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There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable.

There is another which states that this has already happened.

Douglas Adams, The Restaurant at the End of the Universe





Abstract
In the present thesis, we study quantization of classical systems with non-trivial phase
spaces using the group-theoretical quantization technique proposed by Isham. Our main
goal is a better understanding of global and topological aspects of quantum theory. In
practice, the group-theoretical approach enables direct quantization of systems subject
to constraints and boundary conditions in a natural and physically transparent manner
– cases for which the canonical quantization method of Dirac fails.

First, we provide a clari�cation of the quantization formalism. In contrast to prior
treatments, we introduce a sharp distinction between the two group structures that are
involved and explain their physical meaning. The bene�t is a consistent and conceptually
much clearer construction of the Canonical Group. In particular, we shed light upon
the ‘pathological’ case for which the Canonical Group must be de�ned via a central Lie
algebra extension and emphasise the role of the central extension in general.

In addition, we study direct quantization of a particle restricted to a half-line with
‘hard wall’ boundary condition. Despite the apparent simplicity of this example, we show
that a naive quantization attempt based on the cotangent bundle over the half-line as
classical phase space leads to an incomplete quantum theory; the re�ection which is a
characteristic aspect of the ‘hard wall’ is not reproduced. Instead, we propose a di�erent
phase space that realises the necessary boundary condition as a topological feature and
demonstrate that quantization yields a suitable quantum theory for the half-line model.
The insights gained in the present special case improve our understanding of the relation
between classical and quantum theory and illustrate how contact interactions may be
incorporated.

Zusammenfassung
In der vorliegenden Dissertation beschäftigen wir uns mit der Quantisierung von klas-
sischen Systemen mit nicht-trivialen Phasenräumen mittels der gruppentheoretischen
Quantisierungsmethode, welche von Isham vorgeschlagen wurde. Unser Hauptziel ist
ein besseres Verständnis globaler und topologischer Aspekte der Quantentheorie. In der
Praxis erlaubt der gruppentheoretische Zugang die direkte Quantisierung von Systemen
mit Zwangs- und Randbedingungen in natürlicher und physikalisch transparenter Wei-
se – Fälle, in denen die kanonische Quantisierungsmethode von Dirac versagt.

Als Erstes liefern wir eine Präzisierung des Quantisierungsformalismus. Im Gegen-
satz zu vorherigen Arbeiten führen wir eine strikte Unterscheidung zwischen den bei-
den beteiligten Gruppenstrukturen ein und erläutern deren physikalische Bedeutung.
Das Ergebnis ist eine konsistente und konzeptionell deutlich klarere Konstruktion der
Kanonischen Gruppe. Insbesondere diskutieren wir den »pathologischen« Fall, in dem
die Kanonische Gruppe mittels zentraler Liealgebra-Erweiterung de�niert werden muss,
und betonen die Rolle der zentralen Erweiterung im Allgemeinen.

Außerdem betrachten wir die direkte Quantisierung eines Teilchens, welches durch
eine unendlich hohe Potentialwand auf eine Halbgerade eingeschränkt wird. Trotz der
scheinbaren Einfachheit dieses Beispiels zeigen wir, dass ein naiver Quantisierungsver-
such basierend auf dem Kotangentialbündel über der Halbgeraden als Phasenraum zu
einer unvollständigen Quantentheorie führt; die Re�exion, ein wesentlicher Aspekt der
harten Potentialwand, wird nicht reproduziert. Stattdessen schlagen wir einen alternati-
ven Phasenraum vor, der die notwendige Randbedingung als topologische Eigenschaft
realisiert und demonstrieren, dass durch Quantisierung eine geeignete Quantentheo-
rie für die Halbgeraden entsteht. Die aus diesem Spezialfall gewonnenen Erkenntnisse
verbessern das Verständnis der Beziehung zwischen Klassischer und Quantenmechanik
und zeigen, wie Kontaktwechselwirkungen berücksichtigt werden können.
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Introduction and Overview

First quantization is a mystery,
but second quantization is a functor.

Edward Nelson, in [RS.II, section X.7]

Today, almost ninedecades after the birth of the ‘new’ quantum theory, pioneered
by Heisenberg, Born and Jordan [Hei25; BJ25; BHJ26], and developed independently by
Schrödinger [Sch26], non-relativistic quantum mechanics stands as a well-established
and experimentally well-tested theory. Nevertheless, quantum theory still hides some
intricate secrets not just of philosophical value. Speci�cally, there is the question how to
pass from classical to quantum theory via a procedure known as quantization:

How can we construct a quantum theory if a classical system is given?

In fact, the very concept of quantization seems pointless if we consider quantum theory
to be the more fundamental theory and classical mechanics to be only approximately
correct. A direct construction of a quantum theory based on �rst principles, however,
is in most cases – or at least in the more interesting ones – infeasible, and history has
shown that the similarity between classical and quantum physics is large enough to make
an investigation of quantization methods a worthwhile endeavour. Quantization in its
modern sense is therefore often understood as construction of a quantum theory with
help of a classical reference, not necessarily as a strict mapping. The relationship between
classical and quantum theory shifts into the foreground. In the present thesis, our aim
is to study this relation in case of systems with non-trivial classical phase spaces using
the group-theoretical quantization scheme proposed by Christopher Isham in [Ish83].

Historically, the question of quantization in its most basic form was already present
in Heisenberg’s 1925 paper [Hei25, p. 881]: Some of these early papers on

quantum theory are translated
in [Wae67], accompanied by
a historical commentary. Our
remarks on the development of
quantum mechanics also follow
this work.

‘Gegeben sei eine an Stelle der klassischen Größe x(t) tretende quanten-
theoretische Größe; welche quantentheoretische Größe tritt dann an Stelle
von x(t)2?’

(‘If instead of a classical quantity x(t) we have a quantum-theoretical quantity, what
quantum-theoretical quantity will appear in place of x(t)2?’ [Wae67, section 12]). One
of Heisenberg’s main achievements in this groundbreaking work was the insight that
quantum observables, in contrast to classical observables, have to be represented by
non-commutative quantities. Born and Jordan immediately realised that Heisenberg’s
‘quantum-theoretical quantities’ can be understood as (in�nite-dimensional) matrices
[BJ25]. Using the more powerful and economical language of matrices, they were able
to derive the in�nitesimal ‘quantum condition’ in its modern form:

pq− qp= h/(2πi)1 .

The famous ‘Dreimännerarbeit’ (‘three men’s paper’) [BHJ26] – a collaboration of Born,
Heisenberg and Jordan – later provided a logically consistent exposition of the Matrix
Mechanics formalism, including applications.
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Elaborating on Heisenberg’s work, Dirac �rst mentioned the relation between Born
and Jordan’s ‘quantum condition’ and the classical Poisson bracket in [Dir25, section 4]:

q̂r p̂s − p̂sq̂r =
ih
2π

δrs =
ih
2π

{qr, ps} .

The generalisation of this correspondence lies at the heart of the canonical quantization
programme. Dirac proposed this recipe as means to obtain the ‘quantum conditions’ in
the general case in his seminal book [Dir58], �rst published in 1930. After introducing
the ‘mathematical scheme connecting states and observables in quantum mechanics’
(the bra-ket formalism in abstract Hilbert space with quantum observables realised as
self-adjoint operators), he suggested [Dir58, p. 87]:

‘The problem of �nding quantum conditions now reduces to the problem
of determining P.B.s [Poisson brackets] in quantum mechanics. The strong
analogy between the quantum P.B. [quantum commutators] de�ned by (7)
and the classical P.B. de�ned by (1) leads us to make the assumption that
the quantum P.B.s, or at any rate the simpler ones of them, have the same
values as the corresponding classical P.B.s. […]’

The canonical quantization method hence instructs us to replace classical observables
that satisfy a classical Poisson bracket {u,v} = w by self-adjoint quantum operators on
Hilbert space so that the commutation relation [û, v̂] = iħŵ holds.

As history has shown, Dirac’s canonical quantization technique works reasonably
well in the case of ‘conventional’ quantum mechanics over Rn. The primary reason forThroughout this thesis we will

use the term ‘conventional
quantum mechanics’ as a label
for standard text book quantum
mechanics over Rn (see [Sak94;
Sch07; CDL99]).

this is, however, that the underlying con�guration space Rn is so well-behaved. When
we try to quantize classical systems with phase spaces other than the cotangent bundle
T∗Rn, the situation changes dramatically. Already in classical mechanics, phase spaces
di�erent from T∗Rn require a more elaborate mathematical formalism, but this is not
the only di�culty. Because global and topological aspects play a much bigger role in
quantum theory than in classical physics – visible in form of the non-local nature of wave
functions – it happens frequently that certain (even basic) classical observables have no
appropriate quantum counterparts. In those cases, a straightforward application of the
canonical quantization recipe becomes impossible and a more sophisticated approach
is needed.

In practice, a better understanding of the relation between classical and quantum
mechanics is of particular interest in the light of ongoing attempts to quantize general
relativity (see [Woo09] for a review), where a de�nitive answer to the question of the
correct quantum theory of gravitation is still missing. The inherently nonlinear nature
of general relativity makes a perturbative description problematic, if not impossible. A
quantization procedure that is able to take the nonlinear structure into account right
from the outset is a useful tool to construct and study possible candidates for a theory
of quantum gravity. Quantum gravity was, in fact, Isham’s key motive in [Ish83].

In addition, we expect a better knowledge of quantization on arbitrary phase spaces
to be of practical advantage in calculations when physical systems satisfy constraints
or boundary conditions. Similar to Lagrangian mechanics, our goal is to make the side
conditions an implicit part of the formalism. Of course, all calculations could be done
with side conditions enforced by explicit means, like in Newtonian mechanics, but it is
much easier if the formalism handles them for us. With that in mind, quantization is
studied not only for the sake of novel predictions; it is equally rewarding to reproduce
existing results in a more illuminating manner. As an additional bene�t, examples that
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reproduce well-known results let us verify under controlled circumstances that a given
quantization method really implements the side conditions in the correct manner before
we enter new and uncharted territory.

Finally, being the main motivation for the present dissertation, the quantization of
classical systems with non-trivial phase spaces provides an opportunity to learn more
about the structure of quantum theory, like the geometric formulation of Hamiltonian
mechanics on arbitrary manifolds lead to a better understanding of the structure of clas-
sical mechanics. Given only the example of standard quantum mechanics over Rn it is
impossible to decide which properties are truly universal and which just ‘artifacts’ of the
speci�c con�guration space Rn. When constructing new quantum theories, however,
it is crucial to know which features really matter. In particular, the group-theoretical
quantization scheme supports the idea of G-theory, originally formulated in [Hei+87;
Hei+89] and later generalised by [Sła91], which emphasises the role of group actions
and symmetries in a maximal way. Recent applications include [KPRL08; PRL10].

As a long-term goal, we believe the study of quantization might also be a step in
the right direction to replace the set of mathematical axioms on which quantum theory
is currently based by some well-motivated physical principles [Rov96; Fuc01]. As Blau
phrases it [Bla92, section 1]: ‘Perhaps, ultimately, the study of quantization will tell us
enough about quantum theory itself to allow us to do away with the very concept of
quantization.’

∞

Let us give a short outline of this thesis. In the �rst chapter, we will start with a
brief review of the mathematical formalisation of canonical quantization in terms of
the Dirac quantization map. The well-known theorem of Groenewold and Van Hove,
however, states that such a ‘full’ quantization is impossible. Thus, we need to ask what
a reasonable quantization method can, and what it can not accomplish. To this end, we
will examine the individual mathematical assumptions that appear in the de�nition of
the Dirac quantization map and try to determine their physical motivation. Our goal is
to make clear what is sensible to aim for.

In addition, the �rst chapter clari�es some points of the mathematical formalism of
quantum mechanics where standard physics text books are insu�cient to our cause. Of
crucial importance to an understanding of quantization on non-trivial phase spaces is
the proper distinction between self-adjoint and merely symmetric operators, discussed
in section 1.6. While it is usually excusable to neglect the di�erence in conventional
quantum mechanics over the mathematically trivial con�guration space Rn, we will see
that the existence of self-adjoint (but not of symmetric!) operators is linked directly to
global and topological aspects, due to the Stone theorem. Stone’s theorem explains why
a straightforward application of Dirac’s canonical quantization method which does not
take these aspects into account becomes impossible in such cases. We will describe how
the Canonical Group Quantization method with its focus on group structures is able to
handle those di�culties in a very natural and systematic manner. A brief outline of the
group-theoretical quantization scheme on a conceptual level is given in section 1.8.

The following chapters 2, 3 and 4 are more of a supplementary nature. In chapter 2
we provide a review of basic di�erential geometry using the calculus of di�erential forms.
Chapter 3 deals with geometric aspects of (Lie) groups, Lie algebras and group actions
on manifolds. As a more advanced topic, section 3.6 introduces semidirect products
and general group extensions, necessary for a proper understanding of the quantization
method. Chapter 4 is dedicated to symplectic manifolds and the geometric formulation
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of Hamiltonian mechanics, and sections 4.4 and 4.5 discuss the important special case
of cotangent bundles. A reader accustomed to those topics may quickly skim over these
chapters to familiarise himself with our notation or jump straight to chapter 5.

Chapters 5 and 6 constitute the main part of this dissertation. In chapter 5 we will
analyse Isham’s group-theoretical quantization technique in a systematic and rigorous
manner. Of particular interest to us is a certain exceptional case where the Canonical
Group must be de�ned via a central Lie algebra extension. The existing construction is
conceptually rather unsatisfying at this point and Isham himself calls this special case
‘pathological’. Our intention is to resolve this irritating point of Isham’s proposal and to
shed some light on the physical meaning of this exceptional case. We will also clarify
the role of the two distinct group structures that play their part in the group-theoretical
quantization scheme.

Finally, chapter 6 is devoted to quantization in the presence of boundary conditions.
Using the group-theoretical method, we will study the problem of direct quantization for
a particle moving on a half-line with ‘hard wall’ boundary condition. This toy model of
a simple contact interaction provides us with a unique opportunity to verify the correct
realisation of the boundary condition at the end of the half-line as we expect a sensible
quantum theory that implements the boundary condition implicitly to produce the same
predictions as standard quantum mechanics restricted to the spatial region R+ ⊂ R by
an explicit ‘hard wall’ potential.

The half-line model has recently gained some attention because of its mathematical
intricacies [BFV01; FCT02; GK04; BW10]. It is well-known, for instance, that the usual
momentum operator p̂ = −iħ∂q is not self-adjoint on the Hilbert space L2(R+, dq)
and a common suggestion is to ‘resolve the paradox by acknowledging the existence
of the rest of the real line’ [GK04]. Still, this is not a very satisfying solution as wave
functions vanish on the negative part of the real line. Moreover, the missing momentum
observable actually makes sense from a physical point of view: momentum eigenstates
do not satisfy the boundary condition imposed by a ‘hard wall’ potential. Our goal is
hence a direct quantization that does not require the forbidden part of the real line.

In section 6.1, we will discuss Isham’s attempt to construct a quantum theory over the
half-line based on the ‘obvious’ phase space T∗R+ [Ish83, section 4.5]. We will see that
Isham’s representation of the quantum operators is incompatible with an embedding of
the half-line R+ ⊂ R as half of the full line. In section 6.2, we will therefore work out the
relation between Isham’s result and a di�erent representation of the quantum operators
that can be obtained from restricting the position space representation of conventional
quantum mechanics over R to a sub Hilbert space over R+.

Although this �xes the representation problem, section 6.3 shows that the quantum
theory constructed in this manner is incomplete, unable to describe the re�ection at the
end of the half-line which is an important trait of the reference model with the explicit
‘hard wall’ potential. To solve this shortcoming, we construct a di�erent phase space that
emerges naturally on closer examination and realises the boundary condition as a topo-
logical feature: the orbifold R2/Z2. In section 6.4 we study quantization on R2/Z2 via
covering groups of the non-compact semisimple Lie group SL2R. We will demonstrate
that the proposed classical model when quantized using the group-theoretical method
yields a quantum theory that correctly realises the ‘hard wall’ boundary condition and
we will identify the speci�c Canonical Group that must be used.
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To live in the world without becoming
aware of the meaning of the world is
like wandering about in a great library
without touching the books.

Manly Palmer Hall, The Secret Teachings of All Ages

We begin our discussion with the mathematical formalisation of Dirac’s canonical
quantization programme in terms of the so-called Dirac quantization map. However, it
is well-known that such a ‘full’ quantization doesn’t in general exist: the mathematical
requirements are inconsistent. That being said, we will see that some of the supposedly
‘natural’ assumptions are actually rather poorly justi�ed from a physical point of view, a
matter more of mathematical convenience than fundamental physical principles. In an
attempt to understand what a quantization method can, and what it cannot accomplish
we will study the physical motivation behind the assumptions, as far as possible. As result,
we will give a rough description of what we can expect from a quantization method
founded on physical principles. In the last section, we will provide a short outline of
Isham’s Canonical Group Quantization scheme from a birds-eye perspective and discuss
how the group-theoretical quantization method embraces these ideas.

A second goal of this chapter is to discuss the mathematical framework of quantum
theory at points where standard physics textbooks are insu�cient to our cause. Some
simpli�cations that are more or less acceptable for the trivial con�guration space Rn are
no longer justi�ed in case of physical systems with non-trivial phase spaces, where global
and topological aspects enter the arena. Of great importance is the di�erence between
self-adjoint and merely symmetric operators, discussed in section 1.6, which is the major
motivation for a group-based approach to quantization.

1.1 Canonical Quantization à la Dirac

We already discussed Dirac’s canonical quantization recipe in the introduction.
For the following, however, it is convenient to give a more formal de�nition of Dirac’s
quantization method. A commonly agreed upon is the so-called Dirac quantization map
(see e. g. [TAE05, section 1.1] or [Woo97, section 8.1]). The explicit de�nition includes
an irreducibility condition, which we want to formulate using the notion of complete sets
of observables [Bla92, section 2.2] in order to avoid unnecessary restrictions.

De�nition 1.1.1 (Complete set) Given a Lie algebra (A, [ ⋅ , ⋅ ]), consider a set of Lie The motivation for complete
sets comes from Schur’s lemma.
The variant given in [Sim96,
theorem II.4.1] states that, if a
*-representation U of the group
algebra is irreducible, then the
representing operators U(f)
form a complete set.

algebra elements C = {ai} ⊆ A. We say that C is a complete set (in the algebraA) if for
every a ∈ A we have:

[ai,a] = 0 ∀ai ∈ C ⇒ a∝ 1A ,

i. e. if a commutes with all elements of C it has to be proportional to the identity.

In other words, a set C ⊆ A is called complete if and only if there are no nontrivial
subspaces S ⊆ A, other than {0} and A itself, which are invariant under the action of
all elements in C (a subspace is said to be invariant under c ∈ C when cS = {ca ∶ a ∈ S}
is a subset of S). The classical observables of position and momentum, qi and pj, form
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such a complete set under the Poisson bracket, as do the associated quantum operators
q̂i and p̂j under the commutator.

De�nition 1.1.2 (Dirac Quantization Map) Let M be a classical phase space and let
H be the corresponding quantum-mechanical Hilbert space (a separable complex Hil-
bert space). The Dirac quantization map is then a mapping of classical observables (i. e.
smooth, real-valued functions over M) to operators on Hilbert space:

Q ∶ C∞(M,R) → Op(H) ,

with the following properties:

(q1) the mapQ is R-linear,

(q2) the operatorsQ(f) for f ∈ C∞(M,R) are essentially self-adjoint,

(q3) Qmaps Poisson brackets to commutators such that:

[Q(f),Q(д)] = iħQ({f, д}) , (1.1)

(q4) the map Q is irreducible in the sense that any complete set of classical observables
{f1, . . . , fk} is mapped to a complete set of operators {Q(f1), . . . ,Q(fk)},

(q5) the constant function 1M on M maps to the identity onH, i. e.Q(1M) = 1H.

In the case of conventional quantum mechanics over the con�guration space Rn the
irreducibility condition (q4) guarantees that the well-known Schrödinger representation
of the canonical commutation relations in position space (that is, the representation on
H = L2(Rn, dnx) with operators realised as q̂j = qj and p̂j = −iħ ∂/∂qj) is essentiallyWe will discuss the meaning

of ‘essentially unique’ more
thoroughly in the second part
of section 1.6 but we do need
some prerequisites before that.

unique. A proof of this statement was �rst outlined by Stone [Sto30] and later elaborated
on by von Neumann [Neu31]. A good contemporary presentation of the now famous
Stone–von Neumann theorem can be found in [Ros04].

Remark 1.1.3 (von Neumann rule) There is sometimes an additional requirement, the
so-called von Neumann rule. It is a condition of the form:In essence, the von Neumann

rule preserves the multiplicative
structure of the observables,
whereas the condition (q3)
preserves the Lie bracket.

Q(φ(f)) = φ(Q(f)) , (1.2)

for some functions φ ∶ R → R and some observables f. However, there seems to be no
consensus in the literature on what is meant by ‘some’ functions and ‘some’ observables.
In the original work of von Neumann [Neu68, section III.1, (F.)] equation (1.2) is sup-
posed to hold for all physical observables and for all functions φ (as long as both sides of
the equation are well-de�ned), while others have much weaker conditions. For example,
they may only requireQ(qn) = Q(q)n for the position and an analogous condition for
the momentum p.

1.2 Problems of the Dirac Quantization Map

Although quite successful in applications, the canonical quantization method has
some severe shortcomings from a theoretical point of view. The most signi�cant is that
a Dirac quantization map satisfying the above conditions doesn’t exist! This is the famous
result of Groenewold [Gro46] and Van Hove [VH00]. Adapted to our de�nition of the
Dirac quantization map it says the following:
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Theorem 1.2.1 (Groenewold, Van Hove) The postulates (q1), (q3) and (q4) as they are
given in de�nition 1.1.2 are inconsistent, even if we restrict the set of classical observables
to polynomials in q and pof degree ≤ 4.

The following proof is essentially the one given in [TAE05, section 1.2]. We repeat
their argument in this work as it gives some insights on how to proceed later on. To save
us some indices we consider only a one-dimensional con�guration space. Nevertheless,
the argument translates naturally to higher dimensions, so this is no loss of generality.

Proof. We will employ two di�erent Poisson brackets to quantize the classical observable
p2q2 using the given conditions, namely:

{q3, p3} = 9p2q2 , {q2p,qp2} = 3p2q2 . (α)

First note, as a result of (q3) we still have the usual canonical commutation relations of
q̂ = Q(q) and p̂= Q(p) at our disposal:

[q̂, p̂] = iħ , [q̂, q̂] = 0 , [p̂, p̂] = 0 . (β)

To apply the Poisson brackets in (α) we further need to quantize all the terms that occur
inside the brackets. This is done in several consecutive steps:

‘pq’: Consider the Poisson brackets {pq,q} = −q and {pq, p} = p. If we temporarily
write X = Q(pq), the correspondence rule (q3) yields the commutators:

[X, q̂] = −iħq̂ , [X, p̂] = iħp̂ .

Yet, these commutators are also ful�lled by the operator X′ = 1
2(p̂q̂+ q̂p̂) if we apply

the canonical commutation relations of q̂ and p̂ from (β). Hence the di�erence X − X′
commutes with both q̂ and p̂, andX−X′ must then be a multiple of the identity according The irreducibility ofQ implies

that q̂ and p̂ form a complete
set (de�nition 1.1.1).

to the irreducibility condition (q4). Thus we obtain:

X = Q(pq) = 1
2(p̂q̂+ q̂p̂) + c1 ,

with some constant c ∈ C.
‘qm and pm’: Pick the Poisson brackets {qm,q} = 0 and {qm, p} = mqm−1 and let us

write Ym = Q(qm). The correspondence rule (q3) together with the linearity (q1) yields:

[Ym, q̂] = 0 , [Ym, p̂] = miħYm−1 .

Since both commutators are also ful�lled by Y′m = q̂m we can use the same argument as
above to see that Ym and Y′m di�er only by some constants dm ∈ C:

Ym = Q(qm) = q̂m + dm1 .

In this case it is possible to show that the constants dm vanish. Using the expressions for
X and Ym from above and the Poisson bracket {qm, pq} = mqm we get:

miħYm = [Ym,X] = [q̂m + dm1, 12(p̂q̂+ q̂p̂) + c1]
= [q̂m, 12(p̂q̂+ q̂p̂)] =

1
2([q̂

m, p̂] q̂+ q̂ [q̂m, p̂]) = miħq̂m ,

and hence Ym = q̂m. An analogous calculation can be done for pm; together we have: Observe that (γ) is a special
case of a von Neumann rule
(see remark 1.1.3).Q(qm) = q̂m , Q(pm) = p̂m . (γ)
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‘q2p and qp2’: Given the Poisson brackets {q3, p2} = 6q2p and {q2, p3} = 6qp2
these products can be reduced to expressions containing only the powers of q and p for
which quantizations are known from (γ):

6iħQ(q2p) = [Q(q3),Q(p2)] = [q̂3, p̂2] = [q̂3, p̂] p̂+ p̂[q̂3, p̂] = 3iħ(q̂2 p̂+ p̂q̂2) .

After an analogous calculation involving the second bracket we obtain:

Q(q2p) = 1
2(q̂

2 p̂+ p̂q̂2) , Q(qp2) = 1
2(q̂p̂

2 + p̂2q̂) . (δ)

Now we �nally have everything we need to quantize the product p2q2 using the
Poisson brackets mentioned in (α). Via the �rst one we get:

9iħQ(p2q2) = [Q(q3),Q(p3)] = [q̂3, p̂3] ,

which can be further evaluated using the commutation relations (β) and then yields:

Q(p2q2) = q̂2 p̂2 − 2iħq̂p̂− 2
3ħ

21 . (ε)

On the other hand, if we use the second Poisson bracket from (α) and the results from
equation (δ), we obtain:

3iħQ(p2q2) = [Q(q2p),Q(qp2)] = [ 12(q̂
2 p̂+ p̂q̂2), 12(q̂p̂

2 + p̂2q̂)] ,

which again by (β) results in:

Q(p2q2) = q̂2 p̂2 − 2iħq̂p̂− 1
3ħ

21 . (ε′)

This is obviously not the same as (ε); both results di�er by a term of 13ħ
21! This means the

given conditions are inconsistent with each other and the quantization map is therefore
ill-de�ned. ∎

Remark 1.2.2 Other no-go theorems exist for various combinations of the conditions
in de�nition 1.1.2 and the von Neumann rule from remark 1.1.3 (a review can be found
in [TAE05]). The proofs usually look similar to the one given above: take some product
of q’s and p’s and quantize it via the rules in question to obtain a contradiction.

The theorem shows that a full Dirac quantization map doesn’t exist. More import-
ant, however, is the fact that the requirements turned out to be inconsistent even though
they all ‘look’ kind of ‘natural’. This means our intuition about the proper mathematical
description is wrong. In the following sections we will thus study what the conditions
actually mean from a physical point of view – which ones really are ‘natural’, and which
ones are to be discarded.

That being said, the proof of the Groenewold–Van Hove theorem already gives some
hints how a contradiction can be avoided from a mathematical point of view:

Remark 1.2.3 (Geometric and Deformation quantization)

■ An obvious way to circumvent the conclusion from theorem 1.2.1 is to restrict the
domain of Q to contain only some quantizable observables which form a subset of
the functions on phase space:

Obs(M) ⊂ C∞(M,R) .
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The product p2q2 which appeared in the proof then simply ceases to be quantizable
and hence the contradiction vanishes. Furthermore, it is possible to keep a larger
set of quantizable observables if one in turn relaxes some of the other requirements.
This is roughly the approach taken by Geometric Quantization (see [Woo97]). The
method of Canonical Group Quantization also falls into this category. I will argue
in section 1.4 why I understand this restriction of the set of quantizable observables
to be a physically reasonable assumption.

■ A di�erent route is taken by Deformation Quantization. The underlying observa-
tion is that the two contradicting results in the proof of theorem 1.2.1 di�er only by
a term of order ħ2. The idea is hence to modify the correspondence (q4) between
Poisson brackets and quantum commutators by adding terms in higher orders of ħ
that disappear in the limit ħ→ 0, i. e. Notice, however, that ħ → 0

is not a true classical limit (see
[DHS00, section 4.8]). A phys-
ically reasonable classical limit
requires a more sophisticated
approach (see e. g. [Lan98]).

[Q(f),Q(д)] = iħQ({f, д}) +O(ħ2) .

This is usually accomplished by means of a ‘deformed product’ (called star or Moyal
product), which is de�ned on the classical phase space. Details on this method can
be found, for instance, in the textbook written by Waldmann [Wal07].

Remark 1.2.4 There is actually another di�culty with canonical quantization when it
comes to con�guration spaces other than Rn. Consider, for example, a particle that is
restricted to move on the positive real line. The con�guration space is Q = R+. It seems
reasonable to use the position q and momentum pas classical observables, which satisfy
the usual commutation relations. However, when we try to represent these by operators
q̂ = q and p̂ = −iħ ∂/∂q, it turns out that the momentum operator p̂ is not self-adjoint
on the Hilbert space H = L2(R+, dq). Thus, a straightforward application of Dirac’s See section 1.6 for the de�nition

of self-adjointness.canonical quantization recipe is impossible.
The reason is that the exponentiated momentum operatorU(a) ∶= e−iap̂ shifts wave

functions to the negative numbers (for a < 0) according to:

(U(a)ψ)(x) = ψ(x − ħa) ,

which in this case implies a ‘loss’ of probability as shown in �gure 1.1. Given that unitary This argument is quite useful as
it allows us to reason about pos-
sible unitarity or self-adjointness
of operators in an intuitive way.

operators preserve probabilities it is clear that the operatorU(a) cannot be unitary. This
result, however, contradicts Stone’s theorem which states that the exponential eiax̂ of any

q0
‘lost’ probability

e−iap̂
∣ψ∣2

Figure 1.1 The operator e−iap̂ can ‘shift’ the wave function ψ to the negative
numbers, and hence probability is not preserved if we consider the Hilbert space
L2(R+, dq) over only the positive real numbers.
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self-adjoint operator x̂ is a one-parameter group of unitary transformations (see [Sto30]
or theorem 1.6.15 on page 28). Consequently, the operator p̂ cannot be self-adjoint.

We are left with the question how to �nd classical observables that can be quantized
to yield meaningful self-adjoint operators. The canonical quantization programme of
Dirac doesn’t provide an answer. We will see later how the Canonical Group Quantization
scheme deals with such phase spaces.

1.3 Some Words on ‘Simplicity’

The requirements in the de�nition of the Dirac quantization map are based on an
intuition of what looks ‘natural’. As the last section has proven this intuition to be wrong,
we need to ask ourselves about the causes of this misjudgement.

When modelling a physical theory there are several guiding principles involved. First
of all, a physical theory should of course describe empirical observations. Nevertheless, if
two competing theories describe the same matter in di�erent ways we usually assume the
simpler one has to be more fundamental. Yet how do we decide which theory is ‘simpler’?
What do we mean when we say that a theory is ‘simpler’ than another?

At this point some heuristic notions of economy, elegance and beauty enter the �eld.
In particular the development of modern theories – like string theory, quantum grav-
ity and extensions of the standard model of particle physics – is heavily in�uenced byRota discusses the concept of

mathematical beauty in his
amazing book [Rot97].

some idea of mathematical beauty. Sometimes this principle of mathematical beauty
even comes before other considerations. This was also Dirac’s opinion during the time
quantum mechanics was developed [Dir38]:

‘[…] The method is to begin by choosing that branch of mathematics which
one thinks will form the basis of the new theory. One should be in�uenced
very much in this choice by considerations of mathematical beauty. […]’

As is well-known, this ‘mathematical approach’ to physics had, and still has, quite some
successes, in particular when symmetry principles are involved.

Despite this, we should be careful how we apply this ‘rule of simplicity’. AlthoughThe rule of simplicity is also
known as law of parsimony
or as Ockham’s razor in the
literature.

it has proven useful when developing new concepts it can also lead to wrong decisions
(some examples are given in [Ger07] and [Giu08]). This happens speci�cally if we look
for the ‘wrong kind’ of simplicity. As such, the question whether a theory possesses some
desirable mathematical properties doesn’t necessarily say if the theory is correct or not.
Perturbative renormalizability, for example, is certainly a desirable and useful property
of a quantum �eld theory, as it allows us to do perturbative calculations. Nevertheless,
we should always keep in mind that perturbation theory is a mathematical tool and not
an actual physical process.

Another problem we will have to face in our study of quantization is the di�erence
between what physicists say compared to what physicists do. To give an example, most
textbooks on quantum mechanics claim that pure states can be described by vectors in
the Hilbert space H = L2(Rn, dnx) of square-integrable functions (see e. g. [CDL99,
section 3.2.1], [Sak94, section 1.2]). Although in principle correct, the same books then
use plane waves to describe free particles, which are clearly not square-integrable. We
will demonstrate in section 1.5 how this inconsistent use of mathematical concepts can
lead to contradictions, and how those issues can be avoided.

The goal of the remaining part of this chapter is two-fold. On one side, we want
to have a closer look at the mathematical foundations of quantum mechanics. We will
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try to clarify some �ner points of the mathematical concepts relevant to quantization
attempts and explain how the mathematical framework can be brought into accordance
with real practical calculations. The other goal is to give some explanations – or at least
good motivations – why the mathematical concepts we are using are necessary from a
physical point of view.

1.4 Measurements and Quantizable Observables

To begin with, we already pointed out in section 1.2 that it is possible to obtain a
self-consistent quantization method if we restrict the set of quantizable observables. We
want to explain why this restriction is physically quite reasonable. First, though, we need
to determine what the conceptual meaning of the term quantizable observable is. While
words like ‘observable’ and ‘measurements’ directly spring to mind, it turns out that these
are not the best associations to think of.

1.4.1 Observables and Measurements

We will startwith a simple working de�nition of an observable, which can be used
for both classical and quantum observables (see [Omn99, chapter 8, p. 96]):

A physical observable is a physical quantity of a system that can in principle
be observed and measured.

This de�nition immediately raises some new questions: What is meant by physical
quantity? What is an observation or a measurement? – It is an interesting point that these
questions are usually only posed for quantum observables. On the other hand, there
seems to be a tacit agreement that all functions on classical phase space correspond to
classical observables and can be measured as a matter of principle.

When it comes to how actual experiments work, however, it turns out that only a
few quantities can really be measured directly (even in classical physics). Consider for
instance how the velocity of a particle is ‘measured’. In fact, we don’t measure velocity
directly. What we typically do measure is positions of the particle at distinct times, and
then we calculate the velocity from this data. Another example: when we say that we
‘measure’ the momentum of a charged particle, we will most often measure the particle
trajectory when subjected to a magnetic �eld (e. g. in a wire chamber; again a series of
position measurements) and then calculate the momentum from the radius of curvature
of the trajectory. Even time measurements can �nally be tracked down to position meas-
urements of an oscillating system (most obviously the pointer of analog clocks).

To go to the extreme, Penrose remarks in [Pen05, section 21.8] that ‘some physicists
have indeed taken the view that all measurements are ultimately measurements of posi-
tion’, and he points the reader to Goldstein [Gol87] and Bell [Bel04] for references. The
latter writes in [Bel82]: ‘it is always positions that we are in the end concerned with’, and
‘in physics the only observations we must consider are position observations, if only the
positions of instrument pointers’. While certainly quite radical, this view is consistent There is also a quite interesting

discussion of measurements
and the role of so-called device
observables in the book of Du-
bin et al. [DHS00, chapter 16].

with the way measurements were presented above, and as far as I can tell there aren’t any
counterexamples, neither for classical nor for quantum-mechanical measurements.

On the other end of the spectrum, von Neumann proposes a quite di�erent inter-
pretation of (quantum-mechanical) observables [Neu68, section IV.1]:
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‘Unter einer Größe ist eigentlich die Anweisung zu verstehen, wie sie zu mes-
sen ist – und wie ihr Wert aus den Zeigereinstellungen der Meßinstrumente
abzulesen bzw. zu berechnen ist.’

(‘an [observable] quantity must rather be seen as a set of instructions how to measure
it – and how its value is to be read o� the indicator positions of measuring devices, or
calculated therefrom.’)

There are two interesting points to remark about this: First, von Neumann notes that
what we actually measure directly are – again – indicator positions. The values of physical
quantities are then calculated from these results. This perspective �ts perfectly with our
ongoing discussion if we make the distinction between primary observables, for the
quantities that can be measured directly, and secondary observables, for the quantities
that have been calculated from these, and so are measured only indirectly.

On the other hand, von Neumann assumes that (secondary) observables are really
nothing more than measurement instructions. What speaks against this view is the fact
that the same observables appear throughout the underlying theory, including parts
which aren’t directly related to measurements. One could argue, of course, that quantum
mechanics is a theory exclusively about measurements. Still, while this perspective might
be compatible with the Copenhagen interpretation, there are some alternative formula-
tions of quantum mechanics where the measurement process doesn’t play such a specialA good review of some alternat-

ive formulations and interpret-
ations can be found in [Pen05,
chapter 29].

role (e. g. the pilot-wave formulation of Bohmian mechanics [Boh52a; Boh52b], or ideas
surrounding the concept of decoherence [Sch04]). Moreover, we were also searching for
a de�nition of classical observables and it seems to me quite questionable to put such an
emphasis on measurements in classical mechanics.

1.4.2 Quantizable Observables

On the other hand, the basic observation that justi�es the study of quantization is
that some quantities of the classical theory have counterparts in a somehow associated
quantum theory. In conventional quantization on Rn, for instance, we have position q,
momentum p and a constant, corresponding to quantum operators q̂, p̂ and a multiple
of 1. Beyond these, some additional quantities can be quantized but the Groenewold–
Van Hove theorem showed that we will quickly run into problems.

Quantization, however, isn’t really about measurements. Hence, for the purposes of
quantization I want to propose a classi�cation of physical quantities as in �gure 1.2. The
underlying idea is to split up the physical theory into several distinct parts:

dynamical
variables

measurable
observables

quantizable
observables

Figure 1.2 Quantizable observables seen as a subset of the dynamical variables.
The di�erence between dynamical variables and measurable observables is �rst
of all a conceptual one. The mathematical descriptions usually overlap.
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dynamical variables
of the classical theory

dynamical variables
of the quantum theory

quantization

quantizable
observables

Figure 1.3 The correspondence established by a quantization method may not
hold for all dynamical variables but only for a subset of quantizable observables.

theory = kinematics + dynamics +measurements .

Within the scope of this decomposition, a quantization procedure essentially allows us The idea to make a distinction
between dynamical variables
and measurable observables is
also supported by remark 6.2.3.

to construct the kinematical and the dynamical part of a quantum theory based on the
kinematics and dynamics of a given classical theory. The probabilistic description of
measurements in quantum theory is then built on top of this foundation.

The term dynamical variables in this context describes all quantities that appear in
the kinematical and dynamical part of the theory. In the mathematical formulation of
classical mechanics the dynamical variables are basically smooth, real-valued functions
on phase space. Nevertheless, I wouldn’t expect that every arbitrarily crazy function on
phase space necessarily plays a dynamical role. On the other hand, it may prove useful
to include quantities beyond the real-valued functions. Electrodynamics, for instance, A well-known example for

dynamical variables which are
not measurable are ghost �elds.

employs complex vector �elds to facilitate calculations. It might even be a useful trick
to introduce additional dynamical variables with absolutely no measurable impact for
the classical theory if these dynamical variables pick up some physical role and have
measurable consequences after the quantization method has been applied.

In contrast to dynamical variables, I want to use the term measurable observables as
being conceptually related to measurements, just as the name implies. The example of
ghost �elds shows that not all dynamical variables have to be measurable. On the other
hand, the arbitrarily crazy function on phase space, mentioned above, with no dynamical
role to play is still measurable in the sense of von Neumann’s de�nition of observables.

The conceptual di�erence between dynamical variables and measurable observables
is probably best made clear in the context of quantum �eld theory where bare quantities
are used as dynamical variables, whereas renormalised quantities represent measurable
observables. This example also shows that, despite the conceptual di�erence, there is usu-
ally a big overlap when it comes to the mathematical description (bare and renormalised
operators are both operators). This is shown in �gure 1.2.

Finally, if classical mechanics is seen as a limiting case of quantum mechanics, which
is the prevailing opinion, it is reasonable to expect some similarities in their mathemat-
ical formulations. In particular we would expect a correspondence between at least some
basic dynamical variables of the classical and the quantum theory (there is a more thor-
ough discussion of this point in Mackey’s book [Mac63, section 2.4]). That being said, Besides, two quantities with a

similar mathematical appear-
ance may still play di�erent
physical roles in classical and
quantum theory (see [DHS00,
section 4.8]).

we can’t ignore that there are also structural di�erences between classical and quantum
theory. Consequently, the basic correspondence might not hold between all dynamical
variables of the classical theory and all dynamical variables of the quantum theory.

A pragmatic approach is to expect a relation to exist for a subset of the dynamical
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variables, the quantizable observables (see �gure 1.3). The size of this set of quantizableDeformation quantization, for
example, allows for a bigger
set of quantizable observables
at the expense of a ‘less strict’
correspondence (remark 1.2.3).

observables depends on how ‘strict’ we require the correspondence to be, and hence,
ultimately, on the quantization procedure. It seems physically reasonable to assume that
at least some basic dynamical variables of the classical theory are quantizable, yet not to
require this for every single (arbitrarily crazy) dynamical variable.

1.4.3 Quantization on Non-Trivial Phase Spaces?

A question related to the one of quantizable observables is to ask whether any
classical phase space we can think of must produce a meaningful quantum theory. Again,
it is certainly desirable from a mathematical point of view, yet there are some physical
arguments why this need not be the case. Although this topic has already been discussed
by Isham in [Ish83, section 2], the answer will help us to better understand the aim of
quantization. In the process, the nature of the relationship that exists between a classical
and the associated quantized system will also become clearer.

To understand the issue we want to raise, remember that more general phase spaces
typically appear in classical mechanics if we consider systems subject to constraints. If
we look closely at concrete physical systems, however, most of these classical constraints
are valid only on a macroscopic level but ‘soften’ if we examine the same system from a
microscopic perspective. Consider for example a particle restricted to move on a circle,
say the realisation of a mathematical pendulum consisting of a weight attached to a rod of
a given length. Of course, this length can be seen as constant in the macroscopic system,
leading to the con�guration space S1. On a microscopic level, though, it will only be
constant on average (see �gure 1.4).

Seeing this discrepancy between macroscopic and microscopic view, we have to ask
ourselves if the same kinds of constraints that are possible in classical mechanics still
make sense for quantum systems. In an analogous quantum system which describes theEven if the constraint is rigidly

enforced in a quantum system,
we might sometimes run into
problems with self-adjointness
of operators if we try to restrict
the con�guration space (see
remark 1.2.4 for an example).

circular motion of a particle it will probably be more appropriate to use a potential to
implement the constraint, instead of a restricted con�guration space.

In the following discussion we will use the name extrinsic constraints for the type
of constraints like the one above, because these constraints are somehow imposed ‘from
the outside’. A typical indicator for extrinsic constraints is that the phase space appears,
conceptually, as a submanifold of some bigger space.

ℓ

ℓ

(b)(a)

Figure 1.4 The macroscopic constraints (a) of a mathematical pendulum ‘soften’
if we look at them from microscopic perspective (b).
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quantization method

?

mathematical model
of the classical system

mathematical model
of the quantized system

concrete physical realisation
of the classical model

concrete physical realisation
of the quantized model

idealisation idealisation

Figure 1.5 A quantization method establishes a relation between idealised math-
ematical models of concrete physical systems.

A di�erent type of constraints arises from ‘internal’ properties of the system; hence
we call them intrinsic constraints. In contrast to extrinsic constraints, a phase space that
occurs in the presence of intrinsic constraints appears conceptually not as subspace of a
bigger space but is ‘in its nature’ a more general manifold.

An example featuring intrinsic constraints is a system ofn indistinguishable particles
moving in d spatial dimensions [LDM71; LM77; Rey06; PRL10]. Leinaas and Myrheim
pointed out in [LM77, section 2] that indistinguishability of identical particles is neces-
sary already in the classical description to resolve Gibbs’ entropy paradox. The proper
classical con�guration space would thus be:

Q = (Rnd ∖ ∆n)/Sn , (1.3)

where the subtraction of ∆n ensures that no particles occupy the same point in space:

∆n = {(x1, . . . ,xn) ∈ (Rn)d ∶ xi = x j for at least one pair i, j∈ {1, . . . ,n}} , (1.4)

and dividing out the symmetric group Sn implements indistinguishability of particles.
The dominating opinion is that quantization on such a con�guration space makes sense
also from a physical point of view, because the indistinguishability is expected to carry
over to the quantum theory.

To look at this problem of quantizability from a di�erent perspective, consider the
conceptual model in �gure 1.5. The key point is that a quantization method establishes a
relation between idealised mathematical models. From a physical perspective, however,
these models will be meaningless unless there are concrete physical systems which real-
ise these mathematical models (at least approximately).

Think of the classical harmonic oscillator, for instance. The mathematical model in
this case is an appropriate idealisation of an underlying, concrete physical system (say, a
mass attached to a spring). Given the classical model, a quantization method may return
a quantized mathematical model. To make sense of the quantized model, however, we
need to look for actual, physically realised systems which the quantized model describes
in some reasonable idealisation. The quantized model of the harmonic oscillator – the This relation via a quantization

procedure is the reason why
we call some concrete physical
system a quantum harmonic
oscillator – not because of an
actual physically justi�ed limit
that relates the two models.

quantum harmonic oscillator – is realised by a particle moving in a harmonic potential,
for instance. On the other hand, it is di�cult to �nd an appropriate application for the
quantized model of the mathematical pendulum.

That being said, if there is no physical system which realises the quantized model, there
is no physical reason for the classical model to be quantizable in the �rst place.
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As a result, for most typical examples of nontrivial con�guration spaces discussed in
the literature it doesn’t make sense to expect them to be quantizable from a conceptual
point of view because the classical system doesn’t have a direct quantum equivalent. Still,
it could be that the resulting quantum theory is realised by a system that has a quite
di�erent physical interpretation. In contrast, there are classical systems, like the model
of indistinguishable particles, that should genuinely be quantizable because we expect
an analogous interpretation in the quantum theory. Anyway, even if there is no sensible
physical interpretation but quantization is possible mathematically, we can still use such
examples as ‘toy models’ to learn something about the quantization method.

1.5 The Complex Structure and Quantum States

When we introduced the Dirac quantization map in the beginning of this chapter
we tacitly assumed that quantum mechanics has to be formulated in terms of operatorsIt is also possible to start with a

C∗-algebra of observables. The
Hilbert space, however, then
appears as a derived notion.

acting on a complex Hilbert space. It also seems to be common knowledge, dating back
to the birth of quantum mechanics in the 1920s, that pure states are vectors in this Hilbert
space. Or was it rays?

This section is meant to shed some light on states in quantum mechanics. We will
�rst investigate why the mathematical formulation of quantum theory seems to require a
complex structure – in contrast to classical mechanics. Furthermore, we want to answer
the question whether states are vectors or rays. We will also show how the concept of
the Hilbert space needs be extended to accommodate all eigenstates if we want to study
observables with continuous spectra (see also [Gie00] for this last part).

1.5.1 The Complex Structure in Quantum Mechanics

To begin with, the physical reason why the space of states should be a vector space
is the superposition principle. Most textbooks on quantum mechanics then just assume
that complex numbers are a necessity of the mathematical formulation, not worth any
further consideration. Still, Cohen-Tannoudji et al. mention in [CDL99, section 1.1.2]
that the quantum mechanical wave function is complex in its nature, unlike it is the case
in classical electrodynamics where complex numbers are used merely for mathematical
convenience. Unfortunately, the book provides no proper explanation, just some vague
hints that it has something to do with the probabilistic interpretation.

An argument concerning the complex structure which is based on the probabilistic
interpretation can indeed be found in Omnès’ book [Omn99, chapter 5, p. 42]:

‘A simple example may show that one cannot generally use real wave func-
tions because of their probabilistic meaning. Consider a wave function for
a particle having a de�nite momentum p in some reference frame. It must
be a periodic function according to de Broglie, and if real, it can be writ-
ten as Acos[(px − Et)/ħ + α]. At time zero, the probability for observing
the particle at a point x vanishes at the nodes of the cosine, which are sep-Actually, the same arguments

shows that there must not be
any variations of the probability
density which would allow us to
deduce the momentum.

arated by a distance λ/2 = πħ/p [see �gure 1.6]. In another reference sys-
tem moving at a velocity V with respect to the �rst one, the momentum
is p′ = p− mV, and the points where the probability of observation van-
ishes are separated by a di�erent distance λ′/2 = πħ/p′. This is obviously
impossible, since distances are invariant in nonrelativistic physics. The dif-
�culty disappears when the wave function is a complex exponential.’
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ψ

∣ψ∣2

λ/2 = πħ/p

Figure 1.6 The issue with real-valued wave functions is that the probability dens-
ity ∥ψ∥2 vanishes at distances determined by the momentum. However, this is
incompatible with changes of reference frames.

This argument proves, in fact, that simple real-valued wave functions cannot be used
(at least in nonrelativistic quantum mechanics). Nevertheless, it doesn’t justify the need
for complex numbers. Omnès remarks that the di�culty disappears if the wave function
is allowed to be complex, yet this is not the only viable solution. It is equally possible
to circumvent the problem without referring to a complex structure, say by use of wave
functions that assume values in R2. This ‘proof ’ certainly fails.

Sakurai, on the other hand, presents a completely di�erent argument in favour of
complex numbers. He discusses a Stern–Gerlach experiment featuring a beam of silver
atoms and then remarks [Sak94, section 1.1]:

‘[…] we see that if we are allowed to make the coe�cients preceding base
kets complex, there is no di�culty in accommodating the Sy± atoms in our
vector space formalism […]. We thus see that the two-dimensional vector
space needed to describe the spin states of silver atoms must be a complex
vector space; […]
[…] we have already accomplished the main goal of this section: to intro-
duce the idea that quantum-mechanical states are to be represented by vec-
tors in an abstract complex vector space.’

It is true, in fact, that half-integer values of spin correspond to complex representations
of the group SU(2) [Mac63]. Nevertheless, we can ask ourselves why the rest of quantum
mechanics seems to require a complex structure before spin is even introduced. Actually,
nonrelativistic quantum mechanics incorporates spin more or less like an afterthought,
not as an essential ingredient. In the common formulation it requires some formal (and
mathematically quite questionable) notation – the ubiquitous σ ⋅ a = σiai, with Pauli
matrices σi – which, as it turns out, embeds the ‘spin-less’ quantum mechanics in some
Cli�ord algebra that comes with its own complex structure [DL03; Jun06]. Seen this way,
Sakurai’s argument is also not that terribly convincing. We would much prefer a reason
that comes from plain quantum mechanics, without having to incorporate spin.

Another, frequently cited attempt to explain the complex structure has been made
by Stueckelberg [Stu60]. He starts with a quantum theory build upon real numbers and
then argues that an operator J with J2 = −1 needs to be introduced in order to have an
uncertainty principle. More speci�cally, given two symmetric operators F and G acting
on a real Hilbert space, he explains that the uncertainty principle, if one doesn’t want
to introduce a complex structure, has to be of the form ⟨(δF)2⟩⟨(δG)2⟩ ≥ λ2⟨P⟩, with
P = − [F,G]2 and δA= A−⟨A⟩, because the expectation value of the commutator of self-
adjoint operators ⟨[F,G]⟩ vanishes in a real Hilbert space. In section 2 of the paper he For real Hilbert spaces we have

⟨Fψ∣Gψ⟩ = ⟨Gψ∣Fψ⟩. In case of
complex Hilbert spaces there is
only a conjugate symmetry.

then presents his argument, intending to rule out this possibility. This argument would
in turn force us to introduce a complex structure. He argues that the only choice for λ
is given by λ = 0, which yields the trivial equation ⟨(δF)2⟩⟨(δG)2⟩ ≥ 0 that is obviously
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incompatible with a meaningful uncertainty principle.
However, in order to deduce λ = 0 he makes the innocent-looking assumption that

the spectrum of G should be bounded. As consequence, the argument doesn’t actually
show that we need a complex structure to formulate an uncertainty principle; rather it
results in the statement that only unbounded operators exhibit a nontrivial uncertainty,
which is a well-established fact in functional analysis [Gro88, section 5.5]. This issue was
already noted by Sharma and Coulson in [SC87]. Although they provide an idea how a
proper proof following this train of thought could look like, in the end they conclude
their paper with the words: ‘An attempt is being made to prove this conjecture, but this
is a problem in measure theory on a nondistributive lattice which is a touchy business’.

There actually exists a follow-up on this paper, [Sha88], written by Sharma alone.
He doesn’t, however, pursue his original proposal from [SC87] but presents a di�erent
argument:

‘It is, of course, clear that the commutation relation

[q, p] = iħ1

is the right one and can arrive at this commutation relation from a variety
of physical considerations […]. It is also clear that such a commutation rela-
tion cannot exist in a real Hilbert space unless one introduces the operator
ι [with ι2 = −1; a complex structure] to take the place of i.’

While true that the right-hand side of the equation features the imaginary unit i, the
same i also appears on the left-hand side – although hidden for example in the expres-
sion p= −iħ∂q if we choose the Schrödinger representation. It would thus be possible to
circumvent Sharma’s conclusion if we divide the whole equation by i and represent the
momentum by p= −ħ∂q. A related issue is that the author arrives at the conclusion thatThat p is then no longer a self-

adjoint operator isn’t that prob-
lematic because the momentum
is not directly measurable (in
the stricter sense of section 1.4).

the usual commutation relation is ‘of course, the right one’ by citing only references that
a priori(!) assume a complex Hilbert space. It is not even asked if it has to be replaced by
a di�erent equation on a real Hilbert space.

In the end it seems Sharma wasn’t that convinced by his own argument either. He
doesn’t go into the details but puts forward yet another proposal, now by means of the
probabilistic interpretation of wave functions. It is in fact the same approach that we
have already shown to be wrong above.

After seeing all the attempts to justify a complex structure fail for one reason or
another, it seems there is currently no actual proof left (as far as I could �nd out, at least).
Nevertheless, there are some good motivations to require a complex structure.

First, there is currently no formulation of quantum mechanics that doesn’t need a
complex structure at some point or another, although it has been searched for. While
this could simply be dismissed as a lack of creativity, the failed attempts show that there
is at least no simple way to avoid a complex structure.

Furthermore, we know from the discussion above that a simple real Hilbert space is
incompatible with the probabilistic interpretation of wave functions. We already men-
tioned that this doesn’t prove the necessity of complex numbers, but there is an argument
based on the characteristic properties of quantum logic that may show that a complex
Hilbert space, even if not the only option, may be the simplest choice. The idea goes back
to Mackey’s work [Mac63, section 2.2]:

Instead of starting out with a Hilbert space, he �rst establishes a correspondence
between observables and ‘questions’ concerning the results of measurements, and then
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proposes a set of physically motivated axioms for these questions in quantum mechanics.
One of the main di�erences between classical and quantum theory is then that in the
latter there exist questions that are not simultaneously answerable. In consequence, he
concludes, the partially ordered set of all questions in quantum mechanics forms a so-
called σ-complete orthomodular lattice (please refer to Mackey’s book for a de�nition).
As his 7th axiom, he then assumes [Mac63, section 2.2, Axiom VII]:

‘The partially ordered set of all questions in quantum mechanics is isomor-
phic to the partially ordered set of all closed subspaces of a separable, in�nite
dimensional Hilbert space.’

Mackey notes that, while it may seem a little ad hoc at �rst, the axiom is actually quite
natural if one looks at all the choices that are left. His main point in favour of a complex
Hilbert space is that this gives a ‘natural correspondence between observables and one-
parameter groups of symmetries’, like Noether’s theorem does in classical mechanics.

A further study of Mackey’s axioms can be found in a paper of Mączyński [Mac72].
There, the author argues (without the help of the above axiom) that quantum mechanics
needs to be build upon a Hilbert space over a division ring. Seen this way, a complex
Hilbert space is then the simplest possibility after having ruled out a real Hilbert space
with the help of the ‘probabilistic interpretation’ argument discussed before.

Anyway, we will in the following assume that quantum mechanics should be build
upon a complex Hilbert space.

1.5.2 Vectors or Rays?

Ournext objective is to answer the question whether pure states are vectors or rays
in this complex Hilbert spaceH. The obvious physical motivation to use rays is that two
state vectors ∣ψ̃⟩, ∣ψ⟩ ∈ H yield the same expectation value of an operator Â if they are
related by ∣ψ̃⟩ = z∣ψ⟩, where z is an invertible complex number z ∈ C×: It is common to write F× for

the set of invertible elements in
F. Here we have C× = C ∖ {0}.⟨Â⟩ψ̃ =

⟨ψ̃∣Â∣ψ̃⟩
⟨ψ̃∣ψ̃⟩ = ∣z∣2 ⟨ψ∣Â∣ψ⟩

∣z∣2 ⟨ψ∣ψ⟩
= ⟨ψ∣Â∣ψ⟩

⟨ψ∣ψ⟩ = ⟨Â⟩ψ .

The conclusion is that the space of physical states is a projective Hilbert space.

De�nition 1.5.1 (Projective Hilbert space) Given a complex Hilbert spaceH, the asso- An analogous de�nition can
be made, of course, for Hilbert
spaces using other �elds.

ciated projective Hilbert space PH is the quotient space:

PH ∶= (H ∖ {0})/∼ ,

where ∼ is the equivalence relation:

∣ψ̃⟩ ∼ ∣ψ⟩ ∶⇔ ∃z ∈ C× such that ∣ψ̃⟩ = z∣ψ⟩ .

The equivalence classes [ψ] ∈ PH are called rays.

The story doesn’t end here, however. Rays are incompatible with the superposition
principle. The reason is that the superposition principle requires addition of states, but
addition of rays isn’t well-de�ned. To see this, consider two rays [ψ1], [ψ2] and try to
de�ne the superposition [ψ] = [ψ1] + [ψ2] ∶= [∣ψ1⟩ + ∣ψ2⟩] based upon the addition of
representatives. We could just as well have represented the rays [ψi] by some equival-
ent vectors ∣ψ̃i⟩, though, with ∣ψi⟩ = zi∣ψ̃i⟩ for some arbitrary numbers zi ∈ C×. These
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representatives, however, yield the superposition ∣ψ′⟩ = z1∣ψ1⟩ + z2∣ψ2⟩, which doesn’t
in general represent the same ray as the one generated by ∣ψ⟩. Hence addition of rays is
ill-de�ned.

A concrete situation where this problem surfaces is for interference e�ects. We can
change an overall phase without in�uencing the outcome, but the relative phases of the
individual wave functions in a superposition are important. Since rays have forgotten
all phase information (including relative phases), we can’t use them to properly describe
interference e�ects. That said, it could make sense to see vectors as more fundamental
states and interpret rays as something like ‘measurement states’. The relation between
these two kinds of states is then given by Wigner’s theorem, which shows that symmetry
transformations of the projective Hilbert space can be realised as unitary or anti-unitary
operators on the Hilbert space of wave functions [KPRL08; Kel06].

1.5.3 Actual Calculations and Gel’fand Triples

One last point we want to discuss in this section is how states are used in actual
calculations. The point is that we can’t just construct some idealised quantum mechanics
based on wishful thinking; we need to see quantum mechanics the way it is really used
in practice. With this in mind, already Dirac mentions in his book that a Hilbert space
is often too limiting for practical calculations [Dir58, section 10]:

‘In our work up to the present it has been implied that our bra and ket vec-
tors are of �nite length and their scalar products are �nite. We see now the
need for relaxing this condition when we are dealing with eigenvectors of an
observable whose eigenvalues form a range. If we did not relax it, the phe-With ‘ranges of eigenvalues’ he

means the continuous spectrum
of an operator.

nomenon of ranges of eigenvalues could not occur and our theory would
be too weak for most practical problems.’

His conclusion is that ‘The bra and ket vectors that we now use form a more general space
than a Hilbert space’. Although he remarks later that ‘It may be […] that all realizable
states correspond to ket vectors that can be normalized and that form a Hilbert space’,
he also mentions that ‘such [generalised] eigenstates play a very useful role in the theory
and one could not very well do without them’ [Dir58, section 12].

While Dirac uses generalised eigenstates routinely in his formalism, he doesn’t even
waste a thought on an underlying mathematical framework. Generalised eigenstates are
treated just as if they were part of the Hilbert space, ignorant of any di�erences that may
be necessary. Consequently, Dieudonné comments: ‘When one gets to the mathematical
theories which are at the basis of quantum mechanics, one realizes that the attitude of
certain physicists in the handling of these theories truly borders on the delirium.’ (see
[Gie00, chapter 1]), and von Neumann accuses him in the preface of his book [Neu68]
that he introduces ‘mathematical �ctions’ to make the formalism work.

Unfortunately, even today, most textbooks on quantum theory simply ignore the
problem and assume the standpoint that the formalism works just �ne for all practical
purposes. Objections are often dismissed by the comment that wave packets can be used
if necessary. Fact is, however, that operators with continuous spectra, and thus general-
ised eigenstates, appear quite frequently in practical calculations – think for instance of
position and momentum of a free particle – and that we cannot obtain reliable results
by some inconsistent use of mathematical machinery. Using wave packets, on the otherFor example, it is known today

that a lot of the in�nities in
quantum �eld theory come
from such wrong mathematical
presumptions (see the work of
Epstein and Glaser [EG73]).

hand, isn’t very desirable either, as that would complicate calculations considerably.
Thankfully, the problem can be solved in quite an elegant way if we use so-called

rigged Hilbert spaces, also known as Gel’fand triples [GV64; Böh78; Gro88]. The general
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idea behind Gel’fand triples is to let operators act on functionals instead of wave func-
tions and understand all equations in a distributional sense – to be evaluated on a set of
test functions. From a physical point of view this evaluation on test functions is e�ect-
ively the same as forming wave packets, yet without the inconvenience of using concrete
wave packets during actual calculations. The precise de�nition of a Gel’fand triple is the
following:

De�nition 1.5.2 (Gel’fand triple) LetH be a Hilbert space, its topology induced by the
inner product, and let S ⊆ H be a dense subspace that carries a �ner topology such that
the inclusion ι ∶ S ↪ H is continuous. Then, a Gel’fand triple (also called rigged, or
equipped Hilbert space) is the triple:

S ⊆ H ⊆ S∗ , (1.5)

where S∗ ⊇ H∗ is the dual of S , and the dualised Hilbert spaceH∗ is identi�ed withH
itself canonically via J ∶ H → H∗ , f↦ ⟨f∣ ⋅ ⟩. According to Riesz’ representa-

tion theorem, J is an isometric
isomorphism.The map J ∶ H → H∗ from above is the well-known duality between bras and kets,

often written suggestively in Dirac notation as J ∶ ∣ψ⟩ ↦ ⟨ψ∣. Since J is an isomorphism,
we know that to any ket there has to exist a bra and vice versa. In practical calculations,
however, this is often not the case. More precisely, only the eigenstates of an operator
Â that belong to discrete eigenvalues are really elements of H and ful�l an eigenvalue
equation of the type:

Â∣ψ⟩ = λ∣ψ⟩ , λ ∈ C , ∣ψ⟩ ∈ H ∖ {0} . (1.6)

We already mentioned that there are no eigenstates associated to continuous eigenvalues
if we stay in the Hilbert space framework, but using an appropriate Gel’fand triple, we
can de�ne generalised eigenstates, i. e. functionals ψ ∈ S∗ that satisfy a more general
eigenvalue equation:

Âψ = λψ ,
which holds in the sense of distributions, that is:

(Âψ)(f) = (λψ)(f) ∀f ∈ S ∖ {0} . (1.7)

Here, f plays the role of a test function.

Let us �nish this section with a short example of how the mathematical formalism
based on Gel’fand triples works in practice.

Example 1.5.3 (Free particle) Consider a free particle moving in 1-dimensional space,
so H = L2(R, dq). The position operator q̂ acts on wave functions ψ ∈ H in the usual
manner, q̂ψ(q) = qψ(q), and the corresponding eigenvalue equation (where ψ0 is the
eigenfunction associated to q0) is:

q̂ψ0(q) = q0ψ0(q) ⇔ (q− q0)ψ0(q) = 0 , ∀q ∈ R .

Accordingly, ψ0(q) = 0 for all q ≠ q0, and thus ψ0 vanishes almost everywhere. Con-
sequently, there are no solutions other than the null vector ψ0 = 0. In the Hilbert space
setting we conclude that q̂ has no eigenstates.

