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1
Introduction

Along with the rapid development of nanotechnology, fluorescent colloidal quantum dots

(QDs), which are semiconductor crystals with several nanometers in size, have attracted

remarkable scientific and technological interest and been extensively studied since the

1980s [1]. In QDs, the quantum confinement of the charge carriers (electrons and holes)

results in a discretization of the electronic energy levels at the energy band edges and leads

to a size dependent energy band gap, which allows the absorption and the fluorescence

energies to be tuned easily. Due to their broad absorption and narrow emission spectra,

high photostability as well as other “tailor-made” optical properties, QDs have been

widely applied in fields ranging from solid-state lighting [2–8], displays [9], photovoltaic

devices[10, 11] to fluorescence imaging [12–14].

Since the pioneering breakthrough of QD synthesis by Murray et al. in 1993 [15], an

enormous amount of research has been reported on the further improvement of the

properties of QDs, such as narrow size distribution, high photoluminescence quantum

yield, high photostability and narrow emission spectral profile [16–23]. From another

perspective, the individual particles within an ensemble may behave quite differently due

to variations in size, lattice stoichiometry, crystallinity, morphology, surface ligand state

and local environment [24]. Moreover, applications of QDs such as biological fluorescent

labelling [12, 14, 25], single particle tracking [26], quantum cryptography [27] and single-

photon sources [28] can only be realized at the single particle level. Therefore, in order

to have a comprehensive understanding of the photophysical properties of QDs, single

particle investigations are indispensable. Owing to a good signal to noise ratio, laser

scanning confocal microscopy is one of the essential tools for single particle fluorescence

measurements [29].
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Furthermore, as the applications of nano-materials continue to expand, nanoscale

architectures with increasing complexity are evoking broad interest [30]. Like other

nanoparticles, QDs can be considered as chemical building blocks and used to construct

extended and more complex architectures [31, 32]. The properties of the assembled

structures have been found to be different from those of the isolated components [33–39],

and e.g., the emission energy can be controlled by electronic coupling among nano-

particles in three dimensional superlattices [40–43]. Obviously, the study of simple

nanostructures, meaning dimers composed of two single particles, is an promising

starting point of investigations on the fundamental mechanism of the interactions (e.g.,

electronic coupling) among nanoparticles. To date, although various nanoparticles have

been connected by organic molecules or DNAs to form oligomers [32, 34, 35, 44], the

reports on direct assembly of particles without linkers are rather rare and mainly limited

to metal nanoparticles [45, 46]. In 2011, Xu et al. successfully assembled and enriched

CdSe/CdS/ZnS QD dimers and trimers in an organic solvent [47]. However, a detailed

investigation of the electronic interactions of the components in QD dimers at the single

particle level is still lacking. Along these lines, a hetero-dimer system in which the two

QDs have either different sizes or different compositions is a promising option. In this

thesis, both CdSe/CdS/ZnS QD homo- and hetero-dimers were prepared, enriched and

characterized. The fluorescence emission from the two QDs within a homo-dimer could

be resolved by single particle spectroscopy at 4.5 K due to the narrowing of the spectral

linewidths at cryogenic temperature. For hetero-dimers, two kinds of QDs with a large

separation in emission wavelength were prepared and assembled. The obtained hetero-

dimers were characterized by a combination of atomic force and confocal fluorescence

microscopy at room temperature.

Previous studies of QDs have been mainly limited to group II-VI materials such

as CdSe, CdS and CdTe. A big disadvantage is that the commonly used heavy metal

element Cd is very toxic which can severely damage kidneys, bones and lungs of human

beings and increase cancer risks [48]. Therefore, concerning practical applications, more

environmentally benign or so-called “greener” QDs are urgently needed [49, 50]. Among

the possible materials, InP-based QDs have been studied and considered to be promising

alternatives due to their low toxicity and wide emission spectral tunability ranging from

the visible region to the near-infrared region [4, 6, 51–53]. Therefore, the second part of

this thesis focused on InP based (InP/ZnSeS) QDs.

At the single particle level, even under continuous illumination, QDs exhibit fluo-

rescence intermittency (or blinking) on a broad time scale from microseconds to hours.

The fluorescence intensity randomly switches between bright (on) and dark (off ) states
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with the on and off periods following inverse power-law distributions without any

characteristic time scale. This becomes an intrinsic drawback for applications of QDs

based on single particle emission as mentioned above. Since the first observation

of blinking by Nirmal et al. in 1996 [54], numerous studies have focused on this

mysterious phenomenon [55–63]. Although the mechanism of fluorescence blinking

is still not completely understood, various approaches for blinking suppression have

been developed, including changing the temperature and excitation energy [57, 64, 65],

coupling QDs to a metal plasmon resonance [66–68], surface modification [69–75],

overcoating QDs with thick shells (“giant” QDs) [76–78], changing the confinement

potential [79–81] and improving the crystallinity [82–84].

Most of the studies on the suppression of fluorescence blinking have focused on

group II-VI QDs (e.g, CdSe). In contrast, there are very few reports on the fluorescence

blinking of InP based QDs [85–87], and no InP based QDs without blinking have ever been

observed so far. Zan et al. discussed the influence of synthetic conditions on the blinking

of InP/ZnS QDs [86], and Dennis et al. observed effective blinking suppression even when

only a thin shell of CdS was overcoated onto InP core [87]. Besides the findings from

other non-blinking QD systems of CdZnSe/ZnSe [80], zinc-blende CdSe/CdS [83] and

(Zn)CuInS/ZnS [84], these two studies on InP based QDs also emphasized the significant

impact of the internal structure on blinking suppression. Recently, an alloy ZnSeS shell

was overgrown on InP cores by Lim et al. to prepare InP/ZnSeS QDs [7, 52], by which the

large lattice mismatch between InP and ZnS was alleviated and therefore a high quantum

yield was obtained [7, 52]. Based on this work, different series of InP/ZnSeS QDs were

prepared under various experimental conditions and systemically investigated at 295 K

and 4.5 K in this thesis. Particularly, it was found that InP/ZnSeS QDs with 0.2 mmol Se

exhibited high quantum yield, good crystallinity and strong blinking suppression. Possible

mechanisms of the blinking suppression were suggested and discussed.

The organization of this thesis is as follows: Chapter 2 introduces the theoretical

background on the structure and synthesis of QDs, the assembly and separation of

QD oligomers and single particle spectroscopy at room temperature and cryogenic

temperatures. Chapter 3 focuses on the synthetic methods, characterization techniques,

sample preparation and experimental setups. The experimental results are given

in the subsequent two chapters: Chapter 4 addresses the strategies of preparations

and characterizations of monomers, homo- and hetero-dimers of CdSe/CdS/ZnS QDs.

Chapter 5 presents the investigations on InP/ZnSeS QD system, including synthesis,

ensemble characterizations, single particle measurements at 295 K and 4.5 K as well as the

results and discussions of the blinking suppression of samples under various synthetic



4 Introduction

conditions. At last, Chapter 6 summarizes the findings of this thesis and presents an

outlook.



2
Theoretical background

2.1 Semiconductor nanocrystal quantum dots (QDs)

2.1.1 Electronic states and optical properties

2.1.1.1 Bulk semiconductor

Semiconductors are materials with electronic structures between those of conductors and

insulators.

Overlap

Conduction band (CB)

Valence band (VB)

Fermi level

Conductor Semiconductor Insulator

E
n
e
rg
y Band gap

Figure 2.1: Schematic diagram of energy structures of conductors, semiconductors and
insulators.
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In a single free atom, electrons occupy atomic orbitals to form a structure of discrete

energy levels. If two atoms are brought close together, the wavefunctions of them overlap

spatially, which will induce a splitting of the energy eigenstates. As more and more atoms

are introduced, the density of the energy states increases due to the increasing number of

the split levels. Eventually, as a solid containing numerous atoms, the energy levels are so

close and can be considered to form a continuum. Continua of allowed states are called

energy bands. The band with the highest energy which is occupied in the ground state

is the valence band (VB) while the band with the lowest energy which is unoccupied in

the ground state is the conduction band (CB). As shown in Figure 2.1, in metals or other

conductors the valence band overlaps the conduction band whereas in insulators the

electrons in the valence band are separated by a large gap from the conduction band.

Differently from both, in semiconductors the energy barrier to excite electrons from the

valence to the conduction band is relatively small (usually between 0.3 and 3.8 eV) and can

be overcome if an external energy is applied. Figure 2.2 reveals an overview of the band

alignment of III-V and II-VI bulk semiconductors. An excited electron in the conduction

Figure 2.2: Electronic energy bands of some III-V and II-VI semiconductors. CB: conduction
band; VB: valence band. From Ref. [88].

band is attracted to the resulting hole in the valence band by the electrostatic Coulomb

force. When they approach each other in space, the “electron-hole pair” forms a bound

state, which is considered as an electrically neutral quasi-particle, called exciton. The

Bohr radius of the exciton is given by [89]:

aB
exc =

~
2ε

e2

(

1

m∗
e
+

1

m∗
h

)

(2.1)
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where ε denotes the bulk optical dielectric coefficient, e is the elementary charge, m∗
e and

m∗
h are the effective mass of the electron and hole, respectively. The Bohr radii of excitons

in bulk CdSe and bulk InP crystals are about 5.6 nm [90, 91] and 10.0 nm [92], respectively.

2.1.1.2 Nanocrystalline semiconductors: quantum dots

In the past decades, more and more research focused on crystals with very small

dimensions. Fluorescent colloidal quantum dots (QDs), or also known as semiconductor

nanocrystals (NCs), are small crystalline semiconductor particles whose sizes are about a

few nanometers. As described below, Figure 2.3 shows schematically the development of

the electronic structure from atoms to bulk crystals. Since the number of atoms in QDs

is between the one of atoms or molecules and the one of bulk crystals, QDs represent

an intermediate state between single atoms and macroscopic solids, composed of both

continuous energy bands and discrete energy levels at the band edge. Compared to

the bulk semiconductors, the excitonic wavefunctions of QDs are confined in all three

spatial dimensions. When the size of a QD is smaller than the bulk exciton Bohr radius

of the corresponding semiconductor defined by Equation 2.1, the band gap energy of

the QD increases by an additional amount of confinement energy, which can be fine-

tuned by the size of the particle. As a result of this quantum size effect [93, 94], QDs are

featuring size dependent optical properties [95–97] such as “tailor-made” absorption and

fluorescence spectra, which can be applied in wide range of fields such as LEDs [2–7, 98? ],

lasers [99, 100], photovoltaic devices [10, 11], fluorescent labels [12–14]. Figure 2.4 shows

solutions of some fluorescent CdSe QDs by own synthesis with sizes ranging from 1.5 to

5 nm.

For a theoretical description or calculation of the electronic structure of QDs,

different approaches were proposed, such as: (1) Tight-binding-model, which uses

linear superposition of atom orbitals (LCAO) of known orbital basic sets from isolated

atoms to define a polyatomic wavefunction; (2) Pseudopotential, which replaces the true

potential of the ion core (the nucleus and non-valence core electrons) with an effective

potential; (3) Effective mass approximation, which is highlighted below with a more

detailed description.

Effective mass approximation (EMA), based on the approach that the state continuum

of the free electrons is split into separate bands by the periodic potential of the crystal

lattice (a top-down approximation), is widely applied to calculate the electronic states

of QDs. The transition from the bulk to the nanocrystal crystal passes through a three-

dimensional spatial confinement of the charge carriers. By a definition of effective mass,

the electrons in QDs exhibit a weak binding to the atomic cores and are considered to
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LUMO

HOMO

N=10-100 N=100-10000 N→∞

CB

VB

Egap+ΔE

Cluster/

molecule
Quantum dot Bulk crystal

Atom

N=1

Egap

Figure 2.3: Schematic diagram of the energy structures from a single atom, cluster/molecule,
quantum dot to bulk crystalline semiconductor. Adapted from Ref. [101].

(a) (b)

Figure 2.4: Photographs of solutions of CdSe quantum dots by own synthesis with different
sizes (either photo from left to right: about 1.5 nm, 2.5 nm, 3.5 nm, 4 nm and 5 nm) under (a)
room light and (b) the excitation of 366 nm from a UV-lamp.

be nearly free. Specifically, the electron is a particle described in a potential well. The

time-independent Schrödinger equation is expressed as:

ĤΨ(r ) =
[

−
~

2

2m∗∇
2 +VR (r )

]

Ψ(r ) = EΨ(r ) (2.2)

with the position vector r , the lattice vector R and the lattice periodic potential VR (r ) =
VR (r +R). As a solution in terms of Bloch waves with the form of

Ψν,k (r ) = uν,k (r )e i kr (2.3)
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where ν is the band index, the corresponding energy dispersion becomes:

Eν(k) =
~

2

2m∗
ν(k)

k2 (2.4)

With the assumption that there is no interaction between the electron and the hole, the

wavefunction of an electron-hole pair can be separated:

Ψehp(re,rh) =Ψe(re)Ψh(rh) =
∏

i=e,h

Ψi (ri ) (2.5)

The QD is approximated as a hard sphere with the radius R and spatially confined by a

spherical potential described as:

Vi (ri ) =







0 if ri < R (i = e,h)

∞ if ri >R (i = e,h)
(2.6)

Then a new wavefunction which can represent the boundary condition of the spatial

confinement should be introduced, and eventually the quantization of the energy

eigenvalues becomes [102]:

Ψi (ri ) = uk (ri )φi (ri ) (2.7)

with the corresponding Hamiltonian operator

Ĥi =−
~

2

2m∗
i

∇2 +Vi (ri ) (2.8)

Thus, the solutions of the stationary Schrödinger equation are obtained [102]:

φi
nlm(ri ) =

√

2

R3
Ylm

Jl (χnl + ri

R
)

Jl+1(χnl )
(2.9)

where Ylm is spherical harmonics, Jl are Bessel functions and χnl are there nth roots. The

quantum numbers n (= 1, 2, . . . ), l (= 0, 1, 2, . . . ) and m ( = -l , -l+1, . . . , l ) are similar to

those of the hydrogen atoms. Hence, the designations S, P , D , . . . are used for l = 0, 1, 2, . . . .

The energy eigenvalues are:

E i
nl =

~
2

2m∗
i

χ2
nl

R2
(2.10)
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and for the lowest state with n = 1 and l = 0,

E i
10 =

~
2

2m∗
i

π2

R2
(2.11)

In optical spectra, size dependent transitions between energy levels of the electrons and

holes can be observed. With the selection rule for optical transitions in this case ∆n = 0

and ∆l = 0 [101], as depicted in Figure 2.5, the resulting energy of the lowest excited state

of a CdSe QD is:

E(1Sh −1Se) = Egap +E e
10 +E h

10 = Egap +
~

2π2

2R2

(

1

m∗
e
+

1

m∗
h

)

(2.12)

Figure 2.5: Energy structure of the lowest excited state (1Sh −1Se) in a CdSe QD corresponding
to Equation 2.12. CB: conduction band; VB: valence band. Egap is the band gap of the bulk
crystal based on the periodic lattice potential. E e

10 and E e
10 are the energies resulting from the

confinement of the electron and hole, respectively.

Furthermore, taking the Coulomb interaction between the electron and hole as a

disturbance, one can extend the Hamiltonian by a Coulomb term. Thus [102],

Ĥehp =−
~

2

2m∗
e
∇2 −

~
2

2m∗
h

∇2 +Ve(re)+Vh(rh)−
e2

4πε0εr |re − rh|
(2.13)

where ε0 is the permittivity of the vacuum and εr is the relative permittivity of the

semiconductor. By means of a first order perturbation theory with the Coulomb term as a

correction, the lowest excited energy of CdE (E=S or Se) QDs can be expressed as [103–105]:

E(1Sh −1Se) = Egap +Econf +Ecoul = Egap +
~

2π2

2R2

(

1

m∗
e
+

1

m∗
h

)

−
1.8e2

4πε0εrR
(2.14)
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where Egap denotes the bulk semiconductor energy gap, Econf is the confinement energy,

Ecoul is the Coulomb interaction between the electron and hole and R is the radius of the

QD. Equation 2.14 suggests that when the size of QD decreases, Econf scales with 1/R2

whereas Ecoul scales with 1/R . Since the confinement energy varies in a more pronounced

manner than the Coulomb energy, the transition will shift to higher energy with decreasing

QD size. According to particle size, QDs can be divided into three types:

• R > 3aB
exc(≈ 10nm): weak confinement. Coulomb term dominates and the exciton

can move quasi freely.

• R ≈ aB
exc medium confinement.

• R ≪ aB
exc strong confinement. In this case, the Coulomb term can be neglected,

meaning the electron and hole are confined independently.

Figure 2.6 shows the electronic energy structure of the lowest excited state (1Sh−1Se state)

in a CdSe QD. Contributions of terms in Equation 2.14 can be compared.

N
a
n
o
cr
ys
ta
l

Nanocrystal radius R [nm]

B
u
lk
cr
ys
ta
l

Exciton

GS

(a) (b) (c)

Figure 2.6: Energy structure of the lowest excited state (1Sh − 1Se) in a CdSe QD: (a) An
illustration of the continuum and the discrete states of the electron/hole near the band edge

above the ground state (GS) for the bulk crystal and nanocrystal, respectively. E
Ry
exc denotes the

binding energy of the exciton in the bulk crystal. (b) Schematic optical absorption spectrum
of bulk crystal with exciton band and real absorption spectrum of nanocrystal (T = 10K) with
a mean radius of R = 2.6 nm [106]. The lowest-transition corresponds to the transition of
1Sh −1Se state. (c) Dependence of the energy of the 1Sh −1Se state on the nanocrystal radius
R: (o) Experimentally determined values (T = 10K) [101]; (---) EMA approach: Egap +Econf

calculated according to Equation 2.12 (Egap (T = 10K) = 1.84 eV); (—) After considering the
Coulomb interaction: Egap +Econf +Ecoul calculated according to Equation 2.14 (with εr = 6.23);
(– · – · –) Extended empirical EMA approach [107]. Adapted from Ref. [101].
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The zero-order effective-mass approach above considers only single conduction and

valence bands with a confinement of infinite spherical wells. This is sufficient for the

conduction-band states. However, Efros et al. demonstrated that substantial mixing takes

place among the energy levels in the valence-band [90, 108]. For the energy levels of the

hole, the more proper description is the Luttinger Hamiltonian with spherical boundary

conditions, which has been applied to group II-VI and other QDs [90, 107, 109]. With

this treatment, the only good quantum numbers are the total hole angular momentum

F = Lh + J (where Lh is the orbital angular momentum of the lowest contributing hole

level, J is the total angular momentum without mixing), and the parity [110]. Ekimov

et al. [90] proposed a notation for the states of QDs: hole levels are denoted by nLF , where

n is the number of the level, L represents the orbital angular momentum of the lowest

contributing hole sublevel, and F is the total hole angular momentum, whereas electron

levels are denoted by nle where n is the number of the level and le is the orbital angular

momentum. The selection rules in this case becomes Lh − le = 0. With this definition,

in CdSe QDs, as a model QD system which has been widely investigated, lower energy

transitions such as 1S3/2 − 1Se, 2S3/2 − 1Se, 1S1/2 − 1Se and 1P3/2 − 1Pe are commonly

observable in ensemble spectra [107, 111]. Figure 2.7 gives an example of an absorption

spectrum with assigned lowest energy transitions [112].

1P(e)

1S(e)

Deep traps

Surface states

1S3/2(h)
1P3/2(h)

2S3/2(h)

Egap

(c)(a)

(b)

Figure 2.7: (a) Absorption spectrum of 6.4 nm CdSe quantum dots and (b) normalized second
derivative of (a) (adapted from Ref. [113]). The energy transitions are assigned according to
Ref. [107]. (c) The electron and hole energy levels of CdSe QDs in the strong confinement
regime. The dashed lines stand for deep traps and surface states, respectively. Adapted from
Ref. [112].
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Based on the quantum size effect, empirical relationships between the size (ob-

tained from methods as, e.g., transmission electron microscopy) and the first excitonic

absorption wavelength can be established for various types of semiconductor QDs.

Equation 2.15 [114] and Equation 2.16 [115] are the empirical formulas of the diameter d

and the wavelength λ at the first excitonic absorption peak for CdSe QDs and InP QDs,

respectively:

d = (1.6122 ·10−9)λ4 − (2.6575 ·10−6)λ3 + (1.6242 ·10−3)λ2 −0.4277 ·λ+41.57 (2.15)

d = 0.1456 ·e0.0052·λ (2.16)

2.1.2 Synthesis, growth and crystal structures

2.1.2.1 Evolution of organometallic synthesis

The very first techniques of QD synthesis were developed based on aqueous ion chemistry

in the 1980s by Brus and Henglein accompanied by a series of investigations on the

quantum confinement effect [93, 103–105, 116–119]. In the beginning, the method was a

one-phase synthesis involving a precipitation reaction in homogeneous aqueous solutions

containing surfactant-type or polymer-type stabilizers. Then a two-phase route was

invented to prevent the particles from aggregation and to stop further growth by taking

advantage of the arrested precipitation of QDs within inverse micelles which were formed

with an amphiphilic surfactant. However, these approaches resulted in relatively broad

size distributions and poor fluorescence quantum yield, which was ascribed to many

crystal defects due to the low growth temperature. Therefore, reactions taking place at high

temperature were attempted. A remarkable report by Murray et al. with a breakthrough

was published in 1993, in which crystalline, monodispersed, highly luminescent high-

quality cadmium chalcogenide QDs (CdX; X = S, Se, Te) were prepared based on the

pyrolysis of organometallic precursors with coordinating ligands in an organic solvent

with high boiling point [15]. The high reaction temperatures in this procedure (∼300◦C),

provided by a mixture of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO)

which also served as the coordinating solvent, efficiently annealed out defects and

improved crystallinity. The growth rate and the resulting size of the QDs were also

controlled by the temperature. The key point to achieve monodispersity of the QDs is the

injection of organometallic precursors into an organic solvent at high temperature, termed

as “hot-injection” method. The efficient separation of the processes of nucleation and
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growth has been considered to be responsible for the high quality of the QDs synthesized

by “hot-injection”.

Although heat-up synthetic routes in organic solvents [120, 121] without precursor

injections and syntheses in aqueous solution [122–124] have also been reported, the high

temperature organometallic synthesis with hot injection remains a common technique. A

few minor improvements of the procedure result in CdSe QDs with high quantum yield

of 10–25% and size dispersion of 5–10% [16, 17]. Besides the original TOPO and TOP,

Talapin et al. used hexadecylamine (HDA) as an additional coordinating component to

achieve better quality [17]. Later in the year 2003, octadecylamine (ODA) was substituted

for HDA and the non-coordinating, non-polar solvent 1-octadecene (ODE) with low

volatility was introduced by the research group of Peng [20]. Murray et al. originally used

dimethyl cadmium as the cadmium precursor [15]. However, insoluble precipitate was

found in TOPO with dimethyl cadmium because of its instability at high temperature.

As an alternative, cadmium oxide with tetradecylphosphonic acid (TDPA) as well as

other cadmium based complexes were adopted [18, 125]. More recently, to further

reduce the toxicity, besides using the less toxic ODE as a solvent, more environment

friendly phosphine-free chemicals such as oleic acid (OA) were used as ligands in the

synthesis [19, 23, 126].

2.1.2.2 Mechanism of crystallization

The route to colloidal particles with uniform size distribution is derived from the classical

theory proposed in the work by La Mer et al. in the 1940s [127]. The growth of crystals

in solution requires some kind of seed materials which are called nuclei, so that the

crystallization is able to occur at the interface between the seeds and the solution. The

nuclei can either be generated directly in the solution or introduced externally with foreign

seeds. The former process consisting of a single liquid phase is termed “homogeneous

nucleation” whereas the latter is termed “heterogeneous nucleation” [128, 129]. The

heterogeneous nucleation method is not popular for the synthesis of QDs due to the

difficulty in preparation of very small and uniform seeds for nanocrystal formation [130].

To trigger the homogeneous nucleation process in the solution, a high energy barrier

has to be overcome and an extremely high supersaturation level has to be reached.

La Mer’s theory is schematically depicted in Figure 2.8. In stage I, the concentration

of the monomers (molecular species) increases gradually until a critical concentration at

which self-nucleation occurs. Once stage II started, the rate of nucleation drops rapidly to

almost zero because of the abrupt termination of supersaturation. Therefore, this process

is called “burst nucleation”. Subsequently, the monomers will diffuse to the existing nuclei
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Figure 2.8: Schematic graph of the concentration of monomer before and after nucleation as a
function of time based on La Mer’s theory. Adapted from Ref. [127].

instead of forming new nuclei. Hence, stage III is diffusion controlled growth without

additional nucleation, which facilitates the narrow size distribution. For the synthesis of

QDs, the extremely quick formation of nuclei (stage II) can be realized by the hot-injection

method as mentioned above. Due to the very rapid injection at high temperature, ideally

the processes of nucleation and growth are efficiently separated and the size distribution

can be well controlled [131]. However, in practice, there is also crystal growth during

the nucleation process. As a result, the nuclei right after nucleation always have a size

distribution. For a given monomer concentration in a diffusion controlled kinetic process,

the size dependent growth rate can be obtained by considering the Gibbs-Thomson

equation [132, 133]:

Sr = Sb ·e2σVm/r RT (2.17)

where Sr and Sb represent the solubility of the QD and the corresponding bulk crystal,

respectively; σ is specific surface energy; r is the radius of the QD; Vm is the molar volume

of the materials; R is the gas constant and T is the temperature.

In the case of 2σVm/r RT ≪ 1, the growth rate of a particle with the radius r is [133]:

dr

dt
= K (

1

r
+

1

δ
)(

1

r ∗ −
1

r
) (2.18)

where, K is a constant proportional to the diffusion constant of the monomer. δ is the

thickness of the diffusion layer. For a given concentration, r ∗ is the critical radius for which

the solubility of the QDs is exactly the concentration of the monomers in solution (zero

growth rate). Under the assumption of a infinite diffusion radius, the rate as a function of
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particle size is illustrated in Figure 2.9. This function suggests a growth equilibrium which

is related to a critical size r ∗. QDs smaller than r ∗ will dissolve or melt (corresponding

to negative growth rate) while QDs larger than r ∗ will grow. Another important point is

that there is a maximum rate corresponding to 2r ∗ within the positive growth rate regime.

If every QD in the system has a radius larger than 2r ∗, the smaller QDs will grow faster

while the larger ones grow slower. As a result, the size distribution becomes narrower

and narrower over time, which is called size focusing. The value of r ∗ depends mainly

on the overall concentration of free monomers. Therefore, as the reaction proceeds, the

concentration of monomers decreases and the critical size shifts to higher values. When

some QDs start to be smaller than 2r ∗, the bigger QDs grow faster than the smaller ones,

the system enters the size defocusing regime or broadening regime. Furthermore, if some

QDs start to become even smaller than r ∗, then the smallest particles are dissolved to free

monomers which are incorporated into larger QDs. This means that the system enters the

Ostwald ripening regime, which results in not only a broadening of the size distribution,

but also a decrease of the total number of QDs.

Size (r*)

Size-focussing regime

Broadening regime

G
ro
w
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Figure 2.9: Schematic representation of the growth rate dr /dt of the QDs in units of the critical
size r∗. Examples of size distributions in the size focusing regime and broadening regime and
their development with time are displayed. From Ref. [134].

As a result of the analysis above, burst nucleation and separation of nucleation and

crystal growth are the key factors for the uniformity of QDs which are facilitated by the

hot-injection method. To achieve a narrow size distribution, the appropriate amount of

concentration of monomers is crucial: if the concentration is too high, the nucleation

and growth processes cannot be efficiently separated; if the concentration is too low, size

defocusing and Ostwald ripening will take place. In both cases the size distribution is

broadened. In addition, the concentration of the monomer as well as the reactivity of the
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ligands was also proven to have a strong influence on the shape and morphology of the

QDs [135–137].

2.1.2.3 Crystal structure

Most group II-VI and III-V semiconductor materials crystallize in either the hexagonal

wurtzite (WZ) or cubic zinc blende (ZB) structure. Both structures are tetra-coordinated

and vary in the layer stacking along (111), forming an ABCABC . . . or an ABAB . . . sequence,

respectively (Figure 2.10).

A

B
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C

B

C

B

C

B

C
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C

(a) (b)

(c) (d)

Figure 2.10: Crystal structures of (a) wurtzite and (b) zinc blende, respectively. The spheres in
different colors represent different kinds of atoms. (c) The ABAB. . . arrangement viewed along
[001] (c-axis of wurtzite lattice). (d) The ABCABC. . . arrangement viewed along [111] (body
diagonal direction of the face-centered cubic of zinc blende lattice).

X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM)

are widely used techniques for the crystallographic characterization of QDs. The stable

structures (ground state) as well as other structural parameters of selected II–VI, III–V

and IV–VI semiconductors at room temperature are given in Table 2.1. Some materials

such as ZnSe and CdTe which have very little difference in total energy between the WZ

and ZB structure exhibit the WZ-ZB polytypism [138]. Therefore, according to the specific

experimental conditions, nucleation and growth can occur in either structure, and under

certain circumstance, even both may coexist in the same single QD [134].
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Table 2.1: Structural parameters of selected bulk semiconductors [134].

Material Structure (300K) Type Egap (eV) Lattice parameter (Å) Density (kg/m3)

ZnS Zinc blende II-VI 3.61 5.41 4090
ZnSe Zinc blende II-VI 2.69 5.668 5266
ZnTe Zinc blende II-VI 2.39 6.104 5636
CdS Wurtzite II-VI 2.49 4.136/6.714 4820

CdSe Wurtzite II-VI 1.74 4.3/7.01 5810
CdTe Zinc blende II-VI 1.43 6.482 5870
GaN Wurtzite III-V 3.44 3.188/5.185 6095
GaP Zinc blende III-V 2.27 5.45 4138

GaAs Zinc blende III-V 1.42 5.653 5318
GaSb Zinc blende III-V 0.75 6.096 5614
InN Wurtzite III-V 0.8 3.545/5.703 6810
InP Zinc blende III-V 1.35 5.869 4787

InAs Zinc blende III-V 0.35 6.058 5667
InSb Zinc blende III-V 0.23 6.479 5774
PbS Rocksalt IV–VI 0.41 5.936 7597

PbSe Rocksalt IV–VI 0.28 6.117 8260
PbTe Rocksalt IV–VI 0.31 6.462 8219

Figure 2.11: High resolution electron transmission electron microscopy images of CdSe QDs
viewed along the (a) [001] and (b) [010] zone axes. Reprinted from Ref. [139].

CdSe QDs synthesized by pyrolysis using conventional ligands, such as TOPO

and HDA exhibit WZ structure with a three-fold rotation axis C3ν and are able to

generate every high crystallinity with less than one fault per crystallite as shown in

Figure 2.11 [15, 17, 136, 139, 140], while InP QDs from organometallic syntheses were

frequently observed as ZB structure [4, 51, 141–144]. However, as shown in Table 2.1, lead

chalcogenides crystallize in the rocksalt structure. Although it is reported that the CdSe
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QDs whose diameters exceed 11 nm may also crystallize in the rocksalt structure, the ones

with the diameters below 11 nm remain a four-coordinate arrangement [145].

2.1.3 Core/shell structure

Regarding the application requirements of QDs, besides the size distribution as above

discussed, the fluorescence quantum yield (QY) and the stability against photo-oxidation

are two other crucial factors, which are strongly dependent on the surface state of the QDs

due to the very high surface-to-volume ratio of QDs compared with the bulk materials. As

such, on the one hand, the organically passivated QD cores are vulnerable and easy to be

photo-oxidized and bleached [146, 147]; on the other hand, they typically exhibit surface-

related trap states from dangling bonds and surface defects serving as fast non-radiative

de-excitation channels for photogenerated excitons, thereby decreasing the QY [148, 149].

In order to suppress such effects and improve the surface passivation of QDs, one

of the most important strategies is to overcoat the QD cores with another inorganic

semiconductor which has a wider energy band gap, forming a core/shell (CS) structure.

The shell with a wide band gap efficiently confines the wavefunctions of the charge

carriers in the core, thereby raising the quantum yield by decreasing the probability of

non-radiative recombinations [150, 151]. For example, by capping CdSe QD cores with

ZnS, Hines et al. in 1996 found that the QY can be increased from ∼10% to ∼50% [16].

After that, more and more effort has been devoted to core-shell systems, and the best

prepared CdSe/CdS and ZnSe/CdSe core/shell QDs are able to exhibit QYs as high as 85%

and 80–90%, respectively [152, 153]. The shell also serves as a physical barrier between

the optically active core and the surrounding medium, decreasing the sensitivity of the

QDs to environmental influences [1].

