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Abstract

The thesis investigates production and decay processes of the Higgs boson and of a new scalar
in a framework “beyond the Standard Model of particle physics”, which additionally includes a
small and warped extra dimension: the Randall-Sundrum (RS) model. The RS model gives a
natural explanation for the apparently huge hierarchy between the Planck and the weak energy
scales, and for the gauge hierarchy problem arising from the fact that the theoretical prediction
of the physical Higgs boson’s mass depends on the scale of very high energies. Furthermore, it
offers an appealing framework for investigating questions of the flavor sector of particles, e.g.
the hierarchies that are observed between the masses of fermions, or suppression mechanisms
for flavor changing neutral currents.

In most parts of the thesis, a scenario of the RS model is considered, in which all the particle
fields, including the Higgs field, can extend into the bulk, the whole five-dimensional space-time.
Whereas this scenario can be regarded as an especially natural realization of the RS model, it is
also proven that the predictions for the Higgs processes lie significantly closer to the Standard
Model predictions, compared to realizations of the RS model where the Higgs field is localized on
a four-dimensional subspace, a brane. In this regard, the tree-level vertices of the Higgs couplings
depend in a complicated manner on the shape of the Higgs profile in the extra dimension. Due
to the compactified extra dimension, towers of Kaluza-Klein (KK) particles are predicted as
heavy copies of the SM particle fields and of possible new, exotic fields, depending on the gauge
group implemented in the bulk. These KK particle towers virtually contribute to the rates
of loop-induced interactions, and can analytically be summed up by means of five-dimensional
propagator functions. In this sense, the fermion propagator function includes, in a complicated
manner, the Yukawa couplings induced by the bulk-Higgs field. The fermion, gauge boson, and
scalar propagator functions, which are necessary to sum over the contributions of KK towers
in the loop-induced Higgs production process through gluon fusion and the Higgs decay into
two photons, are developed. In addition, all the direct Higgs couplings to gauge bosons and
fermions are computed. With the help of these results, a numerical evaluation of the various
Higgs production and decay rates at the LHC is performed, in dependence of the parameter
space of the bulk-Higgs RS model. Also, the significant signal strengths for the Higgs decays
into two gauge boson final states or fermion final states are compared with the experimental
results of ATLAS and CMS.

Furthermore, the implementation of a new, extra scalar field is considered in the RS frame-
work, by what the temporarily reported di-photon anomaly, seen in first 13 TeV data of the LHC,
could conveniently be explained. The loop-induced production and decay rates of the new bulk
scalar, mediated by KK fermions, are computed, as well as the various decay rates of the scalar
at the tree-level. In this way, the temporarily reported excess rate of di-photons by ATLAS
and CMS can be reproduced for very natural choices of parameters, whereat exclusion bounds,
derived from 8 TeV searches of the LHC, are accounted for. Also, a possible implementation of
Higgs portal couplings to the new scalar sector is discussed. Even though the di-photon excess
was confirmed to be the result of a statistical fluctuation, the evaluations of the RS model with
a new scalar sector can be of value in future analyses in cases of similar excesses. Besides, the
RS framework with a new scalar sector might offer a natural explanation mechanism for the
mass differences between the SM fermions. This is a crucial ingredient of the RS model, and is
investigated, in some parts, in the last section of the thesis.
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Altogether, the thesis provides a comprehensive set of computations and analyses of scalar
sectors in the theoretical framework of the RS model.



Zusammenfassung

Die Arbeit untersucht die Berechnung und Auswertung von Produktions- und Zerfallsprozessen
des Higgs-Bosons sowie eines neuen, zusätzlichen Skalars im Randall-Sundrum Modell (RS-
Modell). Das RS-Modell erweitert das Standard-Modell der Teilchenphysik um eine kleine und
gekrümmte, fünfte Raumdimension und kann auf natürliche Weise erklären, wie die scheinbar
riesige Hierarchie zwischen der Planck-Skala und der Skala der elektroschwachen Wechselwirkung
zustande kommt. Es liefert damit einen Beitrag zur Lösung des Eichhierarchieproblems, das sich
aus der UV-Sensitivität der theoretisch berechneten physikalischen Higgsmasse ergibt. Des Wei-
teren kann das RS-Modell auf attraktive Weise Erklärungsansätze für weitere Fragestellungen
des “Flavor”-Sektors der Elementarteilchen anbieten, wie etwa für die bestehenden Massen-
hierarchien von Fermionen oder die Unterdrückungsmechanismen von neutralen Strömen, die
Teilchen-“Flavor”-Veränderungen (flavour-changing-neutral-currents) induzieren.

Vorrangig wird in dieser Arbeit bei den Analysen und Berechnungen von einem Szenario
des RS-Modells ausgegangen, in dem neben allen Teilchenfeldern auch das Higgsfeld sich in den
vollen fünfdimensionalen Raum, den “bulk”, ausbreiten kann. Während dieses Szenario be-
reits eine besonders natürliche Realisation des RS-Modells darstellt, wird weiterhin gezeigt, dass
die damit gewonnenen Vorhersagen für Higgs-Prozesse deutlich näher an denen des Standard-
Modells der Teilchenphysik liegen im Vergleich zu Szenarien in denen das Higgs-Feld auf einer
“brane” am Rand der Extradimension lokalisiert ist. Bei der hier gewählten Vorgehensweise
hängen jedoch die “Tree-Level-Vertices” von Higgs-Kopplungen in komplizierter Weise von der
Profilfunktion des Higgsfeldes in der Extradimension ab. Aufgrund der kompaktifizierten Ex-
tradimension werden Türme von Kaluza-Klein-Teilchen (KK-Teilchen) als schwere Kopien der
Standard-Modell-Teilchen sowie möglicher neuer exotischer Teilchen vorhergesagt, je nachdem
welche Eichsymmetrie im “bulk” des jeweiligen Modellansatzes realisiert ist. Diese KK-Teilchen-
Türme tragen als virtuelle Teilchen zu den Raten von schleifeninduzierten Wechselwirkungen
bei und können in analytischer Form mittels fünfdimensionaler Propagatorfunktionen aufsum-
miert werden. Die Propagatorfunktion der Fermionen ist hier im Vergleich zu den “brane”-
Higgsmodellen komplexer, weil diese zusätzlich von den Yukawa-Kopplungen, die von einem
“bulk”-Higgsfeld induziert werden, abhängen. Die Propagatorfunktionen der Fermionen, Eich-
bosonen und Skalare werden berechnet. Sie werden benötigt, um die Beiträge von KK-Türmen
in den schleifeninduzierten Higgsprozessen der Gluon-Fusion sowie des Higgszerfalls in zwei Pho-
tonen aufzusummieren. Außerdem werden die direkten Higgskopplungen an Eichbosonen und
an Fermionen berechnet. Mit Hilfe der gewonnenen Resultate werden dann die verschieden-
en am LHC gemessenen Higgsproduktions- und Higgszerfallsraten numerisch in Abhängigkeit
vom Parameterraum des “bulk”-Higgs-RS-Modells ausgewertet. Ebenso werden die wichtigsten
Vorhersagen für Signalstärken von Higgszerfällen in Endzustände, die aus zwei Eichbosonen oder
zwei Fermionen bestehen, mit den experimentellen Resultaten von ATLAS und CMS verglichen.

Im zweiten Teil der Arbeit werden außerdem Produktions- und Zerfallsprozesse eines zusätzli-
chen neuen in das RS-Modell eingeführten skalaren Feldes untersucht. Dies bietet einen Ansatz
zur Erklärung der anfänglich am LHC gemessenen Anomalie von Photonenpaaren in dessen er-
sten 13 TeV-Daten. Berechnet werden die schleifeninduzierten Produktions- und Zerfallsraten
des neuen “bulk”-Skalars, die durch KK Fermionen übermittelt werden, sowie ergänzend die
verschiedenen “Tree-Level”-Zerfallsraten des Skalars. Hiermit können die genannten zweitweise
veröffentlichten Daten von ATLAS und CMS über den Di-Photonen-Exzess für sehr natürliche
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Parameterwerte modelltheoretisch reproduziert werden. Dabei werden Ausschlussgrenzen für
Modell-Parameter von früheren 8 TeV-Messungen berücksichtigt. Außerdem wird eine mögliche
Einbeziehung von Higgs-“Portal”-Kopplungen an den neuen skalaren Sektor diskutiert. Auch
wenn inzwischen dieser Di-Photon-Exzess als statistische Fluktuation bestätigt worden ist, so
können die in dieser Arbeit erfolgten Auswertungen dennoch von Wert in zukünftigen Analy-
sen beim Auftreten ähnlicher Anomalien sein. Außerdem kann ein analoger Modellansatz eines
“bulk”-Skalars einen natürlichen Erklärungsmechanismus für die beobachteten Massendifferen-
zen der Fermionen des Standard-Modells liefern. Dies kann als ein bedeutendes Merkmal des
RS-Modells angesehen werden und wird im letzten Teil der Arbeit behandelt.

Insgesamt liefert die Arbeit damit eine zusammenfassende Darstellung von Berechnungen,
Auswertungen und theoretischen Analysen skalarer Sektoren im Rahmen des RS-Modells.
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Preface

“Quantum theory provides us with a striking illustration of the fact that we can fully
understand a connection though we can only speak of it in images and parables.”
W. Heisenberg

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.”
R. Feynman

Modern theories, based on the quantum principles, are working at the boundary of human be-
ing’s ability of imagination. Nevertheless, the theories should give precise theoretical predictions
that can be verified or falsified by experiments. Only by close conjunction of the experimen-
tal and theoretical progresses, it is guaranteed to gain new physical knowledge. Several years
ago, the Higgs boson was experimentally discovered as the last missing element of the Standard
Model (SM) of particle physics. The discovery confirms the efforts and progress achieved over
the last 70 years in the field of theoretical particle physics, which are self-consistently described
by the SM, over a wide range of energy. Three of the four fundamental forces of nature, de-
scribing the strong, the weak and the electromagnetic interactions, are included in the theory.
These forces are carried out between the elementary particles of the SM, the fermions, through
exchanges of force-mediating particles, the gauge bosons. The Higgs boson is predicted by the
mechanism of spontaneous symmetry breaking, which can theoretically explain the origin of the
masses of all the elementary particles. The theoretical basis for the SM is formed by quantum
field theory, combining the principles of quantum mechanics for the microscopic nature, and
the theory of special relativity for processes at high velocities and energies, together with the
concept of field theory to describe the fundamental interactions of nature. In this context, the
elementary particles appear as the quanta of fundamental fields that can be distinguished by
certain characteristics, e.g. the spin. The interactions of the quanta are described by the theory
of gauge groups. The probability amplitudes for the interactions strengths can be computed to
high accuracies within the perturbation theory by Feynman. Increasing experimental precision
on measuring the particle scatterings, e.g. at the experiments at the European Organization
for Nuclear Research (CERN), allows to test the fundamental interactions better and better.
The SM, as an effective field theory, can describe nature over a wide but still restricted range
of energy. For that reason, phenomena of new and undetected physics could possibly arise at
energies shortly above the range of validity of the SM. Very few theoretical quantities depend
on the endpoint of the energy range of the SM, which are the eligible candidates for junctions
to new theories beyond the SM. Such new theories should be related to open questions of the
SM. The most important one in this context is the gauge hierarchy problem, which is induced
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in the theoretical calculation of the physical Higgs mass. At the Planck energy scale mPl ∼ 1019

GeV/c2 at the least, the forth fundamental force of nature, the gravity, cannot be omitted any
longer from the SM; which is at 1016 eV of energy above the scale of the SM interactions. The
gauge hierarchy problem claims that something new might still be undetected, possibly very
close to the energy range of the present experimental searches.

In the first chapter of the thesis, the main ingredients of the SM, and the most significant
open questions, and probable approaches of new physics are summarized. In the second chapter,
we concentrate on new theories with very small, indiscernible extra spatial dimensions, and
primarily on the Randall-Sundrum (RS) model [1], and its various incarnations for the Higgs
sector and the bulk gauge symmetry. The RS model explains the gauge hierarchy problem with
a five-dimensional space, the bulk, that underlies a strong, negative energy density related to an
extreme warping of scales. The apparently strong hierarchy between the Planck scale and the
scale of the SM might in fact be related to different localizations of the SM particles in the bulk.
The extra dimension, mathematically forming an orbifold, is bounded by two four-dimensional
subspaces, the ultra-violet (UV) and infra-red (IR) branes. With the extreme warping of space-
time, the high Planck scale at the UV brane corresponds to energies shortly above the SM
range at the IR brane. Different incarnations of the model are established that consider either
a minimal bulk gauge group for the particle fields, similar to the SM, or an extended bulk
gauge group to mediate constraints from electroweak precision tests. Also, whereas the Higgs
sector can be localized strictly onto the IR brane, more evolved scenarios consider Higgs field’s
localizations close to the IR brane, or a Higgs field that is only maximally located at the IR
brane, and spread out into the bulk. In this regard, it is most natural to assume that all particle
fields extend into the bulk, which intriguingly can explain further theoretical questions, such
as the origin of the mass differences between the SM particles, or suppression mechanisms for
neutral current interactions. The approaches are related to different bulk-localizations of the
particle fields, causing modifications of the SM interactions strengths.

To test the validity of the RS model, precise determinations of the Higgs boson interactions
strengths with SM particles that are currently measured, e.g. at the Large Hadron Collider
(LHC) at the CERN, are of special interest. In the RS model, the tree-level Higgs to particles
couplings are modified by overlap integrals over the particles profiles in the extra dimension. Be-
sides, the loop-induced processes receive virtual contributions from Kaluza-Klein (KK) particles,
appearing in extra-dimensional theories as infinitely many, heavy copies of the SM fields, and
of possible new exotic fields. The amplitudes of loop processes can be parametrized in terms
of five-dimensional propagator functions that describe the propagation of KK particle fields
through the bulk. We compute the necessary propagator functions for gauge bosons, scalars
and fermions in Chapter 3 of the thesis. Then, in Chapter 4, we will derive the predictions
for all the Higgs couplings to fermions and gauge bosons in the bulk-Higgs RS scenario with a
minimal bulk gauge group. We compute the various production and decay rates for the Higgs
boson at the LHC. These are the Higgs production through gluon fusion, vector boson fusion
and Higgsstrahlung and the Higgs decays into two photon, fermion or gauge boson final states.
We compare our results with previously derived predictions in the brane Higgs and narrow bulk-
Higgs scenarios of the RS model [2–5], and the relevant experimental signal strengths for the
Higgs decay processes at the LHC [6]. It will be consistently proven that the bulk Higgs RS
scenario constitutes to be the most natural framework of the RS model, giving predictions much
closer to the SM compared to other RS scenarios, and in better agreement to the experimental
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results. As a consequence, the parameter space of the bulk Higgs scenario underlies much less
constraints compared with the other Higgs scenarios of the RS model.

In Chapter 5 of the thesis, we consider the RS framework by including an additional new
scalar field [7], which has been adapted to the temporary reported di-photon anomaly seen
in first 13 TeV data of Run 2 experiments at the LHC [8, 9]. Results derived for the Higgs
processes could be further developed to compute the various production and decay processes of
the new scalar. Also, possible Higgs “portal”-couplings to the new scalar sector are included.
The reported di-photon anomaly could be reproduced in the RS model for very natural choices
for the couplings and the KK mass scale. In this context, the RS model with an enlarged bulk
gauge group, featuring the extended amount of KK particles that can mediate loop-processes,
was especially suitable. Also, the framework with an additional bulk scalar can be considered to
explain the theoretical origin of the mass differences of the SM fermions, which will be explored
in some parts in the last section of Chapter 5.

Chapter 6 gives a résumé of the thesis’s main conclusions.
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Chapter 1

Theoretical Particle Physics

1.1 The Standard Model of particle physics

The SM of particle physics is able to describe, over a wide range of energy, all the known fun-
damental forces of nature, i.e. the electromagnetic force, the weak force and the strong force
that are mediated between the known elementary particles. By depending on 18 parameters
only, it shows a remarkable internal, theoretical consistency, and has passed extensive experi-
mental tests. The SM has been developed over a period of about 70 years by collaboration of
a multitude of theoretical and experimental scientists. In the following, let us summarize some
of the steps of the development of the SM, largely taken from [10]. In the first third of the
20th century, dramatic experimental discoveries and theoretical breakthroughs were achieved,
which established the theories of quantum mechanics and relativity (e.g. [11–18]). Around the
year 1930, Dirac formulated the theory of quantum electrodynamics (QED) to describe the in-
teractions of photons with matter (e.g. [19–22]). Fermi included the beta decay to the theory,
and incorporated the neutrino particle that was postulated before by Pauli [23]. Furthermore,
Yukawa postulated that the strong interactions between nucleons were transmitted by a massive
particle [24]. The muon particle, as a heavy copy of the electron, was discovered, and Klein
anticipated that gauge theories form the root cause of beta decay [25]. About ten years later,
the computational rules of QED and the concept of renormalization were developed by Feynman,
Schwinger and Tomonaga (e.g. [26–35]), which could explain the properties of the anomalous
magnetic moment of the electron and the Lamb shift. Several meson and baryon particles were
experimentally detected around 1950, providing the need for new quantum numbers, such as
the strangeness introduced by Gell-Mann. In addition, neutrinos were detected, as well as the
violation of parity in weak interactions by Lee and Yang, and Wu and Telegi [36–38]. The
W boson was postulated to mediate the weak interactions, based on work performed by Yang
and Mills [39]. Then, around the 1960s, a “zoo” of strongly interacting particles was classified
by means of the SU(3) symmetry, succeeded by Ne’eman and Gell-Mann [40–42]. Some times
later, the quarks were postulated by Gell-Mann and Zweig as the building blocks of the bary-
onic matter (e.g. [43, 44]). Nambu proposed that the interactions of quarks with each other
can be described by an SU(3) Yang-Mills theory [45]. After that, the electroweak sector of the
SM was formulated by Glashow, Salam, Ward and Weinberg [46–49]. The Z boson was pre-
dicted, as well as the concept of spontaneous symmetry breaking to induce the masses of gauge
bosons, based on work performed by Nambu, Goldstone, Higgs, Brout and Englert [50–55].
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6 1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Deep inelastic scattering experiments hinted at a substructure inside of the protons. Around
1970, a second family of particles was theoretically implemented to explain the absence of flavor
changing neutral currents, by Glashow, Iliopoulos and Maiani [56]. Furthermore, ’t Hooft could
prove that the Glashow-Salam-Ward-Weinberg model of the electroweak interactions is in fact
renormalizable [57,58]. The Adler-Bell-Jackiw anomaly constraints were investigated, requiring
the existence of both quarks and leptons. Besides, the colors as the quantum numbers of the
quarks were introduced, leading to the formulation of the theory of quantum chromodynam-
ics (QCD) by Gell-Mann, Fritzsch and Leutwyler [59]. In this sense, it was explored that the
strong, weak and electromagnetic interactions can be described by Yang-Mills vector exchange
theories. Later, particles of the third generation, such as the tau lepton and the bottom quark,
were discovered [60], and neutral current interactions were detected at the CERN, confirming
previous theoretical postulates [61, 62]. All these achievements led to the final formulation of
the SM, and its universal acceptance around the year 1979 as the basis of elementary particle
physics. Further experimental confirmations of not yet detected particles followed shortly after,
e.g. the discoveries of the W and Z bosons [63–66]. Measurements of the width of the Z boson
and the radiative structure of the SM were performed at the experiments of the SLAC and the
CERN. Finally, the Higgs boson was discovered as the last undetected particle of the SM in the
year 2012 [67,68].

Despite all these successes, the researches in the field of elementary particle physics have not
been finished. Being a renormalizable theory, the SM does not necessarily require extensions
of new physics. But still, it suffers from several chinks [10]. The confirmation of the Higgs
boson has reinforced the gauge hierarchy problem, which will be explained later in more detail.
Altogether, it comprises the problem that the perturbative control of the radiative corrections
to the Higgs mass is lost at energy scales already close to the experimental reachability. The
most popular and far-reaching theories of new physics have been developed with the motivation
to solve the gauge hierarchy problem, among which are extra-dimensional models as the RS
model [1], theories of supersymmetry, and composite Higgs models. The SM and many of its
bottom-up extensions by new physics are effective field theories that are valid on a wide but
still restricted range of energy. The new theories predict consequences for present or future
collider experiments, whereas merging into the widely confirmed phenomena of the SM in the
lower energy range. In this regard, the SM has been forming the theoretical, well-confirmed
basis point for any new theory, and new particles and interactions are expected to appear at
energy scales slightly above the range of the SM. Einstein’s theory of gravity, describing the
fourth fundamental force of nature, is completely omitted from the SM, and until today, it has
been impossible to find a consistent quantized description of gravity. For that reason, the SM
forms a self-consistent model, valid at energies far away from the Planck scale, mPl =

√
~c/G, at

which the quantum corrections of gravity would become important, with G as the gravitational
constant. A complete theory of nature should be situated at the Planck scale, instead. Some
approaches for such a unified theory, which can describe all the fundamental forces of nature
in a unified manner, are given by the concepts of String theory, for example. In principle, the
scale of the fundamental theory should be the number on which everything should be scaled
on, and where, naturally, all the phenomena of nature should take place. The length scale
related to the Planck mass lies at lPl ∼ 10−33 cm. Comparing it to the scales at which the
nuclear lN ∼ 10−13 and the weak lF ∼ 10−16 interactions of the SM are mediated, tremendous
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differences are encountered, as [10]

lN
lPl
∼ 1020 ,

lF
lPl
∼ 1017 ! (1.1)

One may wonder whether such huge hierarchies can be created by nature, or if they rather
indicate the incompleteness of the SM and therefore claim for new physics. It is impossible to
explore in experiments the energy region close to the Planck scale, and this will stay so for at least
the wide next future. To reach those energy regions, artificially created energy densities similar
to the Big Bang would be required, and rough estimations demand for hypothetical collider
rings with a diameter of our solar system. And since the Planck energy scale is experimentally
unreachable, the ambitions of theoretical physicists should focus on more minimal models, as
the extended versions of the SM that are valid at energy scales currently attainable, or at least
in the next future.

Next to the question about the origin of the different length scales of the interactions, and the
suspicious behaviour of the Higgs mass parameters in the UV energy range, there are further big
problems of the SM stemming from the field of cosmology. By observing the fluxes of neutrinos
produced by cosmic rays or emitted from the sun, oscillations between the three flavours of
neutrinos have been detected [69, 70]. These neutrino oscillations indicate that neutrinos are
actually massive particles, which are assumed to be strictly massless in the SM. Furthermore,
the predominance of baryons over anti-baryons in the universe cannot be sufficiently explained
by the SM (e.g. [71]), although in principle it offers a scenario for an asymmetry between matter
and antimatter through charge and parity (CP) violation. And then, there is a remarkable
missing mass problem in the universe, resulting from a variety of observations that indicate
invisible gravitational sources. Models for the structure formation process after the Big Bang
necessarily claim for matter that does not interact with radiation, in order to derive the present-
day, granular structure of the universe with stars, galaxies and clusters. Altogether, there are
many hints for the existence of this non-luminous dark matter, and this kind of matter must
be different to the baryonic type of matter consisting of the SM elementary particles. In fact,
the expected amount of dark matter in the universe is more than five times as much as the
amount of the visible, baryonic matter. Even worse is the dark energy problem, arising from
observations of an accelerated expansion rate of the universe [72,73]. The SM of cosmology, the
Λ-Cold-Dark-Matter (Λ-CDM) model, assumes a mass-energy decomposition for the universe,
in which 4.9% are baryonic matter consisting of the SM particles, 26.8% are dark matter and
68.3% is dark energy. In this sense, the total mass content consists to 84.5% of dark matter,
and the total mass-energy content is given to 95.1% by dark matter and dark energy [74, 75].
However, such questions are not part of the thesis. Instead, we are working in the framework of
the RS model [1] that can address the mysterious questions about the different energy scales at
which the SM interactions take place, compared to the fundamental Planck energy scale mPl.
The RS model can provide a dynamical explanation for the gauge hierarchy problem, and further
questions arising in the flavor sector of the SM. The basic ingredients of the RS model will be
explained in Chapter 2 of the thesis, whereas we will summarize the significant formulas of the
SM, and its biggest open questions, in the present chapter.
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1.1.1 Some theoretical aspects of the Standard Model

The theoretical description of the SM of particle physics is based on the principles of quan-
tum field theory and the implementation of symmetries. In this connection, the principles of
quantum mechanics for microscopic processes, and field theory describing the effects of forces
and interactions of nature are combined with the theory of special relativity, which accounts
for high-energetic processes at high velocities. These processes describe the scattering interac-
tions of elementary particles, which by nature take place in the cosmic space and are made by
human hand in collider experiments, as for example at the LHC at the CERN. In the follow-
ing, we mention several theoretical issues that are included in the quantum field theory, taken
from [10, 76–79]. A quantum field theory, which describes elementary particles and their in-
teractions, is defined by the action S that is a time-integral over the Lagrangian function L.
For a local field theory, it can be expressed by the four-integral over a Lagrangian density L,
depending on one ore more fields φi(x) and their four-derivatives ∂µφi(x) [79], as

S =

∫
d4x L(φi(x), ∂µφi(x)) ⇔ ∂µ

(
δL

δ(∂µφi)

)
− δL
δφi

= 0 . (1.2)

An extremum principle for the action results in the equations of motion, which determine the
dynamics of a physical system. The above mentioned theoretical symmetries of the physical
system are implemented in the Lagrangian, and the mathematical formalism for symmetries is
the group theory. A group, in this context, is a certain set G, together with an operation ·, which
combines any two of the elements of the group a, b to form another group element c = a · b. In
this connection, certain axioms of closure and associativity must hold, as well as the existence of
identity and inverse elements. The interactions of the SM are described by unitary Lie groups,
where the group elements are unitary transformations, acting on the quantum fields φ, by [10,78]

φ′ = Uφ , U † = U−1 , where U = eiε
ATA εA�1≈ 1 + iεATA . (1.3)

For local transformations, the transformation parameters εA depend on the space-time coordi-
nates xµ. The hermitian quantities TA fulfil the Lie algebra, [TA, TB] = ifABCTC , of the group,
where fABC are the structure constants. In the simplest case of abelian groups, the structure
constants vanish. When implementing an internal symmetry in the Lagrangian L, an invariance
is demanded for the Lagrangian under infinitesimal field transformations as

φi(x)→ φ′i(x) = φi(x) + δφi(x) , where δφi(x) = iεATAij φj(x) . (1.4)

The transformations cause a change

δL =
δL
δφi

δφi +
δL

δ(∂µφi)
δ(∂µφi)

!
= 0 , (1.5)

where δ(∂µφi) ≡ ∂µφ
′
i − ∂µφi = ∂µ(δφi), which has to vanish in order to maintain the symmetry

invariance. From these considerations, a conserved current follows for the quantum field φ, by
using further the equation of motion in (1.2) [76, 78],

0
!

= δL = εA∂µ

[
δL

δ(∂µφi)
iTAij φj

]
⇒ ∂µJAµ = 0, with JAµ = −i δL

δ(∂µφi)
TAij φj . (1.6)
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The conserved charges QA =
∫
d3x JA0 (x) are the generators of the symmetry group, and fulfil

the commutation relations of the group. In the quantum field theory, the commutation relations
classify particle states, and the generators transform the particles into other particles within
a given symmetry multiplet. Also, the conserved symmetry currents satisfy the commutation
relations. These physical currents describe interactions between the particles. In general, sym-
metries are connected with certain conservation laws, as is stated by Noether’s theorem [76,78].

Furthermore, the Lorentz group belongs to the special relativity as the group of transfor-
mations Λµ

ν , acting on the Minkowski-space R3+1, according to x̄µ = Λµ
νx

ν . The elements
of the Minkowski-space are the four-vectors, xµ = (x0, x1, x2, x3)T , with one time and three
space coordinates. The transformations leave the product of two four-vectors, x2 = xµxµ =
gµνx

µxν = x2
0 − ~x3, invariant, from which it follows that gµνΛ

µ
ρΛν

σ = gρσ, where the metric
tensor is gµν = diag(1,−1,−1,−1) in a certain convention [10, 79]. The generators of the
Lorentz group are the tensors Sµν = i

4
[γµ, γν ], where the gamma matrices γµ fulfil the algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . Lorentz transformations can be decomposed into rotations
and velocity transformations. The generators Sµν include the angular momentum operators,
Ji ≡ 1

2
εijkS

jk, and the “boost” (velocity transformation) operators, Ki ≡ Si0. To fulfil the
demands from special relativity, a theory must be invariant under Lorentz transformations. So
does the Dirac equation,

[iγµ∂µ −mψ]ψ = 0 , (1.7)

which is an important free field equation of quantum field theory [76,79]. It is invariant under the
spinor representation of Lorentz transformations, which is Λ 1

2
= exp

(
− i

2
ωµνS

µν
)
. The solutions

of the Dirac equation are linear combinations of plane waves, according to

ψ(x) = u(p)e−ip·x , ψ(x) = v(p)e+ip·x , (1.8)

where the four-momentum is pµ = (E/c, ~p)T , and p2 = m2c2. There are positive and negative
frequency solutions, where the negative frequency solutions describe antiparticles. In four space-
time dimensions, the algebra of the Lorentz group is isomorphic1 to the product of two special
unitary groups, SU(2)×SU(2). For that reason, the spinor fields appear in two varieties. There
are the left-handed spinors, transforming under the first SU(2) group as a spin-1

2
representation,

and the right-handed spinors, transforming similarly under the second SU(2) group. They can
be represented by the two-component, complex Weyl spinors [10],

ψL ∼ (222,111) , ψR ∼ (111,222) . (1.9)

Their behaviour under Lorentz transformations can be written in terms of the Pauli spin matrices
as

ψL,R → ΛL,RψL,R = e
i
2
~σ·(~ω∓i~ν)ψL,R , with σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(1.10)
Here, ~ω and ~ν are real rotation and boost angles. In the Dirac notation, one can write the full
spinor ψ as a combination of two Weyl spinors, as ψ = (ψL ψR)T . With the notation for the

1There is a bijective correlation between the mathematical structure of the Lorentz group and the product of
two special unitary groups of dimension 2.
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Pauli matrices, σµ ≡ (1, ~σ)T , σ̄µ ≡ (1,−~σ)T , the Dirac equation for the spinor ψ from (1.7) can
be written as2 [79] (

−m iσ · ∂
iσ̄ · ∂ −m

)(
ψL
ψR

)
= 000 . (1.11)

The Dirac matrices γµ in the Weyl representation have a 2× 2 block matrix form as

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, γ5 =

(
1 0
0 −1

)
. (1.12)

Then, the gauge principle demands for an invariance under local gauge symmetries, for which
the transformation parameters εA(x) in (1.3) explicitly depend on the space-time coordinates
xµ. The symmetry invariance is achieved by introducing vector-bosonic gauge fields via the
covariant derivatives, Dµ = ∂µ+igAµ, where g is a dimensionless coupling constant, and Aµ(x) =∑N

A=1A
A
µ (x)TA contains a sum over the gauge boson fields, equalling the number of group

generators N of the symmetry group. The gauge bosons couple to the matter fields by their
kinetic terms in the Lagrangian, as ψ̄iγµDµψ. Gauge transformations of the covariant derivatives
read Dµ → D′µ = UDµU †, by which the gauge bosons themselves are transformed as [10,76]

Aµ → A′µ = UAµU
† − i1

g
U∂µU

† ≈ Aµ + δAµ , δAAµ
εA�1≈ −1

g
∂µε

A − fABCεBACµ . (1.13)

Here, we see that the structure constants fABC enter the changes of the gauge bosons δAµ that
are induced by the gauge transformations. These changes cancel the terms that are induced by
the gauge transformations of the matter fields ψ, when transforming the whole coupling term as
ψ̄iγµDµψ → ψ̄U †U (iγµDµ)U †Uψ. On this way, the whole kinetic term is invariant under the
gauge transformations, and a self-interacting theory is obtained. Field strength tensors for the
gauge bosons are built by means of the covariant derivatives, as [10,76]

Fµν = −i[Dµ, Dν ] = ∂µAν−∂νAµ+ ig[Aµ, Aν ] = FA
µνT

A , FA
µν = ∂µA

A
ν −∂νAAµ −gfABCABµACν ,

(1.14)
and they covariantly transform, according to Fµν → UFµνU

†. The Yang-Mills Lagrangian
builds the kinetic terms of the gauge fields, Lkin.boson = −1

4
FµνF

µν , and is invariant under
both Lorentz and gauge transformations. All in all, by putting the demand of local gauge
invariance into a theory, a coupling of the matter fields ψ to the gauge fields Aµ is predicted. It
causes the interactions between the matter fields through exchanges of gauge bosons, according
to the respective gauge groups. This mechanism forms the fundamental, theoretical basis for
the interactions between elementary particles.

A difficulty arises when considering bare mass terms for gauge bosons and fermions. A bare
gauge boson mass term transforms under the gauge transformations in a non-invariant manner,
as

−m2AµA
µ → −m2A′µA

′µ ≈ −m2 [AµA
µ + 2δAµA

µ] , (1.15)

and therefore explicitly breaks the demand of gauge invariance of the theory. To maintain
the gauge principle, a mechanism of a spontaneous gauge symmetry breaking is included. A
scalar field is proposed to the theory, whose potential has a non-vanishing, degenerate ground

2With the notation for the four-derivatives, ∂µ = (∂t,∇∇∇), ∂µ = (∂t,−∇∇∇).
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state of minimal energy. This means that there are several ground states all corresponding to
equivalent physical theories, which can be transformed into each other by means of a symmetry
transformation. By choosing one particular of these ground states, the vacuum state is no longer
invariant under the full, original symmetry group, which has been broken spontaneously. Then,
a coupling of the gauge bosons and fermions to the non-vanishing ground state of the scalar can
give the mass terms, without explicitly violating the gauge invariance [10,77].

For a general example, taken from [10], one can consider a real scalar field Φ(x) with the
components ϕa(x), a = 1, 2, ..., n, following the scalar Lagrangian

L =
1

2
∂µΦt(x)∂µΦ(x)− λ

[
ΦtΦ− v2

2

]2

. (1.16)

This Lagrangian is invariant under the transformations Φ→ Φ′ = RΦ(x), where R = ei
~θ·~T , and

RtR = 1, corresponding to the Lie algebra SO(N) that consists of N(N − 1)/2 antisymmetric

generators TA. According to the Noether theorem, a conserved current, JAµ = iφtTA
↔
∂µ Φ,

corresponds to each generator that fulfils ∂µJAµ = 0 [10]. An infinite number of field configu-

rations, Φ0 = 1√
2
ei
~θ· ~K (0 ... 0 v)T , minimizes the potential of the scalar, the second term of the

Lagrangian in (1.16). The actual vacuum singles out one of these infinite number of states, by
breaking the SO(N) symmetry, but leaving invariant all the rotations in the (N−1)-dimensional

plane perpendicular to that direction. ~K are the generators of the (N − 1) broken symmetries
that form no longer a Lie algebra, whereas (N − 1) angles parametrize the broken rotations.
The field can be expanded away from its vacuum configuration as [10]

Φ(x) =
1√
2
ei
~θ
v
· ~K


0
...
0

v + ρ(x)

 . (1.17)

By inserting this expansion into the Lagrangian, one can derive

L =
1

2
∂µρ∂

µρ+
1

2

(
1 +

ρ

v

)2

∂µξ
i∂µξi −

1

2
m2ρ2 − λ

4
ρ4 − vλρ3 . (1.18)

Here, the phases θi were absorbed into the definitions of the new fields ξi(x), the massless
Nambu-Goldstone (NG) bosons [51,52]. Their number equals (N−1), the number of the broken
symmetries. The Lagrangian is invariant under (N − 1) constant shifts, ξi(x) → ξi(x) + θ̃i, in
a one-to-one correspondence to the remaining SO(N − 1) phase symmetry of the ground state.
One can write the couplings of the NG bosons in terms of a divergence of the broken currents,
as Lint = − 1

v
J iµ(x)∂µξi(x), allowing to find that the unbroken SO(N − 1) symmetry is linearly

realized on the NG bosons as Ξ(x) → ei
~θ· ~KΞ(x), where Ξi(x) = ξi(x). There is one massive

field ρ(x), the Higgs boson, which receives a mass m =
√

2λv. The number of the degrees of
freedom in this process remains constant. From originally N scalar fields ϕa(x), there are now
(N − 1) massless NG bosons ξi(x) and one massive Higgs field ρ(x). In a certain gauge theory,
there are the gauge bosons AAµ that interact with the currents JAµ according to Lint = gAAµJ

Aµ.
Then, the couplings of the NG bosons to the currents can be exactly cancelled by performing
a gauge transformation as δAiµ = −1

g
∂µξ

i + f ijkAjµξ
k [10]. In this sense, the NG bosons can be
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absorbed by a redefinition of the gauge fields, and each gauge field that corresponds to a broken
gauge symmetry acquires an extra degree of freedom to become massive. The mass terms are
generated by the covariant derivative, acting on the scalar field [10],

DµΦ 3
[
∂µ + ig

N∑
A=1

AAµ (x)TA

]
·


0
...
0

[v + ρ(x)]

 , (1.19)

where here the field is situated in its simplest ground state. So, the gauge bosons, associated
to each broken generator, become massive after “eating” the NG bosons, whereas those of the
unbroken generators remain massless.

Perturbative calculations in quantum field theory

On the one hand, the Lagrangians of particle physics consist of the parts that describe free
particle states, the kinetic and the mass terms. On the other hand, they also contain the
parts that describe particle interactions by the couplings of gauge bosons to the currents of
matter fields, governed by a certain coupling constant g. Whereas the parts of the free particles
define the equations of motions via the Euler-Lagrange equations, the parts of the interactions
describe non-linear couplings between the free-particle states. According to the small values of
the coupling constants g in the energy range of the SM, the particle interactions can commonly
be computed by means of a perturbation theory. Theoretically, the perturbative approach is
implemented by an expansion of the Scattering-matrix (S-matrix), relating the initial particle
states |i〉 at an asymptotic time ti = −∞ to the final particles states |f〉 at a time tf = ∞,
according to [77]

|f〉 = S|i〉 . (1.20)

By considering a description for the time evolution of the state vectors in a quantum mechanical
picture, one can derive the Dyson-expansion for the S-matrix

S =
∞∑
n=0

(−i)n
n!

∫
...

∫
d4x1d

4x2...d
4xn T{HI(x1)HI(x2)...HI(xn)} , (1.21)

which contains a time-ordered product T , and the Hamiltonians HI = −LI that describe the
particle couplings. The interactions are extracted from the S-matrix over S = 1 + iT, and the
amplitude

〈pf ...|iT|pApB〉 = (2π)4δ(4)(pA + pB −
∑

pf ) · iM(pA, pB → pf ) (1.22)

describes the scattering of two initial particles with the momenta pA and pB that interact to
a final state of particles with the momenta pf [79]. The expression M(pA, pB → pf ) can be
calculated according to the Feynman rules. Physical measurable quantities, such as cross
sections and decay rates, depend on the square of this amplitude, and an integration over the
phase space accounting for statistical correlations. On that way, statistical predictions can be
derived that give the probability for a certain interaction to take place at a scattering experiment.
In the experiments, a certain interaction process has to be repeated and measured very many
times to get statistical reliable results.
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In principle, the S-matrix, given as a sum in (1.21), describes the interactions to all orders of
perturbation theory, where the lowest order for n = 0 gives the dominant contribution. Higher
orders give smaller and more complicated contributions, since by increasing order of perturbation
theory, the interaction Hamiltonians are coupled to each other to increasing numbers, which
results in a more complex interaction structure. In this connection, the time-ordered product
of operators, connecting different particle states in HI to each other, can be reformulated in
terms of a normal-ordered product by the Wick-theorem. According to the Feynman rules,
these connections of particle states result in vertex couplings and propagators to describe
the processing of particle interactions. This can be illustrated graphically by means of Feynman
diagrams that consist of incoming particles A and B, which scatter and couple to each other,
described by the vertices. Virtual particle states can be produced, having arbitrarily high
momenta according to the uncertainty relation of quantum mechanics. The virtual particles
propagate in space-time, which is described by the propagators. These result, after further
particle couplings described by the vertices, in the outgoing final state particles f . In the
calculations of scattering amplitudes, one has to integrate over the momentum space of all
the undetermined momenta of the intermediate, virtual particles, to account for the statistical
description of scattering by means of overlapping probability densities. In increasing orders
of perturbation theory, such virtual particles are produced in the intermediate states to larger
numbers, forming a higher number of loops that mediate the interactions.

The momentum integrations can give divergent results that commonly occur in the pertur-
bation theory of quantum field theory. In this regard, certain “renormalization” procedures have
to be applied in order to derive physical, measurable predictions [26–35]. In the calculations,
the divergences are absorbed into the bare quantities of a theory, such as masses, charges, and
fields. It is an important attribute of a theory if it is in general possible to perform renormal-
izations at an arbitrary order of perturbation theory. This is true for the theories that predict
only a finite number of possible divergent substructures in the Feynman diagrams. In this case,
similar patterns can be used for the renormalization of the divergent parts for every order of
perturbation theory. The theories of the SM are renormalizable in this sense [57,58]. Instead, in
a non-renormalizable theory an infinite number of divergent substructures can be contained in
the scattering amplitudes, at a sufficiently high order of perturbation theory. Then, the theory
cannot be self-consistent, making it hard to derive physical predictions [76, 78,79].

1.1.2 Lagrangian of the Standard Model

In theory, the SM of particle physics is grounded on the local gauge groups

SU(3)× SU(2)× U(1) , (1.23)

whose correlated gauge bosons

GA
µ , A = 1, ...8 , W a

µ , a = 1, 2, 3 , Bµ , (1.24)

mediate the interactions between the matter fields to guarantee the local gauge invariance. The
quantum numbers that are correlated to the gauge groups are the color charge c, the weak
isospin T and the hypercharge Y . The matter fields, named f in the following, can be grouped
into different classes, corresponding to their transformation behaviours under the gauge groups.
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There are the quarks fields q = u, d, transforming as color triplets under SU(3) [40–45, 59],
whereas the leptons l = ν, e are color singlets [46–49]. All quarks q and electrically charged
leptons e can be separated into the two different chiralities, according to f = PLf + PRf =
fL + fR, where the projection operators are PL,R = (1 ∓ γ5)/2. In addition, there are the
electrically neutral leptons νL, the neutrinos, that exist exclusively as left-handed fields in the
SM. The different chiralities are important for the transformation behaviour under the gauge
group SU(2) of the weak interaction, which non-trivially acts only on left-handed fermions.
For that reason, the left-handed fermions can be grouped into the weak isospin douplets QL =
(uL, dL)T , and LL = (νL, eL)T [46–49]. Instead, the right-handed fermions form the singlets
uR , dR , eR. Interestingly, the fermions come with three generations of fields, which are totally
equal in the quantum numbers, but differ strongly in the masses. Altogether, the particle content
of the SM reads [10]

quarks QL :

(
uL
dL

)
1
3

,

(
cL
sL

)
1
3

,

(
tL
bL

)
1
3

, uR : (uR) 4
3
, (cR) 4

3
, (tR) 4

3
,

dR : (dR)− 2
3
, (sR)− 2

3
, (bR)− 2

3
,

leptons LL :

(
νeL
eL

)
−1

,

(
νµL
µL

)
−1

,

(
ντL
τL

)
−1

, eR : (eR)−2 , (µR)−2 , (τR)−2 ,

(1.25)

where the subscripts write the weak hypercharges Y under the U(1) gauge group, respectively.
The kinetic terms, Lkin =

∑
f f̄ iD/

ff , contain the couplings of the matter fields to the gauge
bosons via the covariant derivatives [10,76,79], given for the quark fields

DµQL =

[
∂µ − i

gs
2
λAGA

µ − i
g

2
σaW a

µ − i
g′

6
Bµ

]
QL ,

DµuR =

[
∂µ − i

gs
2
λAGA

µ − i
2g′

3
Bµ

]
uR ,

DµdR =

[
∂µ − i

gs
2
λAGA

µ + i
g′

3
Bµ

]
dR ,

(1.26)

and for the lepton fields

DµLL =

[
∂µ − i

g

2
σaW a

µ + i
g′

2
Bµ

]
LL ,

DµeR = [∂µ + ig′Bµ] eR ,

(1.27)

to maintain the gauge invariance. These covariant derivatives contain the generators σa and λA

of the non-abelian groups SU(2) and SU(3), respectively. Defining the respective field strength
tensors

GA
µν = ∂AµG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ ,

(1.28)
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the gauge fields fulfil the following kinetic terms

L = −1

4

8∑
A=1

GA
µνG

µνA − 1

4

3∑
a=1

W a
µνW

µνa − 1

4
BµνB

µν . (1.29)

The structure constants fABC , εabc, of the groups SU(3) and SU(2) predict a self-coupling of
the respective gauge bosons GB

µ and W a
µ . Until now, the Lagrangian does not contain any mass

terms, either for fermions or gauge bosons, as their simple inclusions would explicitly break the
electroweak gauge symmetry. For that reason, the SM fields are coupled to a scalar doublet under
SU(2), the Higgs field, having the hypercharge Y = 1, and fulfilling the Lagrangian [50–55]

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2 . (1.30)

For the parameter choices µ2 > 0 and λ > 0, the Higgs potential has a degenerate ground
state with an amount of |〈0|Φ|0〉| = v/

√
2 6= 0 [10, 76–79]. By writing the Higgs doublet as

Φ = (φ+, φ0)T , with a charged and a neutral component, the non-zero ground state, 〈0|Φ|0〉 =
eiα/
√

2 (0 v)T , is invariant under a global phase rotation in α. With one particular of
these ground states, the electroweak gauge symmetry of the Higgs Lagrangian SU(2) × U(1)
is spontaneously broken down to the remaining U(1)em electromagnetic (em) gauge symmetry.
The charges Q are the quantum numbers of the electromagnetic symmetry, and the relation
T3 + Y

2
= Q holds between the quantum numbers of the groups, where T3 is the third component

of the weak isospin. This relation fixes the quark charges to Qu = 2/3, Qd = −1/3, and the
lepton charges to Ql = −1, Qν = 0, respectively. Usually, the Higgs field is expanded around its
simplest ground state as

Φ =
1√
2

(
−iφ+

v + h+ iφ3

)
. (1.31)

Via the covariant derivative in the Higgs Lagrangian, the coupling of the gauge bosons to the
constant vacuum expectation value (vev) v in the expanded Higgs field creates the mass terms
for the gauge bosons,

LHiggs 3 (DµΦ)†(DµΦ) = |(∂µ − i
g

2
σaW a

µ − i
g′

2
Bµ)Φ|2 3

∣∣∣∣∣
(
−ig

2
v√
2
(W 1

µ − iW 2
µ)

v√
2
(ig

2
W 3
µ − ig

′

2
Bµ)

)∣∣∣∣∣
2

=
v2

4 · 2
[
g2(W µ1 + iW µ2) · (W 1

µ − iW 2
µ) + g2W µ3W 3

µ + g
′2BµBµ − 2gg′W µ3Bµ

]
,

(1.32)

by breaking the electroweak gauge symmetry only spontaneously. A redefinition of the elec-
troweak gauge bosons to the mass eigenstates, according to

W±
µ =

1√
2

(W 1
µ∓iW 2

µ) , Aµ = cos θwBµ+sin θwW
3
µ , Zµ = −sin θwBµ+cos θwW

3
µ , (1.33)

is sensible, which is governed by the weak mixing angle θw, where sin θw = g′/
√
g2 + g′2, and

cos θw = g/
√
g2 + g′2. In fact, those redefined fields are the measurable gauge bosons. In the

mass basis, one obtains the following results for the mass terms

LHiggs 3
g2v2

4

(
W µ−W+

µ +
1

2cos2θw
ZµZµ

)
, (1.34)
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with the W and Z boson masses mW = vg
2

and mZ = vg
2cos θw

, whereas the photon state Aµ
remains massless. The interactions of the matter fields with the physical gauge bosons are
usually described in terms of the following current notation [10,76–79]

Lint = g(W+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
Z) + eAµJ

µ
em , (1.35)

where

Jµ+
W =

1√
2

(ν̄Lγ
µeL + ūLγ

µdL) ,

Jµ−W =
1√
2

(
ēLγ

µνL + d̄Lγ
µuL
)
,

JµZ =
1

cosθw

[
ν̄Lγ

µ

(
1

2

)
νL + ēLγ

µ

(
−1

2
+ sin2θw

)
eL + ēRγ

µ
(
sin2θw

)
eR

+ūLγ
µ

(
1

2
− 2

3
sin2θw

)
uL + ūRγ

µ

(
−2

3
sin2θw

)
uR

+d̄Lγ
µ

(
−1

2
+

1

3
sin2θw

)
dL + d̄Rγ

µ

(
1

3
sin2θw

)
dR

]
,

Jµem = ēγµ (−1) e+ ūγµ
(

+
2

3

)
u+ d̄γµ

(
−1

3

)
d .

(1.36)

Each term holds for all three fermion generations, where the fermions are still the gauge eigen-
states. Altogether, the kinetic terms for the fermions and gauge bosons show invariances under
large global symmetries, as for example under global chiral family-symmetries as [10]

U(3)× U(3)× U(3)× U(3)× U(3) . (1.37)

Those symmetries correspond to unitary transformations according to Li → L′i = UijLj, where
U is a 3 × 3 unitary matrix, and there is one for each set of fermions with the same quantum
numbers QL, LL, uR, dR, eR [76, 78, 79]. This large symmetry structure is broken by the Yukawa
interactions, connecting pairs of fermions with the Higgs field,

LYukawa = −
(
Q̄m
L ΦYYY mn

d dnR + Q̄m
L (iσ2Φ?)YYY mn

u unR + L̄mL ΦYYY mn
e enR + h.c.

)
. (1.38)

Again, the fermions of the three generations are grouped into vectors. These terms can create
mass terms for the fermions that are compatible to gauge invariance, similar to the masses of the
gauge bosons, by a coupling to the vev of the expanded Higgs field. The couplings are induced
by arbitrary, complex matrices YYY mn

f , which generally define a mixing between the different gauge
states of the fermions. However, one can perform the following bilinear transformations of the
Yukawa matrices [76,78],

Yd = U†dMdVd , Yu = U†uMuVu , Ye = U†eMeVe , (1.39)

where Ui, Vi are unitary 3× 3 matrices, and

Mu = diag(yu, yc, yt) , Md = diag(yd, ys, yb) , Me = diag(ye, yµ, yτ ) , (1.40)
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are real diagonal matrices. After the following field redefinitions, L′L = UeLL, and e′R = VeeR,
the leptonic part of the Yukawa couplings becomes diagonal. The unitary matrices Vu and Vd

can be absorbed by a redefinition of the fields, as u′R = VuuR and d′R = VddR, whereas the
matrices Uu and Ud cannot be simultaneously absorbed by field redefinitions. Instead, one can
derive

LYukawa = −
[
Q̄
′m
L ΦV†,mnCKMMn

dd
′n
R + Q̄

′n
L (iσ2Φ?)Mn

uu
′n
R + L̄

′n
L ΦMn

e e
′n
R + h.c.

]
, (1.41)

where the up-type quark term is diagonal in the quark states, but the down-type quark term
involves the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix

VCKM = U†uUd . (1.42)

This mixing matrix induces a coupling between the quark mass eigenstates in the charged current
interactions, according to

Jµ+
W =

1√
2

(
ūm
′

L VVV
mn
CKMγ

µdn
′

L

)
, Jµ−W =

1√
2

(
d̄m
′

L VVV
†mn
CKMγ

µun
′

L

)
. (1.43)

Independently from the up-type quark terms, the down-type quark terms can be diagonalized
as well. Then, via a coupling to the vev of the Higgs field, one can obtain the mass terms for
the fermions, where the fermion masses are defined as

mi =
v√
2
yi , (1.44)

and yi are the elements of the diagonal matrices in (1.40). Originally, the unitary CKM-matrix
is determined by 9 free parameters, but each quark field can absorb one phase after a phase
rotation, according to qi → eiθqi, where qi = uL, uR, dL, dR. In addition, a global phase rotation
can be performed, so that the number of free parameters can be reduced to 4, which are three real
parameters and one complex phase in the “standard parametrization” [80]. In the “Wolfenstein
parametrization”, there are the four Wolfenstein-parameters used to describe the CKM-matrix
as [81]

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (1.45)

where the expression holds up to the order λ3, and the Wolfenstein-parameters are of the order
one.

The full Lagrangian of the SM is invariant under the combined operation of three discrete
symmetries, which are charge conjugation (C-symmetry), parity transformation (P-symmetry)
and time-reversal (T-symmetry) [10, 76, 78, 79]. The C-symmetry transforms particle states
into their antiparticle states, where for the matter fields applies ψL → σ2ψ

?
R ≡ ψ̄L and ψR →

−σ2ψ
?
L ≡ −ψ̄R, whereas the P-transformation transforms the chiralities of the matter fields into

each other, as ψL → ψR and ψR → ψL, and the T-symmetry reverses the time evolution of a
considered process. In the SM, violations of the combined CP-transformations are related to
the complex phase of the CKM mixing matrix. By performing the transformations ψL → σ2ψ

?
L

and ψR → −σ2ψ?R in a general Yukawa Lagrangian, one can show that an invariance under
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� SU(2)L × U(1)Y

� mif → 0

� ΛNP � mW ,mZ

Figure 1.1: Electroweak precision observables test four-fermion interactions at lower energies.
Based on the three indicated assumptions on the right-hand side, the significant radiative cor-
rections to these processes, induced by new physics, are the “oblique” corrections, given by
vacuum polarizations that affect the gauge boson propagators [82]. These can be parametrized
sufficiently in terms of the S, T and U parameters. The sum in the graphic indicates a tower of
KK gauge bosons that can mediate the four-fermion interactions in the RS model, which will be
explained in Chapter 2 of the thesis.

CP is achieved for the case that the Yukawa couplings are real [10]. Since in the SM the
parametrization of the CKM-matrix owns at least one complex phase, there is a source of CP-
violation, accordingly. The complex phase is related to the existence of three generations of
particles. For two or less generations of particles, the CP-violating phases can be completely
absorbed by field redefinitions. The kinetic terms of the SM fields are invariant under CP-
transformations. The complex phase of the CKM-matrix constitutes to be the only source for
CP violating phenomena in the SM. In this sense, the study of the CP behaviour of particle
processes can be a useful tool to test the structure of the SM, and to search for new sources of
CP violation, induced by new physics.

Altogether, the full Lagrangian of the SM depends on 18 open parameters, which are the three
gauge couplings gs, g

′ and g, corresponding to the three described interactions, the 9 masses of
the different fermions or equally their different Yukawa couplings strengths, four parameters of
the mixing of the quark states described by the CKM-matrix, and two parameters in the Higgs
sector, for example λ and µ [10,76,78,79]. These parameters have been experimentally fixed to
a great precision resulting in the present consistent formulation of the SM.

1.1.3 Electroweak parameters by Peskin and Takeuchi

M. Peskin and T. Takeuchi introduced a suitable formalism for calculating in general the oblique
radiative electroweak corrections to four-fermion interactions that are implied by new-physics
theories, to confront the predictions with electroweak precision measurements [82–85]. Around
that time in the year 1990, e+e−-collider experiments were studied thoroughly, and many suitable
electroweak precision observables were introduced to be tested at the experiments. Among these
were, for example, decay widths and asymmetries measured at the Z-pole, ratios of cross sections
in deep inelastic neutrino scattering experiments, or measurements of atomic parity violation.
The predictions from the electroweak theory could be tested to a great precision by means
of these observables. And, the nature of the Higgs sector was much more unclear at that
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time. It was a challenge to experimentally distinguish between the various proposed models
for the mechanism of electroweak symmetry breaking, among which were, for example, also
the nowadays excluded Technicolor models. Indirect methods were demanded for comparing
the predictions for electroweak precision observables with experimental results. In this context,
Peskin and Takeuchi have introduced their three parameters. Nowadays, their formalism is still
suitable for testing a large range of new-physics models, and in fact, it provides the most severe
tests of the RS model considered in this thesis. In this regard, we now shortly discuss the original
derivation of the parameters.

The formalism is grounded on three basic, underlying assumptions that apply to a large
range of new-physics models [82]: The first assumption restricts the electroweak gauge group to
SU(2)×U(1), and excludes the existence of additional, hypothetical gauge bosons as predicted
by some extended models with higher gauge symmetries. The electroweak observables probe the
exchanges of electroweak gauge bosons between the light3 SM fermions, as illustrated in Figure
1.1. The second assumption states that the couplings of new-physics particles to the light SM
fermions are suppressed, compared to the couplings to gauge bosons. As a consequence, the
“oblique” corrections by vacuum polarizations, which modify the gauge boson propagators in
the four-fermion interactions, form the dominant loop corrections, compared to corrections by
vertex and box diagrams. The latter scale with the masses of the external, lighter fermions,
and it is assumed that mf → 0 as a good approximation. The third assumption states that the
intrinsic scale of the new physics, given by the masses of the predicted new particles, is much
larger than the masses of the W and Z bosons, ΛNP � mW ,mZ . Due to the precise experimental
confirmation of the SM in the electroweak energy range, any effects of new physics can only be
present at higher energies. In this sense, the Peskin-Takeuchi parameters give a general treatment
for radiative corrections induced by vacuum polarizations that are exclusively caused by heavy
particles of new physics. The formalism is based on preceding work accomplished by Kennedy
and Lynn, who have introduced a general parametrisation for all the radiative corrections to
electroweak processes [83, 84]. Peskin and Takeuchi have adapted this former work by applying
suitable approximations with regard to the three discussed assumptions.

The matrix elements of the charged and neutral-current interactions, mediated by electroweak
gauge bosons, can be formulated in terms of the current notation [82],

MNC = e2QQ′GAA +
e2

sc

[
Q(I ′3 − s2Q) + (I3 − s2Q)Q′

]
GZA +

e2

s2c2
(I3 − s2Q)(I ′3 − s2Q′)GZZ ,

MCC =
e2

2s2
I+I−GWW .

(1.46)

Here, the functions GIJ denote the coefficients of the metric tensor gµν in the gauge boson
propagators, where the remaining terms of the propagators are neglected, according to the
assumption mf → 0. The effects on the propagator coefficients GIJ of the vacuum-polarization
amplitudes ΠIJ [82], defined by

igµνΠIJ(q2) + (qµqν terms) ≡
∫
d4x e−iqx〈JµI (x)JνJ (0)〉 , (1.47)

3The top quark was exempted from that consideration, because the lepton collider experiments, at which the
electroweak observables were measured, could not produce it directly.
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are described by the Dyson equations

GAA = DAA +DAA ΠAA GAA , GZA = DZZ ΠZA GAA ,

GZZ = DZZ +DZZ ΠZZ GZZ , GWW = DWW +DWW ΠWW GWW .
(1.48)

The Dyson equations can be solved for the propagator coefficients, and by inserting the solutions
into the matrix elements in (1.46), the effects of the vacuum polarizations can be included to all
orders of magnitude, in principle. Kennedy and Lynn have shown that with a proper redefinition
in terms of their “starred” parameters, the matrix elements of the neutral and charged current
interactions (1.46) can be re-expressed as [82]

MNC = e2
?Q

1

q2
Q′ +

e2
?

s2
?c

2
?

(I3 − s2
?Q)

ZZ?
q2 −M2

Z?

(I ′3 − s2
?Q
′) ,

MCC =
e2
?

2s2
?

I+
ZW?

q2 −M2
W?

I− .

(1.49)

One recognizes that the forms of these expressions are similar to the forms of the tree-level
amplitudes in (1.46), except that all the coupling constants and gauge boson parameters are now
replaced by the starred parameters. These starred parameters are the “running”, i.e.energy-
dependent, couplings e2

?, s
2
?, the “running” masses M2

W?, M
2
Z?, and “running” wave function

renormalization constants ZW?, ZZ?, all being functions of the vacuum polarization amplitudes
ΠIJ . In this sense, the oblique corrections affect the weak-interaction observables only via the
starred parameters by Kennedy and Lynn. If restricting on the oblique corrections that are
caused solely by heavy new-physics particles, the vacuum polarization functions ΠIJ can be
expanded around q2 = 0 of the gauge boson momenta. Neglecting terms of the order of q4 and
higher, one can find [82]

ΠNP
QQ(q2) ≈ q2Π

′NP
QQ (0) , ΠNP

3Q (q2) ≈ q2Π
′NP
3Q (0) ,

ΠNP
33 (q2) ≈ ΠNP

33 (0) + q2Π
′NP
33 (0) , ΠNP

11 (q2) ≈ ΠNP
11 (0) + q2Π

′NP
11 (0) .

(1.50)

The first constant terms in the upper two expansions vanish by Ward identities, and then, the
expansions depend on 6 parameters, which are Π

′NP
QQ (0), Π

′NP
3Q (0), ΠNP

33 (0), Π
′NP
33 (0), ΠNP

11 (0),

Π
′NP
11 (0). Using the expansions for the vacuum polarization amplitudes in the the starred pa-

rameters by Kennedy and Lynn, three of the parameters can be fixed by including precisely
measured quantities of the weak interaction, like α, GF and sin θw. With the remaining three
open parameters, the following three, UV finite, combinations can be determined [82]

αS ≡ 4e2
[
Π
′NP
33 (0)− Π

′NP
3Q (0)

]
,

αT ≡ e2

s2c2m2
Z

[
ΠNP

11 (0)− ΠNP
33 (0)

]
,

αU ≡ 4e2
[
Π
′NP
11 (0)− Π

′NP
33 (0)

]
,

(1.51)

where the Peskin-Takeuchi parameters S,T and U are introduced. With these three new weak
interaction parameters, the new-physics contributions to processes of the weak interaction can
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be parametrized, based on the three assumptions given before. The parameters have different
physical significances. The parameter S is a measure of the total size of the new-physics sector,
whereas the parameter T measures the violation of the custodial iso-spin symmetry induced by
the new-physics sector. The parameter U turns out to be suppressed compared to the first two
parameters. As well, the parameter U is of less significance, because most of the electroweak
interaction observables xexpt depend solely on the parameters S and T , according to the linear
relation [82]

xexpt(S, T ) = xSM(mt,mh) + axS + bxT . (1.52)

In this relation, the first term gives the SM part of the observables, which depends on the Higgs
and top quark masses. In this sense, the Peskin-Takeuchi parameters are defined in such a
way that for known Higgs boson and top quark masses, they are equal to zero for a pure SM.
This allows to test for the existence of new physics by means of experimental results for the
parameters, after the Higgs and top quark masses are determined. Experimental results for the
various electroweak observables can be displayed in a two-parameter plane in S and T, in which
each observable is given by a broadened band due to correlated experimental errors. The overlap
of different bands has to be determined by a statistical maximum likelihood method, in order
to derive the experimental results for S and T (and U in a three parameter analysis) [82]. The
current experimental results, determined for these parameters, are [86]

SUfree = 0.05± 0.11 , TUfree = 0.09± 0.13 , U = 0.01± 0.11 ,

SU=0 = 0.06± 0.09 , TU=0 = 0.10± 0.07 .
(1.53)

They were determined by two different manners, for a floating U parameter from a three pa-
rameter analysis, and with the constraint U = 0, respectively. One observes that these results
are in a good agreement with the SM, whereas, taking into account the large error values, there
might still be some space for the existence of new physics, as well.

Custodial isospin symmetry and the Peskin-Takeuchi parameters

The Higgs Lagrangian of the SM comprises an internal, global symmetry, the custodial symmetry.
The Higgs field can be decomposed into 4 real fields φi, i = 1, ..., 4, and its potential depends
on the product Φ†Φ, and therefore on the square of these four fields [87],

V(Φ†Φ) = V(φ2
1 + φ2

2 + φ2
3 + φ2

4)

ewsb
= V(φ2

1 + φ2
2 + φ2

3 + h2 + 2hv + v2) = V(φ+φ− + φ−φ+ + φ2
3 + h2 + 2hv + v2) .

(1.54)

This expression is invariant under rotations of the four fields. These rotations can be described
by the global symmetry group SO(4) that is isomorphic to the group product SU(2)L×SU(2)R,
as both fulfil the same Lie algebra. After electroweak symmetry breaking, one of the four fields
exhibits a vev, and can be redefined as φ4 = h+v, including the Higgs boson h. As a consequence,
the Higgs potential is invariant under the group SO(3), describing rotations of only three scalar
fields. The group SO(3) is isomorphic to the group SU(2)V , which is the custodial symmetry,
and the diagonal part of the group product SU(2)L×SU(2)R. The custodial symmetry emerges
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also in the parts of the Higgs Lagrangian that couple to the SM particle fields. The easiest
example is a Yukawa coupling of the Higgs field to one generation of quark fields, given by

LYuk ∈ yuQLΦ̃uR + ydQLΦdR + h.c. . (1.55)

Assuming that the quarks would have equal masses, so that yu = yd = y, the Yukawa Lagrangian
would, in principle, exhibit an invariance under the global symmetry product SU(2)L×SU(2)R.
After electroweak symmetry breaking, the mass terms,

LYuk ∼ y(ūRuL + d̄RdL) + h.c. , (1.56)

remain invariant under the custodial symmetry SU(2)V [87]. For that reason, the mass dif-
ferences between the two fermions in the fermion doublets of the SM cause a violation of the
custodial symmetry. This emerges in contributions to the T parameter.

The contributions to the S,T,U parameters that would be induced by a single, new fermion
doublet (N,E) with the masses mN ,mE were calculated in the review paper of Peskin and
Takeuchi [82]. By evaluating the vacuum-polarization diagram of the new fermion loop created
in a virtual gauge boson line, one can find the results [82]

S ≈ 1

6π
, T ≈ 1

12πs2c2

(
(∆m)2

m2
Z

)
, U ≈ 2

15π

(
(∆m)2

m2
N

)
, (1.57)

by assuming that mN ,mE � mZ , and ∆m ≡ |mN − mE| � mN ,mE. This result allows to
discuss several, significant properties of the S,T, U parameters. One can see that both the
parameters T and U scale with the mass difference (∆m)2 of the fermions in the new SU(2)
doublet, but U is suppressed compared to T by a factor (m2

Z/m
2
N). In fact, the parameter U

plays a fairly unimportant role. In most models of new physics, it is predicted to vanish, or to
have a very small value, at least. All the neutral-current and low-energy observables depend
on the parameters S and T only. In contrast, the parameter T is divided through the lighter
mass m2

Z . The mass splitting (∆m)2 is a measure of the size of the custodial symmetry violation
induced by the new fermion doublet. It should be noticed that each extra fermion doublet,
putted into the theory, additively contributes to S and T [82]. In this regard, the parameter S
is a measure of the total size of the new sector, whereas T is a measure of the total violation of
the custodial symmetry that is induced by the new-physics sector [82].