The situation changes completely if we allow for distributions. Then we have the
well-known solution:

∫ qδq0(q) f(q)dq = ∫ q0δq0(q) f(q)dq ∀f ∈ S , (1.8)
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with δq0(q) ∶= δ(q − q0). The space S of test functions in this example is the Schwartz
space S(R) of di�erentiable functions that decrease faster than any inverse power of q.The elements of the dual space

S(R)
∗ are known as tempered

distributions.
More precisely (see [Gro88, section 2.3.2.c] or any other book on functional analysis):

S(R) ∶= {f ∈ C∞(R) ∶ ∥f∥i,j < ∞ ∀i, j∈N0} , (1.9)

where ∥ ⋅ ∥i,j is the norm family:

∥f∥i,j ∶= sup
q∈R

∣qi∂jf(q)∣ . (1.10)

This is exactly the setting of a Gel’fand triple S ⊂ H ⊂ S∗, and q̂ now properly has a
generalised eigenstate δq0 ∈ S∗ associated to each eigenvalue q0 ∈ R. To demonstrate
that equation (1.8) is really an eigenvalue equation of the type like (1.7) it is possible to
rewrite (1.8) in the form:

(q̂δq0)(f) = (q0δq0)(f) ,
where we use the notation δq0(f) ∶= f(q0) and (q̂δq0)(f) ∶= δq0(qf) = q0 f(q0).

For our further discussion this is already enough to know about Gel’fand triples, so
we want to stop here and refer the interested reader to the literature mentioned above.
What should be kept in mind, however, is that Gel’fand triples provide the necessary
foundation for Dirac’s bra-ket formalism.

Concerning the quantization programme the result is that we can always start with
representations on Hilbert spaces and extend them into Gel’fand triples later on when
needed. In formal calculations involving states, however, we cannot in general assume
states to be ordinary functions. Multiplication of states, for example, may be ill-de�ned
if the states later turn out to be distributions.

1.6 Self-Adjoint and Unitary Operators

Self-adjoint operators are used to describe quantum-mechanical observablesStone’s theorem 1.6.15 shows
that there is an intimate link
between self-adjoint operators
and unitary transformations.
A self-adjoint Hamiltonian is
therefore required in order to
preserve probabilities.

because their eigenvalues are real numbers and their eigenvectors orthogonal. There are,
however, some peculiarities that, while often ignored during concrete calculations, have
to be accounted for by quantization attempts. The �rst is that unbounded self-adjoint
operators are de�ned only on a dense subset of the full Hilbert space. The other is the
subtle yet quite important di�erence between just symmetric and self-adjoint operators.
We base our discussion of these issues primarily on the paper by Gieres [Gie00] and
Großmann’s book [Gro88]. Another source of information is the exhaustive work of
Reed and Simon [RS.I; RS.II; RS.III; RS.IV].

When we later talk about irreducible representations of the canonical commutation
relations, the peculiarities explain why self-adjoint representations are usually studied
in terms of associated unitary representations. In the context of conventional quantum
mechanics on Rn, a lesser known variant of the Stone–von Neumann theorem then
states that there are actually in�nitely many non-equivalent representations. While this
�rst seems like an obstacle, we will argue that it is exactly this feature that is the source
of the scale-dependence (the fundamental constant ħ) in quantum mechanics.

1.6.1 The Di�erence between Symmetric and Self-Adjoint Operators

Up front, we should remark that the mentioned peculiarities of self-adjoint operat-
ors reveal themselves only in the case of in�nite-dimensional Hilbert spaces. There is,
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Y

Figure 1.7 Concerning the de�nition 1.6.1 of an operator.

however, a simple argument which shows that Hilbert spaces of in�nite dimension are
necessary to describe quantum mechanics – at least in most cases. To this end, assume
that the position and momentum operators q̂ and p̂are de�ned for a �nite-dimensional
Hilbert space H, say of dimension dimH = n. If we then calculate the trace of their
commutator [q̂, p̂] = iħ1, we obtain a contradiction because the left-hand side of the
relation vanishes (the trace is cyclic) while the right-hand side yields tr(iħ1n) = iħn ≠ 0.
The problem disappears for in�nite-dimensional Hilbert space because the trace of 1 is
then no longer de�ned. While there are situations where only traceless operators appear An example of traceless operat-

ors where a �nite-dimensional
Hilbert space is su�cient is
given by Pauli’s spin matrices.

as the results of commutators, we will hence in general need to consider Hilbert spaces
of in�nite dimension.

Now, back to self-adjoint operators. Unfortunately, the terms symmetric, Hermitian
and self-adjoint are often mixed up, so let us start with some proper de�nitions. The
crucial point to observe is that an operator always comes together with a domain that
may be smaller than the full Hilbert space. (The following de�nitions are loosely based
on the ones given in [Gro88].)

De�nition 1.6.1 (Operator) Consider two sets X and Y. An operator A consists of a
domain DA ⊆ X and an operating prescription A ∶ DA → Y which maps elements in
the domain DA to elements in the target space (or codomain) Y (see �gure 1.7).

If X is a topological space, an operator A on DA is said to be densely de�ned if its
domain DA is a dense subset of X (i. e. DA = X).

If X and Y are vector spaces, an operator A is called linear operator if the operating
prescription A ∶ DA ⊆ X→ Y is a linear map.

When we talk about equality of operators, the domains have to be taken into account
as well. While it may seem a bit overly accurate at this point, the idea is nevertheless
crucial to the understanding of self-adjoint operators.

De�nition 1.6.2 (Equality of operators) Two operators A and B are equal, A = B, if
they have the same domain and the same operating prescription:

A= B ∶⇔ DA = DB and Aψ = Bψ for all ψ ∈ DA .

We say that A is a restriction of B, written A ⊂ B, if the domain of A is smaller than the
domain of B but the operating prescriptions are compatible:

A⊂ B ∶⇔ DA ⊂ DB and Aψ = Bψ for all ψ ∈ DA .

In turn, the operator B is in this case called an extension of A, written as B ⊃ A.
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Next we de�ne symmetric operators. Symmetric operators are the ones also called
Hermitian by Reed and Simon [RS.I]. However, since the term Hermitian is used with
ambiguous meaning throughout the literature we prefer the name symmetric.

De�nition 1.6.3 (Symmetric operator) LetH be a Hilbert space and let Abe a densely
de�ned linear operator onH. We say A is symmetric if:

⟨φ∣Aψ⟩ = ⟨Aφ∣ψ⟩ ∀ψ,φ ∈ DA . (1.11)

In the case ofH = L2(Rn, dnx) this property is written as:ψ∗ denotes the complex conjug-
ate of ψ. Mathematicians will
usually write ψ instead. ∫ φ∗(x) (Aψ)(x)dnx = ∫ (Aφ)∗(x)ψ(x)dnx ∀φ,ψ ∈ DA .

However, an operator that is merely symmetric is not guaranteed to have real eigenvalues.
If we try to de�ne the momentum operator −iħ∂x on the interval [0; 1] it turns out to
have complex eigenvalues (see also [Gie00, example 4]):

Example 1.6.4 (Particle restricted to a �nite interval) We want to describe a particle that
is constrained to the 1-dimensional intervalQ = [0; 1]. The appropriate Hilbert space is
L2([0; 1], dx). To check whether the momentum operator p̂ = −iħ∂x is symmetric we
integrate by parts (for φ,ψ ∈ H):

∫ 1

0
φ∗(x)(p̂ψ)(x)dx = ∫ 1

0
(p̂φ)∗(x)ψ(x)dx − iħ[ψ∗(x)φ(x)]1x=0 .

Accordingly, the operator p̂ is symmetric if and only if the surface term vanishes. There
are di�erent types of boundary conditions to achieve this. Periodic boundary conditionsGroßmann discusses some

other options in his book but
also shows that only periodic
boundary conditions yield
real eigenvalues [Gro88, sec-
tion 17.2.1].

don’t make sense from a physical perspective because this would mean identifying both
ends of the interval, yet this would describe movement on a circle. The most obvious
choice is thus to require ψ(0) = ψ(1) = 0. Consequently, we restrict the domain of p̂
to continuously di�erentiable functions in H which satisfy these boundary conditions.
The eigenvalue equation then is:

p̂ψp(x) = pψp(x) ∀x ∈ [0; 1] ,

which is solved by:
ψp(x) = c e(i/ħ)px , c ∈ C ∖ {0} ,

for any value of p ∈ C. None of these functions respects the boundary conditions, though,
and so it �rst looks as if the spectrum of p̂ were empty. Nevertheless, a more careful
treatment reveals that the spectrum of p̂ is actually the entire complex plane (see [Gro88,The spectrum in this example

is purely residual, i. e. there are
no eigenstates of p̂– not even
generalised ones – but there are
eigenstates of its adjoint p̂†.

section 17.2.1]).

The example shows that symmetry is not enough to ensure real eigenvalues. The
de�nition of self-adjoint operators �xes this problem [RS.I, section VIII.1]:

De�nition 1.6.5 (Adjoint operator) LetAbe a densely de�ned linear operator on some
Hilbert spaceH, with domain DA. Its adjoint A† is then uniquely determined by:

DA† ∶= {φ ∈ H ∶ ∃φ̃ ∈ H such that ⟨φ∣Aψ⟩ = ⟨φ̃∣ψ⟩ ∀ψ ∈ DA} , (1.12)

and:
A†φ ∶= φ̃ , (1.13)
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where φ̃ depends on both A and φ. Accordingly, we have:

⟨A†φ∣ψ⟩ = ⟨φ∣Aψ⟩ ∀ψ ∈ DA , ∀φ ∈ DA† . (1.14)

Remark 1.6.6 The operator Aneeds to be densely de�ned onH so that equation (1.12)
uniquely determines its adjoint A†. The domain of A†, however, may not be dense (an
example is given in [RS.I, section VIII.1, example 4]).

Further, it is absolutely crucial to note that the domain of the adjoint A† is explicitly
given by the de�nition. The only way to change it is to alter the domain of A. Observe
that – according to equation (1.12) – B ⊃ A implies B† ⊂ A†, while B ⊂ A implies B† ⊃ A†.
Hence, if we enlarge the domain of A, the domain of A† gets smaller, and vice versa.

De�nition 1.6.7 (Self-adjoint operator) A densely de�ned linear operator A on H is Note that neither the sum
A+ B nor the product AB of
self-adjoint operators has to
be self-adjoint again.

called self-adjoint if A= A† in the sense of de�nition 1.6.2, that is:

DA = DA† and Aψ = A†ψ ∀ψ ∈ DA .

Both the domains and the operating prescriptions have be equal.

The relation between symmetric and self-adjoint operators is that self-adjointness
requires A= A† while symmetric operators only satisfy A⊆ A†. This raises the question
whether a symmetric operator can be ‘tuned’ to produce a self-adjoint one. In the light
of remark 1.6.6 we see this can only be achieved by extending A, because the domain of
A† is initially too large and needs to be made smaller to obtain equality.

De�nition 1.6.8 (Essentially self-adjoint) A symmetric operatorA is said to admit self-
adjoint extensions if there exist (possibly many) self-adjoint extensions B ⊇ A.

A densely de�ned, symmetric operator A is essentially self-adjoint if the (unique)
closure A (the smallest closed extension) of A is a self-adjoint operator.

Remark 1.6.9 (De�ciency indices) A common way to check if a given closed, symmetric An operator A is called closed if
its operator graph Γ(A), the set
Γ(A) ∶= {(ψ,Aψ) ∶ ψ ∈ DA}, is
a closed subset. Any symmetric
operator can be assumed closed
without loss of generality.

linear operator Ahas self-adjoint extensions is to calculate its de�ciency indices:

n±(A) = dim(r±(A)) , (1.15)

where r±(A) are the so-called de�ciency subspaces:

r±(A) ∶= ker(A† ∓ i) = im(A± i)⊥ . (1.16)

The operator A admits self-adjoint extensions if and only if the de�ciency indices are
equal, n+ = n−, and A is self-adjoint if and only if n+ = n− = 0.

The idea underlying the method of de�ciency indices is quite elegant. It turns out A thorough treatment of the
method of de�ciency indices
can be found, for example, in
[RS.II, chapter X] or [Gro88,
section 16.5]. The method has
been developed originally by
von Neumann [Neu30].

that if any complex number z ∈ C ∖R is an eigenvalue of a closed, symmetric operator
A, then all points in the whole closed (upper or lower) half-plane H± containing z are
eigenvalues as well. It is hence su�cient to check whether z = ±i is an eigenvalue of A,
which is accomplished by looking at the dimension of the de�ciency subspaces (1.16). In
particular, if both de�ciency indices vanish, the operator Aadmits only real eigenvalues
and therefore is self-adjoint.

The other crucial observation is that any symmetric extension of Achanges both de-
�ciency indices by the same amount. If the de�ciency indices ofAdi�er from each other,
there can hence exist no self-adjoint extensions. On the other hand, there is an explicit
formula for the self-adjoint extensions if n+ and n− are equal [RS.II, theorem X.2]. This
�nally yields the second statement according to which the operator A has self-adjoint
extensions if and only if the de�ciency indices are equal.
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In some cases there are easier criteria for self-adjointness, like in the following:

Lemma 1.6.10 LetAbe a symmetric linear operator that is de�ned on the whole Hilbert
spaceH, that is, DA = H. Then A is self-adjoint.

Proof. Since the adjoint of a symmetric operator ful�ls DA† ⊇ DA but also DA† ⊆ H, we
immediately obtain DA† = DA = H. Moreover, Aψ = A†ψ for all ψ ∈ DA = H, and hence
A is self-adjoint. ∎

Although it thus looks as if all the obscure problems with self-adjointness vanish if
we simply use symmetric operators that are de�ned on the whole Hilbert space, there
is a catch. Everywhere de�ned, symmetric linear operators have another property: they
are automatically bounded as a result of the Hellinger–Toeplitz theorem.

Theorem 1.6.11 (Hellinger, Toeplitz) If A is an everywhere de�ned, symmetric linear
operator on a Hilbert spaceH, then A is bounded.

Proof. See [RS.I, section III.5] or [Gro88, section 10.1.2]. ∎

De�nition 1.6.12 (Bounded operator) A linear operator Aon some Banach space B isA Banach space is a complete
normed vector space. Any Hil-
bert spaces is also a Banach
space, with ∥ψ∥2 ∶= ⟨ψ∣ψ⟩.

bounded if there exists a constant c such that:

∥Aψ∥ ≤ c ∥ψ∥ ∀ψ ∈ DA .

Under these circumstances, the norm of A is de�ned as:

∥A∥ ∶= sup
ψ∈DA

∥Aψ∥
∥ψ∥ . (1.17)

Bounded operators have a number of nice properties. To give an example, a linear
operator is bounded if and only if it is continuous, and it can always be de�ned on the
whole Hilbert space. Nevertheless, it turns out that most physically interesting operators
cannot be bounded because only unbounded operators may have a nontrivial uncertainty
relation (see section 1.5 and [Gro88, section 5.5]). Read in reverse, the Hellinger–Toeplitz
theorem then states that the domain of unbounded, self-adjoint operators cannot be
the whole Hilbert space – the domain must be a proper subset DA ⊂ H. This leads to
problems such as the following (see [Gie00, example 5]):

Example 1.6.13 (Angle and angular momentum variables) Consider polar coordinates
in the plane, with angle φ and angular momentum ℓ, then H = L2([0; 2π], dφ) is our
Hilbert space. The associated quantum operators φ̂ and ℓ̂ act on wave functions via:

(φ̂ψ)(φ) = φψ(φ) , (ℓ̂ψ)(φ) = −iħ∂φψ(φ) .

If we choose the domains as:

Dφ̂ = H , Dℓ̂ = {ψ ∈ H ∶ψ′ ∈ H , ψ(0) = ψ(2π)} ,

both are self-adjoint operators (see [Gro88, section 16.1.3]), and their commutator is
[φ̂, ℓ̂] = iħ1. Furthermore, eigenstates of ℓ̂ are given by:

ℓ̂ ∣ψm⟩ = mħ∣ψm⟩ , ψm(φ) = (2π)−1/2eimφ , (m ∈ Z)
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and they are orthonormal with respect to the standard scalar product:

⟨ψ1 ∣ψ2⟩ ∶= ∫ 2π

0
ψ∗1(φ)ψ2(φ)dφ .

Now, the expectation value of the commutator in eigenstates of ℓ̂ is:

⟨ψm∣ [φ̂, ℓ̂] ∣ψm⟩ = ⟨ψm∣iħ1∣ψm⟩ = iħ⟨ψm ∣ψm⟩ = iħ . (1.18)

Nevertheless, using that φ̂ and ℓ̂ are self-adjoint, we can calculate this in a di�erent way:

⟨ψm∣ [φ̂, ℓ̂] ∣ψm⟩ = ⟨ψm∣(φ̂ℓ̂− ℓ̂φ̂)∣ψm⟩ = ⟨φ̂†ψm ∣ ℓ̂ψm⟩ − ⟨ℓ̂†ψm ∣φ̂ψm⟩
= ⟨φ̂ψm ∣ ℓ̂ψm⟩ − ⟨ℓ̂ψm ∣φ̂ψm⟩ = (mħ−mħ)⟨ψm ∣φ̂ψm⟩ = 0 . (1.19)

This second result obviously contradicts (1.18), however. What went wrong?

The solution is to look closely at the domains of all the operators involved in this
calculation. The important observation is that sums and products of operators have their
own speci�c domains, di�erent from the domains of the individual operators. The rules
to calculate them are:

D(A+ B) = D(A) ∩ D(B) , (1.20)
D(AB) = {ψ ∈ D(B) ∶ Bψ ∈ D(A)} . (1.21)

Applied to the example we obtain:

D(φ̂ℓ̂) = {ψ ∈ Dℓ̂ ∶ ℓ̂ψ ∈ Dφ̂} = {ψ ∈ Dℓ̂ ∶ ℓ̂ψ ∈ H} = Dℓ̂ ,

D(ℓ̂φ̂) = {ψ ∈ Dφ̂ ∶ φ̂ψ ∈ Dℓ̂} = {ψ ∈ H ∶ φ̂ψ ∈ Dℓ̂} ,
D([φ̂, ℓ̂]) = D(φ̂ℓ̂) ∩ D(ℓ̂φ̂) = {ψ ∈ Dℓ̂ ∶ φ̂ψ ∈ Dℓ̂} .

We see, what went wrong in calculations (1.18) and (1.19) is that the eigenstates ψm are
not in the domain of the commutator since:

φ̂ψm(φ) = φ(2π)−1/2eimφ ⇒ φ̂ψm(0) = 0 ≠ (2π)1/2 = φ̂ψm(2π) ,

yet Dℓ̂ contains only periodic functions, and hence ψm ∉ D([φ̂, ℓ̂]). The contradicting
results are thus no longer so entirely surprising, as we formally applied operators to wave
functions outside their domain.

There are two points to remember about this:

■ If we want reliable results, the domain of operators has to be taken into account. As
such, the subset on which an identity holds – like the commutation relations – may be
much smaller than the whole Hilbert space and it may not contain important classes
of functions. In particular this is the case for the uncertainty principle, which if not There exist concrete examples

of wave functions that violate
the uncertainty principle (see
e. g. [Gie00, example 6]).

trivial can only be true on a subset of functions, as it depends on the commutator of
two necessarily unbounded operators.

■ Moreover, the given example shows that domain problems are not restricted to some
obscure pathological cases but may occur in quite ordinary and physically relevant
situations.
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1.6.2 Stone’s Theorem and One-Parameter Unitary Groups

Concerning quantizationwe see that problems with the domains of self-adjoint
operators cannot simply be dismissed. On the other hand, it is nearly impossible to study
representations if we always had to take care of the domains, so it would be helpful if
there were an alternative. Fortunately there is. The resolve comes in the form of Stone’s
theorem that establishes a correspondence between self-adjoint operators and strongly
continuous one-parameter groups of unitary transformations.

De�nition 1.6.14 (One-parameter unitary groups) An operator-valued mapping

U ∶ R → Op(H) , t↦ Ut

is called one-parameter unitary group if:

· Ut is a unitary operator (i. e. U†
tUt = UtU

†
t = 1) for all t ∈ R,

· Ut+s = UtUs for all t, s ∈ R.

In addition, U is said to be strongly continuous if:A theorem of von Neumann
[RS.I, theorem VIII.9] implies
that every weakly continuous
unitary(!) one-parameter group
is actually strongly continuous.

· Ut∣ψ⟩ → Ut0 ∣ψ⟩ for t→ t0 and any ∣ψ⟩ ∈ H.

Theorem 1.6.15 (Stone) There is a correspondence between self-adjoint operators and
strongly continuous one-parameter unitary groups. More precisely:

(i) Let A be a self-adjoint operator on a Hilbert space H, then U(t) ∶= eitA de�nes aNote that the usual power series
cannot be used to calculate the
exponential for unbounded
self-adjoint operators since the
series might not converge in
this case [RS.I, section VIII.4].

strongly continuous one-parameter unitary group.
(ii) In reverse, if U is a strongly continuous one-parameter group there always exists a

self-adjoint operator AonH such that eitA = U(t).

Proof. The original proof can be found in [Sto30]. Alternatively, you can refer to [RS.I],
where part (i) is implied by theorem VIII.7 and part (ii) is theorem VIII.8. ∎

Unlike self-adjoint operators, unitary operators are always bounded and can hence
be assumed as being everywhere de�ned on the whole Hilbert spaceH, without any loss
of generality. Instead of studying self-adjoint representations directly it is hence common
to examine unitary representations and introduce self-adjoint generators afterwards. In
more geometric terms, this amounts to studying unitary representations of a Lie group
G to obtain self-adjoint representations of a Lie algebra LG.

1.6.3 Weyl Form of the Commutation Relations and the Heisenberg Group

In order to study the unitary representations we will have to rewrite the canonical com-
mutation relations in terms of the associated unitary operators. The result is usually
called multiplicative, or integrated Weyl form of the relations. In the case of conven-
tional quantum mechanics (for simplicity we restrict ourselves to one dimension) we
obtain:

Lemma 1.6.16 (Weyl form of the CCR) The usual canonical commutation relations of
conventional quantum mechanics on R:

[q̂, p̂] = iħ1 , [q̂, q̂] = 0 , [p̂, p̂] = 0 ,
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have the integrated Weyl form:

U(a)V(b) = V(b)U(a)eiħab ,
U(a1 + a2) = U(a1)U(a2) , V(b1 + b2) = V(b1)V(b2) , (1.22)

with U(a) ∶= e−iap̂ and V(b) ∶= e−ibq̂.

Proof. The equivalence is most easily shown if we use that the exponential map satis�es
the important relation Ad ○ exp = exp ○ ad (for a proof see section 3.4, equation (3.16)),
where ‘Ad’ and ‘ad’ are the adjoint actions of Lie group and Lie algebra, respectively,
given in de�nitions 3.3.8 and 3.3.9. Moreover, there is a close relation between the adjoint
action ad and the commutator, namely [A,B] = ad(A)(B). Thus we have:

U(a)q̂U(a)−1 = Ad(U(a))q̂ = Ad(exp(−iap̂))q̂ = exp(ad(−iap̂))q̂
= (1 + ad(−iap̂) + 1

2 ad(−iap̂) ○ ad(−iap̂) + ⋯)q̂
= q̂+ [−iap̂, q̂] + 1

2 [−iap̂, [−iap̂, q̂]] + ⋯
= q̂− ħa ,

where we �rst expanded the exponential as a Taylor series, and then the last equality is
due to the fact that all higher commutators of q̂ and p̂ vanish, since 1 commutes with
both q̂ and p̂, and hence [p̂, [p̂, q̂]] ∝ [p̂,1] = 0 and so on. By an analogous calculation
we obtain V(b)p̂V(b)−1 = p̂+ ħb.

Finally, for any analytical function f there is the relation:

U(a)f(q̂)U(a)−1 = f(q̂− ħa) ,

and since the exponential is analytical we obtain:

U(a)V(b)U(a)−1 = e−ib(q̂−ħa) = V(b)eiħab ,

which is the �rst of the relations in equation (1.22). The remaining ones follow directly
from the de�nitions of U(a) and V(b). ∎

The group behind the commutation relations (1.22) is the Heisenberg group H(1).

De�nition 1.6.17 (Heisenberg group) The Heisenberg, or Weyl–Heisenberg group is
given as:

H(n) = (Rn ×Rn ×R, ⋅ ) ,

with the group law:

(u1,v1, s1) ⋅ (u2,v2, s2) ∶= (u1 + u2,v1 + v2, s1 + s2 + 1
2(v1 ⋅ u2 − v2 ⋅ u1)) . (1.23)

Sometimes the name polarised Heisenberg group is used because H(n) results from
a more general version of the Heisenberg group, which acts on a symplectic manifold,
after choosing a Darboux chart (see chapter 4, in particular theorem 4.1.8).

The representation theory of the Heisenberg group H(n) is dictated by the famous
Stone–von Neumann theorem. It can be formulated in the following way:
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µ
µ = ħ

unitarily

inequivalent

unitarily equivalent

position space
representation

momentum space
representation

Figure 1.8 According to the Stone–von Neumann theorem representations of
the Heisenberg group that belong to the same value of µ are unitarily equivalent.
Representations belonging to di�erent values of µ are unitarily inequivalent.

Theorem 1.6.18 (Stone, von Neumann) Consider the Weyl commutation relations ofNote that the constant ħ from
equation (1.22) has now been
replaced by a variable µ which
parametrises representations
of the central subgroup of the
Heisenberg group.

the Heisenberg group:

U(a1 + a2) = U(a1)U(a2) , V(b1 + b2) = V(b1)V(b2) ,
U(a)V(b) = V(b)U(a)eiµab , µ ∈ R ,

where eiµs1 is a unitary representation of the central subgroupZ(H(n)) ≅ (R,+). Then
all non-trivial, strongly continuous, unitary, irreducible representations partition into
equivalence classes such that:The additional statement about

inequivalent representations is
often omitted, yet we will see
below that it is at least equally
important from a physical point
of view.

(i) representations that belong to the same value of µ are unitarily equivalent,

(ii) representations that belong to di�erent values of µ are unitarily inequivalent.

Proof. See [Sto30] and [Neu31], or [Ros04]. ∎

Corollary 1.6.19 If we assume the parameter µ to be �xed beforehand, say to the value
µ = ħ, the Schrödinger representation in position space:

x̂ = x , p̂= −iħ∂x , H = L2(Rn, dnx) ,

is unique up to unitary equivalence. In other words, after �xing the value of µ all unitary,
irreducible representation of the Heisenberg group are indistinguishable from a physical
perspective because unitary equivalences preserve the outcomes of measurements.

1.6.4 Physical Meaning of the Stone–von Neumann Theorem

Historically, the Stone–von Neumann theorem showed the equivalence between
Heisenberg’s matrix mechanics and Schrödinger’s wave function formalism. Apart from
that, the corollary guarantees that calculations in position space yield the same physical
results as calculations in momentum space or any other representation we may choose.
Used this way, the corollary to the Stone–von Neumann theorem justi�es the concept of
an abstract Hilbert space. In contrast, if an analogous statement doesn’t hold, calculations
using di�erent representations may well produce di�erent physical results, so that an
abstract Hilbert space doesn’t make sense.
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Still, there seems to be a problem if we don’t �x the parameter µ in advance. In fact,
theorem 1.6.18 then states that di�erent values of µ give rise to unitarily inequivalent rep-
resentations, resulting in di�erent physical predictions. So, unless we agree to �x some
value of µ we obtain in�nitely many di�erent quantizations! Is this acceptable?

First, I would say that it doesn’t pose a problem because quantization is in its nature
not a properly de�ned mathematical mapping (remember, �rst quantization is a mystery,
not a functor). In fact, it is better seen as a ‘recipe’ to construct candidate theories that We already discussed this

‘recipe-nature’ of quantization
at the end of section 1.4.

could be useful to describe quantum mechanical systems. While it might be possible to
introduce additional requirements to make quantization mathematically well-de�ned,
Isham points out that such attempts should be considered with great care [Ish83, p.1155]:

‘Common sense must be used here to avoid embarking on an overaxiomat-
ized, and hence misguided, piece of theoretical physics. We are still trying to
feel our way towards an understanding of the quantization of intrinsically
nonlinear systems and should not be trapped into axiomatizing theoretical
ideas out of existence.’

Even more, though, I want to argue that the inequivalence of representations for dif-
ferent values of µ is actually quite important from a physical point of view. It is the feature
responsible for the fundamental scale ħ of quantum theory. Unlike classical mechanics,
quantum theory behaves di�erently for microscopic and macroscopic systems. As such,
a physical system exhibits genuinely microscopic quantum behaviour if it has an action
that is less or approximately equal to ħ, whereas classical behaviour emerges if the e�ect-
ive action is much bigger than ħ.

That being said, if representations belonging to di�erent values of µ were unitarily
equivalent, the value of µwould be irrelevant and could be chosen at will, because di�er-
ent values would produce physically indistinguishable predictions (this is what happens
for the parameter α in section 6.1). Only inequivalent representations make di�erent
physical predictions:

It is the unitary inequivalence between representations that says that µ is a
quantity with physical impact; a quantity that can be determined by physical
experiment and is able to �x a fundamental scale.

Finally, it is important to remember that the theorem of Stone and von Neumann
is a statement speci�cally about representations of the Heisenberg group, which we will
see is deeply connected to conventional quantum mechanics. In general, however, there
will be other groups taking this role and then we have no analogous statement about their Still, there are powerful meth-

ods to study representations
of the occurring groups, most
prominently Mackey’s theory
of induced representations (see
e. g. [Mac49] and [Mac76]).

representation theory. There are examples where several distinct equivalence classes of
representations appear, each describing a genuinely di�erent physical setting, not just
a scale dependence as above. It is then again a matter of common sense and physical
insight to select the ones that describe reasonable quantum systems and �nd sensible
interpretations.

1.7 What Is Quantization?
Following this lengthy investigation of the fundamentals we are now in the
position to formulate a pragmatic foundation for quantization. To this end, let us �rst
recall what we initially started with: the Dirac quantization map.

In de�nition 1.1.2 the Dirac quantization map was de�ned as:

Q ∶ C∞(M,R) → Op(H) ,
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mapping functions over the classical phase space M to operators on some associated
separable complex Hilbert spaceH, such thatQ has the following properties:

(q1) the mapQ is R-linear,

(q2) the operatorsQ(f) for f ∈ C∞(M,R) are essentially self-adjoint,

(q3) Qmaps Poisson brackets to commutators such that:

[Q(f),Q(д)] = iħQ({f, д}) ,

(q4) the map Q is irreducible in the sense that any complete set of classical observables
{f1, . . . , fk} is mapped to a complete set of operators {Q(f1), . . . ,Q(fk)},

(q5) the constant function 1M on M maps to the identity onH, i. e.Q(1M) = 1H.

The theorem of Groenewold and Van Hove showed that such a ‘full’ quantization
is impossible as the requirements are inconsistent. Any feasible quantization approach
hence needs to discard, or at least modify, one or the other of the conditions. To make
an informed choice, our goal in this chapter was to reveal which of the requirements
have some actual physical meaning and which ones are assumed just for mathematical
convenience.

First, we should remark that condition (q5) is meant to rule out some trivial solutions,
yet is not really independent of the other requirements. It can be deduced from (q3), for
example, and is hence only necessary if we restrict some of the conditions, say like in
Deformation quantization.

In section 1.4 we argued that it makes sense to restrict the domain ofQ. Although
there are similarities between classical and quantum mechanics (think of the classical
limit) and hence some basic variables of the theory should be quantizable, there are also
some obvious di�erences, so the correspondence cannot be assumed to hold for any
arbitrarily crazy variable. Moreover, we explained that not all classical phase spaces must
yield reasonable quantum theories, and that the physical interpretations of the classical
and the quantized system may be di�erent since the abstract mathematical models might
be realised in di�erent ways.

Further, with respect to quantum states it is indeed possible to initially describe
quantum mechanics based upon some complex separable Hilbert space. While for
most practical calculations we need Gel’fand triples over this Hilbert space in order to in-
clude eigenstates associated to continuous eigenvalues (section 1.5), this is an additional
step which can be implemented later. Only when we need speci�c properties of states we
have to keep in mind that states may in general be distributions rather than functions.

That said, there is another problem hidden in the term associated Hilbert space. For
conventional quantum mechanics on Rn the Stone–von Neumann theorem tells us that
the Hilbert space H = L2(Rn, dnx) of square-integrable functions over con�guration
space is essentially unique – that is, up to some unitary equivalence that doesn’t in�u-
ence the physical results. In other situations, however, there is no such statement and it
becomes an open question what ‘associated’ means. In general we will obtain for a single
classical system a whole family of quantized systems that may have genuinely di�erent
physical interpretations.

In addition, Isham remarks in [Ish83] that when we are dealing with topologically
nontrivial spaces we should also consider ‘twisted’ representations, meaning represent-
ations on sections of vector bundles, not just representations on functions. To handle
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these, the Serre–Swan theorem might be used, which establishes a nice correspondence
between sections of vector bundles over compact manifolds and functions in �nitely
generated projective modules [Swa62].

Another controversial question is the linearity ofQ. It can be broken down into two
individual properties: addition and multiplication by real numbers. Physically, a change
of units (say, from metres to centimetres) corresponds to a multiplication by a real num-
ber. Since such a change of units should have the same e�ect in classical as in quantum
mechanics it seems reasonable to require the quantization map to respect this operation.
There are, however, working quantization approaches with a nonlinear prescription (see
the remark about Blattner–Kostant–Sternberg (BKS) kernels in [TAE05, section 1.2]).
We thus see that a linear quantization map can’t be strictly necessary.

Despite, there is a good motivation to require linearity when regarded in the context
of condition (q3) – the mapping of Poisson brackets to commutators. Both conditions
taken together ensure that (iħ)−1Q is a Lie algebra morphism, so that the Lie algebra
structure is preserved. Typically, it is the Lie algebra structure that is characteristic to
physical systems and so should remain una�ected during the transition from classical
to quantum theory. The reason is on one side the deep connection between observables
and symmetry transformations according to Noether’s theorem. On the other side, there
is a relation between symmetries and the geometry of phase space; a relation that will This relation between geometry,

symmetry transformations and
observables provides one of
the cornerstones of Canonical
Group Quantization.

become more visible in the course of chapter 3. The rules (q1) and (q3) can thus be
interpreted such that they ensure quantization somehow respects the geometry.

The requirement for essentially self-adjoint operators – property (q2) – ensures real
eigenvalues, and thus real numbers as the results of measurements. That being said, we
explained in section 1.6 that there is a di�erence between merely symmetric and self-
adjoint operators, based on the domains. As a result, unbounded self-adjoint operators
are in practice quite di�cult to treat correctly because their domains have to be taken
into account at all times. This is an additional point that a serious quantization approach
has to respect if it means to produce reliable results.

Concerning the irreducibility condition (q4) the idea is, roughly speaking, that it
ensures that the number of observables doesn’t change. This is best illustrated by means
of an example: For classical mechanics on Q = R3 the set {qi, pj} consisting of position
and momentum is complete (i. e. there are no observables other than the identity that
Poisson-commute with all qi and pj) and it is mapped to the set{q̂i, p̂j} under the quant-
ization map. In spin-less quantum mechanics all operators are expressible as functions
of q̂i and p̂j due to Schur’s lemma, so this set is complete and hence the quantization
map irreducible. If we include spin, however, we know that the spin operators commute

classical theory quantized theoriesQ

Figure 1.9 For conventional quantization the Stone–von Neumann theorem
guarantees that the result is essentially unique. In general, however, a single clas-
sical theory may yield several genuinely di�erent quantized theories.
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with all the q̂i and p̂jbut are not proportional to the identity. In this case the set {q̂i, p̂j}
is not complete, and hence the quantization map not irreducible.

There are two conclusions: The irreducibility ensures that no additional, unmotiv-
ated observables arise from the quantization process, nor do we lose any. In principle
this is just what we need because the same basic set of variables should play a role in the
classical as in the quantized theory (remember the classical limit argument from sec-
tion 1.4). Nevertheless, the example of spin shows that it may sometimes be reasonable
to relax this irreducibility condition a little bit to allow for quantum observables with no
classical analogue.

Finally, let me summarise how a pragmatic approach to the quantization problem
could look like. First, we explained that quantization isn’t an actual physical process but
rather a recipe how to construct quantum theories based on some classical ingredients.
Because of this ‘recipe-nature’, a quantization method doesn’t have to produce a unique
quantized system. Until the recipe is better understood it makes more sense to exclude
some of the results afterwards based on a case-by-case analysis rather than to dismiss
theoretical possibilities beforehand by introducing physically ill-justi�ed axioms.

Instead of a single quantization map we will hence assume that there exists in general
a collection of di�erent possible quantizations. For each individual quantization mapQ
in this collection the following assumptions seem physically reasonable:

■ Quantization is restricted to a (possibly small) subset of quantizable observables. This
set Obs(M) ⊆ C∞(M,R) needs to be complete in the sense of de�nition 1.1.1 in
order to ‘feel out’ the whole classical phase space M.

■ Functions in Obs(M) are mapped to essentially self-adjoint operators on a complex
separable Hilbert space H. With regard to the operator domains, most di�culties
can be circumvented if we make use of strongly continuous one-parameter unitary
groups instead of studying self-adjoint operators directly.

■ The quantization map should preserve the Lie algebra structure in the sense thatQ
is linear and maps Poisson brackets to commutators according to the rule (q3).

■ The quantization map is assumed to be irreducible in the sense of (q4). However,
this condition may be relaxed if necessary.

1.8 A Short Outline of Canonical Group Quantization

Themain difficultiesof a quantization attempt as outlined above are to determineThe aim of this section is to
convey the idea of Canonical
Group Quantization. We will
�ll in the technical details in
chapter 5.

a reasonable subset of quantizable observables and to �nd suitable Hilbert spaces. Ca-
nonical Group Quantization, proposed by Christopher Isham in [Ish83], tries to solve
these problems in a way that is particularly transparent from a physical point of view.
The idea underlying Isham’s approach is that the canonical commutation relations arise
from a group G which acts on the classical phase space M in some natural way.

The �rst step is to understand the canonical commutation relations as a self-adjoint
representation of a Lie algebra Obs(M), the Lie algebra that is generated by what we
will call a set of fundamental observables (a complete set of quantizable observables,For quantization on Rn such

a set of fundamental observ-
ables is given by {qi, pi, 1M},
for instance. The Lie algebra
Obs(M) is then the smallest
Lie algebra containing these
functions.

big enough to uniquely determine the quantization map; see also �gure 1.10). Still, it is
more convenient to replace this concrete Lie algebra Obs(M) consisting of functions on
classical phase space M by an abstract Lie algebra, the Canonical Lie algebra LC:
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dynamical
variables

measurable
observables

quantizable
observables

fundamental observables

Figure 1.10 The fundamental observables form a subset of the set of quantizable
observables, big enough to uniquely determine a quantization map.

fundamental classical observables
(+ Poisson brackets)

Canonical Lie algebra LC

fundamental quantum operators
(+ canonical commutation relations)

≅

self-adjoint representation

quantization mapQ

De�nition 1.8.1 (Canonical Lie algebra) The Canonical Lie algebra LC is an abstract
Lie algebra that is isomorphic to the Lie algebra Obs(M) that is generated by a complete
set of fundamental observables.

Furthermore, we explained earlier that it is easier to study self-adjoint representa-
tions in terms of strongly continuous unitary representations of a Lie group associated
to LC. This group is the Canonical Group C, and we replace the former construction by
the following:

≅

fundamental classical observables
(+ Poisson brackets)

Canonical Lie algebra LC

fundamental quantum operators
(+ canonical commutation relations)

Canonical Group C

strongly continuous
one-parameter unitary groups

unitary representation⇐

Once we have a Canonical Group we can study its unitary representations on all pos-
sible Hilbert spaces H. Furthermore, a quantization map Q can be de�ned by sending
fundamental classical observables to the self-adjoint generators of strongly continuous
one-parameter unitary groups.

For conventional quantum mechanics over the con�guration space Q = Rn this
method reproduces the well-known results (see section 5.4). The Canonical Group of
conventional quantum mechanics is the Weyl–Heisenberg group H(n) from section 1.6
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and it yields the usual canonical commutation relations of q̂i, p̂j and 1 thanks to the
Stone–von Neumann theorem.

In general, however, we have neither a Canonical Group, nor is there a ‘natural’ set
of fundamental quantizable observables. If the con�guration space is the circle S1, for
instance, the most obvious choice of observable is the angle φ. Nevertheless, the angle φ
is not a continuous function on S1 and this attempt fails. Another case is example 1.6.4,A more detailed discussion of

why the angle φ doesn’t work
can be found in Kastrup’s paper
[Kas06, appendix A].

a particle constrained to an interval, where the usual momentum operator −iħ∂x is not
self-adjoint. The exact same problem appeared in remark 1.2.4 where we considered the
con�guration space Q = R+ of the positive real line.

So, in the general case, where do the Canonical Group and the set of the fundamental
observables come from?

Isham’s idea is the following: Let us assume for the moment that we already have
a complete set of fundamental observables, generating the Lie algebra Obs(M). Each
function f ∈ Obs(M) produces a Hamiltonian vector �eld Xf and the corresponding
�owΦ ∶ R×M → M if complete is a one-parameter group of symplectic transformations
(more precisely, of Hamiltonian symplectomorphisms) of phase space M. Furthermore,A ‘symplectic transformation’,

or ‘symplectomorphism’, is the
mathematical term for what
is better known in physics as
‘canonical transformation’ (see
also chapter 4).

all these one-parameter groups taken together form a Lie group G which acts on phase
space by symplectic transformations (we will call this group together with its action on
M the Geometric Group G for reasons that will become clear in a moment). Thus, we
have the following picture:

≅

fundamental observables Obs(M)

Canonical Lie algebra LC

Canonical Group C

Hamiltonian vector �elds onM

one-parameter groups of
symplectic transformations

Geometric Group G acting onM

Isham’s important observation in [Ish83] is that the above procedure can be reversed.
Thus, it becomes possible to determine an appropriate Canonical Group C by looking
for a group G of (global) symplectic transformations on M:

≅

fundamental observables Obs(M)

Canonical Lie algebra LC

Canonical Group C

Hamiltonian vector �elds onM

one-parameter groups of
symplectic transformations

Geometric Group G acting onM

⇐

The geometry and the global topological structure of phase space will largely restrict
which symplectic transformations are possible, and will often hint at a reasonable choice.
As such, if we once again consider conventional quantum mechanics on Q = Rn, the
most obvious choice for G is the additive group G = (R2n,+) acting on the classicalWe will discuss this example in

detail in section 5.4. phase space M = R2n by translations, and, in fact, the Canonical Group C, which in this
case is known to be the Weyl–Heisenberg group H(n), can be constructed from G by a
so-called central extension (the general construction is given in section 5.3).
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Apart from these mathematical considerations there will be some additional criteria
to be kept in mind which are necessary for an adequate physical interpretation:

The �rst point is that there might already be a group structure. As an example, when
we discussed conventional quantum mechanics the vector space Rn as con�guration
space of a particle was a poor choice from a conceptual point of view. The actual physical
setting is more accurately described by an a�ne space An, which comes pre-equipped The idea of an a�ne space is

generalised by the concept of
G-spaces (see section 3.2).

with an action of the group (Rn,+), acting on An by translations. An adequate Geomet-
ric Group will usually have to be compatible with such a pre-given group action.

Secondly, there is a connection between the realisation of the group law of the Geo-
metric Group G and the physical interpretation of observables. As an example, suppose
we have some observable that describes an angle. The 1-parameter subgroup of G that
is related to the observable then has to act on phase space by a transformation that can
be interpreted as a rotation. In terms of the subgroup this means that there will be some
kind of periodicity, and this periodicity will re�ect itself in the realisation of the group
law of G. Accordingly, the other way around, if the group action of the Geometric Group
doesn’t provide such a periodicity, the associated observable cannot be interpreted as an
angle.

In chapter 5 we will discuss these issues more thoroughly after we have seen some
concrete examples of how the quantization scheme works in practice. First, however, it
is now the time to give an overview of the mathematical concepts we need to formulate
the quantization method in more rigorous terms.
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2 Manifolds and Fibre Bundles

Although it is generally accepted that physics is written
in the language of mathematics, there are disagreements
on how much mathematical background is needed to
give a proper description of physical phenomena.

Garbaczewski and Karwowski, [GK04]

In this chapter we are going to summarise some facts from di�erential geometry.
A good introductory textbook is the one written by Jänich [Jän01b; Jän01c]. For further
reference I can highly recommend Michor’s lectures [Mic08] as well as the books of
Nakahara [Nak03] and Lee [Lee03]. An excellent review, particularly suitable for our
purposes, is given by Waldmann [Wal07, chapters 2–4] (in German). Another useful
presentation of di�erential geometry, strongly biased towards applications in classical
mechanics, is given in the book of Marsden and Ratiu [MR99].

2.1 Di�erentiable Manifolds

Let us start with some basic de�nitions.

De�nition 2.1.1 (Chart, transition map, atlas) Let M be a topological space. Then, an
n-dimensional chart (U,x) of M is an open subsetU ⊆ M (the chart domain) together
with a homeomorphism x ∶ U → Ũ onto an open subset Ũ ⊆ Rn. A chart locally ‘�attens’
the space M.

Given two overlapping charts (U,x) and (V , y), that is with U ∩ V ≠ ∅, the map
y ○ x−1 ∶ x(U ∩ V) → y(U ∩ V) is called transition map between these charts. By
de�nition, it is always at least a homeomorphism between open subsets of Rn.

An n-dimensional atlas A of M is a collection of n-dimensional charts {(Uα,xα)}α
such that the sets Uα constitute an open cover of M. A Ck-atlas is an atlas whose trans-
ition maps are all Ck.

M
U V

Ũ Ṽ

Rn Rn

x y

y○ x−1

Figure 2.1 Transition map y○ x−1 between two charts (U,x) and (V , y).
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De�nition 2.1.2 (Equivalent atlases, di�erential structure) Two Ck-atlases A1 and A2
of a topological space M are said to be equivalent (or compatible) if their union A1∪A2
is again a Ck-atlas of M.

An n-dimensionalCk-di�erential structure ofM is an equivalence class ofn-dimen-
sional Ck-atlases. Alternatively, a di�erential structure can be de�ned as a maximal at-
las, which is the union of all atlases in an equivalence class.

De�nition 2.1.3 (Manifold) An n-dimensional Ck-manifold M is a second countable
topological Hausdor� space equipped with an n-dimensional Ck-di�erential structure.

As special cases, aC0-manifold is called topological manifold; aC∞-manifold is said
to be a smooth manifold.

While the demand for the di�erential structure is clear, it isn’t immediately obvious
why M needs to be second countable. The reason behind this requirement is the exist-
ence of a partition of unity which enables us to de�ne integration on manifolds. The
Hausdor� property, on the other hand, ensures that the manifold doesn’t ‘branch’ (see
the remark in [Pen05, section 12.2]).

De�nition 2.1.4 (Di�erentiable map) A continuous map φ ∶ M → N between two
manifolds M andN is di�erentiable at p ∈ M if it is di�erentiable at this point ‘in charts’,
this is, if there are charts (U,x) around p ∈ M and (V , y) around φ(p) ∈ N such that
y ○ φ ○ x−1 is di�erentiable at x(p) ∈ Rn in the customary sense (see �gure 2.2). The
map φ is said to be di�erentiable (globally) if it is di�erentiable at every point p ∈ M.

Since R is a manifold itself – with global chart (R, id) – the de�nition also applies
to di�erentiable functions f ∶ M → R and di�erentiable curves α ∶ R → M.

M N

p
φ

U V

x y

Rm Rn

x(p) y○ φ ○ x−1

Figure 2.2 A map φ between manifolds is di�erentiable if it is di�erentiable ‘in
charts’.

2.2 Tangent Vectors and Tangent Spaces
Intuitively, we knowhow a plane tangent to a surface looks like. Although usable
for submanifolds of Rn, the visual picture of ‘tangent to’ fails when the surface isn’t em-
bedded in an ambient space, as it critically depends on it. For the general case we there-
fore need to characterise tangent vectors without reference to the surrounding space.
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M

TpM

α

vp

p

( )I
R

0

Figure 2.3 Di�erentiable curve α through p = α(0) and the corresponding tan-
gent vector vp = [α]. Mention that the tangent vector vpdoesn’t live on the mani-
fold and can only be pictured this way if M is embedded in a surrounding space
(in which case vp is the velocity of the curve at time 0).

There are several di�erent ways to de�ne a tangent vector: via the velocity of a curve,
as a derivation or by its transformation law. For �nite-dimensional manifolds the three
approaches are equivalent (a proof can be found in [Jän01c, section 2.3]), only for in�-
nite-dimensional manifolds one has to be more careful ([Ish83, section 3.1.2]).

De�nition 2.2.1 (Curve) Let I ⊆ R be an open subset of R and let M be a manifold. A
parameterised curve (or just curve) α on M is a map:

α ∶ I → M , t↦ α(t) .

The curve is called smooth if α is di�erentiable (usually C∞).

Using curves we can de�ne tangent vectors in the following ‘geometric’ way:

De�nition 2.2.2 (Tangent vector, tangent space) Let M be a manifold and letKp be the
set of di�erentiable curves α through p ∈ M, with α(0) = p. Two such curves α,β ∈ Kp
are tangentially equivalent, α ∼ β, if they are tangent to each other ‘in charts’, i. e.:

d
dt

∣
t=0
x ○ α(t) = d

dt
∣
t=0
x ○ β(t) , (2.1)

for any chart (U,x) around p. The equivalence classes vp = α̇(0) ∶= [α] for α ∈ Kp are
called tangent vectors at pand TpM ∶= Kp/∼ = {[α] ∶ α ∈ Kp} is the tangent space at p.

In addition to the geometric viewpoint, tangent vectors can also be characterised
algebraically by their action on smooth functions. That said, since a tangent vector is
de�ned locally at a point p ∈ M we don’t need the functions to be de�ned on the whole
manifold, just in a small neighbourhood of p. The following de�nition of function germs
implements this idea.

De�nition 2.2.3 (Germs of functions) Let f, д be two real-valued functions, de�ned
and Ck-di�erentiable in a neighbourhood of a point p ∈ M. We will consider them
germ equivalent if there exists an open neighbourhood U of p such that f∣U = д∣U. The
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domain of f domain of д

f∣U = д∣U

Figure 2.4 The two functions f and д de�ne the same germ.

equivalence classes [f]p are called (Ck-di�erentiable) germs of functions at p, and the
set of all function germs [f]p at p is denoted by Ckp(M).

Germs of functions at pcan be added and multiplied with each other, thereby giving
Ckp(M) the structure of an associative ring with unity. We can identify the real numbers
R with constant functions to induce a scalar multiplication compatible with the ring
structure. The space of germsCkp(M) is hence not just a ring but a real associative algebra
with unity.

De�nition 2.2.4 (Tangent vector as a derivation) Given a Ck-manifold M, an ‘algeb-
raic’ tangent vector vp at p ∈ M is a derivation of the algebra of function germs at p,
namely a linear map:

vp ∶ Ckp(M) → R ,

that satis�es Leibnitz’s law:

vp(fд) = vp(f)д(p) + f(p)vp(д) .

The ‘geometric’ tangent vectors [α] ∈ TpM from above become ‘algebraic’ ones when
we de�ne the action on di�erentiable germs of functions f ∈ C1p(M) as:

[α](f) = α̇(0)f ∶= d
dt

∣
t=0
(f ○ α)(t) . (2.2)

Finally, we want to work our way towards the de�nition of tangent vectors ‘in
coordinates’, the way they are commonly used in most physics textbooks. Given an n-
dimensional manifold M and a chart (U,x) around p ∈ M, a basis of the tangent space
TpM is given by the derivations:

∂
∂xi

∣
p
∶ C1p→ R , f↦ ∂

∂xi
∣
p
f ∶= ∂(f ○ x−1)

∂xi
∣
x(p)

, (2.3)

where f ○ x−1 ∶ Ũ ⊆ Rn → R is the coordinate representation of f. A general tangent
vector vp ∈ TpM can then be expressed as a linear combination:

vp = vip
∂
∂xi

∣
p
, with vip = vp(xi) ∈ R . (2.4)

Unfortunately, since the coordinates vip depend on this speci�c chart (U,x) they
can’t really characterise vp in an invariant way. Expressing vp in a di�erent chart (V , y)
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around p, we obtain:

vp(f) = vip
∂
∂xi

∣
p
(f) = vip

∂(f ○ x−1)
∂xi

∣
x(p)

= vip
∂(f ○ y−1 ○ y○ x−1)

∂xi
∣
x(p)

= vip
∂(f ○ y−1)

∂yj
∣
y(p)

∂(y○ x−1)j
∂xi

∣
x(p)

= vip
∂(y○ x−1)j

∂xi
∣
x(p)

∂
∂yj

∣
p
(f)

!= ṽip
∂
∂yj

∣
p
(f) .

Thus, when changing charts, the coordinates have to be transformed via the Jacobian
matrix of the transition map, the basis vectors via the inverse:

ṽ jp = vip
∂(y○ x−1)j

∂xi
∣
x(p)

,
∂
∂yj

∣
p
= ∂(x ○ y−1)i

∂yj
∣
x(p)

∂
∂xi

∣
p
. (2.5)

Using this, we can make the vague notion of ‘a tangent vector is a tangent vector if it
transforms like one’ more explicit by the following de�nition.

De�nition 2.2.5 (Tangent vector ‘in coordinates’) Consider pairs of coordinates and
basis vectors of TpM (see equation (2.3)):

(vip ;
∂
∂xi

∣
p
) .

Two pairs are said to be equivalent if they are related to each other by a transformation
as in equation (2.5). A tangent vector ‘in coordinates’ is then an equivalence class with
respect to this relation:

[vip ;
∂
∂xi

∣
p
] .

Intuitively, one can think of such a tangent vector as a collection of the coordinate rep-
resentations in all possible bases.

De�nition 2.2.6 (Tangent bundle) The tangent bundle TM of an n-dimensional mani-
fold M is the disjoint union of all tangent spaces:

TM ∶= ∐
p∈M

TpM ∶= ⋃
p∈M

{p} × TpM .

The set TM is – in a canonical way – a 2n-dimensional manifold, where the charts are
given by maps TM ∋ (p,vp) ↦ (x1(p), . . . ,xn(p),vp(x1), . . . ,vp(xn)) ∈ x(U) ×Rn,
when (U,x) is a chart of M around the point p. In addition, there is a natural projection
π ∶ TM → M , (p,vp) ↦ p, turning TM into a vector bundle, a special case of a �bre We will take a closer look at

�bre bundles in section 2.5.bundle. The preimage π−1(p) of p ∈ M is called the �bre over p, in this speci�c case
π−1(p) = {p} × TpM ≅ TpM.

2.3 The Tangent Map

A mapping φ ∶ M → N between two manifolds can be used to ‘push’ tangent vectors
from one manifold to the other. The idea is – when viewing a tangent vector at the point
p ∈ M as represented by a curve α on M – that φ maps α to a curve φ ○ α on N. The
resulting curve then de�nes a new tangent vector at the point φ(p) ∈ N as shown in
�gure 2.5 on the following page. The following de�nition formalises this idea.
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M N

α φ ○ α
p φ(p)
vp

φ

Tpφ
TpM Tφ(p)N

Figure 2.5 Tangent map Tpφ between two manifolds. The function φ ∶ M → N
can be used to push the curve α on M to the manifold N and thereby induces a
transformation of tangent vectors vp↦ Tpφ(vp).

De�nition 2.3.1 (Tangent map) Let φ ∶ M → N be a di�erentiable map between two
manifolds. The tangent map Tpφ of φ at the point p ∈ M (also called pushforward or
di�erential) is:

Tpφ ∶ TpM → Tφ(p)N , [α] ↦ Tpφ([α]) ∶= [φ ○ α] . (2.6)

In addition, we de�ne the (global) tangent map Tφ ∶ TM → TN between the tangent
bundles by Tφ∣TpM ∶= Tpφ. The tangent map satis�es the commutative diagram:

TM TN

M N

Tφ

φ

πM πN

,

where πM ∶ TM → M and πN ∶ TN → N are the natural projections of the tangent
bundles TM and TN, respectively (see de�nition 2.2.6).

There exists a variety of alternative notations. In common use are dφp or Dφp, since
the tangent map at a point generalises the usual di�erential from linear algebra. To em-
phasise the relation to the pullback, the tangent map is also frequently written as φ∗,pWe write φ∗vp ∶= (φ−1)∗vp

for the pushforward of tangent
vectors via the inverse of φ.

and then usually called pushforward. Moreover, in this case, the point p and brackets
around the argument are often omitted, resulting in the notation φ∗[α] or φ∗vp. The
same notation, φ∗, is widely used for the global tangent map.

Remark 2.3.2 If we take the algebraic viewpoint and consider tangent vectors as deriv-
ations (as in de�nition 2.2.4), the tangent map assumes the form:

Tpφ(vp) = vp ○ φ∗ , (2.7)

where the so-called pullback φ∗ acts on germs of functions like:M N

R

φ

дφ∗д φ∗ ∶ Ckφ(p)(N) → Ckp(M) , д↦ φ∗(д) ∶= д ○ φ .

Evaluating equation (2.7) on functions then yields the explicit formula:

(Tpφ(vp))(д) = vp ○ φ∗(д) = vp(д ○ φ) . (2.8)
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Remark 2.3.3 The coordinate representation of the tangent map – using charts (U,x)
around p ∈ M and (V , y) around φ(p) ∈ N – is given by:

Tpφ(vip
∂
∂xi

∣
p
) = vip

∂(yj○ φ ○ x−1)
∂xi

∣
x(p)

∂
∂yj

∣
φ(p)

. (2.9)

Lemma 2.3.4 (Chain rule) Given two di�erentiable maps φ ∶ M → N and ψ ∶ N → O
between manifolds, the following chain rule holds: TM TN TO

M N O
φ ψ

Tφ Tψ

T(ψ ○ φ)

T(ψ ○ φ) = Tψ ○ Tφ . (2.10)

Furthermore, we have:
T idM = idTM . (2.11)

Proof. The proof is a straightforward application of formula (2.8). For vp ∈ TpM and a
di�erentiable function germ д ∈ Ckψ○φ(p)(O) we obtain:

(Tp(ψ ○ φ)(vp))(д) = vp(д ○ (ψ ○ φ)) = vp((д ○ψ) ○ φ)
= (Tpφ(vp))(д ○ψ)
= (Tφ(p)ψ ○ Tpφ(vp))(д) ,

where, in the last step, Tpφ(vp) is simply a tangent vector in Tφ(p)N.
The second identity follows from:

(T idM(vp))(f) = vp(f ○ idM) = vp(f) = (idTM(vp))(f) ,

for all function germs f ∈ Ckp(M) and all p ∈ M. ∎

Equations (2.10) and (2.11) are the de�ning properties of a covariant functor, a map
between categories. Categories combine objects (e. g. sets, groups, vector spaces, …) with
compatible ‘relations’ between them (e. g. equivalence relations, group homomorphisms,
linear maps, …). More precisely:

De�nition 2.3.5 (Category) A category C consists of: More details on categories and
functors can be found in the
book of Hilton and Stammbach
[HS71, chapter II]. The stand-
ard reference is Mac Lane’s
work [Mac98].

· a class of objects Obj(C),
· to each pair (A,B) of objects a set of morphisms (or arrows) Hom(A,B) between

these objects. An element f ∈ Hom(A,B) is typically written as f ∶ A → B (yet f
doesn’t have to be a function in general). The object A is called the source, and B the
target of f. We will denote the class of all morphisms by Hom(C) but some authors
prefer to write Mor(C) instead.

· a binary operation ○ ∶ Hom(A,B) × Hom(B,C) → Hom(A,C), (f, д) ↦ f ○ д,
called composition of morphisms,

such that the following axioms hold:

· the composition is associative, (f ○ д) ○ h = f ○ (д ○ h),
· for each object A, there exists an identity morphism idA ∈ Hom(A,A) that satis�es
idA○f = f and д ○ idA = д.

It should be noted that the sets Hom(A,B) of morphisms are disjoint unless both
domain and codomain match.
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Example 2.3.6 Some important examples of categories include:

■ The category Grp of groups, where the objects are groups and the morphisms are
the group homomorphisms.

■ A groupG itself can be seen as a category with a single object x, where all the morph-
isms are invertible, i. e. isomorphisms. The morphisms then correspond to the group
elements; the group properties are provided by the category laws. The neutral element
of the group is the identity morphism idx ∶ x → x.

■ A slight generalisation of the last example: If we have a set of multiple objects and
all the morphisms are isomorphisms we obtain a so-called groupoid. The di�erenceGroupoids will appear again

later in section 3.2 where we
talk about group actions. In
fact, so-calledG-sets can be
seen as action groupoids.

is that not all morphisms can be composed with each other. In terms of groups this
means that multiplication is only a partial functions, i. e. not all pairs of groupoid
elements can be multiplied with each other.

■ The category Mank of di�erentiable Ck-manifolds where the objects are Ck-mani-
folds and the morphisms are Ck-di�erentiable maps between them.

■ The categoryO(M) where the objects are open subsets of a topological spaceM and
the morphisms are inclusions. The set Hom(A,B) thus contains a single morphism
if A⊆ B and otherwise is empty.

■ An abstract example: A commutative diagram can be interpreted as a category where
the objects are the vertices of the diagram and the morphisms are the arrows. Note
that the morphisms in this case are not functions but they really are seen as the edges
in a directed graph.

De�nition 2.3.7 (Functor) Let C andD be categories. A (covariant) functor F ∶ C → D
is a mapping that associates:

· to each object A ∈ Obj(C) an object F(A) ∈ Obj(D),
· to each morphism f ∶ A→ B in C a morphism F(f) ∶ F(A) → F(B) inD,

such that:

· identities are preserved: F(idA) = idF(A),
· for any two morphisms f ∈ Hom(A,B) and д ∈ Hom(B,C) we have the chain rule:
F(f ○ д) = F(f) ○ F(д).

A contravariant functor G ∶ C → D is de�ned the same way except that it reverses
morphisms, namely f ∶ A→ B is mapped to G(f) ∶ G(B) → G(A) and the chain rule
changes to G(f ○ д) = G(д) ○G(f).

Remark 2.3.8 (Tangent functor) The tangent functor T ∶Mank → VB, acting on di�er-
entiable manifolds (objects) by M ↦ TM and on di�erentiable maps (morphisms) by
φ↦ Tφ, is a covariant functor from the category Mank of Ck-manifolds (with di�eren-
tiable maps) to the category VB of vector bundles (with vector bundle morphisms).

In contrast to the tangent functor, Tp can not be a functor starting in the category
of manifolds because TpM only makes sense if p is a point in M. Nevertheless, it is aLie groups can be thought of

as pointed manifolds. The Lie
functor L (de�nition 3.3.7) is
essentially equal to Te.

functor from the category of pointed manifolds (the objects are pairs (M, p) consisting
of a manifold M and a chosen base point p ∈ M; the morphisms are di�erentiable maps
between manifolds that preserve the base points) to the category VectR of real vector
spaces, with linear maps as morphisms.
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2.4 Vector Fields, Flow, and the Lie Derivative

De�nition 2.4.1 (Vector �eld) Given some manifold M, a vector �eld X on M is a
continuous map:

X ∶ M → TM , p↦ (p,Xp) ,

that attaches a tangent vector Xp ∈ TpM to each point p ∈ M (see �gure 2.6).
Alternatively, we can interpret a vector �eld as a section of the tangent bundle TM,

i. e. a map X ∶ M → TMwith π○X = idM. The condition hereby ensures that X(p) ends
up in the �bre π−1(p) over p, such that the tangent vector Xp lies in the correct tangent
space TpM.

If this viewpoint of vector �elds as sections should be emphasised they are usually
denoted by Γ(TM). The set of smooth vector �elds on M (where X is required to be a
C∞-di�erentiable function) will be written as Γ∞(TM) or simply as X(M).

Remark 2.4.2 The vector �elds Γk(TM) possess the structure of aCk(M)-module over
the algebra of functions thanks to the de�nition:

(fX + дY)(p) ∶= f(p)X(p) + д(p)Y(p) ,

with X,Y ∈ Γk(TM) and f, д ∈ Ck(M).

De�nition 2.4.3 (Vector �eld as derivation) A vector �eld X ∈ Γ∞(TM) naturally acts
on functions f ∈ C∞(M) via:

(Xf)(p) ∶= Xp(f) ∀p ∈ M . (2.12)

Moreover, for any two functions f and д, we have the product rule: For �nite-dimensional, di�eren-
tiable Ck-manifolds with k ≥ 2,
the vector �elds are actually iso-
morphic to the vector space of
derivations of functions on M
(see [AMR88, section 4.2]).

X(fд) = (Xf)д+ f(Xд) .

Thus, vector �elds can be seen as derivations of the algebra of functions C∞(M).