ZnS as a non-toxic material with wide band gap was initially and extensively used

as the passivation shell of CdSe QDs [16, 151]. However, as the thickness of ZnS shell

approaches two or more monolayers, the growth of the shell cannot follow the template

of the core lattice due to the big lattice mismatch between them, inducing lattice strain

and defects at the core/shell interface and inside the shell [151, 154]. The size distribution

of QDs often broadens substantially after coating ZnS shells onto CdSe as well [151]. In

contrast, since the lattice mismatch between CdS and CdSe is much smaller than the one

between ZnS and CdSe (3.9% versus 12%, as shown in Figure 2.12), CdSe/CdS QDs have

better crystallinity. Yet, the wavefunctions of the excitons in CdSe/CdS QDs will extend

across the shell due to the relatively small band gap of CdS compared with ZnS, and hence

the QY is also sensitive to surface states [150].
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Figure 2.12: Energy band alignment and lattice mismatch of bulk semiconductor combinations.
CB: conduction band; VB: valence band. From Ref. [21].

core/shell/shellcore/shellcore

Figure 2.13: Schematic diagrams of the core, core/shell and core/shell/shell structures of
quantum dots.

To combine the advantages of both the efficient confinement of ZnS and the lattice

matching of CdS with respect to CdSe core, the CdSe/CdS/ZnS core/shell/shell structure

has been proposed and prepared [155, 156]. Figure 2.13 displays the structures of the core,

core/shell and core/shell/shell of QDs. With this idea, to have an even more stepwise

change of the band gap and the lattice spacing, the alloyed precursor of Cd0.5Zn0.5S

was additionally introduced, resulting in CdSe/CdS/Cd0.5Zn0.5S/ZnS complex multishell

system [21, 157]. In 2003, the research group of Peng introduced the successive ion layer

adsorption and reaction (SILAR) technique, which was originally applied to the deposition

of thin film onto solid substrates, into the shell growth of QDs. This SILAR method enables

the formation of one monolayer at a time by alternative injections of cationic and anionic

precursors, allowing a precise control over the shell thickness [20]. Upon the shell coating,

the absorption and emission spectra shift to longer wavelengths. This red-shift has been

observed for various core/shell materials as revealed in Figure 2.14(a). This is explained by

a partial extension/tunneling of the wavefunctions of the excitons from the core into the
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shell [150, 151]. Figure 2.14(b) represents the influence of the introduction of the “adapter

shell” on the quantum yield.

(a) (b)

Figure 2.14: Evolution of the peak position in the fluorescence emission spectra for different
core/shell quantum dots. The red-shift of the fluorescence emission spectra upon shell growth
on the CdSe cores are due to the decrease of confinement. The slight blue-shift upon growth of
the outer ZnS layers for the multishell particles is attributed to the formation of a ZnxCd1−xS
alloy shell. (b) Evolution of the QY for different core/shell quantum dots. From Ref. [21].

Besides overcoating the QD core with wide band gap materials, the electronic structure

can also be tuned by core/shell design according to the band gaps and the relative

positions of electronic energy levels of the involved semiconductors as shown in Figure 2.2.

Some common structures are illustrated in Figure 2.15. Unlike the type-I structure

discussed above aiming at better QY, type-II includes an offset of the band gaps of the

core and epitaxial shell and can be applied to efficient separation of the carriers, e.g,

in the photovoltaic field [158, 159]. In reverse-type-I systems, as it is called, the core

is overcoated by a material with a narrower band gap. In quasi-type-II structures, one

carrier is confined in the core while the other is delocalized over the entire core shell

structure [160]. This quasi-type-II was reported to suppress the fluorescence blinking of

single QDs (see Section 5.7) [78, 161, 162]. Specific examples of various types of core/shell

systems include: CdSe/ZnSe [163, 164], CdSe/ZnS [16, 165], CdSe/CdS [20, 82, 166],

CdS/HgS/CdS [167, 168], InP/ZnS [4, 51, 86] and PbSe/PbS [169, 170].

2.1.4 InP based quantum dots

QDs from group II-VI (e.g., CdSe, CdTe or PbS) have been well developed and investigated.

However, they contain very toxic elements (i.e., Cd, Pb and Hg), which are environment

unfriendly and greatly limit the practical applications. Therefore, the “greener” colloidal
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Figure 2.15: Schematic diagrams of the various types of core/shell structures of quantum dots.
The dashed line indicates the wavefunctions of electrons and holes. CB: conduction band; VB:
valence band.

QDs from group III-V, especially InP QDs whose emission covers the visible and near

infrared spectral range, have aroused increasing interest in both fundamental and

industrial fields in recent years [4, 7, 51–53, 171, 172]. Nevertheless, the investigations

and applications of III-V QDs are rather sparse compared to the group II-VI QDs, mainly

because of the difficulties in synthesis and the poorer optical properties. Specifically,

due to the stronger covalent bonding of the precursor, a higher reaction temperature

and longer reaction time are required to synthesize InP QDs. However, these conditions

favor Ostwald ripening, resulting in an increase of size distribution. Therefore, highly

reactive organometallic precursors such as the expensive and pyrophoric phosphorus

precursor tris(trimethylsilyl)phosphine (P(TMS)3) are indispensable. Like the cadmium

chalcogenide system [15], initial synthetic routes to InP QD have used TOPO/TOP as

the solvent. Nevertheless, reaction times as long as 3–7 days were necessary to yield

well crystalline InP QDs [173, 174]. In 2002, the research group of Peng developed a new

procedure based on fatty acids as stabilizers combined with the non-coordinating solvent

ODE [175]. Relatively high quality InP QDs were synthesized in this medium in a fast and

controllable reaction. However, most properties of InP QDs are still inferior to those of

group II-VI QDs. For example, the full width at half maximum (FWHM) of the fluorescence

peak for InP is generally as large as∼50-100 nm and the QY is typically below 1%, frequently

accompanied by emissions from defect states [51, 134, 141, 171, 176]. In addition, InP

QDs also exhibit weak photo- and chemical stabilities due to facile oxidation [52, 171]. To

overcome these surface related problems, besides the method of photo-assisted etching

of their surface with HF (hydrogen fluoride) [177], using a ZnS shell for surface passivation

is the most commonly used approach [51, 176]. Similar to the case of the CdSe/ZnS

core/shell system, the large lattice mismatch between InP and ZnS (7.7%) induces strain

at the interface, resulting in defects such as dislocations, yielding poor photostability as

well as low fluorescence QY [52]. Besides other different optimizations of the synthesis

conditions [51, 141, 176], an efficient approach developed by Lim et al. is incorporating
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ZnSe as a buffer layer to reduce the lattice mismatch down to 3.4%. The as-prepared

robust InP/ZnSeS QDs allow a thicker shell growth of ZnS and reveals a high fluorescence

QY (above 80%) [52].

2.2 Preparation of quantum dot oligomers

The methods used for preparation of nanoparticle oligomers in this thesis represent routes

which fall into the categories of “self-assembly” and “separation”. They are discussed

below.

2.2.1 Self-assembly and separation of nanoparticles

According to the synthetic strategy, self-assembly here is roughly divided into indirect

and direct ones. The indirect self-assembly involves connections of the monomers 1 by

molecular bridges (linkers) while by direct self-assembly the monomers are connected

directly by altering the conditions of the system.

2.2.1.1 Indirect self-assembly

An example of the indirect self-assembly of nanoparticles is shown in Figure 2.16, Novak

et al. used rigid thiol-functionalized phenylacetylenes as linkers or assembly templates

which had different lengths and different numbers of arms to connect silver or gold

particles [34]. Basically they simply mixed the raw noble metal nanoparticles and the

linkers with proper ratio under stirring, and thus the different nanoparticle oligomers were

obtained as designed. By TEM and absorption spectra they characterized the resulting

dimers, trimers and tetramers. The corresponding yields are about 50, 30, and 10%,

respectively. Theories of electromagnetic interactions between metallic spheres based on

the corresponding structures were also tested by absorption spectra.

Additionally, because complementary single-strand DNA molecules possess the

unique Watson-Crick base-paring interactions, they are very widely used for the con-

nection of nanoparticles, not only for the noble metal, but also for QDs [44, 178–180]. One

of the most successful works which produced very well defined oligomer systems was done

by Tikhomirov and co-workers [44]. They prepared mercaptopropionic acid (MPA)-capped

QDs with different sizes by a one-pot synthesis in aqueous solution and functionalized

1The term “monomer” here means single nanoparticles as the basic elements or building blocks of the
assembled nanostructures. This should be distinguished from the term “monomer” used in the synthesis of
nanoparticles which means the molecular species for the nucleations in solution.
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Figure 2.16: (a) Chemical structures of molecules used as linkers with different numbers
and lengths of “arms”. (b) Transmission electron microscope images of (A): Silver particle
dimers linked by structure Ia. (B) and (C): Gold particle trimers linked by structures IIa and IIb,
repectively. (D) A gold particle tetramer linked by structure III. From Ref. [34].

the QDs with DNA ligands. The DNA ligands consisted of three domains: a quantum-dot-

binding domain; a spacer and a DNA-binding domain. With a one-pot synthesis, some

of DNA molecules will be bound to the QDs. By subsequent titration with the sequences

complementary to the quantum dots binding domain and monitoring by size exclusion

chromatography, the so-called valency of the QDs (meaning the number of binding

sites on the QD surface) can be determined. With this rational design, quantum dot

assemblies/oligomers have been made. The TEMs in Figure 2.17 show the corresponding

kinds of QD oligomers. Gel filtration chromatography was taken as the separation

technique in this example, and the yields for different complexes typically approached

70%. With the configuration shown in Figure 2.17(b)(middle panel), even obvious pH

dependent Förster resonance energy transfer (FRET) was realized.

Although various different configurations can be formed by the use of templates

(linkers), the indirect assembly increases the complexity of the oligomer system and

the study of the direct interactions among the components is inevitably influenced

by the linkers. In addition, the inter-particle separation distance has a lower limit in

this case, which constrains some investigations, e.g., the electronic coupling among

the components [35, 47]. These drawbacks highlight the importance of the direct self-

assembly.
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(a)

(b)

Figure 2.17: High-resolution TEM images of DNA-programmed quantum dot complexes. (a)
Quantum dot assemblies built using red dots with valencies of 1–5 and green dots with valencies
of 1. (b) Symmetric binary system made from the same green dots (top); complex structure
made from three different dots: linear ternary complex (middle) and cross-shaped ternary
complex (bottom). Scale bar: 10 nm. From Ref. [44].

2.2.1.2 Direct self-assembly

In a general frame, the colloidal stability of particles in a solvent is analyzed by the

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [181]. The total interaction potential

between particles Vtotal is the sum of the electrostatic repulsion potential Velec, the van

der Waals attraction potential VvdW
1, the dipolar interaction potential Vdipole and the

charge–dipole interaction potential Vcharge–dipole, i.e.,

Vtotal =Velec +VvdW +Vdipole +Vcharge−dipole (2.19)

1Here the van der Waals interaction refers in particular to the interaction between two instantaneously
induced dipoles, i.e., London dispersion force.
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For monodisperse spherical nanoparticles, we have [46, 182]:

Velec(r ) = 2πεsε0aΨ2
0 · ln
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1+e−a(R−2)/Le
)
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(2.21)

Vdipole(r ) =−
µ2

2πεsε0R(R2 −4a2)
(2.22)

Vcharge−dipole(r ) =−
Q2µ2

6(2πεsε0)2kBTr 4
(2.23)

where r is the center-to-center separation of neighboring nanoparticles of radius a (R =
r /a), εs is the relative dielectric constant of the solvent, ε0 is the dielectric constant of

vacuum, Ψ0 is the surface potential of the particle, Łe is the Debye screening length, I

is the ionic strength, µ is the dipole moment, Q is the effective surface charge of the

nanoparticles, kB is the Boltzmann constant, T is the absolute temperature, and AH

is the Hamaker constant of the particles. For noble metal nanoparticles (e.g., citrate-

stabilized gold nanoparticles), Vdipole is derived from surface defects and nonuniform

ligand capping and is usually negligible [182, 183]. Thus, the stability of the colloidal noble

metal particles is mainly determined by the balance between Velec and VvdW. Particularly,

adding a tiny amount of salt increases the ionic strength of the medium, therefore reduces

the Debye screening length, and leads to a smaller repulsion potential Velec. Eventually, the

probability of effective collision is improved, inducing the aggregation of nanoparticles.

Based on this principle, Chen and co-workers [45, 46] triggered the aggregation of gold

nano-spheres by the addition of NaCl. To prevent dissociation of as-formed oligomers,

a diblock copolymer was used to encapsulate the resulting assemblies. By fine tuning

the electrostatic interaction with the concentration of the salt, they obtained monomers,

dimers and trimers with purities of 71%, 24% and 3.5%, respectively. The oligomers were

subsequently further purified by density gradient (11 + 62% CsCl gradient) centrifugation.

The final purities of the dimers and trimers were enriched to be as high as 95.1% and 81%,

respectively (Figure 2.18).

When aggregation of quantum dots is considered, there are three main differences

compared with metal nanoparticles: (1) Due to the small dielectric constant, the

electrostatic repulsion potential is no longer dominant; (2) As a long range interaction,
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Figure 2.18: (A) A typical setup for centrifugation, where 62% and 11% aq. CsCl and then
AuNPn@PSPAA in water were layered from bottom to top. (B) The result of (A) after 20 min
centrifugation. (C) Separation result of a pre-enriched trimer sample. (a1, b2, and c3) TEM
images of the respective fractions indicated in A-C; Insets: the statistical histograms. Scale bars:
100 nm. From Ref. [45].

the dipole-dipole attraction of QDs is considerably strong. In particular, experimentally

the magnitude of the II-VI QD dipoles was observed to be very high for both wurtzite

hexagonal and zinc blende cubic nanocrystals, despite the apparent lack of crystal

lattice asymmetry of the cubic phase. This effect was attributed to charged chalcogen

surface states [183, 184]. In contrast, the energy of van der Waals interaction between

anisotropic QD cores was considered to be less than 0.5RT [33]. Tang et al. reported

linear spontaneous assembly of single CdTe nanoparticles into nanowires and attribute

this to dipole interactions. According to Equation 2.22, the energy of nanoparticle dipole

attraction of two CdTe QDs with a diameter of 3.4 nm and a center-to-center interdipolar

separation of 4 nm was estimated to be 8.8 kJ/mole (0.091 eV) [184]. A linear dependence

of dipole moment on the size of semiconductor QDs was also reported: the dipole moment

varies from 41 D to 98 D with an increase of QD diameter from 2.7 nm to 5.6 nm [183].

Colloidal QDs in a non-polar organic solvent are stabilized by surface ligands which

usually have long chained structures [185]. The ligands with long chains provide steric

repulsion between particles, which plays an most important role to obtain monodisperse

nanoparticles. Taking this principle from the opposite direction, Xu et al. in the Basché

group realized the controllable aggregation of QDs by removal of ligands. CdSe/CdS/ZnS

QDs were precipitated by a bad solvent and re-dispersed in a good solvent for several
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times. The ligand removal during this process leads to an increasing number of QD

oligomers. The QD oligomers were separated by density gradient ultracentrifugation and

the fractions of QD dimers and trimers could be enriched up to 90% and 64%, respectively

(Figure 2.19) [47].

(a) (b)

(c) (d)

Figure 2.19: (a) Photograph of QD oligomers in the tube after density gradient ultracentrifuga-
tion. (I) QDs precipitated directly from the growth solution and redispersed in cyclohexane;
(II) QDs precipitated again and redispersed in cyclohexane. TEM images of QD monomers (b),
dimers (c), and trimers (d) from the corresponding bands. Scale bars: 100 nm. From Ref. [47].

2.2.2 Density gradient ultracentrifugation (DGU)

Besides other methods for purification/separation of nanoparticles according to size,

shape and/or nanostructures [186] such as size exclusion chromatography, gel filtration

chromatography [44], capillary or gel electrophoresis [180, 187, 188], magnetic field flow

fractionation [189, 190], selective precipitation [191–193], membrane filtration [194, 195]

and selective extraction [196, 197], density gradient (ultra)centrifugation as a fast,

versatile and efficient technique was extensively applied for various nanoparticle

solutions [45, 198–204].

First, considering the simple case that a nanoparticle suspends in a liquid medium

in a gravitational field, as depicted in Figure 2.20(a), it receives gravity G = mg , where m
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G=mg

Fb= - ml g

Fb= - mlω2 r

(a) (b)

Fc= m ω 2 r

Ff

Fd

Ff

Fd

Figure 2.20: Sketch of force analyses of a particle in a liquid medium (a) in normal gravitational
field and (b) in force field of ultracentrifugation. For meaning of symbols see text.

is the mass of the particle and g is the acceleration of gravity, buoyant force Fb =−mlg ,

where ml is the mass of the liquid displaced by the particle, Brownian fluctuating force Ff

and possible viscous drag force Fd. Taking into account the very small gravity and buoyant

force due to the small mass m, the random Brownian fluctuating force dominates, and

therefore the particle is able to suspend in the liquid for very long time [205].

In order to separate different components of nanoparticles by sedimentation, the force

field of ultracentrifugation was applied. The corresponding sedimentation-diffusion

equilibrium can be roughly analyzed as follows. As shown in Figure 2.20(b), the

force balance includes [202]: centrifugal force Fc = mω2r , buoyant force Fb = −mlω
2r ,

Brownian fluctuating force Ff and viscous drag force Fd, where ω is the angular speed, r

is the distance from the center of the rotor to the location of the particle. Since the ultra-

centrifugal force can be as high as 100,000 to 1,000,000 times g , the Brownian fluctuating

force is relatively small and negligible. Regarding the drag force Fd, the specific expression

depends on the Reynolds number, which represents the ratio of characteristic magnitudes

of inertial and viscous forces and is defined as: Re ≡ ρlU L/η, where η is the viscosity, ρl is

density of the fluid, U is the characteristic speed and L is the characteristic length. In the

scale of nanometer, the typical sedimentation problems meet Re ≪ 1 [202] and the viscous

drag force has the form of Fd =−ζv with v denoting the sedimentation velocity and ζ is

the friction or drag coefficient. It can be imagined that the particle will be accelerated

first by the strong centrifugal force, but subsequently the increasing speed will give rise to

increasing drag force Fd, which will decrease the acceleration. Eventually, the acceleration

will approach zero and a sedimentation-diffusion equilibrium will be reached. Under this
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condition, the total force should be zero and expressed as:

Ftotal = Fc +Fb +Fd +Ff = (m −ml)ω
2r −ζv +0 = 0 (2.24)

This results in the so-called Svedberg coefficient:

Sv =
v

ω2r
=

m −ml

ζ
(2.25)

The low Reynolds number implies that the inertial effects are negligible and the Stokes

flow equations can be applied. For a spherical particle, Fd = 6πaηv , where a is the radius

of the particle, i.e.,

ζ= 6πaη (2.26)

Combining Equation 2.25 and Equation 2.26, we have [206],

vsph =
(ρ−ρl)d 2

18η
ω2r (2.27)

where d is the diameter of the spherical particle, ρ and ρl are the mass densities of

the particle and the fluid, respectively. In fact, the friction coefficients are similar

for spherically isotropic objects, and the dynamics of other polyhedral bodies can be

described in the same form with a correction factor [207], i.e.,

v =
K (ρ−ρl)deq

2

18η
ω2r

with K = 0.843 · log10

Aeq

0.065 · A

(2.28)

where deq and Aeq represent the diameter and the area of the sphere with the same volume

as the particle, respectively, A is the real surface area of the particle and K (usually between

2 and 4) is the correction factor. Therefore, Equation 2.28 suggests that particles with

larger size and density will travel faster in the sedimentation process if other conditions

are the same.

For particle separation, there are two types of centrifugal techniques: differential

centrifugation and density gradient centrifugation. The term “differential centrifugation”

here refers to multiple centrifugation in a uniform medium. As illustrated in Figure 2.21(a)

and according Equation 2.28, due to the different sedimentation rates of various

components, the big and “heavy” particles precipitate first. After each centrifugation

for an appropriate time, the supernatant is transfered to another tube for the next round

of centrifugation which is usually done with an increasing speed, until the complete
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Figure 2.21: Schematic diagrams of (a) differential centrifugation (b) isopycnic centrifugation
(c) rate-zonal centrifugation. The gray level represents mass density (darker color represents
larger density).

separation of all components. Differential centrifugation is commonly used in the

separation or purification of nuclei of cells and viral particles [208, 209].

If the particles are similar, it is obvious that the quality of separation will be poor

with respect to differential centrifugation. Therefore, density gradient centrifugation is

required. The variation of the buoyant force within the tube is realized by the medium

supporting a density gradient. Density gradient centrifugation can be divided into

isopycnic and rate-zonal centrifugations. Figure 2.21(b) illustrates the principle of the

isopycnic centrifugation, in which the densities of the particles must be within the range

of the densities of the medium. The principle of the separation is merely based on the

difference of their buoyant densities. Each of the particles with a specific density will

eventually sediment at the position where its density is the same as the gradient media

(i.e., the equilibrium position). Sufficient centrifugation time is necessary for the particles

to travel to their isopycnic positions, while excessive running time has no further effect on

the position of the bands. Isopycnic centrifugation has been applied for the separation

of nanoparticles with relatively small densities such as single-walled carbon nanotubes

(SWNT) [198, 203, 210]. However, for objects such as metallic or semiconductor inorganic

nanoparticles whose densities are higher than the available upper limit of any liquid

densities (∼1.7 g/cm3), this method is not applicable [211]. In this case or the case of

separation of particles with the same density, the rate-zonal centrifugation has to be

used [45, 47, 201, 212, 213]. As shown in Figure 2.21(c), in the rate-zonal centrifugation,

the sample is usually loaded as a thin layer on top of a density gradient of the medium

before centrifugation in order to avoid the cross-contamination of particles with different

sedimentation velocities. The particles then sediment through the medium gradient

into distinct bands/zones according to their sizes, shapes, and densities. The medium

gradient provides a viscosity/density gradient which improves particle resolution and
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the stability of the whole system, e.g., preventing convection currents, especially in the

vertical direction [214]. In contrast to the isopycnic centrifugation, the separation must be

terminated before the separated particles precipitate down to the bottom of the centrifuge

tube [186]. Particles from different bands are usually taken out by a needle or a pipette

syringe. Several centrifugation-redispersion cycles can be applied with an appropriate

solvent for a better purification of the fractions [45, 47]. In addition to separation of

nanoparticles with different sizes [201] and shapes [202], rate-zonal centrifugation has

also been used for the separation/enrichment of nanoparticle oligomers (Figure 2.18 and

Figure 2.19) [45, 47].

Compared with the normal centrifuge, an ultracentrifuge consists of a refrigerated, low-

pressure chamber containing a rotor which is driven by an electrical motor and is able to

rotate at extremely high speed, e.g., as high as 10,000-100,000 revolutions per minute (rpm).

Since the technique for separation of QD oligomers in this thesis was the rate-zonal density

gradient ultracentrifugation, the term “density gradient ultracentrifugation (DGU)” below

in this thesis refers particularly to the rate-zonal density gradient ultracentrifugation,

unless otherwise specified.

2.3 Single particle spectroscopy of quantum dots

Due to variations in size, lattice stoichiometry, morphology, crystal habit, ligand

adsorption and local environments, single QD particles within the ensemble may

exhibit substantially different behaviors from the ensemble properties [24]. In addition,

practical applications such as biological fluorescent labelling [12, 13, 25], single particle

tracking [26], quantum cryptography [27] and single-photon sources [28] can only be

realized at the single particle level. Therefore, the investigation of the fluorescence of

single QDs is of great significance. In this thesis, single particles were studied by confocal

fluorescence microscopy which is introduced below.

2.3.1 Confocal fluorescence microscopy

2.3.1.1 The basic principle of confocal fluorescence microscopy

The basic setup of confocal fluorescence microscopy can be schematically illustrated in

Figure 2.22(a): the excitation light passes through a pinhole aperture, and is focused on a

small spot on the sample in a defined focal plane of the microscope objective. Then the

secondary fluorescence emission light from the same focusing point in the focal plane

is collected by the objective, transmits back through the dichroic mirror and is focused
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as a confocal point at the detector pinhole aperture. Fluorescence light rays which occur

at points above and below the objective focal plane are not confocal with the pinhole.

Therefore, these out-of-focus emitting light rays are blocked by the pinhole and not

detected. As the excitation light scans relatively across the sample, which can be realized

either by moving the sample (translating the stage) or scanning the excitation light, the

information of fluorescence intensities at different points is temporarily recorded by the

detector, and the confocal image of the sample is subsequently reconstructed point by

point. In confocal microscope, much of the stray light passing through the optical system

is eliminated by the pinhole aperture. Thus, compared to the conventional widefield

optical microscopy, the confocal microscopy reduces the background fluorescence and

increases the signal-to-noise ratio, and therefore dramatically improves the contrast [215].

(b)

(a)

Figure 2.22: Schematic diagrams of (a) the optical pathway and principal components in a
confocal microscope and (b) the Airy disk diffraction pattern and the corresponding three-
dimensional point spread functions for image formation in confocal microscopy. Adapted from
Ref. [29].

2.3.1.2 Spatial resolution and excitation intensity

As illustrated in Figure 2.22(b), the image formed by a point-like light at the focal plane

is represented by the point spread function (PSF) [216, 217]. This intensity distribution

can be described by the rotationally symmetric Airy pattern (the principal bright spot
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in the center is termed Airy disk). The sample which is considered as a superposition

of an infinite number of emitting points therefore produces the superposition of the

corresponding Airy patterns. The resolution of a microscope mainly depends on the

properties of the intensity point spread function in the image plane. In a given microscope,

the numerical aperture (NA) of the microscope objective is defined as:

NA = n sinθ (2.29)

where θ is the half-angle of the maximum cone of light that can enter or exit the lens and

n is the index of refraction of the surrounding medium. Applying the Rayleigh criterion

which means that two point sources are regarded as just resolved when the principal

diffraction maximum of the one image coincides with the first minimum of the other (the

radius of the Airy disk) [218], the lateral spatial resolution limit is calculated to be [216]:

∆rRay = 0.61
λ

NA
(2.30)

In the case of a confocal microscope, because single-point illumination scanning and

detection are employed, only part of the sample in the shared volume of the excitation and

detection point spread functions is detected. Hence, in the confocal case, the intensity

point spread function is the product of the independent illumination intensity and

detection intensity point spread functions [29]. As discussed in Ref. [101], due to the

narrower intensity point spread function, ideally the lateral spatial resolution limit is

decreased by a factor of
p

2, i.e.,

∆rConf ≃ 0.43
λ

NA
(2.31)

Axial resolution in the experiments of this thesis is negligible because the samples used

are thin and transparent [219]. The lateral intensity distribution (Airy function) can be

described in good approximation by a Gaussian function [220]:

I (r ) = I0 e−2r 2/w2
(2.32)

where r is the radial coordinate with respect to the center of the beam spot, I0 is the

maximum intensity at the center and w is the radius of the beam waist at which I dropped

to I /e2. This Gaussian distribution is also the beam profile in the focal plane of the

excitation light source. Hence, if the lateral focus width is known/measured, the excitation

intensity can be estimated using the following equation containing the excitation power P
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after the microscope objective [221, 222]:

I0 =
2P

πw 2
(2.33)

Since for a Gaussian distribution, the full width at half maximum meets FWHM =
p

2ln2 w ,

the excitation intensity can be also written as:

I0 =
4ln2

π

P0ηtrans(λex)

FWHM2
(2.34)

where P0 is the original excitation power in front of the microscope objective and

ηtrans(λex) is the transmission factor of the microscope objective at the excitation

wavelength λex. Therefore, P = P0ηtrans(λex).

2.3.2 Detection of a single particle (QD)

2.3.2.1 Signal to noise ratio

The fundamental prerequisite for the implementation of any single particle experiment is

a sufficiently high signal-to-noise ratio (SNR). The achievable SNR can be approximated

as follows [223]:

SNR =
N

p
N +C P∆t +Nd∆t

(2.35)

Here, C is the scattered light background (Rayleigh and Raman scattering), P is the incident

laser power, ∆t is the integration time, Nd is the dark count rate of the detector and N is

the number of photons, which is calculated as follows:

N = ηdetφfl
P

hν

σ

A
∆t (2.36)

in which ηdet is the detection efficiency of the confocal microscope, φfl is the quantum

yield, hν is the photon energy, σ is the absorption cross section and A is the area of the

laser spot.

2.3.2.2 Detection efficiency

The detection efficiency of a confocal microscope setup resulting from the efficiencies of

all components in the optical path is [219]:

ηdet(λ) = ηgeoηtrans(λ)
N
∏

i=1

η
Opt
i

(λ)ηDetector(λ) (2.37)
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In addition to the transmissions of the microscope objective, the detector and other

optical elements, a limiting factor is the spatial geometric collection efficiency ηgeo of the

microscope objective used. This is special in microscopes which are operated at cryogenic

temperatures, since there no immersion oil can be used, constraining the accessible NA

from being larger than one. The collection efficiency ηgeo results from the ratio of the

NA dependent maximum acceptance solid angle Ωgeo = 2π(1−cosθ) and full solid angle

Ω0 = 4π, i.e.,

ηgeo =
Ωgeo

Ω0
=

1−cosθ

2
(2.38)

where θ = sin−1(NA/n).

2.3.3 Fluorescence blinking

2.3.3.1 Blinking: “on” and “off ” states in fluorescence

In 1996 Nirmal et al. first observed that under continuous illumination, the fluorescence in-

tensity of a single CdSe/ZnS QD detected as a function of time consists of a series of abrupt

changes, meaning intermittently flickering on and off, which is termed fluorescence

intermittency or more humbly, fluorescence blinking [54]. Similar fluorescence blinking

behavior was subsequently also found in other nanocrystal systems such as CdS [224],

CdS/HgS [225], CdTe [57], InP [85], Si [226] and PbS [227], and became one of the most

studied photo-physical properties of individual semiconductor QDs [24, 228–230]. As

revealed in Figure 2.23, to analyze the dynamics responsible for the blinking phenomenon,

the most common method is to extract the durations of on and off events (on and off

times) from the fluorescence time trace and compile the corresponding histograms. Under

the approximation of binary blinking, a proper threshold is set to discriminate the two

events, and the on/off times are thus obtained. In contrast to the blinking of single

molecules which originates from a transition to a triplet state [231], a typical feature of the

blinking found in QD systems is that the statistic histograms of lengths of on and off times

reveals a non-exponential character. The probability distribution extracted from such

histograms is empirically best described by an inverse power law (a linear distribution in

log-log plots as shown in Figure 2.23(c) and Figure 2.23(d)) with the form [232]:

P (t ) = At−m (2.39)

The exponent m has usually been found to be in the range between one and two. This

distribution of the on or off times extends over a large time scale from several 100 µs up to
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Figure 2.23: (a) Fluorescence time trace of a single InP/ZnSeS QD under excitation by 488 nm
laser light. The dashed horizontal line is the adopted threshold to discriminate the on and off

events. The gray histogram on the right panel is the corresponding intensity distribution. (b)
Enlarged view of part of the time trace with the definition representation of on and off times.
(c) and (d) are the log-log plots of the histograms of the lengths of on and off times, respectively.
The lines are the corresponding least squares linear fittings.

the total observation time such as several 100 s or 1000 s. Therefore, the integral

< t >=
∫∞

tmi n

tP (t )dt (2.40)

diverges and there is no characteristic time scale in blinking behavior since the mean on

and off times are both observation time dependent. Thus, the description of blinking with
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any single rate process is not possible, because any single rate process will predict a single

exponential distribution for on or off times [24].

2.3.3.2 Mechanism of blinking: proposed physical models

Although up to now the exact mechanism of blinking still remains ambiguous, a lot of

effort has been made in the past decades. The model first proposed by Efros and Rosen

assumes that the non-emitting period of a single QD is due to a light-induced ionization

process [55]. As shown in Figure 2.24, an electron–hole pair (exciton) is excited in a neutral

QD by a photon and subsequently recombines, generating emission, which corresponds

to an on state. For some reason such as tunneling or Auger autoionization, one of the

carriers (either an electron or a hole) is ejected from the QD core into the surrounding

matrix or surface traps, resulting in a charged QD. This ionized QD is not fluorescent any

more due to the very fast Auger process (usually orders of magnitude faster than the rate

of radiative recombination [233]) between the remaining carrier and a subsequent exciton.

This Auger process means that the energy of the exciton is completely transferred to the

remaining carrier and excites this carrier up to a higher excited energy level, therefore

without any fluorescent emission, corresponding to an off state. The QD will emit again

when charge neutrality is regained. This model provided the first intuitive picture for

blinking, but failed to explain the power law distributions of on and off times. Therefore,

numerous other modified mechanisms have been proposed as follows:

• Spectral diffusion. The hypothesis by the group of Bawendi [56, 57] involves a

resonant tunneling between an excited state in the QD and an acceptor trap state

which diffuses at the surface or outside the particle. Whenever the trap state

becomes in resonance with the energy levels of the QD, a charge carrier tunnels

out or back into the QD, rendering switching between on and off states of the

fluorescence. Applying the one-dimensional random-walk theory, the probability

density was calculated to be naturally in the form of a power law and the exponent

should be m = 1.5 for both on and off times. Interestingly, by assuming spectral

diffusion of both QD and the acceptor state, Tang et al. found the exponent changed

to be m = 0.5 [58].

• Spatial diffusion. Another diffusion mechanism is proposed by Margolin et al. [59].

