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Abstract

This thesis is concerned with calculations of processes involving the η-η′

system in the framework of large-Nc chiral perturbation theory (LNcChPT).
The calculations are performed at the one-loop level up to and including next-
to-next-to-leading order (NNLO) in the simultaneous expansion in external
momenta, quark masses, and 1/Nc.

First, a general expression for the η-η′ mixing at NNLO is derived, in-
cluding higher-derivative terms up to fourth order in the four momentum,
kinetic and mass terms. In addition, the axial-vector decay constants of the
η-η′ system are determined at NNLO. The numerical analysis of the results
is performed successively at LO, NLO, and NNLO. The in�uence of one-loop
corrections as well as OZI-rule-violating parameters is studied.

The second part of the thesis deals with quantum corrections to the chiral
anomaly accounted for by the Wess-Zumino-Witten action. The anomalous
and normal Ward identities are explicitly con�rmed at the one-loop level,
both in SU(3) ChPT and LNcChPT. To that end, the three-point Green
function involving one axial-vector current and two vector currents (AVV)
with all three legs o� shell is calculated.

The anomalous decays η(′) → γ(∗)γ(∗) and η(
′) → π+π−γ(∗) are calcu-

lated at the one-loop level up to NNLO in LNcChPT. Both the decays to
real photons and the decays involving virtual photons, providing access to
the substructure of the mesons, are discussed. The results are numerically
evaluated successively at LO, NLO, and NNLO. The appearing low-energy
constants are determined through �ts to the available experimental data. In
the case of η(′) → γ(∗)γ(∗), we investigate the decay widths to real photons,
the widths of η(′) → γl+l−, where l = e, µ, and the single-virtual transition
form factors. The considered observables of the decays η(′) → π+π−γ(∗) are
the spectra of the decays involving a real photon, η(′) → π+π−γ, as well as
the spectra of η(′) → π+π−l+l−, where l = e, µ, with respect to the invariant
masses of the π+π− and l+l− systems.





Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Berechnung von Prozessen
des η-η′-Systems im Rahmen der chiralen Störungstheorie für groÿe Werte
von Nc (large-Nc chiral perturbation theory, LNcChPT). Die Rechnungen
werden auf dem Einschleifenniveau bis einschlieÿlich next-to-next-to-leading

order (NNLO) Korrekturen in der simultanen Entwicklung nach externen
Impulsen, Quarkmassen und 1/Nc durchgeführt.

Zunächst wird ein allgemeiner Ausdruck für die η-η′-Mischung bis ein-
schlieÿlich NNLO-Korrekturen hergeleitet, welcher höhere Ableitungsterme
bis zur vierten Ordnung in Viererimpulsen, kinetische und Massenterme
berücksichtigt. Zusätzlich werden die Axialvektorzerfallskonstanten des η-
η′-Systems bis einschlieÿlich NNLO-Korrekturen berechnet. Die numerische
Auswertung der Ergebnisse wird sukzessive durchgeführt in der führenden
Ordnung (leading order, LO), NLO und NNLO. Dabei wird der Ein�uss der
Einschleifenkorrekturen und der Parameter, die die OZI-Regel verletzen, un-
tersucht.

Der zweite Teil der Arbeit beschäftigt sich mit Quantenkorrekturen zur
chiralen Anomalie, die durch die Wess-Zumino-Witten Wirkung beschrieben
wird. Die anomalen und die normalen Ward Identitäten werden auf dem
Einschleifenniveau sowohl in SU(3)-ChPT als auch in LNcChPT explizit
bestätigt. Zu diesem Zweck wird die Green'sche Dreipunktfunktion, die einen
Axialvektorstrom und zwei Vektorströme (AVV) enthält, für alle drei Beine
jenseits der Massenschale berechnet.

Die anomalen Zerfälle η(′) → γ(∗)γ(∗) und η(
′) → π+π−γ(∗) werden auf

dem Einschleifenniveau bis einschlieÿlich NNLO-Korrekturen in LNcChPT
berechnet. Die Zerfälle in reelle Photonen sowie die Zerfälle mit virtuellen
Photonen, welche einen Zugang zur Substruktur der Mesonen bieten, werden
diskutiert. Die numerische Auswertung der Ergebnisse wird sukzessive in
der führenden Ordnung, NLO und NNLO durchgeführt. Dabei werden die
auftretenden Niederenergiekonstanten durch Fits an die vorhandenen experi-
mentellen Daten bestimmt. Im Falle von η(′) → γ(∗)γ(∗) werden die Zerfalls-
breiten der Zerfälle in reelle Photonen, die Breiten von η(

′) → γl+l−, wobei
l = e, µ, und die einfach virtuellen Übergangsformfaktoren untersucht. Die
betrachteten Observablen der Zerfälle η(′) → π+π−γ(∗) sind die Spektren der
Zerfälle mit einem reellen Photon, η(′) → π+π−γ, sowie die Spektren von
η(

′) → π+π−l+l−, wobei l = e, µ, in Bezug auf die invarianten Massen der
π+π−- und l+l−-Systeme.
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Chapter 1

Introduction

The strong interaction is one of the four fundamental forces known today to
describe physical phenomena. The other three forces are the electromag-
netic and the weak interaction and gravitation. In the Standard Model
(SM) of particle physics, the electromagnetic, weak, and strong interac-
tions are formulated as quantum �eld theories, while the incorporation of
gravitation has not been achieved so far. The by now established gauge
theory of the strong interaction is called quantum chromodynamics (QCD)
[FGL 73, GW 73a, Wei 73]. Quantum chromodynamics is based on the gauge
group SU(3) with quarks being the fundamental matter �elds. The quarks,
which carry a so-called color charge that can take three values, interact with
each other through the exchange of gauge bosons, the gluons, which carry
color charge themselves. Due to the latter, the gluons also interact with each
other through three- and four-gluon vertices.

Despite being the constituents of matter, no isolated free quarks have
been observed so far. Instead only color-neutral bound states of quarks and
gluons, so-called hadrons, seem to appear in nature. This phenomenon is
known as con�nement [GW 73b] and it is still an open question how it can
be derived from QCD. Con�nement might be related to another remarkable
feature of QCD called asymptotic freedom [GW 73a, GW 73b, Pol 73]. It
has been shown that the running coupling constant of QCD αs decreases
for increasing energies, thus allowing for a perturbative treatment of QCD in
the high-energy regime with expansion parameter αs. On the other hand, for
lower energies, corresponding to large distances, the strong coupling constant
increases, providing a possible explanation for con�nement. In the low-energy
regime for large values of the coupling constant, perturbation theory is no
longer applicable.

One tool for the non-perturbative treatment of QCD is given by Lattice
QCD, where one obtains numerical solutions of QCD by discretizing space-
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time [Wil 74, Cre 90]. While lattice calculations have made great progress,
they are still limited by the available computing power and an analytical
method for calculations in the low-energy regime remains desirable. One
option �pursued in this work� is the use of an e�ective �eld theory (EFT),
which is a (low-energy) approximation to a more fundamental theory. One
constructs the most general Lagrangian consistent with the symmetries of the
underlying theory [Wei 79], using e�ective degrees of freedom. In the low-
energy region of QCD, those are the baryons and mesons instead of quarks
and gluons. The most general Lagrangian consists of an in�nite number
of interaction terms, each accompanied by a low-energy coupling constant
(LEC). In principle, the LECs could be calculated if one knew the solution
of the underlying theory. In practice, however, when the fundamental theory
is unknown or the connection to the EFT cannot be established directly,
the LECs can be determined by comparison with experimental data. In the
EFT framework, physical quantities are calculated in terms of an expansion
in q/Λ, where q stands for momenta or masses that are small in comparison
to some scale Λ. Therefore, the range of applicability of the EFT is limited
as the expansion is no longer sensible for su�ciently large values of q. In
addition, in actual calculations only a �nite number of terms in the q/Λ
expansion is taken into account, yielding an appropriate description only to
�nite accuracy.

The e�ective �eld theory of the strong interaction at low energies is called
chiral perturbation theory (ChPT) [Wei 79, GL 84, GL 85]. In its SU(3)
formulation, ChPT is based on the chiral SU(3)L × SU(3)R symmetry of the
QCD Lagrangian in the chiral limit1 and its spontaneous breaking to SU(3)V .
The relevant degrees of freedom are given by the pseudoscalar-meson octet
(π, K, η), which can be identi�ed with the Goldstone bosons arising from
the spontaneous chiral symmetry breaking. Since the interaction between the
Goldstone bosons in the chiral limit vanishes for decreasing energies, the per-
turbation series is organized in terms of an expansion in small momenta and
Goldstone-boson or quark masses. In the mesonic sector of ChPT, the deci-
sion which terms of the e�ective Lagrangian and which Feynman diagrams
are relevant in a calculation up to a given order can be made by employing
Weinberg's power counting scheme [Wei 79]. Here, one assigns a chiral or-
der D to each diagram according to its behavior under rescaling of external
momenta or quark masses. Diagrams with higher D are suppressed relative
to those with lower D. Due to the arbitrary negative mass dimension of the
LECs, ChPT is not renormalizable in the traditional sense, i.e., divergences
appearing in the calculation of loop diagrams cannot be eliminated by redef-

1i.e., neglecting the heavy quarks and sending the masses of the light quarks to zero.
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inition of a �nite number of parameters up to in�nite order. However, since
the most general Lagrangian contains all terms compatible with the relevant
symmetries of QCD and calculations are performed up to �nite order, the
in�nities can be absorbed order by order. In this way, ChPT is said to be
renormalizable in a �modern� sense [Wei 79]. Chiral perturbation theory can
also be extended to include baryons or other heavy degrees of freedom such
as vector mesons, but this will not be part of this thesis.

Due to the U(1)A anomaly the η′ is no Goldstone boson. The U(1)A
symmetry is only preserved at the classical level. Quantum corrections give
rise to so-called anomalies, which destroy the symmetry. However, in the
large-number-of-colors (LNc) limit of QCD [Hoo 74a, Wit 79], the U(1)A
anomaly disappears and the η′ becomes a ninth Goldstone boson. The η′

can be incorporated in the EFT by means of a simultaneous expansion in
momenta, quark masses, and 1/Nc. The corresponding EFT is referred to as
large-Nc chiral perturbation theory (LNcChPT) [Mou 95, Leu 96, Her+ 97,
Leu 98, KL 98, Her 98, KL 00]. In the e�ective theory, the non-abelian
U(3)L×U(3)R anomaly is accounted for by the Wess-Zumino-Witten (WZW)
action [WZ 71, Wit 83], which represents the leading-order contribution in
the so-called anomalous or odd-intrinsic-parity sector.

In the real world, due to the breaking of the SU(3) �avor symmetry,
the physical η and η′ states are mixed octet and singlet states. In early in-
vestigations, the connection between the physical and the octet and singlet
states has been established by an orthogonal transformation parametrized
by a single mixing angle θ. The mixing angle θ can be determined either by
diagonalizing the leading-order mass matrix in ChPT or from phenomenol-
ogy [Ams+ 14]. Some examples of processes used to extract the η-η′ mixing
angle are the anomalous two-photon decays η(′) → γγ [AF 89, VH 98], de-
cays of J/Ψ [GK 87, BES 97, BFT 96], or electromagnetic decays of vector
and pseudoscalar mesons [BES 99]. These studies yield mixing angles be-
tween −13° [BES 99] and −22° [VH 98]. Using the Gell-Mann-Okubo mass
formula for the pseudoscalar mesons, Refs. [Isg 76, FJ 77] obtained −10°.
In the more modern approach of LNcChPT, a two-angle mixing scheme
[KL 98, Leu 98, Her+ 98] has been proposed for the calculation of the pseu-
doscalar decay constants. The decay constants relate the physical �elds with
the (bare) octet and singlet �elds. At NLO in LNcChPT, it turns out that
the relation is more complicated than a simple rotation with a single mix-
ing angle θ. The two-angle scheme has been adopted in phenomenologi-
cal analyses [FKS 98, FKS 99] and has become very popular resulting in
well-established determinations of the mixing parameters [FKS 98, FKS 99,
BDC 00, EF 05, EMS 11, EMS 14, EMS 15]. Those investigations found out
that the phenomenological analysis with two di�erent mixing angles leads to
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a more coherent picture than the treatment with a single angle.
The η-η′ mixing is relevant for every process involving the η-η′ system.

Two interesting decay modes, which will be studied in this thesis, are the
anomalous decays η(′) → γ(∗)γ(∗) and η(′) → π+π−γ(∗). The two-photon de-
cays involving one or two virtual photons are described by so-called tran-
sition form factors (TFFs), which probe the substructure of the decaying
pseudoscalar meson. In the time-like region, the single-virtual TFFs are ex-
perimentally accessible in so-called Dalitz decays P → γl+l−, where l = e, µ,
[Ber+ 11, Arn+ 09, Agu+ 14, Abl+ 15, Arn+ 16]. For the η′, also data
in the low-energy space-like region are provided, which were measured in
the process e+e− → e+e−P [Acc+ 98]. The TFFs are of interest for pre-
cision tests of the SM. They enter as contributions to hadronic light-by-
light (HLbL) scattering calculations [Col+ 14, Col+ 15], which play an im-
portant role in theoretical determinations of the anomalous magnetic mo-
ment of the muon, (g − 2)µ, within the SM [JN 09, Nyf 16]. Currently,
there exists a puzzle, since the theoretical SM prediction and the exper-
imental value of (g − 2)µ di�er by 3.2σ [JN 09]. In addition, discrepan-
cies between theoretical and experimental determinations are observed for
the decay rates of the rare decays to a lepton pair P → l+l−, l = e, µ,
[HL 15, MS 16], where the TFFs of the corresponding pseudoscalar P enter
as well. The TFFs have been studied in a variety of theoretical approaches,
e.g., the vector-meson-dominance model [BM 81, Ame+ 83, PB 84], a con-
stituent quark model [BM 81, Ame+ 83, PB 84], ChPT at the one-loop
level [Ame+ 92], a coupled-channel analysis [BN 04a], chiral e�ective theory
with resonances [Czy+ 12], a data-driven approach using Padé approximants
[EMS 14, EMS 15], and a dispersive analysis [Han+ 15].

The decay spectra of η(′) → π+π−γ have been measured in Refs. [Gor+ 70,
Lay+ 73, Adl+ 12, Abe+ 97]. The decays involving a virtual photon can be
probed in the processes η(′) → π+π−l+l−, where l = e, µ. While the decay
widths of η(′) → π+π−e+e− have been determined experimentally [Oli+ 14],
for the widths of η(′) → π+π−µ+µ− only upper limits exist [Oli+ 14]. Theoret-
ical approaches to the decays η(′) → π+π−γ include one-loop ChPT [BBC 90,
Hac 08], ChPT combined with a coupled-channel Bethe-Salpeter equation
[BN 04b], a vector-meson-dominance model [Pic 92], calculations in the con-
text of Hidden Local Symmetries [Ben+ 03, Ben+ 10], one-loop ChPT com-
bined with an Omnes function [VH 98, Hol 02], and a dispersive framework
[Sto+ 12, KP 15]. It turned out that higher-order corrections are very im-
portant for an adequate description of the experimental data. The decays
involving a lepton pair η(′) → π+π−l+l− have been studied in various mod-
els including vector mesons [PR 93, FFK 00, Pet 10] and in a chiral unitary
approach [BN 07].
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At leading order in ChPT, the aforementioned anomalous decays are
driven by the chiral anomaly accounted for by the Wess-Zumino-Witten ac-
tion. In this thesis higher-order corrections to the chiral anomaly are in-
vestigated. The anomalous decays of the η-η′ system, η(′) → γ(∗)γ(∗) and
η(

′) → π+π−γ(∗), are calculated at the one-loop level in LNcChPT, which
corresponds to a next-to-next-to-leading order (NNLO) calculation in the
combined chiral and 1/Nc expansions. To that end, an expression for the η-
η′ mixing is derived at NNLO including one-loop corrections. The anomalous
Ward identities are studied at the one-loop level by means of a calculation
of the three-point Green function involving one axial-vector current and two
vector currents (AVV). We show that the Ward identities are satis�ed by an
explicit veri�cation.

This thesis is organized as follows. In Chapter 2, the QCD Lagrangian
is introduced and its symmetry properties are discussed. Chapter 3 provides
an introduction to anomalies. Various approaches to derive the anomaly are
considered as well as the physical origin of the anomaly. Large-Nc chiral
perturbation theory is introduced in Chapter 4. After the basic features
of the large-Nc expansion of QCD and ChPT are explained, the relevant
Lagrangians of LNcChPT are constructed. This chapter provides all La-
grangians needed for the calculations in this thesis, including those of the
anomalous or odd-intrinsic-parity sector. In Chapter 5 an expression for the
η-η′ mixing at the one-loop level is derived and the numerical analysis of the
mixing, pseudoscalar masses, and decay constants in performed. Chapter 6
contains the investigation of the anomalous Ward identities at the one-loop
level. The two-photon decays of the η-η′ system are studied in Chapter 7.
The calculation, the numerical evaluation, and the results are presented. The
anomalous decays η(′) → π+π−γ(∗) are considered in Chapter 8. Finally, in
Chapter 9, conclusions and an outlook are provided. Technical details of
this work can be found in the Appendix. Besides the Gell-Mann matrices
and loop integrals, additional information on the building blocks and their
transformation behavior is provided. Explicit expressions of higher-order cor-
rections for the quantities calculated in this thesis, additional results for the
�t parameters, and supplementary plots are shown.
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Chapter 2

Quantum chromodynamics

In this chapter, the foundations of quantum chromodynamics (QCD), which
is the gauge theory of the strong interaction, are presented. The QCD La-
grangian is introduced, followed by a discussion of its symmetries in the chiral
limit. Besides spontaneous symmetry breaking and the Goldstone theorem,
Green functions and the Ward identities, which originate from the chiral
symmetry, are discussed. This introduction is based on Ref. [SS 12].

2.1 The QCD Lagrangian

The strong interaction is described by the gauge theory quantum chromo-
dynamics (QCD). Quantum chromodynamics is a non-abelian gauge theory
with SU(3) as gauge group. Its matter �elds are spin-1/2 fermions, the so-
called quarks, and they interact with each other by the exchange of eight
massless gauge bosons, which are the gluons. Quarks occur in six di�erent
�avors (u, d, s, c, b, t) in addition to three possible colors red (r), blue (b), and
green (g) (see Tab. 2.1). The QCD Lagrangian is given by [MP 78, Alt 81]

Flavor u d s

Charge [e] 2/3 −1/3 −1/3
Mass [MeV] 2.3+0.7

−0.5 4.8+0.5
−0.3 95 ± 5

Flavor c b t

Charge [e] 2/3 −1/3 2/3
Mass [GeV] 1.275 ± 0.025 4.18 ± 0.03 173.21 ± 0.51 ± 0.71

Table 2.1: Charges and masses of the quarks [Oli+ 14].
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LQCD =∑
f

q̄f(i /D −mf)qf −
1

4
Gµν,aGµνa . (2.1)

For each quark �avor f , the Dirac spinor quark �elds are written down as a
color triplet

qf =
⎛
⎜
⎝

qf,r
qf,g
qf,b

⎞
⎟
⎠
, (2.2)

which transforms under local SU(3)c gauge transformations, given by Θ(x) =
[Θ1(x), . . . ,Θ8(x)], as

qf ↦ q′f = exp [−i
8

∑
a=1

Θa(x)
λca
2

] qf = U[g(x)]qf . (2.3)

The eight Gell-Mann matrices λca are the generators of SU(3), given in Ap-
pendix A.1. The covariant derivative Dµ acting on qf

Dµqf = ∂µqf − ig
8

∑
a=1

λca
2
Aµ,aqf (2.4)

introduces the coupling of the quark �elds to the eight gluon �elds Aµ,a with
the coupling strength g. Demanding invariance under gauge transformations
leads to the following transformation behavior of the gluon �elds1

λca
2
Aµ,a(x)↦ U[g(x)]λ

c
a

2
Aµ,a(x)U �[g(x)] − i

g
∂µU[g(x)]U �[g(x)], (2.5)

and the covariant derivative has to transform as qf , i.e.,

Dµqf ↦D′
µq

′
f = U[g(x)]Dµqf . (2.6)

In addition, the QCD Lagrangian contains the kinetic term of the gluons,
which is given by the product of the �eld-strength tensors

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c, (2.7)

where fabc are the structure constants of SU(3) (see Appendix A.1). The
non-abelian part gfabcAµ,bAν,c is responsible for the gluon self interaction.

1Here and in the following, a summation over repeated indices is implied.
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2.2 QCD in the chiral limit

The six quark �avors can be divided into three light quarks u, d, s and three
heavy quarks c, b, t (see Tab. 2.1) with mu,md,ms << 1 GeV ≤ mc,mb,mt.
The scale of 1 GeV corresponds to the masses of the lightest hadrons contain-
ing light quarks, e.g., mρ = 770 MeV, which are not Goldstone bosons, and to
the scale of spontaneous chiral symmetry breaking Λχ = 4πFπ = 1.170 GeV.
This suggests that a good approximate description of low-energy QCD is
given by the QCD Lagrangian in the so-called chiral limit

L0
QCD = ∑

f=u,d,s
q̄f i /Dqf −

1

4
Gµν,aGµνa , (2.8)

where the heavy quarks are omitted and the light-quark masses are set to
zero. Introducing the projection operators

PR = 1

2
(1 + γ5), PL =

1

2
(1 − γ5), (2.9)

the Lagrangian can be written as

L0
QCD = ∑

f=u,d,s
(q̄R,f i /DqR,f + q̄L,f i /DqL,f) −

1

4
Gµν,aGµνa . (2.10)

This Lagrangian exhibits a global SU(3)L×SU(3)R×U(1)V ×U(1)A symmetry.
The U(1)V symmetry leads to the conservation of the baryon number, while
the U(1)A symmetry exists only at the classical level. Quantum �uctuations
destroy the conservation of the singlet axial-vector current and generate so-
called anomalies [AB 69, Adl 69, BJ 69]. The SU(3)L ×SU(3)R symmetry is
referred to as chiral symmetry. Considering only the symmetry of the Hamil-
tonian H0

QCD, one would naively expect that the hadrons form approximately
degenerate multiplets matching the dimensionalities of irreducible represen-
tations of the group SU(3)L×SU(3)R×U(1)V . For every multiplet one would
expect the existence of a degenerate multiplet of opposite parity. However,
this is not observed in the hadron spectrum, since, e.g., a degenerate baryon
octet of negative parity does not exist in the low-energy baryon spectrum.
Empirically one realizes that the hadron spectrum re�ects only an SU(3)V
symmetry. Furthermore, the masses of the pseudoscalar-meson octet are
small in comparison to the corresponding vector-meson octet with the same
quark content. This points to the fact that the SU(3)L × SU(3)R symme-
try is spontaneously broken to the SU(3)V symmetry. A symmetry is said
to be spontaneously broken if the ground state of the system is not invari-
ant under the full symmetry group G of the Hamiltonian but only invariant
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under a subgroup H of G. The Goldstone theorem [Gol 61] then predicts
the existence of nG − nH massless Goldstone bosons, where nG denotes the
number of generators of the group G and nH the number of generators of
the group H. The symmetry properties of the Goldstone bosons are closely
related to the ones of the nG − nH generators which do not annihilate the
vacuum. The group SU(3)L × SU(3)R has 16 generators, while the group
SU(3)V , which leaves the ground state invariant, has eight generators. Ac-
cording to the Goldstone theorem, one expects eight Goldstone bosons which
can be identi�ed with the pseudoscalar-meson octet. The �nite masses of the
meson octet are a consequence of the explicit symmetry breaking due to the
non-vanishing quark masses. The observed SU(3)V symmetry is explained by
Coleman's theorem [Col 66], which states that the symmetry of the spectrum
is determined by the symmetry of the vacuum and not by the symmetry of
the Hamiltonian.

2.3 QCD in the presence of external �elds

In quantum �eld theory, one is interested in so-called Green functions, which
are vacuum expectation values of time-ordered products. The Lehmann-
Symanzik-Zimmermann (LSZ) reduction formalism [LSZ 55] connects the
Green functions to physical scattering amplitudes. The symmetries of the
theory impose relations between di�erent Green functions. Those relations
are called Ward-Fradkin-Takahashi identites [War 50, Fra 55, Tak 57], or de-
noted shortly as Ward identities. In the path-integral formalism, all Green
functions can be elegantly combined in a generating functional. To that
end, we introduce into the QCD Lagrangian the couplings of the vector-
and axial-vector currents, the scalar and pseudoscalar quark densities, and
the winding number density ω = g2

16π2 trc(GµνG̃µν) to external c-number �elds
[GL 84, GL 85]

L = L0
QCD +Lext = L0

QCD + q̄γµ (vµ + γ5a
µ) q − q̄ (s − iγ5p) q − θ ω, (2.11)

where

vµ =
8

∑
a=0
vµa
λa
2
, aµ =

8

∑
a=0
aµa
λa
2
, s =

8

∑
a=0
saλa, p =

8

∑
a=0
paλa, (2.12)

with λ0 =
√

2/31, and θ is a real �eld. The original QCD Lagrangian is
recovered for

vµ = aµ = p = 0, s = diag(mu,md,ms), θ = θ0, (2.13)
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where θ0 is the QCD vacuum angle, which is found to be very small ∣θ0∣ ≤ 10−10

[Oli+ 14, Bak 06]. De�ning the generating functional

exp (iZ[v, a, s, p, θ]) = ⟨0∣T exp [i∫ d4xLext(x)] ∣0⟩ , (2.14)

each Green function can be calculated through a functional derivative of the
generating functional with respect to the corresponding external �elds. In
the absence of anomalies, the Ward identities which are obeyed by the Green
functions are equivalent to the invariance of the generating functional under
local chiral transformations [Leu 94]. The invariance of the Lagrangian in
Eq. (2.11) under local chiral transformations can be achieved if the external
�elds transform according to

rµ ↦ VRr
µV �

R + iVR∂µV
�
R,

lµ ↦ VLl
µV �

L + iVL∂µV
�
L ,

s + ip↦ VR(s + ip)V �
L ,

s − ip↦ VL(s − ip)V �
R,

θ ↦ θ + i ln detVR − i ln detVL, (2.15)

with (VL, VR) ∈ U(3)L ×U(3)R and

rµ = vµ + aµ, lµ = vµ − aµ. (2.16)

In addition, local invariance allows to couple external gauge �elds, e.g., the
electromagnetic �eld, to the e�ective degrees of freedom [GL 84, GL 85].
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Chapter 3

Anomalies

An anomaly is said to appear if a symmetry that exists at the classical level is
destroyed by quantum corrections. Anomalies can give rise to a violation of
global symmetries as well as local symmetries. In the latter case, the theory
is no longer renormalizable and becomes inconsistent. One then constrains
the theory by imposing the cancellation of the anomalies. In this chapter,
we will outline di�erent approaches to understand the origin of the anomaly.
This discussion closely follows Ref. [BH 13].

3.1 Perturbation theory

We start with the most intuitive method of the derivation of the anomaly
within perturbation theory, following Ref. [BH 13]. This approach was em-
ployed by the �rst investigators [AB 69, Adl 69, BJ 69]. We consider a mass-
less spinor �eld ψ with a charge e coupled to the electromagnetic �eld Aµ.
The Lagrangian is given by

L = ψ̄(i /∂ − e /A)ψ − 1

4
FµνF

µν , (3.1)

which is invariant under the global transformations

ψ ↦ exp(iα)ψ, (3.2)

ψ ↦ exp(iβγ5)ψ. (3.3)

Noether's theorem implies the conservation of the corresponding vector and
axial-vector currents,

Jµ = ψ̄γµψ, with ∂µJµ = 0, (3.4)
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and

J5µ = ψ̄γµγ5ψ, with ∂µJ5µ = 0, (3.5)

respectively. Let us examine the axial-vector vector vector (AVV) three-point
Green function

T µνρ(q1, q2) = −ie2∫ d4xd4ye−iq1⋅x−iq2⋅y ⟨0∣T [Jµ(x)Jν(y)Jρ5 (0)] ∣0⟩ . (3.6)

The requirement of the conservation of the vector and axial-vector currents
leads to the Sutherland-Veltman theorem [Sut 67, Vel 67], which states that
the π0 → γγ decay amplitude vanishes in this case. One starts by writing
down the most general expression for Tµνρ(q1, q2) which satis�es Bose sym-
metry, parity conservation, and gauge invariance:1

Tµνρ(q1, q2) = ελσαβ {pρgλµgσν qα1 qβ2G1(p2)
+ (gσµq2ν − gσν q1µ) qα1 qβ2 gλρG2(p2)

+ [(gσµq1ν − gσν q2µ) qα1 qβ2 −
1

2
p2gσµg

α
ν (q1 − q2)β] gλρG3(p2)} , (3.7)

where p = q1+q2 is the axial-current momentum. Demanding the conservation
of the axial current yields

0 = pρTµνρ(q1, q2)
= εµναβqα1 qβ2 p2 [G1(p2) +G3(p2)] . (3.8)

We de�ne the o�-shell π0 → γγ amplitude as

⟨γγ∣π0⟩ = εµ∗1 εν∗2 Aµν(q1, q2), (3.9)

with

Aµν(q1, q2) = A(p2)εµναβqα1 qβ2 . (3.10)

Using the LSZ reduction and the partially conserved axial-vector current
(PCAC) condition, which asserts that the divergence of the axial current
serves as an interpolating pion �eld,

∂µJa5µ(x) = FπM2
πφ

a
π(x), (3.11)

where Fπ = 92.2 MeV, together with Eq. (3.8), we obtain

A(p2) = (M2
π − p2)
FπM2

π

p2[G1(p2) +G3(p2)]. (3.12)

1Note that we consider the expression for real photons, i.e., q21 = q
2
2 = 0.
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µ ν

ρ

s+ q1

s

s− q2

Figure 3.1: Perturbation theory Feynman diagram for the AVV three-point
function. Wiggly lines refer to vector currents, the jagged line to the axial-
vector current, and solid lines to quarks.

Since the appearance of poles of G1(p2) and G3(p2) at p2 = 0 is excluded on
physical grounds, we �nd that A(0) = 0 and the decay amplitude for π0 → γγ
vanishes in the chiral limit, where M2

π = 0, thus proo�ng the Sutherland-
Veltman theorem. To derive a value for the real word where M2

π ≠ 0, we
extrapolate from the chiral limit, which suggests an amplitude of the size

A(M2
π) ∼

e2

16π2Fπ

M2
π

Λ2
χ

, (3.13)

where Λχ ∼ 4πFπ ∼ 1 GeV is the chiral scale. The factor e2/(4π) arises from
the two-photon amplitude with a loop diagram, the �extra� 4πFπ is needed for
dimensional purposes, and the factor M2

π/Λ2
χ represents the chiral symmetry

breaking correction by the quark masses to the vanishing lowest-order term.
Equation (3.13) leads to a π0 decay width of

Γπ0 ∼ 1013 s−1, (3.14)

which is three orders of magnitude smaller than observed.
To examine this phenomenon further, we now study the π0 decay in per-

turbation theory. Here, the three-point function is described by the triangle
diagram in Fig. 3.1. The evaluation of the Feynman rules yields

Tµνρ(q1, q2) = Uµνρ(q1, q2) +Uνµρ(q2, q1), (3.15)
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where

Uµνρ(q1, q2) = −i
e2

2 ∫
d4s

(2π)4
Tr( 1

/s + /q1

γµ
1

/s
γν

1

/s − /q2

γργ5) . (3.16)

We can now check whether the current conservation in Eqs. (3.4) and (3.5)
is valid on the quantum level. We start with the conservation of the vector
current, which after some manipulations reads

qµ1Tµνρ(q1, q2) = −
ie2

2 ∫
d4s

(2π)4
[Wνρ(s + q1) −Wνρ(s + q2)], (3.17)

with

Wνρ(s) = Tr(
1

/s
γν

1

/s − /q1
− /q2

γργ5) . (3.18)

We would be allowed to shift the integration variables in Eq. (3.17), if the
integrals were convergent or no worse than logarithmically divergent. In this
case, the two terms in Eq. (3.17) would cancel each other and the vector
current would be conserved. However, since the integrals in Eq. (3.17) are
linearly divergent at large s, one has to be more careful. Using Taylor's
theorem

∫
d4s

(2π)4
F (s + a) = ∫

d4s

(2π)4
[F (s) + aα∂αF (s) + . . . ], (3.19)

we obtain

qµ1Tµνρ(q1, q2) = −
ie2

2
(q2 − q1)α∫

d4s

(2π)4
[∂αWνρ(s) + . . . ], (3.20)

with vanishing higher-order terms, denoted by the ellipses. The remaining
piece is evaluated via Gauss' theorem, leading to

qµ1Tµνρ(q1, q2) =
−ie2

8π2
εµνρσq

µ
1 q

σ
2 . (3.21)

In a similar way one �nds

qν2Tµνρ(q1, q2) =
ie2

8π2
εµνρσq

ν
1q

σ
2 (3.22)

and

(q1 + q2)ρTµνρ(q1, q2) = 0. (3.23)
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Equations (3.21) and (3.22) show a violation of the electromagnetic gauge
invariance, which is problematic if we want to consider interactions with
photons. In addition, the �nite divergence of the vector current leads to the
non-conservation of the fermion number [Zee 03]. However, due to the linear
divergence, the integral in Eq. (3.15) is not well de�ned. One can perform an
appropriate shift of the integration variables such that the result T̃µνρ(q1, q2)
is manifestly crossing symmetric and the vector current is conserved [Zee 03]:

qµ1 T̃µνρ(q1, q2) = qν2 T̃µνρ(q1, q2) = 0. (3.24)

In this case the divergence of the axial-vector current reads

(q1 + q2)ρT̃µνρ(q1, q2) =
ie2

4π2
εµνρσq

ρ
1q
σ
2 . (3.25)

Demanding the conservation of the vector current results in the non-conserva-
tion of the axial-vector current. It is not possible to conserve both currents at
the same time. The proper quantization of the theory has broken the classical
axial symmetry and an anomaly exists. Equation (3.25) corresponds to the
operator equation

∂µJ3
5µ =

e2

16π2
FµνF̃

µν , (3.26)

where

F̃ µν = 1

2
εµναβF

αβ. (3.27)

Using the PCAC condition in Eq. (3.11) together with Eq. (3.26), we obtain

⟨γγ∣π0⟩ = e2

4π2Fπ
εµναβq

µ
1 ε
ν∗
1 q

α
2 ε

β∗
2 , (3.28)

which leads to the π0 decay amplitude

Aπ0γγ =
e2

16π2Fπ
(3.29)

and a decay width of

Γπ0 = M
3
π

4π
∣Aπ0γγ ∣2 = 1.18 × 1016 s−1, (3.30)

which is close to the experimental value Γπ0 = (1.16 ± 0.02) × 1016 s−1.
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Interestingly, already in 1949, Steinberger found a similar result in a pre-
QCD theory when he calculated the π0 decay amplitude from a triangle graph
with a single proton loop [Ste 49], yielding

Aπ0γγ =
e2gπNN
16π2mN

, (3.31)

where gπNN is the strong pseudoscalar πNN coupling constant. Using the
Goldberger-Treiman relation [GT 58]

gπNN = mNgA
Fπ

, (3.32)

where gA ≃ 1.27 is the neutron axial decay constant, leads to a result which is
similar to Eq. (3.29). Steinberger obtained nearly the correct result, because
the answer is given by the triangle anomaly, which is proportional to

tr[q2τ3] =
Nce2

3
. (3.33)

The trace has the same value for one proton as for quarks with three colors.
We have studied the anomaly in a simple (leading-order) perturbative

calculation. In Ref. [AB 69], it was shown that the contributions of higher
orders do not modify the chiral anomaly. The basic reason is that the higher-
order e�ects remove the linear divergence of the triangle diagrams and ren-
der the diagrams more convergent. The study of anomalies has also been
extended to non-abelian theories [Bar 69]. Here, anomalous Ward identities
do not only arise from triangle diagrams but also from box and pentagon dia-
grams. Bardeen was able to identify the minimal form of the anomaly. Wess
and Zumino [WZ 71] derived consistency or integrability relations which the
anomalous Ward identities must satisfy. Those conditions follow from the
structure of the gauge group and are largely independent of the details of
the theory. Based on these relations, Wess and Zumino constructed an ef-
fective action involving the pseudoscalar octet which correctly produces the
non-abelian anomaly. This procedure will be outlined in Sec. 4.4. Witten
[Wit 83] has given a remarkable geometric interpretation of the Wess-Zumino
e�ective action and constructed a closed form of the action in �ve dimensions.
This will be discussed in more detail in Sec. 4.4 as well.

