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Zusammenfassung

In dieser Arbeit befassen wir uns mit der Adsorption und dem Ablöseverhalten von Po-

lymeren auf planaren, festen Oberflächen. Dazu wurden sowohl systematische analyti-

sche Untersuchungen, als auch detaillierte Monte-Carlo Simulationen durchgeführt. Für

die Darstellung der Polymere verwendeten wir Kugel-Feder-Modelle. Zunächst wurde

die Adsorption von einzelnen AB Multiblock-Copolymere auf festen Oberflächen mit-

tels Skalenanalysen und Simulationen untersucht. Dabei konnte schlüssig gezeigt wer-

den, dass dieses Problem auf die Adsorption entsprechendes Homopolymere abgebildet

werden konnte. Somit konnte das Phasendiagramm berechnet und durch Simulatio-

nen bestätigt werden. Eine wichtige und neue Vorhersage war dabei das gegenläufige

Verhalten von Blocklänge und kritischem Absorptionspotenzial. In diesem Zusammen-

hang wurden auch die Adsorption von Zufallscopolymeren untersucht. Deren Verhalten

lässt sich mittels einer
”
annealed disorder approximation “verstehen. Auch dies konnte

mit MC Simulationen gezeigt werden. Im nächsten Schritt wurde die Adsorptionski-

netik detailliert betrachtet. Auf den Fall der
”
starken Adsorption “(Physiosorption)

wurde dabei besonderes Augenmerk gelegt. Das physikalisch intuitive und durch Ska-

lenargumente unterstrichene Strukturbild der sogenannten
”
stem-flower “(ein Teil der

Polymerkette ist gestreckt, der restliche nicht) konnte sowohl mit der Herleitung und

Lösung einer Fokker-Planck-Gleichung mit reflektierenden Randbedingungen, als auch

mit de parallel dazu durchgeführten MC Simulationen bestätigt werden. Im Detail

wurden dazu die zugehörigen Verteilungsfunktionen berechnet und durch Simulatio-

nen verglichen. Im dritten Teil der Arbeit wurde die Desorption der Polymere unter

einer extern angelegten Kraft untersucht. Diese physikalischen Modelle sind vor allem

für Experimente von gewisser Relevanz. Dabei zeigte sich, dass im Detail zwei ver-

schiedene Ensembles wesentlich sind: kontante Kraft und fluktuierenden Höhe, sowie

konstante Höhe fluktuierende Kraft, die sich mittels grokanonischen Theorien behan-

deln lassen. Dabei ist das Phasendiagramm eines adsorbierten Polymers unter einer

konstanten Kraft auf einen neuartigen, dichotome Phasenübergang geführt worden, al-

so einen Phasenübergang ohne Koexistenz. Im andern Fall, konstanter Abstand wurde

das Phasendiagramm h− ǫ explizit berechnet und durch Simulationen bestätigt. Dabei

konnte auch explizit gezeigt werden, dass sich in der Nähe des Desorptions übergangs

die Fluktuationen in beiden Ensembles vollkommen verschieden verhalten.





Abstract

This thesis is concerned with the adsorption and detachment of polymers at planar,

rigid surfaces. We have carried out a systematic investigation of adsorption of polymers

using analytical techniques as well as Monte Carlo simulations with a coarse grained

off-lattice bead spring model. The investigation was carried out in three stages. In

the first stage the adsorption of a single multiblock AB copolymer on a solid surface

was investigated by means of simulations and scaling analysis. It was shown that the

problem could be mapped onto an effective homopolymer problem. Our main result

was the phase diagram of regular multiblock copolymers which shows an increase in

the critical adsorption potential of the substrate with decreasing size of blocks. We

also considered the adsorption of random copolymers which was found to be well de-

scribed within the annealed disorder approximation. In the next phase, we studied the

adsorption kinetics of a single polymer on a flat, structureless surface in the regime of

strong physisorption. The idea of a “stem-flower” polymer conformation and the mech-

anism of “zipping” during the adsorption process were used to derive a Fokker-Planck

equation with reflecting boundary conditions for the time dependent probability distri-

bution function (PDF) of the number of adsorbed monomers. The numerical solution of

the time-dependent PDF obtained from a discrete set of coupled differential equations

were shown to be in perfect agreement with Monte Carlo simulation results. Finally

we studied force induced desorption of a polymer chain adsorbed on an attractive sur-

face. We approached the problem within the framework of two different statistical

ensembles; (i) by keeping the pulling force fixed while measuring the position of the

polymer chain end, and (ii) by measuring the force necessary to keep the chain end

at fixed distance above the adsorbing plane. In the first case we treated the problem

within the framework of the Grand Canonical Ensemble approach and derived analytic

expressions for the various conformational building blocks, characterizing the structure

of an adsorbed linear polymer chain, subject to pulling force of fixed strength. The

main result was the phase diagram of a polymer chain under pulling. We demonstrated

a novel first order phase transformation which is dichotomic i.e. phase coexistence is

not possible. In the second case, we carried out our study in the fixed height statistical

ensemble where one measures the fluctuating force, exerted by the chain on the last

monomer when a chain end is kept fixed at height h over the solid plane at different

adsorption strengths. The phase diagram in the h− ǫ plane was calculated both ana-

lytically and by Monte Carlo simulations. We demonstrated that in the vicinity of the

polymer desorption transition a number of proprties like fluctuations and probability

distribution of various quantities behave differently, if h rather than f is used as an

independent control parameter.
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Chapter 1

Introduction

Polymer science has had a major impact on the way we live. People have used naturally

occurring polymers such as shellac and amber for centuries without realizing their

“polymeric” nature. Macromolecules such as nucleic acids and proteins play a crucial

role in many biological processes [3]. Synthetic polymers are now ubiquitous in every

sphere of modern life and are the basis of a burgeoning industry. Applications extend

from adhesives, coatings, foams, and packaging materials to textile and industrial fibers,

composites, electronic devices, biomedical devices, optical devices, and precursors for

many newly developed high-tech ceramics.

In the middle of the nineteenth century, chemists started synthesizing polymeric

substances but a proper understanding of the molecular structure was lacking until the

work of Staudinger in the 1920s. Staudinger was the first to propose that polymers

consisted of long chains of atoms held together by covalent bonds. There was an

explosion of research in material sciences in the latter half of 20th century and polymer

science was no exception. Kuhn, Flory, Huggins, Stockmayer and others developed the

theories describing macromolecular sizes, self-avoidance and excluded volume effects,

thermodynamics of mixing, polymer solutions etc. Rouse and Zimm developed the

theories of the dynamics of single molecules. Subsequently Edwards, de Gennes, des

Cloizeaux and others developed the modern principles of polymer physics. Today,

polymer physics is a vast body of knowledge with challenging open problems both at

the theoretical and the experimental ends.

A polymer is a giant molecule (macromolecule) made up of covalently bonded ele-

mentary units called monomers. The number of monomers in a molecule is called the

degree of polymerization N . Macromolecules with only one type of repeating units are

called homopolymers.

Polymers that contain different types of monomers are called heteropolymers. The

properties of a heteropolymer is affected by the composition as well as the sequence of

the monomers. Depending on the sequence, copolymers are classified as alternating,
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Figure 1.1: Different types of copolymers

random, block or graft. An important feature influencing the properties of a polymer

is the architecture. Apart from single linear chains, polymers may have complex forms

such as ring, star-branched, comb, ladder, dendrimer or randomly branched.

(a) (b) (c)

(d)
(e)

Figure 1.2: Different polymer topologies: (a) star polymer, (b) comb polymer, (c) ring

polymer, (d) polymer network, (e) polymer brush

Another important property of a polymer is its configuration or spatial struc-

ture. The conformation of a polymer depends on its flexibility, the interaction of the

monomers on the chain and the interaction of the monomers with the surroundings.

Polymer systems can exist in many different macroscopic states. For instance, polymer

liquids may exist as polymer melts or polymer solutions. If a polymer melt is cooled, it
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can transform into a semicrystalline solid below its melting temperature or into a poly-

meric glass below its glass transition temperature. Polymer solutions may be classified

as dilute or semidilute depending on the volume fractions of the polymer and solvent.

The properties of a polymer depend strongly on the nature of the solvent. A solvent is

referred to as ’good’ if a polymer dissolves easily in it. The chain swells to maximize

the number of polymer-fluid contacts. This gives rise to effective repulsive interactions

between monomers and the chain assumes an expanded form. On the other hand, in a

’poor’ solvent, the effective interaction between the beads is attractive and the polymer

collapses to form a globule of high density. In between these two solvent conditions is

the Θ regime which corresponds to a cancellation between the steric repulsion and the

van der Waals attraction between the monomers. In a Θ solvent, a polymer behaves

as an ideal chain. The quality of solvent depends also on temperature. For a flexible

polymer, low temperature may correspond to poor quality and high temperature makes

the same solvent good.

The adsorption of polymers on surfaces plays an important role in many industrial

applications such as the stabilization of colloids, adhesion and chromatography [63, 75,

33]. Scientifically, the interplay of entropic and enthalpic effects lead to a rich variety

of interesting static and dynamic phenomena. In addition to experimental techniques,

theoretical models and computer simulations provide valuable insight into the subject

[33, 14, 28]. The adsorption of polymers at an impenetrable surface has been an active

field of research for over four decades. Consequently, the equilibrium properties of

adsorption of homopolymers is now considered to be well understood. There are many

open problems in this field. The adsorption of heteropolymers is one of the challenging

issues. Recent advances in experimental techniques such as atomic force microscopy

(AFM) and optical/magnetic tweezers which allow one to manipulate single polymer

chains have triggered interest in the properties of single polymer chains at surfaces.

The aim of this research is to explore some aspects of adsorption of polymers such as

the adhesion of block copolymers and the force induced desorption of a polymer chain

from a surface. The thesis is organized as follows:

• Chapter 2 gives an introduction to the theoretical concepts used to describe

polymers. We begin with a description of an ideal polymer chain as a random

walk. And then we describe real polymer chains and excluded volume effects. We

discuss scaling aspects and the blob picture with regard to adsorption on rigid

surfaces. We consider the force-extension relation of a real chain under tension

and finally we briefly discuss the importance of computer simulations in the field

of polymer physics.

• In Chapter 3 we present the simulation techniques that have been used in this

study. We have carried out Monte Carlo simulations using a coarse grained ,off-
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lattice, bead spring model. In this chapter, we give some general information

about the model used. However, since the implementation of this method is

different for each particular case we have studied, in each chapter we give a brief

description of how the method has been adapted.

• Chapter 4 deals with the adsorption of regular multi-block and random copoly-

mers at a rigid, flat surface. We are concerned with the case of a single polymer

tethered at one end to a rigid substrate. Our system consists of copolymers

composed of two kinds of monomers: type ’A’ monomers which are attracted to

the surface and experience an adsorption energy ǫ and type ’B’ monomers which

are neutral to the substrate. We have investigated the adsorption of regular

multi-block copolymers by means of computer simulations and scaling analysis.

In this chapter, we present a brief review of the scaling aspects of homopolymer

adsorption before taking up the issue of block copolymers. We describe how the

problem can be mapped onto an effective homopolymer adsorption problem. We

are particularly interested in the critical adsorption point (CAP). We have dis-

cussed in detail, the methods used to locate the CAP and scaling behaviour of

several quantities above, below and at the CAP. In particular we discuss how the

critical adsorption energy and the fraction of adsorbed monomers depend on the

block length M of sticking monomers A, and on the total length N of the polymer

chains. The primary result of the study presented in this Chapter is the phase

diagram of regular multiblock adsorption which gives the increase of the critical

adsorption potential ǫMc with decreasing length M of the adsorbing blocks. We

also briefly discuss the adsorption of the random copolymers and show that the

system is well described within the framework of the annealed approximation.

Special interest has been paid to the determination of the so called crossover

exponent φ which is known to govern the fraction of adsorbed monomers at the

CAP. Our results show that the crossover exponent is unchanged for multi-block

and random copolymers. Thus the universality class of the adsorption transition

of a heteropolymer is the same as that of a homopolymer. In this chapter, we

confine ourselves to the equilibrium aspects of adsorption phenomena.

• In Chapter 5, we turn our attention to the kinetics of adsorption. There are two

broad classes of adsorption described in literature: chemisorption and physisorp-

tion. Chemisorption is characterized by a small monomer sticking rate, usually

due to a large activation barrier and generally

occurs due to covalent bonds between the monomers and the surface. We examine

the adsorption kinetics of a single polymer chain on a flat surface in the strong

physisorption regime. Based on the idea of a “stem-flower” polymer conform-
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ation, and assuming that the segment attachment process follows a “zipping”

mechanism, we develop a scaling theory which describes the time evolution of

the fraction of adsorbed monomers for polymer chains of arbitrary length N at

adsorption strength of the surface ǫ/kBT . We derive a Master Equation as well

as the corresponding Fokker-Planck equation for the time-dependent probability

distribution function (PDF) of the number of adsorbed monomers and for the

complementary PDF of tails with appropriate reflecting boundary conditions.

We have used a kinetic Monte Carlo algorithm to study the system. The MC

results are then compared to the theoretical predictions. Our focus is primarily

on homopolymers although we briefly discuss the case of regular multiblock and

random copolymers.

• In Chapter 6 we consider the force induced desorption of a polymer in contact

with an attractive substrate. This study is motivated by single macromolecule

experiments which involve the manipulation of individual polymer chains and

biological macromolecules such as proteins and DNA. The system consists of a

tethered homopolymer chain adsorbing at a flat surface with an external pulling

force applied at its free end in the direction perpendicular to the surface. Once

again, we have carried out extensive Monte Carlo simulations to probe the system.

There is a close analogy between the forced detachment of an adsorbed polymer

chain adhering to a solid surface , when the chain is pulled by the end monomer,

and the unzipping of homogeneous double-stranded DNA. We use the analogy to

treat the system within a Grand Canonical Ensemble (GCE) approach as pre-

viously done for the case of DNA unzipping. We derive theoretical expressions

for the mean size of loops, trains, and tails of an adsorbed chain under pulling

as well as values for the universal exponents which describe their probability dis-

tribution functions. We present the adsorption-desorption phase diagram of a

polymer chain under pulling and demonstrate that the relevant phase transform-

ation becomes first order. This is in contrast to the case of adsorptive transition

in the absence of any external force where it is known to be a continuous one. In

this chapter, we carry out our investigations in the “fixed force”- ensemble.

• In Chapter 7 we consider the detachment of a polymer chain at an attractive

surface by an external force applied to a free end. However, in contrast to Chapter

6, our investigations are carried out in the “constant height ensemble”. In many

experiments using Atomic Force Microscopes (AFM), it is customary to anchor

a polymer molecule at one end to a substrate while the other end is fixed to

the cantilever. It is common to prescribe the height of the cantilever from the

surface and to measure the corresponding force. In this chapter, we discuss the
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adsorption-desorption of a single self-avoiding polymer chain keeping the distance

h between the free end of the chain and the surface fixed as a control parameter.

The phase diagram in the ǫ − h plane is obtained analytically as well as by

Monte Carlo simulations. We demonstrate that in the vicinity of the desorption

transition, many properties are different if h is used as the control parameter

instead of the force f .

• Finally, the conclusions are drawn in Chapter 9.
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Chapter 2

Basic Concepts in Polymer Physics

2.1 The Ideal Chain

We begin with a description of a polymer as an ideal chain in which there are no

interactions between monomers far apart on the chain [39]. This situation is rare for

real chains in which monomers interact with the solvent and with other monomers. The

relative strength of these interactions determine if the monomers effectively attract or

repel each other. At low temperatures, the effective interaction between monomers is

attractive and the chain collapses into a globule. At high temperatures the chain swells

due to the dominance of repulsive interaction. At a special intermediate temperature

called the Θ temperature, the chains assume ideal conformation due to cancellation of

repulsive and attractive parts of monomer-monomer interactions.

The starting point of the description of an ideal chain is a random walk [90].

Assuming there is no correlation between the directions of the bonds of the chain, and

if all directions have the same probability, an ideal chain chain may be considered as

a random walk on a lattice. A simple random walk (RW) is a succession of N steps

starting from one lattice point and reaching another arbitrary point on the lattice.

A step is considered to be a jump from a lattice site to a randomly chosen nearest

neighbour. The statistical weight of all possible jumps to nearest neighbours are equal.

To calculate the entropy, one needs to calculate the total number of distinct walks Z(r)

starting from r = 0 and ending at a latice point r in N steps. The total number of

Z(r) is

ZN(tot) =
∑

Z(r) = zN

where z is the number of nearest neighbours on a lattice. The entropy is S(r) =

kB ln (Z(r)) where kB is the Boltzmann constant.

Another simple model of an ideal polymer is the freely jointed chain model in which

the chain consists of N bonds each of length a and no correlations between the bond
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vectors. Since the bond vector can point in any direction, it is an off-lattice model.

The basic quantity characterizing the spatial size of a polymer is the root-mean square

(rms) end-to-end distance. If rn is the nth bond vector , we have

Re =

N
∑

n=1

rn

Now 〈Re〉 = 0.

〈R2
e〉 =

N
∑

n=1

N
∑

m=1

〈rn.rm〉 (2.1)

Since 〈rn.rm〉 = 〈rn〉.〈rm〉 = δn,ma
2, we have

〈R2
e〉 = Na2. (2.2)

Therefore, the root mean square end-to-end distance is proportional to N1/2 for an ideal

chain. The spatial size of the chain is not given by the contour length which is propor-

tional to N , but by Re which is proportional to N1/2. This implies that the probability

of a freely jointed chain to assume a stretched conformation is very small. The chain

is coiled in thermal equilibrium to maximize entropy. It is pertinent to mention that

the only relevant macroscopic length scale of a polymer is the rms end-to-end distance.

All other measures of size such as the radius of gyration and the hydrodynamic radius

are directly proportional to Re and differ only in the proportionality constant. The

radius of gyration is given by

Rg =

(

1

2N

N
∑

n.m=1

〈|Rn −Rm|2〉
)1/2

=

(

1

N

N
∑

n=1

〈|RCM − Rn|2〉
)1/2

(2.3)

where RCM denotes the centre of mass of the chain. It can be measured by small angle

neutron scattering or light scattering [72]. For an ideal chain, the radius of gyration

is related to the rms end-to-end distance as

R2
g = R2

e/6

Another important feature of a polymer is its flexibility. In a freely jointed chain,

there is no correlation between the orientations of bonds, which causes the chain to

be very flexible. In more complicated models of polymers, the intrinsic stiffness is

determined by the orientational correlations along the backbone of the chain. These

correlations are usually short ranged and decouple on a length scale called the per-

sistence length lp of the chain. If the persistence length is much smaller than the size

of the chain, the chain appears to be flexible. All sufficiently long polymer chains are

flexible because of their length. Persistence lengths of real polymers can vary greatly.
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A simple flexible polystyrene chain can have lp ≃ 1.0 − 1.4nm which corresponds to 4

or 5 chain bonds. A double helix DNA can have lp ≃ 50 nm corresponding to 150 base

pairs [39].

The statistical distribution of the end-to-end vector of an ideal chain is Gaussian

and is given by

Pn(Re) =
(

2πNa2/3
)−3/2

exp (−3R2
e/2Na

2) (2.4)

Therefore the ideal chain is also called the Gaussian chain. The distance between any

two not-so-close points on an ideal chain obeys the Gaussian distribution.

The Gaussian chain has a single macroscopic spatial scale. As mentioned earlier,

the radius of gyration, the hydrodynamic radius and the rms end-to-end distance are

of the same order of magnitude.

The entropy of a Gaussian chain is defined as follows

S(Re) = kB ln(P (Re)) + S0 = −3kBR
2
e

2Na2
+ S0

where S0 is a constant. Typically we are interested in the change in entropy. There-

fore the constant S0 is trivial. The corresponding free energy is a quadratic function

of the rms end-to-end distance.

F =
3kBTR

2
e

2Na2
(2.5)

This implies that there is a linear relationship between the force and the rms end-to-

end vector , i.e. the chain behaves as a spring with a restoring force f(Re) that is

entropic in origin.

|f(Re)| = T
dS(Re)

dRe
=

3kBTRe

Na2

for |Re| ≪ Na. The chain acts as an entropic spring with spring constant 3kBT/Na
2.

Now, in all ideal chain models, the statistical properties of the chain do not depend

on the specifics of the model for large N . Therefore , to study the properties of an

ideal chain, it is convenient to use a model that is mathematically tractable [26] .

The simplest is the Gaussian model in which the bond vector is flexible and follows a

Gaussian distribution

p(r) =
(

3/2πa2
)3/2

exp (−3r2/2a2)

. The Gaussian equivalent chain has N links each of average length a. If the position of

the nth segment is Rn and the nth bond vector is rn, the conformational distribution

function of the Gaussian chain is

P ({rn}) =

N
∏

n=1

(

3

2πa2

)3/2

exp

(

−3(Rn −Rn−1)
2

2a2

)

=

(

3

2πa2

)3N/2

exp

(

N
∑

n=1

−3(Rn − Rn−1)
2

2a2

)

(2.6)
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Such a model is microscopically unrealistic but can reproduce macroscopic properties

quite well. The Gaussian chain is often represented as a mechanical model of N + 1

beads connected by N harmonic springs. The energy of the chain is

U =
1

2
k

N
∑

n=1

(Rn − Rn−1)
2 (2.7)

where the spring constant k = 3kBT/a
2. The equilibrium distribution of the rms

end-to-end distance is the same as Eq. 2.4.

It is illuminating to take the continuous chain limit

Rn −Rn−1 → ∂R(n)

∂n
N
∑

n=1

→
∫ N

0

dn

In the continuous limit the probability of the chain configuration is represented as

P [R(n)]δR(n) ∝ D[R(n)] exp

(

− 3

2a2

∫ N

0

dn

(

∂R(n)

∂n

)2
)

This is called a Wiener distribution [34]. In this formalism, some path integrals can

be calculated efficiently using familiar means.

2.2 “Real” Chains (SAW)

We now turn to the case of real polymers in which the interactions bet ween monomers

separated by many bonds along the chain are no longer ignored. Typically, the inter-

action between two monomers involve a hard-core barrier corresponding to the energy

cost of steric repulsion between two overlapping monomers and long-range attractions.

In the previous section we mentioned that an ideal polymer can be modelled as a ran-

dom walk on a lattice. This model allows the chain to loop back on itself i.e. permits

intersections. This is physically impossible in a real polymer. Hence a corresponding

lattice model of a real polymer would have an additional condition preventing two

monomers from occupying the same lattice site. This is called a self-avoiding walk

or SAW. In general, this kind of a condition is called ’excluded volume effect’. The

mathematical properties of SAWs are complex and requires numerical techniques. The

total number of SAWs of N steps has the asymptotic form

ZN (tot) ∝ µNNγ−1 (2.8)

This can be compared to the random walk 2.1. The factor µ depends on the lattice

and dimensionality. The exponent γ depends only on the dimensionality d and is ,
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hence, a universal exponent. For three dimensional lattices γ = γ3 ≃ 7/6. The rms

end-to-end distance Re scales as

Re ≡ aNν (2.9)

where ν is another universal exponent depending only on the dimension. For d = 3 ,

ν ≃ 3/5.This corresponds to swelling of the chain in good solvents.

In order to deal with interactions , it is convenient to consider the canonical partition

function.

Z =

∫

D[R(n)] exp−βH(R(n)) (2.10)

where β = 1/kBT . The Hamiltonian, H0 for a non-interacting polymer chain is given

by

βH0 =
3

2a

∫ N

0

dn

(

∂R

∂n

)2

To model good solvent conditions, it is sufficient to introduce a repulsive two-

body interaction. In the simplest case this can be done by means of a point contact

interaction

βHint =
v

2

∫ N

0

dn

∫ N

0

dmδ(R(n) −R(m))

The interaction constant v which determines the strength of interaction is given by

v = a3

(

1 − Θ

T

)

≡ a3τ

where a3 is the volume of one segment and Θ is the temperature at which v vanishes.

τ is the reduced temperature. H = H0 + Hint is called the Edwards Hamiltonian. In

order to model poor solvent conditions a three-body interaction has to be introduced.

The conformations of a real chain in an athermal or a good solvent are determined

by a balance of the effective repulsive excluded volume interaction and the elastic energy

arising from entropic effects tending to shrink the polymer. The essence of this balance

can be illustrated by the Flory theory th at uses rough estimates for the energetic and

entropic effects to the free energy. We recall that in the absence of interactions, the

free energy of an ideal polymer chain is given by

F (Re) = kBT
3R2

e

2Na2

The Flory theory assumes that the monomers are uniformly distributed in the

volume R3
e without correlations. Hence the probability of a second monomer being

within the excluded volume of a given monomer is the product of the excluded volume

v and the density of monomers in the chain N/R3
e . The energetic cost of being excluded

from this volume is kBT per exclusion or vkBTN/R
3
e per monomer. Hence the energy

cost is

Fint ≃
1

2
vkBT

N2

R3
e

.

11



Chapter 2. Basic Concepts in Polymer Physics

Thus the free energy of a real chain in the Flory approximation is

βF (Re) ≃ kBT
3R2

e

2Na2
+

1

2
vkBT

N2

R3
e

. (2.11)

Minimization of F with respect to Re gives ν ∼ 3/5 which is very close to the value

obtained from more sophisticated techniques such as perturbative methods, Renormal-

ization group calculations and simulations. The current estimation of ν is 0.588±0.001

based on renormalization group calculations and simulations [54].

2.3 Polymer dynamics

The first successful molecular model of polymer dynamics was the Rouse model. A

polymer chain in the Rouse model is represented a N beads connected by springs of

rms size a in a freely draining solvent. The beads interact with each other only via the

springs. Each bead has a friction coefficient ζ . The total friction of the chain is the

sum of the individual contributions of the beads.

ζR = Nζ

The viscous drag experienced by the chain if it is pulled with a velocity v is f = −NζRv

as per Stokes’ law. The diffusion coefficient of the Rouse chain is given by Einstein

relation

DR =
kBT

ζR

The polymer diffuses a distance of the order of its size during a characteristic time

called the Rouse time τR given by

τR ≃ R2

DR
≃ ζNR2

kBT
(2.12)

where R is the size of the chain. On time scales shorter than the Rouse time, the chain

exhibits viscoelastic modes. But on longer time scales the chain is diffusive. Since

R ≃ aNν , we can define a monomer relaxation time τ0 ≃ ζa2/kBT so that

τR ≃ τ0N
1+2ν

Here τ0 is the timescale of individual motion of monomers. At time scales smaller

than τ0, the chain essentially does not move and exhibits elastic response. For τ0 <

t < τR, the chain exhibits viscoelastic response. When a particle moves through a

fluid, it drags some of the solvent around it. The long range force acting on the solvent

and other particles arising from the motion of one particle is called the hydrodynamic

interaction. The Rouse model ignores hydrodynamic interaction of the beads. This

issue is addressed in the Zimm model a discussion of which can be found in [26].

12



2.4. Adsorption and Scaling

2.4 Adsorption and Scaling

A scaling theory is often the first step in understanding universal properties of polymers.

In order to make a scaling analysis, it is necessary to first identify the macroscopically

relevant length scales. The observables are then written as dimensionless combinations

of these variables. Since this thesis is primarily concerned with adsorption of polymers

on rigid surfaces, let us see how scaling laws can be applied to this particular system.

In the presence of an attractive surface, the properties of a polymer solution are

very different from the bulk. Consider a polymer in a dilute solution near a weakly

attractive surface. Let −ǫkBT be the energy gain for a monomer in contact with the

surface. The chain would like to increase the number of surface contacts. But this

results to a loss of conformational entropy due to confinement at the surface. If the

gain in adsorption energy is sufficient to offset the loss the entropy, one observes an

increase in the density of monomers on the surface. Hence, an adsorptive transition

can occur only when the value of the adsorption energy parameter ǫ exceeds a certain

critical value ǫc. The adsorptive transition can be interpreted as a second order phase

transition at the critical point of adsorption in the thermodynamic limit N → ∞.

Close to the critical point the number of monomers on the surface scales as

Ns(ǫ = ǫc) ∼ Nφ (2.13)

where φ is called the crossover exponent. The numerical value of φ is a matter of

ongoing discussion in literature. It is estimated to lie between 0.59 [29] and 0.484 [37].

This issue is dealt in detail in Chapter 4 and Chapter 6 where we have attempted to

explain the cause of the wide variation in reported values of φ

The thickness of the adsorbed layer defines the adsorption blob size. An adsorbed

chain can be viewed as a string of blobs on the surface. The blob size is the length scale

at which the total interaction energy of the monomers within the blob with the surface

is of the order of kBT which is the thermal energy. A blob appears to be on the verge of

adsorption. On length scales smaller than the blob size, the surface interaction is much

smaller than the thermal energy and the section of the chain remains in unperturbed

condition i.e. in swollen condition as a real chain. On length scales larger than the

blob size, the surface interaction is larger than kBT and hence , each blob is forced to

be in contact with the surface. Therefore the polymer chain forms an array of blobs

on the surface. Consider a chain adsorbed on a surface. Let D be the thickness of the

adsorbed layer. The fraction of monomers in contact with the surface is a/D where a

is approximately the size of a monomer. The energetic gain from surface interactions

is

Fint/kBT ≃ −ǫNa/D

13
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D

(a)

(b)

Figure 2.1: (a) Blob picture of a polymer confined in a slit, (b) Blob picture of a

polymer weakly adsorbing on a planar surface. When seen from the top, the blobs

appear to form a SAW in two dimensions with R ∼ n
3/4
b D = nνbD where nb is the

number of blobs.

In order to gain this energy the chain must pay the entropic confinement free energy.

To calculate the confinement energy , consider a chain confined in a slit of size D. The

chain can be viewed as a string of blobs . The diameter of the slit gives the size of

the blob. On length scales smaller than D, the chain does not know that it is being

compressed. The statistics in such length scales is the same as for unperturbed chains

D ≃ ag3/5

where g is the average number of monomers in a blob of size D. The number of blobs is

N/g. The confinement energy is of the order kBT for each blob. Hence, the confinement

energy of the chain is

Fconf/kBT ≃ N/g ≃ N
( a

D

)5/3

Now, adding the adsorption and the confinement energies of the chain, we get

F/kBT ≃ N
( a

D

)5/3

− ǫNa/D (2.14)

14
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Minimizing the free energy with respect to D we find

D ∼ aǫ−3/2

F ∼ Nǫ5/2.