In contrast to spectral diffusion, it suggested spatial diffusion, meaning either by

tunneling or thermal activation, the ejected carrier diffuses in three-dimensional

space around the QD and hops back from the matrix. The model also predicts

power law distribution of on and off times. In addition, ergodicity breaking and
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Figure 2.24: Schematic diagrams of fluorescence blinking and classic charging model of a QD.
(a) An optical excited neutral QD corresponds to photoluminescence. (b) Excitation of the
charged QD leads to fast non-radiative Auger recombination. (c) Ionization processes induces
the on to off transition. (d) Neutralization process induces the off to on transition. Adapted
from Ref. [79].

anomalous diffusion are involved in the model, by which the probability of the

carrier which leaves the QD permanently in the limit of long observation times have

been explained.

• Static multiple trap distribution. Instead of a single trap, Verberk et al. [60]

postulated a uniform static distribution of a series of electron traps near the QD. With

a distance and/or trap depth dependent exponential distribution of trapping and de-

trapping rates, power-law off time distributions were obtained. This model suggests

sensitivity of the power law exponent to the dielectric of the environment [228].

• Tunneling barrier fluctuation. Alternatively, Kuno et al. [61] suggested a dynamic

tunneling process between an electron within a QD and an trap state outside, where

the corresponding height or width of the tunneling barrier varies between each

transition of on-off events.
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• Non-radiative rate fluctuation. Differently from the mechanisms above, the model

proposed by Frantsuzov and Marcus [62] does not invoke the presence of the long-

lived electron traps. The quenching of the QD fluorescence is attributed to the direct

non-radiative recombination of the exciton through the Auger assisted formed

deep surface states. Based on this assumption, the naturally obtained continuous

distributed hole-trapping rate is then governed by the energetic diffusion of the

transition between the first two excited electron states (1Se −1Pe). However, both

on and off time distributions are predicted in this case to be power law with an

exponent of 1.5, which is independent of the chosen threshold and not consistent

with the fact of divergence obtained from different data [63]. Hammers reported a

similar theory and compared it with the experimental data to explain the blinking

suppression after ligand exchange [74].
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Figure 2.25: Schematic diagrams for on and off states in A- and B-type blinking events. (a)
An on states contains a photoexcited electron-hole pair and emits efficiently. (b) In an A-type
blinking event, the off state contains an additional electron in an excited state and is dark due
to the increasing of non-radiative relaxation rate. (c) In a B-type event, the “hot electron” is
trapped by surface states immediately after photoexcitation and combines non-radiatively with
the remaining hole. (d) Addition of external charges in the trap states deactivates the trapping
pathway, and thus causes B-type blinking suppression. From Ref. [234].

Both experimental observations and data analyses for the blinking phenomenon

become complicated due to many factors involved. For example, Nirmal et al. [54]

and Banin et al. [235] found a linear decrease of the on time with the increase of the
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excitation intensity. In contrast, the off time is independent of the intensity. Shimizu

et al. later observed truncation times (cutoffs) in on time distributions which decreased

with the increase of excitation intensity and may imply some competing physical process

interrupting power-law blinking [57]. Moreover, some reports highlighted the strong

dependence of the power law exponents and the truncation times on the chosen threshold

and the experimental bin time, pointing out the truncated power-law distributions of on

times may not reflect a real trend [24, 63]. In addition, Spinicelli et al. reported gray states

in CdSe-CdS nanocrystals involving a trion emission (one electron-hole pair in a ionized

QD) [236]. Zhang et al. even found continuous distribution of emitting states from single

CdSe/ZnS QD and a nonlinear correlation of lifetime and intensity fluctuations [237].

As an experimental result of Zhao et al., the intensity of the off state is found to be at

least 10 times smaller than would be predicted by the charging model of blinking in

the strong confinement limit [238]. These observations accompanied by some other

investigations of the off state behavior challenges the charging-Auger-recombination

and “on/off ” discrete state model, implies that charged quantum dots are also able to

be emissive, and suggests that other complicated processes such as time-dependent

charge migration or multi-exciton emission might be responsible for some observed

fluorescence dynamics [237–240]. More recently, a finding by Galland et al. with the

technique of spectroelectrochemistry reveled that there are two types of blinking [241].

With the relatively bright off state from their QDs, they measured the fluorescence lifetime

and found the first type (termed A-type) blinking with an accompanying decreased

fluorescence lifetime was consistent with the charging model, whereas when the other

type (B-type) blinking happened, the fluorescence lifetime remained constant. The B-

type blinking was explained by the activation and deactivation of an efficient capture

of the photoexcited “hot electrons” (electrons occupying energy levels well above the

lowest energy state in the conduction band) by the electron-accepting surface sites. By

applying an external electrochemical potential, B-type blinking could be suppressed

(Figure 2.25) [234]. In addition, a recently reported non-blinking (Zn)CuInS/ZnS QDs

prepared by in situ interfacial alloying approach highlighted the contribution of interior

traps to the blinking behavior [84]. Up to now, no single theoretical model is able to explain

all experimental observations, and therefore the physical nature of blinking remains partly

a mystery.

2.3.3.3 Blinking Suppression: towards non-blinking quantum dots

Despite the lack of a complete understanding of the exact physical origin of fluorescence

blinking, various methods have been developed to reduce and suppress blinking:
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• Experimental conditions. Some groups found a dependence of blinking on

temperature [57] and excitation energy [64, 65, 242], and therefore to some extent,

the corresponding experimental conditions can be tuned to minimize the blinking.

• Plasmon resonance. Plasmon resonance from metallic nanostructures was used to

cause a change in the fluorescence properties [66–68]. Energy transfer to the metal

could play an essential role in the observed blinking suppression.

• Surface modification. Another important method to modify blinking is the surface

modification of QDs with organic molecular ligands or polymers serving as charge

compensators/mediators [69–75]. Hohng et al. found near complete suppression of

quantum dot blinking when thiol-containing chemicals were added under ambient

conditions [69]. The authors believed that the thiol moiety which plays a role as an

electron donor, can donate electrons to the surface electron traps of a QD. Therefore,

it prevents the traps accepting electrons from the QD itself. Thus, the blinking is

suppressed [69]. The function of thiol group for blinking suppression has also been

reported in aqueous solutions [243, 244].

• “Giant” QDs. The group of Hollingsworth and Mahler et al. developed the so-called

“giant” QDs by overcoating QD cores with very thick shells [76–78, 245]. The strategy

is clear: no matter how ionization of the QD occurs, the thick potential barrier

around the core should decrease the possibility of the escape of the carriers to the

surface [79]. It is worth noting that growth of the thick shell took days. Furthermore,

the quantum yield of the “giant” QDs appeared to be low (10%–40%), which was

speculated to be related to the recombination through defects within the thick,

imperfect shell [76].

• Confinement potential design. As demonstrated by Efros, if the Auger non-

radiative recombination time becomes longer than the radiative recombination

time of a charged electron-hole pair (that is, a trion), which is several nanoseconds,

there will be no photoluminescence off periods (even if the nanocrystal becomes

charged) [79]. Wang et al. indeed observed alloyed CdZnSe/ZnSe QDs with relatively

small size (∼5 nm) exhibiting no blinking at all [80]. They attributed it to a trion

emission resulting from a gradually changing potential energy function and the

relatively soft confinement. Furthermore, it is reported that compared to an

abrupt and step-like confining potential corresponding to the traditional core/shell

structure, a “smooth” confining potential which could result from a graded alloy
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core/shell structure can efficiently increase the rates of Auger recombination, and

thus blinking can be suppressed [81, 246].

• High crystallinity. In 2013, new high-quality CdSe-CdS core-shell QDs with narrow

emission linewidths and suppressed blinking have been synthesized by Chen

et al. [82]. The authors ascribed the strong blinking suppression as well as other

high qualities (high particle uniformity, high quantum yields, narrow and symmetric

emission spectral lineshapes) of their new kind QDs to good crystallinity. Similar

results were found in zinc-blende CdSe/CdS system as well [83]. In a recent report

by Zhang et al., (Zn)CuInS/ZnS QDs prepared by in situ interfacial alloying approach

exhibited non-blinking behavior, and the main mechanism was believed to be the

modification of QDs traps from interior to exterior [84].

Almost all the above-mentioned investigations with respect to the suppression of

fluorescence blinking have focused on group II-VI QDs (CdSe or CdTe based). Taking

into account the increasing requirements of low toxicity in QD applications, a new type

of non-blinking Cd-free QD is urgently needed. Although as promising alternatives, InP

based QDs have been synthesized and characterized [4, 51, 141, 175, 177, 247], there are

very few reports on the fluorescence blinking and blinking suppression of InP based QDs,

and no InP based QDs without blinking have ever been observed [85–87].

2.3.4 Spectral diffusion

As discussed in the beginning of Section 2.3, the linewidth of the emission spectrum

of an ensemble of QDs is broadened due to inhomogeneous broadening. Yet, even the

emission spectra of single QDs at low temperatures often do not exhibit the homogeneous

linewidth (Equation 2.50) or the experimental resolution limited linewidth as originally

expected. This can be attributed to spectral diffusion, which means that the wavelength

of the emission peak of a single QD is not constant but varies with time under constant

excitation. Spectral diffusion occurs on all time scales of observations. The one occurring

on a timescale which is smaller than the acquisition time of the experiment results in

broadening of the emission spectra as mentioned above and is only possible to be resolved

by high resolution spectroscopies [248] whereas the one which occurs at larger time scales

results in discrete jumps of the spectral position [249]. Although the fundamental cause

of spectral diffusion remains uncertain, the classic model proposed by Empedocles and

Bawendi has been widely accepted [24, 250]:

Unlike the case of single molecules which are exquisitely sensitive to changes in

their surrounding environment [251], a lack of dependence of energetics of the radiative
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recombination on surface modification for CdSe QDs was reported by Kuno et al. [252].

Therefore, the excitonic energy in QDs is not sensitive to the chemical nature of

the nanocrystal surface and should be relatively unaffected by small changes in the

surrounding environment [250]. In addition, the magnitude and frequency of small

spectral shifts such as several meV have been observed to increase with increase of

excitation intensity and energy (shorter excitation wavelength) [253, 254], which implies

that the contribution of excitation is in the form of energy released as the exciton relaxes

to its emitting state. Heating is considered not to be the main factor due to rapid heat

dissipation. However, changes of local electric fields which result from charges trapped

on or near the surface of the nanocrystal are thought to be responsible for the spectral

diffusion of QD. The released excess excitation energy may facilitate the movement of

the charges among different local trap sites, inducing local electric field fluctuations

and eventually generating observable spectral shifts [253]. Similar spectral shifts can be

realized by applying an electric field (Stark effect), which further confirms the model [255].

2.3.5 Single particle spectroscopy at cryogenic temperature

At cryogenic temperature, the emission spectra of single particles collapse to narrow lines,

exhibiting an abundant spectroscopic landscape and unexpected physical properties,

which are hidden at the ensemble level and the single particle level at room temperature.

With the technique of single particle spectroscopy at cryogenic temperatures, the

fundamental excitonic structure of the band edge can be revealed.

2.3.5.1 Electron-phonon coupling

A phonon, as an energy quantum, is a collective excitation in a periodic, elastic

arrangement of atoms or molecules in condensed matter. In a solid, it represents an

excited state of a quantized collective oscillation mode of the interacting lattice atoms.

By analogy with transverse and longitudinal waves, phonons as quasi-particles can

also be classified into transverse phonons and longitudinal phonons. The transverse

phonons oscillate perpendicularly to the direction of propagation whereas the oscillation

of longitudinal phonons is along the propagation direction. From another point of view,

phonons can be divided into optical and acoustic phonons. Optical phonons show

movements of cations and anions in the opposite directions, while those in acoustic

phonons move in the same direction. The term optical in this case has no meaning with

respect to the optical activity, but refers to the oscillation frequencies in the visible or

infrared spectral range. Therefore, as depicted in Figure 2.26(a), with the combination
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of directions and motions, the resulting types of phonons are: longitudinal optical

(LO), transverse optical (TO), longitudinally-acoustic (LA) and transverse-acoustic (TA).

Furthermore, the dispersion relations of LO- and LA-phonons in an anisotropic three-

dimensional crystal are shown in Figure 2.26(b). The LO-branch is usually almost

dispersionless.

(a) (b)
LO

TO

LA

TA

LO

LA

0

Figure 2.26: (a) Schematic diagrams of different types of phonons based on the directions of
motion of the ions in a crystal: longitudinal optical (LO), transverse optical (TO), longitudinal
acoustic (LA) and transverse-acoustic (TA). (b) The dispersion of longitudinal optical and
longitudinal acoustic phonons. From Ref. [256].

The properties of optical and acoustic phonons and their contributions to electron-

phonon coupling in semiconductor QDs are discussed below:

The coupling of optical phonons, especially LO phonons, to an exciton in a semi-

conductor is believed to be caused by the polar Fröhlich mechanism [102]. As shown in

Figure 2.27, after excitation, the spatial separation of the electron and hole wavefunctions

leads to an electric polarization field, resulting in a distortion of the ionic lattice as cations

and anions move to the opposite directions. With the recombination of the exciton, the

electric field disappears and the ions return to their initial positions, exhibiting vibrational

motion. The frequencies of optical phonons are mainly material dependent.

Acoustic phonons in optical transitions are generated by piezoelectric coupling

(induced by acoustic vibration induced electric polarization) or deformation of the lattice-

periodic potential (shift of the band energies due to a change in the atomic positions),

where the latter has a greater influence [258]. In contrast to the optical phonons whose

frequencies are weakly size dependent, the frequencies of acoustic phonons are strongly

size dependent and reveal an inversely proportional relationship with the radius R of

the QD [97, 259]. Unlike the optical phonons which are usually quite flat in the entire

first Brouillon zone, the acoustic phonons show a dispersion (Figure 2.26(b)). Therefore,
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(a) (b)

Breathing mode

Spheroidal mode

Torsional mode

Figure 2.27: (a) Fröhlich coupling at an optical excitation to optical phonons: The crystal
lattice is initially at equilibrium position without excitation (up); A photoexcited exciton with a
separation between the wavefunctions of the electron and the hole creates a temporary internal
electric field, distorting the (ionic) crystal lattice (middle); The internal field disappears and
the atoms relax to their equilibrium positions after the recombination of the exciton, inducing
lattice vibrations (bottom). Adapted from Ref. [257]. (b) Schematic diagrams of vibrational
modes of an elastic sphere: breathing mode (l = 0,n = 1) (up), spheroidal mode (l > 0,n = 0)
(middle) and torsional mode (l = 1,n = 0) (down), according to Ref. [102].

the acoustic phonon energy varies significantly with different symmetry points of the

Brillouin zone in bulk materials. The Lamb theory [260] considers the acoustic vibrations

of a particle as a whole from a classical point of view [261]. The theory based on the

model of a spherical elastic body was first described by Lamb [260] and applied to the

calculations of acoustic phonon energies by Tamura et al. [262], Tanaka et al. [263], Saviot

et al. [264], etc.

The model is valid when the wavelengths of the acoustic phonons are sufficiently

larger than the lattice constant of the semiconductor [102]. The computed vibrational fre-

quencies have reached consistency with the experimental data in many nano-structured

systems with different environments and various boundary conditions [261, 265–268].

In Lamb’s theory, the equation of motion of a three-dimensional elastic body is given

by [102, 269]:

ρ
∂2u

∂t 2
= (λ+µ)∇∇∇(∇∇∇·u)+µ∇∇∇2u (2.41)

where u is the lattice displacement vector, ρ is the mass density and the two parameters µ

and λ are Lamé constants, which connect the diagonal and off-diagonal elements of the
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deformation tensor ϵi k with that of the strain tensor σi k as:

σi k = 2µϵi k +λδi kϵl l (2.42)

Using these two constants, the longitudinal and transverse sound velocities can be

respectively expressed as:

vl =

√

2µ+λ

ρ
and vt =

√

µ

ρ
(2.43)

Under stress-free boundary conditions, Equation 2.41 can be solved by introducing a

scalar potential and a vector potential. Thus, two types of vibrational modes, which are

defined as spheroidal modes and torsional modes are obtained. The eigenvalues of both

are described by orbital angular momentum quantum number l and harmonic n. For the

spheroidal modes, we have:

2

[

η2 + (l −1)(l +2)

[

η jl+1(η)

jl (η))
− (l +1)

]]

ξ jl+1(ξ)

jl (ξ)
−

1

2
η4

+ (l −1)(2l +1)η2 + [η2 −2l (l −1)(l +2)]
η jl+1(η)

jl (η)
= 0 (l > 0)

(2.44)

where ξ and η are dimensionless eigenvalues and jl (η) is the spherical Bessel function

of first kind. The spheroidal modes are vibrations with dilatation. Their eigenvalues are

material dependent via the ratio vl/vt and given by:

ξs
l =

ωs
l
d

2vl
and ηs

l =
ωs

l
d

2vt
(2.45)

where ωs
l

is the angular frequency and d is the diameter of the particle. Particularly, the

mode with l = 0 and n = 0 which is called breathing mode is purely radial with spherical

symmetry. In contrast to the spheroidal modes which have mixed longitudinal and

transverse components, the torsional modes are purely transverse without dilatation,

independent of material, and the corresponding eigenvalues are:

jl+1(η)−
l −1

η
jl (η) = 0 (l > 1) (2.46)

which can be further written as:

ηt
l =

ωt
l
d

2vt
(2.47)
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Hence, the (n +1)th eigenvalues corresponding to the angular momentum l are denoted

as ξs
l
, ηs

ln
and ηt

ln
. Only the lowest modes (n = 0) are the surface modes and higher

modes (n > 1) are the inner modes [270]. Since these eigenvalues are simple numbers, the

eigenfrequencies ωs
l

and ωt
l
, or the energies of these spherically confined acoustic modes

reveal a 1/d dependence on size.

The strength of the electron-phonon coupling is described by the Huang-Rhys factor

S, which is defined as

Si =
∆

2
i

2
(2.48)

where ∆i is the shift of the potential minima of the ground and excited state in

dimensionless normal coordinates of phonon mode i . The reorganization energy λi is the

energy recovered as the system relaxes along this mode, given by λi =ωi Si , where ωi is the

phonon frequency [271]. At cryogenic temperatures, since all absorptions and emissions

originate from the ν= 0 state, the Huang-Rhys factor can be obtained directly from the

ratio of the intensities of the one-phonon transition and the zero-phonon line [271].

Experimentally, there is great variation in the strength of electron-phonon coupling

from QD to QD. Taking CdSe QDs as an example, the Huang-Rhys factor shows a large

distribution for both the longitudinal optical modes (SLO: 0.06-1.3) [253] and acoustic

phonons (Sac = 0.016-0.09) [272]. Considering the variation of the size among individual

QDs, it is not surprising that various experiments gave different results.

2.3.5.2 Fluorescence spectra at cryogenic temperature

The spectral properties of QDs are temperature dependent. When the temperature

is decreased from room temperature to cryogenic temperatures, the contribution of

phonons to electronic transitions becomes smaller and smaller, and the absorption

and emission spectra are strongly narrowed. For some materials, a purely electronic

transition without phonon participation which is called zero-phonon line (ZPL) can be

observed [273].

According to the Heisenberg uncertainty principle, the energy level above ground state

with energy E and lifetime ∆t has an uncertainty in energy [274, 275]:

∆E∆t ≃ ~ (2.49)

which means that with a finite lifetime τ of the excited state, any transition energy

cannot have infinitely narrow line frequency distribution, but contains a range of possible

frequencies. Then if dephasing effects can be neglected, the corresponding homogeneous
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linewidth in the spectrum is:

∆νhom =
∆E

h
≃

1

2π∆t
=

1

2πτ
(2.50)

Therefore, neglecting spectral diffusion, the ZPL at cryogenic temperatures has the line

profile of a Lorentzian curve based on this natural broadening [276]:

I (ν) =
1

2π

∆νhom

(ν−ν0)2 + (∆νhom
2 )2

(2.51)

Here, ν is the frequency, ν0 is the frequency of the optical transition with the highest

intensity and ∆νhom is the full width at half maximum (FWHM). At temperatures above

0 K, the homogeneous linewidth Γ(T ) of a transition for a single QD becomes [256]

Γ(T ) = Γ0 +σT +
ΓLO

eELO/kBT −1
(2.52)

where Γ0 = 1
2πτ is the homogeneous linewidth at 0 K, σ is the electron-acoustic phonon

coupling coefficient, ΓLO represents the strength of electron-LO-phonon coupling and

ELO is the LO-phonon energy.

Experimentally, at cryogenic temperatures, the purely electronic transition (ZPL) and

acoustic and longitudinal-optical phonon sidebands (PSBs) of some QDs such as CdSe

can be resolved, as shown schematically in Figure 2.28.

ZPL

Acoustic
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Figure 2.28: Schematic emission spectrum of a single CdSe QD at cryogenic temperatures with
a zero-phonon line (ZPL), acoustic phonon sideband (PSB) and the longitudinal-optical (LO)
phonon.

In addition to the spectral line shape, the band gap of a semiconductor also changes

with the temperature. A reduction of the temperature leads to a reversible blue-shift of the

spectra for both bulk semiconductor crystals and nanocrystals. This can be rationalized

by the interaction resulting from changes of bond length and electron-phonon coupling
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with temperature, whereby the bonding energy, and thus the band gap are modified. The

temperature dependence of the band gap of a bulk semiconductor crystal is generally

described with the empirical Varshni equation [277]:

Eg(T ) = Eg(0)−
αT 2

T +β
(2.53)

where Eg(0) is the band gap at 0 K, α is a temperature coefficient and the temperature β is

close to the Debye temperature of the corresponding material. However, these parameters

from different literatures are not consistent [278].

As an improvement of the Varshni equation, a further description of the temperature

dependence of the band gap of semiconductors proposed by O’Donnell and Chen takes

into account the influence of the electron-phonon coupling on the binding and the

resulting energy band gap [279]. In contrast to Equation 2.53, no empirical variables from

temperature dependent experiments are required, but the Huang-Rhys factor S and the

average phonon energy < ~ω> are involved [279]:

Eg(T ) = Eg(0)−
2S < ~ω>

e<~ω>/kBT −1
(2.54)

where kB is the Boltzmann constant. This equation can also be applied to the estimation

of Huang-Rhys factor and the average phonon energy if the transition energies have been

experimentally obtained. For example, Narayanaswamy et al. extracted the Huang-Rhys

factor S from experimental fitting based on this equation, revealing that the electron-

phonon coupling increases as the diameter of the nanocrystal decreases for InP/ZnS

QDs [280, 281]. A similar trend has also been observed for CdSe QDs through fluorescence

line narrowing experiment [282].
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Experimental materials and methods

3.1 Materials

Chemicals (Table 3.1) were purchased from Merck, abcr, Sigma-Aldrich, Alfa, Strem

Chemicals, Exciton, Goodfellow or lab-prepared. Perylene-monoimide (PMI) was supplied

by the group of Prof. Dr. Klaus Müllen (Max Planck Institute for Polymer Research, Mainz,

Germany). All chemicals were used without further purification.

Table 3.1: Chemicals used in this thesis.

Chemical structure
Molecular

Weight
Supplier

Trioctylphosphine oxide

(TOPO, 98%)
CH3

P

CH3

CH3

O

6

6

6

387 Merck

Trioctylphosphine

(TOP, 97%)
CH3

P

CH3

CH3

6

6

6

371 abcr

Tetradecylphosphonic

acid (TDPA)

CH3
P

O

OH

OH
12

278 Lab1

1Prepared by Michaela Wagner in the Basché group according to Ref. [283].
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Chemical structure
Molecular

Weight
Supplier

Oleic acid

(OA, 90%)
CH3

O

OH
6 5

282
Sigma-

Aldrich

1-Octadecene

(ODE, 90%)
CH3

CH2

15

252
Sigma-

Aldrich

Oleylamine

(70%)

CH3 NH2

6 6

267
Sigma-

Aldrich

Stearic acid

(SA, 98.5%)

CH3

O

OH

15
284

Sigma-

Aldrich

Tetrahydrofuran

(THF, 99.9%)

O

72
Sigma-

Aldrich

Tris(trimethylsilyl)-

phosphine

(P(TMS)3, 98%)

(10 wt% in hexane)

P

SiSi

Si

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

CH3

250
Strem-

Chemicals

Zinc acetate

(Zn(ac)2, 99.99%)

CH3 O

Zn

O CH3

O O

183
Sigma-

Aldrich

1-Dodecanethiol

(DDT, 98%)

CH3
SH

10

202
Sigma-

Aldrich

Perylene-monoimide

(PMI)
N

CH3CH3

CH3CH3

O

O

482 AK Müllen
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Chemical structure
Molecular

Weight
Supplier

Coumarin 545

N O

S

N

O

374 Exciton

Polymethyl-

methacrylate (PMMA)
CH3

CH3

O O

CH3

CH3

n —
Good-

fellow

Cadmium oxide

(CdO, 99.5%)
128

Sigma-

Aldrich

Selenium

(Se, 99.5%)
79 Alfa

Zinc oxide

(ZnO, 99.999%)
81

Sigma-

Aldrich

Sulfur

(S, 99.98%)
32

Sigma-

Aldrich

Indium chloride

(InCl3, 99.999%)
222

Sigma-

Aldrich

3.2 Synthetic methods

3.2.1 Synthesis of CdSe/CdS/ZnS quantum dots

The synthetic procedures to prepare CdSe/CdS/ZnS core-shell QDs in this thesis are based

on the methods developed by the group of Peng [18, 20, 125] and the group of Basché [21].

As shown in Figure 3.1, all reactions were carried out in an air-free and water-free system

with a continuous inert argon gas flow of 20–30 mL/min realized by a standard Schlenk
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Condenser

Temperature sensor

Cold trap

Dewar of liquid N2

Heating mantleMagnetic stirrer
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exhaust Pressure

gauge
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Figure 3.1: Experimental setup for quantum dot synthesis.

line setup in a fume hood. The vacuum achieved was about 1–5 mbar during the degassing

processes. The reaction temperature was controlled with a heating rate of 10–15◦C/min.

3.2.1.1 Precursor solution

All the precursor solutions were prepared under Ar atmosphere protection. The Se-TOP

precursor solution (0.2 M) was prepared by dissolving 79 mg Se powder in 5 mL TOP

at room temperature in an ultrasonic bath. The Cd-OA-ODE precursor solution (0.2 M)

was prepared by dissolving 160.5 mg CdO in 2.5 mL OA and 3.75 mL ODE at 200◦C. The

Zn-OA-ODE precursor solution (0.1 M) was prepared by dissolving 203.4 mg ZnO in 7 mL

OA and 18 mL ODE at 310◦C. The S-ODE precursor solution (0.1 M) was prepared by

dissolving 32 mg sulfur in 10 mL ODE at 180◦C.

3.2.1.2 Synthesis of CdSe core QDs

The hot injection approach was used for the synthesis of CdSe QDs [20, 21].

CdSe core synthesis in TDPA, TOPO and TOP In a typical reaction, 26 mg CdO, 112 mg

TDPA and 2 g TOPO were loaded in a three-neck flask and degassed at 100◦C for 15 min.

Then the mixture was heated up to 310◦C until the reddish CdO powder was gradually

dissolved resulting in optical clear solution. Subsequently, the temperature was adjusted
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to 270◦C (or 310◦C, 380◦C) and 1 mL as prepared Se-TOP precursor solution (0.2 M) was

swiftly injected. Immediately after the injection, the temperature decreased and was kept

at 250◦C (or 290◦C, 360◦C). The growth time was determined according to the desired size

and morphology (see Section 4.3.1). When the reaction was completed, the heating mantle

was removed and the solution was cooled to room temperature. To remove the unreacted

precursors and excess ligands, the QDs were precipitated by adding ethanol/methanol

(v/v 3:1), subsequent centrifugation and decantation. The resulting CdSe QDs were re-

dissolved in toluene and stored at 4◦C in the dark for further processing.

CdSe core synthesis in SA, TOPO and TOP To synthesize large spherical CdSe QD cores

(see Section 4.3.5.1), stearic acid (SA) was introduced. 13 mg CdO and 1 g SA were mixed

and heated to about 130◦C under Ar protection until the solution was clear. Then the

mixture was cooled to room temperature. After that, 2 g TOPO was added and the system

was re-heated up to 360◦C under Ar flow. Subsequently, the solution was cooled slowly and

the temperature was set to 270◦C. At this temperature, 1 mL as prepared Se-TOP precursor

solution (0.2 M) was swiftly injected and the QDs were allowed to grow at 250◦C for 1 min.

To stop the reaction, the heating mantle was removed and the solution was cooled to

approximately 70◦C and diluted with 10 mL of toluene. The QDs were precipitated by

adding acetone, centrifugation and decantation. The QDs with large size could be re-

dissolved in toluene and also be stored at a relatively muddy state at 4◦C in the dark for

further processing. The resulting size is 4.7 ± 0.6 nm, and other characterizations can be

found in Section 4.3.5.1.

3.2.1.3 Concentration estimate of the CdSe core

Although many approaches have been reported for the determination of the extinction

coefficient/absorption cross section and the concentration of CdSe QDs in solution, such

as atomic absorption spectroscopy [114, 284], osmotic pressure [285], comparison with

a known amount of precursor solution [286] and inductively coupled plasma atomic

emission spectroscopy [287], it is widely recognized that the results in the literatures

revealed large discrepancies [288, 289]. The discrepancies may be derived from the

differences of both the synthetic methods and the uncertainties of the characterization

techniques. In this thesis, the widely applied method by Yu et al. in Ref. [114] was adopted.

Typically, 10 µL of the prepared CdSe solution was taken and diluted with 3 mL

toluene. Then the absorption spectrum of this solution was measured. According to

the procedures and the empirical functions described by in Ref. [114], both the size and

the molar extinction coefficient of the CdSe QDs can be estimated from the wavelength of
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the first excitonic absorption peak. The CdSe molar concentration was then determined

by Beer-Lambert’s law:

A = ϵ ·C ·L (3.1)

where A is the absorbance at the first excitonic absorption peak, ϵ (L ·mol−1 ·cm−1) is the

molar extinction coefficient, C (mol/L) is the molar concentration of the QDs and L (cm)

is the path length of the cuvette. In the measurements in this thesis, L was fixed to 1 cm.

3.2.1.4 Shell coating of CdSe core QDs

The CdSe/CdS/ZnS core shell QDs were synthesized via successive ion layer adsorption

and reaction (SILAR) method [20, 21]. First, the size of the CdSe core was calculated by the

empirical formula Equation 2.15. Then, with the estimated concentration by Equation 3.1,

the amount of the precursor solutions for each injection was calculated by assuming the

growth of a concentric spherical shell with a thickness of one monolayer (ML). Based

on the wurzite structure of the nanocrystals, the average thicknesses of one ML of CdS

and ZnS were estimated as 0.35 nm and 0.31 nm, respectively. It is worth noting that

the best results were achieved by the procedure as follows: for the first ML, the actual

injection amount was 50% of the theoretical amount, and from the second ML, 50% of the

theoretical amount was used after the equivalent diameter correction based on the actual

injection volume of the last injection.

As a typical shell coating procedure of the SILAR method, ∼1.5 × 1017 CdSe QDs

dissolved in a minimum amount of toluene (e.g., 0.5 mL) were mixed with 4 mL ODE

and 1 mL oleylamine and loaded in a three-neck flask. Evacuation was conducted at

60◦C for 30 min to thoroughly remove the toluene. Then the mixture was heated to 240◦C

under Ar flow. During this process, Cd-OA-ODE precursor solution for the first ML was

injected at about 100◦C. After 10 min growth at 240◦C, S-ODE precursor solution for the

first ML was added. The subsequent injections of Cd-OA-ODE (or Zn-OA-ODE) and S-

ODE precursor solutions were performed alternately within time intervals of 10 min at

240◦C. Thus, multi-epitaxial growth of shells was possible to be carried out. After cooling

down to room temperature, acetone was added for the precipitation of the CdSe/CdS/ZnS

QDs by centrifucation. The particles were re-dispersed in toluene and stored at 4◦C for

further characterizations and applications.
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3.2.2 Assembly and enrichment of quantum dot oligomers

3.2.2.1 Assembly of QDs into QD oligomers

The assembly procedure of QDs is based on Xu’s method [47]: A toluene solution

containing∼1015 CdSe/CdS/ZnS QDs was diluted to 0.5 mL. Then 15 mL methanol as a bad

solvent was added. With slight shaking, the mixture instantly became turbid. Subsequently,

the QD monomers and oligomers were precipitated by centrifugation (4000 revolutions

per minute (rpm), 30 min) and re-dispersed in 0.3 mL cyclohexane. This was defined as a

cycle of assembly. If most of the QDs in solution at this time was still monomers (can be

characterized by TEM), an additional cycle of assembly was required, until the formation

of the desired amount of oligomers.