Alternative approaches

Alternative approaches to deal with the short-distance behavior are the Pauli-
Villars regularization [PV 49, Gup 53] and point splitting [Tre+ 86]. The
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Pauli-Villars regularization consists of using a Pauli-Villars regulator to ren-
der the results �nite. The physical amplitude is de�ned as the di�erence of
the amplitude calculated with massless fermions and the one calculated with
fermions having a large mass M

T physical
µνρ = lim

M→∞
[Tµνρ(q1, q2) − TMµνρ(q1, q2)] , (3.34)

where TMµνρ(q1, q2) is identical to Tµνρ(q1, q2) but the massless fermion prop-
agators are replaced by propagators having a mass M .

Di�culties arise when the �eld and its conjugate are at the same space-
time point. In the point-splitting approach, this problem is solved by de�ning
the axial current via [Tre+ 86]

J3
5µ(x) = lim

ε→0
ψ̄ (x + 1

2
ε) 1

2
τ3γµγ5ψ (x − 1

2
ε) exp(ie∫

x+(1/2)ε

x−(1/2)ε
dyβA

β(y)) .

(3.35)

Because ψ and ψ̄ have been placed at di�erent points, a so-called Wilson line

exp(ie∫
x+(1/2)ε

x−(1/2)ε
dyβA

β(y)) (3.36)

has to be introduced in order to make the operator locally gauge invari-
ant. Evaluating the divergence, taking the limit ε → 0, and using the short-
distance behavior of the Dirac �eld [Tre+ 86] results once again in the axial-
anomaly equation

∂µJ3
5µ =

e2

16π2
F µνF̃µν . (3.37)

3.2 Path integration

Another way of understanding the anomaly is provided in the path-integral
formalism. Here, Ward identities are formulated via the variation of the gen-
erating functional under local symmetry transformations. In (gauge) theories
with fermions, the path-integral measure is not invariant under axial trans-
formations and the anomaly arises from nontrivial Jacobian factors in the
path-integral measure [Fuj 79, Fuj 80]. Following Ref. [PS 95], this approach
will be explained in more detail. Let us consider a theory of massless fermions
described by a �eld ψ(x) coupled to the electromagnetic �eld Aµ(x). The
fermionic functional integral is given by

Z = ∫ DψDψ̄exp [i∫ d4xψ̄(i /D)ψ] , (3.38)
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with /D = γµDµ. We perform a change of variables corresponding to a local
axial transformation of the fermion �eld

ψ(x)→ ψ′(x) = (1 + iβ(x)γ5)ψ(x),
ψ̄(x)→ ψ̄′(x) = ψ̄(x)(1 + iβ(x)γ5), (3.39)

which leads to

∫ d4xψ̄′(i /D)ψ′ = ∫ d4x [ψ̄(i /D)ψ + β(x)∂µ(ψ̄γµγ5ψ)] . (3.40)

If the functional measure does not change under the change of variables from
ψ′(x) to ψ(x), a variation of the Lagrangian with respect to β(x) implies
the conservation of the axial-vector current J5µ = ψ̄γµγ5ψ. However, this
argument breaks down. To de�ne the functional measure, we expand the
fermion �eld in a basis of eigenstates of /D

(i /D)φm = λmφm, φ̂m(i /D) = −iDµφ̂mγ
µ = λmφ̂m, (3.41)

such that

ψ(x) =∑
m

amφm(x), ψ̄(x) =∑
m

âmφ̂m(x), (3.42)

with anticommuting coe�cients am, âm multiplying the c-number eigenfunc-
tions. The functional measure is given by

DψDψ̄ =∏
m

damdâm. (3.43)

The expansion coe�cients of ψ and ψ′ are connected via an in�nitesimal
transformation (1 +C), given by

a′m =∑
n
∫ d4xφ�

m(x)(1 + iβ(x)γ5)φn(x)an =∑
n

(δmn +Cmn)an. (3.44)

Then, the functional measure transforms as

Dψ′Dψ̄′ = J −2DψDψ̄, (3.45)

where J is the Jacobian determinant of the transformation (1+C). We can
evaluate J according to

J = det(1 +C) = exp [tr log(1 +C)] = exp [∑
n

Cnn + . . . ] , (3.46)



3.2 Path integration 21

where higher-order terms are neglected, because C is in�nitesimal. We obtain

logJ = i∫ d4xβ(x)∑
n

φ�
n(x)γ5φn(x). (3.47)

The sum over eigenstates n has to be regularized in a gauge-invariant way
and a natural choice is

∑
n

φ�
n(x)γ5φn(x) = lim

M→∞
∑
n

φ�
n(x)γ5φn(x)eλ

2
n/M2

. (3.48)

For a �xed �eld Aµ the asymptotic form of the eigenvalues for large k is given
by

λ2
m = k2 = (k0)2 − (k⃗)2. (3.49)

This implies that the sign of λ2
m will be negative at large momentum af-

ter a Wick rotation, which leads to the correct sign in the exponent of the
convergence factor. Equation (3.48) can be written in an operator form

∑
n

φ�
n(x)γ5φn(x) = lim

M→∞
∑
n

φ�
n(x)γ5e(i /D)2/M2

φn(x),

= lim
M→∞

⟨x∣ tr [γ5e(i /D)2/M2] ∣x⟩ . (3.50)

To evaluate Eq. (3.50), we rewrite

(i /D)2 = −D2 + e
2
σµνFµν , (3.51)

with σµν = i
2[γµ, γν]. Since we want to take the limitM →∞, we can consider

the asymptotic part of the spectrum, where the momentum k is large and we
can expand in powers of the gauge �eld. The trace with γ5 is only di�erent
from zero, if we bring down four Dirac matrices from the exponent. To obtain
the leading term, we expand the exponent to order (σ ⋅F )2, and then ignore
the background �eld Aµ in the other terms. This leads to

lim
M→∞

⟨x∣ tr [γ5e(−D
2+(e/2)σ⋅F )/M2] ∣x⟩

= lim
M→∞

tr [γ5 1

2!
( e

2M2
σµνFµν(x))

2

] ⟨x∣ e−∂2/M2 ∣x⟩ . (3.52)

We evaluate the matrix element via a Wick rotation

⟨x∣ e−∂2/M2 ∣x⟩ = lim
x→y∫

d4k

(2π)4
e−ik⋅(x−y)ek

2/M2

= i∫
d4kE
(2π)4

e−k
2
E/M2

= i M
4

16π2
. (3.53)
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Then, Eq. (3.52) reads2

lim
M→∞

−ie2

8 ⋅ 16π2
M4tr [γ5γµγνγλγσ

1

(M2)2
FµνFλσ(x)]

= e2

32π2
εαβµνFαβFµν(x), (3.54)

and the Jacobian determinant takes the form

J = exp [i∫ d4xβ(x) ( e2

32π2
εµνλσFµνFλσ(x))] . (3.55)

Finally, after the change of variables in Eq. (3.39), the functional integral is
given by

Z = ∫ DψDψ̄ exp [i∫ d4x(ψ̄(i /D)ψ + β(x){∂µJµ5 −
e2

16π2
εµνλσFµνFλσ})] .

(3.56)

The variation with respect to β(x) leads precisely to the anomaly equation

∂µJ
µ
5 = e2

16π2
εµνλσFµνFλσ. (3.57)

3.3 Physics of the anomaly

After the formal derivation of the anomaly, we now turn to a discussion of the
physics behind the anomaly. We start by studying the particularly simple
model of massless electrodynamics in one plus one dimensions, which is called
the Schwinger model [Sch 51]. Its Lagrangian is given by

L = ψ̄i /Dψ − 1

4
FµνF

µν , (3.58)

where Dµ = ∂µ + ieAµ and the 2 × 2 Dirac matrices are represented in terms
of the Pauli matrices via

γ0 = σ1 and γ1 = iσ2. (3.59)

At the classical level, both the vector current

jµ = ψ̄γµψ (3.60)

2Note that our convention ε0123 = 1 has the opposite sign as the one used in Ref. [PS 95].
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and the axial vector current

j5
µ = ψ̄γµγ5ψ (3.61)

are conserved:

∂µjµ = 0 and ∂µj5
µ = 0. (3.62)

The currents are related via

j5
µ = εµνjν , with γ5 = −γ0γ1 = σ3, (3.63)

where εµν is the two-dimensional Levi-Civita tensor. However, upon quanti-
zation it can be shown that the Lagrangian takes the form [Sch 62]

L = ψ̄′i /∂ψ′ − 1

4
FµνF

µν + e2

2π
AµA

µ. (3.64)

This Lagrangian describes a non-interacting system of massless spin-1/2 par-
ticles and free �photons� with a squared mass of m2

γ = e2/π. In addition,
quantization destroys the conservation of the axial-vector current and leads
to the anomaly

∂µj5
µ = −

e

2π
εµνFµν . (3.65)

Widom and Srivastava [WS 88] have given an argument for the physical origin
of the anomaly. According to Dirac, the vacuum state of the quantized theory
can be described as a �lled set of negative-energy states. If the external
electric �eld is switched o�, the electron states are evenly distributed with
a constant level density of dp/2π in momentum space between p = −∞ and
p = ∞ and there is no net current. The presence of a constant electric �eld
E, however, gives rise to a net current �ow. The current density j increases
with time

dj

dt
= e∫

∞

−∞

dp

2π

dv

dt
. (3.66)

The Lorentz force law, dp/dt = eE, yields

dv

dt
= d

dt

d

dp

√
m2 + p2 = eEm2

(m2 + p2)3/2 . (3.67)

After the integration, we obtain

dj

dt
= e

2E

π
, (3.68)
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which is independent of the mass. To calculate the divergence of the axial-
vector current, we de�ne jµ = (λ, j) and apply Eq. (3.63). Furthermore, we
make use of the fact that the vacuum charge density λ does not depend on
the position, dλ/dx = 0, and obtain the result

e∂µj5
µ = −

e2

2π
εµνFµν , (3.69)

which is the chiral anomaly. We can rewrite the anomaly equation as

0 = εµν∂µ (ejν +
e2

π
Aν) (3.70)

which leads in Lorenz gauge, i.e., ∂µAµ = 0, to

jµ = −
e

π
Aµ. (3.71)

Inserting Eq. (3.71) into the classical equation of motion, ◻Aµ = ejµ, yields

(◻ + e
2

π
)Aµ = 0. (3.72)

This shows that the photon has developed a mass m2
γ = e2/π. In this picture,

the origin of the anomaly is the modi�cation of the vacuum of the quantized
system due to the presence of an external electromagnetic �eld.

An alternative way to understand this result consists in the discussion of
solutions of the time-independent Dirac equation [Jac 86]

Eψ = γ0γ1 (−i
∂

∂x
− eA)ψ. (3.73)

For a constant vector potential A, we have two types of solutions,

ψ+(x) = (e
ipx

0
) , with E = p − eA, (3.74)

ψ−(x) = ( 0
eipx

) , with E = −p + eA. (3.75)

The subscript ± refers to the chirality of the solution, i.e., the eigenvalues
of the operators 1

2(1 ± γ5). The vacuum consists of �lled negative-energy
states. If A = 0, the vacuum states are those with p < 0 for positive chirality
and p > 0 for negative chirality, depicted in Fig. 3.2. Now we increase A
adiabatically from A = 0 to a nonzero �eld A = ε. In the presence of the �eld,
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E

p

Figure 3.2: The Dirac sea in the case of a vanishing vector potential. Solid
dots refer to �lled states and empty dots to empty states.

the vacuum states change into those with p < eε for positive chirality and
p > eε for negative chirality, which leads to a net chirality production of

∆χ = 2∫
eε

0

dp

2π
= eε
π
. (3.76)

The axial charge is given by

Q5 = ∫ dxψ�σ3ψ, (3.77)

which varies in time according to the axial anomaly

d

dt
Q5 =

e

π
E = e

π

dA

dt
. (3.78)

The integration of both sides of Eq. (3.78) leads to

∆χ = e

π
∆A = eε

π
, (3.79)

which is in agreement with Eq. (3.76). Here, we can see again that the
anomaly arises due to the modi�ed vacuum in the presence of an applied
electric �eld. This derivation can also be generalized to four space-time
dimensions [Mue 90].
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Chapter 4

Large-Nc chiral perturbation
theory

The present chapter discusses large-Nc chiral perturbation theory (LNcChPT),
which is the e�ective theory of QCD at low energies including the singlet �eld.
First, an introduction to QCD in the large-Nc limit is presented, mainly based
on Refs. [Wit 79, Man 97, Leb 99]. We then derive the power-counting rules
of LNcChPT and construct the Lagrangians relevant for the calculations in
this thesis. The discussion of the normal or even-intrinsic-parity sector is
followed by a presentation of the anomalous or odd-intrinsic-parity sector.

4.1 The large-Nc expansion

The limit of an in�nite number of color charges simpli�es the physics of
the strong interaction and provides a good starting point for understanding
many features of the strong interaction. In the so-called large-Nc (LNc)
limit, QCD is generalized from an SU(3) gauge group with three colors to
an SU(Nc) gauge group with Nc colors, and one considers the limit Nc →
∞. Physical quantities are then calculated in this limit, and corrections
are obtained from a systematic expansion in 1/Nc. To determine the LNc

counting rules, one considers Feynman diagrams of QCD in the LNc limit.
At large Nc, combinatoric factors arise, which are responsible for the nature
of the 1/Nc expansion. Let us consider the gluon contribution to the gluon
vacuum polarization shown in Fig. 4.1. As will be explained below, if one
speci�es the color quantum numbers of the initial and �nal states, there are
Nc possibilities for the quantum numbers of the intermediate-state gluon,
and the diagram has a combinatoric factor of Nc. Each of the two interaction
vertices contribute a factor of g, which is the strong coupling constant. If we
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g g

Figure 4.1: Gluon vacuum polarization at lowest order.

want the one-loop gluon vacuum polarization to have a smooth limit for LNc,
the coupling constant must be chosen to be g/

√
Nc, where g is held �xed as

Nc becomes large.
The Nc scaling of g can also be understood from the renormalization

group (RG) equation for the strong coupling constant

µ
dg

dµ
= −b0

g3

16π2
+O(g5), (4.1)

where the leading coe�cient of the β-function is given by

b0 =
11

3
Nc −

2

3
Nf , (4.2)

with Nf being the number of quark �avors. This equation does not exhibit a
sensible LNc limit, since b0 ∼ O(Nc). If we replace g by g/

√
Nc in Eq. (4.1),

the RG equation takes the form

µ
dg

dµ
= −(11

3
− 2

3

Nf

Nc

) g3

16π2
+O(g5). (4.3)

The β-function equation has now a well-de�ned limit as Nc → ∞. Since Nc

drops out of the equation for the running of g, the scale parameter of the
strong interaction, ΛQCD, is held �xed as Nc → ∞. This is equivalent to
holding the string tension, or a meson mass such as the ρ meson mass, �xed.

In the following, we consider the coupling constant to be g/
√
Nc, which

scales 1/
√
Nc. Then, one can show that, due to their combinatoric factors, a

certain class of Feynman diagrams, which are called planar, dominates over
others in the LNc limit in possessing fewer powers of 1/

√
Nc. To perform

this combinatoric analysis, it is particularly convenient to employ 't Hooft's
double-line notation. In this notation, quarks and antiquarks are represented
as arrowed lines, where the anti-color �ow is understood to be opposite the
direction of the arrow. Gluons, which appear in the adjoint representation of
SU(Nc), carry one color and one anti-color index, and are therefore drawn as
two parallel lines whose arrows point in opposite directions, see Figs. 4.2 and
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quark

antiquark

gluon

Figure 4.2: Double-line notation.
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Figure 4.3: Vertices in ordinary and in double-line notation.
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Figure 4.4: Lowest-order gluon vacuum polarization in double-line notation.
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4.3. Figure 4.4 shows the gluon vacuum polarization diagram in double-
line notation. The color-index lines at the edge are contracted with those of
the initial and �nal states, and they are �xed once the states are speci�ed.
However, the closed color-line loop at the center is not �xed and the sum
over k gives a factor of Nc, which is exactly the combinatoric factor of the
diagram in Fig. 4.1. Using this technique one �nds out that the leading
diagrams are planar diagrams, which means that they can be drawn on the
plane with line crossings only at interaction vertices. Non-planar diagrams
are suppressed by factors of 1/N2

c . Examples for both types of diagrams are
given in Fig. 4.5, where the planar diagram scales as (1/

√
Nc)6N3

c = N0
c and

the non-planar diagram as (1/
√
Nc)6Nc = 1/N2

c . Another selection rule is

Figure 4.5: Example for a planar diagram (left) and a non-planar diagram
(right) in ordinary and in double-line notation.

that internal quark loops are suppressed by factors of 1/Nc, which is a result
of the fact that for LNc there are N2

c gluon states but only Nc quark states.
This can be seen in Fig. 4.6, where the one-quark-loop contribution to the
gluon propagator is shown. Compared to Fig. 4.4 the closed color line is

Figure 4.6: Quark contribution to the gluon self energy in ordinary and in
double-line notation.

missing, and the diagram is suppressed by 1/Nc in comparison to Fig. 4.4.
In summary, the leading diagrams for LNc are planar diagrams with a

minimum number of quark loops. After having discussed the gluon propa-
gator, we now turn to matrix elements of gauge-invariant operators such as
quark bilinears. One �nds that the dominant contributions to n-point func-
tions of quark bilinears, such as q̄q or q̄γµq, are planar diagrams with only
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one quark loop running at the edge. Since each quark loop is suppressed
by 1/Nc and Green functions of quark bilinears contain at least one quark
loop, their leading contributions are of the order of Nc. A typical leading
diagram is shown in Fig. 4.7. The resummation of all the leading planar dia-

Figure 4.7: A typical leading-contribution diagram to ⟨JJ⟩.

grams has so far only been achieved in 1+1 dimensions [Hoo 74a, Hoo 74b].
This makes it di�cult to obtain quantitative results in LNcQCD. However,
a qualitative picture of a variety of QCD phenomena emerges in the LNc

limit. The assumption that the color con�nement persists in the LNc limit
combined with the knowledge that planar diagrams are dominating for LNc

leads to a successful picture of the meson world. Let us consider a generic
n-point function of local quark bilinears J = q̄Γq:

⟨T (J1⋯Jn)⟩ ∼ O(Nc). (4.4)

Performing the diagrammatic analysis one �nds that at LNc the only sin-
gularities are one-meson poles. For example, a two-point function takes the
form

⟨J(k)J(−k)⟩ =∑
n

a2
n

k2 −M2
n

, (4.5)

where the sum runs over meson states only. The mass M2
n is the mass of

the nth meson, and an = ⟨0∣J ∣n⟩ is the matrix element for J to create the
nth meson from the vacuum. Since the left-hand side has a smooth limit
for LNc, the meson masses have smooth limits as well, independent of Nc,
M2

n = O(1). Furthermore, in the perturbative regime, ⟨J(k)J(−k)⟩ behaves
logarithmically for large k2. Therefore, the number of meson states is in�nite,
since a �nite sum on the right-hand side of Eq. (4.5) would lead to a 1/k2

behavior for large k2. In addition, the meson states are stable for Nc → ∞,
because the one-particle poles in Eq. (4.5) have to be on the real axis. Poles
o� the real axis would violate the spectral representation. Finally, the Nc

dependence of an can be determined. Since the Green function ⟨J(k)J(−k)⟩ ∼
O(Nc), the matrix element for the operator J to create a meson from the
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vacuum, an = ⟨0∣J ∣n⟩, is O(
√
Nc). Analyzing four-point functions, one �nds

that at LNc mesons are free and non-interacting, and QCD at Nc = ∞ is a
free �eld theory. In general, at LNc the n-point functions are given by sums
of tree diagrams with free meson propagators and e�ective local interaction
vertices amongm meson, which scale as Vm ∼ O(N1−m/2

c ). The amplitude for
a bilinear current to create m mesons from the vacuum is ⟨0∣J ∣M1⋯Mm⟩ ∼
O(N1−m/2

c ).
The analysis can also be extended to gluonic bound states (glueballs). To

that end, one includes gauge invariant operators JG constructed from gluon
�elds, such as Tr(GµνGµν) or Tr(GµνG̃µν). From ⟨T (JG1⋯JGn)⟩ ∼ O(N2

c ) one
can obtain the LNc counting rules ⟨0∣JG ∣G1⋯Gm⟩ ∼ O(N2−m

c ) and for the
vertices V [G1, . . . ,Gm] ∼ O(N2−m

c ), meaning that, in the LNc limit, glueballs
are also free, stable, non-interacting, and in�nite in number. Considering
the mixed correlators, which scale as ⟨T (J1⋯JnJG1⋯JGm)⟩ ∼ O(Nc), it can
be shown that vertices behave as V [M1, . . . ,Mp;G1, . . . ,Gq] ∼ O(N1−q−p/2

c ).
This means that glueballs and mesons decouple at LNc and their mixing is
suppressed by a factor 1/

√
Nc.

This qualitative picture of QCD in the LNc limit explains many aspects
of hadron phenomenology, thus supporting the 1/Nc expansion to be valid
for 1/Nc = 1/3. Some of these aspects are: Mesons are approximately pure qq̄
states and the additional qq̄ sea leading to qq̄qq̄ exotics is suppressed; mul-
tiparticle decays proceed dominantly to resonant two-body �nal states; the
success of Regge phenomenology, where the strong interaction is described
in terms of tree diagrams with physical hadrons exchanged; the existence
of resonances with a narrow width; and the Okubo-Zweig-Iizuka (OZI) rule
[Oku 63, Oku 77, IKS 66, Iiz 66, Zwe 84]. The OZI rule states that strong de-
cays are suppressed if their Feynman diagrams can be split in two by cutting
only internal gluon lines. Annihilation graphs, as the one shown in Fig. 4.8,
are suppressed. One consequence of this rule is that mesons appear in nonets

Figure 4.8: Annihilation graph. Solid lines refer to quarks and wiggly lines
to gluons.
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for three light quarks, because the diagrams that create a mass di�erence be-
tween singlet and octet involve qq̄ annihilation and are O(1/Nc). As a further
example, the OZI rule explains why the φ meson decays dominantly into KK̄
instead of φ→ ρπ or φ→ πππ.

The U(1)A symmetry is broken by an anomaly. In the chiral limit, the
divergence of the singlet axial-vector current is given by

∂µA
µ
0 =

3g2

32π2
εµνρσG

µν
a G

ρσ
a . (4.6)

In the LNc limit however, since g2 scales as 1/Nc, the anomaly disappears. In
this limit, the U(1)A symmetry is restored and the spontaneous breaking of
the chiral symmetry leads to a ninth Goldstone boson, which can be identi�ed
with the η′.

4.2 Chiral perturbation theory

In the low-energy regime, QCD cannot be treated by conventional pertur-
bation theory, because the renormalized strong coupling constant becomes
large. One possibility to solve this problem is to use an e�ective �eld theory
(EFT). The e�ective �eld theory of the strong interaction at low energies is
called chiral perturbation theory (ChPT) [Wei 79, GL 84, GL 85]. An ex-
tensive introduction to ChPT can be found in Ref. [SS 12]. One uses the
e�ective degrees of freedom that are relevant to the energy region of inter-
est. For strong-interaction processes below 1 GeV, those are the hadrons,
mesons and baryons, instead of quarks and gluons, which are the fundamen-
tal degrees of freedom. Physical quantities are then calculated in terms of an
expansion in q/Λ, where q stands for external momenta or masses that are
small in comparison to the scale of spontaneous chiral symmetry breaking
Λ ≈ 1 GeV. The foundation for the construction of e�ective �eld theories is a
�theorem� by Weinberg, which can be summarized in the following way: The
perturbative description in terms of the most general Lagrangian that is com-
patible with the symmetries of the underlying theory yields �the most general
possible S-matrix consistent with analyticity, perturbative unitarity, cluster
decomposition and the assumed symmetry principles� [Wei 79]. In the case
of ChPT, one constructs the most general Lagrangian compatible with the
symmetries of QCD. Those are the (spontaneously broken) chiral symmetry,
invariance under time-reversal, parity, and charge conjugation, and Lorentz
invariance. In addition, one demands the Lagrangian to be Hermitian. The
most general e�ective Lagrangian contains an in�nite number of terms, and
each term is accompanied by a coe�cient, the so-called low-energy constant



34 Large-Nc chiral perturbation theory

(LEC). Therefore, one needs a scheme to organize the Lagrangian and to pre-
dict the importance of terms in the calculation of physical matrix elements.
The mesonic chiral Lagrangian can be ordered according to the number of
derivatives and quark-mass terms,

Le� = L2 +L4 +L6 + . . . , (4.7)

where the subscripts refer to the order in the momentum and quark-mass
expansion. The importance of Feynman diagrams can be determined by
Weinberg's power counting [Wei 79]. One considers the behavior of the in-
variant amplitude of a given Feynman diagram under linear rescaling of the
external momenta, pi ↦ tpi, and quadratic rescaling of the quark masses,
mq ↦ t2mq,

M(pi,mq)↦M(tpi, t2mq) = tDM(pi,mq), (4.8)

where the chiral order D is assigned to the diagram. The chiral order D is
given by

D = 2 + 2NL +
∞
∑
k=1

2(k − 1)N2k, (4.9)

where NL is the number of independent loops and N2k is the number of
vertices derived from L2k. If the masses and momenta are small enough,
diagrams with increasing D become less important and diagrams with small
D dominate.

The low-energy constants contain information on the underlying theory,
and should, in principle, be calculable from QCD. In practice, they have so
far been �tted to experimental data, determined by QCD inspired models,
or predicted by lattice QCD [Nec 09, Col+ 11, Aok+ 14] .

4.3 Large-Nc chiral perturbation theory

Our aim is to include the η′ in the framework of an EFT. Due to the U(1)A
anomaly, the η′ remains massive even in the chiral limit. For that reason,
in the low-energy expansion of conventional SU(3)L × SU(3)R ChPT, the η′

does not play a special role as compared to other states such as the ρ me-
son [GL 85]. However, invoking the LNc limit of QCD [Hoo 74a, Wit 79],
the U(1)A anomaly disappears, and the assumption of an SU(3)V × U(1)V
symmetry of the ground state implies that the singlet state is also massless.
This means that, in the combined chiral and LNc limits, QCD at low ener-
gies is expected to generate the nonet (π,K, η8, η1) as the Goldstone bosons
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[CW 80]. The combined chiral and LNc limits may serve as a starting point
for large-Nc chiral perturbation theory (LNcChPT) as the EFT of QCD at
low energies including the singlet �eld [Mou 95, Leu 96, Her+ 97, Leu 98,
KL 98, Her 98, KL 00, Bor 04, Guo+ 15], which we will also refer to as U(3)
e�ective theory.

In the framework of LNcChPT, one performs a simultaneous expansion
of (renormalized) Feynman diagrams in terms of momenta p, quark masses
m, and 1/Nc.1 The three expansion variables are counted as small quantities
of order [Leu 96]

p = O(
√
δ), m = O(δ), 1/Nc = O(δ). (4.10)

The most general Lagrangian of LNcChPT is organized as an in�nite series
in terms of derivatives, quark-mass terms, and, implicitly, powers of 1/Nc,
with the scaling behavior given in Eq. (4.10):

Le� = L(0) +L(1) +L(2) + . . . , (4.11)

where the superscripts (i) denote the order in δ. The rules for the assignments
of these orders will be explained in a moment.

The dynamical degrees of freedom are collected in the unitary 3×3 matrix

U(x) = exp(iφ(x)
F

) , (4.12)

where

φ =
8

∑
a=0
φaλa =

⎛
⎜⎜⎜⎜
⎝

π0 + 1√
3
η8 +

√
2
3η1

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8 +

√
2
3η1

√
2K0

√
2K−

√
2K̄0 − 2√

3
η8 +

√
2
3η1

⎞
⎟⎟⎟⎟
⎠

(4.13)

contains the pseudoscalar octet �elds and the pseudoscalar singlet �eld η1,
the λa (a = 1, . . . ,8) are the Gell-Mann matrices, given in Appendix A.1, and
λ0 =

√
2/31.

In Eq. (4.12), F denotes the pion-decay constant in the three-�avor chiral
limit and, in accordance with the rules derived in Sec. 4.1, is counted as
F = O(

√
Nc) = O(1/

√
δ). The pseudoscalar �elds φa (a = 0, . . . ,8) count as

O(
√
Nc) such that the argument of the exponential function is O(δ0) and,

1It is understood that dimensionful variables need to be small in comparison with an
energy scale.



36 Large-Nc chiral perturbation theory

thus, U = O(δ0). Besides the dynamical degrees of freedom of Eq. (4.13),
the e�ective Lagrangian also contains a set of external �elds (s, p, lµ, rµ, θ).
The �elds s, p, lµ, and rµ are Hermitian, color-neutral 3×3 matrices coupling
to the corresponding quark bilinears, and θ is a real �eld coupling to the
winding number density [GL 85]. The covariant derivative acting on U is
de�ned as

DµU = ∂µU − irµU + iUlµ. (4.14)

The external scalar and pseudoscalar �elds s and p are combined in the
de�nition χ ≡ 2B(s + ip) [GL 85]. The LEC B is related to the scalar sin-
glet quark condensate ⟨q̄q⟩0 in the three-�avor chiral limit and is of O(N0

c ).
Setting s = M and p = 0, the (isospin-symmetric) quark-mass matrix M =
diag(m̂, m̂,ms), m̂ = (mu+md)/2, is contained in χ = 2BM . Finally, we intro-
duce a dimensionless �eld variable ψ =

√
6η1/F such that det(U) = exp(iψ).

To construct chirally invariant Lagrangians, the transformation properties
of the building blocks under chiral U(3)L×U(3)R transformations need to be
known. The matrix U transforms under (VL, VR) ∈ U(3)L ×U(3)R as

U ↦ VRUV
�
L , (4.15)

while the transformation behavior of the other building blocks is given by

ψ ↦ ψ − i ln(det(VR)) + i ln(det(VL))
= ψ − (θR − θL),

DµU ↦ VRDµUV
�
L ,

Dµψ = ∂µψ − 2⟨aµ⟩↦Dµψ,

Dµθ = ∂µθ + 2⟨aµ⟩↦Dµθ,

χ↦ VRχV
�
L ,

θ ↦ θ + (θR − θL). (4.16)

We now apply the power-counting rules of Eq. (4.10) to the construction of
the e�ective Lagrangian in the LNc framework. First, there is the momentum
and quark-mass counting which proceeds as in conventional SU(3)L×SU(3)R
ChPT [GL 85]: (covariant) derivatives count as O(p), χ counts as O(p2),
etc. (see Table 4.1). We denote the corresponding chiral order by Dp. The
discussion of the U(3)L ×U(3)R case results in three major modi�cations in
comparison with SU(3)L × SU(3)R [Leu 96, Her+ 97, KL 00]: First, the de-
terminant of U is no longer restricted to have the value 1, second, additional
external �elds appear. Third, since, according to Eqs. (4.16), the sum (ψ+θ)
remains invariant under chiral U(3)L × U(3)R transformations, the conven-
tional structures of SU(3)L ×SU(3)R ChPT will be multiplied by coe�cients
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which are functions of the linear combination (ψ+θ). For example, denoting
the SU(3) matrix of ordinary chiral perturbation theory by Û , i.e.,

U = e i3ψÛ , (4.17)

the leading-order Lagrangian reads [GL 85]

L2 =
F 2

4
⟨DµÛD

µÛ �⟩ + F
2

4
⟨χÛ � + Ûχ�⟩,

where the symbol ⟨ ⟩ denotes the trace over �avor indices and the covariant
derivatives are de�ned in Appendix A.3 in Eqs. (A.23). This expression is
replaced by [Her+ 97]

W1⟨DµUD
µU �⟩ +W2⟨χU � +Uχ�⟩, (4.18)

whereW1 andW2 are functions of (ψ+θ) and are also referred to as potentials
[KL 00]. In the limit Nc →∞, these functions reduce to constants [Leu 96].
However, for Nc �nite, the functions may be expanded in (ψ + θ) with well-
de�ned assignments for the LNc scaling behavior of the expansion coe�cients.

