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Zusammenfassung

Die Forschungsfelder der magnetischen Skyrmionen und Antiferromagneten haben
in den letzten Jahren, unabhängig voneinander, wesentliche Fortschritte erzielt.
Skyrmionen sind kleine teilchenartige Objekte, die effizient mit elektrischen Strömen
bewegt und dicht aneinander gepackt werden können, und Potential für neuartige
Datenspeichergeräte, sowie Logikbausteine aufweisen. Antiferromagneten, mag-
netisch geordnete Materialien mit kompensierter Gesamtmagnetisierung, besitzen
mehrere Vorteile gegenüber Ferromagneten, welche weit verbreitet in der Spintronik
sind, wie z.B., schnellere Magnetisierungsdynamik, Unempfindlichkeit gegenüber ex-
ternen magnetischen Störungen und Überfluss in der Natur.

In dieser Arbeit untersuchen wir die dynamischen Eigenschaften von Skyrmionen
in Antiferromagneten mit zwei kollinearen Untergittern. Als erstes erweitern wir die
phänomenologische Theorie, die die Wechselwirkung zwischen elektrischen Strömen
und antiferromagnetischen Momente beschreibt, um Drehmomente die durch Spin-
Bahn-Wechselwirkungseffekte induziert werden zu berücksichtigen (die so-genannten

”
spin-orbit torques“), und leiten eine Bewegungsgleichung für das antiferromag-

netische Skyrmion her. Unsere analytischen Ergebnisse stimmen mit den ersten
veröffentlichen numerischen Simulationen überein.

Als nächstes analysieren wir die intrinsische Dynamik von antiferromagnetis-
chen Skyrmionen, die in dünnen Nanoscheiben eingesperrt sind. Wir entwickeln
einen mikromagnetischen Code, der auf die Finite-Elemente-Methode basiert und
sowohl Ferromagneten, als auch Antiferromagneten simulieren kann. Der Code
beschreibt Proben mit gekrümmter Geometrie genau, findet den nächstliegenden
Gleichgewichtszustand von dem vorgegebenen Modell und berechnet die intrinsis-
chen Eigenmoden eines Gleichgewichtszustands. Wir finden skyrmionische
Grundzustände ohne externe Magnetfelder, in Übereinstimmung mit theoretischen
Voraussagen. Wir beobachten die gleiche Art von Anregungen in ferromagnetischen
und antiferromagnetischen Skyrmionen: gyrotropische,

”
atmende“ und deformierte

Moden und diskutieren ihre Unterschiede.
Theoretische Studien haben bereits die Existenz und Stabilität von antiferromag-

netischen Skyrmionen prognostiziert; dennoch hat es bisher keine experimentellen
Beobachtungen gegeben. Das Spektrum des eingesperrten antiferromagnetischen
Skyrmion weist charakteristische Merkmale auf, die es von dem uniform-
magnetisierten Zustand unterscheiden, und könnte wichtige Hinweise in der experi-
mentellen Suche nach den antiferromagnetischen Skyrmion liefern.
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Abstract

Research in the fields of magnetic skyrmions and antiferromagnets, independently
from each other, has been gaining momentum in recent years. Skyrmions are small
particle-like objects that can be moved efficiently with electric currents and packed
densely together, and hold potential as candidates for novel information storage and
logic devices. Antiferromagnets, magnetically ordered materials with compensating
magnetization, possess a number of advantages over the widely used in the field
of spintronics ferromagnets, such as faster magnetization dynamics, robustness to
external magnetic perturbations and abundance in nature.

In this work, we investigate the dynamics of skyrmions in collinear two-sublattice
antiferromagnets. First, we extend the phenomenological theory that describes
the coupling of antiferromagnetic moments with electric currents to incorporate
spin-orbit torques, and derive an equation of motion for the skyrmion within the
collective-coordinate approach. Our analytical results are consistent with initial
numerical simulations reported recently.

Next, we study the intrinsic dynamics of antiferromagnetic skyrmions confined
in thin nanodisks. We develop a finite-element micromagnetic code that is able to
simulate both ferromagnets and antiferromagnets. The code describes well curved
geometries, finds the nearest equilibrium state of a given model and calculates the
intrinsic eigenmodes of a specified equilibrium state. We find skyrmion ground-
states at zero external field in both ferromagnets and antiferromagnets, consistent
with theoretical predictions. Further, we observe the same types of excitations of
both ferromagnetic and antiferromagnetic skyrmions – gyrotropic, breathing and
deformed-code modes – and discuss their differences.

Theoretical studies have already predicted the existence and stability of antifer-
romagnetic skyrmions; however, there has not been an experimental observation yet.
The spectrum of the confined antiferromagnetic skyrmion shows characteristic fea-
tures that distinguish it from the spectrum of the uniformly magnetized state, which
could provide important clues in the experimental pursuit of the antiferromagnetic
skyrmion.
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Chapter 1

Introduction

Magnetic materials, and especially ferromagnets, have become an indispensable part
of modern technology. The orientation of magnetic moments1 along a preferred di-
rection is well suited for storing binary information in novel data storage media,
whereas the manipulation of magnetic moments, e.g., by electric currents, provides
a platform for data processing and the creation of logic devices. The implications
of this interplay of the charge and spin degrees of freedom, together with the funda-
mental questions related to it, were the inception of the now well-established field
of spintronics within the last few decades [1, 2].

Conventional technology relies heavily on the manipulation of semiconductors
and magnetic materials with electric currents. The high and constantly increasing
demand of processing power due to advancements in electronics and, especially, the
role of the internet, has so far been met. This process has been described well by
the observation known as Moore’s law, stating that roughly every eighteen months
the amount of transistors on an integrated circuit increases by a factor of two.
However, this trend cannot be expected to continue indefinitely: as the transistors
become smaller, eventually, the heat generated by the charge currents will impede
the operation of the device [3, 4]. Spintronics offers a way to circumvent this problem
by employing the spin degree of freedom, which features a lower power consumption
[1, 4].

The current-induced manipulation of magnetic moments and textures has proved
to be key for the rapid growth of the spintronics field. The discovery of magnetore-
sistive effects, such as the giant magnetoresistance that has found application in the
hard-disk drive technology, gave the initial push in the field; it is now succeeded
by the current-induced torque effects that can manipulate magnetic moments, e.g.,
based on the conservation of angular momentum [5, 6]. Next-generation devices
using these effects, like the magnetic random access memory, have already been
proposed [6, 7]. The latter employs the current-induced motion of domain walls in
thin nanowires but, even though it possesses advantages over hard-disk drive tech-
nology, the need for high currents and sample-defects issues prevent its widespread
application [8].

1Here, we use the terms magnetic moment and magnetization interchangeably. To be precise,
the former is directly related to an individual electron spin, whereas the latter represents the
average spin of large number of electrons.
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A promising alternative to domain walls could be the recently discovered
skyrmions, as their properties make them very appealing for novel spintronic devices
[8]. Originally, skyrmions were predicted by the nuclear physicist Tony Skyrme as
topologically stable particle-like solutions of nonlinear field models [9]. Since then,
this concept has found applications in many diverse fields of physics, ranging from
elementary particles to areas of condensed-matter, such as liquid crystals, quantum
Hall systems and Bose-Einstein condensates [10].

In magnetic systems, skyrmions are stable chiral textures with a whirlpool-like
winding of the magnetic moments2, such that the unit sphere is covered entirely
once. This is captured by the topological number, which takes the integer values
Q = ±1. Here, the sign is related to the orientation of the magnetic moment at the
center of the skyrmion.

Magnetic skyrmions were first predicted to appear as stable structures in chiral
magnets theoretically [10, 11, 12, 13]. The breakthrough came with the first experi-
mental observation of skyrmions in bulk systems [14, 15] and thin films [16] – where
the skyrmions appeared in a lattice (henceforth called skyrmion lattices, or skyrmion
crystals) – and, in particular, with the experimental evidence that skyrmion can be
moved with much lower electric currents than domain walls [17]. Crucial for the
stability of skyrmions in these systems is the bulk Dzyaloshinskii-Moriya interac-
tion, which appears in noncentrosymmetric materials (where inversion symmetry
is broken in the crystal structure) with high spin-orbit coupling [10, 18, 19, 20].
Importantly, in these experimental findings an external magnetic field applied in
the out-of-plane direction was necessary for the skyrmion stabilization. As a con-
sequence, the discovered skyrmions exist only in a narrow area of these materials’
phase diagram [8, 14], which would limit their application in devices.

The skyrmion lattice phase was found to extend over a larger region in the phase
diagram in thin films samples, compared to their bulk counterparts [10]. The first
experimental observation of skyrmions at the interfaces of ultrathin magnetic films
(less than one nm) with heavy metals showed further that the skyrmion phase is the
groundstate of the system and an external field is not necessary for its stabilization
[21]. The Dzyaloshinskii-Moriya interactions responsible for the stabilization of these
skyrmions are due to the broken inversion symmetry at the interface, rather than
in the crystal, and are therefore referred to as interfacial.

These two types of Dzyaloshinskii-Moriya interactions lead to skyrmions with
different profiles. In all cases, the magnetic moments at the center and the outskirts
of the skyrmions are aligned in opposite directions and rotate in the intermediate
region only as a function of the radial coordinate. Bulk Dzyaloshinskii-Moriya inter-
actions induce rotation of the spins in the plane perpendicular to the radial direction,
whereas the interfacial type leads to rotation of the spin along the radius [8, 20].
The resulting skyrmions are labelled as Bloch and Néel, respectively, following the
convention used for labelling domain walls (see figure 1.1).

Shortly after the experimental discovery, investigations have shown that mag-
netic skyrmions possess remarkable properties [10, 20], such as a very small size [21],
the topological Hall effect [15], emergent electrodynamics [22], low threshold for the
electric-current-induced motion and the presence of a Magnus force [17, 23]. These

2Here, the adjective chiral means that the winding of the spins occurs in a fixed direction.
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(a) (b)

Figure 1.1: Schematic representation of the (a) Néel and (b) Bloch skyrmions.

findings have revealed a high potential of skyrmions for low-energy, nonvolatile,
ultradense memory and logic devices [8, 24].

Follow-up studies demonstrated the possibility to perform control operations,
such as creation, manipulation and annihilation of isolated skyrmions stabilized
by Dzyaloshinskii-Moriya interactions in perpendicularly magnetized thin magnetic
films, which are essential for technological applications [20]. Theoretical predic-
tions of the stability of such isolated skyrmions [24] were supported by numerical
simulations, showing the creation [25], stability [25, 26], as well as manipulation
by electric currents [25, 27] and, importantly, further supported by experimental
demonstrations of the creation [28], manipulation [29] and annihilation [28] of iso-
lated skyrmions.

Generally, thin films have the advantage that material parameters like the mag-
netic anisotropy, or Dzyaloshinskii-Moriya interactions can be adjusted experimen-
tally [25, 29], which allows for tuning the skyrmion size. Numerical simulations
showed potential for employing skyrmions in racetrack memories [25], as well as in
skyrmion-based logic gates [30]. The experimental observation of stable skyrmions
in thin films at room temperature and zero magnetic field [20, 29, 31], as well as the
demonstration of current-induced motion of trains of skyrmions on a racetrack at
high speeds – comparable to the ones in contemporary hard-disk drives – presented
another important step towards bringing skyrmions closer to applications [29, 32].

Another important field of skyrmion research are excitations that involve the
skyrmions’ internal degrees of freedom. Generally, current-induced skyrmion mo-
tion can be treated by approximating the skyrmion as a rigid object. However, it
was shown that the rigid assumption is not always justified and the skyrmion can
deform as a result of the electric currents [27, 33]. This shows the importance of
understanding how skyrmions can deform in response to external perturbations.

Numerical simulations have identified a number of different internal modes, such
as the gyrotropic, uniform breathing and polygon-like distortion modes [34, 35, 36,
37], which have only partly been experimentally verified [38, 39, 40, 41]. As there is
no consensus regarding the skyrmion excitation modes yet, they constitute an open
field where research is being focused.

The internal skyrmion modes have been shown to produce distinct features in the
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power spectrum, which are different from features of the uniform state and can be
used to identify skyrmion states in experiment [36]. Further, recent proposals employ
such internal modes, e.g., for novel microwave detectors with high sensitivities [20,
42] or for spin-torque nano-oscillators driven by lower electric current densities [43],
and show that the skyrmion excitations are an intriguing field of research also from
the technological point of view.

Up until recently, the majority of the spintronics research with a focus on appli-
cations has been limited to ferromagnets. However, antiferromagnets – magnetically
ordered materials with compensated magnetization – possess properties that make
them appealing as potential alternatives of ferromagnets and as next generation data
storage devices [6, 44]. Antiferromagnets are more robust against magnetic pertur-
bations due to their insensitivity to external magnetic fields; densely arranged anti-
ferromagnetic devices would not interfere with each other due to the lack of magnetic
stray fields; they operate on faster timescales, which could enable ultrafast informa-
tion processing; antiferromagnetic metals, alloys and semiconductors are not limited
to combinations of only a few elements like Fe, Co, Ni and occur more frequently
than their ferromagnetic counterparts [44, 45].

On the other hand, the insensitivity to external magnetic fields makes anti-
ferromagnets also much harder to manipulate and control [44]. Recently, several
breakthroughs were achieved in overcoming this obstacle. The anisotropic magne-
toresistance effect was proposed [46] and utilized [47] to electrically detect antifer-
romagnetically ordered states. Another important step towards antiferromagnetic
spintronics was the prediction [48] and subsequent observation [49] of Néel spin-orbit
torques, in a certain class of antiferromagnets, that can electrically manipulate the
antiferromagnetic Néel vector.

Following the developments in the field of ferromagnetic skyrmions and their
potential, increasing attention has been given to the study of antiferromagnetic
skyrmions. Theoretical predictions and arguments for the stability of antiferro-
magnetic skyrmions existed already before the experimental observation of their
ferromagnetic counterparts [13, 50, 51]. Recently, numerical simulations have em-
ployed existing micromagnetic software for ferromagnets to solve the antiferromag-
netic atomistic Heisenberg model [52, 53, 54]. These studies have focused on the
thermal and current-induced motion of the antiferromagnetic skyrmion by imple-
menting damping and current-induced torques in the same spirit as for ferromag-
nets. We have presented an analytical treatment of the current-induced skyrmion
motion based on the phenomenological approach [55], which will be discussed in
detail in the present work. Numerical Monte Carlo simulations of the Heisenberg
model have further found stable isolated antiferromagnetic skyrmions even at higher
temperatures in finite systems [56], as well as antiferromagnetic skyrmion crystals
[57]. Ab-initio calculations were used to predict the existence of a topological spin-
Hall effect in synthetic antiferromagnetic skyrmions [58] and crystals [57]. Even
so, there has been no experimental observation of antiferromagnetic skyrmions up
to date, possibly due to the challenges associated with detecting antiferromagnetic
order in general, and chiral antiferromagnetic textures in particular [44, 58].

In this work, we focus our attention on gaining more insights on the dynamics
of the elusive antiferromagnetic skyrmion. First, we apply the phenomenological
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approach – used in recent works to study the magnetization dynamics of antiferro-
magnets under the influence of electric currents [59, 60, 61, 62] – to the skyrmion
state of a collinear two-sublattice antiferromagnet. Importantly, we take into ac-
count the effect of the inversion symmetry breaking, which induces the interfacial
Dzyaloshinskii-Moriya interactions. Starting from general principles and symmetry
considerations, we construct the equations describing the macroscopic antiferro-
magnetic magnetization dynamics in the presence of a DC current and an external
magnetic field. In particular, we

(i) take into account the effect of the Dzyaloshinskii-Moriya interactions corre-
sponding to a particular symmetry class of magnetic materials;

(ii) incorporate phenomenologically the spin-orbit torques of an antiferromagnetic
system, and

(iii) study the role of the external magnetic field and its effect on the skyrmion
motion.

We demonstrate that the latter has, in fact, no effect on the skyrmion motion. It
does, however, affect its shape.

Our main result for the antiferromagnetic skyrmion under the influence of electric
currents is an equation of motion for the position R of the skyrmion in the thin film
given by

meffR̈ = −ΓṘ + ∆j. (1.1)

Here, meff is the effective skyrmion mass, and Γ a friction constant. The external
magnetic field does not appear in the equation. The dissipative spin-orbit and spin-
transfer torques (described by ∆) lead to a longitudinal current-induced force on the
skyrmion. In figure 1.2 we illustrate the resulting skyrmion motion. We emphasize
that we included both homogeneous and inhomogeneous current-induced torques in
our analysis, thus obtaining a more general form of the equation of motion than
considered in references [52, 53].

Antiferromagnetic skyrmion motion 7

Here we focus on a rigid magnetic skyrmion, rewrite the equations of motion by using

the collective coordinate approach and obtain an estimate for the skyrmion velocity as

a result of the electric currents.

3.1. Collective coordinates

Experience shows that the complex dynamics of magnetic textures in ferromagnets and

antiferromagnets can often be described by only a few degrees of freedom. [?, 14] The

approach necessitates the choice of a finite set of collective coordinates ⇠i(t) which are

used to specify the time evolution of the Néel order parameter n(r, t) = n(r, {⇠i(t)}).

In particular, we use

ṅ =
X

i

@n

@⇠i
⇠̇i,

n̈ =
X

i

@n

@⇠i
⇠̈i + O(⇠̇2

i ), (9)

where the second term in the last equation is neglected because it is quadratic in the

driving forces [14].

Here we apply the results for the general magnetization dynamics to a rigid

antiferromagnetic skyrmion to analyze its current-induced motion. We use the ansatz

n(r, t) = nsk(r � R(t)), where nsk(r) is the static profile of an isolated skyrmion and

R(t) is the skyrmion position. As collective coordinates we take {⇠i} = {Rx, Ry}. After

multiplying (8) by @n/@⇠↵ for ↵ = x, y and integrating over space, the equation of

motion transforms to

me↵R̈ = ��Ṙ + he↵

⇣
ẑ ⇥ Ṙ

⌘
+ �adj + �h (ẑ ⇥ j) . (10)

The coe�cients read

me↵ =
4⇡x0

�2�

he↵ ' ⇡hx0

��
(I31 + I32)

� ' �4⇡G2x0

�

�h ' ⇡C1x
2
0h

2��
(I4 + I5 + I6 + I7)

�ad ' ⇡�x0

�
+
⇡C2x

2
0

2�
(I6 + I7) (11)

where � represents the friction term and he↵ ,�h denote the transverse terms that

originate from the external magnetic field (similar to a Lorentz force). The constants

Ij are dimensionless integrals determined by the skyrmion profile and we discuss them

later. The appearance of the e↵ective mass me↵ is the main di↵erence compared to

ferromagnetic skyrmion motion resulting from the di↵erent nature of the magnetization

dynamics in antiferromagnets.

Making sure the constraints are fulfilled

We need to make sure that n2 = 1 and n · M = 0.

h ⇥ Ṙ (55)

vsk (56)

x (57)

y (58)

z (59)

Obtaining the skyrmion velocity

Collective coordinate approach, as done previously

The idea is to parametrize the Néel order parameter by collective coordinate ⇠i

n(t) = n
⇣
{⇠i(t)}

⌘
(60)

At the same time, however, the Néel vector depends on the spherical angles n(t) =

n
⇣
✓(t),�

⌘
Which one exactly of the spherical angles contains the time-dependence? Then

ṅ =
X

j

@n

@⇠j
⇠̇j and n̈ '

X

j

@n

@⇠j
⇠̈j (61)

Subsequently multiply the whole equation by @n
@⇠j

· . . . and integrate over space. We choose

the skyrmion center coordinates ⇠i = Rx(t), Ry(t).

