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Abstract

This thesis is about the numerical calculation of loop integrals which appear at
higher orders in perturbative theory. Analogous to the reel emission one can in-
troduce subtraction terms which remove the collinear and soft divergencies of a
loop integral. The phase space and the loop integration can then be performed
numerical in single Monte Carlo integration. In this thesis we show how to per-
form such a numerical integration with the help of contour deformation. We also
show how one can calculate the necessary integrands with recurrence relations.

Zusammenfassung

Gegenstand dieser Arbeit ist die nummerische Berechnung von Schleifeninte-
gralen welche in höheren Ordnungen der Störungstheorie auftreten. Analog zur
reellen Emission kann man auch in den virtuellen Beiträgen Subtraktionsterme
einführen, welche die kollinearen und soften Divergenzen des Schleifenintegrals
entfernen. Die Phasenraumintegration und die Schleifenintegration können dann
in einer einzigen Monte Carlo Integration durchgeführt werden. In dieser Arbeit
zeigen wir wie eine solche numerische Integration unter zu Hilfenahme einer Kon-
tourdeformation durchgeführt werden kann. Ausserdem zeigen wir wie man die
benötigeten Integranden mit Rekursionsformeln berechnen kann.
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1 Introduction

Understanding the final states of high energy particle collisions such as those at
the Large Hadron Collider (LHC) is an extremely challenging theoretical problem.
In a typically LHC event hundreds of particles are produced. In general these
produced particles are not the partons from the theory but hadrons.

Parton Distribution Function (PDF) describe how the constituent partons are
distributed in the hadron. At lowest order the PDF describes the probability to
find a parton of a certain species with a certain momentum fraction of the hadron
when a hadron is probed at a certain scale. In an event generator one factorises the
calculation into different regimes, according to the scales of momentum transfer
involved. At the highest scales we have the hard scattering process. The hard
scattering process is a perturbative description of the interacting of two partons
of the hadrons from the incoming beams. The hard process produces a relative
small number of energetic outgoing partons. At the very lowest scale, of the order
1 GeV, we have hadronisation. The outgoing partons interact non-perturbatively
to form the final state hadrons observed in the detector. These soft processes
are modelled. The hard and soft regime are distinct but connected by a scale
evolution which is described by a parton shower. This scale evolution produces
a large number of additional partons which can participate in the hadronisation
at the soft scale. In fig.(1.1) a schematic view of the factorisation is shown.

We now focus on the hard process. At the LHC multi-jet final states play an
important role and therefore a calculation of the matrix element of the hard pro-
cess with a large number of external particles is desirable. At leading order (LO)
multi-jet events are easily modelled. To improve the accuracy of our theoretical
predictions one needs to include higher order corrections in the calculations.

With an increasing number of external particles the next-to-leading order (NLO)
calculations become considerable more difficult. The past decade has seen a
tremendous progress in automated NLO calculations. The state of the art are
2→ 5 process like V +4-jets [29; 30] or e+e−+7-jets [4]. Most groups using either
methods based generalised unitary [26–37] or methods based on traditional Feyn-
man graphs [38]. For both approaches a variety of packages are available [39–47].
A third approach uses numerical Monte Carlo integration for the computation of
the one-loop amplitude. This approach uses local subtraction terms [1–3; 5] and
contour deformation [2; 5–11] to be able to perform the integration purely nu-
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1 Introduction

Figure 1.1: Schematic view of factorisation of hard collisions at hadron colliders.

merical. We note that most recently also a mix of the Feynman graphs approach
and local subtraction was published [49]. In all approaches of NLO multi-parton
calculations the virtual part is the most challenging.

Some subprocess are absent at tree-level such as the gluon fusion to diphoton
subprocess gg → γγ which is an important background process for the new
heavy boson recently discovered at the LHC [48]. Because the basic process only
appears at one-loop level, a NLO prediction of this subprocess requires a two-loop
calculation.

Two-loop calculations are also required in any studies beyond NLO. Going to
the next-to-next-to-leading order (NNLO) in perturbative theory is a promising
way to high precision calculations. NNLO is available for all processes involving
the production of a single vector or Higgs boson at the LHC. Processes with
larger jet multiplicity are almost inexistent. There exits NNLO calculations for
e+e− → 3-jets [50] and most recently published qq̄ → tt̄ [51]. A NNLO matrix
element generator is highly recommended. We expect that at NNLO the two-loop
calculations are the most challenging ones.

To extend the subtraction method to NNLO calculations one needs the sub-
traction terms for the divergent amplitudes, a contour deformation for two-loop
integrals and an efficient method to calculate the two-loop amplitudes. The lat-
ter two are provided by this thesis. At NNLO there existing subtraction schemes
[18–25] for the double-real and the virtual-real contributions. These subtraction
terms render the phase space integration finite in the regions where one or two ex-
ternal particles become soft or collinear. Local subtraction terms for the two-loop
amplitude in the double-virtual contribution are not known yet.
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In this thesis the numerical calculation of loop integrals which appears at higher
orders in perturbative theory is discussed. The purely numerical calculation of
loop integrals with contour deformation is motivated by the so called subtraction
method. We give in chapter 2 a short review of this method which was developed
by various physicist including the author. In chapter 3 we present an efficient
way to construct the integrand of one- and two-loop primitive amplitudes. The
largest space of the thesis is occupied by the numerical integration of loop inte-
grals via contour deformation. Contour deformation is a method (like the name
implies) to deform the integration variables into the complex plane such that
poles in the integrand are avoided and a numerical integration is available. Af-
ter we render the integral finite by subtraction and avoid the poles on the real
axis of the integration variables by contour deformation, we are able to perform
the integration numerically by Monte Carlo techniques. We distinguish two ap-
proaches to the contour deformation. The so called “Feynman deformation” and
the so called “Direct deformation” approach. In the first, one makes use of the
Feynman trick and simplifies the loop integrand by the price of introducing ad-
ditional integration variables, the so called Feynman parameters. This approach
has the advantage of a rather simple deformation of the integration variables,
massive QCD is automatic included and the extension to higher loops is known.
The drawbacks are numerical instabilities for large particle multiplicity due to
the structure of the integrand after Feynman parametrisation. In chapter 4 we
present a detailed construction rule for the Feynman deformation at one-loop
level and methods to overcome the numerical instabilities of this approach. In
the Direct deformation approach one deforms directly the loop momenta without
the detour of Feynman parametrisation. Therefore one does not deal with nu-
merical instabilities but with a much more involved deformation. So far a Direct
deformation was only known at one-loop level and only for massless QCD. In
chapter 5 we give a detailed construction rule for a Direct deformation suitable
for massive QCD. In chapter 6 we discuss the extension of the Direct deformation
to two- and three-loop integrals.

We summarise the outcome of this thesis. Recurrence relations for one- and
two-loop primitive amplitudes are developed. We discuss in detail the Feynman
deformation approach and develop improvements of this approach for processes
with a large particle multiplicity. Furthermore we develop an extension of the
Direct deformation to the massive QCD and we apply this deformation to multi-
loop integrals.

The work in chapter 2 is based on the publications [1; 2; 4–6]. The work in
chapter 3 mainly based on the publication [6], only the content of subsection
3.4 is new and first published here. The work in chapter 4 mainly based on the
publication [5], only the content of subsection 4.3.2 is new and first published
here. The work in chapter 5 and 6 is new and first published here.
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2 The subtraction method

In this chapter we present an efficient method for the numerical calculation of
next-to-leading order (NLO) corrections.

2.1 Introduction

The subtraction method is based on local subtraction terms for the infrared and
ultraviolet divergences of a one-loop amplitude, recursive relations for off-shell
currents and contour deformation. The method is not new and has been dis-
cussed in the literature before. The contour deformation for one-loop amplitudes
was discussed in [9; 11], the infrared subtraction terms were discussed in [3] and
Berends Giele type recurrence relations for off-shell tree level currents were dis-
cussed in [63] and first attempts for recurrence relations at one-loop level were
discussed in [64].

One milestone for an efficient implementation of the subtraction method was
achieved when we recognised that the local infrared subtraction terms can be
formulated at the amplitude level [1; 2]. In [5] we first combined the subtraction
terms with the contour deformation in a suitable way. In the same publication
we presented an efficient way of constructing the local ultraviolet subtraction
terms via recurrence relations and subtraction terms for vertex and propagator
corrections. As a proof of principles we present results for the cross sections in
electron positron annihilation [4]. This was the first time a physical observable
depending on a one-loop eight-point function was calculated. Most recently, we
gave some technical insights into the method [6]. In this publication we discussed
techniques to improve the efficiency of the subtraction method and presented in
full detail the recurrence relations for the one-loop off-shell currents.

In the following we outline the subtraction method. For sake of simplification
we neglect initial state radiation and parton distribution functions for the initial
state partons in the discussion. This corresponds to an electron positron annihi-
lation. But the subtraction method can also be used to calculate cross sections
for hadron hadron collisions.
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2 The subtraction method

2.2 General framework

We want to calculate an observable at higher orders in perturbative theory. The
master formula to calculate an observable at an electron-positron collider is given
by

〈O〉 =
1

K (s)

1

nspin(1)nspin(2)

∑
n

∫
dφnOn (p1, . . . , pn, q1, q2) |An|2 , (2.1)

where q1 and q2 are the momenta of the initial-state particles, 2K(s) = 2s is
the flux factor and s = (q1 + q2)2 is the center of mass energy squared. The
factors 1/nspin correspond to the averaging of the spins of the initial state par-
ticles. dφn is the invariant phase space measure for n final state particles and
On (p1, . . . , pn, q1, q2) is the observable, corresponding to n final state partons and
two initial state particles. The integral is performed over the phase space of the
n external particles.

We are interested in the perturbative expansion of the amplitudes An in the
coupling constant. One can increase the order in the coupling constant by in-
creasing the number of loops or the number of external (unresolved) partons in
the amplitude. The leading-order contribution to a n-jet observable is given by

|An|2LO =
∣∣A(0)

n

∣∣2 (2.2)

At the next-to-leading order (NLO) we have virtual and real contributions

|An|2NLO = 2 Re
(
A(0)∗

n A(1)
n

)
(2.3)

|An+1|2NLO =
∣∣∣A(0)

n+1

∣∣∣2 (2.4)

Here A
(l)
n denotes an amplitude with n final-state partons and l loops. At NLO

level we have to consider two contributions. The virtual contribution contains
the interference term of a Born amplitude with an one-loop amplitude. The
real contribution is given by the square of a Born amplitude with one additional
unresolved final-state parton. The extra parton is unseen in the detector and
corresponds therefore to a collinear or soft configuration. In a condensed nota-
tion we can write the leading and the next-to-leading order contributions to the
observable O in the following form

〈O〉LO =

∫
n

OndσB, (2.5)

〈O〉NLO =

∫
n+1

On+1dσ
R +

∫
n

OndσV . (2.6)

dσB denotes the Born contribution whose matrix elements are given by eq.(2.2),
dσV denotes the virtual contribution whose matrix elements are given by eq.(2.3)
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2.2 General framework

and dσR denotes the real contribution whose matrix elements are given by eq.(2.4).
The individual NLO contributions are divergent only their sum is finite. To be
able to perform the phase-space integration numerically with Monte Carlo meth-
ods one subtracts and adds a suitably chosen piece [65–68].

〈O〉NLO =

∫
n+1

(
On+1dσ

R −OndσA
)

+

∫
n

OndσV +On
∫
1

dσA

 . (2.7)

The subtraction term dσA must match the real contribution in the divergent
regions and must be easily integrable over the unresolved phase space that the
integral can be performed analytically. By construction, the first term on the
right hand side is integrable over the n+ 1-particle phase space and can therefore
be evaluate numerically. The analytic result of the integrated subtraction term
can be written as ∫

1

dσA = I⊗ dσB. (2.8)

The ⊗ notation implies colour correlations due to colour charge operators. The
insertion operator I contains the infrared poles obtained from integrating the real
contribution over the unresolved phase space. These poles are cancelled by the
infrared poles obtained from integrating the virtual contribution over the loop
momentum. So far this is a well established procedure.

In the subtraction method one extends the idea of subtraction to the virtual
part such that a numerical evaluation of the loop integral is possible. For this
purpose we split the renormalised one-loop amplitude into the bare amplitude
and the counter term.

A(1) = A(1)
bare +A(1)

CT (2.9)

The bare contribution involves the one-loop integral

A(1)
bare =

∫
dDk

(2π)D
G(1)

bare (2.10)

where G(1)
bare denotes the integrand of the bare one-loop amplitude. We introduce

local subtraction terms for the divergences of the bare amplitude. With the
subtraction terms eq.(2.9) reads

A(1)
bare +A(1)

CT =
(
A(1)

bare −A
(1)
soft −A

(1)
coll −A

(1)
UV

)
+
(
A(1)

CT +A(1)
soft +A(1)

coll +A(1)
UV

)
(2.11)

where A(1)
soft denotes the subtraction term for the soft divergences, A(1)

coll denotes

the subtraction term for the collinear divergences and A(1)
UV denotes the subtrac-

tion term for the ultraviolet divergences of the bare one-loop amplitude. These

7



2 The subtraction method

subtraction terms match the bare amplitude in the divergent regions in D di-
mensions. Therefore we can integrate the first bracket on the right hand side of
eq.(2.11) in D = 4 dimensions. We introduce the integral representation of the
subtraction terms.

A(1)
soft =

∫
d4k

(2π)4
G(1)

soft, A(1)
coll =

∫
d4k

(2π)4
G(1)

coll, A(1)
UV =

∫
d4k

(2π)4
G(1)

UV

(2.12)

The contribution of the first bracket on the right hand side of eq.(2.11) to the
virtual NLO corrections can be written as∫

2 Re
[
A(0)∗

(
A(1)

bare −A
(1)
soft −A

(1)
coll −A

(1)
UV

)]
Ondφn

=

∫
dφn

∫
d4k

(2π)4
2 Re

[
A(0)∗

(
G(1)

bare − G
(1)
soft − G

(1)
coll − G

(1)
UV

)]
On +O(ε). (2.13)

The integral on the right hand side is finite and contains by construction only
integrable singularities. The integration over the n-particle phase space and the
loop momentum can be performed together with a single Monte Carlo integration.
The subtraction terms have a form that can be integrated analytically over the
loop momentum k. The result can be written as

2 Re
[
A(0)∗

(
A(1)

CT +A(1)
soft +A(1)

coll +A(1)
UV

)]
dφn = L⊗ dσB. (2.14)

The ultraviolet poles of A(1)
CT and A(1)

UV cancel each other. The insertion operator L
contains the poles in the dimensional regularisation parameter ε from the infrared
divergences of a one-loop amplitude. These poles cancel with the infrared poles
from the real emission and therefore we have

(I + L)⊗ dσB = finite. (2.15)

The NLO contribution can be written as a sum of three finite pieces each suitable
for Monte Carlo integration.

〈O〉NLO = 〈O〉NLOreal + 〈O〉NLOvirtual + 〈O〉NLOinsertion (2.16)

The real contribution is

〈O〉NLOreal =

∫
n+1

(
On+1dσ

R −OndσA
)
. (2.17)

The virtual contribution is

〈O〉NLOvirtual =

∫
dφn

∫
d4k

(2π)4
On2 Re

[
A(0)∗

(
G(1)

bare − G
(1)
soft − G

(1)
coll − G

(1)
UV

)]
.(2.18)

8



2.3 Colour decomposition and kinematics

The contribution from the insertion term is

〈O〉NLOinsertion =

∫
n

On (I + L) dσB. (2.19)

We note that the one-loop integration and the phase-space integration in eq.(2.18)
are done in a single Monte Carlo integration. For the sake of completeness we
give the result of the sum of the insertion operator L and the insertion operator
I. In the massless case we have

I + L =
αs
2π

Re

[∑
i

∑
j 6=i

TiTj

(
γi
T2
i

ln
|2pipj|
µ2
UV

− π2

2
θ(2pipj)

)

+
∑
i

(
γi +Ki −

π2

3
T2
i

)
− (n− 2)

2
β0 ln

µ2
UV

µ2

]
+O(ε). (2.20)

In this formula µ is the renormalisation scale and µUV a scale used in the ultra-
violet subtraction terms. In our algorithm we choose µ2

UV purely imaginary with
Im (µ2

UV ) < 0 and therefore µ 6= µUV . Ti denotes the colour charge operator of
particle i. We further have

T2
q = T2

q̄ = CF , T2
g = CA,

γq = γq̄ =
3

2
CF , γg =

1

2
β0,

Kq = Kq̄ =

(
7

2
− π2

6

)
CF , Kg =

(
67

18
− π2

6

)
CA −

10

9
TRNf , (2.21)

β0 is the first coefficient of the QCD β−function and given by

β0 =
11

3
CA −

4

3
TRNf (2.22)

and for the colour factors we have

CA = Nc, CF =
N2
c − 1

2Nc

, TR =
1

2
. (2.23)

2.3 Colour decomposition and kinematics

The subtraction method makes use of the fact that an QCD amplitude can be
decomposes into colour factors and kinematic factors called partial amplitudes
[70–74]. In this section we also define the kinematic of a one-loop amplitude
which we use through out this thesis.

9



2 The subtraction method

p
1

p
2

p
n

p
n−1

k
1

k
n

k
n−1

Figure 2.1: The labelling of the momenta of an one-loop primitive amplitude.
The arrows denote the momenta flow.

At one-loop level one can decompose a partial amplitude further into primitive
amplitudes. We write

A(1) =
∑
j

CjA
(1)
j (2.24)

where the colour structures are denoted by Cj and the primitive amplitudes are

denoted by A
(1)
j . A primitive amplitude is defined as a colour-stripped gauge-

invariant set of Feynman diagrams with a fixed cyclic ordering of the external
partons and a definite routing of the external fermion lines through the diagram
[75].

The subtraction method exploits the properties of primitive amplitudes. The
fixed cyclic ordering of the external partons ensures that only n different propa-
gator occur in the loop, where n is the number of external particles. Therefore
we have to take for the contour deformation only n propagators into account. In
the construction of the infrared subtraction terms the method exploits explicitly
the gauge invariance of primitive amplitudes and the fact that the type of each
propagator in the loop is known, because of the definite routing of the external
fermion lines thru the loop. In the following we focus on a single primitive ampli-
tudes and keep in mind that we can reconstruct the full amplitude out of the the
primitive amplitudes. Therefore we drop the index j in the primitive amplitude
A

(1)
j .

Next we define the notation for a one-loop primitive amplitude A(1) which we
use thru out this thesis. Because of the cyclic ordering only n propagators occur
in the loop. We label the momenta clockwise by p1, p2, . . . , pn and define

qi =
i∑

j=1

qi (2.25)

10



2.4 Subtraction terms

−E
p

+E
p

Figure 2.2: The Feynman boundary conditions predict the direction of the
contour deformation.

