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Abstract

In this doctoral thesis, various aspects of string model building and phenomenology are

investigated within the framework of Type IIA string theory on the T 6/(Z2 × Z6 × ΩR)

orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of

well-known particle physics models using intersecting rigid D6-branes wrapped on fractional

three-cycles. The models analyzed include the minimal supersymmetric Standard Model as

well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models.

The analysis starts with the detection of symmetries among the various lattice con�gura-

tions of the underlying six-torus T 6. It will be shown that the six a priori independent torus

lattices can be reduced to two independent lattice con�gurations. The next step consists in

determining all possible bulk three-cycles apt to support supersymmetric D6-branes. The

foreseen search will be exhaustive, allowing subsequently a complete classi�cation of the D6-

branes for all values of the complex structure modulus ϱ. The classi�cation of D6-branes uses

several criteria, including the type of gauge group supported by the D6-branes, the rigidity

of the D6-branes and the multiplicity of matter states transforming in the (anti)symmetric

representation of the gauge group. Once the classi�cation of D6-branes is complete, sys-

tematic computer scans test numerous combinations of intersecting D6-branes in order to

detect those that give rise to the correct chiral particle content of the considered models. For

each type of the aforementioned models, concrete examples will be found which satisfy the

constraints on the particle spectrum and ful�ll all consistency conditions. Finally, the thesis

will focus on phenomenological aspects of the particle physics models found, including the

detection of massless U(1) combinations, discrete Zn-symmetries and cubic couplings such

as the Yukawa couplings.

Zusammenfassung

In dieser Doktorarbeit erforsche ich verschiedene Aspekte von Stringtheorie-Modellbildung

und -Phänomenologie auf der Orbifaltigkeit T 6/(Z2 × Z6 × ΩR) im Rahmen der Typ IIA

Stringtheorie. Das Ziel besteht darin, mit Hilfe von starren, sich schneidenden D6-Branen,

supersymmetrische Varianten von bekannten Modellen der Teilchenphysik zu konstruieren.

Die in dieser Doktorarbeit in Betracht gezogenen Modelle umfassen das minimal super-

symmetrische Standardmodell, Pati-Salam Modelle und links-rechts symmetrische Modelle,

sowie SU(5) Modelle. Wir starten mit dem Aufspüren von Symmetrien zwischen den ver-

schiedenen Gitter-Kon�gurationen vom Sechs-Torus T 6. Wir werden sehen, dass die a priori

sechs unabhängigen Gitter zu zwei unabhängigen Gittern reduziert werden können. Im näch-

sten Schritt bestimmen wir alle "bulk" Drei-Zykel, die von supersymmetrischen D6-Branen

umwunden werden können. Dies erlaubt uns, die gefundenen D6-Branen zu klassi�zieren

nach verschiedenen Kriterien, welche folgende Aspekte umfassen: Der Typ der resultieren-

den Eichgruppe der D6-Branen, die Starrheit der D6-Branen sowie die Multiplizität der

Zustände, die sich in der (Anti)symmetrischen Darstellung der Eichgruppe transformieren.

Nachdem die Klassi�zierung abgeschlossen ist, wenden wir systematische Rechner Suchen

an, um verschiedene Kon�gurationen von sich schneidenden D6-Branen zu testen auf ihre

Tauglichkeit, realistische Teilchenspektra zu reproduzieren. Mehrere realistische und kon-

sistente Teilchenmodelle werden explizit angegeben. Zum Abschluss befassen wir uns mit

zusätzlichen Eigenschaften der Modelle, wie die Existenz von masselosen U(1) Kombina-

tionen, diskrete Zn-Symmetrien und Dreipunktkopplungen wie beispielsweise den Yukawa-

Kopplungen.
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Chapter 1

Introduction

1.1 Basics of string theory

Currently, our universe is described by two theories: the Standard Model of particle physics

and general relativity. The Standard Model is a description of three out of the four fundamen-

tal interactions, namely the strong interaction, electromagnetism, and the weak interaction.

General relativity on the other hand is a theory describing gravitational interactions.

Both theories have been tested experimentally up to very precise measurements. Nonethe-

less, the present situation is unsatisfying: the Standard Model has 28 free parameters [1],

the numerical values of which have to be determined entirely by experimental data. Also, it

fails to account for cosmological phenomena such as dark matter [2�4]. Finally, it would be

more elegant to have just one theory instead of two to describe the universe.

Theories based on quantum gravity, such as supergravity [5], loop quantum gravity [6�9]

or asymptotic safe gravity [10, 11] aim to provide a quantum description of gravity. These

theories only describe the gravitational interaction, but they do not comprise a theory of

the other three fundamental gauge interactions. On the other hand, Grand Uni�ed Theories

(GUTs) (see [12�15] and also [16�18]) aim to provide a uni�ed description of the strong, weak

and electromagnetic interaction, but they do not include gravity. For a recent review about

these models, see for example [19]. String theory is special in the sense that its goal is not

only to provide a quantum theory of gravity, but also to reproduce the Standard Model or

Grand Uni�ed Theories. Therefore, it is one of the best candidate theories to truly provide a

Theory of Everything. Moreover, it has found applications in many areas of physics beyond

particle physics, such as cosmology [20, 21] or condensed matter physics via the AdS/CFT

correspondence [22�24]. Also, string theory has found applications in mathematics, provid-

ing for example a proof of the Monstrous Moonshine conjecture [25, 26] or introducing mirror

symmetry [27, 28], which allows to solve problems in enumerative algebraic geometry [29].

The fundamental idea behind string theory is to replace the point-like particle by a one-

dimensional oscillating string of �nite length ls ≥ lP = 1.6 · 10−35m, where lP is called

the Planck length. The advantage of this replacement is that some divergences related

to zero-size point-like particles occurring in quantum �eld theory are no longer present in

string theory. Furthermore, the di�erent oscillation modes of the string give rise to di�erent

types of particles. When moving through space-time, a point-like particle sweeps out a

line, called worldline. A one-dimensional string sweeps out a two-dimensional surface when
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moving in space-time, which is called worldsheet. The worldsheet can be parametrized by

two coordinates τ and σ, where the �rst one is associated to a time-like coordinate and the

second one corresponds to a space-like coordinate along the extent of the string. A string is

represented by maps Xµ(τ, σ), µ = 1 . . . d which map the worldsheet to the ambient space-

time of dimension d. One can distinguish two types of strings depending on their boundary

conditions:

• The closed string, which has periodic boundary conditions:

Xµ(τ, σ + 2π) = Xµ(τ, σ) . (1.1)

Closed strings are associated to the space-time metric and thus give rise to gravity.

• The open strings, which can have either Neumann boundary conditions, i.e. free

endpoints:

∂σX
µ(τ, σ)|endpoints = 0 , (1.2)

or Dirichlet boundary conditions, i.e. the endpoints are �xed to a subspace:

Xµ(τ, σ)|endpoints = 0 . (1.3)

The subspaces these open strings are attached to are called Dp -branes
1, which have p

spatial dimensions and one dimension in time, so that they are p+1 dimensional objects.

D-branes are generalizations of strings to higher dimensions; they are dynamical objects

which have a tension and thus energy.

Open strings with Neumann boundary conditions give rise to gauge bosons whereas

open strings with Dirichlet boundary conditions lead amongst other to the fermionic

matter states of the Standard Model, which are localized at the intersections of D-

branes. We will come back to this in section 3.1.

The original so-called bosonic string theory includes only bosonic degrees of freedom. In

order to include fermionic degrees of freedom, supersymmetry (SUSY) has to be introduced

on the worldsheet [30], which in turn can lead to SUSY in space-time. The resulting the-

ories are called superstring theories. The gauge bosons and their fermionic superpartners,

the gauginos, form together a so-called vector multiplet. The fermionic matter states of the

Standard Model and their bosonic partners form so-called chiral multiplets.

An introductory textbook to string theory and applications of string theory to cosmology

and condensed matter is given by [31]. Other standard textbooks are given by [32�35] and

[36, 37]. For an introductory textbook to branes, we refer the reader to [38].

This doctoral work focuses on string phenomenology, which is a subbranch of string the-

ory. In the next section, we will sketch some important ideas and concepts used in string

phenomenology.

1.2 General features of string phenomenology

Nowadays, there are in total �ve superstring theories: Type I string theory, Type IIA and

Type IIB string theories, as well as two types of heterotic string theory. SUSY can be in-

cluded consistently in string theory if the number of space-time dimensions is ten, meaning

1Note that the "D" in "D-brane" stands for Dirichlet, while "brane" is derived from "membrane".



1.2. GENERAL FEATURES OF STRING PHENOMENOLOGY 3

that there are nine spatial dimensions and one time dimension. To allow for an e�ective

four-dimensional Minkowski space, six of the spatial dimensions have to be "curled up", or

in mathematical language, compacti�ed. In other words, the space spanned by these six

dimensions has to be small enough to avoid detection by modern particle accelerators. The

way these extra dimensions are compacti�ed has an impact on SUSY in the e�ective four-

dimensional Minkowski space-time.

Type I string theory and the heterotic string theories preserve so-called minimal N = 1

SUSY in ten dimensions, whereas the Type II string theories have N = 2 SUSY. This means

that in ten dimensions, two sets of supercharges are used, with each set containing sixteen

supercharges. Each supercharge acts on one component of a Majorana-Weyl spinor, which

has sixteen real components in ten dimensions.

The simplest choice of a compact space would be a six-dimensional torus, but this is not

viable from a phenomenological point of view. Indeed, such a compacti�cation does not

break any symmetries associated to the supercharges, so all of them remain intact in four-

dimensional Minkowski space-time. In four dimensions, a Weyl spinor has two complex

components, so in total the 32 supercharges would be arranged in eight sets, giving N = 8

SUSY when starting from Type II string theory. However, in order to have chiral fermions

as observed in nature, N has to be equal to one or less in four dimensions. This means that

in four dimensions, each boson of the Standard Model should have at most one fermionic

superpartner, and each fermion comes with at most one bosonic superpartner.

Thus, instead of compactifying the extra dimensions on a six-torus, one has to turn to an

internal space equipped with SU(3) holonomy, which allows for N = 2 SUSY in four di-

mensions after compacti�cation. SU(3) holonomy on a manifold means that if we parallel

transport a vector along a closed loop on the manifold, the resulting vector is related to

the initial vector by an element of the group SU(3). A n-dimensional sphere for example

has holonomy group SO(n), and the holonomy group of the torus is equal to the identity.

Compacti�cation on a manifold with holonomy group bigger than SU(3) would break SUSY

completely. This is also undesirable as SUSY has many advantages, e.g. the cancellation of

quadratically divergent contributions to the Higgs mass squared [39].

The link between holonomy and SUSY breaking is given by spinors. Indeed, the super-

charges are related to spinors and are only well-de�ned globally if they are invariant under

the holonomy group. In other words, the decomposition of the ten-dimensional spinors upon

compacti�cation should lead to covariantly constant spinors on the six-dimensional internal

space, called Killing spinors. Consequently, the number of Killing vectors is related to the

number of supersymmetries preserved in four dimensions. Original work on this topic is

given by [40]. For a recent overview, see for instance [41].

On a complex manifold, one can locally introduce a metric whose only non-zero components

are mixed, i.e. of the form gik̄. Using this metric, we can introduce the following two-form

written in local complex coordinates zi and z̄i:

JKähler
1,1 =

3∑
i,k=1

gik̄dz
i ∧ dz̄k . (1.4)
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A manifold is Kähler if this two-form is closed,

dJKähler
1,1 = 0 , (1.5)

which is called Kähler two-form in that case. Subsequently, we can introduce the notion

of Calabi-Yau threefolds, which satisfy the condition of SU(3) holonomy. A Calabi-Yau

threefold CY3 of three complex dimensions or equivalently of six real dimensions is a compact

Kähler manifold satisfying one of the following equivalent conditions:

• CY3 is Ricci-�at, i.e. the Ricci-tensor is zero: R
Ricci
ij = 0.

• CY3 has a Levi-Civita connection with SU(3) holonomy.

• There exists a nowhere vanishing globally de�ned holomorphic three-form Ω3.

Note that the three-form Ω3 will be associated to the holomorphic volume form, which will

be relevant in section 2.4.1. For more details on Calabi-Yau manifolds, see e.g. [42�44].

After compacti�cation on the Calabi-Yau manifold, some of the SUSY is broken since

Calabi-Yau spaces have SU(3) holonomy, and one ends up with N = 2 SUSY in four di-

mensions. This is still too much SUSY, so until the mid nineties, Type II string theories

remained unpopular for model building as they seemed unable to give rise to a chiral matter

content.

A breakthrough in Type II string theory model building was achieved by introducing the

concept of orientifolding [45�49] and D-branes [50]. In Type IIA string theory, orientifolding

consists in replacing a compacti�ed space CY3 by the quotient space CY3/ΩR, where the ori-

entifold projection ΩR corresponds to parity on the string worldsheet (Ω) combined with an

anti-holomorphic involution (R) on the Calabi-Yau space. In our case, the action of R cor-

responds to complex conjugation R : X i(τ, σ) → X i(τ, σ, ), i = 1, 2, 3 on the compact space,

while worldsheet parity Ω reverses the orientation of a string: Ω : Xµ(τ, σ, ) → Xµ(τ,−σ, ),

µ = 1 . . . 10. By introducing this extra symmetry, SUSY is further broken from N = 2 to

N = 1 after compacti�cation. Indeed, it is a general property in physics that states which

are not invariant under a given symmetry are projected out, meaning they disappear from

the theory. Orientifolding projects half of the SUSY charges out.

The addition of this new symmetry leads to the appearance of new mathematical objects

called orientifold planes (O-planes), which correspond to the �xed loci of the orientifold pro-

jection ΩR. These O-planes are charged under the so-called Ramond-Ramond �elds, which

will be introduced in section 2.3.1. The Ramond-Ramond �elds arise from closed string

oscillations, and the RR-charges of the O-planes can be considered as generalizations of the

electromagnetic charge.

The space used for compactifying is a compact space without a boundary. Since Gauss'

theorem states that the total charge on a compact space without boundary must be zero,

the charges of the O-planes must be canceled by introducing D-branes, which have charges

opposite to the O-planes. Charge neutrality is ensured by consistency equations named the

"RR-tadpole cancellation conditions".

Other than orientifolding, the introduction of D-branes also breaks SUSY. A heuristic ar-

gument for this statement can be given as follows: In general, D-branes do not �ll out the
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entire ten-dimensional space, but only a subspace, which breaks translation invariance in ten

dimensions. Since the translation generators are related to the supercharges via the relation{
Qα, Q

†
β

}
= 2(σµ)αβPµ, the introduction of one D-brane breaks half of the SUSY, preserv-

ing the other half. The addition of a second D-brane can either preserve the same half of

SUSY, or it can lead to further SUSY breaking. Model building requires the introduction

of several D-branes, so the D-branes have to be chosen carefully in order to break the same

half of SUSY. This is guaranteed by calibrating the submanifolds on which the D-branes

are wrapped with respect to an appropriate p-form such that they are volume-minimizing.

Indeed, just as the strings, the D-branes have a tension related to the energy. Thus, minimal

volume corresponds to minimal tension and consequently to minimal energy. The conditions

the D6-branes have to satisfy are called "special Lagrangian conditions". We will come back

to this in more detail in section 2.4.1.

A major di�erence between Type IIA and Type IIB string theory consists in the fact that

in the former theory, Dp-branes (p = 1, . . . 10) with p even are present, whereas p is odd in

the latter. In the present set-up, we are working with D6-branes, which �ll out the four-

dimensional Minkowski space-time and wrap three dimensions of the compact space, which

will be referred to as "three-cycles".

An introductory textbook to string phenomenology is given by [51]. Previews on string

phenomenology and model building on topics closely related to this work can be found

in [52, 53]. Other publications focusing on various aspects of D-brane model building are

given by [54�60]. The textbooks [61, 62] are excellent references for almost all mathematical

aspects discussed in this section. The same holds true for the textbook [44] with focus on

Calabi-Yau manifolds.

1.3 Layout of the thesis

In this section, I will brie�y comment on the organization of my thesis and point out my

personal contribution to this project. All notions mentioned in this section will be introduced

properly in the respective chapters. This doctoral work is based on the two publications [63]

and [64] and organized as follows:

Chapter 2 is an introductory chapter, where I introduce those results derived in [65] that

are relevant for my doctoral thesis. These results will be used in the rest of my doctoral work,

which focuses on string model building with intersecting D6-branes on the toroidal orbifold

T 6/(Z2 × Z6 × ΩR). The expectation is that the orbifold T 6/(Z2 × Z6 × ΩR) with discrete

torsion will provide ample possibilities for model building, since it includes the Z′
6 group as

a subgroup. The orbifold T 6/(Z′
6 × ΩR) proved to be a particular fertile background for

model building, see [66�75]. My personal contribution to this chapter consisted in checking

some of the results presented in [65] and in de�ning the discrete shift of D6-branes on the

�rst two-torus in accordance with the orientifold action as described in [76].

Chapter 3 is an introductory chapter to model building in Type IIA string theory with

intersecting D6-branes. Also, I present the particle physics models relevant for this work
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and their realization in the string theoretical context. This chapter is based on textbook

knowledge. Moreover, it contains a collection of formulas used in my work. These have been

derived in [77] and [72].

Chapter 4 is a preparatory chapter to chapter 5, which is about string model building.

String model building on toroidal orbifolds involves important computational power, as it

consists in testing all possible D6-branes con�gurations in order to �nd combinations which

reproduce a realistic particle content. Hence, it is sensible to reduce the number of con�gu-

rations to test as much as possible right from the start.

In the �rst section of chapter 4, I render evident symmetries between torus lattices in order

to reduce the number of D6-brane con�gurations to test. I found that a symmetry pointed

out in [66] for the background Z′
6 is also valid in the background used in my doctoral work,

at least for the so-called a-type lattices. I generalized this symmetry to include the b-type

lattices. I performed this analysis analytically, following the procedure presented in [76].

In the second section of chapter 4, I present the results of a computer code I wrote on Math-

ematica to �nd all three-cycles apt to support SUSY D6-branes. Although I wrote the code

on my own, I followed the instructions of my supervisor Jun.- Prof. Dr. Gabriele Honecker

to approach the detection of D6-branes which preserve SUSY. The D6-branes found can

be distinguished into two types of D6-branes: Those that are SUSY for every value of the

complex structure parameter ϱ and those that are SUSY only for �xed values of ϱ.

Chapter 5 introduces the �rst steps in string model building on T 6/(Z2 × Z6 × ΩR) and

follows our publication [63]. The focus of this chapter lies on the classi�cation of D6-branes

according to several criteria, including the type of gauge group supported by the D6-branes,

the rigidity of the D6-branes and the absence/presence of phenomenologically unwanted

matter states transforming in (anti)symmetric representations.

In the �rst section, I analyzed the type of supported gauge group and found that the results

for the b-type lattices are equivalent to the ones computed in [76, 78], while the results for

the a-type lattices were presented for the �rst time in the context of this doctoral work. This

part of the analysis was done analytically.

The next two sections focus on the remaining two classi�cation criteria. The analysis in

these sections was prepared analytically, but needed to be completed and cross-checked with

computer scans. The last section contains the �rst steps in model building and concentrates

on �nding pairs of D6-branes intersecting in the correct way to produce three generations

of a �rst set of matter states. This analysis cannot be done analytically, but needs large

computer scans. Our approach was as follows: Dr. Wieland Staessens and I both wrote

computer codes independently from each other. Subsequently, we used both codes on the

�rst scans in order to cross-check the results. In the following, I used my own codes to derive

the remaining results, while Dr. Staessens and my supervisor guided the analysis. Since

there are two di�erent methods to compute the intersection numbers of D6-branes, the �rst

one given by the orbifold-invariant approach and the second one proceeding orbifold-sector

per orbifold-sector, I encoded both methods in Mathematica in order to cross-check my

results, for part of the computer scans.

Chapter 6 and chapter 7 are based on both publications [63] and [64] and focus on the

search for particle physics models presenting a full three-generation spectrum and satisfying
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all consistency conditions such as the RR-tadpole cancellation conditions. We separated the

models into two types: the so-called ϱ-dependent models and the ϱ-independent models.

The ϱ-dependent models producing a correct particle spectrum come in vast numbers, which

makes the detection of models satisfying all the consistency conditions di�cult. The com-

puter scans involved in this part of the work were the most time- and processing power-

consuming ones. In order to speed up the analysis, I acquired a custom-built PC with twelve

processors and parallelized my codes. The longest computer scan took six days. Unfortu-

nately, the analysis did not yield any globally consistent models although I had it running

for months in total. I �nally decided to suspend the examination and leave it for future

work. In this thesis, I provide some results concerning the fruitless search for globally con-

sistent ϱ-dependent models in sections 6.2.3 and 7.2.2, which have not been included in our

publications.

The quite reduced number of possibilities for ϱ-independent models at �rst seemed not to

yield three generations of particles. However, I managed to dig out con�gurations of D6-

branes we had at �rst not considered, and which can be used for model building purposes only

with a very restricted set of parameters. Surprisingly, these restricted ϱ-independent models

did not only provide a realistic three-generation particle content, but they also gave rise to

globally consistent models. Even more astonishing, they gave rise to hundred-thousands of

consistent models, ranging from Pati-Salam models over left-right symmetric models to the

Standard Model.

As a �nal remark, note that the data of all models presented explicitly have been checked

numerically and analytically by both Dr. Staessens and me.

Chapter 8 is based on our second publication [64] and concentrates on the phenomenologi-

cal aspects of the globally consistent models found in the previous chapters. More concretely,

it focuses on the search for discrete Zn-symmetries, following the procedure presented in [78].

My supervisor derived analytically explicit expressions for the equations determining the ex-

istence of massless U(1) combinations and discrete Zn-symmetries. I cross-checked these by

hand. The establishing of these equations needs the reduction of linearly dependent three-

cycles (about O(102)) to linearly independent three-cycles, which number 16. I performed

the reduction numerically in order to provide a cross-check for the analytical methods used

by Dr. Staessens and my supervisor. In our publication [64], the analytical method was

illustrated, but in this thesis, I will rather brie�y comment on the numerical procedure.

Chapter 9 concentrates on further phenomenological properties of the globally consistent

models, namely the existence of cubic couplings such as Yukawa couplings. This chapter is

based on our second publication [64], though I provide more details about the computation

here.

This analysis can be done completely analytically, though I used the software GeoGebra to

facilitate the computation. The cubic couplings were derived by both Dr. Staessens and me

in order to cross-check the results. The development of the techniques allowing to locate

the matter states exactly at Z2-�xed points was done by my supervisor and Dr. Staessens,

as given in [64]. Since the procedure is quite technical, I will not present it in this doctoral

work but only use the results.

The Yukawa couplings given in section 9.2.4 correspond to unpublished results.
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Chapter 10 corresponds to the conclusion and contains two sections. In the �rst section,

I give a summary of the doctoral thesis and complement it with discussions. The second

section provides an outlook indicating several directions along which the work of this thesis

could be expanded and deepened.

Appendix The appendix is split into two parts: the �rst part contains details about the

tools used in this work and illustrates their use by providing explicit examples of computa-

tions and constructions, in order to render these more transparent. The examples include

the explicit construction of fractional three-cycles and the computation of beta-function co-

e�cients.

The second part of the appendix contains additional results compared to those given in the

main text and details about their derivation. I put these into the appendix in order to

avoid overloading the main part. More precisely, it provides an example of an alternative

de�nition for the hypercharge, an addendum to chapter 8 and additional results concerning

SUSY two-cycles living on the second and third two-torus, which are related to section 4.2.

Finally, I want to point out that most of the tables given in this work are taken and adapted

from our publications [63] and [64]. The same holds true for �gures 4.1 and 5.1. All other

�gures appearing in this work were produced by myself in the context of this doctoral thesis.



Chapter 2

Type IIA string theory on the

T 6/(Z2 × Z6 × ΩR) orientifold

We will start this chapter with an introductory section about orbifolds and toroidal orbifolds

in particular. In the second section, we will describe the purely geometrical aspects of the

toroidal orbifold used in this work. The string theoretical aspects are considered in the

third section of this chapter, where we introduce Type IIA string theory on the particular

background used in the present set-up. The chapter ends with a fourth section discussing

consistency conditions any particle physics model has to satisfy in our set-up. Discussions

of derivations not performed in the context of this doctoral work will be kept at a minimum.

Instead, we provide the �nal results and indicate the literature where the details of the

computations can be found.

2.1 General aspects of toroidal orbifolds

Manifolds such as smooth Calabi-Yau spaces CY3 are di�cult to use for model building

purposes because the global metric is unknown in general. This leads to the fact that the

string equations of motions cannot be solved explicitly. Hence, instead of using Calabi-Yau

spaces, we will use orbifolds in this work. If M is a manifold and if Γ is a discrete group

acting on M, then the coset or quotient space M/Γ is called an orbifold. Two points on

M linked by the action of Γ are identi�ed. Orbifolds are well-suited for model building

purposes, for if the initial space M is �at, they correspond to �at spaces except at isolated

singular points corresponding to the �xed points of Γ, where the curvature becomes in�nite.

These singular points can in general be resolved by blowing them up or by deforming them,

which leads to a class of smooth Calabi-Yau spaces.

An example of an orbifold is given by the coset space C/Z3, where the action of Z3 on C
corresponds to a rotation by 2π/3 on the complex coordinate z, i.e. z → e

2iπ
3 z. The coset

space corresponds to a cone with the singular point situated at the origin. The opening

angle at the base of the cone equals 60◦, as illustrated in �gure 2.1.

Toroidal orbifolds are of particular interest to string theorists. On toroidal orbifolds, the

string equations of motion can be solved explicitly in order to obtain the massless spectrum,

and the toolkit of conformal �eld theory (CFT) methods is well developed. These features

render toroidal orbifolds one of the best understood backgrounds for string theory and its
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b

Figure 2.1: Construction of the cone C/Z3 out of the complex plane C. On the left, a fundamental

domain in C is de�ned corresponding to one third of the complex plane as illustrated in blue. The

identi�cation of the borders of the fundamental domain results in the cone on the right.

compacti�cations.

Original work on orbifold compacti�cations is given by [79�81]. For a review on string theory

on orbifolds see for instance [82]. Some general references on CFT are, e.g. [83�85].

The compact internal space for four-dimensional models of string theory is six-dimensional,

thus a six-dimensional torus seems to be the perfect candidate for the initial space M. In

order to simplify the analysis, it is generally assumed that the six-torus is factorisable1 and

can be written as a product of three two-dimensional tori: T 6 = T 2
(1) × T 2

(2) × T 2
(3). A two-

dimensional torus can easily be described by the complex plane C divided by a lattice Λ =

{nλ1 +mλ2|n,m ∈ Z, λ1, λ2 ∈ C} such that T 2 = C/Λ. In the case of a two-dimensional

torus T 2, we have two generators λ1, λ2 ∈ C in the lattice Λ, so we have two identi�cations

z ∼ z + λ1 and z ∼ z + λ2. These identi�cations can be rescaled by a factor 1/λ1, leading

to the identi�cations z ∼ z + 1 and z ∼ z + ρ, with ρ = λ2/λ1. The complex parameter

ρ is called the complex structure of the lattice Λ. The fundamental domain consists of

all nonequivalent points. By gluing together opposite sides of the fundamental domain, a

cylinder is obtained, which is closed into a torus once the two remaining sides are identi�ed,

see �gure 2.2.

A simple example of a toroidal orbifold is given by the quotient space T 2/Z2, where the

action of Z2 on T 2 corresponds to a rotation by an angle π in the complex plane z → eiπz,

with z ∈ C. Two points on T 2 related by the Z2-action are identi�ed, and the resulting space

is the so-called "four-pillow" [90]. The four singular points located at the four corners of this

"four-pillow" appear as the �xed points under the action of Z2 on T 2. They are indicated

in the fundamental domain of T 2, see �gure 2.3.

Since the six-dimensional torus T 6 is a �at space, the holonomy group of a toroidal orbifold

of the form T 6/Γ is precisely Γ. Restricting ourselves to Abelian point groups, the group Γ

is of the form ZN or ZN × ZM , with �xed values for N,M as given for example in [42, 91],

in order to obtain the correct amount of SUSY in four dimensions. Products of more than

two ZN 's are not contained in SU(3) anymore and thus do not lead to the right amount of

1Note that also non-factorisable six-tori have been used for string model building. Certain toroidal

orbifolds with for example Γ = Z7,Z8,Z12 come with a complex structure ρ which does not allow a complete

factorization. For more details, see for example [86, 87] and [88, 89]
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0 1

ρiℑ(z)

ℜ(z)

Figure 2.2: Construction of a two-dimensional torus out of the complex plane. The �rst step consists

in gluing together two opposite sides of the fundamental domain along the arrows. The resulting

space is a two-dimensional hollow cylinder. In a second step, the two ends of the cylinder are glued

together, which yields a two-torus.

0 1

ρ
iℑ(z)

ℜ(z)

Figure 2.3: The �gure on the left depicts the fundamental domain of a rectangular two-torus T 2

and the four singular points which arise after dividing out Z2. The area in blue corresponds to the

fundamental domain of the orbifold T 2/Z2. The resulting space is the four-pillow indicated in the

�gure on the right side.

SUSY. In the present doctoral work I will focus on the orbifold T 6/(Z2 ×Z6), where each of

the discrete group factors acts on two of the three two-dimensional tori T 2
(i). For instance,

Z2 can be taken to act on the �rst and the second torus, while Z6 acts on the second and

the third torus. Details about the geometry are given in the next section.

The advantage of model building on toroidal orbifolds of the form T 6/(Z2 ×Z2M) compared

to orbifolds of the form T 6/ZN is that the former allow for rigidity of the D6-branes, which

implies the absence of position moduli. This is an advantage, as these position moduli

correspond to scalar �elds, which together with their fermionic superpartners form chiral

multiplets transforming in the adjoint representation of the gauge group supported by the D6-

brane. In the particle physics models considered in this work, chiral multiplets transforming

in the adjoint representation of non-Abelian gauge groups generally do not appear, see section

3.2. Thus, the scalar degrees of freedom associated to the position moduli are unwanted

from a phenomenological point of view. We will come back to this later in sections 2.3.2 and

3.1. Moreover, toroidal orbifolds of the form T 6/(Z2 × Z2M) allow for a phenomenon called

discrete torsion, which enhances the possibilities for model building. We will come back to

the issue of discrete torsion in section 2.2.4. Similar work was already done on the following

backgrounds:

• T 6/(Z2 × Z2) with discrete torsion: On this background, Pati-Salam models with a

four-generation particle spectrum have been found [92]. These have been given as
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examples, as the focus of [92] did not include a systematic and exhaustive search

for realistic particle physics models. Still, to our best knowledge, no global2 three-

generation Minimal Supersymmetric Standard Model (MSSM) has been found on this

background with discrete torsion so far.

• T 6/(Z2 × Z2M) with discrete torsion: An analysis of mathematical aspects of these

backgrounds, such as the SUSY conditions, the RR-tadpole cancellation conditions or

the lattice of three-cycles, has been given in [65, 72].

• T 6/(Z2 × Z′
6) with discrete torsion3: This background allows for classes of three-

generation global Pati-Salam models, as was found in [76, 93]. Concerning three-

generation MSSM-like models, only local ones were found.

One of the reasons to choose precisely M = 3 in T 6/(Z2 × Z2M) is that previous work

showed that orbifolds containing a Z3 subgroup seemed to be particularly apt to produce

three generations of particles, which corresponds to the number of generations wanted in the

particle models we are considering, see section 3.2. However, this is an empirical observation

and not a strict no-go theorem derived from fundamental principles. For example, the works

on the orbifolds T 6/(Z6 × ΩR) in [94�96, 67] and T 6/(Z′
6 × ΩR) in [66�71] yielded three-

generation models, whereas the orbifolds T 6/(Z4 × ΩR) in [97] and T 6/(Z2 × Z4 × ΩR)

in [98, 99, 95, 65] did not allow such constructions.

The orbifold T 6/(Z′
6 ×ΩR) proved to be a particular fertile background for model building,

so that its study has been extended to the associated low-energy �eld theory, see [67, 72�75].

Based on the pioneering work given in [100], the detection of discrete gauge symmetries in

orbifold models was investigated for the �rst time in [78], and the search for Peccei-Quinn

symmetries and axionic dark matter was launched in [101, 102].

For a summary of the work performed on these orbifolds within our working group, see [103].

2.2 Geometry of T 6/(Z2 × Z6 × ΩR)

2.2.1 The orbifold action and the orientifold projection on T 6

The action of Z2 × Z6

The group Z2 × Z6 has two generators4 whose action is given by:

θ : zi → e2πivizi with
→
v=

1

2
(1,−1, 0) , (2.1)

2A model is called global if it satis�es all the consistency conditions. We will come back to this in section

2.4.3.
3We have di�erent Z6-generators for the di�erent orbifolds:

Z6 :
→
w= 1

6 (−2, 1, 1) ,

Z′
6 :

→
w= 1

6 (1, 2,−3) ,

Z2 × Z′
6 :

→
v= 1

2 (1,−1, 0) and
→
w= 1

6 (−2, 1, 1) ,

Z2 × Z6 :
→
v= 1

2 (1,−1, 0) and
→
w= 1

6 (0, 1,−1) .

4 The orbifold actions need to preserve four-dimensional N = 1 SUSY, which puts constraints on them.

The allowed actions were derived in [79, 80].
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ω : zi → e2πiwizi with
→
w=

1

6
(0, 1,−1) , (2.2)

where zi with i = 1, 2, 3 are the complex coordinates on the three complex directions of the

three two-tori T 2
(i). Since we mod out the action Z2 × Z6, the lattice Λ has to be invariant

under the action of these group factors, i.e. Z2 × Z6 has to act cristallographically5 on the

lattice: λ ∈ Λ ⇒ θnωmλ ∈ Λ, n = 0, 1, m = 0, . . . 5.

Invariance under the action of Z3 ⊂ Z6 forces the basis lattice vectors of the second and

third torus to be of equal length and �xes the angle between them to 60◦ or 120◦, which is

equivalent. However, on the �rst torus, only a Z2-action is present, leaving the shape of the

lattice of the �rst torus un�xed. This is illustrated in �gure 2.4.

The action of ΩR

On top of the action of Z2×Z6, there is also the action of the so-called orientifold projection

ΩR with R acting as complex conjugation zi → z̄i in our case. Worldsheet parity Ω only

acts on the orientation of the strings and has no in�uence on the geometry. Still, we will

refer to the orientifold action by the symbol ΩR although only the R is relevant for the

geometrical considerations.

Invariance of the lattice under ΩR implies that the ΩR-invariant direction, i.e. here the real

axis, must be chosen to lie either along one of the basis lattice vectors or along the diagonal

of the lattice on the second and third torus. We refer to the �rst case as the A-type lattice

and to the second case as the B-type lattice.

On the �rst two-torus T 2
(1), the orientifold action forces the fundamental domain to be either

rectangular, called a-type lattice, or tilted, called b-type lattice. The real axis has to lie

along a basis lattice vector in case of the a-type lattice and along π1 − 1
2
π2 in case of the

b-type lattice, where π1 and π2 are the basis lattice vectors of T
2
(1). This is parametrized by

π1 − bπ2 with b = 0 for the a-type lattice and b = 1
2
for the b-type lattice. The orientifold

action thus constrains the shape of the �rst two-torus, truncating its complex structure ρ

down to a real parameter. This real parameter corresponds to the ratio of the length of the

two basis lattice vectors: ϱ ≡
√
3R2

R1
, where R1 and R2 are the two circumferences of the

two-torus as depicted in �gure 2.4. The factor
√
3 is introduced in the de�nition of ϱ for

later convenience. Note that the real parameter ϱ introduced here di�ers from the complex

parameter ρ introduced in the previous section. In the case of the rectangular lattice for

example, they are related by ρ = iϱ/
√
3. Still, we will refer to the real parameter ϱ as

complex structure modulus.

There are thus a priori six di�erent lattice combinations given by aAA, bAA, aAB, bAB,

aBB and bBB. Note that the lattice a/bBA would be equivalent to the lattice a/bAB.

2.2.2 Hodge numbers

In general, the metric of a Calabi-Yau space or toroidal orbifold can be deformed. The pa-

rameters describing the deformations are called moduli in string compacti�cations. In case

of Calabi-Yau threefolds or six-dimensional toroidal orbifolds, the metric can be deformed in

two ways: either by varying its complex structure, related to the shape of the space, or its

5The various lattices permitted by the orbifold actions have been derived in [104]. The actions of all

allowed ZN and ZN × ZM generators and the corresponding lattices can be found e.g. in [42, 91, 82].
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Figure 2.4: The action of Z2 × Z6 × ΩR �xes the shape of the six-torus to the root lattices of

SU(2)2 × SU(3) × SU(3), with one real complex structure modulus ϱ ≡
√
3R2/R1 inherited from

the �rst two-torus T 2
(1), and two possible choices for the ΩR-invariant direction per two-torus. The

black points labeled by 1,2,3,4 on the �rst torus and by 1,4,5,6 on the second and third torus are �xed

points of the Z2-action. The points denoted by 2,3 on the second and third torus are �xed points

under Z3. In the present context, only Z2-�xed points are relevant for D6-brane model building.

We will comment on this issue brie�y in section 2.3.2. The Z6-action is trivial on the �rst torus and

cyclically permutes three Z2-�xed points on the second and third torus: 1
eπi/3

	 , 4
eπi/3

→ 5
eπi/3

→ 6
eπi/3

→ 4.

The Z3-�xed points are permuted under the Z6 action 2
eπi/3

↔ 3. The orientifold projection ΩR acts

on the �xed points on the �rst two-torus as follows: 2
R
	, 3

R
	, 4

R
	 in case of the a-type lattice and

on the b-type lattice as: 4
R
	, 2

R↔ 3. On the second and third two-torus, ΩR permutes the �xed

points as follows: 4
R
	, 5

R↔ 6 in case of the A-type lattice and 4
R↔ 5, 6

R
	 in case of the B-type

lattice. The basis lattice vectors on T 2
(i) (i = 1, 2, 3) are denoted by π2i−1 and π2i.

Kähler structure, related to the size of the space. The former corresponds to a three-form,

the latter to a two-form.

Two-forms can be holomorphic ω2,0 = dzi∧dzj, antiholomorphic ω0,2 = dz̄i∧dz̄j or of mixed

type, e.g. ω1,1 = dzi ∧ dz̄j, with i, j = 1, 2, 3 corresponding to the three complex directions.

The upper index on the forms indicates the number of holomorphic and antiholomorphic

components, respectively. The same holds true for the three-forms. The so-called Hodge

numbers count the number of complex (r, s)-forms, and they can be arranged into the Hodge

diagram below :

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

CY3=

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(2.3)

where we have, in case of a Kähler manifold, the symmetries of complex conjugation hp,q =

hq,p and Poincaré duality hp,q = hm−q,m−p with m = 3 corresponding to three complex

dimensions. In case of Calabi-Yau threefolds or toroidal orbifolds, only two Hodge numbers

are independent, namely h2,1 and h1,1. The three form given by h3,0 corresponds to the
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holomorphic volume three-form Ω3.

In general, a p-form ω can couple to a p-dimensional subspace c via the duality relation given

by:

(c, ω) →
∫
c

ω . (2.4)

In our case, the two-forms couple to two-cycles and the three-forms couple to three-cycles.

The number of independent two-dimensional and three-dimensional submanifolds (i.e. two-

and three-cycles, respectively) is given by the Betti numbers

b2 = h2,0 + h1,1 + h0,2 CY3= h1,1 ,

b3 = h3,0 + h2,1 + h1,2 + h0,3 CY3= 2 + 2h2,1 .
(2.5)

The Hodge numbers hp,q correspond to the dimensions of the Dolbeault cohomology groups

Hp,q(M,C) and the Betti numbers br correspond to the dimensions of the homology groups

Hr(M,R). For a more detailed discussion on Hodge numbers, see for example [61].

In case of orbifolds, the Hodge numbers count orbifold-invariant two- and three-forms. We

have a so-called untwisted sector, which contains the di�erential forms and cycles inherited

from the underlying six-torus T 6, and the so-called twisted sectors. The twisted sectors refer

to cycles containing exceptional divisors. This will become clearer in section 2.2.4 when

we provide explicit expressions for the twisted three-cycles. The Hodge numbers contain

information about both untwisted and twisted sectors. In case of the untwisted sector, the

Hodge numbers can be easily derived. Indeed, we have three two-forms dzi ∧ dz̄i, i = 1, 2, 3

invariant under all orbifold actions. These are associated to the volumes of the three two-

tori T 2
(i), i = 1, 2, 3. On the other hand, apart from the holomorphic volume three-form, we

only have one three-form (and its complex conjugate) invariant under the orbifold actions,

namely dz̄1 ∧ dz2 ∧ dz3. The complex structure modulus encountered in the previous section

is related to this three-form.

The calculation of the Hodge numbers in the twisted sectors is more involved. We will

illustrate the computation by counting orbifold-invariant combinations of exceptional cycles

in section 2.2.4, but we refer the interested reader to [91, 42, 105] for more details. The �nal

results with and without discrete torsion can be found e.g. in [65] and are reproduced here

in table 2.1. The parameter η appearing in table 2.1 characterizes whether discrete torsion

is switched on (η = −1) or not (η = 1). We will come back to this in section 2.2.4.

Hodge numbers per twist sector on T 6/(Z2 × Z6), with and without discrete torsion

torsion Hodge numbers 1 ω ω2 ω3 θ θω θω2 θω3 total

(0, 1
6
,−1

6
) (0, 1

3
,−1

3
) (0, 1

2
,−1

2
) (1

2
,−1

2
, 0) (1

2
,−1

3
,−1

6
) (1

2
,−1

6
,−1

3
) (1

2
, 0,−1

2
)

η = 1 h1,1 3 2 8 6 8 8 8 8 51

h2,1 1 0 2 0 0 0 0 0 3

η = −1 h1,1 3 0 8 0 0 4 4 0 19

h2,1 1 2 2 6 4 0 0 4 19

Table 2.1: Hodge numbers of the T 6/(Z2 × Z6) orbifold for each twisted sector, with and without

discrete torsion. The parameter η characterizes whether discrete torsion is switched on (η = −1) or

not (η = 1).
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Figure 2.5: Torus three-cycle wrapping on the T 2/(Z2 × Z6) orbifold with wrapping numbers

(n1,m1;n2,m2;n3,m3) = (1, 0; 1, 1; 2,−1).

In sections 2.2.3 and 2.2.4, we will provide explicit expressions for the three-cycles arising

in the untwisted sector and each Z2-twisted sector, as they have been established for the

�rst time in [65]. Also, we will examine the orientifold action on the cycles. The two-forms

can be classi�ed as ΩR-odd and ΩR-even two-forms, which needs to be taken into account.

The results are given and discussed in section 2.3.1.

2.2.3 Bulk three-cycles

We will �rst focus on the three-cycles arising from the untwisted sector, i.e. the three-cycles

inherited from the underlying six-torus, which we call bulk three-cycles. Since the six-torus is

factorisable, a three-cycle can be written as a product of three one-cycles π2i−1, π2i, i = 1, 2, 3

with coe�cients (nj,mj), j = 1, 2, 3

Πtorus =
3⊗

i=1

(niπ2i−1 +miπ2i) . (2.6)

The coe�cients (nj,mj) are referred to as torus wrapping numbers. They indicate the

number of times the cycle winds around the torus before it closes on itself, see �gure 2.5.

On the �rst torus in �gure 2.5, the cycle is shifted, i.e. it does not pass through the origin.6

The expression given in (2.6) is not invariant under the orbifold action. In order to obtain

orbifold-invariant three-cycles, the sum over all orbifold images has to be taken:

Πbulk = 4
2∑

m=0

ωm

[
3⊗

i=1

(niπ2i−1 +miπ2i)

]
. (2.7)

The θ-action maps the cycle to itself and gives an overall factor of two. The ωk-action with

k = 3, 4, 5 maps the sum above onto itself and gives another overall factor of two, leading

to a total factor of four in front of the sum. The Betti numbers indicate the number of

independent three-cycles: b3Untwisted = h3,0
U + h2,1

U + h1,2
U + h0,3

U = 1 + 1 + 1 + 1 = 4. We have

thus four independent three-cycles. A basis of orbifold-invariant three-cycles is for example

6 Note that we consider only discrete shifts by half a lattice vector, such that the three-cycle always

passes through Z2-�xed points. We will come back to this point in section 3.1.
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given by:

ρ1 ≡ 4(1 + ω + ω2)π135 = 4(π135 + π1,4,5−6 + π1,4−3,−6)

= 4(π135 + π145 − π146 − π146 + π136)

= 4(π135 + π145 − 2π146 + π136),

ρ2 ≡ 4(1 + ω + ω2)π136 = 4(2π136 + 2π145 − π146 − π135),

ρ3 ≡ 4(1 + ω + ω2)π235 = 4(π235 + π245 − 2π246 + π236),

ρ4 ≡ 4(1 + ω + ω2)π236 = 4(2π236 + 2π245 − π246 − π235),

(2.8)

where πijk or πi,j,k corresponds to the tensor product πi ⊗ πj ⊗ πk. The next step consists in

determining the intersection numbers between these bulk cycles. The intersection numbers

are important for model building purposes since they are associated to the number of gen-

erations of particles. This will be discussed in more detail in sections 3.1 and 3.2.1. Using

the generic torus intersection number between two torus three-cycles Πtorus
a and Πtorus

b on T 6

de�ned by

Πtorus
a ◦ Πtorus

b ≡ −
3∏

i=1

(ni
am

i
b −mi

an
i
b) , (2.9)

the intersection numbers of the bulk cycles can be calculated as follows:

ρ1 · ρ3 =
1

12
4(π135 + π145 − 2π146 + π136) · 4(π235 + π245 − 2π246 + π236)

=
16

12
(π135 · π235︸ ︷︷ ︸

=0

+ π135 · π245︸ ︷︷ ︸
=0

−π135 · 2π246︸ ︷︷ ︸
=−2

+ π135 · π236︸ ︷︷ ︸
=0

)

+
16

12
(π145 · π235︸ ︷︷ ︸

=0

+ π145 · π245︸ ︷︷ ︸
=0

−π145 · 2π246︸ ︷︷ ︸
=0

+ π145 · π236︸ ︷︷ ︸
=1

)

−32

12
(π146 · π235︸ ︷︷ ︸

=−1

+ π146 · π245︸ ︷︷ ︸
=0

−π146 · 2π246︸ ︷︷ ︸
=0

+ π146 · π236︸ ︷︷ ︸
=0

)

+
16

12
(π136 · π235︸ ︷︷ ︸

=0

+ π136 · π245︸ ︷︷ ︸
=1

−π136 · 2π246︸ ︷︷ ︸
=0

+ π136 · π236︸ ︷︷ ︸
=0

) = 8 .

The intersection number includes the orbifold images. Since a cycle and its orbifold image

are considered to be equivalent, the orbifold images should not be included in the intersection

numbers. On the Z2 × Z6 orbifold, we have in total twelve orbifold images, which implies

that we have to add an overall factor of 1
12

in front.

Proceeding similarly for the other intersection numbers, one obtains [65]:

ρ1 · ρ3 = ρ2 · ρ4 = 8 ,

ρ1 · ρ4 = ρ2 · ρ3 = 4 .
(2.10)

The determinant of the intersection matrix is di�erent from ±1. This means that the lattice

formed by these three-cycles is not unimodular, which implies that the bulk three-cycles

given above only span a sublattice. We will come back to this issue in section 2.3.2.

A general bulk three-cycle can be expressed in terms of the basis bulk three-cycles as follows:

Πbulk = P ρ1 +Qρ2 + U ρ3 + V ρ4, (2.11)
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where we introduced the orbifold-invariant bulk wrapping numbers:

P ≡ n1X, Q ≡ n1Y, U ≡ m1X, V ≡ m1Y,

with X ≡ n2n3 −m2m3, Y ≡ n2m3 +m2n3 +m2m3.
(2.12)

These bulk wrapping numbers can be deduced by writing a general three-cycle in terms of

the torus three-cycles, applying the orbifold generators and expressing the result in terms of

the bulk three-cycles:

(n1π1 +m1π2)⊗ (n2π3 +m2π4)⊗ (n3π5 +m3π6)

= n1n2n3π135 + n1n2m3π136 + n1m2n3π145 + n1m2m3π146 +m1n2n3π235 +m1n2m3π236

+m1m2n3π245 +m1m2m3π246 .

Applying (1 + ω + ω2) to this whole expression gives us

(1 + ω + ω2)n1n2n3π135 = n1n2n3ρ1 ,

(1 + ω + ω2)n1n2m3π136 = n1n2m3ρ2 ,

(1 + ω + ω2)n1m2n3π145 = n1m2n3(π145 + π1,−3+4,5−6 + π1,−3,−6) = n1m2n3ρ2 ,

(1 + ω + ω2)n1m2m3π146 = n1m2m3(π146 + π1,−3+4,5 + π1,−3,5−6) = n1m2m3(ρ2 − ρ1) ,

(1 + ω + ω2)m1n2n3π235 = m1n2n3ρ3 ,

(1 + ω + ω2)m1n2m3π236 = m1n2m3ρ4 ,

(1 + ω + ω2)m1m2n3π245 = m1m2n3(π245 + π2,−3+4,5−6 + π2,−3,−6) = m1m2n3ρ4 ,

(1 + ω + ω2)m1m2m3π246 = m1m2m3(π246 + π2,−3+4,5 + π2,−3,5−6) = m1m2m3(ρ4 − ρ3) .

Summing up all of these, we obtain

(n1n2n3 − n1m2m3)ρ1 = Pρ1 ,

(n1n2m3 + n1m2n3 + n1m2m3)ρ2 = Qρ2 ,

(m1n2n3 −m1m2m3)ρ3 = Uρ3 ,

(m1n2m3 +m1m2n3 +m1m2m3)ρ4 = V ρ4 .

The orbifold-invariance of the bulk wrapping numbers can be checked by using the orbifold

transformations of the torus wrapping numbers given by:
n1 m1

n2 m2

n3 m3

 ω→


n1 m1

m2 −(n2 +m2)

−(n3 +m3) n3

 ω→


n1 m1

−(n2 +m2) n2

m3 −(n3 +m3)

 .

(2.13)

Note that here the �rst ω-action on the second and third torus includes an additional overall

sign �ip with respect to the ω-action de�ned in [65].

Using (2.10) and (2.11), it is straightforward to produce an expression for the intersection

number of two generic bulk three-cycles, as it was �rst given in [65]:

Πbulk
a ◦ Πbulk

b = 8 (PaUb − PbUa +QaVb −QbVa) + 4 (PaVb − PbVa +QaUb −QbUa) , (2.14)

where a and b label the two three-cycles. This completes the introduction of orbifold-invariant

bulk three-cycles on T 6/(Z2 × Z6).
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The orientifold action ΩR on the bulk three-cycles

It remains to be determined how the orientifold action ΩR acts on these bulk cycles, the

R-part of which corresponds to complex conjugation on all three tori and has to be applied

on each lattice basis vector πi, i = 1, ..., 6. As an example, let us consider the action of R
on π1 and π2 in case of a tilted lattice, i.e. b = 1/2. In this lattice, the real axis lies along

π1 − bπ2. Complex conjugation with respect to the real axis leads to

π2
ΩR→ −π2 , (2.15)

π1
ΩR→ π1 − π2 . (2.16)

From these, the transformation of the torus wrapping numbers can be read o� as follows:

n1π1 +m1π2
ΩR→ n1(π1 − π2)−m1π2 = n1π1 − (n1 +m1)π2 . (2.17)

Applying the same procedure on the other cycles and lattices, we �nd the results given in

[65]:

(n1
a′ ,m

1
a′) =

 (n1
a, −m1

a) (a)

(n1
a,−n1

a −m1
a) (b)

, (ni
a′ ,m

i
a′)i=2,3 =

 (ni
a +mi

a , −mi
a) (A)

(mi
a, n

i
a) (B)

,

(2.18)

where a refers to a three-cycle Πa and a′ denotes the orientifold image of a: RΠa = Πa′ . The

transformation laws under ΩR of the bulk three-cycles in (2.8) were derived in [65] and are

reproduced in table 2.2.

Orientifold images of bulk 3-cycles on T 6/(Z2 × Z6 × ΩR)

3− cycle ρ1 ρ2 ρ3 ρ4

a/bAA ρ1 − (2b)ρ3 ρ1 − ρ2 − (2b)[ρ3 − ρ4] −ρ3 ρ4 − ρ3

a/bAB ρ2 − (2b)ρ4 ρ1 − (2b)ρ3 −ρ4 −ρ3

a/bBB ρ2 − ρ1 − (2b)[ρ4 − ρ3] ρ2 − (2b)ρ4 ρ3 − ρ4 −ρ4

Table 2.2: Action of R on the bulk three-cycles de�ned in (2.8) on the orbifold T 6/(Z2 ×Z6), with

and without discrete torsion, for all six lattice con�gurations. The a-type lattices correspond to

b = 0 and the b-type lattices are associated to b = 1/2.

Since the action of ΩR on the cycles is now determined, we can proceed to �nd the O6-

planes, which correspond by de�nition to the �xed points of ΩR. In order to be invariant

under the orientifold projection, the O6-planes have to be either parallel or orthogonal to

the real axis. The di�erent possibilities are depicted in �gure 2.6 for the lattice aAA. Note

that in the case of the a-type lattice, the O6-plane can be displaced by half a lattice vector,

so two parallel O6-planes are present, indicated by the solid line and the dotted line. This

is not the case for the b-type lattice. In fact, albeit displacing the O6-plane by half a lattice

vector would give here an ΩR-invariant cycle, it would not be point-wise invariant. Hence,

it would not correspond to the set of �xed loci of the orientifold projection. Note that in

the case of cycles orthogonal to the real axis, these are point-wise invariant due to the Z2

identi�cation in the coset space T 6/(Z2 × Z6). In total, we have eight orientifold planes for



20 CHAPTER 2. TYPE IIA STRING THEORY ON THE T 6/(Z2 × Z6 × ΩR) ORIENTIFOLD

ΩR

T 2
(1)

π1

π2

1 2

34

T 2
(2)

π3

π4

1 4

65

T 2
(3)

π5

π6

1 4

65

ΩRZ(1)
2

T 2
(1)

π1

π2

1 2

34

T 2
(2)

π3

π4

1 4

65

T 2
(3)

π5

π6

1 4

65

ΩRZ(2)
2

T 2
(1)

π1

π2

1 2

34

T 2
(2)

π3

π4

1 4

65

T 2
(3)

π5

π6

1 4

65

ΩRZ(3)
2

T 2
(1)

π1

π2

1 2

34

T 2
(2)

π3

π4

1 4

65

T 2
(3)

π5

π6

1 4

65

Figure 2.6: Depiction of orbifold representatives of the four O6-planes on the T 2/(Z2 × Z6 × ΩR)

orientifold. The lattice under consideration is the aAA con�guration. On the �rst two-torus T 2
(1),

the O6-plane can be deplaced by half a lattice vector, leading to a total of eight O6-planes.

the a-type lattices and four for the b-type lattices. The orientifold planes are denoted by

ΩR, ΩRZ(i)
2 with i = 1, 2, 3, as indicated in �gure 2.6. In order to obtain O6-planes invariant

under the orbifold action, all the orbifold images of the cycles depicted in �gure 2.6 have to

be summed up.

The geometric data of the four O6-planes are collected in table 2.3.

In order to avoid double counting of equivalent models, it is sensible to de�ne rules to select

a representative of the orbifold and orientifold equivalence classes. The rules for selecting an
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Torus and bulk wrapping numbers for the four O6-plane orbits on T 6/(Z2 × Z6 × ΩR)

O6-plane angle
π

a/bAA a/bAB a/bBB

(ni,mi) (P,Q, U, V ) (ni,mi) (P,Q,U, V ) (ni,mi) (P,Q,U, V )

ΩR (0, 0, 0) ( 1
1−b

, −b
1−b

; 1, 0; 1, 0) 1
1−b

(1, 0,−b, 0) ( 1
1−b

, −b
1−b

; 1, 0; 1, 1) 1
1−b

(1, 1,−b,−b) ( 1
1−b

, −b
1−b

; 1, 1; 1, 1) 3
1−b

(0, 1, 0,−b)

ΩRZ(1)
2 (0, 1

2
, −1

2
) ( 1

1−b
, −b
1−b

;−1, 2; 1,−2) 3
1−b

(1, 0,−b, 0) ( 1
1−b

, −b
1−b

;−1, 2; 1,−1) 1
1−b

(1, 1,−b,−b) ( 1
1−b

, −b
1−b

;−1, 1; 1,−1) 1
1−b

(0, 1, 0,−b)

ΩRZ(3)
2 (1

2
, −1

2
, 0) (0, 1; 1,−2; 1, 0) (0, 0, 1,−2) (0, 1; 1,−2; 1, 1) (0, 0, 3,−3) (0, 1; 1,−1; 1, 1) (0, 0, 2,−1)

ΩRZ(2)
2 (1

2
, 0, −1

2
) (0, 1; 1, 0; 1,−2) (0, 0, 1,−2) (0, 1; 1, 0; 1,−1) (0, 0, 1,−1) (0, 1; 1, 1; 1,−1) (0, 0, 2,−1)

Table 2.3: The �rst column gives the labels of each O6-plane and the second column gives the angles

of a chosen orbifold representative of the O6-planes with respect to the real axis, on each two-torus

T 2
(i), i = 1, 2, 3. The third column lists the torus wrapping numbers (ni,mi)i∈{1,2,3} for the chosen

orbifold representative, and the fourth column gives the orbifold-invariant bulk wrapping numbers

(P,Q,U, V ). The data are given for each lattice con�guration.

orbifold and orientifold representative have �rst been derived in [65]:

• (n3,m3) = (odd,odd) selects an orbifold image of the Z6-orbit generated by ω. The

additional constraint n3 > 0 �xes the orientation of the one-cycle on the third two-torus

T 2
(3).

• The condition on the wrapping numbers of the �rst two-torus T 2
(1) are as follows:

(n1,m1 + bn1)∈
{
( 1
1−b

, 0), (0, 1), (n1 > 0,m1 + bn1 > 0)
}
, which permits to choose an

orientifold representative.

This completes the discussion of three-cycles arising in the untwisted sector. The next step

consists in turning our attention to the three-cycles present in the Z2-twisted sectors, which

are commonly referred to as exceptional cycles.

2.2.4 Exceptional three-cycles

The discussion in this section concentrates solely on the Z2-twisted sectors, as only the three-

cycles arising from these sectors together with the three-cycles from the untwisted sector will

be used for model building in this work.

The Z2-twisted sectors will be denoted by Z(i)
2 , i = 1, 2, 3. A Z(i)

2 -action leaves the ith

two-torus invariant and acts on the other two two-tori. More precisely, the Z(1)
2 -sector is

generated by ω3, Z(2)
2 will be associated to θω3 and Z(3)

2 is generated by θ. The Z(i)
2 -�xed

points on the two-tori correspond to curvature singularities and can be resolved by blowing

them up, i.e. replacing the singular point by the smooth projective space CP1 ≃ S2 [105].

The resulting exceptional divisor, called exceptional two-cycle, will be denoted by e
(i)
αβ in the

following, with α, β referring to the labels of the Z(i)
2 -�xed points on a four-torus T 2

(j) × T 2
(k),

j, k = 1, 2, 3, j ̸= k ̸= i ̸= j.

Before deriving an explicit basis of exceptional cycles, we will discuss discrete torsion,

which has an impact on the type of orbifold-invariant exceptional cycles. Discrete torsion

arises in the case of orbifolds containing a subgroup of the form ZN ×ZN . The introduction

of discrete torsion is motivated from the string theoretical side, where discrete torsion is

manifest as a phase factor in the computation of partition functions, see [106, 105] for

details. Geometrically, discrete torsion implies the action of one Z(i)
2 , i = 1, 2, 3 generator on
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another Z(j)
2 -exceptional cycle, j = 1, 2, 3, j ̸= i as follows:

e
(i)
αβ

Z(j)
2→ ηe

(i)
αβ , (2.19)

where we set η = 1 if we do not consider discrete torsion and η = −1 if we do work with

discrete torsion. Clearly, this has consequences on the orbifold-invariance of the two-cycles

e
(i)
αβ ≃ S2 and thus also on the Hodge numbers for the twisted sectors. For a general orbifold

of the form ZN × ZM , the phase factor η associated to discrete torsion is given by the fol-

lowing formula [106, 107]:

η = e2πni/gcd(N,M), n ∈ Z . (2.20)

Let us illustrate this point on a concrete example from table 2.1. Consider the θ-twisted

sector, i.e. the Z(3)
2 -twisted sector, acting as rotations by angles (1

2
,−1

2
, 0) on T 2

(1)×T 2
(2)×T 2

(3).

The two-cycles associated to this twisted sector are of the form e
(3)
αβ with α ∈ {1, 2, 3, 4} and

β ∈ {1, 4, 5, 6} and are 16 in number, since we have four Z(3)
2 -�xed points on the �rst two-

torus T 2
(1) combined with four Z(3)

2 -�xed points on the second two-torus T 2
(2). Only those

combinations of two-cycles that are orbifold-invariant are kept.

First, consider the case without discrete torsion. The Z6-generators act as follows on the

labels 1
eπi/3

	 , 4
eπi/3

→ 5
eπi/3

→ 6
eπi/3

→ 4 on the second two-torus T 2
(2), whereas they act trivially on

the �rst two-torus T 2
(1). In order to �nd all orbifold-invariant combinations of two-cycles e

(3)
αβ ,

it su�ces to take all 16 two-cycles and apply the orbifold actions on each one. Some of the

resulting combinations are equal, so that in the end only eight di�erent orbifold-invariant

combinations remain, which can be summarized as follows:

e
(3)
α1 α = 1, 2, 3, 4 ,

e
(3)
α4 + e

(3)
α5 + e

(3)
α6 α = 1, 2, 3, 4 .

In the presence of discrete torsion, we have η = −1, and the exceptional two-cycles are no

longer invariant under every Z2-action, as indicated in (2.19). In order to obtain Z2-invariant

cycles, the exceptional two-cycle needs to be tensored with a torus one-cycle on the left-over

two-torus, resulting in a three-cycle:

e
(i)
αβ ⊗

(
niπ2i−1 +miπ2i

) Z(j)
2→ −e

(i)
αβ ⊗

(
−niπ2i−1 −miπ2i

)
= e

(i)
αβ ⊗

(
niπ2i−1 +miπ2i

)
,

with i, j = 1, 2, 3 and i ̸= j .

Under a Z(j)
2 -rotation, the one-cycle niπ2i−1 + miπ2i transforms with a minus sign, which

cancels the minus sign coming from the exceptional two-cycle e
(i)
αβ due to the Z(j)

2 -action

combined with discrete torsion. This combination of the exceptional two-cycle with a one-

cycle is called an exceptional three-cycle. In order to obtain three-cycles invariant under the

generators of Z2 × Z6, we have to sum once again over orbifold images.

Let us come back to the example of the Z(3)
2 -twisted sector generated by θ. If discrete tor-

sion is present, no combination of exceptional two-cycles e
(3)
αβ can be found which is invariant

under the Z(1)
2 - and Z(2)

2 -actions implying that the related Hodge number h1,1 is zero, as

indicated in table 2.1. On the other hand, we can �nd eight orbifold-invariant combinations

of three-cycles if discrete torsion is switched on, the explicit expression of which will be given
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below.

In summary, we can conclude that, in the absence of discrete torsion, the resolution of the

singularities leads to two-cycles, whereas in the presence of discrete torsion, the resolution

gives rise to three-cycles. This is linked to the fact that a singularity can be resolved either

by deforming it or by blowing it up, see [105] for details. In general, the resolution of a

singularity arising by degeneration of the Kähler structure is referred to as blow-up, while

the resolution of a singularity arising by complex structure degeneration is rather called de-

formation. Thus, without discrete torsion, we encounter blow-up rather than deformation,

whereas discrete torsion rather leads to deformation [105].

In the following, we will provide the explicit expressions of orbifold-invariant exceptional

three-cycles for all Z2-twisted sectors Z(i)
2 , i = 1, 2, 3, as they have been derived for the �rst

time in [65].

As in the case of the bulk three-cycles, a basis has to be chosen for the exceptional cycles.

In the Z(1)
2 sector, the Betti numbers are: b3 = h3,0 + h0,3 + h2,1 + h1,2 = 0 + 0 + 6 + 6 = 12

and thus, we can choose a basis of twelve independent three-cycles as follows:

ε
(1)
0 = 6e

(1)
11 ⊗ π1 , ε̃

(1)
0 = 6e

(1)
11 ⊗ π2 ,

ε
(1)
1 = 2(e

(1)
41 + e

(1)
51 + e

(1)
61 )⊗ π1 , ε̃

(1)
1 = 2(e

(1)
41 + e

(1)
51 + e

(1)
61 )⊗ π2 ,

ε
(1)
2 = 2(e

(1)
14 + e

(1)
15 + e

(1)
16 )⊗ π1 , ε̃

(1)
2 = 2(e

(1)
14 + e

(1)
15 + e

(1)
16 )⊗ π2 ,

ε
(1)
3 = 2(e

(1)
44 + e

(1)
56 + e

(1)
65 )⊗ π1 , ε̃

(1)
3 = 2(e

(1)
44 + e

(1)
56 + e

(1)
65 )⊗ π2 ,

ε
(1)
4 = 2(e

(1)
45 + e

(1)
54 + e

(1)
66 )⊗ π1 , ε̃

(1)
4 = 2(e

(1)
45 + e

(1)
54 + e

(1)
66 )⊗ π2 ,

ε
(1)
5 = 2(e

(1)
46 + e

(1)
55 + e

(1)
64 )⊗ π1 , ε̃

(1)
5 = 2(e

(1)
46 + e

(1)
55 + e

(1)
64 )⊗ π2 ,

(2.21)

where once again the orbifold images have been summed up in order to obtain orbifold-

invariant three-cycles. Note that we obtain an overall factor of 2 and not 4 because we only

sum over Z6-images. Indeed, there is no need to sum over Z2-images as the exceptional

three-cycles are already invariant under Z2 per construction. The same can be done for

the second and third twisted sectors Z(2)
2 and Z(3)

2 . For each of these sectors, we have the

following Betti numbers: b3 = h3,0 + h0,3 + h2,1 + h1,2 = 0 + 0 + 4 + 4 = 8. A basis of eight

orbifold-invariant exceptional three-cycles per sector is given in [65]:

ε
(l)
κ = 2

(
e
(l)
κ4 ⊗ π(2l−1) + e

(l)
κ6 ⊗ π−(2l) + e

(l)
κ5 ⊗ π(2l)−(2l−1)

)
,

ε̃
(l)
κ = 2

(
e
(l)
κ4 ⊗ π(2l) + e

(l)
κ6 ⊗ π(2l−1)−(2l) + e

(l)
κ5 ⊗ π−(2l−1)

)
,

(2.22)

where l = 2, 3 denotes the torus where Z2 acts trivially. The label κ refers to the Z2-�xed

points on the �rst torus, i.e. κ = 1, 2, 3, 4. Due to the introduction of the overall sign-�ip in

the transformations (2.13) of the torus-wrapping numbers, a subtlety arises in the de�nition

(2.22). Consider for example the second twisted sector with l = 2. The generator ω acts as a

rotation of +60◦ on the second torus, so π3
ω→ +π4. However, due to the additional sign-�ip,

the fourth lattice vector in the expression of ε above has to appear with a minus sign −π4.

The same is true for ε̃, where we have π4
ω→ π3−4 instead of π4

ω→ π4−3. The same holds for

the action of ω in the third sector, where ω acts as a rotation of −60◦ on the third torus.

Thus, the de�nition of the exceptional three-cycles in (2.22) is consistent with the sign-�ip

in (2.13).
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Just as the bulk three-cycles, the exceptional three-cycles give also rise to intersection

numbers. The intersection between two exceptional two-cycles is minus two or zero, as

explained in [77]:

e
(l)
κλ ◦ e

(k)
αβ = −2δlkδκαδλβ . (2.23)

Using equation (2.23), the intersection numbers for the basis of orbifold-invariant exceptional

three-cycles (2.21) and (2.22) can be found as was done in [65]:

ε
(1)
0 ◦ ε̃(1)0 = −12, ε

(1)
α ◦ ε̃(1)β = −4 δαβ, α, β ∈ {1, 2, 3, 4, 5} ,

ε
(l)
α ◦ ε̃(l)β = −4 δαβ with l = 2, 3 α, β ∈ {1, 2, 3, 4} .

(2.24)

Note that an overall factor of 1/6 has to be included in the computation of the intersection

numbers instead of a factor 1/12, as we had done before for the bulk cycles. This is due to

the fact that we do not sum over all the orbifold images in (2.21) and (2.22).

The Z6-orbit of an exceptional three-cycle e
(i)
αβ⊗(niπ2i−1 +miπ2i) can be expressed in terms

of the basis three-cycles (2.21) and (2.22). The correspondence is given in table 2.4. An

extended version of table 2.4 is given by table A.1 in appendix A.1. These tables are used

to construct fractional three-cycles, which we introduce in section 2.3.2.

Z(k)
2 �xed points and exceptional 3-cycles onT 6/(Z2 × Z6)with discrete torsion (η = −1)

Z(1)
2 twisted sector Z(l)

2 twisted sector with l = 2, 3

f.p.(1) ⊗ (n1π1 +m1π2) orbit f.p.(l) ⊗ (nlπ2l−1 +mlπ2l) orbit

11 n1ε
(1)
0 +m1ε̃

(1)
0 κ1 −

41, 51, 61 n1ε
(1)
1 +m1ε̃

(1)
1 κ4 nlε

(l)
κ +mlε̃

(l)
κ

14, 15, 16 n1ε
(1)
2 +m1ε̃

(1)
2 κ5 mlε

(l)
κ − (nl +ml)ε̃

(l)
κ

44, 56, 65 n1ε
(1)
3 +m1ε̃

(1)
3 κ6 −(nl +ml)ε

(l)
κ + nlε̃

(l)
κ

45, 54, 66 n1ε
(1)
4 +m1ε̃

(1)
4

46, 55, 64 n1ε
(1)
5 +m1ε̃

(1)
5

Table 2.4: Correspondence between an exceptional three-cycle e
(k)
κλ ⊗ (nkπ2k−1 + mkπ2k) and its

Z6-orbit expressed in terms of the exceptional basis three-cycles ε
(k)
α and ε̃

(k)
α , as �rst computed

in [65].

The orientifold action ΩR on the exceptional three-cycles

Just as in the case of the bulk three-cycles, the last step consists in verifying how the ΩR
projection acts on the exceptional three-cycles. Let us introduce the following sign factors

ηΩR, ηΩRZ(i)
2

∈ {−1, 1}, i = 1, 2, 3, satisfying the following relation:

η = ηΩR

3∏
i=1

η
ΩRZ(i)

2
. (2.25)

The motivation for these sign factors comes from the stringy approach. In fact, the sign

factors are related to the signs of the RR-charges of the O6-planes. Discrete torsion a�ects
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the RR-charges of the O6-planes. Without discrete torsion, the RR-charges of all the O6-

planes are negative. In the presence of discrete torsion, one must have an odd number of

exotic O6-planes with positive RR-charge, i.e. η
ΩR(Z(i)

2 )
= −1 occurs. The relation above

has to be ful�lled in order to have worldsheet consistency of the Klein bottle amplitude, see

[92, 65] for details.

The transformation law of the exceptional three-cycles under the orientifold action ΩR is

given by

ΩR : e
(l)
αβ → −η(l)e

(l)
α′β′ with η(l) ≡ ηΩRηΩRZ(l)

2
, l = 1, 2, 3 , (2.26)

This transformation law was �rst introduced in [92]. The Z2-�xed point labels α and β of

the exceptional divisor e
(i)
αβ in e

(i)
αβ⊗ (niπ2i−1 +miπ2i) are permuted under the ΩR-projection

as described in section 2.2.1. The ΩR-projection acts on the one-cycles niπ2i−1 +miπ2i in

the expression of the exceptional cycles e
(i)
αβ ⊗ (niπ2i−1 +miπ2i) as complex conjugation, see

eq. (2.18). Taking these three actions of ΩR on the exceptional three-cycle into account,

one obtains the transformations laws as given in table 2.5.

Orientifold images of exceptional three-cycles onT 6/(Z2 × Z6 × ΩR)with discrete torsion (η = −1)

Z(1)
2 twisted sector Z(l)

2 twisted sector with l = 2, 3

lattice ΩR(ε
(1)
α ) ΩR(ε̃

(1)
α ) α = α′ α ↔ α′ ΩR(ε

(l)
α ) ΩR(ε̃

(l)
α ) α = α′ α ↔ α′

a/bAA

a/bAB

a/bBB

η(1)

(
−ε

(1)
α′ + (2b)ε̃

(1)
α′

)
η(1) ε̃

(1)
α′

0, 1, 2, 3

0, 1, 2, 5

0, 1, 2, 4

4, 5

3, 4

3, 5

−η(l) ε
(l)
α′

(−)l η(l) ε̃
(l)
α′

η(l)

(
ε̃
(l)
α′ − ε

(l)
α′

)
η(l)

(
ε̃
(l)
α′ − ε

(l)
α′

)
(−)l η(l) ε

(l)
α′

η(l) ε̃
(l)
α′

1, 4
2 + 2b, 2

3− 2b, 3

Table 2.5: Action of the orientifold projection on the Z(k)
2 ( k = 1, 2, 3) exceptional three-cycles.

The action depends on the lattice type and the choice of the exotic O6-plane, the latter manifesting

via the sign factor η(k) ≡ ηΩRηΩRZ(k)
2

. The label α is switched to the label α′ under the orientifold

action.

So far, we concentrated entirely on the geometry of our orbifold, and the results were

introduced by purely geometrical means. In the next section, we will introduce string theory,

namely closed strings and D6-branes, which come with open strings.

2.3 Strings and D6-branes on T 6/(Z2 × Z6 × ΩR)

2.3.1 Closed string spectrum

In the ten-dimensional space-time, the following massless closed string states are present:

• The graviton, given by a symmetric and traceless metric.

• The dilaton, a scalar �eld given by the trace of the metric.

• The Kalb-Ramond �eld B2, corresponding to an antisymmetric tensor of second order.

• The Ramond-Ramond �elds Cp, which are p-forms with p = 0, . . . 10. In Type IIA

string theory, p is odd, whereas in Type IIB string theory, it is even. However, not all

the Ramond-Ramond �elds are independent degrees of freedom due to the so-called

Hodge duality in ten dimensions given by: Fp = ⋆F10−p, where ⋆ is the Hodge star

and the Fp are the �uxes associated to the Ramond-Ramond �elds, i.e. Fp = dCp−1.

Hence, in Type IIA, C1 and C3 are the independent degrees of freedom.
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The �elds listed above correspond to the bosonic degrees of freedom, which come with

fermionic SUSY partners. We will only discuss the bosonic part in this section.

The Ramond-Ramond �elds Cp couple to p-dimensional subspaces, the Dp−1-branes, via the

following relation:

Sp−1 = Qp−1

∫
Dp−1-brane

Cp , (2.27)

where Qp−1 is the RR-charge of the Dp−1-brane. The Chern-Simons coupling (2.27) is the

generalization of the coupling of the electromagnetic gauge potential to a charged particle

in electromagnetism. Due to the coupling (2.27), the Dp−1-branes acquire RR-charges under

the Ramond-Ramond �elds Cp. The same holds true for the O-planes.

The dimensional reduction of the ten-dimensional �elds is obtained by integration over the

two-cycles and three-cycles present on the internal space, resulting into four-dimensional

scalar �elds and one-forms. For example, the reduction of C3 and B2 is given by:

Ai =
∫
ith(1,1)-cycle

C3 i = 1 . . . h1,1

bi =
∫
ith(1,1)-cycle

B2 i = 1 . . . h1,1

ζk =
∫
kth3-cycle

C3 k = 1 . . . 2(h2,1 + 1)

(2.28)

The one-forms Ai are U(1) gauge bosons called closed or RR-gauge bosons. Without the

orientifold projection, the �elds obtained after dimensional reduction arrange into N = 2

SUSY multiplets.

By introducing the orientifold projection, these N = 2 SUSY multiplets are reduced to

N = 1 SUSY multiplets, since some states are projected out. Indeed, under the worldsheet

parity Ω, C3 is even (i.e. invariant), whereas B2 is odd (i.e. Ω(B2) = −B2). Consequently,

the dimensional reduction is done by integration over two- and three-cycles which are odd

or even under R:

Ai =
∫
ithR-even (1,1)-cycle

C3 i = 1 . . . h1,1
+

bi =
∫
ithR-odd (1,1)-cycle

B2 i = 1 . . . h1,1
−

ξk =
∫
kthR-even 3-cycle

C3 k = 0 . . . h2,1

(2.29)

We see that the numbers of �elds obtained in (2.29) is reduced compared to the ones obtained

in (2.28), which leads to the truncation of the N = 2 SUSY multiplets to N = 1 SUSY

multiplets. However, note that the total number of multiplets per se is conserved, only the

�eld content of the multiplets is reduced.

The various obtained N = 1 SUSY multiplets in four dimensions are listed in table 2.6.

The gravity multiplet contains the graviton given by the four-dimensional metric, while the

dilaton-axion multiplet contains the dilaton and one of the �elds ξk.

The N = 1 SUSY multiplets called Kähler, whose number is given by h1,1
− , contain the

�elds bi and also real scalar components corresponding to Kähler moduli, i.e. deformations

of the type δgij̄ of the metric. These scalar �elds arise from the dimensional reduction of

the Kähler two-form, and roughly speaking correspond to deformations of the "size" of the

internal space.

The h1,1
+ N = 1 SUSY multiplets associated to vector multiplets contain the RR-gauge

bosons Ai, hence the name.

The N = 1 SUSY multiplets called complex structure, the number of which is given by h2,1,
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contain aside from the remaining �elds ξk also complex structure moduli, i.e. deformations

of the type δgij and δgīj̄ of the metric. These moduli arise from the complex structure

(2,1)-form, whose explicit expression can be found for example in [91, 42], and correspond

to deformations of the "shape" of the internal space.

For more details and the exact form and �eld content of the multiplets, see for example

appendix A in [65], or [108].

Since we are working with the orbifold T 6/(Z2×Z6), the analysis separates into the untwisted

and the twisted sectors. Indeed, massless closed strings on the orbifold T 6/(Z2 × Z6) are

characterized by the following boundary condition:

X i(τ, σ + 2π) = θnωmX i(τ, σ) + λ with i = 1, 2, 3 , (2.30)

where θ and ω correspond to the generators of Z2 × Z6, and λ ∈ Λ is a lattice vector of the

torus lattice. The coordinates τ and σ correspond to the worldsheet coordinates as usual.

The closed string sector thus comprises:

• The untwisted sector with n = 0 and m = 0: these are states freely propagating

on the six-dimensional torus T 6. This sector includes the gravity multiplet and the

dilaton-axion multiplet. Also, it gives rise to three Kähler multiplets. The three Kähler

moduli arising from the untwisted sector are associated to the volumes of the three

two-tori. Moreover, the untwisted sector also gives rise to a single complex structure

multiplet. The associated complex structure modulus corresponds to the complex

structure parameter ϱ introduced in section 2.2.1.

• The twisted sectors with n ̸= 0 or m ̸= 0: these are states localized at singularities. On

T 6, these would correspond to open strings, which become closed only on the orbifold

T 6/(Z2 × Z6) and are stuck at �xed points of Z2 × Z6. These sectors give rise to the

remaining N = 1 SUSY multiplets in table 2.6. The associated moduli correspond

to the moduli of the �xed points. In this thesis, we work at the orbifold point, i.e.

we do not deform explicitly the �xed points. The phenomenology of Type IIA string

theory arising away from the orbifold point has been investigated e.g. in [109�111] on

orbifolds ZN × ZM with discrete torsion in the context of intersecting D6-branes.

The total contributions are obtained by summing over the contributions per sector. In table

2.6, the various contributions per sector have already been summed up. The contributions

per sector, also with the separation h1,1 = h1,1
+ + h1,1

− , can be found in appendix D of [65].