2.5 Polymer under tension

Scaling arguments and the blob picture introduced in the previous section can also

be used to describe the behaviour of a real chain under tension. Consider a force K

applied to the ends of a polymer chain in a good solvent. There are two characteristic

length scales associated with the system : Re ≃ aNν and ξ = kBT/K. The extension

of the chain R(K) is a function of K and the temperature and can be written as

R(K) ≃ RegK (Re/ξ)

Let x = Re/ξ . There are different scenarios depending on the strength of the force.

At very low force (x < 1) , the extension R(K)| is linear in x, i.e. gK(x → 0) ≃ x.

This gives

R(K) ≃ βR2
eK

for KRe < kBT .

At a larger force (x≫ 1), the chain breaks up into a series of blobs each of size ξ. At

length scales smaller than the blob size, the chain is unperturbed and behaves as a self

avoiding walk. At longer length scales, the chain behaves as an array of independent

blobs. If the number of monomers within a blob is denoted by g,

ξ ≃ gνa

or

g ≃
(

kBT

aK

)1/ν

.

The total chain extension is given by the product of the blob size and the number of

blobs.

R(K) ≃ N

g
ξ ≃ Na(βKa)

1−ν
ν

or, K ≃ 1

βa

(

R

Na

)ν/(1−ν)

(2.15)

Therefore the force-extension relationship for an ideal chain is ’Hookean’ i.e. linear

since ν = 1/2. For a real chain, the dependence of the force K on the extension R(K)

15
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−K K

R

ξ

Figure 2.2: Blob picture of a polymer under tension

is a power law with exponent 3/2 for ν = 3/5. This was first derived by Pincus and the

tension blobs are often called Pincus blobs. This scaling approach is valid for relatively

small extensions. The divergence of the force near maximal extension is not described

by this method. We will consider the detachment of a chain at an attractive surface

under the influence of a pulling force in Chapter 6 and 7.

2.6 Adsorption and Monte Carlo simulations

Computer simulations have been extremely useful in the field of polymer physics and

chemistry and have been used extensively in our investigations. Polymers have spe-

cial characteristics that make them an important class of physical systems. A single

macromolecule exhibits different structure on different length scales ranging from that

of a chemical bond to the persistence length to the total size. There are additional

length scales for liquid crystalline polymers, polyelectrolytes, polyampholytes etc. The

treatment of the full chemical detail of a polymer is a challenging task.

However, when one interested in global properties of a polymer system, it is often

sufficient to work with a simplified coarse-grained model. Let us consider the two main

commonly used techniques : molecular dynamics (MD) simulations and Monte Carlo

(MC) methods. In MD, we consider a system of classical particles interacting through

a set of forces. The equations of motion are numerically integrated and the averages of

the state-variables are obtained as the time-averages over the trajectory of the system

in phase space. In contrast, Monte Carlo methods attempt to simulate the distribu-

tions. A generic MC algorithm constructs a weighted walk in the configuration space

of the system and samples different states according to their equilibrium probability

distributions. MC can also be adapted to study time-dependent phenomena.

Polymer simulations took off with lattice models in the pioneering work of Wall et.
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al [91]. The first off-lattice Monte Carlo simulations of single chains were later carried

out by Lal [52]. An early molecular dynamics simulation of polythene using realistic

interactions was done by Weber and Helfand [92]. The Monte Carlo techniques used

in our investigations are described in the next chapter.
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Chapter 3

Simulation Techniques

The simulation of polymers is a challenging task because of the complicated chemistry

and the topology. However, simplified coarse grained models are an important tool in

the study of universal properties of polymers [53]. The modelling leaves out the details

of the chemical structure of the molecules but reduces the computational cost enorm-

ously. Monte Carlo simulations of coarse grained models provide valuable information

about the physical properties of macromolecules.

We use an off-lattice bead spring model to study the static and dynamic properties

of a single polymer chain tethered at one end to an attractive surface. The polymer

chain is consists of coarse-grained monomers connected by coarse grained bonds. Each

bond corresponds to 3-6 chemical bonds along the backbone of a polymer chain. Each

coarse grained bond is described by the FENE potential (finitely extensible nonlinear

elastic potential).

UFENE(l) = −K(lmax − l0)
2ln

[

1 −
(

l − l0
lmax − l0

)2
]

Here lmax is the maximum bond length. The minimum of this potential occurs at l0

about which the potential is harmonic with K being the spring constant. The potential

diverges to infinity for both l → lmax and l → lmin = 2l0 − lmax. We choose choose our

length unit lmax = 1 and the other parameters as ;

l0 = 0.7, K/kBT = 20, lmin = 0.4

where T is the absolute temperature and kB is the Boltzmann constant. The chains

are flexible and there is no potential for bond angles. The non-bonded interactions

between the effective monomers are described by a Morse-type potential.

UM(r)/ǫM = exp[−2α(r − rmin)] − 2 exp[−α(r − rmin)]

where r is the distance between the beads. The parameters chosen are

α = 24, rmin = 0.8, ǫM/kBT = 1
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Chapter 3. Simulation Techniques

The Morse potential provides an impenetrable core and a weak attraction at somewhat

long distances. It decays rapidly with UM ≃ 0 for r ≃ 1 which allows the use of link-

cell algorithm with a cell linear dimension of unity. The parameters of the potential

are chosen so as to prevent the chain from crossing itself. The Morse potential is

more suitable than the Lennard-Jones potential which has a slower decay of r−6 at

long distances and requires a cutoff if one wishes to use the Linked-Cell methods.

The polymer is tethered at one end to a flat structureless surface at z = 0. The

surface interaction of the effective monomers are described by a square well potential

Uw(z) = −ε for z < δ = 0.125 and Uw = 0 otherwise. ε/kBT is varied between 1 and

10.
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Figure 3.1: (a) The FENE potential UFENE(l) (b) The Morse potential UM(r)

We use periodic boundary conditions in the xy direction and impenetrable walls in

the z−direction. We have studied chain lengths between 32 and 512. The dimesions

of the simulation box were chosen according to the chain length and the nature of the

problem. While investigating the adsorption of polymers in the absence of a pulling

force, the size of the box was 64 × 64 × 64 for all chains except the longest. For the

chain-length 512, a larger box size of 128 × 128 × 128 was used. While investigating

a chain under traction, we use a box size of 256 × 256 × 256 for the longest chain (of

length 128). The standard Metropolis algorithm was employed to govern the moves

with self avoidance automatically incorporated in the potentials. In each Monte Carlo

move, a monomer was chosen at random and a random displacement attempted. with

∆x, ∆y, and ∆z chosen uniformly from the interval −0.5 ≤ ∆x,∆y,∆z ≤ 0.5. The

transition probability for the attempted move was calculated from the change ∆U of

the potential energy because of the move as

Ω = min{exp[−∆U/kBT ], 1}
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Figure 3.2: The square of the radius of gyration plotted against the chain length N in

double logarithmic coordinates. The Flory constant which equals half the value of the

slope is estimated to be 0.589.

As in the usual Metropolis algorithm, the attempted move was accepted if Ω exceeds

a random number η uniformly distributed in the interval [0, 1). For a chain of length

N , one Monte Carlo move is completed after N attempts of elementary displacements

of randomly selected monomeric units. As mentioned earlier, the potentials prevent

self-intersection of the chain and one does not need to check for entanglement. This

off-lattice algorithm is reasonably fast compared to most lattice models and suffers less

from ergodicity problems. We have used the off-lattice algorithm to study both the

statics and dynamics of polymer chains in the vicinity of an adsorbing surface. The

code is implemented in ASCII C. We have run most of the simulations on an SGE

cluster and some on PCs.
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Chapter 4

Adsorption of Copolymers

4.1 Introduction

In this Chapter, we discuss the adsorption of multiblock and random copolymers on

planar surfaces. We will consider the statics of adsorption with particular focus on

the critical behaviour of the system. The next chapter deals with the time-dependent

features of polymer adsorption.

As already mentioned in the introducton in Chapter 1, the adsorption of polymers

on surfaces plays a critical role in numerous industrial applications such as adhesion,

biocompatibility, colloidal stabilization, and chromatography. Block copolymers, in

particular, play an important role as additives in many industrial products like paints,

ink, lubricants, coatings, adhesives etc. They are effective in stabilizing colloidal sus-

pensions and this has its origin in adsorbing properties. The adsorption of random

copolymers merits attention because of its significance in biophysics. Random copoly-

mers serve as pragmatic models to study the physics of proteins and other biomolecules.

The adsorption of homopolymers at an impenetrable surface has been the focus of

many studies over four decades.

The theoretical studies of the behaviour of polymers interacting with solid substrate

have been based predominantly on both scaling analysis à la de Gennes [15, 16, 17, 18,

29] as well as on the self-consistent field (SCF) approach à la Fleer et. al [33]. The close

relationship between theory and computer experiments in this field [29, 58] has proved

especially fruitful. As mentioned in Chapter 2, a polymer chain at an attractive surface

can undergo adsorptive transition only when the value of the surface potential ǫ exceeds

a certain critical value ǫc. Most of the studies on polymer adsorption in literature focus

on the determination of the critical adsorption point (CAP) location and on the scaling

behavior of a variety of quantities such as the radius of gyration below, above and at

the CAP. The relation between polymer statistics and the corresponding correlation

functions [29] in the n-vector model of magnets with a free surface in the limit n→ 0
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Chapter 4. Adsorption of Copolymers

has lead to a number of important results. Another important issue that has dominated

the discussion of polymer adsorption is the determination of the so called crossover

exponent φ which is known to govern the fraction of adsorbed monomers at the CAP.

Close the critical point, the number of surface contacts of a polymer of length N is

expected to obey Ns ∼ Nφ where φ is a universal constant. The actual value of φ has

been disputed in literature. A study by Eisenrigler, Binder and Kremer [29] suggests

that φ is close to the Flory exponent ν in 3D. More recently, using a different algorithm,

Hegger and Grassberger [43] determined φ to be close to 0.5, a result that is exact in

2D [11]. This subject is discussed in greater detail in Chapter 6, where we discuss the

reasons for the different estimates of φ.

Recently the scaling relationship for a single chain adsorption has been tested

by Monte Carlo (MC) simulation on a cubic lattice [20, 37] as well as by an off-

lattice model [57, 58] and the adsorption transition of a homopolymer could be viewed

nowadays as comparatively well understood.

Now, while the investigations mentioned above have been devoted almost exclus-

ively to homopolymers, the adsorption of copolymers (e.g. multi-blocks or random

copolymers) is still much less understood. Thus, for instance, the CAP dependence on

block size M at fixed concentration of the sticking A-mers is still unknown as are the

scaling properties of regular multi-block copolymers in the vicinity of the CAP. From

the theoretical perspective, the case of diblock copolymers has been studied mainly

within the SCF-approach [33, 31]. The case of random copolymers adsorption has

gained comparatively more attention so far. The main variations to this problem are :

a random copolymer adsorbing on a homogeneous surface, a homopolymer adsorbing

on a random surface and a random heteropolymer adsorbing on random surface. It has

been investigated by Whittington et al. [83, 61] using both the annealed and quenched

models of randomness. The influence of sequence correlations on the adsorption of

random copolymers has been studied by means of the variational and replica method

approach [69]. Sumithra and Baumgaertner [87] examined the question of how the crit-

ical behavior of random copolymers differs from that of homopolymers by Monte Carlo

simulations and scaling arguments. Thus, among a number of important conclusions,

the results of Monte Carlo simulations demonstrated that the crossover exponent φ

(see below) is independent of the fraction of attractive monomers p.

In this chapter, we use scaling analysis as well as Monte Carlo simulations to study

the critical behavior of multi-block and random copolymers. It turns out that the

critical behaviour of these two types of copolymers could be reduced to the behavior

of an effective homopolymer chain with ”renormalized” segments. For the multi-block

copolymer this allows e.g. to explain how the critical attraction energy depends on the
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block length M and to derive an adsorption phase diagram in terms of CAP against

M . In the case of random copolymers the sequence of sticky and neutral (as regards

the solid substrate) monomers within a particular chain is fixed which exemplifies a

system with quenched randomness. Nevertheless, close to criticality the chain is still

rather mobile, so that the sequence dependence is effectively averaged over the time of

the experiment and the problem can be reduced to the case of annealed randomness.

We show that our MC-findings close to criticality could be perfectly treated within the

annealed randomness model. We start with a discussion of the simulation methods

used in this study.

4.2 Monte Carlo Simulation Model

We have carried out extensive Monte Carlo simulations with a coarse grained, off-lattice

bead spring model [58] to investigate the adsorption of homopolymer , multi-block

copolymer and random copolymers on a flat surface. As already described in Chapter

3, our system consists of a single chain tethered at one end to a flat structureless

surface. There are two kinds of monomers: ”A” and ”B”, of which only the ”A” type

feels an attraction to the surface. The surface interaction of the ”A” type monomers is

described by a square well potential Uw(z) = ǫ for z < δ and Uw(z) = 0 otherwise. δ is

chosen to be 0.125. ǫ is varied from 0.6 to 3.6. Here and in what follows ǫ is measured

in units of the thermal energy kBT (with kB being the Boltzmann constant, and T -

the temperature of the system). The effective bonded interaction is described by the

FENE (finitely extensible nonlinear elastic) potential while the nonbonded interactions

are described by the Morse potential.

We use periodic boundary conditions in the x−y directions and impenetrable walls

in the z direction. We have studied polymer chains of lengths 32, 64, 128, 256 and 512.

We have also studied homopolymer chains and random copolymers (with a fraction of

attractive monomers, p = 0.25, 0.5, 0.75). The size of the box was 64 × 64 × 64 in all

cases except for the 512 chains where a larger box size of 128×128×128 was used. The

standard Metropolis algorithm was employed to govern the moves with self avoidance

automatically incorporated in the potentials. In each Monte Carlo update, a monomer

was chosen at random and a random displacement attempted with ∆x, ∆y, ∆z chosen

uniformly from the interval −0.5 ≤ ∆x,∆y,∆z ≤ 0.5. The transition probability for

the attempted move was calculated from the change ∆U of the potential energies before

and after the move as W = exp (−∆U/kBT ). As for standard Metropolis algorithm,

the attempted move was accepted if W exceeds a random number uniformly distributed

in the interval [0, 1]. As a rule, the polymer chains have been originally equilibrated in

the MC method for a period of about 106 MCS . Depending on degree of adsorption ǫ
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Figure 4.1: Snapshot of a chain with length N = 256 from the MC simulations and

block size M = 4. The blue monomers adsorb on the surface while the pink ones are

neutral to it.

and chain length N this period is varied. This was followed by 200 measurement runs,

each of length 8×106 MCS. The values provided here are for the longest chain length ,

N = 512. In the case of random copolymers, for a given composition, i.e., percentage p

of the A−monomers, a new polymer chain is created in the beginning of the simulation

run by means of a randomly chosen sequence of segments. This chain is then sampled

during the course of the run, and replaced by a new sequence in the beginning of the

next run. Each new sequence is equilibriated for a while before the measurement run.

4.3 Theory: Scaling aspects of Homopolymer Ad-

sorption

A scaling theory is often the first step in understanding universal properties of polymers.

We start with a brief sketch of the scaling theory of homopolymer adsorption [29, 20,

57].
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4.3.1 Order parameter

The process of adsorption is governed by a competition between the adsorption energy

for a segment in contact with the surface and the loss in conformational entropy due to

the confinement of the chain on the surface. It is well known that a single polymer chain

undergoes a transition from a non-bound into an adsorbed state when the adsorption

energy ǫ per monomer increases beyond a critical value ǫc. The adsorption transition

can be interpreted as a second-order phase transition at the critical point (CAP) of

adsorption ǫ = ǫc in the thermodynamical limit, i.e. N → ∞. Close to the CAP the

number of surface contacts Ns scales as

Ns(ǫ = ǫc) ∼ Nφ (4.1)

where the exponent φ is called the crossover exponent. The numerical value of φ is

somewhat controversial and lies in a range between φ = 0.59 (ref. [29]) and φ = 0.484

(ref. [37]), we adopt however the value φ = 0.50 ± 0.02 which has been suggested as

the most satisfactory [57] by comparison with comprehensive simulation results.

Consider a chain tethered to the surface at the one end. The fraction of monomers

on the surface n = Ns/N may be viewed as an order parameter measuring the degree of

adsorption. Let us measure the distance from the CAP by the dimensionless quantity

κ = (ǫ− ǫc)/ǫc (4.2)

and also introduce the scaling variable η ≡ κNφ. In the presence of an attractive

surface, the following four cases can be distinguished.

• For ǫ << ǫc, in the thermodynamic limit N → ∞, the fraction n goes to zero (≈
O(1/N)). For very weak attractive potential , a tethered chain is in a mushroom

like state.

• When κ is close to zero, n ∼ Nφ−1. This scaling behaviour of the order para-

meter is a signature of the critical threshold of adsorption. Now, the energy of

adsorption is simply the product of the energy gain per monomer ∆ǫ = ǫ − ǫc

and the number of adsorbed monomers Ns ∼ Nφ. Therefore, near the critical

point the energy gain of the chain is Nφ∆ǫ. This is balanced by the free energy

due to loss of translation, which is of the order kBT .

• For small κ but large η, i.e. κNφ ≫ 1, the chain is adsorbed as a whole , but

the binding energy of each segment is small. The situation is called the weak

coupling limit. The chain appears as a string of N/g blobs on the surface where

g is the average number of segments in a blob. Each blob is considered to be

on the threshold of adsorption. Each blob carries an adsorption energy of about

kBT . This is explained later.
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• For ǫ≫ ǫc (in the strong coupling limit) n is independent of N . Each segment is

strongly attracted by the surface and the chain lies on the surface.

In this study, we focus on the critical adsorption point and will deal with the first

three regimes described above. The scaling ansatz is then

n(η) = Nφ−1 G (η) . (4.3)

with the scaling function

G(η) =







const , for η → 0

η(1−φ)/φ , for η ≫ 1
(4.4)

The resulting scaling behavior of n follows as,

n ∝



















1/N , for κ << 0

Nφ−1 , for κ→ 0

κ(1−φ)/φ , for κ≫ 1

(4.5)

4.3.2 Gyration radius

The two main quantities used to characterize the extension of the chain are the radius

of gyration Rg and the end-to end distance Re (see Chapter 2 eq. 2.3). The presence

of a surface introduces an anisotropy in the system. In our analysis we have used the

two components of Rg: the component parallel to the surface Rg|| and the component

perpendicular to the surface Rg⊥. These components are calculated in the simulations

in the following way.

R2
g|| = 〈 1

N

N
∑

i=0

(

(xi −X)2 + ((yi − Y )2)〉 (4.6)

and

R2
g⊥ = 〈 1

N

N
∑

i=0

(zi − Z)2〉 (4.7)

where xi, yi and zi denote the ith monomer’s coordinates and X, Y and Z represent

the coordinates of the centre of mass (COM).

RCOM = 〈 1

N

N
∑

i=0

ri〉

Here, the 〈...〉 denote the averages over the different realizations.
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4.3. Theory: Scaling aspects of Homopolymer Adsorption

The gyration radius in direction perpendicular to the surface, Rg⊥(η), has the form

Rg⊥(η) = aNνGg⊥ (η) (4.8)

Here Gg⊥ (η) is a dimensionless function. One may determine the form of the scaling

function Gg⊥(η) from the following consideration. At κ < 0, the chain is not adsorbed,

one has Rg⊥ ∼ aNν , so that Gg⊥ = const. This is the regime in which the attraction

is very small and the chain is practically unperturbed by the surface. In the opposite

limit, η ≫ 0 the N -dependence drops out and Gg⊥(η) ∼ η−ν/φ. The chain is completely

adsorbed on the surface and Rg⊥ is independent of the chain length. Thus

Gg⊥(η) =







const , for η ≤ 0

η−ν/φ , for η ≫ 0
(4.9)

As a result

Rg⊥(η) ∝







aNν , for η ≤ 0

κ−ν/φ , for η ≫ 0
(4.10)

The gyration radius in direction parallel to the surface has similar scaling repres-

entation:

Rg‖(η) = aNνGg‖ (η) (4.11)

Again at κ < 0 the gyration radius Rg‖ ∼ aNν and Gg‖ = const. At η ≫ 0 the

chain behaves as a two-dimensional self-avoiding walk (SAW), i.e. Rg‖ ∼ aNν2 , where

ν2 = 3/4 denotes the Flory exponent in two dimensions. As a result, the scaling

function behaves as

Gg‖(η) =







const , at η ≤ 0

η(ν2−ν)/φ , at η ≫ 0
(4.12)

Thus

Rg‖(η) ∝







aNν , at η ≤ 0

κ(ν2−ν)/φNν2 , at η ≫ 0
(4.13)

Blob picture

In the limit κNφ ≫ 1 the adsorbed chain can be visualized as a string of adsorp-

tion blobs which forms a pancake-like quasi-two-dimensional layer on the surface (see

Chapter 2 Sec. 2.4). The blobs are defined to contain as many monomers g as neces-

sary to be on the verge of being adsorbed and therefore carry an adsorption energy of
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Proximal

DistantThermal Blob

⊥R

||R

Figure 4.2: Blob picture of an adsorbed polymer chain.

the order of kBT each. The thickness of the pancake Rg⊥ corresponds to the size of the

blob and the chain conformation within a blob stays unperturbed (i.e. it is simply a

SAW), thus g ∼ (Rg⊥/a)
1/ν = κ−1/φ where we have used eq 4.10. The gyration radius

can be represented thus as

Rg‖ = Rg⊥

(

N

g

)ν2

∝ κ(ν2−ν)/φNν2 (4.14)

and one goes back to eq 4.13 which proves the consistency of the adsorption blob

picture. Generally speaking, the number of blobs, N/g ∼ κ1/φN , is essential for the

main scaling argument in the above-mentioned scaling functions. For example we could

recast the order parameter scaling behavior eq 4.3 as

n = Nφ−1H

(

N

g

)

(4.15)

where H(x) denotes a new scaling function :

H(x) =







const , for x→ 0

x1−φ , for x≫ 1
(4.16)

Ratio of gyration radius components

The study of the ratio, r(η) ≡ Rg⊥/Rg‖, of gyration radius components is a convenient

way to find the value of ǫc (see [20, 57]). In fact, from the previous scaling equations

r(η) ≡ Rg⊥(η)

Rg‖(η)
=

Gg⊥(η)

Gg‖(η)
(4.17)

Hence at the critical point, i.e. at η → 0, the ratio r(0) = const is independent of

N . Thus by plotting r vs. ǫ for different N all such curves should intersect at a single

point which gives ǫc.
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4.3. Theory: Scaling aspects of Homopolymer Adsorption

Another way to fix ǫc is the following. Exactly at the critical point n ∼ Nφ−1, so

that by plotting nN1−φ vs. N at different values of ǫ one can determine the value

ǫ ≈ ǫc under which nN1−φ becomes independent of N .

4.3.3 Free energy of adsorption

The adsorption on a surface at κ > 0 is due to a free energy gain which is proportional

to the number of blobs, i.e.,

F − Fbulk

N
∝ −1

g
∼ −κ1/φ . (4.18)

The expression for the specific heat per monomer follows immediately from eq 4.18 as

CV = −∂
2(F − Fbulk)

∂2κ
∝ κ−α (4.19)

where α = 2−φ−1. Note that a factor of kBT is absorbed in the free energy throughout

the chapter.

For a chain (of the length N) on the verge of adsorption, the foregoing free energy

gain, F−Fbulk, should be of the order of unity. In view of eq 4.18 this gives an estimate

for the critical energy of adsorption - CAP,

ǫc(N) = ǫc(∞)

(

1 +
1

Nφ

)

, (4.20)

where we have explicitly marked the CAP, ǫc(N) and ǫc(∞), for finite and infinitely

long chains respectively.

4.3.4 Polymer adsorption and the Landau theory of phase

transitions

One of the simplest phenomenological theories of phase transition is the Landau theory

which is based on the idea that the free energy of a system is analytic and obeys the

symmetry of the Hamiltonian. With these two conditions, one can write the free

energy as a Taylor expansion in the order parameter n. For the case of the adsorptive

transition of a single polymer chain on a plane surface, the free energy is expanded in

powers of the order parameter n in the vicinity of the critical adsorption potential.

F = F0 + A(ǫc − ǫ)nζ +Bn2ζ (4.21)

where A and B are positive coefficients and the exponent ζ is determined below by

comparison to the scaling theory. For ǫ < ǫc the minimization of the free energy with
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respect to n gives the equilibrium value n = 0. When ǫ > ǫc, the free energy can be

minimized

∂F

∂n

∣

∣

∣

∣

∣

n=0

= 0

to get

ζA(ǫc − ǫ)nζ−1
0 + 2ζBn2ζ−1

0 = 0

or,

nζ0 =
A

2B
|ǫc − ǫ|

Thus, above the threshold (CAP), the free energy minimum occurs for non-zero value

of the order parameter. The order parameter scales as

n0 ∼ |ǫc − ǫ| 1ζ ∼ |ǫc − ǫ| 1
φ
−1 (4.22)

see eq. 4.5. Therefore, we can now relate the exponent ξ with the crossover exponent

φ as ζ = φ/(1 − φ).

Consider the case of a Gaussian chain [79] where φ = 1/2. Hence, ζ = 1 . Thus,

for a Gaussian chain,

F = F0 + A(ǫc − ǫ)n +Bn2 (4.23)

If we consider φ ≃ 0.59 ( see [29]), we obtain ζ ≃ 1.44.

The phase transition corresponds to the disappearance of the minimum at n = 0

and the emergence of a lower minimum at a nonzero n. Since the value of n at the

new minimum grows continuously from 0, the phase transition is said to be of second

order.

Consider the PDF (probability distribution function) of the order parameter P (n).

This is related to the free energy of the chain as

F − F0 = − ln[P (n)/P (n0)]

assuming kBT = 1. Here n0 is the reference value of the order parameter usually taken

as n0 = 0. However, since our simulations involve an anchored chain, we cannot obtain

n = 0. We choose n = 1/128 as our reference point in our simulations for chains of

length 128. The order parameter histogram obtained from the MC simulations can

be used to calculate the free energy. The free energy, in this form, is plotted in Fig.

4.3 for several values of ǫ . This appears as a typical plot of Landau free energy for a

second order phase transition. For ǫ < ǫc, there is a minimum at n = n0. Since the

fraction of adsorbed monomers cannot be negative, we restrict ourselves to n ≥ 0. The

value of the CAP of a homopolymer in the thermodynamic limit is determined to be
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Figure 4.3: Landau free energy F − F0 plotted against the order parameter for a

polymer chain with N = 128 undergoing a phase transition of second order. The inset

shows the free energy minima plotted against κ in double logarithmic coordinates. The

inverse of the slope gives an estimate of φ.
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ǫc(∞) ≃ 1.72 (see Sec. 4.6). For a chain of length N = 128, ǫc(N = 128) ≃ 1.66. It is

evident from Fig. 4.3, that for ǫ > 1.70, the free energy shifts away from n = 0. Such

behaviour is typical of second order phase transitions.

4.4 Scaling aspects of Multiblock Copolymer Ad-

sorption

Consider now the adsorption of a regular multi-block copolymer which is built up

from monomers A which attract (stick) to the substrate and monomers B which are

neutral to the substrate. In order to treat the adsorption of a regular multi-block

AB - copolymer we reduce the problem to that of a homopolymer which has been

considered above. The idea is that a regular multi-block copolymer can be considered as

a “homopolymer” where a single AB-diblock plays the role of an effective monomer [13].

For such a mapping we first estimate the effective energy of adsorption per diblock.

4.4.1 Effective energy of adsorption per diblock

Cn N
1 Cn N

(a) (b)

γ −1 Nµ
N

µ
γ−1
11

Figure 4.4: Polymer conformation with (a) one end and (b) both ends attached on the

surface. The exponents γ1 and γ11 correspond to the cases when one end is tethered

to the surface (tail) or both ends are attached (loop) respectively.

Each individual diblock is made up of an attractive A-block of length M and a

neutral B-block of the same length M . Upon adsorption the attractive A-block forms a

string of blobs whereas the B-part forms a non-adsorbed tail (or loop) - (see Figure 4.5).
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Figure 4.5: (a) Schematic representation of an individual adsorbed AB-diblock. The A

- part forms a string of quasi-two dimensional blobs and the B-part is neutral regarding

the substrate and its contribution to the free energy is of pure entropical nature. (b)

Density profiles against distance z from the adsorbing plane of A− and B−monomers

at the CAP ǫads = 2.12 for a chain with N = 256 and block size M = 8. In the inset

this is magnified for better visibility. The ratio of the number of A− and B−monomers

in the immediate vicinity of the attractive wall is about 30.
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The free energy gain of the attractive block may be written according to eq 4.18 as

Fattr = −κ1/φM (4.24)

where we measure the energy in units of kBT and κ ≡ (ǫ − ǫhc )/ǫ
h
c measures the

normalized distance from the CAP ǫhc of a homopolymer. The neutral B-part which is

most frequently a loop connecting adjacent A-blocks, but could also be a tail with the

one end free, contributes only to the entropy loss. It is well known that the number of

distinct configurations of a polymer of N links is given by CN ∼ NγµN where µ is a

constant that depends on the model and γ is a universal constant [90]. In 3D - space

γ = 1.159. The entropy associated with the conformations is S ≃ ln(CN). For a chain

tethered to a surface at one end or at both ends (see Fig. 4.4), the exponent γ is

changed to γ1 = 0.679 and γ11 = −0.390 respectively. Hence the free energy of a loop

of length M that arises from the entropy loss when a polymer in bulk gets attached to

a surface at both ends, is given by

Frep = (γ − γ11) lnM (4.25)

In case that also the tails are involved, one should also use the exponent γ1 = 0.679

albeit this does not change qualitatively the expression eq 4.25. They enter the partition

function expressions for a free chain, a chain with both ends fixed at a two points, and

for a chain, tethered by the one end [90]. Therefore the effective adsorption energy of

a diblock is

E(M) = κ1/φM − (γ − γ11) lnM (4.26)

We may see from the MC simulations in Fig. 4.5b that the number of A−monomers

in the immediate vicinity of the attractive wall substantially exceeds (by a factor of

30) the number of B−monomers although the chain is at the critical threshold for

adsorption. The theoretical treatment which follows below takes this into account.