This interpretation of vector �elds coincides with the Lie derivative of functions:

p Xp

integral curve of X

Figure 2.6 Vector �eld on a manifold. The �eld X is a prescription that attaches a
tangent vectorXp to each point p ∈ M, located in the tangent spaceTpM. Integral
curves are tangent to the vector �eld at each point.
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De�nition 2.4.4 (Lie derivative) For functions, the Lie derivative LX f along X is:A geometrical interpretation of
the Lie derivative is given in the
remark after lemma 2.4.11. LX ∶ C∞(M) → C∞(M) , LX f ∶= Xf . (2.13)

The product rule then looks like:

LX(fд) = LX(f)д+ fLX(д) . (2.14)

In this de�nition we used the derivational viewpoint of tangent vectors to de�ne the
same concept for the vector �eld. Similarly, since we can transport tangent vectors from
one manifold to another by means of the tangent map, it seems as if we could push whole
vector �elds between manifolds as well. Unfortunately, there are problems:

Consider a di�erentiable map φ ∶ M → N between manifolds and a vector �eld X on
M. Pointwise application of the tangent map yields Tpφ(Xp) ∈ Tφ(p)(N). We can see
immediately that – since φ is in general not surjective – the result doesn’t de�ne a vector
�eld on the whole manifold N. The vector �eld wouldn’t even be well-de�ned unless φ
were injective. Moreover, the result still depends on p ∈ M and not on a point in N as it
should be the case.

Still, it makes sense that two vector �elds are kind of ‘related’ in this way:

De�nition 2.4.5 (φ-related vector �elds) Let M, N be manifolds, X a vector �eld on
M, Y a vector �eld on N. The vector �elds X is said to be φ-related to Y if there exists
a continuous map φ ∶ M → N such that the following diagram commutes:

TM TN

M N

Tφ

φ

X Y

,

that is:
Tφ ○ X = Y ○ φ , or Tpφ(Xp) = Yφ(p) ∀p ∈ M . (2.15)

If, on the other hand, φ is a di�eomorphism it is possible to de�ne the pushforward
and pullback of vector �elds in the following way:

De�nition 2.4.6 (Pushforward of a vector �eld) Let φ ∶ M → N be a di�eomorphismInstead of φ#X, a lot of authors
use the notation φ∗X also for
the pushforward of vector �elds
and leave it to the reader to
�gure things out.

between manifolds and let X be a vector �eld on M. The pushforward of X is the vector
�eld φ#X ∈ Γ(TN), given by (see also section 4.5 for a further discussion):

TM TN

M N

Tφ

φ

X φ#X⇒φ#

(φ#X)q ∶= φ∗(Xφ−1(q)) = Tφ(Xφ−1(q)) , (2.16)

for each point q ∈ N. The �eld X is then φ-related to φ#X.
In addition, we de�ne the pullback of Y ∈ X(N) as the pushforward via the inverse

φ−1:
φ#Y ∶= (φ−1)#Y .

In this case, the pullbacked �eld φ#Y is φ-related to Y.

Vector fields can be used to formulate ordinary di�erential equations on mani-
folds. The solutions are given by integral curves:
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De�nition 2.4.7 (Integral curve) Let X be a vector �eld on M. A di�erentiable curve
γ ∶ I → M, de�ned on an interval I ⊆ R, is called integral curve (or �ow curve) of X
through p ∈ M if:

γ̇(t) = Xγ(t) , γ(0) = p . (2.17)

This tells us that the velocity of γ at time t is equal to the tangent vector Xγ(t) at this If X is Lipschitz continuous,
the Picard–Lindelöf theorem
guarantees both existence and
uniqueness of maximal integral
curves.

point (see �gure 2.6 on page 47).
We call γ a maximal integral curve if there exists no integral curve through pwith

a domain I′ ⊃ I larger than the domain I of γ. If γ is de�ned for all times t ∈ R, i. e. the
domain is equal to I = R, the integral curve is said to be complete.

If we take the point p ∈ M to be variable we obtain the �ow of X:

De�nition 2.4.8 (Flow) The �ow Φ of a vector �eld X on M is the continuous map:

Φ ∶ R ×M ⊇ U → M , (t, p) ↦ Φ(t, p) ,

where Φ( ⋅ , p) ∶ Ip ⊆ R → M is the maximal integral curve through p and U is the
maximal open subset U ⊆ ⋃p∈M{p} × Ip. Explicitly, the �ow satis�es:

d
dt
Φ(t, p) = XΦ(t,p) , Φ(0, p) = p . (2.18)

If U = M ×R, the �ow is called complete or global �ow. If X possesses a complete �ow, As a special case, compactly
supported vector �elds on a
manifold are always complete
(see [Mic08, lemma 3.8]).

it is said to be a complete vector �eld.
Furthermore, we will write Φt ∶= Φ(t, ⋅ ).

Lemma 2.4.9 (‘Group law’ for the �ow) The �ow satis�es:

Φr ○Φs = Φr+s , (2.19)

for all r, s ∈ R where Φr, Φs and Φr+s is de�ned.

Proof. Given f(r) ∶= Φr ○Φs(p), equation (2.18) yields:

d
dr
f(r) = Xf(r) , f(0) = Φ0 ○Φs(p) = Φs(p) .

On the other hand, using д(r) ∶= Φr+s(p), we obtain:

d
dr
д(r) = Xд(r) , д(0) = Φ0+s(p) = Φs(p) .

Since both f and д satisfy the same di�erential equation and initial condition, the the-
orem of Picard–Lindelöf tells us they have to be identical. Thus, equation (2.19) holds
for all times where the solution to the di�erential equation exists. ∎

If the �ow Φ is complete the set {Φt ∶ t ∈ R} is a one-parameter group of trans-
formations of M (via di�eomorphisms). Otherwise the transformations only form a
one-parameter groupoid (see example 2.3.6 on page 46 for the de�nition; the resulting
object is also called local pseudo group in [CDD77, section III.C]).

De�nition 2.4.10 (Generator of a transformation) Let X be a smooth vector �eld on a If X is compactly supported it
generates a one-parameter sub-
group of global transformations
of M [CDD77, p. 143].

manifold M and let Φ be its �ow. Then X is called the generator of the one-parameter
groupoid {Φt} of local transformations of M.



50 Chapter 2. Manifolds and Fibre Bundles

M

Φtp Φt(p)
Yp

YΦt(p)
Ỹp

Φ−t∗

(LXY)p
TpM TΦt(p)M

Figure 2.7 Lie derivative of a vector �eld. The Lie derivative LXY at the point p
is e�ectively the di�erence between YΦt(p) andYp. To compare them, the former
has to be transported back to TpM using the �ow Φ of X, thereby giving Ỹp.

Using the �ow, we can reformulate the Lie derivative of a function:

Lemma 2.4.11 (Lie derivative) Let M be a smooth manifold, X a smooth vector �eld
on M and Φ the �ow generated by X. Then, the Lie derivative LX f of a function f can
be written as:

LX f =
d
dt

∣
t=0
Φ∗
t f = limt→0

1
t
(Φ∗

t f − f) . (2.20)

Proof. Given that the curve Φ( ⋅ , p) de�nes the tangent vector Xpwe can use the action
of tangent vectors on functions from equation (2.2) to calculate the Lie derivative of f
at the point p:

LX f(p) = (Xf)(p) = Xpf = [Φ( ⋅ , p)]f = d
dt

∣
t=0
f ○Φ(t, p) = d

dt
∣
t=0
f ○Φt(p) .

Using the pullback notation Φ∗
t f = f ○Φt, this is exactly what had to be shown. ∎

Equation (2.20) allows a geometrical interpretation of the Lie derivative: LX f at the
the point p is e�ectively the di�erence of f(Φt(p)) and f(p) when t goes to zero. This
means that the Lie derivative LX fmeasures the change of f along the �ow of X. For this
reason, LX it is sometimes called the ‘�sherman’s derivative’.

Another important thing about equation (2.20) is that it can be used to de�ne the
Lie derivative of vector �elds:

De�nition 2.4.12 (Lie derivative of a vector �eld) Let M be a smooth manifold, let X
and Y be vector �elds on M and let Φ be the �ow of X. Then, the Lie derivative LXY
of Y along X is de�ned as:

(LXY)p =
d
dt

∣
t=0
(Φ#

tY)p = lim
t→0

1
t
(Φ∗

tYΦt(p) − Yp) , (2.21)

where Φ∗
t = (Φ−1

t )∗ = Φ−t∗ is the pushforward via the inverse of Φt (the de�nition of
the Lie derivative is illustrated in �gure 2.7).
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De�nition 2.4.13 (Jacobi–Lie bracket) Given vector �eldsX(M) on a smooth manifold
M, the Jacobi–Lie bracket is the R-bilinear mapping:

[ ⋅ , ⋅ ] ∶ X(M) ×X(M) → X(M) ,
(X,Y) ↦ [X,Y] (f) ∶= X(Y(f)) − Y(X(f)) . (2.22)

Lemma 2.4.14 (Jacobi–Lie bracket and commutator) The Jacobi–Lie bracket of two
vector �elds X and Y is the same as the Lie derivative of Y along X:

[X,Y] (f) = LXY .

Proof. A proof is given in [Mic08, lemma 3.13]. ∎

Lemma 2.4.15 (Properties of the Jacobi–Lie bracket) The Jacobi–Lie bracket has the
following properties:

(i) [X,Y] = − [Y,X] , (antisymmetry)

(ii) [X, [Y,Z]] = [[X,Y] ,Z] + [Y, [X,Z]] , (Jacobi identity)

(iii) [fX,Y] = f [X,Y] − (Y f)X ,

(iv) [X, fY] = f [X,Y] + (Xf)Y .

Proof. The �rst and second property are simple consequences of the de�nition via the
commutator. The third one uses that vector �elds form a C∞(M)-module and that they
act on functions as derivations:

[fX,Y] (д) = (fX)(Y(д)) − Y((fX)(д)) = f X(Y(д)) − Y(f X(д))
= f X(Y(д)) − fY(X(д)) − Y(f)X(д)
= f [X,Y] (д) − (Y f)X(д) .

The last property is just a rewrite of the third one, because [fX,Y] = − [Y, fX]. ∎

Remark 2.4.16 (Vector �elds as Lie algebra) The vector �elds X(M) together with the
Jacobi–Lie bracket [ ⋅ , ⋅ ], that satis�es the �rst two properties of lemma 2.4.15, form the
prototype of a Lie algebra. The Jacobi identity says that [X, ⋅ ] is a derivation of the Lie
algebra. To see this, use the notation ad(X) = [X, ⋅ ] and write X ∗ Y = [X,Y] for the
bracket. The Jacobi identity then reads:

ad(X)(Y ∗ Z) = ad(X)(Y) ∗ Z + Y ∗ ad(X)(Z) ,

which we recognise as the usual product rule.

An important result is that the pullback (pushforward via the inverse) of vector �elds
via a di�eomorphism is a Lie algebra homomorphism:

Lemma 2.4.17 (Pullback and Jacobi–Lie bracket) Let φ ∶ M → N be a di�eomorphism
and let Y1,Y2 ∈ X(N) be vector �elds. The pullback φ# ∶ X(N) → X(M) is then a Lie
algebra homomorphism, that is:

φ# [Y1,Y2] = [φ#Y1,φ#Y2] . (2.23)
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Proof (see [Mic08, lemma 3.10 and corollary 3.11]). Let us write Xi ∶= φ#Yi, then Xi isNote that the proof is even a bit
more general than necessary
because only φ-related vector
�elds Xi and Yi are assumed.

φ-related to Yi, i. e. Tφ ○ Xi = Yi ○ φ. Given a smooth function д ∈ C∞(N) we have:

Xi(д ○ φ)(p) = Xi,p(д ○ φ) = (Tpφ(Xi,p))(д) = (Tφ ○ Xi)p(д)
= (Yi ○ φ)p(д) = Yi,φ(p)(д) = (Yiд)(φ(p)) ∀p ∈ M ,

and therefore Xi(д ○ φ) = (Yiд) ○ φ. Using this we obtain:

(Tφ ○ [X1,X2])(д) = [X1,X2] (д ○ φ) = X1(X2(д ○ φ)) − X2(X1(д ○ φ))
= X1((Y2д) ○ φ) − X2((Y1д) ○ φ) = Y1((Y2д)) ○ φ− Y2((Y1д)) ○ φ ,

which means [X1,X2] is φ-related to [Y1,Y2], in other words φ# [Y1,Y2] = [X1,X2].
Reinserting the de�nition of Xi from above gives the relation we need. ∎

2.5 Fibre Bundles

Informally speaking, a �bre bundle is a space that locally ‘looks’ like a product
space B × F but globally may be more complicated. An example is the tangent bundle
TM – introduced in de�nition 2.2.6 – which locally looks like M ×Rn but globally can
have a nontrivial topological structure.

De�nition 2.5.1 (Fibre bundle) A �bre bundle (E,B,π,F), which we will denote bySome authors (e. g. [Nak03])
prefer to include a ‘structure
group’ in the de�nition of �bre
bundles. We call such bundles
G-bundles (de�nition 2.5.5).

π ∶ E → B or just E for short, consists of:

· a manifold E (the total space),
· a manifold B (the base space),
· a manifold F (the typical �bre or standard �bre),
· a smooth mapping π ∶ E → B (the bundle projection).

Furthermore, for any point z ∈ E there has to be an open neighbourhoodU of π(z) ∈ BWe sometimes use the notation
Ep ∶= π−1(p) for the �bre over
the point p ∈ B.

(a trivialising neighbourhood) such that E ⊇ π−1(U) is di�eomorphic to U × F via a
�bre-preserving di�eomorphism ψ, i. e. such that the following diagram commutes:

E ⊇ π−1(U) U × F

U

π

ψ

pr1

,

where pr1 ∶ U×F → U , (u, f) ↦ u is the projection on the �rst factor (see also �gure 2.8
on the facing page).

If a �bre bundle E is globally di�eomorphic to the product space B × F, we say that
E is a trivial bundle, otherwise E is called a nontrivial bundle (examples are given in
�gure 2.9 on the next page).

De�nition 2.5.2 (Fibre chart, local trivialisation, transition functions) The pair (U,ψ)
from above is called a �bre chart. A collection (Uα,ψα) of �bre charts such that (Uα)
is an open cover of B is called a �bre bundle atlas or local trivialisation of the bundle.

Given a local trivialisation (Uα,ψα) of a �bre bundle E and using the shorthand
notation Uαβ ∶= Uα ∩Uβ, we de�ne transition functions tαβ by:

ψα ○ψ−1β (u, f) =∶ (u, tαβ(u, f)) ,
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(
)

B

E

U

F

U

U × F

z

π(z)

(u, f)

π−1(U)

ψ

π
pr1

Figure 2.8 A �bre chart (U,ψ) locally trivialises the bundle E.

where tαβ can be seen either as a map tαβ ∶ Uαβ × F → F , (u, f) ↦ tαβ(u, f) or
(equivalently) as a map tαβ ∶ Uαβ → Di�(F) , u ↦ tαβ(u), where tαβ(u) ∶= tαβ(u, ⋅ )
is a di�eomorphism of the typical �bre F. The transition functions satisfy the cocycle
conditions (they form a cocycle in the Čech cohomology [Mic08, section 8.3]):

tαβ(u) ○ tβγ(u) = tαγ(u) ∀u ∈ Uα ∩Uβ ∩Uγ ,
tαα(u) = idF ∀u ∈ Uα ,
tαβ(u) = tβα(u)−1 ∀u ∈ Uαβ . (2.24)

Accordingly, the collection (tαβ) is called a cocycle of transition functions.

The de�nition of vector �elds as sections of the tangent bundle can be generalised to
the case of �bre bundles. The sections of a �bre bundle take on values in the �bre over

BB

Figure 2.9 Di�erent �bre bundles over the same base manifold B. The cylinder
is a trivial bundle, the Moebius strip a nontrivial bundle. The latter can be con-
structed by gluing two pieces of paper together where one joint is straight, the
other has a half-twist as shown in the �gure. The structure group of the Moebius
strip would therefore be G ≅ {+1,−1}.
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B

E

p

s(p)

π

�bre π−1(p) ≅ F
section s of E

Figure 2.10 Global section of a �bre bundle E.

each point; a kind of ‘F-valued �elds’.

De�nition 2.5.3 (Section) A (global) section (also called cross section) of a �bre bundle
π ∶ E → B is aCk-di�erentiable map s ∶ B→ E such thatπ○s = idB. TheCk-di�erentiable
sections are denoted by Γk(E) or Γk(B,E), smooth sections by Γ∞(E).

In analogy, a local section is a map s ∶ U → E with π ○ s = idU, where U ⊆ B is an
open subset of B. The Ck-di�erentiable local sections will be written as Γk(U,E).

Bundles in general don’t have to admit globally de�ned sections (see for example
[Nak03, theorem 9.2]). In contrast, local sections always do exist, supported by the local
trivialising neighbourhoods Uα of a �bre bundle atlas. There actually is a connection
between the existence of local sections and local trivialisations of the bundle.

De�nition 2.5.4 (G-bundle atlas,G-bundle structure) Let (E,B,π,F)be a �bre bundle,
then a G-bundle atlas on E consists of:

· a Lie group G (the structure group) together with a left action ℓ on the typical �bre,In gauge theories, the �elds are
sections of a G-bundle and the
structure group is then equal to
the gauge group.

i. e. a smooth mapping ℓ ∶ G × F → F such that ℓдh f = ℓдℓh f and ℓe = idF, where
we write ℓд f = ℓ(д, f),

· a �bre bundle atlas (Uα,ψα) with a cocycle (tαβ) of transition functions that act
on F via the G-action. This means that there exists a family of smooth mappings
φαβ ∶ Uαβ → G such that tαβ(u, f) = ℓ(φαβ(u), f), where φαβ(u) ∈ G.

A G-bundle structure is then an equivalence class of G-bundle atlases, where two
G-bundle atlases are considered equivalent if their union is again a G-bundle atlas.

De�nition 2.5.5 (G-bundle) A G-bundle is a �bre bundle (E,B,π,F) together with a
G-bundle structure on E.

Usually, the G-bundle structure will be given by specifying an explicit �bre bundle
atlas together with transition functions. An example is the Moebius strip in �gure 2.9,
where the open sets U1 and U2 correspond to the two pieces of paper, the structure
group is G ≅ Z2 ≅ {+1,−1} (in this case, as an exception, G is not a Lie group) where
+1 produces the straight join and −1 does the half-twist mentioned in the description.

As another example, the tangent bundle TM of an n-dimensional manifold M is a
GL(n,R)-bundle, where the typical �bre is the vector space Rn.
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De�nition 2.5.6 (Principal bundle) A principal �bre bundle (or just principal bundle)
is a G-bundle π ∶ P → M with typical �bre identical to G, where the structure group G
acts on the �bre G (a Lie group) by left translation G ×G → G , ℓд(h) ∶= дh.

Remark 2.5.7 (Principal right action) A principal bundle π ∶ P → M admits a unique
right action r ∶ P ×G → P (the principal right action), determined by:

ψα(r(ψ−1α (u,h), д)) ∶= (u,hд) ,

where ψα are �bre bundle charts.

De�nition 2.5.8 (Vector bundle) A vector bundle is a G-bundle (E,B,π,V) where
the standard �bre V is a vector space and the structure group is G = GL(V), that is the
transition functions tαβ(u) ∈ GL(V) are linear maps.

A vector bundle with 1-dimensional �bre is also called line bundle.

Remark 2.5.9 The space of smooth sections Γ∞(E) of a vector bundle E naturally has
the structure of a C∞(M,R)-module with �bre-wise addition and multiplication in-
duced by the vector space structure of the typical �bre V. Moreover, vector bundles al-
ways admit a global section, the zero section 0E ∶ B→ E , p↦ (p, 0p) where 0p denotes
the zero in the �bre Ep (the zero element is special since the structure group is linear and
0p is thus invariant under the group action). As an example, for the Moebius strip build
out of B = S1 and V = R, the zero section is the only global section that is admitted.

De�nition 2.5.10 (Bundle map) Let π ∶ E → M and π′ ∶ E′ → M′ be �bre bundles. A
continuous map f ∶ E → E′ is called bundle map or bundle morphism if it is �bre-pre-
serving, that is if there exists a continuous map fB ∶ M → M′ such that the following
diagram commutes:

E E′

M M′

f

fB

π π′

.

In this case, we say that f is a bundle map covering fB. If f is invertible, we speak of a
bundle isomorphism. Two bundles over the same manifold M are called isomorphic if
there exists a bundle isomorphism, with the additional property that this isomorphism
covers the identity idM.

If the bundle in question has some additional structure we want a bundle morphism
to preserve this structure as well. For instance in the case of vector bundles we require
that f is �brewise linear, i. e. the restriction fp ∶ Ep→ E′fB(p) is a linear map between the
�bres Ep over p ∈ M and E′fB(p) over fB(p) ∈ M′.

The pushforward φ∗ ∶ TM → TN between tangent bundles is an example of a vector
bundle map covering φ ∶ M → N.

2.6 Constructions With Fibre Bundles

There are several important constructions that create new �bre bundles out of
existing ones. The basic observation is the following construction theorem:
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Theorem 2.6.1 (Construction theorem for G-bundles) Given a manifold M, let (Uα)
be an open cover of M, suppose we have a left G-action ℓ of a Lie group G on some
manifold F, and let (φαβ ∶ Uαβ → G) be a cocycle of transition functions. Then we can
construct a G-bundle, which depends only on the cohomology class of the cocycle.

Proof. A proof is given by Michor in [Mic08, sections 8.3 and 18.1]. The general idea is
sketched in [Nak03, section 9.2.2]: Construct a collection of trivial bundles Uα × F out
of the open cover (Uα) and let X be their disjoint union:

X =∐
α
Uα × F .

Introduce an equivalence relation ∼ on Xwhere (u, f) ∈ Uα×F is considered equivalent
to (u′, f′) ∈ Uβ × F if u = u′ and f′ = ℓ(φβα(u), f), that is if the base points match
and �bre elements transform via the given transition functions. The total space of the
G-bundle can then be de�ned by E ∶= X/∼.

If the elements of E (the equivalence classes) are written as [(u, f)], the bundle pro-
jection π is then given by:

π ∶ E → M , [(u, f)] ↦ u ,

and �bre charts by:

ψα ∶ π−1(Uα) → Uα × F , [(u, f)] ↦ (u, f) ,

where f can be taken from a �xed but freely chosen representative (u, f) of the equival-
ence class [(u, f)]. The cocycle conditions together with the equivalence classes ensure
that the �bre charts are compatible with each other. ∎

The construction theorem can be applied to vector bundles in the following way
(see [Mic08, section 8.8]): Consider the category VectR of �nite-dimensional real vector
spaces with linear mappings and let F ∶ VectR → VectR be a covariant functor. The
functor is called smooth if F ∶ Hom(V ,W) → Hom(F(V),F(W)) is a smooth mapping
of the morphisms.

Now, given a vector bundle π ∶ E → B together with vector bundle atlas (Uα,ψα)
and a cocycle of transition functions φαβ ∶ Uαβ → GL(V), we can use F to obtain a new
cocycle of transition functions:

F(φαβ) ∶ Uαβ → GL(F(V)) , u↦ F(φαβ)(u) ∶= F(φαβ(u)) ,

where F(φαβ) satis�es the cocycle condition because F is a covariant functor. Finally,
we de�ne F(E) to be the vector bundle over B with �bre F(V) constructed out of this
data according to the construction theorem.

Example 2.6.2 Important examples (most of them can be found in Michor’s book):

■ Let F = ⊗k be the k-th tensor power, which is a smooth functor as is known from
linear algebra. Given a vector bundle E with typical �bre V, the resulting bundle is
the tensor product bundle F(E) = ⊗kE with typical �bre⊗kV.

■ The k-th exterior product bundle⋀kE with typical �bre⋀kV can be constructed by
taking the smooth functor F = ⋀k producing the k-th exterior power.

■ The dual bundle E∗ is constructed via the duality functor F(V) = V∗. Since F
is contravariant (not covariant) the new cocycle of transition functions has to be
de�ned as F(φαβ)(u) ∶= F(φαβ(u)−1).
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■ If we consider the k-functor F( ⋅ , . . . , ⋅ ) = ⋅ ⊗ ⋯ ⊗ ⋅ , which takes k vector spaces
V1, . . . ,Vk and produces a new vector spaceV1⊗⋯⊗Vk (and does the same for linear
maps), we can construct the tensor product of k di�erent vector bundles E1, . . . ,Ek
over the same base manifold. This gives F(E1, . . . ,Ek) = E1 ⊗ ⋯ ⊗ Ek. The new
transition functions are given by F(φ1,αβ, . . . ,φk,αβ).

■ The direct sum is another smooth k-functor F(V1, . . . ,Vk) = V1 ⊕ . . .⊕ Vk, which
is covariant in all arguments. The direct sum of k vector bundles over the same base
manifold is then given by F(E1, . . . ,Ek) = E1 ⊕ . . .⊕ Ek.

The above constructions can be combined, for instance to de�ne the Grassmann
algebra bundle which will later provide the foundation for di�erential forms:

De�nition 2.6.3 (Grassmann algebra bundle) Given some vector bundle (E,B,π,V),
the Grassmann algebra bundle over E is:

⋀E ∶=
n
⊕
k=0

(⋀kE) ,

where n is the dimension of the real vector space V and ⋀0E ∶= M ×R.

De�nition 2.6.4 (Cotangent bundle) The cotangent bundle T∗M of a manifold M is
the dual of the tangent bundle, T∗M ∶= (TM)∗.

Remark 2.6.5 (Explicit construction of the cotangent bundle) We want to give a direct
construction of the cotangent bundle. For this, let π ∶ TM → M be the tangent bundle of
some manifold M and let (Uα,ψα) be a �bre bundle atlas of TM. Since the �bres TpM
are vector spaces they can be dualised. Like in de�nition 2.2.6 of the tangent bundle we The elements of the dualised

space T∗pM are linear functions
ωp that map tangent vectors to
real numbers, ωp ∶ TpM → R.

take the disjoint union to obtain the total space:

T∗M ∶= ∐
p∈M

T∗pM = ⋃
p∈M

{p} × T∗pM .

The bundle maps of the tangent bundle satisfy the following diagram:

TM ⊇TUα Uα ×V

M ⊇Uα V

ψα

π pr1 pr2

,

where V = Rn is the typical �bre. Now we can transpose the map pr2 ○ ψα ∶ TpM → V
to �rst obtain a map between the dual spaces (pr2○ψα)∣pT ∶ V∗ → T∗pM and then de�ne
the �bre bundle charts of T∗M via the inverse:

ψ∗α ∶ T∗Uα → Uα ×V∗ , z↦ (π(z),((pr2 ○ψα)∣π(z)T)
−1(z)) ,

where π ∶ T∗M → M arises naturally from the de�nition as disjoint union.

2.7 Di�erential Forms

Apart fromdi�erential equations we need a way how to integrate on manifolds. The
problem with the conventional integral is that it has coordinate dependencies both in
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the integrand f(x) and in the measure dx independently:

∫ f(x)dx .

The coordinate invariant approach to integration is based on di�erential forms. We will
see – in corollary 2.7.7 to be speci�c – that they somehow combine f(x) and dx into a
single, coordinate invariant entity. A straightforward de�nition is the following:

De�nition 2.7.1 (Di�erential form) Let M be a smooth manifold. A di�erential form
ω of degree k on M (or k-form for short) is a section ω ∈ Γ∞(⋀k T∗M) of the exterior
product bundle ⋀k T∗M of the cotangent space over M.

We write Ωk(M) for the space of di�erential k-forms on M. By convention, 0-forms
are identi�ed with functions Ω0(M) = C∞(M,R). The degree of a di�erential form is
denoted by degω = k for ω ∈ Ωk(M).

Remark 2.7.2 (Alternative de�nition) A di�erential k-form ω can alternatively be seenYet another approach is to
de�ne alternating k-forms
on vector spaces and then in-
troduce di�erential k-forms
analogous to the construction
of vector �elds from tangent
vectors (see e. g. [Jän01b]).

as a C∞(M,R)-multilinear smooth mapping:

ω ∶ X(M) × ⋯ ×X(M) → C∞(M) , (X1, . . . ,Xk) ↦ ω(X1, . . . ,Xk) ,

which is skew symmetric, i. e.

ω(Xσ(1), . . . ,Xσ(k)) = sign(σ)ω(X1, . . . ,Xk) ,

for any permutation σ in the symmetric group Sk.

There is a natural way to multiply di�erential forms:

De�nition 2.7.3 (Wedge product) The wedge product (also called exterior product) of
two di�erential forms ω ∈ Ωk(M) and η ∈ Ωl(M) is a mapping:

∧ ∶ Ωk(M) ×Ωl(M) → Ωk+l(M) , (ω,η) ↦ ω∧ η ,

where ω∧ η is de�ned in a coordinate-free manner as:ω ∧ η is essentially the com-
plete antisymmetrisation of the
tensor product ω⊗ η. ω∧ η(X1, . . . ,Xk,Xk+1, . . . ,Xk+l)

∶= 1
k!l! ∑σ∈Sk+l

sign(σ)ω(Xσ(1), . . . ,Xσ(k))η(Xσ(k+1), . . . ,Xσ(k+l)) , (2.25)

for vector �elds X1, . . . ,Xk+l ∈ X(M).

Lemma 2.7.4 (Properties of the wedge product) The wedge product has the following
properties:

(i) it is associative: (ω∧ η) ∧ ζ = ω∧ (η∧ ζ) ,

(ii) it is graded commutative: ω∧ η = (−1)degωdeg ηη∧ ω ,

(iii) it is C∞(M,R)-bilinear: (fω) ∧ д = ω∧ (fη) = f(ω∧ η) ,

(iv) it ful�ls 1M ∧ ω = ω ,

whereω, η and ζ are di�erential forms, f a smooth function onM and 1M is the constant
function 1M ∶ M → R , p↦ 1.
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Proof. The �rst two properties and the last one follow easily from the de�nition. The
third property is a direct consequence of (i) and (ii), since functions are identi�ed with
0-forms, which means we can write fω = f∧ω, and since the degree of f is deg f = 0. ∎

Theorem 2.7.5 (Algebra of di�erential forms) The space of di�erential forms: The direct sum in the formula
is actually �nite because dif-
ferential k-forms of degree
k > dimM vanish, due to the
skew symmetry.

Ω(M) ∶=
∞

⊕
k=0

Γ∞(⋀k T∗M) ≅ Γ∞(
∞

⊕
k=0

(⋀k T∗M)) ,

(sections of the Grassmann algebra bundle over T∗M) together with the wedge product
is an associative, supercommutative algebra with unity.

Proof. We already mentioned that sections over a vector bundle with �brewise addition
and multiplication form aC∞(M,R)-module. The remaining algebra properties follow
from lemma 2.7.4. Supercommutative thereby simply means that the wedge product is
Z2-graded. ∎

Lemma 2.7.6 (Basis of T∗pM) Let (U,x) be a chart of M around the point p ∈ M. Then
the di�erentials (dx1p, . . . , dxnp) of the coordinate functions xi ∶ U → R form a basis of Di�erentials dφp were intro-

duced in de�nition 2.3.1; there
we used the name tangent map
and wrote dφp = Tpφ.

the cotangent space T∗pM. This basis is dual to the basis (∂1∣p, . . . ,∂n∣p) of the tangent
space TpM at this point.

Moreover, a basis of the space ⋀k T∗M is given by the exterior products:

dxi1 ∧ . . .∧ dxik , with 1 ≤ i1 < . . . < ik ≤ n .

The dimension of ⋀k T∗M is dim⋀k T∗M = (nk) =
n!

k!(n−k)! .

Proof. Given a chart x ∶ U → Rn, we have the coordinate functions xi ∶ U → R, which
are maps between manifolds (since R is a manifold over itself). The di�erential dxip is
then a mapping dxip ∶ TpM → Tx(p)R ≅ R and thus can be seen as an element of the
dual space T∗pM. Furthermore, for tangent vectors ∂j∣p ∈ TpM equation (2.7) yields:

dxip(∂j∣p) = ∂j∣p(xip) = δij ,

hence the di�erentials (dx1p, . . . , dxn) form a basis dual to the basis (∂1∣p, . . . ,∂n∣p) of
the tangent space TpM.

It follows from theorem 2.7.5 that the products dxi1 ∧ . . .∧ dxik span ⋀k T∗M. Two
such products are linearly dependent if and only if they di�er by a permutation of the
factors. To obtain a basis we therefore select a speci�c permutation with the aid of the
rule 1 ≤ i1 < . . . < ik ≤ n. ∎

Corollary 2.7.7 (Coordinate expression of di�erential form) Given a chart (U,x) of
M, a di�erential k-form ω ∈ Ωk(M) can locally be written as:

ω = ∑
1≤i1<...<ik≤n

ωi1 ...ik dx
i1 ∧ . . .∧ dxik , with ωi1 ...ik = ω(∂i1 , . . . ,∂ik) ,

where ωi1 ...ik is a function in C∞(M,R) and totally antisymmetric in the indices. Al-
ternatively, we can use the Einstein summation convention and write:

ω = 1
k!
ωi1 ...ik dx

i1 ∧ . . .∧ dxik ,

where the factor 1/k! makes up for the k! permutations of the indices i1, . . . , ik that
appear in the sum if we don’t use the restriction from above.
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De�nition 2.7.8 (Pullback) Let φ ∶ M → N be a smooth mapping and ω ∈ Ωk(N) a
di�erential form. The pullback φ∗ω ∈ Ωk(M) is de�ned pointwise by:In contrast to the pushforward

(de�nition 2.4.5), where φ had
to be a di�eomorphism, the
pullback is more well-behaved
and φ needs only to be smooth.

(φ∗ω)p(v1, . . . ,vk) ∶= ωφ(p)(φ∗,pv1, . . . ,φ∗,pvk) , (2.26)

on tangent vectors vi ∈ TpM, or globally by:

φ∗ω(X1, . . . ,Xk) = ω(φ#X1, . . . ,φ#Xk) ○ φ , (2.27)

for vector �elds Xi ∈ X(M). The mapping φ∗ ∶ Ωk(N) → Ωk(M) goes in the direction
opposite to the one of φ, so that the following diagram commutes:

Ωk(M) Ωk(N)

M N

πM πN

φ

φ∗

.

Lemma 2.7.9 (Naturality of the pullback) The pullback is natural in the sense that it is
an algebra homomorphism of Ω(M). In particular, it ful�ls:

φ∗(ω∧ η) = (φ∗ω) ∧ (φ∗η) . (2.28)

Proof. By looking at the de�ning equation (2.25) of the wedge product it is easily seen
that it doesn’t matter if we �rst take the product and then apply the pullback or vice
versa. ∎

Lemma 2.7.10 (Chain rule) Given smooth maps φ ∶ M → N and ψ ∶ N → O between
manifolds, we have the chain rule (note the order!):Ω(M) Ω(N)

Ω(O)

M N Oφ ψ

φ∗ ψ∗

(ψ ○ φ)∗

(ψ ○ φ)∗ = φ∗ ○ψ∗ . (2.29)

Furthermore:
id∗M = idΩ(M) . (2.30)

Accordingly, the mapping M ↦ Ω(M) and φ ↦ φ∗ is a contravariant functor from
the category Mank of manifolds with di�erentiable maps to the category of real, graded
commutative algebras with algebra homomorphisms.

Proof. The chain rule for the pullback follows from the de�nition by using the chain
rule for the pushforward (lemma 2.3.4). ∎

De�nition 2.7.11 (Insertion operator) The insertion operator iX ‘inserts’ a vector �eld
X ∈ X(M) into a di�erential form ω ∈ Ωk(M) according to:

iXω(Y1, . . . ,Yk−1) ∶= ω(X,Y1, . . . ,Yk−1) .

We set iX f = 0 for any function/0-form f ∈ Ω0(M).

Lemma 2.7.12 (Properties of the insertion operator) The insertion operator is a graded
derivation of degree −1 of the algebra Ω(M), meaning:The general de�nition of a

graded derivation is given in
de�nition 2.7.13, below. iX(ω∧ η) = (iXω) ∧ η+ (−1)− degωω∧ (iXη) . (2.31)

Moreover:
iX ○ iY + iY ○ iX = 0 . (2.32)
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Proof. The �rst property can be checked by using the de�nition of the wedge product
and some combinatorial considerations (details can be found in [Mic08, lemma 9.7]).
The second property follows directly from the skew symmetry of di�erential forms, since
ω(X,Y, . . .) = −ω(Y,X, . . .). ∎

De�nition 2.7.13 (Graded algebra, graded derivation) LetG be a monoid (a semigroup
with identity, e. g. (Z,+)). An algebra A is called a G-graded algebra if there exists a
decomposition into a direct sum of submodulesAд ⊆ A:

A = ⊕
д∈G
Aд ,

such thatAдAh ⊆ Aдh. A superalgebra is simply a Z2-graded algebra.
Given a Z-graded algebraA, a graded derivation of degree d is a linear map Dwith

D∣Ak ∶ Ak → Ak+d such that the following graded product rule holds:

D(ab) = D(a)b + (−1)d deg aaD(b) .

A graded derivation is sometimes also called superderivation.

2.8 Exterior Derivative and de Rham Cohomology

We already know that, given a function f ∶ M → R, the di�erential dfp at the point
p ∈ M is an element of the cotangent space T∗pM. Since df ∶ M → T∗M , p↦ dfp is
smooth, the map df de�nes a 1-form on M. Accordingly, the symbol d can be seen as
an operator d ∶ Ω0(M) → Ω1(M) which takes 0-forms and produces 1-forms. Further-
more, there is a natural extension that yields an operator acting on k-forms:

Theorem 2.8.1 (Exterior derivative) There is a unique extension of the di�erential d ∶
Ω0(M) → Ω1(M) as a superderivation of degree +1 with respect to the wedge product
such that the complex property d ○ d = 0 holds. The name ‘complex property’

comes from chain complexes,
which are de�ned below.

In detail, this means that there exists a family of mappings dk ∶ Ωk(M) → Ωk+1(M)
with the following properties:

(i) dk ∶ Ωk(M) → Ωk+1(M) is R-linear,

(ii) we have the graded product rule:

d(ω∧ η) = (dω) ∧ η+ (−1)degωω∧ (dη) , (2.33)

(iii) the complex property dk+1 ○ dk = 0 holds.

Proof. A complete proof can be found in [Jän01b, sections 8.3–8.5]. As Waldmann points
out [Wal07, Satz 2.3.14], the main problem is to show that dk can be ‘localised’ on open
subsetsU ⊆ M. Afterwards, given the coordinate expression of a k-form ω ∈ Ωk(M) in
some chart (U,x):

ω∣U = 1
k!
ωi1 ...ik dx

i1 ∧ . . .∧ dxik ,

the map dk can be de�ned locally by the action on ω as:

dkω∣U ∶=
1
k!
dωi1 ...ik ∧ dxi1 ∧ . . .∧ dxik , (2.34)

where ωi1 ...ik ∶ M → R is a normal function. ∎
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De�nition 2.8.2 (Exterior derivative) The exterior derivative d ∶ Ω(M) → Ω(M) is a
derivation of the algebra of di�erential forms, where the action on k-forms is given by
the map d∣Ωk(M) ∶= dk ∶ Ωk(M) → Ωk+1(M) from above.

Lemma 2.8.3 (Explicit expression) If ω ∈ Ωk(M) is a di�erential form, the exterior
derivative assumes the explicit form:An alternative motivation for

this formula can be found in
[Mic08, section 9.8], where
Michor argues why it is the
most natural choice.

dω(X0, . . . ,Xk) =
k
∑
i=0

(−1)kXi(ω(X0, . . . , X̌i, . . . ,Xk))

+∑
i<j

(−1)i+jω([Xi,Xj] ,X0, . . . , X̌i, . . . , X̌j, . . . ,Xk) , (2.35)

for vector �elds X0, . . . ,Xk ∈ X(M), where the notation X̌i means that the vector �eld
Xi is omitted.

Proof. Because of the universal property of exterior product spaces, a multilinear map
A ∶ ⋀kV → R is uniquely determined by a family of k linear maps Ai ∶ V → R. As
a result, two multilinear maps are equal if they agree on a set of basis vectors. Thus, to
check equation (2.35) we only have to calculate both sides using basis vector �elds ∂i.
More details can be found in [Wal07, Satz 2.3.15]. ∎

Lemma 2.8.4 (Naturality of d) The exterior derivative is natural in the sense that, if
φ ∶ M → N is a smooth map between manifolds, the following diagram commutes:

Ωk(N) Ωk+1(N)

Ωk(M) Ωk+1(M)

dN

dM

φ∗ φ∗

, (2.36)

for each k, that is if:
φ∗ ○ dN = dM ○ φ∗ , (2.37)

where dN and dM are the exterior derivatives on N and M, respectively.

To prove this, we �rst cite a useful lemma [Wal07, lemma 2.3.19]:

Lemma 2.8.5 (Derivations and generating sets) Let A be a Z-graded associative al-
gebra and let D1 and D2 be graded derivations of degree di = degDi. Then the graded
commutator:

⟦D1,D2⟧ ∶= D1 ○ D2 − (−1)d1d2D2 ○ D1 ,

is a graded derivation of degree d1 + d2.
If D is a graded derivation ofA, then it is uniquely determined by the values D(ai)

evaluated on a set {ai} generatingA (by addition and algebra multiplication).

Proof. We can see that ⟦D1,D2⟧ is a linear mapAk → Ak+d1+d2 for each k. Checking the
graded product rule is then done by an explicit but not very enlightening calculation.

The second part follows because any element a ∈ A can be written as a combination
of sums and products of the generators ai. By applying the product rule and linearity,
D(a) can be reduced to an expression which contains only sums and products of the
values D(ai). These values thus completely determine D. ∎
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Proof of lemma 2.8.4. It follows from lemma 2.7.6 that Ω(N) is generated by functions
f ∈ C∞(N,R) and 1-forms of the form df ∈ Ω1(N). Since φ∗ ○ dN and dM ○ φ∗ are
both graded derivations of degree +1 we only have to check equality on such a set of
generators. For functions f ∈ C∞(N,R) we obtain:

(φ∗(dN f))p(X) = (dN f)φ(p)(φ∗Xp) = (φ∗Xp)(f) = Xp(f ○ φ) = Xp(φ∗ f)

= (dM(φ∗ f))p(X) .

The calculation for a 1-form of the form df = dN f is even easier:

dM(φ∗(dN f)) = dM ○ dM(φ∗ f) = 0 = φ∗(dN ○ dN f) .
By means of the last lemma, equation (2.37) thus holds on the whole algebra. ∎

In de�niton 2.4.12 we declared the Lie derivative of a vector �eld. The idea was that
the Lie derivative LX measures the change along the �ow of a vector �eld X. It should
be obvious how this can be translated to di�erential forms:

De�nition 2.8.6 (Lie derivative of a di�erential form) Let M be a smooth manifold, let
X be a vector �eld on M and Φ its �ow. The Lie derivative LXω of ω ∈ Ωk(M) along X
is then given by:

(LXω)p =
d
dt

∣
t=0
(Φ∗

tω)p = limt→0
1
t
(Φ∗

t (ωΦt(p)) − ωp) . (2.38)

Lemma 2.8.7 (Properties of the Lie derivative) The Lie derivative of di�erential forms
has the following properties:

(i) LX(ω∧ η) = (LXω) ∧ η+ ω∧ (LXη) , (derivation of degree 0)

(ii) LX = iX ○ d + d ○ iX , (Cartan’s magic formula)

(iii) LX ○ d = d ○LX , (naturalilty with respect to d)

(iv) LX ○ iY − iY ○LX = i[X,Y] .

Proof. (i) The �rst property follows from the fact that the pullback is natural with respect
to the wedge product, as stated in lemma 2.7.9. Therefore:

LX(ω∧ η) =
d
dt

∣
t=0
Φ∗
t (ω∧ η) =

d
dt

∣
t=0
(Φ∗

tω) ∧ (Φ∗
t η)

= ( d
dt

∣
t=0
Φ∗
tω) ∧ η+ ω∧ ( d

dt
∣
t=0
Φ∗
t η) = (LXω) ∧ η+ ω∧ (LXη) ,

where we used Φ∗
0 = id when applying the product rule.

(ii) Now that we know that LX is a derivation of di�erential forms we can again use
lemma 2.8.5 to reduce the proof to two simple calculations. For functions f ∈ C∞(M,R)
we have iX f = 0, so:

(iX ○ d + d ○ iX)f = iX(df) = df(X) = Xf = LX f .

For a di�erential 1-form df ∈ Ω1(M) we use d ○ d = 0 to obtain:

(iX ○ d + d ○ iX)df = d(iXdf) = d(df(X)) = d(Xf)

= d ○ d
dt

∣
t=0
Φ∗
t f =

d
dt

∣
t=0
d ○Φ∗

t f =
d
dt

∣
t=0
Φ∗
t ○ df = LX(df) ,



64 Chapter 2. Manifolds and Fibre Bundles

where the naturality of the exterior derivative (lemma 2.8.4) allowed us to interchange
the order of Φ∗

t and d. Thus Cartan’s magic formula holds.
(iii) This is a simple corollary of Cartan’s formula:

LX ○ d = (iX ○ d + d ○ iX) ○ d = (iX ○ d2 + d ○ iX ○ d) + d2 ○ iX = d ○LX ,

where we added an additional 0 = d2 ○ iX in the second step.
(iv) The last property is again checked in two steps. For functions both sides vanish,

because iX applied to 0-forms yields 0. For a 1-form df ∈ Ω1(M) we get:

(LX ○ iY − iY ○LX)df = LX(df(Y)) − iY(LXdf) = LX(df(Y)) − (LXdf)(Y)
= LX(df(Y)) −LX(df(Y)) + df(LXY) = df([X,Y]) = i[X,Y]df .

Lemma 2.8.5 again does the rest for us, because each side is a derivation. ∎

An interesting question – in fact one of the foundations of cohomology theory
and homological algebra – is the following: Given a di�erential form ω, is there a di�er-
ential form η such that ω can be written as ω = dη? Before we give some answers to this
question, we �rst need to introduce a few new words:

De�nition 2.8.8 (Closed and exact forms) A di�erential form ω ∈ Ωk(M) is called
closed if its exterior derivative vanishes, dω = 0. On the other hand, ω is called exact if
there exists η ∈ Ωk−1(M) such that dη = ω. The set of closed forms will be denoted by
Zk(M), the set of exact forms by Bk(M).

Given d2 = 0, it is clear that an exact form ful�ls dω = d2η = 0. A necessary condition
for a form to be exact is thus that it is closed. The Poincaré lemma tells us, if some k-form
ω ∈ Ωk(M) is closed then it is at least locally exact: For any point p in M there is an open
neighbourhood U of pand some locally de�ned form η ∈ Ωk−1(U) such that ω∣U = dη
(see e. g. [Mic08, lemma 9.10] or [Wal07, Satz 2.3.25]).

To go further, it is useful to introduce the concepts of chain and cochain complexes as
well as homology and cohomology classes. Here we take a little broader approach, since
we not only need de Rham cohomology, which is the cohomology of di�erential forms,
but later, in section 5.3, we will also need to talk about Chevalley–Eilenberg cohomology,
the cohomology of Lie algebras.

De�nition 2.8.9 (Chain complex) A chain complex A● = (Ak,∂k) over some unital
ring Λ is a sequence of Λ-modules Ak, connected by morphisms ∂k ∶ Ak → Ak−1, called
boundary operators, such that the complex property ∂k○∂k+1 = 0 holds. They are usuallyThe complex property is equi-

valent to im ∂k+1 ⊆ ker ∂k.
Compare this to exact se-
quences, where the stronger
condition im ∂k+1 = ker ∂k
holds.

written in the form:

⋯ Ak+1 Ak Ak−1 Ak−2 ⋯∂k+1 ∂k ∂k−1 .

A cochain complex A● = (Ak,dk) is de�ned analogously, only the direction of the
morphisms dk ∶ Ak → Ak+1 is reversed and the complex property changes to dk○dk−1 =
0:

⋯ Ak−1 Ak Ak+1 Ak+2 ⋯dk−1 dk dk+1 .

The map dk is then called a coboundary operator.
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De�nition 2.8.10 (de Rham complex) Let M be a manifold, dimM = n. The cochain
complex (Ωk(M), d), consisting of the vector spaces Ωk(M) of di�erential k-forms to-
gether with the exterior derivative, is called the de Rham complex of M:

0 Ω0(M) Ω1(M) ⋯ Ωn−1(M) Ωn(M) 0d d d d d .

Remark 2.8.11 (Pullback as chain map) The naturality from lemma 2.8.4 implies that
the pullback φ∗ is a chain map between de Rham complexes:

φ∗ ∶ (Ωk(M), d) → (Ωk(N), d) ,

i. e. a family of morphisms between the two cochain complexes such that the following
diagram commutes:

⋯ Ωk−1(N) Ωk(N) Ωk+1(N) Ωk+2(N) ⋯

⋯ Ωk−1(M) Ωk(M) Ωk+1(M) Ωk+2(M) ⋯

d d d d d

d d d d d

φ∗ φ∗ φ∗ φ∗

.

The next thing is to see how the de�nition of closed and exact forms translates into
the language of chain complexes:

De�nition 2.8.12 (Chains, cycles, boundaries, homology and cohomology classes)
Let A● = (Ak,∂k) be a chain complex with boundary operator ∂. De�ne:

Ck(A●) ∶= Ak , Zk(A●) ∶= ker ∂k , Bk(A●) ∶= im ∂k+1 . (2.39)

Elements of Ck(A●) are called k-chains; elements of Zk(A●) are k-cycles; elements of
Bk(A●) are called k-boundaries.

By de�nition, Zk(A●) and Bk(A●) are submodules of Ak with Bk(A●) ⊆ Zk(A●).
Thus it makes sense to de�ne:

Hk(A●) ∶= Zk(A●)/Bk(A●) = ker ∂k/ im ∂k+1 , (2.40)

which is another Λ-module, called the k-th homology class Hk(A●) of A●.
The same de�nitions can be made for a cochain complex A● = (Ak,dk), leading to

k-cochains Ck(A●), k-cocycles Zk(A●) and k-coboundaries Bk(A●). The cohomology
classes Hk(A●) are given by:

Hk(A●) ∶= Zk(A●)/Bk(A●) = kerdk/ imdk−1 . (2.41)

Remark 2.8.13 As elaborated on in [HS71, section IV.1], the k-th homology can be seen
as a covariant functor Hk from the category of chain complexes with chain maps as
morphisms, to the category of left modules with module homomorphisms. The k-th
cohomology is then a contravariant functor Hk.

Using this new language, we can see that a closed form ω ∈ Ωk(M) is a cocycle of the
de Rham complex, because dω = 0 is equivalent to ω ∈ ker d. Moreover, ω is exact if and
only if it is of the form ω = dη for some (k− 1)-form η, which is equivalent to ω ∈ imd.
Hence, exact forms are coboundaries.



66 Chapter 2. Manifolds and Fibre Bundles

De�nition 2.8.14 (de Rham cohomology) The k-th de Rham cohomology class is the
k-th cohomology class of the de Rham cochain complex:

Hk
dR(M) = Zk(M)/Bk(M) .

The elements of Hk
dR(M) are equivalence classes of closed forms, where two of them

are considered equivalent if the di�er only by an exact form: ω ∼ η ⇔ ω = η + dζ. All
the cohomology classes together form a graded algebra, called the de Rham cohomology
algebra of M:

H●
dR(M) =

dimM
⊕
k=0

Hk
dR(M) .

We can now given an answer to the question from above:

Lemma 2.8.15 (Exactness of closed forms) A closed k-form ω ∈ Zk(M) is exact if and
only if it is equivalent to [0] ∈ Hk

dR(M). Moreover, if Hk
dR(M) is trivial, any closed k-

form is also exact.

Proof. Let ω ∼ η be two equivalent k-forms where η is exact, i. e. there exists some
α ∈ Ωk−1(M) such that η = dα. Then ω is also exact, since equivalency means that
there exists some ζ such that ω = η + dζ and thereby ω = η + dζ = dα + dζ = d(α + ζ).
Now, the space of k-forms Ωk(M) always contains a zero-form 0k which is closed and
exact, given that d0k = 0k+1 and 0k = d0k−1. Thus we have shown that ω ∈ Zk(M) is
exact if and only if it is equivalent to 0k. ∎

Of course, we still have to �nd a way to actually calculate the de Rham cohomologyAnother approach to calculate
cohomology classes is via the
Mayer–Vietoris sequence (see
[Mic08, section 11.10] or [HS71,
section VI.14] for details).

classes. This can be done with the aid of de Rham’s theorem [Nak03, theorem 6.2], which
tells us that for compact manifolds the cohomology classes are isomorphic to certain
homology classes. The basic observation comes from Stokes’ theorem:

Theorem 2.8.16 (Stokes) Let G be an oriented, k-dimensional manifold with border
∂G and let ω be a k − 1-form compactly supported on G. Then we have:

∫G dω = ∫∂G ω . (2.42)

Proof. See for example [Jän01b, chapter 9] or [Nak03, theorem 6.1]. ∎

Since the boundary of a boundary of some manifold always vanishes, we have the
complex property ∂ ○ ∂ = 0, and, in fact, it is possible to de�ne a chain complex based
on the notion of geometric boundaries. To allow for actual computations, this has to
be formalised a little bit. One possibility is to use a simplicial complex homeomorphic
to the manifold M we are interested in, and de�ne ∂ as an operator acting on such a
simplicial complex in a purely algebraic way. Then it is possible to calculate homology
classes Hk(M) associated to the manifold M. This approach is taken for example in
[Nak03, chapter 3].

Stokes’ theorem then can be interpreted as representing some duality between the
homology complex calculated using simplicial complexes, and the de Rham complex of
M. More concretely, if we de�ne a pairing ⟨G,ω⟩ of manifolds and di�erential forms:

⟨G,ω⟩ ∶= ∫G ω ,
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equation (2.42) translates to:

∫G dω = ∫∂G ω ⇔ ⟨G, dω⟩ = ⟨∂G,ω⟩ .

Hence, the boundary operator ∂ and the exterior derivative d are kind of adjoint to each
other. This idea then leads to de Rham’s theorem [Nak03, theorem 6.2]:

Theorem 2.8.17 (de Rham) If M is a compact manifold, then the homology classes
Hk(M) and the cohomology classes Hk

dR(M) are both �nite-dimensional. Moreover,
the map Hk(M) ×Hk

dR(M) → R (induced by the pairing ⟨ ⋅ , ⋅ ⟩ from above) is bilinear
and non-degenerate. Hence, homology and cohomology classes are dual to each other:

Hk
dR(M) = (Hk(M))∗ .

As a corollary, the question if some closed form onM is exact can be answered by cal-
culating the homology classes of an associated simplicial complex, which is sometimes
much easier to do. Probably an even more astounding result is that the answer depends
only on the topological structure of the manifold M.
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3 Groups and Group Actions

3.1 Basics of Group Actions

De�nition 3.1.1 (Topological group) A topological group G is simultaneously a group One can think of a topological
group as a group object [Lan02,
section 1.11] in the category of
topological spaces.

and a topological space such that the group multiplication µ ∶ G × G → G and the
inversion operation inv ∶ G → G are continuous.

A morphism between topological groups G and H is a continuous group homo-
morphism G → H. An isomorphism is a group homomorphism G → H which is also a
homeomorphism of the underlying topological spaces.

De�nition 3.1.2 (Continuous group action) Let G be a topological group and let X be
a topological space. A left action ofG on X is then a continuous mapping ℓ ∶ G×X→ X
such that (if we write ℓд = ℓ(д, ⋅ )):

· ℓe = idX for the neutral element e ∈ G,
· ℓд ○ ℓh = ℓдh for all д,h ∈ G.

A right action of G on X is a continuous mapping r ∶ X ×G → X such that: It is common to use G × X as
the domain for a left action and
X × G for a right action, yet
the important di�erence is the
multiplication rule ℓд ○ ℓh = ℓдh
or rд ○ rh = rhд.

· re = idX for the neutral element e ∈ G,
· rд ○ rh = rhд for all д,h ∈ G. (Note the reverse order in the group product!)

Remark 3.1.3 Any left action ℓ can be turned into a right action by taking the inverse of
the group elements. In detail, if we consider r(д,x) ∶= ℓ(д−1,x), then:

rд ○ rh = ℓд−1 ○ ℓh−1 = ℓд−1h−1 = ℓ(hд)−1 = rhд ,

which is the multiplication rule for a right action. The same can be done to obtain a left
action from a given right action.

Remark 3.1.4 (Mappings induced by a group action) Any group action ρ ∶ G × X → X
induces four additional mappings:

ρд ∶ X→ X , x ↦ ρд(x) = ρ(д,x) , ρ̂ ∶ G → Aut(X) , д↦ ρд ,
ρx ∶ G → X , д↦ ρx(д) = ρ(д,x) , ρ̃ ∶ X→ C(G,X) , x ↦ ρx .

The mapping ρ̂ ∶ G → Aut(X) is called a realisation of the group G. The mappings
ρд ∶ X → X are all homeomorphisms, since they are continuous and invertible with
continuous inverse. The homeomorphisms are the automorphisms in the category of
topological spaces. This explains why we write Aut(X) for the codomain of ρ̂.

Using the realisation, there is an alternative way how to characterise group actions.
The idea is that, due to the category laws, the automorphisms Aut(X) of an object X in
some category C form a group. The de�nition from above can then be rephrased – and
generalised – in the following way:
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y

x

ρдx

ρдy
ρд

ρд

orbit Gx

Figure 3.1 Group G acting on some space X. The orbit Gx is the set of all points
that can be reached via the group action when starting from x.

De�nition 3.1.5 (Group action, alternative version) LetG be a group andXbe an object
in some category C. A left action of G on X is then a mapping ℓ ∶ G × X→ X such that
the realisation ℓ̂ ∶ G → AutC(X) is a group homomorphism. This implies:AutC(X) here denotes the auto-

morphism group of X, where
automorphism is meant in the
sense of the category C.

ℓ̂(дh) = ℓ̂(д) ○ ℓ̂(h) , ℓ̂(e) = idX .

A right action ofG on X is a mapping r ∶ X×G → X such that the realisation is a group
antihomomorphism, i. e.

r̂(дh) = r̂(h) ○ r̂(д) , r̂(e) = idX .

Remark 3.1.6 (Group representation) LetV be a vector space. Then the automorphism
group Aut(V) – in the category of vector spaces – is the set of invertible linear maps
from V to V, better known as the general linear group GL(V) = Aut(V). In this case
group elements д ∈ G are represented by linear transformations ρд ∈ GL(V) and ρ̂ is
called (linear) representation of the group G.

Remark 3.1.7 (Group action as functor) Yet another way to look at a group actions is as
functors. In example 2.3.6 we already mentioned that a group can be seen as a category
with a single object and where all the morphisms are isomorphisms. A left action is then
a covariant functor from the group G seen as category, into another category C. The
single object in G is mapped to an object X in C, and the morphisms in G (the group
elements) are mapped to automorphisms of X. The functor properties ensure that we
get a left group action. Similarly, a right action can be seen as a contravariant functor.

De�nition 3.1.8 (Orbit, stabiliser) Let X be a topological space with group action ofG
on X denoted by ρ. The orbit Gx of a point x ∈ X is the set:

Gx ∶= {ρдx ∶ д ∈ G} ⊆ X , (3.1)

in other words: the orbitGx consists of all points in X that can be reached via the group
action when starting from x.

The stabiliser Gx of the point x ∈ X (also called stabiliser subgroup, isotropy group
or little group of x) is the subgroup:

Gx ∶= {д ∈ G ∶ ρдx = x} ≤ G , (3.2)
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i. e. the stabiliser Gx is the subgroup of G that leaves x invariant (so x is a �xed point).

De�nition 3.1.9 (Orbit space) Orbits de�ne an equivalence relation on X, where two
points x, y ∈ X are considered equivalent if they belong to the same orbit:

x ∼G y ∶⇔ ∃д ∈ G ∶ x = ρдy ⇔ Gx = Gy .

The set of all orbits (the equivalence classes), endowed with the quotient topology, is Even if X is a manifold, the
orbit space X/G in general
doesn’t have to be one. It is,
however, the case ifG is a Lie
group with a free and proper
action on X [Wal07, Satz 3.3.18].

called orbit space X/G.

Group actions are usually classi�ed according to the following criteria:

De�nition 3.1.10 (Types of group actions) A group action ρ ∶ G × X→ X is called:

· transitive if there is only one orbitGx = X (for any choice of x ∈ X). In other words:
for any two points x, y ∈ X there exists some д ∈ G such that y = ρдx.

· e�ective (or faithful) if ρдx = x for all x ∈ X (this is ρд = idX) implies д = e. We can
also say that ρ̂ is injective (a monomorphism), i. e. ker ρ̂ = {e}. Informally speaking,
di�erent elements of G then induce di�erent transformations of X.

· almost e�ective if there exists a small neighbourhoodU of the neutral element e ∈ G
such that the action restricted to U is e�ective, meaning such that ρ̂∣U is injective.

· free (or semiregular) if ρдx = x for any choice of x ∈ X implies д = e. In this case, The isomorphism Gx ≅ G
for a free action is a result of
the orbit–stabiliser theorem,
presented below.

each orbit Gx is isomorphic to the group Gx ≅ G. By de�nition, a free action is also
e�ective, but the reverse is not true.

· regular (or simply/sharply transitive) if the action is free and transitive. This means
that for any two points x, y ∈ X there exists precisely one д ∈ G such that y = ρдx.
For a regular action we get X = Gx ≅ G, and the space X equipped with the group
action is then known as a principal homogeneous space or as a G-torsor.

3.2 G-spaces and Equivariant Maps

De�nition 3.2.1 (G-space, equivariant map) A left/rightG-space is a topological space
X together with a continuous left/right action ρ ∶ G × X→ X.

A mapping F ∶ X → Y between two G-spaces X and Y is called equivariant if it An equivariant mapping F ∶

X → Y maps all points of
the orbit Gx ⊆ X to the orbit
GF(x) ⊆ Y.

respects the group actions, i. e. if the following diagram commutes for all д ∈ G:

X Y

X Y

F

F

ρд φд

,

where ρ and φ are the group actions on X and Y, respectively. This is equivalent to the
following condition:

F ○ ρд = φд ○ F ∀д ∈ G .

Equivariant maps are the morphisms in the category of G-spaces. Accordingly, an
isomorphism of G-spaces is an equivariant homeomorphism between G-spaces – not
just an equivariant, continuous bijection.

An important result is the following theorem:
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Theorem 3.2.2 (Orbit–stabiliser theorem) Let X be a left G-space and x ∈ X, then:Note that G/Gx is not a group
unless Gx is a normal subgroup.
This is why the isomorphism
in question can not be a group
homomorphism.

G/Gx ≅G Gx , (3.3)

where the isomorphism is an equivariant continuous bijection.

Intuitively, the stabiliser subgroupGx can be thought of as the set of group elements
that ‘don’t move’ x. The theorem then says that the orbit of a point x ∈ X is isomorphic
to the set G/Gx of group elements that actually ‘do something’ to the point x.

Proof. Let X be a left G-space with action denoted by ρ. For �xed x ∈ X we have the
induced mapping ρx ∶ G → X , ρx(д) ∶= ρдxwhich can be used to de�ne an equivalence
relation of group elements: д ∼ h ∶⇔ ρx(д) = ρx(h). The equivalence classes de�ned
this way are the same as the equivalence classes in G/Gx, since:

д ∼ h ⇔ ρx(д) = ρx(h) ⇔ ρдx = ρhx ⇔ ρh−1дx = x ⇔ h−1д ∈ Gx .

Thus we obtain G/∼ = G/Gx.
Given that the image of ρx is im ρx = Gx, the next step is to show G/∼ ≅ im ρx. ToThe following argument is es-

sentially the �rst isomorphism
theorem of groups translated to
the category of sets, where the
kernel of ρ̃x can be de�ned as
ker ρ̃x = [0] = Gx.

G Gx ⊆ X

G/Gx

ρx

ρ̃x

this end, consider the map:

ρ̃x ∶ G/∼ → X , ρ̃x([д]) ∶= ρx(д) = ρдx ,

which is well-de�ned, since [д] = [д′] is equivalent to ρx(д) = ρx(д′) and therefore also
ρ̃x([д]) = ρ̃x([д′]). Furthermore, the map ρ̃x is injective, because ρ̃x([д]) = ρ̃x([д′])
is de�ned as ρx(д) = ρx(д′) which implies [д] = [д′]. Finally, the image of ρ̃x is the
same as the image of ρx, hence we have our bijection:

G/Gx = G/∼ ≅ im ρ̃x = im ρx = Gx .

