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Zusammenfassung

Unter Normalbedingungen sind Oberflächenkräfte weitgehend verstanden. Es besteht
jedoch kaum Wissen über Oberflächenkräfte bei Hochdruck. Dies ist hauptsächlich
darauf zurückzuführen, dass aufgrund von technischen Schwierigkeiten, die mit der
Erzeugung von Hochdruck einhergehen, kein geeignetes Messgerät vorhanden ist. Es
existiert jedoch eine Vielzahl von Systemen, in denen Oberflächenkräfte relevant sind,
die in Umgebungen mit hohem Druck vorkommen. Solche Umgebungen sind z. B. die
Tiefsee oder Bohrlöcher bei der Ölgewinnung. Es ist daher erstrebenswert, das wissen-
schaftliche Gebiet der Oberflächenkräfte bei Hochdruck experimentell zu erschließen.

Im Rahmen der vorliegenden Arbeit habe ich ein wissenschaftliches Messgerät entwi-
ckelt um Oberflächenkräfte bei Hochdruck zu messen. Das Messgerät setzt sich aus einer
optischen Falle, einem Interferometer und einer optischen Hochdruckzelle zusammen.
Oberflächenkräfte wurden gemessen zwischen einer Glaswand und einer kolloidalen
Glaskugel in wässrigen Lösungen. Die Kugel wurde mittels optischer Falle gegen die
Wand gedrückt. Der Abstand zwischen Kugel und Wand wurde anhand der Interferenz
von Reflektionen an Kugel und Wand bestimmt. Das System aus Kugel, Wand und Pro-
benflüssigkeit befand sich in der optischen Hochdruckzelle, welche die Erzeugung von
Drücken bis zu 1 kbar ermöglichte. Dies entspricht dem höchsten Druck in der Tiefsee.

Das Messgerät wurde zur Untersuchung der Druckabhängigkeit der Kraft zwischen
zwei Oberflächen angewendet, deren elektrochemische Doppelschichten überlappen,
engl.: electrostatic double-layer force. Kraft-Abstands-Kurven wurden mit Subnano-
meter Abstandsauflösung und maximalen Kräften in der Größenordnung von 0,1 nN
aufgenommen. Es konnte nachgewiesen werden, dass Druckänderungen die gemesse-
ne Wechselwirkung nur geringfügig beeinflussen. Die druckabhängigen Änderungen
konnten mithilfe der Druckabhängigkeit der Permittivität von Wasser erklärt werden.
Weitere mögliche druckbedingte Änderungen der Wechselwirkung, z. B. durch eine Än-
derung des ζ-potentials der elektrochemischen Doppelschichten konnten ausgeschlos-
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Zusammenfassung

sen werden. Die Messung von nur geringfügigen und erklärbaren Druckeffekten belegt
die Zuverlässigkeit des Messgeräts bei Hochdruck.

Des Weiteren wurde die brownsche Bewegung der Kugel in der Nähe der Wand unter-
sucht. Es konnte gezeigt werden, dass mit dem hier entwickelten Messgerät die brown-
sche Bewegung kolloidaler Kugeln bei Hochdruck mit Nanometer-Abstandsauflösung
untersucht werden kann. Diese einzigartige Fähigkeit bietet die Möglichkeit eine Viel-
zahl von Wechselwirkungen bei Hochdruck zu untersuchen und insbesondere die
Kraftauflösung bis auf Femtonewton zu verbessern.

Die hier erzielten Ergebnisse demonstrieren, dass das entwickelte Messgerät ein ge-
eignetes Werkzeug zur Untersuchung von Oberflächenkräften bei Hochdruck ist. Das
Messgerät ist auf eine Vielzahl von Wechselwirkungen anwendbar und wird in Zukunft
mit Sicherheit unser Verständnis kolloidaler Systeme bei Hochdruck erweitern.
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Abstract

Surface forces are well understood at standard ambient conditions, but there is very
little understanding about surface forces at high hydrostatic pressure. The main cause
for the lack of understanding is the absence of a proper tool, most likely due to technical
difficulties associated with high pressure. However, many systems that are dominated
by surface forces occur in high pressure environments. Such environments are e.g. the
deep sea or bore holes for oil recovery. Thus, it is desirable to open up the research field
of surface forces at high pressure to experimental investigation.

In this work I developed a scientific instrument for surface force measurement at high
hydrostatic pressure. The instrument is a combination of a long-working-distance op-
tical trap, an interferometer and an optical high-pressure cell. Surface forces were
measured between a glass wall and a colloidal glass bead in aqueous solutions. The
bead was pushed against the wall by the optical trap. The distance between bead and
wall was determined by evaluation of the reflection interference between bead and wall.
The entire system was placed inside the optical high-pressure cell that allowed for the
realization of up to 1 kbar of pressure, which corresponds to the highest pressure en-
countered in the deep sea.

The instrument was applied to the investigation of the pressure dependence of the elec-
trostatic double-layer force. Force-distance curves were recorded with sub-nanometer
distance resolution and a maximum force of the order of 0.1 nN. It could be shown that
the effect of pressure on characteristics of the electrostatic double-layer force is minor.
The pressure effect could be traced back to the pressure dependence of the dielectric
constant of water. Other pressure effects, e.g. due to a change in the ζ-potentials of the
electric double-layers were excluded. The observation of only minor and explainable
changes in the recorded force curves with pressure demonstrates that the instrument
works reliably at high pressure.
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Abstract

Furthermore, the thermal motion of the bead close to the wall was investigated. It was
found that the thermal motion of a colloidal bead can be recorded with nanometer reso-
lution at high pressure with the developed instrument. This unique capability gives the
possibility for widening the range of interactions that can be studied at high pressure
and improving the force resolution to the order of femtonewton.

The results demonstrate that the developed instrument is a suitable tool for the inves-
tigation of surface forces at high hydrostatic pressure. The instrument is applicable to
a multitude of interactions and will certainly deepen our understandings of colloidal
systems in high pressure environments.
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1 Introduction

The concept of forces is one of the fundamental and most general concepts in physics.
In real life, anything that moves does it owing to forces. Anything that stands still does
it owing to forces. Forces can be categorized by the length-scales on which they are
relevant. For example, on the microscopic length-scale, i.e. dimensions smaller than a
nanometer, as in the case of atoms and small molecules like e.g. hydrogen, the relevant
forces are three of the four fundamental forces of nature, i.e. the electromagnetic, the
weak nuclear and the strong nuclear force. The fourth fundamental force, i.e. gravity, is
negligible on the microscopic lengths-scale. However, gravity is relevant on the macro-
scopic length-scale, i.e. dimensions larger than a few micrometers. Relevant forces on
this length-scale furthermore include frictional and inertial forces.

Surface forces are the forces relevant on the length-scale “in between” the micro- and the
macroscopic length-scale, i.e. the mesoscopic length-scale. Hans-Jürgen Butt and Michael
Kappl pragmatically define surface forces as

“all forces that are relevant in systems, that have a small characteristic length
scale, and whose structure and dynamics are dominated by interfaces rather
than gravitation and inertia.” [BK10]

Here, “small” denotes dimensions in the order of nanometers up to micrometers. Sys-
tems dominated by surface forces are very common in every day life, e.g. milk [FM06] or
blood [FCBC11]. Milk is an emulsion, where micrometer-sized liquid milk fat globules
are dispersed in liquid skim-milk. The surface force stabilizing the globules is steric
repusion [FM06]. Blood is a sol, where among others micrometer-sized solid red blood
cells are dispersed in liquid blood plasma. The blood cells are stabilized by repulsive
electrostatic forces [FCBC11]. The general term of such two-phase systems, “in which
one phase has dimensions in the order of 1 nm to 1µm” [BK10] is colloidal system, or
simply colloid.
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1 Introduction

Multiple methods enable the investigation of surface forces. With the surface force ap-
paratus, surface forces can be measured between two macroscopic surfaces [TS69; IT72].
The colloidal probe technique allows for the measurement of forces between the surface
of a colloidal bead that is attached to a scanning probe microscopy cantilever pushed
against another surface [But91b; DSP91]. By using total internal reflection microscopy
the contactless measurement of surface forces between a colloidal bead and a wall is
possible [PLL87]. Optical trapping techniques allow to conduct force measurements
between colloidal particles using focused laser light [Ash70; Gri97].

Surface forces are studied for nearly one century, and nowadays surface forces are well
understood at standard ambient conditions [BK10; Isr11]. In particular, almost all stud-
ies of surface forces were performed at hydrostatic pressures not larger than atmospheric
pressure.

The pressure p is defined as a force F acting perpendicular over an area A, i.e.

p :=
F
A
. (1.1)

The term hydrostatic pressure is used for isotropic pressure, i.e. pressure that could be
caused by placing the system under investigation at a certain depth of a column of water.
The SI-unit of pressure is pascal (1 Pa = 1 N m−2). The most commonly used metric unit
is bar, i.e. 1 bar = 105 Pa. The use of this unit is convenient, since 1 bar is approximately
atmospheric pressure.

Many colloids are present in high-pressure environments. Approximately 70.9 % of the
surface of the earth is covered with water [Wor]. The oceans have an average depth
of 3.8 km, corresponding to an average hydrostatic pressure of 380 bar [Moz+96]. The
deepest part of the oceans is the Mariana Trench, with a depth of 10 924 m [Wor]. Thus,
the water covered surface of earth is a high pressure environment where the hydrostatic
pressure reaches up to 1.1 kbar, i.e. three orders of magnitude higher than atmospheric
pressure.

One colloidal system present in the oceans is colloidal organic carbon [WG91; WG93;
WG94], which is “one of the largest reservoirs of organic carbon on the planet” [Kep94].
Wells and Goldberg have investigated the removal of colloidal organic carbon from
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bulk sea water at a depth of up to 5 km, which corresponds to a hydrostatic pressure
of 0.5 kbar [WG93]. They found that the removal of colloidal organic carbon from bulk
seawater mainly takes place by aggregation into larger colloids followed by sedimen-
tation of the larger colloids to the sea floor. From the structure of the aggregates the
authors concluded that there was a repulsive force between the colloids that needed to
be overcome in order to form aggregates. Ultimately, the strength of this repulsive force
determines the removal rate.

Furthermore, the deep sea is home to multiple living organisms, e.g. marine fish
[Yan+14]. The stability of proteins in aqueous solutions depends on surface forces
[Chi+03]. It is known that the structure of proteins is affected by hydrostatic pressure of
the order of 1 kbar [Moz+96].

High hydrostatic pressure also occurs during oil recovery. For example, drilling muds
are used for lubrication and cooling of drill bits [Bri]. For more than a decade, the rhe-
ology of water-based drilling muds at down-hole conditions, i.e. hydrostatic pressure
up to 1 kbar, has been under investigation [Ald+88]. Drilling muds are suspensions of
e.g. charged, micrometer-sized clay platelets in water. The rheology of suspensions is
determined by the interactions of the individual particles [ZSB01].

In order to gain a fundamental understanding of the structure and dynamics of drilling
muds, deep-sea animal cells or marine colloids, surface forces at high hydrostatic pres-
sure need to be investigated. However, until now there was no instrument that allowed
the measurement of surface forces at hydrostatic pressures up to 1 kbar.

To the best of my knowledge, the only direct measurements of surface forces at high
hydrostatic pressure were reported by Schurtenberger and Heuberger [SH11; SH12].
The authors used an extended surface force apparatus enclosed in an autoclave. Here,
the force between two macroscopic mica surfaces was measured in an environment of
pressurized carbon dioxide. The authors investigated the critical Casimir effect along
the supercritical pressure-temperature ridge of carbon dioxide [SH12]. The authors re-
ported on multiple technical difficulties: Since the mica surfaces were in mechanical
contact with metal and glass parts, due to deformation of these parts the surface sepa-
ration changed with the pressure inside the autoclave by more than 10 nm bar−1 [SH11].
In order to effectively measure surface forces, the pressure drift in the autoclave was

9



1 Introduction

reduced to less than 2 mbar h−1. Durations for equilibration after pressurization between
10 h and two weeks were reported [SH11; SH12]. Since the autoclave was filled with
the fluid under investigation, the authors reported on an extensive cleaning procedure
before each experiment. Finally, the pressure range accessible with the method was lim-
ited to a maximum pressure of 170 bar, which is nearly one order of magnitude smaller
than the largest hydrostatic pressure that occurs on the surface of our planet.

Thus, the research field of surface forces at high hydrostatic pressure is practically unex-
plored. The reason for this seems to be the lack of scientific instruments, most likely due
to the technical difficulties involved with high pressure experiments. The only existing
instrument poses several operational challenges and has a limited pressure range.

The aim of this work was to open up the research field of surface forces at high hy-
drostatic pressure to experimental investigation. Thus, a new scientific instrument was
developed.

In order to find a suitable realization of a high hydrostatic pressure environment for
surface force measurements, it is beneficial to take a look at existing solutions from
fields of research where instruments for measurements at high hydrostatic pressure are
well established. For the investigations of biological samples at pressures of the order
of 1 kbar, the use of optical high-pressure cells is common [Vas+10]. Such cells allow for
light to be transmitted through a small (mostly smaller than 1 ml) pressurized sample
volume. For investigations of matter at ultra-high pressures, i.e. up to 1 Mbar, mostly
optical diamond anvil cells are used [Lov12]. Optical high-pressure cells are for example
used for experiments with light microscopy [Rec+98; DT02; Har+03; Rab+06; MDT06;
Vas+10; Bao+10; DB11; KC12; Vas+13], X-ray reflectivity [Wir+14] or dynamic light
scattering [ADT01; Deg+06].

As mentioned above, optical trapping techniques allow for the investigation of forces
between colloidal particles using light [Gri97]. A purely optical technique for surface
force measurement would allow the use of optical high-pressure cells without modifi-
cation. The most common and commercially available optical trapping technique is a
“single-beam gradient force optical trap” [Ash+86], generally referred to as optical tweez-
ers. Since most optical trapping literature deals with optical tweezers, I will explain the
principles of optical trapping with regard to this technique and then distinguish the
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Figure 1.1: Forces exerted on a
bead by a laser beam. White
arrows denote direction of
beam propagation. Green
lines are exemplary rays.
Black arrows are correspond-
ing forces on the bead. Figure
based on [NB04].

optical trapping technique used in this work. A single laser beam, commonly with
Gaussian TEM00-profile is tightly focused by a high-numerical-aperture objective (typ-
ically NA = 1.2 − 1.4) [NB04; Ash+86]. The description of the optical forces on a bead
with radius R depends on the relation of bead radius to the wavelength λ of the laser
light [NB04; MP02]. For R << λ, the conditions for Raleigh scattering are satisfied. For
R >> λ the optical forces can be described by a ray optics approach. In case of R ≈ λ,
neither description of the optical forces is correct [NB04], but a more rigorous approach
is needed [RGG94]. In this work, R was larger than λ by approximately one order of
magnitude.

Regardless of its justification, the ray optics approach is very instructive: Let’s consider
a dielectric bead whose refractive index nbead is larger than the refractive index nmedium

of the medium surrounding it, illuminated by a laser beam of uniform intensity profile
(fig. 1.1 (a)). When a single ray passes the bead off-center, it will be refracted towards
the center of the bead when it enters and exits the bead, since nbead > nmedium. Due to
refraction, the momentum of the photons is changed and, consequently, the momen-
tum of the bead is changed to the opposite direction. Many photons are refracted by
the bead over time, giving rise to a force exerted on the bead (black arrows in fig. 1.1 (a)).

The amount of photons interacting with the bead is the same for the left and the right side
of the bead, resulting in a cancellation of the lateral components (x and y) of the force.
The remaining force acts on the bead in direction of beam propagation (z-direction).
This force is referred to as radiation pressure force Frp. The radiation pressure force
is proportional to the number of photons that are refracted by the bead, and thus it is
proportional to the power of the laser beam P [NB04]

Frp ∝ P . (1.2)
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1 Introduction

Let us now consider a laser beam profile with an intensity gradient (fig. 1.1 (b)). Here,
more photons are refracted by the bead on the left side. Thus, the lateral components of
the force on the bead do not cancel each other out. The remaining lateral force drives the
bead towards higher intensities. Since this force is caused by a gradient in the intensity of
the laser beam, it is referred to as gradient force ~Fgr

1. The gradient force is proportional
to the intensity gradient of the laser beam [NB04]

~Fgr ∝ ∇I . (1.3)

In the case of fig. 1.1 (b), there is a lateral (x-, y-direction) intensity gradient, but no
intensity gradient in z-direction. Thus, Fgr,z = 0.

Finally consider a tightly focused beam with Gaussian beam profile (fig. 1.1 (c)). The
intensity of the beam is largest on-axis, thus any lateral displacement, e.g. in x-direction
would cause a restoring force Fgr,x in the opposite direction, hence centering the bead
on the beam. Due to the tight focusing, there is an additional intensity gradient in the
direction of beam propagation, which results in a non-zero component of the gradient
force in z-direction Fgr,z directed towards higher intensity. The bead is thus forced to-
wards the focus of the beam.

In case Fgr,z < Frp, the tight focusing allows for three-dimensional trapping of the bead.
At the same time, the high NA needed for focusing limits the working distance, i.e. the
distance between the focus of the beam and the front lens of the objective, to ≈ 0.1 mm
[NB04]. Windows in optical high-pressure cells however are usually ticker than 1 mm
[Vas+10]. Although a prototype of an optical high-pressure cell was reported, where
a cover-slip with a thickness of ≈ 0.2 mm for a window was used at pressures up to
1.2 kbar [Vas+13], a technique that aims to be generally applicable to the use with high-
pressure cells must overcome the restraint of a short working distance.

Long-working-distance optical traps precede optical tweezers by more than a decade
[Ash70]. Here, a Gaussian beam is moderately focused, thus losing the intensity gra-
dient in direction of beam propagation and yielding Fgr,z << Frp. Hence, the bead is
accelerated in direction of beam propagation by the radiation pressure force Frp and

1Note: The underlying cause of ~Fgr is as well radiation pressure. However, for reasons of clarity it is
beneficial to distinguish between ~Fgr and Frp.
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1.1 Principle of Surface Force Measurement at High Hydrostatic Pressure

Figure 1.2: Long-working-
distance optical trapping.
Springs denote lateral trapping
due to ~Fgr.

trapped in lateral direction by the gradient force (fig. 1.2). Since the laser beam is mod-
erately focused, working distances of the order of centimeters can be realized [AD71].
Bowman et al. demonstrated that long-working-distance optical trapping works effec-
tively inside an optical high-pressure cell [Bow+13a; Bow+13b]. They used an optical
trap to determine the bulk viscosity of water at hydrostatic pressures of up to 13 kbar.

1.1 Principle of Surface Force Measurement at High

Hydrostatic Pressure

In this work I utilized long-working-distance optical trapping in order to perform surface
force measurements inside an optical high-pressure cell. I applied this method in order
to investigate one of the most common surface forces, the electrostatic double-layer force
FDL. In particular, this force is present between any charged surfaces that are immersed
in aqueous solutions, including blood-cells, proteins and clay-platelets. The electrostatic
double-layer force is well understood at ambient pressure, but has never directly been
measured at high hydrostatic pressure. The pressure dependence of the electrostatic
double-layer force between colloidal particles in hydrothermal water is subject to con-
troversial discussion [GT08; DM09; Gho09]. Other reports, based on electrophoresis and
rheology experiments indicate a substantial weakening of the electrostatic double-layer
force with pressure [RA06; AOS11]. One aim of this work is to elucidate the pressure
dependence of the electrostatic double-layer force.

Experiments were performed with an optical high-pressure cell that allowed for pressur-
ization of the sample volume to a pressure of up to 1 kbar (fig. 1.3). For the separation of
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1 Introduction

the sample solution from the pressure transmitting water, a capillary capsule was devel-
oped. A rectangular glass capillary was filled with an aqueous solution with dispersed
colloidal glass beads. The ends of the capillary were sealed with a highly viscous sealing
paste, thus separating the pressure transmitting water from the aqueous sample solu-
tion while at the same time allowing pressure to be transmitted. Due to the rectangular
shape of the the capillary the transmitted light was not distorted. The force between a
colloidal glass bead and the upper inner wall of the glass capillary was measured.