Closed string spectrum on T 6/(Z2 × Z6 × ΩR) with discrete torsion η = −1

N = 1 multiplet # a/bAA a/bAB a/bBB

gravity 1

dilaton - axion 1

vector h1,1
+ 4 + 2(1− b)(η(2) + η(3)) 4 + 2(1− b)(η(2) − η(3)) 4− 2(1− b)(η(2) + η(3))

Kähler h1,1
− 15− 2(1− b)(η(2) + η(3)) 15− 2(1− b)(η(2) − η(3)) 15 + 2(1− b)(η(2) + η(3))

complex structure h2,1 19

Table 2.6: Overview of the N = 1 SUSY closed string spectrum of Type IIA string theory on the

T 6/(Z2 × Z6 × ΩR) orientifold with discrete torsion, as computed in [65].
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2.3.2 D6-branes and open strings

In Type IIA string theory, model building is performed with D6-branes having six dimen-

sions in space and one dimension in time and lying on M1,3 × Π3-cycle. They �ll the whole

e�ective four-dimensional Minkowski space-time M1,3 and wrap three-cycles Π3-cycle, which

are three-dimensional submanifolds of the compacti�ed space. These three-cycles have to

satisfy certain geometric conditions, as will be explained in section 2.4.1.

Rigid D6-branes

Although there are three-cycles in the Z3-twisted sectors as indicated in table 2.1, these

will not be used to support D6-branes. Indeed, the massless open string spectrum can been

computed via CFT techniques (e.g. [112�114]), see for example [115] for an overview. Alter-

natively, it can be related to topological intersection numbers of three-cycles in the set-up

of intersecting branes, so that it is not necessary to write down explicit string partition

functions. However, only the three-cycles arising in the untwisted and the Z2-twisted sectors

have an equivalent on the CFT side. Three-cycles from Z3-twisted sectors found no inter-

pretation in terms of string partition functions [77]. Thus, D6-branes are taken to wrap only

three-cycles from the untwisted sectors and the Z2-twisted sectors. Clearly, table 2.1 reveals

that such Z2-twisted exceptional three-cycles only exist if discrete torsion is switched on, i.e

η = −1. Hence, in the following we always assume that discrete torsion is present.

The open strings give rise to various moduli, including position moduli corresponding to

displacements of the D6-branes, and recombination moduli leading to a recombination of

D6-branes. These degrees of freedom are internal degrees of freedom of the D6-branes,

i.e. they can be related to properties of the three-cycles on the internal space. The dis-

placement moduli can be stabilized by considering D6-branes wrapping three-cycles passing

through Z2-�xed points, see [92] for details. Remnants of these displacement moduli are

given by the so-called shift parameters and discrete Wilson lines. Thus, choosing D6-branes

passing through Z2-�xed points eliminates the displacement moduli. Since we have three

Z2-generators, there are Z2-�xed points on all three two-tori T 2
(i), i = 1, 2, 3, rendering the

D6-brane completely rigid insofar that all displacement moduli are projected out. There re-

mains the issue of recombination addressed in section 5.2, which we also refer to as "rigidity".

Hence, in order to stabilize the displacement moduli, the D6-branes have to wrap orbifold

invariant exceptional three-cycles from the Z2-twisted sectors and come with a set of discrete

parameters manifesting as sign factors:

ΠZ(i)
2 = 2(−1)τ

Z(i)2

2∑
m=0

ωm

 ∑
(α,β)∈T 2

(j)
×T 2

(k)

(−1)τ
α
j +τβk e

(i)
αβ ⊗ (niπ2i−1 +miπ2i)

 , (2.31)

where i corresponds to the two-torus left invariant under Z(i)
2 , and (i, j, k) are cyclic per-

mutations of (1, 2, 3). The indices α, β label the four Z2-�xed points on each torus. In the

expression above, the following discrete parameters appear:

• The Z2-eigenvalues (−1)τ
Z(i)2 ∈ {−1, 1}: This parameter is interpreted geometrically as

the orientation of the exceptional two-cycle e
(i)
αβ arising after the blow-up of a Z(i)

2 -�xed
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point on a four-torus T 2
(j) × T 2

(k). The exceptional two-cycle e
(i)
αβ can encircle either

"clockwise" τZ
(i)
2 = 0 or "counter-clockwise" τZ

(i)
2 = 1 the Z(i)

2 -�xed point. The three

Z2-eigenvalues are not independent but related in the following way: τ
Z(1)
2 = τZ

(2)
2 +τZ

(3)
2 .

This is due to the fact that a Z(1)
2 -action followed by a Z(2)

2 -action boils down to a Z(3)
2 -

action.

• The discrete Wilson lines ταj ∈ {0, 1}: Whereas the Z2-eigenvalues correspond to the

absolute orientation of an exceptional two-cycle, the Wilson lines correspond to the

relative orientation of di�erent exceptional two-cycles located at two di�erent Z2-�xed

points. In general, the Z2-�xed point labeled by 1 is chosen as a reference �xed point,

and the Wilson lines of exceptional two-cycles wrapped around other Z2-�xed points

are given with respect to this point. The convention is that ταj = 0 means the same

orientation as the reference exceptional two-cycle, while ταj = 1 refers to the opposite

orientation. If the bulk cycle is shifted by half a lattice vector, a new reference point

is chosen. As we will see later in 2.8, this choice is not completely arbitrary. Note that

the superscript α in ταj can be omitted after introducing reference points and fractional

three-cycles in the next section.

• The discrete shifts σj ∈ {0, 1} , j = 1, 2, 3: They parametrize whether a torus one-cycle

on the two-torus T 2
(j) passes through the origin (σj = 0) or whether it is shifted by

half a lattice vector (σj = 1). The shifts do not appear explicitly in the expression

above, but are rather hidden in the labels α, β of the Z2-�xed points. For reasons

of convenience, it is useful to introduce them explicitly when calculating intersection

numbers in the framework of model building, c.f. appendix A.2.

In total, there are 22 · 23 · 23 = 256 possible choices for the set of discrete parameters. For

details about the derivation of the sign factors, see e.g. [92].

An example of an exceptional three-cycle of the second twisted sector is depicted in �gure

2.7.

Fractional three-cycle

There are two sorts of three-cycles the D6-branes can wrap: the bulk three-cycles arising

from the untwisted sector, and the exceptional three-cycles arising in the Z2 -twisted sectors.

Combining both gives rise to so-called fractional cycles, given as a superposition of a bulk

three-cycle and the sum over the three Z2-twisted sectors containing the exceptional three-

cycles

Πfrac =
1

4

(
Πbulk +

3∑
i=1

ΠZ(i)
2

)
. (2.32)

The advantage of fractional three-cycles in model building is that they are pinned down at

the Z2-�xed points such that none of the continuous displacement moduli survives. Also,

since both the bulk part and the exceptional part of the fractional three-cycle can contribute

to the intersection numbers, the possibilities for model building are enriched. In order for

the basis of the four bulk cycles and all 28 exceptional cycles to form an unimodular lattice,

the overall factor in front has to be 1/4. The overall factor 1/4 is related to the fact that

three-cycles passing through Z2-�xed points are mapped to themselves under a Z2-rotation.
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Figure 2.7: Pictorial representation of an orbifold representative of an exceptional three-cycle aris-

ing in the Z(2)
2 -twisted sector. The action of Z(2)

2 is non-trivial on the �rst and third two-torus

T 2
(1) × T 2

(3) and trivial on the second two-torus T 2
(2). The exceptional three-cycle appears as a

tensor product of a one-cycle on T 2
(2) with two-cycles arising from blowing up Z(2)

2 -�xed points

on T 2
(1) × T 2

(3). The circles indicate the Z2-�xed points contributing to the exceptional three-

cycle. The points encircled in blue correspond to the reference points and contribute with a factor

(−1)τ
Z(i)2 , i = 1, 3, to the exceptional three-cycle ΠZ(2)

2 . The points encircled in magenta contribute

to ΠZ(2)
2 with a factor (−1)τ

Z(i)2 +τ i . Concretely, the three-cycle depicted above can be written

as (−1)τ
Z(2)2
(
e
(2)
11 + e

(2)
14 (−1)τ

3
+ e

(2)
21 (−1)τ

1
+ e

(2)
24 (−1)τ

1+τ3
)
⊗ (π3 − 2π4). The factor (−1)τ

Z(2)2 in

front is obtained by using the relation τZ
(1)
2 = τZ

(2)
2 + τZ

(3)
2 . In order to get the orbifold-invariant

three-cycle, the orbifold images have to be added.

Only the exceptional cycles associated to the �xed points traversed by the bulk three-cycle

contribute to the fractional cycle.

A generic fractional cycle can thus be expressed in terms of the basis cycles as follows:

Πfrac
a =

1

4
Πbulk

a +
1

4

3∑
i=1

ΠZ(i)
2

a

=
1

4
(Paρ1 +Qaρ2 + Uaρ3 + Vaρ4) +

1

4

5∑
α=0

(
x(1)
α,a ε

(1)
α + y(1)α,a ε̃

(1)
α

)
+

1

4

∑
l=2,3

4∑
α=1

(
x(l)
α,a ε

(l)
α + y(l)α,a ε̃

(l)
α

)
,

(2.33)

with the bulk wrapping numbers as de�ned in (2.12), and a is the D6-brane label. The ex-

ceptional wrapping numbers (x
(k)
α,a, y

(k)
α,a), k = 1, 2, 3 are �xed by the torus wrapping numbers

(nk
a,m

k
a) and the discrete parameters. This is due to the fact that the bulk cycle needs to

pass through the Z2-�xed points at which the exceptional cycles are stuck. The exceptional

wrapping numbers are linear combinations of the torus wrapping numbers (nk
a,m

k
a) of the

Z(k)
2 -invariant torus, with the pre-factor determined by the discrete parameters.

The general form of the exceptional wrapping numbers can be divided into two classes (I)

and (II), where the �rst (second) class corresponds to coe�cients receiving contributions

from one (two) �xed points. Not all of the exceptional wrapping numbers (x
(k)
α,a, y

(k)
α,a) in table

2.7 are non-zero. The following rules are valid:

• In the �rst twisted sector k = 1, exactly three of the six pairs (x
(1)
α,a, y

(1)
α,a) are di�erent

from zero if the bulk cycle is shifted on the second or third torus, i.e. (σ2, σ3) ̸= (0, 0).

Two of them belong to class (I), and one belongs to class (II). In the absence of shifts

on both the second and third torus, i.e. (σ2, σ3) = (0, 0), four pairs (x
(1)
α,a, y

(1)
α,a) are non-

zero, each pair belonging to class (I). The remaining exceptional wrapping numbers

are zero.
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Exceptional wrapping numbers (x
(k)
α,a, y

(k)
α,a)on T 6/(Z2 × Z6 × ΩR) in terms of torus wrapping numbers (nk

a,m
k
a)

Z(1)
2 twisted sector Z(l)

2 twisted sector with l = 2, 3

I. II. I. II.

(z
(1)
α,a n1

a, z
(1)
α,a m1

a) (ẑ
(1)
α,a n1

a, ẑ
(1)
α,a m1

a)

(ζ
(l)
α,a nl

a , ζ
(l)
α,a ml

a)

(ζ
(l)
α,a ml

a , −ζ
(l)
α,a (nl

a +ml
a))

(−ζ
(l)
α,a (nl

a +ml
a) , ζ

(l)
α,a nl

a)

(
−ζ

(l)
α,a nl

a + (ζ̂
(l)
α,a − ζ

(l)
α,a)ml

a , (ζ
(l)
α,a − ζ̂

(l)
α,a) nl

a − ζ̂
(l)
α,a ml

a

)(
(ζ

(l)
α,a − ζ̂

(l)
α,a) nl

a − ζ̂
(l)
α,a ml , ζ

(l)
α,a ml

a + ζ̂
(l)
α,a nl

a

)(
ζ̂
(l)
α,a nl

a + ζ
(l)
α,a ml

a , −ζ
(l)
α,a nl

a + (ζ̂
(l)
α,a − ζ

(l)
α,a) ml

a

)
Table 2.7: The denomination type I refers to exceptional wrapping numbers receiving a single

contribution from an orbit of an exceptional three-cycle given in table 2.4. Type II exceptional

wrapping numbers stem from an orbit contributing twice, which is due to two di�erent Z2 �xed

points on T 2
(j) × T 2

(k) . The exact form of the pre-factors z
(1)
α,a, ζ

(l)
α,a, ζ̂

(l)
α,a ∈ {±1} and ẑ

(1)
α,a ∈ {0,±2},

is given in appendix A.1.

• For each twisted sector k = 2, 3, exactly two of the four pairs (x
(k)
α,a, y

(k)
α,a) have non-zero

entries, independently of shifts.

The exact form of the pre-factors z
(1)
α,a, ζ

(l)
α,a, ζ̂

(l)
α,a ∈ {±1} and ẑ

(1)
α,a ∈ {0,±2} can be read o�

case-by-case from table A.1, which is illustrated on examples in appendix A.1.

Note that the Wilson lines τ i appearing in table A.1 only support one index i corresponding

to the label of the three two-tori, in contrast to the Wilson lines ταj appearing in (2.31)

supporting two indexes j, corresponding to the torus label, and α, corresponding to one of

the four �xed points on a given two-torus. The index α has become super�uous upon intro-

ducing fractional cycles and reference points. Indeed, a torus three-cycle traverses exactly

two Z2-�xed points on each two-torus. In the fractional three-cycles, only those exceptional

three-cycles whose Z2-�xed points are traversed by the torus three-cycles contribute. Thus,

we only obtain one Wilson line per two-torus, corresponding to the relative orientation be-

tween the reference point and the second �xed point the torus three-cycles traverses. The

statement remains true when summing over orbifold images, as the orbifold action does not

change the discrete Wilson lines.

To clarify the meaning of tables 2.7 and A.1, concrete examples of the construction of frac-

tional cycles are given in appendix A.1.

Note that table A.1 contains only the possibilities for (n3
a,m

3
a)=(odd,odd). This is due to

our choice of the orbifold representative, see page 21.

The chiral massless open string sector can be computed through the intersection numbers

of fractional three-cycles [77], which are topological quantities. The formulas to compute

these intersection numbers are given in section 3.3.

Finally, note that there is a subtlety in the way a torus one-cycle is shifted. Indeed, the

shift cannot be de�ned arbitrarily, otherwise contradictions arise. Let us write the labels of

the Z2-�xed points a one-cycle traverses on a two-torus as an array of the form

 α

β

, where
the upper entry α is the reference point.

Consider as a concrete example a one-cycle on the second two-torus T 2
(2) with wrapping

numbers (n2
a,m

2
a) =(even,odd), passing through the �xed points

 1

5

. There are two pos-

sibilities to shift this one-cycle: it can either be shifted along 1
2
π3, so that the shifted cycle
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passes through the �xed points

 4

6

, or it can be shifted by 1
2
(π3 + π4), so that the shifted

cycle passes through

 6

4

. We obtain di�erent reference points for di�erent de�nitions of

the shift. Let us keep the �rst de�nition for the shift.

Next, consider the one-cycle with wrapping numbers (n2
a,m

2
a) =(odd,odd) traversing the

�xed points

 1

6

. Let us de�ne the shift along 1
2
π3 with the shifted cycle passing through 4

5

. However, the two de�nitions of the shifts we chose in this example are incompatible,

because they do not commute with the orbifold action ω on T 2
(2): 1

5

 σ2
a→

 4

6

 ω→

 5

4


 1

5

 ω→

 1

6

 σ2
a→

 4

5

 
This leads to inconsistencies in the computation of intersection numbers. The problem can

be solved by de�ning the shifts in accordance with the orbifold action. In our example given

here, the situation can be salvaged by using for example the second de�nition of the shift

for one-cycles with (n2
a,m

2
a) =(even,odd): 1

5

 σ2
a→

 6

4

 ω→

 4

5


 1

5

 ω→

 1

6

 σ2
a→

 4

5

X

This subtlety was taken into account for the �rst time in [76]. In table 2.8, we give the

de�nitions of the shifts we use in the present work, which are compatible with the orbifold

action.

Since there is no Z6-action on the �rst two-torus T 2
(1), the shifts can be de�ned arbitrarily in

case of the a-type lattice. For the b-type lattice, �xed points 2 and 3 are permuted under

the orientifold projection ΩR, so that the shifts must be de�ned in accordance with the

ΩR-action.

Figure 2.8 provides an explicit example of a fractional three-cycle in the presence of a shift

on the �rst two-torus.

Note that in �gure 2.8, due to the choice of the reference points in table 2.8, the point 3

becomes the new reference point after a shift on the �rst torus.

2.4 Consistency conditions

2.4.1 Supersymmetry and Special Lagrangian Cycles

In order to end up with N = 1 SUSY in four dimensions, the D6-branes need to preserve

SUSY by satisfying the SUSY conditions. In Type IIA string theory, it turned out that the
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Assignment of prefactors (−1)τ
Z(i)2
a or (−1)τ

Z(i)2
a +τ ia

Assignment on T 2
(1) Assignment on T 2

(2) Assignment on T 2
(3)

(ni
a,m

i
a) (odd,odd) (odd,even) (even,odd) (odd,odd)

ω→ (odd,even)
ω→ (even,odd) (odd,odd)

ω→ (even,odd)
ω→ (odd,even)

σi
a = 0

 1

3

 ΩRb→

 1

2

  1

4

 ΩRb�

 1

6

→

 1

4

→

 1

5

  1

6

→

 1

5

→

 1

4


σi
a = 1

 2

4

 ΩRb→

 3

4

  2

3

 ↕ ΩRb

 4

5

→

 5

6

→

 6

4

  4

5

→

 6

4

→

 5

6


Table 2.8: Consistent de�nition of the shift of one-cycles on each two-torus T 2

(i), i = 1, 2, 3. The

shift on the second and third two-torus is de�ned in accordance with the orbifold action, as has

been established in [76]. The de�nition of the shift on the �rst two-torus T 2
(1) is consistent with

the ΩR-projection on the b-type lattice. The upper entry corresponds to the reference point and

contributes with sign factor (−1)τ
Z(i)2
a to the exceptional three-cycle Π

Z(j),j ̸=i
2

a . The contribution of

the lower entry is given by the sign factor (−1)τ
Z(i)2
a +τ ia .

SUSY equations boil down to a set of geometrical conditions on the D6-branes, namely the

Lagrangian condition and the special Lagrangian condition, see [53] for details. Since we are

working at the orbifold point, only the bulk part of the fractional three-cycles is relevant.

Away from the orbifold point, also the exceptional three-cycles become important, see e.g.

[110, 109, 111].

The Lagrangian conditions involve the Kähler two-form, which can locally be written as

follows:

JKähler
1,1 =

3∑
i,k=1

gik̄dzi ∧ dz̄k =
3∑

i=1

gīidzi ∧ dz̄i , (2.34)

where i, k label the three complex directions, namely the three two-tori T 2
(i), i = 1, 2, 3, and

gik̄ corresponds to the torus metric. Mixing terms dzi ∧ dz̄k, i ̸= k are not invariant under

the action of Z2 × Z6 and are thus forbidden. A cycle Πa is called Lagrangian if it satis�es

the Lagrangian condition

J Kähler
1,1 |Πa = 0 . (2.35)

This condition means that the Kähler form must vanish on the three-cycle Πa.

The special Lagrangian conditions are introduced via the holomorphic volume three-form

Ω3, which is de�ned up to a global phase factor eiφa . The volume of a three-cycle is given by

Vol(Πa) =

∫
Πa

|Ω3| with Ω3 = eiφa
√
|g|(dz1 ∧ dz2 ∧ dz3) , (2.36)

where g is the determinant of the metric. A three-cycle Πa is called special Lagrangian if it

satis�es the special Lagrangian conditions given by

ℜ(Ω3)|Πa > 0 , ℑ(Ω3)|Πa = 0 . (2.37)

The three-form Ω3 is a so-called calibration form, and we say that the three-cycle Πa is

calibrated with respect to the three-form ℜ(Ω3). A cycle which is calibrated is automatically

volume minimizing in its own homology class. In the picture of the three two-tori, a calibrated

cycle appears as straight lines and not as random curves.

Since the R part of the orientifold action acts on the Kähler two-form and the holomorphic

volume three-form as R(JKähler
1,1 ) = −JKähler

1,1 and R(Ω3) = Ω3, and since the O6-planes
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Figure 2.8: Example of an orbifold representative of a fractional three-cycle. The bulk three-cycle

Πbulk is indicated in red, and the three associated exceptional three-cycles ΠZ(1)
2 , ΠZ(2)

2 and ΠZ(3)
2 are

depicted in green. The points encircled in blue correspond to the reference points and contribute

with a factor (−1)τ
Z(j)2 to the exceptional three-cycles ΠZ(i)

2 with i, j = 1, 2, 3 and i ̸= j. The points

encircled in magenta contribute to ΠZ(i)
2 with a factor (−1)τ

Z(j)2 +τ j .

correspond to the �xed loci underR, it follows that the O6-planes satisfy both the Lagrangian

and special Lagrangian conditions with φO6 = 0:

J Kähler
1,1 |ΠO6

= 0 , (2.38)

ℜ(Ω3)|ΠO6
> 0 , ℑ(Ω3)|ΠO6

= 0 . (2.39)

In the language of SUSY, the phase factor eiφa in the de�nition of the holomorphic volume

form Ω3 actually parametrizes which N = 1 SUSY is preserved by the D6-brane wrapping

the three-cycle Πa. For factorisable six-tori this phase factor φa can be a given geometric

meaning in terms of the (sum of the) angle(s) between the real axis and the three-cycle, as

we will see below.
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In order to preserve N = 1 SUSY, all the D6-branes present in a model have to be calibrated

with respect to the same holomorphic volume three-form as the O6-planes, i.e. φa = φO6 =

0 ∀ a. For more details, see [77, 116, 117].

The equations (2.37) are of a local di�erential form. As usual in physics, one can work

with the di�erential or the integral form of equations. Commonly, in the present context

one works with the integral form of equations. In order to write these down, we introduce

the complex number Za corresponding to the following integral:

Za ≡
∫
Πa

Ω3 . (2.40)

If the cycle Πa is special Lagrangian, the quantity Za is a real number and corresponds to

the volume of the three-cycle Πa. In order to �nd explicit expressions for special Lagrangian

cycles, the integrated and normalized forms of equations (2.37) are used [65]:

ℑ(Za) = 0 , ℜ(Za) > 0 . (2.41)

In the geometrical set-up of the present work, the number Za has been given in [65]:

Za =
3∏

k=1

(
e−iπϕ̃kxk

a

)
, (2.42)

where ϕ̃k encodes the information about the choice of the orientifold-invariant direction, i.e.

whether the lattice is of a-, b-, A- or B-type, and xk
a involves the torus wrapping numbers

of the one-cycle a wrapped on the two-torus T 2
(k). We have

ϕ̃k =

 0 for a,b,A

1
6

for B
, (2.43)

xk
a =

 n1
a + iR2

R1
(m1

a + bn1
a) for T 2

(1)

nl
a + ei

π
3ml

a for T 2
(l), l = 2, 3

. (2.44)

The SUSY conditions boil down to requiring that the sum of the angles between Πa and the

real axis on the three two-tori must be zero. So it is useful to express the angle πϕa of the

one-cycle a with respect to the real axis on the two-torus T 2
(k) in terms of torus wrapping

numbers:

tan (πϕa)k =


ma+bna

na

R2

R1
for a,b

√
3 ma

2na+ma
for A

1√
3
ma−na

na+ma
for B

. (2.45)

The conditions (2.41) can be calculated in terms of the torus wrapping numbers, which in

turn can be expressed in terms of the bulk wrapping numbers (2.12), giving:

a/bAA
3Qa + ϱ [2Ua + Va + b(2Pa +Qa)] = 0

2Pa +Qa − ϱ [Va + bQa] > 0

a/bAB
Qa − Pa + ϱ [Ua + Va + b(Pa +Qa)] = 0

3(Pa +Qa) + ϱ [Ua − Va + b(Pa −Qa)] > 0

a/bBB
−3Pa + ϱ [Ua + 2Va + b(Pa + 2Qa)] = 0

Pa + 2Qa + ϱ [Ua + bPa] > 0

(2.46)
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The SUSY conditions correspond to the �rst set of consistency conditions a stable particle

physics model has to ful�ll.

2.4.2 RR-tadpole cancellation conditions

The D6-branes and O6-planes couple via the Chern-Simons coupling (2.27) to the Ramond-

Ramond �eld C7 and are thus charged under this �eld. The RR-charges of the O6-planes

are related to the RR-charges of the D6-branes as QD6 = −4QO6 [50]. This results from

imposing the cancellation of the so-called RR-tadpole diagram, which can be computed via

CFTmethods. For details about the derivation of RR-tadpoles, see for example [118, 87, 119].

Other than by cancellation of RR-tadpole diagrams, the RR-tadpole cancellation conditions

can be derived by computing the equations of motion of the C7 �eld, starting from the ten-

dimensional action of Type IIA string theory, see for example [77, 120, 53] and references

therein.

In the present set-up, the RR-charges are encoded in terms of cohomology classes. By

virtue of Poincaré duality, the encoding can be translated into the language of three-cycle

homology for D6-branes, so that charge neutrality leads to a set of homology conditions

called RR-tadpole cancellation conditions [53, 121]:∑
a

Na (Πa +Πa′) = 4ΠO6 . (2.47)

The sum goes over all the cycles Πa present in the model, and Na is the number of cycles in

the homology class of the fractional three-cycle Πa. The D6-branes wrapping the orientifold

images Πa′ of three-cycles Πa also carry RR-charges.

As a side-remark, note that the RR-tadpole cancellation conditions also imply the can-

cellation of non-Abelian gauge anomalies. The other anomalies of type Abelian, mixed

Abelian-non-Abelian and mixed Abelian-Gravitational are canceled by the Green-Schwarz

mechanism [122] which can be generalized to the set-up of intersecting D6-branes [123].

In general, models which do not satisfy the RR-tadpole cancellation conditions are called

local models. On the other hand, models which satisfy the RR-tadpole cancellation condi-

tions will be called semi-global models in this thesis.

In the present set-up, the RR-tadpole cancellation conditions can be divided into a bulk and

an exceptional part:

1

4

∑
a

Na

(
Πbulk

a +Πbulk
a′

)
= 4NO6

4∑
i=0

(η
ΩRZ(i)

2

1

4
Π

ΩRZ(i)
2
) , (2.48)

∑
a

Na

(
ΠZ(i)

2
a +Π

Z(i)
2

a′

)
= 0 for i = 1, 2, 3 , (2.49)

where ΩRZ(0)
2 ≡ ΩR and NO6 = 2(1 − b) is the number of identical O6-planes. The right-

hand side of the second equation is zero since the O6-planes have no exceptional part [113].

This is due to the fact that there are no twisted sector contributions to the so-called Klein-

Bottle amplitude, which is a result from CFT. Using formulas (2.11), (2.48) and table 2.2,

the bulk part of the equations can be expressed in terms of the bulk wrapping numbers
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P,Q, U, V :

a/bAA

∑
a Na (2Pa +Qa) = 8

(
ηΩR + 3 η

ΩRZ(1)
2

)
−
∑

a Na
Va+bQa

1−b
= 8

(
η
ΩRZ(2)

2
+ η

ΩRZ(3)
2

)
a/bAB

∑
a Na (Pa +Qa) = 8

(
ηΩR + η

ΩRZ(1)
2

)
∑

a Na
Ua−Va+b (Pa−Qa)

1−b
= 8

(
η
ΩRZ(2)

2
+ 3 η

ΩRZ(3)
2

)
a/bBB

∑
a Na (Pa + 2Qa) = 8

(
3 ηΩR + η

ΩRZ(1)
2

)
∑

a Na
Ua+b Pa

1−b
= 8

(
η
ΩRZ(2)

2
+ η

ΩRZ(3)
2

)
(2.50)

The same can be done for the exceptional wrapping numbers, using equations (2.33), (2.48)

and table 2.5. The results are given in table 2.9.

Twisted RR-tadpole cancellation conditions on T 6/(Z2 × Z6 × ΩR) with discrete torsion (η = −1)

lattice Z(1)
2 twisted sector Z(l)

2 twisted sector with l = 2, 3

a/bAA

∑
a Na(1− η(1))x

(1)
α,a = 0, α = 0, 1, 2, 3∑

a Na[(1 + η(1))y
(1)
α,a + η(1)2b x

(1)
α,a] = 0, α = 0, 1, 2, 3∑

a Na(x
(1)
4,a − η(1)x

(1)
5,a) = 0,∑

a Na[y
(1)
4,a + η(1)y

(1)
5,a + b (x

(1)
4,a + η(1)x

(1)
5,a)] = 0,

∑
aNa[(1− η(l))x

(l)
α,a − η(l)y

(l)
α,a] = 0, α = 1, 4∑

aNa(1 + η(l))y
(l)
α,a = 0, α = 1, 4∑

aNa[x
(l)
2,a − η(l)x

(l)
2+2b,a − η(l)y

(l)
2+2b,a] = 0,∑

aNa[x
(l)
3,a − η(l)x

(l)
3−2b,a − η(l)y

(l)
3−2b,a] = 0,∑

aNa(y
(l)
3,a + η(l)y

(l)
3−2b,a) = 0,∑

aNa(y
(l)
2,a + η(l)y

(l)
2+2b,a) = 0,

a/bAB

∑
a Na(1− η(1))x

(1)
α,a = 0, α = 0, 1, 2, 5∑

a Na[(1 + η(1))y
(1)
α,a + η(1)2b x

(1)
α,a] = 0, α = 0, 1, 2, 5∑

a Na(x
(1)
3,a − η(1)x

(1)
4,a) = 0,∑

a Na[y
(1)
3,a + η(1)y

(1)
4,a + b (x

(1)
3,a + η(1)x

(1)
4,a)] = 0,

∑
a Na(x

(l)
α,a + (−1)l η(l) y

(l)
α,a) = 0, α = 1, 4∑

a Na(x
(l)
2,a + (−1)l η(l)y

(l)
2+2b,a) = 0,∑

a Na(x
(l)
3,a + (−1)l η(l)y

(l)
3−2b,a) = 0,

a/bBB

∑
a Na(1− η(1))x

(1)
α,a = 0, α = 0, 1, 2, 4∑

a Na[(1 + η(1))y
(1)
α,a + η(1)2b x

(1)
α,a] = 0, α = 0, 1, 2, 4∑

a Na(x
(1)
3,a − η(1)x

(1)
5,a) = 0,∑

a Na[y
(1)
3,a + η(1)y

(1)
5,a + b (x

(1)
3,a + η(1)x

(1)
5,a)] = 0,

∑
a Na(1− η(l))x

(l)
α,a = 0, α = 1, 4∑

a Na[(1 + η(l))y
(l)
α,a + η(l)x

(l)
α,a] = 0, α = 1, 4∑

a Na(y
(l)
2,a − η(l)y

(l)
2+2b,a) = 0,∑

a Na(y
(l)
3b,a − η(l)y

(l)
3−2b,a) = 0,∑

a Na[x
(l)
2,a + η(l)x

(l)
2+2b,a + η(l)y

(l)
2+2b,a] = 0,∑

a Na[x
(l)
3,a + η(l)x

(l)
3−2b,a + η(l)y

(l)
3−2b,a] = 0.

Table 2.9: Twisted RR-tadpole cancellation conditions for all lattice con�gurations and Z(i)
2 -twisted

sectors (i = 1, 2, 3) on T 6/(Z2 × Z6 × ΩR) with discrete torsion.

2.4.3 K-theory constraints

In general, (co-)homology classes are used to classify the three-cycles and thus the D6-branes.

In chapter 5 about model building though, we will see that the D6-branes have an additional

structure due to gauge �elds living on them. A better description of the D6-branes would be

given by K-theory, which arises in a side-branch of algebraic geometry. To get an overview

of K-theory, see [124] and references therein. K-theory is able to detect D6-brane charges

missed by ordinary cohomology [125, 126]. In particular, imposing the so-called K-theory

constraints on the D6-branes cancels the K-theory charges not captured by the RR-tadpole

cancellation conditions. The K-theory constraints are quite involved and deriving an explicit

expression for them goes beyond the scope of this thesis. Traditionally, instead of using the



38 CHAPTER 2. TYPE IIA STRING THEORY ON THE T 6/(Z2 × Z6 × ΩR) ORIENTIFOLD

K-theory constraints, one uses the so-called probe-brane constraints [127]. Both constraints

coincide for compacti�cations on smooth manifolds. The probe-brane argument states that

the number of particles charged under the USp(2N) gauge group must be even, lest the

corresponding gauge theory becomes inconsistent [128]. The probe-brane argument can be

considered as necessary conditions, but it is unknown whether these conditions are also

su�cient. The probe-brane constraints can be given in terms of intersection numbers:∑
a

NaΠa ◦ Πprobe = 0 mod 2 . (2.51)

Once again, the sum goes over all the cycles present in the model. The probe-brane Πprobe

corresponds to any D6-brane carrying a symplectic gauge group USp(2N). The D6-branes

supporting such a gauge group will be classi�ed in section 5.1.

Consistent models satisfy all the conditions, i.e. both the RR-tadpole cancellation conditions

and the K-theory constraints. Semi-global models (i.e. models satisfying the RR-tadpole

cancellation conditions) which ful�ll the K-theory constraints are called global models7.

7Note that the terminology used here is slightly di�erent from the one used in our publication [64].



Chapter 3

Introduction to model building with

intersecting D6-branes

We will start this chapter with a basic overview of features and assumptions used in model

building with intersecting D6-branes. We will continue with a review of the particle physics

models considered in this work and provide a collection of formulas used in the context of

this doctoral work.

3.1 Overview of basic aspects in D6-brane model building

A fundamental result in Type IIA string theory is the association of an Abelian U(1) gauge

factor to each D6-brane. Indeed, along the Neumann boundary conditions, the massless open

string excitations give rise to a gauge theory living on the D6-brane worldvolume. Note that

this is a general result, valid for generic D-branes.

Coincident D6-branes form a so-called "stack" of D6-branes. A stack of N coincident D6-

branes carries a non-Abelian unitary U(N) gauge group. In case the stack of D6-brane wraps

a three-cycle invariant under the R-part of the orientifold projection ΩR, it can also give

rise to symplectic USp(2N) or orthogonal SO(2N) groups. Most particle physics models

possess a gauge group consisting of several gauge factors, so that several stacks are present

in the model. Besides, in order to ful�ll the RR-tadpole cancellation conditions, additional

stacks have to be introduced generally, which are called "hidden stacks".

The massless open string excitations give rise to states transforming in the following rep-

resentations of the gauge groups supported by the D6-branes:

The bifundamental representation: This representation arises when the string has the

two endpoints attached to two di�erent intersecting stacks of D6-branes a and b. The string

is localized at the intersection point, where its length is zero. In general, open strings are

oriented. Thus, depending on the orientation of the string, the resulting state transforms

either in the bifundamental representation (Na,Nb) or its complex conjugate (Na,Nb).

This is re�ected in the sign of the intersection numbers, as we will see in the next section

in more detail. The orientifold projection reverses the orientation of a string and e�ectively

leads to taking the complex conjugate of a representation. More precisely, a string spanned

between a and the orientifold image b′ of b supports states transforming either in (Na,Nb)
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Figure 3.1: The degrees of freedom (d.o.f.) of D6-

branes in Minkowski space correspond to vector mul-

tiplets containing the gauge bosons and their SUSY

partners. The longitudinal d.o.f. of the D6-branes in

the internal space are called Wilson lines. The trans-

verse d.o.f. of the D6-branes in the internal space cor-

respond to position moduli. The Wilson lines and shift

moduli combine into C-scalars in the N = 1 chiral

multiplets transforming in the adjoint representation.

or (Na,Nb).

The particles transforming in the bifundamental representations form candidates for matter

particles, i.e. quarks and leptons. Details are given in the next section.

The adjoint representation: A string having both endpoints attached to the same stack

a of D6-branes gives rise to the adjoint representation Na ⊗Na = Adja for a unitary group

U(Na). Two cases can be distinguished:

• The string has both endpoints attached to the same stack of D6-branes on the underly-

ing torus, in which case it gives rise to states transforming in the adjoint representation.

These can be either associated to vector multiplets or to chiral multiplets transforming

in the adjoint representation.

The seven-dimensional gauge �eld AM , M = 0 . . . 6 of a D6-brane can be written as

AM = (Aµ, A
internal
i ) where µ = 0, . . . 3 labels the directions of the Minkowski space

and i = 4, 5, 6 labels the three directions of the D6-brane in the compact space. After

dimensional reduction, the gauge �eld decomposes as follows:

1. The vector �eld Aµ, µ = 0, . . . 3 living in four-dimensional Minkowski space-time

M1,3. This �eld corresponds to the usual gauge boson.

2. The one-form Ainternal =
∑

i ai(x)η
i, where the ηi (i = 4, 5, 6) correspond to a

basis of one-forms1 associated to the three-cycle wrapped by the D6-brane in the

compact space. The coe�cients ai are called continuous Wilson lines.

Furthermore, we have three scalars ϕi (i = 7, 8, 9) associated to the three transverse

degrees of freedom of the seven-dimensional D6-brane in the ten-dimensional space-

time. These are called position moduli or shift moduli, as they cause a continuous

displacement of the D6-brane along the compact space.

The situation described above is summarized schematically in �gure 3.1.

For a stack of Na D6-branes, we obtain multiplets transforming in the adjoint repre-

sentation of the non-Abelian group U(Na). The Wilson lines ai and shift moduli ϕi

1Although a Calabi-Yau threefold does not have (non-trivial) one-forms, a special Lagrangian submanifold

can still support one-forms. This goes back to the theorem of McLean [129].
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Figure 3.2: The strings depicted in blue correspond to chiral multiplets transforming in the adjoint

representation of the gauge group supported by the D6-brane. These strings lead to a recombination

of the D6-brane with one of its orbifold images, resulting in a breaking of the gauge group.

combine into complex scalars ϕi + iai, forming the scalar components of three N = 1

chiral multiplets transforming in the adjoint representation of the gauge group U(Na).

The fermionic components of the chiral multiplets arise from the decomposition of the

seven-dimensional gaugino. Such chiral multiplets are phenomenologically unwanted

for non-Abelian gauge groups, as they do not appear in any model of particle physics.

Moreover, they cause a breaking of the gauge group, which is in general also not

desirable from a phenomenological point of view. However, in the case of toroidal

orbifolds of the form Z2 × ZM , the D6-branes wrap around fractional three-cycles

passing through Z2-�xed points, which �xes the D6-branes. Indeed, these chiral multi-

plets transforming in the adjoint representation are not invariant under the Z2-actions

and are thus projected out of the theory [65, 76, 77, 66, 92�96, 67�71, 97, 130�134].

Only toroidal orbifolds of the form Z2 × Z2M have a Z2-action on all three two-tori

[92, 131, 76, 93, 65], which suppresses the continuous displacement moduli completely.

The Wilson lines and shifts appearing as discrete parameters in the present work are

remnants of these chiral multiplets in the adjoint representation.

• The string has its endpoints attached to di�erent intersecting orbifold images of the

same stack of D6-branes. This also gives rise to a chiral multiplet transforming in the

adjoint representation, associated to a recombination modulus [135�138, 92, 139, 97]. If

this modulus develops a non-vanishing VEV, it causes a deformation of the intersection

point and a recombination of the D6-branes, as schematically illustrated in �gure 3.2.

This recombination triggers the breaking of the gauge group supported by the D6-

brane. Special topological conditions have to be imposed on the D6-branes in order to

ensure complete rigidity of the latter, see section 5.2.

The symmetric and antisymmetric representations: The (anti)symmetric represen-

tation arises from unoriented strings attached to the intersection point of a D6-brane a and

its orientifold image a′ as follows: Na ⊗Na = Antia ⊕Syma. The antisymmetric and sym-

metric representations are selected by adding and subtracting respectively the intersection

number of the D6-brane a and the orientifold planes. We will give the explicit formulas in

sections 3.2 and 3.3. Matter states transforming in the (anti)symmetric representation are

only of limited use in particle physics models, as we will see in the next section.

Non-chiral representations: Non-chiral representations refer to particle states which

come in pairs, one state transforming in a representation R under a certain gauge group, the
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Figure 3.3: Example of orbifold representatives of intersecting bulk three-cycles. The two three-

cycles depicted in green and red intersect once on the �rst two-torus T 2
(1), thrice on the second

two-torus T 2
(2) and again once on the third two-torus T 2

(3). In this example, the three-cycles thus

seem to produce three matter states a priori. However, also the exceptional part and the orbifold

images have to be taken into account, which may alter the results.

second state transforming in the complex conjugate representation R of the gauge group.

The multiplicity of non-chiral particles cannot be computed via the usual topological inter-

section numbers, for these take chirality into account via a sign factor and thus always give

zero for non-chiral particles. Instead, they have to be counted via the so-called beta-function

coe�cients, which we introduce in section 3.3. These coe�cients count the particle states

independently of chirality. By comparing with results from CFT, these coe�cients can also

be related to intersection numbers. Thus, just as for the chiral spectrum, the non-chiral

spectrum can also be determined via intersection numbers, although the formulas for the

latter are more involved. Note that states transforming in the adjoint representation also

have to be computed via the beta-function coe�cients.

Up to this point, we have explained how the di�erent representations associated to the

di�erent particles of a model can be realized in the stringy set-up with intersecting D6-branes.

There remains one last ingredient for model building which consists in the determination of

the multiplicity of the states in the various representations, i.e., the number of generations

of the particles. This number is given by the numerical value of the topological intersection

numbers. For example, in �gure 3.3, the intersection number of the two three-cycles depicted

in green and red is three. Indeed, the intersection points are colored in red: one intersection

point on the �rst two-torus T 2
(1), three intersection points on the second two-torus T 2

(2) and

again one intersection point on the third two-torus T 2
(3). Taking the product of intersection

points of each two-torus, we would a priori expect three generations.

However, in case of fractional three-cycles, the exceptional part can alter the result. Also

the orbifold images have to be taken into account. The formulas allowing to compute the

correct number of generations will be given in section 3.3.

3.2 Particle physics models considered in this work

In this section, we will brie�y present the models considered in this work, namely the MSSM,

the left-right symmetric model, the Pati-Salam model and the SU(5) model.
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3.2.1 MSSM-like models

We will start by indicating the particle content of the Standard Model (SM). Subsequently,

mass terms and Yukawa couplings will be discussed.

The MSSM is the simplest SUSY extension of the SM. Pioneering SUSY versions of the

Standard Model were constructed in [140�144] and also [145�147].

In a �rst step, we will discuss the (MS)SM in a purely �eld theoretical context. In a second

step, we will show how the (MS)SM is realized in the context of intersecting D6-branes in

Type IIA string theory.

The SM and MSSM in the �eld theoretical context

The gauge group of the SM is the following:

SU(3)QCD × SU(2)L × U(1)Y ,

where the �rst gauge factor corresponds to the strong interactions, described by quantum

chromodynamics , and the second and third gauge factors describe the electroweak interac-

tions. The "L" in SU(2)L stands for "left", as the gauge bosons of the weak interactions

couple to left-handed particles only. The symbol "Y " in U(1)Y stands, for the so-called

hypercharge QY .

The particle content of the SM is given in table 3.1. In table 3.1, we only wrote down one

Particle content of the SM

Denomination Symbol Hypercharge

Left-handed leptons L ≡

 νL

eL

 −1
2

Right-handed electron eR 1

Right-handed neutrino νR 0

Left-handed quarks QL ≡

 uL

dL

 1
6

Right-handed up-quark uR −2
3

Right-handed down-quark dR
1
3

Table 3.1: List of the left-handed and right-handed quarks and leptons appearing in the SM. The

�rst column provides the names of the particles, the second column gives the symbols used in this

thesis to refer to the particles, and the third column contains the associated hypercharges.

generation of particles. The SM comes with three copies of this spectrum, called generations,

which we will label with i = 1, 2, 3. These generations present a mass hierarchy, i.e. the

members of a given generation have higher masses than the corresponding particles in the

previous generation. This feature of the SM has been discovered experimentally.

In quantum �eld theory, particles can be given a mass by adding explicit mass terms in the

Lagrangian, which have to be singlets under the gauge group. The simplest way is to pair o�
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particles transforming in a representation R of the gauge group with particles transforming

in the complex conjugate representation R of the gauge group. Indeed, mass terms of the

form R ⊗R contain amongst others the singlet representation of the gauge group SU(N).

However, a look at table 3.1 reveals that this prescription does not work for the SM. Indeed,

the fermions of the SM are chiral under the gauge group SU(2)L. The left-handed leptons

transform as doublets under SU(2)L while the right-handed leptons transform as singlets

under SU(2)L, so they cannot be paired o� directly to provide gauge invariant mass terms.

In order to provide gauge invariant mass terms nonetheless, a so-called Higgs doublet has to

be inserted, which leads to gauge-singlet cubic couplings

LY = yuQL ·HuuR + ydQL ·HddR + yeL ·HueR + yνL ·HdνR . (3.1)

These are called Yukawa couplings. After electroweak symmetry breaking (EWSB)2 and

the Brout-Englert-Higgs mechanism3 [152�155], these give rise to mass terms. EWSB corre-

sponds to the breaking of the electroweak gauge group SU(2)L×U(1)Y to the Abelian gauge

group U(1)EM, describing electromagnetism. We will not describe the process of EWSB here,

but refer the reader for example to the textbook [156] for details.

The features described here for the SM are also mostly valid for the MSSM. The MSSM

comes with the same particle content as the SM, except that each fermion of the SM is put

into a multiplet with a bosonic superpartner, and each boson acquires a fermionic partner,

forming together a N = 1 SUSY multiplet.

Moreover, note that for the SM, only one electroweak Higgs doublet is necessary as the

second one can be obtained from the �rst by complex conjugation. In the MSSM though,

two di�erent Higgs doublets Hu and Hd are needed. This is due to the fact that in order

for the superpotential to be invariant under SUSY, it must be a holomorphic function, so

that the second Higgs doublet cannot be obtained from the �rst by complex conjugation,

see for example [39] for details. An additional argument for the existence of a second Higgs

doublet arises from gauge anomaly cancellation considerations. The presence of the Higgsino,

superpartner of the Higgs doublet, leads to a gauge anomaly. In order to cancel that anomaly,

a second Higgs doublet has to be introduced [39].

Finally, the MSSM allows for couplings which can give rise to undesired e�ects such as a

high decay rate for the proton. Such couplings can be suppressed by adding extra discrete

Zn-symmetries by hand, see for example [157] for details.

The MSSM in the string theoretical context

In Type IIA string model building, the aim is in the �rst place to reproduce the particle con-

tent of the SM. Since SUSY is naturally integrated in superstring theory, the superpartners

are obtained automatically by the associated bosonic and fermionic excitations of the open

and closed strings.

In Type IIA string theory, the standard realization of the particle content in table 3.1 in-

volves four stacks of D6-branes, two of them carrying non-Abelian gauge factors and the

other two carrying Abelian gauge factors:

U(3)a × U(2)b × U(1)c × U(1)d

2Original work on spontaneous symmetry breaking was done in [148].
3See also [149], [150] and [151].
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≃SU(3)a × SU(2)b × U(1)c × U(1)d × U(1)a × U(1)b

=SU(3)a × SU(2)b × U(1)Y × U(1)b × U(1)B−L × U(1)PQ ,

with the de�nitions of the hypercharge U(1)Y , Peccei-Quinn U(1)PQ, U(1)b and baryon-

lepton number U(1)B−L symmetries given in terms of the U(1)-charges Qx by:

QY = 1
6
Qa +

1
2
Qc +

1
2
Qd ,

QPQ = Qc −Qd ,

QB−L = 1
3
Qa +Qd ,

. (3.2)

The Peccei-Quinn symmetry is often introduced in extensions of the SM in order to explain

the strong CP problem, where C stands for the operation of charge conjugation and P for

parity symmetry. The strong CP problem consists in the fact that the strong sector of the

SM, i.e. QCD, preserves the so-called CP symmetry, although it is no symmetry of the SM,

as the electroweak sector violates it via the CKM4 matrix [158]. The preservation of the CP

symmetry by QCD is re�ected in the smallness of the electric dipole moment of the neutron

[159, 160], which can be measured experimentally [161]. We will not give further details

here, but refer the reader to [162�165] for details.

The baryon-lepton number symmetry involves two quantum numbers. The baryon number

B is zero for leptons and ±1/3 for quarks. The lepton number L is zero for quarks and ±1 for

leptons. The baryon/lepton numbers give the di�erence between particles and antiparticles.

In general, B/L is taken to be positive for particles and negative for antiparticles. These

quantum numbers are additive, i.e. the total baryon/lepton number of a particle interaction

is given by the sum of the baryon/lepton numbers of each quark/lepton appearing in the

interaction. The interactions in the SM generally preserve the baryon number and lepton

number separately, i.e. the total baryon/lepton number of the initial particles equals the

total baryon/lepton number of the �nal particles. However, in extensions of the SM, they

may not be conserved separately anymore. Instead, one uses the di�erence B−L as quantum

number, which is conserved during elementary particle interactions even in extensions of the

SM. Proton decay is an example of a reaction violating B and L but conserving B − L.

These originally local U(1) symmetries are broken spontaneously by the Stückelberg mecha-

nism. The Stückelberg mechanism is similar to the Higgs mechanism, see for example [166]

for details. In the Stückelberg mechanism of our stringy set-up, the gauge boson associated

to a U(1) symmetry will become massive after absorption of a closed string axion. There-

fore, spontaneously broken U(1) symmetries are also called "massive" U(1)'s. Note that

the coupling of the gauge boson to the axion is given by a Chern-Simon coupling resulting

directly from the generalized Green-Schwarz-mechanism. Thus, in our stringy set-up, the

Stückelberg mechanism arises explicitly as a consequence of the generalized Green-Schwarz-

mechanism.

The associated remnant global U(1) symmetries are exact at the perturbative level, but they

are broken down to discrete Zn-symmetries by non-perturbative e�ects like instantons, see

[100, 78, 93, 102] and also [167, 168]. Thus, in string theory, Zn-symmetries are naturally

integrated and need not be introduced by hand as is the case for the MSSM. However, the

existence of these discrete Zn-symmetries is model-dependent and has to be checked for each

model individually. We will do this in chapter 8.

4CKM stands for Cabibbo-Kobayashi-Maskawa.
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Remember that Type IIA string models generally come with additional hidden stacks in or-

der to ful�ll the RR-tadpole cancellation conditions given in (2.50) and table 2.9. The hidden

stacks are generally accompanied by additional U(1) factors, which can be local, giving rise

to dark photons, or global, giving rise to massive gauge bosons just as the mediators of the

weak force after electroweak symmetry breaking. Dark photons are interesting in cosmology,

since they can act as a force carrier of dark matter [169]. In fact, they would correspond

to a �fth fundamental force behaving similarly as electromagnetism. Dark photons were

considered to possibly provide a solution for the so-called "g-2" anomaly, which refers to a

deviation of the measured muon anomalous magnetic moment [170] from the predictions of

the Standard Model [171, 172].

The charges Qx, x ∈ {a, c, d} appearing in (3.2) are either -2, -1, 0, 1 or 2. An open

oriented string spanned between a stack x and a stack y carries charges with opposite signs

Qx = ±1 and Qy = ∓1 at its endpoints. An open string with both endpoints attached to the

same stack x has charge zero. An open string spanned between a stack x and its orientifold

image x′ has charge ±2.

The multiplicity of the states in a representation is given by the numerical value of the

intersection numbers Πx ◦ Πy
5, the charges Qx are related to the sign of the intersection

numbers. The explicit formulas to compute Πx ◦ Πy will be provided in the next section.

There are two possibilities to associate the intersection numbers to representations. One

possibility is:

Πx ◦ Πy ≥ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = 1 and Qy = −1

Πx ◦ Πy ≤ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = −1 and Qy = 1
, (3.3)

while the other possibility is given by:

Πx ◦ Πy ≤ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = 1 and Qy = −1

Πx ◦ Πy ≥ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = −1 and Qy = 1
. (3.4)

Note that the following relation is always valid for three-cycles within Calabi-Yau threefolds:

Πx ◦ Πy = −Πy ◦ Πx. Let us introduce the following de�nitions:

χxy ≡ Πx ◦ Πy ,

χAntix ≡ 1

2
(Πx ◦ Πx′ +Πx ◦ ΠO6) ,

χSymx ≡ 1

2
(Πx ◦ Πx′ − Πx ◦ ΠO6) .

In order to illustrate how the particle content of the MSSM in table 3.1 can be reproduced

using the intersection numbers, we will choose the �rst convention. Using the other conven-

tion (3.4), the signs are simply �ipped everywhere.

Remember that a string spanned between a cycle x and the orientifold image of a cycle y

corresponds to an unoriented string. With convention (3.3), we have the following represen-

tations in case orientifold images are involved:

Πx ◦ Πy′ ≤ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = −1 and Qy = −1 , (3.5)

5Note that we denote the fractional three-cycles Πfrac
x introduced in (2.33) in the following by Πx, omitting

the superscript.
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Πx ◦ Πy′ ≥ 0 =⇒ (Nx,Ny) ⇐⇒ Qx = 1 and Qy = 1 . (3.6)

In general, the �rst step consists in aiming to reproduce three generations of left-handed

quarks, which arise in the chiral ab and ab′ sectors6. The conditions to impose on the

intersection numbers of the a and b stacks are reproduced in the table below:

Intersection Chirality Representation under QY

(SU(3), SU(2))(Qa,Qb,Qc,Qd)

χab ≥ 0 (3,2)(1,−1,0,0) 1/6

χab′ ≥ 0 (3,2)(1,1,0,0) 1/6

Multiplicity Particle

χab + χab′ 3 QL 1/6

(3.7)

Thus, in order to reproduce the left-handed quarks with correct multiplicity and chirality,

three conditions are imposed on the intersection numbers of the a stack with the b stack,

namely χab ≥ 0, χab′ ≥ 0 and χab + χab′ = 3. The conditions on the intersection numbers

given above (3.7) are rather stringent. Indeed, if three generations cannot be achieved with

the conditions on the intersection numbers in (3.7), the �rst two conditions χab ≥ 0 and

χab′ ≥ 0 can be omitted, leaving only the condition on the sum of the intersection num-

bers χab + χab′ = 3. This leads e�ectively to three chiral generations of left-handed quarks,

although it allows for the presence of non-chiral pairs of left handed quarks of the form

(3,2)(1/6) + (3,2)(−1/6), where the lower index refers to the hypercharge. However, even by

imposing all three conditions, non-chiral pairs of left-handed quarks may still arise within a

same sector ab or ab′. These can only be detected via the beta-function coe�cients given in

section 3.3.

In case of an enhancement of the gauge group from U(1)b to USp(2)b on the b stack, the

sectors ab and ab′ are equivalent and count only once, i.e. χab = χab′ = 3.

As a side-remark, note that under the SU(2) group, the fundamental representation is equiv-

alent to its complex conjugate, i.e. 2=2. The bar over the representation is thus sometimes

omitted.

The next step in model building is generally dedicated to the reproduction of three genera-

tions of right-handed quarks. These arise in the ac, ac′, ad and ad′ sectors, and the conditions

6Instead of referring to the intersection number between a stack x and a stack y by the symbol Πx ◦Πy′ ,

we simply refer to it by the brane labels x and y and call it "the xy sector".
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to impose on the intersection numbers are the following:

Intersection Chirality Representation under QY

(SU(3), SU(2))(Qa,Qb,Qc,Qd)

χac ≤ 0 (3,1)(−1,0,1,0) 1/3

χac′ ≤ 0 (3,1)(−1,0,−1,0) −2/3

χad ≤ 0 (3,1)(−1,0,0,1) 1/3

χad′ ≤ 0 (3,1)(−1,0,0,−1) −2/3

χAntia ≥ 0 (3,1)(2,0,0,0) 1/3

Multiplicity Particle

χac + χad − χAntia −3 dR 1/3

χac′ + χad′ −3 uR −2/3

(3.8)

Once again, the conditions can be loosened by imposing only the last two equations. Here,

we have two separate conditions for the up-type and down-type right-handed quarks, since

these form singlets under the group SU(2)L, and have di�erent hypercharges.

The third step consists in reproducing three chiral generations of left-handed leptons, which

can arise in the bc, bc′, bd and bd′ sectors. The conditions on the intersection numbers are

as follows:

Intersection Chirality Representation under QY

(SU(3), SU(2))(Qa,Qb,Qc,Qd)

χbc ≥ 0 (1,2)(0,1,−1,0) −1/2

χbc′ ≤ 0 (1,2)(0,−1,−1,0) −1/2

χbd ≥ 0 (1,2)(0,1,0,−1) −1/2

χbd′ ≤ 0 (1,2)(0,−1,0,−1) −1/2

Multiplicity Particle

χbc + χbd − χbc′ − χbd′ 3 L −1/2

(3.9)

As usual, the conditions can be loosened by keeping only the last constraint. Note that the

conditions change if enhancement on b is present. Indeed, we have the following relation

between the intersection numbers: Πx ◦ Πy = −Πx′ ◦ Πy′ and Πx ◦ Πy′ = −Πx′ ◦ Πy. Hence,

enhancement on b implies |χbx| = |χbx′| so that the sectors bx and bx′ are considered as being

equivalent and are counted only once. Consequently, the second and the fourth conditions

are super�uous in case of USp(2)b, and the last condition reduces to χbc + χbd = 3.

The second-to-last step consists in obtaining three generations of chiral right-handed elec-

trons, which arise in the cd′ and the symmetric sectors of cc′ and dd′. The conditions on the
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intersection numbers are the following:

Intersection Chirality Representation under QY

(SU(3), SU(2))(Qa,Qb,Qc,Qd)

χcd′ ≥ 0 (1,1)(0,0,1,1) 1

χSymc ≥ 0 (1,1)(0,0,2,0) 1

χSymd ≥ 0 (1,1)(0,0,0,2) 1

Multiplicity Particle

χcd′ + χSymc + χSymd 3 eR 1

(3.10)

Once more, the conditions can be relaxed to only the last equation.

Finally, the particle physics model should also come with three generations of right-handed

neutrinos. Although the right-handed neutrinos are commonly associated to the cd sectors,

they can in principle arise from any singlet gauge representation. In particular, the following

sectors can give rise to singlet representations under the full gauge group:

Intersection Chirality/ Representation under QY

Multiplicity (SU(3), SU(2))(Qa,Qb,Qc,Qd)

χcd ≥ 0 or ≤ 0 (1,1)(0,0,±1,∓1) 0

χAntib ≥ 0 or ≤ 0 (1,1)(0,±2,0,0) 0

φAdjc ≥ 0 or ≤ 0 (1,1)(0,0,0,0) 0

φAdjd ≥ 0 or ≤ 0 (1,1)(0,0,0,0) 0

(3.11)

The number of states in the adjoint representation φAdjx has to be computed via the beta-

function coe�cients, as we will do in section 5.2. Ideally, the intersection numbers above

should sum up to ±3 with the correct sign factors. However, since these are total gauge sin-

glets, they have escaped direct detection techniques so far. Thus, in string model building

no conditions are put on the number of these gauge singlet states.

The conditions on the intersection numbers we have derived in this section are only valid

for the standard hypercharge de�ned with plus signs. Other de�nitions of the hypercharge

involving di�erent signs need a modi�cation of the conditions on the intersection numbers.

We give an example of another choice of the hypercharge in appendix B.1.

A relevant di�erence between the �eld theoretical and stringy approach to the MSSM con-

sists in the fact that, on top of the chiral particle spectrum we have presented in this section,

the stringy approach usually comes with exotic particles, i.e. particles charged under both

the gauge group of the MSSM and some additional hidden gauge group factors which are

necessary for global consistency. These exotic particles can provide candidates for dark mat-

ter.

Moreover, in Type IIA string theory we also encounter non-chiral particles coming in pairs

of a certain representation R and its complex conjugate R. The electroweak Higgs doublets

Hu and Hd of the MSSM form such a pair. All other non-chiral pairs of particles, how-

ever, have no equivalent on the �eld theoretical side of the MSSM, and are characteristic for
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stringy realizations of particle physics models. Thus, these non-chiral pairs are somewhat

an annoyance from a phenomenological point of view. However, since these states come in

pairs R+R, they can easily be paired o� in gauge-invariant mass terms of the form R⊗R,

although in Type IIA string theory, the couplings must also ful�ll the stringy selection rule,

which is more stringent than gauge invariance, see chapter 9. Therefore, they can in prin-

ciple acquire a mass high enough to lift them out of today's particle detectors' reach. Due

to this possibility to e�ectively remove these states from the low-energy e�ective theory, no

conditions are put on the number of non-chiral particle states.

Because of the presence of additional chiral and non-chiral particles as well as potential

extra U(1) or Zn-symmetries, the models are referred to as MSSM-like models rather than

MSSMs.

In Type IIA string theory, the Yukawa couplings (3.1) and n-point couplings in general (in-

volving n interacting �elds) can be realized in a geometrical manner. Indeed, the Yukawa

couplings can be related to the triangular areas de�ned by three intersecting three-cycles on

the six-torus T 2
(1) × T 2

(2) × T 2
(3). We will come back to this in some more detail in chapter 9.

We explained how the chiral particle content of the SM or MSSM is reproduced via the inter-

section numbers. However, there are also conditions on the absence of certain matter states

given by χSyma = 0 and χSymb = 0. Also the stacks need to satisfy conditions of rigidity.

This is described in chapter 5 in more detail. In the following, we will brie�y present the

GUT models appearing in this work.

The three gauge coupling "constants" associated to the three gauge factors of the MSSM

are only constant over small intervals of the energy scale. The energy dependence is due

to the self-interaction of particles. The coupling constants of the weak and electromagnetic

interactions increase with increasing energy, while the coupling strength of the strong inter-

action decreases logarithmically with increasing energy. The running of coupling constants

is determined by the one-loop beta-function.

At order of magnitudes O(1016) GeV, the three coupling constants almost come together in a

point in the SM. This inspired physicists to speculate whether the beta-functions should not

be adapted at high energies, so that the three coupling strengths exactly meet in one point

and unify into a single coupling constant, meaning only one fundamental interaction exists

at high energies [173, 174]. This is known as Grand Uni�cation, schematically indicated

in �gure 3.4. However, to the present day, no fully satisfying uni�cation theory has been

derived.

3.2.2 The left-right symmetric model

The left-right symmetric model [175, 176] arises upon pondering whether the U(1)Y gauge

group can be seen as a broken SU(2)R gauge group. In order to achieve this, the right-

handed up-type and down-type quarks need to be uni�ed in a SU(2)R-doublet, just as the

left-handed quarks come in electroweak SU(2)L-doublets. The same holds true for the right-

handed leptons. Therefore, the gauge group of the SM would change to

SU(3)× SU(2)L × SU(2)R × U(1)B−L ,

which is the gauge group of the left-right symmetric model. U(1)B−L is the baryon-lepton

number symmetry we encountered in the previous section. Under this gauge group, the
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Figure 3.4: Schematic drawing of the running with energy of the gauge coupling constants. The

quantities αi are related to the gauge couplings gi (i = 1, 2, 3) of U(1)Y , SU(2)L and SU(3)QCD

respectively via the relation: αi =
g2i
4π . The quantity µ corresponds to the energy scale. The left

plot depicts the running of the gauge couplings for the SM, while the right plot does the same for

the MSSM. We see that in the SM, the three couplings almost meet in a point, whereas they meet

exactly at ∼ O(1016) GeV in the case of the MSSM. This is a strong hint for Grand Uni�cation at

high energy scales.

right-handed quarks and leptons of the MSSM combine into doublets as follows:

Intersection Chirality/ Representation under QB−L

Multiplicity (SU(3), SU(2), SU(2))(Qa,Qb,Qc,Qd)

χab ≥ 0 (3,2,1)(1,−1,0,0) 1/3

χab′ ≥ 0 (3,2,1)(1,1,0,0) 1/3

χab + χab′ 3 QL 1/3

χac ≤ 0 (3,1,2)(−1,0,1,0) −1/3

χac′ ≤ 0 (3,1,2)(−1,0,−1,0) −1/3

χac + χac′ −3 QR −1/3

χbd ≥ 0 (1,2,1)(0,1,0,−1) −1

χbd′ ≤ 0 (1,2,1)(0,−1,0,−1) −1

χbd − χbd′ 3 L −1

χcd ≤ 0 (1,1,2)(0,−1,0,1) 1

χcd′ ≥ 0 (1,1,2)(0,1,0,1) 1

−χcd + χcd′ 3 R 1

(3.12)

As in the case of the SM or MSSM, the conditions on the intersection numbers above can be

relaxed by keeping only the conditions on the sums. Also, in case of the left-right symmetric

models, symmetry enhancement to symplectic groups can occur not only on the b stack but

also on the c stack, i.e. U(1)x → USp(2)x (x = b, c), in which case the conditions above

have to be modi�ed accordingly.

The Higgs �elds (Hu, Hd) should arise in the sectors bc and bc′. In this thesis, we choose not

to put conditions on the number of Higgs �elds, although the presence of at least one Higgs

�eld renders the model more appealing from a phenomenological point of view.
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The sectors ad and ad′ can give rise to additional particles not foreseen in the left-right

symmetric models. We put a priori no conditions on these, although it is preferable if these

sectors give rise to at most non-chiral pairs of particles.

3.2.3 The Pati-Salam model

The Pati-Salam model, �rst proposed in [12, 13], can be derived from the left-right symmetric

model by taking the uni�cation of the particle content one step further. Indeed, a sensible

question to ask is whether the lepton number can be seen as a fourth �avor symmetry.

Basically, this corresponds to identifying the groups SU(3) × U(1)B−L as a subset of a

SU(4) group. The uni�cation of these two groups to a SU(4) group implies that the quarks

and leptons are uni�ed in fundamental representations under SU(4). The new gauge group

thus obtained is the group of the Pati-Salam model:

SU(4)× SU(2)L × SU(2)R .

Under this gauge group, quarks and leptons are no longer distinguishable, and the matter

content separates into mere left-handed and right-handed particles:

Intersection Chirality/ Representation under

Multiplicity (SU(4), SU(2), SU(2))(Qa,Qb,Qc)

χab ≥ 0 (4,2,1)(1,−1,0,0)

χab′ ≥ 0 (4,2,1)(1,1,0,0)

χab + χab′ 3 (QL, L)

χac ≤ 0 (4,1,2)(−1,0,1,0)

χac′ ≤ 0 (4,1,2)(−1,0,−1,0)

χac + χac′ −3 (QR, R)

(3.13)

As usual, the conditions can be relaxed by retaining only the conditions on the sum, and in

case of enhancement U(1)x → USp(2)x on the b and/or c stacks, the conditions have to be

modi�ed accordingly. Once again, the Higgs �elds (Hu, Hd) arise from the bc and bc′ sectors.

3.2.4 The SU(5) model

Until now, the uni�ed gauge group of the models with left-right symmetry included several

gauge factors. The �rst model including only one gauge factor was the SU(5) model, �rst

proposed in [15]. Obviously, the gauge group of this model is SU(5) as its name already

indicates. Under this gauge group, the particles of the SM or MSSM regroup as follows:

aa′ : 10Antia =



0 u3
R u2

R u1
L d1L

0 u1
R u2

L d2L

0 u3
L d3L

0 eR

0


ab : 5 =



d1R

d2R

d3R

e

νL


,
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where the index i refers to the color-charge under SU(3)QCD. In order to reproduce the

representation 5 under SU(5) in Type IIA string model building, at least two stacks are

needed: one to support a U(5) group and one to support an arti�cial U(1) group. In that

set-up, the two representations are realized as follows by the intersection numbers:

Intersection Chirality/ Representation under

Multiplicity (SU(5))(Qa,Qb)

χab ≤ 0 (5)(−1,1)

χab′ ≤ 0 (5)(−1,−1)

χab + χab′ −3 5

χAntia 3 (10)(1,0)

(3.14)

The �rst three conditions can once again be relaxed by keeping only the third one. Also,

enhancement on the b stack is tolerated, meaning that the �rst three conditions have to be

adapted if enhancement arises: χab = χab′ = −3. On top of the chiral matter spectrum, we

also have conditions on the rigidity of the a stack. Indeed, one chiral multiplet transforming

in the adjoint representation of SU(5) should be present in order to play the role of the

GUT Higgs, breaking the SU(5) group down to the gauge group of the SM or MSSM at low

energies. Thus, the GUT models presented in this section are only valid at high energies.

An introductory textbook to the SM and extensions thereof is given by [177]. For the

incorporation of particle physics models in Type II string theory with intersecting branes,

see for example [121, 178, 52, 54, 179, 180, 53, 181�184]

3.3 Collection of formulas for the massless open string

spectrum

At the intersection points of two D6-branes, matter states arise whose multiplicity is deter-

mined by the topological intersection number. There are two possibilities to calculate the

intersection numbers, the �rst one is the "orbifold invariant" one and involves the bulk and

exceptional wrapping numbers whereas the second method is based on the torus wrapping

numbers weighted by sign factors.

Both methods only compute the net-chirality of a representation, i.e. they only count the

number of chiral states transforming in the representation under consideration.

The formulas allowing to determine the chiral massless open string spectrum via inter-

section numbers can be found in [77]. The formulas permitting the computation of the

non-chiral massless open string spectrum via intersection numbers on orbifolds of the form

T 6/(Z2 × Z2M) with discrete torsion were provided for the �rst time in appendix B of [65].

3.3.1 Orbifold invariant intersection numbers

The "orbifold invariant" intersection number on T 6/(Z2×Z6) can be directly calculated using

the expression of a generic fractional cycle (2.33) and formulas (2.10) and (2.24). Considering

two fractional three-cycles Πa and Πb, the multiplicities of the chiral matter states in the
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bifundamental representations of a model are given by:

Πa ◦ Πb =
1

4

(
2 (PaUb − PbUa +QaVb −QbVa) + (PaVb − PbVa +QaUb −QbUa)

)
− 1

4

(
3
[
x
(1)
0,ay

(1)
0,b − x

(1)
0,by

(1)
0,a

]
+

5∑
α=1

[
x(1)
α,ay

(1)
α,b − x

(1)
α,by

(1)
α,a

])

− 1

4

3∑
i=2

4∑
α=1

[
x(i)
α,ay

(i)
α,b − x

(i)
α,by

(i)
α,a

]
.

(3.15)

The multiplicities of the states in the (anti)symmetric representations are obtained by replac-

ing the cycle b by the orientifold image of a in expression (3.15), and adding the intersection

number between the cycle a and the O6-planes:

χAntia/Syma =
Πa ◦ Πa′ ± Πa ◦ ΠO6

2
, (3.16)

where ΠO6 is de�ned as follows:

ΠO6 =
NO6

4

(
ηΩRΠΩR +

3∑
k=1

η
ΩRZ(k)

2
Π

ΩRZ(k)
2

)
, (3.17)

with NO6 = 2(1− b). Remember from section 2.4.2 that the O6-planes have no exceptional

part. The intersection number Πa ◦ ΠO6 is thus given by:

Πa ◦ ΠO6 = −

(
ηΩR + 3η

ΩRZ(1)
2

)
2

[
2Ũa + Ṽa

]
−

3(1− b)
(
η
ΩRZ(2)

2
+ η

ΩRZ(3)
2

)
2

Qa , (3.18)

where we introduced the short-hand notations Ũa = Ua + bPa and Ṽa = Va + bQa.

The orbifold invariant intersection numbers miss some information, as they cannot provide

the intersection numbers between an orbifold representative of a fractional three-cycle and

its orbifold images separately. This is due to the fact that the bulk and exceptional wrapping

numbers are orbifold invariant by de�nition. On the bright side, formula (3.15) can be easily

integrated into numerical codes. The determination of the exceptional wrapping numbers

x
(1)
α y

(1)
α (α = 0, . . . 5), and x

(l)
α y

(l)
α (l = 2, 3, α = 1, . . . 4) is done via table A.1 and corresponds

to the most tedious part to encode. Yet, the exceptional wrapping numbers need to be

computed anyway since they enter in the twisted RR-tadpole cancellation conditions, see

table 2.9.

3.3.2 The sector-per-sector intersection numbers

The information about the localization of matter states per intersection sector is contained

in the "sector-per-sector" intersection numbers. The sector-per-sector approach gives the

intersection numbers between an orbifold representative of a fractional three-cycle a and its

orbifold images (ωka) (k = 0, 1, 2) separately, i.e. it provides the number of chiral states per

sector k in a(ωka), k = 0, 1, 2. This information is relevant in the context of the determination

of the Yukawa couplings, as we will see in chapter 9.

The construction of these intersection numbers starts with the torus three-cycles:

Πtorus
a ◦ Πtorus

b ≡ −Iab ≡ −
3∏

i=1

I
(i)
ab ≡ −

3∏
i=1

(ni
am

i
b −mi

an
i
b) . (3.19)
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The bulk three-cycle intersection numbers are obtained by summing over the orbifold images

of each cycle a and b. We obtain for the bulk and exceptional intersection numbers:

Πbulk
a ◦ Πbulk

b =
1

12

(
4

2∑
l=0

Πtorus
(ωla)

)
◦

(
4

2∑
m=0

Πtorus
(ωma)

)
= −4

2∑
k=0

Ia(ωkb) , (3.20)

ΠZ(i)
2

a ◦ ΠZ(i)
2

b ≡ −4
2∑

k=0

I
Z(i)
2

a(ωkb)
≡ −4

2∑
k=0

I
(i)

a(ωkb)
I
Z(i)
2 ,(j,l)

a(ωkb)
, (3.21)

with I
Z(i)
2 ,(j,l)

a(ωkb)
≡ (−1)τ

Z(i)2
a +τ

Z(i)2
b I

Z(i)
2 ,(j)

a(ωkb)
I
Z(i)
2 ,(l)

a(ωkb)
, (3.22)

where i, j, l are cyclic permutations of 1, 2, 3. In the �rst line, we used the following relation

between intersection numbers: I
(i)

(ωla)(ωmb)
= I

(i)

a(ωm−lb)
.

The intersection numbers I
Z(i)
2 ,(j)

a(ωkb)
can be computed as described in appendix A of [67]. Con-

cretely, for a torus three-cycle Πtorus
a passing on the two-torus T 2

(j) through the Z(i)
2 -�xed

points α and β, and a torus three-cycle Πtorus
(ωkb)

traversing the Z(i)
2 -�xed points λ and κ on

T 2
(j), then I

Z(i)
2 ,(j)

a(ωkb)
is given by:

I
Z(i)
2 ,(j)

a(ωkb)
=

 α

β

 ·

 λ

κ

 = δαλ + (−1)τ
j
aδβλ + (−1)τ

j
b δακ + (−1)τ

j
a+τ jb δβκ, , (3.23)

where the upper entries correspond to the reference points. Thus, equal indices in the upper

positions contribute with a term equal to one, equal indices in the lower positions give a

term (−1)τ
j
a+τ jb , and equal indices in an upper and a lower position contribute with (−1)τ

j
a

or (−1)τ
j
b . Note that the orbifold action has no in�uence on the Wilson lines, i.e. τ jb = τ j(ωb).

The same can be done for I
Z(i)
2 ,(k)

a(ωkb)
, which involves the Z(i)

2 -�xed points on the two-torus T 2
(k).

The net-chiralities χa(ωkb) per sector k (k = 0, 1, 2) for bifundamental representations are

de�ned as:

χa(ωkb) ≡ −
Ia(ωkb) +

∑3
i=0 I

Z(i)
2

a(ωkb)

4
(3.24)

The total multiplicity of the states in a bifundamental representation is obtained by summing

over the net-chiralities per sector −Πa ◦ Πb ≡
∑2

k=0 χ
a(ωkb), as indicated in table 3.2.

Using table 3.2 and formula (3.16), we can also provide an explicit expression for the

computation of the multiplicity of the states in the (anti)symmetric representation in terms

of the sector-per-sector approach:

χAntia/Syma = −
2∑

k=0

(
I(ωka)(ωka)′ +

∑3
i=1 I

Z(i)
2

(ωka)(ωka)′

)
±
(∑3

n=0 ηΩRZ(n)
2

Ĩ
ΩRZ(n)

2

(ωka)

)
8

≡
2∑

k=0

χ
Antia/Syma

(ωka)
.

(3.25)

The sector-per-sector method is more di�cult to integrate into numerical codes, at least

for cycles with generic torus wrapping numbers. In this thesis, I wrote a code based on the
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Three-cycle "sector-per-sector" intersection numbers

−Πa ◦ Πb −Πa ◦ ΠO6∑2
k=0

I
a(ωkb)

+
∑3

i=0 I
Z(i)2
a(ωkb)

4

∑2
k=0

ηΩRĨΩR
(ωka)

+
∑3

i=1 ηΩRZ(i)2

Ĩ
ΩRZ(i)2
(ωka)

4

Table 3.2: Explicit expression for the fractional three-cycle intersection numbers, in terms of the

"sector-per-sector" intersection numbers. The left column provides the intersection numbers giving

the net-chirality χab of the bifundamental representations. To obtain the net-chirality χ
Antia/Syma

(ωka)

of the (anti)symmetric representations, the intersection numbers of both columns must be combined

as described in the main text. We have Ĩ
ΩRZ(i)

2

(ωka)
≡ 2(1 − b)I

ΩRZ(i)
2

(ωka)
, where I

ΩRZ(i)
2

(ωka)
are the bulk

intersection numbers (3.19) between Π(ωka) and the O6-plane ΩRZ(i)
2 . The quantity 2(1− b) counts

the number of parallel O6-planes depending on the shape of the �rst two-torus.

sector-per-sector approach to determine the multiplicities of the states in the (anti)symmetric

representations only, for generic fractional three-cycles. This served as a partial cross-check

for the results obtained from the orbifold invariant intersection numbers. In chapter 9,

I computed by hand the multiplicities per sector for all representations, but only for the

speci�c models involved in that chapter.

3.3.3 The beta-function coe�cients

In this section, we provide a brief introduction to the beta-function coe�cients and the for-

mulas to compute them. In appendix A.2, we will present more details of the beta-function

coe�cients and illustrate their use on concrete examples of computation.

The non-chiral spectrum can be deduced from the beta-function coe�cients, which give the

total amount of matter, i.e. the chiral and non-chiral spectrum. The beta-function coe�-

cients need the sector-per-sector intersection numbers as input. A priori, one could think

that the total spectrum is computed by summing the absolute value of the net-chiralities over

the sectors: φab =
∑2

k=0 |χa(ωkb)|. However, non-chiral pairs of states can also arise within

a same sector k, which are not counted when simply summing over the net-chiralites per

sector. These states can only be determined via the beta-function coe�cients as mentioned

before. The generic form of the beta-function coe�cient for a stack a supporting a unitary

gauge group was found by �eld theoretical considerations in [66, 72] and is given by:

bSU(Na) = Na(−3 + φAdja)︸ ︷︷ ︸ +
Na

2
(φSyma + φAntia)︸ ︷︷ ︸ + (φSyma − φAntia)︸ ︷︷ ︸ +

∑
b̸=a

Nb

2
(φab + φab′)︸ ︷︷ ︸

≡ bAaa + bAaa′ + bMaa′ +
∑

b̸=a(b
A
ab + bAab′)

.

(3.26)

The computation of the beta-function coe�cients can be done in String Theory using CFT

methods to determine the so-called annulus part and Möbius part of the string amplitude.

The annulus part corresponds to the exchange of a closed string between two D6-branes,

so that the worldsheet of the string corresponds to a cylinder spanned between the D6-

branes. Alternatively, the cylinder amplitude can be interpreted as arising from an open

string spanned between two D6-branes and moving in a loop. The cylinder can be mapped

to an annulus, hence the superscript A refers to the annulus or cylinder part of the string
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amplitude.

Inserting a so-called crosscap at one end of the cylinder leads to the so-called Möbius part of

the string amplitude. A crosscap is obtained by removing a disc from the worldsheet surface

and identifying opposite points on the boundary. It corresponds to the exchange of a closed

string between a D6-brane and an O6-plane, or equivalently, to an unoriented open string

spanned between a D6-brane and an O6-plane and running in a loop. The superscript M

thus refers to the Möbius part [72].

The results for the di�erent contributions to the beta-function coe�cient can be found in

[65] or [72] and are listed in tables 3.3 and 3.4.

Table 3.3 provides the contributions from the bifundamental and adjoint representations.

Concerning the bifundamental representations, the beta-function coe�cients are obtained

sector-per-sector, i.e. the label b in table 3.3 has to be replaced successively by (ωb) and

(ω2b), so that the total contribution from a bifundamental representation is given by: bA =

bAab + bAa(ωb) + bAa(ω2b).

As for the adjoint representations, they can be obtained from table 3.3 by replacing the

label b successively by a, (ωa) and (ω2a). In that case, the contribution bAaa gives rise to

one vector multiplet containing the gauge boson of the D6-brane, and its SUSY partner

the gaugino. Also, it would give rise to three chiral multiplets containing the position

moduli of the D6-brane if we were not working with �xed D6-branes passing through Z2-

�xed points. The sectors bAa(ωa) and bAa(ω2a) each provide one half of the degrees of freedom of

the N = 1 chiral multiplet. The states from these sectors give rise to recombination moduli,

as explained in section 3.1. The total contribution of an adjoint representation is thus given

by: bA = bAaa + bAa(ωa) + bAa(ω2a).