In addition to the potentials, also new additional structures show up
which do not exist in the SU(3)L × SU(3)R case. For example, in ordi-
nary chiral perturbation theory one �nds for the trace ⟨DµÛ Û �⟩ = 0 [SS 12],
whereas in the U(3)L ×U(3)R case one has

⟨DµUU
�⟩ = iDµψ, (4.19)

giving rise to a new term of the type −W4DµψDµψ [Her+ 97].
To assign LNc counting rules, one compares the Green functions eval-

uated from the e�ective Lagrangian to those obtained in LNcQCD (see
Refs. [Her+ 97, KL 00] for a detailed account). As explained in Sect. 4.1,
the leading contribution to a quark correlation function contains one quark
loop and is of O(Nc). Each �avor trace in the e�ective theory amounts to
a sum over quark �avors, which arises in QCD only in a quark loop and is
therefore suppressed by 1/Nc. In general, diagrams with r quark loops and
thus r �avor traces are of order N2−r

c . Terms in the Lagrangian without
traces correspond to the purely gluonic theory and count at leading order
as N2

c . This argument is transferred to the level of the e�ective Lagrangian,
i.e., single-trace terms are of order Nc, double-trace terms of order unity
etc.2 In other words, we need to identify the number Ntr of �avor traces. In

2When applying these counting rules, one has to account for the so-called trace re-
lations connecting single-trace terms with products of traces (see, e.g., Appendix A of
Ref. [FS 96]).
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particular, because of Eq. (4.16), the expression Dµψ implicitly involves a
�avor trace (see footnote 7 of Ref. [KL 00]). The external �eld θ couples to
the winding number density with strength 1/Nc. Therefore, when expanding
the potentials, each power (ψ + θ)n is accompanied by a coe�cient of order
O(N−n

c ). In a similar fashion, Dµθ (as well as multiple derivatives) are re-
lated to expressions with O(N−1

c ).3 Denoting the number of (ψ+θ) and Dµθ
terms by Nθ, the LNc order reads [Her+ 97, KL 00]

DN−1
c
= −2 +Ntr +Nθ. (4.20)

The combined order of an operator is then given by

Dδ =
1

2
Dp +DN−1

c
. (4.21)

In particular, using Eq. (4.21) allows us to identify the LNc scaling behavior
of the LEC multiplying the corresponding operator.

The leading-order Lagrangian is given by [Leu 96, KL 00]

L(0) = F
2

4
⟨DµUD

µU �⟩ + F
2

4
⟨χU � +Uχ�⟩ − 1

2
τ(ψ + θ)2. (4.22)

Comparing with Eq. (4.18), we identify

F 2

4
=W1(0) =W2(0) (4.23)

as the leading-order term of the expansion of the functionsW1 andW2 which,
because of parity, are even functions. On the other hand, the last term of
Eq. (4.22) originates from the second-order term of the expansion ofW0. The
constant τ = O(N0

c ) is the topological susceptibility of the purely gluonic
theory [Leu 96]. Counting the quark mass as O(p2), the �rst two terms of
L(0) are of O(Ncp2), while the third term is of O(N0

c ), i.e., all terms are of
O(δ0). The leading-order Lagrangian contains 3 LECs, namely, F , B, and
τ .

To explain the power counting of the interaction vertices, we set rµ =
lµ = 0 and χ = 2BM , where M = diag(mu,md,ms) denotes the quark-mass
matrix. For this case, the leading-order Lagrangian contains only even powers
of the pseudoscalar �elds. Expanding the �rst two terms of Eq. (4.22) in
terms of the pseudoscalar �elds results in Feynman rules for the interaction
vertices of the order p2N

1−k/2
c , where k = 4,6, . . . is the number of interacting

3Note that we do not directly book the quantities (ψ+θ) or Dµθ as O(N−1c ), but rather
attribute this order to the coe�cients coming with the terms.
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pseudoscalar �elds [KL 00]. The dependence on Nc and p originates from
the powers of F and the two derivatives, respectively. When discussing QCD
Green functions of, say, pseudoscalar quark bilinears, there will be a factor
BF = O(

√
Nc) at each external source (see Sec. 4.6.2 of Ref. [Sch 03]), such

that an n-point function is of the order p2Nc. Taking φa = O(
√
Nc), the

interaction Lagrangian count as O(p2Nc) which is consistent with referring
to the Lagrangian as O(δ0), with the leading-order contributions of quark
loops being O(Nc) and the leading chiral order being O(p2). On the other
hand, it is also consistent with the expectation of the e�ective meson vertices
containing k external lines being of the order N1−k/2

c , see Sec. 4.1.
The NLO Lagrangian L(1) was constructed in Refs. [Leu 96, Her+ 97,

KL 00] and receives contributions of O(Ncp4), O(p2), and O(N−1
c ). The

terms that are of the same structure as those in L(0) may be absorbed in
the coupling constants F , B, and τ [KL 00]. In particular, τ now has to be
distinguished from the topological susceptibility of gluodynamics. We only
display the terms relevant for our calculation, in particular, we set vµ ≡ (rµ +
lµ)/2 = 0 and keep only aµ ≡ (rµ − lµ)/2, which is needed for the calculation
of the axial-vector matrix elements:

L(1) = L5⟨DµUD
µU �(χU � +Uχ�)⟩ +L8⟨χU �χU � +Uχ�Uχ�⟩

+ F
2

12
Λ1DµψD

µψ − iF
2

12
Λ2(ψ + θ)⟨χU � −Uχ�⟩ + . . . , (4.24)

where the ellipsis refers to the suppressed terms. The �rst two terms of
L(1) count as O(Ncp4) and are obtained from the standard SU(3)L×SU(3)R
ChPT Lagrangian of O(p4) [GL 85] by retaining solely terms with a single
trace and keeping only the constant terms of the potentials. With Dp = 4
and DN−1

c
= −1, Eq. (4.21) implies that L5 and L8 are of O(Nc). According

to Eqs. (4.16), the expression DµψDµψ implicitly involves two �avor traces
(see footnote 7 of Ref. [KL 00]), with the result that the corresponding term
is O(N0

c ). Since F = O(
√
Nc), the coupling Λ1 scales as O(N−1

c ) and has
to vanish in the LNc limit. Finally, the structure proportional to Λ2 is the
leading-order term of the expansion of the potential W3. With Dp = 2 and
DN−1

c
= 0 (Ntr = Nθ = 1), the LEC Λ2 scales as O(N−1

c ).
The SU(3)L×SU(3)R Lagrangian of O(p6) was discussed in Refs. [FS 96,

BCE 99, EFS 02, BGT 02], and the generalization to the U(3)L×U(3)R case
has recently been obtained in Ref. [JGW 14]. For the present purposes, at
NNLO, the relevant pieces of L(2) can be split into three di�erent contribu-
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tions of O(N−1
c p2), O(p4), and O(Ncp6), respectively:

L(2,N−1
c p2) = −F

2

4
v
(2)
2 (ψ + θ)2⟨χU � +Uχ�⟩, (4.25)

L(2,p4) = L4⟨DµUD
µU �⟩⟨χU � +Uχ�⟩ +L6⟨χU � +Uχ�⟩2 +L7⟨χU � −Uχ�⟩2

+ iL18Dµψ⟨χDµU � −DµUχ�⟩ + iL25(ψ + θ)⟨χU �χU � −Uχ�Uχ�⟩
+ iL46Dµθ⟨DµUU �(χU � +Uχ�)⟩ + iL53∂µD

µθ⟨χU � −Uχ�⟩ + . . . ,
(4.26)

L(2,Ncp6) = C12⟨χ+hµνhµν⟩ +C14⟨uµuµχ2
+⟩ +C17⟨χ+uµχ+uµ⟩ +C19⟨χ3

+⟩
+C31⟨χ2

−χ+⟩ + . . . , (4.27)

where

χ± = u�χu� ± uχ�u,

u =
√
U,

uµ = i [u�(∂µ − irµ)u − u(∂µ − ilµ)u�] = iu�DµUu
�,

hµν = ∇µuν +∇νuµ,

∇µX = ∂µX + [Γµ,X],

Γµ =
1

2
[u�(∂µ − irµ)u + u(∂µ − ilµ)u�] . (4.28)

The coupling v(2)2 of Eq. (4.25) scales like O(N−2
c ) and originates from the

expansion of the potentials of Refs. [Leu 96, KL 00] up to and including
terms of order (ψ + θ)2. The �rst three terms of Eq. (4.26) stem from the
standard SU(3)L×SU(3)R ChPT Lagrangian of O(p4) with two traces and
are 1/Nc suppressed compared to the single-trace terms in Eq. (4.24). The
remaining terms of Eq. (4.26) are genuinely related to the LNc U(3)L×U(3)R
framework, since they contain interactions involving the singlet �eld or the
singlet axial-vector current. Finally, the Ci terms of Eq. (4.27) are obtained
from single-trace terms of the SU(3)L×SU(3)R Lagrangian ofO(p6) [BCE 99].
As there is, at present, no satisfactory uni�ed nomenclature for the coupling
constants, for easier reference we choose the names according to the respective
references from which the Lagrangians were taken.

Last but not least, we summarize the power-counting rules for a given
Feynman diagram, which has been evaluated by using the interaction vertices
derived from the e�ective Lagrangians of Eq. (4.11). Using the δ counting
introduced in Eq. (4.10), we assign to any such diagram an order D which is
obtained from the following ingredients: Meson propagators for both octet
and singlet �elds count as O(δ−1). Since meson �elds are always divided by
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F = O(
√
Nc) = O(δ− 1

2 ), a vertex with k meson �elds derived from L(i) is
O(δi+k/2). The integration of a loop counts as δ2. The order D is obtained
by adding up the contributions of the individual building blocks. Figure 4.9
provides two examples of the application of the power-counting rules. Since
the tree-level diagram of Fig. 4.9 (a) consists of a single vertex derived from
L(0) with four external meson lines, it has D = 2. On the other hand, the
one-loop diagram of Fig. 4.9 (b) has two vertices from L(0) with four legs,
two meson propagators, and one loop: D = 2 + 2 − 1 − 1 + 2 = 4. As expected,
the loop increases the order by two units. The power-counting rules are
summarized in Table 4.1.

0 0

(a) (b)

0

Figure 4.9: Illustration of the power counting in LNcChPT. The number 0
in the interaction blobs refers to L(0).

4.4 Odd-intrinsic-parity sector

The Lagrangians discussed so far, L(0)�L(2), possess a larger symmetry than
QCD [Wit 83]. If we consider pure QCD, i.e., no external �elds except for
χ = 2BM , or only electromagnetic reactions, the Lagrangians L(0)�L(2) are
invariant under the transformation φ(x) ↦ −φ(x). This transformation is
called intrinsic parity P , which is the normal parity transformation neglect-
ing the transformation part of space-time x itself. The aforementioned La-
grangians contain only interaction terms with an even number of Goldstone
bosons, which means that they are of even intrinsic parity. Processes with
an odd number of Goldstone bosons are said to be of odd intrinsic parity.
However, odd-intrinsic-parity processes such asK+K− → π+π−π0, η → π+π−γ,
or π0 → γγ are allowed by QCD and appear in nature. Those processes are
related to the chiral anomaly. At leading order, they are described by the
e�ective Wess-Zumino-Witten action [WZ 71, Wit 83].
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Quantity Nc p δ

Momenta/Derivatives p/∂µ 1 p δ
1
2

1/Nc N−1
c 1 δ

Quark masses m 1 p2 δ

Dynamical �elds φa (a = 1, . . . ,8)
√
Nc 1 δ−

1
2

Dynamical �eld ψ 1 1 1

External �eld θ 1 1 1

External currents vµ and aµ 1 p δ
1
2

External �elds s and p 1 p2 δ

Pion-decay constant F (chiral limit)
√
Nc 1 δ−

1
2

Topological susceptibility τ 1 1 1

M2
η′ (chiral limit) N−1

c 1 δ

Octet-meson propagator 1 p−2 δ−1

Singlet-η1 propagator (chiral limit) a) a) δ−1

Loop integration 1 p4 δ2

k-meson vertex from L(i) b) b) δi+k/2

Table 4.1: Power-counting rules in LNcChPT. a) The inverse of the singlet
η1 propagator is of order 1/Nc and p2. b) The assignment i in L(i) receives
contributions from both 1/Nc and p2.
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4.4.1 Wess-Zumino-Witten action

Whereas normal Ward identities correspond to the invariance of the generat-
ing functional under local transformations of the external �elds, the anoma-
lous Ward identities give rise to a particular form of the variation of the
generating functional. Let us consider an in�nitesimal chiral transformation

VR(x) = 1 + iα(x) + iβ(x) + . . . ,
VL(x) = 1 + iα(x) − iβ(x) + . . . . (4.29)

If one simultaneously transforms the external �eld θ(x), the variation of the
generating functional Z due to the anomalies is given by [GL 85]

δθ(x) = −2⟨β(x)⟩,

δZ = −∫ d4x⟨β(x)Ω(x)⟩,

Ω(x) = Nc

16π2
εαβµν [vαβvµν +

4

3
∇αaβ∇µaν +

2

3
i{vαβ, aµaν} +

8

3
iaµvαβaν

+4

3
aαaβaµaν] ,

vαβ = ∂αvβ − ∂βvα − i[vα, vβ],
∇αaβ = ∂αaβ − i[vα, aβ], (4.30)

where the symbol ⟨ ⟩ denotes the trace over �avor indices and Nc is the num-
ber of colors. Wess and Zumino showed that the anomalies satisfy consistency
or integrability relations [WZ 71]. Based on these relations, they constructed
a functional ZA involving the pseudoscalar octet which correctly produces the
non-abelian anomaly. In the following, an outline of the construction will be
provided [WZ 71, GL 85]. The generator D(β) of an in�nitesimal chiral
transformation, speci�ed in Eq. (4.29), of the generating functional is given
by

D(β)f(v, a, s, p, θ) = ∫ d4x [⟨i[β, aµ]
δf

δvµ(x)
+∇µβ

δf

δaµ(x)

−{β, p} δf

δs(x) + {β, s} δf

δp(x)⟩ − 2⟨β δf

δθ(x)⟩] . (4.31)

The condition in Eq. (4.30) then leads to

D(β)ZA = −∫ d4x⟨β(x)Ω(x)⟩, (4.32)
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where Ω is given in Eq. (4.30). One can verify that the action of the operator
exp(D(β)) on the external �elds takes the form

eD(β) [vµ(x) + aµ(x)] = eiβ(x) [i∂µ + vµ(x) + aµ(x)] e−iβ(x),
eD(β) [vµ(x) − aµ(x)] = e−iβ(x) [i∂µ + vµ(x) − aµ(x)] eiβ(x),
eD(β) [s(x) + ip(x)] = eiβ(x) [s(x) + ip(x)] eiβ(x),

eD(β)θ(x) = θ(x) − 2⟨β(x)⟩. (4.33)

The comparison with Eq. (2.15) in Sec. 2.3 shows that the operator exp(D(β))
generates the global transformation

VR(x) = V �
L(x) = exp(iβ(x)). (4.34)

The �eld U(x), given in Eq. (4.12) transforms according to

eD(β)U(x) = eiβ(x)U(x)eiβ(x) (4.35)

under chiral transformation of the external �elds. Using this property, U(x)
can be transformed into the unit matrix if one chooses the matrix β(x) such
that

e−2iβ(x) = U(x). (4.36)

Equation (4.32) can be solved with a functional ZA which depends on the
external �elds only through vµ, aµ, and U :

ZA = ZA(v, a,U). (4.37)

The condition Eq. (4.32) leads to a di�erential equation that determines the
dependence of ZA on the �eld U , and adding the boundary condition

ZA(v, a,1) = 0 (4.38)

determines the functional uniquely. This boundary condition is consistent
with the invariance of ZA under gauge transformations generated by the vec-
tor current. Indeed, performing a global chiral transformation which satis�es
Eq. (4.36) leads to

eD(β)ZA(v, a,U) = 0 = ZA(v, a,1). (4.39)

The di�erential equation (4.32) can be solved by

ZA(v, a,U) =
∞
∑
n=1

1

n! ∫ d4x⟨β(x)[D(β)]n−1Ω(x)⟩. (4.40)
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The �rst term of this series contains the anomaly. The higher-order terms do
not vanish, even if the external vector and axial-vector �elds are switched o�,
and the anomaly gives rise to interactions between �ve or more Goldstone
bosons. The structure ZA(0,0, U) has been given a remarkable geometric
interpretation by Witten [Wit 83].

In Witten's construction, he added to the lowest-order equation of motion
the simplest term possible which breaks the symmetry of having only an even
number of Goldstone bosons at the Lagrangian level. In the case of massless
Goldstone bosons without any external �elds the modi�ed equation of motion
reads

∂µ (
F 2

2
U∂µU �) + λεµνρσU∂µU �U∂νU

�U∂ρU
�U∂σU

� = 0, (4.41)

where λ is a (purely imaginary) constant and ε0123 = 1. A term which is
even (odd) in the Lagrangian leads to a term which is odd (even) in the
equation of motion. As Wess and Zumino [WZ 71] already emphasized, the
action functional generating the new term cannot be written down as the
four-dimensional integral of a Lagrangian expressed in terms of U and its
derivatives. To construct an action corresponding to Eq. (4.41), one has to
extend the domain of de�nition of U to a (hypothetical) �fth dimension,

U(y) = exp(iαφ(x)
F

) , yi = (xµ, α), i = 0, . . . ,4, 0 ≤ α ≤ 1, (4.42)

where Minkowski space is de�ned as the surface of the �ve-dimensional space
for α = 1. In the absence of external �elds (denoted by the superscript 0),
the e�ective Wess-Zumino-Witten action is given by

S0
ano = nS0

WZW,

S0
WZW = − i

240π2 ∫
1

0
dα∫ d4xεijklm⟨ULi ULj ULk ULl ULm⟩, (4.43)

where the indices i, . . . ,m run from 0 to 4, y4 = y4 = α, εijklm is the com-
pletely antisymmetric (�ve-dimensional) tensor with ε01234 = −ε01234 = 1, and
ULi = U �∂U/∂yi. The relation between the constant λ of Eq. (4.41) and n of
Eq. (4.43) is λ = in/(48π2). Using topological arguments, Witten could show
that the constant n must be an integer. Later, in the case of QCD, n will be
identi�ed with the number of colors Nc.

The expansion of U(y) in terms of Goldstone boson �elds, U(y) = 1 +
iαφ(x)/F +O(φ2), leads to an in�nite series of terms. Each term contains
an odd number of Goldstone bosons, i.e., the WZW action S0

WZW is of odd
intrinsic parity. The α integration can be performed explicitly for each indi-
vidual term and one obtains an ordinary action in terms of a four-dimensional
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integral of a local Lagrangian. As an example, let us consider the term with
the smallest number of Goldstone bosons

S5φ
WZW = 1

240π2F 5 ∫
1

0
dα∫ d4xεijklm⟨∂i(αφ)∂j(αφ)∂k(αφ)∂l(αφ)∂m(αφ)⟩

= 1

240π2F 5 ∫
1

0
dα∫ d4xεijklm∂i⟨αφ∂j(αφ)∂k(αφ)∂l(αφ)∂m(αφ)⟩.

(4.44)

Exactly one index can take the value 4. Integrating the term involving i = 4
with respect to α, one obtains

S5φ
WZW = 1

240π2F 5 ∫ d4xεµνρσ⟨φ∂µφ∂νφ∂ρφ∂σφ⟩, (4.45)

where the other terms cancel each other, because the ε tensor in four di-
mensions is antisymmetric under a cyclic permutation of the indices whereas
the trace is symmetric under a cyclic permutation. Equation (4.45) shows
that, without external �elds, the WZW action starts with the interaction of
�ve Goldstone boson �elds. In the presence of external �elds, the anomalous
action receives an additional term [Man 85, Bij 93]

Sano = n(S0
WZW + SextWZW) (4.46)

given by

SextWZW = − i

48π2 ∫ d4xεµνρσ {⟨Zµνρσ(U, l, r)⟩ − ⟨Zµνρσ(1, l, r)⟩} , (4.47)

with

Zµνρσ(U, l, r)

= 1

2
UlµU

�rνUlρU
�rσ +UlµlνlρU �rσ −U �rµrνrρUlσ

+ iU∂µlνlρU �rσ − iU �∂µrνrρUlσ + i∂µrνUlρU �rσ − i∂µlνU �rρU
�lσ

− iULµlνU �rρUlσ + iURµrνUlρU �rσ − iULµlνlρlσ + iURµrνrρrσ

+ 1

2
(ULµU �∂νrρUlσ − URµU∂νlρU �rσ + ULµU �rνU∂ρlσ − URµUlνU �∂ρrσ)

− ULµULνU �rρUlσ + URµURνUlρU �rσ +
1

2
ULµlνUULρlσ −

1

2
URµrνURρrσ

+ ULµlν∂ρlσ − URµrν∂ρrσ + ULµ∂νlρlσ − URµ∂νrρrσ
− iULµULνULρlσ + iURµURνURρrσ, (4.48)
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where ULµ ≡ U �∂µU and URµ ≡ U∂µU �. The subtraction of the ⟨Zµνρσ(1, l, r)⟩
term is necessary to satisfy the boundary condition in Eq. (4.38) leading to
an action that is consistent with the conservation of the vector current.

For the purpose of determining the quantum number n in QCD, we con-
sider the coupling to an external electromagnetic four-vector potential Aµ by
setting

rµ = lµ = −eAµQ, (4.49)

where Q is the quark-charge matrix. We examine the interaction Lagrangian
which is responsible for the decay π0 → γγ. As Bär and Wiese pointed out
[BW 01], in order for the Standard Model to be consistent for arbitrary Nc,
the ordinary quark-charge matrix should be replaced by

Q =
⎛
⎜
⎝

2
3 0 0
0 −1

3 0
0 0 −1

3

⎞
⎟
⎠
→

⎛
⎜
⎝

1
2Nc

+ 1
2 0 0

0 1
2Nc

− 1
2 0

0 0 1
2Nc

− 1
2

⎞
⎟
⎠
. (4.50)

From Eq. (4.46) one can derive the leading-order Lagrangian for the π0 → γγ
decay

Lπ0→γγ = −
n

Nc

e2

32π2
εµνρσFµνFρσ

π0

F0

, (4.51)

which leads to the decay rate

Γπ0→γγ =
α2M3

π0

64π3F 2
0

n2

N2
c

= 7.6 eV × ( n
Nc

)
2

, (4.52)

where α = e2/(4π) is the �ne-structure constant. This result is in good
agreement with the experimental value of Γπ0→γγ = (7.63±0.16) eV [Oli+ 14]
for n = Nc. However, one cannot conclude that Nc = 3. Bär and Wiese
suggested to obtain the value of Nc rather from three-�avor processes such
as η → π+π−γ or Kγ → Kπ. However, Borasoy and Lipartia [BL 05] have
investigated the corresponding η and η′ decays up to NLO in LNcChPT and
concluded that, due to the importance of NLO corrections which are needed
to describe the experimental spectra and decay widths, the number of colors
cannot be determined from these decays.

4.4.2 Higher-order Lagrangians

In this thesis, we want to consider anomalous decays including the η′. At
leading order, anomalous decays are driven by the WZW action, which has



48 Large-Nc chiral perturbation theory

been discussed in Sec. 4.4.1 in SU(3) ChPT. Since our aim is the inclusion
of the η′, we need the expression for the WZW action including the singlet
η1 �eld. The WZW action in U(3) ChPT can be obtained from the SU(3)
WZW action by simply replacing the SU(3) matrices U , rµ, and lµ by the
corresponding U(3) expressions. The WZW term accounts for the anomaly.
The rest of the unnatural parity Lagrangian, without the WZW term, be-
comes invariant under local U(3)L ×U(3)R transformations. At O(p4), there
exist six independent invariants which obey charge conjugation invariance,
and the e�ective Lagrangian at O(p4) reads [KL 00]

L(p4)
ε = LWZW + Ṽ1 i⟨R̃µνDµUDνU

� + L̃µνDµU
�DνU⟩ + Ṽ2 ⟨R̃µνULµνU

�⟩
+ Ṽ3 ⟨R̃µνRµν + L̃µνLµν⟩ + Ṽ4 iDµθ ⟨R̃µνDνUU

� − L̃µνU �DνU⟩
+ Ṽ5 (⟨R̃µν⟩⟨Rµν⟩ + ⟨L̃µν⟩⟨Lµν⟩) + Ṽ6 ⟨R̃µν⟩⟨Lµν⟩, (4.53)

where

Rµν = ∂µrν − ∂νrµ − i[rµ, rν],
Lµν = ∂µlν − ∂νlµ − i[lµ, lν],

F̃ µν = 1

2
εµνρσFρσ. (4.54)

Due to parity, all potentials are odd functions of (ψ+θ), except for V4 which
is even.

In the combined LNc and chiral expansions, the WZW term starts con-
tributing at O(Ncp4) = O(δ). In this thesis, the anomalous processes are
supposed to be studied at the one-loop level, which corresponds to a NNLO
calculation in the δ counting. Therefore, we need the odd-intrinsic-parity La-
grangians at NLO and NNLO. Up to NNLO, the e�ective odd-intrinsic-parity
Lagrangian is denoted by

Lε = L(1)
WZW +L(2)

ε +L(3)
ε , (4.55)

where the superscripts (i) refer to the order in δ. The NLO Lagrangian L(2)
ε

receives contributions from O(p4) and O(Ncp6). From Eq. (4.53) one can
extract [KL 00]

L(2,p4)
ε = L̃1 i(ψ + θ)⟨R̃µνDµUDνU

� + L̃µνDµU
�DνU⟩

+ L̃2(ψ + θ)⟨R̃µνULµνU
�⟩ + L̃3(ψ + θ)⟨R̃µνRµν + L̃µνLµν⟩

+ L̃4 iDµθ ⟨R̃µνDνUU
� − L̃µνU �DνU⟩. (4.56)

The odd-intrinsic-parity Lagrangian at O(p6) has been constructed in SU(3)
ChPT in Refs. [EFS 02, BGT 02]. Reference [JGW 14] provides the full
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O(p6) Lagrangian in U(3) ChPT. The O(Ncp6) contributions are those terms
of the O(p6) Lagrangian which have only one �avor trace and do not contain
the �elds (ψ + θ) or Dµθ. The NNLO Lagrangian L(3)

ε consists of terms of
O(Ncp8), O(p6), and O(N−1

c p4). The O(p8) Lagrangian has not been con-
structed so far. Order p6 terms stem from the O(p6) Lagrangian containing
two �avor traces, the �eld Dµθ, or are generated when expanding the poten-
tials of the odd-parity terms of the O(p6) Lagrangian up to linear order in
(ψ + θ). Terms of O(N−1

c p4) could arise from the expansion of the potentials

in L(p4)
ε , but they do not contribute to the anomalous processes we want

to consider. Since especially the O(p6) Lagrangian contains a lot of terms,
in the following, we display only the terms needed for the calculations in
this thesis. The relevant terms of the O(Ncp6) and O(p6) Lagrangians are
shown in Tabs. 4.2 and 4.3, respectively. Since there is, at present, no satis-
factory uni�ed nomenclature for the coupling constants, for easier reference
we choose the names according to the respective references from which the
Lagrangians were taken.

The operators with the LECs L6,ε
i , which appear in SU(3) ChPT as well,

are taken from Ref. [EFS 02]. They are given in terms of the building blocks

(A)± = u�Au� ± uA�u,

F µν
R = ∂µrν − ∂νrµ − i[rµ, rν],
F µν
L = ∂µlν − ∂νlµ − i[lµ, lν],
Gµν = F µν

R U +UF µν
L ,

Hµν = F µν
R U −UF µν

L ,

(DµDνU)s− =
1

2
({Dµ,Dν}U)−

= (DµDνU)− +
i

2
(Hµν)+, (4.57)

where A refers to operators transforming under the chiral group G as A
G→

VRAV
�
L . The other terms, genuinely related to the U(3) sector, are taken

from Ref. [JGW 14]. Here, the corresponding building blocks are the same
as in Eq. (4.28) with the additional structures

fµν± = uF µν
L u� ± u�F µν

R u. (4.58)

4.5 Precision

In LNcChPT, calculations are performed in the combined chiral and LNc

expansions with a common expansion parameter δ, speci�ed in Eq. (4.10).
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Process LEC Operator SU(3)

P → γ(∗)γ(∗) L6,ε
3 i ⟨(χ)+{(Gµν)+(Hαβ)+ − rev}⟩εµναβ x

L6,ε
8 i ⟨(χ)−(Gµν)+(Gαβ)+⟩εµναβ x

L6,ε
19 i ⟨(DλGλµ)+{(Gνα)+(DβU)− + rev}⟩εµναβ x

η(
′) → π+π−γ(∗) L6,ε

1 ⟨(χ)+{(Hµν)+(DαU)−(DβU)− + rev}⟩εµναβ x
L6,ε

5 ⟨(χ)−{(Gµν)+(DαU)−(DβU)− − rev}⟩εµναβ x
L6,ε

6 ⟨(χ)−(DµU)−(Gνα)+(DβU)−⟩εµναβ x
L6,ε

13 ⟨(Gµν)+{(DλDαU)s−(DβU)−(DλU)− − rev}⟩εµναβ x
L6,ε

14 ⟨(Gµν)+{(DλDαU)s−(DλU)−(DβU)− − rev}⟩εµναβ x

Table 4.2: Relevant terms of L(2,Ncp6)
ε .

Process LEC Operator SU(3)

P → γ(∗)γ(∗) L6,ε
9 i ⟨(χ)−⟩⟨(Gµν)+(Gαβ)+⟩εµναβ x

L237 εµνλρ⟨f+µν⟩⟨f+λσhρσ⟩ -
L238 εµνλρ⟨f+µν⟩⟨∇σf+λσuρ⟩ -
L239 εµνλρ⟨f+µν∇σf+λσ⟩⟨uρ⟩ -
L258 iεµνλρ⟨f+µν⟩⟨f+λρχ−⟩ -
Λ442 εµνλρ(ψ + θ)⟨f+µνf+λρχ+⟩ -

AVV L248 iεµνλρ⟨FLµσDσFLνλ⟩∇ρθ̂ +H.c. -
L249 iεµνλρ⟨FLµνDσFLλσ⟩∇ρθ̂ +H.c. -
L236 εµνλρ⟨f+µν⟩⟨f+λσf−ρσ⟩ -

η(
′) → π+π−γ(∗) L6,ε

2 ⟨(χ)+(DµU)−⟩⟨(DνU)−(Hαβ)+⟩εµναβ x
L6,ε

7 ⟨(χ)−⟩⟨(Gµν)+(DαU)−(DβU)−⟩εµναβ x
L227 iεµνλρ⟨∇σf+µσuνuλ⟩⟨uρ⟩ -
L228 iεµνλρ⟨∇σf+µνuσuλ⟩⟨uρ⟩ +H.c. -
L229 iεµνλρ⟨f+µσhνσuλ⟩⟨uρ⟩ +H.c. -
L230 iεµνλρ⟨f+µνhλσuσ⟩⟨uρ⟩ +H.c. -
L233 iεµνλρ⟨∇σf+µσ⟩⟨uνuλuρ⟩ -
L234 iεµνλρ⟨f+µσ⟩⟨uνuλhρσ⟩ -
L242 εµνλρ⟨uµ⟩⟨uνf−λρχ+⟩ +H.c. -
L254 εµνλρ⟨f+µν⟩⟨uλuρχ−⟩ -
L255 εµνλρ⟨f+µνχ−uλ⟩⟨uρ⟩ +H.c. -
Λ437 (ψ + θ) (iεµνλρ⟨f+µνχ+uλuρ⟩ +H.c.) -
Λ438 iεµνλρ(ψ + θ)⟨f+µνuλχ+uρ⟩ -

Table 4.3: Relevant terms of L(3,p6)
ε .
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Physical observables σ are then given as a series in terms of the expansion
parameter δ with contributions from the di�erent orders σ(n):

σ = σ(0) + δσ(1) + δ2σ(2) + δ3σ(3) + . . . . (4.59)

Since actual calculations take only a �nite number of terms into account, the
result receives a systematic error introduced as δε. The exponent ε is given
by the di�erence of the order of the neglected contributions and the leading
contributions with non-vanishing σ(n).

The processes in this thesis are calculated up to NNLO resulting in a
systematic error of δ3. A possible estimate for the expansion parameter is
given by δ = 1/Nc = 1/3. Corrections breaking the SU(3) symmetry are
roughly given by

M2
K

Λ2
= 0.244 GeV2

1 GeV2 (4.60)

and are of the same order of magnitude as 1/Nc. This means that, optimisti-
cally estimated, all NNLO results are a�ected by a systematic error of at least
4%, and NLO calculations receive a systematic error of at least 10%. These
errors should be added to the (statistical) errors of all calculated quantities
which will be provided in the following chapters.
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Chapter 5

η-η′ mixing

The mixing of states is a quantum-mechanical phenomenon which is inti-
mately related to the symmetries of the underlying dynamics and the even-
tual mechanisms leading to their breaking. Prominent examples in the realm
of subatomic physics include the K0-K̄0 and B0-B̄0 mixing and oscillations,
neutrino mixing, the Cabibbo-Kobayashi-Maskawa quark-mixing matrix, and
the Weinberg angle [Oli+ 14]. In the low-energy regime of QCD, we observe
a fascinating interplay between the dynamical (spontaneous) breaking of chi-
ral symmetry, the explicit symmetry breaking by the quark masses, and the
axial U(1)A anomaly. In this context, the pseudoscalar mesons η and η′ rep-
resent an ideal laboratory for investigating the relevant symmetry-breaking
mechanisms in QCD.

In this chapter, an expression for the η-η′ mixing at the one-loop level
up to and including NNLO is derived, followed by a successive numerical
analysis of the mixing angle, pseudoscalar masses and decay constants at
LO, NLO, and NNLO.