Figure 1.3: Surface force measurement inside an optical high-pressure cell. c©2016 American
Physical Society [Pil+16]

Any force between two bodies depends on the distance between the bodies. For example,
the force-distance dependence of the electrostatic double-layer force FDL between the
bead and the wall is given by

FDL(D) = F0 exp
(
−

D
λD

)
. (1.4)

The force is repulsive, since both glass surfaces are negatively charged in water [BG01;
Lam+08]. The force decays exponentially with increasing distance between bead and
wall D. The decay constant characteristic for the system under investigation is the Debye
length λD. F0 is the amplitude of the force. Equation (1.4) will be discussed in more detail
in chapter 6.

Hence, forces are characterized by force-distance curves (short: force curves). The
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1.2 Outline

here used method for force-distance measurements is a combination of long-working-
distance optical trapping with a reflection interference technique, based on a method
presented by Nadal et al. [Nad+01]. The reflection interference technique was used
for distance measurement and is similar to reflection interference contrast microscopy
[RS92; LS09]. The reflection interference measurement was realized by illumination of
the sample by a laser beam (fig. 1.3, red interference beam). This beam was reflected
at the surface of the bead and the capillary wall. The reflected rays interfered. The
intensity of the reflection interference signal IRI was a measure of D.

The bead was pushed against the wall by means of a moderately focused Gaussian beam
(fig. 1.3, green trapping beam). The force pushing the bead against the wall Fbead was
given by

Fbead = −Frp + Fg − Fb . (1.5)

Here Fg and Fb are gravity and buoyancy. The bead moved against the wall until Fbead

was balanced by the electrostatic double-layer force

Fbead = −FDL

(
Deq

)
, (1.6)

where Deq is the equilibrium distance. Since the radiation pressure force Frp is pro-
portional to the power of the trapping beam P, changing P allowed for probing the
force-distance dependence of FDL.

1.2 Outline

In chapter 2 I will present the instrument and the experimental procedure that I devel-
oped in order to realize the above described principle of measurement. I will at first
present and characterize the optical setup that consists of an optical trap, an interfer-
ometer and an inverse optical microscope. I will then discuss the optical cell that was
used to realize a high-pressure environment. Furthermore, the experimental procedure
developed in order to perform high-pressure experiments in a defined environment
will be presented. Finally, the automated procedure of recording a force curve will be
discussed and the gained data will be presented.
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1 Introduction

The chapters 3, 4 and 5 lay the groundwork for the analysis of the experimental data. In
chapter 3 the trajectory of the bead pushed against the wall will be analyzed based on
the wall-hydrodynamics between bead and wall. In particular, an appropriate analytical
equation of motion will be derived and validated. By determining the hydrodynamic
drag on the bead the force pushing the bead against the wall will be derived. Further-
more, by exploiting the distance dependent hydrodynamic interaction between bead
and wall a calibration for the absolute distance will be obtained.

After the determination of the force pushing the bead against the wall in chapter 3, the
following chapter 4 deals with the analysis of this force. It will be shown, both quali-
tatively and quantitatively that the force pushing the bead against the wall is given by
the sum of the radiation pressure force, gravity and buoyancy. Furthermore, it will be
argued that effects of the non-conservatism of the radiation pressure force are negligible
for the experiments performed in this thesis.

Thermal motion around the equilibrium position where the force pushing the bead
against the wall is balanced by the electrostatic double-layer force necessitates a statis-
tical treatment of the recorded bead-wall distance (chapter 5). An approximation of the
equation of the probability density of the bead’s position will be derived and validated.
The statistical data analysis will be discussed and special care will be taken in order to
account for instrument noise.

The two chapters 6 and 7 present the main scientific findings of this thesis. In chapter 6
the pressure dependence of the electrostatic double-layer force will be investigated. Ex-
periments at ambient pressure will be discussed in order to validate the here used method
for surface force measurements. It will be shown, that force curves were recorded with
sub-nanometer precision. The first systematic study of the electrostatic double-layer
force at different hydrostatic pressures will be presented. The observed pressure effects
will be traced back to pressure induced changes of material properties. It will be shown,
that with the here developed instrument precise measurements of surface forces at high
hydrostatic pressures can be realized.

In order to widen the range of applicability of the here developed instrument, an alter-
native approach of determining surface forces is applied in chapter 7. The electrostatic
double-layer force is derived directly from analysis of the thermal motion of the bead
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1.2 Outline

around equilibrium. The gained results will be compared to results gained with the
hydrodynamic approach. Differences between the two techniques will be traced back
to the effect of instrument noise on the analysis of thermal motion. It will be discussed,
that with the here presented instrument the analysis of the thermal motion of a colloidal
bead is possible with nanometer resolution at high hydrostatic pressures.

Finally, I will present the conclusions drawn form my work in chapter 8. Furthermore
I will give an outlook of the possible future exploration of the research field of surface
forces at high pressure.
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2 Instrument for Surface Force
Measurement at High Hydrostatic
Pressure

In this chapter the setup and experimental procedure are presented that were developed
in order to realize surface force measurements at high hydrostatic pressure.

2.1 The Optical Setup

The optical setup presented here is based on the optical setup constructed by Bernard
Pouligny that is located at the Centre de Recherche Paul Pascal, Pessac, France [AP93;
Nad+01; Mih+12; Sur+13]. The setup consisted of a two-beam long-working-distance
optical trap (2.1, green beam), an interferometer (red beam) and an inverted optical mi-
croscope (yellow beam). All components were mounted on an optical table that stood
on four heavy-duty passive isolation mounts (Thorlabs, PWA075). Contrary to multiple
optical trapping setups that are based on the modification of a commercial microscope
[KPD06; Gri97; MP02; NB04; JZ08], the here presented setup was built from the ground
up in order to ensure adaptability. An additional bread board (Thorlabs, MB6090/M)
was attached vertically to the optical table (black box in fig. 2.1) and the optical compo-
nents were mounted individually to this vertical breadboard.
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.1: The optical setup. Green: Optical trap. Red: Interferometer. Yellow: Optical

microscope. c©2016 American Physical Society [Pil+16]
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2.1 The Optical Setup

2.1.1 Optical Trap

In order to effectively implement the principle of force-measurement presented in part
1.1, the optical trap needed to meet the following requirements:

1. Exert a stable and adjustable force on the bead in direction of beam propagation.

2. Trap the bead laterally to the direction of beam propagation.

3. Provide enough working-distance to fit a high-pressure cell.

4. Exert a force in both upwards and downwards direction.

Here I used a Gaussian long-working-distance optical trap, which immanently meets
requirements 2 and 3. Such a trap as well exerts a force in direction of beam propa-
gation. Requirement 1 translates into the requirement of a stable and adjustable laser
power. The here presented optical trap is a two-beam optical trap (fig. 2.1, green beam).
Due to the use of two counter-propagating beams requirement 4 was fulfilled. The
use of a long-working-distance objective (Nikon, 50×, NA = 0.6, WD = 11 mm) and
a long-working-distance condenser (Nikon, 50×, NA = 0.4, WD = 22 mm) allowed for
generating two counter-propagating trapping-beams with focuses at distances> 1 cm to
the optics. The distance in between the objective and the condenser was > 3 cm, which
was large enough to fit the optical high-pressure cell.

The laser used to generate the trapping-beams (trapping laser) was a diode-pumped
solid-state laser that provided linearly polarized light with a Gaussian beam profile
(Laser Quantum, Finesse pure, wavelength λ = 532 nm). In order to ensure high beam
quality and stability, the trapping laser was always operated at a power of 3 W. The
root-mean-squared (RMS) noise of the trapping beam was below 0.2 %.

The force exerted on the bead is proportional to the power of the trapping-beam. In
order to vary the force on the bead, the beam power had to be made adjustable without
causing changes to other beam-parameters. This was realized by using a combination of
a λ/2-plate and a polarization sensitive beam-splitter cube. The linearly polarized laser
beam was split into two perpendicularly polarized beams. The power ratio of the exiting
beams depended on the direction of polarization of the initial beam. Thus, rotating the
direction of polarization of the initial beam using a λ/2-plate allowed for adjusting the
power-ratio of the exiting beams. This principle was used for the variable attenuator,
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.2: Power of the transmitted beam Plaser
versus transmittance of the variable attenua-
tor. At about 20 % the power meter was most
likely not yet equilibrated when the power
was logged, causing the outlier.

the fixed attenuator and the power splitter. The variable attenuator and the power split-
ter were commercially available modules that allowed for the automated rotation of the
λ/2-plate (Workshop of Photonics, Motorized Standard Watt Pilot, high-power version).
The variable attenuator was used for attenuation of the overall laser-beam. The reflected
part was directed on a beam block. For the fixed attenuator, the λ/2-plate was adjusted
to split the power in a 1 : 2-ratio. The power of the transmitted beam Plaser was thus lim-
ited to approximately 1 W, in order to prevent damage to the optical components or the
sample. The reflected beam was directed onto a power meter (Thorlabs, PM100D with
S302C thermal power sensor), allowing to monitor Plaser as half the measured power.
Plaser was found proportional to the adjusted transmittance of the fixed attenuator (fig.
2.2), allowing for computer controlled adjustment of the power and thus the force on
the bead. For the experiments presented in this thesis, a transmittance of 40 % was not
exceeded. This means that after exiting the fixed attenuator the power of the laser beam
was below 0.4 W at all times.

A shutter (fig. 2.1, shutter 1), positioned subsequent to the fixed attenuator, allowed
for computer-controlled blocking of the entire trapping beam. The shutter was the only
optical component that was not mounted to the optical table in order to avoid the excita-
tions of vibrations due to the abrupt movement of the shutting-lever. Instead, the shutter
was mounted to a pole that stood on the floor of the laboratory. Due to the large aperture
of the shutter, the relative movement of pole and optical table had no influence on the
trapping beam. For directing the trapping beam, high-power dielectric mirrors (CVI
Melles Griot, Y2-1025-45P) were used. These mirrors reflected light with wavelength
λ = 532 nm while allowing for the partial transmission of light at other wavelengths.
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2.1 The Optical Setup

The beam was shaped by three convex lenses (fig. 2.1, L1 to L3). The power splitter split
the beam into the (reflected) up beam and (transmitted) down beam, with an adjustable
power ratio between the beams. Shutters allowed for blocking up- and down beam
separately (fig. 2.1, S2 and S3). The position of the power splitter ensured equal lengths
for the beam paths for up and down beam. The equal path lengths ensured that both
beams were of the same shape and could thus be brought to overlap.

In the here presented experimental configuration (fig. 1.3) the up beam was used to
push the bead against the wall. The radiation pressure force Frp depends on the power
of the trapping beam at the bead P. In order to estimate the ratio of P and the monitored
power of the trapping beam after passing the fixed attenuator Plaser, the power of the up
beam after the objective was measured (fig. 2.1). The high-pressure cell was removed
and the power splitter was set to zero transmission, thus giving full power to the up
beam. The power of the trapping beam was found to drop to approximately 74 % of
Plaser. Furthermore, the power of the trapping beam was found to reduce by 15 % of
Plaser when passing a single dry window of the high-pressure cell. Assuming the power
loss due to the glass-capillary to be negligible results in the approximation

P ≈ 74 % · 85 % · Plaser ≈
2
3

Plaser . (2.1)

Beam Shape

The shape of the trapping beam has an influence on the radiation pressure force Frp

exerted on the bead. The radius of a circular Gaussian beam w is defined by the distance
from the beam axis to where the intensity drops to 1/e2 of its value at the beam axis
[Sel83]. The propagation of w in direction of beam propagation, i.e. z-direction, for a
beam with given wavelength λ is fully characterized by the radius of the beam waist w0,
i.e. the smallest radius of the beam (fig. 2.3).

The laser can possibly heat up or damage the sample or the optics. It is thus important
to choose a configuration of the optical trap that allows the operation at as low laser
powers as possible. Thus, the force efficiency, i.e. the ratio of Frp to P should be max-
imized. An instructive argumentation about the optimum beam radius w0 relative to
the bead radius R was given by Kraikivski et al. [KPD06]: Lets consider a Gaussian
trapping beam with fixed power P illuminating a bead. In case the beam waist radius
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

is approximately equal to the radius of the bead, i.e. w0 ≈ R, a certain force Frp is
exerted on the bead. In case the beam is wider than the bead, i.e. w0 > R, a part of
the beam is not refracted by the bead and thus does not contribute to the overall Frp,
which results in a force on the bead that is smaller than the Frp for the w0 ≈ R case. In
the opposite case where the bead is larger than the beam, i.e. w0 < R, more of the beam
intensity passes through the center of the bead than in the w0 ≈ R case. Since refraction is
strongest at the sides of the bead, the force on the bead for the w0 < R case is smaller than
for the w0 ≈ R case. It is thus evident, that the force efficiency is largest in the w0 ≈ R case.

Figure 2.3: (b) Propagation of a beam with Gaussian intensity profile (a). Z is direction of beam
propagation.

In my optical setup I have chosen lenses with focal lengths fL1 = 200 mm, fL2 = 150 mm
and fL3 = 750 mm for shaping the trapping beam(fig. 2.1). The lenses all were in confocal
configuration with the their neighboring lenses (i.e. the distance between L1 and L2 was
fL1 + fL2, etc.). Lens L3 was in confocal configuration with both the objective and the
condenser, since the power splitter was adjusted so that the beam path lengths of up
beam and down beam were equal. The focal lengths of the objective and the condenser
both were f = 4 mm, corresponding to the a magnification of 50× stated by the manu-
facturer [GHD]. The beam waist radius of the trapping laser was approximately 1 mm.
For this optical configuration the beam waist radius of both the up beam and the down
beam were expected to be of the order of micrometers [Sel83]. Furthermore, the beam
waist of the up beam and the down beam were expected to be located in the focal plane
of the objective and the condenser, respectively.

For the measurement of the beam profile, the microscope camera was exchanged by a
CCD laser beam profiler. The beam profile of the up beam was measured by blocking
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2.1 The Optical Setup

Figure 2.4: Inset: Beam profile of
the up beam measured with a
CCD laser beam profiler (New-
port LBP-2-USB). Squares: hor-
izontal cross section of the pro-
file. Circles: vertical cross sec-
tion. Lines are fits with a Gaus-
sian functions. The fits revealed
w0x = 1.9µm and w0y = 2.9µm.
The fit parameter errors were be-
low 1 %.

the down beam and measuring the reflection of the up beam from the lower window of
the high-pressure cell (fig. 2.4). The position of the cell was adjusted in z-direction until
the width of the reflected beam was minimal. Three times the cell was adjusted and the
profile was measured. The beam profile was approximately elliptical with half-widths
of the semi-axes

w0x = (2.0 ± 0.1)µm w0y = (2.9 ± 0.1)µm , (2.2)

which can be approximated by a mean beam waist radius of

w0 = (2.4 ± 0.4)µm . (2.3)

In this work, the radii of the beads were R ≈ 4µm, thus w0 ≈ R was approximately
satisfied. From w0 we can now calculate the Rayleigh length, i.e. the distance zR from the
beam waist at which w(zR) =

√
2w0. For our result (2.3) we obtain

zR =
πw2

0

λ
= (35.2 ± 11.5)µm . (2.4)

This means, that the width of the beam stays constant over a range of several microme-
ters in direction of beam propagation.
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.5: Reflection inter-
ference. The incident
beam (I0) is reflected at
the bead-water interface
(1) and the water-wall in-
terface (2). The reflected
rays interfere.

2.1.2 Interferometer

The distance between bead and wall was measured using interferometry (fig. 2.5). The
incident interference beam (I0) was reflected at the bead-water interface (1) and at the
water-wall interface (2). The interference of rays 1 and 2 depends on the bead-wall
distance D.

In order to realize a coherent and stable interference beam, an ultralow-noise laser-diode
module (Coherent, ULN, 5 mW, λ = 635 nm) was used (fig. 2.1, interference laser). The
interference beam was transmitted by the dielectric mirrors, allowing for alignment of
the interference beam on to of the up beam (fig. 2.1, red beam path). Since both, trapping
and interference beam were focused by the objective, their alignment relative to each
other was independent of the relative alignment of the objective and the condenser. This
resulted in a stable alignment of interference beam and up beam.

The reflection interference signal was collected by the objective and directed into an
avalanche photo-diode (Thorlabs, APD130A/M) by a non-polarizing beam-splitter cube,
a tilted Notch filter (Thorlabs, wavelength of center = 633 nm, FWHM = 25 nm) and an
optical fiber (Thorlabs, M69L01, diameter = 300µm, NA = 0.39). The beam-splitter cube
allowed for separation of the beam-paths of incident interference beam and reflection
interference signal. The notch filter made the separation of the reflection interference
signal from the trapping beam and the microscope light possible. The notch filter was
slightly tilted, which increased the center wavelength of the reflected band, thus allow-
ing a small part of the interference signal to enter the microscope camera. Monitoring
the reflection interference signal with the microscope camera enabled the alignment of
the interference beam. The optical fiber was used to collect only the signal of the on-axis
interference, i.e. the part of the reflection interference that corresponds to perpendicular
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2.1 The Optical Setup

Figure 2.6: Histogram of intensities of the inter-
ference laser reflected from the lower inner
wall of the capillary without a bead in the
beam path. The histogram was determined
by performing frequency counting on a 2 s in-
terval of the I0 signal with bin-size = 2 mV.
The measured distribution was fitted with a
Gaussian function yielding a mean intensity
of I0 = 954.1 mV and a standard deviation of
σln = 7.5 mV.

reflections at the bead-apex (fig. 2.5). The intensity recorded by the avalanche photo-
diode is referred to as IRI. A similar optical setup for the same interferometry technique
was published recently by Suraniti et al. [Sur+13].

Laser Noise

In order to determine the noise in the reflection interference signal that is not due to
actual movement of the bead, the intensity of I0 reflected from the wall was measured in
absence of the bead (fig. 2.6). From the measured intensity distribution it can be seen that
the intensity of the interference beam can be characterized by a Gaussian distribution
with a standard deviation of

σln = 0.8 % · I0. (2.5)

Here I0 is the mean intensity of the interference beam. When the interference laser
was blocked, the RMS-noise dropped below 0.5 mV, which corresponds to 0.05 % · I0.
The RMS-noise of the interference laser for frequencies between 10 Hz and 10 MHz was
specified by the manufacturer to be less than 0.1 %. Thus, the major contributions to the
measured noise originated from other sources, e.g. thermal motion or other vibrations
of the optical components, which can cause or enhance beam pointing fluctuations. The
optical fiber collects only a part of the reflection interference, causing spatial fluctuations
to translate to fluctuations in the measured intensity.

There are very few reports of the laser noise for other experimental setups. However,
the here determined laser noise falls below the laser noise reported in a recent study

27



2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

where the distance between a colloidal bead and a wall was determined by total internal
reflection microscopy [NAB13]. The authors reported a laser noise between 1.5 % to 5 %.

2.1.3 Optical Microscope

The illumination, the condenser, the objective, the tube lens and the camera compose
an inverse optical microscope (fig. 2.1, yellow beam path). The focal length of the tube
lens was 400 mm, yielding a magnification of the microscope of 400 mm/4 mm = 100×.
Between tube lens and notch filter four long-pass colored glass filters (Thorlabs, FGL530,
FGL550, FGL570, FGL590) were installed that suppressed light with a wavelength
smaller than approximately 0.6µm, in order to filter out the residual intensity of the
trapping beam that was transmitted by the dielectric mirror closest to the silver mirror.
At high powers of the trapping laser this residual light could damage the camera. The
transmission at a wavelength of 532 nm varied for the different colored glass filters.
Thus, by inserting appropriate combinations of the glass filters into the beam path, the
residual light of the down beam could be attenuated in order to be monitored with the
microscope camera or completely blocked.