In a more hidden manner, also the mass terms of the gauge bosons of the SM show an
invariance under the custodial symmetry [87],

LHiggs 3 Dµ〈Φ〉0Dµ〈Φ〉0 ∈
1

4

[
g2
[
W 1
µW

µ1 +W 2
µW

µ2
]

+ (gW3µ − g′Bµ)
2
]
〈Φ〉20

g′=0
=

g2

4
〈Φ〉20

[
Wµ1W

µ1 +Wµ2W
µ2 +Wµ3W

µ3
]
,

(1.58)

where 〈Φ〉20 = v2/2 is the square of the Higgs vev. For g′ = 0, this Lagrangian is invariant under
the global custodial symmetry SU(2), under which the gauge fields transform as a triplet [87].
One can see that the inclusion of the field Bµ breaks the custodial symmetry by the term
−2gg′W 3

µB
µ. The masses of the W and Z bosons, as given in (1.34), fulfil the ratio at tree level

ρ =
m2
W

m2
Z cos2θw

= 1 . (1.59)
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Radiative corrections, induced by gauge fields, give small contributions to this ratio, and con-
tribute softly to a violation of the custodial symmetry. The ρ parameter is linearly correlated
with the T parameter, via ρ−1 = αT [82]. In this sense, any violation of the custodial symmetry
in the Higgs sector results in contributions to the ρ and T parameters.

1.2 Open questions of the Standard Model

The SM of particle physics, relying on the principles of quantum field theory, offers an elaborate
theory, which has passed stringent experimental tests. It has proven its ability to give predictions
for unexpected phenomena of elementary particle physics that have been confirmed later exper-
imentally. The strong, weak and electromagnetic forces of nature are very successfully described
by the model, relying on the group structure SU(3)× SU(2)× U(1). As stated before, the SM
forms an effective field theory, which is valid in a specific range of energy up to a certain cut-
off Λ. In the hitherto experiments, the electroweak energy range around several hundred GeV
has been explored, which is the energy range where the SM is valid. A quantum field theory with
a fundamental energy scale M can be considered at some energies E � M , and all observable
quantities, predicted by the theory, can be expanded in powers of E/M [88–90]. In general, this
expansion can be performed for the whole Lagrangian, as Leff

Λ =
∑

i giQi, which is an infinite
sum over all the local operators Qi, allowed by the symmetries of the theory, multiplied by
coupling constants gi that are referred to as Wilson coefficients [88–90]. By a rough analysis of
the mass dimensions (for natural units ~ = c = 1), the fundamental action S of a theory has
to be dimensionless. One can write the effective coupling constants gi in terms of dimensionless
coefficients Ci, divided by the negative power of the mass dimensions of the fundamental energy
scale of the effective couplings, −γi = [gi], by gi = CiM

−γi . The dimensionless couplings Ci are
assumed to be of order one, Ci = O(1). According to the naturalness principle [91–94], only an
increase of the symmetries of the theory would legitimate other magnitudes. The most general
Lagrangian in four space-time dimensions at an energy scale much below the fundamental scale,
E � Λ < M , can be written as follows [90]

LE�Λ<M =
4∑
i=1

∑
j

CjΛ
iQj +

∑
k

CkQk +
∞∑
m=1

∑
n

Cn
Λm

Qn , (1.60)

where Cj, Ck and Cn are dimensionless coupling constants, whereas Qj, Qk, Qn are operators.
The first two parts with the operators of mass dimensions ≤ 4 give the important contributions,
which lead to re-normalizable predictions of the theory. The remaining part with the operators
of higher dimensions > 4 gives contributions that are suppressed by powers of the cut-off energy
scale Λ. The SM Lagrangian is of mass dimension 4 and forms the middle part of the expansion.
This part does not depend on the cut-off energy scale at all. The first term forms the origin
of several hierarchy problems of the theory, which consist of missing explanations for drastic
differences in the magnitudes of theoretical quantities. These hierarchy problems account for the
main motivations for new theories beyond the SM. Different choices are sensible for the cut-off
energy scale Λ. Since gravity exists undeniably as the forth fundamental force of nature, despite
the three forces of the SM, a pure SM would definitely loose its validity at the Planck energy
scale ΛPlanck ∼ 1019 GeV, at which gravity becomes non-negligibly strong in the SM processes.
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However, due to several open questions of the SM, and by the spirit of research, one would
expect the existence of new physics at energy scales below the Planck scale.

1.2.1 Hierarchy problems

It has just been discussed that the different terms in the expanded effective Lagrangian in (1.60)
have differing sensitivities on the cut-off energy scale Λ, at which the energy range of validity of
a theory is supposed to end. Only the terms of the first part, with the operators of dimension
< 4, come with powers of the cut-off scale, and show a very strong sensitivity on the UV energy
range, therefore. For the gauge structure of the SM, only two possibilities are allowed for these
terms,

Ld<4 = C0Λ4 + C2Λ2Φ†Φ , (1.61)

where Φ is the Higgs field. Other terms are not compatible with the demand of gauge invariance.
A high cut-off scale as Λ ∼ mPl would cause dramatically high expressions for the terms. We
start with a discussion of the second term, which is the most interesting one in our context.

The gauge hierarchy problem

The electroweak gauge symmetry of the SM SU(2) × U(1) is broken by the vev of the scalar
Higgs field. Its magnitude is proportional to the experimentally determined masses of the gauge
bosons, as mW ∼ v, mZ ∼ v. From these relations, one would expect that the mass parameter
of the Higgs field µ =

√
λv is situated in the energy range of the masses of the electroweak gauge

bosons, as well,
−µ2 ∼ −(100 GeV)2 . (1.62)

The parameter λ of the quartic Higgs self-couplings (Φ†Φ)2 is naturally predicted to be of order
one, because the quartic Higgs self-couplings have a mass dimension 4. However, considering
the mass term in the Higgs Lagrangian, L = −µ2Φ†Φ, and baring in mind the above discussion,
one rather finds that

−µ2 ∼ Λ2 , (1.63)

since Φ†Φ is of mass dimension 2. The decomposition in the effective Lagrangian in (1.60) gives
thus L = −µ2Φ†Φ ≡ C2Λ2Φ†Φ. It has just been discussed that the cut-off Λ can lie in the range
of the very high Planck energy scale, Λ ∼ mPl ∼ 1019 GeV, if considering a pure SM. Then, C2

is obtained as

C2 ∼ O
(
µ2

Λ2

)
∼ O

(
104

1032−38

)
∼ O

(
10−28..−34

)
, (1.64)

which is up to 33 orders of magnitude below order one. The definition of naturalness puts several
demands on the dimensionless coupling C2. Following the naturalness criterion by Dirac [91,92],
a natural coupling would just be of O(1). The criterion by t’Hooft is slightly weaker, by claiming
that a value C2 � 1 would be allowed only if the limit C2 → 0, so −µ2 → 0, would increase the
symmetry of the theory in some way [93]. For example, for vanishing fermion masses, the chiral
symmetries and gauge symmetries would be present, explicitly. But, for the case of the Higgs
field, there are not any of such symmetry limits that would allow for a very small coupling C2.
For all these reasons, the theory, in its current incarnation, is considered as highly unnatural,
and a strong fine-tuning of C2 down to a value of 10−28..−34 is demanded.
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Figure 1.2: Two of the diagrams that form the leading corrections to the bare masses of particles.
The bare Higgs mass gets corrected by a fermion (top quark) loop, and the bare fermion mass
gets corrected by a loop consisting of a Higgs boson and a fermion line.

This discussion holds for the bare Higgs mass parameter µ without encountering loop cor-
rections. In fact, µ2 could be much smaller than Λ2, if the bare scalar mass is of the order −Λ2,
and the value is cancelled to −µ2 in a dramatic way by radiative corrections. Nevertheless, a
very high amount of parameter tuning would be demanded for such a cancellation, because the
one-loop corrections to the Higgs mass diverge strongly. Using the cut-off regularization, where
the infinities of loop-integrals are expressed in dependence of a cut-off Λc, the amplitude for the
vacuum polarization by fermions in the Higgs propagator, as illustrated in Figure 1.2, reads for
example

Mδmh = −i
y2
f

2
Nc

∫
d4p

(2π)4

Tr [(p/+ k/+mf )(p/+mf )][
(p+ k)2 −m2

f

] [
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f

]
=
y2
f

2
Nc

∫ 1

0

dx

∫ ΛcΛcΛc2

0

dp2
E

(4π)2
p2
E

(−p2
E + ∆1(x))

(p2
E + ∆1(x))

2

=
y2
f

32π2
Nc

∫ 1

0

dx

[
−ΛcΛcΛc

2 + (2∆1(x) + 1) ln

(
∆1(x) + ΛcΛcΛc

2

∆1(x)

)
+ ...

]
,

(1.65)

where yf is the Yukawa coupling, Nc is the color factor, Λc is the cut-off for the momentum
integral, and ∆1(x) = m2

f + m2
hx(x − 1). One can observe that the expression quadratically

depends on the cut-off Λc in the first term. In this regard, when adding these radiative corrections
to the bare Higgs mass, both can quadratically scale with the Planck scale, and one could
tune the single contributions in such a way that they exactly cancel to give a result of ∼
(100 GeV)2. In this case, one would have to determine parameters over 16 positions in order to
achieve the required theoretical description. This is considered as highly unnatural, as well. If,
however, the SM would be replaced by some new theory, valid at higher energies, the loops in
the Higgs propagator would be quadratically sensitive to the masses of the new particles. On
the contrary, the amplitude expression for the vacuum polarization by the Higgs boson in the
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fermion propagator, as given in Figure 1.2 on the right-hand side, reads

Mδmf = −i
y2
f

2
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d4p

(2π)4

Tr [(p/+ k/+mf )][
(p+ k)2 −m2

f

]
[p2 −m2
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2

∆2(x)

)
+ ... ,

(1.66)

where ∆2(x) = m2
h(1 − x) + m2

fx
2. One observes that the expression only logarithmically

depends on Λc, and includes the bare fermion mass mf , compared to the corrections to the Higgs
propagator. The dependence on Λc can be absorbed by a redefinition of the physical fermion
mass, and the chiral and gauge symmetries allow for a small, bare fermion mass, mf = yfv/

√
2.

In that way, fine-tuning problems are prevented, in contrast to the Higgs case. This is similarly
true for the gauge boson masses. In this sense, the Higgs field seems to play a peculiar role in the
SM. Whereas successfully describing the masses of the other particles in the electroweak energy
range, it exhibits a strong sensitivity on the UV energy range, as well. The aforementioned
points are referred to as the gauge hierarchy problem. After the experimental confirmation of
the Higgs boson at the LHC in 2012 in the expected electroweak energy range [67,68], the gauge
hierarchy problem seems to be more pressing than ever.

In this connection, one can also ask about the origin of the huge hierarchy between the
electroweak energy scale and the Planck scale of gravity, as

µ2 = λv2 = λ4
m2
W

g2
∼ 104 GeV2 � 1

Ggrav

∼M2
Pl ∼ 1038 GeV2 ??? (1.67)

Why are the magnitudes of the strengths of the three SM forces and the gravitational force so
much different? The gauge hierarchy problem does not query the consistency of the electroweak
theory itself, but it certainly reinforces the question whether new physics could be situated at
energies much below the Planck scale. Solutions to the gauge hierarchy problem demand for new
theories at energies of several TeV, in order to avoid the fine-tuning problems in the calculation
of the Higgs mass.

Furthermore, there are also terms in the expanded Lagrangian in (1.60) that are divided
by the cut-off scale to certain powers, with operators of higher mass dimensions, which show a
suppressed relation to the UV energy range. Gauge and Lorentz invariance restrain the operators
of mass dimension 5, made up of SM fields, to one single term that generates a non-zero Majorana
neutrino mass, which violates the lepton number, however [90]. On the contrary, there are many
allowed terms made up of dimension 6 operators, which can be tested by precision measurements,
excluding a cut-off scale up to Λ ∼ 1 − 10 TeV [90, 95]. But, slightly above that scale, new
physics could be situated, in fact. Based on this motivation, most theories of new physics
predict phenomena in this energy range little above the SM. In fact, the LHC experiments at
the CERN have been executed to explore this interesting energy area.

The flavour puzzle

The fermion masses are generated by the Yukawa couplings, which have a natural magnitude of
order 1, times the Higgs vev, and a factor of

√
2. Even with a detailed experimental confirmation
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of the SM, it remains mysterious why the experimentally determined spectrum of quark and
lepton masses covers 5 orders of magnitude. From the electron mass at ∼0.5 MeV to the top
quark mass at ∼175 GeV, the Yukawa couplings show hierarchies up to

me

mt

∼ ye
yt
∼ 10−6 ! (1.68)

Currently, no symmetries or mechanisms are present to explain such hierarchies. Apparently, the
gauge forces of the SM do not distinguish between fermions that belong to different generations,
because these have the same quantum numbers.

Moreover, it is worth to question why there exist these three generations of quarks and
leptons, and what gives rise to the electroweak flavour changing interactions, mediated by a
charged W boson and parametrized by the CKM-matrix. Using the parameter λ ≈ 0.23 of the
Wolfenstein parametrization, the hierarchical pattern of the CKM mixing matrix behaves in
good approximation as

VCKM ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 . (1.69)

Whereas the mixing between the same generation of quarks is always the largest, and nearly of
O(1), the mixing between the first two generations is of the order O(λ), and the mixing between
the second and third generation is of the order O(λ2). The smallest mixing occurs over two
generations, which is of the order O(λ3). The origin of this interesting pattern is not described
within the SM. Moreover, flavour changing interactions, mediated by the neutral Z boson, are
completely forbidden at tree level in the SM, and suppressed by a partial interference at higher
orders, which is called the GIM mechanism [56]. Whereas the leptons of different flavours
cannot mix with each other, a neutrino oscillation has been confirmed experimentally [69, 70].
This mixing is described by the PMNS-Matrix [96,97].

These questions in the fermion sector are part of the still unresolved mysteries of the SM,
and demand for explanations.

The cosmological constant problem

The largest impact of a high cut-off scale, Λ ∼ mPl, is given by the first term in the effective
Lagrangian in (1.61),

C0Λ4 ∼ C0 1064−...76 GeV4 , (1.70)

which causes the most dramatic hierarchy problem of the theory. The term does not contain any
operators, and it effectively describes a shift by Λ4 in the vacuum energy density. This shift is
unobservable in particle physics experiments, because theoretical predictions are always related
to energy differences between the vacuum and certain excited states, where the absolute vacuum
energy density cancels out [79]. But, a vacuum energy gravitationally couples according to the
gravitational field theory, where it is part of a source term that predicts the gravitational field.
Einstein predicted this source to be the cosmological constant [15], which affects the expansion
rate of the universe after the Friedman-le-Maitre model [98]. In fact, an accelerated expansion
rate has experimentally been measured via the red-shift of emitted spectral lines in the light
from distant galaxies, and the dilation in the light decay of supernova luminosity curves [72,73].
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By means of these observations, a very tiny upper bound on the cosmological constant follows,
as [79]

Λ4 < 10−29 g

cm3
∼ (10−11 GeV)4 ∼ 10−44 (GeV)4 . (1.71)

With a natural coupling for C0 of a size O(1), this term lies about 120 magnitudes below the
value that is obtained for a Planck-sized cut-off scale, given in 1.70! The impression manifests
itself that the SM cannot be the last theoretical statement, and especially in its connection to
gravity there is a huge, remaining lack of explanation.

Following the experimentally confirmed accelerated expansion rate of the universe, it is com-
monly concluded that some kind of dark energy has to cause for a non-vanishing but small
cosmological constant, given in (1.71). This dark energy is included in the Λ-CDM model,
mentioned before, having an amount of 68.3% of the total energy in the present-day observable
universe [74,75]. The nature of the hypothetical dark energy is unknown and subject to current
theoretical studies. Some proposals implement new scalar fields in the universe, which also give
contributions to the cosmological constant, and by combining those with the vacuum energy
derived from quantum field theory, one can reproduce the measured value in (1.71).

Also, there are modified theories of gravity that can explain a degravitation of the vacuum
energy density if considering cosmological distances [99–103]. In these approaches, Newton’s
constant G is promoted to a covariant differential operator,

GΛ(�g) = G(�g)F(�g) , (1.72)

which is acting on the energy-momentum tensor that describes the vacuum energy,

GΛ(�)〈Tαβ〉v = G(κ/λ2
c)F(Λ/λ2

c)〈Tαβ〉v , (1.73)

where G(κ/λ2
c) = G

1−σe−κ/λ2c
, and F(Λ/λ2

c) = Λ/λ2c
1+Λ/λ2c

. Describing an essentially flat universe,

according to cosmological observations, one can follow the assumptions that the vacuum energy
can be modelled on macroscopic scales by an almost time -independent, Lorentz-invariant, energy
process, as 〈Tαβ〉v ' Tv cos(kc · x)ηαβ. Here, Tv is the average density of the vacuum energy,
and kc = 1/λc is the three-dimensional characteristic wave-vector, with kx = ky = kz ∼ 1/λc,
and |λc| � 1, due to the homogeneous distribution of the vacuum energy throughout the whole
universe. The parameter

√
Λ ∼ 1030 m gives the scale where the de-gravitation process sets

in, and it is assumed that |σ| < 1, and
√
κ �

√
Λ, to perform a formal series-expansion of

Gκ, for more details see [103]. In this scenario, the differential operator GΛ(�) applies instead
of Newton’s constant for small characteristic wavelengths, whereas for energy processes with
a characteristic wavelength much larger than the macroscopic filter scale, λc �

√
Λ, a strong

de-gravitational effect occurs, according to

lim
λc→+∞

GΛ(�)〈Tαβ〉v = 0 . (1.74)

For that reason, the vacuum energy density with a wavelength as large as the visible universe,
λc ∼ 1029 m, effectively decouples from the gravitational field. This scenario allows to reproduce
the observed accelerated expansion rate of the universe, with the high value for the vacuum
energy as predicted by the quantum field theory. In this scenario, the implications for the
orbital dynamics of a binary-system and generic n-body systems can be computed by using
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post-Newtonian perturbation methods [102, 103]. In this way, the dominant corrections to the
general relativistic results can be derived for the predictions of gravitational wave emissions.
This could provide intriguing possibilities to test for modified gravity in the context of future
measurements of gravitational waves.

1.2.2 Further questions

Unification of the Standard Model’s forces and gravity

Theories of new physics have to consider the region of higher energies above the electroweak
energy scale. Despite the Planck energy scale at which gravity becomes strong, there are further
suggestions for the scale at which new physics could emerge naturally. The electroweak theory
provides a unified description of the weak and the electromagnetic forces, and in this sense, it
is obvious to ask whether the complete group structure of the SM with the three gauge groups
SU(3)×SU(2)×U(1) could actually be described in a unified manner by a single larger symmetry
group. The simplest choice for such a larger symmetry group is the group SU(5) [104], and in
this scenario, the couplings gs, g, and g′ of the SM are connected to the unified coupling g5

by [79,105]

g5 = g3 = g =

√
5

3
g′ . (1.75)

Within this framework, one can extrapolate the values of the three couplings of the SM forces
from the energy scale mZ upwards. They come close together at very high energies, around
∼ 1016 GeV, though they do not actually meet. Nevertheless, it is remarkable that this energy
scale lies already close to the scale where the gravitational attraction of elementary particles
becomes comparable to the strengths of their strong, weak and electromagnetic interactions.
Maybe, it might be reasonable to hope that the unification of the SM forces is in some way
related to a unification of gravity with the three SM forces. However, the minimal unified model
with a SU(5) gauge symmetry, as well as further more extended models, are nowadays excluded,
because a proton decay is predicted by these models [106,107].

Before, it has also been discussed that the naive unification of the principles of quantum field
theory, predicting a high value for the vacuum energy, and gravity, describing the expansion rate
of the universe with a cosmological constant, leads to the tremendous cosmological constant
problem, and to the question about the origin of the dark energy, accounting for the observed
accelerated expansion rate of the universe. Moreover, after the successful quantization of the
electromagnetic force in connection with the other two microscopic forces of the SM, it has not
yet been possible to find a quantized description of the gravitational force for their microscopic
interactions. For sure, it is understood that the unification of quantum field theory and grav-
ity cannot be implemented in a straightforward way, and important concepts have still been
missing from the current understanding [79]. In this context, another mystery in the relation of
elementary particle physics and gravity is the dark matter problem.

Dark matter

Many astrophysical observations of the cohesion and dynamics of galaxies, and models of the
structure formation process of the universe provide indications of invisible gravitational sources.
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In spiral galaxies, for example, observations indicate that the rotation velocities of the outer stars
remain constant, rather than declining for longer distances away from the centre (e.g. [108]).
This could be explained by the existence of a big halo of dark matter around the spiral galaxies,
including ten times more matter than the visible matter localized in the centre. A further
example is the detection of the “bullet-cluster”, which is the name for two crossing galaxies that
consist of stars and gas matter. Using the effect of gravitational lensing, one can determine
the mass centres of the two crossing galaxies, and against the expectations, the galaxies seem to
cross nearly without collisions. The mass centres are lying in the two centres of the shining stars,
rather than in the gas dragging behind, due to its electromagnetic interaction, where one would
expect the mass centres for the visible matter to be situated. On the contrary, by assuming high
densities of dark matter particles in the galaxies that interact only very weak and by gravitation,
one can draw the conclusion that the mass centres are lying in the crowds of the stars, because
dark matter clouds can cross nearly without collisions, as observed (e.g. [109, 110]). Moreover,
observations of the cohesions in galaxy clusters have shown that the velocity dispersions of the
stars, following the virial theorem, indicate a much higher mass emergence than what is observed
by the visible matter [111]. Furthermore, the modelling of the structure formation process of
the universe after the Big Bang between nucleosynthesis and late matter abundances needs kind
of matter that cannot interact with radiation, as the visible matter does. The observed cosmic
microwave background gives a relic radiation map of times very shortly after the Big Bang. It
shows a remarkable homogeneous black-body radiation spectrum with a temperature of 2.726 K,
and temperature anisotropies of millionths degrees [112]. Following this map, one concludes that,
at very early times of the universe, the dominant element was radiation, and growing density
perturbations have led to the corned structure of the present day universe consisting of galaxies
and clusters. Without the inclusion of dark matter, the structure formation process could not
have happened, according to simulations (e.g. [113]), because ordinary matter is affected by
radiation, and density perturbations would have washed out. Instead, dark matter is needed for
having formed the potential wells for the ordinary matter to built structures. Moreover, there is
an intriguing connection is this context, the weakly interacting massive particle (WIMP)-miracle:
Considering the synthesis of the early, expanding universe, particle creation and annihilation
processes must have happened, until approaching a thermal equilibrium state with a constant
particle number density, due to a large expansion rate of the universe. Including dark matter
particles with a self-annihilation cross section in the range of what is expected for particles
that interact weakly, with masses of ∼ GeV - TeV, one determines a present-day dark matter
fraction of ∼ 25%, coinciding with the expected amount of dark matter that follows from other
observations [74, 75]! This remarkable connection indicates that dark matter could plausibly
consist of stable, weakly interacting, massive particles, the so called WIMP-particles. Many new-
physics theories predict dark matter candidates with the necessary properties and masses, like
supersymmetry with the lightest super-symmetric particle, solutions of the strong CP problem of
the SM with the axions, and extradimensional models with a KK parity that include a lightest,
stable KK particle.

In this regard, many experimental efforts have been made for detecting any dark matter
particles. For example, experiments have been searching for the recoil of dark matter particles
at nucleons (e.g. [114]), or in particle collisions where dark matter particles could possibly be
produced out of SM particles (e.g. [115, 116]). Due to the very weak interaction properties,
dark matter particles could only be indirectly detected in the detectors via missing transverse
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momentum in the collision plane. Until now, all the measurements confirm the SM and lack
any signals of dark matter. So, the simplest dark matter hypotheses may not form the correct
answers. More involved models with an elaborated, complete dark sector, which consists of
several dark matter particles and dark forces mediated between the dark matter particles, are
currently under investigation [116, 117]. Last but not least, one should mention that it is com-
monly accepted to explore new theories beyond the SM, whereas the dark matter conclusions
usually assume a one hundred percent validity of Einstein’s theory of general relativity. The
Λ-CDM model parametrizes the Big Bang cosmological model basing on the input assumption
of existing dark matter and dark energy, and it has been argued that, in this way, it might be
rendered non-falsifiable. Attempts with modifications of the general relativity might also explain
the dark matter problem. Apparently, all the effects of dark matter appear by their gravitational
interactions, therefore allowing for solutions that assume deviations from the general relativity
on cosmological scales.

The dark matter problem is certainly one of the most pressing open questions of modern
basic researches, no matter in which physical field the correct answer is hidden.

1.2.3 Theories of new physics

Supersymmetry

It has been discussed that several open questions of the SM ask for theoretical extensions and
new-physics phenomena at energies as low as several TeV. In this regard, the most popular
extension is given by the theory of supersymmetry (SUSY), offering a consistent framework
for calculations, in which the low energy SM predictions are safely reproduced. Early work
in this context was accomplished, e.g. by [118–124]. In the SUSY framework, the Poincaré
symmetry group of space-time, consisting of the momentum generators P µ of the translations,
and the generators Mµν of rotations and velocity transformations, generated by the angular
momentum JJJ and the boosts KKK, is extended by the SUSY transformations, which are generated
by the supercharges QA

α , Q̄B
β . These 2-dimensional representations of the Poincaré group are

spinors carrying a spin 1/2. In principle, one could consider a higher number of such sets with
A,B = 1, 2, ..., N . The generators of the SUSY transformations obey respective commutation
relations with the generators of the Poincaré symmetry group of space-time [125],

[Qα, P
µ] = 0 , [Qα,M

µν ] = (σµν)βαQβ , {Qα, Q̄β} = 2Pµσ
µ
αβ . (1.76)

Therefore, the induced SUSY transformations have to be considered as part of the space-time
transformations. In fact, one can show that the result of two SUSY transformations corresponds
to a space-time translation. Moreover, the generators Qα convert bosonic states into fermionic
states, and vice versa. An N = 1 set of SUSY employs two collections of fields, the chiral super-
multiplets consisting of one left-handed Weyl spinor and one complex scalar, and the gauge super-
multiplets containing the gauge bosons and their spin 1/2 SUSY partner fields [126, 127]. The
fields and their partner fields are connected by the SUSY transformations. Since the generators
of all the internal symmetries (gauge symmetries etc.) commute with P µ, Mµν and Qα, the
SUSY transformations do not change internal charges, and super-partners have to be charged
equally. Moreover, an additional internal symmetry can be implemented, the R-symmetry, which
predicts a conserved supercharge. The SUSY-particles and their partner fields are oppositely
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charged under that supercharge. The supercharge has to be conserved in the decay of SUSY-
particles, which predicts a decay chain that ends up in the production of a lightest SUSY-particle
that cannot decay further. If this lightest SUSY-particle is predicted to be electrically and color
neutral, it offers an appealing candidate for a dark matter particle. For that reason, the SUSY
theories with a realized R-symmetry naturally predict the existence of particles that behave like
dark matter. Furthermore, the R-symmetry demands that the number of fermions has to equal
the number of bosons, and that the particles within one SUSY multiplet must have equal masses.

When implementing the SM particles into the simplest set of SUSY, the quarks and leptons
are chosen as the fermionic components of the chiral supermultiplets. In this way, the squarks
and sleptons are added to the SM, as spin zero super-partners [10, 125, 128]. The gauge bosons
are part of the gauge super-multiplets, which include the gluinos, the winos and the bino as new
spinor super-partners to the theory. In addition, it is necessary to have two scalar Higgs bosons
in order to reproduce the Yukawa interactions of the SM. In this case, the Higgsinos are the
super-partners, which form a vector-like pair of spinor doublets. A lightest SUSY particle can
be realized by a mixture of the Higgsino, sneutrino, and the zino and photino, the partners of
the Z boson and the photon after electroweak symmetry breaking.

In fact, a theory that predicts gauge boson and fermion particles with equal masses is in
contradiction to all experimental paradigms, and for that reason, the SUSY cannot be imple-
mented as an exact symmetry of nature. Nevertheless, it might be broken spontaneously, which
would allow for small differences between the masses of the observed SM particles and their
super-partners. By including a mechanism that can describe, in some way, a slight breaking
of SUSY, tremendously interesting results can be derived. In a unified theory for the strong
and the electroweak interactions of the SM along with SUSY, one can find that the renormal-
ization of the coupling constants is improved in such a way that the three couplings meet with
an impressive accuracy at an energy scale close to 1016 GeV [79]. In addition, the cosmological
constant problem can be softened in such a theory to a discrepancy of 50 orders of magnitude
between the determined and predicted size of the vacuum energy (in comparison to 120 orders
in a pure SM). And, moreover, the gauge hierarchy problem can be solved in a SUSY theory,
because, in every order of perturbation theory, the loop diagrams involving the super-partner
fields cancel out the diagrams of the SM counterparts with the slightly differing masses. For
example, in addition to the diagram of the top-quark loop correction to the Higgs mass, given
in Figure 1.2, one would encounter a similar diagram where sfermions are exchanged, which
implies a quadratic divergence similar to that in the formula (1.65). Adding the two amplitudes
together, the Higgs mass correction in this scenario would depend on

Mδmh ∼
[
−y2

f + y2
s

]
ΛcΛcΛc

2 + ... , (1.77)

with ys as the Yukawa couplings of the sfermions. For small enough mass differences between
the observed quarks and leptons and their scalar super-partners, one can predict a physical
Higgs mass of the correct size. If such postulates were true, the scalar super-partners of the SM
quarks and leptons should be light enough to be experimentally discovered at present collider
experiments. Certainly, this was one of the main motivations for the construction of the LHC
experiments.
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Composite Higgs models

A second class of promising new theories for the gauge hierarchy problem assume the Higgs boson
to emerge as a bound state of a strongly interacting sector, rather than being an elementary
field. In these frameworks, new, asymptotically free gauge interactions become strongly coupled
at a scale Λ ∼ few TeV. This scale is dynamically generated by dimensional transmutation.
Above that scale, no elementary scalars exist, and in that way no hierarchy problem either. In its
original form, the so-called technicolor theories (e.g. [129, 130]) predict heavy resonances that
result from the strongly coupled sector. Unfortunately, the predicted Higgs boson is much heavier
than the measured one, and furthermore, the electroweak precision tests of the S parameter
exclude a wide range of these models [82].

Nevertheless, if assuming the Higgs boson to be a pseudo NG boson of the enlarged global
symmetry group G, these problems can be mitigated [51, 52, 131, 132]. Then, the approximate
global symmetry group G is broken down to H by new, strong gauge interactions. A bare Higgs
mass term causing the fine-tuning problem in the SM is forbidden by some symmetry, and the
Higgs potential is solely generated by radiative corrections, according to the Coleman-Weinberg
formalism [133]. This formalism states that, without a bare Higgs mass term, the physical
Higgs mass is generated through radiative corrections, however, resulting in a Higgs potential
with a non-vanishing vacuum expectation value. In this scenario, the strong constraints from
electroweak precision tests can be avoided. The mass of the composite Higgs boson is not
sensitive to virtual effects above the composite scale, similar to the mass of the pion in QCD,
which is UV stable whereas being a composite state.

For example, a minimal realization of such a model considers a global symmetry group
G = SO(5)× U(1)X , which is spontaneously broken down to H1 = SO(4)× U(1)X at the scale
f [134]. The group SO(4) is isomorphic to SU(2)L × SU(2)R, which means that both fulfil the
same Lie algebra. The electroweak gauge group of the SM SU(2)L × U(1)Y can be embedded
into the group structure SU(2)L×SU(2)R×U(1)X , and the coset SO(5)/SO(4) implies 4= dim
(G)-dim (H1) real NG bosons forming a complex doublet H under SU(2)L, the composite Higgs
boson.

In a more extended framework, one can consider the dynamical symmetry breaking G → H1

at the scale f , and the subgroup H0 ∈ G is gauged by external vector bosons. This symme-
try breaking implies n =dim(G)-dim(H1) Goldstone bosons, and n0= dim(H0)-dim(H) of the
Goldstone bosons can be absorbed to give a mass for the vector bosons of H0 [134, 135]. The
unbroken gauge group is H = H1 ∩ H0, and the remaining n − n0 pseudo NG bosons include
the Higgs doublet. The SM gauge group GSM is embedded into the unbroken subgroup H1, and
is unbroken at tree level. The SM fields are elementary fields, and are external to the strong
sector. Their couplings to the strong sector break the global symmetry G explicitly.

The Higgs potential vanishes at the tree level as a consequence of the Goldstone symmetry.
The effective Higgs potential is generated at the one-loop order, by exchanges of virtual SM
fields, which can break the electroweak symmetry. In this connection, the electroweak scale v
is determined dynamically, and can be smaller than f . The mass scale of the resonances of the
strong sector is given by mρ ∼ gρf , with 1 . gρ . 4π. The strong dynamics can be integrated
out, and their effects can be parametrized by form factors. The Higgs mass is generated at the
one loop order mh ∼ gSMv, with gSM . 1, as a generic SM coupling. In the limit ξ = (v/f)2 → 0,
where f → ∞, the Higgs boson would thus stay light, and all other resonances would become
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infinitely heavy [134].

After having mentioned two of the most popular versions of new physics, SUSY and composite
Higgs models, the next chapter introduces a third class of promising new theories that include
a very small, extra spatial dimension to the SM. The RS model, in particular, as one of these
new theories forms the framework for the subsequent parts of the thesis.



Chapter 2

The Randall-Sundrum Model

2.1 Theories of extra dimensions

Our perception as well as all physical researches indicate that three spatial dimensions and one
time dimension exist. Nevertheless, the mathematical use of very small and indiscernible extra
dimensions provides a fruitful tool for theoretical approaches in physics. Extradimensional the-
ories were elaborated already 100 years ago, at times at which only two of the four fundamental
forces of nature were known, the electromagnetism and gravity. G. Nordström introduced a
fourth spatial dimension in his attempt to unify the theory of electromagnetism with his scalar
theory of gravity, at times before Einstein’s theory of relativity had been published, or much
less confirmed. Nordström considered a five-dimensional vector field, in which he combined the
electromagnetic vector field with his new scalar gravitational potential. In this way, the electro-
magnetic field and the hypothetical scalar field of gravity could be understood as unified into
one single field. In this regard, our four dimensional space-time was considered as a surface of
a higher five-dimensional space-time. Nordström detected that the five-dimensional field equa-
tions of his framework could be separated into the electromagnetic field equations, the Maxwell’s
equations, and the equations of his new, proposed gravitational field [136]. Shortly afterwards,
T. Kaluza followed these ideas, and published a unified description for the theory of electro-
magnetism and Einstein’s theory of general relativity [137]. He introduced a five-dimensional
metric tensor, in which he included the four-dimensional metric tensor of our space-time, the
electromagnetic vector potential and an other scalar field. Furthermore, he used the “cylinder
condition”, claiming that not any component of the five-dimensional metric tensor should depend
on the extra-dimensional coordinate. The shortcomings of Nordström’s and Kaluza’s theories
were that both of them could not provide any mechanism to hide the extra dimension, or to
explain the origin of the “cylinder condition”. Finally, several years later O. Klein explained
how an extra spatial dimension can be escaped of detection and perception [138]. He proposed
that an extra dimension could have a “compactified” behaviour, being of a limited length but
periodically recurring, similar to a two-dimensional surface that is coiled up to a cylinder, as
illustrated in Figure 2.1. When watching the surface from a distance far away, the second di-
mension can not be perceived any longer, and the surface rather appears like a one-dimensional
line. For radii just small enough, compactified extra dimensions could exist but would escape
from detections, in principle. This plausible compactification mechanism for extra dimensions
from the KK theory has been used in numerous subsequent theories, e.g. in the String theory,

35
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Figure 2.1: Sketch of the idea of a compactified extra dimension. It appears like coiled up on a
small radius, and from a distance far away it cannot be perceived any longer, similar to the two
dimensional surface of a cylinder coiled up to an apparently one dimensional line.

or the RS model.

2.1.1 Large extra dimensions

In the year 1998, a framework was published by N. Arkani-Hamed, S. Dimopoulos and G. Dvali
[139] that uses multiple and in principle larger compactified extra spatial dimensions to find a
solution to the gauge hierarchy problem, and to explain the weakness of gravity in relation to the
other forces of nature. In this Arkani-Hamed-Dimopoulos-Dvali (ADD) model, it is declared that
gravity is the only fundamental force of nature that can mediate through the higher-dimensional
space-time, the bulk. The other forces, and all the elementary particle fields, are assumed
to reside on a four-dimensional subspace, a brane. In this regard, the fundamental, higher
dimensional Planck mass mPl(4+n), defining the higher-dimensional gravity constant, forms the
fundamental energy scale of the theory. In principle, it can lie as low as the energy range of
the SM, around several TeV, which is much below the usual, effective, four-dimensional Planck
mass mPl ∼ 1019 GeV. In this way, a gauge hierarchy problem is avoided, and the apparent
weakness of gravity can be explained, as only the effective, four-dimensional behaviour of gravity
appears weak compared to the other SM forces. The strength of gravity depends on the length
distance between two points at which it is measured. For distances r � R, where R is the
compactification radius of the extra dimensions, a sizeable deviation from the known gravity
potential is predicted [139],

V (r) ∼ m1m2

Mn+2
Pl(4+n)

· 1

rn+1
, (r � R) , (2.1)

as gravity can mediate through the whole extra-dimensional bulk. However, for distances much
larger than the extra-dimensional radii r � R, the extra-dimensions cannot be perceived, and the
gravitational potential follows the usual 1/r-behaviour in the four space-time dimensions [139],

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n
· 1

r
, (r � R) . (2.2)
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n 1 2 3 4 5 6 7

R [cm] 1013 10−2 10−7 10−9.5 10−11 10−12 10−12.71

Table 2.1: Sizes of the extra dimensional radii in dependence of the number n of extra dimensions,
as predicted by the ADD model with the formula (2.4), for a higher-dimensional Planck mass
of mPl(4+n) ∼ 1 TeV.

By comparing the last equation with Newton’s gravitational potential, a relation between the
higher dimensional Planck mass mPl(4+n) and the four-dimensional Planck mass mPl follows

M2
Pl ∼M2+n

P l(4+n) R
n . (2.3)

From the four-dimensional point of view, gravity seems to be diluted compared to the three SM
forces, and this is connected to the fact that the SM forces cannot propagate through the extra
dimensions, compared to gravity. Yet, their strengths should be of comparable sizes, if looking at
the higher-dimensional behaviours. The higher-dimensional Planck mass mPl(4+n) may lie close
to the electroweak energy range, whereas from the effective four-dimensional point of view, the
four-dimensional Planck mass mPl has the known high value of ∼ 1019 GeV. The last formula
can be used to determine the sizes of the extra-dimensional radii in dependence of the number
n of extra dimensions and the higher dimensional Planck mass mPl(4+n) ∼ mEW, as predicted
by the model,

R ∼ 10
30
n
−17cm×

(
1 TeV

mEW

)1+ 2
n

. (2.4)

In Table 2.1, the sizes of the extra dimensional radii, obtained from formula (2.4), for a higher
dimensional Planck mass of mPl(4+n) ∼ mEW ∼ 1 TeV are listed, in dependence of the number
n of extra dimensions.

Clearly, the existence of only one large extra dimension n = 1 is empirically excluded. This
case would imply a radius for the extra dimension as R ∼ 1013 cm, which is about the size of
the solar system, and would imply deviations from the known gravity law over distances of such
a size. But, the existence of n ≥ 2 extra dimensions implies radii as R < 0.1 mm, and these
cases might, in fact, be of interest, as measurements of the gravity law over small distances are
searching around this scale for deviations from the 1/r behaviour. From the observations, the
case of n = 2 extra dimensions can be excluded for radii down to R > 44 µm to 95% confidence
level (CL), implying a lower bound on the higher dimensional Planck mass as mPl(4+n) > 1.9
TeV [140]. Also, the existence of extra dimensions could cause signals of missing energy in
collider experiments, where hypothetical force-mediating particles of gravity, which couple to
the SM particles, could escape into the bulk and carry away energy [139, 141]. Intriguingly,
extra dimensions could also enable direct productions of micro black holes at the LHC [142].
But, the strongest constraints result from astrophysical measurements, as for example from
measurements of the heat of Neutron Stars. The heat would be increased for existing extra
dimensions, because additional decays of the hypothetical gravity force-mediating particles would
contribute to the heat energy. The case of n = 2 extra dimensions is excluded up to a Planck
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mass of mPl(4+n) < 1700 TeV, and one can only reach mPl(4+n) ∼ TeV for a number n ≥ 4 of
extra dimensions [143].

Possible shortcomings of the ADD model are that, whereas solving the gauge hierarchy
problem, it introduces a new hierarchy concerning the magnitudes of the unnatural big radii
R of the extra dimensions compared to the higher-dimensional Planck mass. According to the
formula (2.4), one could demand R ∼ 1/mEW to cure this problem, but this would require a
large number n of extra dimensions, accordingly.

2.1.2 Universal extra dimensions

Shortly after the publication of the ADD model, the idea of universal extra dimensions was
established [144]. In this scenario, several compactified extra dimensions are added to the SM,
and in contrast to the ADD model, it is assumed that all particle fields can universally prop-
agate into the extra dimensions. In general, particle fields that extend into compactified extra
dimensions, and therefore live in a higher-dimensional space-time, imply very interesting phys-
ical consequences. For one extra dimension, compactified on a simple circle S1, the periodicity
condition

x5 ≡ x5 + 2πR (2.5)

applies. According to this condition, every five-dimensional particle field, as the simplest example
of a five-dimensional scalar field Φ(xM) with a mass M , can be expanded into an infinite Fourier
series, as

Φ(xµ, x5) =
∞∑

n=−∞

χφn(x5)φn(xµ) . (2.6)

Every mode in the expansion consists of a four-dimensional KK particle field and a profile func-
tion that describes the dependence on the extra dimension. A more convenient compactification
in the sense of particle physics is the S1/Z2 orbifold compactification. In this connection, the
physical domain runs from x5 = 0 to x5 = πR, and a discrete symmetry is imposed, the Z2-
symmetry, by identifying x5 ↔ −x5 in addition to the periodicity condition. This is illustrated
in Figure 2.2. The endpoints do not transform under the Z2-symmetry, and are called the fixed
points of the orbifold [145]. At these fixed points, four-dimensional subspaces, so-called branes,
can be localized. If considering the action of a five-dimensional scalar field [145],

S5D =

∫
d5x

[
(∂MΦ)(∂MΦ)−M2ΦΦ

]
, (2.7)

one can substitute the KK Fourier tower of the five-dimensional scalar, and integrate over the
fifth dimension. One requires that for every four-dimensional Fourier mode φn(xµ) in the
expansion, the action for a four-dimensional scalar applies [145],

S5D
!

=

∫
d4x

∞∑
n=1

[
∂µφn∂µφn −m2

nφ
2
n

]
. (2.8)

so that the single modes describe distinct, four-dimensional, scalar particles, the KK particles.
The requirement results in conditions that are imposed on the profile functions χφn(x5):
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Z2 =
x5=0 x5=πR

Figure 2.2: Sketch of the S1/Z2 orbifold compactification of an extra dimension [145]. The
physical domain runs from x5 = 0 to x5 = πR, by identifying x5 ↔ −x5, apart from the discrete
Z2-symmetry that is imposed. The endpoints of the orbifold are the fixed points and do not
transform under Z2.

1) The five-dimensional action has to be invariant under the Z2-symmetry. For that reason,
the field Φ(xµ, x5) has to follow an intrinsic parity transformation

Φ(xµ,−x5) = PΦ(xµ, x5) , P = ±1 , (2.9)

so that the field has to be even (+) or odd (-) under the Z2-symmetry. An odd field has to fulfil
Dirichlet boundary conditions at the branes, which can be translated into boundary conditions
for the profiles as

χφn(xi)
!

= 0 , xi = 0, πR . (2.10)

An even field has to fulfil Neuman or mixed-type boundary conditions at the branes, as

∂x5χ
φ
n(x5)

∣∣
x5=0,πR

!
= 0 , or at least ∂x5χ

φ
n(x5)

∣∣
x5=0,πR

!
= ξχφn(xi) , xi = 0, πR . (2.11)

2) The profiles χφn(x5) have to form a complete set of functions on the extra dimension,
fulfilling an orthonormality condition,

1

2πR

∫ πR

−πR
dx5 χ

φ
m(x5)χφn(x5) = δmn , (2.12)

which results from a matching of the five-dimensional kinetic terms of the action to the four-
dimensional kinetic terms of scalars.

3) In addition, the mass terms have to match to those of four-dimensional scalars, requiring
an equation of motion for the profiles

∂2
x5
χφn(x5)−M2χφn(x5) = −m2

nχ
φ
n(x5) . (2.13)

Detections of KK particles could provide measurable signals for the existence of a com-
pactified extra dimension in particle scattering processes. With the help of the three kinds of
conditions, one can determine the KK spectrum that is dictated by the KK profiles. The general
solution to the differential equation in (2.13) reads

χφn(x5) = C1 e
i
√
m2
n−M2x5 + C2 e

−i
√
m2
n−M2x5 , (2.14)
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where the periodicity condition implies that

e±i
√
m2
n−M2 x5 !

= e±i
√
m2
n−M2 (x5+2πR)

⇔ ei
√
m2
n−M2 2πR !

= 1 , ⇒
√
m2
n −M2 =

n

R
.

(2.15)

Therefore, the single KK modes have the masses

m2
n = M2 +

n2

R2
, (2.16)

where the lightest mode for n = 0 has a mass M , whereas the higher modes have heavier
masses, ascending with multiples of n/R. Also, one can see that mn < M is not possible. The
Z2-symmetry demands further that

χφn(−x5) = ±1 · χφn(x5) , ⇒ C2 = ±C1 , (2.17)

depending on the parity of the profiles χφn(x5). One can write the KK decomposition in terms
of profiles that are even (+) and odd (-) under the Z2-symmetry, for what it follows from
the previous steps that χφ+

n (x5) = 2C1cos
(
n
R
x5

)
, and χφ−n (x5) = 2iC1sin

(
n
R
x5

)
. With the

identification for the four-dimensional fields, φ±n (xµ) ≡ 1(i)√
2

[φn(xµ)± φ−n(xµ)], and by respecting

the normalization condition in (2.12), giving C1 = 1/
√

2, one can find then

Φ(xµ, x5) =
1√
2πR

φ0(xµ) +
∞∑
n=1

1√
πR

[
φ+
n (xµ) cos

(nx5

R

)
+ φ−n (xµ) sin

(nx5

R

)]
, (2.18)

where

φ−n (xµ) = 0 , if PΦ = +1 , or

φ+
n (xµ) = 0 , if PΦ = −1 , (including φ0(xµ)) .

(2.19)

The KK decomposition on an S1/Z2 orbifold is reduced by a factor 2 compared to the decompo-
sition on a simple circle, given in (2.6). Further, it projects out the zero mode for a field that is
odd under the Z2 parity. The KK decompositions illustrate that an infinite tower of new fields
with separate masses is predicted for five-dimensional fields. The procedure can be generalized
to the fields with other spin, in which the four-dimensional KK fields in the expansions are
adapted accordingly. In principle, we can consider the described setting as an extension of the
SM, where all fermions and gauge bosons are allowed to spread out into the extra dimension,
resulting in specific towers of KK particles. The lightest KK modes, the zero modes, form the
equivalents to the SM particle fields, and moreover, there can be additional, five-dimensional,
particle fields, as long as these fields are odd under the Z2 symmetry and do not have zero modes.
The mass scale MKK of the lightest, additional KK modes, in addition to the SM fields, in this
framework is scaling with the inverse radius of the extra dimension, according to MKK ≈ R−1.
In general, the extra dimensions are assumed to be compactified on radii much larger than the
Planck length, but smaller than those of the ADD model.

The five-dimensional gauge symmetries predict gauge bosons that can be separated into a
four-dimensional vector component and a scalar part, AM = Aµ +A5. Both parts are separately



CHAPTER 2. THE RANDALL-SUNDRUM MODEL 41

expanded in KK decompositions, where the KK particle fields have the respective spins. The
scalar parts A5 have to be odd under the Z2-symmetry to avoid the presence of additional,
light scalars by the zero modes. Also, the quantity Fµ5 = ∂µA5 − ∂5Aµ in the five-dimensional
kinetic Lagrangian of the gauge bosons, Lbosons ∈ 1

4
FMNF

MN = 1
4
(FµνF

µν + Fµ5F
µ5), must own

a well-defined Z2 parity, where ∂µ is even, and ∂5 is odd. This is fulfilled for Z2-even vector
components Aµ and Z2-odd scalar components A5, respectively. After electroweak symmetry
breaking, the KK modes of the scalar decompositions form the third degrees of freedom of the
massive KK gauge bosons of the vector decompositions, as the terms

F2
µ5 3 ∂µA5∂5A

µ ∼
∑
n

A(n)
µ ∂µA

(n)
5 ∂x5χ

Aµ
n (x5) (2.20)

mix the fields A
(n)
µ and A

(n)
5 [145]. This is similar to the non-physical components of the Higgs

field in the SM that form the longitudinal polarization states of the massive gauge bosons.
Following the mass dimensions for the five-dimensional fields1, five-dimensional gauge couplings
g5 have a dimension [g5] = −1/2. By considering, for example, a zero-mode gauge boson coupling
to two KK fermions,∫

d4x

∫ πR

−πR
dx5 g5Ψ̄ΓMAMΨ 3

∫
d4x g4Ψ̄(m)γµA(0)

µ Ψ(n)δmn , (2.22)

one can define the dimensionless couplings by

g4 ≡ g5χ
Aµ
0 (x5) , (2.23)

where the zero-mode profile χ
Aµ
0 (x5) ≈ 1/

√
2πR is constant in the extra dimension to the lowest

approximation. The Kronecker delta δmn in the formula stems from the normalization condition
for the fermion profiles, which has been applied. Instead, for a general coupling of KK fermions to
a higher-mode KK gauge boson, the expression includes the integral over the extra-dimensional
coordinate including the profiles of the coupled KK particles,

Bkmn =

∫ πR

−πR
dx5 χ

Ψ
k (x5)χAµm (x5)χΨ

n (x5) . (2.24)

In the expression before, this integral has resulted in the normalization condition for the fermion
profiles. In general, in extra-dimensional models, the overlap integrals are crucial ingredients of
the effective, four-dimensional couplings. These can modify the interactions of the SM equiva-
lents, the zero modes, in an interesting manner. In this way, for example, a GIM mechanism can
be achieved to explain the suppressed flavor-changing neutral currents of the SM, or a natural
explanation mechanism can be found for the mass splitting of the zero-mode fermions.

A five-dimensional Lie algebra, connected with the commutation relation,

{ΓM ,ΓN} = 2ηMN , (2.25)

1In d 6= 4 space-time dimensions, the mass dimensions of the fields are

[Φ] = [Aµ] = E(d−2)/2 , [Ψ] = E(d−1)/2 , (2.21)

following from the demand that the action has to be dimensionless. So, in five dimensions, the bosons have a
mass dimension 3/2, and the fermions have a mass dimension 2.
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can only be fulfilled by irreducible four-dimensional representations, in contrast to the SM,
where the representations of the four-dimensional Lie algebra can be reduced into two two-
dimensional representations. For example, one can choose a representation in terms of the
4 × 4 Dirac matrices, Γµ = γµ, Γ5 = −iγ5 [145]. As a consequence, the left- and right-handed
zero-mode fields, implied for a doublet fermion under the five-dimensional SU(2) symmetry,
transform equally under SU(2), so that vector-like KK fermions are predicted by the theory.
The important property of the SM SU(2)L gauge transformations, to exclusively act on left-
handed particles, is missing generically, and has to be implemented in some way. The chiral
fermion content of the SM can be achieved by proposing two different fermion fields for the
doublets and singlets. The zero-mode chirality parts, which are not compatible to the SM, are
projected out by means of the Z2-symmetry. In this regard, chiral fermions exist only for the
zero modes, and for every KK mode n > 1, the fermion content is doubled compared to the SM.

The presence of the integrals over the extra-dimensional coordinate when deriving the four-
dimensional, effective theory allows for a natural explanation mechanism for the mass differences
of the SM fermions. For example, we can consider a five-dimensional fermion field Ψ, and add
a Z2-odd bulk mass term, as

L ∼ Ψ̄
(
i∂MΓM + ε(x5)M

)
Ψ , (2.26)

where ε(x5) = +1 (−1), for πR > x5 > 0, (−πR < x5 < 0) [145]. The five-dimensional mass is
just an arbitrary, five-dimensional parameter, for which the Z2-odd behaviour is allowed and even
necessary because an even mass term would explicitly break the Z2-symmetry of the Lagrangian.
It could be generated by a coupling of the fermions to the vev of a Z2-odd bulk scalar, inducing
a spontaneous breaking of the Z2-symmetry. Such a mechanism will be investigated in some
parts in the last section of the thesis. The odd bulk mass term characterizes the form of the
fermion profiles χfn(x5) via the equations of motion,

[−∂x5 + ε(x5)M ]χfLn (x5) = mnχ
fR
n (x5) , [∂x5 + ε(x5)M ]χfRn (x5) = mnχ

fL
n (x5) . (2.27)

We consider f and f ′ as two different fermion fields, where f is a SU(2)L doublet and f ′ is a
singlet. The zero modes of the right-handed doublet and the left-handed singlet are projected
out by means of the Z2-symmetry. One can derive the following solutions for the profiles of the
zero modes (for mn = 0)

χfL0 (x5) = NeMx5 , χ
f ′R
0 (x5) = Ne−M

′x5 . (2.28)

Considering a five-dimensional Yukawa Lagrangian that couples to a brane-localized Higgs sector
[145],

L ∼
∫ πR

−πR
dx5 δ(x5 − πR)hfLf

′
Rλ5D , (2.29)

with a five-dimensional Yukawa coupling λ5D. By integrating over the extra dimension, one can
compare the Lagrangian to the four-dimensional form of the SM, given by λ4D hfLf

′
R. A relation

follows between the four-dimensional and five-dimensional Yukawa couplings [145]

λ4D ∝ λ5D e(M−M ′)πR . (2.30)
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For natural, five-dimensional parameters, the four-dimensional masses of the two different quarks
mq1 and mq2 that scale with λ4D can have exponentially large differences in the magnitudes. For
example, taking λ5D,q1 ≈ λ5D,q2 and M ′ ≈ −M for each quark, and further Mq1 = −3/(πR) and
Mq2 = −1/(πR), one finds [145]

mq1

mq2

∼ e2∆MπR ≈ 1

100
. (2.31)

This is implied by the overlaps of the zero-mode fermion profiles with the exponential behaviour
in the integrals over the extra-dimensional coordinate.

In principle, the general setting for the universal extra dimensions can be implemented for an
arbitrary number δ of extra dimensions [144]. Experimental tests of particle processes through
LHC data, and electroweak precision tests performed at the Z pole, tests of the magnetic mo-
ment of the muon and of flavor changing neutral currents, can give exclusion bounds on the
compactification scale R of the extra dimensions [146, 147]. In the subsequent sections of the
thesis, similar tests will be considered in the context of the RS model, which will be introduced
in the following.

2.1.3 A warped extra dimension - the Randall-Sundrum model

A framework to solve the gauge hierarchy problem by extending the SM with only one small
and compactified extra dimension was published by L. Randall and R. Sundrum in the year
1999 [1]. The approach considers the four-dimensional Minkowskian spacetime ηµν together
with a compact S1/Z2-orbifold, which can be parametrized by an angular coordinate φ = x5

rc
,

where φ ∈ [−π, π]. The parameter rc is the radius of the extra dimension, prior to orbifolding.
The lower part of the extra dimension [−π, 0] is physically equivalent to the upper part [0, π],
apart from the Z2-symmetry, where the periodic identification in the coordinate φ ≡ φ + 2πrc
applies. The four-dimensional space along the fifth dimension is extremely warped by a negative
energy density, in contrast to the models presented before. As an effect, a large hierarchy of
scales is caused between two objects that are situated at different positions along the extra
dimension. To respect the four-dimensional Poincaré-invariance in the four-, the xµ,-directions,
the ansatz for the five-dimensional metric reads [1]

ds2 = GMNdx
MdxN = e−2σ(φ)ηµνdx

µdxν + r2
cdφ

2 . (2.32)

The orbifold has two fixed points at φ = 0 and φ = π, at which four-dimensional subspaces are
localized that only extend into the xµ-directions,

gvis
µν (xµ) ≡ Gµν(x

µ, φ = π) , ghid
µν (xµ) ≡ Gµν(x

µ, φ = 0) . (2.33)

In this original framework, only the gravitational force can extend into the whole five-dimensional
space-time, the bulk. The four-dimensional field content of the SM is assumed to be exclusively
localized onto the brane at φ = π, similar to the ADD model. The classical action for this set-up
has the form [1]

S =

∫
d4x

({∫ π

−π
dφ
√
−G

[
−Λ + 2M3R

]}
+
√−gvis [Lvis − Vvis] +

√−ghid [Lhid − Vhid]

)
.

(2.34)
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Figure 2.3: Sketch of the RS model. It considers an S1/Z2 orbifold that forms a slice of AdS5

space with a negative energy density, bounded by two fourdimensional branes. An exponential
warping of scales is induced along the extra dimension from x5 = 0 to x5 = πrc, indicated by the
dashed curve and the mass relation. The model does not require any large hierarchies between
the fundamental parameters k, rc and M .

A negative, five-dimensional vacuum energy density Λ resides in the bulk, and constant vacuum
energies V are localized on each of the branes, acting as gravitational sources even in the absence
of particle excitations. Here, M represents the fundamental mass scale of the higher-dimensional
theory. The five-dimensional Einstein’s equations for this framework read [1]

√
−G

(
RMN −

1

2
GMNR

)
=− 1

4M3

[
Λ
√
−G GMN + Vvis

√−gvis g
vis
µν δ

µ
Mδ

ν
Nδ(φ− π)

+Vhid

√−ghid g
hid
µν δ

µ
Mδ

ν
Nδ(φ)

]
,

(2.35)

neglecting the brane-localized Lagrangians. By using the five-dimensional metric, one can cal-
culate the Christoffel symbols of the model, and one can determine the Ricci tensor and the
Ricci scalar for a local basis on a Riemann manifold. These can be inserted into the Einstein’s
equations, resulting in the following differential equations

6

r2
c

σ′(φ)2 = − Λ

4M3
,

3

r2
c

σ′′(φ) =
1

4M3rc
[Vhidδ(φ) + Vvisδ(φ− π)] . (2.36)

The first of the two equations gives the solution

σ(φ) = rc|φ|
√
−Λ

24M3
, (2.37)

which is consistent with the orbifold symmetry, and demands a negative sign for Λ in order
to obtain a real root. Such a warped space, caused by a negative energy density, is called an
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“anti-de Sitter (AdS) space”. By defining the curvature scalar k ≡
√

−Λ
24M3 , one derives the

following result for the exponential of the warp factor [1]

σ(φ) = krc|φ| . (2.38)

Then, from the second derivative of the solution, σ′′(φ) = 2krc [δ(φ)− δ(φ− π)], one can obtain
the following energy densities on the branes

Vhid = −Vvis = 24M3k , Λ = −24M3k2 . (2.39)

The curvature term in the five-dimensional action determines a relation between the fundamen-
tal mass M and the four-dimensional Planck mass mPl after having integrated over the extra
dimension. The result is [1]

m2
Pl = M3rc

∫ π

−π
dφ e−2krc|φ| =

M3

k

[
1− e−2krcπ

]
, (2.40)

which indicates that mPl depends only mildly on the radius rc in the limit of a large krc. On
the contrary, the scale for the particle fields that exclusively reside on the visible brane at φ = π
has a strong dependence on the choice for krc. In this connection, the action for the Higgs field
with a mass parameter v0 reads

Svis 3
∫
d4x
√−gvis

[
gµνvisDµH

†DνH − λ(|H|2 − v2
0)2
]
, (2.41)

where gvis
µν = e−2krcπ gµν (whereas ghid = ḡµν). After a canonical renormalization of the wave-

function, H → ekrcπH, one can find

Seff 3
∫
d4x
√
−g
[
gµνDµH

†DνH − λ(|H|2 − e−2krcπv2
0)2
]
. (2.42)

By comparing this effective action with the equation before, one derives the intriguing result for
the relation between the five-dimensional and the four-dimensional Higgs mass parameters v0

and v [1],
v ≡ e−krcπv0 . (2.43)

The relation states that the mass parameters on the visible brane at φ = π are scaled down
by an exponential warp factor e−krcπ, compared to mass scales on the hidden brane at φ = 0.
Equivalent relations hold for any mass parameters m on the visible brane,

mvis ≡ e−krcπmhid . (2.44)

By setting ekrcπ to the order of 1015, TeV scale masses are obtained on the visible brane, which
correspond to mass parameters of the order of the Planck mass ∼ 1019 GeV on the hidden
brane. According to this scaling behaviour, the visible brane is usually denoted as the TeV
or infrared (IR) brane, whereas the hidden brane is denoted as the Planck or ultraviolet (UV)
brane. Possible gravity force mediating particles, the gravitons, would reside close to the hidden
brane, where the high scales hold. Then, the weakness of gravity can be explained by the small
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overlap of the graviton wave function in the fifth dimension with the visible brane, where the
SM particles are assumed to reside on. The crucial point is that the fundamental scale for the
SM particles can naturally be of the order of O(TeV ) on the visible brane. In this relation,
also the UV cut-off scale of the theory can be set to this energy range,

ΛIR = ΛUV e
−krcπ ∼ several TeV , (2.45)

for ΛUV ∼ 1016 TeV. In this way, the apparently huge hierarchy between the Planck and the
electroweak scale is resolved. The weak scale can dynamically be generated by the background
metric for a slice of AdS5 space, according to the formulas (2.40) and (2.43), for a fundamental
mass scale M ∼ mPl. In this sense, the framework is working with natural choices for the
parameters, as

1

rc
. k .M ≈ mPl , krc ∼ 11 , (2.46)

without introducing any larger, new hierarchies, compared to the ADD model [139]. Further-
more, the RS model predicts KK resonances with larger mass differences, whereas in the ADD
model the implied KK resonances of gravitons have mass differences of only a few eV . In this
regard, it should be possible to individually detect the single modes of gravitons via their de-
cay products [1]. But, the radius rc of the extra dimension has to be stabilized to insure the
relation ekrcπ ≈ 1015. This can be achieved by the “Goldberger-Wise mechanism” [148, 149] by
introducing a scalar field in the bulk. This bulk scalar has quartic interactions that are localized
on the branes, and the minimum energy configuration, resulting from this setting, can yield an
appropriate compactification scale rc.

2.2 The minimal Randall-Sundrum model

In the following, we will present a description of the actual frameworks of the RS model that will
be investigated in this thesis. In most parts, we will work with the most natural and upgraded
version of the RS model, in which all particle fields according to the bulk gauge symmetry,
including the Higgs boson, extend into the extra dimension (bulk-Higgs RS model). Initially,
the Higgs sector was strictly localized onto the IR brane, based on the motivation to solve the
gauge hierarchy problem. But, in principle, the setting with a bulk Higgs field can also resolve the
gauge hierarchy problem. Though the Higgs field can extend into the whole extra dimension, the
Higgs profile is exponentially augmenting from the UV brane to the IR brane, with a maximum
positioned onto the IR brane. The derivation of the correct Higgs mass demands for a very
slight amount of fine-tuning, such as around 1 in a 1000 [2]. The electroweak symmetry breaking
potential is localized onto the IR brane, and we do not consider quartic Higgs interactions in the
bulk. For the bulk-Higgs framework, we will consider a minimal implementation for the bulk
gauge symmetry. In addition, we will present two alternative versions of the RS model, one with
a brane-localized Higgs field (brane-Higgs RS model), and another one with an extended
gauge symmetry implemented in the bulk (custodial RS model).

In this sense, we are working with a version of the SM that is extended by a small and
warped extra dimension. The extra dimension has a curled up and microscopic behaviour,
and is chosen to be an S1/Z2 orbifold that can be parametrized by a dimensionless coordinate
t ∈ [ε, 1]. The orbifold is bounded by two four-dimensional branes localized at the fixed-points
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at t = ε = e−krπ ≈ 10−15 (UV brane) and t = 1 (IR brane), similar to the framework of the
original RS model [1]. The metric of the model reads

ds2 =
ε2

t2

(
ηµνdx

µdxν − 1

M2
KK

dt2
)

= e−2kr|φ|ηµνdx
µdxν − r2dφ2 . (2.47)

The dimensionless coordinate t [150–152] is related to the coordinate used in the original publi-
cation of the model φ ∈ [−π, π] by the relation

t = εekr|φ| , (2.48)

where both the radius r of the extra dimension and the curvature constant k are situated close to
the Planck scale, k ∼ 1/r ∼ mPl. The transformation properties from the φ, or x5, coordinates
to the t coordinate are illustrated in Appendix A.1. In this framework, the KK mass scale, the
mass scale of the lightest KK resonances, is determined by the relation MKK = kε. Usually, one
defines the quantity L = krπ ≈ 33−34 as the “size” of the extra dimension, which is stabilized by
the ”Goldberger-Wise mechanism” [148]. According to the metric of the framework in (2.47), we
observe that the quantity L dictates a correspondence of the high Planck scale at the UV brane
with the TeV scale at the IR brane, which is needed to solve the gauge hierarchy problem [1].
We consider a minimal amount of particle fields which are similar to the SM particle fields, so
that we extend the SM gauge group,

SU(3)c × SU(2)L × U(1)Y , (2.49)

to five dimensions [150]. Also, we include a five-dimensional Higgs field, so that all particle
fields of the setting can propagate into the extra dimension. The calculations are performed
with an effective, four-dimensional description of the RS model that is valid at momenta lower
than the warped-down UV cut-off ΛTeV ∼ 10MKK [153]. Due to the microscopic, curled up, and
periodic behaviour of the extra dimension, we can expand the initial five-dimensional particle
fields into the KK decompositions [137, 138]. Every KK mode in the decompositions consists
of a four-dimensional particle field together with a profile function that defines the behaviour
along the extra dimension. The KK decompositions of the five-dimensional particle fields can be
inserted into the original, five-dimensional action of the model, while integrating over the fifth
dimension in order to derive an effective four-dimensional action. In this connection, the profile
functions of the fields have to fulfil particular normalization conditions, as well as differential
equations in dependence of the extra dimensional coordinate (equations of motion), to match
the resulting four-dimensional action with the action of the SM.

The original, five-dimensional action reads [2, 154]

S =

∫
d4x

2πr

L

∫ 1

ε

dt

t

ε4

t4
[Lgauge + LHiggs + Lferm] , (2.50)

with

Lgauge = −1

4
Gb
MNG

MNb − 1

4
F a
MNF

MNa − 1

4
BMNB

MN , (2.51)
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and2

LHiggs = gMNDMΦ†DNΦ− µ2|Φ|2 − Vbranes ,

Vbranes = kεδ(t− ε)kmUV |Φ|2 + kδ(t− 1)

[
−kmIR|Φ|2 +

2r

k
λ|Φ|4

]
,

(2.52)

and

Lferm =
∑
f

f̄
(
iΓM∇M −Mf

)
f −

[
Q̄Y5D

d Φd+ Q̄Y5D
u εΦ†u+ L̄Y5D

e Φe+ h.c.
]
. (2.53)

Here, ε4

t4
r =
√
G is the square root of the determinant of the five-dimensional metric, and Gb

MN ,
b=1,...,8, F a

MN , a=1,2,3, and BMN are the five-dimensional field strength tensors of the groups
SU(3)c, SU(2)L and U(1)Y , respectively. The initial, kinetic terms for the fermions in the
action are modified compared to the SM, due to the curved space along the extra dimension
[155–157]. In this connection, the Dirac matrices in the curved space ΓM = EM

A γ
A have to be

included that are related to the Dirac matrices in the flat space γA = (γµ, iγ5) by the fünfbein
EM
A = diag( t

ε
, t
ε
, t
ε
, t
ε
, 1
r
) [157]. Primarily, the covariant derivative, ∇M = DM + ωM , includes a

second term with the spin connection ωM . Nevertheless, this term does not give a contribution
to the action in the RS model, because the metric is diagonal [155]. Then, the kinetic terms
obtained for the KK fermions are similar to the SM. Also, the kinetic terms for the bulk Higgs
field depend on the five-dimensional metric tensor, and therefore on the warp factor of the curved
space.