The loop momenta are

ki = k − qi (2.26)

For convenience we set

k0 = kn, and q0 = qn. (2.27)

Due to momentum conversation we have

q0 = qn = 0. (2.28)

For the bare contribution of an primitive one-loop amplitude we write

A
(1)
bare =

∫
dDk

(2π)D
G

(1)
bare, G

(1)
bare = Pbare(k)

n∏
i=1

1

k2
i −m2

i + ıδ
. (2.29)

G
(1)
bare is the integrand of the primitive one-loop amplitude. Pbare(k) is a polyno-

mial in the loop momentum k. The +ıδ is the so called Feynman prescription
which follows from Feynman boundary conditions for Green functions. Feyn-
man’s boundary conditions are directly connected to the time ordering of field
operators in the two-point correlation function. For the Klein Gordon theory we
have

〈0|Tφ(x)φ(y)|0〉 = DF (x− y) =

∫
d4p

(2π)4

ı

p2 −m2 + ıδ
e−ıp·(x−y) (2.30)

The Feynman boundary conditions define how to close the integration contour
or in other words in which direction we have to avoid the poles at p2 = m2.
In the chapters 4 to 6 we present methods for a numerical implementation of a
contour deformation predicted by Feynman’s prescription for one- and multi-loop
amplitudes.

2.4 Subtraction terms

In this section we give the results for the infrared subtraction terms and a con-
struction rule for the ultraviolet subtraction terms. For massless QCD the sub-

11



2 The subtraction method

traction terms for an primitive amplitude reads

G
(1)
soft = 4ı

∑
j∈Ig

pj · pj+1

k2
j−1k

2
jk

2
j+1

A
(0)
j (2.31)

G
(1)
coll = 4ı

∑
j∈Ig

[
SjgUV (k2

j−1, k
2
j )

k2
j−1k

2
j

+
Sj+1gUV (k2

j , k
2
j+1)

k2
jk

2
j+1

]
A

(0)
j . (2.32)

The set Ig contains all the gluons circulating in the loop. A
(0)
j is a partial tree

level amplitude. If we take a subset of diagrams which contains gluon j in the
loop and remove gluon j from all these diagrams we get a subset of tree diagrams.
After removing copies of identical diagrams this subset forms the partial tree level
amplitude A

(0)
j . The symmetry factor Sj is 1 if the external particle j is an fermion

and 1/2 if the external particle is an gluon. The factor gUV ensures the collinear
subtraction term is ultraviolet finite. This implies the following properties for the
function

lim
kj−1||kj

gUV (k2
j−1, k

2
j ) = 1, lim

k→∞
gUV (k2

j−1, k
2
j ) = O

(
1

|k|

)
(2.33)

One possible choice is

gUV (k2
j−1, k

2
j ) = 1−

k2
j−1k

2
j

[(k −Q)2 − µ2
UV ]

. (2.34)

The fourvector Q is an arbitrary vector independent from the loop momenta and
we can choose for its value whatever we want. The definition of Q depends on the
method for the contour deformation that we use. In the Feynman deformation
approach discussed in chapter 4 we have

Q =
1

x

n∑
j=1

xiqi, x =
n∑
j=1

xi, (2.35)

where the xi are Feynman parameters. In the Direct deformation approach Q is
not fixed but by applying advanced improvement techniques [6] we set

Q =
1

n

n∑
j=1

qj. (2.36)

in the Direct deformation approach. The arbitrary scale µ2
UV we set purely imag-

inary and with Im (µ2
UV ) < 0. This ensures that the UV-propagator

1

(k −Q)2 − µ2
UV

(2.37)

introduce no additional singularities for the contour deformation. The infrared
subtraction terms are also known for massive QCD [5]. They are formulated at
amplitude level and are proportional to the corresponding Born amplitudes.

12



2.4 Subtraction terms

Analytic integration over the loop momentum yields for the infrared subtraction
terms in massless QCD

S−1
ε µ2ε

∫
dDk

(2π)D
Gsoft = − 1

(4π)2

eεγE

Γ(1− ε)
∑
j∈Ig

2

ε

(
−2pjpj+1

µ2

)−ε
A

(0)
j +O(ε),

S−1
ε µ2ε

∫
dDk

(2π)D
Gcoll = − 1

(4π)2

eεγE

Γ(1− ε)
∑
j∈Ig

(Sj + Sj+1)
2

ε

(
µ2
UV

µ2

)−ε
A

(0)
j +O(ε),

(2.38)

with

Sε = (4π)εe−εγE (2.39)

where γE denotes the Euler-Mascheroni constant, µ denotes the renormalisation
scale in dimensional regularisation and ε is defined by D = 4− 2ε.

The subtraction term for the ultraviolet divergence can be constructed as fol-
lowed. In QCD only vertex and propagator corrections are ultraviolet divergent.
For each such divergent subgraph we construct a subtraction term. If these sub-
traction terms are known for once the full UV subtraction term can be constructed
recursively. The UV subtraction term for a vertex or propagator correction are
obtained by expanding the relevant propagators of the diagram around the ultra-
violet propagator defined in eq.(2.37). For a single propagator we have

1

(k − p)2 −m2
=

1

k̄ − µ2
UV

+
2k̄ · (p−Q)(
k̄2 − µ2

UV

)2 −
(p−Q)2 −m2 + µ2

UV(
k̄2 − µ2

UV

)2

+

[
2k̄ · (p−Q)

]2(
k̄2 − µ2

UV

)3 +O
(

1

|k|5

)
. (2.40)

If we replace the propagators in the vertex or propagators correction for which we
like to construct the subtraction term by these expansion, the resulting expression
matches the original expression in the ultraviolet limit. We can add finite terms to
the subtraction term such that the finite piece of the integrated subtraction term
is independent of Q and has the same prefactor as the 1/ε pole. The integrated
subtraction term have the form

c

(
1

ε
− ln

(
µ2
UV

µ2

))
+O(ε) (2.41)

where c depends on for which vertex or propagator correction we construct the
subtraction term. The form of the integrated subtraction ensures that the sum
of all integrated UV subtraction terms is again proportional to a tree-level am-
plitude.

In this chapter we presented an efficient way for the calculation of observables
at NLO level by extending the idea of subtraction known from the real emission
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2 The subtraction method

part to the virtual part. In the next chapter we discuss an efficient way of
calculating the required amplitudes due method based on recurrence relations.
In the following chapters we discuss the numerical calculation of loop integrals
i.e. contour deformation in full detail.
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3 Recursion relations

In this chapter we illustrate the construction of partial tree-level amplitudes,
one- and two-loop primitive amplitudes and the ultraviolet subtraction term with
Berends-Giele type recurrence relations.

3.1 Introduction

In the final formula eq.(2.17-2.19) of the subtraction method presented in the
previous chapter only amplitudes occur. An efficient method to calculate the
necessary amplitudes is based on recurrence relations. We review the recurrence
method for the tree-level partial amplitudes [63] and for the primitive one-loop
amplitudes [64]. These are the amplitudes needed for the subtraction method
at NLO level. The recurrence relations for the primitive two-loop amplitude are
new and are needed in a future extension of the subtraction method at NNLO
level.

Berends-Giele type recurrence relations build partial tree-level amplitudes from
colour ordered off-shell currents. An off-shell current is an object with n on-shell
legs and one off-shell leg. The momentum of the off-leg is given by the sum of
the momenta of the on-shell legs. Therefore momentum conservation is satisfied.

At tree-level recurrence relations relate off-shell currents with n on-shell legs to
off-shell currents with fewer on-shell legs. At one-loop level the recurrence rela-
tions relate a one-loop off-shell current with n on-shell legs to a tree-level off-shell
current and a one-loop off-shell current with fewer on-shell legs. It is also possible
that the one-loop off-shell current couples directly to the loop. If the one-loop
off-shell current couples directly to the loop we cut one of the propagators and
introduce recurrence relations for off-shell currents with n on-shell legs and two
off-shell legs, where the additional off-shell leg corresponds to the cut loop prop-
agator. We note that the recurrence relations for the one-loop off-shell currents
correctly avoid currents corresponding to diagrams which include an external self
energy.

The generalisation to the two-loop level is almost straightforward. For the mo-
ment we restrict ourself to the calculation of an two-loop amplitude in the lead-

15



3 Recursion relations

ing colour approximation. Therefore only configurations corresponding to planar
diagrams are considered. The recurrence relations at two-loop level correctly
calculate off-shell currents corresponding to the so called bow-tie diagrams. At
two-loop level one needs recurrence relations for one-loop off-shell currents with
n on-shell legs and two off-legs and recurrence relations for tree-level off-shell
currents with n on-shell legs and three off-shell legs. The additional off-shell legs
correspond to cut loop propagators. Again, external self energies are avoided
correctly by the recurrence relations for the two-loop off-shell currents.

For the sake of simplification we use a toy model to discuss the recurrence
relations. For the toy model we choose purely gluonic QCD without the four-
gluon vertex. Therefore only the three-gluon vertex occurs in the calculation.

From an off-shell current one recovers the corresponding on-shell amplitude by
removing the extra propagator, taking the off-shell leg on-shell and contracting
the appropriate polarisation vector.

A(0)
n = ελnµ (pn)ıp2

nJ
µ(0)(1, n− 1) (3.1)

ελµ is the polarisation vector of the gluon corresponding to the polarisation λ. A
(0)
n

is the tree-level partial amplitude corresponding to n external particles. At loop
level we are interested in the integrand of the primitive amplitude A

(l)
n , therefore

we drag the loop integration out of the recurrence relation. We have

G(l)
n = ελnµ (pn)ıp2

nJ
µ(l)(1, n− 1) (3.2)

where G
(l)
n is the integrand of an l-loop primitive amplitude with n external

particles.

A(l)
n =

∫ l∏
i=1

dDk(i)

(2π)D
G(l)
n . (3.3)

In the following discussion we drop the dependence of the off-shell currents from
the loop momenta in the notation.

3.2 Tree-level recursion

At tree-level the recurrence starts for n = 1 and the off-shell current is just the
polarisation vector.

J (0)
µ (m,m) = ελmµ (pm). (3.4)
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3.3 One-loop recursion

The pictorial view of the tree-level recurrence relations is given by

n + 1

n m

=
n−1∑
i=m

i + 1n i m

n + 1

(3.5)

The blob on the left hand side represents the sum of all possible tree-level dia-
grams. On the right hand side we sum over all vertices, in our toy model this is
only the three-gluon vertex, involving the off-shell leg and off-shell currents with
less external legs. In formula this reads

J (0)
µ (m,n) = − ıgµα

(Pm,n)2

n−1∑
i=m

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(0)
β (m, i)J (0)

γ (i+ 1, n)

(3.6)

where V µνρ is the three-gluon vertex in colour ordered Feynman rules, see ap-
pendix A. The momenta Pi,j are defined by

Pi,j = pi + pi+1 + . . .+ pj. (3.7)

3.3 One-loop recursion

At pictorial view of the one-loop recurrence relation is given by

n + 1

n m

=
n−2∑
i=m

i + 1n i m

n + 1

+
n−1∑

i=m+1

i + 1n i m

n + 1

+

n + 1

n m

(3.8)

where the blob with the extra hole on the left hand side represents the sum over all
possible one-loop diagrams. On the right hand side we sum over all possibilities
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3 Recursion relations

to connect the off-shell leg to a tree-level off-shell current and a one-loop off-shell
current, plus the diagram where the off-shell leg connects directly to the loop. If
the off-shell current couples directly to the loop we cut one line in the loop by
introducing pseudo polarisation vectors.

n + 1

n m

=
4∑

a=1

n + 1

n m

s (a)

s (a)

(3.9)

The pseudo polarisation vectors are defined by

gµν =
4∑
i=1

s(i)
µ s

(i)
ν (3.10)

s(0) = (1, 0, 0, 0), s(1) = (0, ı, 0, 0),

s(2) = (0, 0, ı, 0), s(3) = (0, 0, 0, ı). (3.11)

We replace the tensor structure of the line by a sum over pseudo polarisation
vectors. In formula the recurrence relations for the one-loop off-shell current
reads

J (1)
µ (m,n) = − ıgµα

(Pm,n)2

[
n−2∑
i=m

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(0)
β (m, i)J (1)

γ (i+ 1, n)

+
n−1∑

i=m+1

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(1)
β (m, i)J (0)

γ (i+ 1, n)

+
4∑

a=1

V αβγ(−Pm,n,−kn, km−1)s
(a)
β J (0,1)

γ (m,n; a)

]
(3.12)

where the loop momentum is denoted by k. In the last line we introduce the tree-
level off-shell current with one extra off-shell leg J (0,1). The recurrence relations
for J (0,1) are analogous to the tree-level recurrence relations but the recurrence
starts with n = 0 on-shell legs. At the start of the recurrence for J (0,1) we close
the loop which we previously cut and J (0,1) is just the pseudo polarisation vector
times the loop propagator corresponding to the cut line.

J (0,1)
µ (m,m− 1; a) = − ıs

(a)
µ

(km−1)2 (3.13)
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3.4 Two-loop recursion

A pictorial view of the recurrence relation for the tree-level off-shell current with
one extra off-shell leg is given by

n + 1

n m

a

=
n−1∑

i=m−1

i + 1n i m

n + 1
a

(3.14)

and is pretty similar to the normal tree-level recursion relation shown in eq.(3.5).
In formula this reads

J (0,1)(m,n; a) = − ıgµα
k2
n

n−1∑
i=m−1

V αβγ(kn,−ki, Pi+1,n)J
(0,1)
β (m, i; a)J (0)

γ (i+ 1, n).

(3.15)

We note that in the recurrence relations eq.(3.8) and eq.(3.12), only one-loop off-
shell currents with at least two on-shell particles are connected to the off-shell leg
and therefore diagrams with external self energies do not contribute. One would
also produce an external self energy diagram if in eq.(3.14) and eq.(3.15) the tree-
level off-shell current connected to the tree-level off-shell current with one extra
off-shell leg contained n − 1 on-shell legs where n is the number of the external
particles of the considered amplitude. In this case we set the corresponding tree
level off-shell current to zero.

3.4 Two-loop recursion

If we connect two lines circulating in an one-loop diagram by another line the
result is obviously a planar two-loop diagram. We call this connecting line the
internal loop line. To get all planar two-loop diagrams one takes all possible one-
loop diagrams with all possible connections of internal loop lines. What is left
are the diagrams where the two loops are separated by tree-level type diagrams.
These are the so called bow-tie diagrams.

The pictorial view of the recurrence relations for the two-loop off-shell current
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3 Recursion relations

is given by

n + 1

n m

=
n−2∑
i=m

i + 1n i m

n + 1

+
n−1∑

i=m+1

i + 1n i m

n + 1

+
n−2∑

i=m+1

i + 1n i m

n + 1

+

n + 1

n m

(3.16)

where the blob on the left hand side represents the sum over all planar two-loop
diagrams. On the right hand side we sum over all possibilities to connect the
off-shell leg to a tree-level off-shell current and a two-loop off-shell current or to
two one-loop off-shell currents, plus the diagram where the off-shell leg connects
directly to the loop. The recurrence relations for the two-loop off-shell currents
take the bow-tie diagrams where the two loops are separated by a tree-level
diagram into account. Analogously to the one-loop recurrence relations we cut a
loop line by introducing pseudo polarisation vectors.

n + 1

n m

=
4∑

a=1

n + 1

n m

s (a)

s (a)

(3.17)

In formula the two-loop off-shell recurrence relations reads

J (2)
µ (m,n) = − ıgµα

(Pm,n)2

[
n−2∑
i=m

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(0)
β (m, i)J (2)

γ (i+ 1, n)

+
n−1∑

i=m+1

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(2)
β (m, i)J (0)

γ (i+ 1, n)

+
n−2∑

i=m+1

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(1)
β (m, i)J (1)

γ (i+ 1, n)

+
4∑

a=1

V αβγ(−Pm,n,−k(1)
n , k

(1)
m−1)s

(a)
β J (1,1)

γ (m,n; a)

]
(3.18)
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3.4 Two-loop recursion

where the loop momenta are denoted by k(1) and k(2). In the last line we introduce
the one-loop off-shell current with one extra off-shell leg J (1,1). The pictorial view
of the recurrence relation for J (1,1) is given by

n + 1

n m

a

=
n−1∑

i=m−1

i + 1n i m

n + 1
a

+
n−2∑

i=m−1

i + 1n i m

n + 1
a

+

n + 1

n m

a

(3.19)

which is analogous to the recurrence relation for the one-loop off-shell current
J (1). In the last diagram on the right hand side of eq.(3.19) we cut the second
loop line by introducing pseudo polarisation vectors. This second cut corresponds
to the cut of the internal loop line whose momentum is given by k(1) − k(2).

n + 1

n m

a

=
4∑
b=1

n + 1

n m

s (b)

s (b)

a

(3.20)

In formula the recurrence relations for the one-loop off-shell current with one
extra leg reads

J (1,1)
µ (m,n; a) = − ıgµα(

k
(1)
n

)2

[
n−1∑

i=m−1

V αβγ(k(1)
n ,−k(1)

i , Pi+1,n)J
(1,1)
β (m, i; a)J (0)

γ (i+ 1, n)

+
n−1∑

i=m−1

V αβγ(k(1)
n ,−k(1)

i , Pi+1,n)J
(0,1)
β (m, i; a)J (1)

γ (i+ 1, n)

+
4∑
b=1

V αβγ(k(1)
n ,−k(2)

n , k(2) − k(1))s
(b)
β J

(0,2)
γ (m,n; a, b)

]
(3.21)

In the last line of eq.(3.21) we introduce the tree-level off-shell current with two
extra off-shell legs J (0,2). A pictorial view of the recurrence relation for J (0,2) is
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3 Recursion relations

given by

n + 1

n m

ab

=
n−1∑

i=m−1

i + 1n i m

n + 1
ab

+

n + 1

n m

a
b

(3.22)

which is the normal tree-level recurrence relation plus the diagram where we close
one of the loops. In formula this reads

J (0,2)
µ (m,n; a, b) = − ıgµα(

k
(2)
n

)2

[
n−1∑

i=m−1

V αβγ(k(2)
n ,−k(2)

i , Pi+1,n)J
(0,2)
β (m, i; a)J (0)

γ (i+ 1, n)

− ı

(k(2) − k(1))
2V

αβγ(k(2)
n , k(1) − k(2),−k(1)

n )s
(b)
β J

(0,1)
γ (m,n; a)

]
(3.23)

The recurrence relation for the remaining tree-level off-shell current with one
extra off-shell leg J (0,1) was defined in the previous section. We note that for the
new objects J (0,2) or J (1,1) no extra recurrence start conditions are needed.

To avoid diagrams corresponding to external self energies in eq.(3.16) and
eq.(3.19) we connect the off-shell leg only with one- and two-loop off-shell cur-
rents with at least two on-shell legs. Furthermore we set the one-loop off-shell
current in eq.(3.19) and the tree-level off-shell current in eq.(3.22) to zero if these
currents contain n − 1 on-shell legs where n is the number of external particles
of the considered amplitude, to avoid external self energy diagrams.

