
Direct Observation of a Single Proton

in a Penning Trap

Towards a Direct Measurement of the Proton g-Factor

Dissertation zur Erlangung des Grades

Doktor der Naturwissenschaften

am Fachbereich 08 Physik, Mathematik und Informatik

der Johannes Gutenberg-Universität in Mainz

Susanne Waltraud Kreim
geb. in Leonberg

Mainz, den 19. Juni 2009



Datum der mündlichen Prüfung: 25. August 2009



Zusammenfassung

In der vorgelegten Doktorarbeit werden Experimente vorgestellt, die an einem einzel-
nen Proton in einer Penningfalle durchgeführt worden sind. Die Eigenbewegung eines
isoliert gespeicherten, freien Protons konnte elektronisch durch Kopplung an einen Reso-
nanzschwingkreis nachgewiesen werden. Dies stellt eine nicht-destruktive Messung dar,
d. h. das Teilchen geht während der Messung nicht verloren. Die freie Zyklotronfrequenz,
die aus den drei gemessenen Eigenfrequenzen hervorgeht, ist eine von zwei zur Bestim-
mung des magnetischen Moments notwendigen Frequenzen. So wird im Gegensatz zu den
existierenden Arbeiten eine direkte Bestimmung des g-Faktors ermöglicht. Planung, En-
twicklung und Inbetriebnahme des experimentellen Aufbaus wurden im Rahmen dieser
Arbeit durchgeführt, womit eine Messgenauigkeit von 10−7 erreicht wurde. Die dabei
zu bewältigenden technischen Herausforderungen zur Bestimmung der zweiten Frequenz
(der Larmorfrequenz) ergeben sich aus der Kleinheit des magnetischen Moments. Bei
dem für diese Messung benötigten Spinzustand des Teilchens handelt es sich um einen
internen Freiheitsgrad, der nur über eine Kopplung des magnetischen Moments an die
Eigenbewegung bestimmt werden kann. Eine neuartige, hybride Penningfalle wird in
dieser Arbeit vorgestellt, die als Quantensprung-Spektrometer die Spininformation auf
die Eigenbewegung abbildet. Damit liegt der aus der magnetischen Kopplung resul-
tierende Frequenzunterschied in den beiden Spinzuständen erstmalig in einem elektron-
isch detektierbaren Bereich.

Summary

This PhD thesis presents experiments performed on a single proton stored in a Penning
trap. The eigenmotion of an isolated, free proton could be detected electronically via a
coupling to a resonance circuit. This represents a non-destructive measurement, i. e. the
particle is not lost during the measurement. The free cyclotron frequency emerging from
the measured eigenfrequencies is one of the two frequencies required for the determination
of the magnetic moment. This enables a direct determination of the g-factor contrary to
already existing works. Design, developing, and commissioning of the experimental setup
have been accomplished within the scope of this work leading to a measuring accuracy
of 10−7. The technical challenges for the determination of the second frequency (the
Larmor frequency) arising from the smallness of the magnetic moment were mastered.
Since the spin state required for this measurement is an internal degree of freedom, it
can only be accessed through a coupling of the magnetic moment to the eigenmotion. A
novel, hybrid penning trap is presented in this work, which imprints the spin information
onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the
frequency shift of the two spin states resulting from the magnetic coupling reaches for
the first time an electronically detectable range.
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1 Introduction

Curiosity has ever been a main reason to augment knowledge. After having dwelt on the
dimensions given by nature (unit of cubit, ounce or day), humankind commenced to reach
out for the vast and for the tiny. Expanding knowledge towards the extremes, big (unit of
light year or solar mass) and small (unit of femtometer or attosecond), generated the laws
of physics describing nature beyond our everyday life experience. A hundred years ago,
Einstein’s theory of relativity, together with quantum mechanics, revolutionized our view
of the world. Abstract symmetries became the new central principle raising once more
the search for the one theory to explain all processes governing the universe. Today,
the Standard Model of elementary particles already combines electromagnetism with
weak and strong interactions, however, the link to gravitation still has to be established.
High-precision measurements are essential for consolidating these theories and validating
existing laws of physics. In particular, the determination of fundamental constants,
which may yet drift in time, allows for gaining ground in return.

Any atomic system comprises fundamental properties, one of them being the magnetic
moment whose direct determination represents such a high-precision measurement. Es-
pecially, the g-factor of the free electron has been measured by van Dyck and colleagues
with a non-destructive detection technique using the continuous Stern-Gerlach effect in
a Penning trap [1]. Based on these pioneering experiments, Gabrielse and co-workers
succeeded in determining the g-factor with such an utmost accuracy, that a comparison
with quantum electrodynamic calculations led to the hitherto most precise determina-
tion of the fine structure constant α [2,3]. Yet, if the electron is bound in a hydrogen-like
system, the g-factor is changed by binding corrections, bound-state quantum electrody-
namics, and nuclear structure effects. These contributions have been calculated and
agree with the respective measurements within the uncertainty of ≈ 10−9 [4–7]. Then
again, the contribution arising from nuclear structure effects can be partly eliminated if
hydrogen-like systems are compared with lithium-like systems. To this end, experiments
have been started at the University of Mainz aiming at the determination of the magnetic
moment of the electron bound in Si13+ and Ca19+ as well as Si11+ and Ca17+ [8].

This work focuses on the measurement of the magnetic moment of a very simple
charged system and at the same time a fundamental particle: the proton. It combines
the successful measuring techniques of the experiments just mentioned with the idea
of a direct determination of the proton g-factor and leads to captivating research. It is
planned to measure the g-factor of a single, isolated proton stored in a cylindrical Penning
trap with a relative uncertainty of 10−9 or better, thus establishing a counterpart to
Dehmelt’s famous g-2 experiment [1]. The proton (size of about 10−15 m ) is a stable
hadron and was discovered by Rutherford in 1919 [9]. It is part of the atomic nuclei
being bound together by the strong nuclear interaction. Today, the proton’s mass is
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1 Introduction

known to be 1 836 times the electron mass or 1.672 621 637(83) · 10−27 kg.
Beginning in 1933, various experiments have been performed to determine the g-factor

of the proton. However, none of them measured the magnetic moment of the free pro-
ton directly. Stern and colleagues conducted an experiment to determine the magnetic
moment of the proton by deflecting a molecular hydrogen beam in an inhomogeneous
magnetic field yielding µp = 2.5µN with an accuracy of 10% and µN being the nuclear
magneton [10,11]. A few years later, they were able to decrease the relative uncertainty
to 3% by working with a beam of H2 and HD, coming up with µp = (2.46± 3%)µN [12].
With the method of molecular-beam magnetic-resonance [13], Rabi and co-workers suc-
ceeded in determining the magnetic moment to µp = (2.785 ± 0.02)µN [14, 15]. A third
way of conducting this experiment was realized by Bloch and colleagues after the devel-
opment of the method of nuclear magnetic resonance (NMR) [16]. They performed the
measurement in water extracting the magnetic moment of the proton to µp = 2.792µN

from the irradiated frequency. Although they were not able to reduce the uncertainty,
the new experimental technique made the external magnetic field the limiting factor in
determining the magnetic moment.

A great improvement was achieved when it became possible to combine two frequency
measurements to obtain the magnetic moment in units of the nuclear magneton, and
hence overcoming the limits of a conventional measurement of the magnetic field: In
1950, Bloch and Jeffries conducted a NMR experiment to extract the frequency of the
nuclear resonance, which is equal to the Larmor frequency ωL. They then combined it
with a direct cyclotron measurement to determine the frequency of orbital rotation ωc,
both carried out in the same homogeneous magnetic field [17,18]. The determination of
the magnetic moment thus reduced to a frequency ratio:

µp

µN
=
ωL

ωc
= (2.792 4 ± 0.000 2) . (1.1)

A similar experiment was conducted by Hipple with the accelerating “omegatron”,
which resulted in good agreement with the stated value: µp = (2.792 68 ± 0.000 06)µN

[19]. Collington and co-workers were able to improve the value of Jeffries to µp =
(2.792 81 ± 0.000 04)µN by modifying the apparatus in such a way as to obtain nar-
rower peak widths [20]. The best determination up to now was realized by Winkler and
Kleppner in 1972 with a relative uncertainty of 10−8 [21]. They measured the electron-
to-proton magnetic-moment ratio via spectroscopy of hyperfine states in a hydrogen
maser located in a magnetic field. With that value, it became possible to likewise cal-
culate the magnetic moment of the free proton with a relative uncertainty of 10−8 to
µp = 2.792 847 353(28)µN [22]. Karshenboim uses higher order corrections to parame-
ters entering quantum electrodynamics calculations to extract the magnetic moment of
the free proton from measurements with hydrogen atoms. Together with the proposed
experiment on a single, free proton, this constitutes a stringent test of the underlying
calculations.

The determination of the g-factor of a single proton reduces to non-destructively
measuring the two frequencies ωL and ωc of a particle confined in a Penning trap with
an electronic detection unit. In the case of the electron, this bound system of particle and
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trapping potential has been called “geonium”, where the binding potential is given by the
quadrupole potential and magnetic field of the Penning trap. The direct determination
of oscillation frequencies working with single trapped particles was already achieved in
the group of Dehmelt in the 1970s when determining the g-factor of the free electron [1].
The free cyclotron frequency

ωc =
e

mp
B (1.2)

is deduced by measuring the independent eigenmotions of a particle in a Penning trap,
see for example [23,24]. A stored particle induced image currents in the trap electrodes
which can be picked up by a resonance circuit without losing the particle from the
trap. In this way, the particle’s frequency is measured and it is resistively cooled into
thermal equilibrium with the electronic detection unit. Extracting the Larmor frequency
is somewhat more cumbersome. Looking at the spin motion, the g-factor relates the
magnetic moment |~µs| to the angular momentum |~s |, yielding in the case of an atomic
nucleus:

|~µs| =
gs µN

~
|~s| , (1.3)

where µN = e~/(2mp) is the nuclear magneton. Since this work deals solely with the spin
motion, gs ≡ g. The energy eigenstates of a proton stored in a Penning trap, with charge
e and mass mp, are all Zeeman-split due to the presence of the external, homogeneous

magnetic field ~B. For a magnetic field in the axial direction ẑ, this energy shift is given
in dependence of the spin state as:

∆E = −~µ · ~B (1.4)

= −g µNB
~s

~
· ẑ = ms g µNB ,

where ms = ±1/2 is the spin quantum number. The energy gap between the spin-up
and the spin-down state is given by the Larmor precession frequency ωL:

~ωL = g
e~

2mp
B . (1.5)

Inducing radio-frequency transitions between the two spin states and detecting the re-
sulting spin state yields ωL, which, together with the free cyclotron frequency, leads to
the g-factor via the relation

g = 2
ωL

ωc
. (1.6)

Measuring two frequencies down to a relative uncertainty of 10−9 bears challenges for
experimental realization. Since the spin information is an internal degree of freedom
for a particle confined in a Penning trap, it has to be coupled to an external degree of
freedom, i. e. one of the eigenmotions. The so-called magnetic bottle field (a magnetic
field inhomogeneity) introduced by Dehmelt in 1973, is exploited to imprint the spin
state information onto the axial eigenmotion ωz of the particle in the Penning trap
[25]. Thus, the magnetic moment is coupled to ωz shifting this frequency according to
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1 Introduction

the spin direction. This so-called continuous Stern-Gerlach effect is used to determine
the spin state non-destructively [26]. The value of the frequency shift scales with the
magnetic moment of the particle and the strength of the magnetic bottle. Conventional
cylindrical Penning traps, like the one used for example in [27], cannot be employed,
because a relative frequency shift on a 10−7 scale in the case of a proton is almost
impossible to be detected efficiently. To this end, a novel Penning trap is introduced,
which is called the hybrid Penning trap and which was developed in the context of this
thesis [28]. In this trap the magnetic bottle field is greatly enhanced, thus, enabling
the detection of the spin state of the proton. Unfortunately, the magnetic bottle field
compromises a sensitive frequency measurement. Consequently, the double Penning trap
technique will be employed to separate the frequency measurement from the spin-state
analysis [29]. The former will be performed in the first, precision Penning trap located
in the homogeneous region of the magnetic field. The latter will take place in the second,
analysis trap which is located far enough away from the homogeneous region so as not
to interfere.

To achieve a high-precision determination of the proton g-factor, long storage times are
required. This is realized by performing the experiment in a closed setup at 4K yielding
extremely low background pressure (p < 10−16 mbar). Contrary to conventional cooling
methods with liquid helium cryostats, this experiment uses a pulse tube cooler to provide
the cryogenic environment through gas expansion in a closed helium cycle. This envi-
ronment places great requirements on the electronics needed to non-destructively detect
the trapped proton, and it leads to low electronic noise. The use of superconducting res-
onant circuits increases the signal-to-noise ratio of the detection systems substantially.
To this end, detection units have to be designed with a large inductance accompanied
by a low parasitic capacitance in such a way as to yield optimal quality factors. Another
challenge bears the in-trap creation of protons since the experiment takes place in a
sealed chamber. The principle of an electron beam ion source can be used to implement
a miniature device into the trap chamber permitting the production of protons in the
magnetic field and at 4K.

In the following chapters I will set the stage for the accomplishment of the experiment
introduced above. Chapter 2 gives a theoretical view of storage and detection principles
for charged particles. Cylindrical Penning traps are discussed in detail from the first
efforts to today’s electrostatically elaborate traps. In addition, the non-destructive de-
tection of a single particle with an electronic detection unit is examined and different
detection techniques are presented. Lastly, the continuous Stern-Gerlach effect is treated
carefully by including a numerical example of the proton experiment. In chapter 3, the
theoretical concepts for the hybrid Penning trap are developed and the design criteria
for the toroidal hybrid Penning trap used in the proton experiment are discussed. As a
result, the final toroidal hybrid Penning trap is presented. Chapter 4 focuses on the ex-
perimental setup including the cryogenic body and the double-trap tower. The electron
beam ion source is characterized and discussed as well as the detection units for mea-
suring the eigenfrequencies of the trapped particle. Inducing radio-frequency transitions
for the spin-state analysis will also be studied. Moreover, commissioning measurements
of the complete experimental setup are presented.
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The procedure for detecting a single proton is tackled in chapter 5. Here, experimental
data related to the creation, storage, and detection of various particles as well as pure
proton ensembles are presented. Further, the sequence for isolating a single proton
is presented and the results are discussed. Determining the free cyclotron frequency νc

from the eigenmotions of the stored proton concludes this section. The following chapter
deals with the characterization of the precision Penning trap in which the frequency
measurements are performed. Electrostatic properties such as the optimal tuning ratio,
orthogonality, and compensation are examined. Together with a conclusion, chapter 7
deals with further developments of the experimental setup which emerged while the
first measurements were taken but go beyond the scope of this work. Further, different
perspectives will be disclosed. For example, the envisaged measurement establishes the
basis for testing fundamental principles of symmetry. With the g-factor of the proton
determined, the experimental setup can likewise be used to perform the experiment with
a single antiproton allowing in principle to reach the same relative uncertainty. Together,
these measurements will provide a stringent test of the CPT-theorem on the baryonic
sector [30,31].

5



1 Introduction

6



2 Storage and Detection of a Single

Particle in a Penning Trap

Trapping of a charged particle in three dimensions can adroitly be realized by electro-
magnetic fields which are defined through the force ~F they exert on the particle:

~F = q ~E(~r, t) + q
~v

c
× ~B(~r, t) , (2.1)

where q and ~v are charge and velocity of the particle, respectively. At first, solely
an electric field is considered for trapping, restricted to the time-independent case
~E 6= ~E(t) with cylindrical symmetry ~E 6= ~E(θ) and reflection symmetry in the
z = 0-plane. For stable trapping the electrostatic potential Φ(r, z) has to exhibit a
minimum at the position of the particle. Furthermore, since the trapped charge is as-
sumed to be the only free charge within the trapping volume, Φ(r, z) has to fulfill the
Laplace equation

∆Φ(r, z) =
1

r

∂

∂r

(

r
∂

∂r
Φ(r, z)

)

+
∂2

∂z2
Φ(r, z) ≡ 0 . (2.2)

The general solution of the Laplace equation can be expressed in terms of a Taylor
expansion:

Φ(r, z) = Φ0 + r · ∂Φ

∂r

∣
∣
∣
∣
(0,0)

+ z · ∂Φ

∂z

∣
∣
∣
∣
(0,0)

+
r2

2!
· ∂

2Φ

∂r2

∣
∣
∣
∣
(0,0)

+
z2

2!
· ∂

2Φ

∂z2

∣
∣
∣
∣
(0,0)

+ ... . (2.3)

The simplest trapping potential is the ideal quadrupole potential which is obtained by
plugging this form of the potential for orders k < 3 into the Laplace equation (2.2):

Φ(r, z) = U0C
s
2 ·
(

z2 − r2

2

)

, (2.4)

where U0 is the applied voltage and the coefficient Cs
2 is here of dimension 1/m2, the s

denoting the fact that it is scaled to a unit of length. The force exerted on the particle
can be determined with help of eq. (2.1):

~Fel = −∇qΦ(r, z) = −2 q U0C
s
2 z ẑ + q U0C

s
2 r r̂ . (2.5)

It is obvious from the above equation that neither pure minima nor maxima of the
potential can exist in three dimensions, thus trapping has to be performed around an
electrostatic saddle point where q Cs

2 > 0 holds. The potential is chosen such as to realize

7



2 Storage and Detection of a Single Particle in a Penning Trap

trapping in the z direction enabling the introduction of expansion coefficients focusing
on the potential in z:

Cs
k =

1

k!

∂kΦ

∂zk

∣
∣
∣
∣
(0,0)

. (2.6)

Since the motion of a particle is restricted to a certain region in space only if the net force
is zero, the temporal mean of the electric field has to vanish and Cs

1 = 0. The coefficient
Cs

2 denotes the strength of the quadrupole potential. The basic structure needed for
creating an electric saddle point is a three-pole, cylindrically symmetric trap consisting
of a center ring and two end caps (fig. 2.1). With a certain voltage applied to the ring
while the end caps are kept at ground, a potential minimum or maximum (depending on
the polarity of the applied voltage) appears at the center of the trapping volume along
the symmetry axis ẑ. In combination with a homogeneous magnetic field ~B = B0ẑ to
trap the particle radially, trapping in three dimensions is achieved. First experiments
were performed by Frans Michel Penning in the 1930’s who used an axial magnetic field
to force electrons onto cyclotron orbits [32]. Electrodes perpendicular to the magnetic
field to achieve trapping in three dimensions were implemented by Pierce [33]. In 1959
Hans Dehmelt realized an electric quadrupole field by applying a voltage to hyperbolic
electrodes, thus approximating the equipotential surfaces of a quadrupole potential.

r

r0

z0

ϕ0

-1/2

1/2B z

Figure 2.1: Simple cylindrical Penning trap consisting of a ring and two flat end caps and
symmetry axis ẑ.

2.1 Particle Motion and Energy

A charged particle moving in a superposition of a homogeneous magnetic field ~B = B0ẑ
and an electrostatic field ~E = −∇Φ with the potential presented in eq. (2.4) experi-
ences the Lorentz force from eq. (2.1). The axial motion is decoupled from the others
performing a harmonic oscillation about the origin with

ωz =

√

q

m

U0

d2
C2 , (2.7)

8



2.1 Particle Motion and Energy

with d2 = 1
2(z2

0 + 1
2r

2
0) being the characteristic trap dimension as defined by [34], where

z0 is half the length of the ring electrode and r0 is the inner radius of the ring1, as seen
in fig. 2.1. The x- and y-component of the force are dominated by the magnetic field
generating a cyclotron motion in absence of an electrostatic field with frequency

ωc =
q

m
B . (2.8)

The motion of the particle is fully described by the Newtonian equations

ẍ − ωc ẏ −
1

2
ω2

z x = 0

ÿ + ωc ẋ− 1

2
ω2

z y = 0 (2.9)

z̈ + ω2
z z = 0 .

The equations of motion have been solved for example in [35, 36] with the well-known
result:

ω± =
ωc

2
±
√
(ωc

2

)2
− ω2

z

2
, (2.10)

the cyclotron frequency ω+ and the magnetron frequency ω− arising from the ~E× ~B drift.
A particle moving in a Penning trap with these eigenfrequencies exhibits a hierarchical
frequency structure:

ω+ ≫ ωz ≫ ω− . (2.11)

Since the classical equations of motions are linear, they essentially describe harmonic
oscillator equations whose quantization is straightforward. An adequate solution of the
appropriate Schrödinger equation has been presented among others in [37,38]. However,
following Brown in [35], who includes raising and lowering operators, greatly simplifies
the treatment and produces the energy eigenvalues of the respective Hamiltonian. Con-
sidering additionally the spin movement ωL with magnetic quantum number mL, allows
for writing down the total energy E of the system:

E = E+ +EL + Ez + E−

= ~ω+(n+ +
1

2
) + ~mLωL + ~ωz(nz +

1

2
) − ~ω−(n− +

1

2
) , (2.12)

with ni being the quantum numbers of the three eigenfrequencies resulting from eq. (2.9).
The energy level diagram is shown in fig. 2.2 where the splitting is greatly exaggerated
for better visibility. The energy in the cyclotron motion is mostly kinetic energy whereas
in the axial motion it alternates between kinetic and potential energy. These are stable
motions, since reducing the energy in the mode reduces the amplitude. The magnetron
degree of freedom, however, is almost exclusively potential energy meaning that the
motion is an orbit around the top of a radial potential hill. The magnetron motion
is unbound since any dissipative process increases the magnetron radius. Fortunately,
the damping constant is large allowing for a metastable description of the motion since
damping due to synchrotron radiation is infinitely long. The spin motion is an internal
degree of freedom, which will be treated in detail in section 2.5.

1The difference in C
s
k and Ck will become apparent in section 2.2.
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2 Storage and Detection of a Single Particle in a Penning Trap

n+=0

n+=1

nz=1

nz=0

nz=2

nz=3

n-=0

n-=1

n-=2

hω+

hωL
hωz

hω-

||B

||B

mL=+1/2

mL=-1/2

Figure 2.2: Energy level diagram of the eigenmotion of a particle in a Penning trap. It starts
out with the cyclotron energy levels n+ to the left. These levels are split first by
the spin mL, then by the axial nz and magnetron motion n−, respectively.

In the ideal case, the free cyclotron frequency ωc is obtained via ωc = ω+ + ω−. How-
ever, real Penning traps have unavoidable imperfections which alter the ideal electrostatic
potential, such as misalignment of the electrodes both internally and with respect to the
magnetic field directions or deviation from the ideal geometry in the trap electrodes.
This couples the three eigenmotions of the particle resulting in three coupled, linear
second-order differential equations of motion for the case of second-order imperfections.
Solving these equations as been performed in [23] yields the so-called invariance theorem,
see also [39]. The invariance theorem is used for computing the free cyclotron frequency
from the measurable eigenfrequencies of the imperfect trap:

ω2
c = ω̄2

+ + ω̄2
z + ω̄2

− . (2.13)

2.2 Cylindrical Penning Trap

The potential field distribution inside a cylindrical Penning trap, shown in fig. 2.1, can
be solved analytically using standard techniques for solving electrostatic boundary-value
problems involving a series expansion in terms of orthogonal harmonic functions satis-
fying the boundary conditions as given for example in [40]. The traditional method as
performed among others by Benilan and Audoin [41] and by Gabrielse and MacKin-
tosh [42] exploits the fact, that complete knowledge of the potential is unnecessary since
the particles are typically confined near the center of the trap. Thus, the potential can
be expanded in spherical coordinates for r ≪ d in even powers of the small ratio r/d.
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2.2 Cylindrical Penning Trap

Following the multi-pole expansion from [42] yields the potential Φ0:

Φ0(r, θ) =
1

2
U0

∑

k even

Ck

(r

d

)k
Pk(cosθ) = U0 ϕ0 , (2.14)

where k is even because of the assumed reflection symmetry with respect to the
z = 0-plane. The boundary conditions are given by applying −1/2U0 to the ring with
inner radius r = r0 and +1/2U0 to the end plates at z = ±z0 yielding ϕ0 as solution for
the Laplace equation. The Ck-coefficients are the dimensionless expansion coefficients
for the expansion of ϕ0. To achieve the quadrupole field stated in eq. (2.4), anharmoni-
cities quantifiable in terms of the next higher order terms in the above expansion have
to be examined. The most important contribution arises from C4. It can be tuned to
zero mechanically by adjusting the ratio r0/z0, however, this also affects C2. Another
and much more sensitive possibility is the use of correction electrodes to precisely vary
the resulting potential at the center of the trap, thus reducing or minimizing the anhar-
monicity of the trap. As a further development open-end-cap Penning traps have been
designed suitable to introduce a beam into the trapping region [43]. Such a trap consists
of a center ring, two identical correction electrodes, and two elongated, open-ended end
caps comparable to fig. 2.3. A potential U0 is applied between the end caps and the ring,
and Uc to the correction electrodes. The potential inside the trap can be written as the
superposition

Φ = U0ϕ0 + Ucϕc , (2.15)

with ϕ0 and ϕc being solutions to the Laplace equation satisfying the boundary condi-
tions

ϕ0(r0, z) =







−1
2 0 ≤ z ≤ z1

0 z1 < z < z0
1
2 z0 ≤ z ≤ ze

and ϕ0(−z) = ϕ0(z) (2.16)

ϕc(r0, z) =







0 0 ≤ z ≤ z1
1 z1 < z < z0
0 z0 ≤ z ≤ ze

and ϕc(−z) = ϕc(z) .

Furthermore, rotational symmetry is still inferred as well as reflection symmetry in the
z = 0-plane. The potentials can be solved using Bessel functions I0 of first kind, zero
order:

Φ =
U0

2

∞∑

n=0

Acyl
n I0(kn r) cos(kn z) +

Uc

2

∞∑

n=0

Bcyl
n I0(kn r) cos(kn z) . (2.17)

The coefficients Ck are found by matching this analytical solution for the cylinder to
the multi-polar form along the z-axis in the neighborhood of the origin, comparable to
the above equation with coefficients Acyl

n , Bcyl
n , and eq. (2.14). The evaluation performed

in [43] presumed infinitely long end caps and negligible size of the gaps between the
electrodes. For an exact solution, the effect of finite end caps and gaps have to be
included with slight modifications as will be discussed in the following.
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2 Storage and Detection of a Single Particle in a Penning Trap

2.2.1 The five-pole Cylindrical Trap

The electrostatic potential Φ(r, z) for a cylindrical, five-pole Penning trap with open end
caps and the boundary conditions shown in fig. 2.3 was calculated in [44]. This work
aimed at a complete knowledge of the potential inside the trap, thus, the above ansatz
of an expansion in r/d was discarded. A more general ansatz was chosen by comparing
the series solution for the potential with the Taylor expansion from eq. (2.3). It yields
coefficients Cs

k which are scaled to the characteristic length unit of a trap, i. e. mm,
with the dimension of 1/mmk. As such they are independent of specific trap lengths or
geometries.

U
c

U
0

U
c

B

r

z

r = 0

le
lc

lr

z
r0

-z1

z1 z = 0

z0

-z0

r0 ze

ld

z

-ze

Figure 2.3: Open, five-pole cylindrical Penning trap with the symmetry axis ẑ. To the right,
the potential distribution on the electrode surfaces is shown. The gaps between
the electrodes are approximated by linear interpolation [45]. Thus, the required
boundary values for determining Φ(r, z) are properly defined. On the far right,
a cut through the inner surface of the trap is shown.

The calculation has been carried out assuming a trapping volume in which the re-
quirement is fulfilled that Φ(r, z) = 0 and ∆Φ(r, z) = 0. Furthermore, the domain of
Φ(r, z) is given by Φ(r, z) = {rǫ[0, r0], θǫ[0, 2π], zǫ[−l/2, l/2]}. Here, only the solution is
discussed:

Φ(r, z) =
∑

n odd

{

8U0

L ld κ2
n I0(κn r0)

sin

(
κn ld

2

)[

sin

(
κn(ld + lr)

2

)

(2.18)

+ 2T sin

(
κn(ld + lc)

2

)

cos

(
κn(2ld + lr + lc)

2

)]

I0(κn r) cos (κn z)

}

,

12



2.2 Cylindrical Penning Trap

where the different lengths in the equation correspond to the lengths of the different
electrodes: le = end cap, lc = correction electrode, lr = ring, and ld = distance between
electrodes (see also fig. 2.3). The total length of the trap is given by L = 4ld+2le+2lc+lr
and κn = nπ/L. Furthermore, the tuning ratio T is given by T = Uc/U0. The modified
Bessel function of first kind, zero order is denoted by I0(x) = 1+x2/22 +x4/(2242)+ ... .
To simplify eq. (2.18), the coefficients An, Bn are introduced:

Acyl
n =

8

L ld κ2
n I0(κn r0)

· sin
(
κn ld

2

)

· sin
(
κn(ld + lr)

2

)

Bcyl
n =

16

L ld κ2
n I0(κn r0)

· sin
(
κn ld

2

)

· sin
(
κn(ld + lr)

2

)

(2.19)

with n ǫ N, odd. These coefficients depend only on the geometry of the trap. The
coefficients Cs

k from eq. (2.6) can hence be identified:

Cs
k =

1

U0

1

k!

∂kΦ

∂zk

∣
∣
∣
∣
(0,0)

=
1

k!

∑

n odd

[

Acyl
n + T Bcyl

n

] [ ∂k

∂zk
cos (κn z)

]

z=0

, (2.20)

where I0(0) = 1 was used. The odd terms in k of the Taylor expansion vanish out of
symmetry reasons yielding for even k:

Cs
k =

1

U0

1

k!

∂kΦ

∂zk

∣
∣
∣
∣
(0,0)

=
1

k!

∑

n odd

[

Acyl
n + T Bcyl

n

]

(−1)
k
2κk

n . (2.21)

Since only part of the potential depends on the correction voltage Uc, it is convenient to
introduce Ds

k-coefficients for that part of the above expression [43]

Ds
k =

1

k!

∑

n odd

Bcyl
n · (−1)

k
2κk

n . (2.22)

Normally, the expansion coefficients are split up as Cs
k = Es

k +Ds
k ·T , where Es

k denotes
the part dependent solely on the end caps. The coefficients Cs

k and Ds
k are functions of

the relative trap radius r0/z0 and compensation electrode size lc/z0, which can be used
for tuning (cf. fig. 2.3). The leading anharmonicity contribution Cs

4 can be eliminated by
the respective tuning ratio. However, this generally changes Cs

2 and hence changes the
axial frequency ωz, thus the T -dependence of Cs

2 has to be removed. This is achieved by
orthogonalization (ibid.): for any lc/z0, there is a choice of r0/z0 such that Ds

2 can be
tuned to zero leading to a vanishing dependency of the axial frequency on the voltage
applied to the correction electrodes, in other words Ds

2 = ∂Cs
2/∂T = 0 and ωz 6= ωz(Uc).

Furthermore, the next anharmonicity contribution, the Cs
6-coefficient, can be made zero

by picking the corresponding value for zc/z0 such that Cs
6 = 0.

A conversion from the dimensionless coefficients Ck relating to a specific trap dimen-
sion as derived by Gabrielse and others to the coefficients Cs

k, which are scaled to 1/mk,
is possible but not exact. Since the calculation in [43] was performed assuming infinitely
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2 Storage and Detection of a Single Particle in a Penning Trap

long end caps and negligible gaps, the slight modifications arising from finite end caps
and gaps are not accounted for in the conversion. The conversion reads for k = 2:

C2 = 2 d2 · Cs
2 , (2.23)

where d2 = 1
2(z2

0 + 1
2r

2
0) with z0 being the axial distance from the center of the ring to the

beginning of the end cap, in the case of the five-pole trap from fig. 2.3: z0 = z1 + lc +2ld.
Hence, the axial frequency in SI units is calculated via

ωz =

√
q

m
U0 2Cs

2 . (2.24)

For convenience, the C2
k -coefficients are not given in 1/mk but scaled to 1/mmk since

the dimension of mm is the characteristic length for Penning traps employed here. Ex-
pressing the potential with help of the Cs

k-coefficients is of great advantage when going
to other trap geometries as will be seen in chapter 3. There, the coefficients of the
toroidal hybrid trap are calculated from the potential in the same manner enabling a
direct comparison of the traps’ properties.

2.2.2 The Precision Trap of the Proton Experiment

The precision trap of the proton experiment is a five-pole cylindrical Penning trap.
The precision trap is compensated and orthogonal following the routine outlined in
section 2.2.1. For a fixed set of parameters (z1, r0, ld, L), the Ds

2-coefficient can be
tuned to zero by varying the length of the correction electrode lc, cf. fig. 2.3. Fig-
ure 2.4a illustrates the result for such an analytical calculation. It can be seen that for
lc = 2.85mm the trap is orthogonal and Ds

2 = 0. Subsequently, the trap was compen-
sated for the fixed lc by varying the tuning ratio T . The value of the coefficient Cs

4 is
shown as a function of T in fig. 2.4b yielding the ideal tuning ratio of T pt

id = 0.867049. At
this tuning ratio the next higher anharmonicity contribution is smaller than Cs

6 < 10−6

and thus negligible. All parameters of the precision trap can be taken from tab. 2.1.
Please note, that the lower end cap is 2mm longer than the upper end cap ensuring
a sufficient distance to target and holding plate not to perturb the harmonicity of the
electrostatic potential.

Once the electrostatic parameters are computed, the effect of changes in the trap’s
electrostatic properties on the axial frequency of the trapped particle νz can be cal-
culated. There are two major components, which later on facilitate the search for a
detection signal: a change in frequency as a function of a voltage change close to ring
voltage U0 at which the particle is detected and a change in frequency as a function of
a change in the tuning ratio close to T pt

id . The former is referred to as sensitivity, the
latter as non-orthogonality of the trap, both are listed in tab. 2.1. The non-orthogonality
illustrates that particles in the trap can be detected even if the tuning ratio is only hit
within a few percent.

The trapping potential of the precision trap with an inner diameter of 7mm has been
simulated with SIMION, a software for numerically simulating potential distributions
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2.2 Cylindrical Penning Trap

(a) Orthogonality tuning (b) Anharmonicity tuning for a fixed lc

Figure 2.4: Analytical calculation for orthogonality and anharmonicity tuning. (a) Ds
2 as

a function of the length of the correction electrode lc, where the zero-crossing
determines the ideal length for lc. (b) Cs

4 as a function of the tuning ratio T is
plotted for lc = 2.85mm for which Ds

2 = 0.

for geometries with axial symmetry. The trap electrodes are provided with potentials
in such a way that the axial frequency of the proton νz coincides with that of the axial
detection unit at νLC ≈ 680 kHz. To this end, the voltage at the ring electrode is set to
U0 = −3.3V and the correction electrodes are supplied with a voltage of Uc = T pt

id · U0,

where T pt
id is the ideal tuning ratio presented above. The end caps are grounded. The

effective potential in the center of the trap along the z-axis as shown in fig. 2.5a is
slightly reduced as compared to the applied voltages resulting from the superposition
of the different potentials. The data are compared to a harmonic potential (red curve)
which was fitted within ±2mm around the center. It can be seen, that the potential is
to a very high degree harmonic.

The highly sensitive frequency measurement takes place in the precision trap at the
very homogeneous region of the external magnetic field. Therefore, the magnetic inho-
mogeneity arising from the ferromagnetic ring of the analysis trap has to be negligibly
small in order not to compromise the measurement. The upper limit for the position de-
pendent component B2 was set to B2 ≤ 1µT/mm2 which results in a distance between
the two traps of about 65mm, see also fig. 2.5b. This B2-term is on the same order
of magnitude as the one arising from the parts of the trap itself and has been verified
experimentally with a NMR-probe.