In the following, we begin with a more detailed description of the sectors for the gauge fields
and the Higgs field. Then, in the subsequent section, we will give a description for the fermion
sector.

2.2.1 Gauge sector and spontaneous symmetry breaking

The original parameters in the Higgs potential in (2.52) have the mass dimensions [MUV ] =
[2kmUV ] = 1, [MIR] = [2kmIR] = 1 and [λIR] = [4r

k
λ] = −2 of the fundamental energy scale,

which varies along the extra dimension [2,154], corresponding to the Planck scale at the UV brane
and the warped-down Planck scale, lying around several TeV, at the IR brane. Accordingly, a
possible |Φ|4-term on the UV boundary would be suppressed by negative powers of 2 of the
Planck scale, and is neglected here. Similarly, such a term in the bulk would be suppressed by
an intermediate scale between the Planck and the TeV energy scales. However, the inclusion
of such a term would result in a significantly more involved structure of the Higgs sector, and
we refrain from including it, similar to the framework discussed in [154]. The mechanism of
the spontaneous symmetry breaking of the electroweak symmetry is induced by the IR brane-
localized potential, which is forcing the Higgs field to adopt a position-dependent vev v(t) in the
bulk. As usual, one can expand the five-dimensional Higgs field around this vev [2]

Φ(x, t) =
t

ε
√
r

(
−iϕ+(x, t)

1√
2

[v(t) + h(x, t) + iϕ3(x, t)]

)
, (2.54)

2Here, the dimensionless quantities mUV = MUV

2k , mIR = MIR

2k and λ = λIRk
4r are defined from the dimensionful

parameters MUV , MIR and λIR, where [MUV ] = [MIR] = 1 and [λIR] = −2, respectively.
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where h(x, t) is the physical, five-dimensional Higgs scalar. For convenience, we have extracted
the factors t

ε
√
r
, so that the remaining components in the decomposed Higgs field, as the Higgs

boson and the vev, have a mass dimension 1. The Lagrangian of the Higgs sector,

LHiggs =
2πr

L

(∫ 1

ε

dt

t

[
ε2

t2
ηµν(∂µΦ†)(∂νΦ)−M2

KK

ε2

t2
(∂tΦ

†)(∂tΦ)− µ2ε4
1

t4
|Φ|2

]
−δ(t− ε)k2mUV |Φ|2 + δ(t− 1−)

[
M2

KKε
2mIR|Φ|2 − 2rλε4|Φ|4

])
,

(2.55)

reads, by keeping only the terms for [v(t) + h(x, t)], and after a partial integration, as

LHiggs =
π

L

(∫ 1

ε

dt

t

[
(∂µh(x, t)) (∂µh(x, t))− µ2ε2

t2
[v(t) + h(x, t)]2

+t2M2
KK [v(t) + 2h(x, t)] ∂t

(
1

t3
∂t (tv(t))

)
+ t2M2

KKh(x, t)∂t

(
1

t3
∂t (th(x, t))

)]
− k2mUV [v(ε) + h(x, ε)]2 +M2

KKmIR [v(1) + h(1)]2 − λ [v(1) + h(1)]4

− M2
KK

[
1

t2
(v(t) + 2h(x, t)) ∂t (tv(t)) +

1

t2
h(x, t)∂t (th(x, t))

]1

ε

)
.

(2.56)

Demanding that the terms that are linear or quadratic in h(x, t) should cancel on the UV and
IR branes yields the boundary conditions [2]

∂t [tv(t)]|t=ε = mUV v(ε) , ∂t [tv(t)]|t=1− = mIRv(1)− 2λ

M2
KK

v(1)3 ,

∂t [th(x, t)]|t=ε = mUV h(x, ε) , ∂t [th(x, t)]|t=1− = mIRh(x, 1)− 6λ

M2
KK

v(1)2h(x, 1) .

(2.57)

By means of a variational principle with respect to the vev v(t), applied onto the Lagrangian,
one obtains the following equation of motion for the t-dependent vev [2, 154,157–159],

∂t

(
1

t3
∂t[tv(t)]

)
− µ2

k2t4
v(t) = 0 , ⇔

(
t2∂2

t + t∂t − β2
) v(t)

t
, (2.58)

introducing now the bulk-Higgs localization parameter β2 = 4 + µ2

k2
. So, in order to determine a

formula for the Higgs vev v(t), one has to solve its defining differential equation (2.58) subject
to the boundary conditions (2.57). The general solution reads [2]

v(t) = Nv

(
t1+β − rvt1−β

)
, (2.59)

where

rv = ε2β
2 + β −mUV

2− β −mUV

, N2
v =

M2
KK

2λ

(mIR − 2− β)− rv (mIR − 2 + β)

[1− rv]3
. (2.60)
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Usually, one assumes that β must be a real and positive number and obeys to the Breitenlohner-
Friedman bound µ2 > −4k2 [160]. Moreover, it does not necessarily have to be larger than 2.
Unless β is very close to zero, or mUV is extremely fine-tuned to the value (2−β), the coefficient
rv ∝ ε2β in (2.60) is extremely small, and can be set to zero for all practical purposes. In this
case, we obtain

v(t) = v(1) t1+β , v(1) =

√
M2

KK

2λ
(mIR − (2 + β)) , (2.61)

by dropping terms of the order of ε ≈ 10−15 and smaller. The solution predicts the vev to be
peaked towards the IR brane. For that reason, the RS model with a bulk-Higgs field can also
resolve the gauge hierarchy problem [157,161]. For varying choices of β, the Higgs vev is plotted
in Figure 2.4. We can observe that in the limit of larger values for β, it approaches to an IR
brane-localization. Such a brane-localized Higgs scenario will be discussed later. The constant
value for the Higgs vev v(1) on the IR brane should be a real number, and λ > 0 is required by
vacuum stability, so that an upper bound follows on the parameter β,

0 < β < mIR − 2 . (2.62)

The relation between the parameter v(1) and the physical value vSM of the Higgs vev in the SM
can be determined, for example, by the mass terms for the W and Z bosons [2],

Lm =
2π

L

∫ 1

ε

dt

t

v(t)2g2
5

4

[
W+
µ (x, t)W−µ(x, t) +

1

2cos2θW
Zµ(x, t)Zµ(x, t)

]
. (2.63)

To the lowest order in v2/M2
KK , the five-dimensional gauge coupling is related to the gauge

coupling g of the SM via g = g5/
√

2πr [162], and the profiles of the zero-mode W and Z bosons

are constant in the extra dimension, χ
[W,Z]
0 (t) = 1/

√
2π + ... . Then, the relation between the

vev parameters follows,

v2
4 ≡

2π

L

∫ 1

ε

dt

t
v2(t) =

π

L(1 + β)
v(1)2 = M2

KK

π

L(1 + β)

δ

2λ
, (2.64)

where δ ≡ mIR − 2− β. The remaining parameter v4, which we will write as v in the following,
coincides with the SM parameter vSM to the lowest order in an expansion in powers of v2/M2

KK .
The first order correction can be determined from the shift of the Fermi constant in the RS
model, which will be given later in (2.221). With this result, one can obtain the following
expression for the t-dependent vev [2]

v(t) = v4

√
L(1 + β)

π
t1+β . (2.65)

One can choose the following KK decomposition for the Higgs field

h(x, t) =
∞∑
n=0

χhn(t)h(n)(x) , (2.66)
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Figure 2.4: Plot of v(t) and χh0(t) for different values of β, and L = 33.5, MKK = 5 TeV. For
higher values of β, one can observe that the functions approach to an IR brane-localization.

where the zero mode h(0)(x) corresponds to the Higgs boson of the SM. The profile functions
have to obey the normalization conditions

2π

L

∫ 1

ε

dt

t
χhm(t)χhn(t) = δmn , (2.67)

in order to ensure that the kinetic terms of the effective, four-dimensional Lagrangian are canon-
ically normalized. To obtain canonical, four-dimensional mass terms for the KK Higgs bosons,
the equations of motion [2, 154,157–159](

∂2
t −

3

t
∂t −

µ2

t2k2
+ (xhn)2

)[
tχhn(t)

]
= 0 , ⇔

(
t2∂2

t + t∂t + t2(xhn)2 − β2
) χhn(t)

t
= 0 ,

(2.68)
apply further for the KK Higgs profiles. The general solution to the equations of motion reads

χhn(t) = Nnt [Jβ(xnt)− rnYβ(xnt)] , (2.69)

and by applying the UV boundary condition, one finds again that rn ∝ ε2β is negligibly small
in most areas of the extra dimension, except of the region t ∼ ε. Including the normalization
condition, one can further derive

χhn(t) =

√
L

π

tJβ(xnt)√
J2
β(xn)− Jβ+1(xn)Jβ−1(xn)

. (2.70)

The boundary condition on the IR brane determines an eigenvalue equation for the masses of
the scalar KK modes, reading [2]

xnJβ+1(xn)

Jβ(xn)
= 2(mIR − 2− β) = 2δ , (2.71)

where δ = mIR − 2 − β has been introduced before. The parameter δ is important in finding
the solution to the gauge hierarchy problem in the bulk-Higgs RS model, since it determines
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the amount of the Higgs vev, and the mass of the zero-mode Higgs boson as the lightest Higgs
resonance. A little hierarchy problem remains, however, because a natural parameter δ of O(1)
would imply a Higgs vev and zero-mode mass of the order of the KK mass scale MKK , which
cannot be less than a few TeV, empirically. Instead, one has to assume that

δ = mIR − 2− β � 1 (2.72)

in order to obtain a realistic Higgs vev and zero-mode mass, mh, v � MKK [2]. With this
adaptation, one can expand the relation (2.71) in a power series of δ, and finds

x2
0 =

m2
h

M2
KK

= 4(1 + β)δ

[
1− δ

2 + β
+

2δ2

(2 + β)2(3 + β)
+ ..

]
. (2.73)

With MKK = 2 TeV, for example, one needs (1 + β)δ ≈ 10−3. In this sense, we see that the
enormous amount of a fine-tuning, needed in the SM to compute the physical Higgs mass, is
drastically reduced in the bulk-Higgs RS model. For that reason, the model can be considered
as a suitable approach of new physics to the gauge hierarchy problem. An approximate solution
for the zero-mode Higgs profile, given in (2.70), for mh �MKK , reads

χh0(t) = t1+β

√
L(1 + β)

π

[
1 +

m2
h

4M2
KK

(
1

(2 + β)
− t2

(1 + β)

)]
+O

(
m4
h

M4
KK

)
, (2.74)

where we have skipped terms with powers of ε. This approximate solution will be used in
the subsequent calculations of the thesis. As a last step, one can relate the parameter λ to
the physical value λ4 of the Higgs self coupling. For that purpose, one can consider the four-
dimensional, effective Lagrangian for the zero-mode Higgs field to the lowest order in v2/M2

KK ,

LHiggs 3
1

2
∂µh

(0)(x)∂µh(0)(x)−m
2
h

2
h(0)(x)2−v4L

π
(1+β)2λh(0)(x)3− L

π
(1+β)2λh(0)(x)4 , (2.75)

which has been obtained by an integration over the extra dimension. By comparing it to the
corresponding SM Lagrangian

LSM 3 −
m2
h

2
h2 − vSMλSMh3 − λSM

4
h4 , (2.76)

where m2
h = 2λSMv

2
SM , one can derive from either of these terms the following relation to the

leading order [2]

λSM ≈ λ4 ≈
4L

π
(1 + β)2λ . (2.77)

The relation between λSM and λ4 receives higher-order corrections in v2/M2
KK , depending on

which of the three couplings is used to perform the matching [2].
The electroweak gauge fields are described as the gauge eigenstates in the Lagrangian (2.51).

As usual, one can perform the following field redefinitions for the mass eigenstates after elec-
troweak symmetry breaking [154]

W±
M =

1√
2

(
A1
M ∓ iA2

M

)
, AM = sWA

3
M + cwBM , ZM = cWA

3
M − swBM , (2.78)
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where

sw =
g′5√

g2
5 + g′25

, cw =
g5√

g2
5 + g′25

. (2.79)

Here, g5 and g′5 are the five-dimensional gauge couplings belonging to the groups SU(2)L and
U(1)Y , respectively. To the leading order, they are related to the four-dimensional gauge cou-
plings of the SM by the relation g5 =

√
2πrg4 [162]. We define the five-dimensional gauge boson

masses as

MW =
g5v

2
, MZ =

MW

cw
. (2.80)

From the four-dimensional point of view, the five-dimensional gauge bosons can be decomposed
into a four-dimensional vector part with the Lorentz index µ and a scalar part, where we choose
[3, 150]

AM = Aµ + ktAt , (2.81)

with A = W±, A, Z,G. Both parts individually decompose in the KK decompositions. For the
vector parts, the decompositions read [3, 150]

Aµ(x, t) =
1√
r

∞∑
n=0

χAn (t)A(n)
µ (x) , W±

µ (x, t) =
1√
r

∞∑
n=0

χWn (t)W±(n)
µ (x) , (2.82)

where similar expansions can be chosen for the Z-bosons and the gluons. In the bulk-Higgs
RS model, the decompositions for the scalar parts are included in the definitions of Goldstone
bosons and new, physical scalars, as will be presented in the next section. The profile functions
of the KK gauge bosons form complete sets of even functions on the orbifold. The normalization
conditions,

2π

L

∫ 1

ε

dt

t
χ[A]
m (t)χ[A]

n (t) = δmn , (2.83)

apply, with [A] = A,W,Z,G, in order for the action to be compatible to the four-dimensional
kinetic terms of the SM fields. To obtain canonical, four-dimensional mass terms, the profiles
have to follow the equations of motion [154,157–159,163],[

∂2
t −

1

t
∂t −

M2
[A]

2M2
KK

k(1 + β)t2+2β + (x[A]
n )2

]
χ[A]
n (t) = 0 , with [A] = W,Z ,

[
∂2
t −

1

t
∂t + (x[A]

n )2

]
χ[A]
n (t) = 0 , with [A] = A,G ,

(2.84)

which define the profiles and massesm
[A]
n of the KK gauge bosons. In order to ensure the existence

of zero modes, Neumann boundary conditions are chosen for the profiles at the branes [154]

∂t χ
[A]
n (t)

∣∣
t=ε,1

= 0 , (2.85)

with [A] = A,W,Z,G. Due to U(1)em-gauge invariance, the zero-mode photon has to be massless,
mA

0 = 0, resulting in a constant profile function along the extra dimension [162],

χA0 (t) =
1√
2π

. (2.86)
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Figure 2.5: Plot of D00(ε, 1) from (2.90) in dependence of xn = mn/MKK .

This applies also for the case of the zero-mode gluon. Instead, for the zero-mode profiles of the
massive gauge bosons, one can solve the equations of motion by applying an expansion in powers
of m2

W/M
2
KK ,

χW0 (t) =
1√
2π

(
1 +

m2
W

M2
KK

[
t2

2

(
1

2
− ln(t)

)
+
Lt4+2β

4 + 2β
− Lt2

2
+

1

4
− 1

(4 + 2β)2
− 1

4L
+ ...

])
,

(2.87)
where terms of the order of ε2 and smaller are neglected, and for the Z boson profile, one has
to replace W → Z, accordingly. In the profile here, the relation m2

W = m̃2
W has been applied

that holds to the lowest order between the physical mass of the W boson and the parametric
mass m̃W = g5v

2
√

2πr
, predicted by the IR boundary condition. Higher order corrections to that

relation can be derived by determining the W boson profile up to the order O (m2
W/M

4
KK), and

by applying the IR boundary condition on that result, where one can find

m2
W = m̃2

W

(
1− m̃2

W

2M2
KK

[
2L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

]
+ ...

)
. (2.88)

For the Z boson mass, one has to replace mW → mZ , and m̃W → m̃Z =

√
(g25+g

′2
5 )v

2
√

2πr
.

For the higher KK states n ≥ 1, the general solution for the profiles of the gluons or photons,
defined by the second equation of (2.84), reads

χ[A]
n (t) = t [C1J1(xnt) + C2Y1(xnt)] , (2.89)

which is a combination of Bessel functions. From the UV boundary conditions, we find that
C1 = −C2Y0(εxn)/J0(εxn), so that the IR boundary condition gives

D00(ε, 1) ≡ Y0(xn)J0(εxn)− J0(xn)Y0(εxn)
!

= 0 , (2.90)

which determines the mass eigenvalues xn = mn/MKK for the KK gluons or photons. The
remaining constant C2, defined by the normalization condition in (2.83), drops out here. Now,
we can numerically solve for the roots of D00(ε, 1), and we get:

D00(ε, 1)
!

= 0 , ⇒ xn ≈ 2.45, 5.57, 8.70, 11.84, ... . (2.91)
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These roots can also be observed from Figure 2.5, where the course of D00(ε, 1) is plotted in
dependence of xn. The lightest KK mass state of the RS model, which is the KK gluon or
photon, lies at m1 ≈ 2.45 MKK , accordingly [162]. This result is valid independently of the
Higgs localization in the extra dimension, because the gluon and the photon do not directly
couple to the Higgs field, and the differential equation in the second row of (2.84) does not have
any dependence on the Higgs field.

The extended scalar sector of the bulk-Higgs RS model has been studied for example in
[154, 157, 158, 163], and below we follow the presentation from [154]. In the RS model, one has
to enlarge the usual gauge-fixing Lagrangian of the SM in order to remove all the mixing terms
between the four-dimensional vector gauge fields and their scalar correspondents. For the W
bosons, the following form can be chosen, in this connection,

LGF = −r
ξ

[
∂µW

µ+ − ξ
(
M2

KKt ∂t

(
W+
t

t

)
+MW

v(t)

vr
ϕ+

)]

·
[
∂µW

µ− − ξ
(
M2

KKt ∂t

(
W−
t

t

)
+MW

v(t)

vr
π−
)]

.

(2.92)

The terms for the photons, Z bosons and ϕ3 [154] are skipped here, as these terms are not
explicitly needed in this thesis. The Goldstone bosons of the model are defined as those linear
combinations of scalar fields that are multiplied by the gauge parameter ξ,

G± = M2
KKt ∂t

(
W±
t

t

)
+MW

v(t)

vr
ϕ± . (2.93)

Then, the gauge-fixing Lagrangian adopts a form similar to the SM. By means of a variational
principle, one obtains the following equations of motion for the fields W±

t and ϕ± [154]

�4W
±
t +M2

W

v(t)2

v2r
W±
t +MW

v(t)2

v2r
∂t

(
v

v(t)
ϕ±
)
− ξ∂tG± = 0 , (2.94)

�4ϕ
± −M2

KK t∂t
(
t−3 ∂t

[
tϕ±

])
−MWM

2
KK

v

v(t)
t ∂t

(
v(t)2

v2t
W±
t

)
+ ε2t−2µ2ϕ±

+ ξMW
v(t)

v
G± = 0 .

(2.95)

These equations allow to define the new, charged physical scalar fields,

φ± = MKK

(
W±
t + (MW )−1 ∂t

[
v

v(t)
ϕ±
])

, (2.96)

following the demand that their mass terms in (2.94) should be independent of the gauge. In

order to check the definitions, one can add M2
KKt∂t (t−1(2.94)) to MW

v(t)
vr

(2.95), and one can
use the relation µ2 = k2(β2 − 4) from equation (2.60). In this way, one derives the equations of
motion for the charged Goldstone bosons G± [154], as

�4G
± − ξM2

KK t∂t

(
∂tG

±

t

)
+ ξM2

W

v(t)2

v2r
G± = 0 , (2.97)



56 2.2. THE MINIMAL RANDALL-SUNDRUM MODEL

which can be compared with the equations of motion for the gauge boson profiles in (2.84). One
can identify the mass term for the KK modes in (2.84) with minus times the term with the box
operator in (2.97). Then, one can observe that the Goldstone bosons and their KK excitations
have similar profiles as the gauge bosons, and their masses are related by

(mG
n )2 = ξ(mW

n )2 . (2.98)

This confirms that the Gauge-Goldstone equivalence theorem is fulfilled [154]. The equations of
motion for the charged physical scalars φ± can analogously be derived by adding MKK(2.94) to
MKK

MW
∂t

[
v
v(t)

(2.95)
]
, yielding [154,157,158,163]

�4φ
± −M2

KK∂t
(
t−1−2β∂t

[
t1+2βφ±

])
+M2

W

v(t)2

v2r
φ± = 0 . (2.99)

We choose the KK decompositions for the charged Goldstone bosons and physical scalars as
follows

G±(x, t) =
∞∑
n=0

mW
n

1√
r
χG
±

n (t)G±(n)(x) , φ±(x, t) =
v

MWv(t)

∞∑
n=1

mφ±

n χφ
±

n (t)φ±(n)(x) . (2.100)

Similar to the SM, the Goldstone bosons G±(n)(x) form the longitudinal degrees of freedom of
the W bosons and their KK excitations. The profiles follow the same equations of motion as the
gauge boson profiles in equation (2.84). The equations of motion for the profiles of the physical
scalars read

m
(φ±)2
n

M2
KK

χφ
±

n (t) + t1+β∂t

(
t−1−2β∂t

[
tβχφ

±

n (t)
])
− M2

W

M2
KK

v(t)2

v2r
χφ
±

n (t) = 0 , (2.101)

where the boundary conditions [154]

χφ
±

n (t)
∣∣∣
t=ε,1

= 0 (2.102)

are chosen to ensure that the decompositions of the scalars do not have zero modes. Such zero
modes are excluded empirically. The profiles have to fulfil the normalization conditions

2π

L

∫ 1

ε

dt

t
χG
±

m (t)χG
±

n (t) = δmn ,
2π

L

∫ 1

ε

dt

t
χφ
±

m (t)χφ
±

n (t) = δmn , (2.103)

in order to derive proper kinetic terms for the four-dimensional scalars φ±(n)(x) and Goldstone
bosons G±(n)(x). We can invert the KK decompositions for the Goldstone bosons and scalars
in equation (2.100) by using the equations of motion to obtain the KK decompositions for the
fields ϕ± and W±

t

ϕ± =
∞∑
n=0

[
MW

mW
n

v(t)

v
√
r
χG
±

n (t)G±(n)(x)− MKK

mφ±
n

t−β∂t

(
tβχφ

±

n (t)
)
φ±(n)(x)

]
,

W±
t =

∞∑
n=0

[
− 1√

rmW
n

∂t

(
χG
±

n (t)
)
G±(n)(x) +

v(t)

vrMKK

MW

mφ±
n

χφ
±

n (t) φ±(n)(x)

]
.

(2.104)
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In this sense, a framework with a bulk-Higgs field results in different physical predictions for
the scalar field content, compared to a brane-Higgs framework. One combination of the fifths
components of the gauge fields At and the Goldstone bosons in the decomposition of the Higgs
field ϕi remains physical, and gets an explicit, gauge-independent mass term. In this way,
additional physical scalars are predicted in the bulk-Higgs RS model, whose corresponding KK
modes are physical fields and do not decouple in the limit of the unitary gauge where ξ → ∞
[164]. In addition, a second combination of the At’s and ϕi’s provides the longitudinal degrees
of freedom for the vector gauge bosons in the KK towers, and disappears in the unitary gauge,
which are the “unphysical” Goldstone bosons. Altogether, taking into account the Z-bosons,
photons, and the corresponding scalar fields, three KK towers of physical scalars are predicted,
which do not contain zero modes, and four KK towers of Goldstone bosons are predicted, where
three of which contain zero modes.

2.2.2 Fermion sector

The Lagrangian (2.53) defines the fermion sector of our system, where in the sum the index f
runs over f = Q,L, u, d, e. Here, Q = (U,D)T and L = (V , E)T are doublet fields under SU(2)L,
and u, d, e are singlet fields, where each of which are three-component vectors in generation
space [154]. The five-dimensional Lie algebra can only be fulfilled by irreducible four-dimensional
representations, causing the left-handed and right-handed KK fermions to identically transform
under the five-dimensional SU(2)L-gauge transformations. This is the reason why one includes
SU(2)L doublet and singlet fields of both left-handed and right-handed chiralities in the model,
in contrary to the SM [150,155,156]. Only the left-handed doublet fermions and the right-handed
singlet fermions have even Z2-parities, and have zero modes in the KK decompositions. So, the
SM fermion content is guaranteed in the lower energy range. In the following, we use a compact
notation, where we collect the left- and right-handed components of the up- and down-type
quarks and leptons into the six component vectors [2, 5]

FA(x, t) =

√
rε2

t2

(
FA(x, t)

fA(x, t)

)
, (2.105)

with F = U ,D, E , and A = L,R, F = U,D,E, and f = u, d, e. The KK decompositions for the
fermions are chosen as follows [2, 5]

FL(x, t) =

√
Lε

2π

∞∑
n=1

F (n)
L (t)f

(n)
L (x) =

∞∑
n=1

(
CF
n (t)aFn

Sfn(t)afn

)
f

(n)
L (x) ,

FR(x, t) =

√
Lε

2π

∞∑
n=1

F (n)
R (t)f

(n)
R (x) =

∞∑
n=1

(
SFn (t)aFn

Cf
n(t)afn

)
f

(n)
R (x) .

(2.106)

The index n of the KK decompositions labels the different mass eigenstates in the four-dimensional,
effective theory, so that n = 1, 2, 3 refer to the SM quarks and leptons, whereas n = 4, ..., 9 la-
bel the six fermion modes of the first KK level, and so on. The profiles have to follow the
normalization conditions [150]∫ 1

ε

dt F (m)†
A (t)F (n)

A (t) = δmn , A = L,R , (2.107)
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in order to obtain four-dimensional kinetic terms for the KK fermions that are compatible to the
SM. The functions C

[F,f ]
n (t) and S

[F,f ]
n (t), with F = Q,L, and f = u, d, e, are diagonal, 3×3 ma-

trices in the flavour space [150]. The three-component vectors a
[F,f ]
n describe the flavour-mixings

of the five-dimensional interaction eigenstates into the four-dimensional mass eigenstates, gen-
erated by the Yukawa interactions [150]. For the zero-mode fields, with n = 1, 2, 3, the rescaled

vectors â
[F,f ]
n ≡

√
2a

[F,f ]
n obey to single normalization conditions

â[F,f ]†
n â[F,f ]

n = 1 , (2.108)

where the vectors belonging to different n are orthogonal to each other. In order to obtain
canonical, four-dimensional mass terms, the fermion profiles have to fulfil the following equations
of motion [2, 5, 150]

d

dt
F (n)
L (t) = −xnF (n)

R (t) +Mf (t)F (n)
L (t) ,

− d

dt
F (n)
R (t) = −xnF (n)

L (t) +Mf (t)F (n)
R (t) ,

(2.109)

where xn = mfn/MKK are the mass eigenvalues, and

Mf (t) =
1

t

(
cF 0
0 −cf

)
+
v
√
k(1 + β)√
2MKK

t1+β

(
0 Y5D

f

Y5D†
f 0

)
(2.110)

is the generalized mass matrix for a scenario with a bulk-Higgs field [2]. At this point, we
introduce the matrices cF,f , which contain the dimensionless c-parameters cFi ≡ +MF,i/k and
cfi ≡ −Mf,i/k. Without loss of generality, these matrices can be taken to be diagonal [150].
The five-dimensional Yukawa matrices Y5D

f have the mass dimension -1/2. The dimensionless
Yukawa matrices Yf are defined by [2]

Yf ≡
√
k(1 + β)

(2 + β)
Y5D
f , (2.111)

which are assumed to have a non-hierarchical structure in contrast to the SM. Their entries are
random complex elements of the same magnitude, bounded by a maximally allowed entry y?, so
that

|(Yf )ij| ≤ y? (2.112)

applies. The observed hierarchies in the zero-mode fermion sector are explained by a geometrical
realization of the Froggatt-Nielsen mechanism, as it will be explained in the next section [150,153,
154,157,165–167]. In brane-Higgs or very narrow bulk-Higgs scenarios, the upper bound on the
entries y? should not be greater than 3, following the demand that the one loop corrections to the
Yukawa couplings have to remain perturbative [2,153,159]. Instead, for a bulk-Higgs framework
with a small β parameter, the bound can be slightly relaxed to higher values [154]. However,
there is no firm theoretical reason why y? should take values very close to the perturbativity
bound, and in this sense, we choose the values y? = 1, 2, 3 in our subsequent numerical analyses.
The boundary conditions for the fermion profiles imply that the profiles that correspond to KK
decompositions without zero modes vanish on the two branes [2, 5, 150],

(0 1)F (n)
L (ti) = 0 , (1 0)F (n)

R (ti) = 0 , (2.113)
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for ti = {ε, 1}. From these conditions and the equations of motion, one can derive the ap-
proximate zero-mode fermion profiles, valid up to the order v2/M2

KK [155, 156, 168], as follows

F
(0)
L (t) =

 tcFiF (cFi)â
F
i

v
MKK

[
− mf0
v(1+2cfi )

(
t1+cfi − t−cfi ε1+2cfi

)
F (cfi)â

f
i + t2+β+cFj

Ỹ †f,ij√
2
F (cFj)â

F
j

] ,

F
(0)
R (t) =

(
v

MKK

[
mf0

v(1+2cFi )

(
t1+cFi − t−cFi ε1+2cFi

)
F (cFi)â

F
i − t2+β+cfj Ỹf,ij√

2
F (cfj)â

f
j

]
tcfiF (cfi)â

f
i

)
,

(2.114)

where we have defined the abbreviations

F (c[F,f ]) =

√
1 + 2c[F,f ]

1− ε1+2c[F,f ]
, Ỹf,ij =

(2 + β)Yf,ij
(2 + β + cFi + cfj)

. (2.115)

F (c[F,f ]) is usually named the “zero-mode profile” [150, 155, 156]. Using these approximate
profiles, the IR boundary conditions determine the following eigenvalue equations

mfn â
f
n =

v√
2
Ỹ†eff
f âFn , mfn â

F
n =

v√
2
Ỹeff
f â

f
n , (2.116)

where we define

Ỹ eff
f,ij = F (cFi)Ỹf,ijF (cfj) . (2.117)

These can be combined to the equalities [150](
m2
fn1−

v2

2
Ỹeff
f Ỹeff†

f

)
âFn = 0 ,

(
m2
fn1−

v2

2
Ỹeff†
f Ỹeff

f

)
âfn = 0 . (2.118)

To the lowest order, the mass eigenvalues mfn are the solutions to the equation

det

(
m2
fn1−

v2

2
Ỹeff
f Ỹeff†

f

)
= 0 . (2.119)

One can see that the â
[F,f ]
n are the eigenvectors of the matrices Ỹeff

f Ỹeff†
f and Ỹeff†

f Ỹeff
f (with

n = 1, 2, 3 and F = U,D,E; f = u, d, e). Moreover, they form the columns of the unitary
matrices Uf and Wf appearing in the singular-value decomposition [150],

Ỹeff
f = UfλfW

†
f , (2.120)

where

λu =

√
2

v
diag (mu,mc,mt) , λd =

√
2

v
diag (md,ms,mb) , λe =

√
2

v
diag (me,mµ,mτ ) .

(2.121)
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With the help of the redefinitions (2.105), (2.106) and (2.111), the Yukawa interactions of the
Higgs boson with up- and down-type quarks and leptons can be written in the form [2,5]

Lhff = −
∑

f=u,d,e

∞∑
m,n=1

gfmnh
(0)(x)f̄

(m)
L (x)f

(n)
R (x) + h.c. , (2.122)

where

gfmn =
(2 + β)√

2

∫ 1

ε

dt

√
π

L(1 + β)
χh0(t) F (m)†

L (t)

(
0 Yf

Y†f 0

)
F (n)
R (t)

=

√
2π

L(1 + β)

(2 + β)π

Lε

∫ 1

ε

dt χh0(t)
[
aF †m CF

m(t)YfC
f
n(t)afn + af†mSfm(t)Y†fS

F
n (t)aFn

]
.

(2.123)

The function χh0(t) denotes the zero-mode Higgs profile along the extra dimension, as given in
(2.74). In the calculations of the Higgs processes in this thesis, only KK diagonal Higgs couplings
to fermions with m = n will contribute. In general, even the diagonal Yukawa couplings are
complex numbers, in contrast to the SM. A second term is induced in the Lagrangian of the
Yukawa interactions [5],

Ldiag
hff = −

∑
f=u,d,e

∞∑
n=1

[
Re(gfnn) h(0)(x)f̄ (n)(x)f (n)(x) + i Im(gfnn) h(0)(x)f̄ (n)(x)γ5f

(n)(x)
]
,

(2.124)
given by the imaginary part of the Yukawa couplings gfnn. This term creates contributions to
Higgs processes with an odd behaviour under the CP symmetries that are not present in the
SM.

2.2.3 Higgs sector on or very close to the IR brane

In this section, we describe the basic ingredients of a framework with a brane-localized Higgs
field in the RS model. We consider the five-dimensional Lagrangian [150]

2πr

L

∫ 1

ε

dt

t

ε4

t4
(LW,B + LHiggs + LGF + LFP + Lfermion) , (2.125)

where the kinetic terms of the gauge bosons are similar as before

LW,B = GKMGLN

(
−1

4
W a
KLW

a
MN −

1

4
BKLBMN

)
, (2.126)

and the brane-localized Higgs Lagrangian reads

LHiggs =
k

2
δ(t− 1)

[
Gµν(DµΦ)†DνΦ− V (Φ)

]
, V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 , (2.127)

with the Yukawa terms

LYukawa =
k

2
δ(t− 1)

[
Q̄Y5D

d Φd+ Q̄Y5D
u εΦ†u+ L̄Y5D

e Φe+ h.c.
]
. (2.128)
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The Higgs field can be decomposed as

Φ(x) =
1√
2ε

(
−i
√

2ϕ+(x)

v + h(x) + iϕ3(x)

)
, (2.129)

where the factor 1
ε

is extracted to obtain a canonical kinetic term for the Higgs boson,

LHiggs =

∫ 1

ε

dt δ(t− 1)

(
1

2
∂µh∂µh+

µ2ε2

2
(v + h)2 − λ

4
(v + h)4

)
. (2.130)

Then, the vev is v = εµ√
λ
≈ 246 GeV, and ϕ± = (ϕ1 ∓ iϕ2)/

√
2 is defined as usual. We see that

the Higgs mass parameter µ can have a high value at the Planck scale, and gets suppressed in
the Lagrangian, whereas the parameter λ is of O(1). Then, the covariant derivative, acting on
the Higgs field, reads

DµΦ =
1√
2ε

(
−i
√

2
(
∂µϕ

+ +MWW
+
µ

)
∂µh+ i (∂µϕ

3 +MZZµ)

)
+ terms bi-linear in fields , (2.131)

where the gauge boson masses are defined as before. Again, we can decompose the five-
dimensional gauge boson fields as AM = Aµ + ktAt. In order to remove the terms that mix
the vector gauge bosons and the scalar components W±

t , Zt and At, one has to include the
following gauge-fixing Lagrangian [150]

LGF = − t4

2ξε4

[(
∂µAµ − ξM2

KKt∂t

[
At
t

])2

+

(
∂µZµ − ξ

[
kδ(t− 1)

2
MZϕ

3 +M2
KKt∂t

(
Zt
t

)])2

+ 2

(
∂µW+

µ − ξ
[
kδ(t− 1)

2
MWϕ

+ +M2
KKt∂t

(
W+
t

t

)])

×
(
∂µW−

µ − ξ
[
kδ(t− 1)

2
MWϕ

− +M2
KKt∂t

(
W−
t

t

)])]
.

(2.132)

For the consistency of the theory, it is important that one can integrate by parts in the action
without encountering boundary terms. Otherwise, the Lagrangian would not be hermitian. The
δ-function terms on the IR brane give rise to discontinuities of some fields at that border of the
extra dimension, which jeopardize this feature. To define the model in a proper way [150], the
δ-functions have to be considered via the limiting procedure

δ(t− 1) ≡ lim
θ→0+

δ(t− 1 + θ) . (2.133)

In this way, the discontinuities are moved into the bulk, and proper boundary conditions at the
branes can be assigned to the fields, consistent with an integration by parts. All calculations are
performed at a small but finite θ, and, at the end, the limit θ → 0+ can smoothly be performed,
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giving rise to well-defined jump conditions for the fields and their derivatives at the IR brane.
This is indicated by the notation f(1−) ≡ limθ→0+ f(1− θ) for a function that is discontinuous
at t = 1. The KK decompositions for the gauge bosons can be chosen as [150]

[A]µ(x, t) =
1√
r

∑
n

[A](n)
µ (x)χ[A]

n (t) , [A]t(x, t) = − 1√
r

∑
n

kt

m
[A]
n

ϕ
(n)
[A](x)∂tχ

[A]
n (t) , (2.134)

where [A] = A,Z,W±. Again, [A]
(n)
µ are the four-dimensional mass eigenstates, and the profile

functions χ
[A]
n (t) form complete sets of even functions on the orbifold, fulfilling the normalization

condition 2π
L

∫ 1

ε
dt
t
χ

[A]
m (t)χ

[A]
n (t) = δmn, as before. The scalar fields in the decomposition of the

Higgs field can be expanded into the same basis of four-dimensional, scalar mass eigenstates as
the scalar components of the gauge bosons [150],

ϕ±(x) =
∑
n

MW√
r

χWn (1−)

mW
n

ϕ
±(n)
W (x) , ϕ3(x) =

∑
n

MZ√
r

χZn (1−)

mZ
n

ϕ
(n)
Z (x) . (2.135)

The masses of the scalars ϕ
(n)
[A] are

√
ξm

[A]
n that are related to the masses of the four-dimensional

vector fields m
[A]
n by gauge invariance. From the five-dimensional action, the equation of motion

for the gauge boson profiles follows as [150,162,169]

t∂t

(
1

t

[
∂tχ

[A]
n (t)

])
= −(m

[A]
n )2

M2
KK

χ[A]
n (t) +

kM2
[A]

2M2
KK

δ(t− 1)χ[A]
n (t) , (2.136)

where the boundary conditions at the branes read

∂tχ
[A]
n (0) = 0 , ∂tχ

[A]
n (1−) = −

M2
[A]

2ε2k
χ[A]
n (1) . (2.137)

From these relations, one can derive the mass eigenvalues m
[A]
n . Altogether, the theory with a

brane-localized Higgs field contains a tower of massive gauge bosons, accompanied by a tower
of massive, unphysical scalars, and one Higgs field with a mass mh =

√
2λv [150]. Similar to

the SM, the unphysical scalars provide the third degrees of freedom for every KK gauge boson
in the unitary gauge.

One can introduce the four-dimensional gauge coupling g that is related, at the lowest order,
to the five-dimensional gauge coupling by g = g5/

√
2πr [162]. The zero-mode photon and

gluon fields have flat profiles, χ
[γ,g]
0 = 1√

2π
, whereas the profiles of the heavy gauge bosons get

corrections that scale with v2/M2
KK . To the first order, these profiles read [150]

χ[W,Z](t) =
1√
2π

[
1 +

m2
[W,Z]

4M2
KK

(
1− 1

L
+ t2(1− 2L− 2ln t)

)
+O

(
m4

[W,Z]

M4
KK

)]
. (2.138)

Again, from the IR boundary condition, one can derive the physical masses of the gauge bosons
in dependence of the parametric masses m̃2

W = g2v2/4 and m̃2
Z = (g2 + g

′2)v2/4 [150],

m2
[W,Z] = m̃2

[W,Z]

[
1−

m̃2
[W,Z]

2M2
KK

(
L− 1 +

1

2L

)
+O

(
v4

M4
KK

)]
. (2.139)
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From Figure 2.4 before, one can recognize that the vev and the zero-mode Higgs profile
become localized close to the IR brane in the limit β � 1. In this limit, one can identify 1/β
with the width of the Higgs profile [2], and the regulator η used in a brane-Higgs scenario.
Considering the Yukawa coupling terms, one can derive the matching relations between the vev
v(t) and the Higgs profile χh0(t) of the bulk-Higgs scenario and the corresponding distributions

δ
1/β
v (t− 1) and δ

1/β
h (t− 1) in the brane Higgs scenario [2]. For a bulk-Higgs model, the Yukawa

coupling terms read, as given before,

−Lbulk
Y =

∑
f

∫ 1

ε

dt
v(t) +

∑
n hn(x)χhn(t)√

2
F̄L(t, x)

1√
r

(
0 Y5D

f,bulk

Y5D†
f,bulk 0

)
FR(t, x) + h.c. ,

(2.140)
where the five-dimensional Yukawa matrices Y5D

f,bulk have a mass dimension of -1/2. In a model
with a brane-localized Higgs sector, the Yukawa coupling terms read, instead,

−Lbrane
Y =

∑
f

∫ 1

ε

dt
vδηv(t− 1) + h(x)δηh(t− 1)√

2
F̄L(t, x)

k

2

(
0 Y5D

f

Y5D†
f 0

)
FR(t, x) + h.c. ,

(2.141)
using similar redefinitions as in the bulk Higgs model in (2.105), and the KK decompositions
for the fermions from (2.106). Here, the five-dimensional Yukawa matrices Y5D

f have a mass
dimension of -1. In order to match the two expressions onto each other, one has to rewrite the
functions v(t) and χh0(t) in terms of functions of a unit area, which can be mapped onto the
normalized distributions δηv(t− 1) and δηh(t− 1) [2],

v(t) = v4

√
L

π

√
1 + β

2 + β
δ1/β
v (t− 1) ,

χh0(t) =

√
L

π

√
1 + β

2 + β

[
1 +

βm2
h

4M2
KK(1 + β)(2 + β)(4 + β)

+ ..

]
δ

1/β
h (t− 1) ,

(2.142)

with

δ1/β
v (t− 1) = (2 + β)t1+β ,

δ
1/β
h (t− 1) = (2 + β)t1+β

[
1− m2

h

4M2
KK(1 + β)

(
t2 − 2 + β

4 + β

)
+ ..

]
.

(2.143)

The relations between the Yukawa matrices in the two different scenarios for the Higgs localiza-
tions can be determined by considering the bilinear fermion terms of the Yukawa interactions,
resulting in [2]

Yf ≡
k

2
Y5D
f =

√
k(1 + β)

2 + β
Y5D

f,bulk . (2.144)

Equally, one could have used the hf̄f -couplings, where in this case the above relation would
receive corrections of O(m2

h/M
2
KK). It would be wrong to conclude that the Yukawa matrices

Yf vanish in the limit β → ∞ [2]. Rather, the dimensionless Yukawa matrices should be
considered as fixed quantities that are related to the observed quark masses and mixing angles
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of the SM. Then, it follows that the dimensionful Yukawa matrices Y5D
f,bulk must scale with√

β/k ≈ √µ/k [170]. Since β =
√

4 + µ2/k2 is naturally of O(1), the limit of a very large β is
not particularly natural [2]. For large β, one encounters instead

10

r
∼ k ∼ µ

β
or k � µ ∼ MIR

2
. (2.145)

For a large parameter β, the parameter k is needed either to be significantly smaller than the
Planck scale, and yet 1/r should be smaller by an order of magnitude, or one has to assume
that µ and MIR lie significantly above the Planck scale. The latter choice would be especially
unnatural for the parameter MIR, which is naturally situated at the warped down Planck scale
around several TeV. For that reason, the first possibility appears more plausible. In addition,
increasing the parameter β by lowering the curvature parameter k does not significantly affect
the relation λ4 ≈ λIRµ

2 [2].
Nevertheless, the “narrow bulk-Higgs scenario” forms an interesting, intermediate scenario

between a bulk-localized and a strictly brane-localized Higgs scenario of the RS model. For
example, the fermion loop-contributions in Higgs processes significantly differ between a narrow
bulk-Higgs scenario and a brane-Higgs scenario. For the Higgs production through gluon fusion
and the Higgs decay into two photons, the results in both scenarios, in good approximation,
have equal amounts but an opposite sign [2]. It has been explained that the difference is created
by a “resonance effect”, where in the narrow bulk-Higgs scenario, very heavy KK modes with
masses of the order of the inverse Higgs width 1/η give an unsuppressed contribution to the
loop amplitudes [2, 5, 151, 152, 171, 172]. Between the results of both scenarios, not any smooth
interpolation can be found, as the effective field theory description of the RS model, valid up to
the position-dependent UV cut-off

ΛUV (t) ∼ mPle
−σ(φ) = mPl

ε

t
≡ ΛTeV

t
, (2.146)

breaks down in the intermediate region. So, with the help of the cut-off, one can distinguish
between different scenarios for the Higgs localization. From the four-dimensional point of view,

the operators, generated by the Yukawa interactions, have an amount of
v|Yf |
ΛTeV

for a Higgs local-
ization near or on the IR brane. By comparing the amount of the Higgs width η with the size
of these operators, one can distinguish between brane-Higgs and bulk-Higgs incarnations in a
sense that the high momentum KK modes of the theory can or cannot resolve the shape of the
Higgs profile, and do or do not contribute in scattering amplitudes [2]. For the case

η � v|Yf |
ΛTeV

, (2.147)

the Higgs profile cannot be resolved by the high momentum modes of the theory. This is even
true for a possibly non-zero width of the Higgs profile. Such a scenario is referred to as the
brane-Higgs scenario. The relation (2.147) should be considered as a condition on the Higgs
width, or regulator η, at a fixed, physical UV cut-off ΛTeV. In a brane-Higgs scenario, one can
perform the limit η → 0, which strictly localises the Higgs sector onto the IR brane. In the
contrary case, all the momentum KK states can resolve the features of the Higgs profile for a
Higgs width as [2]

η >
v|Yf |
ΛTeV

. (2.148)
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Then, higher momentum modes can give sizeable contributions to amplitudes. Such a scenario
is referred to as the bulk-Higgs scenario, and will be considered in most parts of the thesis. And,
a third, intermediate scenario can be considered for a narrow Higgs profile, fulfilling [2]

v|Yf |
ΛTeV

� η � v|Yf |
MKK

. (2.149)

In this case, whereas the lower momentum KK modes cannot resolve the effects caused by the
Higgs profile, the very high momentum modes can resolve the Higgs width and may give strong
contributions to amplitudes. For that reason, such a framework is different compared to the
brane-Higgs scenario, in which none of the KK modes can resolve the Higgs profile. There is no
smooth transition region between the two scenarios, because the effective field theory approach
is not valid there. The relation (2.149) shows that the limit η → 0 would put ΛTeV to infinity,
which cannot be allowed in a theory that is not UV complete. In such a case, the solution
to the gauge hierarchy problem also would no longer be maintained. Power corrections, as
represented by higher-dimensional operators in the effective Lagrangian of the RS model, scale
like (MKK/ΛTeV)n for a brane-Higgs field. On the contrary, they can be enhanced up to O(1) in
the intermediate region of the scenarios, scaling like (MKK/ηΛTeV)n in this case [2]. Then, the
effective field-theory approach breaks down and the analytic control of the theory is lost. For
that reason, the narrow bulk-Higgs scenario really forms an independent incarnation of the RS
model.

In the brane-Higgs scenario, the equation of motion for the fermion profiles has the same
form as in the bulk-Higgs scenario, given in (2.109), except that the mass matrix reads [5]

Mf (t) =
1

t

(
cF 0

0 −cf

)
+

v√
2MKK

δ(t− 1)

(
0 Yf

Y†f 0

)
, (2.150)

where the bulk mass parameters are again defined by c[F,f ] ≡ ±M[F,f ]/k. For the zero-mode
profiles, for which xn � 1, the C and S profiles from the KK decompositions in (2.105) are
given by [150]

C [F,f ]
n (t) ≈

√
Lε

π
F (c[F,f ])t

c[F,f ] , S[F,f ]
n (t) ≈ ±xn

√
Lε

π
F (c[F,f ])

(
t1+c[F,f ] − ε1+2c[F,f ]t−c[F,f ]

)
(1 + 2c[F,f ])

,

(2.151)
that come along with the rescaled vectors from (2.108). In the φ-coordinate, the S profiles
are multiplied with sgn(φ) in order to imply the Z2-odd behaviour. The profiles coincide with
the fermion profiles of the bulk-Higgs scenario, given in (2.114), if skipping the terms that come
from the Yukawa interactions. In this connection, the functions F (c) are the “zero-mode profiles”
from (2.115). In the following, we summarize the implications for the masses and mixings of
the zero-mode fermions in the minimal RS model with a brane-localized Higgs field, as derived
in [150]. On the IR brane, the profiles of the zero-mode fermions read

C [F,f ]
n (1) =

√
Lε

π
F (c[F,f ]) , S[F,f ]

n (1−) = ±
√
Lε

π

xn
F (c[F,f ])

. (2.152)

In reference [150], it was shown how the equations of motion can be integrated over an infinites-
imal interval around |φ| = π in the φ-notation, leading to the IR boundary conditions for the
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profiles S and C. Again, by defining Y eff
f,ij ≡ F (cFi)Yf,ijF (cfj), and using the zero-mode fermion

profiles on the IR brane, these IR boundary conditions can be recast to the following eigenvalue
equations [150] √

2mn

v
âFn = Yeff

f â
f
n ,

√
2mn

v
âfn = Yeff†

f âFn , (2.153)

that define the mass eigenvalues mn as the solutions to the equation

det

[
m2
n1−

v2

2
Yeff
f Yeff†

f

]
= 0 . (2.154)

The vectors âFn and âfn are the eigenvectors of the matrices Yeff
f Yeff†

f and Yeff†
f Yeff

f , and they form
the columns of the unitary matrices Uf and Wf appearing in the singular-value decomposition,

Yeff
f = UfλfW

†
f , similar to the bulk-Higgs case. For the up- and down-type quarks, these

include the matrices [150]

λu =

√
2

v
diag(mu,mc,mt) , λd =

√
2

v
diag(md,ms,mb) . (2.155)

Again, the relations between the original, five-dimensional fields and the SM mass eigenstates
involve the matrices Uf and Wf , and in this connection, the CKM mixing matrix is given by
VCKM = U†uUd. These relations were presented before for the bulk-Higgs scenario, including
the rescaled Yukawa matrices Ỹf in this case.

The hierarchies between up- and down-type quark masses can by reproduced, in a very
natural way, by assuming a hierarchical structure for the zero-mode profiles as

|F (cA1)| < |F (cA2)| < |F (cA3)| . (2.156)

In the RS model, in fact, such a hierarchy can be derived for very small differences between the
bulk mass parameters cAi , due to the behaviour of the zero-mode profile F (c) [150]. In case of
−1/2 < c < 1/2, the zero-mode profile can be approximated by F (c) ≈

√
1 + 2c, whereas for

−3/2 < c < −1/2 it has an exponentially small behaviour as F (c) ≈ −
√
−1− 2c ε−c−1/2. With

the hierarchical structure of the profiles, the hierarchies between fermion masses and mixings
result without further assumption from the Frogatt-Nielsen mechanism [173]. The products of
the masses of up- and down-type quarks are given by [150]

mumcmt =
v3

2
√

2
|det(Yu)|

∏
i=1,2,3

|F (cQi) F (cui)| ,

mdmsmb =
v3

2
√

2
|det(Yd)|

∏
i=1,2,3

|F (cQi) F (cdi)| .
(2.157)

Due to |F (cAi)| < |F (cAi+1
)|, one can consistently evaluate all the eigenvalues to leading order

in hierarchies, and obtains [150]

mu =
v√
2

|det(Yu)|
|(Mu)11|

|F (cQ1)F (cu1)| , md =
v√
2

|det(Yd)|
|(Md)11|

|F (cQ1)F (cd1)| ,

mc =
v√
2

|(Mu)11|
|(Yu)33|

|F (cQ2)F (cu2)| , ms =
v√
2

|(Md)11|
|(Yd)33|

|F (cQ2)F (cd2)| ,

mt =
v√
2
|(Yu)33||F (cQ3)F (cu3)| , mb =

v√
2
|(Yd)33||F (cQ3)F (cd3)| .

(2.158)
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Here, (Mq)ij denotes the minor of Yq, which is the determinant of the square matrix formed
by removing the ith row and jth column from Yq. So, simply explained, the different four-
dimensional fermion masses are effectively induced by overlaps of the zero-mode profiles F (c),
as

mqi ∼ |F (cQi)F (cqi)| , (2.159)

and the observed quark mass hierarchies can be reproduced for O(1) differing c-parameters.
Furthermore, to the leading order, the elements of the matrices Uq and Wq can be evaluated
as [150]

(Uq)ij = (uq)ij


F (cQi )

F (cQj )
, i ≤ j

F (cQj )

F (cQi )
, i > j

, (Wq)ij = (wq)ije
iφj


F (cqi )

F (cqj )
, i ≤ j

F (cqj )

F (cqi )
, i > j

, (2.160)

and the coefficient matrices uq and wq read [150]

uq =


1 (Mq)21

(Mq)11

(Yq)13
(Yq)33

− (Mq)?21
(Mq)?11

1 (Yq)23
(Yq)33

(Mq)?31
(Mq)?11

− (Yq)?23
(Yq)?33

1

 , wq =


1

(Mq)?12
(Mq)?11

(Yq)?31
(Yq)?33

− (Mq)12
(Mq)11

1
(Yq)?32
(Yq)?33

(Mq)13
(Mq)11

− (Yq)32
(Yq)33

1

 . (2.161)

The phase factors eiφj entering Wq are given by

eiφj = sgn
[
F (cQj)F (cqj)

]
e−i(ρj−ρj+1) ,

ρ1 = arg(det(Yq)) , ρ2 = arg((Mq)11) , ρ3 = arg((Yq)33) ,
(2.162)

and ρ4 = 0. To the leading order, the matrices Uq, and therefore also the CKM mixing matrix,
do not depend on the right-handed profiles F (cqi) [167]. The Wolfenstein parameters of the
CKM matrix are given by

λ =
|Vus|√

|Vud|2 + |Vus|2
, A =

1

λ

∣∣∣∣VcbVus

∣∣∣∣ , ρ̄− iη̄ = −V
?
udVub
V ?
cdVcb

, (2.163)

and can be derived as follows [150]

λ =
|F (cQ1)|
|F (cQ2)|

∣∣∣∣(Md)21

(Md)11

− (Mu)21

(Mu)11

∣∣∣∣ , A =
|F (cQ2)|3

|F (cQ1)|2|F (cQ3)|

∣∣∣∣∣∣∣
(Yd)23
(Yd)33

− (Yu)23
(Yu)33[

(Md)21
(Md)11

− (Mu)21
(Mu)11

]2

∣∣∣∣∣∣∣ ,
ρ̄− iη̄ =

(Yd)33(Mu)31 − (Yd)23(Mu)21 + (Yd)13(Mu)11

(Yd)33(Mu)11

[
(Yd)23
(Yd)33

− (Yu)23
(Yu)33

] [
(Md)21
(Md)11

− (Mu)21
(Mu)11

] .
(2.164)

The zero-mode quark profiles, induced by the different bulk mass parameters, can be expressed in
dependence of the quark masses, the Yukawa matrices and the Wolfenstein parameters, and one
chosen profile, for which one can choose, for example, F (cu3) as given in Appendix C.3 [150].
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Then, the hierarchical structure between the profiles, induced by the c-parameters [167], is
implied for the left-handed profiles as [150]

|F (cQ1)|
|F (cQ2)|

∼ λ ,
|F (cQ2)|
|F (cQ3)|

∼ λ2 ,
|F (cQ1)|
|F (cQ3)|

∼ λ3 . (2.165)

The values for the right-handed profiles are fixed by the observed quark-mass hierarchies [150]

|F (cu1)|
|F (cu3)|

∼ mu

mt

1

λ3
,

|F (cu2)|
|F (cu3)|

∼ mc

mt

1

λ2
,

|F (cd1)|
|F (cu3)|

∼ md

mt

1

λ3
,

|F (cd2)|
|F (cu3)|

∼ ms

mt

1

λ2
,

|F (cd3)|
|F (cu3)|

∼ mb

mt

.

(2.166)

With these results, the structure for the flavor mixing matrices Uq and Wq can be deduced,
which naturally imply hierarchies for the entries of the CKM mixing matrix like3 [150]

Uu,d ∼ VCKM ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 ∼
 1 0.23 0.01

0.23 1 0.05

0.01 0.05 1

 . (2.167)

So, in the RS model, especially the left-handed fermion profiles show a natural hierarchical be-
haviour for different c-parameters. This can be used to explain, in a very natural way, the origin
of the different fermion masses by overlaps of different fermion profiles. Similarly, hierarchical
entries are induced for the CKM mixing matrix [167,168].

2.3 Extension by a custodial bulk gauge symmetry

In this section, we describe the framework of the RS model, in which an extended bulk gauge
symmetry is implemented to maintain a custodial symmetry on the IR brane, the custodial
model [151, 174–176]. This model can allow for much smaller KK masses implied by reduced
constraints from electroweak precision tests, and therefore it has been of particular interest for
phenomenological searches, e.g. at the LHC [2,4]. As mentioned before, also the implementation
of a Higgs field in the bulk allows for reduced constraints on the KK mass scale in a setting
with a minimal bulk gauge symmetry [154]. In this sense, the bulk-Higgs framework and the
custodial model are the two phenomenologically most interesting versions of the RS model.

In the minimal RS model, the effective Lagrangian, equivalent to (1.58), includes the cou-

plings of the zero-mode W
3(0)
µ -boson to the B

(0)
µ -boson, and further to the full KK tower of

B
(n)
µ -bosons in addition to the SM,

Lkin.Higgs 3
∫ 1

ε

dt δ(t− 1)
1

4r

∑
m,n

[
g2

5

(
W 1(m)
µ W µ1(n) +W 2(m)

µ W µ2(n)
)

+
(
g2

5W
3(m)
µ W µ3(n) − 2g5g

′
5W

3(m)
µ Bµ(n) + g

′2
5 B

(m)
µ Bµ(n)

)]
.

(2.168)

3In reference [150], the default values for the quark masses and CKM parameters are collected that were used
to obtain these estimates.
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According to the discussion in Subsection 1.1.3, the coupling of the zero-mode W
i(0)
µ -bosons to

the tower of W
i(n)
µ in the Lagrangian is symmetric in the three different W i-fields, and maintains

the custodial symmetry. On the contrary, the couplings of the zero-mode W
3(0)
µ -boson to the

tower of B
(n)
µ -bosons is violating the custodial symmetry in a much stronger manner compared

to the SM [145]. The ρ-parameter, related to the ratio of the charged and neutral current
interactions, receives strong contributions.

In this connection, contributions are caused by the KK gauge boson states in the oblique
electroweak corrections to effective four-fermion interactions. In contrast to the SM, the S and
T parameters already get contributions at tree level by the contributions to the five-dimensional
gauge boson propagators, to the gauge boson masses and to different observables like GF , α, ρ,
as well as the weak mixing angle [82, 154]. Due to the enlarged custodial symmetry violation,
especially the corrections to the T parameter demand for a high value of the MKK mass scale
[150,177]. The calculations of the S,T,U parameters at tree level, in the minimal RS model with
a brane Higgs and a bulk Higgs and the custodial RS model, and the bounds implied on the KK
mass scale MKK , will be presented at the end of this chapter.

2.3.1 Gauge sector and spontaneous symmetry breaking

The request to avoid the strong violation of the custodial symmetry, as it arises in the minimal
RS model, gave reason to create the custodial RS model, in which a bulk gauge group as
[151,174–176]

SU(2)L × SU(2)R × U(1)X × PLR , (2.169)

is implemented, whereof PLR is a discrete symmetry [176]. We consider this model with a Higgs
sector localized onto the IR brane [151],

Lgauge =
2πr

L

∫ 1

ε

dt

t

ε4

t4
(LL,R,X + LHiggs + LGF) . (2.170)

The kinetic terms of the gauge fields are

LL,R,X = GKMGLN

(
−1

4
LaKLL

a
MN −

1

4
Ra
KLR

a
MN −

1

4
XKLXMN

)
, (2.171)

and GMN is the five-dimensional metric tensor. As always, the five-dimensional gauge bosons
can be decomposed into a vector component and a scalar component, AM = Aµ + ktAt, where
both components individually decompose into the KK expansions of four-dimensional vector
bosons and scalars. The IR brane-localized Higgs Lagrangian [151],

LHiggs =
k

2
δ(t− 1)

[
Gµν

2
Tr
[
(DµΦ)†(DνΦ)

]
− V (Φ)

]
, (2.172)

considers a Higgs bi-doublet, transforming as (2,2)0 under SU(2)L × SU(2)R. The SU(2)L
gauge transformations act on the bi-doublet from the left-hand side, whereas the SU(2)R-
transformations act from the right-hand side. Therefore, the covariant derivative reads

DµΦ = ∂µΦ− igL5 L
a
µT

a
LΦ + igR5 ΦRa

µT
a
R , (2.173)
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with T aL,R = σa/2, and where gL5, gR5 are the five-dimensional gauge couplings, belonging to
the groups SU(2)L and SU(2)R, respectively. In this model, the Higgs bi-doublet induces a
spontaneous gauge symmetry breaking on the IR brane, as [151]

SU(2)L × SU(2)R
IR→ SU(2)V , (2.174)

where a custodial symmetry SU(2)V is maintained explicitly. After the symmetry breaking, the
Higgs bi-doublet can be decomposed around the vev v ≈ 246 GeV as [151]

Φ(x) =
1√
2ε

(
v + h(x)− iϕ3(x) −i

√
2ϕ+(x)

−i
√

2ϕ−(x) v + h(x) + iϕ3(x)

)
, (2.175)

with the scalar fields ϕ± = (ϕ1 ∓ iϕ2)/
√

2. Similar to the SM, one can redefine the charged
gauge bosons as

L±µ =
1√
2

(
L1
µ ∓ iL2

µ

)
, R±µ =

1√
2

(
R1
µ ∓ iR2

µ

)
. (2.176)

Furthermore, by redefining new fields as(
ÃM
VM

)
=

1√
g2
L + g2

R

(
gL −gR
gR gL

)(
LM
RM

)
, (2.177)

where ga = ga5/
√

2πr, one can find that there is one five-dimensional mass term for the gauge
boson Ãµ that adopts the following form on the IR brane [151]

Lmass = δ(t− 1)
(g2
L5 + g2

R5)v2

8
ÃaµÃ

µ,a ≡ δ(t− 1)
1

2
M2

Ã
ÃaµÃ

µa , (2.178)

whereas the field VM remains massless. With only one five-dimensional mass parameter for the
massive gauge bosons, MÃ, the mass Lagrangian on the IR brane remains invariant under the
global custodial symmetry transformations SU(2)V . In order to obtain the SM field content in
the zero modes, the custodial symmetry has to be broken by the U(1)-gauge bosons that are
part of the definition of the Z boson and photon fields. In the custodial model, the BY

µ bosons
are defined on the UV brane, at the other boundary of the extra dimension. In this connection,
the symmetry breaking

SU(2)R × U(1)X
UV→ U(1)Y (2.179)

is induced on the UV brane, where a breaking as SU(2)R → U(1)R can be achieved by means of
odd orbifold boundary conditions, and a spontaneous symmetry breaking as U(1)R × U(1)X →
U(1)Y appears via a vev. Then, one can define the following new fields(

Z ′M
BY
M

)
=

1√
g2
R + g2

X

(
gR −gX
gX gR

)(
R3
M

XM

)
, (2.180)

including the gauge boson BY
M of the group U(1)Y . In this connection, the hypercharge gauge

coupling is gY = gRgX√
g2R+g2X

. After that, one can obtain the neutral, electroweak gauge bosons in

a way similar to the SM, by(
ZM
AM

)
=

1√
g2
L + g2

Y

(
gL −gY
gY gL

)(
L3
M

BY
M

)
, (2.181)
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∂tL
±
µ (x, t) |t=ε = 0

R±µ (x, 0) = 0

∂tZµ(x, t) |t=ε = 0

Z ′µ(x, 0) = 0

∂tAµ(x, t) |t=ε = 0

L±t (x, 0) = 0

R±t (x, 0) = 0

Zt(x, 0) = 0

Z ′t(x, 0) = 0

At(x, 0) = 0

∂tÃ
±
µ (x, t) |t=1− = −(2MKKε)

−1M2
Ã
Ã±µ (x, 1)

∂tV
±
µ (x, t) |t=1 = 0

∂tZ̃µ(x, t) |t=1− = −(2MKKε)
−1M2

Ã
Z̃µ(x, 1)

∂tZ
H
µ (x, t) |t=1 = 0

∂tAµ(x, t) |t=1 = 0

Ã±t (x, 1) = 0

V ±t (x, 1) = 0

Z̃t(x, 1) = 0

ZH
t (x, 1) = 0

At(x, 1) = 0

Table 2.2: Boundary conditions for the gauge bosons at the UV and IR branes [151].

and one can define
sin θw =

gY√
g2
L + g2

Y

, cos θw =
gL√

g2
L + g2

Y

. (2.182)

In addition, the fields V 3
M and XM can be rotated to the photon field AM and a state ZH

M as(
ZH
M

AM

)
=

1

g2
LRX

(
gLgR −gX

√
g2
L + g2

R

gX
√
g2
L + g2

R gLgR

)(
V 3
M

XM

)
, (2.183)

where g2
LRX =

√
g2
Lg

2
R + g2

Lg
2
X + g2

Rg
2
X . Furthermore, the field Z̃M ≡ Ã3

M is defined as a linear
combination of ZM and Z ′M . The boundary conditions for the five-dimensional gauge fields at the
two branes are summarized in Table 2.2. They are chosen in such a way that the correct particle
spectrum of the SM is obtained for the zero modes. By means of these boundary conditions,
one can distinguish between two basis sets of fields, the UV and IR bases. In these basis sets,
the respective boundary conditions adopt easy expressions. Instead, a transformation of the
conditions into the respective other basis set results in relations that mix the different fields,
instead. The transformations between the two basis sets are given by the following rotations [151]

(
Z̃M
ZH
M

)
= RZ

(
ZM
Z ′M

)
, RRRZ ≡

(
cZ −sZ
sZ cZ

)
,(

Ã±M
V ±M

)
= RW

(
L±M
R±M

)
, RRRW ≡

(
cW −sW
sW cW

)
,

(2.184)

along with the angles

sZ ≡ sin θZ =
g2
R√

(g2
L + g2

R)(g2
R + g2

X)
=

gY /gX√
g2
L + g2

R

, sW ≡ sin θW =
gR√
g2
L + g2

R

,

cW ≡ cos θZ =
g2
LRX√

(g2
L + g2

R)(g2
R + g2

X)
=

√
g2
L + g2

Y

g2
L + g2

R

, cW ≡ cos θW =
gL√
g2
L + g2

R

.

