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1 Introduction

What makes mineral–water interfaces important?

Minerals and liquid water are abundant constituents of the earth. Interactions taking
place at the mineral–water interface have tremendous environmental, biological and
industrial impact.1,2 For example, the dissolution and growth of minerals governs
the composition of sea waters,3 impacts the global carbon dioxide cycle4 and plays
a crucial role in biomineralization.5 For understanding these processes, knowledge
concerning the properties of interfacial water is critical.6,7 The aim of the present
thesis is therefore to gain insights into mineral–water interfaces at the atomic scale.
I focus on a particularly interesting group of minerals: The carbonate minerals calcite,
dolomite and magnesite. Calcite, the most stable polymorph of CaCO3, is a major con-
stituent of sedimentary rock.8 Moreover, calcite occurs as biomineral in the shells of
marine animals9 and even in the human brain.10 The minerals dolomite (CaMg(CO3)2)
and magnesite (MgCO3) are obtained by substituting either half or all of the calcium
ions in calcite with magnesium. This exchange of ions opens up the possibility for
systematic studies on the interfacial behavior of calcium (the “cation of choice for
most organisms”)11 and magnesium ions.

Investigating mineral–water interfaces with AFM

Atomic force microscopy (AFM) is the ideal tool for investigating surfaces in real
space.12 Numerous technical improvements have made it possible to atomically re-
solve surfaces in water using dynamic AFM modes.13–16 AFM is based on scanning
the sample surface with a sharp tip – consequently, for probing the interfacial vol-
ume, three-dimensional (3D) scanning of the tip is necessary.17 This technique is very
recent and typically not implemented in commercially-available microscopes. There-
fore, I implemented a highly-�exible 3D scanning routine that can be used to extend
existing dynamic atomic force microscopes.
The central quantity in AFM is the tip-sample force. In this thesis, I provide a unifying
theory for quantitative AFM, that makes use of only one approximation, the harmonic
approximation. This theory reveals the three and only pieces of information about the
tip-sample force that are accessible with dynamic AFM. Using the quantitative analy-
sis, I present the hydration structure at the most stable surfaces of calcite, dolomite
and magnesite. Subtle di�erences in the 3D hydration structure of calcium and magne-
sium ions at the dolomite surface allow for the identi�cation of the ions. This chemical
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1 Introduction

identi�cation is a major advance for the study of mineral–water interfaces with AFM.
Moreover, I take advantage of the real-space imaging capabilities of AFM to resolve
the hydration structure around point defects at the calcite–water interface. The data
demonstrate that point defects cause a minute, yet detectable change in the hydration
structure with a lateral extent of few atoms.
As stimulus for future studies, I additionally provide in this thesis a comprehensive
theory for Kelvin probe force microscopy (KPFM), a technique closely related to AFM.
In KPFM, a voltage is applied between tip and sample. As a result detailed in this thesis,
the charge distribution at the sample can be speci�cally probed. In future studies, this
technique could provide an even more detailed insight into solid–liquid interfaces.

Thesis structure

I present the three AFM equations – a unifying theoretical approach for describing
AFM in section 2.1. Contrary to previous works, the theoretical approach presented
in this section does not rely on mode-speci�c assumptions, making the three AFM
equations applicable for a wide community of AFM users.
In section 2.2, the implementation of an interactive virtual AFM (VAFM) is described.
The simulation allows users to interactively explore the parameter space available
in real AFM experiments, since the interactive VAFM takes measurement electronics
into account. The interactive VAFM does not only provide a useful learning and test-
ing platform: As demonstrated in this section, the interactive VAFM also allows for
checking the validity of the harmonic approximation, the only approximation used to
derive the three AFM equations in section 2.1.
In section 3.1, I address the question whether order at solid–liquid interface can be
induced purely by the con�nement of the surface, regardless of attractive interac-
tions between solid and liquid. For this purpose, a Monte Carlo (MC) simulation of
a most simple solid–liquid interface is conducted. The simulation demonstrates that
an ordered arrangement of liquid molecules at the solid–liquid interface does not
necessarily mean that there are attractive interactions between the liquid molecules
and the surface.
I introduce the dynamic AFM setup employed in this thesis in section 3.2, where I par-
ticularly focus on my implementation of the 3D scanning and data acquisition. A most
�exible data acquisition system has proven to be necessary to record all quantities
that are relevant for quantitative dynamic AFM.
The hydration structure above the three minerals calcite, dolomite and magnesite is
presented in section 3.3. In this section, I also present the chemical identi�cation of
calcium and magnesium ions at the dolomite–water interface. The next three sections
are devoted to the calcite–water interface at conditions that resemble naturally oc-
curring mineral–water interfaces: In section 3.4, I investigate the hydration structure
near point defects. The dependency of the hydration structure on the concentrations
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of ions is discussed in section 3.5. Finally, I provide an outlook towards more compre-
hensive studies on the adsorption of molecules at the calcite–water interface. For this,
I present 3D AFM results at the ethanol–water interface in section 3.6.
Finally, I explore the signal obtained in KPFM measurements. I present a detailed
derivation of the KPFM signal obtained in di�erent KPFM modes in section 4.1. In a
similar spirit as the section on quantitative AFM, this discussion eliminates most mode-
speci�c aspects and shows that the KPFM signal generally contains a weighted sum
over charges in the tip-sample system. The weight function for charges is explored in
detail in section 4.2 and a summary of preliminary KPFM experiments at the mineral–
water interface is presented in section 4.3.
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2 �antitative AFM

2.1 The three AFM equations

Section 2.1 is based on the article “Quantitative Dynamic Atomic Force Mi-
croscopy” by H. Söngen, R. Bechstein and A. Kühnle, which has been accepted
for publication in Journal of Physics: Condensed Matter (reference 18). I have
written the manuscript with contributions by R. Bechstein and comments by A.
Kühnle. I measured and analyzed the shown experimental data and prepared
the �gures. Parts of the article are reproduced verbatim, changes have been
made to make the section consistent with the other sections in this thesis.

A variety of atomic force microscopy (AFM) modes is employed in the �eld of surface
science. The most prominent AFM modes include the amplitude modulation (AM) and
the frequency modulation (FM) mode. Over the years, di�erent ways for analyzing data
acquired with di�erent AFM modes have been developed, where each analysis is usually
based on mode-speci�c assumptions and approximations. Checking the validity of the
seemingly di�erent approximations employed in the various analysis methods can be
a tedious task. Moreover, a straightforward comparison of data analyzed with di�erent
methods can, therefore, be challenging. Here, we combine the existing evaluation methods
which have been separately developed for the di�erent AFMmodes and present a unifying
set of three equations. These three AFM equations allow for a straightforward analysis of
AFM data within the harmonic approximation, regardless of the AFM mode. The three
AFM equations provide the three and only pieces of information about the tip-sample
force available within the harmonic approximation. We demonstrate the generality of
our approach by quantitatively analyzing three-dimensional AFM data obtained in both
the AM and FM mode.

2.1.1 Introduction

Three decades have passed since atomic force microscopy (AFM) has been invented.12

During this time a number of experimental strategies for obtaining AFM data have
been developed, namely static AFM as well as the dynamic AFM modes using “ampli-
tude modulation”19 (AM), “phase modulation”20 (PM) and “frequency modulation”21

(FM). Numerous theoretical studies have been devoted to a quantitative understand-
ing of the recorded AFM data in the respective modes. Each of these studies focuses
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2 Quantitative AFM

on a speci�c operation mode, giving the impression that di�erent approximations
and speci�c theoretical treatment of AFM data is required for each AFM mode and
di�erent amounts of information about the tip-sample interaction are available in the
di�erent modes.
Here, based on existing theories that have been discussed in the view of speci�c
modes only, we establish a comprehensive and generalized set of three equations that
uni�es the quantitative analysis of AFM data for the various AFM modes. We employ
one approximation only, namely the harmonic approximation, which is equivalent to
the perturbation approach by Giessibl22,23 and Dürig,24–27 the “Krylov–Bogoliubov
averaging method” by Sasaki and Tsukada et al.,28–31 the Fourier expansion up to
the �rst harmonic by Hölscher et al.32–34 and Ebeling and Hölscher35 as well as the
“method of slowly varying parameters”36 and others.37

With AFM, the force between tip and sample is investigated. Observing the full move-
ment of the AFM tip allows to determine the tip-sample force. Within the harmonic
approximation, the movement of the tip is approximated using three observables: the
static de�ection, the amplitude and the phase shift for a given excitation force am-
plitude and excitation frequency. Consequently, three pieces of information about
the tip-sample force can be obtained, namely the average even contribution to the
tip-sample force, the average tip-sample force gradient and the average tip-sample
damping constant. Here, we provide the three AFM equations which allow to obtain
these three pieces of information. They are valid for analyzing AFM data irrespective
of the speci�c AFM mode.
In the next section, we will derive the three AFM equations: First, we will split the tip-
sample force into an even and an odd part. Second, we will introduce the path of the tip
in the harmonic approximation. Third, we will analyze the average force acting on the
tip, as well as the average kinetic energy and power. Finally, the three AFM equations
will be obtained. They connect the quantities measured in AFM with the three and
only pieces of information about the tip-sample force available in AFM within the
harmonic approximation. We will discuss the physical meaning of the three obtained
results in section 2.1.3. To demonstrate the applicability of the AFM equations, we
have conducted three-dimensional (3D) AFM measurements above calcite(10.4) in
pure water using both the AM and the FM mode. In section 2.1.4, we present the
results of the quantitative analysis of both data sets.

2.1.2 Derivation of the three AFM equations

In atomic force microscopy, a sample is probed with a tip. The obtained AFM data
provide a depiction of the sample based on the force acting on the tip caused by the
sample, i.e., the tip-sample force Fts. In general, the tip-sample force has a component
normal to the surface and components in the lateral directions. In this section (and the
remainder of the thesis), we will only discuss the normal component of the tip-sample
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2.1 The three AFM equations

Tip velocity Ûzts
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Figure 2.1: A tip-sample force Fts and its components Feven and Fodd plotted as func-
tions of the tip-sample distance and the tip velocity. Red curves indicate the static
AFM case Ûzts = 0.

force Fts and the resulting e�ect on the tip.
It appears plausible that the tip-sample force may in general depend on the tip-sample
displacement rts = (xts,yts, zts) and on the tip velocity Ûrts. If the lateral tip displace-
ment is constant (xts = const. and yts = const.), it is interesting to study the normal
component of the tip-sample force Fts as function of both the tip-sample distance zts
and the normal component of tip velocity Ûzts. A typical tip-sample force Fts(zts, Ûzts)
is drawn in �gure 2.1 a. At zero velocity, i.e., in static AFM, a force-distance curve is
obtained as indicated by the solid red line. This curve shows two prominent features
which are typically observed: at large tip-sample distance, the tip-sample force ap-
proaches zero while the force increases sharply at small distance. In dynamic AFM,
the tip velocity is not zero at all times and, therefore, both the distance and velocity
dependence of the tip-sample force is probed by the tip. A frictional force deceler-
ates the tip. Accordingly, friction decreases the tip-sample force when the tip-sample
distance is increasing, i.e, at positive tip velocity and vice versa.
It is always possible to split the tip-sample force into two terms Feven and Fodd:27,34,38

Fts(zts, Ûzts) = Feven(zts, Ûzts) + Fodd(zts, Ûzts) (2.1)

The term Feven describes the contribution to the tip-sample force that is even with
respect to the tip velocity

Feven(zts, Ûzts) = Feven(zts,−Ûzts) (2.2)

and the term Fodd describes the contribution to the tip-sample force that is odd with
respect to the tip velocity

Fodd(zts, Ûzts) = −Fodd(zts,−Ûzts) . (2.3)

It is necessary to consider the even and odd components separately,27,34,38 since AFM
can only extract these components of the tip-sample force, as already claimed in the
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2 Quantitative AFM

introduction. We will later see that this is correct when we discuss the three AFM
equations.
The even and odd contributions to the tip-sample force shown in �gure 2.1 a are
depicted in �gure 2.1 b and c, respectively. Since Fts, Feven and Fodd can depend on the
tip velocity, none of these quantities is in general a unique function of the tip-sample
distance: At a given tip-sample distance, Fts, Feven and Fodd can have di�erent values
depending on the tip velocity, as can be seen in �gure 2.1.
For conducting an AFM experiment, the tip is mounted on the free end of a mechanical
resonator which can be, e.g., a cantilever, a tuning fork or a length-extension sensor.
This resonator is treated as a harmonic oscillator (see section 2.1.6 for the mathematical
treatment), characterized by three properties: e�ective massm, spring constant k and
damping constant γ . Alternatively, the resonator can be characterized by its spring
constant k , eigenfrequency νe = (2π )−1

√
k/m and quality factor39 Q =

√
km/γ . The

other end of the resonator is �xed and the position of this �xed end with respect
to the sample can be adjusted by a positioning system. Lateral positioning allows
for obtaining AFM images and normal positioning allows for distance-dependent
measurements. The tip-sample distance is derived from measuring the de�ection q of
the free end of the resonator. This is detailed in section 2.1.5.
In a dynamic AFM experiment, the mechanical resonator is externally excited, e.g., by
using a shake piezo or an excitation laser with an external excitation force according
to Fexc = F0 cos(2πνexct). The two excitation parameters excitation force amplitude F0
and excitation frequency νexc are free to be picked by the experimentalist. Feedback
loops can be optionally employed to adjust the excitation parameters during the
experiment.
As a consequence of the excitation, the tip is moving. Observing the full movement of
the tip allows to determine the tip-sample force (as detailed in section 2.1.7). Typically,
however, the de�ection q and the tip-sample distance zts are approximated by

q = qs +A cos(2πνexct + φ) (2.4)
zts = zc +A cos(2πνexct + φ) .

In this case, the three observables static de�ectionqs, amplitudeA and phase shiftφ are
su�cient to describe the tip movement. Equation 2.4 is the harmonic approximation
– the only approximation needed to derive the AFM equations. Its validity can be
checked at any time during the experiment by analyzing the de�ection, e.g., with
an oscilloscope or a spectrum analyzer. The harmonic approximation (equation 2.4)
implies that the resonator is in steady state, i.e., F0, νexc,qs,A,φ and the center position
zc are constant and the tip velocity is Ûzts = Ûq.
Several modes of conducting AFM experiments have been established. They di�er in
the number of employed feedback loops and their respective tasks. Figure 2.2 provides
an overview starting in (a) with a static AFM experiment, in which no external excita-
tion is applied and only the static de�ection is observed. In dynamic AFM experiments
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2.1 The three AFM equations

Excitation parameter Observables

νexc F0 qs A φ

a

b

c

d

e

AM

FM

0 0 0 0 −π 0

1

Figure 2.2: Overview of the static AFM mode (a) and the dynamic AFM modes (b–
e). Points mark excitation parameters (F0, νexc) and observables (qs , A, φ) that are
held constant, double arrows indicate quantities that can change. The mode in (b) is
usually referred to as amplitude-modulation AFM (AM-AFM) while (e) is known as
frequency-modulation AFM (FM-AFM).

both excitation parameters can be chosen to be constant (�gure 2.2 b). Alternatively,
a feedback loop can be used to keep the amplitude constant by adjusting the excita-
tion force amplitude (�gure 2.2 c and e). Another feedback loop can be used to keep
the phase shift constant (usually at −π/2) by adjusting the excitation frequency (�g-
ure 2.2 d and e). In all cases, another additional feedback loop can be employed to
adjust the normal position of the �xed end of the resonator in order to keep one of
the varying quantities at a prede�ned value. In all dynamic AFM experiments, the
two excitation parameters F0 and νexc as well as the three observables qs, A and φ are
necessary for a quantitative analysis. The three observables allow to extract in total
three pieces of information about the tip-sample force. The connection between these
three aspects of the tip-sample force and the three observables are stated in the three
AFM equations as will be introduced in the following.
As a physically insightful way to derive the three AFM equations, we analyze the
time-averaged force acting on the tip 〈F 〉t as well as the average kinetic energy 〈T 〉t
of the resonator and the average power 〈P〉t . The force F = m Üq acting on the tip
consists of four contributions: (1) the tip-sample force, (2) the external excitation
force, (3) the restoring force −kq caused by the mechanical support keeping one end
of the resonator in a �xed position and (4) the decelerating force −γ Ûq caused by both
internal friction in the moving resonator and friction of the resonator and tip moving
through the surrounding medium:

F =m Üq = Fts(zts, Ûzts) + F0 cos(2πνexct) − kq − γ Ûq. (2.5)
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2 Quantitative AFM

The time average of the force acting on the tip is

〈F 〉t =m 〈 Üq〉t
(2.4)
= 0 (2.6)

when the de�ection is given by equation 2.4, as is indicated above the equal sign.
Inserting the tip-sample force (equation 2.1) and the de�ection (equation 2.4) into
equation 2.5 and averaging over time yields

〈F 〉t = 〈Feven(zts, Ûzts)〉t − kqs (2.7)

since 〈Fodd(zts, Ûzts)〉t = 0. Combining the two equations 2.6 and 2.7 yields

〈Feven(zts, Ûzts)〉t = kqs . (2.8)

Knowing the spring constant of the resonator and measuring the static de�ection
allows to obtain the time average of the even contribution to the tip-sample force.40

The time-averaged kinetic energy of the resonator is given by:

〈T 〉t =
m

2
〈 Ûz2ts〉t (2.4)= m

4 (2πνexc)2A2 (2.9)

Another way to calculate the time-average of the kinetic energy is given by the virial
theorem (VT):

〈T 〉t
(VT)
= −12 〈F · zts〉t
(2.4)
= −12 〈F · (zts − zc)〉t
(2.5)
= −12 〈Feven(zts, Ûzts) · (zts − zc)〉t −

F0A

4 cosφ + kA2

4 (2.10)

From equations 2.9 and 2.10 it follows that:

〈Feven(zts, Ûzts) · (zts − zc)〉t =
kA2

2 −
m

2 (2πνexc)2A2 − F0A

2 cosφ . (2.11)

The time-averaged power41–43 is:

〈P〉t = 〈F · Ûzts〉t
(2.4)
= 0 (2.12)

when the de�ection is given by equation 2.4. Using equation 2.5, the tip-sample force
(equation 2.1) and averaging over time yields

〈P〉t = 〈F · Ûzts〉t
(2.5)
= 〈Fodd(zts, Ûzts) · Ûzts〉t −

F0
2 (2πνexc)A sinφ − γ2 (2πνexc)2A2 (2.13)
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2.1 The three AFM equations

Inserting equation 2.12 in equation 2.13 results in

〈Fodd(zts, Ûzts) · Ûzts〉t =
F0
2 (2πνexc)A sinφ + γ2 (2πνexc)2A2. (2.14)

The time-averaged force (equation 2.6) and power (equation 2.12) are both zero, which
is in agreement with equation 2.4 describing the steady state. Only the even part of
the tip-sample force contributes to the average kinetic energy (equation 2.10), while
only the odd part contributes to the average power (equation 2.13).27,34,38 It will be
discussed in section 2.1.3 that conservative tip-sample forces contribute to the even
part, but non-conservative forces can, in general, contribute to both the even and the
odd part.

In static AFM, a single piece of information about Fts is gained from the measured static
de�ection according to the special case of equation 2.8: Feven(zts = zc, Ûzts = 0) = kqs.
Since the velocity of the tip is zero, nothing can be learned about Fodd with static AFM.

In dynamic AFM the tip oscillates. In this case, the static de�ection allows to asses
the time-average of the even part of the tip-sample force according to equation 2.8.
Moreover, dynamic AFM provides two more pieces of information about Fts, namely
the distance dependence of Feven and the velocity dependence of Fodd. To see that, we
rearrange equations 2.11 and 2.14 in two steps. In the �rst step, the derivative of Feven
is introduced as the tip-sample force gradient

kts(zts, Ûzts) = ∂Feven(zts, Ûzts)
∂zts

(2.15)

and Fodd is rewritten as the product of an even and an odd function27,36

Fodd(zts, Ûzts) = −γts(zts, Ûzts) · Ûzts . (2.16)

The obvious choice for the odd function is the tip velocity, the even functionγts(zts, Ûzts)
is introduced as the tip-sample damping constant.34,38 In the second step, the time-
averages in equation 2.8, 2.11 and 2.14 are expressed as weighted averages over the
tip-sample distance (see section 2.1.8 for details):

〈Feven(zts, Ûzts)〉t = 〈Feven(zts, Ûzts)〉∪ (2.17)
2
A2 〈Feven(zts, Ûzts) · (zts − zc)〉t = 〈kts (zts, Ûzts)〉∩ (2.18)

− 2
(2πνexc)2A2 〈Fodd(zts, Ûzts) · Ûzts〉t = 〈γts(zts, Ûzts)〉∩ (2.19)
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2 Quantitative AFM

Here, we use the weighted averages “cup” (∪) and “cap” (∩) according to

〈f 〉∪ =
A∫

−A
dz f (zc + z)w∪(z), w∪(z) = 1

π
√
A2 − z2

(2.20)

〈f 〉∩ =
A∫

−A
dz f (zc + z)w∩(z), w∩(z) = 2

πA2

√
A2 − z2 (2.21)

with the positive and normalized weight functions w∪ and w∩ which average in the
tip-sample distance interval [zc −A, zc +A] around the center position of the tip zc
(see �gure 2.6 in section 2.1.8).
Finally, the three AFM equations are obtained from combining equations 2.8, 2.11 and
2.14 with equations 2.17, 2.18 and 2.19

〈Feven(zts, Ûzts)〉∪ = kqs (2.22)

〈kts(zts, Ûzts)〉∩ = k
(
1 −

(
νexc
νe

)2)
− F0

A
cosφ (2.23)

〈γts(zts, Ûzts)〉∩ = −
k

2πνeQ
− F0
2πνexcA

sinφ (2.24)

using the eigenfrequency νe and the quality factor Q of the resonator. These are the
three AFM equations, which allow to obtain the three pieces of information about
the tip-sample force that are available within the harmonic approximation. The right-
hand sides of the three AFM equations 2.22–2.24 are fully determined by the resonator
properties k , νe and Q , the excitation parameters F0 and νexc, and the observables qs,
A and φ. The three obtained quantities on the left-hand side are the average even part
of the tip-sample force 〈Feven〉∪, the average tip-sample force gradient 〈kts〉∩ and the
average tip-sample damping constant 〈γts〉∩. Thus, in contrast to static AFM, where
only the even tip-sample force contribution Feven can be obtained, dynamic AFM
allows to additionally probe the distance dependence of Feven using 〈kts〉∩ as well as
the velocity dependence of Fodd using 〈γts〉∩. The three averages 〈Feven〉∪, 〈kts〉∩ and
〈γts〉∩ are discussed in more detail in section 2.1.3.
The major advantage of the three AFM equations is that they hold true without restric-
tions to the experimental mode, as long as the harmonic approximation is valid. They
can be applied, independent on how many feedback loops are used and irrespective of
which of the �ve quantities discussed in �gure 2.2 are held constant. Even in the case
of poorly adjusted feedback loops, i.e., when all �ve quantities are varying to some
extent, both excitation parameters (F0 and νexc) and all three observables (qs,A, and φ)
are always experimentally accessible. Therefore, in all of these cases, AFM data can
be analyzed quantitatively using the AFM equations, if the excitation parameters and
all three observables are recorded. In the next section, we will discuss the three pieces
of information that can be obtained with the three AFM equations 2.22–2.24.
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2.1 The three AFM equations
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Figure 2.3: Panel a shows the tip-sample force as introduced in �gure 2.1. The har-
monic approximation (equation 2.4) corresponds to a tip trajectory as indicated by
the solid line (red–approach, blue–retract). In dynamic AFM, the tip-sample force is
probed by the oscillating tip along this path. In static AFM, the tip-sample force at
zts = zc and Ûzts = 0 is measured. The even and odd contribution to Fts along the path
of the tip are shown in panel b and c. In panel d and e, kts and γts along the path of
the tip are shown. The black horizontal lines in (b, d and e) indicate the averages that
can be obtained with the three AFM equations.

2.1.3 The three pieces of information about the tip sample force

In this section, we discuss the physical meaning of the three quantities that can be
obtained using the three AFM equations: The average even contribution of the tip
sample force, the average tip-sample force gradient and the average tip-sample damp-
ing constant. Within the harmonic approximation, the tip probes the tip-sample force
along the path described by equation 2.4 and indicated by the solid line in �gure 2.3 a.
The red line depicts the path of the approaching tip (negative tip velocity), the blue
line the path of the retracting tip (positive tip velocity). Within one oscillation cycle,
the tip probes the tip-sample force twice at each tip-sample distance – with a velocity
that di�ers in its sign, but not in its absolute value.
In �gure 2.3 b, Feven is plotted as a function of zts for the approaching (red) and re-
tracting (blue) tip. According to equation 2.2, Feven is equal for the approaching and
retracting tip along this path.33 Consequently, the blue and red curve overlap. Within
the harmonic approximation, Feven is a unique function of zts along a given path.
The other contribution to the tip-sample force is Fodd, which has an opposite sign
for the approaching and retracting tip. This follows from equation 2.3 and can be
recognized in �gure 2.3 c, which shows Fodd as a function of the tip velocity. Even
within the harmonic approximation, Fodd is not a unique function of zts.
The tip-sample force gradient kts and the tip-sample damping constant γts are plotted
in �gure 2.3 d and e as function of the tip-sample distance. Since both functions are
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even with respect to the tip velocity, they are unique functions of zts along a given
path within the harmonic approximation.
The three AFM equations allow to obtain the average values for Feven, kts and γts from
the experimentally obtained observables qs, A and φ and the excitation parameters F0
and νexc. The �rst AFM equation 2.22 allows to determine the cup-average of the even
force 〈Feven〉∪, which is indicated by the horizontal black line in �gure 2.3 b. The time-
average of the odd force is always zero as can be seen in �gure 2.3 c. The cap-average
of the tip-sample force gradient 〈kts〉∩ is the second piece of information about the
tip-sample force that is available in dynamic AFM. It is obtained with the second
AFM equation 2.23 and it is indicated by the horizontal black line in �gure 2.3 d. The
weighted cap-average of the tip-sample damping constant 〈γts〉∩ is the third piece
of information about the tip-sample force that can be obtained from dynamic AFM
data. The quantity is obtained with the third AFM equation 2.24 and is shown as a
horizontal black line in �gure 2.3 e.
It is straightforward to quantify the tip-sample interaction in terms of 〈Feven〉∪, 〈kts〉∩
and 〈γts〉∩ using the AFM equations. Importantly, these three pieces of information
about Fts(zts, Ûzts) represent a complete description of the tip-sample force within the
harmonic approximation (see section 2.1.7). However, the average values might be a
poor local description of Feven, kts and γts, especially when large amplitudes are used
in the experiment, i.e., when the average is performed over a large tip-sample distance
range. In those cases it might be interesting to deconvolve 〈Feven〉∪, 〈kts〉∩ and 〈γts〉∩,
e.g., as suggested by Dürig,26 Giessibl44 as well as Sader et al.45,46 (see section 2.1.8
for a detailed description).
Obviously, it is possible to distinguish between even and odd contributions to the
tip-sample force. Is it also possible to distinguish between the conservative and the
non-conservative part of the tip-sample force? Any conservative force is necessarily
independent of the tip velocity and, therefore, contributes solely to Feven. Any odd force
has to be velocity-dependent and is, therefore, not conservative. In general, however,
the even contribution is not necessarily purely conservative and the odd contribution
does not necessarily contain all non-conservative contributions.38 A simple example
is a force contribution that we used in our plots of Fts in �gure 2.1 and 2.3: a force
contribution that is proportional to ( Ûzts)2 is not conservative, yet it contributes only
to Feven and not to Fodd.
How can the experimentalist �nd out whether Feven is purely conservative? To an-
swer this important question, it is certainly not enough to measure only the normal
component of the tip-sample force. One feasible strategy might be to �rst exclude
that Feven depends on the tip velocity. This can be done, for example, by comparing
the even force measured with static and dynamic AFM.47 If Feven is independent of
Ûzts it is possible that it is purely conservative. Second, the lateral components of the
tip-sample force need to be calculated from analyzing the lateral movement of the tip.
Only if the even part of the resulting tip-sample force �eld Fts(rts) can be written as
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2.1 The three AFM equations

the negative gradient of a potential energy, the measured even force is purely con-
servative. In all other cases, it is dangerous to interpret the even part of Fts as purely
conservative, as pointed out in detail by Sader et al.38

In the next section, we will demonstrate the applicability of the three AFM equations
2.22–2.24 by quantitatively analyzing AM-AFM and FM-AFM data.

2.1.4 Experimental demonstration

For demonstrating the applicability of the three AFM equations, we performed 3D
AFM measurements at the calcite (10.4)–water interface.48–52 We employed a setup15,16,53

that allows to switch between the AM and FM mode (see �gure 2.2) during the exper-
iment to minimize changes at the tip and the sample. The used setup and all exper-
imental details are described in section 3.2, where we also show the corresponding
raw data. In both modes, we simultaneously recorded all �ve channels of data: the
two excitation parameters F0 and νexc as well as the three observables qs, A and φ.
Using the three AFM equations, we computed the three quantities available from dy-
namic AFM data: the cup-averaged even contribution to the tip-sample force 〈Feven〉∪,
the cap-averaged tip-sample force gradient 〈kts〉∩ and the cap-averaged tip-sample
damping constant 〈γts〉∩.
Figure 2.4 shows these three pieces of information about the tip-sample force in a
vertical slice through the 3D volume along the [481] direction. The left and right
column of �gure 2.4 show the result of the quantitative analysis of AFM data obtained
in AM- and FM-AFM measurements, respectively. Both sets of slices show the same
features. A detailed interpretation of the data is presented in section 3.3. The measured
values for even force, force gradient and damping constant obtained from the AM
and FM data sets are very similar. Of course they are not exactly the same, since
the paths along which the averaging was done (equation 2.4) were not exactly the
same, as discussed in the previous sections. In section 2.1.8 we describe which further
assumptions are necessary to deconvolve the averages using the approach by Sader
et al.45,46 The description of their deconvolution method as well as the deconvolution
of the data shown in �gure 2.4 c and d can be found in section 2.1.8 as well.

2.1.5 Tip-sample distance and coordinate system

In this section, we present an overview over the various distances and the coordinate
system used in the previous sections. In general, the tip-sample force has a component
normal to the surface and components in the lateral directions. As a consequence,
the de�ection of the resonator is a�ected in normal and lateral directions by the tip-
sample force. We employ a coordinate system where the z-direction is oriented normal
to the sample surface, pointing away from the sample. We discuss only the normal
component of the force acting on the tip and the resulting normal component of the
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Figure 2.4: The three pieces of information about the tip-sample force, obtained with
the three AFM equations 2.22–2.24. The 3D AFM data was obtained using the AM (a, c,
e) and the FM (b, d, f) mode, respectively. The �rst row shows the cup-averaged even
force 〈Feven〉∪, the second row shows the cap-averaged tip-sample force gradient 〈kts〉∩
and the third row shows the cap-averaged tip-sample damping constant 〈γts〉∩. Each
frame is plotted in a way that the vertical axis corresponds to the center position
of the tip oscillation zc and the horizontal axis corresponds to a lateral tip-sample
displacement along the [481] direction on the calcite (10.4) surface. The color scales
apply to both data within a row.

de�ection. The three-dimensional case reduces to a one-dimensional case with the
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2.1 The three AFM equations

normal components of the tip-sample force Fts = Fts · ez , the de�ection q = q · ez and
the tip-sample distance zts = rts · ez , where ez is the unit vector in z.
It is desirable to obtain Fts as a function of tip-sample distance zts. However, the tip-
sample distance is experimentally not accessible. Instead, the de�ection q is detected,
and the relative displacement of the �xed end of the resonator with respect to the
sample rp =

(
xp,yp, zp

)
can be adjusted with a positioning system, usually consisting

of piezo elements. Obtaining the absolute tip-sample distance zts requires to know
the distance zo between tip and sample when resonator and positioning system are
in their respective rest positions (q = 0 and zp = 0). The tip-sample distance is then
given as zts = zo +zp +q and the center position of the tip is given as zc = zo +zp +qs.

