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Alexander Winkler

Computer-Simulationen von Kolloidalen Fluiden in Beschränkten
Geometrien

Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an
interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden,
wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt
mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf
das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen
wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa-
Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert,
untersucht.
Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches
vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen
Pore findet man im Bereich des Phasendiagramms, in dem das System typischer-
weise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor.
Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang
der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bere-
iche der polymerreichen und der kolloidreichen Phase, welche von nun an koex-
istieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekur-
ven in entsprechenden Experimenten zu erklären.
Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum einge-
schränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymer-
reichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von
den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei
verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen
und Strukturen des Janustyps.
Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen inner-
halb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien
Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsen-
tiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid-
Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von
Kristallkeimen an Wänden verwendet.
Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche
sich nach einem Quench des Systems aus dem homogenen Zustand in den entmis-
chten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmeth-
ode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte
Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die
Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänen-
größe beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt
sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unter-
schiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der
Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass
die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsre-
ichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.
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Computer Simulations of Colloidal Fluids in Confinement

Colloidal suspensions that exhibit a phase transition in the bulk show a wide spec-
trum of interesting effects when they are confined in geometries, such as cylindrical
pores, spherical cavities or slit pores with planar walls. The influence of these various
types of confinement on the phase behavior as well as on the dynamics of colloid-
polymer mixtures is investigated by computer simulations using the Asakura-Oosawa
model which describes the depletion force leading to phase separation.
In the case of cylindrical confinement an interesting phase behavior due to the sys-
tem’s quasi one-dimensional character is found. In the two-phase region the system
is either filled with a polymer-rich or a colloid-rich phase when the system is confined
to short cylindrical pores. However, when the length of the cylindrical pore exceeds
a certain correlation length along the long axis, multiple quasi one-dimensional do-
mains of the polymer-rich and colloid-rich phases start to form and coexist aside.
These investigations help explain adsorption hysteresis curves of corresponding ex-
periments.
When the colloid-polymer model system is confined to spherical cavities, the tran-
sition point from the polymer-rich to the colloid-rich phase is shifted. It is shown
that this shift is a direct result of the wetting properties in the system and comes
along with two different morphologies at phase coexistence – core-shell structures
and Janus-type structures.
In the context of heterogeneous nucleation of crystals surrounded by liquid a new
method to calculate wall surface free energies is developed. The results obtained for
a hard sphere system and for a colloid-polymer mixture are used to derive contact
angles for wall attached crystalline nuclei.
The phase separation dynamics in quasi two-dimensional systems after a quench
from the homogeneous state into the demixed state is investigated by a mesoscale
simulation method: The multi particle collision dynamics algorithm allows for a
detailed study of the role of hydrodynamic interactions. The universal power law
exponents of the domain growth dynamics known from the studies of strictly two-
or three-dimensional systems are recovered for specific setups. The distinct dynam-
ics perpendicular and parallel to the walls is studied as well as the influence of the
solvent wall boundary condition. It is found that the screening of the effective hy-
drodynamic interaction range strongly modifies the domain growth behavior.
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CHAPTER

1

INTRODUCTION

Condensed matter physics belongs to the most fascinating branches in physics. It
interconnects almost all the different parts of physics and even goes beyond physics
providing connections to biology, medicine, mathematics and informatics. Two as-
pects are especially attractive. First of all, we are surrounded in our daily life
by condensed matter in various phases (gases, liquids, liquid-crystals, crystals, etc.).
The importance of materials with certain properties plays an outstanding role in our
civilization (which is reflected by the names of some ages, like stone-age, bronze-age,
etc.). Second, development of theories and, hence, the understanding of condensed
matter is very challenging, but at the same time the formulation of the problem
itself is very simple; consider, for example, hard spheres in a given volume which
can be described by a single parameter, the packing fraction. In contrast to typical
classical mechanics problems where a two or three particle problem is solved, in con-
densed matter physics one has to deal with macroscopic systems. Instead of single
trajectories, quantities characterizing the system as a whole, like the temperature
or the pressure, are in the focus of interest. The properties of condensed matter
systems depend strongly on the microscopic details of the underlying particle in-
teractions. However, in certain parameter ranges (critical regions) microscopically
different systems behave identical with respect to specific quantities which leads to
universality concepts allowing for the classification of all the various system types.
A special role in condensed matter physics play the so-called soft matter systems.
In comparison to simple molecules they consist of large constituents between nm
and several µm. Typical examples are colloids and polymers or mixtures of those
components which are dispersed in a solvent. The term “soft” reflects the fact that,
for instance, colloidal crystals are very easy to deform in comparison to molecular
crystals. Colloids are particles (typically sphere- or rod-like) that are dispersed in
a solvent and are much larger than the solvent molecules but still are small enough
to be affected by thermal motion1. The terminus “colloid” goes back to the year

1An observation of thermal motion depends strongly on the timescales at which the observation
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Gas (a), liquid (b),
and crystalline (c) phase of a
colloidal suspension containing
charged colloidal spheres in deion-
ized water. The pictures of these
samples were kindly provided
by Prof. Palberg, Komet 336,
Johannes Gutenberg-Universität
Mainz.

1861 when Thomas Graham distinguished between crystalloids which could pass
a membrane and colloids which did not but were “glueing” at the membrane2 [10].
Nowadays, we see colloids in a broad variety in our daily life such as milk, foams,
gels, hand creme, etc. Another important area for colloidal research are industrial
applications, for instance, colloidal ink, enamels or the enhancement of bullet proof
clothes by colloid coating (causing shear thickening). Colloidal systems can also
be regarded as models for molecular systems since they have a lot in common like
phase transitions and critical phenomena (for instance, critical slowing down can
be studied for systems such as colloid-polymer mixtures). However, in contrast
to molecular systems, colloids can be observed easily due to their relatively large
size (by light scattering or directly by confocal microscopy methods). Typical time
scales range from microseconds up to seconds or beyond [11–13]. Apart from their
role as models for atomistic systems, colloids also possess properties which do not
exist in molecular systems caused by the various almost freely designable interaction
potentials and very slow dynamics (for example in the case of gels).
The interactions of colloids can be tuned by grafting polymers or DNA to the surface
or by screening their charges when adding salt to the dispersion. The interaction
can also be tuned indirectly or effectively by admixing polymers to the system. This
technique leads to an effective force, the so-called depletion force, whose range is
controlled by the typical size of the polymers and whose strength depends on the
amount of admixed polymers. This class of colloid-polymer mixtures is the main
topic considered in this thesis. But it is not only possible to modify the interaction
potentials among the colloidal particles, one can also create anisotropic compounds
such as ellipsoids, colloidal polymers, tetrapods [14–16], etc. The variety of interac-
tions and particle shapes enables scientists to obtain a highly complex phase behavior
of such systems, ranging from gases and liquids (see Fig. 1.1a,b) over liquid-crystals
and crystalline structures (see Fig. 1.1c) to macrostructure formations, micelles,
etc. [17]. Furthermore, some methodologies of colloidal and polymer physics have a
direct link to biology such as the investigation of bacteria [18–20], folded proteins
[21], membranes [22, 23] or red blood cells [24].
The colloidal systems under consideration in this work are investigated by means of
computer simulations. The history of computer simulations in the field of statistical

takes place.
2The Greek word κoλλα stands for “glue”.
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physics is rather short. In the 50th of the last century Metropolis et al. [25] in-
troduced the Metropolis Monte Carlo method. By creating random but Boltzmann
weighted configurations of classical many particle systems they were able to show
that it is possible with this method to calculate properties of a two-dimensional hard
sphere system such as the pressure. Almost at the same time Alder and Wain-
wright introduced the Molecular Dynamics simulation method [26–28]. Based on
classical interaction potentials among the particles the phase space trajectory of each
component is calculated using Newton’s equations of motions. While the Metropo-
lis Monte Carlo scheme samples the configuration space in a stochastic manner, in
Molecular Dynamics simulations the trajectories of the individual particles are re-
solved in phase space. The initially questionable success of this kind of numerical
investigations developed to become a well established part in the field of statistical
mechanics and coexists aside theoretical and experimental studies. The main input
into computer simulations of this kind is the precise knowledge of the particle interac-
tions. Effects occurring in experiments such as polydispersity, impurities or particle
shape anisotropy, can be excluded or separately investigated to clarify the exact
origin of the macroscopic properties of the system under examination. Research in
physics with the help of computer simulations is nowadays a two-fold challenge. On
the one hand, one has to develop algorithms which describe correctly the considered
physical problem and, on the other hand, one has to overcome restrictions due to the
hardware regarding the system size and time scales. The latter aspect is typically
addressed by the usage of highly parallel computer architectures which goes along
with the very challenging development of the appropriate simulation software.
The main focus in this work lies on the investigation of models for colloid-polymer
mixtures under various types of confinement by computer simulations. In general, a
strongly confined system which is capable to undergo a phase separation into two co-
existing phases shows an interplay between surface effects, e.g. wetting phenomena,
finite size effects (the correlation length is typically restricted by the confinement)
and effects related to the phase separation. Colloid-polymer mixtures are well suited
to address the effects of the confinement since they allow, on the one hand, for a
controlled and well understood setup of their bulk phase behavior and, on the other
hand, the typical system sizes are in the order of µm for which the fabrication or
setup of the confining geometry (e.g. parallel glass plates) is achievable with the
desired precision. However, this kind of soft matter systems can be also regarded as
a model for systems on the molecular or atomistic length scale which is especially
expedient in the vastly growing research field of nanoconfinement or nanomateri-
als. Since almost a decade we are in touch with nanomaterials in our daily life in
creams, sprays and even in our food. Especially the influence of nanoparticles on
our health is a current debate [29]. The research and understanding of extremely
confined systems is hence, a basic and pertinent necessity.

Outline

The investigation of equilibrium and non-equilibrium properties of colloidal suspen-
sions is a highly challenging and complex task from the theoretical, experimental and
computer simulations point of view. A crucial input for a successful investigation via
computer simulations is a well defined model system and proper methodological and
algorithmical approach. Chapter 2 introduces briefly the model system and Monte
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Carlo simulation techniques which are used for the determination of equilibrium
properties based on the calculation of free energy landscapes. A major attribute of
computer simulations in general is the finite system size. Although thermodynamic
fluctuations are in principal fully included in the mentioned simulation techniques,
which is a great advantage over e.g. mean field theories, the finite system size lim-
its the occurring maximum fluctuation amplitude, which leads to a rounding of
phase transition properties in critical regions. Chapter 3 focuses on these effects
and demonstrates how it is possible by the theory of finite size scaling to make
predictions about the thermodynamic limit of critical properties of colloid-polymer
mixtures in the bulk. From then on the influence of various confining geometries
on the phase behavior is investigated. Colloid-polymer model mixtures confined
between planar walls were successfully studied recently [30–32] and interesting and
intricate behavior is found such as a crossover of the critical behavior from a two-
dimensional character to a three-dimensional character or the interface localization
transition when the walls inequivalently favor one of the particle species. Chap-
ters 4 and 5 address the confinement in still lower dimensions. Chapter 4 focuses
on colloid-polymer mixtures in quasi one-dimensional cylindrical pores, particularly
the phase behavior close to critical regions when changing the length of the cylin-
drical tube. In chapter 5 the influence of spherical cavities on the phase transition
behavior is studied. The role of the system size as well as the interplay with the
wetting behavior is under investigation here.

One of the first models under investigation by computer simulations was the hard
sphere model [26]. Despite its simplicity and thereby resulting suitability as a non-
trivial reference system in the context of statistical mechanics, experiments on col-
loidal hard sphere systems are attainable and accomplishable. This simple and
extensively studied system is still a topic in modern science, since not all of its
properties are fully understood, as for example the equation of state [33], its wet-
ting properties [34] or related aspects of heterogeneous nucleation of the crystalline
phase. The latter aspect of heterogeneous nucleation at planar walls is addressed
for hard sphere systems and colloid-polymer mixtures in chapter 6.

While in the chapters mentioned so-far static equilibrium properties of colloid-
polymer model systems are investigated, eventually, the later chapters of this thesis
explore the topic of non-equilibrium dynamics. When transport properties of the
colloidal dispersion are considered, the solute starts to play a major role. Even
before Graham’s introduction of the colloid nomenclature, Robert Brown dis-
covered that pollen grains show an erratic motion when suspended in a medium.
In the beginning of the 20th century Brownian motion was extensively studied and
finally understood as the imbalance between collision events of molecules on both
sides of the suspended fluid particle [35–37]. The situation becomes complex when
multiple fluid particles are present. Their motion in the solvent is influenced by each
other due to hydrodynamic interactions. Although the suspended colloidal particles
may have a short range hard sphere interaction, when moving they generate dy-
namical many-body forces among each other through the solvent. The large gap in
time and length scales between the solvent molecules (∼ 10−10m) and the embedded
fluid compounds (∼ 10−8m−10−6m) makes it impossible to use the well-established
Molecular Dynamics simulation technique for colloidal suspensions when focusing on
the solvent influence. Instead, mesoscale simulation techniques are required, which
means that the solvent is treated in a coarse grained and hence computational less
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expensive way, typically directly related to the Navier-Stokes equations, while for
the fluid particles the Molecular Dynamics framework is applied. Chapter 7 gives a
detailed introduction on such a mesoscale method, the Multi Particle Collision Dy-
namics algorithm, which is used to study full non-equilibrium properties of colloid-
polymer mixtures. The technique allows for the detailed study of the influence of
certain solvent properties on the dynamics. In chapter 8 the spinodal decomposition
of binary colloid-polymer mixtures in thin films (quasi two-dimensional systems) is
addressed with the focus on hydrodynamic interactions with respect to the demix-
ing dynamics. It can be shown that the underlying universal power law behavior of
the phase separation dynamics is distinctly altered when including hydrodynamic
interactions and even more that the solvent boundary conditions are related to the
hydrodynamic interaction range which strongly influences the observed spinodal de-
composition kinetics.
In collaboration with the group of Eric Luijten (Northwestern University of
Chicago) systems of anisotropic particles with tetrapod morphology were investi-
gated with regard to their phase behavior. The results of this study can be found
in appendix A.



6 CHAPTER 1. INTRODUCTION



CHAPTER

2

MODEL AND BASIC ALGORITHMS

This chapter is meant to introduce the model system and basic algorithms which
are commonly used throughout the thesis. The description of certain extensions and
more specific algorithms are deferred to the corresponding chapters.

2.1. The Asakura-Oosawa Model

When studying a particular system in nature (or experiment) by means of theory,
it is clear that not all the details of the system can be taken into account. A model
is needed which has to be as simple as possible but still describes the basic and
important properties. Asakura and Oosawa proposed such a model (AO model)
to study a binary mixture of spherical colloids and polymers [38, 39] which was
later analyzed by Vrij [40]. In this model, colloids and polymers are represented
as spheres. Colloids are hard with respect to each other as well as with respect to
the polymers. The polymer-polymer interaction is set to zero, which allows them
to overlap without any energy costs. Such simple pair interactions can be regarded
as a coarse grained model for colloids and polymers. The conformational degrees
of freedom of the polymers are neglected assuming that the polymers are in a loose
globular state so that they can easily penetrate each other but not the hard sphere-
like colloids.
This purely entropic model leads to an effective attractive interaction between
the colloids caused by the depletion force [41]. This force results from the in-
crease of the number of microstates Ω in the system at fixed internal energy E
[S(E) = kB ln(Ω(E))] due to overlaps of so-called depletion zones. A depletion zone
is defined as the volume which a center of a polymer is not allowed to enter due
to the presence of the colloid, see figure 2.1. The interaction model has a single
parameter, the ratio between polymer and colloid radius q = rp/rc. This parameter
as well as the concentrations of both particle types determine the system properties.

7
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Figure 2.1: Schematic representation
of the Asakura-Oosawa model in a
simulation box with periodic bound-
ary conditions. The colloids are repre-
sented as big yellow circles, the smaller
polymers are drawn in black. The
bright yellow zones around the colloids
are the depletion zones.

2.2. Extensions of the Asakura-Oosawa Model

The Continuous Asakura-Oosawa Model The AO model and also other types
of hard particle models do not allow to integrate out Newton’s equation of motion
based on the derivative of the interaction potential. Additionally, the fact that
polymers do interact among each other is far away from reality, a more realistic but
still simple interaction potential is desirable. Zausch et al. proposed the so-called
continuous AO model [42] addressing the issues mentioned above. The hard sphere
pair interactions are replaced by Weeks-Chandler-Andersen (WCA) potentials [43–
45] which are truncated and shifted Lennard-Jones potentials:

UWCA(r;σ, ε) =

{
4 ε
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
, for r < rc = 21/6σ

0 , else
. (2.1)

Here, r is the distance between two particles, σ is the pair interaction range and
ε is the interaction amplitude. At ε ≈ 1, the WCA potential has the property to
approximate to quite a high degree a pure hard sphere interaction. In the original
proposal a smoothing function was used which leads to an analytic behavior of UWCA

at r = rc. The resulting benefit of a higher accuracy in microcanonical Molecular
Dynamics studies will not be exerted within the context of the problems addressed
in this thesis, since stochastic thermostating methods are used.
In contrast to the original AO model, the polymer-polymer interaction is extended
to an effective potential [46] which allows for a complete overlap of two polymers,
however, with an energy penalty:

Upol(r;σ, ε) =

{
8 ε
[
1− 10

(
r

21/6σ

)3
+ 15

(
r

21/6σ

)4 − 6
(

r
21/6σ

)5]
, for r < 21/6σ

0 , else
.

(2.2)

The parameters for the amplitudes and the radii are chosen the same as by Zausch
et al. as σcc = 1.0, σcp = 0.9, σpp = 0.8 and εcc = 1.0, εcp = 1.0, εpp = 0.0625. The
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Figure 2.2.: (a) Pair interaction potentials of the extended AO model as a function
of distance r. Here, Ucc(r) = UWCA(r; 1, 1), Ucp(r) = UWCA(r; 0.9, 1) and Upp(r) =
Upol(r; 0.8, 0.0625). (b) Effective Asakura-Oosawa pair potential for various polymer-
colloid diameter ratios q and polymer reservoir packing fractions ηrp as indicated.

resulting behavior of the pair potentials is shown in figure 2.2. From the plot it is
clear that forces can now be derived via F i = −∇Ui, but nevertheless due to the
steep descent in the WCA potentials a relatively small Molecular Dynamics time
step will have to be chosen when studying the dynamics of this model (see chapter
8). The continuous AO model (CAO) behaves very much the same in comparison
to the original AO model. In the plane of extensive variables (ηp, ηc) the bulk phase
diagrams of both models fall almost on top of each other [42].

The Effective Asakura-Oosawa Model Based on the original formulation of the
AO model there exist further extensions and modifications. Especially for computer
simulations so-called effective AO models are attractive. For a polymer-colloid di-
ameter ratio q < 0.156 it is possible to integrate out exactly the polymer degrees of
freedom [47], so that only the colloid particle species has to be explicitly simulated1.
The result is an effective hard-core potential with an attractive well

UEffAO(r) =


∞ , for r ∈ [0, σ)

−ηrp
(1+q)3

q3

(
1− 3r

2(1+q)σ
+ r3

2(1+q)3σ3

)
, for r ∈ [σ, σ(1 + q)]

0 , else.

Here, σ is the colloid diameter, q is the ratio between the polymer diameter and
the colloid diameter and ηrp is the polymer reservoir packing fraction. The potential
is shown in figure 2.2 for three different parameter sets. For the parameter choice
of q = 0.15 and ηrp = 0.1 the effective AO model was studied recently [49]. The
phase diagram shows a transition from a colloidal liquid to a crystalline phase. The
effective AO model will be studied in chapter 6 under the aspect of heterogeneous
nucleation of crystals.

1For q > 0.156 there exist approximate versions of effective AO potentials [48].
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2.3. Boundary Conditions

The boundary conditions are one of the most crucial aspects of computer simula-
tions. Due to the limited amount of memory and operations per second a computer
can perform, the simulated system is always restricted to a finite size and is in
practice often very small in comparison to experimental setups. Periodic boundary
conditions can be used in order to mimic large systems (two different realizations
are presented below), but here, especially walls are in the main focus. Apart from a
simple restriction in terms of the system size (and, hence, correlation lengths) walls
represent an interface and, therefore, interesting phenomena such as wetting and
heterogeneous nucleation appear. Understanding the interplay of these effects with
the bulk phase behavior is a challenging problem.

2.3.1. C³ Boundaries

The label C3 from the title of this section stands for the Euclidean space with
periodic boundary conditions, which simply means that a particle which leaves its
simulation box, for instance, to the right, is entering the box from the left again.
More formally, one can write rα → rα − sign(Lα, rα), where α ∈ {x, y, z}, sign(·, ·)
returns the first argument with the sign of the second argument and Lα represents
the linear dimensions of the cuboid simulation box. At first sight, this seems to
model the infinite space since a particle can move as “far” as it wants. However,
after considering interactions, it becomes clear that this is not the case. A particle
can “feel” itself when the simulation box is shorter than the correlation length. This
is exactly the reason why in finite systems with C3 boundary conditions a phase
separation is observed in supercritical regions (in terms of the temperature, also see
section 3.3).

2.3.2. S³ Boundaries

Periodic boundary conditions can also be applied to confine particles on the surface
of a four-dimensional hypersphere S3, which is a closed, homogeneous, isotropic but
curved three-dimensional space. This space combined with computer simulations
was introduced by Caillol and Levesque [50, 51] to handle long range interac-
tions of Coulombic systems as well as Lennard-Jones systems [52]. The condition
for such a confinement is w2 + x2 + y2 + z2 = R2, where r = {w, x, y, z} is the four-
dimensional position vector of a particle and R is the radius of the hypersphere. The
geodesic length, defined as rij = R arccos(ri · rj/R2), is the measure of distance.
The big advantage of this special geometry is that no periodic images are present
in it. This property means a great simplification for studying long range forces in
contrast to the Euclidean space in which the computationally relatively expensive
Ewald summation is used to provide a proper contribution of periodic images to the
internal energy. Another advantage of the S3 boundaries is the isotropy of the space
which leads to the fact that mirror reflections of anisotropic structures at planes,
for instance, become self inverse (which is not the case in C3). The disadvantage of
S3 is the curvature of the space, which gives rise to an additional finite size effect.
Furthermore, it is not straightforward what the interaction potentials look like on
a hypersphere surface. Solving the Poisson equation for point charges in S3 space
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Figure 2.3: WCA wall potentials for
different choices of the interaction range
parameter σp. The wall is located at
z = 0. The full line shows the poten-
tial a colloid feels near the wall, while
the dashed lines show different choices
of wall potentials acting on polymers.

or in C3 space leads to completely different pair interactions [53]. Studies involving
the S3 boundary conditions are presented in appendix A.

2.3.3. Walls

In the context of this thesis, a very essential boundary condition is represented by
walls. Rather than feeling periodic images the particles now interact (in a certain
direction) with walls via a wall potential Uw. Walls introduce a new interface and,
hence, an interfacial tension. A state of two phase coexistence confined by walls can
result in a contact line (depending on the wetting properties). Furthermore, flat
walls for instance induce order in gases, liquids, etc. resulting in layering effects. As
a small appetizer for studies presented in the later chapters and as an illustration
of these effects, various canonical simulations of the continuous AO model confined
between two planar walls were performed. As wall potential the Weeks-Chandler-
Anderson (WCA) potential is used with interaction amplitude ε = 1 and various
choices of σ shown in figure 2.3. While the colloid-wall interaction was the same
in all canonical simulations the polymer-wall interaction was varied from σp = 0.4
down to σp = 0.184 where the unit length scale is set by colloid diameter σc ≡ 1.
This asymmetric treatment of the particles with respect to the walls does not only
have a big influence on the fluid layers close to the walls but influences such prop-
erties as the shape of the coexistence interface as well as the contact angle at the
wall. The visualization of the latter effect is given in figure 2.4 by density contour
plots. There, walls are present perpendicular to the z-axis at z = ±6, while in the
x- and y-direction periodic boundary conditions were applied.
The curvature of the interface changes when varying the polymer-wall interaction
and one can even recognize a change from complete wetting (note the colloid wetting
layer for σp = 0.4) to partial wetting (all the other values of σp). Of course, this
is not a rigorous study of the wetting behavior since strong finite size effects are
present, but rather gives a first feeling for the differences of a confined system in
comparison to the bulk and at the same time anticipates the topic of wetting and
contact angles of wall attached nuclei both for liquids and gases of colloid-polymer
mixtures (see chapter 5) and crystalline clusters (see chapter 6).
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Figure 2.4.: Different planar density profiles for colloids (dark area) and polymers
(bright area) in a slab geometry. The plots differ by the applied wall-polymer po-
tential, indicated by the polymer interaction range parameter σp = 0.4, 0.256, 0.224,
0.184. To get a reasonable colormap, the data points were normalized by their max-
ima. Note the pronounced layering in the colloid-rich phase which is induced by the
planar walls and can persist even in the center region (see σp = 0.256).
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2.4. Basics of Monte Carlo Simulations

A Monte Carlo simulation solves a certain problem in a stochastic manner using
random numbers. The results always have a statistical error and differ typically
within this error when using different series of random numbers. One has to stress
that this statistical error is not a problem of the method but in fact its strongest
feature, since it is well under control (running the simulation longer will improve the
statistics) and in contrast to other methods typically no systematical errors exist.
Within the context of equilibrium statistical mechanics a Monte Carlo simulation
follows a stochastic trajectory in phase space in order to estimate certain quantities,
for instance, thermal averages of observables. The efficient generation of a correct
stochastic trajectory is the main aim of the simulation. There exist several rules
how such a trajectory has to be constructed which are introduced within the next
paragraphs.
In the following, a system with a discrete set of states {Si}2 (representing for instance
a lattice site model) and a continuously treated Monte Carlo time t is considered.
A continuity equation, the so-called master equation, describes the balance between
a probability flux leaving a state Sj and leading into state Sj

dP (Sj, t)

dt
=
∑
i

WijP (Si, t)−
∑
i

WjiP (Sj, t) . (2.3)

Here, Wij are the transition probabilities to go from state Si to state Sj where it
is assumed that the sequence of states {S1, S2, ...} is a Markov chain. This means
that state Si can be generated from its predecessor without any knowledge of the
trajectory of earlier states (such a generation of a state is called from now on
Monte Carlo move). In thermal equilibrium the condition dP (Sj ,t)

dt
= 0 and thus∑

iWijP (Si, t) −
∑

iWjiP (Sj, t) = 0 has to hold. The condition which certainly
fulfills this statement is the rule of detailed balance

Wij

Wji

=
P (Sj)

P (Si)
. (2.4)

In the canonical ensemble the probability to find the system in the states Si with
energy Ei is

P (Si) =
1

Z
e−Ei/kBT , (2.5)

with Z =
∑

all states e
H/kBT . The partition function Z is not needed since it cancels

out when considering probability ratios. Metropolis et al. proposed in 1953 the
following transition rate which fulfills equation 2.4:

Wij =

{
e−(Ej−Ei)/kBT , Ej − Ei > 0

1 , Ej − Ei ≤ 0
,

Every move which lowers the energy is always accepted, moves which raise the
energy are only accepted with a probability of e−(Ej−Ei)/kBT . With this technique

2A discrete set of states is used to simplify the notation but can be easily extended to a continuous
set of states.
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states are generated with the correct Boltzmann weight (see Eq. 2.5) and, therefore,
an observable O in the canonical ensemble can be estimated by simply taking an
arithmetic average

〈O〉 =
n∑
i=1

Oi

for a sufficiently large number of Monte Carlo steps n.
In the case of a system with particles which can move continuously through space
the canonical Monte Carlo move is undertaken via changes in the particle position.
The following algorithm shows a possible implementation.

Ordinary Translational Move
1. Choose a particle at random.
2. Generate a trial translation vector t with components randomly drawn

from the interval [−∆,∆], where ∆ is the maximal translational amount
determining the efficiency of the move.

3. Update the particle position r → r + t.
4. Calculate the energy difference ∆E = Enew − Eold.
5. Generate a random number g ∈ [0, 1).
6. Accept the move, if g < exp(−∆E/kBT ), otherwise, restore the old

position.

Note that the first step is crucial to fulfill the detailed balance condition. A se-
quential update of all particles would not obey this rule since the probability that
the reverse move for the same particle appears is zero. See reference [54] for de-
tails about the weaker “global balance” condition which still produces correct Monte
Carlo results.

2.5. Cluster Moves

In contrast to ordinary single particle moves, cluster moves are able to explore the
phase space much faster (in terms of CPU time) by handling not only a single
particle but many within the same Monte Carlo step. There exists a rich collection
of cluster moves in the literature that are very useful for lattice simulations [55–57].
The cluster moves developed by Vink et al. and Liu et al. are extremely helpful for
simulations in the continuum, especially for binary mixtures [58–61]. The following
sections introduce these cluster moves and possible modifications in detail.

2.5.1. Rejectable Canonical Cluster Moves

The idea of a canonical cluster move for a binary mixture of hard particles is very
intuitive, especially when one type of particles, acting as a structureless component,
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Figure 2.5.: Schematic illustration of the three steps of the rejectable cluster move
for the translation: colloid selection, colloid translation, polymer mirror reflection
at a plane perpendicular to the translation vector. In this example the move is
accepted.

is only introduced for creating an effective depletion interaction, as e.g. the polymers
in the Asakura-Oosawa model. Imagine the extreme case of a single colloid in a dense
bath of ideal polymers. Despite dynamical effects, the colloid has to drift freely in a
Monte Carlo simulation through the dense fluid of polymers. There exists a simple
way to achieve this in a Monte Carlo simulation: when a colloid is moved and
(illicitly) intersects with several polymer spheres, these polymers are removed and
put into the empty space the colloid left at its original position. An obvious way to
perform this is to apply to the polymers a simple mirror reflection at the center of
the colloid translation vector. The situation becomes more difficult in the case of an
arbitrary number of colloids. In this case, point reflected polymers could intersect
with another colloid, and then the whole move has to be rejected. Note that the
rejectability is a very important ingredient to this type of cluster move since it
always allows for an improvement of the simulation speed in comparison to ordinary
canonical moves regardless of the system’s density. Additionally, one should note
that this move is completely ergodic since in the case of a small translation it reduces
to the ordinary canonical translation.
Figure 2.5 shows a modified version of this cluster move in the case of non-periodic
boundary conditions, in a cylindrical confinement. Here, instead of a point reflec-
tion, a mirror reflection at the plane perpendicular to the cylinder axis is used.
Furthermore, the x- and y-coordinates of the moved colloid are kept constant to en-
sure that the polymers do not leave the cylindrical simulation box [1, 2]. This move
is not ergodic anymore, so it has to be combined with ordinary canonical moves or
any type of moves that allows for a change in the x- and y-coordinates of the colloid.