3.5 UV-subtraction recursion

In this section we discuss the recursive calculation of the subtraction term for
the ultraviolet divergences. The calculation is based on a tree-level recurrence
relation where we insert the local subtraction terms for the divergent vertex and
propagator corrections at the right spots. Therefore the calculation works along
the lines of the calculation of counter terms in renormalisation theory with the
difference that our subtraction terms are local in the loop momentum. The
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3.6 Full QCD recursion

pictorial view of the recurrence relations for the UV subtraction term is given by

n + 1

n m

=
n−2∑
i=m

i + 1n i m

n + 1

+
n−1∑

i=m+1

i + 1n i m

n + 1

+
n−1∑
i=m

i + 1n i m

n + 1

+

n + 1

n m

(3.24)

where the cross represent ultraviolet divergent subgraphs. In formula this reads

J (UV )
µ (m,n) = − ıgµα

(Pm,n)2

[
n−2∑
i=m

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(0)
β (m, i)J (UV )

γ (i+ 1, n)

+
n−1∑

i=m+1

V αβγ(−Pm,n, Pm,i, Pi+1,n)J
(UV )
β (m, i)J (0)

γ (i+ 1, n)

+
n−1∑
i=m

SαβγV (−Pm,n, Pm,i, Pi+1,n)J
(0)
β (m, i)J (0)

γ (i+ 1, n)

+ SαβP (Pm,n)J
(0)
β (m,n)

]
(3.25)

where we introduce the local subtraction terms for the vertex corrections SαβγV

and the propagator corrections SαβP . We note that there are subtraction terms
for the leading and the sub-leading colour contributions of the vertex and propa-
gator corrections separately. Which subtraction term we insert in the recurrence
relation depends on the considered primitive amplitude.

Because in our calculation no external self energies occur we set the tree-level
current in last diagram on the right hand side in eq.(3.24) to zero if it contains
n − 1 on-shell legs where n the total number of on-shell legs of the primitive
amplitude is.

3.6 Full QCD recursion

In this section we provide the reader with guiding principles to extend the recur-
rence relations of the previous sections to full QCD.
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3 Recursion relations

In full QCD we have to add diagrams to the gluon off-shell currents which
corresponds to diagrams where the off-shell leg couples via a four-gluon vertex
to the off-shell currents. For the gluon tree-level recurrence relations we get
additional four-gluon contributions, for example

n + 1

n m

=
n−2∑
i=m

n−1∑
j=i+1

i + 1n i m

n + 1

jj + 1

+ . . . (3.26)

If an gluon off-shell current couples directly to the loop we add a diagram where
the gluon splits into two ghost lines. Because the ghost propagator contains no
non-trivial tensor structure we need no pseudo polarisation vectors for the cut of
a ghost line. We note that to reproduce the correct integrand of the primitive
amplitude one has to sum over both contributions given by the direction of the
fermion flow, right and left with respect to the ghost loop. For the gluon one-loop
off-shell current we get the additional ghost contributions to the one-loop gluon
off-shell current.

n + 1

n m

=

n + 1

n m

+

n + 1

n m

+ . . . (3.27)

In full QCD we have to consider fermion currents. Similar to the gluon currents
one can write down recurrence relations for the quark and antiquark currents [6].
At tree-level with only a single fermion line we have for the quark current

n + 1

n mm + 1

=
n−1∑
i=m

i + 1n i m

n + 1

m + 1

(3.28)

and for the antiquark current we have
n + 1

n mn−1

=
n−1∑
i=m

i + 1n i m

n + 1

n−1

(3.29)
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3.6 Full QCD recursion

In formula the recurrence relation for the quark current reads

Ū (0)(m,n) = ı
n−1∑
i=m

Ū (0)(m, i)V µ
qgq̄J

(0)
µ (i+ 1, n)

/Pm,n

P 2
m,n

(3.30)

and for the antiquark current

V (0)(m,n) = −ı
/Pm,n

P 2
m,n

ı
n−1∑
i=m

V µ
qgq̄J

(0)
µ (m, i)V (0)(i+ 1, n) (3.31)

where Vqgq̄ denotes the colour ordered quark gluon vertex. We note that the
objects Ū (0), V (0), Vqgq̄ and /P are matrices in Dirac space and their positions in
the formula are relevant. The recurrence starts at

Ū (0)(m,m) = ū(pm), V (0)(m,m) = v(pm). (3.32)

The partial amplitude corresponding to a fermion off-shell current is recovered
by removing the extra fermion propagator, taking the off-shell leg on-shell and
contracting from the right with an antiquark spinor in the case of a quark current
and otherwise contracting from the left with a quark spinor.

A(0)(1q, 2, . . . , n− 1, nq̄) = ıŪ (0)(1, n− 1)/pnv(pn)

= −ıu(p1)/p1
V (0)(2, n) (3.33)

If we want to calculate the integrand of an primitive amplitude including fermions
it can be necessary to cut a fermion line. To this end we rewrite the numerator
of an off-shell fermion propagator as the sum of two on-shell contributions and
express these on-shell contributions by corresponding Dirac spinors.

/k = /k
[
+

k2

2k · q /
q, k[ = k − k2

2k · q
q (3.34)

where q is an arbitrary light-like vector. k[ is by construction light-like and we
can replace the complicated tensor structure again in our calculation by a simple
polarisation sum

/k
[

=
∑
λ=±

u(k[, λ)ū(k[, λ), /q =
∑
λ=±

u(q, λ)ū(q, λ). (3.35)

With the recurrence relations present in this chapter all tools for an efficient im-
plementation of partial/primitive amplitudes up to two-loop level and the local
subtraction terms for the one-loop primitive amplitude are provided. We expect
that the local subtraction terms for an two-loop primitive amplitude can be con-
structed similarly but the local subtraction terms for the vertex and propagator
corrections at two-loop level are not known yet.
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4 Feynman deformation

In this chapter we discuss the numerical integration of an one-loop integral avoid-
ing threshold singularities by deforming integration variables into the complex
plane. In this chapter we dicuss an method based on Feynman parametrisation.

4.1 Introduction

If we calculate higher order corrections, different kinds of singularities occur, at
different steps of the calculation. In chapter 2 we have seen that already in
next-to-leading order (NLO) calculations singularities occur. A one-loop integral
contain in general ultraviolet (UV) and infrared (IR) singularities. Integration
over the unresolved phase space of a massless particle also leads to IR singularities.
And there exist integrable singularities where one or more propagator in the loop
go on-shell, these singularities we call threshold singularities. The IR and UV
singularities can be regularised by dimensional regularisation, such that they
appear as poles in 1/ε. If we combine all higher order calculations to a physical
observable all the 1/ε poles are cancelled order by order. By renormalisation of
the parameters in the Lagrangian of our theory one can deal with the UV poles
and the Kinoshita, Lee, Nauenberg (KLN) theorem [53; 54] tells us that the IR
poles from the real emission cancel with the IR poles from the loop integrals.

However one has to extract the poles before these cancellations can be per-
formed. In the method presented in this thesis we do this by subtraction, in the
sense that we construct local subtraction terms which match our original compli-
cated integrand in the IR and UV limit. The 1/ε poles of these subtraction terms
are easily calculable. In a loop calculation after subtraction one can introduce
Feynman parameters to simplify the denominator structure and perform the loop
and Feynman parameter integration numerically.

As a further motivation for the numerical calculation of Feynman parameter
integrals we would like to mention a method called Sector decomposition [55–57].
In this method one factorises the 1/ε poles from a complicated multi parame-
ter integral such that one can easily extract the poles. For example in a multi
loop integral one can introduce Feynman parameters such that one can perform
the loop integration analytically, then use Sector decomposition to factorise the
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poles and extract them. The remaining Feynman parameter integral can then be
performed numerically [58].

In both methods, after one removed the IR and UV poles, one still has to deal
with integrable threshold singularities. Even these singularities are integrable
they lead to numerical instabilities. But one can avoid these singularities by
deforming the integration contour into the complex plane. The direction of the
deformation is defined by Feynman’s +iδ prescription.

The method of contour deformation for a numerically loop integration was
first introduced in [7] and later on it has been refined in different ways to be
applied to one-loop [4; 5; 8–13] and to two-loop [14–17] calculations. In all
these methods one deforms the integration contour by adding a purely imaginary
functions to the real integration variables, xi → x̃i := xi + ifi(x), where xi can
be a Feynman parameter or a component of a loop momenta. When deforming
the integration contour in this way we make use of the multidimensional version
of Cauchy’s theorem which is widely used in one dimension. A simple proof of
the multidimensional version of Cauchy’s theorem is given in [7].

We combined the subtraction method presented in chapter 2 with contour
deformation. Here we discuss the method where we parametrise our one-loop in-
tegral with Feynman parameters after subtraction of the IR and UV singularities.
The introduction of Feynman parameters simplifies the denominator enormously
and the contour deformation is rather simple. But there are also drawbacks. We
investigate that for a high jet multiplicity, non-leading Landau singularities lead
to numerical instabilities. An important part of this chapter is the discussion of
improving the numerical stability of the Monte Carlo integration. It is likely that
some of these improvements also work for the Feynman parameter integral which
occur in the method based on Sector decomposition but this is not tested in this
thesis.

4.2 General framework

In chapter 2.2 we discussed the subtraction method. After we subtracted out
the UV and IR singularities from our one-loop integral we still cannot simply
integrate the real loop momenta kµ from minus infinity to plus infinity, because
along the real axis one or more propagators can be on shell. As long as these sin-
gularities are not pinched we can avoid them by deforming the integration into
the complex plane. Pinched singularities either correspond to IR singularities
and are treated with the corresponding subtraction terms or integrable singular-
ities. The contour deformation is not unique. There are many different choices
which deform the contour correctly. The problem is to find a deformation which
is suitable for Monte Carlo integration. Most deformations will lead to large
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cancellations in different integration regions and therefore to large Monte Carlo
errors. We construct a numerically stable deformation by the following steps.

First we introduce Feynman parameters as additional integration variables.
This transforms the n singular region of the n propagators into a single region.
For this single region a deformation of the loop momentum k can be easily done.

Secondly we have to deform the Feynman parameters into the complex plane
because for vanishing loop momentum the deformation of the loop momentum
vanishes too. The deformation of the Feynman parameters vanishes whenever
Landau’s equations [60] are satisfied.

Thirdly we have to introduce some techniques to improve numerical stability.
The complete deformation vanishes when the loop momentum is zero and Lan-
dau’s equations are satisfied for the Feynman parameters. For a large number of
external particles this leads to numerical instabilities. The disadvantage of the
Feynman parameter approach is that the power of the denominator rises linearly
with the number of external particles. Therefore a singularity with nsing < n
on-shell propagators is enhanced by Feynman parametrisation and leads to nu-
merical instabilities for large n, where n is the number of external particles. To
improve the numerical behaviour we expand our propagators around some small
purely imaginary mass. To improve stability further we split the integration into
different integration channels and choose for each channel a certain mapping of
the Feynman parameters to “flatten” the integrand.

With the subtraction method one can write the integrand of the one-loop am-
plitude after we apply the local subtraction terms in the following way

G
(1)
bare −G

(1)
soft −G

(1)
coll −G

(1)
UV =

P (k)
n∏
j=1

(k2
j −m2

j + ıδ)
+

PUV (k)

(k̄2 − µ2
UV + ıδ)nUV

(4.1)

with

kj = k − qj, qj =

j∑
a=1

pa and k̄ = k −Q, (4.2)

where P (k) and PUV (k) are polynomials in the loop momenta k and the pa’s are

the momenta of the external particles. Q and µUV are free parameters. G
(1)
bare and

G
(1)
soft only contributes to the first term, G

(1)
UV only contributes to the second term

and G
(1)
coll contributes to both terms in eq.(4.1). The real integer nUV is defined

by the UV behaviour of the bare one-loop amplitude and is chosen such that
the subtracted integrand decrease at least like 1/|k|5 for large |k|. In the second
term on the right hand side of eq.(4.1) singularities only occur on the single cone
k̄2 − µ2

UV = 0 and are therefore easy to handle. Further we choose µ2
UV purely
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imaginary, by doing this we move the singular region of the UV propagator away
from the integration contour.

In the construction of the contour deformation we only have to take into account
the n physical propagators. We rewrite the above integrand into simpler form

P (k)
n∏
j=1

(k2
j −m2

j + ıδ)
+

PUV (k)

(k̄2 − µ2
UV + ıδ)nUV

=
R(k)

n∏
j=1

(k2
j −m2

j + ıδ)
(4.3)

where

R(k) = P (k) + PUV (k)

n∏
j=1

(k2
j −m2

j + ıδ)

(k̄2 − µ2
UV + ıδ)nUV

. (4.4)

4.2.1 Feynman integrals

For the contour deformation we consider a Feynman integral of the following form

I =

∫
d4k

(2π)4

R(k)
n∏
i=1

(k2
i −m2

i + ıδ)
, (4.5)

where the numerator function R(k) is a polynomial in the loop momentum k.
The integral above corresponds to a one-loop amplitude with n external particles.
The +ıδ prescription indicates the direction of the deformation. In the next step
we introduce Schwinger parametrisation. Then we deform the loop momentum
and the Schwinger parameters into the complex plane. One could start directly
with Feynman parameters but the detour with Schwinger parameters has certain
advantages. First we can close the contour at plus infinity and can therefore
neglect boundary terms. Secondly, we do not have to deal with a delta distribution
in the integrand and therefore the correct Jacobian is easier to calculate. After
the deformation we integrate out one Schwinger parameter and get an equivalent
formula to the Feynman parametrisation. With a certain mapping of the Feynman
parameters we avoid the integration over the delta distribution such that the
integral is suitable for numerical integration.

We now introduce Schwinger parametrisation. Assume that A and δ are real
numbers, then we have

1

A± ıδ
= ∓ı

∞∫
0

dte±ıt(A±ıδ). (4.6)

We note that we do not perform any algebraic manipulation of the numerator
function in eq.(4.5). To simplify the notation we set the numerator to 1 and
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neglect the +ıδ prescription for the moment. We rewrite the integrand of a
scalar n point function with the help of the Schwinger parametrisation.

1
n∏
i=1

(k2
i −m2

i )
= (−ı)n

∫
dnt exp

{
ı

n∑
i=1

ti
(
k2
i −m2

i

)}
(4.7)

We introduce the matrix

Sij = (qi − qj)2 −m2
i −m2

j (4.8)

which depends only on the kinematic variables of the external particles. With
this matrix we can write the argument of the exponential function in eq.(4.7) in
the following form.

n∑
i=1

ti
(
k2
i −m2

i

)
= t

(
k − 1

t

n∑
i=1

tiqi

)2

+ F(t1, . . . , tn), (4.9)

where

t =
n∑
i=1

ti and F(t1, . . . , tn) =
1

2t

n∑
i,j=1

tiSijtj. (4.10)

In the next step we deform the loop momentum k into the complex plane such
that we always have a positive imaginary part in eq.(4.9). We set

kµ = k̃µ + ıgµν k̃
ν +

1

t

n∑
i=1

tiq
µ
i (4.11)

where gµν is the well known metric tensor g = diag(1,−1,−1,−1). The Jacobian
is ∣∣∣∣∂kµ∂k̃ν

∣∣∣∣ = −4ı (4.12)

Inserting eq.(4.11) into eq.(4.9) we have

n∑
i=1

ti
(
k2
i −m2

i

)
= 2ıtk̃ ◦ k̃ + F(t1, . . . , tn), (4.13)

where k̃ ◦ k̃ denotes the Euclidean scalar product of the real loop momentum k̃.
For k̃ equal zero the imaginary part in eq.(4.13) vanishes. The function F(t) can
be zero, too. To avoid these singularities we deform the Schwinger parameters
into the complex plane. The direction is indicated by Feynman’s +ıδ rule. A
convenient ansatz is

ta = t̃a + ıλt̃a
∂F(t̃1, . . . , t̃n)

∂t̃a
, (4.14)
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Im(t
a
)

Re(t
a
)

Figure 4.1: The integration contour of the Schwinger parameters is closed at
zero and at infinity. The integration at infinity does not contribute to the integral.

where the t̃a are real and positive. The contour is closed at the points t̃a = 0 and
at infinity. Writing the function F in terms of the new variables and expanding
it for infinitesimal small λ we get

F(t1, . . . , tn) = F(t̃1, . . . , t̃n) + ıλ
n∑
j=1

t̃j

(
∂F(t̃1, . . . , t̃n)

∂t̃j

)2

+O(λ2). (4.15)

The function F acquires a positive imaginary part of order λ. Therefore the
deformation always points in the given direction. The only requirement is that
the deformation starts in the right direction and never cross any poles by vary λ
from zero to it’s final value. The size of the scaling parameter λ will be determined
later in this section.

In the next step we integrate out one variable and rewrite eq.(4.7) into the usual
form known from introducing Feynman parameter. We note that with eq.(4.11)
the loop momentum kµ is homogeneous of degree 0 in the Feynman parameters
ti. Therefore the numerator function R(k) is also homogeneous of degree 0 in the
Feynman parameters ti. The complex Feynman parameters ti as functions of the
real Feynman parameters t̃1, . . . , t̃n are homogeneous of degree 1. The Jacobian
J of the Feynman parameter deformation

J(t̃) =

∣∣∣∣∂ti∂t̃j

∣∣∣∣ (4.16)

is a homogeneous function of degree 0 in the variables t̃1, . . . , t̃n and is calculated
numerical. Let L(k̃; t̃1, . . . , t̃n) be a homogeneous function of degree 1 in the
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variables t̃1, . . . , t̃n. Then we integrate out one variable∫
dnt̃e(ıL(k̃;t̃1,...,t̃n)) =

∫
dnt̃

∫
dt̂ δ

(
t̂− t̃

)
e(ıL(k̃;t̃1,...,t̃n))

=

∫
dnx̃ δ (1− x̃)

∫
dt̂ t̂n−1e(ıt̂L(k̃;x̃1,...,x̃n))

= Γ(n)

∫
dnx̃ δ (1− x̃)

(
−ıL(k̃; x̃1, . . . , x̃n)

)−n
(4.17)

with the substitution t̃i = t̂x̃i. The deformation for the variables xi reads analo-
gously

xi = x̃i + ıλx̃i
∂F(x̃1, . . . , x̃n)

∂x̃i
(4.18)

Putting everything together we arrive at

I = 4Γ(n)

∫
d4k̃

(2π)4ı

∫
dnx̃δ(1− x̃)F (k̃; x̃1, . . . , x̃n) (4.19)

with

F (k̃; x̃1, . . . , x̃n) =
J(x̃1, . . . , x̃n)R(k̃)

L(k̃; x̃1, . . . , x̃n)n
(4.20)

and

L(k̃; x̃1, . . . , x̃n) = 2ıxk̃ ◦ k̃ + F(x1, . . . , xn). (4.21)

Eq.(4.19) is the standard formula for Feynman parametrisation supplemented
with the correct Jacobian corresponding to the deformation eq.(4.14) and eq.(4.18).
But the integral in eq.(4.19) is still not suitable for a numerical integration. We
have to replace the integration over the (n−1)-dimensional simplex by an integra-
tion over a n-dimensional hyper-cube [0, 1]n. This is discussed in the Appendix
B. Furthermore we have to find a suitable mapping of the real loop momentum
k̃ such that we can replace the integration over the R4 by a integration over the
4-dimensional hyper-cube [0, 1]4. This is also discussed in the Appendix B.