Word of caution regarding the derivatives @n
@⇠i

In all the subsequent calculations, I have equated

@n

@⇠i
=

@n

@x
(62)

for i = x (⇠x = Rx)and the equivalent for i = y (⇠y = Ry). However this is only true for
the isolated skyrmion, that is centered at the origin nsk(r). Once the skyrmion is set in
motion, then the actual Neel vector becomes n = n(r � R(t)). Consequently, the partial
derivatives need to be replaced by

@n

@⇠i
=

@n(r � R(t))

@⇠i
= �@nsk(r)

@x
(63)

for i = x and the equivalent for i = y. Thus, all the partial derivatives of the skyrmion
Neel vector need to be replaced by a negative sign in the subsequent section.
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Figure 1.2: Schematic representation of the skyrmion motion in an antiferromagnet
driven by an electric current j ‖ x̂ and an external magnetic field B ‖ ẑ, as described
by equation (1.1). The friction force is denoted by ΓṘ and the longitudinal current-
induced force by ∆j. The combination of these forces leads to a skyrmion motion
with the velocity vsk. For simplicity, a static skyrmion shape is depicted, without
taking into account the shape changes that the magnetic field and the electric current
induce.
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Next, we perform numerical simulations to investigate the internal modes of
an antiferromagnetic skyrmion confined in a thin film nanodisk. The resonance
frequencies associated with these internal modes – similar to the distinct features of
the ferromagnetic skyrmion [36] – could provide a gateway towards an experimental
observation of antiferromagnetic skyrmions.

We develop a micromagnetic code that implements the phenomenological model
described above in the absence of electric currents, for both ferromagnets and an-
tiferromagnets3. It is based on the finite-element method, which has the advantage
of describing samples of arbitrary geometry – such as circular nanodisks – accu-
rately and reliably. The code consists of two parts: a relaxation solver that finds
the nearest equilibrium state of the micromagnetic model, and an eigenspectrum
solver, which calculates the frequencies and corresponding eigenvectors of a given
equilibrium texture. In particular, we

(i) find an antiferromagnetic groundstate skyrmion at zero external field with a
profile that is consistent with theoretical predictions [13];

(ii) calculate the eigenspectrum of both the ferromagnetic and antiferromagnetic
skyrmion and observe gyrotropic, deformed-core and breathing modes. We
find that the skyrmion modes in the antiferromagnet

(a) have frequencies higher than the corresponding modes in the ferromagnet
by at least an order of magnitude;

(b) come in pairs, apart from the breathing mode, in the low-frequency spec-
trum;

(c) represent rotation within the nanodisk of the skyrmion only at finite ex-
ternal fields.

The last point is illustrated schematically in figure 1.3. The differences of the anti-
ferromagnetic skyrmion modes can be traced back to the (a) enhancement of anti-
ferromagnetic magnetization dynamics due to the strong exchange interaction [44];

(a) Ferromagnet (b) Antiferromagnet

Figure 1.3: Schematic representation of the lowest-frequency confined-skyrmion
eigenmodes at zero external field. For simplicity, we show only one of the two anti-
ferromagnetic modes; the other oscillates along a different direction in-plane. When
the external field is turned on the antiferromagnetic modes begin rotating around the
nanodisk center.

3Up to date, there is no freely available micromagnetic software that can incorporate the
magnetization dynamics of an antiferromagnet.
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(b) doubling of degrees of freedom due to the presence of two magnetic sublattices;
(c) absence of preferred direction of rotation in antiferromagnets at zero magnetic
field.

This thesis is structured as follows. In chapter 2, we present the fundamen-
tals and methods that we use throughout this work. We discuss first the type of
skyrmions that we focus on in the context of other magnetic textures in section
2.1. We then present the basis of the phenomenological and collective-coordinate
approaches in sections 2.2.1 and 2.2.2, respectively, and discuss the nature of the
different current-induced torques in section 2.2.3. The numerical techniques are
presented in section 2.3. We review the finite-element method in section 2.3.1 and
discuss the basis of our code in section 2.3.2.

In chapter 3, we present the full phenomenological models for both ferromagnets
and antiferromagnets, and study their equilibrium skyrmion solutions. We review
well-known static properties of both the infinite-plane and confined ferromagnetic
skyrmion in section 3.2.2. The antiferromagnetic skyrmion properties are presented
in section 3.3.2, where – apart from reviewing the known antiferromagnetic skyrmion
profile equation – we discuss the effect of the skyrmion motion, e.g., due to electric
currents, on the skyrmion shape. Further, we investigate the confinement effects on
the static properties of an antiferromagnetic skyrmion in the same section.

In chapter 4 we compare the current-induced motion (section 4.1) and the con-
fined skyrmion eigenmodes (section 4.2) of both ferromagnets and antiferromagnets.
In section 4.1.1, we review analytically the ferromagnetic skyrmion motion driven
by electric currents via spin-transfer and spin-orbit torques. In section 4.1.2, we
present the discussion of the antiferromagnetic skyrmion current-induced motion.
In particular, we discuss the current-induced torques in antiferromagnets, derive a
closed equation for the antiferromagnetic order parameter and reformulate the re-
sult into an equation for the position of the skyrmion. The latter results have been
published in reference [55].

The confined-skyrmion dynamics are presented in section 4.2. First, we apply our
micromagnetic code to a ferromagnetic skyrmion and review its eigenspectrum in
section 4.2.2. The skyrmion excitation modes in ferromagnets have been studied on
multiple occasions; however, there has not been a treatment of the same model and
with the same methods as in this work. Therefore, our results draw a richer picture
that complements studies in the existing literature. Next, we present the eigenmode
dynamics of the antiferromagnetic skyrmion in section 4.2.3. The presentation of
the results in both sections 4.2.2 and 4.2.3 is done in two steps: first, a numerical
simulation is performed to find the skyrmion groundstate in both systems, and then
the eigenspectrum of each is calculated. We discuss the lowest-frequency modes
in the spectrum and study their behaviour as a function of the external field and
sample size.

In chapter 5, we present a reference for the ferromagnetic and antiferromag-
netic phenomenological models, the corresponding weak formulations relevant for
the numerical simulations and the corresponding code scripts.

Finally, a summary and conclusions of the work are presented in chapter 6.
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Chapter 2

Fundamentals

2.1 Magnetic textures and the advantages of

skyrmions

In this work, we investigate the static and dynamic properties of magnetic skyrmions,
stabilized by interfacial Dzyaloshinskii-Moriya interactions. Being topologically pro-
tected particle-like solutions of nonlinear field models, skyrmions fall under the gen-
eral category of solitons, which have been studied extensively [10, 20]. Here, we
discuss briefly the differences and advantages of skyrmions with respect to other
solitons.

In magnetic systems, stable solutions of the Landau-Lifshitz-Gilbert equations
(see section 2.2.1 below) are regarded as magnetic solitons [63]. Common examples
are domain walls (one-dimensional solitons of the kink type), vortices, bubbles and
skyrmions (two-dimensional solitons) [20].

Domain walls are topologically trivial magnetic textures and are, therefore, easier
to remove out of a system than skyrmions. Both domain walls and skyrmions can be
driven by spin-polarized currents and follow a similar equation of motion; however,
domain walls are one-dimensional objects described by the wall position coordinate
and tilting angle from the plane, whereas skyrmions are two-dimensional and are
parametrized by in-plane position coordinates [10]. Importantly, the energy of a
domain wall depends on the wall length and changes whenever a crossing (e.g., a
bifurcation) is encountered. This leads to pinning sites for domain walls, which
skyrmions can avoid. Finocchio et al. demonstrated the skyrmions can even move
around corners in complex grid structures [20], thus highlighting their technological
potential.

Vortices are easily distinguishable from skyrmions, as their magnetic moments
curl in-plane around the core in a way that only half of the unit sphere is cov-
ered. On the other hand, magnetic bubbles have a similar appearance to skyrmions
(of the Bloch type), with the magnetization vector rotating between two regions
of oppositely aligned moments. Importantly, bubbles are stabilized by the long-
ranged dipolar interactions; these are dominant in the stabilization even if weak
Dzyaloshinskii-Moriya interactions are present. As a result, bubbles are generally
larger with sizes of the order of 100 nm to 1 µm; skyrmions are smaller, of the order of
5− 100 nm [10]. Further differences are the topological number, which is non-trivial
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for skyrmions (some bubbles are topologically trivial, others non-trivial); skyrmions
are chiral, whereas bubbles can be; bubbles are preferably driven by magnetic fields,
whereas skyrmions, by electric currents.

We also note the existence of dynamical skyrmions (and solitons, in general [63])
that are stabilized, e.g., by current-induced effects that counteract the Gilbert losses
in dissipative materials [20]; however, such objects fall outside of the scope of this
work.

2.2 Analytical techniques

Here, we present the tools needed for the analytical analysis of magnetic skyrmions.
In section 2.2.1, we introduce the phenomenological approach and discuss its advan-
tages and disadvantages. We introduce the Landau-Lifshitz-Gilbert equation and the
relevant contributions to the energy functional for the stabilization of skyrmions. In
section 2.2.2, we present the collective-coordinate approach, which we use later to
describe the current-induced skyrmion motion. Finally, we introduce phenomenolog-
ically the current-induced torques in section 2.2.3 and discuss the differences between
spin-transfer and spin-orbit torques.

2.2.1 Phenomenology

The phenomenological approach is an effective method to describe magnetic systems
that are deeply in the ordered phase. In ferromagnets the order is determined by
the parameter m (magnetization vector) and in antiferromagnets, by n (Néel vec-
tor). Based on symmetries, the (Landau-Lifshitz-Gilbert) equation describing the
magnetization dynamics is postulated, together with the energy functional defining
the main interactions in a given system. The Landau-Lifshitz-Gilbert equation has
proven to represent accurately the current-driven dynamics of magnetic textures,
such as domain walls or skyrmions [10, 64, 65]. Importantly, the characteristic
length of the magnetic texture (∼ nm) has to be much smaller than the charac-
teristic length over which it moves (∼ µm) for the method to be valid. Further,
the temperatures considered have to be lower than corresponding ordering tempera-
ture: Cure temperature for ferromagnets and Néel temperature for antiferromagnets.
Also, for antiferromagnets the temperature has to be large enough, so that quantum
effects can be ignored.

The approach relies on a “coarse-graining” of the magnetization structure, so
that each magnetization site represents a large enough volume where the magnetic
moment is established and varies only slowly within it [66, 67]. This defines the
macroscopic character of the phenomenological approach. As a consequence, the
system exhibits established thermodynamics and the predictions of the approach
are robust.

Due to the macroscopic nature, the models considered within this method are
generic: it covers a multitude of microscopically different systems that all obey
the same symmetries. An immediate advantage is that physical phenomena can be
described accurately without knowledge of the microscopic mechanisms. Further,
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the method establishes a clear connection to many experiments, where macroscopic
quantities are measured.

On the other hand, the parameters determining the relative strength of the inter-
actions within the model cannot be obtained from the phenomenological approach.
These need to be taken as an input, e.g., from experiments or first-principle calcu-
lations (density functional theory [68], etc.). Further, the macroscopic nature of the
approach leads to the smearing out of excitations with smaller lengthscales (gener-
ally, smaller than 1 nm), so that different methods need to be employed for studying
such problems.

Landau-Lifshitz-Gilbert equation

A magnetic system is characterized by the magnetization vector M(r) = Msm(r),
where m is a unit vector, and is treated in a continuum model. In both ferromagnets
and antiferromagnets (in the ordered phase), the magnetization vector has a fixed
length given by the saturation magnetization Ms. The dynamics of the magnetiza-
tion structure is determined by the Landau-Lifshitz-Gilbert equation1 [64, 65, 69]

Ṁ(r) = γM(r)×Beff(r) + αGM(r)× Ṁ(r) + τTorques, (2.1)

where γ is the electron gyromagnetic ratio and Beff the effective field. The latter is
found by taking a functional derivative of the energy functional with respect to the
magnetization vector

Beff(r) = − 1

Ms

δf(r)

δm
, (2.2)

where f is the energy density.
The first term on the right hand side of equation (2.1) represents the precession of

the magnetization vector around the effective field. For the case of a single electron
in an external magnetic field, this term describes the Larmor precession [68].

In realistic samples energy dissipates and the magnetization vector eventually
relaxes towards the direction set by the effective field. This dissipation effect is
captured phenomenologically by introducing the Gilbert damping term2 [64, 67]
proportional to αG, which is the dimensionless Gilbert damping constant. Typical
values of the damping constant are of the order of 10−2 − 10−3 [2, 68].

Similar to the damping term, any external perturbations to the system can be
captured phenomenologically by adding a corresponding torque term. Such terms
have been represented collectively by τexternal in equation (2.1). Common examples
are current-induced or temperature effects. The benefit of the phenomenological
approach is that no detailed knowledge of the microscopic mechanisms is needed; to
construct such a term only the symmetries of the systems need to be respected (see
section 2.2.3).

1If the magnetization vector length is not fixed (e.g., for high temperatures) the Landau-
Lifshitz-Gilbert equation needs to modified.

2A different formulation was proposed initially by Landau and Lifshitz; however, for αG � 1
both formulations are equivalent [5, 64].
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As the length of the magnetization vector is fixed, equation (2.1) can be conve-
niently reformulated in terms of the unit vector m

ṁ(r) = γm(r)×Beff(r) + αGMsm(r)× ṁ(r) + τTorques. (2.3)

Equation (2.3) is the foundation of this work, as it contains all the information
about a magnetic system within the phenomenological approach. In the following
chapters, we investigate specific examples of ferromagnets and antiferromagnets,
and discuss the static and dynamic properties of magnetic skyrmions based on the
Landau-Lifshitz-Gilbert equation:

• Static properties In equilibrium, the magnetization texture has no dynamic
component. As a result, the static part of equation (2.3) can be used to
determine the equilibrium profile of the magnetization vector m(r)3. This is
explored further in chapter 3.

• Dynamic properties Due to the presence of the effective field, equation
(2.3) is a coupled, nonlinear differential equation for the magnetization vector
at every point in space in the system. This complexity makes it impossible to
solve the equation analytically for magnetization textures such as skyrmions.
A useful approach that we employ for an analytical analysis is the collective-
coordinate method, discussed in section 2.2.2. For a more detailed treatment
numerical techniques are necessary; we discuss these in section 4.2.

Energy functional

Information about the material of interest is encoded into the energy functional [65,
66]. The model is constructed based on the relevant interactions and the symmetries
of the system. In this work the energy functional has the general form

F [m] =

∫
d3r [Fexch + Fani + Fext + FDM] , (2.4)

where the individual contributions represent the exchange interactions, anisotropy
energy, external magnetic field and the Dzyaloshinskii-Moriya interactions, respec-
tively. Further contributions known to affect the magnetization texture, such as
dipole-dipole interactions, magnetostrictive effects, etc., fall outside the scope of the
present work. In ferromagnets, the dipolar interactions are a key ingredient in the
stabilization magnetic bubbles [10] and are also important for certain skyrmionic
systems [20]. Here, we investigate thin film samples, for which the effect of dipolar
coupling can be incorporated into an effective anisotropy term [26]. In antiferro-
magnets, the contribution of dipolar interactions is negligible [44, 51].

In the following, we list the expressions of each term in equation (2.4) within
the continuum model up to second order in the slowly varying magnetization vector
and gradients thereof. The discussion here is based on ferromagnetic systems; the
model for an antiferromagnet is developed in chapter 3.

3An alternative and equivalent approach is to minimize the energy functional with respect to
m.
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Exchange The isotropic exchange interactions originate from the electrostatic in-
teractions between electrons and the Pauli exclusion principle [65]. These interac-
tions align neighbouring spins collinearly and are independent of the orientation of
the magnetic moments with respect to the crystal lattice. This isotropy is reflected
in the energy functional

Fexch =

∫
d3r Aex

[
∇m(r)

]2

, (2.5)

where the notation (∇m)2 is to be understood as
∑

i=x,y,z(∂im) ·(∂im). In this work
we do not consider variation of m in the out-of-plane ẑ-direction. For our purposes,
it suffices to consider a scalar exchange stiffness constant Aex; however, for a more
detailed treatment it has to be generalized to a second-rank tensor. The energy of
these interactions is minimized when the magnetization vectors are aligned parallel
or antiparallel, and deviations from the collinear arrangement are penalized. The
value of the exchange stiffness constant Aex has to be taken from experiments or
from first-principle calculations. Typical values are of the order of Aex = 10 pJ m−1.
The exchange stiffness constant is directly proportional to the Curie temperature
[65].

Anisotropy Due to the weaker relativistic spin-orbit interactions between elec-
trons and nuclei, any magnetic material exhibits preferred directions for its magnetic
moments [65]. Being determined by the crystal symmetry, this energy contribution
is called magnetocrystalline anisotropy. The most common types are uniaxial and
cubic anisotropy. In the present work, we focus only on uniaxial anisotropy where
the preferred direction (easy-axis) is along the ẑ-axis:

Fani =

∫
d3r Ku

[
m(r) · ẑ

]2

, (2.6)

Higher order terms are generally small and are neglected here. Depending on the
sign of the anisotropy constant Ku, one distinguishes generally between an easy
axis (Ku > 0) and an easy plane (Ku < 0). Typical values are of the order of
Ku = 50 − 500 kJ m−3 and can be calculated from first-principles or measured in
experiment.

External field Magnetic moments interact with the external magnetic field through
the Zeeman term

Fext =

∫
d3r B

[
m(r) · B̂

]2

, (2.7)

where B̂ is the direction of the external magnetic field. This term aligns the magnetic
moments in the direction of the external field. In this work, the magnetic field will
be put in the ẑ-direction. Typical values used in experiments with ferromagnets
of the order of mT; antiferromagnets are more robust to magnetic fields [44] and
stronger fields (of the order of 10 T) need to be used to align the magnetic moments
away from the easy-axis.
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Dzyaloshinskii-Moriya interactions Magnetic materials that lack inversion
symmetry (i.e., with non-centrosymmetric crystal structures) and exhibit strong
spin-orbit interactions contain an additional important contribution to the energy
functional [10, 11, 18, 19]. The Dzyaloshinskii-Moriya interactions cant neighboring
moments away from each other and are an essential component in the stabilization
of modulated magnetic textures such as spin-spirals and skyrmions.

The continuum description involves terms that are linear in the first derivatives
of the order parameter with respect to the spatial coordinates - there are called
Lifshitz invariants and have the general form [51, 69, 70]

Lkij = mi

(
∂mj

∂xk

)
−mj

(
∂mi

∂xk

)
, (2.8)

where xk are the spatial coordinates and the indices i, j, k = x, y, z. The exact form
of the Dzyaloshinskii-Moriya energy contribution depends on the symmetry of the
crystal and may contains different combination of Lifshitz invariants.