(2.185)

In order to perform the KK decompositions for the gauge fields in the custodial model, one can
introduce the vectors

~ZM =

(
Z̃M
ZH
M

)
, ~W±

M =

(
Ã±M
V ±M

)
, (2.186)
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combining the fields that get mixed by the UV boundary conditions. To work with profiles that
obey definite Neumann- (+) or Dirichlet- (-) boundary conditions at the UV brane, the rotation
matrices are included into the KK decompositions [151],

Aµ(x, t) =
1√
r

∑
n

χAn (t)A(n)
µ (x) , At(x, t) = − 1√

r

∑
n

kt

mA
n

∂tχ
A
n (t)ϕ

(n)
A (x) ,

~Zµ(x, t) =
RZ√
r

∑
n

~χZn (t)Z(n)
µ (x) , ~Zt(x, t) = −RZ√

r

∑
n

kt

mZ
n

∂t~χ
Z
n (t)ϕ

(n)
Z (x) ,

~W±
µ (x, t) =

RW√
r

∑
n

~χWn (t)W±(n)
µ (x) , ~W±

t (x, t) = −RW√
r

∑
n

kt

mW
n

∂t~χ
W
n (t)ϕ

±(n)
W (x) ,

(2.187)

where ~χZn (t) =
(
χZn (t), χZ

′
n (t)

)T
, and ~χWn (t) =

(
χLn(t), χRn (t)

)T
. The boundary conditions for the

profiles can be deduced from the conditions presented in Table 2.2. The normalization conditions
for the vectors apply

2π

L

∫ 1

ε

dt

t
~χ[A]
m (t)T ~χ[A]

n (t) = δmn , [A] = W,Z , (2.188)

in order to obtain the correct mass terms for the KK modes. The photon profiles obey the
standard normalization condition. Likewise to the brane-Higgs scenario, presented before, one
can expand the four-dimensional Goldstone bosons ~ϕ3(x) and ~ϕ±(x) in a basis of mass eigen-
states, and define a gauge-fixing Lagrangian in order to remove the mixing terms between the
Goldstone bosons, the scalar parts of the gauge bosons and the vector components of the gauge
bosons [151]. These parts are skipped here. By inserting the KK decompositions into the
five-dimensional action, one can derive the following equations of motion for the gauge boson
profiles [151]

−t∂t
[

1

t
∂tR[A]~χ

[A](t)

]
=

(m
[A]
n )2

M2
KK

R[A]~χ
[A]
n (t)− δ(t− 1)

L

2πr

M2
[A]

M2
KK

P(+)R[A]~χ
[A](t) , (2.189)

where PPP (+) = diag(1, 0), and [A] = Z,W,A, with MZ = MW = MÃ, and MA = 0, in order to
obtain proper kinetic terms for the KK modes. The appropriate boundary conditions at the IR
brane read4

R[A] ∂t~χ
[A]
n (t) |t=1 = − L

2πr

M2
Ã

M2
KK

P(+)R[A]~χ
[A](t) , (2.190)

where for the photon profile the right-hand side is equal to zero. At the UV brane, the boundary
conditions read (

P(+)∂t + P(−)

)
~χ[A]
n (t) = (0 0)T , (2.191)

with P(−) = diag(0, 1). One can see that both for the W and Z bosons, the equations of motions
and the IR boundary conditions are governed by the same five-dimensional mass parameter
MÃ. For that reason, when calculating the oblique corrections, parametrized by the Peskin-
Takeuchi parameters, the leading corrections in the zero-mode masses and profiles, and the

4These conditions can be derived, e.g. by using the φ-coordinate and by integrating the equations of motion
over an infinitesimal interval around |φ| = π [151].
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five-dimensional propagators, are equal, and cancel each other out. As a consequence, small
new-physics corrections are induced to these parameters. Using an expansion in powers of
v2/M2

KK , one can determine the zero-mode gauge boson profiles as

~χZ0 (t) =

 1√
2π
− m2

Z

2
√

2πM2
KK

[
t2
(
L+ log(t)− 1

2

)
− 1

2
+ 1

2L

]
Lt2m2

Z

2
√

2πM2
KK

sinθZ
cosθZ

+O
(

v4

M4
KK

)
,

~χW0 (t) =

 1√
2π
− m2

W

2
√

2πM2
KK

[
t2
(
L+ log(t)− 1

2

)
− 1

2
+ 1

2L

]
Lt2m2

W

2
√

2πM2
KK

sinθW
cosθW

+O
(

v4

M4
KK

)
.

(2.192)

The first rows of the IR boundary conditions determine the analytic expressions for the masses
of the zero-mode W and Z bosons. To the first order, one can determine [151]

m2
[A] = m̃2

[A]

[
1−

m2
Ã

2M2
KK

L+
m̃2

[A]

2M2
KK

(
1− 1

2L

)]
+O

(
v4

M4
KK

)
,

= m̃2
[A]

[
1−

m̃2
[A]

2M2
KK

(
L

cos2θ[A]

− 1 +
1

2L

)]
+O

(
v4

M4
KK

)
,

(2.193)

where [A] = W,Z, and the parametric masses are mÃ = MÃ/
√

2πr, and m̃W = gLv/2 =
cos θWmÃ, and m̃Z =

√
g2
L + g2

Y v/2 = cos θZmÃ. As stated before, one can observe that the
L-enhanced correction terms in the formulas for the masses of the W and Z bosons scale with
the squared of the same parametric mass m2

Ã
. This is due to the restored custodial symmetry

on the IR brane, which creates the first equal terms in the mass formulas. The second correction
terms are different, but of smaller magnitudes compared to the first ones. The origin of these
terms are the differing mixing angles of the rotation matrices R[A], arising from the fact that the
custodial symmetry is violated on the UV brane. As a consequence, the L and R gauge boson
fields get mixed by the IR boundary conditions, creating the smaller, differing contributions to
the W and Z boson masses. Altogether, the dominant equal terms cancel each other out in
the calculation of the ρ and T parameters, and provide the custodial protection mechanism,
which will allow for smaller MKK masses as a consequence, as we will show in the last section
of this chapter. On the contrary, in the minimal RS model, there are two different parametric
masses m̃W and m̃Z in the IR boundary conditions and the mass relations, which generate large,
L-enhanced contributions to the ρ and T parameters.

2.3.2 Fermion sector

To implement also a custodial protection mechanism for the ZbLb̄L-vertex, a discrete symmetry,
the PLR-symmetry, is imposed, which interchanges between the two SU(2) groups [166,176]. As
a consequence, the left-handed bottom quark has to be part of a SU(2)L × SU(2)R-bi-doublet
with the isospin quantum numbers T 3

L = −T 3
R = −1/2 [151]. In this way, the quantum numbers

of the other fields are fixed uniquely. The charges of the groups U(1)em and U(1)X are connected
by the relations Y = −T 3

R+QX and Q = T 3
L+Y . Moreover, the right-handed down-type quarks

have to be embedded in a SU(2)R-triplet in order to get an U(1)X-invariant Yukawa coupling.



74 2.3. EXTENSION BY A CUSTODIAL BULK GAUGE SYMMETRY

The same representations under SU(2)L × SU(2)R are chosen for all three quark generations.
Then, the multiplet structure follows for the quark fields with an even Z2-parity [151,166]:

QL ≡
(
u

(+)
L 2

3
λ

(−)
L 5

3

d
(+)
L − 1

3
u
′(−)
L 2

3

)
2
3

, ucR ≡
(
u
c(+)
R 2

3

)
2
3

,

TR ≡ T1R ⊕ T2R ≡


Λ
′(−)
R 5

3

U
′(−)
R 2

3

D
′(−)
R − 1

3


2
3

⊕
(
D

(+)
R − 1

3
U

(−)
R 2

3
Λ

(−)
R 5

3

)
2
3

.

(2.194)

Also, there is a second set of multiplets comprising the components of the fields of the opposite
chirality. Altogether, there are 15 different quark fields in the up-type quark sector and 9 in the
down-type quark sector. The boundary conditions at the two branes are chosen in such a way
that there are three light modes in each sector to be identified with the SM quarks. In addition,
there are 9 new and exotic fermion fields with an electric charge of 5/3, which do not have zero
modes. The superscripts specify the type of the UV boundary conditions that apply for the
respective fields. Whereas the fields with a (+) sign obey mixed boundary conditions that allow
for a light zero mode, their corresponding Z2-odd parts fulfil Dirichlet boundary conditions and
do not have zero modes. On the contrary, the fields with a (−) sign correspond to heavy, exotic
fermions with no counterparts in the SM, fulfilling Dirichlet boundary conditions for the Z2-even
fields to avoid the presence of zero modes. These fields are new compared to the minimal RS
model. The KK expansions consist of groups of 15 and 9 modes of similar masses in the up-
and down-type quark sectors, respectively. Furthermore, there is an additional KK tower with
heavy, exotic fermion fields, with 9 excitations of similar masses for each KK level.

For the implementation of the lepton sector, we will distinguish between two different realiza-
tions. The first possibility is to consider a lepton sector similar to the quark sector (custodial
model I), with a multiplet structure as [3]

ξ1L =

(
ν

(+)
L 0 ψ

(−)
L 1

e
(+)
L −1 ν

′(−)
L 0

)
0

, ξ2R =
(
ν
c(+)
R 0

)
0
,

ξ3R = T3R ⊕ T4R =

 Ψ
′(−)
R 1

N
′(−)
R 0

E
′(−)
R −1

⊕ (E(+)
R −1 N

(−)
R 0 Ψ

(−)
R 1

)
0
.

(2.195)

In this set, there are fifteen different lepton states in the neutrino sector, and nine in the charged-
lepton sector. According to the boundary conditions, there are three light modes for each sector
that can be identified with the SM neutrinos and charged leptons. In addition, there are 9
new and exotic lepton states with an electric charge Qψ = +1 without zero modes. For every
KK mode, there are fifteen and nine modes in the neutrino and charged-lepton sectors, and in
addition, there is a KK tower of exotic lepton states having nine excitations for every KK mode.

As a second possibility, one can consider a more minimal lepton sector (custodial model
II). In this realization, the left-handed neutrino and the electron are combined in an SU(2)L
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doublet, similar to the SM, and the right-handed electron along with a new, exotic, neutral
particle NR are combined in an additional SU(2)R doublet,

LL =

(
ν

(+)
L 0

e
(+)
L −1

)
− 1

2

, LcR =

(
e
c(+)
R −1

N
(−)
R 0

)
− 1

2

. (2.196)

so that these states transform as (2,1) and (1,2) under the extended gauge group, respectively
[3]. The electric charges and the weak isospins are indicated by the subscripts. The boundary

conditions at the branes are chosen in such a way that the zero modes of the fields ν
(+)
L , e

(+)
L

and e
c(+)
R correspond to the light leptons of the SM, without having a right-handed neutrino,

whereas the additional, new lepton field N
(−)
R has no zero mode. The zero modes of the charged

leptons get a mass by electroweak symmetry breaking, induced by the Yukawa interactions [3],

LY =
v√
2

∫ 1

ε

dt δ(t− 1)ε3
2

k
(Ye)ij

(
L̄iLΦεLcjR + L̄iRΦεLcjL

)
+ h.c. , (2.197)

where ε = iσ2. The mass of the zero-mode neutrino can be explained by means of higher-
dimensional operators, similar to the SM. Per KK level, there are 6 lepton states and 6 neutrino
states, respectively.

In general, the fermion content of the minimal RS model can be obtained by omitting the
exotic fermion fields that carry a superscript (−). In the following, we present the KK decom-
positions for the quark fields. An analogous discussion holds for the leptons of the custodial
model I, and the decompositions for the custodial model II can be implemented in a similar
way. Similar to the gauge boson sector, an one to one correspondence to the quark fields of the
minimal RS model can be achieved by introducing the following vector notation [151]

~U =

(
u
u′

)
, ~u =

ucU ′
U

 , ~D = d , ~d =

(
D
D′

)
, ~Λ = λ , ~λ =

(
Λ′

Λ

)
. (2.198)

Then, we can also use a combined notation by including the respective doublet and singlet fields
into the larger vectors

FA(x, t) =

√
rε2

t2

(
~FA(x, t)
~fA(x, t)

)
, (2.199)

where A=L,R, and ~F = ~U, ~D, ~Λ and ~f = ~u, ~d, ~λ. The Lagrangian that is bilinear in the fields
reads [151,155,156,170,178]

2π

Lε

∫ 1

ε

dt
∑
f

(
F̄
[
i∂/−MKK

(
c~f
t

+
1

2

↔
∂t γ5

)]
F − v√

2
δ(t− 1)

[
F̄L
(

000 YYY ~f

YYY †~f 000

)
FR + h.c.

])
,

(2.200)

where
↔
∂t≡

→
∂t −

←
∂t, including the Yukawa matrices

Y~u ≡
(

Yu
1√
2
Yd

1√
2
Yd

Yu − 1√
2
Yd − 1√

2
Yd

)
, Y~d ≡ Y~λ ≡ (Yd Yd) , (2.201)
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and the bulk mass matrices

c~u = diag (cQ, cQ,−cuc ,−cT1 ,−cT2) ,

c~d = diag (cQ,−cT2 ,−cT1) , c~λ = diag (cQ,−cT2 ,−cT1) .
(2.202)

Each of the entries in these abbreviations forms a 3× 3 matrix itself. The dimensionless, four-
dimensional Yukawa matrices were obtained from the dimensionful, five-dimensional Yukawa
matrices by Y5D

q ≡ 2Yq

k
. In this setting, the Yukawa couplings to the Higgs field include the

Z2-even and -odd fermion fields5 [170]. The diagonal bulk mass matrices cA are obtained from
the five-dimensional bulk masses Mq of the multiplets Q, uc, T1, T2, where cQ ≡ +MQ/k and
cA ≡ −MA/k, and A = uc, T1, T2.

As before, the KK decompositions can be chosen as

FA(x, t) =

√
Lε

2π

∞∑
n=1

F (n)
A (t)f

(n)
A (x) , (2.203)

where A=L,R, F = U,D,Λ + leptons and f = u, d, λ + leptons. There are three light zero
modes, and 15 heavy states per KK level for the up-type quarks, three light modes and 9 heavy
states per KK level for the down-type quarks, as well as 9 heavy states per KK level for the
exotic quarks without any light modes. Therefore, n = 1, 2, 3 label the first three light modes,
the zero modes that are the SM equivalents, whereas n ≥ 3 label the modes of the higher KK
levels. For the profiles, we have the following vectors [151]

UL(t) =
(
CQ(+)
n (t) aun , CQ(−)

n (t) au
′

n , Su
c(+)
n (t) au

c

n , ST1(−)
n (t) aU

′

n , ST2(−)
n (t) aUn

)T
,

UR(t) =
(
SQ(+)
n (t) aun , SQ(−)

n (t) au
′

n , Cuc(+)
n (t) au

c

n , CT1(−)
n (t) aU

′

n , CT2(−)
n (t) aUn

)T
,

(2.204)

DL(t) =
(
CQ(+)
n (t) adn , ST2(+)

n (t) aDn , ST1(−)
n (t) aD

′

n

)T
,

DR(t) =
(
SQ(+)
n (t) adn , CT2(+)

n (t) aDn , CT1(−)
n (t) aD

′

n

)T
,

(2.205)

ΛL(t) =
(
CQ(−)
n (t) aλn , ST1(−)

n (t) aΛ′

n , ST2(−)
n (t) aΛ

n

)T
,

ΛR(t) =
(
SQ(−)
n (t) aλn , CT1(−)

n (t) aΛ′

n , CT2(−)
n (t) aΛ

n

)T
,

(2.206)

including CA
n (t) and SAn (t), with A = Q, uc, T1, T2 as diagonal 3×3 matrices, containing the even

and odd profiles that get multiplied by the three-vectors aAn , with A = u, u′, uc, U ′, U , d,D′, D,
λ,Λ′,Λ, to encode the flavor structure [151]. As before, the superscripts (±) indicate the type

5For a brane-localized Higgs sector, one can generalize the Yukawa couplings in such a way that the Z2-even
and -odd fermion fields separately couple to the Higgs field, requiring the replacements Y~q → YC

~q and Y†~q → YS†
~q .

Then, the superscripts in Y
[C,S]
~q denote the fields to which the Higgs field couples to [151].
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of the UV boundary conditions that the profiles fulfil. For every respective KK mode, there are
the normalization conditions ∫ 1

ε

dt F (m)†
A (t) F (n)

A (t) = δmn , (2.207)

and the equations of motion read

d

dt
F (n)
L (t) = −xnF (n)

R (t)+M~f (t)F
(n)
L (t) , − d

dt
F (n)
R (t) = −xnF (n)

L (t)+M~f (t)F
(n)
R (t) , (2.208)

including the mass matrix [151]

M~f (t) =
c~f
t

+
vδ(t− 1)√

2MKK

(
0 Y~f

Y†~f 0

)
. (2.209)

The explicit solutions for the profiles with a (+)-sign, C
A(+)
n (t) and S

A(+)
n (t), associated with

the bulk mass parameters cA, are similar to the profiles in the minimal RS model [150,155,156].

The (−)-profiles C
A(−)
n (t) and S

A(−)
n (t) can be derived in a similar manner [151]. The boundary

conditions have been summarized before. The Dirichlet condition S
A(+)
n (ε) = 0 holds for the

Z2-odd part of the fields with a superscript (+), whereas the fields with a superscript (−)

fulfil Dirichlet boundary conditions for the Z2-even fields, as C
A(−)
n (ε) = 0. In the presence

of a regularized Higgs profile, the IR boundary conditions are of Dirichlet type for all fields, as
S
A(±)
n (1−) = 0.6 For the fields with n = 1, 2, 3, the C

(±)
n (t) and S

(±)
n (t) profiles can be determined

in good approximation, up to the order of v2/M2
KK , as [150,151]

C(+)
n ≈

√
Lε

π
F (c) tc , S(+)

n (t) ≈ ±
√
Lε

π
xn F (c)

t1+c − ε1+2ct−c

1 + 2c
,

C(−)
n (t) ≈ −

√
Lε

π
xn F (−c) t

1−c − ε1−2ctc

1− 2c
, S(−)

n (t) ≈ ±
√
Lε

π
F (−c) t−c ,

(2.210)

using the rescaled vectors from (2.108) in the KK decompositions. The overall +-signs of the
S-profiles hold for the bi-doublet associated to cQ, whereas the −-sign applies for the fields
associated to cA, with A = uc, T1, T2. The function F (c) is the usual zero-mode profile [155,
156]. The S-profiles are multiplied with a sgn(φ) in the φ-notation in order to have the Z2-

odd behaviour. One can observe that the profiles C
(+)
n (t) and S

(−)
n (t) are of O(1), whereas the

profiles C
(−)
n (t) and S

(+)
n (t) are of O(v/MKK). This is crucial in partially shielding the ZbLb̄L

and ZdiLd̄
j
L vertices from corrections that stem from a mixing of zero-mode quarks with their

KK excitations [151], which is one of the crucial features of the model.

6The presence of IR brane-localized terms that originate from the Yukawa couplings dictates the boundary be-
haviour of the fields, and causes both the Z2-even and -odd profiles to become discontinuous at the IR brane with

C
[F,f ]
n (1) 6= C

[F,f ]
n (1−) and S

[F,f ]
n (1) = 0, but S

[F,f ]
n (1−) 6= 0 [151,179]. To find the correct IR boundary conditions

requires a proper regularization of the δ-functions. One possibility is to see the δ-function as the limit of a sequence
of regularized functions δη with support on the interval x ∈ [−η, 0], such that limη→0+

∫ +∞
−∞ dx δη(x)f(x) = f(0),

for all test functions f(x), i.e. smooth functions having compact support [151].
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In Chapter 5, we will present the calculation of the decay of a new, heavy bulk scalar into
a pair of photons. In this calculation, it is necessary to know the multiplet structure of the
fields under the SM electroweak gauge group SU(2)L × U(1)Y . In this regard, the fields can be
distinguished by means of the different bulk mass parameters [7]. For the quark fields, there are
two SU(2)L doublets

cQ :

(
u

(+)
L

d
(+)
L

)
1
6

,

(
λ

(−)
L

u
′(−)
L

)
7
6

, (2.211)

one triplet,

cT1 :


Λ
′(−)
R

U
′(−)
R

D
′(−)
R


2
3

, (2.212)

as well as four singlets,

cu :
(
u
c(+)
R

)
2
3

, cT2 :
(
D

(+)
R

)
− 1

3

,
(
U

(−)
R

)
2
3

,
(

Λ
(−)
R

)
5
3

. (2.213)

In the custodial model I, there are two SU(2)L doublets,

cL :

(
ν

(+)
L

e
(+)
L

)
− 1

2

,

(
ψ

(−)
L

ν
′(−)
L

)
1
2

, (2.214)

and one triplet,

cT3 :


Ψ
′(−)
R

N
′(−)
R

E
′(−)
R


0

. (2.215)

Furthermore, there are four singlets,

cν :
(
ν
c(+)
R

)
0
, cT4 :

(
E

(+)
R

)
−1

,
(
N

(−)
R

)
0
,
(

Ψ
(−)
R

)
1
. (2.216)

Instead, in the custodial model II, there are one SU(2)L doublet,

cL :

(
ν

(+)
L

e
(+)
L

)
− 1

2

, (2.217)

and two singlets

ce :
(
e
c(+)
R

)
−1

,
(
N
′(−)
R

)
0
. (2.218)
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2.4 Electroweak parameters in the RS scenarios

Varying exclusion bounds apply for the parameter spaces of the different RS scenarios that are
considered in this thesis, which are the bulk-Higgs RS model, the brane-Higgs RS model with
a minimal bulk gauge symmetry, and the custodial RS model. In this connection, the most
significant constrains stem from electroweak precision tests of the four fermion interactions at
lower energies. In Subsection 1.1.3, we have described that the oblique electroweak corrections,
induced by heavier new particles, to low energy four fermion interactions can be parametrized
by means of the S,T,U parameters [82]. The tree-level predictions for the parameters can be
computed in the different RS scenarios to be compared to the experimentally derived results. In
principle, it is not sufficient to solely restrain on the oblique corrections when describing the new-
physics effects on the four fermion interactions that are implied in the RS model. The fermion
to gauge boson vertices underlie non-universal modifications from the SM due to the varying
fermion profiles. But, considering a selected subset of the most precisely measured observables,
one can still parametrize the electroweak corrections in terms of the S, T and U parameters, in
good approximation [154]. In the following, we will shortly recapitulate the calculations of the
parameters, and the bounds implied on the MKK mass scale, in three different RS scenarios.
Previously, this was already performed, e.g. in the references [2, 150,151,154,174,177]. Further
tests of the various scenarios in the context of the electroweak precision observables and flavour
physics were performed, e.g. in [180–187]. The relevant vacuum polarization functions of the
oblique corrections depend on six open parameters in the applied approximation, as illustrated
in equation (1.50). Rather than directly calculating the vacuum polarization functions, one can
choose the three S,T,U parameters, and the parameter ṽ together with the five-dimensional
gauge couplings g5 and g′5, which can be determined in terms of six precisely known electroweak
observables. For the observables, one can take GF , mZ , mW (or equivalently s2

W ), α (or equiva-
lently s2

0), s2
? and ρ? [2,154]. In the following, we will specify the definitions of these observables

in the three RS scenarios, the minimal model with a brane Higgs (mm), the minimal model
with a bulk Higgs (mmbH) and the custodial model with a brane Higgs (cm).

By the fact that the photon has a flat profile along the extra dimension, the fine-structure
constant α can be defined as

α =
e2

5

2πr4π
, (2.219)

which explicitly reads in the different models

αmm. =
g2g

′2

4π(g2 + g′2)
, αmmbH =

g2
5g
′2
5

2πr 4π(g2
5 + g

′2
5 )

, αcm =
g2
Lg

2
Y

4π(g2
L + g2

Y )
. (2.220)

To derive the relations between the RS model parameter v and the Higgs vev in the SM
vSM ≈ 246 GeV, one can determine the corrections to the Fermi constant GF in the RS scenarios
by constructing the effective four-fermion interaction that mediates the muon decay. The RS
model corrections to this decay process arise due to the modified interactions of the zero-mode
W boson with light fermions, and further because the infinite tower of KK W bosons is virtually
exchanged instead of just the SM W boson. These effects can be sufficiently parametrized in
terms of the five-dimensional W boson propagator functions in the respective scenarios, evaluated
at zero four-momentum. These propagator functions are calculated in the next chapter of the
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Figure 2.6: In this plot, the relation κv = v
vSM

between the Higgs vev in the RS model v and the
SM vSM ≈ 246 GeV is plotted in dependence of the KK mass scale, in the bulk-Higgs model
for β = 1, 10 (blue and yellow curves), in the minimal model (green curve), and the custodial
model (orange curve).

thesis in Section 3.1.1. In the different RS scenarios, one can derive for the leading corrections

GF√
2
≡ 1

2v2
SM

=
1

2v2

[
1 +

Lm2
W

2M2
KK

IRS + ...

]
,

Imm = 1 , ImmbH =
2(1 + β)2

(2 + β)(3 + 2β)
, Icm =

1

c2
W

,

(2.221)

which stem from the leading terms of the five-dimensional propagator functions. The remain-
ing t-dependent terms in the propagator functions give suppressed contributions, if convo-
luted with the profile functions of the light zero-mode fermions, and are therefore neglected.
In a similar manner, the parameter ρ?, stemming from the effective four-fermion Lagrangian
Leff = −4GF√

2

[
J+
µ J
−µ + ρ?(J

µ
3 − s2

?J
µ
Q)2
]
, is determined by the leading terms of the W and Z

boson propagators [154], where one can get

ρ?,mm = 1 +
L(m2

Z −m2
W )

2M2
KK

+ ... ,

ρ?,mmbH = 1 +
(m2

Z −m2
W )

2M2
KK

2L(1 + β)2

(2 + β)(3 + 2β)
+ ... ,

ρ?,cm = 1 + ... .

(2.222)

In the custodial model, the leading terms in the W and Z boson propagator functions both scale

with the same mass parameter m2
Ã

, where
m̃2
W

c2W
=

m̃2
Z

c2Z
= m2

Ã
. These terms cancel each other out

in the calculation of the ρ? and T parameters [151], which is the custodial protection mechanism.
The parameter s2

? in the weak neutral current coincides with the definitions of the weak mixing
angle s2

w in the different scenarios [154]

s2
?,mm =

g
′2

g2 + g′2
, s2

?,mmbH =
g
′2
5

g2
5 + g

′2
5

, s2
?,cm =

g2
Y

g2
L + g2

Y

. (2.223)
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Furthermore, there is a second definition, employing the ratio of the electroweak gauge boson
masses as [82]

s̃2
W ≡ 1− m2

W

m2
Z

, (2.224)

which reads in the different scenarios

s̃2
W,mm =

g
′2

g2 + g′2

(
1− m2

W

2M2
KK

(
L− 1 +

1

2L

)
+ ...

)
,

s̃2
W,mmbH =

g
′2
5

g2
5 + g

′2
5

(
1− m2

W

2M2
KK

[
2L(1 + β)2

(2 + β)(3 + 2β)
− 1 +

1

(2 + β)2
+

1

2L

]
+ ...

)
,

s̃2
W,cm =

g2
Y

g2
L + g2

Y

(
1− m2

W

2M2
KK

[
−1 +

1

2L

]
+ ...

)
.

(2.225)

A third definition relates the weak mixing angle to the precisely measured parameters GF , α
and mZ by [82]

s2
0c

2
0 ≡

πα√
2GFm2

Z

, (2.226)

where one has in the different scenarios

s2
0,mm =

g
′2

(g2 + g′2)

(
1 +

m2
W

2M2
KK

1

(c̃2
W − s̃2

W )

[
s2
WL− 1 +

1

2L

]
+ ...

)
,

s2
0,mmbH =

g
′2
5

g2
5 + g

′2
5

(
1 +

m2
W

2M2
KK

1

(c̃2
W − s̃2

W )

[
s̃2
W

2L(1 + β)2

(2 + β)(3 + 2β)
− 1 +

1

(2 + β)2
+

1

2L

]
+ ...

)
,

s2
0,cm =

g2
Y

g2
L + g2

Y

(
1− m2

W

2M2
KK

1

(c̃2
W − s̃2

W )

[
1− 1

2L

]
...

)
+ .

(2.227)

With this list of definitions, one can solve for the S,T,U parameters by using the first three
relations of the equation (3.13) in [82], which are

m2
W

m2
Z

− c2
0 =

αc2
?

(c2
? − s2

?)

(
−1

2
S + c2

? T +
(c2
? − s2

?)

4s2
?

U

)
,

ρ? − 1 = αT ,

s2
? − s2

0 =
α

(c2
? − s2

?)

(
1

4
S − s2

?c
2
? T

)
.

(2.228)

Then, the results in the different RS scenarios are

Tmm =
πv2L

2M2
KK c̃

2
W

, Smm =
2πv2

M2
KK

(
1− 1

2L

)
,

TmmbH =
πv2

c̃2
WM

2
KK

L(1 + β)2

(2 + β)(3 + 2β)
, SmmbH =

2πv2

M2
KK

(
1− 1

2L
− 1

(2 + β)2

)
,

Tcm = 0 , Scm =
2πv2

M2
KK

(
1− 1

2L

)
,

(2.229)
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whereas U = 0 in all cases. These predictions can be compared to results that were derived from
electroweak precision data in [86], which are

SUfree = 0.05± 0.11 , TUfree = 0.09± 0.13 , U = 0.01± 0.11 ,

SU=0 = 0.06± 0.09 , TU=0 = 0.10± 0.07 .
(2.230)

These experimental results were determined in two different manners, for a floating U parameter
from a three parameter analysis, and for the constraint U = 0, respectively. The matrices with
the correlation coefficients between the parameters are [86]

ρUfree =

 1 0.90 −0.59

0.90 1 −0.83

−0.59 −0.83 1

 , ρU=0 =

(
1 0.91

0.91 1

)
. (2.231)

The values mh,ref = 125 GeV and mt,ref = 173 GeV were taken for the SM reference point, see
(1.52). The results were determined by a statistical maximum likelihood method to find the
regions of maximal overlaps of the experimental results for the various electroweak precision
observables. In this relation, the boundaries of the intervals that indicate a respective level of
confidence for the results are defined by

χ2 = ~P Tρ−1 ~P , (2.232)

where

~PUfree = (
(S − Scentral)

∆S
,
(T − Tcentral)

∆T
,
(U − Ucentral)

∆U
)T ,

~PU=0 = (
(S − Scentral)

∆S
,
(T − Tcentral)

∆T
)T ,

(2.233)

and where the χ2 is equal to 2.41 for 68%, to 5.99 for 95%, and to 9.21 for 99% CL, respectively.
The regions of different CLs for the results are plotted in Figure 2.7, where for the case of a
floating U parameter, we plot the two-dimensional projection on S and T of the three-parameter
CL ellipse. The black lines mark the predictions from the different RS scenarios. By determining
the points of the intersections between the RS predictions and the ellipses of CLs, we can
determine the following exclusion bounds on the MKK mass scale to 95% CL

MKK > 4.4 TeV (U 6= 0) , MKK > 5.3 TeV (U = 0) (2.234)

for the minimal RS model,

MKK > 2.4 TeV for β = 0 , MKK > 3.1 TeV for β = 1 ,MKK > 4.1 TeV for β = 10 (U 6= 0) ,

MKK > 2.9 TeV for β = 0 , MKK > 3.7 TeV for β = 1 ,MKK > 4.9 TeV for β = 10 (U = 0)

(2.235)

for the minimal model with a bulk Higgs field and

MKK > 2.0 TeV (U 6= 0) , MKK > 4.7 TeV (U = 0) (2.236)
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Figure 2.7: These graphics illustrate the ellipses of the 68%, 95% and 99% CL intervals for the
experimental results for the parameters S and T from [86], together with the predictions for S
and T in the different RS scenarios. Whereas the coloured ellipses correspond to the results with
a floating U parameter, the yellow, line-shaped ellipses give the results for U = 0. By means of
a comparison between the RS predictions and the ellipses of 95% CL, we have determined the
bounds on the MKK mass scale that are summarized in the text.

for the custodial model, respectively. We observe that the bounds, derived for a floating U
parameter, are weaker than the bounds for U = 0.

The lightest KK mass state, the first KK resonance of the gluon, has a mass Mg(1) ≈
2.45 MKK , as derived before [162, 169]. So, the lightest particle that is predicted in addi-
tion to the SM by the minimal RS model with a brane Higgs field has a mass of at least 10.8
TeV, whereas it can have a mass as low as 4.9 TeV in the custodial RS model, if optimistically
assuming that U 6= 0 due to higher order corrections. In the past, this established the custodial
RS model to be very interesting for phenomenological searches. Nevertheless, it turned out that
the parameter space of the custodial model can be constrained in a much stronger manner by
investigations of Higgs processes, as e.g. by the h→ ZZ? decay process, due to the presence of
the enlarged particle structure, virtually contributing in loop processes [2–4]. In the RS model
with a bulk Higgs field, masses for the lightest KK particles as low as Mg(1) > 5.9 TeV, for β = 0
and U 6= 0, are compatible to the Peskin-Takeuchi parameters. In this sense, the bulk-Higgs
framework can nearly compete with the involved custodial model concerning the reduced exclu-
sion bounds, compared to the minimal model with a brane Higgs [154]. Whereas the custodial
model provides the enlarged particle structure, the bulk-Higgs scenario can be considered with a
minimal bulk gauge group, instead. All the RS corrections, i.e. corrections in the effective four-
dimensional vertex couplings and contributions from KK towers, are reduced for lower values
of β and a stronger bulk-Higgs localization. Also, the corrections to the effective four-fermion
interactions and the electroweak precision observables are reduced. A lower violation of the
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custodial isospin symmetry occurs due to smaller couplings between the zero modes and KK
states. For these reasons, the bulk-Higgs RS model can form a very interesting alternative to
the complex custodial model. This bulk-Higgs model will be investigated in the main parts of
the thesis.



Chapter 3

Five-Dimensional Propagator Functions

The scattering amplitudes of loop-induced production and decay processes involve the exchanges
of virtual KK particle towers. As a consequence, the amplitudes depend on combinations of
the four-dimensional propagators of KK particles, and the vertex functions that contain the
KK profiles. Such combinations can be summed up by five-dimensional propagator functions in
order to derive analytic expressions. The KK profile functions form complete sets of orthonormal
functions on the orbifold, subject to appropriate boundary conditions. For that reason, it is
possible to determine analytic expressions for the five-dimensional propagator functions. These
can be obtained by solving the differential equations, which follow from the five-dimensional
action that is bilinear in the particle fields. In this chapter, we derive the five-dimensional
propagator functions for gauge bosons, physical scalars and fermions in the framework with a
bulk-Higgs field. The differential equations for the propagator functions significantly complicate
due to the inclusion of non-linear terms compared to brane-Higgs scenarios. The non-linear
terms are caused by the Higgs vev that depends on the extra dimension. In this respect, we
have to work with different kinds of approximations, according to the processes for which the
respective five-dimensional propagator functions are used to sum up the KK particle towers,
respectively.

3.1 Gauge boson propagator

The five-dimensional propagator function for the vector W bosons can be used to sum over the
KK tower of W bosons in the amplitude of the Higgs decay into two photons. The differential
equation for that function is defined by the terms of the Lagrangian that are bilinear in the
vector W bosons. These terms result from the kinetic and gauge fixing parts, and also from
the t-dependent mass term, which is induced by a coupling of the W bosons to the vev of the
bulk-Higgs field, after spontaneous symmetry breaking. One finds the following expression

L5D 3
2π

L

∫ 1

ε

dt

t
W+
µ K

µν
ξ W−

ν + terms of W±
t , (3.1)

where

Kµν
ξ =

(
∂2 −M2

KKt∂t
1

t
∂t

)
ηµν −

(
1− 1

ξ

)
∂µ∂ν +

g2
5

4
k(1 + β)v2 ηµν , (3.2)
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is the inverse Feynman propagator in the Rξ-gauge for the vector part of the five-dimensional
W boson propagator. By applying a Fourier-transformation of the four-coordinates, according
to i∂µ = pµ, one obtains the following defining differential equation for the five-dimensional
propagator of the vector W bosons[(
− p2

M2
KK

− t∂t
1

t
∂t +

g2
5k(1 + β)v2

4M2
KK

)
ηµν +

(
1− 1

ξ

)
pµpν

M2
KK

]
Dξ
νρ(−p2, t; t′) =

Lt′

2πM2
KK

δµρ δ(t−t′) .
(3.3)

One can apply the following ansatz

Dξ
νρ(t, t

′;−p2) =
∞∑
n=0

χWn (t)χWn (t′)

[
i

(mW2
n − p2)

(
ηνρ −

pνpρ
p2

)
+

iξ

(ξmW2
n − p2)

pνpρ
p2

]

= BW (t, t′;−p2)

(
ηνρ −

pνpρ
p2

)
+ Aξ(t, t

′;−p2)
pνpρ
p2

(3.4)

for the propagator function in the equation before, where Aξ(t, t
′;−p2) = BW (t, t′;−p2/ξ).

Therefore, the propagator in the Feynman-t’Hooft gauge for ξ = 1 is defined by just the function
BW (t, t′;−p2), as [3]

Dξ=1
νρ (t, t′;−p2) =

∞∑
n=0

χWn (t)χWn (t′)

(mW2
n − p2)

iηνρ = BW (t, t′;−p2) iηνρ . (3.5)

For this function, the following differential equation is derived [3], with m̃2
W =

g25v
2

8πr
,(

t∂t
1

t
∂t +

p2

M2
KK

− 2π
m̃2
W

M2
KK

kr(1 + β)t2+2β

)
BW (t, t′;−p2) = − Lt

2πM2
KK

δ(t− t′) . (3.6)

The boundary conditions at the branes are of Neuman-type,

∂tBW (t, t′;−p2) = 0 for t = ε, 1 , (3.7)

following from the boundary conditions for the gauge boson profiles.
The differential equation for the five-dimensional W boson propagator in the bulk-Higgs

scenario contains a term that non-linearly depends on the coordinate t, which complicates the
solving of the equation drastically. For p2 = O(m2

h) � M2
KK , much smaller than the KK

mass scale, it is possible to calculate a result up to the order v2/M2
KK , by using a perturbative

approach. In order to solve the homogeneous differential equation for t 6= t′, one can treat the last
two terms on the left-hand side of the equation as a perturbation, along with the perturbation
parameter

ρ =
v2

M2
KK

. (3.8)

Then, one starts by considering two separate solutions for the cases t < t′, named B<
W (t, t′;−p2),

and for t > t′, named B>
W (t, t′;−p2), respectively. These two solutions are matched together at

the point t′, by fulfilling the continuity condition,

B>
W (t′, t′,−p2)

!
= B<

W (t′, t′;−p2) . (3.9)
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Further, a “jump condition” is obtained by integrating the differential equation over an infinites-
imal interval around t = t′. The terms that do not contain derivatives cancel each other out
when inserting the integration boundaries,∫ t+

t−

dt

(
t∂t

1

t
∂t

)
BW (t, t′;−p2) =

∫ t+

t−

dt ∂2
tBW (t, t′;−p2) = ∂tBW (t, t′;−p2)

∣∣t=t+
t=t−

!
=

∫ t+

t−

dt

(
− Lt

2πM2
KK

δ(t− t′)
)

= − Lt′

2πM2
KK

,

(3.10)

where t± = t± δ, and lim δ → 0, resulting in the condition

∂tB
>
W (t, t′;−p2)

∣∣
t=t′
− ∂tB

<
W (t, t′;−p2)

∣∣
t=t′

= − Lt′

2πM2
KK

. (3.11)

The solutions for B
(>,<)
W (t, t′;−p2) are expanded as series expansions in the parameter ρ. By

retaining only the first three terms, one has

B
(>,<)
W (t, t′;−p2) = B

(>,<)
0,W (t, t′;−p2) + ρB

(>,<)
1,W (t, t′;−p2) + ρ2B

(>,<)
2,W (t, t′;−p2) +O(ρ3) . (3.12)

Inserting this approach into the differential equation for the function BW in (3.6), one gets three

separate differential equations for the six functions B
(>,<)
0,W , B

(>,<)
1,W , B

(>,<)
2,W , which are proportional

to ρ0, ρ1 and ρ2, respectively,

∼ ρ0 :

(
t∂t

1

t
∂t

)
B

(>,<)
0,W (t, t′;−p2) = 0 ,

∼ ρ1 :

(
t∂t

1

t
∂t

)
B

(>,<)
1,W (t, t′;−p2)

+

(
p2

v2
− 2π

m̃2
W

v2
kr(1 + β)t2+2β

)
B

(>,<)
0,W (t, t′;−p2) = − Lt′

2πv2
δ(t− t′) ,

∼ ρ2 :

(
t∂t

1

t
∂t

)
B

(>,<)
2,W (t, t′;−p2) +

(
p2

v2
− 2π

m̃2
W

v2
kr(1 + β)t2+2β

)
B

(>,<)
1,W (t, t′;−p2) = 0 .

(3.13)

The six solutions can be determined such that each one satisfies the boundary conditions together
with the continuity and jump conditions. These conditions allow to determine the integration
constants, where the right hand side of the jump condition holds only for B

(>,<)
1,W , and is 0 for the

other four functions. First, one determines the constants in the functions B
(>,<)
0,W , and then in

B
(>,<)
1,W and B

(>,<)
2,W , respectively. After that, an undetermined constant remains in the solutions

for B
(>,<)
2,W , which is irrelevant, however, as we only keep the first four functions B

(>,<)
0,W and B

(>,<)
1,W

in the result. Then, for the full gauge boson propagator, one finds

B
(>,<)
W (t, t′;−p2) =

1

2π

[
c1(t, t′)

m2
W − p2

+
c2(t, t′)

2M2
KK

+O
(

v2

M4
KK

)]
, (3.14)
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where

c1(t, t′) = 1 +
m2
W

2M2
KK

[
L(t4+2β + t′4+2β)

2 + β
+

(1 + β)(3 + β)

(2 + β)2
− 1

L

−t2
(
L− 1

2
+ ln t

)
− t′2

(
L− 1

2
+ ln t′

)] (3.15)

and

c2(t, t′) = Lt2< +
1

2L
+ t2

(
ln t− 1

2

)
+ t′2

(
ln t′ − 1

2

)
. (3.16)

This solution holds for the two cases for t > t′ and t < t′, where t< = min [t,t’] and t> = max
[t,t’]. In an intermediate step of the calculation, the parametric W boson mass m̃W was replaced
by the physical W boson mass in the bulk-Higgs scenario, given in (2.88). Using this result, one
can calculate the KK tower contributions in scattering processes up to the order v2/M2

KK .
In a scenario with a brane-localized Higgs field, the difference is that the mass term from the

gauge-boson Lagrangian is included in the IR boundary conditions, and does not appear in the
differential equation for the propagator function. This simplifies the differential equation for the
function BW (t, t′;−p2) to [3](

p2

M2
KK

+ t∂t
1

t
∂t

)
BW (t, t′;−p2) = − Lt

2πM2
KK

δ(t− t′) , (3.17)

where the boundary conditions are

∂tBW (t, t′;−p2)
∣∣
t=ε

= 0 , BW (t, t′;−p2)
∣∣
t=1−

= −Lm̃
2
W

M2
KK

BW (1, t′;−p2) , (3.18)

which include the mass term, and the jump condition

∂tBW (t, t′;−p2)
∣∣t′+0

t=t′−0
= − Lt′

2πM2
KK

(3.19)

is derived as before. In this case, we have a linear differential equation, where it is possible
to determine an exact solution to all orders of v2/M2

KK . The solution depends on the Bessel
functions of the first and second kind, and was determined, e.g. in [3]. By means of an expansion
including the order v2/M2

KK , we encounter a form similar to the solution in the bulk-Higgs case,
given before in (3.14). Whereas c2(t, t′) remains equal, the expression c1(t, t′) reads in the brane-
Higgs case

c1(t, t′) = 1 +
m2
W

2M2
KK

[
1− 1

L
− t2

(
L− 1

2
+ ln t

)
− t′2

(
L− 1

2
+ ln t′

)]
, (3.20)

which coincides with the limit β →∞ of the bulk-Higgs result in (3.15).

3.1.1 Gauge-boson propagator for p4 ≈ 0

In Subsection 2.4, we have presented the calculations of the Peskin-Takeuchi parameters S, T,
U in three different scenarios of the RS model. In this connection, the corrections to the Fermi
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constant GF and the parameter ρ? could be extracted from the effective, four-dimensional La-
grangians that describe four-fermion interactions. In these interactions, the RS model corrections
are induced by the virtual contributions of the zero-mode and KK-tower gauge bosons, which
can be parametrized with the five-dimensional gauge boson propagator functions. Since the in-
teractions are considered at lower energies, it is sufficient to work with the leading contributions
of the approximate propagator functions, derived for p4 ≈ 0. In the minimal RS model with a
bulk Higgs field, the W boson propagator function reads in this approximation, up to the order
v2/M2

KK [154]

BW (t, t′; 0) =
1

2πm̃2
W

[
1 +

Lm2
W

2M2
KK

(
2(1 + β)2

(2 + β)(3 + 2β)
− t2> +

t4+2β + t
′(4+2β)

(2 + β)

)]
, (3.21)

and in the minimal RS model with a brane Higgs field, it reads

BW (t, t′; 0) =
1

2πm̃2
W

[
1 +

Lm2
W

2M2
KK

(
1− t2>

)]
. (3.22)

In these expressions, the parametric masses m̃2
W are kept instead of the physical mass of the W

boson, which has been convenient for the calculations of the corrections to the Peskin-Takeuchi
parameters. For the Z boson propagator functions, one would have to replace m̃W → m̃Z ,
accordingly.

In the custodial RS model, by using the vector notation from (2.186), rotated to the UV basis,
where the L and R gauge bosons, and the Z and Z ′ gauge bosons are combined into vectors, one
encounters a 2× 2 matrix expression for the five-dimensional gauge boson propagator function.
The KK decomposed W boson propagator reads [3]

BUV
W (t, t′;−p2) =

∞∑
n=0

~χWn (t)~χWn (t′)T

mW2
n − p2

, (3.23)

and the Z boson propagator has a similar form, including the Z boson profiles. In this vector
notation, one derives the differential equation for the gauge boson propagator in a way similar
to the minimal model, giving(

p2

M2
KK

+ t∂t
1

t
∂t

)
BUV
W (t, t′;−p2) = − Lt

2πM2
KK

1 · δ(t− t′) . (3.24)

According to the boundary conditions that the gauge bosons fulfil at the branes, the boundary
conditions for the propagator function read

(P+∂t + P−) BUV
W (t, t′;−p2)

∣∣
t=ε

= 0 ,

RA∂tB
UV
W (t, t′;−p2)

∣∣
t=1−

= −
Lm2

Ã

M2
KK

P+RABUV
W (1, t′;−p2) ,

(3.25)

where m2
Ã

= M2
Ã
/(2πr). One can solve the equation in a way similar to the minimal model

by applying two solutions for the cases t < t′ and t > t′, respectively, that have to fulfil the
continuity and jump conditions and the boundary conditions at the branes. Again, the general
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solution is a combination of Bessel functions, given e.g. in [3]. In the approximation p4 ≈ 0,
and to the order v2/M2

KK , one finds for the W boson propagator function

BUV
W (t, t′;−p2) =

1

2πm̃2
W

1 +
Lm2

W

2M2
KK

(
1
c2W
− t2>

)
Lm2

W sW t
′2

2cWM2
KK

Lm2
W sW t2

2cWM2
KK

Lm2
W t2<

2M2
KK

 , (3.26)

where t>,< = [max, min] (t, t′). The parametric mass m̃2
W is kept instead of the physical mass

of the W boson. Here, cW denotes the cosine of the angle that determines the transformation
between the UV and IR basis sets of fields, as given in (2.185). The Z boson propagator is
obtained by setting m̃W → m̃Z , and equally mW → mZ , and θW → θZ . Note that in the
custodial model both the W and Z boson propagators are governed by the same mass parameter
m̃Ã = m̃2

W/c
2
W = m̃2

Z/c
2
Z [151], which is crucial for the custodial protection mechanism of the ρ?

and T parameters.

3.2 Scalar propagator

In the bulk-Higgs scenario, combinations of the fifths component of the gauge bosons and the
pseudo NG bosons of the decomposed Higgs field remain physical, since they get some gauge-
independent mass terms in the Lagrangian, as we have explained in 2.2.1. When these physical,
scalar KK particles virtually contribute in interactions, the amplitudes depend on scalar KK
towers. Similar to the case of the gauge bosons, these towers can be parametrized in terms of
five-dimensional scalar propagator functions. In a KK decomposed form, for the case of the
charged scalars, φ±, the propagator is defined by

Dφ±(p, t, t′) = −
∞∑
n=1

χφ
±
n (t)χφ

±
n (t′)

p2 −m(φ±)2
n

. (3.27)

In analogy to the case of the gauge boson propagator, presented before, the defining differential
equation for the scalar propagator arises from the terms of the Lagrangian that are bilinear in
the physical scalars. Those terms have predicted the equation of motion for the scalars, given
in (2.99). For that reason, we insert the KK decompositions for the scalars in the equation
of motion, and perform a Fourier transformation to the four-dimensional momentum space by
replacing �4 = −p2. In this way, we can derive the differential equation for the scalar propagator
function, for t 6= t′, as

(
p2

M2
KK

+ ∂2
t −

1

t
∂t −

1

t2
(2 + β)β − 2m̃2

W

M2
KK

L(1 + β)t2+2β

)
Dφ±(p, t, t′) = 0 . (3.28)

This is similar to the derivation of the equation of motion for the scalar profiles, given in (2.101).
In order to find the differential equation for a general t, we use (2.101) and the completeness
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relation for the scalar profiles,
∑∞

n=1 χ
φ±
n (t)χφ

±
n (t′) = Lt

2π
δ(t− t′), to derive

(
p2

M2
KK

+ ∂2
t −

1

t
∂t −

1

t2
(2 + β)β − 2m̃2

W

M2
KK

L(1 + β)t2+2β

)
·
∞∑
n=1

−χ
φ±
n (t)χφ

±
n (t′)

p2 −m(φ±)2
n

= −
∞∑
n=1

χφ
±
n (t′)(

p2 −m(φ±)2
n

) · ( p2

M2
KK

+ ∂2
t −

1

t
∂t −

1

t2
(2 + β)β − 2m̃2

W

M2
KK

L(1 + β)t2+2β

)
χφ
±

n (t)

= −
∞∑
n=1

χφ
±
n (t′)

p2 −m(φ±)2
n

·
(

p2

M2
KK

− m
(φ±)2
n

M2
KK

)
χφ
±

n (t) = −
∞∑
n=1

χφ
±
n (t′)χφ

±
n (t)

M2
KK

= − Lt

2πM2
KK

δ(t− t′) .

(3.29)

In this way, we have determined the right-hand side of the general differential equation,

(
p2

M2
KK

+ ∂2
t −

1

t
∂t −

1

t2
(2 + β)β − 2m̃2

W

M2
KK

L(1 + β)t2+2β

)
Dφ±(p, t, t′) =

−Lt
2πM2

KK

δ(t− t′) .
(3.30)

The scalar profiles fulfil vanishing boundary conditions at both branes, according to the Z2-odd
parity. Similarly, the boundary conditions for the propagator function read

Dφ±(p, ε, t′) = 0 , Dφ±(p, 1−, t′) = 0 . (3.31)

Again, the differential equation has a difficult non-linear behaviour, due to the last term scaling
with t2+2β. It can be approximately solved up to the order v4/M4

KK , where the four-momentum
p2 = O(m2

h) is assumed to be much smaller than the KK mass scale. For t 6= t′, one determines
the two solutions for the cases t > t′ and t < t′, respectively. The two solutions have to obey
the continuity condition

Dφ±(p, t+, t
′) = Dφ±(p, t−, t

′) , (3.32)

with t± = t′ ± δ, and the boundary conditions in (3.31). Further, a jump condition is obtained,
similar to the case of the gauge-boson propagator, by integrating the differential equation over
a small interval around t′. The terms that do not contain derivatives cancel each other out, so
that one obtains∫ t+

t−

dt

(
∂2
t −

1

t
∂t

)
Dφ±(p, t, t′) =

∫ t+

t−

dt ∂2
tDφ±(p, t, t′) = ∂tDφ±(p, t, t′)|t>

t<

!
=

∫ t+

t−

dt
−Lt

2πM2
KK

δ(t− t′) = − Lt′

2πM2
KK

,

(3.33)

where a limiting procedure limδ→0 holds. From the differential equation and the conditions
presented before, one obtains the following result for the five-dimensional scalar propagator
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function

D>,<
φ± (t, t′;−p2) = −

Lt2+β
<

(
t2+β
> − t−β>

)
4πM2

KK(1 + β)
− Lt−β> t2+β

<

16πβM4
KK(1 + β)(2 + β)(3 + 2β)

×[
2Lm̃2

Wβ(1 + β)
[
−t4+2β

< + t2+2β
>

(
2− 3t2> + t4+2β

> − 2β(−1 + t2>) + t4+2β
<

)]
− p2(3 + 2β)

[
2t2> + βt2> − βt2< + t2+2β

>

(
−2 + β(−2 + t2> + t2<)

)]]
+ ... .

(3.34)

Terms of the order of ε2 and smaller are neglected. The solution describes the two cases for
t > t′ and t < t′, since t< = min[t,t’] and t> = max[t,t’].

For smaller values of the four-momentum p, the KK-decomposed propagator can be approx-
imated as

Dφ±(p, t, t′) ≈
∞∑
n=1

χφ
±

n (t)χφ
±

n (t′) ·
[

1

m
(φ±)2
n

+
p2

m
(φ±)4
n

+O(p3)

]
, (3.35)

which will later be used in our calculations. In the result for the analytic propagator function in
(3.34), the first two rows give the result for the first term

∑∞
n=1 χ

φ±
n (t)χ±n (t′) 1

m
(φ±)2
n

, whereas the

last row gives the result for the second term
∑∞

n=1 χ
φ±
n (t)χ±n (t′) p2

m
(φ±)4
n

. The physical scalars are

defined in the bulk-Higgs scenario only, and do not appear in brane-localized Higgs scenarios.

3.3 Fermion propagator

3.3.1 Fermion propagator for p4 ≈ 0

Using the 6-component spinor notation for the fermions, defined in (2.105), the 6×6 propagator
reads in the mixed momentum-position representation [5, 188,189]

iSf (t, t′; p) =

∫
d4x eip·x〈0|T (FL(t, x) + FR(t, x))

(
F̄L(t′, 0) + F̄R(t′, 0)

)
|0〉

=
∞∑
n=1

[
F (n)
L (t)

1− γ5

2
+ F (n)

R (t)
1 + γ5

2

]
i

p/−mfn

[
F (n)†
L (t′)

1 + γ5

2
+ F (n)†

R (t′)
1− γ5

2

]
,

(3.36)

where T denotes the time ordering. In this notation, the Dirac operator has the form [2,5]

Df = p/−MKKγ5
∂

∂t
−MKKMf (t) , (3.37)

where the generalized mass matrix has been defined in (2.110). Using the bulk equations of

motion in (2.109) and the completeness relation for the fermion profiles,
∑∞

n=1F
(n)
A (t)F (n)†

A (t′) =
δ(t− t′), one can show that the generalized Dirac equation

Df Sf (t, t′; p) = δ(t− t′) (3.38)
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is fulfilled [2, 5]. Since massless fermions do not exist, one can study the special limit pµ → 0
without complications, and the propagator does not exhibit a singularity at p2 = 0 [5]. In this
limit, the expression in (3.36) reads

Sf (t, t′; 0) = −
[
∆f

RL(t, t′)
1 + γ5

2
+ ∆f

LR(t, t′)
1− γ5

2

]
, (3.39)

including the functions

∆f
RL(t, t′) =

∞∑
n=1

1

mfn

F (n)
R (t)F †(n)

L (t′) , ∆f
LR(t, t′) = ∆f†

RL(t′, t) . (3.40)

In the following, we present the derivation of the function ∆f
RL(t, t′) in the bulk-Higgs RS

model for a vanishing four-momentum pµ → 0 [5]. One can start with the Dirac equation in
(3.38), which implies the following differential equation for the function ∆f

RL(t, t′)[
∂

∂t
+Mf (t)

]
∆f

RL(t, t′) =
1

MKK

δ(t− t′) , (3.41)

along with the boundary conditions at the UV brane and the IR brane,

(1 0) ∆f
RL(ti, t

′) = (0 0) for ti = ε, 1 . (3.42)

Further, the jump condition

∆f
RL(t′ + 0, t′)−∆f

RL(t′ − 0, t′) =
1

MKK

(3.43)

is obtained by integrating the equation of motion over an infinitesimal interval around t = t′,
similar to the derivations of the jump conditions, presented before. The general solution to the
differential equation in (3.41), for t 6= t′, is an ordered exponential [5],

∆f
RL(t, t′) = T exp

[
−
∫ t

1

dsMf (s)

]
∆f

RL(1, t′) . (3.44)

Due to the time-ordered prescription, it is not possible to get a solution in a closed form for
the function ∆f

RL. However, one can calculate an approximate expression, by setting up a
perturbative expansion in powers of

ρ =
v√

2MKK

� 1 . (3.45)

In this regard, one can define the “time-evolution operator”

U(t, t0) = T exp

[
−
∫ t

t0

dsMf (s)

]
, (3.46)

with the operator of the “unperturbed system”, corresponding to ρ = 0, as

U0(t, t0) = T exp

[
−
∫ t

t0

ds
1

s

(
cF 0
0 −cf

)]
=

(
(t/t0)−cF 0

0 (t/t0)cf

)
. (3.47)
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The operator of the “perturbation” reads

HI(τ) = (2 + β)τ 1+β

(
0 Yf

Y†f 0

)
. (3.48)

The full operator can be constructed as a series expansion

U(t, t0) = U0(t, t0)− ρ
∫ t

t0

dτ U0(t, τ)HI(τ)U0(τ, t0)

+
ρ2

2

∫ t

t0

∫ τ1

t0

dτ1dτ2 U0(t, τ1)HI(τ1)U0(τ1, τ2)HI(τ2)U0(τ2, t0) +O(ρ3) .

(3.49)

Written in form of components, one can get

U(t, 1) = U0(t, 1)− ρU1(t, 1) +
ρ2

2
U2(t, 1) +O(ρ3) , (3.50)

with

U1(t, 1) =

(
0 YA(t)

YB†(t) 0

)
,

(
Y A
)
ij

(t) =
(2 + β)(Yf )ij
p2(cFi + cfj)

[
t2+β+cfj − t−cFi

]
,

(
Y B†)

ij
(t) =

(2 + β)(Y †f )ij

p2(−cfi − cFj)
[
t2+β−cFj − tcfi

]
,

(3.51)

and

U2(t, 1) =

(
−YA(t) YC† + YD(t) 0

0 −YB†(t) YE + YF†(t)

)
,

(Y C†)kj =
(2 + β)(Y †f )kj

p2(−cfk − cFj)
, (Y D)ij(t) =

(2 + β)2(Yf )ik(Y
†
f )kj

p2(−cfk − cFj)

[
t4+2β−cFj − t−cFi
q4(cFi − cFj)

]
,

(Y E)kj =
(2 + β)(Yf )kj
p2(cFk + cfj)

, (Y F †)ij =
(2 + β)2(Y †f )ik(Yf )kj

p2(cFk + cfj)

[
t4+2β+cfj − tcfi
q4(−cfi + cfj)

]
.

(3.52)

Here, we introduce the new abbreviations YA(t), YB†(t), YC†, YD(t), YE, and YF†(t), which
are 3× 3 matrices, according to the 3× 3 matrices Yf and c(F,f) in generation space. The full
solution in (3.44) is a 6× 6 matrix, and reads

∆f
RL(t, t′) = U(t, 1) ·∆f

RL(1, t′) ,

=

t−cF + v2

4M2
KK

[
−YA(t) YC† + YD(t)

]
− v√

2MKK
YA(t)

− v√
2MKK

YB†(t) tcf + v2

4M2
KK

[
−YB†(t) YE + YF†(t)

]


·
(

C>,<
1 C>,<

2

C>,<
3 C>,<

4

)
,

(3.53)
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for t > t′ (>), t < t′ (<). The constants C
(>,<)
i can be determined by solving the system of

boundary conditions in (3.42) and (3.43). From the UV boundary conditions, one obtains[
ε−cF +

v2

4M2
KK

(
−YA(ε) YC† + YD(ε)

)]
·C<

1 −
v√

2MKK

YA(ε) ·C<
3 = 0 , (3.54)

together with a similar equation, where C<
1 is replaced by C<

2 , and C<
3 by C<

4 . The following
two relations are easy to verify,

⇒ (YA)−1(ε) · ε−cF ≈ −(YE)−1 ,

⇒ (YA)−1(ε) ·YD(ε) ≈ (YE)−1 ·YG , Y G
ij ≡

(2 + β)

q4(cFi − cFj)
Yf,ik Y

C†
kj ,

(3.55)

and by using these, one obtains

C<
3 =

√
2MKK

v

[
−(YE)−1 +

v2

4M2
KK

(
−YC† + (YE)−1 YG

)]
·C<

1 , (3.56)

as well as a similar relation for C<
4 in dependence of C<

2 . Checking the definitions in (3.51) and
(3.52), one can clearly see that

YA(1) = YD(1) = 0 , (3.57)

and for that reason, the IR boundary conditions define C>
1 and C>

2 to be zero,

C>
1 = C>

2 = 0 . (3.58)

The jump conditions offer the following relations[
t′−cF +

v2

4M2
KK

(
−YA(t′)YC† + YD(t′)

)]
(−C<

1 )− v√
2MKK

YA(t′) [C>
3 −C<

3 ] =
1

MKK

,[
t′−cF +

v2

4M2
KK

(
−YA(t′)YC† + YD(t′)

)]
(−C<

2 )− v√
2MKK

YA(t′) [C>
4 −C<

4 ] = 0 ,

(3.59)

⇔ −C<
1 = t′cF ·

[
1

MKK

+
v√

2MKK

YA(t′) (C>
3 −C<

3 )

]
+O

(
v3

M3
KK

)
,

−C<
2 =

v√
2MKK

t′cF ·YA(t′) (C>
4 −C<

4 ) +O
(

v3

M3
KK

)
,

(3.60)

where terms of the order of v3/M2
KK and higher are skipped, and equally one can obtain

C>
3 = C<

3 −
v√

2MKK

t′−cf YB†(t′) ·C<
1 +O

(
v3

M3
KK

)
C>

4 = C<
4 −

v√
2MKK

t′−cf YB†(t′) ·C<
2 +

t′−cf

MKK

+O
(

v3

M3
KK

)
.

(3.61)
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The solving of the system of equations is presented in Appendix B.1. The results are

C>
3 = (YE)−1t

′cF

√
2

v
+

v2

2M2
KK

√
2

v

[(
1 + (YE)−1t

′cFYA(t′)
)
t
′−cfYB†(t′)t

′cF

+
1

2

(
YC† − (YE)−1YG

)
t
′cF

]
,

C>
4 =

[
1 + (YE)−1t

′cFYA(t′)
] t′−cf
MKK

,

(3.62)

and

C<
1 = − t

′cF

MKK

,

C<
2 = − v√

2M2
KK

t
′cFYA(t′)t

′−cf ,

C<
3 = (YE)−1t

′cF

√
2

v
+

v2

2M2
KK

√
2

v

[
(YE)−1t

′cFYA(t′)t
′−cfYB†(t′)t

′cF +
1

2

(
YC† − (YE)−1YG

)
t
′cF

]
,

C<
4 =

1

MKK

(YE)−1t
′cFYA(t′)t

′−cf .

(3.63)

Altogether, we obtain the following results for the propagator function, for the two cases t < t′

and t > t′,

∆<
RL(t, t′; 0) =

− 1
MKK

[(
t′

t

)cF
+ YA(t)(YE)−1t

′cF

]
− v√

2M2
KK

[(
t′

t

)cF
+ YA(t)(YE)−1t

′cF

]
YA(t′)t

′−cf

tcf (YE)−1t
′cF
√

2
v

+ v√
2M2

KK

[
YB†(t)t

′cF

+1
2

(
−YB†(t)YE + YF †(t)

)
(YE)−1t

′cF

+tcf (YE)−1t
′cFYA(t′)t

′−cfYB†(t′)t
′cF

+1
2
tcf
(
YC† − (YE)−1YG

)
t
′cF
]

1
MKK

tcf (YE)−1t
′cFYA(t′)t

′−cf


(3.64)

and

∆>
RL(t, t′; 0) =

− 1
MKK

YA(t)(YE)−1t
′cF − v√

2M2
KK

YA(t)
[
1 + (YE)−1t

′cFYA(t′)
]
t
′−cf

tcf (YE)−1t
′cF
√

2
v

+ v√
2M2

KK

[
1
2

(
−YB†(t)YE + YF †(t)

)
(YE)−1t

′cF

+ t
cf

2

(
YC† − (YE)−1YG

)
t
′cF

tcf
(
1 + (YE)−1t

′cFYA(t′)
)
t
′−cfYB†(t′)t

′cF
]

1
MKK

[(
t
t′

)cf + tcf (YE)−1t
′cFYA(t′)t

′−cf
]


.

(3.65)
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With the help of these results, one can analytically sum up the KK tower contributions of
fermions in the amplitudes of loop-induced Higgs processes, which will be presented later.

3.3.2 Fermion propagator for v ≈ 0

In the following, we consider the five-dimensional fermion propagator for general momenta,
p4 6= 0 [2],

iSf (t, t′; p) =
[
∆f

LL(t, t′;−p2)p/+ ∆f
RL(t, t′;−p2)

]
PR + (L↔ R) , (3.66)

where iSf (t, t′; p) has been defined in (3.36), and PR,L = 1
2
(1± γ5). Now, the KK decomposed

propagator functions are [2]

∆f
LL(t, t′;−p2) =

∑
n

1

p2 −m2
fn

F (n)
L (t)F (n)†

L (t′) ,

∆f
RL(t, t′;−p2) =

∑
n

mfn

p2 −m2
fn

F (n)
R (t)F (n)†

L (t′) ,

(3.67)

that are similar to the functions from before, except of a sign change, according to

∆f
RL(t, t′; 0) ≡ −∆f

RL(t, t′) , ∆f
LR(t, t′; 0) ≡ −∆f

LR(t, t′) , (3.68)

where ∆f
RL(t, t′) and ∆f

LR(t, t′) are the functions used in the previous subsection. For the present
case, the generalized Dirac equation in (3.38) implies the coupled system of equations [2]

p2∆f
LL(t, t′;−p2)−MKK

(
∂

∂t
1 +Mf (t)

)
∆f

RL(t, t′;−p2) = 1 · δ(t− t′) ,

∆f
RL(t, t′;−p2)−MKK

(
− ∂

∂t
1 +Mf (t)

)
∆f

LL(t, t′;−p2) = 0 .

(3.69)

By integrating these equations over an infinitesimal interval t ∈ [t′ − 0, t′ + 0] around a fixed t′,
one can get the jump and continuity conditions [2]

∆f
RL(t′ + 0, t′;−p2)−∆f

RL(t′ − 0, t′;−p2) = − 1

MKK

,

∆f
LL(t′ + 0, t′;−p2)−∆f

LL(t′ − 0, t′;−p2) = 0 .