Similarly, using table 3.4, the total contribution of the (anti)symmetric representations is

given sector-per-sector bA + bM = baa′ + b(ωa)(ωa)′ + b(ω2a)(ω2a)′ .

Contributions to bSU(Na) from adjoint and bifundamental matter

(ϕ
(1)
ab , ϕ

(2)
ab , ϕ

(3)
ab ) bAab =

Nb

2
φab

(0, 0, 0) −Nb(
∏3

n=1 δσn
ab,0

δτnab,0)
∑3

i=1(−1)τ
Z(i)2
ab

(0(i), ϕ(j), ϕ(k)) Nb

4
δσi

ab,0
δτ iab,0

(
|I(j·k)ab | − I

Z(i)
2 ,(j·k)

ab

)
ϕ
(n)
ab ̸= 0 ∀n,

∑3
n=1 φ

(n)
ab = 0 Nb

8

(
|Iab|+ sgn(Iab)

∑3
i=1 I

Z(i)
2

ab

)
Table 3.3: Contributions to the SU(Na) beta function coe�cients from matter states transforming

in the bifundamental or adjoint representations, as explained in the main text. The results are given

for di�erent con�gurations of intersecting D6-branes, i.e. at three, one and zero vanishing angles.

Wilson lines or shifts appearing with two indexes ab denote the relative Wilson lines respectively

shifts between two D6-branes, i.e. τnab ≡ τna − τnb and σn
ab ≡ σn

a − σn
b .

For a stack giving rise to gauge symmetry enhancement U(N) → USp(2N)/SO(2N), the

adjoint representation is equivalent to the antisymmetric/symmetric representation, with the

result that the states transforming in the adjoint and (anti)symmetric representations can no

longer be distinguished. This causes the beta-function coe�cient to be of a slightly di�erent

form. The precise form depends on the type of enhancement, i.e. USp or SO enhancement.
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Contributions to bSU(Na) from symmetric and antisymmetric matter

(ϕ
(1)
aa′ , ϕ

(2)
aa′ , ϕ

(3)
aa′) bAaa′ + bMaa′ =

Na

2
(φSyma + φAntia) + (φSyma − φAntia)

(0, 0, 0) ↑↑ ΩR −Na

4

∑3
i=1 I

Z(i)
2 ,(j·k)

aa′ − 1
2

∑3
i=1 ηΩRZ(i)

2
(−1)2b

iσi
aτ

i
a|ĨΩRZ(i)

2 ,(j·k)
a |

(0, 0, 0) ↑↑ ΩRZ(i)
2 −Na

4

∑3
l=1 I

Z(l)
2 ,(m·n)

aa′ − 1
2

(
ηΩR(−1)2b

iσi
aτ

i
a |ĨΩR,(j·k)

a |+
∑

j ̸=i ηΩRZ(j)
2
(−1)2b

kσk
aτ

k
a |ĨΩRZ(j)

2 ,(i·j)
a |

)
(0(i), ϕ

(j)
aa′ , ϕ

(k)
aa′) ↑↑

(
ΩR+ ΩRZ(i)

2

)
Na

4

(
|I(j·k)aa′ | − I

Z(i)
2 ,(j·k)

aa′

)
− 1

2

(
ηΩR(−1)2b

iσi
aτ

i
a|ĨΩR,(j·k)

a |+ η
ΩRZ(i)

2
(−1)2b

iσi
aτ

i
a|ĨΩRZ(i)

2 ,(j·k)
a |

)
(0(i), ϕ

(j)
aa′ , ϕ

(k)
aa′) ↑↑

(
ΩRZ(j)

2 + ΩRZ(k)
2

)
Na

4

(
|I(j·k)aa′ | − I

Z(i)
2 ,(j·k)

aa′

)
− 1

2

(
η
ΩRZ(j)

2
(−1)2b

iσi
aτ

i
a|ĨΩR,(j·k)

a |+ η
ΩRZ(k)

2
(−1)2b

iσi
aτ

i
a|ĨΩRZ(k)

2 ,(j·k)
a |

)
ϕ
(n)
aa′ ̸= 0 ∀n,

∑3
n=1 ϕ

(n)
aa′ = 0 Na

8

(
|Iaa′ |+ sgn(Iaa′)

∑3
i=1 I

Z(i)
2

aa′

)
+ 1

4

(
cΩR
a ηΩR|ĨΩR

a |+
∑3

i=1 c
ΩRZ(i)

2
a η

ΩRZ(i)
2
|ĨΩRZ(i)

2
a |

)
Table 3.4: Contributions to the SU(Na) beta function coe�cients from matter states transforming

in the symmetric or antisymmetric representations. The results are given for di�erent con�gurations

of D6-branes, i.e. D6-branes parallel to some O6-plane on one two-torus, all three two-tori or not

parallel to an O6-plane at all. The factor (−1)2b
iσi

aτ
i
a was introduced for the �rst time in the caption

of table 49 in [65] for reasons of consistency. A concrete example to illustrate the necessity of this

factor was given in appendix B.1 of [76]. Note that bi refers to the shape of the lattice of the ith

torus, i.e. in the present geometrical background we have
→
b= (b, 12 ,

1
2) with b = 0 for a-type lattices

and b = 1/2 for b-type lattices. The coe�cients c
ΩRZ(i)

2
a ∈ {±1} appearing in table 3.4 satisfy the

following relation, as was found in appendix A of [72]: c
ΩRZ(i)

2
a = −sgn

(
I
ΩRZ(i)

2
a

)
· sgn(Iaa′), i =

0, 1, 2, 3.

We will discuss the special cases with gauge symmetry enhancement in appendix A.2 in more

detail, along with concrete examples.

The formulas given in this section are su�cient to determine the total particle content of

the models. In the following chapters, they are used to classify the D6-branes, the classi-

�cation being based on the presence or absence of particles transforming in the adjoint or

(anti)symmetric representation, and to compute the total particle content of the models.

This last step is performed only after global models with correct chiral spectrum have been

found.

As before in the case of the sector-per-sector intersection numbers, I did not write down a

code computing the beta-function coe�cients for generic fractional three-cycles. Instead, I

wrote a code doing this for fractional three-cycles with a speci�c bulk part, in accordance

with the global models we found. Thus, the torus wrapping numbers were �xed, and the

only input of the code were the discrete parameters.



Chapter 4

Preliminary steps to string model

building

The aim of model building consists in reproducing models describing particle physics. The

models in this thesis arise from intersecting D6-branes, so the goal in model building is to

test all possible combinations of intersecting D6-branes in order to �nd con�gurations giving

rise to suitable models. However, the amount of combinations is tremendous, thus it is not

possible to launch a direct computer scan. Instead, simpli�cations have to be made by hand,

and the computer scan has to proceed step-by-step.

A �rst simpli�cation can be made by detecting equivalences between the six lattices intro-

duced in section 2.2.1. The existence of such equivalences was discovered for the �rst time

in [66]. The procedures of detection of such equivalences has been systematized in [76]. In

section 4.1, we follow the methods developed in [76].

The second simpli�cation we consider in this chapter is to classify the D6-branes accord-

ing to the consistency conditions. More precisely, the aim is to �nd D6-branes preserving

N = 1 SUSY, i.e. bulk three-cycles satisfying the SUSY conditions (2.46). Besides, the bulk

part of the three-cycles should also be in agreement with the bulk RR-tadpole cancellation

conditions (2.50).

4.1 Equivalences between the torus lattices

There are several hints indicating redundancies among the six lattices aAA, aAB, aBB,

bAA, bAB and bBB. Following the methods of [76] and [66], hints can be searched among

the following quantities:

• The number of shortest SUSY cycles for each lattice,

• The Hodge numbers associated to the massless closed string spectrum,

• The map between the consistency conditions of di�erent lattices.

We start by comparing the numbers of shortest possible cycles on the six lattices. Symmetries

among these point to relations among lattices. The second step consists in �nding symmetries

between the Hodge numbers of the closed string spectrum, which depend on the choice of the

exotic O6-plane and the lattices. Finally, a map can be found transforming the consistency

conditions of one lattice to the ones of another lattice. As we will see, this map corresponds
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to a rotation on two of the three tori, thus it preserves the relative angles between D6-branes,

meaning that the intersection numbers and Yukawa couplings remain unchanged under the

map. It follows that all lattices related by this map will give rise to equivalent models.

4.1.1 Number of shortest supersymmetric three-cycles

The quantity needed in this section is the length or volume of the three-cycles. This just

corresponds to the product of the lengths of the three one-cycles on each torus. In section

2.4.1, we gave tan(πϕa) in (2.45) in terms of the torus wrapping numbers (ni,mi), i = 1, 2, 3.

The length squared is just the sum of the numerator squared and the denominator squared

appearing in (2.45). Up to normalization factors, the length squared is given by:

ℓ2 =

(
n2
1 +

(
ϱ√
3
(m1 + bn1)

)2
)
(n2

2 + n2m2 +m2
2)(n

2
3 + n3m3 +m2

3) , (4.1)

with ϱ =
√
3R2/R1 and b = 0, 1/2 for the a-type respectively b-type lattices. This expression

can be rewritten as a function of the bulk wrapping numbers (2.12):

ℓ2 =
(
P 2 + PQ+Q2

)
+

ϱ

3

(
Ũ2 + Ũ Ṽ + Ṽ 2

)
, (4.2)

where we introduced the short-hand notation m̃1 ≡ m1 + bn1, so that we have: Ũ = U + bP

and Ṽ = V + bQ, which we already used in section 3.3.1.

The quantity ℓ2 can be used to compare the lengths of the three-cycles. In table 4.1, we

indicated the number of shortest cycles (S) for di�erent values of the complex structure

parameter ϱ, for the six lattices. Also, the next-to-shortest (NS), next-to-next-to-shortest

(NNS) and so on, are indicated.

To �nd these numbers, certain combinations of torus wrapping numbers (ni,mi) are tested

as to whether they give rise to three-cycles satisfying the SUSY conditions (2.46), subse-

quently they are classi�ed according to ℓ2. We only consider combinations of (ni,mi) which

permit to single out an orbifold and orientifold representative as described on page 21, in

order to avoid double-counting. Moreover, ni and mi for a given i have to be co-prime.

Otherwise, the D6-branes would wrap several times around the same cycle and falsify the

determination of the number Na, which corresponds to the rank of the gauge groups sup-

ported by the D6-branes, via the RR-tadpole cancellation conditions given in (2.50) and

table 2.9.

Obtaining an equal amount of shortest possible cycles for di�erent lattices is a strong indica-

tion that these lattices are equivalent. In table 4.1, the �rst line provides di�erent values of

the complex structure parameter ϱ. The subsequent lines give the number of shortest cycles

for each ϱ for the lattices a/bAA. The same is done for the other lattices. We see that the

columns are pairwise switched when going from lattice aAA to aAB and then from aAB

to aBB. The same observation holds true for the b-type lattices. It means that a/bAA lat-

tices with a given complex structure parameter ϱ yield the same number of shortest possible

cycles as a/bAB lattices with complex structure parameter

ϱ′ =
3

(1− b)2ϱ
=

 3
ϱ

for b = 0

12
ϱ

for b = 1/2
. (4.3)

This suggests the existence of a map between the lattices which is accompanied by a

rescaling map of the complex structure parameter.
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ϱ 1 3 2 3
2

4 3
4

6 1
2

12 1
4

1 12 2 6 3 4 8 3
2

9 4
3

aAA bAA

S 3 1 1 1 1 2 1 2 1 2 2 1 6 2 1 1 1 2 1 2

NS 3 1 2 2 1 1 1 1 1 1 1 1 2 6 2 2 1 1 1 1

NNS 1 3 1 1 2 1 1 3 1 2 2 1 27 9 2 1 2 1 2 1

NNNS 1 3 3 1 1 1 2 1 1 3 3 2 27 9 1 4 1 2 2 4

aAB bAB

S 1 3 1 1 2 1 2 1 2 1 1 2 2 6 1 1 2 1 2 1

NS 1 3 2 2 1 1 1 1 1 1 1 1 6 2 2 2 1 1 1 1

NNS 3 1 1 1 1 2 3 1 2 1 1 2 9 27 1 2 1 2 1 2

NNNS 3 1 1 3 1 1 1 2 3 1 2 3 9 27 4 1 2 1 4 2

aBB bBB

S 3 1 1 1 1 2 1 2 1 2 2 1 6 2 1 1 1 2 1 2

NS 3 1 2 2 1 1 1 1 1 1 1 1 2 6 2 2 1 1 1 1

NNS 1 3 1 1 2 1 1 3 1 2 2 1 27 9 2 1 2 1 2 1

NNNS 1 3 3 1 1 1 2 1 1 3 3 2 27 9 1 4 1 2 2 4

Table 4.1: The number of shortest SUSY three-cycles is given for the di�erent lattice types and

arbitrary values of the complex structure parameter ϱ. The columns are pairwise switched when

going from A-type lattices to B-type lattices. This is a hint for a symmetry between lattices which

is accompanied by a rescaling of ϱ. The pairing of the speci�c ϱ-values was suggested by the SUSY

conditions (2.46).

4.1.2 The Hodge numbers and the massless closed string spectrum

The Hodge numbers and the massless closed string spectrum can be found in table 2.6. The

counting of the Hodge numbers (h1,1
+ , h11

− ) is a �rst hint of equivalences between A-type and

B-type lattices for �xed b ∈
{
0, 1

2

}
and simultaneous permutations of the exotic O6-plane

label η(i) ≡ ηΩRηΩRZ(i)
2
, i = 1, 2, 3. The Hodge numbers in table 2.6 suggest the following

transformation law for the choice of the exotic O6-plane when going from lattices AA to

AB: η(2) → η(2) and η(3) → −η(3). Similarly, the lattices AB and BB are linked by the map:

η(2) → −η(2) and η(3) → η(3). Consequently, η(1) → −η(1) in both cases due to the relation

η = η(1)η(2)η(3) = −1 with discrete torsion. This ensures that we still have the same number

of exotic O6-planes on each lattice.

The permutation of the exotic O6-plane label can be translated into a permutation of the

four O6-planes. The following permutations of O6-planes for example would be in agreement

with the transformation laws of the exotic charges:

From AA to AB:
ΩR ↔ ΩRZ(2)

2

ΩRZ(1)
2 ↔ ΩRZ(3)

2

From AB to BB:
ΩR ↔ ΩRZ(3)

2

ΩRZ(1)
2 ↔ ΩRZ(2)

2

(4.4)
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4.1.3 Consistency conditions of di�erent lattices

The analysis can be separated into two parts: one part focusing on the bulk three-cycles

appearing in the fractional three-cycle, and the other part concentrating on the exceptional

three-cycles appearing in the fractional three-cycle.

Bulk three-cycles

The form of the consistency conditions depends on the type of lattice under consideration.

A reparametrization of the discrete variables P,Q, U and V of one lattice leads to the the

variables P ,Q, U and V of another lattice, meaning that the solutions of the consistency

conditions of di�erent lattices are in one-to-one correspondence. This is a strong hint for

equivalences between the lattices in the sense that they will produce equivalent models. The

consistency conditions we take into consideration correspond to the SUSY conditions (2.46)

and the bulk as well as the twisted part of the RR-tadpole cancellation conditions, which

can be found in (2.50) and table 2.9.

Let us consider the following reparametrization:

ϕ :


P

Q

U

V

→


P

Q

U

V

 =


− 1

1−b
(V + bQ)

1
1−b

(U + V + b(P +Q))

(1− b)Q+ b
1−b

(V + bQ)

−(1− b)(P +Q)− b
1−b

(U + V + b(P +Q))

 . (4.5)

By replacing the barred variables P ,Q, U, V appearing in the AA lattices by the variables

appearing on the right-hand side in the reparametrization above, the SUSY conditions of

the lattices a/bAA are transformed into the SUSY conditions of the lattices a/bAB if

simultaneously the complex structure parameter is transformed as ϱ → 3
ϱ(1−b)2

. The same

transformations take the SUSY conditions of a/bAB to those of a/bBB. Hence, we en-

counter here the same symmetry we detected already by analyzing the number of shortest

possible cycles in table 4.1.

To determine the action of ϕ on the RR-tadpole cancellation conditions, we need to check the

transformation properties of the orientifold planes. The bulk wrapping numbers for the four

orientifold planes can be found in table 2.3. For example, the bulk wrapping numbers for

the four orientifold planes of the AA lattices are indicated in column 4 of table 2.3. These

correspond to the barred variables. In order to �nd the unbarred bulk wrapping numbers in

the lattices AB, we need to apply the inverse map ϕ−1 to the barred variables. By applying

ϕ−1 on the orientifold planes, we see that they transform in accordance with the transfor-

mation laws (4.4) we determined by analyzing the massless closed string spectrum. Thus by

applying (4.4) to the exotic charges and ϕ to the bulk wrapping numbers, the RR-tadpole

cancellation conditions are correctly mapped from a/bAA to a/bAB to a/bBB.
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Exceptional three-cycles

The reparametrization ϕ can be transcribed into the torus wrapping numbers as follows:

ϕ :


n1 m1

n2 m2

n3 m3

→


n1 m1

n2 m2

n3 m3

 =


1

1−b
(m1 + bn1) −(1− b)n1 − b

1−b
(m1 + bn1)

−m2 n2 +m2

n3 m3

 .

(4.6)

This correspond to a rotation of the basis cycles by an angle of −π/2 on the �rst torus and

a rotation by an angle of π/3 on the second torus, while the third torus is left invariant.

The next step consists in verifying whether this rotation allows to go from the twisted RR-

tadpole cancellation conditions of one lattice to those of another lattice. Let us consider the

Z(1)
2 twisted sector. From table 2.7, we see that for this �rst twisted sector, we have x

(1)
α ∼ n1

and y
(1)
α ∼ m1, thus the transformation law of the exceptional wrapping numbers x

(1)
α , y

(1)
α

is given by:

x(1)
α =

1

1− b
(y

(1)
α′ + bx

(1)
α′ ) , (4.7)

y(1)α = −(1− b)x
(1)
α′ − b

1− b
(y

(1)
α′ + bx

(1)
α′ ) . (4.8)

In the next step, we need to determine the transformation law of the index α appearing

above and in the twisted RR-tadpole cancellation conditions given in table 2.9, which cor-

responds to the index of the exceptional three-cycles ε
(1)
α and ε̃

(1)
α . A rotation by +π/3

on the second torus transforms the index α of the exceptional three-cycles as follows:

ε
(1)
3 → ε

(1)
5 → ε

(1)
4 → ε

(1)
3 , idem for the ε̃

(1)
α . The indices α = 0, 1, 2 remain invariant.

These transformation laws can be read o� from the exceptional basis cycles in expression

(2.21) as follows: take for example (n2,m2)=(odd,even) in the lattices AA, going through

�xed points 1 and 4 on the second two-torus. It follows from the right-hand side of (4.6)

that (n2,m2)=(odd,odd), which corresponds to the �xed points 1 and 6. So 4 goes to 6 on

the second torus, whereas the point 1 is left invariant. The �xed point labels on the third

torus are left invariant under ϕ, hence we obtain the following transformation law for the

indices of the exceptional two-cycles: e
(1)
4β

ϕ→ e
(1)
6β . Studying the other two possible cases for

(n2,m2), i.e. (n2,m2)=(odd,odd) and (n2,m2)=(even,odd), the transformation laws of all

the exceptional two-cycles e
(1)
αβ , α, β ∈ {1, 4, 5, 6}, can be determined, from which in turn the

transformation laws of the index α of the exceptional basis three-cycles ε
(1)
α and ε̃

(1)
α can be

deduced.

Consequently, the equations in table 2.9 with α = 0, 1, 2, 3 of the lattices AA should be

mapped to the equations with α = 0, 1, 2, 5 of the lattices AB. Applying the map ϕ to the

equations of the lattices AA and recalling that under this map η(1) → −η(1), we obtain:
∑

a Na(1− η(1))x
(1)
α,a = 0∑

a Na[(1 + η(1))y
(1)
α,a + 2η(1)bx

(1)
α,a] = 0

α = 0, 1, 2, 3 (4.9a)

ϕ→


∑

a Na(1 + η(1))(y
(1)
α,a + bx

(1)
α,a) = 0∑

a Na[(η(1) − 1)(1− b)x
(1)
α,a − (1 + η(1))

b
1−b

(y
(1)
α,a + bx

(1)
α,a)] = 0

α = 0, 1, 2, 5 (4.9b)
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The equations in the AB lattices are given by:
∑

a Na[(1 + η(1))y
(1)
α,a + 2η(1)bx

(1)
α,a] = 0∑

a Na(1− η(1))x
(1)
α,a = 0

α = 0, 1, 2, 5 . (4.10)

In order to test whether the equations (4.9b) and (4.10) are equivalent, a case di�erentiation

η(1) = −1 and η(1) = 1 should be performed, giving:

η(1) = 1

Equation (4.9b):


∑

a Na(y
(1)
α,a + bx

(1)
α,a) = 0∑

a
b

1−b
Na(y

(1)
α,a + bx

(1)
α,a) = 0

Equation (4.10):
∑

a(Nay
(1)
α,a + bx

(1)
α,a) = 0 .

η(1) = −1

Equation (4.9b):
∑

aNax
(1)
α,a = 0 Equation (4.10):


∑

a Nabx
(1)
α,a = 0∑

a Nax
(1)
α,a = 0 .

We see from the expressions above that the equations (4.9b) and (4.10) are equivalent for

both cases η(1) = 1 and η(1) = −1. This can be checked by considering b = 0 and b = 1/2

explicitly.

It remains to be seen whether the RR-tadpole cancellation conditions in table 2.9 appearing

with indices α = 4, 5 for the lattices AA are correctly mapped to the conditions with

α = 3, 4 for the lattices AB. A straightforward application of ϕ with (α = 4) → (α = 3)

and (α = 5) → (α = 4) leads to:∑
a

Na(x
(1)
4,a − η(1)x

(1)
5,a) = 0

ϕ→
∑
a

Na[y
(1)
3,a + η(1)y

(1)
4,a + b(x

(1)
3,a + η(1)x

(1)
4,a)] = 0 , (4.11)∑

a

Na[y
(1)
4,a + η(1)y

(1)
5,a + b(x

(1)
4,a + η(1)x

(1)
5,a)] = 0

ϕ→
∑
a

Na(x
(1)
3,a − η(1)x

(1)
4,a) = 0 . (4.12)

This time, the RR-tadpole cancellation conditions are mapped directly to each other, so that

a case di�erentiation is unnecessary.

A similar analysis to the one performed above shows that it is straightforward to check that

the equations of a/bAB are mapped under ϕ to the equations of a/bBB.

Now let us concentrate on the second and third Z(l)
2 (with l = 2, 3) twisted sectors. Let us

start with l = 2. As before, the �rst step consists in determining the transformation law of

the index α associated to the exceptional three-cycles ε
(2)
α and ε̃

(2)
α . This is done by analyzing

the transformation law of the exceptional two-cycles e
(2)
αβ under ϕ.

In the second twisted sector, the second label of the exceptional two-cycles corresponds to

the label of the �xed points on the third two-torus, which is invariant under the map ϕ.

Consequently, the second label β of the exceptional two-cycles does not transform under ϕ:

e
(2)
αβ → e

(2)
α′β.

The �rst label α corresponds to the �xed points on the �rst two-torus, upon which ϕ acts as a

rotation of −π/2. For the untilted lattice (b = 0), the map ϕ leaves invariant the �xed points

labels α = 1 and α = 3, whereas it exchanges the other two labels: (α = 2)
ϕ↔ (α = 4).

For the tilted lattice b = 1/2, the labels α = 1 and α = 4 are invariant, while the other two
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labels are exchanged: (α = 2)
ϕ↔ (α = 3). In the second and third twisted sectors, the label

α in the exceptional two-cycles e
(2)
αβ is the same α as the one appearing in the exceptional

three-cycles ε
(2)
α and ε̃

(2)
α , see (2.22).

The transformation law of the exceptional wrapping numbers x
(2)
α , y

(2)
α under ϕ are the same

as those of n2,m2 given in (4.6):

x(2)
α = −y

(2)
α′ ,

y(2)α = x
(2)
α′ + y

(2)
α′ .

(4.13)

Now let us consider the third twisted sector. Concerning the transformation law of the index

α under ϕ associated to the exceptional three-cycles ε
(3)
α and ε̃

(3)
α , it is the same as the law

we determined for the second twisted sector. Indeed, for both the second and third twisted

sectors, the index α in the expressions of the exceptional two-cycles e
(2)
αβ and e

(3)
αβ refers to

the �xed points of the �rst two-torus.

However, the second index β of the exceptional two-cycles e
(3)
αβ in table 2.4 now has a non-

trivial transformation law under ϕ, as it refers to the �xed points of the second two-torus.

We already explained how this transformation law can be found when we discussed the �rst

twisted sector. Indeed, we have e.g. e
(3)
α4

ϕ→ e
(3)
α′6.

In table 2.4, we �nd the following correspondence:

e
(3)
α4 |AA : (n3,m3) ≡ (x(3)

α , y(3)α )

↓ ϕ

e
(3)
α′6|AB : (−(n3 +m3), n3) ≡ (x

(3)
α′ , y

(3)
α′ ) .

However, the map ϕ is supposed to leave the torus wrapping numbers on the third torus

invariant, so we have:

(n3,m3) = (n3,m3) ⇔ (x(3)
α , y(3)α ) = (y

(3)
α′ ,−(x

(3)
α′ + y

(3)
α′ )) . (4.14)

Comparing this transformation law to (4.13), we see that except for an overall sign factor, we

have the same transformation laws for the exceptional wrapping numbers x
(l)
α , y

(l)
α in both the

second and third twisted sectors (l = 2 and l = 3). Hence, we can treat these simultaneously.

Consider the equations with α = 1, 2, 3, 4 of the lattices a/bAA in table 2.9 for l = 2, 3 and

b = 0. By applying the map and recalling that η(2) → η(2) (respectively η(3) → −η(3) ), we

�nd: 
∑

a Na[(1− η(l))x
(l)
α,a − η(l)y

(l)
α,a] = 0∑

a Na(1 + η(l))y
(l)
α,a = 0

α = 1, 2, 3, 4 (4.15a)

ϕ→


∑

a Na[y
(l)
α,a + (−1)lη(l)x

(l)
α,a] = 0∑

a Na(1 + (−1)lη(l))(x
(l)
α,a + y

(l)
α,a) = 0

α = 1, 4, 3, 2 . (4.15b)

In the a/bAB lattices, we have only one associated equation for b = 0, as can be seen in

table 2.9, given by: ∑
a

Na(x
(l)
α,a + (−1)lη(l)y

(l)
α,a) = 0 α = 1, 2, 3, 4 . (4.16)
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In order to see that equations (4.15b) and (4.16) are equivalent, once more a case di�eren-

tiation has to be performed:

η(l) = 1

Eq. (4.15b):


∑

a Na(y
(l)
α,a + (−1)lx

(l)
α,a) = 0∑

a Na(1 + (−1)l)(x
(l)
α,a + y

(l)
α,a) = 0

Eq. (4.16):
∑

a Na(x
(l)
α,a + (−1)ly

(l)
α,a) = 0 .

η(l) = −1

Eq. (4.15b):


∑

a Na(y
(l)
α,a − (−1)lx

(l)
α,a) = 0∑

a Na(1− (−1)l)(x
(l)
α,a + y

(l)
α,a) = 0

Eq. (4.16):
∑

a Na(x
(l)
α,a − (−1)ly

(l)
α,a) = 0 .

We see that for both sectors (l = 2, 3) the map works correctly for the untilted lattice

(b = 0). Indeed, the �rst equation of (4.15b) is equivalent to (4.16), while the second

equation of (4.15b) is either also equivalent to (4.15b) or else is trivial, depending on l.

For the tilted lattice b = 1/2, the reasoning above holds true for the equations with α = 1, 4.

Remember that for b = 1/2, the labels α = 1, 4 are left invariant under ϕ whereas the labels

α = 2 and α = 3 are interchanged. The equations involving α = 2, 3 for b = 1/2 are given

by: 

∑
a Na[x

(l)
2,a − η(l)x

(l)
3,a − η(l)y

(l)
3,a] = 0∑

a Na[x
(l)
3,a − η(l)x

(l)
2,a − η(l)y

(l)
2,a] = 0∑

a Na[y
(l)
3,a + η(l)y

(l)
2,a] = 0∑

a Na[y
(l)
2,a + η(l)y

(l)
3,a] = 0

(4.17a)

ϕ→



∑
a Na[y

(l)
3,a + (−1)lη(l)x

(l)
2,a] = 0∑

a Na[y
(l)
2,a + (−1)lη(l)x

(l)
3,a] = 0∑

a Na[x
(l)
2,a + y

(l)
2,a + (−1)lη(l)(x

(l)
3,a + y

(l)
3,a)] = 0∑

a Na[x
(l)
3,a + y

(l)
3,a + (−1)lη(l)(x

(l)
2,a + y

(l)
2,a)] = 0 .

(4.17b)

For the AB lattices, the equations involving α = 2, 3 for b = 1/2 are given by:
∑

a Na[x
(l)
2,a + (−1)lη(l)y

(l)
3,a] = 0∑

a Na[x
(l)
3,a + (−1)lη(l)y

(l)
2,a] = 0 .

(4.18)

In order to see that the equations (4.17b) and (4.18) are equivalent, it is su�cient to mul-

tiply the �rst two equations of (4.17b) by the factor (−1)lη(l) and taking into account that

(−1)lη(l)(−1)lη(l) = 1. This leads to the two equations of (4.18). The last two equations of

(4.17b) are simply linear combinations of the �rst two equations of (4.17b).

All in all, we showed that the map ϕ provides a one-to-one relation between the consistency

conditions of the lattices AA and AB, which is valid for the untwisted sector as well as the

three Z(k)
2 (k = 1, 2, 3) twisted sectors. The same analysis can be redone to pass from the

AB lattices to the BB lattices with the same map ϕ. The map is also compatible with the

choice of the shifts in table 2.8, i.e., the map holds in presence of shifts.



4.2. SUPERSYMMETRIC THREE-CYCLES 67

Let me point out that the maps (4.5) and (4.6) with b = 0 have already been proposed in

[66] for the a-type lattice of the T 6/Z′
6 orbifold. It turned out that the map also worked for

the a-type lattice of the T 6/(Z2 ×Z6) orbifold under consideration. The complete extension

of the map to the b-type lattices was proposed in our publication [63] for the �rst time.

The map acts as a rotation on the one-cycles, such that the relative angle between the

cycles is preserved. The same holds true for the shift. This leads to the fact that the

area de�ned by three intersecting D6-branes and the bulk part of the intersection numbers

between D6-branes is invariant under the map. Due to the permutation of the labels of the

exceptional two-cycles, also the Wilson lines and Z(l)
2 eigenvalues are una�ected by the map.

This leads to the fact that also the exceptional part of the intersection numbers is preserved

under the map.

The area de�ned by three intersecting D6-branes is related to the Yukawa coupling at tree

level, whereas the intersection numbers are linked to the matter spectrum and also the

discrete symmetries. Therefore, the relevant physical measurable quantities treated in the

present work are invariant under the map, and the lattices aAA, aAB and aBB give rise to

the same physical models. The same holds true for the lattices bAA, bAB and bBB. As a

conclusion, we are left with two non equivalent types of lattices: the a-type lattices and the

b-type lattices. We choose the lattices aAA and bAA to perform our search for particle

physics models.

4.2 Supersymmetric three-cycles

The �rst step in model building consists in �nding adequate three-cycles that D6-branes

can wrap. The �rst set of consistency conditions corresponds to the SUSY equations (2.46),

involving only the bulk part of the fractional three-cycles. Thus, the �rst aim is to �nd

suitable bulk three-cycles allowing for SUSY models. The bulk cycles are characterized by

the six torus wrapping numbers ni,mi, i = 1, 2, 3. This leads to a lot of combinations to test.

For example, letting the torus wrapping numbers vary from -10 to 10, we have a priori 216 =

85 766 121 combinations. However, as we have seen on page 21, it is su�cient to consider

(n3,m3)=(odd,odd) and n3 > 0 in order to single out an orbifold representative and avoid

orientation �ips by an angle of π. Furthermore, (n1, m̃1) ∈
{
( 1
1−b

, 0), (0, 1), (n1 > 0, m̃1 > 0)
}

permits to single out an orientifold representative. Also, the torus wrapping numbers (ni,mi),

i = 1, 2, 3 have to be coprime for each i. The remaining possible combinations of torus

wrapping numbers ni,mi, i = 1, 2, 3 are used to calculate the corresponding bulk wrapping

numbers P,Q, U, V de�ned in (2.12), which in turn are tested whether they satisfy the SUSY

conditions (2.46).

4.2.1 Upper bounds on the bulk wrapping numbers

A sensible aspect to check is whether upper limits for the bulk wrapping numbers can

be found. Such limits can indeed be found by analyzing the SUSY and bulk RR-tadpole

cancellation conditions. The SUSY conditions (2.46) imply that the left-hand side of the RR-

tadpole cancellation conditions (2.50) have only positive contributions. Indeed, the SUSY

conditions (2.46) can be expressed in terms of (n1, m̃1, X, Y ) as de�ned in (2.12). Taking
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the two SUSY conditions for the lattice a/bAA, we obtain:

0 = 3Q+ ϱ(2 Ũ + Ṽ ) = 3n1Y + ϱm̃1(2X + Y ) , (4.19a)

0 < 2P +Q+ ϱ(−Ṽ ) = n1(2X + Y ) + ϱm̃1(−Y ) . (4.19b)

The de�nitions of P,Q, U, V,X, Y in term of the torus wrapping numbers can be found in

(2.12). The solution to these SUSY equations can be divided into three types:

1. (n1, m̃1) = ( 1
1−b

, 0)
On the �rst torus, these cycles are parallel to the ΩR- and ΩRZ(1)

2 -

invariant planes:

Y
(4.19a)
= 0 , X

(4.19b)
> 0

⇒ P > 0 and Q = Ũ = Ṽ = 0 .
(4.20)

2. (n1, m̃1) = (0, 1)
On the �rst torus, these cycles are parallel to the ΩRZ(2)

2 - and

ΩRZ(3)
2 -invariant planes:

− Y
(4.19a)
= 2X

(4.19b)
> 0

⇒ P = Q = 0 and − Ṽ = 2Ũ > 0 .
(4.21)

3. n1 > 0, m̃1 > 0 This is the most generic case:

Y
(4.19a)
= −ϱ

3

m̃1

n1
(2X + Y ) ,

(
n1 +

ϱ2

3

(m̃1)2

n1

)
(2X + Y )

(4.19b)
> 0

⇒ (2X + Y ) > 0 ⇒ −Ṽ =
ϱ

3

(
m̃1

n1

)2

(2P +Q) > 0 .

(4.22)

Note that the solutions of type 1 in (4.20) and 2 in (4.21) are solutions for every value of

the complex structure parameter ϱ, i.e. they are independent of ϱ.

With the relations given above it is possible to verify that SUSY three-cycles will have only

positive contributions to left-hand side of the RR-tadpole cancellation conditions. The bulk

RR-tadpole cancellations for the a/bAA lattice can be found in (2.50) and are repeated

here for convenience: ∑
a

Na (2Pa +Qa) = 8
(
ηΩR + 3 η

ΩRZ(1)
2

)
, (4.23a)∑

a

Na (−Ṽa) = 8 (1− b)
(
η
ΩRZ(2)

2
+ η

ΩRZ(3)
2

)
. (4.23b)

All SUSY bulk three-cycles contribute either zero or positively to the left-hand sides of the

equations above, as can be checked case-by-case:

• (n1, m̃1) = ( 1
1−b

, 0)

� positive contribution to the left-hand side of (4.23a),

� zero contribution to the left-hand side of (4.23b).

• (n1, m̃1) = (0, 1)
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� zero contribution to the left-hand side of (4.23a),

� positive contribution to the left-hand side of (4.23b).

• n1 > 0, m̃1 > 0

� positive contributions to the left-hand side of both (4.23a) and (4.23b).

Hence, the right-hand side needs to be positive (or zero) in order for the equations to be

satis�ed. Consequently, the ΩRZ(1)
2 -invariant O6-plane cannot support an exotic charge,

i.e. η
ΩRZ(1)

2
= −1 is prohibited. Similarly, any combinations of three exotic charges would

also make it impossible for the three-cycles to satisfy both the SUSY conditions and the

RR-tadpole cancellation conditions.

The SUSY equations (4.19a) and (4.19b) suggest a separation of the second and third tori

from the �rst torus. Indeed, the solutions (4.20), (4.21) and (4.22) show that the torus

wrapping numbers n1, m̃1 can be separated from X,Y , which only involve the torus wrapping

numbers ni,mi for i = 2, 3 and are independent of the type of lattice (b=0 or b=1/2) under

consideration. Thus, it is sensible to concentrate on X,Y �rst and only subsequently include

n1, m̃1.

Since the contributions to the left-hand side of the bulk RR-tadpole cancellation conditions

are always positive (or zero), the right hand-side provides an upper limit for X,Y, n1, m̃1.

Hence, the lower bounds for X, Y are given by the SUSY conditions and the upper bounds

by the RR-tadpole cancellation conditions: 0 ≤ X ≤ 16

Y = 0
or

 0 ≤ 2X + Y ≤ 16

−16 ≤ Y ≤ 0
, (4.24)

where the left-hand side corresponds to the following choice of the exotic charge:

(ηΩR, ηΩRZ(1)
2
, η

ΩRZ(2)
2
, η

ΩRZ(3)
2
) = (1, 1, 1,−1) or (1, 1,−1, 1),

and the right-hand side corresponds to:

(ηΩR, ηΩRZ(1)
2
, η

ΩRZ(2)
2
, η

ΩRZ(3)
2
) = (−1, 1, 1, 1).

The three cases enumerated in (4.20)-(4.22) should be treated separately.

4.2.2 Full classi�cation of bulk three-cycles

In the �rst case (4.20) and the second case (4.21), we always have Y ∈ 2Z. Since we

also have Y = n2m3 +m2(n3 +m3) and (n3,m3)=(odd,odd), we see that (n2,m2) must be

(even,odd). The bulk two-cycles satisfying the conditions on X and Y in (4.20) or (4.21)

and compatible with (4.24) are listed in the �rst two blocks of the left column in table B.2

in appendix B.3. The remaining step consists in adding to X and Y the torus wrapping

numbers (n1,m1) ∈
{(

1
1−b

, −b
1−b

)
, (0, 1)

}
of the �rst two-torus. By taking care of eliminating

all orbifold and orientifold images, we have eight bulk cycles which are of type 1 (4.20) and

2 (4.21). Four of these correspond to bulk three-cycles parallel to the O6-planes and the

additional four are listed in table 4.2.

These cycles have the property that they are SUSY for arbitrary values of the complex

structure parameter ϱ.



70 CHAPTER 4. PRELIMINARY STEPS TO STRING MODEL BUILDING

ϱ-independent SUSY bulk three-cycles on a/bAA

(ni,mi)i∈{1,2,3} ϱ X Y P Q U Ṽ

( 1
1−b

, −b
1−b

; 2, 1; 3,−1) ∀ ϱ 7 0 7
1−b

0 −7b
1−b

0

( 1
1−b

, −b
1−b

; 4,−1; 3, 1) ∀ ϱ 13 0 13
1−b

0 −13b
1−b

0

(0, 1; 4,−5; 3,−1) ∀ ϱ 7 −14 0 0 7 −14

(0, 1; 2,−3; 5,−1) ∀ ϱ 7 −14 0 0 7 −14

Table 4.2: SUSY bulk three-cycles on a/bAA of type 1 (4.20) and 2 (4.21), not overshooting the

bulk RR-tadpole cancellation conditions (2.50). In addition to the four three-cycles displayed here,

there are four more ϱ-independent three-cycles falling into categories (4.20) and (4.21), given by

three-cycles parallel to some O6-plane as listed in table 2.3. The characteristic feature of these eight

three-cycles is that they are SUSY for all values of the complex structure parameter ϱ.

Now let us consider the most generic case given in (4.22). One of the SUSY conditions

relates the complex structure parameter ϱ to the torus wrapping numbers (n1, m̃1):

Y = −ϱ

3

m̃1

n1
(2X + Y ) , 2X + Y > 0 . (4.25)

As previously, we search all (ni,mi) i = 2, 3 giving X and Y satisfying the lower bound and

the upper bound given in (4.24). The results are classi�ed according to the oddness/evenness

of (n2,m2) and can be found in tables B.2, B.3 and B.4 in appendix B.3.

Once again, the associated three-cycles are found by adding the torus wrapping numbers

(n1,m1) such that the upper bound given by the bulk RR-tadpole cancellation conditions is

respected:

0 ≤ 2P +Q ≤ 16 , (4.26)

0 ≤ − Ṽ

1− b
≤ 16 . (4.27)

The complex structure parameter is chosen in accordance with (4.25), such that the SUSY

conditions are satis�ed:

ϱ =
−3Q

2Ũ + Ṽ
with 2Ũ + Ṽ ̸= 0 . (4.28)

The parameter b appears in m̃1, thus we have to distinguish the a-type lattices and the

b-type lattices. The results are as follows:

• For the a-type lattice aAA, we found 1760 bulk three-cycles of type 3 (4.22) on top

of the eight bulk three-cycles which are independent of ϱ (of type 1 and 2, see (4.20)

and (4.21)). These 1760 cycles distribute over 409 values of the complex structure

parameter ϱ, which ranges 1
80

≤ ϱ ≤ 720.

• For the b-type lattice bAA, we found 917 bulk three-cycles of type 3, see (4.22) on top

of the eight bulk three-cycles which are independent of ϱ (of type 1 and 2, see (4.20) and

(4.21)). These 917 cycles distribute over 181 values of the complex structure parameter

ϱ, which ranges 2
75

≤ ϱ ≤ 1350.
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There are too many bulk three-cycles to list them explicitly here, so we will just point out

some aspects of the results from the computer scan.

A majority of the values for ϱ allows for at most four SUSY bulk three-cycles of type 3

(4.22). The values for ϱ allowing for nine or more SUSY bulk three-cycles of type 3 (4.22)

are listed in table 4.3 for both lattices.

Anticipating the results of chapter 5, we already indicated in table 4.3 the values of ϱ allowing

for D6-branes free of matter states transforming in the adjoint or symmetric representation,

which is particularly appealing for model building purposes.

Complex structure moduli ϱa/bAA with ≥ 9 additional SUSY 3-cycles

#of 3-cycles ϱaAA ϱbAA

16 2, 15
2
,15 −

15 1
2
,6 −

14 3
5
, 3
2
,3, 4,18,30 6

13 3
10
, 21

2
,21 −

12
(

1
15

)
,
(

1
10

)
, 6
5
, 9
2
,36,42,45

(
2
15

)
,30,90

11 1
5
, 3
14
, 1
4
, 3
7
, 6
7
, 5
3
, 5
2
, 8,12,33 2

5
, 10

3
,66

10
(

1
12

)
,
(
1
8

)
,
(
1
6

)
, 3
4
,1, 9

5
, 9
4
, 5,9,24,48 6

5
,2, 18

5
, 10,18

9 3
16
, 3
8
, 9
8
, 7
2
, 18

5
, 10,39, (72), (90), (135) 1, 4,42,78, (270)

Table 4.3: Values of the complex structure modulus ϱa/bAA allowing for at least nine additional

SUSY bulk three-cycles, on top of the eight ϱ-independent three-cycles given in tables 2.3 and 4.2.

The ϱ-values in brackets only yield SUSY fractional three-cycles which are accompanied by states

in the adjoint representation. The ϱ-values in bold are the most appealing values, as they allow for

fractional three-cycles potentially devoid of both matter states in the adjoint representation and in

the symmetric representation.

Moreover, �gure 4.1 provides on the horizontal axis the values of ϱ allowing for SUSY

fractional three-cycles potentially free of both matter states in the adjoint representation

and matter states in the symmetric representation. The vertical axis indicates the total

number of SUSY bulk three-cycles (not including the ϱ-independent ones) for these ϱ-values,

independent of the matter states the D6-branes give rise to. We will come back to this point

in sections 5.2 and 5.3.

As a �nal remark, let us point out that the bulk RR-tadpole cancellation conditions (4.26)

and (4.27) provide a direct upper bound of 16 for the torus wrapping numbers on the �rst

torus, n1,m1.

There is no such bound for the torus wrapping numbers on the second and third torus.

However, computer scans showed that the number of obtained solutions already saturated

at values around 14 for ni,mi i = 2, 3. In order to make sure to obtain all appealing solutions

we took ni,mi i = 2, 3 to vary from -32 to +32. To go to such high values for ni,mi i = 2, 3

is only possible when splitting the second and third tori from the �rst torus in a �rst step, as

we have done here. Also, since the number of two-cycles is reduced compared to the number

of three-cycles, it is possible to give an explicit list of them in appendix B.3.
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Note that high values for the torus wrapping numbers render the ful�llment of the twisted

RR-tadpole cancellation conditions in table 2.9 di�cult, such that global models are hard

to construct, see sections 6.2.3 and 7.2.2.

aAA

bAA

complex structure parameter ϱ

o
cc
u
rr
e
n
ce

complex structure parameter ϱ

o
cc
u
rr
e
n
ce

Figure 4.1: Overview of the values of the complex structure parameter ϱ allowing for D6-branes free

of matter states in the adjoint and symmetric representations. The vertical axis indicates the total

number of bulk three-cycles which are SUSY for the ϱ-values under consideration. The upper �gure

shows the results for the aAA lattice, the lower �gure provides the results for the bAA lattice.



Chapter 5

Classi�cation of D6-branes

In this chapter, we give results of the classi�cation of D6-branes, closely following our pub-

lication [63]. The �rst step consists in detecting symmetry enhancement of the gauge group

in order to determine which type of gauge group the D6-branes give rise to. In the next step,

D6-branes are classi�ed according to criteria of rigidity and the presence or absence of matter

states transforming in the symmetric and antisymmetric representations. Finally, the last

section of this chapter classi�es pairs of D6-branes according to the number of generations

of particles they generate.

5.1 Gauge symmetry enhancement to USp and SO groups

A �rst classi�cation criterion of fractional three-cycles is given by the type of gauge group

the D6-branes wrapping these three-cycles support, i.e non-Abelian unitary gauge groups

U(N), symplectic USp(2N) groups or orthogonal SO(2N) groups. Symmetry enhancement

arises when a fractional three-cycle equals its own orientifold image, Πa = Πa′ . In the

present orbifold set-up, this is only possible for three-cycles whose bulk part Πbulk
a is parallel

to an O6-plane, as these are per de�nition the �xed loci of the orientifold projection ΩR.

Moreover, the orientifold projection ΩR acts on the orientation of the exceptional cycles as

indicated in (2.26). The topological conditions on the Wilson lines, shifts and exotic charge

in order to have completely ΩR-invariant fractional three-cycles and thus enhancement are

listed in table 5.1. The full classi�cation of enhancement for the a-type lattice was derived

for the �rst time in the present work, whereas the classi�cation for the b-type lattice is

equivalent to the one given in [76, 78] for the T 6/(Z2×Z′
6) orbifold. The distinction between

symmetry enhancement to USp(2N) groups and SO(2N) groups is determined by examining

the beta-function coe�cients, see for example appendix B of [76] or appendix A.2 of this

thesis.

D6-branes supporting symmetry enhancement are interesting for various reasons:

• The symplectic USp(2) group is isomorphic to the special unitary SU(2) group, so

USp(2) can be used to account for the SU(2)L group appearing in the MSSM, left-

right symmetric or Pati-Salam models. Similarly, it can also be used to play the rôle

of the SU(2)R group in the left-right symmetric model.

• D6-branes supporting USp(2) groups are used as probe-branes for the K-theory con-

straints given in (2.51). We will come back to this in chapter 8.
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Existence of ΩR invariant three-cycles on T 6/(Z2 × Z6 × ΩR)

↑↑ (η(1), η(2), η(3))
!
= (1, 1,−1) (−1,−1,−1)

O6 b = 0 b = 1
2

b = 0 b = 1
2

ΩR


−(−1)σ

2τ2+σ3τ3

−(−1)2bσ
1τ1+σ3τ3

−(−1)2bσ
1τ1+σ2τ2



σ1; τ 1

0; 1

1; 1



1; 1

1; 1

0; 1



σ1; τ 1

0; 1

0; 1



1; 1

1; 1

1; 1


USp(2N) SO(2N) USp(2N) SO(2N)

+1Anti +1Sym +∅ +∅

ΩRZ(1)
2


−(−1)σ

2τ2+σ3τ3

(−1)2bσ
1τ1+σ3τ3

(−1)2bσ
1τ1+σ2τ2



σ1; τ 1

1; 1

0; 1



1; 1

0; 1

1; 1



σ1; τ 1

1; 1

1; 1



1; 1

0; 1

0; 1


USp(2N) SO(2N) SO(2N) USp(2N)

+5Anti +5Sym +4Anti +4Sym

ΩRZ(2)
2


(−1)σ

2τ2+σ3τ3

−(−1)2bσ
1τ1+σ3τ3

(−1)2bσ
1τ1+σ2τ2



σ1; τ 1

1; 1

1; 1



1; 1

0; 1

0; 1



σ1; τ 1

1; 1

0; 1



1; 1

0; 1

1; 1


SO(2N) USp(2N) USp(2N) SO(2N)

+1Anti +1Sym +2Anti +2Sym

ΩRZ(3)
2


(−1)σ

2τ2+σ3τ3

(−1)2bσ
1τ1+σ3τ3

−(−1)2bσ
1τ1+σ2τ2



σ1; τ 1

0; 1

0; 1



1; 1

1; 1

1; 1



σ1; τ 1

0; 1

1; 1



1; 1

1; 1

0; 1


USp(2N) SO(2N) USp(2N) SO(2N)

+1Sym +1Anti +2Anti +2Sym

Table 5.1: Overview of gauge symmetry enhancement to USp(2N) and SO(2N) gauge groups and

matter states in the (anti)symmetric representation on ΩR-invariant D6-branes. The possibility

η
ΩRZ(1)

2

= −1 is omitted as it is incompatible with the SUSY conditions (2.46) and bulk RR-tadpole

cancellation conditions (2.50). The choice of the exotic charge η
ΩRZ(2)

2

= −1 can be obtained from

the listed case η
ΩRZ(3)

2

= −1 upon exchange of the two-torus labels 2 ↔ 3. Underlining refers

to three choices. For example, the requirement of σ2τ2 = 0 leaves open three choices given by

(σ2; τ2) ∈ {(0; 0); (1; 0), (0; 1)}. Underlining of both (σ2; τ2) and (σ3; τ3) gives nine options, as the

choices are independent. For b = 1
2 , we only list the choices for σ1τ1 = 1 explicitly, as the choices

with σ1τ1 = 0 coincide with the choices σiτ i (i = 2, 3) listed for b = 0.

• As discussed in [78, 93], three-cycles supporting USp(2N) or SO(2N) groups are

needed to derive the su�ciency conditions for the existence of discrete Zn-symmetries.

• In the case of a SU(2) gauge group factor originating from a symplectic group USp(2) ≃
SU(2), we have a rank Na = 1 in the RR-tadpole cancellation conditions in (2.50) and
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table 2.9, which is reduced compared to Na = 2 obtained in the case of the SU(2) factor

arising from an unitary group U(2) ≃ SU(2) × U(1). As a consequence, the reduced

rank leaves more room for hidden stacks in the RR-tadpole cancellation conditions,

which in turn augments the possibilities for model building.

The total number of three-cycles allowing for enhancement can be found by combining the

choices of Wilson lines and shifts in table 5.1 with the 22 = 4 independent Z2-eigenvalues.

For the a-type lattice, we �nd 240 combinations of discrete parameters leading to USp(2N)

gauge group enhancement and 16 combinations giving SO(2N) enhancement. For the b-

type lattice, we have 216 combinations for USp(2N) enhancement and 40 combinations with

SO(2N) enhancement.

As can be deduced from table 5.1, most three-cycles supporting gauge symmetry enhance-

ment are accompanied by matter states transforming in the symmetric or antisymmetric

representation of the gauge group. Matter states transforming in the symmetric represen-

tation are not desired on certain stacks from a phenomenological point of view, thus these

three-cycles can only scarcely be used in model building. On the other hand, matter states

transforming in the antisymmetric representation of a USp(2) or SO(2) (or U(2)) gauge

group are tolerated in model building, for they correspond to singlet states under the non-

Abelian groups.

5.2 Criteria for rigid D6-branes

The number of SUSY bulk three-cycles not overshooting the bulk RR-tadpole cancellation

conditions is of order O(103) for both lattice types. Each bulk cycle gives rise to about

O(102) fractional cycles. Since most models need to be realized with several stacks each

one wrapping a di�erent fractional three-cycle, the total number of con�gurations to test

is tremendous and beyond the scope of a direct computer scan. Therefore, it is expedient

to �rst reduce the number of combinations by imposing certain classi�cation criteria on the

three-cycles. The �rst criterion is the condition on the rigidity of D6-branes, as we mentioned

in section 3.1.

5.2.1 Rigidity criteria for MSSM-type models

The criteria of rigidity on the a and b stacks are identical for Pati-Salam models, left-right

symmetric models and MSSMs. In this section, we refer to these models as MSSM-type

models. The criteria are di�erent for SU(5) models, which we therefore treat separately in

the next section 5.2.2.

Due to the absence of a Z6-action on the �rst two-torus T 2
(1), the angle on the �rst torus

between a cycle a and its orbifold images (ωka), (k = 1, 2) is always vanishing:
→
ϕa(ωka)=

±π(0,−1/3, 1/3), (k = 1, 2). Consequently, the correct formula to use in table 3.3 is the

second one, and the condition on the absence of matter states in the adjoint representation

reads:

φa(ωka) ≡ |χa(ωka)| = 1

2

(∣∣∣I(2·3)a(ωka)

∣∣∣− I
Z(1)
2 ,(2·3)

a(ωka)

)
!
= 0 for k = 1, 2, (5.1)
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where the toroidal intersection numbers I
(2·3)
a(ωka)

= I
(2)

a(ωka)
I
(3)

a(ωka)
along T 2

(2)×T 2
(3) are given by:

I
(l)

a(ωka)
= (−)k+l[(nl

a)
2 + nl

am
l
a + (ml

a)
2] ∈ Zodd . (5.2)

These can easily be found by using (3.19) and (2.13). The twisted part I
Z(1)
2

a(ωka)
= (−1)σ

2
aτ

2
a+σ3

aτ
3
a

can be found by proceeding accordingly to the method described in section 3.3.2, which is

illustrated on an example in appendix A.2. Remember that each sector, (k = 1 and k = 2),

accounts for half of the degrees of freedom �lling up the chiral multiplet transforming in the

adjoint representation. This implies φa(ωa) = φa(ω2a), and the total number of matter states

transforming in the adjoint representation is given by:

φAdja =
1

2

2∑
k=1

φa(ωka) = φa(ωa). (5.3)

Since the exceptional part of the intersection number always equals plus or minus one,

I
Z(1)
2

a(ωka)
= (−1)σ

2
aτ

2
a+σ3

aτ
3
a = ±1, the only possibility for φAdja to vanish is to have the bulk

part of the intersection number equal to one:
∣∣∣I(2·3)a(ωka)

∣∣∣ = 1. From (5.2), we see that

this condition implies (n2
a,m

2
a), (n3

a,m
3
a) ∈ {(±1, 0), (0,±1), (±1,∓1)}. For our choice of

the orbifold representative determined on page 21, the only possibilities are (n2
a,m

2
a) ∈

{(1, 0), (0, 1)} , (n3
a,m

3
a) = (1,−1). This was also con�rmed by a computer scan.

For the possibility (n2
a,m

2
a) = (0, 1), (n3

a,m
3
a) = (1,−1), the corresponding Xa and Ya

de�ned in (2.12) satisfy Ya = 0 and Xa > 0. The SUSY conditions (4.19a) and (4.19b)

then imply the following conditions on the torus wrapping numbers of the �rst two-torus:

(n1
a, m̃

1
a) = (1, 0), i.e. (n1

a,m
1
a) = ( 1

1−b
, −b
1−b

) (b = 0, 1/2), see (4.20). This three-cycle corre-

sponds to an orbifold image of the three-cycle parallel to the ΩR-invariant plane as appearing

in table 2.3. It is of type 1 (see (4.20)) and appears for all values of the complex structure

modulus ϱ, as was discussed in section 4.2.

The results for the possibility (n2
a,m

2
a) = (1, 0), (n3

a,m
3
a) = (1,−1) di�er for the a-type

lattice and b-type lattice:

• For the a-type lattice, there are 159 SUSY bulk three-cycles which ful�ll (n2
a,m

2
a) =

(1, 0), (n3
a,m

3
a) = (1,−1), for various values of (n1

a,m
1
a). These 159 three-cycles dis-

tribute over 159 di�erent values of the complex structure modulus ϱ. Therefore, for

these values of ϱ there is at most one cycle of the form (n2
a,m

2
a) = (1, 0), (n3

a,m
3
a) =

(1,−1). The generic form of these cycles is given by (n1
a, m̃

1
a; 1, 0; 1,−1) where n1

a and

m̃1
a are �xed by the value of ϱ. This orbifold representative has angles π(1/3, 0,−1/3)

with respect to the ΩR-invariant direction.

• For the b-type lattice, there are 79 SUSY bulk three-cycles adequate to support rigid

D6-branes. These 79 three-cycles distribute over 79 di�erent values for ϱ, so once

again, there is at most one three-cycle for a �xed value of ϱ ful�lling the criterion of

rigidity, apart from the one parallel to the ΩR-invariant plane.

The condition on the bulk part
∣∣∣I(2·3)a(ωka)

∣∣∣ = 1 is a necessary condition but not yet su�cient.

Indeed, we also have the exceptional part to take into account:

φAdja =

 0 σ2
aτ

2
a = σ3

aτ
3
a ∈ {0, 1}

1 σ2
aτ

2
a ̸= σ3

aτ
3
a ∈ {0, 1}

. (5.4)
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Only the upper condition leads to totally rigid D6-branes. The conditions on rigidity are

independent of the Z2-eigenvalues, the choice of the exotic charge and the Wilson lines on

the �rst torus.

There is one big exception to the criteria of rigidity established above, which corresponds to

three-cycles supporting gauge group enhancement. Indeed, for these cycles we have a = a′,

where the prime denotes as usual the orientifold image of the three-cycle. Hence, the in-

tersection sector a(ωka) can be interpreted as a(ωka)′, meaning that the representations in

which the matter states localized at the intersection points transform can no longer straight-

forwardly be interpreted as adjoint representations.

Instead, the examination of the beta-function coe�cient reveals that the matter states have

to transform in the representations listed in table 5.1. The example in appendix A.2 il-

lustrates this statement. For symplectic groups USp(2N), the adjoint representation is

equivalent to the symmetric representation, whereas for orthogonal groups SO(2N), it is

equivalent to the antisymmetric representation. Hence, in table 5.1, all combinations giving

symplectic groups and coming with additional matter states transforming in the antisym-

metric representation are allowed to support the USp(2) group showing up in the various

particle physics models.

Symmetry enhancement accompanied with matter states transforming in the symmetric rep-

resentation should be avoided, as such states no longer correspond to gauge singlets under

USp(2N).

Summary

Let us brie�y summarize the rigidity criteria of MSSM-type models. A D6-brane is com-

pletely rigid if it satis�es one of the following rigidity criteria:

• The bulk orbit is of the form (n1
a,m

1
a; 1, 0; 1,−1) and the discrete parameters satisfy

σ2
aτ

2
a = σ3

aτ
3
a .

• The bulk orbit is parallel to the ΩR-invariant plane, with σ2
aτ

2
a = σ3

aτ
3
a .

• The bulk orbit is parallel to the ΩR-invariant plane or some other ΩRZ(i)
2 -invariant

plane (i = 1, 2, 3), with σi
a, τ

i
a, and ηΩR, ηΩRZ(i)

2
chosen according to table 5.1 such that

enhancement is present and matter states in the symmetric representation are absent.

5.2.2 Non-rigidity criteria for SU(5) models

The criteria of rigidity for SU(5) models di�er from those of MSSM-type models. In string

theory, the SU(5) model is realized with two stacks. The a stack supports the SU(5) ⊂ U(5)

group, whereas the b stack, supporting a gauge group of rank 1, is necessary to realize the

antifundamental representation 5 housing the matter states (3,1) of the Standard Model

gauge group SU(3)QCD × SU(2)L. This is a stringy construction in the sense that ordinary

quantum �eld theory realizes the SU(5) model with only one gauge factor. In contrast to

MSSM-type models, the a stack of the SU(5) model need not be rigid. Indeed, one matter

state transforming in the adjoint representation of U(5) can be used as a GUT Higgs, break-

ing the U(5) GUT group to the gauge group of the Standard Model. Concerning the b stack,

there are no constraints on rigidity nor the matter states transforming in the (anti)symmetric
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representation of the gauge group supported by b. Symmetry enhancement is tolerated on

the b stack, contrarily to the a stack.

Thus, in this section, we are searching for three-cycles having exactly one matter state arising

at the intersection between the three-cycle and its orbifold images. The bulk three-cycles

susceptible to support one chiral multiplet transforming in the adjoint representation fall

into two categories.

The �rst category corresponds to the bulk three-cycles we used in the previous section,

i.e. the fractional three-cycles with bulk orbit parallel to ΩR or to an orbit of the form

(n1
a,m

1
a; 1, 0; 1,−1). From formula (5.4) one can deduce immediately that it su�ces to take

discrete parameters σ2
aτ

2
a ̸= σ3

aτ
3
a in order to have one matter state transforming in the ad-

joint representation.

The other possibility of bulk three-cycles is given by cycles satisfying
∣∣∣I(2·3)a(ωka)

∣∣∣ = 3. For our

choice of orbifold representatives given on page 21, one possibility is to take (n2
a,m

2
a;n

3
a,m

3
a)

equal to (1,−1; 1, 1) or equal to (1, 1; 1,−1).

Other possibilities are: (n2
a,m

2
a;n

3
a,m

3
a) equal to (2,−1; 1,−1) or to (0,−1; 1, 1). The corre-

sponding Xa and Ya for the latter satisfy −Ya = 2Xa > 0. The SUSY conditions (4.19a) and

(4.19b) imply (n1
a,m

1
a) = (0, 1) (see (4.21)). The last two three-cycles actually correspond

to orbifold representatives of the ΩRZ(2)
2 - and ΩRZ(3)

2 -invariant planes.

Concerning cycles with (n2
a,m

2
a;n

3
a,m

3
a) equal to (1,−1; 1, 1) or equal to (1, 1; 1,−1), a com-

puter scan applied to the 1768 and 925 bulk three-cycles found in section 4.2 gave the

following results for the a-type and b-type lattices, respectively:

• For the a-type lattice, there are 56 combinations of (n1
a,m

1
a), giving rise to three-cycles

satisfying the SUSY conditions for 56 appropriate values of the complex structure

modulus ϱ and not overshooting the RR-tadpole cancellation conditions (2.50), with

(n2
a,m

2
a;n

3
a,m

3
a) equal to (1,−1; 1, 1) or equal to (1, 1; 1,−1).

• For the b-type lattice, we have 27 combinations giving rise to three-cycles satisfying

the conditions mentioned in the previous bullet point.

Once again, not only the bulk three-cycles need to satisfy certain conditions, but also the

discrete Wilson lines and shifts have to be chosen with care:

φAdja =

 1 σ2
aτ

2
a = σ3

aτ
3
a ∈ {0, 1}

2 σ2
aτ

2
a ̸= σ3

aτ
3
a ∈ {0, 1}

, (5.5)

Thus, only the combination σ2
aτ

2
a = σ3

aτ
3
a ∈ {0, 1} leads to one matter state transforming in

the adjoint representation. Once again, the criteria of non-rigidity are independent of Z2-

eigenvalues, the Wilson lines and shifts on the �rst two-torus, and the choice of the exotic

O6-plane.

Summary

The condition of having one chiral multiplet transforming in the adjoint representation of

SU(5) is satis�ed if a three-cycle satis�es one of the following conditions:

• The three-cycle has its bulk orbit parallel to (n1
a,m

1
a; 1, 0; 1,−1) with the discrete pa-

rameters satisfying σ2
aτ

2
a ̸= σ3

aτ
3
a .
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• The three-cycle has its bulk orbit parallel to the ΩR-invariant plane with the discrete

parameters satisfying σ2
aτ

2
a ̸= σ3

aτ
3
a .

• The three-cycle has its bulk orbit parallel to (n1
a,m

1
a; 1, 1; 1,−1) or (n1

a,m
1
a; 1,−1; 1, 1)

with the discrete parameters satisfying σ2
aτ

2
a = σ3

aτ
3
a .

• The three-cycle has its bulk orbit parallel to the ΩRZ(2)
2 - or ΩRZ(3)

2 -invariant plane

and discrete parameters satisfying σ2
aτ

2
a = σ3

aτ
3
a .

5.3 Matter states in (anti)symmetric representations

Due to the presence of the orientifold action, matter states transforming in the symmetric

or antisymmetric representation of the gauge group can arise at the intersection between

a three-cycle and its orientifold image. Matter states transforming in the antisymmetric

representation �nd various applications in the realization of particle physics models, as we

showed in section 3.2.1. The various applications can be summarized as follows:

• Charged under the QCD stack supporting U(3), these states can assume the rôle of

right-handed quarks.

• Charged under a U(2) or USp(2) group, these states correspond to SU(2) singlets.

Thus, they can be associated to right-handed neutrinos.

• Charged under the U(5) group of the SU(5) GUT model, they account for the quarks

and leptons transforming in the 10 representation of U(5).

• An antisymmetric representation does not exist for Abelian U(1) groups, although

some intersections of D6-branes with their orientifold images can formally give rise to

such states.

On the other hand, the phenomenological conditions on matter states transforming in the

symmetric representation of a gauge group are much more restrictive. Actually, they are

tolerated phenomenologically only if they are charged under the hidden sector or under a

mere U(1) gauge factor of the visible sector, when they can account for right-handed leptons,

see section 3.2.1. Since the conditions on these states are more restrictive than the ones for

the states in the antisymmetric representations, the classi�cation of D6-branes starts with

the counting of matter states transforming in the symmetric representation. The next step

consists in classifying the found D6-branes further according to restrictions on the number

of matter states transforming in the antisymmetric representation, which come on top of the

restrictions on the states in the symmetric representation.

Model building in string theory traditionally focuses on the chiral spectrum �rst, aiming to

reproduce the particle content of section 3.2.1. The non-chiral particle content is computed

in a second step, but no constraints are put on the non-chiral spectrum, except for the ones

we already computed due to the issue of rigidity. Every feature of the non-chiral spectrum

which is in agreement with a model from a theoretical point of view is considered as a bonus.
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5.3.1 Chiral spectrum

In order to calculate the spectrum of chiral (anti)symmetric states, one can use formula

(3.15). However, this formula does not give the contributions from each sector (i.e. for given

k in ωk) separately. When calculating the Yukawa couplings later on, it is necessary to

know the matter localization at each sector, though. In order to obtain the sector-per-sector

contribution, one can use formula (3.25) instead.

Remember that the criteria of rigidity di�er for the MSSM-type models and the SU(5)

models, meaning that also the search for (anti)symmetrics should be separated for MSSM-

type and SU(5) models.

MSSM-type models

In the MSSM-type models considered in the present work, the stacks which need to be rigid

also come with conditions on the symmetric and antisymmetric particle spectrum. The

conditions on rigidity for MSSM-type models were given on page 77.

Just as before, the analysis separates into a bulk part and an exceptional part. Running a

computer scan on the rigid fractional three-cycles identi�ed on page 77 and imposing the

absence of chiral matter states in the symmetric representation χSyma = 0 leads to the

following results:

• For the aAA lattice, we have 31 combinations of (n1
a,m

1
a) leading to bulk three-cycles

potentially devoid of matter states transforming in the symmetric representation.

• For the bAA lattice, 15 bulk three-cycles can be free of chiral matter states in the

symmetric representation for certain combinations of the discrete parameters and the

exotic O6-plane charge.

In addition, three-cycles parallel to the four O6-planes are free of chiral matter states in the

symmetric and antisymmetric representation, for all choices of the discrete parameters and

exotic O6-plane charge. Thus, we have 31 (aAA lattice) and 15 (bAA lattice) values for

the complex structure parameter ϱ where we have, aside from the O6-planes, one additional

potentially rigid three-cycle free of chiral matter states in the symmetric representation.

The models considered in this work also come with stacks in the hidden sector or supporting

Abelian U(1) gauge groups. There are no constraints of rigidity or on the matter states

transforming in the symmetric representation for these stacks. Hence, it is interesting to

inquire how many SUSY three-cycles there are in total for each of the 31 respectively 15

values of the complex structure parameter ϱ. This is indicated in table 4.3 and in �gure 4.1

in section 4.2.

In table 4.3, we indicated the values of the complex structure parameter ϱ allowing for more

than nine ϱ-dependent SUSY bulk three-cycles, the maximum being 16 bulk three-cycles for

the aAA lattice and 14 for the bAA lattice. The restriction on the matter states transform-

ing in the adjoint and symmetric representations reduces the number of appealing ϱ, though

we still have one value for ϱ allowing the maximum of SUSY bulk three-cycles, namely ϱ = 15

for the aAA lattice and ϱ = 6 for the bAA lattice.

Figure 4.1 shows that all ϱ allowing for three-cycles potentially rigid and free of matter

states in the symmetric representation come with at least seven ϱ-dependent SUSY bulk
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three-cycles, for both lattices aAA lattice and bAA.

Just as in the case of the matter states in the adjoint representation, the exceptional part

of the intersection numbers leads to certain combinations of the discrete parameters and

choices of the exotic O6-plane which guarantee the absence of chiral matter in the symmetric

representation. Together with the criteria of rigidity on the discrete parameters given by

σ2
aτ

2
a = σ3

aτ
3
a , the constraints on the discrete parameters fall into three classes:

(I) The ΩR-invariant plane is the exotic O6-plane (with ηΩR = −1) and the Wilson lines

and shifts satisfy σ2
aτ

2
a = σ3

aτ
3
a = 0.

(II) The ΩR-invariant plane is the exotic O6-plane (with ηΩR = −1) and the Wilson lines

and shifts satisfy σ2
aτ

2
a = σ3

aτ
3
a = 1.

(III) The ΩRZ(i)
2 -invariant plane (i = 2, 3) is the exotic O6-plane (with η

ΩRZ(i)
2

= −1) and

the Wilson lines and shifts satisfy σ2
aτ

2
a = σ3

aτ
3
a = 0.

These come together with constraints on the torus wrapping numbers of the three-cycles as

indicated in table 5.2.

For con�gurations with the ΩRZ(i)
2 -invariant plane (i = 2, 3) as the exotic O6-plane and

σ2
aτ

2
a = σ3

aτ
3
a = 1, all fractional three-cycles support chiral matter states in the symmetric

representation.

Note that con�guration (III) imposes tight constraints on the second bulk RR-tadpole can-

cellation condition in (2.50), i.e. Ṽa = 0 ∀a. The three-cycles in table 5.2 do not satisfy this

constraint, so these con�gurations lead to local models only. Still, we listed them in table

5.2 for reasons of completeness.

Apart from the ϱ-dependent three-cycles listed in table 5.2, we also have the ϱ-independent

three-cycles parallel to the O6-planes which can be rigid if ful�lling the criteria on page 77.

It turned out that all three-cycles parallel to O6-planes are completely free of chiral matter

states in the symmetric and antisymmetric representations, for all combinations of the dis-

crete parameters and choices of the exotic charge, independent of the criteria of rigidity.

Next, we turn our attention to the criteria of antisymmetric representations. These di�er

for the various MSSM-type models. For example, the MSSM can accommodate up to three

states in the antisymmetric representation on its a or QCD stack, whereas the Pati-Salam

models should have no antisymmetric representation on their a stack. Hence, it is sensible

to search among the three-cycles in table 5.2 for D6-branes supporting at most three chiral

matter states in the antisymmetric representation, i.e. |χAntia| ∈ {0, 1, 2, 3}. Note that in

section 3.2.1, we have seen that the antisymmetric representations of the a stack appear in a

sum in order to realize the right-handed down-type quarks, namely |χac +χad −χAntia| = 3.

Hence, the conditions |χAntia| ∈ {0, 1, 2, 3} may be relaxed as discussed in section 3.2.1.

Anticipating the results though, the conditions |χAntia| ∈ {0, 1, 2, 3} turned out not to be so

stringent as to prevent the realization of three generation particle spectra.

The three-cycles parallel to the O6-planes already ful�ll the criterion |χAntia| ∈ {0, 1, 2, 3}.
Furthermore, the following ϱ-dependent three-cycles also ful�ll this condition:

• For the aAA lattice, only six three-cycles of the form (1,m1
a; 1, 0; 1,−1) have been

found, with m1
a ∈ {1, 2, 3, 4, 5, 6}.
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Classi�cation of bulk orbits (n1
a,m

1
a; 1, 0; 1,−1) without chiral symmetrics on T 6/(Z2 × Z6 × ΩR)

aAA lattice bAA lattice

(n1
a,m

1
a) ϱ Con�guration

(1, 16) 3/16 (II), (III)

(1, 15) 1/5 (II), (III)

(1, 14) 3/14 (II), (III)

(1, 13) 3/13 (II), (III)

(1, 12) 1/4 (II), (III)

(1, 11) 3/11 (II), (III)

(1, 10) 3/10 (II), (III)

(1, 9) 1/3 (II), (III)

(1, 8) 3/8 (II), (III)

(1, 7) 3/7 (II), (III)

(1, 6) 1/2 (II), (III)

(1, 5) 3/5 (II), (III)

(1, 4) 3/4 (II), (III)

(1, 3) 1 (II), (III)

(1, 2) 3/2 (II), (III)

(1, 1) 3 (I), (II), (III)

(n1
a,m

1
a) ϱ Con�guration

(2, 1) 6 (I)

(3, 1) 9 (I)

(4, 1) 12 (I)

(5, 1) 15 (I)

(6, 1) 18 (I)

(7, 1) 21 (I)

(8, 1) 24 (I)

(9, 1) 27 (I)

(10, 1) 30 (I)

(11, 1) 33 (I)

(12, 1) 36 (I)

(13, 1) 39 (I)

(14, 1) 42 (I)

(15, 1) 45 (I)

(16, 1) 48 (I)

(n1
a,m

1
a) ϱ Con�guration

(1, 7) 2/5 (II), (III)

(1, 6) 6/13 (II), (III)

(1, 5) 6/11 (II), (III)

(1, 4) 2/3 (II), (III)

(1, 3) 6/7 (II), (III)

(1, 2) 6/5 (II), (III)

(1, 1) 2 (II), (III)

(1, 0) 6 (I), (II), (III)

(3,−1) 18 (I)

(5,−2) 30 (I)

(7,−3) 42 (I)

(9,−4) 54 (I)

(11,−5) 66 (I)

(13,−6) 78 (I)

(15,−7) 90 (I)

Table 5.2: List of torus wrapping numbers (n1
a,m

1
a; 1, 0; 1,−1) of three-cycles satisfying the criteria

of both rigidity and the absence of chiral matter states transforming in the symmetric representa-

tion, for the aAA lattice (left) and for the bAA lattice (right). The third, sixth and ninth columns

indicate the choices of the exotic O6-plane and discrete parameters allowing to ful�ll the afore-

mentioned criteria. The three distinct con�gurations (I), (II) and (III) are de�ned in the main

text. The equation ϱ = 3 n1
a

m̃1
a
arising from the SUSY conditions (2.46) relates the complex structure

modulus ϱ to the one-cycle wrapping numbers (n1
a,m

1
a).

• For the bAA lattice, only �ve three-cycles of the form (1,m1
a; 1, 0; 1,−1) have been

found, with m1
a ∈ {0, 1, 2, 3, 4}.

For three-cycles of the form (1,m1
a; 1, 0; 1,−1), we can calculate an explicit sector-per-sector

formula for the multiplicity of antisymmetric representations using (3.25). For the aAA

lattice, we �nd:

χ
Antia/Syma

(ωka)
=


−1

2

(
(−)σ

2
aτ

2
a ± ηΩR

) (
m1

a η(1) − η(3)
)

k = 0,

1
4
(1∓ ηΩR)

(
m1

a(1− η(1))− η(2) − η(3)
)

k = 1,

−1
2

(
(−)σ

3
aτ

3
a ± ηΩR

) (
m1

a η(1) − η(2)
)

k = 2.

(5.6)

and for the bAA lattice:

χ
Antia/Syma

(ωka)
=


−1

4

(
(−)σ

2
aτ

2
a ± ηΩR

) (
2m̃1

a η(1) − η(3)
)

k = 0,

1
4
(1∓ ηΩR)

(
m̃1

a(1− η(1))−
η(2)+η(3)

2

)
k = 1,

−1
4

(
(−)σ

3
aτ

3
a ± ηΩR

) (
2m̃1

a η(1) − η(2)
)

k = 2.

(5.7)



5.3. MATTER STATES IN (ANTI)SYMMETRIC REPRESENTATIONS 83

With these formulas, one can easily �nd the amount of chiral matter in the antisymmetric

representation per sector k, k ∈ {0, 1, 2}. Table 5.3 shows the various results for each class

of discrete parameters (I), (II) and (III).

χAntia for rigid fractional three-cycles with χSyma = 0 on T 6/(Z2 × Z6 × ΩR)

(χAntia
a , χAntia

(ωa) , χAntia
(ω2a) )

(n1
a,m

1
a) ϱ (I) (II) (III)

a
A
A

(1, 1) 3 (0, 2, 0) (0, 2, 0) (0, 0,−2) or (−2, 0, 0)

(1, 2) 3/2 − (−1, 3,−1) (−1, 0,−3) or (−3, 0,−1)

(1, 3) 1 − (−2, 4,−2) (−2, 0,−4) or (−4, 0,−2)

(1, 4) 3/4 − (−3, 5,−3) (−3, 0,−5) or (−5, 0,−3)

(1, 5) 3/5 − (−4, 6,−4) (−4, 0,−6) or (−6, 0,−4)

(1, 6) 1/2 − (−5, 7,−5) (−5, 0,−7) or (−7, 0,−5)

b
A
A (1, 0) 6 (0, 1, 0) (0, 1, 0) (0, 0,−1) or (−1, 0, 0)

(1, 1) 2 − (−1, 2,−1) (−1, 0,−2) or (−2, 0,−1)

(1, 2) 6/5 − (−2, 3,−2) (−2, 0,−3) or (−3, 0,−2)

(1, 3) 6/7 − (−3, 4,−3) (−3, 0,−4) or (−4, 0,−3)

(1, 4) 2/3 − (−4, 5,−4) (−4, 0,−5) or (−5, 0,−4)

Table 5.3: List of the net-chiralities (χAntia
a , χAntia

(ωa) , χAntia
(ω2a)

) per sector (ωka)(ωka)′ for the rigid

fractional three-cycles of table 5.2, with the additional condition χAntia ∈ {0,±1,±2,±3}. The

results are given for the aAA and bAA lattice, see eqs. (5.6) and (5.7). The �rst result in the column

with con�guration (III) corresponds to the choice of the exotic O6-plane charge η
ΩRZ(2)

2

= −1,

whereas the second result gives the net-chirality with the choice η
ΩRZ(3)

2

= −1 for the exotic O6-

plane charge.

In table 5.3, we see that although the net-chirality is always χAntia ∈ {0,±1,±2,±3},
the total amount of matter

∑2
k=0 |χ

Antia
(ωk)

| can give more then three matter states in the

antisymmetric representation. This signi�es the presence of non-chiral matter pairs Antia+

Antia. However, not all non-chiral matter states can be detected that way, as non-chiral

pairs can arise even within a same sector k.

SU(5) models

The three-cycles satisfying the criteria on the matter states in the adjoint representation for

SU(5) models are listed on page 78.

The a-stack supporting U(5) needs to support exactly three chiral matter states transform-

ing in the antisymmetric representation playing the rôle of the three generations of quarks

and leptons embedded in the 10 representation of SU(5). There should be no chiral matter

states in the symmetric representation of U(5).