Importantly for this work, in thin film systems where the inversion symmetry
is broken in the ẑ-direction (structural inversion asymmetry), the Dzyaloshinskii-
Moriya functional is

FDM,interfacial =

∫
d3r D

[
(ẑ ·m)(∇ ·m)− (m · ∇)(ẑ ·m)

]
(2.9)

and can also be written as
∫
d3rD

(
Lxxz + Lyyz

)
[71]. This form of the Dzyaloshinskii-

Moriya interactions applies also to magnetic materials belonging to the crystallo-
graphic symmetry group Cnv

4 [12].
The Dzyaloshinskii-Moriya interactions were first discovered as the origin of the

phenomenon called “weak ferromagnetism” in antiferromagnets [66]; Dzyaloshinskii
formulated the phenomenological theory [18] and Moriya proposed the spin-orbit
interactions as an underlying microscopic mechanism [19]. Due to the induced cant-
ing of the magnetic moments, the perfect antiferromagnetic order is relinquished
and a small magnetization component is formed even in the absence of an external
magnetic field5.

2.2.2 Collective coordinates

The Landau-Lifshitz-Gilbert equation (2.3) describes the magnetization dynamics
of a given texture at every point in space; therefore, the complexity due to the
large amount of degrees of freedom is, generally, analytically intractable. Many
studies have shown that the dynamics of magnetic textures in ferromagnets and
antiferromagnets can often be described by only a few variables [50, 61, 72]. In
particular, Thiele [72] proposed a method to simplify the description of moving
textures by integrating out the internal degrees of freedom. Specifically, this is
equivalent to projection the Landau-Lifshitz-Gilbert equation on the translational

4The form of the bulk Dzyaloshinskii-Moriya interactions in materials like MnSi, where
skyrmions were first experimentally discovered [14, 15] is not relevant for the present work and will
not be discussed.

5This can be seen in equation (3.28) due to the Dzyaloshinskii-Moriya interactions term Bd.
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mode of a given magnetic texture when electric currents are applied to the system
[23, 73]. In the more recent literature, this method is referred to as the “collective-
coordinate approach” [74, 75, 76]; in older literature, it is equivalent to finding
integrals of motion, such as the total momentum of the magnetic texture [50, 63].

The collective-coordinate approach consists of identifying a finite set of collective
coordinates ξi(t). These coordinates are chosen to parametrize the type of excitation
of the magnetic texture and define the time evolution of the order parameter – e.g.,
m(r, t) = m(r, {ξi(t)}) for the ferromagnet. For example, when considering the
current-induced motion of a domain wall the collective coordinates are the position
of the wall and the tilting angle from the easy plane. Two-dimensional objects,
such as skyrmions, are parametrized by the in-plane position coordinates [10]. The
method provides a simple description of the magnetization dynamics, which is valid
as long as the driving forces are small [73, 75].

In ferromagnets, the time evolution of the magnetization vector m(r, {ξi(t)}) in
terms of the collective coordinates is given by

ṁ =
∑

i

∂m

∂ξi
ξ̇i. (2.10)

This expression is plugged in the Landau-Lifshitz-Gilbert (2.3) and, subsequently,
the equation is projected on the translation mode of the magnetic texture (see section
4.1 and Appendices B.2 for details).

The same approach can be applied also to collinear, two-sublattice antiferromag-
nets, where the time evolution of the Néel order parameter is specified in terms of a
finite set of collective coordinates n(r, t) = n(r, {ξi(t)}) [61]. Details are discussed
in section 4.1 and Appendix B.3.

2.2.3 Current-induced torques

The manipulation of magnetization by electric currents is a key topic within the
spintronics field [1, 5, 6]. Here, we discuss briefly the relevant current-induced
effects – spin-transfer torques and spin-orbit torques – from the point of view of
phenomenology.

The non-relativistic spin-transfer torques originate from the conservation of an-
gular momentum. They describe the effect, where a spin-polarized current can
transfer angular momentum from the carriers to the magnetic moments of a ferro-
magnet and, thus, change their orientation [1]. We distinguish between two types
of spin-transfer torques: homogeneous and inhomogeneous.

The homogeneous torques are found typically in nanostructures consisting of
two magnetic layers separated by a spacer layer, where the current is flowing in
the out-of-plane (OOP) direction of the layers. The electric current is polarized
upon passing the first layer (called a polarizer) and exerts a torque on the magnetic
moments of the second magnetic layer [2, 77]. Since the Landau-Lifshitz-Gilbert
equation preserves the magnitude of the magnetization vectors, the current-induced
torques need to be perpendicular to it

τOOP,FL = αOOPm× p,

τOOP,AD = βOOPm×
(
m× p

)
.

(2.11)
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Here, αOOP, βOOP are constants that need to be determined from microscopic calcu-
lations and p determines the polarization of the electric current. These terms are
referred to as field-like and antidamping-like, respectively, due to the similarity of
their expressions with the precession and damping terms in equation (2.3)6.

The inhomogeneous torques appear when the electric current is applied in the in-
plane (IP) direction of a magnetic layer, which contains an inhomogeneity such as a
domain wall or a skyrmion. In that case, the spins of the conduction electrons change
adiabatically according to the magnetization gradient and, at the same time, exert
a torque on the magnetic moments of the magnetic layer due to the conservation of
angular momentum [20]. These torques have the form

τIP,adiabatic = αIPm× (j · ∇)m,

τIP,non-adiabatic = βIP(j · ∇)m,
(2.12)

where j is the electric current. Here, the non-adiabatic term has been included
phenomenologically to explain discrepancies with experimental findings [20, 79].

Recently, it was demonstrated that the spin-orbit coupling in a system can polar-
ize electric currents even in the absence of inhomogeneities and magnetic polarizer
layers [80]. The current-induced effects in systems with a strong spin-orbit coupling
are called spin-orbit torques. An important difference to the spin-transfer torques is
that the spin-orbit torque efficiency is not limited by the conservation of angular mo-
mentum (as for the spin-transfer torques). Here, there is the additional possibility
to transfer linear momentum to spin angular momentum [44, 80].

A different setup, which also leads to the generation of spin-orbit torques, in-
volves the spin-Hall effect in heavy-metal layers interfaced with magnetic layers
[20]. Here, the spin-Hall effect generates a spin-polarized current that is injected
vertically into the magnetic layer. The resulting spin-orbit torques are phenomeno-
logically equivalent to the homogeneous spin-transfer torques in equation (2.11);
however, the corresponding coefficients will be different due to the different micro-
scopic mechanism.

By definition, the spin-orbit torques are homogeneous. In this work, we investi-
gate thin films samples in which the inversion symmetry is broken in the out-of-plane
direction. Therefore the spin-orbit torques have a similar form to the torques shown
in equation (2.11):

τSOT,FL = αSOTm× (j× ẑ) ,

τSOT,AD = βSOTm×
[
m× (j× ẑ)

]
,

(2.13)

where we have chosen the out-of-plane direction to be along the ẑ-axis. Importantly,
the role of the spin-polarization p of the electric current is taken over by the cross
product j× ẑ, which is fixed by the direction of inversion symmetry breaking [20].

6The antidamping-like torque is also referred to as Slonczewski torque [78].
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2.3 Numerical techniques

Here, we present the method used to perform the numerical micromagnetic calcu-
lations. First, we list a few popular micromagnetic software packages and explain
the differences to our approach. In section 2.3.1, we introduce the finite-element
method: its principle, essential building blocks, solver methods, and relevant soft-
ware packages used within this work. Finally, in section 2.3.2, we show the methods
used to transform the Landau-Lifshitz-Gilbert equations into the form required by the
finite-element method.

In this work, we use numerical simulations to investigate antiferromagnetic sys-
tems and compute the spectrum of excitations of antiferromagnetic skyrmions. Up
to now, there is no software that is able to do either, in the way necessary for this
work.

There are several established open-source codes in the micromagnetic commu-
nity that focus on ferromagnetic systems. The most common are OOMMF [81],
MicroMagnum [82] and mumax3 [83], which are all based on the “standard” finite-
difference method7. Advantages:

• OOMMF (C++): mature, reliable code with good documentation and exten-
sibility;

• MicroMagnum (C++/Python): speed, efficiency and extensibility;

• mumax3 (Go): fastest code, most efficient parallelization using graphics cards;

Disadvantages:

• OOMMF: slowest of the three in performance and to start using;

• MicroMagnum: not well documented;

• mumax3: requires expensive hardware to harness its power.

None of these codes provide a direct solver that can compute the excitation spectrum
for a given state.

In recent years, the finite-element method has been used to develop an extension
of MicroMagnum, magnum.fe, for the numerical analysis of ferromagnetic structures
[84, 85]. It relies on the same building blocks as our code for mesh generation (Gmsh)
and the solution of the differential equations (FEniCS, see section 2.3.1).

2.3.1 Finite-element method

The finite-element method has been established as a universal method for the so-
lution of partial differential equations. A defining strength of this method is its
universality, as it makes it possible to solve a plethora of differential equations that
reach from science to engineering and beyond. For the simulations in the present

7In the finite-difference method, differential equations are discretized on a regular grid and the
derivatives are approximated by “finite differences”.
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work it offers a better description of three-dimensional thin-film samples. A good
introduction into the subject can be found in references [86, 87]

We implement the finite-element method with the open-source platform FEniCS
[86, 88]. Besides having a powerful finite-element engine, a key feature of FEniCS is
its unified form language (UFL), which allows physical models to be implemented
easily and in a notation similar to the mathematical one [89]. The software allows
programs to be written in C++ and Python; the finite-element method is encoded
in the software library DOLFIN [90].

Model

To demonstrate how the method works, we consider the Poisson equation, repre-
sented by the exchange term

∇2m = Beff,FM (2.14)

The equation is valid on a domain V ⊂ R3 and can be complemented by a set of
Dirichlet (e.g. m = m0 on ΓD ⊂ ∂V ) or Neumann (−∂sm = g on ΓN = ∂V \ΓD)
boundary conditions for the solution m on the boundary ∂V of V .

To discretize the equation by the finite element method, we first multiply it by
a test function v and integrate over the whole volume

−
∫

V

d3r∇m · ∇v +

∫

∂V

d2r (∂sm) · v =

∫

V

d3rBeff,FM · v, (2.15)

where ∂s is the derivative in the direction normal to the surface ∂V , and we have
performed integration by parts. Typically, the test function v is set to vanish on
the boundary ΓD.

Now, the original differential equation (2.14) has been transformed into a varia-
tional problem:

Find the trial function u ∈ T , such that

∫

V

d3r∇u · ∇v = −
∫

V

d3rBeff,FM · v −
∫

∂V

d2r (∂su) · v, (2.16)

for ∀v ∈ T̂ .

Here, the trial and test spaces are defined by

T = {v ∈ H1(V ) : v = u0 on ∂V },
T̂ = {v ∈ H1(V ) : v = 0 on ∂V },

(2.17)

respectively, and H1(V ) is the Sobolev space containing functions v, for which v2

and |∇v|2 have finite integrals over V [86].
Next, we discretize the variational problem (2.16) onto a pair of discrete spaces.

The goal is to find uh ∈ Th ⊂ T , such that
∫

V

d3r∇uh · ∇v = −
∫

V

d3rBeff,FM · v −
∫

ΓN

d2r (∂su) · v, (2.18)
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for ∀v ∈ T̂h ⊂ T̂ . The choice of the discrete spaces Th and T̂h is directly related to
the type of finite elements chosen for the discretization.

Here, it is important to note that [86]

• the Dirichlet boundary condition enters directly into the definition of the trial
space Th (it is an “essential” boundary condition)

• the Neumann condition enters directly into the variational problem (it is a
“natural” boundary condition).

We assume a basis {φj}Nj=1 for Th and {φ̂j}Nj=1 for T̂h, were N denotes the di-
mension of each space. The discrete trial functions can be represented in the basis
of the discrete trial space:

uih(r) =
N∑

j=1

U i
jφ

i
j(r). (2.19)

Here, i denotes the vector component index of uh and U ∈ RN is the vector contain-
ing the degrees of freedom. The finite-element method changes the target of finding
the solution m of (2.14) to finding the vector U .

The discrete variational problem (2.18) can now be reformulated as

N∑

j=1

U i
j

∫

V

d3r∇φij · ∇φ̂ik = −
∫

V

d3r Bi
eff,FMφ̂

i
k −

∫

ΓN

d2r gi φik, (2.20)

for k = 1, 2, . . . , N . Finally, the finite element solution uh is obtained by solving the
linear system

AU = b, (2.21)

where

Akj =

∫

V

d3r∇φj · ∇φ̂k,

bk = −
∫

V

d3r Beff,FMφ̂k −
∫

ΓN

d2r g φk.
(2.22)

The whole procedure is summarized in Table 2.1.

General formulation

The variational problem (2.16) can be generalized to

a(u,v) = L(v), (2.23)

where the integrals are represented by a bilinear form a and a linear form (or,
functional) L:

a : T × T̂ → R,
L : T̂ → R.

(2.24)
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Step Procedure Function Space Target

1 multiply by v m ∈ V ⊂ R3 m

v ∈ T̂
2 integrate over space; u ∈ T u

introduce u = m v ∈ T̂
3 discretize uh ∈ Th ⊂ T uh

v ∈ T̂h ⊂ T̂

4 decompose in basis {φi}Ni=1 φi
{φ̂i}Ni=1

5 solve linear system AU = b U

Table 2.1: Procedure to use the finite-element method.

The generalization of equation (2.20) becomes

N∑

j=1

Uja(φj, φ̂i) = L(φ̂i), (2.25)

and the target equation AU = b, is now defined by

Aij = a(φj, φ̂i),

bi = L(φ̂i),
(2.26)

for i, j = 1, 2, . . . , N .

Function spaces and mesh

The finite-element method relies on finding discrete subspaces Th ⊂ T of infinite-
dimensional function spaces.

To define the discrete space Th, the domain V is divided into a finite set of cells
Th = {C} with disjoint interiors, such that ∪C∈ThC = V . Typically, the cells are
simple polygonal shapes like intervals, triangles, tetrahedra, etc. More information
on different shapes can be found in reference [86]. Throughout this work, we focus
on tetrahedra. All cells together form the mesh of the domain V .

The generation of a mesh and its discretization is done with Gmsh 8 [91].

What is a finite element?

The formal definition of a finite element necessitates introducing a local function
space V on each cell C. A cell C, together with a local function space V , and a set
of rules for describing the functions in V is called a finite element [86]. Formally, a
finite element is a triple (C,V ,L), where:

8This software allows to create meshes using parametric input in Gmsh’s own scripting lan-
guage.
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Figure 2.3: The degrees of freedom
of the linear Lagrange (Courant) tri-
angle are given by point evaluation
at the three vertices of the triangle.

by its values at three non-collinear points. It follows that the linear Lagrange triangle is indeed a finite
element. In general, determining the unisolvence of L may be non-trivial.

2.4.3 The nodal basis

Expressing finite element solutions in Vh in terms of basis functions for the local function spaces V
may be greatly simplified by introducing a nodal basis for V . A nodal basis {fi}n

i=1 for V is a basis for
V that satisfies

`i(fj) = dij, i, j = 1, 2, . . . , n. (2.41)

It follows that any v 2 V may be expressed by

v =
n

Â
i=1

`i(v)fi. (2.42)

In particular, any function v in V for the linear Lagrange triangle is given by v = Â3
i=1 v(xi)fi. In

other words, the expansion coefficients of any function v may be obtained by evaluating the linear
functionals in L at v. We shall therefore interchangeably refer to both the expansion coefficients U of
uh and the linear functionals of L as the degrees of freedom.

Example 2.2 (Nodal basis for the linear Lagrange simplices) The nodal basis for the linear Lagrange in-
terval with vertices at x1 = 0 and x2 = 1 is given by

f1(x) = 1� x, f2(x) = x. (2.43)

The nodal basis for the linear Lagrange triangle with vertices at x1 = (0, 0), x2 = (1, 0) and x3 = (0, 1) is
given by

f1(x) = 1� x1 � x2, f2(x) = x1, f3(x) = x2. (2.44)

The nodal basis for the linear Lagrange tetrahedron with vertices at x1 = (0, 0, 0), x2 = (1, 0, 0), x3 = (0, 1, 0)
and x4 = (0, 0, 1) is given by

f1(x) = 1� x1 � x2 � x3,
f3(x) = x2,

f2(x) = x1,
f4(x) = x3.

(2.45)

Figure 2.1: Linear Lagrange triangle (finite element). The degrees of freedom are
given by point evaluation at the three vertices of the triangle. Figure adapted from
reference [86].

• the domain C is a bounded, closed subset of Rd (for d = 1, 2, 3, ...) with
nonempty interior and piecewise smooth boundary;

• the space V = V(C) is a finite dimensional function space on C of dimension
n;

• the set of degrees of freedom (nodes) L = {l1, l2, . . . , ln} is a basis for the space
of bounded linear functionals on V (we call it V ′).

An example of the above definition is the standard linear Lagrange finite element9

on the triangle in figure 2.1. The cell C is given by the triangle and the local function
space V is the space of first degree polynomials on C (a space of dimension three).
Point evaluation at the three vertices of C can be chosen as the basis for V ′.

Solvers

Having defined the finite elements and function spaces, the next step is to discretize
the differential equations and solve the resulting algebraic system. This task can
be difficult even for linear systems and solvers that can handle sparse and, possibly,
ill-conditioned matrices have to be chosen.

Iterative Krylov methods are a common approach to solve linear equations of
the type (2.21) [92]. Popular ones are the conjugate gradients (CG) and generalized
minimal residual (GMRES) [93]. They generate a sequence of approximations con-
verging to the solution of the linear system. These methods are based only on the
matrix-vector product.

In this work we use the generalized conjugate residual method (GCR), which
is equivalent to GMRES [93, 94], as well as the direct methods method called a
lower-upper (LU) decomposition [86].

Each of the above mentioned methods can be made more efficient, by transform-
ing the linear system

AU = b (2.27)

into

P−1AU = P−1b, (2.28)

9Within our code, the term “Continuous Galerkin” (CG, not to be confused with the Conjugate
Gradient Krylov method) is used a synonym for the Lagrange finite element; see chapter 5.
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which is known as preconditioning. To achieve good convergence the preconditioner
P−1 should be a good approximation of A−1 [86].

All of the solvers mentioned here (together with a large number of precondi-
tioners) are available in modern open-source numerical libraries. For the numerical
simulations in this work, we use the “Portable, Extensible Toolkit for Scientific
Computation” (PETSc) [95].

Finally, the visualization of magnetic structures and meshes in this work is done
by using the open-source data analysis and visualization software Paraview [96].
The underlying data processing engine is the Visualization Toolkit (VTK) [97].

2.3.2 Relaxation and eigenspectrum solvers

Our code implements micromagnetic models for both a ferromagnet and an antifer-
romagnet to find an equilibrium state (relaxation solver) and the intrinsic dynamics
of the latter (eigenspectrum solver). Here, we discuss both solvers in detail.

The relaxation solver employs an implicit projection method based on the Gauss-
Seidel technique [98, 99, 100]. The main advantage is that the method is simple and
unconditionally stable. It comes with the disadvantage of higher computational
effort, which for our purposes is negligible. For more involved calculations, the
higher computational cost is compensated by the increasing computing power of
present-day computers and technologies like cloud computing.

The eigenspectrum solver calculates the frequencies and eigenstates of a slightly
perturbed equilibrium state by considering the linearized dissipationless Landau-
Lifshitz-Gilbert equation in frequency space [101]. The corresponding generalized
eigenvalue problem is solved numerically by using the sparse eigenvalue problem
solver (EPS) object within the “Scalable Library for Eigenvalue Problem Compu-
tations” (SLEPc) [102, 103, 104]. The possibility to integrate this approach with
established numerical libraries, such as SLEPc, gives the advantage of fast calcula-
tion of the excitation modes of a given equilibrium state.