2.1.6 Transfer function of the harmonic oscillator

The aim of this section is to relate the resonator’s de�ection q to any excitation force.
Any external excitation Fexc employed to drive the resonator and any tip-sample
force Fts(zts, Ûzts) excite the resonator and are, therefore, considered as excitation force.
Applying the Fourier transform1 (F ) to equation 2.5 and using

F [ Ûq] = (2πν i) F [q] (2.25)
F [Üq] = (2πν i)2 F [q] (2.26)

leads to a linear relationship between the spectrum of the de�ection F [q] and the
spectrum of the excitation force

F [q] = Gho(ν ) · F [Fts(zts, Ûzts) + Fexc] (2.27)

with the transfer function of the harmonic oscillator

Gho(ν ) = 1
k − (2πν )2m + 2πν iγ (2.28)

=
1/k

1 −
(
ν
νe

)2
+ i ν

Qνe

(2.29)

= |Gho(ν )| exp (iφho(ν )) . (2.30)

The magnitude |Gho(ν )| of the transfer function relates the magnitude of a spectral
component of the excitation force with the magnitude of a spectral component of the
de�ection. Therefore, the function

|Gho(ν )| = 1/k√(
1 −

(
ν
νe

)2)2
+

(
ν

Qνe

)2 (2.31)

1The Fourier transform F of a function f is de�ned as F [f ] =
∫ ∞
−∞ dt f (t) exp(−2πν it), the inverse

Fourier transform of a function s as F −1[s] =
∫ ∞
−∞ dν s(ν ) exp(+2πν it).
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Figure 2.5: Plot of the gain function |Gho | (left) and the phase shift function φho
(right) as function of the frequency for a quality factor Q = 10.

is called gain function. The argument φho(ν ) of the transfer function of the harmonic
oscillator relates the argument of a spectral component of the excitation force with
the argument of a spectral component of the de�ection. Therefore, the function φho(ν )
is called phase shift function.
As the imaginary part of Gho(ν ) is equal to or less than zero, the phase shift function
has values in the range of −π ≤ φho(ν ) ≤ 0. The inversion of

tanφho(ν ) = − ν

Qνe

/ (
1 −

(
ν

νe

)2)
(2.32)

is therefore given by

φho(ν ) =


arctan

(
− ν
Qνe

/ (
1 −

(
ν
νe

)2))
0 ≤ ν < νe

−π/2 ν = νe

−π + arctan
(
− ν
Qνe

/ (
1 −

(
ν
νe

)2))
ν > νe

(2.33)

or, alternatively, by using the atan2 function, which takes the imaginary and real part
of Gho(ν ) as two separate arguments:

φho(ν ) = atan2
(
− ν

Qνe
, 1 −

(
ν

νe

)2)
(2.34)
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2.1 The three AFM equations

Since Gho(ν = 0) = 1/k , any static excitation force Fs leads to a static de�ection
qs = Fs/k . For Fts = 0 and Fexc = F0 cos(2πνexct), the de�ection of the resonator is
derived using equation 2.27 as

q = A cos(2πνexct + φ) (2.35)
with A = |Gho(νexc)| · F0 (2.36)
and φ = φho(νexc) (2.37)

Note that |Gho(ν = νe)| = Q/k = Q |Gho(ν = 0)|. A plot of |Gho | and φho as function
of frequency ν is shown in �gure 2.5.

2.1.7 Fourier series

We rely on the harmonic approximation to derive the three AFM equations. In this
section, we show the connection between the harmonic approximation and the ex-
pansion of the tip-sample force and the de�ection as a Fourier series. The tip-sample
force Fts can be any function of the tip-sample distance zts and of the tip velocity Ûzts
as illustrated in �gure 2.1 a. The tip is moving and, therefore, senses the tip-sample
force along a certain path through the tip-sample force landscape. Consequently, Fts
becomes a function of time. The tip-sample force which is sensed by the tip changes
the way the tip is moving. The path and the force which is sensed along that path are
connected according to equation 2.27.
Assuming Fts(t) and q(t) are periodic functions in time with a period of 1/νexc, they
can be expressed using the following Fourier series:

Fts(t) = F (0)even +
∞∑
n=1

(
F (n)even cos(2πnνexct + φ) + F (n)odd sin(2πnνexct + φ)

)
(2.38)

q(t) = qs +A cos(2πνexct + φ) +
∞∑
n=2

A(n) cos
(
2πnνexct + φ

(n)
)
. (2.39)

The Fourier coe�cients of Fts are obtained according to

F (0)even = 〈Fts〉t = 〈Feven〉t (2.40)

F (n)even = 2 〈Fts cos(2πnνexct + φ)〉t = 2 〈Feven cos(2πnνexct + φ)〉t (2.41)

F (n)odd = 2 〈Fts sin(2πnνexct + φ)〉t = 2 〈Fodd sin(2πnνexct + φ)〉t . (2.42)

Employing equation 2.5, the Fourier coe�cients describing the constant force and the
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�rst harmonic (n = 1) are

F (0)even = 〈Feven〉t = kqs (2.43)

F (1)even =
2
A
〈Feven · (zts − zc)〉t = kA

(
1 −

(
νexc
νe

)2)
− F0 cosφ (2.44)

F (1)odd =
2 〈Fodd · Ûzts〉t
−(2πνexc)A = −kA

(
νexc
Qνe

)
− F0 sinφ . (2.45)

The higher harmonics (n > 1) are described by

F (n)even = kA
(n)

((
1 −

(
nνexc
νe

)2)
cos

(
φ − φ(n)

)
+

(
nνexc
Qνe

)
sin

(
φ − φ(n)

))
(2.46)

F (n)odd = kA
(n)

((
1 −

(
nνexc
νe

)2)
sin

(
φ − φ(n)

)
−

(
nνexc
Qνe

)
cos

(
φ − φ(n)

))
. (2.47)

In case the amplitude A(n) and the phase shift φ(n) of a harmonic of the de�ection
are available from the experiment, the corresponding Fourier coe�cient of Fts can
be obtained using equations 2.43–2.47. However, it is not particularly interesting to
calculate these Fourier coe�cients, since the most straightforward way to obtain
Fts is to measure directly q(t) or its spectrum and employ equation 2.27. No further
approximations are necessary in this case and Fts can be fully reconstructed along the
sampled path.
In the harmonic approximation, the de�ection is approximated by equation 2.4 and
the tip-sample force is accordingly approximated as

Fts(t) = F (0)even + F
(1)
even cos(2πνexct + φ) + F (1)odd sin(2πνexct + φ) (2.48)

while equations 2.43–2.45 remain valid. In this case, the physical meaning of the
Fourier coe�cients becomes obvious

F (0)even = 〈Feven〉∪ (2.49)

F (1)even = A 〈kts 〉∩ (2.50)

F (1)odd = (2πνexc)A 〈γts〉∩ , (2.51)

since 〈kts 〉∩ is the cap-averaged tip-sample force gradient and 〈γts〉∩ is the cap-averaged
tip-sample damping constant. Within the harmonic approximation, it is a feasible ap-
proach to obtain Feven from a deconvolution of 〈kts 〉∩ and Fodd from a deconvolution
of 〈γts〉∩ if both quantities are velocity-independent.
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2.1 The three AFM equations

2.1.8 Convolution and Deconvolution

In this section, we discuss the convolution of Feven, kts and γts into 〈Feven〉∪, 〈kts 〉∩ and
〈γts〉∩ as well as the inverse operation, the deconvolution. We employ the harmonic
approximation, which means the path of the tip is given by the de�ection and velocity
as expressed in equation 2.4.
First, we convert each time-average introduced in equations 2.8, 2.11 and 2.14 into a
convolution, i.e., a weighted average over the tip-sample distance. Using equation 2.20,
the time-average of Feven can be written as

〈Feven(zts, Ûzts)〉t = lim
T→∞

1
2T

T∫
−T

dt Feven(zc +A cos (2πνexct + φ) , Ûzts)

=
1
π

π∫
0

dθ Feven(zc +A cosθ , Ûzts)

=

A∫
−A

dz Feven(zc + z, Ûzts) 1
π
√
A2 − z2

= 〈Feven(zts, Ûzts)〉∪ (2.52)

From the time-average of Feven · (zts − zc) we obtain the following convolution of the
tip-sample force gradient kts:

〈Feven(zts, Ûzts) · (zts − zc)〉t

= A lim
T→∞

1
2T

T∫
−T

dt Feven(zc +A cos(2πνexct + φ), Ûzts) cos(2πνexct + φ)

=
A

π

π∫
0

dθ Feven(zc +A cosθ , Ûzts) cosθ

=
1
π

A∫
−A

dz Feven(zc + z, Ûzts) z√
A2 − z2

=
A2

2

A∫
−A

dz ∂Feven(zc + z, Ûzts)
∂z

2
πA2

√
A2 − z2

=
A2

2 〈kts (zts, Ûzts)〉∩ (2.53)

Here, we made use of equation 2.2, the de�nition of the cap-average in equation 2.21
and the de�nition of the tip-sample force gradient according to equation 2.15. From

25



2 Quantitative AFM

−A 0 A

1

2

3

z

w∪(z) / (πA)−1

−A 0 A

1

2

3

z

w∩(z) / (πA)−1

1

Figure 2.6: Plot of the weight functions cup (a) and cap (b) that are used to average
the quantities Feven as well as kts and γts, respectively. Both weight functions are
normalized, meaning that an integral of the weight function from −A to A equals 1.

the time-average of Fodd · Ûzts we obtain the following convolution of the tip-sample
damping constant γts:

〈Fodd(zts, Ûzts) · Ûzts〉t = − lim
T→∞

1
2T

T∫
−T

dt γts(zc +A cos(2πνexct + φ), Ûzts) · ( Ûzts)2

= −(2πνexcA)2
π

π∫
0

dθ γts(zc +A cosθ , Ûzts) sin2 θ

= −(2πνexcA)2
2

A∫
−A

dz γts(zc + z, Ûzts) 2
πA2

√
A2 − z2

= −(2πνexcA)2
2 〈γts(zts, Ûzts)〉∩ (2.54)

In the above equation, we used equations 2.3 and 2.21 as well as the de�nition of the
tip-sample damping constant according to equation 2.16.
The weighted average in equation 2.52 is a convolution of Feven withw∪ (equation 2.20,
�gure 2.6 a). The weighted averages obtained in equations 2.53 and 2.54 are convolu-
tions of kts and γts withw∩ (equation 2.21, �gure 2.6 b). The inverse operation needed
for extracting kts,γts and Feven from the weighted averages is the deconvolution. Di�er-
ent numerical recipes have been proposed for the deconvolution of the cup-average
and the cap-average.26,44–46 Here, we have chosen to reproduce the result originally
obtained by Sader et al.,45,46 which has been described in numerous works.36–38,43 The
procedure is described in the following. We �rst start by motivating the general idea:
When the tip is not interacting with the sample (at a center position z∞), Fts is zero
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2.1 The three AFM equations

over the entire path probed by the tip. Consequently, all three averages are zero as
well. This is usually the case if the tip is far away from the sample. When the tip
is gradually approached to the sample, at some point it will start to probe along a
path where the tip-sample force is not always zero. The non-zero Fts gives rise to
a change in the three averages that arises from the part of the path that has not
been sampled before. Obtaining averages for various, yet partly overlapping paths
is the basis for deconvolution. There are several possibilities for �nding su�ciently
overlapping paths: Typically, the z-piezo displacement zp is varied in the experiment
to change the tip-sample distance range. In this approach, the excitation parameters
(F0, νexc) and the observables (qs, A, φ) are recorded as function of zp. Using the AFM
equations 2.22–2.24 allows to extract the average of kts,γts and Feven as a function of
the center position of the tip zc = zo + zp + qs. The dependence of the average on the
center position of the tip is in the following indicated with the notation 〈f 〉(zc)

∪ and
〈f 〉(zc)
∩ , respectively.

While convolution is always possible, deconvolution requires to impose further con-
ditions. The convolution equations 2.52–2.54 represent weighted averages along the
tip-sample distance interval probed by the tip, although Feven,kts andγts are in general
velocity-dependent. The convolutions are possible, because all three quantities are
even with respect to velocity and, therefore, unique functions of the tip-sample dis-
tance as discussed in section 2.1.2. The latter is only true on the speci�c path described
by equation 2.4. For a deconvolution along the tip-sample distance, we additionally re-
quire the quantities Feven, kts and γts to be unique functions of the tip-sample distance
in the entire zts interval probed by the tip during the measurement. Otherwise there
would be no su�cient overlap of the paths. This criterion is only ful�lled if Feven, kts
and γts do not depend on the tip velocity.
The following two equations for the deconvolution have been derived:45,46

f (zc −A) = 〈f 〉(zc)
∪ −

z∞∫
zc−A

[√
2A

z − (zc −A)

(
d 〈f 〉(z−A)∪

dz −
√

2
π

d 〈f 〉(z)∪
dz

)]
dz (2.55)

f (zc −A) = − ∂
∂zc

z∞∫
zc−A

[ (
1 +

√
A

64π (z − (zc −A))

)
〈f 〉(z−A)∩ (2.56)

−
√

A3

2(z − (zc −A))
∂ 〈f 〉(z)∩
∂z

]
dz

Note that the even contribution to the tip-sample force Feven can either be obtained by
deconvolving the cup average 〈Feven〉∪ according to equation 2.55 or by deconvolving
the cap-averaged tip-sample force gradient 〈kts〉∩ according to equation 2.56 and
subsequent integration along zc.
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As demonstration, we obtained the even contribution Feven by deconvolution and
subsequent integration of the averaged tip-sample force gradient shown in �gure 2.4 c
and d with the following equation54 that can be used for N discrete data points with
spacing ∆z.

Feven(zk) = + 〈kts〉(zk )∩ ∆z +

√
A

16π 〈kts〉(zk )∩
√
∆z

+

√
4A3

2
〈kts〉(zk+1)∩ − 〈kts〉(zk )∩√

∆z
N−1∑
i=k+1

[
1 +

√
A

64π (zi − zk )
〈kts〉(zi )∩ −√

A3

2(zi − zk )
〈kts〉(zi+1)∩ − 〈kts〉(zi )∩

∆z

]
∆z (2.57)

The �rst three terms in the above equation (without the summation bracket) are
correction terms �rst introduced in the by now unavailable Mathematica notebook by
Sader and Jarvis45 and reproduced in reference 54. The resulting even contribution to
the tip-sample force Feven is shown in �gure 2.7. Both datasets show similar features,
however, Feven is not quantitatively equal. A possible explanation for the discrepancy
could be that Feven depends on the tip-velocity. Accordingly, the requirement for the
deconvolution of Feven being a unique function of zts along the full tip-sample distance
interval probed by the tip would not be ful�lled.

2.1.9 Prevalent, yet restrictive approximations in FM-AFM

In the literature reporting FM-AFM data analysis,22,23 the following approximations
of the AFM equations are often found:

〈Feven(zts, Ûzts)〉t = kqs ≈ 0 (2.58)

〈kts(zts, Ûzts)〉∩ = k
(
1 −

(
νexc
νe

)2)
− F0

A
cosφ ≈ −2k νexc − νe

νe
(2.59)

〈γts(zts, Ûzts)〉∩ = −
k

2πνeQ
− F0
2πνexcA

sinφ ≈ k

2πνeQ

(
F0

F0 (Fts = 0) − 1
)
. (2.60)

Here, several restrictions and approximations have been employed:
– The static de�ection qs is negligible.
– Both FM-AFM feedback loops are working ideally and, thus, the amplitude is

assumed to be exactly the amplitude setpoint and the phase shift is assumed to
be exactly −π/2.
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Figure 2.7: The even contribution of the tip-sample force obtained by deconvolution
of the averaged tip-sample force gradient and subsequent integration. Data in panel a
results from AM-AFM data (�gure 2.4 c), data in b from FM-AFM data (�gure 2.4 d). The
vertical axis corresponds to the tip-sample distance zts. As in �gure 2.4, the horizontal
axis corresponds to the lateral [481] direction of the calcite(10.4) surface. The color
bar applies to both data sets.

– The di�erence between excitation frequency and eigenfrequency νexc − νe (re-
ferred to as “frequency shift” or “detuning”) is small compared to νe (for equa-
tion 2.59) or negligible (for equation 2.60).

These approximations are not always justi�ed. The magnitude of the static de�ec-
tion qs can be signi�cant in both ultra-high vacuum40 as well as in liquid environ-
ment.49 Relying on ideally working feedback loops is an unnecessary limitation since
the AFM equations can handle any AFM data irrespective of how well the employed
feedback loops (if any) work. The excitation frequency can di�er signi�cantly from
the eigenfrequency. In the data presented in �gure 2.4 a for example, the excitation
frequency reaches values of up to 1.2νe. Therefore, we recommend using the three
AFM equations 2.22–2.24 instead of the approximated equations 2.58–2.60, even when
using FM-AFM.

2.1.10 Conclusion

In this section, we derived three AFM equations that can be universally applied to
analyze AFM data. These three equations fully describe the tip-sample force regardless
of the speci�c measurement mode (e.g. AM or FM-AFM) and even at poor feedback-
loop performance – as long as the harmonic approximation is valid. As a result, raw
data from any dynamic AFM experiment can always be related to three pieces of
information about the tip-sample force: the average even force, the average tip-sample
force gradient and the average tip-sample damping constant. We demonstrate the
generality of the three AFM equations by analyzing 3D AFM data measured at the
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calcite(10.4)-water interface with AM- and FM-AFM.
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2.2 The interactive virtual AFM

2.2.1 Introduction

A virtual AFM (VAFM) determines the motion of the tip and emulates the function of
all electronic components necessary to perform AFM experiments numerically. There
are a number of use cases for a VAFM:

– A VAFM can be used to simulate AFM data resulting from a speci�c model for
the tip-sample force which has been obtained from, e.g., theoretical simulations.
Thereby, simulation data can be directly compared with experimental data.

– A real atomic force microscope can be a delicate device—Even if all electronic
components are working correctly and tip and sample have been properly pre-
pared, the experimentalist still has to decide on imaging parameters, feedback
loop gains, scan speeds and detection bandwidths. Optimizing these parameters
to achieve the desired signal-to-noise ratio within a given measurement time is
a crucial task. A VAFM can provide a safe and reliable way for experimentalists
to optimize and explore these parameters without risking to crash the tip or to
damage the sample.

– A VAFM can be used to check the validity of the AFM equations, which have
been derived using the harmonic approximation (which also implied that the
resonator is in steady state). In contrast, a VAFM does not rely on the harmonic
approximation. Comparing data generated by a VAFM with data calculated
using the AFM equations provides means to assess the validity of the harmonic
approximation. Moreover, the VAFM is not limited to investigating the steady-
state resonator oscillation, but allows to also study the transient oscillation of
the resonator.

VAFMs have been developed55–57 and used previously, e.g., for investigating dissipa-
tion at the nanoscale58,59 or for identifying contrast patterns obtained when imaging
the (10.4) surface of calcite in water.60 The usual procedure of running these VAFMs
consists of three steps: First, the user de�nes the settings of the VAFM beforehand
in an input script. Secondly, the VAFM is run. In a third and �nal step, the result-
ing raw data is analyzed. This means that the user cannot straightforwardly monitor
and change quantities of the VAFM during the run. An interactive VAFM eliminates
this problem by providing a convenient and intuitive way to monitor and change
parameters on the �y, just like in a real experiment.
In this section, I describe the implementation of an interactive VAFM. This interactive
VAFM allows to monitor the excitation parameters (F0, νexc) and the observables (qs,A,
φ) as function of time and tip-sample position. During the run, quantities such as the
distance between tip and sample or feedback-loop gains can be changed interactively.
The implementation I describe here is based on modeling all components of the VAFM
(resonator, low-pass �lters, lock-in ampli�er and feedback loops) using �rst-order

31



2 Quantitative AFM

cos(2πνexct)

×

× LP filter X

− sin(2πνexct)

× LP filter Y

Transformation

A =
√
X 2 + Y 2

φ = atan2(Y , X )

Phase shi�
feedback loop

Amplitude
feedback loopF0

νexc

k,νe,Q

External
excitation

× 2Deflection

Fts

LP filter qs

1

Figure 2.8: The setup simulated in the interactive VAFM. The gray box indicates the
lock-in ampli�er.

di�erential equations. Thereby, the interactive VAFM can easily be implemented, since
solvers for �rst-order di�erential equations are readily available in most scienti�c
computation packages (such as MATLAB, scipy2 for use with Python or Igor Pro by
Wavemetrics3).

2.2.2 The system of equations

A schematic overview of the setup that is simulated in the interactive VAFM is depicted
in �gure 2.8. The system includes a tip mounted on a mechanical resonator. The
resonator is modeled as a harmonic oscillator described by its spring constant k , its
eigen frequency νe and its quality factorQ . The sample beneath the tip gives rise to the
normal component of the tip-sample force Fts as function of the tip displacement rts.
The de�ection of the tip q is fed into two devices: A low-pass (LP) �lter (at the bottom
of �gure 2.8) and a lock-in ampli�er (gray box in �gure 2.8). The low-pass �lter extracts
the static de�ection qs and the lock-in ampli�er determines amplitude A and phase
shift φ of the de�ection. Both amplitude and phase shift are fed into feedback loops.

2In scipy (www.scipy.org), the function scipy.integrate.odeint can be used.
3In Igor Pro (www.igorpro.net), the function IntegrateODE can be used.
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2.2 The interactive virtual AFM

If desired by the user, the amplitude feedback loop attempts to �x the amplitude at
a setpoint Asp by adjusting the excitation force amplitude F0. Similarly, a phase shift
feedback loop can optionally be used to �x the phase shift at a phase shift setpoint φsp

by adjusting the excitation frequency νexc. The two excitation parameters F0 and νexc
fully describe the external excitation force acting on the tip, which is F0 cos(2πνexct).
The complete set of equations describing the interactive VAFM is shown below (equa-
tions 2.61a–2.61p). In the following, I will discuss the individual components sepa-
rately.

Ûq = v (2.61a)
Ûv = (−kq − γ Ûq + F0 cosϕ + Fts

(
zp + q, v

) ) /m (2.61b)
Ûϕ = 2πνexc (2.61c)
Ûq(1)s = (2πτs)−1

(
qs − q(1)s

)
(2.61d)

Ûq(i)s = (2πτs)−1
(
q(i−1)s − q(i)s

)
(2.61e)

Ûqs = (2πτs)−1
(
q(n−1) − q(n)

)
(2.61f)

ÛX (1) = (2πτLIA)−1
(
2q cosϕ − X (1)

)
(2.61g)

ÛX (j) = (2πτLIA)−1
(
X (j−1) − X (j)

)
(2.61h)

ÛX = (2πτLIA)−1
(
X (m−1) − X (m)

)
(2.61i)

ÛY (1) = (2πτLIA)−1
(
−2q sinϕ − Y (1)

)
(2.61j)

ÛY (i) = (2πτLIA)−1
(
Y (j−1) − Y (j)

)
(2.61k)

ÛY = (2πτLIA)−1
(
Y (m−1) − Y (m)

)
(2.61l)

ÛA = ( ÛXX + ÛYY ) /√
X 2 + Y 2 (2.61m)

Ûφ = (
X ÛY − ÛXY ) /(X 2 + Y 2) (2.61n)

ÛF0 = K (A)I (Asp −A) − K (A)P
ÛA (2.61o)

Ûνexc = K
(φ)
I (φsp − φ) − K (φ)P Ûφ

Resonator

Excitation phase ϕ

Static de�ection qs
(low-pass �lter

of order n)

Lock-in X
(low-pass �lter

of orderm)

Lock-in Y
(low-pass �lter

of orderm)

Amplitude A
Phase shift φ

A-feedback adjusts F0
φ-feedback adjusts νexc (2.61p)

Resonator deflection and velocity

Equation 2.5 (on page 13) describes the de�ection q of the resonator as a second-order
di�erential equation. Introducing the tip velocity as v = Ûzts = Ûq (for a �xed z-piezo dis-
placement) and the acceleration as Üq = Ûv allows to rewrite this second-order di�erential
equation as the two �rst-order di�erential equations 2.61a and 2.61b. In these two equa-
tions, the eigen frequency νe = (2π )−1

√
k/m and the quality factor Q =

√
km/γ have

33



2 Quantitative AFM

been expressed using the e�ective massm of the resonator and its damping constantγ .
In equation 2.61a, the argument in the cosine term is the excitation phase ϕ = 2πνexct .
The time-derivative of the excitation phase is proportional to the excitation frequency
(equation 2.61c).
When initializing the interactive VAFM (at t = 0), the tip is assumed to oscillate with
amplitude A, phase shift φ = −π/2 and frequency νe. This is expressed in the initial
values of q(t = 0) = 0, v(t = 0) = 2πνeA and ϕ(t = 0) = 0.

Static deflection: The low-pass filter

The static de�ection qs of the tip is the spectral component of the de�ection at zero
frequency. Therefore, qs can be obtained by low-pass �ltering the de�ection signal.
Here, I model a cascaded resistor-capacitor (RC) low-pass �lter.

R

C VO

VI

1

A single RC low-pass �lter stage with input voltageVI
and output voltage VO is depicted on the right. The
voltage VI −VO across the resistor with resistance R is
given according to Ohms law

VI −VO = RI = R ÛQ = RC ÛVO, (2.62)

where the current I was expressed as the time-
derivative of the charge Q stored in the capacitor,
which is given as the product of capacitanceC andVO. Therefore, the time-propagation
of a single RC low-pass �lter stage is given by the �rst-order di�erential equation

ÛVO = (2πτ )−1(VI −VO), (2.63)

where τ = RC/(2π ) is the time constant of the �lter stage.4 In the interactive VAFM,
the time constant is the parameter of the low-pass �lter that can be adjusted by the
user.
Multiple low-pass �lter stages can be cascaded, i.e., the output of the �rst �lter stage
is the input to the second �lter stage, and so forth. The number of stages is called the
order of the low-pass �lter. For determining the static de�ection qs in the interactive
VAFM, the de�ection q is used as the input signal for the �rst �lter stage. The static
de�ection low-pass �lter of order n is therefore described by equations 2.61d to 2.61f,
with i = 2 . . .n − 1 in equation 2.61e. The time constant for the static de�ection low-
pass �lter is denoted as τs. The initial value (at t = 0) of all �lter stages of the static
de�ection low-pass �lter are set to zero.

4Practical considerations for choosing the time constant and an elaborate description of its relation to
the bandwidth are given in the white paper Principles of lock-in detection and the state of the art by
Zurich Instruments (https://www.zhinst.com/sites/default/�les/li_primer/zi_whitepaper_principles_
of_lock-in_detection.pdf)
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2.2 The interactive virtual AFM

Amplitude and phase shi�: The lock-in amplifier

In the interactive VAFM, I model a lock-in ampli�er that detects the spectral compo-
nent (i.e., the Fourier transform) of the de�ection (multiplied by a factor of two5) at
the frequency νexc. The Fourier transform of 2q at frequency νexc is given as

F [2q](νexc) =
∞∫

−∞
dt 2q(t) exp(−2π iνexct) (2.64)

= +

∞∫
−∞

dt 2q(t) cos(2πνexct)

− i
∞∫

−∞
dt 2q(t) sin(2πνexct) = X + iY .

The workings of a lock-in ampli�er can be readily deduced from the above equation
(and are also shown schematically in the gray box in �gure 2.8). First, the input sig-
nal 2q is multiplied with cosϕ. Next, according to equation 2.64, this product needs to
be integrated. Obviously, choosing a time interval ranging from −∞ to∞ is imprac-
tical. Instead, a shorter time-interval is considered by �ltering the product 2q cosϕ
with a low-pass of orderm and time constant τLIA. By doing so, the Fourier transform
of 2q is obtained within a spectral range centered around νexc.6 The quantity resulting
from the low-pass �lter is the real part X = <{F [2q]} of the spectral component
around νexc (equations 2.61g to 2.61i, with j = 2 . . .m − 1 in equation 2.61h).
For determining the imaginary part Y = ={F [2q]} of the spectral component around
νexc, the de�ection is multiplied with (− sinϕ). Again, the product is further low-pass
�ltered to obtain Y (equations 2.61j to 2.61l, with k = 2 . . .m − 1 in equation 2.61k).
The low-pass �lter used for detectingY is described by the same orderm and the same
integration time τLIA as for the low-pass �lter that was used for detecting X .
Amplitude A and phase-shift φ of the tip oscillation are readily obtained by the rela-
tions

A =
√
X 2 + Y 2, (2.65)

φ = atan2(Y ,X ). (2.66)

5The factor of two makes it easier to relate the output of the lock-in ampli�er to the input signal:
The spectrum of an input signal described by A cos(2πνexct) is F [A cos(2πνexct)] = A

2 δ (ν − νexc) +
A
2 δ (ν + νexc). Therefore, the absolute value of the spectral component integrated within a small
frequency range around νexc would be A/2. For convenience, the lock-in ampli�er measures F [2q],
which results in obtaining A directly.

6Again I would like to refer the reader to the white paper by Zurich Instruments for a detailed analysis
of the spectral range, i.e., the bandwidth of the lock-in ampli�er.
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The time-derivatives of amplitude and phase shift are needed for the feedback-loops
described in the next section. They follow from equations 2.65 and 2.66 and are stated
in equations 2.61m and 2.61n.
The initial values at t = 0 are zero for all �lter stages of the X low-pass �lter and (−A)
for all �lter stages of theY low-pass �lter. For the amplitude and phase shift, the initial
values are A and −π/2, respectively.

Excitation force amplitude and excitation frequency: The feedback loops

A integral-proportional feedback loop calculates the output signal VO(t) at time t for
an input signal VI and a setpoint of V sp according to

VO(t) =
t∫

0

dt ′KIVE(t ′) + KPVE(t) +VO(t = 0) with VE = V
sp −VI. (2.67)

The parameter KI is called integral gain, KP is the proportional gain, VO(t = 0) is the
initial output of the feedback loop. Setting both gains to zero e�ectively disables the
feedback loop.
For simulating the interactive VAFM, the above equation needs to be written as a
�rst-order di�erential equation. This can be achieved by taking the time-derivative
of the output signal:

ÛVO = KIVE + KP ÛVE = KIVE − KP ÛVI. (2.68)

In the interactive VAFM, two feedback loops are used:
– The amplitude feedback loop keeps the amplitude constant, i.e., the amplitudeA

is the input and the excitation force amplitude F0 is the output of the feedback
loop. This is written in equation 2.61o using K (A)I as integral gain and K (A)P as
proportional gain. The initial value for the output follows from the gain function
of the resonator and is F0(t = 0) = kA/Q .

– The phase shift feedback loop keeps the phase shift φ (input) constant by ad-
justing the excitation frequency νexc (output). The feedback loop is described
by equation 2.61p using K

(φ)
I as integral gain and K

(φ)
P as proportional gain. The

initial value for the excitation frequency is νexc(t = 0) = νe.