By the universal property of the quotient space G/Gx the bijection is also continuous.
It remains to show that the bijection is equivariant. First note that G/Gx naturally

inherits a group action φ ∶ G ×G/Gx → G/Gx , φд[h] = [дh], whereas on Gx we have
the group action of X restricted to the orbit. Using this we can check the equivariance
property:

ρ̃x ○ φд([h]) = ρ̃x([дh]) = ρдhx = ρд(ρhx) = ρд(ρx(h)) = ρд ○ ρ̃x([h]) ,

where we used that ρ is a left action. Accordingly, the bijection ρ̃x is equivariant and thus
we have shown G/Gx ≅G Gx. ∎

Remark 3.2.3 IfG is a compact group and the space X is Hausdor� it can be shown that
the mapping ρ̃x is not just a continuous bijection but also that the inverse of ρ̃x is con-
tinuous. In this case, the map ρ̃x is an equivariant homeomorphism, i. e. an isomorphism
of G-spaces. A proof is given in [Jän01a, section 3.5].

Before we continue, we just want to say a few words about action groupoids associatedGroupoids were introduced in
example 2.3.6. A nice survey is
given by Brown [Bro87].

toG-spaces. Although we don’t need action groupoids in the following, they provide an
interesting view on G-spaces from a very di�erent perspective.

Remark 3.2.4 (Action groupoid) A givenG-spaceX can be represented by its associated
action groupoid G ⋉ X. The idea is the following:



3.3 Lie Groups and Lie Algebras 73

x

x′

x′′

(д, x)

(h, x′)

y

y′

(д, y)
(д′ , x)

(hд, x)

Figure 3.2 Group action pictured as a collection of arrows on X. Two arrows
(д,x) and (h,x′) can be composed if ρдx = x′.

Picture a group action ρ of G on X as a collection of arrows, where an arrow taking
some point x ∈ X to the point ρдx will be denoted by (д,x) ∶ x ↦ ρдx, as in �gure 3.2.
We will call the point x the source of the arrow (д,x), while the point ρдx will be its
target. The group action then induces a composition of arrows – but only if the target of
the �rst arrow coincides with the source of the second:

(h,x′) ○ (д,x) ∶= (hд,x) , if ρдx = x′ .

This is obviously just placing arrows tail to head after one another. Since arrows have
inverses and since there is an ‘identity arrow’ idx = (e,x) for each x ∈ X, it should be
clear that we just obtained a groupoid.

To summarise, the action groupoid G ⋉ X associated to some G-space X is the cat-
egory where the set of objects is taken to beX, and the morphisms are the arrows indexed
by the set G × X (this means we identify the set of arrows with the set G × X; an arrow
hence is exactly a tuple (д,x) ∈ G × X). The composition of the morphisms/arrows is
already de�ned above.

In applications, action groupoids can be used, for example, to better describe the
symmetry properties of a system when di�erent types of orbits have di�erent symmetry
groups. Moreover, the groupoid view on G-spaces yields some interesting calculational
methods, where techniques from group theory can be generalised to work on groupoids.
Such an example where the concept of a groupoid leads to a deeper understanding of the
underlying structure is the fundamental groupoidΠ1(X) of a space X, which generalises
the fundamental group π1(X,x0) in such a way that Π1(X) no longer depends on a
speci�c base point x0 ∈ X.

3.3 Lie Groups and Lie Algebras

Like topologicalgroupswere group objects in the category of topological spaces,
Lie groups are group objects in the category of smooth manifolds. There is an extensive
literature on the topic of Lie groups and Lie algebras. Here, we just want to mention the
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book of Marsden and Ratiu [MR99], which focuses on applications in classical mechan-
ics, as well as Fulton and Harris [FH91] and Simon [Sim96], where the representation
theory of Lie groups is explained.

De�nition 3.3.1 (Lie group) A Lie group G is simultaneously a group and a smooth
manifold such that the group multiplication µ ∶ G×G → G and the inversion operation
inv ∶ G → G are smooth.

The group actions of left translation Lд ∶ G → G and right translation Rд ∶ G → G
by an element д ∈ G are de�ned as Lдh ∶= дh and Rдh ∶= hд, respectively. Both are
regular actions of the Lie group G on itself.

Interesting properties of Lie groups arise from the interplay of group structure and
di�erential structure. For example it is possible to de�ne vector �elds on a Lie group G.
An important case are the left invariant vector �elds which are in some way compatible
with the group structure of G.

De�nition 3.3.2 (Left invariant vector �eld) A vector �eld X ∈ X(G) on a Lie groupG
is called left invariant if the following diagram commutes for all д ∈ G:

TG TG

G G

X X

Lд

TLд

.

Pointwise we thus have the following relation for the tangent vectors:

(ThLд)Xh = Xдh ∀д,h ∈ G . (3.4)

Using the pullback of vector �elds this equation can be written as:Equation (3.5) says that a left in-
variant vector �eld is Lд-related
to itself (see de�nition 2.4.5). Lд#X = X , (3.5)

with (L #
д X)q = (L−1д #X)q = TLд−1(XLдq), according to de�nition 2.4.6.

Similarly, one de�nes right invariant vector �elds by the property (ThRд)Xh = Xhд.
We will denote the set of left invariant vector �elds on G by XL(G), the set of right in-
variant vector �elds by XR(G).

Since the tangent map TLд is linear, the left invariant vector �elds form a real vector
space. Furthermore, due to lemma 2.4.17, the Jacobi–Lie bracket [X,Y] of two left invari-
ant vector �elds X,Y ∈ XL(G) is again left invariant. The space XL(G) thus possesses
the structure of a Lie algebra; the Lie algebra associated to G:

De�nition 3.3.3 (Lie algebra ofG) LetG be a Lie group. The Lie algebra LG ofG is the
vector space of left invariant vector �elds XL(G) together with the Jacobi–Lie bracket
(de�nition 2.4.13):

[X,Y] (f) ∶= X(Y(f)) − Y(X(f)) ,
for all X,Y ∈ XL(G).

Alternatively, we could have de�ned the Lie algebra LG via right invariant vector
�elds. Although both possibilities lead to Lie algebras, the results are not identical. The
relation is given by the following lemma:
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Figure 3.3 A left invariant vector �eldLA is generated by a tangent vectorA ∈ TeG
via the tangent map of the left translation.

Lemma 3.3.4 (Relation between left and right invariant vector �elds) Let G be a Lie
group and write inv ∶ G → G for the inversion operation. Then:

inv# ∶ XL(M) → XR(M)

is an isomorphism of Lie algebras.

Proof. Given a left invariant vector �eld X ∈ XL(G), we �rst show that Y ∶= inv#X is
right invariant. This is due to:

Rд#Y = Rд#inv#X = (inv ○ Rд)#X = (Lд−1 ○ inv)#X = inv#Lд−1#X = inv#X = Y ,

where we used the relation inv ○ Rд(h) = (hд)−1 = д−1h−1 = Lд−1 ○ inv(h) for h ∈ G,
and the fact that X is left invariant. Given that inv is an involution ofG, i. e. inv is its own
inverse, it immediately follows that inv# is an isomorphism of vector spaces.

That inv# maps the Jacobi–Lie bracket of XL(G) to the one of XR(G) then follows
from lemma 2.4.17, since inv is by de�nition a di�eomorphism. ∎

A closer look at equation (3.4) reveals that a left invariant vector �eld X is completely
determined by its tangent vector at the identity Xe ∈ TeG, as we can obtain other tangent
vectors according to Xд = Xдe = (TeLд)Xe. There actually is an isomorphism between
the space of left invariant vector �elds XL(G) and the tangent space TeG (see �gure 3.3):

TeG → XL(G) , A↦ LA where LAд ∶= TeLд(A) . (3.6)

This gives us an alternative way to describe the Lie algebra LG:

Theorem 3.3.5 (LG and TeG are isomorphic) De�ne a Lie bracket of tangent vectors Due to this theorem we will
identify LG with TeG in the
following text.

A,B ∈ TeG as the Jacobi–Lie bracket of the generated left invariant vector �elds, evalu-
ated at the point e ∈ G:

[A,B]TeG ∶= [LA,LB] (e) , A,B ∈ TeG . (3.7)

Then TeG together with the bracket is isomorphic to the Lie algebra LG.
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Proof. From the discussion above it is clear that TeG and LG are isomorphic as vector
spaces; the isomorphism is given in equation (3.6). The de�nition of the Lie bracket on
TeG is chosen such that:

L
[A,B]TeG
д = TeLд([A,B]TeG) = TeLд([L

A,LB] (e)) = [LA,LB] (д) ∀д ∈ G ,

where we used that the Jacobi–Lie bracket of two left invariant vector �elds is again left
invariant. Thus, A↦ LA is an isomorphism of Lie algebras. ∎

Lemma 3.3.6 (Left and right bracket of TeG) Denote by [ ⋅ , ⋅ ]RTeG the alternative Lie
bracket de�ned via right invariant vector �elds:

[A,B]RTeG ∶= [RA,RB] (e) .

Then we have:

[A,B]TeG = [LA,LB] (e) = − [RA,RB] (e) = − [A,B]RTeG , (3.8)

so − id ∶ TeG → TeG is a Lie algebra isomorphism between TeG equipped with the Lie
bracket de�ned via left and right invariant vector �elds, respectively.

Proof. This is a simple consequence of lemma 3.3.4, since LAe = A = RAe and hence
inv# LA = RA. Furthermore, the tangent map of the inversion is given by Te inv = − id,
which follows from:

(inv#X)e = Te inv(Xe) = Te inv([α]) =
d
dt

∣
t=0
(α(t))−1 = −α̇(0) = −[α] = −Xe ,

for any vector �eld X ∈ XL(G), where α is a curve that represents the tangent vector Xe
of X at the identity. ∎

De�nition 3.3.7 (Lie functor) The so-called Lie functor L is the covariant functor fromIf we forget the group structure
ofG, the Lie functor L is just
the tangent functor Te at the
point e ∈ G.

the category of Lie groups to the category of Lie algebras that maps a Lie groupG to its Lie
algebra LG and a morphism φ ∶ G → H between Lie groups to a Lie algebra morphism
Lφ ∶= Teφ ∶ LG → LH.

Although it is now possible to calculate the Lie bracket using left invariant vector
�elds, we will usually take another approach via the adjoint action ad ∶ TeG×TeG → TeG
of the Lie algebra on itself. As explained in [FH91, section 8.1], the basic observation is
that the inner automorphism Iд ∶ G → G , h ↦ дhд−1 of conjugation by д ∈ G is aNote that Iд is a group auto-

morphism for each д ∈ G. The
induced left action therefore
‘respects’ the group structure,
whereas the left translation Lд
doesn’t have this property.

left action of G on itself, and that it has a �xed point at e ∈ G. It is therefore possible to
induce an action of G on its Lie algebra with the help of the tangent functor:

De�nition 3.3.8 (Adjoint action of G on TeG) Let Iд be the inner automorphism of
conjugation by д ∈ G:

Iд ∶ G → G , h↦ Iд(h) = дhд−1 . (3.9)

The adjoint action (or adjoint representation) Ad of the groupG on its Lie algebra TeGSince Iд = Lд ○ Rд−1 = Rд−1 ○ Lд
we can write the adjoint action
as Adд = TeIд = TeLд ○ TeRд−1 .

is given by:
Adд ∶= TeIд ∶ TeG → TeG . (3.10)
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To induce an action of the Lie algebra TeG on itself we consider Ad as a mapping
Ad ∶ G → Aut(TeG) , д ↦ Adд. Using that TidAut(TeG) is isomorphic to the space of
endomorphisms End(TeG) we arrive at the following de�nition:

De�nition 3.3.9 (Adjoint action of TeG on TeG) Let Ad ∶ G → Aut(TeG) be the ad-
joint action of G on TeG. The adjoint action (or adjoint representation) ad of the Lie
algebra TeG on itself is:

ad ∶= TeAd ∶ TeG → End(TeG) . (3.11)

The surprising result is that the adjoint action ad(A)(B) is nothing other than the
Lie bracket [A,B]TeG calculated using the left invariant vector �elds:

Theorem 3.3.10 (Adjoint action and Lie bracket) The Lie bracket on TeG is:

[A,B]TeG = ad(A)(B) , for A,B ∈ TeG . (3.12)

Proof. Proofs are given in [MR99, section 9.1] and [Mic08, lemma 4.24]. ∎

If we want to calculate the Lie bracket via the adjoint action it is easiest if we express
the tangent vectors A,B ∈ TeG as equivalence classes of smooth curves A = [α] and
B = [β], that is α(0) = β(0) = e and α̇(0) = A as well as β̇(0) = B. The tangent map of
Iд is then given by:

Adд([β]) = TeIд([β]) = [Iд ○ β] =
d
dt

∣
t=0
Iд(β(t)) =

d
dt

∣
t=0
дβ(t)д−1 .

This yields the explicit expression for the Lie bracket:

[A,B]TeG = ad(A)(B) = TeAd([α])([β]) =
d
ds

∣
s=0

d
dt

∣
t=0
α(s)β(t)α(s)−1 . (3.13)

It follows immediately that the Lie bracket of LG vanishes if the Lie group G is Abelian.

3.4 The Exponential Map and One-Parameter Subgroups

In the last sectionwe found a way how to calculate the Lie algebra LG of a given
Lie groupG. The exponential map, in turn, will show that all continuous one-parameter
subgroups of G are generated by elements of the Lie algebra. This way it is possible to
reconstruct the connected component of e in G; actually, the Lie algebra LG uniquely
determines the connected component of the identity up to an isomorphism (see [FH91,
chapter 8] or [Mic08, remark 4.19]). This gives us a hint why the Lie algebra is such an
important tool in the study of Lie groups.

De�nition 3.4.1 (One-parameter subgroup) Let G be a Lie group. A one-parameter It is already su�cient that α is
a continuous curve on G, since
any continuous morphism of
�nite-dimensional Lie groups is
automatically smooth [MR99,
theorem 9.1.9].

subgroup of G is a Lie group morphism α ∶ (R,+) → G, i. e. a smooth curve α on G
with α(t + s) = α(t)α(s) for all t, s ∈ R.

The next lemma establishes a correspondence between left invariant vector �elds on
G and one-parameter subgroups:
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Lemma 3.4.2 (Left invariant vector �elds and subgroups of G) Let G be a Lie group.
Then α ∶ R → G is a one-parameter subgroup of G if and only if α is the integral curve
through e ∈ G of the left invariant vector �eld LA generated by A= α̇(0) ∈ TeG.

Proof. Our proof follows the one of [Mic08, lemma 4.17]:
‘⇒’: For the forward direction let α be a one-parameter subgroup of G and let LA

be the left invariant vector �eld generated by A = α̇(0). We �rst show дα(t) = Φ(t, д),
where Φ is the �ow of LA. Since α is a one-parameter subgroup we get:

d
dt
дα(t) = d

ds
∣
s=0
дα(t + s) = d

ds
∣
s=0
дα(t)α(s) = d

ds
∣
s=0
Lдα(t)α(s)

= TeLдα(t)(
d
ds

∣
s=0
α(s)) = TeLдα(t)(A) = LAдα(t) ,

where the last equality is just the de�nition of LA from equation (3.6). On the other hand,
the �ow Φ of LA ful�ls the equation:

d
dt
Φ(t, д) = LAΦ(t,д) , Φ(0, д) = д .

Since Φ(t, д) and дα(t) satisfy the same di�erential equation and since they are subject
to the same initial condition дα(0) = дe = д = Φ(0, д) for all д ∈ G, we obtainΦ(t, д) =
дα(t) for all t ∈ R by the uniqueness of the solution. It follows immediately that α(t) =
Φ(t, e) is the integral curve of LA through the identity e ∈ G.

‘⇐’: For the reverse direction let α be the integral curve through e ∈ G of the left
invariant vector �eld LA generated by A ∈ TeG. We have:

d
ds
α(t)α(s) = d

ds
Lα(t)α(s) = TLα(t)(

d
ds
α(s)) = TLα(t)(LAα(s)) = LAα(t)α(s) ,

where the third equality uses the integral curve property. Since the initial condition
α(t)α(0) = α(t) holds we obtain α(t)α(s) = Φ(s,α(t)), where Φ is the �ow of LA,
and further:

α(t)α(s) = Φ(s,α(t)) = Φs ○Φt(e) = Φt+s(e) = α(t + s) . (∗)

At �rst equation (∗) is valid only for small values of t, s because lemma 2.4.9 says thatAnother way to prove that (∗)
holds globally is by noticing
that TLα(t) has full rank and
thus dα/dt never vanishes (see
[CDD77, section III.C.3]).

Φt ○Φs = Φt+s only holds for values t, s where both sides are de�ned. But then we can
successively enlarge this domain by multiplying up the values on the left-hand side to
de�ne α for bigger values of t. Thus, the integral curve α ∶ R → G is complete and de�nes
a subgroup of G. ∎

Remark 3.4.3 (Left/right invariant vector �elds are complete) Alongside the last proof
we have just shown that the �ow of left invariant vector �elds is always complete. This is
because the �ow of LA is given by Φ(t, д) = дα(t) and α(t) is de�ned for all t ∈ R (by
the de�nition of a one-parameter subgroup). Also there is a one-parameter subgroup
for any A ∈ TeG. The same holds for right invariant vector �elds.

It is an interesting fact that the �ow of the left invariant vector �eld LA is given by
Φ(t, д) = дα(t) = Rα(t)д via the right action. Using the concept of a generator (see
de�nition 2.4.10 on page 49) this can be formulated in the following way:
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G

e
A B

exp(A)

exp(B)
γA

γB

TeG

Figure 3.4 Exponential map exp ∶ TeG → G. The curve γA is the integral curve
through e ∈ G of the left invariant vector �eld generated by A.

Lemma 3.4.4 The left invariant vector �eld LA is the generator of the one-parameter
group of right translations {Rα(t)} of G, where α is the integral curve of LA through
e ∈ G. The right invariant vector �eld RA generates the one-parameter group of left
translations {Lα(t)} of G (here, α is the integral curve of RA through e).

Proof. If Φ denotes the (global) �ow of LA this is just the simple observation that the
di�eomorphism Φt acts on G by right translation Φt = Rα(t). Analogously for RA. ∎

Now it is time to de�ne the exponential map:

De�nition 3.4.5 (Exponential map) The exponential map is given by:

exp ∶ LG → G , A↦ γA(1) , (3.14)

where γA is the integral curve through e ∈ G of the left invariant vector �eldLAgenerated
by A ∈ TeG ≅ LG.

Theorem 3.4.6 (Properties of exp) The exponential map exp ∶ LG → G has the follow-
ing properties:

(i) exp(tA) = γA(t) for all t ∈ R, with γA from the de�nition,

(ii) exp(tA) exp(sA) = exp((t + s)A) for all t, s ∈ R,

(iii) exp(0) = e and T0 exp = idLG; hence there exist open neighbourhoods 0 ∈ U ⊆ LG
and e ∈ V ⊆ G such that exp ∣U ∶ U → V is a di�eomorphism.

Proof. For the �rst property we have to show γtA(1) = γA(t). This follows from the
uniqueness of integral curves and:

tA= t dα(s)
ds

∣
s=0

= t dα(ts)
d(ts) ∣

s=0
= dα(ts)

ds
∣
s=0

.

The second property is then a simple consequence, making use of lemma 3.4.2:

exp(tA) exp(sA) = γtA(1)γsA(1) = γA(t)γA(s) = γA(t + s) = exp((t + s)A) .
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For the third property we have exp(0) = exp(0A) = γA(0) = e for any choice ofA ∈ TeG.
Furthermore:

T0 exp(A) =
d
dt

∣
t=0
exp(tA) = d

dt
∣
t=0
γtA(1) =

d
dt

∣
t=0
γA(t) = γ̇A(0) = A ,

for each A ∈ TeG, and hence T0 exp = idLG. The rest follows from the constant rank
theorem, since T0 exp = idLG is locally a linear isomorphism (see [Mic08, theorem 1.13];
the constant rank theorem is a generalisation of the inverse function theorem). ∎

There is an important characterisation of the exponential map which we want to cite
from [FH91, Proposition 8.33]:

Theorem 3.4.7 (Uniqueness of exp) The exponential map is the unique map from LG
to G taking 0 to e whose di�erential at the origin Te exp is the identity, and whose re-
strictions to the lines through the origin in LG are one-parameter subgroups of G.

As consequence of the uniqueness theorem we can immediately conclude that the
exponential function for Matrix Lie groups – Lie subgroups ofGL(n) – is the well-known
matrix exponential:

exp ∶ LGL(n) → GL(n) , A↦ eA ∶=
∞

∑
k=0

1
k!
Ak ,

simply because the mapping de�ned this way has the correct properties.

Lemma 3.4.8 (Naturality of exp) If φ ∶ G → H is a smooth morphism between Lie
groups G and H, then the following diagram commutes:

LG LH

G H

exp exp

φ

Teφ

Proof. We see that the curve α ∶ R → H , t ↦ φ(exp(tA)) de�nes a one-parameter
subgroup of H, and thus is an integral curve of a left invariant vector �eld. To �nd the
element of LH that generates this vector �eld we calculate the tangent vector of α at the
identity:

d
dt

∣
t=0
α(t) = d

dt
∣
t=0
φ(exp(tA)) = Teφ(T0 exp(A)) = Teφ(A) .

Now exp(t Teφ(A)) is also an integral curve of the left invariant vector �eld generated
by Teφ(A) and by uniqueness of the solutions (or with the help of theorem 3.4.7) we
conclude that exp(t Teφ(A)) has to be identical to φ(exp(tA)) for all t ∈ R. Hence the
diagram commutes. ∎

Corollary 3.4.9 (Some formulas) A consequence of lemma 3.4.8 is the formula:

д exp(A)д−1 = Iд ○ exp(A) = exp(AdдA) , (3.15)
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since Iд ∶ G → G is a Lie group automorphism and Adд = TeIд. Also:

Ad ○ expG = expGL(LG) ○ ad , (3.16)

since Ad ∶ G → Aut(TeG) ≅ GL(LG) is a Lie group morphism and ad = TeAd.

Although we have the simple multiplication rule exp(tA) exp(sA) = exp((t + s)A)
from theorem 3.4.6, the multiplication rule for general exponentials is a bit more in-
volved:

Theorem 3.4.10 (Baker–Campbell–Hausdor� (BCH) formula) Let G be a Lie group.
Then there exists a neighbourhoodU ⊆ LG of the origin on which exp is invertible, and
for A,B ∈ U we have the multiplication formula:

exp(A) exp(B) = exp(A+ B+ 1
2
[A,B]

+ 1
12

([A, [A,B]] − [B, [B,A]]) + ⋯) . (3.17)

Proof. See [Mic08, theorem 4.29] or [FH91, section 8.3]. ∎

If G is a simply connected, �nite dimensional Lie group, the neighbourhood U in The multiply connected group
G = SL2R is an example where
any д ∈ SL2R can be written
as a product of exponentials,
yet there exist д ∈ SL2R which
can not be written as a single
exponential (see remark 6.4.3).

theorem 3.4.10 extends to all of G and the BCH formula holds globally. It is easy to see,
on the other hand, that the neighbourhood U for the rotation group SO(3) is really a
proper subset of G, because two rotations through π and through −π are the same and
hence the exponential map cannot be invertible unless we restrict ourselves to ‘small’
rotations.

Corollary 3.4.11 A variation of the BCH formula is:

exp(tA) exp(sB) exp(−tA) exp(−sB) = exp(ts [A,B] + O(t2) +O(s2)) , (3.18)

valid for small values of t, s ∈ R. If, for example, the left-hand side is known explicitly,
the formula can be used to calculate the Lie bracket of A and B.

3.5 Group Actions on Manifolds

In physical applications, Lie groups usually appear as groups of continuous
transformations on manifolds. A lot of the concepts developed for Lie groups in the
last sections immediately translate to transformation groups if we replace the canonical
left or right translation by a general group action.

De�nition 3.5.1 (Fundamental vector �eld) Let ρ be a smooth action of a Lie group G
on some manifold M. Then for any element A ∈ TeG = LG of the associated Lie algebra
we de�ne the fundamental vector �eld ζρ(A) ∈ X(M) with respect to ρ via: There is a di�erent convention

where the de�nition depends
on whether ρ is a left or right
action (see remark 3.5.4).

ζρ(A)x ∶= Teρx(A) = T(e,x)ρ(A, 0x) , (3.19)

where ρx ∶ G → M is the partial mapping ρx = ρ( ⋅ ,x) for �xed x ∈ M (this is shown in
�gure 3.5).
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G

e A

M
ζρ(A)x

ζρ(A)y

x

y

ρx

ρy

Figure 3.5 The partial mapping ρx in the de�nition of the fundamental vector
�eld ζρ(A) maps the curve on G with tangent vector A to a curve on M such
that ρx(e) = x.

If we need to calculate the fundamental vector �elds explicitly, we can use the expo-
nential map to express the curve with tangent vectorA ∈ LG as t↦ exp(tA) and obtain
the formula:

ζρ(A)x = Teρx(A) =
d
dt

∣
t=0
ρexp(tA)x . (3.20)

Lemma 3.5.2 Given a left action ℓ of a Lie group G on a manifold M we have:

(i) Txℓд(ζℓ(A)x) = ζℓ(Adд(A))ℓдx for all x ∈ M and for all д ∈ G, that is, the following
diagram commutes for each д ∈ G:

LG X(M)

LG X(M)

Adд ℓд#

ζℓ

ζℓ . (3.21)

Hence ζℓ is equivariant with respect to the G-actions given in the diagram.

(ii) The vector �eld RA × 0M ∈ X(G × M) is ℓ-related to ζℓ(A) ∈ X(M), that is, the
following diagram commutes:

T(G ×M) TM

G ×M M

RA × 0M ζℓ(A)

Tℓ

ℓ . (3.22)

Proof. (i) For the �rst property we write out the left-hand side and insert the de�nition
of the fundamental vector �eld ζℓ(A):

Txℓд(ζℓ(A)x) = Txℓд ○ Teℓx(A) = Te(ℓд ○ ℓx)(A) .

Now remember that the adjoint action on the right-hand side is de�ned as Adд = TeIд,
with Iд(h) = дhд−1. We therefore rewrite ℓд ○ ℓx to contain Iд:

ℓд ○ ℓx(h) = ℓ(дh,x) = ℓ(дhд−1д,x) = ℓ(Iд(h), ℓдx) = ℓℓдx ○ Iд(h) ∀h ∈ G .
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Inserting this into the equation above we get the desired result:

Txℓд(ζℓ(A)x) = Te(ℓд ○ ℓx)(A) = Te(ℓℓx) ○Adд(A) = ζℓ(Adд(A))ℓдx .

(ii) The second property states that diagram (3.22) is commutative. To prove this,
take д ∈ G and x ∈ M, and use the de�nition of ζℓ(A) to obtain:

ζℓ(A) ○ ℓ(д,x) = ζℓ(A)ℓдx = Te,ℓдxℓ(A, 0ℓдx) = Te,ℓдxℓ((idTeG × Tℓд)(A, 0x)) ,

where we have Tℓд(0x) = 0ℓдx because the tangent map is linear. Due to the chain rule
this is equivalent to:

ζℓ(A)ℓдx = Tℓ ○ (idTeG × Tℓд)(A, 0x) = T(ℓ ○ (idG × ℓд))(A, 0x) .

For the mapping inside the brackets we have: In the equality marked (∗) we
used that ℓд is a left action. For
a right action r we would have
gotten r(h, rдx) = r(дh,x)
instead, and hence the left in-
variant vector �eld LA would
appear in the �nal result.

ℓ ○ (idG × ℓд)(h,x) = ℓ(h, ℓдx)
(∗)= ℓ(hд,x) = ℓ(Rдh,x) = ℓ ○ (Rд × idM)(h,x) ,

for all h ∈ G, x ∈ M, and thus:

ζℓ(A)ℓдx = T(ℓ ○ (Rд × idM))(A, 0x) = Tℓ ○ (TRд × idTM)(A, 0x)
= Tℓ(TeRд(A), 0x) = Tℓ ○ (RA× 0M)(д,x) .

Hence RA× 0M is ℓ-related to ζℓ(A). ∎

Theorem 3.5.3 (Fundamental vector �elds for left and right actions) Given a left action
ℓ of a Lie group G on a manifold M, the map ζℓ ∶ LG → X(M) , A ↦ ζℓ(A) is a Lie
algebra antimorphism, meaning ζℓ is R-linear and: The ‘anti’ in antimorphism is

responsible for the minus sign
in the formula.[ζℓ(A), ζℓ(B)] = −ζℓ([A,B]) , (3.23)

for all A,B ∈ LG. In turn, if r ∶ G ×M → M is a right action, the map ζr ∶ LG → X(M)
is a Lie algebra morphism, i. e.

[ζr(A), ζr(B)] = ζr([A,B]) , (3.24)

for all A,B ∈ LG.

Proof. The R-linearity of ζℓ follows immediately from the de�nition.
Then, according to part (ii) of the last lemma, the vector �eld RA×0M is ℓ-related to

ζℓ(A) and thus the Lie bracket [RA× 0M,RB × 0M] is ℓ-related to [ζℓ(A), ζℓ(B)], due
to lemma 2.4.17 (the proof uses φ-related vector �elds).

On the other hand, given A,B ∈ LG, we have:

[RA× 0M,RB × 0M] = [RA,RB] × 0M = R−[A,B] × 0M ,

where we �rst used the de�nition of the Jacobi–Lie bracket and then lemma 3.3.6. Again
by the last lemma we see that −R[A,B] × 0M is ℓ-related to ζℓ(− [A,B]) = −ζℓ([A,B]),
and hence equation (3.23) is proven.

For the second part use the remark in the proof of the last lemma to show that the
vector �eld LA × 0M is r-related to ζr(A). Then equation (3.24) follows analogously to
the argument above, only that [LA,LB] = L[A,B] doesn’t produce a minus sign. ∎
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Remark 3.5.4 In the light of theorem 3.5.3, for a left action ℓ it is common to de�ne:

γℓ(A)x ∶= ζℓ(−A)x = Teℓx(−A) =
d
dt

∣
t=0
ℓexp(−tA)x , (3.25)

such that γℓ ∶ LG → X(M) is a Lie algebra morphism – not an antimorphism. We willIf you prefer, you can also
turn ℓ into a right action r, via
rд ∶= ℓд−1 . The right-hand side
of equation (3.25) is then the
fundamental vector �eld ζr(A)
with respect to r.

call γℓ(A) the antifundamental vector �eld associated toA ∈ LG. In case of a left action,
however, some authors prefer to call γ(A) a fundamental vector �eld and, in turn, ζ(A)
an antifundamental vector �eld, which is the opposite of our convention. Irrespective of
terminology, the mapping γℓ is the morphism γ that is later used by the quantization
scheme via the Canonical Group.

3.6 Semidirect Product and Extensions of Groups

For the quantizationapproach via the Canonical Group we will need a transitiveThe semidirect product can be
found in books on Lie groups,
in particular its relation to
Mackey’s theory of induced
representations (see e. g. [Sim96,
chapter V]). Group extensions
in general are often discussed in
works on Homological algebra,
for example [HS71].

group action on phase space, corresponding to a complete set of classical observables. A
typical situation, however, is that we have found by physical considerations a group that
doesn’t act transitively, and hence we seek a way to somehow ‘extend’ it.

Let’s say the groupG acts on a given space X by a non-transitive action. Since points
of a �xed orbit are already connected by transformations out of G, we look for another
transformation group, say N, that maps elements between these orbits. The question is
how both groups can be combined to give another group that acts on X. The direct
product N ×G springs to mind, but it turns out this only works if the group actions of
N and G commute with each other. Instead, we will have to use the semidirect product,
which respects also non-commuting group actions.

De�nition 3.6.1 (External semidirect product) Let N,G be two groups together with a
left action ℓ ∶ G → Aut(N) (for topological groups ℓhas to be continuous; for Lie groupsObserve, ℓд ∈ Aut(N) implies

that ℓд is a group homomorph-
ism of N for each д ∈ G.

ℓ has to be smooth). Then the (external) semidirect product N ⋊ℓG with respect to ℓ is
the set N ×G together with the multiplication law:

(n2, д2) ⋅ (n1, д1) ∶= (n2 ℓд2(n1), д2д1) . (3.26)

It is common to write N ⋊G instead of N ⋊ℓG if the group action of N onG is apparentThe triangle in the symbol ‘⋊’
can remind us of the fact that
the natural embedding of N
in the semidirect product is a
normal subgroup, often written
as N◁ N ⋊G.

from the context.
The neutral element of N ⋊G is (eN, eG); the inverse of (n, д) ∈ N ⋊G is given by

(n, д)−1 = (ℓд−1(n−1), д−1). The semidirect product reduces to the direct product of
groups if ℓ is taken to be the trivial action ℓ ∶ G → Aut(N) , д↦ idN.

Example 3.6.2

■ The Euclidean group E(n) is isomorphic to T(n) ⋊O(n), the semidirect product of
translations T(n) and orthogonal transformations O(n). If ρ denotes the action of
T(n) on Rn and σ the action of O(n), the combined action action of T(n) ⋊O(n)
on Rn is given by:

τ(a,R)(x) ∶= ρa ○ σR(x) = Rx + a ,
with group multiplication according to (3.26):

(a2,R2) ⋅ (a1,R1) = (a2 + R2a1,R2R1) .

The action ℓ is implicit, since O(n) acts on T(n) ≅ Rn in a canonical way.
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■ The Poincaré group is isomorphic to the semidirect product T(1,3) ⋊ O(1, 3) of
space-time translations and Lorentz transformations.

■ The orthogonal group O(n) is isomorphic to SO(n) ⋊Z2, where Z2 acts on Rn by
re�ections.

De�nition 3.6.3 (Internal semidirect product) LetH be a group with subgroupsN and
G. Then H is called an internal semidirect product of N and G if: The semidirect product turns

into a direct product N × G if
and only if both N andG are
normal subgroups of H.

· N◁H is a normal subgroup,
· N and G generate H, i. e. each h ∈ H can be written as h = nд for n ∈ N and д ∈ G,
· N ∩G = {eH}.

Theorem 3.6.4 Each external semidirect product N ⋊ G is isomorphic to an internal
semidirect product of N and G, and vice versa.

Proof. ‘⇒’: Let H ∶= N ⋊G be an external semidirect product. Let πG ∶ N ⋊G → G be
the natural projection πG(n, д) ∶= д and let ιN ∶ N → N ⋊G be the natural embedding
ιN(n) ∶= (n, eG). Both are group homomorphisms and we have im ιN = kerπG. Since Note, however, that πN is not

in general a homomorphism,
so the embedding of G doesn’t
have to be a normal subgroup.

the kernel of a group homomorphism is a normal subgroup, the image im ιN is thus a
normal subgroup of H.

Let ιG ∶ N → N ⋊G , ιG(д) ∶= (eN, д) be the natural embedding of G, then N ⋊G
is generated by im ιN and im ιG, since for each (n, д) ∈ N ⋊G we have a decomposition
(n, д) = (n, eG) ⋅ (eN, д) = ιN(n) ⋅ ιG(д) according to the multiplication law (3.26) of
the external semidirect product, with n ∈ N and д ∈ G.

Furthermore, im ιN ∩ im ιG = {(n, eG)} ∩ {(eN, д)} = {(eN, eG)} = eH and hence
the external semidirect product N ⋊G is isomorphic to the internal semidirect product
of im ιN ≅ N and im ιG ≅ G.

‘⇐’: Let H be an internal semidirect product of N andG. We show that H is isomor-
phic to the external semidirect product N ⋊ℓ G with ℓд(n) ∶= дnд−1.

Given that N ∩G = {eH}, each element h ∈ H has a unique decomposition h = nд
for n ∈ N and д ∈ G (because ñд̃ = nд implies n−1ñ = дд̃−1 ∈ N ∩G = {e} and hence
ñn−1 = e = д̃−1д, so ñ = n and д̃ = д). Thus φ ∶ N ×G → H , (n, д) ↦ nд is a bijection
of the underlying sets.

To show that φ is, additionally, a group homomorphism, take two group elements
(n, д) and (ñ, д̃) in N ⋊ℓ G and compute:

φ((n, д) ⋅ (ñ, д̃)) = (n ℓд(ñ))(дд̃) = nдñд−1дд̃ = nдñд̃ = φ(n, д) ⋅ φ(ñ, д̃) .

Consequently, the mapping φ ∶ N ⋊ℓ G → H is an isomorphism of groups. ∎

There is an interesting relation between semidirect products and split short exact
sequences of groups. This will help us understand why the semidirect product is in some
cases more natural than the direct product of groups.

De�nition 3.6.5 (Split short exact sequence) Consider the following short exact se-
quence (with additional maps t and u that may not exist, drawn for reference):

0 A B C 0j p

ut
,

We call the sequence:
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· left split if jhas a left inverse t ∶ B→ A, that is t ○ j= idA.If t exists it is surjective.
If u exists it is injective. · right split (or just split) if phas a right inverse u ∶ C → B, that is p○ u = idC.

Lemma 3.6.6 (Splitting lemma for groups) Consider groups H, N and G. Then H is
isomorphic to the semidirect product of N and G:

H ≅ N ⋊G ,

if and only if there exists a split short exact sequence:

0 N H G 0j p

u
. (3.27)

Proof. ‘⇒’: Let H ≅ N ⋊G and denote the isomorphism by φ ∶ H → N ⋊G. It is an easy
and straight-forward calculation to check that the upper row in the following diagram
is a short exact sequence that splits by the map ιG:Note that the natural projection

πN in general is not a group
homomorphism, so there is no
canonical left split. This is why
the lemma explicitly requires a
right split sequence.

0 N N ⋊G G 0

H

ιN πG

ιG

φ∼ pj

,

where ιN and ιG are the natural embeddings, πG the natural projection. From this we
obtain a split short exact sequence like (3.27) if the maps are de�ned by:

j ∶= φ−1 ○ ιN , p ∶= πG ○ φ , u ∶= φ−1 ○ ιG .

‘⇐’: For the reverse direction suppose there exists a split short exact sequence like
the one in (3.27). We show that H is the internal semidirect product of im jand imu.

First, note that im j is a normal subgroup of H due to im j = ker p, which follows
from the exactness of the sequence.

To show that H is generated by im jand imu, take h ∈ H and de�ne h̃ ∶= u ○ p(h),
so that h̃ lies in the image imu (remember that p○ u = idG, but u ○ p ≠ idH, at least in
general). We then have:

p(hh̃−1) = p(h)p(h̃)−1 = p(h)(p○ u ○ p(h))−1 = p(h)p(h)−1 = eG ,

which tells us that hh̃−1 ∈ ker p. Let us now write x ∶= hh̃−1 and remember ker p= im j,
then h = xh̃ is a decomposition of h with x ∈ im j and h̃ ∈ imu. Consequently, the
images of jand u generate H.

Finally, let us show that the intersection of the images of j and u is trivial. To this
end, take h ∈ im j∩ imu. Accordingly, there exists д ∈ G such that h = u(д) and
u(д) ∈ im j. Using im j = ker pwe obtain д = idG(д) = p ○ u(д) = eG and further
h = u(д) = u(eG) = eH. Hence im j∩ imu = {eH}.

At this point we know that H is an internal semidirect product of im jand imu. By
theorem 3.6.4 we can therefore conclude thatH is isomorphic to the external semidirect
product N ⋊G, which concludes the proof. ∎

Before we finish this chapter, we need to say a few words about group extensions in
general (a so-called central extension, in particular, plays an important role in section 5.3,
where we discuss the relation between Canonical Group C and Geometric Group G).
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The last lemma already showed that semidirect products correspond exactly to split
short exact sequences. On the other hand, given a general short exact sequence:

0 N G Q 0j p ,

we have N ≅ im j= ker p, so that N is isomorphic to the kernel of p. Hence, by the �rst
isomorphism theorem of groups (G/ker p ≅ im p) we get Q = im p ≅ G/ker p ≅ G/N,
and the above sequence is thus equivalent (up to isomorphism) to the sequence:

0 N G G/N 0j π ,

where π is the natural projection onto the quotient group G/N. Accordingly, we �nd
that a short exact sequence therefore captures quotient relations between groups. This
leads to the following de�nition:

De�nition 3.6.7 (Group extension) A group extension is a short exact sequence: Note that the group Q is no
subgroup of its extension G!
Sometimes (if and only if the
sequence splits, i. e. i�G is a
semidirect product) Q can be
embedded isomorphically, but
this is not the case in general.

0 N G Q 0j p .

One then calls G the extension of Q by N.
If the sequence splits, we say that G is a split extension of Q. If the image of j lies in

the centre Z(G) = {z ∈ G ∶ zд = дz ∀д ∈ G}, we call G a central extension of Q.

An extension not only depends on N and Q but also on the morphisms jand p. It
is therefore useful to de�ne equivalence classes, where two group extensions G and G̃
of Q by N are called equivalent if there exists a group homomorphism φ ∶ G → G̃ such
that the following diagram commutes: By the short �ve lemma, φ is

automatically an isomorphism
(see e. g. [HS71, lemma 1.1]
or [Mac98, section VIII.4,
lemma 1]; although usually
proven for Abelian categories,
the short �ve lemma also holds
in the full category of groups).

0 N G Q 0

0 N G̃ Q 0

j p

j̃ p̃

φ

.

It turns out that the equivalence classes of group extensions are deeply related to the
second cohomology groups H2(G,A) of a group G. In particular, central extensions of
G correspond to cohomology groups with A a trivial G-module (see [HS71, chapter VI,
speci�cally section 10]).

The same concepts apply to Lie algebras if we use the following de�nition:

De�nition 3.6.8 (Algebra extension) An algebra extension is a short exact sequence
of algebras with algebra morphisms: Like for groups, the algebraQ

is no subalgebra of its extension
E . If and only if E is a split ex-
tension,Q can be embedded
isomorphically.

0 N E Q 0j p .

We then say that E is an extension ofQ byN . Analogously to above, we speak of a split
extension if the given sequence splits. If the image im j lies in the centre Z(E) we will
call E a central extension ofQ.

A central extension of the Lie algebra LG, where G is the so-called Geometric Group,
will appear later when we discuss the quantization scheme. If you want to learn more
about group and algebra extensions, and their relation to homology, good starting points
are Rotman [Rot02, chapter 10], the classic book of Mac Lane [Mac95] and, of course,
the frequently cited [HS71].
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4 Symplectic Geometry and Classical Mechanics

Can a symplectic camel go through the eye of a needle?
Vladimir I. Arnol’d [Arn86]

Symplectic geometry is the natural mathematical framework for the Hamiltonian
formulation of classical mechanics. It is thereby mainly a matter of convention that most
mathematicians prefer the phrase ‘symplectic’ for what physicists call ‘canonical’ (as in
‘canonical transformation’). Nevertheless, we will stick to the mathematicians’ choice in
this case, because the word ‘canonical’ is already much too overused.

The �rst section of this chapter is meant to summarise the basic de�nitions of sym-
plectic geometry. Afterwards, we introduce Hamiltonian vector �elds and show that they
constitute a Lie algebra. In the third section we look at the relation between Hamilto-
nian vector �elds and classical observables. Finally, we show that there is a canonical
symplectic structure on the cotangent bundle and discuss some implications.

4.1 Symplectic Manifolds

De�nition 4.1.1 (Symplectic manifold) A symplectic manifold (M,ω) is a manifoldM
together with a symplectic form ω ∈ Ω2(M), i. e. a 2-form ω on M which is closed and The closedness dω = 0 en-

sures that the Lie bracket of
Hamiltonian vector �elds is
again Hamiltonian (corol-
lary 4.2.5). This is necessary
in order for the Poisson bracket
to exist.

pointwise nondegenerate. As usual, closed means dω = 0, and pointwise nondegenerate
is the property that for each point x ∈ M the mapping TxM → T∗xM , v ↦ ωx(v, ⋅ ) is
an isomorphism.

Symplectic manifolds are always even-dimensional becauseωnondegenerate implies
that the matrix representation (ωij) in any chart has to be invertible. On the other hand,
we know that (ωij) has to be antisymmetric, because ω is skew-symmetric. Given that
antisymmetric matrices are invertible only in even dimensions (their determinant van-
ishes in odd dimensions) it follows that M has to be even-dimensional.

De�nition 4.1.2 (Symplectomorphism) Given two symplectic manifolds (M,ω) and
(N,η), a symplectomorphism (also symplectic, or canonical transformation) between See also de�nition 4.2.6 for the

special case of Hamiltonian
symplectomorphisms.

M and N is a di�eomorphism φ ∶ M → N that respects the symplectic forms, i. e.

φ∗η = ω , (4.1)

or, pointwise:
(φ∗η)x(v,w) = ωx(v,w) ∀v,w ∈ TxM . (4.2)

The symplectomorphisms are the isomorphisms in the category of symplectic manifolds.
For a �xed manifold (M,ω), the symplectomorphisms from M to M (that is, symplectic
automorphisms) constitute a subgroup Sp(M) ≤ Di�(M).

De�nition 4.1.3 (Symplectic vector �eld) A vector �eld X ∈ X(M) is called symplectic This is analogous to Killing
vector �elds on a Riemannian
manifold, for which the Lie
derivative LXд of the metric
tensor д vanishes.

if the Lie derivative of the symplectic form ω along X vanishes:

LXω = 0 . (4.3)
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The symplectic vector �elds form a sub Lie algebra XSp(M) ⊆ X(M).

Lemma 4.1.4 (Flow of symplectic vector �elds) A vector �eld X is symplectic if andActually, this says symplectic
vector �elds are tangent vectors
to symplectomorphisms if we
interpret a symplectomorphism
of M as a point in the in�nite-
dimensional manifold Sp(M).

only if its �ow Φt is a symplectomorphism for each t.

Proof. ‘⇒’: Let X be symplectic and let Φ be the �ow of X, then LXω = 0 and thus:

0 = Φ∗
t (LXω) = LX(Φ∗

tω) =
d
ds

∣
s=0
Φ∗
sΦ

∗
tω = d

ds
∣
s=0
Φ∗
s+tω = d

dt
Φ∗
tω .

Accordingly, we get Φ∗
tω = ω for all t where Φt is de�ned.

‘⇐’: Let the �ow Φt be a symplectomorphism, that is Φ∗
tω = ω, for each t where Φt

is de�ned. Using the de�nition of the Lie derivative we obtain:

LXω = d
dt

∣
t=0
Φ∗
tω = d

dt
∣
t=0
ω = 0 ,

and thus X is a symplectic vector �eld. ∎

Lemma 4.1.5 A vector �eld X is symplectic if and only if d(iXω) = 0, i. e.

LXω = 0 ⇔ d(iXω) = 0 . (4.4)

Proof. By Cartan’s magic formula 2.8.7 we have LXω = d(iXω) + iX(dω). Since ω is a
symplectic form, it is closed, i. e. dω = 0, and thus (4.4) follows. ∎

De�nition 4.1.6 (Symplectic group action) Let G be a Lie group and let (M,ω) be a
symplectic manifold. A symplectic group action ρ is a group action ρ ∶ G → Sp(M) that
acts on M by symplectomorphisms, i. e. ρ∗дω = ω for each д ∈ G.

Lemma 4.1.7 (Fundamental vector �elds of a symplectic action) Given a symplectic
action ρ of G on M, the fundamental vector �elds ζρ(A) are symplectic.

Proof. This is an immediate consequence of lemma 4.1.4 because the �ow of a funda-
mental vector �eld ζρ(A) is given by Φt = ρexp(tA). Moreover, ρexp(tA) is a symplecto-
morphism for each t ∈ R because ρ is a symplectic action. ∎

The prototype for a symplectic space is the vector space R2n, which has a canonical
symplectic form ω0, given by:

ω0(x, y) = xTJy ∀x, y ∈ R2n , J = ( 0 1n
−1n 0 ) , (4.5)

where J is the matrix representation of ω0 in the canonical basis. An important theorem
in symplectic geometry is Darboux’s theorem which states that symplectic manifolds areAn analogous theorem does not

exist for Riemannian manifolds
since they have local invariants
(e. g. curvature and torsion).
The proof of Darboux’s the-
orem in [AM78, theorem 3.2.2]
reveals that this is a direct con-
sequence of dω = 0.

locally symplectomorphic to a subset of (R2n,ω0):

Theorem 4.1.8 (Darboux) Let (M,ω) be a 2n-dimensional symplectic manifold. Then
for each point in M there exists an open neighbourhood U together with a symplecto-
morphism ξ ∶ U → Ũ ⊆ R2n (the pair (U, ξ) is called a Darboux chart) to an open
subset Ũ of R2n endowed with the canonical symplectic form ω0 as in (4.5).
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Proof. See for example [Wal07, Satz 3.1.24] or [MR99, section 5.1]. ∎

For our purposes the most important implication of Darboux’s theorem is the fact
that around each point in M there exists a Darboux charts (U, ξ) such that the sym-
plectic form ω locally takes on the particularly simple form:

ω∣U =
n
∑
i=1

dξi ∧ dξi+n =
n
∑
i=1

dqi ∧ dpi , (4.6)

where we write (q1, . . . ,qn, p1, . . . , pn) ∶= (ξ1, . . . , ξ2n). In physical applications, ξ is
the coordinate representation of a point in phase space, where the qi are the generalised
coordinates, and the pi are the canonically conjugate momenta.

4.2 Hamiltonian Vector Fields

Before we defineHamiltonian vector �elds, we �rst want to introduce the so-called
musical isomorphisms. The basic observation is that, although any �nite dimensional
vector space V is isomorphic to its dual V∗, there is in general no canonical choice for
this isomorphism. On symplectic manifolds, however, we have the symplectic form ω
which is pointwise nondegenerate and thus singles out an isomorphism TxM → T∗xM
for each x ∈ M. Given thatω is a smooth 2-form, this induces a smooth vector bundle iso-
morphism TM → T∗M and thereby also a C∞(M,R)-linear isomorphism of sections
Γ∞(TM) → Γ∞(T∗M), i. e. an isomorphism between vector �elds X(M) = Γ∞(TM)
and 1-forms Ω1(M) = Γ∞(T∗M) on M.

De�nition 4.2.1 (Musical isomorphisms) Let (M,ω) be a symplectic manifold. The

TM T∗M

M M
idM

π π

♭

♯

musical isomorphisms are:

♭ ∶ X(M) → Ω1(M) , X↦ X♭ , X♭ ∶= iXω = ω(X, ⋅ ) , (4.7)

♯ ∶ Ω1(M) → X(M) , α↦ α♯ , ♯ ∶= ♭−1 . (4.8)

They are named �at and sharp, after the musical notation, since ♭ takes vector �elds and
‘�attens’ them to their corresponding 1-forms, whereas ♯ takes 1-forms and ‘sharpens’
them to give the associated vector �elds.

In a Darboux chart (U, ξ), if we write ξ = (q, p) as before, we get a decomposition
(∂i) = (∂qi ,∂ip) of the basis vector �elds of TU. Moreover, according to equation (4.6),
we have ω∣U = dqi ∧ dpi for the symplectic form ω. This way we obtain a coordinate
expression for X♭:

(Xi∂i)
♭ = (Xiq∂

q
i + X

p
j∂

j
p)
♭ = dqj∧ dpj(Xi∂i, ⋅ )

= dqj(Xi∂i)dpj− dpj(Xi∂i)dqj = Xj
q dpj− Xp

j dq
j .

The isomorphism between TM and T∗M is thus given locally by:

(∂i) = (
∂qi
∂ip

) (
dpi
−dqi

) = (Jikdxk)
♭

♯
, (4.9)

where J is the matrix representation of ω0 from equation (4.5).
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De�nition 4.2.2 (Hamiltonian vector �eld) Let (M,ω) be a symplectic manifold. The
Hamiltonian vector �eld Xf associated to f ∈ C∞(M,R) is the vector �eld obtained
by ‘sharpening’ the di�erential:

Xf ∶= df♯ ⇔ Xf
♭ = df . (4.10)

A vector �eld X is thus (globally) Hamiltonian if X♭ = iXω is an exact 1-form. On the
other hand, a vector �eld X is called locally Hamiltonian if X♭ is a closed form.

In a Darboux chart (U, ξ) the local expression for Xf is:It is common to drop the in-
duced bundle chart of TM
from the notation and write Xf
also for the coordinate repres-
entation of Xf, instead of the
somewhat clumsy Tx(Xf).

Xf =
∂f
∂pi

∂iq −
∂f
∂qi

∂pi . (4.11)

We denote the set of globally Hamiltonian vector �elds by XHam(M).

We will see in a second that Hamiltonian vector �elds form a Lie algebra – this will
also lead us to de�ne the Poisson bracket – and that a vector �eld is locally Hamiltonian
if and only if it is symplectic. Still, before we continue we want to take a short break and
gain a better understanding of the relation between a Hamiltonian vector �eld Xf and
the function f it stems from.

Remark 4.2.3 (Relation between f and Xf) Let us look at the �at, two-dimensionalThe given example translates
easily to general symplectic
manifolds, because Darboux’s
theorem tells us that all sym-
plectic manifolds are locally
symplectomorphic to open
subsets of R2n.

phase space (R2,ω0) with the canonical symplectic form ω0 from (4.5). We will also
identify the tangent space TxR2 and the cotangent space T∗x R2 with R2. If we now take
a function f ∈ C∞(R2,R), the di�erential dfx at the point x ∈ R2 is essentially given
by the gradient of f (for this reason we will call df♯ the symplectic gradient of f):

dfx =
∂f
∂xi

(x)dxi∣x = (∇f(x))i dxi∣x ,

only the basis vectors are here the basis 1-forms dxi of the cotangent bundle T∗R2.
We know that the gradient points in the direction where f has the greatest increase

rate and hence at each point is orthogonal to the level surfaces of f. The ‘sharpening’ of

x J

dfx

Xf,x = df♯x

level surfaces of f

Figure 4.1 Hamiltonian vector �eld Xf associated to the function f. The matrix
J is the matrix representation of the canonical symplectic form ω0 and acts on
dfx like a rotation by an angle of −π/2. (In the �gure, both TxR2 and T∗xR2 are
identi�ed with R2).
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df can then be thought of as a rotation by an angle of −π/2 (best seen by a close look at
the matrix representation J of ω0) followed by replacing the basis 1-forms of T∗R2 by
the basis vector �elds of TR2, such that the Hamiltonian vector �eld Xf afterwards is at
each point parallel to the level surface of f (see �gure 4.1). So, as a result, the value of the
function f is conserved along the �ow curves of the Hamiltonian vector �eld Xf.

Now remember that Hamilton’s canonical equations, which describe physical motion
in Hamiltonian mechanics, are given by:

q̇i(t) = + ∂H
∂pi

(q, p, t) , ṗi(t) = −
∂H
∂qi

(q, p, t) , (4.12)

where H is the Hamiltonian function of the dynamical system in question. If we write
ξ(t) = (q(t), p(t)), the two equations (4.12) can be combined to give:

ξ̇(t) = XH∣ξ(t) . (4.13)

Hence, the canonical equations say that physical motion happens along integral curves
ξ of XH. In the light of the last remark we can immediately conclude that, because the
physical motion is generated by XH, the Hamiltonian function H is always conserved in
Hamiltonian systems.

Lemma 4.2.4 (Properties of Hamiltonian vector �elds)

(i) Given any vector �eld Y ∈ X(M), we have:

ω(Xf,Y) = df(Y) = Y(f) = LY f . (4.14)

(ii) A vector �eld is locally Hamiltonian if and only if it is symplectic (therefore any glob-
ally Hamiltonian vector �eld is also symplectic, i. e. XHam(M) ⊆ XSp(M)).

(iii) A di�eomorphism φ ∶ M → N between symplectic manifolds is symplectic if and
only if:

φ#Xf = Xφ∗ f , (4.15)

for all functions f ∈ C∞(N,R).

(iv) The Lie bracket of two symplectic vector �elds X,Y ∈ XSp(M) is a globally Hamilto-
nian vector �eld:

[X,Y] = d(−ω(X,Y))♯ , (4.16)

associated to the function −ω(X,Y) ∈ C∞(M,R).

Proof. (i) Equation (4.14) is a simple consequence of the de�nition, since Xf = df♯ is
equivalent to Xf

♭ = df and thus ω(Xf,Y) = Xf
♭(Y) = df(Y) = Y(f) = LY f for every

vector �eld Y ∈ X(M).

(ii) Lemma 4.1.5 shows that LXω = 0 is equivalent to d(iXω) = 0. This is exactly
what we need, because X locally Hamiltonian is de�ned as X♭ = iXω being closed.

(iii) By using the naturality of the exterior derivative d ○ φ∗ = φ∗ ○ d (lemma 2.8.4)
and the global de�nition of the pullback according to equation (2.27) one obtains:

ωM(Xφ∗ f,Y) = dM(φ∗ f)(Y) = (φ∗dN f)(Y) = dN f(φ#Y) ○ φ = ωN(Xf,φ#Y) ○ φ ,
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for every vector �eld Y ∈ X(M). Now the di�eomorphism φ is symplectic if and only if
φ∗ωN = ωM, or – to express it via the inverse φ−1 – if φ∗ωM = ωN. In this case we can
continue according to:

ωN(Xf,φ#Y) ○ φ = φ∗ωM(Xf,φ#Y) ○ φ = ωM(φ#Xf,φ#φ#Y) = ωM(φ#Xf,Y) ,

where we used φ# = (φ−1)#, so φ#φ# = id. We thus have shown that φ is symplectic if
and only if ω(Xφ∗ f,Y) = ω(φ#Xf,Y) for all Y ∈ X(M), which is equivalent to equa-
tion (4.15) because the symplectic form ω is nondegenerate.

(iv) Consider symplectic vector �elds X,Y ∈ XSp(M), that is LXω = LYω = 0.
According to lemma 2.8.7 we have:

[X,Y]♭ = i[X,Y]ω = (LX ○ iY − iY ○LX)ω = LX(iYω) − iY(LXω) = LX(iYω)
= (d ○ iX − iX ○ d)(iYω) = d(ω(Y,X)) − iX ○ d ○ iY(ω) = d(−ω(X,Y)) ,

where in the last step the second term vanishes because the formula LY = d ○ iY + iY ○ d
implies d ○ iY = LY − iY ○ d and thus:

iX ○ d ○ iY(ω) = iX ○LYω− iX(dω) = iX(LYω) = 0 ,

given that ω is closed and Y is symplectic. Equation (4.16) follows by applying ♯. ∎

Corollary 4.2.5 The Hamiltonian vector �elds XHam(M) constitute a Lie algebra.

Proof. We have to show that XHam(M) is closed under the Jacobi–Lie bracket. This fol-
lows immediately from the last lemma, which states that Hamiltonian vector �elds X,Y
are symplectic, and hence [X,Y] is Hamiltonian according to property (iv). ∎

We know from lemma 4.1.4 that a vector �eld is symplectic if and only if its �ow Φt
is a symplectomorphism for each t. Since Hamiltonian vector �elds constitute a sub Lie
algebra of the symplectic vector �elds, this leads to the following de�nition:

De�nition 4.2.6 (Hamiltonian symplectomorphism) Consider a symplectomorphism
φ ∈ Sp(M) of the symplectic manifold (M,ω). The symplectomorphism is called a
Hamiltonian symplectomorphism if it can be connected to the identity idM via the �ow
Φ of a Hamiltonian vector �eld. The Hamiltonian symplectomorphisms constitute a
subgroup Ham(M) ≤ Sp(M) of the symplectomorphisms of M.

Corollary 4.2.5 shows that the Lie bracket of Hamiltonian vector �elds Xf and Xд is
again Hamiltonian. Consequently, there has to exist a function h ∈ C∞(M,R) such that
[Xf,Xд] = Xh. Property (iv) of lemma 4.2.4 tells us how to determine this function: it
is essentially the Poisson bracket of f and д, up to a minus sign.

De�nition 4.2.7 (Poisson bracket) The Poisson bracket of two functions f and д on a
symplectic manifold (M,ω) is given by:Note that some authors prefer

the opposite convention, i. e.
{f, д} = ω(Xд,Xf), which
is the negative of our Poisson
bracket.

{f, д} ∶= ω(Xf,Xд) = df(Xд) = −dд(Xf) = LXд(f) . (4.17)

The local coordinate expression in a Darboux chart is:

{f, д} = ∂f
∂qi

∂д
∂pi

− ∂д
∂qi

∂f
∂pi

. (4.18)

The smooth functions C∞(M,R) compose a Lie algebra under the Poisson bracket. A
subalgebra of them is used to represent the observables in classical mechanics.
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Lemma 4.2.8 (Properties of the Poisson bracket) The Poisson bracket has the following
properties:

(i) The relation between Jacobi–Lie bracket and Poisson bracket is:

[Xf,Xд] = −X{ f,д} . (4.19)

(ii) {f, д} = −{д, f}, (antisymmetry)

(iii) {f,{д,h}} = {{f, д} ,h} + {д,{f,h}}, (Jacobi identity)

(iv) The Lie derivative along Hamiltonian vector �elds is a derivation of the Poisson
bracket:

LX {f, д} = {LX f, д} + {f,LXд} . (4.20)

(v) A di�eomorphism φ ∶ M → N between symplectic manifolds is symplectic i�:

φ∗ {f, д} = {φ∗ f,φ∗д} , (4.21)

for all functions f, д ∈ C∞(M,R).

Proof. (i) Equation (4.19) was actually the motivation to de�ne the Poisson bracket, be-
cause it tells us to which function h the Hamiltonian vector �eld [Xf,Xд] = Xh is asso-
ciated. As such it is a consequence of equations (4.16) and (4.17).

(ii) The antisymmetry follows immediately from the de�nition.

(iii) For the third property we have:

{f,{д,h}} + {д,{h, f}} + {h,{f, д}} = X{д,h}(f) + Xд(Xh(f)) + Xh(Xд(f))
= X{д,h}(f) + [Xд,Xh] (f) = X{д,h}(f) + X−{д,h}(f) = 0 ,

where we used (4.19). The Jacobi identity follows.

(iv) This follows from the Jacobi identity if we remember {f, д} = LXf(д) from the
de�nition in equation (4.17).

(v) The last property follows from:

φ∗ {f, д} = φ∗(ω(Xf,Xд)) = (φ∗ω)(φ#Xf,φ#Xд)
(∗)= ω(φ#Xf,φ#Xд)

= ω(Xφ∗ f,Xφ∗д) = {φ∗ f,φ∗д} ,

where the equality marked (∗) holds if and only if φ is symplectic. ∎

4.3 The Algebra of Classical Observables

The definition of the Poisson bracket in de�nition 4.2.7 implies that the mapping
f↦ Xf is an antimorphism between the Lie algebra of smooth functions on phase space
C∞(M,R) and the Lie algebra of Hamiltonian vector �elds XHam(M), i. e.

[Xf,Xд] = −X{ f,д} .

Accordingly, we may de�ne a new mapping j:

j ∶ C∞(M,R) → XHam(M) , f↦ −Xf ,
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to get a Lie algebra morphism. Since any Hamiltonian vector �eld stems from a function
this morphism is clearly surjective. On the other hand, the mapping j is not injective be-
cause the formula Xf = df♯ tells us that two functions that di�er by a constant function
produce the same Hamiltonian vector �eld. Identifying constant functions with R we
thus obtain an isomorphism of Lie algebras:

XHam(M) ≅ C∞(M,R)/R .

Regarding the discussion in section 3.6, the quotient relation can also be written as
a short exact sequence of Lie algebras:

0 R C∞(M,R) XHam(M) 0j . (4.22)

This sequence plays a fundamental role in the quantization programme via the Canon-
ical Group.

One more thing about classical observables is noteworthy. Although we already
know the smooth functionsC∞(M,R)on phase space together with the Poisson bracket
form a Lie algebra, they have some additional structure: two smooth functions f and д
can be multiplied with each other to give a new function fд ∈ C∞(M,R). The multi-
plication of functions is commutative, and the combination of a Lie algebra with a com-
mutative algebra – subject to a little compatibility condition – is known as a Poisson
algebra.

De�nition 4.3.1 (Poisson algebra) A Poisson algebra A is a Λ-module A over a com-
mutative ring Λ with identity together with two Λ-bilinear products ⋅ ∶ A × A → A
(multiplication) and [ ⋅ , ⋅ ] ∶ A ×A → A (bracket), such that:

· (A, ⋅) is a commutative algebra,
· (A, [ ⋅ , ⋅ ]) is a Lie algebra,
· The bracket is a derivation of the commutative algebra (A, ⋅) , i. e.

[A,B ⋅ C] = [A,B] ⋅ C + B ⋅ [A,C] , (4.23)

for all A,B,C ∈ A.

Lemma 4.3.2 The smooth functions C∞(M,R) endowed with Poisson bracket and
the common multiplication of functions constitute a real Poisson algebra.