The effective electrode distance D needed to determine the resistive cooling time
constant τ is calculated with a SIMION simulation for the respective detection - see
section 2.3 for details. The pick-up configuration for the axial mode is a 01000-coupling
yielding Dz

pt = 7.37mm for the precision trap. For the detection of the cyclotron mode,
the pick-up in the radial plane is needed. The simulations, however, delivered too large
values and turned out to be unfeasible. First tests with detection unit and protons in
the trap resulted in D+

pt = 52.4mm.
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2 Storage and Detection of a Single Particle in a Penning Trap

(a) Trapping potential of the precision trap (b) Magnetic field inhomogeneity in the precision
trap

Figure 2.5: (a) The trapping potential of the precision trap is shown as a result of a simu-
lation with SIMION. At the ring electrode, a voltage of U0 = −3.3V is applied,
the correction electrodes are provided with a voltage of T pt

id · U0, and the end
caps are grounded. A harmonic potential (red curve) is fitted within ±2mm
around the center, however, the curve is drawn for a wider interval. (b) The
magnetic field inhomogeneity in the vicinity of the center of the precision trap
introduced by the ferromagnetic ring of the analysis trap. The required distance
between the two trap centers to meet the condition B2 ≤ 1µT /mm2 is 72mm.

Table 2.1: Optimized parameters of the precision trap: geometric and electrostatic proper-
ties.

r0 3.500mm Cs
2 −0.02895 /mm2

z1 0.460mm Ds
2 3.3863 · 10−5 /mm2

lc 2.848mm Cs
4 −5.3899 · 10−7 /mm4

ld 0.140mm Cs
6 −7.1179 · 10−6 /mm6

L 23.000mm T pt
id 0.867049

Dz
pt 7.37mm ∆νz

∆U0
−0.103Hz /µV

∆νz
∆Tidpt

−0.399Hz /mUnit
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2.3 Non-Destructive Detection of Particle Motion

2.3 Non-Destructive Detection of Particle Motion

The non-destructive frequency measurement of the particle’s eigenmotion in the trap is
based on an electronic detection method, the bolometric scheme [46]. Non-destructive
in this context means that the particle is not lost after the measurement and that the
measurement can be repeated many times with the same particle. Consider therefore
a particle performing a harmonic oscillation between two parallel plates of a capacitor.
The plates of the capacitor are separated by a distance D and assumed to be infinitely
long and perpendicular to the particle motion along the z-axis; an impedance Z(ω)
connects the two plates, as shown in fig. 2.6. The oscillating particle with z(t) = z̃ cosωt
induces a current depending on the charge q, the velocity of the particle ż(t), and D [47].
The current flowing through the impedance is given by:

Iind(t) =
dQ

dt
=

q

D
ż(t) and (2.25)

Uind(t) = Z(ω) · Iind(t) ,

which is a valid description since the particle amplitude is small compared to the size
of the trap. In the case of hyperbolic or cylindrical traps, a geometric correction factor
is introduced which accounts for the differences arising from the trap shapes compared
to a capacitor. A more general ansatz [48] delivers the “effective electrode distance” D
which is determined by the actual configuration yielding the same electric field at the
position of the particle as the two plates of the capacitor. It is defined via D = U/~̂z ~E
for the axial motion, where U is the potential applied to the detection electrodes and ~E
is the resulting electric field. In this context, it is convenient to identify the electrodes
responsible for detection, by speaking for example of a 01000-coupling in the case of a
five-pole trap if detecting only with one of the correction electrodes.

Z(w)+

-

-

---

Iind(t)

z=0

Ud

Un

Us
D

Figure 2.6: A particle oscillating between the two plates of a capacitor can be non-
destructively detected with an impedance connecting the two plates.

The axial motion is monitored by amplifying and measuring Us(t), which is composed
of Uind(t) and a noise voltage Un(t). As long as the particle is not in thermal equilibrium
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2 Storage and Detection of a Single Particle in a Penning Trap

with the tank circuit, it is most likely needed to drive the oscillation with an external
drive potential Ud(t) to be able to detect it above the noise which has to be included
in the equation of motion. At the same time, the impedance exponentially damps the
particle motion with a damping or resistive cooling time constant τz = 1/γz:

τz =
m

q2
D2

|Z(ω)| . (2.26)

It is the characteristic time period for accomplishing a frequency measurement depending
on particle, trap, and circuit properties. Furthermore, the resistive cooling time constant
is the time constant with which the energy E(t) of the particles decreases with time t
as:

E(t) = E0 · e−τz t (2.27)

with E0 being the initial energy of the particles. The equation of motion of the coupled
system is consequently given by:

m

(
d2

dt2
+ γz

d

dt
+ ω2

z

)

z(t) = F (t) (2.28)

z̈(t) +
q2

m

|Z(ω)|
D2

ż(t) +
q U0 C2

mD2
z(t) =

q

mD
(Ud(t) − Un(t)) .

A detailed discussion of the equation of motion and its solutions can be found in [35,49].
To increase the particle signal, it is convenient to increase the impedance by using an
inductance in parallel to the trap. The resulting tank circuit yields a high parallel
resistance in resonance Rp and compensates the capacitive reactance of the trap which
is a major condition for the bolometric scheme. The considerations can be adequately
undertaken for the detection of the cyclotron and magnetron motion.

2.3.1 Resonance Circuit

In a tank circuit, the impedance Z, which is a measure for the signal strength, consists of
an inductance L and a capacity C as given in fig. 2.7. The losses within the components
are denoted by RL and RC leading to an impedance of:

1

Z
=

1

iωL+RL
+

1

RC
+ iωC (2.29)

≈ 1

RC
+

RL

ω2L2
+ i

(

ωC − 1

ωL

)

,

where the approximation is justified since under realistic conditions RL/ω
2L2 ≪ 1 holds.

The quality factor Q of a circuit is defined as

Q =
1

tanϕ
, (2.30)
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LC

RL

Z(w)

RpRC

L

C1

C
L1

R1

Figure 2.7: Tank circuit (left) and equivalent tank circuit (right) for the detection of the par-
ticle with inductance L, capacity C and ohmic resistor R. The parallel resistance
in resonance is denoted by Rp.

where ϕ is the loss angle of the circuit defined as the ratio of effective resistance to
reactance, see e. g. [50] for details. In resonance ω = ωLC = 1/

√
LC with maximum

impedance, the quality factor can be rewritten as

Q =
Rp

ωLCL
(2.31)

= Rp ωLCC (2.32)

with Rp being the parallel resistance in resonance. Since the induced voltage is given ac-
cording to eq. (2.25), the absolute value of the impedance has to be calculated exploiting
|1/Z| = 1/|Z|:

|Z(ω)| =
ω/C

√

(ω2 − ω2
LC)2 +

ω2
LC ω2

Q2

.

Plugging eq. (2.30) into the above equation leads to an experimentally useful relation for
the quality factor:

Q =
ωLC

∆ω
, (2.33)

where ∆ω is the full-width-at-half-maximum. The expression for the impedance from
eq. (2.33) makes it clear that for a given resonance frequency the capacity C should
be small whereas the inductance L should be large. Moreover, the resonance becomes
narrower the higher the quality factor Q.

2.3.2 Detection of an Excited or Cold Particle

With the detection system described above, the particle is always coupled to the tank
circuit. Once the particle is excited at ωLC = ωz, the power P is dissipated in the
resonance resistance RLC according to P = I2

ind · RLC and hence the particle is cooled
yielding an exponential decay of the particle energy E(t) according to eq. (2.27). During
this time, the particle signal can be detected as a peak in the noise spectrum of the tank
circuit as can be seen schematically in fig. 2.8. This method is used to quickly locate
and detect the particle.
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Figure 2.8: Spectra of an excited (left) and cold (right) particle within the noise spectrum
of the detection circuit. Both curves are calculated with typical parameters for
the planned experiment but drawn not to scale.

As the particle reaches thermal equilibrium with the tank circuit, it is more con-
veniently described via an equivalent circuit diagram. According to Wineland [49],
eq. (2.28) can be expressed in terms of a series circuit (see fig. 2.7):

L1
dI

dt
+

1

C1

∫

dtI +R1 I = 0 . (2.34)

Thus, the harmonically bound particle can be described by an equivalent series circuit
with the particle parameters L1 = mD2/q2, C1 = q2/mω2

zD
2, and R1 = Z(ω). On

resonance, the particle shunts the detection system producing a minimum in the noise
spectrum of the tank circuit as sketched in fig. 2.8, the so-called particle dip. Since the
inductance of the particle is large compared to that of the detection unit L1 ≈ 106 H, it
produces a very narrow dip with a line width

∆ν =
1

2π τ
(2.35)

used for the high-precision measurement.

2.4 Sideband Cooling

The eigenfrequencies within the trap can be coupled in different ways when irradiating
the sum or difference frequency. If, on the one hand, one motion is easily accessible for
cooling with a resonance circuit at 4K, it can be cooled until a thermal equilibrium is
reached. If, on the other hand, a second motion is inept for this way of cooling, it can be
coupled to the easily cooled eigenmode and cooled via energy transfer into this mode.

Since the magnetron motion is an unbound but metastable eigenmode with a large
damping constant, it is crucial that an external mechanism be employed for cooling this
mode. The method of motional sideband cooling was first introduced in a Penning trap
by Wineland [51]. In this context “cooling” is used for reducing the motional amplitude
and not necessarily for reducing the energy. To move the particle to the top of the radial
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2.5 Penning Trap Quantum Jump Spectrometer

potential hill a quadrupole excitation at frequency ωz + ω− is used enabling the cooling
to the limit of [35]

T− =
ω−
ωz

Tz (2.36)

with Tz/− being the temperature of the axial and magnetron motion, respectively.

2.5 Penning Trap Quantum Jump Spectrometer

The g-factor of a single particle as defined by eq. (1.6) results from a precise measurement
of the particle’s cyclotron and Larmor frequencies. As mentioned before, a magnetic bot-
tle field is exploited to imprint the spin state information, which is an internal degree of
freedom, onto the axial eigenmotion of the particle in the Penning trap. The observation
of spatial quantization of the quantum-mechanical angular momentum was achieved by
Stern and Gerlach [52]. The technique used in their experiment experienced a great
development by Dehmelt who introduced the continuous Stern-Gerlach effect [26]. As
in the classic Stern-Gerlach effect, changes in the spin state are detected via changes in
the classical particle trajectories. However, what is observed is a change of the eigenfre-
quency of the particle in the potential well of the Penning trap.

In the homogeneous magnetic field ~B = B0ẑ of the Penning trap, the energy eigen-
states of a particle are Zeeman-split. For a magnetic field in the axial direction, this
energy shift is given for a proton in dependence of the spin state as:

∆E = −~µ · ~B (2.37)

= −g µN

~
B0 ~s · ẑ

= g
ems ~

2mp
B0 , (2.38)

where µN is the nuclear magnetic moment and mp the proton mass. The energy gap
E = ~ωL between spin-up and spin-down state is given by the Larmor precession fre-
quency ωL:

ωL = g
e

2mp
B0 . (2.39)

The coupling between the internal and external degree of freedom is realized by the
magnetic bottle field added to the homogeneous partB0 resulting in an effective magnetic
field of

~B = B0 · ẑ +B2

(
z2 − r2

2
− z · ~r

)

. (2.40)

In the presence of a quadratic magnetic field inhomogeneity B2 symmetric around the
z-axis the particle experiences the corresponding force F depending on the position z of
the particle:

~F = −∇(~µ · ~B) and (2.41)

Fz = −µzB2 z .
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2 Storage and Detection of a Single Particle in a Penning Trap

There are no odd terms present in eq. (2.40) because of the periodic motion of the trapped
particle inside the Penning trap, and thus the cancellation of the linear contribution.
The potential seen by the particle depends on its spin state as seen in fig. 2.9 since the
magnetic moment is coupled to the axial eigenmotion shifting this frequency according
to the spin direction. The potential shift has been calculated for a proton at 4K with
a motional amplitude of 40µm. At a resulting trapping potential of a few hundred µV,
the spin-up state sees a 0.1 neV shallower potential (blue curve), the spin-down state see
a 0.1 neV steeper potential (red curve) as compared to the unperturbed potential (black
curve).

0.1 neV

Figure 2.9: Potential in an inhomogeneous magnetic field calculated for the different spin
states of a proton at 4K and typical parameters of this experiment. The shift
relative to the unperturbed potential (black curve) is greatly magnified.

An induced transition between spin up and spin down at the Larmor precession fre-
quency can be detected by the observation of the corresponding frequency shift in the
axial frequency ∆ωz. This detection of a frequency shift is the direct observation of a
quantum jump. The value of the frequency shift scales with the magnetic moment of
the particle and the strength of the magnetic bottle:

∆ωz =
µzB2

mp ωz
. (2.42)

Inducing spin transitions for different radio-frequqency values ωrf close to the theoret-
ically calculated Larmor frequency ωL results in a probability distribution, i. e. a reso-
nance spectrum, yielding the actual Larmor frequency of the particle in the trap. In this
way, a Penning trap quantum jump spectrometer is realized.

The inhomogeneous magnetic field interferes with the high-precision determination of
the eigenfrequencies in the trap. To avoid this, a double Penning trap is used to sep-
arate frequency measurement and spin-state analysis [29]. Spin transitions are induced
in the precision Penning trap, where the measurement of the eigenfrequencies is also
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2.5 Penning Trap Quantum Jump Spectrometer

performed. Afterwards, the particle is transported into the analysis Penning trap with
the inhomogeneous magnetic field region. To analyze whether a spin-flip has occurred
in the precision trap, the corresponding frequency shift ∆ωz in the axial eigenmotion
is now determined in the analysis trap. Since the transport is subject to fluctuations
and heating, it is necessary to verify that the detected signal results from a spin-flip
and is not caused by noise. Therefore, yet another spin-flip transition is induced to be
able to differentiate between a spin-flip and a fake signal. The magnetic inhomogeneity,
however, hinders driving the transition enforcing a detailed study of transition rates in
the magnetic bottle field.

2.5.1 Transition Rates

In order to achieve a transition between the two spin states, an alternating magnetic field
in the radio-frequency (rf) range ~B1(t) = B̂1(x̂ cosωrft+ ŷ sinωrft) has to be irradiated
orthogonal to ~B0, where the frequency of ~B1(t) has to match ωL. Here, a purely co-
rotating field is considered since the counter-rotating component is non-resonant and
makes a negligible contribution [53]. The spin of the particle 1/2~~σ is then governed
by the homogeneous field ~B0 in the z-direction and the oscillating field ~B1(t) in the
xy-plane. In a quantum mechanical description, the Hamiltonian of the spin movement
can be written as:

H = −g e~

2mc

1

2
~σ
(

~B0 + ~B1(t)
)

. (2.43)

The Hamiltonian can be decomposed into the homogeneous part and the part caused by
~B1(t): H = H0 +H1, where

H0 = ~ωrf
1

2
σz (2.44)

and

H1 =
1

2
~(ωL − ωrf)

1

2
σz +

1

2
~ Ω (σx cosωrft+ σy sinωrft) . (2.45)

The Rabi frequency Ω is given by

Ω = g
eB̂1

2mc
. (2.46)

Further treatment of this problem is performed with the rotating wave approximation
in the interaction picture. Moreover, small perturbations spreading the spin precession
frequency over a range δωL have to be considered for this kind of experiments since the
relation holds that δωL ≫ Ω. To this end, the Rabi frequency has to be convolved with
the inhomogeneities which has been done in [35] yielding for the transition probability
P :

P =
1

2

[
1 − exp

(
−πΩ2 (t2 − t1)χ(ωrf)

)]
, (2.47)

where χ(ωrf) denotes the line profile depending on the axial motion. The time during
which the drive field is applied is given by δ = (t2 − t1).
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2 Storage and Detection of a Single Particle in a Penning Trap

The harmonic axial motion is coupled to an external circuit and thus kept in thermal
equilibrium at temperature T . Fluctuations in the axial motion can be deduced from
the equipartition of energy as

1

2
mω2

z 〈z2〉 =
1

2
kBT , (2.48)

with kB being the Boltzmann constant. In addition, fluctuations arising from the mag-
netic bottle field are given by the line width parameter (ibid.)

∆(T ) = ωL
B2

B0
〈z2(T )〉 . (2.49)

Since the thermal reservoir drives the oscillator with a force that is uniformly distributed
in frequency (“white noise”), it is sufficient to consider two parameters: the axial damp-
ing constant γz cf. eq. (2.26) and the temperature T or equivalently the line width param-
eter ∆(T ). The line profile χ(ω) can be greatly simplified in the two limits γz ≪ ∆(T )
and γz ≫ ∆(T ). Since the weak coupling case applies for the analysis trap in which the
magnetic bottle field is present, it will be treated in the following.

2.5.2 Numerical Example for the Case of Weak Coupling

Two typical trap parameters introduced above determine the damping constant γz and
the line width parameter ∆(T ): the effective electrode distance D and the magnetic
inhomogeneity B2, respectively. Assuming that the experiment is performed in a tem-
perature range from 4K to 30K, a lower limit for ∆(T ) can be delivered with the known
inhomogeneity of the analysis trap of B2 = 4 · 105 T/m2. For the evaluation of γz, the
effective electrode distance D has to be calculated for the pick-up configuration used
in the proton experiment. Since the axial signal will be detected using one correction
electrode only, D has to be computed for the 01000-coupling yielding D = 6.61mm.
Moreover, the resonance resistance RLC = 2π ν LQ = 25.71MΩ is needed resulting from
the values for the axial detection system at the time of this measurement: Q = 4000,
L = 1.5mH, and ν = 682 kHz. Finally, the lower limit amounts to

γz

∆(T )
< 4.7 · 10−5 at 4K ≤ T ≤ 30K , (2.50)

corresponding to the case of weak coupling, thereby coupling the axial motion z(t) loosely
to the thermal reservoir. The line profile is given by (ibid.)

χ(ω) =
θ(ωrf − ωL)

∆(T )
exp

(

−ωrf − ωL

∆(T )

)

, (2.51)

with θ(x) denoting the step function: θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0.
A radial magnetic field strength of B̂1 = 1.43µT leads to a Rabi frequency of

Ω = 382.56Hz yielding a spin-flip rate of 60.89 SF/s (for further discussion see sec-
tion 4.6). The transition probability P can thus be computed as a function of δ, which
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2.5 Penning Trap Quantum Jump Spectrometer

Figure 2.10: Spin-flip probability P in the analysis trap in the case of weak coupling as
a function of δ, the time during which the drive field is applied. No Rabi
oscillations are expected due to inhomogeneities leading to damping.

is shown in fig. 2.10 for T = 30K. For δ = 5 s a transition probability of P ≈ 0.4 is ob-
tained which increases for T = 4K to P ≈ 0.5. Reducing the driving time to δ = 500ms
yields P ≈ 0.35 at T = 4K. These numbers are much more favorable in the precision
trap, since there the case of strong coupling holds.
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3 The Toroidal Hybrid Penning Trap

The Larmor frequency, one of the two frequencies from which the g-factor is extracted,
is determined by performing the continuous Stern-Gerlach effect in the magnetic bottle
field of the analysis trap. This inhomogeneity has to be large enough to cause a de-
tectable frequency shift for an unambiguous spin-state analysis. In the case of a single
proton, conventional Penning traps (hyperbolic or cylindrical) are inapplicable since the
frequency shift on a relative 10−7 scale is not efficiently detectable under experimental
conditions. To this end, the hybrid Penning trap was introduced [28]: a combination of
cylindrical electrodes and electrodes of non-cylindrical shape, e. g. toroidal or hyperbolic,
as opposed to purely cylindrical traps consisting of cylindrical electrodes only. For this
experiment, a hybrid trap was chosen with a toroidal ring and cylindrical correction
electrodes and end caps: the toroidal hybrid Penning trap. As a result, the curved shape
of the toroidal ferromagnetic ring enhances the curvature of the magnetic bottle hence
enabling an efficient spin-state analysis.
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Figure 3.1: (a) Inner surface of a three-pole toroidal hybrid Penning trap. The trap is
made out of axially symmetric electrodes, the ring being of toroidal shape. For
simplicity, the upper and lower regions, ΩI and ΩIII, are drawn to be cylindrical.
(b) Extension to a five-pole toroidal hybrid trap. 2D cut through inner surface.

The electrostatic properties of the toroidal hybrid Penning trap can be calculated
analytically with the “quasi”-Green’s function method developed in [28]. The ansatz
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3 The Toroidal Hybrid Penning Trap

features an extension of the Dirichlet problem to non-trivial geometries and leads to
an analytical solution of the Laplace equation based on the Green’s function approach.
Optimization of the electrostatic properties such as anharmonicity compensation, or-
thogonality and optimum adjustment of frequency shifts is possible. The electrostatic
potential Φ(~x) has to be calculated within a closed volume defined by the trap elec-
trodes to which arbitrary voltages are applied. This corresponds to solving the Laplace
equation with Dirichlet boundary conditions for which the adequate Green’s function
has to be known. The toroidal hybrid trap outlined in fig. 3.1a does not exhibit a known
analytical expression for the Green’s function fulfilling Dirichlet boundary conditions on
its entire surface as is the case with most hybrid traps. If, however, for each of its elec-
trodes the corresponding Green’s function is known, which does meet those conditions
on the electrode’s surface, then it is possible to construct a “quasi”-Green’s function for
the entire hybrid trap which delivers an analytical expression for Φ(~x). In the following,
the “quasi”-Green’s function will be constructed for the trap sketched in fig. 3.1a with
a rotationally invariant surface around the ẑ-axis. Generalization to the five-pole trap
used in the actual experiment will become apparent.

3.1 Theoretical Concepts

In general, the electrostatic boundary-value problem is defined by the following integral
equation [40]:

∫

Ω
d3x′

[
Φ(~x ′)∇′2G(~x | ~x ′) −G(~x | ~x ′)∇′2Φ(~x ′)

]

=

∮

∂Ω
dS′

[

Φ(~x ′)
∂

∂n′
G(~x | ~x ′) −G(~x | ~x ′)

∂

∂n′
Φ(~x ′)

]

, (3.1)

where Ω is the trapping volume under consideration, ∂Ω the surface delimiting that vol-
ume, and Φ(~x ′) the electrostatic potential. G(~x | ~x ′) represents the Green’s function for
the Laplace equation. It is symmetric with respect to interchanging source coordinates,
~x ′, and field coordinates, ~x: G(~x | ~x ′) = G(~x ′ | ~x). Further, it satisfies:

∇2G(~x | ~x ′) = ∇ ′ 2G(~x | ~x ′) = −4πδ
(
~x− ~x ′)

G(~x | ~x ′) =
1

|~x− ~x ′| + F (~x | ~x ′) . (3.2)

F (~x|~x ′) represents an arbitrary function satisfying

∇2F (~x|~x ′) = ∇ ′ 2F (~x|~x ′) = 0∀ {~x, ~x ′} ∈ Ω .

In the case of Dirichlet boundary conditions, F (~x |~x ′) is chosen such that the Green’s
function becomes equal to zero at the surface of the trap: GD(~x | ~x ′) = 0∀ ~x ′ ∈ ∂Ω.
The function F (~x|~x ′) is therefore a solution of the Laplace equation and represents the
potential of a (mirror) charge distribution external to the volume Ω (ibid.). Assum-
ing the absence of free charges within the region in which the potential is calculated,
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∇2Φ(~x ′) ∝ ρ(~x ′) = 0∀ ~x ′ ∈ Ω, eq. (3.1) further simplifies to:

∫

Ω
d3x′

[
Φ(~x ′)∇′2GD(~x | ~x ′)

]
=

∮

∂Ω
dS′

[

Φ(~x ′)
∂

∂n′
GD(~x | ~x ′)

]

. (3.3)

The validity of eq. (3.3) is not restricted to pure Green’s functions satisfying eq. (3.2),
but it applies whenever the volume Ω is free of charges, and for any function being equal
to zero at its surface, GD(~x|~x ′) = 0∀ ~x ′ ∈ ∂Ω. However, if the proper Green’s function
satisfying Dirichlet boundary conditions is known, eq. (3.3) simplifies to the conventional
expression exploiting eq. (3.2):

Φ(~x) = − 1

4π

∮

∂Ω
dS′ · Φ(~x ′)∂ GD(~x|~x ′)∂n′ .

The boundary conditions, Φ(~x ′), are provided by voltages applied to the trap electrodes.
Thus, the explicit knowledge of GD(~x|~x ′) formally solves the potential problem, reducing
it to a simple integral.

For the hybrid trap of fig. 3.1a, we introduce a “quasi”-Green’s function, G̃D(~x |~x ′),
defined as:

G̃D(~x | ~x ′) =







GD
I (~x | ~x ′) ~x ∈ Ω ; ~x ′ ∈ ΩI

GD
II(~x | ~x ′) ~x ∈ Ω ; ~x ′ ∈ ΩII

GD
III(~x | ~x ′) ~x ∈ Ω ; ~x ′ ∈ ΩIII

(3.4)

Each volume Ωi denotes one of the i-regions into which the trapping volume of fig. 3.1a
is divided. This partition of space is basically arbitrary but must fulfill the condition,
that inside each Ωi the Green’s function satisfying Dirichlet boundary conditions on the
physical part of that Ωi-region (i. e. the metallic electrode) must be known. Thus, a set
of functions GD

i (~x|~x ′) must be provided satisfying

∇2GD
i (~x|~x ′) = ∇′ 2GD

i (~x|~x ′) = 4πδ(~x − ~x ′)

and GD
i (~x |~x ′) = 0 on the corresponding part of the trap’s surface. In the example of

fig. 3.1a, the partition is chosen such that there are three Ωi-regions delimited by the
“contact” planes z′ = ±z1.

For the “quasi”-Green’s function introduced the interchange symmetry of the argu-
ments is broken: G̃D(~x | ~x ′) 6= G̃D(~x ′ | ~x); within this derivation the focus lies on the
properties of G̃D with respect to the source ~x ′. Furthermore, since the constituting
functions GD

i (~x | ~x ′) are chosen such that each separately satisfies Dirichlet boundary
conditions for the corresponding electrode, the “quasi”-Green’s function satisfies Dirich-
let boundary conditions on the entire surface of the trap: G̃D(~x|~x ′) = 0∀ ~x ′ ∈ ∂Ω. As
a consequence, eq. (3.3) still holds and is used to calculate the potential Φ(~x).

3.1.1 Solution with the “Quasi”-Green’s Function

In order to obtain Φ(~x) from eq. (3.3), the Laplacian of the “quasi”-Green’s function
with respect to the source coordinates has to be evaluated. For source points within the
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3 The Toroidal Hybrid Penning Trap

trap not lying on any of the contact planes separating the Ωi-regions, this immediately
yields: ∇′2G̃D(~x | ~x ′) = −4πδ(~x − ~x ′)∀V x ′ = {x′, y′, z′ 6= ±z1} due to the definition
of the “quasi”-Green’s function. Note that G̃D(~x |~x ′) has a finite-step discontinuity at
the planes separating the Ωi-regions, ~x ′ = {x′, y′, z′ = ±z1}, which has to be taken
into account when calculating the Laplacian ∇ ′ 2G̃D(~x | ~x ′). Since ∇ ′ 2 represents a
derivative operator and since the derivative of the Heaviside step-function results in the
Dirac-delta, we assume the following ansatz for ∇ ′ 2G̃D(~x|~x ′):

∇′2G̃D(~x | ~x ′) = −4πδ(~x− ~x ′) + δ(z′ − z1)f+(~x | ~x ′) + δ(z′ + z1)f−(~x | ~x ′) . (3.5)

With this ansatz, the Laplacian of the “quasi”-Green’s function for points not lying on
the contact planes, z′ 6= ±z1, is trivially recovered whereas the functions f±(~x | ~x ′) have
to be determined. It is obvious from eq. (3.5), that it suffices to evaluate f± for points

I

II

z
1

e      0

dV

Figure 3.2: Illustration of the Gaussian box enclosing the point ~x ′ = {r′, ϕ′, z′ = +z1}
which lies on the contact plane separating the regions ΩI and ΩII. G̃D has a
finite step discontinuity at any point on that contact plane.

lying on the contact planes: ~x ′ = {r′, ϕ′, z′ = ±z1} for f± in cylindrical coordinates.
On the one hand, consider an infinitesimal volume dV enclosing the point of interest
{r′, ϕ′, z′ = z1} as shown in fig. 3.2. The divergence theorem applied to G̃D(~x|~x ′) at dV
leads to: ∫

dV
d3x′ · ∇′2G̃D(~x | ~x ′) =

∮

S
d~S ′ · ∇′G̃D(~x | ~x ′) . (3.6)

In the limit ε → 0, the lateral surface of the Gaussian box does not contribute to
the surface integral in eq. (3.6), thus

∮

S d
~S ′ · ∇′G̃D(~x|~x ′) =

∮

S⊥

dS′
z

∂
∂z′ G̃

D(~x|~x ′). The
top and bottom surfaces of the Gaussian box of fig. 3.2 are denoted by S⊥; only these
contribute to the surface integral. The integral on the top surface is performed while
z′ = z1 + ε ⇒ z′ ∈ ΩI and G̃D(~x | ~x ′) = GD

I (~x | ~x ′). For the bottom plane applies
z′ = z1 − ε and G̃D(~x|~x ′) = GD

II(~x|~x ′). Further, dSz′ has the opposite orientation in the
latter case as compared to the former, hence leading to:

∮

S
d~S ′ · ∇′G̃D(~x | ~x ′) = lim

ε→0

∮

S⊥

dS′
z

∂

∂z′
[
GD

I (~x | r′, ϕ′, z1 + ε) −GD
II(~x | r′, ϕ′, z1 − ε)

]
.

(3.7)
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On the other hand, with the ansatz of eq. (3.5) and assuming that ~x 6= ~x ′ (i. e. ~x is
outside of dV ), the volume integral in eq. (3.6) yields:

∫

dV
d3x′ · ∇′2G̃D(~x | ~x ′) =

∫

dV
dz′ · dS′

z δ(z − z1)f+(~x | r′, ϕ′, z′) =

∫

S⊥

dS′
z f+(~x | r′, ϕ′, z1).

(3.8)

The explicit form of f+ can now be derived by comparison of eq. (3.7) and eq. (3.8).
Taking into account that GD

i (~x |~x ′) = (1/|~x − ~x ′|) + FD
i (~x |~x ′) while taking the limit

ε→ 0 in eq. (3.7), results in:

f+(~x | r′, ϕ′, z1) =
∂

∂z′
[
FD

I (~x | r′, ϕ′, z1) − FD
II (~x | r′, ϕ′, z1)

]
. (3.9)

The same considerations carried out for the contact plane between regions ΩII and ΩIII

deliver the function f−:

f−(~x | r′, ϕ′,−z1) =
∂

∂z′
[
FD

II (~x | r′, ϕ′,−z1) − FD
III(~x | r′, ϕ′,−z1)

]
. (3.10)

Finally, computing the integral of eq. (3.3) and resolving for Φ(~x) leads to the electro-
static potential inside the trap:

Φ(~x) = − 1

4π

∮

∂Ω
dS′ Φ(~x ′)

∂

∂n′
G̃D(~x | ~x ′)

+
1

2

∫ r0

0
dr′r′ Φ(r′, z1)

∂

∂z′
[
FD

I (~x | r′, z1) − FD
II (~x | r′, z1)

]

+
1

2

∫ r0

0
dr′r′ Φ(r′,−z1)

∂

∂z′
[
FD

II (~x | r′,−z1) − FD
III(~x | r′,−z1)

]
. (3.11)

In the above equation, r0 represents the inner radius of the contact surface delimiting
the different Ωi-regions (see also fig. 3.1b). Note that the integral over ϕ′ has been
assumed to deliver the value 2π in the last two summands of eq. (3.11). This assumption
is valid since the electrostatic potential is axially symmetric. In the usual case of the
trap having point symmetry with respect to its central plane z = 0, the function f−
becomes identical to f+ except for the negative sign. The opposite sign results from the
opposite direction of the surface vector d~S′ when calculating the integral on the right
side of eq. (3.6). Taking this symmetry into account, the calculation of the electrostatic
potential simplifies to:

Φ(~x) = − 1

4π

∮

∂Ω
dS′ Φ(~x ′) · ∂

∂n′
G̃D(~x | ~x ′)

+

∫ r0

0
r′dr′ Φ(r′, z1) ·

∂

∂z′
[
FD

I (~x | r′, z1) − FD
II (~x | r′, z1)

]
. (3.12)

Equation (3.12) constitutes an integral equation which will be solved for the toroidal
hybrid trap in the following.
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3 The Toroidal Hybrid Penning Trap

3.2 Application to the Toroidal Hybrid Trap

To calculate the electrostatic potential of the five-pole toroidal hybrid trap shown in
fig. 3.1b, it is first mandatory to construct the appropriate “quasi”-Green’s function.
The basic Green’s function solving the Laplace equation in cylindrical coordinates (see
for example [40,54,55]) can be modified to yield the Green’s function inside a cylindrical
box satisfying Dirichlet boundary conditions:

Gcyl(r, z | r′, z′) =

4

L

∞∑

n=1,3..

cos(κnz) cos(κnz
′)
I0(κnr<)

I0(κnr0)

[

I0(κnr0)K0(κnr>) − I0(κnr>)K0(κnr0)
]

. (3.13)

Here, most parameters can be identified following the definitions from eq. (2.18) and
fig. 2.3. The notation r>(<) means the bigger (smaller) of (r, r′). The symbols I0 and K0

represent the modified Bessel functions of zeroth order, first and second kind, respec-
tively. Further, the electric potential is assumed to be point-symmetric with respect to
the trap’s center (z = 0), thus only cos(κnz)-functions appear in the series. For eq. (3.13)
to be strictly valid, the trap should be closed by a grounded disk on each side allowing
for the basic Green’s function in cylindrical coordinates to be simplified to a series with
the summation index κn running over odd n as compared to an integral form with con-
tinuous summation index κ. Usually, the traps used in experiments are not closed by
such grounded disks. This issue has been investigated mathematically in [43]: an end
cap three times longer than the inner radius suffices for deviations below one per cent
of the trap’s electrical properties compared to those calculated with an infinitely long
open end cap. In addition, experimental data [6,7] exhibit deviations as low as one part
in a million from the theoretical predictions of eq. (3.13). There, the experiment was
performed in a cylindrical trap with le ≃ 2r0. For the toroidal hybrid trap a similar or
even better accuracy can be assumed due to the enhanced shielding of the trap’s center
from outside by the toroidal ring.

The basic Green’s function in toroidal coordinates [54–57] is used to derive the Green’s
function satisfying Dirichlet boundary conditions on the surface of a torus with circular
cross section:

Gtor(u, v | u′, v′) =
1

aπ

√
cosh v − cos u

√
cosh v′ − cos u′ ·

∞∑

m=0

ǫm cos(mu) cos(mu′)

×
Pm− 1

2
(cos v<)

Pm− 1
2
(cosh v0)

·
(

Pm− 1
2
(cosh v0)Qm− 1

2
(cosh v>) − Pm− 1

2
(cosh v>)Qm− 1

2
(cosh v0)

)

.

(3.14)

Again, axial symmetry is inferred, and the electric potential is assumed to be invariant
across the equatorial plane of the torus, thus only cos(mu)- but no sin(mu)-functions
appear. As before, the notation v>(<) means the bigger (smaller) of (v, v′). The Legendre
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Figure 3.3: Parameters of the toroidal ring. The outer radius of the torus Rtor does not
necessarily coincide with the inner radius of the cylindrical electrodes, r0. This
is reflected by the upper and lower cut-off planes of the torus at P1 and P ′

1.

functions of first and second kind are denoted by Pm− 1
2

and Qm− 1
2
, respectively. For the

case discussed here with m ∈ N, they are also known as toroidal functions (ibid.). The
Neumann factor is given by ǫm = 2−δm,0. The toroidal coordinates {u, v, ϕ} relate to the
Cartesian coordinates via: {x, y, z} = a

cosh v−cos u {cosϕ sinh v, sinϕ sinh v, sin u} (ibid.).
In this coordinate system, a toroidal ring is defined by v = v0, with v0 = constant > 0,
u ∈ [0, 2π] and ϕ ∈ [0, 2π]. For further calculation, the upper and lower points of
the torus facing inside the trap are marked as P1 and P ′

1, respectively (see fig. 3.3). In
toroidal coordinates they are given by: P1 ≡ (u = π/2, v0, ϕ) and P ′

1 ≡ (u = 3π/2, v0, ϕ).
The choice of P1 and P ′

1 is arbitrary, the choice made here has technical reasons: since
the cut-off points are localized slightly below the ring’s north and south pole, more of
the correction electrodes is seen from the trap’s center, and thus shielding due to the
toroidal ring is reduced. An additional free parameter is the length of the ring seen
from the inner side of the trap, lr = 2 · z1. Having specified z1, P1, P

′
1, and r0, the

toroidal ring is completely defined yielding the toroidal parameters: a =
√

r20 + z2
1 and

v0 = sinh−1(r0/z1). With z1 and r0 chosen, the inner radius of the torus is given by
ρtor = z1

r0

√

r20 + z2
1 and the distance from the ẑ-axis to the innermost point of the torus

by r1 =
√

r20 + z2
1 / (z1 +

√

r20 + z2
1).