2.5.2. Rejection Free Canonical Cluster Moves

The next logical step after the rejectable cluster move proposed in the previous sec-
tion is to continue the mirror reflection of particles until there is no overlap anymore.
This leads to a rejection free cluster algorithm proposed by Dress and Krauth
[58]. This original formulation is limited to hard particle interactions. A great
improvement was made by Liu and Luijten, who developed an extension of this
algorithm to arbitrary potentials [59, 60], called the “Geometric Cluster Algorithm”,
providing an analog to the Wolff cluster algorithm for lattice gas simulations. The
algorithm can be formulated as follows:
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Geometric Cluster Algorithm
1. Choose a “seed” particle at random.
2. Choose a self inverse symmetry transformation T = T (c), where c contains

all the coordinates of the particle.
3. Add the seed particle to a queue, called in the following “the cluster“.

Every particle i in the cluster has two configurations to be considered, ci
and c ′i = T (ci).

4. Consider another particle j. Add it to the cluster with probability Pij =
max{0, 1− exp(−β∆Eij)}, where ∆Eij = E(c ′i , cj)− E(ci, cj).

5. Repeat step 4 for all particles which are not already a part of the cluster.
6. Repeat step 5 as long as the cluster grows, after that replace the coordi-

nates {ci} of all particles in the cluster by {c ′i}, respectively.

Some comments about the algorithm are necessary. The choice of an array of co-
ordinates c = {c1, c2, . . . , cn} rather than just the ordinary position r = {rx, ry, rz}
is made to point out the handling of anisotropic particles, which can consist of
more than one molecule or have directors specifying their orientation. Furthermore,
one could even include in c the simulation box label in the case if particles are
moved from one simulation box to another, like in the restricted Gibbs ensemble
(see appendix A). The self inverse symmetry transformation can be, for instance,
reflections at an arbitrary point or plane or reflections at a certain point or a plane
(biased moves). The highest performance of the algorithm is reached in the case of
fluids containing different components of large size ratio. The performance breaks
down when the system’s volume fraction becomes too high, since then almost all
particles are considered to be a part of the cluster and the computational expensive
symmetry transformation T only leads to small changes in the configuration.

2.5.3. Grand Canonical Cluster Moves

While canonical moves have a tunable parameter – the maximum translational
amount – which guarantees that configurations differ at least after a certain num-
ber of Monte Carlo steps, grand canonical particle insertion and particle deletion
moves do not have such a parameter. So, it can happen (especially for hard parti-
cles and high densities) that even after millions and millions of MC steps no single
insertion/deletion move is accepted. This shows how essential and important grand
canonical cluster moves are for studying hard particle systems in the grand canonical
ensemble.
The grand canonical cluster moves used in this thesis were developed by Vink and
Horbach [42, 61]. The basic idea of these moves is to swap the configuration
of a single colloid with the random configuration of multiple polymers. Figure 2.6
illustrates schematically how the cluster move works. The figure can be read in both
directions. The colloid insertion (read the figure from the left to the right) works as
follows. The leftmost picture shows a dense polymer configuration in which a colloid
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Figure 2.6.: Schematic illustration of the four steps of the grand canonical cluster
move. The order of steps from the left to the right corresponds to the insertion of
the colloid, from the right to the left – to the deletion. In this example both moves
are accepted. The details of the move are explained in the text.

should be inserted. One randomly inserts a colloid (second scheme) and detects the
overlapping polymers (third scheme). All overlapping polymers are removed (scheme
at the right). For the colloid deletion (read now from the right to the left) one selects
a random colloid, then one inserts randomly polymers into its depletion zone (third,
second scheme). Finally, the colloid is removed.
The simplicity of the schemes should not conceal important non-trivial details. In
order to fulfill the condition of detailed balance, one has to find appropriate accep-
tance probability rules (which are already asymmetric for ordinary grand canonical
moves). For the colloid insertion one uses

acc(|o〉 → |n〉) =

{
min

[
1, V zcnp!

(Vdzp)
npm(Nc+1)

e−β(En−Eo)
]

, for np < m

0 , else
, (2.6)

while for the colloid removal

acc(|o〉 → |n〉) = min

[
1,

(Vdzp)
npmNc

V zcnp!
e−β(En−Eo)

]
(2.7)

is applied. Here, V is the volume of the system, Nc is the number of colloids, zp
and zc stand for the polymer and colloid fugacities, respectively, and En and Eo are
the energies of the new and the old configurations of the system. Special attention
has to be paid to the variables np and m. In the case of a colloid removal, np is a
random number drawn from the interval [0,m), giving the number of polymers that
have to be randomly inserted into the depletion zone of the colloid. In the case of
the colloid insertion, np is the number of overlapping polymers. If np ≥ m, in the
latter case, the insertion attempt has to be rejected.

2.6. Free Energy Calculations

The partition functions of thermodynamic ensembles are directly related to the ther-
modynamic potentials like the Helmholtz free energy βF (T,N, V ) = − lnZ(T,N, V )
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in the case of the canonical ensemble with partition function

Z(T,N, V ) =
1

h3NN !

ˆ
dr1 . . .

ˆ
drN

ˆ
dp1 . . .

ˆ
dpN e

−βH({ri}N ,{pi}N )

=
1

Λ3NN !

ˆ
dr1 . . .

ˆ
drNe

−βU({ri}N ) ,

with the thermal wavelength Λ = h√
2πmkBT

which includes the result of the momen-
tum integration for a standard kinetic term inside the Hamiltonian H. In the grand
canonical ensemble, the grand potential or “Landau free energy” is related to the
grand canonical partition function via βJ(T, µ, V ) = − lnY (T, µ, V ) with

Y (T, µ, V ) =
∞∑
N=0

1

Λ3NN !

ˆ
dr1 . . .

ˆ
drNe

−β(U({ri}N )−µN)

=
∞∑
N=0

zNZ(T,N, V ) ,

with fugacity z = eβµ. In computer simulations, distribution functions of quantities,
such as the particle number N in a grand canonical simulation, are accessible via
simple histogram recording. In the thermodynamic limit the distribution of the
particle number P (N) reads as

P (N ;T, µ, V ) =
∞∑

N ′=0

1

Λ3N ′N ′ !

ˆ
dr1 . . .

ˆ
drN ′

e−β(U({ri}N′ )−µN ′)

Y (T, µ, V )
δN ′N

= eβµN
Z(T,N, V )

Y (T, µ, V )
.

When considering now the logarithm of the distribution function

lnP (N) = βµN + lnZ(T,N, V )− lnY (T, µ, V )

= βµN − βF (T,N, V ) + βJ(T, µ, V ) ,

one identifies the relation to the Helmholtz free energy βF (T,N, V ) = βµN −
lnP (N) + const.
Of course, in computer simulations, the logarithm of the distribution function P (N)
is not related to a thermodynamic potential but rather to a finite size free energy
function F̃ (N ;T, µ, V ) which converges for infinitely large systems at fixed N to the
related thermodynamic potential. This convergence is non-trivial and may not exist
dependent on the stability of the interaction potentials (see the rigorous derivation
in [62]).
Whenever the free energy landscape of a system of interest possesses deep and widely
spread minima, the system can be easily trapped in such a minimum. Sometimes
very long simulation run times make it possible to overcome the free energy barriers
between two minima, however, even then the relative weight between the two minima
can show large statistical errors. Furthermore, the order parameter region of the
free energy barrier itself is rarely visited, so that quantities connected with exact
properties of the barrier, like the free energy of the interface between two coexisting
phases, cannot be accurately determined.
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In the early 90s Berg and Neuhaus [63, 64] addressed this problem by introduc-
ing an effective Hamiltonian in the probability distribution. Choosing exactly the
negative of the Hamiltonian of the underlying probability distribution results in a
completely flat distribution of states. Since one knows how the effective Hamilto-
nian was constructed, one can easily recalculate the thermodynamic quantities by
reweighting the flat probability distribution with the inverse of the correction. Of
course, in practice, one doesn’t know a priori the effective Hamiltonian. There-
fore, one constructs successive probability distributions that can be used in further
simulations as effective Hamiltonians. These first estimates for the effective Hamil-
tonian can even be produced at different system parameters so that the system can
overcome free energy barriers (for example, one starts with a higher temperature
and lowers it from simulation to simulation until one reaches the desired probabil-
ity distribution). Once a precise free energy function is achieved, the technique of
histogram reweighting [65] can be applied to obtain estimates of the free energy func-
tion in the adjacent region in terms of the systems variables, such as the chemical
potential or the temperature respectively.
The next two sections will introduce methods based on the idea of improving the
performance by using an effective Hamiltonian without spending a lot of computer
time for preliminary distributions, which are often not of interest.

2.6.1. Wang-Landau Algorithm

Wang and Landau proposed in 2001 the “Random walk in energy space with a
flat histogram technique” commonly called “Wang-Landau sampling” [66, 67]. It
belongs to the class of multicanonical simulations where a weight function is used
to force the system to visit originally improbable states, similar to the successive
umbrella sampling which will be introduced in the next section 2.6.2. However,
the big difference is the way how the weight function is obtained. The weight
function is iteratively directly improved during the simulation, which makes the
“Wang-Landau” sampling a simple and robust method with no need for preceding
Monte Carlo simulations.
In the original formulation the density of states in energy space in the canonical
ensemble was considered:

Z(V, T,N) =
1

N !(2π~)3N

ˆ
dr1 . . .

ˆ
drN

ˆ
dp1 . . .

ˆ
dpN e

−βH({ri}N ,{pi}N ) , (2.8)

which can be rewritten with the function of the density of states g(E) = ew(E) as

Z(V, T,N) =

ˆ
dE g(E)e−βE =

ˆ
dE e−βE+w(E) .

The function w(E) can be identified as the weight function (or effective Hamiltonian)
modifying the internal energy of the system. In terms of free energy landscapes, this
algorithm fills the valleys and troughs until the resulting surface is flat, meaning
βE − w(E) = 0 ∀E. The function w(E) fulfilling this relation is obtained by the
“Wang-Landau” algorithm:
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Wang-Landau Sampling
1. Choose an initialization for the weight function, e.g. w(E) = 0 and define

a weight update, e.g. f = 1.
2. Proceed with a Monte Carlo move leading from the old configuration
{ri}old ≡ |o〉 to the new configuration {ri}new ≡ |n〉.

3. Calculate the acceptance probability as:

p(|o〉 → |n〉) = e−β(Eo−En)−w(Eo)+w(En), with

Eo ≡ E({ri}old) and En ≡ E({ri}new).

4. If a random number r ∈ [0, 1) is smaller than p(|o〉 → |n〉), accept the
move, otherwise reject the move and continue with the state |o〉.

5. Update the weight function w (E({ri}))→ w (E({ri})) + f .
6. If the histogram w(E) has not sufficient statistics and f > 0, continue with

2.
7. If the histogram w(E) has sufficient statistics and f > 0, update f → f/2

and continue with 2.

When the weight update approaches f = 0 and the w(E) has reasonable statistics,
one has found the free energy landscape of the system w(e) = −βF (E) up to a
constant. After reaching f & 0 multicanonical simulations with a fixed weight
function have to be performed to check that no systematic error is present. In
practice, the simulation is stopped at a still finite value of f . In this work, fmin =
10−9 is typically used.
In the present work where hard particle systems are studied in the grand canonical
ensemble the number of colloidsNc was used as the reaction coordinate instead of the
internal energy E in the “Wang-Landau algorithm”. An example for an application
of the algorithm for a continuous reaction coordinate is given in chapter 6.

2.6.1.1. Linear Interpolation

In the grand canonical ensemble the natural resolution of the reaction coordinate is
determined by the system size, since it is the number of colloids Nc which serves as a
reaction coordinate. Going to larger systems increases automatically the number of
states which have to be sampled and the free energy barriers typically increase. The
increase in the number of possible states when increasing the system size becomes
even more dramatic if a joint density of states (free energy landscapes depending on
a whole set of reaction coordinates) is the subject of interest.
An easy solution to suppress this effect is to use an interpolation kernel which
counts neighboring states additionally to the current one at once. The interpolating
function as well as the range of interpolated neighbors have to be chosen properly
according to the simulated system.
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Figure 2.7: Progress in calculating a
free energy landscape using a linear in-
terpolation. First an interpolation over
40 next neighbors was done, which just
took about 15 CPU hours and is shown
by curves 0,1,2. Curve 3 was calculated
taking 10 next neighbors into account.
The final curve (4) was obtained using
single bin updates for approximately one
week. The inset shows the defects occur-
ring from the interpolation and their dis-
appearance when one goes back to single
bin updates.

The interpolation method is explained in figure 2.7. A first estimate for the free
energy landscape is already obtained after a few CPU hours. However, this estimate
still has defects, shown in the inset of figure 2.7, which disappear when one proceeds
with the original single bin updates.

2.6.1.2. Parallelization Scheme

One of the biggest advantages of the “Wang-Landau” algorithm in comparison to
other methods calculating free energy landscapes is its potential for straightfor-
ward parallelization schemes. The most simple (pseudo-)parallelization scheme is
the overlapping distribution method where the reaction coordinate space is cut into
windows and each density of states is calculated in this restricted range by a single
process [68]. Here, a parallel scheme based on message passing between the individ-
ual processes is presented which is very efficient without slicing a parameter range
or preparing corresponding starting configurations.
The idea is very simple and so is its implementation. Every simulation process
starts as in the case of the original “Wang-Landau” algorithm on a single CPU,
e.g. a gas-like starting configuration is created randomly and the density of states is
calculated iteratively. However, after a certain Monte Carlo time (which is measured,
for instance, by the process 0) a data exchange via communication between all of
the Np processes takes place. This key feature is schematically shown in figure 2.8.
The data which is exchanged between the a priori uncorrelated simulations on the
different CPUs is the so far estimated weight function wi(C), where C corresponds
to the reaction coordinate of choice. The weight function on every process i is then
replaced by the average

wi(C) =
1

Mges

Np∑
j=1

Mjwj(C) . (2.9)

This leads to a correlation between the different simulation instances in the way that
the typically sampled area in terms of the reaction coordinate C becomes statistically
smooth. Due to the iterative character of the “Wang-Landau” algorithm the further
progress in estimating the “perfect” weight function depends strongly on previous
estimates used instantaneously as input. It is the statistical smoothness of the
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Figure 2.8: Parallelization scheme
for the “Wang-Landau” algorithm.
The first row is showing the CPU in-
dex. Mi stands for the number of
Monte Carlo steps while Wi repre-
sents the weight function calculated
by process number i. Brackets denote
a weighted average over all processes.
The full description of the algorithm
is given in the text.

averaged weight function in comparison to non-communicating processes which leads
to an improvement of the accuracy of the sampling behavior.
An important detail of equation 2.9 is the multiplication of the weight function
wj(C) with the so far proceeded number of Monte Carlo steps Mj. This method
takes care of the asymmetry in the simulated physics (cluster moves in the colloidal
gas phase are much slower than in the colloidal liquid phase) as well as the used
hardware architecture (e.g. different CPU speeds). A “slow” simulation result for
the weight function is only weakly taken into account in contrast to the case where
the simulation was able to increase the quality by performing a very large number
of Monte Carlo steps.
The “Wang-Landau” algorithm is still under intensive investigation regarding its con-
vergence properties, possible adaptive binning techniques, multi-dimensional density
of states and advanced parallel schemes (see, for instance, Refs. [69, 70]). It is im-
portant to note that the effects of many of the improvements reported in literature,
for instance, the modification of the weight update rule, the flatness criterion, the
choice of certain binning techniques or parallel schemes, do strongly depend on the
system under investigation.

2.6.2. Successive Umbrella Sampling

The successive umbrella sampling algorithm [71, 72] is a method in which computer
time is no longer used for the calculation of an estimate of an effective Hamiltonian,
but contributes immediately to the estimate of the probability distribution as well
as to the weight function. The underlying idea is to split up the reaction coordinate
of interest (for instance, the particle number N) into small windows, which are
then processed successively. Since the window is small, small fluctuations in the
reaction coordinate are enough to sample the probability distribution function in this
window. In order to improve statistics, one can always extrapolate the probability
distribution behavior from the previous window to the next window and use it as a
weight function. The unnormalized probability distribution (here, as a function of
the particle number N) is obtained via

P (N) =
N∏
n=1

Pw(n)

Pw(n− 1)
, Pw(0) ≡ 1 , (2.10)
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where Pw(n) stands for the probability distribution of a single window, n refers to
the right border. Note that in practice typically the logarithm of the probability
lnP (N) =

∑N
n=1{lnPw(n)−lnPw(n−1)} is used so that a higher numerical precision

is achieved.
The statistical error propagates quadratically from the beginning to the end of the
window series. For the derivation and further insight in the error propagation see
references [71, 72]. The biggest advantage of the successive umbrella sampling algo-
rithm, especially in the case of grand canonical simulations in which the chemical
potential µ dictates the linear slope of the free energy landscape, is its ability to
overcome steepest slopes in the same time as moderate slopes. This ability is a
crucial ingredient in grand canonical simulations since the coexistence chemical po-
tential is not known a priori and, therefore, the free energy landscape has a strong
underlying linear slope. The reason for this ability is the small window size and
the way the free energy landscape is reconstructed. At the same time, for certain
systems the small window size can also be disadvantageous. There exist transition
pathways in multi-dimensional reaction coordinate space that cannot be projected
in a reasonable way to a single reaction coordinate like the particle number N . In
this case the small window size may suppress important fluctuations and relaxations
in a second reaction coordinate. Nevertheless, the successive umbrella sampling re-
mains one of the most powerful tools for calculating free energy landscapes if one
can describe the free energy behavior in terms of a single reaction coordinate.

Case Study: Absolute Free Energy of a Hard Sphere System To demonstrate
the tremendous power of the successive umbrella sampling algorithm and the high
applicability of multicanonical algorithms in general, absolute free energies of a hard
sphere system are calculated. A system of hard spheres (each with the same radius
rc) can phase separate in a liquid and a crystalline phase (fcc). In the canonical
ensemble, the packing fraction η = 4

3
πr3c

N
V

determines whether the system is in the
liquid state (η ≤ ηl ≈ 0.4915) or in the crystalline state (η ≥ ηc ≈ 0.5428) [49].
Absolute free energies are rarely accessible in typical Monte Carlo simulations. The
first necessary ingredient to obtain an absolute free energy is a reference state with
a precisely known reference free energy. The next step is to find a continuous path
(in terms of a reaction coordinate) from this reference state to the state of interest.
In the case of the considered hard sphere system the reference states are the ideal
gas and the Einstein crystal, the introduction of which is deferred to the later parts
of this paragraph. The free energy of the ideal gas in the canonical ensemble is

βFid(N, V, T ) = − ln

(
V N

λ3NN !

)
. (2.11)

The reaction coordinate of choice is the interaction range of the potential, i. e., the
particle radius rc. For rc = 0 the reference state of the ideal gas is obtained. Every
rc 6= 0 is directly related to a certain packing fraction η, since particle number N and
volume V are assumed to be constant. The successive umbrella sampling algorithm
is now used to calculated the free energy between the state with hard sphere radius
rc and the adjacent state corresponding to rc + δrc. By performing in this manner
a free energy calculation of the range η ∈ [0, ηl], one obtains the absolute free
energy of the liquid branch of a hard sphere system within a single simulation run.



24 CHAPTER 2. MODEL AND BASIC ALGORITHMS

0 0.1 0.2 0.3 0.4 0.5 0.6

η

0

2

4

6

8
β
F

e
x
 /
 N

0 0.1 0.2 0.3 0.4 0.5 0.6

η

0

2

4

6

8
β
F

e
x
 /
 N

Einstein Crystal

Radius Switch

0 0.2 0.4

η

0.002

0

0.002

0.004

(FexFcs) / Fcs

a)

0 5 10

ln(α+1)

0

2

4

6

8

10

12

14

β
 ∆

F
 /
 N

η=0.545

η=0.555

η=0.571

η=0.584

η=0.592

0 2 4 6

ln(α+1)

11

12

13

14

β
 ∆

F
 /
 N

b)

Figure 2.9.: (a) Absolute free energy per particle of a hard sphere system as function
of packing fraction. The inset shows the difference of the calculated free energy
to the Carnahan-Starling free energy prediction. The shaded region is the liquid-
crystal coexistence region. The symbols result from the free energy difference to the
Einstein crystal. (b) Free energy difference to the Einstein crystal reference state
as a function of harmonic coupling strength α. The inset magnifies the upper left
region.

Figure 2.9a shows as a result of such a simulation the excess free energy per particle
Fex/N = Fabs/N − Fid/N . The simulation was performed with N = 3360 hard
spheres, which means that the successive umbrella sampling algorithm calculated
precisely the absolute free energy over a range of approx. 16800 kBT ! The whole
calculation was achieved on a single CPU core within only a couple of days. In the
case of a hard sphere system, an analytical estimate of the excess free energy of the
liquid branch, the so-called Carnahan-Starling equation of state, is available [73]:
Fcs/N = (4η − 3η2)/(1.0− η)2. The inset of figure 2.9a shows the relative deviation
of the calculated free energy to the Carnahan-Starling expression3.
The absolute free energy of the crystalline phase of the hard sphere system is also ac-
cessible in a slightly more complex manner. The method was proposed by Frenkel
and Ladd [28, 74] and uses as a reference state the so-called Einstein crystal. The
Einstein crystal is a system where every particle is pinned to a fixed position ro via
a harmonic trap Vh(r) = α(ro − r)2. In the limit of strong coupling (α → ∞) this
leads to the following expression of the free energy:

FEin(N, V, T ) = U({r0}N)− 3N

2β
ln

(
π

βα

)
, (2.12)

where U({ro}N) is the internal energy of the system if all particles are fixed exactly
at the set of positions {ro}N . Note that this position set does not necessarily need
to have any crystalline structure, but can be chosen arbitrarily. Again the power
of the successive umbrella sampling algorithm is used to overcome large free energy

3The origin of the small systematic deviation results most probably from the finite system size, al-
though the Carnahan-Starling equation is also known to become less accurate at higher packing
fractions.
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difference between the reference state (α → ∞) and the desired “free” crystalline
state at α = 0. The corresponding free energy landscape is shown in figure 2.9b.
Subtracting from FEin(N, V, T ) this difference β∆F as well as the ideal gas term (see
Eq. 2.11) leads directly to the excess free energies shown in figure 2.9a4. Determining
just a few of such excess free energies serves well as a further reference point for a
free energy calculation based on the particle radius as it was done for the liquid
phase. The result of the latter calculation is shown by the full line in the crystalline
region of figure 2.9a.
This case study shows how absolute free energy landscapes as a function of “abstract”
continuous reaction coordinates can be determined by successive umbrella sampling.
These calculations are not only possible for hard sphere systems but rather for any
particles the interaction range of which can be controlled via a parameter as it was
done here for the radius.

2.6.3. Comparison between the Two Free Energy Methods

As a first conclusion, advantages and disadvantages of the previously described
free energy algorithms are listed again and a meaningful combination of the two is
proposed.

Successive Umbrella Sampling
• Advantages

– works at any slope of the free energy landscape→ no a priori information
about the coexistence chemical potential is needed

– boundaries of the reaction coordinate are not needed to be known in
advance

– detailed balance is fulfilled and each Monte Carlo step increases the final
statistics

• Disadvantages

– the lack of a straightforward strong parallelization scheme5

– overcoming multi-dimensional free energy barriers may become difficult if
one only samples in one reaction coordinate and uses small window sizes

Wang-Landau Sampling
• Advantages

– strong parallelization scheme available (scales beyond 4000 cores because
of relatively low communication effort)

– overcoming multi-dimensional free energy barriers while sampling only
along one reaction coordinate is somewhat easier

• Disadvantages
4There exist further corrections related to the change of translational entropy and due to finite
size effects, which are not included here (see [28]).

5However, one can parallelize the successive umbrella sampling up to a certain level by using
multiple independent processes which contribute to the statistics within the same window.
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– spending all the computer time in a reaction coordinate area which is
not of interest if the coexistence chemical potential is not known → no
convergence to the final free energy landscape

– the convergence also breaks down if the reaction coordinate boundaries
are chosen too big

– detailed balance is only fulfilled for a weight update of f = 0

As one can see from this list of advantages and disadvantages, the successive umbrella
sampling algorithm is the perfect choice exploring new (but relatively small) systems
to get first estimates for the coexistence chemical potential and reaction coordinate
boundaries. Then the parallel version of the Wang-Landau algorithm can be used
together with the previous estimates for the study of larger systems.
Note that a lot of investigations were done to check whether multicanonical flat-
histogram Monte Carlo methods are the optimal choice when calculating free ener-
gies. Troyer et al. point out that the flatness with respect to diffusion (tunneling
rate between states) rather than the flatness of the free energy histogram itself might
lead to a higher performance [75, 76].



CHAPTER

3

REVIEW OF BULK PROPERTIES

The Asakura-Oosawa model was studied extensively in the last few years. Especially
the properties of the bulk case are well understood, mainly due to the work of Vink,
Horbach and Binder [61, 77–79]. The phase diagram, the critical properties
as well as further details like capillary waves on interfaces are reported in those
references. Although it is already well studied, simulations of the AO model in
the bulk represent a perfect introduction to more complicated simulations presented
later in the thesis. The bulk case serves in many cases as a reference state when
results from simulations in confinement need to be interpreted. Additionally, the
detailed results presented in the publications make it possible to check simulation
code (e.g. by locating the critical point). The continuous AO model (see section 2.2)
shows qualitatively the same phase behavior as the original AO model, however,
in the case of non-zero polymer-polymer interaction the phase diagram is shifted
[42]. The main focus in this and in the following chapters lies on the original
(purely entropic) AO model, but some results for the continuous AO model are
also presented.
The current chapter also provides the nomenclature for later chapters dedicated to
simulations in confinement. The results obtained by simulations presented here do
not claim to be complete or detailed, but should provide a first notion about basic
properties of the Asakura-Oosawa model.

3.1. Simulation Details

A mixture of colloids with radius rc and polymers with radius rp = 0.8 rc are simu-
lated within the framework of Monte Carlo simulations in a cubic box with periodic
boundary conditions in all directions. The length scale in this section is the colloid
radius rc ≡ 1. The simulation box is split up into cells with diameter dcell ≥ 2rc [27].
Each particle is associated with its corresponding cell. An overlap control for a given

27
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particle with all the other particles in the simulation box is therefore reduced to an
overlap check with respect to the particles in its own cell and the 26 neighboring
cells. This simple trick reduces the quadratic effort to check all possible particle
overlaps to a linear one.
Grand canonical simulations (constant V, T, µc, µp) are performed using rejectable
canonical cluster moves (see section 2.5.1) as well as the grand canonical cluster
moves from section 2.5.3. Free energy calculations are done via the successive um-
brella sampling algorithm (see section 2.6.2) for the smaller systems on a single
CPU and the “Wang-Landau” algorithm for larger systems on multiple CPUs (see
section 2.6.1). Here, the reaction coordinate is the colloid particle number Nc and
not the internal energy E as in the original formulation of the latter algorithm. The
calculated weight function w(Nc) = ln(P (Nc)), where P (Nc) is the probability dis-
tribution of states with colloid particle number Nc, gives access to the (finite size)
free energy function

βF (Nc) = −w(Nc) = − ln(P (Nc)) . (3.1)

As already mentioned earlier, the main advantage of the successive umbrella sam-
pling algorithm is that it works at every colloid chemical potential µc with the same
efficiency while the “Wang-Landau” algorithm needs already a relatively precise esti-
mate of the colloid chemical potential at liquid vapor coexistence µcc. Therefore, the
successive umbrella sampling is a perfect “pre-sampler” to free energy calculations of
large systems which then use the parallel version of the “Wang-Landau” algorithm
on multiple CPUs.

3.2. Phase Separation

The AO model can phase separate in a gas-like (colloid-poor) phase and in a liquid-
like (colloid-rich) phase as long as one is above the critical polymer reservoir packing
fraction ηrp,c ≈ 0.767 (note that this value is only valid at the chosen size ratio of
q = 0.8). The polymer reservoir packing fraction ηrp = π

6
σ3
pe
βµp (σp is the polymer

diameter) plays a similar role as an inverse temperature β = 1
kBT

in energy driven
systems, such as Lennard-Jones systems. The transition from the colloid-poor to
the colloid-rich phase as a function of µc is a first order phase transition. In a finite
system (with periodic boundary conditions) one observes several smeared out jumps
in the derivative

(
∂F
∂N

)
, which correspond to the transitions between several states

shown exemplary by snapshots in figure 3.1.
The periodic boundary conditions allow the system to minimize its surface free
energy by “choosing” the geometry with the smallest surface. Therefore, cylinder
and slab configurations can be observed at certain densities (snapshots 2, 3, 4)
(also see Refs. [80–83]). The different phases can also be identified in a plot of the
colloid chemical potential µc (Fig. 3.2) which exhibits several rounded plateaus. The
rounding of the plateaus comes from the fact that the surface itself varies with the
size of the droplet or the cylinder. In contrast, the slab geometry creates a flat
plateau indicating that the surface area stays constant for the corresponding range
of the colloid packing fraction ηc.
The black dots in figure 3.2 are a direct calculation of the chemical potential using
the Widom insertion method [84]. It provides a nice consistency check that the more
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Figure 3.1.: Different (metastable) phases of the AO model in a finite system in the
bulk case for ηrp = 1.30: colloidal droplet (1), colloidal cylinder (2), slab geometry
(3), cylindrical polymer-rich phase (4), polymer droplet (5).
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Figure 3.2: Different states of the system
shown by steps of the chemical potential
µc as a function of the colloid packing frac-
tion ηc. The (red) full curve shows the
derivative of the free energy landscape,
while the (black) dots are showing data
from the Widom insertion method taken
as a consistency check. The numbers 1 to
5 correspond to the states shown in figure
3.1. The polymer reservoir packing frac-
tion was ηrp = 1.30.
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complicated algorithms for determining the free energy landscape are implemented
correctly. Here, the transitions seem to be sharp which is just an artifact of using only
one starting configuration for each data point. During the time of the measurement
the system was just not able to overcome the entropic barriers to the adjacent
state by fluctuations. The derivative of the free energy landscape provides a higher
accuracy and samples correctly the rounding of transitions in finite systems.

3.3. Critical Behavior

Whenever the words “critical behavior” are mentioned, one also has to mention the
theory of finite size scaling which brought computational physics fundamentally to
the success it has nowadays (for all the details see the original work [85–87] or
compare with [88]). One of the basic aims of this theory is to relate results from
simulations of typically small system sizes to predictions in the thermodynamic limit
or in experiments. Especially close to criticality when the correlation length ξ starts
to diverge, results from computer simulations of finite systems are no longer directly
valid anymore, because a very large correlation length cannot be distinguished any-
more from the diverged one.
From finite size scaling theory follows for the singular part of the free energy land-
scape

F (L, T ) = L−(2−α)/νF(εL1/ν) ,

where L is the length of the system, T is the temperature and ε = (T − Tc)/Tc, Tc
being the critical temperature. The letters α, ν, and following in the next formula
β, are the so-called critical exponents defining the universality class of the system.
The corresponding scaling forms for thermodynamic variables are obtained from the
derivatives of F , e.g.