3.2.2.2 Enrichment and separation of QD oligomers

The enrichment and separation of QD oligomers were carried out by the density gradient

ultracentrifugation (DGU) technique using an ultracentrifuge from Beckman (SW-60 Ti

rotor (swing)). The density gradient was built with a cyclohexane−CCl4 solution system

from the bottom to top 90%, 80%, 70%, 60%, 50%, 40% with respect to the volume ratio of

CCl4 in an 11× 60 mm uncapped thick wall polyallomer tube (the inner diameter of the

tube is 8 mm). The volume of each layer was 0.35 mL. The solvent with the smallest density

was loaded firstly. Then successively, the solvent layer with larger density was injected

to the bottom of the tube using a syringe to lift the former solvent layer. After all layers

of solvent were injected, approximately 0.15 mL QD cyclohexane solution was carefully

added on top of the solution gradient. According to the QD size, different times (e.g.,

10–40 min) were used for the ultracentrifugation which was performed at 50000 rpm, 4◦C,

with the centrifuge chamber evacuated. The distinct bands corresponding to different

oligomers could be observed by eye under room light and/or UV lamp (312 nm). The

fractions were taken successively by a pipette or an 1 mL syringe from top to bottom.

3.2.3 Synthesis of InP/ZnSeS quantum dots

The synthetic procedure is based on the modification of the previous route developed by

Lim et al. [7, 52].

3.2.3.1 Precursor solution

InCl3-tetrahydrofuran (InCl3-THF) precursor solution was prepared by dissolving 25 mg

InCl3 in 1.13 mL THF. Zn-OA-ODE precursor solution was prepared by dissolving 5.50 g
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zinc acetate in 19 mL OA and 41 mL ODE at 200◦C under Ar atmosphere protection. P-ODE

precursor solution was prepared by mixing 0.4 mL P(TMS)3 solution (10 wt% in hexane)

with 1 mL ODE in a glove box. Se-TOP-ODE precursor solution was prepared by dissolving

31.6 mg Se in 1 mL TOP and 1 mL ODE.

3.2.3.2 Synthesis of InP/ZnSeS QDs

Modified from the routes of Ref. [52] and Ref. [7], synthesis of InP/ZnSeS QDs was

developed. Two main series of samples labeled as H and L respectively (see also

Section 5.2) were synthesized as follows:

1 mL InCl3-THF precursor solution, 2 mL Zn-OA-ODE precursor solution and 8 mL

ODE were loaded in a 100 mL three-neck-flask and degassed for 30 min at 100◦C. Then

the temperature of the system was increased to 280◦C (for H series) or 220◦C (for L series)

under Ar gas flow. At this temperature, 1.4 ml of P-ODE precursor solution was swiftly

injected into the solution. The solution was allowed to react for 20 s (for H series) or

7 min (for L series) before a proper amount of Se-TOP-ODE precursor solution was added

dropwise and reacted for 10 min (for H series) or 13 min (for L series). Subsequently, 4 mL

Zn(OA)2 solution and 0.18 mL 1-dodecanethiol (DDT) were added and the solution was

then heated up to 300◦C. After 90 min, the heating mantel was removed and the reaction

was therefore terminated. The as-prepared QDs were dissolved in chloroform and purified

by precipitation via centrifugation after adding an excess amount of acetone. The final

product was re-dissolved in chloroform.

For the HLim series samples prepared by Dr. Jaehoon Lim, besides the route for H

series samples, additional 6 mL (3 mmol) Zn(OA)2 stock solution were swiftly injected and

then 0.72 mL (3 mmol) 1-dodecanethiol were drop-wise injected, and the mixture was

reacted for 120 min at 300◦C.

3.3 Characterization techniques

3.3.1 Ensemble absorption and fluorescence spectroscopy

3.3.1.1 Absorption spectroscopy

UV-visible absorption spectra were measured with an Omega-20 spectrometer from Bruins

Instruments. Cuvettes with four quartz windows and thickness of 1 cm were used. The

absorption spectra were recorded against the corresponding pure solvent reference with
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a slit width of 0.5 mm. Samples were diluted until the absorbance was below 0.05 at the

excitation wavelength.

3.3.1.2 Fluorescence spectroscopy

Fluorescence emission (photoluminescence) and fluorescence excitation spectra were

taken with a FluoroMax-2 fluorometer from Horiba Jobin Yvon. Cuvettes with four

quartz windows and thickness of 1 cm were used. The samples were diluted until

∼10−7–10−6 mol/L to make sure the measured spectral intensities were within the linear

range of the spectrometer.

3.3.1.3 Quantum yield determination

The fluorescence quantum yield (QY) of QDs was determined by comparison of the

integral fluorescence intensity of the QD solution with a standard dye solution at the same

excitation wavelength according to the following formula [290–292]:

ΦQD =
(

Adye · IQD ·n2
solv.QD

AQD · Idye ·n2
solv.dye

)

Φdye (3.2)

where Φ is the quantum yield, A is the absorbance (optical density) at the selected

wavelength in the absorption spectrum which is taken as the excitation wavelength for

the fluorescence spectrum, I denotes the integrated fluorescence intensity, nsolv.QD and

nsolv.dye are the respective refractive indices of the solvents in which the QDs and dye are

dissolved. The subscript “dye” refers to the used reference dye whose absolute quantum

yield is known. Sample were diluted until the absorbance was below 0.05 at the excitation

wavelength for the fluorescence emission spectrum in order to minimize the inner filter

effect. For the CdSe/CdS/ZnS QDs in toluene, the reference dye perylene-monoimide

(PMI) in toluene whose QY is 90% was used [293]. The absorption spectra of both the

sample and the reference dye were measured. Then the wavelength corresponding to

the intersection of the two absorption spectra (i.e., where the optical density of the

QD is equivalent to that of the reference dye) was taken as the excitation wavelength

for fluorescence spectra. For the InP/ZnSeS QDs in chloroform, the reference dye

Coumarin 545 whose QY is 95% in ethanol was used [7]. The refractive indices of

chloroform and ethanol were 1.4459 and 1.3624, respectively. The chemical structures,

absorption and fluorescence spectra of PMI and Coumarin 545 are shown in Table 3.1 and

Figure 3.2.
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Figure 3.2: Absorption (dashed gray line) and fluorescence emission (solid black line) spectra
of PMI (a) and Coumarin 545 (b).

3.3.2 Transmission electron microscopy (TEM)

Philips EM-420 transmission electron microscope operated at an accelerating voltage

of 120 kV (for low resolution images), Carl Zeiss LIBRA-120 energy-filtered transmission

electron microscope operated at an accelerating voltage of 120 kV (for low resolution

images) and JEOL JEM-2100 operated at an accelerating voltage of 200 kV (for high

resolution images) were used to analyze the morphology, size distribution and the

structure of QDs. Samples were purified by precipitation/re-dispersion with bad solvent

and good solvent. The QD solutions were diluted and drop-casted onto copper grids

covered with a carbon film. The TEM grids were dried in air after removing the excess

liquid with filter paper. The size distributions were obtained by measurements of hundreds

of QDs for each sample with a program written by the author in AutoHotkey language.

3.3.3 Energy dispersive X-ray spectroscopy (EDS)

For elemental analysis, a JEOL JEM-3010 high-resolution transmission electron micro-

scope operated at an accelerating voltage of 300 kV equipped with EDS (Oxford) and a

Gatan digital camera (MSC-794) was used.

3.3.4 X-ray diffraction (XRD)

In order to investigate the crystal structure of QDs, XRD measurements were performed

with a powder diffractometer (Bruker New D8 Advance), using CuKα1 (λ = 0.15406 nm) as

the radiation source. Measurements were carried out in a 2θ range from 20 to 80 degrees.

The QD samples were thoroughly purified, drop-casted onto glass substrates for several
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times and dried at room temperature. The XRD patterns of the samples were corrected by

the data of the bare glass substrate measured under the same experimental condition.

3.3.5 Fluorescence lifetime measurements

Time resolved fluorescence measurements were performed by time-correlated single

photon counting (TCSPC) with a FluoroLog-3 spectrometer (Horiba Jobin Yvon). The

samples were excited at 450 nm with a repetition rate of 1 MHz by a tunable FIANIUM

fiber laser. A hybrid photomultiplier detector assembly (PMA Hybrid 50, PicoQuant) was

used as a detector. The photon counts from the APD and the trigger pulse from the laser

were fed into a PicoHarp 300 TCSPC module (PicoQuant) to record the rise/decay time

profiles. The instrumental response function (IRF) was recorded at 450 nm, employing

light scattered by the sample.

3.4 Experimental setups for single particle investigations

3.4.1 Sample preparation

A glass coverslip (Hecht, borosilicate glass, d = 20 mm, thickness 0.13–0.16 mm)

was first cleaned in the ultrasonic bath of Hellmanex dilute solution (5 mL special

cleaning concentrate Hellmanex II from Hellma diluted in 150 mL deionized water) and

subsequently cleaned with pure deionized water. Then the glass coverslip was heated in a

furnace at 520◦C for 4 hours.

A freshly prepared QD solution was diluted by toluene (for CdSe/CdS/ZnS QDs) or

chloroform (for InP/ZnSeS QDs) until the concentration was about 10−8 mol/L and further

diluted by 100 times with poly(methyl methacrylate) (PMMA, chemical structure shown in

Table 3.1)/toluene solutions (∼20 g/L). Finally, 30 µL of the obtained ultra-diluted solution

was spin-coated onto a clean glass coverslip at 3000 rpm for 120 s. This results in a QD is

doped polymer film with a thickness of ∼100 nm [294].

3.4.2 Excitation light sources

For the single particle emission spectroscopy of CdSe/CdS/ZnS QDs and InP/ZnSeS QDs at

cryogenic temperatures, OPSL (optically pumped semiconductor laser) with a wavelength

of 487.6 nm and an output power of 20 mW (Sapphire 488-20 CDRH, Coherent) was used.

For the single particle spectroscopy of InP/ZnSeS QDs at room temperature, diode laser
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with a wavelength of 445.4 nm and an output power of 75 mW (OBIS 445 LX, Coherent)

was used.

3.4.3 Confocal microscope for cryogenic temperature measurement

The confocal fluorescence microscope for the operation at cryogenic temperatures mainly

modified by Dr. Anne Boos from the commercial confocal microscope Attocube CFM1

(Attocube systems) [219] was used for the measurements of CdSe/CdS/ZnS QDs and

InP/ZnSeS QDs at 4.5 K. The basic structure of the setup is described below. More detailed

OPSL-

Laser

Wedge attenuator

APD

CCD

CCD

80/20 (t/r) Neutral beam splitter

50/50 Neutral
beam splitter

Single-mode

Laser-line filter

Cryostat

Microscope objective

Sample

Spectrograph

Long-pass filter

Short-pass filter

Movable mirror

fiberMulti-mode

fiber

Figure 3.3: Schematic diagram of the confocal fluorescence microscope setup for cryogenic
temperature measurement.
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introduction can be found in Ref. [295] and Ref. [219]. Figure 3.3 shows a schematic

representation of the principal components of the setup.

The excitation light passed through a polarization-maintaining single-mode fiber

(PM 460 HP, Nufern, this fiber also served as a pinhole) and reached an optical head

mounted on the cryostat. Here the filters removed unwanted wavelength components

(fiber fluorescence) before a neutral beam splitter cube (Linos Type 746 908, 20R/80T),

by which 20% of the light was reflected through an optical window (N-BK7 Broadband

Precision Window, Thorlabs) into the cryostat in the direction of the microscope objective.

The objective focused the excitation light onto the sample in the cryostat and collected the

fluorescence light. The emitting light went back along the same path as the excitation light

until the beam splitter, which transmitted 80% of the intensity. After the beam splitter, a

movable mirror could be inserted and served for focus checking by the reflection of the

excitation light from the sample plane to a CCD (charge coupled device) camera. After

this movable mirror, remaining excitation light was removed by an optical long-pass filter

before the emission light was focused on the conjugate focal plane of the focal plane in

the sample, where a multi-mode fiber (AFS50/125Y Custom Patch Cord 2.5 m, Thorlabs)

was located. Then the emission light was guided by means of the multi-mode fiber to

a detection system mounted on an optical table and composed of an APD (avalanche

photo diode) and a spectrograph equipped with an EMCCD (electron multiplying charge

coupled device). Some important elements are introduced in more detail below:

3.4.3.1 Cryostat and sample tube

The Supervari-Temp-Cryostat which allows experiments at variable temperatures from

1.4 K to room temperature from Janis Research was used for cryogenic temperature

measurement in this thesis. The schematic diagram in Figure 3.4 illustrates the details

of the cryostat. The cryostat consisted of several insulating vacuum chambers and three

containers for cryogenic liquids: 1) A liquid nitrogen reservoir of a capacity of 50 L was

used for pre-cooling the system and reducing the consumption of liquid helium. 2) A 50 L

liquid helium reservoir, in which the helium level was monitored by a level indicator (liquid

cryogen level meter, model LM-500, Cryomagnetics), allowed continuous measurements

for several days and the exemption from frequent liquid helium refilling. 3) The third

container mounted in the helium reservoir was called variable temperature insert (VTI).

It included a vacuum-insulated tube which could be filled with liquid helium from the

helium reservoir through a needle valve. The so-called “cryogenic temperature” in this

thesis realized by this setup is 4.5 K.
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Figure 3.4: Schematic diagram of the cryostat in Figure 3.3 Adapted from Ref. [219].

The sample, the objective and the piezo-stack were mounted in a cylindrical titanium

sample tube and not directly in liquid helium in the VTI due to the requirements of the

piezo actuators and sensors. After sample loading, the sample tube needed to be degassed

until ∼10−4 mbar for 2 hours for QD samples and refilled with ∼10 mbar of helium gas for

sufficient and fast temperature setting.

3.4.3.2 Sample movement

The sample movement was based on a combination of coarse and fine adjustable piezo-

actuators under a stationary microscope objective in the cooled cryostat with liquid

helium. The combination of these two positioning principles allowed both relatively far

distances of the sample travel and a precise control of a position. The piezo-actuators,

which could be moved even at cryogenic temperatures, realized the movement of the laser

beam on the sample in a telecentric system by sample scanning instead of laser scanning.

By moving the sample, the paraxial approximation of the light was satisfied and thus the

aberrations were minimized [219].
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3.4.3.3 Avalanche photodiode (APD)

An avalanche photodiode (APD), whose high sensitivity allows even single-photon

detection, is a semiconductor analog of a photomultiplier that converts light into

electricity based on the photoelectric effect. By applying a high reverse bias voltage,

the electron was accelerated by an electric field such that further electrons were generated

due to impact ionization (avalanche effect). By a single photon, a steady stream via this

internal current gain effect could be generated and detected. The current depended on

the spectral sensitivity of the APD, the internal amplification as well as the incident light

power [219]. In this work, as represented in Figure 3.3, the emitting light was focused

by an achromatic lens ( f = 50 mm) on the active area (diameter = 170 µm) of an APD

SPCM-AQR-14 (Perkin Elmer), which had a time resolution of 690 ps [294].

It is worth noting that the APD was on the optical head before November of 2012.

The former setup can be found in Ref. [295]. However, this configuration induced a poor

mechanical stability of the system. In addition, since the APD had a relatively large active

area (170 µm in diameter), a higher background was observed. As an improvement, when

the APD was moved onto the optical table behind the multi-mode fiber, the mechanical

stability of the system was dramatically enhanced and the background was reduced.

3.4.3.4 Spectrograph and EMCCD-camera

The fluorescence emission spectra from single QDs were recorded by a spectrograph

(SR-750-B1-R, Andor Technologies) with a focal length of 750 mm in Czerny-Turner

configuration and an EMCCD camera (Newton EMCCD O DU970N-BV 1600 x 200 pixels

with an edge length of 16 microns per pixel, Andor Technology). The emitted light was
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Figure 3.5: (a) Spectrum of a 488 nm laser whose FWHM indicates the spectral resolution of
the spectrograph. (b) Wavelength dependent quantum efficiency of the EMCCD camera in
combination with a grating with 150 grooves/mm, provided by Andor Technologies.
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focused by an achromatic lens ( f = 80 mm) on the entrance slit of the spectrograph

and parallelized by a concave mirror. Parallel light beam hit a diffraction grating which

reflected dispersed light on a further concave mirror. The concave mirror focused the light

eventually onto a EMCCD camera. The grating with 150 grooves/mm allowed a spectral

range as large as 200 nm displayed on the EMCCD camera. As revealed in Figure 3.5(a),

spectral resolution of the spectrograph was measured to be ∼15 cm−1 with a 488 nm laser.

The wavelength dependent quantum efficiency of the EMCCD camera in combination

with a grating with 150 grooves/mm is shown in Figure 3.5, and the obtained emission

spectra were corrected accordingly.

3.4.4 Confocal microscope for room temperature measurement

The confocal microscope developed in the Basché group for room temperature mea-

surement is shown in Figure 3.6. The excitation laser light was coupled into a single-

Laser-line filter

CCD

camera

Microscope

objective

8Oil immersion,

N.A.=1.42

APD

CCD

50/50 8t/r2

splitter

Spectrograph

Sample

Long-pass filter

50/50 8t/r2

Beam splitter

80/20 8t/r2

80/20 8t/r2

Short-pass filter
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fiber-modeSingle

Beam splitter

Beam splitter

Figure 3.6: Schematic diagram of the confocal fluorescence microscope setup for room
temperature measurement.

mode fiber and subsequently passed through filters for spectral filtering. Then the

light transmitted through a neutral beam splitter cube and was reflected by a beam
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splitter plate (the transmittance and reflectivity of both beam splitters were 80% and

20%, respectively). The incident light further went into an oil immersion microscope

objective (Zeiss Plan-Apochromat, NA = 1.4) and was eventually focused on the sample.

The fluorescence light of the sample as well as the reflected excitation light was collected

by the same microscope objective and 4% of the intensity was delivered along the same

path as the excitation light and eventually focused onto a CCD camera, by which the

focus of the sample plane could be monitored. The other 80% of the intensity of the

returning light passed through the beam splitter plate and the component of remaining

excitation light was removed by a long-pass filter. Eventually the emission light reached

a detection system composed of an APD (SPCM-AQR-14, Perkin Elmer, time resolution:

690 ps) and a spectrograph ( f = 300 mm, SpektraPro 300i, Acton Research) equipped

with an EMCCD (Newton EMCCD O DU970N-BV 1600 x 200 pixels with an edge length

of 16 microns per pixel, Andor Technology). An achromatic lens with a focal length of

50 mm was used to focus the collimated light on the entrance slit of the spectrograph,

and a grating with 50 grooves/mm was selected for the measurements of InP/ZnSeS QDs

at room temperature. The fluorescence image was performed by successively scanning

the sample mounted on a piezoelectric XY-translation stage (P-731-8C). Combined with

another piezoelectric element (P-721, PIFOC), the microscope objective could be moved

in Z-direction for focusing. The high NA of the microscope objective in this setup and

the absence of the multi-mode fiber in the detection path increased the signal of the

fluorescence.

3.4.5 Experimental conditions for single particle measurements

Experimental conditions for single particle measurements in this thesis such as excitation

source, excitation power, excitation intensity, filter combinations, objective, grating and

spectral resolution (defined by FWHM of the corresponding excitation laser light) are

tabulated in Table 3.2. All experimental spectral data were analyzed by procedures on the

platform of software WaveMetrics Igor Pro.
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4
Monomers, homo- and hetero-

dimers of CdSe/CdS/ZnS QDs

4.1 Motivation and approaches

Assembly of nanoparticles into oligomers and larger structures is of current interest,

since the properties of the assembled structures may differ from those of the isolated

components [33–39]. For instance, creating three dimensional superlattices via coupling

of nanoparticles leads to a shift of their emission energy [40–42]. To quantitatively

investigate the fundamental mechanism of specific interactions (e.g., electronic coupling)

among the components, the first challenge is to find an effective coupling approach to

build a well-defined system containing particle oligomers. As introduced in Section 2.2.1,

various methods of indirect self-assembly were developed for inorganic nanoparticles,

including noble metal nanoparticles and semiconductor quantum dots (QDs) [34, 35, 44].

However, since a strong interaction requires a short inter-particle distance, the direct

assembly is more important. Unfortunately, well-defined nanoparticle oligomer systems

obtained by direct assembly can only be found in a few reports, most of which are limited

to metal particles [45, 46]. Although Xu et al. in the Basché group developed the direct

assembly of semiconductor QDs into QD dimers and trimers [47], the corresponding

property studies are still in their infancy. In addition, new systems like QD hetero-

oligomers are more easily amenable to quantitative studies of the electronic couplings

among QDs, and therefore, needed to be prepared.
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The motivation of this project was to construct a well-defined QD oligomer (dimer)

system by direct assembly of individual (monomer) CdSe/CdS/ZnS QDs for future optical

investigations on the electronic coupling between the neighboring QDs at the single

particle level.
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Figure 4.1: Simulated fluorescence emission spectra of single QD hetero-dimers and homo-
dimers at 295 K and 4.5 K with Gaussian line shape: (a) Hetero-dimer with an emission
wavelength difference of 18 nm at 295 K. (b) Hetero-dimer with an emission wavelength
difference of 42 nm at 295 K. (c) Homo-dimer with an emission wavelength difference of
10 nm at 295 K. (d) Homo-dimer with an emission wavelength difference of 10 nm at 4.5 K.
Under the assumption that the FWHM of a single QD is 21 nm and 0.5 nm (spectral resolution
limited) at 295 K and 4.5 K, respectively, the green and red dashed lines represent the emission
spectra of the green and red QDs, respectively. The solid black line is the the dimer fluorescence
under the assumption that energy transfer from green QD to red QD is 20%.

Possible approaches for the investigation were analyzed and illustrated in Figure 4.1.

Regarding the emission wavelengths of the QD components, there are two possible QD

dimer configurations at the single particle level:

• Hetero-dimer: The two components, i.e., the green QD (denoted as gQD, since in

many cases in this thesis it is green-emitting) and the red QD (denoted as rQD, since

many cases in this thesis it is red-emitting) were prepared separately with different

emission wavelengths before assembly.
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• Homo-dimer: The QD dimer which assembled from the same batch of the raw QD

solution. However, since a size distribution exists in any ensemble QD system, the

two QDs at the single particle level within a dimer do not have exactly the same

emission wavelength. In this sense, a gQD and rQD can also be defined according

to the slightly different emission wavelengths.

The fluorescence components of the two QDs within a dimer are required to be

spectrally differentiable in order to probe them individually at the same time. Considering

that the full width at half maximum (FWHM) of a single CdSe/CdS/ZnS particle is

around 21 nm (see Section 4.2.5) at room temperature (295 K), according to Rayleigh

criterion [218], the minimum separation of the emission maxima of gQD and rQD should

be above 20 nm in order to obtain a visible discrimination. In Figure 4.1(a), dimer spectra

with a spectral separation of 18 nm are shown exemplarily. Furthermore, a complete

separation of the two emission peaks, which is important for the optical measurement

of the components individually, requires an emission wavelength difference as big as

about 42 nm at room temperature (Figure 4.1(b)), which can only be realized in a hetero-

dimer. Although it is difficult to resolve the contributing spectra for homo-dimers at room

temperature (Figure 4.1(c)), they can be well separated at cryogenic temperatures (e.g.,

4.5 K). As introduced in Section 2.3.5.2, at cryogenic temperatures, the emission peaks of

the CdSe/CdS/ZnS QDs are expected to be strongly narrowed and become a sharp line

(the so-called zero-phonon line (ZPL)). The sharp ZPL allows very fine discrimination

of the two peaks of gQD and rQD, even if they are derived from the same QD batch, as

represented in Figure 4.1(d).

In conclusion, two different approaches have been attempted in this project: 1) the

cryogenic temperature measurement of a homo-dimer sample; 2) the room tempera-

ture measurement of hetero-dimers whose QD components exhibit large wavelength

difference (near 40 nm).

4.2 CdSe/CdS/ZnS QD monomers and homo-dimers

4.2.1 CdSe cores and CdSe/CdS/ZnS QDs

The synthetic procedure for CdSe/CdS/ZnS QDs can be found in Section 3.2.1. Briefly,

the CdSe core QDs were synthesized by hot injection of Se-TOP precursor solution into

Cd solution in TDPA and TOPO. Then the successive ion layer adsorption and reaction

(SILAR) method [20, 21] was applied for the respective coating of CdS and ZnS shells onto

the CdSe core, resulting in a CdSe/CdS/ZnS core/shell/shell system.



72 Monomers, homo- and hetero- dimers of CdSe/CdS/ZnS QDs

2.5

2.0

1.5

1.0

0.5

0.0

In
te

n
si

ty
 (

a
.u

.)

700650600550500450400

Wavelength (nm)

25000 20000 18000 16000

Wavenumbers (cm
-1

)

 Abs. CdSe
 Em. CdSe
 Abs. CdSe/CdS/ZnS
 Em. CdSe/CdS/ZnS

30

20

10

0O
cc

u
rr

e
n
ce

 /
 0

.5
 n

m

65432
Diameter (nm)

(a)

(b)

30

20

10

0

O
cc

u
rr

e
n
ce

 /
 0

.5
 n

m

10864

Diameter (nm)

(c)

Figure 4.2: Characterizations of CdSe core QDs and CdSe/CdS/ZnS core-shell QDs: (a) The
absorption (dashed lines) and emission spectra (solid lines) of CdSe cores (black curve)
and CdSe/CdS/ZnS QDs (gray curve), respectively; TEM images and the corresponding size
distributions of (b) CdSe core QDs (4.0 ± 0.3 nm) and (c) CdSe/CdS/ZnS core-shell QDs (6.3 ±
0.6 nm). The solid curves in the histograms are the corresponding Gaussian fits.

A representative example is shown in Figure 4.2: the CdSe core QDs with a diameter of

4.0 ± 0.3 nm were prepared at an injection temperature of 310◦C, growth temperature of

290◦C and with a growth time of 3 min. Subsequently, 4 monolayers (MLs) CdS and 1 ML
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ZnS were overcoated. From Figure 4.2(a), it can be observed that after the epitaxial growth

of the shell, both the absorption and fluorescence emission spectra exhibit explicit red

shifts, with the first excitonic absorption peak shifting from 553 nm to 572 nm and the

emission maximum from 562 nm to 579 nm, respectively. This suggests an extension of the

exciton wavefunctions from the core into the shell [150, 151]. The FWHMs of the emission

peaks of the core and core-shell particles are 24.7 nm and 26.6 nm, indicating narrow

emissions. In addition, the quantum yield of the QDs is dramatically enhanced from 20%

to 62% by the coating of the CdS/ZnS shell, which can be explained by the increasing

confinement of the wavefunctions of the charge carriers away from the surface, thereby

reducing the probability of non-radiative de-excitation processes from the surface-related

trap states (e.g., surface dangling bonds and defects) [148–151].

The transmission electron microscopy (TEM) images and the size statistics are

represented in Figure 4.2(b) and Figure 4.2(c), for the core sample and CdSe/CdS/ZnS QDs,

respectively. The respective sizes are 4.0 ± 0.3 nm and 6.3 ± 0.6 nm, indicating narrow

size distributions. In addition, the QDs become more spherical and more regular after

shell-coating.

4.2.2 Assembly of CdSe/CdS/ZnS QDs

To prepare QD oligomers, a procedure based on the method developed by Xu et al. [47]

was adopted. “A cycle of assembly process” is defined and depicted in Figure 4.3: Methanol

as a bad solvent was added to a toluene solution containing CdSe/CdS/ZnS QDs. The

aggregated QDs were precipitated by centrifugation and re-dispersed in cyclohexane. If

most of the QDs in solution are still monomers, which can be checked by TEM analysis,

an additional cycle of assembly was conducted. For details see Section 3.2.2.1.

Density Gradient Ultracentrifugation (DGU)

Add

bad solvent
Dissolved

in good

solvent

Centrifugation Decant the solvent
Re-dissolve

in good solvent

Figure 4.3: Schematic diagrams of a cycle of assembly procedure of QDs from monomer to
oligomers. The red dashed ellipses in the last tube indicate QD dimers.
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(a)

(b)

(c)

 9.1 nm QDs

 6.3 nm QDs

 3.8 nm QDs

 1 cycle

 1 cycle

 4 cycles

 3 cycles

 8 cycles

Figure 4.4: TEM images after different numbers of cycles of assembly process of CdSe/CdS/ZnS
QDs with various sizes (diameters): (a) 9.1 ± 0.9 nm, (b) 6.3 ± 0.6 nm and (c) 3.8 ± 0.5 nm. The
required number of cycles of the assembly to obtain an appropriate proportion of oligomers is
strongly size dependent.

To characterize the assembly of QDs, TEM measurements were performed. Regarding

the sample preparation for TEM, QD solutions with high concentrations (e.g., absorbance

above 0.2) can self-assemble to result in ordered close packed QD arrays on the carbon

film on the TEM grid evaporation of the solvent. This is an indication that the QDs are

uniform in size and morphology, as shown in Figure 4.2(b) and (c). However, it has to
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be pointed out that these self-assembled close packed arrays are not the desired stable

oligomers formed in solution, because they are still fully covered with ligands and will

disassemble when they are re-dissolved in a good solvent. Therefore, to avoid this self-

assembly (induced by evaporation of the solvent on TEM grids), the samples have to be

diluted to very low concentrations (absorbance below 0.05) for the TEM characterization

of the oligomers. As a compromise, the number density of particles in TEM image has to

be drastically reduced.

Figure 4.5: A large-area TEM image of oligomers assembled from CdSe/CdS/ZnS QDs with a
diameter of 6.3 nm. The particles marked with white circles are QD dimers.

An interesting phenomenon is that the required cycles of assembly were found to

be QD size dependent. To demonstrate this, three batches of CdSe/CdS/ZnS QDs

with different sizes were compared. As revealed in Figure 4.4(a), for big QDs with a

diameter of 9.1 nm, after one cycle of assembly, some oligomers were formed. In contrast,

aggregation is more difficult for smaller QDs. For instance, after a cycle of assembly with

the same procedure, the particles in the sample of 6.3 nm QDs (the same sample shown

in Figure 4.2(c)) were mostly monomers (Figure 4.4(b), middle). To obtain an enlarged

fraction of oligomers, two more cycles had to be performed (Figure 4.4(b), right). More
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seriously, for the QDs as small as 3.8 nm, even 4 cycles were not sufficient to trigger

efficient assembly, but oligomers appeared only after 8 cycles (Figure 4.4(c)). Several

factors are speculated to be responsible for this experimental observations: 1) A linear

dependence of dipole moment on size of QDs as was reported by Shim et al. [183]; 2)

After the removal of excess ligands by purification, more surface ligands might be lost for

larger QDs during the assembly process; 3) The effect of steric repulsion might be also size

dependent.

As an example, a large-area TEM image of assembled oligomers from CdSe/CdS/ZnS

QDs with a diameter of 6.3 nm is shown in Figure 4.5. Particles marked with white circles

are dimers. Generally, the fraction of QD dimers obtained at this stage is about 20%–30%

for all particle sizes.

4.2.3 Enrichment and separation of QD oligomers

To further enrich the required QD dimers, density gradient ultracentrifugation (DGU)

was applied. As described in Section 3.2.2.2, a cyclohexane−CCl4 solution system was

ultracentrifugation

Monomer band

Dimer band

Trimer band

Starting position

Precipitation

Original sample

Figure 4.6: A schematic diagram of the principle of density gradient ultracentrifugation. The
gray level represents the mass density (darker color corresponds to larger density).

used to build the density gradient. The volume fractions of CCl4 are 90%, 80%, 70%, 60%,

50%, 40% from the bottom to top. As discussed in Section 2.2.2, since the density of

the QDs is much larger than any available organic solvent, the isopycnic centrifugation

is impossible to be conducted. According to the principle of rate-zonal centrifugation

which was applied here and is schematically depicted in Figure 4.6, with a proper time

of ultracentrifugation, distinct monomer, dimer and trimer bands in the tube can be

obtained due to the size difference among them. According to Equation 2.28, the required

time is strongly QD size dependent. Since Equation 2.28 is based on the force equilibrium
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Figure 4.7: Photographs of centrifuge tubes after DGU containing solutions of the QDs with
different sizes: (a) 3.8 nm, (b) 6.3 nm and (c) 9.1 nm. The left photographs were taken under
room light while the right ones were taken under UV lamp. The right panels show typical
TEM images of samples taken from the various bands and the corresponding fractions of the
particles expected.
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condition of small nanoparticles (the inertial effects are negligible [202]), if it is applied

directly to the uniform linear motion, the sedimentation distance s should be calculated

as s = v t , i.e.,

s = v t =
K (ρ−ρl)deq

2

18η
ω2r t

with K = 0.843 · log10

Aeq

0.065 · A

(4.1)

where v is the velocity of the particle, ρ and ρl are the densities of the particle and the

liquid medium, respectively, ω is the angular speed, r is the distance from the rotation

axis of the rotor to the location of the particle, η is the viscosity, and deq and Aeq represent

the diameter and the surface area of the sphere which has the same volume as the particle,

respectively. A is the surface area of the real particle and K , usually between 2 and 4, is

a correction factor. Figure 4.7 shows three sets of photographs of the centrifuge tubes

after DGU containing solutions of oligomers assembled from QDs with sizes of 3.8 nm,

6.3 nm and 9.1 nm, respectively. Indeed, the resulting solutions exhibited two or three

distinct bands, separated by dark gaps. Subsequently, the fractions in the centrifuge

tube were taken carefully by a pipette or an 1 mL syringe from top to bottom. In

this thesis, the fractions taken from the monomer, dimer or trimer band are defined

as “monomer sample”, “dimer sample” and “trimer sample”, respectively, and the QD

monomers, dimers, trimers and higher oligomers are collectively termed “particles”. The

right panels in Figure 4.7 present TEM images of samples taken from the various bands

and the corresponding fractions of the particles expected. It can be concluded from the

TEM images that almost all particles in the monomer samples are monomers, and the

neighboring QDs within a dimer or a trimer are in closely contact, which is consistent

with the directly coupled QD dimers reported in Ref. [47]. A large-area TEM image of the

obtained 6.3 nm CdSe/CdS/ZnS QD dimer sample is shown in Figure 4.8. The fraction of

the QD dimers in this sample is ∼68% (157 out of 231 particles). In general, the fraction of

QD dimers in a dimer sample depends on various factors, such as the initial fraction of

dimers before DGU, the stability of the solution in the centrifuge tube (e.g., turbulence

and diffusion due to mechanical vibration disturbance), the skills in extracting the fraction

from the centrifuge tube after DGU and the volume of the solution extracted. The highest

dimer fraction is 81% (356 out of 439 particles). Thus, the QD dimers are separated from

as assembled oligomer mixture and therefore, enriched. Additionally, as revealed by the

photographs in Figure 4.7, to arrive at similar positions in the centrifuge tube, the smaller

QDs requires longer time of ultracentrifugation than the bigger QDs.