For this search, we will not proceed in two steps as before by calculating the symmetric

spectrum �rst and then the antisymmetric spectrum. Instead, we launch the computer
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scan by directly imposing both conditions on the symmetric and antisymmetric particle

content, i.e. (χAntia , χSyma) = (±3, 0). The scan reveals that for three-cycles with bulk

orbit parallel to (n1
a,m

1
a; 1, 0; 1,−1) with the discrete parameters satisfying σ2

aτ
2
a ̸= σ3

aτ
3
a , no

combination can be found satisfying (χAntia , χSyma) = (±3, 0). For three-cycles with orbits

parallel to (n1
a,m

1
a; 1, 1; 1,−1) or (n1

a,m
1
a; 1,−1; 1, 1) with the discrete parameters satisfying

σ2
aτ

2
a = σ3

aτ
3
a , the results depend on the choice of sign (3.3) or (3.4), i.e. the choice of the

sign in (χAntia , χSyma) = (±3, 0).

For the plus sign (χAntia , χSyma) = (3, 0), no three-cycles ful�lling the required condi-

tions can be found on the aAA lattice. On the bAA lattice, two combinations satisfy

(χAntia , χSyma) = (3, 0): the three-cycles with bulk orbit parallel to (4,−1; 1, 1; 1,−1) or

(4,−1; 1,−1; 1, 1). The SUSY conditions require ϱ = 4 and the bulk RR-tadpole cancella-

tion conditions imply ηΩR = −1, i.e. the ΩR-invariant plane is the exotic O6-plane. Using

formula (3.25), we can once again provide an explicit formula giving the net-chirality of

matter in the (anti)symmetric representation per sector k. For three-cycles with bulk orbit

(4,−1; 1, 1; 1,−1), we �nd:

χ
Antia/Syma

(ωka)

ηΩR=−1
=


1
2

(
(−)σ

1
aτ

1
a − (4∓ 1)

)
k = 0,

1
2

(
4(−)σ

2
aτ

2
a + (−)σ

1
aτ

1
a+σ2

aτ
2
a ± 3

)
k = 1,

1
2

(
4(−)σ

3
aτ

3
a − 3(−)σ

1
aτ

1
a+σ3

aτ
3
a ∓ 1

)
k = 2,

(5.8)

and for the three-cycles with bulk orbit (4,−1; 1,−1; 1, 1), we obtain:

χ
Antia/Syma

(ωka)

ηΩR=−1
=


1
2

(
(−)σ

1
aτ

1
a − (4∓ 1)

)
k = 0,

1
2

(
4(−)σ

2
aτ

2
a − 3(−)σ

1
aτ

1
a+σ2

aτ
2
a ∓ 1

)
k = 1,

1
2

(
4(−)σ

3
aτ

3
a + (−)σ

1
aτ

1
a+σ3

aτ
3
a ± 3

)
k = 2.

(5.9)

From these equations, we see that by summing over all sectors k = 0, 1, 2, the condition

(χAntia , χSyma) = (3, 0) is satis�ed for the combination of discrete parameters σ1
aτ

1
a = σ2

aτ
2
a =

σ3
aτ

3
a . More precisely, the net-chiralities per sector are given by (χAntia

a , χAntia
(ωa) , χAntia

(ω2a) ) =

(−1, 0, 4) and (χ
Syma
a , χ

Syma

(ωa) , χ
Syma

(ω2a) ) = (−2, 1, 1).

The choice with the minus sign, i.e. imposing the conditions (χAntia , χSyma) = (−3, 0),

leads to di�erent possibilities. In case of this choice, a computer scan yields three-cycles

with bulk orbit of the form (1,m1
a; 1, 1; 1,−1) or (1,m1

a; 1,−1; 1, 1), with m1
a = 2 and ϱ = 1

2

for the aAA lattice and m1
a = 1, ϱ = 2

3
for the bAA lattice. Once again, aiming for

global particle physics models imposes the choice ηΩR = −1 for the exotic O6-plane due

to the bulk RR-tadpole cancellation conditions. Using formula (3.25), we can once more

give explicit expressions for the net-chirality per sector k of matter states in (anti)symmetric

representations for three-cycles characterized by the bulk orbit (1,m1
a; 1, 1; 1,−1):

χ
Antia/Syma

(ωka)

ηΩR=−1
=


−1

2
(1± 1) (m̃1

a − 1 + b) k = 0,

1
2
(m̃1

a + 1− b)
(
(−)σ

2
aτ

2
a ± 1

)
k = 1,

1
2

[
m̃1

a

(
(−)σ

3
aτ

3
a ∓ 3

)
− (1− b)

(
3(−)σ

3
aτ

3
a ∓ 1

)]
k = 2,

(5.10)
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Similarly, the three-cycles with orbit (1,m1
a; 1,−1; 1, 1) are characterized by the following

expressions for the net-chiralities:

χ
Antia/Syma

(ωka)

ηΩR=−1
=


−1

2
(1± 1) (m̃1

a − 1 + b) k = 0,

1
2

[
m̃1

a

(
(−)σ

2
aτ

2
a ∓ 3

)
− (1− b)

(
3(−)σ

2
aτ

2
a ∓ 1

)]
k = 1,

1
2
(m̃1

a + 1− b)
(
(−)σ

3
aτ

3
a ± 1

)
k = 2.

(5.11)

The conditions (χAntia , χSyma) = (−3, 0) are satis�ed when the discrete parameters satisfy

σ2
aτ

2
a = σ3

aτ
3
a = 1.

As a side-remark, note that in the case of the net-chiralities of bifundamental representa-

tions χab, the choice of the sign according to (3.3) or (3.4) is not so important, as it can be

obtained by a mere exchange of the three-cycles a and b, i.e. χab = −χba. This is no longer

true in the case of the net-chiralities of (anti)symmetric representations, as these involve only

a single three-cycle a and its orientifold image a′. Consequently, the conditions χAntia = 3

and χAntia = −3 are not equivalent. For models completely free of matter states in the

(anti)symmetric representations, e.g. those considered in chapter 7, the two choices (3.3)

and (3.4) give rise to equivalent models.

All in all, one can conclude that there are numerous fractional three-cycles apt to support

D6-branes providing the right amount of matter states transforming in the adjoint and chiral

(anti)symmetric representations. In the next step, the non-chiral (anti)symmetric spectrum

will be calculated from the three-cycles classi�ed previously.

5.3.2 Non-chiral spectrum

In order to clarify the use of table 3.4, we will produce examples to some of the cases

appearing in table 3.4.

Three vanishing angles
→
ϕ(ωka)(ωka)′= (0, 0, 0)

This con�guration arises when on all three two-tori the angle between a three-cycle (ωka)

for some sector k and its orientifold image (ωka)′ is zero. This only happens for three-cycles

having their bulk orbit parallel to some O6-plane. In appendix A.2, we calculated as an

example the contribution to the beta-function coe�cient explicitly for a cycle parallel to the

ΩR-plane, in case of the a-type lattice. The �rst sector k = 0 gives the following contribution

of matter states to the (anti)symmetric representation for both aAA and bAA lattices:

bAaa′ + bMaa′ =Na

[
η(1)(−)σ

2
aτ

2
a+σ3

aτ
3
a + η(2)(−)2bσ

1
aτ

1
a+σ3

aτ
3
a + η(3)(−)2bσ

1
aτ

1
a+σ2

aτ
2
a

]
− 2ηΩR

[
η(1)(−)2bσ

1
aτ

1
a + η(2)(−)σ

2
aτ

2
a + η(3)(−)σ

3
aτ

3
a

]
.

(5.12)

The lattice dependence enters via the parameter b ∈ {0, 1/2}. In case of gauge symmetry en-

hancement, the (ωka)(ωka)′ sectors cannot be treated independently from the a(ωka) sectors.

Avoiding the combinations of discrete parameters giving rise to gauge symmetry enhance-

ment, we can directly read o� the number of (anti)symmetric states from the expression
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above and distinguish the following cases for the aAA lattice:

bAaa′+bMaa′ =

 Na + 2 (ηΩR = −1, σ2
aτ

2
a = σ3

aτ
3
a = 1), or (η

ΩRZ(l)
2

= −1, σl
aτ

l
a = 0 ̸= σk

aτ
k
a ),

Na − 2 (ηΩR = −1, σ2
aτ

2
a ̸= σ3

aτ
3
a ), or (η

ΩRZ(l)
2

= −1, σ2
aτ

2
a = σ3

aτ
3
a ),

(5.13)

with l, k ∈ {2, 3} and the parameter combinations (σk
aτ

k
a ) chosen such that gauge symmetry

enhancement is absent. Comparing the expression above to formula (3.26), we see that the

�rst possibility Na+2 corresponds to a non-chiral pair of symmetric representations Syma+

Syma of U(Na) and the second possibility Na − 2 yields a non-chiral pair of antisymmetric

representations Antia +Antia. Note, however, that this is only the contribution from the

�rst sector k = 0. The total amount of matter states is provided by the sum over all sectors.

For the bAA lattice, the results are similar to the ones given in section 3.3 of [76].

One vanishing angle:
→
ϕ(ωka)(ωka)′= (0i, ϕj,−ϕk) on T 2

(i) × T 2
(j) × T 2

(k)

The angle between a three-cycle (ωka) for some k and its orientifold image (ωka)′ on one

of the three two-tori can only be zero if this three-cycle is parallel to an O6-plane on the

two-torus in question. For example, the eleven cycles discussed in table 5.2 with bulk orbit

(1,m1
a; 1, 0; 1,−1) are such three-cycles. In the �rst sector k = 0, they are parallel to the

ΩR-plane and the ΩRZ(2)
2 -plane on the second torus. A similar situation arises for the third

sector k = 2, where the cycles are parallel to the ΩR-plane or the ΩRZ(3)
2 -plane on the third

torus. In the second sector k = 1 though, all three angles are non-vanishing. For the �rst

and third sectors k = 0, 2, the following expressions for the beta-function coe�cients can be

derived:

bA(ωka)(ωka)′ + bM(ωka)(ωka)′ =


(
m̃1

a + (1− b)η(2)
) [

Na

2
− (−)σ

2
aτ

2
aηΩR

]
k = 0,(

m̃1
a + (1− b)η(3)

) [
Na

2
− (−)σ

3
aτ

3
aηΩR

]
k = 2.

(5.14)

From this expression, one sees that the amount of matter states in the antisymmetric rep-

resentation matches the net-chiralities in table 5.3. Besides, by looking at table 5.2, we see

that for all three cases (I), (II) and (III), the contribution to the non-chiral matter states in

the symmetric representation is zero. In other words, the conditions in table 5.2 imposed in

order to have vanishing chiral matter states in the symmetric representation imply the van-

ishing of the non-chiral states in the symmetric representation, at least in sectors k = 0, 2.

Actually, the same holds true for the second sector k = 1, as we will see soon.

Another example is once again given by the second and third sectors (k = 1, 2) of a three-

cycle with bulk orbit parallel to ΩR- or ΩRZ(1)
2 -plane. In fact, the Z6-orbifold generator ω

does not act on the �rst two-torus. Using the third formula in table 3.4, the contributions to

the matter states in the (anti)symmetric representation is the same for both sectors k = 1, 2:

bA(ωka)(ωka)′ + bM(ωka)(ωka)′ =
1

2

(
1 + η(1)

) [Na

2
− (−)2bσ

1
aτ

1
aηΩR

]
. (5.15)

For the choice η(1) = −1, we see that this sector gives no contributions. For the choice

η(1) = 1, we can have either an antisymmetric non-chiral pair, Antia+Antia, or a symmetric

non-chiral pair, Syma+Syma, depending on the combination of discrete parameters 2bσ1
aτ

1
a .
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Three non-vanishing angles ϕ
(i)

(ωka)(ωka)′
̸= 0 ∀i

As already mentioned, the sector (ωa)(ωa)′ of the three-cycles in table 5.2 falls into this

category, as none of the three angles between the three-cycle (ωa) and its orientifold image

(ωa)′ vanishes. Thus, the last formula in table 3.4 has to be used in order to calculate the

beta-function coe�cient for both lattices aAA and bAA:

bA(ωa)(ωa)′ + bM(ωa)(ωa)′ =

(
Na

2
+ ηΩR

)[
m̃1

a(1− η(1))− (1− b)(η(2) + η(3))

2

]

=


(
Na

2
− 1
)
[m̃1

a + 1− b] ηΩR = −1,

0 else.

(5.16)

Once again, the number of matter states in the antisymmetric representation matches the

net-chiralities in table 5.3. It is important to notice that this sector is completely free of

matter states in the symmetric representation.

All in all, one can conclude that the three-cycles of table 5.2 are completely devoid of matter

states transforming in the symmetric representation.

Summary

We now have at our disposal the three-cycles adequate to support the a and b stacks of the

MSSM-type models, as well as the a stack of the SU(5) model. To render the results clear,

we give a brief summary of the suitable three-cycles identi�ed in sections 5.2 and 5.3.

For the MSSM-type models, we have the following results:

• The bulk orbit is of the form (n1
a,m

1
a; 1, 0; 1,−1) with the constraints on n1

a,m
1
a, on the

discrete parameters and on the choice of the exotic charge as listed in table 5.2.

• The bulk orbit is parallel to the ΩR-plane, with σ2
aτ

2
a = σ3

aτ
3
a .

• The bulk orbit is parallel to the ΩR-plane or one of the other ΩRZ(i)
2 -planes, i = 1, 2, 3

with σi
a, τ ia, and ηΩR, ηΩRZ(i)

2
i = 1, 2, 3 chosen according to table 5.1 such that gauge

symmetry enhancement is present and symmetric representations are absent.

For the SU(5) model, we have the following three-cycles able to support the a stack:

• On the bAA lattice: three-cycles with bulk orbit parallel to (4,−1; 1, 1; 1,−1) or

(4,−1; 1,−1; 1, 1) with ϱ = 4, ηΩR = −1 and σ1
aτ

1
a = σ2

aτ
2
a = σ3

aτ
3
a = 0.

• On the bAA lattice: three-cycles with bulk orbit parallel to (1, 1; 1, 1; 1,−1) or (1, 1; 1,−1; 1, 1)

with ϱ = 2/3, ηΩR = −1 and σ2
aτ

2
a = σ3

aτ
3
a = 1.

• On the aAA lattice: three-cycles with bulk orbit parallel to (1, 2; 1, 1; 1,−1) or (1, 2; 1,−1; 1, 1)

with ϱ = 1/2, ηΩR = −1 and σ2
aτ

2
a = σ3

aτ
3
a = 1.
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5.4 Towards a three-generation particle spectrum

So far, we determined suitable three-cycles to support the a and b stacks of the MSSM-type

models, as well as the a stack of the SU(5) model. This classi�cation is su�cient to initiate

the �rst step in model building, which consists in computing the �rst bifundamental repre-

sentations. For all MSSM-type models, the conditions on the intersection numbers between

the a and b stacks are the same, namely |χab + χab′| = 3 or |χab| = 3 if gauge symmetry

enhancement is present on the b stack, see section 3.2. Therefore, instead of launching a

direct computer scan over all the stacks appearing in the various models, it is more sensible

to start with only the a and b stacks and trying to get three generations of particles with

these. In a second step, the a and b stacks can be completed with other stacks to give a full

three-generation particle spectrum, which depends on the considered model.

Among the possibilities listed at the end of the previous section, we see that there are

three-cycles which are SUSY depending on the value of the complex structure modulus ϱ,

whereas other three-cycles parallel to some O6-plane are SUSY for all values of ϱ. From now

on, we will refer to the three-cycles parallel to some O6-plane in table 2.3 or parallel to the

three-cycles in table 4.2 as ϱ-independent three-cycles. All other three-cycles not belonging

to this category are referred to as ϱ-dependent three-cycles. Remember from section 4.2 that

we have eight bulk three-cycles of the former and 1760 respectively 917 cycles of the latter,

depending on the lattice aAA or bAA.

An interesting question to answer would be whether it is possible to construct an entire

model that is independent of ϱ. Thus, we will separate the analysis into two parts including

a search for ϱ-independent models and a search for ϱ-dependent models. Consequently, we

will split the models into ϱ-independent and ϱ-dependent models.

5.4.1 ϱ-independent con�gurations

First of all, let us point out that SU(5) models cannot be ϱ-independent models, since we do

not have ϱ-independent three-cycles ful�lling the criteria indicated on page 87. Therefore,

the analysis in this section focuses solely on MSSM-type models.

The �rst step consists in determining exactly which three-cycles of those listed on page 87

may be used for the a stack, and which ones for the b stack. The a stack should support a U(3)

gauge group in the case of the MSSM and left-right symmetric models, or a U(4) gauge group

in the case of the Pati-Salam model. Neither a U(3) stack nor a U(4) group can be realized

through a symplectic or an orthogonal group, as (special) unitary groups are isomorphic to

symplectic or orthogonal groups only in particular cases: USp(2) ≃ SU(2) and SO(2) ≃
U(1). It follows that the three-cycle candidate for the a stack cannot support enhancement.

However, the ϱ-independent cycles parallel to the O6-planes ΩRZ(k)
2 , k = 1, 2, 3 are rigid

only if they present gauge symmetry enhancement, c.f. page 77. Consequently, the a stack

cannot be realized by a three-cycle parallel to ΩRZ(k)
2 , k = 1, 2, 3. The only candidate

left for the a stack is thus the three-cycle parallel to the ΩR-plane, with the conditions

on rigidity σ2
aτ

2
a = σ3

aτ
3
a and further conditions on the discrete parameters such that gauge

group enhancement is absent, see table 5.1.
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The next step consists in �nding a suitable candidate for the b stack. For this stack, USp(2)

gauge group enhancement is allowed since it is intended to support a SU(2) group in all three

models considered, which is isomorphic to a symplectic USp(2) group. However, SU(2) is

not isomorphic to orthogonal groups, so only USp(2) gauge group enhancement is allowed.

Contrarily to D6-branes wrapping the O6-planes ΩRZ(k)
2 , k = 1, 2, 3 which must support a

USp(2) gauge group due to the conditions on rigidity, D6-branes wrapping the ΩR-plane

can support either a unitary U(2) or a symplectic USp(2) gauge group. The results yielded

by the computer scan for taking the ΩR-plane as the b stack are given in table 5.4.

(χab, χab′) between D6-brane stacks a and b for ϱ-independent con�gurations on T 6/(Z2 × Z6 × ΩR)

aAA lattice bAA lattice

D6b stack ηΩR = −1 η
ΩRZ(2,3)

2
= −1 ηΩR = −1 η

ΩRZ(2,3)
2

= −1

U(2)b without adjoints (0, 0) (0, 0), (±2, 0), (0,±2) (0, 0) (0, 0), (±2, 0), (0,±2)

U(2)b with adjoints (0, 0), (±1,±1) (0, 0), (±1,∓1) (0, 0), (±1,±1) (0, 0), (±1,∓1)

enhanced USp(2)b (0), (±2) (0), (±1) (0), (±2) (0), (±1)

Table 5.4: Overview of the net-chiralities (χab, χab′) arising at the intersection of three-cycles with

bulk orbit parallel to the ΩR-plane for the two inequivalent lattice con�gurations aAA and bAA

and the three choices for the exotic O6-plane charge (ηΩR = −1, η
ΩRZ(2)

2

= −1 or η
ΩRZ(3)

2

= −1

). D6-branes parallel to the ΩR-plane are SUSY for all values of the complex structure parameter

ϱ. The D6-brane stack a is completely rigid (without matter states in the adjoint rep.)in all three

cases considered, but the condition of rigidity is relaxed for the b stack in the second case. In the

third case with USp(2)b enhancement, we have χab ≡ χab′ .

From table 5.4, it is clear that the con�guration a parallel (↑↑) to b parallel to the ΩR-

plane does not give rise to three generations of particles transforming in the bifundamental

representation (Na,2b), i.e. |χab + χab′| ̸= 3 and also |χab| = |χab′ | ̸= 3. Even by relaxing

the condition of rigidity on the b stack, it is not possible to realize three generations.

The other possibility is to take the b stack parallel to one of the remaining O6-planes

ΩRZ(k)
2 , (k = 1, 2, 3) and impose USp(2) gauge group enhancement. The results from

the computer scan for this con�guration are given in table 5.5.

In table 5.5, some choices for the exotic O6-planes have been excluded right away and not

been included in the computer scan. In fact, the ΩRZ(k)
2 -planes, k = 2, 3 are characterized

by Ṽa ̸= 0. It follows from the second RR-tadpole cancellation condition in (2.50) that the

ΩR-plane must be the exotic O6-plane: ηΩR = −1. Moreover, in table 5.1 we see that in case

ηΩR = −1, the ΩRZ(1)
2 -plane cannot support USp(2) gauge group enhancement on the aAA

lattice whereas on the bAA lattice, the USp(2) gauge group enhancement is accompanied

by unwanted matter states in the symmetric representation. Note that the same argument

holds for the choices η
ΩRZ(2 or 3)

2
= −1 and b ↑↑ ΩRZ(2,3)

2 , which comes on top of the argument

with the RR-tadpole cancellation conditions.

From table 5.5, we immediately see that this time, three generations are indeed possible for

b ↑↑ ΩRZ(1)
2 and the choice of the exotic charge η

ΩRZ(2 or 3)
2

= −1, for both lattices aAA

and bAA. The choice η
ΩRZ(2 or 3)

2
= −1 in the second bulk RR-tadpole cancellation condition

implies that all stacks appearing in the models must have Ṽ = V + bQ = 0. In total, there

are four three-cycles ful�lling this condition: the two cycles parallel to the ΩR- and ΩRZ(1)
2 -

planes and the three-cycles with bulk orbit parallel to
(

1
1−b

, −b
1−b

; 2, 1; 3,−1
)
or parallel to
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χab = χab′ between D6-brane stacks a and b for ϱ-independent con�gurations on T 6/(Z2 × Z6 × ΩR)

D6a stack � ΩR on aAA lattice D6a stack � ΩR on bAA lattice

D6b stack exotic O6-plane χab exotic O6-plane χab

� ΩRZ(1)
2 + 5Anti η

ΩRZ(2,3)
2

= −1 0,±1,±3 η
ΩRZ(2,3)

2
= −1 0,±1,±3

� ΩRZ(2)
2 + 2Anti ηΩR = −1 ±1,±2 ηΩR = −1 ±2,±4

� ΩRZ(3)
2 + 2Anti ηΩR = −1 ±1,±2 ηΩR = −1 ±2,±4

Table 5.5: Summary of the net-chirality χab = χab′ between a completely rigid D6-brane stack

a (without matter states in the adjoint rep.) and a completely rigid D6-brane stack b. The b

stack supports an enhanced USp(2) gauge group and is accompanied by massless states in the

antisymmetric representation as indicated in the left column. The a stack has its bulk orbit parallel

to the ΩR-plane, while the bulk orbit of the b stack is parallel to one of the other three O6-planes

ΩRZ(i=1,2,3)
2 . The con�guration with the b stack parallel to the ΩR-plane has already been presented

in table 5.4. The second and fourth column give the choice of the exotic O6-plane, while the third

and �fth column list the net-chiralities χab = χab′ for the considered D6-brane con�guration per

lattice type.

(
1

1−b
, −b
1−b

; 4,−1; 3, 1
)
, see table 4.2.

For a ↑↑ ΩR and for b ↑↑ ΩRZ(1)
2 supporting an USp(2) group, with η

ΩRZ(2,3)
2

= −1, we can

calculate the contribution from these two stacks to the �rst bulk RR-tadpole cancellation

condition in (2.50):

∑
x∈{a,b}

Nx(2Px +Qx) = Na
2

1− b
+Nb

6

1− b
= Na

2

1− b
+

6

1− b

!

≤ 32 . (5.17)

For the bAA lattice, we have b = 1/2, so the condition is Na

!

≤ 5. Therefore, even for

the Pati-Salam model which comes with the biggest rank Na = 4, the bulk RR-tadpole

cancellation conditions are not overshot. In case of the aAA lattice with b = 0, the condition

is Na
2

1−b

!

≤ 13, so we have even more room left to add the remaining visible stacks and also

hidden stacks.

5.4.2 ϱ-dependent con�gurations

In this section, we will turn our attention to ϱ-dependent models. An important feature

of ϱ-dependent models is the fact that they always have ηΩR = −1. All ϱ-dependent bulk

three-cycles have Ṽ ̸= 0. The second bulk RR-tadpole cancellation condition thus implies

ηΩR = −1, otherwise global models cannot be constructed.

Both MSSM-type and SU(5) models can arise in the case of ϱ-dependent con�gurations. We

will start the analysis with the MSSM-type models.

MSSM-type models

At this stage, a ϱ-dependent model arises when a ϱ-dependent three-cycle sits on the a stack,

the b stack, or on both a and b stacks. In the later case, the bulk three-cycle must be the

same for the a and the b stack. Indeed, for a ϱ-dependent model we have a �xed value for the

complex structure parameter ϱ. Since there is only one rigid ϱ-dependent bulk three-cycle
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for a given value of ϱ (see section 5.2.1), both a and b stacks must wrap that same rigid bulk

three-cycle. In the following, we will analyze each of the three cases.

a is ϱ-independent and b is ϱ-dependent. Let us start with the case of the a stack

harbored by a ϱ-independent three-cycle and the b stack wrapping a ϱ-dependent three-cycle.

For the same reasons as those given in the previous section, the a stack must be parallel to

the ΩR-plane and must not support gauge group enhancement. The b stack can wrap any

of the three-cycles appearing in table 5.2. Indeed, remember that we have no conditions on

the matter states transforming in the antisymmetric representation for the b stack, since the

b stack always supports an U(2) or USp(2) group, whose antisymmetric representation is

equivalent to a SU(2) singlet. The results of the computer scan for obtaining three gener-

ations |χab + χab′| = 3 of the bifundamental representation (Na,2b) are listed in table 5.6.

All of the combinations listed in table 5.6 give a net chirality |χab + χab′| = 3, although

Bulk D6b orbits for three generations χab + χab′ = ±3 with a ↑↑ ΩR on T 6/(Z2 × Z6 × ΩR) with η = −1

aAA lattice bAA lattice

D6b orbit ϱ (χab, χab′) Occurrence frequency D6b orbit ϱ (χab, χab′) Occurrence frequency

(1, 1; 1, 0; 1,−1) 3 (1, 2) 64 out of 16× 160 combinations (1, 0; 1, 0; 1,−1) 6 (1, 2) 48 out of 48× 160 combinations

(−2,−1) 64 out of 16× 160 combinations (−2,−1) 48 out of 48× 160 combinations

(1, 3; 1, 0; 1,−1) 1 (0, 3) 64 out of 16× 16 combinations (1, 1; 1, 0; 1,−1) 2 (0, 3) 48 out of 48× 16 combinations

(−3, 0) 64 out of 16× 16 combinations (−3, 0) 48 out of 48× 16 combinations

(1, 5; 1, 0; 1,−1) 3/5 (−1, 4) 64 out of 16× 16 combinations (1, 2; 1, 0; 1,−1) 6/5 (−1, 4) 48 out of 48× 16 combinations

(−4, 1) 64 out of 16× 16 combinations (−4, 1) 48 out of 48× 16 combinations

(1, 7; 1, 0; 1,−1) 3/7 (−2, 5) 64 out of 16× 16 combinations (1, 3; 1, 0; 1,−1) 6/7 (−2, 5) 48 out of 48× 16 combinations

(−5, 2) 64 out of 16× 16 combinations (−5, 2) 48 out of 48× 16 combinations

(1, 9; 1, 0; 1,−1) 1/3 (−3, 6) 64 out of 16× 16 combinations (1, 4; 1, 0; 1,−1) 2/3 (−3, 6) 48 out of 48× 16 combinations

(−6, 3) 64 out of 16× 16 combinations (−6, 3) 48 out of 48× 16 combinations

(1, 11; 1, 0; 1,−1) 3/11 (−4, 7) 64 out of 16× 16 combinations (1, 5; 1, 0; 1,−1) 6/11 (−4, 7) 48 out of 48× 16 combinations

(−7, 4) 64 out of 16× 16 combinations (−7, 4) 48 out of 48× 16 combinations

(1, 13; 1, 0; 1,−1) 3/13 (−5, 8) 64 out of 16× 16 combinations (1, 6; 1, 0; 1,−1) 6/13 (−5, 8) 48 out of 48× 16 combinations

(−8, 5) 64 out of 16× 16 combinations (−8, 5) 48 out of 48× 16 combinations

(1, 15; 1, 0; 1,−1) 1/5 (−6, 9) 64 out of 16× 16 combinations (1, 7; 1, 0; 1,−1) 2/5 (−6, 9) 48 out of 48× 16 combinations

(−9, 6) 64 out of 16× 16 combinations (−9, 6) 48 out of 48× 16 combinations

Table 5.6: Complete list of candidate bulk three-cycles for the b stack yielding three generations of

states in the bifundamental representation (Na,2b) with the a stack having its bulk orbit parallel

to the ΩR-plane and exotic O6-plane charge ηΩR = −1. The discrete parameters are chosen such

that both the a stack and the b stack are wrapped by D6-branes ful�lling the criteria on rigidity

and on the matter states transforming in the (anti)symmetric representations. The second and

sixth column list the values of the complex structure modulus ϱ, which is �xed by the requirement

of a SUSY b stack. The third and seventh column give details about the realization of the three

generations by the net-chiralities (χab, χab′), and the fourth and eight column indicate how many

combinations of discrete parameters give rise to the net-chiralities under consideration.

not all of them satisfy |χab| ≤ 3 and |χab′| ≤ 3. The non-ful�llment of these last conditions

implies the existence of non-chiral pairs of matter states transforming in the bifundamental

representation. Only the combinations with (1,m1
b) ∈ {(1, 1), (1, 3)} for the aAA lattice and

(1,m1
b) ∈ {(1, 0), (1, 1)} for the bAA lattice are a priori free of non-chiral matter states in

the bifundamental representation. However, non-chiral states can still arise within a same

sector χab or χab′ , which will be veri�ed via the beta-function coe�cient at the end of the
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analysis.

a is ϱ-dependent and b is ϱ-independent. The next case to consider consists in taking

a ϱ-dependent three-cycle for the a stack and a ϱ-independent three-cycle for the b stack.

Let us �rst discuss the possibilities for the b stack. The b stack can a priori be realized by

a three-cycle parallel to the ΩR-plane, with or without gauge group enhancement, or by a

three-cycle parallel to some other ΩRZ(l)
2 -plane l = 1, 2, 3 with USp(2) enhancement. One

possibility can be excluded right away: ϱ-dependent models always have ηΩR = −1, which

excludes the possibility b ↑↑ ΩRZ(1)
2 . As argued in the previous section, choosing ηΩR = −1

forces the ΩRZ(1)
2 -plane to be accompanied by matter states transforming in the symmetric

representation in the case of USp(2) enhancement. Therefore, this possibility is excluded

right from the beginning.

Now let us discuss the di�erent possibilities of a ϱ-dependent a stack. On the contrary to the

b stack, we have constraints on the multiplicity of the antisymmetric representation of the

a stack. The weakest constraints come from the MSSM model, where antisymmetric states

can account for the right-handed quarks, which imposes |χAntia| ∈ {0, 1, 2, 3}. Hence, the

possible candidates for realizing the a stack can be found in table 5.3.

In order to obtain three generations of the chiral bifundamental representation (Na,2b), the

condition |χab + χab′| = 3 has to be satis�ed in the absence of gauge group enhancement

on the b stack, whereas we impose χab = χab′ !
= ±3 in presence of gauge group enhance-

ment on the b stack. Another important condition is to preserve compatibility between the

chirality of the left-handed and right-handed quarks, which manifests itself as an identical

sign between the net-chiralities of particle states in the antisymmetric representation and

the bifundamental representation: sgn(χAntia) = +sgn(χab+χab′). In the special case where

no states in the antisymmetric representation are present on the a stack, which happens for

a ↑↑ (1, 3; 1, 0; 1,−1) on the aAA lattice and a ↑↑ (1, 1; 1, 0; 1,−1) on the bAA lattice (see

table 5.3), both sign possibilities for χab + χab′ are allowed.

a is ϱ-dependent and b is ϱ-dependent. The last case to consider is having the a stack

and the b stack lying on the same ϱ-dependent bulk three-cycle. For the a stack, we have

the same conditions on the antisymmetric spectrum as in the previous case, so potential

candidates should be taken from table 5.3. Also, the discussion in the previous case about

the relative sign between the net-chiralities of particle states in the antisymmetric represen-

tation χAntia and the bifundamental representation χab+χab′ holds true in the present case.

Note that in the case of a and b wrapping the same bulk three-cycle, one has to impose

that at least one discrete parameter (τZ
(i)
2 , τ i, σi, i = 1, 2, 3) of the fractional three-cycles

is di�erent, in order to ensure that the three-cycles di�er for the a stack and the b stack.

Otherwise, only one stack with bigger rank instead of two stacks with smaller ranks would

be realized.

The results of the computer scans for the last two cases are listed in table 5.7. A notable

absence is given by con�gurations where the a stack sits on some ϱ-dependent three-cycle

and the b stack is parallel to the ΩRZ(2)
2 - or the ΩRZ(3)

2 -plane. Indeed, these con�gurations

did not give rise to three generations of chiral states in the bifundamental representation

(Na,2b).
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Bulk orbits for three generations χab + χab′ = ±3 on T 6/(Z2 × Z6 × ΩR) with η = −1

D6a-orbit D6b-orbit ϱ (χab, χab′) Occurrence Frequency

a
A
A

(1, 1; 1, 0; 1,−1) (1, 1; 1, 0; 1,−1) 3 (0, 3) 864 out of 160× 160 combinations

(1, 3; 1, 0; 1,−1) ↑↑ ΩR : (1, 0; 1, 0; 1, 0) 1 (3, 0) 64 out of 16× 16 combinations

(0, 3) 64 out of 16× 16 combinations

(1, 3; 1, 0; 1,−1) (1, 3; 1, 0; 1,−1) 1 (0,−3) 96 out of 16× 16 combinations

(1, 4; 1, 0; 1,−1) ↑↑ ΩR : (1, 0; 1, 0; 1, 0) 3/4 (−3) 144 out of 16× 144 combinations

(1, 5; 1, 0; 1,−1) ↑↑ ΩR : (1, 0; 1, 0; 1, 0) 3/5 (−3) 576 out of 16× 144 combinations

(1, 6; 1, 0; 1,−1) ↑↑ ΩR : (1, 0; 1, 0; 1, 0) 1/2 (−3) 864 out of 16× 144 combinations

b
A
A

(1, 0; 1, 0; 1,−1) (1, 0; 1, 0; 1,−1) 6 (2, 1) 144 out of 160× 160 combinations

(1, 1; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) 2 (3, 0) 48 out of 16× 48 combinations

(0, 3) 48 out of 16× 48 combinations

(−2,−1) 144 out of 16× 48 combinations

(−1,−2) 144 out of 16× 48 combinations

(1, 1; 1, 0; 1,−1) (1, 1; 1, 0; 1,−1) 2 (0, 3) 128 out of 16× 16 combinations

(0,−3) 64 out of 16× 16 combinations

(1, 2; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) 6/5 (−3) 432 out of 16× 108 combinations

(1, 3; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) 6/7 (−3) 432 out of 16× 108 combinations

(1, 4; 1, 0; 1,−1) (1, 4; 1, 0; 1,−1) 2/3 (0,−3) 48 out of 16× 48 combinations

Table 5.7: Overview of pairs of bulk orbits of fractional three-cycles allowing for three generations

of states in the bifundamental representation (Na,2b) with exotic O6-plane charge ηΩR = −1.

The discrete parameters are chosen such that both the a stack and the b stack are wrapped by D6-

branes ful�lling the criteria on rigidity and on the matter states transforming in the (anti)symmetric

representation.The fourth column gives details about the realization of the three generations by

the net-chiralities (χab, χab′), and the �fth column indicates how many combinations of discrete

parameters give rise to the net-chiralities under consideration. The net-chirality reads χab = χab′ =

−3 for con�gurations where the b stack supports a USp(2) gauge group.

This concludes the analysis of the a and b stacks for the MSSM-type models. A summary

might be appropriate at this stage to clarify the results found so far. The situation is

illustrated in the box diagram of �gure 5.1 which should serve as a road map. Next, we will

turn our attention to SU(5) GUT models.
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Complex structure modulus ϱ

ϱ-indep. con�gurations

(section 5.4.1)

ϱ-dep. con�gurations

(section 5.4.2)

a-stack: rigid, χSyma = 0

and |χAntia| ≤ 3

a-stack ↑↑ ΩR

b-stack ↑↑ ΩR  
b-stack ↑↑ ΩRZ(1)

2 X
b-stack ↑↑ ΩRZ(2)

2  
b-stack ↑↑ ΩRZ(3)

2  

a-stack ↑↑ ΩR

b-stack ↑↑

(1,m1
b ; 1, 0; 1,−1)

(table 5.2)

three chiral generations

(table 5.6)

a-stack ↑↑

(1,m1
a; 1, 0; 1,−1)

(table 5.3)

b-stack ↑↑ ΩR,ΩRZ(i)
2 , or

(1,m1
b ; 1, 0; 1,−1)

(table 5.2)

three chiral generations

(table 5.7)

b-stack: rigid

and χSymb = 0

Figure 5.1: Box diagram illustrating the search for MSSM-type models coming with three genera-

tions of chiral states in the bifundamental representation (Na,2b), for both lattice types aAA and

bAA, as presented in sections 5.4.1 and 5.4.2. The symbols X and  indicate whether three chiral

generations of states in the bifundamental representation (Na,2b) can be realized or not for the

respective D6-brane con�gurations.
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SU(5) models

The antisymmetric representation under SU(5) corresponds to the ten-dimensional repre-

sentation 10, which encompasses quarks and leptons, see section 3.2.4. Since we have three

generations of these, the multiplicity of matter states in the antisymmetric representation

is three. On the other hand, part of the quarks and leptons are embedded in the antifun-

damental �ve dimensional representation 5 of SU(5), which should also occur in copies of

three. In our string theoretical set-up, this representation can only be realized as a bifun-

damental representation (5,1) arising at the intersection of the a stack with some b stack.

For SU(5) models, the chirality between particles in the ten-dimensional representation 10

and the antifundamental �ve-dimensional representation 5 should be re�ected in an opposite

sign between the net-chiralities, i.e. sgn(χAntia) = −sgn(χab).

The potential candidate three-cycles for housing the a stack supporting the U(5) gauge

group have been listed on page 87. The �rst candidates can be found in the bAA lattice

and have bulk orbits parallel to (4,−1; 1,−1; 1, 1) or (4,−1; 1, 1; 1,−1), which give positive

net-chirality for the matter states in the antisymmetric representation, χAntia = 3. The net-

chirality of matter states in the bifundamental representation should therefore come with

a negative sign. The complex structure modulus is �xed to ϱ = 4 by these three-cycles.

In table 4.3, we see that we have nine ϱ-dependent three-cycles SUSY for ϱ = 4. Adding

the eight ϱ-independent three-cycles, we have a total of 17 bulk three-cycles apt to house

the b stack. A full computer scan over all fractional three-cycles arising from the 17 bulk

three-cycles showed that only four bulk orbits used for the b stack satisfy the condition

χab + χab′ = −3 respectively χab = χab′ = −3 if gauge symmetry enhancement on the b

stack is present. The results are listed in table 5.8. The last column gives the number of

fractional three-cycles for the a and b stacks giving rise to three generations of matter states

transforming in the bifundamental representation 5 with the correct chirality as indicated in

the third column. Note that a priori, each bulk three-cycle could give rise to 256 fractional

cycles. However, on the a stack we already have the constraints σ1
aτ

1
a = σ2

aτ
2
a = σ3

aτ
3
a = 0 due

to the constraint on the multiplicity of matter states in the antisymmetric representation

of SU(5), as pointed out on page 87. This leaves 3 · 3 · 3 = 27 possibilities for the discrete

Wilson lines and shifts. We have 2 · 2 = 4 choices for the two independent Z2-eigenvalues,

which gives in total 4 ·27 = 108 a priori choices for the fractional three-cycle wrapped by the

a stack. For the b stack, we count separately the combinations of discrete parameters giving

rise to gauge symmetry enhancement (e.g. 108 combinations for b ↑↑ ΩR) or not (e.g. 144

combinations for b ↑↑ ΩR). Only a fraction of these combinations lead to three generations

of matter states in the bifundamental representation (5,1). Note that the possibility of SO

enhancement on the b stack is completely absent, as the computer scan revealed.

The next possibility is given by the choice of negative net-chirality for the matter states

in the antisymmetric representation, i.e. χAntia = −3. Contrarily to the previous case, we

now have results for both the aAA and bAA lattices. In the aAA lattice, the three-cycles

suitable to support the U(5) group have bulk orbits parallel to (1, 2; 1,−1; 1, 1) or parallel to

(1, 2; 1, 1; 1,−1). These three-cycles are SUSY for ϱ = 1/2. There are in total 15 ϱ-dependent

bulk three-cycles which are SUSY for this value of the complex structure parameter. Once

again, adding the eight ϱ-independent bulk three-cycles gives a total of 23 bulk three-cycles

apt to assume the rôle of the b stack. A computer scan on all of these three-cycles leads to
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Three generation U(5) GUT models on T 6/(Z2 × Z6 × ΩR) with η = −1 (part I)

U(5)a-orbit D6b-orbit (χab, χab′) Occurrence Frequency

(4,−1; 1,−1; 1, 1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) (−2,−1) 3888 out of 108× 144 combinations

(−1,−2) 3888 out of 108× 144 combinations

with USp enhancement (−3) 1728 out of 108× 108 combinations

↑↑ ΩRZ(1)
2 : (2,−1;−1, 2; 1,−2) (−3) 864 out of 108× 36 combinations

with USp enhancement

(4,−1; 1,−1; 1, 1) (0,−3) 432 out of 108× 256 combinations

(4,−1; 1, 1; 1,−1) (0,−3) 432 out of 108× 256 combinations

(4,−1; 1, 1; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) (−2,−1) 3888 out of 108× 144 combinations

(−1,−2) 3888 out of 108× 144 combinations

with USp enhancement (−3) 1728 out of 108× 108 combinations

↑↑ ΩRZ(1)
2 : (2,−1;−1, 2; 1,−2) (−3) 864 out of 108× 36 combinations

with USp enhancement

(4,−1; 1,−1; 1, 1) (0,−3) 432 out of 108× 256 combinations

(4,−1; 1, 1; 1,−1) (0,−3) 432 out of 108× 256 combinations

Table 5.8: Overview of pairs of bulk orbits of fractional three-cycles allowing for three generations

of matter states in the antifundamental representation (χab + χab′ = −χAntia = −3) of U(5)a on

the bAA lattice with exotic O6-plane charge ηΩR = −1 and complex structure parameter ϱ = 4.

The discrete parameters are chosen such that the a stack is wrapped by D6-branes ful�lling the

criteria on rigidity and on the matter states transforming in the (anti)symmetric representations.

The third column gives details about the realization of the three generations by the net-chiralities

(χab, χab′), and the fourth column indicates how many combinations of discrete parameters give rise

to the net-chiralities under consideration. The net-chirality reads χab = χab′ = −3 for con�gurations

where the b stack supports a USp(2) gauge group.

the con�gurations given in table 5.9. The net-chirality of matter states in the bifundamental

representation must now be of positive sign, i.e. χab+χab′ = +3 respectively χab = χab′ = +3

in case of gauge symmetry enhancement on the b stack.

In the bAA lattice, three-cycles adequate to accommodate the a stack have bulk orbits

parallel to (1, 1; 1,−1; 1, 1) or parallel to (1, 1; 1, 1; 1,−1). These three-cycles are SUSY for

ϱ = 2/3. This value for ϱ comes with seven ϱ-dependent bulk three-cycles, plus the eight

ϱ-independent bulk three-cycles, giving a total of 15 bulk three-cycles to test as possible

candidates for the b stack. A computer scan on all of these candidates produced the con�g-

urations of table 5.10, which lead to a full three-generation particle spectrum for the SU(5)

model.
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Three generation U(5) GUT models on T 6/(Z2 × Z6 × ΩR) with η = −1 (part II)

U(5)a-orbit D6b-orbit (χab, χab′) Occurrence Frequency

(1, 2; 1,−1; 1, 1) ↑↑ ΩRZ(2)
2 : (0, 1; 1, 0; 1,−2) (3, 0) 192 out of 16× 208 combinations

(0, 3) 192 out of 16× 208 combinations

↑↑ ΩRZ(3)
2 : (0, 1; 1,−2; 1, 0) (3, 0) 256 out of 16× 208 combinations

(2, 1) 576 out of 16× 208 combinations

(1, 2) 576 out of 16× 208 combinations

(0, 3) 256 out of 16× 208 combinations

with USp enhancement (3) 192 out of 16× 48 combinations

(1, 2; 1,−1; 1, 1) (3, 0) 48 out of 16× 256 combinations

(4,−1) 144 out of 16× 256 combinations

(1, 2; 1, 1; 1,−1) (3, 0) 96 out of 16× 256 combinations

(1, 3; 2, 1; 1,−1) (3, 0) 64 out of 16× 256 combinations

(1, 6; 1, 0; 1,−1) (3, 0) 48 out of 16× 256 combinations

(0, 1; 4,−5; 3,−1) (3, 0) 64 out of 16× 256 combinations

(0, 1; 2,−3; 5,−1) (−3, 6) 64 out of 16× 256 combinations

(1, 2; 1, 1; 1,−1) ↑↑ ΩRZ(2)
2 : (0, 1; 1, 0; 1,−2) (3, 0) 256 out of 16× 208 combinations

(2, 1) 576 out of 16× 208 combinations

(1, 2) 576 out of 16× 208 combinations

(0, 3) 256 out of 16× 208 combinations

with USp enhancement (3) 192 out of 16× 48 combinations

↑↑ ΩRZ(3)
2 : (0, 1; 1,−2; 1, 0) (3, 0) 192 out of 16× 208 combinations

(0, 3) 192 out of 16× 208 combinations

(1, 2; 1, 1; 1,−1) (3, 0) 48 out of 16× 256 combinations

(4,−1) 144 out of 16× 256 combinations

(1, 2; 1,−1; 1, 1) (3, 0) 96 out of 16× 256 combinations

(1, 3; 0, 1; 1,−3) (3, 0) 64 out of 16× 256 combinations

(1, 6; 1, 0; 1,−1) (3, 0) 48 out of 16× 256 combinations

(0, 1; 4,−5; 3,−1) (−3, 6) 64 out of 16× 256 combinations

(0, 1; 2,−3; 5,−1) (3, 0) 64 out of 16× 256 combinations

Table 5.9: Overview of pairs of bulk orbits of fractional three-cycles allowing for three generations

of matter states in the antifundamental representation (χab+χab′ = −χAntia = +3) of U(5)a on the

aAA lattice with exotic O6-plane charge ηΩR = −1 and complex structure parameter ϱ = 1
2 . The

discrete parameters are chosen such that the a stack is wrapped by D6-branes ful�lling the criteria

on rigidity and on the matter states transforming in the (anti)symmetric representation. The third

column gives details about the realization of the three generations by the net-chiralities (χab, χab′),

and the fourth column indicates how many combinations of discrete parameters give rise to the net-

chiralities under consideration. The net-chirality reads χab = χab′ = −3 for con�gurations where

the b stack supports a USp(2) gauge group.
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Chapter 6

The construction of SU(5) and

Pati-Salam models

In Type IIA string theory, the aim of model building consists in �nding SUSY versions of

famous particle physics models. In the previous chapter, we identi�ed D6-branes apt to

house the a and b stacks of MSSM-type models, which included the MSSM itself, left-right

symmetric and Pati-Salam models. On the other hand, we procured the D6-branes suited

to harbor the a and b stacks of the SU(5) model. However, apart from the SU(5) model,

all other particle physics models need more than two stacks to support their gauge group.

Thus, the next step is to add additional stacks in order to provide a global completion of the

particle physics models under consideration. The aim is to construct models which satisfy

all consistency conditions given by the bulk and twisted RR-tadpole cancellation conditions

as well as the K-theory constraints.

In order to avoid overloading the subject, we split it into two parts, to improve the readability.

This chapter 6 focuses on SU(5) models and Pati-Salam models as we derived them in our

publication [63]. In the next chapter 7, we concentrate on left-right symmetric and MSSM-

like models as we presented them in our publication [64].

6.1 Construction of local SU(5) models

The SU(5) model provides nice explanations for certain phenomena, such as electric charge

quantization [51] for example, which the Standard Model fails to explain. However, previous

work on similar toroidal backgrounds revealed that globally consistent SU(5) models are the

hardest to construct in the set-up of intersecting D6-branes of Type IIA string theory. To

my present knowledge, only locally consistent SU(5) models have been constructed so far

[95, 130, 182, 69, 76].

In the previous chapter we identi�ed adequate D6-branes to support the a and b stacks of the

SU(5) model. Since the SU(5) model has a gauge group consisting of only one gauge factor,

no further visible stacks are needed to complete the model. It remains to check whether the

candidates for the a and b stacks given in tables 5.8, 5.9 and 5.10 in the previous chapter

satisfy the bulk and twisted RR-tadpole cancellation conditions, possibly with the addition

of hidden stacks.

On the bAA lattice, the �rst candidate for the a stack was given by the three-cycle with
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bulk orbit parallel to (4,−1; 1,−1; 1, 1) or (4,−1; 1, 1; 1,−1), with ϱ = 4 and ηΩR = −1.

However, this three-cycle alone is already su�cient to overshoot the �rst bulk RR-tadpole

cancellation condition because:

Na(2Pa +Qa) = 5 · (2 · 8− 4) = 60 > 16 , (6.1)

where 16 corresponds to the maximal allowed contribution to the �rst bulk RR-tadpole

cancellation condition for the choice of the exotic charge ηΩR = −1. The value 16 is �xed by

the RR-charges of the O6-planes, see (2.50). This excludes already the possibilities listed in

table 5.8, i.e. they can only give rise to local models.

The second candidate for the a stack on the bAA lattice was given by the three-cycle with

bulk orbit parallel to (1, 1; 1,−1; 1, 1) or (1, 1; 1, 1; 1,−1), with ϱ = 2
3
and exotic O6-plane

ηΩR = −1. The contribution of the a stack to the bulk RR-tadpole cancellation conditions

does not overshoot the RR-charges of the O6-planes this time:

Na(2Pa +Qa) = 5 · (2 · 2− 1) = 15 < 16 , (6.2)

−Na
Va + bQa

1− b
= −5 · 2 ·

(
−1 +

1

2
(−1)

)
= 15 < 16 . (6.3)

However, none of the candidate bulk three-cycles for the b stack appearing in table 5.10

has suitable bulk wrapping numbers which could cancel the remaining RR-charges of the

O6-planes in the equations above.

As a conclusion, we can assert that all SUSY SU(5) models on the bAA lattice of the ori-

entifold T 6/(Z2 × Z6 × ΩR) with discrete torsion can only be local models.

The remaining step in our analysis consists in searching for global SU(5) models on the

aAA lattice. In this case, the candidate bulk three-cycles for supporting the a stack have

orbits parallel to (1, 2; 1,−1; 1, 1) or (1, 2; 1, 1; 1,−1), with ϱ = 1
2
and exotic O6-plane ηΩR =

−1. For both bulk orbits, their contributions to the bulk RR-tadpole cancellation conditions

are given by:

Na(2Pa +Qa) = 5 · (2 · 2− 1) = 15 < 16 , (6.4)

−NaVa = −5 · (−2) = 10 < 16 . (6.5)

Due to the absence of the factor 1
1−b

in the second equation, we are left with more freedom

to cancel the remaining RR-charges of the O6-planes than in the case of the bAA lattice.

In order to obtain a full three generation spectrum, the candidate bulk three-cycle for the

b stack has to be taken from table 5.9. There is exactly one bulk-three cycle with orbit

(1, 6; 1, 0; 1,−1) which cancels the remaining RR-charges of the O6-planes when added to

the equations above:∑
x∈{a,b}

Nx(2Px +Qx) = 5 · (2 · 2− 1) + 1 · (2 · 1− 1)
X
= 16 , (6.6)

−
∑

x∈{a,b}

NxVx = −(5 · (−2) + 1 · (−6))
X
= 16 . (6.7)

In table 6.1, an explicit example is given of a model satisfying the bulk RR-tadpole cancel-

lation conditions and giving rise to a full three generation particle spectrum. The complete
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D6-brane con�guration of a local SU(5) GUT model on the aAA lattice with ϱ = 1
2

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 2; 1,−1; 1, 1) (1
6
,−1

3
, 1
6
) (−+−) (0, 1, 1) (0, 1, 1) U(5)

b (1, 6; 1, 0; 1,−1) (1
3
, 0,−1

3
) (+ + +) (0, 0, 1) (0, 0, 1) U(1)

Table 6.1: Data of a local SU(5) GUT model consisting of two stacks of D6-branes with gauge

group SU(5)a×U(1)a×U(1)b on the aAA lattice. The ΩR-plane is chosen exotic with ηΩR = −1.

Massless spectrum of a local two-stack SU(5) GUT model

State Sector (SU(5)a)U(1)a×U(1)b

10 aa′ 3× (10)(2Anti,0)

5 ab 3× (5)(−1,1)

Φ24,Φ1 aa (24Adj)(0,0) + (1)(0Adj,0)

B bb (1)(0,0Adj)

Σ
i∈{1,2,3}
a , Σ̃

i∈{1,2,3}
a aa′ 3×

[
(15)(2Sym,0) + h.c.

]
Σb bb′ 5× (1)(0,2Sym)

Table 6.2: Overview of the chiral and non-chiral massless particle content associated to the SU(5)

GUT model with D6-brane con�guration given in table 6.1.

spectrum of the chiral particles and the non-chiral pairs of particles corresponding to the

model in table 6.1 is given in table 6.2.

By looking at the spectrum displayed in table 6.2, several shortcomings become imme-

diately apparent. Indeed, we have no electroweak Higgs pair Hu and Hd arising in the

non-chiral sectors of ab or ab′, so the breaking of the electroweak group SU(2)L × U(1)Y to

the electromagnetic group U(1)EM needs another mechanism than the traditional one used

in the Standard Model. Moreover, we have non-chiral pairs transforming in the symmetric

representation 15+ 15 of the SU(5) group supported by the a stack. In order to e�ectively

remove these states from the model, they ought to be very heavy.

However, the crucial drawback for this model is the lack of ful�lling the twisted part of the

RR-tadpole cancellation conditions. As a matter of fact, the contribution of the a and b

stacks of this SU(5) model to the twisted RR-tadpole cancellation conditions is given by:

3∑
i=1

∑
x∈{a,b}

Nx(Π
Z(i)
2

x +Π
Z(i)
2

x′ ) =


−8 ε

(1)
3 + 4 ε

(1)
4 + 4 ε

(1)
5 + 24 ε̃

(1)
4 − 24 ε̃

(1)
5

+18 ε
(2)
1 + 18 ε

(2)
2

−14ε
(3)
1 − 14ε

(3)
2 .

(6.8)

Adding additional hidden stacks to the twisted RR-tadpole cancellation conditions above

may cancel the contributions of the visible a and b stacks. However, in that case, the bulk

RR-tadpole cancellation conditions would be overshot, as the SUSY conditions only allow

for positive contributions to the bulk RR-tadpole cancellation conditions, see section 4.2.

Hence, the bulk part and the twisted part of the RR-tadpole cancellation conditions cannot

be simultaneously ful�lled, and the SU(5) model is again local only.
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The present analysis holds true for the other 47 models associated to a=(1,2; 1,-1; 1,1) and

b= (1,6; 1,0; 1,-1) as well as for all 48 models with bulk orbits a=(1,2; 1,1; 1,-1) and b= (1,6;

1,0; 1,-1) given in table 5.9. More concisely, all 96 models give rise to the same massless

chiral and non-chiral spectrum presented in table 6.2, and all 96 models are characterized

by non-vanishing twisted RR-tadpole cancellation conditions similar to (6.8).

The obtainment of identical particle spectra is a hint for equivalences among the models. As

a matter of fact, in [76, 64], classes of models have been identi�ed. It was found that models

with identical relative Z2-eigenvalues ∆τ
Z(i)
2

ab ≡ τ
Z(i)
2

a − τ
Z(i)
2

b as well as identical shifts and

Wilson lines always give rise to the same particle spectrum, so that they can be considered

to be equivalent. These equivalent models always come at the number of four, since the a

stack for example has four possibilities of combinations for its Z2-eigenvalues τ
Z(i)
2

a , i = 1, 2, 3,

and the Z2-eigenvalue of the second stack is then automatically �xed for each possibility,

as the models must have equal relative Z2-eigenvalues between their two stacks. We cross-

checked explicitly on probe-wise computer scans that the models with identical relative Z2-

eigenvalues, identical Wilson lines and shifts always come at the number of four. Therefore,

the number of physically non-equivalent models corresponds to 24 models rather than 96

models.

To conclude, on the present toroidal orbifold T 6/(Z2 × Z6 × ΩR) with discrete torsion, no

global SU(5) GUT models can be constructed.

6.2 Archetypes of local and global Pati-Salam models

In the set-up of Type IIA string theory, where particle physics models are realized by inter-

sections of D6-branes, the Pati-Salam models are the easiest to construct. Previous work on

similar toroidal backgrounds revealed this fact, see for example [76, 93]. Hence, it is sensible

to start by searching for global Pati-Salam models, as they are most likely to be found.

The gauge group of the Pati-Salam models corresponds to SU(4) × SU(2)L × SU(2)R.

Thus, three stacks are needed to support the three gauge factors, which are referred to as

the a, b and c stacks. The �rst step consists in determining precisely which three-cycles from

section 5.4 can be used for the a and the b stacks in the case of the Pati-Salam models.

In the Pati-Salam model, the a stack should be rigid and it should support no chiral mat-

ter states transforming in the symmetric nor the antisymmetric1 representation of SU(4).

Three-cycles with these properties can be found in table 5.3. Table 5.3 reveals that there

are two bulk three-cycles per lattice supporting no chiral matter states transforming in the

antisymmetric representation. These correspond to three-cycles parallel to the ΩR-plane,

and to three-cycles with bulk orbit of the form (1,m1
a; 1,0; 1,-1) with m1

a = 3 on the aAA

lattice and m1
a = 1 on the bAA lattice.

Concerning the b stack supporting SU(2)L, it should be rigid and free of matter states trans-

forming in the symmetric representation of SU(2)L. There are no conditions on the number

of matter states in the antisymmetric representation, as these correspond to singlets under

1In principle, this condition can be relaxed by allowing one matter state in the antisymmetric represen-

tation of SU(4), in order to reproduce the models described in [185, 186]. However, we will not consider

these models in the present work.



6.2. ARCHETYPES OF LOCAL AND GLOBAL PATI-SALAM MODELS 103

SU(2)L. Thus, other than being parallel to some O6-plane with adequate conditions on

rigidity, the three-cycles from which the b stack can be chosen are indicated in table 5.2.

Once again, tables 5.4, 5.5, 5.6 and 5.7 yield that not all of these can be paired o� with a

suitable a stack to give three generations of bifundamentals (4a,2b).

Finally, the only possible combinations left for the a and b stacks are:

• Table 5.5: the �rst combination,

• Table 5.6: all combinations,

• Table 5.7: combinations two (second line), three (fourth line) for the aAA lattice,

combinations eight (ninth line) and nine (thirteenth line) for the bAA lattice.

In a next step, the a and b stacks have to be completed with a suitable c stack and possibly

also with hidden stacks to have global consistency.

6.2.1 Local Pati-Salam models on the bAA lattice

As shown in the box diagram 5.1, the models can be divided into two classes: models which

are completely independent of the complex structure parameter ϱ, and the models which are

ϱ-dependent, i.e. models which contain at least one stack wrapping a bulk three-cycle which

is only SUSY for a given value of ϱ.

We will start the discussion on the bAA lattice with ϱ-independent Pati-Salam models.

ϱ-independent Pati-Salam models: The candidate bulk three-cycles for the a and b

stacks can be found in table 5.5. Table 5.5 yields that in order to have three generations for

the �rst two stacks of the model, the a stack has to be parallel to the ΩR-plane, the b stack has

to lie along the ΩRZ(1)
2 -plane, and the ΩRZ(2)

2 -plane or ΩRZ(3)
2 -plane has to be chosen to be

the exotic O6-plane, i.e. η
ΩRZ(2)

2
= −1 or η

ΩRZ(3)
2

= −1. The contribution of the a and b stacks

to the �rst bulk RR-tadpole cancellation condition equals
∑

x∈{a,b} Nx(2Px+Qx) = 28 < 32,

where 32 is the maximal allowed contribution (see (2.50)). Note that Nb = 1 and not Nb = 2

since we have gauge symmetry enhancement on the b stack supporting a symplectic USp(2)

group rather than an unitary U(2) group. The next step consists in �nding a suitable

candidate for the c stack supporting the SU(2)R group, which must not contribute more

than 4 to the �rst bulk RR-tadpole cancellation condition. The only ϱ-independent bulk

three-cycle ful�lling 2P + Q ≤ 4 and Ṽ = 0 is the cycle parallel to the ΩR-plane which

satis�es 2P + Q = 4. However, looking at table 5.4, we see that two three-cycles with

bulk orbit parallel to the ΩR-plane cannot give rise to three generations. Thus, we cannot

have three generations in the ac sector, i.e. χac + χac′ ̸= ±3 and also χac = χac′ ̸= ±3

in case of gauge symmetry enhancement on c. In other words, the right-handed matter

states of the Pati-Salam model do not come in three generations, which is rejectable from a

phenomenological point of view.

As a conclusion, we can state that ϱ-independent global Pati-Salam models cannot be realized

on the bAA lattice in the present set-up of T 6/(Z2 × Z6 × ΩR) with discrete torsion.

It remains to be checked whether ϱ-dependent global Pati-Salam models can be constructed

on the bAA lattice in this framework.



104 CHAPTER 6. THE CONSTRUCTION OF SU(5) AND PATI-SALAM MODELS

ϱ-dependent Pati-Salam models: We will start with the �rst possibility of a and b

stacks listed on page 103. Remember that global ϱ-dependent models can only be realized

if the ΩR-plane is chosen to be the exotic O6-plane, i.e. ηΩR = −1. This is due to the

fact that ϱ-dependent bulk three-cycles always have Ṽ ̸= 0, so the second bulk RR-tadpole

cancellation condition imposes η
ΩRZ(2)

2
= η

ΩRZ(3)
2

= 1 ⇒ ηΩR = −1. This condition on the

choice of the exotic charge rules out the possibility to construct ϱ-dependent models starting

from the a and b stacks corresponding to the �rst combination in table 5.5.

The second possibility is given by the set of bulk three-cycle candidates for the a and

b stack presented in table 5.6. This possibility corresponds to the a stack parallel to the

ΩR-plane and the b stack wrapping some ϱ-dependent bulk three-cycle indicated in table

5.6. However, the a stack parallel to the ΩR-plane gives a contribution to the �rst bulk

RR-tadpole cancellation condition which already equals the maximal allowed contribution:

Na(2Pa + Qa) = 4 · 4 = 16. In other words, the b stack should give no contribution at all

to the �rst bulk RR-tadpole cancellation condition. However, none of the bulk three-cycles

given in table 5.6 gives zero contribution, meaning that once again, the bulk RR-tadpole

cancellation conditions cannot be satis�ed. Therefore, the second set of candidates for the

a and b stacks listed on page 103 cannot give rise to global Pati-Salam models on the bAA

lattice.

There remains the last possibility listed on page 103 given by combination eight and nine

of table 5.7. Combination eight corresponds to a ↑↑ (1, 1; 1, 0; 1,−1) and b ↑↑ ΩR while com-

bination nine corresponds to a ↑↑ b ↑↑ (1, 1; 1, 0; 1,−1). Both combinations are associated

to the value of the complex structure modulus ϱ = 2, which is �xed by the bulk three-cycle

with bulk orbit (1,1; 1,0; 1,-1). The c stack supporting the SU(2)R group ought to be rigid,

so it should have the same bulk orbit (1,1; 1,0; 1,-1) as the a stack, or it can be parallel to

some O6-plane. Concerning that last possibility, only the ΩR-plane as the c stack gives rise

to three generations of right-handed matter states in the ac sector, as can be concluded from

table 5.72. The remaining four possibilities are listed in table 6.3, which also indicates the

respective contributions to the bulk RR-tadpole cancellation conditions. Remember that for

ηΩR = −1, the three visible stacks of the Pati-Salam models should satisfy the upper bounds

given by the two independent bulk RR-tadpole cancellation conditions as follows:∑
x∈{a,b,c}

Nx(2Px +Qx) ≤ 16,

−2
∑

x∈{a,b,c}

NxṼx ≤ 16. (6.9)

Comparing these upper bounds with the contributions to the bulk RR-tadpole cancellation

conditions given in table 6.3, we see that for all four combinations, one of the two bulk

RR-tadpole cancellation conditions is overshot.

As a conclusion, we can state that on the bAA lattice of T 6/(Z2×Z6×ΩR) with discrete

torsion, no global Pati-Salam models can be constructed.

2Note that taking b or c along ΩRZ(1)
2 could give rise to three generations, but it would be accompanied

by SO(2) gauge enhancement on b or c, which is not desirable from the point of view of model building.
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Summary of local Pati-Salam models on the bAA lattice of T 6/(Z2 × Z6 × ΩR) with ϱ = 2 and η = −1 = ηΩR

Bulk orbits for the Pati-Salam gauge groups bulk RR tadpoles

a-stack b-stack c-stack
∑

x∈{a,b,c} Nx(2Px +Qx) −2
∑

x∈{a,b,c} NxṼx

(1, 1; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) (1, 1; 1, 0; 1,−1) Na + 4Nb +Nc = 14 3Na + 3Nc = 18

(1, 1; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) Na + 4Nb + 4Nc = 20 3Na = 12

(1, 1; 1, 0; 1,−1) (1, 1; 1, 0; 1,−1) (1, 1; 1, 0; 1,−1) Na +Nb +Nc = 8 3Na + 3Nb + 3Nc = 24

(1, 1; 1, 0; 1,−1) (1, 1; 1, 0; 1,−1) ↑↑ ΩR : (2,−1; 1, 0; 1, 0) Na +Nb + 4Nc = 14 3Na + 3Nb = 18

Table 6.3: Overview of candidate bulk three-cycles on the bAA lattice for the a, b and c stacks

satisfying the conditions on rigidity and matter states transforming in the (anti)symmetric repre-

sentation. The respective contributions of the bulk three-cycles listed in the �rst three columns to

the �rst and second RR-tadpole cancellation conditions are given in the last two columns.

Nonetheless, in our publication [63], we classi�ed the local Pati-Salam models appearing

in table 6.3 into two types of local models. This analysis will be presented in the current

thesis also. Two Pati-Salam models are considered to be of the same type or class, referred

to as prototype, if they support identical gauge groups and give rise to the same chiral and

non-chiral particle spectrum. A speci�c model for the �rst combination of bulk orbits in

table 6.3 is displayed in table 6.4. The associated chiral and non-chiral particle content is

D6-brane con�guration of a local Pati-Salam model on the bAA lattice with ϱ = 2: prototype I

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 1; 1, 0; 1,−1) (1
3
, 0,−1

3
) (−−+) (0, 1, 1) (0, 1, 1) U(4)

b (2,−1; 1, 0; 1, 0) (0, 0, 0) (+−−) (1, 0, 0) (1, 0, 0) U(2)

c (1, 1; 1, 0; 1,−1) (1
3
, 0,−1

3
) (+ + +) (0, 1, 1) (0, 1, 1) U(2)

Table 6.4: Data of a local Pati-Salam model consisting of three stacks of D6-branes with gauge

group SU(4)a × SU(2)b × SU(2)c × U(1)a × U(1)b × U(1)c on the bAA lattice. The ΩR-plane is

chosen exotic with ηΩR = −1.

given in table 6.5.

Spectrum of the prototype I local Pati-Salam model on bAA

State Sector (SU(4)a × SU(2)b × SU(2)c)U(1)a×U(1)b×U(1)c

(QL, L) ab 2× (4,2,1)(1,−1,0)

(QL, L) ab′ (4,2,1)(1,1,0)

(QR, R) ac′ 3× (4,1,2)(−1,0,−1)

A, Ã aa′ 2× [(6Anti,1,1)(2,0,0) + h.c.]

B, B̃ bb′ (1,1Anti,1)(0,2,0) + h.c.

C, C̃ cc′ 2× [(1,1,1Anti)(0,0,2) + h.c.]

GH , G̃H ac 2×
[
(4,1,2)(1,0,−1) + h.c.

]
Table 6.5: Overview of the chiral and non-chiral massless particle content associated to the prototype

I local Pati-Salam model with D6-brane con�guration given in table 6.4.

A second prototype of local Pati-Salam models on the bAA lattice is given by the third
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combination of bulk three-cycles in table 6.3. An explicit example of the second class of

models is given in table 6.6. The chiral and non-chiral particle spectrum corresponding to

D6-brane con�guration of a local Pati-Salam model on the bAA lattice with ϱ = 2: prototype II

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 1; 1, 0; 1,−1) (1
3
, 0,−1

3
) (+−−) (0, 1, 1) (0, 1, 1) U(4)

b (1, 1; 1, 0; 1,−1) (1
3
, 0,−1

3
) (+ + +) (0, 1, 1) (0, 1, 1) U(2)

c (1, 1; 1, 0; 1,−1) (1
3
, 0,−1

3
) (−+−) (0, 1, 1) (0, 1, 1) U(2)

Table 6.6: Data of a local Pati-Salam model consisting of three stacks of D6-branes with gauge

group SU(4)a × SU(2)b × SU(2)c × U(1)a × U(1)b × U(1)c on the bAA lattice. The ΩR-plane is

chosen exotic with ηΩR = −1.

the second class of local Pati-Salam models on the bAA lattice is shown in table 6.7.

Spectrum of the prototype II local Pati-Salam model on bAA

State Sector (SU(4)a × SU(2)b × SU(2)c)U(1)a×U(1)b×U(1)c

(QL, L) ab′ 3× (4,2,1)(1,1,0)

(QR, R) ac′ 3× (4,1,2)(−1,0,−1)

(Hu, Hd) bc′ 3× (1,2,2)(0,−1,−1)

aa′ 2× [(6Anti,1,1)(2,0,0) + h.c.]

bb′ 2× [(1,1Anti,1)(0,2,0) + h.c.]

cc′ 2× [(1,1,1Anti)(0,0,2) + h.c.]

ab (4,2,1)(1,−1,0) + h.c.

ab′ (4,2,1)(1,1,0) + h.c.

GH , G̃H ac 2× [(4,1,2)(1,0,−1) + h.c.]

(Hu, Hd) bc 2× [(1,2,2)(0,1,−1) + h.c.]

Table 6.7: Overview of the chiral and non-chiral massless particle content associated to the prototype

II local Pati-Salam model with D6-brane con�guration given in table 6.6.

All other models arising from the �rst and third combinations of table 6.3 can be classi�ed

into one of these two classes of local Pati-Salam models. Similarly, the models arising from

the second and fourth combinations of table 6.3 can also be classi�ed into these two classes,

up to a trivial exchange in the ac sector of the c stack and its orientifold image c′: χac ↔ χac′ .

To conclude this section, we will brie�y discuss the particle content of both classes of local

Pati-Salam models. A �rst observation concerns the realization of the three generations of

left-handed matter states. In the �rst class of models, the three generations are obtained

from both sectors ab and ab′, as can be checked in table 6.5. In the second class of models,

the particle spectrum of which is displayed in table 6.7, the three generations of left-handed

matter states arise solely from the ab′ sector.

A serious shortcoming of the �rst prototype of local Pati-Salam models is the absence of

the electroweak Higgs, which should arise in the chiral or non-chiral bc and bc′ sectors.
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Thus, the electroweak group SU(2)L ×U(1)Y of the Standard Model must be broken to the

electromagnetic group U(1)EM by a di�erent mechanism than the usual Higgs mechanism

of the Standard Model. In this regard, the second prototype of local Pati-Salam models is

more attractive from a phenomenological point of view, as it provides several electroweak

Higgs doublets coming both from the chiral bc′ sector and the non-chiral bc sector.

Finally, both classes of models o�er the attractive feature of supporting GUT-Higgses GH

and G̃H in the non-chiral ac sector. These GUT-Higgses can be used for breaking the GUT

group SU(4)×SU(2)R down to the gauge group of the Standard Model SU(3)QCD×U(1)Y ,

as described for example in [185, 186].

This concludes the analysis of Pati-Salam models on the bAA lattice of T 6/(Z2×Z6×ΩR)

with discrete torsion. In the next section, we will focus on the construction of Pati-Salam

models on the aAA lattice, for which the bulk RR-tadpole cancellation conditions are less

constraining.

6.2.2 Global ϱ-independent Pati-Salam models on the aAA lattice

Just as for the bAA lattice, the models can be separated into ϱ-independent and ϱ-dependent

models. Once again, we will start with the former models.

We have seen in the previous section that the bulk RR-tadpole cancellation conditions on

the bAA lattice are very constraining regarding the construction of ϱ-independent models.

The situation is clearly di�erent on the aAA lattice. Once again, the candidate bulk three-

cycles for the a and b stacks for ϱ-independent models can be found in table 5.5. The

contribution of the a and b stacks to the �rst bulk RR-tadpole cancellation condition sum

up to:
∑

x∈{a,b} Nx(2Px + Qx) = 4 · 2 + 1 · 6 = 14 ≤ 32, where 32 is the maximally allowed

contribution for the choice of the exotic charge η
ΩRZ(2)

2
= −1 or η

ΩRZ(3)
2

= −1. This leaves

ample room to complete the model with a c stack and even a suitable hidden sector. This

has to be compared to the bAA lattice, where the contributions of the �rst two stacks added

up to 28 already, leaving hardly any room for the c stack.

The c stack should be rigid, free of matter states in the symmetric representation, be ϱ-

independent, satisfy Vc = 0 due to the second bulk RR-tadpole cancellation condition, and

provide three generations of chiral matter states in the ac (and/or ac′) sector. In addition,

it should support a unitary U(2) or symplectic USp(2) group, but not an orthogonal SO(2)

group, in order to provide a proper Pati-Salam model with gauge factor SU(2)R. The only

candidate bulk three-cycle left satisfying these conditions is the three-cycle with bulk orbit

parallel to the ΩRZ(1)
2 -plane. In order to be rigid, it must present USp(2) enhancement. The

three stacks chosen so far give the following total contribution to the �rst bulk RR-tadpole

cancellation condition:∑
x∈{a,b,c}

Nx(2Px +Qx) = 2Na + 6Nb + 6Nc = 20 ≤ 32. (6.10)

Note that Nc = 1 and not Nc = 2 because gauge symmetry enhancement is present on

the c stack, just as it is the case for the b stack. It remains to add an adequate hidden

sector permitting to completely cancel the RR-charges of the O6-planes. As the second

bulk RR-tadpole cancellation condition imposes Vx = 0, the only bulk three-cycles left to

form the hidden sector have bulk orbits parallel to the ΩR-plane, or parallel to the ΩRZ(1)
2 -

plane, or bulk orbits given by (1,0; 2,1; 3,-1) or (1,0; 4,-1; 3,1). However, these last two
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orbits o�er too high a contribution to the �rst RR-tadpole cancellation condition, as they

have bulk wrapping numbers 2Px + Qx > 12. Hence, they cannot be used to construct

the hidden sector. Consequently, this leads to two classes of four-stack Pati-Salam models,

the gauge groups of which di�er in the hidden sector. More precisely, the hidden stack

can be taken parallel to the ΩR-plane with rank Nh = 6, or parallel to the ΩRZ(1)
2 -plane

with rank Nh = 2. Of course, one could also add several hidden stacks with reduced rank,

for example two hidden stacks parallel to the ΩR-plane with each having a reduced rank

Nhi
= 3, i = 1, 2, leading to a �ve-stack Pati-Salam model. However, the more stacks a

model has, the more computational power and processing time is needed in order to analyze

the properties of the model. Therefore, in the present work, we will restrict the analysis to

Pati-Salam models with at most four stacks.

Thus, we are left with two possibilities for the hidden sector, which both ful�ll the bulk

RR-tadpole cancellation conditions. It remains to be checked whether the twisted part

of the RR-tadpole cancellation conditions can also be ful�lled by taking into account the

exceptional part of the fractional three-cycles. A complete computer scan yielded 1 152

global four-stack Pati-Salam models for the �rst type of models with hidden rank Nh = 6,

and 10 368 global four-stack Pati-Salam models for the second type of models with hidden

rankNh = 2. These models ful�ll the bulk and twisted part of all the RR-tadpole cancellation

conditions. The computer scan also revealed that the hidden stack of all the models does not

exhibit enhancement, i.e. the gauge group of the hidden stack supports unitary groups U(6)

and U(2) and not symplectic groups USp(12) and USp(4) or orthogonal groups SO(12) and

SO(4), respectively.

Not all of the models are physically independent models. Just as in the case of the SU(5)

models, the Pati-Salam models with identical relative Z2-eigenvalues ∆τ
Z(i)
2

ab ≡ τ
Z(i)
2

a − τ
Z(i)
2

b ,

∆τ
Z(i)
2

ac and ∆τ
Z(i)
2

ah as well as identical shifts and Wilson lines always produce the same particle

spectrum, so that they can be considered to be equivalent. Another remark concerns the fact

that models with η
ΩRZ(2)

2
= −1 are related to models with η

ΩRZ(3)
2

= −1 via an exchange of the

two-torus labels i = 2 ↔ i = 3 of T 2
(i). We checked explicitly that we always obtained an equal

amount of models for both choices of the exotic O6-plane charge. Therefore, the numbers of

physically non-equivalent models correspond to 1 152÷ 8 = 144 and 10 368÷ 8 = 1 296 for

the �rst type and second type of Pati-Salam models, respectively.

An explicit example including the list of discrete parameters for the �rst type of the global

four-stack Pati-Salam models is given in table 6.8.

D6-brane con�guration of a global Pati-Salam model on the aAA lattice: prototype I

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (0, 1, 1) U(4)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 1) (0, 0, 1) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−−+) (0, 0, 1) (0, 0, 1) USp(2)

h (1, 0; 1, 0; 1, 0) (0, 0, 0) (+−−) (0, 1, 1) (0, 1, 1) U(6)

Table 6.8: Data of a global Pati-Salam model consisting of four stacks with gauge group SU(4)a ×
USp(2)b × USp(2)c × SU(6)h × U(1)a × U(1)h on the aAA lattice. The ΩRZ(2)

2 -plane is chosen

exotic with η
ΩRZ(2)

2

= −1.
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The corresponding spectrum of chiral and non-chiral particles is exhibited in table 6.9.

Spectrum of the prototype I global Pati-Salam model on aAA

State Sector (SU(4)a × USp(2)b × USp(2)c × SU(6)h)U(1)a×U(1)h

(QL, L) ab = ab′ 3× (4,2,1,1)(1,0)

(QR, R) ac = ac′ 3× (4,1,2,1)(−1,0)

(Hu, Hd) bc = bc′ 10× (1,2,2,1)(0,0)

bh = bh′ 3× (1,2,1,6)(0,1)

ch = ch′ 3× (1,1,2,6)(0,−1)

aa′ 2×
[
(6Anti,1,1,1)(2,0) + h.c.

]
bb′ 5× (1,1Anti,1,1)(0,0)

cc′ 5× (1,1,1Anti,1)(0,0)

hh′ 2× [(1,1,1,15Anti))(0,2 + h.c.]

ah 2× [(4,1,1,6)(1,−1) + h.c.]

ah′ (4,1,1,6)(1,1) + h.c.

Table 6.9: Overview of the chiral and non-chiral massless particle content associated to the prototype

I global Pati-Salam model with D6-brane con�guration given in table 6.8.

The example for the second class of global four-stack Pati-Salam models is given in table

6.10, and the corresponding massless particle spectrum can be found in table 6.11.

D6-brane con�guration of a global Pati-Salam model on the aAA lattice: prototype II

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (0, 1, 1) U(4)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 1) (0, 0, 1) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−−+) (0, 0, 1) (0, 0, 1) USp(2)

h (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 0) (0, 0, 0) U(2)

Table 6.10: Data of a global Pati-Salam model consisting of four stacks with gauge group SU(4)a×
USp(2)b × USp(2)c × SU(2)h × U(1)a × U(1)h on the aAA lattice. The ΩRZ(2)

2 -plane is chosen

exotic with η
ΩRZ(2)

2

= −1.