4.4.2 Order parameter

Now we consider a ’homopolymer’ which is build up from effective units (diblocks),

with the attractive energy given by eq 4.26. Let us denote the total number of such

effective units by N = N/2M . The fraction of effective units on the surface obeys then

the same scaling law as given by eq 4.3, i.e.,

Ns

N = N φ−1G
(

∆N φ
)

(4.27)

where now ∆ ≡ (E−Eh
c )/E

h
c with the critical adsoption energy Eh

c of the renormalized

homopolymer. Generally Eh
c is expected to be of the same order but different from ǫhc
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since these are model dependent parameters. Eq 4.27 is accurate if one require that (i)

κ≪ 1 but M ≫ 1 such that lnM ≫ 1 and κ1/φM ≫ 1, and (ii) N ≫ 1. The effective

attraction E of a segment of the renormalized chain now depends on M according to

eq 4.26.

Within each effective unit only Ms A-monomers will be adsorbed at criticality

whereby this monomer number scales as

Ms = MφG
(

κMφ
)

(4.28)

with κ ≡ (ǫ− ǫhc )/ǫ
h
c . The total number of adsorbed monomer is given by

Ns = NsMs = NsM
φG
(

κMφ
)

(4.29)

It follows that the fraction

n ≡ Ns

N
=

Ns

N
MφG

(

κMφ
)

=
Ns

2N Mφ−1G
(

κMφ
)

=
1

2
Mφ−1G

(

κMφ
)

(

N

2M

)φ−1

G

(

∆

(

N

M

)φ
)

, (4.30)

where we have used the scaling law, eq 4.27, for the effective units. Hence, the final

expression for the order parameter can be written as follows:

n =
1

2φ
Nφ−1 G

(

κMφ
)

G

(

∆

(

N

M

)φ
)

(4.31)

Thus we have expressed the order parameter n of a multi-block copolymer in terms of

the chain length N , the block length M , the monomer attraction energy ǫ as well as

the model-dependent homopolymer critical attraction energy ǫhc . Let us consider now

some limiting cases.

Close to criticality ∆ = 0

At the CAP of the multiblock chain one has ∆ = 0, thus one can estimate the deviation

κMc , of the corresponding critical energy of adsorption, ǫMc , from that of a homopolymer,

namely

κMc ≡ ǫMc − ǫhc
ǫhc

=

(

(γ − γ11) lnM + Eh
c

M

)1/2

(4.32)

where we have used eq 4.26 and set φ = 0.5. Under this condition the second G -

function in eq 4.31 is a constant, i.e., G(0) = const. On the other hand, with respect

to a single effective unit the chain stays far from the criticality because of

κMc
√
M =

√

(γ − γ11) lnM + Eh
c ≫ 1. (4.33)
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Eq 4.33 reflects our simulation result, cf. Fig. 4.5b, and justifies the consideration of

A−monomers as a string of blobs. In this case the first G - function in eq 4.31 behaves

as G(κMc
√
M) ∼ κMc

√
M where κMc now is fixed by eq 4.32. In result, eq 4.31 becomes

n ∝
(

(γ − γ11) lnM + Eh
c

N

)1/2

(4.34)

State of the strong adsorption

In this regime κ
√
M ≫ 1 and ∆

√

N/M ≫ 1 so that n ≃ (1/
√
N)G(κ

√
M)G(∆

√

N/M) ∼
κ∆. Therefore,

n ≃ κ
[

κ2M − (γ − γ11) lnM −Eh
c

]

Eh
c

(4.35)

4.4.3 Gyration radius

The components of the gyration radius of a multi-block copolymer can be treated again

by making use of the mapping on the homopolymer problem given by eqs 4.8 and 4.11.

In doing so the mapping looks as follows:

a −→ aMν

κ −→ ∆ =
E − Eh

c

Eh
c

(4.36)

N −→ N =
N

2M

Thus the gyration radius component in direction perpendicular to the surface becomes

Rg⊥ = aNν Gg⊥
(

∆

(

N

M

)φ
)

(4.37)

In the strong adsorption limit ∆
√

N/M ≫ 1 and R⊥ ∼ a∆−ν/φMν , which yields

R⊥ ≃ aMνEh
c

2ν

[κ2M − (γ − γ11) lnM −Eh
c ]

2ν (4.38)

In a similar manner, the gyration radius component parallel to the surface has the

form

Rg‖ = aNν Gg‖
(

∆

(

N

M

)φ
)

(4.39)

which in the limit ∆
√

N/M ≫ 1 results in

Rg‖ ≃ a

(

∆1/φ

M

)ν2−ν

Nν2

≃ a
[

κ2M − (γ − γ11) lnM −Eh
c

]2(ν2−ν)

Mν2−ν
Nν2 (4.40)
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Like in the homopolymer case, one can define a blob length geff ∼ (R⊥/a)
1/ν ∼

∆−1/φ M which in the strong adsorption limit, ∆ ≥ 1, approaches the block length,

geff ≃M , as it should be.

Also in the limit of strong adsorption, ∆
√

N/M ≫ 1, the ratio

Rg‖

R⊥
≃
(

∆1/φN

M

)ν2

≃
(

N

geff

)ν2

(4.41)

leads to the correct scaling in terms of number of blobs, i.e. the ’effective homopolymer’

built up of N/geff units behaves as a two dimensional SAW on the surface .

4.5 Random copolymer adsorption

Let us now turn to the case of random copolymers. Consider a random copolymer

which is built up of Np A-type and Nh B-type monomers. The sampled AB-sequences

are frozen (i.e. a distinct sample does not change during the measurement) which

corresponds to quenched disorder. The binary variable σ specifies the arrangement of

monomers along the chain, so that σ = 1, if the monomer is of A-type (A-monomers

attract to the surface) and σ = 0 otherwise (i.e. in case of neutral B-monomers).

Let the fraction of attractive monomers (i.e., the composition) be p = Np/N and the

fraction of neutral ones be 1−p = Nh/N . We assume that the statistics of sequences is

governed by the Bernoulli distribution [64], i.e., the corresponding distribution function

looks like:

P {σ} = pδ(1 − σ) + (1 − p)δ(σ) (4.42)

This distribution is a special case of the more general Markovian copolymers [64] when

the ”chemical correlation length” goes to zero. Two statistical moments , the mean

and the variance, which correspond to the distribution eq 4.42 are

〈σ〉 = p
〈

θ2
〉

≡
〈

[σ − 〈σ〉]2
〉

= p(1 − p) (4.43)

4.5.1 Composition and the critical ǫc

The adsorption of a random copolymer on a homogeneous surface has been studied

by Whittington et al. [83, 61] within the framework of the annealed disorder approx-

imation. Physically this means that during the measurements the chain touches the

substrate at random in such a way that, as a matter of fact, one samples all possible

distributions of monomers sequences along the backbone of the macromolecule. Follow-

ing this assumption [83], let c+N(n) be the number of polymer configurations such that
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n units have contact with the surface simultaneously. The percentage of A-monomers

(composition) is denoted by p. In the annealed approximation one then averages the

partition function over the disorder distribution, i.e.,

Z(ǫ) =

N
∑

n=1

n
∑

np=0

c+N(n)

(

n

np

)

pnp(1 − p)n−np eǫnp

=

N
∑

n=1

c+N(n) [peǫ + 1 − p]n =

N
∑

n=1

c+N (n) en ǫ
h
eff (4.44)

where ǫheff is the attraction energy of an effective homopolymer. From eq 4.44 one can

see that the annealed problem is reduced to that of a homopolymer where the effective

attractive energy is defined as

ǫheff = ln [peǫ + 1 − p] (4.45)

We know that at the critical point the homopolymer attraction energy, ǫheff = ǫhc , is

model dependent. Then the critical attraction energy ǫ = ǫpc of a random copolymer

reads

ǫpc = ln

[

exp ǫhc + p− 1

p

]

≥ ǫhc (4.46)

where the composition 0 ≤ p ≤ 1. At p → 0 ǫpc → ∞ whereas at p = 1 ǫpc = ǫhc .

The relationship in eq 4.46 has been recently found to be confirmed by Monte Carlo

simulations [95].

4.6 Results and Analysis

The determination of the critical adsorption point (CAP) is essential for testing the

scaling results and for comparison with theory. We have determined the CAP from

the analysis of different quantities: the order parameter n, and the gyration radius Rg

based on scaling ideas. These methods are described as follows:

CAP from the order parameter

From the plots of the order parameter n against the adsorption energy ǫ, we determine

the CAP as the point where the tangent taken at the inflexion point of the order

parameter curve intersects the horizontal axis ǫ. This is shown in Fig 4.6(a), where

the order parameter for a homopolymer chain of length N = 256 is plotted against

the adsorption energy ǫ. Evidently, the order parameter n increases with growing
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strength of the substrate potential ǫ. Thus the polymer chain undergoes a transition

from a grafted, but otherwise detached state, to an adsorbed state whereby the chain

lies flat on the surface plane - see Figure 4.1. In Fig 4.6(b), the order parameter

is plotted against the adsorption energy for homopolymers of different lengths. The

transition region narrows down as N increases, which is in good agreement with the

scaling prediction of n, eq 4.20, in all cases. The corresponding critical adsorption

potentials are plotted against the inverse chain lengths in the insert. Similar results

are shown in Figure 4.7 for multi-block copolymer with block size M = 2. We observe

that the corresponding plots for multiblock copolymers appear to be very similar to

the homopolymers.

In the insets of Figures 4.6 and Figure 4.7, we see that the critical point ǫhc (N) for

homopolymers of chain length N as well as the critical points ǫMc (N) for multi-block

copolymers of chain length N with M = 1, M = 2, M = 4, M = 8, and M = 16,

gradually increase as N → ∞. By extrapolating the data to 1/N = 0, one obtains the

CAP values in the thermodynamic limit. Results for ǫhc , obtained from the analysis of

the order parameter are listed in Tables 4.1. In the last column of both tables we give

the estimate from the intersection point of the respective Rg data which is described

below.

Table 4.1: CAP

M/N 64 128 256 512 ∞ Rg

1 2.47(3) 2.58(3) 2.63(3) 2.63(3) 2.672(30) 2.65(3)

2 2.32(3) 2.44(3) 2.47(3) 2.48(3) 2.52(2) 2.52(3)

4 2.13(3) 2.260(3) 2.29(3) 2.29(3) 2.34(2) 2.30(4)

8 1.93(3) 2.08(3) 2.12(3) 2.14(3) 2.19(3) 2.06(4)

16 1.76(3) 1.93(3) 2.00(3) 2.01(3) 2.06(3) 1.95(4)

p/N

1.0 1.62(2) 1.66(2) 1.701(20) 1.698(25) 1.716(20) 1.718(20)

0.75 1.83(2) 1.89(2) 1.92(2) 1.946(20) 1.95(3) 1.95(3)

0.50 2.21(2) 2.25(2) 2.29(2) 2.32(2) 2.33(2) 2.38(5)

0.25 2.81(4) 2.97(4) 2.98(4) 3.02(4) 3.05(5) 2.91(6)

From the components of Rg

According to eqs 4.10, 4.13, and 4.17, one should expect that all curves of R2
g⊥/R

2
g‖,

for different chain length N intersect at a fixed point which gives the CAP in the limit
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of N → ∞. In Figure 4.8, we illustrate this method by plotting the ratio R2
g⊥/R

2
g‖ vs

ǫ for copolymers with block size M = 2. The curves for different N intersect nearly

at a single intersection point. The CAP obtained from this method, ǫM=2
c = 2.52(3) is

consistent with the estimate from the order parameter method where ǫM=2
c = 2.521(20).

The CAPs ǫc(M) for homopolymers, multi-block copolymers with different block size

M , and for random copolymers are listed in Table 4.1.
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Figure 4.6: (a) The order parameter n is plotted against the ǫ for a chain of length

N = 64 and with block size M = 2. The point where the tangent at the point of

inflexion on the curve meets the abscissa is the CAP . (b) The order parameter n

against the adsorption energy ǫ for homopolymers of different chain lengths N . The

value of the CAP ǫhc (N) for N → ∞ is extrapolated from the log-log plot of ǫhc (N)

versus 1/N as shown in the insert. In the thermodynamic limit (a) ǫhc ≈ 1.716 .
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Figure 4.7: The order parameter n plotted as a function of attractive energy ǫ for

copolymers with block size M = 2. The extrapolation plots for ǫc(N) versus 1/N for

block sizes M = 1, 2, 4, 8, 16, and for the homopolymer, plotted versus 1/N , are shown

in the insert.
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Figure 4.8: The ratio of R2
g⊥/R

2
g‖ plotted as a function of ǫ for (a) homopolymers

and (b)copolymers with block size M = 2. The critical point is determined by the

intersection of all curves which are found to be at ǫhc ≈ 1.72 for the homopolymers and

ǫ
(M=2)
c ≈ 2.52 (M=2).
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4.6.1 Scaling behavior

From the data for the CAP one may check the value of the crossover exponent φ = 0.50

by plotting the order parameter n vs. N

Now , as mentioned before in eq 4.5, the scaling behaviour of the order paramenter

goes as

n ∝



















1/N , for κ << 0

Nφ−1 , for κ→ 0

κ(1−φ)/φ , for κ≫ 1

Therefore, in a double logarithmic plot of the order parameter n against N , the

slope is expected to be φ− 1.

This is illustrated in Figure 4.9 as a double logarithmic plot of n vs. N for the case

of (a) homopolymers and (b) M = 1, i.e., regular alternating polymers. Figure 4.9

demonstrates clearly that the slope of the n vs N curves in logarithmic coordinates

is nearly equal to φ − 1 = −0.5 only in the cases where the strength of the substrate

potential nearly equals the CAP value ǫc , in agreement with the relation n ∝ Nφ−1.

As in the case of homopolymers (eq 4.5), Figure 4.9b shows that in the strongly ad-

sorbed regime (ǫ = 3.40 for M = 1) above the CAP the order parameter n ∝ N0

( independent of chain length). In contrast, far below the CAP, only the anchoring

monomer is attached to the substrate, n ∼ N−1, as in the asymptotic limit N → ∞ of

homopolymers. This is observed for ǫ = 0.60 for the alternating chains (M = 1).

In Figure 4.10, we consider the order parameter scaling behavior for two different

block sizes M = 8 and M = 1. We see that the curves collapse to a master curve when

scaled appropriately. The straight lines represent the predicted asymptotic behaviour.

For small block size M = 1, we see that the curves follow the expected scaling predic-

tions very well. However, for larger block size M = 8, there are clear deviations from

the predictions.

Turning now to the scaling of the radius of gyrations, we present the results for

Rg|| and Rg⊥ in a scaled form for different chain lengths. The straight lines indicate

the theoretically predicted scaling behaviour. We observe that the curves fit well to a

master curve and that the expected power law behaviour is very well obeyed by the

perpendicular component Rg⊥.

In Figure 4.12 we present the corresponding results for the components of the mean

square gyration radius, R2
g‖ and R2

g⊥, in scaled form in terms of the parameter κNφ for

regular block-copolymers with block size M = 1 and M = 8. Generally, one observes a

good agreement with the predictions of Section 4.3 for M = 1. Considerable deviations

from the expected scaling behavior are observed only in Figure 4.12b where the effective
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segment of a diblock with M = 8 is comparatively large for the simulated chain lengths

N ≤ 512, meaning effective chain lengths of Neff = N/16 ≤ 32 which are definitely

too short for a well pronounced scaling behavior to be demonstrated. Simulations with

much longer chain lengths is unfeasible by the method used in this study.

4.6.2 Phase diagram of multi-block copolymer adsorption

Using the values for the CAP, given in Table 4.1, one may construct a phase diagram

showing the relative increase of the critical potential ǫc(M) compared to that of a

homopolymer against (inverse) block size M . This is one of the central results of the

present study. In Figure 4.13 one may see that the line of critical points, defining

the region of adsorption, is a steadily growing function of the inverse block size M−1.

Evidently, the theoretical result, eq 4.32, appears to be in good qualitative agreement

with simulation data . As far as eq 4.32 comes as a result of scaling analysis, it can

be verified only up to a factor of proportionality. As mentioned in Section 4.3.1, the

CAP of a homopolymer, ǫhc , is of the same order as that of the “renormalized” chain

consisting of diblocks, Eh
c . Thus from a fit of the data points with the expression

eq 4.32 one may actually determine Eh
c . Therefore, one gets Eh

c = 3.306 , that is, one

gets values which are two to four times larger than the CAP values of a homopolymer.
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Figure 4.9: Log-log plot of the order parameter n vs N for (a) homopolymers and (b)

block copolymers with block size (M = 1). The value of ǫ for each curve is given in

the legend while the slope is also indicated. One may readily check that the straight

lines with slope ∼ 0.5 correspond to the corresponding values of ǫc ,
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Figure 4.10: Log-log plots of the scaled order parameter nN1−φ vs κNφ for two different

block sizes : (a) M = 8 and (b) M = 1. The straight lines indicate the asymptotic

behavior of the scaling functions given by eq 4.31.
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Figure 4.11: Log-log plots of the gyration radius components R2
g‖/N

2ν and R2
g⊥/N

2ν

vs κNφ with ν = 0.588 and ν2 = 3/4 for homopolymers. The straight lines indicate

the asymptotic behaviour of the scaling functions given by eq 4.10 and 4.13.
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Figure 4.12: Log-log plots of the gyration radius components R2
g‖/N

2ν and R2
g⊥/N

2ν

vs κNφ with ν = 0.588 and ν2 = 3/4 for Block copolymers with block size (a) M = 1

and (b) M = 8. The straight lines indicate the asymptotic behaviour of the scaling

functions given by eq 4.31, 4.10 and 4.13.
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Figure 4.13: κMc = (ǫMc −ǫhc )/ǫhc plotted vs 1/M for multi-block copolymers with various

values of M . The critical point of adsorption for homopolymers is ǫhc = 1.72. The red

symbols denote the simulation results while the curve gives the best fit of eq 4.32,
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. Note that the block size 1 ≤M ≤ 16.
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Figure 4.14: The same as in Figure 4.9 but for random copolymers with the composition
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4.6.3 Random Copolymers

In this section we examine the adsorption transition of random copolymers with quenched

disorder and average percentage p of the A monomers. In addition to testing the scal-

ing behavior, we also check to what extent one may employ the theory developed

within approximation of “annealed disorder” for the description of the CAP proper-

ties. We performed Monte Carlo simulations for heterogeneous random copolymers of

chains lengths 32, 64, 128, 256 and 512 with different fraction of attractive monomers

(p = 0.125, 0.25, 0.50 and 0.75).

It has been pointed out earlier [87, 60] that the crossover exponent stays the same,

φ = 0.5, also in the case of random copolymers. The simulations in the present study

demonstrate this in Figure 4.14 where qualitatively the observed picture is similar to

that of Figure 4.9 - small deviations in the attraction potential ǫ, which was used

when sampling the values of the order parameter n, manifest themselves in significant

changes of the log-log slope 1 − φ from the expected value of −0.5.

In Figure 4.15 we demonstrate that the scaling of the mean square gyration radius

components, which we discussed before with regard to the multiblock copolymers, holds

also for random copolymers with different composition p. Again the value of φ = 0.5

gives best scaling results. Thus it turns out that the composition affects only the value

of the CAP ǫpc .

In Figure 4.16 we present a plot of the critical point of adsorption against the frac-

tion of attractive monomers. The full line corresponds to the theoretical prediction [83],

eq 4.46. Given that there are no fitting parameters in this equation, one finds a very

good agreement between theoretical predictions and simulation results as well as with

very recent simulation results [95] which demonstrates that the adsorption of random

copolymers can be properly described within the scope of the annealed approximation.

This confirms an earlier theoretical result derived in a somewhat different context (het-

eropolymer coil-globule transition) by Grosberg and Shakhnovich [40]. Figure 4.16

also indicates that this approximation breaks down for chains which are not random

[95] - at 50% composition the CAPs of regular block copolymers are clearly off the

theoretical prediction, eq 4.46. As far as polymer adsorption is greatly facilitated by

the formation of trains of monomers on the substrate [95], the larger the block size

M , the lower the respective CAP ǫMc under the line, eq 4.46. No monomer trains are

possible in the case of alternating chains which results in an ǫM=1
c > ǫpc . Thus from

the position of the CAPs on Figure 4.16 one may conclude that the mean length of an

A-train on the substrate at p = 0.5 is close to four.
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Figure 4.15: Log-log plots of the gyration radius components R2
g‖/N

2ν and R2
g⊥/N

2ν

vs κNφ with ν = 0.588 and ν2 = 3/4 for random copolymers at different composition

p.
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Figure 4.16: The CAP, ǫpc , plotted vs the composition p for random copolymers. The
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4.7 Discussion

The main focus of this chapter has been the adsorption transition of random and regular

multiblock copolymers on a rigid substrate. We have used Monte Carlo simulations

to study the adsorption transition and to test scaling predictions at criticality. The

simulation model used is an off-lattice coarse-grained bead-spring model of polymer

chains which interact with a structureless surface by means of a contact potential

when an A-monomer comes close enough to be captured by the adsorption potential.

The simulation results are in good agreement with the scaling predictions.

The central result of the study presented in this Chapter is the phase diagram of

regular multiblock adsorption which gives the increase of the critical adsorption poten-

tial ǫMc with decreasing length M of the adsorbing blocks. For very large block length,

M−1 → 0, we find that the CAP approaches systematically that of a homogeneous

polymer (see Fig. 4.13). We have demonstrated that the phase diagram, derived

from computer experiment agrees well with the theoretical prediction based on scaling

considerations.

The phase diagram for random copolymers with quenched disorder which gives the

change in the critical adsorption potential, ǫpc , with changing percentage of the sticking

A-monomers, p, is also determined from extensive computer simulations. We observe

perfect agreement with the theoretically predicted result which has been derived by

treating the adsorption transition in terms of the “annealed disorder” approximation.

We show how some basic polymer chain properties of interest such as the gyration

radius components perpendicular and parallel to the substrate, or the fraction of ad-

sorbed monomers at criticality, scale when a chain undergoes an adsorption transition.

An important conclusion concerns the value of the universal crossover exponent φ = 0.5

which is found to remain unchanged, regardless whether homo-, regular multiblock-, or

random polymers are concerned. Thus the universality class of the adsorption trans-

ition of a heteropolymer is the same as that of a homopolymer. Having studied the

equilibrium behaviour of polymers at surfaces, the next step is to study the kinetics.

The next Chapter deals with the kinetics of polymer adsorption at plane surfaces.
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Chapter 5

Kinetics of adsorption

5.1 Introduction

Let us now consider the time dependent aspects of adsorption. The theory of the

kinetics of polymer adsorption is less developed than that of equilibrium adsorption.

In fact, the kinetics of adsorption of a single homopolymer chain is a non-trivial and

challenging problem and is the focus of this chapter.

In this section, we briefly review some of the earlier numerical studies of the kinetics

of adsorption of single polymer chains.

There are two broad classes of polymer-adsorption described in literature : chemisorp-

tion and physisorption. Chemisorption is characterized by a small local monomer

sticking rate and usually occurs due to covalent bonds between the monomers and

the surface. This is important in many technological applications. In such cases, the

relaxation kinetics is slowed down sharply and the process may be considered to be ir-

reversible on an experimental time scale. The monomer sticking energy is usually large

( at least one or more orders of magnitude greater than kBT ) and there is usually a sig-

nificant activation barrier associated with the adsorption of monomers. Physisorption

, on the other hand, typically occurs at a much faster rate . It often arises from hydro-

gen bonding or other dipolar forces, dispersion forces or attractions between charged

groups. The activation barrier associated with monomer adsorption in this case is of-

ten negligible. The monomer sticking energy can sometimes be large (ǫ > kBT ). For

example, oxidized metal or silicon based surfaces can form hydrogen bonds with many

polymers. For strong sticking energies, the relaxation dynamics may become very slow

leading to strong non-equilibrium effects.

Konstadinidis et. al. [49] carried out dynamical Monte Carlo simulations for single

chains on a cubic lattice. They studied the configurational distribution after performing

dynamic simulations with a completely irreversible adsorption model and a reversible

one in which a move resulting in the desorption of a segment occurred with a probability
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exp(χs). They observed that for χs > 2kBT , the fraction of loop and train segments

start to deviate from the equilibrium values and at χs ≃ 10kBT , the fraction of segments

in loops and trains merges with the corresponding values of the totally irreversible

model. Cosgrove et al. [46] have used Monte Carlo simulations of single chains on

cubic lattices to study the evolution of structure of polymers undergoing adsorption

in strong and weak adsorption regimes. Shaffer [77] has studied the problem using

Monte Carlo simulations with the bond fluctuation model (BFM) for strong sticking

energies. He investigated the time required for adsorption, τads, as a function of the

chain length and the chemical composition of the chains. He carried out simulations

for homopolymers as well as diblock and random copolymers. The copolymers were

composed of two kinds of monomer segments, one of which adsorbed strongly at the

surface while the other was neutral to the surface. The relaxation function for the

adsorption is defined as

q(t) =
n(t) − neq
n(0) − neq

(5.1)

where n(t) is the number of segments adsorbed at time t, n(0) is the number of segments

at time t = 0 and neq is the number of segments adsorbed at equilibrium. The relaxation

function was found to have a simple exponential decay during most of the adsorption

process. During the late stages, however, the relaxation function was found to deviate

from an exponential. According to Shaffer, the late stage deviation might be due to

artefacts of the lattice model. He defined the relaxation time as the time constant for

the relaxation in the intermediate region. This time constant was found to have a power

law dependence on the chain length. The main result of Shaffer [77] is that τads ∼ N1.58

with excluded volume and τads ∼ N1.50 without excluded volume for homopolymers.

For diblock copolymers, the adsorption time of single chains was found to be almost

independent of the non-adsorbing block length. Since there was no activation barrier

for monomer adsorption, these results correspond to physisorption.

The same scaling for homopolymers has been found by Ponomarev et al.[70] who

also used the BFM for N ≤ 100. Apart from the energy gain (per segment) of ǫs, an

additional activation barrier ǫb for a segment to access the surface was introduced in

this simulation, defining thus a ”temperature” Tb ≡ kBT/ǫb. This sets a characteristic

time for the passage of a segment across the barrier τb = τ0 exp(1/Tb). Different

adsorption dynamics has then been found, depending on the ratio of τb and the Rouse

time: τb/τR ≃ N−2ν−1 exp(1/Tb). The case τb/τR ≪ 1 (at Tb ≥ 1 ) corresponds to

strong physisorption. On the other hand if the chain is relatively short and the barrier

is high enough (Tb is low enough) then τb/τR ≫ 1, which corresponds to chemisorption.

They argue that at τb/τR ≪ 1 the adsorption follows a zipping mechanism whereby

the chain adsorbs predominantly by means of sequential, consecutive attachment of

monomers, a process that quickly erases existing loops. The process is fast and the
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Figure 5.1: Schematic diagram of the different modes of adsorption of a single chain :

simple zipping, accelerated zipping and homogeneous collapse.

characteristic adsorption time τads is smaller than the relaxation time of the chain. In

this case τads ∼ N1.57 for a SAW chain in agreement with Shaffer’s results [77]. In the

opposite limit (chemisorption), the presence of a barrier enhances loop formation in the

course of adsorption. This is because a large number of monomer-surface collisions are

required to overcome the barrier. It was shown that in the presence of even a modest

local barrier, zipping is quenched and a new mechanism involving loop formation is

favoured. The characterstic adsorption time τads is greater than the relaxation time

of the tethered chain. The scaling law now reads τads ∼ Nα, where the exponent

α = 0.8 ± 0.2.

The irreversible chemisorption from the dilute polymer solution has been theoret-

ically studied [5, 66] by making use of scaling theory and the master equation (ME)

method [89] for the loops distribution function. The authors suggest that there are

three modes of chemisorption : zipping , accelerated zipping , and homogeneous col-

lapse. The three modes are depicted in Fig. 5.1 The authors argue that for dilute

solutions, the process is dominated by accelerated zipping when the sequential adsorp-

tion is disrupted by large loops formation.

For strong physisorption the simple zipping mechanism, as opposed to the acceler-

ated zipping, has been also recently considered by Descas, Sommer and Blumen [21].

The authors [21] used the BFM and suggested a simple theoretical description of the

corresponding adsorption dynamics based on what they call a “stem - corona” model.
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This leads to the scaling prediction, τads ∼ N1+ν , which is in reasonably good agree-

ment with the simulation result. In the model proposed by the authors, the polymer

chain is described by an adsorbate portion connected to the non-adsorbed monomers

(corona) by a stretched part (stem). During the main stage of adsorption, the stem

grows at the expense of the corona. This leads to a greater separation of the corona

and the surface which supresses further nucleation events i.e. formation of large loops.

Hence the process is dominated by zipping.

We have investigated the case of strong physisorption by means of an off-lattice

dynamic MC method. The simulations make it possible to describe the adsorption

dynamics not only in terms of the average fraction of adsorbed segments but also to

include train and tail distribution functions which furnish the main constituents of the

dynamic adsorption theory. Our observations indicate that the dominant mechanism of

adsorption is the zipping process. Based on inputs from the simulations, we have pro-

posed a “stem-flower model describing the dynamics of adsorption, which shares many

common features with the one suggested by Descas et al. [21]. We have used this model

within the ME-formalism to treat the time evolution of the distribution of adsorbed

monomers (as well as the distributions of the monomers forming trains and tails). The

problem was mapped onto a drift-diffusion process governed by a Fokker-Planck equa-

tion. The MC findings are in good agreement with the theoretical predictions. We

have also investigated the adsorption of regular multi-block and random copolymers

using dynamic MC. However, the theory, in this case is yet to be developed in these

cases.