5.1 Calculation of the mixing angle

For m̂ ≠ ms, the physical η and η′ mass eigenstates are linear combina-
tions of the mathematical octet and singlet states η8 and η1. Our aim is
to derive a general expression for the η-η′ mixing at the one-loop level up
to and including NNLO in the δ counting. To that end, we start from an
e�ective Lagrangian in terms of the octet and singlet �elds and perform
successive transformations, resulting in a diagonal Lagrangian in terms of
the physical �elds. Because of the e�ective-�eld-theory nature of our ap-
proach, the starting Lagrangian will contain higher-derivative terms up to
and including fourth order in the four momentum. The parameters of the
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Lagrangian are obtained from a one-loop calculation of the self energies using
the Lagrangians and power counting of Sec. 4.3. The Lagrangian after the
transformations will have a standard �free-�eld� form.

Let us collect the �elds η8 and η1 in the doublet

ηA ≡ (η8

η1
) . (5.1)

In terms of ηA, at NNLO the most general e�ective Lagrangian quadratic in
ηA is of the form

Leff = LA = 1

2
∂µη

T
AKA∂µηA −

1

2
ηTAM2

AηA +
1

2
◻ ηTACA ◻ ηA. (5.2)

The symmetric 2 × 2 matrices KA,M2
A, and CA can be written as

KA = (1 + k8 k81

k81 1 + k1
) , (5.3)

M2
A = (M

2
8 M2

81

M2
81 M2

1

) , (5.4)

CA = ( c8 c81

c81 c1
) . (5.5)

Later on, we will provide the one-loop expressions for the matrices KA and
M2

A. The last term in Eq. (5.2), containing higher derivatives of ηA, origi-
nates from the C12 term of the O(δ2) Lagrangian in Eq. (4.27). The matrix
CA is given in Eqs. (B.6)�(B.8) of Appendix B.1. If we were to work at
leading order, only, we would have to replace

KA → 1, M2
A →M2

A
(0) =

⎛
⎜
⎝

○
M2

8

○
M2

81
○

M2
81

○
M2

1 +M2
0

⎞
⎟
⎠
, CA → 0.

The elements of the (leading-order) mass matrixM2
A
(0) read

○
M2

8 = 2

3
B (m̂ + 2ms) =

1

3
(4

○
M2

K −
○
M2

π ), (5.6)

○
M2

1 = 2

3
B (2m̂ +ms) =

1

3
(2

○
M2

K +
○
M2

π ), (5.7)

M2
0 = 6

τ

F 2
, (5.8)

○
M2

81 = −
2
√

2

3
B (ms − m̂) = −2

√
2

3
(

○
M2

K −
○
M2

π ), (5.9)
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where
○

M2
K =B (m̂ +ms) and

○
M2

π =2Bm̂ are the leading-order kaon and pion
masses squared, respectively, and M2

0 denotes the U(1)A anomaly contribu-
tion to the η1 mass squared. The mixing already shows up at leading order,
because the mass matrixM2

A is non-diagonal at that order.
Our �rst step is to perform a �eld rede�nition to get rid of the higher-

derivative structure in Eq. (5.2) [SF 95, FS 00],

ηA = (1 + 1

2
CA◻) ηB. (5.10)

The �eld transformation is constructed such that, after inserting Eq. (5.10)
into Eq. (5.2), the last term is canceled by a term originating from the �rst
term in Eq. (5.2). Moreover, we obtain additional terms originating from the
�mass term� of Eq. (5.2) which now contribute to the new kinetic matrix.
Finally, we neglect any terms generated by the �eld transformation which
is beyond the accuracy of a NNLO calculation. Using the relation φ ◻ φ =
∂µ(φ∂µφ)−∂µφ∂µφ for the components of ηB, and neglecting total-derivative
terms, the Lagrangian after the �rst �eld rede�nition is of the form

LB = 1

2
∂µη

T
BKB∂µηB −

1

2
ηTBM2

BηB, (5.11)

where

KB

= KA +
1

2

⎛
⎜
⎝

2c8

○
M2

8 +2c81

○
M2

81 (c1 + c8)
○

M2
81 + c81(

○
M2

1 +M2
0 +

○
M2

8 )
(c1 + c8)

○
M2

81 + c81(
○
M2

1 +M2
0 +

○
M2

8 ) 2c1(
○
M2

1 +M2
0 ) + 2c81

○
M2

81

⎞
⎟
⎠

≡ (1 + δ(1)8 + δ(2)8 δ
(1)
81 + δ(2)81

δ
(1)
81 + δ(2)81 1 + δ(1)1 + δ(2)1

) , (5.12)

where δ(i)j denotes corrections of O(δi). The entries of the mass matrix
M2

B =M2
A are given by

M2
8 =

○
M2

8 +∆M2
8
(1)+∆M2

8
(2)
, (5.13)

M2
1 =M2

0+
○
M2

1 +∆M2
1
(1)+∆M2

1
(2)
, (5.14)

M2
81 =

○
M2

81+∆M2
81
(1)+∆M2

81
(2)
, (5.15)

where ∆M2
j
(i) denotes corrections of O(δi).
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The next step consists of diagonalizing the kinetic matrix KB in Eq. (5.12)
up to and including O(δ2) through the �eld rede�nition

ηB =
√
ZηC , (5.16)

such that √
Z
T
KB

√
Z = 1. (5.17)

Then, the matrix
√
Z is given by

√
Z

=
⎛
⎝

1 − 1
2δ

(1)
8 + 3

8δ
(1)
8

2
+ 3

8δ
(1)
81

2
− 1

2δ
(2)
8 −1

2δ
(1)
81 + 3

8δ
(1)
1 δ

(1)
81 + 3

8δ
(1)
8 δ

(1)
81 − 1

2δ
(2)
81

−1
2δ

(1)
81 + 3

8δ
(1)
1 δ

(1)
81 + 3

8δ
(1)
8 δ

(1)
81 − 1

2δ
(2)
81 1 − 1

2δ
(1)
1 + 3

8δ
(1)
1

2
+ 3

8δ
(1)
81

2
− 1

2δ
(2)
1

⎞
⎠
.

(5.18)

In terms of ηC , the Lagrangian reads

LC = 1

2
∂µη

T
C∂

µηC −
1

2
ηTCM2

CηC , (5.19)

with the mass matrix given by

M2
C =

√
Z
T
M2

B

√
Z ≡ (M̂

2
8 M̂2

81

M̂2
81 M̂2

1

) . (5.20)

Up to and including second order in the corrections δ(i)j and ∆M2
j
(i), the

entries of the matrixM2
C read

M̂2
8 =

○
M2

8 (1 − δ(1)8 + δ(1)8

2
+ 3

4
δ
(1)
81

2
− δ(2)8 ) +∆M2

8
(1) (1 − δ(1)8 ) +∆M2

8

(2)

+
○

M2
81 (−δ(1)81 + 3

4
δ
(1)
1 δ

(1)
81 + 5

4
δ
(1)
8 δ

(1)
81 − δ(2)81 ) +∆M2

81
(1) (−δ(1)81 )

+ 1

4
(M2

0+
○
M2

1) δ
(1)
81

2
, (5.21)

M̂2
1 = (M2

0+
○
M2

1)(1 − δ(1)1 + δ(1)1

2
+ 3

4
δ
(1)
81

2
− δ(2)1 ) +∆M2

1
(1) (1 − δ(1)1 ) +∆M2

1

(2)

+
○

M2
81 (−δ(1)81 + 3

4
δ
(1)
8 δ

(1)
81 + 5

4
δ
(1)
1 δ

(1)
81 − δ(2)81 ) +∆M2

81
(1) (−δ(1)81 ) + 1

4

○
M2

8 δ
(1)
81

2
,

(5.22)
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M̂2
81 =

○
M2

81 (1 − 1

2
δ
(1)
1 − 1

2
δ
(1)
8 + 3

8
δ
(1)
1

2
+ 1

4
δ
(1)
1 δ

(1)
8 + 3

8
δ
(1)
8

2
+ δ(1)81

2
− 1

2
δ
(2)
1 − 1

2
δ
(2)
8 )

+∆M2
81

(1) (1 − 1

2
δ
(1)
1 − 1

2
δ
(1)
8 ) +∆M2

81
(2)

+
○
M2

8 (−1

2
δ
(1)
81 + 3

8
δ
(1)
1 δ

(1)
81 + 5

8
δ
(1)
8 δ

(1)
81 − δ(2)81 ) +∆M2

8
(1) (−1

2
δ
(1)
81 )

+ (M2
0+

○
M2

1)(−1

2
δ
(1)
81 + 3

8
δ
(1)
8 δ

(1)
81 + 5

8
δ
(1)
1 δ

(1)
81 − δ(2)81 )

+∆M2
1
(1) (−1

2
δ
(1)
81 ) . (5.23)

Finally, to obtain the physical mass eigenstates, we diagonalize the matrix
M2

C by means of an orthogonal transformation,

ηD = RηC , (5.24)

R ≡ (cos θ
[2] −sin θ[2]

sin θ[2] cos θ[2]
) , (5.25)

such that

RM2
CR

T =M2
D = (M

2
η 0

0 M2
η′
) . (5.26)

The superscript [2] refers to corrections up to and including second order in
the δ expansion. Introducing the nomenclature ηP for the physical �elds and
M2

P for the diagonal mass matrix,

ηP = ηD = (η
η′
) , M2

P = (M
2
η 0

0 M2
η′
) ,

the Lagrangian is now of the �free-�eld� type,

L = LD = 1

2
∂µη

T
P∂

µηP −
1

2
ηTPM2

PηP = 1

2
∂µη∂

µη− 1

2
M2

ηη
2+ 1

2
∂µη

′∂µη′− 1

2
M2

η′η
′2.

Equation (5.26) yields three relations,

M̂2
8 =M2

η cos2 θ[2] +M2
η′ sin

2 θ[2], (5.27)

M̂2
1 =M2

η sin2 θ[2] +M2
η′ cos2 θ[2], (5.28)

M̂2
81 = (M2

η′ −M2
η ) sin θ[2] cos θ[2], (5.29)

which de�ne the mixing angle θ[2] calculated up to and including O(δ2).
First, from Eq. (5.29) we infer

sin 2θ[2] = 2M̂2
81

M2
η′ −M2

η

. (5.30)
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Further, we obtain from Eqs. (5.27)�(5.29)

M2
η′ +M2

η = M̂2
8 + M̂2

1 (5.31)

and

M2
η′ −M2

η =
√

(M̂2
8 − M̂2

1 )
2 + 4 (M̂2

81)
2
. (5.32)

This equation implies that Eq. (5.30) can also be written as

sin 2θ[2] = 2M̂2
81√

(M̂2
8 − M̂2

1 )
2
+ 4 (M̂2

81)
2
. (5.33)

The transformation from the octet �elds ηA to the physical �elds ηD can
be summarized as

ηA = TηD = (1 + 1

2
CA◻)

√
ZRTηD, (5.34)

where the transformation matrix T is given by

T = (−A sin θ[2] +B8 cos θ[2] A cos θ[2] +B8 sin θ[2]

A cos θ[2] −B1 sin θ[2] A sin θ[2] +B1 cos θ[2]
) , (5.35)

with

A = −δ(1)81 (1

2
− 3

8
δ
(1)
1 − 3

8
δ
(1)
8 ) − 1

2
δ
(2)
81 + c81

2
◻, (5.36)

Bi = 1 − 1

2
δ
(1)
i + 3

8
δ
(1)
i

2
+ 3

8
δ
(1)
81

2
− 1

2
δ
(2)
i + ci

2
◻ . (5.37)

Up to this point, the procedure for de�ning a mixing angle in terms of
successive transformations is rather general. We now turn to a determination
of the quantities δ(j)i as well as the M2

i terms within LNcChPT. To identify
KA and M2

A at NNLO, we calculate the self-energy insertions −iΣij(p2),
i, j = 1, 8, corresponding to the Feynman diagrams in Fig. 5.1. The Feynman
rules are derived from the Lagrangians L(0), L(1), and L(2) of Eqs. (4.22),
(4.24), and (4.25)�(4.27) in Sec. 4.3. The self energy calculated from the
Lagrangian in Eq. (5.2) takes the form1

Σ(p2) = (Σ88(p2) Σ81(p2)
Σ18(p2) Σ11(p2)) , (5.38)

1Since both the singlet and the octet states are massless in the combined chiral and
Nc →∞ limits, we consider the lowest-order mass terms as part of the self-energy contri-
butions.
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10 2

0

i i i

i j

j j j

Figure 5.1: Self-energy diagrams up to and including O(δ2): Dashed lines
refer to pseudoscalar mesons, and the numbers k in the interaction blobs
refer to vertices derived from the corresponding Lagrangians L(k).

where the Σij(p2) are parametrized up to and including O(δ2) as

Σ88(p2) = − (k8 + c8p
2)p2 +M2

8 , (5.39)

Σ81(p2) = Σ18(p2) = − (k81 + c81p
2)p2 +M2

81, (5.40)

Σ11(p2) = − (k1 + c1p
2)p2 +M2

1 . (5.41)

We now obtain the elements of the kinetic matrix KA, the mass matrixM2
A,

and the matrix CA by comparing the results for the self energies calculated
by means of the Feynman diagrams (Fig. 5.1) with the parametrization given
in Eqs. (5.39)�(5.41).

The NLO contributions to the kinetic matrix read

δ
(1)
8 = 8 (4M2

K −M2
π)L5

3F 2
π

, (5.42)

δ
(1)
1 = 8 (2M2

K +M2
π)L5

3F 2
π

+Λ1, (5.43)

δ
(1)
81 = −16

√
2 (M2

K −M2
π)L5

3F 2
π

, (5.44)

where Mπ, MK , and Fπ denote the physical pion and kaon masses, and
the physical pion-decay constant, respectively. The di�erence between using
physical values instead of leading-order expressions in Eqs. (5.42)�(5.44) is
of NNLO and is compensated by an appropriate modi�cation of the O(δ2)
terms. The NNLO expressions forMπ,MK , and Fπ are displayed in Appendix
B.1.

The entries of the mass matrix M2
A are de�ned in Eqs. (5.13)�(5.15) in

terms of leading-order, δ1, and δ2 pieces. The leading-order masses are given
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in Eqs. (5.6)�(5.9). In terms of the physical pion and kaon masses, and the
physical pion-decay constant, the �rst-order corrections read

∆M2
8
(1) = 16 (8M4

K − 8M2
πM

2
K + 3M4

π)L8

3F 2
π

, (5.45)

∆M2
1
(1) = 16 (4M4

K − 4M2
πM

2
K + 3M4

π)L8

3F 2
π

+ 2Λ2

3
(2M2

K +M2
π) , (5.46)

∆M2
81

(1) = −64
√

2 (M2
K −M2

π)M2
KL8

3F 2
π

− 2
√

2Λ2

3
(M2

K −M2
π). (5.47)

The corresponding NNLO expressions for the kinetic and the mass matrix
elements can be found in Appendix B.1.

5.2 Decay constants

The decay constants of the η-η′ system are de�ned via the matrix element of
the axial-vector current operator Aaµ = q̄γµγ5

λa

2 q,

⟨0∣Aaµ(0) ∣P (p)⟩ = iF a
Ppµ, (5.48)

where a = 8, 0 and P = η, η′. Since both mesons have octet and singlet
components, Eq. (5.48) de�nes four independent decay constants, F a

P . We
parametrize them according to the convention in [Leu 98]

{F a
P} = (F

8
η F 0

η

F 8
η′ F 0

η′
) = (F8 cos θ8 −F0 sin θ0

F8 sin θ8 F0 cos θ0
) . (5.49)

This parametrization is a popular way to de�ne the η-η′ mixing within
the so-called two-angle scheme [FKS 98, FKS 99, BDC 00, EF 05, EMS 11,
EMS 14, EMS 15]. The angles θ8 and θ0 and the constants F8 and F0 are
given by

tan θ8 =
F 8
η′

F 8
η

, tan θ0 = −
F 0
η

F 0
η′
, (5.50)

F8 =
√

(F 8
η )

2 + (F 8
η′)

2
, F0 =

√
(F 0

η )
2 + (F 0

η′)
2
. (5.51)

To determine the decay constants F a
P , we calculate the Feynman diagrams

in Fig. 5.2. First, we calculate the coupling of the axial-vector current to the
octet and singlet �elds φb, collected in the doublet ηA, at the one-loop level
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0

P P P

P

a a

a

a 0 1 2

Figure 5.2: Feynman diagrams contributing to the calculation of the decay
constants up to and including O(δ2). Dashed lines refer to pseudoscalar
mesons, crossed dots to axial-vector sources, and the numbers k in the inter-
action blobs refer to vertices derived from the Lagrangians L(k) in Sec. 4.3.

up to NNLO in the δ counting. The result, which should be interpreted as a
Feynman rule, is represented by the �matrix elements� Fab = ⟨0∣Aaµ(0) ∣b⟩. In
a next step, we transform the bare �elds ηA to the physical states using the
transformation T in Eq. (5.35). The decay constants F a

P are then given by

{F a
P}

T = (F
8
η F 0

η

F 8
η′ F 0

η′
)
T

= (F ⋅ T ). (5.52)

At leading order, the decay constants read

F 8
η = F 0

η′ = F cos θ[0], (5.53)

−F 0
η = F 8

η′ = F sin θ[0], (5.54)

in terms of the leading-order mixing angle θ[0] given in Eq. (5.30). Equation
(5.50) then yields θ0 = θ8 = θ[0]. The NLO decay constants are given by

F 8
η /F = (1 + 1

2
δ
(1)
8 ) cos θ[1] − 1

2
δ
(1)
81 sin θ[1], (5.55)

F 0
η /F = −(1 + 1

2
δ
(1)
1 ) sin θ[1] + 1

2
δ
(1)
81 cos θ[1], (5.56)

F 8
η′/F = (1 + 1

2
δ
(1)
8 ) sin θ[1] + 1

2
δ
(1)
81 cos θ[1], (5.57)

F 0
η′/F = (1 + 1

2
δ
(1)
1 ) cos θ[1] + 1

2
δ
(1)
81 sin θ[1], (5.58)

now in terms of the NLO mixing angle θ[1]. Using Eqs. (5.50) and (5.51),
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one obtains

F8 = F
⎛
⎝

1 + δ
(1)
8

2

⎞
⎠
,

F0 = F
⎛
⎝

1 + δ
(1)
1

2

⎞
⎠
, (5.59)

and

θ8 = θ[1] + arctan
⎛
⎝
δ
(1)
81

2

⎞
⎠
,

θ0 = θ[1] − arctan
⎛
⎝
δ
(1)
81

2

⎞
⎠
. (5.60)

The results for the decay constant at NNLO are lengthy and are given in
Appendix B.1.

5.3 Dependence on the running scale of QCD

The singlet axial-vector current, A0
µ = q̄(1/2)λ0γµγ5q, carries anomalous di-

mension [Adl 69, Kod 80, ET 82]. To obtain �nite correlation functions of
this current, the operator A0

µ receives multiplicative renormalization, and
the decay constants associated with the singlet axial current depend on the
renormalization scale µ of QCD.2 The scale dependence of the operators
is compensated by treating the external �elds as scale-dependent quantities
such that the e�ective action of QCD is rendered scale invariant [KL 00]. The
renormalization of the singlet axial current and hence of the corresponding
decay constants reads

A0 ren
µ = ZAA0

µ, (5.61)

F 0 ren
P = ZAF 0

P , P = η, η′, (5.62)

where the renormalization factor ZA is determined by the anomalous dimen-
sion γA of the singlet axial current,

µ
dZA
dµ

= γAZA, γA = −6Nf(N2
c − 1)

Nc

( g

4π
)

4

+O(g6). (5.63)

2Here, we consider the scale dependence within QCD. This has to be distinguished
from the scale used to renormalize loop corrections within the e�ective �eld theory.
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These properties are then transferred to the e�ective Lagrangian resulting
in e�ective coupling constants which depend on the running scale of QCD
[KL 00]. In order for the e�ective Lagrangian to become invariant under a
change of the QCD scale, the variables (ψ+θ) and Dµθ have to be renormal-
ized according to

(ψ + θ)ren = Z−1
A (ψ + θ), (5.64)

(Dµθ)ren = Z−1
A Dµθ, (5.65)

leading to the following scaling laws for certain LECs,

τ ren = Z2
Aτ,

1 +Λren
1 = Z2

A(1 +Λ1),
1 +Λren

2 = ZA(1 +Λ2),
2L5 + 3Lren18 = ZA(2L5 + 3L18),
2L8 − 3Lren25 = ZA(2L8 − 3L25). (5.66)

Since the triangle graph responsible for the anomalous dimension of the sin-
glet axial current is suppressed by 1/Nc, ZA = 1+O(1/Nc). The renormaliza-
tion is not always multiplicative, as can be seen in Eqs. (5.66). The individ-
ual Lagrangians L(0)�L(2) are not invariant under the QCD renormalization
group. However, the scaling rules above ensure that the sum L(0) +L(1) + . . .
is invariant.

The odd-intrinsic-parity Lagrangians are subject to this issue as well. In
a similar way, one �nds that the sum LWZW + L(2)

ε is renormalization group
invariant, provided L̃1, . . . , L̃4 are renormalized according to [KL 00]

L̃ren1 = ZAL̃1 − κ,
L̃ren2 = ZAL̃2 − κ,
L̃ren3 = ZAL̃3 − κ,
L̃ren4 = ZAL̃4 + κ, (5.67)

where κ = Nc(ZA − 1)/144π2.

5.4 Numerical analysis

In the following, we perform the numerical evaluation of the mixing angle, the
masses of the pseudoscalar mesons, and their decay constants. We present
the results in a systematic way, order by order.
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5.4.1 LO

At leading order, the mixing angle is given by Eq. (5.33) which reduces to

sin 2θ[0] = −4
√

2 (M2
K −M2

π)√
12M2

0 (M2
π −M2

K) + 36 (M2
K −M2

π) 2 + 9M4
0

. (5.68)

This equation is well suited to study the two limits, the �avor-symmetric
case, i.e., M2

π = M2
K , and the limit Nc → ∞. In the �avor-symmetric limit,

the mixing angle vanishes, θ[0] = 0. On the other hand, in the LNc limit,
the U(1)A contribution to the η′ mass vanishes, i.e., M2

0 = 0, and the mixing
angle becomes independent of the pseudoscalar masses

sin 2θ[0] = −2
√

2

3
, (5.69)

which yields θ[0] = −35.3°. We then turn to the physical case. Employing
Eqs. (5.31) and (5.32), we �x M2

0 to the physical M2
η′ mass

M2
0 =

3 (M2
η′
−M2

π) (2M2
K −M2

η′
−M2

π)
4M2

K − 3M2
η′
−M2

π

, (5.70)

and obtain

sin 2θ[0] = −
4
√

2 (M2
K −M2

π) (−4M2
K + 3M2

η′
+M2

π)

3 [−8M2
K (M2

η′
+M2

π) + 8M4
K + 3M4

η′
+ 2M2

πM
2
η′
+ 3M4

π]
. (5.71)

Evaluating these results for physical masses M2
π , M

2
K , and M

2
η′ yields

θ[0] = −19.6° and M0 = 0.820 GeV. (5.72)

5.4.2 NLO

At NLO, still only tree diagrams contribute, since loop contributions are
relegated to NNLO. Beyond F , Bm̂, Bms, and τ , the four NLO LECs L5,
L8, Λ1, Λ2 appear and need to be �xed. Since there are, at present, no values
for all of the NLO LECs in U(3) ChPT available in the literature, we follow
two di�erent strategies to �x the coupling constants:

1. We design a compact system of observables calculated within our frame-
work of LNcChPT and determine the LECs by �xing them to the phys-
ical values of the observables. Our set of observables consists of M2

π ,
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M2
K , FK/Fπ,M2

η ,M
2
η′ . In addition, we need the quark mass ratioms/m̂,

which we take from [Aok+ 14]. The experimental values for the masses
and decay constants are taken from Ref. [Oli+ 14] reading

Mπ = 0.135 GeV, MK = 0.494 GeV, Mη = 0.548 GeV,

Mη′ = 0.958 GeV, Fπ = 0.0922(1) GeV, FK/Fπ = 1.198(6). (5.73)

2. We use phenomenological determinations of some constants obtained
in SU(3) ChPT, for example Tab. 1 from Ref. [BE 14].

We start with the �rst strategy and begin by �xing M2
0 to the physical M2

η′

using the relation

(2M2
η′ − M̂2

8 − M̂2
1 )

2 = (M̂2
8 − M̂2

1 )
2 + 4 (M̂2

81)
2
, (5.74)

which follows from Eqs. (5.31) and (5.32). After expressing M2
0 in terms

of M2
η′ , the parameters Λ1 and Λ2 appear only in the QCD-scale-invariant

combination Λ̃ = Λ1 − 2Λ2 in the expressions for our observables and the
mixing angle. Using the ratio ms/m̂ = 27.5 from [Aok+ 14], the parameters
Bm̂, L5, L8, Λ̃ can be unambiguously obtained from the NLO relations to
the physical values of M2

π , M
2
K , FK/Fπ, M2

η , given in Appendix B.1. The
results for the LECs are shown in Tab. 5.1 labeled NLO I. Notice that at
this order no EFT-scale dependence is introduced yet, so these LECs are
scale independent. We also display errors for all calculated quantities. These
errors are only due to the input errors. We do not give estimates for the errors
due to neglecting higher orders or particular assumptions of our models. As
input errors we consider the errors of FK/Fπ, Fπ, ms/m̂ and later, when we
make use of LECs determined in SU(3) ChPT [BE 14], we also take their
errors into account.

Once the set of LECs is determined, we can evaluate the LO pseudoscalar
masses, the η-η′ mixing angle, and the pseudoscalar decay constants. For the
calculation of the parameters θ8, θ0, F8, F0, we use the simpli�ed formula
at NLO given in Eqs. (5.59) and (5.60). The quantities M2

0 and F0 depend
on the QCD-renormalization scale (see Sec. 5.3). Therefore, we can only
provide the QCD-scale-invariant quantities M2

0 /(1 + Λ1) and F0/(1 + Λ1/2).
We are not able to extract a value for Λ1 from our observables, since physical
observables do not depend on the QCD scale and we can only determine
the invariant combination Λ̃ = Λ1 − 2Λ2. The expressions for M2

0 /(1 + Λ1)
and F0/(1 + Λ1/2) are expanded up to NLO yielding results which depend

on Λ1 only through Λ̃. Table 5.2 shows the leading-order masses
○
M2

π ,
○

M2
K ,

M2
0 /(1 +Λ1), and M2

η for Λ̃ = 0. The mixing angle θ[1], the angles θ8, θ0 and
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the constants F8, F0/(1+Λ1/2) are shown in Tab. 5.3, again under the label
NLO I.

The second scenario uses values for the LECs determined phenomenolog-
ically in the framework of SU(3) ChPT. Since our calculations are performed
in U(3) ChPT, we apply the appropriate matching between the two EFTs
[KL 00, Her 98] when we make use of SU(3) determinations. We set the
matching scale of the two theories to be µ0 =M0 = 0.85 GeV, which is basi-
cally the value of Mη′ in the chiral limit: M2

0 = 6τ/F 2(1 + Λ1). Since SU(3)
ChPT contains one-loop corrections already at NLO, the LECs depend on
the scale of the e�ective theory µ. The SU(3) LECs are typically provided
at µ1 = 0.77 GeV. To study the scale dependence of our results, we evaluate
them at µ = 0.77 GeV and at µ = 1 GeV, which is the scale ofMη′ . Combining
the matching at µ0 and the running from µ1 to µ results in [KL 00, Her 98]:

Lr5(µ) = LSU3,r
5 (µ1) +

3

8

1

16π2
ln(µ1

µ
) ,

Lr8(µ) = LSU3,r
8 (µ1) +

5

48

1

16π2
ln(µ1

µ
) + 1

12

1

16π2
ln(µ0

µ
) ,

Lr4(µ) = LSU3,r
4 (µ1) +

1

8

1

16π2
ln(µ1

µ
) ,

Lr6(µ) = LSU3,r
6 (µ1) +

11

144

1

16π2
ln(µ1

µ
) + 1

72

1

16π2
(1

2
− ln(µ0

µ
)) ,

Lr7(µ) = LSU3,r
7 + F

4(1 +Λ2)2

288τ
,

Lr18(µ) = Lr18(µ2) −
1

4

1

16π2
ln(µ2

µ
) . (5.75)

The constant L18 does not appear in SU(3) ChPT, but we include its running
for completeness, since the running from the scale µ2 = 1 GeV will be needed
later.

The LO quantities
○
M2

π ,
○

M2
K , F are expressed in terms of the physical

quantitiesM2
π ,M

2
K , Fπ, and, again,M

2
0 is determined from the relation toM2

η′

at this order. The parameters θ8, θ0, F8, F0 are calculated using Eqs. (5.59)
and (5.60). For the LECs L5 and L8 we use the values determined at O(p4)
in SU(3) ChPT, i.e., column �p4 �t� in Tab. 1 in Ref. [BE 14]. The OZI-rule-
violating parameter Λ̃ is �xed to M2

η . The results are given in Tabs. 5.1�5.3
labeled NLO II. The dependence of M2

η on Λ̃ is shown in Fig. 5.3.
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µ [GeV] L5 [10−3] L8 [10−3] Λ̃

NLO I - 1.86±0.06 0.78±0.05 −0.34±0.05
NLO II 0.77 1.20±0.10 0.55±0.20 0.02±0.13
NLO II 1 0.58±0.10 0.24±0.20 0.41±0.13

Table 5.1: LECs at NLO.

µ [GeV]
○
M2
π

○
M2
K

M2
0

(1+Λ1) M2
η (Λ̃ = 0)

NLO I - 0.018±0.000 0.261±0.005 0.902±0.013 0.326±0.003
NLO II 0.77 0.018±0.000 0.249±0.023 0.871±0.061 0.299±0.010
NLO II 1 0.018±0.000 0.249±0.023 0.871±0.061 0.269±0.010

Table 5.2: Pseudoscalar masses at NLO in GeV2.

µ [GeV] θ [○] θ8 [○] θ0 [○] F8/Fπ
F0

1+Λ1/2/Fπ

NLO I - −11.1±0.6 −21.7±0.7 −0.5±0.7 1.26±0.01 1.13±0.00
NLO II 0.77 −12.6±3.0 −19.5±3.0 −5.7±3.2 1.17±0.01 1.09±0.01
NLO II 1 −12.6±3.0 −15.9±3.0 −9.3±3.2 1.08±0.01 1.04±0.01

Table 5.3: Mixing angles and decay constants at NLO.
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µ [GeV] L5 [10−3] L8 [10−3] Λ̃

NLO+Lps I 0.77 1.37±0.06 0.85±0.05 0.52±0.05
NLO+Lps I 1 0.75±0.06 0.55±0.05 1.09±0.04
NLO+Lps II 0.77 1.20±0.10 0.55±0.20 1.34±0.13
NLO+Lps II 1 0.58±0.10 0.24±0.20 1.34±0.13

Table 5.4: LECs at NLO with loops added.

5.4.3 NLO+Loops

Before considering the full NNLO corrections, we �rst discuss the case where
we just add the loop contributions to the NLO expressions. Since the loop
corrections do not contain any unknown parameters, we can use exactly the
same system of equations from the NLO I scenario in the previous section
to obtain the desired LECs. We augment the system of linear equations
with the one-loop corrections and extract the values of Bm̂, L5, L8, Λ̃. The
results depend now on the scale of the e�ective theory and we choose to
extract the LECs at µ = 1 GeV. The parameters θ8, θ0, F8, F0 are obtained
from Eqs. (B.23)�(B.26) in Appendix B.1, now also including the one-loop
corrections. The results are given in Tabs. 5.4�5.6 labeled NLO+Lps I.

We compare the results with the values obtained in SU(3) ChPT. For L5

and L8 we use the same values as in the NLO II case. To compensate the
scale dependence of the loop contributions we include the scale-dependent
parts of the LECs L4, L6, L7, L18 (see Eqs. (5.75)), which would appear only
at NNLO. These constants are included without the SU(3)-U(3) matching
and we choose Lr4 = Lr6 = Lr7 = Lr18 = 0 at µ1 = 1 GeV. Eventually, we again
useM2

η to extract Λ̃. Equations (B.23)�(B.26) in Appendix B.1 provide then
our values for θ8, θ0, F8, F0. The results can be found in Tabs. 5.4�5.6,
denoted by NLO+Lps II. Figure 5.3 shows the dependence of M2

η on Λ̃ for
the di�erent scenarios discussed so far. We notice that the dependence is
quite strong. After the inclusion of the loops and the scale-dependent parts
of the 1/Nc-suppressed Li, M2

η is independent of the renormalization scale µ
(compare solid and dashed red lines).

5.4.4 NNLO

At NNLO, there are too many unknown LECs, which cannot be determined
from our chosen set of observables. This means that it is not possible to
consistently determine all LECs appearing at NNLO within our framework
of LNcChPT. So we can only employ the second strategy and make use of
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µ [GeV]
○
M2
π

○
M2
K

M2
0

(1+Λ1) M2
η (Λ̃ = 0)

NLO+Lps I 0.77 0.018±0.000 0.263±0.005 0.927±0.013 0.261±0.003
NLO+Lps I 1 0.017±0.000 0.240±0.005 0.867±0.012 0.218±0.003
NLO+Lps II 0.77 0.019±0.000 0.287±0.023 0.933±0.061 0.199±0.010
NLO+Lps II 1 0.017±0.000 0.265±0.023 0.933±0.061 0.199±0.010

Table 5.5: Pseudoscalar masses at NLO with loops added in GeV2.