Positioning system and distance feedback

A real AFM allows to record distance-dependent curves, two-dimensional images, and
three-dimensional volumes by controlling the piezo displacement rp, i.e., the relative
displacement between the sample and the �xed end of the resonator. The resonator
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of the interactive VAFM can be scanned in a similar fashion. In the most simple case,
the changes in the piezo displacement Ûrts are approximated to be signi�cantly slower
compared to the velocity of the tip v. Scanning is therefore approximated by stepwise
changes in rp. Distance-dependent curves can be obtained by stepwise changes of
zp. The z-piezo displacement quantity is listed as an explicit argument of the tip-
sample force in equation 2.61a. Similarly, scanning in the lateral positions is simulated
by stepwise changes in xp and yp. This requires to consider a tip-sample force that
depends also on the lateral tip-sample distance, which is related to the lateral piezo
displacement according to xts = xp and yts = yp. The scan speed is determined by
both the step size and the time between two step-wise changes of rp.
Moreover, an additional feedback loop can be used to �x one of the the quantities F0,
qs, A, φ and νexc by adjusting the z-piezo displacement zp. Considering an additional
feedback loop requires to add one equation to the system of di�erential equations.
For example, when using FM-AFM, the z-piezo displacement can be adjusted to �x
the excitation frequency at a setpoint ν sp

exc. This is modeled by the equation

Ûzp = K
(zp)
I

(
ν

sp
exc − νexc

) − K (zp)
P Ûνexc, (2.69)

where K (zp)
I and K

(zp)
P are the feedback loop gains.

2.2.3 Implementation

I have implemented the interactive VAFM in Igor Pro using the IntegrateODE function
to solve the system of di�erential equations. Less than 200 lines of code are su�cient
for the core functionality, which makes the implementation easy to comprehend. This
also lowers the barrier for implementing future extensions (such as virtual KPFM). By
employing a background task in Igor Pro, the numerical solver can be run in parallel
to the user interface, allowing the interactive usage of the VAFM.
A screenshot of the interface is shown in �gure 2.9. In this particular example, the
user is currently adjusting the feedback loop parameters by comparing data obtained
from approaching and retracting the tip. A clear hysteresis can be recognized when
comparing approach and retract curves shown in the plot to the right in �gure 2.9 –
indicating to the user that the feedback loops have not yet been properly adjusted.

2.2.4 Demonstration

In this section, I demonstrate a possible use case of the interactive VAFM: Checking
the validity of the harmonic approximation used to derive the three AFM equations
(section 2.1). This check can be performed for a speci�c tip-sample force model and
speci�c resonator properties.
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Figure 2.9: Screenshot of the interactive VAFM implemented in Igor Pro. The
panel on the left allows to monitor and change parameters of the interactive VAFM.
On the right, the resulting quantities are directly plotted as function of the z-
piezo displacement (red–approach, blue–retract). The software is available from
www.self-assembly.uni-mainz.de/software/ivafm.

Here, I will assume that the tip-sample force is given by

Fts(zts, Ûzts) =
12Eeq

zeq

[(
zeq

zts

)13
−

(
zeq

zts

)7]
− α exp

(
− zts
zeq

)
Ûzts | Ûzts | − βz2ts, (2.70)

where Eeq = 10−19 J, zeq = 0.3 nm, α = 0.015 N s2 m−2, β = 0.001 N s2 m−2. This model
for Fts (which is the same model used for the schematic �gures in section 2.1) contains
a Lennard-Jones contribution (�rst term), a non-conservative odd contribution that
depends non-linearly on the tip velocity (second term) and a non-conservative even
contribution that depends on the tip velocity (third term). For the resonator, I select
a spring constant of k = 40 N m−1, an eigen frequency of νe = 150 kHz and a quality
factor of Q = 10. The time constant of the static de�ection low-pass �lter was set to
τs = 10 µs, the lock-in ampli�er time constant was set to τLIA = 1 µs. Moreover, feed-
back loop parameters of K (A)I = 200 kN s−1 m−1, K (A)P = 10 N m−1, K (φ)I = −150 MHz
and K

(φ)
P = −2 Hz s−1 were used.

First, I used the interactive VAFM to calculate the three observables qs, A and φ for
�xed excitation parameters of F0 = 1 nN and νexc = νe. The resulting data is shown
as function of the z-piezo displacement zp in the �rst column of �gure 2.10. Blue
curves apply for the left axes and red curves to the right axes. Additionally, I show
the lower-turning point zltp = zc + qs −A of the oscillation (third row, right axis).
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Figure 2.10: Comparison of AFM data that has been obtained with the interactive
VAFM (solid lines) and the three AFM equations (dashed black lines). Blue curves
apply for the left axes and red curves to the right axes.

The simulation data corresponding to the other AFM modes (where the amplitude or
the phase shift or both observables are held constant atAsp = 0.25 nm and φsp = −π/2
by their respective feedback loop) are shown in the second, third and forth column.
I con�rmed for each case that there is no signi�cant hysteresis between the data
obtained for the approaching and retracting tip.

Next, I used the three AFM equations 2.22–2.24 to calculate the same quantities that
have been obtained with the interactive VAFM, using the same expression for the
tip-sample force (equation 2.70) and the same resonator properties. The obtained data
is shown as black dashed lines in �gure 2.10.

The VAFM data and the data obtained with the three AFM equations agrees well for
the speci�c model of the tip-sample force and the resonator properties considered
here. A slight deviation between the curves can be recognized at very small z-piezo
displacement zp, where the lower-turning point zltp of the tip is nearly constant. The
constant zltp indicates that the tip is repelled from the surface and does not, even
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upon further decrease of zp, signi�cantly approach the surface further. Therefore,
this demonstration shows that (for the speci�c system considered here) the harmonic
approximation is a reasonable approximation in the entire range ofzts that is accessible
by the tip.

2.2.5 Conclusion

In this section, I presented the implementation of an interactive VAFM. The resonator
and all electronic components necessary to perform AFM experiments in any AFM
mode all have been described by a set of �rst-order di�erential equations. This system
of equations can easily be solved numerically with little e�ort – an exemplary imple-
mentation in Igor Pro was achieved using less than 200 lines of code. A potential use
case of the VAFM has been demonstrated by assessing the validity of the harmonic
approximation.
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3 Three-dimensional AFM at mineral–water
interfaces

3.1 Order at the solid–liquid interface

3.1.1 Introduction

At solid–liquid interfaces, the presence of the solid surface in�uences the structure of
the adjacent liquid.61–63 I refer to order at the interface if the density of the interfacial
liquid exhibits a regular pattern of local minima and maxima. A most simple example of
order at the solid–liquid interface is the formation of layered structures, i.e., vertically
alternating layers of increased and decreased liquid density.
Experimentally, order has been observed for a large variety of solid–liquid inter-
faces, including mineral–water interfaces,17,52,64 graphite–water and metal–water in-
terfaces,65–67 the interface of organic crystals and various solvents,68,69 and even at
the interface between solids and liquid metal.70–72 Moreover, the observation of or-
der at the solid–liquid interface is not limited to speci�c techniques, since order has
been observed using X-ray re�ectivity measurements,73–75 the surface force appara-
tus62,76–78 and, as also detailed in the remainder of this thesis, using high-resolution
3D AFM.17

A possible origin for the order are attractive interactions between the liquid molecules
and the surface – giving rise to preferred positions for the liquid molecules to be
located, and, consequently, to local maxima in the liquid density. Another reason for
the ordering of the liquid is the con�nement due to the surface of the solid: Since the
liquid molecules cannot penetrate the solid surface, their positions are con�ned. A
�at surface con�nes the liquid vertically, a corrugated surface additionally con�nes
the liquid laterally.
It would be desirable to di�erentiate between order through attraction and order
through con�nement—While the attraction speci�cally results from the interaction
between the liquid molecules and the surface, liquid con�nement would be generally
expected from any solid surface. As a �rst step, I address two questions:

– Why does con�nement induce order?
– Can con�nement alone (without any attraction between the liquid molecules

and the surface) be responsible for ordering the liquid at the interface?
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Figure 3.1: MC simulation of a one-dimensional system of hard spheres with radius σ
between two hard walls. The probability density p of �nding a sphere is plotted as
function of the position z between the two walls. Di�erent curves correspond to
di�erent numbers of spheres placed between the walls, ranging from one sphere
(bottom) to 15 spheres (top). The maximum number of spheres that can be placed
between the two walls that are spaced 40σ apart is 20. The inset magni�es the curves
corresponding to placing one, two and three spheres.

3.1.2 Monte Carlo simulation

For this, I performed a Monte Carlo (MC) simulation of a most simple solid–liquid
interface: A one-dimensional system of hard spheres as liquid molecules, con�ned
between two hard walls representing two solid surfaces. This model assumes zero
force between the hard spheres and between the spheres and the walls, i.e., there is
no attraction between the liquid molecules and the surface. The only constraint is
that the spheres and the walls are rigid, meaning they cannot be penetrated by other
spheres.
I denote the sphere radius (i.e., half of the sphere width) as σ and choose a wall-to-
wall distance of L = 40σ . Therefore, a maximum number of 20 spheres can be placed
between the two walls. More details on the MC simulation can be found at the end
of this section on page 45. In �gure 3.1, I plot the simulated probability density p of
�nding a sphere at a certain position z between the two walls. The di�erent curves
show the probability densities corresponding to placing one sphere between the two
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3.1 Order at the solid–liquid interface

walls (black bottom curve, magni�ed in inset) to placing 15 spheres between the two
walls (black top curve).
If only one sphere is placed between the two walls, the probability of �nding a sphere
is constant in the range where the sphere can be placed (bottom curve indicated with
“1”, also shown in the inset). For z < σ and z > L−σ the probability is zero, since wall
and spheres are impenetrable. This is indicated by the red area in the sketch below,
in which the walls are depicted by the two blocks to the left and the right:

σ σ

1

Thus, in this case, no ordering is obtained within the liquid.
However, already when placing two spheres between the two walls, a deviation from
the uniform distribution can be recognized (curve indicated with “2” in �gure 3.1, also
shown in the inset). For a two-sphere-system, the probability of placing the second
sphere at position z is equal to the probability of the �rst sphere not blocking position z.
Therefore, �nding the second sphere at any given position depends on the position of
the �rst sphere. If the �rst sphere is placed far away from the wall, the sphere blocks
a space of 4σ for the position of the second sphere:

σ σ4σ

1

However, if the �rst sphere is placed directly at the wall, it only blocks an additional
space of 2σ for the position of the second sphere:

2σσ σ

1

Thus, any sphere placed close to a wall excludes a smaller space compared to placing
it away from the wall. Consequently, the space away from the walls is, on average,
more often blocked. Therefore, the probability of �nding the second sphere close to
the wall is increased.
When considering more spheres between the walls, the accumulation of spheres di-
rectly at the interface becomes even more pronounced (peaks at z = σ and z = L − σ
in �gure 3.1). I will refer to these peaks as the �rst layer. The �rst layer can be con-
sidered as an additional e�ective wall. Therefore, the �rst layer con�nes the liquid
further away from the wall and causes the formation of a second layer. Consequently,
a pronounced layered structure emerges when increasing the number of spheres. In
the extreme case of placing the maximum number of spheres between the walls, the
liquid is perfectly structured. This discussion concludes that order in the form of lay-
ering can be obtained in the simpli�ed case of a one-dimensional hard sphere liquid
with hard walls – even without attractive interactions.
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This �nding is supported by numerous more sophisticated theoretical approaches
that consider three-dimensional systems and use di�erent models for the interaction
between the liquid molecules and their interaction with the surface:

– Henderson, Abraham and Barker79 as well as Snook and van Megen80 have
found a vertical ordering for the hard sphere model in three dimensions. They
have used approximative analytical calculations and MC simulations.

– MC simulations using di�erent combinations of purely repulsive wall interac-
tions with di�erent liquid-liquid interactions (such as hard spheres and Lennard-
Jones interactions) all result in layering.81

– Recently, molecular dynamics (MD) simulations by di�erent authors con�rm
that layering is obtained for water between purely repulsive walls.82,83

There are other research papers that argue the opposite: without attraction, there is
no ordering, even if the liquid is con�ned. This is claimed in a later publication by
Abraham84 when using a Lennard-Jones liquid in contact with a hard wall in three di-
mensions. Only if he additionally considers attractive interactions between the liquid
molecules and the wall (again using a Lennard-Jones model), he obtains layering. The
author argues that the discrepancy to the publication by Snook,81 in which layering
has been observed for a similar system with a hard wall, emerges from a smaller av-
erage bulk density. Moreover, recent MD simulations by Choudhury85 show that the
layering scales with the degree of the attraction, which appears reasonable. However,
it is left open whether the layering completely vanishes when considering no attrac-
tion. Moza�ari claims that for vanishing attraction, no layering can be observed,86

although some of the vertical density pro�les shown in reference 86 exhibit a slight
layering.
A possible explanation for these somewhat contradictory reports could result from
considering di�erent “degrees of repulsion”: While the hard wall and hard sphere
potential is in�nitely steep at the boundary, Lennard-Jones models result in more
“smooth” interactions–e�ectively smearing out the wall and therefore the con�nement.
The liquid–gas interface could be considered as an example of such a smooth repul-
sive con�nement. Indeed, at the liquid–gas interface, no layering is obtained.62,87–89

Importantly for solid–liquid interfaces, both the overwhelming number of research
papers and the most simple one-dimensional hard sphere liquid support the statement:
Con�nement alone can induce order at solid–liquid interfaces, without attractive in-
teractions between the liquid molecules and the surface.

3.1.3 Conclusion

The purpose of this chapter was to discuss general mechanisms that lead to the forma-
tion of ordered structures at solid–liquid interfaces. Attractive interactions between
the liquid molecules and the surface straightforwardly explain local deviations in the
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3.1 Order at the solid–liquid interface

liquid density in the proximity of the surface. However, a simple MC simulation re-
vealed that even in the absence of any attractive interactions, an ordered structure
with pronounced layers can be obtained purely due to con�nement. This layering
is explained by the smaller volume that is excluded by the liquid molecules that are
placed close to a con�ning wall, compared to liquid molecules placed away from the
con�ning wall. As a consequence, the observation of order at solid–liquid interfaces
does not allow to conclude that there are attractive interactions between the liquid
molecules and the solid surface. This is a noteworthy thought to keep in mind for the
data presented in the following sections.

Details of the MC simulation. In the MC simulation, the positions of the spheres were
discretized on a grid with spacing of σ/10. For the starting con�guration I placed all spheres
directly adjacent to each other, starting at the left wall. A simulation step is as follows: First,
a random sphere is selected. This sphere is then placed at a random position chosen within
the accessible range between the neighboring sphere to the left and the neighboring sphere
to the right. The �rst 104 steps of the simulation are discarded to eliminate any in�uence due
to the choice of the starting con�guration. The next 108 steps are used as production run.
After each step, a histogram of the sphere positions was recorded. After the simulation, the
histograms were averaged to obtain the probability density p(z) of �nding a sphere at position
z. The integral of the probability density p ranging from z = 0 to z = 40σ equals the number
of spheres between the two walls.
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3.2 Implementation of a 3D AFM setup

The following section 3.2 is based on the article “Three-dimensional atomic
force microscopy mapping at the solid–liquid interface with fast and �exible
data acquisition” by H. Söngen, M. Nalbach, H. Adam and A. Kühnle which
has been published in Review of Scienti�c Instruments (reference 53). For this
project, I developed and implemented all modi�cations except for the trigger
detection functionality (the counter), which was implemented by H. Adam. I
have written the code for both the microcontroller and the data acquisition
system. I measured and analyzed the data and prepared the �gures and the
manuscript with comments from all authors. Parts of the article are reproduced
verbatim. Modi�cations were made to make this section consistent with the
other sections in this thesis. As a major modi�cation, I have chosen a di�erent
representation of the data, made the description more general to include the
AM-AFM mode and present additional data.

We present the implementation of a three-dimensional mapping routine for probing solid–
liquid interfaces using dynamic atomic force microscopy. Our implementation enables
fast and �exible data acquisition of up to 20 channels simultaneously. The acquired
data can be directly synchronized with commercial atomic force microscope controllers,
making our routine easily extendable for related techniques that require additional data
channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip
to the sample is limited by a user-de�ned threshold, providing the possibility to prevent
potential damage to the tip. The performance of our setup is demonstrated by visualizing
the hydration structure above the calcite (10.4) surface in water.

3.2.1 Introduction

Dynamic AFM is a most valuable tool for studying solid–liquid interfaces in real
space. Numerous technical improvements have made it possible to resolve mineral
surfaces,13,90,91 molecular crystals68 and molecular adsorbates92–95 with atomic-scale
resolution. In addition, the introduction of 3D AFM by Fukuma et al.17 has enabled
the visualization of the interfacial hydration structure.48,49,96,97

In 3D AFM, the volume above the surface is scanned by the tip. This can be performed
by acquiring multiple images at di�erent tip-sample distances.98,99 Since measure-
ments in liquids are often subject to large drift, a more robust method is to approach
and retract the tip to and from the sample periodically while laterally scanning across
its surface. However, in contrast to conventional imaging, where a feedback loop is
used to adjust the distance between tip and sample, a di�erent method for regulating
the tip-sample distance needs to be employed in 3D AFM. One possibility is to use
the distance feedback loop with low gain to adjust the average tip-sample distance.
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3 Three-dimensional AFM at mineral–water interfaces

This concept has been successfully applied in frequency modulation (FM-)AFM,17

bimodal AFM100 and amplitude modulation (AM-)AFM.49 Another option, which is
more suited to non-planar samples, is to stop the cantilever approach whenever a used-
de�ned threshold is reached. This opens up the possibility to investigate, e.g., step
edges, other non-planar structures101,102 and, additionally, allows to minimize poten-
tial damage to the tip. Kobayashi et al.103 employed a �eld-programmable gate array
in combination with a home-built AFM104 to perform threshold-based 3D mapping.
Here, similar to the above mentioned approach by Kobayashi et al., we present an
easy-to-realize microcontroller-based implementation of 3D mapping at solid–liquid
interfaces. While being highly robust due to tip retraction upon reaching a thresh-
old, the main advantage of the present implementation is given by the large number
of simultaneously recordable data channels that are directly synchronized with the
scan movement. This provides means to employ more elaborate AFM-based measure-
ment modes, e.g., related to the rapidly-growing �eld of probing voltage-modulated
electrostatic e�ects at solid–liquid interfaces.105–108

3.2.2 Technical realization

The setup is based on a commercially-available Multimode AFM with a Nanoscope V
controller (Bruker Nano Surfaces Division, USA) optimized for low-noise operation
in liquids using the FM operation mode.15 This instrument has been further extended
to perform photothermal cantilever excitation.16 However, the number of channels
that can be recorded with the originally used controller is limited to four (z-piezo
displacement and three additional data channels), making the controller insu�cient
for some applications (e.g., quantitative 3D dynamic AFM with all �ve data channels
described in section 2.1). By combining custom electronics with a HF2LI lock-in am-
pli�er (Zurich Instruments, Switzerland), which also includes a phase-locked loop
(PLL) and four feedback controllers, we are able to record an increased number of up
to 20 channels. The setup is schematically depicted in �gure 3.2 while its individual
components are described in the following.

AM-AFM operation

For AM-AFM operation, the tip is excited at a constant excitation force amplitude F0
and a constant excitation frequency νexc – both of which can be selected by the user.
Both the PLL and the amplitude feedback loop are switched o�. The feedback signal
(�gure 3.2) for the z-piezo displacement can be, e.g., the amplitude A subtracted by an
amplitude setpoint Asp. This feedback signal is fed into the Nanoscope V controller
using its external signal access module (SAM III, Bruker Nano Surfaces Division, USA).
The controller nulli�es the di�erence between amplitude and its setpoint by employing
a feedback loop that adjusts the z-piezo displacement. While for conventional imaging,
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Figure 3.2: Wiring diagram of the setup. The components added for 3D mapping
are shaded gray. The laser used for photothermal excitation is described in reference
16, the ampli�er of the de�ection signal in reference 15. The Nanoscope V controller
and the HF2LI are described in section 3.2.2, the signal access module (SAM III) in
section 3.2.2, the microcontroller and the low-pass (LP) �lter in section 3.2.2 and the
divider in section 3.2.2.

the tip is scanned, e.g., at constant amplitude, we decrease the gain of the z-piezo
feedback loop when performing 3D mapping. This ensures a compensation for sample
tilt and vertical drift, but does not interfere with the mapping routine described below.

FM-AFM operation

For FM-AFM operation, the PLL of the HF2LI is used to excite the cantilever at a �xed
phase shift φ of −π/2 by adjusting the excitation frequency νexc. The amplitude A of
the oscillating cantilever is kept constant by adjusting the excitation force amplitude F0
using a feedback loop of the HF2LI. In this case, the feedback signal is obtained by
subtracting the excitation frequency shift ∆νexc = νexc − νe provided by the PLL by a
user-adjustable setpoint ∆ν sp

exc.

49



3 Three-dimensional AFM at mineral–water interfaces

Three-dimensional mapping in liquids

We implement 3D mapping by modulating the z-piezo displacement with a microcon-
troller (Atmel SAM3X8E as provided with the Arduino Due platform) while the AFM
controller ensures the lateral scanning of the tip over the surface. The modulation
is performed by applying a voltage with a triangular waveform using the digital-to-
analog (DAC) converter of the microcontroller. The triangular waveform ensures a
uniform sampling of the entire range as well as a constant velocity for both the ap-
proaching and retracting tip. The vertical velocity, which can be set from a computer
using a serial connection emulated over USB, is chosen to be larger (typically by a
factor of 100) than the scan velocity in the fast scan direction. For noise reduction
the bandwidth of the analog output of the microcontroller is limited to 10 kHz by a
second-order low-pass (LP) �lter based on the LT1363 operational ampli�er (Linear
Technology, USA). The �ltered signal is added to the z-voltage provided by the AFM
controller by using a high-voltage (HV) adder.
To prevent approaching the tip too close to the sample during the 3D mapping, a
retraction criterion is provided by exploiting a feedback loop of the HF2LI. The feed-
back loop is adjusted as a pure proportional controller which considers the excitation
frequency shift (FM-AFM) or the negative amplitude (AM-AFM) as its error value. If
the error value exceeds a user-de�ned threshold, the feedback loop outputs a digital
signal, which triggers an interrupt at the microcontroller. Subsequently, if the tip is
approaching the sample when the interrupt is triggered, the direction of the vertical
tip movement is reversed.

Data acquisition and synchronization

Data are acquired, processed and displayed with a self-written software based on
IGOR Pro (Wavemetrics, USA). A self-written IGOR Pro extension (written in C due to
performance considerations) utilizes the HF2LI software interface to digitally capture
data (i.e., excitation force amplitude, excitation frequency, static de�ection, amplitude
and phase shift) at a user-adjustable sampling rate of up to 28 kHz per channel for up
to 20 channels. The IGOR Pro extension runs as a separate thread in which the data
is continuously polled from the HF2LI in an asynchronous fashion. Subsequently, the
data is stored in cyclic bu�ers. To allow for an assignment of the recorded data with the
position of the tip, a synchronization with both the scan engine of the AFM controller
as well as the microcontroller that adjusts the z-piezo displacement is necessary. The
synchronization with the scan engine is achieved by digital end-of-line (EOL) and
end-of-frame (EOF) triggers provided by the AFM controller. Most commercial AFM
controllers provide similar signals that can be used for synchronization. Thereby, our
implementation can easily be modi�ed for other controllers. After each line, the AFM
controller outputs a trigger pulse at its EOL output. Since the pulses are too short for
a reliable detection, they are used as a clock signal for a binary counter (74HC4040,
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Figure 3.3: Timing diagram of the line (a) and frame (b) synchronization of the scan
controller as well as the vertical synchronization with the microcontroller (c). The
naming of the digital inputs to the HF2LI (Dx ) is consistent with �gure 3.2.

.

Fairchild Semiconductor, USA). The output Q0 of the counter (division by 2) represents
each trace and retrace scan as a HIGH and LOW signal, respectively (x-direction,
�gure 3.3 a). Thus, the fast lateral scan direction is directly available for further data
assignment. Similarly, the AFM controller outputs two short digital LOW pulse after
each frame. We use a second binary counter (which performs a division by 4, output
Q1) to obtain a HIGH and LOW signal for each up and down frame, respectively (y-
direction, �gure 3.3 b). Therefore, we directly obtain the slow lateral scan direction for
further data assignment. The microcontroller indicates the direction of the vertical
cantilever movement by an additional digital signal (z-direction, �gure 3.3 c). The
processed triggers from the EOL and EOF outputs of the AFM controller as well as
the trigger of the microcontroller are fed into the digital inputs of the HF2LI. The
HF2LI records the trigger channels as well as its other data channels which are used
for further data processing within the self-written software.

Using the recorded triggers, we can assign the data to individual frames and lines. For
each lateral scan line, the digitally encoded vertical direction (z-direction, �gure 3.3 c)
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Figure 3.4: Vertical slices of the excitation parameters (F0, νexc) and observables (qs ,
A, φ) obtained in a AM-AFM experiment. The slice is aligned along the [481] direction
of calcite. Data is shown for the approaching tip. Blue color is assigned to regions of
no data, i.e. to positions that have not been accessed by the tip.

is used to reconstruct the vertical position of the tip. We perform this line-by-line
data processing online during the measurement, allowing the AFM user to quickly
evaluate the data and react to potential changes during the recording of a 3D map.

3.2.3 Proof of concept

We demonstrate the 3D mapping capability of our setup by resolving the hydration
structure of the calcite (10.4) surface in water. After cleaving the calcite crystal (Korth
Kristalle GmbH, Germany), pure water (Millipore GmbH, Germany) was injected in
a closed liquid cell (Bruker Nano Surface Division, USA) that was sealed with an O-
ring. In water, the used silicon cantilever (PPP-NCHAuD, Nanosensors, Switzerland
with a gold-coated backside) exhibited an eigen frequency of 129.6 kHz and a quality
factor of 9. We determined the de�ection sensitivity by a distance-dependent static
de�ection measurement and obtained a spring constant of 32 N m−1 by evaluating the
thermal noise.109 For operation in the AM mode, we set F0 = 0.6 nN and νexc ≈ 0.95νe.
The closest approach to the sample was limited to the position where the amplitude A
decreased to 0.1 of the amplitude of the retracted cantilever. For FM-AFM operation,
the oscillation amplitude was kept constant at 0.11 nm and the excitation frequency
shift retraction threshold was set to 20 kHz.
We present exemplary vertical (xz) slices from an AM-AFM dataset in �gure 3.4. The
data for the full 3D AM-AFM dataset were acquired in 420 s (corresponding to 128
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Figure 3.5: Vertical slices of the excitation parameters (F0, νexc) and observables (qs ,
A, φ) obtained in a FM-AFM experiment, aligned along the [481] direction.

scan lines and a time of 3.3 s per trace and retrace) with a vertical cantilever velocity
of 92 nm s−1 (yielding approximately 190 pixel in vertical direction and 63 pixel in the
fast scan direction). Due to the independent vertical and lateral tip movement, not
the entire data is collected for the �rst and last approach or retract curve within each
slice, respectively. This explains the additional regions with no data available (color-
coded blue) on the left and right edges in the experimental data. We use the center
position of the tip oscillation zc as distance coordinate, i.e., we plot all data against
the sum of the adjusted z-piezo displacement zp and the measured static de�ection qs.
Additionally, the data is corrected for sample tilt and vertical drift by subtracting the
vertical distances by a linear �t of the position of closest approach to the sample.
The vertical slices of the AM-AFM dataset in �gure 3.4 show the excitation parameters
(F0, νexc) and observables (qs , A, φ). Both the excitation force amplitude (a) and exci-
tation frequency (b) are constant. A checkerboard-like pattern can be recognized in
both the amplitude (e) and phase shift (f) slices. These observations are qualitatively
in line with both previous experimental48–51 3D AFM measurements and theoretical
calculations51,110,111 on calcite (10.4), where water has been found to be vertically
ordered in several layers.
The setup allows to straightforwardly switch between AM-AFM and FM-AFM. In
�gure 3.5 we present FM-AFM data obtained within the same measurement session as
the AM-AFM data, i.e., with the same cantilever and sample. Vertical slices show the ex-
citation parameters (F0, νexc) and observables (qs , A, φ) for the FM-AFM measurement
in �gure 3.5. Here, the excitation frequency exhibits again a regular checkerboard-like
pattern of extrema. The vertical slices in �gure 3.5 e and f also show that amplitude
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Figure 3.6: Lateral slices extracted from a three-dimensional excitation frequency
shift map above the calcite (10.4) surface in water. This �gure is a visual representation
of the same data set used for �gure 3.5. The tip center position where the data has
been extracted is indicated by the arrows in �gure 3.5 a. The black-to-white color scale
is limited to values from (1) ±14 kHz, (2) ±10 kHz, (3) ±6 kHz, (4) ±4 kHz, (5) ±2 kHz,
(6) ±1 kHz.

and phase shift are not perfectly constant. For the quantitative analysis of the data
performed in the following sections (and shown in section 2.1), this is not problematic,
as detailed in section 2.1.
Finally, we present lateral slices through the FM-AFM data set in �gure 3.6. Through
comparison with reference 51 and with the assumption that the drift velocity was
small compared to the slow scan velocity, the shown data was laterally distorted to
match the surface unit cell dimensions of the calcite (10.4) surface.112 The lateral slices
in �gure 3.6 (extracted at various heights parallel to the sample surface as indicated
by the arrows in �gure3.5 a) each reveal a periodic pattern. The observed patterns
are commensurate to each other. Moreover, at a �xed lateral position, minima and
maxima alternate within the di�erent layers (the surface unit cell of calcite is shown
by the black rectangle and can act as a �xed point of reference).
Note that the data shown here is the raw data used for the calculation the three pieces
of information about the tip-sample force shown in �gure 2.4 section 2.1. An detailed
interpretation and discussion of the checkerboard-pattern is given in the section 3.3.
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3.2.4 Conclusion

In conclusion, we present the implementation of three-dimensional mapping at solid–
liquid interfaces using a custom data acquisition system. Up to 20 channels can be
recorded simultaneously in synchronization with the scan movement. The z-piezo
displacement is performed by a microcontroller which is able to reverse the vertical
direction of the tip movement based on a user-de�ned threshold. This �exible architec-
ture makes our setup easily extendable for techniques related to AFM, such as Kelvin
probe force microscopy, open-loop electric potential measurements and bimodal AFM
techniques. We demonstrate the high-resolution capabilities of our 3D FM-AFM setup
by successfully imaging the hydration structure of the calcite (10.4) surface in water.
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3.3 Chemical identification

Section 3.3 is based on the article “Chemical Identi�cation at the Solid–Liquid
Interface” by H. Söngen, C. Marutschke, P. Spijker, E. Holmgren, I. Hermes, R.
Bechstein, S. Klassen, J. Tracey, A. S. Foster and A. Kühnle, which has been
published in Langmuir (reference 52). For this project, I performed or super-
vised measurements (some measurements were performed by S. Klassen and
E. Holmgren). Moreover, I analyzed the experimental data, prepared the �gures
and wrote the manuscript (with the exception of the simulation methods sec-
tion), with contributions by P. Spijker, R. Bechstein, A. S. Foster and A. Kühnle.
The MD simulations shown in this section were performed in the Group of
A. S. Foster by P. Spijker. Analysis of the MD simulation was done in parts
by J. Tracey. Parts of the publication are reproduced verbatim. Besides modi�-
cations to make this section consistent with the other sections in this thesis,
there are four major changes: I include magnesite in the discussion, I show
the tip-sample force gradient as primary data for the chemical identi�cation,
added a discussion on the tip-sample damping factor and show reproduction
data.