In the following sections we first discuss the MC model and then present a detailed

description of the adsorption dynamics model which shares many common features

with the one suggested by Descas et al. [21]. In Section 5.4 we present the main results

obtained from simulations as well as from the ME. We show that our MC-findings are

in good agreement with the theoretical predictions. We summarize our results and

conclusions in Section 5.5. Some details of the train distribution function calculation

are relegated to the Appendix.

5.2 Monte Carlo Simulation Model

The dynamic Monte Carlo method is based on a Markov process that provides a rule

whereby a system changes from one state to another. The choice of moves is arbitrary

to some extent as it does not represent the real physical evolution of the system.

We have used the classic Metropolis algorithm for the kinetic simulations. A Monte

Carlo step consists of attempting a transition to a new configuration choosing from a set

of allowed moves. The attempt is accepted with a probability, min [1, exp (−∆U/kBT )],

62



5.2. Monte Carlo Simulation Model

where ∆U is the difference between the final and initial energy. The interpretation

of Carlo Monte dynamics is that it is equivalent to solving numerically the Master

Equation

∂Pn(t)

∂t
= −

∑

m6=n

[Pn(t)Wn→m − Pm(t)Wm→n]

where Pn(t) is the probability of the system being in state n at time t and Wn→m is the

probability of the transition n → m. The Metropolis algorithm is stochastic. What is

important is not a single trajectory but the trajectories averaged over the randomness.

We have used the off-lattice bead spring model [58] described in Chapter 2 to investigate

the adsorption kinetics of a single chain on a solid substrate. The dynamics is realized

only by local moves. Our system consists of a single chain tethered at one end to a

flat structureless surface. The chains length is varied between 32 and 256. The size of

the box is 64 × 64 × 64. We use periodic boundary conditions in the x − y directions

and impenetrable walls in the z direction. The adsorbing wall is at z = 0. While

investigating copolymers, we had two kinds of monomers: ”A” and ”B”, of which only

the ”A” type feels an attraction to the surface. The surface interaction of the ”A” type

monomers is described by a square well potential Uw(z) = ǫ for z < δ and Uw(z) = 0

otherwise. Here ǫ/kBT is varied from 2.5 to 10.0. The effective bonded interaction

is described by the FENE (finitely extensible nonlinear elastic) potential described in

Chapter 2. The nonbonded interactions are described by the Morse potential.

Apart from homopolymers, we have also studied copolymer chains with block size

M between 1 and 16 and random copolymers (with a fraction of attractive monomers,

p = 0.25, 0.5, 0.75). The time is given by Monte Carlo Steps (MCS). For a chain

length of N , a Monte Carlo Step is elapsed after N attempts of elementary moves in

which each monomer has an equal chance of performing a move.

Before the surface adsorption potential is switched on, the polymer chain is equilib-

rated by the MC method for a period of about 106 MCS whereupon one performs 1000

measurement runs, each of length 2 × 106 MCS with the surface adsorption potential

switched on. Therefore, at the starting conformation of the physisorption is always

a new equilibriated, anchored but non-adsorbed chain configuration. The numbers

provided here are for a chain of length 256. For shorter chains, length of the runs are

shorter.

In the case of random copolymers, for a given composition, i.e., percentage p of

the A−monomers, we create a new polymer chain in the beginning of the simulation

run by means of a randomly chosen sequence of segments. This chain is then sampled

during the course of the run, and replaced by a new sequence in the beginning of the

next run.
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Chapter 5. Kinetics of adsorption

5.3 Theory : Adsorption dynamics

Consider a single polymer molecule (grafted with one end to a flat structureless surface)

in an adsorption experiment which is repeated over and over again. The monomer -

surface interaction is considered attractive with a sticking energy ǫ. Starting from a

non-adsorbed conformation, two different mechanisms of adsorption are depicted in the

sketches. The first figure shows the process of sequential adsorption or zipping. The

next one shows the process of accelerated zipping in which the process is mediated by

the formation of new nucleation points arising from large loops. The formation of large

loops can accelerate the process of adsorption since the loop-ends act as new nucleation

centres from which zipping can proceed. The first question, we must ask is - which of

the two mechanisms mentioned above is the dominant process of physisorption. Our

simulations provide the clue. Figure 5.2 gives snapshots of the chain conformation

from our simulations . Here we have plotted the z-component (i.e. the height) of

the monomers against the index of the monomer along the chain contour. It strongly

suggests a zipping process. Indeed, large loops are so infrequent that we may ignore

them in the construction of a theory of physisorption.
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Figure 5.2: Snapshots of an N = 256 chain conformation, taken at successive time

moments during the adsorption process. The z-coordinate of the i-th monomer is

plotted against monomer index i.

5.3.1 Stem-flower scenario: A macroscopic law

Our observation that simple zipping is the preferred mechanism in the strong phys-

isorption regime, is in accordance with earlier MC-simulation results [70, 21]. From
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5.3. Theory : Adsorption dynamics

Figure 5.2, we see that the chain conformation can be considered within the frame-

work of a “stem-flower” picture which was discussed first by Brochard-Wyart [10] as

characteristic for a polymer chain under strong stationary flow. Recently the “stem-

flower” picture was employed in the case of non-stationary pulled polymer chain [74].

This picture shares many common features with the ”stem-corona” model, suggested

by Descas et al [21]. Here we reconsider it in a more systematic way and employ it as

a basic model to include fluctuations within the ME - formalism.

Fig. 5.3 presents schematically the stem-flower scenario of the adsorption dynam-

ics. Prior to the adsorption process, the chain is in a mushroom like state with one

end tethered to the surface. When the adsorption starts, the monomers closest to

the grafting point get adsorbed first. The number of adsorbed monomers at time t is

denoted by n(t). Most of the chain does not feel the surface. As the zipping proceeds,

the monomers are successively pulled down to the surface. This causes to a tension to

build up between the last adsorbed monomer and its immediate non-adsorbed neigh-

bour. However, monomers far from the last adsorbed monomer, still do not feel the

tension. Therefore, nonadsorbed portion of the chain is subdivided into two parts: a

stretched part (”stem”) of length m(t), and a remaining part (”flower”) which is yet

not perturbed by the tensile force of the substrate. The stem is formed after the first

few adsorption events. In this period , the portion of the chain near the grafting point

unravels and is stretched by the tensile force . After the first few zipping events, we

enter the main stage of adsorption in which there is a distinct stem from which the

monomers are sequentially pulled to the surface. Based on this model, we now derive

a dynamic equation for the zipping. The tensile force propagation front is at distance

R(t) from the surface . The rate of adsorbtion is denoted as v(t) = adn(t)
dt

, where a is

the chain (Kuhn) segment length.

A single adsorption event occurs with energy gain ǫ and entropy loss ln(µ3/µ2),

where µ3 and µ2 are the connectivity constants in three and two dimensions, respect-

ively [90]. As a result, the driving force for adsorption can be expressed as

fdrive =
ǫ− kBT ln(µ3/µ2)

a
=
F

a
(5.2)

where F = ǫ− kBT ln(µ3/µ2) is the change in free energy. The friction force is directly

proportional to the size of the stem , m(t) and the speed at which the stem is dragged,

v(t), i.e.

ffric = ζ0 a m(t)
dn(t)

dt
(5.3)

where ζ0 is the Stokes friction coefficient of a single bead. All the monomers in the

stem are assumed to move together. The equation of motion follows from the balance
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Chapter 5. Kinetics of adsorption

Figure 5.3: Stem-flower picture of the adsorption dynamics. The total number of

adsorbed monomers at time t is denoted by n(t). The tail which, contains all non-

adsorbed monomers, consists of a stretched part, a “stem”, of length m(t), and of a

nonperturbed part which is referred to as “flower”. The rate of adsorption is v(t). The

distance between the surface and the front of the tension propagation is R(t).

Figure 5.4: Snapshots of a chain of length n = 128 on an attractive surface during the

early and late stages of adsorption.
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5.3. Theory : Adsorption dynamics

of driving, fdrive, and drag force, ffric, which yields

ζ0 m(t)
dn(t)

dt
=
F

a2
(5.4)

One may express m(t) in terms of n(t), if one assumes that at time t the ”flower”

(which is placed on average at a distance R(t) from the surface) is not affected by the

tensile force. This means that R(t) is the size which the chain portion n(t) + m(t)

occupied before the adsorption has started, i.e.,

a [n(t) +m(t)]ν = R(t) (5.5)

where ν is the Flory exponent (e.g., ν = 3/5 in d = 3-dimensions) [90]. We have

assumed the usual excluded volume scaling. On the other hand, as shown in Fig. 5.3,

a m(t) ≈ R(t) (5.6)

up to a geometrical factor of order unity. Therefore the relation between m(t) and n(t)

is given as

n(t) ≃ m(t)1/ν −m(t) (5.7)

During most of the adsorption process the stem is sufficiently long, m(t) ≫ 1, so

that m(t)5/3 ≫ m(t), i.e., m(t) ≃ n(t)ν and Eq.(5.4) becomes

ζ0 n(t)ν
dn(t)

dt
=
F

a2
(5.8)

The solution of Eq. (5.8) reads

n(t) ∝
[

F

a2ζ0
t

]1/(1+ν)

(5.9)

As result, (for d = 3 where ν = 3/5) one obtains a law for the adsorption kinetics,

n(t) ∝ t0.62, which is in a good agreement with MC-findings [77, 70, 21]. In the course

of adsorption the “stem” grows and the “flower” moves farther away from the surface.

This, as it was mentioned in Ref. [21], makes the nucleation of a new adsorption site

on the surface less probable.

In the late stages of adsorption the ”flower” has been largely consumed and vanishes

so that the non-adsorbed part of the macromolecule exists as a ”stem” only. From this

moment on the closure relation reads

n(t) +m(t) = N (5.10)

Comparison of Eq. (5.10) with Eq. (5.7) shows that this pure ”stem” regime starts at

n(t) ≥ N − Nν ≈ N , i.e., it could be basically neglected for sufficiently long chains.
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Chapter 5. Kinetics of adsorption

The scaling result derived in this section, Eqn.( 5.9), can be compared to our simulation

results. This is discussed in detail in Sec. 5.4.1.

The stem-flower scenario which we used in this section as well as the macroscopic

equation of motion, Eq.(5.8), are employed below as a starting point for the treatment

of fluctuations.

5.3.2 Time evolution of the distribution of adsorbed monomers

The Master Equation

Let us consider the distribution function P (n, t) of the instantaneous number of ad-

sorbed monomers (i.e., the total train length). The number of adsorbed segments n and

the number monomers in the nonadsorbed chain tail l are mutually complementary, if

one neglects the loops. We argue below that in the strong adsorption regime the loop

contribution is, indeed, rather small and reduces mainly to loops of size unity. With

this assumption, the corresponding tail distribution function, T (l, t) , reads

T (l, t) = P (N − l, t). (5.11)

where N is the length of the polymer chain.

Both P (n, t) and T (l, t) can be obtained either from the simulation or by solving

a set of coupled kinetic equations. For the latter we use the method of the Master

Equation [89]. We treat the adsorption as a sequence of elementary events, describing

the zipping - unzipping dynamics while keeping in mind that within an elementary time

interval only one monomer may change its state of sorption. Thus one can treat the

(un)zipping dynamics as an one-step process, shown schematically in Fig. 5.5a. The

figure depicts a chain of length N undergoing a single step process . The chain has

two parts : an adsorbed train of length n on the surface and a non adsorbed tail of

length N − n. In an elementary time interval, the train can gain or lose a segment by

an adsorption or desorption event. The rate constants of these two events are denoted

by w+(n) and w−(n) respectively. The figure depicts the zipping mechanism. Hence

we ignore the “touch down” events of distant monomers, i.e. the formation of loops.

In order to specify the rate constants, we use the detailed balance condition [89] which

in our case (cf. Fig. 5.5a) reads

w+(n− 1)

w−(n)
= eF/kBT (5.12)

where again F = ǫ−kBT ln(µ3/µ2) is the free energy gain upon a monomer adsorption

event and the energy gain ǫ = E1 −E2.

Detailed balance condition Eq. (5.12) is, of course, an approximation for the non-

equilibrium adsorption process in question. This implies that, despite the global non-

equilibrium, close to a “touch-down” point the monomers are in local equilibrium with
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5.3. Theory : Adsorption dynamics

respect to adsorption-desorption events. This also means that the monomer size is

small enough as compared to the “stem” length, so that this approximation is a good

one, compatible with the “stem-flower” picture of adsorption dynamics.

The detailed balance requirement fixes only the ratio of the rate constants and does

not fully determine their values. Let us choose

w−(n) = q[m(n)] e−F/kBT

w+(n− 1) = q[m(n)]. (5.13)

In Eq. 5.13 the transmission factor q[m(n)] is determined by the friction coefficient ζ

which, within our stem-flower model, is defined as ζ = ζ0m. Therefore, one obtains

q[m(n)] =
kBT

a2ζ
=

kBT

a2ζ0 m
. (5.14)

The notation q[m(n)] implies that the stem length m depends on the total train length

n and, furthermore, the relationship m(n) is given by the closure Eq. (5.7) which also

holds for the instantaneous values, i.e.,

n ≃ m1/ν −m (5.15)

With the rate constants from Eq. 5.13 at hand, the one-step master equation reads

[89]

d

dt
P (n, t) = w−(n + 1) P (n+ 1, t) + w+(n− 1) P (n− 1, t)

− w+(n) P (n, t) − w−(n) P (n, t) (5.16)

or, in a more compact form

d

dt
P (n, t) = ∆

[

w−(n) P (n, t)
]

+ ∆−1
[

w+(n) P (n, t)
]

(5.17)

where the finite-difference operators ∆, ∆−1 are defined as

∆f(n) ≡ f(n+ 1) − f(n)

∆−1f(n) ≡ f(n− 1) − f(n) (5.18)

The total number of the adsorbed monomers varies between 1 and N , i.e., 1 ≤ n ≤
N . For n = 1 the Eq. (5.16) has to be replaced by

d

dt
P (1, t) = w−(2)P (2, t) − w+(1)P (1, t) (5.19)

Similarly, for n = N the ME reads

d

dt
P (N, t) = w+(N − 1)P (N − 1, t) − w−(N)P (N, t) (5.20)
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Finally, the set of master equations (5.16), (5.19) and (5.20) should be supplemented

by the initial condition

P (n, t = 0) = δ(n− 1) (5.21)

because the adsorbtion starts from the state of a one chain end grafted at the surface.

The equation of motion for the first statistical moment, 〈n〉 =
∑∞

n=1 nP (n, t), can

be obtained from Eq. (5.17) by performing the summation by parts:

N−1
∑

n=0

g(n)∆ f(n) = g(N)f(N) − g(0)f(0) +
N
∑

n=1

f(n)∆−1g(n) (5.22)

where f(n) and g(n) are arbitrary functions. Taking this into account and keeping in

mind that P (N, t) = P (0, t) = 0 for simplicity, the equation of motion for 〈n〉 then

yields

d

dt
〈n〉 = −

〈

w−(n)
〉

+
〈

w+(n)
〉

(5.23)

With the relations for the rate constants, Eqs. (5.13) and 5.14, this equation of motion

becomes

ζ0 m(t)
d

dt
n(t) =

kBT

a2

[

1 − e−F/kBT
]

(5.24)

where for brevity we use the notations n(t) = 〈n〉 and m(t) = 〈m〉. The result,

Eq. (5.24), should be compared with Eq. (5.4) derived earlier by means of a simplified

physical consideration (see also [21] where this result was obtained before us). Formally,

Eq. (5.24) transforms back into Eq. (5.4) when adsorption is very weak, F/kBT ≪ 1.

Importantly, Eq. (5.24) has the same structure as Eq. (5.4) even when the adsorption

is not weak and the quantity F/kBT is not small; the only difference between these

equations is that the effective force in Eq. (5.24) has the form (kBT/a)
[

1 − e−F/kBT
]

instead of just F/a. This can be understood by the analogy with the second virial coef-

ficient of interaction between the monomer and the surface. Indeed, we know that the

contribution to the free energy of an imperfect gas due to pair collisions is proportional

to the second virial coefficient rather than just interaction energy; similarly in the case

of adsorption, the effective second virial coefficient is the quantity that describes the ef-

fect of monomer attraction to the wall. Thus, the zipping as a strongly non-equilibrium

process can not be treated quasi-statically by making use of a simple “force-balance”.

The inclusion of fluctuations by employing the ME-formalism is important in order to

obtain the correct result for the driving force.
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5.3. Theory : Adsorption dynamics

Fokker - Planck equation and boundary conditions

We now change from the discrete representation, Eqs. (5.17), (5.19) and (5.20), to a

continuous one, namely, to the Fokker-Planck equation for the distribution function

P (n, t) with proper boundary conditions. This can be done by the substitution

∆ ≃ ∂

∂n
+

1

2

∂2

∂n2

∆−1 ≃ − ∂

∂n
+

1

2

∂2

∂n2
(5.25)

After that, Eq.(5.17) takes on the form

∂

∂t
P (n, t) =

∂

∂n

{[

w−(n) − w+(n)
]

P (n, t)
}

+
1

2

∂2

∂n2

{[

w−(n) + w+(n)
]

P (n, t)
}

(5.26)

where [w+(n) − w−(n)] and [w−(n) + w+(n)] /2 play the roles of drift velocity and

diffusion coefficient, respectively.

It is necessary to derive the proper boundary conditions. We know that at n = 1 the

ME has a different form, given by Eq.(5.19). It is convenient to require that Eq. (5.16)

is still valid with the additional condition

[

w+(n− 1)P (n− 1, t) − w−(n)P (n, t)
]

n=1
= 0 (5.27)

i.e., the transitions between a fictitious state n = 0 and the state n = 1 are also

balanced.

Similarly, to reconcile the equation at n = N , given by Eq. (5.20), with the general

ME, Eq. (5.16), one should impose the condition

[

w−(n+ 1)P (n+ 1, t) − w+(n)P (n, t)
]

n=N
= 0 (5.28)

which again expresses the balance between an artificial state n = N + 1 and the state

n = N . In order to gain a deeper insight into the boundary conditions given by

Eqs.(5.27) and (5.28) let us represent Eq. (5.16) in the form

d

dt
P (n, t) = ∆

[

w−(n)P (n, t) − w+(n− 1)P (n− 1, t)
]

(5.29)

This representation looks like a discrete version of the continuity equation, stating that

the value in the square brackets is the probability current (with a negative sign), i.e.,

J(n) = w+(n− 1)P (n− 1, t) − w−(n)P (n, t) (5.30)

A comparison of Eq. (5.30) with Eqs. (5.27) and (5.28) allows one to conclude that

J(n = 1) = 0 and J(n = N + 1) = 0 (5.31)
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i.e., one should impose reflecting boundary conditions on both ends of the interval.

Within the Fokker-Planck formalism the probability current has the form

J(n) =
[

w+(n) − w−(n)
]

P (n, t) − 1

2

∂

∂n

{[

w+(n) + w−(n)
]

P (n, t)
}

(5.32)

Thus the Fokker-Planck formalism makes it possible to map the strong adsorption

case onto a one-dimensional random walk problem with drift and diffusion coefficients

given in terms of rate constants, Eq. (5.26). While such a description provides physical

insight into the problem, from the viewpoint of numerics it is much easier to deal with

the ME discrete set Eqs. (5.16), (5.19) and (5.20). We will discuss the results of this

solution in Sec. 5.3.4.

5.3.3 Train distribution

Our MC-simulation results show that the distribution of loops in case of strong phys-

isorption is mainly dominated by the shortest loops of length unity. These loops can be

considered as defects during the process of zipping. Moreover, this distribution sets on

much faster than the time for complete adsorption. Thus one may consider the total

number of the adsorbed monomers n(t) as a slow variable in comparison to the number

of defects (or loops of length unity). The adsorbed monomers can be seen as an array

of trains, separated by an equilibrium number of defects (see Fig. 5.5b). The partition

function of this one-dimensional array can be determined rigorously (see Appendix A).

Using the partition function, one can derive an expression for the train distribution

function

D(h, t) =
1

hav(t)
exp

[

− h

hav(t)

]

(5.33)

where hav(t) is the average train length. Eq.(5.33) is the Flory-Schulz distribution

which usually governs the molecular weight distribution in equilibrium polymerization

of a broad class of systems, referred to as living polymers [38].

5.3.4 The Numerical Solution of the Master Equation

The set of ordinary differential equations (5.16), (5.19) and (5.20) with the initial

condition, Eq.(5.21), has been solved numerically in this investigation. Typically, we

use a chain length N = 32, the total time interval takes 300 units of the the elementary

time τ0 = a2ζ0/kBT , the sticking energy was chosen (in units of kBT ) as ǫ = 4.0,

whereas the entropy loss ln(µ3/µ2) = ln 2. Figure 5.6 demonstrates the result of this

solution.

As it can be seen from Fig.5.6, the adsorbtion kinetics follows indeed the drift -

diffusion picture. The initial distribution is very narrow: the adsorption starts with
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5.3. Theory : Adsorption dynamics

n(0) = 1 as a grafted chain configuration. As time goes by, the distribution maximum

moves to larger adsorbed monomer numbers and the distribution itself broadens. Even-

tually, the random process hits the boundary n = N and stays there due to drift and

the reflecting boundary conditions. As a result, the final distribution is a very narrow

again, and is concentrated around the boundary n = N . It is interesting that in the

double logarithmic coordinates the distribution maximum follows a straight line (cf.

Fig. 5.6 right panel) which reveals a clear scaling law. Based on the numerical results

for P (n, t) and making use the relation, Eq. (5.11), one can calculate the tail distri-

bution function T (l, t) as well. We will discuss this in Sec. 5.4.3 where we present our

MC-results. There it will be seen that our MC-findings are in a good agreement with

these theoretical predictions.
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Figure 5.5: (a) Creation - annihilation of an adsorption state with n-monomers due to

a single-step process. The arrows indicate possible single-step transitions with w+(n)

and w−(n) being the rate constants of adsorption and desorption events, respectively.

(b) The adsorbed monomers form trains, divided by defects (loops of length unity).

The total number of adsorbed monomers at time t is denoted by n(t). The train length,

h, itself is a random number, subject to an exponential distribution D(h, t) - Eq.(5.33).
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Figure 5.6: Adsorbed monomer number distribution function P (n, t) (a) and its isolines

as a 2-dimensional log-log plot (b). The variation of the distribution maximum, nmax(t),

is a straight (dashed) line with slope 0.63.

75



Chapter 5. Kinetics of adsorption

5.4 Results and Analysis

We present here the main results from the computer simulation of the adsorption kin-

etics and compare them to those from the solution of the Master Equation, Eqs. (5.16),

(5.19) and (5.20), validating thus the theoretical picture of Section 5.3.

5.4.1 Order Parameter Kinetics - homopolymers

The first step in the analysis of the process of physisorption is to determine the charac-

teristic time scales involved. We use the order parameter, i.e. the fraction of adsorbed

segments, to obtain the time of adsorption.

In Fig. 5.7 we show the adsorption time transients from our MC simulations which

describe the time variation of the order parameter n(t)/N for homopolymer chains

of different length N and strong adhesion ǫ/kBT = 4.0. This surface potential is

much higher than the critical adsorption potential, ǫcr ≃ 1.72 determined from earlier

equilibrium simulations (see Chapter 4 Sec. 4.6). In double logarithmic coordinates

these transients appear as straight lines , suggesting that the time evolution of the

adsorption process is governed by a power law. As the chain length N is increased,

the slope of the curves grows steadily, and for length N = 256 it is equal to ≈ 0.56.

This value is close to the theoretically expected slope of (1 + ν)−1 ≈ 0.62 - cf. Eq. 5.9,

and for even longer lengths of the polymers, the slope would probably approach the

predicted value. In long time scales, the curves reach a plateaux due to the finite size

of the chains.

The total time τ it takes a polymer chain to be fully adsorbed can be determined

from the intersection of the respective late time plateau of each transient with the

straight line tangent to this transient. This method is shown in Fig. 5.9, where the

order parameter is plotted against the time for a homopolymer chain of length 256. The

point where the tangent to the curve during the main stage of adsorption intersects

the tangent to the plateaux (in the late stages) gives us the adsorption time of the

polymer.

Thus one may check the scaling of τ with polymer length N . In the inset to Fig. 5.7

we show the observed scaling of the adsorption time with chain length, τ ∝ Nα. The

straight line represents a fit through the points which lead to the dynamical exponent

α ≈ 1.51 which is again somewhat smaller than the expected one 1 + ν ≈ 1.59. This

small discrepancy is most probably due to finite-size effects too.

We can compare these with results obtained from the numerical solution of the Mas-

ter Equation. The first moment n(t) of the distribution function P (n, t) also exhibits

well expressed scaling behavior, n(t) ∼ t0.66, as shown in Fig. 5.8. In the inset we also

show the resulting relationship for the time of adsorption, τ ∝ N1.6, as expected from
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Figure 5.7: Time evolution of the order parameter (fraction of adsorbed segments)

from the MC simulations for four different chain lengths N = 32, 64, 128, and 256

at surface potential ǫ/kBT = 4.0. The slope of the N = 256-curve is 0.56. The inset

shows the scaling of the adsorption time with chain length,τ ∝ N1.51. T.

Eq. 5.9.

It is known that the characteristic time of chain fluctuations in equilibrium is given

by the Rouse time. This has the form τ ∝ Na where a = 1 + 2ν = 2.176 [26].

Comparing the exponents α and a, it is clear that the time scale of physisorption is

much smaller than the Rouse relaxation time. This means that the chain has no time

to relax and that non-equilibrium effects are dominant.

Fig. 5.10 presents the adsorption transients for a chain of constant length, N = 256,

for different strength of the surface potential. Evidently, as the surface potential gets

stronger, the final (equilibrium) values of the transients at late times t→ ∞ grow while

the curves are horizontally shifted to shorter times. Notwithstanding, the slope of the

n(t) curves remains unchanged when ǫ/kBT is varied, suggesting that the kinetics of

the process is well described by the assumed zipping mechanism.

The changing plateau height may readily be understood as reflecting the correction

in the equilibrium fraction of adsorbed monomers due to the presence of defects (va-

cancies) for any given value of ǫ/kBT . This is demonstrated in the upper left inset in

Fig. 5.10 where the observed plateau values are shown to be perfectly described by the

expression nt→∞ = 1 − 5 exp (−ǫ/kBT ) under the assumption that the probability of

a monomer to desorb from the surface (and create a vacancy in the train) is determ-

ined by the Boltzmann factor exp (−ǫ/kBT ). Evidently, the factor of 5 in front of the
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Figure 5.8: The average adsorbed number of monomer vs. time for different chain

lengths N obtained from the numerical solution of the ME. Dashed line denotes the

slope, t0.66, following from Eq. 5.9. In the inset we show the resulting scaling of the

adsorption time with chain length, τ ∝ N1.6.

exponent yields the entropic gain in free energy when an adsorbed monomer detaches

from the surface while its nearest neighbors still stick to it.

The second inset in Fig. 5.10 shows that the adsorption time transients collapse

on a master curve, if one rescales the time axis appropriately. Note that for a very

strong potential, ǫ/KBT = 10.0, the corresponding transient deviates somewhat from

the master curve since the establishment of local equilibrium (which we assumed in

the theory to happen much faster than the adsorption process itself) is hampered.

Also the transient for ǫ/kBT = 2.5 (not shown in this inset) was found not to fit

into the master curve since this strength is close to that of the critical threshold for

adsorption, the attraction to the surface is comparatively weak and zipping is not

the adequate mechanism. For the transients which do collapse on a master curve,

however, one may view the rescaling of the time axis in Fig. 5.10 by the expression

t→ t[1−13.7 exp(−ǫ/kBT )] as a direct confirmation of Eq. 5.24 where the time variable

tmay be rescaled with the driving force of the process (i.e., with the expression in square

brackets). The factor ≈ 13.7 gives then the ratio µ3/µ2 of the effective coordination

numbers in 3- and 2-dimensions of a polymer chain with excluded volume interactions.

µ3 and µ2 are model-dependent and characterize, therefore, our off-lattice model.
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5.4.2 Order Parameter Kinetics - random and regular block-

copolymers

In Fig. 5.11 we examine the adsorption kinetics for the case of regular block copolymers

with block size M - Fig. 5.11a, and for random copolymers - Fig. 5.11b, bearing in mind

that the zipping mechanism, assumed in our theoretical treatment, is by no means self-

evident when the file of sticking A-monomers is interrupted by neutral B segments. It

becomes evident from Fig. 5.11a, however, that, except for a characteristic ’shoulder’

in the adsorption transients, the power-law character of the order parameter variation

with time remains unchanged. Evidently, only the first shoulder in the adsorption

transient is well expressed while the subsequent ones are against the background of

much larger time scales in the log-log representation of Fig. 5.11a. If, however, one

monitors the adsorption of only a single adsorption event with time then one observes

in normal coordinates a series of such shoulders like a ’staircase’ in Nads(t) as seen in

Figure 5.12 .

The variation of the power exponent, α, with block length M , where α describes

the scaling of the total adsorption time with polymer size N , τ ∝ Nα, is displayed

in the inset on the right. Evidently, α declines as the block size is increased. This

finding appears surprising at first sight, since it goes against the general trend of

regular multiblock copolymers resembling more and more homopolymers (with α =

1 + ν for the latter), as the block size M → ∞. Moreover, it would imply shorter

adsorption times for smaller block size, M → 1, although the shoulder length visibly

grows with growing M - see Fig. 5.11a. In fact, however, as one may readily verify

from Fig. 5.11a, the transients are systematically shifted to longer times (i.e., the total

adsorption takes longer) due to a growing prefactor for M → 1 which does not alter

the scaling relationship τ ∝ Nα. One may thus conclude that the frequent disruption

of the zipping process for smaller blocks M slows down the overall adsorption process

(a transient ’staircase’ with numerous short steps) in comparison to chains with larger

M where the zipping mechanism is fast (a ’staircase’ with few longer steps). Fig. 5.12

displays the time evolution order parameter of a homopolymer and a regular block

copolymer with block size 16. Both have a chain length of 256. The order parameter

plotted here, is obtained for a single run and is not the statistical average of many runs.