4.2.2 Scaling of the deformation

In this subsection we discuss the definition of the scaling parameter λ. In the pre-
vious subsection we already saw that our deformation always points into the right
direction. Because we want deform as far as possible away from the singularities
we have to choose λ as large as possible by not crossing any poles. Therefore we
have to consider also higher orders in λ in the calculation.
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First we write down the sum of all Feynman parameters explicitly.

x = x̃+ ıλ
n∑
i=1

x̃i
∂F
∂x̃i

(4.22)

= x̃+ ıλ
1

2x̃

n∑
i,j=1

x̃iSijx̃j (4.23)

were we use

∂F
∂x̃i

=
1

x̃

n∑
j=1

Sijx̃j −
1

2x̃2

n∑
j,k=1

x̃jSjkx̃k. (4.24)

We are interested in the imaginary part of the denominator in eq.(4.19). We
observe that x is never zero. Therefore it is unproblematic to multiply the de-
nominator function L with x. In following discussion the definition

ṽi =
n∑
j=1

Sijx̃j (4.25)

is helpful. The imaginary part of xL reads

Im(xL) = Im

(
2ıx2k̃ ◦ k̃ +

1

2

n∑
i,j=1

xiSijxj

)

= 2k̃ ◦ k̃

x̃2 −

(
λ

2x̃

n∑
i=1

x̃iṽi

)2


+
λ

2x̃2

n∑
i,j=0

x̃i
(
(ṽi − ṽj)2 + ṽiṽj

)
x̃j (4.26)

We observe that the second term on the right hand side of eq.(4.26) is always
positive. Considering the first term on the right hand side of eq.(4.26) a reasonable
choice for λ is

λ =
1.8x̃√
n∑
i=1

ṽ2
i

(4.27)

With this choice of λ we ensure that eq.(4.26) is always positive and we observe
a good numerical behaviour of the integral. We note that λ is a homogeneous
function of degree 0 in the Feynman parameters.
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4.2.3 Deformation for the UV propagator

We now discuss the impact of the contour deformation developed so far on the
UV subtraction term in eq.(4.3). We have

IUV =
PUV

(k̄2 − µ2
UV )nUV

(4.28)

with

k̄µ = kµ −Qµ. (4.29)

We have to ensure that the imaginary part of the UV propagator is always posi-
tive. For the arbitrary fourvector Qµ we can make the choice

Qµ =
1

x

n∑
i=1

xiq
µ
i . (4.30)

Since the Feynman parameters xi are complex the fourvector Qµ is also complex.
Consider the deformation of the loop momentum in eq.(4.11) we have for the UV
propagator

k̄2 − µ2
UV = 2ık̃ ◦ k̃ − µ2

UV . (4.31)

The Euclidean norm k̃ ◦ k̃ is always positive. By setting µ2
UV purely imaginary

with Im(µ2
UV ) < 0 we ensure that the UV propagator is never zero.

4.3 Improving the numerical stability

In the next section we discuss problems connected to the numeric stability of the
integrand which arise at a high multiplicity of external particles. The origins of
these instabilities are integrable singularities which are enhanced due to Feynman
parametrisation. To improve numerical stability we present two approaches. First
we introduce an artificial small mass into the denominator to avoid the integrable
singularities and expand the denominator around this small parameter. Secondly
we decompose the integration into different regions and choose for each region a
certain coordinate system such that the integrand gets flattened.

Let us discuss under which conditions the denominator in eq.(4.19) vanishes.
We write the denominator in first order of λ.

L(k̃; x̃1, . . . , x̃n) = 2ıx̃k̃ ◦ k̃ + F(x̃1, . . . , x̃n) +O(λ) (4.32)

Then the necessary (but not sufficient) conditions for a vanishing denominator
are given by the Landau equations [60]. We have

∂L

∂k̃
= 0 (4.33)
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and

x̃i = 0 (4.34)

or

∂F
∂x̃i

= 0 (4.35)

for all i ∈ {1, . . . , n}. Since ∂L/∂k̃ = 0, the condition ∂F/∂x̃i = 0 is equivalent to
the condition ∂L/∂x̃i = 0 i.e. according to the definition eq.(4.21) and eq.(4.13)

k2
i −m2

i = 0. (4.36)

We note that with eq.(4.15) the imaginary part up to order λ of the denominator
vanishes if the Landau equations are fulfilled.

We come back to the discussion of the numerical instabilities. Consider now
that eq.(4.33) is fulfilled. Furthermore we have a subset M ⊂ {1, . . . , n} of nsing
elements. If eq.(4.35) is fulfilled for all i ∈ M and eq.(4.34) is fulfilled for all
i ∈ {1, . . . , n}\M , Landau’s equations are fulfilled. For nsing < n this is called a
non-leading Landau singularity. In the final formula the denominator appear to
the power n. But we have shown that only if eq.(4.35) is fulfilled the corresponding
singularity corresponds to the underlying physical configuration i.e. a physical
propagator goes on-shell. Therefore only nsing powers are physical and the other
n − nsing powers are artificially introduced by the Feynman parameters. These
extra unphysical powers are compensated in an analytic integration over the
Feynman parameters in the directions corresponding to {1, . . . , n}\M . However,
the integration is done numerically with Monte Carlo methods. Therefore we
observe numerical instabilities for large n in regions were the function L is close
to zero.

One can think about reducing the power n to which the function L is raised.
We have discussed this approach in [5] but it turnes out that this approach is
not sufficient for a numerical implementation, because in this approach we add
up terms of equal order with alternating signs which lead to a large Monte Carlo
error. Therefore we discuss in the following two other approaches to improve the
numerical stability.

4.3.1 Infrared mass approach

To avoid that the denominator function L gets close to zero we introduce a small
mass parameter µ2

IR, with µ2
IR purely imaginary and Im(µ2

IR) < 0. A Taylor
expansion leads to the identity

L−n = (L− xµ2
IR)−n

1

Γ(n)

∞∑
nIR=0

Γ(nIR + n)

Γ(nIR + 1)

(
−xµ2

IR

L− xµ2
IR

)nIR
. (4.37)
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The definition above of the parameter µ2
IR ensures that

Im(L− xµ2
IR) > 0 (4.38)

It follows that the expression L− xµ2
IR is never zero.

Because L has positive imaginary part at leading order in λ we have∣∣∣∣ −xµ2
IR

L− xµ2
IR

∣∣∣∣ ≤ 1. (4.39)

Therefore, the sum on the right hand side of eq.(4.37) converges until L = 0 but
then the expression on the left side is ill defined anyway. So we can truncate the
series at order NIR and calculate each single summand with a single Monte Carlo
integration. We have

L−n ≈ (L− xµ2
IR)−n

1

Γ(n)

NIR∑
nIR=0

Γ(nIR + n)

Γ(nIR + 1)

(
−xµ2

IR

L− xµ2
IR

)nIR
. (4.40)

We replace the critical expression L−n by the expression (L−xµ2
IR)−n−nIR which

is never zero. This improves numerical stability significantly.

We can improve numerics by performing the following replacement

L−n = L−n

[(
L

L− xµ2
IR

)n ∞∑
i=0

c
(n)
i

(
−xµ2

IR

L− xµ2
IR

)]MIR

(4.41)

with

c
(n)
i =

Γ(i+ n)

Γ(n)Γ(i+ 1)
. (4.42)

For MIR = 1 this is again the identity eq.(4.37). We then make use of the well
known identity

∞∑
i=0

ai

∞∑
j=0

bi =
∞∑
i=0

i∑
j=0

ajbi−j (4.43)

to obtain

L−n = L−n
(

L

L− xµ2
IR

)nMIR ∞∑
iMIR

c̃
(n)
iMIR

(
−xµ2

IR

L− xµ2
IR

)iMIR
(4.44)

where the coefficients c̃i are recursively defined by

c̃
(n)
ij

=

ij∑
ij−1=0

c̃
(n)
ij−1

c
(n)
ij−ij−1

(4.45)
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and the recursion starts with j = 1

c̃
(n)
i1

= c
(n)
i1
. (4.46)

We truncate the series again at NIR and get the final result

L−n =
Ln(MIR−1)

(L− xµ2
IR)

nMIR

NIR∑
iMIR

c̃
(n)
iMIR

(
−xµ2

IR

L− xµ2
IR

)iMIR
(4.47)

The replacement of the original expression L−n depends on three parameters,
NIR,MIR and µIR which we can use to control the quality of our approximation.

4.3.2 Splitting of the integration regions

In this section we discuss a method which is based on the decomposition of
the integration region into different sectors. This approach is inspired by the
algorithm called “Sector Decomposition” which is a constructive method to isolate
divergences from parameter integrals. But the method discussed in this section
should not be confused with the usual “Sector Decomposition”.

We define a splitting of the integration region by choosing k < n ordered
according to size Feynman parameters out of the n Feynman parameters from
the Feynman integral.

x̃i1 > . . . > x̃ik > {x̃ik+1
, . . . , x̃in} (4.48)

We have n over k possibilities to choose k out of n parameters and k! possibilities
to order these k parameters. Therefore we split the original integration region
into n!/(n− k)! regions.

The Monte Carlo generator provides us with n random numbers.

v1, . . . , vn ∈ [0, 1) (4.49)

In the following we discuss how to map these random numbers to the Feynman
parameter of a certain integration region eq.(4.48). We choose the mapping such
that the corresponding Jacobian almost has the form of the imaginary part of
the denominator function (L−xµ2

IR). If (L−xµ2
IR) is close to zero the integrand

becomes flat because of the Jacobian. To ease up notation we discuss only the
mapping for a certain region. The Feynman parameters of this region are defined
by

u1 > . . . > uk > {uk+1, . . . , un}. (4.50)
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We construct the Feynman parameters ui iteratively starting by i = 1. The
mapping of the random numbers vi to the Feynman parameters ui is defined by

u1 = v1 (4.51)

ui = fλi(vi;u1, . . . , ui−1) for i > 1, (4.52)

where fλ(x; . . .) is a strict monotonically increasing function in x. We have

fλ(x; . . .) : [0, 1)→ [0, λ) (4.53)

with

fλ(0; . . .) = 0 (4.54)

and

lim
x→1

fλ(x; . . .) = λ. (4.55)

By defining

λi :=

{
ui−1 : i ∈ {2, . . . , k}
uk : i ∈ {k + 1, . . . , n} (4.56)

the conditions for the Feynman parameters defined in eq.(4.50) are automatically
fulfilled. What is left is the definition of the function fλ(x; . . .).

fλi(vi;u1, . . . , ui−1) = λiviΛ
1−vi
i (4.57)

with

Λi =
ai(u1, . . . , ui−1)

s/2 + ai(u1, . . . , ui−1)
(4.58)

and s the center of mass energy squared of the considered process. The function
a(u1, . . . , ui−1) is given by

ai(u1, . . . , ui−1) =
i−1∑
j=1

uj

(
2k̃ ◦ k̃ − Im(µ2

IR) + bj(u1, . . . , ui−1)
)

(4.59)

with

bj(u1, . . . , ui−1) =

0.9
i−1∑
k=1

uk

((
i−1∑
a=1

ua(Sja − Ska)
)2

+
i−1∑
a,b=1

SjauaSkbub

)
(

i−1∑
k=1

uk

)2
√

i−1∑
a=1

(
i−1∑
b=1

Sabub

)2
.

(4.60)
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With these definitions 0 < Λi < 1 and therefore fλ(vi;u1, . . . , ui−1) fulfills the
conditions defined earlier. Equation(4.60) looks rather complicated but if we
calculate

n∑
i=1

uibi(u1, . . . , un) (4.61)

we see this is exactly the imaginary part we know from eq.(4.26) multiplied by
a factor 1/x̃. Therefore the function ai(u1, . . . , ui−1) almost matches the imag-
inary part of (L − xµ2

IR). Next we show that the Jacobian is proportional to
ai(u1, . . . , ui−1) and matches therefore the imaginary part of (L − xµ2

IR) as pre-
dicted.

The Jacobian matrix of the mapping is obviously a triangle matrix and therefore
the Jacobian determinate is just the product of the diagonal elements.∣∣∣∣∂fλi(vi;u1, . . . , ui−1)

∂uj

∣∣∣∣ =
n∏
i=2

∂fλi(vi;u1, . . . , ui−1)

∂ui
(4.62)

So we can write for the phase space weights

du1 = dv1 (4.63)

dui = λiΛ
1−vi
i (1 + vi ln(Λi)) dvi for i > 1. (4.64)

Because the random numbers vi are smaller than 1 the Jacobian in eq.(4.64) con-
verges to zero for Λi → 0. This improves the numerical stability of the Feynman
integral.

4.4 Checks and examples

In this section we present results calculated with the contour deformation pre-
sented in the previous section. We show how the improvements of the contour
deformation influences the results in regions were the integral is instable. In the
top level diagram of a one-loop amplitude with n external particles, in general n
internal propagators occur. The difficulty of the integration rises with the number
of the internal propagators.

We are testing our method by using a configuration with n external particles.
By pinching (n − 3) of the internal particles we obtain a one-loop three-point
function, see fig.(4.4). In the test program we have n = 6 and the external
momenta of the three-point function are:

P1 = p1 + p2, P2 = p3 + p4, P3 = p5 + p6. (4.65)
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Figure 4.2: The diagram on the left shows the top level diagram for a process
with n external legs. Pinching (n − 3) loop propagators results in a three point
function shown on the right.

where the pi are massless and on-shell. We have to calculate the massless one-loop
scalar three-point function

I = −ı16π2

∫
d4k

(2π)4

1

k2(k − P1)2(k − P1 − P2)2
(4.66)

which is finite for P 2
1 6= 0, P 2

2 6= 0 and P 2
3 6= 0. The analytical result is well

known [76–78]. In the test program we use the program LoopTools [59] for the
analytic calculation of the three-point function. The numerical integration of
the three-point function is almost trivial. To consider more internal propagators
in the integration we multiply and divide the integrand with the propagators
we have pinched and introduce Feynman parameters for the extra factors in the
denominator. We have

In = −ı16π2

∫
d4k

(2π)4

∫
dnx

δ

(
1−

n∑
i=1

xi

)
n−3∏
i=1

D2i[
3∑
i=1

x2i−1D2i−1 +
n−3∑
i=1

x2iD2i

]n (4.67)

with

Di = (k − qi)2 −m2
i and qi =

i∑
j=1

pj. (4.68)

In the test program we use the VEGAS [79; 80] algorithm from the CUBA library
[81]. We use a warm up phase of five runs to adjust the integration grid and then
perform 20 runs with this grid. Each VEGAS run is performed with the same
statistic. For the results presented here we use 106 iterations per run. The
VEGAS algorithm provides us with a reasonable error for each run therefore
we do not use the arithmetic average but the weighted arithmetic average of
the results of the 20 runs. xi is the result of a single VEGAS run and σi the
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corresponding error provided by the VEGAS algorithm. The final result of the
numerical calculation is then

x̄ =

∑
i

xi
σ2
i∑

i

1
σ2
i

(4.69)

and the error is

σx̄ = 1rP
i

1

σ2
i

. (4.70)

The integration of I3 up to I5 is unproblematic and we can generate numerical
results in the per mille accuracy with just the methods described in section (4.2.1)
but we observe numeric instabilities i.e. large statistical errors by calculating I6.
In fig.(4.3) we plotted the numerical results normalised to the analytic result for
In with n ∈ {3, 4, 5, 6}.

The stability can be improved by methods discussed in section(4.3.1) and sec-
tion (4.3.2). We start with the infrared mass approach. This method introduces
three parameters NIR,MIR and the mass µIR. It is convenient to parametrise
µIR by a dimensionless number ηIR through

µ2
IR = −ıη2

IRs
2 (4.71)

where s is the center of mass energy of the considered process.

First we keep MIR = 1 fixed and plot the numerical results normalised to the
analytic results for I6 against the parameter NIR for different mass parameters
ηIR. This plot is shown in fig.(4.4). We observe that the correct value is ap-
proached by increasing NIR. The series converges faster for small ηIR but smaller
ηIR imply larger statistical errors. However by a suitable choice of ηIR and NIR

one obtains a precision in the per mille level.

In fig.(4.5) we plotted the results of the three-point function for a fixed value of
NIR = 6 against various mass parameter ηIR. Because we performs a single Monte
Carlo integration for each summand in the series we need for NIR = 6 almost
seven times more computer time compared with the results from fig.(4.3). To
compensate for this fact we use seven times more statistics to calculate the ηIR = 0
point in fig.(4.5). Even with increased statistics the integral I6 is still instable in
a basic Monte Carlo without the improvements presented in the previous section.
For larger ηIR it seems that the numerical result underestimate the analytic result
if we stop the series at NIR = 6. But increasing NIR just adds noise to the result
and is more time consuming. To be save we choose a small mass parameter in
the following discussion.

Next we vary the parameter MIR and keep ηIR = 0.02 fixed. In the plot
in fig.(4.6) we compare the convergence behaviour of the numerical results for
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Figure 4.3: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on n external particles.
The errorbars indicate the statistical error of the Monte Carlo integration.

various values of MIR. By increasing the parameter MIR we observe a similar
convergence behaviour like the one obtained by increasing the mass parameter
ηIR.

In fig.(4.7) we plotted the results of the three-point function for a fixed value of
NIR = 6 and fixed mass parameter ηIR = 0.02 against various MIR. We observe
that the statistical error does not depend strongly on MIR for MIR ≥ 1. For
NIR = 6, MIR = 3 and ηIR = 0.02 we have a good compromise between precision
and convergence.

Next we investigate the impact of the sector decomposition discussed in section
(4.3.2) on the numerical behaviour of the integral of the three-point function I6.
We set MIR = 0 and ηIR = 0 and decompose the integration region into n!/(n−k)!
subregions with n = 6 and k ∈ {0, 1, 2, 3}. In fig.(4.8) we plot the numeric result
of I6 normalised to the analytic result against the parameter k. Naively, it seems
that the statistical error is strictly decreasing with increasing k. But we calculate
each single integration region with an individual Monte Carlo run. Therefore
we have for k = 3 overall 120 times more statistic compared to the case k = 0
where we have only a single integration region. In fig.(4.9) we compensate this by
increasing the statistic for an individual Monte Carlo depending on k such that
we get for all k’s the same overall statistic. We observe the best efficiently wise
choice is k = 1.
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Figure 4.4: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various values of ηIR and NIR. The errorbars indicate the statistical error of
the Monte Carlo integration.
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Figure 4.5: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for NIR = 6 and various values of ηIR. The errorbars indicate the statistical error
of the Monte Carlo integration.
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Figure 4.6: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for ηIR = 0.02 and for various values of NIR and MIR. The errorbars indicate the
statistical error of the Monte Carlo integration.
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Figure 4.7: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for ηIR = 0.02, NIR = 6 and various values of MIR. The errorbars indicate the
statistical error of the Monte Carlo integration.
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Figure 4.8: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles for
various values of k and fixed statistics for each integration region. The errorbars
indicate the statistical error of the Monte Carlo integration.
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Figure 4.9: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles for
various values of k and fixed overall statistics for each k. The errorbars indicate
the statistical error of the Monte Carlo integration.
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So far we have only considered the massless case with no masses in the loop.
In chapter 5 we compare the performance of the Feynman deformation with the
Direct deformation presented in chapter 5 in the massive case.