µ [GeV] θ [○] θ8 [○] θ0 [○] F8/Fπ
F0

1+Λ1/2/Fπ

NLO+Lps I 0.77 −10.2±0.6 −18.0±0.7 −2.4±0.7 1.31±0.01 0.97±0.00
NLO+Lps I 1 −13.4±0.6 −17.7±0.7 −9.1±0.7 1.31±0.01 0.87±0.00
NLO+Lps II 0.77 −10.2±2.9 −13.5±2.9 −6.8±3.1 1.28±0.01 0.86±0.01
NLO+Lps II 1 −10.2±2.9 −13.5±2.9 −6.8±3.1 1.28±0.01 0.86±0.01

Table 5.6: Mixing angles and decay constants at NLO with loops added.
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Figure 5.3: M2
η as a function of Λ̃ = Λ1−2Λ2. Blue lines: NLO II, at 0.77 GeV

(solid) and 1 GeV (dashed). Red lines: NLO+Loop II, at 0.77 GeV (solid)
and 1 GeV (dashed). The two red lines coincide. Gray line: Physical value.
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phenomenological determinations of the LECs Li and Ci in SU(3) ChPT.
We are then left with �ve completely unknown LECs, Λ1, Λ2, L18, L25,
v
(2)
2 , and the combination L46 + L53, which are related to the singlet �eld.
First, we investigate the case with Ci = 0. We match the Li from SU(3)
to U(3), according to Eq. (5.75), and take their values from the column �p4

�t� in Tab. 1 in Ref. [BE 14]. Since a NNLO calculation in the δ counting
includes contributions of the type NLO×NLO, e.g., products of Li, the results
depend on the EFT scale µ. We display results for two di�erent scales,
µ = 0.77 GeV and µ = 1 GeV. We choose Λ1 = Λ2 = Lr18 = v

(2)
2 = L46 = L53 = 0

at µ2 = 1 GeV, which, together with the U(3)-SU(3) matching, results in
Lr7 ≈ 0 (at µ = 1 GeV). We can then �x one OZI-rule-violating LEC, which
we choose to be L25, to the physical value of M2

η . In this way, L25 accounts
for the contributions to M2

η of all other OZI-rule-violating LECs, which are
put to zero. At NNLO including C12 terms, the simpli�ed expressions for
θ8, θ0, F8, F0 in Eqs. (5.59) and (5.60) do no longer hold. We therefore use
the general formulae in Eqs. (5.50) and (5.51) to calculate the parameters
of the two-angle scheme in the NNLO scenarios. The results are given in
Tabs. 5.7�5.9 labeled NNLO w/o Ci. Figure 5.4 shows M2

η as a function of
L25.

Finally, we include the contributions of the Ci. The Li are treated as
before in terms of running and matching, but now we use the O(p6) values
from Ref. [BE 14], i.e., column �BE14� in Tab. 3. For the Ci we employ
the values from Tab. 4 in Ref. [BE 14]. We do not consider any matching
between U(3) and SU(3) ChPT for the Ci, since we expect the matching to
be a correction beyond the accuracy of our calculation. The dependence of
M2

η on L25 is shown in Fig. 5.4, and eventually L25 is �xed to the physical
value of M2

η . The results are given in Tabs. 5.7�5.9 labeled NNLO w/ Ci.
Figure 5.4 shows a strong dependence ofM2

η on L25. The renormalization-
scale dependence is now much smaller than in the NLO cases. The small
residual scale dependence stems from products of L5 and L8, whose scale
dependence would be compensated by products of one-loop terms in the full
two-loop calculation. The inclusion of the one-loop corrections decreases the
value of M2

η (L25 = 0) by about 30%. This would rather match the expected
order of magnitude of a NLO correction. Taking the Ci into account, further
drastically decreases M2

η (L25 = 0). The Ci couplings have a rather strong
in�uence on our observables. However, they are not very well constrained
in Ref. [BE 14]. Therefore, those values may only be suited for the SU(3)
observables studied in Ref. [BE 14]. According to the δ counting, we would
expect the value for L25 to be of the same order of magnitude as L5 and L8,
since the operator structure is similar, with an additional 1/Nc suppression
leading to ∣L25∣ ∼ 1

3 ⋅ 10−3. The �t to the physical M2
η demands slightly larger
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µ [GeV] L5 [10−3] L8 [10−3] L25 [10−3]
NNLO w/o Ci 0.77 1.20±0.10 0.55±0.20 0.55±0.08
NNLO w/o Ci 1 0.58±0.10 0.24±0.20 0.50±0.08
NNLO w/ Ci 0.77 1.01±0.06 0.52±0.10 0.84±0.04
NNLO w/ Ci 1 0.39±0.06 0.21±0.10 0.80±0.04

Table 5.7: LECs at NNLO.

µ [GeV]
○
M2
π

○
M2
K

M2
0

(1+Λ1) M2
η (L25 = 0)

NNLO w/o Ci 0.77 0.018±0.007 0.277±0.101 0.840±0.154 0.186±0.016
NNLO w/o Ci 1 0.016±0.007 0.257±0.102 0.841±0.158 0.197±0.017
NNLO w/ Ci 0.77 0.018±0.001 0.308±0.015 0.740±0.054 0.124±0.007
NNLO w/ Ci 1 0.017±0.001 0.287±0.016 0.736±0.057 0.133±0.008

Table 5.8: Pseudoscalar masses at NNLO in GeV2.

values for L25 than expected. However, since we neglected the other OZI-
rule-violating couplings Λ1, Λ2, L18, v

(2)
2 in the NNLO scenarios, there could

still exist a combination of values for those LECs which results in both a
good description of M2

η and �natural� values for the LECs.

5.4.5 Discussion of the results

In the following, we discuss the summaries of our results in Tabs. 5.10�
5.12. A summary of the LECs used in the di�erent scenarios is provided
in Tabs. C.1�C.3 in Appendix C. We start with the results for the masses
summarized in Tab. 5.10. The values for the squared pion mass at LO are
very close to the physical squared pion mass with deviations of ca. 10%.
The LO squared kaon masses are larger than the physical value, up to about
25%. The sign of the NLO and NNLO corrections is in accordance with the

µ [GeV] θ [○] θ8 [○] θ0 [○] F8/Fπ
F0

1+Λ1/2/Fπ

NNLO w/o Ci 0.77 −9.6±6.0 −11.7±5.8 −6.6±6.4 1.27±0.02 0.85±0.01
NNLO w/o Ci 1 −10.1±6.3 −12.6±6.1 −6.3±6.5 1.28±0.02 0.86±0.01
NNLO w/ Ci 0.77 −17.3±3.1 −15.5±2.8 −13.7±3.7 1.21±0.02 0.82±0.01
NNLO w/ Ci 1 −18.0±3.3 −16.6±3.1 −13.7±3.8 1.23±0.01 0.83±0.01

Table 5.9: Mixing angles and decay constants at NNLO.
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Figure 5.4: M2
η as a function of L25. Blue lines: NNLO without Ci, at 0.77

GeV (solid) and 1 GeV (dashed). Red lines: NNLO with Ci, at 0.77 GeV
(solid) and 1 GeV (dashed). Gray line: Physical value.

�ndings in Ref. [BE 14]. The LO squared pion and kaon masses, 2m̂B and
(m̂ + ms)B, respectively, show a renormalization-scale dependence, which
is caused by the renormalization of the parameter B in U(3) ChPT. The
squared singlet mass in the chiral limit, M2

0 /(1 + Λ1), has its smallest value
in the LO calculation and increases by about 30% in the other scenarios.
However, a direct comparison to the LO value, M2

0 , remains di�cult, since
we do not know the value of Λ1. The column M2

η (x = 0) shows the value of
M2

η if the OZI-rule-violating parameter Λ̃ or L25, which is �xed to the physical
M2

η , is switched o�. Especially in the NNLO scenarios those values are only
30% to 50% of the physical M2

η . Therefore, we conclude that employing the
LECs determined in SU(3) ChPT is not su�cient in a LNcChPT calculation
and OZI-rule-violating couplings need to be included to adequately describe
M2

η . The contributions of the OZI-rule-violating parameters Λ̃ and L25 are
very important. One should also keep in mind that we only retained L25 and
omitted all other OZI-rule-violating LECs in the NNLO cases.

A summary of the results for the mixing angle θ is shown in Fig. 5.5. In
comparison to the LO value θ = −19.6°, θ gets shifted to values between −9°

and −18°. We display the results for the angles θ8, θ0 and constants F8, F0 in
Figs. 5.6 and 5.7, respectively. They are compared to other phenomenolog-
ical determinations. Reference [Leu 98] determined the mixing parameters
at NLO in LNcChPT using additional input from the two-photon decays of
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Figure 5.5: Results for the mixing angle θ.

η and η′. References [FKS 98, BDC 00, EF 05, EMS 15] employed the two-
angle scheme to extract the mixing parameters phenomenologically from de-
cays involving η and η′, mostly the two-photon decays but other processes,
e.g., η(′)V γ with vector mesons V , were used as well [BDC 00]. Note, how-
ever, these other determinations were performed only in a NLO framework
and under certain assumptions, e.g., neglecting OZI-rule-violating couplings
[FKS 98]. A study of the η-η′ mixing at NNLO in LNcChPT has been per-
formed in Ref. [Guo+ 15], and the mixing parameters have been obtained
from a �t to data from Lattice QCD and input from the two-photon decays.
However, also this work is not able to determine all LECs at NNLO and
some of them were put to zero. For θ0, we �nd values between −14° and 0°,
which agree approximately with the other calculations. For θ8, our values
range from −22° to −11°, and their absolute values are slightly smaller than
those obtained from phenomenology at NLO. Our values for F8 agree with
most of the other calculations. Note that F8 depends only on LECs which
appear in SU(3) ChPT as well and F8 is not a�ected by neglecting unknown
OZI-rule-violating LECs. The errors of F8 and F0/(1+Λ1/2) due to the errors
of the input parameters are very small, and the variation of our values in the
di�erent scenarios could serve as a better estimate of our systematic errors.
For F0/(1+Λ1/2) we �nd smaller values than the other works. The constant
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Figure 5.6: Results for θ8 and θ0.

F0 depends on the OZI-rule-violating couplings Λ1, L18, L46 + L53. In our
NNLO scenarios, however, all of them are set to zero, since they cannot be
determined independently from the observables we study. Allowing values
for Λ1 and L18 which are di�erent from zero, e.g. Λ1 ≈ 0.3 and L18 ≈ 0.3 ⋅10−3,
shifts F0 to higher values in the range of the determinations of the other
works. The values for F are mostly smaller than the physical value. This is
consistent with the �ndings in Ref. [BE 14].

The NLO I case is the most consistent scenario, since it is a full calculation
up to NLO in LNcChPT and does not rely on input from other theories with
di�erent degrees of freedom or a di�erent power-counting scheme. However,
our aim was a calculation of the mixing at the one-loop level up to NNLO in
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µ [GeV]
○
M2
π

○
M2
K

M2
0

(1+Λ1) M2
η (x = 0)

LO - 0.018±0 0.244±0 0.673±0 0.244±0
NLO I - 0.018±0.000 0.261±0.005 0.902±0.013 0.326±0.003
NLO+Lps I 0.77 0.018±0.000 0.263±0.005 0.927±0.013 0.261±0.003
NLO+Lps I 1 0.017±0.000 0.240±0.005 0.867±0.012 0.218±0.003
NLO II 0.77 0.018±0.000 0.249±0.023 0.871±0.061 0.299±0.010
NLO II 1 0.018±0.000 0.249±0.023 0.871±0.061 0.269±0.010
NLO+Lps II 0.77 0.019±0.000 0.287±0.023 0.933±0.061 0.199±0.010
NLO+Lps II 1 0.017±0.000 0.265±0.023 0.933±0.061 0.199±0.010
NNLO w/o Ci 0.77 0.018±0.007 0.277±0.101 0.840±0.154 0.186±0.016
NNLO w/o Ci 1 0.016±0.007 0.257±0.102 0.841±0.158 0.197±0.017
NNLO w/ Ci 0.77 0.018±0.001 0.308±0.015 0.740±0.054 0.124±0.007
NNLO w/ Ci 1 0.017±0.001 0.287±0.016 0.736±0.057 0.133±0.008

Table 5.10: Summary of the results for the pseudoscalar masses in GeV2.
The parameter x denotes Λ̃ or L25.

the δ counting. Among these scenarios, the most complete one is NNLO w/
Ci. Note that even in this case we could not �x all parameters and set �ve
OZI-rule-violating LECs equal to zero.
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µ [GeV] θ [○] θ8 [○] θ0 [○]
LO - −19.6±0 −19.6±0 −19.6±0
NLO I - −11.1±0.6 −21.7±0.7 −0.5±0.7
NLO+Lps I 0.77 −10.2±0.6 −18.0±0.7 −2.4±0.7
NLO+Lps I 1 −13.4±0.6 −17.7±0.7 −9.1±0.7
NLO II 0.77 −12.6±3.0 −19.5±3.0 −5.7±3.2
NLO II 1 −12.6±3.0 −15.9±3.0 −9.3±3.2
NLO+Lps II 0.77 −10.2±2.9 −13.5±2.9 −6.8±3.1
NLO+Lps II 1 −10.2±2.9 −13.5±2.9 −6.8±3.1
NNLO w/o Ci 0.77 −9.6±6.0 −11.7±5.8 −6.6±6.4
NNLO w/o Ci 1 −10.1±6.3 −12.6±6.1 −6.3±6.5
NNLO w/ Ci 0.77 −17.3±3.1 −15.5±2.8 −13.7±3.7
NNLO w/ Ci 1 −18.0±3.3 −16.6±3.1 −13.7±3.8

Table 5.11: Summary of the results for the mixing angles.

µ [GeV] F8/Fπ F0

1+Λ1/2/Fπ F [MeV]

LO - 1±0 1±0 92.2±0.1
NLO I - 1.26±0.01 1.13±0.00 90.73±0.11
NLO+Lps I 0.77 1.31±0.01 0.97±0.00 79.31±0.12
NLO+Lps I 1 1.31±0.01 0.87±0.00 74.77±0.12
NLO II 0.77 1.17±0.01 1.09±0.01 91.25±0.13
NLO II 1 1.08±0.01 1.04±0.01 91.74±0.13
NLO+Lps II 0.77 1.28±0.01 0.86±0.01 74.91±0.14
NLO+Lps II 1 1.28±0.01 0.86±0.01 74.91±0.14
NNLO w/o Ci 0.77 1.27±0.02 0.85±0.01 79.46±6.59
NNLO w/o Ci 1 1.28±0.02 0.86±0.01 79.45±6.59
NNLO w/ Ci 0.77 1.21±0.02 0.82±0.01 73.02±0.13
NNLO w/ Ci 1 1.23±0.01 0.83±0.01 73.02±0.13

Table 5.12: Summary of the results for the decay constants.
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Chapter 6

Anomalous Ward identities

At leading order in chiral e�ective �eld theory, anomalous processes such
as η(′) → γ(∗)γ(∗), η(′) → π+π−γ(∗) are driven by the Wess-Zumino-Witten
e�ective action [WZ 71, Wit 83], which accounts for the anomaly. Higher-
order corrections are supposed to be chirally invariant again. In the following,
we want to investigate this statement by means of an explicit veri�cation of
the anomalous Ward identities at the one-loop level. This calculation serves
as a benchmark for studies of anomalous decays beyond the leading order
and the investigation of the in�uence of vector-meson degrees of freedom on
higher-order corrections.

6.1 Calculation in SU(3) ChPT

We �rst consider the anomalous Ward identities within ordinary ChPT and
then extend the calculation to LNcChPT. For that purpose, we calculate the
three-point Green function involving one axial-vector current and two vector
currents (AVV),

T ρµνcab (p, q) = ∫ d4xd4y eip⋅x+iq⋅y⟨0∣T [Aρc(0)V µ
a (x)V ν

b (y)]∣0⟩, (6.1)

at O(q6) in SU(3)L×SU(3)R ChPT with all three legs o� shell. At O(p6), we
have to evaluate the Feynman diagrams shown in Fig. 6.1. The vertices are
derived from the SU(3) versions of the Lagrangians given in Chapter 4. The
Feynman diagrams are evaluated with the help of the Mathematica package
FEYNCALC [MBD 91]. Since the expressions we obtain for the Green func-
tions are very large, we do not display them here explicitly. However, upon
request, they are available as Mathematica notebooks.

To con�rm the Ward identities explicitly, we consider the diagonal compo-
nents, c = 3, 8, for the axial-vector current Aρc and for the vector currents the
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Figure 6.1: Topologies of the Feynman diagrams contributing to the AVV
Green function. Solid dots refer to vector currents, crossed dots to the axial-
vector current, and dashed lines to pseudoscalar mesons.
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electromagnetic current operator Jµ = q̄Qγµq, whereQ = diag(2/3,−1/3,−1/3)
is the quark-charge matrix. These (diagonal) vector currents are conserved
and the Green function

T ρµνc,em(p, q) = ∫ d4xd4y eip⋅x+iq⋅y⟨0∣T [Aρ,c(0)Jµ(x)Jν(y)]∣0⟩

satis�es the normal Ward identities:

pµT
ρµν
c,em(p, q) = 0 and qνT

ρµν
c,em(p, q) = 0. (6.2)

The axial-vector current has an anomaly. The corresponding anomalous
Ward identity for the AVV Green function can be derived from Eq. (4.40) in
Sec. 4.4 and reads

i(p + q)ρT ρµνc,em(p, q) = 1

3
(2m̂ +ms)Πµν

c,em(p, q) + 1√
3
(m̂ −ms)dcc8Πµν

c,em(p, q)

+
√

2

3
(m̂ −ms)δc8Πµν

0,em(p, q)

− Nc

8π2
εµναβpαqβ⟨λc{Q,Q}⟩, (6.3)

where

Πµν
c,em(p, q) = ∫ d4xd4y eip⋅x+iq⋅y⟨0∣T [Pc(0)Jµ(x)Jν(y)]∣0⟩.

This Ward identity contains the three-point function involving two vector
currents and one pseudoscalar source P , which we calculate in the same
manner as the AVV Green function. We have explicitly veri�ed that the
Ward identities, Eqs. (6.2) and (6.3), are satis�ed at the one-loop level for
c = 3, 8.

6.2 Calculation in LNcChPT

We then extend the calculation to LNcChPT, including the η′ and the singlet
axial-vector current. Again, the aim is to investigate the anomalous Ward
identities at the one-loop level. To that end, we calculate the AVV vertex
at the one-loop level, which is NNLO in LNcChPT. In order to determine
the AVV Green function at NNLO, one has to evaluate the Feynman di-
agrams shown in Fig. 6.1. The vertices are derived from the Lagrangians
in Chapter 4. In the Feynman diagrams, the pseudoscalar propagators are
dressed propagators. To evaluate them, we employ the η-η′ mixing at NNLO
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as introduced in Chapter 5. According to Ref. [BW 01] (see Sec. 4.4.1), for
arbitrary Nc, the quark-charge matrix reads

Q(Nc) =
1

2
diag( 1

Nc

+ 1,
1

Nc

− 1,
1

Nc

− 1) . (6.4)

We investigate the Ward identities not only for Q(3), but also for the general
case Q(Nc) taking into account the Nc dependence of Q in the δ expansion.

We have again tested the normal and anomalous Ward identities for the
diagonal components of the currents, given in Eqs. (6.2) and (6.3), and
showed that they are satis�ed at NNLO. We explicitly calculated the anoma-
lous Ward identity for the singlet axial-vector current, which on top has
the U(1)A anomaly. The relevant Ward identity can again be derived from
Eq. (4.40) in Sec. 4.4 and is given by

i(p + q)ρT ρµν0,em(p, q) =
√

2

3
(2m̂ +ms)Πµν

0,em(p, q) + 2√
3
(m̂ −ms)Πµν

8,em(p, q)

+
√

6Ωµν
em(p, q) − Nc

8π2
εµναβpαqβ⟨λ0{Q,Q}⟩, (6.5)

where
Ωµν
em(p, q) = ∫ d4xd4y eip⋅x+iq⋅y⟨0∣T [ω(0)Jµ(x)Jν(y)]∣0⟩.

The Green functions involving a pseudoscalar source or the winding number
density ω are calculated in the same manner as the AVV vertex.

Using the Lehmann-Symanzik-Zimmermann reduction formalism [LSZ 55],
the AVV vertex can be related to the two-photon decays π0 → γ(∗)γ(∗) and
η(

′) → γ(∗)γ(∗). The divergence of the axial-vector current serves as an inter-
polating pseudoscalar-meson �eld, since it satis�es the relation

⟨0∣∂µAcµ(x) ∣P (q)⟩ =M2
PF

c
P e

−iq⋅x, (6.6)

where MP denotes the mass of the pseudoscalar and F c
P the decay constant

de�ned in Eq. (5.48) in Sec. 5.2. The matrix element M for the decay
P → γ(∗)γ(∗) is then given by

M = 1

M2
PF

c
P

lim
r2→M2

P

(r2 −M2
P ) (−irρ)T ρµνc,em(p, q), (6.7)

where rρ = −(p+ q)ρ. We have checked our results with previous calculations
of the two-photon decays [DW 89, BBC 88, BN 04a, Hac 08].



Chapter 7

Two-photon decays

Anomalous decays of the η-η′ system are ideally suited to obtain important
information on the symmetries of the strong interaction and its symmetry
breaking mechanism. The decays are driven by an interplay of the dynamical
(spontaneous) breaking of the chiral symmetry, the non-abelian anomaly,
explicit symmetry breaking due to the quark masses, and the U(1)A anomaly.
Having successfully included the η′ meson in the framework of LNcChPT and
obtained an expression for the η-η′ mixing, we are now able to investigate
the two-photon decays of the η-η′ system and the decays η(′) → π+π−γ(∗) at
the one-loop level.

The decays η(′) → γ(∗)γ(∗) can be studied for real as well as virtual
photons. They are described by so-called transition form factors (TFF)
FPγ∗γ∗(q2

1, q
2
2), where P = η, η′, which depend on the photon virtualities q2

1,
q2

2 and provide access to the substructure of the mesons. The single-virtual
TFFs FPγ∗γ(q2,0) are experimentally accessible both in the space-like and
in the time-like region. In the time-like region, they are measured in so-
called single Dalitz decays P → γl+l−, where l = e, µ, in the low-energy
range 4m2

l ≤ q2 ≤ (MP − 2ml)2. The η TFF has been measured in the decay
η → e+e−γ by the A2 collaboration at MAMI [Ber+ 11, Agu+ 14] and in the
decay η → µ+µ−γ by the NA60 collaboration [Arn+ 09, Arn+ 16]. In the
low-energy region, the time-like η′ TFF has been obtained from measure-
ments of η′ → e+e−γ by the BESIII collaboration [Abl+ 15]. In the space-like
region, the TFFs are accessed by e+e− colliders in two-photon-fusion reac-
tions e+e− → e+e−P using the single-tag method. One outgoing lepton is
tagged, having emitted a highly-virtual photon with q2

1 = −Q2, while the
other untagged lepton is scattered at small angle with momentum transfer
q2

2 ≃ 0. Whereas for the space-like η TFF no data at low energies are avail-
able, the space-like η′ TFF has been measured by the L3 collaboration at
LEP1 [Acc+ 98].
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Figure 7.1: Feynman diagrams for P → γ∗γ∗ up to NNLO. Dashed lines refer
to pseudoscalar mesons and wiggly lines to photons. The numbers k in the
interaction blobs refer to vertices derived from the corresponding Lagrangians
L(k).

The double-virtual form factors in the time-like region can be probed in
double Dalitz decays P → l+l−l+l− [Amb+ 11], whereas their measurement in
the space-like region remains still an experimental challenge.

7.1 Calculation of the invariant amplitude

The invariant amplitude can be parametrized by

M = −iFPγ∗γ∗(q2
1, q

2
2)εµναβεµ1εν2qα1 q

β
2 , (7.1)

where qµ1 , q
µ
2 denote the photon momenta and εµ1 , ε

µ
2 the polarization vectors

of the photons. In order to determine the invariant amplitude up to NNLO,
we need to calculate the Feynman diagrams shown in Fig. 7.1. The vertices
are derived from the Lagrangians given in Chapter 4. The electromagnetic
�eld couples to the electromagnetic current operator

Jµ = q̄Qγµq, (7.2)

where Q is the quark-charge matrix. For Nc = 3, the quark-charge matrix is
given by

Q(3) = diag(2

3
,−1

3
,−1

3
) . (7.3)
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For arbitrary Nc, however, Q needs to be modi�ed [BW 01] (see Sec. 4.4.1)
and reads

Q(Nc) =
1

2
diag( 1

Nc

+ 1,
1

Nc

− 1,
1

Nc

− 1) . (7.4)

The matrix element is calculated using both versions, Q(3) and Q(Nc). In
the Q(Nc) case, we �rst perform the δ expansion up to NNLO and then set
Nc = 3. The Feynman diagrams are evaluated using theMathematica package
FEYNCALC [MBD 91]. Without the Nc expansion of Q, the results for the
form factors of π0, η, η′ at LO and NLO read

F (π0 → γ∗γ∗)LO = 1

4π2Fπ
, (7.5)

F (π0 → γ∗γ∗)NLO = 1

4π2Fπ
(1 − 1024

3
π2M2

πL
6,ε
8 − 512

3
π2L6,ε

19 (q2
1 + q2

2)) , (7.6)

F (η → γ∗γ∗)LO = 1

4
√

3π2Fπ
(cos(θ[0]) − 2

√
2 sin(θ[0])) , (7.7)

F (η → γ∗γ∗)NLO

= 1

4
√

3π2Fπ
(cos(θ[1]) − 2

√
2 sin(θ[1])

+
8 (M2

K −M2
π) (

√
2 sin(θ[1]) + 2 cos(θ[1]))

3F 2
π

L5

+ 1024

9
π2 (2

√
2 (M2

K + 2M2
π) sin(θ[1]) + (4M2

K − 7M2
π) cos(θ[1]))L6,ε

8

+
√

2 sin(θ[1])λ1

−512

3
π2 (cos(θ[1]) − 2

√
2 sin(θ[1]))L6,ε

19 (q2
1 + q2

2)) , (7.8)

F (η′ → γ∗γ∗)LO = 1

4
√

3π2Fπ
(sin(θ[0]) + 2

√
2 cos(θ[0])) , (7.9)
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1 + q2

2)) , (7.10)
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where θ[i] is the corresponding mixing angle at LO (NLO) given in Eq. (5.33)
in Sec. 5.1. The parameter λ1 is a QCD-scale-invariant combination of OZI-
rule-violating parameters, given by [KL 00]

λ1 = Λ1 − 2K1 = Λ1 + 16π2(L̃2 + 2L̃3). (7.11)

Including the Nc expansion of Q, the results at LO and NLO now take the
form

F (π0 → γ∗γ∗)LO = 0, (7.12)

F (π0 → γ∗γ∗)NLO = 1

4π2Fπ
, (7.13)

F (η → γ∗γ∗)LO = −
3
√

3
2

8π2Fπ
sin(θ[0]), (7.14)

F (η → γ∗γ∗)NLO

=
3
√

3
2

8π2Fπ
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+
8 (M2
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√
2 cos(θ[1]))

3F 2
π
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+ 1024

9
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√
2 (M2
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8

+sin(θ[1])
2

λ1 + 384
√

2π2 sin(θ[1])L6,ε
19 (q2
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2)) , (7.15)
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8π2Fπ
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=
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+
8 (M2
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π) (

√
2 sin(θ[1]) − cos(θ[1]))
3F 2

π
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π2 (2
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8
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2
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√
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1 + q2
2)) . (7.17)

At NNLO, the expressions for the form factors are quite long. Therefore, we
do not display all terms explicitly. The loop contributions corresponding to
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the loop diagrams shown in Fig. 7.1 are provided in Appendix B.2. As an
example, we show the full NNLO tree-level contributions to F (η → γ∗γ∗) in
Eq. (B.33) in Appendix B.2. The expressions for the other form factors are
available as Mathematica notebooks.

7.1.1 Observables

The decay amplitude for real photons is recovered by setting q2
1 = q2

2 = 0 in
Eq. (7.1). The decay width is then given by [Hac 08]

Γ = 1

2!2MP (2π)2

π
√
λ[M2

P ,0,0]
2M2

P
∫ dΩ∑ ∣M∣2. (7.18)

Using ∑λ ε∗(λ)µε(λ)µ′ = −gµµ′ , one obtains

Γ(P → γγ) = M
3
P

64π
∣FPγγ ∣2. (7.19)

The single-virtual TFF FPγ∗γ(q2) ∶= FPγ∗γ∗(q2,0) can be measured in single
Dalitz decays P → γl+l−. The slope of the TFF is de�ned as

slope ∶= 1

FPγγ

d

dq2
FPγ∗γ(q2)∣

q2=0 . (7.20)

One can also de�ne the dimensionless quantity bP =M2
P × slope. The curva-

ture is given by

curv ∶= 1

2

1

FPγγ

d2

d(q2)2
FPγ∗γ(q2)∣

q2=0 , (7.21)

and the corresponding dimensionless quantity reads cP =M4
P × curv.

Experimental extractions of the slope parameter are often performed us-
ing a vector-meson-dominance model (VMD) [Sak 69] to �t the data. In this
case, the TFF is given by a normalized single-pole term with an associated
mass ΛP [EMS 14]:

FPγ∗γ(Q2) = FPγγ(0)
1 +Q2/Λ2

P

, (7.22)

where Q2 = −q2. Expanding this expression in Q2 leads to

FPγ∗γ(Q2) = FPγγ(0)(1 − Q
2

Λ2
P

+ Q
4

Λ4
P

+ . . .) . (7.23)
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Now, we can read o� the slope and curvature VMD predictions, which are
given by

slope = 1

Λ2
P

, (7.24)

curv = 1

Λ4
P

. (7.25)

7.2 Numerical analysis

We perform the numerical analysis of our results successively at LO, NLO,
and NNLO. In the following, we distinguish between two cases, using the
normal quark-charge matrix for Nc = 3 and taking the Nc expansion of Q
into account, denoted by Qexp. Performing the Nc expansion of Q shifts
some of the LECs to higher orders. The LECs L6,ε

8 and L6,ε
19 , stemming from

the NLO Lagrangian in Tab. 4.2 in Sec. 4.4, appear only at NNLO in the
expression for the two-photon decay of the π0. At LO, no unknown LECs
show up and we can calculate the desired quantities directly.

7.2.1 NLO

At NLO, we have to determine �ve LECs. From the even-intrinsic-parity
sector L5 and the NLO mixing angle θ[1] contribute. Here, we employ the
values for L5 and θ[1] determined in the NLO analysis of the η-η′ mixing in
Tabs. 5.1 and 5.3 in Sec. 5.4.2 labeled NLO I. From the odd-intrinsic-parity
sector we have to �x L6,ε

8 , L6,ε
19 , and λ1 = Λ1 − 2K1.

First, we consider the Q(3) case. Since the decay width of the π0 to two
photons depends only on L6,ε

8 , we start by �xing L6,ε
8 to the experimental

value of Γπ0→γγ. We then �t λ1 simultaneously to the experimental results
for Γη→γγ and Γη′→γγ. The experimental values for the decay widths are taken
from Ref. [Oli+ 14] and are displayed in Tab. 7.2. Finally, the parameter L6,ε

19

is determined through a simultaneous �t to the experimental values of the π0,
η, and η′ slopes, given in Tab. 7.3. For the �ts we employ the Mathematica

routine NonlinearModelFit. The errors of the �t parameters and of the results
are the ones obtained from the �t routine. The di�erent steps are performed
successively and we do not take the errors of LECs determined in a previous
step into account. We also do not consider the errors due to neglecting
higher-order terms. Therefore, as explained in Sec. 4.5, a systematic error
of at least 10% should be added to all quantities determined up to NLO.
The results for the LECs are given in Tab. 7.1 and the results for the decay
widths and slopes in Tabs. 7.2 and 7.3, respectively, labeled NLO 1.
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L6,ε
8 [10−3] L6,ε

19 [10−3] λ1

NLO 1 0.16±0.17 −1.31±0.14 0.08±0.18
NLO 2 0.86±0.15 −1.31±0.35 2.59±0.18
NLO 3 0.80±0.34 −1.09±0.33 2.77±0.38

NLO Qexp 0.23±0.45 −1.63±1.87 2.16±1.13

Table 7.1: Results for the LECs determined at NLO.

Next, we examine the case where we �t L6,ε
8 and λ1 simultaneously to

all three decay widths Γπ0→γγ, Γη→γγ, and Γη′→γγ. The constant L
6,ε
19 is then

again �xed to the slopes of π0, η, and η′. The results are shown in Tabs. 7.1�
7.3, labeled NLO 2. To consistently take the errors of L6,ε

8 , L6,ε
19 , and λ1 into

account, we consider another scenario where we determine these three LECs
through a simultaneous �t to the decay widths of π0, η, η′ and the slope
parameters of π0, η, η′. The results are given in Tabs. 7.1�7.3, labeled NLO
3.

In the Q(Nc) case, the π0 form factor at NLO is independent of L6,ε
8 and

L6,ε
19 , which are shifted to the NNLO expression. The width Γπ0→γγ takes the

LO value of the Q(3) case, and the slope is equal to zero at NLO. Therefore,
we determine L6,ε

8 , L6,ε
19 , and λ1 via a simultaneous �t to Γη→γγ, Γη′→γγ, bη,

and b′η. The results are displayed in Tabs. 7.1�7.3, labeled NLO Qexp.
The parameters L5 and θ[1] have been determined in the NLO analysis

in Sec. 5.4.2 with a small error. Therefore, we have not taken these errors
into account in the analysis of the two-photon decays. However, to obtain an
estimate of the e�ect of the errors, we recalculate the quantities in the NLO
2 scenario varying L5 and θ[1] within their errors. This leads to only small
variations in the last digit of the results for the decay widths and the slopes.
We conclude that the in�uence of the errors of L5 and θ1 is very small, and
we neglect them in the following.