3.2.1 Potential of the Toroidal Hybrid Trap

With the geometry of fig. 3.1b chosen, it is obvious that

GD
I (~x|~x ′) = GD

III(~x|~x ′) ≡ Gcyl(~x|~x ′) and GD
II(~x|~x ′) ≡ Gtor(~x|~x ′) .

Using Abel’s identity, the Wronskian of the Bessel functions of eq. (3.13) is evalu-

ated to [56]: I(x)dK(x)
dx − dI(x)

dx K(x) = 1
x and similarly for the toroidal functions of

eq. (3.14): P (x)dQ(x)
dx − dP (x)

dx Q(x) = 1
x . With these Wronskian determinants, the deriva-

tive ∂G̃D(~x, ~x′)/∂n′ on the trap’s surface is greatly simplified. Using the boundary
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3 The Toroidal Hybrid Penning Trap

conditions of fig. 3.1b, the electric potential Φ0(~x) = Φcyl(~x) + Φtor(~x) in zeroth-order is
obtained:

Φcyl(r, z) = − 1

4π

∫ 2π

0
r0 dϕ

′ · 2

∫ L/2

z1

dz′ Φ(r0, z
′) · ∂ Gcyl(r, z | r′, z′)

∂ r′

∣
∣
∣
∣
r′=r0

=
2

L

∞∑

n=1,3···

1

I0(κn r0)

[

2

∫ L
2

z1

dz′ Φ(r0, z
′) cos(κn z

′)

]

I0(κn r) · cos(κn z)

Φtor(u, v) = − 1

4π

∫ 2π

0
hϕ′ · dϕ′

∫ 3π
2

π
2

hu′ · du′ Φ(v0, u
′)

1

hv′

∂ Gtor(u, v | u′, v′)
∂ v′

∣
∣
∣
∣
v′=v0

=
U0

2π

√
cosh v − cosu

∞∑

m=0,1...

ǫm

[∫ 3π/2
π/2 du′ cos(mu′)√

cosh v0−cos u′

]

Pm− 1
2
(cosh v0)

Pm− 1
2
(cosh v) · cos(mu) .

(3.15)

The factor of 2 appearing in front of the integral
∫ L/2
z1

dz′ arises from the symmetry of
the trap around the z = 0-plane. Furthermore, it has been assumed that a constant volt-
age U0 → Φ(u′, v0) = U0 ∀u′ ∈ [0, 2π] is applied to the ring. On the one hand, the scale
factors of the toroidal coordinates, hu′ and hv′ , are equal and cancel in the expression
for calculating Φtor [57]. On the other hand, the scale factor hϕ′ = a sinh v0

cos u′−cosh v0
has to be

included in the integral. Finally, the toroidal coordinates (u, v) can be transformed into
the cylindrical ones (r, z) using the following transformation: v = 2Re

[
coth−1( r+i z

a )
]

and u = −2 Im
[
coth−1( r+i z

a )
]

(ibid.). With the zeroth-order approximation Φ0(r, z) it
is now possible to solve the integral equation, cf. eq. (3.12):

Φ(r, z) = Φ0(r, z)+

∫ r0

0
dr′ r′ Φ(r′, z1)

[

∂Fcyl(r, z | r′, z1)
∂z′

− ∂Ftor(r, z | r′, z1)
∂z′

]

︸ ︷︷ ︸

f+(r,z|r′,z1)

. (3.16)

The explicit form of the functions Fcyl(r, z | r′, z′) and Ftor(r, z | r′, z′) results from the
corresponding Green’s functions from eq. (3.13) and eq. (3.14), as defined in eq. (3.2):

Fcyl(r, z | r′, z′) = − 4

L

∞∑

n=1,3..

K0(κnr0)

I0(κnr0)
cos(κnz) cos(κnz

′) I0(κnr)I0(κnr
′)

Ftor(u, v | u′, v′) = − 1

aπ

√
cosh v − cos u

√
cosh v′ − cosu′ ·

∞∑

m=0

ǫm
Qm− 1

2
(cosh v0)

Pm− 1
2
(cosh v0)

·

· cos(mu) cos(mu′) · Pm− 1
2
(cosh v)Pm− 1

2
(cosh v′) .

(3.17)

The structure of the integral equation (3.16) itself suggests already the solution: the
zeroth-order approximation Φ0(r, z) has to be substituted into the integral on the right
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3.2 Application to the Toroidal Hybrid Trap

hand side of this equation to get the first-order correction:

∆Φ1(r, z) =

∫ r0

0
dr′ r′ Φ0(r

′, z1)f+(r, z|r′, z1) ,

which itself leads to the first-order approximation Φ1(r, z) = Φ0(r, z) + ∆Φ1(r, z). The
solution of the integral equation is obtained by iteration: Φ(r, z) = limj→∞ Φj(r, z),
where Φj(r, z) denotes the jth-order approximation to the potential given by:

Φj(r, z) = Φ0(r, z) +

∫ r0

0
dr′ r′ Φj−1(r

′, z1) f+(r, z | r′, z1)
︸ ︷︷ ︸

∆Φj(r,z)

. (3.18)

The zeroth-order approximation of the potential Φ0(r, z) as well as the propagator consist
of linear combinations of the sets of functions {I0(κn r) · cos(κn z)} and {Pm− 1

2
(cosh v) ·

cos(mu)} as can be seen from eq. (3.15). These sets both form a basis of the linear space
including the solutions of the Laplace equation in the appropriate coordinate systems.
Hence, the corrections ∆Φj(r, z) can be written as linear combinations of these sets,
and the electric potential can be expanded with expansion coefficients An and Bm,
respectively:

Φ(r, z) = U0

∞∑

n=1,3...

An I0(κn r) · cos(κn z)

+ U0

√
cosh v − cos u

∞∑

m=0,1,2...

Bm Pm− 1
2
(cosh v) · cos(mu). (3.19)

These expansion coefficients are of the same nature as the one for the potential of
the cylindrical trap defined earlier, cf. eq. (2.18). In order to obtain an explicit form
of the potential Φ(r, z), the coefficients An and Bm have to be determined iteratively
following the scheme presented above. Consequently, the expansion coefficients of the

jth iteration of the potential Φj(r, z) are given by A
(j)
n and B

(j)
m . Their value is related

to the coefficients of the zeroth-order approximation through the correction terms ∆A
(j)
n

and ∆B
(j)
m such that: A

(j)
n = A

(0)
n + ∆A

(j)
n and B

(j)
m = B

(0)
m + ∆B

(j)
m . The zeroth-

order approximation of the expansion coefficients can be taken from eq. (3.15), and the
correction terms of the jth order are obtained by substituting Φj−1(r, z) in eq. (3.18).

The correction terms ∆A
(j)
n ,∆B

(j)
m are related to the expansion coefficients A

(j−1)
n , B

(j−1)
m

through a simple linear relation allowing for an expression in matrix notation:
(

An

Bm

)

=

∞∑

j=0

U j ·
(

A
(0)
n

B
(0)
m

)

. (3.20)

The iteration coefficient j starts from j = 0 since the zeroth-order coefficients A
(0)
n , B

(0)
m

are included in the above summation. The square matrix U is of the dimension
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3 The Toroidal Hybrid Penning Trap

(N +M) × (N +M) and depends only on the geometry of the trap: U = U(L,R0, z1).
In practice, N = M = 20 suffices for calculating the potential close to the ẑ-axis, which
is usually the region of interest. The explicit form of U and of the expansion coefficients
can be taken from [28]. Technically, the matrix U together with the initial zeroth-order

coefficients A
(0)
n , B

(0)
m delivers the solution of the potential Φ(r, z) inside the toroidal

hybrid trap.

3.2.2 Anharmonicity Compensation and Orthogonality

Following the derivation of the Cs
k- and Ds

k-coefficients from section 2.2.1, the determina-
tion of these coefficient for the toroidal hybrid trap is achieved through direct derivation
from eq. (3.19). The first most relevant for anharmonicity compensation are given by:

Ctor
2 = −1

2





∞∑

n=1,3,...

An κ
2
n +

√
2

a2

∞∑

m=0,1...

Bm(−1)m(4m2 + 1)





Ctor
4 = 1

24





∞∑

n=1,3,...

An κ
4
n +

√
2

a4

∞∑

m=0,1...

Bm(−1)m(16m4 + 56m2 + 9)





Ctor
6 = 1

720





∞∑

n=1,3,...

An κ
6
n +

√
2

a6

∞∑

m=0,1...

Bm(−1)m(64m6 + 512m4 + 1756m2 + 225)



 .

(3.21)

Note that due to the symmetry of the potential across z = 0 all odd coefficients
vanish. Thus, with the coefficients An and Bm of eq. (3.20) already computed, the Ctor

j -
coefficients can be found without loss of accuracy. Likewise, the Dtor

2 -coefficient for
orthogonality tuning is received:

Dtor
2 = −1

2





∞∑

n=1,3,...

∂An

∂ T
κ2

n +

√
2

a2

∞∑

m=0,1...

∂Bm

∂ T
(−1)m(4m2 + 1)



 . (3.22)

Here, eq. (3.20) is used to achieve the desired level of precision when computing ∂An

∂ T ,
∂Bm

∂ T .

3.3 The Toroidal Hybrid Trap of the Proton Experiment

When dealing with anharmonicity compensation in conventional Penning traps, the con-
tribution of the Ctor

6 is usually negligible with the optimal tuning ratio acquired which
makes Ctor

4 = 0. For the toroidal hybrid trap, however, this does not apply here. The
contribution is no longer negligible. As in the case of the five-pole cylindrical trap
(cf. section 2.2.1), different trap parameters can be used for anharmonicity tuning.

The toroidal hybrid trap of the proton experiment has been designed such, that it
is fully compensated. Both coefficients, Ctor

4 and Ctor
6 , depend on the tuning ratio and
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3.3 The Toroidal Hybrid Trap of the Proton Experiment

Figure 3.4: Compensation of the toroidal hybrid trap of the proton experiment. The ideal
tuning ratio T at

id is given as a function of the length lc of the correction electrode.
The black squares show the tuning ratio T (Ctor

4 , lc) as a function of the length
of the correction electrode lc for Ctor

4 = 0. The red circles show T (Ctor
6 , lc)

for Ctor
6 = 0. For different lc there exists an ideal tuning ratio T at

id for which
Ctor

4 = Ctor
6 = 0. In this example, there are two possible values of lc within the

region of interest plotted, lying between 1.0 and 1.5mm.

their contribution to the electric potential can be made zero for the respective optimal
tuning ratio. For every length of the correction electrode lc there exists in each case a
tuning ratio T (Ctor

i ) for which the coefficient is equal to zero. For one special length
of the correction electrode lc the two tuning ratios T (Ctor

4 , lc) and T (Ctor
6 , lc) are equal.

This is the ideal tuning ratio Tid for which Ctor
4 = Ctor

6 = 0 holds as shown in fig. 3.4.
To determine the ideal tuning ratio T at

id , such a plot was created. For the hybrid trap
T at

id has to be found by numerical calculations with arbitrary precision. Here, the black
squares are numerical calculations of T (Ctor

4 , lc) for certain lengths of the correction
electrode for which Ctor

4 = 0. The red circles denote T (Ctor
6 , lc) for different lc for which

Ctor
6 = 0. At the intersection of the two ‘curves’ lies the ideal tuning ratio T at

id . For this
trap, the length of the correction electrode was chosen to be lc = 1.165mm resulting in
an ideal tuning ratio of T at

id = 0.8615. Within this evaluation it proved to be sufficient
to perform the expansion in Bessel functions etc. up to a summation index of n = 45
and the perturbation order up to an iteration index of N,M = 10. Convergence is not
fully reached for n = 45, however, the difference in the results is below 1%. With the
geometric constraints given, it is not possible to orthogonalize the trap.

The trapping potential of the analysis trap with an inner diameter of 3.6mm has been
simulated with SIMION. The trap electrodes are provided with potentials in such a way
that the axial frequency of the proton νz coincides with that of the axial detection unit at
νLC ≈ 680 kHz. To this end, the voltage at the ring electrode is set to U0 = −1V and the
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3 The Toroidal Hybrid Penning Trap

correction electrodes are supplied with a voltage of Uc = T at
id · U0, where T at

id is the ideal
tuning ratio presented above. The end caps are grounded. The effective potential in the
center of the trap along the z-axis as shown in fig. 3.5a is slightly reduced as compared
to the applied voltages resulting from the superposition of the different potentials. As
a comparison, a harmonic potential is also plotted (red curve). It can be seen, that the
potential is to a very high degree harmonic considering typical particle amplitudes of
≈ 100µm.

(a) Trapping potential of the analysis trap (b) Magnetic field of the ferromagnetic ring

Figure 3.5: a) The trapping potential of the analysis trap is shown as a result of a simulation
with SIMION together with a harmonic potential (red curve). At the ring elec-
trode, a voltage of U0 = −1V is applied, the correction electrodes are provided
with a voltage of T at

id ·U0, and the end caps are grounded. b) The magnetic field
introduced by the ferromagnetic ring shown was numerically calculated with the
program SUSZI. The center of the analysis trap is at z = 0, the center of the
precision trap is located at z = 65mm.

The toroidal hybrid trap functions as the analysis trap in which the spin state of a
single proton will be detected. To this end, a magnetic bottle field B2 is created which
allows for this analysis according to eq. (2.42). Since the toroidal ring can be designed
in such a way as to protrude far into the trap (cf. fig. 3.1b), the magnetic inhomogene-
ity at the center of the trap can be greatly enhanced. Please note, that the design of
the toroidal ring is on the other side geometrically restricted since ferromagnetic ma-
terial outside the Gabrielse angle reduces the B2-term [35]. As ferromagnetic material
a Cobalt-Iron compound (vacoflux 50 from the company Vacuumschmelze) was chosen
with a saturation magnetization of µ0M = 2.35T, where M is the magnetization of the
material and µ0 the permeability constant. This material has the highest saturation
magnetization possible for a solid at room temperature. It introduces a negative mag-
netic component to the magnetic field of roughly 0.7T per 1T external field if saturated
as shown in fig. 3.5b. As a comparison, the other machined parts of the trap (made out
of copper or sapphire) influence the external magnetic field on a 10−6 scale; both values
were numerically calculated with the program SUSZI and agree well with similar simu-
lations performed within the diploma thesis of A. Mooser [58]. The resulting magnetic
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3.3 The Toroidal Hybrid Trap of the Proton Experiment

Table 3.1: Optimized parameters of the analysis trap: geometric, magnetic, and electrical
properties.

r0 1.800mm T (Ctor
4 ) 0.8616

r1 1.292mm T (Ctor
6 ) 0.8614

z1 0.770mm T at
id 0.8615

lc 1.165mm Ctor
4 (Tid) 4.4908 · 10−6 /mm4

le 8.285mm Ctor
6 (Tid) 3.0096 · 10−7 /mm6

ld 0.140mm Ctor
2 −0.09587 /mm2

L 21.0mm Dtor
2 0.1411 /mm2

B2 400.3mT/mm2 ∆νz
∆U0

−0.341Hz /µV

Dz
at 6.61mm ∆νz

∆T at
id

−501.885Hz / mUnit

inhomogeneity is B2 = 400.3mT/mm2. The precision trap is placed about 65mm away
from the center of the ferromagnetic ring resulting in a magnetic inhomogeneity below
B2 ≤ 1µT /mm2. Yet, the change in the magnetic field B0 is on the order of 3 · 10−4 T,
which has to be included in the discussion of the magnetic field of the superconducting
magnet.

Together with the requirements discussed above it was possible to construct a toroidal
hybrid trap enabling the spin-state analysis of a single proton. Geometric, magnetic, and
electrical parameters are given in tab. 3.1 and can be compared with figs. 2.3, 3.1b, and
3.3. For a voltage U0 = −1V applied to the ring an axial frequency of a single proton of
682 kHz in the analysis trap is received with a spin-flip jump of 251mHz. The dependency
of the axial frequency on the applied ring voltage is given by ∆νz/∆U0 = −0.341Hz/µV.
Since the analysis trap is not orthogonal, νz becomes a function of the tuning ratio:
with the calculated Dtor

2 -coefficient of Dtor
2 = 0.1411 /mm2, a milli-unit change in the

tuning ratio shifts νz by 501.885Hz, in other words ∆νz/∆T = −501.885Hz/mUnit.
This is no longer a negligible effect and has to be dealt with when tuning the trap
with the trapped proton inside. The detection of the axial mode is performed in the
01000-coupling yielding an effective electrode distance of Dz

at = 6.61mm calculated with
SIMION.
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4 Experimental Setup and Commissioning

Attention is now turned to the features and commissioning of the experimental setup. As
explained before, the g-factor of the proton is extracted from the precise determination
of two variables, the free cyclotron frequency νc and the spin-precession frequency νL.
Starting point for both measurements is a single, isolated proton stored in the Penning
trap. To accomplish a high-precision measurement, long storage times are needed for
which a good vacuum is mandatory. To minimize the background pressure, the double-
trap tower is situated in a sealed, cryogenic ultra-high vacuum (UHV) trap chamber.
Working at cryogenic temperatures provides practically infinitely long storage times and
leads to an increase in the quality factor Q as well as a low noise level of the electronic
detection units. In addition, the sealed UHV trap chamber requires an in-trap creation of
protons, which is realized by implementing an electron beam ion source (EBIS). Finally,
the magnetic field required to conduct the measurement is provided by a superconducting
magnet in whose horizontal bore the experiment takes place. Thus, the mechanical setup
has to be designed in such a way as to guarantee that the precision trap is located at
the center of the magnetic field of the superconducting magnet. Furthermore, is has to
meet the challenges arising from working in a horizontal bore at cryogenic temperatures
and in vacuum.

Within this chapter, components needed to perform the proposed measurement are
presented together with commissioning tests to check their technical reliability. First,
the mechanical construction is tackled taking into account the constraints arising from
the superconducting magnet. Second, the implementation of the trap tower is discussed:
assembly, properties required for trapping and detecting particles, and functioning as
an ion guide. Within this section, pressure and temperature of the insulating vacuum
apparatus are presented. Additionally, the performance of the EBIS is examined followed
by the generation and stability of the trapping potentials. Third, the detection units
for electronically detecting the axial and cyclotron motion of the trapped particle are
presented. They are comprised of a resonance circuit and an amplifier close to the trap
as well as an amplifier at room temperature. It is followed by the section about cabling
and electronic boards of the entire setup. Finally, a suitable method for inducing spin-
flip transitions is described. As a summary, I will discuss the experimental sequence
for the g-factor measurement to illustrate the usage of the different components of the
experimental setup.

4.1 Mechanical Construction

Figure 4.1 shows a technical drawing of the experimental setup in a 2D-cut view. Since
the superconducting magnet (shaded in the drawing) has a horizontal bore, the cryo-
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Figure 4.1: The experimental setup with double cross (left) and superconducting magnet
(right, shaded). The z-axis of the magnet is indicated, which runs through the
geometric center of the bore. Fore details, see text.

mechanical setup was designed such as to suffice this exceptional situation [59]. Optimum
mechanical stability in the horizontal plane had to be realized while minimizing the par-
asitic heat load and bearing in mind thermal contraction effects. To this end, materials
with a heat conductivity according to requirements (high or low heat transmission) and
the proper elasticity have to be employed. Moreover, the used materials need to ex-
hibit a low magnetic susceptibility not to interfere with the field of the superconducting
magnet.

To realize the cryogenic vacuum within the trap chamber, three different temperature
stages (liquid helium – 4K, intermediate stage – 40K to 80K, and room temperature
– 300K) and two pressure stages (UHV and isolation vacuum) are required. The out-
ermost “layer” is the bore with a length of 860mm and a diameter of 88mm which
constitutes the isolation vacuum together with the double-cross construction made out
of non-magnetic, 316LN stainless steel (black in the drawing). Inside of this room tem-
perature environment an isolation vacuum pressure of a few 10−8 mbar is reached. The
cryogenic environment is established by a low-vibrational Gifford MacMahon pulse tube
cooler pumped by a closed helium circuit (light blue). It has two temperature stages,
where 45K and 4K can be reached in the unloaded case within a few hours. The first
stage (red) with heat shields made out of high-purity aluminum acts as buffer for the
second stage (blue). A G10 tube (cyan) with a high mechanical stiffness and a compar-
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4.2 Field of the Superconducting Magnet

atively low thermal conductivity is mounted inside the double cross on stainless steel
holders (dark green) to mechanically anchor the horizontally arranged heat shields of
the first stage. It has been thermally cycled many times and does not exhibit any sign
of mechanical abrasion or wear. Inside of it runs a high-purity copper rod connecting
the UHV trap chamber (cf. fig. 4.3) with the second stage via a coupling flange (located
inside the claw fastener, cipher 1) thus supplying the UHV trap chamber with liquid-
helium temperature. The second and last fixing point for the UHV trap chamber is a
spacer made out of polyetheretherketone (PEEK, dark green), which is fastened to the
surrounding heat shield via Kevlar thread. The pivot for accessing the 4K region is the
aluminum claw fastener at the one end of the G10 tube (left of cipher 1) holding the
heat shield and being thermally connected to the first stage by three high-purity copper
rods running above the G10 tube.

4.2 Field of the Superconducting Magnet

One of the central prerequisites to realize a high-precision measurement is a very stable
magnetic field known with a very low uncertainty. The magnetic field of a supercon-
ducting magnet provides the required magnitude and stability. The choice of the specific
magnitude of the field is subject to different aspects: On the one hand, the accuracy
of the measurement increases with increasing B0 since relative fluctuations in ν+ are
lower. On the other hand, for a fast measurement and hence a small resistive cooling
time constant τ it is convenient to have a small magnetic field since τ ∝ 1/Rp and
Rp ∝ 1/ν+(B0), where Rp is the parallel resistance in resonance of the detection circuit.
Additionally, the signal-to-noise ratio depends on the magnetic field as S/N ∝ 1/

√
B0

privileging a low magnetic field.

(a) Field distribution after shimming (b) Magnetic field derived from shimming

Figure 4.2: (a) Shimming data taken with the NMR probe. The value for the proton Larmor
frequency aimed at was 80.89MHz. (b) The magnetic field close to the center
of the superconducting magnet emerged from the left by averaging with a bin
size of 0.5mm. The data have been fitted with a linear regression (red line).
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After due consideration the magnetic field has been set to B0 = 1.899 831T which is a
suitable value for a first realization of the envisaged g-factor measurement. Furthermore,
it was attempted to create a homogeneous region at the center of the bore of 0.1 ppm. To
this end, the superconducting magnet has been shimmed to a proton Larmor frequency
of 80.89MHz using a NMR probe. The field distribution after shimming is shown in
fig. 4.2a where the frequency of the NMR probe is plotted as a function of the position
along the z-axis of the magnet, cf. fig. 4.1. There, the geometric center of the magnet
coincides with z = 0. It was possible to achieve a peak-to-peak signal with the measuring
device of 10Hz which corresponds to homogeneity of 0.12 ppm within a cylindrical region
of 7mm diameter in the radial plane and 10mm length along the z-axis. The data have
been averaged with a bin size of 0.5mm yielding the plot of the magnetic field. The data
are plotted in such a way that the y-axis is scaled to the value of the magnetic field at
z = 0 of B0 = 1.899 831T as seen from fig. 4.2b. The stability in time can be derived
from first measurements performed with the experimental setup as seen from tab. 5.1
taking into account the shift arising from the ferromagnetic material of ≈ 3 · 10−4 T,
cf. section 3.3. Correcting the measured value of B0 = 1.899 543T (July 2008) and
comparing it with the shimming data (December 2005) results in a stability in time
of the magnetic field of (6.0 ± 0.5) · 10−7 /day. A further discussion is performed in
section 5.5.2.

4.3 Trap Tower

A 3D-cut view of the UHV trap chamber and its contents is shown in fig. 4.3. The UHV
trap chamber (blue) is made out of oxygen-free, high-conductivity (OFHC) copper, which
has a high heat conductivity and is non-magnetic. The copper is gold-plated to prevent
oxidation with a barrier layer of silver to hinder the gold from diffusing into the copper.
At the upper end (left in the drawing), a mounting flange (UMF) with feedthroughs
for cabling closes the UHV trap chamber using indium wire as a vacuum seal (cipher 3
in fig. 4.1). At the lower end, the UHV trap chamber can be pumped through a small
tube before cooling it down. Inside the UHV trap chamber, the UMF holds the trap
tower (different shades of green) consisting of the EBIS (green), the two Penning traps
with the transport section (light green) isolated by sapphire rings (dark green), and the
cyclotron detection unit (orange) comprising the resonator and the 4K amplifier.
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Figure 4.3: 3D-cut view of the UHV trap chamber (blue) with mounting flange on the lower
end and a hole used for pumping on the upper end. The trap tower is mounted
onto the mounting flange and is comprised of the electron beam ion source
(green), the double Penning trap (light green) isolated by sapphire rings (dark
green), and the cyclotron detection unit (orange). The 4K filter board (orange)
is also visible on the other side of the mounting flange.
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The gold-plated electrodes and sapphire components are cleansed in an ultra-sonic
bath with isopropanol before putting the trap tower together which is conducted in a
clean room to minimize the risk of a short circuit due to contamination. The ohmic
resistance between neighboring components and ground, respectively, are measured to
be larger than 200GΩ. The assembled electrode stack is thermally cycled between 300K
and 20K repeatedly while controlling the resistances showing no discrepancy from former
results nor problems with the mechanical fitting accuracy. The parasitic capacitances
of both traps required for the exact dimensioning of the detection coils are measured
using a coil wound out of 800µm thick copper wire with a free resonance frequency
of ν = (1310 ± 3) kHz, an inductance of L = (2.22 ± 0.02)mH, and a self capacitance
of CL = (6.63 ± 0.04) pF. The coil comparable in size to the axial detection coil is set
up within a copper resonator and capacitively coupled to the respective trap while all
other electrodes are grounded. The precision trap exhibits a parasitic capacitance of
Cz

pt = (13.0 ± 0.5) pF, whereas the analysis trap has Cz
at = (17.0 ± 0.5) pF for the axial

detection with 01000-coupling. In the case of the cyclotron detection, the precision trap
features C+

pt = (9.37 ± 0.5) pF. The relatively large error in the parasitic capacitances
arises from not being able to identically reproduce the experimental setup, e. g. exactly
reproducible solder joints or the like.

Figure 4.4: Pressure in the UHV trap chamber developing during the bake-out procedure
at room temperature. The different colored data denote different measuring
sequences.

Subsequently, the assembled trap tower is put in the UHV trap chamber and closed
on one side with the indium sealed UMF and brass screws. On the other side, the
soldered pinch-off tube (cf. fig. 4.3) is set up for pumping. At room temperature, the
UHV trap chamber is pumped for several days and baked out from the ninth day on.
The pressure is measured on the other side of the pinch-off tube allowing to estimate the
pressure within the UHV trap chamber. The development of the pressure is as expected,
part of the pressure curve is shown in fig. 4.4 where the start point of the baking is
clearly visible on the ninth day because of an increase in pressure by about an order of
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4.3 Trap Tower

(a) Pressure inside the insulating vacuum appara-
tus

(b) Temperature inside the insulating vacuum ap-
paratus

Figure 4.5: The pressure development inside the bore vacuum at room temperature is shown
on the left and the temperature development of the two cooling stages inside
the bore vacuum on the right.

magnitude. After two weeks of pumping, the bake-out procedure is stopped followed by
a drop in the pressure. An asymptotic pressure value of 2.1 · 10−8 mbar is reached at
room temperature. After the pinch-off, the pressure slightly rose to 2.3 · 10−8 mbar and
stayed constant, ensuring a leak-proof cut (not shown in the figure).

Afterwards, the closed UHV trap chamber is fixed to the coupling flange of the copper
rod at the position of the claw fastener, cipher 1 in fig. 4.1, and the heat shields are
mounted. After closing the insulating vacuum apparatus, it is prepared for pumping and
cooling down. At room temperature, it is possible to reach a pressure of 1.8 · 10−7 mbar
as seen in fig. 4.5a. The entire experimental setup is cooled down and reaches a stable
value of a few Kelvin in less than a day, see fig. 4.5b. A limiting value of (3.5 ± 0.1)K
is reached at the UHV trap chamber, ≈ 80K at the first stage. The pressure of the
isolation vacuum drops to 2.4 · 10−8 mbar due to thermal freeze-out of residual gases.
The pressure within the UHV trap chamber is expected to be better than 10−16 mbar,
first measurements hereto will be presented in section 5.4.1.

Furthermore, the high-precision measurement requires a HF-proof apparatus. Several
measurements have shown that it is absolutely necessary to ground all unused or tem-
porarily unneeded connections since they function as HF antennas and collect TV, radio,
and mobile phone signals at different frequencies throughout a spectrum from 200 kHz
up to 2GHz. Additionally, the to date unfiltered HV cables have to be equipped with
appropriate filters in order not to disrupt the trapping potentials causing unwanted
fluctuations in the particles’ frequencies.

4.3.1 Electron Beam Ion Source

The EBIS consists of the electron gun and the target fixed to a holding plate (green in
fig. 4.3). The electron gun is made up of a field emission point (FEP) fixed to a holding
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plate and an acceleration electrode. The electrodes are made out of gold-plated OFHC
copper, the electron gun is isolated with macor, since it possesses a higher dielectric
strength than sapphire. Whenever an electric potential U0 is applied between the holding
plate and the acceleration electrode, electrons are emitted from the field emission point
with an emission current ∝ E2 · e−1/E . The electric field strength E depends on the
radius of curvature r of the surface at the tip and the length l of the field emission point:

E ∝ l

r
U0 . (4.1)

Thus, a small diameter ensures high currents at low voltages. The emitted electron beam
travels through the trap tower following the magnetic field lines. Subsequently it hits
the target ejecting atoms and molecules. The target is made out of black polyethylene
which maintains its electric conductivity down to cryogenic temperatures, hence avoiding
a modification of the trap potentials via electric charging. Furthermore, hydrogen atoms
are bound only with a few eV enhancing the trapping rate for protons. The desorbed
neutral particles with typical energies of some meV are ionized by collisions with the
electron beam. The ones being located at the position of the trapping potential after
ionization are consequently trapped in the potential created by the electrodes of the
precision trap.

Figure 4.6: Picture of the field emission point with a measure of 2µm.

A picture of the FEP with a measure of 2µm is shown in fig. 4.6. It was taken with
a scanning tunneling microscope at the Max-Planck-Institute for Polymer Research.
The FEP is made out of tungsten wire with a diameter of 400µm, the tip itself has
a radius of curvature of 25 nm. Prior to implementing the EBIS into the final setup
it is tested at room temperature to ensure its functionality in the high magnetic field
of the superconducting magnet. Electron gun and target are fixed to the UMF and
mounted into the insulating vacuum apparatus at the same position as later in the
actual experiment. After five days of pumping and baking out at room temperature, a
limiting pressure of 6 · 10−8 mbar is reached in the insulating vacuum apparatus.
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4.3 Trap Tower

Subsequently, while the extraction voltage at the acceleration electrode is varied, the
current flow is measured at the FEP, acceleration electrode, and target. During the
measurement, the current at the acceleration electrode was negligible, thus fig. 4.7a solely
shows the current at the FEP (black squares) and the target (red dots). Starting from an
extraction voltage of 0.26 kV, electrons are emitted from the FEP but do not yet reach
the target, which can be explained by the special geometry of the setup: the grounded
trap holder is located between electron gun and remaining electrodes decelerating the
emitted electrons. As soon as their energy is sufficient to overcome this potential barrier
(in this measurement at 0.34 kV), the electrons hit the target and a current is measured.
The error bars indicate the uncertainty in the read-out of the multimeter since there
are large fluctuations in the electron current coming from the FEP. At 0.4 kV the FEP
delivers already a few hundred fA in a stable way for a few minutes, which is enough for
our purpose. During the measurement, a low negative voltage of −40V is applied to the
FEP resulting in an electron energy of 40 eV in the trapping volume. At this electron
energy, the cross section for ionizing hydrogen atoms or molecules is maximum. Since
the ionization probability has a maximum at about threefold of the ionization energy
ϕH = 13.6 eV, the kinetic energy of the electrons coming from the FEP it set to ≈ −40V.
Finally, the FEP is ready to be implemented in the trap tower and put into operation
in a high magnetic field at cryogenic temperatures.

(a) Current-voltage characteristics of field emis-
sion point

(b) Electron current trapped by trap electrodes

Figure 4.7: (a) Current-voltage curve of field emission of the FEP implemented inside the
bore vacuum in the magnetic field at room temperature. The high voltage Uae

is applied to the acceleration electrode. The black squares denote the current
measured at the FEP, the red circles that measured at the target at the other
side of the trap tower. (b) Electron current as a function of the blocking volt-
age Ublock applied to two different transport electrodes (black squares and red
circles).

As an alternative to the single FEP, an array of field emission points of copper
nanowires has been investigated where the tips are grown as solid cylindrical sticks
with a diameter at the top of 150 nm [60]. The great advantages are the high density of
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emitters N = 107/cm2 and a high geometrical field enhancement factor β = l/r = 150
promising a high reliability since it yields high currents at comparatively low voltages.
However, the tests performed at cryogenic temperatures in the bore of the supercon-
ducting magnet did not yield results beating the ones obtained with the FEP.

4.3.2 Trapping Potentials

The fully cabled trap tower is mounted to the coupling flange to test cabling and func-
tionality of the electrodes as trapping devices. Within the insulating vacuum apparatus,
a pressure of 5.6 · 10−8 mbar is reached at a temperature of roughly 7K at the position
of the trap tower. By applying a positive high voltage to the acceleration electrode and
a small negative voltage to the holding plate, electrons are emitted from the FEP and
follow the magnetic field lines to hit the target on the other end of the trap tower. Subse-
quently, a negative voltage is applied to one of the electrodes to hinder the electron beam
from hitting the target. The electron current is measured at the target as a function
of the blocking voltage as shown in fig. 4.7b. It can be seen that the voltage needed to
stop the electron beam lies above the kinetic energy of the electrons of 28.3 eV since the
electrodes have at least a diameter of 3.6mm giving rise to a potential screening effect.
The blocking voltage is measured for all electrodes, the data of two of them is shown
exemplarily. The black squares indicate a transport electrode of nearly 8mm length
with an inner diameter of 7mm. The red circles represent another transport electrode
with a length of only 3.5mm and an inner diameter of 7mm as well. Since the length
along the path of the electron beam is smaller, the effective potential at the center of
the trap is is also smaller, thus requiring a higher blocking voltage to stop the beam.
As the case may be, compare with the potential simulations performed for the precision
and analysis trap, figs. 2.5a and 3.5a, respectively.

All electrodes of the trap tower are supplied by the voltage source UM1-14 version
DCK6-1 from the company Stahl electronics. It supplies 16 channels with voltage values
between 0 and −14V. The channels can be driven in the fast mode and in the ultra-high
precision (UHP) mode. The fast mode comprises 16-bit channels and uses filters with
a time constant of τFM = 11ms, hence, delivering a stability of a few hundred µV. The
UHP mode, on the other hand, uses 32-bit channels and filters with a time constant
of τUHP = 70ms yielding a two to three orders of magnitude better stability. The fast
mode is used for example for preparing a single particle and is always employed unless
stated otherwise. The UHP mode is required for the measurements on a single particle,
e. g. investigation of the single particle dip.