In this chapter we motivated the numerical integration over an Feynman param-
eter integral and for the deformation of the integration contour into the complex
plane. We provided a step by step instruction for the deformation of the loop
momentum and the Feynman parameters. We discussed in detail the issues of
these method at high particle multiplicity and how to overcome them by intro-
ducing advanced methods. These advanced methods were tested extensively for
a simple example.
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5 Direct deformation

In this chapter we discuss the numerical integration of a one-loop integral avoiding
threshold singularities by deforming the loop momentum into the complex plane.

5.1 Introduction

We are interested in calculating numerically a one-loop integral. In the method
discussed in this thesis we deal with the ultraviolet (UV) and infrared (IR) di-
vergencies by subtraction as discussed in chapter 2. After subtraction we are
still faced with threshold singularities of the one-loop integral. In chapter 4 we
discussed in detail how one can avoid threshold singularities of a one-loop inte-
gral by introducing first Feynman parameters and then deform these parameters
together with the loop momentum into the complex plane. But the results based
on the subtraction method for e+e− → n-jets concerning five massless quark
flavours [4] were produced with a contour deformation which does not introduce
Feynman parameters but deforms the loop momenta directly. This deformation
is discussed in detail together with some efficiency improvements for numerical
computations of next-to-leading order (NLO) corrections in [6] and is based on
the work of [11]. For up to n = 5-jets the deformations based on the Feynman
approach and direct integration lead to the same results for e+e− → n-jets. But
for larger n the Feynman approach is too inefficient and not practical any longer.
One advantage of the Feynman approach is that regarding the contour deforma-
tion there is no difference between a massive or massless theory. For the direct
integration approach this is not the case. So far, only a deformation for massless
theories is known in the direct integration approach. If we now want to apply
the subtraction method to processes which include massive degrees of freedom
like e+e− → tt̄ + n-jets for the planed international linear collider (ILC) or tt̄
production for the large hadron collider (LHC) a new deformation is needed. In
this chapter we present a contour deformation based on direct integration of the
loop momentum which is suitable for theories containing massive particles. The
generalisation from the massless to the massive case is not a trivial task because
of the more complicated structure of the threshold singularities. In the massless
case the surface of a threshold singularity is a simple light cone whereas in the
massive case, we have a mass hyperboloid. Especially the intersection of these
surfaces become much more complicated.
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Figure 5.1: Examples for the surfaces of threshold singularities in three dimen-
sions. The diagram on the left corresponds to a cone with its origin at (0,0,0).
The diagram on the right corresponds to a two sheet circular hyperboloid with
its origin at (0,0,0). If the time component of a surface is positive we call it a
forward cone/hyperboloid and otherwise a backward cone/hyperboloid.

5.2 General framework

We recommence with eq.(4.1) and eq.(4.3) from chapter 4. So after we apply the
subtraction terms for the UV and IR singularities we can write the loop integral

I =

∫
d4k

(2π)4

R(k)
n∏
j=1

(k2
j −m2

j + ıδ)
(5.1)

with

R(k) = P (k) + PUV (k)

n∏
j=1

(k2
j −m2

j + ıδ)

(k̄2 − µ2
UV + ıδ)nUV

. (5.2)

We have to avoid the remaining threshold singularity where one or more propaga-
tors are on-shell by deforming the integration contour into the complex plane. In
the massless case the threshold singularities lie on light cones and in the massive
case on two sheet circular hyperboloids with origins at q0, q1, . . . , qn−1. Since

pi = qi − qi−1, (5.3)

the external momenta pi connect the origins of the surfaces of the singularities.
We plot now the origins of the singularities together with their connecting lines
in the loop momentum space where we only show the k0 and k3 components of
the loop momentum fig.(5.2). For a generic primitive one-loop amplitude the
kinematics can be displayed as in diagram (a) where we have two initial state
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Figure 5.2: The sketch show the k0 and k3 component of the loop momenta k.
The two transverse components come out of the plane and are not seen. Diagram
(a) corresponds to a generic primitive amplitude, diagram (b) corresponds to a
primitive amplitude, where the two incoming particles are adjacent, diagram (c)
corresponds to the situation in electron-positron annihilation, where the poles
due to qn−1 are absent.

particles (the momenta with negative time component) and two strands. For a
primitive one-loop amplitude where the two initial state particles are adjacent
the diagram degenerates to diagram (b) with only a single strand. If the two
internal state particles couples only through an intermediate particle to the loop
like a γ/Z-boson in e+e− collision the kinematics are shown in diagram (c).

A threshold singularity occurs when

0 = k2
i −m2

i . (5.4)

To avoid these singularities we deform the loop momentum into the complex
plane by introducing the deformation vector κ.

k → k = k̃ + ıκ(k̃) (5.5)

Applying this deformation to a single propagator

k2
i −m2

i → k̃2
i −m2

i − κ2 + 2ıκ · k̃i (5.6)

introduces an imaginary part 2ıκ · k̃i. Feynman’s +ıδ description tells us in which
direction we have to deform. If the propagator is on-shell the corresponding
imaginary part has to be positive.

k̃2
i −m2

i = 0 ⇒ κ · k̃i ≥ 0, (5.7)

where the equal sign on the right hand side of eq.(5.7) only occurs if the singularity
is pinched. The one-loop integral now reads

I =

∫
d4k̃

(2π)4

∣∣∣∣∂k∂k̃
∣∣∣∣ R(k(k̃))

n∏
j=1

(k̃2
j −m2

j − κ2 + 2ıκ · k̃)
(5.8)
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where the integration is over R4. In appendix B we discuss how to map the four
dimensional hypercube [0, 1]4 to R4 such that the integration is suitable for a
Monte Carlo integration. In the following we discuss in detail the construction
of the deformation vector κ. We note that it is crucial for the method that the
deformation vector not only deforms correctly but is also suitable for a numerical
integration i.e. leads to small statistical errors.

5.3 Definition of the deformation vector κ

We construct the deformation for the most generic primitive one-loop amplitude
fig.(5.2) (a). The points q1, . . . , qn in fig.(5.2) (a) are contained in a finite region.
We split the loop momentum space into two regions, the “internal” and the
“external” region. The internal region is defined by the intersection of the interior
of the forward light cone of qn with the interior of the backward light cone of
qa−1 together with the intersection of the interior of the forward light cone of
qa with the interior of the backward light cone of qn−1. The external region
is defined by the complement of the internal region. We note that only in the
internal region intersections of forward hyperboloids with backward hyperboloids
occur. Therefore, the deformation for the internal region is much more involved
compared to the deformation for the external region. We split the deformation
vector into two contributions.

κ = λ (κint + κext) (5.9)

We discuss the construction of the two contributions κext, κint and the scaling
parameter λ separately.

5.3.1 Definition of some help functions

We define some functions which are important in the following discussion:

hδ±(k,m2) =

(
±k0 −

√
~k2 +m2

)2

(
±k0 −

√
~k2 +m2

)2

+M2
1

(5.10)

If k lies on the forward mass hyperboloid defined by

k2 −m2 = 0 and k0 ≥ 0 (5.11)

the function hδ+ is zero. If k lies on the backward mass hyperboloid defined by

k2 −m2 = 0 and k0 ≤ 0 (5.12)
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the function hδ− is zero. Depending on the parameter M1 the function hδ± is a
smooth function near the hyperboloid. If k is far away from the hyperboloid the
function converges to hδ± = 1.

hδ(k,m
2) =



„
|k0|−
√
~k2+m2

«2

„
|k0|−
√
~k2+m2

«2

+M2
1

: m2 > 0

“√
(k0)2−m2−|~k|

”2

“√
(k0)2−m2−|~k|

”2
+M2

1

: m2 < 0

(5.13)

If k lies on the mass hyperboloid defined by

k2 −m2 = 0, (5.14)

the function hδ is zero. Depending on the parameter M1 the function hδ is a
smooth function near the hyperboloid. If k is far away from the hyperboloid
the function converges to hδ = 1. So, hδ has a similar behaviour as hδ± with the
difference that hδ vanishes regardless of whether k lies on the forward or backward
hyperboloid and hδ is also defined for negative masses squared m2 < 0. A good
choice for the parameter M1 is M2

1 = s/800, where s is the center of mass energy
squared of the considered process.

Concerning eq.(5.6) the imaginary part of a propagator is given by the Minkowski
scalar product of two fourvectors. By rewriting the scalar product to

u · v =

(
u+ v

2

)2

−
(
u− v

2

)2

. (5.15)

we interpret the region where u · v = 0 as a mass hyperboloid at the origin
k = (u+ v)/2 and mass m2 = (u− v)2/4. We define the function

hθ(u, v) = hδ

(
u+ v

2
,
(u− v)2

4

)
θ (−u · v) (5.16)

where θ(x) is the well known Heaviside function. The function hθ(u, v) vanishes
whenever the scalar product −u · v is smaller than zero because of the Heaviside
function. The function hδ provides a smooth behaviour near the hyperboloid
defined by u · v = 0 and hθ(u, v) converges to hθ(u, v) = 1 for −u · v � 0.

5.3.2 Definition of the deformation vector κext

If a threshold singularity occurs in the external region the loop momentum lie
either on a forward hyperboloid or on a backward hyperboloid. In the external
region we have by definition no intersections between forward and backward mass
hyperboloids. Therefore we split the deformation vector into two pieces, one piece
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Figure 5.3: Example for the vectors P+ and P− in the loop momenta space for
a generic primitive amplitude with n = 7 and a = 4.

which deforms correctly if the loop momentum lies on a forward hyperboloid and
one piece which deforms correctly if the loop momentum lies on a backward
hyperboloid. The deformation vector for the external region is given by

κµext(k) = gµν
(
c+k

ν
+ + c−k

ν
−
)

(5.17)

with

k± = k − P±. (5.18)

and gµν the metric tensor. The Lorentz indices are such that an Minkowski
scalar product with κext is equal to an Euclidean scalar product with k±. For an
arbitrary fourvector v we have

v · κext = c+v ◦ k+ + c−v ◦ k− (5.19)

where ◦ demand the Euclidean scalar product.

First we discuss the coefficients c± and then the fourvectors P±. With the help
function hδ± defined in eq.(5.10), the coefficients are simply defined by

c± =
n∏
i=1

hδ∓
(
ki,m

2
i

)
. (5.20)

If the loop momentum k lies on any backward hyperboloid defined by

k2
i −m2

i = 0 and k0 ≤ 0, i ∈ {1, . . . , n} (5.21)
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hδ− = 0 and therefore c+ = 0. Analogously if the loop momentum k lies on any
forward hyperboloid defined by

k2
i −m2

i = 0 and k0 ≥ 0, i ∈ {1, . . . , n} (5.22)

hδ+ = 0 and therefore c− = 0. The coefficients c± filter the threshold singulari-
ties corresponding to the forward/backward hyperboloids out of the integration
region.

The vector P+ is chosen such that gµνk
ν
+ always deforms correctly if k lies on a

forward hyperboloid and P− is chosen such that gµνk
ν
− always deforms correctly if

k lies on a backward hyperboloid. Consider a generic primitive amplitude fig.(5.2)
(a), the vectors (qa− qn) and (qa−1− qn−1) are spacelike. We define P+ such that
qa and qn lie on the forward light cone at the origin P+ with a maximised zero
component of P+ and we define P− such that qa−1 and qn−1 lie on the backward
light cone at the origin P− with a minimised zero component of P−. In formulas,
these conditions read

0 = (qa − P+)2 = (qn − P+)2 = (qa − P+) ◦ (qn − P+)

0 ≤ q0
a − P 0

+, 0 ≤ q0
n − P 0

+

0 = (qa−1 − P−)2 = (qn−1 − P−)2 = (qa−1 − P−) ◦ (qn−1 − P−)

0 ≥ q0
a−1 − P 0

−, 0 ≥ q0
n−1 − P 0

− (5.23)

and are shown in fig.(5.3). The following equation fulfils all the conditions above.

P+ = Z+(qa + qn, qa − qn)

P− = Z−(qa−1 + qn−1, qa−1 − qn−1) (5.24)

with

Zµ
±(x, y) =

1

2

(
xµ ± yν

|~y|
(
g0µyν − g0νyµ

))
. (5.25)

For the degenerate diagrams in fig.(5.2) (b) and (c) we simple have

P+ = qn

P− = qn−2. (5.26)

In appendix C we proof that κext always deforms correctly in the external region.

Next we discuss the UV behaviour of a propagator. We note that k2
i can be

small even if the loop momentum k is in the UV region. We demand that after
contour deformation the propagator falls of like k ◦ k in the UV region. In the
external region at least one of the coefficients c± is non-zero. One can expect that
the scaling parameter λ is of order 1 in the UV region were the loop momentum
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k is very large. The imaginary part of a propagator in the UV region can be
estimated by

ki · κ ≈ k · κext ≈ k ◦ k (5.27)

therefore the UV behaviour of all propagators after contour deformation is well
defined.

5.3.3 Definition of the deformation vector κint

In the internal region we have to take regions into account where a forward
hyperboloid intersects with a backward hyperboloid. In the massless case we
can also have cones which are tangential to each other. Therefore we split the
deformation vector for the internal region into two pieces, one piece which is
suitable for the massless case and one piece which provides a correct deformation
when two mass hyperboloids intersect. In the massless case it suffices to define

κµint = −
n∑
i=1

cik
µ
i (5.28)

but in the massive case we need complicated extra terms

κµint = −
n∑
i=1

cik
µ
i −

n∑
i,j=1
i<j

cijk
µ
ij (5.29)

with

ki = k − qi and kij = k − vij. (5.30)

First we discuss the coefficients ci and cij and then discuss the vectors vij. The
coefficients are defined such that they are zero if the corresponding vector deforms
into the wrong direction. In terms of formulas, we have

k2
a −m2

a = 0 and

{
−ciki · ka < 0 ⇒ ci = 0
−cijkij · ka < 0 ⇒ cij = 0

∀a ∈ {1, . . . , n}. (5.31)

This ensures that the deformation vector κint never deforms into the wrong di-
rection. We have

ci = g(k)
n∏
x=1

di,x and cij = α2
ij g(k)

n∏
x=1

dij,x (5.32)

with the function

g(k) =
s

(k+ + k−) ◦ (k+ + k−) + s
(5.33)
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which ensures that the deformation vector κint falls off like 1/(k ◦ k) in the UV
region and s is the center of mass energy squared of the considered process.
The factor αij is an empirically determined factor which ensures that in certain
massive cases the second term on the right hand side of eq.(5.29) dominates. We
have

αij = max

{
1,

mimj

M2(mi +mj)

}
M2 =

√
s

90
, (5.34)

with s the center of mass energy squared.

The factors di,x are defined by

di,x =


1 : i = x,mx = 0

hδ±(kx,m
2
x) : (qi − qx)2 = 0, q0

i ≶ q0
x, mx = 0

max [hδ(kx,m
2
x), hθ(kx, ki)] : otherwise

(5.35)

The idea is that the di,x check all propagators for the conditions k2
x = m2

x and
−ki ·kx < 0. If both conditions are fulfilled di,x is zero. This ensures the behaviour
of the coefficients ci predicted by eq.(5.31). To proof that fact, we set

k2
a −m2

a = 0. (5.36)

It follows that hδ(ka,m
2
a) = 0 and for x 6= a the functions hδ(kx,m

2
x) and

hδ±(kx,m
2
x) are of order one. Therefore, if only one propagator is one-shell we

can estimate ci ≈ di,a. We have to check that di,aki · ka ≥ 0 for all i ∈ {1, . . . , n}.

• i = a and ma = 0:

−ki · ka = −k2
a = 0 (5.37)

therefore we can set da,a = 1.

• (qi − qa)2 = 0, q0
i < q0

a and ma = 0:

−ki · ka = (qi − qa) · ka = k0
a

(
q0
i − q0

a

)
(1− cos(φ)) (5.38)

by setting di,a = hδ+(ka,m
2
a) we ensure that either k0

a < 0 or di,a = 0.

• (qi − qa)2 = 0, q0
i > q0

a and ma = 0:

−ki · ka = (qi − qa) · ka = k0
a

(
q0
i − q0

a

)
(1− cos(φ)) (5.39)

by setting di,a = hδ−(ka,m
2
a) we ensure that either k0

a > 0 or di,a = 0.

• otherwise: By construction hθ(ki, ka) = 0 if −ki · ka < 0, therefore either
di,a = 0 or −ki · ka > 0.
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In eq.(5.38) and eq.(5.39) we make use of the definition

cos(φ) =
~ka
k0
a

· ~qi − ~qa
q0
i − q0

a

∈ (−1, 1). (5.40)

One can ask why we do not simply define

di,x = max
[
hδ(kx,m

2
x), hθ(kx, ki)

]
(5.41)

because with this construction eq.(5.31) is automatically for the coefficients ci
fulfilled. The exceptions in eq.(5.35) are taking the massless nature of the process
into account. The deformation would vanish in the collinear limit without these
exceptions but even if the contour is pinched we are allowed to deform along
the tangential direction of the two intersection cones. By implementing these
exceptions we observe an improvement of the numerical stability whenever we
have massless propagators in the loop. For the massive case we have no need of
such exceptions and we define

dij,x = max
[
hδ(kx,m

2
x), hθ(kx, kij)

]
. (5.42)

So far, we have ensured that the deformation vector κint never deforms into the
wrong direction and is suitable for the massless case. With κext we already have
a deformation vector which always deforms correctly if the loop momentum k lies
either on a forward hyperboloid or a backward hyperboloid. Next, we define the
vectors vij such that κint deforms correctly whenever k lies on the intersection of
a forward and a backward hyperboloid.

First we define the two variables

xij = |q0
i − q0

j | −mi −
√

(~qi − ~qj)2 +m2
j

zij = (qi − qj)2 − (mi +mj)
2 (5.43)

If zij > 0 there exists an intersection region of a forward and a backward hy-
perboloid. If xij > 0 and xji > 0 the minimum of the forward hyperboloid lies
in the interior of the backward hyperboloid and the maximum of the backward
hyperboloid lies in the interior of the forward hyperboloid, otherwise at least one
of the extremes of a hyperboloid lies outside the other hyperboloid. These two
statements are proven in the appendix C. We note that xij > 0 is a stronger
condition than zij > 0

xij > 0 ⇒ zij > 0. (5.44)

We observe a better numerical performance by defining the vector vij differently
in the region xij > 0, xji > 0 and the region where only zij > 0.

vij =


qik

0
j−qjk0

i

q0i−q0j
: xij > 0 and xji > 0

Vij+Vji
2

: (xij < 0 or xji < 0) and zij > 0
(5.45)
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k0

k3

v
i j

q
i

q
j

k

Figure 5.4: Definition of the vector vij for xij > 0, xji > 0; the loop momentum
k lies on the forward mass hyperboloid with origin qi and on the backward mass
hyperboloid with origin qj. The vector vij lies on the line connecting the points
qi and qj with the time component v0

ij = k0.

q
j

q
i

v
i j

k0

k3

V
i j

V
j i

Figure 5.5: Definition of the vector vij for xij < 0, xji < 0 and zij > 0. The
line connecting the points qi and qj cuts the mass hyperboloids at the two points
Vij and Vji. The vector vij is at half of the distance of these two cutting points.
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with

Vab = qa −ma
qa − qb√
(qa − qb)2

(5.46)

For xij > 0, xji > 0 the vector vij lies on the line defined by (qi−qj) with the time
component v0

ij = k0, see fig.(5.4). Otherwise with zij > 0 the vector vij is given
by one half of the distance of the points where the line (qi − qj) cuts the mass
hyperboloids, see fig.(5.5). We note that for zij ≤ 0 no vij is necessary and we
simply set in eq.(5.29) cij = 0 in this case. The definition in eq.(5.45) ensures that
whenever the loop momentum lies on the intersection of a forward hyperboloid
with a backward hyperboloid there exists a vector which lies in the interior of
both hyperboloids. Therefore the deformation vector κint deform correctly even
in these critical regions. In the appendix C we give a detailed proof of the
deformation.