M = L−β/νM0(εL1/ν) .

Here, the magnetization M represents the order parameter of the system and M0

is a scaling function. This function reduces to a constant (with respect to L) at
the critical temperature when ε = 0, so that M ∝ L−β/ν . From this it is clear that
ratios of momenta such as

〈M4〉
〈M2〉2

=

´
M4P (M) dM(´
M2P (M) dM

)2 (3.2)

become system size independent when one is exactly at T = Tc. Therefore, the
intersection of such ratios (cumulants) for different system sizes is a fast and precise
method to determine the critical point of the system of interest.

Critical Point of the AO Model Figure 3.3a shows the cumulant intersection and
compares its result to the one from the literature [61, 77] (shown as horizontal line
the length of which corresponds to the given error). Here, the intersection yields
ηrp = 0.7670± 0.0005.
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Figure 3.3.: Two approaches to estimate the critical point in the AO model. (a)
Fourth order cumulant intersection. The horizontal line indicates the literature
result. (b) Best agreement between rescaled order parameter distribution of the AO
model with the three-dimensional Ising universality curve (red full line).

A different approach to estimate the critical point is the comparison of the rescaled
order parameter distribution function P (M)/

√
〈M2〉, with M = Nc − 1

2
〈Nc〉, and

the three-dimensional Ising universality curve at the critical point shown in figure
3.3b. Due to the same universality class they show the best “overlap” at the critical
reservoir packing fraction. The deviation between both curves is induced by the
asymmetry of order parameter distribution function of the AO model. The field
mixing technique [89] allows to avoid this problem.

Critical Point of the Continuous AO Model Continuous pair interactions lead
to some differences in the implementation of the basic Monte Carlo moves as well
as in the grand canonical cluster moves in comparison to purely entropic models.
First of all, the internal energy of the system is not only zero but a continuous
value so that a strict early rejection criterion as in the case of a particle overlap
does not exist anymore. Second, since particles have a non-zero probability to
overlap, the depletion zone is not well defined anymore, but rather a parameter
in the grand canonical cluster move. In the case of the WCA potential, which
mimics very well the hard sphere interaction, the native choice of the depletion zone
diameter is σdepl = 1

2
σc + 1

2
σp. To check the correct implementation of continuous

pair interactions in the various types of Monte Carlo moves, the critical point of the
continuous AO model was estimated via the cumulant intersection method (Eq. 3.2).
Figure 3.4 shows the cumulant intersection result in the case of the continuous AO
model with parameters q = σp/σc = 0.8, εcc = εcp = 1 and εpp = 0.0625. The
critical point is estimated as ηrp = 1.2822±0.0005 and agrees well with the literature
value of ηrp = 1.282 ± 0.002 (please see the details in [42]). This shift to a higher
critical polymer reservoir packing fraction in comparison to the original AO model is
expected. The polymers gain less free volume when two depletion zones overlap due
to their soft-core interaction. This reduces the effective depletion force, so that a
higher reservoir packing fraction is needed to achieve an effective colloid attraction
large enough to cause phase separation. For εpp = 0 the phase diagram of the
original AO model is recovered almost perfectly.



32 CHAPTER 3. REVIEW OF BULK PROPERTIES

Figure 3.4: Cumulant intersection at the
critical point in the case of the continuous
AO model. The horizontal line indicates
the location of the critical point given in
the literature. See the main text for the
numerical values.
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3.4. Summary

The Asakura-Oosawa model exhibits a phase separation in a gas-like and liquid-like
phase above a critical point of ηrp = 0.767 (ηrp = 1.282 in the case of the continuous
AOmodel). Via the cumulant intersection method it is possible to extract the critical
reservoir packing fraction. The agreement with the literature values and the results
shown above for the Widom insertion method lead us to the conclusion that the
grand canonical and canonical cluster moves were properly implemented as well as
both free energy algorithms, the successive umbrella sampling and “Wang-Landau”
sampling.
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CYLINDRICAL CONFINEMENT

Besides the fundamental importance for statistical thermodynamics [90–94], the con-
finement of fluids in narrow, cylindrical pores and microporous materials in general
found a lot of interest recently [95–105]. Nanopores appear in natural rocks but
also in artificial devices, such as various zeolithes used as catalysts to separate fluid
mixtures. While random porosity is also an interesting topic, here, the ideal case
of isolated straight pores is studied. Diameters of the order of nanometers can be
experimentally realized by filled carbon nanotubes [106, 107], while diameters up to
150 µm are present in silicon wafers [108].
In general, the influence of walls changes the phase behavior strongly, especially in
narrow pores. The occurrence of vapor condensation at lower chemical potentials in
comparison to the bulk is known as “capillary condensation” achieved via lyophilic
pore walls, and the opposite effect – “capillary evaporation” – is gained by using
lyophobic pore walls [109–114]. An experimental way to access the phenomenology
of cylindrical pores is the observation of adsorption hysteresis effects, where a sys-
tematical shift in comparison to the bulk critical temperature as also predicted by
theories appears [115–120].
Our theoretical picture of a phase change of fluids in cylindrical confinement is
rather incomplete. Kornev et al. [119] describe the condensation and respective
evaporation in cylindrical pores as a morphological transition between wetting film
configurations of different symmetry. This description is only valid for a pore radius
R → ∞ that is clearly not the case in nature or experiments. Similar problems
occur in the phase diagram proposed by Liu et al. [121] where a sharp wetting
transition is predicted for finite pore radii. In experiments [117] a smooth adsorption
isotherm with a finite slope is observed. Non-idealities of the experimental setup like
material impurities or polydispersion, which can occur for the particles or for the
pore geometry, complicate the correct interpretation of this behavior. They can also
draw off attention from interpreting results in the context of quasi one-dimensional
confinement.
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This chapter should solve the question, whether the phase changes in a cylindrical
pore can be described as a sharp transition or as a rounded transition due to the
statistical fluctuations in quasi one-dimensional systems.
Please see also the references [1–4] for a full comparison of the cylindrical confinement
of the Asakura-Oosawa model and the Ising model which has several advantages due
to its symmetries in addressing the latter question.
Since there exists a certain analogy between the quasi one-dimensional confinement
of the AO model considered in this chapter and the one-dimensional Ising model, it
might be helpful to mention briefly the spin configurations one observes for T > 0
(no external field). For any finite temperature T the correlation length of a spin
domain ξz can be exceeded by the system dimension L. This means that the system
is not in a state where all the spins are aligned, but spin up and spin down domains
coexist.

4.1. Simulation Details

The cylindrical confinement is implemented via hard walls of a cylinder with radius
R and length L lying with its axis on the z-axis of the coordinate system. Particles
are not allowed to have positions x2 + y2 ≥ (R− r)2 (where r is the particle radius)
but can “freely” move with respect to their z-coordinate. While in the bulk periodic
boundary conditions were applied in every direction, here, the periodic boundary
condition is only used along the cylinder axis (z-direction). The following studies are
taking two different cylinder diameters D = 2R into account, D = 12 and D = 6.
As in the studies of the bulk case, the length scale is set by the radius of the colloids
rc ≡ 1.
The condition L� D makes the canonical cluster moves in which a particle is trans-
lated at random inefficient. The small diameter of the cylinder restricts the cluster
move to a colloid translation of the order of D, since taking larger translational
amounts leads almost always to a rejection because the particle would leave the
simulation box. Therefore, a modified version of the cluster move is used which was
introduced in subsection 2.5.1 and is schematically shown in figure 2.5 on page 15.
The randomly chosen colloid is moved only in the z-direction with a translational
amount from the interval [0, L/2). Instead of a point mirror reflection, the mirror
reflection is done at the plane perpendicular to the translation vector. Of course the
ordinary translational moves for polymers and colloids were additionally performed
to guarantee ergodicity.
The grand canonical cluster moves are basically the same as in the bulk case. How-
ever, a small modification regarding the volume of the system improves drastically
the performance. New particle positions are generated in a way that an overlap
with the cylinder wall is not possible, meaning x2 + y2 < (R − r)2. Therefore, one
has to replace the system volume V in equations 2.6 and 2.7 by the reduced volume
Vr = π(R−r)2L. Such an improvement is only possible in the case of hard walls, for
finite values of continuous wall potentials the position generation has to be based
on the volume of the whole simulation box.
Although cluster moves are used, the overall invested computer time for studies of
quasi one-dimensional systems is much higher than in the bulk case, since the Monte
Carlo dynamics are much slower.
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4.2. Interplay of Finite Pore Length and Phase
Behavior

To describe the results regarding the rounding of phase transitions in quasi one-
dimensional geometries, it is important to point out the similarities and differences
to the bulk case. In the bulk a well defined critical point ηrp,c exists and, by intro-
ducing the distance t =

ηrp
ηrp,c
− 1, one can distinguish two correlation lengths ξ− and

ξ+ diverging as ξ+ ∝ (−t)−ν coming from the one-phase region and ξ− ∝ t−ν ap-
proaching the critical point from the two-phase region. Only for pore radii R� ξ+
(for t < 0) and R� ξ− (for t > 0) these power laws are still valid.
Furthermore, it is important to point out that the AO model does not behave “neu-
tral” in the case of hard walls, the colloids prefer to layer at the walls (complete
wetting, compare with chapter 5). This wetting behavior leads typically to shifts of
certain quantities like the coexistence chemical potential of the colloids, the coexis-
tence densities and the critical point with respect to the bulk. It is emphasized that
such effects (which occur also in a plate geometry, or spherical confinement) have
to be distinguished from the one induced by the one-dimensional character of the
cylindrical confinement.
At low enough polymer reservoir packing fractions the AO model in cylindrical
confinement forms a mixed state (one phase region) which is homogeneous along
the cylinder axis. The main focus in the following, however, lies on the polymer
reservoir packing fraction region where polymers and colloids start to demix.

4.2.1. Phase Behavior in Short Pores

In short cylindrical pores, where cylinder diameter D and cylinder length L are of
the same order of magnitude (or L & D), the transition of the AO model from
the mixed state to the demixed state is very similar to the phase transition in the
bulk system and differs only through the wetting behavior. The gas-liquid phase
coexistence looks typically as shown in figure 4.1. One clearly identifies the colloidal
capillary bridge with curved liquid-gas interfaces at both sides.
The corresponding free energy landscape is shown in figure 4.2 and is qualitatively
very similar to the one observed in the bulk. However, the typical finite size phase
transition kinks (spherical droplet to cylindrical droplet to slab etc. [80–83]) are
missing, and due to the colloidal wetting layer the gas peak is broadened. In short
cylindrical pores the phase transition of the AO model from the gas to the liquid

Figure 4.1.: Snapshot of gas-liquid coexistence of the Asakura-Oosawa model in a
short cylindrical pore of diameter D = 12 and length L = 60 at polymer reservoir
packing fraction ηrp = 1.30.
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Figure 4.2: Free energy landscape at
phase coexistence of a colloid-rich and
a colloid-poor phase in a cylinder of
length L = 60, diameter D = 12 at
a polymer reservoir packing fraction of
ηrp = 1.30.
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state happens via capillary condensation where the layering in the (oversaturated)
gas at the walls becomes stronger and stronger until they connect in the center to a
liquid phase. The liquid phase then simply grows until the interfaces connect close
to the wall (polymer droplet) and eventually it fills the whole system.
The already mentioned layering of particles at flat walls is shown in figure 4.3.
The parameters are chosen to be the same as in figure 4.2, but simulations were
performed in a semi grand canonical ensemble, where the polymer particle number
is allowed to fluctuate while the colloid particle number is fixed. The radial density
profiles were recorded exactly at the colloid coexistence packing fractions in the
gas phase (Fig. 4.3a) and in the liquid phase (Fig. 4.3b). The flatness of the walls
causes ordering of the colloidal particles in layers (black dashed lines). The layering
persists even at the center of the cylinder, but is less pronounced. A flat “bulk”
density distribution is not reached in such narrow cylindrical pores. The polymers
(red full lines) inherit the colloid layer structure, but are not able to form layers
without the presence of colloidal particles which leads to the flat density plateau
close to the cylinder axis in the case of the gas phase.
Despite the presented layering effects, the results discussed so far do not show any
surprising qualitative difference to the bulk case. However, a controversy appears
when thinking about the thermodynamic limit of this quasi one-dimensional system,
i. e.L → ∞, D = const. In this limit a phase separation cannot occur for a system
with short range interactions at non-zero temperature or finite polymer reservoir
packing fraction [122]. This is already shown by the analytical calculation of the
one-dimensional Ising model. The fact that one sees a clear phase separation with
a free energy barrier of about 10kBT can only result from finite size effects. The
next section indeed shows that phase transitions in quasi one-dimensional systems
(L/D � 1) are qualitatively different and that bulk quantities such as critical points
cannot be defined anymore.

4.2.2. Phase Behavior in Long Pores

Performing a free energy calculation close to the polymer reservoir packing fraction
where the phase separation disappears leads to an interesting discovery, namely that
a third minimum in the middle between the coexistence densities of the gas-like and
liquid-like colloid phases appears (see Fig. 4.4a). By simply looking at a typical
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Figure 4.3.: Radial density profile of colloids and polymers plotted vs. distance
from the cylinder axis for ηrp = 1.30, L = 60, D = 12. Part (a) shows these profiles
in the vapor-like phase, part (b) for the liquid-like phase. Note that in case (b) one
can recognize that the polymers inherit the structure of the colloids although on
their own they do not form any structure (ideal gas).

configuration in the range of states corresponding to the center minimum in βF (ηc)
one finds states with multiple domains of liquid and gas regions (see the snapshots
in figure 4.4) with a typical distance

ξz ∝ exp(πR2βγ) , (4.1)

where γ is the bulk interfacial tension between a liquid and a vapor domain. Equa-
tion 4.1 can be made plausible in the following (coarse grained) picture. The colloidal
domains are treated as a one-dimensional gas of “particles” with number density
ρ = N

L
= ξ−1z . The free energy has two contributions, the ideal gas part and the

interfacial part,

Fid ≈ −NkBT ln

(
e

ρΛ

)
(4.2)

Fint = NγπR2 , (4.3)

Λ being the thermal wave length, Λ = h/
√

2πkBTm. Equation 4.1 can now be
obtained by minimizing the free energy

∂(Fid + Fint)

∂N
= 0

kBT ln

(
ξz
λ

)
= γπR2 .

As indicated by equation 3.1, the free energy function is equivalent to the probability
distribution of the particle number, density or the packing fraction. In the probabil-
ity distribution picture, peaks correspond to phases which were previously described
by minima in the free energy. Figure 4.4b shows the development of the center peak
of the probability distribution when varying ηrp for L = 180 and D = 12. The free
energy landscapes for ηrp = 1.075, 1.10, 1.18 were obtained via histogram extrap-
olation methods based on the free energy calculation at ηrp = 1.115. Fluctuations
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Figure 4.4.: (a) The free energy landscape of a cylinder of radius R = 6 and
length L = 540 at ηrp = 1.15. (b) Distribution P (ηc) of the number of colloids in a
cylinder of diameter D = 12 and length L = 180 (all lengths are measured in units
of the colloid radius) for ηrp = 1.075, 1.10, 1.115, 1.118, 1.20 from top to bottom at
〈ηc〉 ≈ 0.175. (at the bottom) Snapshots of the multiple domain configuration in a
cylinder corresponding to the free energy calculation of figure part (a). The lower
one is sliced in the middle along the long axis.

are simply due to statistical errors. Since the interfacial tension is a function of the
polymer reservoir packing fraction γ = γ(ηrp), the variation of ηrp leads to an effective
variation of the domain correlation length ξz. In this sense, figure 4.4b highlights
the smooth transition between three regimes, ξz . L (single peak at ηrp = 1.075),
ξz ≈ L (three peak structure at ηrp ≈ 1.115) and ξz & L (double peak structure at
ηrp = 1.200).

In addition to the simulations with a cylinder diameter of D = 12, the system was
also studied for D = 6. The choice of such a relatively small cylinder diameter
(note that this corresponds to a width of only three colloids) reduces the number of
particles to simulate and additionally increases the rounding of the phase transition.
Again, the development of the center peak was recorded when varying the polymer
reservoir packing fraction. A much higher accuracy could be achieved due to the
lower particle numbers (see Fig. 4.5a). To emphasize the dependence of the func-
tional form of the probability distribution on the cylinder length, figure 4.5b shows
the results for this function at fixed polymer reservoir packing fraction for several
choices of L. The graph identifies clearly the transition from L � ξz (L = 10) via
L ≈ ξz (L = 100) to L� ξz (L = 1000).

Further insight is given by figure 4.6a and 4.6b where the first and second moment
of the colloid density are plotted. The averaged density as a function of colloid
chemical potential (adsorption isotherms) looks at the first view similar to the bulk
case. However, the rounding of the curve disappears at rather high polymer reservoir
packing fractions (ηrp ≈ 1.05) where the system is already locally ordered. As a next
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Figure 4.5.: (a) Development of the probability distribution of the colloid volume
fraction P (ηc) towards a three peak structure while decreasing ηrp in a cylinder
of diameter D = 6 and length L = 100. (b) Cylinder length dependency of the
probability distribution function in a cylinder of diameter D = 6 at fixed polymer
reservoir packing fraction ηrp = 1.90. (at the bottom) Snapshot of the multiple
domain state in the case of D = 6 and L = 1000.
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Figure 4.6.: a) First momentum (averaged colloid number density) is shown as a
function of the chemical potential for different polymer reservoir volume fractions
in a cylinder of diameter D = 12 and length L = 60. b) The maximum value of the
density fluctuation is plotted versus ηrp for a cylinder of diameter D = 12.
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Figure 4.7: “Phase diagram” of the AO
model in a cylindrical pore of diameter
D = 12 and lengths L = 30, 60 and
180, as indicated. The full curve is the
bulk coexistence curve [78]. Note that
the points shown near 〈ηc〉 ≈ 0.16 to 0.17
mark ηrp,c(D,L) for three choices of L.
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step, the colloidal density fluctuation ∆2 = 〈ρ2c〉−〈ρc〉2 was determined as a function
of µc at fixed ηrp. The chemical potential of the colloids where the maximum occurs
(µmax

c ) gives an estimate for the coexistence chemical potential independently from
the equal area rule result. When the center peak of the free energy landscape
clearly dominates over the two side peaks and hence, the equal area rule cannot be
successfully applied anymore, it is still possible to reweight the free energy function
to µ = µmax

c to obtain an estimate of the free energy at coexistence. The maximum
∆2(µmax

c ) is shown for several ηrp in figure 4.6b. In contrast to the bulk no convergence
to the curve of the thermodynamic limit is observed, but instead the curves shift
more to the right when increasing the cylinder length. The turning points of the
curves give an estimate for a pseudo-critical polymer reservoir packing fraction.
However, in a finite system it is more accurate to define a pseudo-critical point via
an extension of the equal area rule to three peaks. The pseudo-critical point is
defined as the value of ηrp where the probability of observing a multi-domain state
overturns the probability of observing a demixed state, which means that the area
under the middle peak is the same as the sum of the areas of the gas and the liquid
peak. This definition was used to draw the pseudo-critical points ηrp,c(D,L) into
the “phase diagram” shown in figure 4.7. The plotted binodals illustrate the shift in
the coexistence densities which occurs in general for confined systems as well as the
disappearance of the (global) phase separation when increasing the cylinder length.

The Disappearance of Hysteresis Effects

Another point of view on the finite size dependency is to look at the barrier height
the system has to overcome at coexistence to “jump” from the gas into the multiple
domain phase or from the liquid to the multiple domain phase (see Fig. 4.4b). Due
to the asymmetry of the probability distribution the barrier height was averaged
before being plotted (for D = 12) in figure 4.8. The barrier height vanishes at
higher values of ηrp when increasing the cylinder length1.
Directly related to the barrier height and also accessible to experiments is the ob-
servation of adsorption hysteresis curves [123]. In the grand canonical ensemble this
is simply the average volume fraction of colloids ηc as a function of the chemical

1The abscissa variable 1/ηrp was chosen in order to compare qualitatively with the Ising model
where the barrier height is plotted versus the temperature T [1, 2].
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Figure 4.9.: Two hysteresis plots for the AO model. The chemical potential was
varied in steps of 0.001kBT . Several simulation runs (up to 112) were averaged. For
high polymer reservoir packing fractions large sample to sample fluctuations occur.
The open symbols show data for which the chemical potential was increased step-
wise while the full symbols show data for which the value of the chemical potential
was decreased step by step. The plots show the disappearance of the hysteresis for
a system with D = 12 and L = 180 (a) and for a system with D = 6 and L = 100
(b).
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potential µc, where µc is linearly varied over time during the simulation. It is clear
that at sufficiently high polymer reservoir packing fraction where the free energy
landscapes possess a high free energy barrier between the two coexisting phases the
function ηc(µc) follows the branches of a hysteresis curve. One can highlight the
multidomain occurrence in a cylinder by looking at the behavior of such hysteresis
curves. While in the bulk the hysteresis disappears at the critical temperature, in
a quasi one-dimensional confinement one expects the disappearance of hysteresis
effects already at the pseudo-critical point where the system is still locally ordered.
This expectation is motivated by figure 4.8 in which one sees that the free energy bar-
rier becomes very small close to the pseudo-critical points. Indeed figure 4.9 shows
exactly that the hysteresis vanishes shortly before the free energy barrier disappears
completely (the two peaks transform to shoulders in the free energy landscape pic-
ture). Figure 4.9b shows the hysteresis behavior in the pore of diameter D = 6 and
has to be compared with figure 4.5a where the free energy barrier vanishes going
from ηrp = 1.70 to ηrp = 1.60, which is in nice agreement with the collapse of the
two curves in the present figure at ηrp = 1.65. A variation of the cylinder length at
a fixed ηrp is rather difficult in the case of the AO model because the Monte Carlo
relaxation time increases drastically with increasing cylinder length. In the case of
the Ising model, one observes a lowering in the hysteresis critical temperature when
increasing the length of the cylinder (see Refs. [1, 2]).

Some comments on the underlying Monte Carlo dynamics are necessary: As in
experiments, the pronunciation of hysteresis effects is dependent on how fast and
with which step size the chemical potential is varied. Therefore, there is no exact
correspondence between the pseudo-critical points in the “phase diagram” and the
value of ηrp at which the hysteresis disappears.

4.2.3. Analysis in the Canonical Ensemble

The following technique allows to get a qualitative view of the same effects from
a simple canonical ensemble or even from MD simulations. The basic idea is to
equilibrate a very long cylinder at a state where multiple domains exist. Once
equilibrium is reached one starts to collect data in the following manner: Separate
the system in a set of subsystems which differ by their length. For example, a
cylinder of length L = 100 can be separated into subsystem sets {2 × 50, 3 ×
33.33, 4 × 25, . . .}. Within these smaller subsystems one measures the probability
distribution P (ηc) similar to grand canonical simulations. For small subsystems one
gets a double peak distribution. When increasing the subsystem length, at some
point more than one interface can be observed and a third peak is starting to grow
in the middle.

Figure 4.10 shows clearly how the third peak appears as the length of the cylindrical
subsystems is increased. One can also recognize that the system at higher polymer
reservoir packing fraction keeps its double peak structure longer when the length
of the subsystems is increased (especially by looking at the contour plots when the
side peaks start to disappear).
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Figure 4.10.: The growth of the middle peak from the view of the subsystem
ensemble for a cylinder of a total length of L = 1800 and diameter D = 12. Nc is
the number of colloids and Ns is the number of subsystems the cylinder is divided
into. The height of the shown curves is the logarithm ln(P (NcNs/L)).
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4.3. Conclusion

All the graphs verify the same fundamental behavior of the AO model in a quasi
one-dimensional confinement: Phase transitions in cylindrical pores are rounded and
characterized by the pore radius R and the pore length L. The explanation for this
lies in the correlation length ξz expected to vary in analogy to the one-dimensional
Ising model for low temperatures and L → ∞ as described by equation 4.1. The
cylinder length L does not influence this correlation length in this approximation.
This means that at some point the cylinder length can exceed the correlation length
so that multiple domains can be formed in the pore. The typical picture that
interfaces between two coexisting phases lead to free energy barriers (or areas of low
probability in case of P (ηz)) does not hold in quasi one-dimensional systems with
sufficiently large L. The translational entropy of interfaces grows when increasing
the cylinder length while the free energy barrier height of a single interface stays
constant. This interplay between the interfacial free energy and the translational
entropy of the interface is finally responsible for the multiple domain states.



CHAPTER

5

SPHERICAL CONFINEMENT

The huge interest in nanomaterials and their application in science [124–126], in-
dustry and our daily life (shoe creme, food, etc.) demands understanding of their
basic properties. Nanomaterials are defined as natural, incidental or manufactured
materials containing particles, in an unbound state or as an aggregate or as an ag-
glomerate where the majority of particles as well as one or more external dimensions
is in the range of 1nm to 100nm (legal definition of nanomaterials from [127]). Since
the size of the constituents of the material and the material itself are of the same
order of magnitude, the material may exhibit completely different properties than
the corresponding bulk material. The effects due to surface properties may influence
the phase behavior of the system, e.g. shift the transition points, and in general the
finite system size leads to a rounding of phase transitions. The influence of surface
effects in small systems was studied in the case of crystallization of nanoscale liquid
clusters. Already predicted 1909, the freezing transition is expected to be shifted
towards lower temperatures due to higher surface free energy of the crystalline clus-
ter in comparison to the liquid [128]. Experiments and simulations regarding gold
nanoclusters confirmed the prediction [129–131]. In nanocavities the situation is
similar, however, the system is not at the triple point and surrounded by a gas (as
in the case of the above mentioned clusters) but is surrounded by solid walls. Espe-
cially in the case of binary mixtures where one species may favor to wet the walls, it
is clear that the wetting properties of the system influence the phase behavior but
at the same time also the wetting transition [132] of the system is modified by the
finite size of the cavity [133] (for the case of confinement of colloid-polymer mixtures
in thin films between planar walls see Ref. [31]). Here, colloid-polymer mixtures are
studied confined in spherical cavities.
Understanding phase transitions in spherical confinement plays an important role,
since the spherical shape of capsules appears in a wide range of applications (mini
emulsions [134–136], porous networks, containers for drug delivery, etc.). As in the
previous chapter, the AO interaction model is chosen as a model for colloid-polymer
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Figure 5.1: Two types of morphol-
ogy for phase coexistence in spher-
ical confinement as schematic two-
dimensional sketch. (a) Complete
wetting. (b) Partial wetting, “neu-
tral” wall (θ = 90o).

a) b)

mixtures and hard (structureless) walls restrict the center of particles to the volume
specified by x2 + y2 + z2 < (R− σw)2, where R is the radius of the spherical cavity
and σw is the wall interaction range. The unit length scale is set (in contrast to
the studies in the previous chapters) by the colloid diameter dc = 2rc = 1. The
aspect ratio between polymer and colloid diameter is again q = 0.8. Here, the phase
separation of the AO model is influenced by the finite size of the sphere and the
wetting properties of the binary mixture with respect to the wall. These wetting
properties determine the morphology of phase coexistence. While at “neutral” walls
partial wetting and, therefore, a Janus-like morphology (Fig. 5.1b) is expected, in
the case of complete wetting a spherical shell structure exists at phase coexistence
(Fig. 5.1a).
The structure of this chapter is two-folded. As a first step, the (finite size) “phase
diagram” for wall interaction ranges σwc = 0.5 and σwp = 0.4, which correspond to
the radius of the colloid or polymer respectively, is calculated. The crucial knowledge
which wall interaction ranges correspond to which wetting behavior was studied
within the context of a diploma thesis by collaborator Antonia Statt. By applying
the “ensemble switch method” (introduced in chapter 6) to the polymer-rich and
colloid-rich phase of the AO model it was possible to drive the system from complete
wetting of the colloids via partial wetting to complete wetting of the polymers by
varying the colloid-wall interaction range σwc at constant polymer-wall interaction
range σwp = 0.4 (see Ref. [9]). The choice of σwc = 0.5 corresponds to the complete
wetting situation and hence, morphology type “a” (Fig. 5.1a) is expected at phase
coexistence. As a second step, the polymer reservoir packing fraction is fixed and
the interplay of wetting and finite pore size is studied in detail regarding shifts of
the phase transition.

5.1. Phase Behavior

To examine the phase behavior of the AO model under spherical confinement, the
wall interaction parameters are fixed to σwc = 0.5 for the colloid-wall interaction
and σwp = 0.4 for the polymer-wall interaction which corresponds to the situation
of complete wetting of the colloids at the wall. As in the previous chapter, cluster
move based grand canonical Monte Carlo simulations together with successive um-
brella sampling or “Wang-Landau sampling” are performed to calculate free energy
landscapes. Figure 5.2a shows exemplary how the transition from the polymer-rich
to the colloid-rich phase proceeds at fixed ηrp = 1.40. The transition happens in a
smooth manner since finite size induced phase transitions like in the bulk such as
the evaporation-condensation transition (from gas to droplet) do not appear (see
also chapter 3 and references [80–83]).
In contrast to the bulk colloidal droplet formation, here, one observes the growth of
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Figure 5.2.: (a) Snapshots of the gas-liquid phase coexistence in a spherical cavity
of radius R = 10 at ηrp = 1.40. The anterior half of the sphere is cut off, so that
one looks at the center plane. The numbers close to the spheres indicate the actual
number of colloids in the system. (b) Free energy landscape for the AO model under
spherical confinement with radius R = 10 at ηrp = 1.40 at phase coexistence. The
bullets indicate the position of the snapshots in part (a) in terms of the colloid
particle number.

a colloid layer which is attached to the wall. This layer is smoothly growing until
the colloid-rich phase is reached. This smoothness, which can be seen directly in the
free energy landscape (see Fig. 5.2b), is typical for the complete wetting behavior
and does not disappear for larger spheres (also see the derivatives of free energy
landscapes in the next section, Fig. 5.5b). Every change in the colloid packing
fraction ηc changes the interfacial area of the two coexisting phases. Hence, the
free energy barrier is relatively sharply peaked, i.e. a flat plateau cannot exist. The
snapshot with colloid particle number Nc = 2130 illustrates nicely the type “a”
morphology. One can also recognize that the polymer droplet has a certain freedom
with respect to its exact position relative to the center of the cavity, but is “not
allowed” to attach to the wall.
Another important aspect of the free energy function is its high degree of asymmetry.
The transition kinetics are, therefore, different depending on whether one goes from
the polymer-rich to the colloid-rich phase or the other way around. There exists
no nucleation barrier going from the polymer-rich phase towards the coexistence
region, since there is already a thin colloid layer at the walls which can grow easy.
At the other side, in the case of the transition from the colloid-rich phase to the
polymer-rich phase, a polymer droplet has to nucleate (in the “bulk”) and hence, the
free energy exhibits a high slope at this point.
Via histogram reweighting (equal area rule) the coexistence densities can be ex-
tracted from the free energy landscapes. The phase diagram was recorded for three
different sphere sizes R = 5, 7.5, 10. Simulations were carried out at ηrp = 0.85, 0.90,
1.00,. . . , 1.40. The rest of the data points was obtained via histogram extrapolation.
Figure 5.3a shows the chemical potential of the colloids at coexistence µc for various
polymer reservoir packing fractions. Over the whole range of phase coexistence, µc
increases when increasing the radius of the cavity. This property is directly related
to the complete wetting of the colloids and is discussed in more detail in the next
section.
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Figure 5.3.: Finite size phase diagrams for the AO model in spherical confinement
(a) in the plane of βµc and ηrp (βµc is the coexistence chemical potential of the
colloids) and (b) in the plane of ηc, ηrp. (c) Order parameter ∆ = ηc,liq − ηc,gas as
a function of polymer reservoir packing fraction. The full lines are fits f(ηrp) ∝ tβ,
with t =

ηrp
ηrp,c
− 1. (d) Radial density profiles for various polymer reservoir packing

fractions at ηc = 0.214 (R = 10).