Solid-liquid interfaces are decisive for a wide range of natural and technological processes,
including �elds as diverse as geochemistry and environmental science as well as catalysis
and corrosion protection. Dynamic atomic force microscopy nowadays provides unpar-
alleled structural insights into solid–liquid interfaces, including the solvation structure
above the surface. In contrast, identifying the chemical composition of individual inter-
facial atoms still remains a considerable challenge. So far, an identi�cation of chemically
alike atoms in a surface alloy has only been demonstrated under well-controlled ultra-
high vacuum conditions. In liquids, the recent advent of three-dimensional force mapping
has opened the potential to discriminate between anionic and cationic surface species.
However, a full chemical identi�cation will also include the far more challenging situa-
tion of alike interfacial atoms (i.e., with the same net charge). Here we demonstrate the
chemical identi�cation capabilities of dynamic atomic force microscopy at solid–liquid
interfaces by identifying calcium and magnesium cations at the dolomite–water inter-
face. Analyzing site-speci�c vertical positions of hydration layers and comparing them
with molecular dynamics simulations unambiguously unravels the minute, but decisive
di�erence in ion hydration and provides a clear means for telling calcium and magne-
sium ions apart. Our work, thus, demonstrates the chemical identi�cation capabilities of
dynamic AFM at the solid–liquid interface.
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3.3.1 Introduction

Dynamic atomic force microscopy21,23 (AFM) has developed into a most versatile tool
that is capable of imaging surfaces with atomic resolution not only in a well-controlled
ultra-high vacuum (UHV) environment,113 but also at the solid–liquid interface.13

When analyzing distance-dependent data, dynamic AFM can even provide chemical
information on individual atoms at the surface, as has �rst been demonstrated in UHV:
Force-distance curves have been collected on Si(111)-(7×7), revealing site-speci�c dif-
ferences and, thus, demonstrating the potential to di�erentiate inequivalent adatoms
by a careful analysis of force-distance curves.114 Later, ionic crystal sublattices have
been identi�ed on several crystals, including, e.g., CaF2 (111),115 NiO (001),116,117 NaCl
(001)118 and calcite (10.4).119 A particularly challenging system has been studied by
Sugimoto et al., who have been the �rst to demonstrate the identi�cation of individual
surface atoms in an alloy of Pb, Sn and Si, even though these atoms occupy identical
surface positions and are not oppositely charged.120 All the above studies have been
carried out in UHV.

At the solid–liquid interface, however, the situation is usually signi�cantly more com-
plex due to the presence of the solvent molecules that can form a solvation struc-
ture not only at the surface but also at the probe tip.121 Nevertheless, due to the
omnipresence of water �lms on surfaces, especially the solid–water interface has
attracted considerable attention in the last decades,1,2,6,122 with the �rst demonstra-
tion of atomic-scale imaging with dynamic AFM on a mica (001) surface in 2005 by
Fukuma et al.13 Using conventional imaging on calcite (10.4), ionic sublattices have
been assigned based on the di�erent lateral structure.90 Recently, the development
of three-dimensional (3D) force mapping in liquids17 has considerably pushed this
�eld of research. Three-dimensional force maps have been collected on, e.g., calcite
(10.4),48,51 mica,17,64 α-Al2O3,123 graphite,65 alkanethiol �lms124,125 and organic crys-
tals.126 Analyzing site-speci�c di�erences in the force-distance curves has allowed
for the discrimination between anionic and cationic surface species.51 So far, how-
ever, the identi�cation of chemically alike interfacial species possessing the same net
charge has not been demonstrated. Such a di�erentiation is, however, an essential
prerequisite for chemical identi�cation, one of the major challenges of surface science.
For such a demonstration, we investigate an ideally suited model system, namely
dolomite (10.4), possessing two chemically alike cation species that can be bench-
marked against both the well-studied calcite (10.4) surface and the magnesite (10.4)
surface. Here, by comparing high-resolution 3D AFM measurements with molecular
dynamics (MD) simulations, we show that the di�erent hydration of magnesium (Mg)
ions as compared to calcium (Ca) ions leads to a shift of interfacial water above Mg
ions that allows for their discrimination from Ca ions on the surface of dolomite.
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3.3 Chemical identi�cation

3.3.2 Methods

Experimental

Experiments were performed with a custom 3D-AFM15,16,53 operated in the frequency-
modulation mode,21 as described in the previous section 3.2. Calcite (CaCO3) crystals
(Korth Kristalle, Germany), dolomite (CaMg(CO3)2) crystals and magnesite (MgCO3)
crystals (SurfaceNet, Germany) were cleaved prior to the measurement. We used Si
cantilevers exhibiting an eigenfrequency of approximately 150 kHz, a quality factor
of approximately 8 and a spring constant of approximately 40 N m−1 in liquids (types
PPP-NCHAuD, Tap300G and Tap300GB-G were used). Oscillation amplitudes in the
order of 0.7 Å to 0.8 Å have been used. All AFM measurements were performed in
pure water (MilliPore). The de�ection sensitivity was determined from static de�ec-
tion versus z-piezo-displacement curves, and the spring constant by evaluation of the
thermal noise.109 The crystallographic surface directions were obtained from the di-
rection of birefringence.54 Experimental data sets were corrected for sample tilt and
vertical drift as described in the previous section 3.2.53 Moreover, data were corrected
for lateral drift by comparison of up and down images to identify the surface unit
cell. Subsequently, the images were adjusted so that the surface unit cell dimensions
correspond to the unit cell dimensions determined from the dimension of the bulk unit
cell.112 We obtained the averaged tip-sample force gradient 〈kts〉∩ and the averaged
damping factor 〈γts〉∩ from the measured quantities F0, νexc, qs, A and φ according to
the AFM equations described in section 2.1 (equations 2.23–2.24).18 If experimental
data was averaged, a shaded area below and above each average curve indicates a
95 % con�dence interval determined from the standard deviation s and the number of
samples n according to ±1.96s/√n.

Simulations

For all simulations, the large scale molecular dynamics code LAMMPS127 was used.
The simulations were run in parallel on a typical Linux commodity cluster, and anal-
ysis was performed visually using VMD128 or numerically using the Python library
MDAnalysis.129 In order to model the crystal structure of the (10.4) cleavage plane, we
used a crystal that is seven layers thick and where each layer consists of �ve unit cells
along the [421] and eight along the [010] direction. For dolomite and magnesite, the
simulation box dimensions were scaled down (while keeping the internal carbonate
bonds at the correct length) with respect to the dimensions for calcite, in order to
match the surface unit cell size. Each simulation consists of a similar protocol. First,
the seven-layer crystal is modeled as if it is a bulk crystal in order to relax our ini-
tial scaling, during which no external constraints other than a common barostat and
thermostat were applied to the atoms. Subsequently, the crystal is placed in a larger
box and solvated on either side of the (10.4) surface by ample water, such that far
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away from the surface bulk properties can be reached, adding approximately 16 nm
in the direction perpendicular to the surface. The total number of atoms in each of the
simulations is in the range of 25 000. In the next steps, the lateral dimensions of the
simulation box were �xed, along with the carbon atoms of the center-most layer in
order to ensure the proper crystal dimensions and no thermal drift of the system. First,
the entire system is allowed to relax for at least 50 ps (using a 1 fs time step) at ambient
conditions (310 K and 1013.25 hPa). After that, a longer run (0.5 ns) is performed to
allow for the hydration layers to form. Following this, the unit cell dimension along
z as well as the total and separate energy components were constant (except for ther-
mal oscillations), con�rming that equilibrium has been reached. The next 8 ns are the
simulation production run, where each 2.5 ps a snapshot of the system is saved to disk
and used for subsequent analysis.
An accurate force �eld for calcite simulations was developed by Raiteri et al., and has
been used successfully in simulating the growth of calcium carbonate in aqueous solu-
tions.130 Here, we used the same force �eld, except that we replace the intramolecular
angle and improper terms for the carbonates by more common harmonic potentials
providing equivalent interactions. Magnesium terms were taken from the extended
potentials of Tomono et al., which allows for the modeling of dolomite and magne-
site.131 This proved to show no signi�cant di�erences in the the calculated density
to more recently published potentials.132 For water, we used the single point charge
�exible model (SPC/Fw).133

3.3.3 Results: Hydration and chemical identification

Figure 3.7 shows an atomistic model of the (10.4) surfaces of calcite, dolomite and
magnesite. In all cases, the surface unit cell (black rectangle) contains two cations and
two carbonate groups. In case of calcite the cations are Ca, for magnesite both cations
are Mg. For dolomite, the surface unit cell contains both a Ca and a Mg ion, which
leads to alternating Ca and Mg ions oriented along the [421] direction. Therefore, the
solid–liquid interface of the dolomite (10.4) surface constitutes an ideal test system
to assess the feasibility of chemical identi�cation of the two equally charged cations.
To obtain the water density in the volume above the substrates, we performed MD
simulations. In �gure 3.8 we show the density of water oxygen atoms extracted along
a row of alternating cations and anions (dashed lines in �gure 3.7). In case of calcite
(�gure 3.8 a), we �nd that water forms a laterally as well as vertically ordered structure
above the surface. The water molecules in the �rst layer are located above calcium ions,
the ones in the second layer above carbonate groups. This alternating arrangement of
interfacial water above the cations and anions continues in several layers and leads to
a characteristic checkerboard pattern. Our simulations agree with previous theoretical
studies on interfacial water above calcite.51,110,111,134

For dolomite, the simulated water density shown in �gure 3.8 b shows a similar checker-
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Figure 3.7: Schematic model of the (10.4) surface of calcite (a), dolomite (b) and
magnesite (c). The unit cell dimensions are 0.81 nm · 0.50 nm, 0.77 nm · 0.48 nm and
0.73 nm · 0.46 nm, respectively.112 The crystallographic directions in panel a apply to
all panels. The two carbonate groups in the surface unit cell are tilted with respect to
the surface. As the protruding oxygen atom of the carbonate group points in alternat-
ing directions, the carbonate groups are not equivalent.
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Figure 3.8: Interfacial water obtained from MD simulations. The number density of
water oxygen atoms is shown for calcite (a), dolomite (b) and magnesite (c) as a vertical
slice extracted along the [481] direction indicated by the dashed lines in �gure 3.7.
The color scale ranges from dark blue (low density) to white (high density).

board pattern of water density maxima. Similar to calcite, the �rst layer is placed above
the cations, which are now Ca and Mg. However, although Ca and Mg cations occupy
virtually identical positions in the crystal lattice, the oxygen water density maximum
above Mg sites is shifted closer to the surface compared to the Ca site. This �nding
can be rationalized by the smaller size and, consequently, the larger charge density
of Mg compared to Ca.135
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Figure 3.9: Site-speci�c density pro�les obtained from the MD simulations. The
site-speci�c density pro�les result from averaging individual density pro�les within
a circle of 1.25 Å radius centered on each respective ion. Each symmetry equivalent
ion within the simulation box was considered.

The water density above magnesite shows again the checkerboard-like arrangement
of water. Since here all surface cations are Mg, the oxygen water density maximum
is consistently shifted towards smaller distances above each cation, compared to the
calcium case. However, similar to calcite and in contrast to dolomite, the oxygen water
density maxima within one layer are all located at a similar distance from the surface.
Site-speci�c pro�les of the water density above the four atoms within each surface
unit cell are shown in �gure 3.9. These data provide another way of showing the
position of water molecules above the surfaces. For calcite (�gure 3.9 a), alternating
peaks are obtained above the cations (yellow) and the anions (brown). Moreover,
the density pro�les obtained for the two di�erent Ca sites within the surface unit
cell are very similar. The same applies for the two density pro�les extracted above
the carbonate sites. For dolomite (�gure 3.9 b), the shift in the water oxygen density
maxima is visible when comparing the pro�le obtained above Ca (yellow) with the
Mg pro�le (green). A shift in the pro�les obtained above the carbonate sites can also
be recognized. For magnesite (�gure 3.9 c), the density pro�les are consistently shifted
towards smaller distances for both Mg sites and both carbonate sites, respectively. As
for calcite, this again results in very similar pro�les above the respective cation and
anion sites. A comparison between the density pro�les between calcite, dolomite and
magnesite shows that water is not only positioned closer above Mg ions compared
to Ca ions, but that water in the �rst layer is also more con�ned above Mg ions. This
corresponds to the increasingly narrower and more pronounced �rst-layer density
peaks shown in �gure 3.9 when considering �rst calcite (a), then dolomite (b) and
�nally magnesite (c). In contrast, the peak height of the other hydration peaks, in
particular the second and third-layer peak, decreases for increasing the Mg content.
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Figure 3.10: Experimental hydration data for calcite, dolomite and magnesite. Drift-
corrected lateral (xy) slices of the negative cap-averaged tip-sample force gradient
(−〈kts〉∩) are presented in the �rst row (a, c, e). The surface unit cell is oriented iden-
tically as the one in �gure 3.7. Pro�les of −〈kts〉∩ as function of the center position of
the tip zc extracted above the di�erent sites indicated in the �rst row are shown in
the second row (b, d, f). Yellow, green and brown color indicate Ca, Mg and CO3 sites,
respectively. Dashed lines in the graphs correspond to the lower site indicated in the
lateral slices.

Next, we explore whether we can make use of the subtle di�erence between the Ca and
Mg hydration to provide chemical identi�cation of the two interfacial cations on the
surface of dolomite. To address this challenging task, we have optimized a commercial
AFM setup for performing high-resolution imaging at the solid–liquid interface15,16

and added a highly �exible routine for collecting 3D AFM data.53 This setup is also
described in the previous section 3.2 of this thesis. As reference, we �rst analyze
distance-dependent data on calcite at four sites (two above the cations, two above the
anions) within the calcite surface unit cell. A lateral (xy) slice of a 3D data set showing
the negative cap-averaged tip-sample force gradient (−〈kts〉∩) obtained on calcite in
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pure water is shown in �gure 3.10 a. We ensure that this lateral slice is extracted
within a hydration layer (in this case the second layer), as is explained in detail in
section 3.3.4. In �gure 3.10 b, we show site-speci�c pro�les of −〈kts〉∩ extracted at the
two minima and the two maxima observed within each surface unit cell by averaging
over the areas indicated by the circles in �gure 3.10 a and several symmetry-equivalent
sites. All extraction sites are shown in �gure 3.13. A clear agreement between the
two pro�les extracted at sites that are shifted by half a unit cell length along the
[421] direction can be observed (both colored either yellow or brown, respectively).
Moreover, all four extracted pro�les exhibit an oscillatory shape. We interpret each
maximum (minimum) in the negative cap-averaged tip-sample force gradient (−〈kts〉∩)
as a maximum (minimum) in the water density, which is in line with the solvent tip
approximation (STA).136–138 Details on the STA are discussed in section 3.3.4. Note
that the negative tip-sample force gradient close to the surface shows an overall
increase that it interpreted by increasingly repulsive interactions originating from the
presence of a rigid surface solely.

Next, we identify whether the pro�les were extracted above Ca or CO3 sites. By com-
parison with the simulated water density (�gure 3.9 a), the pro�le with the minimum
in −〈kts〉∩ at the smallest tip-sample distance (brown pro�les) can be readily assigned
to a CO3 ion, while the other set of pro�les (yellow pro�les) is assigned to Ca ions. The
excellent agreement between the pro�les extracted above Ca and CO3 sites, respec-
tively, is con�rmed by identical water density pro�les obtained by MD simulations
(�gure 3.9 a). The obtained vertical distance between two water density maxima is
1.3 Å. This distance agrees remarkably well with the layer-to-layer distances for the
presented data in �gure 3.10 b As our description is based on the simple STA model
deviations between the theoretically obtained and the experimentally determined
layer-to-layer distances can be expected.

After having analyzed calcite as a reference, we applied the same analysis protocol to
a 3D data set obtained on the dolomite (10.4) surface. Here, −〈kts〉∩ pro�les extracted
at the sites indicated in �gure 3.10 c are presented in �gure 3.10 d. The individual
pro�les exhibit a very similar shape compared to calcite as they also show alternating
extrema. Two of the four pro�les (extracted at sites shifted half a unit-cell along the
[421] direction) exhibit a clear minimum at the smallest tip-sample distance and are,
consequently, again identi�ed as CO3 sites (brown). In clear contrast to calcite, how-
ever, the other two pro�les – extracted above the cation sites – show a distinctive shift
relative to each other. This shift is also re�ected in the MD simulations (�gure 3.9 b),
as water molecules are located closer to Mg ions compared to Ca sites. Therefore, we
assign the cation-site curve that is shifted more closely to the surface (green, without
prime) to a magnesium site, while the other site (yellow, with primes) is assigned to a
Ca site. This is a demonstration of chemical identi�cation of interfacial ions possess-
ing the same charge. Note that even the shift in the pro�les obtained above carbonate
sites is in excellent agreement with the MD simulations.
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The magnesite data further supports our assignment, as the two −〈kts〉∩ pro�les ex-
tracted above the Mg sites are very similar and do not exhibit the shift relative to each
other. Moreover, the layering beyond the second layer visible in the magnesite data
is not as pronounced compared to calcite and dolomite, which is in agreement to the
density pro�les from the MD simulation (�gure 3.9).

3.3.4 Hydration layer assignment with the solvent tip approximation

A number of theoretical works have been devoted to understanding the mechanism by
which the tip of an atomic force microscope interacts with samples that are immersed
in a liquid.136–139 Recently, Fukuma et al.51 have provided evidence that both the
hydration structure of the tip and of the sample play a key role: As the tip approaches
the surface, the two hydration structures start to merge and overlap. The free energy
of the system has been found to decrease if positions with increased local liquid
density at the tip coincide with positions of locally increased liquid density above
the sample. Consequently, the free energy of the system was found to increase when
liquid molecules were not able to occupy sites favored by both tip and sample. A stable
equilibrium results from placing the liquid molecules con�ned at the tip at positions
that are energetically favored due to both the interaction with the tip and with the
sample. The changes in free energy as a function of the tip-sample displacement result
in a contribution to the tip-sample force.51

The simplest model for the tip hydration structure is to consider just a single molecule
of the liquid that is con�ned at the tip. This is done in the solvent tip approxima-
tion136–139 (STA). According to the STA, the attached molecule probes the density
of the liquid ρ and experiences a force Fsta that is proportional to the vertical gra-
dient of ln ρ̂. If the change of the solvent density due to the presence of the sample
is small compared to the bulk density ρbulk (i.e., ρ̂ = ρ/ρbulk ≈ 1), the force can be
approximated as being directly proportional to the derivative of the solvent density:

Fsta ∝
∂ ln ρ̂
∂z
≈ ∂ρ̂
∂z

for ρ̂ ≈ 1 (3.1)

For very simpli�ed solvent densities (such as sinusoidal density modulations), this
results in a simple relationship: A maximum (minimum) in the density corresponds
to a maximum (minimum) in the negative derivative of Fsta. Note that the force re-
sulting from the STA model is conservative and, therefore, even with respect to the
tip velocity. As a consequence, both the force and its gradient resulting from the
STA only contribute to the even contribution to the tip-sample force and the tip-
sample force gradient, respectively. Experimentally, the negative cap-average of the
tip-sample force gradient was determined (�gure 3.10). The cap-average is a weighted
average that results from the oscillation of the probe tip. The weight function for the
cap average is positive as well as symmetric with respect to the center position of
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Figure 3.11: Plots in the �rst row show the average of all density versus distance pro-
�les 〈ρ〉 within the simulation volume for calcite, dolomite and magnesite (a–c). The
corresponding standard derivation sρ of the averages and its derivative with respect
to z are shown in the second row (d–f) and third row (g–i), respectively. Hydration
layer are identi�ed by local maxima in the average water density, which corresponds
to a maxima in the standard deviation, as indicated by vertical lines.

the tip (section 2.1, �gure 2.6). Since in our case the amplitude of the oscillation is
in the order of the vertical distance of two density maxima, extrema in the negative
force gradient correspond to extrema in the negative cap-averaged tip-sample force
gradient −〈kts〉∩ as well. Consequently, we interpret minima (maxima) in the nega-
tive cap-averaged tip-sample force gradient as minima (maxima) in the water density.
We therefore assigned the pro�les with the �rst minimum (closest to the surface) to
carbonate sites, as the water density in the �rst layer above the CO3 sites is smaller
compared to the density above the cation sites. Importantly, this assignment using the
STA is consistent with tip-sample force data that have been computed using molecular
dynamics simulations explicitly including di�erent probe tips.51

Next, we describe the procedure we used to select the distance, at which we extracted
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Figure 3.12: Averaged cap-averaged negative force gradient pro�les (�rst row), their
standard deviation s (second row) and its derivative (third row) for calcite, dolomite and
magnesite in pure water. The numbers indicate at which position the corresponding
layers shown in �gure 3.13 have been extracted.

the lateral slices of the negative cap-averaged tip-sample force gradient shown in
�gures 3.10, 3.13 and 3.16. The aim is to select a distance, at which the probe tip is
scanned within a hydration layer, as this is a prerequisite for identifying the sites
within the surface unit cell used in the consecutive analysis. Since the average over all
density pro�les within the volume considered in the MD simulations (�gure 3.11 a–c)
clearly shows density maxima corresponding to the hydration layer, it appears obvi-
ous to assign maxima in the average over all cap-averaged tip-sample force gradient
pro�les 〈−〈kts〉∩〉 within a 3D data set (�gure 3.12 a–c) to the vertical positions of
the hydration layers. However, the tip-sample force gradient pro�les do not solely
contain the contribution due to the hydration layers but also additional contributions
due to the interaction of the probe tip with the sample surface. This makes it di�cult
to clearly identify maxima within the averaged −〈kts〉∩ pro�les.
Thus, we base the vertical hydration layer identi�cation based on the fact, that within
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a hydration layer, lateral density variations (i.e., lateral contrast) are at its maximum.
This is obvious from the standard deviation sρ of the averaged density pro�les (�g-
ure 3.11 d–f) which exhibits maxima or in�ection points at distances where hydration
layer are found within the simulation. Consequently, we analyzed the standard devia-
tion s of the −〈kts〉∩ averages (�gure 3.12 d–f). In most cases, the standard deviation
shows a number of in�ection points (identi�ed using the �rst derivative of the stan-
dard deviation shown in the �gures 3.11 and 3.12 g–i). We therefore assign the vertical
position of the hydration layer in the experimental data as indicated by the gray lines
shown in �gure 3.12. This allows to identify most, but not always all layers: For mag-
nesite, for example, only one layer was identi�ed using its de�ection point. In such
cases, the other layers are assigned using the site-speci�c pro�les. The lateral slices
corresponding to the �rst three hydration layers are presented in �gure 3.13. For
completeness, we show the excitation frequency νexc (as part of the raw data) and the
even contribution of the tip-sample force Feven in �gure 3.14. The even contribution
to the tip-sample force Feven was obtained by deconvolution of 〈kts〉∩, as detailed in
section 2.1.8.

3.3.5 The damping constant

In �gure 3.15, we show the cap-averaged tip-sample damping constant 〈γts〉∩ as func-
tion of the center position of the tip oscillation zc. The pro�les were extracted above
the same sites as shown in �gure 3.10 a–c and �gure 3.13. For all three substrates,
〈γts〉∩ is zero away from the surface and increases monotonically when approaching
the surface. The pro�les are very similar, despite the fact that they have been extracted
at di�erent surface sites. In some cases, there are slight variations in the curves, which
are, however, not as pronounced as in the pro�les of −〈kts〉∩ (�gure 3.10).
Previous studies on the damping constant at solid–liquid interfaces report in part on
similar results, in part on di�erent results. Labuda et al.140 and Kaggwa et al.141 report
on results that are similar to the ones observed here: No signi�cant oscillation of γts
was observed in their measurements, which have been performed at the mica–water
and the mica–octamethylcyclotetrasiloxane (OMCTS) interfaces, respectively. In con-
trast, de Beer et al.142,143 and other authors144 report on the experimental observation
of oscillatory damping constant pro�les at the graphite–OMCTS interface, which also
have been obtained using molecular dynamics simulations.142

There are two reasons that might explain the observed discrepancy: Even slight de-
viations in the reference phase shift (induced, e.g., by the electronics of the AFM
detection) can lead to an incorrect evaluation of the three AFM equations, including
equation 2.24 which is used to obtain the damping constant.42,145 As pointed out by
O’Shea,145 the erroneously computed damping constant can re�ect features (such
as the oscillation) present in the tip-sample force gradient. When assuming that the
calibration has been performed correctly in all the experiments, there is an additional
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Figure 3.13: Drift-corrected lateral slices showing the negative cap-averaged tip-
sample force gradient extracted from 3D data obtained on calcite, dolomite and mag-
nesite. The distance (zc) at which the layers have been extracted is indicated in �g-
ure 3.12. The surface unit cell is indicated by the white rectangle, which is placed
at the same position and has the same orientation as the one in �gures 3.7 and 3.10.
The sites at which the pro�les in �gures 3.10, 3.14 and 3.15 have been acquired are
indicated by the colored overlay.

in�uence of the tip size that may explain the discrepancy between the experiments: By
employing MD simulations, de Beer et al. have described a reduction of the oscillation
in the damping constant pro�les when considering a spherical tip instead of a (�at)
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Figure 3.14: Pro�les of the excitation frequency νexc subtracted by the eigen fre-
quency νe as function of the center position of the tip oscillation zc (�rst row) and
the even contribution to the tip-sample force Feven as function of the tip-sample dis-
tance zts (second row).

larger blunt tip. This is similar to the argument by Labuda et al.,140 who claim that the
monotonic damping constant pro�le they obtain results from the interaction of the
nanoscopic tip apex. The argument that a su�ciently large tip is necessary to observe
the oscillatory damping pro�les would corroborate the assumption that a sharp tip
has been used in the experiments presented here.

3.3.6 Reproduction data

In this section, we present another dataset for obtained for each of the three substrates
calcite, dolomite and magnesite as lateral layers in �gure 3.16 and as pro�les (−〈kts〉∩,
〈γts∠∩ and Feven) in �gure 3.17.
Note that for the calcite case (which is the same data set as the FM-AFM data shown in
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Figure 3.15: Pro�les of the averaged tip-sample damping factor 〈γts〉∩ as function
of the center position of the tip zc. The pro�les are extracted at the same sites as the
pro�les in �gure 3.10. For reference, the same number markers as in �gure 3.10 are
shown.

section 3.2), the data has not been drift-correct based on a comparison of up- and down
scans. Instead, the data has been distorted to match the lateral unit cell dimensions
based on the assumption that the drift velocity is small, as described in section 3.2.3.
Due to an experimental error during the static de�ection vs zp pro�le acquisition, a
spring constant of 40 N m−1 is assumed for the dolomite data set shown in �gure 3.16
and 3.17. In this case, the de�ection sensitivity has been obtained from thermal noise
spectra. Moreover, the tip was not scanned in the slow scan direction during this
measurement, the tip was most likely scanned by drift across the sample. Thereby, no
drift correction based on comparison of up and down images was performed. Instead,
by comparison with the previously presented dolomite data, the data was distorted
to match the surface unit cell of dolomite. The magnesite data set shows data plotted
against the z-piezo displacement zp instead as the center position zc = zp+qs since the
additional noise contribution resulting from considering the static de�ection makes
it very di�cult to recognize any contrast in the data.
All data sets exhibit similar features:

– Similar cation pro�les are obtained for calcite and magnesite, while for dolomite
a clear shift in the pro�les above Ca and Mg sites is visible.

– The cap-averaged tip-sample damping constant 〈γts〉∩ shows an overall mono-
tonic increase when approaching the tip to the sample without showing a lay-
ering as pronounced as in −〈kts〉∩.

Comparing the reproduction data with the data shown in the previous �gures also
shows that the quantitative values of −〈kts〉∩, 〈γts〉∩ and Feven vary to a large degree. A
possible explanation for the observed variation in the quantitative values is the usage
of di�erent tips.
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Figure 3.16: Reproduction data showing the lateral contrast in −〈kts〉∩ slices obtained
from drift-corrected 3D datasets. The orientation of the slices is the same as in �g-
ure 3.7. For the dolomite measurement shown in the second column, the [421] and
[421] directions (and, consequently, the [010] and [010] directions) can not be di�er-
entiated.

3.3.7 Conclusions

In conclusion, we have identi�ed individual cations at the solid–liquid interface by the
subtle di�erence in their 3D hydration structure. The capability of dynamic AFM to
provide chemical identi�cation of single atoms at the solid–water interface allows for
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Figure 3.17: Reproduction data showing site-speci�c pro�les of −〈kts〉∩, 〈γts〉∩ and
Feven for calcite, dolomite and magnesite in pure water. The pro�les are averages
acquired at the sites indicated in �gure 3.16, analogously to the previously shown
data.

unraveling so far undiscovered insights into the reactivity of aqueous interfaces. As
aqueous interfaces are ubiquitous both in nature and technology, we anticipate that
this will have a signi�cant impact on both research and technological development.

73





3.4 Hydration structure of point defects at the calcite–water interface

3.4 Hydration structure of point defects at the
calcite–water interface

3.4.1 Introduction

Crystal surfaces are typically not perfectly pure and well-ordered but exhibit defects,
e.g., vacancies, adatoms and substitutions.61,146,147 In many cases, the presence of de-
fects can critically in�uence the reactivity of the surface, making them a crucial as-
pect to consider. In the speci�c case of the calcite (10.4) surface, defects have been
suggested as the starting point for dissolution and growth processes:148,149 Exper-
imentally, Harstad and Stipp149 have found that even trace amounts of impurities
present in natural calcite samples (such as Mg, Fe, Sr, Mn) in�uence the dissolution
of the calcite (10.4) surface. Moreover, in a recent theoretical study, the substitution
of trace amounts of Ca ions with similar divalent ions on the calcite (10.4) surface
has been found to signi�cantly alter the a�nity of water towards the surface.150 As a
consequence, trace amounts of defects can steer the competitive adsorption between
water and organic molecules – a highly relevant interplay in the �eld of biomineral-
ization.150 For this reason, I here focus on the hydration structure at point defects at
the calcite–water interface.
Theoretically, water at surface defects on calcite (10.4) has been studied using density
functional theory (DFT).151 The simulation system included the calcite surface with
a carbonate vacancy, a calcium vacancy and a single water molecule. Compared to
the �at (10.4) terrace, the binding energy of water at both defects has been found to
increase (by 0.55 eV and 0.65 eV for the carbonate and calcium vacancy, respectively).
Moreover, the water molecule was found to dissociate at carbonate vacancies, but not
at calcium vacancies.
A recent molecular dynamics (MD) study by Reischl et al.152 considers both bulk
water instead of a single water molecule as well as the presence of a nanoscopic AFM
tip. The authors have considered both calcium and carbonate vacancies as well as
the substitution of a single Ca atom with a Mg atom. Two major results have been
obtained:152

– At the calcium vacancy, the water structure has been found to be perturbed. At
the carbonate vacancy the distortion of the water structure was signi�cantly
less pronounced compared to the calcium vacancy. In case of the magnesium
substitution, water has been found to be shifted more closely to the surface
(similar to the Mg ions on the dolomite and magnesite surfaces presented in
section 3.3). Therefore, in all cases, defects in�uence the water structure in their
vicinity. For the three di�erent types of defects that have been considered, the
lateral extent of the in�uence on the hydration structure has been reported to
be within the order of 2 × 2 surface unit cells.