The properties of the voltage source have been analyzed, inter alia the temperature
stability is of great concern. Measurements performed for this purpose yielded a stability
of 1 ppm/K. In addition, the stability of the voltage in time at a fixed temperature is
investigated1. To this end, the voltage source itself and its supply unit are surrounded
by copper blocks which are kept at 34 ◦ within a few ten mK using an optimized PID
controller, i. e. proportional plus integral plus derivative controller. A single channel

1The detailed investigation of the stability of the voltage source is part of the PhD thesis of H. Kracke.
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Figure 4.8: Stability in time of the DC voltage source UM1-14 version DCK6-1 taken with
a temperature stabilization of the body of the voltage source. The black (red)
data correspond to a bin size of one (five) minutes.

was kept at −1V for 63 hours taking data points every twelve seconds employing the
reference multimeter 8508A from the company Fluke with an 8.5 digit resolution. These
data were used to derive a histogram with a bin size of one minute and five minutes,
plotted in black and red in fig. 4.8, respectively. The mean value of the black data set
lies at (2.15 ± 0.75) · 10−7 V, that of the red data set at (3.85 ± 0.85) · 10−7 V. Since
the typical time scale of the proposed measurements is on the order of minutes, these
fluctuations are employed to derive a limiting accuracy. To decide whether it is sufficient
for the envisaged high-precision measurements, the corresponding frequency shift in the
axial frequency is calculated. As an example, a deviation of 300 nV corresponds to a
shift in the axial frequency of δz = 100mHz, which relates to an uncertainty in the
determination of νz of 1 · 10−7 for the black data set. This is about a factor of two
smaller than the expected frequency shift of a spin-flip transition, hence it can still be
discriminated.

The fluctuations in the voltage are also caused by the temperature shifts of the cop-
per block and ambiance. Figure 4.9 shows the temperature of the copper housing as
well as that of the ambient air while the above data were taken. It shows very nicely
how the absolute value of the controlled temperature drifts with that of the ambiance.
Therefore, a more sophisticated temperature stabilization including the ambient air of
the laboratory it is mandatory upon reaching down to uncertainties of 10−9.

4.4 Proton Detection

The non-destructive frequency measurement via detection of image currents induced in
the trap electrodes as outlined in sections 2.3.1 and 2.3.2 is in principle sensitive to a
single ion. At room temperature T = 300K with a characteristic trap dimension of
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Figure 4.9: Temperature development during the measurement of the voltage stability. On
the left, the development of the ambient laboratory air is plotted, on the right,
the corresponding one of the copper housing of the voltage source.

D ≈ 1 cm, the induced current is on the order of a few fA:

〈I〉 =
1√
2

q

D
2πνz · z ≈ 5 fA (4.2)

for the axial motion with νz ≈ 680 kHz. However, upon measuring the induced signal
with high precision, not only the signal strength but also the noise background is crucial.
Therefore, it is inevitable to tackle the signal-to-noise ratio S/N since a high S/N permits
a fast measurement process which increases accuracy and shortens measurement time:

S

N
=

Z · I√
4kT · Z · ∆ν

=
QωL · I√

4kT ·QωL · ∆ν , (4.3)

where Z is the impedance of the detection unit, ∆ν the bandwidth, and k the Boltzmann
constant. It is obvious from eq. (4.3) that a reduction in temperature reduces thermal
noise and thus facilitates the measurement. In addition, working with a narrow-band
resonance circuit with a large parallel resistance in resonance Rp = Qω L = Q/(ω C)
including a high quality factor Q enhances the sensitivity. For this purpose, a highly sen-
sitive, low-noise detection unit is realized by a system containing a helical resonator with
inductance L, capacitance C, and resistance R as well as a field effect transistor (FET)
amplifier [61]. A schematic drawing for the detection unit of the analysis trap is shown
in fig. 4.10. A large inductance L increases the quality factor Q whereas it is favorable
to minimize the capacitance C since it enters as ω = 1/

√
LC. Parasitic capacitances are

kept small by placing the detection units as close as possible to the trap. Furthermore,
a high parallel resistance in resonance Rp diminishes the characteristic time scale for a
measurement given by the resistive cooling time constant τ , eq. (2.26), thus leading to a
fast measurement process. Working at cryogenic temperatures leads to a low electronic
noise, i. e. Johnson noise, which further increases the signal-to-noise ratio (SNR). In this
experimental setup, two detection units enable detecting two frequencies directly, the
cyclotron motion ν+ ≈ 29MHz and the axial motion νz ≈ 680 kHz. The third frequency
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LR

C
AMP FFT

Figure 4.10: Schematic drawing of the electronic detection in the analysis trap with tank cir-
cuit (with inductance L, capacitance C, and resistance R) , inductive coupling,
and amplifier. The signal is led to the FFT analyzer at room temperature.

ν− ≈ 8 kHz is measured indirectly via a coupling to the axial motion. Each detection
unit serves two different purposes: electronic detection and cooling. Moreover, the axial
system not only addresses two frequencies but is also employed for detecting the spin
orientation of the proton. In the following, design criteria are discussed exemplarily for
the axial detection unit.

4.4.1 Tank Circuit for Detecting the Axial Motion

Electronic detection with a resonance circuit is realized by a helical resonator which
consists of a cylindrical coil within a cylindrical housing acting as a HF shield [62]. The
shield has to be designed such as not to negatively impact the coil’s properties. The
coil with inductance L exhibits a self capacitance CL parallel to L and the trap. The
number of windings of the coil is determined by the requirement that the frequency of
the entire tank circuit has to match the trapped particle’s oscillation frequency:

νLC =
1

2π
√

L(CL + Cp)
, (4.4)

where the inductance is given by the helical resonator. The capacitance is made up of
different contributions, one of them being the parasitic capacity of the coil itself, which
has to be minimized to deliver a large parallel resistance in resonance Rp (cf. eq. 2.3.1).
The total parasitic capacitance is given by Cp, comprising the entire trap tower (30 pF,
measured with tank circuit), vacuum feedthroughs (2 pF per feedthrough, measured with
tank circuit), cables (5 pF, estimated), other components of the detection unit (≈ 15 pF,
partly measured) and amounting to Cp ≈ 55 pF for the axial detection circuit. Please
keep in mind, that one detection system is used which is connected to both traps. For
an ideal dimensioning, the design follows Macalpine’s λ/4-resonator which provides a
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rule of thumb for an optimal quality factor Q:

Q = 50D
√
ν , (4.5)

with resonance frequency ν of the free resonator and inner diameter D of the housing
given in inch. The mechanics of the experimental setup limit the inner diameter to
D = 51mm with a wall thickness of 0.5mm, with which the entire geometry of the
helical resonator is fixed via the design instructions: Length of the housing L = 1.325·D,
diameter of the coil body d = 0.55 ·D, and length of the coil body l = 1.5 ·d. The quality
factor Q is influenced by different loss mechanisms which reduce the total energy stored
in the resonator. Losses appear in all parts of the helical resonator and are usually split
up as follows [63]: First, losses in the coil wire described by the ansatz Q = ωL/RL where
the so-called skin and proximity effects have to be taken into account [64]. To reduce
the loss resistance RL, resonator and shield are machined out of type II superconducting
NbTi which permits placing the detector in the high magnetic field near the trap, thus
reducing parasitic capacitances and further increasing the SNR, cf. section 2.3. NbTi
has a critical temperature of 9.5K and is thus suitable for the cryogenic surroundings
at 4K. Second, the ohmic resistance of the resonator RR which arises from currents
induced in the resonator leading to power dissipation. Last, those of dielectric sort RD,
for example in the wire insulation. One measure towards a reduction of dielectric losses
is to machine the coil body out of polytetrafluorethylene (PTFE, also known as teflon)
and to use as little material as possible.

The usage of superconducting material does not completely eliminate the ohmic losses
in both, coil and resonator, since a finite residual resistivity remains. Two main causes
give reasons therefore: On the one hand, in an external magnetic field above critical
strength Hc1, flux enters in type II superconductors via quantized flux lines or vortices,
hence producing a mixed state which leads to a collapse of superconductivity above a
critical value Hc2. Due to the external magnetic field, the vortices begin to move in
the mixed state causing the so-called flux-flow resistance, a macroscopically measurable
resistivity [65]. On the other hand, the superconductor responses to an AC field which
can be understood in the two-fluid model [66]. Within the superconductor, Cooper pairs
constitute the superconducting component which carries the AC current. The normal
component of unpaired electrons created by thermal breakup of Cooper pairs also carries
the AC current resulting in a surface resistance. At low temperatures, however, this is
dominated by a temperature-independent residual resistance which has merely been
measured in the GHz range [67, 68]. Since it depends on the surface purity it can be
reduced by preferably working with clean surfaces. These effects have to be considered
when optimizing the design of the superconducting tank circuit in order to reach a
maximum quality factor Q. In the case of the axial coil, this has been treated in [69].

The superconducting coil consists of formvar insulated NbTi wire with a core diameter
of 50.8µm, nz = 400 windings are wound in a single layer around a PTFE body with a
coil diameter of dz = 31mm and a length of lz = 37.2mm. It exhibits an inductance of
Lz = 1.45mH and a self capacitance of Cz

L = 4pF. Coupling to the amplifier is realized
by a tap point. Great care was taken to assemble the helical resonator as seen in fig. 4.11.
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NbTi inductor PTFE core

NbTi housing

copper plate

traptap point

D d

l
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Figure 4.11: Drawing of the helical resonator. The NbTi wire (green) is coupled to copper
wire (red) for further cabling. The copper plate (red) fixing the PTFE core to
the NbTi shield is employed for sufficient thermalization.

The NbTi wire was coupled to thick copper wire (red) for further cabling. The copper
plate (red) within the PTFE core was fixed with copper screws (yellow) to the NbTi
housing to ensure good thermal contact.

The second component of the detection system is the cryogenic amplifier consisting of a
source circuit with a source follower for impedance matching2. The amplifier is made up
out of a field effect transistor NE25139 with a voltage noise of ǫzn = (1.2− 1.5) nV/

√
Hz,

a current noise of ǫzcn = 5 fA/
√

Hz at νLC
z = 680 kHz, and delivers a gain of 4. The

axial detection unit is located on the other side of the UMF beyond the 4K filter board
(cf. fig. 4.3). As such the parasitic capacitances arising from cabling are small, and the
distortion of the magnetic field lines does not influence the magnetic field at the position
of the traps. With the detection unit connected to the trap and completely wired, a
quality factor of Qz = 5300 ± 50 is reached at an axial frequency of νLC

z = 688.150 kHz
resulting in a parallel resistance in resonance of Rz

p = 33MΩ and a resistive cooling time
constant of

τz =
m

q2
(Dz

pt)
2

Rz
p

= 106ms (4.6)

with Dz
pt = 7.37mm from tab. 2.1 and using eq. (2.26). Finally, the axial detection unit

is implemented in the isolating vacuum apparatus and is ready to be employed.

4.4.2 Tank Circuit for Detecting the Cyclotron Motion

The cyclotron frequency ν+ has to be determined with the smallest error, since it con-
tributes the most to the free cyclotron frequency νc. If applicable, consult tab. 5.1 for
experimentally determined values of the three eigenmotions of a single proton in the
precision trap. To enhance measuring sensitivity the cyclotron detection unit is placed

2Designing the cryogenic amplifiers is part of the PhD thesis of S. Ulmer.
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inside the UHV trap chamber to minimize parasitic capacitances as seen in fig. 4.1 (ci-
pher 4) and fig. 4.3 (orange). The geometric constraints, however, restrict the achievable
inductance and hence limit the quality factor Q. Additionally, the HF losses in NbTi in
that frequency range are so considerable, that the helical resonator is machined out of
OFHC copper. Moreover, copper does not disturb the magnetic field of the supercon-
ducting magnet.

The helical resonator has an inner diameter of D+ = 42mm resulting from the me-
chanical setup of the experiment. Hence, the coil with 13.1 windings has a length of
l+ = 35mm and a diameter of d+ = 23mm. It is wound on a PTFE core using copper
wire with a diameter of 1mm. The coil with L+ = 1.65µH and C+

L = 2.5 pF exhibits
a free resonance frequency of ν = 79MHz and a quality factor at room temperature of
Q+ = 800 ± 10 [59]. At cryogenic temperature with the entire setup connected as seen
from fig. 4.12, a quality factor of Q+ = 950 ± 10 at νLC

+ = (28 944 749 ± 50)Hz with a
width of ∆νLC

+ = 30kHz is achieved resulting in R+
p = 2.85MΩ. In first experiments

with a proton cloud, a resistive cooling time constant of τ+ = 50 s to 60 s is measured.
The second component is the cryogenic amplifier likewise located in the UHV trap cham-
ber and included in the copper housing. The amplifier comprises a field effect transistor
NE25139 as the main component, which exhibits a voltage noise of ǫ+n = 0.7 nV/

√
Hz

and a current noise of ǫ+cn = 5 fA/
√

Hz. Hence, a gain of 5 is reached with a SNR of
about 50 for typical particle energies of E+ ≈ 1 eV. Furthermore, a varactor diode MA-
46H-076 with a tunability of a few ten pF is implemented in the detection unit to be
able to exactly tune the frequency of the resonance circuit to that of the particle. With
the coupling chosen in the setup this correspond to a frequency tuning of ±500 kHz. The
entire detection unit exhibits a parasitic capacity of 19 pF depending on the tuning of
the varactor diode. At room temperature, a commercial, coaxial low-noise amplifier of
the type ZFL-500LN from the company mini circuits is used before leading the signal
to the FFT analyzer.

Figure 4.12: Completely assembled trap tower with the cyclotron resonator on the right.
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4.5 Cabling and Electronic Boards

All electrodes within the UHV trap chamber as well as the detection systems have to
be connected by cables to the electric devices at 300K. To this end, the connection
has to meet different requirements reaching in a high magnetic field from cryogenic to
room temperature through different pressure zones. As an example, the DC line of the
transport electrode T5 is shown in fig. 4.13. The electrode is located at the left, the
electric device at the right side of the drawing. The connection starts in the UHV trap
chamber which is located in the high magnetic field region and constitutes an ultra-
high vacuum at a temperature of about 4K. Inside, gold-plated, high-purity copper wire
with a diameter below 1mm is used. Alternatively, PTFE-insulated copper wire is used
whenever the risk of an electric contact is given. The pins attached to the electrode itself
are soldered with Sn90Ag10 solder prior to gold-plating in order not to contaminate the
galvanic baths and to avoid thermal heating after completion. For all other soldering
points conventional solder was used.

FDC

T5

17 17

RC

DC5

RC RC

DC4
DCK6-1

trap chamber 4K region 77K region 300K region

Figure 4.13: Exemplary connection of an electrode for applying a DC potential. For more
details, see text.

Subsequently, the wire is attached to the feedthrough in the UMF. The UMF has
space for 31 feedthroughs with a diameter of 3.91mm and a dielectric strength of 1 kV
as seen in fig. 4.14. Furthermore, it houses two feedthroughs with a diameter of 6.27mm
each and a dielectric strength of 2 kV. All feedthroughs with wire and mantel machined
from copper were soft soldered into the UMF since there was not enough room for
welding. In the example, the DC line is soldered to feedthrough number 17, as specified
by the black cipher 17 in fig. 4.13. In the following, optionally varnish-insulated, 100µm
thick Cu84Ni4Mn12 wire or 200µm thick Cu55Ni44Mn1 wire with a PTFE insulation of
radially 200µm was used for cabling. Both exhibit a low heat conductivity and are non-
magnetic at low temperatures. Furthermore, constantan wire has a dielectric strength
of 40 − 80 kV/mm and is as such suitable for high-voltage (HV) lines. For the HV line
of the acceleration electrode, a semi-rigid, cryogenic coaxial cable made out of stainless
steel (SS-PTFE-SS) was used with an inner diameter of 2.2mm and a nominal dielectric
strength of 3 kV but tested higher.

All DC lines have to be filtered at the three temperature stages naturally given by
the system in order not to transport perturbing AC signals into the UHV trap chamber.
Thus, the connection goes from the feedthrough to the first RC-filter at 4K, marked
green in fig. 4.13. The cipher 17 above the filter indicates the filter number on the
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Figure 4.14: Mounting flange of the UHV trap chamber. The machined piece is shown on
the left, the gold-plated and with 33 electric feedthroughs equipped mounting
flange with the adjacent workpiece on the right side.

electronic board3. The 4K filter board is located above the UMF, represented in fig. 4.1
by cipher 3. At this temperature stage, filters for the HV lines were abandoned due
to space reasons. Each RC-filter for a DC line has a cut-off voltage of Uc = 50V, a
cut-off frequency of νc = 143Hz, and a response time of τ = 1ms. The electronic board
is manufactured out of PTFE to minimize rf losses and parasitic capacitances with the
ground connection clamped to the adjacent workpiece as seen in fig. 4.15a.

(a) Filter board at 4K (b) Filter board at 77K

Figure 4.15: Filter board at 4K and at 77K with outgoing connections. The soldered con-
nections of the feedthroughs to the 4K filter board are visible.

In the following, the connecting cable leads to the 77K filter board, marked magenta
in fig. 4.13. The cipher above the filter again indicates the filter number on the electronic
board. The filter here has the same properties as the one at 4K. It is positioned at the

3The design of the filter boards is part of the PhD thesis of C. C. Rodegheri.
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end of the claw fastener (cipher 1 in fig. 4.1) and is shown in fig. 4.15b. Subsequently,
the cable leads to the flange of the isolation vacuum at 300K denoted in the drawing by
the black box FDC (f lange for DC lines) through which it reaches the respective filter
board (marked blue). Finally, it is guided to the DC voltage source UM1-14 version
DCK6-1, indicated by the blue cipher. This voltage source with a stability of 1 ppm/K
provides an accurate and stable voltage, one of the essential requirements for precision
measurements.

4.5.1 Excitation and Detection

To conduct the measurement of the proton oscillation frequencies, different excitations
for the individual eigenmotions of the stored proton are required. On the one hand, the
axial motion of the particle has to be excited which is realized by a dipole excitation of
the axial frequency νz. The setup allows for such an excitation in both traps through
the trap electrodes A4 and P5 (for nomenclature of electrodes cf. fig. 4.3). On the other
hand, a dipole excitation in the radial direction is needed for the cyclotron motion ν+.
To this end, a dipole excitation is directed at one half of a split electrode in each trap
(A5 and P4), which is displaced from the center of the trap, is used for this excitation
yielding a dipole component in the radial which accesses the cyclotron motion. The
axial motion is not addressed by this excitation since the frequency lies a few orders of
magnitude away. In principle, the radial quadrupole part could cause unwanted mode
coupling, however, the cyclotron frequency does not comply with a sum frequency of the
sort ν+ = a νz + b ν−, where a, b ∈ N. The magnetron motion is not directly excited but
can be accessed via a quadrupole excitation at the sum frequency νz ± ν− through the
same split electrode.

For the excitation lines, manually built twisted-pair wire out of PTFE-insulated OFHC
copper is employed in the UHV trap chamber, see therefor figs. 4.19 and 4.20. The con-
nection is coupled to the DC line by a CC-filter, which comprises two capacitances in
such a way that it constitutes a 1:3 voltage divider (10 dB). A 1MΩ resistor is imple-
mented in the DC line to keep the signal from traveling to the DC voltage supply, thus
avoiding reflections. Concerning the split electrodes, a 1MΩ resistor is put between the
two halves to ensure that one half can still be used for excitation purposes while the DC
potential is the same for both of them. On the other side of the UMF beyond the UHV
of the trap chamber, cryogenic suitable coaxial cable with a PTFE-insulated, 100µm
thick brass conductor and a shield of braided CuNi is used to lead the excitation signals
to the signal generator at atmospheric pressure and room temperature, disrupted at the
exit of the double cross by yet another feedthrough. Several feedthroughs in the UMF
as well as in the flanges of the isolation vacuum are used to transmit the UMF (“good”)
ground in order to eliminate offset potentials. This ground line is also connected to the
77K stage to ensure thermal contact.

Three electrodes are employed for detection of the particle. In the precision trap,
axial and cyclotron motion of the particle can be detected via trap electrode P2 and
P4, respectively. In the analysis trap, however, only the axial motion can be monitored
via trap electrode A2. There are several reasons as to why the cyclotron motion cannot
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be measured: First, space reasons allow for just one cyclotron detection unit within the
UHV trap chamber. Second, connecting both traps to one detection unit would introduce
unwanted parasitic capacitances. And third, during the actual precision measurement,
the detection of the cyclotron frequency ν+ would destroy coherence with respect to the
measurements performed in the precision trap, since monitoring the cyclotron motion
with a resonance circuit would heat the cyclotron energy E+, thus changing the quantum
number. Moreover, since , solely the precision trap is attached in order not to perturb the
detection signal more than explicitly needed. The detection line of the cyclotron motion
goes from the electrode to the resonance circuit, the 4K cyclotron amplifier (cipher 4 in
fig. 4.1), and further to the feedthrough in the UMF. On the other side, it is guided with
cryogenic coaxial cable in a CuNi tube through the feedthrough in the double cross to
the room temperature amplifier and signal analyzer. As for the axial detection, the two
detection lines are coupled capacitively inside the UHV trap chamber going to a single
feedthrough in the UMF from where the line is guided to the resonance circuit and 4K
axial amplifier. The remaining connection compares to the one described above.

4.5.2 Wiring Diagram

Figures 4.19 and 4.20 show the wiring diagram of the experiment4. A connecting cable is
drawn in black. Different colors indicate different applications at the three temperature
stages. The most important ones are listed in the following: At 4K, the filter board is
depicted by the green color, the axial amplifier by yellow, and the cyclotron amplifier
by orange. At 77K, magenta pictures the respective filter board. The 300K filter board
is denoted by blue, the respective axial amplifier by dark yellow, and the cyclotron
amplifier by red. All electronic devices needed for the experiment are shown in black at
the top of the diagram. In conclusion, a distinct overview over the experimental setup is
established. All devices are connected to a LABVIEW-based control system with which
the experimental routines can be executed5.

4.6 Induction of Spin-Flip Transitions

The Larmor frequency νL is accessed by driving a spin-flip transition and monitoring
it in the axial motion of the particle stored in the trap. To be able to drive spin-flip
transitions, an alternating magnetic field ~B1(t) = B̂1(x̂ cosωrft+ ŷ sinωrft) in the radio-
frequency (rf) range with circular polarization and perpendicular to the ẑ−axis of the
magnetic field B0 has to be introduced at the center of both Penning traps. In the
precision trap it is needed for the actual measurement, in the analysis trap it is needed
to determine the spin state of the particle. A magnetic field amplitude of B̂1 = 1µT
should be reached in order to achieve a reasonable spin-flip rate of about 60 spin-flips per
second (for details see section 2.5.2). In general, there are two possibilities for generating
this field: using one of the trap electrodes or via a coil from outside the trap tower. The

4The figures are moved to the end of this chapter for a better display alternative.
5Programming the control system is part of the PhD thesis of H. Kracke.
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former choice was discarded, since coupling the signal directly to one half of a split
trap electrode or even using it as part of a resonance circuit did not deliver a satisfying
field strength B1. The latter alternative, however, has to deal with the electromagnetic
shielding of the copper electrodes.

D

signal generator

R&S SML01

Cp

F

F

C

5
0
 W

L

z=0

z
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~

Figure 4.16: Resonance circuit for spin-flip excitation. Solely the coil with inductance L
is implemented in the UHV trap chamber, the parallel capacitance Cp of the
resonance circuit is located on the other side of the UHV trap chamber, beyond
the UMF. The remaining components will be explained in the text.

A resonantly driven LC circuit positioned outside of the trap tower for external ex-
citation is the most suitable configuration. Figure 4.16 shows the equivalent circuit
diagram of the resonance circuit, where the rf signal provided by a Rhode&Schwarz
SML01 signal generator is coupled capacitively via Cc to the resonance circuit and is
terminated with a 50Ohm resistor. Due to spatial constraints, a pancake coil (induc-
tance L, self-capacitance C) with a diameter of D = 20.0mm and a radial distance to
the trap center of d = 14.5mm is used. The coil center coincides with the trap center
at z = 0, cf. fig. 4.17. The used material is a 510µm thick copper wire with a PTFE
insulation of 200µm thickness, resulting in a distance of the wire centers of 910µm.
The coil can be conceived as a concentric configuration of n windings yielding a n-times
magnified current. To avoid unnecessary capacitive coupling, the one end of the coil
lying inwards is connected to ground. The effective magnetic field could be further en-
hanced by a factor of two using a pair of coils in Helmholtz configuration. Furthermore,
it would be less susceptible for spatial misalignment, however, the geometric constraints
forbid it. Besides the coil – the only component of the resonance circuit placed inside
the UHV trap chamber – the excitation unit consists of the parasitic capacitance of the
two feedthroughs in the UMF (F) and a parallel capacitance Cp with a value well above
the parasitic ones as such constituting a well-defined capacitance. An ohmic damping
resistance Rda is introduced to limit the quality factor Q in such a way as to allow for a
detuning of ±500 kHz with a loss of no more than 3dB. The resonance frequency of each
coil and thus the number of windings has to match the Larmor frequency νL in the each
trap. In the precision trap it amounts to νpt

L = 80.89MHz whereas in the analysis trap
a frequency of νat

L ≈ 40MHz is required depending on the exact value of the magnetic

61



4 Experimental Setup and Commissioning

field perturbation arising from the CoFe ring, which is not yet experimentally affirmed.

Since tuning of a resonance circuit is more difficult the higher the frequency, the
following measurements focus on νpt

L . In addition, they are conducted in the analysis
trap since the magnetic inhomogeneity B2 impedes the induction, hence “killing two
birds with one stone”. The power transfer is indeed similar for the two frequencies νpt

L

and νat
L , thus the experimental data can later on be transferred. To determine the number

of required windings, two effects have to be considered which alter the frequency of the
resonance circuit: since the experiment will be conducted at cryogenic temperature, a
frequency shift of ν4K

LC = 400 kHz going from a temperature of 300K down to 4K has to
be factored in. Second, the shielding of the UHV trap chamber shifts the frequency by
an additional ∆νshield = 2MHz:

ν300K
LC = νpt

L + 2MHz + 400 kHz = 83.292MHz . (4.7)

z=0

rcl

ncl network analyzer

d

50 Ω
B1

Figure 4.17: Experimental setup for detecting the magnetic field amplitude B1 at the trap
center. On the left, the coil as part of the resonance circuit is shown to which
an alternating current is applied. A conductor loop picks up the induced signal
at the center of the analysis trap, which is analyzed with a network analyzer.
For explanation of the parameters see text.

Applying an alternating current to the resonance circuit establishes a radial magnetic
field component at the trap center. The fraction reaching the position of the trapped
particle is detected by a conductor loop with radius rcl and surface F = π r2cl, whose
surface vector n̂cl is aligned with that of the coil. The voltage Uind induced in the
conductor loop is given by:

Uind = −
∫

~̇B d~F = −
∫

Ḃ dF cosϕ = −
∫

Ḃ dF , (4.8)
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yielding with the expressions for F and B1 from above:

Uind = − d

dt
(B̂1 sinωt) · π r2cl = −ωB̂1 cosωt · π r2cl , (4.9)

where B1 is the magnetic field generated by the coil. The peak value of the magnetic
field penetrating the conductor loop can be calculated from the induced voltage Uind:

B̂1(ν, Pout) =
Û(Pout)

2π ν · π r2cl
=

√
2 ·
√

10
Pout
10 P0R

2π ν · π r2cl
, (4.10)

where the frequency measured with the conductor loop is equal to the drive frequency
of the coil due to the small line width of the signal generator and is denoted by ν. The
peak value of the induced voltage has to be calculated from the attenuation of the signal
power Pout measured with a network analyzer, for which the general conversion from
dBm to V or A holds. Since all values are measured in units of dBm, the reference value
for the power is P0 = 1mW, and the voltage drop is measured at an ohmic resistance of
R = 50Ohm. Peak and mean values are related via Û =

√
2Ueff . For comparison with

the theoretical value, the magnetic field of the pancake coil is calculated via:

Bin
eff(P, z̃) =

∑

n

µ0 Ieff(P )πr2n
2π(z̃2 + r2n)3/2

, (4.11)

where n is the number of windings and rn is the radius of the nth winding presuming
that the pancake coil is made up of n concentric loops. The magnetic field amplitude is
calculated on the z̃-axis, which is perpendicular to the coil’s surface and goes through
its center (cf. fig. 4.16).

4.6.1 Determination of Coupling Capacitance and Damping Resistance

Different values for the coupling capacitance Cc are used to adjust the frequency of the
coil to the Larmor frequency of the proton νL and to establish maximum power transfer.
In addition, it reduces the capacitances from components beyond, yet, their parasitic
influence lies below 0.5% and is discarded in the following. The damping of the quality
factor Q due to the coupling capacitance is neglected, since the damping resistance will
later on anyhow limit the quality factor. A pancake coil as seen in fig. 4.16 with n = 7
windings, and inductance of L = 0.5µH, and a self capacitance of C = 5.2 pF exhibits an
undamped frequency of ν = 105.3MHz with a quality factor of Q = 85. It is employed
to measure the power transfer of a 10 dBm input signal on and far-off resonance as a
function of the coupling capacitance Cc. To make out the offset of power transfer, the
hot end of the coil is excited via a shorted connection, hence Cc = 0. This offset value
is indicated by the blue line in the left graph of fig. 4.18 drawn parallel to the x-axis
to be able to compare with the values attained far-off resonance. The magnetic field
amplitude B̂1 induced in a conductor loop with a radius of rcl = 1.5mm is calculated
from the measured attenuation via eq. (4.10). The highest magnetic field amplitude is
reached for a coupling capacitance Cc = 1.5 pF. For greater values of Cc it diminishes

63



4 Experimental Setup and Commissioning

as expected, for smaller values the setup limits the power transfer. The black squares
denote the magnetic field amplitude B̂1 on resonance, the red circles the data far-off
resonance. For a coupling capacitance of Cc = 1.5 pF a magnetic field amplitude of
B̂1 = 46.5µT is reached which corresponds to an enhancement of 30 dB taking into
account the offset value of 1.5µT. Please note, that the conductor loop is placed directly
in front of the coil leading to the higher values for the magnetic field amplitude than in
the actual experiment, where the signal has to travel a certain distance until it reaches
the position of the particle.

Figure 4.18: Adjustment of the coupling capacitance and the damping resistance of the
resonance circuit. On the left, the enhancement of the magnetic field amplitude
at the position of the conductor loop as a function of the coupling capacitance
Cc is shown. The black squares denote the magnetic field on resonance, the red
circles that far-off resonance. The blue line indicates the offset value. On the
right, the quality factor Q of the resonance circuit as a function of the ohmic
damping resistance Rda is shown. The black squares denote the measured data,
the red circle an exemplarily calculated quality factor Q. The solid line is drawn
to guide the eye.

The ohmic damping resistance is used to limit the quality factor Q in such a way as
to allow for a reasonable detuning of about ±500 kHz while remaining within the 3 dB
width leading to a quality factor of approximately Q ≈ 80. Without such a damping
component, the quality factor would increase by about a factor of 10 when cooling the
system to liquid helium temperature which would complicate the spin-flip excitation.
Different values for the damping resistance Rda were implemented in the resonance
circuit of fig. 4.16 to determine the impact on the quality factor Q. The results are
shown on the right of fig. 4.18 (black squares), the solid line is drawn to guide the eye.
The theoretical quality factor for a damping resistance of Rda = 2.2Ω was calculated to
Q = 92 which is in good agreement with the measured data.
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4.6.2 Shielding and Fine-Tuning of the Resonance Circuit

The copper electrodes constitute a rf shielding, yet the electromagnetic radiation travels
through the gaps between the electrodes, since the sapphire isolation rings do not have a
screening effect. Figure 4.17 shows a 2D-cut view of the analysis trap with the sapphire
rings marked in gray and the isolating gaps shown. Moreover, also the slits of the split
electrodes let the radiation pass. Different measurements have shown that the coil has
to be placed in such a way that the magnetic field can travel through the slits and the
gaps to enhance the field at the position of the trapped particle. The shielding effect
of ≈ 5 dB – which corresponds to a reduction in the magnetic field of about 40% in
comparison to the value calculated with eq. (4.10) – is then partly compensated by the
adapted orientation of the coil with respect to the trap electrodes6.

Table 4.1: Results of the optimization of the resonance circuit for the spin-flip transition

parameter symbol value reason

diameter D 20.0mm geometric constraints

windings n ≈ 6.5 undamped frequency

frequency νLC 83.3MHz from eq. (4.7)

quality factor Q ≈ 80 3 dB attenuation at ±500 kHz

detuning

coupling capacity Cc (0.7 − 1.5) pF maximum of power transfer

ohmic damping resistance Rda (10 − 80)Ω limiting the quality factor

parallel capacity Cp ≈ 2 pF well-defined tuning, negligible

parasitic capacities

One of the tested resonance circuits is used to deduce an appropriate value for the parallel
capacity Cp, see fig. 4.16. With n = 6.25 windings, a damping resistance of Rda = 10Ω, a
coupling capacitance of Cc = 0.8 pF, and a parallel capacitance of Cp = 2.2 pF a quality
factor of Q = 113 is reached at a frequency of 83MHz. Different measurements were
performed to specify the exact dimensions of all components using a conductor loop to
simulate the particle. Thus, with the appropriate components it is possible to tune the
resonance circuit to the Larmor frequency of the proton νL except for a few kHz. A
summary of the results for the different components is given in tab. 4.1 with a short
explanation for each component. A proposed configuration is included in the wiring
diagram, cf. figs. 4.19 and 4.20. With these design instructions at hand, the frequency of
the resonance circuit can be tuned as needed also for the implementation in the analysis
trap. With an input power of 10 dBm, the measured attenuation of Pout = 24dBm
yields a magnetic field amplitude of B̂LC

1 = 1.43µT which is sufficient to drive spin-flip
transitions as calculated in section 2.5.2. a theoretical derivation was undertaken in [58]
and agrees well with the presented results.

6The task of spin-flip excitation is investigated in great detail within the diploma thesis of A. Mooser.
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4.7 Experimental Sequence

To conclude this chapter, I present the experimental sequence needed to determine the
cyclotron and Larmor frequencies from which the g-factor can be extracted. The usage
of all components introduced above will become apparent. In the following chapter,
experimental results up to the determination of the free cyclotron frequency will be
presented and discussed. The addressed measuring procedures will then be treated
thoroughly and will become obvious.

• Loading the trap: After the setup is cooled down, thus having established a
cryogenic UHV in the trap chamber, the EBIS is put into operation and provides
different charged particles. While it is running, the electrodes of the precision trap
are supplied with the voltages needed to trap the different species. To monitor
the content of the trap the potential depth is varied such that the different species
first undergo an axial dipole excitation at a frequency of νLC + δ and, secondly,
are detected non-destructively by the axial detection unit upon coincidence of
resonance frequency of the circuit and axial frequency of the particle νLC ≡ νz by
that generating a mass spectrum.

• Preparing a pure proton cloud: In a next step, the impurity ions are removed
to obtain a pure proton cloud. To this end, the protons are kept in resonance with
the tank circuit at νLC ≡ νz(U) via the corresponding potential depth and are thus
resistively cooled. At the same time, a strong excitation sweep directed at all axial
frequencies below the axial frequency of the stored protons is applied to the end
cap of the precision trap P5 and transfers enough energy to the other particles to
be lost from the trap.

• Isolation of a single proton: The cyclotron motion of the proton cloud with fre-
quency ν+ can now be detected with the respective detection unit. With a slightly
anharmonic trap – e. g. the tuning ratio not perfectly optimized – the frequencies
of the particles becomes energy-dependent (for details see appendix A). Magnetic
field inhomogeneities will amplify this effect. Therefore, a broadband dipole exci-
tation in the radial direction will spread the ion cloud into distinguishable peaks.
It is now possible to remove single particles with a well-directed excitation at a
fixed frequency. Repeating this procedure successively removes all but one proton
from the trap.

• Determination of the free cyclotron frequency νc: The single proton is
cooled to cryogenic temperatures by keeping it in resonance with the axial and
cyclotron detection units simultaneously. The magnetron motion is cooled by
repeatedly applying a quadrupole excitation at the sum frequency νz+ν− and thus
transferring energy between the axial and the magnetron eigenmodes. Once the
particle is in thermal equilibrium with the detection unit, it can be detected as a dip
in the noise spectrum of the axial resonance circuit yielding the particle’s frequency
νz. The cyclotron frequency ν+ is determined by first exciting this motion and
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monitoring the subsequent cooling. While the particle is cooled, the cyclotron
frequency changes and the amplitude of the signal decreases until the particle
disappears in the noise spectrum of the cyclotron resonance circuit. When plotting
the temporal frequency change, this end point corresponds to cyclotron frequency
of the cooled particle in the trap. The magnetron frequency is determined via
a coupling to the axial motion. The three measured variables supply the free
cyclotron frequency νc via the invariance theorem given in eq. (2.13).