Once again, we will �nish this section with a discussion of the similarities and di�erences

between the two classes of models. Aside from the di�erent gauge factor on the hidden stack,

there are also di�erences in the non-chiral part of the massless particle spectrum. In the

second class of models, we have for example non-chiral matter states in the bh and ch sectors,

which are not present in the �rst class of models. On the other hand, the chiral particle

content is realized in both types of models in exactly the same manner. Luckily, there are

also ten electroweak Higgses available in both types of models, arising in the bc sector. A

disadvantage in both models is the presence of several exotic matter states. Remember from

section 3.2.1 that exotic matter states are matter states which are charged under both the

three visible stacks forming the gauge group of the Pati-Salam model and the fourth hidden
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Spectrum of the prototype II global Pati-Salam model on aAA

State Sector (SU(4)a × USp(2)b × USp(2)c × SU(2)h)U(1)a×U(1)h

(QL, L) ab = ab′ 3× (4,2,1,1)(1,0)

(QR, R) ac = ac′ 3× (4,1,2,1)(−1,0)

(Hu, Hd) bc = bc′ 10× (1,2,2,1)(0,0)

bh = bh′ 3× (1,2,1,2)(0,1)

ch = ch′ 3× (1,1,2,2)(0,−1)

aa′ 2×
[
(6Anti,1,1,1)(2,0) + h.c.

]
bb′ 5× (1,1Anti,1,1)(0,0)

cc′ 5× (1,1,1Anti,1)(0,0)

hh′ 6× [(1,1,1,1Anti)(0,2) + h.c.]

ah 2× [(4,1,1,2)(1,−1) + h.c.]

ah′ (4,1,1,2)(1,1) + h.c.

bh = bh′ 3× [(1,2,1,2)(0,−1) + h.c.]

ch = ch′ 3× [(1,1,2,2)(0,−1) + h.c.]

Table 6.11: Overview of the chiral and non-chiral massless particle content associated to the proto-

type II global Pati-Salam model with D6-brane con�guration given in table 6.10.

stack. Such particles are not desired from a phenomenological point of view, for they would

be detectable by ordinary particle detectors, as they interact by exchange of ordinary visible

gauge bosons, on top of the hidden gauge boson carrier of a new fundamental force. Particles

charged exclusively under the hidden sector, and not charged under the visible sector, are

acceptable, since they would interact solely via the new fundamental force and thus escape

notice of ordinary particle detectors.

Another shortcoming of the two classes of models is the absence of GUT-Higgses which

should naturally arise from the non-chiral ac and ac′ sectors. Thus, another mechanism

would need to be devised to break the Pati-Salam GUT group to the gauge group of the

Standard Model.

6.2.3 The situation of ϱ-dependent Pati-Salam models on the aAA

lattice

This section is meant to give the reader a super�cial overview of the situation of ϱ-dependent

Pati-Salam models in the case of the aAA lattice. The aim is not to provide a complete

and thorough search for global Pati-Salam models, as we have already found some in the

previous section. Remember that for ϱ-dependent models, the exotic O6-plane charge has

to be ηΩR = −1, otherwise the second bulk RR-tadpole cancellation condition is violated by

at least one stack.

The �rst step consists in �nding suitable candidates of bulk three-cycles to support the a

and b stacks, which can be found in table 5.6 and 5.7. Remember that the a stack should

also be free of matter states in the antisymmetric representation, so possible candidate bulk
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three-cycles are given by all entries in table 5.6 as well as the second and fourth lines of table

5.7. We will choose only one combination in order to illustrate the situation of ϱ-dependent

models. The combination we choose has the a stack parallel to the ΩR-plane and the b stack

has its bulk orbit parallel to the ϱ-dependent orbit (1,1; 1,0; 1,-1). The associated complex

structure parameter is ϱ = 3. This value for the complex structure parameter allows for 14

bulk three-cycles which are SUSY for ϱ = 3, on top of the eight ϱ-independent bulk three-

cycles which are SUSY for all values of ϱ. Thus, this leaves a total of 22 bulk three-cycles at

our disposal to support the c stack and the hidden stacks. Since the c stack should be rigid, it

must either be parallel to some O6-plane with an adequate choice of discrete parameters, or

it must be parallel to the same bulk three-cycle as the b stack (1,1; 1,0; 1,-1) with constraints

on rigidity. However, tables 5.4 and 5.5 reveal that by taking the c stack parallel to some

O6-plane, no three generations of right-handed matter states can be realized in the ac and

ac′ sectors with ηΩR = −1. Hence, the only candidate for the c stack is the bulk three-cycle

with orbit (1,1; 1,0; 1,-1). A full computer scan yielded 256 combinations for the a, b and c

stacks giving a full three generation chiral particle content.

The next step is to check the bulk RR-tadpole cancellation conditions, in order to cancel

them with a suitable hidden sector. The ΩR-plane has bulk wrapping numbers (P,Q, U, V ) =

(1, 0, 0, 0) on the aAA lattice, the three-cycle (1,1; 1,0; 1,-1) has bulk wrapping numbers

(P,Q, U, V ) = (1,−1, 1,−1). Hence, the sum over the �rst three stacks yields for the bulk

RR-tadpole cancellation conditions the following contributions:∑
x=a,b,c Nx(2Px +Qx) = 2Na +Nb +Nc = 12 < 16 ,

−
∑

x=a,b,cNxVx = Nb +Nc = 4 < 16 .
(6.11)

The �rst bulk RR-tadpole cancellation condition leaves room for a maximal contribution of

four (16− 12 = 4) for the hidden sector, the second bulk RR-tadpole cancellation condition

leaves room for a maximal hidden contribution of twelve (16 − 4 = 12). A scan over all 22

bulk three-cycles, that preserve SUSY for ϱ = 3, reveals a list given in table 6.12 of nine

bulk three-cycles which can be added to the bulk RR-tadpole cancellation conditions above

without overshooting them. These nine bulk three-cycles can be combined with di�erent

ranks Ni in order to ful�ll both bulk RR-tadpole cancellation conditions as indicated in

table 6.13. In table 6.13, we see that there is no combination which can satisfy both bulk

RR-tadpole cancellation conditions with only one hidden stack, which would be the preferred

combination. The next best combinations are those coming with two hidden stacks. There

are eight of them:

N1 = 1 and N4 = 1 N1 = 1 and N5 = 1 N2 = 3 and N4 = 1 N2 = 3 and N5 = 1

N2 = 4 and N8 = 4 N2 = 4 and N9 = 4 N7 = 2 and N9 = 6 N7 = 2 and N8 = 6
.

(6.12)

A complete scan over all 256 combinations of the visible sector combined with the 256 · 256
possibilities of the two hidden stacks revealed that none of the eight possibilities above sat-

is�ed all of the twisted RR-tadpole cancellation conditions.

Since global �ve-stack Pati-Salam models cannot be constructed with the current choice

of the visible sector, the next step is to check whether global six-stack models with three

hidden stacks can be constructed. The scan now runs over a total of 256 · 256 · 256 · 256
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Candidate bulk 3-cycles for the hidden sector

rank (n1,m1;n2,m2;n3,m3) (P,Q, U, V ) 2P +Q V

N1 (1, 1; 1,−2; 1, 1) (3,−3, 3,−3) 3 −3

N2 (1, 1; 1, 0; 1,−1) (1,−1, 1,−1) 1 −1

N3 (1, 2; 4,−1; 1,−1) (3,−4, 6,−8) 2 −8

N4 (1, 3; 3,−1; 1,−1) (2,−3, 6,−9) 1 −9

N5 (1, 3; 1,−1; 3,−1) (2,−3, 6,−9) 1 −9

N6 (1, 2; 0,−1; 1, 3) (3,−4, 6,−8) 2 −8

N7 ΩR (1, 0, 0, 0) 2 0

N8 ΩRZ(2)
2 (0, 0, 1,−2) 0 −2

N9 ΩRZ(3)
2 (0, 0, 1,−2) 0 −2

Table 6.12: List of bulk three-cycles that are SUSY for ϱ = 3 and do not overshoot the bulk RR-

tadpole cancellation conditions (6.11). The second column gives the torus wrapping numbers, the

third one gives the bulk wrapping numbers and the last two columns provide the contributions to

the �rst respectively second bulk RR-tadpole cancellation conditions. To each three-cycle a rank

Ni is associated in the �rst column with values indicated in table 6.13.

combinations, which lengthens the processing time more or less by a factor of 256 compared

to the �ve-stack models. In addition, in table 6.13 we can �nd a total of 20 combinations

with three hidden stacks, as compared to the eight possibilities we had before for the two

hidden stacks. A complete computer scan over all 20 combinations revealed once more that

none of them would ful�ll all the twisted RR-tadpole cancellation conditions.

The remaining 13 out of the initial 41 combinations all come with four hidden stacks. I did

not perform a scan over these, as the processing time is augmented once more by a factor

256 compared to the previous scan, due to the addition of one hidden stack. Moreover,

it is likely that these combinations too will not ful�ll the twisted RR-tadpole cancellation

conditions, as all the previous scans running over a total of 86 033 563 648 combinations

already have failed. Note also that the combinations indicated in table 6.13 only correspond

to combinations where the hidden stacks wrap di�erent bulk three-cycles. The table could

be extended by taking hidden stacks wrapped on the same bulk three-cycles with reduced

rank, but considering di�erent exceptional cycles so that the hidden stacks wrap di�erent

fractional three-cycles. For example, the �rst combination with two hidden stacks of table

6.13 could be extended to eight hidden stacks, each supporting a gauge factor with rank one

Ni = 1, i = 1, . . . 8. These options have not been pursued in this thesis, as they involve too

much computational power.

To conclude, we can state that the possibilities to construct the hidden sector for the

present visible sector are more numerous than in the case of the ϱ-independent models

we have analyzed before. Therefore, a complete and thorough analysis exhausting all the

possibilities needs a tremendous amount of processing power and time. The computer scans

performed in this section already indicate that the results obtained at the end of a full

analysis might be meager. Indeed, the torus wrapping numbers of the three-cycles used
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Combinations of hidden stacks ful�lling the bulk RR-tad.c.c.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1 N2 N3 N4 N5 N6 N7 N8 N9

0 0 0 0 0 0 2 0 6 0 2 0 0 0 0 1 3 2

0 0 0 0 0 0 2 1 5 0 2 0 0 0 0 1 4 1

0 0 0 0 0 0 2 2 4 0 2 0 0 0 0 1 5 0

0 0 0 0 0 0 2 3 3 0 2 0 0 0 1 0 0 1

0 0 0 0 0 0 2 4 2 0 2 0 0 0 1 0 1 0

0 0 0 0 0 0 2 5 1 0 2 1 0 0 0 0 0 1

0 0 0 0 0 0 2 6 0 0 2 1 0 0 0 0 1 0

0 0 0 0 0 1 1 0 2 0 3 0 0 1 0 0 0 0

0 0 0 0 0 1 1 1 1 0 3 0 1 0 0 0 0 0

0 0 0 0 0 1 1 2 0 0 4 0 0 0 0 0 0 4

0 0 1 0 0 0 1 0 2 0 4 0 0 0 0 0 1 3

0 0 1 0 0 0 1 1 1 0 4 0 0 0 0 0 2 2

0 0 1 0 0 0 1 2 0 0 4 0 0 0 0 0 3 1

0 1 0 0 1 0 1 0 1 0 4 0 0 0 0 0 4 0

0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0

0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0

0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 4

0 2 0 0 0 0 1 0 5 1 1 0 0 0 0 0 1 3

0 2 0 0 0 0 1 1 4 1 1 0 0 0 0 0 2 2

0 2 0 0 0 0 1 2 3 1 1 0 0 0 0 0 3 1

1 1 0 0 0 0 0 4 0

Table 6.13: This table provides in total 41 combinations of the bulk three-cycles given in table 6.12

with various ranks Ni which satisfy both bulk RR-tadpole cancellation conditions (RR-tad.c.c.) in

(6.11) exactly when added to the visible sector.

for the visible sector are already chosen to be as small as possible, so that they give the

smallest possible contributions to the twisted RR-tadpole cancellation conditions. Still, all

256 combinations of the visible sector give a maximal contribution of ±24 to at least one

of the twisted RR-tadpole cancellation condition. The likelihood of this large contribution

to be canceled exactly by a hidden sector is rather small. In comparison, in the case of ϱ-

independent Pati-Salam models, the maximal contribution of the visible sector to the twisted

RR-tadpole cancellation conditions was no more than ±8, which can be canceled much more

easily by an adequate hidden sector.

As a �nal remark, note that the issue of physically non-equivalent models was not addressed

at all in this section, since the focus lied on detecting global models and not on analyzing

local models.
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All in all, instead of investing a lot more e�ort and time in a thorough analysis of all the

possibilities of the hidden sector and di�erent visible sectors and risking meager results, I

preferred to drop any further search for global ϱ-dependent Pati-Salam models and rather

concentrate on the phenomenology of the global models I already found.



Chapter 7

The construction of left-right symmetric

and MSSM-like models

7.1 Five-stack and six-stack left-right symmetric models

Left-right symmetric models are closer in construction to the coveted MSSM than Pati-Salam

models are. Therefore, they are more appealing from a phenomenological point of view than

Pati-Salam models. Unfortunately, global models are also harder to construct as previous

work on similar toroidal backgrounds has shown [187, 76].

The gauge group of the left-right symmetric model is given by SU(3)×SU(2)L ×SU(2)R ×
U(1)B−L. Since we have four gauge factors, we need four stacks in order to construct left-

right symmetric models. The conditions on the �rst two stacks denoted by a and b are similar

to the conditions on the �rst two stacks of the Pati-Salam model. The �rst two stacks should

be rigid, exempt of chiral matter states transforming in the symmetric representation, and

the a stack should also be free of chiral matter states in the antisymmetric representation.

Hence, the potential candidate three-cycles for the �rst two stacks are the same than those

for the Pati-Salam models.

However, since previous work on similar backgrounds taught us that global left-right symmet-

ric models are harder to realize than global Pati-Salam models, we will loosen the constraints

on the c stack, so that the conditions on the third stack supporting SU(2)R are less stringent

than in the case of the Pati-Salam models. Thus, the c stack can come with matter states

in the symmetric or adjoint representation. Apart from the condition of giving rise to three

generations of particles, no further condition is put on the c stack. The conditions on the b

and c stacks are thus slightly asymmetric, despite the name of "left-right symmetric". On

the fourth stack labeled by d, there are no constraints on the particle states other than

giving rise to three generations of particles, because any irreducible representation under an

Abelian U(1) group is a singlet representation.

We have seen in the previous chapter that ϱ-independent models seem to be particularly in-

clined to give rise to global models. This is due to the fact that the torus wrapping numbers

of three-cycles parallel to some O6-plane are quite small and thus the twisted RR-tadpole

cancellation conditions are more easily ful�lled than in the ϱ-dependent case. On the other

hand, we have seen that ϱ-dependent three-cycles tend to produce larger contributions to

the twisted RR-tadpole cancellation conditions, so that global models are less likely to arise.

Also, the number of possibilities for the construction of ϱ-dependent models is tremendous,
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whereas the number of combinations for ϱ-independent models is rather small, which renders

a systematic and complete analysis possible. Therefore, it is sensible to focus the search on

ϱ-independent models. We will only give a brief overview of a quick scan for ϱ-dependent

models in section 7.2.2.

7.1.1 Search for the visible sector of left-right symmetric models

Remember that for ϱ-independent models, the only suitable candidates of three-cycles for

the a and b stacks are given by a ↑↑ ΩR and b ↑↑ ΩRZ(1)
2 and η

ΩRZ(2 or 3)
2

= −1, as we have

seen in the case of the Pati-Salam models in the previous chapter. For this choice of the

exotic charge, the two bulk RR-tadpole cancellation conditions are given by:∑
x∈{a,b,c,d}Nx(2Px +Qx) =

12
1−b

+Nc(2Pc +Qc) + (2Pd +Qd) ≤ 32 ,∑
x∈{a,b,c,d}Nx(Vx + bQx) = 0 ⇒ Ṽx = 0 ∀x .

(7.1)

where Nc = 2 if no gauge symmetry enhancement is present on c and Nc = 1 if USp(2) en-

hancement is present. Just as for the Pati-Salam models, these conditions permit to exclude

a number of possible candidate three-cycles for the c and d stacks right from the beginning.

Table 7.1 gives a list of all SUSY ϱ-independent bulk-three cycles which satisfy the second

bulk RR-tadpole cancellation condition. We can already exclude the last bulk three-cycle in

table 7.1, as it overshoots the �rst bulk RR-tadpole cancellation condition for both lattices

aAA and bAA. This leaves only three candidate bulk three-cycles for the c and d stacks as

well as any hidden stack.

Overview of SUSY bulk three-cycles in compliance with Ṽx = 0 ∀ ϱ

aAA lattice bAA lattice

bulk wrapping numbers (2P +Q, V ) bulk wrapping numbers (2P +Q, V + 1
2
Q)

ΩR : (1, 0; 1, 0; 1, 0) (2, 0) ΩR : (2,−1; 1, 0; 1, 0) (4, 0)

ΩRZ(1)
2 : (1, 0;−1, 2; 1,−2) (6, 0) ΩRZ(1)

2 : (2,−1;−1, 2; 1,−2) (12, 0)

(1, 0; 2, 1; 3,−1) (14, 0) (2,−1; 2, 1; 3,−1) (28, 0)

(1, 0; 4,−1; 3, 1) (26, 0) (2,−1; 4,−1; 3, 1) (52, 0)

Table 7.1: Bulk orbits of candidate three-cycles for the c and d stacks satisfying Ṽx = 0, in the

context of ϱ-independent left-right symmetric models on the a/bAA lattices. Except for the last

bulk orbit, the bulk three-cycles are consistent with the RR-tadpole cancellation conditions (7.1)

and can be used for SUSY model building.

Left-right symmetric models on the bAA lattice

Once again, we will start the discussion with the bAA lattice. A look at table 7.1 and

the RR-tadpole cancellation conditions (7.1) reveals that the last three bulk three-cycles

have to be excluded, as their contributions overshoot the maximally allowed contribution

2P +Q > 8 of the �rst bulk RR-tadpole cancellation condition. The only possibility left is
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to take both the c and d stacks parallel to the ΩR-plane. In that case, the �rst bulk RR-

tadpole cancellation is ful�lled, leaving no room for hidden sectors. However, as table 5.4

yields, taking c parallel to the ΩR-plane renders the realization of three generations of right-

handed quarks impossible, i.e. |χac + χac′| = 3, or |χac| ≡ |χac′ | = 3 with gauge symmetry

enhancement on c cannot be satis�ed. In conclusion, one can state that ϱ-independent left-

right symmetric models can only be local on the bAA lattice on T 6/(Z2 × Z6 × ΩR) with

discrete torsion.

Instead of providing examples of local models on the bAA lattice as we did for Pati-Salam

models, we will rather continue our search for global models on the aAA lattice, since the

primary goal is to �nd global models.

Left-right symmetric models on the aAA lattice

Contrarily to the bAA lattice, there are a priori three bulk three-cycles not overshooting

the �rst bulk RR-tadpole cancellation condition on the aAA lattice. The second and third

columns in table 7.2 provide an overview of all possible combinations for the c and d stacks

with the mentioned three bulk three-cycles. The fourth and �fth columns indicate the

contribution of these combinations to the �rst bulk RR-tadpole cancellation condition, on

top of the contributions coming from the a and b stacks. The sixth column reveals whether

three generations of right-handed quarks can be realized, i.e. whether |χac + χac′ | = 3, or

|χac| ≡ |χac′| = 3 with gauge symmetry enhancement on c can be satis�ed. Note also that

the correct chirality between the right-handed and left-handed quarks must be re�ected in

a relative sign, χac + χac′ = −χab or χac = −χab. The seventh column indicates if three

generations of left-handed leptons can be realized, i.e. whether |χbd| = 3 with the correct

chirality χab = +χbd. Finally, the numbers in parentheses show the compatibility between

the exigence of having three generations of right-handed quarks and three generations of left-

handed leptons, with correct relative sign. The numbers indicate the amount of combinations

of discrete parameters found ful�lling the aforementioned conditions. Note, however, the

number indicated in table 7.2 counts non-equivalent models.

As already mentioned in the previous chapter in the case of the presented SU(5) model

and the global Pati-Salam models, classes of models can be identi�ed. Also in the present

case, models with identical relative Z2-eigenvalues ∆τ
Z(i)
2

ab ≡ τ
Z(i)
2

a − τ
Z(i)
2

b , ∆τ
Z(i)
2

ac , and ∆τ
Z(i)
2

ad

as well as identical shifts and Wilson lines always give rise to the same particle spectrum,

so that they can be considered to be equivalent. We cross-checked explicitly for certain

combinations of table 7.2 that the models with identical relative Z2-eigenvalues, identical

Wilson lines and shifts always come at the number of four. Thus, the number of models

given in table 7.2 corresponds to the number of independent models, which is four times less

than the total number of models found.

Another remark concerns the fact that models with η
ΩRZ(2)

2
= −1 are related to models with

η
ΩRZ(3)

2
= −1 via an exchange of the two-torus labels i = 2 ↔ i = 3 of T 2

(i), just as in

the case of the global Pati-Salam models found in the previous chapter. We checked once

more explicitly that we always obtained an equal amount of models for both choices of the

exotic O6-plane charge. Thus, the overall total number of models has to be divided by eight

in order to avoid counting redundant models and to obtain the number of non-equivalent

models given in table 7.2.

Finally, it should be noted that in order to �nd the number of models given in table 7.2, we



118 CHAPTER 7. THE CONSTRUCTION OF LEFT-RIGHT SYMMETRIC AND

MSSM-LIKE MODELS

Four-stack combinations with gauge group U(3)a × USp(2)b × U(2)c||USp(2)c × U(1)d on aAA

c stack d stack RR-tadpoles:
∑

x∈{a,b,c,d}(2Px +Qx) ≤ 32 3 qR 3L

1 ΩR ΩR 2Na + 6Nb + 2Nc + 2Nd = 18 X  X9840

2 ΩR with USp(2)c ΩR 2Na + 6Nb + 2Nc + 2Nd = 16 X  X2304

3 ΩR ΩRZ(1)
2 2Na + 6Nb + 2Nc + 6Nd = 22 X  X198720

4 ΩR with USp(2)c ΩRZ(1)
2 2Na + 6Nb + 2Nc + 6Nd = 20 X  X46080

5 ΩR (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 2Nc + 14Nd = 30 X  X9936

6 ΩR with USp(2)c (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 2Nc + 14Nd = 28 X  X2304

7 ΩRZ(1)
2 ΩR 2Na + 6Nb + 6Nc + 2Nd = 26 X  X9984

8 ΩRZ(1)
2 with USp(2)c ΩR 2Na + 6Nb + 6Nc + 2Nd = 20 X X59616 X2304(X288)

9 ΩRZ(1)
2 ΩRZ(1)

2 2Na + 6Nb + 6Nc + 6Nd = 30 X  X197760

10 ΩRZ(1)
2 with USp(2)c ΩRZ(1)

2 2Na + 6Nb + 6Nc + 6Nd = 24 X X59904 X46080(X5760)

11 ΩRZ(1)
2 (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 6Nc + 14Nd = 38   X9984

12 ΩRZ(1)
2 with USp(2)c (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 6Nc + 14Nd = 32 X X73728 X2304(X288)

13 (1, 0; 2, 1; 3,−1) ΩR 2Na + 6Nb + 14Nc + 2Nd = 42   X12288

14 (1, 0; 2, 1; 3,−1) ΩRZ(1)
2 2Na + 6Nb + 14Nc + 6Nd = 46   X245760

15 (1, 0; 2, 1; 3,−1) (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 14Nc + 14Nd = 54   X12240

Table 7.2: Overview of candidate pairs of bulk three-cycles for the c and d stacks of SUSY left-right

symmetric models on the aAA lattice, with exotic charge η
ΩRZ(2 or 3)

2

= −1. The fourth and �fth

columns test the respective contributions to the �rst bulk RR-tadpole cancellation condition in (7.1)

of the pairs of three-cycles displayed in the second and third columns, on top of the contributions

coming from the a and b stacks. The sixth column veri�es whether the condition of three right-

handed quark generations is ful�lled, i.e. |χac| ≡ |χac′ | = 3 for USp(2)c or |χac+χac′ | = 3 for U(2)c.

The last column does the same for three left-handed lepton generations, i.e. |χbd| ≡ |χbd′ | = 3. The

symbol in parentheses in the last column tests compatibility between these two conditions. The

correct chirality between left- and right-handed particles has been taken into account via sign factors.

The subscript indicates the number of combinatorial possibilities of discrete parameters (σ⃗x), (τ⃗x)

and (−1)τ
Z(k)2
x for x ∈ {a, b, c, d} with the constraints discussed in the main text. The original

number was divided by eight in order to count only non-equivalent models as discussed in the main

text. Concerning the a and b stacks, remember that we have the following con�guration: a ↑↑ ΩR
and b ↑↑ ΩRZ(1)

2 .

imposed the condition that if three-cycles have identical bulk orbits, they should di�er by at

least one discrete parameter in order to actually correspond to distinct fractional three-cycles.

Also, when we are dealing with three-cycles parallel to O6-planes, the orientifold images of

these only di�er by the Z2-eigenvalues from the original three-cycles. The Wilson lines and

shifts are not a�ected by the orientifold projection, while the Z2-eigenvalues transform as

follows:

(−1)τ
Z(i)2 ΩR→ ±η(i)(−1)2b

jσjτ j+2bkσkτk(−1)τ
Z(i)2 , (7.2)

where i, j, k are cyclic permutations of 1,2,3, and b1 = b, b2 = b3 = 1/2. The plus sign

is used if the bulk part of the three-cycle is anti-parallel to its orientifold image on the ith

two-torus T 2
(i). In the other cases, i.e. parallel cycles or cycles neither parallel nor anti-

parallel, the minus sign is used. Thus, in case both cycles for the c and d stacks have

the same bulk orbit and are parallel to some O6-plane, and have on top of that identical
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Wilson lines and shifts, additional conditions have to be imposed on the Z2-eigenvalues in

agreement with formula (7.2), so that the three-cycles are not orientifold images of each

other. Without this condition, it is possible that the bifundamental representation produces

a negative contribution to the beta-function coe�cients, which does not make sense as the

beta-function coe�cients are supposed to count the total number of particles, irrespective of

chirality. This happens because, if two stacks are orientifold images of each other, they do not

give rise to the bifundamental representation, but rather to the symmetric or antisymmetric

representation. Thus, the correct formulas to use for the beta-function coe�cients would be

those in table 3.4 and not table 3.3.

With all these conditions, we see that only combinations 8, 10 and 12 in table 7.2 are apt to

provide a full three generation spectrum with all RR-tadpole cancellation conditions ful�lled.

7.1.2 Semi-global �ve-stack left-right symmetric models

In the following, we will analyze each of the three combinations 8, 10 and 12 and test their

potential to give rise to global three generation left-right symmetric models. In table 7.2,

there is one combination which fully satis�es the bulk RR-tadpole cancellation conditions:

combination 12.

Combination 12: It remains to be seen whether combination 12 leads to a full three

generation spectrum, that is to say, whether also three generations of right-handed leptons

can be produced with |χcd| = 3 and correct relative sign χcd = −χab. With this additional

condition, the number of models for combination 12 is reduced from 288 to 144. The �nal

step consists in checking the local or global character of these 144 models. A full computer

scan over all 144 models of combination 12 yielded that none of them would ful�ll all twisted

RR-tadpole cancellation conditions.

This leaves combinations 8 and 10. In order to ful�ll the bulk RR-tadpole cancellation

conditions exactly, hidden stacks have to be added, which should be chosen from table 7.1.

Combination 8 leaves room for a contribution of 12 from the hidden sector, while combination

10 has room for a contribution of 8. Let us start with combination 8.

Combination 8: The aim is to have as few stacks as possible in the hidden sector. Hence,

the �rst try consists in �nding global �ve-stack left-right symmetric models with one stack in

the hidden sector. Only if no such model can be found, should the hidden sector be extended

to include two hidden stacks. There are two possibilities to realize a �ve-stack model with

combination 8 with vanishing bulk RR-tadpole cancellation conditions. The �rst possibility

consists in taking the hidden stack parallel to the ΩR-plane with rank Nh = 6. The sec-

ond possibility is given by taking the hidden stack parallel to the ΩRZ(1)
2 -plane, with rank

Nh = 2. These are the only possibilities, as the other two bulk three-cycles in table 7.1

overshoot the room left in the �rst bulk RR-tadpole cancellation condition in (7.1). The

additional constraint of giving rise to three generations of right-handed electrons does not

reduce the number of 288 models in table 7.2 any further. However, a full computer scan

over all 288 models revealed that none of them would ful�ll all the twisted RR-tadpole can-

cellation conditions, for both possibilities of the hidden stack. Therefore, combination 8 can
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only give rise to local �ve-stack left-right symmetric models.

Next, we will turn our attention to combination 10.

Combination 10: By adding the condition of having three generations of right-handed

electrons, the number of non-equivalent models was reduced from 5 760 to 5 184. The

only possibility to ful�ll the �rst bulk RR-tadpole cancellation condition with one hidden

stack exactly is to take the hidden stack parallel to the ΩR-plane with rank Nh = 4. A

full computer scan over all 5 184 models yielded that 1 296 combinations of these 5 184

models with the hidden stack ful�ll all twisted RR-tadpole cancellation conditions. However,

contrarily to Pati-Salam models, this is still insu�cient to guarantee the global character

of the model. In fact, there is one last set of consistency conditions to ful�ll, namely the

K-theory constraints (2.51). In our Pati-Salam models, the rank of the a stack was four and

thus even, and the hidden stack had also an even rank of six or two, depending on the class

of model. Thus, these stacks already provide even contributions to the K-theory constraints.

The b and c stacks had rank equal to one, but they presented gauge symmetry enhancement,

so the intersection between these and the probe-branes also supporting gauge symmetry

enhancement is zero. This is due to the fact that the intersection between two ΩR-even cycles

(i.e. cycles invariant under the orientifold projection) is always zero, as we will see in chapter

8. Thus, the presented Pati-Salam models satisfying the RR-tadpole cancellation conditions

were global models automatically. In the case of the left-right symmetric models though, the

a stack has an odd rank of three, and does not support gauge symmetry enhancement. Hence,

the K-theory constraints must be checked explicitly. A scan running over all 1 296 models

checking the K-theory constraints in (2.51) yielded that none of the models would satisfy

all the K-theory constraints. Consequently, these models are semi-global but not global, i.e.

they satisfy the RR-tadpole cancellation conditions but not the K-theory constraints. In the

following, we will give a concrete example of such a left-right symmetric model. In the next

chapter, we will also derive an explicit analytical expression for the K-theory constraints,

and show which of the K-theory constraints are violated for this particular model.

A computer scan over all 1 296 models revealed that the chiral particle content as well as the

non-chiral particle spectrum is identical for all these models, up to the trivial exchange of the

hidden stack h with its orientifold image h′. Since the naming of a stack and its orientifold

image is arbitrary, this exchange has no profound physical meaning and is just an arti�cial

construct. Thus, the spectra of all models are truly equivalent. Also, a complete computer

scan over all 1 296 models revealed that there is no gauge symmetry enhancement on the

hidden stack, meaning that the gauge group of the hidden stack is a unitary U(4) group and

not a symplectic USp(8) or orthogonal SO(8) group.

A prototype of a semi-global �ve-stack left-right symmetric model is presented in table 7.3.

The associated chiral and non-chiral open string spectrum to the model in table 7.3 is

indicated in table 7.4.

As usual, we will discuss certain points of the particle content of table 7.4. In the visible

sector, aside from three generations of left-handed and right-handed quarks and leptons, we

also have electroweak Higgses in the bc sector. Less desirable from a phenomenological point

of view is the abundant presence of non-chiral massless states in the visible sector, arising in

the ad, ad′, bd and cd sectors. Also, the visible sector is not completely decoupled from the

hidden sector, as we have once again exotic states charged under both the visible and hidden
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D6-brane con�guration of a 5-stack Left-Right Symmetric model on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (0, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 1, 0) (0, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−+−) (0, 1, 0) (0, 1, 0) USp(2)

d (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+−−) (0, 0, 0) (0, 0, 0) U(1)

h (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 1, 1) (0, 1, 1) U(4)

Table 7.3: Data of a semi-global left-right symmetric model consisting of �ve stacks of D6-branes

with gauge group SU(3)a ×USp(2)b ×USp(2)c ×U(4)h ×U(1)a ×U(1)d on the aAA lattice. The

ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1. The RR-tadpole cancellation conditions are

satis�ed, not so the K-theory constraints.

gauge factors. An intriguing feature is the fact that the model could also be interpreted as

a �ve-stack Pati-Salam model, with the hidden stack h supporting the SU(4) gauge group

of the Pati-Salam model, and the a and d stacks corresponding to a U(3) × U(1) hidden

sector. Interesting is the presence of Pati-Salam GUT Higgses (1,1,2,4)(0,0,−1) in the ch or

ch′ sectors, rendering such a Pati-Salam model particularly appealing. Remember that in

the previously presented global four-stack Pati-Salam models, GUT-Higgses were missing.

On the other hand, the model presented in this section is semi-global only and not global,

making it less attractive than the previous Pati-Salam models. A last remark concerns the

outermost right columns in table 7.4, which indicate the charges of the particles under the

discrete symmetries. We will come back to this point later in the next chapter.

Hitherto, we exhausted all the possibilities of construction of ϱ-independent �ve-stack left-

right symmetric models. The analysis produced only semi-global models that are not global

models, which is not so attractive a feature in model building. It is thus clear that in order

to �nd global ϱ-independent left-right symmetric models, the models have to be extended

to six-stack models, including two stacks in the hidden sector.

7.1.3 Global six-stack left-right symmetric models

Previously, we identi�ed combinations 8 and 10 in table 7.2 as candidates suited to potentially

give rise to global left-right symmetric models. In the current section, the aim is to complete

combinations 8 and 10 by two hidden stacks to form global six-stack left-right symmetric

models. Once again, we will start with combination 8.

Combination 8

Combination 8 left room for a total contribution of 12 in the hidden sector in order to ful�ll

the �rst bulk RR-tadpole cancellation condition. As can be deduced from table 7.1, only the

�rst two bulk three-cycles of table 7.1 can be used, as the other ones already overshoot the

maximally allowed contribution in the hidden sector. There are in total three possibilities

to achieve a total contribution of 12 with two hidden stacks:

• Both hidden stacks are parallel to the ΩR-plane, with the following combinations of

ranks: Nh1 = Nh2 = 3, Nh1 = 4 and Nh2 = 2, or Nh1 = 5 and Nh2 = 1. Of course,
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Overview of the Spectrum for 5-stack Left-Right Symm. on the aAA lattice

sector state (SU(3)a × USp(2)b × USp(2)c × SU(4)h)U(1)a×U(1)d×U(1)h Z3 Z4

ab ≡ ab′ QL 3× (3,2,1,1)(1,0,0) 1 0

ac ≡ ac′ QR 3× (3,1,2,1)(−1,0,0) 2 0

ad (3,1,1,1)(1,−1,0) + h.c. 1 0

ad′ 2×
[
(3,1,1,1)(1,1,0) + h.c.

]
1||2 0

bc ≡ bc′ (Hu, Hd) 10× (1,2,2,1)(0,0,0) 0 0

bd ≡ b′d L 3× (1,2,1,1)(0,−1,0) 0 0

bd ≡ b′d 3×
[
(1,2,1,1)(0,−1,0) + h.c.

]
0 0

cd ≡ c′d R 3× (1,1,2,1)(0,1,0) 0 0

cd ≡ c′d 3×
[
(1,1,2,1)(0,1,0) + h.c.

]
0 0

ah 2×
[
(3,1,1,4)(1,0,−1) + h.c.

]
1||2 3||1

ah′ (3,1,1,4)(1,0,1) + h.c. 1||2 1||3

bh ≡ b′h 3× (1,2,1,4)(0,0,1) 0 1

ch ≡ c′h 3× (1,1,2,4)(0,0,−1) 0 3

dh 2×
[
(1,1,1,4)(0,1,−1) + h.c.

]
0 3||1

dh′ (1,1,1,4)(0,1,1) + h.c. 0 1

aa′ 2× [(3A,1,1,1)(2,0,0) + h.c.] 2||1 0

bb′ ≡ bb 5× (1,1A,1,1)(0,0,0) 0 0

cc′ ≡ cc 5× (1,1,1A,1)(0,0,0) 0 0

dd 4× (1,1,1,1)(0,0,0) 0 0

hh′ 2× [(1,1,1,6A)(0,0,2) + h.c.] 0 2

Table 7.4: Overview of the chiral and non-chiral massless particle content associated to the semi-

global left-right symmetric model with D6-brane con�guration given in table 7.3. Anticipating the

results from chapter 8, the last two columns display the charges of the particles under two discrete

Zn-symmetries for future reference. For non-chiral pairs of particles, we denoted the Zn-charges by

the logic symbol ||.

for the last two combinations the ranks can be switched, but this would only lead to

equivalent models as the hidden sector is symmetric in its two stacks.

• Both hidden stacks are parallel to the ΩRZ(1)
2 -plane, each one coming with a rank of

one, Nh1 = Nh2 = 1.

• The �rst hidden stack is parallel to the ΩR-plane with rank Nh1 = 3 and the second

stack is parallel to the ΩRZ(1)
2 -plane with rank Nh2 = 1. Of course, the two stacks can

be switched, but this would only lead to equivalent models.

We will discuss each of these possibilities, starting with the third possibility listed in the

bullet points above.
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h1 ↑↑ ΩR and h2 ↑↑ ΩRZ(1)
2 : A complete computer scan over all combinations of the 288

local four-stack models with the two hidden stacks revealed a total of 20 736 six-stack left-

right symmetric models satisfying all twisted RR-tadpole cancellation conditions. However,

the same scan also revealed that none of these models would satisfy all the K-theory con-

straints. Thus, these models with an inhomogeneous hidden sector are semi-global models

but not global models. Since we have already presented a semi-global �ve-stack left-right

symmetric model in the previous section, we will not analyze these semi-global six-stack

models any further. Instead, we will turn our attention to the two possibilities with an

homogeneous hidden sector.

h1 ↑↑ ΩR and h2 ↑↑ ΩR: A full computer scan yielded that the �rst possibility listed in

the bullet points above with Nh1 = 4, Nh2 = 2 and Nh1 = 5, Nh2 = 1, produces only local

models. Actually, a probe-wise computer scan on the semi-global six-stack models found

in this section revealed that the contributions from the visible sector and the hidden sector

to the twisted RR-tadpole cancellation conditions generally cancel separately. Therefore,

introducing an asymmetry in the hidden sector by giving di�erent ranks to the two hidden

stacks leads to the fact that the contributions from the two hidden stacks do not cancel

each other anymore. Also, the asymmetry in the ranks cannot easily be compensated by an

asymmetry in the torus wrapping numbers, as the two hidden stacks are parallel to the same

bulk three-cycle.

A complete computer scan yielded that the possibility with ranks in the hidden sector given

by Nh1 = Nh2 = 3 allows for a total of 271 296 semi-global models, 105 408 of which are

also global models. This number can be divided by two, as the hidden sector is completely

symmetric, allowing for a simple switch of the two hidden stacks h1 ↔ h2. None of the models

present gauge symmetry enhancement in the hidden sector, which was checked explicitly. In

general, it is hard to produce a complete analysis of six-stack models, for their number is

large compared to �ve-stack models and thus substantial computational power and processing

time is needed. Therefore, the classi�cation of models is done by checking explicitly several

examples in order to provide prototypes. A concise example of a global six-stack left-right

symmetric model with hidden gauge group U(3)×U(3), which we will refer to as prototype

I, is provided in table 7.5.

D6-brane con�guration for a 6-stack LRS model (prototype I) on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 1, 1) (0, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 1, 0) (0, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−+−) (0, 1, 0) (0, 1, 0) USp(2)

d (1, 0; 1, 0; 1, 0) (0, 0, 0) (+−−) (0, 1, 1) (0, 1, 1) U(1)

h1 (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 0, 0) (0, 0, 0) U(3)

h2 (1, 0; 1, 0; 1, 0) (0, 0, 0) (+−−) (0, 0, 0) (0, 0, 0) U(3)

Table 7.5: Data of a global left-right symmetric model consisting of six stacks of D6-branes with

gauge group SU(3)a×USp(2)b×USp(2)c×SU(3)h1 ×SU(3)h2 ×U(1)a×U(1)d×U(1)h1 ×U(1)h2

on the aAA lattice. The ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1.
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The corresponding massless chiral and non-chiral open string spectrum is given in table

7.6.

Overview of the Spectrum for prototype I LRS Model on the aAA lattice

sector state (SU(3)a × USp(2)b × USp(2)c × SU(3)h1 × SU(3)h2)U(1)a×U(1)d×U(1)h1×U(1)h2
Z2 Z3 Z6

ab ≡ ab′ QL 3× (3,2,1,1,1)(1,0,0,0) 1 1 1

ac ≡ ac′ QR 3× (3,1,2,1,1)(−1,0,0,0) 1 2 5

ad (3,1,1,1,1)(1,−1,0,0) + h.c. 0 1||2 4||2

ad′ 2×
[
(3,1,1,1,1)(1,1,0,0) + h.c.

]
0 1||2 4||2

bc ≡ bc′ (Hu, Hd) 10× (1,2,2,1,1)(0,0,0,0) 0 0 0

bd ≡ b′d L 3× (1,2,1,1,1)(0,−1,0,0) 1 0 3

cd ≡ c′d R 3× (1,1,2,1,1)(0,1,0,0) 1 0 3

ah1 2× (3,1,1,3,1)(−1,0,1,0) 0 0 0

ah2 2× (3,1,1,1,3)(1,0,0,−1) 0 0 0

bh1 ≡ b′h1 (1,2,1,3,1)(0,0,−1,0) 1 2 5

bh1 ≡ b′h1 (1,2,1,3,1)(0,0,−1,0) + h.c. 1 2||1 5||1

bh2 ≡ b′h2 (1,2,1,1,3)(0,0,0,1) 1 1 1

bh2 ≡ b′h2 (1,2,1,1,3)(0,0,0,1) + h.c. 1 1||2 1||5

ch1 ≡ c′h1 (1,1,2,3,1)(0,0,−1,0) 1 2 5

ch1 ≡ c′h1 (1,1,2,3,1)(0,0,−1,0) + h.c. 1 2||1 5||1

ch2 ≡ c′h2 (1,1,2,1,3)(0,0,0,1) 1 1 1

ch2 ≡ c′h2 (1,1,2,1,3)(0,0,0,1) + h.c. 1 1||2 1||5

dh1 2× (1,1,1,3,1)(0,1,−1,0) 0 2 2

dh2 2× (1,1,1,1,3)(0,−1,0,1) 0 1 4

h1h2 (1,1,1,3,3)(0,0,1,−1) + h.c. 0 0 0

h1h
′
2 2×

[
(1,1,1,3,3)(0,0,1,1) + h.c.

]
0 2||1 2||4

aa′ 2× [(3A,1,1,1,1)(2,0,0,0) + h.c.] 0 2||1 2||4

bb′ ≡ bb 5× (1,1A,1,1,1)(0,0,0,0) 0 0 0

cc′ ≡ cc 5× (1,1,1A,1,1)(0,0,0,0) 0 0 0

h1h
′
1 2× [(1,1,1,3A,1)(0,0,2,0) + h.c.] 0 2||1 2||4

h2h
′
2 2× [(1,1,1,1,3A)(0,0,0,2) + h.c.] 0 2||1 2||4

Table 7.6: Overview of the chiral and non-chiral massless particle content associated to the prototype

I left-right symmetric model with D6-brane con�guration given in table 7.5. Anticipating the results

from chapter 8, the last three columns display the charges of the particles under three discrete Zn-

symmetries for future reference. For non-chiral pairs of particles, we denoted the Zn-charges by the

logic symbol ||.

Table 7.6 shows that this time, non-chiral matter states arise in the visible sector only in

the ad, ad′ sectors. Once again, we have three generations of leptons and quarks as well as

several electroweak Higgses. A shortcoming of the model is the coupling of the visible sector

to the hidden sector through numerous chiral exotic particles.

There remains one last possibility to be tested for combination number 8, namely the

hidden sector supporting gauge groups with rank one.
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h1 ↑↑ ΩRZ(1)
2 and h2 ↑↑ ΩRZ(1)

2 : A complete computer scan revealed 271 872 semi-global

models, 105 984 of which are also global models. Once again, the hidden sector is symmetric

in its two stacks, so this number can be divided by two. Also, none of the models presented

gauge symmetry enhancement in the hidden sector. An explicit example is provided in table

7.7, its associated massless open string spectrum can be found in table 7.8.

D6-brane con�guration for a 6-stack LRS model (prototype II) on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 1, 1) (0, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 1, 0) (0, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−+−) (0, 1, 0) (0, 1, 0) USp(2)

d (1, 0; 1, 0; 1, 0) (0, 0, 0) (+−−) (0, 1, 1) (0, 1, 1) U(1)

h1 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 0) (0, 0, 0) U(1)

h2 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+−−) (0, 0, 0) (0, 0, 0) U(1)

Table 7.7: Data of a global left-right symmetric model consisting of six stacks of D6-branes with

gauge group SU(3)a ×USp(2)b ×USp(2)c ×U(1)a ×U(1)d ×U(1)h1 ×U(1)h2 on the aAA lattice.

The ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1.
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Overview of the spectrum for prototype II LRS model on the aAA lattice

sector state (SU(3)a × USp(2)b × USp(2)c)U(1)a×U(1)d×U(1)h1×U(1)h2
Ũ(1)B−L Z6

ab ≡ ab′ QL 3× (3,2,1)(1,0,0,0) 1/3 1

ac ≡ ac′ QR 3× (3,1,2)(−1,0,0,0) −1/3 5

ad Xad + X̃ad (3,1,1)(1,−1,0,0) + h.c. ±4/3 4||2

ad′ Xad′(i) + X̃ad′(i) 2×
[
(3,1,1)(1,1,0,0) + h.c.

]
∓2/3 4||2

bc ≡ bc′ (Hu, Hd) 10× (1,2,2)(0,0,0,0) 0 0

bd ≡ b′d L 3× (1,2,1)(0,−1,0,0) 1 3

cd ≡ c′d R 3× (1,1,2)(0,1,0,0) −1 3

ah1 2×
[
(3,1,1)(1,0,−1,0) + h.c.

]
±4/3 4||2

ah′
1 (3,1,1)(1,0,1,0) + h.c. ∓2/3 4||2

ah2 2×
[
(3,1,1)(1,0,0,−1) + h.c.

]
∓2/3 4||2

ah′
2 (3,1,1)(1,0,0,1) + h.c. ±4/3 4||2

bh1 ≡ b′h1 3× (1,2,1)(0,0,1,0) −1 3

bh1 ≡ b′h1 3×
[
(1,2,1)(0,0,−1,0) + h.c.

]
±1 3

bh2 ≡ b′h2 3× (1,2,1)(0,0,0,−1) −1 3

bh2 ≡ b′h2 3
[
×(1,2,1)(0,0,0,1) + h.c.

]
±1 3

ch1 ≡ c′h1 3× (1,1,2)(0,0,−1,0) 1 3

ch1 ≡ c′h1 3×
[
(1,1,2)(0,0,1,0) + h.c.

]
∓1 3

ch2 ≡ c′h2 3× (1,1,2)(0,0,0,1) 1 3

ch2 ≡ c′h2 3
[
×(1,1,2)(0,0,0,1) + h.c.

]
±1 3

dh1 Xdh1(i) + X̃dh1(i) 2×
[
(1,1,1)(0,1,−1,0) + h.c.

]
0 0

dh′
1 Xdh′

1 + X̃dh′
1 (1,1,1)(0,1,1,0) + h.c. ∓2 0

dh2 Xdh2(i) + X̃dh2(i) 2×
[
(1,1,1)(0,1,0,−1) + h.c.

]
∓2 0

dh′
2 Xdh′

2 + X̃dh′
2 (1,1,1)(0,1,0,1) + h.c. 0 0

h1h2 5×
[
(1,1,1)(0,0,1,−1) + h.c.

]
∓2 0

h1h
′
2 6×

[
(1,1,1)(0,0,1,1) + h.c.

]
0 0

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] ±2/3 2||4

bb′ ≡ bb 5× (1,1A,1)(0,0,0,0) 0 0

cc′ ≡ cc 5× (1,1,1A)(0,0,0,0) 0 0

h1h1 4× (1,1,1)(0,0,0,0) 0 0

h2h2 4× (1,1,1)(0,0,0,0) 0 0

Table 7.8: Overview of the chiral and non-chiral massless particle content associated to the prototype

II left-right symmetric model with D6-brane con�guration given in table 7.7. Anticipating the

results from chapter 8, the second-to-last column displays the charges of the particles under a

gauged generalized baryon-lepton number U(1)-symmetry for future reference, while the last column

provides the charges under a discrete Z6-symmetry.
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The visible spectrum of both prototypes in tables 7.6 and 7.8 is identical since we chose

identical stacks a, b, c and d. The main di�erence in the spectrum is thus located in the

hidden sector. Indeed, for prototype II, the chiral exotic particles are even more abundant

than in prototype I. There are other fundamental di�erences between the properties of the

two prototypes, as will be pointed out in the next chapter 8 about discrete symmetries.

Our probe-wise scan over the spectra of the global six-stack left-right symmetric models

arising from combination 8 with hidden group U(1)×U(1) unearthed other prototypes with

di�erent particle content in the hidden sector.

We refer to these additional prototypes as prototype IIb and IIc. Prototype IIb is particularly

interesting because it comes with a hidden sector completely decoupled from the visible

sector. An explicit con�guration for a prototype IIb model is given in table 7.9 with its

associated massless chiral and non-chiral open string spectrum indicated in table 7.10.

D6-brane con�guration for a 6-stack LRS model (prototype IIb) on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (1, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+−−) (0, 1, 0) (1, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−−+) (0, 1, 0) (1, 1, 0) USp(2)

d (1, 0; 1, 0; 1, 0) (0, 0, 0) (−+−) (0, 1, 1) (1, 1, 1) U(1)

h1 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−+−) (0, 0, 0) (0, 0, 0) U(1)

h2 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−−+) (0, 0, 0) (0, 0, 0) U(1)

Table 7.9: Data of a global left-right symmetric model consisting of six stacks of D6-branes with

gauge group SU(3)a ×USp(2)b ×USp(2)c ×U(1)a ×U(1)d ×U(1)h1 ×U(1)h2 on the aAA lattice.

The ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1.

An explicit model for prototype IIc is given in table 7.11 with its corresponding particle

content in table 7.12.
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Overview of the Spectrum for prototype IIb LRS Model on the aAA lattice

sector state (SU(3)a × USp(2)b × USp(2)c)U(1)a×U(1)d×U(1)h1×U(1)h2
Ũ(1)B−L

ab ≡ ab′ QL 3× (3,2,1)(1,0,0,0) 1/3

ac ≡ ac′ QR 3× (3,1,2)(−1,0,0,0) −1/3

ad (3,1,1)(1,−1,0,0) + h.c. ±4/3

ad′ 2×
[
(3,1,1)(1,1,0,0) + h.c.

]
∓2/3

bc ≡ bc′ (Hu, Hd) 10× (1,2,2)(0,0,0,0) 0

bd ≡ b′d L 3× (1,2,1)(0,−1,0,0) 1

cd ≡ c′d R 3× (1,1,2)(0,1,0,0) −1

h1h2 5×
[
(1,1,1)(0,0,1,−1) + h.c.

]
∓2

h1h
′
2 6×

[
(1,1,1)(0,0,1,1) + h.c.

]
0

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] ±2/3

bb′ ≡ bb 5× (1,1A,1)(0,0,0,0) 0

cc′ ≡ cc 5× (1,1,1A)(0,0,0,0) 0

h1h1 4× (1,1,1)(0,0,0,0) 0

h2h2 4× (1,1,1)(0,0,0,0) 0

Table 7.10: Overview of the chiral and non-chiral massless particle content associated to the pro-

totype IIb left-right symmetric model with D6-brane con�guration given in table 7.9. Anticipating

the results from chapter 8, the last column displays the charges of the particles under the global,

no longer gauged, generalized baryon-lepton number symmetry for future reference.

D6-brane con�guration for a 6-stack LRS model (prototype IIc) on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (0, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+−−) (0, 1, 0) (0, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−−+) (0, 1, 0) (0, 1, 0) USp(2)

d (1, 0; 1, 0; 1, 0) (0, 0, 0) (−+−) (0, 1, 1) (0, 1, 1) U(1)

h1 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 1) (0, 0, 1) U(1)

h2 (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 0, 1) (1, 1, 1) U(1)

Table 7.11: Data of a global left-right symmetric model consisting of six stacks of D6-branes with

gauge group SU(3)a ×USp(2)b ×USp(2)c ×U(1)a ×U(1)d ×U(1)h1 ×U(1)h2 on the aAA lattice.

The ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1.
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Overview of the Spectrum for prototype IIc LRS Model on the aAA lattice

sector state (SU(3)a × USp(2)b × USp(2)c)U(1)a×U(1)d×U(1)h1×U(1)h2
Ũ(1)B−L

ab ≡ ab′ QL 3× (3,2,1)(1,0,0,0) 1/3

ac ≡ ac′ QR 3× (3,1,2)(−1,0,0,0) −1/3

ad (3,1,1)(1,−1,0,0) + h.c. ±4/3

ad′ 2×
[
(3,1,1)(1,1,0,0) + h.c.

]
∓2/3

bc ≡ bc′ (Hu, Hd) 10× (1,2,2)(0,0,0,0) 0

bd ≡ b′d L 3× (1,2,1)(0,−1,0,0) 1

cd ≡ c′d R 3× (1,1,2)(0,1,0,0) −1

ah1 3× (3,1,1)(−1,0,1,0) −4/3

ah′
1 3× (3,1,1)(1,0,1,0) −2/3

bh1 ≡ b′h1 4×
[
(1,2,1)(0,0,−1,0) + h.c.

]
±1

ch1 ≡ c′h1 6× (1,1,2)(0,0,−1,0) 1

ch1 ≡ c′h1 2×
[
(1,1,2)(0,0,1,0) + h.c.

]
∓1

dh1 3× (1,1,1)(0,1,−1,0) 0

dh′
1 3× (1,1,1)(0,−1,−1,0) −2

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] ±2/3

bb′ ≡ bb 5× (1,1A,1)(0,0,0,0) 0

cc′ ≡ cc 5× (1,1,1A)(0,0,0,0) 0

h1h1 4× (1,1,1)(0,0,0,0) 0

h2h2 4× (1,1,1)(0,0,0,0) 0

Table 7.12: Overview of the chiral and non-chiral massless particle content associated to the proto-

type IIc left-right symmetric model with D6-brane con�guration given in table 7.11. Anticipating

the results from chapter 8, the last column displays the charges of the particles under the global,

no longer gauged, generalized baryon-lepton number symmetry for future reference.
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All three prototypes of left-right symmetric models arising from combination 8 have an

identical massless open string spectrum in the visible sector, but di�erent ones in the hidden

sector. Prototype IIb has the most attractive particle spectrum, as it does not only have

no chiral exotics charged under both the visible and the hidden gauge factors, but it is even

free of non-chiral exotics. Thus, its visible sector is completely decoupled from the hidden

sector. The non-chiral pair charged solely under the hidden gauge could be a candidate for

dark matter, as it can interact with the visible quarks and leptons of the Standard Model

only via gravity and no other fundamental force.

As to the issue of the baryon-lepton number symmetry charges indicated in the outermost

right column, more details will be given in the next chapter on discrete symmetries.

Combination 10

We now focus on combination 10, which comes with 5 184 candidates apt to be completed

into global six-stack left-right symmetric models. These are more numerous than those from

combination 8, and in the case of �ve-stack left-right symmetric models, they also proved

to be more fertile since they allowed at least for semi-global models, contrarily to those of

combination 8. The maximally allowed contribution from the hidden sector to the �rst bulk

RR-tadpole cancellation condition is reduced to 8, though. Consequently, there are only two

possibilities to add two hidden stacks summing up to a total contribution of 8:

• Both hidden stacks are parallel to the ΩR-plane, each having a rank equal to two,

Nh1 = Nh2 = 2, or having ranks equal to Nh1 = 3 and Nh2 = 1. Once more, switching

the ranks of the latter combination to Nh1 = 1 and Nh2 = 3 only leads to equivalent

models.

• The �rst hidden stack is parallel to the ΩR-plane with rank Nh1 = 1 and the second

hidden stack is parallel to the ΩRZ(1)
2 -plane with equal rank Nh2 = 1. Once again,

switching the hidden stacks does not lead to new non-equivalent models.

We will initiate the analysis with the �rst possibility.

h1 ↑↑ ΩR and h2 ↑↑ ΩR: A full computer scan over the 5 184 candidates combined with

the two hidden stacks having ranks Nh1 = 3 and Nh2 = 1 only yielded local models. Once

again, this can be traced back to the asymmetry in the ranks of hidden stacks being parallel

to the same bulk three-cycle.

A complete scan over all combinations of the 5 184 candidates with the two hidden stacks

having ranks Nh1 = Nh2 = 2 produced 1 283 040 semi-global models, none of which would

ful�ll all the K-theory constraints. An interesting aspect of this combination is the fact that

gauge symmetry enhancement in the hidden sectors is allowed for the semi-global models,

contrarily to the models we have analyzed so far. Still, as we have already dug out a

substantial number of global left-right symmetric models, we will not dally with semi-global

models. Let us continue with the second possibility.

h1 ↑↑ ΩR and h2 ↑↑ ΩRZ(1)
2 : The computer scan counted 933 120 semi-global models,

20 736 of which were also global models. As typical, none of the models allowed for gauge

symmetry enhancement in the hidden sector. Just as before, we computed the particle con-

tent for several examples, but found only one type of spectrum. This spectrum was identical
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to the one of prototype II in table 7.8, except for an exchange of the d stack with the �rst

hidden stack h1, which leads to a large number of non-chiral matter states in the visible

sector. The numbers of models found, however, indicate that there is no one-to-one rela-

tion between prototype II models arising from combination 8 and the models coming from

combination 10. Indeed, the d stack cannot be simply exchanged systematically with the

�rst hidden stack h1, as we have conditions on d coming from the number of generations of

the particle content, but no such conditions on the hidden stacks. Since we found one type

of spectrum for combination 10, but three types of spectra from combination 8, we suspect

that the models arising from combination 10 constitute a subset of the models arising from

combination 8, regarding the particle content. However, since we did not perform a full

computer scan over all models, there might be more prototypes lurking around. Note that

di�erent prototypes should produce di�erent spectra which are not related through some

trivial exchange of stacks or stacks and their orientifold images, such as b ↔ c, h1 ↔ h2 or

hi=1,2 ↔ h′
i=1,2. In the chapters 8 and 9 about string phenomenology, we will concentrate on

the models arising from combination 8, as they seem to provide more varied prototypes.

Table 7.13 provides an overview in numbers of all six-stack left-right symmetric models

treated in the present and previous sections.

Summary of ϱ-independent LRS Models on the aAA lattice

Combination Hidden gauge factor Global Semi-global

n◦8 U(3)h1 × U(3)h2 52 704 135 648

U(1)h1 × U(1)h2 52 992 135 936

U(3)h1 × U(1)h2 0 20 736

n◦10 U(4)h 0 1 296

U(1)h1 × U(1)h2 20 736 933 120

U(2)h1 × U(2)h2 0 1 283 040

USp(4)h1 × U(2)h2 0 69 984

USp(4)h1 × USp(4)h2 0 5 832

Table 7.13: List of ϱ-independent �ve- and six-stack left-right symmetric models on the aAA lattice

with various hidden sectors. The second-to-last column gives the number of models satisfying both

the RR-tadpole cancellation conditions and the K-theory constraints. The last column gives the

number of models satisfying the RR-tadpole cancellation conditions. The initial number of models

found was divided by eight in order to count only non-equivalent models as explained in the main

text of section 7.1.1.

7.2 Searching for global MSSM-like D6-brane models

The MSSMs are the particle physics models hardest to construct in the set-up of Type

IIA string theory. Previous work on similar toroidal compact spaces yielded few MSSMs

as e.g. in [187], and these were always accompanied by unwanted features, such as global

inconsistency or the presence of chiral multiplets transforming in the adjoint representation.



132 CHAPTER 7. THE CONSTRUCTION OF LEFT-RIGHT SYMMETRIC AND

MSSM-LIKE MODELS

To my present knowledge, MSSM-like models with completely rigid D6-branes have not been

constructed so far.

7.2.1 Global �ve-stack ϱ-independent MSSM-like models

As we already argued in the previous section, we will focus on the search for ϱ-independent

models, as they seem to be more fertile. The gauge group of the Standard Model in

particle physics is given by SU(3)QCD × SU(2)L × U(1)Y . In our stringy set-up, this

gauge group can be constructed either with three stacks supporting U(3)a × U(2)b × U(1)c
(or U(3)a × USp(2)b × U(1)c) or with four stacks supporting U(3)a×U(2)b×U(1)c×U(1)d
(or U(3)a × USp(2)b × U(1)c × U(1)d), as we presented it in section 3.2.1. The conditions

on the a and b stacks are similar to the ones of the left-right symmetric models: the a and

b stack must be rigid, support no chiral matter states in the symmetric representation, and

a must present at most three chiral matter states in the antisymmetric representation. The

three-cycles from the �rst entry of table 5.5 (corresponding to a parallel to the ΩR-plane

and b parallel to the ΩRZ(1)
2 -plane), which we have used so far to constitute ϱ-independent

a and b stacks, ful�ll all these requirements so that we can use them once more for the

construction of MSSM models. There are a priori no conditions of rigidity and matter states

in the (anti)symmetric representation on the c and d stacks. The numerous Abelian U(1)

factors combine into the hypercharge of the MSSM as follows:

3-stack: QY =
1

6
Qa +

xc

2
Qc, 4-stack: QY =

1

6
Qa +

xc

2
Qc +

xd

2
Qd, (7.3)

where xc, xd ∈ {±1}. Comparing appendix B.1 to section 3.2.1 we see that a sign change of a

U(1)-charge, for exampleQc ↔ −Qc, is equivalent to exchanging the stack with its orientifold

image c ↔ c′. The attribution of the name "orientifold image" to a three-cycle is arbitrary,

and in order to exhaust all the possibilities of model building, the analysis should be done

separately for all four de�nitions of the hypercharge. However, in our case, we are dealing

with three-cycles the bulk parts of which are orientifold invariant. Thus, the three-cycles

di�er from their orientifold images only through the Z2-eigenvalues. Since we are always

running our computer scans over all values for the discrete parameters, the exchange of the

three-cycles with their orientifold images is already included in the analysis automatically.

Exchanging the labels explicitly would lead to a redundant counting of models. Thus, in the

current work, we will settle on the de�nition with plus-signs everywhere: xc = xd = +1. Note

that also more exotic choices for the hypercharge like QY = 1
6
Qa +

1
2
Qc ± 3

2
Qd are excluded.

Indeed, this last de�nition would imply that the right-handed down-quarks dR must arise

solely from the antisymmetric representation of the a stack. However, three-cycles parallel

to some O6-plane do not give rise to chiral matter states transforming in the antisymmetric

representation, whereupon this de�nition of the hypercharge must be rejected since the a

stack is parallel to the ΩR-plane.

In the MSSM, the attribution of the chiral matter states to the di�erent intersection sectors is

more involved than in the case of the previously studied GUT models. Hence, we reproduce

the precise conditions we imposed on the various intersection numbers in table 7.14. Note

that in table 7.14, we took into account that we have gauge symmetry enhancement on the b

stack, which simpli�es the formulas lightly. Note also, that the conditions to impose a priori

should be more stringent, including constraints on the signs of each term appearing in the
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Overview of topological intersection # for chiral MSSM spectrum

U(3)a × USp(2)b × U(1)c U(3)a × USp(2)b × U(1)c × U(1)d

state sector chirality sector chirality

QL ab χab ≡ χab′ = ±3 ab χab ≡ χab′ = ±3

dR ac χac = ∓3 ac+ ad χac + χad = ∓3

uR ac′ χac′ = ∓3 ac′ + ad′ χac′ + χad′ = ∓3

L bc χbc = ±3 bc+ bd χbc + χbd = ±3

eR cc′ χSymc = ±3 cc′ + dd′ + cd′ χSymc + χSymd + χcd′ = ±3

Table 7.14: Conditions on the intersection numbers of a three generation chiral MSSM-like spectrum

with the hypercharge prescription xc = xd = 1 in eq. (7.3), for both three-stack and four-stack

realizations of the MSSM. The four-stack realization was presented in section 3.2.1 in the most

general case and is adapted in this table in order to take the particularities of the considered models

into account. More precisely, the absence of antisymmetric representations on the a stack, gauge

symmetry enhancement on the b stack and the restriction to the weaker conditions, as discussed in

the main text, have been included in the conditions displayed in this table. As explained in section

3.2.1, the right-handed neutrinos νR can in principle be realized via any singlet states under the

MSSM gauge group, provided that Yukawa couplings can be attributed to them.

sums, as can be reviewed in section 3.2.1. The stringent conditions should avoid the presence

of too abundant pairs of non-chiral matter states in the visible sector. However, a complete

computer scan revealed that no models could be found satisfying the strong constraints, not

even local models. Therefore, we had to loosen the constraints from section 3.2.1 to the ones

indicated in table 7.14.

As usual, we will start with the bAA lattice. Remember from formula (7.1) that the

maximal allowed total contribution to the �rst bulk RR-tadpole cancellation condition after

summation over the �rst two stacks equals 32 − 12
1−b

= 8. Once again, table 7.1 tells us

that the only candidate three-cycle for constituting the c or d stack must have its bulk orbit

parallel to the ΩR-plane. This already excludes the possibility of a three-stack MSSM. In

fact, table 5.4 tells us that three generations cannot be realized in the intersection sector of

ac or ac′ if both a and c stacks are parallel to the ΩR-plane. Looking in turn at table 7.14,

we deduce that neither right-handed up-quarks nor right-handed down-quarks can come in

three generations. Still, for the sake of completeness, we ran a computer scan in order to

provide the number of left-handed leptons in table 7.15.

The situation is a bit di�erent concerning the construction of four-stack MSSMs. Indeed,

taking the c and d stacks both parallel to the ΩR-plane satis�es the bulk RR-tadpole can-

cellation conditions. Also, since the right-handed quarks are now realized as a sum over

di�erent intersection sectors, i.e. ac+ ad and ac′+ ad′, we can no longer easily exclude right

from the start the possibility of having a full three generation spectrum. However, a full

computer scan revealed that no model can be found with three generations of right-handed

quarks on the bAA lattice, see table 7.15. This can also be checked explicitly by use of

the entries in table 5.4. On this account, we conclude once more that global ϱ-independent

MSSMs cannot be realized on the bAA lattice on T 6/(Z2 ×Z6 ×ΩR) with discrete torsion.
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3- or 4-stack combinations with gauge group U(3)a × USp(2)b × U(1)c (×U(1)d)

c stack d stack RR-tadpoles:
∑

x∈{a,b,c,d}(2Px +Qx) ≤ 32 3 qR 3L

3− stack ΩR 4Na + 12Nb + 4Nc = 28 X  X36

4− stack ΩR ΩR 4Na + 12Nb + 4Nc + 4Nd = 32 X  X19008

Table 7.15: Overview of candidate pairs of bulk three-cycles for the c and d stacks of ϱ-independent

MSSM-like models on the bAA lattice, with exotic charge η
ΩRZ(2 or 3)

2

= −1. The fourth and �fth

columns test the respective contributions to the �rst bulk RR-tadpole cancellation condition in (7.1)

of the pairs of three-cycles displayed in the second and third columns, on top of the contributions

coming from the a and b stacks. The sixth column veri�es whether the condition of three right-

handed quark generations is ful�lled according to table 7.14, and the last column does the same

for three left-handed lepton generations. The subscript indicates the number of combinatorial

possibilities of discrete parameters (σ⃗x), (τ⃗x) and (−1)τ
Z(k)2
x for x ∈ {a, b, c, d} with the constraints

discussed in the main text of section 7.1.1. The original number was divided by eight in order to

count only non-equivalent models as discussed in the main text.

Let us turn our attention to the aAA lattice. The total allowed contribution of the c and

d stacks to the �rst RR-tadpole cancellation condition is 32− 12
1−b

= 20 for the aAA lattice.

Thus, the �rst three bulk three-cycles in table 7.1 are potential candidates for supporting

the c and d stacks. In table 7.16, we indicate all possible combinations for the c and d

stacks with these three bulk three-cycles, for both three-stack and four-stack realizations of

the MSSM. Although the last combination overshoots the �rst bulk RR-tadpole cancellation

condition, we included it in the table for the sake of completeness.

Contrarily to the left-right symmetric models, gauge symmetry enhancement to symplec-

tic groups on the c stack is not allowed, as the c stack of the MSSM should support an

Abelian U(1) gauge factor and not a symplectic USp(2) group. Concerning gauge symmetry

enhancement to orthogonal groups, table 5.1 yields that with our choice of the exotic charge

η
ΩRZ(2 or 3)

2
= −1, SO(2N) enhancement does not occur for three-cycles parallel to the ΩR-

plane or the ΩRZ(1)
2 -plane on the aAA lattice.

The numbers indicated in table 7.16 were found in the same way as those of table 7.2 for

the left-right symmetric models, meaning we divided the original numbers by eight in or-

der to eliminate equivalent models. Moreover, we imposed once more that the fractional

three-cycles wrapping the c and d stacks must be di�erent from each other and must not be

orientifold images of each other.

In table 7.16, a symmetry manifests itself by an equal number of models upon the exchange

of the c and d stacks. Table 7.14 shows that in the case of the four-stack realization of the

MSSM, c and d appear symmetrically in the conditions on the particle spectrum, hence the

symmetry upon the exchange c ↔ d. Combinations related by this symmetry are physically

identical.

From table 7.16, we see that only combinations 5, 6 and 8 allow for three generations of

right-handed quarks and left-handed leptons without overshooting the �rst bulk RR-tadpole

cancellation condition. Combinations 6 and 8 ful�ll the bulk RR-tadpole cancellation condi-

tions exactly and leave no room for a hidden sector. However, a complete computer scan over

these 144 + 144 models yielded that none of these would ful�ll all the twisted RR-tadpole
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Three-stack combinations with gauge group U(3)a × USp(2)b × U(1)c

c stack RR-tadpoles:
∑

x∈{a,b,c}(2Px +Qx) ≤ 32 3 qR 3L

1 ΩR 2Na + 6Nb + 2Nc+ = 14 X  X48

2 ΩRZ(1)
2 2Na + 6Nb + 6Nc = 18 X  X960

3 (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 14Nc = 26 X  X48

Four-stack combinations with gauge group U(3)a × USp(2)b × U(1)c × U(1)d

c stack d stack RR-tadpoles:
∑

x∈{a,b,c,d}(2Px +Qx) ≤ 32 3 qR 3L

1 ΩR ΩR 2Na + 6Nb + 2Nc + 2Nd = 16 X  X25344

2 ΩR ΩRZ(1)
2 2Na + 6Nb + 2Nc + 6Nd = 20 X  X157824

3 ΩR (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 2Nc + 14Nd = 28 X  X23760

4 ΩRZ(1)
2 ΩR 2Na + 6Nb + 6Nc + 2Nd = 20 X  X157824

5 ΩRZ(1)
2 ΩRZ(1)

2 2Na + 6Nb + 6Nc + 6Nd = 24 X X1152 X316800(X576)
6 ΩRZ(1)

2 (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 6Nc + 14Nd = 32 X X576 X201024(X144)
7 (1, 0; 2, 1; 3,−1) ΩR 2Na + 6Nb + 14Nc + 2Nd = 28 X  X23760

8 (1, 0; 2, 1; 3,−1) ΩRZ(1)
2 2Na + 6Nb + 14Nc + 6Nd = 32 X X576 X201024(X144)

9 (1, 0; 2, 1; 3,−1) (1, 0; 2, 1; 3,−1) 2Na + 6Nb + 14Nc + 14Nd = 40   X24768

Table 7.16: Overview of candidate pairs of bulk three-cycles for the c and d stacks of ϱ-independent

MSSM-like three- or four-stack models on the aAA lattice, with exotic charge η
ΩRZ(2 or 3)

2

= −1. The

fourth and �fth columns test the respective contributions to the �rst bulk RR-tadpole cancellation

condition in (7.1) of the pairs of three-cycles displayed in the second and third columns, on top of

the contributions coming from the a and b stacks. The sixth column veri�es whether the condition

of three right-handed quark generations is ful�lled according to table 7.14, and the last column

does the same for three left-handed lepton generations. The symbol in parentheses in the last

column tests compatibility between these two conditions. The subscript indicates the number of

combinatorial possibilities of discrete parameters (σ⃗x), (τ⃗x) and (−1)τ
Z(k)2
x for x ∈ {a, b, c, d} with

the constraints discussed in the main text of section 7.1.1. The original number was divided by

eight in order to count only non-equivalent models as discussed in the main text.

cancellation conditions.

This leaves only one combination to be completed with a hidden sector, namely combination

5. The additional condition on the right-handed electrons eR does not reduce the num-

ber of 576 models indicated in table 7.16. It turns out that the number of generations of

right-handed neutrinos νR also equals three for all 576 models, if they are taken from the cd

sector. In order to complete these 576 models with a hidden sector, we �rst need to check

what maximal contribution is allowed for the hidden sector by the �rst bulk RR-tadpole

cancellation condition:

12 + 2Pc +Qc + 2Pd +Qd = 12 + 6 + 6 = 24 < 32 . (7.4)

Thus, the maximal contribution permitted for the hidden sector is eight: 32 − 24 = 8. As

usual, the aim is to add one hidden stack only, to reduce processing time. A look at table

7.1 tells us that the only possibility to add a single hidden stack is to take the hidden stack

parallel to the ΩR-plane with rank Nh = 4.

A complete computer scan over all combinations of the 576 models with the hidden stack
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provided a total of 288 models which ful�ll all the twisted RR-tadpole cancellation conditions.

The computer scan also revealed that all 288 semi-global models also satisfy all the K-theory

constraints. Thus, we have a total of 288 global �ve-stack MSSMs. Since the number of

models is small, a full computer scan of the particle spectrum can be performed. The scan

shows that there is only one type of chiral and non-chiral massless particle spectrum, up

to trivial exchanges such as c ↔ d and h ↔ h′. Taking these exchanges into account, the

number of models is reduced to 288÷ 4 = 72 models. An explicit prototype of a global �ve-

stack MSSM is given in table 7.17, with the corresponding massless open string spectrum

indicated in table 7.18.

D6-brane con�guration of a global 5-stack MSSM con�guration on the aAA lattice

wrapping numbers Angle
π

Z(i)
2 -eigenvalues (τ⃗) (σ⃗) gauge group

a (1, 0; 1, 0; 1, 0) (0, 0, 0) (−−+) (0, 1, 1) (0, 1, 1) U(3)

b (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+ + +) (0, 1, 0) (0, 1, 0) USp(2)

c (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (+−−) (0, 1, 1) (0, 1, 1) U(1)

d (1, 0;−1, 2; 1,−2) (0, 1
2
,−1

2
) (−+−) (0, 0, 1) (0, 0, 1) U(1)

h (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 1, 1) (0, 1, 1) U(4)

Table 7.17: Data of a global MSSM-like model consisting of �ve stacks of D6-branes with gauge

group SU(3)a × USp(2)b × SU(4)h × U(1)a × U(1)c × U(1)d × U(1)h on the aAA lattice. The

ΩRZ(3)
2 -plane is chosen exotic with η

ΩRZ(3)
2

= −1.
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Overview of the massless matter spectrum for global 5-stack MSSM on the aAA lattice

sector state (SU(3)a × USp(2)b × SU(4)h)U(1)a×U(1)c×U(1)d×U(1)h QY QPQ Z3 Z6

ab ≡ ab′ QL 3× (3,2,1)(1,0,0,0) 1/6 0 0 0

ac dR 6× (3,1,1)(−1,1,0,0) 1/3 1 1 2

ad dR 3× (3,1,1)(1,0,−1,0) −1/3 1 1 2

ad′ uR 3× (3,1,1)(−1,0,−1,0) −2/3 1 1 2

bc ≡ b′c Hu 3× (1,2,1)(0,1,0,0) 1/2 1 1 2

bc ≡ b′c Hu +Hd 3×
[
(1,2,1)(0,1,0,0) + h.c.

]
±1/2 ±1 1||2 2||4

bd ≡ b′d L 6× (1,2,1)(0,0,−1,0) −1/2 1 1 2

bd ≡ b′d H̃u + H̃d 2×
[
(1,2,1)(0,0,1,0) + h.c.

]
±1/2 ∓1 2||1 4||2

cd νR 3× (1,1,1)(0,−1,1,0) 0 −2 1 2

cd Σcd + Σ̃cd 3×
[
(1,1,1)(0,−1,1,0) + h.c.

]
0 ∓2 1||2 2||4

cd′ eR 3× (1,1,1)(0,1,1,0) 1 0 0 0

cd′ Xcd′ + X̃cd′ 3×
[
(1,1,1)(0,1,1,0) + h.c.

]
±1 0 0 0

ah ha + h̃a 2×
[
(3,1,4)(1,0,0,−1) + h.c.

]
±1/6 0 1||2 5||1

ah′ ha + h̃a (3,1,4)(1,0,0,1) + h.c. ±1/6 0 2||1 1||5

bh ≡ b′h hb 3× (1,2,4)(0,0,0,1) 0 0 2 1

ch′ hc 6× (1,1,4)(0,−1,0,−1) −1/2 −1 0 3

dh hd 3× (1,1,4)(0,0,1,−1) 1/2 −1 0 3

dh′ hd 3× (1,1,4)(0,0,1,1) 1/2 −1 1 5

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] ±1/3 0 0 0

bb′ ≡ bb Anti
(i)
b 5× (1,1A,1)(0,0,0,0) 0 0 0 0

cc 4× (1,1,1)(0,0,0,0) 0 0 0 0

dd Adj
(i)
d 5× (1,1,1)(0,0,0,0) 0 0 0 0

dd′ Symd + Symd (1,1,1)(0,0,2,0) + (1,1,1)(0,0,−2,0) ±1 ∓2 1||2 2||4

hh′ 2× [(1,1,6A)(0,0,0,2) + h.c.] 0 0 1 2||4

Table 7.18: Overview of the chiral and non-chiral massless particle content associated to the MSSM-

like model with D6-brane con�guration given in table 7.17. Anticipating the results from chapter 8,

the last four columns display the charges of the particles under the massless hypercharge symmetry,

a massive Peccei-Quinn symmetry, and two discrete Zn-symmetries for future reference. For non-

chiral pairs of particles, we denoted the Zn-charges by the logic symbol ||.
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As already mentioned, we were forced to loosen the constraints on the particle spectrum

by allowing a considerable amount of non-chiral pairs in the visible sector. Looking at table

7.18 we behold a considerable amount of right-handed down quarks dR appearing in the

ac intersection sector as well as a substantial amount of left-handed leptons arising in the

bd intersection sector. In the low-energy regime, the numerous U(1) factors combine into

the e�ective hypercharge QY = 1
6
Qa +

1
2
Qc +

1
2
Qd, as explained in section 3.2.1. Under the

Standard Model group SU(3)QCD × SU(2)L × U(1)Y , the right-handed down-type quarks

dR from the ac sector are charged as (3,1) 1
3
, whereas the particles dR from the ad sector

are charged as (3,1)− 1
3
. Therefore, in the e�ective low-energy theory, these particles are

hermitian conjugates to each other and can form non-chiral pairs, which are less annoying

phenomenologically than chiral matter states, since they can potentially become heavy. By

pairing o� three of the six right-handed down-type quarks dR of the ac sector with the

three right-handed down-type quarks dR from the ad sector, we are left e�ectively with

three generations of chiral right-handed down-type quarks dR at low energies. The same can

potentially be done with the super�uous left-handed leptons L arising in the bd sector, three

of which can be paired o� with the three particles Hu appearing in the bc sector. This leaves

us potentially with a full three generation particle spectrum in the e�ective MSSM. We will

investigate the feasibility of this scenario in chapter 9. Note also that we will comment on

the last three columns in table 7.18 with the symmetries in the next chapter.

7.2.2 Some results for ϱ-dependent models

In this subsection, we will provide examples of computer scans in order to illustrate the

generic situation of ϱ-dependent MSSMs. Once again, we will focus on the aAA lattice, as

its bulk RR-tadpole cancellation conditions are less stringent. The combination we will focus

on is the second combination in table 5.7, which corresponds to taking the a stack parallel

to the orbit (1,3; 1,0; 1-1) and the b stack parallel to the ΩR-plane. The ϱ-dependent bulk

three-cycle (1,3; 1,0; 1,-1) is associated to ϱ = 1. There are in total ten ϱ-dependent bulk

three-cycles which are SUSY for ϱ = 1, plus the eight ϱ-independent bulk three-cycles which

are SUSY for every value of the complex structure parameter ϱ. Table 5.7 indicates that we

have a total of 128 combinations for the a and b stacks under consideration giving rise to

three generations of left-handed quarks.