The illumination of the microscope was in a Köhler-like configuration [Köh93], i.e. the
image of the halogen light source (Thorlabs, OSL1) was projected onto the back-focal
plane of the condenser by two plano-convex lenses (fig. 2.1). The light source was in
the focus of the first plano convex lens (P1). The back-focal plane of the condenser was
in the focus of the second plano-convex lens (P2). Between the plano-convex lenses the
image of the light source was at infinity. Contrary to the typical Köhler configuration, the
condenser aperture diaphragm was not placed in the back-focal plane of the condenser,
i.e. in the plane of the image of the light source, but directly in front of the light source.
This way the aperture of the light source could be adjusted without an influence on the
down beam. The field diaphragm was positioned between the plano-convex lenses. The
condenser aperture diaphragm was closed as much as possible, causing the light coming
from the condenser to be nearly unidirectional, i.e. reducing the condenser aperture to
zero. This way the depth of field was increased while trading off for lateral resolution
of the microscope image [SD]. A large depth of field facilitated the selection of only a
single bead, since additional beads or satellites (i.e. smaller particles) could be detected
effectively without having to adjust the position of the focus. The lateral resolution d of
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2.1 The Optical Setup

Figure 2.7: Microscope images of the two beads used for recording force curves at a salt con-
centration of 0.1 mmol dm−3 at a pressure of p = 1 bar (a) and p = 1 kbar (b) and at a salt
concentration of 1 mmol dm−3 at a pressure of p = 1 bar (c) and p = 1 kbar (d). At a given salt
concentration, the same bead was used at different pressures.

the optical microscope with a condenser numerical aperture of zero may be estimated
using the Abbe formula for central illumination

d =
λm

NAObjective
. (2.6)

For λm we can use the smallest wavelength collected by the camera. Due to the colored
glass filters, λm ≈ 0.6µm. For the numerical aperture of the objective NAObjective = 0.6
(part 2.1.1) equation (2.6) yields d ≈ 1µm. The only quantity determined by optical
microscopy was the radius R of the bead under investigation (fig. 2.7). The inaccuracy
in determining the bead-diameter is equal to the resolution of the microscope. Thus, the
inaccuracy in determining the bead radius was

∆R =
d
2
≈ 0.5µm . (2.7)

The application of pressure did not seem to have an influence on the microscope image
(fig. 2.7).
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2.2 High Pressure

2.2.1 High Pressure Cell

In order to realize optical trapping experiments at high hydrostatic pressure a compact
optical high-pressure cell was needed that fit into the optical trapping setup. A cell in-
vented by Hartmann, Pfeifer, Dornheim and Sommer (HPDS-cell) met the requirement
of compactness while withstanding pressures up to 3 kbar [Har+03; HKS04]. The HPDS-
cell was originally used for the investigation of biological cells by light microscopy at
high hydrostatic pressure [HKS04; Fre+06]. For the work presented in this thesis a
HPDS-cell was manufactured by RECORD Maschinenbau GmbH, Königsee, Germany.
The cell consisted of a cylindrical main body and a lid, both made of tool steel, that were
fixed by six screws (M6×20) (fig. 2.8). Two channels that exit at opposite sides of the the
main body allow to fill the cell with water. For pressurization, one channel was closed
by a plug and the other channel was connected to a high-pressure tube coming from the
high-pressure equipment used for compression of the water.

The reason for the compact design of the HPDS-cell was a progressive metal sealing
[Dor03]. At pressures below approximately 0.5 kbar, the o-ring between main body and
lid sealed the cell. At higher pressures, the part of the lid that was in contact with the
o-ring was pressed against the main body of the cell due to the pressure inside the cell,
constituting a metal-to-metal sealing.

Two sapphire windows allowed for light to be transmitted through the center of the
cell. The distance between the windows was approximately 0.4 mm. Inside this gap
the sample could be placed. The entire cell was positioned in the optical setup between
the objective and the condenser (fig. 2.1). The objective could be brought to a distance
from the sample-volume below 7 mm due to the recess at the lower part of the main
body. Thus, the use of an objective with a working distance of 11 mm allowed for the
exploration of the entire sample volume without risking collisions of the objective with
the high-pressure cell.

The sample liquid was encapsulated inside a rectangular glass capillary (VitroCom,
VitroTubes 5010-050, borosilicate rectangular glass capillary, nominal inner dimensions
h ×w × d = 100µm × 1 mm × 8 mm). The ends of the capillary were sealed with high-
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2.2 High Pressure

Figure 2.8: Scheme of the high-pressure optical cell. The drawing is based on the high-pressure
cell described by Hartmann et al. [Har+03] and a technical drawing from Andreas Zumbach
(RECORD Maschinenbau GmbH, Königsee, Germany). Not to scale. The main body of the
cell was cylindrical with a height of 25 mm and a diameter of 85 mm. With mounted lid,
the overall height of the high-pressure cell was below 3 cm. Two conical sapphire windows
(thickness 2.2 mm) were fitted into the lid and the main body. The direction of the up beam is
indicated for orientation.

viscosity Baysilone paste (Bayer), thus separating the sample liquid from the pressure
transmitting liquid while allowing for hydrostatic pressure to be transmitted.

2.2.2 Periphery

For pressurization, the high-pressure cell was connected to the high-pressure equipment
with a flexible high-pressure tube (fig. 2.9). The plug was removed. An electrical hose
pump (neoLab) was used for rinsing the entire equipment with with ultrapure water
from the reservoir (Sartorius Arium 611 VF purification system, MilliQ, specific resistiv-
ity of 18.2 MΩ cm) until no more air-bubbles exited the high-pressure cell. The piston
screw pump (HiP High Pressure Equipment Company) was filled with water. Then,
while the pump was still running, the plug was inserted into the cell, sealing the pressur-
ized volume. The valve was then closed and the pump was turned off. The water could
be pressurized up to p = 1 kbar using the piston screw pump . An analogue manometer
(HiP High Pressure Equipment Company, accuracy 5 %) was used for monitoring the
pressure inside the high-pressure equipment. For safety reasons, a burst disc was used
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that caused an instantaneous pressure relaxation in case the pressure exceeded 1 kbar.

Figure 2.9: High pressure equipment.

At a pressure of 0.5 kbar the pressure reading of the manometer was approximately
constant. At a pressure of 1 kbar the pressure decreased by approximately 10 bar min−1.

2.3 Samples

2.3.1 Beads

The colloidal beads used for surface force measurement by optical trapping at high
hydrostatic pressure had to meet the following requirements:

1. A surface charge of the same sign as the surface charge of the glass wall. Otherwise

32



2.3 Samples

the beads would adhere to the wall and could not be detached by means of optical
trapping.

2. A refractive index nbead larger than the refractive index of the liquid, i.e. water
(nwater ≈ 1.33). Otherwise the beads would be pushed out of the trapping beam by
the gradient force instead of being centered on the beam axis.

3. No change in size in a pressure range from 1 bar to 1 kbar.

4. A weight in water not larger than a few piconewton, i.e. smaller than typical
optical forces [JZ08].

5. A low surface-roughness.

Glass beads meet requirements 1 and 2. The bulk modulus K of glass is of the order
of 50 GPa, which is e.g. about one order of magnitude larger than the bulk modulus of
polystyrene [KL]. The isotropic change in the volume of a substance ∆V is related to the
change in hydrostatic pressure ∆p by

∆V
V

K = −∆p . (2.8)

For a sphere with radius R we use V = 4/3 · πR3 and ∆V = 4πR2∆R, which yields

3
∆R
R

K = −∆p . (2.9)

Thus, for a change of pressure by ∆p = 1 kbar = 100 MPa, a relative decrease of the
radius of a glass bead by

∆R
R

= −
2 × 10−3

3
≈ −0.07 % (2.10)

is expected. This means that for R = 4µm a decrease of the radius by less than 3 nm is
expected, which is negligible, thus satisfying requirement 3.

The roughness of several commercially available beads was studied by van Zwol et al.
[Zwo+08]. They found that the root-mean-squared (RMS) roughness of different types
of beads ranged from 0.7 nm to 40 nm, whereas some beads could not be quantified by
an RMS-roughness due to their deformed shape. The lowest roughness, i.e. 0.7 nm, was
reported for DUKE borosilicate microspheres type 9020. These beads had a radius of
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Figure 2.10: Scanning probe microscopy image
of the DUKE STANDARDS borosilicate glass
microspheres 9008. The height sensor to-
pography was recorded in intermediate con-
tact mode with a Dimension Icon FS device
using an Olympus non-contact mode can-
tilever (OMCL-AC 240TS-W2, resonant fre-
quency f0 = 70 kHz). In order to account for
the curvature of the bead, 2nd order flatten-
ing was applied to the image-data. The RMS-
roughness for this measurement after flatten-
ing was σ = 2.6 nm.

R = (10.0 ± 0.7)µm.

In order to satisfy both requirements 4 and 5, DUKE microspheres from the 9000 series
with a mean radius of R = 4µm were chosen (DUKE STANDARDS borosilicate glass
microspheres 9008). A density of ρbead = 2.55 g cm−3 and a refractive index of nbead = 1.56
(at a wavelength of 589 nm) were stated by the manufacturer.

Scanning probe microscopy (SPM) measurements of four different beads of the here
used type revealed a mean RMS-roughness of

σ = 3.3 nm . (2.11)

Fig. 2.10 shows an exemplary SPM image for one of the beads. The measured roughness
is larger than the reported value of 0.7 nm [Zwo+08]. However, the roughness of the
here used beads is smaller than most roughness values reported by Van Zwol et al.. A
comparable roughness of 5.5 nm was reported for DUKE sodalime glass 9030 beads.

Van Zwol et al. also reported scanning electron microscope (SEM) images of the investi-
gated bead-types. The DUKE borosilicate glass 9020 beads appeared smooth while the
DUKE sodalime glass 9030 beads had µm-sized features. SEM images of the here used
DUKE borosilicate glass 9008 beads revealed similar features (fig. 2.11). Overall, the
here used beads were less smooth than the ones of the same type investigated by van
Zwol et al. (type 9020), which is most likely is due to a batch-dependence of the bead
quality.
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2.3 Samples

Figure 2.11: Scanning electron microscope images of the glass beads used in this work. The beads
were supplied in form of a dry powder. A small amount of the bead-powder was poured onto
a Si wafer that was coated with 20 nm of Pt. The overall sample was coated with an additional
thin layer (3 nm) of Pt by means of sputtering. Picture (b) is a zoom-in of (a). c©2016 American
Physical Society [Pil+16]

The choice of DUKE borosilicate glass 9008 beads meets all requirements mentioned
above. If not mentioned otherwise, these beads were used in all experiments reported
in this thesis.

2.3.2 Capillary

Rectangular capillaies (VitroCom, VitroTubes 5010-050, borosilicate rectangular glass
capillary) were used for encapsulation of the dispersion of aqueous NaCl solution and
beads. Force measurements were performed with a bead pushed against the upper in-
ner wall of the capillary. Thus, the inner wall of the capillaries needed to be characterized.

SPM images at three different positions on a shiver of a VitroTubes 5010-050 borosilicate
rectangular glass capillary revealed a mean RMS-roughness of the inner capillary wall
of

σ = 0.3 nm . (2.12)

Fig. 2.12 shows an exemplary SPM image of the upper inner wall of the capillary. The
roughness of the capillary was one order of magnitude smaller than the roughness of
the beads. Furthermore, the surface of the capillary displayed occasional spikes (white
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.12: Scanning probe microscopy image
of the inside of a VitroTubes 5010-050 borosil-
icate rectangular glass capillary. The height
sensor topography was recorded in interme-
diate contact mode with a Dimension Icon FS
device using an Olympus non-contact mode
cantilever (OMCL-AC 240TS-W2, resonant
frequency f0 = 70 kHz). 1st order flattening
was applied to the image-data. The RMS-
roughness for this measurement after flatten-
ing was σ = 0.3 nm.

dots in fig. 2.12). However, he height of the spikes was smaller than 4 nm, which is com-
parable to the RMS-roughness of the beads. It was thus not expected that the spikes had
a significant effect on the the electrostatic double-layer force between bead and wall.
A more detailed discussion on the effect of roughness on the measured electrostatic
double-layer force will be given in part 6.0.2.

2.4 Experimental Procedure and Data Acquisition

2.4.1 Preperations

Two aqueous NaCl solutions with salt concentrations of c0 = (0.10 ± 0.01) mmol dm−3

and (1.0 ± 0.1) mmol dm−3 were prepared using ultra-pure water (Sartorius Arium 611
VF purification system, resistivity of 18.2 MΩ cm). A small amount of the dry glass
beads was dispersed in ultra-pure water and sonicated for at least 15 min. 1 ml of NaCl
solution was mixed with 50µl of the bead dispersion, thus diluting the sample solutions
to salt concentrations of approximately

c0 = (95 ± 10)µmol dm−3 and (0.95 ± 0.10) mmol dm−3 . (2.13)

The pH value of the sample was approximately pH = 4 − 4.5 (measured with MERCK
pH-indicator strips Acilit R©).

The sample solutions were encapsulated in a glass capillary. I have experienced that
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sealing the capillary worked best, when the outer surface of the capillary remained
dry before contact with the sealing paste (Bayer, high-viscosity Baysilone paste). Thus,
the following loading procedure was employed: The rectangular glass capillaries were
supplied having a length of 50 mm. One capillary was prepared for breaking off a small
capillary piece by scratching it with a diamond cutter approximately 8 mm away from
one end. The other end of the capillary was then dipped into the sample solution and
the sample solution filled the capillary by capillary rise. The scratched end was dipped
into the sealing paste. The capillary was then broken. The other end of the 8 mm long
capillary piece was dipped into the sealing paste. It was important to not dip the ends
of the capillary too deep into the sealing paste so that the central part of the capillary
stayed clean.

The sealed capillary piece was then placed in the middle of the high-pressure cell. Due
to the sealing paste, the capillary piece stuck to the cell-body. The high-pressure cell
was then pre-filled with water, closed and tilted by 90◦ for a couple of minutes in order
to let the beads sediment to one side of the capillary. The cell was then connected to the
high-pressure periphery and clamped on a platform that was connected to a motorized
stage (Vision Lasertechnik) and placed between the objective and the condenser.

The glass beads were at one side of the capillary. A single bead was selected for all
experiments at a given salt concentration and moved away from the wall to the center
of the capillary by trapping it with the down beam and moving the high-pressure cell
laterally. Far from the other beads, the selected bead was pushed upwards by the up
beam. The cell was lowered continuously in order to keep the bead in the focus of the
objective until the bead reached the upper inner wall of the capillary.

2.4.2 Recording a Force Curve

At the upper inner capillary wall the force curves were recorded. The interference laser
was turned on and aligned so that the reflection interference pattern was centered on
the bead and symmetrical. The intensity of the reflection interference signal IRI mea-
sured by the avalanche photo-diode was recorded at a sampling rate of 50 kHz using a
data acquisition card (National InstrumentsTM PCIe-6321, X Series Multifunction DAQ).
Using this sampling rate, the Nyquist criterion was fulfilled, since the fastest recorded
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.13: Scheme of the automated measurement. The different stages of the experiment (a)
and the corresponding settings of the computer controlled shutter, attenuator (P) and data
acquisition electronics (DAQ) (b).

frequency was of the order of 5 kHz. The data acquisition, shutter 1, i.e. the shutter that
blocks the trapping beam and the variable attenuator were controlled using LabVIEW
(National InstrumentsTM) (fig. 2.13 (b)).

A force curve was automatically recorded in the following way: Initially, the power of
the trapping beam was set to a value P1 (fig. 2.13 (i)). Then shutter 1 was closed, blocking
the trapping beam, and the data acquisition of IRI was initiated (fig. 2.13 (1)). Since the
density of the bead was larger than the density of water, the bead then sedimented a
few micrometers away from the wall. Subsequently, shutter 1 was opened and the bead
was pushed against the wall by the trapping beam (fig. 2.13 (2)). The force pushing the
bead against the wall is given by

Fbead = −Frp + Fg − Fb . (2.14)

The bead moved against the wall until Fbead was counteracted by the double-layer force
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2.4 Experimental Procedure and Data Acquisition

FDL. Around the equilibrium distance Deq where

Fbead = −FDL

(
Deq

)
, (2.15)

the bead performed thermal motion (fig. 2.13 (3)). The data acquisition was stopped and
the power of the trapping beam P was increased to P = P2 (fig. 2.13 (4)), thus increasing
Fbead and reducing the equilibrium distance Deq. Steps (1) to (4) were then repeated
several times.

A measurement at a given power of the trapping beam P = Pi is referred to as a single
measurement (fig. 2.13 (b), highlighted blue). Every single measurement gave a single
force-distance data point

(
Deq,FDL

)
. A series of data points derived from single mea-

surements at different Pi composed a force curve.

2.4.3 Single Measurement

A single measurement gives the recorded intensity of the reflection interference signal
IRI versus time (fig. 2.14, black line). IRI is related to the bead-wall distance D by [LS09]

2IRI = Imax + Imin − (Imax − Imin) cos
(

4πnmedium

λ
D + φ

)
. (2.16)

Here, Imax and Imin are the intensities of a maximum and a minimum of IRI, nmedium is
the refractive index of the medium between bead and wall, λ is the wavelength of the
interference laser and φ is the phase of the cosine function at contact of bead and wall.
The refractive index of water at a hydrostatic pressure of up to 1 kbar was determined
by Schiebener et al. [Sch+90].

When the bead moved towards the wall, the recorded IRI signal exhibited multiple
extrema (fig. 2.14 (2)). For consecutive extrema in the measured interference signal the
corresponding difference in distance D is

∆D =
λ

4nmedium
. (2.17)

For water at p = 1 bar up to 1 kbar and the wavelength of the here used interference
laser (λ = 635 nm) the distance difference was ∆D ≈ 119 nm. By determining the
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2 Instrument for Surface Force Measurement at High Hydrostatic Pressure

Figure 2.14: Example of a single
measurement at P = 83 mW.
Black line: Intensity of the reflec-
tion interference signal IRI. Blue
line: Derived bead-wall distance
D. The parts before and after
approximately 1.13 s correspond
to steps (2) and (3) in fig. 2.13,
respectively. c©2016 American
Physical Society [Pil+16]

temporal position of the extrema, the trajectory of the bead moving against the wall was
determined (fig. 2.14, blue squares). After the last minimum at around 1.12 s, equation
(2.16) was strictly monotonic and could thus be inverted

D = arccos
(
±

2IRI − (Imax + Imin)
Imax − Imin

)
·

λ
4nmediumπ

−D0 , (2.18)

yielding the blue line in fig. 2.14. Here, the sign inside the inverse cosine function
depends on the side of the cosine where the recorded IRI was located. The distance D0

corresponds to the phase φ. Since by interferometry with a single laser only relative
distances can be measured, the constant D0 was at first not determined.

The IRI-signal exhibited an envelope that is not accounted for by equation (2.16). This
envelope was due to the lensing effect of the bead. It caused a distance dependence of
the Imax and Imin values, i.e. the peak values of the different extrema differed from one
another. This lead to an inaccuracy of the distances D determined by equation (2.18).
Using extrapolation, the inaccuracy in D due to the lensing effect of the bead was deter-
mined to be of the order of 1 nm. The error was determined for all measured distances
Deq and taken into account for fitting.

It will be shown that the evaluation of step (2) (fig. 2.14) yields the force acting on the
bead and also the constant D0 needed for determination of the absolute distance D (see
chapter 3). Furthermore, the evaluation of the thermal motion in equilibrium (step (3))
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yields the precise value of the Deq (see chapter 5).
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3 Analysis of the Trajectory of the Bead
Moving Towards the Wall

Force curves were recorded by performing single measurements at stepwise increasing
powers of the trapping beam P (see part 2.4.3). At each single measurement, the bead
was pushed against the wall by the sum of the radiation pressure force, gravity and
buoyancy

Fbead = −Frp + Fg − Fb . (3.1)

The value of Fbead needed to be determined for every given P. For distances much larger
than the Debye-length, i.e. D > 7λD, the electrostatic double-layer force between bead
and wall is negligible. The force counteracting Fbead is the hydrodynamic drag Fhd (fig.
3.1), with

Fbead = −Fhd . (3.2)

Gravity and buoyancy are independent of D. The radiation pressure force Frp depends
on the radius w of the beam at the position of the bead [Ash70]. The beam-radius is

Figure 3.1: Bead pushed
against the wall by the
trapping beam. The force
pushing the bead against
the wall is counteracted
by the hydrodynamic
drag.

43



3 Analysis of the Trajectory of the Bead Moving Towards the Wall

distance dependent [JZ08]

w(z) = w0

√
1 +

(
z
zR

)2

. (3.3)

Here z = 0 is the position of the beam-waist along the direction of beam propagation
(z-direction). For a beam waist radius of w0 = 2.4µm (see equation (2.3)) and a cor-
responding Rayleigh length of zR = 35.2µm the radius of the beam increases by less
than 0.4 % for z = 3µm, which is negligible and thus should not affect Frp. Thus, when
evaluating the beads trajectory at bead-wall distances D ≤ 3µm, Fbead may be assumed
constant.

The constancy of Fbead has the important consequence that the electrostatic double-layer
force for a bead-wall distance Deq is equal to the hydrodynamic drag experienced by the
bead for D > 7λD

FDL

(
Deq

)
= Fhd . (3.4)

In this chapter, in order to determine Fhd, the trajectory of the bead moving towards the
wall is evaluated. The equation of motion of a bead moving towards a wall through
a liquid depends on the distance D. Analytic solutions of the equation of motion are
determined and compared to the exact numerical solution. The distance dependence
of the equation of motion is exploited in order to determine the absolute separation
between bead and wall.