Even if only the position of the QD monomers is taken into account, the predicted

sedimentation distance by Equation 4.1 reveals difference from the experimental
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Figure 4.8: A large-area TEM image of the sample which is taken from the dimer band shown
in Figure 4.7(b). The particles marked with white circles are QD dimers. The inset shows
the particle distribution. Mo.: monomers; Di.: dimers; H.O.: trimers, tetramers and higher
oligomers.

observations (see columns of “Calc.s∗1 ” and “Exp.s1” in Table 4.1). This difference becomes

very severe when comparing the positions of the dimer and trimer bands (see columns

of “Calc.s∗2 ” and “Exp.s2” for dimer bands, and “Calc.s∗3 ” and “Exp.s3” for trimer bands in

Table 4.1). The specific parameters were taken as follows:

• The mass density of the CdSe/CdS/ZnS QDs ρ = 5×103 kg/m3, considering that the

density of CdSe, CdS and ZnS (wurtzite structure) are 5.81×103 kg/m3, 4.82×103

kg/m3 and 3.98×103 kg/m3, respectively.

• The mass density of the liquid medium ρl = 1.338×103 kg/m3, which is the average

density of the cyclohexane−CCl4 gradient solvent system used.

• The viscosity η = 1×10−3 Pa·s, since the viscosities of cyclohexane and CCl4 are

1×10−3 Pa·s and 0.97×10−3 Pa·s, respectively.
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• As depicted in Figure 4.9(b), when the rotor is processing, the particles are moving

in the centrifuge tube, therefore, as the first approximation, the average radius of

the rotor rav = 91.7 mm was taken as the rotation radius r in Equation 4.1.

• The angular velocity ω is calculated with the rotation speed of 50000 rpm.

Table 4.1: DGU experimental conditions and sedimentation distances of QD oligomers with
different sizes. s1, s2 and s3 represent the sedimentation distances of the monomers, dimers
and trimers, respectively. “Calc.” with star stands for calculation results based on Equation 4.1
while “Calc.” without star stands for the calculation results based on Equation 4.11. “Exp.”
denotes the experimental observations. “Time” means the time of ultracentrifugation.

QD size
(nm)

Time
(min)

Calc.s∗1
(mm)

Calc.s1

(mm)
Exp.s1

(mm)
Calc.s∗2
(mm)

Calc.s2

(mm)
Exp.s2

(mm)
Calc.s∗3
(mm)

Calc.s3

(mm)
Exp.s3

(mm)

3.8 40 17.7 13.9 13.0 28.1 21.0 19.5 36.9 26.7 –
6.3 24 29.2 24.2 24.9 46.4 37.3 36.0 60.8 48.2 –
9.1 10 25.4 20.7 21.5 40.3 31.6 29.5 52.9 40.7 35.5

The significant disagreement between the calculations based on Equation 4.1 and

experimental results can be explained by the over-simplifications with regard to the

following two aspects:

(1) As mentioned above, the position of QDs in the tube changed during the DGU. As a

result, the rotation radius r which was related to the centrifugal force should not be taken

as a constant, but should vary between rmin and rmax as shown in Figure 4.9(b). Since at

the beginning the sample was loaded at the top of the centrifuge tube, the r is directly

related to the sedimentation distance s of the QDs, i.e., s = r − rmin.

(2) The density of the medium differs at different positions/depths. Therefore, the use

of an average solvent density for the calculation may be inappropriate. Since the liquid

layers with different densities could also diffuse with the proceeding of DGU, a quasi-

continuous variation of the density along the tube can be assumed. From the geometry

of the centrifuge tube and the amount of solvent for each layer, the density gradient was

calculated to be cρ = 10 kg ·m−3 · mm−1. Consequently, the density ρl should be corrected

to be ρl(r ) = ρ0 + cρ(r − rmin), where ρ0 = 1.16×103 kg/m3 is the smallest density of the

solvent (40% CCl4).

Based on the two considerations above, an improvement of Equation 4.1 was

developed as follows:

v =
K

[

ρ−ρl(r )
]

deq
2

18η
ω2r (4.2)
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(a) (b)

(63.1 mm)

(91.7 mm)

(120.3 mm)

s

r

Figure 4.9: (a) A photograph and (b) profile chart of Beckman SW-60 Ti rotor (swing), adapted
from the manual of the device. The black dot in the centrifuge tube schematically denotes the
position of a QD. The color gradient in the centrifuge tube stands for the density gradient of the
solvent (darker color corresponds to larger density).

where ρl(r ) = ρ0 + cρ(r − rmin). For simplicity, we define

α≡
Kω2d 2

eq

18η
(4.3)

Therefore, Equation 4.2 can be re-written as:

v =α(ρ−ρ0 − cρr + cρrmin) · r =α(ρ−ρ0 + cρrmin) · r −αcρr 2 (4.4)

Then, further defining

p ≡α(ρ−ρ0 + cρrmin) and q ≡−αcρ (4.5)

we have

v =
dr

dt
= p · r +q · r 2 (4.6)

i.e.,

dt =
1

pr +qr 2
dr (4.7)
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the integration of Equation 4.7 yields:

t =
∫

dt =−
1

p
ln

∣

∣

∣

p +qr

r

∣

∣

∣+C (4.8)

Therefore,

r =
p

e−p(t−C ) −q
(4.9)

where C is the integration constant, which can be determined by the initial conditions.

r (t = 0) = rmin =
p

ecp −q

Thus,

C =
1

p
ln

(

p

rmin
+q

)

(4.10)

Eventually, the expected sedimentation distance is:

s = r − rmin =
p

e−p(t−C ) −q
− rmin

where

p =
Kω2d 2

eq

18η
(ρ−ρ0 + cρrmin)

q =−
Kω2d 2

eq

18η
cρ

K = 0.843 · log10

Aeq

0.065 · A

C =
1

p
ln

(

p

rmin
+q

)

(4.11)

Concerning the situation of a QD dimer or trimer, as introduced above, the equivalent

diameter deq and equivalent area Aeq, which correspond to the sphere with the same

volume as the oligomers, were calculated and substituted into Equation 4.11. The obtained

sedimentation distances of the particles are denoted as s1, s2, s3 for monomers, dimers

and trimers, respectively.

Table 4.1 lists the calculated and experimental sedimentation distances of QDs with

various sizes and DGU times, experimental results of which are shown in Figure 4.7.

In contrast to the values calculated based on Equation 4.1 (Calc.s∗1 and Calc.s∗2 ), the
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predicted sedimentation distances by Equation 4.11 for both monomers (Calc.s1) and

dimers (Calc.s2) are well consistent with the experimental observations (Exp.s2), although

the equivalence of a dimer to a sphere which has the same volume is a very rough

approximation. As shown in Figure 4.7(c), a trimer band can also be seen for 9.1 nm QDs.

However, the prediction of this trimer position Calc.s3 exhibits relatively big difference

from the reality (although better than Calc.s∗3 ). This might be attributed to the imperfect

“equivalent sphere” approximation for trimers, considering that they posses more kinds of

geometrical configurations.
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Figure 4.10: Absorption (dashed lines) and emission (solid lines) spectra of the monomer
sample (black curves) and the dimer sample (gray curves) which are taken from the monomer
band and the dimer band shown in Figure 4.7(b), respectively.

Ensemble absorption and emission spectra of 6.3 nm monomer and dimer samples

are shown in Figure 4.10(c). Compared to the monomer sample spectra, the absorption

spectrum of QD dimer sample exhibits a small red-shift of the first excitonic peak (from

572 nm to 575 nm), and the fluorescence peak in the emission spectrum also slightly

shifts to the lower energy direction (from 579 nm to 583 nm), which implies that possible

electronic coupling within homo-dimers in the dimer solution exists. Both the emission

peak FWHM of the monomer and the dimer samples are quite narrow, i.e., 26.6 nm

and 24.6 nm, respectively. However, the quantum yield drops from 61.9% to 36.5% after

dimerization, which might be due to ligand loss during the assembly process.

4.2.4 Fluorescence imaging of single QDs

Single particle measurements of as-prepared 6.3 nm CdSe/CdS/ZnS QDs at room

temperature (295 K) and cryogenic temperature (4.5 K) were both performed with the
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setup described in Section 3.4.3. Both samples were embedded in PMMA films. The

scanning speed for recording fluorescence images was 10 ms per pixel. The time resolution

(time bin) for fluorescence time traces was 100 ms. Regarding the emission spectra, every

QD was measured for 25 s with the shortest spectral integration time of 5 s. The excitation

intensity was about 1 kW/cm2 (1045 W/cm2).
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Figure 4.11: Confocal fluorescence microscopic images of 6.3 nm CdSe/CdS/ZnS QDs in a
PMMA film at (a) 295 K (b) 4.5 K, excited by a 488 nm laser with an excitation intensity of
1 kW/cm2 at both temperatures.

Table 4.2: Comparison of the results from the fluorescence microscopic images at 295 K and
4.5 K. The QD density here is defined by the number of QDs per image which show single in
spectrum.

Temperature
background

counts
signal

amplitude
SNR

QD density
(#/image)

295 K 30 170 6.8 27
4.5 K 280 50 2.4 14

Ratio (4.5 K/295 K) 9.3 0.29 0.35 0.52

In general, as an example shown in Figure 4.11, for both monomer and dimer samples,

the fluorescence images measured by the same setup at room temperature and cryogenic

temperature exhibited large differences, including an increase of the background counts

and decreasing signal amplitude, signal to noise ratio (SNR) and QD density from 295 K to

4.5 K. These changes can be quantitatively characterized by a series of ratios of values at

4.5 K and 295 K, as listed in Table 4.2. These ratios are qualitatively consistent with results

from Ref. [219], where the reason was speculated to be related to a loss of QD ligands

during the evacuation process of sample preparation, since different evacuation times

and ligands led to different results [219].
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4.2.5 Single particle spectroscopy of QD monomer and dimer samples

at room temperature (T = 295 K)

4.2.5.1 Typical emission spectra

Figure 4.12 shows typical emission spectra of individual particles in QD monomer and

dimer samples at 295 K, respectively. In this case the emission peak of the particle in

dimer sample is slightly broader than that of the particle in monomer sample. Even if

the particle whose emission spectrum is shown in Figure 4.12(b) is a QD dimer, it is not

possible to spectrally resolve the two QD components within it.
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Figure 4.12: Typical emission spectra of a single particle (in a PMMA film) from (a) monomer
sample and (b) dimer sample at 295 K, excited by a 488 nm laser with an excitation intensity of
1 kW/cm2. The integration time is 5 s.

4.2.5.2 Statistics of the emission spectra at 295 K

As a more quantitative study, spectral positions and FWHMs of the emission peaks of

the particles in monomer and dimer samples at room temperature were collected and

analyzed statistically. As presented in Figure 4.13(a) and Figure 4.13(b), the distributions

of the spectral positions of emission maxima follow Gaussian functions, with resulting

average values of 17288 cm−1 (i.e., 578 nm) and 17130 cm−1(i.e., 584 nm) for monomers

and dimers under the excitation intensity of 1 kW/cm2, respectively. These values give

good agreement with the ensemble emission wavelengths, which are 579 nm and 583 nm

for monomers and dimers, respectively. The FWHM of the emission peaks of monomers

and dimers are similar at room temperature, both around 600 cm−1 (∼20–21 nm), further

revealing that it is not possible to spectrally discriminate two neighboring QDs in a

homo QD dimer at room temperature. Therefore, cryogenic temperature measurement is

indispensable.
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Figure 4.13: Distributions of spectral positions of peak maxima in emission spectra of single
particles (in a PMMA film) from (a) monomer sample and (b) dimer sample at 295 K. Lower
panels are the corresponding FWHM distributions of single particles in (c) the monomer sample
and (d) the dimer sample at 295 K, respectively. The solid curves in the histograms are the
corresponding Gaussian fits.

4.2.6 Single particle spectroscopy of CdSe/CdS/ZnS QD monomers at

cryogenic temperature (T = 4.5 K)

4.2.6.1 Typical emission spectra

Single particle spectroscopy of QD monomers at 4.5 K was performed. As expected,

the FWHM of the emission of a single QD was extremely narrowed and a sharp ZPL

accompanied by phonon sidebands (PSBs) appeared when the temperature was reduced

to the cryogenic temperature. Figure 4.14 shows a typical emission spectrum of a single

bright CdSe/CdS/ZnS QD at 4.5 K which was excited with excitation intensity of 1 kW/cm2.

In conjunction with the zero-phonon line (ZPL), the transitions of the replicas of acoustic

phonons, longitudinal optical (LO) phonons of CdSe (210 cm−1) and CdS (302 cm−1),

and even second harmonic of the LO-phonon of CdSe (423 cm−1) can be observed in the

spectra. The results of the LO phonons are in good agreement with the literature (LOCdSe
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= 206 cm−1 [253], LOCdS = 305 cm−1 [296]). For QDs of inferior quality, the 2LOCdSe is

invisible. However, almost all the principal peaks and CdSe LO PSBs exhibit obvious

asymmetry, suggesting the presence of an electron-phonon coupling to acoustic modes

and the participation of the electron-LO-phonon coupling of CdS, respectively. In contrast,

the peaks corresponding to the LO-phonon replicas in the spectra of single CdSe/ZnS QDs

are symmetrical due to the absence of CdS, as described in Ref. [219].
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Figure 4.14: A typical emission spectrum of a single bright CdSe/CdS/ZnS QD in a PMMA film
at 4.5 K with excitation intensity of 1 kW/cm2. The emission energy range which approximately
corresponds to transitions of acoustic phonon replicas are highlighted with gray background.
LOCdSe, LOCdS and 2LOCdSe denote the LO phonon replicas of CdSe, CdS and second harmonic
of the LO-phonon of CdSe, respectively. The inset shows an enlarged view. The integration time
is 5 s.

4.2.6.2 Statistics of the LO phonon replica

As it is one of the most important features of a single QD spectrum at low temperature, the

LO phonon energy of CdSe was further studied. The peak-to-peak distance between the

ZPL and CdSe LO replica was measured and analyzed, since this distance is supposed to

be the energy of CdSe LO phonons [253]. Figure 4.16(a) reveals the statistical correlation

of the CdSe LO phonon energy to the ZPL spectral position. It can be seen that most of

the values concentrate in the region between 200 cm−1 and 220 cm−1. The average value

was calculated to be 207 cm−1. Noting that for a single CdSe QD with a diameter of 4.5 nm

without passivation shell, the LOCdSe phonon energy has been reported to be 25.6 meV
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(206 cm−1) [253] and the size of the CdSe core used here in the core-shell QD (4.0 nm), it

exhibits very good agreement. From the left panel in Figure 4.16(a), it can be concluded

that the LO phonon energy is insensitive to spectral position of the emission peak of the

single QDs.
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Figure 4.15: Gaussian fits (red lines) of the ZPL and the CdSe LO replica of an emission spectrum
(solid black line) belonging to a single CdSe/CdS/ZnS QD in a PMMA film at 4.5 K with excitation
intensity of 1 kW/cm2. The integration time is 5 s. The Gaussian fits are done based on the
high-energy side of the corresponding peaks (the energy range corresponding to the solid red
lines).

As introduced in Section 2.3.5.1, the Huang-Rhys factor describes the strength of

the linear electron-phonon coupling and can be obtained directly from the intensity

ratio of the one-phonon- and zero-phonon-transitions in the emission spectrum at

cryogenic temperatures [271]. In order to extract the ZPL and the CdSe LO replica from

the principal peak and PSB respectively, Gaussian fits based on the high-energy side of

the corresponding peaks were conducted (Figure 4.15). Then the integrated intensities of

these Gaussian fits were considered as the integrated intensities of the ZPL and the CdSe

LO replica. Results are shown in Figure 4.16(b). The SLO (CdSe) varies from 0.20 to 0.82

with an average value of 0.40, which exhibits no obvious dependence on spectral position

of the emission (or particle size). The values are generally consistent with literature values

of Empedocles et al. (SLO = 0.06–1.3 with an average value of 0.49 for single CdSe and

CdSe/ZnS QDs [253]) and Norris et al. (SLO = 0.36 and 0.45 for sub-ensemble CdSe QDs

with diameters of 4.2 nm and 3.8 nm, respectively [297]). In addition, both CdSe LO

phonon energy and SLO of CdSe reveal a lack of excitation intensity dependence, which is

consistent with the observations in Ref. [219].
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Figure 4.16: Statistical correlations of (a) CdSe LO phonon energy (peak-to-peak distance
between ZPL and PSB of CdSe LO, 405 spectra) and (b) The Huang-Rhys factor of CdSe LO
phonon (from 52 QDs) to the ZPL spectral positions. The gray cross (+) and black circle (o)
stand for the results of QDs excited with 1 kW/cm2 and 3 kW/cm2, respectively. The bars filled
with gray color and the ones with black frame without filling are the respective statistics.

4.2.6.3 Statistics of the band edge emission peak at 4.5 K

The spectral positions of the ZPLs, i.e., the maximum of the band edge transitions were

statistically analyzed. As introduced in Section 2.3.5.2, when the temperature is decreased

to cryogenic temperatures, an explicit spectral blue-shift is expected. Experimentally, as

seen in Figure 4.17(a), the average wavenumber of the band edge transition is 17518 cm−1.

Compared with the ensemble emission wavelength at 295 K which is 579 nm (17271 cm−1)

and the maximum of the distribution of the single particle emission spectra which is

578 nm (17288 cm−1), the energy increased by 247 cm−1 and 230 cm−1, respectively. As

a commonly used formula (see Section 2.3.5.2), the empirical Varshni equation Eg(T ) =
Eg(0)−αT 2/(T +β) predicts an increase of the band edge transition of 825 cm−1 from

295 K to 4.5 K, when the coefficients of bulk CdSe semiconductor α= 1.7 ·10−3 eV/K and
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β= 1150 K are used [298]. This is much larger than the experimental values 247 cm−1 and

230 cm−1 found here. Nevertheless, when applying the equation of O’Donnell and Chen

Eg(T ) = Eg(0)− 2S<~ω>
e<~ω>/kBT −1

(details see Section 2.3.5.2) which is an alternative without

empirical variables [279], the calculated blue-shift energy differs significantly. The Huang-

Rhys factor S and the average phonon energy < ~ω> are involved in this formula. In case

of our CdSe/CdS/ZnS QDs, as a first approximation, when only the LO phonon of CdSe

is taken into account, meaning S= 0.40 and < ~ω >= 207 cm−1 based on the results in

Section 4.2.6.2, a blue-shift of 95 cm−1 should be expected. Obviously, the experimental

results are smaller than the value based on the Varshni equation but larger than the

value from the equation of O’Donnell and Chen. This could be due to the complexity in

composition of the core-shell system and a model in which more details are taken into

account might be needed.
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Figure 4.17: Distributions of (a) spectral positions and (b) FWHMs of the band edge transition
peaks in emission spectra of single QDs in a PMMA film at 4.5 K. The bars filled with gray color
and the ones with black frame without filling are the statistics of QDs under the excitation of
1 kW/cm2 and 3 kW/cm2, respectively.

The FWHMs of the band edge transitions were also studied. As revealed in Figure 4.17(b),

the width of the principal peak is distributed in a range of 10–110 cm−1 and concentrates

on 30 cm−1–40 cm−1. The emission ZPL of a single CdSe/CdS/ZnS QD has been observed

by Chilla et al. to be as narrow as 220 µeV (1.77 cm−1) corresponding to the resolution

limit [299]. Since the spectral resolution in the measurements here was about 15 cm−1,

most of the limited widths observed here definitely do not reflect the natural broadening

of the zero-phonon transition state and fast spectral diffusion might be involved. However,

the width of the peak provides a feature of the QD monomers, which could be useful for

the comparison with the QD dimer sample (see Section 4.2.7).
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4.2.6.4 Statistics of the spectral diffusion

Spectral diffusion of CdSe/CdS/ZnS QDs was investigated at 4.5 K. As shown in Figure 4.18(a),

for every QD, 5 spectra were consecutively measured with the integration time of 5 seconds

for each spectrum. Then the largest peak-to-peak spectral position shift of the band
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Figure 4.18: (a) Five consecutive emission spectra (left panel) and the corresponding
fluorescence time trace (right panel, time bin: 100 ms) of a single QD in a PMMA film at
4.5 K. The dashed lines represent the minimum and maximum energy edge to define the
magnitude of spectral diffusion, i.e., maximum peak-to-peak shift in a series, which is about
35 cm−1 in this specific case. (b) Spectral diffusion distributions of the QDs in a PMMA film
at 4.5 K. The integration time is 5 s for each spectrum. The bars filled with gray color and the
ones with black frame without filling stand for the results under the excitation of 1 kW/cm2

and 3 kW/cm2, respectively. The vertical arrow denotes the experimental spectral resolution
(15 cm−1).

edge transition within the series of every QD was recorded and used to characterize the

magnitude of spectral diffusion (in the situation of Figure 4.18(a) the value is ∼35 cm−1).

Figure 4.18(b) illustrates the distribution of the spectral diffusion under this definition.

One can see that the spectral shifts of most of the QDs are smaller than 50 cm−1, especially

for the cases when an excitation intensity of 1 kW/cm2 was applied. It is interesting that the
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excitation power exhibits an influence on the behavior of spectral diffusion. With larger

excitation intensity (3 kW/cm2), a slightly bigger extent of spectral diffusion (spectral

position of peak maximum jumps within a bigger energy range) was observed. The

excitation power dependence is consistent with the experimental results by Empedocles

et al. [253, 254].

4.2.7 Single particle spectroscopy of QD dimer sample at cryogenic

temperature (T = 4.5 K)

4.2.7.1 Spectral categories of particles in the dimer sample

The as-prepared CdSe/CdS/ZnS QD homo-dimer sample (containing 68% QD dimers)

spectra of which are shown in Figure 4.10 was used to make a sample for single particle

statistics at 4.5 K. In this experiment, different kinds of spectral series were observed, which

were categorized into four types, denoted by M, D, H and MD, respectively. Although

it is not possible to exclude the presence of particles which may not emit during the

measurement, spectral series of different categories probably correspond to different

kinds of particles (monomer, dimer, trimer, or higher oligomers), as explained as follows:

(1) Type M (Figure 4.19(a)) is a series in which each spectrum shows only one principal

band edge emission peak whose FWHM is smaller than 50 cm−1, and the spectral

diffusion is also smaller than 50cm−1. This feature indicates a high probability that

the corresponding QD is a single QD monomer.

(2) Type D is a spectral series which exhibits two sharp principal peaks with a relatively

large spectral position difference (larger than 100 cm−1), either within one spectrum

or in two spectra of the same series. Two examples are shown in Figure 4.19(b) and

Figure 4.19(c): the separations of the two peaks emitting at different wavelengths in

these two cases are ∼198 cm−1 and ∼260 cm−1, respectively. Considering that two

distinct peaks (difference larger than 100 cm−1) and spectral diffusion (larger than

100 cm−1) have very rarely been observed on the experimental time scale in the QD

monomer sample (see Section 4.2.6.4), the possibility of a monomer can be largely

excluded for the QDs of type D. Thus, particles of this type are most likely to be QD

dimers.

(3) In very few cases, multiple peaks could be observed in the spectral series, as

revealed in Figure 4.19(d). These series are labeled as type H. This may imply that

the corresponding QD oligomers are higher oligomers (trimers, tetramers or even

aggregates consisting of more QDs).
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Figure 4.19: Representative spectral series (left panels) and the corresponding fluorescence
time traces (right panels, time bin: 100 ms) of the particles (in a PMMA film) taken from
the dimer sample and measured at 4.5 K: (a) M type; (b) D type with small peak separation
(∼198 cm−1); (c) D type with big peak separation (∼260 cm−1); (d) H type. The integration time
of each spectrum is 5 s.

(4) Moreover, there are spectral series which are difficult to be categorized into any of

the three types mentioned above. These series are labeled as MD. For this type, it is

difficult to distinguish between monomers and dimers:

• CASE 1: As shown in Figure 4.20(a), the signal to noise ratio is too low for the

extraction of spectral positions of the possible emission peaks.

• CASE 2: There are no adequate spectra in a series due to the short survival time

of the particle against photo-bleaching. Figure 4.20(b) shows an example. The

emissions of the first and second spectra are close to each other in wavelength

and no additional spectra are available for analysis due to the photo-bleaching.

• CASE 3: As revealed in Figure 4.20(c), two emission peaks can be resolved in the

spectra. However, the spectral position separation is ∼62 cm−1. This value is at
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Figure 4.20: Representative spectral series (left panels) and the corresponding fluorescence
time traces (right panels, time bin: 100 ms) of particles (in a PMMA film) belonging to type MD

taken from the dimer sample and measured at 4.5 K: (a) Low signal to noise ratio. (b) Short
survival time against photo-bleaching. (c) Two close peaks (∼62 cm−1). (d) Broadened peak
(∼57 cm−1). The integration time of each spectrum is 5 s.

the border of the criterion for monomer and dimer discrimination (∼50 cm−1

as discussed above). Considering the statistics of the linewidth (Figure 4.17(b))

and spectral diffusion on the time scale of the measurement (Figure 4.18) of the

QD monomer sample at 4.5 K, the probability of spectral diffusion induced dual

emissions from a monomer in this case is low. To be on the safe side, this kind of

spectral series was categorized into type MD, not type M.

• CASE 4: Although only one single principal peak in each spectrum of the

series was found, the FWHM of the emission peaks are larger than the value

corresponding to the monomer sample. An example is shown in Figure 4.20(d),

whose biggest FWHM is ∼57 cm−1. Similar to the CASE 3 above, it also cannot be

surely assigned to a monomer or a dimer.
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4.2.7.2 Category distribution and discussion

The category distribution of the spectral series mentioned above is presented in Figure 4.21.

Type D is dominant with a fraction of 43%. However, it is not appropriate to conclude that

the observed QD dimer purity is 43%, since the following possibilities should be taken

into account:

(1) As briefly discussed above, the cases belonging to type MD might also correspond to

QD dimers.

(2) In fact, particles corresponding to type M should not be surely assigned to QD

monomers, since dimers whose two QD components emit extremely close in

wavelength will exhibit the same spectrum. As a consequence, there is always the

possibility that some QDs of type M are actually QD dimers.

(3) In addition, blinking behavior of QDs makes the system even more complicated. As

mentioned above, taking into account QDs which were in an off state or did not

fluoresce at all during the measurement, assigning a single particle to monomer or

dimer is not possible only by means of spectroscopy.
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Figure 4.21: Category distribution of emission spectral series of single particles (in a PMMA
film) from the QD dimer sample at 4.5 K.

Compared with the results of the monomer sample at 4.5 K mentioned above, since

explicit differences have been observed for the particles in the dimer sample, the types and

type distributions derived from spectral series definitely provide evidence of the existence

of QD dimers in the dimer sample. As a very rough estimate, the dimer fraction could be

in the range of 40%–70%, although this should not be quantitatively compared with the

ensemble result (∼68%) from TEM measurement.
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4.3 CdSe/CdS/ZnS QD hetero-dimers

Although some qualitative proof of the existence of QD dimers in single particle

measurement have been obtained at 4.5 K, an obvious disadvantage of the experiments

at cryogenic temperature mentioned above is that the components were not spatially

resolved in nanoscale. In contrast, with a setup combining atomic-force microscopy

and confocal fluorescence microscopy (AFM-CFM) developed by the Basché group, AFM

images (topography) and the corresponding fluorescence spectra of QDs can be recorded

simultaneously [47, 300]. Taking advantage of this technique, the dimers can be spatially

characterized at room temperature. However, to distinguish the fluorescence components

spectrally, hetero-dimers have to be used instead of homo-dimers. Therefore, the synthesis

of the hetero-dimer was attempted.

4.3.1 Size dependent fluorescence of CdSe core particles

The relationship between the fluorescence emission wavelength and the size of CdSe

QDs has been investigated experimentally. With an injection temperature of 270◦C

and a growth temperature of 250◦C, a series of CdSe QDs was synthesized following

the procedure “CdSe core synthesis in TDPA, TOPO and TOP” described in Section 3.2.1.2.

As shown in Figure 4.22(a) and Figure 4.22(b), both absorption and emission wavelengths

of CdSe QDs reveal a red-shift with growth time. Figure 4.22(c) and Figure 4.22(d) display

two typical TEM images corresponding to the CdSe core growing for 3 min (diameter: 2.6

± 0.3 nm) and 15 min (diameter: 3.1 ± 0.4 nm), respectively, which were used for the

further synthesis of core-shell structures in this work.

4.3.2 QD hetero-dimers whose QD components have different sizes

4.3.2.1 QD components

As discussed before, the strategy of hetero-dimer preparation is to dimerize two QDs with

large difference in their emission wavelengths. Since the fluorescence is strongly size

dependent, the first intuitive idea is to synthesize and assemble two QDs with different

sizes (denoted as structure I). CdSe QDs mentioned above with the growth time of

3 min and 15 min were selected as cores for the green QDs (gQDs) and red QDs (rQDs).

Considering that CdS shell coating will lead to emission red-shift, in order to eventually

obtain adequate wavelength separation between gQDs and rQDs, different thicknesses

of CdS shells were chosen. The CdSe cores for gQDs were coated with 4 monolayers
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Figure 4.22: (a) Temporal evolution of absorption and emission spectra of CdSe QD cores. (b)
The maxima of the first excitonic peak of the absorption spectra (o) and the maxima of the
peaks (+) of the emission spectra at different growth times. The inset shows an enlarged view
for the first 10 min and solid lines are only a guide for the eye. TEM images of the CdSe QDs
growing for (c) 3 min and (d) 15 min. The diameters are measured to be 2.6 ± 0.3 nm and 3.1 ±
0.4 nm, respectively.

CdS and 1 monolayer ZnS (written as “CdSe/4ML CdS/ZnS” for short) while the rQDs

were prepared to give CdSe/8ML CdS/ZnS. Corresponding characterizations are shown

in Figure 4.23. From TEM images, it can be seen that not only the size distribution of



98 Monomers, homo- and hetero- dimers of CdSe/CdS/ZnS QDs

rQDs is broader than that of gQDs, but also the average size of rQDs is much larger than

that of gQDs, namely 8.4 ± 1.0 nm versus 5.3 ± 0.6 nm. More importantly, as revealed in

Figure 4.23(d), the emission wavelength separation is about 42 nm, which can be spectrally

well resolved.
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Figure 4.23: Characterizations of QD components with different sizes: TEM images of (a) gQDs
and (b) rQDs. (c) The size distributions of gQDs (diameter: 5.3 ± 0.6 nm) and rQDs (diameter:
8.4 ± 1.0 nm). Solid lines in the histograms are the corresponding Gaussian fits. (d) Absorption
and emission spectra of gQDs and rQDs.

4.3.2.2 Dimerization and characterizations

The gQDs and rQDs were mixed and assembled for three cycles to form QD oligomers.

The as assembled particles are characterized by TEM. As shown in Figure 4.24, the QD size

varies over a wide range, probably due to the contribution from the size distributions of

both gQD and rQD batches. Figure 4.24 also reveals that: 1) The homo-dimers composed

of two rQDs (marked with red circles) are more than the ones composed of two gQDs
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(marked with green circles); 2) The homo-dimers composed of two gQDs are more than

the hetero-dimers whose components have different sizes (marked with blue circles). The

dependence of the required cycles of assembly on QD size (see Section 4.2.2) may explain

the former but not the latter. To understand the mechanism of the second phenomenon,

a model of assembly of QDs with different sizes is proposed here.

Figure 4.24: TEM image of as assembled oligomers from 5.3 nm gQDs and 8.4 nm rQDs. The
particles marked with green, red and blue circles are homo-dimers composed of two gQDs and
two rQDs, and hetero-dimers, respectively.