– Moreover, it was found that the defects are stable, meaning they did not change
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or move – even though the vacancy-induced local charge of ±2e has not been
compensated by other ions (which have not been included in the simulation).
This behavior has been observed both in the presence and in the absence of the
AFM tip. The stability reported by the authors refers to at least the time frame
of the simulation (50 ns for the simulation without the tip and a total of 6.4 µs
for the combined simulations with the tip).

Surface defects at the calcite–water interface have been observed before in 2D AFM
experiments.90,153 In these studies, the observation of defects has been used to char-
acterize the AFM tip – only atomically sharp AFM tips image single atomic-scale
features, such as point defects. However, the defect itself and its hydration structure
have not been the focus of these studies. Here, I performed high-resolution 3D AFM
experiments to analyze the hydration structure in the vicinity of point defects at the
calcite–water interface.
Thereby, I answer the question “Can point defects in surfaces in solution be atomically
resolved by atomic force microscopy?” raised by Reischl et al. in the title of their paper
with “yes – even in 3D AFM data”.

3.4.2 Experimental method

I performed the experiments described within this section in the group of T. Fukuma in
Kanazawa (Japan) using a custom-built AFM.14,154 Silicon cantilevers (AC55, Olympus)
with a nominal spring constant of 85 N m−1 and an eigenfrequency of approximately
1.2 MHz in water were used. In most cases, the cantilevers have been coated by an ad-
ditional layer of silicon (of approximately 15 nm thickness) by sputtering as described
in reference 155. The excitation of the cantilever was performed with a photothermal
excitation system.156,157

Amplitude and phase shift of the cantilever oscillation were detected by a commer-
cial oscillation controller (OC4, Specs). The oscillation controller was operated in the
frequency modulation (FM) mode, meaning that two feedback loops tried to keep
amplitude and phase shift constant by adjusting the excitation force amplitude F0 and
the excitation frequency νexc. The quantities F0 and νexc provided by the oscillation
controller were fed into an AFM controller (ARC2, Asylum Research). The AFM con-
troller performed data acquisition and adjusted the positioning of the scan piezo. The
typical resolution of 3D datasets was 64 · 64 pixel laterally and 512 pixel vertically,
with a data acquisition time in the order of 2 min.
Three-dimensional mapping was performed by employing a customized software
for the AFM controller that has been developed in the group of T. Fukuma. Note that
phase shift and static de�ection have not been recorded due to a limited number of data
acquisition channels. Therefore, I will not use the three AFM equations to calculate
the three pieces of information about the tip-sample force (〈Feven〉∪, 〈kts〉∩, 〈γts〉∩,
equations 2.22–2.24 in section 2.1). Instead, I will show the excitation frequency νexc
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Figure 3.18: Atomically resolved image of the calcite (10.4) surface with defects.
Panel a shows the z-piezo displacement (data range 10 pm) and panel b the corre-
sponding excitation frequency shift (data range −3 kHz to 11.3 kHz). As a visual aid,
the locations of the defects in the upper half of the image (either visible in panel a, b,
or both) are marked by the red circles. Both images are trace-down images, the [421]
direction points to the lower right corner. A line-by-line median subtraction has been
applied to the image in panel a.

as raw data. When assuming that the phase shift feedback loop keeps the phase shift
at −π/2 and that the excitation frequency shift νexc − νe is small compared to νe, the
excitation frequency shift is proportional to the negative cap-averaged tip-sample
force gradient (section 2.1.9). According to the solvent tip approximation and the
discussion in section 3.3.4, maxima in the excitation frequency shift νexc − νe are
interpreted as maxima in the water density.
In all experiments shown in this section, I used calcite crystals with a brown coloration
that have been available in the lab of T. Fukuma. Due to the limited amount of the
samples, one of the calcite samples was cleaved once. After this initial cleaving, the
sample was repeatedly immersed in pure water (MilliPore) prior to each measurement.
This has not shown to yield any signi�cant di�erences in both small-scale and large-
scale AFM images compared to freshly cleaved calcite samples. The crystallographic
directions of the crystal have been determined from the birefringence.54 The liquid
droplet of pure water, in which each measurement was performed, was exposed to
air.

3.4.3 Experimental results

Figure 3.18 presents an atomically resolved image of the (10.4) surface of calcite. The
z-piezo displacement zp is shown in panel a, the corresponding excitation frequency
shift νexc − νe in panel b. At various positions in the image (marked in the upper half
with red circles in both panels at equal positions), deviations from the periodic lattice of
the calcite (10.4) surface can be observed. In previous AFM works, similar atomic-scale
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Figure 3.19: Two images repeatedly showing defects on atomically-resolved calcite
(10.4) taken with a time di�erence of 2 min. Two red circles shown at equivalent
positions in both images serve as a guide to the eye by showing the same defects,
illustrating that the locations of the defects are �xed. The black-to-white color scale
ranges from 1 kHz to 6 kHz. Both images are trace-down images, the [421] direction
points to the lower right corner.

inhomogeneities on the calcite surface have been assigned to point defects.90,119,153 In
the above shown image, the number density of surface unit cells exhibiting a defect
is in the order of approximately 1 %. The measurements show that point defects on
the surface of calcite (10.4) are present on the sample. They can be observed with the
experimental setup, which also means that an atomically-sharp tip has been used in
this experiment.

Stability of the observed defects on calcite

Next, I asses whether the defects are located at �xed positions or whether they are
di�using, appearing or disappearing in the course of time. To this end, consecutive 2D
images at a �xed surface site were recorded. Care was taken to select a series of images
that showed a stable (non-dissolving) terrace of the calcite surface without step edges.
As AFM measurements are typically subject to (non-linear) drift as well as piezo creep
e�ects, two consecutive images are not necessarily showing the exact same section
of the sample surface. To align the images, the two-dimensional cross-correlation of
two images was computed for each consecutive image pair. Consequently, each image
was shifted by an o�set given by the maximum of the cross-correlation function.
Two images from a series of 48 images (spanning a total time of approximately 25 min)
are shown in �gure 3.19. Several point defects are located at �xed positions within the
time-scale of several minutes (e.g., the two defects marked by the red circles at identical
positions in both images). This observation is consistent with the MD simulations
by Reischl et al.152 which indicate that calcium and carbonate vacancies as well as
magnesium substitutions on calcite (10.4) are stable, even in the presence of an AFM
tip. Moreover, the presented data show that defects can be observed at least within a
time that is similar compared to the time it takes to record a typical 3D dataset (which
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Figure 3.20: Lateral slices of a 3D excitation frequency shift dataset showing a defect
(marked by an arrow). The color scale ranges from black (low) over orange to white
(high).

is in the order of 2 min).

Hydration structure in the vicinity of defects

Lateral slices of an exemplary 3D excitation frequency dataset extracted at di�erent
z-piezo displacements are presented in �gure 3.20 a–e. The surface unit cell of cal-
cite (10.4) can be identi�ed by the pattern of minima and maxima (indicated by the
rectangular overlay). An inhomogeneity is visible in the center of the lateral slices
(indicated by the arrow). The deviation from the otherwise periodic structure was
repeatedly observed in at least 3 scan lines. In analogy to the 2D images, I interpret
this inhomogeneity as a point defect. Interestingly, the defect does not cause a ma-
jor disruption of the hydration structure. Only a slightly enhanced contrast (smaller
or larger excitation frequency compared to equivalent sites) is visible at the defect
site. In the presented data, the deviation from the otherwise periodic pattern is only
visible within an area that measures one CaCO3 unit, i.e. half a calcite (10.4) surface
unit cell. Considering the di�erent noise present in the experimental data and in the
MD simulation data, the lateral extent �ts remarkably well with the MD simulation
results.152
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Figure 3.21: Excitation frequency shift pro�les extracted above calcium ions (yellow)
and carbonate groups (brown) at di�erent sites. The extraction sites are shown in the
inset. Pro�les extracted at the defect site (marked with “D” in the inset) correspond
to the dark curves, all other curves are opaque. The vertical lines (with numbers 1–5)
indicate the tip-sample distance, at which the slices a–e presented in �gure 3.20 have
been extracted.

In �gure 3.21, I compare pro�les of the excitation frequency (as function of the z-piezo
displacement) obtained above defect and non-defect sites. The procedure for extracting
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the pro�les is similar to the procedure described in section 3.3.4: First, the standard
deviation of all excitation frequency pro�les within the volume is used to identify
z-piezo displacements where the tip was scanned within a layer. Next, pro�les were
extracted at the position of local minima and maxima visible in lateral slices extracted
within a layer. As detailed in section 3.3.4, the pro�les with the minimum in the �rst
layer (brown curve) corresponds to a carbonate site, the other set of curves (yellow) to
Ca sites. The pro�les shown in �gure 3.21 are drawn using faint lines for the non-defect
sites and with darkened lines at the defect site (indicated by the arrow in 3.20 a and b.
The extraction sites are marked in the third layer (inset of �gure 3.21) by the yellow and
brown overlay, the defect sites are additionally marked with “D”. The curves extracted
above the defect sites exhibit some minor, yet systematic, di�erences compared to the
non-defect sites: The pro�le corresponding to the Ca defect site (yellow darkened
line) consistently exhibits the largest local maxima and the smallest local minima in
the fourth, third, and (with one exception) the second layer. This corresponds to the
enhanced contrast visible at the defect site in �gure 3.20. Moreover, in the �rst and
second layer, the defect pro�le extracted above the Ca site is shifted closer to the
surface compared to the other Ca pro�les. The other defect pro�le (corresponding to
a carbonate site) shows a local minimum in the �rst layer that is more pronounced
compared to the non-defect pro�les. The experimental data suggests that point defects
indeed causes a minute, yet detectable change in the hydration structure above calcite.

3.4.4 Reproduction data

I present two additional data set obtained above di�erent point defects. Lateral slices
of the excitation frequency extracted at di�erent z-piezo displacements are shown in
�gures 3.22 and 3.23. In the �gures, the position of a point defect is marked by the
arrow, the calcite unit cell by the black rectangle. In both cases, the lateral extent of
the defect is again within the range of a single unit cell. Moreover, the checkerboard-
like arrangement of water is only slightly perturbed, similar to the data set shown in
�gures 3.20 and 3.21.

3.4.5 Conclusion

In this section, I investigated the hydration structure above point defects at the calcite–
water interface. High-resolution 3D AFM maps show that the hydration structure near
point defects is perturbed – both laterally as well as vertically. The lateral extent of
the perturbation in the hydration structure due to the point defects is in the order of a
single unit cell. This is in good agreement with previous MD simulations. To the best
of my knowledge, this is the �rst experimental observation of the hydration structure
in the vicinity of point defects with high-resolution 3D AFM in liquids.
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Figure 3.22: Another set of (lateral slices extracted from a 3D excitation frequency
shift dataset showing a lateral inhomogeneity that is interpreted as a defect (marked
by an arrow). The vertical distance between the consecutive lateral slices (from small
zp in panel a to large zp in panel e) is in the order of 0.1 nm.
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Figure 3.23: A third example of a set of lateral slices from a 3D excitation frequency
shift dataset showing a defect. The vertical distance between the consecutive lateral
slices (a–e) is in the order of 0.1 nm. The slices have been distorted so that the period-
icity matches the calcite unit cell dimensions.
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3.5 Influence of ions on the hydration structure of calcite

3.5.1 Introduction

A further step towards a more comprehensive understanding of the calcite–water
interface is to study the e�ect of dissolved ions in the solution on the hydration struc-
ture. Additional dissolved ions in the solution (re�ecting a change in ionic strength
and pH) mimic many natural environments, e.g., sea water. In previous studies, ions
in the solution have been found to in�uence the dissolution and growth behavior of
calcite.158–160 In some of these studies, the in�uence of ions was in parts explained by
their in�uence on the hydration structure of calcite.
Moreover, ions have a particularly interesting role in the context of imaging calcite
with AFM in water. In the past, AFM images have been recorded in solutions that
contain ions to “facilitate the imaging”.90 It has been furthermore reported that ions
in the solution improve the atomic-scale imaging contrast.48 According to the authors
of reference 48, the addition of ions leads to an e�ective screening of charges. Conse-
quently, electrostatic force contributions to the tip-sample force are reduced. A clear
systematic demonstration of the relationship between added ions and the imaging
contrast, however, is still lacking.
Only a few experimental studies focus on the in�uence of ions on the hydration
structure of calcite. Ricci et al.161 have studied the e�ect of monovalent ions, such as
sodium, calcium, rubidium and chloride ions on the calcite–water interface using 2D
AFM images. They observed atomic-scale “protrusions” that have been interpreted as
single adsorbed ions on the surface. However, no 3D data has been presented by the
authors, making it di�cult to deduce the impact of the ions on the hydration structure.
The in�uence of Mg ions and a synthetic polypeptide on the calcite surface have been
studied with vertical (xz) slices by Araki et al.50 The authors analyzed the number
of observed hydration layers and the overall tip-sample force magnitude. From the
observed number of hydration layers they have concluded that Mg ions enhance the
hydration. However, they have performed the experiments with di�erent tips and
di�erent samples. Given the di�erent levels of noise typically observed in di�erent
measurement sessions (e.g., due to using di�erent cantilevers and laser alignment),
the number of observed layers might also be exposed to large statistical �uctuations.
Moreover, the reproduction data presented in section 3.3 reveals that the overall mag-
nitude of the observed forces can also signi�cantly di�er when using di�erent tips,
despite preparing the sample and solution in similar ways.
Therefore, I here explore four di�erent experimental approaches for assessing the
in�uence of ions on the hydration structure of calcite. I focus on the in�uence of
hydronium and hydroxide ions (by varying the pH), since these ions are always present
in aqueous solutions. Moreover, I consider di�erent concentrations of Na and Cl ions,
as these are relevant when considering, e.g., sea water.
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3.5.2 Experimental method and results

Vertical slices in solutions of di�erent pH

In a �rst step, I investigate vertical slices of the negative cap-averaged tip-sample
force gradient −〈kts〉∩ obtained above calcite in solutions of di�erent pH. For this,
the setup described in section 3.2 was used, according to the procedure described in
section 3.3. The solutions with pH = 4.01 and pH = 9.92 were obtained by adding
aqueous hydrochloric acid (HCl) and aqueous sodium hydroxide (NaOH) solutions,
respectively. For the solution with pH = 8.20, no HCl and NaOH was added. Instead,
the overall concentration of added electrolytes was set to 10−4 mol L−1 by dissolving
NaCl. Thereby, all solution are expected to exhibit a comparable ionic strength in
the order of 10−4 mol L−1. For the AFM measurements in the di�erent solutions, dif-
ferent cantilevers (type TAP300 GB-G) and calcite samples have been used. Sample
preparation and data acquisition have been performed by S. Klassen.
From a large collection of 2D (xz) slices, I selected a representative slice for each
solution, which is shown in the �rst column of �gure 3.24 (a–c). The slices are aligned
approximately along the [481] direction (�gure 3.7). All data show the checkerboard-
like arrangement of water at the calcite–water interface that has been discussed in
the previous sections. While there are slight di�erences in the observed patterns, the
overall vertical extent and contrast are very similar. Importantly, no clear systematic
trend can be recognized as function of pH.

Vertical slices in bu�er solutions

One could argue that the dissolution of calcite (which releases Ca and CO3 species
such as H2CO3, HCO3

- and CO2) in�uences the pH of the solution – particularly in the
proximity to the surface. As described by Ricci et al., aqueous solutions that contain
calcite eventually exhibit a pH of approximately 8 due to the dissolution of calcite. A
possible reason for the similarity of the reported data in �gure 3.24 a–c could therefore
be that the pH is similar in each case – at least in the interfacial volume at the surface.
Therefore, the experiments were repeated: Instead of using aqueous solutions with
added HCl or NaOH, bu�er solutions were used. Bu�er solutions contain both acidic
molecules and molecules of their conjugate base. Any hydronium ions resulting from,
e.g., the dissolution of calcite protonate the conjucated base of the bu�er and, thereby,
do not signi�cantly alter the hydronium concentration of the solution. Similarly, addi-
tional hydroxide ions deprotonate the bu�er acid. Consequently, the pH of the solution
is expected to be nearly constant, allowing a more systematic study of the e�ect of
the hydronium and hydroxide ion concentration. In the experiments presented here,
bu�er solutions with pH = 4.00 (Carl Roth, P712.3, containing citric acid, sodium
hydroxide and sodium chloride), pH = 6.865 (Carl Roth, 4284.1, containing potassium
di-hydrogene phosphate and di-sodium hydrogene phosphate) and with pH = 10.00
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Figure 3.24: Vertical slices of the negative cap-averaged tip-sample force gradient
−〈kts〉∩ as function of the z-piezo displacement. The slices are aligned approximately
along the [481] direction. Data shown in the �rst column was obtained in aqueous
solutions at di�erent pH, data shown on the right was obtained in bu�er solutions.
The color scale is adjusted in each case to maximize the contrast.

(Carl Roth, P716.2, containing boric acid, sodium hydroxide, potassium chloride) were
used. Experimental slices of the negative cap-averaged tip-sample force gradient at
the calcite–water interface obtained in bu�er solutions are shown in the second col-
umn of �gure 3.24 (d–f). In all cases the checkerboard-like arrangement of water is
observed. Again, no clear systematic trend as function of pH is apparent from the
presented data.
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3.5.3 Solution exchange experiment: Influence of pH

So far, di�erent cantilevers and samples have been used in di�erent aqueous solutions.
A possible reason for not observing any systematic trend when changing the pH could
result from using di�erent tips. Moreover, only 2D (xz) slices have been presented.
For a more comprehensive analysis, 3D datasets in di�erent aqueous solutions (with
di�erent pH) were recorded on the calcite (10.4) surface. I used a �ow-through setup
that allows to exchange the measurement solution while using the same sample and
cantilever. Thereby, changes to the cantilever, the cantilever tip and the sample are
minimized, which facilitates a comparison. The exchanged liquid volume was 0.4 mL,
the exchange was performed using a push-pull pump system (KD Scienti�c ). I per-
formed the measurements shown in �gures 3.25 and 3.26 in Kanazawa (Japan) with the
setup and cantilevers described in section 3.4.2. In contrast to section 3.4.2, optically
clear calcite crystals with a signi�cantly lower surface defect density (as observed
with AFM) were used for the data shown in this section. As detailed in section 3.4.2,
I show the excitation frequency shift νexc − νe for data obtained with this setup. The
pH of the solution was adjusted by adding aqueous HCl solution, no bu�er was used.
In all cases, the 3D data exhibited the characteristic checkerboard pattern that has
been previously observed for calcite (10.4) in pure water.48–51,53 To systematically
asses the in�uence of dissolved ions on the hydration structure, two aspects of the
3D datasets obtained for di�erent concentrations have been compared (�gure 3.25):
(1) The averaged excitation frequency shift pro�les as a measure for the average
negative cap-averaged tip-sample force gradient, (2) the standard deviation of the
excitation frequency shift pro�les as a measure for the lateral contrast. The �rst row
of �gure 3.25 (a, b) shows data obtained within the same tip and sample during a
solution exchange experiment. For the data presented in the second row (c, d), only
the cantilever was exchanged. The sample and the solutions are the same as the ones
used while acquiring the data presented in the �rst row.
The averaged pro�les shown in �gure 3.25 a exhibit an increase of the excitation fre-
quency shift for the approaching tip. The overall slope of the pro�le is rather similar
and again no clear systematic trend is visible from the data. In the pro�les in �g-
ure 3.25 b, an increase in the standard deviation sνexc is observed when approaching
the tip towards the sample–corresponding to increased lateral contrast in the prox-
imity to the sample. Shoulders and in�ection points in the pro�les correspond to
hydration layers (section 3.3.4). Again, the pro�les are rather similar and do not show
a clear dependency on the pH. Similar results are obtained for the same sample and the
same set of solutions in a solution experiment carried out with a di�erent cantilever,
i.e., a di�erent tip. Again, both the averaged frequency shift pro�les (�gure 3.25 c)
and the corresponding standard deviations (�gure 3.25 d) are strikingly similar. In-
terestingly, both the slope of the averaged pro�les (c) and the order of magnitude of
the standard deviation (d) does signi�cantly di�er from the measurement shown in
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Figure 3.25: Averaged excitation frequency shift pro�les (a, c) and the corresponding
standard deviation (b, d) for varying pH in aqueous solution at the calcite–water
interface. Data shown within each row was recorded with the same cantilever and the
same sample in a solution exchange experiment. The order of the solution exchange
is re�ected in the �gure legend, starting with the �rst solution on top.

�gure 3.25 a and b, respectively. This demonstrates that the tip-sample interactions
indeed strongly depends on the tip – which �ts well to the reproduction data discussed
in section 3.3.6.

3.5.4 Solution exchange experiment: Influence of sodium chloride
concentration

A similar solution exchange experiment was performed (again with the setup de-
scribed in section 3.4.2) to assess the in�uence of the concentration of sodium and
chloride ions on the hydration structure of calcite. The solutions were prepared by
dissolving solid NaCl in pure water (MilliPore). Using the �ow-through system, I ex-
changed the solutions starting from pure water over concentrations of 0.01 mol L−1 to
1 mol L−1 and back within one measurement series.1 Figure 3.26 shows the resulting

1For similarly large sodium chloride concentrations of 4 mol L−1, Martin-Jimenezet al.64 observed the
formation of a large interfacial structure extending several nanometer into the liquid at the mica–
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Figure 3.26: Averaged excitation frequency shift pro�les (a) and the corresponding
standard deviation (b) for varying concentration of sodium chloride in aqueous so-
lution. The data was recorded with the same cantilever and the same sample in a
solution exchange experiment. The solution exchange was performed according to
the order of the �gure legend, starting with the �rst solution (pure water) on top.

average excitation frequency shift curves (a) and their corresponding standard devia-
tion (b). Again, this measurement does not show clear systematic di�erences in the
hydration structure when varying the concentration of sodium chloride.

3.5.5 Conclusion

In this section, I described several experiments that aimed towards assessing the in-
�uence of ions (hydronium, hydroxide, sodium and chloride ions) on the hydration
structure of calcite. The checkerboard-like arrangement of water on calcite was ob-
served, regardless of the composition of the solution. This includes a pH range from
4 to 10 and concentrations of sodium chloride of up to 1 mol L−1. The lateral contrast
obtained from 3D data acquired at the calcite–water interface did not increase in the
presence of sodium and chloride ions. Moreover, none of the data show a clear system-
atic trend as function of the respective ion concentration. This allows to conclude that
possible changes of the hydration structure due to a change of pH and ionic strength
are smaller compared to variations of the measured hydration structure due to tip
changes or other statistical variations in the course of the experiment. The results also
demonstrate the robustness of observing the checkerboard-like water arrangement
at the calcite–water interface. This points toward the fact that the depiction of the
calcite–water interface based on the data presented in the previous sections (obtained

water interface. In some measurements, I also have observed similar long-range structures. However,
I found that the observation is unsystematic – even in solutions of pure water, I was able to observe
such structures, both at the calcite–water, magnesite–water and calcite–ethanol interfaces. Due to
their unsystematic nature, these experiments are not discussed here.
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in pure water) remains valid in more complex (e.g., natural) environments of di�erent
pH and ionic strength.

91





3.6 Beyond water: The calcite–ethanol interface

3.6 Beyond water: The calcite–ethanol interface

3.6.1 Introduction

In nature, calcite is often found in the presence of organic molecules. The interaction
between calcite and these molecules is of far-reaching importance, for example in the
�eld of biomineralization:9 Speci�c molecules have been identi�ed to in�uence the
dissolution and growth behavior of calcite. The molecules can cause changes in surface
morphologies95,162 and even the formation of complex mineral compounds.9,163 It is
largely unclear, how these interactions take place.11

H

O

CH2

CH3

1

As a step towards understanding the interaction between calcite
and organic molecules, I here investigate the interface between
calcite (10.4) and ethanol. A single ethanol molecule (shown on
the right) exhibits both a hydroxyl group and a hydrocarbon
chain, which are common building blocks of molecules. There-
fore, ethanol acts as a model molecule for more complex organic
compounds.
Theoretically, the calcite–ethanol interface has been investigated previously by using
density functional theory (DFT)164,165 and molecular dynamics (MD) simulations,166–169

which are summarized in the following: It has been found that ethanol molecules
strongly bind towards calcite (10.4) terraces – even stronger than water.164,166,168,169

Ethanol molecules bind towards calcite with their hydroxyl group: The oxygen of the
hydroxyl group binds towards a Ca ion, while the hydrogen of the hydroxyl group
binds towards a carbonate group (this is similar to the bonding con�guration of an
isolated ethanol molecule on calcite obtained with DFT calculations).165 Consequently,
the hydrocarbon chains of the ethanol molecules point upwards, away from the sur-
face. This results in one ethanol molecule per CaCO3 unit at the calcite (10.4) surface.
This ordered �rst layer of ethanol molecules above the calcite surface is followed by
a region of low ethanol density, which has been referred to as gap.167,169 Beyond the
gap, ethanol again arranges in several horizontal layers. In contrast to the �rst layer,
however, both the lateral order and the orientational order of the ethanol molecules
in the upper layers is signi�cantly less pronounced. The vertical distance between the
layers is in the order of approximately 0.5 nm.
Isolated aspects of the above mentioned theoretical studies have been con�rmed exper-
imentally: With AFM, the calcite (10.4) surface has been laterally resolved in ethanol
at the atomic scale.170–172 The observed periodicity matched the surface unit cell di-
mensions. However, from AFM images it is not straightforward to determine at which
vertical distance the tip was scanned above the surface. Therefore, it remains un-
clear whether the observed lateral structure corresponds to the �rst ordered layer of
ethanol on calcite. The vertical structure of ethanol on calcite has been investigated
in a combined X-ray re�ectivity and MD study.167 As a result, ethanol was found to
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form layers above the calcite surface. Due to the lack of lateral resolution of X-ray
re�ectivity measurements, however, no experimental information on the lateral order
within the �rst layer has been obtained form this measurement.
To provide a more comprehensive experimental study of the calcite–ethanol interface,
I here report on high-resolution 3D AFM data obtained at the calcite (10.4) surface in
ethanol to asses both the lateral and the vertical order at the interface. This approach
is similar to the work in references 171 and 172.

3.6.2 Experimental method

All experiments shown in this section were performed with the setup described in
section 3.2. S. Klassen assisted with the sample preparation and data acquisition. Apart
from the description below, measurements and calibrations were performed according
to the same protocol as in section 3.3. After cleaving calcite in air, ethanol (Sigma
Aldrich, article number 32205, purity ≥ 99.8 %) was injected in the liquid cell. Since the
ethanol was exposed to air during the measurement, it sometimes evaporated, making
it necessary to repeatedly inject ethanol during a measurement session. Cantilever
of type TAP300 GB-G were used. The acquisition time for each vertical slice (trace
and retrace) of a 3D map was 10 s and the frequency of the (approach and retract)
z-modulation was 10 Hz, corresponding to 50 approach and 50 retract curves per
vertical slice. During the acquisition of the reproduction dataset shown at the end
of this section (�gure 3.29), a large voltage drift (possibly caused by the evaporation
of ethanol) in the low-pass �ltered signal from the photo diode prohibits to obtain
the static de�ection. Therefore, in this �gure the data is plotted against the z-piezo
displacement zp.

3.6.3 Experimental results

A vertical slice of the negative cap-averaged tip-sample force gradient (−〈kts〉∩) ob-
tained in ethanol on calcite (10.4) is shown in �gure 3.27 a. The slice measures 3 nm
(laterally) by 3.5 nm (vertically). The average over all data shown in the slice is shown
as a pro�le in �gure 3.27 b.
As for the calcite–water case discussed in the previous sections, the negative tip-
sample force gradient shows local minima and maxima. Close to the surface (at the bot-
tom), laterally alternating local maxima with a periodicity of approximately 0.3 nm can
be observed. As the vertical slice is recorded approximately along the [481] direction,
this distance roughly �ts to the Ca-Ca repeat distance of

√
a2 + (b/2)2 ≈ 0.6 nm, when

using the surface unit cell dimensions112 a = 0.5 nm and b = 0.81 nm (a schematic
drawing of the surface unit cell is shown in �gure 3.7 a on page 61).2 Therefore, it

2The discrepancy between the observed repeat distance (0.3 nm) and the expected repeat distance
(0.6 nm) might be the result of lateral drift. The lateral drift cannot be quanti�ed from the data, since
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Figure 3.27: Vertical slice of the negative cap-averaged tip-sample force gradient (a)
at the calcite–ethanol interface. Panel b shows the average of all pro�les shown in
panel a. In both cases, −〈kts〉∩ is shown as function of the center position of the tip
zc. The black-to-white color scale in a ranges from −0.1 N m−1 to 0.3 N m−1.

appears reasonable to assign this lateral structure to the ordered �rst layer of ethanol
molecules. This is in accordance with the MD simulations,166–169 which have shown
that ethanol arranges in a ordered �rst layer above calcite, where one ethanol molecule
binds towards one CaCO3 unit.
The experimental data shows further layers above the �rst layer (indicated by the
markers in �gure 3.27 b). In analogy to the discussion in section 3.3.4, the layers are
identi�ed as maxima in −〈kts〉∩ according to the numbers indicated in �gure 3.27 b.
In this assignment, the minimum observed between the �rst and second layer cor-
responds to the gap. Importantly, no lateral structure is visible in the upper layers,
further supporting the previous assignment of the �rst layer. Observing no order in
the upper layers �ts well to the MD simulations from previous theoretical studies,
which do not indicate signi�cant lateral order in the layers above the �rst layer.166–169

Moreover, the layer-to-layer distances indicated in �gure 3.27 b are in the order of
approximately 0.5 nm, which again agrees well with the MD simulations.
Figure 3.28 shows additionally the cap-averaged tip-sample damping constant 〈γts〉∩
as function of the center position zc of the tip. The data corresponds to the same slice
as shown in �gure 3.27 and is again shown as a vertical slice (a) and as an average
pro�le (b). To facilitate the comparison, the numbered markers from �gure 3.27 b are
again shown. Similar to what has been observed for the carbonate minerals in water
(section 3.3, �gure 3.15 on page 71), the tip-sample damping constant does not show

only a few vertical slices have been acquired.
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Figure 3.28: Vertical slices (a) and averaged pro�les (b) showing 〈γts〉∩ at the calcite–
ethanol interface. The slice correspond to the same dataset as shown in 3.27. The
black-to-white color scale ranges from −0.1 N s m−1 to 0.4 N s m−1.

a clear layering as pronounced as in −〈kts〉∩.

3.6.4 Reproduction data

Experimentally, the observation of lateral order in the �rst layer of ethanol has been
di�cult compared to achieving lateral resolution on calcite in water. It appears likely
that this is a consequence of ethanol binding more strongly towards calcite (compared
to water).165,166,168,170 To show that the lateral order can be reproducibly observed, an-
other measurement of ethanol in water (performed with a di�erent tip and a di�erent
calcite sample) is shown in �gures 3.29 a–d. Overall, the reproduction data sets show
very similar features:

– Lateral order is obtained in one layer close to the surface. At smaller zp, no clear
lateral order is visible.

– Above the �rst layer, additional layers can be recognized. These upper layers
do not exhibit a lateral structure.

– The layer-to-layer distances are again in the order of approximately 0.5 nm.