(3.70)

The boundary conditions at the UV and IR branes are

(0 1) ·∆f
LL(ti, t

′;−p2) = (1 0) ·∆f
RL(ti, t

′;−p2) = 0 , ti = ε, 1 . (3.71)

These conditions state that the Z2-odd fermion profiles obey to Dirichlet boundary conditions
at the two branes, respectively.

In calculating the contributions of the KK fermion tower to the production and decay pro-
cesses of a new, heavy bulk scalar S, with a mass mS ∼ 750 GeV, one can neglect the Yukawa
interactions, scaling with v ≈ 246 GeV � mS, and skip the respective terms in the differential
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equation of the propagator. In this sense, one can consider the limit v ≈ 0 in the mass matrix
Mf (t), given in (2.110), and in this limit, the Higgs localization in the bulk does not play a role.
In order to solve the coupled system of equations in (3.69), one combines the two equations to
a second-order equation for the function ∆f

LL [2],[
1
∂2

∂t2
− 1

t2

(
c2
F 0
0 −c2

f

)
+

1

t2

(
cF 0
0 −cf

)
− 1p̂2

E

]
∆f

LL(t, t′;−p2) =
1

M2
KK

δ(t− t′) , (3.72)

where p̂2
E ≡ −p2/M2

KK . Then, the second equation in (3.69) determines the function ∆f
RL. By

solving the second order equation for t 6= t′, one finds the general solutions

∆
f(>,<)
LL (t, t′,−p2) =

√
t

(
IcF− 1

2
(p̂Et) 0

0 Icf+ 1
2
(p̂Et)

)(
C

(>,<)
1 (t′) C

(>,<)
2 (t′)

C
(>,<)
3 (t′) C

(>,<)
4 (t′)

)

+
√
t

(
I−cF+ 1

2
(p̂Et) 0

0 I−cf− 1
2
(p̂Et)

)(
C

(>,<)
5 (t′) C

(>,<)
6 (t′)

C
(>,<)
7 (t′) C

(>,<)
8 (t′)

) (3.73)

and

∆
f(>,<)
RL (t, t′,−p2) = −pE

√
t

(
IcF+ 1

2
(p̂Et) 0

0 Icf− 1
2
(p̂Et)

)(
C

(>,<)
1 (t′) C

(>,<)
2 (t′)

C
(>,<)
3 (t′) C

(>,<)
4 (t′)

)

− pE
√
t

(
I−cF− 1

2
(p̂Et) 0

0 I−cf+ 1
2
(p̂Et)

)(
C

(>,<)
5 (t′) C

(>,<)
6 (t′)

C
(>,<)
7 (t′) C

(>,<)
8 (t′)

)
.

(3.74)

This is in correspondence with the calculation presented in [2]. The sixteen constant matrices

C
(>,<)
i (t′) are defined by the 4 continuity and 4 jump conditions, together with the 8 boundary

conditions at the branes. These conditions allow to determine the final result for the function
∆f

RL as

∆f>
RL(t, t′;−p2) =

pEπ
√
tt′

2M2
KK

(
D2(cF ,1,t,p̂E)D1(cF ,ε,t

′,p̂E)
D2(cF ,ε,1,p̂E)cos(cF π)

0

0
D1(cf ,1,t,p̂E)D2(cf ,ε,t

′,p̂E)

D2(cf ,1,ε,p̂E)cos(cfπ)

)
,

∆f<
RL(t, t′;−p2) =

pEπ
√
tt′

2M2
KK

(
D1(cF ,1,t

′,p̂E)D2(cF ,ε,t,p̂E)
D2(cF ,ε,1,p̂E)cos(cF π)

0

0
D2(cf ,t

′,1,p̂E)D1(cf ,ε,t,p̂E)

D2(cf ,ε,1,p̂E)cos(cfπ)

)
,

(3.75)

whereas the function ∆f
LL reads

∆f>
LL(t, t′;−p2) =

π
√
tt′

2M2
KK

(
D1(cF ,1,t,p̂E)D1(cF ,ε,t

′,p̂E)
D2(cF ,1,ε,p̂E)cos(cF π)

0

0
D2(cf ,1,t,p̂E)D2(cf ,ε,t

′,p̂E)

D2(cf ,ε,1,p̂E)cos(cfπ)

)
,

∆f<
LL(t, t′;−p2) =

π
√
tt′

2M2
KK

(
D1(cF ,1,t

′,p̂E)D1(cF ,ε,t,p̂E)
D2(cF ,1,ε,p̂E)cos(cF π)

0

0
D2(cf ,1,t

′,p̂E)D2(cf ,ε,t,p̂E)

D2(cf ,ε,1,p̂E)cos(cfπ)

)
,

(3.76)
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and we introduce

D1(c, a, t) = I−c− 1
2
(ap̂E)Ic− 1

2
(tp̂E)− Ic+ 1

2
(ap̂E)I−c+ 1

2
(tp̂E) ,

D2(c, a, t) = I−c− 1
2
(ap̂E)Ic+ 1

2
(tp̂E)− Ic+ 1

2
(ap̂E)I−c− 1

2
(tp̂E) .

(3.77)

The functions I are Bessel functions of the second kind. It should be noticed that the following
relations apply

D1(c, a, a) =
2cos(cπ)MKK

πapE
,

D2(−c, ε, t)D2(c, 1, t)−D1(−c, ε, t)D1(c, 1, t) =
−2cos(cπ)MKKD1(c, 1, ε)

πtpE
.

(3.78)

The amplitudes of the loop-induced production and decay processes of the new scalar S, pre-
sented later, will depend on the following expressions [7]

∆f
LR(t, t; p2

E) + ∆f
RL(t, t; p2

E)

2
=

1

2M2
KK

(
d(+)(cQ, pE, t) 0

0 −d(+)(cq, pE, t)

)
, (3.79)

where

d(+)(c, pE, t) =
D2(c, ε, t)D1(c, 1, t) +D1(c, ε, t)D2(c, 1, t)

D2(c, ε, t)D1(c, 1, t)−D1(c, ε, t)D2(c, 1, t)
. (3.80)

Later, in Chapter 5, we will also calculate the production and decay processes of S in the
enlarged RS model with a custodial bulk gauge symmetry. For that case, the differential equation
for the propagator function can be generalized as follows[

1
∂2

∂t2
− 1

t2

(
c2
~F

0

0 −c2
~f

)
+

1

t2

(
c~F 0
0 −c~f

)
− 1p̂2

E

]
∆f

LL(t, t′;−p2) =
1

M2
KK

δ(t− t′) , (3.81)

where the bulk mass matrices have been given in (2.202). The following boundary conditions
apply for the respective functions

(0 1 0 0 0) ∆U
LL(ε) = (0 0 0 0 0) , (0 0 1 0 0) ∆U

LL(ε) = (0 0 0 0 0) ,

(1 0 0 0 0) ∆U
RL(ε) = (0 0 0 0 0) , (0 0 0 1 0) ∆U

RL(ε) = (0 0 0 0 0) ,

(0 0 0 0 1) ∆U
RL(ε) = (0 0 0 0 0) ,

(3.82)

(0 0 1 0 0) ∆U
LL(1) = (0 0 0 0 0) , (0 0 0 1 0) ∆U

LL(1) = (0 0 0 0 0) ,

(0 0 0 0 1) ∆U
LL(1) = (0 0 0 0 0) , (1 0 0 0 0) ∆U

RL(1) = (0 0 0 0 0) ,

(0 1 0 0 0) ∆U
RL(1) = (0 0 0 0 0) ,

(3.83)

(0 1 0) ∆D
LL(ε) = (0 0 0) , (1 0 0) ∆D

RL(ε) = (0 0 0) , (0 0 1) ∆D
RL(ε) = (0 0 0)

(0 1 0) ∆D
LL(1) = (0 0 0) , (0 0 1) ∆D

LL(1) = (0 0 0) , (1 0 0) ∆D
RL(1) = (0 0 0) ,

(0 1 0) ∆Λ
LL(ε) = (0 0 0) , (1 0 0) ∆Λ

RL(ε) = (0 0 0) , (0 0 1) ∆Λ
RL(ε) = (0 0 0)

(0 1 0) ∆Λ
LL(1) = (0 0 0) , (0 0 1) ∆Λ

LL(1) = (0 0 0) , (1 0 0) ∆Λ
RL(1) = (0 0 0) ,

(3.84)
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following from the conditions that S
(+)
n (ε) = 0, and C

(−)
n (ε) = 0, as well as S±n (1) = 0 [151].

Despite the extended matrix expressions for the propagator functions in the custodial model,
it turns out that, analogously to (3.79), the expressions contained in the amplitudes can be
determined as

∆u
LR(t, t; p2

E) + ∆u
RL(t, t; p2

E)

2
=

1

2M2
KK

d(+)(cQ, pE, t) 0 0 0 0
0 d(−)(cQ, pE, t) 0 0 0
0 0 −d(+)(cuc , pE, t) 0 0
0 0 0 −d(−)(cτ1 , pE, t) 0
0 0 0 0 −d(−)(cτ2 , pE, t)

 ,

∆d
LR(t, t; p2

E) + ∆d
RL(t, t; p2

E)

2
=

1

2M2
KK

d(+)(cQ, pE, t) 0
0 −d(+)(cτ2 , pE, t) 0
0 0 −d(−)(cτ1 , pE, t)

 ,

∆λ
LR(t, t; p2

E) + ∆λ
RL(t, t; p2

E)

2
=

1

2M2
KK

d(−)(cQ, pE, t) 0 0
0 −d(−)(cτ1 , pE, t) 0
0 0 −d(−)(cτ2 , pE, t)

 ,

(3.85)

depending on d(+)(c, pE, t), defined in (3.80), and further on [7]

d(−)(c, pE, t) =
D1(−c, ε, t)D1(c, 1, t) +D2(−c, ε, t)D2(c, 1, t)

D1(−c, ε, t)D1(c, 1, t)−D2(−c, ε, t)D2(c, 1, t)
, (3.86)

where D1 and D2 are given before in (3.78). Note that the results in the minimal RS model are
obtained by simply skipping all the d(−)(c, pE, t)-entries.



Chapter 4

Higgs Productions and Decays

After the Higgs boson could experimentally be confirmed at the LHC in 2012 [67,68], a solution
to the gauge hierarchy problem, i.e. the question why the Higgs bosons mass is stabilized at the
electroweak scale, has been demanded more than ever. Precisely measuring the Higgs couplings
to the SM particles can help to discover new-physics approaches and to distinguish between dif-
ferent ones. The RS model was introduced as one of the most promising new-physics approaches
that can solve the gauge hierarchy problem, as presented in the second chapter of this thesis.
The clearest signals predicted by the RS model are the direct detections of KK resonances, in-
evitably occurring in the model as series of heavy copies of the SM particles. But, none of these
KK particles has been observed yet, and precision tests of the Peskin-Takeuchi observables sug-
gest that their masses could be too heavy for a direct detection at present collider experiments.
However, KK particles induce significant, virtual loop-contributions in particle processes, even
in lower energy scattering processes. The loop-induced Higgs production process through gluon
fusion and the Higgs decay into two photons, for example, are very interesting candidates to
test the predictions of the RS model and to search for the warped extra dimension in an indi-
rect way. Furthermore, tree-level processes such as the vector boson fusion and Higgsstrahlung
productions, and the Higgs decays into a pair of a virtual and a real gauge boson, or into a pair
of fermions such as tau leptons, can be of interest to probe the direct Higgs couplings to SM
particles. The direct Higgs couplings can receive sizeable new-physics contributions in the RS
model compared to the SM. Technically, these deviations are caused by the overlap integrals,
appearing in the effective four-dimensional Feynman vertices of the RS model. So, in total,
precise experimental results for the Higgs couplings, presently investigated at the LHC experi-
ments, and possibly in the near future at new International Linear Collider (ILC) experiments,
constitute to be a suitable data set to search for the existence of a warped extra dimension.

Higgs production and decay rates were numerously investigated in RS scenarios, e.g. in
[2, 3, 5, 151, 152, 171, 190–193], where the Higgs field was strictly localized on, or very close to,
the IR brane. These brane-Higgs or very narrow bulk-Higgs scenarios are strongly constrained
by tests of the Peskin-Takeuchi observables [82], as we have shown in the second chapter of
the thesis. A bound on the KK mass scale is implied as MKK > 4.4 TeV to 95% CL [177].
Accordingly, the lightest KK state is predicted to have a mass of at least Mg(1) > 10.8 TeV. This
is a strong disadvantage of these scenarios, since higher KK mass scales reduce the ability of the
model to mediate the gauge hierarchy problem, and give less interesting outcomes for present
particle experiments. Also, we have presented the custodial RS model with a more involved
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particle structure of fermions and gauge bosons [2, 151, 174–176], in which the bound from the
electroweak observable tests can be softened to MKK > 2.0 TeV (where Mg(1) > 4.9 TeV). In
this model, the bulk gauge group is extended in such a way that there is no stronger violation
of the custodial symmetry in the Higgs sector, compared with the SM. But, apart from the
complex particle structure, also the custodial model is strongly constrained at the present level,
as e.g. by the Higgs decay into a pair of a virtual and a real Z boson [2,4]. For that reason, we
have presented, in most parts of Chapter 2, the Higgs scenario of the RS model in which also
the Higgs field extends into the extra dimension, with a maximal localization at the IR brane,
the bulk-Higgs RS scenario. This framework has many advantages compared to other Higgs
scenarios. The Higgs field does no longer have a special status as the only brane-localized field.
From that point of view, this framework seems to be the most natural version of the RS model.
The fermion mass hierarchy can be addressed in the bulk-Higgs scenario as well, and moreover,
it can give some explanations for the small scale of neutrino masses [157, 194, 195]. In Section
2.4, we have explained that the bound stemming from the electroweak precision tests can be
relaxed down to MKK > 2.4 TeV (Mg(1) > 5.6 TeV) to 95 % CL in the bulk-Higgs scenario (for
β = 0) [154]. Consistently, the scenario seems to form a promising alternative to the strongly
constrained brane-Higgs scenarios, without and even with a custodial bulk gauge symmetry.

The bulk-Higgs framework has the prejudice that the integrations over the profile functions
of KK particles, performed in deriving the effective four-dimensional Feynman rules, depend in a
complicated way on the shape of the Higgs profile, localized in the extra dimension. Instead, in
the brane-localized Higgs scenarios, the Higgs profile is described by a simple delta-distribution,
which significantly simplifies the integrations. In this relation, all the results for couplings and
amplitudes in the bulk-Higgs RS model give much longer expressions in dependence of the
parameter space of the model. We don’t feel intimidated by this fact. The Higgs processes that
we will investigate in the following have already been explored in the narrow bulk-Higgs scenario,
e.g. in the references [2–4], which coincides with the benchmark case of the limit β →∞ in the
bulk-Higgs scenario. By taking these results as reference values for our investigations, we expect
that the results for couplings and processes in the bulk-Higgs scenario should lie closer to the
SM predictions, compared to the other Higgs scenarios. In fact, we will find that the results lie
the closer to the SM predictions, the stronger the Higgs field is located in the extra dimension,
and the more natural the considered setting is, actually. This is a very interesting outcome,
which possibly establishes the bulk-Higgs scenario to be the most interesting incarnation of the
RS model.

In this chapter, we present the calculations and evaluations of the various Higgs production
and decay processes in the bulk-Higgs RS scenario. The infinite summations over all contribut-
ing KK states in the amplitudes will be related to five-dimensional propagator functions in the
mixed momentum-position representations [188,189,196–199]. This is done in contrast to refer-
ence [154], where the same Higgs production and decay processes were calculated in a similar
framework. The calculations of the propagator functions have been presented in the previous
chapter. In our approach, we will be able to derive analytic formulas for all the different Higgs
production and decay processes, in the end. The chapter will be structured as follows. At first,
we will present the calculation of the W boson contribution to the loop-induced Higgs decay into
two photons. In this context, we will also discuss the Higgs decay rate into a pair of a virtual and
a real gauge boson. After that, we present the contribution of the physical scalars to the Higgs
decay into two photons. After this, the most demanding part will follow, with the calculation of
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W ⋆(n), Z⋆(n)

W ⋆(n), Z⋆(n)

q⋆(n)

Figure 4.1: Feynman diagrams for the dominant Higgs production processes at the LHC, the
loop-induced gluon fusion production mediated by quark fields (left), the production in asso-
ciation with a gauge boson named as Higgsstrahlung (middle), and the vector boson fusion
(right) [4].

the fermion contribution to the loop-induced Higgs production process through gluon fusion and
the Higgs decay into two photons. In this relation, at first we will sum over the full KK fermion
tower in the amplitudes, and then we will consider the contributions of the zero-mode fermions
in a separate manner. The summation over the full KK fermion tower will be related to the
five-dimensional fermion propagator function, and the zero-mode contributions can computed
with the help of the approximate zero-mode fermion profiles. The zero-mode contributions will
allow to derive the various tree-level Higgs couplings to a pair of fermions. In all cases, the
first significant contributions by new-physics to the respective processes in the SM are given in
powers of v2/M2

KK . All the results depend on the significant, open parameters of the bulk-Higgs
RS scenario. These are the KK mass scale, the five-dimensional Yukawa matrices and the bulk-
Higgs localization parameter β. After the presentation of the calculations, we will numerically
evaluate our results with the help of diced parameter sets that give input values for the open
parameters of the model. At first, we will evaluate the single Higgs couplings to particles, and
then, we will discuss the different Higgs cross sections and decay rates, in order to illustrate the
dependences on the RS model parameter space. Also, the new-physics corrections to the total
Higgs decay width of the SM will be derived in this evaluation. To compare our results with the
relevant results from the ATLAS and CMS experiments at the LHC [6,200–202], we will further
investigate the signal rates of a Higgs production at the LHC and a subsequent decay into the
final states γγ,WW ?, ZZ?, bb̄ and τ τ̄ , respectively. These signal rates are given by the cross
sections of the Higgs production processes at the LHC, multiplied by the Higgs decay rate into
the respective final states, corrected by the normalized total Higgs decay width in the RS model.
However, in the bulk-Higgs scenario, there are only very moderate new-physics deviations from
the SM. As a consequence, we will not be able to derive any new, significant exclusion bounds on
the parameter space of the model, by comparing the predicted signal rates with the experimen-
tal results. As an outlook, we will consider the possible experimental capabilities of new ILC
experiments on the precision measurements of Higgs couplings. We will compare our predictions
in the RS model with these new, possible capabilities by assuming SM-like measurements. In
this way, we can test up to which amount the parameter space of the bulk-Higgs RS model can
possibly be explored at next-generation experiments. Altogether, this chapter is pivotal for the
thesis, and will comprise its main results.
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g(0)

g(0)q⋆(n)W ⋆(n), Z⋆(n)

Figure 4.2: Feynman diagrams for the Higgs decays into a pair of fermions such as b quarks or
τ leptons (left), a pair of a virtual and a real gauge boson where the virtual gauge boson decays
further into a fermion pair (middle), and into two gluons mediated by quark fields (right).

2× 2×

2×

f ⋆(n) W ⋆(n)
µ W ⋆(n)

µ

φ⋆(n)
φ⋆(n)

Figure 4.3: Feynman diagrams for the Higgs decay into two photons in the unitary gauge. The
loops are mediated by KK fermions, KK W bosons, and the physical KK scalars of the bulk-Higgs
model.

4.1 Calculations

The dominant Higgs production process at the LHC is the gluon fusion production. Moreover,
the Higgs boson can be produced in association with a W or a Z boson via the Higgsstrahlung’s
production process, by the vector boson fusion, or together with a tt̄-pair. In this connection, the
different portions of the production processes are (for mh = 125.1 GeV and

√
s = 8 TeV) [203]

σ(pp→ h) = 0.872 σ(gg → h) + 0.072 σ(qq̄ → qq̄V ?V ? → qq̄h)

+ 0.032 σ(qq̄ → Wh) + 0.019 σ(qq̄ → Zh) + 0.006 σ(gg → tt̄h) ,
(4.1)

where the vector boson fusion can be transmitted by both V = W,Z bosons. The Feynman
diagrams for the first three processes are given in Figure 4.1, and will be calculated in the
following in the bulk-Higgs framework. Shortly after its production, the Higgs boson decays,
according to the different branching fractions [203],

Γtot = 0.56 Γ(h→ bb̄) + 0.23 Γ(h→ WW ?) + 0.03 Γ(h→ ZZ?)

+ 0.09 Γ(h→ gg) + 0.06 Γ(h→ τ τ̄) + 0.03 ,
(4.2)
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with a total Higgs decay width of Γtot = 4.21 MeV, for mh = 126 GeV.1 The Feynman diagrams
for the Higgs decays into a pair of fermions, gauge bosons and gluons are given in Figure 4.2. The
corrections to the remaining Higgs decay modes, such as h→ cc̄, Zγ, ..., will have less significant
effects on the total Higgs decay width in the RS model. We will summarize these effects by
their combined branching fraction in the SM, which is 3%. However, the Higgs decay into two
photons provides a clear, experimentally measurable channel despite its small branching fraction.
Moreover, it is of special interest for new-physics searches due to its loop-induced transmission.
The Feynman diagrams for this process are summarized in Figure 4.3, and the calculations of the
single contributions will be presented in the following sections. The various tree-level and loop-
induced Higgs couplings to SM particles can be described in terms of an effective Lagrangian,
defined at the electroweak scale µ ≈ v [4, 5],

Leff = CW
2m2

W

vSM
hW+

µ W
−µ + CZ

m2
Z

vSM
hZµZ

µ −
∑
f=t,b,τ

mf

vSM
hf̄(Cf + Cf5iγ5)f

+ Cg
αs

12πvSM
hGa

µνG
a,µν − Cg5

αs
8πvSM

hGa
µνG̃

a,µν

+ Cγ
α

6πvSM
hFµνF

µν − Cγ5
α

4πvSM
hFµνF̃

µν + ... ,

(4.3)

with F̃ µν = −1
2
εµναβFαβ, G̃µν = −1

2
εµναβGαβ and ε0123 = −1. In principle, effects from a

renormalization-group running from the scale µ ≈ MKK down to the electroweak scale would
have to be taken into account, leading to insignificant deviations, however [5]. Also, there
are Higgs self-couplings, or hZµf̄γ

µf -couplings etc., where the RS corrections are of minor
importance and will not be investigated in the thesis. The couplings Ci write the contributions
from processes that are even under the CP transformations, whereas the couplings Ci5 write the
contributions that are odd under CP transformations, which are new compared to the SM. For
that reason, we have CW = CZ = Cf = 1, and Cf5 = Cg = Cg5 = Cγ = Cγ5 = 0, in the SM.
With the help of the couplings, one can easily write the Higgs production cross sections and
decay rates, normalized on the respective SM rates, as [2–5,154]

σ(pp→ h)i,RS
σ(pp→ h)i,SM

= C
(eff),2
i + C

(eff),2
i5 ,

Γ(h→ ii)RS
Γ(h→ ii)SM

= C
(eff),2
i + C

(eff),2
i5 . (4.4)

For the loop-induced Higgs processes, the heavy SM particles t, W and Z can be integrated out,
resulting in additional contributions at the one-loop order, which are included in the effective
couplings Ceff

[i,i5]. These effective couplings include the loop-induced couplings with the contribu-
tions from KK particles C[g,γ], C[g,γ]5, and the modified SM contributions from fermions in the
case of the gluon fusion process [3–5],

Ceff
g = Cg +

∑
f

CfA(τf ) , Ceff
g5 = Cg5 +

∑
f

Cf5B(τf ) , (4.5)

1The current result for the Higgs bosons mass is mh = 125.09±0.21±0.11 GeV (with statistical and systematic
uncertainties), resulting from a combined analysis of ATLAS and CMS [204].
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where τf = 4m2
f/m

2
h, and from fermions and W bosons in the case of the Higgs decay into two

photons [4],

Ceff
γ = Cγ+

∑
f

NcfQ
2
f CfA(τf )−

21

4
CWAW (τW ) , Ceff

γ5 = Cγ5+
∑
f

NcfQ
2
f Cf5B(τf ) . (4.6)

Here, Ncf is the color factor, which is 1 for leptons and 3 for quarks, and Qf are the fermion
charges. In this regard, the amplitudes of loop-induced processes will be parametrized in terms
of the following parametrization2 [2, 3, 5]

Mges(gg → h) = Ceff
g

αs
12πv

〈0|Ga
µνG

µν,a|gg〉 − Ceff
g5

αs
8πv
〈0|Ga

µνG̃
µν,a|gg〉 ,

Mges(h→ γγ) = Ceff
γ

α

6πv
〈γγ|FµνF µν |0〉 − Ceff

5γ

α

4πv
〈γγ|FµνF̃ µν |0〉 .

(4.7)

In the SM, the corresponding, effective couplings read Cg,SM =
∑

f A(τf ), and

Cγ,SM =
∑

f NcfQ
2
fA(τf ) −21

4
AW (τW ). The loop contributions that are induced by KK particles

consist of fermionic parts in the case of the gluon fusion process, Cg =
∑

f νf , Cg5 =
∑

f νf5,
whereas there are also contributions from KK W bosons and KK scalars in the Higgs decay into
two photons [4, 154],

Cγ =
∑
f

NcfQ
2
fνf + νW + νφ , Cγ5 =

∑
f

NcfQ
2
fνf5 + νW5 + νφ5 . (4.8)

Our calculations will be performed in the unitary gauge, so that the loops in the production
and decay processes are mediated by physical particles, exclusively. Goldstone bosons and
ghost particles are absent in our calculations. The calculations and results for the individual
contributions will be presented in the course of this chapter. We will especially focus on the
contributions to the loop-induced Higgs decay rate into two photons, given by fermions, gauge
bosons and scalars. The results for the fermion contributions will give the formulas for the tree-
level Higgs couplings to fermions, forming the direct Higgs decay rates into a pair of fermions,
such as b quarks or τ leptons. Moreover, the results are equal to the gluon fusion production
rate, apart from charge and color factors. The tree-level Higgs couplings to gauge bosons can
be derived from the W boson contribution to the Higgs decay into two photons. In addition,
we will explicitly determine the formulas for the Higgs decay rates into a pair of a virtual and a
real gauge boson, normalized on the SM predictions, which only a bit differ from the squared of
the Higgs to W bosons coupling. We will end up with a compendium of comprehensive formulas
to describe the various Higgs decay rates into two particle states, which can numerically be
evaluated in dependence of the parameter space of the bulk-Higgs RS model. By this, we will be
able to determine the signal rates for a Higgs production at the LHC and a subsequent decay into
a final state of two particles, which can be compared to the respective experimental results. In
the following, we begin with a list of Feynman rules that are needed to calculate the amplitudes.
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Vertex Feynman rule

hW
+(m)
µ W

−(n)
ν i2πg4m̃W

2π
L

∫ 1

ε
dt
t
v(t)
v
χh0(t)χWm (t)χWn (t)ηµν

A
(0)
σ W

+(m)
µ W

−(n)
ν ieδmn [(pW+ − pW−)σηµν + (pA − pW+)νησµ + (pW− − pA)µηνσ]

A
(0)
ρ A

(0)
σ W

+(m)
µ W

−(n)
ν ie2δmn [ηρνησµ + ησνηρµ − 2ηρσηµν ]

hφ+(m)φ−(n)

−i
∫ 1

ε
dt 2π

Lt

(
v(t)
v
χh0(t) g

2r
MW

(
mφ
±
m

mφ
±
n

+ mφ
±
n

mφ
±
m

)
χφ
−
m (t)χφ

+

n (t)

+ g
2r

M2
KK

mφ
±
m mφ

±
n

v(t)
v
MW t∂t

(
t−1−βχh0(t)

)
×
[
χφ

+

m (t) · ∂t
(
tβχφ

−
n (t)

)
+ χφ

−
n (t) ·∂t

(
tβχφ

+

m (t)
)])

+λ4π
L

M2
KK

mφ
±
m mφ

±
n

v(1)χh0(1) ∂t

(
tβχφ

−
m (t)

)
∂t

(
tβχφ

+

n (t)
)∣∣∣

t=1

A
(0)
µ φ+(m)φ−(n) ieδmn(pφ− − pφ+)µ

A
(0)
µ A

(0)
ν φ+(m)φ−(n) i2e2δmnηµν

G(0)
µ,aq̄(m)q(n) −igsδmnγµta

A
(0)
µ f̄ (m)f (n) −ieQΨδmnγµ

hf̄ (n)f (n)

−i
(
Re(ghΨnΨn

nn ) + iγ5 Im(ghΨnΨn
nn )

)
,

ghΨnΨn
nn = (2+β)√

2

∫ 1

ε
dt
√

π
L(1+β)

χh0(t) F̄ (n)†
L (t)

(
0 Yf

Y†f 0

)
F (n)
R (t)

Table 4.1: Feynman rules in the bulk-Higgs RS model, derived in the effective four-dimensional
theory, which are used throughout the calculations.

4.1.1 Feynman rules

In this section, we list all the Feynman rules for three- and four-particle vertices that are used
in the subsequent analyses. We use the four-dimensional, effective theory that can be derived
from the five-dimensional action by integrating out the extra dimension, and using the KK
decompositions and explicit profile functions for the relevant particle fields. In general, the
integrations over the extra dimension reappear in the Feynman rules for the interaction vertices,
containing overlap integrals over the profile functions of the interacting fields. In Table 4.1, the

2The expectation values 〈γγ|FµνFµν |0〉 = −4 (k1 · k2ηµν − kν1kµ2 ) ε?µ(k1)ε?ν(k2) and 〈γγ|Fµν F̃µν |0〉 =

4εµναβk1αk2βε
?
µ(k1)ε?ν(k2) parametrize the Lorentz structures of the external momenta of the loop amplitudes

with the polarization vectors.
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Feynman rules are listed, and we discuss several of these rules in the following.
Generally, the vertices of the couplings between zero-mode photons and KK particles are

diagonal in the KK number, expressed by the Kronecker delta δmn. These exclusively allow
for couplings between KK particles of the same mode. In these vertices, the overlap integrals
over the extra dimension can be traced back to the orthonormality conditions that the particles’
profiles fulfil, in effect resulting in the Kronecker-delta expressions. This results from the fact
that the zero-mode photon has a flat profile due to U(1)em-gauge invariance, which is given
in (2.86) [162]. On the contrary, note that the higher KK modes of the photons have non-flat
profiles, and couple to KK fermions of different modes. This is also true for the case of the gluon,
since KK gluons and photons have similar profile functions. In general, the Higgs couplings with
two fermions, two charged gauge bosons or two scalars allow for couplings between KK particles
of different modes. Furthermore, the couplings of the zero-mode Higgs boson with fermions are
off-diagonal in flavor. The zero-mode Higgs profile χ

(h)
0 (t) is different from the Higgs vev v(t) by

O (v2/M2
KK)-corrections, and the five-dimensional Dirac fermion mass terms do not contribute,

since these are not induced by Higgs couplings. Such effects are included in the couplings that
can be fragmented into

g(hfmfn)
mn =

mfn

v
δmn −

mfn

v
Φff,mn −

mfm

v
ΦFF,mn +

mfn

v
∆g̃hmn −

m2
h

4M2
KK

mfn

v
Φh
mn . (4.9)

In the subsequent section, we explain some steps of the derivations of these couplings, and give
the definitions of the new mixing matrices ∆g̃hmn and Φh,mn, by deriving the explicit forms for
the case of zero-mode fermions.

In the derivations of the vertex couplings between zero-mode photons and KK scalars, one has
to include the equations of motion for the scalar profiles (2.101), in order to write the integrals
over the extra dimension by the normalization conditions for the profiles [3,154]. As an example,
we shortly present the derivation of the vertex coupling between the zero-mode photon and two
physical KK scalars. Starting with the terms from the Lagrangian that define the couplings
between the five-dimensional photon field and the five-dimensional scalar fields ϕ± and W±

t ,

2πr

L

∫ 1

ε

dt

t

ε4

t4
(LHiggs + Lgauge) 3

2π

L

∫ 1

ε

dt

t

([
−ie5(∂µϕ

−)ϕ+Aµ + ie5ϕ
−(∂µϕ

+)Aµ
]

+ie5rM
2
KKAµ

[
∂µ(W+

t )W−
t − ∂µ(W−

t )W+
t

])
,

(4.10)

one can insert the parts of the KK decompositions for the fields ϕ± and W±
t from (2.104) that

contain the φ(n)-dependencies, and one has to consider one KK mode for every field, respectively.
One has to change from spatial to momentum space for the four-dimensional coordinates by
replacing ∂µφ

(n)(x)→ i(pφ(n))µφ
(n)(p) and obtains

2πr

L

∫ 1

ε

dt

t

ε4

t4
(LHiggs + Lgauge) 3

2π

L

∫ 1

ε

dt

t

e

mφ±
m mφ±

n

(pφ− − pφ+)µφ
−(m)(p)φ+(n)(p)Aµ(0)(p)(

M2
KKt

−2β∂t

(
tβχφ

−

m (t)
)
∂t

(
tβχφ

+

n (t)
)

+M2
W

v(t)2

v2r
χφ
−

m (t)χφ
+

n (t)

)
.

(4.11)
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In these steps, the relation between the five-dimensional and the four-dimensional coupling
constants, e5 =

√
2πre, and the constant zero-mode photon profile, given in (2.86), have been

used. A partial integration of the first term on the right-hand side of (4.11) can be performed,
while using the boundary conditions for the scalar profiles in (2.102). After that, one can insert
the equations of motion for the scalar profiles in (2.101), finding

2πr

L

∫ 1

ε

dt

t

ε4

t4
(LHiggs + Lgauge) 3 φ−(m)(p)φ+(n)(p)Aµ(0)(p)e

2π

L

∫ 1

ε

dt

t
χφ
−

m (t)χφ
+

n (t)(pφ− − pφ+)µ .

(4.12)
Now, we recognize that the remaining integral over the extra dimension corresponds to the
normalization condition for the scalar profiles, given in (2.103). With this result, one derives
the vertex expression for the coupling of the zero-mode photon to KK scalars, which is given in
Table 4.1.

The effective, four-dimensional propagators of the KK fermions, KK bosons and scalar KK
particles are equal to the fermion, boson or scalar propagators of the SM, except of the inclusion
of the respective KK masses,

Df (n)(p) =
i(p/+mfn)

p2 −m2
fn

+ iε
,

Dξ,µν

W (n)(p) =
−i

p2 −m2
W (n)

(
ηµν − (1− ξ) pµpν

p2 − ξm2
W (n)

)
=

−i
p2 −m2

W (n)

(
ηµν − pµpν

m2
W (n)

)
+

−i
p2 − ξm2

W (n)

pµpν

m2
W (n)

,

Dφ±(n)(p) =
i

p2 −mφ±(n)2
n + iε

.

(4.13)

Induced by the KK-diagonal vertex couplings to zero-mode photons, there are also KK-diagonal
vertex couplings to the Higgs boson in the loop-induced Higgs production and decay processes,
which will be calculated in the following. For that reason, every loop in the processes, to
the lowest order in perturbation theory, is mediated by KK particles of the same mode, and
any mixing between the different KK modes is forbidden. One single summation over the
contributing states remains in every loop-amplitude, which will allow to derive finite results
[3, 154]. On the contrary, for several summations in the amplitudes, this important property
would not be guaranteed. The infinite summations are the largest technical differences in the
calculations, compared to the SM. In this connection, parametrizations will be used in terms of
five-dimensional propagator functions of the respective particle fields. Now, this will be outlined
in the upcoming sections.

4.1.2 W boson contribution to the Higgs decay into two photons

To begin with the computational part of the thesis, we start with the presentation of the W
boson contribution to the Higgs decay into two photons. In a general Rξ-gauge, one would
have to include a large amount of Feynman diagrams into the calculation that are mediated by
unphysical particles, as Goldstone bosons and ghost particles. The corresponding calculation
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in the SM was performed in [205], where it was explained that all diagrams with ”unphysical”
particles cancel out when summing over all contributions. Actually, this must happen because
the physical result cannot depend on a gauge parameter ξ. The contributing diagrams are
solely formed by loops of physical particles. These are the two diagrams given in Figure 4.3,
corresponding to the diagrams that contribute in the unitary gauge for ξ →∞.

For the RS model with a brane-localized Higgs field and a very narrow bulk-Higgs field, the
calculation of the W boson contribution to the Higgs decay to two photons was presented in
detail in [3]. By using an effective, four-dimensional description, the amplitude for every bosonic
diagram could be expressed in dependence of the respective SM amplitude, according to

MW
RS,i(h→ γγ) = 2π

m̃2
W

v

∞∑
n=0

∫ 1

ε

dt δη(t− 1)[χWn (t)]2
[
vSM
m2
W

MW
SM,i(h→ γγ)

]
mW→mWn

. (4.14)

Here, δη(t − 1), with η � 1, denotes the profile of a very narrow bulk-Higgs field [2, 3], as
explained in Subsection 2.2.3. In addition to the SM amplitudes, the amplitudes in the RS model
contain one KK sum, which runs over the integral over the extra dimension that stems from the
vertices of the zero-mode Higgs boson couplings to KK particles, and some factors accounting
for the differences between the coupling constants. One can conclude that all diagrams with
“unphysical” particles will cancel out to zero, by summing over the contributions for every
single KK mode, because this is true for the SM, as confirmed in [205].

In the bulk-Higgs framework, one has to make the replacement in the amplitudes for the
Higgs profile

δη(t− 1)→ 2π

Lt

v(t)

v
χh0(t) = 2(1 + β)t1+2β

(
1 +

m2
h

4M2
KK

[
1

(2 + β)
− t2

(1 + β)

])
. (4.15)

Then, the full amplitude of the W boson contribution to the Higgs decay into two photons can
be obtained from the expression (4.14) by inserting the SM amplitude [205]

MW
SM(h→ γγ) =

e2g

(4π)2m2
hmW

(
m2
h + 6m2

W − 6m2
W (m2

h − 2m2
W )×

∫ 1

0
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∫ 1−x

0
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1
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hxy −m2

W

)
×
(
m2
hη

µν − 2kµ2k
ν
1

)
ε?µ(k1)ε?ν(k2) ,

(4.16)

which depends on two Feynman parameter integrals over x and y,

MW
RS(h→ γγ) = −3πm̃2

W

2π

L
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dt

t
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v
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[
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]2 ( α
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6
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n
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n
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(4.17)

One can use the relation

6 + 12 mW2
n

∫ 1

0

dx

∫ 1−x

0

dy
1

m2
hxy −mW2

n

= 12

∫ 1

0

dx

∫ 1−x

0

dy
m2
hxy

m2
hxy −mW2

n

, (4.18)
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where 6 = 12
∫ 1

0
dx
∫ 1−x

0
dy
[
−m2

hxy +mW2
n

]−1
, together with the KK decomposed, five-dimensional

W boson propagator function for ξ = 1, given in (3.5), in order to handle the infinite sum over
the squared W boson profiles χWn (t) in the amplitude. By using the parametrization, given in
the equation (4.7), we derive the complete W boson contribution to the effective CP-even Higgs
coupling to two photons Ceff

γ ,

−21

4
CWA(τW ) + νW =− 3π

m̃2
W

κv

2π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)×[

BW (t, t; 0) + 6

∫ 1

0

dx

∫ 1−x

0

dy (1− 2xy)BW (t, t;−xym2
h)

]
.

(4.19)

There is no CP-odd W boson contribution to Ceff
5γ . A division through the vev-shift κv is included,

since the couplings are matched onto an effective Lagrangian in (4.3) that contains the SM vev.
One can insert the analytic function for the W boson propagator, in order to derive an analytic
result, and obtains

−21

4
CWA(τW )+νW = −3

m̃2
W

κv

π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)×(

c1(t, t)

m2
W

+
c2(t, t)

2M2
KK

+ 6

∫ 1

0

dx

∫ 1−x

0

dy (1− 2xy)

[
c1(t, t)

m2
W − xym2

h

+
c2(t, t)

2M2
KK

])
,

(4.20)

where c1(t, t′) and c2(t, t′) are part of the analytic boson propagator function, defined in (3.14).
With the help of the following two integral expressions∫ 1

0

dx

∫ 1−x

0

dy f(xy) =
1

2

∫ 1

0

dx

∫ 1

0

dy f (xy(1− y)) ,∫ 1

0

dx

∫ 1

0

dy f (4xy(1− y)) =

∫ 1

0

dz arctanh
(√

1− z
)
f(z) ,

(4.21)

one finds, then,

−21

4
CWA(τW ) + νW = −3

m̃2
W

κv

π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)×(

c1(t, t)

m2
W

+
c2(t, t)

2M2
KK

+ 3

∫ 1

0

dz arctanh
(√

1− z
) (

1− z

2

)
·
[

τW c1(t, t)

m2
W (τW − z)

+
c2(t, t)

2M2
KK

])
.

(4.22)

One can perform the following two integrals, by using the integration described in Appendix
C.1, ∫ 1

0

dz artanh
(√

1− z
) (

1− z

2

)
=

5

6
,∫ 1

0

dz artanh
(√

1− z
) (1− z

2
)

(τW − z)
=

1

2
+
(

1− τW
2

)
f(τW ) ,

(4.23)
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Figure 4.4: Here, the W boson contribution, −21
4
CWA(τW ) + νW , normalized on the SM contri-

bution, −21
4
A(τW ), is plotted in dependence of the KK mass scale and for three different choices

for the parameter β. A tendency to suppressed values can be observed for smaller values of
MKK , and larger values of β.

and gets

−21

4
CWA(τW ) + νW

=− 3
m̃2
W

κv

π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t) ·

(
c1(t, t)

m2
W

+
c2(t, t)

2M2
KK

+ [7AW (τW )− 2]
c1(t, t)

2m2
W

+
5

4

c2(t, t)

M2
KK

)

=− 3m̃2
W

π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t) · 7

2

(
c1(t, t)

m2
W

AW (τW ) +
c2(t, t)

2M2
KK

)
,

(4.24)

which depends on one remaining integral over the t-coordinate. Moreover, one has to include
the mass relation between the parametric mass and the physical mass of the W boson from
(2.88). Then, one derives the final result for the W boson contribution to the Higgs decay into
two photons,

−21

4
CWA(τW ) + νW +O

(
v4

M4
KK

)
. (4.25)

Here, one can identify the zero-mode W boson contribution, −21
4
CWA(τW ), and the loop con-

tributions of KK W bosons, νW [3], reading

CW = 1− m2
W

2M2
KK

(
3L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

)
,

νW = −21

4

m2
W

2M2
KK

(
L(1 + β)

(2 + β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

)
,

(4.26)

where τW = 4m2
W/m

2
h. The functionAW (τW ) = 1

7

[
2 + 3τW + 3τW (2− τW ) arctan2

(
1/
√
τW − 1

)]
is normalized in such a way that it approaches 1 in the asymptotic limit τW →∞, see Appendix
C.1. In the SM, the W boson contribution to the Higgs decay into two photons, parametrized
in terms of the coefficients in (4.7), is given by −21

4
A(τW ). In the RS model, the contribution of

the zero-mode W bosons corresponds to the SM W boson contribution, apart from a modified
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coupling CW . In addition, the whole KK tower of W bosons, νW , contributes, which is absent in
the SM. In Figure 4.4, the W boson contribution to the Higgs decay into two photons is plotted
in the RS model, normalized on the SM W boson contribution, in dependence of the KK mass
scale, and for three different values of β. The contribution is negative in the SM, and we observe
that in the RS model it is suppressed even stronger, at least for smaller values of the KK mass
scale and higher values of β. In the limit β → ∞ (4.26), the result smoothly interpolates into
the result derived in the very narrow bulk-Higgs scenario of the RS model [3], reading

−21

4
CnbH
W A(τW ) + νnbH

W = −21

4

[(
1− m2

W

2M2
KK

(
3

2
L− 1 +

1

2L

))
AW (τW )

+
m2
W

2M2
KK

(
L− 1 +

1

2L

)]
+O

(
v4

M4
KK

)
.

(4.27)

Also, this result equals the result in a strict brane-Higgs scenario.

4.1.3 Higgs decay rates into vector bosons

The Higgs boson can directly decay into a pair of W or Z bosons, which consists of a virtual and
a real particle, according to the relations mh < 2mW and mh < 2mZ , where the virtual gauge
boson decays further into a pair of fermions. Also, the description of such tree-level processes
involves exchanges of virtual gauge bosons, as it can be observed from the Feynman diagram in
Figure 4.2. In the RS model, this implies the exchange of the full KK tower of virtual gauge
bosons. In the following, we will present the significant calculative steps of these decay rates,
by using a calculation presented in [4]. In this reference, the decay rates were computed for
the brane-localized Higgs scenario of the RS model. The authors have expressed their results in
dependence of the SM decay rates that are rescaled by certain correction factors. The calculative
steps presented there are similarly valid for the calculation in the bulk-Higgs scenario, with the
exception that the rescaling factors accordingly differ, and have to be determined anew. In
this subsection, we calculate these factors, while referencing on the previous work to a large
amount [4]. Later, a numerical evaluation will be performed, exclusively with the new results
derived for the bulk-Higgs RS scenario.

We start with the calculation of h → WW ?, by following [4], and thus consider the process
h → W−W+? → W−fif̄

′
j, where fi and f̄ ′j denote a pair of light fermions with the generation

indices i, j. The corresponding differential decay rate in the SM reads [4, 206],

dΓ

ds
=

1

16π2m3
h

Γ(W+ → fif̄
′
j)

mW

m2
W

v2

λ1/2(m2
h,m

2
W , s)

(m2
W − s)2

[
(m2

h −m2
W )2 + 2s(5m2

W −m2
h) + s2

]
,

(4.28)
where s is the squared invariant mass of the fermion pair, and λ(x, y, z) = (x − y − z)2 − 4yz.
The result includes the on-shell decay rate for the process W+ → fif̄

′
j [4],

Γ(W+ → fif̄
′
j) = N f

cmW
g2

24π
|gij,L|2 , (4.29)

where g denotes the SU(2)L gauge coupling, andN f
c is the color factor, equalling 1 for leptons and

3 for quarks. Furthermore, there is gij,L = δij/
√

2 for leptons and gij,L = V CKM
ij /

√
2 for quarks.
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After having performed the remaining integration over s in the interval 0 ≤ s ≤ (mh −mW )2,
one can derive [4]

Γ(h→ W−W+? → W−fif̄
′
j) =

m3
h

32πv2

Γ(W+ → fif̄
′
j)

πmW

g

(
m2
W

m2
h

)
, (4.30)

where fermion-mass effects are neglected. The first factor is one half of the would-be on-shell h→
WW decay width in the limit mh � mW , and the second factor accounts for the suppression,
arising because one of the W bosons is produced off-shell. The function g(x) gives the result
stemming from the phase-space [4], which reads

g(x) =
6x(1− 8x+ 20x2)√

4x− 1
arccos

(
3x− 1

2x3/2

)
− 3x(1− 6x+ 4x2)ln x− (1− x)(2− 13x+ 47x2) .

(4.31)
It is a common practice in the literature to define the off-shell h→ WW ? decay rate by [4]

Γ(h→ WW ?) ≡ 2
∑
fi,f ′j

Γ(h→ W+fif̄
′
j) , (4.32)

where the sum includes all fermion pairs with a total mass lighter than mW . The factor 2 results
from the inclusion of the charge-conjugated decays h → W−f̄if

′
j. In the SM, the partial decay

rate Γ(W+ → fif̄
′
j) would be replaced by twice the total decay width ΓW of the W boson.

Analogous formulas hold for the decays of the Higgs boson into a pair of a virtual and a real
Z boson. In this connection, one must replace W → Z everywhere, and use [4]

Γ(Z → ff̄) = N f
cmZ

g2

24πc2
w

(
g2
f,L + g2

f,R

)
, (4.33)

for the partial decay rates of the Z boson in the SM. Here, gf,L = T f3 − s2
wQf and gf,R = −s2

wQf

are the left-handed and right-handed couplings of the various fermion species, and sw = sin θw
and cw = cos θw denote the sine and cosine of the weak mixing angle. In this case, the total
off-shell decay rate reads [4]

Γ(h→ ZZ?) ≡
∑
f

Γ(h→ Zff̄) , (4.34)

where the sum runs over all fermions with a mass lighter than mZ/2. So far, we have summarized
just the derivations from [4].

Apart from the RS corrections to the decay rates that are caused by the exchanges of the
full KK towers of gauge bosons, also the electroweak gauge couplings, entering the partial decay
rates in (4.29) and (4.33), get modified, as well as the Higgs couplings to vector bosons. The

Feynman rule for the W
+(0)
µ W

−(n)
ν h-vertex coupling reads in the bulk-Higgs RS model

2πi
2m̃2

W

v

2π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)χWn (t)χW0 (t) ηµν , (4.35)

as given in Table 4.1. For the zero modes, one encounters the correction factor CW , rescaling this
vertex compared to the SM, which has been derived just before in (4.26). A second correction
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factor stems from the Feynman rule of the W
+(n)
µ ū

(i)
A d

(j)
A -vertex, where A = L,R is a chirality

label and i, j label the flavours of the SM quarks. It was explained in [150] that this vertex is
given in the RS model, in good approximation, by [4]

i√
2

g5√
2πr

√
2πχWn (ε)V CKM

ij γµPL , (4.36)

which is also valid in the bulk-Higgs scenario, since the Higgs field is not involved in this coupling.
Further contributions, including the couplings to right-handed fermions, are strongly chirality-
suppressed. For the zero mode, one encounters a correction factor relative to the SM 3

C
1/2
ΓW
≡ g5√

2πrg

√
2πχW0 (ε) ≈ 1− m2

W

2M2
KK

1

4L
, (4.38)

which affects all the amplitudes of the W boson decays into light fermions. It follows that,
relative to the SM, one must perform the following replacements in the SM decay amplitude of
the process h→ W−W ?+ → W−uid̄j,

1

m2
W − s

→ vSM
v

m̃2
W

m2
W

g5√
2πrg

2π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)

√
2πχW0 (t) 2πBW (t, ε,−s)

≈ C
1/2
ΓW
CW

[
1

m2
W − s

− 1

4M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)]
,

(4.39)

where BW (t, t′;−p2) is the W boson propagator function, defined in (3.5). This result has an

intuitive form. The factor C
1/2
ΓW

rescales the W boson decay amplitudes of the SM, whereas the
factor CW rescales the Higgs boson coupling to a W+W−-pair, and the last term denotes the
contributions from the KK resonances, encoded in the W boson propagator function [4]. Then,
by substituting the expression into (4.28), and by performing the integration over s, one derives
the result

Γ(h→ WW ?) ≈ m3
h

16πv2
SM

CΓWΓSMW
πmW

C2
W

[
g

(
m2
W

m2
h

)
− m2

h

2M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)
h

(
m2
W

m2
h

)]
,

(4.40)
where [4]

h(x) = −
(
1− 4x+ 12x2

)√
4x− 1 arccos

(
3x− 1

2x3/2

)
− 1

2

(
1− 6x+ 36x2

)
lnx+

1

6
(1− x)

(
11− 61x+ 38x2

)
.

(4.41)

3The first-order corrections to the relation between the five-dimensional gauge coupling g5 and the gauge
coupling in the SM read

g5√
2πrg

=
m̃W

mWκv
≈ 1− m2

W

4M2
KK

[
(1 + β)(3 + β)

(2 + β)2
− 1

2L

]
. (4.37)
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In the subsequent numerical evaluation, we will encounter the ratio of the decay rate in the RS
model divided by the decay rate in the SM, which is accordingly

Γ(h→ WW ?)RS
Γ(h→ WW ?)SM

≈ CΓWC
2
W

[
1− m2

h

2M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)
h

(
m2
W

m2
h

)
/g

(
m2
W

m2
h

)]
.

(4.42)
The analysis of the h → ZZ?-decay rate proceeds in an analogous way. The correction factor
for the hZZ-coupling of the zero-mode particles reads

CZ =
vSM
v

m̃2
Z

m2
Z

2π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)2π

[
χZ0 (t)

]2
≈ 1− m2

Z

2M2
KK

(
2L(1 + β)2

(2 + β)(3 + 2β)
− (1 + β)(3 + β)

(2 + β)2
+

1

2L

)
− m2

W

2M2
KK

L(1 + β)2

(2 + β)(3 + 2β)
,

(4.43)

where the last term stems from the correction of the vev-shift κv. Moreover, the Zff̄ -couplings
in the RS model, which enter the partial rates in (4.33), underlie the replacement [4]

g

cw
gf,A(s2

w)→ g5√
2πrcw

√
2πχZ0 (ε)gf,A(s2

w) . (4.44)

If the weak mixing angle is defined via the structure of the couplings gf,A(s2
w), one finds the

following correction factor for the Z boson decay amplitude [4]

C
1/2
ΓZ

=
g5√
2πrg

√
2πχZ0 (ε) ≈ 1 +

m2
Z −m2

W

4M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)
− m2

W

4M2
KK

1

2L
. (4.45)

For the Z boson decay width, normalized on the decay width in the SM, one can use the result
from (4.42) by inserting the correction factors for the Z boson decay, and one has to replace mW

by mZ in the functions g(x) and h(x), accordingly. Numerically, the two results for the Higgs
decay into a pair of W or Z bosons are very similar, where the small differences are induced by
the difference between the W and Z boson masses.

4.1.4 Higgs production through Higgsstrahlung and vector boson fu-
sion

In a manner similar to the one just presented for the Higgs decay rates into vector bosons, the
Higgs production processes through Higgsstrahlung and vector boson fusion can be parametrized,
as discussed in [4] for the RS model with a brane-localized Higgs field. The Feynman diagram
for the Higgsstrahlung’s production process is similar to the twisted diagram of the Higgs boson
decay into a pair of gauge bosons, see Figures 4.1 and 4.2. The two incoming fermions decay into
a pair of a Higgs boson and a gauge boson, mediated by a gauge boson propagator. Therefore,
at the quark level, the amplitude of Higgsstrahlung gets the same corrections as the amplitude
of the Higgs decay into a pair of gauge bosons [4]. With s as the invariant mass squared of the
hV -pair in the final state, the differential cross section for the Higgsstrahlung’s process reads

dσ(pp→ hV )

ds
= CΓV C

2
V

[
1 +

s−m2
V

2M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)
+ ...

]
dσ(pp→ hV )SM

ds
, (4.46)
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where the correction terms stem from the contributions of the KK resonances, forming the
corrections to the gauge boson propagator, similar to (4.42). However, it is not possible to
derive a simple analytic formula for the Higgsstrahlung’s cross section, because the SM cross
section and therefore the s-dependence is related in a complicated way to the shapes of parton
distribution functions. But, the leading L-enhanced correction terms stemming from C2

V are
independent of s. Keeping only these terms, one can approximate [4]

σ(pp→ hV )RS ≈ C2
V · σ(pp→ hV )SM . (4.47)

In a similar manner, one can approximate the corrections to the cross section of the vector-
boson fusion. This process is mediated by two virtual gauge bosons, as illustrated in Figure
4.1. Two gauge boson propagators account for the respective corrections in the bulk-Higgs RS
model, so that one has to replace

1

(m2
V − p2

1)(m2
V − p2

2)
→ vSM

v

m̃2
V

m2
V

(
g5√
2πrg

)2
2π

L

∫ 1

ε

dt

t

v(t)

v
χh0(t)(2π)2BV (t, ε;−p2

1)BV (t, ε;−p2
2)

=
CΓV CV

(m2
V − p2

1)(m2
V − p2

2)

(
1− 2m2

V − p2
1 − p2

2

4M2
KK

(
(1 + β)(3 + β)

(2 + β)2
− 1

L

)
+ ...

)
,

(4.48)

in an amplitude expression. Again, the integrations over s involve complicated convolutions with
parton distribution functions. The leading L-enhanced corrections are included in C2

V , and are
independent of s, so that the approximation

σ(pp→ hqq′)RS ≈ C2
V σ(pp→ hqq′)SM (4.49)

can be used for the Higgs production through vector boson fusion, as well [4].

4.1.5 Scalar contribution to the Higgs decay into two photons

In the following, we present the calculation of the scalar contribution to the Higgs decay into two
photons. The physical scalars are a special feature of the bulk-Higgs RS model, as presented
in the second chapter of the thesis. Most easily, one can express the amplitudes of the two
contributing diagrams, which are given in Figure 4.3, in dependence of the following Passarino-
Veltman (PV) loop-integrals [207–209]

B0(a, b) =
1

iπd/2

∫
ddp

1

[(p− a)2 −m2] [(p− b)2 −m2]
,

C0(0, k1, k1 + k2) =
1

iπd/2

∫
ddp

1

[p2 −m2] [(p− k1)2 −m2] [(p− k1 − k2)2 −m2]
,

Cµ(0, k1, k1 + k2) =
1

iπd/2

∫
ddp

pµ

[p2 −m2] [(p− k1)2 −m2] [(p− k1 − k2)2 −m2]
,

Cµν(0, k1, k1 + k2) =
1

iπd/2

∫
ddp

pµpν

[p2 −m2] [(p− k1)2 −m2] [(p− k1 − k2)2 −m2]
.

(4.50)
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In these expressions, it has been already applied that the masses of the virtual loop-particles
are equal, where there is in our case m = mφ

n. In this notation, the amplitudes of the two
contributing diagrams read

M1 =
∞∑
n=1

2× 22−dπd/2e2ghφφnn (Cµν(0, k1, k1 + k2)− Cµ(0, k1, k1 + k2)kν1) ε?µ(k1)ε?ν(k2) ,

M2 =
∞∑
n=1

−21−dπ−d/2e2ghφφnn η
µνB0(0, k1 + k2) ε?µ(k1)ε?ν(k2) ,

(4.51)

given as a sum over all the virtual KK states that propagate in the loops. It has been used
that kµ1 ε

?
µ(k1) = kν2ε

?
ν(k2) = 0, according to the polarization of the external photon states. Using

the PV integrals, it is convenient to reduce the tensor and vector PV integrals to the scalar PV
integrals [209],

Cµ(0, k1, k1 + k2) = − k
µ
2

m2
h

[
B0(0, k1 + k2)−B0(k1, k1 + k2)

]
,

Cµν(0, k1, k1 + k2) =
ηµν

2
×
[
mφ2
n C

0(0, k1, k1 + k2) +
1

2
B0(0, k1 + k2) +

1

2

]
+
kµ2k

ν
1

m2
h

×
[
−B0(0, k1 + k2) +B0(k1, k1 + k2)−mφ2

n C
0(0, k1, k1 + k2)− 1

2

]
.

(4.52)

In these expressions, a dimensional regularization has been already performed, so that there is
d → 4 now. In addition, the relation 2k1k2 = m2

h has been applied, following from momen-
tum conservation. With the help of these steps, one derives the full amplitude of the scalar
contribution to the Higgs decay into two photons as

Mges =
∞∑
n=1

e2ghφφnn

2π2m2
h

(
mφ2
n C

0(0, k1, k1 + k2) +
1

2

)[
m2
h

2
ηµν − kµ2kν1

]
ε?µ(k1)ε?ν(k2) . (4.53)

The remaining PV integral C0 is the same as the Feynman parameter integral in the amplitude
of the W boson contribution to the Higgs decay into two photons, presented before,

C0(0, k1, k1 + k2)
d=4
=

1

iπ2

∫
d4p

[(
p2 −mφ2

n

) (
(p− k1)2 −mφ2

n

) (
(p− k1 − k2)2 −mφ2

n

)]−1

=
1

iπ2

∫
d4p 2

∫ 1

0

dxdydz
δ(x+ y + z − 1)[

p2 −mφ2
n − 2pk1y − 2p(k1 + k2)z +m2

hz
]3

=
2

iπ2

∫
d4p̃

∫ 1

0

dx

∫ 1−x

0

dz
[
p̃2 +m2

hxz −mφ2
n

]−3

= −
∫ 1

0

dx

∫ 1−x

0

dz
[
−m2

hxz +mφ2
n

]−1
= − 2

m2
h

arctan2

(
1√

τφn − 1

)
,

(4.54)
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where p̃ = p−[k1y+(k1+k2)z], and τφn = 4m
(φ±)2
n /m2

h. In the second to last step, the momentum
integral over p̃ has been performed [79]. The calculation of the Feynman parameter integral is
presented in Appendix C.1. One derives the CP-even loop contribution of the scalars to the
coupling Ceff

γ as follows

νφ =
∞∑
n=1

vghφφnn

8m
(φ±)2
n

Aφ(τφn) , (4.55)

with the function Aφ(τφn) = −3τφn
[
1− τφnarctan2

(
1/
√
τφn − 1

)]
, using the parametrization

in (4.7) and (4.8). A scalar, CP-odd loop contribution does not arise. The scalars do not
have zero modes, so that their masses are much heavier than the mass of the zero-mode Higgs
boson. Therefore, one can approximate τφn to have high values, for which the function A(τφn)
approaches to 1, as limτφn→∞Aφ(τφn) = 1, see Appendix C.1. The coupling expression

ghφφmn =∫ 1

ε

dt
2π

Lt

(
v(t)

v
χh0(t)

g

2r
MW

(
mφ±
m

mφ±
n

+
mφ±
n

mφ±
m

)
χφ
−

m (t)χφ
+

n (t)

+
g

2r

M2
KK

mφ±
m mφ±

n

v(t)

v
MW t∂t

(
t−1−βχh0(t)

)
×
[
χφ

+

m (t) · ∂t
(
tβχφ

−

n (t)
)

+ χφ
−

n (t) ·∂t
(
tβχφ

+

m (t)
)])

+ λ
4π

L

M2
KK

mφ±
m mφ±

n

v(1)χh0(1) ∂t

(
tβχφ

−

m (t)
)
∂t

(
tβχφ

+

n (t)
)∣∣∣

t=1
,

(4.56)

contains an integral over the Higgs’ vev and profile, and the scalar KK profiles. By including the
infinite sum over the KK states into the integral, one can express the result in dependence of the
five-dimensional scalar propagator, by using the approximate KK-decomposed scalar propagator,
given in (3.35). Then, up to the order v2/M2

KK , one can give the scalar loop contribution in the
form

νφ =
∞∑
n=1

vghφφnn

8m
(φ±)2
n

=
v

8

∫ 1

ε

dt
2π

Lt

g

r
χh0(t)

v(t)

v
MWDφ±(0, t, t)

+
vπ

2L
λM2

KKv(1)χh0(1)
∂

∂t

∂

∂t′
∂

∂p2
Dφ±(p, t, t′)

∣∣∣∣
t′=t=1

.

(4.57)

The following two expressions

Dφ±(0, t, t) =
L(t2 − t4+2β)

4πM2
KK(1 + β)

,
∂

∂t

∂

∂t′
∂

∂p2
Dφ±(p, t, t′)

∣∣∣∣
t′=t=1

=
L

4πM4
KK(2 + β)

, (4.58)

can be determined from the analytic five-dimensional propagator function of the scalars, derived
in (3.34). Furthermore, the relation λ = m2

hπ/[32v2L(1 + β)2], and the dependence between the
five-dimensional mass parameter MW and the four-dimensional mass parameter m̃W of the W
boson, equalling the physical mass of the W boson mW to the leading order, MW =

√
2πrm̃W ,
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Figure 4.5: In this graphic, the loop-contributions of the physical KK scalars of the bulk-Higgs
RS model to the Higgs decay into two photons are plotted, in dependence of the KK mass scale
and for three choices of the parameter β. The contributions are the smaller, the higher the value
of β is, and completely vanish in the limit β → ∞, since the scalars decouple in the limit of a
brane-localized Higgs field.

have to be taken into account. Then, one obtains the result for the scalar contribution to the
Higgs decay into two photons as follows

νφ =
Lm2

W

8M2
KK

(
1

(2 + β)
− 1

(3 + 2β)

)
+

m2
h

128 M2
KK(1 + β)(2 + β)

+O
(

v3

M3
KK

)
. (4.59)

In Figure 4.5, the result is plotted in dependence of the KK mass scale and for three choices of
the parameter β. Altogether, the scalars only give a sub-leading effect to the Higgs decay rate.
One observes that the contributions are the smaller the higher the value of β is, and completely
vanish in the limit β → ∞, corresponding to the result in an RS scenario with a very narrow
bulk-Higgs field. In fact, the physical scalars are an exclusive feature of the bulk-Higgs RS
model, and decouple in the limit of a brane-Higgs localization.

4.1.6 Fermion contribution to the Higgs decay into two photons

Figure 4.6 recapitulates the two Feynman diagrams that describe the fermion contribution to
the Higgs decay into two photons. The loops are formed by all the different KK states of the
fermions. Similar diagrams hold for the gluon fusion production process, except that they are
reversed with incoming gluons, and only quarks can contribute in the loops. With the help of
the Feynman rules, summarized in Table 4.1, one can write the full amplitude for the fermion
contribution to the Higgs decay into two photons as follows

Mf
h→γγ =− i

∑
f=u,d,e

∞∑
n=1

(−ieQf )
2i3Nc,f (−1)ε?µ(k1)ε?ν(k2)

∫
ddp

(2π)d
1

d1d2d3

− i
(
Re(gfnn) Tr[ATr] + i Im(gfnn) Tr[γ5ATr]

)
,

(4.60)
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Figure 4.6: In this graphic, the two Feynman diagrams are displayed that parametrize the
fermion contribution to the Higgs decay into two photons. The diagrams for the Higgs production
process through gluon fusion are similar, but in a reversed form, with incoming gluon states.
The outgoing photons are replaced by each other in the second diagram.

including

ATr = (p/− k2/+mf
n)γν(p/+mf

n)γµ(p/+ k1/+mf
n)

+ (−p/− k1/+mf
n)γµ(−p/+mf

n)γν(−p/+ k2/+mf
n) ,

(4.61)

and
d1 = (p2 −m2

fn) , d2 = ([p+ k1]2 −m2
fn) , d3 = ([p− k2]2 −m2

fn) . (4.62)

In this expression, the Kronecker deltas from the fermion to photon vertices are evaluated already.
The amplitude depends on one single summation over all contributing KK fermion states, with
n = 1, ...,∞. The first sum runs over the fermions f = u, d, e, where each of which are three
component vectors in generation space. Besides, Nc,f denotes the color factor, which is Nc,q = 3
for quarks, to account for the fact that quarks of all three colors as quantum numbers can mediate
the loop, whereas Nc,e = 1 for leptons. To derive the amplitude of the gluon fusion production
process, one has to replace e2Q2

fNc,f → g2
s , include Tr[tatb] = δab/2, with the color indices a and

b, skip the lepton contribution, and consider the polarization vectors of incoming gluons. The
first terms in (4.60), proportional to Re(gfnn), give the CP-even contributions to the amplitude,
as can be recognized from (2.124). For one respective term of the sum over the KK states, the
calculation of the CP-even contribution is similar to the corresponding calculation in the SM.4

By using the result from [210], one determines the result for the loop form factors of the CP-even
contributions. In addition, we compute the loop form factors of the CP-odd contributions, given
by the second terms in (4.60) proportional to Im(gfnn), whereof the calculation is presented in
Appendix C.2. In total, one determines the following two expressions for the CP-even and -odd
contributions to the couplings Ceff

γ and Ceff
5γ from (4.6) and (4.8), by using the parametrization

in (4.7), ∑
f=u,d,e

Q2
f Nc,f [CfA(τf ) + νf ] =

1

κv

∑
f=u,d,e

Q2
f Nc,f

∞∑
n=1

v Re(gfnn)

mfn

A(τfn) ,

∑
f=u,d,e

Q2
f Nc,f [Cf5B(τf ) + νf5] =

1

κv

∑
f=u,d,e

Q2
f Nc,f

∞∑
n=1

v Im(gfnn)

mfn

B(τfn) .