• Determination of the Larmor frequency νL: Since the energy eigenstates of
the two spin states are not directly accessible in the precision trap, the proton is
transported adiabatically to the analysis trap where the inhomogeneous magnetic
field B2 couples the magnetic moment to the axial eigenmotion of the particle.
Consequently, a measurement of the axial frequency νz provides the spin state.
With this information at hand, the particle is brought back to the precision trap
where it is again resistively cooled. Subsequently, the Larmor frequency νL is
irradiated to induce a spin-flip transition, and the particle is probed in the analysis
trap yet another time. Fluctuations, however, affect the particle’s motion and
can mock a transition. Therefore, it is indispensable that a spin-flip transition is
performed in the analysis trap to unambiguously determine the spin state and if
so confirm a transition. Since the exact frequency of the particle in the precision
trap νexp

L is unknown, the described sequence is conducted repeatedly for different
excitation frequencies νL±δ to yield the spin-flip transition probability as a function
of the spin precession frequency from which νexp

L is deduced.
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Figure 4.19: Connection diagram with color code for the different applications and temper-
ature stages, left half of the diagram.
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Figure 4.20: Connection diagram with color code for the different applications and temper-
ature stages, right half of the diagram.
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5 Detection of a Single Proton in the

Precision Penning Trap

Up to now, all parts, which are needed to realize the measurement of the magnetic
moment of a free proton, have been presented. The theoretical framework to create,
trap, and detect protons has been reviewed, the hybrid trap required to perform and
measure spin-flip transitions has been introduced, and the double Penning trap has
been characterized. The essential components have been pieced together and various
commissioning measurements assure the technical reliability of the experimental setup.
It is now time to approach the experimental sequence discussed in the preceding chapter.
According to section 4.7, I will present the first experimental data taken with the proton
apparatus. The initial setting for the following measurements is a cryogenic ultra-high
vacuum environment in the trap chamber with the system prepared as discussed in
section 4.3.

5.1 Creation, Storage, and Detection of a Particle Ensemble

The electron beam ion source is put into operation to produce singly charged ions in
the trapping potential of the precision trap. To this end, a five-pole cylindrical Penning
trap is established by applying a voltage of U0 = −14V to the ring electrode P3, a
voltage of Uc = T pt

id · U0 = −12.14V to the correction electrodes P2 and P4, and by
grounding the end caps P1 and P5 (for the tuning ratio cf. tab. 2.1, for nomenclature
of electrodes cf. fig. 4.3). Here, the theoretically calculated, ideal tuning ratio for the
precision trap is denoted by T pt

id . Since all the presented measurements take place in the
precision Penning trap the subscript pt is abandoned in the following. Subsequently, a
high negative voltage of UAE = −1.12 kV is applied to the acceleration electrode AE for
10 s yielding an electron current of about 200 nA. The emitted electrons are provided
with a kinetic energy of 40 eV by applying UFEP = −40V to the field emission point
FEP. After the electron gun is turned off, a mass spectrum in the axial mode is taken
by varying the potential U0 from −14V to −2V in 60 s while keeping the tuning ratio
Tid constant. Whenever the axial frequency of an ensemble of particles reaches that of
the axial detection system νz ≡ νLC

z , they are detected as a peak in the spectrum of the
circuit as their energy is much greater than the temperature of the cryogenic surrounding.
Since the trapping potential U0 ∝ m/q is proportional to the mass-to-charge ratio of the
particles – see eq. (2.7) – the different trapped species can be identified.

Figure 5.1 shows such a mass spectrum of the axial mode taken in the precision
Penning trap where protons (H+) and molecular hydrogen ions (H+

2 ) appear as expected
at U cal

0 = −3.37V and U cal
0 = −6.74V, respectively. Here, the superscript cal refers to
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H+

H2
+

Figure 5.1: Mass spectrum of the axial mode in the precision Penning trap. According to
the mass-to-charge ratio m/q, different species appear as peaks in the spectrum
upon ramping the ring voltage U0. In the spectrum presented, H+- and H+

2 -ions
are detected.

the theoretically calculated values for the trapping potential U0. It is impossible that
12C6+-, 16O8+- or 12C4+-ions are created and stored in the trap, which would appear
at the same position as molecular hydrogen ions (H+

2 or H+
3 ). The third peak would

appear at U cal
0 = −10.11V showing all species with a mass-to-charge ratio of m/q = 3.

The energy of the ionizing electrons is smaller than the electronic binding energies of
the highly charged ions such that the ionization probability for preparing highly charged
ions is negligible. The mass spectrum was taken without supplemental heating in terms
of a dipole excitation in the axial mode.

5.2 Removing Impurity Ions

The particle ensemble shown in fig. 5.1 is subject to further investigation for obtaining
a pure ensemble of protons. To this end, the proton ensemble is brought into resonance
with the detection system, which has its frequency maximum at νLC

z = 688.15 kHz
with a corresponding ring voltage of U0 = −3.35V and a fixed tuning ratio of Tid.
Since the anharmonicity contributions to the trapping potential can never be made zero,
the particles’ frequencies become a function of the eigenenergies, especially the axial
frequency becomes a function of the cyclotron energy ∂νz/∂E+ < 0. Therefore, the
ring voltage is set to U0 = −3.36V yielding a deeper trapping potential, such that
the frequency of the energetic protons moves towards the resonance frequency of the
detection unit while being cooled. Subsequently, a dipole excitation is irradiated through
the end cap P5 by sweeping the excitation frequency from 500 kHz to 1 kHz in 180 s with
a power of 0 dBm. In this way, enough energy is transferred to all trapped species seeing
the excitation in the axial motion such that they overcome the trapping potential and
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leave the trap1. Later on, a mass spectrum is recorded by ramping the ring voltage
U0 from −3.85V to −2.85V within 10 s while irradiating an axial dipole excitation at
690 kHz with a power of −40 dBm. While the particles’ frequency decreases, they first
undergo the excitation which transfers sufficient energy in Ez to heat them such that the
signal rises above the noise level. Second, the particles are detected by the resonance
circuit while being resistively cooled, i. e. the energy in the corresponding motion is
reduced. This happens with each particle at its respective frequency resulting in a peak
in the mass spectrum, which is shown in fig. 5.2. The ensemble of energetic protons is
clearly visible, the peak with a full-width-at-half-maximum (FWHM) of about 30mV
indicating a particle number of roughly 100. Moreover, a mass spectrum (not shown)
was taken by ramping the ring voltage from −14V to −2V to ensure that other species
are no longer present in the trap.

Figure 5.2: A mass spectrum of the axial motion in the precision Penning trap is shown
where solely an ensemble of protons is present after removing impurity ions from
the trap. The peak width of about 30mV indicates a particle number of roughly
100.

The protons emitted from the target and stored in the precision trap are in the first
instance very energetic particles. For further data acquisition and especially for an
increase in measuring accuracy, the protons in the pure ensemble need to be resistively
cooled in all eigenmotions. Figure 5.3 shows a proton ensemble before (red) and after
(blue) resistively cooling of two of the three eigenmodes in the sense explained above.
In this example, the FWHM of the red curve of 150mV indicates more likely a particle
number of 1000, considerably more than in the mass spectrum shown in fig. 5.2 and the
spectra were taken with different initial conditions, thus the differing detection voltage.
Furthermore, a different amplifier at room temperature was employed accounting for the
differing background noise level.

1The power given in the text is the effective power applied to the electronic boxes. Further attenuation
within the apparatus has to be considered additionally.
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After having prepared a pure proton ensemble, the cyclotron motion is excited with
a dipole excitation through the split correction electrode P4 with a span of 10 kHz and
a power of −55 dBm, irradiated within 20 s. Subsequently, the particles are allowed
to resistively cool into thermal equilibrium with the cyclotron resonance circuit with a
cooling time of roughly 60 s. The magnetron motion is cooled via sideband cooling at
a frequency of νz + ν− = 696 kHz with a power of −45 dBm. After having excited the
axial motion, the mass spectrum exhibits a FWHM of only 60mV motivating the use
of cooling prior to conducting other examinations. For further measurements, a notch
filter was integrated in the routine. Since it attenuates only a small frequency range – in
our case a few kHz around the proton frequency of 680 kHz – it is suitable for removing
unwanted species.

Figure 5.3: An ensemble of protons is shown before (red) and after (blue) resistive cooling
of the three eigenmodes. For more details, see text.

5.3 Observation of Individual Protons

With a pure proton ensemble prepared in the trap, it is now feasible to determine their
cyclotron frequency using a dipole excitation through the split correction electrode P4
which excites the energy and increases the cyclotron energy E+. To this end, the trap
depth is lowered by applying U0 = −14V to the ring electrode corresponding to a
cyclotron frequency of ν+ = 28.922MHz. Thus, it raises the margin for optimizing the
experimental routine. In addition, it prolongates the cooling time since the particle peak
is located on one shoulder of the resonance curve of the circuit. Consequently, a frequency
sweep is employed around the cyclotron frequency ν+ with a span of 10 − 20 kHz for
10− 20 s and a power ranging from −55 dBm to −35 dBm to increase E+. It is expected
that a peak appears in the noise spectrum of the cyclotron detection unit which splits
up into various peaks once the particle number has reached a sufficiently small number
of a few tens of particles. During the irradiation each particle experiences the radial
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excitation according to its relative phase. Hence, the particles within the ensemble are
excited with varying efficiency and appear at different frequencies in the spectrum as
seen from fig. 5.4a. The rising slope in the noise spectrum from left to right denotes the
left shoulder of the resonance curve of the detection unit. Following figs. 5.4b and 5.4c,
the peaks move closer together and towards higher frequencies while the particles are
being resistively cooled by the cyclotron resonance circuit. After roughly ten minutes
solely one peak is left which does not undergo further cooling but remains as such
as seen from fig. 5.4d. Please note, that the area integral does not remain constant
during data acquisition due to the cooling process. Usually, no particles are lost during
the cooling of the cyclotron motion. Within the spectra of fig. 5.4 the peaks move
towards higher frequency during cooling which indicates that a magnetic inhomogeneity
is present, i. e. B2 < 0. The relativistic effect leads into the same direction, however, it
is calculated to be much smaller than the measured drift (cf. appendix A).

(a) Proton ensemble directly after dipole excita-
tion, particles are split up into several peaks.

(b) Proton ensemble three minutes after excita-
tion, particles are being cooled.

(c) Three more minutes later, peaks move to-
gether and towards higher frequency.

(d) Proton ensemble reunited and cooled, shot
taken 15 minutes after excitation.

Figure 5.4: Dipole excitation of the cyclotron motion: the proton ensemble is split up into
different peaks which reunite to one peak while experiencing cooling through the
cyclotron detection unit.

In addition, a pure proton ensemble facilitates the search for a particle dip in the noise
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spectrum of the axial detection unit (for a detailed explanation of the detection tech-
nique, turn to section 2.3.2). To detect a particle dip, the energy in all three eigenmodes
has to be minimized. For this purpose, the cyclotron motion of the particle ensemble
is cooled to reduce the cyclotron energy E+. The cooling limit is reached when the
peak disappears in the noise spectrum or the frequency drift ceases. Under the present
experimental conditions, a particle dip in the noise spectrum of the cyclotron detection
unit could not be achieved since the cooling time is about three orders of magnitude
larger than the axial cooling time resulting in a significantly more narrow dip. At the
same time, the ring voltage is set to U0 to also cool the axial motion. The magnetron
motion is cooled via sideband cooling by irradiating the sum frequency νz + ν− into the
trap employing the split correction electrode P4. This produces a quadrupole field in
the (r− z)-plane which is able to couple the two motions. It produces spikes in the axial
detection signal whenever energy is transferred from the magnetron motion (E−) into
the axial motion (Ez), which in turn is cooled by the axial detection unit. Repeating
this several times cools the magnetron motion into thermal equilibrium with the circuit.

To observe the single particle dip in the noise spectrum of the resonance circuit, ring
voltage U0 and tuning ratio T are now tuned until a dip emerges. The signal height of
the particle dip in the noise spectrum increases the better the trap is optimized, which
in turn is used to determine the optimal trap parameters at the maximum height corre-
sponding to a ring voltage of U0 = −3.35455V with a tuning ratio of T = 0.851. These
experimental values are used later on for preparing a single proton. The optimization
routine for the trap will be tackled in the next chapter.

5.4 Isolation of a Single Proton

Systematically removing protons from the trap is achieved by the following experimental
sequence: The proton ensemble is cooled in the three eigenmodes so that the motional
amplitudes of each particle are reduced, and coupling between the eigenmodes is min-
imized. Furthermore, the particle ensemble is less susceptible to perturbations which
cause unwanted particle loss. For the purpose of cooling the axial motion, ring voltage
and tuning ratio are set to the above determined parameters cooling the particle ensem-
ble into thermal equilibrium with the detection unit. After the ensemble is cooled, it is
radially excited with a dipole excitation at the cyclotron frequency ν+ while residing in
a trapping potential applied to the ring electrode of U0 = −10V. Consequently, the en-
semble splits up into different peaks which are detected with the cyclotron circuit. While
several particles can thus be identified, a well-directed, pulsed, strong excitation with
a span of about 10 kHz is aimed at one of the peaks. The motional amplitudes are so
strongly excited that the particles can then leave the trap. It is reasonable to assume that
the excitation hits the so-called heating frequency ν+ + ν− transferring enough energy
into the magnetron motion such that these particles leave the trap. Subsequently, the
trapping potential at the ring electrode is ramped back to U0 to cool all eigenmodes and
detect cyclotron and axial motion of the particle ensemble. The conventional method of
evaporative cooling could also be employed, however, ramping the potential turned out
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to be not as selective as the presented method.
Figure 5.5 shows such a sequence with the detected cyclotron motion on the left and

the detected axial motion on the right side. Cyclotron and axial motion were monitored
consecutively, not at the same time. The first two graphs (a, b) show an ensemble of a
few tens of protons detected as a peak in the cyclotron motion and as a particle dip in
the axial motion, respectively. They are followed by the spectra for three particles (c, d)
and two particles (e, f). The sequence concludes with the spectra for one particle (g, h).
The apparent broadening of the single particle peaks in the cyclotron mode arises from
the fact that the spectrum is recorded while the particle is being cooled. The cyclotron
frequency ν+ is determined as the mean value of several single particle spectra as will
be discussed in section 5.5. In the spectra on the right, the resonance structure of the
detection circuit is shown in whose center the particle dip emerges. Please note, that the
axial spectrum of two particles was taken with a different amplifier at room temperature,
thus the higher signal. The axial frequency νz is determined from several single particle
dip spectra.

5.4.1 Storage Time

It is routinely possible to repeatedly prepare a single proton in the precision Penning
trap within a few hours. The storage time is usually on the order of days but not yet
limited by the ultra-high vacuum, the particle is usually lost by attempts to optimize
the experimental routine. From what has been measured so far, it is possible to give a
first estimate on the pressure in the trap chamber. Following Diederich in “Observing a
single hydrogen-like ion in a Penning trap” [70], an upper limit of p < 10−14 mbar can be
given. Accomplishing a similar measurement with a single proton stored in a Penning
trap would require much longer measuring time since the charge exchange cross section
is much smaller compared to 12C5+. Gabrielse and co-workers reported an even lower
value for the upper limit of 7 · 10−17 mbar, which was determined during measurements
concerning the antiproton mass [71]. Within the scope of this work a more detailed
investigation of storage times was not pursued since in the context of the work presented
here the storage time was never a limitation.
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a

b

c

d

e

f

g

h

Figure 5.5: Successive reduction of the particle number from a proton ensemble of some ten
particles to a single proton. On the left, the detection of the cyclotron motion
as a peak in the noise spectrum is shown, on the right the detection of the axial
motion as a particle dip in the noise spectrum. For further details, see text.
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5.5 Eigenfrequencies of a Single Proton

A single, isolated proton prepared in the precision Penning trap allows for taking data
towards the actual g-factor measurement and collecting statistics. Since the three eigen-
frequencies of the particle in the trap provide us with the free cyclotron frequency νc

needed to extract the g-factor – cf. eq. (1.6) – it is imperative to determine them with a
very low uncertainty. The cyclotron frequency ν+ has to be determined with the highest
precision because it has the largest effect. After cooling of the three eigenmodes and
subsequent excitation of the cyclotron motion, the particle signature appears as a peak
in the noise spectrum of the cyclotron resonator and is cooled into thermal equilibrium
with the circuit according to eq. (2.27). As long as the energy diminishes, the temporal
cyclotron frequency change is recorded to determine the resistive cooling time constant
τ+ and the cyclotron frequency ν+.

Figure 5.6: Temporal cyclotron frequency change while the single particle is cooled into
thermal equilibrium with the resonance circuit. The three curves in red, black,
and green denote three individual measurements carried out with the same single
proton stored in the trap.

Figure 5.6 shows such curves of three consecutive measurements with a single particle
trapped in the precision trap following the outlined routine. Although the starting energy
is different for each measurement, after each excitation and cooling cycle the amplitudes
approximate the same value of roughly 6µVpp before disappearing in the noise spectrum.
The requirement for a reliable data analysis of the same axial frequency is fulfilled within
3Hz. Every data set is fitted with the function ν(t) = A·e−t/τ++ν+, where A corresponds
to the initial amplitude. The value for ν+ results from an extrapolation of time t → ∞
and energy E → 0. From these measurement, the mean value of the extrapolated values
of the cyclotron frequency is determined to ν+ = (28 950 788.7±4.3)Hz, which is chosen
to be the zero on the y-axis of the plot. The resistive cooling time constant follows
from the fits as τ+ = (62.8 ± 4.6) s, which is a reliable value in that sense that the
determined cyclotron frequency lies well within the 3 dB-width of the detection circuit’s
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resonance. The cyclotron frequency is less than 3 kHz away from the resonance frequency
of νLC

+ = 28.9475MHz, which is about 10% of the line width of the circuit resonance of
∆νLC

+ = 30kHz.

The determination of the axial motion is achieved in a different way since the particle
is detected as a dip in the noise spectrum of the detection unit. As described above,
a particle cooled in all eigenmodes into thermal equilibrium with both detection units
is the basis for detecting a particle dip. After the cyclotron motion has been cooled
into thermal equilibrium and while the axial motion of the particle is resistively cooled,
the single particle dip develops. Subsequently, the magnetron motion is cooled until
the noise increase in the axial spectrum has disappeared and it can be assumed to be
in thermal equilibrium with the axial detection unit. A single particle dip in the noise
spectrum of the resonance circuit is recorded as seen in fig. 5.7a and fitted as a first
ansatz with a simple inverted peak function

f(ν) = ULC
0 + 2A/π · w/(4(ν − νz)

2 + ∆ν2
z )

taking ±50 data points around the center to determine the width of the particle dip.
Here, ULC

0 denotes the baseline and A the amplitude. In this particular example,
the center frequency is determined to be νz = (688 149.56 ± 0.04)Hz with a width of
∆νz = 0.99± 0.13. Figure 5.7b shows a zoom with only ±20Hz around the center of the
dip from which can be seen that a data point was taken every 250mHz and that the fit
follows nicely the dip signature. Considering several spectra for data analysis leads to
an axial frequency of νz = (688 149.5 ± 0.1)Hz and a width of ∆νz = (1.0 ± 0.1)Hz.

(a) Single particle dip in the noise spectrum of the
axial detection circuit.

(b) Zoom into the noise spectrum with ±10Hz
around the dip center.

Figure 5.7: Detection of the axial motion of a single proton. (a) A single particle dip is
shown with the respective Lorentzian fit. (b) A zoom with ±10Hz around the
dip center with the respective fit. A data point was taken every 250mHz ensuring
sufficient data points within the particle dip.

To decide whether the recorded spectrum is that of a single particle, the expected
line width of the particle dip has to be considered which is calculated from eq. (2.35)
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to ∆νz = 1.5Hz following eq. (4.6). To receive reliable evidence, different numbers
of particles are prepared in the trap and a particle dip is recorded several times for
each of them. Figure 5.8 shows the result of the respective Lorentzian fits for one,
two, and three particles where the particle number was also determined by the number
of cyclotron peaks as seen from fig. 5.5. The Lorentzian fit is a suitable lead since the
extrapolation to zero particles yields a width of 0. It can be used to decide whether there
is one proton present in the trap and to roughly discriminate between different particle
numbers. Moreover, it is very unlikely that other particles are present in the trap. Singly
charged impurity ions like 12C+ or 16O+, which cannot be detected with the implemented
voltage source, would otherwise disturb the single proton causing frequency shifts due
to Coulomb-Coulomb interaction and confounding a single particle dip measurement.
However, for further data analysis, the Lorentzian fit does not deliver satisfying results
which will be the topic of the following section.

Figure 5.8: Performing a Lorentzian fit for several particle dips with different particle num-
bers results in the above graph, where the width of the particle dip ∆ν is plotted
as a function of the number of particles present in the trap together with a linear
fit.

Please note, that the width of a single particle dip is on the order of (1.0 ± 0.1)Hz,
which is considerably smaller than the calculated width of ∆νz = 1.5Hz. This may be
caused by the fact that the parallel resistance in resonance Rz

p is smaller than previously
determined. The experimentally determined line width can be used to derive a more
reasonable value for the parallel resistance in resonance. According to eq. (2.35), the
resistive cooling time constant τz can be calculated from the measured line width yielding
τ exp
z = 159ms. With an effective electrode distance of Dz

pt = 7.37mm, the parallel
resistance in resonance can hence be computed to Rz

p = 22MΩ,
As the last of the three eigenmodes, the magnetron frequency ν− has to be considered,

which is measured via a coupling to the axial motion at νz + ν− and νz − ν− enabling
the detection as sidebands in the noise spectrum. Using the differential as well as the
summated result leads to a mean value of ν− = (8 679 ± 202)Hz for the magnetron
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motion. The apparently large error arises from the lack of cooling the eigenmotions,
however, the effect on the free cyclotron frequency is negligibly small if the invariance
theorem is employed as will become clear in section 5.5.2.

5.5.1 Investigation of the Single Particle Dip

A more sophisticated method for analyzing the data of the single particle dip is given by
applying the tank circuit model to particles in a Penning trap [72]. It makes use of the
fact that upon detection the particle is in thermal equilibrium with the axial detection
unit. Hence, the impedance is made up not only of the parameters of the detection
system, Cz

L and Rz
p from section 4.4.1, but also of those of the equivalent series circuit

of the particle L1, C1, and R1, cf. eq. (2.34). The single particle inductance is given by
L1 = mp (Dz

pt/q)
2, where mp and q denote mass and charge of the proton, respectively.

The effective electrode distance in axial direction for the precision trap is indicated by
Dz

pt. The required single particle resistance can be computed via R1 = 2πνz L1 /Q1 if Q1

were known. Yet, the resistive cooling time constant of both systems coincides allowing
for putting Q1 = νz /∆ν = 2πτz with τz from eq. (4.6) resulting in

R1 =
νz L1

νz

Z(νz) q
2

(Dz
pt)

2m
= Z(νz) . (5.1)

Thus, the impedance of the detection unit can be used as the resistance of the particle
at the respective axial frequency νz of the particle. Further parameters, which enter the
consideration, are the particle number n yielding Rn = R1/n for more than one particle
as well as the scaling factor A. The latter is necessary since the fitting data are recorded
in units of voltage including according to U = Z · I not only the impedance but also the
current I. It is therefore impossible to discriminate between particle current and any
irregularities in the formula. Finally, the general fitting function for the impedance as a
function of the frequency Z(ν) can be given with the fitting parameters n, A, and νz:

Z(ν, νz, n,A) =

∣
∣
∣
∣
∣
∣

A
n

R1(νz)+2πν L1 I+ 1
2πν C1(νz) I

+ 1
Rz

p
+ 1

2πν Lz I + 2πν Cz
L

∣
∣
∣
∣
∣
∣

. (5.2)

The fitting function from eq. (5.2) can be used to fit not only symmetric but also
dispersive line profiles. The results for a single particle are shown in fig. 5.9. In the
case of the symmetric fit, the particle number yields n = 0.97. Several spectra have
been treated that way resulting in a mean width of the single particle dip of ∆ν =
(0.94 ± 0.10)Hz. The measurements render possible a reliable method for determining
the detected particle number which constitutes a good basis for gaining in precision and
is subject to further investigation. The dispersive line profile shown in fig. 5.9b emerges
whenever the frequency of the particle is detuned with respect to the resonance circuit’s
and nicely demonstrates a first attempt to tackle dispersive line profiles. It can be used
to adjust the trap since a frequency shift arising from a tilt or the like can be easily
identified.
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(a) Single particle dip at U0 = −3.35464 V with
the fitting function Z(ν).

(b) Dispersive line profile at U0 = −3.35415 V
with the fitting function Z(ν).

Figure 5.9: Detection of a single particle in the axial noise spectrum as a particle dip and a
dispersive line profile with a tuning ratio of T = 0.8515. The data have been
fitted with the fitting function Z(ν) of eq. (5.2).

For a high-precision measurement the particle signal not only has to be of good quality
but also has to exhibit a high stability in time. To test the time stability, multiple single
particle dip spectra have been recorded during a night for almost seven hours. For each
recorded spectrum the center frequency of the single particle dip in the noise spectrum
of the resonance circuit is determined. The measurement has been conducted in the
ultra-high precision mode of the temperature stabilized voltage source. For a typical
time scale of one minute, the center frequency exhibits a stability of 5 · 10−3 Hz. This
relates to a relative uncertainty in the determination of the axial frequency of 7 · 10−9

which is not a limiting factor in the axial frequency determination.

5.5.2 Determination of the Free Cyclotron Frequency

After having measured the three eigenfrequencies of a single proton in the precision
trap, the free cyclotron frequency νc can be calculated using the invariance theorem
from eq. (2.13). The eigenfrequencies do not each have to be known with the same
uncertainty since their contribution to the free cyclotron frequency is different. This
becomes apparent upon looking at the relative error of the free cyclotron frequency
determined using conventional error calculation

∆νc

νc
=

(
ν+

νc

)2

︸ ︷︷ ︸

≈1

∆ν+

ν+
+

(
νz

νc

)2

︸ ︷︷ ︸

≈10−4

∆νz

νz
+

(
ν−
νc

)2

︸ ︷︷ ︸

≈10−8

∆ν−
ν−

. (5.3)

Looking at the relative error in the free cyclotron frequency provides a first valuation of
the uncertainty that can be reached with this experimental setup in the precision trap.
Table 5.1 shows frequency measurements from three different days which allow for the
derivation of the free cyclotron frequency. Each frequency determination arises from
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taking the mean value of several individual measurements, performed consecutively at a
single proton. As the eigenmodes have been measured at different trapping voltages U0

they have to be scaled to the same ring voltage U0 before calculating the free cyclotron
frequency νc. Since the calculation depends most sensitively on the cyclotron frequency
ν+, the other eigenfrequencies are scaled to that respective trapping potential U0(ν+).
In the case of the magnetron frequency, it is scaled by the measured frequency shift
per voltage of 2.4Hz/mV since scaling is tedious without knowledge of the magnetic
field. The error arising from the shift of ∆ν− /∆U0 upon going to a different voltage is
negligible compared to the error in the magnetron frequency itself. Please note, that the
magnetron frequency was measured prior to cooling the different eigenmotions resulting
in such a high error. Its effect on the free cyclotron frequency, however, is negligible
due to eq. (5.3). The results from calculating the free cyclotron frequency νc with the
invariance theorem are listed in tab. 5.1 together with the relative error ∆νc. Moreover,
the magnetic field of the superconducting magnet B0 can be deduced from νc using
eq. (1.2) with the same uncertainty. The performed measurements demonstrate nicely
how the uncertainty of the measured eigenfrequencies decreases with increasing expertise
and knowledge of the experiment.

The results just discussed are based on data with little statistical information collected.
During each measurement, the experimental conditions were very stable, however, the
errors given in tab. 5.1 rather represent the fitting errors arising from the determination
of the different frequencies than reliable standard deviations. In the near future, the
experiment will be run over a long time span to produce better statistics. Systematic
errors have not yet been taken into account. Comparing the two values of the free
cyclotron frequency derived from measurements under similar experimental conditions,
the relative error increases to low 10−6. Although the two measurements cannot be used
to derive a relative uncertainty, a more realistic error estimates leads to the supposition
that the actual error of eq. (5.3) lies rather in the range of low 10−7. A few examples
of how to improve the measuring routine and the experimental setup will be given in
chapter 7.

Nevertheless, it has been demonstrated that the free cyclotron frequency νc – one of
the two ingredients needed to extract the g-factor – can generally be derived from the
eigenfrequencies of the trapped proton with an uncertainty in the range of low 10−7.
The determination of the free cyclotron frequency can in turn be used to derive a drift
in time of the magnetic field B0. Comparing the data measured on July 15th with that
measured on July 24th yields a drift in time of (7.0 ± 0.5) · 10−7 /day, which agrees
within 15% with the comparison done in section 4.2 with the shimming data. Albeit the
experiment stands at the very beginning of data acquisition, already now it is possible to
measure with a quite low uncertainty. The above presented evaluation sheds light on the
envisaged high-precision measurement once systematics are under control and statistics
are collected.
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Table 5.1: Eigenfrequencies of a single proton in the precision trap with T = 0.851.

06/30/08 νi /Hz U0 /V B0 /µT

ν− 8 679± 202 −3.349

07/15/08

ν+ 28 950 788.7± 4.3 −3.35455

νz 688 148± 2 −3.35455

νc 28 958 967± 15 1 899 549.8± 1.5

07/24/08

ν+ 28 950 724.6± 1.6 −3.354845

νz 688 180.1± 0.1 −3.354845

νc 28 958 902± 6 1 899 543.0± 0.6

5.5.3 The Free Cyclotron Frequency as a Lead to Contact Potentials

In principle, there are two different ways of determining the free cyclotron frequency νc.
Up to now, the three eigenfrequencies of the proton in the trap have been measured at a
certain voltage U0 applied to the ring electrode, and the experimental values have been
used to compute the free cyclotron frequency νc according to the invariance theorem from
eq. (2.13). It is also possible to measure the cyclotron frequency ν+ for different values
of the ring voltage U0 and extrapolate to U0 = 0V thus attaining the free cyclotron
frequency νc. Comparing the two methods hints at possible contact potentials at the
trapping electrodes. Figure 5.10 shows the cyclotron frequency ν+ as a function of
the voltage applied to the ring electrode U0 measured within a few hours to the last
measurement of tab. 5.1. A linear extrapolation (red curve) provides the free cyclotron
frequency νextr

c = (28 959 025± 1)Hz for U0 = 0V. This reveals a contact potential since
it differs by 123Hz from the calculated value of νc = 28958 902Hz, corresponding to
a contact potential of 50mV. This measuring technique provides the resulting contact
potential as the effective sum of possible contact potentials applied to the five trap
electrodes. Further measurements indicate that not only a contact potential but also
the proximity of the target gave rise to this discrepancy, which could be resolved in later
measurements going beyond the scope of this work.
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5 Detection of a Single Proton in the Precision Penning Trap

Figure 5.10: Cyclotron frequency ν+ as a function of the voltage applied to the ring electrode
U0. The red curve denotes a linear extrapolation fitted to the data, where the
intercept at the y-axis defines the zero in frequency.
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Trap

The precision Penning trap was designed according to certain criteria explained thor-
oughly in section 2.2.2. For the envisaged high-precision measurement it is essential
that the trap implemented into the experimental setup is optimized, the electrostatic
properties are determined and under control. Once the axial motion of a single trapped
particle has been detected, it is possible to use this detection signal for characterizing
and tuning the trap. As a first step, the curvature of the potential – expressed by the
Cs

2-coefficient – is determined. To this end, the axial frequency is measured for different
values of the ring voltage U0 with the tuning ratio fixed to T = 0.851. Subsequently, the
Cs

2-coefficient is extracted with eqs. (2.7) and (2.23) to Cs
2 = −(0.02747± 0.0036) /mm2.

Within the error, the experimentally determined value coincides with the theoretically
predicted one from tab. 2.1. All experimentally determined properties of the precision
trap are listed in tab. 6.1.

6.1 Optimization of the Precision Penning Trap

An optimized Penning trap is the foundation for a high-precision measurement of a
trapped particle because the potential is harmonic to a very high degree and the fre-
quency dependence on motional amplitudes is minimized. Since the precision trap was
designed as orthogonal and compensated, there exists a tuning ratio for which the trap-
ping potential is maximally harmonic (Cs

4 = Cs
6 = 0) and the axial frequency neither

depends on the voltage applied to the correction electrodes νz 6= νz(Uc) nor on the
cyclotron energy νz 6= νz(E+), cf. section 2.2.1. This tuning ratio has to be specified ex-
perimentally whereto the single particle dip in the noise spectrum of the axial detection
unit is a very suitable basis: the more harmonic the trapping potential is, the deeper
and narrower the single particle dip gets. In order to determine the optimal tuning ratio,

Table 6.1: Experimentally determined parameters of the precision trap

T 0.8510±0.0005 Dz
pt 8.99mm

Cs
2 −(0.02747±0.0036) /mm2 ∆νz

∆U0
−0.1Hz/µV

Ds
2 −(3.37±0.98) · 10−4 /mm2 ∆νz

∆Tpt
id

−3.98Hz/mUnit

Cs
4 −(5.41±0.17) · 10−5 /mm4
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6 Characterization of the Precision Penning Trap

different tuning ratios are applied to the trap. Subsequently, the ring voltage U0 is used
to center the single particle dip in the noise spectrum of the resonance circuit, since the
dip signature broadens if it is not properly centered. Then, the depth d as well as the
width ∆ν of the single particle dip are measured for the corresponding ring voltage U0.
Once the optimal tuning ratio is found, it can in turn be used to derive the expansion
coefficient Ds

2. The following measurements were conducted in the UHP mode of the
voltage source UM1-14 version DCK6-1.

∆νz = 1.31 Hz

(a) U0 = −3.35455 V, d = 4.5 dB

∆νz = 1.39 Hz

(b) U0 = −3.35478 V, d = 4.1 dB

∆νz = 0.87 Hz

(c) U0 = −3.35473 V, d = 6.0 dB

∆νz = 1.53 Hz

(d) U0 = −3.35463 V, d = 3.3 dB

Figure 6.1: Single particle dips for different settings of the precision trap as part of an
optimization measurement of the trap’s electrostatic properties. The first three
single particle dips were recorded for a tuning ratio of T = 0.851, the fourth one
for T = 0.850. The red curves show the respective Lorentzian fit of the single
particle dip. For more details, see text.

The first three graphs in fig. 6.1 show parts of the experimental sequence just outlined
for a tuning ratio of T = 0.851. The ring voltage U0 is tuned to center the single particle
dip at νLC

z = 688 150Hz, the center frequency of the axial resonator. In fig. 6.1a the
ring voltage U0 is set to a value for which the corresponding axial frequency of the
particle νz is lower than νLC

z leading to a smeared particle signature. The same holds
for fig. 6.1b where the axial frequency νz is higher than the resonance frequency of the
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axial detection unit νLC
z . Both dip signatures are broader and flatter than the single

particle dip of fig. 6.1c where the ring voltage is tuned in such a way that the particle’s
frequency coincides with the resonance circuit’s. In this example, the center frequency
νLC
z was hit by a few hundred mHz at νz = 688 149.3Hz producing a single particle dip

with a width of ∆νz = 0.87Hz and a depth of d = 6.03 dB determined by a Lorentzian
fit (red curve) which was performed for ±50 data points around the center frequency.
As a comparison, the fourth graph shows the centered single particle dip for a tuning
ratio of T = 0.850. The single particle dip is located at νz = 688 150Hz with a width of
∆νz = 1.5Hz and a depth of d = 3.33 dB which clearly indicates a less optimized trap.