Interestingly, the reproduction data shows a faint lateral contrast in 〈γts〉∩ within the
distance range of the �rst layer (�gure 3.29)̧. Following the discussion in �gure 3.3.5,
it might be speculated that the nanoscopic tip apex might have been larger compared
to the tip with which the data presented in �gures 3.27 and 3.28 was obtained.

96



3.6 Beyond water: The calcite–ethanol interface

0.5 nm

0.5 nm

zp

0 0.1 0.2 0.3 0.4 0.5

1
gap
2

3

4

0.5 nm

0.46 nm

0.46 nm

0.40 nm

−〈kts〉∩ /Nm−1

zpa b

1

0.5 nm

0.5 nm

zp

0 0.2 0.4

1
gap
2

3

4

0.5 nm

〈γts〉∩ / µN sm−1

zpc d

1

Figure 3.29: Vertical slice of the negative cap-averaged tip-sample force gradient (a)
and the cap-averaged tip-sample damping constant (b) above the calcite surface ob-
tained in ethanol. In contrast to �gures 3.27 and 3.28, both data are shown as function
of the z-piezo displacement zp. The black-to-white color scale ranges from −0.1 N m−1

to 0.3 N m−1 (a) and from −0.1 N s m−1 to 0.6 N s m−1 (c).

3.6.5 Conclusion

In this section, the solvation structure of ethanol above the calcite (10.4) surface was
investigated. High-resolution AFM data revealed a layered structure above the calcite
surface. In the �rst layer, a lateral structure is visible in the data. In contrast, the layers
above the �rst layer do not show lateral contrast. Therefore, the experimental data in-
dicate that ethanol molecules form an ordered layer directly above the calcite surface.
In the layers above the �rst layer, the order of the molecules is not as pronounced.
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These �ndings �t remarkably well to previously reported MD simulations. The mea-
surements furthermore highlight the advantage of 3D AFM, as both the lateral and the
vertical structure at the calcite–ethanol interface can be analyzed to provide a more
comprehensive understanding.
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4 �antitative KPFM

4.1 Derivation of the KPFM signal

Section 4.1 was written both by P. Rahe and H. Söngen and has been submitted
in similar form as a chapter to the book “Kelvin Probe Force Microscopy – From
Single Charge Detection to Device Characterization”, edited by S. Sadewasser
and T. Glatzel. Most of the section is reproduced verbatim, changes were made
to make the section consistent with the other sections in this thesis. As a major
change, I shortened and modi�ed section 4.1.2.

We analyze Kelvin probe force microscopy (KPFM) for tip-sample systems that contain
static charges by presenting a rigorous derivation for the respective KPFM signal in all
common KPFM modes, namely amplitude modulation, frequency modulation, and het-
erodyne detection in the static, open-loop and closed-loop variant. The electrostatic model
employed in the derivation is based on a general electrostatic analysis of an arbitrary
tip-sample geometry formed by two metals, and which can include a static charge dis-
tribution and dielectric material in-between. The e�ect of the electrostatic force on the
oscillating tip is calculated from this model within the harmonic approximation, and the
observables for each of the above KPFM modes are derived from the tip oscillation signal.

Our calculation reveals that the KPFM signal can for all modes be written as a weighted
sum over all charges, whereby each charge is multiplied with a position-dependent weight
function depending on the tip-sample geometry, the KPFM mode, and the oscillation
amplitude. Interestingly, as the weight function does not depend on the charges itself,
the contribution of the void tip-sample system and the charge distribution can be well-
separated in the KPFM signal. The weight function for charges allows for a detailed
understanding of the KPFM contrast formation, and enables to trace the dependence
of the KPFM signal on di�erent parameters such as the tip-sample geometry and the
oscillation amplitude.

4.1.1 Introduction

There is now a large body of experimental work available showing variations in
the Kelvin probe force microscopy (KPFM) signal on a variety of samples, includ-
ing contrast on adsorbed molecular systems,173–180 on metallic nanoclusters,177,181 on
charged species182–185 and on surfaces with atomic-scale resolution.186–189 Although
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Figure 4.1: Setup of a tip-sample system including a conductive tip and a conductive
sample or conductive sample holder between which an external voltageVext is applied.
Additionally, we have included N = 3 exemplary point charges located in-between
the two conductors. A dielectric sample and a dielectric medium would be considered
by a di�erent local dielectric permittivity in speci�c parts of the space between the
two conductors.

KPFM has developed into an invaluable tool to investigate electric properties at the
nanoscale, the general interpretation of the KPFM signalVKPFM is still controversially
discussed. For example, attempts to explain the KPFM signal of molecule-on-insulator
systems following the concepts developed for metal surfaces have been made.173,180,190

Furthermore, a number of explanations have been put forward that relate the KPFM
signal VKPFM to dipole and charge densities,182,184,185 the electrostatic surface poten-
tial,191 and the normal component of the electric �eld.192

Besides the complexity of the KPFM signal interpretation due to the diverse range
of the investigated samples, there are additionally a number of experimental KPFM
modes available, namely the amplitude modulation (AM), frequency modulation (FM)
and heterodyne mode used in static, open-loop or closed-loop con�guration.193,194

Each technique is optimized for usage in di�erent environments and for di�erent
samples, but all techniques result in a voltage signal, the KPFM signal VKPFM.
In this section, we will investigate the central question how the KPFM signal is related
to the physical sample properties, namely the contact potential di�erence and the
charge distribution within the tip-sample system, by a rigorous derivation for the
formulas describing the KPFM signal VKPFM for the di�erent KPFM modes.
The system under consideration is depicted in �gure 4.1. It is formed by a two-
electrode setup with the upper electrode representing the tip and the lower repre-
senting the sample side, which is either the metallic sample, or a metallic sample back
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contact in case of dielectric material in the gap. Dielectric material is accounted for
by assigning a local dielectric permittivity to the respective region between the two
metals. Moreover, we include a static charge distribution inside the tip-sample sys-
tem formed by the two metals to model the presence of atomic or molecular species.
This layout represents a common case of atomic or molecular species adsorbed and
assembled on surfaces of insulating or conducting materials,175,195,196 as well as for
species on insulating thick �lms.183,184 The derivation that is presented herein follows
our recent work,197,198 and also re�ects similar evaluations for speci�c tip-sample
systems,199,200 or for short-range electrostatic forces.201

The derivation starts in section 4.1.2 with a general electrostatic description based
on a model presented by Kantorovich et al.202 This model allows to calculate the
electrostatic force on the probing tip for an arbitrary geometry. After a description of
experimental measurement strategies in section 4.1.3, we can analytically calculate in
section 4.1.4 the resulting KPFM signal for the di�erent experimental KPFM modes.
The central result of this section is the introduction of the KPFM weight function for
charges,WKPFM, in section 4.1.5, which allows to write the KPFM signal in a straight-
forward way as a sum over the weighted charges. Speci�cally, each charge qi of a total
of N charges is multiplied by the weight functionWKPFM evaluated at the position ri
of the respective charge,

VKPFM = VCPD +
N∑
i=1

qiWKPFM(ri ), (4.1)

where VCPD is the contact potential di�erence of the two metals. The weight func-
tion WKPFM is an implicit function of the tip-sample geometry, which includes the
tip position, as well as of the oscillation amplitude. Furthermore, the weight function
depends on the KPFM mode used in the experiment, namely on whether the AM
or FM detection is used. The KPFM signal VKPFM can therefore be understood as a
convolution of the charge distribution with the weight function.197,198

4.1.2 Electrostatic description

The starting point to understand the physical origin of the KPFM signal for all KPFM
modes and diverse sample systems is to calculate the tip-sample force arising due
to the electrostatic interaction. Here, we �rst review the total electrostatic energy Ues
for the tip-sample system including external sources, i.e., batteries or power supplies,
that �x the electric potentials on the conductors. From this total electrostatic energy
we calculate the tip-sample force. The KPFM signal then follows from evaluating spe-
ci�c observables for the di�erent KPFM modes with respect to the externally applied
voltage.
The electrostatic calculation fundamental to our KPFM model has initially been per-
formed by Kantorovich et al.202 They have analyzed a system containing an arbitrary
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number of �nite metallic conductorsm at �xed potentials {Φm}, an arbitrary number
of point charges {qi } located at positions {ri } outside of the conductors, and external
batteries keeping the potentials {Φm} on the metals constant upon moving any metal
within the system. Consequently, the total energy consists of the energy stored in the
electrostatic �eld as well as the energy contribution due to the external batteries.
Here, we adapt the original result from Kantorovich et al.202 to the case of a KPFM
tip-sample system by reducing their general case to two metals and N point charges
(�gure 4.1). In the KPFM setup, the upper metal (1) represents the metallic tip and
the lower metal (2) represents the sample side, de�ned by the metallic sample or a
metallic sample holder in case of dielectric material in the tip-sample gap. As result
for the electrostatic energy of the system, Kantorovich et al. obtained the sum of four
terms:202

Ues = UC +Uq-C +Uq-q +Uim. (4.2)

The �rst term describes the negative potential energy of the void (i.e., charge-free)
tip-sample system:

UC = −12CvoidV
2. (4.3)

In the above equation,Cvoid is the capacitance of the void tip-sample system. Without
loss of generality,202 we can set the potential di�erenceV = Φ1−Φ2 toVext−VCPD with
an externally applied voltage Vext and the contact potential di�erence VCPD between
the two metals. By introducing a constant contact potential di�erence, we assume
that each metal surface is homogeneous with respect to their work function. The
second term describing the interaction between the point charges and the metal plates
(excluding any image charges) is given by

Uq-C =
N∑
i=1

qiΦvoid(ri ) =
N∑
i=1

qi Φ̂void(ri )V . (4.4)

Here, Φvoid is the electric potential of the void tip-sample system. Since in the case
described here only two metals (tip and sample side) are present, the electric poten-
tial Φvoid of the void capacitor directly scales with the potential between the plates,
allowing us to introduce the normalized electric potential Φ̂void = Φvoid/V . The third
terms describes the pairwise Coulomb-interaction between all point charges (the sum-
mation excludes terms where i = j).

Uq-q =
1

8πε0

N∑
i=1

N∑
j=1

qiqj��ri − rj �� (4.5)

The potential energy contribution due to the image charges is given according to

Uim =
1
2

N∑
i=1

N∑
j=1

qiqjΦind(ri , rj ). (4.6)
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Here,Φind(ri , rj ) describes the potential at ri due to the image charges caused by unity
charge at position rj .
As the �nal result of this section we can now calculate the electrostatic contribution Fes
to the tip-sample force Fts. The normal component of the electrostatic force results
directly from di�erentiating the total electrostatic energy (equation 4.2) with respect
to the tip-sample distance zts,

Fes(zts,V ) = −∂Ues
∂zts

(4.7)

=
1
2
∂Cvoid
∂zts

·V 2 (4.8)

−
N∑
i=1

qi
∂Φ̂void
∂zts

(ri ) ·V

− 1
2

N∑
i=1

N∑
j=1

qiqj
∂Φind
∂zts
(ri , rj ).

The formula reduces to three terms as the Coulomb interaction is not dependent on the
tip-sample distance zts. Before discussing this result, we brie�y revisit the assumptions
made for the derivation of this formula:

– All metals and dielectric materials are described macroscopically, and the dielec-
tric materials modeled by a relative permittivity εr(r) are isotropic and linear.

– All metals have homogeneous surfaces and all charges reside on their surfaces.
– The presence of the tip does neither modify the position of the point charges
{qi }, nor the position of the dielectric media. Therefore, we do not consider
relaxations due to the tip-sample interaction.

Equation 4.8 is in agreement with several �ndings known from experiments. First, the
force scales quadratically with the voltageV , and terms qiV will change the parabolic
shape depending on the charges in the system. Second, for the charge-free system
(N = 0), where all terms containingqi evaluate to zero, equation 4.8 reduces to the �rst
termUC. This term is identical to the description of a void tip-sample capacitor as given
by equation 4.3, and it is furthermore the common starting point when describing the
KPFM signal for conducting substrates.203

The force described by equation 4.8 conveniently separates the contribution from the
void tip-sample system – which depends on the geometry of the two metals, the dielec-
tric media, and the applied potential, but not on the point charges – from the image
interactions of the point charges – where the charges and the geometry of the metals
contribute, but which is independent from the external voltage. While a description
of the void tip-sample capacitor by the capacitance Cvoid and the electrostatic poten-
tial Φvoid can be performed analytically,202,204,205 calculating the image interactionUim
analytically can be a rather di�cult challenge, in particular for realistic geometries
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and multiple charges. As one of the important results of this section, we will derive in
the following section that the image interaction terms do not contribute to the KPFM
signal and, consequently, do not have to be evaluated for a KPFM signal analysis.

4.1.3 KPFM detection

Based on this electrostatic model, we now turn to the calculation of the KPFM signal
for the various KPFM modes based on an analysis of the tip motion. In this and
the next section, we will quantitatively derive observables that are recorded in the
AM-KPFM mode, the FM-KPFM mode, and the heterodyne KPFM modes, each in
the static, open-loop, and closed-loop variants.193,194 Despite the di�erence of the
KPFM mode-speci�c observables, it is possible to condense all di�erent observables
into one generalized equation that allows for a quantitative description of KPFM for
all operation modes. Our derivation does not rely on mode-speci�c assumptions or
approximations – we will only employ the harmonic approximation, which is the
prevalent approximation used for the quantitative analysis of atomic force microscopy
(AFM) data (see section 2.1).

The electrostatic force Fes (equation 4.8) contributes to the tip-sample force Fts, which
can also include, e.g., chemical, van-der-Waals or magnetic force contributions.206

Generally, the tip-sample force Fts(zts, Ûzts,V ) depends on the tip-sample distance zts,
the tip velocity Ûzts as well as the voltage V between the tip and sample side metal.
We assume in the following that only the electrostatic contribution Fes to the total
tip-sample force Fts is dependent on the voltage between the metals.

In the most general case, the voltage V between the tip and the sample side metal is
a sum of the contact potential di�erence VCPD and an externally applied voltage Vext,
which in turn can be de�ned by the sum of a static (DC) bias Vbias and a sinusoidal
voltage with amplitude Ves and electrostatic excitation frequency νes,

V = −VCPD +Vbias +Ves cos(2πνest). (4.9)

For KPFM experiments in which only the static voltage Vbias is applied, we can set
Ves = 0. Similarly, for treating experiments where no static voltage, but only a sinu-
soidal voltage is applied, we can set Vbias = 0.

The electrostatic force Fes in equation 4.8 can be rewritten in the form of three terms
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4.1 Derivation of the KPFM signal

when using the voltage V according to equation 4.9,1

Fes(zts,V ) = Fes,a(zts) (4.10)
+ Fes,b(zts) cos(2πνest)
+ Fes,c(zts) cos(2π (2νes)t),

where

Fes,a(zts) = + 1
2
∂Cvoid
∂zts

(
(Vbias −VCPD)2 + 1

2V
2

es

)
(4.11)

− (Vbias −VCPD)
N∑
i=1

qi
∂Φ̂void
∂zts

(ri )

− 1
2

N∑
i=1

N∑
j=1

qiqj
∂Φ̂ind
∂zts
(ri , rj )

Fes,b(zts) = +Ves

(
∂Cvoid
∂zts

(Vbias −VCPD) −
N∑
i=1

qi
∂Φ̂void(ri )
∂zts

)
(4.12)

Fes,c(zts) = + 1
4
∂Cvoid
∂zts

V 2
es. (4.13)

Because Fes contributes to the tip-sample force Fts, the latter force can in analogy to
equation 4.10 also be written in the form of three terms

Fts(zts, Ûzts,V ) = Fts,a(zts, Ûzts) (4.14)
+ Fts,b(zts, Ûzts) cos(2πνest)
+ Fts,c(zts, Ûzts) cos(2π (2νes)t).

Here, Fts,a contains Fes,a and all other voltage-independent contributions to the inter-
action force. In contrast, the other two terms include only electrostatic forces, we can
therefore use the identities Fts,b = Fes,b and Fts,c = Fes,c.
Next, we discuss the e�ect of the tip-sample force (including Fes) on the motion of the
AFM resonator. This description closely follows the approach detailed in section 2.1.
This resonator is described as an harmonic oscillator with e�ective mass m, spring
constant k , and damping constant γ . The derivation of the oscillator’s behavior starts
with the equation of motion considering all involved forces: Besides the tip-sample
force Fts, the force acting on the resonator consists of the restoring force −kq and a

1The three quantities Fes,a, Fes,b and Fes,c might �rsthand appear to be spectral components of Fes –
they would represent a static component (at zero frequency), a �rst harmonic (at frequency νes) and
a second harmonic (at frequency 2νes). However, it is important to remember that during dynamic
AFM and dynamic KPFM measurements, the tip-sample distance zts is also a function of time. There-
fore, considering Fes,a, Fes,b and Fes,c to be spectral components of Fes is only reasonable under the
assumption that zts is �xed.
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damping force −γ Ûq. Moreover, for conventional dynamic AFM imaging, we consider
an external excitation force F0 cos(2πνexct), where F0 is the excitation force amplitude
and νexc is the excitation frequency. The equation of motion is then given by

m Üq = − kq − γ Ûq (4.15)
+ F0 cos(2πνexct)
+ Fts(zts, Ûzts,V ).

An analytical solution of equation 4.15 for an arbitrary tip-sample force is generally
not possible since Fts depends on the tip-sample distance zts. We therefore employ the
harmonic approximation, in which the de�ection of the resonator is approximated as

q̃ = qs +A cos(2πνexct + φ) (4.16)

and, consequently, the tip-sample distance zts is given as

z̃ts = zc +A cos(2πνexct + φ). (4.17)

In the above equations, qs is the static de�ection, A is the oscillation amplitude, and φ
is the phase shift between the excitation at frequency νexc and the de�ection. The tip
oscillates around zc, the center position of the oscillation.
When only discussing dynamic AFM (as is done in section 2.1), this approximation
can consistently be used for the de�ection and the tip-sample distance by replacing q
with q̃ and zts with z̃ts in equation 4.15. However, the approximation implies that the
only spectral components of the de�ection are the static de�ection and the �rst har-
monic at frequency νexc – there would not be any additional spectral components for
a KPFM measurement to detect. Therefore, we only use the harmonic approximation
for the sampling of the tip-sample and electrostatic force in equation 4.15. This means
that we only substitute Fts(zts, Ûzts,V ) with Fts(z̃ts, Û̃zts,V ) in equation 4.15, but do not
replace the other occurrences of q, thereby allowing arbitrary spectral components to
the de�ection. The thought underlying this approximation is that the additional spec-
tral components to the de�ection, which are not expressed in equation 4.16, do not
signi�cantly a�ect the path along which the tip-sample force is sampled. Combining
the harmonic approximation with equations 4.14 and 4.15 yields

m Üq = − kq − γ Ûq (4.18)
+ F0 cos(2πνexct)
+ Fts,a(z̃ts, Û̃zts)
+ Fes,b(z̃ts) cos(2πνest)
+ Fes,c(z̃ts) cos(2π (2νes)t) .

When Fts is periodically sampled due to the oscillation of the tip-sample distance
as described in equation 4.17, Fts,a, Fes,b and Fes,c are periodic functions of time with
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4.1 Derivation of the KPFM signal

period ν−1exc since they depend on the tip-sample distance. They can be developed in a
Fourier series. However, before doing so, we split Fts,a into an odd and an even part
according to Fts,a = Feven,a + Fodd,a. Here, the force Feven,a is even with respect to the
tip-velocity (Feven,a(zts, Ûzts) = Feven,a(zts,−Ûzts)), while Fodd,a is odd with respect to the
tip velocity (Fodd,a(zts, Ûzts) = −Fodd,a(zts,−Ûzts)). The Fourier series of Fts,a can then be
written as

Fts,a = F (0)even,a +
∞∑
n=1

F (n)even,a cos(2πnνexct + φ) (4.19)

+F (n)odd,a sin(2πnνexct + φ).
The model we use for the electrostatic description of the system results in a purely
conservative electrostatic force Fes, which does not depend on the tip velocity. There-
fore, Fes,b and Fes,c are even with respect to the tip-velocity and, consequently, do only
carry the even-force terms in their Fourier series:

Fes,b = F (0)es,b +
∞∑
n=1

F (n)es,b cos(2πnνexct + φ) (4.20)

Fes,c = F (0)es,c +
∞∑
n=1

F (n)es,c cos(2πnνexct + φ) (4.21)

Within the harmonic approximation, this Fourier series is truncated after the linear
term with n = 1. The resulting spectral components describing Fts,a, Fes,b and Fes,c
can furthermore be written as weighted averages over the tip-sample distance range
[−A + zc, zc +A], namely

Fts,a(z̃ts, Û̃zts) ≈ 〈Feven,a〉∪ + 〈kts,a〉∩(zts − zc) − 〈γts,a〉∩ Ûzts, (4.22)
Fes,b(z̃ts) ≈ 〈Fes,b〉∪ + 〈kes,b〉∩(zts − zc), (4.23)
Fes,c(z̃ts) ≈ 〈Fes,c〉∪ + 〈kes,c〉∩(zts − zc). (4.24)

The derivation of these expression is analogously to the discussion in section 2.1.8.
In the above equations, we introduced the tip-sample force gradient kts,a and the
electrostatic force gradients kes,b and kes,c as

kts,a =
∂Feven,a
∂zts

(4.25)

kes,b =
∂Fes,b
∂zts

(4.26)

kes,c =
∂Fes,c
∂zts

(4.27)

as well as the tip-sample damping coe�cient γts,a according to Fodd,a = −γts,a Ûq. The
cup (∪) and cap (∩) averages are de�ned by equations 2.20 and 2.21 on page 16. Both
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averages can be considered as function of, e.g. the oscillation center position zc and
the amplitude A.
Inserting equations 4.22, 4.23 and 4.24 into equation 4.18 results in the di�erential
equation of the harmonic oscillator using the harmonic approximation and the mod-
ulated electrostatic forces,

m Üq ≈ − (k − 〈kts,a〉∩)q (4.28)
− (γ + 〈γts,a〉∩) Ûq
+ F0 cos(2πνexct)
+ 〈Feven,a〉∪
+ 〈Fes,b〉∪ cos(2πνest)
+ 〈Fes,c〉∪ cos(2π (2νes)t)
+A/2 〈kes,b〉∩ cos(2π (νexc + νes)t + φ)
+A/2 〈kes,b〉∩ cos(2π (νexc − νes)t + φ)
+A/2 〈kes,c〉∩ cos(2π (νexc + 2νes)t + φ)
+A/2 〈kes,c〉∩ cos(2π (νexc − 2νes)t + φ)

The harmonic oscillator is now characterized by its e�ective massm, e�ective spring
constant k ′ = k−〈kts,a〉∩ and e�ective damping constantγ ′ = γ + 〈γts,a〉∩. For practical
reasons, we consider all other contributions as being contributions to the excitation
force. In contrast to equation 4.15, the excitation force components here only depend
on the center position zc and the amplitude A, and not on zts. This allows us to solve
the approximation in equation 4.28 analytically: The resulting spectrum of the de-
�ection can be directly obtained by applying the Fourier transform to both sides of
equation 4.28. Since the Fourier transform of the �rst and second time-derivative is
given equations 2.25 and 2.26 (page 21), we obtain the following relation between the
spectrum of the de�ection and the spectrum of the tip-sample force and the external
excitation force (see also section 2.1.6)

F [q] = G ′ho(ν )F
[
+ F0 cos(2πνexct) (4.29)
+ 〈Feven,a〉∪
+ 〈Fes,b〉∪ cos(2πνest)
+ 〈Fes,c〉∪ cos(2π (2νes)t)
+A/2 〈kes,b〉∩ cos(2π (νexc + νes)t + φ)
+A/2 〈kes,b〉∩ cos(2π (νexc − νes)t + φ)
+A/2 〈kes,c〉∩ cos(2π (νexc + 2νes)t + φ)
+A/2 〈kes,b〉∩ cos(2π (νexc − 2νes)t + φ)

]
.

We can therefore conclude that the spectral components of the de�ection are con-
nected to the spectral components of the excitation force by the transfer functionG ′ho
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Figure 4.2: Panel a shows the frequencies of all spectral components of the de�ection
that are described with equation 4.29. Panel b presents the spectral components of the
demodulated de�ection signal (the demodulation is performed at the frequency νexc).
The spectral components that are measured in the di�erent KPFM modes are indicated
by black arrows for the static methods, blue arrows for the closed-loop methods and
red arrows for open-loop methods

de�ned as

G ′ho(ν ) =
1

k ′ − (2πν )2m + 2πν iγ ′ =
��G ′ho(ν )

�� exp(iφ ′ho(ν )
)
. (4.30)

The prime indicates that the transfer function depends on k ′ and γ ′, as opposed to
k and γ . We can identify the spectral components of the cantilever de�ection q by
inspection of equation 4.29. As schematically plotted with respect to a frequency axis
in �gure 4.2 a, the spectral components are given by

– a static de�ection due to the static force components,
– a �rst harmonic (due to the external excitation) at the frequency νexc,
– a �rst and second harmonic mode due to the electrostatic excitation at frequen-

cies νes and 2νes, and
– sidebands at νexc ± νes and νexc ± 2νes.
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Table 4.1: Summary of the various KPFM implementations categorized via the applied
voltage.

no KPFM Vbias = 0, Ves = 0

static KPFM Vbias , 0, Ves = 0

open-loop KPFM Vbias = 0, Ves , 0

closed-loop KPFM Vbias , 0, Ves , 0

All spectral components listed above can be measured experimentally. However, de-
pending on the choice on the KPFM mode, the experimentalist only evaluates certain
spectral components of the de�ection as we will discuss in the next section 4.1.4.

4.1.4 The KPFM signal

To calculate the KPFM signals obtained in the di�erent KPFM modes, we start the
categorization of the modes from the choice of the applied voltage as given by equa-
tion 4.9. First, the experimentalist chooses whether a static bias voltage and/or an
sinusoidal voltage is applied (table 4.1). We refer to the case of only applying a DC
bias voltage as static KPFM, while the case of only applying a sinusoidal voltage with-
out DC bias is known as the open-loop KPFM mode. If the DC bias voltage is regulated
by an additional feedback loop and added to the sinusoidal voltage, this third mode is
known as closed-loop KPFM.
Next, and depending on the above choice of the applied voltage, the experimentalist
chooses which spectral components to detect. The schemes are classi�ed using the
terms amplitude-modulation (AM), frequency-modulation (FM) and heterodyne detec-
tion.

Excursus: Measuring spectral components

Before starting the quantitative evaluation of the KPFM signal in these di�erent modes,
we discuss the procedure of quantitatively measuring spectral components as we will
frequently refer to measuring spectral components of the electrostatic force in the
following. The experimentally accessible quantity is in all cases the de�ection of the
resonator. Measuring the spectral components of this de�ection provides the basis for
measuring spectral components of the electrostatic force.
In the laboratory, a lock-in ampli�er usually performs this task (see section 2.2). This
device measures the Fourier components of a signal around a �xed frequency within
a given bandwidth. Since the spectrum of a signal is a complex number, the lock-in
ampli�er outputs either the real and imaginary part, or the magnitude (“amplitude”)
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4.1 Derivation of the KPFM signal

and the argument (“phase shift”) of the input signal relative to the reference signal.
To give one example, the inverse Fourier transform of the spectral component of the
de�ection at frequency νes is (according to equation 4.29)��G ′ho(νes)

�� · |〈Fes,b〉∪ |︸                    ︷︷                    ︸
amplitude A(νes)

cos
(
2πνest + φ

′
ho(νes) + πΘ(−〈Fes,b〉∪)︸                          ︷︷                          ︸

phase shift φ(νes)

)
.

Consequently, the amplitude A(νes) is the product of the gain function and the mag-
nitude of the �rst spectral component of the electrostatic tip-sample force. To obtain
the sign of the spectral component of the electrostatic excitation force, the phase
shift φ(νes) needs to be evaluated additionally. The measured phase shift consists of
the phase shift due to the harmonic oscillatorφ ′ho(νexc) and an additional phase shift of
π in case 〈Fes,b〉∪ < 0. For the above equation, the phase shift of π for negative spectral
components of the electrostatic force is written using the Heaviside function Θ.

AM-KPFM

Static AM-KPFM

Only a DC bias voltage is applied in static AM-AFM,207 thereforeVes = 0. All spectral
components of the electrostatic force except for the static term vanish in this case as
is apparent from equation 4.29. Consequently, the only spectral components of the
de�ection that remain are the static de�ection and the oscillating at νexc (see �gure 4.2).
The observable in static AM-KPFM is the static de�ection as a function of the applied
bias voltage, which can directly be accessed experimentally.
The contribution to the static de�ection that depends on the bias voltage is according
to equation 4.29 proportional to 〈Fes,a〉∪. This term 〈Fes,a〉∪ depends in turn parabol-
ically on the bias voltage. We �nd the KPFM signal for static AM-KPFM directly as
the bias voltage at the extremum of this term,

∂F [q](0)
∂Vbias

= 0

⇔ ∂〈Feven,a〉∪
∂Vbias

= 0

⇔ ∂〈Fes,a〉∪
∂Vbias

= 0 for Vbias = VAM (and Ves = 0). (4.31)

We can evaluate this condition using equation 4.11 and arrive at the AM-KPFM sig-
nal VAM

VAM = VCPD +
N∑
i=1

qi

〈
∂Φ̂void
∂zts
(ri )

〉
∪〈

∂Cvoid
∂zts

〉
∪

(4.32)
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where the electrostatic potential Φvoid and the capacitance Cvoid of the charge-free
tip-sample system are averaged using the cup averaging function 〈.〉∪.

Closed-loop AM-KPFM

In closed-loop AM-KPFM, both a static bias voltage and an oscillatory voltage at fre-
quency νes are applied. The �rst harmonic resulting from the electrostatic excitation
(at νes) is detected in closed-loop AM-KPFM from the de�ection signal q of the oscillat-
ing cantilever.208,209 A feedback loop is used to nullify the amplitude of this spectral
component by adjusting the bias voltage Vbias,

F [q](νes) = 0
⇔ 〈Fes,b〉∪ = 0 for Vbias = VAM. (4.33)

According to equation 4.12, the KPFM signal is

VAM = VCPD +
N∑
i=1

qi

〈
∂Φ̂void
∂zts
(ri )

〉
∪〈

∂Cvoid
∂zts

〉
∪

. (4.34)

Thus, static AM-KPFM and closed-loop AM-KPFM give the same KPFM signal.

Open-loop AM-KPFM

Both, the �rst and the second harmonic signal at νes and 2νes due to the electrostatic
excitation at νes are measured in open-loop AM-KPFM.210 In a post-processing step,
the components 〈Fes,b〉∪ and 〈Fes,c〉∪ of the electrostatic force are then evaluated from
measuring the spectral components at νes and 2νes of the de�ection signal as exempli-
�ed in section 4.1.4. The open-loop AM-KPFM signal follows �nally from

VAM =
Ves
4
〈Fes,b〉∪
〈Fes,c〉∪ = VCPD +

N∑
i=1

qi

〈
∂Φ̂void
∂zts
(ri )

〉
∪〈

∂Cvoid
∂zts

〉
∪

. (4.35)

From this analysis we conclude that all AM-KPFM modes give the same measured
signal – despite the detection of di�erent experimental observables.

FM-KPFM

In the AM-KPFM modes discussed before, spectral components are detected directly
from the de�ection signal. In contrast, the de�ection signal is demodulated at fre-
quency νexc using a demodulator in the FM-KPFM modes, and observables are eval-
uated from this demodulated signal. The demodulator can be thought of e�ectively
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4.1 Derivation of the KPFM signal

shifting all spectral components of the de�ection by νexc, and is commonly imple-
mented using a phase-locked loop in an experimental setup. The demodulation is
based on multiplication of the de�ection signal q with cos(2πνexct).