(4.63)

4The gluon fusion production process in the SM was calculated, and presented in very detail, e.g. in [210].
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The summations run over the Yukawa couplings gfnn between the zero-mode Higgs boson and KK
fermions, times the constant vev parameter v, divided through the masses of the KK fermions
mfn . Furthermore, they are multiplied with the loop-form factors A(τfn) and B(τfn), which
parametrize the results in dependence of τfn = 4m2

fn
/m2

h, and read [211]

A(τfn) =
3τfn

2

[
1 + (1− τfn)arctan2 1√

τfn − 1

]
, B(τfn) = τfnarctan2 1√

τfn − 1
. (4.64)

If one considers KK fermions of the modes n = 4, ..., having much heavier masses than the
zero-mode Higgs boson mh, one can approximate the form factors by their asymptotic values,
limτfn→∞A(τfn) = limτfn→∞B(τfn) = 1, see Appendix C.1. Instead, for the light zero-mode
fermions with n = 1, 2, 3, the form factors A(τfn) and B(τfn) cannot be neglected. For that
reason, one first has to subtract the first three contributions for n = 1, 2, 3 in the calculation,
and then adds them again multiplied with the exact form factors, according to [5]∑

f=u,d,e

Q2
fNc,f [CfA(τfn) + νf ]

=
1

κv

∑
f=u,d,e

Q2
fNc,f

[
∞∑
n=1

vRe(gfnn)

mfn

+
3∑

n=1

vRe(gfnn)

mfn

[−1 + A(τfn)]

]
,

∑
f=u,d,e

Q2
fNc,f [Cf5B(τfn) + νf5]

=
1

κv

∑
f=u,d,e

Q2
fNc,f

[
∞∑
n=1

vIm(gfnn)

mfn

+
3∑

n=1

vIm(gfnn)

mfn

[−1 +B(τfn)]

]
.

(4.65)

In the following, we present the separate calculations of the contributions from the zero modes
and the KK fermion towers. The KK tower contributions, given by the infinite summations
over all KK fermion states, can be related to the five-dimensional fermion propagator function,
to find a closed, analytic expression [5]. This procedure will be presented a bit later. The
zero-mode fermion contributions have to be explicitly computed by performing the integral over
the zero-mode fermion profiles contained in gfnn. For that purpose, one uses the approximate
zero-mode fermion profiles, derived in (2.114). After having independently calculated the two
different contributions, we will further set all the fermion bulk mass parameters c to the value
-1/2, in order to decrease the large parameter space on which the results depend on. In this way,
we will derive a concise and clear expression for the fermion contributions to the loop-induced
Higgs processes, in the end.

Zero-mode fermion contribution

We start with the calculation of the contribution of the zero-mode fermions to the loop-induced
Higgs couplings, given by the separate sum over the first three KK states, n = 1, 2, 3 in (4.65).
To derive an expression for this sum, one can start with the equations of motion in (2.109) and
consider the KK decompositions from (2.106). In this connection, one has to take the conjugate-
transpose of the equation of motion of CF

m(t)âFm, and multiply it with SFn (t)âFn . Equally, one has
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to multiply âF †m CF †
m (t) with the equation of motion of SFn (t)âFn , yielding [151]

− d

dt

(
âF †m CF †

m (t)SFn (t)âFn
)

= xnâ
F †
m SF †m (t)SFn (t)âFn − âF †m CF †

m (t)CF
n (t)âFnxm

− v(2 + β)√
2MKK

t1+β
(
âf†mSf†m (t)Y†fS

F
n (t)âFn − âF †m CF †

m (t)YfC
f
n(t)âfn

)
.

(4.66)

When this relation is integrated over the whole orbifold, the total derivative on the left-hand
side of the equation does not contribute, because the S-profiles obey to declining, odd boundary
conditions at the branes, SFn (0) = SFn (1) = 0. Using further the normalization condition for the
profile functions from (2.107), one derives the following expression

(2 + β)
√

2π

Lε

∫ 1

ε

dt t1+β âF †m CF †
m (t)YfC

f
nâ

f
n =

(2 + β)
√

2π

Lε

∫ 1

ε

dt t1+β âf†mSf†m (t)Y†fS
F
n (t)âFn

+
mfmδmn

v
− mfn

v

2π

Lε

∫ 1

ε

dt âf†mSf†m (t)Sfn(t)âfn −
mfm

v

2π

Lε

∫ 1

ε

dt âF †m SF †m (t)SFn (t)âFn .

(4.67)

With the help of this expression, one can determine the sum over the first three KK states in
the fermion contribution. The Yukawa couplings gfnn from (2.123) contain an integral over the
profile functions of the fermions and the Higgs boson, and one includes the sum over the three
KK states into the integral. Then, the expression can be split up into the different terms, by
using (4.67),

3∑
n=1

vgfnn
mfn

= 3− Tr (Φff + ΦFF ) + Tr
(
∆g̃hnn

)
− m2

h

4M2
KK

Tr
(
Φh
)

+O
(

v3

M3
KK

)
, (4.68)

where

Φff,mn ≡
2π

Lε

∫ 1

ε

dt âf†mSf†m (t)Sfn(t)âfn

ΦFF,mn ≡
2π

Lε

∫ 1

ε

dt âF †m SF †m (t)SFn (t)âFn

∆g̃hmn ≡
v

mfn

√
2(2 + β)

2π

Lε

∫ 1

ε

dt t1+β âf†mSf†m (t)Y†fS
F
n (t)âFn ,

Φh
mn ≡

v

mfn

(2 + β)√
2

2π

Lε

∫ 1

ε

dt t1+β

(
t2

1 + β
− 1

2 + β

)
âF †m CF †

m (t)YfC
f
n(t)âfn .

(4.69)

This is in correspondence with the vertex of the general Higgs couplings to fermions, given in
(4.9). With the help of the approximate zero-mode fermion profiles in (2.114), one computes
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the single matrix expressions, and derives

Φff,mn =
v2

M2
KK

[
mfm

v

∑
i

W †
f,mi

1

1− 2cfi

(
1

F (cfi)
2
− 1 +

F (cfi)
2

2cfi + 3

)
Wf,in

mfn

v

+
mfm√

2 v

∑
i,j

W †
f,mi

(
1

p4(cfi + cFj)
− 1

F (cfi)
2

)
Ỹ†eff
f,ij

p3(−cfi + cFj)
Uf,jn

+
mfn√

2 v

∑
i,j

U †f,mj

(
1

p4(cfi + cFj)
− 1

F (cfi)
2

)
Ỹeff
f,ji

p3(−cfi + cFj)
Wf,in

+
1

2

∑
i,j,k

U †f,mj
Ỹeff
f,jiỸ

†eff
f,ik

F (cfi)
2q5(cFj + cFk)

Uf,kn

]
,

(4.70)

ΦFF,mn =
v2

M2
KK

[
mfm

v

∑
i

U †f,mi
1

1− 2cFi

(
1

F (cFi)
2
− 1 +

F (cFi)
2

2cFi + 3

)
Uf,in

mfn

v

+
mfm√

2 v

∑
i,j

U †f,mi

(
1

p4(cFi + cfj)
− 1

F (cFi)
2

)
Ỹeff
f,ij

p3(−cFi + cfj)
Wf,jn

+
mfn√

2 v

∑
i,j

W †
f,mj

(
1

p4(cFi + cfj)
− 1

F (cFi)
2

)
Ỹ†eff
f,ji

p3(−cFi + cfj)
Uf,in

+
1

2

∑
i,j,k

W †
f,mj

Ỹ†eff
f,jiỸ

eff
f,ik

F (cFi)
2q5(cfj + cfk)

Wf,kn

]
,

(4.71)

∆g̃hmn = − v

mfn

v2

M2
KK

[√
2mfm

v

∑
i,j

W †
miỸ

†eff
f,ijUjn

mfn

v4

p2(cfi + cFj)

p2(−cfi − cFj)

×
( −2(1 + cfi + cFj)

p4(cfi + cFj)(1 + 2cfi)(1 + 2cFj)
+

1

F (cfi)
2F (cFj)

2

+
[(1 + 2cfi)

−1 − F (cfi)
−2]

p3(−cfi + cFj)
+

[
(1 + 2cFj)

−1 − F (cFj)
−2
]

p3(cfi − cFj)

)

+
mfm

v

∑
k,i,l

W †
mk

(
1

q5(cfk + cfl)
− 1

F (cfk)
2

)
p2(cfk + cFi) Ỹ†eff

f,ki Ỹeff
f,il

q4(−cfk + cfl)F (cFi)
2
Wln

+
mfn

v

∑
k,i,l

U †mk

(
1

q5(cFk + cFl)
− 1

F (cFl)
2

)
Ỹeff
f,ki Ỹ†eff

f,il p2(cfi + cFl)

q4(cFk − cFl)F (cfi)
2
Uln

+
1√
2

∑
i,j,k,p

U †mi
Ỹeff
f,ij Ỹ†eff

f,jk Ỹeff
f,kp p2(cfj + cFk)

F (cfj)
2 r6(cFi + cfp) F (cFk)

2
Wpn

]
,

(4.72)
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Φh
mn =

v

mfn

∑
i,j

U †mi
Ỹeff
f,ij√
2

p2(cFi + cfj)

p4(cFi + cfj)(1 + β)
Wjn −

δmn
2 + β

. (4.73)

The matrices Uf , Wf and Ỹf have been defined in (2.120), and F (c) is the zero-mode fermion
profile, given in (2.115). In addition, we have introduced the abbreviations [154]

pk(c) = (k + c+ β) , qk(c) = (k + c+ 2β) , rk(c) = (k + c+ 3β) . (4.74)

One can compare the result with previous findings, derived in the very narrow bulk-Higgs sce-
nario of the RS model, corresponding to the limit β → ∞ performed in the results of the
bulk-Higgs scenario. In this limit, the different matrix expressions read

Φff,mn

limβ→∞
=

mfmmfn

M2
KK

∑
i

W †
f,mi

1

1− 2cfi

(
1

F (cfi)
2
− 1 +

F (cfi)
2

2cfi + 3

)
Wf,in ,

ΦFF,mn

limβ→∞
=

mfmmfn

M2
KK

∑
i

U †f,mi
1

1− 2cFi

(
1

F (cFi)
2
− 1 +

F (cFi)
2

2cFi + 3

)
Uf,in ,

∆g̃hmn
limβ→∞

= −1

3

∑
i,j,k

v2

M2
KK

U †miF (cFi)Yf,ijY
†
f,jkF (cFk)

−1Ukn ,

Φh
mn

limβ→∞
= 0 .

(4.75)

To find the results, one has to use the eigenvalue equations

mfnW =
v√
2
Y†,eff
f U , mfnU =

v√
2
Yeff
f W , (4.76)

resulting from (2.153). These outcomes coincide with the results determined in the references,
e.g. in [2, 5, 151].

Contribution of the full KK fermion tower

The infinite summation over the Yukawa couplings gfnn, times the vev, divided through the KK
fermion masses in (4.65), can be computed in a closed form by relating it to the five-dimensional
fermion propagator function [2, 5]. Using the KK decomposed propagator functions, given in
(3.40), one can write the summation over the KK fermion states in the fermion contribution
as [5]

∞∑
n=1

vgfnn
mfn

=

∫ 1

ε

dt

√
π

L

χh0(t)√
1 + β

T fRL(t, t) , (4.77)

where

T fRL(t, t′) =
v(2 + β)√

2
Tr

[(
0 Yf

Y†f 0

)
∆f

RL(t, t′)

]
(4.78)

depends on the propagator function ∆f
RL(t, t′). Notice that only the off-diagonal blocks of the

propagator function enter into the result. In Section 3.3.1, we have presented the calculation
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and result for the propagator function ∆RL(t, t′), depending on the two 3×3 matrix expressions
C>

3 and C>
4 , given in (3.62). Including these results, the expression in (4.78) is determined as

T fRL(t, t) =
v(2 + β)√

2
Tr

[
Yf

(
tcf +

v2

4M2
KK

(
−YB†(t) YE + YF †(t)

))
C>

3

+ Y†f

(
− v√

2MKK

YA(t)

)
C>

4

]
= (2 + β) Tr

[
Yf t

cf

(
(YE)−1tcF +

v2

2M2
KK

[(
1 + (YE)−1tcFYA(t)

)
t−cfYB†(t)tcF

+
1

2

(
YC† − (YE)−1YG

)
tcF
)]

+
v2

4M2
KK

Yf

(
−YB†(t)YE + YF †(t)

)
(YE)−1tcF

− v2

2M2
KK

Y†fY
A(t)

(
1 + (YE)−1tcFYA(t)

)
t−cf

]
.

(4.79)

After having performed the remaining integral over the function T fRL(t, t) and the Higgs profile
in (4.77), one obtains the following result

∞∑
n=1

v(gfnn)

mfn

=
∑
i,j

(
2 + β

p2(cfj + cFi)
+

m2
h

4M2
KK

[
1

p2(cfj + cFi)
− 2 + β

(1 + β)p4(cfj + cFi)

])
·
[
Yf,ij(Y

E)−1
ji

]
+

v2

2M2
KK

[∑
i,j

(
2 + β

p2(cfj + cFi)
− 1

4

)[
Yf,ijY

C†
ji

]
− 1

2

∑
i,j,k,l

(2 + β)2

p2(cfj + cFi)q4(cFk − cFi)
[
Yf,ij(Y

E)−1
jk Yf,klY

C†
li

]
+
∑
i,j,k,l

(
2 + β

r6(cfj + cFk)
− 2 + β

q4(cfj + cFk + cfl + cFi)

)
·
[
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(4.80)

by skipping terms of O (ε2) and smaller. The abbreviations containing the Yukawa matrices
YA(t), YB†(t), YC†, YE, YF †(t), YG have been defined in Subsection 3.3.1. In the limit of a
very narrow bulk-Higgs field, corresponding to β →∞, the result in (4.80) gives

lim
β→∞

(
∞∑
n=1

v(gfnn)

mfn

)
= 1 +

v2

2M2
KK

1

3
Tr
(
YfY

†
f

)
+ ... . (4.81)
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This is in correspondence with previous findings, derived in the very narrow-bulk Higgs scenario
of the RS model, e.g. in [5].

Complete result for the fermion contribution

In the previous subsections, we have separately presented the calculations of the zero-mode
fermion contributions, and the contributions from the full KK fermion tower. The results are
given by extensive formulas, which depend, in a complicated way, on the different fermion
bulk mass parameters c[F,f ]i , for example. In the subsequent part of the thesis, we want to
numerically evaluate and graphically present the results for the various Higgs decay rates into two
particle states, in dependence of the RS model parameter space. In this regard, the significant
and interesting parameters are the KK mass scale, the five-dimensional Yukawa matrices and
the bulk-Higgs localization parameter β. For this purpose, we want to minimize the large
parameter space of our system, and to obtain a more concise expression for the complete fermion
contribution. The bulk mass parameters, except of the one for the top quark, are all situated near
the value -1/2 in order to derive the accurate zero-mode fermion masses in the RS model [150,
154]. For that reason, one can approximate the extended formulas for the fermion contribution
by setting all the various fermion bulk mass parameters c to be of value -1/2. Then, for example,
one can obtain reductions as

(2 + β)

p2(cAi + cBj)
→ (2 + β)

(1 + β)
, (4.82)

where cAi and cBj are arbitrary fermion bulk mass parameters. Then, using the eigenvalue
equations from (2.116), one can derive the following results for the expressions Φff,nn and ΦFF,nn,
appearing in the sum over the KK-diagonal zero-mode fermion contributions,

Φff,nn
ci→−1/2

= ΦFF,nn
ci→−1/2

=
∑
n

m2
fn

2M2
KK

(
L

[
1− (5 + 3β)

(2 + β)(3 + β)

]
− 1 +

1

2L

)
,

Φh
nn

ci→−1/2
= −

∑
n

δnn
(2 + β)(3 + β)

.

(4.83)

These expressions are suppressed by the square of the zero-mode fermion masses over the square
of the KK mass scale. For that reason, they play a less significant role in the subsequent
numerical evaluation [2, 150, 151]. In the complete result for the fermion contribution, given in
(4.65), the sum over the first three KK states is subtracted, and is again added, multiplied with
the exact form factors A(τfi) and B(τfi). These functions adopt significant values only for the
cases of the third generation fermions, for mf = mτ ,mb,mt. For the last entry of the matrix
expression ∆g̃ggh, giving the contribution of the third generation fermions, one can derive the
following formula in the limit ci → −1/2,

∆g̃h33

ci→−1/2
=

v2

M2
KK

[
Ū3iYf,ijY

†
f,jkŪk3

(
− 4(2 + β)3

(1 + β)(3 + β)(5 + 3β)
+
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†
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2(1 + β)

]
≈ − v2

M2
KK

(1 + β)(2 + β)

(3 + β)(5 + 3β)

(
YfY

†
fYf

)
33

(Yf )33

,

(4.84)
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where here the unitary matrices in the limit ci → −1/2 are labelled by Ū and W̄. For the sum
over the full KK fermion tower, one obtains further

∞∑
n=1

vgfnn
mfn

c→−1/2
=

∑
n,k

[
1 +

m2
h

4M2
KK

1

(2 + β)(3 + β)

]
δnn +

v2

2M2
KK

(2 + β)

(5 + 3β)
Yf,nkY

†
f,kn . (4.85)

Now, after having computed the limit for the individual parts of the fermion contribution, one
can determine the complete result, according to the formula (4.65). In this connection, one can
distinguish between the results for the tree-level Higgs couplings to the fermions of the third
generation, and the loop-contributions of the KK fermion tower, as

Cf + iCf5 = 1− εf +
m2
h

4M2
KK

1

(2 + β)(3 + β)
− v2

M2
KK

(1 + β)(2 + β)

(3 + β)(5 + 3β)

(YfY
†
fYf )33

(Yf )33

− Lm2
W

2M2
KK

(1 + β)2

(2 + β)(3 + 2β)
,

νf + iνf5 =
v2

2M2
KK

(2 + β)

(3 + β)
Tr
[
YfY

†
f

]
.

(4.86)

The indices f of the couplings Cf + iCf5 are written as f = t, b, τ . We neglect the zero-mode
contributions of the lighter fermions, since the corresponding form factors A(τfi) and B(τfi)
have insignificantly small values. On the contrary, for νf + iνf5 and the Yukawa matrices Yf the
indices f mean f = u, d, e, classifying between up-type quarks, down-type quarks and leptons.
In the numerical evaluation, we will neglect further the contributions εf that are

εf = (Φff )33 + (ΦFF )33 , (4.87)

given in the first row of (4.83), which are suppressed by m2
fn
/M2

KK [2, 150, 151]. The traces of

the hermitian matrix YfY
†
f are real, so that the CP-odd loop contributions of the KK towers

vanish completely, νf5 = 0 [2, 3]. By now, the present result does no longer depend on the 15
different fermion bulk mass parameters. Therefore, the phenomenological impact of the KK
mass scale MKK , the Yukawa matrices Yf and the parameter β of the Higgs can be investigated
much better.

Taking the concise expressions in (4.86), one can perform the limit β → ∞, in which the
results smoothly merge into the result derived in the very narrow bulk-Higgs scenario, reading

CnbH
f + iCnbH

f5 ≈ 1− εnbH
f − v2

M2
KK

1

3

(YuY
†
uYu)33

(Yu)33

− Lm2
W

4M2
KK

,

νnbH
f + iνnbH

f5 ≈
v2

2M2
KK

Tr
[
YfY

†
f

]
,

(4.88)

These outcomes coincide with the results calculated e.g. in [2,5]. In references [2,3], the profile
function of a very narrow bulk-Higgs field was taken to be a regularized distribution δη(t − 1)
of width η � 1, as mentioned in Subsection 2.2.3. The bulk-Higgs profile χh0(t), given in (2.74),
behaves similarly to this distribution in the limit β →∞. It should be noticed that the results for
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the fermion contributions in loop-induced Higgs processes do not smoothly interpolate between
a very narrow bulk-Higgs scenario and a real brane-Higgs scenario [2, 5, 151, 152, 171, 212]. The
difference is due to a “resonance effect” in the very narrow bulk-Higgs scenario, where very heavy
KK modes with masses of the order of the inverse Higgs width ∆h = v/η give an unsuppressed
contribution to loop amplitudes [2,172]. As a result, the effective field theory description breaks
down in the intermediate region between the two scenarios. This has been briefly discussed
in Subsection 2.2.3. The result for the loop-contributions of fermions to the gluon fusion in a
brane-Higgs scenario is of opposite sign compared to the result in the very narrow bulk-Higgs
scenario, and reads [2, 5]

νbH
f + iνbH

f5 ≈ −
v2

2M2
KK

Tr
[
YfY

†
f

]
. (4.89)

For that reason, the predictions for the Higgs decay into two photons and the gluon fusion
production process significantly differ between the two Higgs scenarios, although these might
consider a similar Higgs localization, from a naive point of view. But actually, the brane-Higgs
scenario and the very narrow bulk-Higgs scenario really form two different incarnations of the
RS model.

In the following, the analytic results, derived for the various Higgs couplings and processes
presented in the previous subsections, will numerically be evaluated, in the following, in de-
pendence of the significant, open parameters of the RS model. For the bulk-Higgs localization
parameter, a value 1 is chosen for a scenario with a real bulk-Higgs field, and a value 10 is
chosen for a scenario with a narrow bulk-Higgs field. For the numerical input of the evaluations,
three parameter sets have been diced with 5000 points for the Yukawa matrices Yf and the KK
mass scale MKK , where each set respects a different maximally allowed entry of the Yukawa
matrices y?, with y? = 1, 2, 3. For a given value of MKK , a χ2-minimization has been performed,
by starting from a random point, with anarchic, random, complex entries for (Yf )ij that obey
to the upper bound y?. All points have been rejected that deviate by more than 1σ from the
Wolfenstein parameters and the masses of the zero-mode quarks [150]. During the dicing pro-
cess, appropriate bulk mass parameters ci were used for the fermions to reproduce the correct
quark masses. Details on the dicing process are presented in Appendix C.3.

In Figure 4.7, the CP-even Higgs couplings to top quarks Ct are plotted, for β = 1 on the left-
hand side and β = 10 on the right-hand side, and for three different maximally allowed entries
of the Yukawa matrices y? = 1, 2, 3. One observes that the deviations from the SM are stronger
for lower values of the KK mass scale, higher values of β, and higher maximally allowed entries
of the Yukawa matrices y?, respectively. Similarly, the CP-odd Higgs couplings to top quarks
C5t are plotted in Figure 4.8 for the same choices of parameters. The results scatter around
zero, with larger magnitudes for higher maximally allowed entries of the Yukawa matrices y?,
smaller values for the KK mass scale and higher values for β. Both the CP-even and -odd Higgs
couplings to top quarks are mainly determined by the Yukawa matrices, entering through the

expressions
(YfY

†
fYf )33

(Yf )33
. These expressions can be averaged, by following the assumption that the

entries of the Yukawa matrices are distributed with a Gaussian shape around its central value,
for a large enough set of scattered points. Then, it follows that [2]

〈
(YfY

†
fYf )33

(Yf )33

〉 ≈ (2Ng − 1)
y2
?

2
, (4.90)
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Figure 4.7: The CP-even Higgs couplings Ct to a pair of t quarks are plotted in dependence of
the KK mass scale, for β = 1 on the left-hand side and β = 10 on the right-hand side, for the
three different maximally allowed entries of the Yukawa matrices, y? = 1, 2, 3, respectively.

Figure 4.8: The CP-odd Higgs couplings C5t to a pair of t quarks are plotted in dependence of
the KK mass scale, for β = 1 on the left-hand side and β = 10 on the right-hand side, for the
three different maximally allowed entries of the Yukawa matrices, y? = 1, 2, 3, respectively.

where Ng = 3 is the number of fermion generations.5 Using this average, one can find for the
Higgs couplings to quark fields,

Cq ≈ 1− v2

M2
KK




3.75
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15.00

×
(y?

3

)2

+


0.95

1.57

1.78

 , (4.91)

for β = 1 (upper numbers), β = 10 (numbers in the middle) and β → ∞ (lower numbers).
Instead, for the Higgs couplings to lepton fields, one can find

Cl ≈ 1− v2

2M2
KK

({
8.44

13.06
×
(y?

3

)2

+

{
0.94

1.57

)
, (4.92)

5For the matrices Ỹf in the bulk-Higgs RS model, it follows further that 〈 (Ỹf Ỹ
†
f Ỹf )33

(Ỹf )33
〉 ≈ (1+β)2

(2+β)2 (2Ng − 1)
y2?
2 .
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Figure 4.9: The CP-even Higgs couplings to a pair of t quarks, b quarks and τ leptons, Ct, Cb, Cτ ,
are plotted, for y? = 3, in dependence of the KK mass scale, for β = 1 on the left-hand side and
β = 10 on the right-hand side, respectively.

for β = 1 (upper numbers) and β = 10 (lower numbers), whereas the result for the limit β →∞
is equal to the quark case. The last values denote the corrections from the vev-shift of the Higgs
κv in the RS model. So, the scattered results for the CP-even Higgs couplings to fermions are
rather insensitive to the individual entries of the Yukawa matrices, but form broad bands that
scale with y2

?, as plotted in Figure 4.7. For higher values of the KK mass scale MKK , all the
rates approach to the SM expectations, since the new-physics effects scale with v2/(2M2

KK).
The differences between the quark and lepton results stem from the factors (1 + β)2/(2 + β)2,
which are only included in the quark case. The matrices Ỹq from (2.115) were diced subject
to the constraints that these have to reproduce the correct quark masses and the CKM mixing
matrix. On the contrary and for simplicity, the matrices for the leptons Yl were diced without
implementing such constraints. This may have created the small differences in the numerical
Higgs couplings. The averaged curves for the couplings Cf , for y? = 3, are indicated by the
black and dashed lines in the plots in Figure 4.7. The results obtained in the limit β →∞ are
given by the orange and dashed curves. The curve for β = 10 already strongly approaches to
the orange curve of the benchmark case. The CP-odd couplings average to 0, and one observes
a broad scattering of the results around this central value in the plots in Figure 4.8, with larger
amounts for larger values of y? and smaller values for the KK mass scale.

In Figure 4.9, the CP-even Higgs couplings to a pair of t quarks, b quarks and τ leptons are
illustrated, for β = 1 on the left-hand side and β = 10 on the right-hand side, and a maximally
allowed entry y? = 3 of the Yukawa matrices. In Figure 4.10, the CP-odd Higgs couplings to
t and b quarks and τ leptons, C5t, C5b and C5τ , are plotted, for β = 10, and y? = 3, on the
left-hand side. On the right-hand side, the correlation of the CP-odd Higgs couplings to a pair
of t and b quarks, C5t and C5b, is indicated for β = 10 and three different maximally allowed
entries of the Yukawa matrices. The different behaviours of the curves result from the different

kinds of matrices Yu, Yd and Yl that enter the expressions
(YfY

†
fYf )33

(Yf )33
, which determine the

Higgs couplings to the fermions. It can be observed from the plots that there is only a moderate
dependence on the different types of Yukawa matrices, especially for the CP-even couplings for
β = 10. For β = 1, the lepton couplings Cτ slightly differ from the quark couplings Cb and Ct
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Figure 4.10: The CP-odd Higgs couplings to t and b quarks and τ leptons, C5t, C5b and C5τ ,
are plotted for β = 10 and y? = 3, on the left-hand side, respectively. On the right-hand side,
the correlation of the CP-odd Higgs couplings to a pair of t and b quarks, C5t, C5b, is indicated,
for β = 10, and three different maximally allowed entries of the Yukawa matrices.

in the range of lower KK masses, as predicted by the averaged expressions in (4.91) and (4.92).
For the CP-odd Higgs couplings, the behaviour of the Higgs couplings to t and b quarks seems
to be nearly symmetric in the right plot of Figure 4.10. On the left-hand side, the CP-odd
Higgs couplings to leptons seem to scatter with slightly larger magnitudes, compared to the
couplings to t and b quarks. One can conclude that the flavor-specific constraints, applied in the
dicing processes of Yu and Yd, seem to have quite insignificant effects, according to the similar
magnitudes of the new-physics effects in the Higgs couplings. The lepton Yukawa matrices Yl,
diced with the absence of flavor-specific constraints, cause slightly larger new-physics effects in
the CP-even Higgs couplings, and a broader scattering of the CP-odd Higgs couplings, compared
to the quark cases.

After having discussed the behaviour of the single Higgs couplings to fermions, in dependence
of the parameters of the bulk-Higgs RS model, one can evaluate, in the next step, the new-physics
effects on the various Higgs production and decay rates, which are easily calculated by means
of the different Higgs couplings.

4.2 Higgs cross sections and decay rates, and the total

Higgs decay width

4.2.1 Tree-level Higgs decay rates

In the following, several Higgs production cross sections and decay rates are numerically evalu-
ated in dependence of the RS model’s parameter space. We start with an analysis of the tree-level
Higgs production cross sections through W boson fusion and Higgsstrahlung, produced in asso-
ciation with a W boson, which are given to good approximation by C2

W from (4.26), according to
the formulas (4.49) and (4.47). The results for these processes in connection with a Z boson are
very similar, so that we restrain on the W boson case in the following. The results are plotted in
Figure 4.11 on the left-hand side, in dependence of the KK mass scale and three different choices
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Figure 4.11: The cross sections for Higgs productions via W boson fusion, and Higgsstrahlung,
given by C2

W in good approximation, are plotted on the left-hand side, and the Higgs decay
rates into a pair of heavy W bosons are plotted on the right-hand side, normalized on the SM
predictions, respectively. Very similar curves could be derived for the processes in connection
with a Z boson.

for the parameter β. Smaller new-physics deviations from the SM can be observed that are only
important for very low KK masses < 3 TeV, and one can find a less significant dependence on
the parameter β, as well. On the right-hand side of Figure 4.11, the Higgs decay rates into states
of a virtual and a real W boson are plotted, where the virtual W boson is decaying further into
a state of two fermions. Again, the decay into two Z bosons would give very similar results that
are skipped here. The rates in the plot are normalized on the SM values, and are plotted in
dependence of the KK mass scale for three parameter choices of β, respectively. One can ob-
serve that the curves strongly resemble the curves of the Higgs production cross sections, given
in Figure on the left-hand side. The formula for the normalized decay rates in (4.42) is similar
to the formula for the normalized Higgs cross sections, given by C2

W that gets corrected by the
factor CΓW , arising from the gauge boson to fermions couplings, and the contributions from the
KK gauge boson tower that are exchanged in the process, as well. Similarly, the dependences
on the Higgs localization parameter β are of minor importance, as the new-physics corrections
are, in total, of a moderate magnitude.

In Figure 4.12, the Higgs decay rates into a pair of b quarks and τ leptons are plotted, for
y? = 3, and β = 1 on the left-hand side and β = 10 on the right-hand side, where the blue points
give the results for a Higgs decaying into a pair of τ leptons, and the green points give the results
for a Higgs decaying into a pair of b quarks. The single Higgs couplings to fermions have been
investigated before, and the decay rates consist of the sum of the square of the CP-even and
-odd Higgs couplings, as given in (4.4). The new-physics effects in the two different decay rates
get amplified now, compared to the effects arising in the single Higgs couplings that have been
discussed before. Again, the small differences between the two decay rates into ττ and bb final
states stem from the expressions that contain the different Yukawa matrices Ỹd and Ỹl. The
results for the decays into τ leptons scatter in a bit broader manner. It has been discussed that
these differences do not necessarily result from a physical reason, but merely from the dicing
procedure of the Yukawa matrices. Also, the contributions of the CP-odd Higgs couplings that
scatter around zero may cause a slightly broader scattering of the curves of the decay rates,
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Figure 4.12: Here, the Higgs decay rates into a pair of τ leptons and b quarks, normalized on
the SM decay rates, are plotted for y? = 3, and β = 1 on the left-hand side and β = 10 on
the right-hand side. The black, dashed lines give the averaged results, obtained from (4.91) and
(4.92), for β = 1 and β = 10, whereas the orange, dashed lines give the averages for β →∞.

compared to the curves of the single, CP-even Higgs couplings. All in all, stronger new-physics
effects can be found in the Higgs decay rates to fermions in Figure (4.12), compared to the
Higgs decay rates to W bosons in Figure 4.11. In this sense, also the dependence on the Higgs
localization parameter β is more severe.

4.2.2 Loop-induced Higgs processes

As a next step, the loop-induced Higgs production process through gluon fusion and the Higgs
decay rate into two photons, normalized on the SM predictions, are evaluated. These Higgs
production and decay rates include both the RS models modifications of the tree-level Higgs cou-
plings to fermions and gauge bosons, as well as the loop-contributions induced by KK fermions,
KK gauge bosons and KK scalars. For that reason, these rates can be of special importance in
the context of new-physics searches. The results, derived with the diced sets of parameters, are
displayed in Figure 4.13, for β = 1 on the left-hand side and β = 10 on the right-hand side,
respectively. The fermion loop-contributions, given by the traces of Yukawa matrices, can be
averaged for a large enough set of scattered points as [4]

〈Tr
(
YfY

†
f

)
〉 ≈ N2

g

y2
?

2
, (4.93)

assuming that the entries of the Yukawa matrices are distributed with a Gaussian shape around
its central value, and Ng = 3 is the number of fermion generations, similar as before. With
the help of the averaged expressions, and L = 33.5, A(τW ) ≈ 1.19, A(τt) ≈ 1, A(τb) ≈ 0, and
therefore CSM

γ ≈ −4.91, and CSM
g ≈ 1, one determines the following averages to the lowest order

σRS[gg→h]

σSM[gg→h]

≈ 1 +
v2

2M2
KK
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3

)2 − 1.9
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(
y?
3

)2 − 3.1

(−30 + 162) ·
(
y?
3

)2 − 3.6

, (4.94)
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Figure 4.13: Numerical results for the cross sections of the Higgs boson production through
gluon fusion (upper plots), and the Higgs decay rates into two photons (lower plots), normalized
on the corresponding SM predictions. The dependencies on the KK mass scale MKK and the
maximally allowed entry of the Yukawa matrices y? are illustrated. The left plots correspond
to the scenario with a real bulk-Higgs field, for β=1, and the right plots correspond to the
scenario with a narrow bulk-Higgs field, for β=10. The vertical, black and dashed lines express
the constraints that are implied by tests of the Peskin-Takeuchi observables in the respective
bulk-Higgs scenarios [82].

and

ΓRS[h→γγ]

ΓSM[h→γγ]

≈ 1− v2

2M2
KK

 1
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3.6

 . (4.95)

The numbers in the upper rows correspond to the real bulk-Higgs case (β = 1), the numbers
in the middle rows correspond to the narrow bulk-Higgs case (β = 10), whereas the numbers in
the lower rows give the results in the limit β →∞. Similar to the tree-level Higgs couplings to
fermions, the new-physics effects in these rates, scaling with v2/(2M2

KK), strongly depend on the
parameter y?. The averages from (4.94) and (4.95) are plotted in Figure 4.13 by the black and
dashed curves. From (4.94), one can find that the fermion contributions, solely determining the
gluon fusion process, contain two different and contrary new-physics effects, given by the two
different terms proportional to (y?/3)2. At first, the top quark zero mode mixes with the tower
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of KK resonances, resulting in a suppression of the top quark Yukawa coupling to the Higgs
boson, which are the first, negative values. Then, the full KK tower of fermions contributes in
the loop, which are the second, positive values that elevate the whole result [154]. The last values
denote the corrections from the vev-shift of the Higgs κv in the RS model. The suppression of
the zero-mode top quark Yukawa coupling is of smaller magnitude, compared to the elevation
caused by the KK tower contributions, so that the results for the gluon fusion cross section are
increased compared to the SM. For the averaged, normalized Higgs decay rates into two photons
in (4.95), one can notice that all contributions, except of the vev shift, are divided through the
SM prediction, which is dominated by the W boson contribution [3]. The first, very small values
in (4.95) write the loop-contributions from the physical KK scalars that do not arise in the SM,
and vanish for β → ∞. The second values correspond to the W boson contributions, and the
third values are the combined fermion contributions. In contrast to the SM, one can observe that
the fermion loop-contributions dominate the Higgs decay rate into two photons in the RS model,
in correspondence with findings, e.g. from [2, 3, 5, 151, 152, 154, 171, 193]. Again, the last values
denote the corrections from the vev-shift κv. Altogether, the new-physics effects in the Higgs
decay rates to two photons, which are suppressed compared to the SM, are smaller compared to
the effects to the gluon fusion productions. This is because an interference effect arises between
the negative W boson contribution of the SM prediction and the positive contribution from the
KK fermions. The exclusion bounds implied by the Peskin-Takeuchi observable tests on the KK
mass scale, derived in (2.235), are indicated by the black and dashed lines in the plots. Here, we
take the bounds derived for U = 0 as predicted by the RS model. Above the bounds, significantly
smaller deviations from the SM expectations can be observed. Respecting the lowest, allowed
KK masses for the case of y? = 3, the gluon fusion production rates can be enhanced by 12.7 %
for β=1 and by 15.1 % for β=10, compared to the SM prediction. The curves of the normalized
Higgs decay rate for y? = 3 can be reduced by 5.4 % for β=1, and by 6.1 % for β=10. The
results in a scenario with a very narrow bulk-Higgs field, corresponding to the limit β →∞, for
the case of y? = 3, are given by the lowest rows of the averages in (4.94) and (4.95), and are
illustrated in the plots by the orange, dashed curves. One can see that for higher values of β,
the yellow curves approach to the orange curves, where the curves for β = 10 lie already very
close to these curves. So, again, it is explicitly shown that the new-physics effects have a more
profound impact, the higher the value of β is, and the less the bulk-Higgs localization is realized.

In Figure 4.14, the correlated new-physics corrections to the gluon fusion production process
and the Higgs decay rate into two photons are displayed, for β = 1 on the left-hand side and
β = 10 on the right-hand side, and for three different choices for the maximally allowed entry of
the Yukawa matrices y?, respectively. The anti-correlation of the corrections to the two processes
can be observed, and also, that the magnitudes of the new-physics effects to the gluon fusion
productions are larger than for the Higgs decay rates. The black points depict the results that
respect the exclusion bounds from the Peskin-Takeuchi observables in the respective bulk-Higgs
scenarios, for all three cases of y? = 1, 2, 3. In comparison with the coloured points, these black
points visualize the very slight deviations from the SM predictions in the parameter ranges that
are compatible to the bounds. For that reason, one can suspect that it might not be possible to
derive significantly stronger exclusion bounds on the parameter space of the bulk-Higgs RS model
by comparing the predictions with experimental results, as it will be presented subsequently.
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Figure 4.14: Here, the correlated new-physics effects to the Higgs production cross sections of
gluon fusion, and the Higgs decay rates into two photons are plotted, for β = 1 on the left-hand
side and β = 10 on the right-hand side. The black points depict the results that respect the
bounds implied by the Peskin-Takeuchi observable tests for all three choices of y?.

4.2.3 Total Higgs decay width

Figure 4.15: Predictions for the total Higgs decay width in the RS model, for β = 1 on the
left-hand side, and β = 10 on the right-hand side, and for three choices for the parameter y?,
respectively.

Altogether, the new-physics corrections to the various Higgs decay rates, defined via the
couplings in (4.4), affect the total Higgs decay width from (4.2). So, if assuming the branching
fractions from the SM, one can account for the RS corrections to the total Higgs decay width
ΓSMh = 4.21 MeV (for mh = 126 GeV) via the formula [203]

κh ≈ 0.56
(
|Cb|2 + |Cb5|2

)
+0.23C2

W +0.03C2
Z+0.09

(
|Cg|2 + |Cg5|2

)
+0.06

(
|Cτ |2 + |Cτ5|2

)
+0.03 .

(4.96)
The results are plotted in Figure 4.15, for β = 1 and β = 10, and y? = 1, 2, 3. Higher maximally
allowed entries of the Yukawa matrices y? do not significantly alter the magnitude of the RS
corrections, but rather cause a broader scattering of the results, as it can be observed from the
blue points in the plots. The new-physics corrections to all the different decay rates, except
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of the decay rate to two gluons, cause a suppression of the predictions compared to the SM.
However, the Higgs decay rate to two gluons receives the strongest new-physics corrections in
the RS model, as can be observed from the augmented predictions for the gluon fusion cross
sections in Figure 4.13, which are calculated by means of the equal formula. Although having a
branching fraction of only 9% of the total Higgs decay width, the new-physics corrections to this
rate significantly counteract with the remaining Higgs decay rates, which are reduced compared
to the SM.

The normalized total Higgs decay width will enter all the predictions for the signal strengths
of the various Higgs decay processes at the LHC that will be evaluated in the upcoming section.
Since the signal strengths involve a division through the normalized Higgs decay width, they are
accordingly enhanced in the regions of lower KK masses. Using the previously given averages
for the Higgs couplings and decay rates, one can determine the averages for the normalized total
Higgs decay width as

κh ≈ 1− v2

2M2
KK




1.03

4.51

6.72

×
(y?

3

)2

+


2.86

4.72

5.38

 , (4.97)

for β = 1 (upper numbers), β = 10 (middle numbers) and β → ∞ (lower numbers). These
curves are indicated in the plots by the black and dashed lines for β = 1 and 10, whereas the
orange, dashed lines correspond to β →∞. One can see that the averaged curves deviate from
the scattered points, which may occur due to the contributions from the CP odd couplings,
which average to 0 but scatter in a broader manner. However, these differences turn out to be
less significant when calculating the averages for the signal strengths of the Higgs decay rates in
the next section.

4.3 Signal strengths for the Higgs decays at the LHC

With the help of the diced sets of parameters, one can numerically calculate the signal strengths
Rii for the combined rates of a Higgs production at the LHC and a subsequent decay into the fi-
nal states ii = γγ, ZZ?, WW ?, bb̄, τ τ̄ . In contrast to the single Higgs couplings, or the individual
Higgs production and decay rates, measurements of the signal strengths are directly experimen-
tally accessible. The predictions are normalized on the respective SM predictions to investigate
the effects that solely arise from new physics. The formulas for the signal strengths include
the cross sections for the Higgs boson productions, by accounting for the different branching
fractions, where the gluon fusion productions are considered with a fraction of ≈ 90%, and the
Higgsstrahlung and vector boson fusion productions are considered with a fraction of ≈ 10%.
For simplicity, it is also assumed that the latter processes are always mediated by W bosons,
which is a sufficient approximation for the numerical evaluations. In the formulas for the signal
strengths, the sum of the cross sections is multiplied with the branching ratio of the respective
Higgs decay rates under consideration. The corrections to the total Higgs decay width are in-
cluded. Altogether, the new-physics effects to the signal strengths can become manifest in the
three individual quantities, which have been separately evaluated in the previous subsections.
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Rγγ RWW RZZ Rττ Rbb

ATLAS 1.14+0.27
−0.25 1.22+0.23

−0.21 1.52+0.40
−0.34 1.41+0.40

−0.36 0.62+0.37
−0.37

CMS 1.11+0.25
−0.23 0.900.23

−0.21 1.04+0.32
−0.26 0.88+0.30

−0.28 0.81+0.45
−0.43

av.: 1.14+0.19
−0.18 1.09+0.18

−0.16 1.29+0.26
−0.23 1.11+0.24

−0.22 0.70+0.29
−0.27

Table 4.2: Experimental results and their total uncertainties for the signal strengths Rii of the
various Higgs decay rates, from combined data collected at the LHC at Runs with center of mass
energies

√
s = 7 and 8 TeV [6].

The following formulas apply for the rates

Rγγ =
(σ ·BR)(pp→ h→ γγ)RS
(σ ·BR)(pp→ h→ γγ)SM

=
1

κh

[(
|Ceff

g |2 + |Ceff
g5 |2
)
· 0.9 + C2

W · 0.1
]
·
(
|Ceff

γ |2 + |Ceff
γ5|2
)
,

RV V =
(σ ·BR)(pp→ h→ V V ?)RS
(σ ·BR)(pp→ h→ V V ?)SM

=
1

κh

[(
|Ceff

g |2 + |Ceff
g5 |2
)
· 0.9 + C2

W · 0.1
]

· Γ(h→ V V ?)RS
Γ(h→ V V ?)SM

, V = W,Z ,

Rττ =
(σ ·BR)(pp→ h→ ττ)RS
(σ ·BR)(pp→ h→ ττ)SM

=
1

κh

[(
|Ceff

g |2 + |Ceff
g5 |2
)
· 0.9 + C2

W · 0.1
]
·
(
|Cτ |2 + |Cτ5|2

)
,

Rbb =
(σ ·BR)(pp→ h→ bb)RS
(σ ·BR)(pp→ h→ bb)SM

=
1

κh
C2
W ·
(
|Cb|2 + |Cb5|2

)
.

(4.98)

The formula for the corrections to the total Higgs decay width κh has been presented in (4.97),
and the formula for the decay rates into the gauge boson final states WW ? and ZZ? has been
derived in (4.42). The Higgs production process through gluon fusion, and the Higgs decay
rates into γγ, τ τ̄ , bb̄, are computed by the sum of the square of the CP-even and -odd Higgs
couplings, as given in (4.4). For the signal strengths of the Higgs decay into a pair of b quarks,
the Higgsstrahlung’s production process is an experimentally more feasible Higgs production
channel at the LHC than the gluon fusion production, which suffers from an overwhelming QCD
background [213]. For that reason, only this channel is considered in the formula in (4.98) [4]. In
the following, the numeric results for the individual signal strengths are presented, as predicted
by the bulk-Higgs RS model. Furthermore, the results are compared to the results reported
by the ATLAS and CMS collaborations from the LHC, given in [6]. The experimental results
are summarized in Table 4.2, and we will compare our predictions with the naive averages that
are given in the lowest row, built by the results for a specific rate from the two collaborations,
respectively.

We begin with an evaluation of the signal strengths for the loop-induced Higgs decay rate into
two photons. The numeric results for this rate, normalized on the SM prediction, are displayed
in Figure 4.16. The left plot gives the results for β=1 in a scenario with a real bulk-Higgs
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Figure 4.16: Numerical results for the signal strengths for the Higgs decay into two photons,
normalized on the SM prediction, for three different maximally allowed entries of the Yukawa
matrices y?. The left plot corresponds to a scenario with a real bulk-Higgs field (β=1), and the
right plot corresponds to a scenario with a narrow bulk-Higgs field (β=10). The light blue band
shows the averaged 1σ error region from the experimental results by ATLAS and CMS [6]. The
dashed lines indicate the exclusion bounds implied by tests of the Peskin-Takeuchi observables
from (2.235).

field, and the right plot gives the results for β=10 in a scenario with a narrow bulk-Higgs field.
The results are elevated compared to the SM. Using the previously given averages for the cross
sections and decay rates, one can determine the signal strengths for the Higgs decay into two
photons, normalized on the SM prediction, to the lowest order as

Rγγ ≈ 1 +
v2

2M2
KK


46.5 · 0.9 ·

(
y?
3

)2 − 3.6 · 0.1 + 0.2− 19.5 ·
(
y?
3

)2 − 5.3

103.7 · 0.9 ·
(
y?
3

)2 − 6.0 · 0.1− 0.9− 30.6 ·
(
y?
3

)2 − 11.1

132.0 · 0.9 ·
(
y?
3

)2 − 6.9 · 0.1− 1.4− 35.8 ·
(
y?
3

)2 − 13.9

. (4.99)

The values in the upper row correspond to β = 1, the values in the middle row correspond to
β = 10, and the last row gives the result for β → ∞. The averages are illustrated in the plots,
for y? = 3, by the black and dashed curves. It can be observed that the new-physics effects to
the gluon fusion production cross sections, given by the first positive values in the averages, and
the Higgs decay rates into two photons, given by the third and fourth values, interfere with each
other [3]. The elevations from the gluon fusions dominate, and the results for the signal strengths
are elevated compared to the SM, accordingly. The suppression effect of the Higgs decay rate into
two photons is of moderate size, due to the interplay between the fermion contributions and the
SM W boson contributions in that decay rate, as has been discussed before. The second values
in (4.99) are related to the fraction of the Higgs boson production through vector boson fusion
and Higgsstrahlung, and the last values denote the combined corrections from the vev-shift κv
and the total Higgs decay width κh. In the plots, the orange, dashed curves illustrate the results
in a scenario with a very narrow bulk-Higgs field, corresponding to β →∞, for y? = 3, which are
given by the last row in the averages in (4.99). For a certain choice of v2/(2M2

KK) and y? = 3, one
can find that the new-physics effects for β = 1 are about 25 %, and for β = 10 are about 75 % of
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Figure 4.17: Numerical results for the signal strengths for the Higgs decays into pairs of gauge
bosons (WW ?, ZZ?) at the LHC. The plots on the left-hand side give the results for β = 1,
whereas the plots on the right-hand side give the results for β = 10, for three choices of y?,
respectively. The light blue band gives the averages of the experimental results from ATLAS
and CMS [6]. The black points in the lower right plot indicate the scatter points, binned in
a range of 250 GeV, that are used for the determination of the exclusion bounds, which are
summarized in Table 4.21.

the effects that are obtained in the benchmark case for β →∞. The average of the experimental
results from ATLAS and CMS, given in Table 4.2, is displayed by the corresponding 1σ error
region by the light blue band in the plots in Figure 4.16. Points that lie outside of this band
can be excluded to 68 % CL. The bulk-Higgs results for β = 1 are nearly completely covered
by this band, and the results for a narrow bulk Higgs for β = 10 are situated in the 1σ band in
most of the parameter ranges. The dashed lines indicate the exclusion bounds derived from the
Peskin Takeuchi parameters, given in (2.235). Above these bounds, only very slight deviations
from the SM can be observed.

All in all, the enhanced Higgs production cross sections through gluon fusion determine
largely the results for all the signal strengths, except of the Rbb-rate, and cause augmented
predictions compared to the SM. These get attenuated by the suppressed contributions from
the other Higgs production cross sections, given by ≈ C2

W , displayed in the Figure 4.11, and the
respective Higgs decay rates, which are illustrated in Figures 4.11 and 4.12. The signal rates
for the Higgs decays into WW ? and ZZ? states RWW and RZZ are plotted in Figure 4.17, for
β = 1 on the left-hand side and β = 10 on the right-hand side, and the three different maximally
allowed entries of the Yukawa matrices. Very similar trends can be observed for the curves of the
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Figure 4.18: Plots of the correlations between the signal strengths Rγγ and RZZ , for β = 1 on
the left-hand side and β = 10 on the right-hand side, and for three choices of y?, respectively.
The gray, dashed crosses indicate the results and uncertainties from the averages of the ATLAS
and CMS results [6].

two processes. By using the previously given averages, one can average the signal rates RWW

and RZZ , normalized on the SM predictions, by

RWW ≈ 1 +
v2

2M2
KK




42.88

97.93

125.52

×
(y?

3

)2

−


5.12

8.39

9.63

 ,

RZZ ≈ 1 +
v2

2M2
KK




42.88

97.93

125.52

×
(y?

3

)2

−


6.15

10.12

11.61

 .

(4.100)

These averages are given in the plots by the black and dashed curves for β = 1 and β = 10, and
the orange, dashed curves for the limit β → ∞, respectively. One can observe that there are
stronger new-physics corrections to RWW and RZZ in comparison to the results for Rγγ, given in
Figure 4.16. In all the cases, the largest contributions stem from the loop-contributions of KK
fermions that determine the gluon fusion production rate, entering RWW , RZZ and Rγγ. Then,
in the rate Rγγ, the extenuated fermion loop-contributions to the Higgs decay rates lead to a
stronger compensation effect, compared to the effects by the tree-level decay rates h → WW ?,
h → ZZ? in RWW and RZZ . In Figure 4.18, the results for Rγγ and RZZ are plotted in a
combination for β = 1 on the left-hand side and β = 10 on the right-hand side. All the results
are correlatively enhanced compared to the SM predictions, which correspond to just the ratios
1. As before, one can observe that the new-physics corrections to RZZ are larger, compared to
the corrections to Rγγ. The gray, dashed crosses indicate the averages and 1σ uncertainties from
the experimental results of ATLAS and CMS [6]. One can see that for larger values of y?, the
scattered points are passing the regions that are marked by the crosses to a large amount.

Similar to the evaluations before, the results for the signal strengths for the Higgs decays
into tau leptons are plotted in Figure 4.19, for β = 1 and β = 10, and three different maximally
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Figure 4.19: Plots of the signal strengths for the Higgs decay into a pair of tau leptons. The
plot on the left-hand side corresponds to a value β = 1, and the plot on the right-hand side to a
value β = 10. The light blue bands mark the average of the experimental results from ATLAS
and CMS [6].

allowed entries of the Yukawa matrices. Whereas the curves resemble the curves for Rγγ, plotted
in Figure 4.16, the magnitudes of the new-physics corrections are, in fact, a bit larger, compared
to the effects to Rγγ. Again, a partial compensation arises in the rates Rττ between the enhanced
gluon fusion cross sections and the suppressed decay rates into tau leptons. But, the decay rates
into tau leptons, plotted in Figure 4.12, are mediated at the tree level compared to the loop-
induced decay rates into two photons that receive contributions from the full KK fermion tower.
For that reason, there is a weaker compensation effect in Rττ compared to Rγγ, and the new-
physics corrections are a bit larger. The averaged signal strengths read

Rττ ≈ 1 +
v2

2M2
KK




26.0

71.81

95.52

×
(y?

3

)2

−


1.28

2.13

2.47

 , (4.101)

given by the black (β = 1, 10) and orange, dashed curves (β →∞) in the plots in Figure 4.19.
Solely the predictions for the signal strengths for the Higgs decay into a pair of b quarks are

suppressed compared to the SM, as it can be observed from Figure 4.20. The only production
channel included here is the Higgsstrahlung’s production, given by ≈ C2

W , which is suppressed
compared to the SM, as plotted in Figure 4.11. It is multiplied with the suppressed Higgs
decay rate into b quarks, evaluated in Figure 4.12. Using the previously given averages, one can
approximate the signal strengths for the Higgs decays into a pair of b quarks by

Rbb ≈ 1− v2

2M2
KK




6.47

17.43

23.28

×
(y?

3

)2

+


4.56

7.62

8.68

 , (4.102)

which are plotted in Figure 4.20 by the black (β = 1, 10) and orange, dashed lines (β →∞).
The 1σ uncertainty regions of the averages of the experimental results from ATLAS and

CMS, collected in Table 4.2, are marked in all the plots by the light blue areas, respectively.
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Figure 4.20: Plots of the signal strengths for the Higgs decay into a pair of b quarks. The plot
on the left-hand side corresponds to a value β = 1 and the plot on the right-hand side to a value
β = 10. The light blue bands mark the average of the experimental results from ATLAS and
CMS [6].

Interestingly, the tendencies of these results to enhanced or suppressed values compared to
the SM predictions are in agreement with the predictions in the bulk-Higgs RS model. There
are enhanced results for the rates Rγγ, RWW , RZZ and Rττ , whereas the results for Rbb are
suppressed. For the rates Rγγ and RZZ , both the results from ATLAS and CMS are enhanced
compared to the SM, whereas for RWW and Rττ , the results from CMS are suppressed, actually.
For the rate Rbb, the results from the two collaborations are both suppressed compared to
the SM. So, the predictions in the bulk-Higgs RS model are in a good agreement with the
experimental results. But, the experimental results are also compatible to the SM predictions
within the uncertainties. As a consequence, since the RS model with a bulk-Higgs localization
gives predictions much closer to the SM, compared to the brane-Higgs scenarios of the RS model,
the predictions are also better compatible to the experimental results that prove more or less
the SM predictions.

For that reason, we had low expectations for deriving any significant, new exclusion bounds
on the parameter space of the bulk-Higgs RS model, by comparing the experimental results with
the numerical predictions for the signal strengths of the Higgs processes. Nevertheless, in order
to perform such comparisons, the scattered points for each of the signal strengths have been
binned within a range of 250 GeV, as is indicated by the black points in the lower right plot of
Figure 4.17, as an example. Then, one could determine the parameter value for MKK , at which
the binned results for the rates Rii, divided through the respective experimental result Rii,exp,
deviate by more than 1σ or 2σ from the ratio 1, according to the formula

z =
Rii,bin

Rii,exp

⇒ |1− z| >
{

1σ(z) ⇒ 68%

2σ(z) ⇒ 95%
excluded ,

σ(z) =

√(
∆Rii,th

Rii,exp

)2

+

(
∆Rii,exp ·Rii,th

R2
ii,exp

)2

.

(4.103)

This evaluation has been performed for all the scattered curves, for y? = 3 and y? = 2, and both
values of β = 1 and 10, respectively. In the experiments, the scattering events for the signal
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Figure 4.21: Parameter regions for the KK mass scale that can be excluded to 68% or 95%
CL, given by the green and blue areas, which were derived by means of comparisons between
the predicted signal strengths in the bulk-Higgs RS model and the experimental results from
ATLAS and CMS. The left plot gives the results for y? = 3, and the right plot gives the results
for y? = 2. The parameter values for β are indicated. The gray, dashed lines indicate the upper
bounds of the regions that are excluded by the Peskin-Takeuchi parameters to 95% CL. In this
sense, evaluations of the signal strengths for the Higgs decay rates cannot provide any stronger
constraints on the parameter space.

strength of a considered process follow a statistical procedure. In a Gaussian normal distribution,
68% or 95% of all the values of the distribution can be found in the intervals of ±1σ or ±2σ
around the mean value, respectively. Accordingly, one can consider Rii,bin/Rii,exp = 1 as the mean
value, and the mentioned percentile fractions of a measurement, divided by the experimental
results as a prediction Rii,exp, can be found in the σ-intervals around the mean value. Here, σ is
calculated according to the evolution of errors with the formula in (4.103), where the standard
deviations of the points in the bins are considered as the theoretical errors. In this sense, a range
of points in the MKK − Rii-planes, for which the ratio Rii/Rii,exp deviates by more than 1σ or
2σ from 1, is not included in 68% or 95% of all the experimental data, and can be excluded by
the respective CLs.

The results from this evaluation are summarized in the graphics of Figure 4.21. The com-
parisons were performed for y? = 3 (left plot) and y? = 2 (right plot), and for β = 1 and β = 10,
as specified. The green areas indicate the regions that are excluded to 68% CL according to
the described evaluation, and the blue areas indicate the regions that are excluded to 95% CL.
The results resemble those of the before mentioned discussions for the various signal strengths
for the Higgs processes in the RS model. The strongest exclusion bounds stem from the rates
RWW and RZZ , since the strongest new-physics effects arise there. Only for RWW and RZZ ,
exclusion bounds could be determined to 95% CL. The results for RZZ , to 68% CL, apparently
exclude a large range of higher KK masses. This is a consequence of the fact that the 1σ region
of the average of the experimental results for RZZ ends above the ratio 1. This might, however,
be related to an in-sufficient experimental precision, connected with the present results, and the
statement is given to 68% CL, only. All the other results exclude certain parameter regions of
lower KK masses. The signal strengths for the Higgs decay into two photons and tau leptons
give smaller excluded regions, and the predictions for the signal strengths of the Higgs decay into
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CW CZ Cg Cγ
(-0.004,0) (-0.006,0) (-0.014,0.014) (-0.032, 0.035)

Ct Cb Cτ
(-0.044,0.035) (-0.003,0.011) (-0.013,0.017)

Table 4.3: Experimental capabilites for the precision measurements at a future ILC [214–217],
for
√
s = 1 TeV and 1000 fb−1, demonstrated by the 1σ confidence intervals that have been

derived in [218].

b quarks have been found to lie in the experimental 1σ regions in most of the parameter ranges.
The gray, dashed lines indicate the bounds that are implied by the Peskin-Takeuchi parameters
in the respective bulk-Higgs RS scenarios, to 95% CL. As suspected before, the results we have
been able to derive with our evaluations give only very weak exclusion bounds on the parame-
ter space of the model, which are much below the exclusion bounds from the Peskin-Takeuchi
parameters.

This is in contrast to the evaluations performed in other Higgs scenarios of the RS model,
e.g. in [2–4]. For the brane-Higgs scenario, the predictions for the cross sections of the gluon
fusion production rate are suppressed compared to the SM, and as an effect, the signal strengths
Rγγ, RWW , RZZ and Rττ are suppressed compared to the SM, as well. In principle, brane-Higgs
scenarios with a minimal particle content are less significant for phenomenological searches, since
they suffer from the strong exclusion bounds, implied by the Peskin-Takeuchi parameters. But,
in realizations of the RS model with a custodial bulk gauge symmetry and a brane-Higgs, as
presented in Section 2.3 of the thesis, the enlarged KK fermion content causes negative and much
stronger new-physics contributions to the Higgs processes. In these scenarios, the evaluations of
the signal strengths for Higgs processes were performed e.g. in [2–4], and resulted in very strong
exclusion bounds on the parameter space of the custodial RS model, exceeding the bounds from
the Peskin-Takeuchi parameters to a large amount. To 95% CL, the most stringent, derived
constraints are MKK > 8.12 TeV for a brane Higgs, and MKK > 6.08 TeV for a narrow bulk
Higgs (β →∞), both for y? = 3 [4]. In this regard, the masses of the lightest KK particles must
lie above Mg(1) > 19.89 TeV and Mg(1) > 14.90 TeV, accordingly. Nevertheless, the bounds can
be weaker for lower values of y?. But, in total, also the custodial RS model is very strongly
constrained at the present level by means of the various Higgs processes. On the contrary,
the evaluations presented in this chapter of the thesis can demonstrate that the predictions for
the Higgs processes in the bulk-Higgs RS model are, in principle, well compatible to the SM.
Furthermore, they are in a good agreement with the experimental results of the LHC. From
these outcomes, one can conclude that the existence of a small and warped extra dimension in
connection with a bulk-Higgs field might still be conceivable.

4.3.1 Outlook on the precision measurements of Higgs couplings

In the previous section, the signal strengths for the various Higgs decay processes at the LHC
have been evaluated, and have been compared to the experimental results from ATLAS and
CMS. It was not possible to derive any new, significant constraints on the parameter space of
the bulk-Higgs RS model by means of these comparisons. So, it proves to be quite difficult to
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test the predictions of the bulk-Higgs RS model using the current precision measurements in the
Higgs sector. Future, more advanced experiments with stronger sensitivities are demanded in
order to perform enough precise measurements. In this context, the ILC is one proposed, future
collider project [214–223], where the sensitivity on measuring the Higgs rates can be enormously
improved compared to the LHC.6 The possible, experimental capabilities of an upgraded version
of the ILC, on testing the Higgs couplings in a model-independent way, were derived in [218],
expressed by 1σ confidence intervals for the uncertainties. The results are summarized in Table
4.3, and can be compared to the Higgs couplings predicted by the bulk-Higgs RS model [4].
In this way, the ability of the upgraded ILC on deriving constraints on the parameter space
of the model can be tested [4]. Such a comparison was performed in [4] for the predictions in
a brane-localized Higgs scenario with a custodial bulk gauge symmetry. In this relation, one
can assume SM like Higgs couplings for the experimental results Cexp

i = 1, while taking the 1σ
uncertainties from Table 4.3 [218]. Then, a similar evaluation can be performed, as done before
for the Higgs signal strengths. The deviations for z = Ci/C

exp
i , according to (4.103), can be

computed to determine the excluded parameter regions to certain CLs. The results are displayed
in the graphics in 4.22, for y? = 3 on the left and y? = 2 on the right, and for β = 1 and β = 10,
as indicated. Again, the green areas mark the regions that can be excluded to 68% CL, whereas
the blue areas mark the regions that can be excluded to 95% CL. The exclusion bounds derived

6The ILC will be a linear collider experiment with a length of ≈34 km, reaching a center of mass energy of√
s = 500 GeV, or 1 TeV in a possible upgrading level, and will operate with colliding electron and positron beams.

A possible location for this project could be in Japan, according to the ILC Design Report from 2013 [222,223].
In this experiment, the center of mass energy will enormously be increased compared to preceding lepton collider
experiments. In principle, at lepton colliders it is possible to test particle interactions at much higher precisions
compared to hadron colliders like the LHC. The full center of mass energy is available in the interactions to
produce new particles, and the energies and momenta of the initial particles in the collisions are well known.
This allows to apply a reconstruction method for the detection of “hidden” particles that do not leave any traces
in the detectors, as neutrinos, or possible dark matter and light supersymmetric particles. In this way, it might
be conceivable that new particles will be detected at the ILC in lower energy ranges, whose signals might have
been too inconspicuous for a detection at the LHC. Whereas in the LHC collisions, much higher center of mass
energies are reached, in principle, the colliding protons consist of a substructure of quarks, carrying an unknown
fraction of the total center of mass energy. The interactions are carried out by some of the sub-particles, and it
is possible to search after new particles in a large energy region. The disadvantage is that large rates of highly-
energetic jets of particles are produced in the interactions of quarks and gluons that cause a strong background
pollution in the measurements. At lepton colliders, the background pollution is significantly reduced, compared
to hadron colliders. Therefore, they are suitable to test for rare particle processes, and processes with less precise
signatures. Altogether, the lepton colliders are especially helpful to test processes that are mediated by the
electroweak interaction, whereas hadron colliders allow to better explore the theories of the strong interaction.
So, it will be of special interest to extend the precision measurements of the electroweak interactions in the new
ILC experiments. The top quark physics will be better explored, because the center of mass energy will be
sufficient to produce a pair of top quarks at a lepton collider, for the first time. In this relation, the asymmetric
coupling of the top quarks to Z bosons can be investigated, for example. Furthermore, the properties of the Higgs
boson, e.g. its mass, spin and its interaction strengths with the SM particles, will be studied thoroughly. In this
way, it will be possible to test a large range of new-physics theories by indirect means. We have just presented
an evaluation in the context of the bulk-Higgs RS model of the various Higgs couplings to particles. These could
be compared with precise experimental measurements, in order to constrain the parameters space of the model,
or to “detect” even some possible hints for the existence of an extra dimension. In total, the ILC will offer a
complementary experimental facility to the LHC, to significantly advance the researches in the field of particle
physics.
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Figure 4.22: Plot of the excluded parameter regions, derived by means of a comparison between
the Higgs couplings predicted by the bulk-Higgs RS model and the experimental capabilites of a
possible, future ILC. It is assumed that the results reproduce the SM predictions, by Cexp

i = 1,
together with the 1σ uncertainties derived in [218], given in Table 4.3. The green fields mark the
excluded regions to 68% CL, and the blue fields mark the excluded regions to 95% CL. The gray,
dashed lines indicate the exclusion bounds derived from tests of the Peskin-Takeuchi observables
to 95% CL.

from the couplings Cg and Cb to 95% CL, for y? = 3,

Cg : MKK > 4.7 TeV (β = 1) , MKK > 7.0 TeV (β = 10) ,

Cb : MKK > 4.0 TeV (β = 1) , MKK > 6.3 TeV (β = 10) ,
(4.104)

are stronger than the dashed lines, which indicate the bounds from the Peskin-Takeuchi observ-
able tests, to 95 % CL. These results could possibly exclude masses for the lightest KK particle,
the KK gluon, up to Mg(1) < 11.5 TeV for β = 1, and up to Mg(1) < 17.2 TeV for β = 10,
respectively. Weaker constraints would apply for lower maximally allowed entries of the Yukawa
matrices y?, as it can be observed from the plot on the right-hand side of 4.22. All the other
exclusion bounds lie still below the bounds from the Peskin-Takeuchi parameters, actually.