Discussion of the results

In the NLO 1 case, we �nd quite small values for L6,ε
8 and λ1. However,

if we perform a simultaneous �t to the π0, η, η′ decay widths (NLO 2 and
NLO 3), the values for L6,ε

8 and λ1 become larger, with a drastic increase of
the λ1 value. Phenomenological studies [Leu 98, FKS 98, FKS 99, EGM 15]
suggest that OZI-rule-violating parameters as, e.g., λ1 should be small. For
example, Ref. [Leu 98] determines1 λ1 = Λ1 − 2Λ3 = 0.25 and Ref. [EGM 15]

1In Ref. [Leu 98] the coupling K1 is denoted by Λ3 =K1.
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Γπ0 [eV] Γη [keV] Γη′ [keV]

LO 7.79±0.02 0.62±0.00 5.03±0.01
LO Qexp 0±0 0.20±0.00 8.33±0.02
NLO 1 7.63±0.16 0.59±0.40 3.95±12.23
NLO 2 6.99±1.71 0.50±1.02 4.28±13.17
NLO 3 7.04±0.99 0.45±0.55 5.06±7.23

NLO Qexp 7.79±0.02 0.52±7.40 4.36±94.40
Data [Oli+ 14] 7.63±0.16 0.52±0.02 4.36±0.25

Table 7.2: Results for the two-photon decay widths at NLO.

bπ0 bη bη′

LO 0±0 0±0 0±0
LO Qexp 0±0 0±0 0±0
NLO 1 0.04±0.02 0.55±0.26 2.53±1.19
NLO 2 0.04±0.05 0.51±0.69 −2.09±2.83
NLO 3 0.04±0.04 0.52±0.42 −1.86±2.20

NLO Qexp 0±0 0.29±4.27 −3.62±52.87
Data 0.03±0.01 0.58±0.02 1.30±0.22

Table 7.3: Results for the slope parameters at NLO. The experimental value
for bπ0 is taken from Ref. [Mas 12], bη from Ref. [EMS 15], and bη′ from
Ref. [EMS 14].
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�nds Λ1 = 0.21(5), Λ3 = 0.05(3), yielding λ1 = Λ1 − 2Λ3 = 0.11(8). These
results are in agreement with the NLO 1 case, whereas the scenarios NLO
2 and NLO 3 indicate very large OZI-rule-violating corrections. The values
for L6,ε

19 do not exhibit large variations in the di�erent scenarios. They can
be compared to a VMD prediction yielding L6,ε

19 = −1 × 10−3 [Hac 08]. Our
absolute values are 30% larger than predicted by VMD, but agree mostly
within their errors.

The LO values for the decay widths labeled LO agree within 20% with
the experimental values. The slopes are equal to zero at that order. At LO,
taking the Nc expansion of Q into account leads to results that are far from
the experimental values. The NLO calculations improve the description of
the decay widths. In the NLO 1 case, the π0 decay width is equal to the
experimental value, because L6,ε

8 is �xed to it. In the NLO 2 case, where
the parameters where �tted to all three decay widths, the description of Γπ0

worsens, while Γη and Γη′ come closer to the experimental values. Our NLO
1-3 results for the slope of the η agree well with the experimental value, which
was determined in Ref. [EMS 15] with great precision. The description of the
η′ slope, however, is very bad. Due to the small error of bη the �t favors this
value, contributing to the poor description of bη′ . In the simultaneous �t to
all decay widths and slope parameters (NLO 3), the results for the decay
widths show larger deviations from the experimental values in comparison to
NLO 2, marginally improving the values for the slopes. In the NLO Qexp
scenario, the π0 decay width is given by the leading-order value of the Q(3)
case. Since, then, the two parameters L6,ε

8 and λ1 need to be �xed by Γη
and Γη′ alone, we reproduce the experimental values for these widths. The
results for bη and bη′ are very poor in this case. In the NLO Qexp case,
the errors of the LECs and the results for the decay widths and slopes are
very large. This further re�ects the fact that the NLO Qexp calculation is
not appropriate the describe the data, and the LECs cannot be �xed in a
sensible way. We thus conclude that neglecting the Nc expansion of Q leads
to a better description of the experimental data at LO and NLO. However,
in general, the NLO calculation is not su�cient to adequately describe the
decay widths and slopes of π0, η, and η′, which motivates taking higher-order
corrections into account.

7.2.2 NNLO

At NNLO, a lot of new LECs appear both from the even-intrinsic-parity
sector and the odd-intrinsic-parity sector. Moreover, our power counting
demands taking terms of the O(p8) Lagrangian into account, which has not
been constructed yet. We therefore make the following ansatz for the q2
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dependence of the single-virtual TFFs up to NNLO:

Fηγ∗γ(q2) = F LO
ηγ∗γ +

1

4
√

3π2Fπ
(Aη +Bηq

2 +Cη(q2)2) + loopsη(q2), (7.26)

Fη′γ∗γ(q2) = F LO
η′γ∗γ +

2
√

2

4
√

3π2Fπ
(Aη′ +Bη′q

2 +Cη′(q2)2) + loopsη′(q2). (7.27)

The AP and BP are combinations of LECs from the higher-order Lagrangians
in Chapter 4 and, in principle, receive contributions from the O(p8) La-
grangian as well. The CP stem solely from the O(p8) Lagrangian. The ex-
pression loopsP (q2) denotes the q2-dependent part of the loop corrections,
while the q2-independent parts are absorbed in the parameters AP . At
NNLO, we only consider the TFFs of η and η′, since there are no data avail-
able for the π0 TFF in the low-energy region. We determine the parameters
AP , BP , CP through a simultaneous �t to the decay widths to real photons
ΓP→γγ and to the experimental data for the TFFs. In the following, we per-
form several �ts for both the η and the η′ TFF considering di�erent NNLO
contributions. We start by �tting the full NNLO expressions. Then, we
consider the case without loops, which means switching of the q2-dependent
pieces loopsP (q2). To study the in�uence of the CP terms, we also perform
�ts where we put CP = 0. Finally, we discuss the case where both CP and
loops are neglected. In addition, we examine each of these four scenarios
taking the Nc expansion of Q into account, denoted by Qexp. The �ts are
performed using the Mathematica routine NonlinearModelFit, and the er-
rors of the �t parameters are the ones obtained by this routine. According
to Sec. 4.5, a systematic error of at least 4% should be added to all results
determined up to NNLO.

The TFF of the η is �tted to the time-like experimental data obtained
in Refs. [Arn+ 09, Ber+ 11, Agu+ 14, Arn+ 16]. For each case, we perform
�ts up to three di�erent values of the invariant mass of the lepton pair,
q = m(l+l−). The maximal q values are q1 = 0.47 GeV, q2 = 0.40 GeV,
and q3 = 0.35 GeV. The results for the parameters �tted up to 0.47 GeV are
displayed in Tab. 7.4, and the results of the other �ts can be found in Tab. C.4
in Appendix C. For the η′ TFF there are also data points in the space-like
low-energy region available. Therefore, we �t the TFF to the space-like data
from Ref. [Acc+ 98] and to the time-like data from Ref. [Abl+ 15]. Here,
we choose four �t regions for each scenario. The di�erent �t ranges for the
photon virtuality q2 are −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I), −0.53 GeV2 ≤ q2 ≤
0.40 GeV2 (II), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (III), and −0.50 GeV2 ≤ q2 ≤
0.40 GeV2 (IV). Table 7.5 shows the results for the parameters �tted in the
range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2, and the results of the other �ts are
displayed in Tab. C.5 in Appendix C.
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Aη Bη [GeV−2] Cη [GeV−4]
Full −0.17±0.02 2.16±0.18 11.57± 1.46

W/O loops −0.17±0.02 2.84±0.17 12.30± 1.44
Cp=0 −0.17±0.03 3.41±0.12 0± 0

W/O loops Cp=0 −0.17±0.03 4.17±0.13 0± 0
Full Qexp 0.66±0.02 2.23±0.18 11.65± 1.46

W/O loops Qexp 0.66±0.02 2.84±0.17 12.30± 1.44
Cp=0 Qexp 0.66±0.03 3.49±0.12 0± 0

W/O loops Cp=0 Qexp 0.66±0.03 4.17±0.13 0± 0

Table 7.4: Fit parameters for the η TFF. The LECs were �tted up to
0.47 GeV.

Aη′ Bη′ [GeV−2] Cη′ [GeV−4]
Full −0.06±0.02 1.08±0.18 1.18± 0.37

W/O loops −0.06±0.02 1.23±0.18 1.30± 0.37
Cp=0 −0.06±0.02 0.55±0.10 0± 0

W/O loops Cp=0 −0.06±0.02 0.64±0.10 0± 0
Full Qexp −0.29±0.02 1.07±0.18 1.17± 0.37

W/O loops Qexp −0.29±0.02 1.23±0.18 1.30± 0.37
Cp=0 Qexp −0.29±0.02 0.54±0.10 0± 0

W/O loops Cp=0 Qexp −0.29±0.02 0.64±0.10 0± 0

Table 7.5: Fit parameters for the η′ TFF. The LECs were �tted in the range
−0.53 GeV2 ≤ q2 ≤ 0.43 GeV2.
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The q2 dependence of the η TFF is shown in Fig. 7.2, where the TFF,
normalized to 1 at q2 = 0, is plotted as a function of the invariant mass of the
lepton pair m(l+l−) together with the experimental data. In this case, the
TFF was �tted up to 0.47 GeV. The bands show the 1σ error bands obtained
by the Mathematica �t routine NonlinearModelFit. Figure 7.3 shows the

ã ã ã
ã

ã

ã
ã

ã

ã

ã

ã

ò ò ò
ò ò

ò

ò

ò

ò

ò ò

ò

ò

ì ì ì
ì ì

ì ì
ì

ì

ì
ì

ì

ì

ì

0.0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

mHl+l-L @GeVD

ÈF Η2 �ÈF ΗH
0L2

Figure 7.2: η TFF �tted up to 0.47 GeV. The red line is the full NNLO
calculation and the blue line the NNLO result with Cη = 0. The experimental
data are taken from Refs. [Arn+ 09] (▲), [Ber+ 11] (◻), [Agu+ 14] (∎),
[Arn+ 16] (⧫).

results of the �ts for the di�erent �t ranges. As the �t range is extended to
higher m(l+l−) values, the curves become steeper.

The q2 dependence of the normalized η′ TFF, �tted between −0.53 GeV2

and 0.43 GeV2, is shown in Fig. 7.4 together with the experimental data.
The bands are the 1σ error bands due to the errors of the �t parameters.
The results for the η′ TFF �tted to di�erent ranges are displayed in Fig. 7.5.

Discussion of the results

In the following, we will interpret the results of the NNLO analysis. We start
with the discussion of the LECs determined at NNLO, shown in Tabs. 7.4 and
7.5. Switching on or o� the loop contributions corresponds to considering
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Figure 7.3: η TFF �tted up to 0.47 GeV (solid), 0.40 GeV (dashed), and 0.35
GeV (dash-dotted). The red lines are the full NNLO calculations and the
blue lines the NNLO results with Cη = 0. The experimental data are taken
from Refs. [Arn+ 09] (▲), [Ber+ 11] (◻), [Agu+ 14] (∎), [Arn+ 16] (⧫).

the q2-dependent parts, loopsP (q2), or neglecting them, respectively. As a
result, the parameters AP remain the same in both cases. The inclusion of
the Nc expansion of Q has almost no visible e�ect on the shape of the TFFs.
However, this expansion has an in�uence on the parameters AP which change
notably, since the LO expressions for the TFF (see Sec. 7.1) are di�erent
with or without the NC expansion of Q. The q2-dependent loop corrections
loopsP (q2) give numerically quite similar contributions to the TFF with or
without the Nc expansion of Q. Therefore, the parameters BP and CP do
not vary very much in these two cases. As Figures D.1 and D.2 in Appendix
D show, the in�uence of the loop contributions on the shape of the TFFs is
very small. However, the e�ects of the loops can be seen in the variation of
BP and CP with and without loops, where we observe rather small changes.
Neglecting the loops leads to an increase of the values of BP and CP in
order to compensate for the missing contributions, which add positively to
the TFFs.

Table C.4 in Appendix C shows the variation of the �t parameters for
the η TFF with decreasing �t range. If Cη is put to zero, the parameter Bη

decreases as the �t range decreases. This behavior is in accordance with the
fact that the curves become steeper as the �t range is extended to higher q2
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Figure 7.4: η′ TFF �tted in the range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2. The
red line is the full NNLO calculation and the blue line the NNLO result
with Cη′ = 0. The time-like data are taken from Ref. [Abl+ 15] (●) and the
space-like data from Ref. [Acc+ 98] (▲).
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Figure 7.5: η′ TFF �tted in the range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (solid),
−0.53 GeV2 ≤ q2 ≤ 0.40 GeV2 (dashed), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (dash-
dotted), −0.50 GeV2 ≤ q2 ≤ 0.40 GeV2 (dotted). The red lines are the full
NNLO calculations and the blue lines the NNLO results with Cη′ = 0. The
time-like data are taken from Ref. [Abl+ 15] (●) and the space-like data from
Ref. [Acc+ 98] (▲).
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qmax [GeV] bη cη

Full 0.47 0.48±0.03 0.66±0.08
Full 0.40 0.53±0.04 0.49±0.08
Full 0.35 0.53±0.06 0.47±0.08
Cp=0 0.47 0.70±0.03 0.05±0.00
Cp=0 0.40 0.67±0.02 0.05±0.00
Cp=0 0.35 0.64±0.02 0.05±0.00

Table 7.6: Results for the slope and the curvature of the η TFF at NNLO.

values. If we include the Cη term in the �t, there is an interplay between Cη
and Bη. For decreasing �t range, the Cη values tend to decrease while Bη

increases. In addition, the errors of Bη and Cη become larger. This is to be
expected since less data points are included in the �t, there seems to be a
correlation between Bη and Cη, and the Cη term becomes more important
at higher values of q2.

In the case of the η′, the �t range is varied both in the time-like and the
space-like region. The variation of the parameters is displayed in Tab. C.5
in Appendix C. Decreasing the time-like �t range yields smaller values for
both Bη′ and Cη′ . This is to be expected, since the TFF curves show less
curvature as the �t range gets smaller. If we exclude the last space-like data
point, the values for Bη′ and Cη′ increase. In this case, the �t focuses more
on the time-like region and the parameters adjust to the steep rise of the
time-like TFF.

Slope and curvature

Employing the results for the �t parameters, we calculate the slopes and the
curvatures of the TFFs as de�ned in Eqs. (7.20) and (7.21). The errors are
due to the errors of the �t parameters. As a �rst estimate we assume that
the �t parameters are independent. Taking into account their correlations is
beyond the scope of this thesis. The main results are given in Tabs. 7.6 and
7.7.

The values for the slopes with and without loop contributions agree within
their uncertainties. This is the case, because the in�uence of the loops is
already compensated by di�erent values for the �t parameters BP . The Nc

expansion of the quark-charge matrix plays a negligible role. If we neglect
the Cη term, Bη compensates for the missing contribution, and, as a result,
the η slope increases. This e�ect is diminished if the �t range is restricted to
lower q2 values. In the case of the η′, if we set Cη′ = 0, the slope gets smaller.
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Fit range bη′ cη′

Full I 1.47±0.22 1.58±0.41
Full II 1.32±0.19 1.30±0.41
Full III 1.52±0.13 3.46±0.42
Full IV 1.42±0.13 2.95±0.41
Cp=0 I 0.84±0.12 0.28±0.01
Cp=0 II 0.82±0.10 0.28±0.01
Cp=0 III 1.11±0.25 0.28±0.01
Cp=0 IV 1.04±0.20 0.28±0.01

Table 7.7: Results for the slope and the curvature of the η′ TFF at NNLO.
The �t ranges are: −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I), −0.53 GeV2 ≤ q2 ≤
0.40 GeV2 (II), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (III), −0.50 GeV2 ≤ q2 ≤
0.40 GeV2 (IV).

This behavior is di�erent from the one of the η slope due to the inclusion of
the space-like data. As a further check, we have investigated the case where
the �t is performed only to the time-like data. Then, the η′ slope increases
if we put Cη′ = 0, which is similar to the η case.

Our results for the slopes can be compared with other theoretical and ex-
perimental determinations. Experimental results for the η slope are: bη =
0.57(12) from Lepton-G [Dzh+ 80], bη = 0.61(14) from TPC [Aih+ 90],
bη = 0.43(6) from CELLO [Beh+ 91], and bη = 0.50(6) from CLEO [Gro+ 98].
The NA60 collaboration determined bη = 0.59(5) [Arn+ 09] and bη = 0.59(2)
[Usa+ 11]. Results from A2 are bη = 0.58(11) [Ber+ 11] and bη = 0.59(7)
[Agu+ 14]. Experimental results for the η′ slope are: bη′ = 1.55(73) from
Lepton-G [Dzh+ 79, Dzh+ 80], bη′ = 1.27(21) from TPC [Aih+ 90], bη′ =
1.47(15) from CELLO [Beh+ 91], bη′ = 1.24(14) from CLEO [Gro+ 98], and
bη′ = 1.47(23) from BESIII [Abl+ 15]. The TFFs of the η-η′ system have
been studied in various theoretical approaches. The vector-meson-dominance
model (VMD) [BM 81, Ame+ 83, PB 84] predicts bη = 0.53 and bη′ = 1.33.
The calculation of a triangle loop of the constituent quarks (Quark loop)
[BM 81, Ame+ 83, PB 84] yields bη = 0.51 and bη′ = 1.30, and the Brodsky-
Lepage interpolation formula [BL 81] gives bη = 0.36 and bη′ = 2.11. Chiral
perturbation theory at the one-loop level (1-loop ChPT) using the leading-
order η-η′ mixing [Ame+ 92] provides bη = 0.51 and bη′ = 1.47. A coupled-
channel (CC) analysis [BN 04a] �nds bη = 0.47 and bη′ = 1.64, and chiral
e�ective theory with resonances (RχT) [Czy+ 12] �nds bη = 0.546(9) and
bη′ = 1.384(3). In Ref. [KOT 14], the axial anomaly is connected to the
vector-meson-dominance model by means of anomaly sum rules (ASR) yield-
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ing bη = 0.54 and bη′ = 1.06. An analysis of the data using Padé approximants
gives bη = 0.576(15) [EMS 15] and bη′ = 1.30(22) [EMS 14], and a dispersive
analysis [Han+ 15] predicts bη = 0.62+0.07

−0.03 and bη′ = 1.40+0.14
−0.07. Figures 7.6 and

7.7 show the comparison of our results for the η and η′ slopes, respectively,
together with the other experimental and theoretical determinations. Our
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Figure 7.6: Comparison of the results for bη.

values bη = 0.53(4) from the �t up to 0.40 GeV and bη′ = 1.47(22) from �t I
agree within the errors with most of the other theoretical and experimental
results. In general, our result for bη is slightly lower than the other determina-
tions, whereas our value for bη′ is slightly higher than the other results. From
Tab. 7.6 one can observe that a decreasing �t range leads to values for bη
which come closer to the other theoretical and experimental determinations.

The main results for the curvatures of η and η′ are displayed in Tabs. 7.6
and 7.7, respectively. The η curvature is reduced if the �t range is restricted
to smaller q2 values. The η′ curvature decreases if the time-like range is
decreased. As the space-like �t range becomes smaller, the �t is dominated
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Figure 7.7: Comparison of the results for bη′ .
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by the steeply rising time-like data and the curvature is almost twice as large.
The main contributions to the curvature stem from the CP terms. If we put
them to zero, the remaining curvature is given by the loop contributions,
which is rather small.

Our values for the curvature can be compared with other theoretical
determinations. An analysis of the data using Padé approximants �nds
cη = 0.339(15)stat(5)sys [EMS 15] and cη′ = 1.72(47)stat(34)sys [EMS 14]. If
we use a simple VMD estimate as given in Eq. (7.25) with ΛP = 0.77 GeV
[Hac 08], we obtain cη = 0.26 and cη′ = 2.40. Our values for cη are mostly
larger than the other predictions. Only if the �t range is decreased, our
results come to agreement with Ref. [EMS 15], whereas the naive VMD pre-
diction is even smaller. In the cases including the full space-like data, the
η′ curvature is slightly smaller than the one from Ref. [EMS 14], but shows
agreement within the errors. The VMD prediction for cη′ is larger and lies
on the upper end of the error band in Ref. [EMS 14]. None of our values
reaches within the errors, which are only the ones provided by the �t, the
VMD value. The results for cη′ in the cases where the space-like �t range is
restricted are much larger than the ones from the �t to all space-like data as
well as the ones from the other references.

7.3 Single Dalitz decays

Having performed the numerical evaluation of the single-virtual TFFs of η
and η′, we are now able to calculate the decay widths of the decays to one
photon and a lepton pair. Since there are no low-energy data for the π0

TFF available, we have not studied the π0 TFF at NNLO. In addition, our
analysis focuses more on the η-η′ system. Therefore, here, we do not consider
the single Dalitz decay π0 → γe+e−. To obtain the invariant amplitude for the
decay P → γl+l−, where P = η, η′ and l = e, µ, we use Eq. (7.1) and therein
de�ne qµ1 , with q2

1 = s, and εµ1 = (e/s)[ūγµv] as virtual-photon momentum
and polarization, respectively. The momentum of the real photon is denoted
by q2 with q2

2 = 0, and ε2 is its polarization. The decay width can be written
as [Hac 08]

Γ(P → γl+l−) = ∫
M2
P

4m2
l

ds

√
λ[M2

P , s,0]
√
λ[s,m2

l ,m
2
l ]

1024M3
Pπ

4s ∫ dΩll∑∣M∣2. (7.28)

De�ning the leptonic tensor

Lµν = ∑
spin

[ūγµv][ūγνv]∗ (7.29)
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Γη→γe+e− BRrel
η→γe+e− Γη′→γe+e− BRrel

η′→γe+e−

[eV] [10−2] [eV] [10−2]
LO 10.10±0.02 1.63±0.00 90.59±0.20 1.80±0.01

LO Qexp 3.22±0.01 1.61±0.01 150.06±0.33 1.80±0.01
NLO 1 9.90±1.50 1.68±1.17 80.88±22.62 2.05±6.37
NLO 2 8.39±1.23 1.68±3.43 71.02±20.39 1.66±5.13
NLO 3 7.46±2.58 1.66±2.11 85.25±48.00 1.68±2.59

NLO Qexp 8.52±8.96 1.64±23.38 70.65±135.12 1.62±35.22
Full 8.66±0.24 1.68±0.08 85.54±3.58 1.96±0.14
Cp=0 8.68±0.34 1.68±0.09 81.44±4.41 1.87±0.15

Exp. [Oli+ 14] 9.04±0.63 1.75±0.10 92.86±9.09 2.13±0.16

Table 7.8: Decay widths and relative BRs for η(′) → γe+e−.

and employing the identity

∫
dΩll

4π
Lµµ′ =

4

3
(1 + 2m2

l

q2
)(qµqµ′ − q2gµµ′), q2 = s, (7.30)

one obtains

Γ(P → γl+l−)

= e2

384M3
Pπ

3 ∫
M2
P

4m2
l

ds

√
1 − 4m2

l

s (M2
P − s)3(2m2

l + s)
s2

∣F (P → γl+l−)∣2. (7.31)

To evaluate this expression numerically, we make use of the LECs determined
in Secs. 7.2.1 and 7.2.2. At NNLO, we employ the LECs determined from
the �rst �ts, i.e., �tting the η TFF up to 0.47 GeV and the η′ TFF in the
range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I). The results for the decay widths to
one photon and a lepton pair are shown in Tabs. 7.8 and 7.9. The errors are
calculated from the errors of the LECs which are assumed to be uncorrelated.
They can be viewed as upper limits for the errors. Taking the correlations
into account is beyond the scope of this thesis. In addition, a systematic
error should be added as explained in Sec. 4.5.

The values for Γη→γe+e− and Γη′→γe+e− behave like the corresponding values
for the decays to two real photons. The disagreement of the two-photon-decay
widths in some scenarios and the experimental data is re�ected in the values
for Γη(′)→γe+e− as well. Therefore, we calculate the relative branching ratios
(BR)

BRrel
P→γl+l− =

ΓP→γl+l−

ΓP→γγ
, (7.32)
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Γη→γµ+µ− BRrel
η→γµ+µ− Γη′→γµ+µ− BRrel

η′→γµ+µ−

[eV] [10−4] [eV] [10−3]
LO 0.34±0.00 0.55±0.00 8.65±0.02 1.72±0.01

LO Qexp 0.11±0.00 0.55±0.00 14.32±0.03 1.72±0.01
NLO 1 0.44±0.06 0.75±0.52 14.47±3.11 3.66±11.37
NLO 2 0.38±0.06 0.76±1.56 3.15±1.37 0.74±2.29
NLO 3 0.33±0.10 0.73±0.92 4.50±3.39 0.89±1.44

NLO Qexp 0.33±0.33 0.63±9.05 2.48±5.46 0.57±12.38
Full 0.42±0.01 8.14±0.37 13.36±1.03 3.07±0.30
Cp=0 0.42±0.01 8.14±0.37 9.91±0.60 2.28±0.19

Exp. [Oli+ 14] 0.41±0.05 7.87±1.02 21.38±5.43 4.91±1.24

Table 7.9: Decay widths and relative BRs for η(′) → γµ+µ−.

using the values for ΓP→γγ obtained in the di�erent scenarios. The results are
shown in Tabs. 7.8 and 7.9. Now, the values for the relative BRs do not vary
very much within the di�erent cases and orders. The η relative BR is very
close to the experimental value, while the η′ relative BR is somewhat smaller
than the experimental result, especially in most of the NLO cases. This is
related to the value of the η′ slope. The slope is very large in the NLO 1 case,
which leads to a large relative BR, and the negative values for bη′ in the other
NLO cases are re�ected in a reduced relative BR even compared to the LO
value. The decay width of P → γe+e− receives its main contribution at values
where the virtual photon is in the vicinity of its mass shell. Therefore, the η
and η′ relative BRs are well described already at LO. The decay P → γµ+µ−

provides a better probe of the virtual behavior of the TFF at larger photon
virtualities. However, the values for Γη→γµ+µ− are still related to the two-
photon-decay widths, but the higher-order corrections in q2, parametrized
by slope and curvature, become important. Here, we calculate the relative
BRs as well. The LO relative BR of the η is now lower than the experimental
value and increases at NLO and NNLO. Especially at NNLO, we obtain very
good agreement with the data for both Γη→γµ+µ− and BRrel

η→γµ+µ− . The LO
relative BR for η′ → γµ+µ− is only 30% of the experimental value. In the
NLO scenarios it becomes even smaller except for NLO 1. This is related
to the slope of the η′ which is very large in the NLO 1 scenario, but poorly
described in the other NLO cases with even negative values. The full NNLO
value is larger than the LO one and most of the NLO values. However,
it is still smaller than the experimental result. If we neglect the Cη′ term,
the relative BR decreases again. This is connected to the description of the
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BRrel
η→γe+e− BRrel

η→γµ+µ−

[10−2] [10−4]
QED [MT 73] 1.63±0 5.54±0

Quark model [Lih 11] 1.77±0 7.48±0
Hidden gauge [Pet 10] 1.666±0.002 7.75±0.09
Mod. VMD [Pet 10] 1.662±0.002 7.54±0.11
Padé approx. [EG 15] 1.68±0.15 8.30±1.42

This work 1.68±0.08 8.14±0.37
Exp. [Oli+ 14] 1.75±0.10 7.87±1.02

Table 7.10: Comparison of theoretical determinations of the η relative BRs.

BRrel
η′→γe+e− BRrel

η′→γµ+µ−

[10−2] [10−3]
Hidden gauge [Pet 10] 2.10±0.02 4.45±0.15
Mod. VMD [Pet 10] 2.06±0.02 4.11±0.18
Padé approx. [EG 15] 1.99±0.16 3.36±0.26

This work 1.96±0.14 3.07±0.30
Exp. [Oli+ 14] 2.13±0.16 4.91±1.24

Table 7.11: Comparison of theoretical determinations of the η′ relative BRs.

η′ TFF data. The time-like TFF is underestimated for higher values of q2

and even more so if one does not take the (q2)2 term into account. The
decay width of η′ → γµ+µ− receives contributions in q2 ranges where vector-
meson resonances become important [EG 15], which are not included in our
framework.

Our full NNLO results for the relative BRs are compared with other
theoretical determinations. The QED prediction for η → γl+l−, l = e, µ, is
provided in Ref. [MT 73]. Reference [Lih 11] studied the single Dalitz decays
of the η within the light-front quark model. All four decays η(′) → γl+l−,
l = e, µ, have been calculated including vector mesons in the hidden gauge
model and a modi�ed VMD model [Pet 10]. Reference [EG 15] predicts the
decay widths by means of a data-driven approach using Padé approximants.
The results for the η and η′ relative BRs can be found in Tabs. 7.10 and 7.11,
respectively.

Our values for BRrel
η→γe+e− and BRrel

η′→γe+e− agree well with the other de-
terminations. In the case of BRrel

η→γµ+µ− , as already stated, the simple QED
prediction is too small. Here, our result agrees with the other works, ex-
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cept for Ref. [Lih 11] which gives a slightly smaller value. Our result for
BRrel(η′ → γµ+µ−) is smaller than the others. It agrees within errors with
Ref. [EG 15], and the determinations including vector mesons are larger.



Chapter 8

η(′) → π+π−γ(∗)

At leading order, the decays η(′) → π+π−γ(∗) are determined by the chiral
box anomaly, which is contained in the Wess-Zumino-Witten Lagrangian.
However, since the dynamical range of the decay involving a real photon,
4M2

π ≤ sππ ≤ M2
η(′), is far from the chiral limit, higher-order corrections be-

come important and their in�uence needs to be studied. Besides the decay
widths, also the decay spectra have been measured for both the η and the
η′ decay. The photon-energy spectrum of η → π+π−γ is provided by the
WASA@COSY collaboration [Adl+ 12]. Earlier measurements have been
performed in Refs. [Gor+ 70, Lay+ 73], but are presented without accep-
tance corrections. The π+π− invariant-mass spectrum of η′ → π+π−γ has
been measured by the Crystal Barrel collaboration [Abe+ 97]. The decays
η(

′) → π+π−l+l−, where l = e, µ, probe the decays involving a virtual photon
η(

′) → π+π−γ∗ and provide information on the substructure of the decaying
meson. For these decays, the decay widths Γ(η(′) → π+π−e+e−) have been
measured [Oli+ 14], whereas for Γ(η(′) → π+π−µ+µ−) only upper limits are
provided [Oli+ 14].

8.1 Calculation of the invariant amplitude

The invariant amplitude can be parametrized by

M = −iF εµναβεµpν1pα2 qβ, (8.1)

where qµ and εµ denote the momentum and polarization of the photon, re-
spectively, and pµ1 , p

µ
2 are the momenta of the pions with sππ = (p1 + p2)2.

To obtain the invariant amplitude up to NNLO, we have to evaluate the
Feynman diagrams shown in Fig. 8.1, where the vertices are obtained from



108 η(
′) → π+π−γ(∗)

1 2 3

1 1

0 0

1

Figure 8.1: Feynman diagrams for η(′) → π+π−γ∗ up to NNLO. Dashed lines
refer to pseudoscalar mesons and wiggly lines to photons. The numbers
k in the interaction blobs refer to vertices derived from the corresponding
Lagrangians L(k).

the Lagrangians given in Chapter 4. We start the calculation by consider-
ing the general case of the quark-charge matrix Q(Nc) for arbitrary Nc (see
Sec. 4.4.1). However, in the calculation of the Feynman diagrams, it turns
out that, due to the �avor structure, the Nc-dependent part of Q(Nc) gives
no contribution to the matrix element. Again, we employ the Mathematica

package FEYNCALC [MBD 91] for the calculation of the Feynman diagrams.
At LO, the form factors F are given by

F (η → π+π−γ∗) = 1

4
√

3π2F 3
π

(cos(θ[0]) −
√

2 sin(θ[0])) , (8.2)

F (η′ → π+π−γ∗) = 1

4
√

3π2F 3
π

(sin(θ[0]) +
√

2 cos(θ[0])) , (8.3)
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where θ[0] = −19.6° is the LO mixing angle. At NLO, the form factors F read

F (η → π+π−γ∗)

= 1

4
√

3π2F 3
π

((cos(θ[1]) −
√

2 sin(θ[1])) (1 + c14M
2
η + c13M

2
π − c14q

2 + c15sππ)

−
√

2 sin(θ[1])c2) , (8.4)

F (η′ → π+π−γ∗)

= 1

4
√

3π2F 3
π

((sin(θ[1]) +
√

2 cos(θ[1])) (1 + c14M
2
η′ + c13M

2
π − c14q

2 + c15sππ)

+
√

2 cos(θ[1])c2) , (8.5)

where

c2 = −48π2L̃1 −
Λ1

2
,

c13 = −1024π2 (L6,ε
13 +L

6,ε
14 +L

6,ε
5 + L

6,ε
6

2
) ,

c14 = 512π2L6,ε
13 ,

c15 = 512π2 (2L6,ε
13 +L

6,ε
14 ) , (8.6)

and θ[1] is the mixing angle calculated up to NLO, given in Eq. (5.33) in
Sec. 5.1. The parameter c2 represents a QCD-scale-invariant combination of
OZI-rule-violating parameters [KL 00]. Since the expressions at NNLO are
very long, we only display the loop corrections, corresponding to the loop
diagrams in Fig. 8.1, in Appendix B.2. However, the tree-level contributions
can be provided as a Mathematica notebook. Similar to the case of the two-
photon decays (see Sec. 7.1), at NNLO, we have to deal with a proliferation
of LECs and the fact that the O(p8) Lagrangian has not been constructed.
Therefore, we make an ansatz for the form factors at NNLO:

Fη(sππ) = F LO
η + 1

4
√

3π2F 3
π

(bη + cηsππ + dηs2
ππ) + loopsη(sππ), (8.7)

Fη′(sππ) = F LO
η′ + 1

4
√

3π2F 3
π

(bη′ + cη′sππ + dη′s2
ππ) + loopsη′(sππ), (8.8)

where F LO
P are the LO form factors given in Eqs. (8.2) and (8.3), and the

expression loopsP (sππ) refers to the sππ-dependent parts of the loop correc-
tions. The parameters bP and cP receive contributions from the higher-order
Lagrangians in Chapter 4 as well as from, in principle, the O(p8) Lagrangian.
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In addition, the LECs and loop contributions originating from the η-η′ mix-
ing are also absorbed in bP and cP . The parameters dP consist solely of
terms from the O(p8) Lagrangian. However, the most general form factor at
NNLO could depend on a second kinematic variable t or u. This dependence
would be introduced by the O(p8) Lagrangian. For simplicity, we ignore
those contributions in the following and employ the ansatz in Eqs. (8.7) and
(8.8).