In the following, we describe the operation of both solvers on the example of the
ferromagnet. For the antiferromagnet, the implementation is equivalent when the
doubling of degrees of freedom is taken into account: we group the two sublattice-
magnetization vectors of the antiferromagnet together in a single six-dimensional
vector10.

Projection method

We consider the general form of the Landau-Lifshitz-Gilbert equation with damping:

ṁ = −γm×Beff + αGm× ṁ (2.29)

where γ is the gyromagnetic ratio and αG the Gilbert damping constant. Using the
property m2 = 1, we can rewrite the equation as:

10Within our micromagnetic approach, both sublattice magnetization vectors of the two-
sublattice antiferromagnet are assigned to a single point in the space (see section 3.3 for details).
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1.2. NUMERICAL APPROACH 11

FEniCScan be done in Puthon withoud su↵ering from the usually poor performace
of interpreted languages.

• FEniCS

• GMsh

1.2 Numerical Approach

In this section, I present the methods we use to numerically solve the Landau-
Lifshitz-Gibert equation with OMNeS.

1.2.1 Projection method

some general words about the projection method. Look at the 3 references below
To study the magnetization dynamics of ferromagnets and antiferromagnets, I

look at the general form of the Landau-Lifshitz-Gibert equation with damping:

ṁ = ��m ⇥ Be↵ + ↵Gm ⇥ ṁ (1.20)

where � is the gyromagnetic ratio check sign and consistency and ↵G the Gilbert
damping parameter. Using the property m2 = 1, I can rewrite the equation as

ṁ = ��m ⇥ Be↵ + ↵Gm ⇥
h
� �m ⇥ Be↵ + ↵Gm ⇥ ṁ

i

= ��m ⇥ Be↵ � �↵G [m(m · Be↵) � Be↵] � ↵2
Gṁ

ṁ = � �

1 + ↵2
G

m ⇥ Be↵ �
�↵G

(1 + ↵2
G)

h
m(m · Be↵) � Be↵

i
(1.21)

To ease the notation, I introduce the rescaled gyromagnetic ration �0 = �/(1 +↵2
G).

A typical approach here is to study the overdamped regime (↵G � 1), in which the
precession term is neglected with respect to the damping term (second one in the
above equation) 1.

Within the projection method, on top of neglecting the precession term, I con-
sider only the term proportional to the e↵ective field. The precession term and the
component of Be↵ that is parallel to m are thrown away. In other words, by adding
(at each numerical step) the full Be↵ to the magnetization vector, I let the latter
relax straight to the e↵ective field vector Be↵ on a sphere (the magnitude of m is not
allowed to change). To compensate for the neglected terms and fulfull the constraint
m2 = 1, at each step of the numerical calculation the magnetization vector m is
normalized by hand.

Thus, after normalization, the start and end points of the magnetization vector
evolution in our alternative scenario are the same as a conventional overdamped/-

1Formally, this is done by multiplying (1.21) by ↵G, so that the second term on the rhs remains
finite after taking the limit ↵G ! 1.
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Figure 2.2: Evolution of the magnetization vector m driven by the effective field Beff.
The blue arrow represents the direct path on the unit sphere, which the magnetization
vector follows within the projection method.

ṁ = −γm×Beff + αGm×
[
− γm×Beff + αGm× ṁ

]

= −γm×Beff − γαG
[
m(m ·Beff)−Beff

]
− α2

Gṁ

= − γ

1 + α2
G

m×Beff −
γαG

(1 + α2
G)

[
m(m ·Beff)−Beff

]
(2.30)

To simplify the notation, we introduce the rescaled gyromagnetic ratio γ′ = γ/(1 +
α2
G). A typical approach here is to study the overdamped regime (αG � 1), in which

the precession term is neglected with respect to the damping term11.
Within the projection method, we neglect both the precession term and the

component of Beff that is parallel to m – that is, the first two terms in equation
(2.30). As a consequence, during each numerical step, the full effective field vector
is added to the magnetization vector; this makes m relax straight to Beff by taking
the shortest route on the unit sphere, as shown in figure 2.2. The magnitude of m
is fixed; therefore, to compensate for the neglected terms and fulfill the constraint
m2 = 1, we normalize the magnetization vector m by hand during each step of the
numerical calculation.

The equation that we are left with is

1

αG

dm

dt
= γ′Beff

dm

dt′
= Beff, (2.31)

where, we defined t′ = γ′αG t.

11Formally, this is done by multiplying equation (2.30) by αG, so that the second term on the
right hand side remains finite after taking the limit αG →∞.
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Next, we use an implicit first-order Runge-Kutta method to discretize the Landau-
Lifshitz-Gilbert equation in time12

mn+1 −mn

∆t
= γ′Beff[mn+1], (2.32)

where n and n + 1 are the indices of the previous and current numerical step,
respectively, and ∆t is the time step. Reordering the terms brings us to

mn+1 − γ′∆tBeff[mn+1] = mn. (2.33)

We use a manual step-size control, where the step ∆t is decreased once the observed
error level |mn+1 −mn| is less than ∆t2. Convergence is reached when the error
decreases below a specified value, which sets the precision of the algorithm. In
that case the magnetization vector is aligned with the effective field (zero-torque
condition), as can be seen in equation (2.31)

To proceed, we need to transform the partial differential equation (2.33) into a
variational problem (see section 2.3.1). We do this by multiplying the whole equation
by a test function v, integrate over the volume V , and perform integration by parts
on the term containing second-order derivatives. From here onwards, we denote the
unknown function to be computed mn+1 by u and the previous-step magnetization
vector mn by m0. For simplicity, we cast equation (2.33) dimensionless by dividing
it by the (reference) saturation field Bs = µ0Ms

1

Bs

∫

V

d3r
(
u · v

)
− γ′∆t

Bs

∫

V

d3r
(
Beff · v

)
=

1

Bs

∫

V

d3r
(
m0 · v

)
. (2.34)

Linearized Landau-Lifshitz-Gilbert equation

To obtain the eigenmodes of a magnetization texture described by m, we consider
small linear deviations δm from the equilibrium structure m0, defined by [101]

m(t) = m0 + δm(t), (2.35)

with |δm| � 1 and m0 · δm = 0. The latter condition ensures that the magnitude
of the unit magnetization vector m does not change and all the excitations δm are
transverse to it.

The intrinsic dynamics are given by the undamped Landau-Lifshitz-Gilbert equa-
tion (2.29)

ṁ = −γm×Beff, (2.36)

which is defined within the volume V . Equation (2.36) is complemented by a bound-
ary condition for ∂m/∂S13 on the boundary ∂V (ΓN, see section 2.3.1).

By definition, the equilibrium structure m0 does not have any dynamics

0 = m0 ×Beff[m0]. (2.37)

12For simplicity, we denote the rescaled time again by t.
13If Dzyaloshinskii-Moriya interactions are present in the system, the boundary condition is

non-trivial – see Appendix A.2 for details. If not, the condition is simply ∂m/∂S = 0.
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The excitations δm, on the other hand, do. Plugging the full magnetization vector
(2.35) into the Landau-Lifshitz-Gilbert equation (2.36) and keeping terms up to first
order in the deviations δm leads to

δṁ ' −γm0 ×Beff[m0 + δm]− γδm×Beff[m0]

= −γm0 ×
δBeff[m0]

δm
− γδm×Beff[m0], (2.38)

which is complemented by a boundary condition for the deviations vector ∂δm/∂S.
For the sake of simplicity, in the following we call Beff[δm] = δBeff[m0]/δm14.

We perform a Fourier transform into frequency space, so that

iωδm = −γm0 ×Beff[δm]− γδm×Beff[m0] + Λ (m0 · δm) m0, (2.39)

where

δm(t) =

∫

V

d3r eiωtδm(ω), (2.40)

and we have added the Lagrange multiplier Λ to ensure that only deviations that
do no change the magnitude of m are considered (in other words, that the condition
m0 · δm = 0 is not violated). It suffices to choose the value of Λ to be 10 − 100
times the magnitude of the effective field Beff.

Next, we construct the weak formulation of the linearized Landau-Lifshitz-Gilbert
equation (2.39). The resulting equation can be written in matrix form as (see Ap-
pendix A.1 for details)

−iω
γ

Mũ = Aũ, (2.41)

Equation (2.41) represents a generalized eigenvalue problem, which we solve numer-
ically using the EPS object within SLEPc [102].

As can be seen directly from equation (2.41), to find the eigenfrequencies we
need the imaginary components of the solver output. The eigenvectors ũ are also
complex; however, the physical eigenmodes are real, so that we take

δm(t) = Re
{
ũeiωt

}

= Re
{(

Re{ũ}+ iIm{ũ}
)(

cos(ωt) + i sin(ωt)
)}

= Re
{

Re{ũ} cos(ωt)− Im{ũ} sin(ωt) + i
(

Re{ũ} sin(ωt) + Im{ũ} cos(ωt)
)}

= Re{ũ} cos(ωt)− Im{ũ} sin(ωt). (2.42)

Due to the use of complex numbers for the representation of the deviations δm
and their corresponding frequencies, the code gives as a result always a pair of
eigenmodes with complex conjugated frequencies (that is, iω and −iω). The real
parts of the corresponding eigenvectors are the same.

14For effective fields that are linear in the magnetization vector m this relation is mathematically
valid and not just a definition.
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Chapter 3

Static skyrmion properties,
confinement and shape effects in
antiferromagnets

The magnetic skyrmions we consider in this work are stabilized due to the presence
of Dzyaloshinskii-Moriya interactions in perpendicularly magnetized ultrathin films.
The thickness of such films ranges typically from a few atomic layers to a few nm [21,
25, 36, 105]. Here, we focus on interfacial Dzyaloshinskii-Moriya interactions that
are induced by a broken structural inversion symmetry in the out-of-plane direction.
We do not consider bulk Dzyaloshinskii-Moriya interactions, which result from the
interplay of broken crystal inversion symmetry and strong spin-orbit coupling is the
system. Therefore, the skyrmions here are of Néel type (see figure 3.1) [20, 25].

For both ferromagnets and antiferromagnets we consider models that include
exchange and interfacial Dzyaloshinskii-Moriya interactions, uniaxial anisotropy (in
the out-of-plane direction) and an external magnetic field. We disregard the contri-
butions of the demagnetization field – in ferromagnetic thin films it can be incorpo-
rated into an effective anisotropy term [26], and in antiferromagnets it is negligible
due to the antiparallel alignment of the sublattice magnetizations [51]1.

The existence of skyrmions in such systems is an established fact theoretically –
in ferromagnets the results of references [11, 12, 13, 24] and in antiferromagnets of
reference [51] are all applicable to thin films. Experimentally, there is evidence in
ferromagnets [21]. However, in antiferromagnets there has been no observation of
skyrmions yet.

We consider an isolated skyrmion both in an infinite-plane setup and in a con-
fined nanodisk, where the disk boundaries play an important role for the stability
of the skyrmions. For the latter we follow the approach presented by Rohart et
al. [26] for ferromagnets, and apply it to study the boundary effects on confined
antiferromagnetic skyrmions.

This chapter is structured as follows. In section 3.1 we summarize the symmetry

1We refer to references [12, 73] for studies of the ferromagnetic skyrmion profile where the de-
magnetization field is taken into account. A model of a collinear antiferromagnet taking into
account the demagnetization field is presented in reference [106], however, in the absence of
Dzyaloshinskii-Moriya interactions.
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of magnetic skyrmions and present the method to obtain analytically the skyrmion
profile equation. Then, we present the phenomenological models, rederive the re-
spective skyrmion profile equations and solve them numerically for both free and
confined skyrmions – for ferromagnets in section 3.2 and antiferromagnets in section
3.3. We show the behaviour of the skyrmions as a function of the Dzyaloshinskii-
Moriya constant and the external magnetic field, and discuss the differences between
ferromagnets and antiferromagnets.

3.1 Introduction

Skyrmions are two-dimensional objects with a cylindrical symmetry – radially sym-
metric within the plane and translationally invariant in the out-of-the plane direc-
tion. For simplicity, we choose ẑ as the out-of-plane direction. As a consequence, the
skyrmion profile cannot have any dependence on the z coordinate. Magnetic tex-
tures with such a symmetry can be found primarily in noncentrosymmetric materials
with Dzyaloshinskii-Moriya interactions [12, 51]. In the following, we consider equi-
librium solutions of ferromagnetic and antiferromagnetic models of such materials
by minimizing the corresponding energy functional.

To exploit the symmetry of skyrmions, it is convenient to parametrize the posi-
tion vector in cylindrical coordinates

r =



ρ cosφ
ρ sinφ
z


 , (3.1)

and the magnetization vector (in the case of antiferromagnets, the Néel vector) in
spherical coordinates

m(r) =




sin θ(ρ) cosψ(φ)
sin θ(ρ) sinψ(φ)

cos θ(ρ)


 . (3.2)

Here, the angle ψ determines the type of skyrmion. Common examples are the Néel
(also called hedgehog) skyrmion (see figures 3.1a and 3.1c)

ψ = φ, θ = θ(ρ), (3.3)

and the Bloch (also called vortex-like) skyrmion for which the azimuthal angle is
shifted by ∆ψ = π/2 (figures 3.1b and 3.1d)

ψ = φ− π

2
, θ = θ(ρ). (3.4)

In the present work we are interested in the properties and dynamics of Néel
skyrmions. Therefore, we do not discuss the vortex-like skyrmions in the follow-
ing.

The main goal of this chapter is to obtain the skyrmion profile from both
ferromagnetic and antiferromagnetic functionals of noncentrosymmetric materials.
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(a) (b)

(c) (d)

mz

-1.0 -0.5 0 0.5 1.0

-6-4-20
24
6

Figure 3.1: Schematic representation of the Néel (“hedgehog”) (a) side and (c) top
view, and Bloch (vortex-like) skyrmions (b) and (d). In this work, we focus on
skyrmions of the Néel type.

We specify the energy functional of both systems and investigate its equilibrium
skyrmion solutions by considering a steady state of the corresponding Landau-
Lifshitz-Gilbert equation2 This leads to a skyrmion profile equation, which deter-
mines the polar angle θ(ρ) of the magnetic texture (there is no dependence on the
azimuthal angle ψ(φ) due to the rotational symmetry of the skyrmions around the
ẑ-direction).

There is no analytical solution of the profile equation. Therefore, we solve it nu-
merically by specifying the boundary conditions θ(ρ = 0) = π and θ(ρ → ∞) = 0.
This corresponds to a skyrmion with negative polarity p = −1: the magnetiza-
tion vector is pointing in the negative ẑ-direction in the skyrmion core and, in the
positive ẑ-direction away from the skyrmion (see figure 3.1). The first condition is
implemented as an initial condition of the differential profile equation. We use a

2Alternatively, this can be done by minimizing the energy functional with respect to the order
parameter (magnetization vector m for ferromagnets and Néel vector n for antiferromagnets).
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shooting method to find an initial value for dθ(ρ = 0)/dρ that fixes the profile in
a way that the second condition is fulfilled. In this chapter, we will investigate the
skyrmion profile as a function of the Dzyaloshinskii-Moriya constant and the exter-
nal magnetic field. Since the profile is sensitive to both parameters, the shooting
method has to applied for each parameter set to find the value of dθ(ρ = 0)/dρ that
fulfills the condition θ(ρ→∞) = 0.

The skyrmion is characterized by the topological charge

Q =
1

4π

∫
dxdym ·

(
∂m

∂x
× ∂m

∂y

)
, (3.5)

which can take values Q = ±1. For the boundary conditions chosen here the topo-
logical charge evaluates to Q = −1. In spherical coordinates equation (3.5) becomes
(see Appendix B.2)

Q =
1

2

∫ ∞

0

dρ

(
dθ

dρ

)
sin θ. (3.6)

Next, we introduce the phenomenological models for both ferromagnets and an-
tiferromagnets, and discuss the static properties of the corresponding skyrmions.

3.2 Ferromagnets

Here, we discuss a generic ferromagnetic model, which contains exchange interac-
tions, uniaxial anisotropy, external field and interfacial Dzyaloshinskii-Moriya in-
teractions (consistent with the Cnv symmetry class). The demagnetization field
(resulting from dipolar interactions) is disregarded in the following discussion. A
more complete treatment can be found in reference [73] and the references therein.

3.2.1 Model

The energy functional of a ferromagnetic system that can host skyrmions in terms
of the unit vector of the magnetization m(r) is [73]

FFM =

∫
dr

{
Aex (∇m)2 +KuMs

[
1− (m · ẑ)2

]
−BMsm · ẑ

−D
[
(ẑ ·m)(∇ ·m)− (m · ∇)(ẑ ·m)

]}
, (3.7)

where Aex is the exchange stiffness constant and represents the exchange interac-
tions, Ku the magnetocrystalline anisotropy constant, D the Dzyaloshinskii-Moriya
constant and we have set the external magnetic field B in the ẑ-direction. The
corresponding effective field is found through equation (2.2) and reads

Beff,FM =
2Aex

Ms

∇2m + 2Ku(m · ẑ)ẑ +Bẑ +
2D

Ms

[
ẑ(∇ ·m)−∇(ẑ ·m)

]
. (3.8)
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The Landau-Lifshitz-Gilbert equation corresponding to this model is

ṁ = −γm×Beff,FM + τTorques, (3.9)

where τTorques are torques that any external perturbations might exert on the mag-
netization texture (see section 2.2.1).

3.2.2 Skyrmion profile

The energy functional in equation (3.7) allows for Néel skyrmions when the az-
imuthal angles of the magnetization vector and the radial vector match, ψ = φ (see
section 3.1) [12, 73]. The skyrmion profile can be found by investigating the steady
state of equation (3.9)

m(r)×Beff,FM(r) = 0. (3.10)

Due to the cylindrical symmetry of the skyrmion, finding the profile is reduced to
a one-dimensional problem given by the polar angle θ. We rewrite both the energy
functional and effective field in spherical coordinates and plug in the parametrization
of the magnetization vector (3.2) to find the profile equation. The energy functional
becomes

FFM = t

∫ ∞

0

dρρ

∫ 2π

0

dφ

{
Aex

[(
dθ

dρ

)2

+
sin2 θ

ρ2

]
+KuMs sin2 θ

−BMs cos θ −D
[
dθ

dρ
+

sin θ cos θ

ρ

]}
, (3.11)

and equation (3.10) transforms to

2Aex

Ms

[
1

ρ

dθ

dρ
+
d2θ

dρ2
− sin θ cos θ

ρ2

]
− 2Ku sin θ cos θ −B sin θ − 2D

Ms

sin2 θ

ρ
= 0. (3.12)

When discussing infinite films, it is useful to recast the model in dimensionless form.
We introduce the characteristic lengthscale of the system x0 (which can be inter-
preted as the domain wall width [12]) and the threshold value of the Dzyaloshinskii-
Moriya constant3

x0 =

√
Aex

KuMs

,

D0 =
4

π

√
KuMsAex,

(3.13)

and rescale the radial coordinate to ρ̃ = ρ/x0. The rescaled profile equation becomes

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− 4D

πD0

sin2 θ

ρ̃
− sin θ cos θ − η sin θ = 0, (3.14)

where η = B/(2Ku). Details of the derivation of equation (3.14) can be found in
Appendix B.1.
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Parameter Value Unit

Aex 15.0 pJ m−1

Ku 0.5 T
B 0.1 T
D 3.5 mJ m−2

Ms 1.0 MA m−1

Rescaled Parameter Value Unit

x0 5.42 nm
η 0.10 −
D0 3.52 mJ m−2

D/D0 0.99 −
ξFM 8.60 nm

Table 3.1: Typical parameters of perpendicularly magnetized ferromagnetic materi-
als that can host skyrmions [26, 36] Listed are the constants that enter the energy
functional in equation (3.7) directly, as well as the rescaled parameters that appear
in the profile equations (3.14) and (3.15).