5.3.4 Definition of the scaling parameter λ

The definition of the scaling parameter works along the lines of [11] with some
minor changes because of the masses which can appear in the loop propagators.
The deformation is given by k → k + ıκ where

κ = λκ0. (5.47)

In the previous sections we discussed the construction of κ0 = κint+κext in detail.
In appendix C we give a detailed proof that this deformation points always in
the right direction for all loop momenta k. If λ is infinitesimal we have a correct
deformation. But for the sake of numerical stability we want to deform as far
away as possible from the singularities and therefore we need to make λ as large
as possible. We now have to ensure that we do not cross any poles by varying the
size of λ from zero to its final value. We define for each propagator in the loop a
scaling parameter λi such that we do not cross any poles of the given propagator
by varying λi from zero to its final value. By taking λ as the minimum of these
λi we ensure that we do not cross any poles. We write for the ith propagator

Di = (ki + ıλκ0)2 −m2
i = k2

i + 2ıλκ0 · ki − λ2κ2
0 −m2

i (5.48)

The function Di vanishes for values of λ given by

λ = ı
√
Xi ±

√
Yi −Xi (5.49)

where we introduce the functions

Xi =

(
κ0 · ki
κ2

0

)2

and Yi =
k2
i −m2

i

κ2
0

. (5.50)
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5.3 Definition of the deformation vector κ

If Yi > Xi and Xi → 0 we have a pole at the real axis with value

λ =
√
Yi. (5.51)

To avoid these poles we limit the value of λ to one half of the value of this pole.
If instead Yi < Xi the poles of the propagator Di are on the imaginary λ axis
and we can choose the real value of λ as big as we like. We define

λ2
i =


Yi/4 : 2Xi < Yi

Xi − Yi/4 : 0 < Yi < 2Xi

Xi − Yi/2 : Yi < 0

Next we discuss the case that the loop momentum is near a collinear singularity.
The collinear singularities emerging from qi are given by

k → qi + x(qi+1 − qi) x ∈ (0, 1) (5.52)

k → qi + x(qi−1 − qi) x ∈ (0, 1) (5.53)

These two lines meet at qi for x = 0. At a collinear singularity one can not deform
away from the singularity but only deform along the line defined by eq.(5.52) or
eq.(5.53). In this case we have κ0 · ki = κ2

0 = 0 and in the definitions of Xi

and Yi the numerator and the denominator vanishes. So the scaling parameter
need some special treatment in the collinear limit. Near the collinear limit we
approximate the deformation vector by a vector alongside the collinear line plus
a small vector perpendicular to it. We write

κ0 = −Cki + ε⊥ (5.54)

where C is the sum over all coefficients from the internal region which can con-
tribute to the collinear limit

C =
n∑
i=1

ci +
n∑

i,j=1

i<j

cij. (5.55)

We note

κ2
0 = C2k2

i − 2Cki · ε⊥ +O(ε2⊥)

2Cκ0 · ki = −2C2k2
i + 2Cki · ε⊥ (5.56)

by adding these two equations we get

2κ0 · ki = −Ck2
i −

κ2
0

C
(5.57)

and squaring the last equation and introducing the definitions from eq.(5.50)
yields

2Xi = Yi +
C2

2
Y 2
i +

1

2C2
> Yi. (5.58)
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Near the collinear limit we are never in the region 2Xi < Yi. For Yi > 0 we
estimate

λ2
i = Xi −

1

4
Yi

=
1

4
Yi +

C2

4
Y 2
i +

1

4C2
>

1

4C2
(5.59)

and for Yi < 0 we estimate

λ2
i = Xi −

1

2
Yi

=
C2

4
Y 2
i +

1

4C2
>

1

4C2
. (5.60)

Thus near the collinear limit we have

λi >
1

2C
. (5.61)

To ensure that λ is a smooth function near the collinear limit we define

λcoll =
1

4C
. (5.62)

and define λ as the minimum of all the λi’s and λcoll

λ = min [1, λi, λcoll] i ∈ {1, . . . , n}. (5.63)

So far, we have considered all the propagators in the loop and the collinear limit
but we also have to ensure that we do not run into poles of the UV propagator

DUV =
(
k̄ + ıλκ0

)2 − µ2
UV = k̄2 + 2ıλκ0 · k̄ − λ2κ2

0 − µ2
UV . (5.64)

The mass µ2
UV is purely imaginary with Im(µ2

UV ) < 0. We have to ensure by
scaling that the imaginary part introduced through the deformation is larger
than Im(µ2

UV ).

2λUV κ0 · k̄ > Im(µ2
UV ) (5.65)

We define

λUV =

{
1 : 4κ0 · k̄ > Im(µ2

UV )
Im(µ2

UV )

4κ0·k̄
: 4κ0 · k̄ ≤ Im(µ2

UV )
(5.66)

and

λ = min [1, λi, λcoll, λUV ] i ∈ {1, . . . , n}. (5.67)

This ensures that the deformation is suitable for the UV propagator.
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Figure 5.6: The diagram on the left shows the top level diagram for a process
with n massless external legs with a closed massive line. Pinching (n − 3) loop
propagators results in a three point function shown on the right.
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Figure 5.7: The diagram on the left shows the top level diagram for a process
with n−2 massless and 2 massive external legs. The massive line goes left around
in the loop. Pinching (n − 3) loop propagators results in a three point function
shown on the right.
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Figure 5.8: The diagram on the left shows the top level diagram for a process
with n − 2 massless and 2 massive external legs. The massive line goes right
around in the loop. Pinching (n − 3) loop propagators results in a three point
function shown on the right.
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Figure 5.9: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various masses in the loop. For m = 0 we do not show the result for the
Feynman deformation due its large statistical error.

5.4 Checks and examples

In this section we present results calculated with the contour deformation pre-
sented in the previous sections. We are testing by using a configuration with n
massless external particles with a closed massive line, see fig.(5.6), and a con-
figuration with n − 2 massless and two massive external particles, see fig.(5.7).
By pinching (n − 3) of the internal particles we obtain a one-loop three-point
function as shown in fig.(5.6) and fig.(5.7). By permuting the position of one of
the massive external particles we can vary the number of massive lines in the loop
from 1 to n − 1. Like in chapter 4 we use LoopTools to compare our numerical
results with the analytical results of the three point function.

In the plots we show the numerical results for the three-point function consid-
ering six external particles normalised to the analytic results. We show results
calculated with the “Feynman deformation” discussed in chapter 4 and with the
“Direct deformation” discussed in this chapter to compare each other. For the
integration we use the VEGAS algorithm in the same way as discussed in section
4.4. The final result is given by the weighted arithmetic average of 20 independent
VEGAS runs with 106 iterations per run and a warm up phase with five runs.

First we discuss the set up shown in fig.(5.6), a closed massive line in the loop.
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5.4 Checks and examples

The plot in fig.(5.9) show the impact of a closed massive line in the loop to the
numerical stability of the integrand. It is shown the normalised results against the
ratio of the mass in the loop to the center of mass energy. In this framework we use
none of the improvement techniques for the Feynman deformation. We observe
that the statistical error of the results calculated with the Feynman deformation
are strongly dependent on the mass circulating in the loop. The larger the mass
the more stable the integration. But because of the very large energy of the LHC
compared to the heaviest known particle, the top quark, a large mass to center
of mass energy ratio is very unlikely.

Next we discuss the framework shown in fig.(5.7) and fig.(5.8). We keep the
position in the loop of one of the massive external particles fixed and permute
the other massive external particle around the loop. By doing this we can vary
the number of massive lines in the loop from 1 to (n − 1), here n = 6. To
improve the stability of the Feynman deformation we use the following choice of
parameters: k = 1, η = 0.02, NIR = 6 and MIR = 3. For k = 1 and NIR = 6
we split the original integration into 36 integrations, each region is performed
with 105 iterations per VEGAS run. To give comparable results we perform the
integration with the Direct deformation with an 36 times larger statistic. The
plots in fig.(5.10-5.13) shows the normalised results for the one-loop three-point
function for different masses moving left or right around the loop against the
number of massive lines in the loop.

We observe that the Feynman deformation and the Direct deformation provide
both reasonable results. Overall, the Direct deformation seems to lead to smaller
statistical errors expect the case that a massive line circulate in the loop. The
integrand of the three-point Feynman integral concerning six external particles
is of course more complicate than the integrand of a simple three-point function.
But still the tests shown that the Direct deformation is very suitable for an
numerical integration of one-loop integrals with massive propagators involved.
Also is the Direct deformation absolutely process independent and therefore we
can use it to integrate multi-loop integrals numerically. How this is done, is
content of the next chapter.
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Figure 5.10: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various numbers of massive propagators in the loop. The massive line is left
moving with mass m =

√
s/9.
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Figure 5.11: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various numbers of massive propagators in the loop. The massive line is right
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Figure 5.12: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various numbers of massive propagators in the loop. The massive line is left
moving with mass m = 4

√
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Figure 5.13: Results for the numerical integration of the three-point function
normalised to the analytical result for a contour based on six external particles
for various numbers of massive propagators in the loop. The massive line is right
moving with mass m = 4
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6 Direct integration of two- and
three-loop diagrams

In this chapter we discuss the numerical calculation of multi-loop integrals with
the contour deformation discussed in chapter 5.

6.1 Introduction

In chapter 2 we discuss in detail the numerical calculation of an infrared save
observable at NLO. We give a short outlook to the NNLO calculation to moti-
vate the contour deformation for multi-loop integrals. At the NNLO one has to
calculate the following contributions

|An|2NNLO = 2 Re
(
A(0)∗

n A(2)
n

)
+
∣∣A(1)

n

∣∣2
|An+1|2NNLO = 2 Re

(
A(0)∗

n+1A
(1)
n+1

)
|An+2|2NNLO =

∣∣∣A(0)
n+2

∣∣∣2 . (6.1)

Here A(l)
n denotes an amplitude with n final-state partons and l loops. One would

naively expect that in the calculation of
∣∣∣A(1)

n

∣∣∣2 one need to calculate the O(ε)-

and O(ε2)-terms of the one-loop amplitudes. A numerical calculation in D = 4
dimension is of course not sensitive to these terms. But in [69] it is shown that
the O(ε)- and O(ε2)-terms of a one-loop amplitudes are not needed. We quote
here the important result of this publication:

Theorem: For an NNLO calculation it is sufficient to know the tree-level ampli-
tudes A(0)

n , A(0)
n+1 and A(0)

n+2, the O(ε0)-terms of the one-loop finite remainder

function F (1)
n and F (1)

n+1, as well as the O(ε0)-terms of the two-loop finite

remainder function F (2)
n . The O(ε)- and O(ε2)-terms of the one-loop finite

remainder function F (1)
n drop out from the final result and are therefore not

needed.

This theorem open the gate for a numerical NNLO calculation analogues to the
NLO calculations presented in chapter 2. The finite remainder functions can be
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6 Direct integration of two- and three-loop diagrams
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C(3) C(1) C(2)
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C(6)

C(4)

Figure 6.1: Simple chain diagrams for a two loop diagram (left) and a three
loop diagram (right). In the two-loop case we can have up to three chains and in
the three-loop case up to six chains.

written as

F (1)
n = A(1)

n − I(1)A(0)
n

F (2)
n = A(2)

n − I(1)A(1)
n − I(2)A(0)

n . (6.2)

If a local integral representation of the insertion operators I(1) and I(2) are known
one can perform the integrals on the right hand side numerical in D = 4 dimen-
sions.

We conclude, a numerical NNLO calculation is possible but one need local
subtraction terms for one- and two-loop amplitudes and a suitable contour de-
formation. The local subtraction terms at two-loop level are not known yet.
Contour deformations at two-loop level are known [14–17] but only for methods
based on Feynman parameters. In a single two-loop diagram with n external
partons coupling directly to the loops, n + 3 different propagators appear. In a
two-loop primitive amplitude in the leading colour approximation i.e. only pla-
nar diagrams contribute, the number of different propagators appearing in the
calculation increase to 2n + 1. Therefore, we have in the Feynman parameter
approach a denominator function to the very high power 2n+ 1. As discussed in
chapter 4 this could lead to numerical instabilities. For this reason we develop a
contour deformation based on the Direct deformation which is suitable for two-
loop integrals. As a proof of principles we apply the contour deformation also to
three-loop integrals.

6.2 The chain diagram

In this section we discuss the representation of multi-loop diagrams in terms of
so called “chain diagrams” [53]. We consider an arbitrary Feynman diagram
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containing n internal lines. To each internal boson line i we have a propagator

Di =
1

(ki − qi)2 −m2
i + iε

(6.3)

where ki, qi and mi represent variable and fixed momenta and masses. We note
that in general the fixed momenta qi are not simply given by the sum of the
momenta of the external particles like in the one loop case. We can always
choose ki and qi, in such a way that conservation of four-momentum holds at
each vertex for k and q separately. One writes a N -loop diagram with n internal
lines as ∫ N∏

i=1

d4kiF

n∏
j=1

Dj (6.4)

where the numerator function F represents the contribution from vertices and
numerators of fermion propagators. In a subtraction approach the function F
also contains subtraction terms for the infrared and ultraviolet divergences such
that the integral is finite. Assuming the integral is finite one needs a suitable
contour deformation to be able to perform the integral numerically with Monte
Carlo methods. For this purpose, let us introduce the notion of a chain. A chain α
is defined as the largest set of internal lines having the same momentum variable
kα. Obviously, each internal line can only belong to a single chain. If a vertex is
only connected via chains to the rest of the diagram we called it an internal vertex.
Otherwise it will be called an external vertex. A new diagram is obtained from a
Feynman diagram by omitting all external lines and corresponding vertices. This
will be called chain diagram. An example of a two- and three-loop chain diagram
is shown in fig.(6.1).

In the following let M the number of chains and nα the number of internal
lines of a chain α. We write the N -loop integral

∫ N∏
i

d4k(i)F

M∏
α=1

nα∏
j=1

D
(α)
j . (6.5)

We emphasize that each chain can be parameterized by one variable momentum
called a chain momentum, a set of fixed momenta and a set of masses.

C(α) :=
{
k(α)|q(α)

1 , . . . , q(α)
nα |m

(α)
1 , . . . ,m(α)

nα

}
(6.6)

In chapter 5 we showed how to construct a suitable contour deformation for a
diagram containing only a single chain. In the following section we discuss the
construction of the contour deformation for multi-loop integrals by reducing the
problem to the construction of a deformation for a single chain.
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k (3)

C(1) C(2)
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Figure 6.2: Definition of the three-loop chain diagram. k(1), k(2) and k(3) are the
three independent loop momenta. The variable momenta of the other chains are
given by the following linear combinations of the loop momenta: k(4) = k(1)−k(2),
k(5) = k(2) − k(3) and k(6) = k(3) − k(1).

6.3 The deformation for a multi loop integral

Our starting point is a N -loop integral like in eq.(6.5) with chains defined like
in eq.(6.6). First we note that in general N < M and we are therefore not able
to deform each single chain momentum into the complex plane separately. We
choose a framework in which the first N chain momenta correspond exactly to the
N loop momenta. The remaining M −N chain momenta are linear combinations
of the loop momenta. For up to three loops, we can ensure that for every topology
the M −N chain momenta are given by one loop momentum minus another loop
momentum. This is shown in fig.(6.2).

The contour deformation of a N -loop diagram is defined by the deformation of
the N independent loop momenta.

k(α) → k(α) = k̃(α) + ıκ(α)(k̃(1), . . . , k̃(N)), α ∈ {1, . . . , N}. (6.7)

After applying this deformation to the multi-loop integral, it reads∫ N∏
i

d4k(i)F

∣∣∣∣∂k(β)µ

∂k̃(γ)ν

∣∣∣∣ M∏
α=1

nα∏
j=1

D̃
(α)
j (6.8)

with

D̃
(α)
j =

1(
k̃(α) − q(α)

j

)2

+ 2ıκ(α) ·
(
k̃(α) − q(α)

j

)
− (κ(α))

2
. (6.9)

We note that for α > N the deformation vector κ(α) is given by a linear com-
bination of two deformation vectors and the chain momenta are given by linear
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6.3 The deformation for a multi loop integral

combinations of two loop momenta.

k̃(α)|α>N = k̃(β) − k̃(γ), (β 6= γ) ∈ {1, . . . , N}, (6.10)

⇒ κ(α)|α>N = κ(β) − κ(γ), (β 6= γ) ∈ {1, . . . , N}. (6.11)

Because it is not possible to construct a deformation for each chain separately we
have to find deformation vectors which deform in different chains correctly at the
same time. Technically we merge two or more chains together by simply rewriting
the propagators of a chain and then constructing a deformation vector for the
merged chain with the algorithm presented in chapter 5. The final deformation
vectors will be a linear combinations of the deformation vectors constructed from
these merged chains.

We define a N ×M matrix S whose entries Sij are by default 1 and Sij is (−1)
if a chain momentum k(j) depends on the independent loop momentum k(i) with
a relative sign. For the example given in fig.(6.2) this matrix reads

S =

1 1 1 1 1 −1
1 1 1 −1 1 1
1 1 1 1 −1 1

 . (6.12)

The contribution of two chains to the integrand are now rewritten. To simplify
the notation we set the masses to zero for a moment. We have for α ≤ N :

nα∏
i=1

D
(α)
i

nβ∏
j=1

D
(β)
j =

nα∏
i=1

nβ∏
j=1

1(
k(α) − q(α)

i

)2 (
k(β) − q(β)

j

)2

=
nα∏
i=1

nβ∏
j=1

1(
k(α) − q(α)

i

)2 (
k(α) −

(
k(α) − S(αβ)

(
k(β) − q(β)

j

)))2

=
nα∏
i=1

1(
k(α) − q(α)

i

)2

nβ∏
j=1

1(
k(α) − q(αβ)

j

)2 (6.13)

where we introduced a new “fixed momentum”

q
(αβ)
i = k(α) − S(αβ)

(
k(β) − q(β)

i

)
(6.14)

which is in general not fixed at all. But for the contour deformation it plays
for the moment no role that the q(αβ)’s depend on variable momenta. We note
that S(αβ) is a scalar and we do not summarize over β in eq.(6.13) and eq.(6.14).
Because the propagators are squared the sign of S(αβ) drops out in eq.(6.13) and
the introduction of S(αβ) in eq.(6.14) seems to be unnecessary or arbitrary. In
the following we motivate the factor S(αβ) in eq.(6.14). Let us first remember of
eq.(5.7) which defines the basic property of the deformation vector.

k2
i −m2

i = 0 ⇒ κ · ki ≥ 0 (6.15)
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6 Direct integration of two- and three-loop diagrams

C(1) C(2)

C(3)

C(4)

C(5)

C(6)

Figure 6.3: Example for the four different possibilities to reduce a
three-loop chain diagram to a one-loop chain diagram, holding chain C(1)

fixed. As a result we get four sets of chains. C(123) = {C(1), C(2), C(3)},
C(1345) = {C(1), C(3), C(4), C(5)}, C(1256) = {C(1), C(2), C(5), C(6)} and C(146) =
{C(1), C(4), C(6)}.