Static FM-KPFM

Similar to static AM-KPFM, only a DC bias voltage is applied in static FM-KPFM,176,211–213

thereforeVes = 0. In static FM-KPFM, the static component of the demodulated de�ec-
tion signal2 is recorded as function of the applied bias voltage Vbias. The KPFM signal
corresponds in this case to the applied bias voltage, at which the demodulated signal
is extremal

∂F [q cos(2πνexct)](0)
∂Vbias

= 0

⇔ ∂F [q](νes)
∂Vbias

= 0

⇔ ∂〈kes,a〉
∂Vbias

= 0 for Vbias = VFM. (4.36)

When using equation 4.12 and 4.26, this condition yields the static mode FM-KPFM
signal

VFM = VCPD +
N∑
i=1

qi

〈
∂2Φ̂void
∂z2ts
(ri )

〉
∩〈

∂2Cvoid
∂z2ts

〉
∩

. (4.37)

In contrast to the AM-KPFM modes, the second derivative of the electrostatic poten-
tialΦvoid and of the capacitanceCvoid of the charge-free tip-sample system is calculated
here.

Closed-loop FM-KPFM

The �rst harmonic signal resulting from the electrostatic excitation at νes is detected
from the demodulated de�ection signal in closed-loop FM-KPFM, and this signal is
nulli�ed by adjusting the bias voltage Vbias.193,212 This is experimentally achieved
by using a feedback loop regulating Vbias to nullify the magnitude of this spectral
component. In this case, the KPFM signal equals to the adjusted bias voltage Vbias at
which the magnitude of the spectral component is zero,

F [q cos(2πνexct)](νes) = 0
⇔ F[q](νexc ± νes) = 0 (4.38)

⇔ 〈kes,b〉∩ = 0 for Vbias = VFM. (4.39)
2In a FM-AFM experiment, the demodulated de�ection signal is typically available as the excitation

frequency or the excitation frequency shift relative to a reference frequency.
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According to equation 4.12, the KPFM signal is

VFM = VCPD +
N∑
i=1

qi

〈
∂2Φ̂void
∂z2ts
(ri )

〉
∩〈

∂2Cvoid
∂z2ts

〉
∩

. (4.40)

Open-loop FM-KPFM

The �rst and the second harmonic at νes and 2νes, respectively, are both extracted from
the demodulated de�ection signal in open-loop FM-KPFM.214 Similar to the open-loop
AM-KPFM mode, the corresponding components of the electrostatic interaction, here
the force gradients 〈kes,b〉∩ and 〈kes,c〉∩ (equation 4.29), are calculated from the two
spectral components in the demodulated signal using the transfer function of the
demodulator (section 4.1.4). The open-loop FM-KPFM signal follows from

VFM =
Ves
4
〈kes,b〉∩
〈kes,c〉∩ = VCPD +

N∑
i=1

qi

〈
∂2Φ̂void
∂z2ts
(ri )

〉
∩〈

∂2Cvoid
∂z2ts

〉
∩

. (4.41)

Thus, the KPFM signals obtained in static FM-KPFM, open-loop FM-KPFM and closed-
loop FM-KPFM are identical, but di�erent to the AM-KPFM signal.

Heterodyne FM-KPFM

The spectral components at the sidebands νexc±νes andνexc±2νes are directly measured
from the de�ection signal in heterodyne KPFM.215 The heterodyne detection scheme
allows the implementation of a closed-loop and an open-loop method: In closed-loop
heterodyne KPFM, the spectral components at νexc ± νes are measured and nulli�ed
by adjusting Vbias with a feedback loop. This is described by equation 4.38. Therefore,
closed-loop heterodyne KPFM gives the same signal as FM-KPFM.
In the open-loop variant of heterodyne KPFM, spectral components of the de�ection
at νexc ± νes and νexc ± 2νes are measured. Similar to the other open-loop methods, the
components of the corresponding electrostatic tip-sample interaction are calculated
in a post-processing step. The two components that can be obtained in the open-
loop heterodyne mode are 〈kes,b〉∩ and 〈kes,c〉∩, and with the de�nition for VFM in
equation 4.41, the signal is identical to the open-loop FM-KPFM mode.
Consequently, heterodyne open-loop KPFM allows to obtain the same KPFM signal
as heterodyne closed-loop KPFM, and both signals are identical to the open- and
closed-loop FM-KPFM modes.
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Table 4.2: Summary of the spectral components of the de�ectionq or the demodulated
de�ection q cos(2πνexct) relevant in the KPFM modes discussed in this section (see
also �gure 4.2). The entries in the right column show either the condition for which
the KPFM signal equal to Vbias is calculated, or the experimentally obtained quantity
that is directly the KPFM signal.

static AM-KPFM ∂F [q](0)
∂Vbias

= 0

static FM-KPFM ∂F [q cos(2πνexct)](0)
∂Vbias

= 0

open-loop AM-KPFM (Ves/4) ·
F [q](νes)
F [q](2νes)

open-loop FM-KPFM (Ves/4) ·
F [q cos(2πνexct)](νes)
F [q cos(2πνexct)](2νes)

closed-loop AM-KPFM F [q](νes) = 0

closed-loop FM-KPFM F [q cos(2πνexct)](νes) = 0

Summary of the KPFM modes

The detection schemes that have been discussed in the this section are summarized
in table 4.2 by listing the components of the de�ection signal which are evaluated in
each respective mode. Despite the di�erent detection schemes, all AM-KPFM modes
result in the same KPFM signal VAM and all FM-KPFM modes give the same KPFM
signal VFM.

4.1.5 The weight function for charges

The KPFM signal for all six KPFM modes discussed before can be written as

VKPFM = VCPD +
N∑
i=1

qiWKPFM(ri ). (4.42)

This formula allows us to introduce the KPFM weight function for charges WKPFM,
which weights the contribution of each charge qi at its position ri . The resulting
KPFM signal is then given as the sum over all weighted charges with an additional
o�set given by the contact potential di�erence between the tip and sample side metal.
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For the AM-KPFM modes, the weight function for charges is de�ned by the ratio of
the cup-averaged �rst zts-derivative of Φ̂void and Cvoid

WAM(r) =

〈
∂Φ̂void
∂zts
(r)

〉
∪〈

∂Cvoid
∂zts

〉
∪

. (4.43)

For the FM-KPFM modes, the weight function for charges is given by the ratio of the
cap-averaged second zts-derivative of Φ̂void and Cvoid

WFM(r) =

〈
∂2Φ̂void
∂z2ts
(r)

〉
∩〈

∂2Cvoid
∂z2ts

〉
∩

. (4.44)

The cup 〈.〉∪ and cap 〈.〉∩ averages are each performed over the tip-sample distance
interval that is probed by the oscillating tip, i.e. zts ∈ [−A + zc, zc + A]. The weight
of each charge therefore depends on the tip position range characterized by, e.g., the
center position zc of the tip and the oscillation amplitude A.
Moreover, the weight function only depends on two electrostatic quantities of the
void (i.e., charge free) tip-sample system, namely the normalized electrostatic poten-
tial Φ̂void and the capacitance Cvoid. While the image charge interaction contributes
to the total electrostatic force, it does not appear in the weight function and, there-
fore, does not contribute to the KPFM signal. The weight function is consequently a
property of the charge-free tip sample system. This important conclusion simpli�es
the interpretation of KPFM data, and especially allows to calculate the KPFM signal
for charge distributions in a straightforward manner.

4.1.6 Conclusions and Outlook

This section introduced the KPFM weight function for charges, which is identi�ed
to be the central quantity for the calculation and interpretation of KPFM data for
physical systems that include charge distributions. Based on an electrostatic model
describing a general tip-sample system with tip and sample formed by two metals,
a charge distribution, and, optionally, dielectric material in the tip-sample gap, we
derived the KPFM signal for all experimentally implemented KPFM modes. In all
these KPFM modes, namely static, open-loop, and closed-loop variants for the AM,
FM, or heterodyne detection, the KPFM signal is given from a weighted sum over all
charges in the tip-sample system.
The weight function for charges depends on the electrostatic properties of the charge-
free tip-sample system, such as the sample geometry and composition, the tip geome-
try, the displacement between tip and sample, and the medium surrounding tip and
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sample. The weight function for charges, and thus the resulting KPFM signal, depends
furthermore on the oscillation amplitude of the tip.
The next section 4.2 will give a detailed account on several properties of this weight
function, and will investigate the dependency on di�erent parameters such as the
tip-sample geometry or the oscillation amplitude.
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4.2 Analysis of the weight function for charges

Section 4.2 by H. Söngen, P. Rahe, R. Bechstein and A. Kühnle has been submit-
ted in similar form as a chapter to the book “Kelvin Probe Force Microscopy –
From Single Charge Detection to Device Characterization”, edited by S. Sade-
wasser and T. Glatzel. I have written the code for calculating the KPFM weight
function and KPFM signal, analyzed the calculated data, prepared the �gures,
and wrote most of the chapter with input by all authors. Most of the chapter is
reproduced verbatim, changes were made to make this section consistent with
the other sections in this thesis. As a major change, I shortened section 4.2.5
(previously the appendix).

The KPFM signal for systems containing local charges can be expressed as a weighted
sum over all local charges. The weight function for charges quanti�es the contribution
of each charge, depending on its position. In this section, we evaluate the KPFM weight
function for charges by analyzing several application-relevant model systems. The in-
tention of this section is to provide insights into the KPFM contrast formation in order to
facilitate the KPFM data interpretation. For this, we concentrate on three model systems:
(A) a conductive sample in ultra-high vacuum, (B) a dielectric sample in ultra-high vac-
uum, and (C) a dielectric sample in water. We calculate the weight function for charges
for each of these systems using a conductive sphere as a tip model. While the analysis
substantiates a number of known experimental observations, it reveals surprising e�ects
in some environments. For example, the sign of the FM-KPFM signal re�ects the sign of
the charges measured in the systems A and B, but in system C the sign of the KPFM signal
is found to be tip-sample distance dependent. Additionally, we deduce the lateral KPFM
resolution limits and �nally discuss the lateral decay of the weight function to assess
how charges contribute to the signal. Our discussion is accompanied by an interactive
visualization available at www.self-assembly.uni-mainz.de/kpfm.

4.2.1 Introduction

Atomic force microscopy (AFM) has most successfully been joined with the Kelvin
probe technique to speci�cally probe voltage-dependent contributions to the tip-
sample interaction force.203,208 This Kelvin probe force microscopy (KPFM) has ex-
tensively been used to investigate a large variety of di�erent tip-sample systems,
including conductive,216 semi-conductive217 and dielectric174,179 materials in air,218

ultra-high vacuum176,219 and in liquid106,220 environments.
Recently, the KPFM signal has been derived for a most general system that consists
of a conductive tip, a conductive sample or a dielectric sample with a metallic back
contact, and N point charges qi located at positions ri.197,198 This model also has been
introduced in section 4.1. Both major KPFM modes, namely the amplitude modulation
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(AM) and the frequency modulation (FM) mode194 have been considered in their most
prominent technical implementations, which are the static, closed-loop and open-loop
methods. It was found that for all cases, the KPFM signal VKPFM can been written as

VKPFM = VCPD +
N∑
i=1

qiWKPFM(ri ) (4.45)

where the KPFM signal contains the contact potential di�erence VCPD between the
homogeneous tip and conductive sample (or the conductive sample back contact in
case of insulating samples) and, most importantly, a weighted sum over all charges qi
located within the tip-sample system. Each charge in the sum is multiplied by a weight
functionWKPFM that is evaluated at the position ri of each charge. The weight function
is fully de�ned by the properties of the charge-free tip-sample system, the oscillation
amplitude of the tip and the KPFM mode.

In this section, we closely inspect equation 4.45 with the motivation to facilitate the
interpretation of experimental KPFM data. In particular, we answer the following
questions:

– How does the sign of the KPFM signal re�ect the sign of the charges beneath
the tip?

– How does the oscillation amplitude of the tip in�uence the KPFM signal?

– What is the lateral resolution for resolving charges with KPFM?

– What is the KPFM signal generated by electric dipoles?

– How large is the contribution of surface charges distributed across the whole
sample to the KPFM signal?

For this, we �rst review the weight function for charges in section 4.2.2. Here, we
also introduce the tip-sample systems we consider in this section. In section 4.2.3
we discuss properties of the weight function for chargesWKPFM, in particular its sign.
Next, in section 4.2.4, we discuss both qualitative and quantitative aspects of the KPFM
signal by using the weight function for charges. For the purpose of this discussion, we
calculate the KPFM signal VKPFM for simple charge distributions such as single point
charges, dipoles and a layer of surface charges.

Most of the calculations we present in the following sections can also be explored with
our interactive KPFM visualization. The KPFM visualization runs within the browser
and is accessible at www.self-assembly.uni-mainz.de/kpfm.
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4.2.2 The weight function for charges

Depending on using AM oder FM-KPFM, there are di�erent expressions for the weight
function for charges.197,198 The AM-KPFM weight function is given by

WAM(r) =

〈
∂Φ̂void
∂zts
(r)

〉
∪〈

∂Cvoid
∂zts

〉
∪

, (4.46)

and the FM-KPFM weight function is written as

WFM(r) =

〈
∂2Φ̂void
∂z2ts
(r)

〉
∩〈

∂2Cvoid
∂z2ts

〉
∩

. (4.47)

Both KPFM weight functions are determined by two electrostatic quantities: the nor-
malized electric potential3 Φ̂void and the capacitanceCvoid, both calculated for the void,
i.e., the charge-free tip-sample system. There are two distinct di�erences between the
AM and FM-KPFM weight function: First, depending on considering the AM or the
FM mode, either the �rst or second derivative of Φ̂void and Cvoid with respect to the
tip-sample distance zts appears in the respective weight function. Second, di�erent
averages are calculated for the two KPFM modes. The two derivatives are averaged
over the tip-sample distance range [−A+zc, zc +A] covered during the tip oscillation
with amplitude A around the center position zc. We introduce the cup average 〈.〉∪
and the cap average 〈.〉∩ for AM-KPFM and FM-KPFM, respectively, as detailed in the
previous section 4.1 and in section 2.1. The averaging functions are both positive and
normalized.
The weight functionWKPFM for charges is evaluated at the positions ri of each charge to
calculate the KPFM signalVKPFM (equation 4.45). The weight function depends on prop-
erties of the void tip-sample system, including the geometry of both tip and sample, as
well as their relative displacement. Moreover, the weight function for charges depends
on the electrostatic properties, such as the dielectric permittivity of the medium sur-
rounding the tip. Since the weight function contains quantities that are averaged over
the tip-sample distance oscillation range, the weight function additionally depends
on the oscillation amplitude of the tip.

The void tip-sample system

The quantitative evaluation of equation 4.45 requires to pick a suitable model for the
geometry of the void tip-sample system. Within this section we use a simple, yet

3The quantity Φ̂void is the electric potential normalized with respect to the voltage V between the
conductive tip and sample (or sample back contact in case of dielectric samples), i.e., Φ̂void = Φvoid/V .
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Figure 4.3: Three void tip-sample systems we consider for calculating the KPFM
weight functions. A conducting sample (β = 1) is present in system A. While the
samples in system B and system C are given by dielectric material with εs = 8, the
dielectric constant of the medium where the tip is located di�ers. System B represents
the ultra-high vacuum environment where the tip is located in a vacuum (εm = 1),
while system C corresponds to measurements in the liquid environment using εm = 80.

realistic, model consisting of a conductive sphere as a tip. The reader is free to pick a
di�erent model appropriate for the respective application. We are con�dent that the
qualitative statements of this section regarding the properties of the weight function
are correct irrespective of the choice of the model.
In the model we use here, the tip is placed above either a conductive or a dielectric
sample �lling the semi-in�nite half-space at z < 0 below the surface located at z = 0.
We denote the relative dielectric permittivity of the medium surrounding the tip
as εm. In case of a dielectric sample, we denote the relative dielectric permittivity of
the sample as εs. According to the electrostatic model we use, a conductive sample
is obtained in the limiting case εs → ∞ (corresponding to setting the factor β =
(εs − εm)/(εs + εm) to 1, see section 4.2.5). Unless otherwise stated, the tip radius is
in the following set to R = 20 nm. The tip-sample distance is denoted as zts (see
�gure 4.3 a). Details on the calculation ofWKPFM can be found in section 4.2.5.
Similar to our previous analysis of the weight function,198 we discuss here three
di�erent tip-sample systems as drawn in �gure 4.3. First, we consider as “system A”
a conductive substrate (β = 1) in ultra-high vacuum (εm = 1). Second, we consider
a thick dielectric sample in vacuum as “system B”, where we set the permittivity of
the sample to εs = 8 to exemplary resemble the bulk insulating material calcite.221

Third, while we consider for “system C” again a dielectric sample with εs = 8, we set
the permittivity of the medium to a value larger than the permittivity of the sample.
Speci�cally, we choose εm = 80 to represent water.222 In all considered cases, we set
VCPD = 0, i.e., we only consider the KPFM signal arising from charges in the tip-sample
system. We thereby ignore any o�set as a result of the contact potential di�erence
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Figure 4.4: Weight function for charges in AM-KPFM (top row) and FM-KPFM (bot-
tom row). The considered tip-sample systems A, B and C are shown in the �rst, second
and third column, respectively. The tip-sample distance is zts = 20 nm, the tip radius is
R = 20 nm and the amplitude isA = 0. The weight function corresponding to other pa-
rameters can interactively explored at www.self-assembly.uni-mainz.de/kpfm. The
coordinate system and scale bar shown in panel a apply to all panels. The sample
surface at z = 0 is indicated by a horizontal black line.

between the two metallic electrodes. Note that, within the electrostatic model we
employ here, VCPD is only a property of the metallic electrodes and does not depend
on their geometry, the tip displacement and the oscillation amplitude.

4.2.3 Properties of the weight function for charges

Using the electrostatic model introduced in the last section, we can evaluate the weight
function for charges as is shown in �gure 4.4.
The value of the weight function in the area below the tip (the tip sphere is indicated
by a white circle) is of primary interest as charges are typically located in the tip-
sample gap and in close proximity to the sample surface. It is a common assumption,
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especially in UHV-based experiments, that the sign of the KPFM signal corresponds
to the sign of the charges in the tip-sample gap.176,182,184,185 For systems A and B in
both the AM and FM-KPFM mode, we �nd indeed that the sign of the weight function
below the tip is positive, thus the sign of the charges qi in equation 4.45 is maintained
in the KPFM signal VKPFM. In sharp contrast, the sign of the KPFM weight function
below the tip is negative in system C for the tip-sample distance evaluated in �gure 4.4.
The inversion of the sign of the weight function is readily explained by the sign of the
derivative of the capacitance that enters the weight function, as detailed in reference
198 and in the following section:
For the conductive sample (system A) the capacitance of the system is at its maxi-
mum when the distance between the tip and the conductive sample is at its minimum
(zts → 0), similar to a parallel-plate capacitor. Consequently, the capacitance decreases
for increasing tip-sample distance, leading to a negative �rst derivative of Cvoid with
respect to zts. For dielectric samples, the capacitance of the void tip-sample system is
additionally in�uenced by the permittivity of both, sample and medium. For system
B (εm < εs) the capacitance is again at its maximum when the tip is placed directly
above the sample, since here the tip is surrounded by both, the dielectric sample and
the dielectric medium. In the limit of a large tip-sample distance, the tip is only sur-
rounded by the medium, which has a smaller permittivity than the sample. Therefore,
for system B, the �rst derivative of Cvoid with respect to zltp is again negative. In
system C, however, the capacitance decreases for decreasing tip-sample distances,
since the sample has a smaller dielectric permittivity compared to the medium. This
e�ect readily explains the observation of an inversed sign when performing KPFM
measurements in a medium with a permittivity εm larger than the permittivity εs of
the sample.198 We discuss the far-reaching consequences of this sign inversion in the
next section.
Despite the change in sign for system C, a di�erent overall magnitude of the weight
function for charges as well as a di�erent decay can be recognized in �gure 4.4 when
comparing di�erent modes and sample systems – both aspects are again discussed
in the next section. Finally, to illustrate that the KPFM weight function depends on
the displacement between tip and sample, we exemplary plot the AM-KPFM weight
function for system A in �gure 4.5 for three di�erent tip-sample distances. As the tip
approaches the sample, the asymmetry of the weight function (when comparing the
area beneath and above the tip) becomes more pronounced.

4.2.4 KPFM signal for relevant charge distributions

In this section, we calculate the KPFM signal VKPFM using equation 4.45 for di�erent
charge distributions that resemble, for example, charged adsorbates such as molecules
or atoms, deposited on metallic and insulating surfaces. The charges in the tip-sample
system are all de�ned by their magnitudesqi and positions ri. For a given displacement

124



4.2 Analysis of the weight function for charges

x

z

zts = 16 nm

10 nm

−250mV 0 250mV

zts = 10 nm
zts = 4 nm

System A
Conducting sample

εm = 1

A
M
-K
PF

M

a b c

1

Figure 4.5: The weight function for charges in AM-KPFM for system A is shown for
di�erent tip-sample distances zts. The color bar applies to all panels.

between tip and sample, the weight function is then evaluated at the positions of the
charges.
We start with considering a single point charge, for which we discuss the sign of
the KPFM signal and the in�uence of the oscillation amplitude. Next, we investigate
the signal for two point charges to quantify the lateral resolution of KPFM and the
imaging of di�erently-oriented dipoles. We continue with considering samples that
exhibit a layer of surface charge to reveal the dependency of the KPFM signal on the
sample size.

Imaging a single point charge

We consider a single positive point charge of magnitude e , located at a height of
z = 0.2 nm above the surface and in the center (x = 0,y = 0) of our coordinate system.
To disentangle e�ects in the KPFM signal due to the tip-sample geometry from the
averaging over the oscillation cycle, we start by setting the oscillation amplitude A
to zero. This corresponds to experiments in the static AFM mode. We will close this
section by discussing the e�ect of increasing the oscillation amplitude.

Lateral images

We show images of the calculated KPFM signal as a function of xts and yts in �g-
ure 4.6, where the tip-sample distance zts is held constant at 0.5 nm. The upper panel
of �gure 4.6 shows the AM-KPFM signal, the lower panel shows the FM-KPFM signal.
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Figure 4.6: Lateral images of the KPFM signal calculated for a point charge +e (black
dot) located at x = 0, y = 0 and z = 0.2 nm. The sample surface is located at z = 0.
The oscillation amplitude A is set to zero and the tip-sample distance is zts = 0.5 nm.
The coordinate system and scale bar shown in panel a apply to all panels, the color
bars to both images above each bar.

For the conductive sample (system A, panel a and d) and the dielectric sample with
εm < εs (system B, panel b and e), the positive charge results in a positive KPFM signal
at the position of the charge. Although the magnitude of VKPFM is di�erent for the
di�erent sample systems, the sign of the KPFM signal corresponds to the sign of the
charge regardless of using AM-KPFM or FM-KPFM. Moreover, the KPFM signal is at
its maximum when the tip is positioned directly above the point charge. The charge
is imaged with radial symmetry and with a lateral extend in the order of several
nanometer.

In sharp contrast, the positive point charge yields within the shown image an overall
negative AM-KPFM signal for the dielectric sample with εm > εs (system C, �gure 4.6 c),
and is furthermore in both modes (�gure 4.6 c and f) imaged as a toroidal ring with a
local minimum at the position of the charge. Consequently, the qualitative interpreta-
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Figure 4.7: Vertical slice of the KPFM signal calculated for a point charge +e (black
dot) located at x = 0, y = 0 and z = 0.2 nm. The oscillation amplitude A is set to zero.
The coordinate system and scale bar shown in panel a apply to all panels, the color
bars to both images above each bar.

tion of AM-KPFM in system C is di�erent compared to systems A and B, especially
since the sign of the KPFM signal reverses in the AM-KPFM mode. The physical rea-
son for the sign reversal of the KPFM signal is the sign reversal of the derivatives of
the capacitance, as discussed in section 4.2.3.

Vertical slices

Next, we consider the same systems A, B and C, but evaluate the KPFM signal in the
form of slices as shown in �gure 4.7. Thereby, we investigate the dependence of the
KPFM signal on the tip-sample distance.
For systems A and B, we see that the KPFM signal for both the AM and the FM-
KPFM mode has the same sign in the entire zts range of up to zts = 75 nm as shown
in �gures 4.7 a, b, d and e. In contrast, the AM-KPFM signal obtained in system C
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(�gure 4.7 c) has an inverted sign throughout the investigated tip-sample distance
regime, and the sign of the KPFM signal for system C in the FM mode (�gure 4.7 f)
di�ers within the evaluated tip-sample distance regime. This �nding highlights that
qualitative statements regarding the sign of the point charge can be a challenge in
FM-KPFM experiments for systems of type C (where εm > εs), and especially require
knowledge of the tip-sample distance when using the FM-KPFM mode for systems of
type C.

The vertical slices furthermore show that the KPFM signal changes monotonically
upon approaching the tip closer to the charge for both system A and B, while the
behavior for system C is more complex as the KPFM signal can even change the sign
(see �gure 4.7 f).

Lateral and vertical profiles

It is common practice to experimentally measure the KPFM signal along speci�c
surface directions in order to obtain the KPFM signal in pro�les, e.g., as function of xts
or zts. To facilitate comparison of these experiments with the KPFM signal of a single
point charge, we show lateral and vertical pro�les of the KPFM signal in this section.
Using our model we calculate lateral pro�les obtained at three di�erent tip-sample
distances (zts = 0.5 nm, 2 nm and 10 nm) as shown in �gure 4.8.

For systems A and B (black and blue lines), the KPFM signal shows a single peak in
the lateral pro�les, for the AM- and the FM-KPFM mode. The signal is at maximum
when the tip is positioned centered on the charge. Moreover, the width of the peak
increases for increasing tip-sample distances. As already discussed for the lateral and
vertical slices, a non-monotonic shape of the KPFM signal is observed for system C
when approaching the tip to the charge (red solid lines). Additionally, the AM-KPFM
signal in system C is negative for all tip-sample distances shown in �gure 4.8. In
contrast, the FM-KPFM signal for system C changes depending on the tip-sample
distance (�gure 4.8 e and 4.8 f).

Vertical pro�les of the KPFM signal extracted at the lateral position of the point charge
are shown in �gure 4.9. For system A and B, the KPFM signal increases for decreasing
tip-sample distances. The increase in the KPFM signal is particularly steep when the
tip is close to the sample, and the signal magnitudes clearly di�er for the di�erent
KPFM modes. The absolute value of the KPFM signal in system C decreases for the AM
mode when increasing the tip-sample distance and, again, a non-monotonic behavior
is observed for system C in the FM mode, where the KPFM signal exhibits a maximum
in the vertical pro�le (red dashed line) shown in �gure 4.9.
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Figure 4.8: Lateral pro�les of the KPFM signal calculated for a point charge+e located
at x = 0, y = 0 and z = 0.2 nm. The oscillation amplitude A is set to zero. The tip-
sample distance zts at which the tip has been scanned is indicated above the top panel.

Influence of the oscillation amplitude

We have so far chosen the oscillation amplitude A to be zero for all calculations of
the KPFM signal, corresponding to the static AFM case. However, in dynamic AFM
the oscillation amplitude is not zero. Therefore, we explore the e�ect of a non-zero
oscillation amplitude on the KPFM signal in this section. According to the de�nition
of the weight functions (equations 4.46 and 4.47), both the derivative of the normalized
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Figure 4.9:Vertical pro�les of the KPFM signal calculated for a point charge+e located
at x = 0, y = 0 and z = 0.2 nm. The oscillation amplitude A is set to zero. The tip was
positioned directly above the charge at xts = 0 and yts = 0.

electric potential of the void tip-sample system Φ̂void and the corresponding derivative
of the capacitance Cvoid are averaged over the tip-sample distance range sampled
during one oscillation cycle.
To illustrate the e�ect of this averaging, we calculate in �gure 4.10 the KPFM signal
along the same line pro�le shown in �gure 4.8 with amplitudes of 0.1 nm, 1 nm, 10 nm
and 100 nm and compare them with the A = 0 case. In all cases, we set the lower
turning point of the tip oscillation to zc − A = 0.5 nm. Therefore, the tip-sample
distance range considered for the averages (equations 2.20 and 2.21) is zts ∈ [−A +
zc, zc +A].
Figure 4.10 a presents the AM-KPFM signal for a conductive sample (system A). The
pro�le lines indicate that the KPFM signal at the position of the charge decreases
for increasing oscillation amplitudes by a factor of about two. A qualitatively similar
behavior can be found for FM-KPFM (�gure 4.10 f) in system A and for system B
(�gure 4.10 b and g). For system C in FM-KPFM, even the sign of the KPFM signal
can change depending on the oscillation amplitude (�gure 4.10 h). While the KPFM
signal of a charge-free system does not depend on the oscillation amplitude,193 it is
clearly emphasized from �gure 4.10 that a quantitative comparison of KPFM signals
between di�erent experiments cannot be made without considering the amplitude
when considering systems containing charges.
For an investigation of the peak shape we normalize the pro�les with respect to the
maximum value of the peak (at xts = 0). Normalized pro�les are only calculated for
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Figure 4.10: Lateral pro�les of the KPFM signal calculated for a point charge +e
located at x = 0, y = 0 and z = 0.2 nm calculated for several oscillation amplitudes
A, namely 0 nm, 1 nm, 10 nm and 100 nm (increasing the amplitude is indicated by
the black arrow). The lower turning point of the tip oscillation was held constant
at zc − A = 0.5 nm. Panels in the second and fourth row present the KPFM signal
normalized to the respective maximum value at xts = 0.

systems A and B, since only here the KPFM signal has a consistent sign and peak-
like shape in lateral pro�les. The results in �gure 4.10 d, e, i and j clearly show an
increase in the width of the peaks with increasing the oscillation amplitude. This
�nding is related to the peak-broadening observed for increasing tip-sample distances

131



4 Quantitative KPFM

(�gure 4.8) combined with the fact that the properties at larger tip-sample distances
increasingly contribute with increasing the oscillation amplitude. As we will discuss
in the next section, the lateral resolution in KPFM experiments is e�ectively reduced
with larger peak widths.
These conclusions can also be drawn for system A in the FM-KPFM mode as well as
for system B in both, the AM and the FM-KPFM mode as is apparent from �gure 4.10.
Thus, for system A and B, increasing the oscillation amplitude causes a decrease in the
KPFM signal at the charge position and an increase of the peak width. However, the
sign of the KPFM signal does not change as function of the oscillation amplitude. This
allows qualitative statements regarding the sign of the charge to be made independent
of the oscillation amplitude for system A and B.