Next, we solve the skyrmion profile equation (3.14) numerically by using the
shooting method, as described in section 3.1. We choose a skyrmion with core
polarity p = −1, that is, a texture with the boundary conditions θ(ρ̃ = 0) = π and
θ(ρ̃ → ∞) = 0 and investigate the shape of the profile for different values of the
parameters D/D0 and η. Typical parameters of ferromagnetic materials, which host
skyrmions and the corresponding effective parameters are listed in Table 3.1.

The zero-field skyrmion solution θ(ρ̃) of equation (3.14) for D/D0 = 0.9 is shown
in figure 3.2. We show both the skyrmion profile as mz = cos θ(ρ̃) and the entire
magnetization vector m, defined in equation (3.2), in a region of dimensions 5 × 5
around the infinite-plane skyrmion.
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Figure 3.2: Isolated ferromagnetic skyrmion on an infinite plane. Shown is the
numerical solution of equation (3.14) for D/D0 = 0.9 and η = 0: (a) mz and
(b) full magnetization vector m on a 5 × 5 (in units of ρ̃) grid centered around
the skyrmion. The color code represents the value of mz, as defined in (a). The
topological charge of the shown skyrmion evaluates to Q = −1.

3The domain wall energy for a system with Dzyaloshinskii-Moriya interactions is given by
σDW = 4

√
AexKuMs ∓ πD. Equation (3.13) defines the critical value of D, for which the domain

wall energy goes to zero [12, 26].
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The skyrmion profile depends strongly on the strength of the Dzyaloshinskii-
Moriya interactions and the external magnetic field. In infinite planes, a skyrmion
at zero magnetic field can be stabilized as long as D < D0 [24, 26]. For typical ferro-
magnets this amounts to a critical Dzyaloshinskii-Moriya constant of ∼ 3.5 mJ m−2

(see Table 3.1).
We show both θ(ρ̃) and mz(ρ̃) for the skyrmion with negative polarity p = −1

as a function of D/D0 in figure 3.3. The skyrmion grows with increasing D. For the
chosen configuration, the magnetization vector makes a full π rotation from θ(0) = π
to θ(∞) = 2π as shown in figure 3.3a. The chirality of the skyrmion is fixed by the
sign of D – in the analysis here we have a negative sign, as shown in equation (3.7).
Choosing the opposite sign for D reverses the rotation from θ(0) = π to θ(∞) = 0,
without a change to mz in figure 3.3b4.
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Figure 3.3: Profile of the ferromagnetic skyrmion for different values of the
Dzyaloshinskii-Moriya constant and zero external field: (a) polar angle θ(ρ̃) and
(b) mz. See Table 3.2 for a list of the corresponding values of D.

D(mJ m−2) D/D0 ξFM(nm)

5.28 1.50 5.68
4.23 1.20 7.10
3.49 0.99 8.60
3.17 0.90 9.47
1.76 0.50 17.04
0.35 0.10 85.19

D(mJ m−2) D/D0 ξAFM(nm)

10.56 1.50 5.68
8.45 1.20 7.10
6.98 0.99 8.60
6.34 0.90 9.47
3.52 0.50 17.04
0.70 0.10 85.19

Table 3.2: Different values of the Dzyaloshinskii-Moriya constant and the corre-
sponding rescaled parameters for the ferromagnet in equations (3.14) and (3.15),
and for the antiferromagnet in equations (3.32) and (3.34)?.
? The difference in D by a factor of two is an artefact of the definition of the energy functionals in

equations (3.7) and (3.24).

4See figure 3.1 for a schematic representation of a Néel skyrmion with the opposite sign of D.
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Next, we briefly sketch the effect of the external magnetic field on the ferro-
magnetic skyrmion. For visualization purposes, we fix D/D0 = 0.99 to start with
a larger skyrmion (see figure 3.3) and solve the profile equation for different values
of η5. We show both θ(ρ̃) and mz(ρ̃) for the p = −1 skyrmion in figure 3.4. Due
to the Zeeman coupling in the energy functional (3.11), the profile is sensitive to
the direction of the external magnetic field. For positive B the preferred direction
for the magnetization vector is along the ẑ-axis. Since m is antiparallel to ẑ at the
skyrmion core, with increasing external field the skyrmions shrinks. This effect is
shown in figure 3.4. If B is chosen negative, then the effect is reversed and the
skyrmion grows.
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Figure 3.4: Ferromagnetic skyrmion profile for D/D0 = 0.99 (see figure 3.3) and
different values of the external magnetic field, where η = B/(2Ku). The profile
is obtained from the numerical integration of equation (3.14): (a) polar angle θ(ρ̃)
and (b) z-component of the skyrmion magnetization vector. See Table 3.3 for the
corresponding values of B.

B(T) η B2/B2
0

1.0 1.0 5.6× 10−3

0.3 0.3 5.0× 10−4

0.1 0.1 5.6× 10−5

B(T) B2/B2
0 η

10 0.54 9.80
5 0.13 4.90
3 0.05 2.94
2 0.02 1.96
1 0.005 0.98

Table 3.3: Different values of the external magnetic field and the corresponding
rescaled parameters – η for the ferromagnet in equations (3.14) and (3.15), and
B2/B2

0 for the antiferromagnet in equations (3.32) and (3.34). The values listed on
the left are used for the ferromagnet in figures 3.4 and 3.7 and the ones one the
right, for the antiferromagnet in figures 3.11 and 3.13.

5The external field B is directly proportional to the dimensionless parameter η. For the present
set of parameters (see Table 3.1) a value of η = 1.0 corresponds to B = 1 T.
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Confined ferromagnetic skyrmions

Recently, Rohart et al. [26] showed that skyrmions confined in finite samples have
different properties compared to skyrmions in infinite samples. The origin of this dif-
ference are the Dzyaloshinskii-Moriya interactions and the canting that they induce
at the sample boundaries. Specifically, the volume energies of the model discussed in
section 3.2 conspire to form a “natural” boundary condition that is clearly irrelevant
in infinite samples. However, an important consequence of this boundary condition
in nanostructures is that no uniform state is possible when Dzyaloshinskii-Moriya
interactions are present.

To reproduce this effect, we rederive the steady-state Landau-Lifshitz-Gilbert
equation (3.10) by applying a variational principle on the energy functional (3.7).
Details are shown in Appendix A.2. The benefit of this approach is that, besides
the volume terms already taken into account in equation (3.14), we obtain also the
corresponding surface terms relevant for finite samples.

This procedure gives the exact same skyrmion profile equation as shown in equa-
tion (3.14). Since we are discussing nanostructures, it is beneficial not to rescale the
equation and rewrite it in terms of the radial coordinate ρ (see also Appendix B.1)

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

(
1

ρ2
+

1

x2
0

)
− 2

ξFM

sin2 θ

ρ
− η

x2
0

sin θ = 0, (3.15)

where x0 is the same characteristic domain wall width as before and ξFM = 2Aex/D
is the characteristic length of the cycloid state [12, 26, 107]. The surface terms
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Figure 3.5: Ferromagnetic skyrmion confined in a nanodisk of Rdisk = 50 nm. Shown
is the numerical solution of equations (3.15-3.16) for parameters η = 0, x0 = 5.42 nm
and ξFM = 8.60 nm, which correspond to for D/D0 = 0.99: (a) mz and (b) full
magnetization vector m with the boundary of the nanodisk (black circle). The color
code represents the value of mz, as defined in (a). The topological charge of the
shown confined skyrmion evaluates to Q = −0.89, as a result of the canting at the
nanodisk boundaries.
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contribute the “natural” boundary condition (see Appendix A.2)

(
dθ

dρ

)

boundary

=
1

ξFM

. (3.16)

We solve equation (3.15) numerically on a finite nanodisk of radius Rdisk = 50 nm
by using a shooting method, as discussed earlier. The difference here is that we do
not aim to fulfill the condition θ(ρ → ∞) = 0, but instead do so for the modified
boundary condition θ′(ρ = Rdisk) = 1/ξFM.

We show the zero-field confined skyrmion in figure 3.5 for x0 = 5.42 nm and
ξFM = 8.60 nm, which corresponds to D/D0 = 0.99 for the infinite-plane skyrmion.
The main difference here is the canting that occurs at the sample edges (compare
to figure 3.26). The chirality of the canting is again determined by the sign of the
Dzyaloshinskii-Moriya constant – for negative D the canting at the edges is outwards
and for positive D, inwards.

Another important difference is the improved stability of the confined skyrmion.
Due to the confining potential at the edges, it is possible to stabilize skyrmions even
for D > D0, whereas in the same range isolated infinite-plane skyrmions transform
to cycloids or skyrmion lattices [24, 26].

We show the zero-field confined skyrmion profile for different values of the
Dzyaloshinskii-Moriya constant in figure 3.6, where profiles corresponding toD < D0

are depicted in warm colors and the profiles with D > D0, in cool colors. The larger
skyrmions resemble magnetic bubbles in the sense that there are extended regions
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Figure 3.6: Confined ferromagnetic skyrmion for different values of the
Dzyaloshinskii-Moriya constant and zero external field: (a) polar angle θ(ρ) and (b)
z-component of the skyrmion magnetization vector. Warm colors depict skyrmion
profiles for which D < D0 and cool colors, D > D0. In both figures we
use x0 = 5.42 nm. See also figure 3.5 for a visualization of the skyrmion with
ξFM = 8.60 nm and Table 3.2 for a list of the corresponding values of D.

6For visualization purposes, we show in figure 3.5 a confined skyrmion with parameters cor-
responding to D/D0 = 0.99, whereas in figure 3.2 we showed an infinite-plane skyrmion for
D/D0 = 0.9. Here, we compare qualitatively the profiles of the confined and infinite-plane
skyrmions, so that this difference in parameters is irrelevant.

44



CHAPTER 3 3.3. Antiferromagnets

0 10 20 30 40 50

Π

3 Π

2

2 Π

Ρ HnmL

Θ
HΡ

L

Η

1.0

0.3

0.1

0.0

(a)

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

Ρ HnmL

m
z

Η

1.0

0.3

0.1

0.0

(b)

Figure 3.7: Confined ferromagnetic skyrmion for ξFM = 8.60 nm, x0 = 5.42 nm
and different values of the external magnetic field: (a) polar angle θ(ρ) and
(b) z-component of the skyrmion magnetization vector. Shown is the numerical so-
lution of equations (3.15-3.16). The choice of ξFM corresponds to D/D0 = 0.99 (see
figure 3.4). See also Table 3.3 for the corresponding values of the magnetic field.

with mz = ±1 separated by a continuous change of the magnetization vector. In
the regime D < D0 the skyrmion does not feel the confining potential of the edges
and its radius is fixed by the value of D. In contrast, for D > D0 the skyrmion size
is determined entirely by the nanodisk radius, as long as the latter is not too large
compared to the cycloid length L0 = 2πξFM. If it is, then a single skyrmion cannot
be stabilized and states with a larger rotation of the magnetization vector solve the
profile equation [26].

The canting at the edges for the confined skyrmion is evident in figure 3.6 and
increases with increasing D. Contrary to the infinite-plane skyrmion, the magneti-
zation vector here makes a rotation larger than π (see figure 3.6a), which also leads
to the fact that the topological charge defined in equations (3.5-3.6) does not equal
one for confined skyrmions. For the skyrmion shown in figure 3.5 it amounts to
Q = −0.89.

For comparison with the infinite-plane skyrmion (figure 3.4), we plot the profile
of the confined skyrmion as a function of the external magnetic field in figure 3.7.
Apart from the canting at the edges, the behaviour of both skyrmions is qualitatively
similar as far as the present work is concerned.

3.3 Antiferromagnets

In this section, we consider a generic model for a collinear two-sublattice antiferro-
magnet. We investigate the interplay of the exchange interactions, uniaxial mag-
netocrystalline anisotropy, external magnetic field and interfacial Dzyaloshinskii-
Moriya interactions. Stray field effects are neglected, as they are expected to be
small due to the antiparallel alignment of the magnetization vectors. A detailed
discussion of the demagnetization (stray field) effects in antiferromagnets can be
found in reference [106].

45



3.3. Antiferromagnets CHAPTER 3

3.3.1 Model

We consider a two-sublattice antiferromagnet within the exchange approximation
with the sublattice magnetizations M1 ' −M2 and |M1| = |M2| = Ms, where Ms

is the saturation magnetization [51, 65]. We assume that the temperature is low
enough, so that the magnitude of the magnetization vectors Ms does not change.
This allows us to work with the unit vectors m1 = M1/Ms and m2 = M2/Ms in the
following.

Our phenomenological approach is based on the exchange approximation [65],
which requires rotational invariance of the magnetization vectors and invariance of
the theory with respect to an exchange of the two sublattices. As a result, the energy
functional has to be invariant under the transformations M1 →M2 and M2 →M1.

The sample of interest is a thin two-dimensional film with structural inversion
asymmetry along the ẑ-direction, due to the presence of an interface. This structure
is captured by the crystallographic class Cnv

7

In terms of the two sublattices

Following reference [51], the model we consider is8

FAFM =

∫
d3r

{
A
[
(∇m1)2 + (∇m2)2

]
+BexchMs (m1 ·m2)

− BanMs

2

[
(m1 · ẑ)2 + (m2 · ẑ)2

]
−BMs

[
(m1 · ẑ) + (m2 · ẑ)

]

−BdMs

[
m1 ×m2

]
· ẑ + fDM,surface

}
. (3.17)

Here, the constant Ban describes the inhomogeneous exchange interaction and Bexch,
the homogeneous exchange interaction. A uniaxial magnetocrystalline anisotropy is
captured by the constant Ban and B denotes the external magnetic field. Both are
set in the ẑ-direction. The Dzyaloshinskii-Moriya interactions are described by a
homogeneous term Bd (which is the origin of weak ferromagnetism [51, 108]) and
an inhomogeneous term9

fDM = −D
4

{[
(m1 −m2) · ẑ

][
∇ · (m1 −m2)

]
− (m1 −m2) · ∇

[
(m1 −m2) · ẑ

]}
.

(3.18)

The latter part is the main ingredient needed to stabilize a skyrmion in this system
and inhomogeneous textures in general [51]. Equation (3.18) is the antiferromagnetic
generalization of the Dzyaloshinskii-Moriya functional in equation (3.7) [12, 51].

7This class describes also materials with non-centrosymmetric crystal lattices (an example of
such an antiferromagnet is K2V3O8 [51]).

8In the present work we disregard the exchange and anisotropy terms involving both sublattices,
as they do not significantly affect the results. The full model can be found in reference [51].

9See also the discussion on Lifshitz invariants in section 2.2.1 and equations (2.8-2.9).
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Due to the macroscopic nature of the phenomenological model, to every point
r in space magnetization vectors of both sublattices m1(r) and m2(r) are assigned.
This leads to the distinction between homogeneous terms (representing interaction
between magnetization vectors at the same point in space) and inhomogeneous terms
(interaction between magnetization vectors at different points in space) in the energy
functional (see figure 3.8). Consequently, the inhomogeneous terms always contain
gradients.

The Landau-Lifshitz-Gilbert equations for both magnetic sublattices are10

ṁ1 = −γm1 ×BAFM
eff,1 ,

ṁ2 = −γm2 ×BAFM
eff,2 ,

(3.19)

which are coupled through the effective fields

BAFM
eff,1 =

2A

Ms

∇2m1 −Bexchm2 +Ban(m1 · ẑ)ẑ +Bẑ +Bd(m2 × ẑ) + BAFM
DM ,

BAFM
eff,2 =

2A

Ms

∇2m2 −Bexchm1 +Ban(m2 · ẑ)ẑ +Bẑ −Bd(m1 × ẑ)−BAFM
DM ,

(3.20)

with the Dzyaloshinskii-Moriya field

BAFM
DM =

D

2Ms

[
ẑ
(
∇ · (m1 −m2)

)
−∇

(
(m1 −m2) · ẑ

)]
. (3.21)

Figure 3.8: Schematic representation of the coarse graining within the antiferromag-
netic phenomenological model. The sublattice magnetizations m1 (depicted red) and
m2 (blue) are macroscopic quantities and – due to the averaging over space – are
both assigned to every point r in space. This leads to the appearance of homogeneous
(m1,m2 at the same point in space) and inhomogeneous interaction terms (m1,m2

at different points in space, e.g., r and r + ∆r).

10We disregard damping terms and current-induced torques for the present discussion regarding
the static skyrmion profile.
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In terms of the order parameter

For the analytical treatment, it is more convenient to formulate the theory in terms
of the antiferromagnetic order parameter (also called the Néel vector)

n =
m1 −m2

2
, (3.22)

and the total magnetization

m =
m1 + m2

2
. (3.23)

See figure 3.9 for a schematic representation. In the following, we will refer to n
and m as the antiferromagnetic vectors. Here, the invariance of the theory with
respect to an exchange of the two sublattices translates to invariance under the
transformations n→ −n and m→m.

The magnetic energy in terms of the antiferromagnetic vectors follows directly
from equations (3.17) and (3.22-3.23)11 [51, 65]

FAFM =

∫
dr

{
2A (∇n)2 + 2BexchMsm

2 −BanMs(n · ẑ)2 − 2BMs(m · ẑ)

+ 2BdMs(m× n) · ẑ −D
[
(ẑ · n)(∇ · n)− (n · ∇)(ẑ · n)

]}
. (3.24)

The first and the second terms describe the inhomogeneous and homogenous ex-
change interaction with the constants A and Bexch, respectively. The uniaxial
anisotropy is parameterized by the constant Ban > 0 and the external magnetic
field is denoted by B. The remaining terms describe the Dzyaloshinskii-Moriya in-
teractions, where Bd and D represent the homogeneous (pointing in the ẑ-direction)
and inhomogeneous parts, respectively.

The antiferromagnetic vectors obey the constraints n2 = 1 and n · m = 0.
Throughout this work we make the assumption that the homogeneous exchange
interaction Bexch is the dominant energy scale, so that Bexch � Bd, Ban. For typical
values of the external magnetic field that do not destroy the antiferromagnetic order
the exchange constants dominates the field too, Bexch � B [47].

m

n

m2

m1

Figure 3.9: Schematic representation of the antiferromagnetic vectors: sublattice
vectors m1 and m2, and Néel vector n and total magnetization m (not to scale).

11The energy functional seems to satisfy the C∞v symmetry group, however, the discrete sym-
metry origin of the antiferromagnetic vectors needs to be respected, which lowers the symmetry
to Cnv.
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To leading order in Bexch the corresponding Landau-Lifshitz-Gilbert equations
take the form

ṅ = γ
[
n×BAFM

eff,m

]
+ τn,

ṁ = γ
[
n×BAFM

eff,n + m×BAFM
eff,m

]
+ τm,

(3.25)

where τn,m are possible torques from external perturbations (see section 2.2.3 for an
example) and the effective fields here are defined as12

BAFM
eff,n = − 1

2Ms

δf

δn
,

BAFM
eff,m = − 1

2Ms

δf

δm
,

(3.26)

and given by

BAFM
eff,n =

2A

Ms

∇2n +Ban(n · ẑ)ẑ +Bd(m× ẑ) +
D

Ms

[
(∇ · n)ẑ −∇(n · ẑ)

]
,

BAFM
eff,m = −2Bexchm + B−Bd(n× ẑ).