4.3.2 Intermediate summary

In this chapter, the various direct Higgs couplings to the SM particles, and the loop-induced
Higgs couplings to gluons and photons, have been computed in the RS model with a minimal
bulk gauge group similar to the SM and a bulk-Higgs field. It has been possible to express the
summations, arising in the loop-induced Higgs couplings to gluons and photons, in dependence of
five-dimensional propagator functions in mixed momentum-position representations, as discussed
in [188, 189, 196–199]. Furthermore, the tree-level Higgs decay rates to two W or Z boson or
fermion final states have been computed. Analytical results have been derived for all the different
processes, valid to the first order in v2/M2

KK , which visualise the first, significant corrections
in the bulk-Higgs RS model compared to the SM. For the bulk-Higgs localization parameter,
it has been able to smoothly perform the limit β → ∞, offering the results calculated before
in a scenario with a very narrow bulk-Higgs field, e.g. in [2–5, 171, 172, 212]. A numerical and
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graphical evaluation has been performed for the various Higgs couplings, and Higgs production
and decay rates, in dependence of the KK mass scale MKK , the Yukawa matrices Yf and the
characteristic parameter of the bulk-Higgs scenario β. For the parameter β, a value 1 has been
taken for a real bulk-Higgs field, and a value 10 has been taken for a narrow bulk-Higgs field.

Enhancements have been observed for the predictions of the gluon fusion cross section, nor-
malized on the SM prediction. On the contrary, all the normalized Higgs decay rates into the
final states ii = WW ?, ZZ?, γγ, bb̄, τ τ̄ are suppressed compared to the SM. From the produc-
tion and decay rates, we have been able to determine the new-physics corrections to the signal
strengths for a Higgs production and decay into the different final states ii at the LHC, accord-
ing to pp → h → ii, where ii = γγ, b̄b, τ̄ τ,WW ?, ZZ?. In the loop-induced rates, the largest
contributions are given by the contributions of KK fermions, in agreement with findings derived
in [2,3,5,151,152,154,171,193]. Via the gluon fusion cross section, these contributions dominate
the various signal strengths for the Higgs decay rates at the LHC, giving enhanced predictions
compared to the SM. Consistently, the predictions lie the closer to the SM predictions, the lower
the value of β is and the stronger the Higgs field is located in the extra dimension. Already for
β = 10, the results approach strongly to the results of the very narrow bulk-Higgs scenario, cor-
responding to β →∞. Altogether, the new-physics effects have a stronger impact on the signal
strengths of the direct Higgs decays, compared to the signal strength of the Higgs decay into
photons that is mediated by loops of virtual particles. In the latter process, an interference effect
arises between the KK tower contributions by the fermions in the gluon fusion cross section and
the KK tower contributions by fermions and W bosons in the Higgs decay rate into two photons,
causing a partial decompensation of the new-physics effects, as a consequence. Remarkably, the
averages of experimental results from ATLAS and CMS for all the signal strengths, given in [6],
are in quite good coherence with the predictions in the bulk-Higgs RS model. The predictions
have been compared with the experimental results in order to determine exclusion bounds on
the parameter space of the model. However, all the determined bounds are weaker than the
exclusion bounds that follow from the Peskin-Takeuchi parameters. Also, with a future and
possible upgraded ILC experiment, it might be very challenging to determine any significant
exclusion bounds on the parameter space of the bulk-Higgs RS model, even if all measurements
of the Higgs couplings would prove the SM predictions.

So, we have consistently proven that in the bulk-Higgs RS model, besides the reduced exclu-
sion bounds from the Peskin-Takeuchi parameters, also the Higgs production and decay processes
lie significantly closer to the SM predictions. For these reasons, the bulk-Higgs RS model can
be considered to be an interesting alternative to the RS scenario with a custodial protection
mechanism. Whereas the custodial model provides the lowest predictions and therefore the best
agreements for the Pekin-Takeuchi parameters, it significantly suffers from the enlarged KK par-
ticle content of fermions and gauge bosons, which can induce strong new-physics contributions in
Higgs processes [2–4]. In the bulk-Higgs RS model, it is not necessary to implement an enlarged
bulk gauge group and particle content to provide good agreements for the Peskin-Takeuchi pa-
rameters and the Higgs processes. It will be interesting to test whether the good agreements
of the bulk-Higgs RS model persist in phenomenological evaluations of other particle processes.
Currently, the model appears to be a promising theoretical framework to address gauge and
flavour hierarchy problems of the SM.
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Chapter 5

A New, Heavy Bulk Scalar in the RS
Model

5.1 Di-photon resonance from a warped extra dimension

5.1.1 Some introductory remarks

Run 2 of the LHC experiments has operated with the highest center of mass energies that were
ever reached in collider experiments. There were big expectations that new particle states, e.g.
predicted by theories with extra dimensions, or SUSY, could be discovered, providing hints at
the existence of new physics beyond the SM. Whereas the Higgs boson was successfully detected
at the LHC [67, 68], discoveries of any new particles have been lacking, however. Then, an
observation of an anomaly in the di-photon mass spectrum of first 13 TeV data from Run 2
of the LHC was finally reported in December 2015. Interestingly, the anomaly, peaked as an
excess of recorded data at an invariant mass of 750 GeV, was independently observed by both
the ATLAS and CMS collaborations [8, 9, 224, 225]. At last, such an anomaly could be the
observation of a new particle state that was produced in pp collisions and subsequently decayed
into a state of two photons. Other decay channels of the presumably new particle were absent.
The decay width of the observed resonance could have a narrow or a broad shape, with a value
fitted to the data between 0 and 100 GeV. The best fit result for ATLAS was obtained for
a broad width of Γtot ∼ 45 GeV ∼ 0.06 · mS [9], whereas CMS favoured a narrow width of
Γtot = 1.4 · 10−4 ·mS [226]. An independent analysis in reference [227] concluded that the large-
width scenario was disfavoured by a combination of the ATLAS and CMS analyses, considering
the
√
s =13 TeV data, and was slightly preferred if including the data recorded at

√
s =8 TeV.

For example, the total decay rates were summarized in [228] for a width narrower or a width
broader than the experimental resolution of 6 − 10 GeV, by using the results reported from
ATLAS and CMS in [224,225].

In collider experiments, the scatterings of beam particles, comprised in bunches, are per-
formed repeatedly, while recording the data obtained in the detectors around the collision point.
This process is performed over a long period of time, at which the detected signals are summed
up. In this context, the luminosity is a quantity that describes the number of particle scatter-
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ings in an experiment.1 The first results from ATLAS and CMS were reported for integrated
luminosities of 3.2 fb−1 [9], and 2.6 fb−1 [8], respectively. The detections of particle signals
in scattering experiments follow statistical rules. For smaller data sets, fluctuations from the
expected amount of background signals may arise at any point in the invariant mass range.
So, for a resonance detected above the background signals a certain statistical significance has
to be determined to quantify whether it is the result of a particles decay, rather than just a
fluctuation of the background. A possibility to get an expression for the statistical significance
is to calculate the p-value, which is the probability that the background-only-hypothesis is true
and the observed excess was created by just a fluctuation. The lower this probability is, the
more convenient is it to reject the background-only-hypothesis and to claim for the alternative
hypothesis, which confirms the detection of a new resonance. The p-value can also be formu-
lated as a number of standard-deviations of a statistical distribution, giving a value for the
extremeness of a would-be fluctuation. In this connection, a local statistical significance of 5σ
is usually set as the threshold for a discovery in high-energy physics. For such a fluctuation,
the p-value lies around 2.7 · 10−7, which is 270 in a billion. For a resonance with such a small
p-value, one can make the conditional statement that the background-only-hypothesis seems to
be very unlikely, at least. The according conclusion is that the resonance was very probably
created by the decay of a new particle, which had induced the signals above the background at
the particular region in the mass plot. The Higgs boson could be discovered in the year 2012
with a statistical significance above 5σ [67, 68], for example.

Several variables of the measurements have to be accounted for in the determination of the
statistical significance, such as specific detector uncertainties, or the fact that data from several
experiments is combined in the evaluations. These factors create a certain model-dependence
for the calculation, which can hardly be avoided. The results for the di-photon anomaly were
reported for local statistical significances of 3.9σ for ATLAS favouring a broad width for the
resonance, and 3.4σ for CMS favouring a narrow width in this case [9,226]. Actually, no excess
was observed in the results of previous Runs of the LHC that were performed at

√
s = 7 TeV

and
√
s = 8 TeV. However, the results from these Runs were compatible in most ranges with

the theoretical assumption of a new, heavy scalar particle with a mass of 750 GeV [224,225]. By
a naive combination of the data, collected at Run 1 at

√
s = 8 TeV and Run 2 at

√
s = 13 TeV,

the anomalous excess could reach a local statistical significance of about 4σ [228], corresponding

1The luminosity is a quantity to describe the number of particle scattering events in an experiment per units
of time and surface,

L =
n ·N1 ·N2 · f

4πσxσy
, Ṅ = σp · L . (5.1)

Here, Ṅ is the number of the expected events per units of time, in a detector placed around the collision point,
and σp is the cross section of the considered process, whereas N1 and N2 are the particles in the colliding
bunches. In addition, n is the number of the bunches that collide with the frequency f , and the bream density
usually follows a Gaußian shape with the widths σx and σy [229]. The luminosity characterizes the ability of a
certain particle scattering experiment to accomplish results with a high statistical significance. In this sense, the
integrated luminosity is the integral of the luminosity with respect to time [230],

Lint =

∫
L dt . (5.2)

The higher the integrated luminosity is, the more data is available to analyse, and the more precise are the
experimental results.
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to a probability of 1 in a 50000 of just being created by a background fluctuation.

But, in fact, the local statistical significance only forms a reliable quantity to determine
whether a resonance has a physical origin, if the measurements are restricted to a specific range
where a resonance is expected to be found. This was not the case for the diphoton anomaly,
which could have been materialised equally in ∼ 102 other places within the same data-set [228].
If measuring processes that follow statistical principles over a large range of energy intervals,
also statistically unlike fluctuations may appear at some point in the observation range. Since
so many different experiments have been performed at the LHC, outcomes, which seem to be
unlikely, are expected to be observed in a small fraction of them, caused by fluctuations that
disappear if measuring for a longer time. This is the so-called “Look-elsewhere effect”, which may
dilute the local statistical significance. It is accounted for in the global statistical significance,
in which the whole mass range is taken into account over which an observation is performed.
In the case of the di-photon anomaly, ATLAS reported a global statistical significance of 2.3σ
whereas CMS reported a global statistical significance of 1.6σ [9, 226].

So, despite the apparently strong indications for an observation, the di-photon anomaly did
not pass the 5σ-threshold for the local statistical significance. For that reason, it had never been
called a discovery. In fact, it turned out that the high 5σ-threshold is mandatory in order to
guarantee a high discovery standard in the field of high energy physics. Subsequent investigations
of the di-photon anomaly have proven that the matter of statistics has seriously to be taken in
particle scattering experiments, and, in fact, the anomaly turned out to be a manifestation
of the “Look-elsewhere effect”. Very probably, it was created by a random fluctuation of the
background at the particular energy. With much more of recorded data, 15.4 fb−1 for ATLAS
and 12.9 fb−1 for CMS, both collaborations announced in the summer of 2016 that the excess
had disappeared in the updated invariant mass spectrum [231, 232]. Instead, the data was
conform with the expected background signals at the one standard-deviation level [231, 232].
Unfortunately, such disturbances can happen in statistical processes.

Shortly after the announcement of the excess in December 2015, a reaction, maybe dispro-
portionate, was caused by the field of theoretical physics [233]. Over 500 publications were
released that offered very plausible explanations for the excess. After having waited for tens
of years, the hope was enormous that the anomaly would have been verified with more data,
so that a first discovery of new physics beyond the SM would have been manifested, finally.
And, although the excess had not passed the 5σ-discovery threshold, further compelling reasons
contributed to the big excitement about this excess. As a very important point, the excess was
independently observed by both the ATLAS and CMS collaborations at the same point in the
mass range of di-photons! This could have been a clear indication for a possible physical origin
of the excess by the decay of a new particle. Furthermore, the observation was made in a very
clear observation channel, the di-photon invariant mass plot. The two produced photons in this
channel constitute to be a clean measurable final state, and the background rates to this process
can be determined to a high precision. Only the di-lepton and four-lepton final states are even
cleaner observables. Probably, more attention is paid to anomalies observed in the di-photon
channel than to anomalies found in final states that suffer from a strong background pollution.
Moreover, the di-photon channel was one of the discovery channels of the Higgs boson [67,68].

On the other hand, maybe it was necessary to present something new, besides the Higgs
boson, after so much money had been spent on the construction of the LHC experiments. The
search for new phenomena beyond the SM formed one of the main incentives for the development
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of the LHC. But, theoretical particle physicists have the duty to give explanations for newly
observed phenomena, which also applied to the case of the di-photon anomaly. So far, there is
no experimental evidence for the existence of any new physics beyond the SM, although there are
many well-motivated theories. Theoretical physicists have to speculate and have to elaborate
hypothetical frameworks to explain specific problems of the existing theory, and they must
postulate experimental signals that would allow to confirm new theories. After the falsification
of the di-photon anomaly in the summer 2016, all the new, theoretical explanations remain.
These provide interesting approaches to theoretical phenomena, and give fruitful impulses to
the field of particle physics, which, in this sense, have certainly their own values.

5.1.2 Inclusion of a singlet bulk scalar to the RS model

After these short, introductory remarks, I would like to outline in the next sections our work
from [7], which gives a consistent and natural explanation for the di-photon anomaly in the
framework of the RS model. In this context, I focus on the values of the excess reported in
December 2015 and spring 2016, given in the publications [8, 9, 224, 226]. The signal strength
for a narrow-width, scalar particle produced via gluon fusion was determined in [234] as a
combination of ATLAS and CMS data from measurements performed at

√
s = 8 TeV and√

s = 13 TeV, as
σ(pp→ S → γγ) = (4.6± 1.2) fb . (5.3)

In the subsequently presented evaluations, we fit our analysis to this value. Very interestingly,
this signal could not be reproduced by a minimal extension of the SM with just one single new
scalar S, or by a large set of theoretically well-motivated, UV-completed theories (e.g. [235]). The
reason was that additional new particles, with either a large multiplicity or sizeable couplings
to S, had to enter the loop in the gluon-fusion or bb̄-initiated production processes [236]. A
production of the resonance from other quark-initiated states would have caused a tension with
8 TeV data, whereas photon-induced production would have required non-perturbatively large
couplings [237, 238]. Moreover, the minimal super-symmetric UV completion of the SM would
have been ruled out by the resonance. This was due to the fact that the theory lacks a neutral
scalar candidate with appropriate couplings, although the additional degrees of freedom, needed
in the loop-induced production process, would have been motivated well [239]. As a consequence,
one had to resort to models with a low SUSY breaking scale, giving an sgoldstino explanation
[240], or R-parity violating scenarios in which an sneutrino had large enough couplings to explain
the excess [241, 242]. In principle, a large di-photon branching ratio could be obtained from
several composite resonances, like neutral composite scalars in non-minimal composite Higgs
models [243–246]. Also, a dilaton or radion could have been considered as a possible candidate
in extra dimensional models, which required either a fine-tuned Higgs-radion mixing [247,248] or
a small radius of the extra dimension [249]. In all cases, unwanted consequences were obtained for
the scale of the UV completion. Also, several non-minimal extensions of the SM were proposed,
explaining the di-photon excess along with other anomalies observed in the flavor sector and the
anomalous magnetic moment of the muon [239,250–256].

Fortunately, the RS model, and especially the enlarged RS model with a custodial symmetry,
could offer very natural explanations for the observed excess [7]. Here, only one single bulk
scalar singlet had to be included to the traditional framework of the RS model. The only
renormalizable interactions of that bulk scalar were the couplings to the bilinears of vector-like
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bulk fermions, present in the RS model, with the exception of possible Higgs “portal”-couplings.
For coupling parameters of this new bulk scalar to fermions of O(1), the di-photon excess could
be explained with KK masses in the multi-TeV range, compatible to electroweak precision tests
and constraints from flavor physics and Higgs phenomenology. The results are largely insensitive
to the parameters of the RS model, such as the five-dimensional masses of the fermions and their
Yukawa couplings to the Higgs field. In good approximation, the loop-induced couplings of the
new resonance to di-boson states just count the number of the degrees of freedom that propagate
in the loop, times group-theory factors. For that reason, the enlarged custodial RS model with
the extended degrees of freedom for fermions and gauge bosons was particularly suitable to
explain the excess. Moreover, all the calculated decay rates S → γγ,WW,ZZ,Zγ, gg, tt̄ and tt̄h
were compatible to the experimental results from

√
s = 8 TeV measurements at the LHC. And

furthermore, a similar scenario with the inclusion of a new bulk scalar to the RS model can offer
intriguing possibilities in the context of flavor physics, by generating the Z2-odd bulk fermion
mass terms via a spontaneous symmetry breaking induced by the vacuum expectation value of
a similar scalar [257, 258]. Some features of this possibility will be explored in the last section
of this chapter.

Besides, similar extra-dimensional frameworks were considered in the context of the di-photon
excess. For example, the new resonance was identified with the lowest spin-2 KK graviton in
a warped extra dimensional model in [259–261]. In [262, 263], flat extra dimensional scenarios
were investigated that cannot address the gauge hierarchy problem of the Higgs and the new
scalar. The authors from [262] took the assumption that the new scalar could exclusively couple
to heavy, vector-like leptons by placing only the SM lepton fields in the bulk. They had to
introduce a cut-off for overlap integrals by hand, which was motivated by stringy arguments.
Furthermore, a very similar framework to that of ours was published in [264], shortly after the
release of our paper. Our framework certainly has the advantage that the explanations could be
found on a very natural way without further complicated model building.

We identified the di-photon resonance with the lightest KK excitation of a new bulk scalar
field S(x, φ) in the RS model, forming a singlet under the bulk gauge group. In the RS model,
there is a four-component vector-like, five-dimensional fermion field for every Weyl fermion of
the SM [150]. For the zero-mode fermions, the chirality parts, not compatible to the SM, are
projected out by means of the Z2-symmetry, which is determined by the boundary conditions
at the branes. There are two towers of KK excitations for the two chirality parts of the fermion
fields. The new scalar field S couples to the scalar density of vector-like fermions, f̄f = f̄LfR +
f̄RfL, which combines fermions of even and odd chiralities, and therefore fermions of opposite
Z2-parities, in each of the terms. Accordingly, the field S(x, φ) must own an odd Z2-parity,
S(x,−φ) = −S(x, φ), to maintain the symmetry invariance of the coupling terms. The five-
dimensional Lagrangian, comprising the kinetic and mass terms of the new scalar S and its
coupling terms to fermions, reads∫ π

−π
dφ re−4σ(φ)

[
gMN

2
(∂MS) (∂NS)− µ2

S

2
S2 −

∑
f

(
sgn(φ)f̄Mff + Sf̄Gff

)]
, (5.4)

where the sum runs over all the five-dimensional fermion multiplets f . In the custodial RS
model, additional exotic fermion fields are included in the sum. The bulk mass and coupling
matrices Mf and Gf are hermitian matrices in generation space. By means of field redefinitions,
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one can arrange that the matrices Mf are real and diagonal [150]. Furthermore, it is sensible to
assume similar structures for the two matrices Mf and Gf , assuming a “hidden” framework in
which the fermion bulk mass matrices are induced via a spontaneous Z2-symmetry breaking by
coupling the fermions to the vev of an odd bulk scalar. Conventionally, the matrices with the
dimensionless bulk mass parameters are defined by cf = ±Mf/k, where the plus (minus) signs
hold for fermions whose left-handed (right-handed) components have even profile functions under
the Z2-symmetry. With the same sign conventions, one can further define the dimensionless
coupling matrices gf via

gf = ±
√
k(1 + βS)

(2 + βS)
Gf , (5.5)

where β2
S = 4 + µ2

S/k
2. The definition is in analogy to the definition of the dimensionless

Yukawa matrices in the bulk-Higgs RS model. The terms with the βS-dependence ensure that
the dimensionless couplings behave well in the limit βS → ∞, describing an IR brane-localized
scalar field similar to the Higgs case. In the subsequent phenomenological analysis, it will be
assumed that the entries of the matrices gf have the same signs and similar magnitudes, with a
possible exception of gt ≡ (gu)33. This is well grounded by the fact that all fermion bulk mass
parameters cf cluster near or below the value −1/2, below which the zero-mode fermion profile
is localized near the UV brane. The only exception can be the parameter of the right-handed
top quark that is positive to realize a localization for the zero-mode profile close to the IR brane.
Besides the couplings to fermions given in (5.4), the scalar can possibly couple to the Higgs field.
Such a coupling is inevitably induced at the one-loop order, as will be discussed later. Other
direct couplings to SM particles are not allowed due to the demand of gauge invariance.

The KK decomposition for the five-dimensional scalar field S can be chosen as follows

S(x, φ) =
eσ(φ)

√
r

∑
n

Sn(x)χSn(t) , (5.6)

including a switch-over from the φ- to the t-coordinate. From the five-dimensional action,
the following equation of motion follows for the profiles in order to obtain the correct four-
dimensional mass terms for the KK scalars,

(
t2∂2

t + t∂t − β2
S + t2x2

n

) χSn(t)

t
= 0 , (5.7)

with xn = mS
n/MKK . In order to obtain appropriate kinetic terms for the KK scalars, the

normalization condition,

2π

L

∫ 1

ε

dt

t
χSm(t)χSn(t) = δmn , (5.8)

has to be fulfilled, as well. Due to the Z2-odd parity of the field S, the Dirichlet boundary
condition, χSn(ε) = 0, is required to be fulfilled at the UV brane. From these conditions, the
general solution for the profiles can be determined as

χSn(t) = Nnt [JβS(xnt)− rnJ−βS(xnt)] , rn =
JβS(εxn)

J−βS(εxn)
≈ Γ(1− βS)

1 + βS

(εxn
2

)2βS
, (5.9)
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including the expression rn, and Nn is a normalization constant. In order to adapt the mass for
the first KK resonance to the reported mass of 750 GeV, which is quite light in comparison to
the KK mass scale, one has to impose a mixed boundary condition,

χSn(1) = ξχS
′

n (1) , (5.10)

at the IR brane. It can be engineered by adding brane-localized terms to the action. In the
limits ξ → 0, and ξ →∞, the special cases of Dirichlet and Neumann boundary conditions are
recovered. In general, the subsequent relation follows from the IR boundary condition

[1− ξ(1− βS)] JβS(xn)− ξxnJβS−1(xn) = rn {[1− ξ(1 + βS)] J−βS(xn)− ξxnJ−βS−1(xn)} .
(5.11)

Due to the smallness of the quantity rn ∝ ε2βS , given in (5.9), the whole right-hand side of (5.11)
can be set to zero, in good approximation. Then, one can derive for the mass of the lightest KK
resonance

x2
1 ≈

4(1 + βS) [1− ξ(1 + βS)]

1− ξ(3 + βS)
. (5.12)

For a value mS
1 ≈ 750 GeV, a moderate, justifiable tuning of parameters is necessary. With

MKK = 2 TeV, for example, one would need ξ ≈ 0.69 for βS = 0.5, ξ ≈ 0.51 for βS = 1, ξ ≈ 0.17
for βS = 5, and ξ ≈ 0.09 for βS = 10. In this way, the hierarchy problem, associated with the
mass of the new scalar, can be solved in the RS framework, similar to the case of the Higgs
boson. For such a lighter mass, one can expand the profile of the first KK resonance in powers
of x2

1, as follows

χS1 (t) =

√
L(1 + βS)

π
t1+βS

(
1− x2

1

4

[
t2

(1 + βS)
− 1

(2 + βS)

]
+O(x4

1)

)
. (5.13)

This is equal to the profile of the zero-mode bulk-Higgs field, derived in (2.74). Similar to the
bulk-Higgs scenario, it is assumed that βS > 0 (i.e., µ2

S > −4k2) following the Breitenlohner-
Freedman bound [160]. Also, the parameter βS controls the localization of the bulk scalar. For
βS = O(1), the scalar profile extends through the extra dimension, whereas for βS � 1, it is
localized close to the IR brane, according to

χS1 (t)
β→∞
=

√
L(1 + βS)

π

1

(2 + βS)
δ(t− 1) . (5.14)

In analogy to the Higgs case, there is no particular reason why the scalar S should be localized
close to the IR brane. But again, the results take a particularly simple form in this limit.

5.1.3 S couplings to particles

The direct couplings of the scalar S to the scalar density of vector-like fermions are included
in equation (5.4). Then, transmitted by loops of KK fermions, the scalar can couple to gauge
bosons at the one-loop order. Since the masses of the lightest KK fermions lie in the multi-TeV
range, these are much heavier than the mass of the 750 GeV di-photon resonance. For that
reason, one can integrate out the tower of heavy KK fermion modes in computing the S decays
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to di-boson final states. We can define the following effective Lagrangian, which is valid below
the KK mass scale,

Leff =cgg
αs
4π
SGa

µνG
µν,a + cWW

α

4πs2
w

SW a
µνW

µν,a + cBB
α

4πc2
w

BµνB
µν

−
[
SQ̄LŶuΦ̃uR + SQ̄LŶdΦdR + SL̄LŶeΦeR + h.c.

]
.

(5.15)

The mass of the scalar S lies much above the electroweak scale. For that reason, the effective
Lagrangian is considered in the electroweak symmetric phase. In the first row, the loop-induced
couplings of S to gauge bosons are given, where the RS model effects are summarized into the
Wilson coefficients cgg, cWW and cBB. In the second row, there are the direct couplings to

fermions that are governed by the couplings matrices Ŷf . Here, Ga
µν , W

a
µν and Bµν are the field

strength tensors of the groups SU(3)c, SU(2)L and U(1)Y , respectively, Φ is the scalar Higgs
doublet, and sw = sinθw and cw = cosθw. After electroweak symmetry breaking, the resulting
couplings to γγ, WW and ZZ states can be deduced as

Leff = cγγ
α

4π
SFµνF

µν + cZγ
α

4π
SZµνF

µν + cZZ
α

4π
SZµνZ

µν , (5.16)

where

cγγ = cWW + cBB , cZγ =
cW
sW

cWW −
sW
cW

cBB, cZZ =
c2
W

s2
W

cWW +
s2
W

c2
W

cBB . (5.17)

The second line in (5.15) writes the S couplings to the Higgs field and a pair of fermions. The S
couplings to fermions have a hierarchical structure in the model, where the largest coupling, by
far, is the S coupling to top quarks. After a transformation to the mass basis, one can rewrite
Re[(Ŷ)33] = cttyt, with the top-quark Yukawa coupling yt =

√
2mt/v, giving

Leff 3 −cttmt

(
1 +

h

v

)
St̄t+ ... . (5.18)

In the effective Lagrangian, the results for the Wilson coefficients are suppressed by the mass
scale of the new physics, as cii ∝ 1/MKK .

Further, the coefficients are supposed to hold at the matching scale ΛKK= few ×MKK ,
which is the mass scale of the low-lying KK modes that give the dominant contributions in the
loops of the processes. The two-gluon operator has a non-trivial QCD evolution for altering
energies [265, 266], and it mixes with the operator in (5.18) under renormalization [267]. If the
strong coupling αs and the Yukawa coupling yt are factored out from the definitions of cgg and
ctt, as it is in the present case, then, the evolution effects from the high matching scale ΛKK down
to the scale µ = mS arise only at the next-to-leading order in renormalization-group improved
perturbation theory. The following relations apply [7]

cgg(µ) =

[
1 +

β1

4β0

αs(µ)− αs(ΛKK)

π

]
cgg(ΛKK) ,

ctt(µ) = ctt(ΛKK) +
3CF
β0

αs(µ)− αs(ΛKK)

π
cgg(ΛKK) ,

(5.19)
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Figure 5.1: Loop-diagrams, which are transmitted by exchanges of heavy KK fermions, can be
described at lower energies by effective local interactions that couple S to diboson final states.

where β0 = 7, β1 = 26 and CF = 4/3. The coefficients cWW and cBB remain invariant under the
QCD evolution. From these relations, it follows that the S to top quarks coupling is inevitably
induced to a small amount by a renormalization group evolution, even if it is absent at the high
matching scale. For ΛKK = 5 TeV, and µ = 750 GeV, one can determine

ctt(µ) ≈ ctt(ΛKK) + 0.0028cgg(ΛKK) , cgg(µ) ≈ 1.0045cgg(ΛKK) . (5.20)

Higher-order QCD corrections to the Wilson coefficients at the high matching scale are likely
to have a stronger impact [268, 269], but, to be conservative, such enhancement factors are not
included in the present analysis.

In order to calculate the RS model effects to the loop-induced S couplings, transmitted by
KK fermions, one has to consider one-loop diagrams as the one plotted in Figure 5.1. The
calculations are similar to the calculations of the loop-induced Higgs processes, presented in the
previous chapter of this thesis. One can parametrize each of the couplings in terms of an integral
over a single, five-dimensional fermion propagator function to sum over the transmitted KK
fermion states. Starting from the Lagrangian in (5.4), one can employ the KK decompositions
for the fermion fields, and finds for the S couplings to fermions

Lferm = −
∑
f

∑
l,m,n

√
π

L(1 + βS)
(2 + βS)

∫ 1

ε

dt Sl(x)
[
f̄

(m)
L (x)f

(n)
R (x)

×χSl (t)F †(m)
L (t)

(
gF 0
0 −gf

)
F (n)
R (t) + h.c.

]
,

(5.21)

which is very similar to the couplings of the bulk Higgs to fermions. According to the calculation,
presented in [2], one can derive the S couplings to di-boson states as

cgg = −
∑
f=q

df
2

∫ 1

0

dx

∫ 1

0

dy (1− 4xyȳ) Tf
[
−xyȳm2

S − i0
]
,

cWW = −
∑
f=q,l

N f
c Tf

∫ 1

0

dx

∫ 1

0

dy (1− 4xyȳ) Tf
[
−xyȳm2

S − i0
]
,

cBB = −
∑
f=q,l

N f
c dfY

2
f

∫ 1

0

dx

∫ 1

0

dy (1− 4xyȳ) Tf
[
−xyȳm2

S − i0
]
.

(5.22)

The sum in the result for cgg is running over quark states, only, whereas for cWW and cBB, one
has to sum over all states of quarks and leptons. These expressions only differ in the group-
theory factors. Here, df is the dimension of the SU(2) multiplet, Tf is the Dynkin index of
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SU(2), where there is Tf = 1/2 for doublets, Tf = 2 for triplets and Tf = 0 for singlets, Yf is
the hypercharge of the multiplet, and the color factor N f

c equals 3 for quarks and 1 for leptons.
In addition, two Feynman parameter integrals over x and y are included, where ȳ = 1− y. The
product of the mixed-chirality components of the five-dimensional fermion propagator, and the
profile of the scalar S, are included in the expression Tf (p2

E). For Euclidean momenta p2
E = −p2,

it reads

Tf (p2
E) =

√
π

L

(2 + βS)√
1 + βS

∫ 1

ε

dt χS1 (t) Tr

[
(±gf )

1

2

(
∆f

LR(t, t; p2
E) + ∆f

RL(t, t; p2
E)
)]

, (5.23)

where the trace is performed over 3 × 3 matrices in the generation space. The relations hold
under the assumptions that Tf (p2

E) vanishes for pE → ∞, and that pE
dTf
dpE

vanishes for pE = 0

and pE →∞ [2], which are satisfied in the present model. The KK decomposed representation
of the fermion propagator function has been derived in Chapter 3, given in (3.67). Moreover, it is
assumed that the Higgs vev v is negligibly small, compared to the energy scale of the considered
processes, by neglecting tiny corrections of the order of v2/M2

KK , compared to m2
S/M

2
KK . It

follows that the zero-mode particles are approximately massless, and do not contribute to the
leading order. The calculation of the analytic, five-dimensional fermion propagator function, for
v ≈ 0, in the minimal and the custodial RS models has been presented in Section 3.3.2 of the
thesis. With the help of the results for the propagator function, one can compute the expressions

∆f
LR(t, t; p2

E) + ∆f
RL(t, t; p2

E)

2
= ± 1

2M2
KK

d(±)(cf , pE, t)

= ± 1

2M2
KK

(
k

(±)
0 (cf , t) + p̂2

Ek
(±)
2 (cf , t) +O

(
p̂4
E

))
,

(5.24)

which are diagonal matrices, with a dimension according to the specific fermion content of the
model (minimal or custodial model). The functions d(±)(cf , pE, t) are given in (3.80) and (3.86),
respectively. Here, the overall ±-signs correspond to fermions whose left-handed (right-handed)
components have even profile functions under the Z2-symmetry, whereas the superscripts (±)
refer to the boundary conditions (normal or twisted) that are obeyed by the fermion multiplet
f at the branes. It is justified to expand the results in a power series in p̂2

E, as it is done in
(5.24), because interactions are considered at an energy scale much below the KK mass scale,

p̂2
E ∼ (mS/MKK)2 � 1. Then, the expressions k

(±)
0 (cf , t) and k

(±)
2 (cf , t) read

k
(+)
0 (cf , t) = 1 +

2F 2(cf )

1 + 2cf

(
t1+2cf − 1

)
, k

(−)
0 (cf , t) = 1 ,

k
(+)
2 (cf , t) =

2t2 (1− t−1−2cf )

1− 4c2
f

+ 2(1− ε2)F 4(cf )
t1+2cf − 1

(1− 4c2
f )(3 + 2cf )

− 2F 2(cf )

(
t2 (2− t−1−2cf )

(1− 2cf )(1 + 2cf )2
− 2(1 + cf )t

3+2cf

(1 + 2cf )2(3 + 2cf )
− 1 + ε2(t1+2cf − 1)

(1− 2cf )(3 + 2cf )

)
,

k
(−)
2 (cf , t) =

2t2 (1− t−1−2cf )

1− 4c2
f

(
1−

(ε
t

)1−2cf
)
.

(5.25)
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Figure 5.2: Results for the corrections ∆(+)(cf , β) (solid curves) and ∆(−)(cf , β) (dashed curves),
for mS = 750 GeV and MKK = 2 TeV, according to the formulas given in Appendix D.1.

Here, the zero-mode fermion profile F (c) is included, which is exponentially small for all the
fermions, except of the right-handed top quark. Considering the limit ε→ 0 wherever possible,
one can derive

cgg = − 1

3MKK

∑
f=q

df
2

∫ 1

0

dt (2 + βS)t1+βS

(
1− m2

S

4M2
KK

[
t2

1 + βS
− 1

2 + βS

]
+ ...

)

× Tr

[
gf

(
k

(±)
0 (cf , t)−

7m2
S

120M2
KK

k
(±)
2 (cf , t) + ...

)]
≡ − 1

3MKK

∑
f=q

df
2

Tr
[
gf
(
1 + ∆(±)(cf , βS)

)]
,

(5.26)

with

∆(+)(cf , βS) = − 2F 2(cf )

3 + βS + 2cf
+O

(
m2
S

M2
KK

)
, ∆(−)(cf , βS) = O

(
m2
S

M2
KK

)
. (5.27)

The expressions for cWW and cBB are derived similarly. Also, these can be obtained by replacing
df/2 with N f

c Tf or N f
c dfY

2
f in (5.26), and including the lepton fields, according to the formulas

(5.22). The corrections to ∆(±)(cf , βS) of O (m2
S/M

2
KK) are given in Appendix D.1. Even for

MKK masses as low as 2 TeV, one can find that these corrections are very small and can be
neglected. Note that in the limit βS → ∞, there is ∆(±)(cf , βS) → 0. In Figure 5.2, the full
expressions ∆(±)(cf , β) are plotted as functions of the bulk mass parameters cf for different
choices of the parameter β. One can also neglect the exponentially small quantities F 2(cf ),
except for the case of the right-handed top quark, for which there is F 2(ct) ≈ 1 + 2ct. In this
approximation, the Wilson coefficients simply count the numbers of the fermionic degrees of
freedom that are predicted by the respective RS scenarios. For the custodial model I, one can
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find

cgg = − 1

3MKK

Tr

(
2gggQ +

1

2
gggu +

3

2
gggd +

3

2
gggT1

)
≈ − 16geff

3MKK

− (1 + βS − 2ct)

(3 + βS + 2ct)

gt
6MKK

,

cWW = − 1

3MKK

Tr (3gggQ + 6gggT1 + gggL + 2gggT3) ≈ −
12geff

MKK

,

cBB = − 1

3MKK

Tr

(
25

3
gggQ +

4

3
gggu + 10gggd + 4gggT1 + gggL + 2ggge

)
≈ −236geff

9MKK

− (1 + βS − 2ct)

(3 + βS + 2ct)

4gt
9MKK

,

(5.28)

whereas for the custodial model II, the results are

cWW = − 1

3MKK

Tr

(
3gggQ + 6gggT1 +

1

2
gggL

)
≈ − 19geff

2MKK

,

cBB = − 1

3MKK

Tr

(
25

3
gggQ +

4

3
gggu + 10gggd + 4gggT1 +

1

2
gggL + ggge

)
≈ − 445geff

18MKK

− (1 + βS − 2ct)

(3 + βS + 2ct)

4gt
9MKK

,

(5.29)

and cgg is unchanged. In the minimal RS model, one can derive

cgg = − 1

3MKK

Tr

(
gggQ +

1

2
gggu +

1

2
gggd

)
≈ − 11geff

6MKK

− (1 + βS − 2ct)

(3 + βS + 2ct)

gt
6MKK

,

cWW = − 1

3MKK

Tr

(
3

2
gggQ +

1

2
gggL

)
≈ − 2geff

MKK

,

cBB = − 1

3MKK

Tr

(
1

6
gggQ +

4

3
gggu +

1

3
gggd +

1

2
gggL + ggge

)
≈ − 26geff

9MKK

− (1 + βS − 2ct)

(3 + βS + 2ct)

4gt
9MKK

.

(5.30)

It is assumed that the diagonal entries of all the matrices gggf are equal to a universal value geff,
except of the value gt, which corresponds to the right-handed top quark. This is in correspon-
dence with the behaviour of the cf -parameters that lie very close to each other, except of the
value ct. Note that the bulk localization parameter βS appears only in these correction terms
scaling with gt.

In the tree-level S couplings to zero-mode fermions, as the zero-mode top quarks, one has to
consider an integral over the extra dimension. In this integral, the zero-mode fermion profiles
and the S profile are included. Neglecting terms of the order of m2

h/M
2
KK , the Lagrangian of
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√
s MSTW2008 [270] NNPDF30 [271] PDF4LHC15 [272] HERA20 [273] MMHT2014 [274]

8 TeV 44.9+1.6
−2.4 fb 45.8+1.6

−2.5 fb 46.7+1.7
−2.5 fb 42.2+1.4

−2.2 fb 46.7+1.6
−2.5 fb

13 TeV 203+ 6
−10 fb 207+ 7

−10 fb 208+ 7
−10 fb 197+ 6

− 9 fb 208+ 7
−10 fb

Table 5.1: NNLO predictions for the production cross sections of S through gluon fusion in
units of (cgg/TeV)2. The different columns correspond to different sets of PDFs, used in the
derivations, and the quoted errors are estimated from scale variations [7, 275].

the S to up quarks couplings reads

Lferm =−
∑
m,n

S(x)ū
(m)
L (x)u

(n)
R (x)(2 + βS)

∫ 1

0

dt t1+βS

×
[
xnâ

(U)†
m F (cccQ)tcccQgggQF (cccQ)

t1+cccQ − ε1+2cccQt−cccQ

1 + 2cccQ
â(U)
n

+xmâ
(u)†
m F (cccu)

t1+cccu − ε1+2cccut−cccu

1 + 2cccu
ggguF (cccu)t

cccu â(u)
n

]
+ h.c. ,

(5.31)

where xn = mn/MKK , and n = 1, 2, 3, label the three lowest-lying states that are u, c and
t. Here, a Z2-even profile is combined with a Z2-odd profile, where the Z2-odd profile arises
after electroweak symmetry breaking, induced by a mixing between the zero modes and their
KK excitations. For that reason, the expressions scale with the masses mf

n of the zero-mode

fermions. The vectors â
(U)
n and â

(u)
n describe the fermion mixings in the flavor space, whose

entries are strongly hierarchical, having the largest entry at the position n. For the S coupling
to a pair of top quarks, one can, then, find in a good approximation

ctt ≈
1

MKK

[
gQ

(
1− F 2(cQ)

3 + βS + 2cQ

)
+ gu

(
1− F 2(cu)

3 + βS + 2cu

)]
33

≈ 1

MKK

[
(gQ)33 +

2 + βS
3 + βS + 2ct

gt

]
,

(5.32)

which applies for both the minimal and the custodial RS models.

5.1.4 Phenomenological evaluations of the various S decay rates

In the following, the cross section for the S boson production at the LHC, and the various S
decay rates into SM particle states, parametrized in terms of the Wilson coefficients from the
effective Lagrangian in (5.15), are summarized. The general formulas are valid for many new-
physics models, where the couplings of S to SM particles are induced by exchanges of heavy
new particles. With the previously derived results for the Wilson coefficients in the different RS
scenarios, one can perform explicit evaluations in dependence of the RS model parameter space.
The cross section for the S boson production through gluon fusion at the LHC is given, at the
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Born level, by

σ(pp→ S) =
α2
s(µ)m2

S

64πs
c2
gg(µ)

∫ 1

m2
S/s

dx

x
fg/p [x, µ] fg/p

[
m2
S

sx
, µ

]
, (5.33)

depending on a gluon-gluon luminosity function fg/p. The factorization and renormalization
scales are set to µ ∼ mS. It is known well from the calculation of the analogous Higgs production
cross section that higher-order QCD corrections may have an enormous impact. In this sense,
we have been very grateful to Daniel Wilhelm for having used his adaptation of the code CuTe

[276], developed in [277, 278], to calculate the pp → S cross section at the NNLO, including
resummation effects. The results are displayed in Table 5.1, corresponding to the ratio σ(pp→
S)/c2

gg(µ) for different sets of parton distribution functions (PDFs) quoted, and the default scale
choice µ = mS. With the MSTW2008-PDF, one can find

σ8 TeV
NNLO(pp→ S) =

(
44.9+1.6+1.8

−2.4−2.7

)
fb×

(
cgg(mS)

TeV

)2

,

σ13 TeV
NNLO (pp→ S) =

(
203+ 6+5

−10−6

)
fb×

(
cgg(mS)

TeV

)2

.

(5.34)

The errors refer to scale variations and the variation of the PDFs. Also, the program CuTe

predicts the pT -distribution of the produced S bosons, and it has been found that this distribution
peaks around 22 GeV. The higher-order corrections enhance the cross section by more than a
factor 2 compared to the Born cross section, given in (5.33).

According to the general formula for the partial decay rate with a final state of two particles2,
one can determine the S decay rates into γγ, WW , ZZ and Zγ final states, and into hadronic
final states, such as gg and tt̄, in dependence of the Wilson coefficients computed before for the

2The general formula for the partial decay rate of a particle’s decay, A→ B,C, accounting for the summation
over the phase space, reads [279]

Γ(A→ B + C) =
N

16π

λ1/2(m2
A,m

2
B ,m

2
C)

m2
A

∑
d.o.f.

|M|2 , (5.35)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (5.36)

The formula depends on a sum over the internal degrees of freedom (d.o.f.) of the particles, such as spins,
polarizations and colors. For the decay rate into a final state of equal particles, with B = C, one has to consider
N = 1

2 to avoid an over-counting of the d.o.f.s.
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Figure 5.3: Dependence on the ratio cBB/cWW of the S decay rates into WW, ZZ and Zγ final
states, divided through the S decay rate into the γγ final state.

different RS scenarios. The results are

Γ(S → γγ) =
α2m3

S

64π3
(cWW + cBB)2 ,

Γ(S → WW ) =
α2m3

S

32π3

c2
WW

s4
w

(
1− 4xW + 6x2

W

)
(1− 4xW )1/2 ,

Γ(S → ZZ) =
α2m3

S

64π3

[
c2
w

s2
w

cWW +
s2
w

c2
w

cBB

]2 (
1− 4xZ + 6x2

Z

)
(1− 4xZ)1/2 ,

Γ(S → Zγ) =
α2m3

S

32π3

[
cw
sw
cWW −

sw
cw
cBB

]2

(1− xZ)3 ,

(5.37)

where x[W,Z] = m2
[W,Z]/m

2
S. The Wilson coefficients are evaluated at the scale µ = mS. Instead,

the gauge couplings and the Weinberg angle are evaluated at the appropriate scale for the final-
state bosons, so that α(mZ) = 1/127.94 for the Z and W bosons, α = 1/137.04 for photon final
states, and s2

W = 0.2313. All the rates are entirely determined by the Wilson coefficients cWW

and cBB. In this regard, any ratio of two rates is a function of the ratio cBB/cWW , which is an
important quantity that characterizes the specific model under consideration. The dependencies
on this quantity for the ratio of two rates are illustrated in Figure 5.3. For the different scenarios,
assuming −2 < gt/geff < 1, one encounters 2.11 < cBB/cWW < 2.23 in the custodial model I,
2.50 < cBB/cWW < 2.65 in the custodial model II, and 1.00 < cBB/cWW < 1.66 in the minimal
model. Especially the S → Zγ decay rate has a large dependence on the ratio cBB/cWW , and is
strongly suppressed for the three RS scenarios that are considered.

For the S decay rates into gluon and top quark final states, one can determine the following
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jj [280] WW [281] ZZ [282] Zγ [283] tt̄ [284] hh [285]

< 2.5 pb < 40 fb < 12 fb < 4 fb < 700 fb < 50 fb

Table 5.2: Bounds on the production cross sections pp → S → XX to 95% CL, obtained in
dijet, diboson and tt̄ resonance searches performed at Run 1 at

√
s = 8 TeV of the LHC.

results

Γ(S → gg) =
α2
s(µ)m3

S

8π3
Kgg(µ)c2

gg(µ) ,

Γ(S → tt̄) =
3m2

t (µ)mS

8π
c2
tt(µ)(1− 4xt)

3/2 ,

(5.38)

where all the running quantities are considered at µ ≈ mS. Here, mt(µ) is the running top-quark
mass, for which it is used mt(mS) = 146.8 GeV, whereas the top-quark pole mass mt = 173.34
GeV is entering the phase space factors via xt = m2

t/m
2
S. For most of the parameter choices

in the RS model, the S → gg decay mode is the dominant decay channel, and forms the most
important part of the total decay width in the calculation of the branching fractions. By using
calculations of the Higgs boson decay rate into two gluons, up to the order of O(α5

s), in the
heavy top-quark limit [286, 287], authors from [7] were able to derive the S → gg decay rate to
the same accuracy. The impact of radiative corrections is significantly smaller than in the Higgs
case, and the perturbative series at µ = mS exhibits a very good convergence. The result was
determined to be KN3LO

gg ≈ 1.348 [7].
In the following, the experimental results for the di-photon rate from equation (5.3) are

reproduced in the parameter spaces of the different RS scenarios. Furthermore, by including the
predictions for the various S decay rates, computed before, one can compare the theoretically
reproduced di-photon rates in dependence of the RS model parameters with results obtained
from dijet, diboson and tt̄ resonance searches, performed at Run 1 of the LHC, which are
summarized in Table 5.2. To compare the results with the di-photon measurements at

√
s =13

TeV, the numbers in Table 5.2 have to be multiplied with the boost factor 4.52, which is obtained
from the ratio of the production cross sections in (5.34). In this way, exclusion bounds for the
RS model parameter spaces can be obtained that are implied by Run 1 searches. In Figure
5.4, the results are displayed in the MKK/geff -gt/geff-parameter plane, where the 1σ and 2σ fit
regions correspond to the green and blue marked areas. The gray areas indicate the excluded
regions that follow from Run 1 searches, with the boundaries drawn in red (dijet searches),
purple (tt̄ searches), blue (WW searches), orange (ZZ searches) and green (Zγ searches). For
the contribution of the right-handed zero-mode top quark, the input parameters βS = 1 and
ct = 0.4 were used. The central fit results for βS = 1 (black, dashed), βS = 10 (green, dashed)
and βS → ∞ (red) are illustrated in the plot in the lower right corner, and one can observe
that varying the parameter βS does not substantially alter the course of the central fit curves.
Similarly, this can be concluded for variations of the parameter ct.

One can find that in the two enlarged custodial models, the di-photon rate can be reproduced
over a wide range of parameters, without any fine tuning necessary, or conflict caused with Run
1 exclusion bounds. By varying the parameter choice for gt/geff, one gets values for MKK/geff
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Figure 5.4: Regions in the parameter spaces of the different RS scenarios, where the di-photon
signal is reproduced at 1σ (green area) and 2σ (blue area). The black, dashed lines correspond to
the fit to the central result, given in (5.3). The exclusion bounds from Run 1 resonance searches
at 95% CL, given in Table 5.2, are indicated by the gray regions with the boundaries drawn in
red (dijets), purple (tt̄), blue (WW), orange (ZZ), and green (Zγ). The results hold for βS = 1
and ct = 0.4. In the lower right plot, a variation of the central fit result is illustrated, for βS = 1
(black dashed), βS = 10 (green dashed) and βS →∞ (red).

ranging from 2 to 8 TeV. For a KK mass scale MKK close to the lowest allowed value by
electroweak precision tests, the coupling geff ranges from 0.25 to 1, which is well inside the
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Br(S → XX) gg γγ WW ZZ Zγ tt̄ hh tt̄h Γtot [GeV]

custodial I 43.56 1.28 5.08 2.11 0.10 47.39 0 0.49 0.08

custodial II 28.84 0.68 2.09 0.92 0.02 66.76 0 0.69 0.22

minimal 89.45 0.36 2.61 0.95 0.16 6.41 0 0.07 0.14

custodial I 32.73 0.97 9.79 4.56 0.08 48.18 3.11 0.59 0.11

custodial II 24.49 0.58 4.28 2.04 0.01 66.56 1.30 0.76 0.26

minimal 78.38 0.32 6.21 2.78 0.14 9.99 2.05 0.14 0.16

custodial I 21.90 0.65 17.93 8.66 0.05 41.91 8.31 0.59 0.16

custodial II 19.53 0.46 9.09 4.42 0.01 61.59 4.13 0.76 0.32

minimal 60.94 0.25 13.55 6.45 0.11 12.14 6.37 0.20 0.21

Table 5.3: Branching ratios in % for the various S decay modes in the three RS scenarios under
consideration, for the benchmark parameter points given in the text. The values in the center
and lower portions give the results for small Higgs portal couplings, λ1 = 0.02 and 0.04, whereas
λ2 is set to zero in all cases.

perturbative region. In this case, the masses for the lightest KK particles could be as low as a
bit more than 4 TeV. But, also for MKK ≈ 5 TeV, and geff ∼ 1, i.e. for KK particles as light as
12 TeV, the di-photon signal could be reproduced for very natural choices of parameters.

In contrast, the parameter space of the minimal RS model is much more constrained. Respect-
ing the bound implied by electroweak precision tests, allowing for ratios as MKK/geff ∼ 0.4− 1,
the resulting coupling values, geff ∼ 5 − 12, lie close to the perturbativity limit. Also, only
negative ratios are allowed for gt/geff, respecting the strong constraint from the tt̄ resonance
searches, which is indicated by the purple line in the plot.3

In the following, the individual branching fractions for the various S decay modes are studied,
by choosing the following benchmark points for the RS model parameters in the three scenarios:

custodial model I custodial model II minimal model

MKK/geff 4.0 TeV 3.0 TeV 0.7 TeV

gt/geff -0.5 0 -1.5

These parameter choices are indicated in the plots by the red points. For these benchmark
points, the branching ratios for the various S decay rates are summarized in Table 5.3. The
S → tt̄ decay rate has been calculated to the lowest order, only, and it might be afflicted with
some uncertainty due to neglected QCD corrections. The corresponding branching ratio is quite
sensitive to the choice for gt/geff, in contrast to the remaining branching ratios that depend on
it only mildly. The results in the different scenarios for the total decay widths of S are written

3However, it might be conceivable that the exclusion bound from the tt̄ searches is considerably weaker, due
to interference effects not considered in the experimental analyses [288–290].
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Figure 5.5: Diagrams of the S decays mediated by Higgs “portal” couplings.

in the last column of Table 5.3. All in all, these give narrow widths in the range of

Γtot

mS

≈ (1.1− 4.3) · 10−4 . (5.39)

Originally, ATLAS had reported a result with a large width, such as Γtot/mS ≈ 0.06 [9]. However,
this was only slightly preferred against a result with a narrow width, leading to an improvement of
the fit by 0.3σ. Instead, CMS had reported a result with a narrow width, as Γtot/mS = 1.4 ·10−4,
as the outcome from a combined analysis of 8 TeV and 13 TeV data [226]. In [227], it was
concluded that the large-width scenario is disfavoured by a combination of the 13 TeV data
from ATLAS and CMS, and is slightly preferred if including the 8 TeV data, because it is easier
to absorb the signal of a broad resonance into the background model. The local statistical
significance was changing by at most of 0.5σ between these two options [7].

To summarize, in the different RS scenarios, any of the three chosen benchmark points could
reproduce the reported di-photon signal, and was consistent with the exclusion bounds derived
from Run 1 data of the LHC. Strongly differing results were observed in particular for the S → gg
and S → tt̄ decay modes, whereas the S → Zγ decay mode turned out to be very small in all
the considered scenarios.

5.1.5 Higgs “portal” couplings

In principle, the Higgs field can couple to the new scalar S in a direct way, following the demands
from gauge invariance and renormalizability. In this sense, the Higgs field can form a “portal”
to the new-physics sector, which in the present case is the framework with the new scalar field
S. Such a Lagrangian with the Higgs portal couplings reads [236,239,291,292]

δLeff = −λ1mS S |Φ|2 −
λ2

2
S2 |Φ|2 ∈ −λ1

2
mS S(v + h)2 − λ2

4
S2(v + h)2 . (5.40)

In any case4, the Higgs portal couplings were inevitably induced at the one loop order, by
diagrams similar to those in Figure 5.1, where the external gauge fields would be replaced by

4In the RS model with a brane-localized Higgs sector, one could implement an odd bulk scalar S, which
completely vanishes on the IR brane. In such a scenario, direct Higgs portal interactions would be avoided. In
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Figure 5.6: Regions in the parameter spaces of the different RS scenarios, where the di-photon
signal is reproduced at 1σ (green area) and 2σ (blue area), with the inclusion of Higgs portal
couplings. The meaning of the colors is the same as in Figure 5.4. It is used gt/geff = −1.5 for
the custodial model I, gt/geff = 0 for the custodial model II, and gt/geff = −1.5 for the minimal
model, together with βS = 1 and ct = 0.4. In the lower right plot, a variation of the central
fit values is illustrated, for βS = 1 (black dashed), βS = 10 (green dashed) and βS → ∞ (red),
respectively.

principle, such a scenario would be more natural, because a Z2-odd bulk scalar S would naturally vanish on both
branes to avoid a non-continuous behaviour at the boundaries, in contrast to the present scenario, where it was
necessary to implement mixed-typed IR boundary conditions in order to get a mass for S below the KK mass
scale, mS ≈ 750 GeV, as presented before.
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Higgs bosons. Also, an effective Lagrangian from the type considered in (5.15) induces a portal
coupling λ1 proportional to ctt, from top-quark loop graphs below the electroweak scale. In this
sense, Higgs portal couplings in the RS model cannot be omitted completely.

In the following, the interactions are computed that are induced by the Higgs portal couplings,
given in (5.40). The first portal coupling can induce three different and interesting effects. The
presence of a tadpole demands for a shift of the physical field S, such as S → S−(λ1v

2)/(2mS). If
performing this shift in (5.15), the SM Yukawa couplings receive corrections, and wave-function
corrections are induced to the gauge fields. Furthermore, there is a direct decay mode of S into
two Higgs particles, as illustrated in the upper three diagrams of Figure 5.5. To the leading
order in the portal coupling λ1, this decay rate can be computed as

Γ(S → hh) =
mS

32π
λ2

1

(
1 +

3m2
h − 2λ2v

2

m2
S −m2

h

)2√
1− 4xh . (5.41)

Also, there is a mixing between the scalar S and the Higgs boson, which modifies the results for
the tree-level decay modes S → tt̄,WW,ZZ, via the diagrams that are given in the lower row
of Figure 5.5. The modified S → tt̄ and S → WW decay rates read

Γ(S → tt̄) =
3m2

t

8πmS

(1− 4xt)
3/2

(
mSctt +

λ1

1− xh

)2

,

Γ(S → WW ) =
mS

16π

√
1− 4xW

[
m2
Sc

2
WW

2

(
α

πs2
W

)2

(1− 4xW + 6x2
W )

+

(
λ1

1− xh

)2

(1− 4xW + 12x2
W )− 6mScWW

α

πs2
W

λ1

1− xh
xW (1− 2xW )

]
,

(5.42)

and a similar decay rate can be found for S → ZZ. And further, the mixing between the field S
and the Higgs has an impact on the properties of the Higgs boson. In this case, the physical Higgs
boson is given by a combination (cos θh− sin θS), with sin 2θ = 2λ1mSv/(m

2
S −m2

h) ≈ 0.67λ1,
where mS and mh are referred to after the field redefinitions. Measurements of the Higgs
branching fractions constrain cosθ to be larger than 0.86, to 95% CL [293, 294], which implies
|λ1| < 1.3 as a rather weak constraint.

The S decay mode into two Higgs bosons, and the contributions to the S decays into WW
and ZZ states, have a strong impact on the phenomenological analysis of the di-photon signal
in the RS scenarios. Similar to the evaluations before, in Figure 5.6, the 1σ and 2σ fit regions
to the di-photon signal from (5.3) are presented in dependence of the portal coupling λ1. The
values for gt/geff are fixed to those of the benchmark points, given before, and also, the meaning
of the colors of the various curves is the same as before. In the case of Higgs portal couplings,
the exclusion bounds from the S → ZZ decay rate from Run 1 of the LHC provide the strongest
constraints, and exclude portal couplings as |λ1| ≥ 0.06 (0.07) in the custodial RS model I
(II), respectively. In Table 5.3, the results for the branching fractions of the various S decay
modes, and the total S decay widths, for λ1 = 0.02, and λ1 = 0.04, are included. Even for such
small portal couplings, the S → hh branching fraction can have a sizeable portion of the decay
modes, and the branching fractions of the S → WW, ZZ decays can be enhanced significantly.
The parameter space of the minimal model suffers from the strongest exclusion bounds, similar
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Figure 5.7: Diagrams that describe the three-body decay mode S → tt̄h.

to the evaluations before. However, for small Higgs portal couplings, as |λ1| ≤ 0.03, natural
parameter choices are possible for MKK/geff. The lower right plot gives the dependence of the
fits on the central values for βS = 1 (black dashed line), βS = 5 (green dashed) and βS → ∞
(red), indicating a minor dependence on the bulk localization parameter βS, as before.

5.1.6 Three-body decay rate S → tt̄h

The LHC experiments measured results for the tt̄h production rate that are enhanced compared
to the SM prediction [295,296]. The framework, considered here, includes a coupling of the new
field S to a tt̄ pair and a Higgs boson at the tree level. In this regard, it was interesting to
see whether the hypothetical scalar S might also has contributed to the enhanced tt̄h-rate. The
diagrams that describe the S → tt̄h decay mode are illustrated in Figure 5.7. The two Higgs
portal couplings, governed by λ1 and λ2, contribute in this case. The kinematics of a three body
decay can be described in a Dalitz distribution by means of two variables, which are the squares
of the invariant masses of two pairs of the decay products, for example [279]. In the present case,
one can derive the following result in dependence on the dimensionless variables z = m2

tt̄/m
2
S

and w = m2
th/m

2
S [7],

d2Γ(S → tt̄h)

dwdz
=

3y2
tm

3
S

256π3
c2
tt

[
A2(z − 4xt)− 2ABxt (1− 2w − z + 2xt + xh)

+ B2xt ((1− w + xt) (w − xt − xh)− z (w − xt))
]
,

(5.43)

with

A = 1 +

(
2xt

1− w − z + xt + xh
+

2xt
w − xt

)(
1 +

1

mSctt

λ1

1− xh

)
+

1

mSctt

λ1

z − xh

(
1 +

3xh
1− xh

)
− v2

m2
S

λ2

1− z ,

B =

(
1

1− w − z + xt + xh
− 1

w − xt

)(
1 +

1

mSctt

λ1

1− xh

)
.

(5.44)
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λ1 Custodial I Custodial II Minimal

0 3.92244× 10−4 1.49561× 10−3 9.37345× 10−5

0.02 6.33963× 10−4 1.93907× 10−3 2.27213× 10−4

0.04 9.35606× 10−4 2.44245× 10−3 4.20614× 10−4

Table 5.4: Results for the decay rates S → tt̄h in [GeV], obtained by numerical integrations
over the Dalitz plot in the different RS scenarios, for three different and small choices for λ1,
and λ2 = 0. The resulting branching fractions are given in the previous to last column of Table
5.3, respectively.

The phase space for the variables w and z is bounded by [7]

wmin(z) ≤ w ≤ wmax(z) , 4xt ≤ z ≤ (1−√xh)2 , (5.45)

with

wmax/min(z) =
(1− xh)2

4z
− 1

4z

(√
z(z − 4xt)∓

√
(1− z − xh)2 − 4zxh

)2

. (5.46)

The results for the decay rates in [GeV], obtained from numeric integrations over the Dalitz
distribution, are summarized in Table 5.4. The predicted signal strengths, σ(pp→ S)×BR(S →
tt̄h), do not exceed 5 fb in the considered RS scenarios. The results for the S → tt̄h branching
ratio are given in the previous to last column of Table 5.3. Typically, these are two orders of
magnitude smaller than the S → tt̄ branching ratios. Nevertheless, all the results were too small
to explain the enhanced Higgs production rate in association with a tt̄-pair.

5.1.7 Intermediate summary

The anomalous excess of photon pairs, detected by both the experiments from ATLAS and CMS
at 750 GeV in the invariant mass spectrum from first 13 TeV data, had raised enormous hopes
on finally having detected a hint on new physics beyond the SM. Unfortunately, the excess was
not verified by future analyses, leading to the conclusion that the presumed resonance was, in
fact, a statistical fluctuation. Alternatively, the resonance would most likely have been created
by the decay of a new, scalar boson with a mass of 750 GeV, produced by gluon fusion. It
was remarkable that the simple addition of a single new scalar to the SM, as well as several,
well motivated UV completions, including the MSSM, had failed to explain the resonance. We
argued that the diphoton signal could straightforwardly be reproduced from an extension of the
RS model, by identifying the resonance with the lightest KK excitation of an additional bulk
scalar field [7]. In the RS model, the gluon fusion production rate of a scalar, and the decay
rate of the scalar into two photons, can have large magnitudes, due to the large multiplicity
of vector-like KK fermion states that contribute in the virtual loops. By summing up the KK
tower of fermions with the help of the five-dimensional fermion propagator function, we were
able to derive remarkably simple, analytic expressions for the effective S couplings to gluons
and photons. In good approximation, these simply count the number of the fermionic degrees
of freedom in the loops, weighted by group-theory factors. In this regard, the RS framework
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with a custodial bulk gauge symmetry, featuring a larger number of fermion states compared
to the minimal model, was particularly suitable to explain the excess. It was found that, with
O(1)-couplings of the resonance to fermions, and KK masses in the multi-TeV range, one could
explain the di-photon signal, without violating any of Run 1 exclusion bounds from the resonance
searches in various di-boson and di-jet channels. By working with an effective Lagrangian of
local interactions to subsume the RS corrections into Wilson coefficients, the findings can be
adapted to any model that considers a similar resonance. In the case of a possible, but unlike,
reappearance of the di-photon signal, or of a new and similar signal, our findings could open the
door to detailed studies of the parameter spaces of the RS models.

5.2 Localization mechanism of fermions by an Z2-odd bulk

scalar

A scenario similar to the one considered in the last section can form a particularly interesting
framework to describe a localization mechanism for fermions in the extra dimension. This
localization mechanism is a crucial ingredient of the RS model, grounded on the Z2-odd bulk
fermion masses that determine the fermion profiles along the extra dimension. The odd bulk
fermion masses have to be generated via couplings of the fermions to the vev of an odd bulk
scalar. The different fermion localizations in the extra dimension can account for the mass
splitting of the four-dimensional zero-mode fermions in a natural way, as has been explained in
the end of Section 2.2.3.

Considering a five-dimensional Dirac fermion f with a mass Mf of the order of the funda-
mental scale M , which propagates in a five-dimensional space with RS metric, one can write its
most general action as follows

S =

∫
d4x

∫ π

−π
dφ
√
G {f̄

(
iΓM∇M − sgn(φ)Mf

)
f − LYuk} . (5.47)

The odd Dirac bulk fermion mass terms include the scalar density of the vector-like fermions

sgn(φ)Mf

(
f̄f
)

= sgn(φ)Mf

(
F̄LFR + F̄RFL + f̄LfR + f̄RfL

)
, (5.48)

where Z2-even fermion fields are combined with Z2-odd fermion fields, where F denote SU(2)
doublets and f are singlets. The left-handed doublets and right-handed singlets are Z2-even, and
their counterparts of opposite chiralities are Z2-odd. To ensure the SU(2)-invariance, two doublet
and two singlet fermions are combined in the mass terms, respectively. In order to maintain the
Z2-invariance of the action, the five-dimensional fermion mass terms have to transform with an
odd behaviour under the Z2-symmetry, obeying to a sign change under φ→ −φ, as it is provided
by the sgnφ. The Z2-odd bulk mass terms can be induced by a spontaneous breaking of the
Z2-symmetry, which origin has to be described by an underlying mechanism.

For such a framework, one can consider the implementation of a new scalar field SL, just as
before, with the Lagrangian∫ π

−π
dφ re−4σ(φ)

[
gMN

2
(∂MSL) (∂NSL) +

µ2
L

2
S2
L −

λL
2
S4
L −

∑
f

(
SLf̄Gff

)]
, (5.49)
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including now a quartic self-coupling term that scales with λL. The fermion bulk mass terms
will be induced by the last terms, which couple the scalar to the scalar density of vector-like
fermions, with the coupling-strength matrices Gf . For µL > 0 and λL > 0, the potential of the
scalar will exhibit a Mexican-hat behaviour in the five-dimensional space, similar to the Higgs
case, with a region of degenerate, non-zero minima.5 With one particular of these minima, the
couplings to the fermions induce a spontaneous symmetry breaking of the Z2-symmetry. One
can write the vev of the scalar, induced by the potential, as follows

〈SL(x, t)〉 =
wL(t)√
rε

, (5.50)

which depends on the extra dimensional coordinate, similar to the case of the bulk-Higgs vev.
Here, a factor 1/(

√
rε) is extracted so that the vev wL(t) and the field S̄L(x, t) have the dimension

of energy. The scalar field can be expanded around that vev by

SL(x, t) =
1√
rε

[
wL(t) + S̄L(x, t)

]
. (5.51)

With this expansion, and by using the redefinition of the fermions in (2.105), one rewrites the
scalar Lagrangian as

2π

L

∫ 1

ε

dt

t

[
ηµν

2t2
[
∂µS̄L(x, t)

] [
∂νS̄L(x, t)

]
− M2

KK

2t2
(
∂t[wL(t) + S̄L(x, t)]

)2

+
µ2
Lε

2

2t4
[
wL(t) + S̄L(x, t)

]2 − λL
2rt4

[
wL(t) + S̄L(x, t)

]4
−
∑
f

[
wL(t) + S̄L(x, t)

]
√
rε

(
F̄L(x, t)

(
GF 0
0 Gf

)
FR(x, t) + h.c.