A measurable observable of the decay is provided by the di�erential cross
section as a function of the photon energy

ω = 1

2
(MP −

sππ
MP

) , (8.9)

which takes the form [Hac 08]

dΓ

dω
= MPω3(M2

P − 4M2
π − 2MPω)

384π3

¿
ÁÁÀ1 − 4M2

π

M2
P − 2MPω

∣F (P → π+π−γ)∣2.

(8.10)

The full decay width can be obtained by integration

Γ(P → π+π−γ) = ∫
1
2
(MP−4M2

π/MP )

0
dω
dΓ

dω
. (8.11)

8.2 Numerical analysis

To evaluate our results numerically we need to �x the LECs. This is done
in a successive way, starting at LO and proceeding to NLO and, �nally, to
NNLO.

8.2.1 LO

At LO, we can directly calculate the decay widths by using Eq. (8.11) together
with the form factors in Eqs. (8.2) and (8.3). The LO results are

Γ(η → π+π−γ) = 36 eV, (8.12)

Γ(η′ → π+π−γ) = 3.4 keV, (8.13)

which, in particular for the η′, are a lot smaller than the experimental values
Γ(η → π+π−γ) = (55.3±2.4) eV [Oli+ 14] and Γ(η′ → π+π−γ) = (57.6±2.8) keV
[Oli+ 14]. Employing Equation (8.10) with the LO form factors, we also
determine the spectra at LO and compare them to the experimental data.
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Since the data are provided in arbitrary units, we multiply our LO results for
the spectra by a normalization constant AP , P = η, η′, and determine this
constant through a �t to the data. For η → π+π−γ we use the full photon-
energy spectrum provided by Ref. [Adl+ 12], and for η′ → π+π−γ we �t our
results to the π+π− invariant-mass spectrum, measured in Ref. [Abe+ 97], up
to 0.59 GeV. The results are shown in Fig. 8.2. As one can clearly see, the
LO description is very poor and it is crucial to take higher-order corrections
into account.

8.2.2 NLO

At NLO, we determine the appearing LECs through a �t to the experimental
spectra of the decays. It is not possible to independently determine all NLO
LECs in the expressions for the NLO form factors in Eqs. (8.4) and (8.5).
We are only able to �x those linear combinations of LECs which accompany
independent sππ structures. The NLO form factors in terms of these linear
combinations of LECs are given by

Fη(sππ) =
1

4
√

3π2F 3
π

((cos(θ[1]) −
√

2 sin(θ[1])) (1 + c15sππ) + c3) , (8.14)

Fη′(sππ) =
1

4
√

3π2F 3
π

((sin(θ[1]) +
√

2 cos(θ[1])) (1 + c15sππ) + c4) , (8.15)

where θ[1] is the mixing angle calculated up to NLO, given in Eq. (5.33) in
Sec. 5.1, and

c3 = (cos(θ[1]) −
√

2 sin(θ[1])) (c13M
2
π + c14M

2
η ) −

√
2 sin(θ[1]) c2,

c4 = (sin(θ[1]) +
√

2 cos(θ[1])) (c13M
2
π + c14M

2
η′) +

√
2 cos(θ[1]) c2. (8.16)

We now have to determine four parameters c3, c4, c15, and the NLO mixing
angle θ[1]. For θ[1] we employ our value from the NLO I analysis in Sec. 5.4.2.
The constants c3, c4, and c15 are determined through a �t to experimental
data. We use the decay width of η → π+π−γ, the photon-energy spectrum
of the η decay, and the π+π− invariant-mass spectrum of the η′ decay. Since
we are not able to describe the full η′ spectrum, we do not include the η′

decay width in our �t. We perform three simultaneous �ts to the data for
the η decay width [Oli+ 14], the full η spectrum from Ref. [Adl+ 12], and
to the η′ spectrum from Ref. [Abe+ 97] up to 0.59 GeV (I), 0.64 GeV (II),
and 0.72 GeV (III). Since the experimental spectra are provided in arbitrary
units, we multiply our �t functions, i.e., Eq. (8.10) with the form factors from
Eqs. (8.14) and (8.15), by normalization constants AP . The results for the
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�t parameters are given in Tab. 8.1, where the errors are the ones provided
by the Mathematica �t routine NonlinearModelFit.

Fit Aη [1010] Aη′ [105] c3 c4 c15 [GeV−2]
I 1.43±0.09 −0.59±0.56 −0.68±0.06 −1.06±1.02 5.78±0.32
II 1.43±0.09 −1.17±0.49 −0.68±0.06 −1.68±0.38 5.78±0.32
III 1.43±0.09 −2.83±0.58 −0.68±0.06 −2.35±0.16 5.78±0.34

Table 8.1: Fit parameters at NLO.

The parameters Aη and c3 appear only in the η form factor. Therefore,
they are �xed by the η data, which remain the same in all three cases and
do not lead to a change of the parameters. Also c15, which appears in both
the expression for the η and the η′ form factor, seems to be determined by
the η spectrum, since it does not depend on the �t range of the η′ spectrum.
The variation of the η′ �t range is then re�ected in the variation of Aη′ and
c4. A VMD estimate from SU(3) ChPT predicts c15 = 2.53 GeV−2 [Hac 08].
Our value for c15 is more than twice as large.

The NLO results for the η and η′ spectra are shown in Fig. 8.2 together
with the LO results obtained in Sec. 8.2.1 and the experimental data. The
1σ error bands of the �ts of the η′ spectra are displayed in Fig. 8.3.
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Figure 8.2: Left: Photon-energy spectrum of η → π+π−γ at LO (gray) and
NLO (blue). The blue band is the 1σ error band. The experimental data
are taken from Ref. [Adl+ 12]. Right: Invariant-mass spectrum of the π+π−

system in η′ → π+π−γ at LO (gray) and NLO (blue) �tted up to 0.59 GeV
(dash-dotted), 0.64 GeV (dashed), 0.72 GeV (solid). The experimental data
are taken from Ref. [Abe+ 97].

For both the η and the η′ spectrum, the NLO description is a clear im-
provement in comparison to the LO result. At NLO, increasing the �t range



8.2 Numerical analysis 113

0.4 0.5 0.6 0.7
0

5

10

15

sΠΠ @GeVD

A
.U

.

0.4 0.5 0.6 0.7
0

5

10

15

sΠΠ @GeVD

A
.U

.

0.4 0.5 0.6 0.7
0

5

10

15

sΠΠ @GeVD

A
.U

.

Figure 8.3: Invariant-mass spectrum of the π+π− system in η′ → π+π−γ with
the 1σ error band at NLO �tted up to 0.59 GeV (left), 0.64 GeV (middle),
0.72 GeV (right). The experimental data are taken from Ref. [Abe+ 97].

of the η′ spectrum leads to a better description of the data at higher sππ,
but it worsens at lower sππ. The error bands become smaller as more data
are included in the �t.

8.2.3 NNLO

At NNLO, we employ the ansatz for the form factors in Eqs. (8.7) and (8.8).
Since the form factors for η and η′ each have their speci�c set of LECs,
we perform the �ts to their data separately. The normalization Aη and
the LECs bη, cη, dη are �xed through a simultaneous �t to the η decay
width [Oli+ 14] and the photon-energy spectrum [Adl+ 12]. We consider
four di�erent scenarios. The �rst is the full NNLO calculation (Full). Then
we switch o� the loop contributions (W/O loops). Finally, we put the dη
term to zero, and we also discuss the case without dη and without loop
contributions. The results are shown in Tab. C.6 in Appendix C. Then,
all four scenarios are discussed for the η′. Since we cannot describe the
full η′ spectrum, we do not include the decay width in the �t. Therefore,
when the loop contributions are switched o�, we are not able to extract the
overall normalization separately. In those cases, we can only �t the spectrum
induced by the form factor

Fη′(sππ) = F LO
η′ + 1

4
√

3π2F 3
π

(c̃η′sππ + d̃η′s2
ππ) (8.17)

multiplied by the normalization constant Ãη′ . The relation to the parameters
given in Eq. (8.8) (without loopsP (sππ)), with the original normalization Aη′ ,
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takes the form
√
Ãη′ =

sin(θ[0]) +
√

2 cos(θ[0]) + bη′
sin(θ[0]) +

√
2 cos(θ[0])

√
Aη′ ,

c̃η′ =
sin(θ[0]) +

√
2 cos(θ[0])

sin(θ[0]) +
√

2 cos(θ[0]) + bη′
cη′ ,

d̃η′ =
sin(θ[0]) +

√
2 cos(θ[0])

sin(θ[0]) +
√

2 cos(θ[0]) + bη′
dη′ , (8.18)

where θ[0] = −19.6° is the LO mixing angle. In the scenarios including loops,
the loop contributions provide additional independent sππ structures, so we
can try to extract the LECs and the overall normalization separately. The
results with and without loops are provided in Tabs. C.7 and C.8 in Appendix
C, respectively.

Figure 8.4 shows our LO, NLO, and NNLO predictions for the η spec-
trum together with the experimental data. The description of the spectrum
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Figure 8.4: Photon-energy spectrum of η → π+π−γ at LO (gray), NLO (blue)
and NNLO (red). For the NLO and NNLO results the corresponding 1σ error
bands are shown. The experimental data are taken from Ref. [Adl+ 12].

improves gradually from LO to NLO to NNLO. We �nd that the contribu-
tions of the loops to the shape of the spectrum are very small and can be
compensated by a change of the LECs. The improved description of the data
from NLO to NNLO is due to the inclusion of the s2

ππ term.
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Figure 8.5 shows the results of the �ts of the NNLO expression for the η′

spectrum without s2
ππ term to the experimental data in the three di�erent �t

ranges. The corresponding error bands are displayed in Fig. D.3 in Appendix
D. Here, we observe a better description of the data compared to the NLO
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Figure 8.5: Invariant-mass spectrum of the π+π− system in η′ → π+π−γ at
NNLO with dη′ = 0, �tted up to 0.59 GeV (dash-dotted), 0.64 GeV (dashed),
0.72 GeV (solid). The experimental data are taken from Ref. [Abe+ 97].

calculation due to the inclusion of the loop corrections. Taking the s2
ππ term

into account in the full NNLO expression tends to make the �t unstable, in
particular in the cases where the �t range is small. Therefore, we discuss here
only the results of the �ts up to 0.72 GeV (III) and the results of the other
�ts are shown in Fig. D.4 in Appendix D. Figure 8.6 shows a comparison of
our NLO, NNLO without dη′ term, and full NNLO results for the η′ spectrum
�tted up to 0.72 GeV. At such high values of sππ, the inclusion of the dη′
term yields a better description of the data compared to NNLO with dη′ = 0.
However, as can be seen in Fig. 8.6, even the full NNLO result is not able
to describe the whole spectrum. This problem originates in the fact that,
since the invariant mass of the pion pair reaches values as high as 0.8 GeV,
vector-meson degrees of freedom become important. Since we do not consider
vector mesons as explicit degrees of freedom in our calculation, we cannot
reproduce the whole spectrum correctly.
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Figure 8.6: Invariant-mass spectrum of the π+π− system in η′ → π+π−γ at
NLO (blue), NNLO with dη′ = 0 (purple), and full NNLO (red) �tted up to
0.72 GeV. The left plot shows the spectrum up to 0.75 GeV and the right plot
the full spectrum. The experimental data are taken from Ref. [Abe+ 97].

Comparison with other works

The decay η → π+π−γ has been studied in one-loop ChPT using the LO
η-η′ mixing in Refs. [BBC 90, Hac 08]. They have found that O(p6) cor-
rections are crucial to describe the data, and that the contributions of the
contact terms dominate over the loop corrections. We agree with these �nd-
ings. Reference [BN 04b] investigates the decays η(′) → π+π−γ in an approach
that combines ChPT with a coupled-channel Bethe-Salpeter equation which
generates vector mesons dynamically. They also observe the importance of
O(p6) contact terms in order to describe the data for the η decay. The η′

data however, cannot be described by just adjusting the O(p6) contact terms.
In the decay η′ → π+π−γ, vector mesons play an important role and, after
the inclusion of the coupled-channel approach, the experimental η′ spectrum
can be reproduced. The e�ects of vector mesons have been taken into ac-
count by a momentum dependent vector-meson-dominance model [Pic 92]
or in a more elaborate way in the context of Hidden Local Symmetries
[Ben+ 03, Ben+ 10]. References [VH 98, Hol 02] apply an Omnes function
on top of the one-loop results to include the e�ects of p-wave pion scattering.
Another approach consists in the combination of ChPT with dispersion the-
ory allowing for a controlled inclusion of resonance physics [Sto+ 12]. Due
to the inclusion of pion-pion rescattering in the �nal state both the η and the
η′ spectrum can be well described. Reference [KP 15] augments this analysis
of the η → π+π−γ decay by the a2 tensor meson.
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8.3 η(
′) → π+π−l+l−

In the following, we investigate the decays involving a virtual photon η(′) →
π+π−γ∗, which are connected to the decays η(′) → π+π−l+l−, with a lepton
pair l = e, µ. The matrix element for the decay η(′) → π+π−γ∗ is given by

M = −iF εµναβεµpν+pα−qβ, (8.19)

where qµ and εµ denote the momentum and polarization of the photon, re-
spectively, and pµ+, p

µ
− are the momenta of the pions. The decay η(

′) →
π+π−l+l− proceeds via a two-step mechanism [PR 93, BN 07]. The �rst de-
cay is η(′) → π+π−γ∗ which is followed by γ∗ → l+l−. We can obtain the
invariant amplitude for η(′) → π+π−l+l− from a modi�cation of the one in
Eq. (8.19). The photon is now o� shell and we replace its polarization vec-
tor εµ by (e/q2)ū(k−)γµv(k+), where k± are the lepton momenta. After this
modi�cation the invariant amplitude reads

M = −iF εµναβpν+pα−qβ [
e

q2
ū(k−)γµv(k+)] . (8.20)

The form factors F have been calculated in Sec. 8.1. We can then calculate
the di�erential decay rates of η(′) → π+π−l+l− in terms of the normalized in-
variant mass of the pion pair x = (p++p−)2/M2

P ≡ sππ/M2
P and the normalized

invariant mass of the lepton pair y = (k++k−)2/M2
P ≡ q2/M2

P , where P = η, η′.
The di�erential decay width is given by [PR 93]

d2Γ

dxdy
= e2M7

P

18(4π)5

λ3/2(1, x, y)λ1/2(y, ν2, ν2)λ3/2(x,µ2, µ2)
x2y2

(1

4
+ ν

2

2y
) ∣F ∣2,

(8.21)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, µ =Mπ/MP , and ν =ml/MP .
The spectrum with respect to x is obtained by integrating over y

dΓ

dx
= ∫

1−2
√
x+x

4m2
l
/M2

P

dy
d2Γ

dxdy
, (8.22)

whereas the integration over x leads to the spectrum with respect to y

dΓ

dy
= ∫

1−2
√
y+y

4M2
π/M2

P

dx
d2Γ

dxdy
. (8.23)

The full decay width of η(′) → π+π−l+l− is given by

Γ(P → π+π−l+l−) = ∫
1−2

√
4m2

l
/M2

P+4m2
l /M

2
P

4M2
π/M2

P

dx∫
1−2

√
x+x

4m2
l
/M2

P

dy
d2Γ

dxdy
. (8.24)
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8.3.1 Numerical analysis

While at LO the numerical evaluation of the results can be performed directly,
at NLO we need to �x four constants c3, c4, c15, and c14. For the parameters
c3, c4, c15 we employ the values determined from the decays to real photons
η(

′) → π+π−γ at NLO in Tab. 8.1. The parameter c14 is multiplied by the
photon virtuality q2 and needs to be �xed using data for the decays η(′) →
π+π−l+l− involving a virtual photon. The only available data for these decays
are the decay widths for η(′) → π+π−e+e− [Oli+ 14], while for the decay widths
of η(′) → π+π−µ+µ− only upper limits exist [Oli+ 14]. The spectra of these
decays have not been measured. Since we are not able to describe the full
η′ → π+π−γ spectrum due to the importance of resonant contributions, we
also expect that the description of the η′ → π+π−e+e− decay is not appropriate
in our framework. Therefore, if we want to determine c14 from experimental
data, we are left with only the decay width of η → π+π−e+e−. Our naive
attempt is to �x c14 to the experimental value of Γ(η → π+π−e+e−) = 350 ±
20 meV [Oli+ 14], which results in c14 = (−9.67 ± 33.06) GeV−2. However,
it turns out that Γ(η → π+π−e+e−) is not very sensitive to the value of c14

and the NLO result for c14 = 0 is already close to the experimental value.
This can be also seen in the left plot of Fig. 8.7 which shows the π+π−

invariant-mass spectrum. The curves for c14 = −9.67 GeV−2 and for c14 = 0
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Figure 8.7: Invariant-mass spectra of the π+π− system in η → π+π−l+l− at
LO (gray), NLO with c14 = 0 (blue) and NLO (red). The bands correspond
to the assumption of an 33% error in c14.

are very similar. Moreover, the error of c14 due to the experimental error of
Γ(η → π+π−e+e−) is very large. Therefore, in the following discussions, we
consider only the systematic error of c14. The red band shows the variation
assuming an 33% error in c14, which is also rather small. A naive VMD
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estimate for c14 is given by c14 = −2.53 GeV−2 [Hac 08], which is roughly of
the same order of magnitude as our value c14 = −9.67 GeV−2. Figure 8.7 shows
also the prediction for the π+π− invariant-mass spectrum of η → π+π−µ+µ−.
Due to the larger invariant mass of the muon pair the photon virtuality
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Figure 8.8: Invariant-mass spectra of the π+π− system at LO (gray), NLO
with c14 = 0 (blue) and NLO with c14 = −9.67 GeV−2 (red). The values for c4

are taken from �t I (dashed), II (solid), III (dash-dotted).

is increased and the decay is more sensitive to c14. Here, the error band is
large and the result is di�erent from the LO result and the one for c14 = 0.
This decay would be better suited to determine c14, but unfortunately no
experimental data exist. From this analysis we conclude that our value for
c14 cannot be well determined from Γ(η → π+π−e+e−) and might not be very
sensible. In the following, in order to obtain an estimate of the in�uence of
c14, we employ the naive value of c14 = −9.67 GeV−2 with an error of 33%.
We show the invariant-mass spectra of the π+π− and l+l− systems at NLO
for all four decays η(′) → π+π−l+l− in Figs. 8.8 and 8.9, respectively. They
are compared to the LO results and the NLO results for c14 = 0. For the
η′ decays we also show the predictions for the three di�erent values of c4
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Figure 8.9: Invariant-mass spectra of the l+l− system at LO (gray), NLO
with c14 = 0 (blue) and NLO with c14 = −9.67 GeV−2 (red). The values for c4

are taken from �t I (dashed), II (solid), III (dash-dotted).
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determined in Tab. 8.1 in Sec. 8.2.2 corresponding to the di�erent �t ranges
of the η′ → π+π−γ spectrum.

In general, the LO and NLO spectra di�er a lot. The NLO corrections
tend to produce steeper and larger peaks compared to the LO predictions.
The curves for c14 = 0 and c14 = −9.67 GeV−2 coincide approximately for the
decays involving an e+e− pair and di�er in the cases with a muon pair. The
di�erent values for c4 have a very strong in�uence on the η′ spectra.

At NNLO, in addition to the parameters determined from η(
′) → π+π−γ

more unknown LECs, multiplying possible structures in the form factors like
(q2)2 or q2sππ, appear. Therefore, we do not numerically evaluate the full
NNLO expressions. At this order the loops start contributing. For complete-
ness, in order to provide an estimate of the size of the loop corrections, we
evaluate the scenario where we just add the loops to the LO expressions. The
corresponding spectra are shown in Figs. D.5 and D.6 in Appendix D. We
observe rather large e�ects of the loops on the spectra comparable in size to
the NLO corrections.

Finally, we integrate the spectra and obtain predictions for the full decay
widths of η′ → π+π−l+l−. The results are displayed in Tab. 8.2. Since this is
only a �rst study of the decays η(′) → π+π−l+l− to obtain a rough estimate
of the higher-order corrections, we do not provide errors for the results of
the decay widths. The values of the η decay widths do not change in the

Γη→π+π−e+e− Γη′→π+π−e+e− Γη→π+π−µ+µ− Γη′→π+π−µ+µ−
[10−10 GeV] [10−7 GeV] [10−15 GeV] [10−9 GeV]

LO 2.34 0.26 7.20 0.59
NLO II 3.51 1.37 12.23 3.17

NLO c14=0 I 3.46 1.31 5.50 1.06
NLO c14=0 II 3.46 2.06 5.50 2.18
NLO c14=0 III 3.46 0.72 5.50 0.37
LO+Loops 1.81 1.13 5.16 2.50

Data [Oli+ 14] 3.5 ± 0.2 4.8+2.6
−2.0 < 4.7 ⋅ 105 < 5.7

VMD [PR 93] 3.8 - - -
[FFK 00] 4.72 3.56 15.72 3.96

CC [BN 07] 3.89+0.10
−0.13 4.31+0.38

−0.64 9.8+5.8
−3.5 3.2+2.0

−1.6

Hidden gauge [Pet 10] 4.11 ± 0.27 4.3 ± 0.46 11.33 ± 0.67 4.36 ± 0.63
Modif. VMD [Pet 10] 3.96 ± 0.22 4.49 ± 0.33 11.32 ± 0.54 4.77 ± 0.54

Table 8.2: Results for the decay widths of η(′) → π+π−l+l−. At NLO, the
value of c4 is determined by the �ts I-III in Sec. 8.2.2.
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scenarios �NLO c14=0 I-III�, since they correspond to a variation of c4 which
only appears in the η′ form factor. The NLO corrections increase the value
for Γη→π+π−e+e− compared to the LO one, providing results that are close to
the experimental value. The LO value for Γη′→π+π−e+e− is very small. The
NLO results depend quite strongly on the di�erent values determined for
c4 and are only up to 40% of the experimental value. This is connected
to the importance of vector mesons, which we have not taken into account
explicitly. In addition, already the full NNLO contributions might improve
our result. For c14 = −9.67 GeV−2, the NLO value for Γη→π+π−µ+µ− is larger
than the LO one, while the NLO value for c14 = 0 is even smaller than the
LO result. However, the experimental limit is �ve orders of magnitude larger
than our determinations. In the case of η′ → π+π−µ+µ−, the NLO values
tend to increase in comparison to the LO one. As for the decays involving an
electron pair, the NLO results depend strongly on c4. The experimental limit
is only twice as large as our largest results. In addition, the loops lead to a
further increase of the decay width. Therefore, it could be possible to achieve
a good description of this decay even in our framework without vector mesons.
Since both a pion pair and a muon pair have to be created, their invariant
masses do not reach values where the contributions of vector mesons start
dominating. For both η decay widths the loop corrections decrease about
25% in comparison to the LO values, whereas the loops add a large positive
contribution to the LO result for the η′ decay widths.

Comparison with other works

In Table 8.2 we compare our results for the decay widths with other theo-
retical predictions. In Reference [PR 93], the decay η → π+π−e+e− has been
studied in a chiral model that incorporates vector mesons explicitly. Ref-
erence [FFK 00] calculated various decays of light un�avored mesons using
a meson-exchange model based on VMD. A chiral unitary approach that
combines ChPT with a coupled-channel Bethe-Salpeter equation has been
applied to the decays η(′) → π+π−l+l− in Ref. [BN 07]. Reference [Pet 10]
investigates the decays within the hidden gauge and a modi�ed VMD model.
The results of Refs. [BN 07, Pet 10] agree within their errors which are quite
large in some cases, and the agreement is better for the decays involving
e+e− than for those with µ+µ−. The results of Ref. [FFK 00] show larger
deviations. Our NLO results for Γη→π+π−e+e− are slightly smaller than the
other theoretical values which are larger than the experimental value. The
other theoretical predictions agree within errors with the experimental value
for Γη′→π+π−e+e− , but they are slightly smaller and Ref. [FFK 00] shows the
greatest deviation. All theory values for the decays involving a muon pair are
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below the experimental limits. In general, our NLO results for Γη′→π+π−e+e− ,
Γη→π+π−µ+µ− , and Γη′→π+π−µ+µ− are substantially lower than the other theoret-
ical predictions. This can be explained by the fact that we, as opposed to
the other works, have not taken the explicit contributions of vector mesons
into account.

References [PR 93, BN 07, Pet 10] provide also plots of their predicted
spectra. The invariant-mass spectra of the π+π− and e+e− systems in η →
π+π−e+e− agree with each other and with our NLO results for the spectra.
For the spectra of η → π+π−µ+µ− with respect to

√
sππ and

√
q2 we �nd

qualitative agreement of our NLO results with Refs. [BN 07, Pet 10], with the
di�erence that our peaks are a little bit higher than those of the other works.
Our NLO π+π− invariant-mass spectrum of η′ → π+π−e+e− is much broader
and lower than those in Refs. [BN 07, Pet 10], which exhibit a steep peak
around 750 MeV. Less pronounced is the behavior in the e+e− invariant-mass
spectrum, but also there our peak is broader and lower. Here, the in�uence
of the explicit vector mesons which are included Refs. [BN 07, Pet 10] can
be clearly seen. The spectra for η′ → π+π−µ+µ− agree quite well between
Ref. [BN 07] and our results. Only our peak in the invariant-mass spectrum
of the µ+µ− system is broader than in Ref. [BN 07].

In order to test the di�erent approaches to the decays η(′) → π+π−l+l−,
more experimental data on the decays is highly desirable. Experimental data
on the di�erential decay spectra of any of the decays η(′) → π+π−l+l− or the
decays widths of η(′) → π+π−µ+µ− would allow for an improved determination
of the parameter c14 and might even facilitate the determination of LECs at
NNLO.
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Chapter 9

Conclusions

In this thesis we have studied the η-η′ system in LNcChPT. All calculations
have been performed at the one-loop level, corresponding to NNLO calcula-
tions in the simultaneous expansion in external momenta, quark masses, and
1/Nc. In the LNc limit, the U(1)A anomaly contribution to the η′ mass van-
ishes. Therefore, in the combined chiral and LNc expansions, we have been
able to include the η′ as a ninth Goldstone boson in the e�ective theory.

Due to the explicit breaking of the SU(3) �avor symmetry caused by the
di�erence of up-, down-, and strange-quark masses in the isopin-symmetric
limit (mu = md ≠ ms), the physical η and η′ states are mixed singlet and
octet states. We have calculated the η-η′ mixing at the one-loop level up
to NNLO in the simultaneous chiral and LNc expansions. To that end, we
have performed successive transformations to convert the starting e�ective
Lagrangian in terms of octet and singlet �elds into a diagonal Lagrangian
in terms of the physical �elds. We have derived a general expression for the
η-η′ mixing for a Lagrangian containing higher-derivative terms up to and
including fourth order in the four momentum and general kinetic and mass
terms, which have been determined in a one-loop calculation. In addition, we
have calculated the axial-vector decay constants of the η-η′ system at NNLO
and determined the angles θ8, θ0 and the constants F8, F0 of the two-angle
scheme.

Then, we have performed the numerical analysis of the results successively
at LO, NLO, and NNLO. To that end, we have considered the masses M2

π ,
M2

K ,M
2
η ,M

2
η′ , the decay constants Fπ, FK , the mixing angle θ, and the decay

constants of the η-η′ system. At NLO and especially at NNLO, we have to
deal with a proliferation of unknown LECs. At NLO, we have been able to
determine all appearing LECs by �xing the corresponding NLO expressions
to the physical values of M2

π , M
2
K , M

2
η , M

2
η′ , Fπ, FK , and employing the

quark mass ratio m̂/ms. At NNLO, however, this approach is no longer
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possible since the number of LECs becomes too large. This problem has been
solved by our second strategy, which consists of using values for some LECs,
Li and Ci, determined in SU(3) ChPT. We have applied the appropriate
matching relations between SU(3) and U(3) ChPT in order to obtain values
for the LECs in U(3) ChPT. One OZI-rule-violating parameter has been
determined by �xing it to M2

η , the other �ve OZI-rule-violating LECs were
set to zero. In general, we have found that the in�uence of the OZI-rule-
violating parameters is rather large and their values need to be di�erent
from zero. Taking only LECs which appear in the SU(3) sector into account
is not su�cient. Furthermore, the loop corrections have been found to be
substantial and are rather of the order of magnitude of NLO corrections
than NNLO corrections, questioning the convergence of LNcChPT or the
organization of the power counting.

Having �xed the LECs, we have obtained numerical results for the mixing
angle and the decay constants of the η-η′ system and compared them to
other phenomenological determinations. While we �nd agreement for some
parameters, the appearing discrepancies stem from the di�erent treatments
of OZI-rule-violating LECs, which are mostly neglected in the other works,
or from the fact that the other determinations were performed in an NLO
framework. Providing precise numerical results for the η-η′ mixing at NNLO
remains a challenge, due to the large number of unknown LECs. In the
future, a determination of the NNLO LECs may be achieved with the help
of Lattice QCD.

Having derived an expression for the η-η′ mixing, we have been able to
study two anomalous decays of the η-η′ system, namely η(′) → γ(∗)γ(∗) and
η(

′) → π+π−γ(∗). As a benchmark for the investigation of higher-order cor-
rections to anomalous processes or the future inclusion of vector mesons, we
have �rst performed an explicit veri�cation of the anomalous Ward identi-
ties at the one-loop level up to NNLO. To that end, we have calculated the
three-point Green function involving one axial-vector current and two vector
currents (AVV) with all three legs o� shell. We have explicitly con�rmed the
normal Ward identities satis�ed by the diagonal components of the vector
currents and the anomalous Ward identities of the axial-vector current at the
one-loop level.

The next step was the calculation of the decays η(′) → γ∗γ(∗) and η(′) →
π+π−γ(∗) at the one-loop level up to NNLO. Besides the loop corrections, all
contact terms appearing at NNLO have been calculated, except for those of
the O(p8) Lagrangian, which has not been constructed yet. However, in the
expressions for the form factors describing the decays, possible structures
originating from the O(p8) Lagrangian have been introduced phenomeno-
logically, accompanied by free parameters. The numerical analyses of the
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decays have been performed successively at LO, NLO, and NNLO. At NLO,
we employed the values for the LECs and mixing angle determined in the
NLO analysis of the η-η′ mixing. The other LECs were �tted to the available
experimental data for the decays.

We �rst considered the two-photon decays η(′) → γ(∗)γ(∗). At NLO, the
LECs from the odd-intrinsic-parity sector were �xed to the experimental
data of the decay widths to real photons and the slope parameters of π0,
η, η′. We have found that the NLO results are not su�cient to describe all
data simultaneously. If the Nc expansion of the quark-charge matrix is taken
into account, the results worsen. At NNLO, the LECs have been determined
through a �t to the experimental data for the η and η′ transition form factors.
We have achieved a good description of the η TFF up to 0.45 GeV and of
the η′ TFF between −0.25 GeV2 and 0.3 GeV2, which is mainly caused by
the inclusion of (q2)2 terms, whereas loops do not play an important role. In
addition, we have calculated the slopes and the curvatures of the TFFs and
the decay widths of η(′) → γl+l−, where l = e, µ, and compared them to other
works. In general, our NNLO results for those quantities tend to agree with
the other experimental and theoretical determinations.

To numerically evaluate the η(′) → π+π−γ decays, we have determined the
LECs from the odd-intrinsic-parity sector through a �t to the decay width
and the full decay spectrum of the η and to parts of the η′ decay spectrum,
since we are not able to adequately describe the full η′ spectrum. In the
case of the η, the description of the spectrum gradually improves from LO,
which is far o�, to NLO and NNLO, where the experimental data are well
described. The higher-order contact terms play an important role and the
improvement from NLO and NNLO is mainly caused by the s2

ππ term in the
form factor, whereas the loops have only a very small in�uence. Also in the
case of the η′ decay, the results gradually improve from LO to NLO and
NNLO. Here, the in�uence of the loops is more important and the inclusion
of the s2

ππ term improves the results only if we try to describe the spectrum
at high values of the π+π− invariant mass. At NNLO, we have achieved a
good description of the η′ spectrum up to

√
sππ = 0.7 GeV. At these high

values of sππ, our approach reaches its limit, since resonant contributions of
vector mesons become important.

Finally, we have considered the decays η(′) → π+π−l+l−, l = e, µ, which
probe the decays η(′) → π+π−γ∗ involving a virtual photon. At NLO, the
LEC c14, which accompanies the photon virtuality, could only been �xed to
the decay width of η → π+π−e+e−, which is, however, not very sensitive to
this parameter since the exchanged photon is close to its mass shell. As
a �rst study, we have then evaluated the decay spectra of all four decays
with respect to the invariant masses of the π+π− and l+l− systems at NLO.
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The NLO corrections modify the spectra substantially in comparison to the
LO results. Unfortunately no experimental data for the spectra are available.
We have compared our results with other theoretical determinations and �nd
agreement in some cases. Discrepancies arise when the in�uence of vector-
meson degrees of freedom becomes important, which have been taken into
account in the other works. At NNLO, due to the appearance of additional
LECs which cannot be �xed, we only evaluated the spectra for the scenario
where we just added the loop corrections to the LO results. We have found
that the loop contributions are of the same order of magnitude as the NLO
corrections.

To further test the various theoretical approaches, more experimental
information on the decay widths of η(′) → π+π−µ+µ− or the di�erential spectra
of any of the four decays is highly desirable. More data would also allow for
a better determination of the LECs at NLO and maybe even at NNLO.