(3.27)

Static magnetization of the antiferromagnet

The static magnetization of this system without electric currents is found by mini-
mizing the energy functional (3.24)13. This yields [50, 51]

m0 = − B

2Bexch

n× (n× ẑ)− Bd

2Bexch

n× ẑ. (3.28)

The presence of the homogeneous Dzyaloshinskii-Moriya term Bd shows that even in
the absence of an external magnetic field the total magnetization is non-zero. This
is the origin of the phenomenon called weak ferromagnetism (see section 2.2.1). In
the present work, we are not interested in such effects. Further, this term does not
contribute to the translational motion of an antiferromagnetic texture within the
approximations we consider and we neglect it in the following14.

Closed Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert equations (3.25) can be brought in closed form by elim-
inating m by using the expression of BAFM

eff,m in equations (3.27). We take n× (· · · )
the first equation in (3.25), solve for m and plug the obtained expression in the
equation for ṁ (3.25). In the absence of external torques this leads to the closed
equation for the Néel vector

n× n̈ = 2Bexchγ
2
(
n×BAFM

eff,n

)
− γ2 (n×B) (n ·B) + 2γṅ (n ·B) . (3.29)

12The factors of 1/2 come from the definition of the antiferromagnetic vectors in equations
(3.22) and (3.23).

13Alternatively, the static magnetization can be obtained by taking the cross product of the
first line of equations (3.25) with n and identifying the time-independent components under the
constraints n2 = 1 and n ·m = 0.

14The main effect of Bd is that it renormalizes the effective anisotropy constant Ban. See
reference [51] for more details.
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Effects of external torques on the skyrmion profile

In section 4.1 we investigate the skyrmion motion induced by electric currents. Some
of the current-induced torques that enter equation (3.25) in that case are field-like
(see sections 2.2.3 and 4.1.2) and, therefore, represent potential forces. Such torques
are equivalent to the terms appearing in equations (3.27), so that they have to
be taken into account when investigating the static skyrmion properties. For this
purpose, we introduce the external effective field Bext,eff (see sections 3.3.2 and 4.1.2)
that contains both the external magnetic field and the conservative current-induced
fields

Bext,eff = B− C1

2γ
(ẑ × j) . (3.30)

Here, C1 is the coefficient of the field-like current-induced spin-orbit torque and j
the electric current density (see section 2.2.3).

3.3.2 Skyrmion profile

The energy functional in equation (3.24) allows for skyrmion solutions as long as the
external field is applied along the ẑ-direction or is zero [50, 51]. We assume the exter-
nal magnetic field to be the dominant contribution towards Bext,eff in equation (3.30),
so that the current-induced field does not destroy the skyrmion (B � C1j/2γ). The
skyrmion profile n = nsk +δn is determined from the steady state of equation (3.29),
which is valid in the absence of dissipative and damping terms

n×BAFM
eff,n −

1

2Bexch

(n×Bext,eff) (n ·Bext,eff) = − 1

γBexch

ṅ (n ·Bext,eff) . (3.31)

In this chapter we are interested in the static skyrmion properties and focus our
attention on the static component nsk solves the equation with both j, ṅ = 0.

The corrections δn originate from a non-zero dynamic term ṅ and the current-
induced effective field C1/2γ(ẑ×j) and are relevant for the current-induced skyrmion
motion, which we investigate in section 4.1.2. Gomonay et al. [109] discussed that a
deformation of an antiferromagnetic texture occurs at velocities close to the magnon
velocity. In antiferromagnets the magnon velocity is of the order of 30 km s−1,
which is orders of magnitude higher than in ferromagnets. We are considering slow
skyrmion dynamics in section 4.1.2 and, therefore, the corrections can be assumed
small, |δn| � |nsk|.

Following the procedure for the ferromagnetic skyrmion (section 3.2.2), we rewrite
equation (3.31) into spherical coordinates (see Appendix B.1)

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− 4D

πD0

sin2 θ

ρ̃
−
(

1− B2

B2
0

)
sin θ cos θ = 0. (3.32)

Here, we presented the dimensionless form of the profile equation . The radial coor-
dinate is rescaled according to ρ̃ = ρ/x0, where x0 is the antiferromagnetic character-
istic lengthscale (domain wall width), D0 the threshold value of the inhomogeneous
Dzyaloshinskii-Moriya interactions in antiferromagnets and B0 the spin-flop field of
the antiferromagnet
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x0 =

√
2A

BanMs

,

D0 =
4

π

√
2ABanMs,

B0 =
√

2BexchBan. (3.33)

At this stage, we note that for zero magnetic field the profile equations for
the ferromagnet (3.14) and the antiferromagnet (3.32) are identical. Therefore,
we can readily take over the results for the zero-field ferromagnetic skyrmion after
substituting the ferromagnetic magnetization m by the Néel vector n15 (see figures
3.2-3.3). On an infinite plane the profile equation has a skyrmion solution only when
D < D0, otherwise resulting structure is a cycloid. We plot the antiferromagnetic
counterpart of figure 3.2 in figure 3.10, where we visualize the Néel vector with
double-headed arrows.

When the magnetic field is turned on, the two ferromagnetic and antiferromag-
netic skyrmion react differently. The main difference is that the antiferromagnet is
not sensitive to the direction – parallel, or antiparallel – of the magnetic field, since
only B2 enters the profile equation (3.32). To show the antiferromagnetic skyrmion
profile in the presence of magnetic field, we solve equation (3.32) numerically for the
skyrmion with polarity p = −1 using the same technique as before and the material
parameters listed in Table 3.4.

We plot the skyrmion profile for D/D0 = 0.99 and different values of B are
plotted in figure 3.11. As expected, the antiferromagnet is less sensitive than the
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Figure 3.10: Isolated antiferromagnetic skyrmion on an infinite plane for zero ex-
ternal field. Shown is the numerical solution of equation (3.32): (a) nz for different
values of D; (b) Néel vector n for D/D0 = 0.9 on a 5× 5 (in units of ρ̃) grid cen-
tered around the skyrmion. The color code represents the value of nz, as defined in
(a). The exact same profile defines the ferromagnetic skyrmions, as shown in figures
3.2-3.3. See Table 3.2 for the corresponding values of D. The topological charge of
the depicted skyrmion evaluates to Q = −1.

15The same applies to the definition of the topological charge in equations (3.5-3.6).
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Parameter Value Unit

Bexch 90.9 T
B 1.5 T
A 15.0 pJ m−1

Ban 1.0 T
D 7.0 mJ m−2

Ms 1.0 MA m−1

Rescaled Parameter Value Unit

B0 13.52 T
B2/B2

0 0.01 −
x0 5.42 nm
D0 7.04 mJ m−2

D/D0 0.99 −
ξAFM 8.60 nm

Table 3.4: List of typical parameters for an antiferromagnetic material. The param-
eters here are chosen in such a way that the exchange field Bexch is the largest scale
in the system and the same characteristic lengthscales as for the ferromagnet are
reproduced (see Table 3.1). Shown are the constants that enter the energy functional
in equation (3.24) directly and the corresponding rescaled parameters that appear in
the profile equations (3.32) and (3.34).

ferromagnet – a strong field of B = 1 T enlarges the antiferromagnetic skyrmion a
little (figure 3.11b), whereas the effect on the ferromagnetic skyrmion is significantly
stronger (figure 3.4b). This allows to apply even stronger fields without destroying
the skyrmion. For fields larger than the spin-flop field B > B0 the antiferromagnet
enter the spin-flop phase, where the preferred direction of the Néel vector is in-plane.
This phase is beyond the scope of the present work16.
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Figure 3.11: Antiferromagnetic skyrmion profile for D/D0 = 0.99 (see figure 3.10)
and different values of the external magnetic field. The profile is obtained from the
numerical integration of equation (3.32): (a) polar angle θ(ρ̃) and (b) nz. See also
Table 3.3 for the corresponding values of the dimensionless parameter B2/B2

0 .

16See reference [51] for a discussion on the stability of states modulated by the Dzyaloshinskii-
Moriya interactions within the spin-flop phase in antiferromagnets.
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Confined antiferromagnetic skyrmions

Equivalent to ferromagnets, the Dzyaloshinskii-Moriya interactions in antiferromag-
nets will induce canting of the Néel vector at the edges of finite samples (see the
corresponding discussion in section 3.2.2). Due to this effect, nanostructures with
D 6= 0 cannot host uniform magnetic textures. Here, using the same variational
approach on energy functional (3.17), we derive the boundary condition for the an-
tiferromagnetic skyrmion profile equation (3.32). Details can be found in Appendix
A.2.

For finite samples, it is beneficial not to rescale the equation and rewrite it in
terms of the radial coordinate ρ (see also Appendix B.1)

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

[
1

ρ2
+

1

x2
0

(
1− B2

2BexchBan

)]
− 2

sin2 θ

ξAFMρ
= 0, (3.34)

where x0 is the same antiferromagnetic domain wall width as before and
ξAFM = 4A/D is the characteristic length of the antiferromagnetic cycloid state
[12, 26, 51, 107]. The surface terms contribute the “natural” boundary condition
(see Appendix A.2)

(
dθ

dρ

)

boundary

=
1

ξAFM

. (3.35)

We solve equation (3.34) numerically on a finite nanodisk of radius Rdisk = 50 nm
and, as for the ferromagnet, with the initial condition θ(ρ = 0) = π. The modified
boundary condition θ′(ρ = Rdisk) = 1/ξAFM is fulfilled by a shooting method.
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Figure 3.12: Antiferromagnetic skyrmion confined in a nanodisk of Rdisk = 50 nm.
Shown is the numerical solution of equations (3.34-3.35) for parameters B = 0 T,
x0 = 5.42 nm and ξAFM = 8.60 nm, which correspond to for D/D0 = 0.99: (a) nz
and (b) full Néel vector n with the nanodisk boundary (black circle). The color code
represents the value of nz, as defined in (a). The confined ferromagnetic counterpart
is shown in figure 3.5. See also Table 3.2 for the corresponding values of D. The
topological charge of the shown skyrmion evaluates to Q = −0.89.
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Figure 3.13: Profile of the confined antiferromagnetic skyrmion for ξAFM = 8.60 nm,
x0 = 5.42 nm and different values of the external magnetic field: (a) polar angle
θ(ρ) and (b) z-component of the Néel vector. Shown is the numerical solution of
equations (3.34-3.35). The choice of ξAFM corresponds to D/D0 = 0.99 (see figure
3.12). We note that the colors chosen here match the ones in figure 3.11 only for
B = 0 T. The corresponding values of the dimensionless parameter B2/B2

0 are shown
in Table 3.3.

The conclusions drawn for the ferromagnetic skyrmion regarding the magnetiza-
tion canting at the edges, its chirality, topological charge and the increased stability
even for D > D0 apply here as well. We show the antiferromagnetic confined
skyrmion at zero field in figure 3.12 for x0 = 5.42 nm and ξAFM = 8.60 nm, which
corresponds to D/D0 = 0.99 for the infinite-plane skyrmion. For completeness, we
also show the profile for different values of D in figure 3.12a, where profiles for which
D < D0 are depicted in green colors and for D > D0, in blue colors. In the lat-
ter case the skyrmion size is confined by the nanodisk boundaries, as long Rdisk is
not too large compared to the cycloid length L0 = 2πξAFM. If it is, then a single
skyrmion cannot be stabilized and states with a larger rotation of the magnetization
vector solve the profile equation [26].

For comparison with the infinite-plane skyrmion (figure 3.11), we plot the profile
of the confined skyrmion as a function of the external magnetic field in figure 3.13.
In both cases the skyrmion grows when the magnetic field is increased. However, for
the confined skyrmion, the growth is limited by the nanodisk boundaries, so that
even at higher fields than for the infinite-plane skyrmion the size does not change
much (compare figures 3.11b and 3.13b).

3.4 Summary

In this chapter, we presented the phenomenological models for ferromagnetic
and antiferromagnetic thin films, and investigated the static properties of the cor-
responding skyrmion solutions. The models incorporate exchange interactions, uni-
axial anisotropy, external magnetic field and interfacial Dzyaloshinskii-Moriya in-
teractions. Dipolar interactions are negligible for the present setup and were not
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considered. Importantly, we reviewed two representations of the antiferromagnetic
model – one in terms of the individual sublattices (which we later use in the numer-
ical simulations), and the other in terms of the antiferromagnetic vectors (which we
later use in the analytical calculations).

Based on these models, we reproduced analytically the profile equation for fer-
romagnetic and antiferromagnetic Néel skyrmions with negative polarity (p = −1)
and reviewed known results regarding the dependence of the skyrmion profile on the
Dzyaloshinskii-Moriya constant and the external field in infinite-plane films [12, 51].
We emphasize that

• at zero external field the profile equations in ferromagnets and antiferromag-
nets are identical – the former defines the ferromagnetic magnetization vector
and the latter, the antiferromagnetic Néel vector [13];

• at finite magnetic fields, the ferromagnetic profile equation is linear in the
field, whereas the antiferromagnetic equation is quadratic in it.

Due to the strong exchange interaction in antiferromagnets, the antiferromagnetic
skyrmion is less sensitive to the external field than the ferromagnetic skyrmion and
persists at higher fields.

Finally, we investigated the static properties of skyrmions confined in circular
nanodisks. For ferromagnets, it was recently shown that the Dzyaloshinskii-Moriya
interactions induce an additional canting of the magnetization vector at the sam-
ple boundaries [26]. This creates a confining potential, which stabilizes skyrmions
for a larger range of the Dzyaloshinskii-Moriya constant compared to infinite-plane
skyrmions. We reproduced these results through variational calculations and ex-
tended the analysis to antiferromagnetic confined skyrmions.

The derivation of the modified boundary conditions in finite antiferromagnetic
thin films with Dzyaloshinskii-Moriya interactions is our main result in this chapter.
At zero external field the findings are identical to the ferromagnetic case. At finite
fields we find that the confining potential diminishes the effect of the magnetic field
close to the boundaries and, as a result, the antiferromagnetic confined skyrmion
persists at higher fields than the infinite-plane skyrmion (see figures 3.11 and 3.13).

With this, the stage is set to go beyond the static properties of ferromagnetic
and antiferromagnetic skyrmions. In the next chapter, we apply the models in-
troduced here to investigate the current-induced motion of infinite-plane skyrmions
analytically, and the intrinsic dynamic modes of confined skyrmions numerically.
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Chapter 4

Current-induced motion and
confined intrinsic dynamics of
skyrmions in antiferromagnets

4.1 Translational current-driven skyrmion motion

In this section, we focus on the current-driven motion of isolated skyrmions in
perpendicularly magnetized (infinite) thin films. The inversion symmetry breaking at
the interface of the magnetic thin film, which is assumed to exhibit a strong spin-orbit
coupling, leads to the appearance of interfacial Dzyaloshinskii-Moriya interactions.
When electric currents are applied to this systems, they become spin-polarized due to
the spin-orbit coupling; this effect is captured by introducing spin-orbit torques into
the model1.

The manipulation of magnetic textures with electric currents and the constant
improvement of technological devices is a key area in spintronics. Magnetic skyrmions
have gained a lot of attention as candidates for low-energy novel information storage
and logic devices due to their unique characteristics, like the low threshold current
needed to set them in motion [10, 25, 110].

In ferromagnets, the current-induced skyrmion motion has been studied exten-
sively – both due to the effects of spin-transfer torques [23, 25, 110] and spin-orbit
torques [73]. Here, we review the results of Knoester et al. [73], where both effects
have been studied analytically.

In antiferromagnets there has been no experimental observation of antiferro-
magnetic skyrmions yet and the literature on current-induced motion is much more
sparse. The first studies employed numerical simulations and highlighted the differ-
ent dynamics of antiferromagnetic skyrmions driven by spin-transfer torques [52, 53].
The analysis presented in this chapter tackles the problem analytically – where the
phenomenological model is extended to incorporate both spin-transfer and spin-orbit
torques – and was published in reference [55].

1The same model is also applicable to setups in which spin-polarized currents are injected
vertically into the magnetic thin film, for example, due to the spin-Hall effect in an adjacent
heavy-metal layer with a large spin-orbit coupling [25].
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For the analysis, we use the ferromagnetic and antiferromagnetic models dis-
cussed in the previous chapter and extend them to cover spin-transfer and spin-
orbit torques. The models take into account spin-orbit coupling to lowest order [73]
and, in addition, describe the antiferromagnetic dynamics to leading order in the
exchange field [55]. We derive an equation of motion for a general magnetization
texture analytically and apply the collective-coordinate method (see section 2.2.2) to
project the full Landau-Lifshitz-Gilbert equations onto the skyrmion translational
modes (parametrized by the center of mass coordinates Rx and Ry) for both systems.
Within this approach, we use the equilibrium skyrmion profiles obtained in chapter
3. Finally, we estimate the resulting skyrmion drift velocities for both systems and
compare the analytical results to existing numerical works.

As discussed previously, we disregard the effects of dipolar interactions in our
models2. Further, we do not consider pinning effects or study the corresponding
critical current density needed to move skyrmions. In ferromagnets these issues have
been addressed numerically in the works of Iwasaki et al. [110] and experimentally
in the work of Woo et al. [29]. The pinning of antiferromagnetic skyrmions has been
numerically studied recently [54].

4.1.1 Ferromagnetic skyrmions

In this section, we review the results for the skyrmion motion driven by current-
induced spin-transfer and spin-orbit torques. For the original works we refer to
Knoester et al. and Sampaio et al. [25, 73].

Equation of motion

The full Landau-Lifshitz-Gilbert equation for a ferromagnet includes damping terms
and external torques [73]

ṁ = γm×Beff,FM + αG,FMm× ṁ + τj, (4.1)

where γ is the gyromagnetic ratio, αG,FM the phenomenological Gilbert damping
coefficient and τj represent the current-induced torques (see section 2.2.3). The
effective field is given in equation (3.8) and reads

Beff,FM =
2Aex

Ms

∇2m + 2Ku(m · ẑ)ẑ +Bẑ +
2D

Ms

[
ẑ(∇ ·m)−∇(ẑ ·m)

]
. (4.2)

The current-induced torques for the present system can be both homogeneous
and inhomogeneous (see also the discussion in reference [73]). We write collectively
τj = τFM,STT + τFM,SOT, where

τFM,STT = αFM (j · ∇) m + βFMm× (j · ∇) m,

τFM,SOT = aFMm× (j× ẑ) + bFMm×
[
m× (j× ẑ)

]
.

(4.3)

2We consider thin films where dipolar interactions are negligible [26]; further, there are studies
showing that their inclusion does not have a sizeable influence [25].
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Here, the terms proportional to αFM and βFM represent the conventional reactive and
dissipative spin-transfer torques. In the second line of equation (4.3) aFM describes
the field-like and bFM, the antidamping spin-orbit torque.

Bringing all terms together in equation (4.1) we obtain the time-evolution of the
magnetization vector in the presence of electric currents

ṁ = γm×Beff,FM + αG,FMm× ṁ + αFM (j · ∇) m + aFMm× (j× ẑ)

+ βFMm× (j · ∇) m + bFMm×
[
m× (j× ẑ)

]
. (4.4)

This result has been obtained by Knoester et al. [73] and describes the dynamics of
a general ferromagnetic texture driven by current-induced torques to first order in
the spin-orbit coupling.