The �rst aim is to �nd MSSM-like models satisfying the conditions on the particle spectrum

presented in section 3.2.1. Using the stringent version of the conditions limiting the amount

of non-chiral matter pairs in the visible sector, a full computer scan over all combinations

of the 128 pairs a and b with the possible 18 · 18 combinations for the c and d stacks

yielded 12 800 models giving rise to a three-generation particle spectrum, except for the

right-handed neutrinos. By imposing also the conditions on the cd sector in order to have

three generations of right-handed neutrinos, the number of models is reduced to 4 608 local

models. The computer scan yielded the following constellations of bulk three-cycles for the
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c and d stacks:

number c d

1152 ΩRZ(1)
2 ΩRZ(3)

2

1152 ΩRZ(1)
2 ΩRZ(2)

2

1152 ΩRZ(3)
2 ΩRZ(1)

2

1152 ΩRZ(2)
2 ΩRZ(1)

2

(7.5)

However, the computer scan also revealed that all 4 608 models present gauge symmetry

enhancement on the bulk three-cycle parallel to the ΩRZ(1)
2 -plane. Gauge symmetry en-

hancement on the d stack is not wanted for MSSM-like models nor for left-right symmetric

models. Thus, only the 2 304 models where the c stack is parallel to the ΩRZ(1)
2 -plane are

usable for model building. In all 2 304 models, the c stack gives rise to an orthogonal SO(2)

group. The models thus do not correspond to genuine MSSMs, but still expose similar prop-

erties to MSSM-like models.

The next step is to check the bulk RR-tadpole cancellation conditions. The bulk wrapping

numbers of three-cycles parallel to the ΩRZ(1)
2 -plane and the ΩRZ(2,3)

2 -planes are given by

(P,Q, U, V ) = (3, 0, 0, 0) and (P,Q, U, V ) = (0, 0, 1,−2), respectively. Hence, the sum over

the four stacks yields the following contributions to the two bulk RR-tadpole cancellation

conditions, for ηΩR = −1:

∑
x∈{a,b,c,d}

Nx(2Px +Qx) = Na + 2Nb + 6Nc = 3 + 2 · 2 + 6 · 1 = 13 ≤ 16 , (7.6)

−
∑

x∈{a,b,c,d}

NxVx = 3Na + 2Nd = 3 · 3 + 2 · 1 = 11 ≤ 16 . (7.7)

Out of the 18 bulk three-cycles SUSY for ϱ = 1, the following bulk three-cycles can be added

to the bulk RR-tadpole cancellation conditions above without overshooting them:

(n1,m1;n2,m2;n3,m3) (P,Q, U, V ) 2P +Q V rank

(1, 3; 1, 0; 1,−1) (1,−1, 3,−3) 1 −3 N1

(1, 1; 1,−1; 1, 1) (2,−1, 2,−1) 3 −1 N2

(1, 1; 1, 1; 1,−1) (2,−1, 2,−1) 3 −1 N3

ΩR (1, 0, 0, 0) 2 0 N4

ΩRZ(2)
2 (0, 0, 1,−2) 0 −2 N5

ΩRZ(3)
2 (0, 0, 1,−2) 0 −2 N6

(7.8)

We see that none of these bulk three-cycles cancels both RR-tadpole cancellation conditions

exactly, so that the hidden sector necessarily has to contain more than one stack. A computer

scan produced the following eight combinations of the bulk three-cycles above with di�erent
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ranks Ni which cancel both bulk RR-tadpole cancellation conditions exactly:

N1 N2 N3 N4 N5 N6

1 0 0 1 1 0

0 1 0 0 2 0

0 0 1 0 2 0

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 0 1 1

0 1 0 0 0 2

0 0 1 0 0 2

(7.9)

The most interesting combinations are those with two hidden stacks, as the processing time

for the analysis is reduced compared to the con�gurations involving three hidden stacks. We

have in total four of these combinations corresponding to:

h1 h2 Nh1 Nh2

ΩRZ(2)
2 (1, 1; 1,−1; 1, 1) 2 1

ΩRZ(2)
2 (1, 1; 1, 1; 1,−1) 2 1

ΩRZ(3)
2 (1, 1; 1,−1; 1, 1) 2 1

ΩRZ(3)
2 (1, 1; 1, 1; 1,−1) 2 1

(7.10)

However, a full computer scan over all 4 · 2 304 · 256 · 256 = 603 979 776 possibilities listed

above found that none of these models would ful�ll all the twisted RR-tadpole cancellation

conditions. The search could be extended to seven-stack MSSM models, though it is very

unlikely that global MSSM models can be found with the combination of stacks given above.

Indeed, the visible stacks contribute always with ±36 to at least one of the twisted RR-

tadpole cancellations, which is bigger than the contribution we found for the ϱ-dependent

Pati-Salam models.

Conclusion

In this summery section, we provide a brief overview of the particle physics models analyzed

in the previous chapter and this chapter.

For the bAA lattice, we have proven that:

• Global SU(5) models cannot be constructed on bAA.

• Global Pati-Salam models cannot be constructed on bAA.

• Global ϱ-independent left-right symmetric models cannot be constructed on bAA.

• Global ϱ-independent MSSMs cannot be constructed on bAA.
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It remains to be seen whether global ϱ-dependent left-right symmetric and MSSM-like mod-

els can be constructed, but this analysis is not included in the present doctoral work due to

time limitations.

For the aAA lattice, the results can be summarized as follows:

• Global SU(5) models cannot be constructed on aAA.

• Global ϱ-independent Pati-Salam models can be constructed on aAA.

• Global ϱ-independent left-right symmetric models can be constructed on aAA.

• Global ϱ-independent MSSMs can be constructed on aAA.

It remains to be seen whether global ϱ-dependent Pati-Salam models, global ϱ-dependent

left-right symmetric and MSSM-like models can be constructed, but this analysis goes be-

yond the scope of the present doctoral work due to the high processing time and power

involved.
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Chapter 8

Discrete Symmetries

8.1 Massless U(1) and discrete Zn-symmetries

The two previous chapters focused on model building in Type IIA string theory. The next

two chapters will rather focus on phenomenological features of the constructed models. The

present chapter concentrates on the existence of massless, i.e. gauged, U(1) symmetries and

discrete Zn-symmetries, while the next chapter focuses on the Yukawa couplings.

We will start with the conditions for the existence of massless U(1) gauge symmetries. As

we explained in section 3.2.1, a so-called massless U(1) symmetry refers to (a combination

of) Abelian U(1) symmetries which is not broken spontaneously and whose gauge boson

therefore remains massless without acquiring mass through the Stückelberg mechanism. For

example, in the Standard Model or the minimal SUSY extension thereof, the MSSM, the

hypercharge U(1)Y is associated to a massless U(1) combination, see section 3.2.1. In left-

right symmetric models, a massless U(1) symmetry is usually present as the baryon-lepton

number symmetry U(1)B−L. The detection of any supplementary massless U(1) combination

in a model would imply the existence of an additional massless photon, the dark photon.

The conditions on the existence of such a massless gauged U(1) symmetry are given by

the following set of topological constraints, which correspond to the Stückelberg coupling

[188�190, 66]:

ΠΩR-even
i ◦

(∑
a

qaNaΠ
frac
a

)
= 0 ∀ i ∈ {0, . . . h21} , (8.1)

with qa ∈ Q and ΠΩR-even
i referring to a three-cycle invariant under the orientifold projection

ΩR. Since the right-hand side of the equation above is zero, we can also take qa ∈ Z when

checking the equations above. We see that the equations above correspond exactly to the

equations for the existence of Zn-symmetries (8.5) introduced below, except that the right-

hand side "= 0 mod n" in (8.5) has to be replaced by "= 0", in other words the equations

(8.5) have to be satis�ed for every value of n.

The next issue to address is the existence of discrete Zn-symmetries. As mentioned in

section 3.2.1, discrete Zn-symmetries can be invoked to suppress unwanted couplings which

may lead to undesirable e�ects such as proton decay, see [157]. The possible discrete sym-

metries present in the MSSM have been classi�ed in [191] in terms of three generators given

by Rn = ei2πR/n, Ln = ei2πL/n and An = ei2πA/n. The de�nition of the generators R, L
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and A can be found in [191, 100, 78]. The most generic Zn-symmetry allowing all standard

Yukawa couplings is given by [191, 100]:

gn = Rm
n · Ak

n · Lp
n, m, k, p = 0, 1, . . . , n− 1 . (8.2)

The discrete Zn-symmetry generator acts on chiral super�elds Φj with a global phase factor

[191]:

Φj → eiQj2π/nΦj , (8.3)

where Qj are the discrete charges of the states under the Zn-generator, de�ned up to mod n.

The charges of the MSSM particles under the generator gn are given by [78, 191, 100]:

QQL
= 0, QuR

= −m, QdR = m− k,

QL = −k − p, QeR = m+ p QνR = −m+ k + p,

QHu = m, QHd
= −m+ k.

(8.4)

This charge assignment allows for Zn-invariant Yukawa couplings. The charges of the left-

handed quarks QL are traditionally chosen to be zero. This can be achieved through a base

shift, i.e. a shift by a massless U(1) symmetry like for instance the hypercharge. A base shift

consists in multiplying the generator of the discrete Zn-symmetries by a discrete subgroup

of a massless U(1)x generator, e
i2πQx

n . Note that any combination of U(1)'s leading to a

massless gauged U(1) symmetry, i.e. any element satisfying (8.1), can be added to the equa-

tions (8.5), since their contribution is zero in that case. This re�ects the shift of the discrete

Zn-symmetries by this massless U(1) combination. The procedure will become clearer when

we analyze concrete examples.

The Zn-symmetries are considered to arise from broken continuous gauge U(1) symmetries.

Therefore, they should also satisfy anomaly constraints. In [192, 191], it was shown that

only three discrete symmetries satisfy all the anomaly constraints of the MSSM, namely

matter parity given by the generator R2, baryon triality given by the generator B3 ≡ R3L3

and a combination thereof corresponding to proton hexality given by P6 ≡ R5
6L2

6 [193, 78].

Using (8.4), the charges of the MSSM states under matter parity, baryon triality and proton

hexality can be computed and are given in table 8.1.

Zn-charges of the MSSM-particles, n = 2, 3, 6

Name Zn QL uR dR L eR νR Hu Hd

R-parity Z2 0 1 1 0 1 1 1 1

baryon triality Z3 0 2 1 2 2 0 1 2

proton hexality Z6 0 1 5 4 1 3 5 1

Table 8.1: Standard charge assignment of the MSSM particles under the discrete Z2, Z3 and Z6-

symmetries associated to respectively matter parity, baryon triality and proton hexality.

In [100], it was shown that in our string set-up the existence of a discrete Zn-symmetry

follows from a set of topological conditions:

ΠΩR-even
i ◦

(∑
a

kaNaΠ
frac
a

)
= 0 mod n ∀ i ∈ {0, . . . h21} with QZn =

∑
a

kaQa .

(8.5)
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The three-cycle Πfrac
a corresponds to any fractional three-cycle present in the model and giv-

ing rise to a U(1)a group. In other words, the sum
∑

a goes over those stacks present in the

model which support unitary groups U(Na) ≃ SU(Na) × U(1)a. A three-cycle denoted by

ΠΩR-even
i refers to a three-cycle invariant under the orientifold projection ΩR. Here QZn , Qa

are the charges of the states under the Zn-symmetry and the U(1)a symmetries, respectively.

In order to avoid double counting of discrete Zn-symmetries, the coe�cients ka ∈ Z need to

lie within the interval 0 ≤ ka < n and satisfy the conditions gcd(n, ka, kb, . . . ) = 1.

Further reading about discrete Zn-symmetries and their incorporation in string theory can

be found in [194�201, 167, 168]. In this chapter, we will follow the approach proposed in

[78, 93, 102, 64].

In the chapters 6 and 7, we found several prototypes of local, semi-global and global models,

including SU(5) and Pati-Salam models, left-right symmetric and MSSM-like models. We

will not derive for each of these its phenomenological properties, since we want to avoid

boring the reader by repeating a hundred times the same analysis. Instead, we will pick only

a few of the global models found and analyze their discrete symmetries in this chapter as

well as their Yukawa couplings in the next chapter. The phenomenologically more interest-

ing models are the left-right symmetric and MSSM models, as they are the closest to the

Standard Model of particle physics. Hence, we will concentrate the analysis on the global

�ve-stack e�ective MSSM and the global six-stack left-right symmetric models including

prototype I, prototype II, and a quick discussion of prototypes IIb and IIc. Remember that

these models all have exotic O6-plane charge η
ΩRZ(2 or 3)

2
= −1. Since these two choices are

related through a simple permutation of the indices of the second and third two-torus T 2
(i),

we will derive the results for η
ΩRZ(3)

2
= −1 only. Similarly, we will derive the results only for

the aAA lattice, as the bAA lattice does not yield global models easily.

8.2 Explicit expression for the conditions on Zn-symmetries

In this section, we will derive a concrete analytical expression for the conditions on discrete

symmetries (8.5), which implies the reduction of the ΩR-even three-cycles ΠΩR-even to linearly

independent three-cycles.

There are two types of ΩR-even three-cycles ΠΩR-even which can be inserted in equation

(8.5). The �rst possibility consists in inserting pure bulk three-cycles and pure exceptional

three-cycles which are even under the orientifold projection. The pure bulk or exceptional

even three-cycles will provide a set of necessary conditions. The non-ful�llment of the neces-

sary conditions implies the non-existence of discrete Zn-symmetries. However, the ful�llment

of the necessary conditions does not imply the existence of discrete Zn-symmetries.

The second possibility is to insert fractional three-cycles which are even under the orientifold

projection in formula (8.5). In our case, the fractional three-cycles which are even under the

orientifold projection correspond to the three-cycles parallel to the O6-planes and presenting

USp or SO enhancement as indicated in table 5.1. Inserting these in (8.5) provides us with

a set of equations giving su�cient conditions for the existence of discrete Zn-symmetries.

We will see that the analytical expressions of the necessary conditions are less complicated

than those of the su�cient conditions. Thus, it is sensible to check via the necessary con-



146 CHAPTER 8. DISCRETE SYMMETRIES

ditions which discrete Zn-symmetries may exist at all. In a second step, the Zn-symmetries

detected should be tested via the su�cient conditions.

First of all, the pure bulk and pure exceptional ΩR-even and ΩR-odd three-cycles and

their intersection numbers should be computed. The results are indicated in tables 8.2 and

8.3.

ΩR-even and -odd bulk three-cycles on T 6/(Z2 × Z6 × ΩR)

ΩR-even ΩR-odd Intersection Numbers

ρ1 ρ3 ρ1 ◦ ρ3 = 8

ρ3 − 2ρ4 ρ1 − 2ρ2 [ρ3 − 2ρ4] ◦ [ρ1 − 2ρ2] = −24

Table 8.2: List of the ΩR-even and ΩR-odd pure bulk three-cycles with the choice of the exotic

O6-plane charge η
ΩRZ(3)

2

= −1 for the aAA lattice. The right column lists all intersections numbers

between the bulk three-cycles (vanishing intersection numbers are omitted).

Note that all other intersections of the form ΠΩR-even ◦ ΠΩR-odd in table 8.2, for instance

ρ1 ◦ (ρ1 − 2ρ2), are zero, as can be deduced from formula (2.10). Clearly, also intersections

of the form ΠΩR-even ◦ ΠΩR-even and ΠΩR-odd ◦ ΠΩR-odd are zero, as can be explicitly veri�ed

using formula (2.10).

ΩR-even and -odd exceptional three-cycles on T 6/(Z2 × Z6 × ΩR)

ΩR-even ΩR-odd α Intersection Numbers

ε̃
(1)
α ε

(1)
α 0, 1, 2, 3 ε̃

(1)
0 ◦ ε(1)0 = 12, ε̃

(1)
α ◦ ε(1)α = 4 for α = 1, 2, 3

ε
(1)
4 − ε

(1)
5 ε̃

(1)
4 − ε̃

(1)
5 [ε

(1)
4 − ε

(1)
5 ] ◦ [ε̃(1)4 − ε̃

(1)
5 ] = −8

ε̃
(1)
4 + ε̃

(1)
5 ε

(1)
4 + ε

(1)
5 [ε̃

(1)
4 + ε̃

(1)
5 ] ◦ [ε(1)4 + ε

(1)
5 ] = 8

ε
(2)
α − 2ε̃

(2)
α ε

(2)
α 1, 2, 3, 4 [ε

(2)
α − 2ε̃

(2)
α ] ◦ ε(2)α = −8

ε
(3)
α ε

(3)
α − 2ε̃

(3)
α 1, 2, 3, 4 ε

(3)
α ◦ [ε(3)α − 2ε̃

(3)
α ] = 8

Table 8.3: List of the ΩR-even and ΩR-odd pure exceptional three-cycles with the choice of the

exotic O6-plane charge η
ΩRZ(3)

2

= −1 for the aAA lattice. The right column lists all intersections

numbers between the exceptional three-cycles (vanishing intersection numbers are omitted).

Once again, all other combinations of intersection numbers in table 8.3 are zero, as can

be checked explicitly by using formula (2.24). These pure bulk or exceptional ΩR-even and

ΩR-odd three-cycles form the building blocks of any fractional three-cycle. In other words,

any generic fractional three-cycle can be expanded in terms of the ΩR-even and ΩR-odd
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cycles as follows:

Πfrac
a =

1

4
Πbulk

a +
1

4

3∑
i=1

ΠZ(i)
2

a

=
1

4
(Paρ1 +Qaρ2 + Uaρ3 + Vaρ4) +

1

4

5∑
α=0

(
x(1)
α,a ε

(1)
α + y(1)α,a ε̃

(1)
α

)
+

1

4

∑
l=2,3

4∑
α=1

(
x(l)
α,a ε

(l)
α + y(l)α,a ε̃

(l)
α

)
,

=
1

4

((
Pa +

Qa

2

)
ρ1 −Qa

ρ1 − 2ρ2
2

+

(
Ua +

Va

2

)
ρ3 − V

ρ3 − 2ρ4
2

)
+

3∑
α=0

1

4

(
x(1)
α,a ε

(1)
α + y(1)α,a ε̃

(1)
α

)
+

1

4

(
x
(1)
4,a + x

(1)
5,a

2
[ε

(1)
4 + ε

(1)
5 ] +

x
(1)
4,a − x

(1)
5,a

2
[ε

(1)
4 − ε

(1)
5 ]

)
+

1

4

(
y
(1)
4,a + y

(1)
5,a

2
[ε̃

(1)
4 + ε̃

(1)
5 ] +

y
(1)
4,a − y

(1)
5,a

2
[ε̃

(1)
4 − ε̃

(1)
5 ]

)

+
∑
l=2,3

4∑
α=1

1

4

((
x(l)
α,a +

y
(l)
α,a

2

)
ε(l)α − y(l)α,a

ε
(l)
α − 2ε̃

(l)
α

2

)
.

(8.6)

Rewritten, this gives:

Πfrac
a =Πfrac,even

a +Πfrac,odd
a with

Πfrac,even
a =

1

4

((
Pa +

Qa

2

)
ρ1 − Va

ρ3 − 2ρ4
2

)
+

3∑
α=0

1

4

(
y(1)α,a ε̃

(1)
α +

x
(1)
4,a − x

(1)
5,a

2
[ε

(1)
4 − ε

(1)
5 ] +

y
(1)
4,a + y

(1)
5,a

2
[ε̃

(1)
4 + ε̃

(1)
5 ]

)

+
4∑

α=1

1

4

(
−y(2)α,a

ε
(2)
α − 2ε̃

(2)
α

2

)
+

4∑
α=1

1

4

((
x(3)
α,a +

y
(3)
α,a

2

)
ε(3)α

)
,

Πfrac,odd
a =

1

4

(
−Qa

ρ1 − 2ρ2
2

+

(
Ua +

Va

2

)
ρ3

)
+

3∑
α=0

1

4

(
x(1)
α,a ε

(1)
α +

x
(1)
4,a + x

(1)
5,a

2
[ε

(1)
4 + ε

(1)
5 ] +

y
(1)
4,a − y

(1)
5,a

2
[ε̃

(1)
4 − ε̃

(1)
5 ]

)

+
4∑

α=1

1

4

((
x(2)
α,a +

y
(2)
α,a

2

)
ε(2)α

)
+

4∑
α=1

1

4

(
−y(3)α,a

ε
(3)
α − 2ε̃

(3)
α

2

)
.

(8.7)

The intersection number with any ΩR-even cycle ΠΩR-even is then given by:

ΠΩR-even ◦ Πfrac
a = ΠΩR-even ◦ Πfrac,odd

a , (8.8)

since we always have ΠΩR-even ◦ Πfrac,even
a = 0 as we mentioned before.

The expressions above allow us to compute the intersection numbers of pure bulk and ex-

ceptional ΩR-even three-cycles with any fractional three-cycle in terms of the bulk and

exceptional wrapping numbers of the latter. Using formula (8.8) above and the expression

(8.7), as well as the intersection numbers in tables 8.2 and 8.3, one �nds the results given in

table 8.4. The right column in table 8.4 will be used to derive the necessary and su�cient

Zn-conditions.

Writing out explicitly the results in table 8.4, we �nd a set of 16 equations which form the

necessary conditions on the existence of Zn-symmetries from pure bulk and pure exceptional
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Intersection numbers with basic ΩR-even three-cycles

ΠΩR-even ΠΩR-even ◦
∑

a NaΠ
frac
a

ρ1
∑

a Na(2Ua + Va)

ρ3 − 2ρ4
∑

aNa 3Qa

ε̃
(1)
0

∑
a Na 3x

(1)
0,a

ε̃
(1)
α∈{1,2,3}

∑
a Nax

(1)
α,a

ε
(1)
4 − ε

(1)
5 −

∑
a Na(y

(1)
4,a − y

(1)
5,a)

ε̃
(1)
4 + ε̃

(1)
5

∑
aNa(x

(1)
4,a + x

(1)
5,a)

ε
(2)
α − 2ε̃

(2)
α −

∑
aNa(2x

(2)
α,a + y

(2)
α,a)

ε
(3)
α −

∑
a Nay

(3)
α,a

Table 8.4: Ingredients for the computation of the K-theory and Zn-symmetry constraints. The right

column gives the intersection numbers of the ΩR-even pure bulk or exceptional three-cycles listed

in the left column with any fractional three-cycle, in terms of the bulk and exceptional wrapping

numbers of the latter.

cycles:

∑
a

ka Na



2Ua + Va

3Qa

3x
(1)
0,a

x
(1)
1,a

x
(1)
2,a

x
(1)
3,a

x
(1)
4,a + x

(1)
5,a

−(y
(1)
4,a − y

(1)
5,a)

−(2x
(2)
1,a + y

(2)
1,a)

−(2x
(2)
2,a + y

(2)
2,a)

−(2x
(2)
3,a + y

(2)
3,a)

−(2x
(2)
4,a + y

(2)
4,a)

−y
(3)
1,a

−y
(3)
2,a

−y
(3)
3,a

−y
(3)
4,a



!
= 0 mod n . (8.9)

From the intersection numbers in tables 8.2 and 8.3, we see that the pure bulk and pure

exceptional ΩR-even/odd three-cycles do not form an unimodular lattice. This means that

these pure bulk or exceptional three-cycles only span a sublattice. Some information might

be lost if one uses only these three-cycles to obtain the conditions on discrete symmetries.

In order to capture all Zn-symmetries correctly, the necessary conditions are complemented
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with a set of su�cient conditions derived from fractional three-cycles.

The su�cient conditions are provided by the fractional three-cycles supporting gauge sym-

metry enhancement as in table 5.1. On the aAA lattice, there are in total 240 ΩR-even

fractional three-cycles, supporting either USp or SO enhancement. However, since we only

have the bbulk+Z2
3 = hbulk+Z2

21 + 1 = 16 independent basis ΩR-even three-cycles indicated in

tables 8.2 and 8.3, only 16 of these 240 fractional three-cycles can be linearly independent.

Thus, the su�cient conditions can be reduced from 240 to 16 linearly independent equations.

We will start with the fractional three-cycles supporting USp enhancement. Should these

provide less than 16 linearly independent equations, then the three-cycles supporting SO en-

hancement would also need to be taken into account. On the aAA lattice, table 5.1 tells us

that with η
ΩRZ(3)

2
= −1, we can have three types of fractional three-cycles giving rise to USp

enhancement, lying either parallel to the ΩR-plane, the ΩRZ(1)
2 -plane or the ΩRZ(3)

2 -plane.

These can be expressed as follows:

Πfrac
USp(2)↑↑ΩR

=
1

4

(
Πbulk

ΩR + (−1)τ
Z(1)2 Π

Z(1)
2

h,(σ2,1)
+ (−1)τ

Z(2)2 Π
Z(2)
2

h,(σ1,1)
+ (−1)τ

Z(1)2 +τZ
(2)
2 Π

Z(3)
2

h,(σ1,σ2)

)
,

Πfrac
USp(2)

↑↑ΩRZ(1)2

=
1

4

(
Πbulk

ΩRZ(1)
2

+ (−1)τ
Z(1)2 Π

Z(1)
2

h,(1,σ3)
+ (−1)τ

Z(2)2 Π
Z(2)
2

v,(σ1,σ3)
− (−1)τ

Z(1)2 +τZ
(2)
2 Π

Z(3)
2

v,(σ1,1)

)
,

Πfrac
USp(2)

↑↑ΩRZ(3)2

=
1

4

(
Πbulk

ΩRZ(3)
2

+ (−1)τ
Z(1)2 Π

Z(1)
2

v,(σ2,σ3)
− (−1)τ

Z(2)2 Π
Z(2)
2

v,(σ1,σ3)
+ (−1)τ

Z(1)2 +τZ
(2)
2 Π

Z(3)
2

h,(σ1,σ2)

)
,

(8.10)

with Πbulk
ΩR = ρ1, Π

bulk

ΩRZ(1)
2

= 3ρ1 and Πbulk

ΩRZ(3)
2

= ρ3 − 2ρ4. The various expressions for the

"horizontal" contributions Π
Z(i)
2

h,(·,·) and the "vertical" contributions Π
Z(i)
2

v,(·,·) can be found in [65]

and are reproduced in table 8.5 for convenience.

The �rst step in establishing the su�cient conditions for the discrete Zn-symmetries consists

in reducing the number of linearly dependent fractional three-cycles given above. More

precisely, the condition to check in our case whether r fractional three-cycles are linearly

dependent is the following:

λ1Π1 + . . . λrΠr
?
= 0 for λi ∈ {−1,+1} . (8.11)

If this equation is ful�lled, the fractional three-cycles are linearly dependent. The reduction

can be done by hand, as illustrated on examples in our publication [64]. However, it can also

been done numerically, which we will brie�y comment here. Using table 8.5, the expressions

(8.10) can be de�ned as functions of the discrete parameters (τZ
(i)
2 , τ i, σi). Loops over the

discrete parameters provide the 240 fractional three-cycles supporting USp enhancement.

The next step in the algorithm tests for two-by-two dependencies among the fractional

three-cycles. If the following condition is satis�ed,

λ1Π1 + λ2Π2 = 0 for λi ∈ {−1,+1} , (8.12)

one of the two three-cycles is deleted, as they are linearly dependent. Once all the two-by-two

dependencies are eliminated, the algorithm tests for three-by-three dependencies,

λ1Π1 + λ2Π2 + λ3Π3 = 0 for λi ∈ {−1,+1} , (8.13)

and so on. It turned out that all the fractional three-cycles parallel to the ΩRZ(1)
2 -plane

can be written as linear combinations of the fractional three-cycles parallel to the ΩR-plane.
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Exceptional contributions to ΩR-invariant 3-cycles for T 6/(Z2 × Z6 × ΩR) on aAA

aAA : Z(1)
2

Π
Z(1)
2

h,(0,0) ε
(1)
0 + (−1)τ2 ε

(1)
1 + (−1)τ3 ε

(1)
2 + (−1)τ2+τ3 ε

(1)
3

Π
Z(1)
2

h,(1,0) [1 + (−1)τ2 ] ε
(1)
1 + (−1)τ3 ε

(1)
4 + (−1)τ2+τ3 ε

(1)
5

Π
Z(1)
2

h,(0,1) [1 + (−1)τ3 ] ε
(1)
2 + (−1)τ2 ε

(1)
4 + (−1)τ2+τ3 ε

(1)
5

Π
Z(1)
2

h,(1,1) [(−1)τ2 + (−1)τ3 ] ε
(1)
3 + (−1)τ2+τ3 ε

(1)
4 + ε

(1)
5

Π
Z(1)
2

v,(0,0) ε̃
(1)
0 + (−1)τ2 ε̃

(1)
1 + (−1)τ3 ε̃

(1)
2 + (−1)τ2+τ3 ε̃

(1)
3

Π
Z(1)
2

v,(1,0) [1 + (−1)τ2 ]ε̃
(1)
1 + (−1)τ3 ε̃

(1)
4 + (−1)τ2+τ3 ε̃

(1)
5

Π
Z(1)
2

v,(0,1) [1 + (−1)τ3 ]ε̃
(1)
2 + (−1)τ2 ε̃

(1)
4 + (−1)τ2+τ3 ε̃

(1)
5

Π
Z(1)
2

v,(1,1) [(−1)τ2 + (−1)τ3 ]ε̃
(1)
3 + (−1)τ2+τ3 ε̃

(1)
4 + ε̃

(1)
5

aAA : Z(i)
2 with (i, j) ∈ {(2, 3), (3, 2)}

Π
Z(i)
2

h,(σ1,0)
(−1)τj

[
ε
(i)
k1

+ (−1)τ1ε
(i)
k2

]
Π

Z(i)
2

h,(σ1,1)
−(−1)τjε

(i)
k1

− [1− (−1)τj ]ε̃
(i)
k1

− (−1)τ1
[
(−1)τjε

(i)
k2

+ [1− (−1)τj ]ε̃
(i)
k2

]
Π

Z(i)
2

v,(σ1,0)
(−1)τj

[
−ε

(i)
k1

+ 2ε̃
(i)
k1

+ (−1)τ1
(
−ε

(i)
k2

+ 2ε̃
(i)
k2

)]
Π

Z(i)
2

v,(σ1,1)
[2− (−1)τj ]ε

(i)
k1

− [1 + (−1)τj ]ε̃
(i)
k1

+ (−1)τ1
[
[2− (−1)τj ]ε

(i)
k2

− [1 + (−1)τj ]ε̃
(i)
k2

]
Table 8.5: Contributions of the exceptional three-cycles to the fractional three-cycles supporting

USp enhancement as de�ned in (8.10) on the aAA lattice. The subscript of the three-cycles in the

left column indicates whether the one-cycle on T 2
(i) of the Z(i)

2 exceptional three-cycle is parallel to

the ΩR-plane (h) or perpendicular to it (v). Also, it gives the discrete shifts (σj , σk) on T 2
(j) × T 2

(k)

for the three-cycles of the Z(i)
2 twisted sector.

In the end, the algorithm provided a set of 16 linearly independent fractional three-cycles

parallel to the ΩR- and ΩRZ(3)
2 -planes, which we give in appendix B.2. We see from appendix

B.2 that in the present case, the three-cycles supporting USp enhancement already provide

the full set of 16 linearly independent equations.

Thus, it is not needed to include the fractional three-cycles supporting SO enhancement,

since these are necessarily linear combinations of the 16 fractional three-cycles given in

appendix B.2. The 16 fractional three-cycles can be arranged into a nicer form in order to
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subsequently derive the 16 su�cient conditions by using table 8.4:



ρ1
4
+

ε
(1)
4 −ε

(1)
5

4
+

ε
(2)
1 −2 ε̃

(2)
1

4
+

ε
(2)
2 −2 ε̃

(2)
2

4
+

ε
(3)
1 +ε

(3)
2

4

ε
(3)
1

ε
(2)
1 −2 ε̃

(2)
1

2
+

ε
(3)
1

2

ε
(3)
2

ε
(2)
2 −2 ε̃

(2)
2

2
+

ε
(3)
2

2

ε
(1)
4 −ε

(1)
5

2
+

ε
(3)
1 +ε

(3)
2

2

ρ1
4
+

ε
(1)
4 −ε

(1)
5

4
+

ε
(2)
3 −2 ε̃

(2)
3

4
+

ε
(2)
4 −2 ε̃

(2)
4

4
+

ε
(3)
3 +ε

(3)
4

4

ε
(3)
4

ε
(2)
4 −2 ε̃

(2)
4

2
+

ε
(3)
4

2

ε
(1)
4 −ε

(1)
5

2
+

ε
(3)
3 +ε

(3)
4

2

ρ3−2ρ4
4

+
ε̃
(1)
0 +ε̃

(1)
1 +ε̃

(1)
2 +ε̃

(1)
3

4
+

(ε
(2)
2 −2ε̃

(2)
2 )+(ε

(2)
3 −2ε̃

(2)
3 )

4
+

ε
(3)
2 +ε

(3)
3

4

ε̃
(1)
0 +ε̃

(1)
2

2

ε̃
(1)
1 +ε̃

(1)
2

2

ε̃
(1)
3

ε̃
(1)
1 +ε̃

(1)
3

2
+

ε
(3)
2 +ε

(3)
3

2

ρ3−2ρ4
4

+
2 ε̃

(1)
1 +

(
ε̃
(1)
4 +ε̃

(1)
5

)
4

+
(ε

(2)
2 −2 ε̃

(2)
2 )+(ε

(2)
3 −2 ε̃

(2)
3 )

4
− ε

(3)
2 +ε

(3)
3

4



◦
∑
a

Na kaΠ
frac
a

=
∑
a

Na ka



2Ua+Va−(y
(1)
4,a−y

(1)
5,a)−(2x

(2)
1,a+y

(2)
1,a)−(2x

(2)
2,a+y

(2)
2,a)−y

(3)
1,a−y

(3)
2,a

4

−y
(3)
1,a

− (2x
(2)
1,a+y

(2)
1,a)+y

(3)
1,a

2

−y
(3)
2,a

− (2x
(2)
2,a+y

(2)
2,a)+y

(3)
2,a

2

− (y
(1)
4,a−y

(1)
5,a)+y

(3)
1,a+y

(3)
2,a

2

2Ua+Va−(y
(1)
4,a−y

(1)
5,a)−(2x

(2)
3,a+y

(2)
3,a)−(2x

(2)
4,a+y

(2)
4,a)−y

(3)
3,a−y

(3)
4,a

4

−y
(3)
4,a

− (2x
(2)
4,a+y

(2)
4,a)+y

(3)
4,a

2

− (y
(1)
4,a−y

(1)
5,a)+y

(3)
3,a+y

(3)
4,a

2

3Qa+(3x
(1)
0,a+x

(1)
1,a+x

(1)
2,a+x

(1)
3,a)−(2x

(2)
2,a+y

(2)
2,a)−(2x

(2)
3,a+y

(2)
3,a)−y

(3)
2,a−y

(3)
3,a

4

3x
(1)
0,a+x

(1)
2,a

2

x
(1)
1,a+x

(1)
2,a

2

x
(1)
3,a

x
(1)
1,a+x

(1)
3,a−y

(3)
2,a−y

(3)
3,a

2

3Qa+2x
(1)
1,a+(x

(1)
4,a+x

(1)
5,a)−(2x

(2)
2,a+y

(2)
2,a)−(2x

(2)
3,a+y

(2)
3,a)+y

(3)
2,a+y

(3)
3,a

4



!
= 0 mod n .

(8.14)
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The 16 equations above also contain the K-theory constraints, which can be seen by com-

paring (8.5) and (2.51). Indeed, by taking ka = 1 ∀a, and n = 2 in equation (8.5), we

�nd exactly the K-theory constraints (2.51), as Πprobe in (2.51) corresponds to any cycle

carrying an USp group. In other words, the ful�lling of the K-theory constraints guarantees

a discrete Z2-symmetry. This is only valid in the particular case where all the Zn-conditions

are derived from three-cycles supporting USp enhancement. Had we been forced to also

take into consideration the ΩR-even three-cycles supporting SO enhancement in order to

obtain a full set of 16 linearly independent ΩR-even fractional three-cycles, the K-theory

constraints could not have been derived as easily from the Zn-conditions (8.14).

In the next sections, we will determine the discrete Zn-symmetries and massless U(1) sym-

metries for the global MSSM and left-right symmetric models we have previously unearthed.

8.3 Zn-symmetries in the global �ve-stack MSSM

In this section, we will derive the Zn-conditions for the global e�ective MSSM-like model we

dug out in the previous chapter. For this �rst model, we will derive the results in some detail

in order to show how the computation is done. For the following models in the next sections,

we will only indicate the results, and we will avoid giving all the intermediate steps.

The Zn-symmetries can be used to reinforce the interpretation of the chiral spectrum, as

the charges of the particles under these discrete symmetries should be compatible with the

results found from the �eld theoretical side of SUSY models. Also, they provide a solid

consistency check with the results derived in the next chapter 9.

To this end, we need the bulk and exceptional wrapping numbers of the various stacks

associated to the model indicated in table 7.17. Remember that the bulk wrapping numbers

of the �ve stacks were (P,Q,U, V ) = (1, 0, 0, 0) for a, h, and (P,Q, U, V ) = (3, 0, 0, 0) for

b, c, d, with the ranks: Na = 3, Nb = Nc = Nd = 1, Nh = 4.

For the �rst twisted sector, the exceptional wrapping numbers for each stack can be found

in table 8.6.

The exceptional wrapping numbers of the �ve stacks in the second and third twisted sectors

Pairs (x
(1)
α,z, y

(1)
α,z), α = 0 . . . 5, z ∈ {a, b, c, d, h} of the global MSSM

Stack x
(1)
0 y

(1)
0 x

(1)
1 y

(1)
1 x

(1)
2 y

(1)
2 x

(1)
3 y

(1)
3 x

(1)
4 y

(1)
4 x

(1)
5 y

(1)
5

a 0 0 0 0 0 0 2 0 −1 0 −1 0

b 0 0 0 0 0 0 0 0 1 0 −1 0

c 0 0 0 0 0 0 −2 0 1 0 1 0

d 0 0 0 0 0 0 0 0 −1 0 1 0

h 0 0 0 0 0 0 −2 0 1 0 1 0

Table 8.6: Exceptional wrapping numbers of the �rst Z2-twisted sector for the �ve stacks of the

global MSSM-like model found on T 6/(Z2 × Z6 × ΩR) with discrete torsion, η = η
ΩRZ(3)

2

= −1.

can be found in table 8.7.

With these data, we can derive �rst the necessary conditions for the existence of discrete
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Pairs (x
(2,3)
α,z , y

(2,3)
α,z ), α = 1 . . . 4, z ∈ {a, b, c, d, h} of the global MSSM

Stack x
(2)
1 y

(2)
1 x

(2)
2 y

(2)
2 x

(2)
3 y

(2)
3 x

(2)
4 y

(2)
4 x

(3)
1 y

(3)
1 x

(3)
2 y

(3)
2 x

(3)
3 y

(3)
3 x

(3)
4 y

(3)
4

a −1 2 −1 2 0 0 0 0 1 −2 1 −2 0 0 0 0

b −1 2 −1 2 0 0 0 0 −3 0 −3 0 0 0 0 0

c −3 0 −3 0 0 0 0 0 3 0 3 0 0 0 0 0

d 3 0 3 0 0 0 0 0 −1 2 −1 2 0 0 0 0

h 1 −2 1 −2 0 0 0 0 1 −2 1 −2 0 0 0 0

Table 8.7: Exceptional wrapping numbers of the second and third Z2-twisted sectors for the �ve

stacks of the global MSSM-like model found on T 6/(Z2 × Z6 × ΩR) with discrete torsion, η =

η
ΩRZ(3)

2

= −1.

symmetries from (8.9):

ka



0

0

0

0

0

6

−6

0

0

0

0

0

6

6

0

0



+ kc



0

0

0

0

0

−2

2

0

6

6

0

0

0

0

0

0



+ kd



0

0

0

0

0

0

0

0

−6

−6

0

0

−2

−2

0

0



+ kh



0

0

0

0

0

−8

8

0

0

0

0

0

8

8

0

0



!
= 0 mod n . (8.15)

We see that we have no contributions from the b stack, since the associated entries are all

zero. Thus, kb is arbitrary, which is due to the fact that the b stack supports a symplectic

USp(2) group and not an unitary U(2) = SU(2)× U(1) group, and so the b stack does not

give rise to a U(1)b factor.

A look at the equations immediately reveals that ten out of the 16 equations are trivially

satis�ed, as they have zero entries. Also, there are redundancies among the remaining six

equations. In fact, we are left with three equations which are not trivial and which are not
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multiples of each other:

−6ka + 2kc + 8kh
!
= 0 mod n,

6kc − 6kd
!
= 0 mod n,

6ka − 2kd + 8kh
!
= 0 mod n.

(8.16)

These equations give a �rst hint for the existence of discrete Zn-symmetries. The massless

U(1) combinations can be obtained by setting the right-hand side equal to zero:

(1) − 6ka + 2kc + 8kh = 0 ,

(2) 6kc − 6kd = 0 ,

(3) 6ka − 2kd + 8kh = 0 .

For a massless U(1), the second equation immediately implies kc = kd. Taking this into

account and adding the �rst and third equation gives us:

(1) − 6ka + 2kc + 8kh = 0 ,

(2), (1) + (3) 16kh = 0 .

Thus, the solutions are of the form (ka, 3ka, 3ka, 0). Non-equivalent solutions satisfy gcd(ka, 3ka, 3ka, 0) =

1, so the only solution left is (ka, kc, kd, kh) = (1, 3, 3, 0). This solution corresponds in fact

up to normalization to the U(1)Y hypercharge de�ned as:

Qy =
1

6
Qa +

1

2
Qc +

1

2
Qd . (8.17)

Hence, this is the only massless U(1) combination we have. The standard de�nition we

chose in the previous chapter for the hypercharge is thus consistent with our results in the

present section, and the hypercharge acts as an unbroken gauge symmetry U(1)Y , and not as

a global U(1) symmetry. Since it is the only solution to the equations above, we can already

conclude that the global e�ective �ve-stack MSSM-like model does not present dark photons.

Anticipating a bit, let us also point out that this de�nition for the hypercharge also satis�es

the su�cient conditions given by the equations derived below. Thus, the hypercharge can

be used to induce a base shift of the discrete symmetries in order to put the Zn-charges of

the left-handed quarks equal to zero.

In a second step, we have to insert the bulk and exceptional wrapping numbers given above
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into the equations (8.14) in order to derive the su�cient conditions:

ka



3

6

3

6

3

6

0

0

0

0

3

0

0

6

6

−3



+ kc



3

0

3

0

3

0

0

0

0

0

1

0

0

−2

−1

2



+ kd



−4

−2

−4

−2

−4

−2

0

0

0

0

−2

0

0

0

−1

−1



+ kh



4

8

4

8

4

8

0

0

0

0

0

0

0

−8

0

0



!
= 0 mod n . (8.18)

This time, six equations out of the 16 equations are trivial, as they have zero entries. The

set of di�erent non-trivial equations is given by:

3ka + 3kc − 4kd + 4kh
!
= 0 mod n,

6ka − 2kd + 8kh
!
= 0 mod n,

3ka + kc − 2kd
!
= 0 mod n,

6ka − 2kc − 8kh
!
= 0 mod n,

6ka − kc − kd
!
= 0 mod n,

−3ka + 2kc − kd
!
= 0 mod n.

(8.19)

However, since we have only four stacks yielding a U(1) factor with already a massless U(1)Y
present, we expect at most three linearly independent equations by taking both the necessary

and su�cient conditions together. For example, the �rst, the third and the �fth equation

of the su�cient conditions above are linearly independent. In order to get an idea of the

possible discrete symmetries showing up, a computer scan is helpful, which can be found in

appendix B.2.2.

However, not all the discrete symmetries found in appendix B.2.2 correspond to non-

equivalent Zn-symmetries. Indeed, the �ve stacks of this particular model provide a total of

four U(1)'s. Thus, we can have at most three independent discrete Zn-symmetries, giving

together with the continuous U(1)Y hypercharge we already found, a total of four indepen-

dent U(1) combinations. In order to detect equivalent Zn-symmetries, the Zn-charges of

the particle spectrum have to be calculated. Since a Zn-symmetry with high values of n
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often can be decomposed into Zn-symmetries with low values for n, it is unlikely to �nd

independent Zn-symmetries with high values for n. We will illustrate this on some examples

of Zn-symmetries taken from the table given in appendix B.2.2.

Let us consider the examples of Zn-symmetries given in table 8.8.

Sample of discrete Zn-symmetries

ka kc kd kh n ka kc kd kh n

1 1 1 1 2 3 2 2 0 7

0 1 2 2 3 3 1 1 0 8

1 0 0 0 3 1 0 6 3 9

0 0 0 1 4 4 2 2 5 10

2 1 1 0 5 4 1 1 0 11

0 2 4 1 6 0 4 8 5 12

Table 8.8: Sample of discrete Zn-symmetries taken from appendix B.2.2. In order to detect inde-

pendent Zn-symmetries, the charges of the matter states of the global MSSM under these discrete

Zn-symmetries have to be analyzed.

The charges are calculated in the same way as the hypercharge by writing QZn = kaQa +

kcQc+ kdQd+ khQh. Table 8.9 shows the charges of the matter states under the symmetries

displayed in table 8.8. Note that the upper label of Zi
3 in table 8.9 just numerates the discrete

symmetries in the same order as they appear in table 8.8. For example, Z1
3 corresponds to the

�rst Z3-symmetry appearing in table 8.8, namely the one given by (ka, kc, kd, kh) = (0, 1, 2, 2).

Note that in the case of non-chiral pairs of matter states, only the charge of one member

of the pair is indicated in table 8.9.

In a second step, each Zn-charge is shifted by a certain factor times the hypercharge so

that the Zn-charges of the left-handed quarks arising in the ab = ab′ sector become zero, as

indicated in table 8.10.

Now we can compare the di�erent Zn-symmetries and see whether they are truly inde-

pendent. We see that the most exotic discrete symmetries such as Z5,Z7,Z8 and Z11 all

act trivially on the particle spectrum after a shift by the hypercharge, so these do not give

rise to any new charge selection rules on the couplings and have no in�uence whatsoever in

the model. Thus, these symmetries just correspond to discrete subgroups of the continuous

hypercharge.

The Z10 is clearly homomorphic to the Z2 symmetry as a look at the charges in table 8.10

yields. Similarly, Z9 is equivalent to Z1
3. Moreover, the charges of Z6 and those of Z12 can

for both symmetries be mapped to the charges of Z1
3. The mapping can be done as follows:

Z6-charges −→ Z1
3-charges

0, 3 −→ 0

2, 5 −→ 1

1, 4 −→ 2

Z12-charges −→ Z1
3-charges

0, 3, 6, 9 −→ 0

1, 4, 7, 10 −→ 1

2, 5, 8, 11 −→ 2

(8.20)

These examples illustrate that indeed, all discrete Zn-symmetries with higher values of n

can be mapped to Zn-symmetries with lower values for n. Thus, it makes sense to restrict
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Examples of discrete Zn-symmetries and charges for the global MSSM-like model

sector (6·)QY Z2 Z1
3 Z2

3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12

ab = ab′ 3× (3,2,1)(1,0,0,0) 1 1 0 1 0 2 0 3 3 1 4 4 0

ac 6× (3,1,1)(−1,1,0,0) 2 0 1 2 0 4 2 6 6 8 8 8 4

ad 3× (3,1,1)(1,0,−1,0) −2 0 1 1 0 1 2 1 2 4 2 3 4

ad′ 3× (3,1,1)(−1,0,−1,0) −4 0 1 2 0 2 2 2 4 2 4 6 4

bc = b′c 3× (1,2,1)(0,1,0,0) 3 1 1 0 0 1 2 2 1 0 2 1 4

bc = b′c 3×
[
(1,2,1)(0,1,0,0) + h.c.

]
3 1 1 0 0 1 2 2 1 0 2 1 4

bd = b′d 6× (1,2,1)(0,0,−1,0) −3 1 1 0 0 4 2 5 7 3 8 10 4

bd = b′d 2×
[
(1,2,1)(0,0,−1,0) + h.c.

]
−3 1 1 0 0 4 2 5 7 3 8 10 4

cd 3× (1,1,1)(0,−1,1,0) 0 0 1 0 0 0 2 0 0 6 0 0 4

cd 3×
[
(1,1,1)(0,−1,1,0) + h.c.

]
0 0 1 0 0 0 2 0 0 6 0 0 4

cd′ 3× (1,1,1)(0,1,1,0) 6 0 0 0 0 2 0 4 2 6 4 2 0

cd′ 3×
[
(1,1,1)(0,1,1,0) + h.c.

]
6 0 0 0 0 2 0 4 2 6 4 2 0

ah 2×
[
(3,1,4)(1,0,0,−1) + h.c.

]
1 0 1 1 3 2 5 3 3 7 9 4 7

ah′ (3,1,4)(1,0,0,1) + h.c. 1 0 2 1 1 2 1 3 3 4 9 4 5

bh = b′h 3× (1,2,4)(0,0,0,1) 0 1 2 0 1 0 1 0 0 3 5 0 5

ch′ 6× (1,1,4)(0,−1,0,−1) −3 0 0 0 3 4 3 5 7 6 3 10 3

dh 3× (1,1,4)(0,0,1,−1) 3 0 0 0 3 1 3 2 1 3 7 1 3

dh′ 3× (1,1,4)(0,0,1,1) 3 0 1 0 1 1 5 2 1 0 7 1 1

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] 2 0 0 2 0 4 0 6 6 2 8 8 0

bb′ ≡ bb 5× (1,1A,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

cc 4× (1,1,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

dd 5× (1,1,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

hh′ 2× [(1,1,6A)(0,0,0,2) + h.c.] 0 0 1 0 2 0 2 0 0 6 0 0 10

Table 8.9: Discrete Zn-charges of the massless open string spectrum of the global MSSM-like model.

For non-chiral pairs of particles, only the charges of the �rst state are indicated. The representations

of the particles correspond to the gauge group (SU(3)a×USp(2)b×SU(4)h)U(1)a×U(1)c×U(1)d×U(1)h .

the analysis to values of n less than e.g. six: n = 2, 3, 4, 5, 6.

Note that we also always obtain a set of discrete symmetries arising from the centers of

the non-Abelian U(N) gauge factors. Indeed, the actual gauge group of a stack without

gauge group enhancement is given by U(N) = SU(N)×U(1)
ZN

. The commuting group element

diag(α . . . α) with α = e2iπ/N can be considered to belong either to SU(N) or U(1). Taking

the quotient by ZN expresses that the two viewpoints are equivalent. However, the charges

of the states under this ZN -symmetry are the same as those under SU(N), so these discrete

symmetries arising as centers of gauge groups provide no selection rules distinct from the

SU(N) gauge invariance itself [100]. Hence, such discrete symmetries are not really relevant

in phenomenology. In our case, the Z2
3 and Z4 are such symmetries.

The results can be summarized as follows:
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Examples of shifted discrete Zn-symmetries and charges for the global MSSM-like model

sector (6·)QY Z2 Z1
3 Z2

3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12

ab = ab′ 3× (3,2,1)(1,0,0,0) 1 0 0 0 0 0 0 0 0 0 0 0 0

ac 6× (3,1,1)(−1,1,0,0) 2 0 1 0 0 0 2 0 0 6 0 0 4

ad 3× (3,1,1)(1,0,−1,0) −2 0 1 0 0 0 2 0 0 6 0 0 4

ad′ 3× (3,1,1)(−1,0,−1,0) −4 0 1 0 0 0 2 0 0 6 0 0 4

bc = b′c 3× (1,2,1)(0,1,0,0) 3 0 1 0 0 0 2 0 0 6 0 0 4

bc = b′c 3×
[
(1,2,1)(0,1,0,0) + h.c.

]
3 0 1 0 0 0 2 0 0 6 0 0 4

bd = b′d 6× (1,2,1)(0,0,−1,0) −3 0 1 0 0 0 2 0 0 6 0 0 4

bd = b′d 2×
[
(1,2,1)(0,0,−1,0) + h.c.

]
−3 0 1 0 0 0 2 0 0 6 0 0 4

cd 3× (1,1,1)(0,−1,1,0) 0 0 1 0 0 0 2 0 0 6 0 0 4

cd 3×
[
(1,1,1)(0,−1,1,0) + h.c.

]
0 0 1 0 0 0 2 0 0 6 0 0 4

cd′ 3× (1,1,1)(0,1,1,0) 6 0 0 0 0 0 0 0 0 0 0 0 0

cd′ 3×
[
(1,1,1)(0,1,1,0) + h.c.

]
6 0 0 0 0 0 0 0 0 0 0 0 0

ah 2×
[
(3,1,4)(1,0,0,−1) + h.c.

]
1 1 1 0 3 0 5 0 0 6 5 0 7

ah′ (3,1,4)(1,0,0,1) + h.c. 1 1 2 0 1 0 1 0 0 3 5 0 5

bh = b′h 3× (1,2,4)(0,0,0,1) 0 1 2 0 1 0 1 0 0 3 5 0 5

ch′ 6× (1,1,4)(0,−1,0,−1) −3 1 0 0 3 0 3 0 0 0 5 0 3

dh 3× (1,1,4)(0,0,1,−1) 3 1 0 0 3 0 3 0 0 0 5 0 3

dh′ 3× (1,1,4)(0,0,1,1) 3 1 1 0 1 0 5 0 0 6 5 0 1

aa′ 2× [(3A,1,1)(2,0,0,0) + h.c.] 2 0 0 0 0 0 0 0 0 0 0 0 0

bb′ ≡ bb 5× (1,1A,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

cc 4× (1,1,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

dd 5× (1,1,1)(0,0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

hh′ 2× [(1,1,6A)(0,0,0,2) + h.c.] 0 0 1 0 2 0 2 0 0 6 0 0 10

Table 8.10: Discrete Zn-charges of the massless open string spectrum of the global MSSM-like model

after a shift by the massless hypercharge. The shift is performed in such a way that the charges of

the left-handed quarks QL are zero. The representations of the particles correspond to the gauge

group (SU(3)a × USp(2)b × SU(4)h)U(1)a×U(1)c×U(1)d×U(1)h .

1. The combination (ka, kc, kd, kh) = (1, 0, 0, 0) associated to Z2
3 gives rise to a Z3-symmetry

inherited from the SU(3)a group of the a stack. This symmetry is homomorphic to the

center of the gauge group SU(3)a, acting as a baryon-number-like discrete symmetry.

Upon a basis shift by the massless hypercharge, this symmetry acts trivially on both

the visible and the hidden sector.

2. The combination (ka, kc, kd, kh) = (0, 0, 0, 1) gives rise to a Z4-symmetry inherited from

the SU(4)h group of the hidden stack, homomorphic to the center of the gauge group

SU(4)h. It acts trivially on the visible sector, but non-trivially on exotic matter states.

As mentioned before, it provides no new coupling selection rule beyond SU(4) gauge

invariance.
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3. The combination (ka, kc, kd, kh) = (1, 1, 1, 1) gives rise to the Z2-symmetry inherited

from the K-theory constraints. It acts trivially on the visible spectrum, but non-

trivially on the exotic matter states arising in the hidden sector. However, this Z2-

symmetry corresponds to a linear combination of the Z2-symmetry hidden inside the

massless hypercharge and the Z2-symmetry hidden as a sub-symmetry of the Z4-

symmetry of the previous bullet point. This can be seen via the charges: after a

shift by the massless hypercharge, the charges of the Z4-symmetry can be mapped to

those of the Z2-symmetry by identifying the charge 0 of Z2 with the charges 0 and 2

of the Z4-symmetry, and the charge 1 of Z2 is mapped to the charges 1 and 3 of Z4.

Thus, this Z2-symmetry should not be considered as an independent symmetry.

4. Finally, the combination (ka, kc, kd, kh) = (0, 2, 4, 1) gives rise to a Z6-symmetry. How-

ever, in the low-energy e�ective �eld theory, it can be reduced to an e�ective Z3-

symmetry, namely Z1
3 associated to (ka, kc, kd, kh) = (0, 1, 2, 2), as we have shown

above in (8.20).

The Z6 or e�ective Z3-symmetry merits a closer inspection, as it is the only one not arising

from the center of some non-Abelian gauge factor or the K-theory constraints. Thus, it is the

only one containing additional information compared to the information already contained

in the gauge factors.

In table 7.18, we indicate the charges of the particle spectrum under the Z6-symmetry in the

last column, and the charges under the e�ective Z3-symmetry are given in the second-to-last

column. Comparing the charges of this discrete Z3-symmetry with the charges given in table

8.1 for baryon triality, we see that they do not match. Thus, the Z3 present in the global

e�ective �ve-stack MSSM analyzed here corresponds to a new stringy discrete symmetry,

which is not present in the �eld theory of the MSSM.

However, a closer look at the charges given in table 7.18 also reveals that the generator of

this new stringy discrete symmetry seems a priori unsuited to be decomposed as has been

done in (8.2). Indeed, the charges of the Higgses and the right-handed up quarks given in

(8.4) are incompatible with table 7.18:

Hu : m = 1 mod 3 ,

uR : −m = 1 mod 3 .
(8.21)

This is linked to the fact that we have an e�ective MSSM with an extended right-handed

down quark sector, an extended left-handed lepton sector and an extended Higgs sector.

Indeed, in the next chapter about Yukawa couplings, we will see that H̃u arising from the

bd = b′d sector couples to the right-handed up quarks as QL · H̃uuR, whereas Hd arising from

the bc = b′c sector couples to the right-handed down quarks as QL ·HddR. Consequently, if

we replace Hu by H̃u, which has a di�erent Z3-charge, as shown in table 7.18, the constraints

on the charges become:

H̃u : m = 2 mod 3 ,

uR : −m = 1 mod 3 .
(8.22)

This is perfectly compatible. Similarly, our stringy Z3-symmetry forbids by charge selection

rules the three-point coupling of H̃d to the right-handed down quarks dR, which is consistent
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with our results in the next chapter. Such a coupling would have been problematic as we

have:

H̃d : −m+ k = 1 mod 3 ,

dR : m− k = 1 mod 3 .
(8.23)

Since only Hd appears in our Yukawa couplings though, the decomposition works out:

Hd : −m+ k = 2 mod 3 ,

dR : m− k = 1 mod 3 .
(8.24)

This is compatible. In fact, we can take for the generator of our stringy Z3-symmetry the

product R2
3A3L3, i.e. m = 2, k = 1, p = 1. Inserting these values into (8.4) gives us almost

the charges indicated in table 7.18.

An exception is given by the right-handed neutrinos. More precisely, table 7.18 tells us that

the Z3-charge of the right-handed neutrinos arising in the cd sector equals one. However,

the formulas (8.4) imply that the charges of the right-handed neutrinos should be zero:

−m + k + p = −2 + 1 + 1 = 0. Since this is not the case, the right-handed neutrinos

cannot be paired o� with the Higgs �eld H̃u to provide invariant Yukawa terms. Instead,

they couple to Hu to produce Yukawa couplings, which is con�rmed by our results in the

next chapter. Hence, the singlet states arising in the cd sector may not correspond to the

right-handed neutrinos of the MSSM, just as Hu and H̃d should not be interpreted as the

traditional Higgs �elds of the MSSM. The issue can be solved by identifying the right-handed

neutrino states with the singlet states arising in the cc or dd sectors, instead of the singlet

states coming from the cd sector as is traditionally done. With this new interpretation, the

right-handed neutrinos can be given mass with a cubic coupling involving H̃u, as we will

see in the next chapter. Also, they would then present the correct Z3-charge under the

decomposition R2
3A3L3. A disadvantage is the fact that with the latter identi�cation, the

right-handed neutrinos no longer come in three generations.

Finally, in table 7.18, we indicated the charges of the particles under a Peccei-Quinn sym-

metry de�ned by QPQ = Qc−Qd. In the present MSSM-like model though, we have already

seen that we only have one gauged massless U(1) symmetry, which corresponds to the hy-

percharge. The absence of further massless U(1) symmetries prohibits the interpretation of

the Peccei-Quinn symmetry as a massless gauged symmetry. Instead, the Peccei-Quinn sym-

metry acts as a global U(1) symmetry at low energies which is non-perturbatively broken.

An interesting observation is given by the fact that in the visible sector, the charges of the

particles under the stringy Z3-symmetry can be mapped to the charges of the Peccei-Quinn

symmetry, as can be seen in table 7.18. Thus, any coupling in the visible sector allowed by the

discrete Z3-symmetry will also be automatically invariant under the Peccei-Quinn symmetry.

In summary, we can say that the gauge group of the present MSSM-like model containing

the total information about the charge selection rules is given by the gauge group SU(3)a ×
USp(2)b × U(1)Y × SU(4)h × Z3 at low energies.
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8.4 Zn-symmetries in the global six-stack left-right sym-

metric models

In this section, we will brie�y discuss the discrete symmetries for prototype I and prototype

II left-right symmetric models. As already mentioned, we will refrain from giving all the

details of the computation and focus on the main results instead. The massless U(1) sym-

metry desired in the left-right symmetric models corresponds to the baryon-lepton number

symmetry. The traditional de�nition of the baryon-lepton number symmetry in the left-right

symmetric models is given by QB−L = 1
3
Qa + Qd within D-brane models. If this symmetry

is present as a massless gauged symmetry in our models, it should come as a combination

(ka, kd, kh1 , kh2) = (1, 3, 0, 0). Note that in all our left-right symmetric models, the b and the

c stack support a USp(2) group, which does not give rise to a U(1) factor. Thus, we have

no contributions from the b nor the c stacks.

8.4.1 Prototype I left-right symmetric model

Remember that the prototype I left-right symmetric model is characterized by the following

gauge group: U(3)a×USp(2)b×USp(2)c×U(1)d×U(3)h1 ×U(3)h2 . The data for this model

can be found in table 7.5. We will directly write down the set of necessary and su�cient

Zn-conditions without indicating the exceptional wrapping numbers. The set of necessary

conditions is given by:

ka



0

0

0

0

0

−6

6

0

0

0

0

0

6

6

0

0



+ kd



0

0

0

0

0

−2

2

0

0

0

0

0

−2

−2

0

0



+ kh1



0

0

9

3

3

3

0

0

−6

−6

0

0

0

0

0

0



+ kh2



0

0

9

3

3

3

0

0

6

6

0

0

0

0

0

0



!
= 0 mod n . (8.25)
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Once more, several conditions have zero entries and are thus trivial, while others are only

multiples of each other. We are left with a set of �ve non-trivial equations:

3kh1 + 3kh2

!
= 0 mod n,

−6ka − 2kd + 3kh1 + 3kh2

!
= 0 mod n,

6ka + 2kd
!
= 0 mod n,

−6kh1 + 6kh2

!
= 0 mod n,

6ka − 2kd
!
= 0 mod n.

(8.26)

This set of equations has to be completed by the set of su�cient conditions, given by:

ka



3

6

3

6

3

6

0

0

0

0

0

0

0

−6

0

0



+ kd



−1

−2

−1

−2

−1

−2

0

0

0

0

−1

0

0

−2

−2

1



+ kh1



−3

0

−3

0

−3

0

0

0

0

0

3

6

3

3

3

0



+ kh2



3

0

3

0

3

0

0

0

0

0

6

6

3

3

3

3



!
= 0 mod n. (8.27)

The �rst block gives only two di�erent equations, with the second equation already contained

in the necessary conditions. The second block is trivial, and the third block produces �ve

equations which are not multiples of each other. However, two of the latter appeared already

before in the necessary conditions. Note also that the last two and the �rst equations of the

third block are not linearly independent. Thus, we obtain three supplementary constraints:

3ka − kd − 3kh1 + 3kh2

!
= 0 mod n,

−kd + 3kh1 + 6kh2

!
= 0 mod n,

−2kd + 3kh1 + 3kh2

!
= 0 mod n.

(8.28)

Once again, both necessary and su�cient conditions together can provide at most four

linearly independent equations, as the six stacks give rise to four U(1) symmetries only. For

example, the three su�cient equations together with the �rst necessary condition form four

linearly independent equations.
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First, we will start by looking for massless U(1) combinations, i.e. for combinations of

coe�cients ki which satisfy the necessary and su�cient conditions for every value of n. By

putting the right-hand side of the necessary conditions to zero, we already deduce from the

necessary conditions that the only solution is the trivial one: ka = kc = kh1 = kh2 = 0. Thus,

the prototype I left-right symmetric model does not provide any massless U(1) symmetry. In

particular, the absence of a massless U(1) symmetry implies that the baryon-lepton number

symmetry U(1)B−L acts as a global symmetry.

Next, we turn our attention to the discrete Zn-symmetries. A similar code to the one used

for the MSSM in appendix B.2.2 yielded 46 combinations of ki's giving various Z2, Z3 and

Z6 symmetries. No other values for n were found, at least not for values of ki ≤ 16, which

is in stark contrast to the MSSM where all values for n up to 45 have been found. We will

not give the combinations explicitly. Comparing once again the Zn-charges of the particles

in order to detect equivalent symmetries, we obtain the following results:

• Since we are in presence of a global model, the K-theory constraints are satis�ed and

provide the Z2-symmetry associated to the combination (ka, kc, kh1 , kh2) = (1, 1, 1, 1).

By looking at the third-to-last column of table 7.6, we see that the Z2-charges of the

particles in the visible sector are identical to the ones of the massive baryon-lepton

number symmetry associated to QB−L = Qa + 3Qd. Therefore, one might be tempted

to consider the Z2-symmetry arising from the K-theory constraints as the remnant

of the broken baryon-lepton number symmetry. However, the exotic particles of the

hidden sector are also charged under the Z2-symmetry, which raises the suspicion that

the Z2-symmetry in question might be the remnant of some generalized baryon-lepton

number symmetry under which the hidden sector is also charged.

Furthermore, table 7.6 also reveals that only states transforming in the fundamental

representation 2 of either USp(2)b or USp(2)c are charged under the Z2-symmetry.

Hence, the charge selection rules coming from the Z2-symmetry are identical to the

ones coming from USp(2)b or USp(2)c and contain no additional information.

• As expected, we also have the three Z3-symmetries homomorphic to the centers of the

three SU(3) groups supported by the a stack and the two hidden stacks. These corre-

spond to the combinations (ka, kc, kh1 , kh2) = (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Hence,

these discrete symmetries also do not provide any additional selection rules to the ones

given by the associated non-Abelian SU(3) gauge groups.

• A Z6-symmetry is for example given by the combination (ka, kc, kh1 , kh2) = (1, 3, 1, 1).

The charges of the particles under this symmetry are listed in the last column of table

7.6. By comparing these charges to the charges of the Z2-symmetry, we see that the

charge 0 of Z2 is associated to an even charge number of Z6, while the charge 1 of Z2

is associated to an odd charge number of Z6. This indicates that the Z2-symmetry is

a sub-symmetry of Z6, so that the latter also gives rise to an e�ective Z3-symmetry.

Indeed, the charges of Z6 can be mapped to the charges of the Z3-symmetry associated

to the combination (ka, kc, kh1 , kh2) = (1, 0, 1, 1). We can use the same mapping as the

one de�ned in (8.20), except that the rôle of the 1 and 2 charges of Z3 have to be

inverted. However, the latter Z3-symmetry corresponds to a linear combination of the
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three Z3-symmetries discussed in the previous point. Thus, this symmetry is not an

independent symmetry and provides no new charge selection rules.

Consequently, in this prototype I left-right symmetric model we do not obtain any Zn-

symmetry providing additional charge selection rules beyond the ones given by gauge invari-

ance.

8.4.2 Prototype II left-right symmetric model

In this section, we will analyze the symmetries of the prototype II left-right symmetric model

the data of which can be found in table 7.7. Using these data, the necessary Zn-conditions

can be computed:

ka



0

0

0

0

0

−6

6

0

0

0

0

0

6

6

0

0



+ kd



0

0

0

0

0

−2

2

0

0

0

0

0

−2

−2

0

0



+ kh1



0

0

3

1

1

1

0

0

0

0

0

0

2

2

0

0



+ kh2



0

0

3

1

1

1

0

0

0

0

0

0

−2

−2

0

0



!
= 0 mod n . (8.29)

Four non-trivial equations, not multiples of each other, can be deduced:

kh1 + kh2

!
= 0 mod n,

−6ka − 2kd + kh1 + kh2

!
= 0 mod n,

6ka + 2kd
!
= 0 mod n,

6ka − 2kd + 2kh1 − 2kh2

!
= 0 mod n.

(8.30)
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Just as in the case of the two previous models, these equations have to be supplemented

with the set of su�cient conditions:

ka



3

6

3

6

3

6

0

0

0

0

0

0

0

−6

0

0



+ kd



−1

−2

−1

−2

−1

−2

0

0

0

0

−1

0

0

−2

−2

1



+ kh1



1

2

1

2

1

2

0

0

0

0

2

2

1

1

2

0



+ kh2



−1

−2

−1

−2

−1

−2

0

0

0

0

1

2

1

1

0

1



!
= 0 mod n. (8.31)

The �rst block provides one equation, whereas the third block o�ers three additional equa-

tions to the necessary conditions, giving a total of four su�cient conditions:

3ka − kd + kh1 − kh2

!
= 0 mod n,

−kd + 2kh1 + kh2

!
= 0 mod n,

−2kd + 2kh1

!
= 0 mod n,

kd + kh2

!
= 0 mod n.

(8.32)

However, only three out of the eight non-trivial necessary and su�cient conditions are truly

independent. A set of three linearly independent equations is for example given by the �rst

three su�cient conditions. This is in accordance with the fact that, although the six stacks

give rise to four U(1) factors, only three independent Zn-symmetries arise since we have a

massless U(1) symmetry in this model. Indeed, setting the right-hand side of the necessary

conditions (8.30) equal to zero without the "mod n", the �rst two equations yield kh1 = −kh2

and kd = −3ka. Putting these into the third equation yields kh1 = −3ka. Thus, the solution

of the necessary condition is of the form (ka,−3ka,−3ka, 3ka). By putting ka = 1 in order to

have gcd (ka, . . . , kh2) = 1, and by inserting this solution into the su�cient conditions (8.32),

we see that the latter are satis�ed as well by this combination of ki's for every value of n.

Thus, contrarily to the previous prototype I left-right symmetric model, this time we have

a massless U(1) which can be associated to a generalized baryon-lepton number symmetry:

Ũ(1)B−L =
1

3
U(1)a − U(1)d − U(1)h1 + U(1)h2 . (8.33)
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Under this generalized baryon-lepton number symmetry, not only the visible sector but also

the hidden sector is charged. The charges of the particles of the prototype II left-right

symmetric model under the generalized baryon-lepton number symmetry are indicated in

table 7.8. A stark contrast between prototype I and prototype II models is the fact that

in the former, the generalized baryon-lepton number symmetry acts as a global symmetry

whereas it acts as a gauged massless symmetry in the latter.

Next, we will turn our attention to the existence of discrete Zn-symmetries. Following once

more the same reasoning as the one performed in the case of the MSSM-like model, the

results can be summarized as follows:

• As usual, we have the Z2-symmetry arsing from the K-theory constraints and corre-

sponding to the combination (ka, kd, kh1 , kh2) = (1, 1, 1, 1). The Z2-symmetry in the

prototype I model was associated to the remnants of a broken massive generalized

baryon-lepton number symmetry, while the Z2-symmetry in the present case can be

interpreted as a sub-symmetry of the massless generalized Ũ(1)B−L symmetry. Indeed,

after a shift of the Z2-charges by the massless Ũ(1)B−L symmetry, these are all set to

zero. Thus, this symmetry does not contain any new information.

• The non-Abelian gauge factor SU(3)a gives rise to a discrete Z3-symmetry, associated

to the combination (ka, kd, kh1 , kh2) = (1, 0, 0, 0) and homomorphic to the center of

SU(3)a. Once again, a shift of the Z3-charges by the massless Ũ(1)B−L symmetry puts

all the charges equal to zero. Hence, this symmetry also acts only trivially on the

low-energy particle spectrum, and does not give rise to any new charge selection rules.

• Finally, we have once more a Z6-symmetry corresponding to the linear combination

(ka, kd, kh1 , kh2) = (1, 3, 3, 3). However, all the charges of the particles under this Z6-

symmetry are also put to zero upon a shift by the massless Ũ(1)B−L symmetry, indicat-

ing that the Z6-symmetry corresponds to a discrete sub-symmetry of the generalized

baryon-lepton number symmetry. Moreover, the Z6-symmetry can be decomposed into

the Z2-symmetry arising from the K-theory constraints and the Z3-symmetry arising

from the center of SU(3)a, which both act trivially after a Ũ(1)B−L-shift, as pointed

out in the previous bullet points. Thus, this Z6-symmetry is not a new independent

symmetry and does not yield any new charge selection rules.

All in all, we can conclude that the full gauge group of the prototype II left-right symmetric

model at low energies is given by: SU(3)a × USp(2)b × USp(2)c × Ũ(1)B−L.

8.4.3 Brief overview of the results for the other prototypes

In this section, we will brie�y discuss the results for the other left-right symmetric models

including the semi-global �ve-stack left-right symmetric model and the global six-stack pro-

totype IIb and IIc left-right symmetric models. We will explicitly show how the RR-tadpole

cancellation conditions are ful�lled, but not the K-theory constraints for the �ve-stack left-

right symmetric model. Subsequently, we will discuss potential massless U(1) combinations

and discrete symmetries. In the case of the prototype IIb and prototype IIc left-right sym-

metric models, we will restrain the analysis to the existence of massless U(1) combinations,

since the results for the Zn-symmetries are very similar to the ones obtained for the prototype

II left-right symmetric model, as can be reviewed in our publication [64].
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Five-stack semi-global left-right symmetric model

In this section, we will pin down exactly which sector is responsible for the incompatibility

between the ful�llment of the RR-tadpole cancellation conditions and the ful�llment of the

K-theory constraints. This can be done only after having derived the explicit analytical

expression for the K-theory constraints, as we have done in the present chapter. That

explains why we postponed the analysis to this chapter instead of performing it already in

chapter 7.

We will start by checking explicitly the RR-tadpole cancellation conditions and the K-theory

constraints. The data for the �ve-stack semi-global left-right symmetric model was given

in table 7.3. The associated exceptional wrapping numbers are indicated in tables 8.11 and

8.12. In tables 8.11 and 8.12, the second-to-last line checks the RR-tadpole cancellation

conditions, which can be found in (2.50) and table 2.9. Remember that our choice for the

exotic charge is given by η
ΩRZ(3)

2
= −1, implying that η(1) = η(2) = 1 and η(3) = −1. For this

choice of the exotic O6-plane charge, the only non-trivial twisted RR-tadpole cancellations

conditions in the �rst Z2-twisted sector are given by:∑
z∈{a,b,c,d,h}

Nzy
(1)
α,z = 0, α = 0, 1, 2, 3 , (8.34)

∑
z∈{a,b,c,d,h}

Nz(x
(1)
4,z − x

(1)
5,z) = 0 , (8.35)

∑
z∈{a,b,c,d,h}

Nz(y
(1)
4,z + y

(1)
5,z) = 0 . (8.36)

A look at the entries of the second-to-last line of table 8.11 yields that these are all ful�lled.

The last line in tables 8.11 and 8.12 checks whether the K-theory constraints arising from

the pure bulk and exceptional three-cycles, which we call the "pure K-theory" constraints,

are satis�ed. These can be found in (8.9), by putting ki = 1 ∀ i and n = 2. They can be

summarized as follows: ∑
z∈{a,b,c,d,h}

Nz3x
(1)
0,z = 0 mod 2 , (8.37)

∑
z∈{a,b,c,d,h}

Nzx
(1)
α,z = 0 mod 2 α = 1, 2, 3 , (8.38)

∑
z∈{a,b,c,d,h}

Nz(x
(1)
4,z + x

(1)
5,z) = 0 mod 2 , (8.39)

−
∑

z∈{a,b,c,d,h}

Nz(y
(1)
4,z − y

(1)
5,z) = 0 mod 2 . (8.40)

Inserting the exceptional wrapping numbers of the �rst twisted sector indicated in the third-

to-last line of table 8.11 into the formulas above, the last line in table 8.11 shows that

the exceptional wrapping numbers x
(1)
α,z, α = 0, 1, 2, 3 do not satisfy the pure K-theory

constraints.

A look at the third-to-last line in table 8.12 tells us that the sum over the stacks of the

exceptional wrapping numbers of the second twisted sector are zero. Thus, the RR-tadpole

cancellation conditions and the pure K-theory constraints in the second sector are trivially

satis�ed. In the third twisted sector, the only non-trivial twisted RR-tadpole cancellation
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conditions for our choice of the exotic charge are given by:∑
z∈{a,b,c,d,h}

Nz(2x
(3)
α,z + y(3)α,z) = 0 α = 1, 2, 3, 4 . (8.41)

The exceptional wrapping numbers given in table 8.12 ful�ll these conditions, as indicated in

the second-to-last line in table 8.12. The exceptional wrapping numbers of the third twisted

sector also satisfy the pure K-theory constraints, which can be summarized as follows:

−
∑

z∈{a,b,c,d,h}

Nzy
(3)
α,z = 0 mod 2 α = 1, 2, 3, 4 . (8.42)

Veri�cation of the RR-t.c.c. and pure K-theory constraints, part I

z N (P,Q,U, V ) x
(1)
0 y

(1)
0 x

(1)
1 y

(1)
1 x

(1)
2 y

(1)
2 x

(1)
3 y

(1)
3 x

(1)
4 y

(1)
4 x

(1)
5 y

(1)
5

a 3 (1, 0, 0, 0) 0 0 0 0 0 0 2 0 −1 0 −1 0

b 1 (3, 0, 0, 0) 0 0 0 0 0 0 0 0 1 0 −1 0

c 1 (3, 0, 0, 0) 0 0 0 0 0 0 0 0 −1 0 1 0

d 1 (3, 0, 0, 0) 1 0 1 0 1 0 1 0 0 0 0 0

h 4 (1, 0, 0, 0) 0 0 0 0 0 0 −2 0 1 0 1 0∑
z Nzz (16, 0, 0, 0) 1 0 1 0 1 0 −1 0 1 0 1 0

RR-t.c.c.? X X X X X X X
K-pure? X all violated X X

Table 8.11: Bulk and exceptional wrapping numbers and veri�cation of the ful�llment of the RR-

tadpole cancellation conditions (RR-t.c.c.) and pure K-theory constraints (K-pure) in the bulk and

the �rst Z2-twisted sectors of the semi-global �ve-stack left-right symmetric model (LRS).

Veri�cation of the RR-t.c.c. and pure K-theory constraints, part II

z N x
(2)
1 y

(2)
1 x

(2)
2 y

(2)
2 x

(2)
3 y

(2)
3 x

(2)
4 y

(2)
4 x

(3)
1 y

(3)
1 x

(3)
2 y

(3)
2 x

(3)
3 y

(3)
3 x

(3)
4 y

(3)
4

a 3 −1 2 −1 2 0 0 0 0 1 −2 1 −2 0 0 0 0

b 1 −1 2 −1 2 0 0 0 0 −3 0 −3 0 0 0 0 0

c 1 −1 2 −1 2 0 0 0 0 3 0 3 0 0 0 0 0

d 1 1 −2 1 −2 0 0 0 0 −1 2 −1 2 0 0 0 0

h 4 1 −2 1 −2 0 0 0 0 1 −2 1 −2 0 0 0 0∑
z Nzz 0 0 0 0 0 0 0 0 6 −12 6 −12 0 0 0 0

RR-t.c.c.? X X X X X X X X
K-pure? X X X X X X X X

Table 8.12: Exceptional wrapping numbers and veri�cation of the ful�llment of the RR-tadpole

cancellation conditions (RR-t.c.c.) and pure K-theory constraints (K-pure) in the second and third

Z2-twisted sectors of the semi-global �ve-stack left-right symmetric (LRS) model.
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This concludes the proof that the �ve-stack left-right symmetric model is a semi-global

model but not a global model, i.e. it ful�lls all the RR-tadpole cancellation conditions but

not the K-theory constraints.

Next, we will turn our attention to the existence of massless U(1) and discrete Zn-symmetries.

For this model, we have a set of four non-trivial necessary conditions given by:

kd
!
= 0 mod n,

6ka + kd − 8kh
!
= 0 mod n,

−6ka + 8kh
!
= 0 mod n,

6ka − 2kd + 8kh
!
= 0 mod n.