3.1 Equation of Motion

The equation of motion for a “slow” bead in a viscous fluid is given by the Stokes
equation

Fhd = −6πRvη . (3.5)

Here η is dynamic viscosity of the fluid and v is the velocity of the bead.

The quantity that determines whether this equation is applicable to the given system is
the Reynolds number [HB83]

Re =
2ρvR
η

. (3.6)
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3.1 Equation of Motion

Here ρ is the density and of the fluid. Using the radius of the here used beads R ≈ 4µm
yields for water Re = 8v s m−1. Since in this work v < 1 mm s−1 for all experiments,
Re < 10−2, which is sufficiently small [HB83], confirming the applicability of equation
(3.5).

However, for a bead moving against a wall, the effect of drainage of liquid from the gap
between bead and wall must be accounted for. In this case, the equation of motion is
given by the modified Stokes equation

Fhd = −6πRvηλB(D) . (3.7)

For a given bead radius R, the factor λB(D) is the dimensionless wall-correction of the
Stokes equation [Bre61]. It is a strictly monotonic function of D with

lim
D→∞

λB(D) = 1 (3.8)

and [CH85]

lim
D→0

λB(D) =
R
D
. (3.9)

Equation (3.8) depicts the case of a bead moving through a fluid in the absence of a
wall where equation (3.7) reproduces the ordinary Stokes equation. An exact solution
of λB(D) was derived by Brenner [Bre61]

λB(D) =
4
3

sinh (α) ·
∞∑

n=1

n (n + 1)
(2n − 1) (2n + 3)

 2 sinh (2n + 1)α + (2n + 1) sinh (2α)

4 sinh2
(
n + 1

2

)
α − (2n + 1)2 sinh2 (α)

− 1

 (3.10)

with

α = arccos
(

D
R

+ 1
)
. (3.11)

It is now evident, that λB(D) ≡ λB(D/R), i.e. the wall correction depends on the ratio
of bead-wall distance to bead radius. Numerical evaluation of the first 200 terms of
equation (3.10) yielded a plot of λB (fig. 3.2 (a), black line).

The exact solution of equation (3.10) is only numerically possible. Thus, using the exact
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3 Analysis of the Trajectory of the Bead Moving Towards the Wall

Figure 3.2: (a) Log-log plot of correction factor λB calculated independent of R with the exact
equation (3.10) (black line), the Butt-Kappl approximation (3.12) (red line) and the Cox-Brenner
approximation (3.14) (blue line). (b) Relative difference between exact calculation of λB and
approximation by Butt-Kappl (red line) and Cox-Brenner (blue line) calculated with (3.13).
Calculations were performed with MathWorks R© Matlab R© Version 7.14.0.739.

solution given by equation (3.10) for solving of equation (3.7) and evaluating the mea-
sured trajectories would be cumbersome and lengthy, especially since approximately
500 trajectories were evaluated in this thesis. An analytical approximation of (3.10) was
motivated by Butt and Kappl [BK10]

λBK
B (D) = 1 +

R
D
. (3.12)

They used the pragmatic approach of adding the asymptotic solutions (3.8) and (3.9),
making λBK

B (D) exact in the case of D << R and D >> R (fig. 3.2 (a), red line). Here, the
case of D ≈ R was evaluated by calculation of

∆λB(D) =
λB(D) − λapprox

B (D)

λB(D)
. (3.13)

The error made by using λBK
B (D) was found smaller than 6.5 % for all D (fig. 3.2 (b), red

line).

Another approximation, valid for small values of D was given by Cox and Brenner
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[CB67]

λCB
B (D) =

R
D

+
1
5

ln
(

R
D

)
+ 0.971264 . (3.14)

This approximation satisfies (3.9) but deviates from the exact solution for large D (fig.
3.2 (a), blue line). For a range of 10−3 < D/R < 3/4, λCB

B (D) was found to be closer to the
exact λB(D) than λBK

B (D) (fig. 3.2 (b), blue line).

For evaluation of the measured beads trajectory, a model function D(t) is needed. The
wanted function is the solution of equation (3.7), or more explicitly

− 1 = R · a
dD
dt
λB(D) , (3.15)

with
a :=

6πη
Fhd

. (3.16)

For Fhd = const this differential equation can be solved by

− (t − ti)
1

aR
=

D∫
Di

λB(z) dz . (3.17)

For the exact λB given by equation (3.10), equation (3.17) was solved by numerical inte-
gration using the adaptive Simpsons’s method (fig. 3.3, black line).

For the Butt-Kappl (λBK
B ) and Cox-Brenner (λCB

B ) approximations solving equation (3.17)
results in the implicit solutions for the trajectory of the bead

− (t − ti)
1

aR
= ΛB(D) −ΛB(Di) , (3.18)

with
ΛBK

B (D) := D + R ln (D) (3.19)

for the Butt-Kappl approximation and

ΛCB
B (D) := ln (D)

(
R −

1
5

D
)

+ D
(

1
5

R + 1.1712
)

(3.20)

for the Cox-Brenner approximation.
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3 Analysis of the Trajectory of the Bead Moving Towards the Wall

Figure 3.3: Calculated trajectory of a bead moving towards a wall for Fhd = const and R = 1
using the exact correction factor λB (black line) and the approximations by Butt-Kappl (red
line) and Cox-Brenner (blue line). Inset shows sum of squared errors between the trajectories
calculated with the exact and approximated correction factors. Calculations were performed
with MathWorks R© Matlab R© Version 7.14.0.739.

The trajectories given by (3.18) were calculated on a range of Di = 3/4 ≥ D ≥ D f = 1/20
setting R = 1 and ti = 0 (fig. 3.3, red line and blue line). The chosen range corresponds
to 3µm ≥ D ≥ 0.2µm for a bead with R = 4µm, which is the range of the measured
trajectories that was evaluated. The exact and approximate calculated trajectories all
display the same behavior. For a fixed range, the trajectories may be brought to overlap
by scaling the antiderivatives ΛBK

B (D) and ΛCB
B (D) with a factor q. To find the value of

q that provides the best overlap of exact and approximate solution, the sum of squared
errors was calculated

χ2 =

N∑
n=0


Dn∫

Di

λB(z) dz − q
(
ΛB(Dn) −ΛB(Di)

)
2

, (3.21)

where the range from Di to D f was divided into an equidistant grid Dn = Di−n/100 with
N =

(
Di −D f

)
· 100. χ2 had a minimum at qBK

min = 1.06 and qCB
min = 1.02 for the Butt-Kappl

and the Cox-Brenner approximation, respectively (fig. 3.3 , inset).
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3.2 Data Evaluation

The values of qmin are a measure of the error made by data evaluation with the analytic
approximations of λB. When equation (3.18) is used for curve fitting, Fhd is a fit value.
Instead of the hydrodynamic drag Fhd, a reduced drag force F̃hd = Fhd/q is determined by
curve fitting. This means that using the Butt-Kappl approximation and the Cox-Brenner
approximation the hydrodynamic drag is underestimated by approximately 6 % and
2 %, respectively. However, since this is only a minor error of the accuracy of determin-
ing Fhd, equation (3.18) together with (3.19) or (3.20) may be used as the function of the
bead trajectory for data evaluation.

3.2 Data Evaluation

Evaluation of the reflection interference signal resulted in the trajectory of the bead (see
part 2.4.3). The evaluation of the recorded reflection interference signal itself does not
give the absolute bead-wall distance D, but a relative distance

D̃ = D + D0 , (3.22)

with an offset D0, which was not jet determined. For data evaluation, D̃ = 0 was chosen
to be the position of the bead corresponding to the last extremum of the reflection
interference signal before the bead reaches Deq (see fig. 2.14 of an exemplary single
measurement at approximately t = 1.12 s). Using equation (3.18) yields the implicit
function for the bead trajectory

t = −aRΛB

(
D̃ −D0

)
+ t̃ . (3.23)

Here a, D0 and t̃ are the fit-values, with the integration constant t̃ = ti/ (aR) + ΛB(Di), and
ΛB(D) given by equations (3.19) or (3.20). Fhd was determined from the fit value a using
tabulated values for the viscosity of water for a given temperature and pressure from
the National Institute of Standards and Technology Chemistry Webbook [LMF].

The measured trajectories could be fitted with equation (3.23) with a coefficient of de-
termination > 0.999 with both the Butt-Kappl and the Cox-Brenner approximation. The
fit-curves of both approximations overlapped and were not distinguishable, thus only
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3 Analysis of the Trajectory of the Bead Moving Towards the Wall

Figure 3.4: Trajectories of the bead
moving against the wall for dif-
ferent powers of the trapping
beam P (black squares). Ap-
proximately the last 3µm before
the wall were fitted using equa-
tion (3.23) (red lines). If not
stated otherwise, in this work
curve fitting was performed with
OriginLab R© OriginPro 9.1 OG
(32-bit) using orthogonal regres-
sion. Here R = (4.0 ± 0.5)µm,
c0 = 0.1 mmol dm−3, p = 1 bar
and T = (21 ± 1) ◦C.

the fit-curve of the Butt-Kappl approximation was plotted (fig. 3.4, red lines). From the
steepness of the trajectories it is evident that for larger powers of the trapping beam P the
bead moved faster against the wall and the determined Fhd was larger. The dependence
of Fhd and thus Fbead on P is discussed in chapter 4.

In order to determine whether both approximations lead to equivalent results, a series
of trajectories recorded for different powers of the trapping beam P was evaluated
with equation (3.23) using equations (3.19) and (3.20) (fig. 3.5). The force determined
using the Butt-Kappl approximation FBK

hd is correlated to the force determined using the
Cox-Brenner approximation FCB

hd with a Pearson product-moment correlation coefficient
of rPearson = 1. This means that there is no qualitative difference between the two
approximations. Fitting with a proportional function (fig. 3.5, red line) revealed

FCB
hd

FBK
hd

= 1.04 . (3.24)

This is in good agreement with the above determined correction factors

qBK
min

qBK
min

=
1.06
1.02

= 1.04 . (3.25)

The values of the distance offset D0 were as well strongly correlated with rPearson >

0.999. On average the Butt-Kappl and Cox-Brenner approximations yielded D
BK
0 =
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3.2 Data Evaluation

Figure 3.5: Comparison of fit val-
ues Fhd and D0 (inset) determined
with the Butt-Kappl and the Cox-
Brenner approximation. 20 tra-
jectories with R = (4.0 ± 0.5)µm,
c0 = 0.1 mmol dm−3, p = 1 bar,
T = (21 ± 1) ◦C and P increas-
ing from 28 mW to 142 mW in
equidistant steps of 5.7 mW were
evaluated.

(−202.1 ± 15.9) nm and D
CB
0 = (−204.3 ± 16.8) nm, i.e. a difference of approximatel 1 %.

It is thus evident that both functions lead to equivalent results. Due to its simplicity the
Butt-Kappl approximation, namely

t = −aR
(
D̃ −D0 + R ln

(
D̃ −D0

))
+ t̃ (3.26)

was used in this work for evaluation of the trajectory of the bead moving towards the
wall.

3.2.1 Errors of the Fit

Before fitting the measured trajectories, two parameters must be chosen, i.e.

1. the radius R of the bead and

2. the end of the fit-range Df.

The uncertainty of the radius ∆R has a direct influence on equation (3.26). The choise
of Df influences the fit due to the D-dependence of the error of the approximation ∆λB

(fig. 3.2 (b)). Thus, both parameters influence the determined Fhd and D0. In order to
determine the influence of ∆R on Fhd and D0, the same data-set as in fig. 3.5 was evaluated
by fitting it with a radius subsequently set to R + ∆R and R − ∆R and determining the
largest absolute deviation of the fit values from those obtained by fitting with R. Setting
R = 4.0µm and ∆R = 0.5µm yielded
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3 Analysis of the Trajectory of the Bead Moving Towards the Wall

• ∆Fhd/Fhd ≈ 22 % (∆Fhd/Fhd ≈ 25 % with R = 3.6µm) and

• ∆D0 ≈ 13.7 nm

systematically at all powers P. It is important to note that ∆R only influences the accu-
racy of determining Fhd. Thus, although the corresponding error ∆Fhd is significantly
large, it is insignificant when comparing force curves recorded with the same bead.
Hence, in this work, for experiments at a given salt concentration and different hydro-
static pressures, the same bead was used to record all force curves.

Only the last 3µm of the bead’s trajectory were fitted, i.e. Df = 3µm. The error due
to the choice of the fitting-range was evaluated by subsequently setting Df = 2µm and
Df = 4µm, and determining the largest absolute deviation of the fit values from those
obtained by fitting with Df = 3µm. The determined errors were on average

• ∆Fhd/Fhd ≈ 1 % and

• ∆D0 ≈ 4.3 nm.

The error of Fhd was calculated for every force-distance data point and accounted for by
the curve-fitting algorithm.

3.3 Determination of the Absolute Distance

The reflection interference signal by itself does not allow the determination of the ab-
solute bead-wall distance D (see equation (2.16)). Determining D from analysis of the
bead’s trajectory is possible but error-prone (see part 3.2). However, it will be shown
that using the information gained from the evaluation of the bead’s trajectory, the phase
at contact φ of the reflection interference signal may be determined to be exactly π,
allowing an accurate determination of the absolute bead-wall distance.

The here used reflection interference technique is very similar to reflection interference
contrast microscopy (RICM) [Nad+01; RS92; LS09]. For RICM, it was argued by Radler
and Sackmann that the phase is determined φ = π, because the liquid has a lower re-
fractive index than the bead and the wall [RS92]. The refractive index of borosilicate
glass is lower than that of water, hence Radler and Sackmann’s argument holds for
the presently discussed experimental configuration. The reason for the fixed value of
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3.3 Determination of the Absolute Distance

Figure 3.6: Rays
reflected from
the water-wall
interface (1), and
the bead-water
interfaces facing
the wall (2) and
averted from the
wall (3).

φ is that the reflection at the water-wall interface undergoes a phase shift by π (fig.
3.6, ray 1) while the the reflection at the bead-water interface doesn’t (fig. 3.6, ray 2).
However, this argumentation neglects the influence of further reflections, in particular
a third reflection at the bead-water interface averted from the wall (fig. 3.6, ray 3). For
the usual RICM configuration this third reflection most likely can be neglected, since
in RICM setups an incoherent light-source is used for interference measurement [RS92;
LS09]. However, in this work a laser-diode was used, where the coherence length is of
the order of millimeters, i.e. much larger than the diameter of the bead. Thus, φ = π

cannot be assumed a priori.

Assuming an influence of a third ray, the phase at contact would depend on the radius
of the bead, i.e. φ(R). Evaluation of the trajectory of a bead moving against the wall
using equation (3.26) for different beads with radii R from 2.6µm to 5.2µm allowed the
investigation of the R dependence of φ (fig. 3.7), since a given phase φ corresponds to a
distance offset D0. Using equation (2.16), the determined D0 were converted into values
of φ in units of π.

The effect of a third reflection due to e.g. an additional membrane was studied in
RICM experiments [LS09]. The change in φ was found to depend on the ratio of the
membrane thickness and the wavelength of the reflected light. For a membrane of 4 nm
thickness illuminated with light with a wavelength in the visible range, a change in φ of
approximately 0.4π was stated [LS09]. Thus, for the range of here investigated radii, φ
should assume seemingly random values from 0 to 2π. This however was not observed.
The measured values all were in a range between 0.7π and 1.1π, demonstrating that φ
is not a function of R. The variations of φ rather originate from inaccuracies related to
the evaluation of the bead’s trajectory. It can thus be concluded, that the third reflection
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3 Analysis of the Trajectory of the Bead Moving Towards the Wall

Figure 3.7: Phase of the reflection
interference signal φ versus ra-
dius R of the bead. In case of
R = 2.6µm and R = 2.8µm silica
microspheres type SS06N from
Bangs Laboratories, Inc. were
used. The beads with R = 3.6µm
and R = 4µm were described in
part 2.3. In case of R = 5.2µm
a borosilicate glass microsphere
type 9010 from DUKE Scientific
Corp. was used.

does not influence φ, yielding analogously to the RICM case that

φ = π . (3.27)

Hence, for the experiment in part 3.2 we get

D0 = −
λ
2n

(3.28)

and with this the absolute distance calibration

D = D̃ +
λ
2n
≈ D̃ + 238 nm . (3.29)

3.4 Summary

In this chapter the trajectory of the bead moving towards the wall was exploited in order
to determine the hydrodynamic drag on the bead and the absolute bead-wall distance.
It was discussed that the determination of the hydrodynamic drag allows the force cali-
bration of the measured electrostatic double-layer force.

Approximations of the distance dependent wall-effect correction factor λB were dis-
cussed. It was found that a simple approximation proposed by Butt and Kappl allows
accurate determination of λB for all distances D. Based on this approximation, an
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3.4 Summary

equation was derived that allowed the determination of both absolute distance and hy-
drodynamic drag. The combination of the results from evaluation of the beads trajectory
with properties of the reflection interference signal allowed for an accurate determina-
tion of the absolute bead-wall distance.

55





4 The Force Pushing the Bead Against
the Wall

The force pushing the bead against the wall was assumed to be given by

Fbead = −Frp + Fg − Fb . (4.1)

with the difference of gravity and bouyancy

Fg − Fb =
4
3
πR3g

(
ρbead − ρwater

)
(4.2)

and the radiation pressure force Frp. Here g = 9.81 m s−2 is the gravitational accelera-
tion in central Germany. In this chapter the validity of equation (4.1) will be proven.
The measured radiation pressure force will be compared to calculations based on the
generalized Lorentz-Mie theory. Furthermore, possible force fluctuations due to the
dependence of Frp on the position of the bead lateral to the beam-axis will be estimated.

4.1 Dependence on Beam Power

The radiation pressure force is proportional to the number of photons that are refracted
by the bead, and thus proportional to the power of the trapping beam P [Ash70; NB04;
MP02]. We can thus define the force efficiency

frp :=
Frp

P
, (4.3)

which is independent of the beam power P. In chapter 3 it was established that Fbead =

−Fhd (equation (3.2)). Thus, by evaluating the hydrodynamic drag for multiple P we
expect to find a linear function
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4 The Force Pushing the Bead Against the Wall

Fhd = frp · P + Fb − Fg . (4.4)

Figure 4.1: The hydrodynamic drag versus laser power for a bead with R = (4.0 ± 0.5)µm
(crosses) fitted with equation (4.4) (red line). Fit values were frp = (0.29 ± 0.06) pN mW−1

and Fb − Fg = (−3.6 ± 0.2) pN. Other experimental parameters: c0 = 0.1 mmol dm−3, p = 1 bar
and T = (21 ± 1) ◦C.

The measured force could be fitted with equation (4.4) with a calculated coefficient of
determination of 1. This proves that the power dependent part of the force pushing the
bead against the wall is non-thermal. If e.g. the trapping beam heated up the bead, addi-
tional effects like convection would lead to a deviation of the measured curve from a line.

Calculating the difference of buoyancy and gravity with equation (4.2) yields

Fb − Fg = (−4.1 ± 1.5) pN . (4.5)

Here R = (4.0 ± 0.5)µm, ρwater ≈ 1 g cm−3 and ρbead = 2.55 g cm−3 (value provided by
manufacturer) was used. This result is in quantitative agreement with the intercept of
the fitted function at (−3.6 ± 0.2) pN in fig. 4.1. We can thus conclude that the force on
the bead is well represented by equation (4.1).
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4.2 Effect of Non-Conservatism of the Radiation Pressure Force

The evaluation of the hydrodynamic drag yields the force efficiency for the here pre-
sented experimental configuration

frp = (0.29 ± 0.06) pN mW−1 . (4.6)

The force efficiency frp can alternatively be determined using the generalized Lorentz-
Mie therorie (GLMT) [RGG94]. Using the program ABSphere [Ren14] for the given
experimental configuration (R = (4.0 ± 0.5)µm, w0 = (2.4 ± 0.4)µm, λ/nwater = 397 nm
nbead/nwater = 1.164) yields

f GLMT
rp = (0.11 ± 0.06) pN mW−1 . (4.7)

This theoretically determined force efficiency is lower than the measured frp (equation
4.6). The discrepancy could be explained with the imprecision of nbead. The value stated
by the manufacturer (nbead = 1.56 @ 589 nm) is explicitly not intended for calibration
and could thus vary. Also, due to dispersion nbead would be slightly larger for a wave-
length of 532 nm than for 589 nm. An increased value of nbead by 5 % would resolve the
discrepancy.