The sequence discussed on the basis of fig. 6.1 is iterated for different tuning ratios
T . For each tuning ratio, several spectra are recorded and depth d as well as width
∆νz of the single particle dip are extracted. Since the quality of the single particle dip
depends on how well the particle frequency is centered, i. e. coincides with frequency
νLC
z of the resonance circuit, it is crucial that the single particle dip appears at the same

frequency in all spectra which was achieved within 300mHz for a fixed tuning ratio.
During the measurement series, however it was not possible to reproduce the exact
frequency centering resulting in an effective center frequency of νz = (688 150.4±0.9)Hz
was realized, the error arising from thermal fluctuations at room temperature at the
time of this measurement, since the voltage source was not operated in the temperature
stabilized mode. The results for seven different values of the tuning ratio are shown
in fig. 6.2. As expected, the maximum in the depth d coincides with the minimum in
the width ∆νz allowing for a determination of the tuning ratio between T = 0.851 and
T = 0.852. Fitting both data sets with different peak functions (Gauss and Lorentz)
yields an optimal tuning ratio of T = 0.8516 ± 0.0002 for the trap conditions at that
time. As it is quite probable that contact potentials are generated differently at the trap
electrodes with each loading of the trap with the electron beam ion source and since
the optimal tuning ratio depends on the actual voltage applied to ring and correction
electrodes, it may vary with every new start of the experimental sequence, cf. section 4.7.
Therefore, the tuning ratio has to be optimized with each new run and may differ for the
measurements discussed within this work. In conclusion, it has been demonstrated that
this method is suitable to optimize the trap and determine the optimal tuning ratio.

Finally, the experimentally determined optimal tuning ratio of T = 0.8510 ± 5 · 10−4

can now be exploited to determine an upper limit to the leading anharmonicity contribu-
tion given by the Cs

4-coefficient. The coefficient is calculated using eq. (2.21) leading to
Cs

4 = −(5.41 ± 0.17) · 10−5 /mm4.

6.2 Determination of the Orthogonality of the Trap

The orthogonality of the trap – in other words the dependence of the axial frequency
on the tuning ratio – is a property which very much facilitates data acquisition. On
the one hand, without precise knowledge of the optimal tuning ratio, detection and
identification of particles in the mass spectrum are still feasible. On the other hand,
it is of great advantage that the measured variables solely depend on fluctuations of
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6 Characterization of the Precision Penning Trap

Figure 6.2: The two parameters depth d and the width ∆νz of single particle dips are plotted
for different tuning ratios T to determine the tuning ratio for which the trap is
optimized.

one voltage applied, namely the ring voltage U0. The leading expansion coefficient Ds
2

from eq. (2.22) describing the degree of orthogonality enters in the calculation of the
axial frequency νz since it is part of the expansion coefficient Cs

2 from eq. (2.21). Again,
eq. (2.7) is employed to express the voltage applied to the ring as a function of the tuning
ratio where Ds

2 enters as a parameter yet to be determined

U0(T ) =
(2π νz)

2m

2 · 106 q(Es
2 +Ds

2 · T )
. (6.1)

To determine the orthogonality of the trap from the data of fig. 6.2, the ring voltage
U0 is extracted for each tuning ratio at which the single particle dip is centered in the
noise spectrum of the circuit. The data points are plotted in fig. 6.3, where the error
bars denote the uncertainty in the ring voltage U0. The data are fitted with a rational
fit function U0(T ) = 1/(a + b · T ) (red curve). Through a comparison, the parameter b
delivers the Ds

2-coefficient via

Ds
2 =

bm (2π νz)
2

2 · 106 q
= −(3.37 ± 0.98) · 10−4/mm2 . (6.2)

From this, the orthogonality can be derived as ∆νz /∆T = −3.98Hz/mUnit. This lies an
order of magnitude above the theoretically predicted value of ∆νz /∆T = −0.4Hz/mUnit,
however, it shows nicely how an important trap property can be extracted from the
optimization measurements performed. Certainly, there is room for improvements. For
example, the frequency at which the particle has been detected varied from measurement
to measurement leading to a mean value of νz = (688 150.4 ± 0.9)Hz which inevitably
led to a fake increase in the Ds

2-coefficient. Improvements towards a better temporal
stability of the single particle dip concerning the voltage source have been discussed in
section 4.3.2. Other improvements will be tackled in chapter 7.
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6.3 Trap Imperfections

Figure 6.3: Voltage applied to the ring electrode U0 for which the frequencies of single
particle dip νz and resonance circuit νLC

z coincide as a function of the tuning
ratio T . The red line is a rational fit function from which the expansion coefficient
Ds

2 is extracted.

6.3 Trap Imperfections

In a real trap, the electrostatic potential is never fully described by the expansion co-
efficients of eq. (2.21) of section 2.2.1, as machining errors, misalignment, voltage fluc-
tuations or the like cause the experimentally determined coefficients to deviate from
their calculated value. This constitutes a further reason as to why the experimentally
determined coefficients presented above are different from the theoretical coefficients.
The large discrepancy of the experimentally determined tuning ratio T = 0.851 from
the theoretically calculated value of Tid = 0.867 turns out to be caused by an incorrect
positioning of the target too close to one of the end caps of the precision trap. Thus, the
trap itself became asymmetric since one end was open, the other closed. With T = 0.851
it was possible to account for this asymmetry and detect the particle as a dip in the
noise spectrum of the axial detection unit.

In general, an asymmetric potential can have various reasons which give rise to odd
terms appearing in the expansion. If the end caps are affected, the shift is computed via
ck-coefficients, in the case of the correction electrodes via dk-coefficients, following the
calculations of Gabrielse in [43]. For k = 1, the axial equilibrium position of the particle
will be shifted. Yet in this experiment, a large d1-coefficient is favorable for electronic
particle detection via a 01000-coupling in order to optimize detection sensitivity and
resistive cooling of the axial motion, cf. section 2.3. The d1-coefficient can be determined
by employing the damping constant

γexp
z =

q2

m

d2
1

4z2
0

Rz
p =

1

τ exp
z

, (6.3)
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6 Characterization of the Precision Penning Trap

where the resistive cooling time constant τ exp
z = 159ms was experimentally determined

from the single particle dip in the noise spectrum of the axial detection unit in the
preceding chapter. It yields d1 = 0.8001 which agrees with values measured in other
cylindrical traps such as for example the one found ibid.

z0

r

z

0

0

Uas

L/2

Figure 6.4: Asymmetric potential applied to the correction electrodes, symmetric under rota-
tions about the z-axis and asymmetric under reflections across the z = 0 plane.
Sketch of half the trap with length L/2.

The next contribution, k = 3, causes a shift in the axial frequency. If an asymmetric
potential Uas is applied to the correction electrodes as seen in fig. 6.4 (cf. also fig. 2.3),
it leads to a frequency shift in the axial motion of

∆νz

νz
= −3

4

(
d

z0

)4

d1d3

(
Uas

U0

)2

, (6.4)

from which the d3-coefficient can be extracted. The measurement has been performed
by applying different values of Uas to the correction electrodes and measuring the cor-
responding frequency shift ∆νz. However, these frequency shifts suggest an asymmetry
which is unrealistic considering the trap geometry, the coefficient being more than an
order of magnitude larger than in comparable traps. This is attributed to the proximity
of the target and has to be remeasured once the trap tower is modified. Usually, the
impact of a large d3 (or c3) is negligible since asymmetric potentials are not applied.
However, since the two correction electrodes (and end caps) are supplied each by inde-
pendent voltage channels, a systematic investigation of this effect is necessary to be able
to identify an unwanted frequency shift arising from asymmetric voltage fluctuations to
which only an upper limit can be given.
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Within this work, I have presented design, assembly, and commissioning of the experi-
mental setup which is dedicated to the measurement of the proton g-factor. Feasibility
studies and implementation of the required components have been completed, initial
operation and first experimental results have been discussed. At present, the double
Penning trap setup consisting of a conventional cylindrical trap and a novel hybrid trap
has been successfully implemented into the cryogenic ultra-high vacuum chamber which
in turn is surrounded by an elaborate insulating vacuum apparatus with an intermedi-
ate temperature stage. The electron beam ion source, which is integrated in the trap
setup, allows for the creation of protons which can subsequently be stored in the pre-
cision trap. The production of a pure proton ensemble by removing impurity ions has
been demonstrated and their eigenfrequencies have been detected with the respective
non-destructive detection units.

It is now possible to isolate a single proton with a well-directed method and measure
its eigenfrequencies in the precision Penning trap. These eigenfrequencies yield the free
cyclotron frequency νc, one of the two frequencies needed to determine the g-factor.
Although the experiment is in the fledgling stages, the first data I have taken with the
experimental setup already allow for the determination of the eigenfrequencies in the
precision trap down to a relative accuracy of 10−7 limited mainly by the few statistics
collected. Extracting the free cyclotron frequency leads to the striking result of a relative
uncertainty of only 2 · 10−7. Gaining in experimental routine and realizing technical
improvements will push this value towards the envisaged goal of 10−9.

Monitoring the axial eigenfrequency enables the investigation of the trap’s electrostatic
properties. Important parameters of the precision trap have been specified such as the
curvature of the potential, the orthogonality or the anharmonicity contribution. They
allow for a comparison with the theoretically calculated values leading to an assessment
of the geometric quality of the trap as well as the reliability of the theoretical derivation
of chapter 2. Finally, trap imperfections have been analyzed yielding first estimates of
the odd expansion coefficients of the potential, which in turn helps identifying possible
frequency shifts.

The Larmor frequency νL – the other frequency entering eq. (1.6) to yield the
g-factor – is determined by observing spin-flip transitions in the double Penning trap.
The resonance circuit to drive the spin-flip transition is implemented, tested, and ready
to be put into operation. The Larmor frequency has not been measured up to now since
this step demands a fully characterized analysis trap and an adiabatically working single
particle transport between the precision trap and the analysis trap.

The measurement sequence outlined in section 4.7 has been partly experimentally
tested and established as became clear above. The next essential measure is the adiabatic
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transport of a single proton. Transport simulation studies have been performed with
SIMION and work is in progress towards an efficient transport of a particle ensemble,
which can then be detected non-destructively in the analysis trap via the axial detection
unit. An ensemble of protons has been transported from the precision trap towards the
analysis trap, however, most of it is lost at the tapered electrode T1 (cf. fig. 4.3) due to a
fast broadening of the magnetron motion. Detection of the proton ensemble as a peak in
the noise spectrum of the axial detection unit has been achieved in the analysis trap with
a copper ring instead of the ferromagnetic one. This drawback is being investigated.
Meanwhile, it has been discovered that the ferromagnetic ring of the analysis trap is
not the cause for the transport problems, since the same problems continue to exist
after removal of the magnetic inhomogeneity. Attention is now turned to the tapered
electrode which baffles the adiabatic transport in opposition to the simulations. At
present, efforts are made towards a pulsed, non-adiabatic transport comparable with that
at other Penning trap experiments. Once a particle ensemble is monitored in the analysis
trap, the trap itself can be investigated. Characterization of the trap’s properties and
optimization of its parameters constitutes an obligatory test of the underlying theoretical
derivation introduced in chapter 3 and comprises a feasibility study of the concept of
hybrid Penning traps.

7.1 Further Developments at the Experimental Setup

In the following, I will discuss upcoming experimental measures and possible technical
developments of the setup. During this first run of data acquisition, several ideas arose
of how to improve the experimental setup, two of which I will elaborate on. As the
measurements in chapters 4 and 5 have shown, the temperature stabilization of the
voltage source is essential for reaching down to uncertainties better than 10−7. A more
sophisticated temperature stabilization including the ambient air of the laboratory is
mandatory as has been discussed in section 4.3.2.

The cyclotron eigenmotion of the stored proton contributes dominantly to the deter-
mination of the free cyclotron frequency νc as became clear from eq. (5.3). It is measured
by monitoring the temporal cyclotron frequency change while the single particle is resis-
tively cooled into thermal equilibrium with the resonance circuit. A peculiar aspect is a
periodic fluctuation of the frequency upon approaching the asymptotic limit. Figure 7.1
shows a single measurement of the temporal development of the cyclotron frequency of
a single proton starting from t = 100 s after excitation of the cyclotron frequency. The
data have been split up in red and black data points to visualize a perturbation, which
is transported to the trap via the mechanics of the heat conduction. The two curves
correspond to vibrations of the pulse tube cooler arising from varying positioning of the
piston during a cycle. Each data set has been fitted with an exponential decay denoted
by the red and black curve, respectively, yielding a difference of 6Hz in the determination
of the cyclotron frequency: νred

+ = 28936 824Hz and νblack
+ = 28936 818Hz. Mechanical

decoupling reduced the vibrations at the trap and enhanced the measurement accuracy
leading to an uncertainty of only 2Hz in the determination of the cyclotron frequency.
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Figure 7.1: Temporal cyclotron frequency change while the single particle is cooled into ther-
mal equilibrium with the resonance circuit. The curve of a single measurement is
split up in red and black data sets to visualize the perturbation due to the vibra-
tion of the pulse tube cooler. The data are separately fitted with an exponential
decay yielding a difference of 6Hz in the cyclotron frequency.

Certainly, the further development of the computer control system is an issue. Data ac-
quisition for frequency measurements is completed, the LABVIEW-based control system
does not yet include all experimental sequences needed to perform the entire measure-
ment. For example, the cyclotron excitation has been performed manually during the
first run. Moreover, some electronic devices for the accomplishment of the continuous
Stern-Gerlach effect are still missing.

Independent of the hitherto acquired data, the temperature of the stored particle – and
hence that of the electronic detection units – is a parameter which quickly comes to mind
when considering possible improvements. Performing the experiment at liquid helium
temperature, fluctuations in the axial motion have to be taken into account arising
from the considerably large amplitude of the particle of z(4K) ≈ 40µm according to
eq. (2.48). Employing a He-3/He-4 mixing cryostat with a base temperature of a few
tens of mK yields a particle amplitude of ≈ 4µm. In the precision trap, this gain of an
order of magnitude is directly reflected in the influence of the B2-term on the cyclotron
frequency, a major contribution to the systematic error due to frequency shifts. Another
possibility of reaching down to the mK-range is by the method of feedback cooling used
in the experiments of Gabrielse [73].

Reaching down to even lower motional amplitudes can be achieved by means of sym-
pathetic laser cooling using a single ion stored in a second Penning trap [74]. Heinzen
and Wineland consider a source, i. e. in the case of this experiment the single proton,
and a laser-cooled ion as a pair of coupled oscillators in the weak damping limit. The
coupling can be switched on and off quickly compared with the exchange time tex. These
conditions enable oscillatory exchange of energy between the two oscillators such that
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the laser-cooled ion may be used to both cool and detect excitations in the source. The
laser-cooled ion thus replaces the electronic detection unit. At first, the possibility of
cooling alone is discussed where the ion is cooled to the zero-point state via sideband
cooling while the oscillators are decoupled. The laser is then turned off and the coupling
is switched on until the ion’s zero-point state has been transferred to the source via
image currents, i. e. until the exchange time has elapsed. Thus, the source resides in
a well-defined quantum state. If, for example, the energy of the cyclotron eigenmotion
of the stored proton is cooled into the zero-point state, the frequency shift of the ax-
ial motion due to a finite cyclotron energy is for all intents and purposes annihilated.
Thus, it becomes possible to electronically detect the axial motion without this source
of systematic error.

As a further step, detection is now included. To this end, both oscillators have to be
prepared in the zero-point state and they have to be decoupled. Suppose now, that an
external drive applied to the source puts at least one quantum of energy in its motion.
This excitation can then be transferred to the ion by recoupling the two oscillators for
a time tex. After the systems are again decoupled, the ion is probed using the sideband
method. In the case of this experiment, a spin-flip is induced to the stored proton
changing its quantum state. Thus, it becomes possible to map the internal degree of
freedom onto another particle. The manipulated ion is then probed to read out the spin
information.

For the detection of the axial eigenmotion, it is essential that the trapping potential
is harmonic such that the frequency is not shifted even for large motional amplitudes
z. However, an anharmonic contribution arising from finite values of the expansion
coefficients Cs

4 and Cs
6 will always be present. If the trap is tuned in such a way, that the

two coefficients have a different sign, their contribution to the frequency shift becomes
a function of the motional amplitudes: Since the effect of the Cs

4-coefficient scales with
z4, it dominates the contribution to the frequency shift for small motional amplitudes,
whereas for large motional amplitudes the contribution arising from the Cs

6-coefficient
dominates. Consider a trapped particle which is cooled enough as to reside in a very
harmonic trap leading to a negligibly small shift in the axial frequency. The particle’s
frequency is now shifted according to the sign of Cs

4. For a certain motional amplitude,
the two contributions have the same magnitude but are of different sign, and hence the
frequency shifts cancel each other out. It allows for detecting the axial eigenmotion
with a large motional amplitude but without the frequency shift. One requirement is
stabilizing the particle’s motional amplitude which is realized in the group of Gabrielse
by the single-particle self-excited oscillator [73]. This is accomplished by driving the
trapped particle by an electric field, which is derived from the current that the particle
motion induces in an electric circuit attached to the trap electrodes. This method allows
for the detection of a five parts in 1010 frequency shift in a few seconds enabling the
measurement of an electron spin-flip. Gabrielse and co-workers aim at utilizing this
technique in their experiment for the determination of the g-factor of a free proton.
Their setup comprises also a cylindrical Penning trap, however, the detection of a proton
spin-flip is greatly handicapped due to a comparatively small magnetic bottle field and
the three orders of magnitude smaller magnetic moment.
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7.2 Advancement in the Detection of the Larmor Frequency

The determination of the Larmor frequency represents the most tricky part of the exper-
imental sequence. In the case of a proton and with the parameters of this experiment,
the frequency shift upon a spin-flip transition according to eq. (2.42) amounts to roughly
250mHz at an axial frequency of ≈ 680 kHz, which corresponds to a 10−7 effect. This is a
challenge to detect electronically since the axial frequency depends on the trapping volt-
ages applied to ring and correction electrodes and thus on their fluctuations. Assuming a
correlated fluctuation between ring and correction electrodes of 300 nV relates to a shift
in the axial frequency of roughly 80mHz complicating the unambiguous identification
of a spin-flip. To evade these difficulties, the signal buried in noise can be recovered by
a phase-sensitive measurement [75]. Application to the axial motion of a particle stored
in a cylindrical Penning trap has been tackled in [76]. This method utilizes the fact that
the temporal evolution of the phase depends on the spin state. The frequency shift is
expressed in a phase difference, hence the full frequency information is not needed, and
the signal-to-noise ratio increases. For this purpose, the phase of the trapped proton is
allowed to evolve freely after having primarily excited its axial eigenmotion; freely in this
context means undisturbed from the axial detection electronics. Since the phase of the
spin-up state evolves more slowly than that of the spin-down state, a phase difference
∆ϕ can be detected after a waiting time t yielding a frequency resolution ∆ν of

∆ν =
1

t

σ(∆ϕ)

2π
. (7.1)

This way it is possible to beat the Fourier limit.
Another possibility to access the internal spin information is given by the method

of Rabi oscillations. The trapped proton constitutes a two-level system with the two
internal states |0〉 = spin up and |1〉 = spin down. Assuming that it resides in one of the
states ψ1(0) = |0〉, it can be transferred with a π-pulse into the second state ψ(t) = |1〉,
where π = Ω t, and Ω is the Rabi frequency from eq. (2.46). The excitation probabil-
ity plotted as a function of the excitation time while keeping the excitation amplitude
constant yields a Rabi profile. This method requires a temporal coherence of the spin
eigenmotion and the drive signal. Looking at the temporal development, the Larmor
frequency of the trapped particle is subject to three modifications: first, the influence of
thermal fluctuations of the axial motion according to eq. (2.49) as ∆(T ) ∝ B2 〈z2(T )〉;
second, a modification due to the drift of the magnetic field of the superconducting mag-
net ∆(B0) ∝ ∂B0/∂t; and third, a modulation arising from the asymmetric B1-term of
the magnetic field ∆(B1) ∝ B1 z sinωz t. The thermal fluctuations of the axial energy
can be prevented by changing the trapping potential U0 in such a way that the axial
frequency of the particle is far off the frequency of the resonance circuit and the coupling
time between the circuit and the particle is much larger than the measurement time.
Since the axial energy of the particle is thus constant, the Larmor frequency is shifted
by a fixed value ∝ B2 which can be accounted for upon irradiating the transition sig-
nal. The temporal stability of the magnetic field B0 was determined in section 4.2 and
has to be compared with the characteristic time scale for the technique just introduced.
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The numerics of section 2.5.2 deliver a Rabi frequency of Ω = 380Hz yielding a Rabi
period of τR ≈ 3ms. The magnetic field decays with a rate of 3.6 · 10−15/ms which
can be entirely neglected. Lastly, the B1-term of the magnetic field has to be tackled.
Since the period of the axial motion is τz ≈ 1µs, hence τR ≫ τz, the modulation index
leads to the development of strongly suppressed sidebands at discrete frequency values
of νL ± νz, which are negligibly far away for the arbitrarily narrow excitation signal at
the Larmor frequency νL. Because of that, the Larmor frequency can be considered
constant during the time scale of the measurement, e.g. about 8ms for one spin-flip.
Altogether, it should be possible to establish temporal coherence, the main requirement
for the realization of Rabi oscillations.

In this context, the method of separated oscillatory fields introduced by Ramsey has
to be considered as “icing on the cake” [77,78]. Again, consider a particle in the initial
state ψ1(0) = |0〉 which is excited with a π/2-pulse into a superposition of the two
internal states ψ(t) = 1/

√
2 (|0〉− i|1〉), where π/2 = Ω t. Irradiating a second π/2-pulse

after a waiting time tw produces interference fringes depending on the phase α between
first and second π/2-pulse. The final state is given by

ψ1(2t+ tw) =
1

2

(
(1 − ie−iα)|0〉 + (eiα − i)|1〉

)
. (7.2)

Varying the phase α produces so-called Ramsey fringes from which the probability for
finding the particle in one of the two states can be deduced.

7.3 Future Experiments

The hybrid trap design enables a variety of new experiments such as investigating the
magnetic moments of bare light nuclei like deuteron, tritium or 3He. The large magnetic
bottle field allows for accessing the spin precession frequency directly. The determina-
tion of the magnetic moment of a 3He nucleus (helion) in a helium atom is of special
importance since it serves as a standard nuclear magnetic resonance technique [22].

The magnetic moment of the antiproton has recently been determined from the hy-
perfine structure of antiprotonic helium p̄He+ to µs = −2.7862(83)µN which agrees with
the proton magnetic moment within 2.9 · 10−3 [79]. This newly determined value agrees
within the error bars with the to date accepted value for the magnetic moment of the
antiproton of µs = −2.8005(90)µN achieved by Kreissl more than twenty years ago [80].
This constitutes an indirect determination of the magnetic moment of the antiproton
bound in a three-body system by comparison with quantum electrodynamics calcula-
tions. With the experimental setup I have introduced, however, it will be possible to
perform a direct measurement on a single, unbound antiproton. Just as in the case
of the proton, its antiparticle can be stored in a Penning trap and be detected non-
destructively with an electronic detection system [81]. The measurements to determine
the free cyclotron and Larmor frequency are able to be conducted under the same exper-
imental conditions. To perform this experiment, the experimental setup has to be taken
either to AD at CERN, Geneva or to the planned FLAIR facility, Darmstadt. The only
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7.3 Future Experiments

modification arises from the external injection required to bring the antiproton into the
trap tower. Within this restriction a similar accuracy should be reachable providing a
stringent test of CPT symmetry.

99



7 Conclusion and Perspective

100



A Perturbations Leading to Shifts in the

Eigenfrequencies

The ideal trap model is not sufficient to extract the g-factor due to departures from an
ideal electrostatic quadrupole potential, due to an inhomogeneous magnetic field, and
due to relativistic corrections. Thus, the energy levels are shifted producing correspond-
ing shifts in the measurable eigenfrequencies ω → ω + ∆ω. These frequency shifts have
been evaluated in matrix formulation in the classical limit with first order perturbation
theory by Brown and Gabrielse [35]:








∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL








= M






∆E+

∆Ez

∆E−




 . (A.1)

Here, the matrix M stands for a general correction matrix having to be specified for
one of the perturbations mentioned above. It is a 4 × 3 matrix since the spin energy
is neglected in the classical limit. The energy of the three eigenmotions in the Penning
trap denoted by E+, Ez and E− can be taken from eq. (2.12). The matrix formulation
comprises nicely the different corrections: each of the three perturbations produces shifts
in each of the four eigenfrequencies. Each of these shifts, in turn, is linear in the three
classical excitation energies.

Now, consider as a first application the leading anharmonicity term in the quadrupole
potential ∆U ∝ C4. The response matrix MV is calculated to (ibid.):







∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL








=
6C4

q U0








1
4(ωz/ω+)4 −1

2(ωz/ω+)2 −(ωz/ω+)2

−1
2(ωz/ω+)2 1

4 1

−(ωz/ω+)2 1 1

0 0 0








·






∆E+

∆Ez

∆E−




 .

Since generally ω− ≪ ω+ holds, factors of ω+ − ω− have been approximated by ω+ to
simplify this matrix. As can be seen, the spin motion is not altered by an electrostatic
potential. Looking at the shift in the axial frequency, the above equation yields:

∆ωz

ωz
=

6C4

q U0

(

−1

2

(
ωz

ω+

)2

E+ +
1

4
Ez + E−

)

. (A.2)

Two characteristics should be mentioned: In the leading anharmonicity correction C4

the axial frequency depends linearly on the cyclotron energy ω2
z ∝ E+. Furthermore,

this term is used to monitor and minimize C4 when compensating the anharmonicity.
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The leading perturbation to the spatially homogeneous magnetic field ~B is that of a

weak magnetic bottle: ∆ ~B = B2

[

(z2 − r2/2)B̂ − (B̂ · ~z)~r
]

yielding a correction matrix

of the form (ibid.):








∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL








=
B2

B0

1

2mω+ω−








−(ωz/ω+)2 1 2

1 0 −1

2 −1 −2

−(ωz/ω+)2 1 2








·






∆E+

∆Ez

∆E−




 .

The direction of the homogeneous magnetic field to which the bottle is added is denoted
by B̂. As long as the hierarchy of frequencies eq. (2.11) holds, the magnetic bottle
produces identical shifts in the cyclotron and spin frequencies.

Finally, the relativistic corrections are being considered:








∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL








= − 1

mc2








1 1
2 −(ωz/ω+)2

1
2

3
8 −1

4(ωz/ω+)2

−(ωz/ω+)2 −1
4(ωz/ω+)2 1

4(ωz/ω+)4

2
9

1
2 −(ωz/ω+)2








·






∆E+

∆Ez

∆E−




 .

Equation (2.11) has been used to simplify the matrix. The frequencies on the right side
are the non-relativistic frequencies, the velocity of light is denoted by c. The effect arising
from using relativistic frequencies instead, e. g. ωz(γ) = 1/γωz(γ = 1), is negligible. To
discuss the effect of relativistic corrections, the axial frequency is investigated:

∆ωrel
z == − ωz

mc2

[
1

2
E+ +

3

8
Ez −

ω+

4
E−

]

, (A.3)

where the leading correction acts as a mass shift. Since ωz is inversely proportional to
the square root of the mass of the particle, it is shifted down. Furthermore, the change
in the kinetic energy of the magnetron motion can be neglected since ω+ ≫ ω− which is
evident in the matrix element M31. Finally, since the rest energy mc2 sets the scale for
these corrections, they will typically be very small. In the case of the proton, the effect
of the other perturbations will dominate.

Furthermore, the temperature of the detection units serving as a thermal bath for
resistively cooling the particle’s eigenmotions leads to shifts which directly impact the
g-factor resonance. Naturally, the detection units should be in thermal equilibrium with
the second stage of the cold head, however, if the second stage is overloaded the tempera-
ture may rise. As an example, the shift of the actual value of the g-factor and broadening
of the g-factor resonance curve, i. e. the increase in the full-width-at-half-maximum, are
calculated for different values of the axial temperature Tz. Relativistic corrections are
included and typical parameters of the proton experiment are used. Figure A.1 shows
the results for both calculations which are both affecting the g-factor resonance on a
10−9 scale. Thus, for the envisaged high-precision measurement these shifts have to be
taken into account.
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Figure A.1: On the left, the shift of the g-factor from g0 as a function of the axial tem-
perature Tz is shown. On the right, the broadening of the resonance curve is
plotted, i. e. the increase in the full-width-at-half-maximum as a function of Tz.
Both include relativistic corrections.
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[10] I. Estermann, O. Stern, Über die magnetische Ablenkung von Wasserstoff-
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Abstract. The measurement of the magnetic moment (or g-factor) of the antiproton and of the 
proton is a sensitive test of CPT invariance. In our experiment we will store and detect a single 
(anti)proton in a cryogenic Penning trap. The g-factor will be measured by detection of quantum 
jumps via the continuous Stern-Gerlach effect. Most of the experimental techniques to be used 
have been already successfully employed by our group for the measurement of the g-factor of 
the bound electron in hydrogen-like ions. However, the magnetic moment of the proton is 
smaller than that of the electron by a factor of 658. Our hybrid trap design combines cylindrical 
electrodes with a toroidal ferromagnetic ring electrode. With this novel trap, spin-flip transitions 
of the (anti)proton can be detected by observation of tiny differences in the axial frequency by a 
phase-sensitive method. With our apparatus, we envisage to determine the g-factor of the 
(anti)proton with an accuracy of 10-9 or better. 

Keywords: Magnetic moment; Antiproton; CPT. 
PACS: 11.30Cp, 11.30Er, 14.20Dh 

INTRODUCTION 

The comparison of the magnetic moments (or g-factors) of the antiproton and of the 
proton is a sensitive test of CPT invariance in the baryonic sector [1]. In our 
experiment a single (anti)proton in a Penning trap will be stored. The g-factor will be 
measured by detection of quantum jumps via the continuous Stern-Gerlach effect [2], 
which was applied for the first time by Dehmelt in the g-factor measurement of the 
free electron in a Penning trap [3]. Later on, this effect has also been utilized for 
electronic g-factor measurements on hydrogen-like ions [4, 5]. The principle of the 
continuous Stern-Gerlach effect is based on a coupling of the magnetic moment µ of a 
particle to its axial oscillation frequency ωz in a Penning trap. This coupling is 
achieved by a quadratic magnetic field component (’magnetic bottle’) superimposed 
on the homogeneous magnetic field B0 of the Penning trap B(z) = B0 +B2z

2. The axial 
frequency change ∆ωz due to a spin-flip transition is directly related to the coefficient 
B2, which characterises the size of the quadratic field component. 
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The measurement will be performed on a single antiproton in a cryogenic Penning 
trap [6]. With the trap and the vacuum enclosure of the apparatus kept at liquid-helium 
temperature, the background pressure is below 10−16 mbar and the storage time before 
antiproton annihilation is longer than several months [7]. The antiproton is resistively 
cooled close to the ambient temperature of 4 K by keeping its oscillation frequencies 
at the resonance frequencies of high-Q resonance circuits attached to the trap 
electrodes. The trapped antiproton is monitored via the currents which are induced in 
the trap electrodes by its oscillations. The g-factor of the antiproton is determined by 
measuring its cyclotron frequency and its spin precession frequency in the magnetic 
field of the trap. 

 
c

L
pg

ω
ω

2=  (2) 

With the double Penning trap method [8] the g-factor of the antiproton can be 
determined with an accuracy of 1 ppb. Such a measurement would represent an 
improvement in accuracy by more than six orders of magnitude and is being prepared 
off-line with a single trapped proton. 

HYBRID TRAP 

Since the magnetic dipole moment of the proton is almost three orders of 
magnitude smaller than that of the electron, the axial frequency jump due to a spinflip 
becomes very small (Equ. 1). Using the same cylindrical trap geometry as for our 
previous heavy-ion experiments on hydrogen-like carbon 12C5+ and oxygen 16O7+ [5], 
the frequency change would be ∆ωz ≈ 2π × 20 mHz, which is practically impossible to 
detect. In order to increase the frequency jump ∆ωz, a novel trap design with a toroidal 
ring electrode made out of solid ferromagnetic material (nickel or cobalt-iron) will be 
used. A sketch of the hybrid trap is shown in Fig. 1, together with the 'Gabrielse-type' 
cylindrical trap. 

The essential advantage of the hybrid trap – compared to the cylindrical trap – for 
the (anti)proton g-factor experiment is the bigger magnitude of the quadratic magnetic 
field component B2, which is due to the smaller distance of the ferromagnetic material 
to the trapped particle. This stronger magnetic inhomogeneity will make it possible to 
detect spinflip transitions of a single trapped (anti)proton. For a given set of trap 
parameters, the axial frequency jump due to a spinflip transition increases from ∆ωz ≈ 
2π × 100 mHz in the case of the cylindrical trap to ∆ωz ≈ 2π × 300 mHz, when the ring 
electrode is replaced by a toroidal electrode (hybrid trap), see Fig. 2. 
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FIGURE 1.  Sketch of the hybrid trap (right-hand side), together with the 'Gabrielse-type' cylindrical 
trap (left-hand side). Only the inner surfaces of the trap electrodes are shown. The lengths of the trap 
electrodes are lR (ring electrode), lK (correction electrodes for harmonicity tuning), and lE (end 
electrodes). R0 is the inner diameter of the cylindrical electrodes. 
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FIGURE 2.  The axial frequency change of a single trapped (anti)proton due to a spinflip transition is 
plotted as a function of the length of the correction electrodes for the two cases of the cylindrical and of 

the novel hybrid trap. 
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The size of the frequency jump depends not only on the shape of the ring electrode, 
but also on other trap parameters, for example the length of the correction electrodes 
which are required for harmonicity tuning of the electrostatic trapping potential. With 
longer correction electrodes the axial frequency jump increases (Fig. 2), because the 
trapping potential becomes shallower (keeping fixed the voltages applied to the 
electrodes) and thus the axial frequency is reduced, which leads to a larger frequency 
change, see Equ. 1. 

The influence of the inner radius of the trap electrodes on the strength of the 
'magnetic bottle' B2 - and thus on the (anti)proton's axial frequency jump - is shown in 
Fig. 3. A substantial increase can be achieved reducing the inner radius R0 from 3.5 
mm, as used in our heavy-ion experiments, to below 2 mm for the (anti)proton g-
factor experiment. 
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FIGURE 3.  Dependence of the 'magnetic bottle' strength B2 on the inner radius R0 of the trap 
electrodes. 

In a detailed study we have investigated all trap parameters to find the optimum 
trap geometry for the (anti)proton g-factor experiment. All trap parameters have been 
considered: the shape, inner radius, length and material of the trap electrodes, the dc 
voltages applied to electrodes, the strength of the magnetic field, etc., and have tried to 
optimize these parameters with respect to 

• the size of the (anti)proton's axial frequency jump, 
• the sensitivity of its axial frequency to external voltage fluctuations, 
• the dependence of its axial frequency on the voltage at the correction 

electrodes ('orthogonality'), 
• the electronic detection sensitivity, 
• the time constants for resistive cooling, 
• harmonicity range of the electrostatic trapping potential, and 
• the stability of the magnetic field strength. 

The results of our study are the topic of a forthcoming publication [9]. 

263

Downloaded 17 Jun 2009 to 137.138.137.193. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



PHASE-SENSITIVE MEASUREMENT OF TRAPPED 
PARTICLE'S EIGENFREQUENCIES 

We have developed and applied a novel method for the precise determination of 
small frequency differences of particle motions inside a Penning trap [10]. This phase-
sensitive method plays an important role in our concept of the (anti)proton g-factor 
measurements. The integrated phase difference of the particle's motion relative to an 
excitation frequency with a well-defined phase is measured. Thereby, the Fourier-limit 
for frequency measurements based on Fourier-analyses of detection signals can be 
overcome. This method will allow us to significantly reduce the necessary 
measurement time and to increase the sensitivity to frequency differences. A related 
experiment which implicitly makes use of motional phase information has been 
described previously for free electrons by Gabrielse et al. [11]. 

The novel method is based on the fact that when the oscillation frequency of the 
trapped particle is different, so is the velocity of its phase evolution relative to a given 
initial phase. This is sketched in Fig. 4: the axial trapping frequency of the (anti)proton 
is lower in the case when its spin is parallel to the external magnetic field. 
Accordingly, the integrated phase of the (anti)proton’s motion after a given time is 
different from the antiparallel case. Experimentally, a well-defined dipolar excitation 
of the particle motion with a fixed phase is performed by use of a burst generator. 
Then the particle is decoupled from the electronics and the phase evolves freely for a 
given waiting time. The phase information is subsequently acquired by re-coupling the 
detection electronics to the trapped particle. Finally, its motion is resistively cooled to 
the initial value for the next measurement to start. Note that it is not necessary to 
evaluate the full frequency information, since the frequency difference itself is 
expressed in terms of a phase difference. Thus, the novel scheme is not restricted by 
the Fourier limit. 