(8.43)

Since we have gauge group enhancement on the b and c stacks, these do not appear in the

conditions above as they do not yield a U(1) symmetry. The detection of a massless U(1)

can be done by putting the right-hand side of the equations above equal to zero without the

mod n. Clearly, there is no solution apart from the trivial one ki = 0 ∀ i. Thus, we do not

have any massless U(1) symmetry in this speci�c model. In particular, we have once again

no massless gauged baryon-lepton number symmetry. As usual, the necessary conditions

have to be completed by a set of su�cient conditions which yield four additional non-trivial

equations:

3ka − kd + 4kh
!
= 0 mod n,

3ka + kd
!
= 0 mod n,

6ka
!
= 0 mod n,

3ka − kd
!
= 0 mod n.

(8.44)

The presence of only three U(1) gauge factors implies that only three conditions can be lin-

early independent. The �rst three su�cient conditions for example are linearly independent.

Consequently, in the absence of a massless U(1) symmetry, we can have up to three indepen-

dent discrete Zn-symmetries. For ki varying between 0 and 16, only seven combinations of

the ki's show up, associated to values of n equal to 3, 4, 6, 12. The results can be summarized

as follows:

• Exactly one Z3-symmetry shows up, associated to the combination (ka, kd, kh) =

(1, 0, 0) and homomorphic to the center of the non-Abelian gauge factor SU(3)a. The

charges of the particles under this discrete symmetry are given in the second-to-last

column of table 7.4. We see that only quark-like particles, i.e. particles attached to

the a stack, are charged under this discrete Z3-symmetry, which is obvious as it arises

from the center of SU(3)a. Thus, this symmetry acts as usual as a baryon-number-like

symmetry. Also, it does not yield any additional charge selection rules to the ones

already imposed by the non-Abelian SU(3)a.

• There is only one Z4-symmetry, associated to the combination (ka, kd, kh) = (0, 0, 1)

and homomorphic to the center of the non-Abelian hidden gauge factor SU(4)h. The

charges of the particles under this discrete symmetry are given in the last column of

table 7.4. As the Z4-symmetry arises from the hidden stack, only exotic particles are

charged under it. As usual, it does not yield any additional charge selection rules to

the ones already imposed by the non-Abelian SU(4)h.
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• We have one Z6-symmetry associated to the combination (ka, kd, kh) = (2, 0, 3). How-

ever, this is clearly a combination of the Z3 and Z4 symmetries discussed in the previous

bullet points. Also, the four remaining combinations giving rise to Z12-symmetries are

characterized by kd = 0 and thus correspond to linear combinations of the Z3 and Z4

symmetries.

• Let us explicitly point out the absence of the Z2-symmetry associated to the K-theory

constraints (ka, kd, kh) = (1, 1, 1). It is clear that the latter combination does not

satisfy the necessary and su�cient K-theory constraints. This is to be expected from

a model that is semi-global but not global.

All in all, we can conclude that the �ve-stack semi-global left-right symmetric model is free

of non-trivial discrete symmetries and massless U(1)'s.

Prototype IIb and Prototype IIc left-right symmetric models

Since the crucial di�erence between prototype I and prototype II left-right symmetric models

seemed to be the existence of a massless U(1) symmetry, we will focus on this aspect rather

than the discrete Zn-symmetries.

The data of the prototype IIb left-right symmetric model can be found in table 7.9. The

necessary conditions can be reduced to four non-trivial equations reading:

−kh1 − kh2

!
= 0 mod n ,

6ka + 2kd − kh1 − kh2

!
= 0 mod n ,

−6ka − 2kd
!
= 0 mod n ,

6ka − 2kd
!
= 0 mod n .

(8.45)

Note that the third equation above is a linear combination of the �rst two equations. Con-

centrating on the existence of massless U(1) symmetries, we put the right-hand side of

the equations above equal to zero without the "mod n" and �nd the following solution:

(ka, kd, kh1 , kh2) = (0, 0, 1,−1). The next step consists in checking whether this solution

is compatible with the su�cient conditions. However, the �rst su�cient condition already

reads:

− kh1 + kh2 = 0 mod n, (8.46)

which is in con�ict with the unique solution found from the necessary conditions, when

putting the right-hand side equal to zero without the "mod n". Thus, prototype IIb does

not present any massless U(1) symmetry. In particular, the generalized gauged baryon-lepton

number symmetry found for the prototype II model only acts as a global U(1) symmetry

in the present prototype IIb model. The charges of the particles under this global U(1)

symmetry are indicated in the last column of table 7.10.

Next, let us turn our attention to the prototype IIc left-right symmetry model. The data

associated to this model can be found in table 7.11. The necessary conditions for this model
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boil down to four non-trivial conditions reading:

−2kh1

!
= 0 mod n ,

−2kh2

!
= 0 mod n ,

6ka + 2kd
!
= 0 mod n ,

6ka − 2kd + 2kh1

!
= 0 mod n .

(8.47)

Putting the right-hand side to zero without mod n, we see that the only solution is the trivial

one (ka, kd, kh1 , kh2) = (0, 0, 0, 0). Thus, we do not even need to write down the su�cient

conditions as the necessary conditions already prohibit the existence of a massless U(1) sym-

metry. Once again, the generalized baryon-lepton number symmetry found for prototype II

acts only as a global U(1) symmetry in the prototype IIc model. The charges of the particles

under this global symmetry can be found in the last column of table 7.12.

In our publication [64], we also brie�y analyzed the discrete Zn-symmetries for both proto-

type IIb and IIc left-right symmetric models, but did not detect any new non-trivial discrete

symmetry.

All in all, we can conclude that of all the left-right symmetric models found, only the

prototype II model allows for the existence of a massless U(1) symmetry, which on top acts

similarly to the coveted baryon-lepton number symmetry. This aspect renders the prototype

II left-right symmetric model more attractive from a phenomenological point of view than

its fellow prototype left-right symmetric models.
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Chapter 9

Three- and four-point couplings at

leading order

9.1 Yukawa and other cubic couplings

In Type IIA string model building, the second step after constructing suitable particle physics

spectra consists in reproducing the correct low-energy �eld theory. Whereas the �rst part of

model building focuses on reproducing the correct particle content, the second part concen-

trating on �eld theory considerations includes additional features, such as discrete symme-

tries or the correct three-point couplings. Hitherto, our particles associated to open string

excitations localized at D6-brane intersections are massless. To obtain a useful particle

physics model, the particles need to acquire masses corresponding to the masses measured

at particle detectors. In the Standard Model of particle physics, the particles obtain mass

through the Yukawa couplings, which correspond to cubic couplings, i.e. interaction terms

involving three di�erent �elds, see section 3.2.1. Usually, one of the �elds is the Higgs �eld,

which acquires a vacuum expectation value (VEV) and thus yields mass terms for the other

�elds. In Type IIA string theory, the procedure of giving mass to the particles is identical,

albeit the constraints on the coupling terms are more stringent than from the mere �eld

theoretical point of view. Moreover, a realistic stringy particle physics model should also

allow for a mass hierarchy between the di�erent particle generations in agreement with ex-

perimental data.

Finally, in string theory cubic couplings also provide a useful tool to identify correctly the

open string spectrum with the particle content. Indeed, we already pointed out in the pre-

vious chapter that it occurs that two di�erent sectors can give rise to particle states having

the same SM quantum numbers. A striking example is given by the right-handed neutrinos

νR, which are gauge group singlets and could thus be associated to any sector giving rise to

singlet states. Yukawa couplings and other cubic couplings potentially provide the means

for a correct identi�cation of the di�erent particle states.

Just as in �eld theory, not all cubic couplings are allowed. In string theory, there are two

rules to respect. The �rst rule is given by the "charge selection rule", which states that

any term in the perturbative part of the superpotential W must be a gauge singlet. More

precisely, it means that the �elds transforming in various representations of the gauge group

must combine into interaction terms in such a way that they form gauge singlets under all
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gauge group factors, including U(1)-factors and Zn-symmetries. In general, a cubic coupling

in the perturbative part of the superpotential has the following form:

Wper ∋ Wxyzϕ
x
abϕ

y
bcϕ

z
ca, (9.1)

where Wxyz is the coupling constant and the ϕk
ij are super�elds associated to open string

states localized at the intersection points of the D6-branes i and j with i, j ∈ {a, b, c}. The
subscripts a, b and c refer to the fractional three-cycles Πfrac

a , Πfrac
b and Πfrac

c which the three

D6-branes wrap, while the superscripts x, y and z are related to the multiplicities or gener-

ations of the respective states. A mass term arises when the scalar component of one of the

three super�elds acquires a VEV. In that case, the mass is given by a combination of the

VEV and the coupling constant Wxyz.

The second rule is a purely stringy selection rule and has no equivalent in the �eld theoret-

ical language. The "stringy selection rule" states that the torus three-cycles Πtorus
a , Πtorus

b

and Πtorus
c supporting the intersecting D6-branes have to form a closed triangular sequence

denoted by [a, b, c] = [a, b][b, c][c, a] on each two-torus T 2
(i). The three states ϕ

x
ab, ϕ

y
bc and ϕz

ca

are then localized at the three apexes of the triangle, corresponding to pairwise intersection

points of the D6-branes. The physical interpretation in case of the six-torus is that the

de�ned triangular surface on each two-torus is spanned by a worldsheet instanton, as can be

shown with techniques of scattering amplitudes. We will not delve deeper into this aspect

in this work, but instead refer the interested reader to [202�207].

The coupling constant Wxyz is related to the sum of the triangular areas in the following

way [202�207]:

Wxyz ≃ e−
∑3

i=1 A
(i)
xyz/(2πα

′), (9.2)

where A(i)
xyz is the area of the closed triangle [a, b, c] with apexes occupied by the three states

ϕx
ab, ϕ

y
bc and ϕz

ca on the two-torus T 2
(i), which is in general given as a fraction of the total

area of the two-torus. The parameter α′ is called Regge slope and is related to the tension

of the string. In case the three-cycles a, b and c intersect in a single point on a two-torus,

the corresponding contribution to the coupling constant is of order O(1). If the three-cycles

do not form a closed sequence on some two-torus, the coupling Wxyz is zero.

In the present work, we focus on the couplings at leading order to estimate the strength of

the couplings, i.e. in equation (9.2), we restrict the analysis to the smallest possible trian-

gles. Due to the periodicity of the underlying six-torus, an in�nite number of triangles for

a same set of apexes can be obtained, each one coming with an increased area. However,

these correspond to higher order correction terms in the superpotential [202�207]. Further-

more, the equation (9.2) is a classical expression and neglects the quantum contribution.

In this work, we will restrict the analysis to the classical part. For details on the quantum

correction, see [202, 207�210]. Note also that in (9.2) additional constraints arise which are

related to the Z2-eigenvalues, Wilson lines and shifts of the D6-branes. These give the exact

localization of particle states at the intersection points and were derived in appendix A of

[64]. Finally, let us point out that the cubic couplings or three-point couplings can be gen-

eralized tom-point couplings. In that case, the couplings are realized by genericm-polygons.

The precise computation of the coupling constant Wxyz in Type IIA string theory is a large

bene�t of string theory compared to �eld theory. Actually, in the Standard Model of particle

physics, the Yukawa coupling constants cannot be derived from �rst principles. Instead, they
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correspond to free parameters of the theory, which have to be �tted by hand to the experi-

mental data. Subsequently, also the hierarchy is produced by hand in the Standard Model.

In contrast, Type IIA string theory provides the tools to associate geometrical meaning to

the mass couplings, making them natural and computable. For concrete computations of

m-point couplings on similar backgrounds to the one used here, see for example [75, 74, 76].

These references also include discussions about the correct hierarchy reproduction.

As a �nal remark, note that in all our global models the bulk three-cycles are parallel to

the ΩR- or ΩRZ(1)
2 -plane. In particular, on the �rst two-torus T 2

(1) the one-cycles always

have wrapping numbers (n1,m1) = (1, 0), as both the orbifold and orientifold actions act

trivially on the ΩR and ΩRZ(1)
2 -planes on the �rst two-torus. Thus, the contribution from

the �rst two-torus T 2
(1) to the total area is always zero. Consequently, in the present work,

we will focus on the couplings coming from the second and third two-torus T 2
(2) × T 2

(3).

In order to avoid confusions, we will �x the labels of the intersection points right from the

start. The following �gure exposes all possible combinations of bulk orbits arising in our

models and their intersection points, and the �gure also puts a label to each intersection

point:

1 4

65

: (S, S ′)
: (P, P ′)
: (Q,Q′)
: (R,R′)
: (2, 3)

The solid lines indicate various possibilities of bulk orbits which appear in our models without

shifts. The dashed lines correspond to the bulk orbits in presence of shifts. The black points

correspond to Z2-�xed points. All the other points form Z2-invariant pairs of points of the

form (X,X ′). The points in gray labeled by 2 and 3 are Z3-�xed points (see �gure 2.4),

and together form a Z2-invariant pair of points. The points (X,X ′) will be denoted in the

following by a further index i = 2, 3 as (Xi, X
′
i) in order to refer to the two-torus under

consideration, i.e. the second T 2
(2) or third two-torus T 2

(3).

9.2 Cubic couplings in the global MSSM-like model

As we already pointed out in the previous chapter about discrete symmetries, we will not

derive the �eld theoretical properties for all the models we found, but restrict the analysis

to the global MSSM-like model and the left-right symmetric models. In this section, we will

concentrate on the cubic couplings arising in the �ve-stack MSSM-like model. Once again,

we will derive the results in some detail for the MSSM, but only provide the �nal results for

the left-right symmetric models.

Generic discussion of the superpotential

Remember some of the features of the global MSSM model at hand: we have an extended

Higgs sector, extended left-handed lepton and right-handed quark sectors, as well as a non-



176 CHAPTER 9. THREE- AND FOUR-POINT COUPLINGS AT LEADING ORDER

trivial Z3-symmetry. In addition, we have a global Peccei-Quinn symmetry U(1)PQ ≡ U(1)c−
U(1)d, which is re�ected in the charges of the particle spectrum under this symmetry, see

table 7.18 [101, 102]. This is con�rmed by the form of our perturbative superpotential.

Anticipating the results, the superpotential can schematically be written in terms of �ve

di�erent contributions we are interested in:

Wper ⊃ WMSSM +Wextra +WDFSZ +Wν +Whidden , (9.3)

where the �ve contributions read (schematically) as follows:

WMSSM = yuQL · H̃uuR + yd QL ·HddR + ye L ·HdeR + yν L ·HuνR, (9.4a)

Wextra = κ dRΣ
cddR + κ̃ L ·HuΣ

cd, (9.4b)

WDFSZ = µHu · H̃dΣ
cd + µ̃ H̃u ·HdΣ̃

cd, (9.4c)

Wν = BL · H̃uAntib + UL · H̃uAdjd, (9.4d)

Whidden = hu hb ·Huhc + hd hb · H̃dhd. (9.4e)

An remarkable absence is given by certain Yukawa couplings involving Hu or H̃d, such as e.g.

yu QL · HuuR, which do neither satisfy the stringy selection rules nor the charge selection

rules. This has been checked explicitly case-by-case; albeit in this work, we will only go

through some choice examples explicitly.

The �rst part of the superpotential (9.4a) constitutes the usual superpotential of the MSSM,

containing the Yukawa couplings indicated in section 3.2.1. However, there is a signi�cant

di�erence due to the fact that in the present couplings, two sorts of Higgses appear, the ones

with a tilde and the ones without tilde. More precisely, we have only one sort of down-type

Higgses Hd appearing, but two sorts of Higgs �elds Hu and H̃u for the up-type Higgses. In

the previous chapter 8, we have seen that by interpreting the right-handed neutrinos in the

usual way as matter states arising in the cd sector, as we do in (9.4a), the charges of the

right-handed neutrinos νR under the Z3-symmetry in table 7.17 are in con�ict with those

deduced from formulas (8.4). This issue can be solved by identifying the right-handed neu-

trinos with the singlet states arising in the antisymmetric sector of b or the adjoint sector

of d. The drawback of this interpretation is that the right-handed neutrinos no longer come

in three generations. In this chapter, we will analyze mass terms for all three possible inter-

pretations of the right-handed neutrinos νR.

The second contribution to the superpotential (9.4b) involves cubic couplings for the nu-

merous right-handed quarks and left-handed leptons. The scalars in the super�elds Σcd and

Σ̃cd, which we will call axions, can develop a VEV, producing a supersymmetric mass term

for the right-handed quarks and left-handed leptons. If the coupling constant is high enough,

the super�uous generations of non-chiral right-handed quarks and left-handed leptons could

be lifted to high energies. Consequently, we would be left e�ectively with three generations

of right-handed quarks and left-handed leptons at low energies. Hence, it is important to

determine these cubic couplings and compare them with the traditional Yukawa couplings

of the MSSM.

The third component of the superpotential (9.4c) is the SUSY version of the DFSZ model,

see e.g. [101, 211]. Basically, the DFSZ model forms an extension of the Standard Model
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by the Peccei-Quinn symmetry and an extra singlet �eld. Its aim is to solve the strong

CP-problem [212, 213]. The original proposition of Peccei and Quinn [162, 163] associated

the breaking scale of the U(1)PQ symmetry to the electroweak scale. However, this leads to

phenomenologically undesired e�ects so that the original Peccei-Quinn model has been ruled

out, see [214�216]. The breaking scale of the U(1)PQ symmetry can be decoupled from the

electroweak scale by associating the former to the VEV of a new scalar �eld, which is a sin-

glet under the MSSM gauge group, but charged under U(1)PQ. This is the scenario used in

the DFSZ model. In our case, the Σcd axion arising in the non-chiral cd sector could assume

the rôle of this scalar �eld, as it is a singlet under the MSSM gauge group but charged under

U(1)PQ. Also, the Higgs �elds possess the correct Peccei-Quinn charges to form together

with Σcd a U(1)PQ singlet term.

The fourth contribution to the superpotential (9.4d) consists in cubic couplings for the

right-handed neutrinos in the case they are associated to the states arising in the antisym-

metric sector of b or the adjoint sector of d.

The �nal contribution to the perturbative superpotential (9.4e) is dedicated to cubic cou-

plings involving chiral exotic particle states from the hidden sector. The sates hb play the

rôle of exotic left-handed leptons in the hidden sector, since they constitute an electroweak

doublet. The exotic states hc and hd can be interpreted as exotic right-handed leptons,

corresponding to neutrino-like exotics and electron-like exotics respectively. They can be

coupled to the Higgs doublets arising in the visible sector, in a similar way to their leptonic

counterparts in the visible sector. Should the coupling constants hu and hd reveal themselves

to be of order one, then the chiral exotic particles are lifted to energies high above current

detectors' reach and are no longer observable.

Localization of matter states

The determination of cubic couplings needs the information in which sectors x(ωky)k=0,1,2

the matter states arise precisely. Tables 9.1 and 9.2 contain the matter localization per

sector, according to the data given in table 7.17. This data is not yet su�cient to determine

the exact localization of matter states at precise Z2-�xed points or Z2-invariant pairs of

points. In fact, the chiral states can be localized precisely, since in our case the number of

intersection points of torus three-cycles agrees with the number of states determined by the

intersection numbers, as we will see in the following sections. The rule is that chiral states

are located at a Z2-�xed point on at least one of the two two-tori T 2
(2) × T 2

(3). The non-chiral

states are in general located on Z2-invariant pairs of points on both two-tori. However, in

the present context, we will also encounter non-chiral states including a Z2-�xed point in

their location. In that case, we have to determine precisely the location of each member of

the non-chiral pair, as in general only one member of the non-chiral pair is used in cubic

couplings. The precise localization can be performed by using the Chan-Paton labels. This

method is also an alternative to computing the intersection numbers sector-per-sector. The

method is quite technical, so we will not go into detail here. The technique is presented in

appendix A of our publication [64], where discrete Wilson lines and shifts have been included

in the computation for the �rst time. I will only use the results to illustrate the computation

of cubic couplings and refer the reader to [64] for more detailed information.
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Figure 9.1: The three-cycle denoted by a is depicted in blue, the three-cycle labeled by b is indicated

in green, and the three-cycle (ω2d)′ is given in red. These three-cycles give rise to a quarkonic

Yukawa coupling of the form yuQL · H̃uuR. On the second two-torus T 2
(2), an example of a triangle

formed by a, b and (ω2d)′ is depicted in orange.

9.2.1 Quarkonic cubic couplings

In this section, we will focus on cubic couplings involving quarks, which we refer to as

"quarkonic" couplings. We will go through the calculation of one of the Yukawa couplings

involving quarks explicitly, and only give the �nal results for all the other quarkonic cubic

couplings. The example we will examine explicitly shall be the Yukawa coupling yuQL ·H̃uuR

of the MSSM part of the superpotential, which gives mass to the up-type quarks after EWSB.

Example of calculation: The Yukawa coupling yuQL · H̃uuR

In table 9.1 we see that the three generations of left-handed quarks QL arising in the sectors

a(ωkb) (see table 7.18) are spread over two di�erent sectors k = 0, 1.

The same holds true for the right-handed up-type quarks arising in the sectors a(ωkd)′ (see

tables 7.18 and 9.2) with k = 0, 2. Consequently, di�erent orbifold images of the cycles b

and d′ have to be used to provide mass terms for all three generations of up-type quarks.

We will start with the sequence [a, b, (ω2d)′].

Triangles formed by the sequence [a, b, (ω2d)′]: The situation is illustrated in �gure

9.1. We see in �gure 9.1 that these three torus three-cycles ful�ll the stringy selection rule,

as they form a closed sequence. In addition, the Yukawa coupling yuQL · H̃uuR consists of

representations which form a singlet under the gauge group of the MSSM. Besides, the U(1)-

charges also cancel: (Qa, Qc, Qd, Qh) = (1, 0, 0, 0) + (0, 0, 1, 0) + (−1, 0,−1, 0). Remember

that the various charges of the particle content for this MSSM model can be found in table

7.18. Therefore, the cubic coupling under consideration also satis�es the charge selection rule.

On the �rst two-torus T 2
(1), all the one-cycles are coincident, as all three-cycles have (n

1,m1) =

(1, 0) and the orbifold generators as well as the orientifold projection act trivially on this

one-cycle on the �rst two-torus. Note that also none of the three-cycles present in this MSSM

model comes with a shift on the �rst two-torus, as can be checked from table 7.17. As we

already pointed out at the beginning of this chapter, we will focus on the second and third

two-torus T 2
(2) × T 2

(3).

On the second two-torus T 2
(2), we see that all three one-cycles intersect in one single point,

the Z2-�xed point labeled by 5. Other intersection points are given by the Z2-�xed point

labeled by 6, and the Z2-invariant pair of intersection points (S2, S
′
2) depicted in magenta.

In the fundamental domain of T 2
(2), already two closed triangles can be seen, given by the
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intersection points 5, 6, S2 and 5, 6, S ′
2, which are Z2-images of each other. However, other

triangles with other apexes exist which only close after identi�cation of the boundaries of

the fundamental domain. They can be detected by drawing several lattice cells.

On the third two-torus T 2
(3), we have two Z2-�xed points labeled by 4 and 5 as intersection

points. There are four more intersection points. Already by drawing only one lattice cell, we

can detect two small triangles given by the intersection points 5, P3, Q3 and their Z2-image,

and two bigger triangles formed by the intersection points 4, 5, Q3 and their Z2-images. Fur-

ther triangles can be found by drawing several lattice cells.

In summary, we have the following intersection points and localization of matter states:

state xy χxy T 2
(2) T 2

(3)

Q
(1,2)
L ab 2 5, 6 (Q3, Q

′
3)

u
(1)
R a(ω2d)′ −1 5 5

H̃
(2)
u (+H̃

(2)
d , L(1,2,3)) b(ω2d)′ |2| (−3) 5, (S2, S

′
2) 4, (P3, P

′
3)

(9.5)

The �rst column gives the particles appearing in the Yukawa coupling under consideration,

and the second column gives the intersection sector xy in which the states arise. The third

column yields the multiplicity (and chirality in case of chiral states) of the states given in

the �rst column. The fourth and �fth columns provide the labels of the intersection points

of the one-cycles x and y on the second respectively third two-torus.

We see that in the ab sector, we have two chiral states labeled Q
(1,2)
L , which matches the

number of intersection points. Indeed, one chiral left-handed quark state, let it be denoted

by Q
(1)
L , is localized at the Z2-invariant pair of intersection points (6, (Q3, Q

′
3)), whereas the

second left-handed quark state Q
(2)
L is situated at (5, (Q3, Q

′
3)) on T 2

(2) × T 2
(3). Note that a

state sitting at a Z2-invariant pair of points is shared between the two points. Thus, the

area of a triangle and its Z2-image is only counted once.

Also the multiplicity of the chiral right-handed up-type quark matches the number of inter-

section points, i.e. one state localized at the intersection point (5, 5) on T 2
(2) × T 2

(3).

However, in the b(ω2d)′ sector, we see that we have four Z2-invariant pairs of intersection

points (5, 4), (5, (P3, P
′
3)), ((S2, S

′
2), 4) and ((S2, S

′
2), (P3, P

′
3)), but only one non-chiral state

denoted by H̃
(2)
u + H̃

(2)
d which we are interested in. A look at table 9.2 reveals that this

sector also comes with three chiral states L(1,2,3), but we are not interested in these, since

they have di�erent U(1)-charges (see table 7.18) than the up-type Higgs H̃
(2)
u and thus do

not satisfy the charge selection rule. In order to calculate the correct Yukawa coupling, the

exact position of the non-chiral pair has to be determined. Since we only have one non-

chiral pair in the considered sector, it is clear that it will be localized at the Z2-invariant

pair of intersection points ((S2, S
′
2), (P3, P

′
3)), while the three chiral leptonic states L

(1,2,3) will

place themselves at the intersection points involving some Z2-�xed points, i.e. (5, (P3, P
′
3)),

((S2, S
′
2), 4) and (5, 4).

Note that the feature of having both chiral and non-chiral matter states arising in the same

sector is rather unusual, and has not been encountered in previous studies of Yukawa cou-

plings with intersecting D6-branes.
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Next, we draw all possible triangles and compute the corresponding areas:

triangles on T 2
(2)

Area
v2

triangles on T 2
(3)

Area
v3

[5]2 0 [(Q3, Q
′
3), 5, 4]3

3
16

[5, 6, 5]2
3
4

[(P3, P
′
3), (Q3, Q

′
3), 5]3

1
48

[5, (S2, S
′
2), 5]2

1
3

[(S2, S
′
2), 5, 6]2

1
12

(9.6)

The quantity vi denotes the total area of the fundamental domain of the two-torus T 2
(i) in

units of α′. A priori, we have 4 · 2 = 8 possible combinations of triangles [ ]2 and [ ]3.

However, not all of these can be used since we have only one non-chiral Higgs pair sitting at

the point ((S2, S
′
2), (P3, P

′
3)). Hence, the triangles [5]2 and [5, 6, 5]2 of the second two-torus

and the triangle [(Q3, Q
′
3), 5, 4]3 on the third two-torus cannot be used. In the end, we have

two possible combinations left to provide mass terms for the two left-handed quarks Q
(1,2)
L

and the right-handed up-type quark u
(1)
R . The results can be summarized as follows:

Coupling Triangles on T 2
(2) × T 2

(3) Parameter

Q
(2)
L · H̃(2)

u u
(1)
R {[5, (S2, S

′
2), 5], [(Q3, Q

′
3), (P3, P

′
3), 5]} y

(221)
u ∼ O

(
e−

16v2+v3
48

)
Q

(1)
L · H̃(2)

u u
(1)
R {[6, (S2, S

′
2), 5], [(Q3, Q

′
3), (P3, P

′
3), 5]} y

(121)
u ∼ O

(
e−

4v2+v3
48

)
The parameters y

(ijk)
u , i, j, k ∈ {1, 2} are the up-type Yukawa coupling constants with the

superscript referring to the particle generation involved in the coupling. The exponent of

the coupling gives the area enclosed by the sequence. We denoted the Higgs particle arising

in this sector b(ω2d)′ by H̃
(2)
u . There is one generation-mixing mass term given by the

Yukawa coupling y
(221)
u , and one diagonal mass term y

(121)
u without generation mixing. The

generation-mixing terms should be suppressed compared to the diagonal terms in order to

produce a realistic structure of the Yukawa couplings. This agrees with our choice of the label

(i) in Q
(i=1,2)
L insofar that the non-diagonal Yukawa coupling y

(221)
u is suppressed compared

to the diagonal one y
(121)
u , i.e y

(221)
u < y

(121)
u .

So far, only one generation of up-type quarks has acquired mass. To produce mass terms for

the remaining up-type quarks, we have to analyze another sequence, involving for example

the three-cycles a, (ωb), d′.

Triangles formed by the sequence [a, (ωb), d′]: The three torus three-cycles lie on the

six-torus as indicated in �gure 9.2. On the second two-torus T 2
(2) in �gure 9.2, we see that we

have no intersection point where all three one-cycles meet. Instead, we have two pairs of Z2-

invariant intersection points in which two one-cycles meet. Thus, already on the fundamental

domain of the two-torus, a triangle is apparent, formed by the three points P2, Q2, 6. The

third two-torus T 2
(3) comes with the obvious triangle the apexes of which are 6, 5, R3, as well

as its usual Z2-image. Furthermore, the Z2-�xed point denoted by 6 is an intersection point

of all three one-cycles. Once again, drawing further lattice cells reveals other triangles with

other apexes.
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Figure 9.2: The three-cycle denoted by a is depicted in blue, the three-cycle labeled by (ωb) is

indicated in green, and the three-cycle d′ is given in red. These three-cycles give rise to a quarkonic

Yukawa coupling of the form yuQL · H̃uuR.

All in all, we have the following intersection points and localizations of matter states:

state xy χxy T 2
(2) T 2

(3)

Q
(3)
L a(ωb) 1 6 6

u
(2,3)
R ad′ −2 (Q2, Q

′
2) 5, 6

H̃
(1)
u (+H̃

(1)
d , L(4,5,6)) (ωb)d′ |2| (−3) 4, (P2, P

′
2) 6, (R3, R

′
3)

(9.7)

Once again, the multiplicity of the chiral states matches with the intersection points of one-

cycles. In the non-chiral sector, we have once more one relevant non-chiral state and three

non-relevant chiral states. 1 As usual, the non-chiral state H̃
(1)
u +H̃

(1)
d sits on the Z2-invariant

pair of points ((P2, P
′
2), (R3, R

′
3)) on T 2

(2) × T 2
(3).

The triangles are given by:

triangle on T 2
(2)

Area
v2

triangle on T 2
(3)

Area
v3

[(Q2, Q
′
2), (P2, P

′
2), 6]2

1
48

[(R3, R
′
3), 5, 6]3

1
12

[(Q2, Q
′
2), 4, 6]2

3
16

[6, (R3, R
′
3), 6]3

1
3

[6]3 0

[6, 5, 6]3
3
4

(9.8)

We have again eight possibilities to choose combinations of triangles on the second and third

torus, albeit not all can be realized as we have only one non-chiral Higgs pair. In conclusion,

the possible Yukawa couplings are uniquely determined and can be summarized as follows:

Coupling Triangles on T 2
(2) × T 2

(3) Parameter

Q
(3)
L · H̃(1)

u u
(2)
R {[6, (P2, P

′
2), (Q2, Q

′
2)], [6, (R3, R

′
3), 6]} y

(312)
u ∼ O

(
e−

v2+16v3
48

)
Q

(3)
L · H̃(1)

u u
(3)
R {[6, (P2, P

′
2), (Q2, Q

′
2)], [6, (R3, R

′
3), 5]} y

(313)
u ∼ O

(
e−

v2+4v3
48

)
We have a diagonal mass term associated to the coupling y(313), corresponding to the third

generation of up-type quarks. There is no diagonal term for the second generation of up-type

1Note that we have the following relation between intersection numbers or sectors: (ωb)d′ = b(ω2d′) =

b(ωd)′. In general, we have (ωkx)(ωly) = x(ωl−ky), and switching the orientifold projection with the orbifold

action boils down to switching the second and third sectors ω1 ↔ ω2, or more generic, replacing the exponent

of the ω-action by minus the exponent. This can be checked explicitly by using (2.13) and (2.18).
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quarks involving Q
(2)
L and u

(2)
R , though the latter appears in the generation-mixing coupling

associated to y(312). Once again, the o�-diagonal term is suppressed compared to the diagonal

term. Also, having a look at the diagonal Yukawa couplings y(121) and y(313), we see that

we can create a mass hierarchy between the generations of particles by choosing v2 > v3
or v2 < v3. Hence, this stringy set-up allows to explain mass hierarchy in a natural way.

However, note that the parameters vi are still free parameters, but they can be related to

geometrical quantities.

Other cubic couplings involving quarks

In this section, we will brie�y summarize and comment on the results concerning the other

cubic couplings involving quarks in (9.3). The results for the down-type quarks can be de-

rived similarly to the ones for the up-type quarks and are given in tables 9.3 and 9.4.

Quarkonic Yukawa couplings in (9.4a): The results in table 9.3 can be summarized as

follows: contrarily to the up-type quarks, we have diagonal Yukawa couplings for all three

generations of down-type quarks, given by y
(1,i,1)
d , i = 2, 3, y

(2,1,2)
d , and y

(3,i,3)
d , i = 2, 3. We see

that in the b(ω2c) sector, we have two non-chiral Higgs pairs labeled by i = 2, 3. The labeling

i is chosen as follows: i = 3 corresponds to the Higgs pair H
(3)
u +H

(3)
d located at the usual

intersection points involving two pairs of Z2-invariant points, for example ((S2, S
′
2), (P3, P

′
3)).

The localization of the second Higgs pair H
(2)
u +H

(2)
d labeled by i = 2 is more complicated.

Indeed, the computation via Chan-Paton labels revealed that the up-type Higgs doublet H
(2)
u

is located at intersection points of the form ((Y, Y ′), X) on T 2
(2) × T 2

(3), while the down-type

Higgs doublet H
(2)
d is situated at intersection points of the form (X, (Y, Y ′)) on T 2

(2) × T 2
(3),

where (Y, Y ′) denotes a Z2-invariant pair of points and X a Z2-�xed point. This has been

taken into account in the Yukawa couplings of table 9.3. The presence of two non-chiral Higgs

pairs clearly enriches the Yukawa structure, as can be seen by comparing the couplings of

the up-type quarks with those of the down-type quarks. This is related to the fact that more

closed triangles with occupied apexes can be used when one of the Higgs doublets sits on a

Z2-�xed point on one of the two tori T 2
(2) or T

2
(3).

A look at table 9.3 reveals a suppression of the o�-diagonal terms y
(112)
d , y

(231)
d , and y

(33i∈{4,5,6})
d

with respect to the diagonal couplings y
(212)
d , y

(131)
d and y

(333)
d respectively. However, this holds

not true for the Yukawa couplings involving the Higgs doublet labeled by H
(2)
d , as y

(221)
d for

instance is larger than y
(121)
d .

As a side-remark, note that the ordering of the apexes of the triangles in the third column

of table 9.3 (and the following tables as well) re�ects the localization of the matter states in

the same order as the states appear in the Yukawa couplings of the �rst column.
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Quarkonic couplings in (9.4b): Table 9.4 provides cubic couplings for the redundant

right-handed down-type quarks dR
(1,2,3)

and d
(4,5,6)
R with the axions Σcd(1,2,3). The hope was

that some of the couplings with Σcd(1,2,3) would come with large coupling constants so that

super�uous e�ective non-chiral pairs dR + dR acquire a mass big enough to put them out

of today's detector ranges. Unfortunately, we see that none of the couplings κ is of order

O(1). Instead, they are all exponentially suppressed. Obviously, another mechanism has

to be derived in order to explain why only three generations of right-handed down-quarks

d
(1,2,3)
R appear at low energies. However, the derivation of such a mechanism is not a topic

included in this thesis, and has to be performed in future work.

Note that also here we have two non-chiral pairs of axions Σcd(1,2) arising in the c(ωd) sector,

labeled by i = 1, 2. Once again, this feature enriches considerably the Yukawa structure.
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Figure 9.3: The three-cycle denoted by (ω2c) is depicted in cyan, the three-cycle labeled by b is

indicated in green, and the three-cycle (ω2d)′ is given in red. These three-cycles give rise to a

leptonic Yukawa coupling of the form yeL ·HdeR.

9.2.2 Leptonic cubic couplings

In this section, we will focus on the states that are uncharged under the strong interactions,

i.e. leptonic states. These include the leptons per se, but also the Higgs doublets which have

similar quantum numbers to the left-handed leptons. We choose to present in some detail

the Yukawa couplings yeL ·HdeR of the electron-like leptons.

Example of calculation: The Yukawa coupling yeL ·HdeR

In table 7.18, we see that the left-handed leptons L of the low-energy MSSM arise in the

bd sector, the right-handed electrons in the cd′ sector and the Higgs doublet Hd from the

non-chiral bc sector. A look at table 9.2 reveals that the three generations of right-handed

electrons eR are localized in a single sector c(ωkd)′ with k = 1. Consequently, we need

only one sequence of orbifold and orientifold images of the cycles b, c, d to give mass to all

three generations, unlike the situation for the up-type quarks where the three generations of

quarks spread over two sectors.

Triangles formed by the sequence [b, (ω2c), (ω2d)′]: The position of the three torus

three-cycles on the three two-tori is given in �gure 9.3. The situation is a bit di�erent

compared to the one of the up-type quarks. Indeed, we now have on both two-tori two

intersection points where all three one-cycles meet, namely a Z2-�xed point (5 on T 2
(2) and 4

on T 2
(3)) and a pair of Z2-invariant points ((S2, S

′
2) on T 2

(2) and (P3, P
′
3) on T 2

(3)). Contrarily

to the case of the up-type quarks, the apexes of the triangles include both members of the

Z2-invariant pair of points. The precise matter localization per sector is given by:

state xy χxy T 2
(2) T 2

(3)

L(1,2,3) (+H̃
(2)
u + H̃

(2)
d ) b(ω2d)′ −3 (+|2|) 5, (S2, S

′
2) 4, (P3, P

′
3)

H
(2,3)
d (+H

(2,3)
u ) b(ω2c) |4| 5, (S2, S

′
2) 4, (P3, P

′
3)

e
(1,2,3)
R (+Xcd(1) + X̃cd(1)) (ω2c)(ω2d)′ 3 (+|2|) 5, (S2, S

′
2) 4, (P3, P

′
3)

(9.9)

In the b(ω2d)′ sector, we have on top of the three chiral states L(1,2,3) also a non-chiral Higgs

pair H̃
(2)
u + H̃

(2)
d . Once again, the non-chiral pair is placed on some combination of states

involving the Z2-invariant pairs of points ((S2, S
′
2), (P3, P

′
3)). The three chiral states sit on

the three combinations left involving at least one Z2-�xed point. The same holds true for
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the (ω2c)(ω2d)′ sector2. The b(ω2c) sector comes with two non-chiral pairs of Higgs doublets

H
(2,3)
u +H

(2,3)
d . The labeling and positioning of the two Higgs doublets is of course the same

as before in the case of the Yukawa couplings involving down-type quarks, which was dis-

cussed at the end of the previous section.

The triangles visible in the fundamental domain are the only possible ones. Drawing several

lattice cells does not yield any new triangles except for higher order copies. The triangles

of the form [4, (P3, P
′
3), (P3, P

′
3)] and [(S2, S

′
2), (S2, S

′
2), 5] have an area equal to vi

6
. Together

with the intersection points where all three one-cycles meet, we have a total of nine combi-

nations to pair o� closed sequences of both two-tori.

However, not all combinations can be used to produce Yukawa couplings as not all inter-

section points support all states. For example, both Higgs doublets H
(2)
d and H

(3)
d involve

the Z2-invariant pair of points (P3, P
′
3) on the third two-torus T 2

(3). Thus, we cannot use the

triangle given by a single intersection point [4]3 on the third two-torus. This has been taken

into account in table 9.5. The �rst block of table 9.5 summarizes the results for the electron-

like leptons. The labels of the leptons i have been chosen in such a way that a realistic

mass hierarchy pattern is reproduced. Indeed, the o�-diagonal couplings involving the �rst

and third generations L(1,3) and e
(1,3)
R are more suppressed than the couplings involving the

second and third generations L(2,3) and e
(2,3)
R , i.e. y

(322)
e ≈ y

(223)
e > y

(133)
e ≈ y

(331)
e . Hence, the

Yukawa couplings for the second generation of electron-like leptons are larger than the ones

for the �rst generation. Contrarily to the �rst and second generations, the third generation

comes with a diagonal term y
(323)
e , which is of order one.

As a side-remark, note that we could also have written down three-point couplings for

other states (e.g. Xcd(1) + X̃cd(1)) appearing in the intersection sectors under consideration.

However, these states have very similar couplings to the ones given in table 9.5, and are

related to them by a simple relabeling of the states. We omitted writing them down explicitly

in order to avoid overloading the tables.

2Once more, we have the following relation between intersection numbers: (ω2c)(ω2d)′ = (ω2c)(ωd′) =

c(ω−1d′) = c(ω2d′) = c(ωd)′.
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Other leptonic cubic couplings

The cubic couplings for the other leptons can be derived in much the same way, as we always

have the D6-branes b, c, d and their orbifold and orientifold images involved.

Yukawa couplings for the neutrinos in (9.4a): The results for the neutrinos are given

in the second block of table 9.5. All three generations of right-handed neutrinos can be

given mass with the same mass hierarchy we had for the electrons, i.e. y
(622)
ν ≈ y

(523)
ν >

y
(433)
ν ≈ y

(631)
ν . However, the left-handed leptons L(4,5,6) appearing in the cubic coupling of

the neutrinos are not the same as those left-handed leptons L(1,2,3) appearing in the coupling

of the electrons, since di�erent b(ωkd) sectors are involved. This is a bit annoying, since we

wanted to give three generations of leptons L out of the six generations of leptons masses

large enough so that the MSSM at low energies has only e�ectively three generations of

leptons. This aim is in contradiction to the fact that all six generations are needed to

provide mass terms for both electrons and neutrinos at low energies. However, this is only

a problem if we identify the right-handed neutrinos νR with the singlet states arising in the

c(ωkd) sectors. As mentioned already several times, an alternative identi�cation can be done

using the antisymmetric sector of b or the adjoint sector of d, which we will analyze in section

9.2.3.
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Leptonic couplings in (9.4b): Now let us consider table 9.6. This table includes cubic

coupling terms for the numerous left-handed leptons with the axions Σcd(1,2,3), which develop

a VEV in order to provide additional mass terms. Both sets of leptons L(1,2,3) and L(4,5,6)

couple to the axions Σcd(1,2) and Σcd(3), respectively, with di�erent sets of Yukawa couplings.

Thus, one set of leptons could possibly be rendered heavier than the other. In fact, a possi-

bility to decouple L(1,2,3) from L(4,5,6) would be by increasing the VEV of Σcd(3) compared to

the VEV of Σcd(1,2), which would render the leptons L(4,5,6) heavier than the leptons L(1,2,3).

However, the �eld Σcd(3) also appears in the couplings κ(131), κ(232) and κ(132) of table 9.4.

A large VEV for Σcd(3) would imply a large mass for the right handed down-type quarks

d
(1)
R and d

(2)
R , which is phenomenologically undesirable as these down-type quarks are needed

to provide three generations of right-handed down-type quarks at low energies. The same

holds true when lifting the VEV of Σcd(1,2) in order to render L(1,2,3) heavy. Thus, just as

in the case of the redundant right-handed quarks, another mechanism needs to be found in

order to explain why this MSSM model appears as an e�ective three-generation model at

low energies.

Note that we have a total of six up-type Higgses H
(1...6)
u appearing in table 9.6. The label

i = 2, 3 refers to the Higgs doublets we have already encountered before. These Higgses arise

in the non-chiral sector of b(ω2c), with H
(3)
u being situated at an Z2-invariant pair of points

of the form ((Y, Y ′), (X,X ′)) on T 2
(2) × T 2

(3) and H
(2)
u localized at intersection points of the

form ((Y, Y ′), X) on T 2
(2) × T 2

(3). The Higgs doublet arising in the non-chiral sector of b(ωc)

is denoted by H
(1)
u .

Apart from the non-chiral Higgses we also have three additional chiral Higgses H
(4,5,6)
u arising

in the chiral sector of b(ωc). They are referred to as up-type Higgses because they present

the same quantum numbers as the electroweak up-type Higgs doublets arising from the non-

chiral sectors. The Higgses H
(4,5,6)
u play a similar rôle to the extra down-type quarks dR we

have encountered in the previous section, insofar that they form hermitian conjugates with

three out of the six redundant leptons L(1...6). They can thus e�ectively pair o� with the

latter to form non-chiral pairs of states.

Finally, we will brie�y comment on the labeling of the axions Σcd(1,2). In the non-chiral

sector of c(ωd), we have two pairs of axions labeled by Σcd(1,2) + Σ̃cd(1,2). We labeled by

Σcd(2) (+Σ̃cd(2)) the pair of axions localized at an intersection point of the form ((Y, Y ′), (X,X ′))

on T 2
(2) × T 2

(3), and the axion labeled by Σcd(1) sits at an intersection point of the form

(Y, (X,X ′)) on T 2
(2) × T 2

(3). Let us already point out, for later reference, that the second

member of the �rst non-chiral pair denoted by Σ̃cd(1) lives at an intersection point of the

form ((Y, Y ′), X) on T 2
(2) × T 2

(3). This has been explicitly computed in our publication [64]

via the method involving Chan-Paton factors.
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Couplings in (9.4c): There is one last sort of couplings involving leptonic states, given

in table 9.7. The couplings Hu · H̃dΣ̃
cd and H̃u ·HdΣ̃

cd are part of the SUSY formulation of

the DFSZ axion model as explained beforehand. The electroweak Higgs doublets denoted

with tilde arise from the non-chiral sectors of b(ωd) and b(ω2d).

Once again, both sets of untilded Higgses from the chiral sector H
(4,5,6)
u and the non-chiral

sectors H
(1,2,3)
u can be used in the couplings, since they have the same quantum numbers.

Note that table 9.7 is the only table containing the tilded members of the non-chiral axions,

i.e. for instance Σ̃cd(1), which we already mentioned in the previous paragraph.

In table 9.7, we also see some couplings with the symbol of in�nity ∞ appearing. Indeed,

for some couplings it occurs that the intersection points occupied with particle states do

not form closed triangles. The same phenomena appears for other couplings such as those

involving the neutrinos, but we only wrote down two examples explicitly in table 9.7 since

such couplings do not exist.

As a �nal remark, note that we could have interpreted the leptons L(1,...,6) as down-type

Higgses H̃d, since they have the same quantum numbers. In that sense, tables 9.6 and 9.7

belong to the same discussion.
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Figure 9.4: The three-cycle denoted by (ω2d) is depicted in orange, the three-cycle labeled by b

is indicated in green, and the three-cycle (ωd) is given in red. These three-cycles give rise to a

coupling of the form L · H̃uAdjd.

9.2.3 Alternative couplings for the neutrinos

We have seen that by identifying the right-handed neutrino states with the singlet states

arising in the c(ω2d) sector, troubles arise concerning the charge of the right-handed neutrinos

νR under the non-trivial Z3-symmetry. Alternative singlet states can be used to play the

rôle of the right-handed neutrinos, such as the �ve singlet states from the b(ωk=1,2b)′ sectors

Antib = (1,1A,1)(0,0,0,0) corresponding to the antisymmetric representation of USp(2)b,

or the four and �ve singlet states arising in the c(ωk=1,2)c respectively d(ωk=1,2)d sectors

corresponding to the adjoint representation of U(1)c respectively U(1)d.

The Yukawa couplings associated to these singlet states are then of the form L · H̃uAdj

respectively L · H̃uAnti. It is not possible to provide a coupling of the form L · H̃uAdj

with the states Adj arising in the c(ωk=1,2c) sectors and satisfying the stringy selection rule.

The other two possibilities involving the antisymmetric states from the b(ωk=1,2b)′ sectors

and the states in the adjoint representation coming from the d(ωk=1,2)d sectors on the other

hand allow for couplings ful�lling the stringy selection rule. Once more, we will derive one

coupling explicitly, and provide the �nal results of the remaining couplings.

Example of calculation: The coupling L · H̃uAdjd

The Yukawa coupling L · H̃uAdjd involves the stacks b, (ωd) and (ω2d). Remember that the

leptons arising from the chiral sector of b(ωd) are labeled L(4,5,6), those arising from b(ω2d)

are labeled L(1,2,3). The up-type Higgs H̃
(2)
u arises from the non-chiral sector of b(ω2d)

while the up-type Higgs H̃
(1)
u arises from the non-chiral sector of b(ωd). All six Yukawa

couplings for the six generations of left-handed leptons can be realized with the same se-

quence [b, (ωd), (ω2d)]. These three-cycles lie on the three two-tori as indicated in �gure

9.4. On the second two-torus T 2
(2), there is no intersection point where all three one-cycles

meet. Pairwise intersection points are given by the points labeled 1, 5, 6, (R2, R
′
2), (2, 3)

and (S2, S
′
2). On the fundamental domain, we can already detect two triangles and their

Z2-images [5, (2, 3), (R2, R
′
2)] and [6, (2, 3), (S2, S

′
2)]. Other triangles become apparent when

drawing several lattice cells. On the third two-torus T 2
(3), all three one-cycles intersect in the

Z2-�xed point 4 and in the Z2-invariant pair of points (P3, P
′
3). An obvious triangle and its

Z2-image is given by the apexes [4, (P3, P
′
3), (P3, P

′
3)].

There are two possibilities to interpret the matter localization in the di�erent sectors, ac-
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cording to which set of leptons one is considering. The �rst possibility is given by:

state xy χxy T 2
(2) T 2

(3)

L(1,2,3) (+H̃
(2)
u + H̃

(2)
d ) b(ω2d) 3 (+|2|) 6, (R2, R

′
2) 4, (P3, P

′
3)

H̃
(1)
u (+H̃

(1)
d , L(4,5,6)) b(ωd) |2| (+3) 5, (S2, S

′
2) 4, (P3, P

′
3)

Adj
(1,2,3,4,5)
d (ωd)(ω2d) + (ω2d)(ωd) |5| 1, (2, 3) 4, (P3, P

′
3)

(9.10)

Once again, the three chiral leptons L(1,2,3) sit on the points involving some Z2-�xed points,

i.e. (6, (P3, P
′
3)), (6, 4) and ((R2, R

′
2), 4) on T 2

(2)×T 2
(3). The non-chiral Higgs H̃

(1)
u +H̃

(1)
d sits at

the points ((S2, S
′
2), (P3, P

′
3)). We have a pair of states in the adjoint representation denoted

by Adj
(4)
d +Adj

(5)
d living on ((2, 3), (P3, P

′
3)). The state in the adjoint representation denoted

by Adj
(2)
d is taken to live on ((2, 3), 4), the state in the adjoint representation denoted by

Adj
(3)
d is associated to (1, (P3, P

′
3)). The state labeled by Adj

(1)
d sits on the point (1, 4).

However, it cannot be involved in Yukawa couplings because its presence implies that one of

the apexes of a triangle is left unoccupied. The possible triangles on T 2
(2) × T 2

(3) which can

be formed with all apexes occupied by some state are given in the �rst block of table 9.8.

The other set of leptons can gain mass by the following interpretation of matter localization:

state xy χxy T 2
(2) T 2

(3)

L(4,5,6) (+H̃
(1)
u + H̃

(1)
d ) b(ωd) 3 (+|2|) 5, (S2, S

′
2) 4, (P3, P

′
3)

H̃
(2)
u (+H̃

(2)
d , L(1,2,3)) b(ω2d) |2| (+3) 6, (R2, R

′
2) 4, (P3, P

′
3)

Adj
(1,2,3,4,5)
d (ωd)(ω2d) + (ω2d)(ωd) |5| 1, (2, 3) 4, (P3, P

′
3)

(9.11)

Thus, the localization of matter states at intersection points is now slightly di�erent. It

can be derived from the previous interpretation by exchanging the labels 6 ↔ 5 and

(R2, R
′
2) ↔ (S2, S

′
2). The results are indicated in the second block of table 9.8.

In the second block of table 9.8 we see that we can provide mass terms for four out of

the �ve singlet states Adj
(1,2,3,4,5)
d . Both set of leptons L(1,2,3) and L(4,5,6) can be coupled

o�. Unfortunately, none of the couplings is of order one, which could have removed some of

the redundant leptons. However, the set of leptons L(1,2,3) and L(4,5,6) involve couplings to

di�erent Higgses H̃
(1)
u respectively H̃

(2)
u . Thus, by cranking up the VEV of the �eld H̃

(2)
u , some

of the leptons could be e�ectively removed from the low-energy model. This is not viable

from a phenomenological point of view though, as the �eld H̃
(2)
u also appears in the Yukawa

couplings of the up-type quarks, see table 9.3. Lifting the VEV of H̃
(2)
u would render some

of the up-type quarks too heavy. The same reasoning holds true for the couplings involving

H̃
(1)
u and L(1,2,3). Therefore, this scenario does not allow either to provide an argument for

a three-generation e�ective low-energy MSSM. In the next section, we will comment on the

results for the remaining alternative interpretation of the singlet states, albeit without giving

the explicit derivation.
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Other couplings involving right-handed neutrinos

The other possible interpretation of the right-handed neutrino states is given by the �ve

singlet states arising in the antisymmetric sector of b(ωk=1,2b)′. The corresponding Yukawa

coupling is of the form L · H̃uAntib. Just as in the previous computation, four out of the

�ve singlet states can be paired o� to the six generations of leptons with the sequences

[b, (ω2d)(ω2b)′] and [b, (ωd)(ωb)′]. The results are given in the �rst and second block of table

9.9. The situation is very similar to the one of the previous interpretation of right-handed

neutrinos. Indeed, none of the couplings is of order one, meaning that all six generations of

left-handed leptons remain present at low energies.

All in all, we can conclude that two out of the three alternative identi�cations of the right-

handed neutrinos give rise to Yukawa couplings. Hence, we can extend the perturbative

superpotential by adding the following terms:

Wper ⊃ B(i1k)L(i) · H̃(1)
u Anti

(k)
b + B̃(j1k)L(j) · H̃(2)

u Anti
(k)
b

+A(i1k)L(i) · H̃(1)
u Adj

(k)
d + Ã(j1k)L(j) · H̃(2)

u Adj
(k)
d ,

(9.12)

with i ∈ {1, 2, 3}, j ∈ {4, 5, 6} and k ∈ {2, 3, 4, 5}. The precise form of the associated

sequences and Yukawa couplings is given in table 9.9. Note that for the two possible iden-

ti�cations of the right-handed neutrinos presented in this section, we have a total of ten

generations of right-handed neutrinos, as we have �ve states in the antisymmetric sector of

b(ωk=1,2b)′ and �ve states in the adjoint sector of d(ωk=1,2d). This is phenomenologically

acceptable, as many theoretical models include so-called sterile neutrinos. These are right-

handed neutrinos which are used e.g. as candidates for dark matter states. For a review on

sterile neutrinos, see for instance [217].
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9.2.4 Hidden sector cubic couplings

This section is the �nal step in our search for cubic couplings and involves the exotic states

of the hidden sector. Since exotic particles are unappealing from a phenomenological point

of view, the hope is that they become substantially heavy. The exotic states can in principle

be given mass by coupling them to the various Higgs doublets arising in the visible sector.

As a �rst observation, let us consider the exotic states arising in the non-chiral sectors of ah

and ah′ as shown in tables 9.1 and 9.2. This involves the D6-branes a, h, h′. In the case

of a non-chiral pair of states, the most convenient way to provide mass terms with cubic

couplings would be to pair o� both members of the non-chiral pair simultaneously to some

singlet state. However, this is not possible, as the singlet states involve either the D6-branes

c or d. Thus, more than three cycles would be needed, which would lead to quartic couplings

instead of cubic couplings. Since we want to limit the analysis to cubic couplings, we will not

consider the exotic particles from the ah and ah′ sectors here and rather focus on the exotic

particles arising in the sectors of bh = bh′, ch′, dh and dh′. Note that the two non-chiral

pairs in the antisymmetric sector of hh′ are completely decoupled from the visible sector and

are thus not bothersome from the phenomenological point of view. Hence, we will not try

to give them masses.

To simplify the notation, we will label the states arising from the sectors xh and xh′ by hx

respectively hx, x = b, c, d. As usual, we will compute one cubic coupling in some detail,

and only give the �nal results for the others. We choose to present the coupling hb ·Huhc in

some detail.

Example of calculation: The Yukawa coupling hb ·Huhc

In the ch′ sector, we have six generations of particles arising. Thus, our �rst aim is to pair

o� as many of these as possible. We can couple them to the chiral states coming from the

bh′ sector, together with the non-chiral Higgs from the bc sector, giving the following cubic

coupling: hb · Huhc. This coupling satis�es the charge selection rules: (Qa, Qc, Qd, Qh) =

(0, 0, 0, 1) + (0, 1, 0, 0) + (0,−1, 0,−1). Let us label the matter states per sector as follows:

(χbc, χb(ωc), χb(ω2c)) = (0, |2| (−3), |4|) :
(
0, H

(1)
u (+H

(1)
d , H

(4,5,6)
u ), H

(2,3)
u (+H

(2,3)
d )

)
,

(χbh′
, χb(ωh)′ , χb(ω2h)′) = (2, 1, 0) : (h

(1,2)
b , h

(3)
b , 0),

(χch′
, χc(ωh)′ , χc(ω2h)′) = (−4,−1,−1) : (h(3,4,5,6)

c , h(1)
c , h(2)

c ).

To give the �rst generation of exotic particles hc a mass, we can take the sequence [b, (ωc), h′].

Triangles formed by the sequence [b, (ωc), h′]: The three-cycles b, (ωc), h′ lie on the

three two-tori as indicated in �gure 9.5. Looking at the fundamental domain of the second

two-torus T 2
(2), it seems a priori that no closed sequence can be found, apart from Z2-�xed

point 6, where all three one-cycles meet. However, the triangles close only after identi�cation

of the borders of the fundamental domain. This can be seen by drawing several lattice cells.

On the third two-torus T 2
(3), already two triangles and their Z2-images are apparent on the

fundamental domain. We see that the coupling under consideration satis�es the stringy

selection rule as it allows for closed sequences.
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Figure 9.5: The three-cycle denoted by h′ is depicted in blue, the three-cycle labeled by b is indicated

in green, and the three-cycle (ωc) is given in red. These three-cycles give rise to a Yukawa coupling

of the form hb ·Huhc.

The localization of matter states per sector is:

state xy χxy T 2
(2) T 2

(3)

h
(1,2)
b bh′ 2 5, 6 (Q3, Q

′
3)

H
(1)
u (+H

(1)
d , H

(4,5,6)
u ) b(ωc) |2| (−3) 6, (R2, R

′
2) 4, (P3, P

′
3)

h(1)
c (ωc)h′ −1 6 5

(9.13)

Once again, the non-chiral Higgs pair H
(1)
u + H

(1)
d sits on the Z2-invariant pair of points

((R2, R
′
2), (P3, P

′
3)), while the three chiral states H

(4)
u , H

(5)
u and H

(6)
u sit on the points (6, 4),

(6, (P3, P
′
3)) and ((R2, R

′
2), 4) respectively. The following closed sequences are present:

triangle on T 2
(2)

Area
v2

triangle on T 2
(3)

Area
v3

[6, 5, 6]2
3
4

[(Q3, Q
′
3), 4, 5]3

3
16

[6, (R2, R
′
2), 6]2

1
3

[(Q3, Q
′
3), (P3, P

′
3), 5]3

1
48

[5, (R2, R
′
2), 6]2

1
12

[6]2 0

(9.14)

We will restrict ourselves to the couplings involving the non-chiral Higgs pair H
(1)
u + H

(1)
d ,

and omit the couplings involving the chiral states H
(4,5,6)
u in order to avoid overloading the

tables. The allowed Yukawa couplings involving the non-chiral Higgs H
(1)
u are listed in the

�rst block of table 9.10. As usual, we have chosen in table 9.10 the labels i in h
(i)
b in a

way aiming to suppress the non-diagonal terms with respect to the diagonal terms, so that

generation mixing is disfavored. In other words, we have chosen h
(2)
b to sit at the point

(6, (Q3, Q
′
3)) and h

(1)
b to sit at the point (5, (Q3, Q

′
3)) on T 2

(2) × T 2
(3).

The second generation of particles h(2)
c is situated in another sector of ch′, so we have to

take another sequence to provide it with a mass term. An appropriate sequence is given by

[b, (ω2c), h′].

Triangles formed by the sequence [b, (ω2c), h′]: The three-cycles b, (ω2c), h′ lie on the

three two-tori as depicted in �gure 9.6. Once again, several closed triangles are apparent

already on the fundamental domains of T 2
(2) × T 2

(3). The localization of matter states per
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Figure 9.6: The three-cycle denoted by h′ is depicted in blue, the three-cycle labeled by b is indicated

in green, and the three-cycle (ω2c) is given in red. These three-cycles give rise to a Yukawa coupling

of the form hb ·Huhc.

sector is as follows:

state xy χxy T 2
(2) T 2

(3)

h
(1,2)
b bh′ 2 5, 6 (Q3, Q

′
3)

H
(2,3)
u (+H

(2,3)
d ) b(ω2c) |4| 5, (S2, S

′
2) 4, (P3, P

′
3)

h(2)
c (ω2c)h′ −1 5 6

(9.15)

Once again, we have two non-chiral Higgs pairs H
(2,3)
u +H

(2,3)
d in the b(ω2c) sector. As before,

H
(3)
u sits on the Z2-invariant pair of points ((S2, S

′
2), (P3, P

′
3)), whereas the Higgs H

(2)
u sits on

some combination of a Z2-�xed point and a Z2-invariant pair of points, namely ((S2, S
′
2), 4).

The presence of two Higgses once more enhances the possible Yukawa structures. The various

closed triangles are as follows:

triangle on T 2
(2)

Area
v2

triangle on T 2
(3)

Area
v3

[5, (S2, S
′
2), 5]2

1
3

[(Q3, Q
′
3), 4, 6]3

3
16

[5, 6, 5]2
3
4

[(Q3, Q
′
3), (P3, P

′
3), 6]3

1
48

[5, (S2, S
′
2), 6]2

1
12

[5]2 0

(9.16)

There are eight possible combinations of triangles on both two-tori. Once again, not all

possible combinations can be taken to provide Yukawa couplings since some apexes are un-

occupied by the states under consideration. The possible Yukawa couplings are listed in

the second block of table 9.10. Once again, the choice of labels i in h
(i)
b we have made for

the previous sequence allows also for this sequence to suppress the non-diagonal terms with

respect to the diagonal terms.

Finally, we have one remaining generation of the exotic particles hb and four remaining

generations for the exotic hc particles. These can be paired o� by taking for example the

sequence [b, (ω2c), (ωh)′].

Triangles formed by the sequence [b, (ω2c), (ωh)′]: The three cycles b, (ω2c), (ωh)′ lie on

the three two-tori as given in �gure 9.7. Once again, on the second two-torus closed triangles
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Figure 9.7: The three-cycle denoted by (ωh)′ is depicted in blue, the three-cycle labeled by b is

indicated in green, and the three-cycle (ω2c) is given in red. These three-cycles give rise to a

Yukawa coupling of the form hb ·Huhc.

only become apparent after identi�cation of the borders of the fundamental domain. The

matter localization per sector is given by:

state xy χxy T 2
(2) T 2

(3)

h
(3)
b b(ωh)′ 1 5 4

H
(2,3)
u (+H

(2,3)
d ) b(ω2c) |4| 5, (S2, S

′
2) 4, (P3, P

′
3)

h(3,4,5,6)
c (ω2c)(ωh)′ −4 4, 5 4, 6

(9.17)

Once more, we have two non-chiral Higgs pairs, which enriches the Yukawa structure. The

various closed triangles are as follows:

triangle on T 2
(2)

Area
v2

triangle on T 2
(3)

Area
v3

[5, (S2, S
′
2), 5]2

1
3

[(P3, P
′
3), 4, 4]3

1
3

[5, 4, 5]2
3
4

[4, 6, 4]3
3
4

[5, (S2, S
′
2), 4]2

1
12

[4, (P3, P
′
3), 6]3

1
12

[5]2 0 [4]3 0

(9.18)

We have a total of 16 possible combinations. The combinations which can be taken to provide

Yukawa couplings are listed in the third block of table 9.10. Once again, we chose the labels

i in h(i)
c such that the o�-diagonal terms are suppressed with respect to the diagonal mass

term, at least for the couplings involving H
(3)
u . The pattern is no longer valid for couplings

involving the �eld H
(2)
u .

Remaining hidden sector cubic couplings

There are two particles which remain to be decoupled, namely the state hd arising in the

dh sector and the exotic state hd coming from the sector dh′. The latter cannot be coupled

to a Higgs particle in a cubic coupling satisfying simultaneously the charge selection rule

and the stringy selection rule. Indeed, hd has Qh = +1, so it cannot be paired with the

chiral exotic hb, because that would violate the charge selection rule. It cannot be paired

either with a Higgs particle together with hc or hd, since that would not satisfy the stringy

selection rules. The remaining state hd can instead be coupled to the tilded Higgses arising

in the bd sector and the exotic states hb which we already used in the previous coupling.

The sequences giving the corresponding Yukawa couplings are shown in blocks four and �ve
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of table 9.10. Once more, the o�-diagonal terms are suppressed with respect to the diagonal

terms. As a �nal remark, note once again that the tilded down-type Higgses H̃
(1,2)
d could

have been replaced with the leptons L(1,...,6), giving rise to other couplings. However, we

focused on the Yukawa couplings with the traditional interpretation of the Higgses arising

from the non-chiral sector in order to avoid overloading the tables.

This concludes the analysis of the Yukawa couplings of the MSSM, which we investigated

in some detail. On the one hand, the analysis turned out to be quite interesting as the global

�ve-stack MSSM model allows to include Yukawa couplings such as (9.4c) and (9.4b), hinting

at extensions of the usual MSSM in the �eld theoretical context. Also, an inherent mass

hierarchy was apparent, and generally the o�-diagonal couplings were suppressed compared

to the diagonal ones, as it ought to be in a realistic model. On the other hand, we saw

that there is no clear way to decouple the candidate SM sector from redundant matter

states, which makes it di�cult to introduce a separation of mass scales based solely on the

superpotential couplings.

In the next section, we will concentrate on the global six-stack left-right symmetric models.



9.2. CUBIC COUPLINGS IN THE GLOBAL MSSM-LIKE MODEL 205
C
u
b
ic
co
u
p
li
n
g
s
fo
r
th
e
su
p
e
rp
o
te
n
ti
a
l
(9
.3
)
o
f
a
g
lo
b
a
l
5
-s
ta
ck

M
S
S
M

(p
a
rt
V
II
I)

C
o
u
p
li
n
g

S
e
q
u
e
n
ce

T
ri
a
n
g
le
s
o
n

T
2 (2
)
×
T

2 (3
)

E
n
cl
o
se
d
A
re
a

P
a
ra
m
e
te
r

h
(2
)

b
·H

(1
)

u
h
(1
)

c
[b
,ω

c,
h
′ ]

{[
6,
(R

2
,R

′ 2
),
6]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
5]
}

v
2 3
+

v
3

4
8

h
(2
1
1
)

u
∼

O
( e−

1
6
v
2
+
v
3

4
8

)
h
(1
)

b
·H

(1
)

u
h
(1
)

c
{[
5,
(R

2
,R

′ 2
),
6]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
5]
}

v
2

1
2
+

v
3

4
8

h
(1
1
1
)

u
∼

O
( e−

4
v
2
+
v
3

4
8

)
h
(1
)

b
·H

(3
)

u
h
(2
)

c

[b
,ω

2
c,
h
′ ]

{[
5,
(S

2
,S

′ 2
),
5]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
6]
}

v
2 3
+

v
3

4
8

h
(1
3
2
)

u
∼

O
( e−

1
6
v
2
+
v
3

4
8

)
h
(2
)

b
·H

(3
)

u
h
(2
)

c
{[
6,
(S

2
,S

′ 2
),
5]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
6]
}

v
2

1
2
+

v
3

4
8

h
(2
3
2
)

u
∼

O
( e−

4
v
2
+
v
3

4
8

)
h
(1
)

b
·H

(2
)

u
h
(2
)

c
{[
5,
(S

2
,S

′ 2
),
5]
,[
(Q

3
,Q

′ 3
),
4,
6]
}

v
2 3
+

3
v
3

1
6

h
(1
2
2
)

u
∼

O
( e−

1
6
v
2
+
9
v
3

4
8

)
h
(2
)

b
·H

(2
)

u
h
(2
)

c
{[
6,
(S

2
,S

′ 2
),
5]
,[
(Q

3
,Q

′ 3
),
4,
6]
}

v
2

1
2
+

3
v
3

1
6

h
(2
2
2
)

u
∼

O
( e−

4
v
2
+
9
v
3

4
8

)
h
(3
)

b
·H

(3
)

u
h
(6
)

c

[b
,ω

2
c,
(ω

h
)′
]

{[
5,
(S

2
,S

′ 2
),
5]
,[
4,
(P

3
,P

′ 3
),
4]
}

v
2 3
+

v
3 3

h
(3
3
6
)

u
∼

O
( e−

v
2
+
v
3

3

)
h
(3
)

b
·H

(3
)

u
h
(5
)

c
{[
5,
(S

2
,S

′ 2
),
5]
,[
4,
(P

3
,P

′ 3
),
6]
}

v
2 3
+

v
3

1
2

h
(3
3
5
)

u
∼

O
( e−

4
v
2
+
v
3

1
2

)
h
(3
)

b
·H

(3
)

u
h
(4
)

c
{[
5,
(S

2
,S

′ 2
),
4]
,[
4,
(P

3
,P

′ 3
),
4]
}

v
2

1
2
+

v
3 3

h
(3
3
4
)

u
∼

O
( e−

v
2
+
4
v
3

1
2

)
h
(3
)

b
·H

(3
)

u
h
(3
)

c
{[
5,
(S

2
,S

′ 2
),
4]
,[
4,
(P

3
,P

′ 3
),
6]
}

v
2

1
2
+

v
3

1
2

h
(3
3
3
)

u
∼

O
( e−

v
2
+
v
3

1
2

)
h
(3
)

b
·H

(2
)

u
h
(6
)

c
{[
5,
(S

2
,S

′ 2
),
5]
,[
4]
}

v
2 3

h
(3
2
6
)

u
∼

O
( e−

v
2 3

)
h
(3
)

b
·H

(2
)

u
h
(5
)

c
{[
5,
(S

2
,S

′ 2
),
5]
,[
4,
4,
6]
}

v
2 3
+

3
v
3

4
h
(3
2
5
)

u
∼

O
( e−

4
v
2
+
9
v
3

1
2

)
h
(3
)

b
·H

(2
)

u
h
(4
)

c
{[
5,
(S

2
,S

′ 2
),
4]
,[
4]
}

v
2

1
2

h
(3
2
4
)

u
∼

O
( e−

v
2

1
2

)
h
(3
)

b
·H

(2
)

u
h
(3
)

c
{[
5,
(S

2
,S

′ 2
),
4]
,[
4,
4,
6]
}

v
2

1
2
+

3
v
3

4
h
(3
2
3
)

u
∼

O
( e−

v
2
+
9
v
3

1
2

)
h
(1
)

b
·H̃

(2
)

d
h
(1
)

d
[b
,(
ω
2
d
),
h
]

{[
5,
(R

2
,R

′ 2
),
6]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
6]
}

v
2

1
2
+

v
3

4
8

h
(1
2
1
)

d
∼

O
( e−

4
v
2
+
v
3

4
8

)
h
(2
)

b
·H̃

(2
)

d
h
(1
)

d
{[
6,
(R

2
,R

′ 2
),
6]
,[
(Q

3
,Q

′ 3
),
(P

3
,P

′ 3
),
6]
}

v
2 3
+

v
3

4
8

h
(2
2
1
)

d
∼

O
( e−

1
6
v
2
+
v
3

4
8

)
h
(3
)

b
·H̃

(1
)

d
h
(3
)

d
[ω

2
b,
d
,h

]
{[
5,
(Q

2
,Q

′ 2
),
(P

2
,P

′ 2
)]
,[
5,
(S

3
,S

′ 3
),
6]
}

v
2

4
8
+

v
3

1
2

h
(3
1
3
)

d
∼

O
( e−

v
2
+
4
v
3

4
8

)
h
(3
)

b
·H̃

(1
)

d
h
(2
)

d
{[
5,
(Q

2
,Q

′ 2
),
(P

2
,P

′ 2
)]
,[
5,
(S

3
,S

′ 3
),
5]
}

v
2

4
8
+

v
3 3

h
(3
1
2
)

d
∼

O
( e−

v
2
+
1
6
v
3

4
8

)
T
ab
le

9.
10
:
C
om

p
le
te

li
st

of
th
e
cu
b
ic

co
u
p
li
n
gs

(9
.4
e)

of
th
e
gl
ob
al

�
ve
-s
ta
ck

M
S
S
M
-l
ik
e
m
o
d
el

of
ta
b
le

7.
17

in
vo
lv
in
g
th
e
ex
ot
ic

st
at
es

of
th
e
h
id
d
en

se
ct
or
.
T
h
e
se
co
n
d
co
lu
m
n
in
d
ic
at
es

th
e
D
6-
b
ra
n
e
st
ac
k
s
u
se
d
to

fo
rm

th
e
tr
ia
n
gl
es

gi
ve
n
in

th
e
th
ir
d
co
lu
m
n
b
y
[x
]
or

[x
,y
,z
]
w
it
h
ap
ex
es

(i
n
te
rs
ec
ti
on

p
oi
n
ts
)
x
,y
,z

on
T
2 (i
=
2
,3
)
ac
co
rd
in
g
to

th
e
cu
b
ic
co
u
p
li
n
gs

gi
ve
n
in

th
e
�
rs
t
co
lu
m
n
.
T
h
e
fo
u
rt
h
co
lu
m
n
p
ro
v
id
es

th
e
ar
ea

fo
r
th
e
re
sp
ec
ti
ve

tr
ia
n
gl
es

in

te
rm

s
of

th
e
ar
ea
s
v i

of
th
e
tw
o-
to
ri
T
2 (i
=
2
,3
),
w
h
il
e
th
e
la
st

co
lu
m
n
p
re
se
n
ts

th
e
re
su
lt
in
g
co
u
p
li
n
g
co
n
st
an
ts
.



206 CHAPTER 9. THREE- AND FOUR-POINT COUPLINGS AT LEADING ORDER

9.3 Yukawa couplings for the global left-right symmetric

models

In left-right symmetric models in general, the right-handed particles join up in SU(2)R
doublets, which reduces the spectrum. Therefore, the possible cubic couplings are also

reduced in left-right symmetric models compared to the MSSM-like models. This fact renders

the analysis less interesting from a phenomenological point of view due to the restricted

possibilities in model building, so we will present the analysis only super�cially by giving

some �nal results without deriving them in detail. Moreover, we add a section including

quartic couplings in order to augment the possibilities for discussions and analysis.

A �rst remark about the four prototypes I, II, IIb and IIc of the six-stack global left-right

symmetric models concerns the visible sector of particles. Indeed, a look at tables 7.6,

7.8, 7.12 and 7.10 reveals that all prototypes have the same content of visible particles,

i.e. particles charged under the visible gauge group U(3)a × USp(2)b × USp(2)c × U(1)d.

Thus, by reducing the analysis to the visible sector, all four prototypes can be discussed

simultaneously. There is, however, a subtlety to consider. Actually, a look at tables 7.5,

7.7, 7.11 and 7.9 yields that the prototype I and II models have exactly the same visible

stacks a, b, c, d, i.e. same bulk orbits, same Z2-eigenvalues, same Wilson lines and identical

shifts. These di�er, however, from those used for the prototype IIb and IIc models. As a

consequence, the matter localization per sector may di�er for these prototypes. Still, the

discrete Wilson lines τ i, i = 2, 3 and shifts σi, i = 2, 3 agree on the second and third two-

torus T 2
(2,3) for all prototype models, so that they come with a similar Yukawa structure,

as we focus on the second and third two-torus only. We will restrict our analysis to the

prototype II model.

9.3.1 Cubic couplings

The cubic Yukawa couplings of a left-right symmetric model have the following structure:

WYuk = yQQL(Hu, Hd)QR + yLL(Hu, Hd)R. (9.19)

As anticipated, the structure is simpler than the one of the Yukawa couplings for the MSSM,

see (9.4a). Also, we have no apparent extension of the left-right symmetric model as we had

in (9.3) for the global �ve-stack MSSM. An advantage of the six-stack left-right symmetric

models compared to the �ve-stack MSSM-like model is the fact that we do not have redun-

dant generations of right-handed quarks and left-handed leptons. This permits to avoid the

terms in (9.4b) we had for the �ve-stack MSSM-like model. Since we limit the analysis to the

visible sector, a term similar to (9.4e) is not computed here. The Yukawa couplings (9.19)

satisfy the charge selection rules. It remains to be seen whether adequate sequences can be

found to ful�ll the stringy selection rules.

The �rst ingredient for �nding suitable sequences is to determine the matter states' local-

ization per sector. This information is given for the prototype II model in tables 9.11 and

9.12.
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Once again, the information in tables 9.11 and 9.12 has to be completed by the data of

matter states' localizations at the various intersection points. The results are the same

as for the MSSM-like model in the previous section: Chiral matter states are localized at

intersection points involving at least one Z2-�xed point. Non-chiral pairs of matter states

spread over pairs of Z2-invariant points, except when more than one non-chiral pair is present

in a same sector, in which case the non-chiral pairs of matter states also sit on intersection

points involving Z2-�xed points.

The results for the Yukawa couplings in (9.19) are given in tables 9.13 and 9.14. By comparing

both tables, we can see that there is a symmetry between quarks and leptons; By exchanging

left-handed quarks with left-handed leptons Q
(i)
L ↔ L(i) and right-handed quarks with right-

handed leptonsQ
(i)
R ↔ R(i), we obtain the same order of magnitude for the Yukawa couplings.

Subsequently, we will restrict the discussion to the quarks, since the same observations are

also valid for the leptons.

In the case of left-right symmetric models, the Higgses arising from the non-chiral sectors

already come in doublets. More precisely, in the MSSM-like model, the amount of non-chiral

matter nNC = |2| denoted one non-chiral Higgs pair Hu+Hd. In case of left-right symmetric

models, the amount of nNC = |2| corresponds to two non-chiral Higgs doublets of the form

(Hu, Hd)
(1) and (Hu, Hd)

(2). Thus, the numbering of Higgses (Hu, Hd)
(i) emerging from the

b(ωkc)k=0,1,2 sectors follow the natural ordering with i ∈ {1, 2} for k = 0, i ∈ {3, 4, 5, 6} for

k = 1 and i ∈ {7, 8, 9, 10} for k = 2.

Table 9.13 yields that we have four diagonal Yukawa couplings for both the second and third

generation of quarks. These couplings involve the Higgs doublets (Hu, Hd)
(3,4,5,6) and give rise

to identical Yukawa couplings for �xed i in (Hu, Hd)
(i). There is no diagonal mass term for

the �rst generation of quarks Q
(1)
L and Q

(1)
R , although both states appear in generation-mixing

terms with the third respectively the second generation of quarks. Moreover, the Yukawa

couplings including (Hu, Hd)
(3) present suppression of the o�-diagonal terms compared to

the diagonal terms. Unluckily, the Yukawa couplings involving the Higgses (Hu, Hd)
(4,5,6)

present the opposite pattern, which makes a microscopical explanation of the structure of

the CKM matrix not straightforward.

The Higgses (Hu, Hd)
(1,2) arising in the bc sector constitute a noticeable absence in table

9.13. Indeed, they cannot be localized precisely at Z2 × Z2 invariant intersection points via

the method of Chan-Paton labels. Without going into details, this aspect is related to the

fact that the orbits of the b and c stacks are fully parallel on all three two-tori T 2
(i). A deeper

investigation on this phenomenon goes beyond the scope of this doctoral work though, so

that we will not treat the cubic couplings involving (Hu, Hd)
(1,2) in this work.