Proof. Since we already know that the Poisson bracket gives C∞(M,R) the structure of
a Lie algebra we only have to check that (4.23) holds. This follows from:

{f, дh} = −Xf(дh) = −(Xfд) h − д(Xfh) = {f, д} h + д{f,h} ,

where we used that a vector �eld acts on functions like a derivation. ∎

It is this commutative multiplication of classical observables, compared to the non-
commutative multiplication of operators, that is the most visible di�erence between the
mathematical structures underlying classical mechanics and quantum mechanics. The
Lie bracket, on the other hand, is preserved by most quantization methods (a famous ex-
ception being deformation quantization, where the Lie algebra structures have to match
only in the limit ħ→ 0).
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4.4 Symplectic Structure of the Cotangent Bundle

Most systems usually discussed in classical mechanics use as phase space the co-
tangent bundle T∗Q over the con�guration space Q. The surprising fact is that, unlike
generic �bre bundles, the cotangent bundle comes with a canonical symplectic structure.
Moreover, the symplectic form ω of the cotangent bundle is not only closed but exact. It
can thus be derived from a 1-form which is known as Liouville form.

De�nition 4.4.1 (Liouville 1-form) Given a smooth manifold Q, the cotangent bundle
M = T∗Q supports a canonical 1-form θ ∈ Ω1(M), called the Liouville form: Note that θ ∈ Ω1

(M) means it
is a section T∗Q → T∗(T∗Q).
The double cotangent structure
can be confusing at �rst sight,
yet it is this feature which gives
us a canonical 1-form on M.

θ(X) ∶= π̃M(X)(TπQ(X)) ∀X ∈ TM , (4.24)

where the projections, as well as the induced mapping TπQ, are given in the following
diagram:

T(T∗Q) = TM

T∗Q = M TQ

Q

R

π̃M

πQ

TπQ

π̃Q

θ

π̃M(X)⇒

∈

X

The projection π̃M assigns the basepoint m ∈ M to a given point X = (m,Xm) ∈ TM, Mind the subtlety of notation: a
point X ∈ TM is split (by a local
trivialisation of the bundle) into
its basepoint m ∈ M and its
value Xm ∈ TmM. The same is
done below for m = (q,mq).

that is π̃M ∶ X = (m,Xm) ↦ m. Because M is the cotangent bundle T∗Q, this point m =
π̃M(X) ∈ M can be reinterpreted as a cotangent vector in T∗qQ (with q = πQ(m)), which
then acts on the tangent vector TπQ(X) ∈ TπQ(m)Q via the natural pairing between
T∗qQ and TqQ (i. e. (α,Y) ↦ α(Y) for α ∈ T∗qQ and Y ∈ TqQ).

R

M = T∗Q TmM

Q

m

q

TqQ

Xm

TmπQ(Xm)
πQ

TmπQ

θm

mq
�bre T∗q Q

Figure 4.2 Pointwise de�nition of the Liouville 1-form θ. For convenience we
use the abbreviation q = πQ(m) ∈ Q.
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The situation becomes clearer if we evaluate equation (4.24) at a given point m ∈ M.
In this case, the projection π̃M can be eliminated from the formula and we obtain the
following expression (which can also serve as the de�nition of θ):

θm(Xm) = mq(TmπQ(Xm)) ∀Xm ∈ TmM , (4.25)

with q = πQ(m) ∈ Q. Note how m = (q,mq) on the left-hand side is again seen as a
point in M = T∗Q, whereas on the right-hand side its ‘value’ mq is a cotangent vectorInstead of using a local trivial-

isation to write m = (q,mq),
we could also represent m by
the value m = α(q) ∈ T∗Q
of a 1-form α ∶ Q → T∗Q. In
principle we then would have
to show that the calculation is
independent of the choice of α.

acting on the tangent vector TmπQ(Xm) ∈ TqQ at the point q.

After this invariant de�nition of the Liouville form we want to derive a local coordin-
ate expression. Before we can do this, we �rst need to construct a Darboux chart on the
cotangent bundle. Incidentally, a Darboux chart of T∗Q can be induced by a given chart
of the con�guration space Q, where we again use the ‘schizophrenic nature’ of points in
T∗Q/cotangent vectors on Q.

Remark 4.4.2 (Canonical Darboux charts of the cotangent bundle) Any chart (U,x)
of the con�guration space manifold Q induces a chart (T∗U,(q, p)) of the cotangent
bundle M = T∗Q due to:

qi(m) ∶= xi ○ πQ(m) , pi(m) ∶= mπQ(m)(
∂
∂xi

∣
πQ(m)

) , (4.26)

where πQ ∶ T∗Q → Q is the bundle projection and the tangent vectors ∂/∂xi∣πQ(m) form
a basis of TπQ(m)Q. It is clear that (4.26) de�nes a chart of T∗Q. We will see that it is a
Darboux chart when we calculate the coordinate expression of the symplectic 2-form ω
associated to θ.

A basis of the tangent space TmM (tangent to M) is given by the 2n tangent vectors:

∂
∂qi

∣
m
,
∂
∂pj

∣
m
∈ TmM .

It turns out that the tangent map TmπQ maps the �rst n basis vectors ∂/∂qi∣m of TmM
to the basis vectors ∂/∂xi∣πQ(m) of TπQ(m)Q, whereas the remaining ones are mapped
to zero:

TmπQ(
∂
∂qi

∣
m
) = ∂

∂xi
∣
πQ(m)

, TmπQ(
∂
∂pi

∣
m
) = 0 . (4.27)

This follows from ∂qj/∂qi = δij and ∂qj/∂pi = 0, respectively, if you look closely at the
coordinate representation of the tangent map, given in equation (2.9), where we remem-
ber qi = xi ○ πQ. A proof by explicit calculation can be found in [Wal07, lemma 3.2.2].

Lemma 4.4.3 (Coordinate representation of θ) Given a chart (T∗U,(q, p)) as in equa-
tion (4.26), the local coordinate representation of θ is:

θ∣T∗U = pi dqi + 0 . (4.28)

All the terms proportional to dpi vanish.

Proof. A general 1-form θ ∈ Ω1(M) locally has the form:

θ∣T∗U = θqi dq
i + θipdpi ,
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with coe�cient functions θqi = θ(∂/∂qi) and θip = θ(∂/∂pi). Using equation (4.27) we
obtain:

θqi (m) = θm(
∂
∂qi

∣
m
) = m( ∂

∂xi
∣
πQ(m)

) = pi(m) , θip(m) = θm(
∂
∂pi

∣
m
) = 0 .

This gives the coordinate form stated in (4.28). ∎

Lemma 4.4.4 (Universal property of θ) The Liouville form θ ∈ Ω1(T∗Q) is uniquely

Ω(T∗Q)

T∗Q

Ω(Q)

Q

απQ

α∗

⇒

determined by the universal property that for any 1-form α ∈ Ω1(Q) it ful�ls:

α∗θ = α , (4.29)

where α∗ ∶ Ω(T∗Q) → Ω(Q) is the pullback along α ∶ Q → T∗Q seen as a section.

Proof. Suppose α is a 1-form in Ω1(Q). We then have:

(α∗θ)q(Xq) = θα(q)(Tqα(Xq)) = αq(Tα(q)πQ ○ Tqα(Xq)) = αq(Tq(πQ ○ α)(Xq)) ,

for any tangent vectorXq ∈ TqQ. Further, since α is a section, we obtain πQ○α = idQ and
thus Tq(πQ ○ α)(Xq) = Xq. This proves that θ as de�ned above ful�ls equation (4.29)
for every α ∈ Ω1(Q).

Although uniqueness of θ can now be shown by direct calculation, there is a much For the direct calculation note
that (4.26) implies qi ○ α = xi

and pi ○ α = αi; afterwards use
the coordinate expression for
Tqα from equation (2.9).

simpler way (due to [AM78, proposition 3.2.11]). First observe that equation (4.29) is
equivalent to:

θα(q)(Tqα(Xq))
!= αq(Xq) ,

for all α ∈ Ω1(Q) and all Xq ∈ TqQ for each q ∈ Q. It is then easy to see this equation
�xes θ uniquely, because α(q) spans the whole cotangent space T∗qQ for variable α, and
Tqα(Xq) spans the whole tangent space Tα(q)(T∗Q) for variable α and variable Xq. ∎

De�nition 4.4.5 (Canonical 2-form on T∗Q) The canonical symplectic structure of the
cotangent bundle T∗Q is given by the canonical 2-form ω ∈ Ω2(T∗Q):

ω ∶= −dθ , (4.30)

where θ is the Liouville 1-form from above.

Because of lemma 4.4.3, the coordinate expression for ω is:

ω∣T∗U = −d(pi dqi) = dqi ∧ dpi , (4.31)

which �nally proves that equation (4.26) de�nes a Darboux chart on T∗Q.
Furthermore, the de�nition of ω in equation (4.30) together with the explicit expres-

sion (2.35) for the exterior derivative gives:

ω(X,Y) = −dθ(X,Y) = −X(θ(Y)) + Y(θ(X)) − θ([X,Y])
= Y(θ(X)) −LXθ(Y) = d(θ(X))(Y) −LXθ(Y) ,

so we obtain the useful formula:

X♭ = iXω = d(iXθ) −LXθ . (4.32)
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4.5 Symplectic Group Actions on the Cotangent Bundle

In this section we present two important constructions for symplectomorphisms
of cotangent bundles: the cotangent lift of di�eomorphisms and �bre translations using
1-forms. Together, they provide a natural source for symplectic group actions on T∗Q.
The resulting group C∞(Q,R)/R ⋊Di�(Q) features prominently in the quantization
programme via the Canonical Group.

De�nition 4.5.1 (Cotangent lift) Suppose Q and S are manifolds and let φ ∶ Q → S be
a di�eomorphism. The cotangent lift T∗φ ∶ T∗S → T∗Q of φ is then given by:

(T∗s φ(αs))(vq) ∶= αs(Tqφ(vq)) and q ∶= φ−1(s) , (4.33)

for all points α = (s,αs) ∈ T∗S, and T∗φ∣TsS ∶= T∗s φ. Moreover:

T∗φ ∶= T∗φ−1 ∶ T∗Q → T∗S .

At �rst, equation (4.33) looks suspiciously like the pullback φ∗ of di�erential forms
(as in de�nition 2.7.8). However, where the pullback acts on sections φ∗ ∶ Ω(S) → Ω(Q),
the cotangent lift T∗φ ∶ T∗S → T∗Q is a point transformation between cotangent
bundles. The relation between them is analogous to the relation between pushforward
of vector �elds φ# ∶ X(Q) → X(S) and tangent map Tφ = φ∗ ∶ TQ → TS. We will
explain this in a second. Before, we need to clarify some properties:

Lemma 4.5.2 (Properties of the cotangent lift)

(i) The cotangent lift T∗φ of φ ∶ Q → S is a vector bundle isomorphism covering the
map φ−1, i. e. the following diagram commutes:

T∗S T∗Q

S Qφ−1

T∗φ

πS πQ

. (4.34)

(ii) For φ ∶ Q → S and ψ ∶ S → R we have the chain rule:

T∗(ψ ○ φ) = T∗φ ○ T∗ψ . (4.35)

Moreover:
T∗ idQ = idT∗Q . (4.36)

Accordingly, the mapping T∗ ∶ Mank → VB is a contravariant functor from the
category Mank of Ck-manifolds to the category VB of vector bundles.

(iii) The cotangent lift is a symplectomorphism of cotangent bundles. If ωQ and ωS are

Ω(T∗S) Ω(T∗Q)

T∗S T∗Q

S Q

πS πQ

φ

T∗φ

(T∗φ)∗

⇒
⇒

the canonical symplectic forms on T∗Q and T∗S, respectively, this means:

(T∗φ)∗ωQ = ωS .

Even stronger, the cotangent lift preserves the Liouville 1-forms:

(T∗θ)∗θQ = θS .

(Analogous properties hold for T∗φ, only the map goes in the opposite direction.)
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Proof. (i) That T∗φ is a vector bundle morphism covering φ−1, in particular that it is
�bre-preserving, follows from the de�nition, because T∗φ is already given by its restric-
tion to �bres: T∗s φ ∶ TsS → Tφ−1(s)Q. Moreover, we can see from the chain rule (which
we will prove next) that the inverse to T∗φ is the map T∗φ = T∗φ−1. Hence T∗φ is a
vector bundle isomorphism.

(ii) The chain rule as well as T∗ idQ = idT∗Q come from the corresponding proper-
ties of the tangent map Tφ (see lemma 2.3.4).

(iii) We �rst show that the cotangent lift preserves the Liouville 1-forms. To prove Waldmann [Wal07, Satz 3.2.11]
also shows the reverse: Any dif-
feomorphism ψ ∶ T∗S → T∗Q
that preserves the Liouville
1(!)-forms is the cotangent
lift of some di�eomorphism
φ ∶ Q → S (however, this is not
the case if ψ only preserves the
symplectic 2-forms).

this, let us write ψ ∶= T∗φ and denote the Liouville form on T∗Q by θ = θQ. Then, for
any point α = (s,αs) ∈ T∗S and any Xα ∈ Tα(T∗S):

(ψ∗θ)α(Xα) = θψ(α)(Tαψ(Xα)) = (ψ(α))πQ○ψ(α)(Tψ(α)πQ ○ Tαψ(Xα)) ,

where we �rst used the de�nition 2.7.8 of the pullback, then the de�nition of θ. The next
step is to reinsert ψ(α) = T∗φ(αs) into the equation and apply the formula (4.33) for
the cotangent lift, so:

(ψ(α))πQ○ψ(α)(Tψ(α)πQ ○ Tαψ(Xα)) = (T∗s φ(αs))πQ○ψ(α)(Tα(πQ ○ψ)(Xα))

= αφ○πQ○ψ(α)(T(φ ○ πQ ○ψ)(Xα)) .

Now, observe that φ○πQ ○ψ = πS holds because of the commutativity of diagram (4.34).
This �nally leaves us with:

(ψ∗θ)α(Xα) = αφ○πQ○ψ(α)(T(φ ○ πQ ○ψ)(Xα)) = απS(α)(TαπS(Xα)) = θS,α(Xα) ,

where, in the last equality, we used the de�nition of the Liouville form θS on T∗S. Hence
ψ∗θQ = θS, so the Liouville 1-forms are preserved.

Given ωQ = −dθQ and ωS = −dθS this further implies:

ωS = −dθS = −d(ψ∗θQ) = ψ∗(−dθQ) = ψ∗ωQ ,

because pullback and exterior derivatives commute with each other. The cotangent lift
ψ = T∗φ is thus a symplectomorphism from T∗S to T∗Q. ∎

Now back to the promised relation between pullback and cotangent lift. Compare
diagram (4.34) for the cotangent liftT∗φwith the corresponding diagram for the tangent
map Tφ from de�nition 2.3.1:

T∗Q T∗S

Q S

πQ πS

φ

T∗φ

φ∗α α⇐φ
∗

TQ TS

Q S

πQ πS

φ

Tφ

X φ#X⇒φ#

As already mentioned, both tangent map Tφ and cotangent lift T∗φ are vector bundle
morphisms, covering φ and φ−1, respectively. In contrast, the pullback φ∗ and the push-
forward of vector �elds φ# act on sections. The big di�erence when a section is relocated
is that not only the values have to be transformed but also the basepoints. Hence, a 1-form
α ∈ Ω1(S) is pulled back to a form in Ω1(Q) via:

φ∗α = T∗φ ○ α ○ φ , or pointwise: (φ∗α)q = T∗φ(αφ(q)) .
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Z

T∗Q

ρ↑д
0q 0p

T∗q Q T∗pQ

Figure 4.3 Cotangent lift ρ↑ of a group action ρ. Note that Z (the embedding of
Q via the zero section Q → T∗Q , q ↦ (q, 0q)) is necessarily an orbit of the
lifted group action ρ↑. Hence the action cannot be transitive.

A vector �eld is pushed forward according to (this is exactly de�nition 2.4.6):

φ#X = Tφ ○ X ○ φ−1 , or pointwise: (φ#X)s = Tφ(X−1φ (s)) .

This explains again why the pushforward of vector �elds can only be de�ned if the map
φ is invertible, whereas the pullback of di�erential forms doesn’t require this condition.

The contangent lift can be used to lift a given group action on the base manifold Q
to a group action on the contangent bundle T∗Q.

De�nition 4.5.3 (Cotangent lift of a group action) Let ρ ∶ G → Di�(Q) be a smooth
T∗Q T∗Q

Q Q

πQ πQ

ρд

T∗ρд

⇒

action of some Lie groupG acting on the manifold Q. The cotangent lift of ρ is a group
action ρ↑ on the cotangent bundle, given by:

ρ↑ ∶ G → Sp(T∗Q) , д↦ ρ↑д ∶= T∗ρд = T∗ρд−1 . (4.37)

Lemma 4.5.4 Given a smooth left (right) action ρ of G on Q, the cotangent lift ρ↑ is a
symplectic left (right) action of G on the cotangent bundle T∗Q.

Proof. The ‘symplectic’ part is clear because the cotangent lift of a di�eomorphism ofQ
is a symplectomorphism of T∗Q.

Furthermore, if ρ is a left action then ρ↑ is a left action as well, due to:

ρ↑дh = T∗ρдh = T∗(ρд ○ ρh) = T∗ρд ○ T∗ρh = ρ
↑
д ○ ρ↑h ,

where we used the chain rule from lemma 4.5.2 (ii), only the additional inverse φ−1 in
T∗φ = T∗φ−1 reverses the order of terms. Analogously, the lifted group action ρ↑ is a
right action whenever ρ is a right action. ∎

Unfortunately, the cotangent lift of a group action is never transitive. The reason is
simple: the cotangent lift of a di�eomorphism φ ∈ Di� Q is a linear map between the
�bres. It always maps the zero in one cotangent space to the zero in another cotangent
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Z

tβ(Z)

T∗Q

0q 0p

T∗q Q T∗pQ

tβ,q

tβ,p

Figure 4.4 Fibre translation by a 1-form β. All points of the zero section Z are
shifted to points in τβ(Z) by the �bre translation τβ. The orbits of τβ are �bres
of T∗Q.

space (see �gure 4.3). The image of the zero section, Z = {(q, 0q) ∶ q ∈ Q}, is thus an
orbit of ρ↑. Since Z ⊂ T∗Q is a proper subset, the group action is not transitive.

Accordingly, to obtain a transitive group action on T∗Q we have to augment the
transformations between �bres by some transformations along the �bres.

De�nition 4.5.5 (Fibre translation) Let β ∈ Ω1(Q) be a 1-form. The �bre translation
(or momentum shift) by β is the di�eomorphism: The �bre translation τβ is a

symplectomorphism if and only
if β is closed (see lemma 4.5.8).τβ ∶ T∗Q → T∗Q , α↦ α + β(πQ(α)) , (4.38)

where α is a point in T∗Q. If we write q = πQ(α) this yields the �brewise expression:

τβ,q ∶= τβ∣T∗q Q ∶ T
∗
qQ → T∗qQ , αq ↦ αq + βq ,

where αq ∈ T∗qQ is a cotangent vector and βq ∈ T∗qQ is the value of the 1-form β at the
point q ∈ Q (see also �gure 4.4). The �bre translation is well-de�ned because T∗Q is a
vector bundle, and hence elements in the same �bre can be added to each other.

Before we come to the properties of τβ we want to de�ne a related concept – the
vertical lift of β to a vector �eld on T∗Q.

De�nition 4.5.6 (Vertical lift) Let β ∈ Ω1(Q) be a 1-form. The vertical lift of β is the
vector �eld Vβ ∈ X(T∗Q) that generates the �bre translation τβ, i. e. pointwise:

(Vβ)αq =
d
dt

∣
t=0
τtβ,q(αq) =

d
dt

∣
t=0
(αq + tβq) , (4.39)

for each αq ∈ T∗Q. The map Φ(m, t) ∶= τtβ(m) is thus the (complete) �ow of Vβ.

The name ‘vertical lift’ comes from the fact that Vβ is a vector �eld with values in
the vertical bundle V(T∗Q), which is a subbundle of the tangent bundle T(T∗Q). The
de�nition is as follows:



104 Chapter 4. Symplectic Geometry and Classical Mechanics

M TmM

m

vertical subspace VmM

�bre π−1(q)

Figure 4.5 The vertical subspace VmM is the subspace of TmM which is tangent
to the �bre containing m (i. e. the �bre π−1(q) for q = π(m)).

De�nition 4.5.7 (Vertical bundle) Given a �bre bundle π ∶ M → Q , the vertical bundleThis de�nition works for any
�bre bundle M, not just for
vector bundles.

Note that there is, in general, no
canonical choice for a comple-
mentary horizontal subspace.

VM over M is the subbundle of the tangent bundle TM that consists of vectors tangent
to the �bres of M (see �gure 4.5). More precisely, for each m ∈ M the vertical subspace
VmM ⊆ TmM is given by:

VmM ∶= {Xm ∈ TmM ∶ Tmπ(Xm) = 0} , (4.40)

i. e. VmM is the kernel of the map Tmπ ∶ TmM → Tπ(m)Q. The vertical bundle is then
the disjoint union of all vertical subspaces.

Lemma 4.5.8 (Properties of �bre translations) Let π ∶ T∗Q → Q denote the cotangent
bundle M = T∗Q over Q.

(i) The �bre translations are �bre preserving, i. e. π ○ τβ = π for each β ∈ Ω1(Q), and
satisfy:

τrβ ○ τsγ = τrβ+sγ ,
for all r, s ∈ R and β,γ ∈ Ω1(Q).

(ii) The �bre translation τβ (the vertical lift Vβ) is symplectic if and only if β is closed.

(iii) The vertical lift Vβ is Hamiltonian if and only if β is exact. In this case, that is if
β = df for some function f ∈ C∞(Q,R), we have:

Vβ = −Xπ∗ f . (4.41)

Proof. (i) Both properties are immediate consequences of the de�nition.

(ii) First, it follows from lemma 4.1.5 that the �bre translation τβ is a symplectic trans-
formation if and only if the vertical lift Vβ is a symplectic vector �eld because τtβ(m)
is the �ow of Vβ.

Next, we want to check under which conditions τβ is a symplectomorphism. Let us
calculate the pullback of the Liouville form θ. At the point α = (q,αq) ∈ T∗Q and for
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any tangent vector Xα ∈ TαM we have:

(τβ∗θ)α(Xα) = θτβ(α)(Tατβ(Xα)) = τβ(α)(Tτβ(α)π ○ Tατβ(Xα))
= τβ(α)(Tα(π ○ τβ)(Xα)) = τβ(α)(Tαπ(Xα)) ,

where we used the property π ○ τβ = π from part (i). When inserting the de�nition of
τβ one obtains:

τβ(α)(Tαπ(Xα)) = α(Tαπ(Xα)) + β(Tαπ(Xα)) = θα(Xα) + π∗β(Xα) ,

so τβ∗θ = θ + π∗β. Applying the exterior derivative (which commutes with pullbacks)
yields the pullback of the symplectic form ω = −dθ:

τβ∗ω = ω− π∗(dβ) .

The �bre translation τβ is thus symplectic if and only if the obstructing term on the
right-hand side vanishes. This is equivalent to β being closed, dβ = 0.

(iii) We already remarked that the vertical lift Vβ produces a vertical vector �eld,
that is Tπ(Vβ) = 0. Given how θ is de�ned, this implies iVβθ = θ(Vβ) = 0. Further, we
can use equation (4.32) to obtain:

(Vβ)♭ = iVβω = −LVβθ + d(iVβθ) = −LVβθ = −π∗β ,

where the last equality follows if we remember that τtβ(m) is the �ow ofVβ, and hence:

LVβθ = d
dt

∣
t=0
τβ∗θ =

d
dt

∣
t=0
(θ + t(π∗β)) = π∗β ,

where we reused τβ∗θ = θ + π∗β from part (ii). Thus Vβ is Hamiltonian if and only
if π∗β is exact, which is equivalent to β being exact because pullback π∗ and exterior
derivative commute. ∎

Remark 4.5.9 (Fundamental vector �elds and vertical lift) It turns out that the vertical
lift Vβ is the fundamental vector �eld associated to β.

First, note that for a ‘�at’ Abelian Lie group G – an Abelian Lie group where the
underlying manifold is a vector space V – the associated Lie algebra LG is isomorphic
to T0V ≅ V endowed with the trivial Lie bracket [ ⋅ , ⋅ ] = 0. Accordingly, the exponential
map exp ∶ LG → G is just the identity exp = idV.

In case of Ω1(Q), what was written above as tβ is thus actually tβ = exp(tβ) ∈ G,
for β seen as an element in the Lie algebra LG = Ω1(Q). The �bre translations then
de�ne a group action of G on M by:

τ ∶ G → Di�(M) , tβ = exp(tβ) ↦ τtβ = τexp(tβ) .

where the group homomorphism property of τ is part (i) of the last lemma. With this
in mind, if you now compare de�nition 4.5.6 of the vertical lift Vβ to the de�nition 3.5.1
on page 81 of a fundamental vector �elds, it follows that the vertical lift Vβ is also the
fundamental vector �eld Vβ = ζτ(β) with respect to τ.

If we want the fundamental vector �elds Vβ to be Hamiltonian – as we do in the
quantization scheme via the Canonical Group – lemma 4.5.8 tells us that we have to use
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exact 1-forms. Since β exact means that β = df for some function f ∈ C∞(Q,R), we can
use the functions C∞(Q,R) to describe exact 1-forms. There is only one complication:
two functions f, д that di�er only by a constant have the same exterior derivative and
so produce the same 1-form β = df = dд. This minor annoyance is easily resolved by
passing over to the quotient C∞(Q,R)/R.

Finally, the groups Di�(Q), acting via the cotangent lift, and C∞(Q,R)/R, acting
via �bre translations, can be combined to obtain a transitive group action on T∗Q. This
is how the semidirect product C∞(Q,R)/R ⋊Di�(Q) enters the arena. The action ofThe semidirect product was

introduced in de�nition 3.6.1
on page 84.

C∞(Q,R)/R ⋊Di�(Q) on the cotangent bundle T∗Q is given by:

ρ( f,φ)(m) ∶= T∗φ(m) − (df)φ○π(m) , (4.42)

for f ∈ C∞(Q,R)/R, φ ∈ Di�(Q) and m ∈ M, resulting in the group law:

(f2,φ2) ⋅ (f1,φ1) = (f2 + f1 ○ φ−12 ,φ2 ○ φ1) . (4.43)

Properties of this group will be further discussed when we talk about the quantization
on cotangent bundles in section 5.5.



5 Canonical Group Quantization

1. Write down the problem.
2. Think very hard.
3. Write down the answer.

Feynman Problem-Solving Algorithm, folklore

We already gave an outline of Canonical Group Quantization in section 1.8. The
goal of this chapter is to put the still rather vague description on solid foundations and
formulate the quantization method using the mathematical terms developed during the
last few chapters. To this end, we will loosely follow the original presentation of Isham A short overview of the full

quantization procedure can also
be found in [BRL10].

given in [Ish83], yet with an important di�erence:
Unlike Isham, we make a sharp distinction between what we called the Geometric

Group G and the Canonical Group C. We will see that a Geometric Group equips the
classical phase space with the structure of a G-space. The Canonical Group C, on the
other hand, does not act on phase space but is related to the fundamental observables.
Taking the di�erence seriously, we properly establish the relation between the groups
C and G in section 5.3. The result is a conceptually much clearer construction of the
Canonical Group. In particular, we will shed some light on the special case that requires
a central Lie algebra extension, the one that Isham calls ‘pathological’.

5.1 Mathematical Formulation of the Quantization Scheme

According to our discussion in section 1.8 the general quantization scheme consists
of two main steps:

1. Find a Canonical Group C such that the associated set of fundamental quantizable
observables is ‘big enough’,

2. Study strongly continuous unitary irreducible representations of C; they give rise to
self-adjoint operator representations of the algebra of fundamental observables.

The second step is primarily a mathematical problem in representation theory. For
the examples we want to discuss in this chapter, the representation theory is well-known,
so we will just point to the literature where necessary. The �rst step, on the other hand,
is where physical considerations play a signi�cant part, and it is this question of how to
select a suitable Canonical Group C that lies at the heart of the quantization scheme.

In section 1.8 we already gave an outline of the idea behind the group-theoretical
quantization method. Schematically, we had the following picture:

≅

fundamental observables Obs(M)

Canonical Lie algebra LC

Canonical Group C

Hamiltonian vector �elds onM

one-parameter groups of
symplectic transformations

Geometric Group G acting onM

⇐
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Roughly speaking, given a set of fundamental observables Obs(M) we can calculate the
associated Hamiltonian vector �elds and via their �ow they serve as generators of one-
parameter groups of symplectic transformations of M. All these one-parameter groups
taken together constitute a Lie group, the Geometric Group G, which canonically acts
on classical phase space M.

On the other hand, if we are able to reverse the procedure it is possible to start with
a Geometric Group G to obtain a set of fundamental quantizable observables Obs(M).
Since the geometry and the global topological structure of the classical phase space largely
restricts possible (and reasonable) symplectic transformations, we thereby obtain sets of
fundamental observables re�ecting the characteristics of the phase space M.

Before we explain how to select an appropriate Geometric Group G, however, we
need to show how Isham’s idea is realised mathematically. The ‘arena’ is the following
diagram:In the following the Lie groups

C and G are usually omitted.
Here, the groups are included
to help relate the diagram to the
overview shown above.

0 R C∞(M,R) XHam(M) 0

LC LG

C G

j

γ

L L

. (5.1)

Almost all spaces in this diagram are Lie algebras, only G and C are Lie groups. The
upper row is the short exact sequence (4.22) known from our discussion of the algebra
of classical observables in section 4.3, where the Lie algebra morphism jassigns to eachRemember that f ↦ Xf

without the sign is a Lie algebra
antimorphism (lemma 4.2.8).

function the negative of its associated Hamiltonian vector �eld:

j ∶ C∞(M,R) → XHam(M) , f↦ −Xf . (5.2)

Furthermore, if we assume G acts on M via a left action ρ ∶ G ×M → M the map γ is aIt is a common convention
to assume a left action of G
on M, which makes γ(A) an
antifundamental vector �eld in
the terminology of section 3.5.
Nevertheless, remark 3.5.4
shows that γ(A) is at the same
time a fundamental vector �eld
with respect to a right action. In
the end, the important point is
that γ in diagram (5.1) comes
out as Lie algebra morphism,
not as an antimorphism.

realisation of Lie algebra elements A ∈ LG in terms of their associated antifundamental
vector �elds γ(A) ∈ X(M), and hence γ is a Lie algebra morphism as well (remark 3.5.4).
Note that γ implicitly depends on the group action ρ; the de�nition of the antifunda-
mental vector �eld γ(A) from equation (3.25) shows this more clearly:

γ(A)x = Teρx(A) =
d
dt

∣
t=0
ρexp(−tA)x ∀x ∈ M . (5.3)

The step from Geometric to Canonical Group is implemented in this diagram on
the level of the corresponding Lie algebras instead of on the level of groups. The explicit
construction of LC is a bit more involved since it depends on the existence of a speci�c
right inverse. We will discuss the details in section 5.3.

It is important to understand how exactly diagram (5.1) reverses the construction of
the Geometric Group in order to obtain the Canonical Group C. To this end, remember
that the idea in the forward direction was to begin with a complete set of fundamental
observables Obs(M) ⊆ C∞(M,R) and assign Hamiltonian vector �elds to them. This
step is now accomplished by the Lie algebra morphism j, and we will denote the resulting
subalgebra of the Hamiltonian vector �elds by XObs(M) ⊆ XHam(M):

XObs(M) ∶= j(Obs(M)) = im j∣Obs(M) . (5.4)
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As lemma 2.4.9 guarantees, each Hamiltonian vector �eld in XObs(M) if it is complete
will generate a one-parameter group of symplectic transformations. Moreover, all these
individual one-parameter groups can be combined to give an abstract Lie group G, the
Geometric Group, that acts on the classical phase space M by means of a group action
ρ, thanks to the theorem of Palais (see [Mic08, theorem 6.5]):

Theorem 5.1.1 (Palais) Let M be a smooth manifold and let φ ∶ LG → X(M) be a Lie
algebra morphism from a �nite dimensional Lie algebra LG into the Lie algebra X(M)
of vector �elds on M such that each element in the image of φ is a complete vector �eld.
Moreover, let G be a simply connected Lie group with Lie algebra LG.

Then there exists a left action ρ of G on Mwhose associated antifundamental vector
�eld mapping γ, given by equation (5.3), equals φ.

Remark 5.1.2 (Completeness of vector �elds) From the perspective of Palais’ theorem
the reason why vector �elds in the image of φ have to be complete is that a Lie group
action ρ realises group elements д ∈ G in terms of global di�eomorphisms ρд ∈ Di�(M).
Global di�eomorphisms, however, are generated only by vector �elds with a global �ow, Complete vector �elds can be

interpreted as tangent vectors
to global di�eomorphisms if
Di�(M) is seen as a Lie group
(see also section 5.5).

that is, by complete vector �elds.
Of course, the demand for complete Hamiltonian vector �elds will in general not

be ful�lled by arbitrary observables. Nevertheless, section 1.6 showed that self-adjoint
operators are in one-to-one correspondence with strongly continuous one-parameter
groups of unitary transformations, as a consequence of Stone’s theorem 1.6.15. Therefore,
only classical observables that generate groups of transformations are of interest to the
quantization procedure, and for these classical observables the completeness assumption
is satis�ed.

Using Palais’ theorem, the construction of the Geometric Group G is summarised
by the following diagram:

0 R C∞(M,R) XHam(M) 0

Obs(M) XObs(M)

LC

G

⊆ ⊆

j

∼

j̃

theorem of Palais

. (5.5)

Moreover, the argument in the forward direction shows that the choice of an algebra of
fundamental observables Obs(M) renders classical phase space into a G-space in the
sense of de�nition 3.2.1.

Now, to reverse the steps leading from XObs(M) to G, �rst recall from lemma 3.4.2
that the one-parameter subgroups of G are exactly the integral curves through e ∈ G of
left invariant vector �elds. Accordingly, we can express any one-parameter subgroup α
of G via the exponential map exp ∶ LG → G as α(t) = exp(tA) using a tangent vector
A ∈ TeG ≅ LG, where Agenerates the one-parameter group α.

The group action ρ realises this ‘abstract’ one-parameter group t ↦ α(t) in terms
of the ‘concrete’ one-parameter group t↦ ρα(t) of symplectic transformations on phase



110 Chapter 5. Canonical Group Quantization

space (see also �gure 3.5 on page 82). The generator of this one-parameter group of
symplectomorphisms is the fundamental vector �eld ζ(A) as its �ow Φ is given by
Φ(t,x) = ρα(t)x for all t ∈ R and all x ∈ M.

In the end, diagram (5.1) simply introduces an additional minus sign to replace theAnother convention which can
be found in the literature is to
use ζ and to replace jby the
antimorphism f ↦ Xf (or use
the opposite sign convention
for the Poisson bracket). Using
morphisms, however, is more
convenient for our purposes.

Lie algebra antimorphism ζ by the more convenient Lie algebra morphism γ. The fol-
lowing diagram displays both directions combined:

0 R C∞(M,R) XHam(M) 0

Obs(M) XObs(M)

LC LG

G

⊆ ⊆

j

∼

j̃

Palais

L

γ

. (5.6)

So far, diagram (5.6) shows that the choice of an algebra of Hamiltonian vector �elds
XObs(M), generated by an algebra Obs(M) of fundamental observables, corresponds
to singling out a speci�c G-space structure on phase space.

5.2 Properties of the Geometric Group

Although the quantizationmethod starts with a Geometric Group G in mind
and determines a set of fundamental classical observables Obs(M) based on this group,
the properties of G must be obtained by thinking in the opposite direction. To this end,
let us consider an abridged version of diagram (5.1):

0 R C∞(M,R) XHam(M) 0

LG

j

γ

. (5.7)

The �rst observation is that we used Hamiltonian vector �elds associated to the funda-
mental observables to construct the Geometric Group G in the forward direction. Thus,
by choice of an appropriate group action ρwe will have to guarantee that γproduces only
Hamiltonian vector �elds. Such group actions play an important role in the following,
so they deserve a proper name:

De�nition 5.2.1 (Hamiltonian group action) A group action ρ ∶ G ×M → M of a LieOne-parameter subgroups of
G are realised via a Hamilto-
nian action by one-parameter
groups of Hamiltonian sym-
plectomorphisms (see de�ni-
tion 4.2.6).

group G on a symplectic manifold (M,ω) is called Hamiltonian group action if the
associated fundamental vector �elds are Hamiltonian.

In general, we will have to check this property ‘by hand’. Nevertheless, a necessary
precondition is that G acts on M via a symplectic group action. In fact, lemma 4.1.7
showed that the fundamental vector �elds associated to a symplectic group action are
symplectic vector �elds and the same holds for antifundamental vector �elds.
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Moreover, part (ii) of lemma 4.2.4 revealed that vector �elds are symplectic if and
only if they are locally Hamiltonian. While this local property is usually not enough to
guarantee globally Hamiltonian vector �elds its practical value lies in the fact that the
local property, in contrast to the global property, is easily veri�ed by calculations. With
a little bit of intuition it is possible to guess reasonable, at least symplectic group actions
if we simply remember that the symplectic volume element has to be preserved.

Remark 5.2.2 There are two special cases where the property of locally Hamiltonian is
enough to imply globally Hamiltonian vector �elds:

■ If the �rst de Rham cohomology group of M is trivial, i. e. H1
dR(M) = 0, every closed

1-form is automatically exact according to lemma 2.8.15. As a vector �eld X is locally
Hamiltonian if and only if the associated 1-form X♭ is closed (de�nition 4.2.2), this
implies that X♭ will also be exact. Hence a locally Hamiltonian vector �eld X will
automatically be globally Hamiltonian in this case.

■ The second possibility comes from part (iv) of lemma 4.2.4, which states that the Lie
bracket [X,Y] of two locally Hamiltonian vector �elds X,Y ∈ XSp(M) is globally
Hamiltonian. Accordingly, if each element A ∈ LG can be written as a commutator
of two other elements in LG the associated fundamental vector �elds will be globally
Hamiltonian. This is the case if G is a semisimple Lie group (see [FH91, section 9.1];
if G is a semisimple Lie group, the associated Lie algebra LG – which is then, too,
called semisimple – can be written as LG = [LG,LG]).

In addition to the Hamiltonian group action of G, Isham argues in his notes that
there is no particular bene�t in considering disconnected Geometric Groups unless one
wants to allow anti-symplectic transformations, corresponding to anti-unitary quantum
operators [Ish83, section 4.3.1]. The reason is simply that the classical phase space M can
usually be assumed to be a connected manifold and thus it makes sense for the Geometric
Group G – which acts on M – to share this property. Unless stated otherwise, we will
hence assume the Geometric Group G to be a connected Lie group.

There are two additional properties. First, the group action of G on M will have to
be transitive. One reason to require a transitive action is that only in this case the Geo- In particular, transitivity

requires dimG ≥ dimM.metric Group is ‘fully aware’ of the global structure of phase space – that it ‘feels out’ the
whole space M [Ish83, section 4.3.2]. In contrast, if the group action were not transitive,
the phase space would decompose into di�erent G-orbits, but then the physical system
would be restricted to a single orbit and we could have used this orbit as our phase space
in the �rst place.

A related point is that a transitive group action is necessary to generate a complete Remember that a complete
set of quantizable observables
is necessary to formulate an
irreducibility condition for
the quantization map (see also
section 1.7).

set of fundamental quantizable observables. Given the intuition we have gained from
Noether’s theorem, a complete set of fundamental observables should correspond to a
transformation group that covers all ‘directions’ in phase space. Isham discusses this
more thoroughly in his notes and explains that a transitive group action is su�cient to
guarantee a local generating principle, that is, there is always a neighbourhood in phase
space such that any function f ∈ C∞(M,R) can be written locally as a function of the
fundamental observables (see [Ish83, section 4.3.4] for the details).

Finally, the morphism γ must establish a one-to-one correspondence between LG
and XObs(M). The reason is that the Geometric Group G was originally constructed in
the opposite direction and hence it must be possible to re-obtain the algebraLG from the
set of Hamiltonian vector �elds in the image of γ (this also requires that imγ coincides
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M

Figure 5.1 The torus T2 is topologically the product of two circles S1 × S1. This
decomposition hints at a natural transformation group which can be used as
Geometric Group G if it satis�es de�nition 5.2.3.

with XObs(M), that is, imγ = XObs(M)). Accordingly, γ as a map between LG and
XObs(M) will have to be an isomorphism.

Surjectivity is guaranteed automatically if we de�ne XObs(M) ∶= imγ. To make γ
injective, however, we have to require an almost e�ective group action of G on M. By
de�nition 3.1.10, a group action ρ is e�ective if and only if the realisation д ↦ ρд is
injective. Nevertheless, the explicit expression for γ, equation (5.3), uses the realisation
only in a neighbourhood of the neutral element e ∈ G (since LG ≅ TeG). It is thus
completely su�cient if the realisation of G is injective in a neighbourhood of e, and
hence we need to require only an almost e�ective action.

Let us summarise all these properties in the following de�nition:

De�nition 5.2.3 (Geometric Group) Let (M,ω) be a symplectic manifold and let G be
a Lie group that acts on M via a smooth group action ρ ∶ G ×M → M. We will call (G, ρ)
a Geometric Group if the following conditions hold:

· G is a connected Lie group,
· ρ is a Hamiltonian group action in the sense of de�nition 5.2.1

(as a precondition, ρ must be a symplectic action),
· ρ is transitive,
· ρ is almost e�ective.

Remark 5.2.4 (Phase space as G-space) The classical phase space M together with the
structure imposed by a Geometric Group (G, ρ) is a G-space in the sense of section 3.2.
Since M is now in addition a symplectic manifold, we naturally require a Lie group G
which acts on M in a way that is compatible with the symplectic structure.

While the definition looks quite restrictive, fact is that it doesn’t determine G
uniquely. The usual way to select a suitable Geometric Group is hence to look for a
transformation group that arises ‘naturally’ from the structure of M. In the common
case where M is a cotangent bundle M = T∗Q, for instance, an obvious choice is to useThe special case of quantization

on cotangent bundles is the
topic of section 5.5.

the cotangent lift from section 4.5 to induce symplectic transformations on M based on
di�eomorphisms of the underlying con�guration space Q and subsequently augment
them by �bre translations to obtain a transitive group action. In other cases, it might
be possible to exploit a product structure in order to obtain a natural group action, for
example for the torus shown in �gure 5.1.
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That being said, in addition to pure mathematical suitability, di�erent Geometric
groups may also correspond to di�erent physical situations. We know that a momentum
observable arises from translations in position space whereas angular momentum is re-
lated to rotations. The fact which observables better describe the classical system at hand
thus enters into the choice of Geometric Group. In fact, it may in general be that an im-
portant classical observable is quantizable only in terms of a speci�c Geometric Group
but not in terms of another, so that the choice of Geometric Group is a choice between
incompatible quantizations. In addition, it may play a role for the problem at hand which
variables outside the set of fundamental observables are quantizable.

Furthermore, it is important to observe that we cannot associate physical meaning
to functions on phase space by considering them individually. Position and momentum,
for example, are intertwined by the fact that they act on each other via translations. The
physical interpretation of one observable will hence a�ect the possible interpretations
of others. So, even if a certain observable can be quantized using several di�erent Geo-
metric groups, the physical interpretation of this observable may depend on what other
observables are quantizable alongside.

5.3 From Geometric to Canonical Group

Let us assume that we have found a Geometric Group G that is compatible with a
given classical phase space, at least from a mathematical point of view. How do we then
proceed in order to obtain the Canonical Group?

As mentioned earlier, the quantization method does not construct the Canonical
Group directly but uses a detour via the associated Lie algebras. Isham starts with the
Lie algebra LG of the Geometric Group and �nds that it must sometimes be ‘extended’
(via a central extension), and sometimes not. He provides a mathematical condition for
when the extension is necessary, yet the physical meaning of the extension is left unclear.
In fact, the central extension appears like a last resort for some ‘pathological’ situations –
conventional quantum mechanics overRn unfortunately being one of them. The speci�c
use of a central extension to obtain LC, however, is motivated by Isham only by the fact
that a simpler type of extension doesn’t work, which is not very satisfying.

5.3.1 The Relation Between LC and LG

We will take a di�erent perspective that provides a much clearer understanding.
Right from the beginning, both Lie algebras have a distinct physical signi�cance, even
if they later might happen to coincide:

· LC abstractly describes the Lie algebra of the fundamental observables,
· LG describes the Lie algebra of the associated Hamiltonian vector �elds.

The di�erence is that observables serve an additional purpose. They generate canonical
transformations via their Hamiltonian vector �elds, but they also serve as some kind of
‘coordinates’, especially with respect to measurements. More precisely, when the Poisson
bracket is written as a Lie derivative:

{f, д} = LXд f ,

we see that the Poisson bracket explicitly describes the in�nitesimal change of the f-values Seen like this, the coordinate
change of f for canonically
conjugate observables, with
{f, д} = 1, just matches the
�ow of Xд, and vice versa. This
is why conjugate observables ‘�t
together’ exceptionally well.

along the �ow of the Hamiltonian vector �eld Xд associated to the observable д. Since this
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second role as coordinate values is no longer explicitly contained in the algebra of the
associated vector �elds, it is not surprising that the algebra LC might in general need to
be bigger than the algebra of the associated vector �elds LG.

In contrast to Isham, we will embrace the di�erence between LC and LG, and try to
determine their general relation. To this end, consider the following diagram:

0 R C∞(M,R) XHam(M) 0

Obs(M) XObs(M)

LC LG

⊆ ⊆

j̃

j

∼ γ∼

?

. (5.8)

The algebra Obs(M) of the fundamental observables is, of course, still unknown when
we begin the quantization procedure with the Geometric GroupG. Nevertheless, the last
section showed that γmust be an isomorphism between LG and XObs(M). In turn, we
can thus use the image of γ to de�ne the algebra XObs(M):

XObs(M) ∶= imγ .

Since our aim is to assign observables to the Hamiltonian vector �elds in XObs(M),A recipe for the construction
of Obs(M) and LC that arises
from the following considera-
tions is shown in �gure 5.2.

it makes sense to look for some kind of inverse to j̃. We already mentioned in section 4.3
that the ‘full’ mapping j ∶ C∞(M,R) → XHam(M) isn’t injective because two functions
that di�er only by a constant produce the same Hamiltonian vector �eld (remember
Xf = df♯). Nevertheless, not everything is lost. We only search a kind of inverse to the
mapping j̃, for a subalgebra of fundamental observables Obs(M) ⊆ C∞(M,R).

If we assume, once again, that Obs(M) were already known, there are two cases that
need to be distinguished. From the fact that the Lie algebra Obs(M) is also a vector
space, we can infer that Obs(M) contains either all or none of the constant functions:

(i) If Obs(M) doesn’t contain the constant functions, the mapping j̃ is injective and we
hence have an isomorphism Obs(M) ≅ XObs(M), which gives LC ≅ LG.

(ii) If Obs(M) contains the constant functions, the mapping j̃ is not injective. Still, since
it then contains all constant functions the Lie algebra Obs(M) in this case must be a
central Lie algebra extension of XObs(M) by R in the sense of de�nition 3.6.8 (this is
not true in the �rst case!). We will see later that LC can under these circumstancesNote that LG is no subalgebra

of its extension LC. Whenever
the central extension is strictly
necessary, LG cannot even be
embedded into LC!

be de�ned as a central Lie algebra extension of LG.

The point is now that j̃ in the �rst case has an inverse. Of course, neither Obs(M)
nor the restriction j̃ is known explicitly when we apply the quantization procedure. It
is clear, however, that an invertible j̃can only exist if there exists at least a candidate for
an inverse. This is the case if we can �nd a (necessarily injective) Lie algebra morphism
ũ ∶ XObs(M) → C∞(M,R) which satis�es j○ ũ = j̃○ ũ = idXObs(M):While the explicit subalgebra

Obs(M) is unknown at this
point, we know that it must
satisfy imu ⊆ Obs(M). The
precise form is given below.

0 R C∞(M,R) XHam(M) 0

Obs(M) XObs(M) = imγ

LC LG

⊆ ⊆

j

∼ γ∼

?

j̃

ũ

.
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If a morphism like ũ exists we have two possibilities (Isham mentions only the �rst
in his notes):

1. The obvious approach if ũ exists is to de�ne the algebra of fundamental quantizable
observables as Obs(M) ∶= im ũ. As a result, the mapping j̃will be an isomorphism
and we end up with the Lie algebra LC ≅ LG.

2. While not required we can optionally include the constant functions by means of a The existence of this second
possibility means that constant
functions can always be quant-
ized – in this case ‘for free’.

central extension. Since constant functions Poisson-commute with everything they
can be incorporated trivially, that is, we can de�ne Obs(M) ∶= im ũ⊕R as a direct
sum of Lie algebras. The algebra LC ≅ LG ⊕R is thus a central extension of LG and
the mapping ũ becomes a right inverse of j̃, not a full inverse.

Mathematically, the central extension in this case is, in addition, a split extension
(de�nition 3.6.8), for which ũ is the splitting map. The monomorphism ũ embeds
XObs(M) isomorphically into Obs(M). Although a split extension LC is a priori
only a semidirect sum of Lie algebras, a split central extension of a Lie algebra is
necessarily isomorphic to a direct sum of Lie algebras [Sch08, section 4.1]. Hence,
the trivial extension is, up to isomorphism, the only possibility in this case.

Otherwise, a di�erent course of action is necessary:

3. If no morphism like ũ exists the algebra of fundamental observables Obs(M) must
be a non-splitting central extension of XObs(M). The pre-images of the Hamiltonian
vector �elds in XObs(M) and the constant functions are in this case interwoven in
such a non-trivial manner that no embedding of XObs(M) into Obs(M) exists.

In contrast to the case for which a splitting map ũ exists, the central extension is
not optional but strictly necessary under these circumstances. Theorem 5.3.7, given
below, provides the explicit expressions for Obs(M) and LC in this case.

That said, Isham states in his notes [Ish83, section 4.3.6] that it would be ‘satisfying
aesthetically if, in practice, physical systems of this type [for which a central extension is
strictly necessary] never arose.’ He also remarks that ‘in the series of concrete examples
[…] Q = Rn is the only “pathological” case [which requires a central extension] and in
the rest (including quantum gravity!) the cocycle obligingly vanishes [no extension is
necessary]’. Thus, it looks like Rn is ‘special’, but it is unclear why this is the case.

As we see it, given the relation between the two algebras Obs(M) and XObs(M)
as established above, the central extension no longer appears to be ‘pathological’. The
connection via a central Lie algebra extension is actually the natural relation between
observables and their associated Hamiltonian vector �elds. Moreover, concerning the
necessity to de�ne Obs(M) via a central extension, the following statement holds:

Lemma 5.3.1 (Necessity of central extension)

(i) The necessity to de�neObs(M) via a (non-splitting) central extension can only arise
if constant functions are interwoven with the remaining fundamental observables in
a non-trivial manner, that is, only if constant functions appear as (part of the) result
of a Poisson bracket.

(ii) If canonically conjugate observables appear as fundamental quantizable observables,
the algebra Obs(M) is necessarily a non-splitting central extension of XObs(M).

Proof of part (i). Constant functions commute with all observables due to the general
de�nition of the Poisson bracket. Thus, constant function can only be an essential part
of the Lie algebra Obs(M) if they appear as part of the result of a Poisson bracket of two
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other observables, that is, in Poisson brackets of the form {f, д} = h+ c1, with f, д,h ∈
Obs(M) and c ∈ R ∖ {0}. Otherwise, constant functions are incorporated trivially and
the central extension in this case is optional because a trivial extension splits. ∎

The proof of the second statement in lemma 5.3.1 requires some basic knowledge of
Lie algebra cohomology and will thus be postponed until the end of section 5.3.2.

Remark 5.3.2 (Limits of lemma 5.3.1; the Virasoro algebra) Part (i) of lemma 5.3.1 states
that Poisson brackets of the form {f, д} = h + c1 with functions f, д,h ∈ Obs(M) and
a constant c ∈ R ∖ {0} are a necessary precondition for Obs(M) to be a non-splitting
central extension ofXObs(M). An example is the Weyl–Heisenberg algebra known from
section 1.6 which encodes the well-known Poisson brackets {qi, pj} = δij associated to
the con�guration space Q = Rn. The reverse statement, however, might not be true. If
only the �xed combination h + c1 with some constant value of c appears as observable
we can de�ne h′ ∶= h + c1 and this new observable h′ will in general not be a constant
function. thus rendering a central extension unnecessary in this case.

Part (ii) of lemma 5.3.1, on the other hand, states that Obs(M) will necessarily be a
non-splitting central extension when canonically conjugate observables are quantizable.
Reading Isham’s account, the Weyl–Heisenberg algebra also seems to be the only case for
which a non-splitting central extension is required. Still, at least if we allow for in�nite-
dimensional Lie algebras we can provide a second example: the Virasoro algebra. The
Lie brackets of the Virasoro algebra are given by:

[Lm,Ln] = (m − n)Lm+n + 1
12n(n

2 − 1)Zδm+n,0 , [Ln,Z] = 0 ,

for all m,n ∈ Z (Z is an element of the centre), and therefore of the form required by
part (i) of the lemma. These commutators show that none of the basis elements Ln and
Z of the Virasoro algebra are canonically conjugate to each other. On the other hand, it
is known that the Virasoro algebra is a non-trivial central extension of the Witt algebra,
with commutators:

[Lm,Ln] = (m − n)Lm+n ,

for all m,n ∈ Z (see [Sch08, chapter 5]). Thus, at least in the in�nite-dimensional case,
a non-splitting central extension does not require canonically conjugate observables.

5.3.2 Existence of a Splitting Map and Lie Algebra Cohomology

Let us now turn back to the explicit construction of the Canonical Group C. A result
that will be of great help to decide whether a Lie algebra morphism ũ with the property
j○ ũ = idXObs(M) exists is that j always has an (automatically injective) right inverse if
we forget the Lie algebra structure and interpret jas a linear map between vector spaces.
This is a corollary of a more general proposition. When we studied short exact sequences
of groups in section 3.6, an important statement was the splitting lemma 3.6.6. A related
result is that every short exact sequence of projective modules splits [HS71, theorem 4.7].An analogous statement does

not hold for Lie algebras. Oth-
erwise, we would always end up
in case (i).

Therefore, since vector spaces are simple examples of projective modules, we always have
the following split short exact sequence of vector spaces(!):

0 R C∞(M,R) XHam(M) 0j

u

linear map!

. (5.9)
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Given that j is not injective there is some freedom left in the speci�c choice of the
right inverse u. Since the kernel of j is given by ker j ≅ R we can always add constant
functions to the results of u and the new mapping will still be a right inverse of j. The
question is whether this inherent freedom can be exploited to adjust the linear map u
so that the restriction u∣XObs(M) becomes a Lie algebra morphism. In other words, we
are trying to modify u in such a manner that the (necessarily injective) linear mapping
P ∶= u ○ γ in the following diagram turns into a Lie algebra morphism (since γ de�nes
an isomorphism between LG and XObs(M) the mapping P is a Lie algebra morphism
if and only if this is the case for u∣XObs(M) ):

0 R C∞(M,R) XHam(M) 0

LG

j

γ

u

P

, (5.10)

that is:
{P(A),P(B)} = P([A,B]) ∀A,B ∈ LG . (5.11)

Remark 5.3.3 (Sourieau’s momentum map) The map P is closely related to Sourieau’s
moment map J ∶ M → (LG)∗, and sometimes P is called comoment map. Explicitly, the
correspondence between P and J is given by J(m)(A) = P(A)(m) for all A ∈ LG and
for all m ∈ M (see [Ish83, section 4.3.4]; more details about the momentum map can be
found in [MR99, chapter 11], for example).

In order to study the situation more closely it is convenient to introduce the so-called
obstruction cocycle z [Ish83, equation (4.3.17)]: Obviously, P is a Lie algebra

morphism if and only if the
obstruction cocycle z vanishes.z(A,B) ∶= {P(A),P(B)} − P([A,B]) , A,B ∈ LG . (5.12)

Roughly speaking, the cocycle z quanti�es ‘how much’ P violates the equality in (5.11).
First, we will show that z really is a cocycle. To this end, notice that the value z(A,B)

of z for any choice of A,B ∈ LG is a constant function on M. This follows from:

−XP([A,B]) = j○ P([A,B]) = γ([A,B])

= [γ(A),γ(B)] = [XP(A),XP(B)]
(4.19)= −X{P(A),P(B)} ,

and the fact that Xf = Xд implies f = д+ const. Hence the obstruction cocycle z can be
understood as a mapping:

z ∶ LG ×LG → R , (A,B) ↦ z(A,B) .

Since P is required to be linear, z is actually a bilinear mapping. Moreover, z satis�es:

z(A,B) = −z(B,A) , (5.13)
z(A, [B,C]) + z(B, [C,A]) + z(C, [A,B]) = 0 . (5.14)

The �rst equation states that z is antisymmetric. Therefore, z can be read as a 2-form
over the vector space LG, that is, a 2-cochain z ∈ ⋀2(LG∗) (the space LG∗ is the dual of
the Lie algebra LG; it is instructive to compare this to the de�nition 2.7.1 of di�erential
forms on manifolds). Furthermore, the following de�nition [Wal07, de�nition 3.3.43]
helps to understand the second equation, (5.14):
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De�nition 5.3.4 (Chevalley–Eilenberg operator) Let LG be a Lie algebra and considerEquation (5.15) looks a lot like
the explicit expression for the
exterior derivative, d, which is
given in lemma 2.8.3.

the cochains Ck(LG,R) = ⋀k(LG∗). For any k-cochain α ∈ ⋀k(LG∗) and Lie algebra
elements A0, . . . ,Ak ∈ LG the Chevalley–Eilenberg operator δCE is given by:

δCEα(A0, . . . ,Ak) ∶= ∑
i<j

(−1)i+jα([Ai,Aj] ,A0, . . . , Ǎi, . . . , Ǎj, . . . ,Ak) . (5.15)

Just like the exterior derivative in de Rham cohomology, the Chevalley–Eilenberg
operator satis�es the properties of a coboundary operator, δCE ○ δCE = 0, and hence we
get a cochain complex (de�nition 2.8.9):

⋯ ⋀k−1(LG∗) ⋀k(LG∗) ⋀k+1(LG∗) ⋯δCE δCE δCE δCE

Continuing as in de�nition 2.8.12, we de�ne k-cocycles Zk(LG,R) and k-coboundaries
Bk(LG,R) as:

Zk(LG,R) ∶= ker δ(k)CE , Bk(LG,R) ∶= im δ(k−1)CE , (5.16)

as well as the cohomology classes Hk
CE(LG,R) of Chevalley–Eilenberg cohomology:This is also known as scalar Lie

algebra cohomology. In general,
Lie algebra cohomology with
coe�cients in LG-modules is
de�ned using the Ext functor
(see [HS71, section VII.2]).

Hk
CE(LG,R) ∶= Zk(LG,R)/Bk(LG,R) . (5.17)

Rewritten using the Chevalley–Eilenberg operator δCE, equation (5.14) becomes:

δCEz = 0 , (5.18)

and hence for any linear map P the mapping z really is a 2-cocycle z ∈ Z2(LG,R) with
respect to the scalar Lie algebra cohomology of LG, just as the name suggests.

The next step is to �nd out under what circumstances z can be made to vanish. We
already explained that u remains a right inverse of j if we add arbitrary constants to its
values. This implies that we can add an arbitrary constant cA ∈ R to the value P(A) for
each A ∈ LG. This freedom, however, is also the only possible modi�cation as any other
change would lead to an algebra Obs(M) that no longer projects onto the given vector
�elds XObs(M). In other words: every allowed mapping P̃ is related to the originally
chosen mapping P via P̃(A) = P(A) + h(A), where h is a function h ∶ LG → R with
values h(A) ∶= cA.

That said, a further restriction arises from the fact that the modi�ed mapping P̃must
still be linear. As P is assumed linear, the function h must therefore really be a linear
function on LG. Hence, the maximal freedom in the choice of P̃ can be parameterised
by an element of the dual Lie algebra α ∈ LG∗ according to:

P̃(A) ∶= P(A) + α(A) , (5.19)

for every A ∈ LG.
The obstruction cocycle z̃ associated to the modi�ed mapping P̃ is:

z̃(A,B) = {P̃(A), P̃(B)} − P̃([A,B])
= {P(A) + α(A),P(B) + α(B)} − P([A,B]) − α([A,B])
= {P(A),P(B)} − P([A,B]) − α([A,B])
= z(A,B) − α([A,B]) , (5.20)
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where we used in the next to last step that α(A) and α(B) are constant functions which
Poisson-commute with everything. The result implies that the obstruction cocycles for
arbitrarily chosen linear maps P and P̃ di�er exactly by a term of the form α([A,B]).
In particular, the obstruction cocycle z can be made to vanish, i. e. z̃ = 0, if and only if
there exists some α ∈ LG∗ such that z itself can be written as:

z(A,B) = α([A,B]) , (5.21)

for every A,B ∈ LG. Using the Chevalley–Eilenberg operator from above this equation
becomes:

z(A,B) = α([A,B]) = δCEα(A,B) ,

and hence we ultimately proved the following result:

Lemma 5.3.5 (Elimination of the obstruction cocycle) Given the notation from above, In de Rham cohomology a
coboundary is a closed form
that is moreover exact.

the obstruction cocycle z ∈ Z2(LG,R), de�ned in terms of the mapping P according to
equation (5.12), can be eliminated if and only if z is a coboundary z ∈ B2(LG,R), that is,
if and only if there exists a 1-form α ∈ LG∗ such that:

z = δCEα = α([ ⋅ , ⋅ ]) . (5.22)

If the obstruction cocycle z is of this form, an injective Lie algebra morphism from
LG to C∞(M,R) is given by:

P̃ ∶ LG → C∞(M,R) , A↦ P̃(A) ∶= P(A) + α(A) . (5.23)

Lemma 5.3.5 hands us a powerful method to check whether the original, at �rst only
linear, mapping P can be adjusted to yield a Lie algebra morphism. It is even possible to
make statements about whole classes of Lie algebras if we know something about their
cohomology. If the cohomology class H2

CE(LG,R) is trivial, for example, every cochain
is a coboundary and, consequently, the obstruction cocycle can always be made to vanish
in this case. If the Geometric Group G is Abelian, on the other hand, its associated Lie
algebra LG is trivial, i. e. [A,B] = 0 for every A,B ∈ LG. Then there is no chance to
adjust P and hence no Lie algebra morphism with the required properties unless P is a
Lie algebra morphism in the �rst place.

As explained, the outcome determines how the quantization procedure continues. If
the mapping P can be turned into a Lie algebra morphism we can de�ne the Lie algebra Remember that we can also

choose to include the constant
functions trivially in this case,
just as explained in the begin-
ning of this section.

of the fundamental observables by Obs(M) ∶= imP. Since P is necessarily injective, the
Lie algebra LG is in this case isomorphic to Obs(M). Given LC ≅ Obs(M), we therefore
obtain LC ≅ LG. It is moreover possible to choose LC = LG without loss of generality,
because the Canonical Lie algebra LC is unique only up to an isomorphism. This yields
the following diagram:

imP =∶ Obs(M) XObs(M) ∶= imγ

LC LG

j̃

∼ γ∼ ∼
P

ũ

id
(5.24)

In short: if P can be adjusted to become a Lie morphism, we can choose the Canonical Although the abstract groups
G and C can be chosen equal in
this case, notice that they still
bear di�erent meaning!

Group C equal to the Geometric Group G and our search is complete.
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Remark 5.3.6 (Proof of part (ii) of lemma 5.3.1) We are now in the position to prove
the second part of lemma 5.3.1. To this end, remember that equation (5.20) showed that
any two obstruction cocycles z and z̃ di�er at most by a coboundary δCEα. Therefore,
the obstruction cocycles for all possible choices of the linear mapping P are part of the
same cohomology class [z] ∈ H2

CE(LG,R). So, if a Lie algebra morphism like u exists,
lemma 5.3.5 implies that any possible obstruction cocycle is a coboundary.

Now, consider canonically conjugate observables f and д which satisfy {f, д} = 1.
Given that j is a Lie algebra epimorphism, we obtain:

0 = d(1)♯ = j(1) = j({f, д}) = [j(f), j(д)] = [−Xf,−Xд] = [Xf,Xд] = [A,B] ,

where the last step makes use of the de�nitions A ∶= γ−1(Xf), B ∶= γ−1(Xд) and the fact
that γ is a Lie algebra isomorphism. Since j as a linear map is invertible, there exists a
linear map P and constant functions cA and cB so that f = P(A)+ cA and д = P(B)+ cB.
The associated obstruction cocycle is:

z(A,B) = {P(A),P(B)} − P([A,B]) = {f − cA, д− cB} − P(0) = 1 .