As expected, the values for the coexistence densities lie between the binodal branches
of the bulk phase diagram (Fig. 5.3b). An approach to the bulk coexistence densities
when increasing R is visible, but in the case of the gas branch rather slow. The
binodals end in pseudo-critical points near ηrp ≈ 0.8 . . . 0.9. One possible way to
define the position of the pseudo-critical points is to use the relation ηcl − ηcg ∝
(ηrp/η

r
p,c − 1)β, where the “critical exponent” β and the “critical polymer reservoir

packing fraction” ηrp,c are treated as fit parameters. Figure 5.3c illustrates the fits
(full lines).
The asymmetry of the gas branch is transferred to the order parameter ∆ = ηc,liq−
ηc,gas (see Fig. 5.3c). Therefore, the function ∆(ηrp) = const(ηrp/ηrp,c − 1)β results in
a much higher exponent β in comparison to the bulk for small sphere radii. The
fit parameters are given in table 5.1. Such a fit is not the only possible choice
for the definition of a pseudo-critical point; observing the maximum of the density
fluctuations as a function of the polymer reservoir packing fraction would be an
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R const ηrp,c β

5 0.431(5) 0.876(5) 0.63(2)

7.5 0.415(2) 0.830(1) 0.597(8)

10 0.408(1) 0.816(1) 0.544(6)

Table 5.1: Fit parameters for the or-
der parameter function (see the main
text and figure 5.3c). The last number
in brackets is the error.

alternative way (also leading to different values). In a finite system the transition
from a bimodal free energy function to a unimodal free energy function is analytic
which results in an effective exponent β = 0.5. Figure 5.3d shows the change in the
radial density profile of the colloids when going through the critical region at fixed
colloid packing fraction ηc = 0.214. One can clearly identify the transition from
the homogeneous state with uniform density (apart from the walls) to the demixed
state where the colloid density vanishes in the center of the cavity. Note that this
behavior is only visible in the case of a second order transition to morphology type
“a”, because the orientational average of η(r) would lead to a radially constant
density in morphology type “b”.

5.2. Interplay of Wetting and Finite Pore Size

As already mentioned, the transition point µc varies for different radii of the cavity.
This quite pronounced variation is a result of the complete wetting property of the
system and is expected to disappear in the case of neutral walls (90o contact angle)
as it is made plausible in the following.

5.2.1. Theoretical Aspects

The phase coexistence of the vapor (labeled as v) and the liquid (labeled as l) phase
of the AO model in the bulk with free energy Fb, entropy S and volume V serves
as a starting point to estimate the functional dependency µc = µc(R) ≡ µRc . The
inverse temperature is set to β = 1 throughout. The free energy of the system is
decomposed into bulk and surface terms

F (ηrp, µc, σwc, R) = V fb(η
r
p, µc) + Afs(η

r
p, µc, σwc) , R→∞ . (5.1)

Note, however, that fs(µc, σwc) may have a residual dependence on R if one wants
to use this decomposition not only in the limit R→∞ but for all R. In this case a
more general Ansatz for fs has to be chosen, e.g.

fs(η
r
p, µc, σwc, R) =

fs(η
r
p, µc, σwc)

1 + 2δ/R + 2(l/R)2
, (5.2)

where δ is the so-called “Tolman length” and l another length scale derived from
second order terms [81]. However, this problem is disregarded here and, using A =
4πR2 and V = 4

3
πR3, Eq. 5.1 can be written as

F (ηrp, µc, σwc, R)/V = fb(η
r
p, µc) +

3

R
fs(η

r
p, µc, σwc) , R→∞ .
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Using the general relations for the number density of the colloids

ρc = −
(
∂(F/V )

∂µc

)
ηrp,σwc

, ρbc(η
r
p, µc) = −

(
∂fb(η

r
p, µc)

∂µc

)
ηrp

,

and ρsc(η
r
p, µc, σwc) = −

(
∂fs(η

r
p, µc, σwc)

∂µc

)
ηrp,σwc

,

which is the so-called surface excess density, one gets (again neglecting the residual
R-dependence that ρsc may have)

ρc(η
r
p, µc, σwc) = ρbc(η

r
p, µc) +

3

R
ρsc(η

r
p, µc, σwc) .

When considering the vapor-liquid phase coexistence of the AO model in the bulk,
the two free energies F v and F l have to be equal:

F v(ηrp, µc, σwc, R) = F l(ηrp, µc, σwc, R) ⇔

f vb (ηrp, µc) +
3

R
f vs (ηrp, µc, σwc) = f lb(η

r
p, µc) +

3

R
f ls(η

r
p, µc, σwc) . (5.3)

In the bulk phase coexistence occurs at µ∞c : f vb (ηrp, µ
∞
c ) = f lb(η

r
p, µ

∞
c ). Since it is

reasonable to expect that for large R the capillary condensation type effects will be
small, a Taylor expansion in µc close to µ∞c is suitable:

f vb (ηrp, µc) = f vb (ηrp, µc)− ρvc(ηrp)(µc − µ∞c ) (5.4)

f lb(η
r
p, µc) = f lb(η

r
p, µc)− ρlc(ηrp)(µc − µ∞c ) . (5.5)

Similarly the surface free energies are expandable as:

f vs (ηrp, µc, σwc) = f vs (ηrp, µ
∞
c , σwc)− ρvs(ηrp, σwc)(µc − µ∞c ) (5.6)

f ls(η
r
p, µc, σwc) = f ls(η

r
p, µ

∞
c , σwc)− ρls(ηrp, σwc)(µc − µ∞c ) . (5.7)

Using equations 5.4 to 5.7 in equation 5.3 yields that the transition occurs at a
chemical potential µRc satisfying the equation

(µRc − µ∞c )

{
ρlc(η

r
p)− ρvc(ηrp)−

3

R

[
ρvs(η

r
p, σwc)− ρls(ηrp, σwc)

]}
=

3

R

(
f ls(η

r
p, µ

∞
c , σwc)− f vs (ηrp, µ

∞
c , σwc)

)
and hence

µRc = µ∞c −
f vs (ηrp, µ

∞
c , σwc)− f ls(ηrp, µ∞c , σwc)

R
3

(
ρlc(η

r
p)− ρvc(ηrp)

)
− [ρvs(η

r
p, σwc)− ρls(ηrp, σwc)]

. (5.8)

Equation 5.8 is the central result which shows that µRc −µc is not simply proportional
to 1/R, but exhibits also a 1/R2 correction. This can be seen by an expansion of
Eq. 5.8

µRc = µ∞c −
3(f vs − f ls)
ρlc − ρvc

1

R
− 9((f vs − f ls)(ρvs − ρls))

(ρlc − ρvc)2
1

R2
+O(1/R3) . (5.9)
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Figure 5.4.: (a) Snapshots of the gas-liquid phase coexistence in a spherical cavity
of radius R = 10 at ηrp = 0.94. The anterior half of the sphere is cut off, so that
one looks at the center plane. The numbers close to the spheres indicate the actual
number of colloids in the system. (b) Free energy landscape in the case of neutral
walls (σwc = 0.6755) at ηrp = 0.94 and R = 10. Full circles mark the positions of the
snapshots shown in part (a).

From the expansion it is clear that for large R the vapor and liquid wall tension
difference can be obtained as

lim
R→∞

∂µRc
∂(1/R)

= −3(f vs − f ls)
ρlc − ρvc

. (5.10)

Of course, one has to mention, as a caveat, that the expansions Eqs. 5.4-5.7 require
that quadratic terms in µc still are negligible. The expansion to the second order
including effects related to the bulk susceptibility χb = −(∂2fb/∂µ

2
c)ηrp,µc=µ∞c and the

analogously defined surface excess susceptibilities χs is not carried out here.

5.2.2. Simulation Results

Equations 5.9 and 5.10 predict that in general the phase transition in spherical
cavities is shifted with respect to the bulk. One can also see that in the special
case of a 90o contact angle, where f vs − f ls = 0, this shift should vanish. This
fact and the 1/R and 1/R2 dependence of µRc is addressed in the following by the
calculation of free energy landscapes at fixed polymer reservoir packing fraction
ηrp = 0.94 but varying sphere radii R and colloid-wall interaction range σwc. First of
all, a contact angle θ = 90o is studied, which is expected to appear at a colloid-wall
interaction range of σwc ≈ 0.6755 (Ref. [9]). This special case of partial wetting is
not compatible with the core-shell structure observed in Fig. 5.2a and the Janus-like
(half-half) phase coexistence morphology is expected. Indeed, figure 5.4a shows the
phase transition from the polymer-rich to the colloid-rich phase starting with the
nucleation of a colloidal droplet at the wall (N = 376) and going via the Janus-
like structure (N = 1061) to the wall-attached polymer droplet (N = 1753) before
reaching the liquid phase. Similar to figure 5.2b the corresponding free energy
function (Fig. 5.4b) exhibits a smooth behavior, however, the function is now much
more symmetric and the typical property of the AO model, a narrow gas peak and
a wider liquid peak, is recovered. Note that the expected kinks associated with the
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Figure 5.5.: (a) Adsorption isotherms for various radii R in the case of complete
wetting. (b) Derivatives of the free energy for various cavity radii. The inflection
points in (a) and the horizontal dashed lines in (b) indicate the coexistence chemical
potential of the colloids µRc . (c) Derivatives of the free energy as a function of colloid
packing fraction ηc in the case of neutral walls. (d) Convergence behavior of the
chemical potential as a function of cavity radius for various colloid-wall interaction
ranges. The full lines are parabolic fits.

nucleation of the colloidal and polymer droplet at the wall are not clearly visible
(although the derivative of the free energy landscape starts showing smeared out
jumps in figure 5.5c, which is discussed in more detail in the next paragraphs). Well
pronounced kinks in the free energy landscapes are only expected for higher polymer
reservoir packing fractions and for larger sphere radii.

As a next step, the two extreme cases of complete wetting (σwc = 0.5) and the
partial wetting situation with θ = 90o are compared in more detail. Figure 5.5
illustrates the shift of the coexistence chemical potential of the colloids µRc in the
case of the complete wetting situation (σwc = 0.5) where the turning points of
〈ηc〉 = π

6V

´
dNc lnF (µc, Nc)Nc/

´
dNc lnF (µc, Nc) define µRc . In figure 5.5b the

axes are exchanged and βµc is directly calculated via the derivative of the free
energy βµc = ∂F (Nc)/∂Nc. The coexistence densities appear at the end of the
horizontal lines the height of which corresponds to the colloid chemical potential at
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coexistence. The function µ(ηc) always shows in the center region a well defined
intersection point with these lines which is directly related to the relatively sharp
peak at the center of the free energy landscapes. In contrast, in the case of neutral
walls (see Fig. 5.5c) the colloid chemical potential at coexistence does almost not
vary with R and derivatives of the free energy landscape develop a horizontal plateau
in the center when going to large cavity radii R. Furthermore, one can recognize
the development of smeared out jumps at both ends of the center region indicating
heterogeneous nucleation barriers. The barrier associated with the nucleation of the
colloidal droplet is clearly not visible in the complete wetting situation in figure part
(b).

Finally, figure 5.5d shows the coexistence chemical potential µRc as a function of 1/R
for different wetting situations, which can be directly compared with equations 5.9
and 5.10. The full lines are parabolic fits where the intersection with the ordinate
was fixed to the chemical potential of the colloids at coexistence in the bulk system
βµ∞c = 6.2023. The expected parabolic behavior is in good agreement with the
simulation data. The slope of the fit at 1

R
= 0 is directly related to the surface free

energy difference and, hence, can be compared with the very precise wall tension
calculations in reference [9]. As coexistence density difference in the bulk the value
of ρlc − ρvc = 0.57442 from reference [61] was used. Figure 5.6 shows the resulting
estimate for the surface free energies for various colloid-wall interaction ranges σwc.
Note that there is no tunable parameter but the extracted values are completely in-
dependent from the ensemble switch method results in reference [9]. Therefore, one
can conclude that the presented theory not only qualitatively describes the shift of
the transition chemical potential but is also able to give quantitative results as long
as neither complete drying nor complete wetting is present. The quantitative agree-
ment is rather surprising since a lot of approximations were made. The deviation
close and above the wetting transition results from the fact that the surface excess
densities were assumed to be independent of the cavity radius, which is clearly not
the case when a macroscopic large wetting layer tries to form in a small spherical
cavity.
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5.3. Conclusion

The confinement in spherical cavities of binary systems, here a colloid-polymer mix-
ture, which exhibit a gas-liquid phase transition, plays a crucial role with respect
to the properties of the phase transition, i.e. the phase coexistence morphology. By
only tuning the colloid-wall interaction it is possible to create a core-shell structure
or a Janus-type-like structure when both phases coexist. Furthermore, one observes
a shift of the phase transition point which is directly related to the wetting properties
of the confined system. This shift depends not only linearly but also quadratically on
the inverse cavity radius 1/R and can be quantitatively described by the presented
approximate theory. This insight into the phase transition properties in spherical
cavities is especially valuable within the context of nanomaterials.



CHAPTER

6

CONFINEMENT BETWEEN WALLS

In this chapter the wetting behavior of a hard sphere system and the effective
Asakura-Oosawa model at flat, planar walls is investigated. Both models exhibit
a first order liquid to crystal phase transition. The wetting behavior in the con-
text of liquid-like and gas-like phases was successfully studied [9, 137–140] and is
rather well understood in the picture of classical nucleation theory [141]. However,
the nucleation of crystals from the fluid phase, which appears in many applications
such as formation of ice crystals in the atmosphere and crystallization processes in
various materials, is poorly understood. The question arises, whether the macro-
scopic description based on Young’s equations and the classical nucleation theory
which assumes a macroscopic “critical nucleus” is still valid in the case of crystalline
clusters. The biggest issue might be that crystalline phases are not isotropic. The
crystal plane which is involved in the interface at coexistence with the surrounding
liquid in the bulk (assuming a slab geometry) is typically different from the crystal
plane which favors planar flat walls. In the case of complete wetting (see Fig. 6.1b)
this leads to a competition between the two different surface free energies and it
is a priori not obvious which crystal orientation is thermodynamically more stable.
Even the description based on surface free energies itself is uncertain, since the typ-
ically heterogeneous growth of a crystalline cluster can easily result in meta-stable
but long living states which are not predicted by the net balance of all free energy
contributions. Under consideration of these caveats and the recent experimental
observations in the field of colloidal systems such as non-spherical, rough crystalline
clusters [142], the importance of thermal fluctuations [143] and the generic similarity
to crystal nucleation in metals and alloys [144], the following studies are meant to
contribute to the understanding of the wetting properties of colloidal crystal phases.
As already seen in chapter 5, at phase coexistence and in the presence of confining
walls, one of the two phases is typically preferred by the wall. This can be expressed
by Young’s equation

γlg cos(θ) = γwg − γwl , (6.1)
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Figure 6.1.: (a) A liquid droplet surrounded by gas at the wall corresponding to a
contact angle θ > 0o. (b) The complete wetting situation corresponding to θ = 0o.

which is typically formulated for a liquid droplet attached to a wall surrounded by
vapor, where γlg, γwg and γwl are the liquid-gas, wall-gas and wall-liquid interfa-
cial tensions respectively. Figure 6.1 shows the two cases of partial and complete
wetting. In part (a) the condition

∣∣∣γwg−γwl

γlg

∣∣∣ ≤ 1 is fulfilled and, hence, θ can be
determined by equation 6.1, while in part (b) this condition is not fulfilled and com-
plete wetting occurs. From Eq. 6.1 it is clear that studies regarding the wetting
behavior of the system of interest can be directly related to the calculation of wall
tensions. One of the main tasks in this chapter is the development of a new method,
the so-called ensemble switch method (section 6.1.3), which is used to determine
wall tensions of both phases, the liquid phase and the crystalline phase, with a high
precision.
For the hard sphere model evidence is found that complete wetting occurs when the
system is confined between hard walls [34] and thus, this system is not suited to
study wall attached crystalline nuclei. However, it was extensively studied in the
past [26, 145–149] and therefore, will serve in this chapter as a reference system
to check for the correctness of new methods. When replacing the hard walls by
continuous wall interactions it is not known, in which way the wetting behavior
of the system is altered. This question is answered in the following sections by
investigating density profiles and by the direct calculation of wall tensions via the
“ensemble switch method”. Finally, the effective AO model is investigated in a
similar manner and it is shown that partial wetting occurs. The contact angle of the
crystalline cluster can be influenced by changing the properties of the particle-wall
interactions.
The whole studies in this chapter were performed in collaboration with Debabrata
Deb (pressure tensor and density profile based calculations as well as direct studies of
crystalline nuclei by means of geometric methods), Mohammad Hossein Yamani
and Martin Oettel (Density Functional Theory (DFT) calculations) who are
greatly acknowledged at this point for their work and helpful discussions. Especially
the DFT and pressure tensor results for the hard sphere model will be present in
some of the graphs providing further insight and serving as consistency checks for
the ensemble switch method (for more details, see Refs. [5–8]).

6.1. Simulation Details

In the following, the simulation setup is chosen so that walls are placed at z = ±Lz

2
.

Simulations are performed in the NV T -ensemble at constant particle number, sim-
ulation box volume and temperature kBT = 1. In contrast to earlier chapters where
a binary mixture of two particle species was studied, here, only a single particle
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(all with σ = 0.5). The shaded area
represents the hard wall potential. The
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type (called colloids in the following) is used. Two different pair interaction poten-
tials between the colloids are studied, the hard sphere interaction and the effective
Asakura-Oosawa interaction (see section 2.2). The unit length is the diameter (or
diameter-like parameter) of the pair potential. The hard sphere model has only a
single parameter, the particle diameter which is set to σ = 1 in the following. For
the effective AO model the polymer reservoir packing fraction parameter is set to
ηrp = 0.1 and the ratio between polymer diameter and colloid diameter is chosen
as q = 0.15. Phase diagrams for this parameter choices were already reported in
reference [49].

6.1.1. Wall Potentials

The wall-particle pair interaction might influence the wall tensions and thus, is also
expected to influence the wetting behavior, i.e. the contact angle. Therefore, various
wall potentials are considered here, which are: the hard wall potential, the WCA
wall potential and a shifted Lennard-Jones-like wall potential, defined as:

Uw,hard(z) =

{
∞ , for z ≤ σ

0 , else
, (6.2)

Uw,WCA(z, ε) =

{
4 ε
[(

σ
z

)12 − (σ
z

)6
+ 1

4

]
, for z < 21/6σ

0 , else
(6.3)

and

Uw,LJP1(z, ε) =

4 ε
[(

σ
z

)12 − (σ
z

)6]
+ 1 , for z ≤ σ 6

√
2(ε+

√
(ε− 1)ε)

0 , else
. (6.4)

When increasing ε in Uw,LJP1(z, ε) (from ε = 1) one can increase the strength of
the attractive part of the potential by keeping at the same time the repulsive part
so that Uw,LJP1(1, ε) = 1 ∀ ε. Figure 6.2 illustrates the difference between the WCA
potential Uw,WCA(z, ε) and the shifted Lennard-Jones potential Uw,LJP1(z, ε) with
respect to the ε-dependency. Note that for ε = 1 the LJP1 and the WCA potential
coincide.
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Figure 6.3.: Two density profiles of a hard sphere system for packing fractions ηg ≈
0.42 (a) and ηg ≈ 0.46 (b). The wall potential is the WCA potential with σw = 0.5
and ε = 1. The linear dimensions of the simulation boxes are Lx = Ly = 12.41786,
Lz = 25.61184. The insets show an estimate for the bulk density ρb as a function of
the integration range c.

6.1.2. Density Profiles

Before proceeding with the calculation of wall tensions for investigating the wetting
behavior of colloidal crystalline phases, attention has to be paid to some subtle
points regarding thermodynamic quantities which have to be treated differently in
comparison to the bulk situation. In the following, the hard sphere system confined
between WCA walls is used as a representative example to discuss general properties
of the confinement as well as to present first results regarding the influence of the
wall potential. The translational invariance of the system is now broken in the z-
direction so that an “origin plane” at z = 0 can be defined. Due to the distinguished
z-axis some thermodynamic quantities become a function of the z-coordinate. A
typical quantity of such a kind is the number density profile ρ(z) (or the packing
fraction η(z) = π

6
σ3ρ(z)) or the pressure of the system which is split up in parts

parallel and perpendicular to the walls [150]. Figure 6.3 shows examples of density
profiles in the case of a hard sphere liquid confined between two WCA walls. The
walls clearly induce a layering. This layering effect decays towards the center plane
of the system at z = 0.

The density profiles play an important role since they allow for a comparison between
the Monte Carlo simulations and the density functional theory results and can also
be directly used to estimate the wall tensions. Moreover, figure 6.3 points out an
ambiguity which will play a crucial role in the following. In computer simulations
of finite systems, there exists in general a mismatch between the global packing
fraction ηg = π

6
σ3N

V
, where V is the volume of the simulation box, and the so-called

bulk packing fraction ηb which can be extracted from the center plateau of the
density profile. While the examples in figure 6.3 suggest to simply read off the bulk
density around z ≈ 0 a closer look reveals (especially for dense systems (η ≈ 0.42
to η ≈ 0.49)) that still very small oscillations are visible at the plateau. The bulk



6.1. SIMULATION DETAILS 59

0.1 0.2 0.3 0.4 0.5

ηb

0.02

0.03

0.04

0.05

0.06

0.07

η
s

DFT:

ε=2.0

ε=1.0

ε=0.7

hard wall

ε=0.4

ε=0.2

ε=0.1

MC sim:

ε=2.0

ε=1.0

ε=1.0

ε=1.0

hard wall Davidchack et al.

ε=0.4

Figure 6.4.: Surface excess packing fraction ηs as a function of bulk packing fraction
for hard spheres confined between WCA walls. The parameter ε of the WCA wall
potential was varied as indicated. While lines represent density functional theory
results, symbols indicate simulation results. In the case ε = 1.0 different simulation
box geometries were used to check for finite size effects. Triangles pointing to the
right correspond to Lx,y = 5 and Lz = 40. Triangles pointing down correspond
to a geometry of Lx,y = 13 and Lz = 50. All the other symbols correspond to
Lx,y = 12.418 and Lz = 25.612.

packing fraction can be extracted from a density profile via

ηb(c) =
πσ3

6

´ c
−c ρ(z) dz

2c
, (6.5)

where c sets the amount of the plateau considered for the bulk packing fraction.
The insets in figure 6.3 show the influence of the integration range. While in part
(a) ρb(c) develops a plateau around c ≈ 3, the inset of part (b) does not allow for
the estimation of a value for ρb(c) indicating that the linear dimension Lz of the
simulation box is chosen still too small. A more rigorous way to define the bulk
packing fraction (especially in the case of crystalline phases) is given by the limit
ηb = lim

V→∞
ηg(N, V )|ρg=const.

Although the distance between the walls of the system shown by figure 6.3 is quite
large, due to the effective thickness of the walls and the surface excess properties of
the confined liquid one observes a difference of approximately 1% between global and
bulk packing fractions. This issue is pointed out here, because it is the infinitely large
system and, therefore, the bulk packing fraction, for which the wetting properties
predicted by macroscopic theories are defined.
The influence of the variation of wall potential properties on the system can be
made visible by a density profile related quantity, the so-called surface excess pack-
ing fraction ηs (which was already introduced for spherical confinement in section
5.2.1). Furthermore, this sensitive quantity allows for a first comparison between the
DFT calculations and computer simulations. The surface excess packing fraction is
defined as

ηs =
1

2

ˆ Lz/2

−Lz/2

(η(z)− ηb) dz , (6.6)



60 CHAPTER 6. CONFINEMENT BETWEEN WALLS

where the factor 1
2
takes the two walls into account. Within the context of this

quantity it is important to mention the work by Laird and Davidchack [149],
which provides highly precise estimates for the surface excess density and the wall
tension in the case of hard spheres confined between hard walls. Figure 6.4 shows
the literature data from reference [149] for hard spheres between hard walls in com-
parison to simulations results for hard spheres between WCA walls for various ε.
The DFT results presented in this figures were calculated by collaborators Yamani
and Oettel. The functional form of the excess free energy in the DFT is the
so-called White Bear II functional (full lines) and its tensor modification (dashed
lines). The White Bear II functional is consistent with analytic expressions for the
liquid of hard spheres confined between hard walls, while the tensor modification is
slightly less consistent but has the benefit to predict accurately liquid-crystal coexis-
tence densities, bulk crystal free energies and further hard sphere crystal properties
[5, 151]. The Monte Carlo simulation results for ε = 2.0, ε = 0.4 and several for
ε = 1 in the case of Lx,y = 12.418 and Lz = 25.612 were provided by Deb who is
acknowledged at this point. Up to a bulk packing fraction of ηb ≈ 0.39 the results
from DFT and from simulation agree well. Beyond this packing fraction systematic
differences between theory and simulation results start to occur. The simulation
results lie systematically lower and −ηs decreases when increasing the bulk packing
fraction, while all DFT results have an inflection point and even increase for the
higher wall potential amplitudes. The simulation box sizes could be too small for
the high packing fraction ηb & 0.46. To rule this out, various box size were consid-
ered for WCA wall potentials with ε = 1 as indicated in figure 6.4. No systematic
influence of the simulation box dimensions on the surface excess packing fraction
are visible within the statistical errors. In addition, the data from Davidchack et
al. was recorded for a system size of Lx,y = 50 and Lz = 65 and shows the same
tendency, so that it is likely to exclude that the drop-down of −ηs is a pure finite
size effect. It is more likely that the approximate density functionals fail to pre-
dict the correct density profiles at very high packing fractions and hence, −ηs is
systematically overestimated.
Of course, differences between the DFT and the simulations with respect to the
behavior of ηs(ηb) will affect the wall tension prediction γwl as well. From the
latter discussion one can conclude that the DFT calculations provide a valuable
insight of the surface excess properties of the system and will additionally serve as
an excellent consistency check for the later presented “ensemble switch method” up
to a bulk packing fraction of ηb ≈ 0.4. The results for the surface excess packing
fraction show that the functional form of the wall potentials does modify the surface
properties. Using dγ ∼ ηs(P (ηb))dP (ηb), where P (ηb) is the pressure as a function
of bulk packing fraction (see also [149]), it is clear that an increase of the amplitude
ε of the WCA will cause an increase of the wall tension γ.

6.1.3. The Ensemble Switch Method

Within this chapter a methodology to determine wall tensions for liquid and crys-
talline phases is developed. The method is a modification of the thermodynamic
integration method from Löwen [152] which was used to extract wall tensions in
colloid-polymer mixtures and hard sphere crystals [153, 154].
In the original formulation by Löwen, the transition from a bulk system with pe-
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riodic boundary conditions to a system with walls is made. The periodic boundary
conditions were not modified during this process, however, in the state with com-
pletely switched on walls the interaction between particles “through” the walls were
suppressed by using relatively wide walls (typically with a diameter of σ = 1). The
difference between the bulk and the wall situation is represented by a parameter
λ ∈ [0, 1] in the Hamiltonian H({ri}) = Hb({ri}) + λHw({ri}). The free energy
difference can therefore be integrated out by ∆F =

´ 〈
∂H
∂λ

〉
dλ. The main drawback

of this method was the thickness of the walls which induces strong finite size effects
since the system is compressed during the process of switching on the walls. A finite
size scaling analysis to obtain the proper bulk packing fraction was not performed
and the statistical errors are in general large (also in the more recent work [153, 154]
where modern computers were available).

Detailed Description

The following three modifications are applied to this method to improve the quality
of the results:

1. Superposition of Boundary Conditions The change in pressure when switch-
ing on wall interactions can strongly influence the free energy difference ∆F . By
choosing walls of the thickness of half a particle diameter, the bulk and the wall sit-
uation become relatively similar so that the pressure difference is less pronounced.
However, using thin walls automatically means that the periodic boundary condi-
tions have to be switched on smoothly as well. This can be achieved by defining the
Hamiltonian H of the system as a superposition (or mixture) between the Hamil-
tonian of the bulk system with periodic boundary conditions along the z-axis H1

and the Hamiltonian of the wall system without periodic boundary conditions in
z-direction H2 (H2 also includes the wall potential). The mixing between these two
ensembles is realized by a superposition of the form

H({ri}) = (1− κ)H1({ri}) + κH2({ri}) , (6.7)

where κ ∈ [0, 1] indicates the current mixing percentage between both ensembles
the energies of which are labeled with 1 and 2. Note that compression effects can
still arise, but due to the proper (smooth) handling of the periodic boundary con-
ditions every wall thickness is allowed so that one can always chose a system where
compression effects are minimized.
As will be explained later in more detail, equation 6.7 represents only one possibility
to combine the Hamiltonians H1 and H2. Dependent on the system under investi-
gation, a direct dependence of the Hamiltonians on κ, e.g. H2(κ, {ri}), might help
to increase the smoothness of the transition from the bulk to the confined system,
which is valid as long as the “pure” states are reached for κ = 0 or κ = 1 respec-
tively. In the case of hard walls, the wall potential amplitude is set to a high but
still finite value (e.g. ε = 200kBT ), since otherwise the product κH2 remains always
κH2 = ”∞” so that a smooth transition from H1 to H2 is not possible. Similarly,
the overlap penalty between hard spheres can be set to a high but finite value to
allow for a proper handling of the periodic boundary conditions when the system is
in a mixed state (κ ≈ 0.5).
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2. Calculating Free Energy Differences The free energy difference between the
bulk system and the system with walls ∆F at a certain system size is obtained
within a single simulation run using the “Wang-Landau-algorithm” (see chapter 2)
with respect to the continuous and rather abstract reaction coordinate κ. The range
of κ from zero to one is discretized into 1000 bins. While intermediate states (such as
κ = 0.5) do not provide meaningful information, the free energy difference between
the bulk system and the confined system ∆F = F (κ = 0) − F (κ = 1) gives an
estimate for the wall surface free energy.
For dense fluid systems as well as for the crystalline phase up to 512 CPU cores were
used in parallel. With this amount of processes a free energy difference ∆F can be
calculated within less than 24 hours with high precision.