)]
.

(5.52)

The KK expansion for the field S̄L(x, t) is chosen as

S̄L(x, t) =
∞∑
n=1

χSLn (t)S̄
(n)
L (x) , (5.53)

and the equation of motion for the scalar profiles reads(
∂2
t −

3

t
∂t +

µ2
L

k2t2
− 3ξ

t2
w2
L(t) +

mS2
n

M2
KK

)
χSLn (t) = 0 , (5.54)

where ξ = 2λL
M2
KKr

. The term scaling with ξ is new, compared to the equation of motion for the

Higgs profiles. The function wL(t) of the vev is the value of s(t) that minimizes [258]

2π

L

∫ 1

ε

dt

t

[
−M

2
KK

2t2
(∂ts(t))

2 +
µ2
Lε

2

2t4
(s(t))2 − λL

2rt4
(s(t))4

]
, (5.55)

5For convenience, in the case of the Higgs field, considered in this thesis, the electroweak symmetry breaking
is maintained on the IR brane, even for a bulk-Higgs localization. For that reason, a quartic coupling term is
solely included on the IR brane, rather than in the bulk.
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Figure 5.8: Plots of the zero-mode fermion profiles in the conventional RS model, for bulk mass
parameters as c = −0.38 (blue curve), c = −0.58 (black curve), c = +0.34 (red curve), and
c = −0.84 (orange curve). It can be observed that for O(1)-differences between the fermion bulk
mass parameters, the profiles considerably differ in the magnitudes. This behaviour is crucial
for explaining the mass differences between the four-dimensional zero-mode fermion particles in
a natural way.

subject to the boundary conditions

s(ε) = s(1) = 0 . (5.56)

Due to the Z2-odd behaviour, the boundary conditions demand the function to vanish on the
branes. By means of a variational principle with respect to wL(t), one derives the equation of
motion for the vev as follows

t2w′′L(t)− 3tw′L(t) +
µ2
L

k2
wL(t)− ξw3

L(t) = 0 . (5.57)

There is a tension between the boundary conditions and the potential that determines a non-zero
vev in the bulk. It is only possible to solve the differential equation in (5.57), while fulfilling the
boundary conditions to a good approximation. The mass matrix expressionMf (t), determining
the equations of motion for the fermion profiles, is modified in the present framework and
contains the coupling to the vev wL(t), as

Mw
f (t) =

wL(t)

t

√
π

L

(
gF 0
0 −gf

)
+
v(2 + β)√

2MKK

t1+β

(
0 Yf

Y†f 0

)
, (5.58)

where the dimensionless coupling matrices are defined by

gF,f = ±
√
kGF,f . (5.59)

To the lowest order in v/MKK , the equations of motion for the zero-mode fermion profiles read

∂tF (0)
L (t) =

wL(t)

t

√
π

L

(
gF 0
0 −gf

)
F (0)
L (t) ,

−∂tF (0)
R (t) =

wL(t)

t

√
π

L

(
gF 0
0 −gf

)
F (0)
R (t) .

(5.60)
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In the case of the conventional RS model with constant fermion bulk masses cf , as has been
described in Section 2.2.3, the fermion profiles read to the lowest order

F (0)
L (t) = (F (cF )tcF 0)T , F (0)

R (t) = (0 F (cf )t
cf )T , (5.61)

where F (c) is the “zero-mode fermion profile” from (2.115), and c are the diagonal 3×3 bulk mass
matrices. For the following choices of bulk mass parameters c = −0.38,−0.58, +0.34, and −0.84,
the individual zero-mode fermion profiles in the conventional framework are plotted in Figure 5.8.
It is essential in deriving the natural explanation mechanism for the four-dimensional fermion
mass hierarchies that the magnitudes of these various fermion profiles show a strong hierarchical
behaviour for O(1)-differences between the bulk mass parameters c. In this connection, the small
profile for c = −0.88 accounts for a light lepton mass, whereas the profile for c = −0.38 gives a
mass for a quark of the second generation, and the IR-localized profile for c = +0.34 can explain
the heavy top quark mass. The explicit mechanism to derive the zero-mode fermion masses in
the conventional RS model has been summarized in Subsection 2.2.3.

5.2.1 Framework with a flat extra dimension

For the case of a flat extra dimension, as discussed in Subsection 2.1.2 in the context of models
with universal extra dimensions, the localizer mechanism was worked out in [257, 258]. In this
case, the differential equation for the vev considerably simplifies, to [258]

∂x5w(x5) = −λv2w(x5) + λw(x5)3 , (5.62)

with the boundary conditions, w(0) = w(L) = 0, where L is the size of the extra dimension. A
solution for the limiting case L =∞ is given by a single kink,

w(x5) = v tanh

√
λ

2
vx5 , (5.63)

whereas for large, finite L2 � 1
λv2

, it was possible to construct an approximate solution by a
series of well-separated kinks [257,258], as

w(x5) ≈ v tanh

√
λ

2
v(−L− x5) tanh

√
λ

2
vx5 tanh

√
λ

2
v(L− x5) . (5.64)

This result for the vev has an odd behaviour at the boundaries of the extra dimension, as can be
observed from Figure 5.9. Furthermore, the function can be approximated by a step function,
assuming λv2L� 1 [257],

w(x5) = uε(x5) , ε(x5) =

{
+1 0 < x5 < L

−1 −L < x5 < 0
. (5.65)

In this way, the Z2-odd, approximately constant bulk fermion mass terms of the conventional
model are reproduced via the couplings of the fermions to the bulk vev.

In the case of a warped extra dimension, the differential equation complicates due to the
warp factor in the kinetic terms of the scalar action, as given in (5.57).
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Figure 5.9: Plot of the approximate solution w(x5), derived in [257,258], and given in (5.64), for
v = 2.5, L = 10 and λ = 8, in a framework with a flat extra dimension.

5.2.2 Analytic solutions for wL(t)

By fixing the parameters

µ2
L

k2
=

32

9
, (5.66)

one can analytically solve the differential equation for the bulk vev in (5.57), where the solution
reads

wL(t) =
2

3

√
2

ξ

[
tanh

(
2

3
ln(α · t)

)
+ 1

]
=

4

3

√
2

ξ
· 1

1 + (αt)−
4
3

. (5.67)

The solution adopts the following values at the branes

wL(ε) =
4

3

√
2

ξ
· (αε)

4
3

1 + (αε)
4
3

, wL(1) =
4

3

√
2

ξ
· (α)

4
3

1 + (α)
4
3

. (5.68)

Obviously, these are in contradiction with the boundary conditions in (5.56). In the φ-coordinate,
the equation of motion for the vev reads

1

r2
w′′L(φ)− 4k

r
sgn(φ)w′L(φ) + µ2

LwL(φ)− 2λL
r
e2krπwL(φ)3 = 0 , (5.69)

which is fulfilled by the following solution (for the special case of µ2
L = 32

9
k2),

w(φ) =
4

3
ke−krπ

√
r

λL

sgn(φ)

1 + α−4/3e
4kr
3

(π−|φ|)
. (5.70)

The solution depends on the parameter α, which is in principle arbitrary, but determines the
shape of the solution. For the three parameter choices α = 1, 1000, 1010, the solutions are plotted
in Figure 5.10. For these cases, the UV boundary condition is approximately fulfilled, whereas
the functions remain constant on the IR brane.6 For higher values of α, a kink-like behaviour is
observed. However, it is not possible to construct a series of well-separated kinks, repeatedly for
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Figure 5.10: Plots of the analytic solutions for the vev wL, in the t-coordinate on the left-hand
side, and the φ-coordinate on the right-hand side, for ξ = 5, and α = 1 (black curves), α = 1000
(blue curves), α = 107 (green curves), and α = 1010 (red curves), respectively. The solutions
decline to zero at the UV boundary in good approximation, whereas they remain constant at
the IR boundary.

every half of the extra dimension, as has been shown before for the case of a flat extra dimension.

From the equations of motion in (5.60), one determines the following zero-mode fermion
profiles to the lowest order, which are induced by the analytic solutions for the vev,

F (0)
L (t) =

[1 + (αt)
4
3

]gF√ 2π
Lξ NF âF

0

 , F (0)
R (t) =

 0[
1 + (αt)

4
3

]gf√ 2π
Lξ Nf âf

 . (5.71)

These profiles respect the boundary conditions for the fermions at the branes. Furthermore, the
normalization condition for the fermion profiles gives

NF,f =
1√∫ 1

ε
dt
[
1 + (αt)

4
3

]2gF,f

√
2π
Lξ

. (5.72)

The question is whether it is possible to reproduce hierarchical zero-mode fermion profiles in
this framework, similar to the conventional model. For α = 107, ξ = 5, and the coupling choices
g = −5,−2.5,−1,+1, the results derived for the zero-mode fermion profiles are plotted in Figure
5.11 . Intriguingly, these results look very similar to the profiles of the conventional model with
the constant bulk fermion masses, plotted in Figure 5.8, which provide a hierarchical behaviour
in the magnitudes. All coupling choices for g are of the same order of magnitude, although one
order of magnitude larger than for the case of the conventional profiles. Solely, the parameter
α is chosen to have a high value. It turns out that for smaller values of α, it is not possible to

6It should be noticed that the Dirac fermion mass terms, mψ̄ψ = m
(
F̄F + f̄f

)
=

m
(
F̄LFR + F̄RFL + f̄LfR + f̄RfL

)
, inevitably vanish on both branes, following from the fermion bound-

ary conditions that are chosen such that FR(ti) = fL(ti) = 0 for ti = ε, 1, as presented before.
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Figure 5.11: Zero-mode fermion profiles implied by the analytic solutions for the vev in (5.67),
for α = 107, ξ = 5, and g=-5 (orange curve), -2.5 (black curve), -1 (blue curve), and +1 (red
curve), respectively. For these parameter choices, a hierarchical behaviour for the profiles can
be observed.

derive hierarchical zero-mode fermion profiles. In Appendix D.2, the zero-mode fermion profiles
are plotted for α = 1000 and α = 1 for the same coupling choices as used in Figure 5.11. In
principle, it can be observed that the magnitudes of the fermion profiles are less hierarchical for
a lower value of the parameter α.

Moreover, by fixing the input parameter values, one can also determine numeric solutions
for the bulk vev wL(t). Some numeric solutions are shown in Appendix D.2.

5.2.3 Intermediate summary

The origin of the Z2-odd bulk fermion masses can possibly be explained by couplings of the
fermions to the vev of an odd bulk scalar. The bulk fermion masses are a crucial ingredient
of the RS model to explain the mass splitting of the zero-mode fermions, as has been shown
in the last paragraph of Section 2.2.3. However, the defining differential equation for the bulk
scalar vev has a complicated non-linear behaviour, making it challenging to determine solutions
compatible to the boundary conditions for a Z2-odd field. For the special parameter choice
µ2
L/k

2 = 32/9, we have been able to determine analytic solutions that approximately vanish at
the UV boundary. The solutions depend on an arbitrary parameter α, which has to be large
∼ 107 to derive zero-mode fermion profiles with a hierarchical behaviour, which is necessary to
explain the mass splitting of the fermions. In addition, it is possible to solve the differential
equation for the vev numerically, where it has turned out that the solution must reproduce a
kink-like behaviour in the t-coordinate in order to have hierarchical zero-mode fermion profiles.
For other choices of parameters, the resulting zero-mode fermion profiles cannot reproduce the
necessary hierarchical behaviour.

Therefore, most parts of this intriguing, but challenging project of finding the “localizer”
mechanism for the bulk fermions of the RS model, by means of an odd bulk scalar, has to
remain for future work.



Chapter 6

Summary and Conclusions

The discovery of the Higgs boson at the LHC in summer 2012 finally proved the existence of
the last missing element of the SM of particle physics [67,68]. Indeed, the couplings of this new
particle are close to those predicted by the SM [200–202]. As a consequence, an explanation for
the gauge hierarchy problem, inevitably arising in scalar sectors in or additionally included to the
SM, is demanded more than ever. The precise determinations and experimental measurements
of Higgs interaction strengths with SM particles provide important tools to test different new-
physics approaches to the gauge hierarchy problem and to distinguish between different ones.
In this thesis, concepts and implications of scalar sectors have been investigated in a framework
of new physics beyond the SM with a small and warped extra dimension: the RS model.

In the first chapter of the thesis, the main features of the SM have been dealt with. The
most pressing open questions have been discussed, such as the gauge hierarchy problem, as
well as two approaches to this problem, provided by theories of new physics. Furthermore, in
the second chapter, theories with extra dimensions and the main features of the minimal RS
model with a bulk-Higgs localization have been dealt with. In this context, the bulk-Higgs
field, as considered in this thesis, has a profile function that depends on the extra dimensional
coordinate t = ε ek|x5| with a power of (1+β) [2,154,157]. The sectors of the gauge fields and the
spontaneous symmetry breaking mechanism have been illustrated, and it has been shown that,
in the bulk-Higgs RS model, the gauge hierarchy problem is mitigated to a very small amount
of fine-tuning that is still necessary to compute the correct Higgs mass. The sector of physical
scalar fields, exclusively present in the bulk-Higgs RS model, and the realization of the fermion
sector have been displayed. In addition, a scenario has been discussed where the Higgs sector is
implemented on, or very close to, the IR brane. After that, the main characteristics of the RS
model with a custodial bulk gauge symmetry have been presented. In this context, the S, T, U
parameters by Peskin and Takeuchi [82] have been derived at the tree level in the different RS
scenarios, and the excluded parameter regions implied on the KK mass scale MKK , which is the
scale of the lightest additional particles predicted by the RS model, have been summarized.

Then, in Chapter 3 of the thesis, a set of five-dimensional propagator functions has been
presented in the mixed momentum-position representation [188, 189, 196–199]. With the help
of these propagator functions, one has been able to compute the various Higgs production and
decay processes in the RS model with a minimal bulk gauge group similar to the SM and a
bulk-Higgs field. The computations have been done and explained in detail in Chapter 4. In an
extra-dimensional model, modifications of the effective, four-dimensional Feynman rules arise
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due to integrals over the particles profiles in the extra dimension, which modify the tree-level
Higgs couplings to fermions and gauge bosons. The Higgs couplings to gluons and photons are
induced at the one-loop order, where the largest technical differences, compared to the SM, are
infinite summations over virtual KK particle states contributing in loops. These summations
can be related to the five-dimensional propagator functions. A concise and clear result has been
obtained for the tree-level Higgs couplings to fermions and the loop contributions of KK fermions,
after having approximated the 15 different fermion bulk-mass parameters cf by the value -1/2,
respectively. For the bulk-Higgs localization parameter, the limit β → ∞ could be smoothly
performed, giving results computed in a narrow bulk-Higgs scenario, e.g. in [2,3,5,171,172,212].
In these references, the narrow bulk-Higgs state was described by a normalized distribution
δη(t−1) of width η � 1, in contrast to the bulk-Higgs profile used in this thesis. Furthermore, the
contributions of W bosons and scalars to the Higgs decay into two photons have been computed
in the bulk-Higgs RS model, as well as the corrections to the decay rates h → WW ? and
h→ ZZ?. All Higgs couplings to gauge bosons and fermions, which form the Higgs production
rates of gluon fusion, vector boson fusion and Higgsstrahlung, and the Higgs decay rates into
γγ,WW ?, ZZ?, bb̄ and τ τ̄ final states, have been determined. Analytic results, valid to the first
order of v2/M2

KK , could be derived for all the different Higgs processes, which visualise the first,
significant corrections in the RS model compared to the SM.

The results for the various Higgs processes have been numerically and graphically evaluated in
dependence of the KK mass scale MKK , the Yukawa matrices Yf , and the bulk-Higgs localization
parameter β. In this connection, enhanced predictions, compared to the SM prediction, have
been observed for the gluon fusion cross sections. On the contrary, the other Higgs production
rates and all the decay rates are suppressed compared to the SM. The largest contributions to the
processes are caused by virtual KK fermions, in correspondence with [2,3,5,151,152,154,171,193].
The physical KK scalars of the bulk Higgs RS model only give very small contributions to the
Higgs decay into two photons. Also, the contributions from W bosons to this process have a
small effect compared to the SM. Consistently, it has been detected that the predictions for
all the Higgs processes lie the closer to the SM predictions the lower the value of β is and the
stronger the bulk-Higgs field is located in the extra dimension. Besides, the results for β = 10
lie already very close to the results for the very narrow bulk-Higgs scenario, corresponding to
β →∞.

The predictions for the LHC signal strengths of the Higgs decays into two photon, gauge
boson or tau lepton states are consistently augmented compared to the respective SM predictions.
The augmentations result from the dominant, augmented contributions of the gluon fusion cross
sections, which are extenuated by the negative contributions stemming from the other Higgs
productions, the Higgs decay rates, and the corrections to the total Higgs decay width. For the
signal strengths of the Higgs decays into a pair of b quarks, only the Higgsstrahlung’s production
process that causes suppressed predictions compared to the SM has been included. Remarkably,
the experimental results, reported by ATLAS and CMS [6], agree with the tendencies of the RS
predictions to enhanced or suppressed rates compared to the SM. For that reason, it has not been
possible to constrain the parameter space of the bulk-Higgs RS model in any significant manner
by means of the evaluations, comparing the RS predictions with the experimental results.

As an outlook, the various Higgs couplings in the bulk-Higgs RS model have been compared
to the possible experimental capabilities of a future, upgraded ILC facility [214–218]. Even in
this case, it might be very challenging to constrain the parameter space of the bulk-Higgs RS
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model in a significant way, also if all measurements would prove the SM’s predictions.
In contrast to these outcomes of the bulk-Higgs RS scenario, previous investigations of Higgs

processes in a brane-Higgs scenario of the RS model gave suppressed predictions for the cross
sections of the gluon fusion, which dominate the signal strengths of the various Higgs decay rates.
As a consequence, even the parameter space of the custodial RS model can be constrained
very strongly, as proven in [2–4]. Accordingly, one may conclude that, as well as having the
most natural Higgs setting and predicting reduced exclusion bounds by the Peskin-Takeuchi
parameters, also the examinations of the Higgs processes favour the bulk-Higgs scenario of the
RS model. This framework provides a compelling alternative to the complex RS model with a
custodial protection mechanism [151,174–176], and in fact might appear to be the most plausible
and interesting scenario of the RS model.

In a second part of the thesis, the analyses have been enlarged to explain the temporarily
reported di-photon anomaly, seen in first data from Run 2 of the LHC, performed at

√
s = 13

TeV [8, 9, 224, 226]. Unfortunately, the excess did not pass future verifications, indicating that
it resulted from a statistical fluctuation [231, 232]. Alternatively, and most likely, it could have
been created by the decay of a new scalar boson with a mass of 750 GeV. For this reason, the
framework of the RS model has been extended by a single, new scalar field, and the anomaly
has been identified with the decay of its first KK resonance [7]. It has been able to especially
well explain the di-photon signal in the framework of the custodial RS model [151, 174–176],
for O(1)-couplings and KK masses compatible to electroweak precision tests. But, also the
framework with a minimal bulk gauge group has been suitable for explaining the excess. The
Higgs localization in the extra dimension has been irrelevant in these evaluations since the
processes have been considered for v � m2

S, where the significant effects have been scaling with
m2
S/M

2
KK . The various S decay rates into gg, γγ,WW,ZZ,Zγ, tt̄, hh and tt̄h final states have

been computed, and the exclusion bounds implied by Run 1 measurements of the LHC have
been derived, and have been taken into account in the evaluations. In addition, the effects of
possible Higgs portal couplings on the production and decay rates of the new scalar S have been
determined. In this case, the excluded parameter regions, following from Run 1 searches, have
been detected to be more significant.

Furthermore, a mechanism can be found to explain the origin of the mass differences of the
SM fermions by coupling the fermions to the vev of a similar, new bulk scalar field, as considered
for the di-photon excess [257, 258]. Such a framework has to some extend been explored in the
last section of Chapter 5, but there remain many more features to be investigated in future
analyses.

Altogether, calculations of scalar production and decay processes, to be tested at present-day
experiments, are important tools to investigate new approaches of physics to the gauge hierarchy
problem. In this context, the RS model with a small and warped extra dimension forms one of
the most suitable frameworks of research in this field, and the thesis, too, would like to contribute
to this task by its computations and analysis.
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Appendix A

The Randall-Sundrum Model

A.1 Notations for the extradimensional coordinate

In the following, a short compendium of relations between the original five-dimensional coordi-
nate x5 = rφ and the dimensionless coordinate t = εekr|φ| [155], which is used throughout this
thesis, is given. The t coordinate reflects the orbifold compactification of the extra dimension,
where the UV boundary at x5 = 0 transforms to ε = e−krπ, and the IR boundary at x5 = ±rπ
transforms to t = e−krπekrπ = 1. The non-linear correlation between the x5 or φ coordinates and
the t coordinate is plotted in Figure A.1. The t coordinate effectively maps the inverse warping
of the space along the extra dimension, getting a sizeable amount only in the last region of the
orbifold, close to the IR brane. Partial derivatives transform according to

∂

∂x5

→ 1

r

∂

∂φ
→ sgn(φ)kt

∂

∂t
, (A.1)

between the coordinates. For the integration over the x5-coordinate, there is [150]∫ rπ

−rπ
dx5 =

∫ 0

−rπ
dx5 +

∫ rπ

0

dx5 = −πr
L

∫ ε

1

dt

t
+
πr

L

∫ 1

ε

dt

t
=

2πr

L

∫ 1

ε

dt

t
, (A.2)

since dt
dx5

= sgn(x5) · kt. The metric reads in the two notations

ds2 = GMNdx
MdxN = e−2kr|φ|ηµνdx

µdxν − r2dφ2 =
ε2

t2

(
ηµνdx

µdxν − 1

M2
KK

dt2
)
, (A.3)

such that the matrix notation for the metric is

GMN =

(
e−2kr|φ|ηµν 0

0 −r2

)
, GMN =

(
e2kr|φ|ηµν 0

0 − 1
r2

)
,

√
|G| = e−4kr|φ|r , (A.4)

in the φ coordinate, and

GMN =

(
ε2

t2
ηµν 0
0 − 1

k2t2

)
, GMN =

(
t2

ε2
ηµν 0
0 −k2t2

)
,

√
|G| = ε4πr

t5L
(A.5)
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Figure A.1: A sketch of the relation between the φ = x5
r

and the t = εek|x5| coordinates.
The t coordinate effectively maps the inverse warping of the space along the extra dimension,
compactified on an orbifold, in this way getting a sizeable amount only in the last region of the
orbifold, close to the IR brane.

in the t coordinate. Considering the brane-localized potentials VUV and VIR with the original
Lagrangian

Lbranes =

∫ rπ

−rπ
dx5 e

−4σ(φ) [−VUV δ(x5)− VIRδ(|x5| − rπ)] , (A.6)

the δ-functions can be transformed according to

δ(x5)→ kεδ(t− ε) , δ(|x5| − rπ)→ kδ(t− 1) . (A.7)

However, a symmetric integration interval is needed for the integration over the δ-function. For
that reason, the full transformation reads

Lbranes =
πr

L

∫ 1

ε

dt

t

ε4

t4
[−MKKδ(t− ε)VUV − kδ(t− 1)VIR] , (A.8)

where there is no factor 2 compared to the transformation shown in (A.2) before.



Appendix B

Five-Dimensional Propagator Functions

B.1 System of equations involved in the calculation of

the fermion propagator

Here, the determination of the coefficient matrices C>,<
i of the five-dimensional fermion prop-

agator function, derived in Section 3.3.1, is presented. These coefficient matrices are defined
by a system of equations resulting from the boundary conditions at the branes and the jump
condition for the propagator function, given in (3.56), (3.60) and (3.61). In the following, we
name •equation I :

−C<
1 = t

′cF ·
[

1

MKK

+
v√

2MKK

YA(t′) · (C>
3 −C<

3 )

]
, (B.1)

•equation II :

C>
3 = C<

3 −
v√

2MKK

t
′−cfYB†(t′) ·C<

1 , (B.2)

and •equation III :

C<
3 =

√
2MKK

v
·
[
−(YE)−1 +

v2

4M2
KK

(
−YC† + (YE)−1YG

)]
·C<

1 . (B.3)

By inserting equation I into equation II, one gets:

C>
3 = C<

3 +
v√

2MKK

t
′−cfYB†(t′)t

′cF ·
[

1

MKK

+
v√

2MKK

YA(t′) · (C>
3 −C<

3 )

]
,

⇔
[
1− v2

2M2
KK

t
′−cfYB†(t′)t

′cFYA(t′)

]
·C>

3 =

[
1− v2

2M2
KK

t
′−cfYB†(t′)t

′cFYA(t′)

]
·C<

3

+
v√

2M2
KK

t
′−cfYB†(t′)t

′cF ,

⇔ C<
3 = C>

3 −
v√

2M2
KK

t
′−cfYB†(t′)t

′cF .

(B.4)
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And by setting equation I into equation III, one derives:

C<
3 =

√
2MKK

v

[
−(YE)−1 +

v2

4M2
KK

(
−YC† + (YE)−1YG

)]
·C<

1

eq.I
=

[
(YE)−1 +

v2

4M2
KK

(
YC† − (YE)−1YG

)]
t
′cF ·

[√
2

v
1 + YA(t′) (C>

3 −C<
3 )

]

= (YE)−1t
′cF

√
2

v
+

v2

4M2
KK

[
YC† − (YE)−1YG

]
t
′cF

√
2

v

+

[
(YE)−1t

′cFYA(t′) +
v2

4M2
KK

(
YC† − (YE)−1YG

)
t
′cFYA(t′)

]
·C>

3

−
[
(YE)−1t

′cFYA(t′) +
v2

4M2
KK

(
YC† − (YE)−1YG

)
t
′cFYA(t′)

]
·C<

3 .

(B.5)

By combining the upper two results, one finds:

C>
3 −

v√
2M2

KK

t
′−cfYB†(t′)t

′cF = (YE)−1t
′cF

√
2

v
+

v2

4M2
KK

[
YC† − (YE)−1YG

]
t
′cF

√
2

v

+

[
(YE)−1t

′cFYA(t′) +
v2

4M2
KK

(
YC† − (YE)−1YG

)
t
′cFYA(t′)

]
·C>

3

−
[
(YE)−1t

′cFYA(t′) +
v2

4M2
KK

(
YC† − (YE)−1YG

)
t
′cFYA(t′)

]
·
[
C>

3 −
v√

2M2
KK

t
′−cfYB†(t′)t

′cF

]
,

⇔

C>
3 = (YE)−1t

′cF

√
2

v
+

v2

2M2
KK

√
2

v
t
′−cfYB†(t′)t

′cF

+
v2

4M2
KK

[
YC† − (YE)−1YG

]
t
′cF

√
2

v
+

v2

2M2
KK

√
2

v
(YE)−1t

′cFYA(t′)t
′−cfYB†(t′)t

′cF

= (YE)−1t
′cF

√
2

v
+

v2

2M2
KK

√
2

v

[(
1 + (YE)−1t

′cFYA(t′)
)
t
′−cfYB†(t′)t

′cF

+
1

2

(
YC† − (YE)−1YG

)
t
′cF

]
.

(B.6)

In a similar manner, we name •equation I’ :

C<
4 =

√
2MKK

v
·
[
−(YE)−1 +

v2

4M2
KK

(
−YC† + (YE)−1YG

)]
·C<

2 , (B.7)

and •equation II’ :

−C<
2 =

v√
2MKK

t
′cFYA(t′) · (C>

4 −C<
4 ) , (B.8)
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as well as •equation III’ :

C>
4 = C<

4 −
v√

2MKK

t
′−cfYB†(t′) ·C<

2 +
t
′−cf

MKK

. (B.9)

One can put equation II’ into equation I’ and obtains:

C<
4 = (YE)−1t

′cFYA(t′)·(C>
4 −C<

4 ) , ⇔
(
1 + (YE)−1t

′cFYA(t′)
)
·C<

4 = (YE)−1t
′cFYA(t′)·C>

4 .

(B.10)

By combining this result with equation III’, one finds up to O
(

v
MKK

)
:

C>
4 = C<

4 +
t
′−cf

MKK

, ⇔ C>
4 =

[
1 + (YE)−1t

′cFYA(t′)
] t′−cf
MKK

. (B.11)

By inserting equation II’ into equation III’, one obtains

C>
4 = C<

4 +
v2

2M2
KK

t
′−cfYB†(t′)t

′cFYA(t′) (C>
4 −C<

4 ) +
t
′−cf

MKK

, (B.12)

and by using the result for C>
4 in (B.11), one gets

C<
4 =

1

MKK

(YE)−1t
′cFYA(t′) t

′−cf . (B.13)

Then, by using equation II’, one obtains

C<
2 = − v√

2M2
KK

t
′cFYA(t′)t

′−cf . (B.14)

Again, by inserting equation I into equation II, one finds

C>
3 = C<

3 +
v2

2M2
KK

t
′−cfYB†(t′)t

′cF

[√
2

v
YA(t′) (C>

3 −C<
3 )

]
, ⇔

C<
3 = C>

3 −
v2

2M2
KK

√
2

v
t
′−cfYB†(t′)t

′cF

= (YE)−1t
′cF

√
2

v
+

v2

2M2
KK

√
2

v

[
(YE)−1t

′cFYA(t′)t
′−cfYB†(t′)t

′cF +
1

2

(
YC† − (YE)−1YG

)
t
′cF

]
,

(B.15)

and from equation I, one derives

C<
1 = − t

′cF

MKK

+ ... . (B.16)
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Altogether, the two solutions ∆<
RL(t, t′; 0) and ∆>

RL(t, r′; 0) read up to the order O
(

v3

M3
KK

)
:

∆<
RL(t, t′; 0) =

− 1
MKK

[(
t′

t

)cF
+ YA(t)(YE)−1t

′cF

]
− v√

2M2
KK

[(
t′

t

)cF
+ YA(t)(YE)−1t

′cF

]
YA(t′)t

′−cf

tcf (YE)−1t
′cF
√

2
v

+ v√
2M2

KK

[
YB†(t)t

′cF

+1
2

(
−YB†(t)YE + YF †(t)

)
(YE)−1t

′cF

+tcf (YE)−1t
′cFYA(t′)t

′−cfYB†(t′)t
′cF

+1
2
tcf
(
YC† − (YE)−1YG

)
t
′cF
]

1
MKK

tcf (YE)−1t
′cFYA(t′)t

′−cf


,

∆>
RL(t, t′; 0) =

− 1
MKK

YA(t)(YE)−1t
′cF − v√

2M2
KK

YA(t)
[
1 + (YE)−1t

′cFYA(t′)
]
t
′−cf

tcf (YE)−1t
′cF
√

2
v

+ v√
2M2

KK

[
1
2

(
−YB†(t)YE + YF †(t)

)
(YE)−1t

′cF

+ t
cf

2

(
YC† − (YE)−1YG

)
t
′cF

tcf
(
1 + (YE)−1t

′cFYA(t′)
)
t
′−cfYB†(t′)t

′cF
]

1
MKK

[(
t
t′

)cf + tcf (YE)−1t
′cFYA(t′)t

′−cf
]


.

(B.17)

With the help of these results, analytic expressions can be determined for the sum over the KK
fermion tower in the calculations of the loop-induced Higgs production and decay processes, as
presented in Chapter 3 of this thesis.



Appendix C

Higgs Productions and Decays

C.1 Feynman parameter integral, and loop form factors

of Higgs couplings

In the calculation of the W boson contribution to the Higgs decay into two photons, presented
in 4.1.2, the following Feynman parameter integral appears∫ 1

0

dz arctanh
(√

1− z
) 1− z

2

τW − z
=

∫ 1

0

dz arctanh
(√

1− z
)(1− τW

2

τW − z
+

1

2

)

=
(

1− τW
2

)∫ 1

0

dz
arctanh

(√
1− z

)
τW − z

+
1

2
,

(C.1)

containing the remaining integral∫ 1

0

dz
arctanh

(√
1− z

)
τW − z

= −1

2

∫ 1

0

dx

∫ 1−x

0

dy
−1

−xy +
m2
W

m2
h

= −1

2

∫ 1

0

dx
1

x
ln

[
1− m2

h

m2
W

x(1− x)

]
≡ −1

2
J(ξ) ,

(C.2)

where ξ ≡ m2
h

m2
W

. Here, the integral is retyped according to the relations in (4.21). The integral

J(ξ) is the most difficult part to determine. Luckily, its calculation is presented in great detail
in [297]. The argument of the logarithm is positive in 0 ≤ x ≤ 1 for ξ < 4, and touches the
x-axis for ξ = 4. For ξ > 4, the argument has two roots, and after an integration by parts, the
integral J(ξ) can be written as

J(ξ) = ξ

∫ 1

0

dx
(1− 2x) lnx

1− x (1− x) ξ
. (C.3)

The denominator vanishes at the two roots in the integration range, and one splits the integral
into the principal part and the contributions of the poles, by using the rule∫

dx′

x′ − x∓ iε = P

∫
dx′

x′ − x ± iπ δ(x
′ − x) . (C.4)
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One uses the condition

δ(1− xξ + x2ξ) = ξ−1β−1 [δ(x− 1

2
(1 + β)) + δ(x− 1

2
(1− β))] , (C.5)

with the abbreviation β =
√

1− 4 ξ−1, to determine the imaginary part of J(ξ). If ξ > 4 holds,
the parameter β is real, and one obtains

Im J(ξ) = −π ln
1 + β

1− β . (C.6)

To calculate the real part of the integral, one differentiates the definition of J(ξ) in (C.2) with
respect to ξ, yielding

dJ

dξ
= −

∫ 1

0

dx
1− x

1− x (1− x) ξ
. (C.7)

One substitutes x = 1
2
(1 + u), and obtains

dJ

dξ
= −

∫ 1

−1

du

4− ξ + ξu2
, (C.8)

after dropping an antisymmetric term in the integrand. For positive β values, resulting from
ξ > 4 or ξ < 0, one obtains

dJ

dξ
=

1

2β ξ

∫ 1

−1

du

(
1

u+ β
− 1

u− β

)
=

1

β ξ
ln

∣∣∣∣1 + β

1− β

∣∣∣∣ . (C.9)

For the case of 0 < ξ < 4, one obtains

dJ

dξ
=

−1√
ξ (4− ξ)

arctan

(
u

√
ξ

4− ξ

)∣∣∣∣∣
1

−1

=
−2√

ξ (4− ξ)
arctan

√
ξ

4− ξ =
−2√

ξ (4− ξ)
arcsin

√
1

4
ξ .

(C.10)

One can integrate (C.9) and (C.10) over ξ and derives

J(ξ) = −2 (arcsin

√
1

4
ξ)2 + const. , (0 < ξ < 4) ,

Re[J(ξ)] =
1

2
ln2

∣∣∣∣1 + β

1− β

∣∣∣∣+ const. , (ξ > 4, ξ < 0) .

(C.11)

One concludes that the constants are zero for the case of ξ < 4, because J(ξ) vanishes at ξ = 0.
A comparison between the solutions in (C.11) at the point ξ = 4 shows that one has to include
a constant −1

2
π2 for the case of ξ > 4. Then, the solutions for J(ξ) read

J(ξ) =


1
2
ln2 β+1

β−1
(ξ < 0)

−2 (arcsin
√

1
4
ξ)2 (0 < ξ < 4)

1
2
ln2 1+β

1−β − 1
2
π2 − iπ ln 1+β

1−β (ξ ≥ 4)

. (C.12)
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Figure C.1: The behaviour of the form factors AW (τ) (blue), Af (τ) (yellow), Bf (τ) (green) and
Aφ(τ) (orange) for large arguments is indicated. They are all normalized in such a way that
they approach to 1 in the asymptotic limit.

The case of ξ =
m2
h

m2
W
< 0 is not possible in the present considerations. The solutions for the

other cases can be rewritten as J(ξ) = J(4/τW ) = −2f(τW ) [205], by writing τW = 4m2
W/m

2
h,

and with

f(τW ) =


arctan2 1√

τW−1
(τW > 1)

−1
4

[
ln1+

√
1−τW

1−
√

1−τW
− iπ

]2

(τW ≤ 1)
. (C.13)

This result appears in the loop-form factors, describing the KK contributions of W bosons,
fermions and scalars in the loop-induced Higgs production and decay processes. One has

AW (τ) =
1

7
[2 + 3τ + 3τ(2− τ)f(τ)] , Aφ(τ) = −3τ [1− τf(τ)] ,

Af (τ) =
3τ

2
[1 + (1− τ)f(τ)] , Bf (τ) = τf(τ) .

(C.14)

They are normalized in such a way that they converge to 1 in the asymptotic limit τ → ∞, as
it can be observed from Figure C.1.
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C.2 CP-odd loop-contribution of fermions to Higgs pro-

cesses

Here, the significant steps of the calculation of the CP-odd part of the fermion contribution
to the loop-induced Higgs processes are presented shortly. Starting from equation (4.60), the
CP-odd part of the amplitude for the fermion contribution to the Higgs decay into two photons
is

Mf,CP odd
h→γγ = −

∑
f=u,d,e

∞∑
n=1

(eQf )
2Nc,f Im(gfnn)ε?µ(k1)ε?ν(k2)

∫
ddp

(2π)d
Tr[γ5ATr]

d1d2d3

, (C.15)

with

ATr = (p/− k2/+mf
n)γν(p/+mf

n)γµ(p/+ k1/+mf
n)

+ (−p/− k1/+mf
n)γµ(−p/+mf

n)γν(−p/+ k2/+mf
n) ,

d1 = (p2 −m2
fn) , d2 = ([p+ k1]2 −m2

fn) , d3 = ([p− k2]2 −m2
fn) .

(C.16)

Using the relations

Tr [any odd n. of γ′s] = 0 , Tr [γ5γ
µγν ] = 0 , Tr [γ5γ

µγνγργσ] = −4iεµνρσ , (C.17)

one can determine

Tr [γ5ATr] = Tr
[
γ5

(
(p/− k2/+mf

n)γν(p/+mf
n)γµ(p/+ k1/+mf

n)

+(−p/− k1/+mf
n)γµ(−p/+mf

n)γν(−p/+ k2/+mf
n)
)]

= −4imf
n (ερνσµ · [pρpσ − k2ρpσ] + ερνµσ · [pρpσ + pρk1σ] + ερνµσ · [−k2ρpσ − k2ρk1σ]

+ ενρµσ · [pρpσ + pρk1σ] + ερµσν · [pρpσ + k1ρpσ] + ερµνσ · [pρpσ − pρk2σ]

+ερµνσ · [k1ρpσ − k1ρk2σ] + εµρνσ · [pρpσ − pρk2σ])

= ... = 8imf
nε
µνσρk1σk2ρ .

(C.18)

Here, the anti-zyclic behaviour of the tensor εµνσρ under the exchange of two indices in juxtapo-
sition with each other has been used. So, the result is

Mf,CP odd
h→γγ = −

∑
f=u,d,e

∞∑
n=1

(eQf )
2Nc,f Im(gfnn)8imf

nε
µνσρk1σk2ρε

?
µ(k1)ε?ν(k2)

∫
ddp

(2π)d
1

d1d2d3

,

= −i
∑

f=u,d,e

∞∑
n=1

Q2
fNc,f Im(gfnn)

α

4πv
(4π)22vmf

n

∫
ddp

(2π)d
1

d1d2d3

〈γγ|FµνF̃ µν |0〉 ,

⇔ Cf
5 = i

∑
f=u,d,e

∞∑
n=1

Q2
fNc,f Im(gfnn)(4π)22vmf

n

∫
ddp

(2π)d
1

d1d2d3

.

(C.19)
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The parametrization in (4.7) has been applied. The momentum integral can be expressed in
dependence of Feynman parameters, and one finds∫

ddp

(2π)d
1

(p2 −mf2
n )((p+ k1)2 −mf2

n )((p− k2)2 −mf2
n )

= 2

∫
ddp

(2π)d

∫ 1

0

dx

∫ 1−x

0

dy
1

(p2 −mf2
n + 2p(k1x− k2y))3

= 2

∫
ddp̃

(2π)d

∫ 1

0

dx

∫ 1−x

0

dy
1

(p̃2 −mf2
n +m2

hxy)3
= − 2i

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy
1

mf2
n −m2

hxy

= − 2i

(4π)2

−1

2m2
h

J(ξ) = − 2i

(4π)2m2
h

f(τfn) ,

(C.20)

where the momentum shift p̃ = p+k1x−k2y is performed, and k2
1 = k2

2 = 0 and 2k1k2 = m2
h has

been used. The calculation of the Feynman parameter integral J(ξ) has been presented before
in Section C.1. The full result can be determined as

Cf
5 =

∑
f=u,d,e

Q2
fNc,f

∞∑
n=1

Im(gfnn)v

mf
n

B(τfn) , (C.21)

where B(τ) = τf(τ) has been defined in the section before in Appendix C.1.
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C.3 Dicing of the RS model parameter sets

For the input parameters of the numerical evaluations, performed in Chapter 3 of the thesis,
three sets have been diced for the Yukawa matrices Yu and Yd, whose entries are bounded in
magnitude by |(Yf )ij| ≤ y?, with y? = 1, 2, 3, in dependence of the KK mass scale in the range
of MKK ∈ [1, 10] TeV. The diced Yukawa matrices can reproduce the correct zero-mode fermion
masses and Wolfenstein parameters, according to the formulas (2.154) and (2.164). In the dicing
process, the correct zero-mode fermion profiles have been used, which can be expressed in terms
of the quark masses, Yukawa matrices and Wolfenstein parameters, together with one chosen
profile, as for example F (cu3) [150],

|F (cQ1)| =
√

2mt

v

Aλ3

| (Md)21
(Md)21

− (Mu)21
(Mu)21

||(Yu)33| | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
1

|F (cu3)|
,

|F (cQ2)| =
√

2mt

v

Aλ2

|(Yu)33| | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
1

|F (cu3)|
,

|F (cQ3)| =
√

2mt

v

| (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
|(Yu)33| | (Yd)23

(Yd)33
− (Yu)23

(Yu)33
|

1

|F (cu3)|
,

|F (cu1)| =
mu

mt

|(Mu)11| | (Md)21
(Md)11

− (Mu)21
(Mu)11

||(Yu)33| | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
Aλ3|det(Yu)|

|F (cu3)| ,

|F (cu2)| =
mc

mt

|(Yu)33|2 | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
Aλ2|(Mu)11|

|F (cu3)| ,

|F (cd1)| =
md

mt

|(Md)11| | (Mu)21
(Mu)11

− (Md)21
(Md)11

||(Yu)33| | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
Aλ3|det(Yd)|

|F (cu3)| ,

|F (cd2)| =
ms

mt

|(Yd)33||(Yu)33| | (Yd)23
(Yd)33

− (Yu)23
(Yu)33

|
Aλ2|(Md)11|

|F (cu3)| ,

|F (cd3)| =
mb

mt

|(Yu)33|
|(Yd)33|

|F (cu3)| .

(C.22)

The dicing process has been performed with a program written for Mathematica by U. Haisch et
al.. The entries of the quark Yukawa matrices Yu and Yd have been diced as random complex
numbers, following a flat distribution, according to the formula

(YYY f )ij =
√
y∗ · |(YYY f )ij| eiφ , (YYY f )ij ∈ [0, y∗] , φ ∈ [0, 2π] , (C.23)

so that every number within the allowed range 0 ≤ |(YYY q)ij| ≤ y∗, has been diced with an equal
probability. The two Wolfenstein parameters ρ̄ and η̄ have been calculated for the diced Yukawa
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matrices, and the quantity

χ2[Xi] =
∑
i

(
Xi −Xi,exp

σ(Xi,exp)

)2

, (C.24)

with Xi = (η̄, ρ̄), has been demanded to fulfil a FindMinimum condition of Mathematica, oth-
erwise the calculated matrices have been rejected. Then, the zero-mode profiles for the quark
fields have been determined, according to the formulas presented above, for a randomly chosen
|F (cu3)| ∈ [0,

√
3]. Using the formulas (2.154) and (2.164), a ten parameter set has been deter-

mined for the quark masses and Wolfenstein parameters, asXi = (mu,mc,mt,md,ms,mb, A, λ, ρ̄, η̄).
For this set, the χ2 has been computed, according to (C.24), with the experimentally determined
quark masses, Wolfenstein parameters and the 1σ error values as inputs. It has been demanded
that χ2 < 10 according to the degrees of freedom, and that max|F (c(Qi,qi))| <

√
2 (except of

|F (cu3)|), otherwise the calculated parameter points have been rejected. In this vein, the data-
sets for Yu, Yd could be derived in dependence of MKK that reproduce the physical fermion
masses and the Wolfenstein parameters. A simplification has been used for the dicing of the lep-
ton Yukawa matrices Yl, which have been determined according to the formula (C.23), without
imposing further chi-square minimizations adapting to lepton masses.

The experimental input values for the quark masses in GeV, and Wolfenstein parameters,
with corresponding 1σ errors, used in the dicing program, have been

mu = 0.0015 mc = 0.55 mt = 140 md = 0.003 ms = 0.05 mb = 2.2

σ[mu] = 0.001 σ[mc] = 0.05 σ[mt] = 10. σ[md] = 0.002 σ[ms] = 0.03 σ[mb] = 0.1

λ = 0.2265 A = 0.807 ρ̄ = 0.147 η̄ = 0.343

σ[λ] = 0.0008 σ[A] = 0.018 σ[ρ̄] = 0.023 σ[η̄] = 0.016

These values might slightly deviate from the latest experimental results, which we expect to
be numerically insignificant for the evaluations. Besides, the dicing program was written for
the minimal RS scenario with a brane-localized Higgs field. The relations for the fermion mass
eigenvalues and Wolfenstein parameters in the bulk-Higgs RS scenario involve the matrices Ỹf ,
defined in (2.115), rather than the matrices Yf , see equation (2.119). For that reason, the diced
sets from the program have been used for Ỹu and Ỹd in the formulas. In the end, it was set
cfi → −1/2, and the results have been rewritten in dependence of the matrices Yf , as in (4.86),

for example. Accordingly, rescaling factors (1+β)
(2+β)

Ỹq = Yq have been included in the calculation
of the scatter plots. For the leptons, such rescaling factors have not been included, and the
simply diced sets have been taken for Yl.
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Appendix D

A New, Heavy Bulk Scalar in the RS
Model

D.1 Corrections to the expressions ∆(±)(cf , β)

Here, the expressions from (5.27) are displayed up to O(
m4
S

M4
KK

)-corrections,

∆(+)(cf , β) = − 2F 2(cf )

(3 + β + 2cf )

− m2
S

60M2
KK

[
− (2 + β)

(1− 2cf )(4 + β)(3 + β − 2cf )
− (1− ε2)F 4(cf )

(1− 2cf )(3 + 2cf )(3 + β + 2cf )

− F 2(cf )(2 + β)(2 + β − 4cf )

(1− 2cf )(1 + 2cf )2(4 + β)(3 + β − 2cf )
+

2F 2(cf )(1 + cf )(2 + β)

(1 + 2cf )2(3 + 2cf )(5 + β + 2cf )

+
F 2(cf )

(1− 2cf )(3 + 2cf )

(
1− ε2 (1 + 2cf )

(3 + β + 2cf )

)]
+

m2
S

4M2
KK

[
β

(1 + β)(2 + β)(4 + β)

+
4cfF

2(cf )(2 + β)

(1 + β)(1 + 2cf )(4 + β + 2cf )(4 + β)
− 2F 2(cf )

(3 + β + 2cf )

]
+O

(
m4
S

M4
KK

)
,

∆(−)(cf , β) = − m2
S

60M2
KK

1

(1− 2cf )

[
− (2 + β)

(4 + β)(3 + β − 2cf )
+

ε1−2cf

(3 + β + 2cf )

]

+
m2
S

4M2
KK

β

(1 + β)(2 + β)(4 + β)
+O

(
m4
S

M4
KK

)
,

(D.1)

which have been plotted in Figure 5.2.
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Figure D.1: Numeric solutions for wL(t), derived for µ2
L/k

2 = 32/9, ξ = 5, w′(1) =
−3.8651104855284 (blue curve), µ2

L/k
2 = 32/9, ξ = 4.7, w′(1) = −3.8651104855284 (black

curve), µ2
L/k

2 = 32/9 + 1.5, ξ = 5, w′(1) = −3.8651104855284 (gray curve), µ2
L/k

2 = 32/9, ξ =
5, w′(1) = −2.6 (green curve).

D.2 Solutions for the odd bulk scalar vev wL(t)

In Section 5.2, approximate, analytic solutions have been determined for the bulk scalar vev,
which could possibly form the origin of the Z2-odd bulk fermion masses of the RS model. The
odd bulk masses determine the localizations of the fermions along the extra dimension, which
have to show a hierarchic behaviour in order to explain the mass splitting of the zero-mode
fermions. For suitable choices of parameters, it has been possible to derive hierarchic zero-mode
fermion profiles, which have been plotted in Figure 5.11.

By further fixing the parameter values for µ2
L/k

2 and ξ, one can numerically solve the dif-
ferential equation for the vev wL(t), given in (5.57). In Figure D.1, the numeric results, derived
for the vev, are plotted for:

µ2
L/k

2 = 32/9 ξ = 5 w′(1) = −3.8651104855284 (blue curve)

µ2
L/k

2 = 32/9 ξ = 4.7 w′(1) = −3.8651104855284 (black curve)

µ2
L/k

2 = 32/9 + 1.5 ξ = 5 w′(1) = −3.8651104855284 (gray curve)

µ2
L/k

2 = 32/9 ξ = 5 w′(1) = −2.6 (red curve)

Again, due to the non-linear relation between the φ and the t coordinates, the shapes of the
solutions differ in the two coordinates. For the first of these results, which is the blue curve in
the plot that reproduces a kink-like behaviour over half of the extra dimension, the resulting
zero-mode fermion profiles have been determined numerically, according to (5.60). The results
are plotted in Figure D.2, for µ2

L/k
2 = 32/9, ξ = 5, w′(1) = −3.8651104855284 and g=-5 (orange

curve), -2.5 (black curve), -1 (blue curve) and +1 (red curve). The solutions fulfil the normaliza-
tion condition for the fermion profiles, and the IR boundary values are chosen as F (0)(1) = 0.1,
which are arbitrary, in principle. Taking similar input parameter values as before, one deter-
mines very similar shapes for the solutions, showing a hierarchical behaviour. Moreover, the vev
fulfils the two boundary conditions in good approximation, and there is no big parameter value
needed, as for the parameter α in the analytic solutions shown before. For the other parame-
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Figure D.2: Zero-mode fermion profiles from the numerically calculated vev, for µ2
L/k

2 =
32/9, ξ = 5, w′(1) = −3.8651104855284, and g=-5 (orange curve), -2.5 (black curve), -1 (blue
curve) and +1 (red curve), taking F (0)(1) = 0.1.

ter choices, indicated by the black, gray and red curves in Figure D.1, the resulting zero-mode
fermion profiles are given in Figures D.4 and D.5. For these cases, it is not possible to derive
hierarchical zero-mode fermion profiles.

Similarly, in Figures D.3 and D.4, solutions are given for the zero-mode fermion profiles to
the lowest order, derived from the analytic vev for α = 1000 and α = 1, for which the solutions
for the vev are plotted in Figure 5.10.
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Figure D.3: Here, the zero-mode fermion profiles, implied by the solution for the vev in (5.67),
are plotted for α = 1000 and µ2

L/k
2 = 32/9 and ξ = 5, whereat g = +1,−1,−2.5 (left-hand

side) and g = −5 (right-hand side).
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Figure D.4: Here, the zero-mode fermion profiles are plotted for g = +1,−1,−2.5,−5, respec-
tively, implied by the solution for the vev in (5.67) for µ2

L/k
2 = 32/9, ξ = 5, and α = 1 on the

left-hand side, and implied by the numerically determined vev for µ2
L/k

2 = 32/9 + 1.5, ξ = 5
and w′(1) = −3.8651104855284 on the right-hand side.
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Figure D.5: Here, the zero-mode fermion profiles implied by the numerically determined vev
for g = +1,−1,−2.5,−5 are plotted on the left-hand side for µ2

L/k
2 = 32/9 + 1.5, ξ = 4.7 and

w′(1) = −3.8651104855284, and are plotted on the right-hand side for µ2
L/k

2 = 32/9+1.5, ξ = 5
and w′(1) = −2.6.
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lation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron
Fields, Prog. Theor. Phys., vol. 2, p. 101-116, (1947)

[36] Bargmann, V. and Michel, L. and Telegdi, V., Precession of the polarization of particles
moving in a homogeneous electromagnetic field, Phys. Rev. Lett., vol. 2, p. 435-436, (1959)

[37] Lee, T. and Yang, C., Question of Parity Conservation in Weak Interactions, Phys. Rev., vol.
104, p. 254-258, (1956)

[38] Wu, C. S. and Ambler, E. and Hayward, R. W. and Hoppes, D. D. and Hudson, R. P.,
Experimental Test of Parity Conservation in Beta Decay, Phys. Rev., vol. 105, p. 1413-1414,
(1957)

[39] Yang, C. and Mills, R., Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys.
Rev., vol. 96, p. 191-195, (1954)

[40] Gell-Mann, M. and Zachariasen, F., Broken Symmetries and Bare Coupling Constants, Phys.
Rev., vol. 123, p. 1065-1071, (1961)

[41] Gell-Mann, M., The Eightfold Way: A Theory of strong interaction symmetry, (1961) [CTSL-
20, TID-12608]

[42] Ne’eman, Y., Derivation of strong interactions from a gauge invariance, Nucl. Phys., vol. 26,
p. 222-229, (1961)

[43] Zweig, G., An SU(3) model for strong interaction symmetry and its breaking. Version 2, Devel-
opments in the Quark Theory of Hadrons, Volume 1. Edited by D. Lichtenberg and S. Rosen.
pp. 22-101, p. 22-101, (1964)

[44] Zweig, G., An SU(3) model for strong interaction symmetry and its breaking. Version 1, (1964)
[CERN-TH-401]

[45] Freund, G. and Nambu, Y., Broken SU(3) × SU(3) × SU(3) × SU(3) symmetry of strong
interactions, Proceedings, 12th International Conference on High Energy Physics (ICHEP
1964): Dubna, vol. 1, p. 811-813, (1964)

https://journals.aps.org/pr/abstract/10.1103/PhysRev.75.651
https://journals.aps.org/pr/abstract/10.1103/PhysRev.75.651
https://journals.aps.org/pr/abstract/10.1103/PhysRev.74.1439
https://journals.aps.org/pr/abstract/10.1103/PhysRev.74.1439
https://journals.aps.org/pr/abstract/10.1103/PhysRev.73.416
https://journals.aps.org/pr/abstract/10.1103/PhysRev.74.224
https://academic.oup.com/ptp/article-lookup/doi/10.1143/ptp/2.3.101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.2.435
https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.254
https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.254
https://journals.aps.org/pr/abstract/10.1103/PhysRev.105.1413
https://journals.aps.org/pr/abstract/10.1103/PhysRev.105.1413
https://journals.aps.org/pr/abstract/10.1103/PhysRev.96.191
https://journals.aps.org/pr/abstract/10.1103/PhysRev.96.191
https://journals.aps.org/pr/abstract/10.1103/PhysRev.123.1065
https://journals.aps.org/pr/abstract/10.1103/PhysRev.123.1065
http://tuvalu.santafe.edu/~mgm/Site/Publications_files/MGM2055.pdf
http://tuvalu.santafe.edu/~mgm/Site/Publications_files/MGM2055.pdf
http://www.sciencedirect.com/science/article/pii/0029558261901341?via3Dihub
http://www.sciencedirect.com/science/article/pii/0029558261901341?via3Dihub
http://inspirehep.net/record/4674/files/cern-th-412.pdf
http://inspirehep.net/record/4674/files/cern-th-412.pdf
http://inspirehep.net/record/4674/files/cern-th-412.pdf
http://inspirehep.net/record/11881/files/CM-P00042883.pdf
http://inspirehep.net/record/11881/files/CM-P00042883.pdf
http://inspirehep.net/record/1376747/files/C64-08-05-p811.pdf
http://inspirehep.net/record/1376747/files/C64-08-05-p811.pdf


206 BIBLIOGRAPHY

[46] Salam, A. and Ward, J., Electromagnetic and weak interactions, Phys. Lett., vol. 13, p.
168-171, (1964)

[47] Glashow, S. and Weinberg, S., Breaking chiral symmetry, Phys. Rev. Lett., vol. 20, p. 224-
227, (1968)

[48] Weinberg, S., A Model of Leptons, Phys. Rev. Lett., vol. 19, p. 1264-1266 , 1967)

[49] Glashow, S., Model of Weak Interactions with CP Violation, Phys. Rev. Lett., vol. 14, p.
35-38, (1965)

[50] Goldstone, J., Field Theories with Superconductor Solutions, Nuovo Cim., vol. 19, p. 154-164,
(1961)

[51] Nambu, Y. and Jona-Lasinio, G., Dynamical Model of Elementary Particles based on an
Analogy with Superconductivity. 2., Phys. Rev., vol. 124, p. 246-254, (1961)

[52] Nambu, Y. and Jona-Lasinio, G., Dynamical Model of Elementary Particles Based on an
Analogy with Superconductivity. 1., Phys. Rev., vol. 122, p. 345-358, (1961)

[53] Guralnik, G. and Hagen, C. and Kibble, T., Global Conservation Laws and Massless Particles,
Phys. Rev. Lett., vol. 13, p. 585-587, (1964)

[54] Englert, F. and Brout, R., Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.
Rev. Lett., vol. 113, p. 321-323, (1964)

[55] Higgs, P., Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett., vol. 13, p.
508-509, (1964)

[56] Glashow, S. and Iliopoulos, J. and Maiani, L., Weak Interactions with Lepton-Hadron Sym-
metry, Phys. Rev., vol. D2, p. 1285-1292, (1970)

[57] ’t Hooft, G., Renormalization of Massless Yang-Mills Fields, Nucl. Phys., vol. B33, p. 173-199,
(1971)

[58] ’t Hooft, G., Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys., vol. B35,
p. 167-188, (1971)

[59] Fritzsch, H. and Gell-Mann, M. and Leutwyler, H., Advantages of the Color Octet Gluon
Picture, Phys. Lett., vol. 47B, p. 365-368, (1973)

[60] Perl, M., The Discovery of The Tau Lepton, NATO Sci. Ser. B, vol. 352, p. 277-302, (1996)

[61] Hasert, F. and others, Observation of Neutrino Like Interactions Without Muon Or Electron in
the Gargamelle Neutrino Experiment, Phys. Lett., vol. 46B, p. 138-140, (1973)

[62] Hasert, F. and others, Search for Elastic νµ Electron Scattering, Phys. Lett., vol. 46B, p.
121-124, (1973)

[63] Arnison, G. and others, Experimental Observation of Lepton Pairs of Invariant Mass Around
95 GeV/c2 at the CERN SPS Collider, Phys. Lett., vol. 126B, p. 398-410, (1983)

http://www.sciencedirect.com/science/article/pii/0031916364907115?via3Dihub
http://www.sciencedirect.com/science/article/pii/0031916364907115?via3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.20.224
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.20.224
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.14.35
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.14.35
https://link.springer.com/article/10.10072FBF02812722
https://link.springer.com/article/10.10072FBF02812722
https://journals.aps.org/pr/abstract/10.1103/PhysRev.124.246
https://journals.aps.org/pr/abstract/10.1103/PhysRev.122.345
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.585
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.321
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.321
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.508
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.13.508
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.2.1285
http://www.sciencedirect.com/science/article/pii/0550321371903956?via3Dihub
http://www.sciencedirect.com/science/article/pii/0550321371903956?via3Dihub
http://www.sciencedirect.com/science/article/pii/0550321371901398?via3Dihub
http://www.sciencedirect.com/science/article/pii/0550321371901398?via3Dihub
http://www.sciencedirect.com/science/article/pii/0370269373906254?via3Dihub
https://link.springer.com/chapter/10.10072F978-1-4613-1147-8_15
http://www.sciencedirect.com/science/article/pii/0370269373904991?via3Dihub
http://www.sciencedirect.com/science/article/pii/0370269373904942?via3Dihub
http://www.sciencedirect.com/science/article/pii/0370269373904942?via3Dihub
http://www.sciencedirect.com/science/article/pii/0370269383901880?via3Dihub


BIBLIOGRAPHY 207

[64] Arnison, G. and others, Further Evidence for Charged Intermediate Vector Bosons at the SPS
Collider, Phys. Lett., vol. 129B, p. 273-282, (1983)

[65] Banner, M. and others, Observation of Single Isolated Electrons of High Transverse Momentum
in Events with Missing Transverse Energy at the CERN p̄p Collider,Phys. Lett., vol. 122B, p.
476-485, (1983)

[66] Bagnaia, P. and others, Evidence for Z0 → e+e− at the CERN p̄p Collider, Phys. Lett., vol.
129B, p. 130-140, (1983)

[67] Aad, Georges and others, Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett., vol. B716, p. 1-29, (2012),
arXiv:hep-ex/1207.7214

[68] Chatrchyan, Serguei and others, Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC, Phys. Lett., vol. B716, p. 30-61, (2012), arXiv:hep-ex/1207.7235

[69] Ahmad, Q. and others, Measurement of the rate of νe + d→ p+ p+ e− interactions produced
by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett., vol. 87, p. 071301,
(2001), arXiv:nucl-ex/0106015

[70] Fukuda, Y. and others, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.,
vol. 81, p. 1562-1567, (1998), arXiv:hep-ex/9807003

[71] Canetti, L. and Drewes, M. and Shaposhnikov, M., Matter and Antimatter in the Universe,
New J. Phys., vol. 14, p. 095012, (2012), arXiv:hep-ph/1204.4186

[72] Perlmutter, S. and others, Measurements of Omega and Lambda from 42 high redshift super-
novae, Astrophys. J., vol. 517, p. 565-586, (1999), arXiv:astro-ph/9812133

[73] Riess, A. and others, Observational evidence from supernovae for an accelerating universe and
a cosmological constant, Astron. J., vol. 116, p. 1009-1038, (1998), arXiv:astro-ph/9805201

[74] Jarosik, N. and others, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions: Sky Maps, Systematic Errors, and Basic Results, Astrophys. J. Suppl., vol. 192, p. 14,
(2011), arXiv:astro-ph/1001.4744

[75] Ade, P. and others, Planck 2013 results. I. Overview of products and scientific results, Astron.
Astrophys., vol. 571, p. A1, (2014), arXiv:astro-ph/1303.5062

[76] Weinberg, S., The Quantum theory of fields. Vol. 1: Foundations, (2005), Cambridge Univer-
sity Press, (2005)

[77] Mandl, F. and Shaw, G., Quantum Field Theory, Chichester, Uk: Wiley (1984) 354 p. (A
Wiley-interscience Publication)

[78] Cheng, T. and Li, L., Gauge Theory of Elementary Particle Physics, Oxford, Uk: Clarendon
(1984) 536 P. (Oxford Science Publications)

http://www.sciencedirect.com/science/article/pii/0370269383908602?via3Dihub
http://www.sciencedirect.com/science/article/pii/0370269383916052?viaDihub
http://www.sciencedirect.com/science/article/pii/0370269383916052?viaDihub
http://www.sciencedirect.com/science/article/pii/037026938390744X?via3Dihub
http://www.sciencedirect.com/science/article/pii/037026938390744X?via3Dihub
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7235
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.071301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.071301
https://arxiv.org/abs/nucl-ex/0106015
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1562
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
http://iopscience.iop.org/article/10.1088/1367-2630/14/9/095012/meta
https://arxiv.org/abs/1204.4186
http://iopscience.iop.org/article/10.1086/307221/meta
https://arxiv.org/abs/astro-ph/9812133
http://iopscience.iop.org/article/10.1086/300499/meta
https://arxiv.org/abs/astro-ph/9805201
http://iopscience.iop.org/article/10.1088/0067-0049/192/2/14/meta
http://iopscience.iop.org/article/10.1088/0067-0049/192/2/14/meta
https://arxiv.org/abs/1001.4744
https://www.aanda.org/articles/aa/abs/2014/11/aa21529-13/aa21529-13.html
https://www.aanda.org/articles/aa/abs/2014/11/aa21529-13/aa21529-13.html
https://arxiv.org/abs/1303.5062
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471496839.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471496839.html


208 BIBLIOGRAPHY

[79] Peskin, M. and Schroeder, D., An Introduction to quantum field theory, Reading, USA:
Addison-Wesley (1995) 842 p.

[80] Chau, Ling-Lie and Keung, Wai-Yee, Comments on the Parametrization of the Kobayashi-
Maskawa Matrix, Phys. Rev. Lett., vol. 53, p. 1802, (1984)

[81] Wolfenstein, Lincoln, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett.,
vol. 51, p. 1945, (1983)

[82] Peskin, Michael E. and Takeuchi, Tatsu, Estimation of oblique electroweak corrections, Phys.
Rev., vol. D46, p. 381-409, (1992)

[83] Kuroda, M. and Moultaka, G. and Schildknecht, D., Direct one loop renormalization of
SU(2)L×U(1)Y four fermion processes and running coupling constants, Nucl. Phys., vol. B350,
p. 25-72, (1991)

[84] Kennedy, D. and Lynn, B., Electroweak Radiative Corrections with an Effective Lagrangian:
Four Fermion Processes, Nucl. Phys., vol. B322, p. 1-54, (1989)

[85] Peskin, M. and Takeuchi, T., A New constraint on a strongly interacting Higgs sector, Phys.
Rev. Lett., vol. 65, p. 964-967, (1990)
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[250] Bélanger, Geneviève and Delaunay, Cédric, A Dark Sector for gµ − 2, RK and a Diphoton
Resonance, Phys. Rev., vol. D94, p. 075019, (2016), arXiv:hep-ph/1603.03333
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Miscellaneous

List of abbreviations

ADD Arkani-Hamed-Dimopoulos-Dvali
AdS Anti-de Sitter
ATLAS A Toroidal LHC ApparatuS
CERN European Organization for Nuclear Research
CKM Cabibbo-Kobayashi-Maskawa
CL confidence level
CMS Compact Muon Solenoid
CP charge and parity
em electromagnetic
eV electron Volt
GeV Giga electron Volt
ILC International Linear Collider
IR infra-red
KK Kaluza-Klein
Λ-CDM Λ-Cold-Dark-Matter
LHC Large Hadron Collider
m meter
MeV Mega electron Volt
NG Nambu-Goldstone
PDF parton distribution function
PV Passarino-Veltman
QCD quantum chromodynamics
QED quantum electrodynamics
RS Randall-Sundrum
SLAC Stanford Linear Accelerator Center
SM Standard Model
S-matrix Scattering-matrix
SUSY supersymmetry
TeV Tera electron Volt
UV ultra-violet
vev vacuum expectation value
WIMP weakly interacting massive particle
XD X-dimensional
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