It is evident that the order parameter of the homopolymer increases smoothly with time

whereas in the case of the block copolymer, it increases in short bursts that look like

a “staircase”. The presence of non-adsorbing blocks in the chain lead to the intervals

in the graph where the order parameter remains constant (with some fluctuations).

A characteristic “shoulder” in the adsorption transients of regular multiblock co-
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polymers manifests itself in the early stage of adsorption and lasts progressively longer

when M grows. We interpret the temporal length of this shoulder with the time it

takes for a segment from the second adsorptive A-block in the polymer chain to be

eventually captured by the attractive surface, once the first A-block has been entirely

adsorbed. For sufficiently large blocks one would therefore expect that this time in-

terval, τs, associated with the capture event, will scale as the Rouse time, M1+2ν , of a

non-adsorbing tethered chain of length M . The observed τs versus M relationship has

been shown in the upper left inset in Fig. 5.11a. The slope of ≈ 1.49 is less that the

Rouse time scaling exponent, 2.18, which one may attribute to the rather small values

of the block length M that were accessible in our simulation. One should also allow

for scatter in the end time of the shoulder due to the mismatch in the capture times of

all the successive A-blocks in the course of our statistical everaging over many chains

during the computer experiment. In the case of random copolymers, Fig. 5.11b, the

observed adsorption transients resemble largely those of a homopolymer chain with

the same number of beads again, apart from the expected difference in the plateau

height which is determined by the equilibrium number of adsorbed monomers. One

should note, however, that a rescaling of the vertical axis with the fraction of sticking

monomers, p, does not lead to coinciding plateau height - evidently the loops whose

size also depends on p also affect the equilibrium number of adsorbed monomers. The

variation of the observed scaling exponent α with composition p is shown in the in-

set to Fig. 5.11b wherefrom one gets α ≈ 1.6. Note that this value is considerably

lower than the power of 2.24 which has been observed earlier [77], however, for very

short chains with only 10 sticking beads. One may conclude that even for random

copolymer adsorption the typical time of the process scales as τ ∝ Nα, as observed

for homo - and regular block copolymers. It is conceivable, therefore, that an effective

zipping mechanism in terms of renormalized segments, that is, segments consisting of

an A and B diblock unit of length 2M for regular multiblock copolymers provides an

adequate notion of the way the adsorption kinetics may be treated even in such more

complicated cases. For random copolymers the role of the block length M would then

be played by the typical correlation length.
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Figure 5.11: (a) Number of adsorbed segments, Nads(t)), versus time t for regular

AB-copolymers with block size M = 1 ÷ 64 and length N = 256. For comparison,

the transient of a homopolymer is shown by a solid line too. The time interval, taken

by the initial “shoulder”, is shown in the upper left inset. The lower inset displays

the variation of the scaling exponent, α, for the time of adsorption τ ∝ Nα versus

block length relationship. (b) The same as in (a) but for random copolymers of length

N = 256 and different composition p = 0.25, 0.5, 0.75. For p = 1 one has the case of

a homopolymer. The inset shows the variation of α with p.
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5.4.3 Probability Distribution Functions

The time evolution in the corresponding Probability Distribution Functions (PDF) of

all the trains, loops and tails of adsorbed polymers provides a lot of information and

insight in the kinetics of the adsorption process. In the Appendix we have derived

theoretically the expected train distribution under the assumption that local equilib-

rium of loops of unit length is established much faster than the characteristic time of

adsorption itself. The resulting distribution of possible train lengths is shown to be

exponential, in close analogy to that of living polymers [38]. In Fig. 5.13a we plot the

observed PDF of train lengths for a chain with N = 256 at two strengths ǫ/kBT of

the adsorption potential. When scaled with the mean train length hav(t) = 〈h(t)〉, at

time t, in both cases for ǫ/kBT = 3.0 and 5.0 one finds an almost perfect straight line

in semi-log coordinates, as predicted by Eq. 5.33.
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Figure 5.13: Distribution of train lengths during the adsorption process of a homo-

polymer chain with N = 256 at two strengths of the adsorption potential ǫ, shown

in semi-log coordinates. PDFs for different times (in units of 105 MCS) collapse on

master curves when rescaled by the mean train length hav(t).

One may thus conclude that the PDF for train lengths preserves its exponential

form during the course of the adsorption process, validating thus the conjecture of

rapid local equilibrium. The latter, however, is somewhat violated for the case of

rather strong adsorption - ǫ/kBT = 5.0 - shown in Fig. 5.13 which is manifested by the

increased scatter of data at late times when the adsorption process overtakes to some
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extent the relaxation kinetics on the surface. The PDF of loops W (k, t) at different

times after the onset of adsorption is shown in Fig. 5.14. Evidently, the distribution is

sharply peaked at size one whereas less than the remaining 20% of the loops are of size

two. Thus the loops can be viewed as single thermally activated defects (vacancies)

consisting of a desorbed single bead with both of its nearest neighbors still attached

to the adsorption plane. As the inset in Fig. 5.14 indicates, the PDF of loops is also

described by an exponential function. Large loops which are directly related to the

nucleation of new adsorption spots, have a very low probability. This confirms that

zipping is the dominant mechanism.

Eventually, in Fig. 5.15a we present the observed PDF of tails for different times

t after the start of adsorption, and compare the simulation results with those from

the numeric solution for T (l, t) according to Eq. 5.11. One may readily verify from

Fig. 5.15 that the similarity between simulational and theoretic results is really strong.

In both cases one starts at t = 1 with a strongly peaked PDF at the full tail length

l(t = 1) = N . As time goes by, the distribution becomes broader and its maximum

shifts to smaller values. At late times the moving peak shrinks again and the tail either

vanishes, or reduces to a size of single segment which is expressed by the sharp peak

at the origin of the abscissa.
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Figure 5.14: Distribution of loop lengths W (k, t) for N = 256 and ǫ/kBT = 4.0 during

ongoing polymer adsorption. The time is given in units of 105 MCS. In the inset the
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Figure 5.15: (a) Distribution of tail size for different times (in units of 105 MCS) during

the polymer chain adsorption for a chain with N = 256 at ǫ/kBT = 4.0. (b) The same

as in (a) as derived from the solution of the ME for chain length N = 32. For better

visibility the time slices for t = 1, 5, 30 100, 150, 200, and 300 are shifted along the

time axis and arranged such that the initial distribution for t = 1 is represented by the

most distant slice.
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5.5 Discussion

In this chapter, we have presented the results of our investigations of the adsorption

kinetics of a single polymer chain on a flat structureless plane in the strong physisorp-

tion regime. We have studied the system analytically as well as by means of dynamic

Monte Carlo simulations with a bead-spring model. Adopting the stem-flower model

for a chain conformation during adsorption, and assuming the segment attachment

process to follow a “zipping” mechanism, we have developed a scaling theory which

describes the time evolution of the fraction of adsorbed monomers for polymer chains of

arbitrary length N at adsorption strength of the surface ǫ/kBT . In this model, the non-

adsorbed part of the chain consists of a stretched ’stem’ that connects the adsorbate

to the ’flower’ which does not feel the tension during the main stage of adsorption.

We have derived a Master Equation as well as the corresponding Fokker-Planck

equation for the time-dependent PDF of the number of adsorbed monomers and for

the complementary PDF of tails, and defined the appropriate reflecting boundary con-

ditions.

Inherent in this derivation is the assumed condition of detailed balance which makes

it possible to relate the elementary steps of adsorption/desorption.

From the numeric solution of the equivalent discrete set of coupled first-order differ-

ential equations we have found that the growth of the adsorbed fraction of monomers

with time is governed by a power law,

n(t) ∝ t
1

1+ν

while the typical time of adsorption τ scales with the length of the polymer N as

τ ∝ Nα

with α = 1 + ν.

The adsorption transients, found in the Monte Carlo simulation are in good agree-

ment with these predictions, if one takes into account the finite-size effects due to the

finite length of the studied polymer chains.

We demonstrate also that the height of the long time plateau in the adsorption

transients is determined by the equilibrium number of vacancies (defects) in the trains

of adsorbed monomers. The transients themselves are found to collapse on a single

master curve, if time is measured in reduced units which scale with the corresponding

driving force for adsorption as determined by the surface potential ǫ/kBT .

A deeper insight into the adsorption kinetics is provided by our detailed study of

the relevant probability distributions of trains, loops and tails during the adsorption.

The predicted exponential expression for the PDF of trains is in a very good agree-

ment with our simulational findings. The loops in the strong physisorption regime
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are observed to reduce to occasional desorbed segments (vacancies) which play little

role in the dominating picture of trains and tails. The PDFs of the latter are found

from the simulation data to present a shape which is fully consistent with that of the

theoretic treatment. It should be noted also that for chemisorption, a monomer ad-

sorption event involves a significant local activation barrier [5, 66]. In this so-called

“accelerated zipping“ regime, the loops formation disrupts the adsorption process and

the corresponding dynamics differs significantly from the one investigated in this study.

Finally, in the case of regular multiblock and random copolymers we find that the

adsorption kinetics strongly resembles that of homopolymers. The observed deviations

from the latter suggest plausible interpretations in terms of polymer dynamics, however,

it is clear that additional investigations will be warranted before a complete picture of

the adsorption kinetics in this case is established too.

Having discussed the statics and kinetics of the adsorption of single polymer chain

on a flat surface, we now turn our attention to a variation of the problem : adsorption

of a polymer in the presence of a pulling force.
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Pulling an adsorbed polymer from

a surface I: the f-ensemble

6.1 Introduction

In the previous chapters we have explored the statics and kinetics of polymer adsorption

on planar surfaces. We now consider the adsorption and desorption of a polymer under

the influence of a pulling force. This study is motivated by recent advances in the

field of single macromolecule experiments which have made it possible to manipulate

individual polymer chains and biological macromolecules such as proteins and DNA.

The upsurge of interest into the statics and dynamics of single macromolecules at

surfaces has been spurred by the use of Atomic Force Microscopy (AFM) [41, 45,

71, 47] and optical/magnetic tweezers [82, 88, 4]. It is now possible to pull or push

individual molecules and even study a single molecule undergo a force-driven phase

transition. Manipulation of single macromolecules has become an important method

for understanding their mechanical properties and characterizing the intermolecular

interactions [84, 12]. Measurements of the force, needed to detach a chain from an

adsorbing surface, and most notably, of the force versus extension relationship which

exhibits sharp discontinuities have been interpreted as indication for the presence of

unadsorbed loops on the surface. In turn, this has initiated a number of theoretical

studies [42, 32, 2] which have helped to get better insight into the thermodynamic

behavior and the mechanism of polymer detachment from adhesive surface under a

pulling external force. A comprehensive treatment of the problem for the case of a

phantom polymer chain can be found in the paper of Skvortsov et al. [81]. There

is a close analogy between the forced detachment of an adsorbed polymer chain like

polyvinilamine and polyacrylic acid, adhering to a solid surface such as mica or a self-

assembled monolayer, when the chain is pulled by the end monomer, and the unzipping

of homogeneous double-stranded DNA. In the context of DNA denaturation and the
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simple single chain adsorption, this analogy has been discussed already in the middle

60s [44]. Recently, the DNA denaturation and its unzipping have been reconsidered

by Kafri, Mukamel and Peliti [94]. The consideration was based on the Poland and

Sheraga’ s Grand Canonical Ensemble (GCE) approach [68] as well as on Duplantier’s

analysis of the number of configurations in polymer networks of arbitrary topology [27].

Duplantier’s analysis makes it possible to calculate the values of universal exponents

which undergo renormalization due to excluded volume effects. In particular, it has

been shown by Kafri et al. [94] that this renormalization procedure changes even the

order of the melting (or denaturation) transition in DNA from second to first order.

In this chapter, we use the approach of Kafri et al.[94] in order to treat the detach-

ment of a single chain from a sticky substrate when the chain end is pulled by external

force. It has been pointed out earlier[81] that the problem may be considered within

the framework of two different statistical ensembles, i.e., by keeping the pulling force

fixed while measuring the (fluctuating) position of the polymer chain end, or, by meas-

uring the (fluctuating) force necessary to keep the chain end at fixed distance above the

adsorbing plane. Our study is presented in two parts. In this chapter, we are primarily

concerned with the fixed force ensemble. In the next chapter, we discuss the fixed

distance ensemble which is more common in experiments. We start with a brief review

of the properties of the simulation model in Section 6.2. Then, in Sec. 6.3 , we begin

with the consideration of the conventional adsorption (i.e. force-free) problem where

we derive a basic expression for the crossover exponent describing polymer adsorption.

There we also consider theoretically some basic features of adsorbed polymer chains

as the variation of the average length of loops and tails in the chain with changing

strength of the adsorption potential. In Section 6.4 we extend our theoretical analysis

to the case of polymer adsorption in the presence of external force, and obtain results

for the main conformal properties of such chains as well as the relevant phase diagram

of the system. Then in Section 6.5 we report on our most important results, gained in

the course of the computer experiment, and compare them to theoretical predictions.

We end this chapter in Section 6.6 with a brief summary and discussion of the most

salient results of the present investigation.

6.2 Monte Carlo Simulation Model

We have investigated the force induced desorption of a polymer by means of extens-

ive Monte Carlo simulations. We use a coarse grained off-lattice bead-spring model

[9] which has proved rather efficient in a number of polymers studies so far. The

system consists of a single polymer chain tethered at one end to a flat impenetrable
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structureless surface. The surface interaction is described by a square well potential,

Uw(z) =







ǫ, z < δ

0, z ≥ δ
(6.1)

The strength ǫ is varied from 2.0 to 7.0 and kBT = 1. The effective bonded

interaction is described by the FENE (finitely extensible nonlinear elastic) potential:

UFENE = −K(1 − l0)
2ln

[

1 −
(

l − l0
lmax − l0

)2
]

(6.2)

with K = 20, lmax = 1, l0 = 0.7, lmin = 0.4. The nonbonded interactions between

monomers are described by the Morse potential.

UM(r)

ǫM
= exp(−2α(r − rmin)) − 2 exp(−α(r − rmin)) (6.3)

with α = 24, rmin = 0.8, ǫM/kBT = 1.

We employ periodic boundary conditions in the x− y directions and impenetrable

walls in the z direction. The lengths of the studied polymer chains are typically 32, 64,

and 128. The size of the simulation box was chosen appropriately to the chain length,

so for example, for a chain length of 128, the box size was 256 × 256 × 256 . The box

size used here is larger than the size used in the previous studies. This is because we

are dealing with a stretched chain . All simulations were carried out for constant force.

A force f was applied to the last monomer in the z-direction, i.e., perpendicular to the

adsorbing surface.

As in previous studies, the standard Metropolis algorithm was employed to govern

the moves with self avoidance automatically incorporated in the potentials. In each

Monte Carlo update, a monomer was chosen at random and a random displacement

attempted with ∆x, ∆y, ∆z chosen uniformly from the interval −0.5 ≤ ∆x,∆y,∆z ≤
0.5. If the last monomer was displaced in z direction, there was an energy cost of

−f∆z due to the pulling force. The transition probability for the attempted move was

calculated from the change ∆U of the potential energies before and after the move

was performed as W = exp(−∆U/kBT ). As in a standard Metropolis algorithm, the

attempted move was accepted, if W exceeds a random number uniformly distributed

in the interval [0, 1].

As a rule, the longest polymer chains, i.e. those with N = 128, have been originally

equilibrated in the MC method for a period of about 5×105 MCS after which typically

500 measurement runs were performed, each of length 2× 106 MCS. The equilibration

period and the length of the run were chosen according to the chain length and the

values provided here are for the longest chain length.

In the next section, we consider theoretically the basic features of adsorbed polymer

chains.
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6.3 Single chain adsorption: loop-, train-, and tail

statistics

A single chain, adsorbed on a solid plane, is built up from loops, trains and a free

tail. In order to derive expressions for the mean values of these basic structural units,

one may treat the problem within the Grand Canonical Ensemble (GCE). In the GCE

approach the lengths of these building blocks are not fixed and are allowed to fluctuate.

The GC-partition function is given as

Ξ(z) =

∞
∑

N=0

ΞN z
N =

V0(z)Q(z)

1 − V (z)U(z)
(6.4)

where ΞN is the canonical partition function of a chain of length N and z is the

fugacity. U(z), V (z) and Q(z) denote the GC partition functions of loops, trains and

a tail respectively. The building block adjacent to the tethered chain end is allowed

for by V0(z) = 1 + V (z).

The series given by Eq. (6.4) is a geometric progression with respect to U(z)V (z).

Figure 6.1 gives a pictorial representation of this series.

+ + + . . .
V0 V0 V0V V V

U U UQ Q Q

Figure 6.1: Schematic representation of the series expansion given by Eq. (6.4)

The GC-partition function of the loops is defined by

U(z) =
∞
∑

n=1

Ωn z
n =

∞
∑

n=1

(µ3z)
n

n1−γ11
(6.5)

where Ωn is the number of surface n-loops (i.e., self-avoiding walks of length n which

start and terminate on the surface) configurations. For an isolated n-loop this number

of configurations is given by Ωn = µn3n
γ11−1 where µ3 is the 3d connective constant

(in three dimensions, d = 3, one has µ3 = 4.68, and the exponent γ11 = −0.390 )[90].

Below we will demonstrate that the exponent γ11 changes due to the excluded volume

interactions between different loops.

The train GC-partition function reads

V (z) =
∞
∑

n=1

Ψn z
n =

∞
∑

n=1

(µ2wz)
n

n1−γd=2
(6.6)
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where the number of train configurations of length n (which are located in the d = 2

surface plane) is given by Ψn = wn µn2 n
γd=2−1. Here µ2 = 2.6 and γd=2 = 1.343 [90].

In Eq. (6.6) we have taken into account that each adsorbed segment of the chain gains

an additional statistical weight w = exp(ε/kBT ) ≡ exp(ǫ), where T is the temperature

and the Boltzmann constant kB is set to unity. In what follows the notation ǫ stands

for the dimensionless adsorption energy of a single monomer. In fact, ǫ denotes the

potential well depth of the short-ranged surface potential, defined in the description of

our simulation model in Section 6.2.

The GC-partition function for the chain tail is given by

Q(z) = 1 +
∞
∑

n=1

Λn z
n = 1 +

∞
∑

n=1

(µ3z)
n

n1−γ1
(6.7)

where the n-tail number of configuration equals Λn = µn3 n
γ1−1, and in d = 3 the

exponent γ1 = 0.680 [90].

With the knowledge of the GC partition function, given by Eq.(6.4), it is possible

to calculate the number of weighted configurations of a polymer chain, containing N

segments (i.e., its canonical partition function), ΞN . From the generating function

method (see, e.g., Sec. 2.4 in the book by Rudnick and Gaspari [73]) it is well known

that at N → ∞ the coefficient at zN i.e. ΞN (the canonical partition function) is

defined by a singular point (a pole or a branch point) of Ξ(z) which lies closest to the

origin. Thus,

ΞN =
1

2πi

∮

Ξ(z)

zN+1
dz (6.8)

or,

ΞN ≃ (z∗)−NRes Ξ(z∗) (6.9)

In our case this is a simple pole, z∗, which is determined from the condition

V (z∗) U(z∗) = 1 (6.10)

The principal contribution to this coefficient at zN is (z∗)−(N+1), i.e., ΞN ≈ (z∗)−N ,

and so the corresponding free energy

F = −T ln ΞN = TN ln z∗ (6.11)

In Section 6.4, devoted to the adsorption of a pulled polymer chain, we shall see that an

important singularity arises also from the tail generating function. The average fraction

of adsorbed monomers, n = Ns/N (where Ns is the number of adsorbed monomers)

which we use as an order parameter for the degree of adsorption, can be calculated

then as follows

n ≡ Ns

N
=

1

N

∂ ln ΞN
∂ lnw

= −∂ ln z∗

∂ lnw
(6.12)
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The generating functions, given by Eqs. (6.5), (6.6), and (6.7), can be conveniently

expressed in terms of the polylog function [30]. In Appendix B we sketch the properties

of the polylog function and its behavior in the vicinity of the singular point. Here, we

briefly mention the main properties : The polylog function Φ(α, z) is defined by the

series

Φ(α, z) =
∞
∑

n=1

1

nα
zn (6.13)

which converges at |z| < 1. The polylog function at z → 1 may be expressed as

Φ(α, z) ≈







































Γ(1−α)
(1−z)1−α , at α < 1

ln
(

1
1−z

)

, at α = 1

ζ(α)− aα(1 − z)α−1 − bα(1 − z) + . . . , at 1 < α < 2

(6.14)

where the coefficients aα = π/Γ(α)| sin(πα)| and bα = ζ(α− 1).

Hence

U(z) = Φ(1 − γ11, µ3z) = Φ(1.39, µ3z) (6.15)

V (z) = Φ(1 − γd=2, µ2wz) = Φ(−0.343, µ2wz) (6.16)

Q(z) = 1 + Φ(1 − γ1, µ3z) = Φ(0.32, µ3z) (6.17)

In terms of the polylog function (see Appendix B) the basic Eq.(6.10) is then given

by

Φ(α, µ3z
∗) = Φ−1(λ, µ2wz

∗) (6.18)

where the exponents α = 1 − γ11 ≈ 1.39 > 1 and λ = 1 − γd=2 ≈ −0.343 < 1.

One should note that the exponent α = 1 − γ11 corresponds to a loop treated as an

isolated one i.e. the interactions of the loop with the rest of the chain are neglected.

This is an important feature of the method which handles the main building blocks

(loops, trains and tails) as independent objects (see, e.g., Eq.(6.4)). Nevertheless, in

Sec. 6.3.2, following Kafri et al. [94], we shall show that by taking into account the

excluded volume interaction between a loop and the rest of the chain one ends up with

a renormalized value of the exponent α (it increases). This is important because the

value of α determines itself the value of the well known surface (or, crossover) exponent

φ in all the basic scaling laws pertaining to polymer adsorption (see below).

Close to the critical point, zc = z∗ which is defined by µ3zc = 1, the l.h.s. of

Eq.(6.18) can be expanded (cf. Eq.(B.11)) as follows

ζ(α) − aα(1 − µ3z
∗)α−1 − bα(1 − µ3z

∗) = Φ−1(1 − γd=2, µ2wz
∗) (6.19)
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with ζ(x) denoting the Riemann zeta-function. At the critical adsorption point (CAP),

ǫc and wc = exp(ǫc), the solution of Eq. (6.18) is z∗ = zc = 1/µ3 so that wc is given by

the expression

ζ(α) = Φ−1(1 − γd=2, µ2wc/µ3). (6.20)

The expansion of Eq.(6.19) around the critical point, z∗ = zc and w = wc, could be

effected by the substitution of w = wc+ δ and z∗ = zc−∆ in Eq. (6.19). Here δ and ∆

are corresponding infinitesimal increments and we took into account that z∗ decreases

with increasing w. Substituting this in Eq. (6.19) gives

ζ(α) − aα(µ3∆)α−1 ≈ Φ−1(1 − γd=2, µ2wczc)

−Φ−2(1 − γd=2, µ2wczc)

[

d

dx
Φ(1 − γd=2, x)

]

x=µ2wczc

δ

(6.21)

Taking into account the condition for the critical point, Eq. (6.20), as well as the

identity Eq. (B.2), the solution for z∗ can be recast in the form

z∗(w) ≈ 1

µ3

[

1 −
(

A

aα

)1/(α−1)

(w − wc)
1/(α−1)

]

(6.22)

where the constants

A =
µ2Φ(−γd=2, µ2wc/µ3)

Φ2(1 − γd=2, µ2wc/µ3)

aα =
π

Γ(α)| sin(πα)| , (6.23)

and wc is defined by Eq. (6.20). The full numerical solution for the order parameter

as well as for the pole z∗(w) is displayed in Fig. 6.2.

Having the solution Eq.(6.22) at hand, one can use the expression Eq.(6.12) for the

average fraction of adsorbed monomers.

n ≡ ∂ ln z∗

∂ lnw
(6.24)

and

ln z∗ ≃
(

A

aα

)
1

α−1

(w − wc)
1

α−1 (6.25)

After some straightforward calculations we arrive at

n(ǫ) ∝ (ǫ− ǫc)
1

α−1
−1 (6.26)
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Figure 6.2: The ’order parameter’ (i.e., the fraction of adsorbed chain segments), n,

against the surface potential, ǫ, in the absence of detachment force, f = 0. The inset

shows the variation of the fugacity z∗ with w = exp(ǫ), Eq. (6.18).

where we have used w−wc ≈ exp(ǫc) (ǫ− ǫc). On the other hand, it is well known [90]

that the scaling behavior in the vicinity of the critical adsorption energy is described

by the crossover exponent φ (see Chapter 4). The corresponding scaling relationship

(see Chapter 4 eq. 4.5) is given by

n(ǫ) ∝







Nφ−1, at ǫ = ǫc

(ǫ− ǫc)
1
φ
−1 at ǫ > ǫc

(6.27)

If the result, given by Eq.(6.26), is compared to that of Eq. (6.27), it becomes

apparent that

φ = α− 1 (6.28)

which is one of the central results in the present investigation. As stated above, if the

loops are treated as independent non-interacting objects, the exponent α = 1− γ11, so

that

φ = −γ11 ≈ 0.39 (6.29)

In Sec. 6.3.2 we shall demonstrate that by taking into account the excluded volume

interactions between a loop and the rest of the chain one finds an increase of the values

of α, and φ, respectively.
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6.3. Single chain adsorption

6.3.1 Loops and tails distributions

Here we examine how the size distribution of polymer loops and tails looks like close to

the critical point of adsorption. The GC-partition function for loops, given by Eq.(6.5),

yields immediately

Ploop(l) ≈
(µ3z)

l

lα

∣

∣

∣

∣

z=z∗
=

(µ3z
∗)l

l1+φ
(6.30)

where we have used the essential relation between the loop exponent α and the crossover

exponent φ, Eq.(6.28). Close to the critical point, µ3z
∗ ≤ 1 (see Eq.(6.22)) and the

l-dependence is mainly described by inverse power-law

Ploop(l) ≈
1

l1+φ
(6.31)

Deeper in the region of adsorption, however, the exponential part in Eq. (6.30) dom-

inates. Taking into account Eq.(6.22), one obtains

Ploop(l) ≈
1

l1+φ
exp

[

−c1(ǫ− ǫc)
1/φ l

]

, (6.32)

i.e., with increasing adsorption energy ǫ the size distribution becomes narrower.

The distribution of tails (at the CAP, i.e., at µ3z
∗ ≤ 1) is even broader, namely

Ptail(l) ≈
(µ3z

∗)l

lβ
(6.33)

where for an isolated tail β = 1 − γ1 ≈ 0.32. We will show below (see Eq.(6.57)) that

if the interaction of a tail with the rest of the chain is taken into account this leads to

a larger value of β = 0.51. One should be aware, however, that this result, Eq. (6.33),

is only valid for ǫ ≥ ǫc since a solution for Eq. (6.18) does not exist for subcritical

values of the adsorption potential. It is clear, however, that even in the subcritical

region, ǫ < ǫc there are still monomers which occasionally touch the substrate, creating

thus single loops at the expense of the tail length. This affects and modifies therefore

the distribution Ptail in the vicinity of ǫc. One can take into account this additional

contribution by considering a single loop - tail configuration. Pictorially the latter can

be inferred from Fig. 6.4b where instead of two loops and a tail one should imagine a

single loop adjacent to the tail. The partition function of such configuration is given

by

Zl−t =
µN−l

3

(N − l)1+φ

µl3
lβ

(from eq. 6.30 and 6.33 ). On the other side, the partition function of a tethered chain

is Zt = µN3 Nγ1−1. Thus the probability P<
tail(l) to find a tail of length l next to a single

loop of length N − l can be estimated as

P<
tail(l) =

Zl−t
Zt

∝ N1−γ1

lβ(N − l)1+φ
. (6.34)
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Evidently, Eq. (6.34) predicts a singularity (that is, a steep maximum) in the distri-

bution of tails when l ∼= N . One may expect that in the vicinity of the critical point,

ǫ ≈ ǫc, the observed distribution of tails will be given by an interpolation between the

expressions shown in Eq. (6.33) and Eq. (6.34). As in the case of loop, distributions,

deeper in the region of adsorption, we use Eq. (6.30) to obtain

Ptail(l) =
1

lβ
exp

[

−c1(ǫ− ǫc)
1/φ l

]

Hence, the overall tail distribution can be represented as

Ptail(l) =







































1
lβ

exp
[

−c1(ǫ− ǫc)
1/φ l

]

, ǫ > ǫc

A1

lβ
+ A2N1−γ1

lβ(N−l)1+φ , ǫ = ǫc

N1−γ1

lβ(N−l)1+φ . ǫ < ǫc

(6.35)

Evidently, close to the CAP this distribution is expected to attain a U -shaped form

with maxima at l ≈ 1 and l ∼= N . This shape of Ptail(l) has been predicted earlier

for a Gaussian chain by Gorbunov et al.[36]. In close analogy with Eq. (6.35), the

distribution of loops reads

Ploop(l) =







































1
lβ

exp
[

−c1(ǫ− ǫc)
1/φ l

]

, ǫ > ǫc

B1

l1+φ + B2N1−γ1

l1+φ(N−l)β , ǫ = ǫc

N1−γ1

l1+φ(N−l)β . ǫ < ǫc

(6.36)

In Eqs. (6.35)-(6.36) A1, A2, B1, B2 are some constants. As we shall see in Section 6.5,

the simulation results for Ptail(l), Ploop(l) are in good agreement with the predictions,

Eqs. (6.35)-(6.36).