Lateral resolution for imaging charges with KPFM

The lateral resolution of KPFM experiments is an important �gure to assess when
aiming to image charges with KPFM. We de�ne the lateral resolution for imaging
charges with KPFM by the minimal lateral distance at which two equally-charged
point charges can be distinguished. The lateral resolution is in�uenced by several
parameters, such as the vertical tip position zts and the oscillation amplitude A. In
the previous sections, we have found that the KPFM signal images a single point
charge as a single peak (for systems A and B in both, AM- and FM-KPFM modes).
We obtained the sharpest peaks for the smallest considered tip-sample distance of
zts = 0.5 nm (�gure 4.8) and for the smallest considered oscillation amplitude A = 0
(�gure 4.10). We will use these two parameters in the following for illustrating the
lateral resolution.
Figure 4.11 presents lateral pro�les of the KPFM signal for two positive point charges
(each +e , each located at z = 0.2 nm above the surface). The charges are positioned at
di�erent lateral distances indicated by the dots. The corresponding KPFM line pro�les
are shifted vertically for clarity. When the charges are placed 10 nm apart, they appear
as two clearly separable peaks in the pro�les shown in �gure 4.11. When ignoring
measurement noise, these charges can be resolved if there is a minimum between the
two peaks. However, KPFM experiments are always subject to measurement noise,223.
Therefore, the resolution will be limited by a minimum detectable signal di�erence
between the minimum between the peaks and the peak maximum. Upon moving the
charges towards each other, eventually the two peaks merge to a single peak. For all
considered cases (system A and B, AM-KPFM and FM-KPFM), they appear as one peak
at the smallest considered charge separation of 2 nm.
So far, we considered the lateral resolution for a �xed tip radius of R = 20 nm. To
investigate the in�uence of the tip radius on the lateral resolution, we plot the depth of
the minimum between the charges (the “dip” voltage indicated asVdip in �gure 4.11 a)
as a function of the tip radius R for two charges spaced 3 nm apart. LargerVdip values
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Figure 4.11: Lateral pro�les of the KPFM signal for two point charges (+e located
at z = 0.2 nm as indicated by arrows) and separated by increasing distances ranging
from 2 nm to 10 nm. The individual pro�les are shifted by the amount stated at the
scale bar. In all cases, the oscillation amplitude A was set to zero and the tip-sample
distance zts was held constant at 0.5 nm.

lead to more robust measurements of the two charges as larger noise can be accepted.
If there is no minimum between the two charges, the charges cannot be distinguished.
The corresponding curves of Vdip vs. R are shown in �gure 4.12 for system A and B
in both, the AM and FM mode. In case there was no dip, no data is shown. With a
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Figure 4.12: Lateral resolution quanti�ed by the depth of the minimumVdip between
the two charge peaks as function of the tip radius for two charges separated by an
arbitrarily chosen distance of 4 nm. No data denotes the absence of a dip between the
signals at the two charge positions.

tip radius of R > 20 nm, the two charges cannot be separated, regardless of consid-
ering system A or B or by using AM-KPFM or FM-KPFM. Moreover, the dip voltage
is consistently larger in the FM-KPFM modes (dashed lines) compared to the AM-
KPFM modes (solid line), indicating that the resolution is increased in FM-KPFM
measurements when compared to AM-KPFM. This conclusion is in agreement with
KPFM experiments on conducting surfaces of di�erent local composition, where an
increased lateral resolution was found for the FM-KPFM mode as well.194

Imaging dipoles

Molecules that adsorb on surfaces often exhibit a dipole moment. To investigate the
KPFM signal produced by such a molecular adsorbate, we calculate the KPFM signal
that arises from either a vertical or a horizontal dipole. In each case, the dipole results
from placing two charges of opposite sign.

Vertical dipole

First, we consider the KPFM signal for a system containing a vertical dipole centered
at x = 0 and y = 0 as shown in �gure 4.13. The dipole points upwards, i.e., a negative
charge is located at z = 0.15 nm and a positive charge at z = 0.25 nm, which results
in a dipole length of 0.1 nm and a dipole moment of 1eÅ ≈ 4.8 D. The oscillation
amplitude of the tip is set to zero.
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Figure 4.13: Vertical slice of the KPFM signal calculated for a vertical dipole (pointing
upwards) located at x = 0, y = 0 and z = 0.2 nm. The oscillation amplitude A is set
to zero. The coordinate system, scale bar and position of the dipole shown in panel a
apply to all panels, the color bar to both images above each bar.

For systems A and B, the vertical slice reveals a KPFM signal qualitatively similar to
the one obtained for a single positive point charge (see �gure 4.7). The KPFM signal
for the upward-pointing dipole is positive in both, AM- and FM-KPFM mode. This is a
result from the weight function for charges having its maximum directly beneath the
tip (for system A and B) and then falling o� for increasing distances. Therefore, the
upper charge of the dipole is closer to the tip and its contribution to the KFPM signal
is larger compared to the lower charge. However, the presence of the lower charge of
the dipole readily explains the overall smaller magnitude of the KPFM signal when
compared to a single point charge (see �gure 4.7).

In contrast to systems A and B, the vertical slice of the KPFM signal for the vertical
dipole obtained for system C is qualitatively di�erent than the vertical slice of the
single point charge (�gure 4.7). The KPFM signal in AM-KPFM is positive when the
tip is directly above the dipole. In FM-KPFM, the vertical dipole produces negative
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side lobes. The sign of the KPFM signal in system C depends again on the tip-sample
distance as was found for the single point charge in system C before, and the KPFM
signal for the dipole is furthermore smaller than the point charge signal in �gure 4.7.

Horizontal dipole

A vertical slice of the KPFM signal obtained for a horizontal dipole is shown in �g-
ure 4.14. The dipole is again centered at y = 0 and z = 0.2 nm and results from
two charges, −e at x = −0.05 nm and +e at x = 0.05 nm. Consequently, the dipole is
pointing in the positive x direction. For systems A and B and in both, AM- and FM-
KPFM mode (�gures 4.14 a, b, d and e), the dipole produces a negative KPFM signal for
xts < 0 and a positive KPFM signal for xts > 0. Since the weight function has a radial
symmetry for the spherical tip used within this section, the KPFM signal is zero at
xts = 0 as both charges cancel each other. Imaging the lateral dipole with a di�erent
sign depending on the lateral position provides means to distinguish the lateral dipole
clearly from a single point charge. The KPFM signal obtained for system C shows
a rather complex behavior including di�erent signs depending on the vertical and
lateral tip position, as expected from the insights obtained for the single point charge.

Surface charge distribution

We have so far calculated the KPFM signal for one and two point charges, but neglected
that a substrate, which is usually large compared to the tip dimensions, is often covered
by e.g. charged defects or charged atoms or molecules. Therefore, we now extend the
analysis by quantifying the contribution to the KPFM signal due to a large number of
point charges, most of which are located at large distances from the tip.
We plot the KPFM weight functionWKPFM in �gure 4.15 for a �xed tip position rts =
(0, 0, 5 nm) centered above the origin as function of distance r =

√
x2 + y2 + z2 from

the origin. The lateral distance interval is evaluated from r = 0.2 nm (i.e., close to the
tip) up to r = 1 mm (representing the edge of the sample far away from the tip). The
pro�le of the weight function is computed for a �xed height z = 0.2 nm (with the tip
at zts = 5 nm) and we set again the oscillation amplitude A to zero.
For all considered tip-sample systems A, B and C and for both, AM- and FM-KPFM
modes, the weight function decays to zero in the limit r → ∞. However, there is a
striking di�erence in the fall-o� behavior when comparing the conductive sample
(system A) with the dielectric samples (systems B and C). The AM-KPFM and FM-
KPFM weight functions decay both with r−3 for the conductive sample (system A).
On dielectric samples, however, the AM-KPFM and FM-KPFM weight functions both
decay more slowly with r−1.
To illustrate the consequences of the di�erent lateral decays of the weight function, we
consider a sample that is homogeneously covered with surface charges. These surface
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Figure 4.14: Vertical slices of the KPFM signal calculated for a horizontal dipole
pointing to the right (centered at x = 0, y = 0 and z = 0.2 nm. The oscillation
amplitude A is set to zero. The coordinate system, scale bar and position of the dipole
shown in panel a apply to all panels, the color bar to both images above each bar.

charges could, e.g., arise from defects as well as from polar or charged adsorbates. We
model the surface charges as a charged circular-shaped island with surface charge
density σ and radius rσ (see �gure 4.16). We assume that the charges are located at a
height of z = 0.2 nm above the sample, i.e. at the same distance at which the weight
function was analyzed in �gure 4.15.
Using this charge distribution, we �rst model a sample where an island with a radius
of rσ = 100 nm covers the surface. The corresponding KPFM signal is shown as a
function of the surface charge density σ in �gure 4.17 for the (a) AM-KPFM and (b)
FM-KPFM modes and for systems A (conductive sample and εm = 1, dotted black lines)
and B (dielectric sample with εs = 8 and εm = 1, dotted blue lines).
Next, we compare the KPFM signal with the signal that is produced by a charged
island that covers a large portion of the sample by setting its radius to rσ = 1 mm. On
the conductive sample (system A), the KPFM signal remains nearly constant (solid

137



4 Quantitative KPFM

10−18

10−15

10−12

10−9

10−6

10−3

100

A

B

C

∝ r−3

∝ r−1

∝ r−1
System A, Conductive sample, εm = 1
System B, Dielectric sample, εs = 8, εm = 1
System C, Dielectric sample, εs = 8, εm = 80

Solid line – positive sign
Dashed line – negative sign

|W
A

M
|/
(V
/e
)

10−9 10−8 10−7 10−6 10−5 10−4 10−3

10−18

10−15

10−12

10−9

10−6

10−3

100

A

B

C

∝ r−3

∝ r−1

∝ r−1

Solid line – positive sign
Dashed line – negative sign

r /m

|W
FM
|/
(V
/e
)

a

b

1

Figure 4.15: Lateral pro�les of the AM-KPFM weight function for charges (a) and
the FM-KPFM weight function for charges (b) as function of the distance r from the
origin in a double-logarithmic plot.

black lines in �gure 4.17) when compared to the KPFM signal obtained for the smaller
charged island with radius rσ = 100 nm. This indicates that the charges that contribute
to the KPFM signal are overwhelmingly located beneath the tip.4 In this case, the KPFM
signal converges with respect to the radius of the charged island.
In sharp contrast, the KPFM signal obtained for the dielectric sample (system B) di�ers
several orders of magnitude compared to the smaller island with rσ = 100 nm. In this

4The slight decrease in the KPFM signal when increasing rσ from 100 nm to 1 mm originates from the
negative sign of the weight function for system A in the distance range of r & 100 nm (see black
solid and dashed line in �gure 4.15 a).
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Figure 4.16: Illustration showing the charged island (gray circle) with radius rσ lo-
cated at a height of z = 0.2 nm above the sample. The tip (with tip radius R = 20 nm)
is placed at a distance of zts = 5 nm above the sample. The illustration is not to scale.

case, even for a surface charge density of σ = 10−6 e/nm2, the KPFM signal obtained
for the dielectric sample is in the order of several volts. Indeed, Kelvin voltages on
surfaces of especially freshly cleaved insulating materials have been found to be of the
order of several 10 V.224 As already clear from the decay in �gure 4.15, charges from
the whole sample contribute critically to the KPFM signal when considering dielectric
samples. Here, the KPFM signal does not converge with respect to the radius of the
charged island.

Thus, the di�erent lateral decay of the weight function for charges in KPFM that is
obtained for a conductive sample compared to a dielectric sample has a signi�cant
impact on the interpretation of KPFM data. For conductive samples, the major contri-
bution to the KPFM signal arises from charges that are in the proximity of the tip. On
dielectric samples, in contrast, charges located on the whole sample can signi�cantly
contribute to the KPFM signal. In this case, the KPFM signal consequently depends
on the size of the sample.

4.2.5 Electrostatic model

In this �nal section, we present details on the calculation of Φ̂void and Cvoid – the
two electrostatic quantities necessary for calculating the KPFM weight function for
charges. Since we use the model of a spherical tip, we will here revisit the solution
for a metallic sphere against a dielectric or metallic sample following previous works,
which are based on in�nite image charge series.205,225 The method of in�nite image
charge series for both the sphere-conductor and the sphere-dielectric setup is based
on two concepts for solving electrostatic boundary problems using image charges: (a)
the case of a point charge in front of a dielectric (or metallic) half-space and (b) the
case of a point charge in front of a conducting sphere.
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Figure 4.17: Calculated AM-KPFM signal (a) and FM-KPFM signal (b) for a homo-
geneously charged island with radius rσ as function of the island’s surface charge
density σ . The tip is positioned above the center of the charged island at rts = 0 and
zts = 1 nm. The charges within the island are located at z = 0.2 nm, the oscillation
amplitude is set to zero

Point charge in front of conductive or dielectric half-space

For a point charge q in a medium with relative permittivity εm at a distance b in front
of a dielectric or conductive half-space, an image charge with magnitude ξ ′ = −βq
placed at b ′ = −b yields the correct boundary condition at the interface.226 The factor
β is de�ned by the dielectric permittivities according to

β =
εs − εm
εs + εm

, (4.48)

where εs is the permittivity of the lower half-space. For a metal, β = 1.205
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The potential for the upper half-space (z ≥ 0) is then de�ned by the point charge q
and image charge ξ ′

Φ (r) = 1
4πε0εm

(
q√

x2 + y2 + (b − z)2
+

−βq√
x2 + y2 + (b + z)2

)
. (4.49)

To calculate the electrostatic potential for the lower half-space (z < 0) it is necessary
to place a di�erent image charge ξ ′′ with magnitude ξ ′′ = q − ξ ′ = q(1 + β) in the
upper half space at the same position as the charge q. The potential for z < 0 then
reads

Φ (r) = q(1 + β)
4πε0εs

√
x2 + y2 + (b − z)2

. (4.50)

Point charge outside of a conductive sphere

For a point charge q located outside of a conducting sphere at a distance y from
the center, an image charge ξ ′ is placed on the line connecting the point charge q
with the center of the sphere. The image charge of magnitude ξ ′ = −ay q is placed
at distance d = a2

y from the sphere center to match the boundary condition at the
sphere surface.226 Then, the total electrostatic potential for the conducting sphere of
radius R at potential V in a medium with relative permittivity εm and a point charge
at distance y is given from the sum of potentials for three point charges:

Φ (r) = 1
4πε0εm

©­­«
q

|r − y| +
−Ry q���a2y2y − r��� + RV

|r|
ª®®¬ (4.51)

for |r| ≥ R. While the �rst two terms ensure the boundary condition on the sphere
surface for a neutral sphere due to the external charge, the last term includes the
potential distribution due to the charged surface.

Conductive sphere in front of dielectric or conductive half-space

Using these two concepts, the solution for the conducting sphere in front of the con-
ductive or dielectric half-space can be found using series of image charges.205,225

A single point charge ξ0 = 4πε0εmRV is placed at z0 = R + zts, representing a conduct-
ing sphere of radius R at constant potential V in the medium with εm and with the
center positioned atR+zts from the lower half-space, see also �gures. 4.3 and 4.18. The
dielectric material εs is modeled with an in�nite thickness where the metallic back
contact resides at z → −∞. In practice, this approximation is usually ful�lled as the
sample thickness is much larger compared to the sphere radius R and the tip-sample
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Figure 4.18: Geometry of the sphere-dielectric system including the positions of the
image charges.

separation zts. Furthermore, and without loss of generality, the potential can be set to
ground at this back electrode.
While the boundary condition at the sphere is ful�lled with the point charge ξ0, the
boundary condition at the dielectric boundary is not. The latter can be corrected by
placing an image charge

ξ ′0 = − βξ0 at z ′0 = −z0 (4.52)

and x = 0,y = 0. The image charges series {ξi } and {ξ ′i } de�ne the electrostatic po-
tential in the upper half-space (above the sample, at z ≥ 0). The electrostatic potential
at z < 0 is given from placing an image charge of magnitude

ξ ′′0 = ξ0 − ξ ′0 = (1 + β)ξ0 at z ′′0 = z0 (4.53)

in the upper half-space. Now the image charge ξ ′0 violates the boundary condition
on the sphere, which can again be �xed by placing according image charges. The
concept of in�nite charge series relies on an alternating correction of the two boundary
conditions, whereby the in�nite series ful�lls all boundary conditions.
The in�nite series of image charges continues with

ξ1 =
R

2(R + zts)βξ0 at z1 = R + zts − R2

2(R + zts) , (4.54)

ful�lling the boundary condition at the sphere for ξ ′0. The series of image charges
ξi , ξ ′i and ξ ′′i is then continued to alternatively ful�ll the boundary conditions at the
sphere and at the dielectric boundary. The magnitudes ξi and positions zi of these
image charges placed inside the sphere are given by the following recursive equations
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(for i > 0)

zi = z0 − R2

z0 + zi−1
with z0 = R + zts (4.55)

ξi =
R

z0 + zi−1
βξi−1 with ξ0 = 4πε0εmRV . (4.56)

This charge series is accompanied by two further image charge series, namely ξ ′i and
ξ ′′i according to

z ′i = −zi , (4.57)
ξ ′i = −βξi , (4.58)
z ′′i = zi , (4.59)
ξ ′′i = (1 + β)ξi . (4.60)

Using the series of these charges, the potential Φvoid for both half-spaces follows
directly from the superposition of the point charge potentials, namely

Φvoid (r) = 1
4πε0εm

∞∑
i=0

[
ξi√

x2 + y2 + (zi − z)2
+

ξ ′i√
x2 + y2 + (z ′i − z)2

]
(for z ≥ 0)

(4.61)

for the upper half-space and

Φvoid (r) = 1
4πε0εs

∞∑
i=0

ξ ′′i√
x2 + y2 + (z ′′i − z)2

(for z < 0) (4.62)

for the lower half-space. The capacitanceCvoid of the system is given by the sum over
all image charges ξi divided by the tip voltage V :

Cvoid =
1
V

∞∑
i=0

ξi . (4.63)

As the magnitudes of the image charges converge quickly to zero, it is practical to
only consider a �nite number of terms. Since the positions of the charges converge
quickly, the high-index elements can furthermore be represented by a single charge
holding the sum of the remaining in�nite charge series.202,205

For all calculations shown within this section, we truncated the in�nite image charge
series after 100 image charges and consider the additional single charge holding the
sum of the remaining charges in the series.202,205 After calculating the normalized
electric potential and the capacitance, we numerically determined the derivatives
needed for computing the weight functions in equations 4.46 and 4.47 using a central
�nite di�erence scheme of second order.
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4.2.6 Conclusions and Outlook

In this section, we discussed the KPFM signal arising from charge distributions that
represent charged adsorbates such as atoms or molecules on surfaces. As tip-sample
system we considered a spherical tip surrounded by either vacuum, air, or liquid above
either a conductive or dielectric sample. The KPFM signal of a single point charge,
a pair of charges (dipole), a charged island and a layer of charges was calculated
by convolution of the respective charge distributions with the weight function for
charges.
For a single point charge we discussed lateral and vertical images and pro�les of the
KPFM signal. Interestingly, on dielectric samples, the KPFM signal arising from a
single positive point charge can be positive or negative, depending on the dielectric
permittivities of medium and sample. In some cases, the sign even depends on the
tip-sample distance. This demonstrates that knowledge of the weight function for
charges and the tip-sample distance is crucial, even for a qualitative interpretation of
charges beneath the tip. Furthermore, the quantitative value of the obtained KPFM
signal depends on the oscillation amplitude of the probe tip.
We provided means to quantify the lateral resolution of KPFM. For the spherical tip
model we used here, two charges can only be resolved if their distance is at least in
the range of the tip radius.
We considered two charges of equal magnitude but di�erent sign, i.e. dipoles. Consid-
ering a sample in vacuum and air, a vertical dipole produces a KPFM signal with the
same sign as its upper point charge. Only dipoles that are oriented horizontally on
the surface can be clearly di�erentiated from a single point charge, since the sign of
the KPFM signal inverts depending on the lateral position of the tip.
We compared the KPFM signal generated by an island of charges for di�erent island
sizes. Our analysis revealed that the KPFM signal does not converge with respect to the
island size when considering dielectric samples. In case of dielectric samples, charges
can signi�cantly contribute to the KPFM signal, even if they are far away (in the
range of mm) from the tip. Therefore, the KPFM signal obtained for dielectric samples
that are covered with a layer of charges depends on the sample size. In contrast, on
conductive samples, the charges that contribute to the KPFM signal are more locally
con�ned within several tens of nanometers, since here the KPFM signal converges.
With this discussion of the KPFM weight function for charges, we aim for a coherent
understanding of the KPFM signal generation to enable KPFM data interpretation.
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4.3 Open-loop KPFM at mineral–water interfaces

In sections 4.3.1 to 4.3.3 I summarize selected aspects of my work “Probing
charges on an insulating surface in liquids” (supervised by A. Kühnle, Johannes
Gutenberg-Universität Mainz, reference 227), which I conducted as part of the
quali�cation as a fast-track doctorate candidate.

4.3.1 Introduction

KPFM at solid–liquid interfaces (including mineral–water interfaces) is a recently in-
troduced �eld of research.105,106,108,220 The aim of KPFM at solid–liquid interfaces is
to speci�cally probe electrostatic interactions, which arise from, e.g., the presence of
ions and, consequently, the accumulation of surface charges.61,62 Since the method is
based on applying a voltage between tip and sample, the presence of a liquid adds two
major di�culties, compared to KPFM measurements in air and vacuum:105 Applying
a voltage can cause electrochemical reactions, i.e., an electron transfer from the elec-
trodes where the voltage is applied to molecular species in the liquid. Thereby, the
composition of the solid–liquid interface is modi�ed by the measurement. Moreover,
if the liquid contains mobile ions, the ions can migrate in the electric �eld resulting
from the applied voltage.108 Again, this process can modify the composition of the
solid–liquid interface.
For the minerals studied within this thesis, electrochemical reactions are not likely
to occur, since the (non-conducting) minerals provide su�cient electrical insulation.
For limiting the migration of ions in the electric �eld, it has been proposed105,214 to
only apply an alternating voltage to the tip, and no static bias voltage. Thereby, ions
are expected to be only periodically displaced and not statically into a �xed direction.

4.3.2 Implementation

Based on the work by Kobayashi et al.,105 I extended the setup described in section 3.2
to also perform open-loop AM-KPFM experiments at the solid–liquid interface. For
this I added electrical contacts to both the cantilever (left part of �gure 4.19) and the
backside of the mineral samples (right part of �gure 4.19 b). The alternating voltage
applied between tip and cantilever (with frequency νes and an amplitude within the
order of several volts) was generated by the HF2LI (described in detail in section 3.2.2).
In some cases, this voltage was additionally ampli�ed by a high-voltage ampli�er
(Model 7500, Krohn-Hite, USA) to achieve detectable signals. Both amplitude and phase
shift of the �rst harmonic (at νes) and at the second harmonic (at 2νes) were extracted
from the de�ection signal using two lock-in ampli�ers within the HF2LI. The data
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Figure 4.19: Cantilever holder (left) and sample holder (right) with a magnesite
sample above a gold-coated metal plate. Both the cantilever and the backside contact
to the sample allow to be electrically contacted. Images taken from reference 227.

acquisition was performed using the HF2LI in combination with the synchronization
with respect to the scan movement as described in section 3.2.2.

4.3.3 Transfer function measurements

As detailed in section 4.1.4 on page 110, the measurement of spectral components of
the tip-sample force requires the knowledge on the transfer function of the resonator.
According to section 2.1.6, the transfer function of the resonator is modeled as the
transfer function of the harmonic oscillator. In �gure 4.20, I summarize results for the
cantilever transfer function measurement for two systems: A magnesite sample in air
(left) and a magnesite sample in pure water (right). For both cases I present the ampli-
tude (a, b) and phase shift (c, d) at the �rst harmonic resulting from the electrostatic
cantilever excitation used in KPFM. I compare the measured amplitude and phase shift
(solid black lines) with the gain function and phase shift function of the harmonic
oscillator (solid red lines) that have been �tted to the data. For the measurement in
air, the cantilever transfer function �ts well to the transfer function of the harmonic
oscillator (�gure 4.19 a, c). This is not the case for the measurement in liquid water
(b, d). Here, in sharp contrast to the measurement in air, additional peaks appear in
both the amplitude and phase shift. In reference 227 I demonstrate that the measured
transfer function with the additional peaks resembles the transfer function obtained
during piezoelectric cantilever excitation. Piezoelectric cantilever excitation produces
additional peaks due to the excitation of additional resonances within the setup, in
particular the liquid cell (�gure 4.19 a).228 I therefore speculated that the additional
peaks also result from the excitation of unwanted additional resonances.227 Impor-
tantly, the peaks render quantitative open-loop KPFM measurements on insulating
samples in water challenging, since the measurement is obviously not described by
the model in the previous sections.
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Figure 4.20: Experimental measurement of the transfer function of the cantilever on
magnesite in air (�rst column) and in water (second column) with comparisons of the
transfer function expected for a harmonic oscillator. An additional phase shift o�set
was included in the �t of the phase shift function. Data is taken from reference 227,
in which also data acquisition parameters and data processing are detailed.

4.3.4 Demonstration of KPFM data acquisition

To demonstrate that the setup is – in principle – capable of recording KPFM data, I
present the amplitude and phase shift at the �rst and second harmonic (νes and 2νes)
obtained during high-resolution 3D AFM measurements on dolomite (10.4) immersed
in pure water. The dolomite sample preparation is described in section 3.3. A can-
tilever of type PPP-NCHAuD was used.5 In this measurement, the eigenfrequency of
the cantilever was approximately 120 kHz, the electrostatic excitation frequency was
set to νes = 150 kHz and the electrostatic excitation voltage amplitude was approxi-
mately 100 V. For reference, �gure 4.21 a shows the excitation frequency νexc, which
reveals the checkerboard-like pattern discussed in section 3.3. Amplitude and phase
shift of the �rst and second electrostatic harmonics are shown in b–e. Data in each
channel is constant when the tip is away from the sample. Only in the distance range
where the checkerboard-like pattern is observed in the excitation frequency data (a),

5Cantilevers of this type are made of (highly-doped) silicon. Therefore, they are not metallic conductors
as assumed in the theoretic model presented before.
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Figure 4.21: Experimental measurement of the excitation frequency (a) and the four
additional channels necessary for performing quantitative open-loop KPFM. The data
was collected at the dolomite–water interface.

lateral and vertical contrast variations can be recognized in the KPFM data channels
(b–e). Due to the additional peaks in the electrostatic excitation spectrum, the trans-
fer function of the system is not described by the transfer function of the harmonic
oscillator. It is, consequently, not feasible to further process the data according to the
analysis for the open-loop methods presented in section 4.1. From the presented data,
it is therefore not possible to determine whether the observed contrast in b–e is the
result of a voltage-dependent contribution to the tip-sample force or not. The data
thereby demonstrates the necessity of the quantitative consideration of the cantilever
transfer function.

4.3.5 Conclusion

I summarized in this chapter experiments on open-loop AM-KPFM at the solid–liquid
interface. The electrostatic excitation of the cantilever was achieved by applying a
voltage between cantilever and a back contact to dielectric mineral samples. In air,
the response of the cantilever was described by the transfer function of the harmonic
oscillator. In sharp contrast, the measurement of the cantilever transfer function in
liquid water yielded additional peaks in the electrostatic excitation spectra. This ex-
periment demonstrates that KPFM at mineral–water interfaces introduces signi�cant
challenges. To encourage further developments in this exciting research �eld, I demon-
strate that open-loop AM-KPFM can easily be combined with 3D AFM measurements
by using the highly-�exible data acquisition system described in section 3.2.
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This thesis reports on atomic-scale insights into the structure of the interface between
carbonate minerals and liquid water. The fundamental and atomistic understanding
of mineral–water interfaces is relevant in industrial processes and in diverse �elds of
research, such as geology and biomineralization.
Three-dimensional dynamic AFM is the ideal tool to investigate mineral–water inter-
faces in real space. First, I present a unifying theory for the quantitative analysis of
AFM data by deriving the three AFM equations. In contrast to previous works, this
analysis is not speci�cally geared towards individual AFM modes. Instead, the theory
allows for a quantitative analysis in all commonly-used AFM modes, such as the AM
and FM mode. Moreover, an interactive virtual AFM is described in this thesis. The
virtual AFM allows to assess the validity of the harmonic approximation (the only
approximation used for deriving the three AFM equations).
In this thesis, the highly-demanding data acquisition for quantitative AFM became pos-
sible by the development of a fast and �exible data acquisition system. For a full quan-
titative dynamic AFM measurement, �ve data channels need to be recorded in parallel.
When additionally combining the measurement with KPFM, even more data channels
are necessary. This is beyond the capabilities of most commercially-available AFM
controllers. The system presented in this thesis allows to record up to 20 data channels
in parallel and works in combination with many available AFM controllers. Moreover,
I describe the implementation of 3D AFM mapping using a custom-programmed mi-
crocontroller. By combining the data acquisition system with 3D mapping, I obtain
3D AFM datasets of mineral–water interfaces with atomic resolution.
By using both, the quantitative AFM analysis and the 3D AFM setup, I investigate
the hydration structure at the aqueous interface of carbonate minerals. In particular,
I focus on the most stable (10.4) surface of the minerals calcite, dolomite and magne-
site. In all cases, water forms a highly-ordered checkerboard-like arrangement at the
interface, which agrees well with the water density obtained from MD simulations.
On the dolomite surface, which contains both calcium and magnesium cations, the
equally-charged cations exhibit a di�erent hydration structure: Above magnesium
ions, water is shifted more closely to the surface compared to calcium ions. This sub-
tle di�erence in the hydration structure allows for their chemical identi�cation. So
far, the identi�cation of chemically-alike atoms (i.e., with same net charge) has only
been achieved in the well-controlled ultra-high vacuum environment. Transferring
this capability to solid–liquid interfaces signi�cantly advances the 3D AFM technique
for investigating a wide range of application-relevant phenomena (such as corrosion,

149



5 Summary

catalysis and friction) at the atomic scale.
In the vicinity of point defects at the calcite–water interface, I reveal minute distor-
tions of the hydration structure. As point defects are often critical for the dissolution
and growth of minerals, these experiments can provide valuable input for further ex-
perimental and theoretical studies on the detailed dissolution and growth mechanism.
Moreover, I determine that the checkerboard-like water structure at the calcite–water
interface is consistently obtained in a wide range of pH and ionic strength. Finally, I
provide 3D AFM results at the calcite–ethanol interface. Due to its hydrocarbon chain
and the hydroxyl group, the ethanol molecules act as a simple model for more com-
plex organic molecules relevant during, e.g., biomineralization processes. The data
I present reveals experimental evidence for the presence of an ordered �rst layer of
ethanol molecules at the calcite (10.4) surface. Simultaneously, the data reveal that this
�rst layer is followed by additional layers with signi�cantly less-pronounced lateral
order.
In this thesis, a comprehensive theory for KPFM is provided, with a particular focus
on open-loop AM-KPFM at mineral–water interfaces. Starting from a previously-
introduced electrostatic model, the KPFM signal in all KPFM modes is quantitatively
derived. Similar to the quantitative AFM theory, also the KPFM signal can be gener-
alized: Regardless of the operation mode, a weighted sum over local charges in the
tip-sample system is obtained. I provide a detailed description of the weight function
for charges, which is central for quantitatively understanding KPFM. By considering a
simple, yet relevant tip-sample-model, I reveal that positive charges can contribute ei-
ther positively or negatively to the KPFM signal – depending on the dielectric medium
surrounding the tip. This demonstrates that even for determining the sign of a charge
distribution, a careful consideration of the weight function for charges is necessary. As
an outlook, I discuss critical checks necessary for performing quantitative open-loop
AM-KPFM experiments at mineral–water interfaces.
In summary, this work constitutes a comprehensive study on AFM and KPFM – both
with respect to a quantitative data analysis and technical implementation. The high-
resolution insights into the hydration structure of mineral–water interfaces presented
in this thesis allow for chemical identi�cation of individual surface atoms and even
the investigation of single point defects.
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