By de�nition, the cocycle z is a coboundary if there exists some α ∈ LG∗ so that:

1 = z(A,B) = δCEα(A,B) = α([A,B]) ,

but α([A,B]) = α(0) = 0. As this is clearly a contradiction, the obstruction cocycle z is
in this case not a coboundary. Therefore, a Lie algebra morphism like u does not exist
and the central extension at hand is a non-splitting central extension, just as claimed.

5.3.3 The Case of a Non-Splitting Central Extension

If the linearmapping P cannot be turned into a Lie algebra morphism, we have to
continue di�erently. We mentioned that this can only happen if the algebra Obs(M),
which we try to determine, contains the constant functions in a non-trivial manner.
WheneverP cannot be adjusted to become a Lie algebra morphism, the Lie algebra of the
fundamental observables Obs(M) will be a non-splitting central Lie algebra extension
of XObs(M) by R. This means we have to look for a short exact sequence:

0 R Obs(M) XObs(M) 0j ,

where R is embedded into the centre Z(Obs(M)).
Given the isomorphisms LG ≅ XObs(M) and LC ≅ Obs(M), we can extend this

sequence into the following commutative diagram:

0 R Obs(M) XObs(M) 0

0 R LC LG 0

j

∼ ∼ γ

, (5.25)

where the epimorphism between LC and LG is the epimorphism j composed with
the two isomorphisms in the diagram. To determine Obs(M) we can thus construct
a central extension LC of LG together with an Lie algebra monomorphism P̂ ∶ LC →
C∞(M,R) for which the above diagram commutes if we de�ne Obs(M) ∶= im P̂. This
is accomplished by the following lemma:
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Lemma 5.3.7 (Non-splitting central extension of LG) Consider the case for which the
map P ∶ LG → C∞(M,R) as given above is no Lie algebra morphism and for which
the obstruction cocycle z cannot be made to vanish. A central extension of LG with the
desired properties is then given by the direct sum of vector spaces:

LC ∶= LG ⊕R , (5.26)

equipped with the Lie bracket: Observe how this de�nition of
the Lie bracket leads to the fact
that LG cannot be embedded
isomorphically into LC, unless
z vanishes identically.

[(A, λ),(B, µ)] ∶= ([A,B] , z(A,B)) , (5.27)

for all A,B ∈ LG and λ, µ ∈ R, where [A,B] is the Lie bracket of LG.
Furthermore, the mapping P̂ ∶ LC → C∞(M,R) given by P̂(A, λ) ∶= P(A)+ λ is an

injective Lie algebra morphism with the property that diagram (5.25) commutes if we
de�ne Obs(M) ∶= im P̂.

Proof. To verify that LC really is a Lie algebra, observe that linearity and antisymmetry
of the bracket (5.27) follow immediately because the Lie bracket of LG and the cocycle
z both have these properties. Moreover, the Jacobi identity is satis�ed, given:

[(A, λ), [(B, µ),(C,ν)]] + cycl. = [(A, λ),([B,C] , z(B,C))] + cycl.

= ([A, [B,C]] , z(A, [B,C])) + cycl. = 0 ,

for all A,B,C ∈ LG and λ, µ,ν ∈ R, where the last step employs the Jacobi identity for
the Lie bracket of LG and the cocycle property (5.14) of z. In addition, the Lie algebra
LC is a Lie algebra extension of LG because the following is a short exact sequence: Note that the decomposition

LC = LG ⊕ R doesn’t respect
the Lie bracket. The sequence
in general will not split!

0 R LC = LG ⊕R LG 0ι2 pr1 ,

where ι2(λ) ∶= (0, λ) is the natural embedding of R into LC, and pr1(A, λ) ∶= A the
natural projection of LC onto LG. The extension is central, since im ι2 lies in the centre
of LC, which follows directly from equation (5.27).

Concerning the mapping P̂ ∶ LC → C∞(M,R), we have: Observe how the addition of
λ in the de�nition of P̂ doesn’t
change the value of the Poisson
bracket but gives an additional
term that is added to the result
of the commutator P([A,B]).

{P̂(A, λ), P̂(B, µ)} − P̂([(A, λ),(B, µ)])

= {P(A) + λ,P(B) + µ} − (P([A,B]) + z(A,B))

= {P(A),P(B)} − P([A,B]) − z(A,B) = z(A,B) − z(A,B) = 0 ,

for all (A, λ),(B, µ) ∈ LC = LG ⊕R, and hence P̂ is a Lie algebra morphism as claimed.
Furthermore, given the equality:

j○ P̂(A, λ) = j(P(A) + λ) = j○ P(A) + j(λ) = j○ P(A) = γ(A) = γ ○ pr1(A, λ) ,

for all (A, λ) ∈ LG ⊕R = LC, we see that the following diagram commutes:

im P̂ XObs(M) 0

0 R LG ⊕R LG 0

j∣im P̂

ι2 pr1

∼ γP̂ P

. (α)
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By de�nition, we have imP ⊆ im P̂. Since the ‘additional’ elements, in im P̂ ∖ imP, are
constant functions, the mapping j∣im P̂ remains a surjective mapping onto XObs(M).

To prove that the mapping P̂ ∶ LC → C∞(M,R) is injective consider A,B ∈ LG and
λ, µ ∈ R with P̂(A, λ) = P̂(B, µ). We will show A= B and λ = µ using a simple diagram
chasing argument. First, due to linearity of P we obtain:

P̂(A, λ) = P̂(B, µ) ⇔ P(A) + λ = P(B) + µ ⇔ P(A− B) + (λ− µ) = 0 , (β)

and application of jon both sides yields:

0 = j(0) = j(P(A− B) + (λ− µ)) = j○ P(A− B) = γ(A− B) .

Since γ is an isomorphism we get A= B. Inserting P(A− B) = P(0) = 0 back into equa-
tion (β) shows λ = µ, and hence (A, λ) = (B, µ). Accordingly, the Lie algebra morphism
P̂ ∶ LC → C∞(M,R) is injective. If we furthermore restrict the codomain of P̂ to im P̂,
the mapping P̂ ∶ LC → im P̂ in diagram (α) becomes an isomorphism.

Finally, we can turn the upper row of diagram (α) into a short exact sequence by
extending it to the left via the injection ι ∶= P̂ ○ ι2 ∶ R → im P̂:

0 R im P̂ XObs(M) 0

0 R LG ⊕R LG 0

ι j∣im P̂

ι2 pr1

∼ γ∼ P̂ P

. (5.28)

Hence, if we write Obs(M) ∶= im P̂, this diagram turns into a diagram just like (5.25),
which is exactly what we were looking for. ∎

For reference, �gure 5.2 provides an overview of the whole construction of LC.

5.4 Example: Conventional Quantum Mechanics

A first application of the quantization procedure is to reproduce conventional
quantum mechanics onQ = Rn. While Isham has already shown that the method yields
the expected results (see [Ish83, section 4.4]), we nevertheless want to use this example to
demonstrate how the quantization method is applied in practice. The familiar situation
helps to understand what is going on.

On the other hand, despite the familiarity, conventional quantum mechanics turns
out to be rather involved from the view of the quantization method. In fact, lemma 5.3.1
showed that the canonically conjugate observables q and p require a non-splitting cent-
ral extension to obtain the algebra of fundamental observables Obs(M).

To avoid some unnecessary indices we will restrict ourselves to the 1-dimensional
case. The classical con�guration space is Q = R and the associated phase space is the
trivial bundle M = T∗R which is globally isomorphic to R2 via the canonical Darboux
chart from remark 4.4.2:

(q, p) ∶ T∗R → R2 .

The symplectic 2-form ω of M = T∗R is given in terms of these coordinates by:

ω = dq∧ dp .
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Geometric Group G with action ρ on M

Find a linear map P such that j ○ P = γ

De�ne z(A,B) ∶= {P(A),P(B)} − P([A,B])

z = 0 ?

∃α ∈ LG∗ such
that z = δCEα ?

LC ≅ LG
P̃(A) ∶= P(A) + α(A)
Obs(M) ∶= im P̃

LC ≅ LG
Obs(M) ∶= imP

or (optional extension):

LC ≅ LG ⊕R direct sum
Obs(M) ∶= imP⊕R

LC ≅ LG ⊕R with
[ ⋅ , ⋅ ] as in eq. (5.27)
P̂(A, λ) ∶= P(A) + λ
Obs(M) ∶= im P̂

de�nition 5.2.3

diagrams (5.9) and (5.10)

equation (5.12)

diagram (5.24) lemma 5.3.5 lemma 5.3.7

yes no

yes no

Figure 5.2 Recipe for the construction of LC, given a Geometric Group G.

5.4.1 Step 1: Geometric Group and Group Action

The first step is to �nd an appropriate Geometric Group G together with its group
action ρ on M. One of the requirements from section 5.2 was thatGmust act transitively
on M, and we also mentioned that transitivity requires dimG ≥ dimM. In our case this
is dimG ≥ 2. From a mathematical point of view, the simplest choice that could possibly
work is hence the 2-dimensional, additive, Abelian group:

G = (R2,+) , (5.29)

which acts on M ≅ R2 naturally by translations: The signs in equation (5.30)
don’t a�ect the end result and
can thus be chosen to simplify
the calculations. They will later
cancel out against some signs
in the formula for Hamiltonian
vector �elds.

ρ ∶ G ×M → M , ρ(u,v)(q, p) ∶= (q+ u, p− v) . (5.30)

At the end of section 1.8 we also mentioned that a group acting on the con�guration space
by some kind of translations is necessary to de�ne a reasonable notion of distances. As
distances are a prerequisite to interpret points in the con�guration space as positions, the
above Geometric Group seems a good choice from a physical perspective as well.

Concerning the properties of a Geometric Group, observe that the group action ρ
is transitive because for each two points (q1, p1),(q2, p2) ∈ M there is always a group
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element (u,v) ∈ G such that ρ(u,v)(q1, p1) = (q2, p2). Moreover, the action is free – and
thus e�ective – given that ρ(u,v)(q, p) = (q, p) implies (u,v) = (0, 0) = e ∈ G already
for any single choice of (q, p) ∈ M.

Next we need to check that the group action is symplectic, that is:

(ρ∗дω)s(Xs,Ys) = ωρдs(Tsρд(Xs),Tsρд(Ys))
?= ωs(Xs,Ys) ,

for all tangent vectors Xs,Ys ∈ TsM, and for every s ∈ M and д ∶= (u,v) ∈ G. First, we
calculate the value of the tangent map Tsρд(Xs) for Xs ∈ TsM. To this end, let α be a
smooth curve in M that represents the tangent vector Xs, i. e. α(0) = s and α̇(0) = Xs.
For brevity, we will write s̃ = ρд(s), and αi and Xis with i ∈ {q, p} for the coordinate
expressions of α and Xs, respectively. Using this notation, we get:

Tsρд(Xs) = Tsρд([α]) = [ρ(u,v) ○ α] =
d
dt

∣
t=0
(αq(t) + u,αp(t) − v)

= (α̇q(0), α̇p(0)) = (Xqs ,Xp
s ) = Xqs ∂q∣s̃ + X

p
s ∣s̃ = X

i
s∂i∣s̃ ∈ Ts̃M .

The transported tangent vector Tsρд(Xs) has the same ‘entries’, only the base point is
shifted from s to s̃.

Given the coordinate expression ωs = dq∧dp∣s of the symplectic 2-form we thereby
obtain:

(ρ∗дω)s(Xs,Ys) = ωs̃(Tsρд(Xs),Tsρд(Ys)) = dq∧ dp∣s̃(X
i
s∂i∣s̃,Y

i
s ∂i∣s̃)

= Xqs Xp
s − Xp

s X
q
s = dq∧ dp∣s(X

i
s∂i∣s,Y

i
s ∂i∣s) = ωs(Xs,Ys) ,

and hence the group action ρ is symplectic. Conveniently, the �rst de Rham cohomology
group H1

dR(M) of our phase space M = R2 is known to be trivial, whereby remark 5.2.2
implies that ρ is in fact a Hamiltonian action. The Lie group G together with its group
action ρ thus satis�es all properties required in the de�nition 5.2.3 of a Geometric Group.

5.4.2 Step 2: Lie Algebra and Antifundamental Vector Fields

Now that wehave a Geometric Group G, the next step is to calculate the Lie algebra
LG and the antifundamental vector �eld mapping γ. The tangent space of G = R2 at the

q

p

ρ(u,v)

(q, p)

(q+ u, p− v)

Figure 5.3 Geometric Group G = (R2,+) acting on M = T∗R by translations.
The group action ρ preserves phase space volumes (drawn hatched).
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point e = (0, 0) ∈ G is given by TeG ≅ R2, hence:

LG = (R2, [ ⋅ , ⋅ ]) , with [A,B] = 0 ∀A,B ∈ LG , (5.31)

where the vanishing Lie bracket results from the fact that G is Abelian (see the explicit
expression for the Lie bracket in equation (3.13)).

To obtain the exponential map exp ∶ LG → G we will use the left invariant vector In this uncomplicated situation
we could just as well guess the
exponential map and then use
the uniqueness theorem 3.4.7,
but we want to demonstrate the
general method.

�elds XL(G). If ℓ ∶ G ×G → G denotes the left action of G on itself (ℓдh = д+ h) the left
invariant vector �eld LA generated by A= [α] ∈ TeG is (equation (3.6)):

LAд = Teℓд(A) = Teℓд([α]) = [ℓд ○ α] =
d
dt

∣
t=0
(д+ α(t)) = α̇(0) = A .

The integral curve γA through e ∈ G of this constant vector �eld is determined by:

γ̇A(t) = LAγA(t) , γA(0) = e ⇒ γA(t) = tA .

The exponential map for our case is hence given by (de�nition 3.4.5): This looks essentially like the
identity map but implicitly uses
the isomorphism LG ≅ R2

= G.exp ∶ LG → G , exp(tA) = γtA(1) = γA(t) = tA . (5.32)

Finally, the formula for antifundamental vector �elds, equation (5.3), applied to a Lie
algebra element A= (a,b) ∈ LG ≅ R2 yields the pointwise result:

γ(A)s =
d
dt

∣
t=0
ρexp(−tA)s =

d
dt

∣
t=0
(q− ta, p+ tb) = −a∂q∣s + b∂p∣s .

Globally, the vector �eld γ(A) is:

γ(A) = −a∂q + b∂p . (5.33)

5.4.3 Step 3: Construction of the Canonical Group

We are nowready to construct the Canonical Group C according to the recipe shown
in �gure 5.2. The �rst step is to �nd a linear mapping P that satis�es j○ P = γ, such that
the following diagram commutes:

0 R C∞(R2,R) XHam(R2) 0

LG

j

γ
P

.

To construct such a linear mapping P, let f be a function f ∈ C∞(R2,R) and calculate
j(f) = −Xf = −df♯. The necessary musical isomorphism ♯ = ♭−1 can be obtained from
X♭ = iXω = dq∧ dp(X, ⋅ ) and is given in Darboux coordinates by:

♯ ∶ T∗s M → TsM , ♯(adq+ bdp) = −a∂p+ b∂q .

Therefore:

j(f) = −Xf = −df♯ = −((∂q f)dq♯ + (∂pf)dp♯) = −(∂pf)∂q + (∂q f)∂p . (5.34)
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Continuing, we require j(f) = γ(A) and equate the corresponding coe�cients in
equations (5.33) and (5.34) to obtain:

−a∂q + b∂p != −(∂pf)∂q + (∂q f)∂p ⇔ a = ∂pf , b = ∂q f .

Accordingly, the function f related to the antifundamental vector �eld γ(A) is given by
f(s) = ap(s) + bq(s) + const. A linear map P that satis�es j○ P = γ is therefore:We will drop the constant for

now and remember that this
is an inherent freedom of the
de�ning relation j○ P = γ.

P ∶ LG → C∞(R2,R) , A= (a,b) ↦ P(a,b) ∶= ap+ bq . (5.35)

Given the mapping P, we can calculate the obstruction cocycle z (equation (5.12)).
The Poisson bracket of P(A1) and P(A2) for A1 = (a1,b1) and A2 = (a2,b2) is:

{P(A1),P(A2)} = ω(XP(A1),XP(A2)) = ω(γ(A1),γ(A2))
= dq∧ dp(γ(a1,b1),γ(a2,b2)) = b1a2 − b2a1 .

Since the Lie bracket of LG vanishes, we have P([A1,A2]) = P(0) = 0, and hence:

z((a1,b1),(a2,b2)) = b1a2 − b2a1 . (5.36)

The obstruction cocycle obviously doesn’t vanish and therefore P is not a Lie algebra
morphism. Worse even, since the Lie bracket of LG is trivial we have α([A1,A2]) = 0
for any choice of α ∈ LG∗, which means z cannot be written as z = δCEα (the cocycle
z is not a coboundary) and so there is no way to adjust P that would yield a Lie algebra
morphism. Consequently, we have to construct LC as a central extension.

Fortunately, lemma 5.3.7 already provides all the details. An appropriate central Lie
algebra extension of LG is hence given by:

LC = LG ⊕R = R2 ×R , (5.37)

with Lie bracket [(A1, r1),(A2, r2)] = ([A1,A2] , z(A1,A2)), that is:

[(a1,b1; r1),(a2,b2; r2)] ∶= (0, 0; b1a2 − b2a1) , (5.38)

for all (a1,b1; r1),(a2,b2; r2) ∈ LC ≅ R2×R. Moreover, there is an injective Lie algebra
morphism:

P̂ ∶ LC → C∞(R2,R) , P̂(a,b; r) ∶= ap+ bq+ r .
The algebra of fundamental classical observables Obs(M) ∶= im P̂ is hence generated by
the set {q, p, 1}, and the fundamental Poisson brackets of the generators are:

{q, p} = 1 , {q,q} = {p, p} = {1, 1} = {q, 1} = {p, 1} = 0 . (5.39)

This result comes as no surprise, although the Poisson brackets involving the constant
function 1 = 1M are usually omitted. Nevertheless, we included them to make clear that
constant functions are not to be ignored as something gratuitous. Constant functions are
really an essential part of the algebra of fundamental observables Obs(M) in the case of
conventional quantum mechanics, not optional. In fact, lemma 5.3.1 showed that this a
direct consequence of q and pbeing canonically conjugate observables.

Furthermore, the fact that q and p can really be interpreted as the actual physical
quantities of position and momentum is not as obvious as it might seem. We have, of
course, chosen some suggestive notation, and we already know what to expect. Still, a
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proper argument involves that G acts on phase space in a way so that translations in the
position coordinate are generated by the momentum observable whereas translations in
momentum coordinate are generated by the position observable.

In fact, the all too familiar situation makes it di�cult to see an issue here. In general,
however, it turns out that the mathematical appearance of individual observables is not
enough to justify a physical interpretation. In section 6.1 we will discuss an example
where the problem of interpretation proves more tangible and where the same function
on phase space can be interpreted in quite di�erent ways.

What remains for now is to construct the actual Canonical Group C that is associated
to the Canonical Lie algebra LC. One possibility to obtain the group multiplication is to
use some formal properties of the exponential map exp ∶ LC → C. Given a Lie algebra
element A= (a,b; r) ∈ LC, let us de�ne:

exp(A) = exp(a,b; r) =∶ (a,b; r)C = (A)C .

The result is formally a group element in C. For small Lie algebra elements near 0 we can
then use the Baker–Campbell–Hausdor� formula 3.4.10 to formally obtain the group
operation ∗ in C as:

(A1)C ∗ (A2)C = exp(A1) ∗ exp(A2) = exp(A1 + A2 + 1
2 [A1,A2] + . . .)

= (A1 + A2 + 1
2 [A1,A2] + . . .)C .

Since the commutator (5.38) maps into the centreZ(LC) of the Lie algebraLC = R2×R,
all higher commutators vanish and we obtain:

(a1,b1; r1)C ∗ (a2,b2; r2)C = (a1 + a2,b1 + b2; r1 + r2 + 1
2(b1a2 − b2a1))C . (5.40)

This is easily recognised as the group law of the 1-dimensional Heisenberg group H(1)
from de�nition 1.6.17.

Note that unlike the Geometric Group G = (R2,+) from which it was constructed,
the Heisenberg group H(1) is no longer Abelian. Nevertheless, now that we know how
the ‘strange’ group law of the Heisenberg group H(1) arises from a central Lie algebra
extension of the simple translation group (R2,+), the group law (5.40) looks much more
natural than it did before.

5.4.4 Step 4: Representations and Canonical Commutation Relations

The final step of the quantization procedure is to study unitary, irreducible rep-
resentations of the Canonical Group C and to de�ne the quantum operators as the self-
adjoint generators of strongly continuous 1-parameter unitary groups.

SupposeU′ ∶ C = H(1) → U(H) , д→ U′(д) is such a strongly continuous, unitary,
irreducible representation of the Heisenberg group, where U′(д) is a unitary operator
on the (yet unknown) Hilbert space H. Furthermore, the uniqueness theorem for the
exponential map, theorem 3.4.7, states that 1-parameter subgroups of C can be written
as restrictions of exp to lines through the origin of LC. Accordingly, let us de�ne:

U(a) ∶= U′(exp(a, 0; 0)) , V(b) ∶= U′(exp(0,b; 0)) , (5.41)

so that U and V are unitary representations of 1-parameter subgroups of C. We will
represent elements in the centre Z(C) = {exp(0, 0; r) ∈ C ∶ r ∈ R} by:

U′(exp(0, 0; r)) = e−iµr1 , µ ∈ R . (5.42)
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This way, we get the group commutation relations:

U(a1)U(a2) = U′( exp(a1, 0; 0) ∗ exp(a2, 0; 0)) = U′(exp(a1 + a2, 0; 0))
= U(a1 + a2) ,

V(b1)V(b2) = V(b1 + b2) ,

as well as:

U(a)V(b)U(a)−1V(b)−1 = U′(exp([(a, 0; 0),(0,b; 0)] + . . .))

= U′(exp(0, 0;−ba) + 0) = eiµab ⇔ U(a)V(b) = V(b)U(A)eiµab .

These relations are nothing but the Weyl form of the canonical commutation rela-
tions from lemma 1.6.16, only that U and V are now de�ned in terms of 1-parameter
subgroups of C, not in terms of the generating operators. Nevertheless, Stone’s theorem,
theorem 1.6.15, states that there are self-adjoint generators q̂ and p̂ such that:

e−iap̂ = U(a) = U′(exp(a, 0; 0)) , e−ibq̂ = V(b) = U′(exp(0,b; 0)) , (5.43)

which means we can now de�ne q̂ and p̂ this way. If you look back at how the Canonical
Group C was constructed, you will see that the operator p̂ is related to translations U in
position and q̂ related to translationsV in momentum, just as it should be. The operators
q̂, p̂and 1 also satisfy the usual commutation relations (although the parameter µ takes
the place of ħ).

The representations of the Heisenberg group C = H(1) are given by theorem 1.6.18,
of Stone and von Neumann, which states that after �xing a value of µ ∈ R, all non-trivial,
strongly continuous, unitary, irreducible representations are unitarily equivalent to the
well-known Schrödinger representation in position space H = L2(R, dq), where the
fundamental quantum operators are given by:

q̂ = q , p̂= −iµ∂q , 1̂M = 1 . (5.44)

The quantization mapQ is hence determined by:

Q ∶ ap+ bq+ r↦ ap̂+ bq̂+ rµ1 . (5.45)

5.4.5 Physical Units

As one mighthave noticed, the operators in equation (5.43) so far are dimensionless
and the parameter µ is just a real number. Nevertheless, to introduce physical units we
can simply choose a base unit q0 for the length, p0 for the momentum, and de�ne physical
operators as:

q̂ϕ ∶= q0q̂ , p̂ϕ ∶= p0 p̂ . (5.46)

The commutator of these operators if we use the representation (5.44) is:

[q̂ϕ, p̂ϕ] = iµq0p01 .

Finally, given that the combination µq0p0 on the right-hand side has the physical
unit of an action (length×momentum) it seems reasonable to identify µq0p0 with the
fundamental physical constant ħ that can be measured experimentally:

µq0p0 =∶ ħ . (5.47)
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Remember, once again, that the reason why ħ is measurable in experiments is that The physical meaning behind
ħ is that it introduces a scale
dependence into the theory,
as discussed at the end of sec-
tion 1.6.

di�erent values of µ yield unitarily inequivalent representations. If, on the other hand,
representations belonging to di�erent values of ħ were unitarily equivalent they would
produce physically identical results and the explicit value of ħ would be irrelevant.

Remark 5.4.1 Observe that equation (5.47) doesn’t �x the physical base units q0 and p0
completely; it only enforces that their product q0p0 be equal to the constant ħ/µ. Also,
notice that this freedom appears already in the classical Poisson bracket {q, p} = 1. We
will see this behaviour again in section 6.4.

In summary, we have shown that the method of Canonical Group Quantization is
able to reproduce the theory of conventional quantum mechanics in 1 dimension, and the
higher-dimensional case works analogously if we just decorate q and pwith some indices.
This is a reassuring result and helps to gain some trust in the method. Nevertheless, the
real value of the Canonical Group Quantization method is that it can be applied to phase
spaces where the conventional approach fails.

5.5 Quantization on Cotangent Bundles

In the last section the classical phase space M was a cotangent bundle. This case is Our presentation in this section
again roughly follows Isham’s
notes [Ish83].

so common in physics that it pays o� to investigate the special case of cotangent bundles
more closely. Also from a mathematical point of view a cotangent bundle M = T∗Q is
particularly interesting because every cotangent bundle carries a canonical symplectic
structure ω (see section 4.4):

ω = −dθ ,
where θ is the Liouville 1-form, given by equation (4.25):

θm(Xm) = m(Tmπ(Xm)) = m(π∗Xm) ∀XM ∈ TmM .

In addition, the unique properties of cotangent bundles yield some natural constructions
for symplectomorphisms that don’t exist in a more general setting (see section 4.5).

5.5.1 The group C∞(Q,R)/R ⋊Di�(Q)
From a physical standpoint, the characteristic feature of a phase space M that is An example of a phase space

that is not a cotangent bundle is
the model of angle and action
variables, M = S1 ×R+.

a cotangent bundle, is the existence of a con�guration space Q – the base manifold of
the bundle M = T∗Q. Furthermore, there might be a natural group of transformations
on the con�guration space Q. In general, this must be a subgroup of the in�nite-dimen-
sional Lie group Di�(Q) which contains all global di�eomorphisms of Q. In case of
conventional quantum mechanics, for example, this subgroup of di�eomorphisms of the
con�guration space consists of translations ρu ∶ q↦ q+ u with u ∈ (R,+).

What we need for the quantization procedure, however, are not transformations on
con�guration space but transformations on phase space. Fortunately, the cotangent lift
provides a solution to this problem. In section 4.5, the cotangent lift of a group action
ρ ∶ G → Di�(Q) , д↦ ρд was de�ned as (equation (4.37)): Note that we can use the group

(Di�(Q),○) forG, in which
case the action ρ is the identity
ρ = idDiff(Q), with ρφ ∶= φ.

ρ↑ ∶ G → Sp(M) , д↦ ρ↑д ∶= T∗ρд = T∗ρд−1 . (5.48)

In particular, lemma 4.5.4 states that the cotangent lift ρ↑ of a left (right) action ρ on Q
is a symplectic left (right) action on phase space M. The above action ρu ∶ q↦ q+u, for
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q

p
T∗q R T∗q+uR

ρ(u,0) = ρ↑u

ρ(0,v)ρ(u,v)

(q, p) (q+ u, p)

(q+ u, p− v)

Figure 5.4 The group action on R2 decomposes into the cotangent lift ρ(u,0) of
a translation ρu in con�guration space, augmented by a �bre translation ρ(0,v).
The q-axis in this drawing is actually the embedding of the base manifoldQ = R
via the zero section Q → T∗Q , q↦ (q, 0q).

example, acting on the con�guration space Q = R, is thereby lifted to the group action
ρ↑u ∶ (q, p) ↦ (q+ u, p) which acts symplectically on phase space M = T∗R ≅ R2.

That being said, we also know that the cotangent lift of an action is by itself never
transitive but can be augmented by �bre translations to obtain a transitive group action.
The �bre translation by a 1-form β ∈ Ω1(Q) is given by equation (4.38):The decomposition of the

group action ρ(u,v) from before
is shown in �gure 5.4. τβ ∶ T∗Q → T∗Q , m↦ m + βπQ(m) ,

where m is a point m ∈ M = T∗Q and where πQ ∶ T∗Q → Q is the bundle projection.
Remark 4.5.9 then showed that the mapping τ:

τ ∶ G → Di�(M) , β↦ τβ , (5.49)

is a group action if we see the vector space of 1-forms as a Lie group G = (Ω1(Q),+).
In addition, lemma 4.5.8 tells us that this action is symplectic if and only if β is closed,Because G is a vector space, the

Lie algebra LG is isomorphic to
G itself, and the exponential is
given by exp(tβ) = tβ.

and Hamiltonian if and only if β is exact.
Since a Hamiltonian group action is what we need for the quantization method, we

are interested only in the case where β is an exact 1-form, that is, we look at the case where
there exists a function f ∈ C∞(Q,R) = Ω0(Q) such that β = df. Accordingly, we could
just let the additive group of functions C∞(Q,R) act on M via f ↦ τdf, which gives a
Hamiltonian action. However, since two functions f and д that di�er only by a constant
produce the same 1-form β = df = dд, this group action is not e�ective. Instead, we will
thus use the quotient group C∞(Q,R)/R, where constant functions have been divided
out. The resulting group action of (C∞(Q,R)/R,+) on M is:

τ ∶ C∞(Q,R)/R → Sp(M) , α↦ τdα , (5.50)

with:The exterior derivative of an
equivalence class α = [f] is
de�ned as dα ∶= [df].

τdα ∶ M → M , τdα(m) = m + (dα)πQ(m) . (5.51)

Due to the construction, this group action τ is both e�ective and Hamiltonian.
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Q

T∗q Q
T∗ϕ(q)Q

q = πQ(m)

ρ↑φ

τ−dα
ρ(α,φ)

m
T∗φ(m)

T∗φ(m) − (dα)φ(q)

Figure 5.5 Group action of the semidirect product C∞(Q,R)/R ⋊ Di�(Q) on
the cotangent bundle M = T∗Q. Observe the similarity to �gure 5.4.

Finally, the group actions ρ↑, obtained via the cotangent lift, and τ, induced by �bre
translations, can be combined into a transitive, symplectic action ρ on M:

ρ ∶ C∞(Q,R)/R ⋊Di�(Q) → Sp(M) , (α,φ) ↦ ρ(α,φ) , (5.52)

with:
ρ(α,φ) ∶ M → M , ρ(α,φ)(m) ∶= T∗φ(m) − (dα)φ○πQ(m) . (5.53)

The group law of C∞(Q,R)/R ⋊Di�(Q) turns out as:

(α2,φ2) ∗ (α1,φ1) = (α2 + α1 ○ φ−12 ,φ2 ○ φ1) , (5.54)

which is the usual form of group law for an (external) semidirect product (see section 3.6,
speci�cally de�nition 3.6.1). The neutral and inverse elements of this group are:

e = (0, id) , (α,φ)−1 = (−α ○ φ,φ−1) . (5.55)

In general, a suitable Geometric Group G for a cotangent bundle T∗Q will be a �nite- It is actually possible to use the
group C∞(Q,R)/R ⋊Di�(Q)

directly, instead of a subgroup
(see [Ish83, section 4.7.3]). The
in�nite-dimensional group
however yields in�nitely many
fundamental observables,
which is usually not what we
want.

dimensional subgroup of the in�nite-dimensional Lie group C∞(Q,R)/R ⋊Di�(Q).

5.5.2 Lie algebra of C∞(Q,R)/R ⋊Di�(Q)

Since the full group C∞(Q,R)/R ⋊ Di�(Q) is rather complicated we will build
up its Lie algebra in several consecutive steps.

Let us begin with the Lie algebra of the di�eomorphism group Di�(Q). The group
law of Di�(Q) is the composition of di�eomorphisms, the neutral element the identity
e = idQ, and the inverse of a di�eomorphism φ is given by φ−1. To obtain the Lie algebra,
note that each 1-parameter subgroup of global di�eomorphisms in Di�(Q) can be read
as a complete �ow Φ ∶ R × Q → Q. The mapping α ∶ R → Di�(Q) , t ↦ α(t) = Φt is
a smooth curve in Di�(Q) which satis�es α(0) = idQ = e ∈ Di�(Q). The Lie algebra
then consists of tangent vectors to curves like α.

To understand how the tangent vector for a curve of di�eomorphisms looks like,
observe that for each q ∈ Q the mapping Φq ∶ R → Q , t↦ Φq(t) = Φt(q) is a complete
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curve in Q which passes through the point Φq(0) = q. The tangent vector for the curve
Φq is a tangent vector vq ∈ TqQ in the usual sense. This is the pointwise relation that
must hold between α and its tangent vector V, i. e. Vq = vq for each q ∈ Q. Accordingly,
the tangent vector V for the curve α of di�eomorphisms can be understood as a vector
�eld on Q – more precisely,V is the vector �eld that generates the �ow Φ. Furthermore,
since Φ is a complete �ow, we see that the Lie algebra of Di�(Q) is isomorphic to the
algebra of complete vector �elds on Q, that is:

LDi�(Q) = TidDi�(Q) ≅ Xcpl(Q) . (5.56)

What remains is to calculate the Lie bracket of LDi�(Q). One way to do this is
via the adjoint action and theorem 3.3.10. Accordingly, we begin with the conjugation
automorphism Iφ:

Iφ(ψ) = φ ○ψ ○ φ−1 , φ,ψ ∈ Di�(Q) . (5.57)

If we then write α ∶ t ↦ αt and β ∶ t ↦ βt for the di�eomorphism-valued curves with
α0 = β0 = id that represent the tangent vectors A,B ∈ TidDi�(Q), respectively, we get
the adjoint action of the Lie algebra LDi�(Q) on itself from equation (3.13) as:The calculation employs the

product rule and the fact that
α−t = α−1t is the �ow of −A. ad(A)(B)(f)(q) = TidAd([α])([β])(f)(q)

= d
dt

∣
t=0
Adαt([β])(f)(q) =

d
dt

∣
t=0

d
ds

∣
s=0
f ○ αt ○ βs ○ α−1t (q)

= d
ds

∣
s=0
A(f)(βs ○ α−10 (q)) + d

dt
∣
t=0
B(f ○ α0)(α−1t (q))

= d
ds

∣
s=0
A(f)(βs(q)) +

d
dt

∣
t=0
B(f)(α−1t (q))

= B ○ A(f)(q) − A○ B(f)(q) ,

for all functions f ∈ C∞(Q,R) and for each point q ∈ Q. A little surprising, the Lie
bracket of LDi�(Q) is hence the negative of the Jacobi–Lie bracket of vector �elds:

[A,B]L = B ○ A− A○ B = − [A,B] , (5.58)

for A,B ∈ LDi�(Q) = Xcpl(Q).

Now that we have the Lie algebra of Di�(Q), let us proceed with the Lie algebra of
the full group C∞(Q,R)/R ⋊ Di�(Q). The conjugation automorphism I(α,φ) in this
case is given by:

I(α,φ)(β,ψ) = (α + β ○ φ−1 − α ○ φ ○ψ−1 ○ φ−1,φ ○ψ ○ψ−1) , (5.59)

for group elements (α,φ) and (β,ψ). There are the following special cases:

(i) For α = β = 0 we get:
I(0,φ)(0,ψ) = (0,φ ○ψ ○ φ−1) .

As the second entry is the same as the conjugation automorphism of Di�(Q) from
equation (5.57), the corresponding Lie bracket is:

[(0,A),(0,B)]
L
= (0,−[A,B]) . (5.60)
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(ii) The case A = B = 0 is even easier. Given that C∞(Q,R)/R is vector space, the Lie
algebra can be identi�ed with the group itself. The exponential is exp(α) = α and
the Lie bracket is trivial because the group is Abelian:

[(α, 0),(β, 0)]
L
= (0, 0) . (5.61)

(iii) For a mixed combination of group elements, (0,φ) and (β, id), the conjugation is:

I(0,φ)(β, id) = (0 + β ○ φ−1 − 0,φ ○ id ○φ−1) = (β ○ φ−1, id) .

Accordingly, for a Lie algebra element (β, 0) we get:

Ad(0,φ)(β, 0) =
d
dt

∣
t=0
I(0,φ)(tβ, exp(0)) =

d
dt

∣
t=0
((tβ) ○ φ−1, id) = (β ○ φ−1, 0) .

Furthermore, if we represent Aby a curve t↦ αt as before, we obtain: Given A(β) = dβ(A), we see
that the choice of representative
for β doesn’t really matter.ad(0,A)(β, 0) = d

dt
∣
t=0
Ad(0,αt)(β, 0) =

d
dt

∣
t=0
(β ○ α−1t , 0) = (−A(β), 0) .

From this, we get the mixed Lie bracket:

[(0,A),(β, 0)]
L
= (−A(β), 0) . (5.62)

Finally, the general Lie bracket of C∞(Q,R)/R ⋊Di�(Q) is now easy to calculate
if we exploit linearity and antisymmetry of the bracket. The result is:

[(α,A),(β,B)]
L
= (B(α) − A(β),−[A,B]) . (5.63)

5.5.3 Antifundamental Vector Fields

Rightnow, we have the groupC∞(Q,R)/R⋊Di�(Q) that acts on phase space via the
group action (5.52). We know that the group action is e�ective, transitive and symplectic.
The next step is to calculate the antifundamental vector �elds and check whether they
are Hamiltonian.

Again, let us begin with the ‘Di�(Q) part’ of the group. To this end, consider a Lie
algebra element (a complete vector �eld) V ∈ Xcpl(Q) = LDi�(Q) and write V̂ for
the associated antifundamental vector �eld γ(V) ∈ X(M). Since the action of a di�eo-
morphism φ ∈ Di�(Q) on M is given by ρ(0,φ)(m) = T∗φ(m), according to equa-
tion (5.53), the vector �eld V̂ is:

V̂m = d
dt

∣
t=0
ρ(0,exp(−tA))(m) = d

dt
∣
t=0
T∗(exp(−tA))(m) = d

dt
∣
t=0
T∗(exp(tA))(m) ,

pointwise, for each m ∈ M = T∗Q.
Concerning the symplectic 2-form ω of the cotangent bundle T∗Q, we know from

section 4.4 that it ful�ls:

ω(Y,Z) = −dθ(Y,Z) = Z(θ(Y)) − Y(θ(Z)) + θ([Y,Z]) ,

for all Y,Z ∈ X(T∗Q), where θ is the Liouville 1-form. The Lie derivative of θ along Y,
on the other hand, is:

LYθ(Z) = LY(θ(Z)) − θ(LYZ) = Y(θ(Z)) − θ([Y,Z]) .
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Combining these two equations, we obtain:

V̂♭(Z) = ω(V̂ ,Z) = Z(θ(V̂)) −LV̂θ(Z) = Z(θ(V̂)) = d(θ(V̂))(Z) , (5.64)

where the symplectic vector �eld V̂ preserves the symplectic 1-form, and henceLV̂θ = 0.
Accordingly, the antifundamental vector �eld V̂ is a Hamiltonian vector �eld:

γ(V) = V̂ = Xθ(V̂) . (5.65)

While this proves that the ‘Di�(Q) part’ of the group action is Hamiltonian, it would
be nice if we had an explicit expression for the function θ(V̂) in terms of the original
Lie algebra element V. To this end, remember the de�nition of the Liouville form from
equation (4.24):

θ(V̂)m = m(π∗V̂)π(m) ,

where π∗V̂ is now given by:

(π∗V̂)(f) = V̂(f ○ π) = d
dt

∣
t=0
f ○ π ○ T∗ exp(tV) .

Lemma 4.5.2 states that the cotangent lift T∗φ of a di�eomorphism φ is a vector
bundle isomorphism covering φ−1. The following is hence a commutative diagram:

T∗Q T∗Q

Q Q

T∗φ

π π

φ ,

or, in other words, π ○ T∗φ(m) = φ−1 ○ π(m) for all m ∈ T∗Q. Applied to the above
expression for π∗V̂, this yields:

(π∗V̂)(f) = d
dt

∣
t=0
f ○ π ○ T∗ exp(tV) = d

dt
∣
t=0
f ○ exp(−tV) ○ π .

Since exp(−tV) is the �ow of the vector �eld −V, we get π∗V̂m = −Vπ(m). An explicit
expression for the function θ(V̂) ∈ C∞(M,R) that yields the Hamiltonian vector �eld
V̂ in equation (5.65) is hence:

θ(V̂)(m) = −m(Vπ(m)) . (5.66)

For the ‘function part’ of the group we explained that the Lie algebra is isomorphic to,
and thus can be identi�ed with the group C∞(Q,R)/R itself. For a Lie algebra element
α the exponential is hence exp(α) = α. According to equation (5.53), the action of α on
M is given by ρ(α,id)(m) = m − (dα)π(m) for all m ∈ M. The antifundamental vector
�eld Â ∶= γ(α) ∈ X(M) is therefore:

Âm = d
dt

∣
t=0
ρ(exp(−tα),id)(m) = d

dt
∣
t=0
(m + t(dα)π(m)) . (5.67)

Actually, we already know this vector �eld to be Hamiltonian. We mentioned the
relation between fundamental vector �elds that arise from �bre translations and vertical
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lifts in section 4.5 (speci�cally remark 4.5.9). Since our group action has an additional
minus sign, however, it is now the antifundamental vector �eld Â that is equal to the
vertical lift Vdα. Furthermore, part (iii) of lemma 4.5.8 states that the vertical lift Vdα is
Hamiltonian, and equation (4.41) yields the explicit expression: The Hamiltonian vector �eld

does not depend on the repres-
entative chosen for α because
the de�nition Xα○π = d(α ○ π)♯
contains an exterior derivative.

γ(α) = Â= Vdα = −Xπ∗α = −Xα○π . (5.68)

Since all the antifundamental vector �elds so turned out to be Hamiltonian, the full
group action (5.52) of C∞(Q,R)/R⋊Di�(Q) is a Hamiltonian action. Summing up, the
groupC∞(Q,R)/R⋊Di�(Q) with group action ρ hence possesses all the properties of
a Geometric Group for the cotangent bundle T∗Q. The only di�culty is that it is in�nite
dimensional and hence would generate a set of in�nitely many fundamental observables.
Instead, a �nite-dimensional subgroup whose action is still transitive will thus serve as
the Geometric Group G in the quantization procedure. Such a subgroup will in general
be a semidirect product of the form G = W ⋊ G ⊆ C∞(Q,R)/R ⋊ Di�(Q) for some
group G ⊆ Di�(Q) and some vector space W ⊆ C∞(Q,R)/R.

5.5.4 The Mapping P and the Obstruction Cocycle

It is possible to make some general statements about the obstruction cocycle in this
setting. Again, we will look at the two parts of the group independently.

For an element V in the Lie algebra LDi�(Q) of the ‘Di�(Q) part’ of the group,
the restriction of the mapping P that satis�es γ = j○P is determined by equations (5.65)
and (5.66) as:

PD(V)(m) ∶= P∣
LDiff(Q)

(V)(m) ∶= −θ(V̂)(m) = m(Vπ(m)) . (5.69)

We will see that the corresponding obstruction cocycle vanishes. In fact, we will show
that PD is a Lie algebra morphism. For V ,W ∈ LDi�(Q) we have:

{PD(V),PD(W)} = {θ(V̂),θ(Ŵ)} = ω(Xθ(V̂),Xθ(Ŵ)
) = ω(V̂ ,Ŵ) ,

where we used equation (5.65) in the last step. Due to equation (5.64) this evaluates to:

ω(V̂ ,Ŵ) = Ŵ(θ(V̂)) = LŴ(θ(V̂)) = LŴθ(V̂) + θ(LŴV̂) = θ([Ŵ, V̂]) .

Continuing, the commutator of Ŵ and V̂ expressed in terms of W and V is:

[Ŵ, V̂] (f) = LŴV̂(f) = d
dt

∣
t=0
(ΦŴ#

t V̂)(f) = d
dt

∣
t=0
ΦŴ∗
t ○ V̂ ○ΦŴ

t∗ f

= d
dt

∣
t=0
V̂(f ○ΦŴ

−t) ○ΦŴ
t = d

dt
∣
t=0

d
ds

∣
s=0
f ○ΦŴ

−t ○ΦV̂
s ○ΦŴ

t

= d
dt

∣
t=0

d
ds

∣
s=0
f ○ΦW∗

−t ○ΦV∗
s ○ΦW∗

t = d
dt

∣
t=0

d
ds

∣
s=0
f ○ (ΦW

t ○ΦV
s ○ΦW

−t)∗

= df ○ ( d
dt

∣
t=0

d
ds

∣
s=0
ΦW
t ○ΦV

s ○ΦW
−t)

+

= df ○ ([V ,W]+)

= [V ,W]+ (f) = − [V ,W]+L (f) = [W,V]+L (f) ,
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where we used the notation (A)+ = Â for the lifted vector �eld corresponding to A, and
where ΦX

t is the �ow of the vector �eld X. The �nal result for the Poisson bracket hence
becomes:

{PD(V),PD(W)} = θ([Ŵ, V̂]) = θ([W,V]+L) = P([V ,W]L) . (5.70)

Accordingly, the mapping PD is a Lie algebra morphism and the obstruction cocycle for
the ‘Di�(Q) part’ of the group vanishes.

The ‘function part’ of the group taken individually is unproblematic as well. Never-
theless, there is a catch when we try to de�ne the mapping P. In fact, for a Lie algebra
element α ∈ L(C∞(Q,R)/R) ≅ C∞(Q,R)/R equation (5.68) suggests that we should
de�ne the corresponding restriction of P by:

PC(α) ∶= P∣L(C∞(Q,R)/R)
(α) ?∶= α ○ π .

This mapping, however, is ill-de�ned. The Lie algebra element α is an equivalence class
and the value PC(α) clearly depends on the actual representative chosen for α. The only
solution to �x this problem is hence to somehow select a speci�c representative ᾱ ∈ α for
each Lie algebra element α and de�ne PC by:

PC(α) ∶= ᾱ ○ π . (5.71)

Using this de�nition we can calculate the Poisson bracket. For equivalence classes
α,β ∈ L(C∞(Q,R)/R) pick some representatives ᾱ ∈ α and β̄ ∈ β, then:

{PC(α),PC(β)} = ω(XPC(α),XPC(β))
= ω(Xᾱ○π,Xβ̄○π) = ω(Â, B̂) = −LÂθ(B̂) = 0 ,

where we used the notation Â ∶= γ(α) and B̂ ∶= γ(β) for the antifundamental vector
�elds as before. Since the commutator ofL(C∞(Q,R)/R) is trivial, i. e. [α,β] = 0 for all
α,β, the mapping PC is a Lie algebra morphism so that the obstruction cocycle vanishes
for the ‘function part’ of the group as well.

A problem, however, arises from mixing both parts. For m ∈ M we get the Poisson
bracket:

{PD(V),PC(α)} (m) = ω(V̂ , Â)(m) = d(ᾱ ○ π)(V̂)(m)
= V̂m(ᾱ ○ π) = (π∗V̂m)(ᾱ) = −Vπ(m)(ᾱ) = −V(ᾱ) ○ π(m) .

On the other hand, equation (5.62) yields the commutator of V and α as:

[V ,α] = [(0,V),(α, 0)] = (−V(α), 0) .

Since the result is in the ‘function part’ of the Lie algebra, we obtain:

P([V ,α]) = PC(−V(α)) = −V(α) ○ π .

Consequently, the obstruction cocycle in this case is:

z((0,V),(α, 0)) = {P(0,V),P(α, 0)} − P([(0,V),(α, 0)])
= −(V(ᾱ) −V(α)) ○ π . (5.72)
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The obstruction cocycle hence vanishes if and only if the representativeV(α) for the
equivalence class V(α) is equal to the function V(ᾱ). Nevertheless, the representative
chosen for V(α) must match the choice made for some β ∈ C∞(Q,R)/R. The choice
forV(β) must match the speci�c representative chosen for some γ, and so on. Although
this might be possible for some speci�c subgroups of Di�(Q) andC∞(Q,R)/R, we are
almost guaranteed to run into problems in the general case.



138 Chapter 5. Canonical Group Quantization



6 Quantization on the Half-Line

Whatever I have up till now accepted as most true I have
acquired either from the senses or through the senses.
But from time to time I have found that the senses
deceive, and it is prudent never to trust completely those
who have deceived us even once.

René Descartes, Meditations on First Philosophy

In this chapter we will study in depth the question how to quantize a particle that
is restricted to a half-line. Obviously, the con�guration space of such a particle is given
by R+ and the corresponding classical phase space must clearly be T∗R+. Quantization
on T∗R+, however, has already been discussed by Isham in [Ish83], and it would seem
pointless to dedicate an entire chapter to a solved problem.

Anyway, the toy model of a particle moving on a half-line provides us with the rare
opportunity to verify the result and we will see that the quantum theory constructed in
[Ish83] o�ers only an incomplete description of this problem. As guiding principle, we
expect a sensible quantum theory for the half-line model to be in some sense equivalent
to the quantum theory obtained if the particle gets restricted to R+ ⊂ R by a ‘hard wall’
potential, but this relation is left completely in the dark. In fact, the representation of the
quantum operators in [Ish83] requires a scale-invariant measure on R+ which suggests
a rather di�erent interpretation. We will present Isham’s quantization attempt based on
T∗R+ in section 6.1 and discuss issues that arise in section 6.2. In particular, we will
establish the relation to the reference model obtained by restriction to R+.

Once the connection to the reference model is made clear, section 6.3 will consider
the same problem from its quantum-mechanical perspective and we will see that the
quantum theory obtained by quantization starting with T∗R+ is insu�cient to explain
the re�ection at the end of the half-line. Isham’s main intention in [Ish83] is quantum
gravity for which R+ can be seen as special case of GL+(n,R), so this shortcoming did
probably not occur to him. Still, in [Ish83, section 2.2.5] he introduced the half-line by
means of a potential and the contact interaction with the ‘hard wall’ is quite interesting
in its own right [FCT02; GK04; BW10]. Surprisingly, there exists a self-adjoint quantum
operator p̂2 over R+, yet the classical observable p2 on T∗R+ cannot be quantized.

We will show that this is not a shortcoming of the quantization technique. Instead, we
will construct a di�erent phase space that implements the classical contact interaction
topologically: the orbifold R2/Z2. Section 6.4 discusses quantization on R2/Z2 using
covering groups of SO↑(1, 2). In particular, we will identify a speci�c Canonical Group
that reproduces the desired self-adjoint operator p̂2 on R+.

6.1 Isham’s Quantization on the Phase Space T∗R+

We begin with an account of Isham’s quantization on the phase space T∗R+ – the
cotangent bundle over the con�guration space Q = R+ of strictly positive real numbers.
Isham’s original treatment can be found in [Ish83, section 4.5] and the calculations turn
out to be pretty straightforward from a mathematical point of view. In particular, there
is no need to de�ne the Canonical Group via a central extension. The present section
primarily provides a walk-through of these calculations and shows how the quantization
procedure can be applied to formally construct a quantum theory on R+. We will also
intersperse some remarks where problems arise but leave the discussion for later.



140 Chapter 6. Quantization on the Half-Line

6.1.1 Step 1: Geometric Group and Group Action

As for conventional quantum mechanics, the �rst step is to �nd an appropriate
Geometric Group G. Now following the results of section 5.5, though, we will not try to
determine the whole group with its action directly. Instead, we begin with a Lie groupG
that acts on the con�guration space Q = R+ in a ‘natural’ way and then use the cotangent
lift to obtain a group action on M = T∗Q. Afterwards, this action will be augmented by
�bre translations to obtain a suitable Geometric Group G.

To start with, let us have a closer look at the classical phase space. Since the �bres of
the cotangent bundle M = T∗R+ in this case have to be 1-dimensional vector spaces,M
is isomorphic to M = T∗R+ ≅ R+ ×R. The isomorphism is a global Darboux chart:We write q for points in Q, but

we will see that qmay require a
physical interpretation di�erent
from a spatial position!

(q, p) ∶ M → R2 , m↦ (q(m), p(m)) , (6.1)

in which the symplectic form ω takes on the usual form:

ω = dq∧ dp .
Now for the group action. First, remember that a smooth group action ρ of a Lie

group G on the con�guration space Q sends group elements д ∈ G to di�eomorphisms
ρд ∈ Di�(Q). For this reason we cannot simply use translations q ↦ q + u, like we did
for conventional quantum mechanics. For large enough negative values of u ∈ R the
translations are no longer in Di�(R+). On the other hand, we cannot restrict ourselves
to only positive values of u because R+ is not a group under addition.

Instead, Isham points out that the multiplicative group G = (R+, ⋅ ) acts naturallyMind the qualitative di�erence:
In opposition to the neutral
element e = 1 of G = R+

when seen as a group, there
is no preferred point in the
con�guration space Q = R+.

on the con�guration space Q = R+, via:

ρ ∶ G ×Q → Q , (λ,q) ↦ ρλ(q) ∶= λq . (6.2)

Remark 6.1.1 Although this group action is a natural choice from a mathematical point
of view, from a physical perspective it looks strange to multiply position coordinates
with numbers. We will discuss this point in the next section.

Given the group action ρ, we apply the machinery from the last section and see what
happens. The cotangent lift ρ↑ of the group action ρ is given by:

ρ↑λ = T∗ρλ = T
∗ρλ−1 .

In terms of the Darboux chart from above this is:This explicit expression shows
nicely how the scaling by λ in
the q-direction combined with
the inverse scaling by λ−1 in
the p-direction preserves phase
space volumes.

ρ↑λ(q, p) = (λq, λ−1p) . (6.3)

A �bre translation τ looks identical to the one we used in the example of conventional
quantum mechanics:

τv(q, p) = (q, p− v) , v ∈ R .
The group W behind this action is the Abelian group (R,+).

Both groups can be combined via the semidirect product to obtain the Geometric
Group G = W ⋊G = R ⋊R+, which acts on phase space M = T∗R+ by the (according
to its construction) Hamiltonian, transitive and e�ective action:The group action on phase

space is shown in �gure 6.1 on
the next page. ρ ∶ G ×M → M , ρ(v,λ)(q, p) ∶= (λq, λ−1p− v) . (6.4)

The multiplication law of G, which agrees with this group action, is:

(v2, λ2) ∗ (v1, λ1) = (v2 + λ−12 v1, λ2λ1) , (6.5)

for all (v1, λ1),(v2, λ2) ∈ G. The neutral element of the Geometric Group G is given by
e = (0, 1), and the inverse of a group element (v, λ) is (v, λ)−1 = (−λv, λ−1).
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q

p T∗qR+ T∗λqR
+

(q, p)

(λq, λ−1p)

(λq, λ−1p− v)

ρ(0,λ)

ρ(v,1)

Figure 6.1 Group action of the Geometric Group G = R ⋊R+ on classical phase
space M = T∗R+. Note how symplectic volume elements are preserved.

6.1.2 Step 2: Lie Algebra and Antifundamental Vector Fields

The next step is to calculate the Lie algebra LG associated to G, and to determine
the antifundamental vector �eld mapping γ. The vector space underlying LG is:

LG = TeG = T(0,1)(R ×R+) ≅ T0R⊕ T1R+ ≅ R ×R = R2 .

For the Lie bracket, we start with the conjugation Iд. Explicitly, we have:

I(v,λ)(w, µ) = (v, λ) ∗ (w, µ) ∗ (−λv, λ−1) = (v + λ−1w − µ−1v, µ) ,

for all (v, λ),(w, µ) ∈ G. Next, for Lie algebra elements A = (A1,A2) and B = (B1,B2)
in LG, represented by the curves α = (αv,αλ) and β = (βv,βλ), respectively, we get:

Ad(v,λ)(B) = TeI(v,λ)(B) =
d
dt

∣
t=0
I(v,λ)β(t)

= d
dt

∣
t=0
(v + λ−1βv(t) − βλ(t)−1v,βλ(t)) = (λ−1B1 + B2v,B2) .

Accordingly:

ad(A)(B) = TeAd(A)(B) =
d
dt

∣
t=0
Adα(t)(B)

= d
dt

∣
t=0
(αλ(t)−1B1 + B2αv(t),B2) = (−A2B1 + B2A1, 0) .

If we slightly change the notation, the Lie bracket [ ⋅ , ⋅ ]L = ad( ⋅ )( ⋅ ) hence becomes:

[(b1, r1),(b2, r2)]L = (r2b1 − r1b2, 0) . (6.6)

This Lie bracket is, in fact, a special case of the general formula (5.63). An important
point about this result is that the Lie bracket of LG doesn’t vanish this time – in contrast
to how it was for conventional quantum mechanics.
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In addition to the Lie algebra we need to �nd the corresponding antifundamental
vector �eld mapping γ. In order to achieve this, our next step is to determine the expo-
nential map exp ∶ LG → G. Given a Lie algebra element A = [α] = (b, r) ∈ TeG, the left
invariant vector �eld LA ∈ XL(G) generated by A, evaluated at the point (v, λ) ∈ G is:

LA(v,λ) = Teℓ(v,λ)(A) =
d
dt

∣
t=0
ℓ(v,λ)α(t)

= d
dt

∣
t=0
(v + λ−1αv(t), λαλ(t)) = (λ−1b, λr) .

A short calculation yields the integral curve γA of the left invariant vector �eld LA as:

γA(t) =
⎧⎪⎪⎨⎪⎪⎩

((b/r)(1 − e−rt), ert) for r ≠ 0 ,
(bt, 1) for r = 0 .

Accordingly, the exponential map is:

exp(b, r) =
⎧⎪⎪⎨⎪⎪⎩

((b/r)(1 − e−r), er) for r ≠ 0 ,
(b, 1) for r = 0 .

(6.7)

Two important special cases are exp(b, 0) = (b, 1) and exp(0, r) = (0, er).It is interesting to look at those
special cases in the light of the
individual exponential maps of
the two factors of G = R ⋊R+.

Finally, the antifundamental vector �elds are easy to calculate. We get:

γ(b, 0)(q,p) =
d
dt

∣
t=0
ρexp(−t(b,0))(q, p) =

d
dt

∣
t=0
ρ(−tb,1)(q, p) = (0,b) = b∂p∣(q,p) ,

and:

γ(0, r)(q,p) =
d
dt

∣
t=0
ρexp(−t(0,r))(q, p) =

d
dt

∣
t=0
ρ(0,e−r)(q, p) = (−rq, rp)

= −rq∂q∣(q,p) + rp∂p∣(q,p) .

Combining these two intermediate results we end up with the antifundamental vector
�eld mapping γ according to:

γ(b, r) = −rq∂q + (b + rp)∂p , (6.8)

for all (b, r) ∈ LG.

6.1.3 Step 3: Construction of the Canonical Group

Obtaining theCanonical Group C is now just a matter of following the recipe given
in �gure 5.2. As before, the �rst step is to �nd a linear mapping P that satis�es j○ P = γ.
Since d and ♯ are both ‘local’ operations, the mapping j looks identical to the one in
equation (5.34):

j(f) = −Xf = −df♯ = −(∂pf)∂q + (∂q f)∂p , (6.9)

only the function f now lives in C∞(T∗R+,R) instead of in C∞(T∗R,R). Equating
the corresponding coe�cients between equations (6.8) and (6.9) leaves us with:

−rq∂q + (b + rp)∂p != −(∂pf)∂q + (∂q f)∂p ⇔ rq = ∂pf , (b + rp) = ∂q f .
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ρ(v,1)

level surfaces of q
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p
level surfaces of qp

ρ(0,λ)
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Figure 6.2 Remark 4.2.3 can be used to gain an intuitive understanding how the
group action of R ⋊R+ on the phase space T∗R+ is related to the fundamental
observables. In fact, the one-parameter subgroups of R⋊R+ which generate the
observables q and qpare realised as transformations along the level surfaces of q
and qp, respectively.

Up to some constant, this set of partial di�erential equations is solved by f = bq + rqp.
Hence we will de�ne the searched-for mapping P as:

P ∶ LG → C∞(M,R) , (b, r) ↦ P((b, r)) ∶= bq+ rqp . (6.10)

To check whether P is a Lie algebra morphism or not, we calculate the obstruction
cocycle z. For Lie algebra elements A1 = (b1, r1) and A2 = (b2, r2) in LG, the Poisson
bracket of their images under P yields:

{P(A1),P(A2)} = ω(γ(A1),γ(A2)) = dq∧ dp(γ(b1, r1),γ(b2, r2))
= −r1q(b2 + r2p) + r2q(b1 + r1p)
= (r2b1 − r1b2)q .

On the other hand, the image of the commutator is:

P([A1,A2]) = P([(b1, r1),(b2, r2)]) = P((r2b1 − r1b2, 0))
= (r2b1 − r1b2)q .

The obstruction cocycle z(A1,A2) hence vanishes for all A1,A2 ∈ LG so that the
(a priori only known to be linear) mapping P turns out to be a Lie algebra morphism.
According to the discussion in section 5.3 we can under these circumstances choose LC
equal to LG, which gives C = G. The algebra of fundamental observables can be de�ned
as Obs(M) ∶= imP and is generated by the functions q and qp (see also �gure 6.2).

6.1.4 Step 4: Representations and Commutation Relations

In order to study the unitary representations of the Canonical Group C = R ⋊R+,
assume thatU′ ∶ C → U(H) is a strongly continuous, unitary, irreducible representation
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ρ(0,λ)

ρ(λ−1v,1)

ρ(0,λ)

ρ(v,1)

Figure 6.3 Concerning the commutation relation (6.12) ofU(λ) and V(b). The
transformation ρ(0,λ) scales p-coordinates by λ−1, so that the transformations
carried out in the opposite order require a di�erent �bre translation, namely by
λ−1v. The transformation ρ(0,λ), however, stays the same for the opposite order.
A consequence of this is the unitary equivalenceV(b) ∼ V(λ−1b) for any choice
of λ ∈ R+ (see equation (6.20)).

of C on some complex separable Hilbert space H. Isham in [Ish83, section 4.5.2] then
goes on and de�nes 1-parameter subgroups of unitary operators by:The calculation is possible and

yields the same end result if we
use Ũ(r) ∶= U′

(exp(0, r))
instead ofU(λ). The choice
ofU(λ) is merely a matter of
convenience.

U(λ) ∶= U′((0, λ)) , V(b) ∶= U′(exp(b, 0)) ,

for λ ∈ R+ and b ∈ R. The commutation relations for these operators are:

U(λ1)U(λ2) = U′((0, λ1) ∗ (0, λ2)) = U(λ1λ2) ,
V(b1)V(b2) = U′((b1, 1) ∗ (b2, 1)) = U′((b1 + b2, 1)) = V(b1 + b2) ,

as well as:

U(λ)V(b) = U′((0, λ) ∗ (b, 1)) = U′((λ−1b, λ))
= U′((λ−1b, 1) ∗ (0, λ)) = V(λ−1b)U(λ) .

In summary (see also �gure 6.3):

U(λ1)U(λ2) = U(λ1λ2) , V(b1)V(b2) = V(b1 + b2) , (6.11)
U(λ)V(b) = V(λ−1b)U(λ) . (6.12)

Again, Stone’s theorem guarantees that there exist self-adjoint generators q̂ and π̂ of
the one-parameter unitary groups U(λ) and V(b), such that:

e−irπ̂ = U(er) = U′(exp(0, r)) , e−ibq̂ = V(b) = U′(exp(b, 0)) , (6.13)

If we also have an explicit representation, the quantization map will be determined by:

Q ∶ bq+ rqp↦ bq̂+ rπ̂ . (6.14)

The quantum operator π̂ hence corresponds to the classical observable qp, the operator
q̂ to the observable q. Given the quantization map, the commutation relations of q̂ and
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π̂ (valid on a dense subset of wave functions) follow from the classical Poisson brackets
of q and qpas:

[q̂, q̂] = 0 , [π̂, π̂] = 0 , [q̂, π̂] = iq̂ . (6.15)

Remark 6.1.2 (Constant functions) In contrast to conventional quantum mechanics the
commutation relations (6.15) do not include constant functions as an essential part. As
mentioned earlier, this is possible because the observables q and qpare not canonically
conjugate to each other.

What remains is to �nd a concrete representation for the quantum operators. Isham
remarks that a representation in this case can be constructed using the analogy to the
Schrödinger representation of conventional quantum mechanics.

Recall that in section 5.4, the example of conventional quantum mechanics in one
dimension, wave functions were elements of the Hilbert space L2(R, dq). The groups
of unitary transformations U(a) and V(b) from conventional quantum mechanics act
on these wave functions according to:

(U(a)ψ)(q) = ψ(q− µa) , (V(b)ψ)(q) = e−ibqψ(q) .