If we have a chain momentum k(γ) = Sαγk
(α) + Sβγk

(β), which is a linear combi-
nation of the two loop momenta k(α) and k(β), we like to merge the chain γ with
the chain α. Therefore we rewrite the propagator to(

k(γ) − q(γ)
)2 −

(
m(γ)

)2
=

(
k(α) − q(αγ)

)2 −
(
m(γ)

)2
. (6.16)

We apply the usual deformation to the loop momentum

k(α) → k(α) + ıκ(α) (6.17)

where κ(α) is constructed such that it fulfils eq.(6.15) for both chains α and γ
simultaneously.(

k(α) − q(α)
)2

=
(
m(α)

)2 ⇒ κ(α) ·
(
k(α) − q(α)

)
≥ 0 (6.18)(

k(α) − q(αγ)
)2

=
(
m(γ)

)2 ⇒ κ(α) ·
(
k(α) − q(αγ)

)
≥ 0 (6.19)

After applying the deformation the imaginary part of the propagator of chain γ
which is proportional to κ(α) is given by

Im
((
k(γ) − q(γ)

)2 −
(
m(γ)

)2
)

= 2Sαγκ
(α) ·

(
k(γ) − q(γ)

)
. (6.20)

To fulfil eq.(6.15) we demand

Sαγ
(
k(γ) − q(γ)

)
= k(α) − q(αγ). (6.21)

From the last equation the definition of eq.(6.14) follows directly.

Analogously to eq.(6.6) we define a merged chain by

C(i1,...,ir) =
{
k(i1)

∣∣ q(i1)
1 , . . . , q(i1)

ni1
, q

(i1i2)
1 , . . . , q(i1ir)

nir

∣∣ m(i1)
1 , . . . ,m(ir)

nir

}
(6.22)

For each such a merged chain we can construct a corresponding deformation
vector κ(i1,...,ir) and we note that the deformation

k(i1) → k(i1) + ıκ(i1,...,ir) (6.23)
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6.3 The deformation for a multi loop integral

provides the correct imaginary part for all propagators in the merged chain in
the sense that eq.(6.15) is fulfilled.

Naively one would now expect to get the right deformation for a loop momen-
tum by merging all chains whose chain momenta depend on this loop momentum
and constructing the corresponding deformation vector from this single merged
chain only. For the two-loop case, where we have k(3) = k(1) − k(2), one would
expect

κ(1) = κ(13) and κ(2) = κ(23). (6.24)

But the situation is not so simple! The deformation vector for a loop momentum
will be the sum of deformation vectors constructed from different merged chains.
The different merged chains are defined by the different combinations of chains
which are merged. The procedure to get all the necessary combinations of chains
to construct the different merged chains is the following: We take the N -loop
chain diagram, keep the line fixed which corresponds to the loop momentum for
which we want construct the deformation vector. We note that by cutting out a
chain from the chain diagram we reduce the N -loop chain diagram to a N − 1
loop chain diagram. By taking into account all the possibilities to reduce a N -
loop chain diagram to a one-loop chain diagram by cutting out successive single
chains, we get all the necessary combinations of chains we need to merge. This
procedure is exemplarily shown for a three-loop diagram in fig.(6.3).

In the two-loop case with k(3) = k(1) − k(2) we have the deformation vectors:

κ(1) = κ(12) + κ(13)

κ(2) = κ(12) + κ(23)

κ(3) = κ(13) − κ(23) (6.25)

We note that κ(12) = κ(21). In the three-loop case with the notation given in
fig.(6.2) we have the deformation vectors:

κ(1) = κ(123) + κ(146) + κ(1256) + κ(1345)

κ(2) = κ(123) + κ(245) + κ(1256) + κ(2346)

κ(3) = κ(123) + κ(356) + κ(1345) + κ(2346)

κ(4) = κ(146) − κ(245) + κ(1345) − κ(2346)

κ(5) = κ(245) − κ(356) + κ(1256) − κ(1345)

κ(6) = κ(356) − κ(146) + κ(2346) − κ(1256) (6.26)

The bold indices imply that each single summand on the right hand side of the
definitions deforms correctly in the corresponding chain. One can ask why we
need all these terms? We define a soft chain momentum by

k(α) = q
(α)
i and m

(α)
i = 0. (6.27)
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6 Direct integration of two- and three-loop diagrams

If the chain momentum k(α) becomes soft the corresponding deformation vector
κ(α) has to vanish because of continuous arguments. If the loop momentum lies
on the forward cone it points into the forward cone and if the momentum lies on
the backward cone it points into the backward cone. Because the deformation has
to be continuous it has to vanish at the origin of the cone. If k(3) becomes soft in
the two-loop example then κ(13) and κ(23) vanish separately. Therefore κ(3) is zero
as it should be. But we can still deform in the chains C(1) and C(2), that why we
need the extra terms. As κ(3) = 0 implies we have in this case κ(1) = κ(2) = κ(12).

Cutting a chain out of a chain diagram corresponds to setting the chain mo-
mentum soft in this chain. Therefore cutting chains out of a chain diagram until
a single chain remains corresponds to making all these chain momenta soft but
we can still deform correctly in the remaining chain. Because we have to deform
if possible we have to consider every combination of soft chains which reduces the
N -loop chain diagram to a one-loop chain diagram.

We take a closer look at the deformation vector

κ(i1,...,in) = λ(i1,...,in)
(
κ

(i1,...,in)
int + κ

(i1,...,in)
ext

)
. (6.28)

The scaling parameter λ(i1,...,in) is calculated by interpreting the merged chain
defined by eq.(6.22) as an one-loop diagram and using the algorithm discussed in
chapter 5.

The vector κ(i1,...,in) must be a smooth function of the variable momenta. The
vector vij defined in eq.(5.45) is not a smooth function in the momenta qi, qj and
therefore in the multi-loop case not a smooth function in the variable momenta.
In the multi-loop case we rewrite

k − vij → θ(zij)
zij

zij +M2
2

(
k − (1−Xij)

Vij + Vji
2

−XijWij

)
(6.29)

The expression on the right hand side is a smooth function in the variable mo-
mentum k and the fixed momenta qi, qj. We have

Xij = θ(xij)
xij

xij +M2

θ(xji)
xji

xji +M2

, M2 =

√
s

90
(6.30)

and

Wij =
qik

0
j − qjk0

i

q0
i − q0

j

(6.31)

The variables xij, zij and Vij are defined in chapter 5 and s is the center of mass
energy squared of the considered process

In the construction of κext, more specifically in the definition of the vector P+

and P−, we make use of the fact that we have only up to two strains in the loop
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6.4 Collinear configurations

k
i−1

p
i

k
i

k (1)

k (1)−k(2)

k (2)

Figure 6.4: Examples for one-loop diagram with an external vertex (left) and
an example for an two-loop diagram with an internal vertex (right).

momentum space for a one-loop amplitude fig.(5.2). For a generic merged chain
this is no longer true but it is graphically clear that we can still find points in
the loop momentum space whose light cones contain all the appearing strains. In
the following we present a way to calculate the vectors P± in the multi-loop case.
Consider a merged chain with n fixed momenta q1, . . . , qn, we set

P± = P
(n)
± (6.32)

where P
(n)
± is defined recursively by

P
(i)
± =


Z±

(
P

(i−1)
± + qi, P

(i−1)
± − qi

)
:
(
P

(i−1)
± − qi

)2

< 0

P
(i−1)
± :

(
P

(i−1)
± − qi

)2

> 0,
(
P

(i−1)(0)
± − q(0)

i

)
≶ 0

qi :
(
P

(i−1)
± − qi

)2

> 0,
(
P

(i−1)(0)
± − q(0)

i

)
≷ 0

.

(6.33)

The recursion start at P
(1)
± = q1 and Z±(x, y) is defined by eq.(5.25).

6.4 Collinear configurations

At one-loop level the contour deformation is pinched if two collinear loop lines
connected via an external vertex. This lead to an non integrable singularity. One
could expect that at multi-loop level something similar happens if two collinear
loop lines are connected via an internal vertex. We show exemplary at two-loops
that this is not the case.

First we review the collinear configuration of an one-loop diagram fig.(6.4). We
have a massless external on-shell particle p2

i = 0. If the two adjoint loop prop-
agators get collinear to the external particle the contour deformation is pinched
and a non integrable singularity appear. We note that at least one of the loop
propagators must correspond to an gluon in order that the singularity is non
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6 Direct integration of two- and three-loop diagrams

integrable. To show that the singularity is pinched we write down explicitly the
imaginary part of the two loop propagators which are on-shell in the collinear
limit.

k → qi−1 + xpi ⇒
{

Im(k2
i−1) → xκ · pi

Im(k2
i ) → (x− 1)κ · pi

, x ∈ (0, 1) (6.34)

Obviously it is impossible to find a deformation vector κ such both propagators
get a positive imaginary part and therefore is in this collinear limit κ · pi = 0.

Now the two-loop case. The loop momentum k(3) = k(1) − k(2) is connected
via an internal vertex to the loop momenta k(1) and k(2). The masses in the
corresponding propagators are zero. We set k(2) on-shell and k(1), k(3) collinear to
k(2).

k(2) → p p2 = 0 (6.35)

k(1) → xp (6.36)

k(3) → (x− 1)p (6.37)

In this set up three loop propagators are on-shell. With the definition given in
eq.(6.25), the corresponding imaginary parts are

Im
(
(k(1))2

)
→ xκ(12) · p+ xκ(13) · p (6.38)

Im
(
(k(2))2

)
→ κ(12) · p+ κ(23) · p (6.39)

Im
(
(k(3))2

)
→ (x− 1)κ(13) · p− (x− 1)κ(23) · p. (6.40)

For all values of x the singularity is never pinched. We construct our deformation
vectors such that:

x < 0

⇒ κ(12) · p = 0, κ(13) · p < 0, κ(23) · p > 0. (6.41)

x ∈ (0, 1)

⇒ κ(12) · p > 0, κ(13) · p = 0, κ(23) · p > 0. (6.42)

x > 1

⇒ κ(12) · p > 0, κ(13) · p > 0, κ(23) · p = 0. (6.43)

For x = 0 or x = 1 the singularity is pinched but only for a single propagator and
therefore don’t lead to an non integrable singularity. We summarize, a necessary
condition for an non integrable collinear singularity in a loop integration is a
massless on-shell external particle which is connected directly to the loop.

6.5 Checks and examples

In this section we test the contour deformation for multi-loop diagrams by calcu-
lating some simple diagrams and compare the numerical results with the known
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k (L)−k(L−1)k (2)−k(3)k (1)−k(2)

p + k(2)

−k(2)

p + k(1)

−k(1)

−p

p + k(L)

−k(L)

p

Figure 6.5: Definition of the L-loop two-point ladder diagram. The analytic
expression for this diagram is given by B(L)(p2).

k (L)−k(L−1)k (2)−k(3)k (1)−k(2)
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Figure 6.6: Definition of the L-loop three-point ladder diagram. The analytic
expression for this diagram is given by C(L)(p2
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Figure 6.7: Definition of the L-loop four-point ladder diagram. The analytic
expression for this diagram is given by D(L)(p2
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3, p

2
4, s, t).
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6 Direct integration of two- and three-loop diagrams

analytical results. Scalar multi-loop diagrams with all external particles off shell
are infrared safe. With no one-loop self-energy type sub diagrams these diagrams
are also ultraviolet finite. In the literature [61] we find simple analytical results
for the two-, three- and four-point ladder diagrams shown in fig.(6.5, 6.6, 6.7).
We repeat here the analytical results for these ladder diagrams.

B(L)(p2) =

(
ıπ2

p2

)L
p2 (2L)!

(L!)2
ζ(2L− 1) (6.44)

C(L)(p2
1, p

2
2, p

2
3) =

(
ıπ2

p2
3

)L
Φ(L)(x, y) (6.45)

D(L)(p2
1, p

2
2, p

2
3, p

2
4, s, t) =

(
ıπ2

s

)L
1

t
Φ(L)(X, Y ) (6.46)

The function Φ can be expressed in terms of polylogarithms

Φ(L)(x, y) = − 1

L!λ

2L∑
j=L

(−1)jj! ln2L−j(y/x)

(j − L)!(2L− j)!

[
Lij

(
− 1

ρx

)
− Lij(−ρy)

]
,(6.47)

The definitions of the variables are

x =
p2

1

p2
3

, y =
p2

2

p2
3

,

X =
p2

1p
2
3

st
, Y =

p2
2p

2
4

st

s = (p1 + p2)2, t = (p2 + p3)2

λ(x, y) =
√

(1− x− y)2 − 4xy ρ(x, y) =
2

1− x− y − λ

(6.48)

In [62] it is shown that the non-planar two-loop three-point function can also be
expressed in terms of these functions:

C(2)
np (p2

1, p
2
2, p

2
3) =

(
C(1)(p2

1, p
2
2, p

2
3)
)2

(6.49)

The chain diagram of the three-loop ladder diagram is degenerate and therefore
simplifies the construction of the deformation vector a little bit. We get the
degenerate chain diagram by removing the chain C(6) from fig.(6.2). The resulting
chain diagram is shown in fig.(6.8). The deformation vectors for such chain
diagram are defined by

κ(1) = κ(14) + κ(123) + κ(125)

κ(2) = κ(245) + κ(123) + κ(125) + κ(234)

κ(3) = κ(35) + κ(123) + κ(234)

κ(4) = κ(14) − κ(245) − κ(234)

κ(5) = κ(245) + κ(125) − κ(35) (6.50)
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C(1)

C(2)

C(3)C(4) C(5)

Figure 6.8: The degenerate chain diagram of an three-loop ladder diagram.

In our test program we use the VEGAS algorithm from the CUBA library. After a
warm-up phase of five VEGAS runs the program performs 20 VEGAS runs. Each
VEGAS run is performed with 107 iterations. The final result is calculated via
a weighted arithmetical average of the 20 VEGAS runs, see chapter 4 for more
details. For the calculation of the three-loop ladder diagrams we increase the
statistic by another factor of 10. The detailed set up i.e. the external momenta
of the diagrams for the calculation is given in appendix D.

In tab.(6.1) we show the analytic results together with the numeric results
calculated with our method for the two- and three-loop ladder diagrams defined
in fig.(6.5, 6.6, 6.7) and the non planar two-loop triangle. In tab.(6.2) we show
the numeric results for different two-loop six-point topologies. For such diagrams
no analytic results are known but we can check if or how strongly the statistical
error depends on the topology we calculate.

The numerical results shown in tab.(6.1) are in good agreement with the ana-
lytic results. At the two-loop level we reach a accuracy of about one percent. At
three-loop level the accuracy decrease to about 10 percent but as a proof of prin-
ciples these results are still good. The numerical results for the two-loop six-point
functions shown in tab.(6.2) are at a accuracy of about five percent and shown
no strong dependence of the given topology. In terms of the contour deformation
we do not expect any difficulties from calculating non-planar diagrams.

In this chapter we successfully apply the Direct deformation approach to multi-
loop integrals. So far we are limited in the calculation of two- and three-loop
integrals. An extension to even higher-loops are thinkable but not practical for
the moment. We tested the contour deformation only for massless diagrams, but
because the Direct deformation is suitable for masses at one-loop level we expect
it is also suitable for masses at multi-loop level.
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6 Direct integration of two- and three-loop diagrams

analytic result numerical result

B(2) −8.67343 ∗ 10−2 (−8.651± 0.0509) ∗ 10−2

C(2) −4.44938 ∗ 10−5 (−4.4842± 0.0569) ∗ 10−5

C
(2)
np −7.05339 ∗ 10−5 (−7.0829± 0.0905) ∗ 10−5

D(2) −1.43249 ∗ 10−7 (−1.4489± 0.0172) ∗ 10−7

B(3) −ı 3.03884 ∗ 10−4 −ı (3.0403± 0.3241) ∗ 10−4

C(3) −ı 2.04016 ∗ 10−7 −ı (2.0804± 0.2432) ∗ 10−7

D(3) −ı 2.55297 ∗ 10−9 −ı (2.8133± 0.2482) ∗ 10−9

Table 6.1: Results for various two- and three-loop diagrams corresponding to
two-, three- and four-point functions.

82



6.5 Checks and examples

(a) (b) (c)

(d) (e) (f)

Figure 6.9: Definition of various two-loop six-point topologies.

numerical result relative error

(a) (−2.0191± 0.0505) ∗ 10−12 2.5%

(b) (−2.8192± 0.1266) ∗ 10−12 4.5%

(c) (−1.5706± 0.1288) ∗ 10−12 8.2%

(d) (−4.148± 0.1817) ∗ 10−13 4.4%

(e) (−9.7411± 0.6512) ∗ 10−13 6.7%

(f) (−2.4069± 0.1543) ∗ 10−12 6.4%

Table 6.2: Results for various two-loop six-point diagrams.
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7 Summary and outlook

In this thesis we mainly discuss the numerical calculation of loop integrals with
contour deformation. As a motivation we present in chapter 2 the subtraction
method at NLO level. This method uses subtraction terms and contour de-
formation for a fully numerical calculation of NLO observables. The necessary
ingredients, the tree-level partial amplitudes and the integrands of the primitive
one-loop amplitudes are calculated via Berends-Giele type recurrence relations.
In chapter 3 we discussed the recurrence relations for these ingredients in de-
tail. Furthermore we extended the method to the integrands of planar primitive
two-loop amplitudes for a future application at NNLO calculations. The recur-
rence relations at loop level are based on tree-level recurrence relations and cut
techniques to cut open the loops.

In chapter 4 and chapter 5 we discussed two different approaches to contour
deformation for one-loop integrals. In chapter 4 we presented a contour deforma-
tion based on Feynman parameters. The advantage of this method is the relative
simple deformation but on the other we observed numerical instabilities at large
particle multiplicity. We presented the infrared mass approach and a suitable
splitting of the integration region to overcome these instabilities. In chapter 5
we presented a contour deformation which works directly in the loop momentum
space. This deformation is more complicated but do not face the numerical insta-
bilities of the Feynman deformation. In chapter 5 we focused on the calculation
of one-loop integrals with massive propagators and compared the performance of
the Feynman deformation with the performance of the Direct deformation.

With a NNLO application in mind we presented in chapter 6 the extension
of the Direct deformation discussed in chapter 5 to multi-loop integrals. We
introduce there the notation of a chain and showed how to reduce the problem of
calculating a deformation vector from the multi-loop level to the one-loop level.
We have tested the contour deformation for various simple two- and three-loop
diagrams.