3. Treatment of Finite Size Effects The finite size of the simulation box influ-
ences simulation results for multiple reasons. One can distinguish between general
finite size effects (which occur in almost every simulation) and confinement-specific
finite size effects on free energies. Correlations between particles with their periodic
images due to periodic boundary conditions, a cut off capillary wave spectrum of
interfaces, a translational entropy contribution of interfaces all contribute to the first
type of finite size effects. In solid structures it is also possible to introduce stress
by an incorrect choice of the system size. A confinement between flat walls leads
additionally to a difference between the bulk packing fraction ηb compared to the
global packing fraction ηg = π

6
σ3N

V
.

It is clear that one has to study carefully the finite size effects of ensemble switch
simulations. However, not all finite size effects can be distinguished. The following
discussion should give a feeling of the order of magnitude of the different finite size
effects.
The wall tension is defined as

γ∗ ≡ βγσ2 = lim
Lz , A→∞

β∆F (Lz, A)

(2A)
, (6.8)

A = Lx×Ly being the area of a wall. The strongest variation of ∆F is expected with
respect to the wall distance Lz. To study this behavior, the linear dimension Lz of
the simulation box has to be varied while the cross section area A is kept constant.
As it is shown later, in practice a linear extrapolation of β∆F as a function of 1/Lz
towards 1/Lz = 0 allows to determine γ∗.

Application and Free Energy Results

In the following, the parameter choice and representative free energy calculation
results for both interaction models and various wall interactions are presented. The
main focus lies on the variation of the simulation box size and extrapolation of γ∗
as stated in equation 6.8.
The liquid phase of both, the hard sphere model and the effective AO model, was
investigated using the following relation. For every cross sectional area A = L × L
the z-dimension was varied as D = L, 2L, 4L and D = 8L. For the hard sphere
interaction A was chosen as A = 5 × 5, 6 × 6 or A = 8 × 8. For the effective AO
model A was kept constant as A = 8.05× 8.05. In the case of the crystalline phase
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the simulation box dimension has to be compatible with the fcc structure, so that
possible stress of the crystal is minimized. For the crystal orientation where the
(111)-plane is parallel to the walls the z-dimension was varied in the way so that
6, 12, 24, 48 or 96 lattice planes fit. The cross-sectional area for the hard sphere
interaction model was chosen as Lx × Ly = [8.8723 × 7.6835], [8.8331 × 7.6496],
[8.7807× 7.6043], [8.7290× 7.5595], [8.6779× 7.5152], [8.6292× 7.4730] and for the
effective AO model as Lx × Ly = [8.3982, 7.2730], [8.3763, 7.2540], [8.3544, 7.2350],
[8.3335, 7.2170], [8.3127, 7.1990]. In practice, the various packing fractions of the
crystalline phase are set up as follows. For fixed linear dimensionD the face-centered
cubic (fcc) initialization had always the same number of particles. The various
packing fraction values are then obtained by an appropriate definition of the unit
length scale, i.e. the particle diameter. For both models, the smallest system contains
only 384 particles, while the largest systems contain 6144 particles.
The parallel version of the “Wang-Landau algorithm” is used to calculate the free
energy function F (κ). The mixing parameter κ is discretized into 1000 values κi ∈
[0, 1] and, using the Metropolis criterion, the system can move from state i to one
of the adjacent states κi+1 or κi−1. The linear interpolation technique (see section
2.6.1) is used for the very first weight update. From then on, single bin updates are
used until the free energy function “converges” (f = 10−10). For the largest systems
up to 512 cores are used in parallel.
Figure 6.5 presents results obtained for the liquid phases of both considered in-
teraction models. Figure 6.5a shows the free energy differences at constant global
packing fraction ηg = 0.4063 in the case of the hard sphere model confined between
WCA walls for the smallest investigated system size. Even at such moderate packing
fraction and small system size the free energy difference is about β∆F ≈ 65 kBT .
This means that a free energy algorithm such as the “Wang-Landau sampling” is a
mandatory necessity. From figure 6.5a an influence of the z-dimension is certainly
visible. When plotting the free energy difference as a function of 1

Lz
, a linear fit

can be used to extrapolate to β∆F (Lz →∞). However, one has to admit that the
functional dependence β∆F (Lz) is not known so that the extrapolation by a linear
fit could lead to systematic errors. Figure 6.5b shows examples for the linear fits.
It is difficult to decide, whether a linear behavior is the correct description of the
function β∆F (1/Lz) since only four data points are involved. Nevertheless, a linear
fit certainly serves as a first order approximation of this type of finite size effects.
Part (c) and (d) of the same figure are the analogue to (a) and (b) for the effective
AO model confined between LJP1 wall potentials. In contrast to part (a), the free
energy function is now not monotonic anymore, but develops a minimum around
κ ≈ 0.9. The non-monotonic behavior is a direct result of the attractive well of
the LJP1 potential. For small values of κ the diverging repulsive part of the wall
potential dominates, while for κ . 1 the attractive part starts to become “active”.
Figure 6.5d verifies again that a linear extrapolation of β∆F (1/Lz) is sufficient to
extract a precise estimate for γ.
At this point a few comments on the exact shape of the function β∆F (κ) are nec-
essary. Free energy algorithms such as successive umbrella sampling or the “Wang-
Landau sampling” show in general the best performance when the underlying free
energy landscape has an overall moderate slope as a function of the reaction coor-
dinate of interest. In the case of the ensemble switch method it is possible to “tune”
the exact form of β∆F (κ) for all intermediate κ values, as long as the extreme case



64 CHAPTER 6. CONFINEMENT BETWEEN WALLS

0 0.2 0.4 0.6 0.8 1

κ

0

10

20

30

40

50

60

70

β
 ∆

 F
(κ

)

V=5x5x5

V=5x5x10

V=5x5x20

V=5x5x40

a)

0 0.05 0.1 0.15 0.2

1/Lz

30

40

50

60

β
∆

 F

ηg = 0.4063

ηg = 0.3686

ηg = 0.3393

ηg = 0.2890

b)

0 0.2 0.4 0.6 0.8 1

κ

0

40

80

120

160

200

β
 ∆

 F
(κ

)

V=8.05 x 8.05 x 8.05

V=8.05 x 8.05 x 16.1

V=8.05 x 8.05 x 32.2

V=8.05 x 8.05 x 64.4

c)

0 0.05 0.1

1/Lz

150

160

170

180

190

β
∆

 F
ηg = 0.4938

ηg = 0.4898

ηg = 0.4798

ηg = 0.4697

d)

Figure 6.5.: Surface free energy results for liquid phases and extrapolation Lz →∞.
(a) Free energy as a function of the mixing parameter κ for ηg = 0.4063 with hard
sphere particle interactions and WCA wall potential (εw = 1, σw = 0.5). (b) Linear
fit of the free energy differences obtained from plots as shown in part (a) serving as
extrapolation to Lz →∞ [the upper curve with diamonds corresponds to part (a)].
The area of the wall was always A = 5 × 5. (c) Free energy of the liquid phase of
the effective AO model in the case of the LJP1 wall potential (εw = 2, σw = 0.5)
at global packing fraction ηg = 0.4697. (d) Extrapolation to Lz → ∞ via a linear
fit for various packing fractions as indicated. The diamonds correspond to the data
shown in part (c). The area of the wall was always A = 8.05× 8.05.

κ = 0 (pure bulk) and κ = 1 (full switched on walls) are not changed. To compensate
the highly diverging (1/r)12 part in the wall potentials, the wall potential amplitude
ε was modified as ε → κ12ε. This leads to the smooth and modest behavior of the
free energy landscapes presented in this chapter.

The crystalline structure of the effective AO model and the hard sphere model is the
fcc structure. Within the context of flat walls it is known that these systems favor
a crystal orientation for which the (111)-plane is parallel to the walls [34, 152] (see
Fig. 6.6). In the case of crystalline phases the free energy difference β∆F (κ) shows
a much stronger dependency on the linear simulation box dimension Lz, as shown
by figure 6.6a. Again a linear behavior of β∆F (1/Lz) is observed, but the slope
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Figure 6.6.: Surface free energy results for crystal phases and extrapolation Lz →
∞. (a) Free energy as a function of the mixing parameter κ for ηg = 0.55 with hard
sphere particle interactions and WCA wall potential (εw = 1, σw = 0.5). (b) Linear
fit of the free energy differences obtained from plots as shown in part (a) serving
as extrapolation to Lz → ∞ [the free energy differences from part (a) correspond
to the 5th curve from the top with triangles pointing up]. (c) Free energy of the
crystalline phase of the effective AO model in the case of the WCA wall potential
(εw = 1, σw = 0.5) at global packing fraction ηg = 0.64. (d) Extrapolation to
Lz → ∞ via a linear fit for various packing fractions as indicated. The diamonds
correspond to the data shown in part (c). (at the bottom) Various snapshots of the
crystalline fcc structure. The most right picture is a topview on the fcc (111)-plane.
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of the straight line fit increases drastically (Fig. 6.6b). This increase in the slope
makes the extrapolation to 1

Lz
= 0 more sensitive resulting in larger fitting errors.

In addition, it is noted that a variation of Lz in very small steps leads to a damped
oscillatory behavior of β∆F (Lz) corresponding to compression and stretching of the
solid structure. By strictly doubling the system size from simulation to simulation
one can ensure that the oscillatory stress part in β∆F (Lz) has a monotonic behavior
and is therefore not directly visible in figure 6.6 part (b) and (d). The extrapolation
in the case of the hard sphere system to 1/Lz → 0 shows a slight deviation of the
linear fit regarding the largest and the smallest system. This can be interpreted as
evidence that a quadratic or even higher order behavior might underlie the finite
size scaling. However, by simply increasing the system size further and disregarding
the results for smallest system the linear behavior can be retrieved as indicated in
the case of the effective AO model in figure 6.6d.
Finally, one has also to ensure that the simulation box size in x and y-direction is
sufficiently large. For the liquid state the pair correlation function g(r) can be used
as an estimate at which distances the correlation becomes small (for a fixed packing
fraction). Extracting the wall tension from too small systems (with respect to the
x- and y-dimension) is expected to lead to systematic errors. In the next section
the liquid branch of the wall tension of a hard sphere system confined between hard
walls is compared with highly precise results from literature [149] to check for this
kind of finite size effects.

6.2. Results for Hard Spheres

The ensemble switch method, as described above, allows for precise wall tension
estimates which have typically a statistical error of less than 0.8%. The results by
Laird and Davidchack on hard spheres between hard walls are extremely precise
(with an error typically less than 0.2%) and, therefore, can serve as a reference
system to check the ensemble switch method. Figure 6.7 shows the reference data
(full curve) as well as the results from the ensemble mix method (symbols). The
cross section area A was varied to check the influence on the wall tension estimates.
The small systems (A = 5 × 5) agree within the error bars with the reference data
and simulations of larger systems with A = 8 × 8. Using A = 6 × 6 for packing
fractions η & 0.42 seems to be sufficient to calculate precisely the wall tension.
With this comparison one can conclude, on the one hand, that at sufficiently large
wall surface area A the leading finite size effect is given by the variation of Lz and,
on the other hand, that the ensemble switch method can produce reliable precise
results for wall tensions. For the confinement of hard spheres between hard walls
it is known that a complete wetting layer forms [34] and hence, this system is not
suited to study crystalline wall attached clusters. As seen in figure 6.4, the wall
potential amplitude of the WCA wall potential has a strong influence on the surface
properties of the hard sphere system and the question arises whether it is possible to
obtain partial wetting for a hard sphere system by only changing this wall potential
parameter.
To investigate the wetting behavior of the hard sphere system, the wall tensions at
bulk coexistence densities have to be determined. The coexistence densities of the
hard sphere system are ηl = 0.492 for the liquid and ηc = 0.545 for the crystalline
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Figure 6.7.: Wall tension of the hard sphere model confined between hard walls
(σw = 0.5) as a function of packing fraction. The shaded area marks the beginning
of the coexistence region of the liquid and crystalline phase for hard spheres. The
full curve corresponds to the data of Davidchack [149] (interpolation via cubic
splines), the dashed line is the DFT result (White Bear II functional), the blue
diamonds are pressure tensor calculations and the black symbols show the result of
the ensemble switch method for different cross sections A respectively.

phase [49]. The wall potential amplitude ε was varied as ε = 0.25, 0.5, 1.0, 2.0,
4.0. Various ensemble switch simulations close to the coexistence densities were
performed for every wall potential amplitude. Figure 6.8a shows the result for the
liquid phase and demonstrates that it is possible to modify the wall tension when
varying ε. The DFT results (provided by Yamani and Oettel) agree well with the
simulation results up to a bulk packing fraction of ηb ≈ 0.45. From this point on, the
simulation results are systematically lower as expected from the investigation of the
surface excess packing fraction ηs. In addition, pressure tensor results (provided by
coworker Deb) are included in the graph which agree also well with the “ensemble
switch” results.
To derive a contact angle via Young’s equation (Eq. 6.1), one does not only need
the wall tensions but additionally the liquid-crystal interfacial tension γlc, which is
in general difficult to obtain. Two methods are common to calculate the interfacial
tension. In the wave fluctuation method the interfacial stiffness γ̃lc with respect
to various possible orientations of the crystal can be calculated. The interfacial
tensions of the different crystal orientations are then extracted via a cubic harmonics
expansion (see Ref. [155]). Furthermore, there also exists the cleaving wall method
where the work which it costs to separate and connect the liquid and the crystalline
phase is directly related to the corresponding wall tension. Between different authors
and different methods the results for the interfacial tension vary. Latest results from
2010 [156] are γ111 = 0.5416, γ110 = 0.5590 and γ100 = 0.5820. The interfacial
stiffness is estimated as γ̃lc = 0.49 (Zykova-Timan et al.) or as γ̃lc = 0.44 (Laird
et al.) [49, 148]. Figure 6.8b focuses on the coexistence region (note the break in
the abscissa scale) and allows for analyzing the wetting behavior of the system by
means of Young’s equation. Although the absolute values of the wall tension are
strongly influenced by the applied WCA wall potential, the variation in γwl seems to
be identical to the variation in γ111wc within the errors of the calculation. Therefore,
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Figure 6.8.: Wall tension of the hard sphere model confined between WCA walls
(σw = 0.5) as a function of packing fraction. Part (a) focuses on the liquid phase
while part (b) shows the densities close to the coexistence region. At the liquid
branches (a) three different data sets are compared: DFT-calculations, the ensemble
mix method and the pressure tensor method. In (b) only the results from the
ensemble mix method are shown.

ε 0.25 0.5 1.0 2.0 4.0

γlw 1.649± 0.014 1.821± 0.024 1.986± 0.018 2.107± 0.002 2.216± 0.006

γ111wc 1.131± 0.007 1.321± 0.011 1.473± 0.011 1.611± 0.010 1.715± 0.011

∆γ 0.518± 0.016 0.500± 0.026 0.513± 0.021 0.496± 0.010 0.501± 0.013

Table 6.1.: Wall tension estimates for the hard sphere model confined between
WCA walls close to the coexistence densities at ηl = 0.4915 and ηc = 0.5428. In all
the cases the contact angle is Θ & 0o.

the wetting behavior is not (or only weakly) influenced by such modifications of the
wall potential. Furthermore, the difference of the wall tensions ∆γ = γwl − γ111wc is
similar to the estimates of the liquid-crystal interfacial tension: For hard spheres
confined between WCA walls complete wetting or partial wetting with very small
contact angles occurs (see also table 6.1).

6.3. Results for the Effective AO Model

The hard sphere interaction model together with WCA walls did not allow for a
convenient study of contact angles of crystalline clusters since the influence of the
wall amplitude ε on the difference ∆γ = γwl − γ111wc is rather weak and the system
stays in the region of complete wetting or partial wetting with tiny contact angles.
In contrast, the effective Asakura-Oosawa (eff. AO) model is expected to show large
enough contact angles of crystalline “nuclei” so that a detailed study on the relation
between colloid-wall interaction and the contact angle seems to be more promising.
Zykova-Timan et al. studied the bulk properties of this model in the NPT en-
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Figure 6.9.: Wall tension results obtained by the ensemble mix method close to the
liquid crystal coexistence area of the effective AO model confined between various
wall types as indicated.

semble [49]. The effective AO model undergoes a first order phase transition from
a liquid to a crystalline fcc phase. The liquid-crystal interfacial stiffness γ̃lc = 0.95
was extracted via the capillary wave analysis [49] and is the only estimate for the
interfacial tension at the moment. The liquid and crystal coexistence densities are
ηl = 0.494 and ηc = 0.64 respectively.

As in the previous section, the wall tensions of the liquid and crystalline phase
were calculated via the ensemble switch method. Additionally to the WCA wall
interaction the so-called LJP1 wall potentials (see Eq. 6.4) with an attractive well
were used to influence the wetting behavior.

In comparison to the hard sphere system, the crystal coexistence density of the
effective AO model is even higher which leads to very small translational amounts
in the canonical moves and, hence, the computational effort increases drastically.
Due to the higher densities and the increased interaction range of the pair potential,
slightly larger simulation boxes were chosen in comparison to the previous “ensemble
switch” studies.

Figure 6.9 shows the results for the obtained wall tensions. All the wall tensions
are in general lower than in the hard sphere case. Table 6.1 shows the results for
various wall potentials and crystal orientations at the coexistence densities. One
can see again that the variation of the wall potential has a strong influence on
the wall tension, however, in the case of the WCA wall potential the difference
∆γ = γlw−γ111cw does vary only weakly again. In contrast, the variation to the LJP1
wall potential could increase the difference and, hence, reduces the contact angle.
Using the interfacial stiffness from [49] as a first estimate for the interfacial tension as
γlc ≈ 0.95 one can derive via Young’s equation (6.1) a contact angle of θ ≈ 72° in the
case of WCA walls and θ ≈ 48° for the LJP1 potential with ε = 2. The reduction of
the contact angle can be understood in the following phenomenological picture: The
attractive part of the wall potential causes the dense crystalline phase to gain more
potential energy in comparison to the liquid phase. A crystalline nucleus consisting
of a fixed number of particles therefore tries to flatten more at the wall than the
surrounding liquid which leads to a reduction of the contact angle θ.
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Table 6.2: Wall tension
estimates for the effective
AO model at the coexistence
densities ηl = 0.494 and ηc =
0.64. For γ110cw complete wet-
ting of the liquid is expected.

WCA ε = 1 γlw 1.836± 0.003

γ111cw 1.540± 0.019 Θ ≈ 72o

γ100cw 1.82± 0.051 Θ ≈ 89o

γ110cw 2.94± 0.2

WCA ε = 2 γlw 1.923± 0.005

γ111cw 1.610± 0.017 Θ ≈ 71o

LJP1 ε = 2 γlw 1.360± 0.004

γ111cw 0.722± 0.012 Θ ≈ 48o

Since it is in general possible to attach crystalline nuclei also with the (110)- or (100)-
plane at the wall, a rough estimate of the wall tensions for these crystal orientations
at the crystal coexistence density were calculated. Especially for the (110)-plane,
which is very “rough”, the procedure of switching on walls leads to an immense
amount of stress, so that free energy differences of the order of 6000 kBT appear
for the smallest systems. It is questionable whether a simple linear fit procedure
still covers the finite size effects properly, in fact, the data for the (110)-orientation
suggests a more quadratic behavior. The resulting values for the wall tensions are
given in table 6.1.
The derived contact angles of θ ≈ 72o for WCA wall interactions and θ ≈ 90o

for the (100)-plane (note in table 6.1 γlw − γ100cw ≈ 0) agree almost exactly with
the contact angles obtained by geometrical methods (see Ref. [8]). Such a high
consistency between the two independent measurements of the contact angles is
rather unexpected since, on the one hand, the geometric method based on crystalline
cluster identification and sphere-cap fitting contains a certain freedom regarding
the choice of parameters (which slightly influence the contact angle estimate) and,
on the other hand, the contact angle calculation presented above is based on the
interfacial stiffness rather than the interfacial tension of the liquid-crystal interface.
Nevertheless, evidence is found that the macroscopic picture of heterogeneous crystal
nucleation at planar, flat walls still holds to a high degree although the anisotropy,
inhomogeneity and the other implications that were mentioned at the beginning of
this chapter are disregarded in this formalism.

6.4. Conclusion

The topic of heterogeneous nucleation of crystalline clusters was addressed by Monte
Carlo simulations in an (extended) NV T ensemble within the theoretical framework
of a surface free energy based macroscopic picture. By comparison with literature
results, density functional theory and pressure tensor calculations it was shown that
the “ensemble switch” method predicts reliable values for the surface free energies of
liquids and crystals confined between planar walls. Hard spheres in the crystalline
phase are predicted to show complete wetting or only tiny contact angles with respect
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to repulsive WCA walls independent of the applied degree of repulsion at the walls.
In the effective Asakura-Oosawa model crystalline clusters with a contact angle of
θ ≈ 71o are expected. The introduction of an attractive well close to the wall allows
for the reduction of the contact angle. Comparison with the direct observation of
crystalline clusters and analysis via geometric methods (by collaborator Deb [8])
yields that the simple picture of a surface free energy balance of wall attached nuclei
can still provide quantitative insight into the problem of heterogeneous crystalline
nucleation.
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CHAPTER

7

MULTI PARTICLE COLLISION
DYNAMICS (MPCD)

In mesoscale simulations where molecular details play an important role for the dy-
namics, a simple continuum description based on the Navier-Stokes equations is not
sufficient anymore. Also a fully atomistic approach is not well suited since only the
short time behavior is accessible with present-day computers due to the high number
of microscopic degrees of freedom. There exist multiple algorithms addressing the
key feature of mesoscale systems, which is the interplay between thermal fluctua-
tions and hydrodynamic interactions. All these algorithms like Dissipative Particle
Dynamics (DPD) [157–159], Lattice Boltzmann (LB) [160–162] and also MPCD in-
troduced by Malevanets and Kapral [163, 164] (also known under the name
Stochastic Rotation Dynamics (SRD)) try to average out the microscopic degrees of
freedom to get a high computational efficiency by using a coarse grained approach
for the solvent.
The MPCD algorithm is well suited for Reynolds and Perclet numbers of the order
of 0.1 to 10 and has within this range a lot of advantages in comparison to alter-
native methods. It is an easy to implement and fast approach having explicit (but
coarse grained, ideal) solvent particles for which analytic expressions, e.g. transport
coefficients, exist.
The basic idea is to combine the ordinary velocity Verlet based Molecular Dynam-
ics (MD) simulations of so-called “fluid” or “embedded” particles with a simplified
and coarse grained solvent model. The solvent is represented by point-like non-
interacting particles. The coupling of the fluid particles to the solvent is achieved
by the exchange of momentum between solvent particles and fluid particles within
collision steps1. The local conservation of momentum and mass of the MPCD algo-

1This is the simplest and computationally inexpensive way to couple both particle species. How-
ever, there exist also more sophisticated approaches where an explicit pair interaction model
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rithm is the crucial ingredient to obtain hydrodynamics in the simulation.
The MPCD algorithm is highly extensible to various thermostats [165, 166] as well
as constraints like walls and obstacles [167, 168]. The simplicity of the inclusion of
walls and obstacles is one of its strongest features. Furthermore, the possibility to
switch off the hydrodynamics by maintaining the thermodynamic fluctuations [169]
makes the MPCD algorithm a powerful tool to study the influence of hydrodynamics
on the kinetics of complex fluids.
This chapter is structured as follows. First, the integration scheme of Molecular
Dynamics simulations is introduced, then the MPCD algorithm including various
thermostat versions and boundary conditions is described in detail. After this, two
case studies are presented, Poiseuille flow of the solvent in narrow channels and the
dynamics of a single fluid tracer particle embedded in solvent.

7.1. MD Integration Scheme

The following paragraphs briefly elucidate some important aspects of MD simu-
lations following references [28, 170]. While Monte Carlo methods are based on a
stochastic trajectory in phase space, in Molecular Dynamics simulations the classical
trajectories of particles based on Newtons second law are calculated. In contrast to
Monte Carlo methods, Molecular Dynamics simulations are typically used to extract
(additionally to equilibrium quantities) transport properties of classical many-body
systems. The word “classical” already anticipates at which length and time scales
the MD simulation scheme is useful.
The basic idea behind MD simulations is to integrate Newtons equations of motion

mir̈i = F i ,

where mi is the mass of the particle i and F i is the force acting on this particle. In
this approach it is assumed that the force F i can be extracted via −∇Ui = F i from
an N -particle potential of the general form

U({ri}) =
∑
i

u1(ri) +
1

2

∑
i 6=j

u2(ri, rj) + . . . , (7.1)

where . . . stands for three-body interactions like bond angle potentials and higher
order interactions. The term u1(ri) corresponds to an external field or walls, while
u2(ri, rj) corresponds to pair interactions. The labels 1, 2 at u represent at the same
time the principal order of the numerical effort of the operation to calculate those
interactions in a computer simulation.
There exist multiple algorithms how to integrate Newtons equations of motion within
a small time interval δt (the so-called MD time step). One of the most simplest of
these algorithms is the so-called velocity Verlet algorithm [171] which defines the
propagation of a particle in phase space via

ri(t+ δt) = ri(t) + vi(t)δt+
F i(t)

2mi

δt2 (7.2)

vi(t+ δt) = vi(t) +
F i(t+ δt) + F i(t)

2mi

δt . (7.3)

between fluid and solvent particles is applied.
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Implementing these two equations (together with a force calculation and boundary
conditions) is enough to perform MD simulations in the NV E ensemble where the
total energy Etot = Epot + Ekin is a constant over all times and, hence, represents
a control variable to check a proper implementation (especially when taking paral-
lelization schemes into account, see section 2.6.1.2 for the corresponding figure).

7.2. The MPCD Algorithm

Long range correlations due to hydrodynamics are obtained by conservation of mass
and momentum. All hydrodynamic interaction (HI) methods fulfill those conserva-
tion laws. Lattice methods are fast but break the Galilean invariance and have the
disadvantage that there is no “natural” way to couple the solutes such as colloids
and polymers to the solvent. The same problem also occurs when confinement is
considered. Ripoll and Winkler [172] studied carefully the solvent properties
such as transport coefficients using the MPCD approach. Dependent on the param-
eters a gas-like or a fluid-like behavior can be modeled by the MPCD solvent which
is characterized by the Schmidt number measuring the ratio between viscous and
diffusive transport [172, 173].
In addition to the aforementioned MD steps for embedded particles, the basic struc-
ture of all MPCD algorithms consists of two steps, which are presented here in their
original formulation (SRD) in the micro canonical ensemble:

1. Collision step: update the velocities of the solvent particles in each cell by
a rotation of their relative velocities:

vi = u +R(α)δvi , (7.4)

where u is the mean velocity in the cell, δvi = vi − u and R(α) is a rotation
matrix with angle α around a randomly chosen rotation axis. In this collision
step the fluid particles are integrated, which is explained later in more detail
(see section 7.2.2).

2. Streaming step: update the particle positions and velocities of the solvent
particles by the standard velocity Verlet algorithm:

ri(t+ τ) = ri(t) + vi(t)τ +
1

2

F e(t)

ms

τ 2 (7.5)

vi(t+ τ) = vi(t) +
1

2ms

[F e(t) + F e(t+ τ)] τ . (7.6)

F e is an external force, ms the mass of a solvent particle and τ the collision
time step, which in case of an embedded MD fluid (see section 7.4) can be
related to the MD time δt as τ = I · δt with I being a positive integer.

These two basic steps describe clearly in which theoretical picture the solvent is
treated in MPCD algorithms. Within a single cell hydrodynamic interactions are not
resolved. Instead, collisions between solvent particles are treated stochastically. The
streaming step does not contain forces between solvent particles, which expresses the
continuous character of the solvent. Using a whole set of collision cells together with
the streaming steps, describes hydrodynamics for length scales beyond the collision
cell dimension a. If the linear cell dimension a is chosen that large that a solvent
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particle remains over several streaming steps within the same cell and typically
“collides” with the same neighboring solvent particles, the Galilean invariance is
broken and the algorithm fails, i.e. the solvent particles become strongly correlated.
The so-called mean free path λ = τ

√
kBT/ms/a, ms being the mass of a single

solvent particle, can be used as a measure for the validity of the algorithm when
considering transport coefficients or any other measurement where a solvent mass
is involved. For instance, the presence of a thermostat or an external force will
define the solvent mass and thus, the condition λ > 1 should be fulfilled. However,
there exists a nice workaround of this algorithmic drawback, which is the shift of
the center of the cell system by a vector whose components are drawn randomly
from the interval [−a, a]. This simple trick restores Galilean invariance by ensuring
that within the collision of a solvent particle the mean velocity is composed of the
velocities of different neighboring particles every collision step [174].

7.2.1. Solvent Thermostats

Three different thermostats were implemented and tested for the solvent, the Effi-
cient Cell Level Thermostating (ECLT) [175] and the Maxwell-Boltzmann-Statistics
thermostat (MBS) [176], which are a direct extension of the SRD algorithm, and an
Anderson-Thermostat referred to as MPC-AT [165, 177].

MPC-AT Thermostat The MPC-AT was introduced 2002 by Gompper et al. [165,
177] and follows a route different to the original SRD algorithm. No rotation of rel-
ative velocities is performed, but new relative velocities vri are generated based on
a Maxwell-Boltzmann distribution with variance σ2 = kBT/ms. The collision rule
is then

vi = u + vri −
1

M

M∑
j=1

vrj , (7.7)

M being the number of particles in the considered cell. The MPC-AT approach
can be extended to also conserve angular momentum, which plays an important
role especially for anisotropic particles. The only drawback of the MPC-AT is the
rather expensive generation of Gaussian random numbers (three per particle in every
collision step).