The main di�erence of the current example is that the group R+ is not additive but
multiplicative. Isham hence deems it reasonable to de�ne the following realisation:

(U(λ)ψ)(q) ∶= ψ(λ−1q) , (V(b)ψ)(q) ∶= e−ibqψ(q) , (6.16)

where the wave functions ψ are square-integrable, complex-valued functions over the
con�guration space Q = R+.

However, Isham remarks in [Ish83, section 4.5.2] that the operator U(λ) given in
equation (6.16) isn’t unitary if the inner product ofH is de�ned in the usual way via the
Lebesgue measure dq on R+. He explains that in order to solve this problem we have to
introduce a di�erent, scale-invariant, measure dq/q on R+ and de�ne the inner product Mathematically, the measure

dq/q is a left and right invariant
Radon measure on (R+, ⋅ ) (see
for example [Els11, chapter VIII,
example 3.10]).

of wave functions φ,ψ by:

⟨ψ∣φ⟩ ∶= ∫
R+
ψ∗(q)φ(q) dq

q
.

The operatorsU(λ) andV(b) are both unitary if the Hilbert spaceH uses this new inner
product. According to Isham, the appropriate Hilbert space for the representations of the
Canonical Group C = R ⋊R+ is hence:

H = L2(R+, dq/q) . (6.17)

The generators q̂ and π̂ are given explicitly on this Hilbert space by:

(q̂ψ)(q) = qψ(q) , (π̂ψ)(q) = −iq(∂qψ)(q) . (6.18)

Remark 6.1.3 In contrast to p̂ = −i∂q, the operator π̂ in equation (6.18), de�ned on a
suitable domain, is a self-adjoint operator on L2(R+, dq/q). Intuitively, the additional Note that π̂ as in (6.18) is not

even symmetric if R+ uses the
Lebesgue measure dq.

factor of q in π̂ = −iq∂q works in such a way that the transformations generated by π̂
‘slow down’ the nearer one gets to the origin q = 0. It is therefore no longer possible to
‘shift wave functions past the origin’, which is what prevents the momentum operator p̂
from being self-adjoint on R+ (see remark 1.2.4).
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Remark 6.1.4 (Concerning the unusual measure) A problem with this result lies in the
necessity of the unusual measure dq/q on R+. The operator q̂ given in equation (6.18) is
diagonal and associated to the classical position observable which suggests that we are
in the position space representation. On the other hand, it if we want to interpret the
result as particle on a half-line it makes sense to calculate distances between di�erent
spatial positions and calculating distances requires a metric. Furthermore, when R+ is
really the position space it should be possible to view R+ as submanifold of the full
line R and the metric on R+ should hence be the usual Euclidean metric. Nevertheless,
the measure dq/q is incompatible with the Euclidean metric. This certainly raises some
doubts regarding the interpretation of R+ as position space.

Postponing the issues with the measure dq/q until the next section, we need
to �nd out whether there are additional, unitarily inequivalent representations of the
Canonical Group C. For this, observe that the commutation relations (6.15) of q̂ and π̂
still hold if we replace q̂ by αq̂, for some arbitrary value of α ∈ R. Hence there is actually
a whole family of unitary representations:

(U(λ)ψ)(q) ∶= ψ(λ−1q) , (V(b)ψ)(q) ∶= e−iαbqψ(q) , (6.19)

for ψ ∈ H = L2(R+, dq/q), parameterised by α ∈ R.
Nevertheless, not all the representations are inequivalent. Due to the commutation

relation (6.12) we have (see also �gure 6.3):

U−1(λ)V(b)U(λ) = V(λb) ∀λ ∈ R+ . (6.20)

Thus we see that the unitary operator V(b) in equation (6.19) is unitarily equivalent to
V′(b) = e−iαλbq for an arbitrary value of λ ∈ R+. Accordingly, the representations fall
into three classes:

· representations with α > 0,
· representations with α < 0,
· the representation with α = 0.

Representations within the same class are unitarily equivalent. If we look at the spectrum
of q̂ = αq, on the other hand, which is equal to R+, R− or {0}, respectively, it becomes
clear that unitary transformations between di�erent classes cannot exist.

Remark 6.1.5 (Physical relevance of α) In the case of conventional quantum mechanics
there appeared a parameter µ ∈ R during the study of the representations, at the end
of section 5.4. There we argued that the choice of µ in�uences the physical predictions
and hence must be a measurable physical quantity. Consequently, we explained that µ
introduces a preferred scale into the theory, which we later identi�ed with ħ.

The parameter α ∈ R in this example is of a di�erent quality. Due to the unitary
equivalence (6.20) it matters only whether α is positive, negative or zero, but the actual
magnitude of α is physically irrelevant! A value of α = 1 gives exactly the same physical
predictions as, say, α = 42. In contrast to conventional quantum mechanics, there is
therefore no preferred scale in the quantum theory that we obtained via the Geometric
Group G = R ⋊R+ acting on T∗R+.

This approach isn’t in general applicable to construct all possible representations of a
given group. Nevertheless, Isham assures that no additional irreducible representations
exist [Ish83, section 4.5.2]:
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‘A priori, there might be many other irreducible representations, but when
Mackey’s techniques are applied to the group [R ⋊R+] they show that the
three we have just found—[…]—are the entire set.’

Remark 6.1.6 The supposed nonexistence of other irreducible representations raises an-
other question. For a particle on a half-line we expect it possible to obtain the quantum
theory in an alternative manner as some kind of ‘restriction’ of the well-known quantum
theory for a particle on the full line. In particular, while we expect position space wave
functions to be functions overR+, it should be possible to inherit the usual inner product
from conventional quantum mechanics over R.

Isham’s statement, however, suggests that there is no way to get rid of the unusual
measure dq/q on R+, which would mean that it is impossible to obtain the quantum
theory for a particle on a half-line as a restriction. We will see in the following section
that this isn’t true. We will actually construct a representation for the operators q̂ and π̂
via a restriction so that the inner product is the usual one, which yields a representation
of R ⋊R+ on L2(R+, dq).

6.1.5 Physical Units

It is again possible to replace the dimensionless operators q̂ and π̂ by some new
operators q̂ϕ and π̂ϕ carrying physical dimension. Like at the end of section 5.4, we can
choose base units q0 and π0 and de�ne:

q̂ϕ ∶= q0q̂ , π̂ϕ ∶= π0π̂ . (6.21)

The canonical commutation relations of these operators are:

[q̂ϕ, q̂ϕ] = 0 , [π̂ϕ, π̂ϕ] = 0 , [q̂ϕ, π̂ϕ] = iπ0q̂ϕ . (6.22)

What is strange about these commutation relations is that the base unit π0 appears
explicitly on the right-hand side of the commutator. In contrast to representations of the
Heisenberg group, there is this time no parameter like µ that can be used to ‘absorb’ the
base unit π0. The unit q0, on the other hand, doesn’t appear at all in equation (6.22) and It is interesting to consider the

current situation in the light of
remark 5.4.1.

can be chosen at will. We can replace the operator q̂ϕ by λq̂ϕ for any λ ∈ R+ without
measurable e�ect since this amounts to choosing a unitarily equivalent representation.
Consequently, the magnitude of q̂ϕ can not be measured using the operators we have!

6.1.6 A Canonical Transformation

Isham presents an argument in [Ish83, section 4.5.4] with intention to show that π0
in equation (6.22) must be chosen equal to ħ. His argument is based on the existence of
a canonical transformation between the phase spaces T∗R and T∗R+ – essentially the The existence of a global canon-

ical transformation in this case
is a coincidence. In general, a
phase space M is only locally
symplectomorphic to a subset
of T∗R2n (Darboux’s theorem).

cotangent lift of the exponential map exp ∶ R → R+, only that we have to take care of the
dimensions if we want to map physical operators. Accordingly, if we temporarily write ˆ̃q
for the operator q̂ϕ on R+ and q̂ for the operator q̂ϕ on R from section 5.4 we have the
following di�eomorphism between the con�guration spaces:

Φ ∶ R → R+ , Φ(q) ∶= q̃0eq/q0 , (6.23)

where q̃0 is the base unit of ˆ̃q in R+ and q0 the base unit of q̂ in R. The inverse is:

Φ−1 ∶ R+ → R , Φ−1(q̃) = q0 ln(q̃/q̃0) .
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The cotangent lift yields symplectomorphisms between the cotangent bundles:

T∗Φ ∶ T∗R+ → T∗R , (q̃, p̃) ↦ (q0 ln(q̃/q̃0), q̃p̃/q0) ,
T∗Φ−1 ∶ T∗R → T∗R+, (q, p) ↦ (q̃0eq/q0 , e−q/q0q0p/q̃0) . (6.24)

This canonical transformation allows us to use the group action ρ ∶ G×T∗R → T∗R
of the Geometric Group G = (R2,+) from conventional quantum mechanics to induce
a group action ρ̃ ∶ G × T∗R+ → R+, acting on the phase space T∗R+, via:T∗R T∗R+

T∗R T∗R+

ρ(u,v) ρ̃(u,v)

T∗Φ

T∗Φ−1

⇒ ρ̃(u,v)(q̃, p̃) ∶= T∗Φ−1 ○ ρ(u,v) ○ T∗Φ(q̃, p̃) = (q̃eu/q0 , e−u/q0(p̃− q0v/q̃)) , (6.25)

for all (q̃, p̃) ∈ T∗R+ and all (u,v) ∈ G = (R2,+). This group action certainly isn’t
what one would call ‘natural’ from a mathematical point of view. Still, it is a transitive,
e�ective and Hamiltonian action on T∗R+, which is what we need for the quantization
procedure.

When applying the recipe, we can reuse most of the results from section 5.4. The
obstruction cocycle z doesn’t vanish and is no coboundary so that the Canonical Group
C, which then has to be a central extension of G, again turns out to be the Heisenberg
group. We obtain a Lie algebra morphism:

P̂ ∶ LC → C∞(M,R) , P̂(a,b, r) = a(q̃p̃/q0) + bq0 ln(q̃/q̃0) + r ,

and the quantization map can be de�ned as:

Q ∶ a(q̃p̃/q0) + bq0 ln(q̃/q̃0) + r↦ ap̂+ bq̂+ iħ1 , (6.26)

where q̂, p̂ and 1 satisfy the same commutation relations as in conventional quantum
mechanics, [q̂, p̂] = iħ1, but the operators are now de�ned onH(R+, dq/q).

Isham argues that the product q̃p̃ is a quantizable observable for both GeometricNote that Isham’s argument
is based on the mathematical
form of a single observable
alone. We consider this to be
problematic at best because
di�erent quantizations using
di�erent Geometric groups
might yield physically incom-
patible quantum theories so
that it doesn’t make sense to
compare the operators.

Groups, G = R2 as well as G = R ⋊ R+, and thus he demands that the corresponding
quantum operators should match. Comparing the quantization maps (6.26) and (6.14),
this means π̂ = q0 p̂and ˆ̃q = q̃0eq̂/q0 . Accordingly, he obtains:

[ ˆ̃q, π̂] = [q̃0eq̂/q0 ,q0 p̂] = q̃0eq̂/q0 iħ = iħ ˆ̃q .

If we go back to the notation from before, this result is equivalent to:

[q̂ϕ, π̂ϕ] = iħq̂ϕ , (6.27)

and hence Isham concludes that π0 must be equal to ħ.

Remark 6.1.7 This result seems rather surprising from a physical perspective. Contrary
to the way how physical units were introduced, Isham’s argument says that we cannot
choose a base unit for π̂ϕ but that the base unit π0 must be chosen equal to ħ.

On the other hand, the argument doesn’t �x the base unit for the operator q̂ϕ. The
value q0 can still be chosen at will because all the corresponding representations of the
Canonical Group R ⋊R+ are unitarily equivalent. From a physical point of view this is
not really what one would expect for a position coordinate of a particle.
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6.2 Physical Interpretation as Particle on a Half-Line?

After going through the calculations it is now time to think about the physical
interpretation of the result. Even though Isham’s prime motive is quantum gravity, he
repeatedly calls R+ the con�guration space of a particle moving on the positive real line
[Ish83, sections 2.2.5 and 4.5]. However, the scale-invariant measure dq/q which was
required for unitarity is not what we expect in this case. Speci�cally:

■ The measure dq/q con�icts with a Euclidean metric (remark 6.1.4),
■ The quantum theory cannot be obtained from the position space representation of

conventional quantum mechanics on a full line by restriction (remark 6.1.6).

As a result, it becomes questionable whether the resulting quantum theory can still be
interpreted as describing a particle on a half-line. We want to investigate whether this is
a problem of the quantization procedure or a fault of our expectations.

6.2.1 Physical Interpretation of Isham’s Result

The reason which leads Isham to call Q = R+ the con�guration space of a particle
moving on the positive real line – a half-line or semi-axis, conceptually – is obvious. If
we consider a particle moving on a full line, with con�guration space Q = R, we can
impose the constraint q > 0 which results in the submanifold R+ ⊂ R. Consequently,
the function q ∈ C∞(T∗R+,R) is a restriction of q ∈ C∞(T∗R,R) and it is reasonable
to attribute to the restricted function the same physical meaning as to the unrestricted
one: the position coordinate of a particle.

Nevertheless, the canonical transformation (6.24) between T∗R and T∗R+ from
above paints a di�erent picture. With regard to the canonical transformation, the base
space R+ is not a submanifold of R; instead, the phase spaces T∗R and T∗R+ are put on The exponential yields intrins-

ically positive numbers. The
positivity isn’t the result of a
constraint (see also section 1.4).

an equal footing – they are globally isomorphic symplectic manifolds. If we adopt this
view, the function q ∈ C∞(T∗R+,R), however, requires a di�erent physical interpreta-
tion. Due to equation (6.23) it is no longer q but (up to some constants) the logarithm of
q ∈ C∞(T∗R+,R) which represents the position coordinate of a particle. A particle on
a full line, not a half-line, though.

Now, the manifolds R+ and R are di�eomorphic and hence indistinguishable from a
mathematical point of view. From a physical point of view, however, a half-line is clearly
not the same as a full line. We expect a half-line to ‘end’ at some point (whatever that may
mean mathematically), whereas the full line ‘doesn’t end’; the full line should extend to
in�nity in both directions.

One possibility to implement a distinction also mathematically, as a property of the
con�guration space, arises when we view points in con�guration space as positions and
assume that distances between spatial positions have physical relevance. At least in the
present example this seems a reasonable and not overly restrictive assumption.

Mathematically, to calculate distances we need a metric. If we introduce a Euclidean A Euclidean metric on R seems
reasonable if R represents the
position of a particle on a line,
but the argument doesn’t really
depend on this speci�c choice.
A di�erent metric yields the
same conclusions.

metric on the whole line R, the two interpretations yield di�erent metrics on R+:

(i) WhenR+ is seen as submanifoldR+ ⊂ R, the spaceR+ inherits the Euclidean metric
dR(x, y) = ∥x − y∥ from R. The measure induced by the Euclidean metric is the
Lebesgue measure dq.

(ii) In contrast, the symplectomorphism T∗R+ ≅ T∗R arises from the di�eomorphism
exp ∶ R → R+. Since it can’t matter whether we calculate distances in terms of the
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original or in terms of transformed coordinates, this di�eomorphism must be an
isometry between the con�guration spaces. We hence get an induced metric dR+ on
R+ which satis�es:

dR(x, y) != dR+(exp(x), exp(y)) ,

for all x, y ∈ R. In terms of the Euclidean norm ∥ ⋅ ∥ on R, this is:

dR+(x̃, ỹ) = dR(ln(x̃), ln(ỹ)) = ∥ln(x̃) − ln(ỹ)∥ = ∥ln(x̃/ỹ)∥ , (6.28)

for all x̃, ỹ ∈ R+. In agreement with this, the measure on R+ becomes:

dq↦ d(ln q̃) = dq̃
q̃
. (6.29)

Remark 6.2.1 (Compatibility with the symplectic form) It is an interesting fact that the
same symplectic form on phase space is compatible with both measures on con�guration
space. The given symplectomorphism between T∗R and T∗R+ not only maps dq to
dq̃/q̃ but also transforms dp to q̃dp̃. Due to the multilinearity of di�erential forms with
respect to functions, we obtain:

dq∧ dp↦ (dq̃/q̃) ∧ (q̃dp̃) = dq̃∧ dp̃ ,

which is the same symplectic form that we get when R+ is obtained via the restriction.
The phase space provides enough freedom to absorb the di�erent measures on base

space in the ‘�bre part’ of the symplectic form, but we don’t necessarily have this free-
dom in the associated quantum theory. Wave functions are de�ned on only ‘one half ’
of the classical phase space. There is hence no guarantee that two classically equivalent
interpretations are still both compatible with the quantized theory.

When we now take another look at the action (6.4) of G = R ⋊R+ on T∗R+ we can
consider the transformations at the level of the con�guration space. Using the bundle
projection πQ of T∗R+ and an embedding of the con�guration space Q = R+ via the
zero section q↦ (q, 0), we obtain:

ρ↓ ∶ G ×Q → Q , ρ↓
(v,λ)(q) ∶= πQ(λq, λ

−10 − v) = λq .

Depending on the metric of R+, the ‘meaning’ of these transformations is di�erent:

(i) When the con�guration space carries the Euclidean metric dR restricted to R+, the
distance between points x, y ∈ R+ is scaled by such a transformation:

dR(x, y) ↦ dR(λx, λy) = ∥λx − λy∥ = λ∥x − y∥ = λdR(x, y) .

This is what we expect if q is a spatial position.

(ii) On the other hand, using the metric dR+ induced on R+ via the exponential, we get
a di�erent result:

dR+(x, y) ↦ dR+(λx, λy) = ∥ln(λx/λy)∥ = dR+(x, y) .

Distances de�ned via dR+ are preserved under this transformation. Accordingly, the
transformation should in this case really be understood as a translation in unusual
coordinates, not as some ‘scaling’.
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Given these two possibilities, the representation (6.16) of R ⋊ R+ seems to belong
only to the second interpretation, not the �rst (this wouldn’t be a problem if we were
not in the position space representation, but the realisation of q̂ in equation (6.18) as a
diagonal operator suggests that we are). In other words:

We have strong indications that the representation of the Canonical Group We will see in a moment that
this is really the case.R ⋊ R+ in equation (6.16) is not the correct position space representation

for a particle on a half-line. Instead, the result seems to describe a particle
on the whole line – it is essentially conventional quantum mechanics over
R with an unusual choice of coordinates.

These doubts are not meant to be dismissed carelessly. Apart from conventional
quantum mechanics over Rn it is di�cult to �nd simple classical systems which have
a quantum analogue that can be realised in practice and where the relation between
classical and quantized system is easy to understand (recall the discussion of non-trivial
phase spaces and boundary conditions in section 1.4). We can hope that the quantization
procedure is justi�ed, but, given the non-intuitive nature of quantum mechanics, results
not matching our expectations could just as well be the consequence of some misguided
assumptions made along the way.

It certainly seems worthwhile to investigate why the quantization method yields a
result that doesn’t really match our expectations. We need the classical theory to provide
a framework for the physical interpretation of the associated quantum theory, and it is also
important to know the limits of this analogy. Cases exist where classically equivalent
systems yield inequivalent quantum theories. An interesting example is the harmonic
oscillator, where it is possible to obtain genuinely di�erent predictions for the ground
state energy depending on whether the harmonic oscillator is quantized using Cartesian
or Action-and-angle variables (see [Kas03; Kas07; Hun10]). The ‘unusual’ result isn’t a
fault of the quantization procedure, however, but a di�erent kind of quantum harmonic
oscillator. According to Kastrup [Kas03; Kas06; Kas07], there seem to exist applications
of such models in the �eld of quantum optics. Also, an explicit model for a quantum
oscillator with an unusual ground state eigenvalue will appear in section 6.4.

6.2.2 The Position Space Representation for a Particle on a Half-Line

Let us take a step back and consider the situation from a di�erent perspective. From
a physical point of view we expect the particle on a half-line R+ to be essentially the
same as a particle on a whole line when con�ned to R+ ⊂ R by a suitable potential V: This in�nitely high potential

cannot be seen as limiting case
of a �nite one in this context.
For any �nite step potential
the momentum has a unique
self-adjoint extension. For an
in�nite potential there exists
no self-adjoint momentum
operator [BFV01, section 7.4].

V(q) =
⎧⎪⎪⎨⎪⎪⎩

∞ q ≤ 0 ,
0 q > 0 .

(6.30)

In other words, we assume that the operations of quantization and restriction commute
in this situation (in general, however, there also exist counterexamples, e. g. [Lol90]; this
assumption should not be taken too lightly!):

classical theory over R quantum theory over R

classical theory over R+ quantum theory over R+

quantization

quantization

restriction restriction
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To obtain a quantum theory for a particle on a half-line we will hence start with the
usual position and momentum operators onH = L2(R, dq), acting on wave functions
according to (for ħ = 1):

(q̂ψ)(q) = qψ(q) , (p̂ψ)(q) = −i∂qψ(q) .

Continuing with this train of thought, a wave function ψ ∈ H is compatible with the
above potential if and only if it satis�es ψ(q) = 0 for all q ≤ 0. Since functions that do
not satisfy this condition cannot contribute to the solutions, we can ignore the forbidden
wave functions and restrict ourselves to the subspace of allowed wave functions:

H̃ ∶= {ψ ∈ H ∶ψ(q) = 0 ∀q ≤ 0} ⊂ H .

Furthermore, it turns out that the resulting subspace is isomorphic to the Hilbert space
H+ = L2(R+, dq). The isomorphism is:

H+ → H̃ , ψ↦ ψ̃ , ψ̃(q) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 q ≤ 0 ,
ψ(q) q > 0 .

(6.31)

Remark 6.2.2 It might look like continuing a function in a non-continuous manner asThis remark seems trivial but
we will come back to this point
in remark 6.3.1.

in equation (6.31) could be problematic. Nevertheless, while functions in L2(. . .) must
be measurable, they are not required to be continuous. As a result, the mapping (6.31)
really is an isomorphism between Hilbert spaces.

Remark 6.2.3 (Concerning the momentum) We already know that the momentum is
no longer self-adjoint on H+. Formally, the conclusion is that ‘the momentum is not aThis also means that there is no

momentum-space representation
for a particle on a half-line!

measurable quantity in that situation’ [BFV01, section 5.2]. While this truth at �rst seems
almost too hard to be truly acceptable, viewing R+ like proposed above, as R together
with a suitable potential, makes it more plausible. As a matter of fact, the momentum
eigenfunctions – plane waves – are incompatible with the given potential and hence
can’t contribute to any solutions.

On the other hand, it may be possible to de�ne something like an ‘intrinsically un-
sharp’ momentum observable in such situations (my guess is that wavelets might be a
step in this direction; Morlet wavelets, for example, are basically Gaussian wave packets,
and they have already been applied in conventional quantum mechanics [Ash10], albeit
for di�erent reasons). Nevertheless, we would then have to make a distinction between
operators that generate dynamics and observables that appear in measurements. This
would require some changes to the framework of quantum mechanics that we are not
prepared to discuss in this thesis.

To construct a quantum theory with observables q̂ and π̂ for the particle on a half-
line R+ ⊂ R and to �nd out whether a relation exists to the result of the last section it
seems reasonable to proceed in the following manner:

1. Quantize the classical observables q and qp over R using the well-known position
space representations of q̂ and p̂given above,

2. Check whether the obtained operators are still self-adjoint when we restrict them to
act on the subspace H̃ ⊂ H, isomorphic toH+,

3. Integrate the self-adjoint generators to 1-parameter unitary groups onH+ and study
the relation to the representation (6.16) of R ⋊R+.
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For the �rst step, we already have the operator q̂ associated to the observable q of
spatial position. Concerning the observable π ∶= qp, we know that (AB)† = B†A†, so
neither q̂p̂nor p̂q̂ alone can be symmetric because q̂ and p̂don’t commute. Instead we
must take the symmetric linear combination to obtain a self-adjoint operator onH:

π↦ π̂ ∶= 1
2(q̂p̂+ p̂q̂) = q̂p̂−

1
2 i , (6.32)

which acts on (a dense subset of) position space wave functions ψ ∈ H = L2(R, dq)
according to:

(π̂ψ)(q) = −i(q∂q + 1
2)ψ(q) . (6.33)

This result di�ers from the operator π̂ in equation (6.18). The additional term of −i/2
doesn’t appear in the original result.

Given the operators onH, the next step is to �nd out what happens when we restrict
q̂ and π̂ to operators acting on wave functions inH+. It is easy to see that q̂ is self-adjoint
onH+, but we know that the momentum operator p̂restricted toH+ is not. Nevertheless,
since self-adjointness is rather complicated, this doesn’t say much about π̂ itself.

We �rst have to check that π̂ is symmetric onH+. Integration by parts yields:

⟨ψ∣π̂φ⟩ = ∫ ∞

0
ψ∗(q)(π̂φ)(q)dq = ∫ ∞

0
ψ∗(q)(−i)(q∂q + 1

2)φ(q)dq

= −i ∫ ∞

0
ψ∗(q)q∂qφ(q)dq−

i
2 ∫

∞

0
ψ∗(q)φ(q)dq

= −i[ψ∗(q)qφ(q)]
∞

q=0
+ i ∫ ∞

0
∂q(qψ)∗(q)φ(q)dq−

i
2
⟨ψ∣φ⟩ .

Using ∂q(qψ)∗(q) = ψ∗(q) + q∂qψ∗(q), the integral in the second term evaluates to:

∫ ∞

0
∂q(qψ)∗(q)φ(q)dq = ∫ ∞

0
(q∂qψ)∗(q)φ(q)dq+ ∫ ∞

0
ψ∗(q)φ(q)dq .

Reinserting this result into the above equation we get:

⟨ψ∣π̂φ⟩ = −i[qψ∗(q)φ(q)]
∞

q=0
+ ⟨π̂ψ∣φ⟩ . (6.34)

The surface term cannot be argued away for arbitrary wave functions in L2(R+, dq). Note that the typical argument
which assumes that functions in
L2(R, dq) vanish for q → ±∞

is plainly wrong (see [Gie00]
for a counterexample). Even
the supposedly simple quantum
mechanics over R requires a
more sophisticated argument
involving operator domains.

Nevertheless,ψ and φ are not arbitrary. They must both be elements of an appropriately
chosen domain of π̂. For example, π̂ is symmetric on the domain D(π̂) = C∞0 (0;∞) of
smooth functions with compact support contained in (0;∞), and this domain is dense
inH+ [Gro88, section 3.2].

If it were practical to specify explicitly a domain on which π̂ is symmetric and closed,
we could check for self-adjointness by calculating the de�ciency indices as explained in
section 1.6. Nevertheless, the condition that π̂be closed is crucial, and we would also have
to determine the explicit domain of the adjoint π̂† to execute the calculation. Fortunately,
there is an easier way in the current situation. Using the identity q∂q = ∂ln(q) for q ∈ R+

we can calculate Ũ(a) ∶= e−iaπ̂:

(Ũ(a)ψ)(q) = (e−iaπ̂ψ)(q) = (e−ia(∂ln(q)+1/2)ψ)(q) = e−a/2(e−a∂ln(q)ψ)(q)

= e−a/2
∞

∑
n=0

(−a)n
n!

(∂nln(q)ψ)(q) = e−a/2
∞

∑
n=0

(−a)n
n!

(∂nzψ)(ez)

= e−a/2ψ(ez−a) = e−a/2ψ(e−aq) .
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Although the calculation probably looks acceptable, it turns out that we have to be more
careful. It is only a formal calculation: the usual power series which we used to calcu-
late the exponential is not well-de�ned for unbounded self-adjoint operators because
the series isn’t guaranteed to converge on a big enough set of wave functions (see [RS.I,
sections VIII.4 and VIII.5]). Nevertheless, we can in the reverse direction calculate the
generator of the formally obtained Ũ(a) via the strong derivative to verify the result:

d
d(−ia) ∣a=0

(Ũ(a)ψ)(q) = i d
da

∣
a=0
(e−a/2ψ(e−aq))

= i[− 1
2 e

−a/2ψ(e−aq) + e−a/2(−q)∂qψ(e−aq)]
a=0

= −i(q∂q + 1
2)ψ(q) .

Since we regained the original π̂ we see that the expression for Ũ(a) produced by the
formal calculation is, in this case, actually the correct one:

(Ũ(a)ψ)(q) = e−a/2ψ(e−aq) . (6.35)

Moreover, Ũ(a) is a unitary operator onH+ for each a ∈ R, given:

⟨Ũ(a)ψ∣Ũ(a)φ⟩ = ∫ ∞

0
(Ũ(a)ψ)∗(q)(Ũ(a)φ)(q)dq

= ∫ ∞

0
e−a/2ψ∗(e−aq)e−a/2φ(e−aq)dq

= ∫ ∞

0
e−aψ∗(z)φ(z)ea dz (z = e−aq)

= ∫ ∞

0
ψ∗(q)φ(q)dq = ⟨ψ∣φ⟩ .

Due to Stone’s theorem we can hence conclude that there exists a dense domain on which
the generator π̂ is self-adjoint (this is shown in the proof of Stone’s theorem given in [RS.I,
theorem VIII.8]; for the domain see also [RS.I, theorem VIII.7]).

Looking at the explicit representation, we can see directly that the operators q̂ and π̂
onH+ obtained via this method satisfy the same commutation relations as the equally
named operators of Isham’s representation on L2(R+, dq/q) given in equation (6.18).
They de�ne a self-adjoint representation of the Lie algebra L(R ⋊ R+), only this time
on the Hilbert space L2(R+, dq) with the usual Lebesgue measure dq.

Finally, if we de�ne U(λ = ea) ∶= U(a), equivalent to U(λ) = Ũ(ln λ) for λ ∈ R+,
we can rewrite equation (6.35) in the form:

(U(λ)ψ)(q) =
√
λ−1ψ(λ−1q) . (6.36)

In addition, we have:
(V(b)ψ)(q) = e−ibqψ(q) . (6.37)

A simple calculation shows that both families of operators together give rise to a unitary
irreducible representation of R ⋊R+ on L2(R+, dq), and due to its construction this is
the correct position space representation of the Canonical Group C = R ⋊ R+ when
the operators q̂ and π̂ are used to describe a particle moving on a half-line.
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6.2.3 The Relation to Isham’s Result

Finally, we want to investigate how the correct position space representation of the
Canonical Group R⋊R+ on L2(R+, dq) for a particle on a half-line is related to Isham’s
representation (6.16) on L2(R+, dq/q). There exists, actually, a unitary transformation
between the two di�erent Hilbert spaces:

W ∶ L2(R+, dq/q) → L2(R+, dq) , (Wψ)(q) ∶= 1
√qψ(q) . (6.38)

The realisation of the one-parameter group of unitary transformationsV(b) = e−ibq
generated by the operator q̂ is not a�ected by this transformation; since W doesn’t alter
the argument of the wave functions we have:

(WV(b)W−1ψ)(q) = 1
√qe

−ibq√qψ(q) = e−ibqψ(q) , (6.39)

for all ψ ∈ L2(R+, dq). The realisation of the self-adjoint generator q̂ is hence diagonal
in both representations.

Remark 6.2.4 Note that the domain ofV(b) after the transformation is not the same as
before. Wave functions that are square-integrable with respect to the measure dq/qwill
in general not be square-integrable with respect to the measure dq, and vice versa. As a
consequence, although the generator q̂ acts on wave functions in both Hilbert spaces by
the exact same prescription (q̂ψ)(q) = qψ(q), the eigenfunctions of q̂ to the same eigen-
values will be di�erent for L2(R+, dq/q) and L2(R+, dq). The reason is that a unitary
transformation, in particular, a�ects the way how boundary conditions are realised.

The realisation (6.16) of the one-parameter unitary group U(λ) on L2(R+, dq/q),
on the other hand, transforms according to:

(WU(λ)W−1ψ)(q) = 1
√q

√
λ−1qψ(λ−1q) =

√
λ−1ψ(λ−1q) , (6.40)

for allψ ∈ L2(R+, dq). The right-hand side of this formula is just the realisation (6.36) of
U(λ) on L2(R+, dq) that we obtained above. Moreover, the realisation of the generator
π̂ = −iq∂q on L2(R+, dq/q) is transformed to π̂ = −i(q∂q+ 1/2) on L2(R+, dq), which
matches equation (6.33).

Given these results, the two di�erent representations ofR⋊R+ – the one by The fact that di�erent notions
of distances in the q-coordinate
are equivalent is probably a
consequence of the canonically
conjugate momentum pnot
being quantizable. When there
is no observable that generates
translations in the q-coordinate,
the measure isn’t required to
respect these translations.

Isham and the representation constructed above – turn out to be unitarily
equivalent. Even though Isham’s representation is not the correct position
space representation for a particle on a half-line, it hence produces the same
physical predictions.

The mathematical reason why such a unitary equivalence exists is that a measure is
not required to be strictly invariant under the group action for a unitary representation
to be possible; in general, a quasi-invariant measure µ is completely su�cient (Isham
actually discusses the point of quasi-invariance in section 5.2 of [Ish83], but he doesn’t
seem to recognise its relevance to the present case; as a matter of fact, the interpretation
of the quantum theory as describing a particle moving on a half-line would break down
if the Lebesgue measure dq on R+ were not quasi-invariant!).
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q

∣ψ∣2U(λ)

(a) L2(R+, dq/q)

q

∣ψ∣2U(λ)

(b) L2(R+, dq)

Figure 6.4 Unitary representations of the transformation U(λ) for the di�erent
measures on R+. The operatorU(λ) actually preserves the area under the wave
packet in both �gures. The reason is the unusual measure dq/q used in (a).

In general, a measure µ is called G-quasi-invariant if the transformed measure µд
for all д ∈ G has the same sets of measure zero as the original measure µ. The measureMeasures with the same sets of

measure zero are usually called
equivalent measures.

µд is thereby de�ned as µд(B) ∶= (ρд∗µ)(B) ∶= µ(ρ−1д (B)) for all Borel sets B ⊆ Q,
where ρд is the group action of G on Q [Ish83, equation (5.2.5)].

Given a G-quasi-invariant measure µ on Q, the space L2(Q, dµ) carries a unitary
representation of the group G:

(U(д)ψ)(q) ∶= (
dµд
dµ

(q))
1/2

ψ(ρд−1q) , (6.41)

where the factor (dµд/dµ)(q) is the so-called Radon–Nikodým derivative (a detailed
treatment can be found, for example, in [Els11, section VII.2.3]; be aware that dµд/dµ is
not an actual derivative, yet it formally ful�ls most of the properties).

Concerning the particle on a half-line, we can see that U(λ) in equation (6.36) is
of the speci�c form (6.41). The subgroup G = (R+, ⋅ ) in this case acts on Q = R+ by
simple multiplication, and the Lebesgue measure dq turns out to be G-quasi-invariant
under this action on R+. In particular, the Radon–Nikodým derivative with respect to
the group action is given by (dµд/dµ)(q) = λ−1, which results in the additional factor
of λ−1/2 compared to Isham’s representation.

In the present case, �gure 6.4 shows what is going on. We know that any unitary
operatorU(λ) must preserve probabilities, that is, the area under the probability density
function ∣ψ∣2 must be preserved. Isham’s representation, shown in �gure 6.4(a), is only
one way to accomplish this. If only the argument of the wave function is transformed,
preservation of the area requires a measure on R+ which takes the transformation into
account. For Isham’s representation the measure dq/q is hence strictly necessary.

Nonetheless, we have shown in this section that it is possible to keep the Lebesgue
measure dq on R+ if we rescale the wave functions afterwards, as shown in �gure 6.4(b).
It turned out that the correct factor for the rescaling to make U(λ) unitary is given by
the Radon–Nikodým derivative. In particular, if we require the usual notion of distances
in the q-coordinate based on the Euclidean metric, the �gure shows that the additional
factor corresponding to the Radon–Nikodým derivative arises naturally from a simple
geometrical consideration.

Remark 6.2.5 After writing section 6.2, I found that the possibility to ‘get rid of the non-
trivial measure’ by means of the unitary transformation (6.38) has been mentioned by
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Bojowald and Strobl in [BS00, section 2.2.1]. While no complete proof is provided, they
also remark that the operator π̂ in equation (6.32) is self-adjoint on L2(R+, dq). The
way we obtain the representation of R ⋊ R+ on L2(R+, dq) in section 6.2.2 in fact can
be seen as an example of the ‘projection method’ of quantization they describe in [BS00,
section 2.5]. Nevertheless, the ‘projection method’ does not provide any short cuts to
our calculations as it does not solve the question of self-adjointness. For every operator
restricted to a subspace, self-adjointness has to be checked ‘the hard way’, as we have
done in section 6.2.2. Unfortunately, their method also o�ers no systematic way how to
obtain ‘restrictable’ operators.

That said, it seems the authors of [BS00] view the nontrivial measure dq/q just as
a mathematical curiosity without any physical signi�cance. Contrary to this, we view
the measure on R+ as crucial to the physical interpretation. As has been discussed in
section 6.2.1, a metric that must be compatible with the given measure decides whether
the same transformation q ↦ λq has to be interpreted as a ‘scaling’ or as a ‘translation’.
The existence of the two possibilities is particularly relevant to the present situation for
which the canonical transformation between T∗R and T∗R+ can also be interpreted
as a simple change of coordinates, a point that hasn’t been mentioned before. Seen this
way, the quantum theory over R+ endowed with the measure dq/q describes a particle
on the full line (with unusual coordinates) but q is not a position coordinate. Only for a
representation on L2(R+, dq) with the measure inherited from L2(R, dq) it is possible
to interpret the result as position space representation of the half-line and q as position
of a particle as only in this case the Hilbert space is a subspace L2(R+, dq) ⊂ L2(R, dq),
that is, actually ‘one half ’ of a full line.

6.3 Dynamics and the Topological Realisation of Boundary Conditions

So far, the previous section gives the impression that quantization on the phase space
T∗R+ via the Canonical Group R⋊R+ yields a quantum theory that might, after all, be
used to describe a particle moving on a half-line. Nevertheless, we will see in a second
that exactly the word ‘moving’ in the last sentence poses a serious problem. An important
dynamical aspect of the quantum particle on a half-line cannot be explained using the
obtained quantum theory: the re�ection at the end. The quantum theory constructed
in section 6.1 is in this sense incomplete. To solve this shortcoming, we will construct a
di�erent classical phase space for a particle on a half-line and we will show that this phase
space emerges naturally on closer examination of the problem at hand. Our proposal is
to implement the ‘hard wall’ (Dirichlet) boundary conditions as a topological feature of
the classical phase space.

6.3.1 Dynamics and a ‘Free’ Particle on the Half-Line

When we thinkabout dynamics, a typical Hamiltonian of a classical particle is given
by the sum of kinetic energy and some potential:

H(q, p) = p2

2m
+V(q) . (6.42)

We run straight into a problem: For a particle restricted to a half-line the momentum
cannot be quantized. The Hamiltonian vector �eldXponT∗R+ is incomplete and hence
we cannot associate a self-adjoint operator to p. Self-adjoint operators always generate
groups of unitary transformations but �ows of incomplete vector �elds give rise only to
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pseudogroups. Still, since there is no way to make p̂ = −i∂q a self-adjoint operator on
L2(R+, dq) this is no fault of the quantization method.

At �rst, the same seems to be the case for the squared momentum p2. Just like the
vector �eld Xp, the Hamiltonian vector �eld Xp2 is incomplete when restricted to the
submanifold T∗R+ ⊂ T∗R (see �gure 6.5). Therefore, the quantization method cannot
possibly map the observable p2 de�ned on T∗R+ to a self-adjoint operator.

A rather unexpected thing, however, happens when we consider the same problem
from the quantum-mechanical perspective and try to restrict the operator p̂2 = −(∂q)2
known from conventional quantum mechanics on R to the half-line R+ ⊂ R. One �nds
that the operator p̂2 indeed admits self-adjoint extensions after it has been restricted to
the Hilbert space L2(R+, dq) [RS.II; BFV01; FCT02; GK04; BW10]. This is a key point
of this section:

The Hamiltonian (6.42) without any potential is a valid Hamiltonian for a
quantum particle moving on a half-line!

We could, of course, try to ignore this mathematically rather technical result as being
unphysical. Nevertheless, we will see that exactly the Hamiltonian without any potential
describes re�ection of an otherwise free quantum particle at the origin and this surely
isn’t entirely unphysical.

6.3.2 Self-Adjoint Extensions of p̂2 on a Half-Line

A detailed treatment of the squared momentum operator p̂2 on L2(R+, dq) can be
found in Reed and Simon’s book [RS.II, section X.1, example 2]. We will give an account
of the points that are important to our ongoing discussion.

The starting point is the operator p̂2 = −(∂q)2 with domain D0 = C∞0 (0;∞) of
smooth functions with compact support contained in R+ = (0;∞). This operator is
symmetric and closed on D0. Also, the domain D0 is dense in L2(R+, dq). To avoid
some clumsy notations, we write A= p̂2 in the following.

The next step is to calculate the de�ciency indices n± of A. We try to �nd solutions
to the eigenvalue equation A†φ± = ∓iφ±, where A† is the adjoint operator. A priori,

q

p

Xp

q

p
Xp2

Figure 6.5 The Hamiltonian vector �elds Xp and Xp2 are both incomplete when
restricted to T∗R+. The �ow curves leave T∗R+ at some point and cross into the
forbidden region q ≤ 0.
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given the domain of A, the eigenfunctions φ± could be generalised solutions (evaluated
on test functions in C∞0 (0;∞)). Nevertheless, there exists a regularity theorem in this
particular case [RS.II, theorem IX.25 (Weyl’s lemma)] which states that only ordinary
solutions with φ± ∈ C∞(0,∞) are possible.

A basis for the ordinary solutions of −∂2qφ+(q) = −iφ+(q) is given by:

φ+,1(q) = exp((1 + i)q/
√
2 ) , φ+,2(q) = exp(−(1 + i)q/

√
2 ) ,

for −∂2qφ−(q) = +iφ−(q) we have:

φ−,1(q) = exp((1 − i)q/
√
2 ) , φ−,2(q) = exp(−(1 − i)q/

√
2 ) .

Of these solutions, only φ+,2 and φ−,2 are in L2(R+, dq) whereas φ−,1 and φ+,1 diverge
for q→∞. The de�ciency subspaces r± are hence both 1-dimensional, so that we obtain
the de�ciency indices (n+,n−) = (1, 1). As a consequence, the operator A admits self-
adjoint extensions.

The speci�c extension we are interested in is the one that corresponds to a re�ection It is important to notice that the
boundary condition ψ(0) = 0
is not optional in the de�nition
of D∞. Unlike in conventional
quantum mechanics over R,
p̂2 will not be self-adjoint if the
condition is omitted.

by an in�nitely high hard wall potential at the origin, because this is the case which we
expect to have a well-de�ned classical counterpart (see also [FCT02]). The domain of
this extension is:

D∞ = {ψ ∈ L2(R+, dq) ∶ψ ∈ AC2[0,∞] , ψ(0) = 0} . (6.43)

The space AC2[0;∞] is the set of square-integrable functions in L2([0;∞], dq) whose
weak derivatives are in AC[0;∞]. The space AC[0;∞] denotes absolutely continuous Absolutely continuous func-

tions over X are di�erentiable
µ-almost everywhere and their
derivatives are in L2(X, µ) (see
[Gro88, section 3.2] or [RS.I,
section VIII.1] for a de�nition).

functions over [0;∞].

Remark 6.3.1 (Boundary conditions) The domain D∞ poses conditions for functions
over the closed interval [0;∞] although the boundary points 0 and∞ are not contained
inR+. This doesn’t seem to make sense at �rst, becauseψ ∈ L2(R+, dq) isn’t even de�ned
at q = 0, hence it should be impossible to require ψ(0) = 0. However, the condition in
equation (6.43) must actually be read as ‘ψ is an equivalence class in L2(R+, dq) that
admits a representative which can be continued to a function in AC2[0;∞] that satis�es
ψ(0) = 0.’ As a result, it is possible for wave functions ψ in the domain D∞ to kind of
‘feel’ a potential like the one in equation (6.30) which is in�nitely high for q ≤ 0, and this
although the potential vanishes identically on R+!

The necessity of the boundary condition is also interesting in the light of our earlier
remark 6.2.2. There, we pointed out that functions in the Hilbert space L2(R+, dq) don’t
have to be continuous, just measurable. The boundary condition ψ(0) = 0 alone isn’t
a restriction for functions in L2(R+, dq) and equation (6.31) de�nes an isomorphism
between Hilbert spaces. Nevertheless, we see now that the restriction to the subspace
of wave functions L2(R+, dq) ⊂ L2(R, dq) compatible with the hard wall potential V
doesn’t ‘fully implement’ the e�ects of the potential. In fact, it is in general not enough
to consider the e�ects on wave functions in Hilbert space, but it is necessary to have in
mind the e�ect of restrictions on the domains of operators.

Regarding the physical interpretation of the operator extension to D∞, it is clear
that a plane wave ψ(q) = eipq doesn’t satisfy the boundary condition ψ(0) = 0. There is,
however, a linear combination of plane waves that works, namely: Although pappears in this

formula as a variable, keep in
mind that the momentum on
the half-line isn’t observable
(see the discussion below).

ψ(q) = eipq − e−ipq . (6.44)
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Remark 6.3.2 (Eigenfunctions and spectrum of p̂2) The functions ψ in equation (6.44)
are the (generalised) eigenfunctions of p̂2. While they are not square-integrable, they
satisfy:

p̂2ψ(q) = −∂2q(eipq − e−ipq) = p2(eipq − e−ipq) = p2ψ(q) . (6.45)

Consequently, the (purely continuous) spectrum of p̂2 on D∞ is given by:

σ(p̂2) = (0;∞) . (6.46)

From a physical perspective, the eigenfunctionψ is e�ectively the superposition of an
incoming plane wave with negative momentum −pand a re�ected, outgoing plane wave
with positive momentum p. Hence we see that the self-adjoint operator p̂2 with domain
D∞ generates the dynamics of a quantum particle that gets re�ected by an in�nitely high
hard wall potential at the origin, just as claimed.

That being said, with respect to the quantization scheme it is important to note that
neither the incoming, nor the outgoing wave alone is compatible with the boundary con-
dition for p̂2 on D∞. Accordingly, although ψ looks like a superposition of plane waves,
it cannot actually be decomposed in this way. We know that the momentum operator
restricted to the half-line isn’t a valid observable, and, indeed, the eigenfunction ψ in
equation (6.44) doesn’t depend on the sign of p. Although the wave function ψ contains
information about the magnitude ∣p∣ of the momentum, it doesn’t select a direction. This
agrees perfectly with the fact that only the kinetic energy, proportional to p2, is preserved
by an elastic re�ection at the origin, but not the momentum p, which changes its sign.

6.3.3 A Limit of the Quantization Procedure

We have seen that the squared momentum operator p̂2 on an appropriately chosen
domain is a self-adjoint operator on L2(R+, dq). Moreover, when used as Hamiltonian
(we will drop the constant 2m in the following) the operator p̂2 on D∞ generates some
perfectly reasonable dynamics for a quantum particle moving on a half-line. In fact, an
elastic re�ection at the origin is not just a reasonable but a characteristic trait if we want
the theory for a particle on the half-line to be equivalent to a particle restricted to R+ as
if by the in�nitely high step potential V given in equation (6.30).

The quantization method, on the other hand, when applied to the phase space T∗R+

cannot justify the self-adjoint operator p̂2 at all. We know that the Hamiltonian vector
�eld Xp2 on T∗R+, just like Xp, is incomplete (�gure 6.5), and since p2 doesn’t generate
a complete group of transformations on phase space the quantization procedure cannot
assign a self-adjoint operator to p2. In other words:

There is no Canonical Group C for which the squared momentum p2 on
the classical phase space T∗R+ is a quantizable observable!

The fact that the quantization procedure is unable to reproduce such an important
and characteristic aspect of the dynamics of a quantum particle moving on a half-line is a
severe shortcoming. It must be either a fault of the quantization method, or a limit of the
chosen classical phase space T∗R+. While we will argue that a di�erent classical phase
space can be used to obtain the self-adjoint operator p̂2 over R+ (and we will explain
why this phase space might be a better choice overall with respect to the characteristic
properties of a half-line), there are strict limits as to what can be accomplished:

Lemma 6.3.3 There exists no classical phase space M and no Canonical Group C for
which the quantization procedure maps classical fundamental observables q and p2 to
the self-adjoint quantum operators q̂ and p̂2 on L2(R+, dq), respectively.
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Proof. The commutator of q̂ and p̂2 is given by [q̂, p̂2] = 2iħp̂, so that the Poisson
bracket of the corresponding classical observables q and p2 must be {q, p2} = 2p. Thus,
pas well becomes an element of the algebra of fundamental observables whenever both
q and p2 are in Obs(M).

On the other hand, it is a requirement of the quantization procedure that classical
observables in Obs(M) are mapped to (essentially) self-adjoint operators. Nevertheless,
such a map cannot exist in the present situation because there is no way to make p̂ a
self-adjoint operator on L2(R+, dq). ∎

Accordingly, as long as we require the full set of all quantizable observables to close
under the Poisson bracket, not just the fundamental ones (observe that this is important
to guarantee a consistent quantization map), lemma 6.3.3 implies that there is no way to
obtain q̂ and p̂2 on L2(R+, dq) at the same time. So, if we want the quantization method
to reproduce the squared momentum operator p̂2 on L2(R+, dq) it becomes clear that
we will have to give up the position operator q̂.

Remark 6.3.4 It is important to consider the implications of lemma 6.3.3 carefully. In
general, only the full Hamiltonian Ĥ needs to be self-adjoint, not individual terms. It is,
for example, sometimes possible to counter-balance non-matching de�ciency indices
of one operator by adding or multiplying with another (this happens for the operator
p̂2 for which p̂ on C∞0 (0;∞) has de�ciency indices (n+,n−) = (0,1), yet p̂2 admits
self-adjoint extensions; this is also the reason why the eigenfunction (6.44) cannot be
decomposed over the half-line). In a more general situation, it could therefore be that
only a Hamiltonian of the form (6.42) with some non-vanishing potentialV(q) generates
physically acceptable dynamics. In the speci�c case at hand, however, we showed that
p̂2 is already self-adjoint by itself on the domain D∞, so no additional terms are needed.
Moreover, we know that p̂2 generates physically relevant dynamics.

6.3.4 A Di�erent Phase Space for a Particle on a Half-Line

Giving up the position operator q̂ in favour of p̂2 isn’t easy to accept. Nevertheless,
we have seen numerous times that it can be futile to insist on prejudices, especially with
regard to quantum mechanics. In fact, we will show that a di�erent classical phase space
together with a suitable Canonical Group captures the characteristics of a half-line in
a much better way. Moreover, when searching for fundamental observables compatible
with p2 on this phase space, we �nd q2 as a natural candidate. Although q2 in general
�xes the position coordinate q only up to a sign, this is not an issue for q ∈ R+, for which
the observable q and q2 contain the same information.

Let us begin with the classical phase space. The problem with the original phase
space T∗R+ is that the Hamiltonian vector �eld Xp2 on T∗R+ is incomplete. On the
other hand, this is nothing but expected. We know that the Hamiltonian H = p2/(2m)
in classical mechanics generates the motion of a free particle. So, if we just ‘look’ at the
half-line R+ ⊂ R but don’t impose any boundary condition it is no wonder that a free
particle will be able to leave this subset and cross into the ‘forbidden’ area.

When we now consider the vector �eld Xp2 in �gure 6.5 again, with this in mind, an
interesting possibility opens up. We can try to implement the boundary condition that
describes elastic re�ection of an otherwise free particle at the origin by gluing together
the phase space as in �gure 6.6. If we identify (0,−p) with (0, p) for all momenta p, the
�ow curve of the Hamiltonian vector �eld Xp2 on which an incoming free particle with The �ow curves of XH are the

solutions of the canonical equa-
tions with Hamiltonian H.
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negative momentum−parrives (and would otherwise leave the submanifoldT∗R+) gets
connected to the �ow curve of an outgoing particle with momentum +p.

While this is basically the correct idea, there are some technical details that require
our attention:

■ We have to take care that the ‘gluing together’ happens smoothly. We must be able
to calculate the Hamiltonian vector �eld Xp2 on the resulting phase space and, in
particular, the symplectic form ω needs to survive the process.

■ It turns out that it is impossible to obtain globally a smooth manifold. We will see that
the space after the identi�cation looks like a half-cone (think ‘forward light cone’),
which has a singularity at the tip, corresponding to the point (q, p) = (0,0). Our
options are either to exclude this point in order to get a smooth manifold, or to think
about a suitable generalisation of the quantization method.

If we ignore the issue with the origin for the moment, the solution to the �rst problem
is straightforward. As shown in �gure 6.7, we just have to make sure that for each point
(0, p) a neighbourhood U contained in a small strip around q = 0 gets identi�ed in the
correct direction with a neighbourhood U′ of (0,−p). We can see that this requires the
neighbourhoods U and U′ to be related by a point re�ection at the origin.

That being said, this strip around q = 0 doesn’t actually have to be ‘small’. Without
loss of generality we can, in fact, extend this strip to the whole space T∗R, as shown in
�gure 6.8, if we identify all points in T∗R ≅ R2 related by a point re�ection (a group
action of Z2 on T∗R):Notice that the re�ection (6.47)

restricts to the identi�cation of
(0, p) with (0,−p) for q = 0. R2 → R2 , (q, p) ↦ (−q,−p) . (6.47)

Each equivalence class of points then has a representative (q, p) with q ≥ 0 and the
resulting phase spaceR2/Z2 has the mathematical structure of an orbifold. Furthermore,An orbifold M/Γ is basically

the quotient of a manifold M
by a �nite group Γ. The actual
de�nition enforces the quotient
structure only locally, of course.
Moerdijk [MM03, section 2.4]
and Hepworth [Hep09, sec-
tion 3] give proper de�nitions,
but we do not need the details
in the following.

we can see that it is possible to keep the symplectic 2-form ω = dq∧dpof T∗R ≅ R2 on
the orbifold R2/Z2 since dq∧ dp is invariant under the re�ection (6.47):

dq∧ dp↦ d(−q) ∧ d(−p) = dq∧ dp .

q

p
Xp2

Figure 6.6 It is possible to make the Hamiltonian vector �eld Xp2 complete by
gluing together the phase space so that the �ow curves of Xp2 that would leave
the submanifold T∗R+ at the point (0,−p) enter again at (0, p).
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Figure 6.7 Mathematically, to ensure that the identi�cation happens smoothly,
we have to include a small strip around q = 0where a neighbourhoodU is related
to U′ by the point re�ection (6.47).

Remark 6.3.5 The phase space R2/Z2 has an interesting physical interpretation. It is
possible to think of the original particle at the position q with momentum p as being
accompanied by a ‘mirror particle’ at the point −q with the opposite momentum −p.
When the original particle with (negative) momentum p leaves the half-line, the mirror
particle enters with the opposite momentum −p, and in terms of representatives with
q ≥ 0 this looks exactly like a re�ection at the point q = 0. Doncheski and Robinett
carried out a numerical study of wave packets re�ecting at the origin using an informal
version of this ‘mirror particle’ model in [DR99].

Concerning observables on this space, notice that the Hamiltonian vector �eld Xq
associated to the position observable qon T∗R doesn’t survive the identi�cation process
because tangent vectors with opposite direction would have to be identi�ed. In fact, we
see that the observable q itself is no longer well-de�ned on R2/Z2. Due to lemma 6.3.3, we can not

have q as observable anyway, if
we want p2 to be quantizable.

In general, only smooth functions on T∗R invariant under the re�ection (6.47) are
still well-de�ned on the resulting phase space and may in principle be quantizable. Valid
observables are hence functions f ∈ C∞(T∗R,R) with the symmetry property:

f(q, p) = f(−q,−p) . (6.48)

This is the case, for example, for polynomials of even degree in q and p(including mixed
polynomials like qp), but rules out all odd polynomials.

So, what remains is to tackle the problem with the singularity. To this end, observe
that all the Hamiltonian vector �elds of valid observables on R2/Z2 vanish at this point:

Lemma 6.3.6 (Hamiltonian vector �elds on R2/Z2) Let f be a smooth function in
C∞(R2,R) which satis�es the symmetry property (6.48). Then, the Hamiltonian vector
�eld Xf vanishes at the point (q, p) = (0, 0).

Proof. First, observe that the derivative of a di�erentiable function дwhich satis�es the



164 Chapter 6. Quantization on the Half-Line

q

p
Xp2

Figure 6.8 An alternative construction for the phase space in �gure 6.6 is to start
with T∗R ≅ R2 and identify (q, p) with (−q,−p). Again, it is easy to see that the
Hamiltonian vector �eld Xp2 is complete on this space.

symmetry property д(x) = д(−x) vanishes at the point x = 0, due to:

д′(0) = lim
ε→0

1
2ε

(д(0 + ε) − д(0 − ε)) = lim
ε→0

1
2ε

(д(ε) − д(ε)) = 0 .

When we apply this result to the mappings q ↦ f(q, 0) and p↦ f(0, p), respectively,
it follows that all functions which satisfy the property (6.48) will have vanishing partial
derivatives ∂q f and ∂pf at the point (q, p) = (0, 0). Therefore, given the de�nition of
Xf as Xf = df♯ = (∂q f)dq♯ + (∂pf)dp♯, we see that the Hamiltonian vector �eld Xf
vanishes at the point (0, 0). ∎

Since all Hamiltonian vector �elds vanish at the singularity, the stabiliser subgroup
G(0,0) of this point for any group action of a Lie group G that generates Hamiltonian
vector �elds is the whole group G(0,0) = G. Hence, according to the orbit–stabiliser
theorem 3.2.2, the G-orbit of (0,0) is given by G(0, 0) ≅ G/G(0,0) ≅ {0}. Consequently,
the singularity will always be an orbit by itself.

Given this result, it doesn’t really matter for the quantization procedure whether we
keep or exclude the singularity:

■ If we choose to exclude the singularity, we get the manifold (R2 ∖ {0})/Z2 and the
quantization method can be applied exactly as before. Moreover, since the singularity
is a separate orbit and a group action on a single point can only be trivial, excluding
this point doesn’t a�ect the choice of Geometric Group.

■ On the other hand, if we consider the orbifold R2/Z2 including the singularity, we
cannot require the action of the Geometric Group G to be transitive on the whole
orbifold. The best we can do is to require the G-action to be transitive on the subset
(R2/Z2) ∖ {0}. The quantization method simply avoids the singularity and doesn’t
really ‘feel’ the orbifold structure.
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Figure 6.9 The Hamiltonian vector �elds Xq2 and Xqp are compatible with the
re�ection (6.47) and hence well-de�ned on the orbifold R2/Z2. In combination
with Xp2 they generate a transitive group action on R2 ∖ {0}.

6.4 Quantization on R2/Z2 and ‘Half a Harmonic Oscillator’

After constructing a phase space that describes the elastic re�ection at the end
of a half-line classically, we try to �nd a Canonical Group that reproduces the squared
momentum operator p̂2 (with domain D∞) in the quantum theory on L2(R+, dq). We
will, however, apply the quantization method a little di�erently than usual. Instead of
searching for a Geometric Group G, we will directly construct a suitable Lie algebra of
fundamental observables Obs(M) that contains p2. We will then use the quantization
method to ‘reverse-engineer’ the Canonical Group on R2/Z2 that maps p2 to p̂2.

6.4.1 An Algebra of Fundamental Quantizable Observables

As mentioned before, the symmetry condition (6.48) for observables on R2/Z2
rules out all odd polynomials in q and p. The most natural supplement to p2 hence
seems to be q2. Nevertheless, when we calculate the Poisson bracket of q2 and p2 we
�nd that the mixed polynomial qpmust be included as well. After adding qp, tough, the
Lie algebra Obs(M) generated by the fundamental observables {q2, p2,qp} closes, and
the Poisson brackets are:

{q2, p2} = 4qp , {qp,q2} = −2q2 , {qp, p2} = +2p2 . (6.49)

The Hamiltonian vector �elds Xq2 , Xp2 and Xqp are well-de�ned on R2/Z2, complete,
and they span a 2-dimensional tangent space at every point except (q, p) = (0, 0) (see
�gure 6.9). Therefore, given Palais’ theorem 5.1.1, these vector �elds generate a transitive
group action of some Lie group on (R2/Z2) ∖ {0}.

A look at the literature (e. g. Fulton and Harris [FH91, section 10.3]) reveals that the
Poisson brackets in equation (6.49) are brackets in the Lie algebra sl(2,R): The algebra sl(2,R) consists of

traceless matrices. This follows
from det ○ exp = exp ○ tr and
det(д) = 1 for all д ∈ SL2R.

[N+,N−] = A , [A,N+] = +2N+ , [A,N−] = −2N− , (6.50)

for which the basis elements A, N+ and N− have matrix representations:

A= (1 0
0 −1) , N+ = (0 1

0 0) , N− = (0 0
1 0) . (6.51)



166 Chapter 6. Quantization on the Half-Line
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Figure 6.10 Two-fold and universal covering group of SO(2) ≅ S1.

Explicitly, if we identify the Poisson bracket with the Lie bracket in (6.50), [ ⋅ , ⋅ ] =̂{ ⋅ , ⋅ },
equation (6.50) results from the following identi�cations:

A =̂ −qp , N+ =̂ 1
2αq

2 , N− =̂ − 1
2α

−1p2 , (6.52)

with α ∈ R×. We will later use α = 1, but notice that this is the same freedom as in the
choice of physical base units q0 and p0 for the Heisenberg group (remark 5.4.1).

A Lie group associated to the Lie algebra sl(2,R) is the special linear group SL2R,Like Fulton and Harris [FH91],
we denote the real symplectic
group of rank n by Sp2nR. Be
aware that some authors prefer
to write SpnR in place of our
Sp2nR (e. g. Taylor [Tay86]).

with isomorphisms SL2R = Sp2R ≅ SU(1, 1) ≅ Spin+(1, 2). The centre of SL2R is
Z(SL2R) = {±1} ≅ Z2, and the quotient PSL2R ∶= SL2R)/Z2, called the projective
special linear group, produces the same Lie algebra. PSL2R is isomorphic to the proper
orthochronous Lorentz group SO↑(1, 2) = SOe(1, 2) in 2+1 (space–time) dimensions. Of
course, all covering groups of SO↑(1, 2) have sl(2,R) as their Lie algebra as well.

Remark 6.4.1 (Covering groups) It is well known that the double cover Spin(n) of theThe basic theorems concerning
covering groups can be found
in [Sim96, section VII.6] and in
[FH91, section 7.3]. Duistermaat
and Kolk [DK00, chapter 1],
on the other hand, give a more
detailed account.

rotation group SO(n) = Spin(n)/Z2 is the universal covering group (the unique, simply
connected covering group) for n ≥ 3, because the fundamental group of SO(n) is equal
to π1(SO(n)) ≅ Z2 for all n ≥ 3 [FH91, proposition 23.1]. In particular, there are for
n ≥ 3 no additional covering groups of SO(n) other than the spin group Spin(n).

For SO↑(1, 2), however, the double cover SL2R is not the universal covering group
and the situation gets a lot more interesting. The fundamental group of SL2R is given by
π1(SL2R) ≅ Z (the group SL2R contains SO(2) ≅ S1 as a maximal compact subgroup
and the fundamental group of the circle is π1(S1) ≅ Z). The universal covering group
G̃ of G = SL2R is thus in�nitely sheeted. As a result, there exist n-fold covering groups
of SO↑(1, 2) for every number n ∈ N. The n-fold cover Gn of a connected Lie group G
is a central group extension by Zn [Sim96, theorem VII.6.2]:

0 Zn Gn G 0 .

Given that the centre of SO↑(1, 2) is trivial, it follows that the n-fold covering groupGn
of G = SO↑(1, 2) has centre Z(Gn) = Zn ⊆ Z.

One speci�c covering group that will appear later is the metaplectic group Mp2R,The metaplectic group Mp2R,
in contrast to SO↑(1, 2) and
Sp2R, is not a matrix group. No
proper covering group of SL2R
has faithful �nite-dimensional
representations [Puk64, p. 97].

which is the unique 2-fold cover of the symplectic group Sp2R ≅ SL2R, and is the 4-fold
cover of SO↑(1, 2) (see [Tay86, chapter 11]).

Remark 6.4.2 The group SO↑(1, 2) and covering groups appear in a paper by Bojowald
et al. [Boj+00] in an application to Schwarzschild black holes, and also in a number
of papers written by Kastrup [Kas03; Kas07] where he discusses the quantization of a
harmonic oscillator using action-and-angle variables. Kastrup in fact recognises in these
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papers that the phase space {(φ, I) ∶ φ ∈ Rmod2π , I ∈ R+} of action I and angle φ is
di�eomorphic to R2/Z2 (see in particular [Kas03, appendix A.3]). On the other hand,
Kastrup parenthetically remarks in [Kas03, section 6.3] that ‘a system con�ned to the
half plane q ≥ 0’ (realised by an in�nite step potential like (6.30)) can be obtained by an
identi�cation of q with −q, but he explicitly forbids the identi�cation of pwith −p (he
does not justify the construction, however, nor does he give further details). Thus, he
ends up with {(q, p) ∈ R2 ∶ (q, p) ≡ (−q, p)} as phase space of the half-line.