The subtraction method is a well established method for NLO calculations.
The process e+e− to up to seven jets were calculated and it is planned to publish
results for Z + jets at hadron colliders in the near future. With the work pre-
sented in this thesis the subtraction method is also suitable for NLO calculations
in tt̄ production or massive QCD in general. The recursion relations and contour
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7 Summary and outlook

deformation at two-loop level were two small steps toward a NNLO implemen-
tation of the subtraction method. For an automated calculation of the two-loop
contribution in a NNLO calculation the local infrared and ultraviolet subtraction
terms for the two-loop amplitude are missed and open for future work.
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A Colour ordered Feynman rules

In this appendix we give a list of the colour ordered Feynman [5]. They are
obtained from the standard Feynman rules by extracting from each formula the
coupling constant and the colour part. The propagators for quark, gluon and
ghost particles are given by

= ı
/k +m

k2 −m2
,

= −ıg
µν

k2

= ı
1

k2
. (A.1)

The colour ordered Feynman rules for the vertices are

= −ıγµ,

k
1

k
2

k
3

= −ı
[
gµν
(
kλ1 − kλ2

)
+ gνλ (kµ2 − k

µ
3 ) + gλµ (kν3 − kν1)

]
,

= −ı
[
gµνgλρ − 2gµλgνρ + gµρgνλ

]
,

k

= −ıkµ. (A.2)
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B Generating the random points

In this appendix we show how to map the random numbers provided by the
VEGAS algorithm to the integration variables.

B.1 Generating Feynman parameters

We show that for functions which are homogeneous of order (−n)

1∫
0

dnxδ

(
1−

n∑
i=1

xi

)
f(x1, . . . , xn) =

n∑
i=1

1∫
0

dnxδ (1− xi) f(x1, . . . , xn) (B.1)

Proof:∫
dnxδ

(
1−

n∑
i=1

xi

)
f(x1, . . . , xn)

=

1∫
0

dx1

1−x1∫
0

dx2 · · ·
1−x1−...−xn−2∫

0

dxn−1f (x1, . . . , xn−1, 1− x1 − . . .− xn−1)

(B.2)

We substitute

x1 = y1

x2 = (1− y1)y2

...

xn−1 = (1− y1) · · · (1− yn−2)yn−1 (B.3)

This yields

=

1∫
0

dy1 · · ·
1∫

0

dyn−1

n−2∏
i=1

(1− yi)n−i−1 f (y1, (1− y1)y2, . . . , (1− y1) · · · (1− yn−1))

(B.4)
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B Generating the random points

We split the integration into n regions

=

n−1∑
j=1

1/2∫
0

dy1 · · ·
1∫

1/2

dyj

1∫
0

dyj+1 · · ·
1∫

0

dyn−1 +

1/2∫
0

dy1 · · ·
1/2∫
0

dyn−1


n−2∏
i=1

(1− yi)n−i−1 f (y1, (1− y1)y2, . . . , (1− y1) · · · (1− yn−1)) . (B.5)

For the j-th channel we have

1/2∫
0

. . .

1∫
1/2

· · ·
1∫

0

dn−1y

n−2∏
i=1

(1− yi)n−i−1 ((1− y1) · · · (1− yj−1)yj)
−n

f (z1, . . . , zj−1, 1, zj, . . . , zn−1) (B.6)

with the definition

z1 =
y1

(1− y1) · · · (1− yj−1)yj
...

zj−1 =
yj−1

(1− yi−1)yj

zj =
(1− yj)yj+1

yj
...

zn−1 =
(1− yj) · · · (1− yn−1)

yj
(B.7)

The Jacobian matrix for this transformation is given by

J−1 =

∣∣∣∣∂zi∂yj

∣∣∣∣ =

(
j−1∏
i=1

∂zi
∂yi

)
∗
∣∣∣∣∂zs∂yt

∣∣∣∣
s,t≥j

(B.8)

∂zi
∂yi

=
1

(1− yi)2(1− yi+1) · · · (1− yj−1)yj
i < j (B.9)∣∣∣∣∂zs∂yt

∣∣∣∣
s,t≥j

= (−1)n−j

(
n−2∏
i=j

(1− yi)n−i−1

)
yj−n−1
j

∗

∣∣∣∣∣∣∣∣∣∣∣

yj+1 (1− yj+1)yj+2 · · · (1− yj+1) · · · (1− yn−1)
−1 yj+2 (1− yj+2) · · · (1− yn−1)
0 −1 (1− yj+3) · · · (1− yn−1)
...

. . .
...

0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣
(B.10)
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B.1 Generating Feynman parameters

It can be easily shown that the determinant of the matrix is 1. Combining all
the results we obtain the Jacobian

J = (−1)n−j

(
n−2∏
i=1

(1− yi)n−i−1 ((1− y1) · · · (1− yj−1)yj)
−n

)−1

(B.11)

The minus signs are eaten up by making the integration boundaries right. So the
integral for the j-th channel is given by the simple expression

=

1∫
0

dn−1zf (z1, . . . , zj−1, 1, zj, . . . , zn−1) (B.12)

After renaming the integration variables and introducing a delta distribution we
have

=

1∫
0

dnxδ (1− xj) f(x1, . . . , xn) (B.13)

A similar calculation holds for the n-th channel. With this we have shown that for
a homogeneous function of degree (−n) the integration over the n−1 dimensional
simplex can be replaced by the integration over the n surfaces of the n dimensional
hyper cube. We can now write our integral as

I =
n∑
i=1

1∫
0

dnxδ(1− xi)f(x1, . . . , xn)

= n

n∑
i=1

1∫
0

dλλn−1

1∫
0

dn−1xf(x1, . . . , xi−1, 1, xi+1, . . . , xn). (B.14)

substituting yj = λxj for all j 6= i yields

= n
n∑
i=1

1∫
0

dλ

λ∫
0

dn−1yf

(
y1

λ
, . . . ,

yi−1

λ
,
λ

λ
,
yi+1

λ
, . . . ,

yn
λ

)
(B.15)

= n

1∫
0

dnzf(u1, . . . , un), ui =
zi

max{z1, . . . , zn}
. (B.16)

The definition of the integration variables is suitable for our Monte Carlo pro-
gramme and can be used for any Feynman parameter integral.
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B Generating the random points

B.2 Generating the loop momentum

In this section we discuss the construction of the loop momentum from four
numbers randomly distributed in the unit hyper cube [0, 1]4. We define for
u0, u1, u2, u3 ∈ [0, 1] a radius kE and three angles ζ, θ, φ by the following equations:

kE = µ1

√
tan

π

2
u0

ζ = arccos(1− 2u1)

θ = arccos(1− 2u2)

φ = 2πu3 (B.17)

µ1 is an arbitrary scale, which we take to be the order of the center-of-mass
energy. The loop momentum is then given by

k = kE


cos ζ

sin ζ sin θ sinφ
sin ζ sin θ cosφ

sin ζ cos θ

 (B.18)

The Jacobian of this transformation is∣∣∣∣∂k∂u
∣∣∣∣ = 2π2k

2
E

µ2
1

(
k4
E − µ4

1

)
sin ζ (B.19)

We note that in the case of an multi-loop integral we construct all the loop
momenta with this method.
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C Proof of the direct
deformation

In this appendix we give detailed proof for some statements made in chapter 5.

C.1 Proof for zij

We show that for all loop momenta k which lie on the intersection of a forward
hyperboloid with a backward hyperboloid the constant zij is greater zero. There-
fore the statement zij > 0 is equivalent to the statement that there exists an
intersection of a forward hyperboloid with a backward hyperboloid. We define
the forward hyperboloid by

k2
i −m2

i = 0 k0
i > 0 (C.1)

and the backward hyperboloid by

k2
j −m2

j = 0 k0
j < 0. (C.2)

We calculate the constant

zij = (qi − qj)2 − (mi +mj)
2

= (ki − kj)2 − (mi +mj)
2

= 2(|k0
i ||k0

j | −mimj + |~ki||~kj| cosφ)

≥ 2|~ki||~kj|(1 + cosφ), (C.3)

in the last step we made use of

|k0
i ||k0

j | −mimj ≥ |~ki||~kj|, (C.4)

which can be easily shown. We note that in the massless case and with (qi − qj)
light-like the intersection of a forward hyperboloid with a backward hyperboloid is
given by the region where a forward cone is tangential to a backward cone. This
region corresponds to the collinear singularity and the deformation is pinched.
Therefore if zij ≤ 0 we set cij in eq.(5.29) to zero.
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C Proof of the direct deformation

C.2 Proof for xij

We show that if xij > 0 and xji > 0 the minimum of the forward hyperboloid lies
in the interior of the backward hyperboloid and the maximum of the backward
hyperboloid lies in the interior of the forward hyperboloid. For points k which lie
inside a forward hyperboloid with origin qi we have

0 < k0
i −

√
~k2
i +m2

i . (C.5)

For points k which lies inside a backward hyperboloid with origin qi we have

0 < −k0
i −

√
~k2
i +m2

i . (C.6)

For q0
i < q0

j the minimum of the forward hyperboloid is at qi + ê0mi and the
maximum of the backward hyperboloid is at qj − ê0mj. The conditions that the
extremum lies in the correlated hyperboloid reads in this case

0 < q0
j −mj − q0

i −
√

(~qi − ~qj)2 +m2
i (C.7)

0 < −(q0
i +mi − q0

j )−
√

(~qi − ~qj)2 +m2
j (C.8)

For q0
i > q0

j the minimum of the forward hyperboloid is at qj + ê0mj and the
maximum of the backward hyperboloid is at qi − ê0mi. The conditions that the
extremum lies in the correlate hyperboloid reads in this case

0 < q0
i −mi − q0

j −
√

(~qi − ~qj)2 +m2
j (C.9)

0 < −(q0
j +mj − q0

i )−
√

(~qi − ~qj)2 +m2
i (C.10)

We combine eq.(C.8) and eq.(C.9) to

0 < xij = |q0
i − q0

j | −mi −
√

(~qi − ~qj)2 +m2
j (C.11)

and we combine eq.(C.7) and eq.(C.10) to

0 < xji = |q0
i − q0

j | −mj −
√

(~qi − ~qj)2 +m2
i . (C.12)

C.3 Proof for κext

We show that κext always deforms correctly as long as the loop momentum lies
either on a forward hyperboloid or on a backward hyperboloid. If the loop mo-
mentum k lies on a forward hyperboloid with origin qi we have

k2
i −m2

i = 0 k0
i > 0 ⇒ k0

i ≥ |~ki|, (C.13)
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C.4 Proof for κint

and it follows that k lies also inside the forward cone with origin P+

k0
+ ≥ |~k+|. (C.14)

Because k lies on a forward hyperboloid we also have hδ+(ki,m
2
i ) = 0, therefore

c− = 0 and c+ ≈ 1. The imaginary part of the critical propagator reads

κext · ki ≈ k+ ◦ ki
≥ |~k+||~ki|(1 + cos θ)

≥ 0 (C.15)

If the loop momentum k lies on the backward hyperboloid with origin qi we have

k2
i −m2

i = 0 k0
i < 0 ⇒ k0

i ≤ −|~ki|, (C.16)

and it follows that k lies also inside the backward cone with origin P−

k0
− ≤ −|~k−|. (C.17)

Because k lies on a backward hyperboloid we also have hδ−(ki,m
2
i ) = 0, therefore

c+ = 0 and c− ≈ 1. The imaginary part of the critical propagator reads

κext · ki ≈ k− ◦ ki
≥ |~k−||~ki|(1 + cos θ)

≥ 0 (C.18)

The equal sign in eq.(C.15) and eq.(C.18) only appear in the soft limit k = qi,
because if

k0
i = ±|~ki| and k0

± = ±|~k±| (C.19)

the two cones are tangential and therefore we have cosφ = 1 in this case.

C.4 Proof for κint

We show that κint deforms correctly if the loop momentum k lies on the intersec-
tion of a forward hyperboloid with a backward hyperboloid. This intersection is
defined by

k2
i −m2

i = 0 k0
i > 0 (C.20)

k2
j −m2

j = 0 k0
j < 0 (C.21)

To show that κint deforms correctly we only need to show that −(k − vij) leads
to a positive imaginary part in the two critical propagators. First we consider
xij > 0 and xji >. Then

vij =
qik

0
j − qjk0

i

q0
i − q0

j

(C.22)
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C Proof of the direct deformation

and we rewrite the conditions to

xij > 0 ⇒ ~ki · ~kj > mi(k
0
i − k0

j ) + k0
i k

0
j −m2

i (C.23)

xji > 0 ⇒ ~ki · ~kj > mj(k
0
i − k0

j ) + k0
i k

0
j −m2

j . (C.24)

The imaginary part for the i-th propagator is given by

κint · ki ≥ −(k − vij) · ki

=
kik

0
j − kjk0

i

k0
i − k0

j

· ki

=
~kj · ~kik0

i − ~k2
i k

0
j

k0
i − k0

j

>
k0
i

(
mi(k

0
i − k0

j ) + k0
i k

0
j −m2

i

)
− ~k2

i k
0
j

k0
i − k0

j

= mi

(
k0
i −mi

)
≥ 0. (C.25)

The imaginary part for the j-th propagator is given by

κint · kj ≥ −(k − vij) · kj

=
kik

0
j − kjk0

i

k0
i − k0

j

· kj

=
~k2
jk

0
i − ~ki · ~kjk0

j

k0
i − k0

j

>
~k2
jk

0
i − k0

j

(
mj(k

0
i − k0

j ) + k0
i k

0
j −m2

j

)
k0
i − k0

j

= mj

(
−k0

j −mj

)
≥ 0. (C.26)

The equal sign in eq.(C.25) and eq.(C.26) never appears in practise because in
this case we have xij = 0 or xji = 0. Eq.(C.25) is zero if the loop momentum lies
in the minimum of the forward hyperboloid with origin qi and eq.(C.26) is zero
if the loop momentum lies in the maximum of the backward hyperboloid with
origin qj but by construction (xij > 0, xji > 0) it is forbidden that an extremum
of one hyperboloid lie on the other hyperboloid.

Next we consider the case that xij ≤ 0 or xji ≤ 0 and zij > 0. We note that

zij > 0 ⇒
√

(ki − kj)2 > mi +mj (C.27)

and therefore we also have

−ki · kj > mimj ≥ 0. (C.28)
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C.4 Proof for κint

The imaginary part for the i-th propagator is given by

κint · ki ≥ −(k − vij) · ki

= −ki
2

(
ki −mi

ki − kj√
(ki − kj)2

+ kj +mj
ki − kj√
(ki − kj)2

)

= −1

4

(
ki −mi

ki − kj√
(ki − kj)2

)2

− ki
2

(
kj +mj

ki − kj√
(ki − kj)2

)

≥ −1

4

(
ki −mi

ki − kj√
(ki − kj)2

)2

− ki · kj
2

(
1− mi +mj√

(ki − kj)2

)
≥ 0. (C.29)

The imaginary part for the j-th propagator is given by

κint · kj ≥ −(k − vij) · kj

= −kj
2

(
ki −mi

ki − kj√
(ki − kj)2

+ kj +mj
ki − kj√
(ki − kj)2

)

= −kj
2

(
ki −mi

ki − kj√
(ki − kj)2

)
− 1

4

(
kj −mj

kj − ki√
(ki − kj)2

)2

≥ −ki · kj
2

(
1− mi +mj√

(ki − kj)2

)
− 1

4

(
kj −mj

kj − ki√
(ki − kj)2

)2

≥ 0 (C.30)

In the last step of eq.(C.29) and eq.(C.30) we make use of the fact that the
distance of two points on the same mass hyperboloid is spacelike. We note that
the equal sign in eq.(C.29) and eq.(C.30) only appears if mi = mj = 0 and
(qi − qj)2 = 0 but this configuration correspond to a pinch singularity called the
collinear singularity.
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D Test program set-up’s

In the case that someone like to verify our results calculated in this thesis we
present in this appendix the explicit numbers for external momenta we use in our
test program.

D.1 Massless six-point function

In chapter 4 and chapter 5 we make use of an six-point function with all external
momenta on-shell and massless to test our contour deformation, Fig.(4.2) and
5.6. The momenta of the external massless on-shell particles are given in our test
program by:

p1 = (29.91523,−18.184584,−8.692535, 22.106147)

p2 = (9.827193, 4.075286, 8.795244,−1.615378)

p3 = (22.170989,−9.264169, 14.187043,−14.298802)

p4 = (28.086588, 23.373467,−14.289752,−6.191967)

p5 = (−45, 0, 0, 45)

p6 = (−45, 0, 0,−45)

We note that the center of mass energy is around the Z-Boson mass.

D.2 Massive six-point function

In chapter 5 we make use of an six-point function with two massive and four
massless external on-shell momenta to test our contour deformation, Fig.(5.7)
and 5.9. The external on-shell particles with p2

1 = p2
4 = 100 are given in our test
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D Test program set-up’s

program by:

p1 = (30.447087,−17.481165,−8.356289, 21.251033)

p2 = (9.447056, 3.917645, 8.455025,−1.552891)

p3 = (21.313366,−8.905811, 13.638257,−13.745693)

p4 = (28.792489, 22.469331,−13.736994,−5.952449)

p5 = (−45, 0, 0, 45)

p6 = (−45, 0, 0,−45)

and the external on-shell particles with p2
1 = p2

4 = 1600 are given by:

p1 = (40.785589,−4.842567,−2.314828, 5.886881)

p2 = (2.616988, 1.085251, 2.342179,−0.430176)

p3 = (5.904149,−2.467054, 3.778019,−3.80778)

p4 = (40.693274, 6.224369,−3.80537,−1.6489249)

p5 = (−45, 0, 0, 45)

p6 = (−45, 0, 0,−45)

D.3 Ladder diagrams

In chapter 6 we make use of the two-, three- and four-point ladder diagrams
with all external particles off shell to test our contour deformation for multi-loop
integrals. For the two-point function the external off-shell momentum is given
by:

p = (90, 0, 0, 0).

For the three-point function the external off-shell momenta are given by:

p1 = (39.7424,−14.1093, 0.102709, 20.4908)

p2 = (50.2576, 14.1093,−0.102709,−20.4908)

p3 = (−90, 0, 0, 0)

For the four-point function the external off-shell momenta are given by:

p1 = (19.6586,−7.15252,−0.206016, 8.96383)

p2 = (26.874, 7.04203,−0.0501295,−12.9055)

p3 = (43.4674, 0.110491, 0.256146, 3.9417)

p4 = (−90, 0, 0, 0)
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D.4 Off-shell six-point function

D.4 Off-shell six-point function

In chapter 6 we make use of the two-loop six-point function with all external
particles off shell Fig.(6.9) to test our contour deformation for multi-loop integrals.
The external off-shell momenta are given by:

p1 = (9.64873,−1.60843,−7.38348,−0.535027)

p2 = (18.9132,−10.5194, 10.0603, 10.8508)

p3 = (11.8059,−3.17397,−6.77661,−3.43232)

p4 = (29.6765, 21.5419, 5.75578,−5.06762)

p5 = (19.9556,−6.24009,−1.65597,−1.81582)

p6 = (−90, 0, 0, 0)
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