4.2 Effect of Non-Conservatism of the Radiation Pressure

Force

Ashkin pointed out that the radiation pressure force excreted by a Gaussian beam on
a bead is not conservative [Ash92]. Roichman et al. have found that due to this non-
conservatism a bead trapped by optical tweezers does not assume a static equilibrium
position but traces out a tordial vortex [Roi+08]. These additional fluctuations could
influence the equilibrium position of the trapped bead. De Messieres et al. porposed a
simple model of the optical force ~Fop experienced by a trapped bead that reproduced the
findings by Riochman et al. [MDLP11]

~Fop

(
~r
)

= ~Fgr

(
~r
)

+ Fe f f
rp (l)ẑ , (4.8)
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4 The Force Pushing the Bead Against the Wall

with harmonic restoring force due to the gradient in laser-intentsity

~Fgr

(
~r
)

= −kxxx̂ − kyyŷ − kzzẑ . (4.9)

Here ~r = xx̂ + yŷ + zẑ is the displacement of the bead relative to the focus of the beam,
with

∥∥∥~r∥∥∥ assumed small, and ki is the trap-stiffness in i-th direction. z is the direction of
the beam propagation. The radiation pressure force was modeled as

Fe f f
rp (l) = Frp + Sl2 . (4.10)

Here l =
√

x2 + y2 is the lateral displacement of the bead from the beam-axis. For a bead
centered on the beam axis Fe f f

rp (l = 0) = Frp, as was used in this work. Within this model,
the radiation pressure force is not conservative, since

∇ ×

(
Fe f f

rp (l)ẑ
)

= 2S


y
−x
0

 , (4.11)

which generically is not zero. Whereas∇×~Fgr

(
~r
)

= ~0, proving the conservative character
of the gradient force.

For beads that are larger than the radius of the beam (R > w0), S is positive. The ob-
servations by Roichman et al. can now be understood in the following way [MDLP11]:
In the absence of thermal motion the bead would be trapped at a position zeq along the
beam-axis, where kzzeq = Frp. However, thermal motion causes lateral displacement
of the bead. When the bead moves off-axis, the radiation pressure force is increased,
causing an additional displacement in z-direction. Eventually, the on-axis position of
the bead will be restored, causing the radiation pressure to assume its initial strength.
The bead’s on-axis position will then return to zeq, restoring initial conditions.

In this work the optical trap was of long-working-distance type, which differs from
optical tweezers by lack of a restoring force in z-direction. For example in the case of a
bead illuminated by the trapping beam in bulk water, kz ≈ 0. However, when the bead
was at a small distance Deq from the glass wall, it was trapped in z-direction due to the
electrostatic double-layer force. Thus, kz = dFDL

dz

(
Deq

)
. The profile of the optical forces

for our experimental configuration was calculated using GLMT (fig. 4.2). For small
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4.2 Effect of Non-Conservatism of the Radiation Pressure Force

Figure 4.2: Radiation pressure force efficiency

f e f f
rp and gradient force efficiency fgr for lat-

eral displacements from the beam axis with
y = 0 and −5µm ≤ x ≤ 5µm calcu-
lated with ABSphere [Ren14]. Red lines:
Fits with equations (4.12) and (4.13) on the
range −1µm < x < 1µm yield frp =
0.11 pN mW−1, S/P = 0.02 pN mW−1 µm−2

and kx/P = 0.28 pN mW−1 µm−1. Errors of
the fit-values were below 1 %. Parameter of
the calculation: R = 4.0µm, w0 = 2.4µm,
λ/nwater = 397 nm, nbead/nwater = 1.164.

displacements |x| ≤ 1µm the radiation pressure force efficiency frp could be fitted with

f e f f
rp (l) = frp +

S
P

l2 , (4.12)

which was deduced by dividing (4.10) by P. In the same range the gradient force was
found harmonic with

fgr =
Fgr

P
=

kx

P
x . (4.13)

Thus, equation (4.8) is applicable to our experimental configuration and can be used for
estimating the effect of the non-conservatism of the radiation pressure force.

Pilat et al. have argued that the additional displacement caused by the fluctuations
can be estimated by determining the mean radiation pressure force [Pil+16]. The mean
square displacement of the bead from the beam-axis is given by

〈
l2
〉

= 2
kBT
kx

, (4.14)

assuming kx = ky. For the mean effective radiation pressure force we thus get

F
e f f
rp ≈ Frp

1 +
2SkBT
Frpkx

 . (4.15)

For our experimental configuration kx > 10−5 N m−1 and S/Frp ≈ 0.2µm−2 (fig. 4.2),
yielding

2SkBT
Frpkx

< 1.6 × 10−4 . (4.16)
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4 The Force Pushing the Bead Against the Wall

Thus, lateral fluctuations of the bead could cause an increase of the radiation pressure
force on the femtonewton range. In order to estimate the effect on the equilibrium
position Deq we approximate Fbead ≈ −F

e f f
rp , thus neglecting gravity an buoyancy. The

corrected position D̃eq can be calculated using F
e f f
rp = FDL

(
D̃eq

)
and Frp = FDL

(
Deq

)
. Using

equation (1.4) for FDL we get

D̃eq = Deq − λD ln

1 +
2SkBT
Frpkx

 . (4.17)

For λD < 30 nm the corrective term in (4.17) is of the order of picometer, which is below
the resolution of the technique.

4.3 Summary

It could be shown that the force pushing the bead against the wall was given by the sum
of the radiation pressure force and the effective gravitational force. Thermal effects due
to excessive absorption of the laser light were not observed. It was further estimated
that the non-conservative character of the radiation pressure force has no influence on
the experiments performed in this work.
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5 Analysis of the Thermal Motion of the
Bead Close to the Wall

For a given power of the trapping beam P, the glass bead was pushed against the glass
wall by a force Fbead (see chapters 3 and 4). In the absence of thermal motion the bead
would have moved against the wall until it reached a distance Deq where

Fbead = −FDL

(
Deq

)
. (5.1)

The method of determining force curves used in this work relies on the determination
of Deq. However, due to thermal motion the distance D fluctuates randomly (fig. 5.1),
resulting in a statistical distribution of the distances D.

Figure 5.1: Thermal motion of the bead at the wall.

For a colloidal bead in a potential V(D) the probability density of distances p(D) is given
by the Boltzmann distribution [AP87]

p(D) = A exp
(
−

V (D)
kBT

)
. (5.2)

Here A is a factor ascertaining the normalization
+∞∫
−∞

p(D) dD = 1. It is noteworthy that,
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5 Analysis of the Thermal Motion of the Bead Close to the Wall

although the hydrodynamic drag on the bead is distance dependent (equation (3.7)),
the probability density p(D) is not influenced by the hydrodynamic wall effect and only
depends on the potential V(D) [AP87]. For our experimental configuration the potential
V(D) is implicitly given by

− V′(D) ≡ −
dV
dD

(D) = Ftotal , (5.3)

where Ftotal is the total force acting on the bead

Ftotal(D) = FDL(D) + Fbead , (5.4)

which in Deq by definition (equation (5.1)) is zero

Ftotal

(
Deq

)
= 0 . (5.5)

In order to evaluate p(D) and thus determine Deq we will at first approximate equation
(5.2).

5.1 Approximation of the Probability Distribution

We will first argue that Deq is the position of a minimum of V(D) and thus the most
probable distance. From equations (5.3) and (5.5) we know that V(D) is at an extremum
at Deq. For our experimental configuration FDL is given by an exponentially decaying
function

FDL(D) = F0 exp
(
−

D
λD

)
, (5.6)

where the decay-constant is the Debye-length λD and F0 is the force-amplitude. A
more detailed discussion of FDL(D) will be given in chapter 6. Using equation (5.6), the
differentiation of equation (5.3) results in

V′′(D) = −F′total(D) =
1
λD

FDL(D) , (5.7)

yielding that V(D) is a convex function, since V′′(D) > 0 for all D. Thus Deq is the position
of the minimum of V(D) and the maximum of p(D). Assuming only small deviations

∆D = D −Deq (5.8)
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5.1 Approximation of the Probability Distribution

of the bead’s position from the equilibrium and most probable position Deq, the potential
can be expanded

V(D) = V
(
Deq

)
+ V′

(
Deq

)
∆D︸       ︷︷       ︸

=:T1

+
1
2

V′′
(
Deq

)
∆D2︸           ︷︷           ︸

=:T2

+
1
6

V′′′
(
Deq

)
∆D3︸            ︷︷            ︸

=:T3

+O
(
∆D4

)
. (5.9)

By definition of Deq, V′
(
Deq

)
= 0 and thus T1 = 0. In order to estimate the influence of

T3 on V(D) relative to T2, equation (5.7) is differentiated

V′′′(D) = −
1
λ2

D

FDL(D) . (5.10)

We thus get

T2 =
1
2

1
λD

FDL

(
Deq

)
∆D2 =

1
2
λDFDL

(
Deq

) (∆D
λD

)2

(5.11)

and

T3 = −
1
6

1
λ2

D

FDL(D)∆D3 = −
1
6
λDFDL(D)

(
∆D
λD

)3

. (5.12)

Dividing (5.12) by (5.11) gives

T3

T2
= −

1
3

∆D
λD

. (5.13)

We can thus conclude that for
∆D << 3λD , (5.14)

T3 and higher orders of ∆D in equation (5.9) can be neglected, yielding the harmonic
approximation of the potential

V(D) ≈ V
(
Deq

)
+

1
2

V′′
(
Deq

)
∆D2 . (5.15)

The corresponding probability density is given by

p(D) = Ã exp

−1
2

V′′
(
Deq

)
kBT

(
D −Deq

)2

 . (5.16)

Here Ã := A exp
(
−

V(Deq)
kBT

)
. This approximate equation was stated before by [Nad+01;

CD01]. However, by explicit conducting the approximation, the condition (5.14) for the
validity of equation (5.16) was derived.
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5 Analysis of the Thermal Motion of the Bead Close to the Wall

The probability density p(D) is thus a Gaussian function

p(D) = Ã exp

−1
2

(
D −Deq

σtm

)2
 , (5.17)

with standard deviation σtm, which is related to the curvature of the potential by

V′′
(
Deq

)
=

kBT
σ2

tm

. (5.18)

Most often (approximately 68 % of the time), ∆D < σtm. Using equation (5.14) yields a
usable measure of the validity of approximation (5.17)

σtm << 3λD. (5.19)

5.2 Data Analysis

Figure 5.2: (a) Example of the reflection interference signal I of a bead’s thermal motion close to
the wall at a beam power of P = 83 mW and a corresponding force on the bead Fbead = 19.6 pN.
Signal was recorded with a sampling rate of 50 kHz. Left of the dotted vertical line the last
fringes due to the bead moving against the wall are included in the plot. Plot corresponds to
the same single measurement as fig. 2.14. (b) Corresponding histogram of intensities of the
reflection interference signal N(I) determined for a sampling interval of τ = 2 s with a bin-size
of ∆I = 3 mV. Further experimental parameters: R = (4.0 ± 0.5)µm, c0 = 0.1 mmol dm−3,
p = 1 bar and T = (21 ± 1) ◦C.
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5.2 Data Analysis

In this chapter, for better readability, the intensity of the reflection interference signal is
simply stated as I without the subscript RI, i.e.

I ≡ IRI . (5.20)

By analyzing the reflection interference signal of the bead’s thermal motion around
Deq (fig. 5.2 (a), right of the dotted vertical line) at first the probability density of
intensities p(I) is determined, whereas p(I) dI is the probability to find the measured
intensity of the interference signal in the interval [I − dI/2, I + dI/2]. Frequency counting
is applied for a 2 s long interval of the interference signal I(t) with a bin-size of ∆I = 3 mV,
determining the histogram N(I), i.e. the number of samples of I(t) that fall into the
interval [I − ∆I/2, I + ∆I/2] for different values of I (fig. 5.2 (b)). The corresponding
probability is given by

N(I)
N

= p(I)∆I . (5.21)

Here N is the total number of samples, in particular N = 105 for 2 s interval sampled
at a rate of 50 kHz. A sampling time of τ = 2 s was chosen in order to avoid the influ-
ence of long-term instability of the reflection interference signal due to possible drift of
the sample or fluctuations of the intensity of the interference laser. Since the reference
intensities Imin and Imax used for calculating the distance D were determined for every
single measurement right before the thermal motion in equilibrium was analyzed (see
fig. 2.14) the reflection interference signal only had to be stable for the sampling time of
2 s.

In the next step it will be shown how the probability density of distances p(D) is de-
termined, whereas p(D) dD is the probability to find the bead at a distance to the wall
between D − dD/2 and D + dD/2. The probability of finding the bead in the distance
interval [D − dD/2,D + dD/2] is equal to the probability of finding the corresponding
reflection interference signal in the interval [I − dI/2, I + dI/2] [PLL87], i.e.

p(D) dD = p(I) dI . (5.22)

Changing over from infinitesimal to finite intervals, we get the approximation

p(D)∆D(I) ≈ p(I)∆I . (5.23)
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5 Analysis of the Thermal Motion of the Bead Close to the Wall

This approximation is valid for the case p
(
Ĩ
)
≈ const for all Ĩ 3 [I − ∆I/2, I + ∆I/2] and

p
(
D̃
)
≈ const for all D̃ 3 [D − ∆D/2,D + ∆I/2]. Combining equations (5.21) and (5.23)

yields

p(D) ≈
N(I)

N · ∆D(I)
. (5.24)

As mentioned above, the data evaluation was performed with a constant bin-size ∆I.
However, the corresponding ∆D(I) is a function of I, given by

∆D(I) =
∣∣∣D(I + ∆I) −D(I − ∆I)

∣∣∣ , (5.25)

whereas the relationship between distance and intensity D(I) is given by equation (2.18).

Applying equation (5.24) to the measured histogram of intensities N(I) (fig. 5.2) resulted
in the probability density of distances p(D) (fig. 5.3 (a)). For sufficiently long sampling
times τ the probability density converges against a Boltzmann distribution. As expected
from the approximation (5.16), the determined p(D) was Gaussian and could be fitted
with equation (5.17), yielding the equilibrium distance Deq and the standard deviation
σtm. For measurements at salt concentration c0 = 0.1 mmol dm−3 for Fbead from 4.6 pN to
37.6 pN the determined standard deviations σtm were in a range from 4.3 nm to 1.9 nm,
which is well below the corresponding Debye length of λD ≈ 23 nm, thus satisfying
condition (5.19).

Using equation (5.2) the potential V(D) can be determined by

V (D)
kBT

= − ln
(
p(D)

)
− ln (A) . (5.26)

The potential V(D) determined from the measured p(D) was parabolic (fig. 5.3 (b)), fur-
thermore demonstrating the validity of the harmonic approximation of V(D) (equation
(5.15)).

It is worth noting that the measured histogram N(I) (fig. 5.2) corresponding to p(D) in
fig. 5.3 (a) as well is a Gaussian. Since p(I) and p(D) are related by

p(I) =
p(D)
dI
dD (D)

, (5.27)
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5.2 Data Analysis

Figure 5.3: (a) Probability density p(D) determined from histogram N(I) in fig. 5.2. The probabil-
ity density was fitted with equation (5.17) (black line), yielding Deq = 176.4 nm, σtm = 2.3 nm
and Ã = 0.999 nm/

√
2πσtm. The errors of the fit values were smaller than 1 % and in particular

smaller than 0.1 % for Deq. (b) Corresponding potential V(D) calculated with equation (5.26)
(gray squares). The black line is the fit from (a) inserted in (5.26).

the shape of p(I) and thus N(I) will be the same as the shape of p(D) in case the slope
dI/dD of I(D) is approximately constant in the range of distances assumed by the bead.
This is the case if the measured reflection interference signal I is far from its extrema (see
equation (2.16)). For example in fig 5.2 the interference signal I(D) corresponding to the
bead’s thermal motion is approximately in the middle between Imin and Imax and thus
on the side of the cosine function. In general, when recording the force curves the range
of trapping beam powers P was set so, that the bead’s thermal motion was performed
on the same side of the cosine for all powers P. For most P the intensity I was far from
the extrema.

5.2.1 Effect of Instrument Noise

Up until now it was assumed that the reflection interference signal I was free of any
noise that was not due to the thermal motion of the bead. However, any real experiment
is influenced by instrument noise, i.e. noise that is caused by the means to investigate
the system. One type of instrument noise is what we will call laser noise, i.e. the noise
of the intensity recorded with the avalanche photo-diode that remains when the bead
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5 Analysis of the Thermal Motion of the Bead Close to the Wall

is removed from the beam path. Thus, this noise could be measured directly (see part
2.1.2 Laser Noise). Laser noise includes all noise that causes fluctuations in the intensity
of the interference beam, i.e. fluctuations of the intensity of the interference laser and
vibrations of the optics in the beam path of the interference beam. Since every single
measurement is evaluated independently, any fluctuations on timescales longer than
the sampling time τ = 2 s do not influence the data evaluation.

Here, the effect of laser noise on the measured probability density p(D) will be investi-
gated. We will later argue that the findings for the effect of laser noise could be applied
to other instrument noise as well.

From investigating the recorded signal of the interference beam reflected from the wall
without a bead in the beam path (fig. 2.6) it can be concluded that the intensity of the
interference beam I0(t) can be represented by the sum of a constant mean intensity I0

and a time dependent noise contribution Iln(t)

I0(t) = I0 + Iln(t) . (5.28)

The measured probability density of the interference beam p0(I0) was well represented
by a Gaussian function with mean value I0 and standard deviation σI

ln = 0.8 % · I0

(see part 2.1.2). In other words, the probability density of the noise contribution
pln(Iln) = p0

(
I0 − I0

)
is a Gaussian function with a mean value of zero and standard

deviation σI
ln = 0.8 % · I0.

The reflection interference signal I is a function of the distance D and the intensity of
the interference beam, i.e. I

(
D, I0(t)

)
= I

(
D, I0 + Iln(t)

)
. From σI

ln/I0 = 0.8 % we know that
Iln(t) << I0. Expansion yields

I
(
D, I0(t)

)
≈ I

(
D, I0

)
+

dI
dI0

(
D, I0

)
· Iln(t) . (5.29)

Since the reflection interference signal is proportional to the intensity of the interference
beam [LS09], i.e. I

(
D, I0(t)

)
∝ I0(t) we get

I
(
D, I0

)
=

dI
dI0

(
D, I0

)
· I0 . (5.30)

Combining equations (5.29) and (5.30) yields

70



5.2 Data Analysis

I
(
D, I0(t)

)
≈ I

(
D, I0

)
+ I

(
D, I0

)
·

Iln(t)

I0

. (5.31)

For the product on the right side of equation (5.31) the fluctuation of the factor I
(
D, I0

)
due to thermal noise of the bead arround Deq is negligible compared to the fluctuation
of the factor Iln(t)/I0, establishing the approximation

I
(
D, I0(t)

)
≈ I

(
D, I0

)
+ I

(
Deq, I0

)
·

Iln(t)

I0

. (5.32)

Recollecting that I
(
D, I0

)
≡ I(D) is the instrument noise-free reflection interference sig-

nal, equation (5.32) signifies that laser noise introduces additive noise to the measured
reflection interference signal.

The measured distance Dm is a function of the reflection interference intensity I (equation
(2.18)). The latter is a function of the actual distance D and the intensity of the interference
beam I0(t), i.e.

Dm = D
(
I
(
D, I0(t)

))
. (5.33)

Since Iln(t)/I0 << 1, expansion yields

Dm ≈ D
(
I
(
D, I0

))
︸      ︷︷      ︸

≡D

+
dD
dI

(I) · I
(
Deq, I0

)
·

Iln(t)

I0︸                        ︷︷                        ︸
=:Dln

. (5.34)

It was thus shown that the measured distance Dm is the sum of the actual bead-wall
distance D and a noise contribution Dln. The final step is to determine the effect of
additive distance-noise on the measured probability density pm(Dm). Let pln(Dln) be
the probability density due to laser noise and ptm(D) be the probability density due to
thermal motion (note: usually the probability density due to the thermal motion of the
bead was simply stated as p(D). Here the subscript “tm” was used for unambiguity).
Odiachi and Prieve have found that the measured probability density of a signal subject
to additive noise is equal to the convolution of the probability densities of the noise-free
signal and the noise contribution [OP04]. Application to the here presented case yields
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pm(Dm) =

∞∫
−∞

ptm(Dm −Dln)pln(Dln) dDln . (5.35)

It was shown that ptm(D) was a Gaussian function (see equation (5.16) and fig. 5.3 (a)).
The probability density of intensities pln(Iln) of the laser noise contribution is related
to the probability density of distances pln(Dln) by equation (5.27). Since pln(Iln) is a
Gaussian function, pln(Dln) is also expected to be Gaussian, because the slope of the
reflection interference signal I(D) is approximately constant over the range of Iln values
contributing to pln(Dln). The definition of Dln in equation (5.34) yields the standard
deviation σD

ln of pln(Dln)

σD
ln =

∣∣∣∣∣∣∂D
∂I

(
I0

)∣∣∣∣∣∣ · I(Deq, I0

)
·
σI

ln

I0

. (5.36)

Here σI
ln is the standard deviation of pln(Iln). For simplicity the notation σln ≡ σD

ln will be
used for the standard deviation of distances.