9.3.2 Quartic couplings

Hitherto, we have only provided mass terms for the chiral states of the visible sector. How-

ever, there are also non-chiral pairs of matter states present in the visible sector, as can be

deduced from table 7.8. These arise in the ad and ad′ sectors. The most suitable way to

provide these states with mass terms would be to couple them to some singlet states arising

in the dd or dd′ sectors. However, in the prototypes presented in this work, no such singlet

states are present, see e.g. table 7.8. Consequently, only quartic couplings may allow to

produce mass terms for the non-chiral states in the visible sector. Since the number of cubic

couplings is reduced, we will extend the analysis to include a very brief discussion of quartic
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couplings for the prototype II model. The prototype II left-right symmetric model comes

with abundant non-chiral pairs of matter states in the hidden sector, which provides us with

ample possibilities to pair o� the non-chiral states arising in the visible sector. We can write

down the following quartic couplings satisfying the charge selection rules:

Wextra =
µij
h1

Mstring
XadX̃ad′(i)Xdh1(j)Xdh′

1 +
µij
h2

Mstring
XadX̃ad′(i)Xdh2(j)Xdh′

2

+
µ̃ij
h1

Mstring
X̃adXad′(i)X̃dh1(j)X̃dh′

1 +
µ̃ij
h2

Mstring
X̃adXad′(i)X̃dh2(j)X̃dh′

2 ,
(9.20)

with i, j ∈ {1, 2} and Mstring the string mass scale. Obviously, these couplings can only be

written down for the prototype II and IIc left-right symmetric models, since the prototype

IIb lacks exotic particles, i.e. particles charged under both the visible and hidden sectors

such as those arising in the dh1, dh
′
1, dh2 and dh′

2 sectors. The next step would consist

in the exact localization of the particle states at the intersection points, with the same

method mentioned before, i.e. via the Chan-Paton labels. Also, the stringy selection rule

should be satis�ed, implying the existence of closed quadrilateral shapes with all corners

occupied by particle states. However, a closer look reveals that the non-chiral pair of states

Xad + X̃ad arises solely in the �rst ad sector, i.e. a(ωk=0)d. Since the orbits of a and d are

parallel on all three two-tori T 2
(i), we run into the same issue encountered before with the

Higgses (Hu, Hd)
(1,2) in the cubic couplings, namely that the localization of Xad + X̃ad at

intersection points is not possible, as these states live on the full toroidal cycle shared by a

and d. Therefore, we will not write down explicit sequences and couplings strengths for the

quartic left-right symmetric couplings in this work, as a better understanding of conformal

�eld theory methods for m-point couplings on toroidal orbifolds with Z2-factors is needed.
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Chapter 10

Conclusion

10.1 Summary and discussion

This doctoral work discusses model building and string phenomenology in Type IIA string

theory on the geometrical background T 6/(Z2 × Z6 × ΩR) with discrete torsion.

The �rst three chapters mainly form the introduction. The �rst chapter provides a basic in-

sight into string theory and Type IIA string theory in particular. The second chapter focuses

in a �rst step on the geometry of the orbifold used for dimensional reduction. In a second

step, Type IIA string theory is introduced on this particular background, by incorporating

closed and open strings as well as D6-branes. Finally, the third and last introductory chap-

ter presents string model building and phenomenology. In a �rst step, the particle physics

models considered in this work are presented, including the MSSM, left-right symmetric

and Pati-Salam models, as well as SU(5) models. In a second step, the realization of these

particle physics models in the context of intersecting D6-brane models is explained.

In the �rst part of the fourth chapter, we brought to light existing symmetries between

di�erent torus lattices. The original six lattice con�gurations have been reduced to only two

independent ones, which simpli�es the analysis drastically. The �rst hint for symmetries

has been detected by counting the number of shortest possible three-cycles for di�erent lat-

tice con�gurations. The analysis of the closed string spectrum of di�erent lattices yielded

a map between the exotic O6-plane charges of di�erent lattice con�gurations, consolidating

the existence of relations between lattices. The �nal evidence was given by providing a map

allowing to pass from the set of consistency conditions of one lattice con�guration to the set

of consistency conditions of another one. The discussion was completed by evaluating the

invariance of physical quantities computed in this work under the considered map, which

resulted in the reduction of the analysis to two independent lattice con�gurations.

In the second part of the fourth chapter, we launched a systematic search to determine all

bulk three-cycles suitable to support D6-branes satisfying the SUSY conditions. The �rst

step consisted in deriving upper and lower bounds for the bulk wrapping numbers. In a

second step, the possible solutions of the SUSY equations have been classi�ed into three

types of solutions according to whether the one-cycle on the �rst two-torus T 2
(1) was parallel

or orthogonal to the �rst O6-plane ΩR, or neither of these. The �rst two types of SUSY

solutions correspond to bulk three-cycles which satisfy the SUSY conditions for every value
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of the complex structure parameter ϱ. The third type of SUSY solutions is given by three-

cycles which are SUSY only for �xed values of ϱ. A computer scan revealed four bulk-three

cycles of the �rst type of solutions and again four bulk-three cycles for the second type of

solutions, this for both considered lattice con�gurations aAA and bAA. The scan yielded

further 1760 bulk three-cycles of the third type for the aAA lattice and 917 ϱ-dependent

bulk three-cycles for the bAA lattice.

The �fth chapter starts with the classi�cation of D6-branes according to the gauge group

they support. Using the beta-function coe�cient, the con�gurations of discrete parameters

and exotic O6-plane charges giving rise to gauge symmetry enhancement to symplectic or

orthogonal groups were determined. This analysis was performed analytically.

In the second part of the chapter, candidates of D6-branes suitable for string model building

were identi�ed. The criteria di�er for MSSM-type models including the MSSM, left-right

symmetric and Pati-Salam models, and for the SU(5) models. The �rst criterion analyzed

was the criterion of rigidity of the D6-branes, which is given by the absence or presence of

matter states transforming in the adjoint representation. The analysis, performed partly

by hand, partly numerically, yielded about O(102) SUSY bulk three-cycles satisfying the

rigidity criteria in case of the MSSM-type models and about O(10) in case of the SU(5)

model, for each of the two lattice con�gurations.

The second criterion for model building is given by the absence of matter states transform-

ing in the symmetric representation, and a limited number of matter states transforming in

the antisymmetric representation. The analysis produced about O(10) SUSY and rigid bulk

three-cycles satisfying the criteria on (anti)symmetric matter states in case of MSSM-type

models, for each of the two torus lattices. In case of the SU(5) models, only four bulk three-

cycles satisfying the rigidity criteria and the criteria of matter states in the (anti)symmetric

representations were found for the bAA lattice, and only two bulk three-cycles for the aAA

lattice.

The third and �nal part of the chapter concentrates on the �rst steps in string model build-

ing. It consists in detecting pairs of D6-branes giving rise to three generations of chiral

matter states transforming in the bifundamental representation (Na,2b). The analysis,

which can only be performed with computer scans, can be separated into ϱ-independent

D6-brane con�gurations and ϱ-dependent con�gurations in case of the MSSM-type models.

For the former, we found about O(102) suitable D6-brane con�gurations and for the latter,

about O(103) adequate pairs of D6-branes were detected. In case of the SU(5) models, only

ϱ-dependent con�gurations are realizable, coming with a number of about O(104). These

numbers already indicated that the total number of D6-brane con�gurations to test would

need substantial processing power and time, especially in the case of ϱ-dependent models.

The sixth and seventh chapters are dedicated to the search for concrete globally consistent

particle physics models. The sixth chapter concentrates on the search for Pati-Salam and

SU(5) models, while the seventh chapter focuses on left-right symmetric and MSSM-like

models. In chapter six, we showed that no global SU(5) models can be constructed, which

agrees with the results obtained on all other orbifolds to date, see [95, 130, 182, 69, 76]. How-

ever, locally consistent three particle generation SU(5) models can be realized, an explicit

example of which was provided. The same results hold true for Pati-Salam models on the

bAA lattice con�guration. In case of Pati-Salam models though, the situation is di�erent
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for the aAA lattice con�guration. The less stringent RR-tadpole cancellation conditions of

the aAA lattice permitted the construction of three-generation globally consistent four-stack

Pati-Salam models, which on top were independent of the complex structure modulus ϱ. The

models numbered about O(103) and could be divided into two classes according to their hid-

den sector and particle spectrum. One explicit example per class was provided. Concerning

the construction of ϱ-dependent Pati-Salam models, it turned out that local three-generation

models can be realized in tremendous numbers. However, numerous computer scans showed

that global ϱ-dependent Pati-Salam models are extremely scarce in comparison, if they ex-

ist at all. The di�culties encountered during the search for global ϱ-dependent Pati-Salam

models have been illustrated. In the end, we preferred to abandon this fruitless search and

concentrate instead on the construction of ϱ-independent global models.

Chapter seven focuses on the meticulous search for ϱ-independent global left-right sym-

metric and MSSM-like models. We showed once again that for the bAA lattice, only local

left-right symmetric and MSSM-like ϱ-independent models can be constructed. We refrained

from giving explicit examples, as we already did so for the Pati-Salam and SU(5) models in

chapter six. In the case of the aAA lattice, we showed that left-right symmetric models can

be globally consistent only if they contain at least six stacks of D6-branes. The total number

of global six-stack left-right symmetric models found was about O(105). We provided four

di�erent explicit examples of global six-stack left-right symmetric models. Moreover, we

found �ve-stack left-right symmetric models which satisfy the consistency conditions only

partially, namely they ful�lled the RR-tadpole cancellation conditions but not the K-theory

constraints. We referred to the models satisfying the former but not necessarily the latter

as semi-global models. The climax of the research was given by the discovery of full three-

generation global ϱ-independent e�ective �ve-stack MSSM-like models. They come with an

extended left-handed lepton and right-handed quark sector, which has the potential to ef-

fectively be reduced to a three-generation particle content at low energies. We found about

O(102) such models. We also showed that globally consistent MSSM-like models can only

be constructed with at least �ve stacks of D6-branes, and we noted that three-generation

MSSM-like models with only three stacks cannot be constructed at all, regardless of their

local or global character.

The eighth chapter concentrates on phenomenological aspects of the global models found,

namely the detection of massless Abelian U(1) symmetries and discrete Zn-symmetries. We

started the chapter by deriving explicit expressions for the conditions of existence of these

symmetries and for the K-theory constraints, which in our case provided automatically a

Z2-symmetry if ful�lled.

In order to avoid repeating the same analysis several times, we restricted the detection of

these symmetries to the global MSSM-like and left-right symmetric models. The MSSM-

like model under consideration yielded exactly one massless U(1) combination, which cor-

responded to the standard de�nition of the hypercharge. Also, it came with a non-trivial

Z3-symmetry which provided a �rst hint that an alternative identi�cation of the right-handed

neutrinos may be necessary. The existence of these symmetries consolidates the phenomeno-

logical appeal of this global �ve-stack MSSM-like model, as explained in section 3.2.1.

We presented the analysis for the MSSM-like model in some detail, but only provided the

�nal results for the left-right symmetric models. We explicitly pointed out the absence of the
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Z2-symmetry associated to the violation of the K-theory constraint in case of the semi-global

�ve-stack left-right symmetric model. Moreover, we showed that only one of the four exam-

ined global six-stack left-right symmetric models yielded a massless U(1) combination, which

has been associated to a generalization of the baryon-lepton number symmetry. However,

none of the examined left-right symmetric models yielded any Zn-symmetry not arising from

the center of some gauge group or from the K-theory constraints.

The �nal ninth chapter focuses on �eld theoretical aspects of the global MSSM-like and

left-right symmetric models, namely the Yukawa couplings and other cubic couplings at tree

level. Due to the extended left-handed lepton and Higgs sector as well as the extended

right-handed quark sector, the global MSSM-like model in particular exhibited a rich cubic

coupling structure. All the usual Yukawa couplings of the MSSM have been derived, and

some inherent mass hierarchy was manifest as well. Also, the cubic couplings allowed for

the inclusion of Higgs-axion couplings as they appear in extensions of the MSSM, such as

Peccei-Quinn models or DFSZ models. We were also able to provide mass terms for the

redundant left-handed leptons and right-handed quarks, though these turned out to be of

the same order of magnitude as the usual Yukawa couplings of the MSSM. Furthermore,

the exotic chiral particles of the hidden sector have been paired o� with the Higgs doublets,

providing hidden Yukawa couplings. However, none of the couplings was of order one, which

would have e�ectively removed these undesired particles from the model at low energies.

Finally, we showed that cubic couplings can be provided for alternative candidates of the

right-handed neutrinos. The advantage of the alternative identi�cations of the right-handed

neutrinos is that the charges under the non-trivial Z3-symmetry come out correctly. The

drawback is the fact that with the alternative identi�cations, the right-handed neutrinos

come no longer in three generations.

In the case of the left-right symmetric models, we reduced the analysis to the visible sector in

order to discuss all four examples of left-right symmetric models simultaneously. We showed

that the usual Yukawa couplings can be constructed for left-handed and right-handed leptons

and quarks. At the end of the chapter, we also brie�y discussed four-point couplings of the

left-right symmetric models.

10.2 Outlook

As expected from previous work on similar backgrounds, the orbifold T 6/(Z2 × Z6 × ΩR)

turned out to be particularly fertile for string model building purposes. Actually, it turned

out to be almost too fertile, as it produces tremendous numbers of local three-generation

models, which renders the detection of global models very hard. Future work could certainly

focus on the extension of the search for global MSSM-type models, which include left-right

symmetric, Pati-Salam and MSSM-like models, to the ϱ-dependent models. A substantial

amount of processing power is certainly needed to complete the search for global ϱ-dependent

models.

Also in the case of ϱ-independent models, explicit examples of local MSSM-like and left-

right symmetric models can be given for the bAA lattice, as we did for the Pati-Salam

and SU(5) models. Moreover, due to the substantial number of global left-right symmetric
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models found, we used only a probe-wise scan to classify the left-right symmetric models

into four types of models. A complete computer scan may reveal further classes of left-right

symmetric models.

In addition to model building, the analysis of the global models on the orbifold T 6/(Z2 ×
Z6 ×ΩR) could be extended in many di�erent ways. For example, the detection of discrete

Zn-symmetries [100, 167, 168, 78, 93, 64] could also be performed in the context of the global

Pati-Salam models found. The same holds true for the computation of Yukawa couplings.

Also, the presence of DFSZ couplings in the global MSSM-like model suggests a further

exploitation of axion models and the investigation of related cosmological aspects in general.

The analysis could thus be extended along the lines of [57, 218] or [219, 220, 101] for instance.

Note that in our case, the axion arises from the open string sector, so that a scenario as

described in [220, 101] should be considered, in contrast to those described in [221, 219, 222,

223], where the axion arises from the closed string sector.

Moreover, we have seen that the redundant left-handed lepton sector and right-handed

quark sector could not be completely decoupled from the model using Yukawa couplings

alone. Another mechanism should be devised in order to explain why the global MSSM-like

model appears as an e�ective three-generation particle physics model at low energies. Sim-

ilarly, we have seen that three out of the four classes of global left-right symmetric models

do not come with any massless U(1) combination. The impact of this aspect should also be

investigated, for example by analyzing the breaking of the left-right symmetric GUT gauge

group to the gauge group of the SM.

An aspect we did not consider in the present work is the gauge couplings [224, 72, 73,

225, 67, 226, 227]. At tree level, these are related to the volumes of the D6-branes, which

we computed when counting the number of shortest possible three-cycles in the context of

lattice symmetries. Higher order terms are given by the massive string excitations, i.e. the

threshold corrections expressed in terms of the gauge kinetic function. This analysis could

be performed for each of the global particle physics models found. In this context, it would

be interesting to know how our global models fare in the analysis of low string scale scenarios

at the LHC, see for instance [228�235, 218, 236, 76].

Furthermore, we limited the analysis in this doctoral work to perturbative e�ects. The

superpotential could also be extended to involve non-perturbative e�ects such as D6-brane

instantons [237].

Another interesting feature to examine would be di�erent patterns of SUSY breaking. In the

present work, we derived SUSY versions of well-known particle physics models. In order to

retrieve the non-SUSY particle physics models, SUSY should be broken at some energy scale.

This could for example be achieved by the formation of a gaugino condensate [238, 239] in

the hidden sector. Another possibility to break SUSY could be achieved by deformations of

the Z2-�xed points, as has been suggested e.g. in [110, 109].
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Appendix A

Explicit examples of constructions and

computations

The tools used to do calculations on the toroidal orbifold T 6/(Z2 × Z6 × ΩR) with discrete

torsion are rather technical, and maybe also a little more complicated than those necessary

to do computations on other toroidal orbifolds, such as T 6/(Z2 × Z′
6 × ΩR) for instance.

In order to render more transparent the techniques used in this work and described in the

main text, we will provide in this appendix explicit examples of constructions and compu-

tations. More precisely, we will �rst illustrate how the exceptional wrapping numbers can

be derived. These are necessary both to calculate intersection numbers with the orbifold

invariant method and to check the twisted RR-tadpole cancellation conditions.

In the second section of this appendix, we will explicitly derive the beta-function coe�-

cients for three-cycles with bulk orbits parallel to the ΩR-invariant plane. The derivation

is based on computing intersection numbers with the sector-per-sector method. Only with

this method the beta-function coe�cients can be derived, and only with this method the full

matter localization per sector can be determined, the latter being unavoidable to correctly

compute the Yukawa couplings.

A.1 Explicit construction of a fractional cycle

In a �rst step, we provide table A.1 allowing to determine the exceptional wrapping numbers

(x
(k)
α , y

(k)
α ) in function of torus wrapping numbers (nk,mk), Z2-eigenvalues (−1)τ

Z(i)2 (i =

1, 2, 3), displacements (σ⃗) and Wilson lines (τ⃗).
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ẑ
(1
)

α
m

1)
α
=
2

(z
(1
)

α
n
1
,
z
(1
)

α
m

1)
α
=
5
,3

(ẑ
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In a second step, we illustrate by some examples how the entries of table A.1 can be

computed.

A fractional three-cycle is given as a sum of a bulk three-cycle and three exceptional three-

cycles:

Πfrac =
1

4

(
Πbulk +ΠZ(1)

2 +ΠZ(2)
2 +ΠZ(3)

2

)
. (A.1)

Only those exceptional three-cycles are added whose associated Z2-�xed points are traversed

by the bulk three-cycle. In this section, we will illustrate by an example how the entries of

table A.1 can be derived.

Let us consider the three-cycle characterized by the torus wrapping numbers of the form

(n1,m1; n2,m2; n3,m3)=(odd,odd; odd,even; odd,odd).

We will start the discussion with the �rst Z2-twisted sector Z(1)
2 . In a �rst step, we as-

sume that we have no shift on the second and third two-torus, i.e. σ2 = σ3 = 0. On

the second torus, the three-cycle thus passes through the �xed points 1 and 4, since we

have (n2,m2)=(odd,even). On the third torus, it passes through points 1 and 6 as we have

(n3,m3)=(odd,odd). These four �xed points give us a total of four combinations of excep-

tional two-cycles e
(1)
κλ with κ ∈ {1, 4} and λ ∈ {1, 6}. Each of the four exceptional two-cycles

is tensored with the one-cycle n1π1 +m1π2, giving an exceptional three-cycle. The last step

consists in taking all orbifold images of the exceptional three-cycles. The orbifold orbits of

these four exceptional three-cycles can directly be read o� from table 2.4:

T(2) × T(3)

11 → n1ε
(1)
0 +m1ε̃

(1)
0

16 → (n1ε
(1)
2 +m1ε̃

(1)
2 )(−1)τ

3

41 → (n1ε
(1)
1 +m1ε̃

(1)
1 )(−1)τ

2

46 → (n1ε
(1)
5 +m1ε̃

(1)
5 )(−1)τ

2+τ3

The τ i describe the Wilson lines, which give rise to a di�erent sign according to the relative

orientation of the exceptional two-cycles located at di�erent �xed points. For example,

passing from the �rst to the second line above gives a Wilson line (−1)τ
3
, since on the

third torus we pass from the reference �xed point 1 to the �xed point 6. In the end, the

entire exceptional three-cycle has to be multiplied by a factor (−1)τ
Z(1)2 , corresponding to

the absolute orientation of the involved exceptional two-cycles. The exceptional wrapping

numbers thus depend on the oddness/evenness and the numerical value of the torus wrapping

numbers, the Z(1)
2 -eigenvalues, the Wilson lines and the shifts. Shortly, we will see how they

depend on the shift. All in all, the exceptional three-cycle of the �rst Z2-twisted sector

associated to the bulk wrapping numbers and discrete parameters under consideration can

be written as follows:

ΠZ(1)
2 = (−1)τ

Z(1)2
(
n1ε

(1)
0 +m1ε̃

(1)
0 + (n1ε

(1)
2 +m1ε̃

(1)
2 )(−1)τ

3

+ (n1ε
(1)
1 +m1ε̃

(1)
1 )(−1)τ

2

+ (n1ε
(1)
5 +m1ε̃

(1)
5 )(−1)τ

2+τ3
)
.

From the expression above, we can read o� the exceptional wrapping numbers of the �rst
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Z2-twisted sector:

x
(1)
0 = (−1)τ

Z(1)2 n1 x
(1)
2 = (−1)τ

Z(1)2 +τ3n1 x
(1)
1 = (−1)τ

Z(1)2 +τ2n1 x
(1)
5 = (−1)τ

Z(1)2 +τ2+τ3n1 ,

y
(1)
0 = (−1)τ

Z(1)2 m1 y
(1)
2 = (−1)τ

Z(1)2 +τ3m1 y
(1)
1 = (−1)τ

Z(1)2 +τ2m1 y
(1)
5 = (−1)τ

Z(1)2 +τ2+τ3m1 .

(A.2)

The remaining four exceptional wrapping numbers are zero: (x
(1)
α , y

(1)
α ) = (0, 0), for α = 3, 4.

Note that in this case, each exceptional three-cycle ε
(1)
α , ε̃

(1)
α and thus the corresponding

exceptional wrapping numbers receives a contribution from only one exceptional two-cycle

e
(1)
κλ . In the main text (c.f. table 2.7) we referred to these as type I exceptional wrapping

numbers. The coe�cients z
(1)
α associated to the pairs (x

(1)
α , y

(1)
α ) appearing in tables 2.7

and A.1 are thus given by z
(1)
0 = (−1)τ

Z(1)2 , z
(1)
2 = (−1)τ

Z(1)2 +τ3 , z
(1)
1 = (−1)τ

Z(1)2 +τ2 and

z
(1)
5 = (−1)τ

Z(1)2 +τ2+τ3 .

Before moving on to the second Z2-twisted sector, let us brie�y consider how the presence

of shifts e�ects the results. Consider for example a shift on the second torus: σ2 = 1. Then

the points (1, 4) on the second torus are shifted to the points (5, 6), accordingly to table 2.8.

Some orbits now contribute twice:

T(2) × T(3)

51 → n1ε
(1)
1 +m1ε̃

(1)
1

56 → (n1ε
(1)
3 +m1ε̃

(1)
3 )(−1)τ

3

61 → (n1ε
(1)
1 +m1ε̃

(1)
1 )(−1)τ

2

66 → (n1ε
(1)
4 +m1ε̃

(1)
4 )(−1)τ

2+τ3

We see that the exceptional three-cycles ε
(1)
1 and ε̃

(1)
1 now have two contributions from the

exceptional two-cycles e
(1)
51 and e

(1)
61 , giving:

(−1)τ
Z(1)2 n1(1 + (−1)τ

2

)︸ ︷︷ ︸
x
(1)
1

ε
(1)
1 + (−1)τ

Z(1)2 m1(1 + (−1)τ
2

)︸ ︷︷ ︸
y
(1)
1

ε̃
(1)
1 . (A.3)

Thus, in this particular example, the exceptional wrapping numbers x
(1)
1 and y

(1)
1 are said

to be of type II. The coe�cient ẑ appearing in table 2.7 associated to x
(1)
1 and y

(1)
1 is thus

ẑ
(1)
1 = (−1)τ

Z(1)2 (1 + (−1)τ
2
).

Now let us concentrate on the second Z2-twisted sector. Remember that the bulk three-

cycle under consideration is characterized by torus wrapping numbers of the form (n1,m1;n3,m3)=(odd,odd;

odd,odd). Let us come back to the situations where there are no shifts, i.e. σ1 = σ3 = 0. On

the �rst torus, the bulk cycle passes through the points (1, 3), on the third torus it passes

through (1, 6). The possible combinations of �xed points are:

T(1) × T(3)

11 → no contribution

16 → (−(n2 +m2)ε
(2)
1 + n2ε̃

(2)
1 )(−1)τ

3

31 → no contribution
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36 → (−(n2 +m2)ε
(2)
3 + n2ε̃

(2)
3 )(−1)τ

1+τ3

The orbifold invariant exceptional three-cycles corresponding to these �xed points can once

again be read o� from table 2.4.

We �nd that exceptional two-cycles of the type e
(2)
κ1 give no contributions in table 2.4. This

is due to the fact that �xed points labeled by 1 situated at the origins of the three two-tori

are invariant under the orbifold action, so the sum over the orbits is zero:

(1 + ω + ω2)(n2e
(2)
κ1 ⊗ π3 +m2e

(2)
κ1 ⊗ π4) =n2e

(2)
κ1 ⊗ π3 + n2e

(2)
κ1 ⊗ π−4 + n2e

(2)
κ1 ⊗ π4−3

+m2e
(2)
κ1 ⊗ π4 +m2e

(2)
κ1 ⊗ π3−4 +m2e

(2)
κ1 ⊗ π−3

=0 .

Hence, written out, the exceptional three-cycle in the Z(2)
2 sector is:

ΠZ(2)
2 = (−1)τ

Z(2)2

(
−(n2 +m2)ε

(2)
1 + n2ε̃

(2)
1 + (−1)τ

1

(−(n2 +m2)ε
(2)
3 + n2ε̃

(2)
3 )
)
(−1)τ

3

.

(A.4)

Thus, we can again read o� the exceptional wrapping numbers:

x
(2)
1 = −(n2 +m2)(−1)τ

Z(2)2 +τ3 x
(2)
3 = −(n2 +m2)(−1)τ

Z(2)2 +τ3+τ1 ,

y
(2)
1 = n2(−1)τ

Z(2)2 +τ3 y
(2)
3 = n2(−1)τ

Z(2)2 +τ3+τ1 .
(A.5)

The exceptional wrapping numbers (x
(2)
α , y

(2)
α ), α = 1, 3 are of type I, since each pair receives

only one contribution from an exceptional two-cycle e
(2)
κλ . The remaining eight wrapping

numbers have zero entries, (x
(2)
α , y

(2)
α ) = (0, 0), α = 2, 4. The coe�cients ζ

(2)
α appearing in

tables 2.7 and A.1 are in this example given by ζ
(2)
1 = (−1)τ

Z(2)2 +τ3 and ζ
(2)
3 = (−1)τ

Z(2)2 +τ1+τ3 .

The third Z2-twisted sector can be treated similarly.

All in all, the fractional three-cycles can be written as indicated in (A.1), where each ex-

ceptional contribution ΠZ(i)
2 i = 1, 2, 3 can be computed as illustrated above.

Table A.1 contains, in a compact form, the complete information to derive the exceptional

wrapping numbers as we illustrated above. It provides the exceptional wrapping numbers

for each possible combination of oddness/evenness of the torus wrapping numbers and shifts.

The computer code I wrote to calculate the exceptional wrapping numbers is based on table

A.1. Note that a preliminary version of table A.1 was given in [65]. However, the table in

[65] did not yet take into account the fact that the new reference points introduced upon

shifts have to be chosen in accordance with the orbifold action as we did in table 2.8. Table

A.1 in the present work, which is consistent with table 2.8, was introduced for the �rst time

in our publication [63].
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A.2 Example of the calculation of beta-function coe�-

cients

A.2.1 Preliminary considerations

In general, the running of the gauge couplings ga(µ) in terms of the energy scale µ is given

by (see e.g.[240, 66, 67]):

8π2

ga(µ)2
=

8π2

g2a,string
+

ba
2
ln

(
Mstring

µ

)2

+ gauge threshold corrections , (A.6)

where the reference scale Mstring is a constant and g2a,string is the tree-level gauge coupling,

which is related to the volume of the D6-branes in string theory, see e.g. [241].

The coe�cient ba appearing in the second term of (A.6) is called the one-loop beta-function

coe�cient or simply the beta-function coe�cient. It contains information of the particle

content charged under the gauge group in question, see e.g. [177, 156, 242]. In string theory,

the beta-function coe�cient corresponds to the contribution from massless strings running

in a loop. The massive string excitations contribute to the gauge threshold corrections,

which have to be computed with CFT methods. This has already been well-studied in the

past, see for example [243�246] or [247�251] and also [67, 72]. The beta-function coe�cient

is su�cient for our purpose, since it allows us to detect gauge symmetry enhancement and

compute the complete massless open string sector, both chiral and non-chiral.

In the following, we will brie�y comment on the various contributions of the particle content

to the beta-function coe�cients. We de�ne the quadratic Casimir C2 and the index C of a

representation R as follows:

Tr(TR
a TR

b ) = C(R)δab, (A.7)

dim Group∑
a=1

TR
a TR

a = C2(R)1dim R. (A.8)

where TR
a are the in�nitesimal generators expressed in the representation R of the Lie group,

and δab is the Killing form de�ned by δab = Tr(TAdj
a TAdj

b ). The index C of the various

representations for the groups considered in this work is given by:

SU(N): Sp(2N): SO(2N):

C(N) = 1
2

C(2N) = 1
2

C(2N) = 1
2

C(Adj) = N C(Adj) = N + 1 C(Adj) = N − 1

C(Sym) = N+2
2

C(Sym) = N + 1 C(Sym) = N + 1

C(Anti) = N−2
2

C(Anti) = N − 1 C(Anti) = N − 1

(A.9)

We have the following relation between C and C2:

C(R)dim(Group) = C2(R)dim(R) . (A.10)

For the adjoint representation we have dim(Group) = dim(R), which implies C(Adj) =

C2(Adj). The contributions to the beta-function coe�cients di�er for vector multiplets
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(i.e. gauge bosons and their superpartners) and chiral multiplets (i.e. fermions and their

superpartners), as the former have di�erent degrees of freedom from the latter. The con-

tributions to the beta-function coe�cient from a single vector multiplet (1V ) and a single

chiral multiplet (1C) are given by:

b(1V ) = −3C2(Adj), (A.11)

b(1C) = C(R). (A.12)

In order to �nd the contributions from all the particles present in the theory, the contributions

above have to be multiplied by the multiplicities φxy of the particles. For an unitary group,

the beta-function coe�cients can be found e.g. in [66] and are of the form:

bSU(Na) = Na(−3 + φAdja) +
Na + 2

2
φSyma +

Na − 2

2
φAntia +

∑
b̸=a

Nb

2
(φab + φab′) . (A.13)

For symplectic gauge factors, the beta-function coe�cient is:

bUSp(2Na) = (Na + 1)(−3 + φSyma) + (Na − 1)φAntia +
∑
b̸=a

Nb

2
φab . (A.14)

We see that for USp(2)a ≃ SU(2) formula (A.13) with Na = 2 matches with formula (A.14)

with Na = 1, as required. The beta-function coe�cient for orthogonal gauge groups is:

bSO(2Na) = (Na − 1)(−3 + φAntia) + (Na + 1)φSyma +
∑
b̸=a

Nb

2
φab . (A.15)

In our set-up, we can compute the beta-function coe�cients with the formulas involving

intersection numbers indicated in section 3.3, as we will illustrate on an example in the next

section. Comparing the results to (A.13), (A.14) and (A.15), gauge symmetry enhancement

can be detected, and the multiplicities φxy of the various representations can be read o�.

A.2.2 Example of computation

Let us consider the three-cycle with bulk orbit parallel to the ΩR-invariant plane with bulk

orbit (1,0;1,0;1,0) on the aAA lattice. We have:

a = (1, 0; 1, 0; 1, 0) a′ = (1, 0; 1, 0; 1, 0),

(ωa) = (1, 0; 0,−1;−1, 1) (ωa)′ = (1, 0;−1, 1; 0,−1),

(ω2a) = (1, 0;−1, 1; 0,−1) (ω2a)′ = (1, 0; 0,−1;−1, 1).

(A.16)

Remember from section 3.3.2 that the bulk and exceptional intersection numbers are given

by:

3∏
i=1

(ni
am

i
b − ni

bm
i
a) ≡ I

(1)
ab I

(2)
ab I

(3)
ab , (A.17)

I
Z(i)
2

ab = (−1)τ
Z(i)2
a +τ

Z(i)2
b I

Z(i)
2 ,(j)

ab I
Z(i)
2 ,(k)

ab I
(i)
ab , (A.18)

= I
Z(i)
2 ,(j·k)

ab I
(i)
ab , (A.19)

where i, j, k are cyclic permutations of 1, 2, 3. We will start by determining the contributions

to beta-function coe�cients related to the adjoint representation.
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The adjoint representation

For the sector aa, the �rst formula in table 3.3 has to be used. This sector gives a contribution

of baa = −3Na, which corresponds to the vector multiplet containing the gauge boson.

Because we are working with fractional three-cycles passing through Z2-�xed points, no

contributions from chiral multiplets arise, which would have corresponded to displacement

moduli.

Next, we concentrate on the contributions ba(ωa) and ba(ω2a). The bulk intersection numbers

of these two sectors per two-torus T 2
(i), (i = 2, 3) are given by:

(I
(1)
a(ωa), I

(2)
a(ωa), I

(3)
a(ωa)) = (0↑↑ ,−1 , 1),

(I
(1)

a(ω2a), I
(2)

a(ω2a), I
(3)

a(ω2a)) = (0↑↑ , 1 ,−1),
(A.20)

where the up arrows ↑↑ indicate parallel one-cycles. Between the brane a under consideration
and its �rst orbifold image (ωa) is an angle of (0, ϕ,−ϕ), thus we have to use the second

entry of table 3.3 to compute the multiplicity of the second sector ba(ωa):

ba(ωa) =
1

4
δσ1

a(ωa)
,0δτ1

a(ωa)
,0︸ ︷︷ ︸

=1

|I(2·3)a(ωa)|︸ ︷︷ ︸
=1

−I
Z(1)
2 ,(2·3)

a(ωa)

 . (A.21)

The orbifold action does not change the discrete Wilson lines nor the shifts or Z2-eigenvalues,

hence we have no relative shifts or Wilson lines δσ1
a(ωa)

,0 = δτ1
a(ωa)

,0 = 1. As can be read o�

from (A.19) and (A.18), the twisted part of the intersection numbers is given by:

I
Z(1)
2 ,(2·3)

a(ωa) = (−1)τ
Z(1)2
a +τ

Z(1)2
(ωa)I

Z(1)
2 ,(2)

a(ωa) I
Z(1)
2 ,(3)

a(ωa) . (A.22)

Note that in the case under consideration, we do not need the bulk part of the intersection

numbers on the �rst two-torus given by I
(1)
a(ωa) for the computation of the adjoint repre-

sentation in (A.21). This is due to the fact that the Z6-orbifold action does not act on

the �rst two-torus, such that a brane a and its orbifold images (ωka) are always parallel

on the �rst two-torus T 2
(1), hence I

(1)
a(ωa) = 0. Also, we have τ

Z(i)
2

a = τ
Z(i)
2

(ωa), implying that:

(−1)τ
Z(1)2
a +τ

Z(1)2
(ωa) = 1.

The twisted parts I
Z(1)
2 ,(2)

a(ωa) and I
Z(1)
2 ,(3)

a(ωa) have to be calculated separately for the second and

the third two-torus. In order to keep the computation generic, we will derive the results in

presence of shifts and without shifts.

To indicate that a bulk cycle passes through the Z2-�xed points labeled by α and β on a

two-torus, we use the notation

 α

β

 if α is the reference point and

 β

α

 if β is the reference

point. On the second torus T 2
(2), the bulk three-cycle passes through the following Z2-�xed

points:

(n2
a,m

2
a) = (1, 0) ⇒

 1

4

 shift→

 5

6

 , (A.23)

(n2
(ωa),m

2
(ωa)) = (0,−1) ⇒

 1

5

 shift→

 6

4

 , (A.24)
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where we place the label of the reference Z2-�xed point in the upper entry as aforementioned.

According to (3.23), equal upper indices give a factor +1, whereas equal lower indices give

a factor (−1)(τ
2
a+τ2

(ωa)
). Equal indices with one of them in an upper, the second in a lower

position give a factor (−1)τ
2
a or τ2

(ωa) , see (3.23):

no shift:

 1

4

 ·

 1

5

 = 1 = I
Z(1)
2 ,(2)

a(ωa) , (A.25)

with shift:

 5

6

 ·

 6

4

 = (−1)τ
2
a = I

Z(1)
2 ,(2)

a(ωa) . (A.26)

The result can be written as I
Z(1)
2 ,(2)

a(ωa) = (−1)τ
2
aσ

2
a . In fact, with this scripture, both cases

for the shift can be accounted for simultaneously. Similarly, on the third two-torus T 2
(3) the

bulk-three cycles pass through the following Z2-�xed points:

(n3
a,m

3
a) = (1, 0) ⇒

 1

4

 shift→

 5

6

 , (A.27)

(n3
(ωa),m

3
(ωa)) = (−1, 1) ⇒

 1

6

 shift→

 4

5

 , (A.28)

which give the following contributions to the twisted part of the intersection numbers:

no shift:

 1

4

 ·

 1

6

 = 1 = I
Z(1)
2 ,(3)

a(ωa) , (A.29)

with shift:

 5

6

 ·

 4

5

 = (−1)τ
3
(ωa) = I

Z(1)
2 ,(3)

a(ωa) . (A.30)

Once again, the result can be written as I
Z(1)
2 ,(3)

a(ωa) = (−1)τ
3
(ωa)

σ3
(ωa) . As usual, we have τ ia = τ i(ωa)

and σi
a = σi

(ωa) because the orbifold action does not change the Wilson lines, nor the shifts.

Thus, putting all the pieces together in (A.21), the multiplicity of the adjoint representation

in the a(ωa) sector is given by:

ba(ωa) =
1

4

(
1− (−1)σ

2
aτ

2
a+σ3

aτ
3
a

)
. (A.31)

The same results can be derived analogously for the second sector ba(ω2a). The complete

contribution to the beta-function coe�cient of the adjoint representation is given by the

sum of ba(ωa), ba(ω2a) and baa. In fact, as already mentioned in section 3.3, ba(ωa) and ba(ω2a)

each provide half of the degrees of freedom of a chiral multiplet. Both together form a chiral

N = 1 SUSY multiplet transforming in the adjoint representation, so the multiplicity of the

latter is given by φa(ωa)+φa(ω2a)

2
.

The contribution to the beta-function coe�cient of bifundamental representations can be

computed analogously to the calculation illustrated above for the adjoint representation.

Therefore, we will not provide an example, but continue with the contributions to the beta-

function coe�cient of the symmetric and antisymmetric representations.
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The symmetric and antisymmetric representations

We consider again the three-cycle with bulk orbit parallel to the �rst orientifold plane ΩR.

Once again, we have three sectors contributing to the beta-function coe�cient, given by baa′ ,

b(ωa)(ωa)′ and b(ω2a)(ω2a)′ . We will start with the �rst one.

The �rst sector baa′: The torus three-cycle a given by (1,0;1,0;1,0) is invariant under the

orientifold projection, so a and a′ are parallel on all three two-tori and we have to use the

�rst entry of table 3.4, reading:

baa′ = −Na

4

3∑
i=1

I
Z(i)
2 ,(j·k)

aa′ − 1

2

3∑
i=1

η
ΩRZ(i)

2
(−1)2b

iσi
aτ

i
a|ĨΩRZ(i)

2 ,(j·k)
a | , (A.32)

where in our background (b1, b2, b3) = (b, 1/2, 1/2), and Ĩ
ΩRZ(i)

2 ,(j·k)
a = NO6I

ΩRZ(i)
2 ,(j·k)

a , with

NO6 = 2(1− b), b = 0, 1/2.

In our computation, we will also need the torus wrapping numbers of the other three O6-

planes, given by:

ΩRZ(1)
2 : (1, 0;−1, 2; 1,−2),

ΩRZ(2)
2 : (0, 1; 1, 0; 1,−2),

ΩRZ(3)
2 : (0, 1; 1,−2; 1, 0).

The bulk intersection numbers can subsequently be computed and are given in table A.2.

Bulk intersection numbers needed to compute baa′, ba(ωa)′ and ba(ω2a)′ , for a parallel to the ΩR-plane

y
(
I
(1)
yy′ , I

(2)
yy′ , I

(3)
yy′

) (
I
ΩR,(1)
y , I

ΩR,(2)
y , I

ΩR,(3)
y

) (
I
ΩRZ(1)

2 ,(1)
y , I

ΩRZ(1)
2 ,(2)

y , I
ΩRZ(1)

2 ,(3)
y

) (
I
ΩRZ(2)

2 ,(1)
y , I

ΩRZ(2)
2 ,(2)

y , I
ΩRZ(2)

2 ,(3)
y

) (
I
ΩRZ(3)

2 ,(1)
y , I

ΩRZ(3)
2 ,(2)

y , I
ΩRZ(3)

2 ,(3)
y

)
a (0↑↑ , 0↑↑ , 0↑↑) (0↑↑ , 0↑↑ , 0↑↑) (0↑↑ , 2 ,−2) (1 , 0↑↑ ,−2) (1 ,−2 , 0↑↑)

(ωa) (0↑↑ ,−1 , 1) (0↑↑ , 1 ,−1) (0↑↑ ,−1 , 1) (1 , 1 , 1) (1 , 1 ,−1)

(ω2a) (0↑↑ , 1 ,−1) (0↑↑ ,−1 , 1) (0↑↑ ,−1 , 1) (1 ,−1 , 1) (1 , 1 , 1)

Table A.2: Bulk intersection numbers of the three-cycles under consideration with their orientifold

images or some O6-plane on each of the three two-tori T 2
(i), i = 1, 2, 3. Two up arrows indicate one-

cycles that are parallel. These intersection numbers are necessary ingredients for the determination

of the multiplicity of the symmetric and antisymmetric representations.

The bulk intersection numbers in table A.2 can be used to compute the second sum in

(A.32). Only bulk intersection numbers are needed since the O6-planes do not wrap excep-

tional cycles.

In order to compute the �rst sum in (A.32), the exceptional intersection numbers are

needed. The exceptional intersection numbers are given by:

I
Z(i)
2 ,(j·k)

aa′ = (−1)τ
Z(i)2
a +τ

Z(i)2
a′ I

Z(i)
2 ,(j)

aa′ I
Z(i)
2 ,(k)

aa′ . (A.33)

We have to calculate the contributions from each Z(i)
2 -twisted sector i = 1, 2, 3 separately.

For the �rst twisted sector with i = 1, the contribution to compute is I
Z(1)
2 ,(2·3)

aa′ . On the

second two-torus, the bulk three-cycles a and a′ pass through the following Z2-�xed points:

(n2
a,m

2
a) = (1, 0) ⇒

 1

4

 shift→

 5

6

 , (A.34)
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(n2
a′ ,m

2
a′) = (1, 0) ⇒

 1

4

 shift→

 5

6

 , (A.35)

leading to the following contributions to the exceptional intersection numbers:

no shift:

 1

4

 ·

 1

4

 = 1 + (−1)τ
a+τa

′

= 1 + (−1)2τ
a

= 2 = I
Z(1)
2 ,(2)

aa′ , (A.36)

with shift:

 5

6

 ·

 5

6

 = 1 + (−1)τ
a+τa

′

= 2 = I
Z(1)
2 ,(2)

aa′ . (A.37)

This time, we obtain the same results independently of whether a shift is present or not. The

reasoning is the same for the third two-torus. The orientifold projection does not in�uence

the Wilson lines nor the shifts. However, it has an in�uence on the Z2-eigenvalues as we will

see below, since it acts as a re�exion with respect to the real axis.

In the next step, we have to consider the transformation rule under the orientifold projection

of the Z(1)
2 -eigenvalue of the cycle a in order to determine the quantity (−1)τ

Z(1)2
a +τ

Z(1)2
a′ . This

can be done by applying subsequently the orientifold projection on the basis cycles and the

torus wrapping numbers, and by comparing both. The cycle a passes through the Z2-�xed

points 1 and 4 on both the second and third two-torus, without shift.The exceptional cycle

obtained is given by:

ΠZ(1)
2

a = (ε
(1)
0 + ε

(1)
2 (−1)τ

3
a + ε

(1)
1 (−1)τ

2
a + ε

(1)
3 (−1)τ

2
a+τ3a )(−1)τ

Z(1)2
a . (A.38)

By applying the orientifold projection on the basis exceptional cycles as in (2.26), we �nd:

ΩR(ΠZ(1)
2

a ) = −η(1)Π
Z(1)
2

a . (A.39)

On the other hand, we can apply the orientifold projection on the torus wrapping numbers

as in (2.18), giving:

Π
Z(1)
2

a′ = (ε
(1)
0 + ε

(1)
2 (−1)τ

3
a + ε

(1)
1 (−1)τ

2
a + ε

(1)
3 (−1)τ

2
a+τ3a )(−1)τ

Z(1)2
a′ . (A.40)

By comparing the two expressions, we �nd that:

(−1)τ
Z(1)2
a′ = −η(1)(−1)τ

Z(1)2
a . (A.41)

A correction needs to be added in presence of shifts, giving:

(−1)τ
Z(1)2
a′ = −η(1)(−1)τ

Z(1)2
a (−1)2b

2σ2
aτ

2
a+2b3σ3

aτ
3
a , (A.42)

with (b2, b3) = (1/2, 1/2) in our background. When dealing with three-cycles parallel to

some O6-plane, as in the present case, extra care has to be taken. For the three O6-planes

ΩRZ(i=1,2,3)
2 that are orthogonal to the real axis on two of the three two-tori, a and a′ are

antiparallel on these two-tori, implying that a and a′ di�er by a sign factor. However, these

three-cycles can give rise to gauge symmetry enhancement, which imposes a to be exactly
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equal to a′. Consequently, extra signs have to be introduced if a and a′ are antiparallel on

some two-tori. This forces us to modify the de�nition of τ
Z(i)
2

a′ (i = 1, 2, 3) slightly by turning

the overall minus signs into a plus sign if a three-cycle is antiparallel to its orientifold image

on the two-torus T 2
(i).

Putting all the results together in (A.33), we �nd the intersection numbers of the �rst twisted

sector:

I
Z(1)
2 ,(2·3)

aa′ = −4η(1)(−1)σ
2
aτ

2
a+σ3

aτ
3
a . (A.43)

A similar analysis has to be done with the intersection numbers in the second and third

twisted sectors I
Z(2)
2 ,(1·3)

aa′ and I
Z(3)
2 ,(1·2)

aa′ .

With these ingredients, the �rst sum in formula (A.32) can be computed. The second sum

only involves the bulk intersection numbers given in (A.2).

All in all, we obtain for the �rst sector baa′ the following contribution to the beta-function

coe�cient, see formula (A.32):

baa′ = Na(η(1)(−1)σ
2
aτ

2
a+σ3

aτ
3
a + η(2)(−1)σ

3
aτ

3
a + η(3)(−1)σ

2
aτ

2
a )

−2(η
ΩRZ(1)

2
+ η

ΩRZ(2)
2
(−1)σ

2
aτ

2
a + η

ΩRZ(3)
2
(−1)σ

3
aτ

3
a ).

(A.44)

The second and third sectors b(ωa)(ωa)′ and b(ω2a)(ω2a)′: Consider now the second sector

b(ωa)(ωa)′ . The �rst orbifold image (ωa) of the cycle a is parallel to ΩR or ΩRZ(1)
2 on the �rst

two-torus T 2
(1). Hence, this situation corresponds to the third entry in table 3.4 with i = 1.

Given that b1 = 0 since we are working on the aAA lattice, the beta-function coe�cient is

given by:

b(ωa)(ωa)′ = Na

4

(
|I(2·3)(ωa)(ωa)′ | − |IZ

(1)
2 (2·3)

(ωa)(ωa)′|
)
− 1

2

(
ηΩR|ĨΩR(2·3)

(ωa) |+ η
ΩRZ(1)

2
|ĨΩRZ(1)

2 (2·3)
(ωa) |

)
= Na

4
(1 + η(1))− 1

2

(
ηΩR + η

ΩRZ(1)
2

)
,

(A.45)

where we used similar computations to the ones performed above to pass from the �rst to

the second line. The same can be done for the second orbifold image (ω2a), i.e. the second

sector b(ω2a)(ω2a)′ , leading exactly to the same result.

Concrete examples for the beta-function coe�cient

As a �rst concrete example, let us consider all shifts being zero, σi = 0, i = 1, 2, 3. Formula

(A.21) gives us ba(ωa) = ba(ω2a) = 0. Furthermore, let the ΩR-plane be the exotic one, i.e.

ηΩR = −1 ⇒ η(1) = −1. This implies b(ωa)(ωa)′ = b(ω2a)(ω2a)′ = 0, as a look at formula (A.45)

reveals. The �rst sector of the contribution from the (anti)symmetric representation gives

baa′ = −3Na− 6, see formula (A.44). The beta-function coe�cient is given by summing over

all sectors k = 0, 1, 2 and representations, leading to:

bUSp(2Na) = baa + ba(ωa) + ba(ω2a) + baa′ + b(ωa)(ωa)′ + b(ω2a)(ω2a)′ +
∑
b̸=a

Nb

2
φab

= −3Na − 6− 3Na +
∑
b̸=a

Nb

2
φab
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= −6(Na + 1) +
∑
b ̸=a

Nb

2
φab,

where one −3Na comes from the symmetric/antisymmetric sector baa′ and the other from

the adjoint sector baa. The explicit expression of the contribution from the bifundamental

representations depend on the number of stacks present in the model. We will limit the

examples to the adjoint and (anti)symmetric representations.

Since we are considering a three-cycle with bulk orbit parallel to the ΩR-plane, we have

gauge symmetry enhancement with the chosen con�guration of discrete parameters and ex-

otic charge (σi = 0 and ηΩR = −1), see table 5.1. The sum in the last line was performed in

order to make apparent one of the indices C given in (A.9). In the absence of enhancement,

the sectors ba(ωka) and b(ωka)(ωka)′ can be interpreted separately. In case of enhancement, they

have to be taken together in order to make sense of the spectrum.

As we have enhancement, the three-cycle a is equivalent to its orientifold image a′ with a = a′,

implying that the sectors ba(ωka) and b(ωka)(ωka)′ contain redundant information. To avoid

double-counting of the multilpicities, the result is divided by 2, giving bUSp(2Na) = −3(Na+1).

The factor −3 is typical for the presence of a vector multiplet, transforming in the adjoint

representation. From the formulas (A.9) we see that only for symplectic groups USp(2N)

we have C(Adj) = N + 1. Thus, here we are in presence of USp(2N)-enhancement of the

gauge group.

As a second example, consider the following shifts and Wilson lines: σ2
aτ

2
a = σ3

aτ
3
a = 1

and the exotic charge ηΩR = −1. This is a situation without enhancement, see table 5.1.

Summing again over the sectors k = 0, 1, 2 and the various representations, we obtain:

bSU(Na) = baa + ba(ωa) + ba(ω2a) + baa′ + b(ωa)(ωa)′ + b(ω2a)(ω2a)′ +
∑
b̸=a

Nb

2
φab

= −3Na + 0 + 0 + (Na + 2) + 0 + 0 +
∑
b̸=a

Nb

2
φab

= −3Na +
2(Na + 2)

2
+
∑
b̸=a

Nb

2
φab .

The term −3Na is again the contribution baa from the vector multiplet associated to the

gauge bosons, transforming in the adjoint representation of SU(Na). By further comparing

the result above to the list (A.9), we see that the second term corresponds to a contribution

from two multiplets transforming in the symmetric representation of SU(Na), given by baa′ .

Finally, consider the case: σ2
aτ

2
a = 0, σ3

aτ
3
a = 1 and again ηΩR = −1, so that no enhancement

is present. The result for the beta-function coe�cient is:

bSU(Na) = baa + ba(ωa) + ba(ω2a) + baa′ + b(ωa)(ωa)′ + b(ω2a)(ω2a)′ +
∑
b̸=a

Nb

2
φab

= −3Na +
Na

2
+

Na

2
+ (Na − 2) + 0 + 0 +

∑
b̸=a

Nb

2
φab

= −3Na +
Na

2
+

Na

2
+

2(Na − 2)

2
+
∑
b̸=a

Nb

2
φab .
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The �rst term has already been discussed. The second and third terms arising from ba(ωk=1,2a)

provide together a chiral multiplet transforming in the adjoint representation of SU(Na).

These are unwanted for non-Abelian groups from a phenomenological point of view, so that

this combination of exotic charge, shifts and Wilson lines should be avoided. Indeed, the

chiral multiplets coming from ba(ωk=1,2a) correspond to deformation moduli of the D6-branes,

rendering them non-rigid. The last term coming from baa′ corresponds to two multiplets

transforming in the antisymmetric representation of SU(Na), as can be deduced from (A.9).

Once the beta-function coe�cients are computed, the multiplicities φxy can be directly

determined by comparing the expression found with formula (A.13), respectively (A.14) and

(A.15) in case of enhancement.



Appendix B

Additional information

B.1 Other de�nitions of the hypercharge

We will present only one example explicitly, as the conditions on the intersection numbers

for the other de�nitions of the hypercharge can be derived similarly.

Consider, for example, the following de�nition of the hypercharge:

QY =
1

6
Qa −

1

2
Qc +

1

2
Qd . (B.1)

The conditions on the left-handed quarks remain una�ected by the change of signs. The

other constraints, though, change. Indeed, the conditions for the right-handed up-type and

down-type quarks become:

Intersection Chirality/ Representation under QY

Multiplicity (SU(3), SU(2))(Qa,Qb,Qc,Qd)

χac ≤ 0 (3,1)(−1,0,1,0) −2/3

χac′ ≤ 0 (3,1)(−1,0,−1,0) 1/3

χad ≤ 0 (3,1)(−1,0,0,1) 1/3

χad′ ≤ 0 (3,1)(−1,0,0,−1) −2/3

χAntia ≥ 0 (3,1)(2,0,0,0) 1/3

χac′ + χad − χAntia −3 dR 1/3

χac + χad′ −3 uR −2/3

(B.2)

The particles arising in the ac and ac′ sectors now lead to di�erent values of the hypercharge

and consequently, they need to be paired o� in the sum di�erently from before in section

3.2.1. A similar phenomenon arises for the left-handed leptons, the conditions for which
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become:

Intersection Chirality/ Representation under QY

Multiplicity (SU(3), SU(2))(Qa,Qb,Qc,Qd)

χbc ≤ 0 (1,2)(0,−1,1,0) −1/2

χbc′ ≥ 0 (1,2)(0,1,1,0) −1/2

χbd ≥ 0 (1,2)(0,1,0,−1) −1/2

χbd′ ≤ 0 (1,2)(0,−1,0,−1) −1/2

−χbc + χbd + χbc′ − χbd′ 3 L −1/2

(B.3)

Finally, for the right-handed electrons, the conditions are:

Intersection Chirality/ Representation under QY

Multiplicity (SU(3), SU(2))(Qa,Qb,Qc,Qd)

χcd ≤ 0 (1,1)(0,0,−1,1) 1

χSymc ≤ 0 (1,1)(0,0,−2,0) 1

χSymd ≥ 0 (1,1)(0,0,0,2) 1

−χcd − χSymc + χSymd 3 eR 1

(B.4)

Note that the right-handed electrons now involve the cd sector instead of the cd′ sector.

Indeed, the cd′ sector now gives the right-handed neutrinos:

Intersection Chirality/ Representation under QY

Multiplicity (SU(3), SU(2))(Qa,Qb,Qc,Qd)

χcd′ ±3 νR : (1,1)(0,0,±1,±1) 0

χAntib ≥ 0 or ≤ 0 (1,1)(0,±2,0,0) 0

χAdjc ≥ 0 or ≤ 0 (1,1)(0,0,0,0) 0

χAdjd ≥ 0 or ≤ 0 (1,1)(0,0,0,0) 0

(B.5)

By comparing the conditions derived for this de�nition of the hypercharge to those derived

previously for the standard de�nition of the hypercharge in section 3.2.1, we see that they

coincide after a simple exchange of the c stack with its orieni�old image c′.

The conclusion is the same for the two remaining de�nitions of the hypercharge, Qy =
Qa

6
+ Qc

2
− Qd

2
and Qy = Qa

6
− Qc

2
− Qd

2
, where the �rst corresponds to an exchange d ↔ d′

and the second to a simultaneous exchange c ↔ c′ and d ↔ d′.

B.2 Addendum to chapter 8

In this section, we provide some complementary information to the results discussed in

chapter 8.



B.2. ADDENDUM TO CHAPTER 8 235

B.2.1 Linearly independent fractional three-cycles

A set of 16 linearly independent fractional three-cycles is given by:

1

4

(
(ε

(2)
1 − 2ε̃

(2)
1 ) + ε

(3)
1 + (ε

(2)
2 − 2ε̃

(2)
2 ) + ε

(3)
2 + (ε

(1)
4 − ε

(1)
5 ) + ρ1

)
,

1

4

(
(ε

(2)
1 − 2ε̃

(2)
1 )− ε

(3)
1 + (ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 − (ε

(1)
4 − ε

(1)
5 ) + ρ1

)
,

1

4

(
−(ε

(2)
1 − 2ε̃

(2)
1 )− ε

(3)
1 − (ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 + (ε

(1)
4 − ε

(1)
5 ) + ρ1

)
,

1

4

(
−(ε

(2)
1 − 2ε̃

(2)
1 ) + ε

(3)
1 − (ε

(2)
2 − 2ε̃

(2)
2 ) + ε

(3)
2 − (ε

(1)
4 − ε

(1)
5 ) + ρ1

)
,

1

4

(
(ε

(1)
4 − ε

(1)
5 ) + (ε

(2)
3 − 2ε̃

(2)
3 ) + ε

(3)
3 + (ε

(2)
4 − 2ε̃

(2)
4 ) + ε

(3)
4 + ρ1

)
,

1

4

(
−(ε

(1)
4 − ε

(1)
5 ) + (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 + (ε

(2)
4 − 2ε̃

(2)
4 )− ε

(3)
4 + ρ1

)
,

1

4

(
(ε

(1)
4 − ε

(1)
5 ) + (ε

(2)
3 − 2ε̃

(2)
3 ) + ε

(3)
3 − (ε

(2)
4 − 2ε̃

(2)
4 )− ε

(3)
4 + ρ1

)
,

1

4

(
−(ε

(1)
4 − ε

(1)
5 ) + (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 − (ε

(2)
4 − 2ε̃

(2)
4 ) + ε

(3)
4 + ρ1

)
,

1

4

(
(ε

(2)
2 − 2ε̃

(2)
2 ) + ε

(3)
2 + (ε

(2)
3 − 2ε̃

(2)
3 ) + ε

(3)
3 + ε̃

(1)
0 + ε̃

(1)
1 + ε̃

(1)
2 + ε̃

(1)
3 + ρ3 − 2ρ4

)
,

1

4

(
−(ε

(2)
2 − 2ε̃

(2)
2 ) + ε

(3)
2 − (ε

(2)
3 − 2ε̃

(2)
3 ) + ε

(3)
3 + ε̃

(1)
0 + ε̃

(1)
1 − ε̃

(1)
2 − ε̃

(1)
3 + ρ3 − 2ρ4

)
,

1

4

(
(ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 + (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 + ε̃

(1)
0 − ε̃

(1)
1 + ε̃

(1)
2 − ε̃

(1)
3 + ρ3 − 2ρ4

)
,

1

4

(
−(ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 − (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 + ε̃

(1)
0 − ε̃

(1)
1 − ε̃

(1)
2 + ε̃

(1)
3 + ρ3 − 2ρ4

)
,

1

4

(
(ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 + (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 − ε̃

(1)
0 − ε̃

(1)
1 − ε̃

(1)
2 − ε̃

(1)
3 + ρ3 − 2ρ4

)
,

1

4

(
−(ε

(2)
2 − 2ε̃

(2)
2 ) + ε

(3)
2 − (ε

(2)
3 − 2ε̃

(2)
3 ) + ε

(3)
3 + 2ε̃

(1)
2 + (ε̃

(1)
4 + ε̃

(1)
5 ) + ρ3 − 2ρ4

)
,

1

4

(
−(ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 − (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 + 2ε̃

(1)
2 − (ε̃

(1)
4 + ε̃

(1)
5 ) + ρ3 − 2ρ4

)
,

1

4

(
(ε

(2)
2 − 2ε̃

(2)
2 )− ε

(3)
2 + (ε

(2)
3 − 2ε̃

(2)
3 )− ε

(3)
3 + 2ε̃

(1)
1 + (ε̃

(1)
4 + ε̃

(1)
5 ) + ρ3 − 2ρ4

)
.

Their independence can be checked by calculating the rank of the associated coe�cient

matrix.
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The corresponding coe�cient matrix is the following:

Rk
1

4



0 0 0 0 0 0 0 0 1 1 1 1 −1 0 0 0

0 0 0 0 0 0 0 0 1 1 −1 −1 −1 0 0 2

0 0 0 0 0 0 0 0 1 −1 1 −1 −1 2 2 0

0 0 0 0 0 0 0 0 1 −1 −1 1 −1 0 0 0

1 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1

1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1

0 0 0 0 1 1 1 1 1 −1 1 −1 1 −1 −1 1

0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 1 1 −1 −1 −1 1 −1 −1

0 0 0 0 1 −1 1 −1 1 1 −1 −1 −1 1 −1 −1

0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



= 16,

(B.6)

where the columns correspond to the coe�cients of the cycles. The basis cycles are taken in

the same order as in table 8.3. (From top row to bottom row: ε̃
(1)
α ,ε

(1)
4 −ε

(1)
5 , ε̃

(1)
4 + ε̃

(1)
5 ,ε

(2)
α −

2ε̃
(2)
α ,ε

(3)
α , ρ1, ρ3 − 2ρ4.)

B.2.2 Details about the Zn-symmetries for the global MSSM

The following code illustrates how the necessary and su�cient conditions for the existence

of Zn-symmetries of the MSSM given in table 7.17 should be interpreted:

Do[

n1 = ka*3 + kc*3 + kd*(-4) + kh*4;

n2 = ka*3 + kc*1 + kd*(-2) + kh*0;

n3 = ka*(6) + kc*(-1) + kd*(-1) + kh*0;

n = GCD[n1, n2, n3];

If[And[ka < n, kc < n, kd < n, kh < n, GCD[ka, kc, kd, kh, n] == 1, n != 1],

Print[ka, ",", kc, ",", kd, ",", kh, " : ", n]

]

, {ka, 0, 16} , {kc, 0, 16} , {kd, 0, 16} , {kh, 0, 16}]

Thus, for the ki's varying from zero to 16, the code takes the greatest common divisor n of

the contributions ni from three linearly independent equations of (8.19). Thus n corresponds

to the discrete symmetry Zn.

The code produced a total of 442 di�erent combinations giving discrete symmetries for all
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n up to n = 45. From n = 45 on, some values were missing, but that is probably just due

to the fact that we limited the ki's to 16. In the following table, we only reproduce, as a

sample, the symmetries up to n = 12 for the D6-brane con�guration in table 7.17:

ka kc kd kh n ka kc kd kh n ka kc kd kh n ka kc kd kh n

1 1 1 0 2 3 1 1 6 8 2 2 10 1 12 7 1 5 11 12

1 1 1 1 2 5 7 7 0 8 2 2 10 7 12 7 5 1 1 12

0 1 2 2 3 5 7 7 2 8 2 6 6 3 12 7 5 1 4 12

0 2 1 1 3 5 7 7 4 8 2 10 2 5 12 7 5 1 7 12

1 0 0 0 3 5 7 7 6 8 2 10 2 11 12 7 5 1 10 12

1 1 2 2 3 7 5 5 2 8 3 1 5 2 12 7 9 9 0 12

1 2 1 1 3 7 5 5 6 8 3 1 5 5 12 7 9 9 3 12

2 1 2 2 3 1 0 6 3 9 3 1 5 8 12 7 9 9 6 12

2 2 1 1 3 1 6 0 6 9 3 1 5 11 12 7 9 9 9 12

0 0 0 1 4 2 0 3 6 9 3 5 1 1 12 8 0 0 3 12

1 3 3 1 4 2 3 0 3 9 3 5 1 4 12 8 0 0 9 12

2 2 2 1 4 4 3 3 0 9 3 5 1 7 12 8 4 8 5 12

2 2 2 3 4 5 0 3 6 9 3 5 1 10 12 8 4 8 11 12

3 1 1 1 4 5 3 0 3 9 4 0 0 3 12 8 8 4 1 12

3 1 1 3 4 5 6 6 0 9 4 0 0 9 12 8 8 4 7 12

2 1 1 0 5 7 0 6 3 9 4 4 8 5 12 9 7 11 2 12

3 4 4 0 5 7 6 0 6 9 4 4 8 11 12 9 7 11 5 12

0 2 4 1 6 8 0 3 6 9 4 8 4 1 12 9 7 11 8 12

0 4 2 5 6 8 3 0 3 9 4 8 4 7 12 9 7 11 11 12

1 1 5 2 6 4 2 2 5 10 5 3 3 0 12 9 11 7 1 12

1 1 5 5 6 6 8 8 5 10 5 3 3 3 12 9 11 7 4 12

1 5 1 1 6 4 1 1 0 11 5 3 3 6 12 9 11 7 7 12

1 5 1 4 6 5 4 4 0 11 5 3 3 9 12 9 11 7 10 12

2 0 0 3 6 6 7 7 0 11 5 7 11 2 12 10 2 10 1 12

2 2 4 1 6 7 10 10 0 11 5 7 11 5 12 10 2 10 7 12

2 4 2 5 6 0 4 8 5 12 5 7 11 8 12 10 6 6 3 12

4 2 4 1 6 0 4 8 11 12 5 7 11 11 12 10 6 6 9 12

4 4 2 5 6 0 8 4 1 12 5 11 7 1 12 10 10 2 5 12

5 1 5 2 6 0 8 4 7 12 5 11 7 4 12 10 10 2 11 12

5 1 5 5 6 1 3 3 3 12 5 11 7 7 12 11 1 5 2 12

5 5 1 1 6 1 7 11 2 12 5 11 7 10 12 11 1 5 5 12
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5 5 1 4 6 1 7 11 5 12 6 2 10 1 12 11 1 5 8 12

3 2 2 0 7 1 7 11 8 12 6 2 10 7 12 11 1 5 11 12

4 5 5 0 7 1 7 11 11 12 6 10 2 5 12 11 5 1 1 12

1 3 3 2 8 1 11 7 1 12 6 10 2 11 12 11 5 1 4 12

3 1 1 0 8 1 11 7 4 12 7 1 5 2 12 11 5 1 7 12

3 1 1 2 8 1 11 7 7 12 7 1 5 5 12 11 5 1 10 12

3 1 1 4 8 1 11 7 10 12 7 1 5 8 12 11 9 9 3 12

11 9 9 9 12

Only a few of these correspond to actual new independent Zn-symmetries. Redundancies

between the discrete symmetries can be detected by analyzing the charges of the particles

under the discrete Zn-symmetries, as is explained in the main text of chapter 8.
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B.3 Classi�cation of SUSY two-cycles on T 2
(2) × T 2

(3) with

lattice AA

Systematic classi�cation of bulk 2-cycles on T 2
(2) × T 2

(3) with lattice AA (part I)

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(0, 1; 1,−1) 1 0 2

(2,−1; 1, 1) 3 0 6

(2, 1; 3,−1) 7 0 14

(−2, 3; 1,−3) 7 0 14

(4,−1; 3, 1) 13 0 26

(4,−3; 1, 3) 13 0 26

(2,−1; 1,−1) 1 −2 0

(0,−1; 1, 1) 1 −2 0

(4,−5; 3,−1) 7 −14 0

(4, 1; 1,−3) 7 −14 0

(2,−3; 5,−1) 7 −14 0

(2, 1; 1,−5) 7 −14 0

(0, 1; 1,−3) 3 −2 4

(2, 1; 1,−1) 3 −2 4

(0, 1; 3,−5) 5 −2 8

(2, 3; 1,−1) 5 −2 8

(2,−1; 3, 1) 7 −2 12

(0, 1; 5,−7) 7 −2 12

(4,−3; 1, 1) 7 −2 12

(2, 5; 1,−1) 7 −2 12

(0, 1; 7,−9) 9 −2 16

(2, 7; 1,−1) 9 −2 16

(0,−1; 1, 3) 3 −4 2

(4,−1; 1,−1) 3 −4 2

(2,−1; 3,−1) 5 −4 6

(0, 1; 1,−5) 5 −4 6

(2,−3; 1, 1) 5 −4 6

(4, 1; 1,−1) 5 −4 6

(0, 1; 3,−7) 7 −4 10

(4, 3; 1,−1) 7 −4 10

(4, 5; 1,−1) 9 −4 14

(0, 1; 5,−9) 9 −4 14

(6,−1; 1,−1) 5 −6 4

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(0,−1; 1, 5) 5 −6 4

(0, 1; 1,−7) 7 −6 8

(6, 1; 1,−1) 7 −6 8

(4,−5; 1, 1) 9 −6 12

(2,−1; 5,−1) 9 −6 12

(2,−3; 1, 3) 11 −6 16

(0, 1; 5,−11) 11 −6 16

(6, 5; 1,−1) 11 −6 16

(4,−1; 3,−1) 11 −6 16

(0,−1; 3, 5) 5 −8 2

(8,−3; 1,−1) 5 −8 2

(2, 1; 1,−3) 5 −8 2

(0,−1; 1, 7) 7 −8 6

(8,−1; 1,−1) 7 −8 6

(2,−1; 5,−3) 7 −8 6

(2,−5; 1, 1) 7 −8 6

(8, 1; 1,−1) 9 −8 10

(0, 1; 1,−9) 9 −8 10

(0, 1; 3,−11) 11 −8 14

(8, 3; 1,−1) 11 −8 14

(0,−1; 3, 7) 7 −10 4

(10,−3; 1,−1) 7 −10 4

(2,−3; 3, 1) 9 −10 8

(10,−1; 1,−1) 9 −10 8

(0,−1; 1, 9) 9 −10 8

(4,−3; 3,−1) 9 −10 8

(4,−7; 1, 1) 11 −10 12

(2,−1; 7,−3) 11 −10 12

(0, 1; 1,−11) 11 −10 12

(10, 1; 1,−1) 11 −10 12

(0, 1; 3,−13) 13 −10 16

(10, 3; 1,−1) 13 −10 16

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(0,−1; 5, 7) 7 −12 2

(12,−5; 1,−1) 7 −12 2

(2,−7; 1, 1) 9 −12 6

(2,−1; 7,−5) 9 −12 6

(2, 3; 1,−3) 11 −12 10

(12,−1; 1,−1) 11 −12 10

(0,−1; 1, 11) 11 −12 10

(2, 1; 3,−5) 11 −12 10

(0, 1; 1,−13) 13 −12 14

(12, 1; 1,−1) 13 −12 14

(0,−1; 5, 9) 9 −14 4

(14,−5; 1,−1) 9 −14 4

(0,−1; 3, 11) 11 −14 8

(14,−3; 1,−1) 11 −14 8

(0,−1; 1, 13) 13 −14 12

(2,−1; 9,−5) 13 −14 12

(4,−9; 1, 1) 13 −14 12

(14,−1; 1,−1) 13 −14 12

(0, 1; 1,−15) 15 −14 16

(14, 1; 1,−1) 15 −14 16

(0,−1; 7, 9) 9 −16 2

(16,−7; 1,−1) 9 −16 2

(0,−1; 5, 11) 11 −16 6

(2,−1; 9,−7) 11 −16 6

(16,−5; 1,−1) 11 −16 6

(2,−9; 1, 1) 11 −16 6

(16,−3; 1,−1) 13 −16 10

(6,−5; 3,−1) 13 −16 10

(2,−3; 5, 1) 13 −16 10

(0,−1; 3, 13) 13 −16 10

(0,−1; 1, 15) 15 −16 14

(16,−1; 1,−1) 15 −16 14

Table B.2: Complete list of the torus wrapping numbers satisfying (n2
a,m

2
a) =(even, odd),

(n3
a,m

3
a) =(odd, odd) and n3

a > 0 on T 2
(2) × T 2

(3), as well as their corresponding bulk wrapping

numbers (Xa, Ya) ful�lling the SUSY constraints (4.20), (4.21) or (4.22) and compatible with the

bulk RR-tadpole conditions (4.24) on the AA lattice.
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Systematic classi�cation of bulk 2-cycles on T 2
(2) × T 2

(3) with lattice AA (part II)

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(1,−1; 1, 1) 2 −1 3

(1, 1; 1,−1) 2 −1 3

(1,−1; 1, 3) 4 −1 7

(1, 3; 1,−1) 4 −1 7

(1,−1; 1, 5) 6 −1 11

(1, 5; 1,−1) 6 −1 11

(1, 1; 5,−3) 8 −1 15

(1,−1; 1, 7) 8 −1 15

(5,−3; 1, 1) 8 −1 15

(1, 7; 1,−1) 8 −1 15

(3,−1; 1,−1) 2 −3 1

(1,−1; 3,−1) 2 −3 1

(3, 1; 1,−1) 4 −3 5

(1,−1; 3, 1) 4 −3 5

(−1, 3; 1,−3) 8 −3 13

(3, 5; 1,−1) 8 −3 13

(1,−1; 3, 5) 8 −3 13

(1, 1; 1,−3) 4 −5 3

(1,−1; 5,−1) 4 −5 3

(5,−1; 1,−1) 4 −5 3

(1,−3; 1, 1) 4 −5 3

(5, 1; 1,−1) 6 −5 7

(1,−1; 5, 1) 6 −5 7

(1,−1; 5, 3) 8 −5 11

(3,−1; 3,−1) 8 −5 11

(5, 3; 1,−1) 8 −5 11

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(1,−1; 7,−3) 4 −7 1

(7,−3; 1,−1) 4 −7 1

(7,−1; 1,−1) 6 −7 5

(1,−1; 7,−1) 6 −7 5

(1,−1; 7, 1) 8 −7 9

(7, 1; 1,−1) 8 −7 9

(1, 1; 3,−5) 8 −7 9

(3,−5; 1, 1) 8 −7 9

(7, 3; 1,−1) 10 −7 13

(1,−1; 7, 3) 10 −7 13

(1,−5; 1, 1) 6 −9 3

(1, 1; 1,−5) 6 −9 3

(9,−1; 1,−1) 8 −9 7

(1,−1; 9,−1) 8 −9 7

(1,−1; 9, 1) 10 −9 11

(1,−3; 1, 3) 10 −9 11

(1, 3; 1,−3) 10 −9 11

(9, 1; 1,−1) 10 −9 11

(5,−7; 1, 1) 12 −9 15

(1, 1; 5,−7) 12 −9 15

(3, 1; 1,−3) 6 −11 1

(1,−3; 3, 1) 6 −11 1

(1,−1; 11,−5) 6 −11 1

(11,−5; 1,−1) 6 −11 1

(11,−3; 1,−1) 8 −11 5

(1,−1; 11,−3) 8 −11 5

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(3,−7; 1, 1) 10 −11 9

(1, 1; 3,−7) 10 −11 9

(11,−1; 1,−1) 10 −11 9

(1,−1; 11,−1) 10 −11 9

(1,−1; 11, 1) 12 −11 13

(3,−1; 5,−3) 12 −11 13

(5,−3; 3,−1) 12 −11 13

(11, 1; 1,−1) 12 −11 13

(1,−1; 13,−5) 8 −13 3

(1, 1; 1,−7) 8 −13 3

(1,−7; 1, 1) 8 −13 3

(13,−5; 1,−1) 8 −13 3

(1,−1; 13,−3) 10 −13 7

(13,−3; 1,−1) 10 −13 7

(1,−1; 13,−1) 12 −13 11

(13,−1; 1,−1) 12 −13 11

(5,−9; 1, 1) 14 −13 15

(1,−1; 13, 1) 14 −13 15

(1, 1; 5,−9) 14 −13 15

(13, 1; 1,−1) 14 −13 15

(−1,−3; 1, 3) 8 −15 1

(15,−7; 1,−1) 8 −15 1

(1,−1; 15,−7) 8 −15 1

(1,−1; 15,−1) 14 −15 13

(15,−1; 1,−1) 14 −15 13

Table B.3: Complete list of the torus wrapping numbers satisfying (n2
a,m

2
a) =(odd, odd),

(n3
a,m

3
a) =(odd, odd) and n3

a > 0 on T 2
(2) × T 2

(3), as well as their corresponding bulk wrapping

numbers (Xa, Ya) ful�lling the SUSY constraints (4.20), (4.21) or (4.22) and compatible with the

bulk RR-tadpole conditions (4.24) on the AA lattice.
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Systematic classi�cation of bulk 2-cycles on T 2
(2) × T 2

(3) with lattice AA (part III)

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(1, 0; 1,−1) 1 −1 1

(1, 0; 3,−1) 3 −1 5

(1, 2; 1,−1) 3 −1 5

(1, 0; 5,−1) 5 −1 9

(−1, 2; 1,−3) 5 −1 9

(3,−2; 1, 1) 5 −1 9

(1, 4; 1,−1) 5 −1 9

(1, 0; 7,−1) 7 −1 13

(1, 6; 1,−1) 7 −1 13

(1,−2; 1, 1) 3 −3 3

(1, 0; 5,−3) 5 −3 7

(3, 2; 1,−1) 5 −3 7

(3, 4; 1,−1) 7 −3 11

(1, 0; 7,−3) 7 −3 11

(−1, 2; 1,−5) 9 −3 15

(5,−4; 1, 1) 9 −3 15

(5,−2; 1,−1) 3 −5 1

(1, 0; 3,−5) 3 −5 1

(5, 2; 1,−1) 7 −5 9

(1, 0; 7,−5) 7 −5 9

(3,−4; 1, 1) 7 −5 9

(1,−2; 1, 3) 7 −5 9

(5, 4; 1,−1) 9 −5 13

(1, 0; 9,−5) 9 −5 13

(1, 0; 5,−7) 5 −7 3

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(1,−4; 1, 1) 5 −7 3

(7,−2; 1,−1) 5 −7 3

(1,−2; 3, 1) 5 −7 3

(3,−2; 3,−1) 7 −7 7

(1, 2; 1,−3) 7 −7 7

(1, 0; 9,−7) 9 −7 11

(7, 2; 1,−1) 9 −7 11

(1, 0; 11,−7) 11 −7 15

(1,−2; 1, 5) 11 −7 15

(7, 4; 1,−1) 11 −7 15

(5,−6; 1, 1) 11 −7 15

(1, 0; 5,−9) 5 −9 1

(9,−4; 1,−1) 5 −9 1

(9,−2; 1,−1) 7 −9 5

(1, 0; 7,−9) 7 −9 5

(9, 2; 1,−1) 11 −9 13

(1, 0; 11,−9) 11 −9 13

(1, 0; 7,−11) 7 −11 3

(1,−6; 1, 1) 7 −11 3

(1,−2; 5, 1) 7 −11 3

(11,−4; 1,−1) 7 −11 3

(11,−2; 1,−1) 9 −11 7

(1, 0; 9,−11) 9 −11 7

(5,−8; 1, 1) 13 −11 15

(1, 4; 1,−3) 13 −11 15

(n2
a,m

2
a;n

3
a,m

3
a) Xa Ya 2Xa + Ya

(1,−2; 3, 5) 13 −11 15

(3,−2; 5,−1) 13 −11 15

(1, 0; 13,−11) 13 −11 15

(11, 2; 1,−1) 13 −11 15

(13,−6; 1,−1) 7 −13 1

(1, 0; 7,−13) 7 −13 1

(1, 0; 9,−13) 9 −13 5

(3, 2; 1,−3) 9 −13 5

(3,−2; 5,−3) 9 −13 5

(13,−4; 1,−1) 9 −13 5

(1, 0; 11,−13) 11 −13 9

(3,−8; 1, 1) 11 −13 9

(5,−4; 3,−1) 11 −13 9

(1,−2; 5, 3) 11 −13 9

(13,−2; 1,−1) 11 −13 9

(1, 2; 1,−5) 11 −13 9

(3,−4; 3, 1) 13 −13 13

(1,−4; 1, 3) 13 −13 13

(1,−2; 7, 1) 9 −15 3

(1,−8; 1, 1) 9 −15 3

(1, 0; 11,−15) 11 −15 7

(15,−4; 1,−1) 11 −15 7

(1, 0; 13,−15) 13 −15 11

(15,−2; 1,−1) 13 −15 11

Table B.4: Complete list of the torus wrapping numbers satisfying (n2
a,m

2
a) =(odd, even),

(n3
a,m

3
a) = (odd, odd) and n3

a > 0 on T 2
(2) × T 2

(3), as well as their corresponding bulk wrapping

numbers (Xa, Ya) ful�lling the SUSY constraints (4.20), (4.21) or (4.22) and compatible with the

bulk RR-tadpole conditions (4.24) on the AA lattice.
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