In contrast to Kastrup, we believe that the additional identi�cation of pwith −p is Kastrup also obtains a ground
state energy of 1/2 ħω for his
model [Kas03, section 6.3], but
we will show in section 6.4.4
that the correct ground state
energy of a harmonic oscillator
on the half-line with ‘hard wall’
boundary conditions is 3/2 ħω.

strictly necessary to describe a particle on a half-line for several reasons: First of all, as
a purely mathematical requirement the �ow curves of Xp2 need to be connected in the
correct direction to make the vector �eld complete (see �gure 6.6) since otherwise the
group-theoretical quantization method cannot be applied. This is not accomplished by
Kastrup’s model. Furthermore, while the symplectic 2-form ω = dq∧dp is well-de�ned
on R2/Z2, we can see that ω does not survive the identi�cation of (q, p) with (−q, p),
given that d(−q) ∧ dp = −(dq ∧ dp) ≠ dq ∧ dp. Apart from that, the identi�cation of
pwith −p also makes sense from a physical perspective as the momentum in classical
mechanics changes its sign when a particle gets re�ected by a hard wall.

6.4.2 Irreducible Unitary Representations of SL2R

We know that the Lie groups associated to the algebra sl(2,R) are covering groups
of SO↑(1, 2). What remains is to �nd the speci�c covering that should be used as the
Canonical Group for a particle on the half-line. However, since the representations of
covering groups of SO↑(1, 2) are related, it is not much more work to study irreducible
representations for all possibilities. Afterwards, it is possible to ‘reverse-engineer’ the
Canonical Group by looking at which representation reproduces the operator p̂2 on the
domain D∞ from section 6.3. We start with representations of SL2R.

The classic reference concerning irreducible unitary representations of SO↑(1,2)
and its covering groups is Bargmann’s seminal paper [Bar47]. Harish-Chandra not long
afterwards presented a di�erent, more algebraic approach, using what is today known
as the Harish-Chandra homomorphism [HC51; HC52]. Nevertheless, the representation
theory for non-compact Lie groups was in a very early stage of development at this time
so that some important concepts were not yet properly named. The notation as well
often feels quite baroque (especially in Bargmann’s paper).

A more accessible introduction for the contemporary reader using modern terms
and notation is Lang’s book [Lan85]. We will use Taylor [Tay86, chapter 8] as our main
reference, who gives an excellent and succinct treatment. The modern formulation of
the algebraic approach using the language of irreducible (g,K)-modules, on the other A Lie algebra representation

of g onH turnsH into a left
g-module. A (g,K)-module is
a g-module together with an
action of the maximal compact
subgroup K ⊂ G.

hand, is explained in Habib [Hab98] and Huang [Hua99, chapter 11].

From the standpoint of representation theory, SL2R is the simplest non-compact,
semisimple Lie group. The major di�culty to deal with is that all non-trivial irreducible
unitary representations of non-compact semisimple Lie groups are in�nite-dimensional.
The crucial feature of a semisimple Lie group G, on the other hand, is that G contains
a maximal compact subgroup K. This is a consequence of the Iwasawa decomposition
[Iwa49], according to which any semisimple Lie group G can be written uniquely as
the productG = KAN of a maximal compact subgroup K, an Abelian subgroup Aand a The Lie algebra g as well splits

into a direct sum g = k ⊕ a ⊕ n,
in agreement with the Iwasawa
decomposition of G.

nilpotent subgroupN (see Knapp [Kna96, section VI.4] for a contemporary and readable
account on the Iwasawa decomposition).
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In our case of G1 = SL2R, the maximal compact subgroup is given by K1 = SO(2)
[Tay86, chapter 13]. The Iwasawa decomposition G1 = K1A1N1 consists of:

K1 = {k1(ϑ) ∶= ( cos ϑ sin ϑ
− sin ϑ cos ϑ) , ϑ ∈ [0; 2π)} = SO(2) , (6.53a)

A1 = {a1(t) ∶= (e
t 0
0 e−t) , t ∈ R} , (6.53b)

N1 = {n1(ξ) ∶= (1 ξ
0 1) , ξ ∈ R} . (6.53c)

Using the matrix representations (6.50) of the Lie algebra elements, the subgroups
can be written via the exponential (exp is the usual matrix exponential in this case):

k1(ϑ) = exp(ϑZ) , a1(t) = exp(tA) , n1(ξ) = exp(ξN+) , (6.54)

with the generator Z of the maximal compact subgroup K1 given by:

Z ∶= ( 0 1
−1 0) = (N+ − N−) . (6.55)

Remark 6.4.3 (Exponential map) For compact Lie groups the exponential always maps
surjectively onto the connected component of the identity. For the non-compact group
SL2R, however, the exponential exp ∶ sl(2,R) → SL2R is not surjective – the image of
exp is not even dense in SL2R (see [Mos94]). It is not di�cult to show that matrices of
the form −n1(ξ) for ξ ≠ 0 cannot be reached using an argument based on eigenvalues
and the fact that −n1(ξ) for ξ ≠ 0 cannot be diagonalised.

Nevertheless, using the Iwasawa decomposition, any group element д ∈ G1 can be
written as a product д = kan and each factor taken by itself can be reached via the
exponential. Indeed, for the problematic matrices of the form −n1(ξ) we have:

−n1(ξ) = (−1)n1(ξ) = k1(π)n1(ξ) = exp(πZ) exp(ξN+) .

For SO↑(1, 2), though, the exponential is surjective because −1 and 1 get identi�ed by
the quotient map SL2R↠ PSL2R ≅ SO↑(1, 2).

For the following we need to introduce some additional notation. Let us de�ne:Notice that Taylor includes an
additional factor of −1/2 in his
de�nition of A and of 1/2 in his
de�nition of B. We compensate
for this in our de�nition of X±,
so that Z and X± are chosen
like in [Tay86, section 8.1].

B ∶= (0 1
1 0) = (N+ + N−) , (6.56)

as well as some elements X± of the complexi�ed Lie algebra sl(2,C), which will play the
role of raising and lowering operators with respect to Z (notice that X+ and X− will not
be represented by skew-symmetric operators in the following):

X± ∶= − 1
2(A± iB) , (6.57)

with commutators:
[Z,X±] = ±2iX± , [X+,X−] = −iZ . (6.58)

In addition, we need the Casimir operator C (see [Tay86, section 8.1, eq. (1.25)]):The Casimir operator will in
general not be quantizable. In
fact, this happens to be the case
for the group SL2R, where the
correspondence (6.52) yields
C =̂ 0 for the classical theory,
but C is typically represented by
a non-zero quantum operator.

C = Z2 − A2 − B2 = (N+ − N−)2 − A2 − (N+ + N−)2 . (6.59)

The Casimir operator as well is not an element of sl(2,R) itself but lies in the centre of
the universal enveloping algebra U(sl(2,R)) (see [FH91, section 25.1 and appendix C],
[Tay86, section 0.3] or [Lan85, section X.1] for the Casimir operator).
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Figure 6.11 The Hamiltonian vector �elds of q2+ p2 and q2− p2 correspond (up
to constants) to the Lie algebra elements Z and B, respectively.

Remark 6.4.4 (Universal enveloping algebra) The universal enveloping algebra of g is
the quotient Ug = Tg/I of unital associative algebras, of the tensor algebra Tg over g
seen as complex vector space, modulo the two-sided ideal I = ⟨X⊗Y −Y⊗X−[X,Y] ∶
X,Y ∈ g⟩. Dividing out the ideal implements the Lie brackets of g as commutators in
the universal enveloping algebra Ug, i. e. [X,Y] = X⊗ Y − Y ⊗ X for all X,Y ∈ g.

The universal enveloping algebra Ug with embedding ι ∶ g → Ug (the so-called
structure map; a Lie algebra morphism) has the following universal property: for any
unital associative algebraA over C, let L(A) be the Lie algebra we obtain fromA if we Notice that a Lie algebra is a

non-associative algebra. There
is the Jacobi identity instead of
associativity.

de�ne the Lie bracket of L(A) as the commutator [a,b] ∶= ab−ba for a,b ∈ A using the
multiplication inA. Then, for anyA, any Lie algebra morphism φ ∶ g→ L(A) induces a
unique algebra morphism φ̃ ∶ Ug→ A such that the following diagram commutes:

Ug A

g L(A)

ι L

φ

φ̃

⇒

.

From a categorial point of view, L and U are covariant functors. An argument based
on the above diagram shows that the universal algebra functor U is left adjoint to L
(the double arrow in the diagram is a natural transformation; see [HS71, section VII.1]).
An important consequence is that algebra representations of the universal enveloping
algebra Ug correspond in a one-to-one manner to Lie algebra representations of g (the
bracket is realised ‘implicitly’, so to say, by representations of Ug), and this is the deeper
reason why the universal enveloping algebra Ug and the Casimir operator C ∈ Z(Ug)
play such an important role in the representation theory of Lie groups.

Now, following [Tay86, section 8.2] and [Lan85, chapter VI], let U be an irreducible
unitary representation of SL2R on some Hilbert spaceH, and let:

E ∶= LU(Z) , R± ∶= LU(X±) , (6.60)

where LU is the derived representation LU of the Lie algebra (L is the Lie functor) LU(X) =
d
dt

∣

t=0
U(exp(tX))

[Lan85, section VI.1]. Then H admits an orthogonal direct sum decomposition into
weight spacesHk for the action of the maximal compact subgroup K1 = SO(2): For the theory behind weights,

see [Tay86, section 3.2].
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H =⊕kHk , (6.61)

so that elements in K1 act on the weight spaceHk according to:The domain of E is actually
only a subset ofHk (remember
the discussion of unbounded
operators from section 1.6), but
it can be shown that iE is essen-
tially self-adjoint. To save some
pages we will skip over this
technical complication. Please
consult [Tay86] or [Lan85] if
you want to �ll in the blanks.

U(exp(ϑZ))∣ψ⟩ = eiϑk∣ψ⟩ ⇒ −iE∣ψ⟩ = k∣ψ⟩ , (6.62)

for all ∣ψ⟩ ∈ Hk. In other words,Hk is the eigenspace with respect to the eigenvalue k
of the self-adjoint operator −iE (the operator E itself is skew-adjoint). Accordingly, we
will in the following usually write ∣k⟩ = ∣ψ⟩ for elements ∣ψ⟩ ∈ Hk.

To determine which values of k may appear in the decomposition, remember that
the identity e of the group must be represented by the identity operator 1 onH. In the
present case we have exp(2πZ) = 1 because the exponential exp ∶ sl(2,R) → SL2R is
just the usual matrix exponential exp(ϑZ) = eϑZ. Accordingly, equation (6.62) implies
that k must satisfy ei2πk = 1. Therefore, the values k must be integers:

k ∈ I ⊆ Z . (6.63)

Continuing with the analysis, we �nd that the operators R+ and R− act as raising andMathematically, R± represent
root vectors of the Lie algebra.
The algebra sl(2,R) has roots
+2 and −2 [FH91, chapter 12].

lowering operators on eigenvectors ∣k⟩ ∈ Hk of −iE:

− iE(R±∣k⟩) = −i(R±(E∣k⟩) ± 2iR±∣k⟩) = (k ± 2)(R±∣k⟩) . (6.64)

Taking into account the irreducibility, we thus get a single unbroken sequence of weight
spacesHk (for a reducible representation the representation spaceH could be the union
of several disjoint sequences) [FH91, section 11.1]:Given k ∈ Z there are exactly

two sequences like (6.65) that
continue to in�nity in both
directions – one for even and
one for odd integers.

⋯ Hk−2 Hk Hk+2 ⋯
R+ R+ R+ R+

R−R−R−R−
E E E

. (6.65)

While the sequence is not allowed to break into disjoint sequences, it can happen
that the sequence terminates in one direction or the other. This is the case if there exists
a maximal weight k = kmax with R+∣kmax⟩ = 0, which results in a sequence:

⋯ Hk−2 Hk = Hkmax ,
R+ R+

R−R−
E E

(6.66)

or a minimal weight k = kmin with R−∣kmin⟩ = 0, which yields a sequence like:

Hkmin = Hk Hk+2 ⋯
R+ R+

R−R−
E E

. (6.67)

On the other hand, it can be shown that any non-trivial irreducible unitary represent-
ation of a non-compact semisimple Lie group must be in�nite dimensional, yet each
weight spaceHk is only one-dimensional (see [Tay86, section 8.2] for the details). Hence,
unless U is the trivial representation a sequence must consist of in�nitely many weight
spaces. Therefore, and in contrast to unitary representations of a compact Lie group, the
sequence cannot end in both directions.
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As a result, we have four qualitatively di�erent possibilities for the spectrum of the
self-adjoint operator −iE. We get two possibilities for the case where the sequence in
(6.65) is in�nite in both directions (the superscript ‘e’ means ‘even’; ‘o’ stands for ‘odd’): Note that [Bar47] and [Kas03]

both use a di�erent convention
which amounts to an additional
factor of 1/2 in the de�nition
of Z. Accordingly, they discuss
spectra of − 1

2 iE. If you want to
compare the results, you just
have to multiply eigenvalues in
our notation by 1/2.

σe(−iE) = {2k ∶ k ∈ Z} , (6.68a)
σo(−iE) = {2k + 1 ∶ k ∈ Z} , (6.68b)

and two types of spectra for half-in�nite sequences, one type for each of the cases (6.66)
and (6.67), indexed by the minimal (or maximal) weight k0:

σ+k0(−iE) = {k0 + 2k ∶ k ∈ Z+
0} , (6.68c)

σ−k0(−iE) = {k0 − 2k ∶ k ∈ Z+
0} . (6.68d)

There are, however, further restrictions. A spectrum of the form (6.68c), for example,
requires a ground state ∣k0⟩, such that R−∣k0⟩ = 0 but R+∣k0⟩ ≠ 0, yet such a ground state
does not exist for arbitrary values of k0. In order to determine for which k0 a suitable
ground state exists we will calculate the operator norms of R+ and R−. To this end, con-
sider that the de�nition (6.57) of X± implies:

X+X− + X−X+ = 1
2(A

2 + B2) ,

so that the Casimir operator C = Z2 − A2 − B2 can be written as:

C = Z2 − 2(X+X− + X−X+) .

On the other hand, the commutator [X+,X−] = −iZ from equation (6.58) yields:

2(X+X− − X−X+) = −2iZ .

Adding and subtracting these two equations we get:

4X−X+ = Z2 + 2iZ − C , 4X+X− = Z2 − 2iZ − C , (6.69)

or, written in terms of the unitary irreducible representation U:

4R−R+ = E2 + 2iE − λ1 , 4R+R− = E2 − 2iE − λ1 , (6.70)

where the value λ ∈ C is the eigenvalue of the Casimir operator which, due to Schur’s
lemma, must be represented proportional to the identity, i. e. by LU(C) = λ1.

Furthermore, since LU represents Lie algebra elements by skew-symmetric operat-
ors the de�ning equation (6.57) of X± yields the relation R†

+ = −R− between the raising
and lowering operators. Taking into account that E produces the eigenvalue ik when
evaluated on an eigenstate ∣k⟩ ∈ Hk, we obtain:

∥R±∥2L(Hk ,Hk±2) = −⟨k∣R∓R±∣k⟩ = −
1
4(−k

2 ∓ 2k − λ) = 1
4(k

2 ± 2k + λ) ,

and therefore (see also [Tay86, section 8.2, equations (2.18) and (2.19)]):

∥R±∥L(Hk ,Hk±2) =
1
2((k ± 1)

2 + λ− 1)1/2 , (6.71)

Let us now write:

R+∣k⟩ = αk∣k + 2⟩ , R−∣k + 2⟩ = βk∣k⟩ ,
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then, given equation (6.71), αk is a complex number with absolute value:

∣αk∣ = 1
2((k + 1)

2 + λ− 1)1/2 , (6.72a)

and βk = −α∗k (due to R− = −R†
+; α∗k denotes the complex conjugate of αk), so that:

∣βk−2∣ = 1
2((k − 1)

2 + λ− 1)1/2 . (6.72b)

Finally, to obtain a spectrum of the form (6.68c) we mentioned there has to exist aSpectra of the form (6.68c)
belong to representations of the
type U+

k0 de�ned below.
ground state ∣k0⟩ such that R−∣k0⟩ = 0 but R+∣k0⟩ ≠ 0. The former requires βk0−2 = 0
and hence �xes the value λ of the Casimir operator as λ = 1 − (k0 − 1)2. The second
condition,R+∣k0⟩ ≠ 0, on the other hand, requires ∣αk0 ∣ > 0 and thus (k0+1)2+λ−1 > 0.
Inserting λ we get (k0 + 1)2 + 1 − (k0 − 1)2 − 1 > 0, which simpli�es to k0 > 0. As we
also have k ∈ Z in the present situation, a spectrum like (6.68c) is therefore possible if
and only if k0 ≥ 1.

A detailed case by case analysis following the lines of this example reveals that all
non-trivial irreducible unitary representations of SL2R can be classi�ed up to unitary
equivalence by the type of spectrum of −iE, chosen from equation (6.68), and the value
λ of the Casimir operator. We do not want to replicate the analysis for the other cases
here; instead, we will just quote the results from [Tay86, section 8.2]:

The unbounded spectra σe and σo of −iE give rise to the two families of principal
series representations and the complementary series:

First principal series Ue
is if −iE has an unbounded spectrum of type σe(−iE) and theIt is common to allow both

signs of s, but then Ue
is ≅ Ue

−is
for s ∈ R. For the second
principal series, this means
Uo
is ≅ Uo

−is for s ∈ R ∖ {0}, and
for the complementary series
Ue
s ≅ Ue

−s for s ∈ (−1; 1) ∖ {0}.

value of the Casimir operator is λ = 1 + s2 for s ∈ R+
0 (including s = 0).

Second principal series Uo
is if −iE has an unbounded spectrum of type σo(−iE) and

the value of the Casimir operator is λ = 1 + s2 for s ∈ R+ (excluding s = 0).
Complementary series Ue

s if −iE has an unbounded spectrum of type σe(−iE) and
the value of the Casimir operator is λ = 1 − s2 for s ∈ (0; 1).

The bounded spectra σ±k0 , on the other hand, belong to the two discrete series and the
mock discrete series representations:

Holomorphic (or positive) discrete series U+
k0 if −iE has a bounded spectrum of typeThe value k0 is sometimes

called Bargmann index. It is
the ‘ground state’ eigenvalue of
the spectrum of −iE.

σ+k0(−iE) with k0 ∈ Z and k0 ≥ 2 (the value λ of the Casimir operator is in this case
given by λ = 1 − (k0 − 1)2 = −k0(k0 − 2)).

Antiholomorphic (or negative) discrete series U−
k0 if −iE has a bounded spectrum of

type σ−k0(−iE) with k0 ∈ Z and k0 ≤ −2 (the value of the Casimir operator is in this
case given by λ = 1 − (k0 + 1)2 = −k0(k0 + 2)).

Mock (or limit of) discrete series U+
1 and U−

−1 if −iE has a bounded spectrum of type
σ+k0(−iE) for the special case of k0 = 1, or of type σ−k0(−iE) for k0 = −1, respectively.

The classi�cation is completed by the (�nite dimensional) trivial representation.

Remark 6.4.5 (Mock discrete series) The reason to put U+
1 and U−

−1 in a separate class
and not treat them as part of the positive and negative discrete series is that they have
Plancherel measure zero and do not appear in the Plancherel formula for SL2R. ApartThe Plancherel formula can be

found in [Lan85, chapter VIII]
but is irrelevant to our present
discussion.

from that, however, U+
1 and U−

−1 behave a lot like other discrete series representations
and it often makes sense to treat them as if they were part of the discrete series. Kastrup,
for example, makes no distinction and calls U+

k0 for all values k0 ≥ 1 (in our notation)
positive discrete series representations [Kas03, appendix B.3]. Bargmann speaks of the
‘discrete class’ representations U+

k0 and U−
−k0 for k0 ≥ 1 [Bar47, section 5i].
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⋯

complementary series Ue
s

negative discrete series U−k0
⋯

mock discrete series U+1 and U−−1 �rst principal series Ue
is

second principal series Uo
is

Figure 6.12 Classi�cation of the irreducible unitary representations ofG = SL2R
and parametrisation of the unitary dual Ĝ in terms of the complex parameter z
(see remark 6.4.6; �gure according to [Lan85, section VI.6, �gure 1]).

Remark 6.4.6 It is instructive to compare Taylor’s result with the classi�cation given in
Lang’s book [Lan85, section VI.6, theorem 8]. For this, recall that we found the relation
λ = 1 − (k0 − 1)2 for representations of the positive discrete series U+

k0 (including the
limit case k0 = 1). Inserting this into equation (6.72a), we get:

∣αk∣ = 1
2((k + 1)

2 − (k0 − 1)2)
1/2 .

Accordingly, we can set αk to:

αk ∶= 1
2((k + 1) + z) , (6.73)

if we de�ne z ∶= k0 − 1 for all representations of type U+
k0 .

The same formula (6.73) for αk holds for representations of the negative discrete
series U−

k0 (for k0 ≤ −1) provided we set z ∶= k0 + 1 in this case. Continuing, we can
write z = is for the �rst and second principal series Ue

is and Uo
is, as well as z = s for the

complementary seriesUe
s , always resulting in the formula (6.73) for αk. In addition, this

convention is supported by the fact that there exists a formal limit s→ 0 for the second
principal series Uo

s , and it turns out that the representation Uo
0 is reducible and splits

into the direct sum Uo
0 = U+

1 ⊕U−
−1 [Tay86, section 8.2, equation (2.56)].

Looking at [Lan85, section VI.6] you will �nd that Lang bases the classi�cation �rst
of all on the parameter z (although the parameter is called s in his book), and that z
allows a parametrisation of the unitary dual Ĝ according to �gure 6.12. Notice, however,
that representations of the positive discrete series (including the mock discrete series
representationU+

1 ) are then labelled by πz for z ∈ Z+
0 , starting with z = 0, and the index

is no longer the ‘ground state’ eigenvalue k0 of −iE. This is why Taylor’s convention is
better suited to our discussion.

As a convention, we will in the following include the mock discrete series
representations when we speak of the positive or negative discrete series!

6.4.3 Representations of SO↑(1,2) and Covering Groups

We will see shortly that not SL2R itself but one of its coverings is the appropriate
Canonical Group for our phase spaceR2/Z2. To identify the Canonical Group we hence
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need to classify the irreducible unitary representations of SO↑(1, 2) and of the other
covering groups. Fortunately, most of the work is already done. As all these groups have
the same Lie algebra sl(2,R), the results from above which depend only on properties
of the Lie algebra remain valid. In particular, the fundamental equation (6.64) for the
raising and lowering operators R± remains correct, so that R± still maps vectors from
Hk to vectors in Hk±2. Consecutive eigenvalues of −iE therefore di�er by a value of 2
not only for SL2R but for all the covering groups of SO↑(1,2).

What changes is the set of values that the index kmay assume in the decomposition
of H into weight spaces Hk. This is where we used the speci�c group G1 = SL2R to
derive equation (6.63) which states that k takes on integer values. The argument was
that the identity e of the group is represented by the identity operator 1 on H. On the
other hand, we had the action of the maximal compact subgroupK1 = SO(2) on vectors
∣k⟩ ∈ Hk according to equation (6.62):

U(exp(ϑZ))∣k⟩ = eiϑk∣k⟩ .

Given exp(2πZ) = 1 for the exponential map exp ∶ sl(2,R) → SL2R, the values of k
were hence determined by the requirement ei2πk = 1, which implied k ∈ Z.

Before we treat the general case we will �rst show how representations of the group
SO↑(1, 2) ≅ PSL2R are related to those of its double covering SL2R using an argument
given in [Tay86, section 2.1]. For this, letU ∶ PSL2R → U(H) be a unitary representation
of PSL2R and observe that the representation of PSL2R lifts to a representation Û of the
covering group SL2R via the covering morphism p ∶ SL2R↠ PSL2R:The diagram also shows that

each faithful representations
of PSL2R is lifted to an only
almost faithful representation
of SL2R.

SL2R

PSL2R U(H)
U

p
Û

⇒

. (6.74)

We know that the kernel ker p= {±1} of the covering map is a discrete normal subgroup
of SL2R, so that ker p lies in the centre Z(SL2R) [Sim96, theorem VII.6.2]. Therefore,
if U is irreducible the representation Û will be irreducible as well. We have, however,
already classi�ed all irreducible unitary representations of SL2R, and the representation
Û must hence be one of them – the irreducible unitary representations of PSL2R are a
subset of the irreducible unitary representations of SL2R.

Now in the opposite direction, a given unitary representation Û of SL2R yields a
representation of PSL2R if and only if Û factors through the covering map p, that is, if
there exists some mapping U such that Û = U ○ p. We can see that Û factors through p
if and only if Û is constant on the kernel ker p. Moreover, given that e ∈ ker p and that
the group identity e must be represented by Û(e) = 1, it follows that Û(ker p) = 1.

Via the exponential, the kernel ker p= {±1} ⊂ SL2R can be parameterised as:Notice that the kernel {±1}
lies in the maximal compact
subgroup K1 of SL2R. We will
see later, in theorem 6.4.7, that
this is not just a coincidence.

ker p= {exp( 12ϑZ) ∶ ϑ ∈ 2πZ} . (6.75)

Given the usual action (6.62) of K1 on Hk, the condition Û(ker p) = 1 hence requires
eiπk = 1. Accordingly, an irreducible unitary representation of SL2R factors through to an
irreducible unitary representation of PSL2R if and only if k ∈ 2Z.

Using the classi�cation of irreducible unitary representations for SL2R from above,
the classi�cation for SO↑(1, 2) ≅ PSL2R is hence given as follows:
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■ all the �rst principal series and the complementary series representations of SL2R are
also representations of PSL2R, but not the second principal series representations,

■ half of the positive and the negative discrete series representations U±
±k0 of SL2R are

as well representations of PSL2R, namely for even numbers k0 ∈ 2Z (with k0 > 0).

For the positive discrete series representations of SO↑(1, 2), in particular, the spectrum
of the operator −iE is given by:

σ+k0(−iE) = {2k + k0 ∶ k ∈ Z+
0} , k0 ∈ 2Z+ . (6.76)

Finally, let us consider representations for a general covering group of SL2R. We
will see that the discussion of the double covering SL2R ↠ PSL2R can be generalised
appropriately. An important detail, though, necessary to derive equation (6.75) (which
ultimately determined the values k) was that the kernel of the covering map p is part
of the maximal compact subgroup K1 of SL2R. Incidentally, we already know that the
kernel of a covering morphism p lies in the centreZ(G) for any connected Lie groupG.
The following theorem about the Cartan decomposition then does the heavy lifting and Bargmann implicitly uses

the Cartan decomposition in
[Bar47, section 4] to construct
the universal covering group of
SL2R.

shows that the centre Z(G) is contained in the maximal compact subgroup of G.

Theorem 6.4.7 ([Kna96, theorem 6.31]) Let G be a semisimple Lie group, let θ be a
Cartan involution of its Lie algebra g, let g = k⊕ p be the corresponding Cartan decom-
position, and let K be the analytic subgroup of G with Lie algebra k. Then

(a) there exists a Lie group automorphism Θ of G (the global Cartan involution of G)
with di�erential θ, and Θ has Θ2 = 1

(b) the subgroup of G �xed by Θ is K
(c) the mapping K × p → G given by (k,X) ↦ k exp(X) is a di�eomorphism onto G

(the decomposition G ≅ K × p is the global Cartan decomposition of G)
(d) K is closed
(e) K contains the centre Z(G) of G
(f) K is compact if and only if Z(G) is �nite
(g) when Z(G) is �nite, K is a maximal compact subgroup of G.

De�nition 6.4.8 (Cartan decomposition) LetBbe the Killing form of a real semisimple The Killing form B of a real
semisimple Lie group is non-
degenerate and inde�nite. It
can be shown that every real
semisimple Lie algebra g has
a Cartan involution [Kna96,
corollary 6.18].

Lie algebra g. An involution θ of g is called a Cartan involution if the symmetric bilinear
form Bθ(X,Y) ∶= −B(X,θY) for X,Y ∈ g is positive de�nite.

A Cartan involution yields a Cartan decomposition g = k ⊕ p, where g splits into
eigenspaces k and p of the involution θ with eigenvalues +1 and −1, respectively (so that
θ∣k = +1 and θ∣p = −1). The eigenspace p does not close under the Lie bracket, because
[p,p] ⊆ k. The eigenspace k, on the other hand, is a subalgebra of g. The direct sum in
g = k⊕ p is a direct sum of vector spaces.

For our particular case G = SL2R it follows from part (g) of the theorem that the
analytic subgroup K in the Cartan decomposition G ≅ K × p is the maximal compact
subgroup K = SO(2) of SL2R (the Iwasawa decomposition G = KAN is actually a
re�nement of the Cartan decomposition; see [Kna96, section VI.4]). We want to remark
that a Cartan involution of sl(2,R) that yields the decomposition SL2R ≅ SO(2) × p is
given by θ(X) = −Xt for all X ∈ sl(2,R) but we will not need it in the following. Instead,
let us draw some conclusions from theorem 6.4.7:
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Corollary 6.4.9 (Structure of covering groups) Let G be a connected semisimple Lie
group, g its Lie algebra. Let g = k⊕p be a Cartan decomposition of the Lie algebra g and
let G ≅ K × p be the corresponding Cartan decomposition of G. Furthermore, let G′ be
a covering group of G and let p ∶ G′↠ G be the covering morphism. Then:

(i) the Cartan decomposition of the covering group G′ is given by G′ ≅ K′ × p, via the
di�eomorphism (k′,X) ↦ k′ expG′(X), where K′ is the analytic subgroup of G′
with Lie algebra k,

(ii) the kernel ker pof the covering morphism p lies in the subgroup K′. The restriction
pK ∶ K′ ↠ K of the covering map phas kernel ker pK = ker p. In particular, we get
K ≅ K′/ker p.

Proof. (i) This is a direct consequence of theorem 6.4.7.
(ii) For a connected Lie groupGwe already mentioned in remark 6.4.1 that the kernel

of the covering morphism lies in the centre ker p ⊆ Z(G′) of the covering group G′,
because ker p ⊆ G′ is a discrete normal subgroup. Moreover, due to semisimplicity of
G′, part (e) of theorem 6.4.7 yields Z(G′) ⊆ K′, so that ker p ⊆ K′ follows. Therefore,
ker pK = ker pand we obtain K ≅ K′/ker pK = K′/ker p. ∎

In simple words, corollary 6.4.9 states that all the covering groups of a connected
semisimple Lie group G are completely determined by covering groups of the maximal
compact subgroup K. So, when we want to classify irreducible unitary representations of
all the covering groups of G = SL2R, we just have to consider coverings of the maximal
compact subgroup K = SO(2) ≅ S1.

When we write the circle group as S1 = {z ∈ C ∶ ∣z∣ = 1}, an n-fold cover of S1 over
itself is given by pn ∶ S1 ↠ S1 , z = eiφ ↦ zn = einφ [Hat02, section 1.3]. The kernel of
pn consists of all nth roots of unity (see �gure 6.13) and can be parametrised as:

ker pn = {ei(2πm)/n ∶m = 0, . . . ,n − 1} . (6.77)

Furthermore, the universal covering group of S1 is isomorphic to (R,+) with covering
morphism p∞ ∶ R → S1 , φ↦ eiφ and kernel ker p∞ = 2πZ. To parametrise the kernel
of p∞ in the fashion of equation (6.77), recall that the Lie algebra LR = T0R can be
identi�ed with R. Thus, the exponential map expR ∶ LR → R is the identity expR = idR,
and we obtain:

ker p∞ = 2πZ = {expR(2πm) ∶m ∈ Z} . (6.78)

Now, to lift this result from S1 to the whole group let ẽxp ∶ sl(2,R) → S̃L2R be the
exponential map of the universal covering group. Then it follows from corollary 6.4.9
and equation (6.78) that the kernel of the covering map p∞ ∶ S̃L2R ↠ SL2R can be
parametrised as (the generator Z ∈ k is the same as before):This result for the universal

covering is mentioned near the
end of [Tay86, section 8.2] but
no proof is given.

n = 2 n = 3 n = 4 n = 5

Figure 6.13 The kernel of the n-fold covering pn ∶ S1 → S1 , z↦ zn of the circle
group S1 over itself consists of all nth roots of unity.
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SO↑(1, 2)

SL2R

Mp2R

S̃L2R
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Figure 6.14 Possible ground state eigenvalues k0 of −iE for irreducible unitary
representations of the positive discrete series U+

k0 , pictured for covering groups
of G1/2 = SO↑(1,2). Filled dots indicate faithful representations, which lift to
unfaithful representations of the covering groups.

ker p∞ = {ẽxp(2πmZ) ∶m ∈ Z} . (6.79)

If pn ∶ Gn↠ G is an n-fold covering of G = SL2R, on the other hand, we have:

ker pn = {expGn(2πmZ) ∶m = 0, . . . ,n − 1} . (6.80)

The elements in ker pn are all mapped to the identity 1 ∈ G under the covering map
pn but they are distinct elements of the covering group Gn, just like we have seen in
the case of SL2R ↠ PSL2R. So, while exp(ϑZ) = 1 for ϑ = 2πZ in SL2R, we have
expGn(ϑZ) = 1 for ϑ = 2πnZ in the covering Gn. Accordingly, the values k in the
decomposition ofH into weight spaces for an n-fold cover of SL2R are determined by
the condition eik2πn = 1. In summary we therefore obtain the following results:

■ for irreducible unitary representations of an n-fold covering Gn of G1 = SL2R, the
index kmay assume values k ∈ (1/n)Z (we can abuse the notation a little and write
G1/2 = PSL2R for the ‘1/2-fold cover’ of SL2R),

■ for irreducible unitary representations of the universal covering group S̃L2R we see Explicit representations of the
universal covering group S̃L2R
were �rst constructed in detail
by Pukánszky [Puk64], later
elaborated on by Sally [Sal67].

that arbitrary values k ∈ R may appear.

In particular for the positive discrete series U+
k0 of the covering groups we �nd that

the ground state eigenvalue k0 of −iE, the minimal weight of the representation U+
k0 , is

given by k0 ∈ (1/n)Z+ for the n-fold covering groupGn of SL2R. The universal cover of
SL2R corresponds to the limit n→∞ for which k0 ∈ R+ (�gure 6.14 gives an overview).
The spectrum of the operator −iE is, as before:

σ+k0(−iE) = {2k + k0 ∶ k ∈ Z} . (6.81)

Once the ground state eigenvalue k0 is �xed by choice of a speci�c representation U+
k0 ,

all higher eigenvalues of −iE simply di�er by a value of 2.
So, for SO↑(1,2) the �rst few possible spectra of −iE are:

σ+2 (−iE) = {2, 4, 6, 8, . . .} ,
σ+4 (−iE) = {4, 6, 8, 10, . . .} ,
σ+6 (−iE) = {6, 8, 10, 12, . . .} , etc.
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For the special linear group SL2R, on the other hand, they are:

σ+1 (−iE) = {1, 3, 5, 7, . . .} ,
σ+2 (−iE) = {2, 4, 6, 8, . . .} ,
σ+3 (−iE) = {3, 5, 7, 9, . . .} , etc. ,

and for the metaplectic group Mp2R the possibilities are:

σ+1/2(−iE) = { 12 ,
5
2 ,

9
2 ,

13
2 , . . .} ,

σ+1 (−iE) = {1, 3, 5, 7, . . .} ,
σ+3/2(−iE) = { 32 ,

7
2 ,

11
2 ,

15
2 , . . .} , etc.

Example 6.4.10 A spectrum of −iE that starts with k0 = 1, for instance, belongs to the
positive discrete series representation U+

1 . This representation is a faithful irreducible
unitary representation of SL2R and a (unfaithful) representation ofMp2R and all higher
covering groups of SL2R, but not an irreducible unitary representation of SO↑(1, 2).

If we �nd a spectrum of −iE that starts with k0 = 3/2, on the other hand, we can
identify the associated representation U+

3/2 as a faithful irreducible unitary representa-
tion of the metaplectic group Mp2R. It is also a unfaithful representation of all proper
covering groups of Mp2R. Nevertheless, U+

3/2 is no irreducible unitary representations
of SO↑(1, 2), nor of SL2R.

Remark 6.4.11 (Casimir operator) The formula λ = −k0(k0 − 2) for the eigenvalue λ of
the Casimir operator remains correct for positive discrete series representations of the
covering groups. An interesting observation, however, is that the value λ is the same for
the representations U+

k0 and U+
2−k0 (when they are allowed), due to:

λ(2−k0) = −(2 − k0)((2 − k0) − 2) = −(2 − k0)(−k0) = −k0(k0 − 2) = λ(k0) .

The representationsU+
1/2 andU+

3/2 of the metaplectic group provide the �rst non-trivial
example of this behaviour.

6.4.4 Identi�cation of the Canonical Group

Now that wehave classi�ed the irreducible unitary representations of SO↑(1, 2) and
its covering groups, recall how the Lie algebra sl(2,R) originally appeared. To obtain the
speci�c form (6.50) of the fundamental Lie brackets of sl(2,R) we made the following
identi�cations with the classical observables q2, p2 and qp (we assume that the units of
q2 and p2 are chosen so that the constant α in equation (6.52) equals 1):

A =̂ −qp , N+ =̂ 1
2q

2 , N− =̂ − 1
2p

2 , (6.82)

The classical observable associated to the generator Z of the maximal compact subgroup
is thus:

Z = N+ − N− =̂ 1
2(q

2 + p2) . (6.83)

This classical quantity is clearly half-bounded from below (it is, after all, the energy of
a harmonic oscillator). Therefore, only representations of the positive discrete series will
play a role when we try to model a particle on a half-line.
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On the other hand, section 6.3 showed that the squared momentum operator p̂2 with
domain D∞ according to equation (6.43) is self-adjoint on the half-line. Moreover, we
know from section 6.2 that both q̂2 and the symmetrised combination 1

2(q̂p̂+ p̂q̂) (with
domains chosen appropriately) are self-adjoint operators when restricted to the half-
line. Thus, we have quantized versions of our fundamental observables q2, p2 and qp
and they give a Lie algebra representation of sl(2,R) by self-adjoint operators on the
Hilbert spaceH+ = L2(R+, dq):

− iLU(A) = − 1
2(q̂p̂+ p̂q̂) , −iLU(N+) = 1

2 q̂
2 , −iLU(N−) = − 1

2 p̂
2 . (6.84)

In particular, Z is represented by:

− iE = −iLU(Z) = −iLU(N+ − N−) = 1
2(q̂

2 + p̂2) . (6.85)

Remark 6.4.12 Note that the whole purpose of the operator −iE in equation (6.85) is to
�x a speci�c representation when we try to identify the Canonical Group for a particle
on a half-line but, in contrast to the situation in [Kas03; Kas07], the operator −iE does
not have to act as Hamiltonian. Therefore, the Canonical Group obtained below is not
speci�c to physics of a harmonic oscillator but governs generic dynamics on a half-line
with ‘hard wall’ boundary condition.

Remark 6.4.13 Although equation (6.85) looks like the well-known harmonic oscillator
Hamiltonian on R, observe that it really describes (if used as Hamiltonian) a harmonic
oscillator on a half-line. The di�erence isn’t visible in form of a potential but lies hidden
in the operator domain. Compared to the operator p̂2 on the whole line which is self-
adjoint on the domain {ψ ∈ L2(R, dq) ∶ ψ ∈ AC2[−∞;+∞]}, section 6.3 showed that
the operator p̂2 restricted to the half-line requires the boundary condition ψ(0) = 0 in
addition to ψ ∈ AC2[0;∞] for all ψ ∈ D∞. Without the boundary condition, p̂2 isn’t
self-adjoint on L2(R+, dq).

To determine the spectrum of E in equation (6.85), on the other hand, we can exploit
the fact that the operators q̂2 and p̂2 restricted to L2(R+, dq) act on wave functions in
the same way as the original, unrestricted operators on L2(R, dq). Only the domain is
di�erent. Therefore, the spectrum σ(−iE) consists precisely of the eigenvalues of the
conventional harmonic oscillator on the whole line for which the eigenfunctions satisfy
the boundary condition ψ(0) = 0.

Remark 6.4.14 (Eigenfunctions of the harmonic oscillator on R) The eigenfunctions of
the harmonic oscillator Hamiltonian 1

2(q̂
2 + p̂2) on L2(R, dq) are well known as (see

for example [Sak94, appendix A.4]):

ψk(q) =
1√
2kk!

π−1/4e−q
2
/2Hk(q) . (6.86)

and they satisfy the well-known eigenvalue equation:

1
2(q̂

2 + p̂2)∣ψk⟩ = (k + 1
2)∣ψk⟩ , for k ∈ Z+

0 . (6.87)

The functions Hk in equation (6.86) are the Hermite polynomials:

Hk(q) = (−1)keq
2
(∂q)ke−q

2
. (6.88)
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Figure 6.15 Solutions for the harmonic oscillator on a half-lineR+ are, due to the
additional boundary condition ψ(0) = 0, exactly the odd eigenfunctions of the
regular harmonic oscillator on the whole line R.

Explicitly, the �rst few Hermite polynomials are:

H0(q) = 1 , H1(q) = 2q ,
H2(q) = 4q2 − 2 , H3(q) = 8q3 − 12q ,
H4(q) = 16q4 − 48q2 + 12 , H5(q) = 32q5 − 160q3 + 120q .

We see that Hk(0) = 0 whenever k is odd, whereas Hk(0) ≠ 0 when k is even.

It follows from remark 6.4.14 that the eigenfunctions of the operator −iE above are
exactly the ψn from equation (6.86) for odd values of n (see also �gure 6.15). Hence, the
spectrum of −iE is:

σ(−iE) = {2k + 3
2 ∶ k ∈ Z

+
0} = σ+3/2(−iE) . (6.89)

Due to half-integer weights, this representation cannot arise if the Canonical Group is
equal to PSL2R or SL2R. Nevertheless, U+

3/2 is an irreducible unitary representation of
the metaplectic group Mp2R. Hence we can state as result:

The simplest Canonical Group C on the classical phase space R2/Z2 that is
able to reproduce the squared momentum operator p̂2 on L2(R+, dq) with
domain D∞ as in equation (6.43) is the metaplectic group C =Mp2R, the
4-fold covering group of SO↑(1, 2) and the 2-fold covering group of Sp2R.
In particular, it is the only Canonical Group C for which U+

3/2 is a faithful
representation.

The existence of a suitable Canonical Group proves that using the group-theoretical
quantization method it is possible to obtain a viable quantum theory for a particle on a
half-line including the re�ection at the end as if by a ‘hard wall’ potential but without
need for the potential, nor for the negative part of the real line on which this potential
would have be de�ned. Instead, this toy model of a system with contact interaction can
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be quantized directly, over the restricted con�guration space R+, if the boundary condi-
tion is realised on the classical level as topological feature of the phase space.

6.4.5 The Harmonic Oscillator and the Metaplectic Representation

To understand the relation between the one-dimensional harmonic oscillator on
the whole line and the oscillator on the half-line properly, we will end this chapter with
a few words on the metaplectic representation. The metaplectic representation ofMp2R
in relation to the harmonic oscillator has been mentioned by Kastrup [Kas07, section 3.5]
but an earlier and more thorough treatment can be found in [Tay86, chapters 1 and 11].
Furthermore, the metaplectic representation ofMp2R is closely related to the projective
Segal–Shale–Weil representation of Sp2R [Wei64] which is famous for its application to
modular forms and θ-series [LV80].

The problem that will lead us to the metaplectic representation reveals itself when
we think about the well-known spectrum of the harmonic oscillator Hamiltonian over
the whole line, Q = R:

σHO ∶= σ( 12(q̂
2 + p̂2)) = {k + 1

2 ∶ k ∈ Z
+
0} . (6.90)

The spectrum σHO looks exactly like the spectrum σ+1 (−iE) = {2k + 1 ∶ k ∈ Z+
0} scaled

by a factor of 1/2. The following identi�cation therefore seems tempting:

− iE ?= q̂2 + p̂2 ⇒ σHO
?= σ+1 (− 1

2 iE) . (6.91)

Nevertheless, you will notice eventually that the unrestricted operators q̂2 and p̂2 on
the Hilbert space H = L2(R, dq) over R have the same commutation relations as the
restricted operators q̂2 and p̂2 on the Hilbert spaceH+ = L2(R+, dq) over the half-line.
Thus, we have to identify −iEwith 1

2(q̂
2+ p̂2) for the regular harmonic oscillator on the

whole line as well, similar to equation (6.85), which contradicts equation (6.91).
The answer to this riddle is that the spectrum σHO of the harmonic oscillator does not

come from an irreducible unitary representation of Sp2R or any of the covering groups.
The spectrum must rather be written as:

σHO = σ+1/2(−iE) ∪ σ+3/2(−iE) , −iE = 1
2(q̂

2 + p̂2) , (6.92)

and belongs to the reducible representation Ump ∶= U+
1/2 ⊕U+

3/2 of Mp2R. This is quite
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interesting in the light of remark 6.4.11 because the Casimir operator is represented by
the same value λ = 3/4 for the representations U+

1/2 and U+
3/2. The representation Ump

of Mp2R on the Hilbert spaceH = L2(R, dq), with realisations as in equation (6.84) yet
without restriction to the half-line, is known as metaplectic representation of the group
Mp2R [Tay86, section 11.3]. It becomes obvious that the spectrum σHO of the harmonic
oscillator must belong to a reducible representation of Mp2R once one realises that the
ladder operators R± on L2(R, dq) are quadratic polynomials in q̂ and p̂ and therefore
cannot change the parity of wave functions. The Hilbert space H = L2(R, dq) hence
splits into a direct sum:

H = He ⊕Ho , (6.93)

for which the subspacesHe andHo of wave functions with even/odd parity are invariant
under the metaplectic representation Ump. The eigenfunctions ψk of the conventional
harmonic oscillator over R, however, alternate between even and odd parity.
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The spectra show that U+
1/2 becomes an irreducible representation on the subspace

He ⊂ H, whereas U+
3/2 is irreducible on the subspace Ho ⊂ H. We can, furthermore,

restrict these representations to representations on H+ = L2(R+, dq) because values
ψe/o(−q) of even and odd wave functions on the negative half-line are determined by
ψe/o(−q) = ±ψe/o(q) for positive q ∈ R+. The boundary condition that appears in the
domain D∞ of the operator p̂2 on the half-line then is a result of the fact that odd wave
functions ψ ∈ Ho satisfy ψ(0) = 0. This is the promised relation between the harmonic
oscillator on the whole line and the oscillator on the half-line:

The harmonic oscillator on the half-line is in a very direct sense ‘half of ’
the oscillator on the whole line.

Remark 6.4.15 (Segal–Shale–Weil representation) The relation to the Segal–Shale–Weil
representation of Sp2R is that the metaplectic representation of Mp2R projects down to
a representation of Sp2R on PU(H):

Mp2R U(H)

Sp2R PU(H)

U+1/2 ⊕ U+3/2

⇒

.

Nevertheless, we have 2πE∣k⟩ = πi(q̂2+ p̂2)∣k⟩ = πik∣k⟩ for k ∈ {1, 3, 5, . . .}, and hence
e2πE∣k⟩ = eπik∣k⟩ = −∣k⟩ [Tay86, section 11.3]. It follows that exp(2πZ) = e (in Sp2R)
is represented by e2πE = −1. Therefore, the Segal–Shale–Weil representation of Sp2R is
only a projective representation on PU(H) = U(H)/C× (where −1 ∼ +1) but does not
lift to a ‘true’ representation of Sp2R on U(H) [LV80, sections 1.6–1.7]. This matches
our discussion of the possible representations of covering groups in section 6.4.3.

Finally, a di�erent way to approach the metaplectic representation is in terms of the
ladder operators a and a†, and the number operator N = a†a of the regular harmonic
oscillator over R [Sak94, section 2.3]:

a = 1√
2
(q̂+ ip̂) , a† = 1√

2
(q̂− ip̂) , N = 1

2
(q̂2 + p̂2) − 1

2
. (6.94)

These operators satisfy the well-known commutation relations:

[a,a†] = 1 , [N,a] = −a , [N,a†] = a† , (6.95)

and the harmonic oscillator Hamiltonian reads:

Ĥ = 1
2(q̂

2 + p̂2) = N + 1
2 . (6.96)

Equation (6.95) shows that the ladder operators a and a† belong to to the Lie algebra
of the Heisenberg group, not to the Lie algebra sl(2,R), and this is the reason why the
identi�cation (6.91) can’t explain the spectrum σHO.

On the other hand, we can rewrite the Hamiltonian Ĥ in (6.96) as:

Ĥ = N + 1
2 = a

†a + 1
2 =

1
2(a

†a + aa†) , (6.97)

and the commutation relations of Ĥ and the squared operators a2 and a†2 are:

[a2,a†2] = 4Ĥ , [H,a2] = −2a2 , [H,a†2] = 2a†2 . (6.98)
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Moreover, if we now de�ne: The representation (6.99) has
applications in quantum optics
and is known as single-mode
‘two boson’ realisation of the
Lie algebra su(1, 1) in this case
[Per86; Ger91; Ger05; Kas03].

It is also noteworthy how well
the realisation (6.99) plays with
the ‘mirror particle’ model of
motion on the half-line that we
mentioned in remark 6.3.5.

− iE ∶= Ĥ , −iR+ ∶= R̂+ ∶= 1
2a

†2 , −iR− ∶= R̂− ∶= 1
2a

2 , (6.99)

these operators satisfy the same commutation relations as the equally named operators
introduced in equation (6.60):

[E,R±] = ±2iR± , [R−,R+] = iE .

Accordingly, the operators R± in equation (6.99) are precisely the raising and lowering
operators of sl(2,R) introduced before.

The relation (6.99) between the two di�erent kinds of ladder operators is shown in
�gure 6.16 and explains the spectrum of the harmonic oscillator on the whole line and
its relation to the spectrum of the harmonic oscillator on the half-line quite nicely:

■ Over the whole line, the ladder operators a and a† are available, in addition to the
operators R̂+ and R̂−, because the phase space T∗R over R admits an action of the
Heisenberg group H(1). The operators a and a† then ‘connect’ the two irreducible
representations U+

1/2 and U+
3/2 of the metaplectic group Mp2R so that their direct

sum becomes necessary to explain the spectrum of the harmonic oscillator over the
whole line.

■ The phase space R2/Z2, on the other hand, is incompatible with an action of the
Heisenberg group, which is reasonable because the restriction to the half-line breaks
the translation subgroup in the q-coordinate. The raising and lowering operators R̂±
associated to the metaplectic group are still available; however, the two irreducible
components of the metaplectic representation of Mp2R are no longer connected.
Thus, only one of the representations, either U+

1/2 or U+
3/2, can (and does) appear.

In this thesis, we found that the irreducible representation U+
3/2 of Mp2R contains

the operator p̂2 restricted to the half-line R+ ⊂ R with domain D∞ ⊂ L2(R+, dq). Since
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Figure 6.16 The two kinds of ladder operators. On the Hilbert space L2(R, dq)
over the whole line, the operators a and a† ‘connect’ the representationsU+

1/2 and
U+
3/2 of Mp2R but themselves belong to the Lie algebra of the Heisenberg group.

Over the half-line, on the other hand, only the operators R̂± are well-de�ned and
U+
3/2 is the representation that contains the operator p̂2 on the domain D∞.
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the domain D∞ includes the boundary condition ψ(0) = 0 for wave functions ψ ∈ D∞,
this is the representation that must be used to describe motion on the half-line where a
particle gets re�ected by a hard wall potential at the origin. Nevertheless, notice again
that the potential isn’t needed to arrive at correct results – the obtained quantum theory
is self-consistent on the subspace L2(R+, dq) ⊂ L2(R, dq) and the boundary condition
ψ(0) = 0 is automatically ful�lled by all Hamiltonians that can be written down using
the fundamental quantum operators of this theory.

The representationU+
1/2, on the other hand, while associated to the same Canonical

Group Mp2R, does not describe a particle on the half-line when we require this model
to be equivalent to a particle con�ned to R+ by a hard wall potential. Nevertheless, the
representation may still be relevant for models where R+ appears in a di�erent physical
context, say as a topological factor of some higher-dimensional con�guration space. The
half-line R+ might, for example, be the radius in some centrally symmetric system.



Summary and Conclusions

Nature uses only the longest threads to weave her
patterns, so each small piece of her fabric reveals the
organization of the entire tapestry.

Richard P. Feynman [Fey65, chapter 1]

In this work we studied the direct quantization of non-relativistic classical systems
using a group-theoretical scheme. Although phase spaces di�erent from T∗Rn pose no
problem in Hamiltonian mechanics, the same cannot be said for quantum mechanics.
Since global and topological aspects play a much bigger role in quantum theory than in
the associated classical theory, it happens frequently that certain, sometimes even basic,
classical observables have no appropriate quantum counterparts. As application of the
Canonical Group Quantization method we explored the relation between classical and
quantum models for a particle on a half-line with ‘hard wall’ boundary condition.

The �rst chapter started with a review of Dirac’s canonical quantization programme
and its formalisation in terms of the Dirac quantization map. Nevertheless, the famous
theorem of Groenewold and Van Hove exposes such a ‘full’ quantization as impossible:
the supposedly natural assumptions are inconsistent. Some of the assumptions have a
physical motivation but others appear to be adopted just for the bene�t of mathematical
convenience. The main goal of this chapter was to understand how a physically justi�ed
quantization procedure should look like – what it can, and what it can not accomplish.
In contrast to a widespread belief, the nature of quantization is only one of similarity
between classical and quantum theory, not the inverse of a physically realised classical
limit. As a consequence, there is no physical reason for a quantization method to produce
a unique result, nor does it make much sense to require arbitrary classical systems, or
arbitrary observables of these systems, to be quantizable.

Also in the �rst chapter we discussed some mathematical points in quantum theory
where standard physics textbooks are insu�cient to our purposes, most important the
subtle di�erence between symmetric and self-adjoint operators. The distinction rests in
the operator domains and domains are typically ignored in calculations. We explained
why this simpli�cation is acceptable in quantum mechanics over the trivial con�guration
space Rn but no longer adequate in case of non-trivial spaces: due to Stone’s theorem,
the existence of self-adjoint (but not of symmetric) operators is heavily in�uenced by
global and topological aspects. The momentum operator p̂ = −iħ∂q, for example, can
be restricted to a symmetric operator on the half-lineR+ ⊂ R but there exists no domain
on which the restricted operator were self-adjoint.

The proper way to handle the di�culties with domains of self-adjoint operators is in
terms of corresponding continuous groups of unitary transformations. Stone’s theorem
asserts that any self-adjoint operator generates a strongly continuous group of unitary
transformations and vice versa. This is up to a certain point analogous to the situation
in classical mechanics where observables, by means of Hamiltonian vector �elds, act
as generators of �nite transformations. There exist classical observables, however, for
which the associated Hamiltonian vector �elds are incomplete, so that they generate only
pseudogroups, not groups, of symplectic transformations. Since self-adjoint operators,
on the other hand, always generate groups of unitary transformations, such observables
have no proper quantum counterparts. The Canonical Group Quantization method is a
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constructive and physically transparent technique to select from the outset only classical
observables that generate groups of transformations. A set of ‘fundamental’ observables
then �xes a quantization map. In contrast to a quantization scheme that works only on
the level of in�nitesimal generators, the use of a ‘quantization group’ ensures that global
and topological properties are preserved.

Continuing, in chapters 2 to 4 we reviewed some of the mathematical background
required to understand Isham’s quantization procedure. In chapter 2 we gave a review
of basic di�erential geometry using the calculus of di�erential forms. Chapter 3 dealt
with geometric aspects of Lie groups, the relation between Lie groups and Lie algebras
via Lie functor and exponential map, and group actions on manifolds. We also included
some notes on semidirect products and group extensions in this chapter. Afterwards,
chapter 4 gave an introduction to symplectic manifolds and the geometric formulation
of Hamiltonian mechanics. In particular, we discussed the canonical symplectic struc-
ture of cotangent bundles and two natural constructions for symplectic group actions in
this case.

Chapters 5 and 6 contain the main achievements of this dissertation. In chapter 5
we studied Isham’s Canonical Group Quantization technique in detail and were able to
sort out some points left unclear by Isham’s presentation in [Ish83]. The construction
of the Canonical Group C via a central Lie algebra extension in the exceptional case for
which the group G itself ‘doesn’t work’ appears as a kind of last resort in Isham’s work.
The motivation given for the speci�c use of a central extension, in particular, is merely
that a supposedly more natural form of ‘enlargening’ fails, yet the actual signi�cance
of the central extension from a physical point of view was left unclear. As a result, the
construction of the Canonical Group seemed conceptually rather unsatisfying in this
special case, suggestively called ‘pathological’ by Isham.

In contrast to Isham’s display, a cornerstone of our analysis was a sharp distinction
between Geometric Group G and Canonical Group C right from the outset. An advantage
of our perspective is that both groups have a clear conceptual meaning:

· the Geometric Group G is a G-space structure of the classical phase space,
· the Canonical Group C is associated directly to a set of preferred observables.

This allowed us to do a proper study of the relation between C and G, and the result
was a much clearer and more satisfying construction of the Canonical Group. Following
our approach, the relation between the Lie algebras LC and LG via a central extension
appears naturally and inevitably, mimicking the relation between classical observables
and Hamiltonian vector �elds. In fact, we found that it is always possible to de�ne LC
by means of a central extension, also if the extension is not strictly required (although
a central extension will in this case be a trivial extension, isomorphic to a direct sum
of Lie algebras). On the other hand, we proved that the construction of LC via a non-
trivial central extension is strictly necessary when canonically conjugate observables are
among the fundamental observables.

In chapter 6 we used the quantization procedure to examine the relation between
classical and quantum models for a particle moving on a half-line with emphasis on the
boundary condition. As guiding principle, an acceptable quantum theory for a particle
on a half-line should be physically equivalent to the theory of a particle restricted to the
spatial region R+ ⊂ R by means of a ‘hard wall’ potential. The value of this toy model is
that it allows for a detailed study of the boundary condition at the origin under controlled
circumstances – a simple example of a contact interaction. Our question was whether a
consistent quantum theory overR+ that realises the boundary condition implicitly could
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be obtained directly from a corresponding classical model with help of the quantization
method. Since Isham claimed to have constructed a quantum theory over the half-line
in [Ish83, section 4.5], the chapter was split roughly into two parts:

In the �rst half of chapter 6 we discussed Isham’s earlier quantization attempt. The
‘obvious’ classical phase space of a particle on the half-line R+ is the cotangent bundle
T∗R+. Starting with T∗R+, the group R⋊R+ leads to a quantum theory over R+ based
on the fundamental observables q and qp (the momentum itself is not quantizable over
the half-line!). Although formally correct, some points raised doubts about the physical
interpretation as quantum theory over a half-line:

· Isham’s self-adjoint representation of the quantum operators constructed in analogy
to the position space representation of standard quantum mechanics requires a scale-
invariant measure, dq/q, onR+ and this measure con�icts with the Euclidean metric
induced on R+ via the embedding R+ ⊂ R as half of the whole line. Thus, the in-
terpretation of R+ as a half-line became questionable. In fact, a much better �tting
interpretation appeared to be as quantum theory for a particle moving on the whole
line with an unusual choice of coordinates.

· The obtained quantum theory on R+ is scale-invariant in the q-coordinate so that it
is impossible to �x a length scale. Physical applications are limited to systems which
exhibit such a scale-invariance but we would not expect this kind of symmetry to
hold in general for a particle moving on a half-line.

We were able to sort out the �rst problem by an explicit construction of the proper
position space representation on the Hilbert spaceH+ = L2(R+, dq) equipped with the
usual Lebesgue measure. To do this, we proved that the operators q̂ and π̂ of standard
quantum mechanics on the Hilbert space H = L2(R, dq) over the whole line that are
associated to the classical observables q and π = qp can be restricted to self-adjoint
operators onH+ in the strict mathematical sense. Given this result, we could show that
Isham’s representation is unitary equivalent to the proper position space representation.
Such a unitary equivalence exists because only a G-quasi-invariant, not a G-invariant,
measure is required. This clari�es the relation between Isham’s quantum theory on R+

and conventional quantum mechanics restricted to the spatial region R+ ⊂ R by means
of a ‘hard wall’ potential. What remains, however, is that the constructed quantum theory
on R+ is severely restricted with respect to possible applications to the half-line.

Given the limited value this prior result with respect to dynamics on a half-line, the
central question of the second half of chapter 6 was whether a ‘better’ quantum theory
over R+ can be obtained. To this end, we considered the problem from its quantum-
mechanical side and found that the squared momentum operator p̂2 (but not p̂ itself!)
can be made self-adjoint on the Hilbert spaceH+ overR+ by choice of a suitable domain.
In particular, there exists a domain D∞ ⊂ H+ which requires the Dirichlet boundary
condition ψ(0) = 0. The Hamiltonian p̂2/(2m) on this domain describes a re�ection as
if by a ‘hard wall’ potential at the origin. Nevertheless, in contrast to standard quantum
mechanics, the boundary condition is an intrinsic feature of the theory and does not
have to be enforced by an explicit potential. In fact, the operator p̂2 is no longer self-
adjoint over the half-line if the boundary condition is omitted! We showed that Isham’s
quantum theory on the half-line is unable to explain this dynamical aspect and hence
fails with respect to our ‘guiding principle’: the quantization scheme applied to the co-
tangent bundle T∗R+ yields an incomplete quantum theory that is not equivalent to
quantum mechanics restricted to R+ by a ‘hard wall’ potential. As Isham’s main object-
ive in [Ish83] is quantum gravity for which R+ can be interpreted in a di�erent manner,
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this problem did probably not occur to him. Nevertheless, the contact interaction is quite
interesting in its own right, which justi�es a further examination.

The problem that prevents inclusion of the contact interaction turned out to be the
‘obvious’ classical phase space T∗R+. While the squared momentum p2 as observable
on the cotangent bundle T∗R+ is inherently not quantizable because the Hamiltonian
vector �eld Xp2 on T∗R+ is incomplete, we could show that this is no shortcoming but
actually a bene�t of the quantization method. Based on the negative result that Xp2 is
incomplete on T∗R+ we constructed a di�erent classical phase space for the particle
on a half-line on which Xp2 becomes complete: the orbifold R2/Z2. This phase space
emerges naturally upon closer examination and realises the re�ection as a topological
feature.

Starting with the classical observables q2, p2 and qp on R2/Z2 which generate the
Lie algebra sl(2,R) we were able to reverse-engineer the speci�c Canonical Group that
yields the desired operator p̂2 on L2(R+, dq) mentioned above. The appropriate group
is the metaplectic group Mp2R, a 2-fold cover of the symplectic group Sp2R ≅ SL2R,
and the speci�c representation of Mp2R that describes a particle on the half-line with
re�ection at the end is the irreducible unitary representationU+

3/2 of the positive discrete
series. Furthermore, we established the relation between our result and the metaplectic
representation of Mp2R on the Hilbert space L2(R, dq) which governs the harmonic
oscillator in conventional quantum mechanics over the whole line.

The results of sections 6.3 and 6.4 show that a quantum theory over the half-line
that includes the re�ection at the end as an intrinsic feature can be constructed by direct
quantization using the group-theoretical approach. In contrast to the view advertised for
example in [GK04], it is not necessary to include the rest of the line to obtain a physically
satisfying description; the restriction to the half-line due to the contact interaction with
a hard wall can be realised already classically. Whereas the re�ection in quantum theory,
however, takes on the form of a boundary condition imposed on operators, the re�ec-
tion on the classical level must be realised as a topological feature of the phase space. In
fact, the group-theoretical approach enforces consistency between the global behaviour
of the classical and the associated quantum theory: a closer look reveals that classical
mechanics on the cotangent bundle T∗R+ does not support the re�ection we aimed for
and it is therefore actually desirable that the method fails in this case. A publication of
these results is in preparation [JHP12].

In order to generalise the observations made in the present special case it would be
interesting to examine systems for which R+ appears as part of a higher-dimensional
con�guration space, for example as radius r ∈ R+ of a spherically symmetric problem.
We expect an analogous construction of the phase space to be possible in these cases.
Moreover, there exists a connection to the Riemann hypothesis via the Berry–Keating
conjecture [BK99; SRL11; SH11] which relates quantizations of the classical observable
qp to zeros of the Riemann ζ function, an unexpected link between physics and pure
mathematics.
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