By using properties of a convolution of two Gaussian functions, three key properties of
the measured probability density pm(Dm) can be derived from equation (5.35):

• The convolution pm(Dm) is as well a Gaussian function with mean value Dm and
standard deviation σm.

• The mean of the convolution is the sum of means of the convoluted functions:

Dm = D + Dln = Deq + 0 . (5.37)

• The variance of the convolution is the sum of variances of the convoluted functions:

σ2
m = σ2

tm + σ2
ln . (5.38)

We thus conclude that the determined equilibrium position Deq is independent of laser
noise. The effect of laser noise is to increase the width of the measured probability
density. This finding (i.e. equation (5.38)) is equivalent to an assumption by Oetama and
Walz for any instrument noise that increases “the dynamic fluctuations in the scattering
signal [of total internal reflection microscopy measurements, D.W.P.]” [OW05]. They
were able to successfully apply their assumption in order to correct for instrument
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noise when determining the diffusion coefficient of a colloidal bead in water. It is thus
a reasonable proposition that equation (5.38) is applicable not only to laser noise but
as well to other instrument noise that causes additional dynamic fluctuations to the
measured reflection interference signal

σ2
m = σ2

tm + σ2
in . (5.39)

Assuming that the other noise contributions are approximately Gaussian and indepen-
dent of the laser noise, the total variance of the instrument noise σ2

in is given by

σ2
in = σ2

ln + σ2
on . (5.40)

Here σon accounts for other noise contributions that could not be measured directly, e.g.
noise due to pointing instability of the trapping laser. Since only the central part of the
reflection interference is collected by the optical fiber and thus recorded by the avalanche
photo-diode, spatial fluctuations of the reflection interference translate to fluctuations
in the measured intensity I (see part 2.1.2). Lateral changes in the bead position could,
due to the lensing effect of the bead laterally divert the reflection.

5.2.2 Sufficiency of the Sampling Time

In order for the measured probability density p(D) to converge against the Boltzmann
distribution (equation (5.16)) the bead must be given enough time to explore the poten-
tial V(D). The probability is highest for finding the bead at Deq, i.e. the minimum of the
potential V(D). With increasing distance ∆D from Deq, the probability of occupation by
the bead decreases. This means, the larger the interval

[
Deq − ∆D,Deq + ∆D

]
on which

V(D) is supposed to be determined accurately, the larger the needed sampling time τ.

Compared to typical total internal reflection microscopy experiments, where the thermal
motion is sampled for several minutes up to hours [PLL87; PF90; Vol+10], the here
chosen sampling time of τ = 2 s appears rather short. Determining a sufficient τ is not
trivial. Sholl et al. performed Brownian Dynamic simulations in order to investigate
the relationship between sampling time τ and accuracy of determining the potential
V(D), quantified by the largest accurately determined potential Vmax [Sho+00]. By using
equations (5.16) and (5.18), the range of accurately determined potentials can be related
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to the range of accurately determined distances by

(∆D)2

σ2 =
Vmax

kBT
. (5.41)

This means, for Vmax = 1 kBT an interval
[
Deq − σ,Deq + σ

]
is well resolved. Since for

the here presented data analysis only the peak of p(D) is evaluated, the determined p(D)
must only be accurate over a small range around Deq. Hence, Vmax = 1 kBT is certainly a
sufficient threshold.

Sholl et al. evaluated the case where the wall was below the bead and the bead was
pushed against the wall by the difference of gravity and buoyancy [Sho+00]. For a bead
with radius R = 5µm and density ρbead = 2.2 g cm−3 they found τ = 6 s for an accuracy
of Vmax = 2 kBT. The concentration c0 of the 1:1 electrolyte was 0.5 mmol dm−3, however
Sholl et al. found that τ was insensitive to the use of different electrolyte concentrations
in a range from 0.1 mmol dm−3 to 2 mmol dm−3. The radius used in the simulation is
comparable to the radius of the bead’s used in the work presented here (R ≈ 4µm).
The force pushing the bead against the wall was Fbead = 4

3πR3
(
ρbead − ρwater

)
g = 6.2 pN,

where the gravitational acceleration g = 9.81 m s−2 and the density of water ρwater =

1 g cm−3 were used. The required sampling time τ for Vmax = 1 kBT can be calculated
using the finding of Sholl et al., that Vmax ∝ ln (τ), which yields

τ = 2.2 s . (5.42)

Since in the here presented work Fbead was in a range from 4 pN to 90 pN and the needed
τ was found to decrease with increasing ρbead [Sho+00] and thus with increasing Fbead,
we can conclude that τ = 2 s is a sufficiently large sampling time for data evaluation.

5.3 Summary

In this chapter the thermal motion of the bead around the equilibrium position Deq in the
potential V(D) was investigated. A harmonic approximation of V(D) was found valid
for the given experimental configuration, yielding a Gaussian probability density of the
bead’s position. Since Deq was defined as the position, where the total force on the bead
is zero, it could be determined as the center of the Gaussian. It was further found that
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5.3 Summary

instrument noise leaves the measured Deq unaltered while increasing the width of the
probability density. Finally, it was argued that recording the bead’s thermal motion for
a time of 2 s is sufficient to evaluate the potential V(D) in proximity to Deq.
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6 Pressure Dependence of the
Electrostatic Double-Layer Force

In water most surfaces are charged [BK10]. Glass surfaces are negatively charged in wa-
ter at pH > 2 due to the dissociation of silanol groups [BG01; Lam+08]. The electrostatic
field generated by the surface charges causes counter-ions to accumulate close to the
surface [BK10]. The system composed of the surface ions together with the dissolved
ions that are close to the surface is called electric double-layer. The force between two
charged surfaces in water is not simply the Coulomb-force, since the electrostatic field of
the surface charges is screened by dissolved ions. The overlap of the double-layers of the
surfaces causes a force between the surfaces which is called electrostatic double-layer force.
This force is well understood at ambient pressure, but has never been directly measured
at high hydrostatic pressure. In this chapter I will present the first measurement of the
electrostatic double-layer force at hydrostatic pressures between 1 bar and 1 kbar.

For a sphere and a plane separated by a distance D “in all cases when the interaction
[between the individual electric double-layers, D.W.P.] is not very strong”[VO48] and
D >> λD, the electrostatic double-layer force FDL can be calculated by [Isr11; BK10;
VO48]

FDL(D) = 64πR
ε0 ε
λD

kBT
e2 α

2 exp
(
−

D
λD

)
= F0 exp

(
−

D
λD

)
, (6.1)

with

α = tanh
(

eψ0

4kBT

)
. (6.2)

Here R is the radius of the sphere, ψ0 is the surface potential, which is assumed to
be identical for both surfaces, ε0 and ε are the vacuum permittivity and the dielectric
constant of the liquid and e is the elementary charge. The Debye-length λD is given by
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1
λD

=

√
e2

ε0εkBT

∑
ciZ2

i . (6.3)

Here, ci and Zi are the concentration and the valency of the i-th ion sort in the liquid.
For room-temperature (T = 20 ◦C) we get kBT/e ≈ 25 mV. For low surface potentials,
i.e. ψ0 << 4kBT/e ≈ 100 mV, we can approximate α ≈ eψ0/4kBT and thus simplify the
expression for the electrostatic double-layer force

FDL(D) =
4πRψ2

0ε0ε

λD
exp

(
−

D
λD

)
= F0 exp

(
−

D
λD

)
, (6.4)

which is equivalent to the result reported by Butt in case of large distances (approx-
imately D > 5λD) [But91b; But91a]. The approximation of α has been used before
for borosilicate glass in water [JB13]. Another important quantity that characterizes a
charged surface is the surface charge density σs. σs is related to ψ0 by the Grahame
equation [BK10]

σs =
√

8c0ε0εkBT · sinh
(

eψ0

2kBT

)
. (6.5)

For small arguments of sinh, i.e. ψ0 << 2kBT/e, we can approximate sinh (x) ≈ x and get
the linearized Grahame equation

σs =
ε0εψ0

λD
. (6.6)

The theoretical description presented above establishes a relationship between the elec-
trostatic double-layer force and properties of the liquid and the surfaces. Based on this
description we can predict effects on FDL(D) due to pressurization of the liquid.

6.0.1 Effects of Pressure

Based on the increase of ε with pressure [UF80; FN04] (fig. 6.1 (a)), a pressure effect on
the electrostatic double-layer force is deducible. In a pressure range from 1 bar to 1 kbar
at room-temperature ε increases by approximately 5 %. Using equation (6.3) it can be
expected for λD at two different pressures p1 and p2 that
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Figure 6.1: (a) Dielectric constant of water ε versus hydrostatic pressure p at different tempera-
tures T. Plot based on data from [UF80]. At T = 25 ◦C, ε increases from 78.46 at p = 1 bar to
82.08 at p = 1 kbar. (b) Increase of λD with p at T = 25 ◦C relative to λD

(
p = 1 bar

)
calculated

with (6.7). This increase was approximately the same for all temperatures from 0 ◦C to 75 ◦C.

λD

(
p2

)
= λD

(
p1

) √√√√
ε
(
p2

)
ε
(
p1

) . (6.7)

For an increase of the hydrostatic pressure from p1 = 1 bar to p1 = 1 kbar at a room-
temperature λD is expected to increase by approximately 2.3 % (fig. 6.1 (b)).

In order to predict the pressure dependence of the force amplitude F0, the pressure
dependence of ψ0 and σs must be investigated. ψ0 and σs are related to each other by the
Grahame equation (6.5). The linearized Grahame equation (6.6) together withλD ∝

√
ε0ε

(6.3) results in:

σs

ψ0
=
ε0ε
λD
∝
√
ε0ε . (6.8)

Thus, in order to predict the pressure dependence of F0, boundary conditions for ψ0 and
σs need to be specified. In analogy to the boundary conditions used for deriving the
electrostatic double-layer force [BK10; PG72; VO48] the two extreme cases are

1. CC: Constant charge. The charge density σs remains constant during pressuriza-
tion.
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6 Pressure Dependence of the Electrostatic Double-Layer Force

2. CP: Constant potential. The surface potential ψ0 remains constant during pressur-
ization.

CC: Assuming constant charge boundary condition, the expected pressure effect of ψ0

can be estimated by using equation (6.8)

ψ0

(
p2

)
= ψ0

(
p1

) √√√√
ε
(
p1

)
ε
(
p2

) . (6.9)

Using the above equation together with (6.4) yields an estimation of the expected pres-
sure effect on the amplitude of the double-layer force for the constant charge boundary
condition

FCC
0

(
p2

)
= F0

(
p1

) ε (p2

)
ε
(
p1

) λD

(
p1

)
λD

(
p2

)
ψ0

(
p2

)
ψ0

(
p1

)


2

= F0

(
p1

) √√√√
ε
(
p1

)
ε
(
p2

) . (6.10)

CP: Using the constant potential boundary condition ψ0

(
p1

)
= ψ0

(
p2

)
yields

FCP
0

(
p2

)
= F0

(
p1

) ε (p2

)
ε
(
p1

) λD

(
p1

)
λD

(
p2

) = F0

(
p1

) √√√√
ε
(
p2

)
ε
(
p1

) . (6.11)

For an increase of the hydrostatic pressure from p1 = 1 bar to p1 = 1 kbar equation (6.10)
predicts an increase of F0 by 2.3 % while equation (6.11) predicts a decrease of F0 by
2.2 %. Which boundary condition applies when changing the hydrostatic pressure is
debated in literature [GT08; DM09; Gho09]. Detecting the subtle effect of pressure on F0

could clarify the underlying boundary condition on σS and ψ0.

Effect of hydrostatic pressure on the ζ-potential

The ζ-potential is a characteristic property of the electric double-layer used e.g. in the
context of electrophoresis [HR97]. While ψ0 is the potential at the solid-liquid interface,
ζ is defined as the potential at the “plane of shear”[BVS09]. Although there does not
seem to be any direct evidence of the existence of the plane of shear [GXX12], the plane
is assumed to be located a few molecular layers away from the solid-liquid interface
[HR97]. However, it is known that ζ < ψ0 [HR97]. In order to estimate the order of
magnitude of the effect or pressure on the electrostatic double-layer force we will further
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assume that the potential-drop between the solid-liquid interface and the plane of shear
is less than 1/e, i.e. 3ζ > ψ0.

The effect of hydrostatic pressure up to 4 bar on the ζ-potential of quartz in aqueous
electrolyte solutions at room temperature was investigated by means of electrophoresis
[RA06]. The ζ-potential of quartz was found to increase from approximately −50 mV to
−10 mV when increasing the pressure from 1 bar to 4 bar in an 10 mmol dm−3 aqueous
NaCl solution at pH = 4. After excluding phase transformations of the quartz as the
reason for this increase, the authors stated that “the increase in pressure can only change
the suspension ordering at the solid-liquid interface in a monotonic variation”[RA06].
However, the meaning of “suspension ordering” is not further discussed by the authors,
but it is clear that the authors explain their finding with a modification of the liquid by
pressure. Thus, an effect of pressure on the ζ-potential should as well be observable for
other solid materials in aqueous electrolyte.

In a more recent work the stability of fumed silica suspensions was inverstigated in a
pressure range from 1 bar to 150 bar [AOS11]. It was found that the shear thickening
behavior of fumed silica suspended in 50/50 mixtures of water and glycerol at an NaCl
concentration of 0.1 mol dm−3 increased with hydrostatic pressure. This behavior was
explained by a weakening of the electrostatic double-layer force due to a decrease in the
magnitude of the ζ-potential with pressure, whereas the authors based their conclusion
on the electrophoresis experiments by [RA06].

The Debye-length λD should not be affected by changes of the ζ-potential (see equation
(6.3)). F0 however depends on ψ0. Using equations (6.1) and (6.2) and neglecting the
pressure effect of ε results in

F0

(
p2

)
F0

(
p1

) ≈
tanh

eψ0

(
p2

)
4kBT

 / tanh

eψ0

(
p1

)
4kBT




2

. (6.12)

Using values of the ζ-potential reported in reference [RA06] results in

F0

(
p = 4 bar

)
/F0

(
p = 1 bar

)
≈ 0.05 (6.13)
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when assuming ψ0 = ζ, and

F0

(
p = 4 bar

)
/F0

(
p = 1 bar

)
≈ 0.1 (6.14)

for ψ0 = 3ζ. Although such a steep decrease of the ζ-potential would not be likely to
continue for pressures larger than 4 bar, for an increase of the hydrostatic pressure from
1 bar to 1 kbar the amplitude of the double-layer force F0 is expected to decrease by at
least one order of magnitude.

6.0.2 Influence of Roughness on the Electrostatic Double-Layer Force

The roughness of solid surfaces influences the surface forces between them [SW97;
WSP99; Zwo+08; GXX12]. The effect of roughness on the electrostatic double-layer
force was recently investigated by Parsons et al. [PWC14]. They found that roughness
has no effect on the measured Debye length λD but increases the amplitude of the force
by a factor of

FDL ∝ exp

 σ2
m

2λ2
D

 , (6.15)

where σm =
√
σ2

1 + σ2
2, and σ1/2 is the RMS-roughness of each surface. Using scanning

probe microscopy the RMS-roughness σ1 of the here used beads was determined to
be on average 3.3 nm (equation (2.11)). The glass wall showed a mean roughness of
σ2 = 0.3 nm (equation (2.12)). For λD = 23 nm and λD = 9 nm equation (6.15) predicts
an increase of FDL by 1 % and 7 %, respectively. Compared to the > 20 % inaccuracy of
determining the absolute value of FDL due to the inaccuracy of the radius of the bead
R (see part 3.2.1) the increase of the measured FDL due to roughness is minor. Further-
more, since the roughness of the bead has no influence on the precision of the force
measurement, the error is insignificant when comparing force curves recorded with the
same bead.

6.1 Ambient Pressure Experiment

The bead was pushed against the capillary wall by the trapping beam at different powers
P. At each power, the analysis of the hydrodynamic drag Fhd on a bead approaching
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the wall (see chapter 3) and the analysis of the thermal motion of the same bead close to
the wall (see chapter 5) yielded a data point

(
Deq,FDL

)
. These data points composed a

force curve. In case of the electrostatic double-layer force an exponential dependence is
expected (equation (6.1)). The latter can be visualized by a semi-logarithmic plot of the
force curve (fig. 6.2).

The force decayed more steeply for the salt concentration of c0 = 1 mmol dm−3 than
for c0 = 0.1 mmol dm−3 due to the enhanced screening of the electrostatic field by the
increased amount of ions in the electrolyte. For the same reason, the force curve for
1 mmol dm−3 was recorded at smaller absolute distances (60 nm to 80 nm) then the one
for 0.1 mmol dm−3 (160 nm to 210 nm). The force curves could be effectively fitted with
equation (6.1) using orthogonal regression, which accounts for x and y errors. The
fitting revealed λD = (24.0 ± 0.3) nm and λD = (8.8 ± 0.2) nm for 0.1 mmol dm−3 and
1 mmol dm−3, respectively. Given the uncertainties of c0 (see part 2.3), pH and T the
Debye lengths were calculated by using equation (6.3). Here I obtained values for the
Debye lengths of λD = 24.2− 30.1 nm and λD = 8.9− 10.3 nm, respectively, which are in
quantitative agreement with the measured values.

In order to visualize the precision of the measurements, the force curves were plotted
with two sets of error bars (fig. 6.2). The black error bars correspond to errors of the
precision and are thus relevant for the comparison of data points corresponding to the
same force curve. The gray error bars furthermore include errors of the accuracy of the
measurement, e.g. the inaccuracy of the force values due to the error of the bead radius
∆R (see part 3.2.1).

In order to estimate the distance resolution of the technique, the force curve at 1 mmol dm−3

was evaluated. Force curves were recorded by increasing Fbead in equidistant steps
∆Fbead. The corresponding difference in D is given by

∆D = ∆Fbead ·

(
dFDL

dD

)−1

. (6.16)

Since the slope of FDL(D) increases with increasing force, the spatial resolution is
demonstrated best for data points corresponding to the largest measured forces, i.e.
FDL > 53 pN. Here, six distinguishable data points were recorded consecutively in a
range from 59 nm to 63 nm (fig. 6.2 (b)), demonstrating sub-nanometer distance resolu-
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Figure 6.2: (a) Semi-logarithmic plot of force curves recorded at 1 bar for NaCl concentrations
of 0.1 mmol dm−3 and 1 mmol dm−3 in water at pH = 4 - 4.5 and T = (21 ± 1) ◦C. Force
curves were recorded by increasing Fbead in equidistant steps of ∆Fbead ≈ 1.6 pN from 4.7 pN
to 37.6 pN and ∆Fbead ≈ 3.7 pN from 7.5 pN to 82.2 pN for 0.1 mmol dm−3 and 1 mmol dm−3,
respectively. Black error bars correspond to errors of the precision. Gray error bars furthermore
include errors of the accuracy. Solid lines are fits with equation (6.1) with fit values λD =
(24.0 ± 0.3) nm, F0 = (31 ± 3) nN and λD = (8.8 ± 0.2) nm, F0 = (69 ± 9) nN for 0.1 mmol dm−3

and 1 mmol dm−3, respectively. (b) Zoom-in of (a). Only errors of the precision were plotted.
c©2016 American Physical Society [Pil+16]

tion of the reflection interference technique.

6.2 Experiments at Different Pressures

Several force curves were recorded in aqueous NaCl solutions with concentrations of
0.1 mmol dm−3 and 1 mmol dm−3 at different hydrostatic pressures p between 1 bar and
1 kbar (fig. 6.3). Since the radius, the roughness and the surface charge density of a bead
influence the measured double-layer force (see equation (6.1) and part 6.0.2), the same
bead was used to record all force curves at a given salt concentration. At least three
consecutive force curves were recorded at a given pressure.