 

FIGURE 4.  Schematic view of the frequency difference as expressed by the 
difference in the phase evolution. 
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OUTLOOK 

Protons can be easily produced within a Penning trap, by bombarding a target with 
a low-energy electron beam. Our experiment starts therefore with the measurement of 
the proton’s g-factor. Antiprotons, on the contrary, are very difficult to produce. 
Worldwide, only the AD facility at CERN and the future FLAIR facility at GSI/FAIR 
deliver low-energy antiprotons. For the measurement of the g-factor of the antiproton 
our experimental apparatus will move from Mainz to either CERN or GSI/FAIR. 
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Abstract. Penning traps offer unique possibilities for storing, manipulating
and investigating charged particles with high sensitivity and accuracy. The
widespread applications of Penning traps in physics and chemistry comprise
e.g. mass spectrometry, laser spectroscopy, measurements of electronic and
nuclear magnetic moments, chemical sample analysis and reaction studies. We
have developed a method, based on the Green’s function approach, which
allows for the analytical calculation of the electrostatic properties of a Penning
trap with arbitrary electrodes. The ansatz features an extension of Dirichlet’s
problem to nontrivial geometries and leads to an analytical solution of the
Laplace equation. As an example we discuss the toroidal hybrid Penning
trap designed for our planned measurements of the magnetic moment of the
(anti)proton. As in the case of cylindrical Penning traps, it is possible to
optimize the properties of the electric trapping fields, which is mandatory for
high-precision experiments with single charged particles. Of particular interest
are the anharmonicity compensation, orthogonality and optimum adjustment of
frequency shifts by the continuous Stern–Gerlach effect in a quantum jump
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spectrometer. The mathematical formalism developed goes beyond the mere
design of novel Penning traps and has potential applications in other fields of
physics and engineering.
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1. Introduction

Penning traps are very suitable for precision experiments with charged particles since they
provide long storage and observation times. Radial confinement is realized by a homogeneous
magnetic field EB; axially the particles are trapped by an electrostatic field EE ‖ EB in a harmonic
trapping potential. Besides being able to confine a single charged particle, it is possible to detect
it non-destructively with an electronic detection technique [1]. Currently, two types of Penning
traps for measurements with relative uncertainties down to 10−13 [2] are being used: hyperbolic
and cylindrical traps [3, 4]. The hyperbolic one has found a wide range of applications in
mass spectrometry [5]. Cylindrical traps have been used for determining the g-factor of an
electron bound in hydrogen-like carbon and oxygen [6, 7] as well as of the free electron [2, 8].
Moreover, Penning traps have been used to measure e.g. the antiproton’s mass [9], masses of
stable particles, atoms [10]–[12], and short-lived radioactive ions [13]–[16]. Furthermore, they
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have been implemented in molecular electric dipole moment experiments [17], antihydrogen
production [18, 19] or the most accurate test of the CPT symmetry in the lepton sector [20].
Such high-precision experiments depend critically on the correct design of the trap being used.
Furthermore, novel kinds of Penning traps are coming into use: because of its scalability, for
example, the planar Penning trap [21]–[23] offers possibilities for quantum computation with
ions or electrons.

Our planned high-precision measurement of the magnetic moment of a single
(anti)proton [24, 25] demands a Penning trap different from any existing one. The determination
of the g-factor results from a precise measurement of the particle’s cyclotron and Larmor
frequencies [6, 7]. Since the latter is an internal degree of freedom, a magnetic bottle is
exploited to imprint the spin state information onto an external degree of freedom, namely
the axial eigenmotion of the particle. This so-called continuous Stern–Gerlach effect is used to
detect the resulting frequency shift and thus the spin state non-destructively [26, 27]. Using a
conventional cylindrical trap, like the one in [26], the continuous Stern–Gerlach effect would
shift the axial frequency of a single (anti)proton on a relative 10−7 scale, making it almost
impossible to detect efficiently. To this end, a novel Penning trap is introduced, which we call
the hybrid Penning trap: a combination of electrodes of different shape, basically cylindrical
end caps and correction electrodes and a toroidal or hyperbolic ring. In particular, the curved
shape of a toroidal ferromagnetic ring enhances the curvature of the magnetic bottle by more
than one order of magnitude compared with a cylindrical ring of similar dimensions and the
same material, therefore making the resolution of the phase-sensitive Stern–Gerlach quantum
jump spectrometer [28] big enough for the efficient determination of the spin state of a single
(anti)proton.

In section 2, a ‘quasi’-Green’s function method is presented which will render the
analytical calculation of a hybrid Penning trap (figure 1) possible. An analytical calculation of
the entire electrostatic properties of a toroidal hybrid Penning trap consisting of two cylindrical
end caps, two cylindrical correction electrodes and one toroidal ring (figure 3) will be presented
in section 3. This trap is used to illustrate the ‘quasi’-Green’s function method developed
in section 2. In section 4, detailed analytical expressions for the design of a toroidal hybrid
Penning trap for high-precision experiments are given. Those formulae make the design of such
traps considerably easier than any numerical approach. In section 5, further applications of
the mathematical formalism developed to other fields of experimental physics are discussed
focusing on ion-trapping technology and microwave engineering. Besides being our motivation
for the measurement for the (anti)proton’s g-factor, the power of this calculation technique
goes beyond the design of the hybrid Penning trap and could be used in many other problems
involving the Laplace equation.

2. The ‘quasi’-Green’s function solution to Dirichlet’s problem

2.1. Definition of the hybrid Penning trap

The Green’s function formalism is a well-known and powerful technique for calculating
electrostatic potentials. In the case of ion traps, the electrostatic potential 8( Ex) usually
has to be calculated within a closed volume defined by some electrodes to which arbitrary
voltages are applied. Mathematically, this problem simply corresponds to solving the Laplace
equation with Dirichlet boundary conditions: if the adequate Green’s function is available, the
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Figure 1. Inner surface of a three-pole hybrid Penning trap. The trap is made up
of axially symmetric electrodes each with a different geometry. For simplicity of
the figure, the upper and lower regions, �I and �III, respectively, are drawn to be
cylindrical.

computation of 8( Ex) becomes straightforward. Green’s functions for electrodes with various
shapes (hyperboloids, oblate and prolate spheroids, toroids, flat-ring cyclide discs, etc) are well
known in the literature [29, 30]. These kinds of electrodes can be put together in many different
ways, so that a vast class of well-defined trapping volumes can theoretically be envisaged with
them. Any such combination of differently shaped electrodes defining a closed trapping region
is what we call a hybrid Penning trap.

2.2. The potential problem in a hybrid Penning trap

Most hybrid traps, even if they are relatively simple like the one outlined in figure 1, do not have
a known analytic expression for the Green’s function fulfilling Dirichlet boundary conditions
on their entire surface. If, however, for each electrode forming the trap, the corresponding
Green’s function, which does meet those conditions on the electrode’s surface, is known, then
it is possible to construct a ‘quasi’-Green’s function for the entire hybrid trap which delivers
an analytic expression for 8( Ex). The next paragraphs show formally how to construct such a
‘quasi’-Green’s function and how to calculate the electric potential with it. For simplicity, we
will restrict the discussion to the trap sketched in figure 1, which is defined by two external
cylindrical electrodes and one central ring with arbitrary but rotationally invariant surface
around the Euz-axis. Generalization of the presented formalism to other trapping geometries
and/or to a higher number of electrodes will become apparent.

In general, the electrostatic boundary-value problem is defined by the following integral
equation [31]:∫

�

d3x ′
[
8( Ex ′)∇ ′2G( Ex | Ex ′) − G( Ex | Ex ′)∇ ′28( Ex ′)

]
=

∮
∂�

dS′

[
8( Ex ′)

∂

∂n′
G( Ex | Ex ′) − G( Ex | Ex ′)

∂

∂n′
8( Ex ′)

]
, (1)
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where � is the trapping volume under consideration, ∂� the surface delimiting that volume,
and 8( Ex ′) the electrostatic potential. G( Ex | Ex ′) represents the Green’s function for the Laplace
equation. It is symmetric with respect to interchanging the source, Ex ′, and field coordinates,
Ex : G( Ex | Ex ′) = G( Ex ′

| Ex). Further, it satisfies

∇
2G( Ex | Ex ′) = ∇

′2G( Ex | Ex ′) = −4πδ
(
Ex − Ex ′

)
; G( Ex | Ex ′) =

1

| Ex − Ex ′|
+ F( Ex | Ex ′). (2)

F( Ex | Ex ′) represents any arbitrary function satisfying ∇
2 F( Ex | Ex ′) = ∇

′2 F( Ex | Ex ′) = 0,

∀ { Ex, Ex ′
} ∈ � . In the case of Dirichlet boundary conditions, F( Ex | Ex ′) is chosen such that the

Green’s function becomes equal to zero at the surface of the trap: GD( Ex | Ex ′) = 0 ∀ Ex ′
∈ ∂�.

The function F( Ex | Ex ′) is thus a solution of the Laplace equation and it represents the potential
of a (mirror) charge distribution external to the volume � [31]. Further, assuming the absence of
free charges within the region where the potential is calculated, ∇28( Ex ′) ∝ ρ( Ex ′) = 0, ∀ Ex ′

∈ �,
equation (1) simplifies to∫

�

d3x ′
[
8( Ex ′)∇ ′2GD( Ex | Ex ′)

]
=

∮
∂�

dS′

[
8( Ex ′)

∂

∂n′
GD( Ex | Ex ′)

]
. (3)

The validity of equation (3) is not restricted to pure Green’s functions satisfying
equation (2), but it applies whenever the volume � is free of charges and for any function
being equal to zero at its surface, GD( Ex | Ex ′) = 0 ∀ Ex ′

∈ ∂�. However, if the proper Green’s
function satisfying Dirichlet boundary conditions is known, then exploiting ∇

2GD( Ex | Ex ′) =

−4πδ ( Ex − Ex ′), equation (3) simplifies to the conventional expression 8( Ex) = −
1

4π

∮
∂�

dS′
·

8( Ex ′) ∂ GD( Ex | Ex ′)

∂n′ . The boundary conditions, 8( Ex ′), are provided by the applied voltages at the trap
electrodes. Thus, the explicit knowledge of GD( Ex | Ex ′) formally solves the potential problem,
reducing it to a simple integral.

2.3. Definition of the ‘quasi’-Green’s function

For the hybrid trap of figure 1, we introduce a ‘quasi’-Green’s function, G̃D( Ex | Ex ′), defined as

G̃D( Ex | Ex ′) =


GD

I ( Ex | Ex ′) Ex ∈ �; Ex ′
∈ �I,

GD
II( Ex | Ex ′) Ex ∈ �; Ex ′

∈ �II,

GD
III( Ex | Ex ′) Ex ∈ �; Ex ′

∈ �III,

(4)

Each volume �i denotes one of the i-regions into which the trapping volume of figure 1 is
divided (see also figure 3). This partition of space is in principle arbitrary but must satisfy the
condition that inside each �i the Green’s function satisfying Dirichlet boundary conditions on
the physical part of that �i -region (i.e. the metallic electrode) must be known. Thus, a set of
functions GD

i ( Ex | Ex ′) must be provided satisfying ∇
2GD

i ( Ex | Ex ′) = ∇
′2GD

i ( Ex | Ex ′) = 4πδ( Ex − Ex ′)

and GD
i ( Ex | Ex ′) = 0 on the corresponding part of the trap’s surface. In the example of figure 1,

the partition is chosen such that there are three �i -regions delimited by the ‘contact’ planes
z′

= ±z1. In principle, many different ‘quasi’-Green’s functions, G̃D( Ex | Ex ′), can be constructed;
the most convenient choice, however, depends on the actual geometry of the trap being
considered.

For the ‘quasi’-Green’s function introduced, the interchange symmetry of the arguments
is broken: G̃D( Ex | Ex ′) 6= G̃D( Ex ′

| Ex). Our focus is on the properties of G̃D with respect to the
source Ex ′. Since the constituting functions GD

i ( Ex | Ex ′) are chosen such that each separately
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Figure 2. Illustration of the Gaussian box enclosing the point Ex ′
= {r ′, ϕ′,

z′
= +z1} which lies on the contact plane separating the regions �I and �II. G̃D

has a finite step discontinuity at any point on that contact plane.

satisfies Dirichlet boundary conditions for the corresponding electrode, the ‘quasi’-Green’s
function satisfies Dirichlet boundary conditions on the entire surface of the trap: G̃D( Ex | Ex ′) = 0,

∀ Ex ′
∈ ∂�. As a consequence of this, equation (3) still holds and will be used in the following

to calculate the potential 8( Ex).

2.4. Solution with the ‘quasi’-Green’s function

In order to obtain 8( Ex) from equation (3), the Laplacian of the ‘quasi’-Green’s function with
respect to the source coordinates, ∇

′2G̃D( Ex | Ex ′), has to be evaluated. For source points within
the trap not lying on any of the contact planes separating the �i -regions, this immediately
yields: ∇

′2G̃D( Ex | Ex ′) = −4πδ( Ex − Ex ′) ∀Ex ′
= {x ′, y′, z′

6= ±z1}, simply due to the definition of
the ‘quasi’-Green’s function. The case of the contact surfaces has to be considered separately.

Note that G̃D( Ex | Ex ′) has a finite-step discontinuity at the planes separating the �i -regions,
Ex ′

= {x ′, y′, z′
= ±z1}. This discontinuity has to be taken into account when calculating the

Laplacian ∇
′2G̃D( Ex | Ex ′) at any of those points. Since ∇

′2 represents a derivative operator and
since the derivative of the Heaviside step-function results in the Dirac-delta, we assume the
following ansatz for ∇

′2G̃D( Ex | Ex ′):

∇
′2G̃D( Ex | Ex ′) = −4πδ( Ex − Ex ′) + δ(z′

− z1) f+( Ex | Ex ′) + δ(z′ + z1) f−( Ex | Ex ′). (5)

With this ansatz, the Laplacian of the ‘quasi’-Green’s function for points not lying on
the contact planes, z′

6= ±z1, is trivially recovered. The functions f±( Ex | Ex ′) still have to be
determined.

It is obvious from equation (5) that it suffices to evaluate f± for points lying on the contact
planes; in cylindrical coordinates: Ex ′

= {r ′, ϕ′, z′
= ±z1} for f±, respectively. On the one hand,

consider an infinitesimal volume dV enclosing the point of interest {r ′, ϕ′, z′
= z1} as shown in

figure 2. The divergence theorem applied to G̃D( Ex | Ex ′) at dV states that∫
dV

d3x ′
· ∇

′2G̃D( Ex | Ex ′) =

∮
S

d ES ′
· ∇

′G̃D( Ex | Ex ′) . (6)

In the limit ε → 0, the lateral surface of the Gaussian box does not contribute to the
surface integral in equation (6), thus

∮
S d ES ′

· ∇
′G̃D( Ex | Ex ′) =

∮
S⊥

dS′

z
∂

∂z′ G̃D( Ex | Ex ′). The top and
bottom surfaces of the Gaussian box of figure 2 are denoted by S⊥; only these contribute to the
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surface integral. The integral on the top surface is performed while z′
= z1 + ε ⇒ z′

∈ �I and
G̃D( Ex | Ex ′) = GD

I ( Ex | Ex ′). For the bottom plane, z′
= z1 − ε and G̃D( Ex | Ex ′) = GD

II( Ex | Ex ′). Further,
dS′

z has the opposite orientation in the latter case as compared with the former, hence leading to∮
S

d ES ′
· ∇

′G̃D( Ex | Ex ′) = lim
ε→0

∮
S⊥

dS′

z

∂

∂z′

[
GD

I ( Ex | r ′, ϕ′, z1 + ε) − GD
II( Ex | r ′, ϕ′, z1 − ε)

]
. (7)

On the other hand, with the ansatz of equation (5) and assuming that Ex 6= Ex ′ (thus Ex is
outside of dV ), the volume integral in equation (6) yields∫

dV
d3x ′

· ∇
′2G̃D( Ex | Ex ′) =

∫
dV

dz′
· dS′

z δ(z − z1) f+( Ex | r ′, ϕ′, z′) =

∫
S⊥

dS′

z f+( Ex | r ′, ϕ′, z1).

(8)

Now, we can obtain the explicit form of f+ by comparing equation (7) with (8). Taking
into account that GD

i ( Ex | Ex ′) =
1

| Ex−Ex ′|
+ FD

i ( Ex | Ex ′), while taking the limit ε → 0 in equation (7),
results in:

f+( Ex | r ′, ϕ′, z1) =
∂

∂z′

[
FD

I ( Ex | r ′, ϕ′, z1) − FD
II ( Ex | r ′, ϕ′, z1)

]
. (9)

The same considerations carried out for the contact plane between regions �II and �III deliver
the function f−:

f−( Ex | r ′, ϕ′, −z1) =
∂

∂z′

[
FD

II ( Ex | r ′, ϕ′, −z1) − FD
III( Ex | r ′, ϕ′, −z1)

]
. (10)

Finally, computing the integral of equation (3) and resolving for 8( Ex), we obtain the
electrostatic potential inside the trap:

8( Ex) = −
1

4π

∮
∂�

dS′ 8( Ex ′)
∂

∂n′
G̃D( Ex | Ex ′)

+
1

2

∫ R0

0
dr ′r ′ 8(r ′, z1)

∂

∂z′

[
FD

I ( Ex | r ′, z1) − FD
II ( Ex | r ′, z1)

]
+

1

2

∫ R0

0
dr ′r ′ 8(r ′, −z1)

∂

∂z′

[
FD

II ( Ex | r ′, −z1) − FD
III( Ex | r ′, −z1)

]
. (11)

In equation (11), R0 represents the radius of the contact surface delimiting the different
�i -regions. Note that the integral over ϕ′ has been assumed to deliver the value 2π in the last
two summands of equation (11). This assumption is valid only if the electrostatic potential is
axially symmetric. If this is not the case, those summands become surface integrals and the
integration over ϕ′

∈ [0, 2π ] still has to be performed. In the usual case of the trap having point
symmetry with respect to its central plane z = 0, the function f− becomes identical to f+ except
for the negative sign. The opposite sign results from the opposite direction of the surface vector
d ES′ when calculating the integral on the right-hand side of equation (6). Taking this symmetry
into account the calculation of the electrostatic potential simplifies to

8( Ex) = −
1

4π

∮
∂�

dS′ 8( Ex ′) ·
∂

∂n′
G̃D( Ex | Ex ′)

+
∫ R0

0
r ′dr ′ 8(r ′, z1) ·

∂

∂z′

[
FD

I ( Ex | r ′, z1) − FD
II ( Ex | r ′, z1)

]
. (12)
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2.5. Properties of the solution

Equation (12), or more generally equation (11), represents the formal solution of the boundary-
value problem defined by the stack of electrodes of figure 1. With explicit knowledge of
FD

i ( Ex | Ex ′), the electrostatic potential inside the trapping volume can be obtained by integration
of equation (12). The main features of equation (12) are as follows.

1. It represents an integral equation: the potential 8( Ex) appears not only as the pre-specified
boundary conditions on the trap’s surface but also in the second integral over the contact
planes where 8( Ex) is a priori unknown.

2. The first integral in equation (12) represents the zeroth-order approximation to the
potential, 80( Ex). It is the linear superposition of the potentials created individually by each
electrode with the corresponding voltage. However, 80( Ex) does not fulfill the boundary
conditions on the surface of the entire trap. Upon putting the electrodes together to form
the trap, the superficial charges induced by each electrode on all others arrange in such
a way that the final electric potential, 8( Ex), fulfills the boundary conditions on the entire
trap’s surface. The influence of these mutually induced charges on the final potential 8( Ex)

is given by the second integral in equation (12) denoted by 18( Ex). The mathematical
expression for the process described is an integral equation: 8( Ex) = 80( Ex) + 18( Ex).

3. If all electrodes have the same shape, the functions F D
i become the same FD

I = FD
II = FD

III

and hence G̃D simplifies to the usual Green’s function. Furthermore, equation (12) reduces
to the well-known expression of the electrostatic potential for the simple Dirichlet’s
problem.

In principle, equations (12) and (11) may be applied to many different problems. Their
generalization to situations where axial symmetry is broken and/or where the shape of
the electrodes is non-cylindrical is straightforward as long as a ‘quasi’-Green’s function as
introduced in equation (4) can be constructed. In order to illustrate the power of the presented
method, the complete calculation of the toroidal hybrid trap is performed with the help of
equation (12) in the next section. The properties of such a trap will be discussed in detail in
section 4. Other possible applications of equation (12) will be briefly presented in section 5.

3. Application of the method: the toroidal hybrid trap

As an example of the formalism presented, we calculate the electrostatic potential within a
Penning trap formed by a toroidal ring of circular cross section and cylindrical correction
electrodes and end caps, which fits exactly in the kind of hybrid trap considered in the previous
section and outlined in figure 1. The toroidal hybrid trap is sketched in detail in figures 3 and 4.
Applying equation (12) to the toroidal hybrid trap is straightforward; the first step consists of
constructing the appropriate ‘quasi’-Green’s function.

3.1. Construction of an appropriate ‘quasi’-Green’s function

The basic Green’s function for the Laplace equation, 1
| Ex−Ex ′|

, has been calculated in cylindrical
coordinates elsewhere [29, 31, 32]. A simple modification of that basic function leads to the
Green’s function inside a cylindrical box satisfying Dirichlet boundary conditions, employing
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Correction

Ring

Correction

End cap

End cap

R

Figure 3. Inner surface of a hybrid Penning trap with toroidal ring electrode
and cylindrical correction electrodes and end caps. Region I includes the upper
correction electrode and end cap, region II includes the toroidal ring, and region
III the lower correction and end cap electrode.

the coordinate system of figure 3:

Gcyl(r, z | r ′, z′)

=
4

L

∞∑
n=1,3,...

cos(κnz) cos(κnz′)
I0(κnr<)

I0(κn R0)

[
I0(κn R0)K0(κnr>) − I0(κnr>)K0(κn R0)

]
. (13)

Here, κn = nπ/L with L being the total length of the trap given by L = 4 d + 2 le + 2 lk + lr.
The notation r>(<) means the bigger (smaller) of (r, r ′). The different letters denote the lengths
of the different electrodes as shown in figure 3: le = length of the end cap, lk = length of the
correction electrode, lr = length of the ring (lr = 2z1), and d = the small gap between electrodes.
The inner radius of the electrodes is given by R0, which coincides with the parameter R0 defined
in section 2. The symbols I0 and K0 represent the modified Bessel functions of zeroth order, first
and second kind, respectively. In equation (13) we have assumed axial symmetry (rotational
invariance around Euz); hence the azimuth angle ϕ does not appear. Further, we have assumed
the electric potential to be point-symmetric with respect to the trap’s center (z = 0); thus only
cos(κnz)-functions appear in the series.

For equation (13) to be strictly valid, the trap should be closed by a grounded disc on
each side allowing for the basic Green’s function in cylindrical coordinates to be simplified
to a series with the summation index κn running over odd n only in contrast to an integral
form with continuous summation index κ . Usually, the traps used in experiments are not closed

New Journal of Physics 10 (2008) 103009 (http://www.njp.org/)

http://www.njp.org/


10

R0

r0

z1

R torus

torus

a = R20 + z ,

,

,

,

.

2
1

v0 = sinh−1(R0/z1)

Rtorus =
R20 + z

2
1

R0

ρtorus =
z1
R0

R20 + z
2
1

r0 =
R20 + z

2
1

z1 + R20 + z
2
1

Given z1 and R0

 torus parameters:

ûz

P1

P1′

Upper and lower points P1 and P1′, in toroidal coordinates:
P1  (u = π /2, v0, ) , P1′  (u = 3π /2, v0, )

ρ

ϕ ϕ

Figure 4. Parameters of the toroidal ring. The outer radius of the torus Rtorus does
not necessarily coincide with the inner radius of the cylindrical electrodes, R0.
This is reflected by the (arbitrarily chosen) upper and lower cut-off planes of the
torus at P1 and P ′

1, respectively: in this example, below the actual north and south
poles of the torus.

by such grounded discs. This issue has been investigated mathematically in [33]: an end cap
three times longer than the inner radius suffices for minimizing deviations (below 1%) of the
trap’s electrical properties calculated with equation (13) compared with those calculated with an
infinitely long open end cap. In addition, the measurement of the electronic g-factor on carbon
and oxygen [6, 7] has shown deviations as low as one part in a million in the experimental
values of the coefficients c2, c4 and d2 [34] from the theoretical predictions of equation (13) (see
section 4). In this latter case, the measurements have been performed with a cylindrical trap
with le ' 2R0. For the toroidal hybrid trap a similar or even better accuracy can be assumed due
to the enhanced shielding of the trap’s center from outside by the toroidal ring.

The basic Green’s function in toroidal coordinates has also been calculated elsewhere
[29, 32, 35]. With it, the Green’s function satisfying Dirichlet boundary conditions on the surface
of a torus with circular cross section can be obtained employing standard techniques [31]; the
result is:

G tor(u, v | u′, v′) =
1

a π

√
cosh v − cos u

√
cosh v′ − cos u′ ·

∞∑
m=0

εm cos(mu) cos(mu′)

×
Pm−(1/2)(cos v<)

Pm−1/2(cosh v0)
·
(
Pm−(1/2)(cosh v0) Qm−(1/2)(cosh v>)

−Pm−(1/2)(cosh v>) Qm−(1/2)(cosh v0)
)
. (14)
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Pm−(1/2) and Qm−(1/2) denote the Legendre functions of first and second kind, respectively.
For the case discussed here with m ∈ N, they are also known as toroidal functions [29, 36].
The Neumann factor [29] is given by εm = 2 − δm,0. The toroidal coordinates {u, v, ϕ} relate
to the Cartesian coordinates via: {x, y, z} = a/(cosh v − cosu) {cos ϕ sinh v, sin ϕ sinh v, sin u}

[29, 35]. In this coordinate system, a toroidal ring is defined by v = v0, with v0 = constant > 0,
u ∈ [0, 2π ] and ϕ ∈ [0, 2π ]. The notation v>(<) in equation (14) again means the bigger
(smaller) of (v, v′). As before, axial symmetry is assumed and hence the azimuth ϕ does not
appear in equation (14). Moreover, the electric potential is assumed to be invariant across
the equatorial plane of the torus; thus only cos(mu)—but no sin(mu)—functions appear in
equation (14).

For further calculation, we set the upper and lower points of the torus looking into the
inner trap’s surface as the points P1 and P ′

1, respectively (see figure 4). In toroidal coordinates
they are given by: P1 ≡ (u = π/2, v0, ϕ) and P ′

1 ≡ (u = 3π/2, v0, ϕ). The choice of P1 and P ′

1
is completely arbitrary; the reason for that specific choice is purely technical: since they are
localized slightly below the ring’s north and south poles, more of the correction electrodes
is seen from the trap’s center, and thus shielding due to the toroidal ring is reduced. An
additional free parameter is the length of the ring seen from the inner side of the trap, lr = 2z1.
Having specified z1, P1, P ′

1 and R0, the toroidal ring is completely defined yielding the toroidal

parameters: a =

√
R2

0 + z2
1 and v0 = sinh−1(R0/z1).

3.2. Potential of the toroidal hybrid trap in zeroth-order approximation

With the geometry of figure 3 chosen, it is obvious that GD
I ( Ex | Ex ′) = G D

III( Ex | Ex ′) ≡ Gcyl( Ex | Ex ′)

and GD
II( Ex | Ex ′) ≡ G tor( Ex | Ex ′). Using Abel’s identity, the Wronskian of the Bessel functions of

equation (13) is evaluated to [36]: I (x) dK (x)

dx −
dI (x)

dx K (x) =
1
x and similarly for the toroidal

functions of equation (14): P(x) dQ(x)

dx −
dP(x)

dx Q(x) =
1
x . With these Wronskian determinants,

the derivative ∂G̃D( Ex, Ex ′)/∂n′ on the trap’s surface is greatly simplified. Using the boundary
conditions of figure 3, the electric potential 80( Ex) = 8cyc( Ex) + 8tor( Ex) is obtained:

8cyl(r, z) = −
1

4π

∫ 2π

0
R0 dϕ′

· 2
∫ L/2

z1

dz′ 8(R0, z′) ·
∂ Gcyl(r, z | r ′, z′)

∂r ′

∣∣∣∣
r ′=R0

=
2

L

∞∑
n=1,3,...

1

I0(κn R0)

[
2
∫ L/2

z1

dz′ 8(R0, z′) cos(κn z′)

]
I0(κn r) · cos(κn z)

(15)

8tor(u, v) = −
1

4π

∫ 2π

0
hϕ′ · dϕ′

∫ 3π/2

π/2
hu′ · du′ 8(v0, u′)

1

hv′

∂ G tor(u, v | u′, v′)

∂v′

∣∣∣∣
v′=v0

=
U0

2π

√
cosh v − cos u

∞∑
m=0,1,...

εm

[∫ 3π/2

π/2
du′

cos(mu′)
√

cosh v0 − cos u′

]
Pm−(1/2)(cosh v0)

Pm−(1/2)(cosh v) · cos(m u).

The factor of 2 appearing in front of the integral
∫ L/2

z1
dz′ arises from the symmetry of the

trap around the z = 0 plane. In the case where the voltages applied to lower correction electrode
and/or end cap differ from those applied to the corresponding upper electrodes, a further integral∫

−z1

−L/2 dz′ would have to be evaluated instead. The scale factors of the toroidal coordinates, hu′

New Journal of Physics 10 (2008) 103009 (http://www.njp.org/)

http://www.njp.org/


12

and hv′ , are equal [35] and in the expression for calculating 8tor they just simplify. On the
other hand, the scale factor hϕ′ =

a sinh v0
cos u′−cosh v0

has to be included in the integral. Furthermore, it
has been assumed that the ring has a constant voltage U0 → 8(u′, v0) = U0 , ∀ u′

∈ [0, 2π ]. As
mentioned before, the latter integral

∫ P ′

1
P1

du′ is delimited to the surface ‘looking’ inside the trap’s
volume. Finally, the toroidal coordinates (u, v) can be transformed into the cylindrical ones
(r, z). The transformation is given by v = 2 Re[coth−1( r+i z

a )] and u = −2 Im[coth−1( r+i z
a )] [35].

3.3. The electric potential of the toroidal hybrid trap

Having obtained the zeroth-order approximation 80(r, z), we are now in a position to solve the
integral equation:

8(r, z) = 80(r, z) +
∫ R0

0
dr ′ r ′ 8(r ′, z1)

[
∂ Fcyl(r, z | r ′, z1)

∂z′
−

∂ Ftor(r, z | r ′, z1)

∂z′

]
︸ ︷︷ ︸

f+(r,z|r ′,z1)

. (16)

The explicit forms of the functions Fcyl(r, z|r ′, z′) and Ftor(r, z|r ′, z′) result from the
corresponding Green’s functions from equations (13) and (14), as defined in equation (2):

Fcyl(r, z | r ′, z′) = −
4

L

∞∑
n=1,3,...

K0(κn R0)

I0(κn R0)
cos(κnz) cos(κnz′) I0(κnr)I0(κnr ′)

(17)

Ftor(u, v | u′, v′) = −
1

aπ

√
cosh v − cos u

√
cosh v′ − cos u′

×

∞∑
m=0

εm
Qm−(1/2)(cosh v0)

Pm−(1/2)(cosh v0)
· cos(mu) cos(mu′) · Pm−(1/2)(cosh v) Pm−(1/2)(cosh v′).

The structure of the integral equation (16) itself already suggests the solution: the zeroth-
order approximation 80(r, z) has to be substituted into the integral on the right-hand side of
equation (16) to get the first-order correction: 181(r, z) =

∫ R0

0 dr ′ r ′ 80(r ′, z1) f+(r, z | r ′, z1),
which leads to the first-order approximation 81(r, z) = 80(r, z) + 181(r, z). The complete
solution of the integral equation is obtained by iteration: 8(r, z) = lim j→∞ 8 j(r, z), where
8 j(r, z) denotes the j th-order approximation to the potential given by:

8 j(r, z) = 80(r, z) +
∫ R0

0
dr ′ r ′ 8 j−1(r

′, z1) f+(r, z | r ′, z1)︸ ︷︷ ︸
18 j (r,z)

. (18)

The zeroth-order approximation of the potential 80(r, z) consists of linear combinations
of the sets of functions {I0(κn r) · cos(κn z)} and {Pm−(12)(cosh v) · cos(m u)} as can be seen
from equation (15). These sets both form a basis of the linear space including the solutions
to the Laplace equation in the appropriate coordinate systems. Additionally, the propagator
f+(r, z|r ′, z1) from equation (17) also consists of a linear combination of {I0(κn r) · cos(κn z)}
and {Pm−(12)(cosh v) · cos(m u)}. Hence, the corrections 18 j(r, z) can be written as linear
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combinations of these sets, and the electric potential can be expanded as follows:

8(r, z) = U0

∞∑
n=1,3...

An I0(κn r) · cos(κn z)

+ U0

√
cosh v − cos u

∞∑
m=0,1,2,...

Bm Pm−(1/2)(cosh v) · cos(mu). (19)

In order to obtain an explicit form of the potential 8(r, z), the coefficients An and Bm have
to be determined iteratively following the scheme presented above. Therefore, the expansion
coefficients of the j th iteration of the potential 8 j(r, z) are given by A( j)

n and B( j)
m . According to

equation (19) their value is related to the coefficients of the zeroth-order approximation through
the correction terms 1A( j)

n and 1B( j)
m such that: A( j)

n = A(0)
n + 1A( j)

n and B( j)
m = B(0)

m + 1B( j)
m .

The zeroth-order approximation of the expansion coefficients can be taken from equation (15).
The correction terms of the j th order are obtained by substituting 8 j−1(r, z) in equation (18).
Resolving for the expansion coefficients yields, with the boundary conditions taken from
figure 3,

A(0)
n =

8

L · d · κ2
n I0(κn R0)

[
sin
(

κn(d + 2z1)

2

)
sin
(

κn d

2

)
−

κn d

2
sin (κn z1)

+2 T sin
(

κn(d + lk)

2

)
cos

(
κn(2d + 2z1 + lk)

2

)
sin
(

κn d

2

)]
; n = 1, 3, 5, . . . ,

(20)

B(0)
m =

1

2π

εm

Pm−(1/2)(cosh v0)

∫ 3π/2

π/2
du

cos(mu)
√

cosh v0 − cos u
; m = 0, 1, 2, . . . ,

In equation (20) the tuning ratio is defined as: T = Uc/U0. The potential at the isolating
gaps between neighboring electrodes has been approximated by a linear interpolation of the
constant voltages applied at those electrodes. This approximation is valid whenever those gaps
are small compared with the lengths of the trap’s electrodes.

The j th-order correction terms of the expansion coefficients are given by

1A( j)
n =

1

U0
αn

∫ R0

0
dr r 8 j−1(r, z1) I0(κn r); αn =

4κn

L

K0(κn R0)

I0(κn R0)
sin(κn z1),

(21)

1B( j)
m =

1

U0
βm

∫ R0

0
dr r 8 j−1(r, z1) Ym(r, z1); βm =

εm

4πa2

Qm−(1/2)(cosh v0)

Pm−(1/2)(cosh v0)
.

The iteration order j obviously starts at j = 1 and should theoretically go up
to infinity. The function Ym(r, z) is given by Ym(r, z) =

√
cosh v − cos u {(4m − 2)

cos(mu)Pm−(3/2)(cosh v) sin u + 4m Pm−(1/2)(cosh v) [sin(mu) − cosh v sin((m + 1)u)]}, which
results from the derivation of the Green’s function of the torus ∂ Ftor(r, z|r ′, z1)/∂z′ as indi-
cated in equation (16). In the expression for Ym(r, z) the toroidal coordinates (u, v) must be
transformed into the cylindrical ones (r, z1).