Current-driven skyrmion motion

Next, we apply the collective-coordinate approach to study the translational motion
of a ferromagnetic skyrmion (see section 2.2.2). This is equivalent to the Thiele ap-
proach used in recent literature [25, 73, 79, 110, 111]. We assume that the skyrmion
profile is composed of a static, cylindrical and rigid component (see section 3.2.2).
For the time evolution we use the ansatz m(r, t) = m(r−R(t)), where m is the
equilibrium skyrmion texture obtained in section 3.2.2 and R(t) is the skyrmion
position. As collective coordinates, we take {ξi} = {Rx, Ry}.

To obtain the equation of motion for the skyrmion, we project onto the trans-
lational mode by multiplying equation (4.4) by m × ∂m/∂xβ for β = x, y and
subsequently integrating over space. We note that the equilibrium profile of the
skyrmion is found from equation (3.10) so that, upon projection, the first term on
the right hand side of equation (4.4) vanishes. The remaining terms determine the
skyrmion equation of motion (see Appendix B.2 for details) [25, 43, 73, 79, 110, 111]

G× Ṙ = −ΓFMṘ + ∆‖j + ∆⊥
(
ẑ × j

)
, (4.5)

where

G = −Msx0

γ
Qẑ,

ΓFM =
Msx0

γ
DαG,FM,

∆‖ =
Msx0

γ

[
βFMD + bFMx0I

′
]
,

∆⊥ =
Msx0

γ

[
aFMx0I + αFMQ

]
. (4.6)

The first term in equation (4.5) describes the Magnus force and highlights the in-
herent gyrotropic dynamics of ferromagnets. It contains the gyrovector G [23, 72],
which is directly proportional to the topological charge of the skyrmion (in the
present case Q = −1). The electric current – applied in the xy-plane – produces
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two driving forces: a longitudinal dissipative force proportional to the coefficient ∆‖
and parallel to the direction of the current, and a transversal force proportional to
∆⊥ and perpendicular to the current. The Gilbert damping constant αG,FM is the
origin of the friction force described by the coefficient ΓFM.

We have schematically depicted the motion of the ferromagnetic skyrmion for an
electric current applied in the x̂-direction in figure 4.1.

Equation (4.5) contains the saturation magnetizationMs, the characteristic length-
scale of the ferromagnet x0 and the dimensionless constants D, I and I ′ which are
integrals over the skyrmion profile and are listed in Appendix B.2.

Current-driven skyrmion velocity

The components of the velocity can be readily obtained from equation (4.5) [73, 110]

vx =
DαG,FM(DβFM + bFMx0I

′) + aFMx0I − αFM

1 + (DαG,FM)2 jx,

vy =
DβFM + bFMx0I

′ +DαG,FM(αFM − aFMx0I)

1 + (DαG,FM)2 jx,

(4.7)

where we have limited our attention to electric currents applied in the x̂-direction.
In an infinite plane the skyrmion has both a longitudinal and a transversal velocity;
however, if the skyrmion is confined in a narrow strip, it eventually feels the repulsive
forces from the edges and resumes motion only in the longitudinal direction [25, 26,
27]3.

We list typical values of the torque coefficients for ferromagnets in Table 4.1.
The expressions in equations (4.7) give an analytical estimate of the current-driven
skyrmion velocity, which is in a very good agreement with the results from numerical
simulations [27, 110]. Both results are summarized in 4.1.

We note that Iwasaki et al. [110] consider a scenario where only inhomogeneous
torques are present (both the adiabatic and non-adiabatic spin-transfer torques),
which drive the Néel skyrmion along the current in a narrow ferromagnetic strip.
On the other hand, Tomasello et al. [27] consider the motion of a Néel skyrmion
driven by homogeneous torques of the same form as in equation (4.3), but originating
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At the same time, however, the Néel vector depends on the spherical angles n(t) =

n
⇣
✓(t),�

⌘
Which one exactly of the spherical angles contains the time-dependence? Then
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Here we focus on a rigid magnetic skyrmion, rewrite the equations of motion by using

the collective coordinate approach and obtain an estimate for the skyrmion velocity as

a result of the electric currents.

3.1. Collective coordinates

Experience shows that the complex dynamics of magnetic textures in ferromagnets and

antiferromagnets can often be described by only a few degrees of freedom. [?, 14] The

approach necessitates the choice of a finite set of collective coordinates ⇠i(t) which are

used to specify the time evolution of the Néel order parameter n(r, t) = n(r, {⇠i(t)}).

In particular, we use

ṅ =
X

i

@n

@⇠i
⇠̇i,

n̈ =
X

i

@n

@⇠i
⇠̈i + O(⇠̇2

i ), (9)

where the second term in the last equation is neglected because it is quadratic in the

driving forces [14].

Here we apply the results for the general magnetization dynamics to a rigid

antiferromagnetic skyrmion to analyze its current-induced motion. We use the ansatz

n(r, t) = nsk(r � R(t)), where nsk(r) is the static profile of an isolated skyrmion and

R(t) is the skyrmion position. As collective coordinates we take {⇠i} = {Rx, Ry}. After

multiplying (8) by @n/@⇠↵ for ↵ = x, y and integrating over space, the equation of

motion transforms to

me↵R̈ = ��Ṙ + he↵

⇣
ẑ ⇥ Ṙ

⌘
+ �adj + �h (ẑ ⇥ j) . (10)

The coe�cients read

me↵ =
4⇡x0

�2�

he↵ ' ⇡hx0

��
(I31 + I32)

� ' �4⇡G2x0

�

�h ' ⇡C1x
2
0h

2��
(I4 + I5 + I6 + I7)

�ad ' ⇡�x0

�
+
⇡C2x

2
0

2�
(I6 + I7) (11)

where � represents the friction term and he↵ ,�h denote the transverse terms that

originate from the external magnetic field (similar to a Lorentz force). The constants

Ij are dimensionless integrals determined by the skyrmion profile and we discuss them

later. The appearance of the e↵ective mass me↵ is the main di↵erence compared to

ferromagnetic skyrmion motion resulting from the di↵erent nature of the magnetization

dynamics in antiferromagnets.

vsk

B

Figure 4.1: Schematic representation of the skyrmion motion in a ferromagnet driven
by an electric current j ‖ x̂ and an external magnetic field B ‖ ẑ, as described by
equation (4.5). The friction force is denoted by ΓFMṘ, the longitudinal current-
induced force by ∆‖j and the transversal current-induced force by ∆⊥j. The combi-
nation of these forces leads to a skyrmion motion with the velocity vsk.

3This is a key component for the concept of skyrmion racetrack memory [25, 27].
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Parameters Units Iwasaki et al. [110]? Tomasello et al. [27]??

αG,FM − 0.5 0.3
αFM m3 A−1 s−1 7.8× 10−11 −
βFM m3 A−1 s−1 −3.9× 10−11 −
aFM m2 A−1 s−1 − −
bFM m2 A−1 s−1 − −0.019
x0 nm − 103

j A m−2 1011 1011

Estimated

|vx,sk| m s−1 7.8 5.2
|vy,sk| m s−1 0 17.4

Numerical results

vsk m s−1 ∼ 8 ∼ 15
?The values of the current-induced torque coefficients αFM and βFM have been calculated
from the expressions that the authors provide in [110] for their spin-transfer torque coefficients
αFM = pa3/(2e) and βFM = −pa3/(2e)β, where p = 0.2 is the spin polarization of the electric
current, e the electron charge and a = 5 Å is the lattice constant. We focus only on one set of
values for αG,FM, βFM and v of the range provided in [110], namely αG,FM = βFM = 0.5;
?? Here, we focus only on the scenario of Néel skyrmions driven by spin-Hall effect torques. The
corresponding torque coefficient is calculated according to bFM = γ~θSH/(2eMsL), where γ is the
gyromagnetic ratio, ~ the reduced Planck constant, θSH = −0.3 the spin-Hall angle for the used
setup, Ms = 1 MA m−1 the saturation magnetization and L = 1 nm the ferromagnetic layer thick-
ness. The rescaling factor that the authors use is not the characteristic width x0, but rather the
thin film length.

Table 4.1: Estimated velocities of the ferromagnetic skyrmion using the parameters
from references [27, 110] and the formulas for vx,sk and vy,sk presented in equations
(4.7). The numerical results for vsk are taken from the diagrams of the corresponding
reference.

from the spin-Hall effect of the electric current applied to an adjacent heavy metal
layer4. Despite the different origin, the value of the homogeneous torque quoted in
reference [27] is comparable to the estimated value of the homogeneous spin-orbit
torque [73, 105]. Both scenarios are captured within the phenomenological model
presented in this section.

In conclusion, homogeneous torques of the Slonczewski type (the term in equation
(4.3) proportional to bFM) are found to be more effective in driving Néel skyrmions
and result in faster velocities [25, 27]. In this work the homogeneous torques are a
direct result of the spin-orbit coupling in the ferromagnet, but they can also be due
to the vertical injection of spin-polarized current from a multilayer structure into
the ferromagnet [25], or due to the spin-Hall effect generated in a heavy metal layer
adjacent to the ferromagnet [27].

4Due to the different nature of the torque in reference [27], the skyrmion is driven in a narrow
ferromagnetic strip in a direction transverse to the electric current.
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4.1.2 Antiferromagnetic skyrmions

In this section, we analyze the antiferromagnetic skyrmion motion driven by current-
induced spin-transfer and spin-orbit torques. These results have been published in
reference [55].

We start by discussing the current-induced torques in the antiferromagnet. We
proceed with analyzing the magnetization dynamics of a uniaxial antiferromagnet
in the presence of electric currents and a time-independent external magnetic field.
Finally, we focus on the translational motion of a magnetic skyrmion, rewrite the
equations of motion by using the collective-coordinate approach, and obtain an
estimate for the skyrmion velocity as a result of the electric currents.

Spin-orbit torques in antiferromagnets

We follow a phenomenological approach to derive the current-induced torques. It is
based on the Onsager reciprocity relations, which, in the case under consideration,
relate the process of inducing charge currents by a time-varying magnetic texture
to the effect that charge currents have on the magnetization dynamics.

Following Hals et al. [60], to lowest order in the spatial gradients and the mag-
netization m, and zeroth order in spin-orbit coupling we find three contributions
towards the magnetically pumped charge density jpump/σ (where σ is the electri-
cal conductivity) that obey the symmetries of the system (rotation and n → −n):
η/γ n · (ṁ×∂in), β/γ ṅ ·∂in and ζ/γ n · (ṅ×∂im) [60]. After applying the Onsager
relations these are transformed and result in the torques

τn,STT =
η

2
(j · ∇)n +

β

2
(j · ∇)n×m +

ζ

2
m×

[
(j · ∇)m× n

]
,

τm,STT =
η

2
m×

[
(j · ∇)n× n

]
+
β

2
(j · ∇)n× n +

ζ

2
n×

[
(j · ∇)m× n

]
.

(4.8)

Here, the terms parameterized by the coefficients η, ζ describe reactive spin-transfer
torques, whereas the term with β describes a dissipative spin-transfer torque.

Furthermore, as discussed in section 2.2.3, the inversion symmetry breaking gives
rise to another set of torques even in homogeneous systems, which do not involve
gradients of the antiferromagnetic vectors. Following the same approach as above
[112], we find the pumped charge currents that are lowest order in the spin-orbit
coupling: C1/γ ẑ×ṁ, C2/γ ẑ×(n× ṅ) and C3/γ ẑ×(m× ṁ), which after applying
the Onsager relations lead to

τn,SOT = −C1

2
n× (ẑ × j)− C2

2
m×

[
n× (ẑ × j)

]
− C3

2
n×

[
m× (ẑ × j)

]
,

τm,SOT = −C1

2
m× (ẑ × j)− C2

2
n×

[
n× (ẑ × j)

]
− C3

2
m×

[
m× (ẑ × j)

]
.

(4.9)

Here, the terms proportional to C1 are field-like (reactive) spin-orbit torques and the
terms proportional to C2, C3 are the anti-damping (dissipative) spin-orbit torques.
In ferromagnetic systems similar torques have been discussed in references [73, 76]
and in antiferromagnets a microscopic analysis has been performed in reference [48].

While we cannot generically exclude the existence of spin-orbit torques beyond
the exchange approximation, in microscopic models such as the Rashba model such

62



CHAPTER 4 4.1. Translational current-driven skyrmion motion

torques do not occur. In that case, with the exception of higher harmonics, equations
(4.9) capture the spin-orbit torques. The study of possible spin-orbit that break the
exchange approximation falls outside the scope of the present work.

We emphasize that the spin-orbit torques and the spin-transfer torques differ
in their nature (see also section 2.2.3). Whereas in the latter the free electrons are
polarized by the local magnetization, while moving through the texture, and interact
with it after being polarized, in the spin-orbit torques the polarization is due to the
spin-orbit coupling in the system and not due to the magnetization. In that sense,
the spin-transfer torques are a result of a non-local interaction between the electrons
and the magnetic moments, while the spin-orbit torques are local.

In the later steps of the calculation, presented below, the form of both the spin-
transfer and the spin-orbit torques will be simplified by retaining only the leading
order terms in Bexch.

Equation of motion

Next, we derive the equations of motion for the Néel order parameter for a time-
independent magnetic field and electric current. The Landau-Lifshitz-Gilbert equa-
tions to leading order in Bexch are given by [59, 60, 113]

ṅ = γ
[
n×BAFM

eff,m

]
+ τn,

ṁ = γ
[
n×BAFM

eff,n + m×BAFM
eff,m

]
+ αGn× ṅ + τm, (4.10)

where γ is the gyromagnetic ratio, αG is a phenomenological Gilbert damping coef-
ficient5 and τn,m represent the respective current-induced torques discussed above.
The effective fields are given in equations (3.27) and read

BAFM
eff,n =

2A

Ms

∇2n +Ban(n · ẑ)ẑ +Bd(m× ẑ) +
D

Ms

[
(∇ · n)ẑ −∇(n · ẑ)

]
,

BAFM
eff,m = −2Bexchm + B−Bd(n× ẑ).

(4.11)

Writing out the torques explicitly, the Landau-Lifshitz-Gilbert equations (4.10)
become

ṅ = γ
[
n×BAFM

eff,m

]
+
η

2
(j · ∇)n− C1

2
n× (ẑ × j),

ṁ = γ
[
n×BAFM

eff,n + m×BAFM
eff,m

]
+ αGn× ṅ +

η

2
m×

[
(j · ∇)n× n

]

+
β

2
(j · ∇)n× n− C1

2
m× (ẑ × j)− C2

2
n×

[
n× (ẑ × j)

]
.

(4.12)

Here, only terms to leading order in Bexch have been kept, apart from the η and C1

ones in the second line, which we retained in order to keep the constraints n2 = 1
and n ·m = 0 fulfilled. The term containing the effective field BAFM

eff,m on the second
line is of subleading order in Bexch; however, it is of the same order as the left hand
side after substituting equation (4.13) below and needs to be kept as well.

5In the notation of [60], this is the G2 damping constant.
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An expression for the total magnetization can be obtained from the equation for
ṅ:

m =
1

2γBexch

n× ṅ + m0 −
η

4γBexch

n× (j · ∇)n +
C1

4γBexch

n× [n× (ẑ × j)] ,

(4.13)

where the static magnetization m0 is given in equation (3.28). As discussed in
section 3.3.1, we neglect the homogeneous Dzyaloshinskii-Moriya contribution Bd in
the following.

Next, we substitute equation (4.13) into the second line of equation (4.12) and
obtain a closed equation for the Néel order parameter

n× n̈ = Bshape + Bforces. (4.14)

Here, we have grouped the right hand side into terms that determine the shape of
the antiferromagnetic texture and terms that induce or affect its motion. The fields
are given by

Bshape = 2γṅ(n ·Bext,eff) + 2Bexchγ
2
(
n×BAFM

eff,n

)
− γ2(n×Bext,eff)(n ·Bext,eff),

Bforces = −ηγBexchn
[
(j · ∇)n ·m

]
+ βγBexch(j · ∇)n× n (4.15)

− C2γBexchn×
[
n× (ẑ × j)

]
+ 2αGγBexchn× ṅ,

where the external effective field contains both the magnetic field and the current-
induced contribution Bext,eff = B− C1/2γ(ẑ × j).

In deriving the equation for the Néel order parameter only terms up to linear
order in ṅ and j have been kept. An example of a term of higher order that has
been omitted is n× (j · ∇)ṅ.

Equation (4.14) is an important result of this work and describes the magnetiza-
tion dynamics of a uniaxial antiferromagnet, with inversion symmetry broken along
the ẑ-direction, under the influence of an external time-independent magnetic field
and DC electric current.

Current-driven skyrmion motion

Next, we apply the collective-coordinate approach to the translational motion of
an antiferromagnetic skyrmion to analyze its current-induced dynamics (see section
2.2.2). We assume that the skyrmion profile is composed of a static, cylindrical and
rigid component nsk and motion- and current-induced corrections δn that break the
cylindrical symmetry (see section 3.3.2). For the time evolution we use the ansatz
n(r, t) = n(r−R(t)), where n = nsk + δn and R(t) is the skyrmion position. As
collective coordinates we take {ξi} = {Rx, Ry}.

Throughout this section we assume that the skyrmion velocity vsk is small com-
pared to the magnon velocity c (vsk � c), which is the limiting velocity in anti-
ferromagnets. The latter is due to the Lorentz-invariance of the antiferromagnetic
magnetization dynamics [50, 109]. As a consequence, the corrections can be assumed
small, |δn| � |nsk|.

64



CHAPTER 4 4.1. Translational current-driven skyrmion motion

We multiply (4.14) by n×∂n/∂xα
6 for α = x, y and integrate over space. We use

the equilibrium profile found in section 3.3.2 for nsk so that, upon projection, the
terms given by Bshape do not contribute to the equation of motion (see Appendix B.3
for details). To leading order in the electric currents the equation for the skyrmion
position becomes

meffR̈ = −ΓṘ + ∆j. (4.16)

The coefficients read

meff =
Ms

γ2

x0

2Bexch

,

Γ ' −Ms

γ
x0 αG,

∆ ' Ms

2γ

[
βx0 − C2x

2
0IAFM

]
, (4.17)

where Γ represents a friction term and ∆ characterizes the effect of the dissipative
current-induced torques. The dimensionless constant IAFM is determined by the
skyrmion profile and we evaluate it in Appendix B.4. The characteristic length-
scale x0 is the domain wall width of the antiferromagnet and is given in equation
(3.33). The skyrmion motion described by equation (4.16) is schematically depicted
in figure 4.2.

The dependence of the effective mass meff on the exchange constant Bexch is the
main difference compared to ferromagnetic skyrmion motion and results from the
different nature of the magnetization dynamics in antiferromagnets. A relation for
the effective mass similar to equation (4.16) has also been obtained for domain walls
in antiferromagnets [109].

In deriving equation (4.16) we have considered both homogeneous and inhomo-
geneous current-induced torques, as well as an external magnetic field applied in the
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the collective coordinate approach and obtain an estimate for the skyrmion velocity as

a result of the electric currents.

3.1. Collective coordinates

Experience shows that the complex dynamics of magnetic textures in ferromagnets and

antiferromagnets can often be described by only a few degrees of freedom. [?, 14] The

approach necessitates the choice of a finite set of collective coordinates ⇠i(t) which are

used to specify the time evolution of the Néel order parameter n(r, t) = n(r, {⇠i(t)}).

In particular, we use
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where the second term in the last equation is neglected because it is quadratic in the

driving forces [14].