All effects due to hydrostatic pressure on the experimental system under investigations
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were expected to be reversible. Any irreversible changes of the force curves would
point towards leakage, contamination or other unwanted effects. In order to ascertain
reversibility regarding pressure effects, measurements were performed alternately at
ambient and high pressure, i.e. first at ambient pressure (1 bar Nr. 1), then at high
pressure (0.5 kbar and 1 kbar Nr.1), again at ambient pressure (1 bar Nr. 2), again at high
pressure (1 kbar Nr.2) and finally at ambient pressure (1 bar Nr.3).

All measured force curves display the exponentially decaying behavior as expected for
the electrostatic double-layer force from equation (6.1). Table 6.1 summarizes the aver-
aged fit values obtained from the fits with equation (6.1). In nearly all cases, λD varied
by less than 1 nm for consecutive force curves, demonstrating a nanometer precision in
determining λD. The only exception was the first 1 kbar measurement at a salt concen-
tration of 0.1 mmol dm−3, where λD varied by less than 1.5 nm. However, the expected
change of λD due to the pressure induced increase of ε was on the sub-nanometer scale
(see part 6.0.1). For an increase of p from 1 bar to 1 kbar an increase of λD by 0.5 nm and
0.2 nm was expected for the 0.1 mmol dm−3 and 1 mmol dm−3 sample, respectively. Cor-
responding to the experimental precision, the Debye lengths λD for different pressures
p were found constant within approximately 1 nm (table 6.1).

c0[mmol dm−3] p = 1 bar 0.5 kbar 1 kbar
0.1 λD[nm] = 23.3 ± 0.6 22.7 ± 0.3 22.5 ± 1.1
0.1 F0[nN] = 43 ± 9 53 ± 9 64 ± 30
1 λD[nm] = 9.0 ± 0.6 9.0 ± 0.4 9.5 ± 0.9
1 F0[nN] = 55 ± 26 43 ± 8 61 ± 40

Table 6.1: Average fit values for force curves in figure 6.3 fitted with equation (6.1).

In the experiment with c0 = 0.1 mmol dm−3 the force on the bead increased with in-
creasing pressure (fig. 6.3 (a)), except for the second measurement at 1 bar (black stars).
Here the measured force on the bead seemed to be largest although these force curves
were recorded at ambient pressure. Since these force curves were recorded at ambient
pressure, the increased force could not be explained by an effect of pressure. Also, since
the force curves of the first and last measurement at 1 bar overlap (black squares and tri-
angles) the increase of the force for the second at 1 bar could not be due to an irreversible
effect of pressure, like e.g. leakage of the sealed capillary. Similar outliers were recorded
for the experiment with a salt concentration of 1 mmol dm−3 (fig. 6.3 (b)). Opposed to

85



6 Pressure Dependence of the Electrostatic Double-Layer Force

Figure 6.3: Semi-logarithmic plot of force curves recorded at hydrostatic pressures from 1 bar to
1 kbar at salt concentrations of 0.1 mmol dm−3 (a) and 1 mmol dm−3 (b). For all force curves
at the same salt concentration the same bead was used. The radii of the two beads were (a)
R = (4.0 ± 0.5)µm and (b) R = (3.6 ± 0.5)µm. T = (21 ± 1) ◦C. The experimental procedure
was to first measure at a pressure of 1 bar (black squares), then 0.5 kbar (green squares), 1 kbar
(red circles), again 1 bar (black stars), 1 kbar (red triangles) and finally 1 bar (black triangles).
At each pressure step, at least three force curves were recorded. For example, the 40 black
squares display one force curve composed of 20 data points and two force curves composed
of 10 data points each. Error bars were not plotted for better visibility. However, errors of
single data points were considered by the fitting algorithm. Solid lines are exemplary results
of fits of the first force curve at 1 bar (black) and 1 kbar (red) with equation (6.1). Dotted lines
mark the positions at which F1 was determined (equation (6.17)). c©2016 American Physical
Society [Pil+16]

the outlier for 0.1 mmol dm−3, here the force seemed to decrease in the 0.5 kbar (green
squares) and the second 1 bar measurement (black stars), furthermore suggesting that
the large change of the force was not systematic but random.

A possible explanation for the outliers is a variation of bead orientation between mea-
surements. Surface charge inhomogeneity was ascertained in the case of polystyrene
beads [FV02] and hypothesized for silica beads [Che+09]. A variation of the surface
charge density σs with the orientation of the bead would affect the measured F0 (equa-
tions (6.1) and (6.5)) while not affecting the measured λD, since λD only depends on
properties of the liquid (equation (6.3)). Furthermore, an inhomogeneity of the surface
roughness would also affect the measured F0 (see part 6.0.2). If the bead’s orientation
relative to the wall was fixed e.g. if the bead were glued to a cantilever, as in the case of
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the colloidal probe technique [But91b; DSP91], the inhomogeneities would not affect the
reproducibility of measured force curves. If the bead were free to rotate, as in the case
e.g. in total internal reflection microscopy experiments [PLL87], the random rotation of
the bead and thus constantly changing orientation would contribute to the measured
noise. In the case of an optically trapped bead however, asymmetries in the bead’s
shape or optical density cause a preferred orientation of the bead relative to the trapping
beam. It was for example observed that ellipsoidal particles, when trapped, locked
their long axis in direction of beam propagation [MLP12; Mih+12]. Scanning electron
microscopy images of the beads revealed asymmetries in the shape of the beads in the
form of micrometer-sized features (see part 2.3). These asymmetries could cause the
orientation of a bead to be locked during trapping, which would explain the overlap of
consecutively measured force curves. However, when changing the pressure between
measurements, the trapping laser was blocked for approximately 5 min and the bead
sedimented to the lower wall of the capillary. Thus, the bead could rotate during that
time, possibly causing a changed orientation when again being trapped by the trapping
beam.

It was necessary to allow the bead to sediment to the lower capillary wall, since a
change in the pressure caused the flexible high-pressure hose to expand (pressurization)
or contract (pressure relaxation), which caused a lateral shift of the high-pressure cell.
Trapping the bead at the upper capillary wall while changing the pressure could have
led to the bead escaping the trapping beam due to the shift of the high-pressure cell,
subsequently causing the bead to sediment out of focus and possibly get lost. Thus, in
order to ensure that the same bead was used to record all force curves at a given salt
concentration, it was not possible to keep the bead trapped and locked in its orientation
while changing the pressure.

An alternative explanation to the random force changes could be dirt particles that en-
tered the trapping beam. If located underneath the bead, dirt particles could influence
the radiation pressure exerted on the bead by the trapping beam or the intensity of the
interference signal. If located between bead and wall, dirt particles could furthermore
have influenced the surface forces between bead and wall. However, the reflection in-
terference signal is highly sensitive to dirt and would have noticeably been disturbed.
This was not the case for any single measurement presented in this work. Dirt particles
are thus excluded as a possible cause of the observed force changes.
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6 Pressure Dependence of the Electrostatic Double-Layer Force

6.2.1 Quantitative Comparison of the Force Magnitude at Different

Pressures

In order to quantitatively compare the magnitude of the measured force between mea-
surements, I compared the force at a fixed distance. For a given force curve fitted with
equation (6.1) with fit value λD and F0 the force F1 at a fixed distance D1 is determined
by

F1(D1) = F0 exp(−
D1

λD
) . (6.17)

The distance ranges over which the force curves were recorded were approximately
160 nm to 230 nm and 55 nm to 90 nm for 0.1 mmol dm−3 and 1 mmol dm−3, respectively
(fig. 6.3). For a value of D1 within the range of the experimental data, equation (6.17) is
an interpolation. Since the fit curves were determined to fit the measured data best, an
interpolated value of F1 corresponds well to the recorded data. For a value of D1 that
exceeds the range, equation (6.17) is an extrapolation. For example F1(D1 = 0) = F0, i.e.
the fit value F0 corresponds to an extrapolation to zero distance. Figuratively speaking,
trying to determine F0 by curve fitting data that was recorded far from the wall is like
trying to press the power button on a distant computer using a long stick. For this reason
the uncertainty of F0 also depends on the error ∆λD. The assumption that F1 is exact
at the left limit DL of the range of a force curve together with the inversion of equation
(6.17) allows the estimation of the relative error of the fit value F0

∆F0

F0
=

1
2

∣∣∣∣∣∣
(
exp(

DL

λD − ∆λD
) − exp(

DL

λD + ∆λD
)
)

exp(−
DL

λD
)

∣∣∣∣∣∣ . (6.18)

For DL = 160 nm, λD = (23 ± 1) nm and DL = 55 nm, λD = (9 ± 1) nm we get ∆F0/F0 =

31 % and ∆F0/F0 = 80 %, respectively. In order to avoid this imprecision of the fit values
F0, instead of directly comparing F0 for different force curves, values of F1(D1) were
compared, where D1 was within the range the measured force curve. The center of the
range was chosen as the reference distance, i.e. D1 = 190 nm and D1 = 70 nm for all
force curves for 0.1 mmol dm−3 and 1 mmol dm−3, respectively (dotted lines in fig. 6.3).
In figure 6.4 the displayed values of F1 are averages for consecutively measured force
curves and the error bars are the corresponding standard deviation, showing an average
precision of the measured force magnitude of 3 % and 15 % for experiments at a salt con-
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centration of 0.1 mmol dm−3 and 1 mmol dm−3, respectively. The relative errors of F1 are
at least 5 times smaller than the estimated relative errors of the fit value F0, confirming
the expectation that F1 is a more precise measure of the force at a given distance than F0.

From the known pressure effect of the dielectric constant of water ε, the expected increase
of F0 andλD with increasing pressure was calculated (see part 6.0.1). The expected change
between two values of F1 for two different pressures p1 and p2 is given by

F1

(
p2

)
= F1

(
p1

)F0

(
p2

)
F0

(
p1

) exp

− D1

λD

(
p2

) +
D1

λD

(
p1

)
 . (6.19)

Using equations (6.7) for λD and (6.10) for F0 with constant charge boundary condition
results in

FCC
1

(
p2

)
= F1

(
p1

)√√√√ε
(
p1

)
ε
(
p2

) exp

− D1

λD

(
p2

)
1 −

√√√√
ε
(
p2

)
ε
(
p1

)

 . (6.20)

The measured values F1

(
p
)

at different p can now be compared to each other by calcu-
lating what the expected value FCC

1 would be at a pressure of 1 bar

FCC
1 = F1

(
p
)√ ε

(
p
)

ε(1 bar)
exp

+ D1

λD

(
p
)
1 −

√
ε
(
p
)

ε(1 bar)


 . (6.21)

Values of F1 (black crosses) and FCC
1 (blue circles) at p = 1 bar overlap (fig. 6.4), as is ex-

pected from equation (6.21). For both salt concentrations at p = 0.5 kbar and p = 1 kbar,
FCC

1 /F1 ≈ 0.92 and FCC
1 /F1 ≈ 0.85, respectively. This large correction is mostly due to

accounting for the pressure effect of λD which enters equation (6.21) exponentially. The
correction of F0 accounts for approximately 1 % to 2 % of the difference.

After correcting for the expected pressure effects, it can be seen that for the experiment
with c0 = 0.1 mmol dm−3 the values of FCC

1 recorded at the first and last 1 bar, the 0.5 kbar
and the first 1 kbar measurement match within their error (fig. 6.4(a)). The value of FCC

1

for the second 1 kbar measurement is slightly lower by approximately 10 % compared to
the former values. The FCC

1 value at the second 1 bar measurement deviates strongly by
being at least 33 % higher than any of the other values of FCC

1 . As mentioned above, this
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6 Pressure Dependence of the Electrostatic Double-Layer Force

Figure 6.4: Magnitudes of the force F1 determined from the force curves (fig. 6.3) at different
hydrostatic pressures. Values of F1 were determined for each force curve using equation (6.17)
with D1 = 190 nm and D1 = 70 nm for 0.1 mmol dm−3 and 1 mmol dm−3, respectively. Mean
values for consecutive force curves at same hydrostatic pressure are plotted (black crosses).
FCC

1 are force magnitudes corrected for known pressure effects by equation (6.21) (blue circles).
Errors are the determined standard deviations. For better orientation, the symbols of the
corresponding force curves were displayed at the bottom.

difference can neither be explained by an effect of pressure, nor by a history effect, since
the second as well as the third measurement at 1 bar were directly after a measurement
at 1 kbar. It is much rather likely that the bead had the same orientation (orientation
1) in all cases except for the second 1 bar measurement (orientation 2). Maybe in the
case of the second 1 kbar measurement the bead assumed a third orientation, although
the difference to orientation 1 seems rather small. Since the bead assumed orientation
1 at least four times more often than orientation 2, orientation 1 seems to be the most
probable orientation.

The experiment with c0 = 1 mmol dm−3 shows qualitatively the same behavior as the
one with 0.1 mmol dm−3 (fig. 6.4 (b)). The values of FCC

1 match within their error for the
first and last 1 bar and both 1 kbar measurements. The value of FCC

1 is by approximately
36 % lower for the 0.5 kbar force curves compared to the former values. For the second
1 bar measurement FCC

1 is approximately half of what was measured for the other two
1 bar measurements. These two deviants as well suggest a random error that could be
explained by a varying orientation of the bead.
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However, the majority of the performed measurements (at least 2 out of 3) agrees with
the hypothesis that the effect of pressure on the electrostatic double-layer force originates
solely from the effect of pressure on the dielectric constant ε. None of the measured FCC

1

values differ by one order of magnitude from each other. Since FCC
1 was corrected for

pressure effects of λD, it can be concluded that the actual amplitude F0 of the double-
layer force as well did not decrease by one order of magnitude. Such a strong decrease
was expected, based on the decrease of the ζ-potential with pressure that was reported
by others (see [RA06; AOS11] and part 6.0.1). It is thus evident, that no such pressure
effect of the ζ-potential occurred.

Nevertheless, in order to quantify to what extent the magnitude of the electrostatic
double-layer force remained constant during the entire experiment, it was assumed
that all values of FCC

1 were independent of p and their variation was purely statisti-
cal. By determining the overall mean µ and standard deviation σ of values FCC

1 we get
σ/µ = 0.14 and σ/µ = 0.28 for the experiment with salt concentration 0.1 mmol dm−3 and
1 mmol dm−3, respectively. Thus, after correction for known pressure effects, the force
amplitude F0 was constant within 14 % and 28 % for the experiment with 0.1 mmol dm−3

and 1 mmol dm−3 salt concentration, respectively. This affirms the finding, that the pres-
sure effect of the ζ-potential is negligible.

It is important to note that the constant charge boundary condition was assumed for
deriving FCC

1 . However, another possibility is that ψ0 remained constant during pres-
surization and σs varied (see part 6.0.1). Assuming the constant potential boundary
condition (equation (6.11)) the corrected values FCP

1 are determined by

FCP
1 = F1

(
p
)√√√√ε

(
p = 1 bar

)
ε
(
p
) exp

+ D1

λD

(
p
)
1 −

√√√√
ε
(
p
)

ε
(
p = 1 bar

)

 . (6.22)

The difference between the corrections due to the two different boundary conditions
is FCC

1 /FCP
1 = ε

(
p
)
/ε

(
p = 1 bar

)
, i.e. for p = 1 kbar, FCC

1 is 4.6 % larger than FCP
1 . This

difference is of the order of the errors of single F1 values. Thus, within the error of the
experiment it was not possible to decide, which boundary condition is correct for the
investigated system.
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6.3 Summary

It was demonstrated that force curves were recorded with a sub-nanometer resolution
in distance. The electrostatic double-layer force was successfully measured at hydro-
static pressures up to 1 kbar. The Debye length was found constant on the investigated
pressure range within approximately 1 nm, which corresponds to the experimental pre-
cision of determining the Debye length. By careful evaluation of the force magnitude,
the measured pressure effects could be explained by the pressure induced increase of
the dielectric constant of water. Based on the here presented results, a decrease of the
ζ-potential with increasing pressure as reported by [RA06] can be excluded. The results
further prove that no significant artifact due to the pressurization occurred and the here
presented method is a reliable tool for the measurement of surface forces at high hydro-
static pressure.

Changes in the measured forces that were not correlated with pressure could best be
explained by inhomogeneity of the surface charge of the beads. To the best of my
knowledge, this is the first report of an effect of inhomogeneities of the surface charge
of colloidal beads on measured surface forces.
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7 Thermal Motion at High Hydrostatic
Pressure

7.1 Motivation

In the previous chapters of this thesis the electrostatic double-layer force on the bead
in equilibrium was determined by a hydrodynamic method, i.e. by analysis of the hy-
drodynamic drag on the bead moving towards the wall. The resulting force curves are
presented in chapter 6. For determining these force curves, the thermal motion of the
bead close to the wall had to be accounted for (as discussed in chapter 5) in order to
determine the equilibrium position Deq, where the force pushing the bead against the
wall was in equilibrium with the electrostatic double-layer force repelling the bead from
the wall. The thermal motion of the bead was essentially treated as unwanted noise
and its effect on the beads position was removed by averaging. However, the thermal
motion holds a variety of information about the system under investigation and has the
potential to extend the range of interactions accessible with the here presented instru-
ment.

Techniques such as total internal reflection microscopy [PLL87] or reflection interference
contrast microscopy [RS92] are available that allow to resolve the thermal motion of a col-
loidal particle with nanometer resolution at ambient pressure. It was reported, that with
total internal reflection microscopy forces down to 0.01 pN could be investigated [Pri99].
The investigation of the thermal motion of a colloidal bead allowed the study of multi-
ple interactions [Pri99], like the electrostatic double-layer force [AP87], hydrodynamic
interactions [BS90], van der Waals interactions [BP99] or critical Casimir forces [Her+08].

However, the possibilities to investigate the thermal motion of colloidal particles at high
hydrostatic pressure are extremely limited [MDT06]. The thermal motion of a colloidal
sphere close to a wall at hydrostatic pressures up to 250 bar has been studied before by
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Mukai et al. [MDT06]. Here the lateral diffusion coefficient was measured by tracking
the position of the sphere using light microscopy with an optical resolution of 2µm.
Bowman et al. optically trapped a colloidal glass bead in bulk water inside a diamond
anvil cell [Bow+13a; Bow+13b]. They tracked the bead’s lateral thermal motion by high-
speed (1 ms time resolution) video particle tracking and determined the bead’s diffusion
coefficient in order to derive the viscosity of water at up to 13 kbar hydrostatic pressure.
Thus, so far the thermal motion of colloidal particles at high hydrostatic pressure could
be tracked at best with micrometer resolution.

In chapter 6 it was shown that the investigation of surface forces at pressures up to 1 kbar
with sub-nanometer resolution is possible. However, since any noise was averaged out
in the previous evaluation, it remains unclear whether the measured noise is actually
the thermal motion of the bead and how well the thermal motion is resolved.

In this chapter force curves will be determined by a thermal method, i.e. by analysis of the
thermal motion of the bead. It will be shown that the measured noise signal is mainly
due to the thermal motion of the bead with a minor instrument noise contribution. At
first the noise signal will be evaluated for measurements at ambient pressure in order
to independently derive force curves of the electrostatic double-layer force FDL between
bead and wall that will be compared to the force curves determined in chapter 6. Finally
the thermal motion of the bead will be analyzed at 1 kbar hydrostatic pressure. It will be
demonstrated that the thermal motion could be measured at high pressure just as well
as at ambient pressure.

7.2 Determination of the Electrostatic Double-Layer Force

by Analysis of the Thermal Motion

The probability density p(D) of the bead’s position depends on the potential V(D) be-
tween bead and wall (equation (5.2))

p(D) = A exp
(
−

V (D)
kBT

)
. (7.1)
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In order to deduce a force curve, it is possible to directly determine the potential V(D)
from analysis of p(D) and deduce the total force on the bead Ftotal by derivation (equation
(5.3))

− V′(D) ≡ −
dV
dD

(D) = Ftotal(D) . (7.2)

However, since Ftotal = FDL + Fbead, in order to determine the absolute values of FDL, a
calibration of the force driving the bead against the wall Fbead would be needed.