ECLT Thermostat 2005 Hecht et al. introduced the efficient cell level thermo-
stat ECLT. The original idea of the rotation of the relative velocities in the SRD
algorithm is sustained, but additionally a velocity rescaling is applied with a certain
acceptance probability. This cell-wise thermostating does not change the viscosity
of the fluid and preserves the parameter α which represents an important solvent
parameter for fine-tuning solvent properties. It was reported to have a fast equili-
bration time and was successfully applied for the study of sedimentation of charged
colloids [175]. Please see also the full review [178] or the original article [175] for
further details of the algorithm.
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Efficient Cell Level Thermostating (ECLT)
1. Choose a real number ψ from the interval [1, 1 + c] at random, where c is

the “strength” of the thermostat typically of the order of c ≈ 0.1.
2. Generate with probability 1

2
the scaling factor S = ψ or S = 1/ψ respec-

tively.
3. Calculate the acceptance probability p = min(1, A) with
A = S3(M−1) exp

(
− 1

2kBT

∑M
1=1mi(vi − u)2(S2 − 1)

)
, whereM is the num-

ber of particles in the current cell.
4. Perform a stochastic rotation with the rescaled rotation matrix SR if a

uniform random number ε ∈ [0, 1) is smaller than p, otherwise perform a
(usual) stochastic rotation with R.

MBS Thermostat Eventually 2010 the so-called Maxwell-Boltzmann-Statistics
thermostat (MBST) was proposed by Gompper et al. and represents from all of
the so-far introduced thermostats the fastest in terms of reaching the desired target
temperature which is an important feature when a system undergoes a quench.
The relative velocities of the particles in the MPC cell are rotated and rescaled in
every collision step. Similar to the ECLT the rotation angle α is preserved as a
tunable parameter of solvent properties. The velocity rescaling factor ξ is created
by two types of kinetic energies, the relative local kinetic energy of the cell Ek =
1
2

∑
imi(∆vi)

2 and the target local kinetic energy E ′

k which is taken from a gamma
distribution:

P (E
′

k) =
1

E
′
kΓ(f/2)

(
E

′

k

kBT

)
e−E

′
k/(kBT ) . (7.8)

Here, f = 3(M − 1) is the number of degrees of freedom of the system and Γ(x) is
the gamma function. The rescaling factor ξ is then calculated as

ξ =
√
E

′
k/Ek . (7.9)

During every SRD collision step the relative particle velocities are then additionally
rescaled as ∆vi → ξ∆vi. Note that the formulation in this order has a numerical
instability for Ek = 0, since then ξ → ∞ and the product ξ∆vi is not defined
anymore. Of course, Ek = 0 is equivalent to ∆vi = 0 ∀i and hence ∆vi does not
need to be rescaled or rotated.

NOHI Thermostat Another very important thermostat type is the NOHI thermo-
stat, where NOHI stands for “no hydrodynamic interactions”. It allows to switch off
hydrodynamics while the thermal fluctuations still remain [169]. Instead of explicit
solvent particles, the the mean momentum P taken from a Maxwell-Boltzmann dis-
tribution with variance σ2 = msMkBT and zero mean is used. This way of solvent
treatment is much faster than all the other MPC thermostats, because no solvent
particles are needed in the simulation anymore. They are completely represented
by their mass ms and their average number per cell M . Of course, this thermostat
is only useful when particles embedded in the solvent are present (see section 7.4).
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7.2.2. Fluid Solvent Coupling

The coupling of the solvent to fluid particles is one of the strongest features of
MPCD algorithms in contrast to other methods, especially lattice methods, since
the coupling happens in a very “native” way. The most simple technique is the
following: Fluid particles are integrated in the collision steps, which means that they
are associated to solvent cells and the mean velocity of the cell is the mass weighted
average of all velocities being part of the cell. All the previously presented formulas
stay exactly the same where M is now the total number of particles in the cell
(including fluid particles) and the average velocity is u =

∑M
i=1mivi/

∑M
i=1mi, mi

being the mass of either a solvent particle or a fluid particle respectively. This leads
to a momentum transfer from the fluid to the solvent. The velocity of fluid particles
is updated in the same way as the velocity of the solvent particles (either by the
SRD technique or within the context of the thermostats). This leads to a momentum
transfer from the solvent to the embedded fluid particles ∆p = (v′ − vold)mf . The
collision step is the only point where both particle species are coupled. Until the
next collision fluid particles are treated via the velocity Verlet integration procedure
and the solvent particles stream interactionless.
The frequency at which collision steps are performed defines the solvent viscosity,
as it will be shown in section 7.3. The integration time step of the velocity Verlet
integration of the fluid particles is independent from this choice. However, the
frequency of MPCD collision steps has to be an integer multiple of the MD time
step.

7.2.3. Boundary Conditions

The behavior of the solvent close to boundaries like planar walls plays an important
role with respect to the hydrodynamics and is not as trivial to implement as it might
look in the first place. In general, one has to distinguish between stick, perfect slip
and partial slip boundary conditions. Since the solvent is treated as a set of point-like
non-interacting particles, the collision with a wall is treated in a geometric manner
within the streaming step. However, the collision step also has to be modified as it
will be explained in the following paragraphs.

Perfect Slip Boundaries The perfect slip boundary is easy to realize. Solvent
particles which would pass through the wall within a streaming time step are specu-
larly reflected at the wall. In case of planar walls, chosen perpendicular to the z-axis
and located at ±Lz

2
, this means that the z-component of the velocity is modified as

vz → −vz. Denoting the particle position after the streaming as ro, which lies out-
side of the simulation box, the new particle position after the reflection is calculated
as rnz = 2wz − roz , where wz = ±Lz

2
depending whether the particle penetrated the

upper or the lower wall.

Stick Boundaries In contrast to the slip boundary specular reflection, here, the so-
called bounce back rules inspired by other mesoscale methods (Lattice-Boltzmann)
are applied. In the case of planar walls the bounce back rule leads to v → −v.
With the notation rb for the solvent particle position before the streaming step (the
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Wall

D solvent particles

M-D ghost particles

Figure 7.1: Schematic representation
of a collision cell which intersects with
a wall. A certain number of ghost par-
ticles are added to recover the mean
number of particles per cell M .

other labels are the same as in the previous paragraph) the new particle position is
calculated as

rn = 2

[
rb + (ro − rb)

wz − rbz
roz − rbz

]
− ro .

With this simple bounce back rule one could in principle already simulate no-slip
boundary conditions. However, for more complicated shaped boundaries than planar
walls as well as for the necessary shift of the cell system (see the beginning of section
7.2) it is unavoidable to have partially occupied collision cells. These cells cause the
appearance of spurious slip at the wall. In this case so-called bulk filling rules
have to be applied to guarantee no-slip boundaries. A number of ghost particles is
generated to counterbalance the difference from the mean solvent particle number
per cell M (see the scheme in Fig. 7.1). The velocities of the ghost particles are
drawn from a Maxwell-Boltzmann distribution with variance σ2 = kBT/ms. There
are various modifications to this simple bulk filling rule to improve the properties
of the solvent close to walls, which includes for example a symmetrization or the
precise calculation of the occupied volume fraction by the wall in each cell (see [173]
for a systematic study of MPC solvents at various types of boundaries).

Partial Slip Boundaries A simple method to control the amount of slip at a surface
for solvent particles was introduced as Method 2 in reference [173]. One just selects
with a certain probability Γ perfect slip or stick boundaries. This technique allows a
continuous crossover from stick boundary conditions to perfect slip boundaries and
naturally fits, as a stochastic but momentum conserving method, into the framework
of the MPCD simulation technique.

7.3. Case Study: Poiseuille Flow of Solvent

Poiseuille flow in channels can be used to determine the viscosity of the solvent in
a fast and reliable way. Furthermore, it gives insight regarding the effects of the
implemented boundary conditions (no-slip, partial slip). By applying a constant
pressure gradient or alternatively a constant external force parallel to the walls a
Poiseuille flow can be accomplished.
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Due to the local conservation of momentum and energy the SRD algorithm is directly
related to the Navier-Stokes equations, and hence, assuming a constant density, the
Navier-Stokes equations for incompressible (Newtonian) fluids serve as a starting
point for the derivation of a viscosity measurement:

ρ(∂t + 〈u|∇〉)u = −∇p+ η∇2u + ρF /ms (7.10)
〈∇|u〉 = 0 . (7.11)

Here, u is the velocity field, p is the pressure, η is the viscosity and F is an external
force. The equation is easy to solve under the condition to have only an external
force term ρF /ms = ρg = ρgex and that one is interested in a steady-state solution
of the following form:

u(t, x, y, z) = u(z)ex

Then equation 7.11 is fulfilled and equation 7.10 reduces to:

−ρg
η

= u′′(z) ,

which leads with the no-slip boundary conditions u
(
z = ±L

2

)
= 0 to the solution

u(z) = −ρg
2η

(
z2 − L2

4

)
. (7.12)

An extension including a slip length at the boundaries can be derived as

u(z) = −ρg
2η

(
z2 − L2

4

)
+
ρgsL

2η
, (7.13)

where s is the slip length (please compare with [179] for a more detailed description).
For cylindrical confinement one obtains

u(r) = −ρg
4η

(
R2 − r2

)
,

r being the radial component of the cylindrical coordinates.
The viscosity η can also be predicted for the MPCD solvent model. The kinematic
viscosity ν = η/ρ (with ρ = Ns/a

3) can be described by kinetic theory of two parts
(for more details see [180–184]), a collision part

νcoll√
kBTa2/m

=
1

λ

(1− cosα)

18

(
1− 1

ρ

)
(7.14)

and a kinetic part

νkin√
kBTa2/m

= λ

[
1

(4− 2 cosα− 2 cos 2α)

5ρ

ρ− 1
− 1

2

]
, (7.15)

where α is the rotation angle (see subsection 7.2), λ is the mean free path (λ =
τ
√
kBT/ma2), a is the size of the collision cell and ρ is the number density of

the solvent. This rotation angle dependent results are valid for both the ECLT
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Figure 7.2.: Relation of parabolic flow profiles to the viscosity and slip
length. In part (a) one can see a typical probability distribution P (u, z) with´ ´

P (u, z) du dz = 1 of a velocity profile for λ = 0.3 using the ECLT. Contours
of constant probability from 0.2% up to 1.4% are shown. The maximum in the dark
area in the center corresponds to 1.636%. Part (b) shows different velocity profiles
in a channel using the ECL thermostating. Part (c) shows the viscosity obtained
by fitting equation 7.13 to the velocity profiles and compares with theory. Part (d)
shows the slip length obtained from the same fit. Further details are given in the
text.



82 CHAPTER 7. MULTI PARTICLE COLLISION DYNAMICS (MPCD)

and MBST algorithms. In the case of an MPC-AT thermostat one expects for the
viscosity contributions [185]:

ηcoll =
ms(Ns − 1 + e−Ns)

12aτ
(7.16)

and

ηkin = ρkBTτ

(
Ns

Ns − 1 + e−Ns
− 1

2

)
. (7.17)

With equation 7.13 it is possible to extract the solvent viscosity via the fit to veloc-
ity profiles obtained by simulations of plane Poiseuille flow induced by a constant
external force. This results can then be compared directly to the above presented
theoretical predictions.
To study the Poiseuille flow, the simulation box was chosen as Lx = Lz = 25 and
Ly = 10 with walls at z = ±Lz/2 in the unit length scale of a = 1. The mass of
the solvent was set to ms = 1 and the density was ρ = 32 or ρ = 10. By keeping
the temperature fixed at kBT = 1 the mean free path becomes identical to the
collision time λ = τ . Figure 7.2a shows a typical velocity probability distribution
in the channel in x-direction. By averaging over the ordinate one can then obtain
parabolic velocity profiles shown in figure 7.2b. From these parabolic profiles the
viscosity η and the slip length s is extracted by fitting equation 7.13 to the data sets.
Part (c) of the same figure shows the results for the viscosity in case of an MPC-
AT, the ECL thermostat and the MBS thermostat. The dashed lines correspond
to the theoretical curves of equations 7.14 and 7.15 for the ECLT/MBST data and
equations 7.16 and 7.17 for the AT data. In both cases the theory perfectly agrees
without the use of fitting parameters with the simulation viscosity results. In case
of the MBST thermostat the cylindrical confinement was also used to calculate the
solvent viscosity shown by the open diamond symbols in figure 7.2c.
Figure 7.2d shows the slip length obtained from the fits in the case of ρ = 32. The
slip length is of the order of 10−2 and varies only slightly with λ. By increasing the
wall distance or increasing the number density ρ it is possible to minimize further
the appearance of a slip length.

7.4. Case Study: Influence of Hydrodynamics on a
Tracer Particle

The properties of the solvent in the bulk or in confinement are already an interesting
topic on their own (see, for instance, [167, 168] or [173]). Now, one can go a step
further and put a single heavy fluid tracer particle in the solvent and investigate the
influence of hydrodynamic interactions on the embedded particle motion.
A convenient way to measure the hydrodynamic contribution to the diffusion of a
single embedded particle is the calculation of the velocity auto-correlation function

Cv(t) =
〈v(t) · v(0)〉
〈v2(0)〉

, (7.18)
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Figure 7.3: Velocity auto-correlation
function for a single heavy tracer particle
with and without hydrodynamic interac-
tions. The straight line renders the ex-
ponential decay (Eq. 7.19). The solvent
density was set to ρ = 10. The rotation
angle was α = π/2 and the tracer particle
mass was mf = ρms. Note that the kinks
and fluctuations from τ = 40 on are due
to low statistics.

where the average 〈. . .〉 can be interpreted either as an average over independent
runs or as re-definitions of the time step t = 0 within the same trajectory. Under the
molecular-chaos assumption one expects an exponential decay of Cv(t) (see [172])

Cv(τ = I · t) ' (1− γ)τ , γ =
2

3
(1− cos(α))

msρ

msρ+mf

. (7.19)

Figure 7.3 shows the time dependence of the velocity auto-correlation function
of a single tracer particle of mass mf = ρms in the case of an MBS thermostat
(MBST) and for switched off hydrodynamics (NOHI). The hydrodynamic influence
on the velocity auto-correlation is clearly visible and drops below 10−4 only after 120
collisions. Furthermore, the graph verifies the thermal motion of the tracer particle
in the case of switched off hydrodynamic interactions as predicted by equation 7.19.
A comparison of the diffusion coefficient

D =
1

3

ˆ ∞
0

〈v(t) · v(0)〉dt→ 1

3

(
1

2
〈v2(0)〉+

∞∑
I=1

〈v(I · τ) · v(0)〉

)
τ (7.20)

for both cases leads to (DMBST−DNOHI)/DNOHI ≈ 0.43, so an enhancement of 43% of
the hydrodynamics in comparison to Brownian motion with respect to the diffusion.

7.5. MPCD Parallelization

There exist multiple ways how a typical Molecular Dynamics simulation program
could be parallelized to use more than a single CPU core at the same time. The basic
idea of all those techniques is that parts of a program which do not influence each
other can be executed at the same time. For instance, it could be that the calculation
of the force between two particles has so many contributions that every contribution
could be calculated by an own core (force decomposition). In the case of the typically
short ranged potentials within this work such a parallelization is not efficient, of
course. However, there are two techniques which do perform efficiently, namely,
the particle decomposition based on shared memory, and the domain decomposition
[186, 187] based on message passing. Note that both techniques have to be applied
for the MD part and the solvent part of the simulation in a different manner.
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Figure 7.4: Domain decom-
position scheme for velocity
Verlet steps visualizing the ha-
los with respect to the do-
main in the center. The in-
ner and outer halo layers co-
incide with the boundaries of
the MD particle cell system
(drawn in light gray). Here, a
one-dimensional slice decom-
position is shown. Instead
of periodic boundaries (indi-
cated as “pbc”) walls can also
be applied.

pbc

outer halo
inner halo

7.5.1. Parallelization via Message Passing

Molecular Dynamics Part Using the domain decomposition technique means to
separate the simulation box into smaller domains (slices, cubes, etc.) in which the
majority of particles is independent from particles in other simulation box parts
with respect to the force calculation. Each domain is associated to one process.
For short range interactions it is obvious that every particle has a radius beyond
which it cannot influence other particles anymore (cutoff radius of the pair po-
tential). This idea goes back to the year 1959 [27] and is used already in se-
rial code where the particles are always part of a cell system with cell diameters
dcell ≥ max[{rcut,a}, a labels the pair potential]2. Instead of calculating the distances
(and forces) to all particles, only the particles in the own and the neighboring cells
have to be taken into account.
This cell system sets the width of the so-called halo layers in a domain decomposition
parallelization (see Fig. 7.4). From the point of view of the center domain in figure
7.4 the particles in the outer halo have to be known, since they can potentially
contribute to the force a particle feels close to the domain borders. At this point the
message passing comes into play. Before any force can be calculated, each process
has to send its particle positions of the inner domain halos to the processes of
the neighboring domains and has to receive the information about the outer halos.
After this send-receive communication every process has all the information needed
to update the forces of all particles inside its own domain. When the new forces
of all particles are determined, the particles move according to the Verlet rules (see
section 7.1). The particles which now lie outside of the domain have to be sent
to the corresponding neighboring domains and can subsequently be removed from
memory.
In this work a one-dimensional (via slices) and a two-dimensional (via cuboids)
domain decomposition is mainly used. The one-dimensional decomposition has the
disadvantage that the message lengths (which scale with the domain cross sectional

2The cell system for the MD particles is just a technical detail to improve the performance of the
force calculation and should not be mistaken for the solvent collision cell system.
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Figure 7.5: Weak scaling plot of the
one-dimensional domain decomposition
parallelization on Juropa. The system
size per process is constant in this plot.
From the left to the right the following
numbers of cores were used: 4, 8, 16,
32, 64, 128, 256. The slice dimension
was Lx × Ly × Lz = 4 × 128 × 5 and
Lx×Ly×Lz = 4×256×5 as indicated.

area) is larger than in a two- or three-dimensional decomposition, however, it has
the advantage that only a single send-receive operation is needed since no corners
are present. As a general rule one should always prefer the higher-dimensional
decomposition, but sometimes the system under study itself can also favor lower-
dimensional decomposition as in the case of the parallel walls confinement or the
cylindrical confinement.

Solvent Part The aforementioned domain decomposition scheme only treats MD
particles (colloids and polymers). The solvent particles are handled in a slightly
different way. At this point Godehard Sutmann has to be greatly acknowledged
for his ideas, help and long discussions regarding the parallelization of the MPC
part. Please see the corresponding reference [188].
First of all, the random shift vector a0 of the MPC cell system is generated by
the root process and sent to all other processes. Then, particles are sorted into
this shifted cell system. The shift leads to the situation that particles do not have
an associated cell in the current domain and have to be sent to the neighboring
domains. This is done in an ordered manner. First, a send-receive along the x-axis
is performed, then along the y-axis and so on. This guarantees that all particles
are placed in the proper cells. The MPC cell algorithm of choice is used to update
all of the solvent velocities. The new calculated velocities are sent back in the
inverse order, so first the z, then the y and finally the x-axis. This sequenced send-
receive technique treats the corners properly. The subsequent MPC streaming step
is handled as the streaming in the case of the MD particles.
Figure 7.5 shows how far one can go in terms of CPU cores with reasonable losses in
performance in case of the one-dimensional domain decomposition. The quadratic
geometry of the systems is reached for 32 and 64 processes for Ly = 128 and Lz = 256
respectively.

Probing the Correct Implementation

Velocity Verlet Integration Molecular Dynamics simulations in the NV E ensem-
ble were tested in two ways. The sum of kinetic and potential energy is conserved in
the NV E ensemble and should not systematically vary, if the integration time step
was chosen to be small enough. As a test a colloid-polymer mixture (continuous AO
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Figure 7.6.: Conservation of total energy Etot in an NV E simulation which was
split up into domains to run in parallel. A random configuration of colloids and
polymers in a elongated cuboid box with walls was chosen for initialization. The
time step was chosen as δt = 0.002. Part (a) shows the contribution of kinetic and
potential energy. Part (b) shows the contribution from the different domains to the
total energy.

model, see section 2.1) was considered. Figure 7.6 shows such a check of the parallel
implementation of the velocity Verlet algorithm. From figure part (a) it is nicely
visible how the (fluctuating) potential and kinetic energy sum up to the constant
total energy Etot. In part (b) of the same figure the total kinetic energy is shown
for each subdomain separately. Although fluctuating within a subsystem, the total
energy as a sum over all domains is again a constant. This leads to the conclusion
that, on the one hand, the integration time step was chosen small enough (for the
considered pair interactions) and, on the other hand, the domain decomposition via
message passing was implemented correctly.

Solvent Coupling A similar test can be performed to check whether the collisional
coupling between MD and solvent particles was properly implemented. Again the
total energy Etot = Ekin,fluid + Ekin,sol + Epot is a conserved quantity in the case
of the SRD algorithm in a bulk system3. Figure 7.7 is the analog to figure 7.6b
and verifies the conservation of the total energy within the domain decomposition
parallelization.

7.5.2. Parallelization via Shared Memory

Molecular Dynamics Part The second technique which was implemented is the
particle decomposition via shared memory. The forces acting on each particle can
be calculated independently from the force calculations for other particles. Such
calculations are done typically in large for -loops. Different loop parts are treated
by different processes (threads). Program parts where multiple threads need write
access at the same time at the same memory area are treated in parallel via the

3Note that bulk filling rules for under-occupied MPC cells would already destroy the conservation
of energy.
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Figure 7.7: Energy conservation and
equipartition of energy across different
domains. The solvent acts as a strong
thermostat, so that only up to time t =
200 small fluctuations are visible within
the subdomains.

openMP reduction operations (for instance the kinetic or potential energy). The
association to MD cells cannot be parallelized in such a simple way (linked list
access) and is executed serially. This is not a drawback since the particle insertion
is a rather fast operation in comparison to the velocity Verlet step. Furthermore,
tasks are distributed to threads in a scheduled manner using an exponential decay
of the partial task size. Such a scheduling scheme minimizes the idle-time tasks have
to wait for each other.

Solvent Part In case of the solvent collision step there exists no default openMP
reduction operation which could handle the simultaneous array write access when
sorting in the particles into MPC cells. A simple data structure is needed to solve
this issue. In the serial code each MPC cell owns an array to sort in the solvent and
MD particles before performing the stochastic collision. To do this in parallel, every
MPC cell gets now as many arrays as threads are present, so that every process has
its own private array. This technique is visualized by figure 7.8. This simple trick
is really crucial for the shared memory parallelization, since the number of solvent
particles which have to be shifted and sorted in is typically of the order of millions
and thus, a serial execution of this code block would drastically slow down the whole
program.
For comparison the shared memory parallelization performance is shown together
with the message passing parallelization results in a strong scaling plot (see Fig. 7.9).
Even though there is almost no serial part left in the particle decomposition paral-
lelization, the performance cannot compete with the domain decomposition via mes-
sage passing. The main reason is that the particle memory is not spatially ordered
and, therefore, is accessed in a random manner. The odd performance drop-down
for six cores can be understood when one looks how the Intel Nehalem 8-core nodes
access their memory. The Nehalem unit is split up in two quad-cores each of which
have access to “their own” half of the global memory. In the case of 6 cores, two cores
can access some memory only via communication with the neighboring quad-core
unit. The six core data point represents the most unbalanced memory access. In the
case of the domain decomposition small deviations from the almost linear behavior
are expected since the cell system diameters depend on the used domain slice width.
In practice, both versions of parallelization were used for different tasks. Most often,
the domain decomposition scheme was used since it shows the better performance
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Figure 7.9: Strong scaling compar-
ison between the domain decomposi-
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and is not restricted to the size of a node. However, since particles of the same type
are only distinguishable by their position in memory, the division of the system in
subdomains, which particles often enter and leave, leads to the loss of their discern-
ability. For measurements of quantities such as auto-correlation functions for which
the particles have to be distinguishable the shared memory parallelization scheme
was applied.

Hybrid simulations where a particle decomposition via a shared memory paralleliza-
tion is done additionally within a domain of a domain decomposition parallelization
scheme make sense up to the number of cores which have direct access to the same
range of global memory. For instance, an AMD 12-core Magny Cours unit is split
up into two six-core units which have direct access to their part of the memory. In
this case one would expect a linear scaling up to six cores.
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7.6. Conclusion

In this chapter the MPCD algorithm was introduced. Multiple thermostats were
implemented and compared in their properties and their performance. It was shown
that the solvent viscosity (Schmidt number) can be controlled by the parameters
of the algorithm and agree very well with the theoretical predictions. The same
measurement confirms that perfect stick boundary conditions for hard walls can be
achieved by bounce back and bulk filling rules. Furthermore, the coupling between
the solvent and embedded particles was introduced and the influence of hydrody-
namics on an embedded heavy tracer particle could be measured. It was possible to
implement two different parallelization schemes, from which the domain decompo-
sition scheme can be applied to multiple nodes and therefore, is expected to work
on hundreds or thousands of CPU cores.



90 CHAPTER 7. MULTI PARTICLE COLLISION DYNAMICS (MPCD)



CHAPTER

8

SPINODAL DECOMPOSITION IN
THIN FILMS

After a quench of a multi-component system from a homogeneous state into a phase
diagram region of phase coexistence the system becomes unstable with respect to
the initially homogeneous state and phase separation takes place via the “spinodal
decomposition” mechanism. Due to density fluctuations the system breaks up into
mesoscopic domains (& particle diameter) aspiring to further growth. Besides the
technological importance like the production of alloys, porous membranes or polymer
foams, the pattern formation mechanism represents a generic process in condensed
matter. Particularly the case of thin films becomes important in the context of
nanotechnology and at the same time remains a challenging problem with respect
to our theoretical understanding. This is due to a competition of interface and
bulk behavior leading to complex phenomena like wetting, prewetting and layering
transitions. Spinodal decomposition in quasi two-dimensional systems is especially
interesting from the experimental point of view where binary mixtures are often
confined between substrates (typically favored by only one of the two components
of the binary mixture). Colloid-polymer mixtures are perfectly suited to study the
spinodal decomposition mechanism via experiments, since the µm-sized colloids can
be observed directly by confocal microscopy. The static properties of colloid-polymer
mixtures could be successfully investigated via coarse grained models such as the AO
model or its extension (see next section and reference [42]), but the dynamics are
controlled by the solvent particles below the nanometer size. The MPCD technique
is able to model such systems in which length scales from nanometers (solvent) up to
100 µm or more (macroscopic pattern formation) need to be considered simultane-
ously. Figure 8.1 shows a typical snapshot from a spinodal decomposition simulation
using the MPCD technique. Three different length scales are visible: point-like sol-
vent particles (small blue spheres), fluid particles (yellow and black spheres) and the
macroscopic domains consisting of fluid particles.

91
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Figure 8.1: Typical snap-
shot of a colloid-polymer
mixture during the demixing
process. The small particles
(blue) represent the point-
like solvent particles. The
black particles are the poly-
mers and the yellow parti-
cles are the colloids. A small
part of the upper layer of sol-
vent particles is not shown
to improve the visibility of
the colloid-polymer domain
structure.

In this chapter the dynamics of spinodal decomposition in binary fluids is investi-
gated by using the MPCD algorithm which allows for switching off hydrodynamic
interactions. In contrast to a lot of theoretical and numerical studies which were
done in the past and used to predict universality (see next section for an overview),
here an intrinsically asymmetric binary colloid-polymer mixture confined between
planar walls (which are favored by the colloids) is studied. Such a model, for which
no symmetry with respect to interactions is left over anymore, and for which the
dimensionality is neither pure three-dimensional nor pure two-dimensional, is much
closer to the “real” experiments, and the question arises whether a universal phase
separation behavior can still be expected.

8.1. Aspects of Phase Separation Kinetics

This section shall serve as a brief summary of what is known about spinodal de-
composition from the theoretical point of view, from the point of view of numerical
investigations and also from the perspective of experiments. In binary fluid mix-
tures, one observes a self-similarity during the coarsening process, which means that
typical snapshots of the demixing pattern at different times can be mapped onto
each other by zooming in or out. This type of universality is typically described by
the growth of a characteristic length scale ld(t) over time t after the quench from the
one-phase region into the two-phase region. As will be discussed just below, within
certain time regimes a simple power law description ld(t) ∼ tn of the average domain
size is found, where n is the so-called “growth exponent”. However, to which degree
of universality such simple formulas are valid is a current debate, especially when
thinking about typical experimental setups. Even when confining a monolayer of
fluid particles, the system behaves still three-dimensional on the length scale of the
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solvent particles. Of course, also effects from gravitation, polydispersity, impurities
or non-idealities regarding the flatness of the confining walls are often present in
experiments.

Spinodal Decomposition in three dimensions Following the review from Bray
[189], one expects in the case of a binary liquid mixture in the bulk for the average
domain size three different growth law regimes, which can be made plausible by di-
mensional arguments. In general, one distinguishes between two classes of dynamical
models. The time evolution of a non-conserved order parameter φ is

∂tφ ∼
δF [φ]

δφ
, (8.1)

where F [φ] is the free energy functional of this order parameter. Such dynamics
equations with additional noise terms are called “model A” within the framework
of critical dynamics and represent a simple gradient descent. It can be used to
describe, for instance, a transition from the gas to the liquid phase. For the case of
phase separation after a quench, the order parameter is conserved and the dynamic
equation (“model B”) can be written as a continuity equation

∂tφ ∼ −∇ · j (8.2)

with a current j = λ∇ δF
δφ
. The functional derivative δF

δφ
can be interpreted as the

chemical potential µ ≡ δF
δφ

so that equation 8.2 results into a diffusion equation

∂tφ ∼ λ∆µ . (8.3)

Equation 8.3 is extended by an “advective” term taking into account the transport
of the order parameter by hydrodynamic flow:

∂tφ+ v∇φ ∼ λ∆µ ,

where v is the local velocity of the fluid. This velocity field follows from the Navier-
Stokes equations in the case of an incompressible fluid as

ρ (∂tv + (v · ∇)v)) = η∇2v −∇p− φ∇µ . (8.4)

Here, η is the fluid shear viscosity, p is the pressure and ρ is the density. The last
term is the driving force and is equivalent to the free energy difference the fluid
follows when the chemical potential µ is varied.
In the overdamped limit (viscous hydrodynamics) the left hand side of equation 8.4
can be neglected and with p and µ ∼ γ

L
(where γ is the interfacial tension) and

v ∼ L
t
it yields

η

Lt
∼ γ

L2
⇒ L ∼ γ

η
t . (8.5)

The latter equation represents the viscous growth law and serves from now on to
define the validity regimes of the two further growth laws.
Equation 8.3 is valid when the advective term is negligible resulting in the diffusive
growth law

1

t
∼ λ

γ

L3
⇒ L ∼ (λγt)1/3 . (8.6)
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This is only valid when λ∆µ � v · ∇φ which leads with the same dimensional
estimates and the result of equation 8.5 to L� (λη)1/2. For the last possible growth
law one considers the case when the inertial term in the Navier-Stokes equation
dominates over the viscous part, so that

ρ
L

t2
∼ γ

L2
⇒ L ∼

(
γ

ρ
t2
)1/3

(8.7)

follows as the inertial growth law. This is valid, if ρ (∂tv + (v · ∇)v))� η∇2v which
leads using again the result of equation 8.5 to ρ L

t2
� γ

L2 ⇒ L� η2

ργ
. With L ≡ ld(t)

one can summarize the scaling laws of the average domain size in binary liquids
including hydrodynamic interactions as

ld(t) ∝


(Dγt)1/3 , L� (Dη)1/2

γ
η
t , (Dη)1/2 � L� η2

ργ

(γ/ρ)1/3t2/3 , L� η2

ργ

. (8.8)

For a more detailed review of these growth laws and further aspects of spinodal
decomposition in three dimensions see the work from Siggia [190], Furukawa
[191, 192] and the more recent review from Kendon et al. [193, 194]. The latter
present Lattice Boltzmann simulation results of high quality which confirm very
convincingly the viscous (∼ t) and the inertial regime at late times (∼ t2/3). They
point out a wide crossover regime over multiple decades of time from the power law
exponent n = 1 to n = 2/3. The investigated time regime and system size is only
possible to access via mesoscale methods such as Lattice Boltzmann. Reaching this
late time regime using conventional MD simulation techniques is a very challenging
task at current state-of-the-art computers [195]. The derivation of growth laws based
on dimensional analysis is pointed out by Grant and Elder to be not rigorous
[196]. They criticize that the simple dimensional arguments lead wrongly to the
late time power law with exponent 2/3. They claim that the growth exponent is
bounded to n ≤ 1/2 because the increase in the Reynolds number at late times causes
turbulence and hence, will not allow for exponents larger than 1/2. Despite these
critics, the growth laws of equation 8.8 were often verified in computer simulations,
and also in experiments a rather high exponent of n ≈ 0.8 was observed [197].