Divergence of the average loop and tail lengths at criticality

The average loop length is defined by the loop GC-partition function, Eq.(6.5), as

L = z
∂ lnU(z)

∂z

∣

∣

∣

∣

z=z∗
=

Φ(α − 1, µ3z
∗)

Φ(α, µ3z∗)
(6.37)

where we have used Eq.(B.2). Taking into account the polylog function behavior given

by Eq.(B.11) with the requirement that 1 < α < 2 as well as the solution for z∗,

Eq.(6.22), one gets

L ≈ Γ(2 − α)

ζ(α)

(aα
A

)
2−α
α−1 1

(w − wc)
2−α
α−1

∝ 1

(ǫ− ǫc)
1
φ
−1

(6.38)
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where the result Eq.(6.28) has been used. This result is compatible with the scaling

prediction based on Eq. (6.27). Indeed, close to criticality, L ≈ N/Ns. From Eq.(6.27)

one obtains then the same result, L ∝ (ǫ − ǫc)
1−1/φ. The free energy goes as F =

TN ln z∗ ∝ −N(ǫ − ǫc)
1/φ where one has used Eq.(6.22). On the other hand, the free

energy is proportional to the number of adsorption blobs, i.e., F ∝ N/g, where g is the

length (number of segments) of the blob. The adsorption blobs are defined to contain

as many monomers g as necessary to be on the verge of adsorption and therefore carry

an adsorption energy of the order of kBT each. In result the blob length scales as

g ∝ (ǫ − ǫc)
−1/φ. The size of the adsorbed chain perpendicular to the surface, R⊥, is

nothing but the blob size, that is, R⊥ ≈ gν . Thus one obtains

R⊥ ∝ 1

(ǫ− ǫc)ν/φ
. (6.39)

Consider now the average tail length S. In terms of the GC-partition function for

blobs, Eq. (6.7), it reads

S = z
∂ lnQ(z)

∂z

∣

∣

∣

∣

z=z∗
=

Φ(β − 1, µ3z
∗)

1 + Φ(β, µ3z∗)
(6.40)

with the exponent β = 1− γ1 = 0.32 < 1. This value of the exponent β does not allow

for the interaction of the tail with other building blocks of the adsorbed chain and will

be corrected in Sec.6.3.2. Using the results, Eqs. (B.11) and (6.22), the expression for

the average tail length Eq.(6.40) can be recast in the form

S ≈ (1 − β)
(aα
A

)
1

α−1 1

(w − wc)
1

α−1

∝ 1

(ǫ− ǫc)
1
φ

(6.41)

Notably, the exponent β drops out of this expression. The corresponding tail size

RS ∼ Sν scales as

RS ∝ 1

(ǫ− ǫc)ν/φ
(6.42)

Note that the tail size, Eq.(6.42), scales exactly like the blob (and not the loop!) size,

Eq. (6.39).

6.3.2 Role of interacting loops and tails

As mentioned above, the exponent α, which governs the numbers of loops in the con-

figuration of adsorbed polymer, determines also the crossover exponent φ so that it

is of prime importance to know the exact value of α. If the surface loops are treated

as isolated objects (i.e., loop-loop or loop-tail interactions are ignored), the exponent

α = 1 − γ11 = 1.39. Recently Kafri et al. [94] have shown in the context of DNA
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melting that the interaction of a loop with the rest of the chain increases the loop

exponent α. In their work the authors of ref. [94] essentially used some results of the

renormalization theory of arbitrary polymer graphs, developed earlier by Duplantier

[27]. This approach makes it possible to treat also polymer chains which are grafted

onto a solid surface. Here we give a short sketch of Duplantier’s results for a poly-

mer graph located close to the surface and then demonstrate how the loop-loop and

loop-tail interactions lead to the enhancement of the effective surface loop exponent.

For an arbitrary self-avoiding polymer graph G, which is grafted on the surface, it

has been shown by Duplantier [27] by renormalization methods that the total number

of configurations is given by the standard asymptotic expression:

Z(G) = µN3 Nγs−1 (6.43)

where N =
∑N

j=1Mj is the total length of the graph made of N chains (or edges) of

length Mj . The surface exponent γs is given by the following general relationship

γs = 1 − ν(dL + Ls + Vs − 1) +
∑

k≥1

(nLσk + nskσ
s
L) (6.44)

where ν is the Flory exponent and d stands for the space dimensionality. In Eq. (6.44)

L is the total number of independent constitutive polymer loops in the graph G (i.e.,

the surface loops are not included in L). Ls is the total number of extremities of

polymer lines upon contact to the surface. nk and nsk are the numbers of bulk and

surface vertices of order k respectively, thus Ls =
∑

k≥1 k n
s
k. Vs gives the number of

surface vertices, i.e., Vs =
∑

k≥1 n
s
k. Finally, σk and σsk are critical bulk and surface

exponents which correspond to the k-arm vertices. In d < 4 these exponents can be

calculated analytically via the ε-expansion but some of them could be also expressed in

terms of the conventional exponents ν, γ, γ1 and γ11 [27]. Figure 6.3 gives an example

of a polymer graph with the specification of its topological elements.

The number of configurations given by Eq.(6.43) holds when the lengths of all

components Ma are large and comparable to the total length N . As long as at least

one of them becomes small, i.e. Ma ≪ N , then one gets

Z(G) = µN3 Nγs−1 G

(

M1

N
,
M2

N
, . . . ,

MN

N

)

(6.45)

where the scaling function G(x1, x2, . . . , xN ) has a singularity, provided any of the

arguments xa goes to zero. In fact, in this limit the polymer graph changes its topology

and, therefore, the surface exponent γs changes too. In the next subsection we show

how these results could be used to calculate the effective exponent α which takes into

account the interaction of a surface loop with the rest of the chain.
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Figure 6.3: A polymer graph located close to the surface has the following topological

characteristics: L = 1, Ls = 9, Vs = 4, n1 = 3, n3 = 2, ns1 = 1, ns2 = 1, ns3 = 2. One

surface vertex is fixed whereas the other vertices may move freely.

Surface loop embedded in an adsorbed chain

Consider the configurations of a chain (tethered with one end on the surface) in the

vicinity of the adsorption critical point (see Fig. 6.4). Let M be the length of a surface

loop while K measures the length of the rest of the chain, i.e., M + K = N . The

number of configurations of the polymer graph, depicted in Fig.6.4a, is

Z = µM+K
3 (M +K)γ

s
a−1 G

(

M

M +K

)

(6.46)

where γsa is the exponent which could be calculated using Eq.( 6.44) (see below) and

the scaling function G(x) ≈ 1 for large M and K. In the case when M/K → 0 one has

a crossover to the polymer graph shown in Fig 6.4b where the number of configurations

Z ∼ µK3 (K)γ
s
a−1 (1/K)γ

s
a−γ

s
b (with γsb being the surface exponent of the corresponding

graph). These arguments fix the form of the scaling function which can be written as

G(x) ≈







xγ
s
a−γ

s
b , at x≪ 1

1, at x ≈ 1
(6.47)

In the case of a small surface loop, embedded in an adsorbed polymer, with M ≫ 1

and K ≫ 1 (but with M/K ≪ 1) one obtains for the total number of configurations

Z ∼ µM+K
3 Kγs

a−1

(

M

K

)γs
a−γ

s
b

∼ µM3 Mγs
a−γ

s
b µK3 Kγs

b−1. (6.48)

The last result indicates that the total partition function may be factorized to Z ∼
Zloop Zrest where Zloop and Zrest are the partition functions of the small loop and the

rest of the chain, respectively. Thus, using the notations of Eq.(6.5), one obtains

Ωn = µn3/n
γs

b−γ
s
a , i.e., the effective exponent α becomes

α = γsb − γsa. (6.49)

Now we are in a position to determine the exponents γsa and γsb . Let us assume that

the polymer graph in Fig. 6.4a is made of N subchains (N − 1 being loops and 1 - a
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(a)

(b)

(c)

Figure 6.4: An array of surface loops close to criticality. One of the surface loops of

length M in the limit M/N ≪ 1 is contracted, changing the topology of the polymer

graph from (a) to (b). This contraction procedure makes it possible to derive the

scaling function G(x). By similar contraction of a tail the graph goes over from (a) to

(c).

tail). The topological characteristics can be specified as follows: L = 0, Ls = 2N + 1,

Vs = N , n1 = 1, ns1 = 1, ns2 = N − 1. Earlier it has been shown [27] that the critical

exponent σs2 = 2ν + 1. With these values Eq.(6.44) yields

γsa = 2 −N (ν + 1) + σ1 + σs1 (6.50)

The corresponding expression for γsb can be obtained from Eq. (6.50) by the substitu-

tion N → N − 1. This yields

γsb = 3 + ν −N (ν + 1) + σ1 + σs1 (6.51)

The final expression for the exponent α, given by Eq. (6.49), then reads

α = γsb − γsa = ν + 1. (6.52)

With this theoretical prediction the value of the crossover exponent, given by Eq.

(6.28), is determined as:

φ = α− 1 = ν = 0.588 (6.53)

where we have taken the best numerical estimate for the Flory exponent ν at d = 3

[90]. A comparison of Eq.(6.53) with Eq. (6.29) leads to the important conclusion that,

depending on the range of the excluded volume interaction, the value of φ may vary

significantly. Indeed, if the interactions affect beads from the same surface loop only

then φ is given by Eq.(6.29), otherwise (i.e., when the beads from all loops interact)

the value of φ will be enhanced markedly (see Eq. (6.53)).
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6.3. Single chain adsorption

One should emphasize, however, that Eq. (6.52) does not give an exact value for the

exponent α, but rather an upper limit only. Indeed, the total number of configurations,

given by Eq. (6.48), is estimated by a factorized expression for the partition function

which takes into account the contribution of a loop and the rest of the chain. As a

matter of fact this is a Mean Field approach which overestimates interactions at the

expense of correlations, reducing thus the total number of configurations of a loop.

The latter is reflected by an increase of α. The precise value of α therefore satisfies

the inequality 1 − γ11 < α < 1 + ν. In the special case of a Gauissian chain both the

lower and upper limits for α merge while for a phantom chain one has γ11 = −0.5 (cf.

Section 6.2 in [27]) and ν = 0.5. Thus, for Gaussian chains one obtains the well known

value φ = 0.5.

Following the same way of reasoning, one may expect that the exponent for the

tail, β (see Eq. (6.40)), is also renormalized due to interaction with the rest of the

adsorbed chain. Tail contraction when going from (a) to (c) in Fig. 6.4 enables one to

obtain for the renormalized β-exponent the following relationship

β = γsc − γsa (6.54)

where γsc is the surface exponent of the polymer graph given in Fig. 6.4c. Again, if the

polymer graph given in Fig. 6.4a is made of N chains then the exponent γsc for the

graph Fig. 6.4c becomes

γsc = 3 − ν −N (ν + 1) + 2σs1 (6.55)

Taking into account Eq. (6.50), one obtains β = 1 − ν + σs1 − σ1, whereby the critical

exponents (see [27]) are given by

σ1 =
γ − 1

2

σs1 = ν + γ1 −
γ + 1

2
(6.56)

The calculation gives finally

β = γ1 − γ + 1 (6.57)

with γ1 ≈ 0.68 and γ ≈ 1.17 so that β ≈ 0.51. As expected, the value of the β-exponent

increases as compared to the “isolated tail” case, β = 1 − γ11 ≈ 0.32.

Comparison with other results

The result, given by Eq. (6.53), deserves a more detailed discussion. One should

point out that, generally, the value of φ for the good solvent case in three dimension
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has been so far fairly controversial. For example, Monte-Carlo (MC) data (albeit

for relatively short chains N ≤ 100) on a diamond lattice yield φ = 0.588 ± 0.03

[29] which is in complete agreement with Eq.(6.53). A recent MC-investigation [20]

has suggested that the uncertainty in the value of φ might be related to the limited

accuracy in the determination of the critical adsorption energy ǫc. Namely, for the

bond fluctuation model (BFM), which has been used by Descas, Sommer and Blumen

[20], ǫc ranges between 0.98 and 1.01, i.e., within ±2.5%. This relatively small change

leads to significant variation of φ between 0.5 and 0.59. The same authors have shown

that the set of parameters, ǫc = 1.01 and φ = 0.59, leads to a more accurate scaling

prediction. The adsorption of the tethered SAW chain on a simple cubic lattice for

chain lengths of up to N = 1000 (by means of the so-called “scanning method”)

gives: φ = 0.53 ± 0.007 [56]. In yet another MC-study, based on the pruned-enriched

Rosenbluth method (PERM) [43], it was found that φ is pretty close to 0.5. However, in

a more recent study of the same author [37] one determined for φ an even smaller value:

φ = 0.484 ± 0.002. The value φ = 0.5 was also been supported by the MC-simulation

results based on the off-lattice model [57].

The analytical methods for calculation of φ are based on the field-theoretical renor-

malization group (RG) study of the semi-infinite n-vector model in the n → 0 limit.

In earlier investigations [23, 22, 28] the ε-expansion (where ε = 4 − d) up to order

ε2 lead to the prediction φ = 0.67 which deviates widely from all MC-findings. In a

more recent investigation the so-called massive field-theory approach at fixed d (i.e.,

the ε-expansion has been avoided) was extended to systems with surfaces [24, 25]. The

result for the crossover exponent reads φ ≈ 0.52. Thus we believe that the present

study elucidates the origin for the diversity of results concerning the precise value of φ

and provides a physical background of it.

6.4 Adsorption under external detaching force

The adsorption of a Gaussian chain on a solid plane under detaching force acting on

the chain end has been studied first by Skvortsov, Gorbunov and Klushin [35, 80] in the

early 90s. For a Gaussian chain the problem can be solved rigorously even for a finite

chain length N . The adsorption-desorption transition is of the first order, however,

phase coexistence and metastable states are absent.

Below we apply the GC - ensemble approach to the case of self-avoiding polymer

chain adsorption under the presence of detaching force. Again, the problem has much

in common with the unzipping transition of double-stranded DNA [94]. When a force

f is applied to the free end of the tethered chain, the tail GC partition function in
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6.4. Adsorption under external detaching force

Eq.(6.4) changes. The total GC-partition function is then given by

Ξ(z) =
V0(z) R(z)

1 − V (z)U(z)
(6.58)

where the tail GC - partition function now takes on the form

R(z) = 1 +

∞
∑

n=1

Ξtail(n) zn (6.59)

In Eq.(6.59) Ξtail(n) is the canonical partition function of the tail under applied force:

Ξtail(n) =
µn3
nβ

∫

d3r Pn(r) exp (fz/T ) . (6.60)

Here we take into account that the pulling force is directed perpendicular to the plane

(in z-direction). In Eq. (6.60) Pn(r) is the end-to-end distance probability distribution

function (PDF). To estimate this function on large distances from the solid plane, i.e.,

at z ≫ Rn ≈ anν , we assume, following Kreer et al. [51], that under this condition the

PDF is given by the des Cloizeaux expression [19] for the bulk:

Pn(r) =
1

R3
n

F

(

r

Rn

)

(6.61)

where the scaling function F (x) is

F (x) = Bxt exp
(

−Dxδ
)

. (6.62)

In Eq. (6.62) B and D are constants while the exponents δ and t are given by

δ =
1

1 − ν
(6.63)

and

t =
β − d/2 + dν

1 − ν
. (6.64)

Here β = 1− γ1 is the tail surface exponent and d = 3. Note that in the limit z ≫ Rn

the only difference between the PDFs in the bulk and in the semi-infinite case lies in

the fact that instead of the exponent γ in Eq. (6.64) one has γ1. The integration over

x and y coordinates in Eq.(6.60) is readily carried out and one obtains

Ξtail(n) =
µn3
nβ

C

Rn

∞
∫

0

dz

(

z

Rn

)2+t−δ

exp

[

−D
(

z

Rn

)δ

+
fz

T

]

= C
µn3
nβ

∞
∫

0

dx x2+t−δ exp
(

−Dxδ + f̃nx
)

(6.65)

107



Chapter 6. Pulling: the f-ensemble

where the normalization constant C = δD(3+t)/δ−1/Γ[(3 + t)/δ − 1]. The integral in

Eq. (6.65) can be tackled by the saddle point method (since f̃n ≡ fRn/T ≫ 1). The

saddle point itself is defined by the value xsp = (f̃n/(δD))1/(δ−1) ∼ f̃
1/ν−1
n , or, in terms

of the z-variable,

zsp ≈ Rn

(

f̃n

)1/ν−1

≈ an

(

fa

T

)1/ν−1

(6.66)

which is nothing but the well-known Pincus deformation law [14]. Finally, Eq. (6.65)

becomes

Ξtail(n) = a1 (f̃)θ
µn3

nβ−θν
exp

(

a2f̃
1/νn

)

(6.67)

with a1 and a2 being constants, the dimensionless force f̃ ≡ fa/T , and the exponent

θ = (2+ t−3δ/2)/(δ−1). Thus the GC-partition function , Eq. (6.59), can be written

as

R(z) = 1 + a1 (f̃)θ
∞
∑

n=1

1

nψ

[

zµ3 exp(a2(f̃)1/ν
]n

= 1 + a1 (f̃)θ Φ(ψ, zµ3 exp(a2(f̃)1/ν) (6.68)

where we have defined the new exponent

ψ = β − νθ =
d− 1

2
− (d− 2)ν. (6.69)

One should point out that the exponent β drops out from the final expression for ψ

which for d = 3 is defined as ψ = 1 − ν.

It is evident from Eq. (6.68) that (cf. Eq.(B.11)) at z → µ−1
3 exp(−a2f̃

1/ν) the tail

GC-partition function has a branch point at z = z#, i.e.

R(z) ∼ a1 (f̃)θ
Γ(1 − ψ)(z#)1−ψ

[z# − z]1−ψ
(6.70)

where 1 − ψ < 1 and

z# = µ−1
3 exp(−a2f̃

1/ν). (6.71)

Turning back to the total GC-partition function, Eq.(6.58), one may conclude that

Ξ(z) has two singularities on the real axis Rez: the pole z∗ which is defined by Eq.(6.10),

and the branch point z# given by Eq. (6.71). It is well known (see, e.g., Sec. 2.4.3 in

[73]) that in the thermodynamic limit, N → ∞, the contribution to the coefficient of

zN (i.e., to ΞN) consists of contributions by the pole and by the branch singular points,

i.e.

ΞN ∼ C1 (z∗)−(N+1) +
C2

Γ(1 − ψ)
N−ψ (z#)−(N+1−ψ) (6.72)
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6.4. Adsorption under external detaching force

The singular points, z∗ and z#, are involved in Eq.(6.72) with large negative exponents.

Hence, for large N only the smallest of these points matters. On the other hand, z∗

depends on the dimensionless adsorption energy ǫ only (or, on w = exp(ǫ)) whereas z#

is controlled by the dimensionless external force f̃ (cf., Eq.(6.71)). Therefore, in terms

of the two control parameters, ǫ and f̃ , the equation

z∗(ǫ) = z#(f̃) (6.73)

determines the critical line of transition between the adsorbed phase and the force-

induced desorbed phase. In the following this line will be referred to as the detachment

line. The controll parameters, ǫD and f̃D, which satisfy Eq. (6.73), will be named

detachment energy and detachment force, respectively. On the detachment line the

system undergoes a first-order phase transition. The detachment line at f̃D → 0

terminates in the critical adsorption point, ǫc, where the transition becomes of second

order. In the vicinity of the critical adsorption point the detachment force f̃D behaves

as

f̃D ∼ (ǫ− ǫc)
ν/φ (6.74)

where we have used Eq.(6.73) as well as Eqs. (6.22) and (6.71).

6.4.1 Order parameter

Let us study first how the fraction of adsorbed monomers n = Ns/N , which we use as

an order parameter, depends on the pulling force at fixed value of the contact energy

ǫ1 > ǫc. For f̃ < f̃D it is clear that z∗ < z# and the first term in Eq. (6.72) dominates

over the second one. In this case the order parameter

n = − ∂ ln z∗(w)

∂ lnw

∣

∣

∣

∣

w=exp(ǫ1)

(6.75)

is constant independent of the force. At f̃ > f̃D (i.e., after crossing the detachment

line) z∗ > z# and the second term in Eq. (6.72) prevails. Since z# is w-independent,

it is evident that n = 0, i.e., the polymer is totally detached. In result, the n vs. f̃

dependence resembles a step - function with a jump at f̃ = f̃D.

Now let us fix the force f̃ = f̃1 and investigate how the order parameter n depends

on the adsorption energy ǫ or on the fugacity w. Again, Eq.(6.73) at f̃ = f̃1 defines

a detachment energy ǫD. At ǫ < ǫD one has still z# < z∗ and the second term in

Eq. (6.72) dominates so that the chain is completely desorbed (i.e., n = 0). At

ǫ > ǫD only the first term in Eq.(6.72) survives so that the relationship n vs. ǫ follows

the conventional adsorption dependence without any force-influence. The transition

at ǫ = ǫD is of first order whereby the order parameter jump grows as the force f̃1

increases.
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Figure 6.5: The ’order parameter’ , n, against the: (a) energy of adsorption ǫ (f is

given as a parameter); (b) - against the pulling force f , with ǫ a parameter. Vertical

lines denote the discontinuous jumps of n, indicating a 1st− order transition. The

nD(fD) (full line) in (b) denotes the order parameter value at the detachment line.

(c) The phase diagram of the adsorption-desorption transition under puling force f

in dimensionless units. An arrow at ǫc denotes the point of critical adsorption for

f = 0. (d) The reentrant phase diagram - the same as in (c) but with force against

temperature in dimensional units at fixed value of ǫ > ǫc. The largest force f for which

chain adsorption may still take place occurs at temperature Tmax, as indicated by an

arrow.
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In Figure 6.5a,b we show the predicted variation of the order parameter for an

infinitely long chain, following from the present consideration. The boundary of the

region of adsorbtion, shown in the phase diagram in Figure 6.5c, denotes the line of

critical values of detachment force for any given attraction of the substrate as described

by Eq. (6.73).

The adsorption-desorption first order phase transition under pulling force has a clear

dichotomic nature (i.e., it follows an “either - or” scenario): in the thermodynamic limit

N → ∞ there is no phase coexistence! The configurations are divided into adsorbed

and detached (or stretched) dichotomic classes. The metastable states are completely

absent. Basically, this is in line with the general thermodynamic principles which argue

that in thermal equilibrium the thermodynamic potentials are convex functions of their

order parameters. This excludes multiple minima and metastable states [8].

6.4.2 Reentrant behavior of the phase diagram

The results given in Section 6.4.1 demonstrate that the detachment line on the phase

diagram is a monotonous function in terms of the dimensionless quantities f̃D vs. ǫD.

Recently, it has been revealed that the detachment line, when represented in terms

of dimensional variables, force fD versus temperature T , goes (at the relatively low

temperature) through a maximum, that is, the desorption transition shows a reentrant

behavior! Below we demonstrate that this result follows directly from our theory.

First, one should note that the low temperature limit implies large values of the

ratio ǫ = ε/kBT . On the other hand, the solution z∗(w), which results from Eq.(6.18),

goes to zero, i.e., z∗ → 0, when ε → ∞. One may assume that under these conditions

z∗µ2e
ǫ → 1− (this will be proven a posteriori). Then the polylog function in the l.h.s.

of Eq.(6.18) reads Φ(α, µ3z
∗) ≈ µ3z

∗ but Φ−1(λ, µ2wz
∗) ≈ c1(1−µ2wz

∗)1−λ (where we

have used Eq. (B.11) and the fact that λ < 1). Taking into account Eq.(6.18), one

arrives at the following result

µ3z
∗ ≈ c1(1 − µ2wz

∗)1−λ (6.76)

This equation determines the function z∗(w) at large w. To zero-order approxima-

tion the solution reads z∗(0) ≈ (µ2w)−1. Within the first order approximation z∗(1) ≈
(µ2w)−1−δ where the decrement δ is found as δ = (1/µ2w)(µ3/µ2w)1/(1−λ). This result

is consistent with the assumption z∗µ2e
ǫ → 1− so that the solution of Eq. (6.76) in the

main approximation can be written as

z∗ ≈ 1

µ2
e−ǫ (6.77)

By making use of this solution as well as of the result given by Eq.(6.71) in the Eq.(6.73),

the detachment line at large dimensionless detachment energy ǫD ≡ ε/kBT and force
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f̃D ≡ afD/kBT can be written as

f̃D =
1

aν2

[

ǫD − ln

(

µ3

µ2

)]ν

. (6.78)

Thus, in terms of the dimensionless controll parameters f̃D increases as the energy

ǫD increases. Notably, however, if the same detachment line is represented in terms

of the dimensional control parameters, detachment force fD vs. detachment temper-

ature TD (with the dimensional adsorption energy ε0 being fixed), one encounters a

nonmonotonic behavior

fD =
kBTD
a

[

ε0

kBTD
− ln

(

µ3

µ2

)]ν

(6.79)

which is shown in Fig. 6.5d. The curve given by Eq.(6.79) goes through a maximum

at a temperature given by

Tmax
D =

(1 − ν)ε0

kB ln
(

µ3

µ2

) . (6.80)

For simplicity we assume kB = 1. Such nonmonotonic behavior is termed reentrant

and can be observed in the DNA unzipping process [55, 65, 62] as well as in the case

of stretched polymer adsorption on solid surfaces [67, 50]. At very low T , however,

the expression eq. 6.61 for Pm(r) [65] predicts divergent chain deformation [9] , i.e.,

becomes unphysical. One can readily show that in this case the correct behavior is

given by fa = ε0 + kBT ln(µ3/µ2).

6.4.3 Average loop and tail lengths close to the detachment

line

As long as the adsorption energy ǫ > ǫc (or w > wc), the average loop length L remains

finite upon the detachment line crossing. At f̃ < f̃D the fugacity z = z∗(w) and the

average loop length are given by

L = z
∂ lnU(z)

∂z

∣

∣

∣

∣

z=z∗(w)

=
Φ (α− 1, µ3z

∗(w))

Φ (α, µ3z∗(w))
. (6.81)

Thus, at f̃ < f̃D the force does not effects the loop length. At f̃ > f̃D the fugacity is

given by z = z#(f̃) where z# is determined from Eq. (6.71). In this case the average

loop length reads

L = z
∂ lnU(z)

∂z

∣

∣

∣

∣

z=z#(f̃)

=
Φ
(

α− 1, µ3z
#(f̃)

)

Φ
(

α, µ3z#(f̃)
) (6.82)
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Figure 6.6: Variation of the average loop size, L, with detachment force strength f for

several values of the adsorption energy ǫ (given as a parameter). (b) Mean tail size S

against f at different substrate attraction ǫ.

Since at ǫ > ǫc and f̃ > f̃D we have µ3z
# < µ3z

∗ < 1. In this case the function given

by Eq. (6.82) declines when the force grows - see Figure 6.6a.

In contrast, the average tail length S diverges in the vicinity of the detachment

line. Indeed, at f̃ < f̃D the average tail length is given by

S = z
∂ lnR(z)

∂z

∣

∣

∣

∣

z=z∗(w)

=
a1f̃

θΦ
(

ψ − 1, µ3z
∗(w) exp(a2f̃

1/µ)
)

1 + a1f̃ θΦ
(

ψ, µ3z∗(w) exp(a2f̃ 1/µ)
)

≈ 1
[

1 − µ3z∗ exp(a2f̃ 1/µ)
] (6.83)

because ψ < 1 and µ3z
∗ exp(a2f̃

1/µ) ≤ 1 (cf. Eq. (B.11)). In the vicinity of the

detachment line 1 − µ3z
∗(w) exp(a2f̃

1/ν) ≈ (f̃D − f̃)/(νf̃D) and, therefore,

S ∝ f̃D

f̃D − f̃
. (6.84)

At f̃ ≥ f̃D the fugacity z = z#(f̃) and hence,

S = z
∂ lnR(z)

∂z

∣

∣

∣

∣

z=z#(f̃)

→ ∞. (6.85)

The divergence in Eq.(6.85) follows immediately from Eq.(6.70) which holds in the

thermodynamical limit. In practice, however, for a large but finite chain length S → N

at f̃ ≥ f̃D. Thus, despite the abrupt first order phase transition, as far as the order

parameter n is concerned, the detachment in terms of the tail length S starts diverging

already at f̃ ≤ f̃D as one comes close to the critical detachment force f̃D.
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6.4.4 Latent heat variation upon detachment

Finally we study the change in the internal energy of the system while crossing the line

of detachment. At f̃ > f̃D the stretching energy E follows the Pincus law, so that

E(f̃ = f̃D + 0) = NkBT f̃
1/ν
D (6.86)

In the adsorbed phase

E(f̃ = f̃D − 0) = −NkBT ǫD n(wD) (6.87)

As a result, the latent heat q, consumed upon detachment (or, due to force-induced

desorption,) reads

q ≡ E(f̃ = f̃D + 0) −E(f̃ = f̃D − 0) = NkBT
[

f̃
1/ν
D + ǫD n(wD)

]

> 0 (6.88)

i.e., the heat is absorbed by the system during the force -induced desorption. In the

vicinity of the critical point f̃D ∼ (ǫ − ǫc)
ν/φ and n ∼ (ǫ − ǫc)

1/φ−1, thus to a leading

order

q ≈ NkBTǫc (ǫ− ǫc)
1/φ−1. (6.89)

6.5 Monte Carlo Simulation Results

In the previous sections, we have discussed the simulation methods as well as developed

a detailed analytical theory to explain the force induced desorption of polymer chains

from a surface. In this section we discuss the results of the computer experiment and

how they compare with the theoretical predictions.

6.5.1 Determination of the detachment point

In the absence of external pulling force, the transition of a polymer from desorbed to

adsorbed state is known to be of second order, and the fraction of adsorbed monomers,

n, can be identified as an order parameter. Therefore, in our computer experiment we

use n to determine the point of polymer detachment from the adsorbing surface. At

constant surface potential, ǫ, one finds that n steeply decreases upon a small increase of

the pulling force whereby the polymer chain undergoes a transition from an adsorbed

phase to a grafted-detached state. In order to locate the point of chain detachment,

we draw a tangent at the inflexion point of the curve n vs. f . The detachment force,

fD, is then identified as the point where the tangent intersects the abscissa (f -axis) -

see Fig. 6.7(a). This is the same as the method described in Chapter 4 Figure 4.6(a).