Specifically, as depicted in Figure 4.25(a), QDs with two sizes (for simplicity, small

QDs and big QDs denoted as “sQD” and “bQD”) are mixed immediately after synthesis

and the surface sites for chemical bondings are fully covered with ligands. During the

process of assembly, ligand loss is induced, accompanied by the formation of oligomers.

Because of detachment of ligands, some exposed free surface sites (red dots in Figure 4.25)

are left, available for QD attachment to form QD oligomers. The essential hypothesis of

this model is that the surface site density ρ is QD size independent, and the assembly of

oligomers is realized by the connection of exposed surface sites from different QDs. Under

this condition, the numbers of total surface sites are 4πρR2 and 4πρr 2 for bQD and sQD,

respectively, where R and r are the respective radii of the particles. Then if the ligand loss

is also uniformly distributed, the ratio of the numbers of exposed free sites for bQD and

sQD should be R2/r 2, which means that the free sites of bQD can be much more than that

of sQD, as represented by red dots in Figure 4.25(b). Considering the initial stage of the

assembly process (the onset of dimer formation), along with the desired hetero-dimer

(Dsb) composed of one sQD and one bQD, homo-dimers Dbb (the dimer of two bQDs)
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Figure 4.25: Schematic diagram of mechanism of the assembly from QDs with different sizes.
(a) Original state of the as-synthesized QDs. (b) The state of QDs after ligand loss. (c) Possible
assembled QD dimers: Dsb, Dss and Dbb.

and Dss (the dimer of two sQDs) are also possible to be created. However, the stability of

the hetero-dimers and homo-dimers is likely to be significantly different. As illustrated in

Figure 4.25(c), since numerous free surface sites of the bQD in a hetero-dimer are exposed,

which have high activity, there is a high probability that the surrounding sQD monomers

collide with the hetero-dimer Dsb and assemble to form an oligomer containing multiple

sQDs and one bQD (Omsb). In contrast, since QDs with the similar sizes have similar

numbers of free sites in a system, either the as formed Dbb or Dss have few numbers of
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exposed surface sites, corresponding to a lower free energy of the system compared to the

case of Dsb. As a consequence, QD dimers which are most likely to form are homo-dimers

rather than hetero-dimers.

“Hetero-

dimer”

band?

S1g=9.8

S1r=24.2

0

10

20

30

40

(mm)(a)

100 nm
100 nm 20 nm

(b)

(c)
60

40

20

0

O
c
c
u
rr
e
n
c
e

Monomer Dimer H.Olig.

47%

39%

14%

Figure 4.26: (a) Photographs of a centrifuge tube after DGU containing QD oligomers
assembled from 5.3 nm gQDs and 8.4 nm rQDs. The left photo was taken under room light while
the right one was taken under UV lamp. The gQD monomer, rQD monomer and suspected
“hetero-dimer” bands were marked. (b) TEM images of the particles from the suspected “hetero-
dimer” band. All images have the same scale bar of 100 nm except for the right bottom inset
which shows an enlarged view with scale bar of 20 nm. The homo-dimers are marked with
red circles while a hetero-dimer is marked with a blue circle. (c) Particle distribution of the
sample taken from the suspected “hetero-dimer” band. H.Olig.: trimers, tetramers and higher
oligomers.

DGU at 50000 rpm for 14 min was performed subsequently. Figure 4.26(a) shows

photographs of the centrifuge tube after DGU under room light and UV light, respectively.

The gQD monomer and rQD monomer bands can be clearly observed from the distinct

colors. The sedimentation distances measured are 9.8 mm and 24.2 mm, respectively.

Considering the sizes of the particles (5.3 nm for the gQDs and 8.4 nm for the rQDs),

the corresponding calculated results based on Equation 4.11 are 9.2 mm and 25.2 mm,

respectively, giving relatively good agreement with the observations. When a QD hetero-

dimer composed of 5.3 nm and 8.4 nm QDs is converted to an equivalent spherical particle,

Equation 4.11 predicts a sedimentation distance of 27.6 mm. In the experiment, at the

corresponding position below the rQD monomer band, a relatively blurred band under
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a small dark gap was observed. This band is a suspect for the desired hetero-dimers

(simply denoted as “hetero-dimer” band), which was therefore extracted from the tube

and characterized by TEM. Figure 4.26(b) shows a typical TEM image. Not only the fraction

of dimers is relatively low (39%, 43 out of 110 particles), but also most of visible dimers are

homo-dimers, meaning that the sizes of the two QD components are quite close (generally

in the range of 7.5 nm–8.5 nm).
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Figure 4.27: Three representative combinations of AFM images (upper panels) and
corresponding fluorescence spectra (lower panels) of the QD dimers from the “hetero-dimer”
band in Figure 4.26. Data provided by Sven Stöttinger.

Furthermore, single particle measurements of the sample from the “hetero-dimer”

band in Figure 4.26 were performed with the AFM-CFM setup by Sven Stöttinger. Three

examples are illustrated in Figure 4.27. From Figure 4.27(a) to (c), the examples were

arranged in accordance with the order of increasing spectral distance of the two peak

components. However, even for the situation of Figure 4.27(c), it is not possible to probe

the emissions from the two components separately at the same time. An interesting

phenomenon is that the emission of a single component could be observed sometimes

when the other component is off due to fluorescence blinking. In the case represented in

Figure 4.27(b), when the gQD (rQD) turned to off state while the rQD (gQD) was still in on

state, a solitary spectrum of rQD (gQD) emerged. The brighter emission spectra obtained

under the circumstance that both QDs were on is similar to the superposition of the two

isolated spectra. Nevertheless, when the gQD and rQD are both on, the simultaneous

independent measurements of fluorescence of each is infeasible.
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As a conclusion from both TEM and AFM-CFM characterizations, the obtained QD

dimers from the so-called “hetero-dimer” band in Figure 4.26 are typically not the real

desired hetero-dimers as originally designed, but homo-dimers mainly from the batch of

big rQDs. An obvious reason is that the sample before DGU had a small fraction of hetero-

dimers, as discussed above. In addition, if the attachment between the components in a

dimer was relatively weak, the sQD (gQD) and bQD (rQD) in a hetero-dimer might detach

during DGU since the sedimentation velocity was strongly size dependent. This might be

another reason for the lack of observation of QD hetero-dimers in the experiment.

4.3.3 QD hetero-dimers whose QD components have similar sizes

Since it turned out that the method used so far for the assembly of hetero-dimers

was inefficient, a new strategy was invented, which rests on the dimerization of QD

components with similar sizes. For a spherical CdSe QD, the emission wavelength is size

dependent. However, when the QD is coated with a CdS shell, a red-shift is expected due

to the wavefunction extension of the excitons into the CdS shell. In contrast, since ZnS

has a much wider energy band gap, theoretically coating ZnS onto CdSe or CdSe/CdS QDs

will not influence the emission wavelength. Therefore, as illustrated in Figure 4.28(b), with

particular combinations of core-shell compositions, QD components with similar sizes

but different emission wavelengths (structure II) were prepared.

QD Components

with different sizes

QD Components

with similar sizes

Particular

core-shell

structure

(a) (b) (c)

CdSe

CdS

ZnS

IIa:

IIb:

II:I:

Figure 4.28: Schematic diagram of QD hetero-dimers with different structures. (a) QD
components with different sizes (structure I). (b) QD components with different fluorescence
emissions but similar sizes by particular core-shell structure design (structure II). (c) Two
specific approaches to structure II. The outermost contours denote the colors of fluorescence.

Two approaches will be further discussed, which are schematically depicted in

Figure 4.28(c). For structure IIa, the same CdSe core but different ratios of the amount of

CdS-shell and ZnS-shell for the two QD components were used, while for structure IIb,

different CdSe cores were used as well.
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4.3.4 Structure IIa: QD components with the same CdSe core

For simplicity, structure IIa was attempted first: CdSe QD cores injected at 270◦C with

the growth time of 3 min (Figure 4.22(c)) were chosen for the cores of both gQDs and

rQDs. After subsequent shell overgrowth, CdSe/5ML CdS/1ML ZnS QDs and CdSe/2ML

CdS/4ML ZnS QDs were obtained as rQDs and gQDs, respectively.
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Figure 4.29: Characterizations of the QD components of structure IIa: TEM images of (a) gQDs
and (b) rQDs. (c) The size distributions of gQDs (diameter: 4.9 ± 0.9 nm) and rQDs (diameter:
7.3 ± 0.9 nm). Solid lines in the histograms are the corresponding Gaussian fits.(d) Absorption
and emission spectra of the gQDs and rQDs.

Although the lattice constants of CdS and ZnS are different (0.35 nm versus 0.31 nm),

the theoretical size discrepancy between gQDs and rQDs with the structures mentioned

above should be rather small, i.e., 0.24 nm in diameter. From this point of view, the

experimental observations are surprising. As shown in Figure 4.29(c), the synthesized

gQDs (4.9 ± 0.9 nm) and rQDs (7.3 ± 0.9 nm) exhibit a large difference in size. This
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originates from the bad quality in morphology of the gQDs, shown in Figure 4.29(a). The

QDs appear irregular and the size varies strongly from one to another. Probably, the growth

of multiple ZnS shells was not successful due to the large lattice mismatch between either

ZnS and CdSe or ZnS and CdS [21]. Since either ZnS and CdSe or ZnS and CdS have a large

lattice mismatch [21], the ZnS shell may grow in ways such as coherent epitaxial with a

large distortion or strain, incoherent epitaxial with dislocations, or highly disordered [151],

which makes it difficult to overgrow thick ZnS shell. In conclusion, the resulting sizes of

the two QD components prepared by this method were not sufficiently close.

4.3.5 Structure IIb: QD components with different CdSe cores

A sufficient emission wavelength separation of the two QD components which have

similar sizes can be realized either by the size difference of CdSe cores or by the different

magnitude of red-shifts in emission resulting from different shell compositions. Since the

latter could not be achieved due to the difficulties from the ZnS coating, CdSe cores with

smaller and bigger sizes have to be synthesized and used for gQDs and rQDs, respectively.

Thus, the hetero-dimers shown as structure IIb in Figure 4.28(c) are required. For gQDs,

the 2.6 nm QDs whose TEM image is shown in Figure 4.22(c) can be directly used. However,

in order to obtain a sufficiently long emission wavelength (> 590 nm) and spherical core-

shell QDs with a narrow size distribution, the QD cores for rQDs have to be big (> 4.5 nm)

and spherical.

4.3.5.1 Synthesis of big spherical CdSe cores

In order to synthesize big spherical CdSe cores, the first strategy was to increase the

reaction time. For the procedure discussed in Section 4.3.1 whose spectral temporal

evolution is shown in Figure 4.22(a) and Figure 4.22(b), the spectral position of emission

peak maximum tended to saturate after 15 min, and the longest emission wavelength

562 nm which was achieved by a growth time of 60 min is still much smaller than the

required 590 nm. Furthermore, the morphology of the as-prepared QDs became elliptical

with an aspect ratio of ∼2.0, which can be found in Figure 4.30(a)(middle and bottom

panels).

Increasing the temperature is another approach to prepare bigger CdSe QDs. The

injection temperature of the precursor solution was therefore raised. Figure 4.30(b)(middle

panel) displays the TEM image of CdSe cores when the system was hot-injected at 310◦C

and reacted for 15 min at 290◦C. Compared with the results at lower temperature with the

same growth time, a much longer emission wavelength was obtained (593 nm), which is
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Figure 4.30: The absorption and emission spectra (upper panels), TEM images (middle panels)
and the corresponding size distributions (lower panels) of CdSe QDs (a) hot-injected at 270◦C
and growing at 250◦C for 60 min, (b) hot-injected at 310◦C and growing at 290◦C for 15 min,
and (c) hot-injected at 380◦C and growing at 360◦C for 1 min. The respective QD diameters
of short axes and long axes are: (a) 2.8 ± 0.4 nm and 5.7 ± 0.6 nm; (b) 3.7 ± 0.4 nm and 7.8 ±
0.9 nm; (c) 4.0 ± 0.5 nm and 12.0 ± 1.5 nm. Solid lines in the histograms are the corresponding
Gaussian fits.

suitable for the core of rQD. However, the QDs were elliptical as well with a short axis of

only 3.7 nm and an ellipticity of 2.1.

The size comparison of the QDs growing for 3 min at different hot-injection

temperatures (270◦C and 310◦C, 3.1 ± 0.4 nm and 4.0 ± 0.3 nm) revealed a hint that

higher temperature with shorter growth time favored the synthesis of big spherical cores.

Inspired by this phenomenon, hot-injection at temperatures as high as 380◦C was carried
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out. However, as shown in Figure 4.30(c), even with the growth time as short as 1 min at

360◦C, the particles exhibited rod-shaped with an aspect ratio of ∼3.0.

The ellipticity of the CdSe QDs can be explained by a mechanism proposed by Peng

et al. [136]: It is well recognized that CdSe QDs grow in wurtzite (hexagonal) structure at

high temperatures, and a permanent dipole moment has been observed along the unique

c-axis [301]. Since the ligands used in the solution are usually electron-donating which

should bind to cationic species exclusively, the (001) facet, either has to be terminated by

negatively charged Se atoms and remains basically uncoated, or with surface Cd atoms

which have more dangling bonds and are more active. Both cases induce a significant high

chemical potential at this unique facet. As a result, especially considering the condition

that the monomer concentration in our procedure was kept at relatively high value to

prevent Ostwald ripening, the growth reaction rate along the c-axis is supposed to be

much faster than that along any other axes. Therefore, elliptical QDs or even nanorods are

expected to be formed.
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Figure 4.31: (a) TEM image, (b) size distribution (4.7 ± 0.6 nm) and (c) the absorption and
emission spectra of the CdSe QDs synthesized with stearic acid, TOPO and TOP as ligands.
Solid line in the histogram is the corresponding Gaussian fitting.

An alternative approach to produce big spherical CdSe QDs is to use other ligands. Qu

et al. reported that fatty acids are excellent candidates to synthesize relatively large-sized

CdSe QDs (above 4 nm) [125]. By a slight modification of their procedure, stearic acid (SA)

has been introduced for the synthesis (details can be found in “CdSe core synthesis in SA,

TOPO and TOP” in Section 3.2.1.2). The results are illustrated in Figure 4.31. From the

TEM image, it can be seen that the CdSe core with new ligands are spherical and the size

is 4.7 ± 0.6 nm. The emission maximum is at ∼595 nm. Both characteristics completely

meet the requirements of the CdSe cores for rQDs.
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4.3.5.2 QD components

The as-synthesized big CdSe cores were coated with 1 ML CdS and 1 ML ZnS to produce

rQDs. For the gQD, the 2.6 nm CdSe QD cores shown in Figure 4.22 were chosen and

coated with 2 ML CdS and 2 ML ZnS. Figure 4.32 represents the characterization results

of the gQD and rQD samples. The TEM images and size distributions explicitly indicate

that the gQDs and rQDs are spherical and very similar in size (5.4 ± 0.4 and 5.6 ± 0.5 nm,

respectively). Moreover, from Figure 4.32(d), it can be concluded that the ensemble

emission wavelengths are also very well separated, as it was originally desired.
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Figure 4.32: Characterizations of QD components of structure IIb: TEM images of (a) gQDs
and (b) rQDs. (c) Size distributions of gQDs (diameter: 5.4 ± 0.4 nm) and rQDs (diameter: 5.6 ±
0.5 nm). Solid lines in the histograms are the corresponding Gaussian fits.(d) Absorption and
emission spectra of the gQDs and the rQDs.
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4.3.5.3 Dimerization and characterizations

Subsequently, the obtained gQDs and rQDs were mixed and assembled. As expected, in

contrast to the case demonstrated in Section 4.3.2.2 (TEM images of assembled oligomers

shown in Figure 4.24), here the QD components of the oligomers after assembly exhibited

similar sizes, as displayed in TEM images in Figure 4.33.

Figure 4.33: TEM image of as assembled oligomers from 5.4 nm gQDs and 5.6 nm rQDs.

To enrich the fraction of QD hetero-dimers, DGU at 50000 rpm for 19 min was

conducted. Because of the slight difference of the average sizes of gQDs and rQDs,

the overall size distribution of either monomers or dimers in a hetero-dimer sample

is expected to be broader than that of monomers or dimers in a homo-dimer sample.

Accordingly, in this experiment, broad bands were observed in the centrifuge tube after

DGU, which is shown in Figure 4.34(a). A dark gap can still be resolved in the tube

by the naked eye, which indicates where the monomer and dimer bands divide. Also

due to the small size difference of gQDs and rQDs, the bands corresponding to homo-

dimers and hetero-dimers are impossible to be differentiated. The center positions of the

monomer band and dimer bands are measured to be 13.5 mm and 21.0 mm, respectively.

According to Equation 4.11, the theoretical sedimentation distances of 5.4 nm and 5.6 nm

QD monomers are expected to be 13.3 mm and 14.4 mm, respectively. The position of

the hetero-dimer band is calculated to be 20.9 mm. Hence, the theoretical positions of

the monomer bands and hetero-dimer band give good agreement with the experimental

results. Figure 4.26(b) shows a TEM image of particles extracted from the dimer band. QD

dimers whose neighboring QD components have similar sizes can be found in the image.



110 Monomers, homo- and hetero- dimers of CdSe/CdS/ZnS QDs

S1g/r=13.5

S2g/r=21.0

“dimer”

0

10

20

30

40

(mm)(a)

100 nm

20 nm100 nm 20 nm

(b)

(c)

80

60

40

20

0

O
c
c
u
rr
e
n
c
e

Monomer Dimer H.Olig.

14%

65%

21%

Figure 4.34: (a) Photographs of a centrifuge tube after DGU containing QD oligomers
assembled from 5.4 nm gQDs and 5.6 nm rQDs. The left photo was taken under room light
while the right one was taken under UV lamp. The QD monomer and hetero-dimer bands were
marked. (b) A large-area TEM image of particles in the dimer band. The inset shows an enlarged
view. The dimers are marked with white circles. (c) Particle distribution of the sample taken
from the dimer band. H.Olig.: trimers, tetramers and higher oligomers.

The dimer fraction was ∼65% (71 out of 109 particles). It should be emphasized that it was

not possible to assign the observed QD dimers to homo-dimers or hetero-dimers by TEM,

since the gQDs and rQDs are not differentiable by size.

Thanks to the capacity of simultaneous measurements of topography and fluorescence,

a more comprehensive characterization of the dimer band sample was performed at the

single particle level by Sven Stöttinger with the AFM-CFM technique. Figure 4.35 displays

the results of two observed hetero-dimers. AFM images identify QD dimers spatially while

the corresponding spectra confirm the emission wavelength difference of the two QD

components of the same dimer. Thus, the existence of hetero-dimers can be verified.

Furthermore, as revealed in the lower panels in Figure 4.35, the emission bands from the

gQD and rQD in this hetero-dimer are spectrally completely separated. With a proper

dichroic optical filter, the fluorescence of the two QD components within a dimer can be

independently measured. This provides prospectives for the investigations of electronic

couplings among QDs.
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Figure 4.35: Two examples of combinations of AFM images (upper panels) and corresponding
fluorescence spectra (lower panels) of QD dimers from the dimer band shown in Figure 4.34.
Data provided by Sven Stöttinger.

4.4 Summary

Homo-dimers and hetero-dimers assembled from CdSe/CdS/ZnS QDs have been

prepared to build a simple and well-defined system for the investigation of electronic

interactions between two closely attached QDs. The assembly was performed by repeated

precipitation of the QDs from a good solvent by adding a bad solvent. A size dependence

of the assembly has been observed, meaning that smaller QDs require more cycles of

assembly for effective formation of QD oligomers. The fraction of QD dimers among

oligomers was found to be about 20%–30%. Subsequently, the fraction of QD dimers

was enhanced by density gradient ultracentrifugation. The sedimentation distances

calculated by the traditional sedimentation formula based on uniform centrifugal force

field and homogeneous fluid (Equation 4.1) were found to be quite different from the

experimental values. Therefore, taking into account variations of the centrifugal force and

the medium density at different depths in the centrifuge tube, an improved theoretical

formula (Equation 4.11) was proposed, with which the calculations gave good agreement

with the observed sedimentation distances, both for the QD monomers and dimers. After

DGU purification, the fraction of the QD dimers in solution could be enhanced up to 81%.
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Single particle measurements of the QD monomers and dimers were performed at

295 K and 4.5 K, respectively. When the temperature was reduced, the quality of the

fluorescence images of single QDs was found to degrade, including an enhancement of

background and a reduction of signal amplitude, signal to noise ration and QD density.

The emission spectra collapsed to narrow ZPLs accompanied by PSBs. Experimental

results indicated that neither the CdSe LO phonon energy nor the Huang-Rhys factor of

CdSe LO phonon revealed correlation to the ZPL spectral position, and the respective

values 207 cm−1 and 0.40 were in good agreement with those reported in the literature.

In addition, the blue-shift of the band gap energy with the temperature reduction was

measured and compared with theoretical calculations. It was found that the experimental

value is smaller than the result based on the Varshni equation but larger than that

calculated by the equation of O’Donnell and Chen. An excitation intensity dependence of

spectral diffusion has also been observed.

As for the fluorescence of a homo-dimer sample at 4.5 K, various types of spectra have

been found. The spectral series were categorized and analyzed, and possible scenarios

were discussed as well. A comparison of the results of monomer and dimer samples

indicates the presence of QD homo-dimers in the dimer sample.

Considering the hetero-dimer approach which may provide more quantitative and

rigorous evidence of QD dimers, QD hetero-dimers whose components have different

and similar sizes were prepared. Although the sedimentation distances of both were

consistent with the calculation based on Equation 4.11, very small fraction of the desired

hetero-dimers was found in the former case. This can be explained by a mechanism

based on the exposed free surface sites triggered QD assembly under the assumption of

size independent surface site density. Therefore, QD hetero-dimers whose components

have similar sizes were attempted. Taking into account the requirement of emission

wavelength separation and difficulties from the ZnS coating, big spherical CdSe QD cores

were prepared. This was realized by a synthesis in which stearic acid was used as one of the

surface ligands. Eventually, rQDs and gQDs with the structures of CdSe/1 ML CdS/1 ML

ZnS and CdSe/2 ML CdS/2 ML ZnS were synthesized and dimerized. Although it was not

possible to distinguish homo- and hetero-dimers from TEM characterization, the AFM-

CFM measurement at room temperature provided conclusive evidence of the existence of

QD hetero-dimers as desired. Since the fluorescence emissions of the two QD components

could be spectrally completely separated, this well-defined QD dimer system has laid

a foundation for the further investigations of the interaction (e.g, electronic coupling)

among quantum dots.



5
Investigations of InP/ZnSeS QDs

5.1 Introduction and motivation

Undoubtedly, “green” chemistry is one of the major topics of the current chemical indus-

try [302]. Specifically in the research field of quantum dots (QDs), there are increasing

requirements for new types of cadmium-free QDs which are more environmentally benign

due to the intrinsic toxicity of cadmium [49]. This is not only reflected in applications of

conventional optoelectronic devices such as light-emitting diodes (LED) [2, 5–7, 98, 171],

lasers [99, 100] and solar cells [10, 11], but also in applications at the single particle level

such as biological fluorescent labeling [12, 13, 25, 303, 304], single particle tracking [26],

quantum cryptography [27] and single-photon sources [28]. As introduced in Section 2.1.4,

with its low toxicity and proper spectral emission range which covers the visible and near

infrared, InP QDs are becoming a promising alternative for toxic QDs such as CdSe or

CdTe from group II-VI. However, compared to the situation of group II-VI QDs, on the one

hand, people face greater challenge in synthesis of high quality InP QDs with narrow size

distribution, small full width at half maximum (FWHM) and high quantum yield at the

ensemble level (see Section 2.1.4) [134].

Since the pioneering work of Battaglia et al. [175], many efforts have been made to

improve the quality of InP based QDs, by photo-assisted surface etching of InP QDs [177]

and synthesis of InP QDs with a ZnS shell [51, 141, 176]. Furthermore, more complicated

core-shell structures and a deeper analysis of the internal structure have been reported

more recently [52, 84, 142, 171]. The work here is mainly based on the strategy developed
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by Lim et al. [52], incorporating ZnSe as a buffer layer into the InP/ZnS system to alleviate

the lattice mismatch between InP and ZnS. Thus, a high QY can be achieved.

At the single particle level, as discussed in Section 2.3.3.3, various approaches

have been established to suppress the fluorescence blinking, including alteration of

temperature [57] or excitation energy [64, 65, 242], utilization of the plasmon resonance

from metallic nanostructures [66–68], surface modification of QDs with organic molecular

ligands or polymers serving as charge compensators/mediators [69–75, 243], synthesis of

particles with alloy composition [80] and overcoating QDs with very thick shells of another

passivating semiconductor material [76–78, 245]. Among these approaches, “giant” QDs

were considered to be an efficient method [76, 77]. It is worth noting that with respect

to the CdSe based “giant” QDs, the thick shell has to be CdS or CdxZnyS for effective

blinking suppression [76] whereas CdSe/ZnS QDs were proven by Heyes et al. to exhibit

shell-independent blinking [305]. In addition, Wang et al. reported that their small

CdZnSe/ZnSe QDs (∼5 nm) showed non-blinking emission due to the soft confinement

potential of the alloy structure [80], and García-Santamaría also found that the formation

of a graded layer can produce a “smooth” potential profile resulting in great reduction

of the Auger recombination rate [306]. These two findings combined with the more

recently reported studies of non-blinking zinc-blende CdSe/CdS [83] and (Zn)CuInS/ZnS

QDs [84] have suggested that the crystallinity and internal structure of the particles play

an important role in the blinking suppression.

Almost all of the above-mentioned studies on the suppression of fluorescence blinking

have focused on group II-VI QDs (CdSe or CdTe as the core). There are in contrast very

few reports on the fluorescence blinking of InP based QDs [85–87]. Zan et al. studied the

effect of the synthetic conditions on the blinking of InP/ZnS QDs [86], and Dennis et al.

observed slight suppression of fluorescence blinking and Auger recombination from their

InP/CdS type-II QDs [87]. Unlike the QDs of the conventional CdSe/CdS system, it has

been observed that InP based (InP/CdS) QDs lack a simple shell-thickness dependence on

blinking, meaning that even the blinking of QDs with only one monolayer of a CdS shell

could be effectively suppressed [87]. Their results have also implied that the core-shell

interface and internal structure are expected to be at least as significant as (if not more

significant than) the shell thickness to the blinking suppression, especially for InP based

QDs.

In this chapter, the studies presented concentrate on the internal structure of the

particles, not only with regard to ensemble synthesis and characterizations, but also to

spectral properties of the individual particles.
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5.2 Sample description

Three series (labelled with HLim, H and L) of samples with different injected amounts of

precursors and reaction temperatures were investigated. The amount of the Se was

systematically varied and compared in each set. The HLim series was prepared by

Dr. Jaehoon Lim from the research group of Prof. Kookheon Char in Seoul National

University and the H and L series were synthesized by the author of this thesis. Synthetic

details are described in Section 3.2.3. Sample labels and the corresponding essential

experimental conditions such as P-ODE precursor injection temperatures Tinj, the growth

times of InP tgrow.InP and Se tgrow.Se, and the amounts of Se and S injections are tabulated

in Table 5.1. For experiments at the single particle level, about one hundred quantum dots

of each sample were measured.

Table 5.1: Labels and essential synthetic parameters of the InP/ZnSeS samples.

Sample Composition Tinj (◦C) tgrow.InP tgrow.Se Se (mmol) S (mmol)

HLim1 InP/ZnS 280 20 s — 0 3.8
HLim2 InP/ZnSeS 280 20 s 10 min 0.2 3.8
HLim3 InP/ZnSeS 280 20 s 10 min 0.8 3.8

H1 InP/ZnS 280 20 s — 0 0.8
H2 InP/ZnSeS 280 20 s 10 min 0.2 0.8
L1 InP/ZnS 220 7 min — 0 0.8
L2 InP/ZnSeS 220 7 min 13 min 0.001 0.8
L3 InP/ZnSeS 220 7 min 13 min 0.05 0.8
L4 InP/ZnSeS 220 7 min 13 min 0.2 0.8
L5 InP/ZnSeS 220 7 min 13 min 0.4 0.8

5.3 Ensemble characterizations

5.3.1 HLim series

Ensemble absorption and emission spectra of the three InP/ZnSeS samples HLim1, HLim2

and HLim3 with different amounts of Se were measured. As shown in Figure 5.1 and

Table 5.2, from sample HLim1 to HLim3, both the absorption and emission spectra

exhibit red-shifts, which can be interpreted by the increasing spatial extension of the

wavefunctions of electrons and holes into the shell with the increase of the amount of

Se incorporated. The FWHMs of the emission spectra are generally larger (above 50 nm)

than those of the emission spectra of CdSe QDs, which has been commonly observed in
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previous reports [51, 134, 141, 171, 176]. In addition, compared to the quantum yields of

the other two samples (56% and 59% for HLim1 and HLim2, respectively), a lower value of

the sample HLim3 was found (25%).
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Figure 5.1: Absorption (solid lines) and emission (dashed lines) spectra of samples of the HLim

series. The emission spectra were measured with an excitation wavelength of 400 nm.

Table 5.2: Results of the ensemble spectra of HLim series.

Sample
λAbs.Max

(nm)
λEm.Max

(nm)
FWHM

(nm)
QY
(%)

HLim1 464 507 63 56
HLim2 468 509 58 59
HLim3 479 520 53 25

Furthermore, these three samples were characterized by TEM. In the TEM images

shown in Figure 5.2, it can be observed that the particles have irregular shapes for all three

samples. Statistics reveal that the sizes of HLim1, HLim2 and HLim3 are 7.3 ± 0.8 nm, 7.5

± 0.9 nm and 6.9 ± 1.1 nm, respectively.

5.3.2 H series

Since the work in Ref. [7] revealed that a shell with less sulfur of InP/ZnSeS QDs resulted

in a higher quantum yield, two samples H1 and H2 were prepared with injections of less

S-precursor solutions. Although no Se was added for H1 and 0.2 mmol Se were injected for

H2, the spectra of them are quite similar (Figure 5.3), both emitting at 513 nm. However,
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Figure 5.2: TEM images of samples (a) HLim1, (b) HLim2 and (c) HLim3, respectively. The
panels at the bottom show the corresponding size distributions: HLim1: 7.3 ± 0.8 nm; HLim2:
7.5 ± 0.9 nm; HLim3: 6.9 ± 1.1 nm. Solid curves in histograms are the corresponding Gaussian
fits.

as listed in Table 5.3, with the addition of Se from sample H1 to H2, the QY is dramatically

increased, from 37% to 69%.
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Figure 5.3: Absorption (dashed lines) and emission (solid lines) spectra of the H series.
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Table 5.3: Results of the ensemble spectra of H series.

Sample
λAbs.Max

(nm)
λEm.Max

(nm)
FWHM

(nm)
QY
(%)

H1 466 513 66 37
H2 466 513 65 69
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Figure 5.4: TEM images of samples (a) H1 and (b) H2, respectively. The panels at the bottom
show the corresponding size distributions: H1: 6.0 ± 0.8 nm; H2: 6.3 ± 0.7 nm. The solid curves
in the histograms are the corresponding Gaussian fits.

TEM images of the samples H1 and H2 are shown in Figure 5.4. As expected, compared

with HLim series, H series exhibits smaller sizes, since less amount of sulfur was added in

the reaction. However, morphology and size uniformity are only slightly improved.

5.3.3 L series

As discussed in Ref. [52], at relatively high temperature (280◦C), the fast growth of InP

(20s) and ZnSe shells (10 min) are probably under kinetic control at a high monomer

concentration. Therefore, procedures in which InP and ZnSe grow at lower temperature

(220◦C) have been attempted in order to allow the reaction to achieve a more controllable

state, and more detailed and systematical investigations of the resulting L samples were

performed. Taking L4 as an example (the other L samples showed the similar behaviors),
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at some crucial growth stages during synthesis, aliquots of the reaction solutions were

extracted and characterized as follows.

5.3.3.1 Temporal evolution

Optical spectra Figure 5.5(a) shows the temporal evolution of the absorption and the

fluorescence spectra of L4. Since Zn have been initially added to passivate InP cores, once
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Figure 5.5: Comparison of QDs at different growth stages for sample L4.(a) Temporal evolution
of the absorption (dashed lines) and the fluorescence (solid lines) spectra (excited at 300 nm
for the InP core and 400 nm for the others). The maxima of the first excitonic absorption and
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quantum yields and emission FWHM of sample L4.

Se injected, ZnSe will form at the surface of the InP cores. After Se injection, maxima of



120 Investigations of InP/ZnSeS QDs

both the first excitonic absorption peak and the fluorescence peak exhibit obvious red-

shifts, indicating a delocalization of the charge carriers into the ZnSe buffer shell. After

Zn and S precursor injections, in contrast, a slight blue-shift of peak maximum can be

observed, which may be due to a slight alloying of ZnSe and ZnS at 300◦C [7, 21, 307]. The

fluorescence QY increases dramatically after Se and S injections and eventually ends up

at ∼85%, while FWHMs of the emission spectra remains at around 55 nm (Figure 5.5(b)).