Spinodal Decomposition in two dimensions The process of spinodal decompo-
sition of binary mixtures in two dimensions is much less understood than in three di-
mensions. Although a lot of theoretical and numerical investigations were performed,
a whole zoo of power law exponents was obtained raising the question whether one
can talk at all about universality in spinodal decomposition kinetics. A few exam-
ples are presented and commented in the following. The already mentioned study
by Furukawa [191] is also valid in two dimensions and hence, predicts a growth
law with exponent n = 2/3 for late times. Furukawa’s numerical investigations
indeed confirm this prediction but also point out that for a high viscosity, where
a so-called double phase separation morphology is seen, the universality vanishes
[198]. While for the early states where the system still behaves diffusive the n = 1/3
power law is also expected for two-dimensional systems, as soon as hydrodynamic
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mechanisms play a role, the droplet diffusion-coagulation mechanism with n = 1/d,
d = 2 should dominate which agrees with the prediction by Grant et al. of n = 1/2
(for concentrated mixtures) and a crossover at late times to n = 1/3 (for dilute mix-
tures, Lifshitz-Slyozov mechanism) [199]. The morphology of the demixing pattern
is reported to have a strong influence on the growth mechanism. While a perco-
lating pattern which is typically achieved for symmetric 50%-50% binary mixtures
(often called “critical”) shows an n = 2/3 power law, off-critical concentration ratios
can lead to n = 1/2 or n = 1/3 [200, 201]. Wagner et al. report that for binary
mixtures, in which both species have different dynamics and at the same time show
a droplet morphology at 50%-50% mixture, a viscous regime with n = 1 is recovered
which later crosses over into a n = 2/3 regime, very similar to three dimensions.
Finally, Tanaka et al. as well as Wagner et al. argue that there cannot exist a
universality in the true sense of the word, since the observed growth laws depend
too strongly on the underlying viscosity [202, 203]. Reith et al. [204] did quenches
close to the critical point and point out that even in the supercritical region the
growth of critical fluctuations shows power law behavior but only well inside the
two phase region it is possible to observe an n = 1/2 power law. As a last example
the work of Chen et al. shall be mentioned [205]. In their numerical investigations
of two-dimensional polymer blends they are able to switch off hydrodynamics. For
50%-50% mixtures they find n ≈ 1/2 with hydrodynamics and n ≈ 1/3 (which is
much closer to 1/4 when one looks at the data) without hydrodynamics. As soon as
droplet patterns are reached they find always n ≈ 1/3 (1/4). They also comment on
the so-called “pinning” effect which was observed in experiments [206] as a sudden
tremendous slowdown in dynamics which was later explained by Crist as a “shock”
due to a morphological crossover from a percolation to a droplet pattern [207].

Spinodal Decomposition in quasi two dimensions With all the controversial
aspects mentioned above in mind a few results from numerical investigations of the
quasi two-dimensional setup, where x- and y-dimensions are huge in comparison to
the z-dimension of the system, are discussed in the following. One expects a two-
dimensional behavior in the spinodal decomposition process as soon as the average
domain size exceeds the smallest lateral dimension of the system. Ramachan-
dran et al. studied via DPD simulations a pure two-dimensional fluid layer (in the
x, y-plane) which is surrounded by solvent with respect to the z-dimension [23]. In-
dependent of the concentration ratio they find a power law with n = 1/3 when a
solvent is present in the third dimension and n = 1/2 when they restrict the sys-
tem to purely two dimensions. They predict that the presence of additional walls
perpendicular to the z-axis leads to a power law with n = 1/4. Das et al. studied
a binary Lennard-Jones fluid confined between two walls, where the “A-particles”
favor the walls [208]. For droplet structures they find a growth law exponent of
n = 2/3 at late times and conclude that this behavior may be only a transient or
that the wetting influences the growth dynamics. Finally, Hore and Laradji pro-
vide a very detailed study by means of DPD simulations on quasi two-dimensional
systems where wetting layers are present [209]. Similar to Das et al. they find for
the droplet morphology fast growth exceeding even n = 1 at an intermediate time
regime, which crosses over into the n = 1/3 power law at late times. They explain
this as a result of the wetting layer backflow. Furthermore, for the case of “neutral”
walls and percolation pattern, they studied the influence of stick and slip boundary
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conditions and find that in the case of stick boundary conditions correlations are
screened which leads to a smaller growth law exponent n = 1/3 in contrast to slip
boundaries n = 1/2.
All these various findings and possible growth mechanisms make clear how complex
the situation of phase separation kinetics is in general and for quasi two-dimensional
confinement in particular. It becomes apparent that universality in the strong classi-
cal sense, meaning parameter insensitive power laws, may not exist for binary fluids
in quasi two-dimensional confinement. However, it might be possible to categorize
the various observed power laws and, therefore, predict for well-defined setups which
growth mechanism and regularities are expected.

8.2. Phase Diagram

Before one can start studying the spinodal decomposition of the continuous AO
model confined between planar walls, one has to know the phase diagram. The
bulk phase diagram can only serve as a rough orientation, but important effects
like the asymmetric preference of particle species to the walls (which are located at
±Lz/2) are not covered. Therefore, a phase diagram has to be recorded separately
for every wall distance D one is interested in. The WCA potential is used for the
particle-wall interaction with σwc = 0.5 and σwp = 0.4. The wetting behavior of
the continuous AO model was studied in high detail at fixed ηrp ≈ 1.57 [9]. For the
wall-particle interaction ranges chosen above, complete wetting was found and is
also expected to be present for higher values of ηrp. Figure 8.2 shows the binodal in
the case of wall distances D = 5 and D = 10. Please note that all packing fractions
result from the number densities by using the effective diameter deff = 1.01557σ,
σ being the parameter in the corresponding potential, as η = ρπ

6
d3eff. Some of the

grand canonical Monte Carlo simulations simulations were performed by collaborator
Antonia Statt who is acknowledged at this point.
Figure 8.2d shows estimates for the free energy landscapes for wall distance D = 1.5.
Such a small wall separation leads to an almost pure two-dimensional system, since
colloids and polymers do not fit on top of each other anymore. The depletion force
seems to be smaller than in three-dimensional systems. To be able to see a clear
phase separation extremely high polymer reservoir packing fraction of ηrp & 3.5 are
needed. Although at ηrp = 4 the coexistence density minima are well separated the
resulting interfacial tension is only around γ ≈ 0.1. When increasing the polymer
reservoir packing fraction to ηrp = 5 the interfacial tension is increased by a factor
of five to γ ≈ 0.5. The colloid and polymer densities, on the other hand, are only
6% and 15% respectively higher. These values are in general important since they
define the validity regimes of the power laws (see Eq. 8.8). Assuming a constant
shear viscosity η and mass density ρ, an increase of the interfacial tension lowers the
length scale from which on the inertial growth regime dominates.

8.3. Simulation Details

Quenching Procedure The word “quench” refers to an instantaneous or very
quick change of system parameters so that the system is positioned in a region
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Figure 8.2.: (a) Phase diagram of the continuous AO model confined between
planar walls a distance D apart. The wall potential is the WCA potential with
σw = 0.5. Two different choices of D = 5 and D = 10 as well as the bulk data
from [42] are shown. (b) Phase diagram of the continuous AO model in the plane of
polymer packing fraction ηp and colloid packing fraction ηc for distance D = 5. (c)
Same as (b) but for D = 10. (d) Free energy landscapes for Lx = 20, Ly = 60 and
D = 1.5 for various ηrp as indicated.
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of the phase diagram its current configuration does not belong to. Such a jump
from one region in the phase diagram to another region of the phase diagram can
be achieved via a change in temperature, pressure or volume depending on which
ensemble is considered. In the actual case of the continuous AO model a simple
change of the temperature variable is undesirable, since this model represents an
entropic system where the polymer reservoir packing fraction plays the role of an
inverse temperature. Changing the polymer particle number in the simulation leads
to the desired quench, but there is no well-defined rule how additional polymers
should be inserted. Therefore, a volume quench is used, which means a change in
both the polymer packing fraction and the colloid packing fraction. This is achieved
by an initial simulation in a much larger simulation box with same wall distance D.
The coordinates of a typical snapshot of this simulation are then rescaled with
respect to their x- and y-coordinates to fit into the smaller target simulation box
corresponding to the target packing fractions. In the case of MPCD simulations,
the solvent particle coordinates are kept constant so that the solvent density is not
changed during this quench procedure1. Resulting overlaps between particles (which
lead to numerical instabilities of the integration scheme due to tremendous forces)
are the drawback of the volume quench and need a subtle treatment, for instance,
by force limitations during the velocity Verlet steps. In practice only a few of this
restricted integration steps (if ever) are needed, since the solvent particles act as a
very strong thermostat.

Parameter Choice The parameter space of the actual system under study is im-
mense even when disregarding technical parameters like the integration time step
and parallelization related parameters. The parameters for the static properties of
the model are fixed throughout the MPCD simulations which are exactly the pa-
rameters which define the phase diagram (see section 2.2 and 8.2). The unit length
scale is the colloid diameter σcc in the colloid-colloid WCA-interaction potential.
The choice of the parameters which influence the dynamics directly2 needs a few
comments and remarks. The mass of a polymer was set equal to the mass of a colloid
(mp = mc = 1), which means with respect to the SRD algorithm that the solvent
cannot directly distinguish between the species of MD particles. However, the soft
interaction potential of the polymers allows for multiple polymers per solvent cell,
while the “hard” interactions between colloids suppress the occurrence of multiple
colloids in an MPC cell. Of course, it is desirable to study the influences of the
mass difference in binary mixtures on the dynamics (especially when taking HI
into account), but this remains a future project. Another parameter, which has
to be chosen carefully, is the MPC cell dimension. This dimension sets the lower
boundary for the resolution of hydrodynamic effects, since within such a cell there
are only stochastic collisions. This means, on the one hand, the smaller this cell
size the better hydrodynamic influences can be studied at small length scales. On
the other hand, the simple velocity coupling (see section 7.4), in which solvent
particles can stream through MD particles, anyway makes a correct hydrodynamic
description below the order of MD particle sizes impossible. As a compromise, here,

1Solvent particles that lie outside the simulation box are removed. Then the desired solvent den-
sity is matched by either adding a few solvent particles at random or deleting them respectively.

2Note that also parameters such as the wall distance or the relative percentage of the particle
species influence the dynamics strongly.
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Lx = Ly D σcc, εcc σcp, εcp σpp, εpp σwc, εwc σwp, εwp

256; 512 1.5; 5; 10 1, 1 0.9, 1 0.8, 0.0625 0.5, 1 0.4, 1

mc, mp ms Ns a, α δt τ T, therm.

1, 1 0.025 10 0.5, π/2 0.002 0.008 1, MBST; NOHI

Table 8.1.: General parameter setup for the study of spinodal decomposition in
thin films. Multiple entries per field are separated by commas while values which
were varied are separated by semicolons. The MBST thermostat allows for different
boundary conditions of solvent particles (see the details in the main text).

a lateral cell dimension of a = 0.5 was selected. The next point is to decide for
a certain solvent number density. The solvent number density defines the quality
of the approximation of the MPC solvent to a realistic solvent (remember that one
solvent particle in the simulation represents a group of solvent particles in reality).
Especially the compressibility (∼ 1/ρs) rises when choosing low solvent densities.
Successful simulations were reported for solvent densities from ρs = 10 up to ρs = 32
per cell volume. With the choice of a = 0.5, ρs = 10 leads to an overall density
of ρtots = 80 and therefore, represents a relatively high value so that compressibility
effects should be negligible. Additionally to the solvents density, the mass of solvent
particles has to be chosen. A rule of thumb says that the mass of one MD particle
should be similar to the sum of solvent particle masses it interacts with. A solvent
mass ofms = 0.025 means a total solvent mass ofmtot

c = 0.25 per cell ormtot
V = 2 per

unit volume and hence, represents a reasonable choice to fulfill this rule of thumb.
With all these parameters fixed, the collision time step τ determines the solvent
viscosity via the mean free path λ = τ

√
kBT/(msa2). With the choice of τ =

4 × 0.002 = 0.008 this results in λ ≈ 0.1 so that the viscosity yields (see Fig. 8.3)
η = ρs,cη

∗ ≈ 5.4. As one can see from figure 8.3 this choice of mean free path
and corresponding viscosity belongs to the collision dominated part and therefore,
belongs to the regime of high Schmidt numbers. Table 8.1 gives a summary of
the parameters to be considered in the simulation. Additionally, one should keep
in mind the polymer and colloid particle numbers which define the position in the
phase diagrams and control the morphology and therefore, the dynamics of phase
separation.
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Technical Details The huge system size makes it almost impossible to run a
simulation on a single core; the memory needed exceeds 6 GB or more, which means
on current computer architectures that an inter-CPU communication is needed when
memory is accessed (see the scaling breakdown in figure 7.9). Despite such a slowing
down due to architectural limits, the typical performance a single core achieves is of
the order of 2 ·10−5t per second (AMD interlagos architecture, V = 256×256×10),
where t is the MD unit time. Simulating a range of t ∼ 105 would lead to a real-
time of approximately 150 years. Even though this is the most extreme example
in terms of system size and time range considered in this thesis, it clearly points
out the necessity of a highly parallelized implementation of the algorithms. Certain
system dynamics of interest are expected to follow power laws O(t) ∼ tn with n . 1,
where O stands for a typical observable of interest like the average structure size ld.
This expectation leads to the following choice for data output. For the early times
the simulation runs on “only” 256 cores and writes to the hard disk positions and
velocities of the colloids and polymers every t = 12 MD unit times. Then the number
of cores per lateral dimension is doubled as well as the time when coordinates are
written out leading to 1024 cores and t = 48. The latest stages in the simulations are
accessed via 4096 cores and t = 192. This leads to a balanced communication, input-
output to calculation time ratio and therefore, to an (almost) linear strong scaling
behavior. In practice, checkpointing (to continue a simulation) comes additionally
into play for which also the solvent particle positions and velocities have to be written
out from time to time leading to full-information snapshots of a typical size of 2
to 9 GB. Figure 8.4 shows the performance development of typical simulation runs
(V = 256×256×10) on the super computer hermit (Cray XE6). The performance
is always set by the slowest process, which is typically the process corresponding to
the domain with the largest particle number. In the case of spinodal decomposition
the polymer regions with almost four times more particles than present in colloid
regions cause the general dropdown of the performance over MD time t due to their
growth. This problem of load imbalance could be solved by the virtualization of
MPI-ranks which then can be dynamically distributed to individual processors [210].
However, this needs a moderate redesign of the code and is known for compatibility
issues depending on the super computer platform, so that its implementation is
deferred to the future. From the graph it is clear that the MD part of the algorithm
(which is the costly part when using the NOHI thermostating) is responsible for the
breakdown in performance. The large dropdown in performance going from 1024 to
4096 cores can be explained by the MD cell system change from lc,MD = 1.14 (1.5%
larger than the cutoff radius) to lc,MD = 1.33 (18.5% larger than the cutoff radius).
This means that approximately 1.4 times more particles are selected as potential
contributors to the force calculation of a single particle which fits well to the change
in performance3.

Extracting Structural Information The most common structural information is
obtained by measuring position correlations in real or momentum space. While in
soft matter physics colloidal particles are directly observable via confocal microscopy
and therefore, an access to real space analysis is possible, in condensed matter
physics, on the molecular level, scattering methods such as x-ray scattering, which

3The value 1.4 comes from the area comparison l2c,4096/l
2
c,1024 since the z-dimension of the MD

cell system stays unchanged.
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correspond to momentum space, are the preferred choice. In computer simulations
both methods are applicable and both have their advantages and disadvantages.
The calculation of pair correlation functions is a rather slow process of quadratic
numerical effort. The smooth behavior of the resulting g(r)-curves allows for a
precise detection of the average domain size by reading off the second intersection
of g(r) with the horizontal line at c = 1. Only for very early times the oscillations
of the order of the particle-particle distance complicate the situation, since multiple
intersections can occur (see Fig. 8.5a, t = 60). For such short times the general trend
of the pair correlation function has to be fitted and the intersection between the fit
and c = 1 can be regarded as a typical length scale. In general, the structure factor
shows a more noisy signal (even though it was averaged over the same number of
runs) but can clearly distinguish between typical inner particle distances q ≈ 6.2 and
the larger patterns within the demixing process (q < 1) (see Fig. 8.5b). Note that
both, the pair correlation function and the structure factor, can hardly distinguish
between different morphologies e.g. droplet patterns or bicontinuous percolation-like
patterns.
In the following, the average domain size during spinodal decomposition is measured
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Figure 8.5.: Colloid position correlations in direct (a) and momentum space (b)
for the case for the demixing process of a colloid-polymer mixture in quasi two-
dimensional confinement (see section 8.4).
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using the pair correlation function instead of the structure factor, since it is the
average domain size for later times that can be determined with high precision and
which is expected to show a universal behavior. In quasi two-dimensional geometries
there exist multiple ways how to define a meaningful version of this quantity. Here,
the distances are measured in thin slices parallel to the walls. Only the slices close to
the center are taken into account to exclude the wetting effects close to the walls. For
instance, for the wall distance D = 10 seven slices with a width of 0.5 in the range
z ∈ [−1.75,+1.75] were used. In each slice a quasi two-dimensional pair correlation
function is calculated taking only x- and y-components of the particle positions into
account. The seven resulting pair correlation functions are then averaged and the
intersection with c = 1 is read off. This is done for every time step within every
independent run. The value of the intersection point rc1 can be related to the average
domain size ld using the structure factor peaks. When comparing the peak positions
(using 2π/q = r) with the intersection points, the relation ld = 2.5rc1 seems to be a
reasonable choice.

8.4. Film Thickness D=5

The first system under consideration has a wall distance D = 5. Apart from the
investigation of spinodal decomposition, the system also introduces the nomencla-
ture and the typical choice of parameters which can be varied to influence the phase
separation dynamics. The simulation box size is chosen as V = 256 × 256 × 5. In
the following it is assumed that finite size effects set in at an average structure size
of the minority phase of lmax

d ≈ L/4 so that the time regime, where this structure
size is exceeded, does not need to be accessed. The quench is performed into a
phase diagram region of critical composition of both phases, which means a packing
fraction ratio of approximately 1

2
(ηgc + ηlc) for the colloids and 1

2
(ηgp + ηlp) for the

polymers, where ηg/l are the gas and liquid coexistence packing fractions respec-
tively (see Fig. 8.2b). The main focus lies on the influence of hydrodynamic effects
on the domain growth behavior. In the case of included hydrodynamics (via the
MBS thermostat) two different choices of boundary conditions were studied, stick
boundaries and slip boundaries (see section 7.2.3). By simply looking at snapshot se-
ries (Fig. 8.6) a qualitative picture evolves how domain growth proceeds for different
solvent properties. In the very beginning a bicontinuous structure of interconnecting
domains is visible. At later times the number of droplets of the colloid-rich phase
(white areas) dominates in comparison to the number of droplets of the polymer-rich
phase (black areas). The fastest domain growth is seen for the case of hydrodynam-
ics in combination with perfect slip boundary conditions (left column). In the case
of hydrodynamics with perfect stick boundary condition the whole process is distinc-
tively slowed down (middle column). When hydrodynamic interactions are switched
off completely (right column) the system exhibits the slowest dynamics of pattern
formation.
While the snapshots visualize nicely the dynamics in the lateral dimensions, they
do not give insight into the dynamics perpendicular to the walls. Figure 8.7a shows
the changes over time of the colloidal density profiles perpendicular to the walls.
The height of the colloid layer peak at the wall varies in a non-monotonic way,
which is shown for all three solvent implementations in figure 8.7b. This special
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(a) time t = 12

(b) time t = 1200

(c) time t = 12000

(d) time t = 30000

Figure 8.6.: Snapshot series of the demixing process. Only the polymers are shown
(black dots). Time increases from top to bottom. The left series corresponds to
hydrodynamics with perfect slip boundary conditions (MBST slip). The middle
column corresponds to hydrodynamics with stick boundary conditions (MSBT stick)
and the right column corresponds to switched off hydrodynamics (NOHI).
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Figure 8.7.: (a) Typical density profiles of the colloids along the z-axis at different
times as indicated (MBST). (b) Height of the first colloid layer peak as a function
of time.
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Figure 8.8.: Schematic representation of the different processes influencing the
particle distribution perpendicular to the walls in a narrow quasi two-dimensional
system. (a) Particles rapidly form groups of the size of wall separation and connect
to the walls. (b) The strong depletion force acting at the colloids (yellow areas)
leads to a further flow of this species to the walls. (c) Domains combine but the
colloids still move into the direction of the walls. (d) Saturation of the colloidal drift
towards the walls and further connection of domains redistributing colloid layers
close to the walls among the center region (indicated by the yellow area enclosed by
vertical dotted lines).

type of dynamics can be explained by an interplay of a flow of the colloids towards
the walls due to the intrinsic depletion force which saturates at some moment and
the connection of colloidal domains redistributing the colloid layer remnants (see
Fig. 8.8). While the growth of the colloid layer at the walls is a direct result of
the intrinsic particle dynamics, the “backflow” is an effective movement resulting
from the combination of colloidal domains. For the polymers this results in flows
of the opposite direction. As long as one stays in a symmetric bicontinuous domain
structure there is no reason why these two flows should enhance the coarsening
process at later times, but rather one anticipates a compensation, so that at the end
power laws typical for two-dimensional systems are expected.
However, the form of the interconnection patterns of the colloid-rich and polymer-
rich regions does depend on time. This means that the percolation threshold, where
the system switches from a symmetric bicontinuous pattern to a droplet pattern,
which depends in two dimensions only on the underlying viscosity of both phases
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and the concentration ratio, might be shifted in either direction. These effects shall
be rather weakly pronounced in the case of D = 5, but are expected to play a more
important role when increasing the wall distance D, e.g. D = 10.
Finally, the average domain size as a function of time was measured as described in
the previous section. Figure 8.9 shows this quantity for the three different choices of
solvent implementation in analog to the corresponding snapshot series. As expected,
hydrodynamics drastically speed up the whole process. However, the predicted late
time behavior with power law exponent n = 2/3 for two dimensions is only visible for
perfect slip boundary conditions and only over a short range of time before one sees a
break down to n ≈ 1/3 again. The reason for this becomes clear from the snapshots
where one identifies that the approximately bicontinuous structure changes more and
more to a round droplet structure where the Lifshitz-Slyozov mechanism dominates
again. The stick boundary case never evolves this power law but follows with high
precision the n = 1/3 power law behavior, although the morphology as a function
of domain size ld is the same as in the case of perfect slip boundary conditions. This
discovery can be understood when one asks the question, over which lateral distance
a velocity correlation in the solvent persists. A solvent particle “travels” typically a
distance of the order D until it collides with the walls. Since bounce back rules are
applied to model the stick boundary condition, the velocity of the solvent particle is
inverted, and the velocity auto-correlation dies rapidly out. This screening effect is
shown in more detail in figure 8.10 where the velocity auto-correlation function in
the xy-plane is compared for several choices of pore widths D with stick boundary
conditions and perfect slip boundary conditions. This investigation shows clearly
that in the case of perfect slip even in a narrow pore of D = 1.5 the expected long
time tail behavior is established rapidly, while for the stick boundary condition the
velocity auto-correlation is strongly screened for D = 5 and gets even negative for
D = 2.5 or D = 1.5 (full symbols).
This finding is a very distinct detail of quasi two-dimensional systems confined be-
tween walls in comparison to the pure two-dimensional case. Even though in an
experiment it might be possible to have a colloid-polymer monolayer, the solvent
will still exhibit three-dimensional dynamics. The solvent slip length determines
over which range of average structure size the observation of the inertial regime
(n = 2/3) is possible at all.
The domain growth behavior for switched off hydrodynamics (NOHI in Fig. 8.9)
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Figure 8.10: Two-dimensional ve-
locity auto-correlation function for
various wall distances D and bound-
ary conditions as indicated. Full
symbols mark negative values, i.e. an
anti-correlation of the velocity over
time.
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needs still to be commented. As expected from the previously shown snapshots,
the average domain size shows the slowest growth behavior over time. No scaling
behavior is observed, but rather a huge transient towards n ≈ 1/3. In order to dis-
tinguish between this assumed transient behavior and a possible late time behavior
with an exponent of n = 1/4, which was also reported in literature regarding the
two-dimensional compressible Ising model [211], another series of simulation runs
using the NOHI thermostat is performed, but now with a solvent density per cell of
ρs = 1. This choice effects the viscosity of the solvent and hence, influences the time
scale of the simulation so that a more advanced coarsening is accessible with less
computational effort as shown in figure 8.11. The data observed for ρs = 1 shows
again a very slow growth of the effective exponent ne towards n = 1/3. The inset of
the same figure emphasizes this by plotting the effective exponent ne as a function
of 1/ld(t). This makes it possible to extrapolate to ld(t)→∞. Both curves clearly
exceed the n = 1/4 power law and tend towards n = 1/3 (dotted line) at late times.
The last point which shall be addressed for film thickness D = 5 is the influence
of the colloid-polymer concentration ratio (at fixed ηrp) on the spinodal decompo-
sition kinetics. As mentioned above, the coarsening pattern morphology is crucial
for the observed growth laws and, therefore, one expects for strongly “off-critical”
quenches, where droplet patterns are present, that the Lifshitz-Slyozov mechanism
dominates. In general, the question of the possibility of enhanced domain growth
due to wetting layer backflow can be concerned for “off-critical” quenches. However,
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Figure 8.12.: (a) Domain growth for off-critical quenches in the case of slip bound-
ary conditions. For comparison the curve resulting from a critical concentration
ratio with stick boundary conditions is also shown. (b) Typical snapshots for the
two different colloid-polymer concentration ratios.

in the case of D = 5 colloid wetting layers do simply not fit so that only small
remnants are visible at the colloid domains (as already insinuated by figure 8.8).
Figure 8.12a shows the result for off-critical quenches to the left (label “quench L”
in Fig. 8.2b) and to the right (label “quench R”) in comparison to the center quench.
The snapshots in the same figure part (b) demonstrate that even at intermediate
times (t ≈ 4000) no bicontinuous structure evolved. First of all, it is remarkable that
both data sets for the off-critical mixtures fall on top of each other, although there
is a difference in dynamics of both phases. Second, in comparison to the data series
of the critical quench for stick boundary conditions the n = 1/3 scaling behavior is
only slightly exceeded, so that one can conclude that in the case of D = 5 there is no
pronounced evidence for an enhancement of the demixing dynamics due to wetting
layer backflow.
Before going on to a wall separation of D = 10, the results for film thickness D = 5
are briefly summarized: For bicontinuous coarsening patterns the domain growth
law universality of purely two-dimensional systems is found. However, the domain
structure is influenced by the underlying dynamics perpendicular to the walls so that
a percolating structure may vanish over time. Furthermore, the boundary conditions
of the solvent play a crucial role. Only in the case where hydrodynamic interactions
are not screened (perfect slip boundaries) the ld ∼ t1/3 power law is exceeded. The
suppression of hydrodynamic interactions slows the process of spinodal decomposi-
tion drastically down and a large transient region towards a power law exponent of
n = 1/3 is present.

8.5. Film Thickness D=10

Increasing the wall distance from D = 5 to D = 10 is expected to enhance the
influence of the dynamics perpendicular to the walls on the coarsening pattern.
Indeed, the “critical” quench (labeled as “quench 1” in Fig. 8.2c) leads even at early
times to a pure colloidal droplet structure which persists over time (see Fig. 8.13a).