Thus one can determine the detachment force as a function of the adsorption potential
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Figure 6.7: (a) Plot of the ’order parameter’, n, against pulling force f , for an adsorp-

tion strength ε/kBT = 3.0. The polymer chain length is N=128. The tangent at the

inflexion point of the curve meets the abscissa at fD which we define as the detachment

force. (b) The ’order parameter’, n, against the adsorption potential ǫ for fixed pulling

force f = 2.0. The tangent at the inflexion point of the curve meets the abscissa at

εD/kBT where the polymer adsorbs at the surface plane.

ǫ. Alternately, from the plot of n against the adsorption potential ǫ, with the pulling

force f held constant, one can observe that as sharp growth of n as the potential is

slightly increased. The critical potential for chain attachment at the transition point

can be found similarly as indicated in Fig. 6.7(b).

Fig. 6.8(a) shows the variation of the order parameter with changing surface po-

tential for several values of the pulling force. Evidently, the larger the pulling force,

the stronger the surface potential, needed to keep the polymer adsorbed on the plane.

In the absence of a force, the order paramenter changes smoothly. For larger forces,

however, the transition becomes rapidly abrupt. This abrupt behavior of the order

parameter is in close agreement with our theoretical predictions, depicted in Fig. 6.5.

In Fig. 6.8(b) we show the variation of the order parameter n with changing force f

for various adsorption potentials ǫ. The threshold values for polymer desorption, ǫD(f)

and fD(ǫ), as obtained for chains of different length, are then extrapolated to obtain

the corresponding values in the thermodynamic limit N → ∞ as described earlier in
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Chapter 4 Sec. 4.6 for free chains.
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Figure 6.8: (a) The ’order parameter’, n, against the surface potential, ǫ, for various

pulling forces. The chain has length N=128. (b) Variation of n with the pulling force,

f , for several surface potentials.

Our observations show that ǫD increases slightly (i.e., the finite-size effects are

rather small) with growing chain length N . By extrapolating the data to 1/N → 0

one obtains then ǫD for infinite length of the polymer chain. Similarly, the detachment

force at fixed surface potential ǫ may be determined in the thermodynamic limit.
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6.5. Monte Carlo Simulation Results

6.5.2 Adsorption-desorption phase diagram under pulling

Using the threshold values of fD and ǫD for critical adsorption/detachment in the

thermodynamic limit, one can construct the adsorption-desorption phase diagram for

a polymer chain. The phase diagram may be obtained by any of the two methods, i.e.,

(i) by fixing of the force and locating ǫD, and/or (ii), by fixing of the surface potential

and locating the detachment force fD. The resulting phase diagram is displayed in

Figure 6.9. The inset in Fig 6.9 shows that fD ∝ (ǫ − ǫc)
0.97 which may be compared

to the theoretical prediction fD ∼ (ǫ− ǫc)
ν/φ. Hence, this method gives us an estimate

for the crossover exponent φ. For ǫc = 1.67 , we find φ ∼ 0.59 ± 0.02.
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Figure 6.9: Plot of the critical detachment force fD against the surface potential ǫ. In

the inset in a double logarithmic plot fD is plotted against (ǫ− ǫc)/kBT . The critical

adsorption potential for zero force has been found earlier [6] to be ǫc = 1.67.

6.5.3 Average lengths of loops and tails
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Figure 6.10: (a) Distribution of loop sizes for chain length N = 128 at different strength

of the surface potential and no pulling force. The inset shows the same in double

logarithmic coordinates. The measured slope at ǫc/kBT = 1.67 (full line) is −1.38±0.02

which practically coincides with the prediction Eq.(6.30). (b) The average loop length

plotted against (ǫ− ǫc)/kBT where ǫc/kBT = 1.67, for various chain lengths in double

logarithmic coordinates. The slopes x, indicated by a dashed line, are obtained from

the L vs. (ǫ− ǫc)/kBT curves, and plotted against 1/N in the inset. Extrapolation to

1/N → 0 yields x ≈ 0.95.
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In Fig 6.10a we plot the PDF of the loop sizes for a chain with N = 128 at

several strengths of the adsorption potential ǫ in the absence of pulling. One may

readily verify that the PDF has a peak for loops of size unity which suggests that most

frequently single-segment defects (that is, vacancies in the monomer trains) occur in

the conformation of adsorbed chain. However, for ǫ < ǫc one may detect clearly in

Fig 6.10a slight increase in the distribution for loops of size l ≈ N which becomes more

pronounced at smaller ǫ ≈ 1.0 − 1.2 in full agreement with the double-peaked shape,

predicted by Eq. (6.36).

The average loop size L is plotted against the surface potential (with regard to its

critical value at the adsorption point), (ǫ − ǫc)/kBT in Fig 6.10b. We find that, well

inside the region of adsorption, L scales as a power law, L ∝ (ǫ − ǫ)x. The exponent

x, plotted as a function of N in the inset, is negative, therefore, stronger attraction

makes the loops smaller while the mean loop size evidently increases with growing

chain length N which is a finite size effect. The exponent x approaches −0.96 in the

limit 1/N → 0 - see inset in Fig 6.10b. This provides another estimate of the crossover

exponent φ since x = 1 − 1/φ, according to Eq.(6.38). Thus we find φ ≈ 0.51 ± 0.02.

From Fig 6.10b it is evident that the slope of the L vs. (ǫ − ǫ)/kBT curves visibly

changes as one comes closer to the CAP. In the immediate vicinity of ǫc the slope

is small and the corresponding estimate for the crossover exponent in this region is

φ ≈ 0.63. One should bear in mind, however, that this is due to the finite length

of the chains used in the simulation which limits the possibility for the loop size to

grow indefinitely, especially at ǫc. Therefore, we use and depict measurements of the

slope sufficiently far from the CAP where it tends to a constant value, indicated by

the dashed line in Fig 6.10b.

In Fig. 6.11(a) we plot the PDF of the tail size for a chain with N = 128 at several

strengths of the adsorption potential in the absence of pulling. An interesting feature

of the tail distribution function for ǫ = 1.70 immediately at the CAP, ǫc = 1.67, is the

observed bimodal character. It means that there are two dominating chain populations,

one with few loops and a long tail, and the other with many loops and a very short

tail. Our simulation result thus confirms the shape of the tail distribution at criticality,

Eq. (6.35), and appears in excellent agreement with the analytic result, derived earlier

by Gorbunov et al. [36], indicating that in the vicinity of the critical adsorption point

(CAP) chain conformations are either loop- or tail-dominated.

In Fig 6.11(b) the average tail length, S, is plotted against (ǫ − ǫc)/kBT . Again,

S is found to scale as a power law with the adhesion strength, S ∝ (ǫ − ǫc)
y where y

is negative, decreases with N , and approaches eventually −1.67 for 1/N → 0 . This

result can be compared to Eq.( 6.41). The corresponding estimate of φ is thus 0.60.
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Figure 6.11: (a) Distribution of the tail size for different surface potentials in a polymer

of length N = 128 with no pulling force. (b) The average tail length S against (ǫ −
ǫc)/kBT plotted for various chain lengths in double logarithmic coordinates. The slopes

obtained from these curves are plotted against 1/N in the inset and extrapolated to

get the thermodynamic limit N → ∞.
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We turn now to the properties of adsorbed chains in the presence of pulling force.

A remarkable feature of the probability distribution of the order parameter is the
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Figure 6.12: Distribution of the order parameter n for a pulling force fa/kBT = 6.0

and different strength of adhesion ǫ/kBT . The chain length is N = 128 and the

threshold value of the surface potential for this force is ǫD ≈ 6.095 ± 0.03. The values

ǫ/kBT = 6.09 and ǫ/kBT = 6.10 are on both sides of the detachment line, cf. Fig. 6.9.

absence of a second peak in the vicinity of the critical strength of adsorption, ǫD ≈
6.095 ± 0.03, which still keeps the polymer adsorbed at pulling force fa/kBT = 6.0.

Somewhat further away from ǫD, one observes a clear maximum in the distribution

H(n), indicating a desorbed chain with n ≈ 0.01 for ǫ = 6.05, or an almost entirely

adsorbed chain with n ≈ 0.99 for ǫ = 6.15. This lack of bimodality in theH(n) confirms

the dichotomic nature of the desorption transition which rules out phase coexistence.

In Fig 6.13a, the average loop length, L is plotted against the external pulling

force f for ǫ/kBT = 4.0. For f below the detachment threshold, fD, the average loop

size appears to be constant independent of the force. As the force f exceeds fD, the

average loop size decreases in close agreement with the theoretical prediction, shown

in Fig. 6.5a. In Fig 6.13b, the average tail length, S, is plotted against the difference

fD− f for several chain lengths at surface adhesion ǫ/kBT = 4.0 in double logarithmic

coordinates. As the applied pulling force f gradually approaches the threshold force

for detachment, fD, the tail gets systematically longer and comes close to the length

of the chain N . Evidently, if one takes into account the finite-size effects which lead

to the observed bending of S ≈ N at stronger pulling, the tail S scales as (fD − f)−w.

The exponent w approaches 1.01 (see inset in Fig 6.13b) at ǫ/kBT = 4.0. This may be
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Chapter 6. Pulling: the f-ensemble

compared to the theoretical prediction of Eq. (6.84) which predicts indeed w = 1.

Eventually, in Fig 6.14(a) the PDF of the tail size s is plotted at different strengths

of the surface potential ǫ while the force, applied to the chain end, is held constant,

f = 2.0. In contrast, in Fig 6.14(b), we display the distribution of tail size s for the case

when the adhesion strength is fixed, ǫ/kBT = 4.0, whereas the pulling force f is varied.

Both graphs are remarkable in that they reflect the transition from fully adsorbed

polymer, characterized by a sharp peak in the PDF at vanishing tail sizes, to detached

chain when the pulling force exceeds the threshold fD and the corresponding PDF is

peaked at s/N ≈ 1. We emphasize again that although this phase transition of chain

detachment is clearly of first order, no trace of a bimodal distribution in the vicinity

of the transition line can be detected! Thus, the states on both sides of the phase

boundary fD(ǫ) cannot coexist simultaneously which underlines the peculiar nature of

this phase transformation. At this point we should like to point out, however, that

this exotic feature of the detachment transitions has meanwhile been established also

in the case of the so called escape transition of a polymer coil, deformed under the tip

of an Atomic Force Microscope [86, 85, 1, 59]. It has been shown rigorously recently

[48], that despite its first order nature, the escape transition takes place without phase

coexistence. Most probably, this unusual feature is due to the topological connectivity

of polymer chain as quasi one-dimensional system.
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Figure 6.13: (a) The average loop length plotted against the pulling force f for fixed

ǫ/kBT = 4.0. (b) The average tail length S is plotted against the (f−fD)−1 for various
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Figure 6.14: (a) Distribution of the tail size for a pulling force fa/kBT = 2.0 and

different strength of adhesion ǫ/kBT . The chain length is N = 128. (b) Distribution

of the tail size for different force f at ǫ/kBT = 4.0.
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6.6 Discussion

In this chapter, we have studied the force-induced desorption transition of a polymer

chain in contact with an adhesive surface. We treat the problem within the frame-

work of the Grand Canonical Ensemble approach and derive analytic expressions for

the various conformational building blocks, characterizing the structure of an adsorbed

linear polymer chain, subject to pulling force of fixed strength. Closed analytic expres-

sions for the fraction of adsorbed segments (i.e., the order parameter of the desorption

transition) and for probability distributions of trains, loops and tails have been derived

along with expressions for the corresponding first moments in terms of the surface

potential intensity both with and without external force. As expected, all these con-

formational properties and their variation with the proximity to the CAP are governed

by a crossover exponent φ.

A central result in the present work is the calculation of φ using the approach of

Kafri et al. [94] which provides insight into the background of the existing controversial

reports about its numeric value. We demonstrate that the value of φ may vary within

the interval 0.39 ≤ φ ≤ 0.6, depending on the possibility of a single loop to interact with

the neighboring loops in the adsorbed polymer. Since this range is model-dependent,

one should not be surprised that different models produce different estimates of φ in

this interval.

A comparison with the results from extensive Monte Carlo simulations demonstrates

the good agreement between theoretic predictions and simulation data.

In particular, we verify the gradual transition of the PDF of loops from power-law

to exponential decay as one moves away from the critical adsorption point to stronger

adsorption. We demonstrate that for vanishing pulling force, f → 0, the mean loop

size, L ∝ (ǫ − ǫc)
1− 1

φ , and the mean tail size, S ∝ (ǫ − ǫc)
1
φ , diverge when one comes

close to the CAP. In contrast, for a non-zero pulling force, f 6= 0, we show that the

loops on the average get smaller with growing force while close to the detachment

threshold, f ≈ fD, the tail length diverges as S ∝ (1 − f
fD

)−1.

Eventually, we derive the overall phase diagram of the force-induced desorption

transition for a linear self-avoiding polymer chain and demonstrate its reentrant char-

acter when plotted in terms of detachment force fD against system temperature T .

We find that despite being of first order, the force-induced phase transition of polymer

desorption is dichotomic in its nature, that is, no phase coexistence and no metastable

states exist. This unusual feature of the phase transformation is unambiguously sup-

ported by our simulation data, e.g., through the comparison of the order parameter

probability distributions on both sides in the immediate vicinity of the detachment line

whereby no double-peaked structure is detected.

In this work, the simulations have been carried out within the framework of a
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constant force ensemble. The next chapter deals with the constant height ensemble

where one uses the end-monomer z-position as an independent parameter and measures

the force, exerted by the chain on the end monomer.
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Chapter 7

Pulling an adsorbed polymer from

a surface II : the h-ensemble

7.1 Introduction

In the previous Chapter, we discussed the properties of a polymer chain under the in-

fluence of an external force that pulls it from an attractive substrate. As we mentioned

before, this study was motivated by recent advances in the field of single molecule ma-

nipulation techniques such as atomic force microscopy (AFM) and optical/magnetic

tweezers.

In these experimments it is customary to anchor a polymer molecule with one end

to the substrate whereas the other end is fixed on the cantilever. The polymer molecule

can be adsorbed on the substrate while the cantilever recedes from the substrate. In

doing so one can prescribe the acting force in AFM experiment whereas the distance

between the tip and the surface is measured. Conversely, it is also possible to pre-

scribe the distance and measure the corresponding force. In fact the latter is actually

more typical in AFM-experiments. From the standpoint of statistical mechanics these

two cases could be qualified as f -ensemble (force is fixed while chain end height is

measured) and as h-ensemble (the height, h is fixed while one measures f). Recently

these two ways of descriptions as well as their interrelation were discussed for the case

of a phantom polymer chain by Skvortsov et al. [81]. Previously, we have discussed

the adsorption of a single tethered self-avoiding polymer on a solid substrate with an

external force applied to a free chain’s end i.e. in the f -ensemble.

Now we consider the detachment process of a single self-avoiding polymer chain,

keeping the distance h between the free chain’s end and the substrate as the control

parameter. We demonstrate below that a number of properties behave differently in

the vicinity of the phase transition, depending on which of the two equivalent ensembles

is used as a basis for the study of systems’s behavior.
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7.2 Monte Carlo Simulation Model

We have used the coarse grained off-lattice bead-spring model [9] (see Chapter 3) which

was employed in our previous studies. The system consists of a single polymer chain

tethered at one end to a flat impenetrable structureless surface. The surface interaction

is described by a square well potential,

Uw(z) =







ǫ, z < rc

0, z ≥ rc
(7.1)

The strength ǫ is varied from 0 to 7.0 while the interaction range rc = 0.125. The

effective bonded interaction is described by the FENE (finitely extensible nonlinear

elastic) potential:

UFENE = −K(1 − l0)
2ln

[

1 −
(

l − l0
lmax − l0

)2
]

(7.2)

with K = 20, lmax = 1, l0 = 0.7, lmin = 0.4. The nonbonded interactions between

monomers are described by the Morse potential:

UM(r)

ǫM
= exp(−2α(r − rmin)) − 2 exp(−α(r − rmin)) (7.3)

with α = 24, rmin = 0.8, ǫM/kBT = 1. In few cases, needed to clarify the nature of

the polymer chain resistence to stretching, we have taken the nonbonded interactions

between monomers as purely repulsive by shifting the Morse potential upward by ǫM

and removing its attractive branch, VM(r) = 0 for r ≥ rmin.

We employ periodic boundary conditions in the x− y directions and impenetrable

walls in the z direction. The lengths of the studied polymer chains are 64, and 128.

The size of the simulation box was chosen appropriately to the chain length, so for

example, for a chain length of 128, the box size was 256 × 256 × 256 and for chain

length N = 64, the box size was 128 × 128 × 128. All simulations were carried out

for constant position of the last monomer z-coordinate, that is, in the fixed height

ensemble.

The standard Metropolis algorithm was employed to govern the moves with self

avoidance automatically incorporated in the potentials. In each Monte Carlo up-

date, a monomer was chosen at random and a random displacement attempted with

∆x, ∆y, ∆z chosen uniformly from the interval −0.5 ≤ ∆x,∆y,∆z ≤ 0.5. The last

monomer was held at constant height but was free to move in the xy plane.

The transition probability for the attempted move was calculated from the change

∆U of the potential energies before and after the move was performed as W =

exp(−∆U/kBT ). As in a standard Metropolis algorithm, the attempted move was
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accepted, if W exceeds a random number uniformly distributed in the interval [0, 1].

In order to get the chain end to the desired height, we used the algorithm described in

the previous chapter i.e. for the fixed force ensemble. Using a starting configuration in

which the chain end is less than (but close to) the desired height, we apply a constant

force to the chain and pull it up until it reaches the desired height (withing a small

error margin). Once the required height is reached, the force is switched off and the

chain is equilibrated in the MC method for a period of about 5× 105 MCS after which

typically 500 measurement runs are performed, each of length 2× 106 MCS. The equi-

libration period and the length of the run were chosen according to the chain length and

the values provided here are for the longest chain length. An additional consideration

in this study was the measurement of the force on the last monomer. The force has

two components : the contribution of the bonded interaction with its neighbour and

the contribution of the rest of the monomers. The two contributions were measured

separately and the total force required to keep the monomer at a constant height was

obtained by adding both components.

7.3 Theory : Single chain adsorption with distance

as a control parameter

7.3.1 Deformation of a tethered chain

We first examine how a chain tethered to a solid surface responds to stretching. This

problem amounts to finding the chain free end probability distribution function (PDF)

PN(h) where N is the chain length, i.e., the number of beads. As described in Chapter

6, the partition function of such chain a with fixed distance h of the chain end from

the anchoring plane is given as

Ξtail(N, h) =
µN3
Nβ

l0PN(h) (7.4)

where β = 1 − γ1 and the exponent γ1 = 0.680 (see Chapter 4 Section 4.4.1). This

may be compared to eq. 6.60 in Chapter 6 which gave the canonical partition function

of the tail of a polymer chain under an applied force. Here µ3 is the model dependent

connective constant (see e.g. ref.[90]). In Eq. (7.4) l0 denotes a short-range charac-

teristic length which depends on the chain model. We discuss the chain deformation

within two models: bead-spring (BS) model and freely jointed bond vectors (FJBV)

model.In the first case, the bonds are elastic while in the second case the bonds are

considered rigid.
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Bead-spring model

The form of PN(x) has been discussed earlier [29, 28] and used later in studies of the

monomer density in polymer brushes [51]. A derivation of the form of PN(x) is sketched

in Appendix C. Here we outline this in a way which is appropriate for our purposes.

The average end-to-end chain distance reads RN = l0N
ν , where l0 is the mean distance

between two successive beads on a chain and ν is the Flory exponent . The short

distance behavior, h≪ RN , is given by

PN(h) ∝
(

h

RN

)ζ

(7.5)

where the exponent ζ ≈ 0.8 [29]. As described in the previous chapter, for the long

distance behavior, h/RN ≫ 1, we assume, following Ref.[51], that the PDF of the

end-to-end vector r is given by des Cloizeaux’s expression [19] for the bulk : PN (r) =

(1/RN) F (r/RN) where the scaling function F (x) ∝ xt exp[−Dxδ], and the exponents

t = (β − d/2 + νd)/(1 − ν) , δ = 1/(1 − ν) and β = 1 − γ1. This has been discussed

earlier in Chapter 6 Section 6.4 and in the Appendix C. Here and below d denotes

the space dimensionality. One should emphasize that the presence of a surface is

manifested only through the replacement of γ by γ1 (as compared to the pure bulk

case!). By integration of PN(r) over the x and y coordinates one obtains PN(h) ∝
(h/RN)2+t−δ exp[−D(h/RN )δ]. As the long distance behavior is dominated mainly by

the exponential function while the short distance regime is described by Eq. (7.5), we

can approximate the overall behavior as

PN(h) =
A

RN

(

h

RN

)ζ

exp

[

−D
(

h

RN

)δ
]

(7.6)

A comparison of the distrbution, Eq. (7.6), with our simulation data is shown in

Fig. 7.1. The constants A and D in Eq. (7.6) can be found from the conditions:
∫

PN(h)dh = 1 and
∫

h2PN(h)dh = R2
N . This leads to:

A = δ

[

Γ

(

1 + ζ

δ

)]−(1+ζ)/2 [

Γ

(

3 + ζ

δ

)]−(1−ζ)/2

(7.7)

and

D =

[

Γ

(

3 + ζ

δ

)]δ/2 [

Γ

(

1 + ζ

δ

)]−δ/2

(7.8)

where δ ≈ 2.43 and ζ ≈ 0.8. One gets the estimates A ≈ 2.029 and D ≈ 0.670.
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The free energy of the tethered chain with a fixed distance h takes on the form

Ftail(N, h) = −kBT ln Ξtail(N, h). By making use of Eqs. (7.4) and (7.6) the expression

for the force fN , acting on the end-monomer when kept at distance h is given by

fN =
∂

∂h
Ftail(N, h) =

kBT

RN

[

δD

(

h

RN

)δ−1

− ζ

(

RN

h

)

]

(7.9)

One should note that at h/RN ≫ 1 we have h ∝ RN (RNfN/kBT )1/(δ−1) which, after

taking into account that δ−1 = 1− ν, leads to the well known Pincus deformation law:

h ∝ l0N(l0fN/kBT )1/ν−1 [14] (see Chapter 2, Section 2.5 ). In this approximation

the (dimensionless) elastic energy reads Uel/kBT = −N(l0fN/kBT )1/ν . As a result the

corresponding tail free energy is given by

Ftail

kBT
= −N

(

l0fN
kBT

)1/ν

−N lnµ3 (7.10)

Eq. (7.9) indicates that there exists a height h0 = (ζ/δD)1/δRN over the surface

where the force fN changes sign and becomes negative (that is, the surface repulsion

dominates). According to Eq. (7.9) the force diverges as fN ∝ −kBT/h upon further

decrease of the distance h.

Freely jointed chain

It is well known [39] that the Pincus law, Eq. (7.9), describes the deformation behavior

at intermediate force strength, 1/Nν ≪ l0fN/kBT ≤ 1. Direct Monte Carlo simulation

results indicate that, depending on the model, deviations from Pincus law emerge

at h/RN ≥ 3 (bead-spring off-lattice model) [78], or h/RN ≥ 6 (Bond Fluctuation

Model) [93]. In such “overstretched” regime (when the chain is stretched close to its

contour length) one should take into account that the chain bonds cannot expand

indefinitely. This case could be treated within the simple freely jointed bond vectors

(FJBV) model [78, 76] where the bond length l0 is fixed. In this model the force -

deformation relationship is given by

fN =
kBT

l0
L−1

(

h

l0N

)

(7.11)

where L−1 denotes the inverse Langevin function L(x) = coth(x) − 1/x and l0 is

the bond vector length. We discuss the main results pertaining to FJBV model in

Appendix A. The elastic deformation energy reads Uel/kBT = −(l0fN/kBT )
∑N

i=1 <

cos θi >= −N(l0fN/kBT )L(l0fN/kBT ), where θi is the average polar angle of the i-th

bond vector (see Appendix A). Thus the corresponding free energy of the tail for the

FJBV model reads

Ftail

kBT
= −NG

(

l0fN
kBT

)

−N lnµ3 (7.12)
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where we have used the notation G(x) = xL(x) = x coth(x) − 1. Now we are in a

position to discuss the pulling of the adsorbed chain controlled by the chain height h.

7.3.2 Pulling controlled by the chain end position

Consider now an adsorbed chain when the adsorption energy per monomer is sufficiently

large, ε ≥ εc, where εc denotes a corresponding critical energy of adsorption. Below

we will also use the notation ǫ = ε/kBT for the dimensionless adsorption energy. The

problem of force-induced polymer desorption could be posed as follows: how is the

process of polymer detachment governed by the chain end position h? Figure 7.2a

gives a schematic representation of such a system, and the situation in a computer

experiment, as shown in the snapshot Fig. 7.2b, is very similar.
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Figure 7.1: Probability distribution PN (h)) of chain end positions h above the grafting

plane for a polymer with N = 128 monomers at zero strength of the adsorption poten-

tial ǫ = 0.0. In the inset the MC data for PN (h)) (solid black line) is compared to the

theoretical result, Eq. (7.6). Dashed line denotes the expected slope of ζ ≈ 0.78 of the

probability distribution for small heights.
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Adsorbed part Tail

h

M

N − M
fM

(a)

Figure 7.2: (a) Schematic graph of an adsorbed polymer chain, partially detached from

the plane by an external force which keeps the last monomer at height h. The total

chain is built up from a tail of length M and an adsorbed part of length N − M .

The force fM acting on the chain end is conjugated to h, i.e., fM = ∂Ftail/∂h. (b) A

snapshot from the MC simulation: N = 128, h = 25.0, ǫ = 4.0 and 〈f〉 = 6.1.
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7.3. Theory

As is evident from Fig. 7.2a, the system is built up from a tail of length M and

an adsorbed portion of length N −M . The adsorbed part can be treated within the

grand canonical ensemble approach as described in the previous Chapter. In ref.[7] it

was shown that the free energy of the adsorbed portion is Fads = kBT (N −M) ln z∗(ǫ),

where the fugacity per an adsorbed monomer z∗(ǫ) depends on ǫ and can be found

from the basic equation (see Chapter 6 eq. 6.18)

Φ(α, µ3z
∗) Φ(λ, µ2wz

∗) = 1 (7.13)

As described earlier in Chapter 6 eq. 6.13 and in Appendix B, the so called polylog

function in Eq. (7.13) is defined as Φ(α, z) =
∑∞

n=1 z
n/nα and the connective constants

µ3, µ2 in three and two dimensional spaces are model dependent [90]. The exponents

α = 1 + φ and λ = 1 − γd=2 where φ ≈ 0.5 is the crossover exponent and γd=2 = 1.343

[90]. Finally w = exp(ǫ) is the additional statistical weight gained by each adsorbed

segment.

In equilibrium, the force conjugated to h, that is, fM = ∂Ftail/∂h, should be equal

to the chain resistance force to pulling fp = (kBT/l0)F(ǫ) (where F(ǫ) is a scaling

function depending only on ǫ), i.e.,

fM =























kBT
RM

[

δD
(

h
RM

)δ−1

− ζ
(

RM

h

)

]

= fp , for BS-model

kBT
l0

L−1
(

h
l0M

)

= fp , for FJBV-model

(7.14)

The resisting force fp holds the last adsorbed monomer in the adhesive plane (see

again Fig.7.2a where the last adsorbed monomer experiences a force fM). One should

emphasize that the force fp stays constant in the course of the pulling process (i.e.,

as long as one monomer, at least, is adsorbed on the surface), thus fp corresponds

to the plateau on the deformation curve (force f vs. chain end position h). The

adsorbed monomer (see Fig. 7.2) has a chemical potential, µads = ln z∗, which in an

equilibrium should be equal to the chemical potential of a desorbed monomer in the

tail, µdes = ∂(Ftail/kBT )/∂N . The expression for Ftail depends on the model and is

given either by eq. (7.10) for the BS-model or by eq.(7.12) in the case of FJBV-model.

Taking this into account the condition µads = µdes leads to the following “plateau law”

relationship

l0 fp

kBT
=



















|ln[µ3z
∗(ǫ)]|ν , for BS-model

G−1 (|ln[µ3z
∗(ε)]|) , for FJVB-model

(7.15)

where G−1(x) stands for the inversion of the function G(x) = x coth(x)−1. One should

note that Eq.(7.15) resembles Eq. 6.73 in Chapter 6 which determines the detachment
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line in the pulling controlled by the applied force. Close to the critical point ǫc the

plateau force fp goes to zero. Namely, taking into account that in the vicinity of the

critical point ln[µ3z
∗(ǫ)] ∝ −(ǫ− ǫc)

1/φ (see ref.[7]) and G−1(x) ≈ (3x)1/2 we conclude

that

fp ∝



















(ǫ− ǫc)
ν/φ , for BS-model

(ǫ− ǫc)
1/2φ , for FJVB-model

One can resolve Eq.(7.14) with respect to M (taking into account that h ≫ RM),

and arrive at expression for the tail length

M(h, ǫ) =



















h
l0

(

kBT
l0fp

)1/ν−1

, for BS-model

h
l0

[

L
(

l0fp
kBT

)]−1

, for FJVB-model

(7.16)

where the force at the plateau, fp, is described by the eq. (7.15). If, for the degree

of adsorption we use the fraction of chain contacts with the plane, n = Ns/N , as an

order parameter, where Ns is the number of monomers on the surface, we may write

(as in Chapter 6)

n = − 1

kBTN

∂

∂ǫ
(Fads + Ftail) (7.17)

where Fads and Ftail are free energies of the adsorbed and desorbed portions of the

chain respectively. The free energy Fads = kBT [N −M(h, ǫ)] ln z∗(ǫ) whereas Ftail =

kBTµdesM(h, ǫ) (recall that µdes is the chemical potential of a desorbed monomer).