The fluorescence maximum of the final sample is located at 517 nm, corresponding to a

green emission.

Structural characterizations In order to study the internal structure of the as-prepared

L4 QDs, the samples reacted for 13 min after Se injection (InP/ZnSe@13 min), reacted

for 30 min, 60 min and 90 min after S injection (InP/ZnSeS@30 min, InP/ZnSeS@60 min

and InP/ZnSeS@90 min, respectively) were characterized by TEM. The corresponding

sizes of the QDs obtained from the TEM images displayed in Figure 5.6 are 2.9 ± 0.4 nm,

3.7 ±0.4 nm, 4.2 ± 0.5 nm and 4.5 ± 0.4 nm, respectively. The size of the Zn-passivated

InP core is estimated to be ∼1.3 nm according to the wavelength of the first excitonic

absorption peak (423 nm) based on the empirical formula (Equation 2.16). Compared

with the HLim and the H series, the L4 sample (Figure 5.6(d)) shows a more spherical

morphology and a narrower size distribution.

In addition, the atomic contents of the samples at different growth stages of L4, which

are considered to correspond to different radial positions of the InP/ZnSeS@90 min QDs,

were measured by energy dispersive X-ray spectroscopy (EDS). The results show that with

the proceeding of the shell coating, the atomic contents of Se and S gradually decrease

and increase, respectively, as indicated in Figure 5.7(a). Combined with the corresponding

sizes measured by TEM (Figure 5.6), the EDS results explicitly confirm the composition

gradient of the alloy shell.

Furthermore, this set of samples was thoroughly purified and X-ray diffraction (XRD)

measurements were performed for crystallographic analysis. Figure 5.7(b) reveals that

although the XRD pattern of InP cores shows broad band due to the very small size of the

InP QDs (1.3 nm), compared with the standard XRD lines (vertical sticks), all core/shell

samples can be identified and indexed with the zinc blende crystal phase according to the

strongest three distinct diffraction peaks. Unlike InP/CdS QDs which have zinc blende core

(InP) and wurtzite shell (CdS) [87], the crystal phase of the InP/ZnSeS QDs is maintained

after coating. This is believed to be more favorable for the compatibility of core and shell.

Moreover, it has been observed that the positions of the diffraction peaks in the XRD

patterns shift gradually towards higher angles with the shell overgrowth. The peaks of
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Figure 5.6: TEM images of QDs at different growth stages for sample L4. The right panels
are size distributions and the corresponding Gaussian fits. (a) InP/ZnSe: 2.9 ± 0.4 nm; (b)
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Figure 5.7: Structural characterization of QDs at different growth stages for sample L4. (a)
Atomic contents at different growth stages of the InP/ZnSeS QDs from energy dispersive
X-ray spectroscopy. (b) X-ray diffraction patterns of the samples at different growth stages.
The standard diffraction lines of InP, ZnSe and ZnS of zinc blende structure from the ICDD
PDF database indicated by vertical bars (|) are presented for comparison. The corresponding
overall lattice constants are listed on the right side. (c) High resolution transmission electron
microscopy images of the as-prepared InP/ZnSeS@90 min QDs. The insets are the enlarged
view and the fast-Fourier transform (FFT) of the single QD marked with the dashed white circle.
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the InP/ZnSe sample are located between the positions of the Bragg reflections for bulk

InP (ICDD PDF1 #32-0452) and ZnSe (ICDD PDF #37-1463), and similarly, the peaks of

InP/ZnSeS samples are located between the positions of the Bragg reflections for bulk ZnSe

(ICDD PDF #37-1463) and ZnS (ICDD PDF #05-0566). These data also illustrate a gradual

decrease of the overall lattice constant from the center to the surface of the InP/ZnSeS

QDs (listed on the right side of Figure 5.7(b)) based on formulas 2d sinθ = nλ (Bragg’s

law) and dhkl = a/
p

h2 +k2 + l 2 (for cubic unit cell), where d is the interplanar spacing

of the crystal, n (an integer) is the “order” of Bragg reflection, λ is the wavelength of the

incident X-rays (λ = 0.15406 nm), θ is the angle of incidence and (hkl ) denotes a generic

Miller index. Furthermore, the InP/ZnSeS@90 min sample has been characterized by high

resolution transmission electron microscopy. The electron micrograph in Figure 5.7(c)

shows that the QDs have a relatively spherical shape. Based on the crystal lattice fringes

and the corresponding fast-Fourier transform (FFT) (insets in Figure 5.7(c)), the exposed

interplanar spacing has been measured to be 0.318 nm. This interplanar spacing is in

good agreement with the value calculated by Bragg’s law based on the peak position

corresponding to crystal plane (111) in the XRD pattern. The lattice fringes also suggest a

high crystallinity the InP/ZnSeS QDs.

5.3.3.2 Different amounts of Se

In order to study the influence of the ZnSe buffer shell on the photophysics, samples with

different amounts of Se (varied from 0 to 0.4 mmol) have been synthesized, characterized

and compared. As listed in Table 5.1, the samples were labeled as L1, L2, L3, L4 and L5

corresponding to Se amounts of 0, 0.001, 0.05, 0.2, 0.4 mmol, respectively. Figure 5.8(a)

shows the absorption and emission spectra, from which it can be seen that the emission

wavelengths of the samples are similar, except for L5 which contains a large amount of Se.

The fluorescence QYs increase from L1 to L4 and decrease for L5 with increasing amount

of Se, while the FWHM of the emission spectrum behaves in the opposite way, as displayed

in Figure 5.8(b). The specific values can be found in Table 5.4.

Moreover, as represented in Figure 5.9, the fluorescence lifetimes of the samples of

the L series were measured by means of time-correlated single photon counting (TCSPC)

(for experimental details see Section 3.3.5). Histograms of photon arrival times had to be

fit with a sum of four exponential functions convoluted with an instrumental response

1ICDD: the International Centre for Diffraction Data; PDF: Powder Diffraction File.
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Table 5.4: Results of the ensemble spectra of L series.

Sample
λAbs.Max

(nm)
λEm.Max

(nm)
FWHM

(nm)
QY
(%)

L1 468 515 63 58
L2 468 516 60 78
L3 467 516 55 82
L4 478 517 56 85
L5 494 530 60 73

function (IRF) according to:

I f l (t ) =
[

∑

n

Ane
− t

tn

]

⊗ I RF (t )+B (5.1)

The fitting parameters were listed in Table 5.5. Using the components of amplitudes An

and lifetimes τn , the average fluorescence lifetime <τ> of each sample was calculated

based on:

< τ>=
∑

n

Anτ
2
n

∑

m Amτm
(5.2)

Moreover, together with the QY values in Table 5.4, according to

kr =
QY

< τ>
(5.3)
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Table 5.5: Fluorescence lifetime fitting parameters of L series. kr: radiative decay rate; knr:
non-radiative decay rate.

A1 τ1 A2 τ2 A3 τ3 A4 τ4 < τ> QY kr knr

(ns) (ns) (ns) (ns) (ns) (%) (106s−1) (106s−1)

core 0.42 0.34 0.41 2.58 0.14 11 0.03 49 23 3.3 1.4 42.0
L1 0.28 2.35 0.16 18 0.49 56 0.07 198 97 58 6.0 4.3
L2 0.17 2.45 0.22 25 0.54 63 0.07 199 93 78 8.4 2.4
L3 0.08 2.75 0.19 24 0.66 56 0.06 163 73 82 11.2 2.5
L4 0.05 2.68 0.2 22 0.69 48 0.06 125 58 85 14.6 2.6
L5 0.19 2.2 0.4 20 0.38 43 0.03 156 51 73 14.3 5.3
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Figure 5.10: Comparison of radiative decay rates (kr) and non-radiative decay rates (knr) of
samples L1-L5 with increasing amount of Se. In order to prevent the details being covered, knr

of the core had been divided by a factor of 10 before it was plotted.
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and

knr =
1−QY

< τ>
(5.4)

the radiative and non-radiative decay rate constants kr and knr were obtained and are

given in Figure 5.10. After the overgrowth of the shell, the radiative decay rate kr increases

almost linearly with increasing amount of Se and eventually saturates when using a large

amount of Se in sample L5 (0.4 mmol), while as a first approximation the non-radiative

decay rate knr remains constant.
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Figure 5.11: TEM images of samples (a) L1, (b) L4 and (c) L5. The insets are enlarged views.
The panels at the bottom show the corresponding size distributions: L1: 4.4 ± 0.8 nm; L4: 4.5 ±
0.4 nm; L5: 4.5 ± 0.8 nm. Solid curves in the histograms are the corresponding Gaussian fits.

Finally, the corresponding TEM images reveal that compared to the samples without

Se (L1, Figure 5.11(a)) and with a large amount of Se (L5, Figure 5.11(c)), the QDs with

0.2 mmol Se (L4, Figure 5.11(b)) possess a more spherical morphology and a narrower size

distribution. This correlation of the morphology and the optical properties (e.g., different

fluorescence QYs) found here further reveals the importance of the crystal structure of the

QDs on their photophysical properties, which can be controlled by the amount of Se.
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5.4 Single particle measurements at room temperature (T

= 295 K)

Single particle measurements at room temperature were performed with the setup

described in Section 3.4.4. The different QDs were embedded in PMMA films. The time

resolution (time bin) of the fluorescence time traces was 20 ms. The shortest spectral

integration time was 1 second.

5.4.1 HLim series

For the measurement of the HLim series, a 488 nm OPSL laser was used. The excitation

intensity was ∼285 W/cm2. Other information such as optical filter combinations can be

found in Table 3.2.

5.4.1.1 Photostability

The stability against photo-bleaching of the HLim series was tested in air and argon

atmospheres. As revealed in Figure 5.12(a) and Figure 5.12(b), the survival time against
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Figure 5.12: The survival times against photo-bleaching of sample (a) HLim2 in air, (b) HLim2

in argon, (c) HLim1 in argon and (d) HLim3 in argon.

photo-bleaching is strongly dependent on the surrounding atmosphere. Aa argon
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atmosphere obviously plays an important role in the protection of samples from photo-

bleaching, indicating that the bleaching may be mainly ascribed to a process which is

related to the air environment (such as photo-oxidation), even though the QDs were

embedded in the PMMA film.

Survival time distributions of sample HLim1, HLim2 and HLim3 in argon were

compared as well (Figure 5.12(b)(c)(d)). In all three samples, QDs bleached in argon

atmosphere. The fractions of the QDs whose survival time fell into the interval of 180-120 s

were 48%, 36% and 35% for sample HLim1, HLim2 and HLim3, respectively. This result

suggests that the survival time against bleaching does not differ significantly from sample

to sample under these experimental conditions.

5.4.1.2 Typical emission spectra

Since the 488 nm laser light was used as the excitation source, the wavelength of the edge

of the long-pass filter used in the detection path in the experiment had to be longer than

488 nm. However, as seen in Figure 5.13(a), some blue part of the emission spectra of the

bulk samples have been cut off by the filter. This induces two consequences: 1) Some

bluer QDs would be excluded and absent in the single particle measurements; 2) The

single particle emission spectra of some bluer QDs whose fluorescence could be detected

may be partially cut off. The details are demonstrated below.

As displayed in Figure 5.13(b), the line shape of the emission spectrum of the single

QD exhibits a substantial difference from the Gaussian fit. This spectral asymmetry could

be easily attributed to the long-pass filter. But it is worth noting that the filter is at least

not the exclusive contribution. An evidence is that another redder QD whose emission is

far from the filter edge shows a similar line shape as well (Figure 5.13(c)). An asymmetry of

emission spectra could be found for all the QDs measured, although it does not appear to

be significant at room temperature. Since the ensemble spectrum is in principle equivalent

to the convolution of single particle spectra of the contributing QDs and a symmetric

Gaussian distribution of the emission spectral positions, the spectral asymmetry at the

single particle level might be responsible for the asymmetry of the ensemble spectra.

5.4.1.3 Statistics of the emission spectra

The distributions of the emission maxima and FHWMs of the emission spectra of single

particles belonging to the HLim series are shown in Figure 5.14 and the values are tabulated

in Table 5.6.

The asymmetry of the histograms of the peak positions in Figure 5.14(a)(c)(e) are likely

related to the long-pass filter used in the single particle measurement, meaning some
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Figure 5.13: (a) Ensemble spectra of HLim series and the transmission curve of the 488 nm
long-pass filter. Typical emission spectra of (b) a single QD and (c) another redder single QD
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blue solid curves are corresponding Gaussian fits and the residual error of the fits, respectively.
Vertical lines indicate the spectral position of the 488 nm excitation light. The integration time
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Figure 5.14: Distributions of emission maxima and FWHMs of the emission peaks in single QD
spectra of HLim series. Spectral position distributions: (a) HLim1, (c) HLim2 and (e) HLim3.
FWHM distributions: (b) HLim1, (d) HLim2 and (f) HLim3. The solid curves in the histograms
are the corresponding Gaussian fits.

bluer QDs are filtered out artificially. Particularly, as revealed in Figure 5.14(a), a Gaussian

fitting of sample HLim1 is not possible. For the other two samples, despite of possible

slightly over-estimations of red wavelengths due to the long-pass filter, the resulting values

from the distributions of the spectral peak positions from single QDs (see Table 5.6) are in

accordance with the ensemble emission maxima (Table 5.2).
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To avoid any under-estimation of the FWHMs of emission peaks, only the QDs

whose emission wavelengths are longer than 500 nm were taken into account for the

FWHM statistics. The results shown in Table 5.6 from distributions in Figure 5.14(b)(d)(f)

indicate that the emission peak widths of the single particles are all much narrower than

those of the ensemble samples (22-25 nm versus 53–63 nm), suggesting the presence of

inhomogeneous spectral broadening. Considering the spectral resolution (∼96 cm−1) of

the spectra, the variation in peak FWHM among different samples is not significant.

Table 5.6: Statistical results of emission maxima and FWHMs of the emission peaks in single
particle spectra of the HLim samples.

sample
Peak Max.

(nm)
Peak FWHM

(nm)
Peak FWHM

(cm−1)

HLim1 — 25.1 ± 5.7 968 ± 220
HLim2 509.1 ± 13.6 22.1 ± 5.4 853 ± 208
HLim3 518.6 ± 14.8 24.6 ± 5.0 916 ± 186

5.4.1.4 Time traces and categorizations

For all three samples, four different types of single particle fluorescence time traces were

observed, labeled with F, N, B and M, respectively. Representative time traces as well as

the corresponding count rate distributions are displayed in Figure 5.15. Thresholds were

set to define the on and off states according to the count rate distributions.

• Type F (Figure 5.15(a)): QDs which exhibit long off times and do not show well

defined on state intensities in the time traces. Since it has been observed that

even the fluorescence time trace with a time bin as small as 1 ms exhibits similar

features (not shown here), the different intensities might be due to very frequent

blinkings (fluctuations on the time scale smaller than 1 ms) [241]. From the count

rate distribution (the right panel of Figure 5.15(a)), it can be seen that most of the

time the QD is in off state at background intensities.

• Type B (Figure 5.15(b)): QDs featuring a binary blinking with relatively well defined

intensities for both on and off states. The bimodal distribution of the fluorescence

intensities indicate the photon counts from the bright state and the dark state.

• Type M (Figure 5.15(c)) is a category which embraces more complicated time traces:

The single QDs show multiple levels of intensities, so that a threshold to distinguish
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between on and off state is impossible to set. The states with intermediate intensities

might correspond to some gray state, e.g., trion emissions [236].

• Type N (Figure 5.15(d)) is the category of critical importance, in which the QDs

exhibit strong blinking suppression or nearly non-blinking behavior. Accordingly,

the contribution from the off state to the count rate distribution is very small.
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Single particle fluorescence time traces corresponding to these four categories can be

found in all three samples of HLim series. The category distributions for sample HLim1,

HLim2 and HLim3 are shown in Figure 5.16. Category F dominates (∼69% of QDs) in

sample HLim3 whereas the category B dominates in the other two samples. This may

explain why sample HLim3 has the lowest quantum yield in solution. Moreover, too large

amount of Se in InP/ZnSeS QDs is believed to reduce the crystallinity of the shell [52].

Thus, the presence of trap states in the shell may lead to non-radiative pathways and

prevent a QD from emitting for a long time. In contrast, there are 9% and 11% nearly

non-blinking QDs (category N) in HLim1 and HLim2 samples, respectively, implying that

the blinking of some InP/ZnSeS QDs has been suppressed effectively.

5.4.1.5 Statistics of on and off times

The on time fraction, defined as the fraction of the total on time during the total

measurement time, is extensively used to quantitatively characterize the blinking behavior

of single QDs [71, 76, 82]. The on time fraction distributions of the HLim series were

analyzed here. As illustrated in Figure 5.17, HLim3 sample has more QDs which have a

short on time fraction compared with HLim1 and HLim2 samples. This is consistent with

the results of the category distributions, since category F obviously corresponds to a short

on time fraction (generally below 40%). The overall on time fractions (the sum of on times

from all QDs divided by the overall measurement time [305]) of HLim1 HLim2 and HLim3

are 63%, 69% and 42%, respectively. The fractions of QDs whose on time fraction is above

80% in HLim1, HLim2 and HLim3 samples are 33%, 43% and 22%, respectively. All these

results show that HLim2 possesses the strongest blinking suppression among the three

samples.
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Figure 5.17: On time fraction distributions of fluorescence blinking of HLim series: (a) HLim1,
(b) HLim2, and (c) HLim3.

The probability distributions extracted from the on and off time histograms were

studied as well. As commonly found in QD blinking, introduced in Section 2.3.3.1, for
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HLim series: (a) HLim1, (b) HLim2 and (c) HLim3. The lines denote the least-squares fits. (d)
Comparison of the inverse power law exponents mon (black triangles) and moff (gray squares)
of different samples.

all three samples, the on or off time probabilities feature a linear distribution on a log-

log scale as shown in Figure 5.18(a)–(c), namely that the distribution follows an inverse

power law P (t) = At−m . The exponents mon and moff of the power law distributions

were determined by linear least-squares fits for the three samples and compared in

Figure 5.18(d). HLim3 has the largest mon and smallest moff, indicating large fraction of on

times distributing in short times and large fraction of off times distributing in long times.

The mon of HLim2 is smaller than that of HLim1, which means that HLim2 has a higher

probability for long on times. In contrast, no significant difference has been observed

between the moff of HLim1 and that of of HLim2. This implies a similar time scale of the

“off to on” process for these two samples.

5.4.2 H and L series

In order to avoid cut by the long-pass filter, single particle measurements of sample series

H and L excited by a 445 nm laser at room temperature were conducted, and a 458 nm
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long-pass filter was used in the detection path of the setup to block the excitation light.

The excitation intensity was ∼344 W/cm2 (0.34 kW/cm2) (also see Table 3.2).

5.4.2.1 Typical emission spectra

Single particle spectra of the H and the L series are similar to those of the HLim series.

A typical spectrum is shown in Figure 5.19, in which obvious spectral asymmetry can

also be observed. Since the spectral position of the edge of the long-pass filter (458 nm)

for this measurement is far from the wavelength range of the emission, the spectral

asymmetry cannot be attributed to the long-pass filter, but probably to some intrinsic

optical properties of these InP/ZnSeS QDs. The rationale behind this phenomenon may

be better understood with the results of the experiments at cryogenic temperature (see

Section 5.5.1).
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Figure 5.19: Typical emission spectrum of a single QD from L4 excited at 445 nm and the
transmission curve of the 458 nm long-pass filter used. The black solid curve is the Gaussian fit
and the blue line is the residual error of the fit. The integration time of the spectrum was one
second.

5.4.2.2 Statics of emission spectra

Because the long-pass filter was spectrally far away from the emission, the emission

maximum of single particles belong to the L and H series showed symmetrical Gaussian

distributions. As an example, distributions of emission maxima and FWHMs of the

emission peaks in single QD spectra of L4 sample are given in Figure 5.20. The values

of the L and the H series are listed in Table 5.7. The average emission maxima of single

particles were consistent with the ensemble results.
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Figure 5.20: Distributions of emission maxima and FWHMs of the emission peaks in single QD
spectra of L4 sample. The solid curves in the histograms are the corresponding Gaussian fits.

Table 5.7: Statistical results of emission maxima and FWHMs of the emission peaks in single
particle spectra of the L and the H series.

sample
Peak Max.

(nm)
Peak FWHM

(nm)
Peak FWHM

(cm−1)

H1 514.7 ± 15.8 24.7 ± 8.1 959 ± 362
H2 514.0 ± 15.5 23.6 ± 8.6 894 ± 326
L1 512.5 ± 16.8 24.3 ± 9.7 926 ± 369
L2 514.0 ± 14.3 23.3 ± 7.8 882 ± 295
L3 516.6 ± 14.5 24.0 ± 6.5 900 ± 244
L4 513.9 ± 13.8 23.8 ± 6.3 902 ± 240
L5 530.8 ± 15.8 24.2 ± 9.1 859 ± 323

5.4.2.3 Time traces and on/off times

The fluorescence time traces of the H and the L series were analyzed. In contrast to the

HLim series, almost all of the time traces in the H and the L series featured binary blinking

behaviors, although a few “gray states” were also visible (Figure 5.22). Moreover, the on

time fraction distributions of the L series were found to be quite different from those of

the H series. As shown in Figure 5.21, the on time fractions are concentrated in the interval

between 90% and 100% for the L series, whereas the on time fractions of the H series are

more uniformly distributed, especially for that of sample H1. This implies that a synthesis

at lower temperatures can suppress the blinking effectively for the system investigated.

Recently, the term largely non-blinking has been introduced by Vela et al. as a blinking

behavior whose overall on time fraction is above 80% [305]. Regarding the distributions

shown in Figure 5.21(a)–(e), largely non-blinking QDs dominate for all samples belonging

to the L series. Figure 5.22 presents some representative time traces of these largely
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Figure 5.21: On time fraction distributions of sample (a) L1, (b) L2, (c) L3, (d) L4, (e) L5, (f) H1

and (g) H2.

non-blinking QDs. From Figure 5.22(a) to Figure 5.22(d), the on time fractions of the

corresponding QDs are 81%, 91%, 97%, 99%, respectively. Part of the time traces (marked

with gray background) are expanded and plotted in the lower panels of the sub-figures.

The combination of the figures in full range and a sub-range shows the self-similarity and

complexity of the traces on different time scales. Considering that most of the QDs in the

L series are largely non-blinking, it can be concluded that the blinking has been strongly

suppressed in these samples.

As a more quantitative comparison of the samples with various amounts of Se in the L

and H series, the percentage of QDs with an on time fraction over 80% and over 90% are

displayed in Figure 5.23(a), respectively. Sample L4 has the strongest blinking suppression,

which means that about 80% and 51% of the QDs which have an on time fraction above

80% and above 90%, respectively. Samples with either less or larger amounts of Se lead to

lower on time fractions. Additionally, the overall on time fractions reveal a similar trend

(Figure 5.23(b)).

Furthermore, the samples of the H and L series also exhibit power law probability

distributions of the on and off times. As an example, the result of L4 is displayed in

Figure 5.24(a). For comparison, on and off time coefficients (the power law exponents) of
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Figure 5.22: Representative fluorescence time traces with the corresponding distributions of
count rates (right panels) of largely non-blinking InP/ZnSeS QDs (with the overall on time
fraction over 80%). The calculated on time fractions are (a) 81%, (b) 91%, (c) 97% and (d) 99%,
respectively. The lower panel in each sub-figure is the enlarged view of part of the time trace
(the part marked with gray background), which shows the self-similarity and complexity of
the traces on different time scales. Dashed lines denote the threshold values chosen for the
discrimination of the on and off states. Time bin: 20 ms.

the H and L series are presented in Figure 5.24(b). For the L, mon decreases from 1.48 to

1.28, while the off time coefficient moff is rather insensitive to the Se amount and fluctuates

around 1.55 in a narrow range. This trend is similar to the case of HLim1 and HLim2 (see

Figure 5.18(d)) and has been observed by Zan et al. in InP/ZnS QDs synthesized under

various conditions [86]. In conjunction with the ensemble characterizations, the single

particle experiments have further emphasized the important function of the amount of Se

as a buffer material. It seems that an appropriate amount of Se can optimize the internal

structure of the QDs by reducing the interfacial strain and defects. Thus, the crystallinity

has been improved, leading to a strong blinking suppression.
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Figure 5.24: (a) Probability distributions of the on or off times of sample L4. (b) Comparison of
the inverse power law exponents mon and moff of different samples. (c) A fluorescence blinking
trace reveals a digital blinking behavior. mon = 1.15±0.08 and moff = 1.26±0.13 from 46 events.
(d) A fluorescence blinking trace reveals a chaotic blinking behavior. mon = 1.54±0.16 and
moff = 1.80±0.11 from 284 events.

Another interesting phenomenon which can be found in Figure 5.24(b) is that both on

and off time coefficients of the H series are larger than those of the L series, but similar to

those of the HLim series (Figure 5.18(d)). It is worth noting that even with the same on

time fraction, mon and moff may be different for different particles relating to different
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blinking behaviors. For example, with similar on time fractions (∼63%), if both mon and

moff are small (mon = 1.15 and moff = 1.26) as shown in Figure 5.24(c), the fluorescence

time trace exhibits more digital blinking behavior, whereas if both mon and moff are large

(mon = 1.54 and moff = 1.80) as shown in Figure 5.24(d), the fluorescence blinking is more

chaotic. The different numbers of on or off events (46 versus 284) of the two time traces in

this example further illustrate the different blinking behaviors. In addition, the analysis

here also reflects that on time fraction and mon/off are two different ways to characterize

the fluorescence blinking.

5.4.2.4 Influence of surface ligands

As mentioned in Section 2.3.3.3, the ligand related surface states have been considered as a

crucial factor for the fluorescence quantum yield and blinking behavior of QDs [69–72, 75].

Therefore, the influence of surface ligands on quantum yield and blinking behavior

of the as-prepared InP/ZnSeS QDs was studied. After harsh purification (six cycles

with chloroform and an excess of ethanol), as shown in Figure 5.25(a), the average

brightness (average value of the signal to noise ratios of QDs in the image) dropped

by 18%. Meanwhile, the overall on time fraction of QDs decreased from 86% to 76%, and

the fraction of the largely non-blinking QDs decreased from 81% to 50%. However, when

additional 0.1 mL 1-dodecanethiol (DDT) was added, the intensity and blinking behavior

basically recovered (brightness back to 0.91 of the original value).

Similar experiments were performed at the ensemble level. After harsh purification,

some amount of ligands (DDT or OA) was added to the solution and the corresponding

QYs were compared. The results shown in Figure 5.25(b) indicate that after ligand removal,

addition of DDT may partially recover the QY of the QDs. In contrast, with an increasing

amount of oleic acid (OA) added, the fluorescence was gradually quenched. These results

implied that DDT may play an important role for the bulk emission quantum yield and

blinking behaviors of InP/ZnSeS QDs. A tentative mechanism is outlined in the following:

In solution, ligands tend to reach a dynamic adsorption/desorption equilibrium with

the QD surface. After harsh purification, the number of attached ligands per QD decreases

dramatically. Thus, the passivation of QDs becomes worse, because of many surface

defects and surface “dangling bonds”, which may quench the emission. Thiol-containing

chemicals have been reported to be responsible for blinking suppression by mechanisms

such as charge compensation at the surface traps [69, 82]. This may explain the different

QYs when DDT and OA were added, since only the former compound contains a thiol

group.
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Figure 5.25: (a) Confocal fluorescence microscope images of the sample L4 original (left),
after harsh purification (middle) and after adding DDT again (right). The ratio of the average
brightness of QDs among these three sample is about 1 : 0.66 : 0.91 from left to right. The
illustration below shows the assumption with respect to the surface ligand states. (b) Quantum
yield comparison of an original InP/ZnSeS QD solution, after ligand removal and when different
amounts of ligands (1-dodecanethiol (DDT) or oleic acid (OA)) were added again.

5.5 Single particle measurements at cryogenic tempera-

ture (T = 4.5 K)

To further investigate the photophysical properties of InP/ZnSeS QDs, single particle

measurements of L series samples L1, L4 and L5 at cryogenic temperature (T = 4.5 K) were

performed with the setup described in Section 3.4.3. Because excitation with a 445 nm

laser led to a low signal to noise ratio (approximately 3.1 with a time bin of 10 ms) and low

signal to background ratio (about 1.08), a 488 nm OPSL laser was used as the excitation

source. The excitation intensity was ∼1045 W/cm2. The samples were embedded in

a PMMA film by spin-coating and measured in ∼10 mbar helium atmosphere. Other

experimental details are listed in Table 3.2.
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5.5.1 Typical emission spectrum of InP/ZnSeS QDs at 4.5 K

A typical emission spectrum of a single InP/ZnSeS QD at 4.5 K with an integration time of

5 seconds is shown in Figure 5.26(a)(black curve). Compared with the spectrum of a single

CdSe/CdS/ZnS QD at 4.5 K which has a zero-phonon line (ZPL) with a spectral resolution

limited linewidth as displayed in Figure 5.26(b), the spectrum of a single InP/ZnSeS QD

within the same magnitude of spectral range and the same integration time reveals no

ZPL but a much broader main peak (band edge emission, ∼190 cm−1) accompanied

by a broad phonon sideband (PSB). The broad band edge emission implies that either

significant coupling of the exciton to phonons with relatively low frequencies or very

strong spectral diffusion are involved. Moreover, the asymmetrical broad peak observed

at low temperature may have the same source as the slight spectral asymmetry of single

InP/ZnSeS QD emission at room temperature.

5.5.2 Phonons contributions

In contrast to the situation of CdSe QDs, the reports on low temperature spectroscopy

of InP based QDs are very rare, especially at the single particle level and/or measured at

cryogenic temperatures [92, 110, 308]. Furthermore, considering the spectral resolution of

the measurement (∼17 cm−1) and the composition of the InP/ZnSeS QDs, various phonon

contributions coupled to the exciton will be discussed in the following.

5.5.2.1 Optical phonons

Since Fröhlich coupling involves the interactions between the longitudinal optical (LO)

phonons and the polarization of the exciton (see Section 2.3.5.1), it is polar in nature. As a

result, the magnitude of Fröhlich coupling is strongly dependent on the ionic polarization

of the crystal, which is related to the static and high-frequency dielectric constants (ε0

and ε∞, respectively) [298]. As listed in Table 5.8, both ε0 and ε∞ of InP are much larger

than those of other semiconductors. This is not very surprising due to the more covalent

character of the bonds in materials from group III-V. More specifically, a measurement of

the coupling strength of the electrons and LO phonons can be represented by the Fröhlich

coupling constant αF defined as [309]:

αF =
1

2

e2/
√

~/2mα
c ωLO

~ωLO

(

1

ε∞
−

1

ε0

)

(5.5)

where e is the electron charge, mα
c is the electron effective mass (conductivity mass) and

ωLO is the LO phonon frequency.
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Figure 5.26: Typical emission spectra of (a) a single InP/ZnSeS QD (solid black curve) and (b) a
single CdSe/CdS/ZnS QD in a PMMA film at 4.5 K excited at 488 nm with the same magnitude of
spectral range. The region highlighted in gray with a width of 170 cm−1 denotes the transitions
near the band edge at the lower energy side. The dashed line in (a) represents the transmission
curve of the long-pass filter used at 4.5 K. The red curve in (a) is a typical emission spectrum of
a single InP/ZnSeS QD in a PMMA film at 295 K excited at 445 nm. Integration time: 5 s.

Considering the smallerαF of InP compared with those of other semiconductors shown

in Table 5.8, weaker Fröhlich coupling is expected for InP. Moreover, the αF values of zinc

blende ZnSe and ZnS are comparable with the values of wurtzite CdSe and CdS, which

indicates that the Fröhlich coupling strength is not determined by the crystal structure,

but rather depends on the polarity of the bonds in the crystal. This suggests that the

electron coupling to transverse optical phonons (TOs) for InP is also relatively strong and

may contribute to the spectrum. Indeed, unlike for CdSe QDs, both the participation of

LO (∼342 cm−1) and TO (∼310 cm−1) phonons in InP QDs (2.9 nm) have been observed by

three-pulse photon-echo experiments in Ref. [110]. Another evidence is that the Huang-

Rhys parameters S of the coupling to LO phonons obtained from the fitting based on the
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Table 5.8: Static dielectric constants ε0, high-frequency dielectric constants ε∞ and Fröhlich
coupling constants αF of some bulk semiconductor crystals [298].

Structures Zinc blende Wurtzite

Materials InP ZnSe ZnS CdSe CdS ZnS

ε0 12.9 8.9 8.3 9.29 10.2 8.1
ε∞ 9.9 5.9 5.1 6.20 5.4 5.4
αF 0.15 0.432 0.63 0.46 0.514 -

same experiment in Ref. [110] is 0.08, which is smaller than the value reported for CdSe

QDs with a similar size (S = 0.18) [310].