The aim was to obtain force values with the thermal method Ftm that are independent of
force values determined with the hydrodynamic method Fhd (see equation (3.4)). This
was achieved by in the following way. The harmonic approximation (equation (5.16))

p(D) = Ã exp

−1
2

V′′
(
Deq

)
kBT

(
D −Deq

)2

 (7.3)

was used. Hence, the probability density was a Gaussian distribution. The standard
deviation σtm of the probability density p(D) is related to the second derivative of the
potential V(D) at the position Deq (equation (5.18))

V′′
(
Deq

)
=

kBT
σ2

tm

. (7.4)

It was shown above that (equation (5.7))

V′′(D) = FDL(D)/λD , (7.5)

which yields

FDL

(
Deq

)
= λD

kBT
σ2

tm

= Ftm

(
Deq

)
. (7.6)

Thus, the thermal method for determining the electrostatic double layer force is as
follows:

1. The standard deviation of the probability density σtm is determined for different
equilibrium positions Deq.

2. From the determined standard deviations, the values of V′′
(
Deq

)
are determined

(equation (7.4)), overall yielding the curve V′′(D)
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3. V′′(D) is an exponential function with the same decay constant as FDL(D) (equation
(7.5)), allowing for the determination of λD.

4. Multiplication of V′′(D) by λD yields the force curve Ftm(D) = FDL(D).

7.2.1 Influence of Instrument Noise

The standard deviation σtm was assumed to depend solely on the thermal motion of the
bead. However, it was discussed above that instrument noise increases the standard
deviation σm of the measured probability density p(D) (equation (5.39)), i.e.

σ2
m = σ2

tm + σ2
in . (7.7)

Here σin is the standard deviation of the D measurement corresponding to instrument
noise. For the determined force values with the thermal method this means

Ftm

(
Deq

)
= λD

kBT
σ2

m
(7.8)

= λD
kBT

σ2
tm + σ2

in

. (7.9)

Hence, in the presence of instrument noise, the determined force is an underestimation
of the electrostatic double-layer force

Ftm

(
Deq

)
≤ FDL

(
Deq

)
. (7.10)

Equation (7.6) is the special case of relation (7.10) for negligible instrument noise, i.e.
σin << σtm. It is the only case where Ftm is equal to the actual magnitude of the double-
layer force.

As the signal to noise ratio σtm/σin decreases, so does the ratio Ftm

(
Deq

)
/FDL

(
Deq

)
. Since

σ2
tm ∝ 1/FDL(D), generically the signal to noise ratio σtm/σin decreases with decreasing

distance D, resulting in a flattening of the measured force curve Ftm(D) due to instrument
noise. Therefore, in the presence of instrument noise the decay constant λtm

D of the force
curve Ftm(D) is expected to be larger than the Debye length

λtm
D ≥ λD . (7.11)
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7.3 Measurement of the Electrostatic Double-Layer Force

by Analysis of Thermal Motion

The thermal motion of the bead around its equilibrium position was analyzed for the
same data that was presented in chapter 6, yielding multiple values for standard devi-
ations σm corresponding to positions Deq (see part 5.2 Data Analysis). Exemplary, the
first experiment recorded at p = 1 bar was plotted (fig. 7.1 (a)). Due to the increasing
slope of the double-layer force, the measured σm decreased with decreasing bead-wall
distance. Application of equation (7.4) yielded the curvature of the potential V′′(D) (fig.
7.1 (b)). Fitting of V′′(D) with an exponential function yielded λtm

D .

Figure 7.1: Evaluation of the bead’s thermal motion at p = 1 bar and c0 = 0.1 mmol dm−3 for
powers P of the trapping beam between 29 mW and 142 mW. (a) Standard deviation σm of the
measured probability density p(D) at different equilibrium positions Deq. (b) Corresponding
curvature of the potential V′′

(
Deq

)
calculated using equation (7.4) with T = (294 ± 1) K. The

underlying single measurements are the same as for fig. 6.2 at c0 = 0.1 mmol dm−3. Thus, the
errors of Deq are the same as for fig. 6.2 at c0 = 0.1 mmol dm−3 and were not plotted. The
errors of σm and V′′

(
Deq

)
are a measure of the variation of σm for varying sampling times τ

form 0.5 s to 2 s. The curve V′′(D) was fitted with an exponential function (black line), yielding
a decay constant of λtm

D = (29.6 ± 1.1) nm.

Although the curve in fig. 7.1 (b) was determined from the same data as the force curve
for c0 = 0.1 mmol dm−3 in fig. 6.2, the determined decay constants differ from each other.
The thermal method gave λtm

D = (29.6 ± 1.1) nm, which is larger than the decay constant
λhd

D = (24.0 ± 0.3) nm determined with the hydrodynamic method for the same data. On
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average the decay constants determined with the thermal method were

λtm
D = (26.5 ± 2.9) nm (7.12)

and

λtm
D = (10.3 ± 1.1) nm , (7.13)

at salt concentrations of c0 = 0.1 mmol dm−3 and 1 mmol dm−3, respectively. Thus, on
average λtm

D was approximately 15 % larger than λhd
D (see table 6.1). This difference

between the thermal and the hydrodynamic method was expected due to the above
discussed vulnerability of the thermal method to instrument noise (equation (7.11)).

Figure 7.2: Comparison of thermal and hydrodynamic method. Data was recorded at p = 1 bar,
T = (21 ± 1) ◦C and c0 = 0.1 mmol dm−3 (a) and c0 = 1 mmol dm−3 (b). Force curves were
determined by the thermal method using equation (7.8) with λtm

D (denoted as Ftm : λtm
D , open

squares) and λhd
D (denoted as Ftm : λhd

D , gray squares). For comparison the force curves
determined with the hydrodynamic method were plotted (crosses) with corresponding fit of
equation (6.4). For (a): λtm

D = (29.6 ± 1.1) nm and λhd
D = (24.0 ± 0.3) nm and for (b): λtm

D =

(10.3 ± 0.4) nm and λhd
D = (8.8 ± 0.2) nm. The errors of the force values were approximately

the same for Ftm : λtm
D and Ftm : λhd

D . For better readability these errors were just plotted for
Ftm : λhd

D . Since all force curves share the same Deq values, the errors of Deq were not plotted.
The errors of Deq are the same as in fig. 6.2.

The force curves Ftm(D) were calculated in two ways: by multiplication of the measured
V′′(D) = kBT/σ2

m by the decay constant λtm
D determined with the thermal method (fig.
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7.2 empty squares) and by the decay constant λhd
D determined with the hydrodynamic

method (filled squares). For comparison the force curves determined with the hydro-
dynamic method Fhd(D) were plotted (crosses) with corresponding fit of equation (6.4)
(solid line).

In order to compare the force curves determined with the two methods, the average
relative difference of the force magnitude was calculated

∆F =
1
N

N∑
i=1

∣∣∣∣∣∣Ftm(Di) − Fhd(Di)
Fhd(Di)

∣∣∣∣∣∣ . (7.14)

Here N is the number of data points that compose a force curve. For a salt concentration
of c0 = 0.1 mmol dm−3 and Ftm calculated with λtm

D :

∆F = 18.5 % , (7.15)

and for Ftm calculated with λhd
D :

∆F = 13.8 % . (7.16)

However, for c0 = 1 mmol dm−3 and Ftm calculated with λtm
D :

∆F = 17.9 % , (7.17)

and for Ftm calculated with λhd
D :

∆F = 25.7 % . (7.18)

In all cases, the agreement between force curves was comparable to the estimated in-
accuracy of determining Fhd, i.e. 22 % and 25 % for 0.1 mmol dm−3 and 1 mmol dm−3,
respectively (see part 3.2.1). In particular, force values Ftm calculated with λtm

D agree with
the force values Fhd, demonstrating that the results obtained with the thermal method
are in agreement with those obtained with the hydrodynamic method. However, since
due to instrument noise λhd

D is argued to be less accurate than λtm
D , for further evaluation

λhd
D was used for calculation of the force Ftm.
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7.3.1 Accounting for Instrument Noise

By applying equation (7.7), instrument noise can be corrected for by subtraction of the
corresponding variance σ2

in from the measured variance σ2
m

σ2
tm = σ2

m − σ
2
in . (7.19)

Insertion into equation (7.6) yields the corrected force values

Fc
tm

(
Deq

)
= λD

kBT
σ2

m − σ
2
in

. (7.20)

As discussed above (equation (5.40)), the variance of the instrument noise is the sum of
variances of the known laser noise σ2

ln and other noise contributions σ2
on

σ2
in = σ2

ln + σ2
on . (7.21)

Using the finding σI
ln/I0 = 0.8 % (fig. 2.6) together with equation (5.36), which relates the

standard deviation of the intensity σI
ln to the standard deviation of the position σln, the

standard deviation of the laser noise σln was calculated for every data point, yielding
values between 0.2 nm and 0.5 nm. The standard deviation due to other noise sources
σon was not known.

σI
ln/I0 [%] σon [nm] λtm

D (0.1 mmol dm−3) [nm] λtm
D (1 mmol dm−3) [nm]

0 0 28.6 ± 2.7 10.0 ± 0.5
0.8 0 26.5 ± 2.5 9.6 ± 0.5
1.6 0 20.1 ± 2.0 8.1 ± 0.5
0.8 0.3 25.9 ± 2.5 8.9 ± 0.5
0.8 0.5 24.8 ± 2.5 7.4 ± 0.5
0.8 1.0 23.1 ± 2.4 4.3 ± 0.4

Table 7.1: Effect of instrument noise correction on λtm
D . Force curves were calculated using equa-

tions (7.20) and (5.40) for different standard deviations of the intensity noise of the interference
beam σI

ln/I0 and other noise sources σon. The resulting force curves were fitted with equation
(6.4) in order to determine λtm

D .

In order to examine the effect of instrument noise correction on the thermal method, the
force values Ftm : λhd

D in fig. 7.2 were recalculated using equation (7.20) for different val-
ues of σI

ln/I0 and σon. The resulting force curves were fitted by the exponential function
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7.3 Measurement of the Electrostatic Double-Layer Force by Analysis of Thermal Motion

(6.4) in order to determine the decay constants λtm
D (table 7.1). In general it was found

that the larger the value of the subtracted variance, the smaller the corresponding decay
constant. This is in agreement with the finding from total internal reflection microscopy
experiments that instrument noise obscures the determination of the Debye length by
increasing the measured decay constant [NAB13; Sho+00].

Figure 7.3: Instrument noise correction. Data was recorded at p = 1 bar, T = (21 ± 1) ◦C and
c0 = 0.1 mmol dm−3 (a) and c0 = 1 mmol dm−3 (b). Force curves Ftm : λhd

D were determined
with the thermal method using equation (7.8) with λhd

D (gray squares). Instrument noise
corrected force curves Fc

tm : λhd
D were calculated with equation (7.20) using σI

ln/I0 = 0.8 %
and σon = 0.5 nm (blue squares). For comparison the force curves determined with the
hydrodynamic method were plotted (crosses) with corresponding fit of equation (6.4) (black
line). Error bars were not plotted for better visibility.

As mentioned above, it was determined that σI
ln/I0 = 0.8 % for the experiments presented

in this thesis. Comparing the decay constants λtm
D in table 7.1 to the decay constants

determined with the hydrodynamic method λhd
D (see fig. 7.2), σon is expected to be

in a range from 0.3 nm to 0.5 nm. Values of σon that were outside this range led to
significant discrepancies of λhd

D and λtm
D . This evaluation yields, that noise that could not

be accounted for as laser noise was on the sub-nanometer scale. Thus, the overall RMS
instrument noise was approximately

σin =
√
σ2

ln + σ2
on ≈ 1 nm . (7.22)

As an example, Fc
tm(D) was calculated for σI

ln/I0 = 0.8 % and σon = 0.5 nm (fig. 7.3 blue
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7 Thermal Motion at High Hydrostatic Pressure

squares). Using equation (7.14) the average difference of the force magnitudes of Fc
tm(D)

and Fhd(D) was on average
∆F = 10.1 % (7.23)

and
∆F = 12.3 % (7.24)

for 0.1 mmol dm−3 and 1 mmol dm−3, respectively. Hence, the instrument-noise-corrected
force curves were in best agreement with the force curves determined with the hydro-
dynamic method.

7.4 High Hydrostatic Pressure Experiments

The thermal method of force measurement was applied at a hydrostatic pressure of
p = 1 kbar (fig. 7.4). In order to account for instrument noise, σI

ln/I0 = 0.8 % and
σon = 0.5 nm were used to calculate Fc

tm(D).

Figure 7.4: Thermal method at high pressure. Data was recorded at p = 1 kbar, T = (21 ± 1) ◦C
and c0 = 0.1 mmol dm−3 (a) and c0 = 1 mmol dm−3 (b). Force curves Ftm : λhd

D were determined
with the thermal method using equation (7.8) with λhd

D (gray squares). Instrument noise
corrected force curves Fc

tm : λhd
D were calculated with equation (7.20) using σI

ln/I0 = 0.8 %
and σon = 0.5 nm (blue squares). For comparison, the force curves determined with the
hydrodynamic method were plotted (crosses) with corresponding fit of equation (6.4). Error
bars were not plotted for better visibility.
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7.5 Summary

The difference of the force magnitudes of the uncorrected Ftm(D) and Fhd(D) was on
average

∆F = 15.5 % (7.25)

and
∆F = 21.8 % (7.26)

for 0.1 mmol dm−3 and 1 mmol dm−3, respectively. The difference of the force magnitudes
of the instrument-noise-corrected Fc

tm(D) and Fhd(D) was on average

∆F = 11.6 % (7.27)

and
∆F = 10.1 % (7.28)

for 0.1 mmol dm−3 and 1 mmol dm−3, respectively. Thus, the force curves determined
with the thermal method at high pressure showed the same agreement as with force
curves determined with the hydrodynamic method the ones at ambient pressure. Since
for instrument noise correction the parameters determined from ambient pressure ex-
periments were used, it can be seen that there was no additional noise at high pressure
compared to ambient pressure.

7.5 Summary

Force curves of the electrostatic double-layer force between the bead and the wall were
determined by analysis of the thermal motion of the bead in equilibrium. These force
curves were in agreement with the force curves determined by analysis of the hydrody-
namic drag on the bead, which is evidence for the accuracy of both both the hydrody-
namic and the thermal method for surface force measurement.

It was found that the thermal method is sensitive to instrument noise, unlike the hydro-
dynamic method. In particular, instrument noise was found to increase the determined
decay lengths of the force curves. By comparison of force curves determined with the
hydrodynamic and the thermal method it was found that the RMS instrument noise was
of the order of approximately 1 nm, which is comparable to noise in other state of the
art techniques like total internal reflection microscopy. Although this finding was de-
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7 Thermal Motion at High Hydrostatic Pressure

rived from a statistical treatment of the data, implications for the time-resolved thermal
motion of a colloidal bead can be derived. At any given time the position of the bead is
determined with nanometer precision.

The measurement of the thermal motion of the bead at pressure up to 1 kbar showed
no difference to the measurement at ambient pressure. As in the case of ambient pres-
sure, an RMS instrument noise of approximately 1 nm was found for the high pressure
measurements. This means that with the here presented instrument the investigation
of the thermal motion of a colloidal bead is possible with nanometer resolution at high
hydrostatic pressure.
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8 Concluding remarks and Outlook

With my work, I developed a scientific instrument that enables the investigation of
surface forces at high hydrostatic pressure. Using this instrument, I measured surface
forces at ambient pressure as well as at hydrostatic pressures up to 1 kbar, which is of
the order of the highest hydrostatic pressure naturally present on the surface of earth.
In particular, I could clarify the pressure dependence of the electrostatic double-layer
force between glass surfaces in water. In general, a multitude of surface forces can
now be investigated at high pressure, making a deeper insight into physics at extreme
conditions possible.

The developed instrument is a combination of a long-working-distance optical trap
with a reflection interference technique, based on a method published by Nadal et al.
[Nad+01]. The performance of the developed instrument exceeds the performance of
the previously published one in many ways.

• Force curves were recorded with sub-nanometer distance resolution and maximum
exercisable forces of the order 0.1 nN, which is in both cases an improvement of
approximately one order of magnitude compared to what was published before.
The maximum exercisable force is of the same order as the largest optical forces
reported for other optical traps [JZ08].

• By adjusting the geometry of the optical trap and providing computer-controlled
adjustment of parameters of the trapping beam, the automated recording of force
curves was implemented. The automation significantly reduced the duration of
experiments, i.e. a force curve was recorded within minutes. This enabled a
statistical treatment of the recorded force curves. In comparison, in the previous
work a single force curve consisting of 12 data points was interpreted [Nad+01].

• The repeatability of the recorded force curves was demonstrated and the quan-
titative agreement of the measured Debye-lengths with values calculated from
solution properties was verified.
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8 Concluding remarks and Outlook

• It was ascertained that solely optical forces were exerted by the trapping beam and
no measurable thermal effects occurred.

Force curves were not recorded directly but were determined by analysis of the trajec-
tory of the colloidal bead. I provided and verified simple methods for the analysis of
the hydrodynamic drag on the bead and the thermal motion of the bead. In particular,
I demonstrated that an analytical model for the hydrodynamic wall effect suggested by
Butt and Kappl led to equivalent results as the exact numerical model. The use of the
analytical model enabled the automation of the data analysis and thus increased the
number of force curves that could be determined.

The instrument was used for surface force measurements inside an optical high-pressure
cell at hydrostatic pressures of up to 1 kbar. By encapsulation of the sample solution
and the glass beads into a rectangular glass capillary, the sample solution was separated
from the pressure transmitting water. From the repeatability of force curves recorded at
alternating pressure it can be concluded, that no irreversible pressure effects occurred.
This signifies that the capillary capsule remained intact for the entire experimental pro-
cedure. Hence, my method of encapsulation is suitable for providing defined conditions
for surface force measurements at high pressure. Furthermore, only a volume < 1µl of
the sample dispersion is needed for high pressure experiments, which is multiple orders
of magnitude smaller than the total pressurized volume (> 0.1 l).

The electrostatic double-layer force was studied at hydrostatic pressures from 1 bar to
1 kbar. The measured pressure effects could be traced back to the pressure effect of
the dielectric constant of water. In particular, I can conclude that the zeta potential
of an electric double-layer is not dependent on pressure, especially not as strongly as
reported by others [RA06; AOS11]. Overall, the effect of pressure on the electrostatic
double-layer force was minor. Therefore I conclude that colloidal stability, governed by
the electrostatic double-layer force, is not affected by pressure. Furthermore, since the
changes of the force curves due to pressure were minor and explainable, it is assured that
the developed instrument works reliably at high hydrostatic pressure. Such reliability
is the foundation of future high pressure research, especially on systems with possibly
complex pressure effects.

The precision and reliability of the instrument allowed the observation of anisotropic ef-
fects of the interaction between the colloidal bead and the wall. During the investigation
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of the electrostatic double-layer force, fluctuations of the force between approximately
33 % and 50 % occurred. These fluctuations could be explained with an inhomogeneity
of both the shape of the beads and the surface charge distribution. While the inho-
mogeneity of the shape of the beads was evident from scanning electron microscopy
images, charge inhomogeneity on the surface of glass beads has been only hypothe-
sized [Che+09], not proven. The here obtained results are further evidence for the
presence of charge inhomogeneity on colloidal beads. Since colloidal particles change
orientation due to thermal motion, surface charge inhomogeneity would influence the
stability [FV02] and structure of colloids. In particular, since the here used technique,
unlike other techniques for surface force measurement, is sensitive to the distribution of
surface charges, the technique could be used to investigate the effect of charge inhomo-
geneity on colloidal stability.

An alternative approach to determine the surface forces experienced by a colloidal bead
is the analysis of the bead’s thermal motion. I could demonstrate that with the here
presented instrument the monitoring of a colloidal bead’s thermal motion at high hy-
drostatic pressure with nanometer resolution is possible. This resolution is comparable
to state of the art techniques like total internal reflection microscopy [Vol+10]. Monitor-
ing thermal motion with such distance resolution enables the study of a multitude of
interactions, like van der Waals interactions [BP99] or critical Casimir forces [Her+08] at
high hydrostatic pressure. Furthermore, by investigation of thermal motion, the force
resolution of the developed instrument could be improved down to the femtonewton
range [Pri99; Vol+09].

The geometry of the here presented instrument allows the use of a wide variety of op-
tical cells. In particular, diamond anvil cells could be used [MB74; Lov12], thus giving
the possibility to exceed the accessible pressure range. Furthermore, other optical high-
pressure cells also allow for the control of temperature [ADT01; DT02; Vas+10]. Using
such a cell, a long-range repulsion between silica spheres in supercritical ethanol (critical
point at 61 bar and 241 ◦C) was observed by means of optical microscopy [Muk+14]. The
here presented instrument could be used to quantify the observed repulsion and overall
deepen the insight into colloidal behavior in supercritical fluids.
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