In conclusion, we have achieved a good description of the anomalous de-
cays of the η-η′ system in the low-energy region. In order to extend the range
of applicability of our theory and in particular in order to describe the decay
spectrum of η′ → π+π−γ, the inclusion of vector mesons as explicit degrees of
freedom is necessary. The vector mesons should be included consistently in
terms of constraints and renormalizability and one needs to make sure that
the (anomalous) Ward identities are still satis�ed. This approach could also
reduce the number of independent couplings.
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De�nitions

A.1 Gell-Mann matrices

The Gell-Mann matrices λa (a = 1, . . . ,8) are the generators of the group
SU(3). An explicit representation is given by:

λ1 =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 0

⎞
⎟
⎠
, λ2 =

⎛
⎜
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟
⎠
, λ3 =

⎛
⎜
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟
⎠
,

λ4 =
⎛
⎜
⎝

0 0 1
0 0 0
1 0 0

⎞
⎟
⎠
, λ5 =

⎛
⎜
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟
⎠
, λ6 =

⎛
⎜
⎝

0 0 0
0 0 1
0 1 0

⎞
⎟
⎠
,

λ7 =
⎛
⎜
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟
⎠
, λ8 =

√
1

3

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟
⎠
. (A.1)

The Gell-Mann matrices are Hermitian, traceless 3×3 matrices satisfying the
commutation relations

[λa
2
,
λb
2
] = ifabc

λc
2
, (A.2)

where fabc are the totally antisymmetric structure constants of SU(3). The
non-vanishing structure constants are displayed in Tab. A.1. The anti-

abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2 −1

2
1
2

1
2

1
2 −1

2
1
2

√
3 1

2

√
3

Table A.1: Non-vanishing structure constants of SU(3).
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abc 118 146 157 228 247 256 338 344

dabc
1√
3

1
2

1
2

1√
3

−1
2

1
2

1√
3

1
2

abc 355 366 377 448 558 668 778 888

dabc
1
2 −1

2 −1
2 − 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1√

3

Table A.2: Non-vanishing dabc.

commutation relations of the Gell-Mann matrices read

{λa, λb} =
4

3
δab1 + 2dabcλc, (A.3)

where the totally symmetric dabc are summarized in Tab. A.2. The product
of two Gell-Mann matrices satis�es

λaλb =
2

3
δab1 + habcλc, (A.4)

where habc = dabc + ifabc, and the trace reads

Tr(λaλb) = 2δab. (A.5)

Moreover, it is convenient to introduce a ninth matrix

λ0 =
√

2

3
1, (A.6)

such that Eq. (A.5) is still satis�ed by the nine matrices λa. Then, the set
{iλa∣a = 0, . . . ,8} provides a basis of the Lie algebra u(3) of U(3).

A.2 Loop integrals

In this section, we de�ne the loop integrals which are needed for the calcula-
tions in this thesis. All loop integrals are reduced to scalar integrals [PV 79]
employing the Mathematica package FEYNCALC [MBD 91]. Therefore, we
only display the scalar integrals, which are de�ned in dimensional regular-
ization:

Integral with one internal line

A0(m2) = (2πµ)4−n

iπ2 ∫
dnk

k2 −m2 + i0+ . (A.7)
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Integral with two internal lines

B0(p2,m2
1,m

2
2) =

(2πµ)4−n

iπ2 ∫
dnk

[k2 −m2
1 + i0+][(k + p)2 −m2

2 + i0+]
. (A.8)

The explicit expressions for these integrals read

A0(m2) = (−16π2) [2m2λ + m2

8π2
ln(m

µ
)] , (A.9)

B0(p2,m2
1,m

2
2) = (−16π2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2λ +

ln (m1

µ )
8π2

+ 1

16π2
(A.10)

× [−1 + p
2 −m2

1 +m2
2

p2
ln(m2

m1

) + 2m1m2

p2
F (Ω)]} , (A.11)

where

λ = 1

16π2
{ 1

n − 4
− 1

2
[ln(4π) + Γ′(1) + 1]} , (A.12)

Ω = p
2 −m2

1 −m2
2

2m1m2

(A.13)

and

F (Ω) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
Ω2 − 1 ln (−Ω −

√
Ω2 − 1) for Ω ≤ −1,√

1 −Ω2 arccos (−Ω) for − 1 ≤ Ω ≤ 1,√
Ω2 − 1 ln (Ω +

√
Ω2 − 1) − iπ

√
Ω2 − 1 for 1 ≤ Ω.

(A.14)

If not otherwise stated, we evaluate the loop integrals at the renormalization
scale µ = 1 GeV. Furthermore, some useful relations between the scalar
integrals are given by:

B0(0,m2
1,m

2
2) =

A0(m2
1) −A0(m2

2)
m2

1 −m2
2

, (A.15)

B0(0,m2,m2) = A0(m2)
m2

− 1, (A.16)

B0(m2,m2,0) = A0(m2)
m2

+ 1. (A.17)

A.3 Building blocks and transformation behav-

ior

In the following, a decomposition of the U(3) building blocks in SU(3) and
U(1) components is provided. The e�ective dynamical degrees of freedom
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are contained in the U(3) matrix

U = exp(i
8

∑
a=0

φaλa
F

) = e i3ψÛ , (A.18)

where
det(Û) = 1, det(U) = eiψ, ψ = −i ln(det(U)). (A.19)

The external �elds s, p, lµ, and rµ are Hermitian, color-neutral 3×3 matrices
coupling to the corresponding quark bilinears, and θ is a real �eld coupling
to the winding number density [GL 85]. The traceless components of rµ and
lµ are de�ned as

rµ = r̂µ +
1

3
⟨rµ⟩, ⟨r̂µ⟩ = 0,

lµ = l̂µ +
1

3
⟨lµ⟩, ⟨l̂µ⟩ = 0. (A.20)

We parametrize the group elements (VL, VR) ∈ U(3)L ×U(3)R in terms of

VR = exp(−i
8

∑
a=0
θRa

λa
2

) = e− i3 θRV̂R,

det (V̂R) = 1, θR = i ln (det (VR)) ,

VL = exp(−i
8

∑
a=0
θLa

λa
2

) = e− i3 θLV̂L,

det (V̂L) = 1, θL = i ln (det (VL)) . (A.21)

We de�ne vµ = 1
2(rµ+lµ), aµ = 1

2(rµ−lµ), and χ = 2B(s+ip). Under the group
G = U(3)L ×U(3)R, the transformation properties of the dynamical degrees
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of freedom and of the external �elds read

U ↦ VRUV
�
L ,

ψ ↦ ψ − i ln(det(VR)) + i ln(det(VL)) = ψ − (θR − θL),
rµ ↦ VRrµV

�
R + iVR∂µV

�
R,

r̂µ ↦ V̂Rr̂µV̂
�
R + iV̂R∂µV̂

�
R,

⟨rµ⟩↦ ⟨rµ⟩ − ∂µθR,
lµ ↦ VLlµV

�
L + iVL∂µV

�
L ,

l̂µ ↦ V̂Ll̂µV̂
�
L + iV̂L∂µV̂

�
L ,

⟨lµ⟩↦ ⟨lµ⟩ − ∂µθL,

⟨aµ⟩↦ ⟨aµ⟩ −
1

2
(∂µθR − ∂µθL),

χ↦ VRχV
�
L ,

θ ↦ θ + (θR − θL). (A.22)

The covariant derivatives are de�ned according to the transformation behav-
ior of the object to which they are applied:

DµU = ∂µU − irµU + iUlµ ↦ VRDµUV
�
L ,

DµU
� = ∂µU � + iU �rµ − ilµU � ↦ VLDµU

�V �
R,

DµÛ = ∂µÛ − ir̂µÛ + iÛ l̂µ,
Dµψ = ∂µψ − 2⟨aµ⟩↦Dµψ,

DµU = e i3ψ (DµÛ + i

3
DµΨÛ) ,

Dµθ = ∂µθ + 2⟨aµ⟩↦Dµθ. (A.23)
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Appendix B

Additional expressions

This appendix provides explicit higher-order expressions for the quantities
calculated in this thesis. The loop functions are de�ned in Appendix A.2. If
not otherwise stated, we evaluate the loop integrals at the renormalization
scale µ = 1 GeV.

B.1 η-η′ mixing

The pion decay constant F in the chiral limit is given by

F = Fπ [1 − 4M2
πL5

F 2
π

− 1

F 4
π

(4 (2M4
π (3 (L5) 2 − 8L8L5 + (C14 +C17)F 2

π) + F 2
π (2M2

K +M2
π)L4))

−A0 (M2
K) + 2A0 (M2

π)
32π2F 2

π

] (B.1)

in terms of the physical decay constant Fπ and the physical pion and kaon

masses, Mπ and MK , respectively. The expression for the LO pion mass
○
M2

π



136 Additional expressions

reads

○
M2

π = 2Bm̂

=M2
π [1 + 8M2

π (L5 − 2L8)
F 2
π

+ 1

F 4
π

(8 (2M4
π (8 (L5 − 2L8) 2 + (2C12 +C14 +C17 − 3C19 − 2C31)F 2

π)

+2F 2
πM

2
K (L4 − 2L6) + F 2

πM
2
π (L4 − 2L6)))

+ 1

192F 2
π

((2
√

2 sin(2θ[0]) + cos(2θ[0]) − 3)A0 (M2
η )

− (2
√

2 sin(2θ[0]) + cos(2θ[0]) + 3)A0 (M2
η′) + 6A0 (M2

π))] , (B.2)

and the LO kaon mass
○

M2
K is given by

○
M2

K = B(m̂ +ms)

=M2
K [1 + 8M2

K (L5 − 2L8)
F 2
π

+ 1

F 4
π

(8 (4M4
K (2 (L5 − 4L8) (L5 − 2L8) + (C12 +C14 − 3C19 −C31)F 2

π)

+ 2M2
K (F 2

π (L4 − 2L6 + 2 (−C14 +C17 + 3C19)M2
π) + 4M2

πL5 (L5 − 2L8))
−F 2

πM
2
π (2 (L6 + (−C14 +C17 + 3C19)M2

π) −L4)))

+ 1

192F 2
πM

2
K

(sin2(θ[0]) ((3M2
η′ +M2

π)A0 (M2
η′) − 4M2

KA0 (M2
η ))

+
√

2 (2M2
K −M2

π) sin(2θ[0]) (A0 (M2
η′) −A0 (M2

η ))
+ cos2(θ[0]) ((3M2

η +M2
π)A0 (M2

η ) − 4M2
KA0 (M2

η′)))] . (B.3)

In loop contributions, we always use the LO mixing angle

θ[0] = −arctan
⎛
⎜
⎝

2
√

2 (M2
K −M2

π)
3 (1

3 (M2
π − 4M2

K) +M2
η′
)

⎞
⎟
⎠
, (B.4)
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which yields θ[0] = −19.6°. The ratio of the physical kaon and pion decay
constants is given by

FK/Fπ

= 1 + 4 (M2
K −M2

π)L5

F 2
π

+ 1

F 4
π

(8 ((3M4
K + 2M2

πM
2
K − 3M4

π) (L5) 2 + 8 (M4
π −M4

K)L8L5

+2F 2
π (M2

K −M2
π) (C14M

2
K +C17M

2
π)))

+ 1

128π2F 2
π

(2A0 (M2
K) + 3 cos2(θ[0])A0 (M2

η ) + 3 sin2(θ[0])A0 (M2
η′)

−5A0 (M2
π)) (B.5)

In the following, the NNLO expressions for the matrix CA de�ned in
Eq. (5.2) in Sec. 5.1, the kinetic matrix KB and the mass matrixMB de�ned
in Eq. (5.11) are provided. The components of CA are given by

c8 =
32C12 (4M2

K −M2
π)

3F 2
π

, (B.6)

c1 =
32C12 (2M2

K +M2
π)

3F 2
π

, (B.7)

c81 =
64

√
2C12 (M2

π −M2
K)

3F 2
π

. (B.8)

At NNLO, both tree and loop corrections occur. The second-order tree con-
tributions to the kinetic matrix read

δ
(2,tr)
8 = 1

3F 4
π

[8 (2 (8 (2M4
K + 2M2

πM
2
K −M4

π) (L5) 2 + 8 (M4
π − 4M4

K)L8L5

+ (C14 +C17)F 2
π (8M4

K − 8M2
πM

2
K + 3M4

π))
+3F 2

π (2M2
K +M2

π)L4) + 32C12F
2
π (8M4

K − 8M2
πM

2
K + 3M4

π)] , (B.9)

δ
(2,tr)
1 = 1

3F 4
π

[8 (3F 2
π (2M2

K +M2
π)L4 + 16 (M4

K +M2
πM

2
K +M4

π) (L5) 2

− 16 (2M4
K +M4

π)L8L5

+2 (C14 +C17) (4M4
K − 4M2

πM
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K + 3M4

π) + 3L18 (2M2
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π)))
+32C12F

2
π (4M4

K − 4M2
πM

2
K +M2

0 (2M2
K +M2

π) + 3M4
π)] , (B.10)
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δ
(2,tr)
81 = − 1

3F 4
π

[8
√

2 (M2
K −M2

π) (16L5 ((M2
K + 2M2

π)L5 − 2 (M2
K +M2

π)L8)

+F 2
π (8 (C14 +C17)M2

K + 3L18))
+32

√
2C12F

2
π (4M2

K +M2
0 ) (M2

K −M2
π)] , (B.11)

and the loop contributions

δ
(2,lo)
8 = A0 (M2

K)
16π2F 2

π

, δ
(2,lo)
1 = 0, δ

(2,lo)
81 = 0. (B.12)

The second-order tree contributions to the mass matrix are

∆M2
8
(2,tr)

= 1

3F 4
π

[16 (16M6
K (8 (L5 − 2L8)L8 + (3C19 + 2C31)F 2

π)

+ 8M2
πM

4
K (16 (L8) 2 − 3 (3C19 + 2C31)F 2

π) + 4M4
πM

2
K (32L8 (L8 −L5)

+3 (3C19 + 2C31)F 2
π) +M6
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π)L6)] , (B.13)

∆M2
1
(2,tr)

= 1

3F 4
π

[16 (F 2
πΛ2 (2M4

K +M4
π) (L5 − 2L8) + F 2
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+ 24C19F
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6
K + 16C31F

2
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6
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2
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2
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4
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2
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2
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4
K

+ 18C19F
2
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4
πM

2
K + 12C31F

2
πM

4
πM

2
K + 3C19F

2
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6
π + 2C31F

2
πM

6
π

−12F 2
πL25M

4
K + 12F 2

πL25M
2
πM

2
K − 9F 2

πL25M
4
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K +M2

π)v
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2 , (B.14)

∆M2
81

(2,tr)

= − 1

3F 4
π

[16
√

2 (M2
K −M2

π) (2 (4M4
K (8 (L5 − 2L8)L8 + (3C19 + 2C31)F 2
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π (L6 +L7 − 2 (3C19 + 2C31)M2
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K (L5 −L8)L8)
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2
K (2 (L6 +L7) − 3L25) + (3C19 + 2C31)F 2
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4
π)
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πΛ2 (M2
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and the loop corrections are given by

∆M2
8
(2,lo) = 1

576F 2
π

(2
√

2 (8M2
K − 5M2

π) sin(2θ[0]) (A0 (M2
η ) −A0 (M2

η′))

+ (8M2
K − 5M2

π) cos(2θ[0]) (A0 (M2
η ) −A0 (M2

η′))
+ 3 (8M2

K − 3M2
π) (A0 (M2

η ) +A0 (M2
η′))

+6M2
π (3A0 (M2

π) − 2A0 (M2
K))) , (B.16)

∆M2
1
(2,lo) = 1

144F 2
π

(2
√

2 (M2
K −M2

π) sin(2θ[0]) (A0 (M2
η ) −A0 (M2

η′))

+ (M2
K −M2

π) cos(2θ[0]) (A0 (M2
η ) −A0 (M2

η′))
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K (4A0 (M2
K) +A0 (M2
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η′)) + 9M2
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π)) ,
(B.17)

∆M2
81

(2,lo) = 1

576F 2
π
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K −M2

π) sin(2θ[0]) (A0 (M2
η′) −A0 (M2
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√
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η ) +A0 (M2
η′))
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πA0 (M2
π))) . (B.18)

The NNLO expressions for the decay constants of the η-η′ system are
given by

F 8
η = Fπ cos(θ[2]) + 1

3Fπ
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K −M2
π)L5 (

√
2 sin(θ[2]) + 2 cos(θ[2])))

+ cos(θ[2])
48π2F 3

π

[256π2 ((4M4
K + 8M2

πM
2
K − 9M4

π) (L5) 2 + 16 (M4
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K)L8L5

+4 (C14 +C17)F 2
πM

2
K (M2

K −M2
π)) + 3F 2
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K) −A0 (M2
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3F 3

π
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√
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π (−Λ1L5 + 16 (C14 +C17)M2

K + 6L18)

+16L5 ((M2
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π)L5 − 4 (M2
K +M2

π)L8))]

+ C12

3Fπ (4M2
K − 3M2

η′
−M2
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[16 (M2

K −M2
π) (−2 (M2

K −M2
π)M2
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√

2 sin(θ[2]) − 4 cos(θ[2])) + 3
√

2M2
π (M2

π − 2M2
K) sin(θ[2])

+3
√

2M4
η′ sin(θ[2]))] , (B.19)
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F 8
η′ = Fπ sin(θ[2]) − 1

3Fπ
(8 (M2

K −M2
π)L5 (

√
2 cos(θ[2]) − 2 sin(θ[2])))
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3F 3
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√

2 (M2
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K + 6L18)
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π)L8))]
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48π2F 3

π

[256π2 ((4M4
K + 8M2
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2
K − 9M4
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K)L8L5
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πM

2
K (M2

K −M2
π)) + 3F 2

π (A0 (M2
K) −A0 (M2

π))]
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3Fπ

⎡⎢⎢⎢⎢⎣
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⎛
⎝

1

4M2
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π

[
√

2 (M2
K −M2
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K (7M2
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π) + 16M4

K + 3M4
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− sin(θ[2]) (−4M2

K (M2
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π (M2
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π)))] , (B.20)

F 0
η = −

1

6Fπ
[16 (M2

K −M2
π)L5 (sin(θ[2]) +

√
2 cos(θ[2])) + 3F 2
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3F 3

π
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√
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π (−Λ1L5 + 16 (C14 +C17)M2

K
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π
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√
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K −M2
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K (M2
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π))] , (B.21)
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F 0
η′ =

1

6Fπ
[16 (M2

K −M2
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√
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96π2F 3

π

[2 (2π2 (32 (4L5 ((2M4
K + 4M2

πM
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+ F 2
π (M2

π (3 (L18 +L46 +L53) − 8 (C14 +C17)M2
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K

+6 (L18 +L46 +L53)M2
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πA0 (M2
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− sin(θ[2])
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π
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√
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π (−Λ1L5 + 16 (C14 +C17)M2

K

+6 (L18 + 2L46 + 2L53)) + 16L5 ((M2
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+ C12

3Fπ (4M2
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π) cos(θ[2]) (2M2

K −M2
η′))] , (B.22)

in terms of the physical masses M2
π , M

2
K , M

2
η′ and the physical pion decay

constant Fπ. The mixing angle θ[2] is the NNLO mixing angle given in
Eq. (5.33) in Sec. 5.1. In the case where the loop contributions are added to
the NLO results, the parameters of the two-angle scheme can be simpli�ed
to read

F8 = Fπ +
1

48π2Fπ
[256π2 (M2

K −M2
π)L5 + 3A0 (M2

K) − 3A0 (M2
π)] , (B.23)

F0 = Fπ +
1

96π2Fπ
[16π2 (16M2

K (L5 + 3L18) + 8M2
π (3L18 − 2L5) + 3F 2

πΛ1)

−3A0 (M2
K) − 6A0 (M2

π)] , (B.24)

θ8 = θ[2] + arctan(−4
√

2 (M2
K −M2

π) (2L5 + 3L18)
3F 2

π

) , (B.25)

θ0 = θ[2] − arctan(−4
√

2 (M2
K −M2

π) (2L5 + 3L18)
3F 2

π

) . (B.26)

B.2 Anomalous decays

In the case without the Nc expansion of the quark-charge matrix Q, the loop
contributions to the form factors of the two-photon decays given by the loop
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diagrams in Fig. 7.1 read
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= 1
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2 sin(θ[0]) − cos(θ[0])) (q2
2 (− (3B0 (q2

2,M
2
K ,M

2
K)

+3B0 (q2
2,M

2
π ,M

2
π) + 4)) + 3 (4M2

K − q2
1)B0 (q2

1,M
2
K ,M

2
K)

+ 4 (3M2
KB0 (q2

2,M
2
K ,M

2
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Including the Nc expansion of Q, the loop contributions are given by
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Without the Nc expansion of Q, the NNLO tree-level contributions to the η
TFF take the form
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= 2 cos(θ[0])
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where K1 = −16π2(L̃2 + 2L̃3).
The loop contributions to the form factors of the decays η(′) → π+π−γ∗

given by the loop diagrams in Fig. 8.1 read
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3π4F 5
π

[2 cos(θ[0]) (3 (q2 − 4M2
K)B0 (q2,M2

K ,M
2
K)

+ 2 (sππ − 4M2
K)B0 (sππ,M2

K ,M
2
K) + (sππ − 4M2

π)B0 (sππ,M2
π ,M

2
π)

+2A0 (M2
K) + 22A0 (M2

π) + 2 (−10M2
K − 2M2

π + q2 + sππ))
−
√

2 sin(θ[0]) ((sππ − 4M2
K)B0 (sππ,M2

K ,M
2
K) + 2 ((sππ − 4M2

π)
×B0 (sππ,M2

π ,M
2
π) − 2M2

K − 4M2
π + sππ) + 22A0 (M2

K) + 44A0 (M2
π))]
(B.34)
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and

F (η′ → π+π−γ∗)

= 1

768
√

3π4F 5
π

[2 sin(θ[0]) (3 (q2 − 4M2
K)B0 (q2,M2

K ,M
2
K)

+ 2 (sππ − 4M2
K)B0 (sππ,M2

K ,M
2
K) + (sππ − 4M2

π)B0 (sππ,M2
π ,M

2
π)

+2A0 (M2
K) + 22A0 (M2

π) + 2 (−2 (5M2
K +M2

π) + q2 + sππ))
+
√

2 cos(θ[0]) ((sππ − 4M2
K)B0 (sππ,M2

K ,M
2
K) + 2 ((sππ − 4M2

π)
×B0 (sππ,M2

π ,M
2
π) − 2M2

K − 4M2
π + sππ) + 22A0 (M2

K) + 44A0 (M2
π))] .
(B.35)
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Appendix C

Additional parameters

µ [GeV] L5 [10−3] L8 [10−3] Λ̃ L25 [10−3]
NLO I - 1.86±0.06 0.78±0.05 −0.34±0.05 0±0
NLO+Lps I 0.77 1.37±0.06 0.85±0.05 0.52±0.05 0±0
NLO+Lps I 1 0.75±0.06 0.55±0.05 1.09±0.04 0±0
NLO II 0.77 1.20±0.10 0.55±0.20 0.02±0.13 0±0
NLO II 1 0.58±0.10 0.24±0.20 0.41±0.13 0±0
NLO+Lps II 0.77 1.20±0.10 0.55±0.20 1.34±0.13 0±0
NLO+Lps II 1 0.58±0.10 0.24±0.20 1.34±0.13 0±0
NNLO w/o Ci 0.77 1.20±0.10 0.55±0.20 0±0 0.55±0.08
NNLO w/o Ci 1 0.58±0.10 0.24±0.20 0±0 0.50±0.08
NNLO w/ Ci 0.77 1.01±0.06 0.52±0.10 0±0 0.84±0.04
NNLO w/ Ci 1 0.39±0.06 0.21±0.10 0±0 0.80±0.04

Table C.1: Summary of the results for the LECs determined in the numerical
analysis of the η-η′ mixing in Sec. 5.4.



148 Additional parameters

µ [GeV] L4 [10−3] L6 [10−3] L7 [10−3] L18 [10−3]

NLO I - 0±0 0±0 0±0 0±0
NLO+Lps I 0.77 0±0 0±0 0±0 0±0
NLO+Lps I 1 0±0 0±0 0±0 0±0
NLO II 0.77 0±0 0±0 0±0 0±0
NLO II 1 0±0 0±0 0±0 0±0
NLO+Lps II 0.77 0.21±0 0.10±0 0±0 −0.41±0
NLO+Lps II 1 0±0 0±0 0±0 0±0
NNLO w/o Ci 0.77 0.00±0.30 0.04±0.40 0.00±0.20 −0.41±0
NNLO w/o Ci 1 −0.21±0.30 −0.07±0.40 0.00±0.20 0±0
NNLO w/ Ci 0.77 0.30±0 0.18±0.05 0.00±0.09 −0.41±0
NNLO w/ Ci 1 0.09±0 0.07±0.05 0.00±0.09 0±0

Table C.2: Input LECs used in Sec. 5.4.

µ [GeV] C12 [10−3] C14 [10−3] C17 [10−3] C19 [10−3] C31 [10−3]

NLO I - 0±0 0±0 0±0 0±0 0±0
NLO+Lps I 0.77 0±0 0±0 0±0 0±0 0±0
NLO+Lps I 1 0±0 0±0 0±0 0±0 0±0
NLO II 0.77 0±0 0±0 0±0 0±0 0±0
NLO II 1 0±0 0±0 0±0 0±0 0±0
NLO+Lps II 0.77 0±0 0±0 0±0 0±0 0±0
NLO+Lps II 1 0±0 0±0 0±0 0±0 0±0
NNLO w/o Ci 0.77 0±0 0±0 0±0 0±0 0±0
NNLO w/o Ci 1 0±0 0±0 0±0 0±0 0±0
NNLO w/ Ci 0.77 −0.33±0 −0.12±0 −0.12±0 −0.47±0 0.24±0
NNLO w/ Ci 1 −0.33±0 −0.12±0 −0.12±0 −0.47±0 0.24±0

Table C.3: Input LECs used in Sec. 5.4 in GeV−2.
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qmax [GeV] Aη Bη [GeV−2] Cη [GeV−4]

Full 0.47 −0.17±0.02 2.16±0.18 11.57± 1.46
Full 0.40 −0.17±0.02 2.44±0.23 8.37± 2.21
Full 0.35 −0.17±0.02 2.46±0.32 8.01± 3.91

Full Qexp 0.47 0.66±0.02 2.23±0.18 11.65± 1.46
Full Qexp 0.40 0.66±0.02 2.51±0.23 8.44± 2.21
Full Qexp 0.35 0.66±0.02 2.53±0.32 8.09± 3.91
W/O loops 0.47 −0.17±0.02 2.84±0.17 12.30± 1.44
W/O loops 0.40 −0.17±0.02 3.06±0.23 9.75± 2.21
W/O loops 0.35 −0.17±0.02 3.02±0.32 10.31± 3.90

W/O loops Qexp 0.47 0.66±0.02 2.84±0.17 12.30± 1.44
W/O loops Qexp 0.40 0.66±0.02 3.06±0.23 9.75± 2.21
W/O loops Qexp 0.35 0.66±0.02 3.02±0.32 10.31± 3.90

Cp=0 0.47 −0.17±0.03 3.41±0.12 0± 0
Cp=0 0.40 −0.17±0.03 3.24±0.11 0± 0
Cp=0 0.35 −0.17±0.03 3.08±0.11 0± 0

Cp=0 Qexp 0.47 0.66±0.03 3.49±0.12 0± 0
Cp=0 Qexp 0.40 0.66±0.03 3.32±0.11 0± 0
Cp=0 Qexp 0.35 0.66±0.03 3.16±0.11 0± 0

W/O loops Cp=0 0.47 −0.17±0.03 4.17±0.13 0± 0
W/O loops Cp=0 0.40 −0.17±0.03 4.00±0.11 0± 0
W/O loops Cp=0 0.35 −0.17±0.03 3.82±0.11 0± 0

W/O loops Cp=0 Qexp 0.47 0.66±0.03 4.17±0.13 0± 0
W/O loops Cp=0 Qexp 0.40 0.66±0.03 4.00±0.11 0± 0
W/O loops Cp=0 Qexp 0.35 0.66±0.03 3.82±0.11 0± 0

Table C.4: Fit parameters for the η TFF determined in Sec. 7.2.2.
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Fit Aη′ Bη′ [GeV−2] Cη′ [GeV−4]
Full I −0.06±0.02 1.08±0.18 1.18± 0.37
Full II −0.06±0.01 0.95±0.16 0.92± 0.33
Full III −0.06±0.01 1.12±0.11 2.89± 0.50
Full IV −0.06±0.01 1.04±0.11 2.43± 0.51

Full Qexp I −0.29±0.02 1.07±0.18 1.17± 0.37
Full Qexp II −0.29±0.01 0.95±0.16 0.91± 0.33
Full Qexp III −0.29±0.01 1.11±0.11 2.89± 0.50
Full Qexp IV −0.29±0.01 1.03±0.11 2.42± 0.51
W/O loops I −0.06±0.02 1.23±0.18 1.30± 0.37
W/O loops II −0.06±0.01 1.10±0.16 1.04± 0.33
W/O loops III −0.06±0.01 1.27±0.11 3.03± 0.48
W/O loops IV −0.06±0.01 1.19±0.11 2.59± 0.50

W/O loops Qexp I −0.29±0.02 1.23±0.18 1.30± 0.37
W/O loops Qexp II −0.29±0.01 1.10±0.16 1.04± 0.33
W/O loops Qexp III −0.29±0.01 1.27±0.11 3.03± 0.48
W/O loops Qexp IV −0.29±0.01 1.19±0.11 2.59± 0.50

Cp=0 I −0.06±0.02 0.55±0.10 0± 0
Cp=0 II −0.06±0.02 0.54±0.08 0± 0
Cp=0 III −0.06±0.02 0.78±0.21 0± 0
Cp=0 IV −0.06±0.02 0.72±0.17 0± 0

Cp=0 Qexp I −0.29±0.02 0.54±0.10 0± 0
Cp=0 Qexp II −0.29±0.02 0.53±0.08 0± 0
Cp=0 Qexp III −0.29±0.02 0.77±0.21 0± 0
Cp=0 Qexp IV −0.29±0.02 0.71±0.17 0± 0

W/O loops Cp=0 I −0.06±0.02 0.64±0.10 0± 0
W/O loops Cp=0 II −0.06±0.02 0.63±0.09 0± 0
W/O loops Cp=0 III −0.06±0.02 0.91±0.22 0± 0
W/O loops Cp=0 IV −0.06±0.02 0.85±0.18 0± 0

W/O loops Cp=0 Qexp I −0.29±0.02 0.64±0.10 0± 0
W/O loops Cp=0 Qexp II −0.29±0.02 0.63±0.09 0± 0
W/O loops Cp=0 Qexp III −0.29±0.02 0.91±0.22 0± 0
W/O loops Cp=0 Qexp IV −0.29±0.02 0.85±0.18 0± 0

Table C.5: Fit parameters for the η′ TFF determined in Sec. 7.2.2. The �t
ranges are: −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I), −0.53 GeV2 ≤ q2 ≤ 0.40 GeV2

(II), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (III), −0.50 GeV2 ≤ q2 ≤ 0.40 GeV2 (IV).
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Aη [1010] bη cη [GeV−2] dη [GeV−4]
Full 1.29±0.05 0.09±0.17 −4.60±2.13 34.35±6.35

W/O loops 1.45±0.07 −0.01±0.17 −3.30±2.02 31.49±6.01
dp=0 1.28±0.07 −2.03±0.06 −8.41±0.41 0±0

dp=0 w/o loops 1.43±0.09 −0.84±0.06 7.24±0.41 0±0

Table C.6: Fit parameters for the η spectrum at NNLO determined in
Sec. 8.2.

Aη′ [106] bη′ cη′ [GeV−2] dη′ [GeV−4]
Full I −48.57±16.05 −0.59±0.49 −3.20±4.11 4.77±8.76
Full II −45.34±4.93 −0.34±0.23 −5.05±1.70 7.84±2.90
Full III −44.38±14.19 −1.31±0.11 1.32±0.75 −2.59±0.92
dp=0 I −47.21±6.75 −1.19±0.07 0.20±0.31 0±0
dp=0 II −45.03±5.37 −0.88±0.05 −0.80±0.17 0±0
dp=0 III −42.57±4.43 −0.85±0.03 −0.89±0.08 0±0

Table C.7: Fit parameters for the η′ spectrum at NNLO including loops
determined in Sec. 8.2.

Ãη′ [105] c̃η′ [GeV−2] d̃η′ [GeV−4]
W/O loops I −19.06±28.20 −5.93±1.14 12.73±1.67
W/O loops II −11.27±10.94 −5.27±0.70 11.75±1.35
W/O loops III −7.53±4.04 −4.88±0.27 11.73±1.35

dp=0 w/o loops I −0.01±0.13 50.58±325.28 0±0
dp=0 w/o loops II −0.28±0.52 −14.14±10.36 0±0
dp=0 w/o loops III −3.78±1.80 −5.98±0.86 0±0

Table C.8: Fit parameters for the η′ spectrum at NNLO without loops de-
termined in Sec. 8.2.
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Appendix D

Additional plots
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Figure D.1: η TFF �tted up to 0.47 GeV. The red line is the full NNLO calcu-
lation, the green line the NNLO result without loops. The blue lines coincide
and are the NNLO results with Cη = 0 including loops (dark blue) and with-
out loops (light blue). The experimental data are taken from Refs. [Arn+ 09]
(▲), [Ber+ 11] (◻), [Agu+ 14] (∎), [Arn+ 16] (⧫).
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Figure D.2: η′ TFF �tted between −0.53 GeV2 and 0.43 GeV2. The red line
is the full NNLO calculation and the green line the NNLO result without
loops. The blue lines are the NNLO results with Cη′ = 0 including loops
(dark blue) and without loops (light blue). The time-like data are taken
from Ref. [Abl+ 15] (●) and the space-like data from Ref. [Acc+ 98] (▲).
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Figure D.3: Invariant-mass spectrum of the π+π− system in η′ → π+π−γ at
NNLO with dη′ = 0 �tted up to 0.59 GeV (left), 0.64 GeV (middle), 0.72 GeV
(right) including the 1σ error bands. The experimental data are taken from
Ref. [Abe+ 97].
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Figure D.4: Upper-left plot: Invariant-mass spectrum of the π+π− system in
η′ → π+π−γ at NNLO �tted up to 0.59 GeV (dash-dotted), 0.64 GeV (dashed),
0.72 GeV (solid). Upper-right plot: 1σ error band for the �t up to 0.59 GeV.
Lower-left plot: 1σ error band for the �t up to 0.64 GeV. Lower-right plot:
1σ error band for the �t up to 0.72 GeV. The experimental data are taken
from Ref. [Abe+ 97].
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Figure D.5: Invariant-mass spectra of the π+π− system at LO (gray), NLO
with c14 = 0 (blue), and LO with loops added (purple).
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Figure D.6: Invariant-mass spectra of the l+l− system at LO (gray), NLO
with c14 = 0 (blue), and LO with loops added (purple).
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