Furthermore, Seong et al. studied the size-dependent Raman spectra of InP quantum

dots [311]. They concluded that the LO phonon frequency decreases while the TO phonon

frequency increases when the QD size is reduced, but only ∼2 cm−1 difference in energy

between QDs with diameters of 3.5 nm and 5.2 nm has been found. Therefore, as generally

outlined in Section 2.3.5.1, the energies of optical phonons are almost size independent.

Based on Ref. [298], optical phonon energies of the relevant semiconductors are tabu-

lated in Table 5.9. Since LO phonons dominate in the polar II-VI group semiconductors,

TO phonons of the ZnSeS shell have not been considered in this study.

Table 5.9: Some optical phonon energies of InP, ZnSe and ZnS bulk semiconductors with zinc
blende crystal structure [298].

Materials ~ωLO (cm−1) ~ωTO (cm−1)

InP 342 310
ZnSe 252 –
ZnS 350 –

5.5.2.2 Acoustic phonons

Unlike optical phonons, the frequencies of acoustic phonons are inversely proportional to

the size of the nanocrystals according to Lamb theory (see Section 2.3.5.1). At the ensemble

level, Narayanaswamy et al. have reported that both optical and acoustic phonons

contributed to line broadenings in 1.8 nm and 3 nm InP/ZnS core-shell nanocrystals, and

the acoustic phonon contributions were dominant at low temperatures [281], emphasizing

the significant role that acoustic phonons play in the spectral linewidth at cryogenic

temperature for InP based QDs. At the sub-ensemble level, Banin et al. [110] studied InP

QDs smaller than 5 nm by nanosecond hole burning and femtosecond three-pulse phonon
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echo experiments. Similar to the single QD emission spectrum shown in Figure 5.26(a),

a broad main transition peak was found in the hole-burning spectra, and the authors

observed narrow features the widths from 10 meV (80.6 cm−1) to 20 meV (161.3 cm−1) for

the investigated InP QDs with diameters ranging from 4.1 nm to 2.2 nm. The line-widths

have been attributed to coupling of the exciton to acoustic modes with low frequencies.

Table 5.10: Eigenvalues (ηln based on Talati calculation [261] andη∗
ln

based on Murray’s method
[264, 268]) and the corresponding energies (~ωln and ~ω∗

ln
, respectively) of spheroidal and

torsional modes of acoustic phonons of InP QDs with a diameter of 2.9 nm. The transverse
velocity vt: 3080 m/s of InP [261] was taken for the calculation.

Type l n ηln η∗
ln

~ωl n (cm−1) ~ω∗
l n

(cm−1)

Spheroidal 0 0 3.283 – 37.1 –
Spheroidal 0 1 7.310 5.995 82.6 67.7
Spheroidal 1 0 – 3.647 – 41.2
Spheroidal 1 1 6.256 7.310 70.7 82.6
Spheroidal 2 0 – 2.653 – 30.0
Spheroidal 2 1 5.774 5.166 65.2 58.4
Torsional 1 0 5.184 5.764 58.6 65.1
Torsional 1 1 8.468 9.096 95.7 102.8
Torsional 2 0 – 2.502 – 28.3
Torsional 2 1 6.566 7.137 74.2 80.6

Based on Lamb’s theory, the frequency of the acoustic phononωln should be calculated

by ωln = 2ηln vt/d , which is deduced from Equation 2.45 and Equation 2.47. The

dimensionless eigenvalue ηln here contains the ratio of longitudinal to transverse sound

velocity (vl/vt) of the material. To estimate the acoustic phonon energies of InP/ZnSeS

QDs, the QD diameter d chosen for the calculation needs to be considered. Since the

exciton wavefunctions will extend into the shell which has a gradient composition, neither

using the size of the core nor of the whole particle seems appropriate [281]. Therefore, as

a rough estimate, an average diameter 2.9 nm (core (1.3 nm), core-shell QDs (4.5 nm))

was selected for the calculation. With the eigenvalues provided by Ref. [261], the energies

corresponding to various acoustic phonon modes were calculated, as listed in Table 5.10.

Unfortunately, it is not possible to assign any specific phonon energies to the spectrum

shown in Figure 5.26(a). Nevertheless, the monotonous increase of the intensity within the

range highlighted in gray in the spectrum implies that the breathing mode as well as other

low frequency surface modes (n = 0) might contribute significantly. Taking into account

the possibility of spectral diffusion and the linewidths of acoustic phonon replicas, a

roughly estimated energy region with a maximum spectral distance of 170 cm−1 to the
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purely electronic transition line is ascribed to the electron coupling to acoustic modes in

this study (marked gray in Figure 5.26(a)).

5.5.3 Categories of single particle spectra

As shown in Figure 5.26(a), not only acoustic phonons are impossible to assign, but also

the optical phonon replicas are difficult to be distinguished from each other. In order to

have a better signal to noise ratio, a series of spectra from the same QD at different times

were superposed after proper shifting every spectrum to avoid a possible broadening from

spectral shifts. The shifts were determined such that the overlap of single spectra was

maximized. As seen in Figure 5.27, the emission spectra of single InP/ZnSeS QDs can be

categorized into three types:

• A type: The spectrum exhibits two distinct peaks, and the PSB corresponding to

the LO and TO phonons of InP (or LO phonons of ZnS) can be distinguished from

the main peak. At the spectral position where the LO phonon of ZnSe is expected

(phonon energy 252 cm−1, as marked by the rightmost vertical line in the spectra),

an obvious dip appears instead of a peak, implying the absence of coupling to ZnSe

LO phonons.

• B type: The spectral region where optical phonons are expected appears as shoulder.

This might be ascribed to an increasing contribution from the ZnSe LO phonon

(252 cm−1) coupling to the exciton.

• C type: The PSB is more difficult to resolve in the spectrum and the entire range

on the low energy side of the purely electronic transition in the spectrum shows a

monotonous increase, which indicates that the coupling of ZnSe LO phonons to the

exciton might be stronger compared with the situations of the other two types.

All three categories were observed in each of the three samples. Especially, the

existence of type B and C in sample L1 (InP/ZnS QDs without Se) indicates that this

categorization may have a large error due to the lack of strict quantitative distinctions

between the types. However, statistically, the category distributions of these three samples

might still give some hints: As presented in Figure 5.28, the number of spectra belonging

to type A decreases from L1 to L5 while the number of spectra of type C increases. Based

on the speculations above, this is a hint that in L1 sample, the excitons are mainly confined

in the core, but with increasing amount of Se, the excitons extend more and more into

the ZnSeS shell, and therefore the coupling to ZnSe phonons becomes stronger and more
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Figure 5.27: Representative emission spectra of single InP/ZnSeS QDs of (a) A type (b) B

type and (c) C type. Spectra were obtained by the superposition of single spectra each with
integration time of 5 s after proper shift as explained in the main text. The vertical lines mark
the positions whose spectral distances to the main peak maxima are 350 cm−1 (LO phonon,
ZnS), 342 cm−1 (LO phonon of InP, may not be able to distinguished by the eye from 350 cm−1),
310cm−1 (TO phonon, InP) and 252 cm−1 (LO phonon, ZnSe), from left to right, respectively.
The region highlighted in gray having a width of 170 cm−1 denotes the transitions near the band
edge which may originate from coupling to acoustic phonons.
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Figure 5.28: Spectral category distributions of InP/ZnSeS QDs at 4.5 K: (a) L1, (b) L4 and (c) L5.

probable. It is worth noting that even in sample L1, the charge carriers may extend to

the ZnS shell as it has been reported that InP/ZnS QDs can also form a (thin) radial

composition gradient at 300◦C or 260◦C [4, 86]. In addition, for InP/ZnSeS QDs, the real

phonon energies could be slightly different from the values of pure InP, ZnSe or ZnS, since

the QDs have a radial gradient alloy structure.

5.5.4 Average optical phonon energies

Average optical phonon energies were calculated by identification of the spectral positions

of the purely excitonic transitions and the PSBs. The spectral position of a PSB was defined

by the position of the maximum of a resolved PSB (Figure 5.27(a)) or by the middle position

of a flat PSB (Figure 5.27(b)), respectively. Most of the C type spectra were discarded for

this analysis due to the difficulty in peak discrimination.

The results are represented in Figure 5.29(a)–(c). The resulting average optical phonon

energies of L1, L4 and L5 are 332 cm−1, 321 cm−1 and 320 cm−1, respectively. These values

are all lie between the LO phonon energy (342 cm−1) and TO phonon energy (310 cm−1) of

InP. However, the slightly smaller values of L4 and L5 may imply some contribution from

the ZnSe shell, since the LO phonon energy of ZnSe is 252 cm−1. Furthermore, there is no

correlation between the average optical phonon energy and emission maximum position

of all QDs.

5.5.5 Fluorescence blinking at 4.5 K

Due to the lower detection efficiency of the setup for cryogenic temperature measure-

ments compared with the setup for room temperature measurements (see Section 3.4.3

and Section 3.4.4), the time resolution (time bin) of the fluorescence time trace at 4.5 K

had to be increased up to 100 ms in order to acquire a sufficient signal to noise ratio. Since

all possible blinking events within a time bin were smeared out and the corresponding

intensities were converted to an average value, the increase of time bin may lead to some
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Figure 5.29: Average optical phonon energy distributions obtained by the spectral distance
between the purely electronic transitions and PSBs (for details see the main text) of (a) L1, (b)
L4 and (c) L5. The solid curves in the histograms are the Gaussian fits. (d) The correlation of the
average optical phonon energy and the emission maximum position of all QDs investigated.
The average optical phonon energies of L1, L4 and L5 are 332 cm−1, 321 cm−1 and 320 cm−1,
respectively.

intermediate intensity levels between the levels of on and off states. To illustrate this,

comparison of a simulated time trace with 10 ms time bin (blue crosses) and the time trace

integrated from it with 100 ms time bin (red circles) is shown in Figure 5.30(a). Although

the trace with 10 ms time bin was purely binary blinking (the dark count rate was 5 and the

bright count rate was 100), when it was integrated to become the trace with a time bin of

100 ms, intermediate intensity levels appeared due to the different total counts summed

up from different 100 ms time intervals. Accordingly, the distribution of the count rates

was broadened. This effect has also been discussed in the literature [63]. Figure 5.30(b)

shows a typical fluorescence time trace of InP/ZnSeS QDs in a PMMA film at 4.5 K, in

which some intermediate intensity levels might be derived from the large time bin used

(100 ms).
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Figure 5.30: (a) A simulated time trace with a time bin of 10 ms (blue crosses, the dark count
rate is 5 and the bright count rate is 100). Red circles denote the corresponding trace when the
time bin is increased to 100 ms. The solid black connection lines between the symbols serve as
a guide for the eye. The dashed lines are the thresholds and the histograms in the right panel
are the count rate distributions. (b) A typical fluorescence time trace of InP/ZnSeS QDs from L4

sample in a PMMA film at 4.5 K. Time bin: 100 ms. The on time fraction is 88%.

40

30

20

10

0

O
c
c
u
rr
e
n
c
e
/
1
0
%

100806040200

On time fraction (%)

30

20

10

0

O
c
c
u
rr
e
n
c
e
/
1
0
%

100806040200

On time fraction (%)

30

20

10

0

O
c
c
u
rr
e
n
c
e
/
1
0
%

100806040200

On time fraction (%)

80

70

O
v
e
ra
ll
o
n
ti
m
e

fr
a
c
ti
o
n
(%
)

L1 L4 L5

Sample

(a) (b)

(c) (d)

Figure 5.31: On time fraction distribution of: (a) L1, (b) L4 and (c) L5 samples at 4.5 K. (d) The
overall on time fractions.

The on time fractions of sample L1, L4 and L5 at 4.5 K are shown in Figure 5.31. About

48%, 59% and 56% QDs are largely non-blinking QDs (on time fraction of >80%), and

about 24%, 39% and 25% of QDs are the ones whose on time fractions are over 90%, for

L1, L4 and L5, respectively. The overall on time fractions of L1, L4 and L5 are 71%, 79%

and 74%, respectively. Extracted from the histograms of the on/off time distributions,

the probability distributions of the on or off times also follow inverse power-laws as it
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Figure 5.32: Comparison of the inverse power law exponents mon and moff of L1, L4 and L5 at
4.5 K.

is the case at room temperature. The power-law exponents mon and moff are displayed

in Figure 5.32. The on (off ) time coefficients of L1, L4 and L5 at 4.5 K are 1.43 (1.68),

1.30 (1.54), 1.60 (1.66), respectively. The trend of fluorescence blinking results at 4.5 K

discussed above is similar to that at room temperature, indicating that sample L4 reveals

the strongest blinking suppression.

5.6 Comparison of the different samples

Within each series, a great many of experimental results presented before showed that the

incorporation of 0.2 mmol Se improves the properties of the InP/ZnSeS QDs, including

higher quantum yield, more spherical morphology, narrower size distribution, larger on

time fraction and a smaller blinking coefficient mon. Samples with either more or less Se

induce more inferior properties. An overview of the experimental results is tabulated in

Table 5.11.

Based on Table 5.11, the results among the different series can also be compared from

another perspective. Generally, there are clear differences between the results of the high

temperature series (HLim and H series) and those of the low temperature series (L series).

This implies that a lower injection temperature and a relatively longer reaction time of InP

and ZnSe lead to a higher quantum yield and a more effective blinking suppression of the

final InP/ZnSeS QDs. In conjunction with the improvement of the on time fraction, the

blinking coefficients mon and moff of the L series are obviously smaller than those of the

high temperature series, leading to a more digital blinking behavior.

Since the chemical stability and diffusion rate of the reactive monomers (molecular

species) as well as the binding strength of the organic ligands to the surface of the growing
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QDs are all strongly temperature dependent, an appropriate growth temperature is crucial

for the resulting quality of the synthesized quantum dots [312]. On the one hand, a too

Table 5.11: Overview of the experimental results of InP/ZnSeS QD samples at 295 K and
4.5 K (values in brackets). QY: quantum yield; FWHM: the FWHMs of the emission spectra of
ensemble samples; QD size: particle diameters obtained from TEM images; LNB QD fraction:
the fraction of largely non-blinking QDs (QDs with on time fractions over 80%).

Samples
QY
(%)

FWHM
(nm)

QD size
(nm)

overall on time
fraction (%)

LNB QD
fraction (%)

mon moff

HLim1 56 63 7.8 ± 0.8 63 33 1.83 1.80
HLim2 59 58 7.5 ± 0.9 69 43 1.72 1.77
HLim3 25 53 6.9 ± 1.1 42 22 1.87 1.64

H1 37 66 6.0 ± 0.8 58 24 1.76 1.81
H2 69 65 6.3 ± 0.7 72 43 1.71 1.81

L1 58 63 4.4 ± 0.8 75 (71) 55 (48) 1.48 (1.43) 1.56 (1.68)
L2 78 60 4.4 ± 0.7 81 64 1.46 1.51
L3 82 55 4.4 ± 0.5 79 67 1.39 1.53
L4 85 56 4.5 ± 0.4 86 (79) 81 (59) 1.28 (1.30) 1.53 (1.54)
L5 73 60 4.5 ± 0.8 77 (74) 61 (56) 1.41 (1.60) 1.59 (1.66)

low temperature is insufficient to overcome the energy barrier to trigger homogeneous

nucleation and the subsequent crystallization [130], and a relatively small difference

between temperatures before and after the injection of precursor solution may also

adversely affect the separation of the nucleation and growth processes [131]. On the other

hand, a too high temperature may induce an uncontrolled growth process during which it

is difficult to exploit subtle kinetic or energetic effects to obtain precise control over the

size and size distribution [312]. For the synthesis of InP/ZnSeS QDs, due to the relatively

high reactivity of P(TMS)3 and Se-TOP, the reactions at high temperature (280◦C) at short

times are likely to be under kinetic control, which is an adverse condition to achieve good

crystallinity and uniform shell growth [52]. In contrast, at a lower temperature (220◦C)

with longer reaction times, the thermodynamically controlled growth is favored, which

might be responsible for the observed high QY and strong blinking suppression of the

as-prepared QDs of L series.
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5.7 Possible mechanisms of the strong blinking suppres-

sion

As mentioned at the beginning of this chapter, although the “giant” Cd-containing QDs

with very thick shells (thickness above 6 nm) synthesized by Hollingsworth’s group

succeeded in a reduction of fluorescence blinking [76, 162, 305], a thick shell is at least

not the exclusive approach for blinking suppression in QDs. For instance, when applying

ZnS as the shell instead of thick CdS or CdxZnyS shells to synthesize “giant” QDs, the

blinking behavior was found to be almost completely independent of the thickness of

the ZnS shell [305, 313]. Similarly, blinking suppression of InP/CdS QDs was also found

to be not strongly shell-thickness dependent [87], suggesting that both the composition

and the internal structure are crucial factors for a successful blinking suppression. This

has been further emphasized in Ref. [306], Ref. [83] and Ref. [84] with CdSe/CdS, zinc-

blende CdSe/CdS and (Zn)CuInS/ZnS QD systems. In addition, the CdZnSe/ZnSe QDs

synthesized by Wang et al. exhibited a complete non-blinking behavior even with a size of

only ∼5 nm [76].

The as-prepared InP/ZnSeS QDs (L series) are also quite small (∼4.5 nm) with a

relatively thin shell (∼1.6 nm). Therefore, the isolation of the wavefunction of the core

from the surface may not be the main reason for the blinking reduction. Considering

that the InP/ZnSeS QDs have a radial gradient in both composition and crystal structure

(see Figure 5.7), the strong blinking suppression should be more probably ascribed to the

internal structure of the particles. Several mechanisms are tentatively suggested below:

(1) Less strain, fewer defects and better crystallinity resulting from the gradient

crystal structure. On the one hand, the reactivity difference between the Se and

S precursor solutions during synthesis were chosen and utilized for the formation of

a composition-gradient shell heterostructure [52]; on the other hand, even after the

injection of Se precursor solution, there were still InP monomers remaining in the

reaction system, which should lead to a growth competition with the subsequent ZnSe

coating. Through this competition, the core and shell materials may form a very thin

mixed layer at the interface. Therefore, the lattice mismatch at the core-shell interface

could be further alleviated. It is worth noting that “giant” QDs with thick shells usually

exhibit lower QYs, which is explained by the non-radiative recombination through

defects (e.g., dislocations) within the thick and imperfect shell [76]. From this point of

view, the low QY of InP/ZnS QDs made by Zan et al. [86] might also be rationalized by

defects at the core-shell interface due to the large lattice mismatch. In contrast, for
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the InP/ZnSeS QDs whose composition is shown in Figure 5.7, the gradually changing

crystal structure may provide a favorable path to reduce the lattice mismatch and

to improve the crystallinity. Thus, the fact that the InP/ZnSeS QDs show both high

fluorescence QY (above 80%) and high on time fraction (∼85%) appears to be at least

partially attributable to the better crystallinity due to the gradient structure. This

claim is similar to the explanations in the reports on phase-pure wurtzite and zinc

blende CdSe/CdS QDs with high crystallinities [82, 83].

(2) Quasi-type-II electronic structure. The electronic structure of the InP/ZnSeS QDs is

schematically illustrated in Figure 5.33. Quite similar to the CdSe/CdS QD system,

in conjunction with the energy offset between the very small InP core (1.3 nm) and

the ZnSeS shell (conduction band minimum offset ∼0.3 eV, valence band maximum

offset ∼0.8 eV) and the effective mass difference of the charge carriers (me = 0.077, mh

= 0.64 for InP), it is expected that a photoexcited hole should be mainly confined

in the InP core whereas the electron wavefunction is able to delocalize into the

gradient ZnSeS shell and thus spreads across the entire QD volume, resulting in

a quasi-type-II structure (see also Figure 2.15) [7, 52, 314]. Another hint for this

assumption is the existence of a relatively large effective Stokes shift (spectral

separation between emission and absorption) in InP/ZnSeS QDs investigated here

(1500–2000 cm−1), which is similar to those of CdSe/CdS “giant” QDs, suggesting

that an internal shell-to-core energy relaxation process may be involved [87, 315].

This quasi-type-II structure was analyzed for other systems and reported to be

conducive to the blinking suppression through the reduction of the non-radiative

Auger recombination [78, 161, 162]. Specifically, the extension of the wavefunction

increases the effective particle size so that electrons and holes are spatially more

separated, resulting in a reduction of the electron-hole overlap integral which can

increase the non-radiative Auger lifetime [316, 317]. Thus, the fluorescence time is

increased.

(3) Smooth energy potential and soft confinement. Figure 5.33 also depicts the energy

potentials near the band edge of the QDs with core/shell, core/shell/shell and

radial gradient composition structures. It can be readily understood that the

gradient structure provides a smooth and soft-confinement energy potential in

comparison with the other two configurations. Because an efficient non-radiative

Auger recombination has to satisfy the breaking of strict momentum conservation,

which is suitable with the abrupt change at the core-shell interface in the case of

core/shell or core/shell/shell structure, the more smooth energy potential with a
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soft-confinement is expected to be critical for suppression of the non-radiative Auger

recombinations [80, 318]. This view is supported by simulations and calculations

by Cragg et al. [246], in which they have found that smoothing out the confinement

potential could reduce the non-radiative Auger recombination rate by more than

three orders of magnitude relative to the rate in structures with abruptly terminating

boundaries.

(4) Ligand influence. As shown in Figure 5.25 and discussed in Section 5.4.2.4, the ligands

also have a strong influence on the optical properties of the InP/ZnSeS QDs. The

comparison of OA and DDT has highlighted the particular role that DDT plays. As

Hohng et al. pointed out, a thiol-moiety may serve as an electron donor, which can

donate electrons to the surface electron traps, preventing the traps accepting electrons

from the QD itself, and thus the blinking is suppressed [69]. The source of sulfur for

the non-blinking high quality CdSe/CdS QDs synthesized by Chen et al.was also a

thiol-containing chemical (1-octanethiol), whereas samples made from traditional

sulfur precursor solution showed severe blinking [82]. Zhang et al. also synthesized

nearly non-blinking CdSe/CdS and (Zn)CuInS/ZnS QDs with alkylthiols [84, 319]. It

is believed that the decomposition process of alkylthiols at high temperature can

slowly release the activated S by homolytic cleavage of the thiol and alkyl groups, and

the activated S can subsequently bind to the surface traps of the QDs, inducing a
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surface reconstruction and a blinking suppression [84, 319]. Moreover, as depicted

in Figure 2.25, the so-called B-type blinking, which was proposed and reported by

Galland et al., derived from the capture of hot electrons was able to be suppressed by

applying an external electrochemical potential [241]. If this kind of blinking exists in

InP/ZnSeS QDs, the DDT may provide electrons, which occupy the trap states, and

thus reduce blinking of this type.

The significance of the internal structure has been further confirmed by the investiga-

tions of samples with an increasing amount of Se. For example, as revealed in Figure 5.11,

the amount of Se influences the morphology/crystallinity of the samples, implying that

the structure can be tuned by the amount of Se incorporated. As expected, not only the

results at the ensemble level such as the fluorescence QY and FWHM of the emission

spectra (Figure 5.8(b)), but also the results from single particle measurements such as

the increase of the on time fraction (Figure 5.23(a) and (b)) and the decreasing on time

power-law exponent mon (Figure 5.24(b)) achieve the best value with the same tendency.

Analysis of the time-resolved measurements (Figure 5.10) demonstrated that by adjusting

the Se amount, the radiative rate kr is enhanced. It is worth noting that, theoretically, if

the non-radiative recombination time (e.g., Auger process) is always essentially longer

than the radiative recombination time in a QD system, there will be no “dark” state at all,

even if the QD is charged [79]. Although the lifetimes measured here are average results

which may contain contributions from different pathways, generally the trend of the ratio

kr/knr is in good agreement with the observations of the blinking behavior, meaning that

sample L4 has the longest non-radiative recombination-time (smallest knr) compared

with the radiative recombination-time (larger kr), considering that kr/nr = 1/τr/nr. This

implies that an optimized internal structure suppresses the non-radiative recombination

pathways (including Auger recombination) efficiently.

5.8 Summary

Sample series HLim, H and L (for experimental conditions see Table 5.1) of green-emitting

InP/ZnSeS QDs have been investigated both at the ensemble and the single particle

level. Generally the L series exhibit higher QYs and stronger blinking suppression than

the other two series synthesized at higher temperature. Within each series, the amount

of Se has been proven to have a great impact on the photophysical properties of the

samples. Specifically, in a series of QDs with increasing Se amount, the fluorescence QY,

the radiative rate and blinking suppression increase.
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The best sample with 0.2 mmol Se injection (L4) resulted in a very high fluorescence QY

of ∼85%. The radial gradient composition in the InP/ZnSeS QDs has been characterized

and verified by energy dispersive X-ray spectroscopy. From the X-ray diffraction pattern,

crystalline phases of both the Zn-passivated InP core and the ZnSeS shell were identified

to be zinc blende. The similarity of the crystal structure at different growth stages and

the gradually changed lattice constants further confirmed the radial gradient structure.

Moreover, HRTEM images reveal a high crystallinity of the InP/ZnSeS QDs as well.

At the single particle level, strong suppression of fluorescence blinking of the as-

prepared sample is characterized by the on time fraction and the on/off power law

probability exponents. For the best sample, while the overall on time fraction was

∼85%, about 80% and 51% of the QDs have an on time fraction of >80% and >90%,

respectively. For the sample with 0.2 mmol Se, the power law exponent mon can be

as small as 1.28. In contrast, the off times seem to be insensitive to the Se amount. The

strong fluorescence blinking suppression has been mainly attributed to factors caused by

the internal structure of the InP/ZnSeS QD: gradient crystal structure induced reduction

of defects, good crystallinity, and a quasi-type-II electronic structure in a smooth energy

potential with soft confinement. As a thiol-containing ligand, DDT was also found to play

a crucial role in the fluorescence performance.

Intensive spectral line broadening either originating from electron-phonon coupling

or strong spectral diffusion in the fluorescence emission spectra of single InP/ZnSeS

QDs has been observed at 4.5 K. The results have provided first indications that with an

increasing Se amount, ZnSe optical phonons might contribute more and more to electron-

phonon coupling, further implying the influence of the Se amount on the photophysical

properties.





6
Summary and outlook

The thesis was devoted to investigations of two kinds of semiconductor quantum

dot (QD) systems: CdSe/CdS/ZnS QDs (monomers and dimers) and InP/ZnSeS QDs.

Core/shell/shell structured CdSe/CdS/ZnS QDs were synthesized in organic solvent and

used as building blocks to build QD homo-dimers and hetero-dimers. The assembly was

realized by repeated precipitation of the QDs from a good solvent (toluene or cyclohexane)

by adding a bad solvent (methanol). For homo-dimers, a dependence of assembly cycles

required to trigger effective dimer formation on the particle size was found. The QD

dimer fraction in the samples after assembly was found to be typically about 20%–30%.

To further enrich the dimers, rate-zonal density gradient ultracentrifugation (DGU) with

a density gradient established by cyclohexane−CCl4 mixtures was applied. After DGU,

distinct monomer and dimer bands were observed. However, the sedimentation distances

showed inconsistence with the results calculated by a sedimentation formula based on

an assumption of a uniform centrifugal force field and a homogeneous fluid medium

(Equation 4.1). Therefore, the variations of the centrifugal force and the medium density at

different positions in the centrifuge tube were taken into account, and thus an improved

sedimentation formula (Equation 4.11) was obtained. The calculated sedimentation

distances of monomer and dimer bands according to the improved formula were found to

be in good quantitative agreement with the experimental observations. By this method,

the dimers could be enriched up to 81% as the best result. Subsequently, single particle

measurements of the QD monomers and homo-dimers were performed at 295 K and 4.5 K,

respectively. At room temperature, the emission spectra from the two components within

QD homo-dimers were not distinguishable due to the small spectral separation and the

broad linewidths. In contrast, the optical emission spectrum of a single CdSe/CdS/ZnS
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QD features a narrow zero-phonon line (ZPL) accompanied by phonon sidebands (PSBs)

at 4.5 K. Due to the narrow linewidths, replicas of CdSe and CdS LO phonons as well as

the second harmonic of the LO-phonon of CdSe in the emission spectra of an individual

CdSe/CdS/ZnS QD could be observed. The average energy and the Huang-Rhys factor of

CdSe LO phonons were found to be 207 cm−1 and 0.40, respectively. Both values were in

accordance with data reported in the literature and not correlated to the spectral position

of the ZPL. Moreover, the band gap energy of a single QD showed a blue-shift with the

decrease of temperature. The energy of this blue-shift was found to be smaller than the

result based on the Varshni equation (Equation 2.53) but larger than that calculated by the

equation of O’Donnell and Chen (Equation 2.54). In single particle spectroscopy at 4.5 K of

a sample in which dimers have been enriched, different types of spectra were observed and

categorized. Possible scenarios behind each type were analyzed as well. Moreover, as an

alternative approach to the preparation of QD dimers, two batches of CdSe/CdS/ZnS QDs

with different sizes were synthesized separately and assembled to from QD hetero-dimers.

After further enrichment by DGU, most of the dimers at the position of the centrifuge

tube where hetero-dimers were expected turned out to be homo-dimers with components

having similar sizes. This result was explained by a model based on QD assembly triggered

by exposed free surface sites under the assumption of a size independent surface site

density. On a further attempt, QD hetero-dimers in which the components have similar

sizes but different compositions were prepared. Eventually, the best hetero-dimers were

built by the dimerization of CdSe/1 ML CdS/1 ML ZnS and CdSe/2 ML CdS/2 ML ZnS

QDs. Although transmission electron microscopy (TEM) characterization was not able

to distinguish between homo- and hetero-dimers, a combination of atomic force and

confocal fluorescence microscopy provided an identification of QD hetero-dimers at room

temperature.

Future research for this project may mainly concentrate on single particle spectroscopy

of QD hetero-dimers. As concluded above, the hetero-dimers have been identified by

the combined setup of atomic force and confocal fluorescence microscopy. Hence, with

a proper dichroic optical filter, it will be possible to probe the photons emitted from

the two QD components within a dimer individually at the same time, which allows

their corresponding fluorescence intensities (therefore also blinking behaviors) and

fluorescence decays to be measured separately. Thus, the electronic coupling between

the two adjacent QDs can be studied and analyzed.

Concerning the InP/ZnSeS QDs, three series of samples with different InP and ZnSe

growth temperatures and times were prepared. Generally, a lower growth temperature

(220◦C) with a longer reaction times led to better performance of the QDs such as better
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crystallinity, higher quantum yield and stronger blinking suppression. Moreover, within

each series, the amount of Se was also found to have a great impact on the properties

mentioned above. A fluorescence QY as high as 85% was achieved by a sample which

contained 0.2 mmol Se. The gradient composition in radial direction of the InP/ZnSeS

QDs was corroborated by energy dispersive X-ray spectroscopy. Crystalline phases of

the ZnSeS shell were identified to be zinc blende by X-ray diffraction. The results from

X-ray diffraction also indicated that samples at different growth stages exhibited similar

crystal structures and that the lattice constants also varied gradually with the epitaxial

overgrowth of the shell. In addition, the results from high-resolution transmission electron

microscopy revealed a good crystallinity of the InP/ZnSeS QDs. At the single particle level,

strong suppression of fluorescence blinking was observed and characterized by the on

time fraction and the on/off power law probability exponents. The sample with the

best quality (L4) showed an overall on time fraction of ∼85%, and the percentage of QDs

which had an on time fraction >80% and >90% were 80% and 51%, respectively. The

on time coefficient mon was found to be as small as 1.28, indicating a high probability

for long on times. The samples with more and less amounts of Se exhibited smaller on

time fractions and bigger on time coefficients. However, the off times appeared to be

insensitive to the Se amounts, which implied that the off to on transition process might be

governed by a different mechanism from the on to off transition. Several factors related

to the structure of the InP/ZnSeS QDs were tentatively suggested to be responsible for

the observed strong fluorescence blinking suppression, such as gradient crystal structure

induced good crystallinity and reduction of defects, a quasi-type-II electronic structure

and a smooth energy potential with a soft confinement. The used 1-dodecanethiol (DDT),

which served as S source and stabilizing ligand, also revealed a crucial influence on the

bulk fluorescence quantum yield and blinking behavior. At cryogenic temperature (4.5 K),

the emission spectra of single InP/ZnSeS QDs showed surprisingly broad linewidths,

which could be due to strong electron-phonon coupling or spectral diffusion. The results

suggested that with an increase of the Se amount, the coupling to ZnSe optical phonons

increased, which further implied the impact of Se on the photophysical properties of the

InP/ZnSeS QDs.

In the future, additional studies may be performed to gain a deeper insight into the ra-

tionale behind the blinking suppression, for instance, fluorescence lifetime measurement

at single particle level, or single particle spectroscopy at various temperatures with high

spectral resolution. From another perspective, experimental conditions might be further

improved for a complete elimination of the blinking (i.e., non-blinking QDs). Moreover,

the synthesis of red-emitting InP based QDs with a high quantum yield, which remains
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a challenge so far, could be another direction of future work. In general, it is believed

that further studies of these new Cd-free QDs will be beneficial for the fundamental

understanding and applications of nanoparticles, especially at the single particle level.
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