If for each new iteration the integrals in equation (21) had to be evaluated, the process
of calculating the correction coefficients would be extremely cumbersome. Fortunately, this
is not the case: equation (21) shows that the correction terms 1A( j)

n , 1B( j)
m are related to the
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expansion coefficients A( j−1)
n , B( j−1)

m through a simple linear relation, enabling us to write in
matrix notation:(

1A( j)
p

1B( j)
q

)
=

(
Sp,n Tp,m

Vq,n Wq,m

)
·

(
A( j−1)

n
B( j−1)

m

)
; U =

(
Sp,n Tp,m

Vq,n Wq,m

)
. (22)

The matrices for the correction terms and expansion coefficient are column vectors of
dimension (N + M) × 1, where N and M denote the number of terms used in the expansion
of the cylindrical and toroidal part of 8(r, z), respectively, as can be seen from equation (19).
Theoretically, an exact solution demands N , M → +∞. Moreover, the (N + M) × (N + M)

square matrix U depends only on the geometry of the hybrid trap: U = U(L , R0, z1). It depends
neither on the iteration order j nor on the applied voltages U0, Uc. Its elements are integrals
which need to be evaluated once. The explicit form of U is obtained after some tedious algebraic
calculations; here we just present the result:

Sp,n = αp cos(κnz1) ·


n = p 1

2 R2
0

[
I0 (κn R0)

2
− I1 (κn R0)

2
]
,

n 6= p
R0

κ2
p − κ2

n

[
κp I0(κn R0) I1(κp R0) − κn I0(κp R0) I1(κn R0)

]
Tp,m = αp ·

∫ R0

0
dr r I0(κpr)

√
cosh v − cos u Pm−(1/2)(cosh v) cos(mu),

(23)

Vq,n = βq cos(κnz1) ·

∫ R0

0
dr r Yq(r, z1)I0(κnr),

Wq,m = βq ·

∫ R0

0
dr r Yq(r, z1)

√
cosh v − cos u Pm−(1/2)(cosh v) cos(mu).

In general, the sub-matrices of U each have a different dimension: S ≡ N × N ,
T ≡ N × M , V ≡ M × N and W ≡ M × M . The expansion coefficients An, Bn of the potential
are thus given by(

An

Bm

)
=

∞∑
j=0

U j
·

(
A(0)

n
B(0)

m

)
. (24)

Now, the iteration coefficient j starts from j = 0 since the zeroth-order coefficients
A(0)

n , B(0)
m have to be included in the above summation. Technically, the matrix U together with

the initial zeroth-order coefficients A(0)
n , B(0)

m delivers the solution of the potential 8(r, z) inside
the toroidal hybrid trap.

3.4. Comments on the solution

The main features of the solution for the hybrid trap obtained in the preceding section are the
following:

1. The solution is analytical; the function 8(r, z) is obtained as given in equation (19).
However, the coefficients An, Bm will be in general numerical, with no closed symbolic
expression. The analyticity of 8(r, z) has decisive advantages over a pure numerical
approach when designing the trap. This will become clear in section 4.
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Figure 5. Example of the potential of a toroidal hybrid trap. The ring voltage is
set to U0 = −1 V with a tuning ratio of T = 0.96 and grounded end caps. The
roughness of the zeroth-order approximation 80(r, z) is visible: the boundary
conditions are not fulfilled, neither at the correction electrode nor at the end
cap. On the contrary, the ‘exact solution’ 8100(r, z) fulfills them. All graphs are
calculated with R0 = 2 mm, z1 = 0.46 mm, L = 20.44 mm and N = M = 40.

2. 8(r, z) is a linear combination of functions obeying the Laplace equation; therefore it itself
satisfies ∇

28(r, z) = 0 inside the trapping volume. A plot of 8(r, z) on the surface of the
trap showing that it also satisfies the boundary conditions confirms ex post its validity. This
is demonstrated in figures 5 and 6.

3. An exact calculation of the potential would theoretically require infinite terms and
summands. In practice though, we observe that setting N = M = 20 suffices for calculating
the potential close to the ûz-axis, which is usually the region of interest.

4. The main difficulty in the calculation is the computation of U , which requires (N + M)2

numerical integrations. The complexity of the problem increases quadratically with the
number of terms N , M .

3.5. Convergence of the iterative solution

The convergence of equation (24) is guaranteed by the fact that lim
j→∞

U j
= 0. This can be proved

for any geometrical parameters L , R0, z1 and exploiting that lim
j→∞

α j
n = lim

j→∞

β j
m = 0 ∀ n, m.

Convergence is provided by the fact that K j
0 (κn R0) and Q j

m−1/2(coshv0) tend very rapidly to
zero for increasing j and n, m, respectively. Upon exponentiating, any element of the matrix
U j

n,m contains products of the form αk
n · β l

m with k + l 6 j which tend to zero while k, l → ∞;
therefore lim

j→∞

U j
n,m = 0 holds. In figure 7, the convergence of the particular U j for the example

considered in figures 5 and 6 is shown.
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Figure 6. Left: the curve shows that the boundary conditions are fulfilled at the
ring. Right: optimal tuning ratio as a function of the length of the correction
electrode. For one specific length, lk = 1.25, the optimal tuning ratio can even be
set to 1.

3.6. The electric potential of the cylindrical Penning trap

As a corollary of the calculation of 80(r, z) in the previous section, the potential of the
cylindrical Penning trap is obtained by adding a further integral of the form

∫ z1

−z1
dz′ U0 cos(κn z′)

to 8cyl(r, z) from equation (13), where U0 is the applied voltage to the (cylindrical) ring. With
the boundary conditions shown in figure 3, the potential of the cylindrical Penning trap is given
by:

8cylinder(r, z) = U0

∞∑
n=1,3,...

{
8

L · d · κn
2 · I0(κn R0)

sin
(

κn d

2

)[
sin
(

κn(d + lr)

2

)
+ 2 T sin

(
κn(d + lk)

2

)
cos

(
κn(2d + lr + lk)

2

)]
I0(κnr) · cos(κnz)

}
. (25)

Here, lr = 2 z1 is now the length of the cylindrical ring. All electrostatic properties of the
cylindrical five-electrode Penning trap can be deduced from equation (25). Of special relevance
for precision experiments are compensation and orthogonality, which will be investigated for
the toroidal hybrid trap in section 4.

3.7. The electric potential of a toroidal ring

As in the case of the cylindrical trap, the electric potential created by a ring of circular
cross section at a constant voltage is obtained as a corollary of the calculation of 80(r, z) for
the toroidal hybrid trap. Taking into account that

∫ 2π

0 du′ cos(mu′)
√

cosh v0−cos u′
= 2

√
2 Qm−(1/2)(cosh v0)

[29, 37], we have

8torus(u, v) = U0

√
2

π

√
cosh v − cos u

∞∑
m=0,1,...

εm
Qm−(1/2)(cosh v0)

Pm−(1/2)(cosh v0)
Pm−(1/2)(cosh v) · cos(mu).

(26)
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Figure 7. Example of the convergence of
∑

∞

j=0 U j . The semilogarithmic plot
on the left shows how the norm of the U vanishes with increasing exponent:
| U j

|→ 0. The graph on the right shows the convergence of an arbitrary element
of
∑

∞

j=0 U j after having added a few summands to the series. All elements of
that matrix satisfy this behavior.

This expression is valid for points outside the torus. It can be converted to Cartesian (x, y, z)
or cylindrical coordinates (r, ϕ, z) with the transformations given in sections 3.1 and 3.2,
respectively.

4. Anharmonicity compensation and orthogonality of the toroidal hybrid trap

Precision experiments with ion traps depend critically on the electrostatic performance of the
trap. For example, the compensation of electrostatic anharmonicities of a Penning trap was first
achieved by Dehmelt [38] in the context of his famous g − 2 experiment [4]. The so-called
c j - and d j -coefficients determine systematically the electrostatic properties of any Penning trap
and are essential for its accurate design. These coefficients have been extensively investigated
for both truncated hyperbolic [39] and cylindrical traps [3]. Their meaning and relevance for
high-precision Penning trap experiments is also described in [40]. In this section, we will
derive analytic expressions for c j - and d j -coefficients for the toroidal hybrid trap. This will
clearly illustrate the power of the method developed in section 3. The task of designing a
suitable toroidal hybrid trap for high-precision experiments, like the planned measurement
of the g-factor of the (anti)proton, is enormously simplified having analytic expressions for
the fundamental coefficients c2, c4, c6 and d2. Higher-order coefficients can also be calculated
without any additional numerical effort.

4.1. Determination of c2, c4 and c6 for the toroidal hybrid trap

Close to the center of the trap (r = z = 0) the electrostatic potential of equation (19) can be
expressed as a Taylor expansion of the form:

8(r, z) = 80 + r
∂8

∂r
+ z

∂8

∂z
+

r 2

2!

∂28

∂r 2
+

z2

2!

∂28

∂z2
+ · · · =

∞∑
j=0

j∑
i=0

(
j
i

)
∂ j8

∂r i∂z j−i
r i z j−i , (27)
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where all derivatives are evaluated at r = z = 0. We define the c j -coefficients as

c j =
1

U0
·

1

j!
·
∂ j8(r, z)

∂z j

∣∣∣
(0,0)

. (28)

These coefficients are solely functions of the trap geometry and the applied tuning ratio:
c j = c j(le, lk, lr, d, R0, T ). From equation (19) the determination of c j is straightforward
through direct derivation. The first most relevant ones are given by

c2 = −
1

2

(
∞∑

n=1,3,...

An κ2
n +

√
2

a2

∞∑
m=0,1,...

Bm(−1)m(4m2 + 1)

)
,

c4 =
1

24

(
∞∑

n=1,3,...

An κ4
n +

√
2

a4

∞∑
m=0,1,...

Bm(−1)m(16m4 + 56m2 + 9)

)
, (29)

c6 =
1

720

(
∞∑

n=1,3,...

An κ6
n +

√
2

a6

∞∑
m=0,1,...

Bm(−1)m(64m6 + 512m4 + 1756m2 + 225)

)
.

Note that due to the symmetry of the potential across z = 0, all odd coefficients vanish.
Thus, with the coefficients An and Bm of equation (24) already computed, the c j -coefficients
can be found without loss of accuracy.

4.2. Optimal tuning ratio and orthogonality

The c j -coefficients can be written as the sum of two terms: c j = e j(le, lk, lr, d, a)

+ T · d j(le, lk, lr, d, a), which can be seen from equation (20). If the applied tuning ratio
T = Uc/U0 is chosen such that T = −e4/d4, then c4 is automatically canceled. The biggest
electric anharmonicity is normally represented by that coefficient. With c4 = 0 the trap is said
to be compensated and T = −e4/d4 is the optimal tuning ratio. Compensation is absolutely
necessary for many high-precision experiments since, as a result, the frequency of the trapped
particle does not depend on its oscillation amplitude. Thus, uncontrolled or systematic errors
are substantially reduced and the frequency can be treated as a constant for many applications.
The specific optimal tuning ratio for the toroidal hybrid trap in the example of figure 5 can be
taken from figure 8 after having computed c4 with equation (29) for different values of T .

An additional property usually desired in precision Penning traps is the orthogonality [3].
A trap is said to be orthogonal when the curvature of the trapping potential is independent of the
applied tuning ratio: c2 6= c2(T ) or d2 =

∂ c2
∂ T = 0. As before, the d2-coefficient is received from

equation (29) through derivation:

d2 = −
1

2

(
∞∑

n=1,3,...

∂ An

∂ T
κ2

n +

√
2

a2

∞∑
m=0,1,...

∂ Bm

∂ T
(−1)m(4m2 + 1)

)
. (30)

To compute ∂ An
∂ T , ∂ Bm

∂ T , the zeroth-order coefficients A(0)
n , B(0)

m from equation (20) first have
to be derived and, subsequently, equation (24) is used to achieve the desired level of precision.

In figure 8, d2 has been calculated as a function of the length of the correction electrode lk ,
while keeping all other geometric parameters constant. It can be seen that for one specific lk the
d2-coefficient is equal to zero and the trap of the example becomes orthogonal.
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Figure 8. Left: the c4 term can be canceled by applying the optimal tuning ratio.
Right: a specific lk makes d2 = 0 and the trap becomes orthogonal.

Table 1. Parameters of an orthogonalized and compensated toroidal hybrid trap.

Geometric and electrical properties

R0 3.600 mm d2 4.02797 × 10−5 mm−2

z1 0.200 mm Tc4 0.913088
lk 1.279 mm c4(Tc4) −2.51735 × 10−8 mm−4

le 8.741 mm c6(Tc4) −3.43197 × 10−5 mm−6

4.3. Numerical example for an orthogonal and compensated toroidal hybrid trap

Table 1 shows a numerical example for an orthogonal and compensated toroidal hybrid trap.
To achieve this, the trap is first made orthogonal for a specific thickness of the ring lr via the
corresponding length of the correction electrode lk. Subsequently, the coefficient c4 is tuned
to zero with the appropriate tuning ratio. Finally, the value of the coefficient c6 is determined.
Since machining of the parts sets a limit of some micrometres to the accuracy achievable, the
coefficients will never be identical to zero. As a measure of how well the trap is orthogonalized,
it is therefore convenient to examine the change of axial frequency νz as a function of the tuning
ratio. With the calculated d2-coefficient of d2 = 4.02797 × 10−5 mm−2, a micro-unit change in
the tuning ratio shifts νz by 0.1 mHz at an axial frequency in the case of a singly trapped proton
of roughly 700 kHz, which is negligible.

Thus, we have demonstrated that the parameters of the toroidal hybrid trap can be tuned
in such a way as to yield a harmonic potential and an orthogonal trap, where the axial
frequency depends neither on the axial energy nor the voltage applied to the correction electrode.
Finally, the hybrid traps offer all the tuning possibilities for which cylindrical Penning traps are
exploited.

5. Further applications

The calculation of the toroidal hybrid trap for the measurement of the g-factor of the
(anti)proton [24, 25] has been the main motivation for the general method developed in
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Figure 9. The hyperbolic hybrid trap is an interesting possibility which can be
calculated analytically with the ‘quasi’-Green’s function method of section 3.

section 2. Beyond that, the method can solve the Laplace equation analytically in many other
situations. Here, we want to comment briefly on some possibilities.

5.1. Other possible hybrid traps

Different hybrid traps can be thought of just by replacing the toroidal ring by other electrodes
with more convenient shapes depending on the goal of the experiments. For example, in
high-precision mass measurements with experimental setups at room temperature, like those
of [15, 41], traditional hyperbolic Penning traps are commonly used. This is due to the larger
volume in which the potential is harmonic as compared with cylindrical traps. However, no
analytic formulae have been known for these traps until now. A hyperbolic hybrid trap with a
(truncated) hyperbolic ring and cylindrical correction electrodes and end caps would have a very
similar harmonicity volume plus the advantages of being open, and therefore easily accessible
for beam-lines. Moreover, it would be much easier to design with the method of section 2
and easier to machine. The basic Green’s function 1

| Ex−Ex ′|
is well known in oblate spheroidal

coordinates [29, 30, 32], with which the ‘quasi’-Green’s function for the hyperbolic hybrid
trap can be constructed, and hence application of equation (12) becomes straightforward. A
comparison between the hyperbolic and toroidal hybrid trap is shown in figure 9.

Additionally, with the method employed for the toroidal trap, an appropriate ‘quasi’-
Green’s function for the classical hyperbolic trap (hyperbolic ring and end caps) might be
constructed using oblate spheroidal coordinates; with it an analytical solution to that trap might
be obtained.

5.2. Applications to planar traps

Another interesting problem that can immediately be solved with the ‘quasi’-Green’s function
method of section 2 is the propagation of microwaves in quasi-TEM modes [42] in planar
structures like micro strips, coplanar waveguides and slot lines. For instance, coplanar
waveguides (short CPW) have been used recently for building planar cavities in circuit-QED
experiments [43]. Experiments where the electromagnetic field of a CPW cavity is coupled
to ions, neutral atoms [44] or even polar molecules [45, 46] have been proposed or are under
construction. The problem of calculating the propagating quasi-TEM modes arises through the
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different dielectric constant (ε) of the substrate and the ‘air side’ of the transmission line [47].
This can be easily overcome just by partitioning the space into two regions with different
Green’s functions, each with the corresponding ε and again applying equation (12). With the
Green’s function in rectangular Cartesian coordinates, the problem can in principle be solved
easily. It must be mentioned that analytical solutions for the micro strip, CPW and slot lines
have been found already [47]–[49]. However, extensions to situations with multiple substrates,
partial filling with other dielectrica, etc can be handled conveniently with the ‘quasi’-Green’s
function method of section 2 while being inaccessible by other means.

6. Conclusion

Within this article, we have presented an analytically solvable extension of Dirichlet’s problem.
The analytical calculation of the electric potential distribution of a novel kind of Penning trap,
the hybrid trap, has been performed. The hybrid Penning trap introduced represents a new
powerful tool in high-precision experiments. Intricate mass and g-factor measurements, such as
our planned measurement of the (anti)proton’s magnetic moment, appear feasible by using this
novel type of trap. As mentioned before, in order to make use of the continuous Stern–Gerlach
effect, a strong magnetic bottle with a high curvature B2 is required. The magnetic bottle
is superimposed onto the homogeneous magnetic field B0 needed for radial confinement
yielding a net magnetic field along Euz of the form: Bz = B0 + B2 z2. For our measurement
of the (anti)proton’s magnetic moment, we have manufactured a toroidal hybrid trap with
B2 ∼ 400 mT mm−2, resulting in a frequency shift of about 200 mHz for a single (anti)proton
at ∼ 700 kHz axial frequency, thus enabling the non-destructive detection of the (anti)proton’s
spin state [28]. This has been our main motivation for developing the hybrid Penning trap. A
complete discussion on all the advantages of this toroidal trap over other conventional designs
with hyperbolic or cylindrical traps for the measurement of the (anti)proton’s magnetic moment
goes beyond the scope of this paper and will be reviewed in future publications.

Another type of hybrid trap can be realized by replacing the center ring by a hyperboloid,
as seen in figure 9. The hyperbolic hybrid Penning trap is an attractive alternative to classical
hyperbolic traps with truncated electrodes. Avoiding the difficult manufacturing process of the
hyperbolic end caps and correction electrodes used in pure hyperbolic Penning traps is only one
of the advantages of the hybrid hyperbolic trap worth mentioning. Additional advantages are
the open access for particle injection and the good anharmonicity behavior. Furthermore, other
shapes can be thought of, with which hybrid traps could increase the range of applications of
Penning traps in experimental physics.

Finally, the ‘quasi’-Green’s function formalism developed can be extended to other
problems of interest in physics and engineering. Future experiments with planar traps using
microwave guides might profit from this technique.
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1. Introduction

The magnetic moment is one of the basic quantities of any atomic system. For multi-

electron atoms or ions it provides information on the wave function and represents an

important quantity to test atomic physics calculations. This is particularly true for

systems with few electrons where the magnetic moment can be calculated with high

precision.

Penning traps have in recent years contributed substantially to our knowledge of

magnetic moments in charged systems. In fact the most precise measurements to date

arise from Penning trap experiments using different techniques. The magnetic moment

of the electron bound in singly charged alkali-like ions has been determined in various

experiments with typical fractional uncertainty of 10−8 using optical-microwave double

resonance technique [1, 2, 3]. With similar techniques nuclear magnetic moments of

those systems have been derived with uncertainties in the range of 10−6 [2, 4, 5].

For fundamental particles the most notable result has been obtained for the free

electron. Based on the pioneering experiments of Dehmelt and coworkers [6] recently

Gabrielse and coworkers have determined the magnetic moment of the electron with

extreme precision [7]. Usually it is expressed in units of the Bohr magneton μB = (e/m)�

using the dimensionless g factor:

�μ = gμB�s (1)

where s is the electron spin. Presently the most precise value for g is [7]

g = 2.002 319 304 361 46 (56).

This value can be compared with quantum electrodynamics (QED) calculations which

are expressed in a perturbation series using the fine structure constant α as expansion

parameter:

g = 2 + C1(α/π) + C2(α/π)2 + C3(α/π)3 + C4(α/π)4 + ... . (2)

While the coefficients Cn have been calculated with sufficient accuracy up to the forth

order and also additional correction from hadronic contributions have been included

[8, 9], the value for α is not known accurate enough to match the experimental precision.

It has been generally agreed that the most precise value for α can be derived from a

comparison of the experimental and theoretical value for the electrons g factor [9, 10].

When the electron is bound to a nucleus forming a hydrogen-like system the g factor

is changed by binding corrections, additional bound-state quantum electrodynamics

(BS-QED) contributions, and by nuclear structure effects. In recent years these

contributions have been calculated to high accuracy [11, 12]. Measurements to test these

calculations have been performed on C5+ [13] and O7+ [14]. In these experiments single

ions have been confined in a double Penning trap [15]. The spin precession frequency of

the bound electron ωL = g(e/m)sB is measured simultaneously with the ions cyclotron
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frequency ωc = (qe/M)B. Here q is the charge state of the ion and M its mass, and the

g factor follows from the ratio of the frequencies

g = 2
ωL

ωc

m

M

q

e
(3)

provided the electron/ion mass ratio m/M is known. Within the uncertainty of about

10−9 the results agree with BS-QED calculations and represent a stringent test of the

theory.

The BS-QED contributions scale approximately with the square of the nuclear

charge Z of the H-like ion. Thus measuring the g-factor of systems with higher Z would

represent a more stringent test of the BS-QED calculations. In the experiments on

C5+ and O7+ the ions were produced by consecutive electro-ionization within the trap

system. Going to higher-Z systems requires higher electron energies to account for the

increasing electron binding energies of the ions. Technical reasons limit the energies in

a closed system to a few keV. New experiments have been started at the University of

Mainz with the aim of measuring the g factor of the electron bound in Si13+ and Ca19+.

Also the electron g factor of of Li-like Si11+ and Ca17+ will be measured. A comparison of

H- and Li-like ions of the same element will eliminate partly uncertainties from nuclear

structure contributions [Shabaev]. Ca19+ is the highest-Z ion which is accessible with a

setup similar as used in the experiments on C5+ and O7+. The experiments are based

on the same principles as in the preceding experiments. Details will be given below.

Similarly attempts are under way to determine the g factor of the proton with

high accuracy [16]. This is considered as a feasibility test for planned experiments on

the anti-proton using the same technique. The comparison of the magnetic moments

of proton and anti-proton would represent a test of the CPT invariance for baryonic

systems.

The purpose of this contribution is to present the status of both experiments. As

it will be outlined below they have reached a status which allows expecting first results

in the near future.

2. Experimental method

In our experiments a single ion or proton is produced by electron bombardment and

confined in a Penning trap. The Penning trap has been described extensively in the

literature [17, 18]. The presence of the ion is detected by the image currents induced in

the traps electrodes by the ions oscillation. In order to keep the noise of the detection

circuits small the trap as well as the attached amplifiers are kept at liquid helium

temperature. The detection circuits consists of high-quality resonance circuits with

the trap electrodes as capacitance. The resonance frequencies are chosen at the ions

oscillation frequencies in axial and radial direction, respectively. A Fourier transform

of the induced noise spectrum reveals the ion oscillation frequencies. In a Penning trap

we have three different oscillation frequencies. The axial frequency in the direction of

the magnetic field is given by ωz = (qU/Md2)1/2 with U the potential difference applied
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between the trap electrodes and d the traps characteristic dimension. On the radial

plane we have the so-called perturbed cyclotron frequency ω+ = ωc/2+(ω2
c/4−ω2

z/2)1/2

and the “magnetron frequency” ω− = ωc/2− (ω2
c/4−ω2

z/2)1/2. The square sum of these

three frequencies gives the cyclotron frequency of the free particle as required for the

calibration of the magnetic field:

ω2
+ + ω2

− + ω2
z = ω2

c .

This relation (“invariance theorem”) is in first order independent of perturbations by

trap imperfections which may shift the frequencies [17].

The spin precession frequency ωL of the bound electron is determined by a

measurement of the energy difference ΔE between the two spin directions

ωL = ΔE/� = g
e

2m
B. (4)

Spin flips are induced by microwaves blown into the trap. They are detected by the

“continuous Stern-Gerlach effect” [18, 19, 20]: The central ring electrode of the Penning

trap is made from ferromagnetic material. This deforms the magnetic field in a bottle-

like manner:

B = B0 + B2

(

z2 − ρ2

2

)

. (5)

In the inhomogeneous magnetic field the force acting on the electrons magnetic moment

adds or subtracts, depending on the spin orientation, to the electric binding force of the

Penning trap. This causes a slight difference in the ions axial oscillation frequency

ω
′
z
∼= ωz ± μzB2

mωz

= ωz ± δωz . (6)

When a spin flip is induced by microwaves blown into the trap the change in axial

frequency serves as monitor. For typical operating parameters in our experiments this

frequency change is rather small: It accounts for about 200 mHz in the case of Si13+

and Ca19+ and about 10 mHz for the proton, while the axial oscillation frequency is in

the few hundred kHz range. The detection of these small frequency changes represents

an experimental challenge, requiring extremely stable trap operating conditions. The

previous experiments on C5+ and O7+ demonstrate that induced spin flips can be

detected without ambiguity. Feasibility tests have shown that the sensitivity of spin

flip detection can be improved by measuring phase differences of the axial oscillation

frequencies [21].

Since the inhomogeneous magnetic field of the trap, required for analysis of the

spin direction, would lead to a broadening and asymmetry of the spin and motional

frequencies we separate the region where spin flips are induced from the one where the

spin direction is determined using a double trap technique. The spin direction is first

determined in a “analysis” trap with superimposed inhomogeneous B -field. Then the

ion is transferred to a second trap (“precision trap”) located a few cm apart where the

magnetic field is kept homogeneous. The geometry of this trap is identical with the
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analysis trap. Here attempts to induce spin transitions take place. The ion is then

transferred back to the analysis trap where the spin direction is probed. The spin flip

probability as function of the microwave frequency shows a maximum at the Larmor

precession frequency. While the ion is in the precision trap its motional frequencies are

determined as described above. The simultaneous measurement of cyclotron and Larmor

frequency eliminates to a large degree uncertainties caused by unavoidable temporal

instabilities of the magnetic field. From the ratio of both frequencies the g factor is

determined according to equation (3) provided the electron/ion mass ratio is known.

3. g-factor of Si13+ and Ca19+

We are in the process to determine the g factor of the electron bound in hydrogen-like

Si13+ and Ca19+. For this purpose we have extended the double Penning trap as used

in the experiments on C5+ and O7+ by a third trap (“creation trap”) which acts to

produce highly charged ions by charge breeding similar as in EBIT ion sources [22].

Figure 1 shows an outline and a photograph of the triple trap. The electrodes of 7

mm inner diameter are made from oxygen free copper and the surfaces are gold plated.

The precision and the analysis trap consist of a ring and two endcap electrodes and

correction electrodes placed between them. In contrast the creation trap has only three

electrodes.

1
7

1
m

m

Figure 1. Outline (left) and photograph (right) of the triple Penning trap. The total
length is about 17 cm.

Singly charged ions are produced by electrons emitted from a field emission point
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at a few hundred eV energy and reflected at hyperbolical shaped electrodes a few cm

apart. They hit a target surface from which the required ions as well as impurity ions

are detached. They are stored in the creation trap and by consecutive ionization higher

charged states are produced. A mass spectrum of the stored ions can be obtained when

the voltage applied to creation trap electrodes is scanned. Since the ions axial oscillation

frequency depends on the charge-to-mass ratio and the square root of the applied voltage

the trapped ions are consecutively brought into resonance with a tank circuit attached

to the electrode. In case of resonance the noise power across the tank circuit increases

by the induced noise from the axial oscillation. The noise is amplified and displayed as

shown for the preparation trap in figure 2.

Figure 2. Induced noise in the axial detection circuit from oscillating 28Si ions in
different charge states when the trap voltage is scanned.

Strong radio-frequency excitation of the axial oscillation at their respective

frequencies eliminates all ion species except those under investigation from the trap.

Then the trap potential depth is carefully reduced and ions of large oscillation amplitude

will leave the trap until a single particle is left. The ion is kept continuously in resonance

with the circuits and its oscillation amplitude is damped by he induced currents until

it reaches temperature equilibrium with the environment. The presence of the ion in

thermal equilibrium with the environment manifest itself by a minimum in the noise

spectrum of the axial tank circuit (figure 3a). This can be understood when we consider

the oscillating ion as an equivalent series resonance circuit. Its quality factor is very high

since there is little damping of the axial oscillation. At its resonance frequency the noise

voltage across the attached parallel circuit is shortcut leading to the observed minimum

in the spectral density. After averaging for about 90 seconds the axial frequency can

be determined with uncertainties below 100 mHz. As stated above this is a necessary

requirement to detect induced spin flips through the change in axial frequency.
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Figure 3. a(upper trace): Axial signal from a single Si12+ ion resistively cooled to
4K. b(lower trace): Split of the axial resonance into two components when axial and
cyclotron oscillations are coupled by an additional rf field at their frequency difference.

When we couple the axial to the cyclotron motion by an additional r.f. quadrupole

field at the frequency ωcouple = ω+ − ωz + δ, where δ is a detuning from the frequency

difference, the axial dip splits into two components [15] (see figure 3b). From the

splitting the perturbed cyclotron frequency can be obtained through

ω+ = ωcouple + ωz − 2

(
ωr + ωl

2
− ωz

)

(7)

The uncertainty of the observed minima in figure 3 allows determining the cyclotron

frequency of (nominally 28 MHz in a B -field of 3.7 T in case of Si13+) to a few parts in

10−9.

Presently the detection of the spin direction is being prepared and we expect to

observe induced spin flips in the near future.

On the theoretical side calculations of the different contributions to the g factor of

hydrogen-like Si13+ and Ca19+ are available. They are listed in table 1.

Table 1. Theoretical contributions to the electron g factor in hydrogen-like 40Ca19+

and 28Si13+. The values are taken from [11] for Ca and from [23] for Si. The largest
uncertainty comes from an estimate of uncalculated higher order terms.

Ion Dirac value BS-QED Nuclear effects Total
40Ca19+ 1.985 723 203 7(1) 0.002 333 287 8(100) 0.000 000 4100 1.988 056 946 6(100)
28Si13+ 1.993 023 570 6(1) 0.002 328 682 0(100) 0.000 000 4050 1.988 057 010 0(100)
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To evaluate the g factor from the measured ωL/ωc frequency ratio the mass ratio

m/M of the electron to the ion has to be known accurately. The electron mass (in atomic

units) is known to 5.3 · 10−10 [24]. The masses of 40Ca and 28Si have been determined

by the SMILETRAP group in Stockholm to 7 · 10−10 [25] and 4 · 10−11 [26], respectively.

4. g-factor of the (anti)proton

The magnetic moment of the proton is known to 8 significant digits from measurements

of the hydrogen hyperfine structure [27]. An improvement of this number would be of

little interest in itself since presently it cannot be calculated to the aimed accuracy from

strong interaction models. On the other hand the magnetic moment of the antiproton is

currently known from measurements of the fine structure splitting of X-ray transitions

in antiprotonic lead atoms to a precision of only 10−3 [28]. A proposal to determine the

g-factor of the antiproton by means of spectroscopy of antiprotonic helium [29] aims for

an uncertainty of 10−5. An accuracy of the same order of magnitude as for the proton

would allow to compare both numbers as test of the CPT invariance for baryonic systems

[30].

Penning traps offer the opportunity to measure the g factor of the antiproton with

high accuracy using the same method as described above for H-like ions. As a first

step towards this goal we have set up an experiment to determine the g-factor of the

proton, potentially improving the existing value. The advantage of performing the

measurement on a single isolated particle is that the result is free of any corrections

from the environment and the precision is only limited by technical limitations such as

stability of the traps electric and magnetic fields. If successful we plan to use the setup

for antiprotons when a source of low energy antiprotons will be available at the Fair

facility of GSI/Darmstadt [31].

The proton trap, shown in figure 4 and described previously in [32], is a cylindrical

double trap made of gold plated OFHC copper. The inner diameter at the precision trap

is 3.5 mm and at the analysis trap 1.3 mm. The diameter at the analysis trap is made

smaller in order to increase the magnetic field inhomogeneity produced by a CoFe ring

electrode. For the same purpose this electrode was designed in toroidal geometry [32].

According to equation (6) this leads to a larger change in the axial oscillation frequency

upon an induced spin flip. We have calculated a B2 term (see equation (5)) of 400

T/mm2. This will lead to an axial frequency change of 220 mHz at a total frequency of

about 690 kHz. The trap is placed in a closed vacuum system and is held at cryogenic

temperatures of about 4 K by a Gifford MacMahon pulse tube cooler. This ensures

ultrahigh vacuum by cryopumping and long storage times of the proton.

The protons are created inside the trap system by electron impact from a black

polyethylene target, using a field emission point as electron source. They are detected

by noise induced in high-Q resonant circuits attached to the trap. Figure 5 shows a

Fourier-transform of the noise in the radial detection circuit with a maximum noise

power at the frequency of the perturbed cyclotron oscillation at 29 MHz. The proton
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Figure 4. Sketch of the double trap for (anti)proton g factor determination.

is excited to a few eV energy by a resonant rf field. The fractional uncertainty of the

central frequency is of the order of 3 · 10−8.

Figure 5. Fourier-transform of the noise in the radial detection circuit showing a
maximum at the perturbed cyclotron frequency induced by a single trapped proton.

When we keep the ion in resonance with the detection circuit the cyclotron

oscillation is damped by energy dissipation. This is monitored by the change in the
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perturbed cyclotron frequency when the cyclotron radius is reduced during the cooling

process. This arises from uncompensated higher order contributions in the trapping

potential. Figure 6 shows an example. The time constant for cyclotron cooling was

determined to 52 s. The frequency drift, as well as the time constant are in agreement

to calculations.

Figure 6. Change of the cyclotron frequency of a single proton in the analysis trap
by resistive cooling.

In the axial direction a minimum in the noise power is detected similar as previously

described for H-like ions when the proton is in thermal equilibrium with the circuit.

Figure 7 shows the axial resonance after averaging for 90 s. High resolution scans of the

signal show that the axial frequency can be determined with uncertainties below 100

mHz, sufficient to detect changes upon an induced spin flip.

Figure 7. Axial resonance of a single proton in thermal equilibrium with a circuit at
4 K.
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5. Conclusion

The experimental setups for precise g factor measurements on medium-heavy hydrogen-

or lithium-like ions as well as on bare protons have been completed. Single particles

have been stored for times exceeding several days. Their energy has been reduced in

all degrees of freedom to the ambient temperature by resistive cooling using high-Q

circuits held at liquid helium temperature. Presently measurement to determine the

motional frequencies with high accuracy in order to calibrate the magnetic fields of

the Penning traps. Transport of the particles between the two potential minima of

the double Penning trap has been successfully performed. We expect the detection of

induced spin flips in the near future. The prospects are that the g factors derived from

the ratio of the Larmor- and the cyclotron frequencies will have uncertainties of 10−9

or below. This will represent a significant contribution to tests of bound state quantum

electrodynamic calculations and to a future test of CPT invariance for protons and

antiprotons.
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[32] Verdú J et al 2008 New J. Phys. 10 103009


	Verdu_NJP_10_103009(2008).pdf
	1. Introduction
	2. The `quasi'-Green's function solution to Dirichlet's problem
	2.1. Definition of the hybrid Penning trap
	2.2. The potential problem in a hybrid Penning trap
	2.3. Definition of the `quasi'-Green's function
	2.4. Solution with the `quasi'-Green's function
	2.5. Properties of the solution

	3. Application of the method: the toroidal hybrid trap
	3.1. Construction of an appropriate `quasi'-Green's function
	3.2. Potential of the toroidal hybrid trap in zeroth-order approximation
	3.3. The electric potential of the toroidal hybrid trap
	3.4. Comments on the solution
	3.5. Convergence of the iterative solution
	3.6. The electric potential of the cylindrical Penning trap
	3.7. The electric potential of a toroidal ring

	4. Anharmonicity compensation and orthogonality of the toroidal hybrid trap
	4.1. Determination of c2, c4 and c6 for the toroidal hybrid trap
	4.2. Optimal tuning ratio and orthogonality
	4.3. Numerical example for an orthogonal and compensated toroidal hybrid trap

	5. Further applications
	5.1. Other possible hybrid traps
	5.2. Applications to planar traps

	6. Conclusion
	Acknowledgments
	References


	copyright: 