108 CHAPTER 8. SPINODAL DECOMPOSITION IN THIN FILMS

To obtain a bicontinuous structure further concentration ratios were studied labeled
as “quench 2” and “quench 3” in Fig. 8.2c. While the simulation run corresponding to
“quench 2” shows an almost perfectly symmetric percolation pattern at intermediate
times around t ≈ 1500, at later times (t ≈ 6700) the system switches to a polymer
droplet structure. Finally, although not as symmetrical as “quench 2” at intermediate
times, the bicontinuous structure of “quench 3” remains stable up to t ≈ 9000 (not
shown). To save computer time these results were obtained from single runs using
slip boundary conditions.
The obvious change in the pattern morphology can be quantified by using the so-
called Euler characteristic χ. The Euler characteristic is a topological invariant and
was originally developed to characterize polyhedra by comparing the occurrence of
vertices, edges and faces. Continuous structures such as spheres, toruses etc. can be
discretized using polygons or in the most simple case cubes or squares in two dimen-
sions, respectively. Once discretized, it is possible to define Euler characteristics for
the originally continuous structures. In two dimensions every droplet contributes
with χ = 1, every hole with χ = −1 and a bicontinuous structure has χ = 0.
Here, a simple mapping on the two-dimensional Ising model is performed and the
Euler characteristic is calculated following references [212, 213]. Such mapping pro-
cedures from densities of continuous systems to Ising systems have typically a free
parameter, the threshold when a local density corresponds to “spin up” and not to
“spin down”. By changing this threshold only a bit, χ shifts up or down. Another
subtle point is the generation of “noise pixels” due to fluctuations in the local density
which are not intended to contribute to χ. Both influences are minimized by using
a relatively large area (Al = 4 × 4 in units of the colloid diameter) to estimate the
local density (noise reduction). Then the distribution of densities over all such areas
is analyzed. When the system is demixed and the average structure size exceeds
noticeably Al = 4 × 4, the density distribution shows a double peak structure the
peak positions of which correspond to local, time dependent coexistence densities
ηgloc(t) and ηlloc(t) for either particle species. The mean 1

2
(ηgloc(t) + ηlloc(t)) is then

used as a time dependent threshold for the spin mapping procedure. Figure 8.13a
shows the Euler characteristics for colloids and polymers as a function of time for
the three considered quenches. The asymmetry between the Euler characteristic of
the polymer-rich phase and the Euler characteristic of the colloid-rich phase at the
early stages results from the wetting of the colloids at the walls and disappears when
the average domain size exceeds clearly D = 10. From then on the initial number
of colloidal droplets is decreasing over time and at the late stages saturates to the
morphology which is visible in the snapshots in Fig. 8.13a. One can also see the
crossover from a percolation pattern to droplets of the polymer-rich phase in the
case of quench 2.
Figure 8.13b shows the average structure size as a function of time for these single
simulation runs. The first quench, which corresponds to a droplet structure, exceeds
at late times the n = 1/3 power law, giving first evidence that wetting layer effects
might accelerate the demixing dynamics. The dynamics of quench 2 show an inter-
esting break-off close to t ≈ 4000. This “pinning effect” is known from experiments
[206] to happen when one crosses the percolation threshold. The system remains
“shocked” until it continues to follow a power law behavior. The data corresponding
to quench 3 shows the fastest (n = 2/3 like) power law behavior at late times, which
fits to the fact that χ is closest to a percolation structure at late times for quench
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Figure 8.13.: (a) Snapshot series of the demixing process for various concentra-
tion ratios. Only the polymers are shown (black dots). The perfect slip boundary
condition was used. Concentration ratios correspond to the quench 1 to quench 3
as indicated in Fig. 8.2c. (b) Euler characteristic for colloid and polymer pattern
at various concentration ratios using the MBS thermostat with slip boundaries. (c)
The average domain size ld for the three different colloid-polymer concentrations
obtained from a single run as a function of time. As a guide for the eye power laws
with different slopes are included.

3. All these various findings make clear that for D = 10 the concentration ratio
plays a dominant role with respect to the scaling behavior. However, since only
data from single simulation runs are presented, one has to be careful with a quanti-
tative interpretation of the results by means of power law exponents. For instance,
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Figure 8.14.: (a) Maximum height of the colloid wall layer peak as a function of
time for quench 3. Note that only two simulation runs were averaged, so that the
fluctuations of the data points result from the statistical error. (b) Domain growth
for slip and stick boundary conditions as well as switched off hydrodynamics for the
“quench 3” concentration ratio.

the exact time at which the percolation threshold is crossed (quench 2 data series)
depends on the current fluctuations and hence, is expected to differ from simulation
run to simulation run. It is questionable whether “pinning effects” are visible at
all when one averages over enough independent runs. In fact, one is more likely
to see a reduced effective growth law exponent. The concentration ratio used for
quench 3 is the only one which seems to be reasonably well suited for probing the
influence of hydrodynamics on the coarsening dynamics as done for D = 5. In the
next paragraph the “quench 3” setup is used when comparing the various solvent
setups, MBST slip, stick and switched off hydrodynamic interactions.

The period of time over which the growth and decrement of the colloid layer at the
walls takes place is extended in comparison to the wall distance D = 5, but shows
the same qualitative behavior as shown in figure 8.14a. Eventually, figure 8.14b
presents the results for the domain growth behavior. The results are in qualitative
agreement with the scaling laws obtained for wall distance D = 5, but the data
series with included hydrodynamic interactions show both an enhancement over the
n = 2/3 and n = 1/3 power law behavior respectively. In principle, such effects can
result for two different reasons: three-dimensional viscous hydrodynamics behavior
(transient with n . 1) or enhancement by wetting layers. The first reason can be
ruled out, since the average domain length scale at which the enhancement is present
exceeds clearly the wall distance D = 10. Therefore, it is likely that domain growth
profits from the presence of wetting layer remnants.

To study the latter aspect of a possible speed-up in the domain growth dynamics in
more detail, the spinodal decomposition of off-critical pure droplet states is investi-
gated. The dynamics in droplet pattern are expected to follow the n = 1/3 power
law behavior, independent of the fact whether the polymers or the colloids form the
minority phase. This was indeed observed for wall distance D = 5 (see Fig. 8.12). In
the case of D = 10 the wetting layer remnants are stronger developed and a possible
influence has to be more pronounced. When arguing that wetting layer remnants
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of the colloid-rich phase enhance the domain growth of colloidal droplets, one has
to postulate that in the contrary case where the polymers form the droplets no en-
hancement or even a slow down has to be recognizable. Figure 8.15 confirms this
presumption. The data series for the colloidal droplet pattern exceeds clearly the
power law with exponent n = 1/3 (quench 1) and at the same time the data series
for the concentration ratio where polymer droplets are present shows a distinct slow
down at late stages. From these findings it is clear that the violation of the n = 1/3
power law reported for quasi two-dimensional systems in the literature [208, 209]
are related to the wetting properties of the system. However, the terminus “wetting
layer backflow” which suggest in a sense an active mechanism has to be used with
caution. Rather the picture of a particle redistribution in a geometric manner, when
two domains connect, emerges (as proposed by scheme 8.8).

8.6. Film Thickness D=1.5

To clarify further the role of the quasi dimensionality, i.e. the influence of the wall
distance D, the last simulation series presented in this chapter are performed in a
system of size V = 512×512×1.5. Since particles cannot use anymore the dimension
perpendicular to the walls to pass each other, the system is almost two-dimensional.
The asymmetry with respect to the wall preference of the colloid particle species is
highly suppressed now, and a critical quench is expected to produce a rather stable
bicontinuous structure over a wide range of time scales. This section focuses on the
question whether the so far observed results depend on the z-dimension, i.e. a three-
dimensional hydrodynamics, or if they constitute a two-dimensional behavior. The
hydrodynamics in the case of D = 1.5 are almost two-dimensional since only three
MPC cells fit between the walls. Stick boundary conditions will lead to a strong
hydrodynamic screening of the order of D = 1.5, so that the difference between
included HI with stick boundaries and switched-off HI is expected to be smaller
than observed in the previous sections for D = 5 and D = 10. For slip boundary
conditions two-dimensional hydrodynamic interactions are recovered resulting in
ld ∼ t1/2 [214], or, when reaching the inertial regime (ld � η2

ργ
), in ld ∼ t2/3 [191].

Two different quenches are considered in the following. While both are critical, the
underlying polymer reservoir packing fractions are very different corresponding to
the free energy landscapes presented in figure 8.2d with polymer reservoir packing
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Figure 8.16.: Comparison of the domain growth pattern for two different polymer
reservoir packing fractions. “quench 1” corresponds to ηrp ≈ 4 and “quench 2” corre-
sponds to ηrp ≈ 5. In both cases the MBS thermostat with slip boundary conditions
was used.

fractions ηrp ≈ 4 and ηrp ≈ 5. The polymer reservoir packing fraction of ηrp ≈ 4
corresponds to the coexistence diameters of Nc = 103552 colloids and Np = 503648
polymers. The interfacial tension is tiny (γ ≈ 0.1) which induces very frayed inter-
faces between colloid-rich and polymer-rich areas (see the snapshot series “quench 1”
in figure 8.16). For ηrp ≈ 5 the particle numbers are Nc = 109507 and Np = 579610.
The interfacial tension is γ ≈ 0.5. The higher surface tension leads to much sharper
interfaces as seen in Fig. 8.16 (“quench 2”).
Already visible from these series of snapshots is that the domain growth dynamics
are accelerated in the case of “quench 2”. At MD time t = 31700 individual domains
are even that large for “quench 2” that they already interconnect with themselves via
the periodic boundary conditions. As soon as such a connection appears, dynamics
can be extremely accelerated because the system can very efficiently minimize the
interfacial area by aligning the interfaces parallel to the x or y-axis. Then further
growth of this domain happens essentially in a one-dimensional manner leading to
a slow down in the phase separation dynamics. Thus, this type of finite size effects
leads to oscillations in the observed domain growth. Percolation patterns are most
sensitive to this kind of finite size effects because they have the largest interfacial
area. It is essential to look carefully at snapshot series and the average domain
size extracted from single runs, since the oscillations can easily be misinterpreted
as “pinning effects” or can lead to artificial effective exponents when averaging over
multiple runs. Data corresponding to an average domain size ld & 100 are not taken
into account in the following.
In figure 8.17 the average domain size is shown as a function of MD time. Part
(a) shows the quench to ηrp ≈ 4 (“quench 1”) and part (b) shows the results for the
quench to ηrp ≈ 5. In both cases the hydrodynamic interactions play a tremendous
role. As expected from the previous studies (D = 5, 10), switching off the hydrody-
namic interactions leads to the slowest dynamics with respect to ld(t). As before,
the corresponding curves slightly exceed the n = 1/4 power law. Hydrodynamics
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Figure 8.17.: Average domain size ld as a function of time for three different solvent
properties at polymer reservoir packing fraction ηrp ≈ 4 (a) and ηrp ≈ 5 (b).

combined with stick boundary conditions do clearly accelerate the demixing process,
but, due to the extreme screening by the presence of the walls, the function ld(t)
shows qualitatively the same behavior as for switched off hydrodynamics. Finally,
slip boundary conditions lead to the fastest growth showing a power law behavior
of ld ∼ t1/2 in the case of ηrp ≈ 4 (Fig. 8.17a) and ld ∼ t2/3 for ηrp ≈ 5 (Fig. 8.17b).
As motivated in the beginning of this section, this difference is due to the enhanced
gas-liquid interfacial tension γ for the deeper quench (ηrp ≈ 5) in comparison to
“quench 1” (ηrp ≈ 4). The inertial regime ld � η2

ργ
is reached earlier and hence the

n = 2/3 power law becomes visible. These observations fit nicely in the theoretical
picture and expectations which evolved already from the results obtained for wall
distances D = 5 and D = 10.

8.7. Conclusion

The Multi Particle Collision Dynamics mesoscale simulation method is well-suited to
study spinodal decomposition kinetics. The overall number of particles can exceed
50 millions due to the substantial amount of explicitly included solvent particles.
However, the usage of parallel computation techniques alleviates the accompanying
problems to some extent and allows for a detailed study of phase separation over
multiple time and length scales. This way the influence of hydrodynamics on the
dynamics of phase separation can be investigated in detail.
The presented results for three different solvent properties, different wall distances
and various phase separation morphologies lead to the conclusion that there ex-
ists universal behavior in quasi two-dimensional systems of intrinsically asymmetric
binary mixtures. However, in contrast to pure two-dimensional and particularly
three-dimensional systems, the distinct dynamics perpendicular to the walls limits
the range in time over which power law predictions based on two dimensions or
three dimensions are observable. In addition, the boundary condition of the solvent,
which is not present in systems which are either strictly two-dimensional or three-
dimensional without confinement, strongly influences the hydrodynamic interaction
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range. The outcome of the presented simulation runs points out that stick boundary
conditions lead to a screening of hydrodynamic interactions on the scale of the wall
distance D. In this case power laws based on long range hydrodynamic interactions
such as the inertial late time behavior predicted by Furukawa [192] can only be
visible for respectively large wall separations. When setting the slip length to in-
finity by using perfect slip boundary conditions, hydrodynamic interactions become
long ranged again, and evidence for the inertial regime is found.
As in strictly two-dimensional or three-dimensional systems, the spinodal decom-
position kinetics of quasi two-dimensional systems is strongly influenced by the un-
derlying demixing pattern morphology. In addition to the fluid viscosity imbalance,
slow non-monotonic dynamics perpendicular to the walls influence the structure of
the phase separation patterns over time. As long as the system shows a percolating
domain structure the domain growth laws for pure two-dimensional systems with
included hydrodynamic interactions are recovered, namely, the droplet diffusion-
coagulation mechanism for ld � η2

ργ
[214] or Furukawa’s inertial growth law as

soon as the inertial regime is entered (ld � η2

ργ
). When hydrodynamic interactions

are switched off and the system behaves purely diffusive, a slow transient to the
ld ∼ t1/3 power law is obtained.
Furthermore, the possibility of an enhancement of the spinodal decomposition ki-
netics by “wetting layer backflow” could be verified for the largest wall distance of
D = 10. When the droplets forming the minority phase favor the walls, the do-
main growth clearly exceeds the n = 1/3 power law behavior. In contrast, when
the majority phase does favor the walls, the phase separation is drastically slowed
down. The picture which is proposed for this finding is that of a simple redistri-
bution of wetting layer remnants of domains leading to an effective backflow when
they interconnect.
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9

SUMMARY & OUTLOOK

The phase behavior of a model colloid-polymer mixture, the Asakura-Oosawa model,
under various types of confinement was studied by Monte Carlo simulations. The
calculation of free energy functions played a key role in the investigation of the
phase behavior throughout all the different types of confinement. It was shown that
a system which is confined to a quasi one-dimensional geometry exhibits a “phase
behavior” which is qualitatively different from a bulk system or a system confined in
a plate geometry. As soon as the correlation length ξz is exceeded by the length of
the cylindrical pore, the system does not stay in the pure gas or the pure liquid state,
but instead forms multiple coexisting domains of both phases. Thus, for very long
cylindrical pores the phase separation into vapor-like and liquid-like phases takes
place in two steps: When the bulk correlation length is of the same order as the
cylinder radius, phase separation occurs on a local scale. Moving further into the
region where phase separation occurs in the bulk, the system develops long quasi one-
dimensional domains (whose length ξz is controlled by the bulk interfacial tension).
Only when this length exceeds the length of the cylindrical pore, one obtains a
state with uniform density in z-direction. As a next step, the Asakura-Oosawa
model system was investigated in even lower-dimensional confinement, in spherical
cavities. It was demonstrated that the “phase transition point” (in terms of the
colloid chemical potential) is directly related to the wetting properties of the binary
mixture at the walls as well as to the radius R of the spherical cavity. By expanding
free energy expressions for the case R → ∞ it was possible to show that the shift
of the transition point is controlled by the contact angle between the gas-liquid
interface and the wall. Two different cases of phase coexistence morphologies were
pointed out, the core-shell structure and the Janus-type structure. These findings are
believed to be especially important to the field of nanomaterials and are intended
to inspire further experiments. Eventually, a method to calculate wall tensions
for liquids and crystalline phases was developed and applied to the hard sphere
system and the effective AO model confined between planar walls. The obtained
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wall tension results were used to estimate the contact angle of heterogeneous wall
attached crystalline nuclei by means of Young’s equation. It was shown that the wall
potential in general influences the wall tensions and particularly that by introducing
an attractive well the contact angle is modified in the case of the effective AO
model. These findings are intended to motivate further comparative studies such as
the direct observation of crystalline wall attached nuclei [8] as well as experiments
to understand in more detail the topic of heterogeneous nucleation especially with
respect to the validity of the macroscopic description based on Young’s equation.
The last part of this work addresses dynamics with a special focus on the influence of
hydrodynamic interactions on the phase separation kinetics of colloid-polymer mix-
tures confined between planar walls. It was shown that the Multi Particle Collision
Dynamics algorithm is well suited to tackle this issue, since its mesoscale picture of
the colloidal suspension provides enough details about the solvent properties and at
the same time is efficient to study spinodal decomposition over multiple decades in
time. The obtained results lead to the conclusion that in the case of a quasi two-
dimensional confinement of an intrinsically asymmetric binary mixture universality
regimes exist, the exact form of which depends on the specific setup. For very small
wall distances D the theoretically predicted power law behavior is obtained, while
the wetting properties and the dynamics perpendicular to the walls start to gain in-
fluence and hence modify the power law forms when D is increased. Hydrodynamic
long range interactions in quasi two-dimensional systems can only build up when the
perfect slip boundary condition is applied to the solvent. Phase separation kinetics
in quasi two-dimensional systems are highly complex due to the interplay of wetting
and the finite system size and the regimes of universal behavior are found to depend
strongly on the chosen setup.
Overall this work demonstrates that confining geometries strongly influence the
phase behavior of the system in comparison to the bulk and lead to interesting and
complex phenomena in equilibrium as well as in the dynamics of the system due to
the interplay of surface and finite size effects.



APPENDIX

A

ON THE PHASE BEHAVIOR OF
TETRAPODS

The following project was undertaken under the supervision of Prof. Erik Luijten
during my visit at Northwestern University, Chicago (October the 18th, 2010 - De-
cember the 17th, 2010).
The recent progress in the production of nanoscale and mesoscale material building
blocks with different shapes [215, 216] is expected to strongly expand the variety
of materials. Understanding the exact influence of the shape on the self-assembly
properties and phase behavior is crucial if one wants to predict features of new
materials. This chapter focuses on building blocks consisting of colloidal particles
which are known to show a broad range of self assembled structures [217] or even
quasi crystalline structures [218].
Very promising candidates for the design of new materials are building blocks with
tetrahedral geometry, i.e. tetrapods, which could be synthesized successfully over a
wide range of aspect ratios [219, 220]. Figure A.1 shows how tetrapod structures

Figure A.1: Snapshots of tetrapods
consisting of spherical colloids:
(a) arm length la = 1,
(b) arm length la = 3
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can be built by spherical colloids. The arm length la is the number of colloids in one
branch which is attached to the colloidal seed in the center. In the following, the
unit length scale is set by the colloid monomer diameter. Three different tetrapod
conformations are considered here: While the distance between the centers of col-
loidal monomers is always chosen to be the same as the colloid diameter, the arm
length is varied as la = 1, 2, 3.
In the following, the phase behavior of two tetrapod models is obtained with two
methodologies. First, Monte Carlo simulations are performed where the intercon-
nection between colloidal monomers is rigid and pair interactions of monomers of
the same tetrapod are suppressed. Second, Molecular Dynamics simulations on
graphic processing units (GPUs) are undertaken, where stiff bond potentials and
stiff bond angle potentials were applied between the colloidal spheres. In the case of
the Molecular Dynamics simulations the monomer-monomer interaction within the
same tetrapod is included.

A.1. Monte Carlo Simulations

Studying the phase behavior of binary mixtures with a high size asymmetry between
the two components becomes more difficult when arbitrary shapes of the particles are
allowed, especially when one wants to perform grand canonical cluster moves from
section 2.5.3. For simple shapes, like spherocylinders, one can easily extend this clus-
ter move type but when looking at even more complex shapes, like tetrapods, it is
technically difficult to extend the grand canonical cluster move, since the generation
of random coordinates for the depletant particles in the particle deletion move be-
comes difficult. In general, the additional rotational degree of freedom reduces a lot
the acceptance probability for particle insertions and the question arises, if studies
based on a canonical move set might be better suited in this case. Sinkovits and
Luijten generalized the canonical rejection free geometric cluster algorithm (see
section 2.5.2) for arbitrarily shaped anisotropic particles [221, 222]. In this general-
ization self-inverse symmetry operations such as mirror reflections at a pivot point
or reflections at a plane are implemented on a hyperspherical geometry (see section
2.3.2) which is needed to maintain the self-inverse character of the transformations.
Simulations on hypersphere surfaces were introduced by Caillol as a method to
handle long range Coulomb interactions of charged particles [50, 51, 53]. He also
studied particles with Lennard-Jones interaction potentials on hyperspherical sur-
faces and proposed an empirical correction to the potential to suppress curvature
related effects [52] which is particularly important when being close to the critical
region of the system.
It has been shown that the combination of the so-called restricted Gibbs ensemble
with the geometric cluster algorithm allows for an efficient calculation of phase di-
agrams [223, 224]. Due to the highly structured and modularized code provided by
Daniel Sinkovits, it was possible to include the restricted Gibbs ensemble struc-
ture in a fast and time efficient manner. Daniel Sinkovits and Erik Luijten are
greatly acknowledged at this point for their help and never-ending will of answering
questions regarding the technical and physical details. In the restricted Gibbs en-
semble two simulation boxes (or hypersphere surfaces) are present and, additionally
to canonical moves in the separate boxes, particle moves between both simulation
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boxes are attempted1.

Simulation Details and Results

Two different setups for the investigation of the tetrapod phase behavior are regarded
in the following, a single component system where the monomers interact via a
version of the Lennard-Jones potential and a tetrapod-polymer mixture using the
Asakura-Oosawa interaction model. To compare between both setups qualitatively,
the inverse temperature β = 1

kBT
is used in analogy to the polymer reservoir packing

fraction ηrp as a parameter for the phase diagrams in case of the Lennard-Jones
interaction model. All simulations take place on a four-dimensional hypersphere
surface, where the hypersphere has a radius of R = 6. The studies of the single
component system are used in the following to explain the simulation procedure
details for the restricted Gibbs ensemble.
The Lennard-Jones pair interactions between the colloidal monomers, as proposed
by Caillol, is

WLJ(i, j) =

4

[(
σ

R sin rij

)12
−
(

σ
R sin rij

)6]
, for rij < rc/R

0 , else
, (A.1)

where R is the radius of the hypersphere, σ the monomer diameter (σ = 1) and
rij = R arccos(ri ·rj/R2) is the distance between particle i and particle j. Here, the
cutoff radius is set to rc = 2.5. When the system undergoes a phase separation in
the restricted Gibbs ensemble, the densities observed in both simulation boxes do
in general not correspond to the coexistence densities but rather to a respectively
oversaturated or undersaturated state, because both the volume and the total par-
ticle number are fixed. This comes from the fact that in restricted Gibbs ensemble
Monte Carlo simulations no explicit interface of the coexisting phases is present and
that the system favors the oversaturated and undersaturated phase states over the
additional creation of an interface in one of the simulation boxes. The so-called
intersection method [225] is used to obtain the “true” coexistence densities from a
series of simulation runs at different total tetrapod number N0. Figure A.2a illus-
trates this method for the choice of tetrapods with arm length la = 1. For every
inverse temperature β up to thirty choices of N0 were simulated. These simulations
are independent from each other and therefore, can be performed simultaneously.
The average particle numbers in both boxes N− and N+ are recorded and plotted
once versus N0 and once versus 2N0 − 2N±. The resulting intersection of both
curves marks then the true coexistence particle numbers at the ordinate. From the
example plot in figure A.2 one determines Nc− = 72 and Nc+ = 408 leading with
V = 2π2R3 = 4263.67 to the monomer packing fractions ηg = 0.044 and ηl = 0.251.
The snapshot (Fig. A.2b) verifies that the extracted coexistence densities correspond
to a gas-liquid phase coexistence, since no ordered structures are visible.
This intersection technique is performed also for all choices of arm length la = 1, 2, 3
as well as for the AO interaction model with al = 1. For this interaction model the

1Volume exchange moves are not allowed in this restricted version of the Gibbs ensemble, since the
mirror reflection operations in the cluster moves only work when the volume of both simulation
boxes is equal.
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Figure A.2.: (a) Intersection method for tetrapods of arm length la = 1 on the
surface of a hypersphere with radius R = 6 (β = 0.52). N0 is the total number of
particles simulated, while N± are the particle numbers corresponding to the peaks
in the probability distribution function. The full lines are a guide to the eye. (b)
Snapshot taken out of a canonical simulation showing a liquid droplet of tetrapods
with arm length al = 1 surrounded by the coexisting gas. The center particles of
the tetrapods are colored in yellow. A wedge was cut out of the configuration to
allow a view inside the droplet.

ratio of the polymer diameter to the colloidal monomer diameter is set to q = 0.8,
as in the previous chapters, and the polymer reservoir packing fraction is varied
to obtain the phase diagram. The resulting phase behavior of the tetrapods is
summarized in figure A.3.

Figure A.3a shows three binodals in the case of the modified Lennard-Jones model for
different arm lengths, as indicated. The coexistence densities are shown as a function
of the inverse temperature β = 1

kBT
. For arm length al = 1 and al = 2 a region of

phase coexistence is visible for β & 0.5 and β & 0.42 respectively. For arm length
al = 3 only a few data points are shown which correspond to several computational
expensive “test”-runs. The equilibration time as well as the correlation between
configurations increase drastically when increasing the arm length. Therefore, the
quality of the data, especially for the liquid branches, is expected to become less
precise in the case of arm length 2 and 3. Part (b) of the same figure presents
the binodal for tetrapods of arm length al = 1 in the case of the Asakura-Oosawa
model. One can clearly recognize the same qualitative behavior in comparison to
the Lennard-Jones interaction model (part (a)). In the case of the binary tetrapod-
polymer mixture the rejection free cluster algorithm develops its full power. The
computational effort for a pair of coexistence density points did not increase much
(. 10%).
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Figure A.3.: (a) Phase diagram of tetrapods with modified Lennard-Jones potential
(Eq. A.1), where η is the monomer packing fraction. The arm length varies as
indicated. The radius of the hypersphere is fixed to R = 6. (b) Binodal for tetrapods
of arm length al = 1 using an Asakura-Oosawa model for several polymer reservoir
packing fractions ηrp.

A.2. Molecular Dynamics Simulations

As an alternative approach to study the phase behavior of tetrapods, the single com-
ponent setup (without polymers) is investigated by means of Molecular Dynamics
simulation based on the velocity Verlet algorithm (see section 7.1). The simulations
take place in a standard cuboid simulation box. The tetrapod model is slightly mod-
ified. The colloidal monomer interaction potential is again the Lennard-Jones pair
potential with cutoff radius rc = 2.5 (without curvature correction expression) but
interactions between monomers of the same tetrapod are not excluded anymore. In
addition, strong harmonic bond potentials V (r) = 1

2
kb(r− σ)2 with spring constant

kb = 600 as well as bond angle potentials V (r) = 1
2
ka(θ − θ0)2 with ka = 600 and

θ0 = 2.0944 for the connections of monomers to the center and θ0 = π for connec-
tions within one arm are used. These connections between the monomers take a
proper transfer of momentum within a tetrapod into account. The unit length scale
is set by the monomer diameter σ ≡ 1.

The simulations are performed on a graphic card (nVIDIA GTX 580) using the
open source Molecular Dynamics implementation HOOMD [226]. The velocity Ver-
let algorithm allows in contrast to ordinary Monte Carlo simulations a position
update of all the particles simultaneously. This feature enables Molecular Dynamics
simulations to be performed in a parallel manner on the multiple compute units
which modern graphic cards provide. In case of the simple one component setup of
the tetrapod ensemble this technique is expected to perform even better than the
geometric cluster algorithm. Of course, as soon as a second particle species (with a
relatively small particle diameter) comes into play, this advantage is lost, and the
geometric cluster algorithm will outnumber Molecular Dynamics simulations with
respect to the performance.
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Figure A.4.: Snapshot of the coexistence interface between the liquid (left) and
the gas (right) phase of tetrapods of arm length al = 3 simulated via canonical MD
on a GTX 580 GPU. The different colors serve for the distinction of the individual
tetrapods.

Simulation Details and Results

Simulations are performed at constant temperature using the Nosé-Hover thermostat
with time constant τ = 0.005. The integration time step is chosen as ∆t = 0.0001.
To extract properly the coexistence densities, an elongated simulation box with
volume V = 30× 30× 120 is chosen. When the total particle number in the system
is close to the coexistence diameter, a slab configuration evolves (see Fig. A.4). The
elongated simulation box assures that the system maintains the slab configuration
even when the total particle number does not exactly correspond to the coexistence
diameter. The volume which both phases occupy simply adjusts, but the coexistence
densities remain unchanged.

After equilibration of the system to a certain temperature a production run is per-
formed in which configurations are written out. The last configuration of such a
production simulation run can be used as a starting point for the next considered
temperature to reduce the equilibration time. The configurations are then analyzed
via sub-boxes. The simulation box is virtually divided into cubic subsystems and for
every subsystem a probability distribution P (η) (where η is the monomer packing
fraction in the system) is recorded. To increase the statistics, especially for larger
subsystems, all the coordinates of a configuration are shifted between 300 and 1000
times randomly. One typically ends up in an asymmetric double peak structure
of P (η) where the peak positions with respect to η mark the coexistence packing
fractions as illustrated by figure A.5. In contrast to probability distributions from
grand canonical Monte Carlo simulations, the plateau between the two peaks does
not give any further information such as the interfacial free energy. The probability
distribution shows only a weak sub-box size dependency, which is recognizable in
the shape of the peaks as well as in the absolute positions of the peak maxima. Since
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Figure A.6: Binodals extracted from the
sub-box analysis of Molecular Dynamics
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lengths al as indicated. The simulation
box size was in all three cases V = 30 ×
30 × 120. The dimension of the sub-box
was chosen as V = 15× 15× 15.

the probability distribution for the larger sub-box (Ls = 15) can more accurately
resolve the gas phase, the coexistence densities resulting from the sub-box analysis
of length Ls = 15 are used in the following.
As for the Monte Carlo simulations on the hypersphere three different choices of the
arm length were considered, al = 1, 2, 3. The total number of tetrapods was chosen
as N(al = 1) = 4698, N(al = 2) = 2610 and N(al = 3) = 1566. Figure A.6 shows
the final result for the phase diagram. First of all, the qualitative behavior is the
same as for the Monte Carlo simulations, but the curves are stretched by a factor of
approximately 1.12. Such a difference was expected, since two different models with
a different number of degrees of freedom were used. When one compares the high
density branches, especially for arm length al = 2 and al = 3, one can suspect that
the Monte Carlo simulations slightly underestimate the liquid coexistence density.

A.3. Conclusion

It was shown that the geometric cluster algorithm together with the restricted Gibbs
ensemble is a powerful tool to study anisotropic particles via Monte Carlo simula-
tions, especially when an explicit depletant particle species is present in the sim-
ulation. Tetrapods modeled by colloidal spheres with a repulsive core interaction
followed by an attractive part show the following phase behavior. For high temper-
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atures (or low ηrp in the case of the Asakura-Oosawa interaction model) the system
is in a homogeneous state. When the temperature is lowered, the system demixes
into a vapor-like and a liquid-like phase. The phase diagram was recorded for three
different arm lengths of the tetrapods which all show a gas-liquid phase transition.
Systems containing tetrapods with longer arms start to phase separate at higher
temperatures (lower ηrp) in comparison to tetrapods with shorter arms. In addition,
the monomer packing fraction η at coexistence is smaller for longer arm lengths.
In contrast to simpler shapes such as spherocylinder, no evidence for orientational
order in the considered interval of η was found.
These observations might motivate further studies of tetrapod systems with higher
values for al with a special focus on the phase behavior in the region where the system
starts to demix. This is closely related to the question whether for β = 0 this kind of
phase separation can be observed or, similarly, whether a purely repulsive tetrapod
system can show a vapor-liquid phase transition for long enough arms. But also the
results obtained for the system based on the Asakura-Oosawa model represents a
good starting point for further investigations. Keeping the arm length al fixed but
lowering the aspect ratio between polymer diameter and monomer diameter q, can
result in an interesting phase behavior, such as directional ordering or the formation
of gel-like structures.
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