After substitution these expressions in eq. (7.17) and taking into account that in

equilibrium µads = µdes (the sequence of operations is important: taking the derivative

with respect to ǫ is to be followed by the condition µads = µdes) so one gets

n = −
[

1 − M(h, ǫ)

N

]

∂ ln z∗(ǫ)

∂ǫ
(7.18)

i.e. the order parameter n is defined by the product of monomer fraction in the adsorbed

portion, 1 −M/N , and the fraction of surface contacts in this portion, −∂ ln z∗/∂ǫ.

The expressions for the order parameter can be recast in the form

n =

∣

∣

∣

∣

∂ ln z∗(ǫ)

∂ǫ

∣

∣

∣

∣

×



















1 − h
c1l0N

(

kBT
l0fp

)1/ν−1

, BS-model

1 − h
c2l0N

[

L
(

l0fp
kBT

)]−1

, FJVB-model

(7.19)
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Here c1 and c2 are some constants of the order of unity. As one can see from Eq. (7.19),

the order parameter decreases linearly and steadily with h/N . This behavior is qual-

itatively different from the abrupt jump of n when the pulling force f is changed as a

control parameter. In Section 7.4 we will show that this predictions is in a good agree-

ment with our MC - findings. The transition point on the n vs. h curve corresponds

to total detachment, n = 0. The corresponding distance h will be termed “detachment

height” hD. The dependence of hD on the adsorption energy ǫ can be obtained from

Eq.(7.19) where n is set to zero, i.e.

hD
l0N

=



















(

l0fp
kBT

)1/ν−1

, BS-model

L
(

l0fp
kBT

)

, FJVB-model

(7.20)

where again fp as a function of ǫ is given by Eq. (7.15).

The line given by Eq. (7.20), is named “detachment line”. It corresponds to an

adsorption - desorption polymer transition which appears as of second order since this

order parameter n goes to zero continuously as h increases. One should emphasize,

however, that this “detachment” transition has the same nature as the force-induced

desorption transition [7] where the pulling force f , rather than the distance h, is fixed

and used as a control parameter, and which is known to be of first order.

One can suggest a somewhat alternative way to define the detachment transition,

namely, as a transition upon which the tail length M becomes equal to the total chain

length N . Taking into account the eq. (7.16) for M(h, ǫ) we come to the following

detachment line

hD
l0N

=



















(

l0fp
kBT

)1/ν−1

, for BS-model

L
(

l0fp
kBT

)

, for FJVB-model

(7.21)

It is easy to understand that the condition M(h, ε) = N corresponds to the force

plateau termination and can be seen by the MC - simulation (see the next Section).

7.4 Results and Analysis

In order to verify the theoretical predictions, outlined in Section 7.3, we carried out

extensive Monte Carlo simulations with the off-lattice model, described in Section 7.2.

In these simulations we fixed the end monomer of the polymer chain at height h above

the adsorbing surface, and measured the (fluctuating) force, needed to keep the last

bead at distance h, as well as the corresponding fraction of adsorbed monomers n.
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These computer experiments were performed at different strengths ǫ of the adsorption

potential, Eq. (7.1).
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Figure 7.3: (a) Variation of order parameter (fraction of adsorbed monomers) n with

changing height h/l0N of the fixed chain-end for polymers of length N = 64, 128

and different adsorption strength ǫ/kBT obtained analytically. (b) Variation of n with

changing height of the chain end for different ǫ/kBT from MC simulations. The insets

show the resulting n− ǫ relationship for several fixed heights.
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In Fig. 7.3a, 7.3b, we compare the predicted course of the order parameter n with

changing reduced height h/l0N for several values of 2.0 ≤ ǫ ≤ 5.0 with the results

from MC simulations. Note, that the critical point of adsorption ǫc ≈ 1.7 (see Chapter

4 Section 4.6). We take our measurements outside the region of critical adsorption.

Typically, both in the analytical results, plotted in Fig. 7.3a, which correspond to an

infinitely-long chain N → ∞, and in the MC-data, Fig. 7.3b, for N = 128, one recovers

the predicted linear decrease of n with growing h.
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(ε −  εc)/kBT
0

0.2

0.4

0.6

0.8

h
D
/l 0N

MC
BS model
FJBV model

ADSORBED

Figure 7.4: Phase diagram showing the dependence of the critical height of polymer

detachment from the substrate, hD/l0N
ν , on the relative strength of adsorption (ε−εc)

where εc is the critical point of adsorption at zero force .
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Finite-size effects lead to some rounding of the simulation data (in Fig. 7.3b these

effects are seen to be larger for N = 64 than for N = 128) when n → 0 so that the

height of detachment hD is determined from the intersection of the tangent to n(h) and

the x−axis where n = 0. Evidently, with growing adsorption strength, ǫ, larger height

hD is needed to detach the polymer from the substrate. Thus, one may construct a

phase diagram for the desorption transition, which we show in Fig. 7.4. In the insets

of Fig. 7.3a, 7.3b, we show the variation of the fraction of adsorbed segments with

adsorption strengths ǫ for several heights 20 ≤ h ≤ 50 of the N = 128 chain. It is

evident that, apart from the rounding of the MC data for n at n → 0, one finds very

good agreement between the behavior, predicted by Eq. (7.18), and the simulation

results. The gradual change of n in the whole interval of possible variation suggests a

pseudo-continuous phase transition, as pointed out in the end of Section 7.3.
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Figure 7.5: (a) Probability distribution P (n) of the order parameter n (i.e., the fraction

of adsorbed monomers) for N = 128 and ǫ = 3.0 at different heights of the chain-end h

over the grafting plane. In the inset we show P (n) at the detachment line hD = 54.3.

(b) Variation of the second- and third central moments of P (n) with h. The maximum

of 〈(n− 〈n〉)3〉 is reached at h = hD.
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It has been pointed out earlier by Skvortsov et al.[81] that while both the fixed-force

and the fixed-height ensembles are equivalent as far as the mean values of observables

such as the fraction of adsorbed monomers and other related quantities are concerned,

this does not apply to some more detailed properties like those involving fluctuations.

Therefore, it is interesting to examine the fluctuations in the number of chain contacts

with the surface, n, for different values of our control parameter h. First we consider the

order parameter distribution P (n) for zero force in Fig. 7.6 obtained from our computer

experiment. For rather weak adsorption ǫ < ǫc = 1.7 in the subcritical regime, one

can varify from Fig. 7.6 that P (n) gradually transforms from nearly Gaussian into

exponential distribution. For ǫ > ǫc the distribution width grows and goes through a

sharp maximum in the vicinity of ǫc, and then drops as ǫ increases further as displayed

in the inset.
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Figure 7.6: PDF of the order parameter (fraction of contacts with the plane) for

different adsorption stregth ǫ at zero force. At the CAP one has ǫc ≈ 1.7. The change

of the variance 〈n2〉 − 〈n〉2 with varying ǫ is displayed in the inset.

The theoretical analysis [81] for the fixed-height ensemble predicts a dispersion

〈(∆n)2〉 of the adsorbed fraction n is proportional to the chain length N while being

independent of the value of h. The probability distribution P (n) of the number of

contacts is expected to be Gaussian. In Fig. 7.5a we display the distribution P (n)

measured in the MC simulations for different heights h at given adsorption energy

ǫ = 3.0. Indeed, one can readily verify from our results that far enough from the

detachment line, h < hD, the shape of P (n) is Gaussian and the second moment,

〈(∆n)2〉, remains unchanged with varying height h. Of course, when h → hD the

maximum of P (n) shifts to lower values of n. Only in the immediate vicinity of hD
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where n→ 0 and the fluctuations strongly decrease one observes a significant deviation

from the Gaussian shape - cf. the inset in Fig. 7.5a. The latter is illustrated in

more detail in Fig. 7.5b where we show the measured variation of the second moment,

〈(∆n)2〉, and the third moment, 〈(n−〈n〉)3〉 with increasing height h. While the course

of 〈(∆n)2〉 closely follows that, predicted for Gaussian chains [81], the deviation from

Gaussianity of P (n), measured by the deviation of the third moment from zero, is

localized in the vicinity of the detachment height hD.

The force f , exerted by the chain on the end-monomer, when kept at height h

above the surface, is one of the main properties which can be measured in experiments

carried out within the fixed-height ensemble. Note that f has the same magnitude

and opposite sign, f = −f̃ , as the force, applied by the experimentalist. The variation

of the force f with increasing height h is shown in Fig. 7.7a for several values of

the adsorption potential 2.0 ≤ ǫ ≤ 5.0. In Fig. 7.7a we distinguish between the

components of the total force f acting on the end bead. The total force consists of two

contributions : the first stems from the quasi-elastic forces of the bonded interaction

(FENE) whereas the second contribution is due to the short-range interactions between

non-bonded monomers (in our model - the Morse potential). A typical feature of the

f−h relationship, namely, the existence of a broad interval of heights h where the force

remains constant (a plateau in the force) is readily seen in Fig. 7.7a. With growing

strength of adsorption ǫ the length of this plateau as well as the magnitude of the

force increase. Note, that for ǫ = 0 no plateau whatsoever is found. Upon further

extension of the chain, the plateau ends and the measured force starts to grow rapidly

in magnitude - an effect, caused by stretching of the individual bonds rather than the

chain conformation itself.

A closer inspection of Fig. 7.7a reveals that the non-bonded contribution to f ,

which is generally much weaker than the bonded one, behaves differently, depending

on whether the forces between non-nearest neighbors along the backbone of the chain

are purely repulsive, or contain an attractive branch. While for strong adsorption,

ǫ ≥ 3.0, a plateau is observed even for attractive non-bonded interactions, for weak

adsorption, ǫ ≤ 2.0, an increase of the non-bonded contribution at h/l0N ≈ 0.35, (seen

as a minimum in Fig. 7.7a) is observed.

This effect is entirely missing in the case of purely repulsive nonbonded interactions

- see the inset in Fig. 7.7a where the contributions from bonded and non-bonded

interactions are shown for a neutral surface ǫ = 0. If one plots the magnitude of the

measured force at the plateau against the corresponding value of the the adsorption

potential, ǫ, one may check the theoretical result, Eq. (7.15)

The f − h relationship, which gives the equation of state of the stretched poly-
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mer, may be derived within one of the different theoretical modela, e.g., that of BS,

Eq. (7.9), or FJBV, Eq. (7.11), as mentioned in Section 7.3. Which of these theoretical

descriptions is the more adequate can be decided by comparison with experiment. In

Fig. 7.8a, 7.8b, we present such comparison by plotting our simulation data using dif-

ferent scaling for the dimensionless height h. From Fig. 7.8a it becomes evident that

the data for N = 64 and N = 128 from our computer experiment collapse on a single

curve, albeit this collapse only holds as long as h/l0N
ν ≤ 3.0 for the BS model while

it fails for stronger stretching. In contrast, this collapse works well for all values of

h, provided the height is scaled with the contour length of the chain N - Fig. 7.8b -

regardless of whether a pure repulsive or the full Morse potential (which includes also

an attractive part) of interactions are involved. The analytical expression, Eq. (6.37),

is found to provide perfect agreement with the simulation data for strong stretching,

h/l0N ≥ 0.4. From the simulation data on Fig. 7.8 one may verify that the force f

goes through zero at some height h and even turns negative, provided one keeps the

chain end very close to the grafting surface.
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Figure 7.7: (a) Variation of the two components to the total force, exerted by the

chain on the end-monomer which is fixed at (dimensionless) height h/l0N for different

adsorption potentials 2.0 ≤ ǫ/kBT ≤ 5.0: bonding interactions (full symbols) and

non-bonding Morse interactions (empty symbols). In the inset the same is shown for

a neutral plane ǫ = 0.0 for purely repulsive monomers (triangles) and for the usual

Morse potential (circles). (b) Variation of the total force (plateau hight) exerted by

the AFM tip on the chain-end for chain length N = 128 with adsorption strength ǫ.
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Figure 7.8: (a) Variation of the total applied force f with growing height of the end

monomer in terms of Pincus reduced variables, fl0N
ν/kBT versus h/l0N

ν , for a poly-

mer with purely repulsive nonbonded forces for N = 64, 128. (b) The same as in

(a) but in terms of reduced units fl0/kBT versus h/l0N for purely repulsive (empty

symbols) as well as for usual Morse potential (full symbols) of nonbonded interactions

between monomers. The FJBV-model results, Eq. (7.14), is shown by a solid line.

Arrows indicate the unperturbed gyration radius positions Rg/N for N = 64, 128

147



Chapter 7. Pulling: the h-ensemble

7.5 Discussion

This chapter is the concluding part of our discussion of the force induced desorption

of a polymer from an attractive surface. We have treated the polymer in the so-called

h-ensemble in which we consider the detachment of the polymer keeping the distance h

between the chain end and the substrate as the control parameter. The motivation for

this investigation has been the necessity to distinguish between results obtained in this

ensemble and results, derived in the constant-force ensemble (described in the previous

chapter), as far as both ensembles could in principle be used by experimentalists. We

find that the observed behavior of the main quantity of interest, namely, the fraction

of adsorbed beads n (i.e., the order parameter of the phase transition) with changing

height h differs qualitatively from the variation of the order paremeter when the pulling

force is varied. In the constant-height ensemble one observes a steady variation of n

with changing h whereas in the constant-force ensemble one sees an abrupt jump of n

at a particular value of fD, termed a detachment force. However, this should not cast

doubts on the genuine first-order nature of the phase transition which can be recovered

within the constant-height ensemble too, provided one expresses the control parameter

h in terms of the average force f . We have explored two different theoretical models

for the basic force - extension relationship, namely, the bead-spring (BS) model as well

as that of a Freely-Jointed Bond-Vectors (FJBV) model.

Our primary result is the phase diagram which gives the variation of the critical

height of polymer detachment with the strength of adsorption. As expected, with

growing adsorption strength, the height of detachment is found to increase. Another

important consideration in this study was the measurement of the force on the end

monomer. The equation of state ı.e. the f − h relationship was one of the foci of

our investigations. An important feature is the plateau in the deformation curve which

denotes the interval in which the force remains constant during the pulling process. The

plateau was found to increase with growing strength of the adsorption potential. Our

simulation results indicate a good agreement between theory and computer experiment.

This concludes the present study of the pulling of an adsorbed polymer from a surface.
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Chapter 8

Conclusions

This thesis is concerned with the adsorption of polymers at planar, rigid surfaces.

Adsorption of polymers on surfaces plays a critical role in a host of technological

applications such as adhesion, colloidal stabilization, and chromatography. Hence this

subject has been the focus of research efforts for several decades. We have carried out

a systematic investigation of adsorption of polymers using analytical techniques as well

as Monte Carlo simulations with a coarse grained off-lattice bead spring model. The

investigation was carried out in three stages :

• The adsorptive transition of regular multiblock and random copolymers was stud-

ied with particular focus on the critical behavior . Our main result was the phase

diagram of regular multiblock copolymers which shows an increase in the critical

adsorption potential of the substrate with decreasing size of blocks. The phase

diagram for random copolymers with quenched disorder which gives the change

in the critical adsorption potential, ǫpc , with changing percentage of the sticking

A-monomers, p, is also determined from computer simulations. We observe per-

fect agreement with the theoretically predicted result which has been derived by

treating the adsorption transition in terms of the “annealed disorder” approx-

imation. An important conclusion concerns the value of the universal crossover

exponent φ = 0.5 which is found to remain unchanged, regardless whether homo-,

regular multiblock-, or random polymers are concerned. Thus the universality

class of the adsorption transition of a a regular multi-block or a random copoly-

mer is the same as that of a homopolymer.

• We studied the adsorption kinetics of a single polymer on a solid plane in the

strong physisorption regime. We found a perfect agreement between the theor-

etical predictions and the simulation results for the PDF . From the numerical

solution of the Master Equation, we have found that the growth of the adsorbed
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Chapter 8. Conclusions

fraction of monomers with time is governed by a power law

n(t) ∝ t
1

1+ν ,

while the typical time of adsorption τ scales with

τ ∝ Nα

with α = 1 + ν. Our Monte Carlo results are in good agreement with these

predictions if one takes into account the finite-size effects due to the finite length

of the studied polymer chains. A deeper insight into the adsorption kinetics is

provided by our detailed study of the relevant probability distributions of trains,

loops and tails during the adsorption. The predicted exponential expression for

the PDF of trains is in a very good agreement with our simulational findings.

The loops in the strong physisorption regime are observed to reduce to occasional

desorbed segments (vacancies) which play little role in the dominating picture of

trains and tails. The PDFs of the latter are found from the simulation data to

present a shape which is fully consistent with that of the theoretic treatment.

• We have studied force induced desorption of a polymer chain adsorbed on an

attractive surface. This field has become topical due to the use of Atomic Force

Microscopy (AFM) and optical tweezers which allow one to manipulate single

polymer chains. We approached the problem within the framework of two differ-

ent statistical ensembles; (i) by keeping the pulling force fixed while measuring

the (fluctuating) position of the polymer chain end, and (ii) by measuring the

(fluctuating) force necessary to keep the chain end at fixed distance above the

adsorbing plane.

– In the first case we treated the problem within the framework of the Grand

Canonical Ensemble approach and derived analytic expressions for the vari-

ous conformational building blocks, characterizing the structure of an ad-

sorbed linear polymer chain, subject to pulling force of fixed strength. The

main result was the phase diagram of a polymer chain under pulling. We

demonstrated a novel first order phase transformation which is dichotomic

i.e. phase coexistence is not possible. The primary result was the calculation

of the crossover exponent, φ which provides insight into the background of

the existing controversial reports about its numeric value. We demonstrated

that the value of φ may vary within the interval 0.39 ≤ φ ≤ 0.6, depending

on the possibility of a single loop to interact with the neighboring loops in

the adsorbed polymer. Since this range is model-dependent, this accounts

for the different estimates of φ in literature.
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– In the second case, we carried out our study in the “fixed height” statistical

ensemble where one measures the fluctuating force, exerted by the chain on

the last monomer when a chain end is kept fixed at height h over the solid

plane at different adsorption strength ǫ. The phase diagram in the h − ǫ

plane was calculated both analytically and by Monte Carlo simulations. We

demonstrated that in the vicinity of the polymer desorption transition a

number of proprties like fluctuations and probability distribution of various

quantities behave differently, if h rather than f is used as an independent

control parameter.

For future considerations, it would be interesting to explore the dynamics of a polymer

chain being pulled from an attractive surface. This can be achieved using kinetic

Monte Carlo simulations by pulling one end of the chain at a constant rate . Another

area for further studies would be to consider the pulling of heteropolymers from a

surface. It would be interesting to find out how the sequence of monomers affect the

force-extension curve.

151



152



Appendix A

Derivation of train distribution

The partition function of an one-dimensional array of p + 1 trains, separated by p

defects, has the following form

Φ[n(t), p] =

∫

. . .

∫

0<x1<x2...xp<n(t)

dx1 . . . dxp

=

n(t)
∫

0

dx1

n(t)
∫

x1

dx2 . . .

n(t)
∫

xp−1

dxp =
1

p!
[n(t)]p (A.1)

where n(t) is the total number of adsorbed monomers at time t.

Consider now the the distribution of an arbitrary train hs+1 = xs+1 − xs. In order

to find it, one should carry out the integration in Eq. (A.1) over all x-coordinates

except xs and xs+1. In result of the integration one gets

Φxsxs+1
[n(t), p] dxsdxs+1 =

1

(s− 1)!(p− s− 1)!
xs−1
s [n(t) − xs+1]

p−s−1 dxsdxs+1(A.2)

where Eq.(A.1) has been used separately for the intervals [0, xs] and [xs+1, n(t)]. The

distribution of the train length, hs+1 = xs+1 − xs, follows immediately from Eq.(A.2)

after integrating over xs, i.e.

Φhs+1
[n(t), p] =

1

(s− 1)!(p− s− 1)!

n(t)−hs+1
∫

0

xs−1
s [n(t) − hs+1 − xs]

p−s−1 dxs (A.3)

By the substitution, y = xs/[n(t)− hs+1], in the integral of Eq.(A.3) one arrives at the

result

Φhs+1
[n(t), p] =

[n(t) − hs+1]
p−1

(s− 1)!(p− s− 1)!

1
∫

0

ys−1(1 − y)p−s−1 dy

=
1

(p− 1)!
[n(t) − hs+1]

p−1 (A.4)
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where one has used
∫ 1

0
ys−1(1− y)p−s−1dy = (s− 1)!(p− s− 1)!/(p− 1)!. The result in

Eq. (A.4) does not depend on the consecutive number of the train, as expected. The

normalized probability to find a train of the length h at time t is given by

D(h, t) =
Φh[n(t), p]

Φ[n(t), p]
=

p!

(p− 1)!

[n(t) − h]p−1

[n(t)]p

=
p

n(t)

[

1 − h

n(t)

]p−1

≃ p

n(t)
exp

[

−h p

n(t)

]

(A.5)

where one uses Eqs.(A.1) and (A.4) as well as the conditions p ≫ 1 and h/n(t) ≪ 1.

Taking into account that the average train length hav(t) = n(t)/p, the last expression

results in Eq.(5.33).
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Appendix B

Properties of the polylog function

The polylog function Φ(α, z) is defined by the series

Φ(α, z) =

∞
∑

n=1

1

nα
zn (B.1)

which converges at |z| < 1. From the definition, Eq. (B.1), one immediately obtains

z
d

dz
Φ(α, z) = Φ(α− 1, z) (B.2)

The calculation of the series Eq. (B.1) (see Sec. 1.11 in ref. [30]) gives

Φ(α, z) = Γ(1 − α)

[

ln

(

1

z

)]α−1

+

∞
∑

r=0

ζ(α− r)
(ln z)r

r!
(B.3)

where Γ(x) is the gamma-function, ζ(x) is the Riemann zeta-function, and the exponent

α is noninteger, i.e. α 6= 1, 2, 3, . . .

Consider now the case of integer values of α. The gumma-function Γ(x) has poles

at all negative integer arguments whereas the pole of ζ(x) is placed at x = 1. One may

write α = m+ δ where m is a positive integer and δ → 0. Then in the vicinity of the

poles the gamma- and zeta-functions can be rewritten as

Γ(1 −m− δ) =
(−1)m

(m− 1)!

[

1

δ
− ψ(m) + O(δ)

]

ζ(1 + δ) =

[

1

δ
− ψ(1) + O(δ)

]

(B.4)

where ψ(x) is the digamma function (or ψ-function) defined as the logarithmic deriv-

ative of the gamma-function, ψ(x) = d ln Γ(x)/dx. One should also take into account

that
[

ln

(

1

z

)]δ

= 1 + δ ln

[

ln

(

1

z

)]

+ O(δ) (B.5)
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After taking into account Eqs.(B.4) and (B.5) in Eq. (B.3) and due to the cancellation

of poles in the gamma- and zeta-functions at small values of δ the polylog function,

Eq.(B.1) becomes [30]

Φ(m, z) =
(ln z)m−1

(m− 1)!

[

ψ(m) − ψ(1) − ln ln

(

1

z

)]

+

∞
∑′

r=0

ζ(m− r)
(ln z))r

r!
(B.6)

where the prime indicates that the term r = m− 1 is to be omitted.

We are interested in the behavior of Φ(α, z) at z → 1. In this case ln(1/z) =

− ln[1− (1− z)] ≈ (1− z). At α < 1, the main contribution comes from the first term

in Eq. (B.3), i.e.

Φ(α, z) ≈ Γ(1 − α)

(1 − z)1−α
(B.7)

At α = 1 and z → 1, and making use of Eq. (B.6), one obtains

Φ(1, z) ≈ − ln ln

(

1

z

)

≈ ln

(

1

1 − z

)

(B.8)

Finally, at α > 1 the polylog function Φ(α, z) has no singularity at z → 1 and Eq.(B.3)

results in the following expansion

Φ(α, z) ≈ ζ(α) + Γ(1 − α)(1 − z)α−1 − ζ(α− 1)(1 − z) + . . . (B.9)

In a bit more specific case when 1 < α < 2 we will use the well known relationship

Γ(1 − α) = −π/[Γ(α)| sin(πα)|] so that

Φ(α, z) ≈ ζ(α) − π

Γ(α)| sin(πα)|(1 − z)α−1 − ζ(α− 1)(1 − z) + . . . (B.10)

Taking into account the Eqs.(B.7), (B.8) and (B.10), the expression for the polylog

function at z → 1 reads

Φ(α, z) ≈







































Γ(1−α)
(1−z)1−α , at α < 1

ln
(

1
1−z

)

, at α = 1

ζ(α)− aα(1 − z)α−1 − bα(1 − z) + . . . , at 1 < α < 2

(B.11)

where the coefficients aα = π/Γ(α)| sin(πα)| and bα = ζ(α− 1).
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Appendix C

PDF of the end-to-end distance of a

SAW chain.

Following McKenzie and Moore, we show that the probability that a SAW of n steps

reaches a distance r from the origin has the form

pn(r) ∼ R−d
n (r/Rn)

t exp
(

− (r/Rn)
1/(1−ν)

)

(C.1)

where Rn is a scaling length which varies as nν and d is the dimensionality. We start

with the analogy between the probability distribution Pn(r) of a self avoiding walk of n

steps that starts at the origin and ends at r, and the high temperature series expansion

of the spin-spin correlation of the Ising model. Consider the generating function

Γ(r, v) =
∑

n≥1

Cn(r)v
n (C.2)

where Cn(r) is the number of SAW trajectories. The Fourier transform of Γ(r, ν) close

to the critical point has the following Ornstein-Zernicke form

Γ̂(k, v) =
Aκη

κ2 + k2
(C.3)

when k and κ are small and k2 = |k2|. The parameter κ is the inverse correlation

length ξ

κ ≃ ξ−1 = κ0 (1 − v/vc)
ν

At k → 0

Γ̂(0.v) ≃ 1

(1 − v/vc)(2−η)ν
=

1

(1 − v/vc)γ1
= χ/T (C.4)

where γ1 = (2 − η)ν.

Now consider the polymer generating function

Γ(r, v) =

∞
∑

n≥1

CnPn(r)v
n (C.5)
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which is analogous to the spin-spin correlation function mentioned above. Here Cn ∼
µn3n

γ1−1. The Fourier transformation of Γ(r, θ) is

Γ̂(k, v) =
∑

n≥1

nγ1−1(µ3v)
n

∫

Pn(r)e
ik.rd3r (C.6)

Now,
∫

Pnrd
3r = 0 and

∞
∑

n≥1

(µ3v)
n

n1−γ
=

Γ(γ)

(1 − µ3v)γ

for 1 − γ < 0. As a result , at k → 0

Γ̂(0, v) ≃ Γ(γ)

(1 − µ3v)γ
(C.7)

Comparing with Equation C.4, we see that vc = 1/µ3. Let v = vce
−θ. With this

change of variable, in the limit θ → 0, the generating functional has the form

Γ(r, θ) =
∑

n≥1

vncCnPn(r)e
−nθ

and we assume that the Fourier Transform of Γ(r, θ) i.e Γ(k, θ) also has the Ornstein

Zernicke form

Γ̂(k, θ) ∼ Aκη

κ2 + k2
(C.8)

where κ = κ0θ
ν .

The inverse of Equation C.8 is

Γ(r, θ) = Aκη
∫ ∞

0

ddk
eik.r

κ2 + k2

∫ π

0

dφ sind−2 φ

∫ ∞

0

dkkd−1 e
ikr cosφ

κ2 + k2

After a little algebra and simplification , we get

Γ(r, θ) ∼ κη−
3−d
2 r−(d−1)/2e−κr (C.9)

for κr ≫ 1 and θ → 0. Now, since

Γ(r, θ) =

∞
∑

n>ge1

µ−nCnPn(r)e
−nθ

using Cauchy’s theorem, we have

µ−nCnPn(r) =
1

2πi

∮

dv

vn+1
Γ(r, v)

or

µ−nCnPn(r) =
1

2πi

∫ c+iπ

c−iπ

Γ(r, θ)enθdθ
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where c is larger than the real part of any singularity of Γ(r, θ). Using the method of

steepest descent to perform the integral, we finally get

CnPn(r) ∝ µnnγ−1−νd
[rκ0ν

nν

]

1−γ+νd−d/2

1−ν
exp

(

−(1/ν − 1)
(rκ0ν

nν

)1/(1−ν)
)

(C.10)

But we know that Cn ∼ µnnγ−1. Therefore , the PDF for the end-to-end distance

has the form

Pn(r) ∝
(

1

nνd

)

[rκ0ν

nν

]t

exp

(

−D
(rκ0ν

nν

)δ
)

(C.11)

with

t =
1 − γ1 + νd− d/2

1 − ν
(C.12)

δ =
1

1 − ν
(C.13)
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Appendix D

Freely jointed bond vectors model

The deformation law in the overstretched regime (when the chain deformation is close

to its saturation) could be treated better within the FJBV model. Let us consider a

tethered chain of the length N with one end anchored at the origin of the coordinates

and the external force fN acting on the free end. The corresponding deformation energy

reads

Uext = −fN r⊥N = −fN
N
∑

i=1

bi cos θi (D.1)

where r⊥N is the z-coorditate (directed perpendicular to the surf ace) of the chain end,

bi and θi are the length and the polar angle of the i-th bond vector respectively. The

corresponding partition function of the FJBV model is given by

ZN(fN ) =

∫ N
∏

i=1

dφi sin θidθi exp

(

fN
T

N
∑

i=1

bi cos θi

)

= (4π)N
N
∏

i=1

(

T

bifN

)

cosh

(

bifN
T

)

(D.2)

The average orientation of the i-th bond vector can be calculated as

< cos θi >=

(

T

fN

)

∂

∂bi
lnZN(fN) = coth

(

bifN
T

)

−
(

T

bifN

)

(D.3)

From eq.(D.3) the chain end mean distance h is given by

h =
N
∑

i=1

bi < cos θi >= bNL
(

bfN
T

)

(D.4)

where we have took into account that the lengths of all bond vectors are the same,

bi = b, and where L(x) = coth(x) − 1/x is the Langevin function. This leads to the
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force - distance relationship

bfN
T

= L−1

(

h

bN

)

=







1
1−h/bN , at h/bN ≤ 1

2h
bN

, at h/bN ≪ 1
(D.5)

which we use in Sec.II. The notation L−1(x) stands for the inverce Langevin function.
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