Here we apply the results for the general magnetization dynamics to a rigid

antiferromagnetic skyrmion to analyze its current-induced motion. We use the ansatz

n(r, t) = nsk(r � R(t)), where nsk(r) is the static profile of an isolated skyrmion and

R(t) is the skyrmion position. As collective coordinates we take {⇠i} = {Rx, Ry}. After

multiplying (8) by @n/@⇠↵ for ↵ = x, y and integrating over space, the equation of

motion transforms to
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where � represents the friction term and he↵ ,�h denote the transverse terms that

originate from the external magnetic field (similar to a Lorentz force). The constants

Ij are dimensionless integrals determined by the skyrmion profile and we discuss them

later. The appearance of the e↵ective mass me↵ is the main di↵erence compared to

ferromagnetic skyrmion motion resulting from the di↵erent nature of the magnetization

dynamics in antiferromagnets.

Making sure the constraints are fulfilled

We need to make sure that n2 = 1 and n · M = 0.

h ⇥ Ṙ (55)

vsk (56)

x (57)

y (58)

z (59)

Obtaining the skyrmion velocity

Collective coordinate approach, as done previously

The idea is to parametrize the Néel order parameter by collective coordinate ⇠i

n(t) = n
⇣
{⇠i(t)}

⌘
(60)

At the same time, however, the Néel vector depends on the spherical angles n(t) =

n
⇣
✓(t),�

⌘
Which one exactly of the spherical angles contains the time-dependence? Then

ṅ =
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@⇠j
⇠̇j and n̈ '

X

j

@n

@⇠j
⇠̈j (61)

Subsequently multiply the whole equation by @n
@⇠j

· . . . and integrate over space. We choose

the skyrmion center coordinates ⇠i = Rx(t), Ry(t).

Word of caution regarding the derivatives @n
@⇠i

In all the subsequent calculations, I have equated

@n

@⇠i
=

@n

@x
(62)

for i = x (⇠x = Rx)and the equivalent for i = y (⇠y = Ry). However this is only true for
the isolated skyrmion, that is centered at the origin nsk(r). Once the skyrmion is set in
motion, then the actual Neel vector becomes n = n(r � R(t)). Consequently, the partial
derivatives need to be replaced by

@n

@⇠i
=

@n(r � R(t))

@⇠i
= �@nsk(r)

@x
(63)

for i = x and the equivalent for i = y. Thus, all the partial derivatives of the skyrmion
Neel vector need to be replaced by a negative sign in the subsequent section.
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The idea is to parametrize the Néel order parameter by collective coordinate ⇠i

n(t) = n
⇣
{⇠i(t)}

⌘
(60)
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Figure 4.2: Schematic representation of the skyrmion motion in an antiferromagnet
driven by an electric current j ‖ x̂ and an external magnetic field B ‖ ẑ, as described
by equation (4.16). The friction force is denoted by ΓṘ and the longitudinal current-
induced force by ∆j. The combination of these forces leads to a skyrmion motion
with the velocity vsk. For simplicity, a static skyrmion shape is depicted, without
taking into account the shape changes that the magnetic field and the electric current
induce.

6The choice of this factor comes from general considerations for the conserved quantities in the
system. For the translational motion, the relevant quantity is the momentum [50]. Note that this
also agrees with the approach taken in reference [61].
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ẑ-direction. Thus, our results paint a richer picture of the current-induced antifer-
romagnetic skyrmion motion than discussed recently. References [52, 53] predicted
longitudinal current-induced forces on the skyrmion position, as opposed to the fer-
romagnetic skyrmion motion, where the nonzero magnetization always leads to a
transverse force. Reference [53] dealt with homogeneous torques only, whereas in
reference [52] only inhomogeneous torques have been considered. In both references
no magnetic field has been included. We find, that even in the presence of an applied
field the skyrmion motion remains longitudinal. This is further substantiated by the
findings of references [50, 114], where it is shown that gyroscopic forces (which are
linear in the magnetic field) are not present in antiferromagnets for objects that
exhibit the topology of skyrmions.

For an electric current applied in the x̂-direction, an expression for the longitu-
dinal velocity vsk can be readily obtained by the steady-state solution of equation
(4.16), which yields

vsk = −
[
β

2αG
− C2x0

2αG
IAFM

]
jx ≡ vsk,β + vsk,C2 . (4.18)

This is the velocity corresponding to the zero-field scenario considered in references
[52, 53].

Current-driven skyrmion velocity

Now, we are in a position to give an estimate for the magnitude of the longitu-
dinal skyrmion velocity in equation (4.18). The constant IAFM = 1.56 has been
evaluated in Appendix B.4. We estimate the spin-orbit torque coefficient to be
C2 ' 3.4× 10−3 m2 A−1 s−1 (see Appendix B.5). The Gilbert damping parameter
is αG ' 0.01 [60]. The characteristic length of the system is of the order of the
skyrmion size, which is typically x0 ' 10−8 m [51, 60, 61]. Typical experimentally
used current densities in ferromagnets are of the order of j ' 1011 A m−2 [73]. With
this, we estimate

vsk,C2 ' 265 m s−1. (4.19)

In contrast, reference [53] predicts a skyrmion velocity of ∼ 1700 m s−1. In that
work, homogeneous torques of a similar form, but of different origin have been
considered. The homogeneous torques there arise from a spin-polarized current
injected vertically into the system, whereas the homogeneous torques in the present
work are due to the spin-orbit coupling in the antiferromagnet. Using the values
that they provide (see Table 4.2), we arrive at vsk,C2 ' 500 m s−1, which has the
same order of magnitude as the result of reference [53].

In equation (4.12) the dissipative spin-transfer torque coefficient β has dimen-
sions of m3 A−1 s−1. Its dimensionless counterpart β̃ is obtained through β̃ = βne,
where n is the electron density and e the electron charge. Typically, in ferromagnetic
systems this value is taken to be of the order of the Gilbert damping, β̃ ' αG [115].
Typical metallic electron densities are of the order of n ' 1029 m−3 so that for these
parameters we find

vsk,β ' 5 m s−1. (4.20)
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Parameters Units This work Zhang et al. [53] Barker et al. [52]??

αG − 0.01 0.3 0.01
C2 m2 A−1 s−1 0.0034 0.2? −
β − 0.01 − 0.1
x0 nm 10 10 −
j A m−2 1011 1011 3.2× 1012???

Estimated

vsk,C2 m s−1 265 520 −
vsk,β m s−1 5 − 1000

Numerical results

vsk m s−1 − ∼ 1700 ∼ 2000
?This value has been calculated from the expression that the authors provide in reference [53] for
their Slonczewski-like spin-transfer torque coefficient β = |~/(µ0e)|P/(2dMs), multiplied by the
gyromagnetic ratio |γ| = 2.211 × 105 m A−1 s−1. Here, ~ is the reduced Planck constant, µ0 the
vacuum permeability, e the electron charge, P = 0.4 is the polarization rate of the spin-polarized
current, d = 0.4 nm the film thickness and Ms = 290 kA m−1 is the saturation magnetization;
??We focus only on one set of values for αG, β and v of the range provided in reference [52];
???The authors use a value of j = 200 m s−1 for the drift velocity of the electrons. We calculate
the corresponding current density by taking the electron density to be n ' 1029 m−3.

Table 4.2: Estimated velocities of the antiferromagnetic skyrmion using the param-
eters from the present work and from references [52, 53]. In all cases the velocities
vsk,C2 and vsk,β are estimated according to the expressions in equation (4.18). The
numerical results for vsk are taken from references [53] and [52], respectively.

This component of the velocity corresponds to the skyrmion velocity discussed in
reference [52]. Our estimate agrees with the findings of that work for the same choice
of parameters (see Table 4.2).

Typical magnon velocities in antiferromagnets are of the order of c ' 30 km s−1

(see references [109, 116]). The largest estimate of the skyrmion velocity that we
obtained, using the parameters of reference [52] (Table 4.2), is still much smaller
than the magnon velocity. This justifies our assumption of slow skyrmion dynamics.

4.1.3 Summary

We extended the phenomenological theory of a collinear two-sublattice antiferromag-
net with uniaxial anisotropy and interfacial Dzyaloshinskii-Moriya interactions to
incorporate the current-induced spin-orbit torques, together with the already stud-
ied spin-transfer torques. We used this theory to analyze the translational skyrmion
motion in the presence of an out-of-plane, time-independent external magnetic field
and a DC electric current. We find that the magnetic field merely modifies the shape
of the antiferromagnetic skyrmion (see also section 3.3.2) and does not contribute
towards the skyrmion motion. Further, our results show that the skyrmion moves
in a straight line, along the direction of the applied electric current. This agrees
with the numerical results of references [52, 53], which were obtained for skyrmions
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in the absence of a magnetic field. Depending on the choice of parameters, we find
skyrmion velocities that are in the range of 1 − 1000 m s−1, also in agreement with
numerical results [52, 53]. Finally, we find that attainable velocities are not high
enough to induce sizeable deformation of the antiferromagnetic skyrmion.

In ferromagnets, the current-induced skyrmion motion has been studied exten-
sively (e.g., see references [25, 43, 73, 79, 110, 111]). Here, we reviewed mainly the
results of reference [73], where a similar phenomenological model is constructed: a
uniaxial ferromagnet with interfacial Dzyaloshinskii-Moriya interactions in the pres-
ence of electric currents that induce both spin-transfer and spin-orbit torques. The
effective equation of motion in terms of the collective position coordinates shows that
the ferromagnetic skyrmions has both longitudinal and transversal velocity compo-
nents. The estimated skyrmion velocities are of the order of 10 m s−1 for typical
ferromagnetic parameters, in agreement with numerical results [25, 27, 110].

The analysis in this section highlights the principal difference of the magne-
tization dynamics in ferromagnets and antiferromagnets [45]. The ferromagnetic
dynamics are intrinsically gyrotropic, as can be seen from the appearance of the
Magnus force term in the effective equation of motion (4.5) for the ferromagnetic
skyrmion. Further, the ferromagnetic Landau-Lifshitz-Gilbert equation is formu-
lated in terms of the angular momentum of the system. In contrast, the antifer-
romagnetic dynamics are Newton-like: the corresponding Landau-Lifshitz-Gilbert
equations result in an equation of forces for the Néel vector due to the presence of
the second derivative with respect to time. The much higher skyrmion velocities in
antiferromagnets can be traced back to the faster magnetization dynamics due to the
strong exchange interactions – which is another key difference between ferromagnets
and antiferromagnets [44, 117].

In conclusion, we note that current-induced ferromagnetic skyrmion motion has
already been experimentally observed [29], whereas there has been no experimental
observation of antiferromagnetic skyrmions yet.
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4.2 Eigenmodes of confined skyrmions

In this section, we investigate numerically the confined skyrmion dynamics for both
ferromagnets and antiferromagnets. Unlike the previous section, where we studied
the current-driven translational motion of isolated skyrmions in a thin-film infinite
plane, here we focus on the lowest-frequency eigenmodes of isolated skyrmions con-
fined in thin-film nanodisks.

The eigenmodes of ferromagnetic skyrmions have been studied in recent litera-
ture; however, there has been no treatment of the same model and with the same
finite-element method calculating the eigenfrequencies directly in frequency space,
which reveals the full excitation spectrum. In antiferromagnets, there has been no
investigation of the skyrmion eigenmodes yet.

Prior to the discovery of skyrmions, magnetic vortices and their excitations have
been studied intensely in the context of modern information technology devices.
Vortices are found in samples that are magnetized in-plane and are described by a
magnetization vector curling in-plane around its core, where the magnetization is
pointing out of the plane (as such, they represent “half-skyrmions”). For a given
material, the vortex core can point either in the positive or negative out-of-plane
direction. This is characterized by the core polarity, defined as the value of the
ẑ-component of the magnetization vector at the core p = mz(r = 0) = ±1. In finite
samples gyrations of the vortex around its equilibrium position at zero external
field occur in the opposite direction for both vortex polarities and have the same
frequency. Recent research demonstrates that these gyrotropic modes can be used
for a novel microwave frequency-controlled memory device [118]. The device exploits
the frequency splitting of the clockwise and counterclockwise gyrotropic modes of
the vortex (related to the core polarity p = ±1) induced by the application of an
external magnetic field.

The excitations of magnetic skyrmions, similar to vortices, present another in-
triguing direction of modern research. As discussed in chapter 1, skyrmions are an
intriguing candidate as the core element in technology applications, e.g., skyrmion
racetrack memory or spin-torque oscillators [20, 43, 118, 119, 120]. The latter rely
on the geometric confinement and the gyrotropic nature of the skyrmion dynam-
ics [43]. In addition, novel methods to manipulate skyrmions (alternative to using
electric currents) have been proposed, in which oscillating magnetic fields induce
skyrmion motion by coupling to its excitation modes – superposed gyrotropic [121]
and breathing modes [122].

Spin-wave excitations in vortices and magnetic skyrmions are generally found
in the GHz range. Therefore, microwaves (frequencies ranging from few hundreds
of MHz to a few hundreds of GHz) have been used to experimentally excite and
observe excitation modes of skyrmion lattices [38, 39, 40, 41]. Theoretical stud-
ies predicted two gyrotropic and one breathing modes for skyrmion lattices [34],
whereas the experimental works showed contradicting results7. Further, there is no

7A single gyrotropic and one breathing mode are observed in references [38, 39]; reference [41]
reports no breathing mode and either two or one gyrotropic modes, depending on the material;
both gyrotropic modes are observed in reference [40] and indirect evidence is presented for the
existence of a breathing mode.
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experimental evidence of the gyrotropic modes of an isolated skyrmion yet. Thus,
a good understanding of the skyrmion excitations is still elusive.

In the following, we present our numerical simulations on the isolated skyrmion
dynamics in confined nanodisks. First, we summarize relevant results from recent
literature on the ferromagnetic skyrmion eigenmodes in section 4.2.1. We present
the results of our numerical simulations for the ferromagnet in section 4.2.2, and
for the antiferromagnet in section 4.2.3. The calculation of the excitation modes
consists of two steps: first, we determine the groundstate texture of the magnetic
nanodisk; then, we calculate the eigenmode spectrum of the relaxed equilibrium
state.

4.2.1 Literature review

Ferromagnetic skyrmions have been studied extensively in recent years; the field
of antiferromagnetic skyrmions is still in its infancy. Here, we summarise relevant
results for stabilization of skyrmions, as well as results for skyrmion dynamics and
eigenmodes.

Statics

The stability of ferromagnetic skyrmions – in lattices and as individual skyrmions,
both in bulk materials and thin films – is a widely established fact, both theoret-
ically and experimentally [10, 20]. We emphasize that a ferromagnetic confined
skyrmion can be a metastable state or a groundstate, depending on the strength
of the Dzyaloshinskii-Moriya interactions [26] (see also section D.3 and figure D.9).
Further studies have demonstrated the stability of the skyrmion state in the presence
of a static external magnetic field along the easy axis [36]. Both references [26, 36]
use a micromagnetic model similar to ours. The results show that the stronger the
Dzyaloshinskii-Moriya interactions, the larger the skyrmion becomes; depending on
the relative orientation of the magnetic field and the skyrmion core, the skyrmion
size is either reduced (antiparallel orientation) or increased8 (parallel orientation).

In another recent study, stable confined skyrmions have been found in the absence
of uniaxial anisotropy and external field [123]. There, the skyrmions are stabilized
entirely due to the bulk Dzyaloshinskii-Moriya interactions and the demagnetization
field. The authors consider thicker samples (∼ 10 nm) and allow for variation of the
magnetization vector along the out-of-plane direction. It is shown that skyrmions
can be found as groundstate for a large range of the external field (including zero
field) and adapt their size to the size of nanodisk, similar to anisotropy-stabilized
skyrmions. The model presented in reference [123] is significantly different from
ours.

Antiferromagnetic skyrmions have been predicted to exist both theoretically
[13, 50, 51] and numerically [52, 53, 54, 56, 57]; however, there has not been an
experimental observation yet. Further, no studies exist focusing on antiferromag-
netic skyrmions confined in thin film nanodisks, which is what we do in the present
work.

8However, the confining potential can counteract the increase of the skyrmion size [36].
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Reference fgyrotropic(GHz) fbreathing(GHz) Rdisk (nm) t (nm)

Moon et al. [124] ∼ 1 − 80 34.0
Kim et al. [36] − 2− 8? 50 1.0
Moon et al. [121] 0; 38?? 8 150 0.4
Mruczkiewicz et al. [119] < 1 0.7− 0.9??? 125 1.4
Beg et al. [125]???? 0.67 2 75 1.0

? These frequency values are reported in reference [36] as a function of the Dzyaloshinskii-Moriya
constant and the external magnetic field strength; ?? The two values correspond to two gyrotropic
modes with a different sense of rotation; ??? Different breathing mode frequencies are found in
reference [119] as a function of the out-of-plane anisotropy; ???? The model used in reference [125]
is significantly different from the other references (see the discussion at the end of section 4.2.2).

Table 4.3: List of gyrotropic and breathing mode frequencies of the isolated ferro-
magnetic skyrmion confined in a thin film reported in recent literature. Here, Rdisk

is the nanodisk radius and t its thickness.

Dynamics

The excitation modes of skyrmions in ferromagnets have been studied previously on
several occasions – both of skyrmion lattices and of confined isolated skyrmions –
where the attention was focused primarily on gyrotropic and breathing modes. In
these studies, the skyrmions were excited with time-dependent external magnetic
fields. Fields that are directed out-of-plane do not affect the radial symmetry of
the skyrmions and can excite skyrmion breathing modes [36, 119, 121]. In-plane
magnetic fields, on the other hand, do break the radial symmetry and can excite
gyrotropic modes, as well as other modes that affect the shape of the skyrmion
[119, 121].

The gyrotropic modes are found at finite frequencies in the GHz range in fer-
romagnetic nanodisks. This is a consequence of the finite size of the sample and
the resulting skyrmion confinement. In infinite samples, the skyrmion gyrotropic
and translational modes (they have the same translational nature) would have zero
frequency due to the translational invariance [119].

As a reference, we summarize in Table 4.3 the values of gyrotropic and breathing
modes of isolated skyrmion confined in a ferromagnetic nanodisk film, calculated
numerically for different models in the recent literature. We do not show results
obtained for skyrmion lattices, e.g., by Mochizuki et al. [34], or Wang et al. [122].
There have been no studies yet targeting the antiferromagnetic excitation modes,
prior to this work.

4.2.2 Ferromagnetic skyrmions

Here, we present our results from the numerical simulations for the ferromagnetic
skyrmion dynamics. We obtain a skyrmion equilibrium state confined in a nanodisk
and calculate its eigenspectrum. Finally, we compare our results to existing results
from the literature.
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Rdisk = 50nm
lchar = 1nm

t = 1nm

Figure 4.3: Schematic representation of the thin film nanodisk used for the numerical
simulations. The depicted lengthscales – nanodisk radius Rdisk = 50 nm, thickness
t = 1 nm and characteristic length lchar = 1 nm – and line segments are not up to
scale.

The discussion in the entire chapter is based on nanodisks of radiusRdisk = 50 nm,
thickness t = 1 nm and a characteristic length lchar = 1 nm (see figure 4.3), unless
explicitly stated otherwise.

The first step towards finding the magnetization dynamics of any magnetic tex-
ture, is to find its equilibrium state. To do so, we use the model presented in section
3.2 and apply the numerical methods discussed in section 2.3.2. We make a choice
for the initial state and let it relax to equilibrium.

The relaxation process is governed by the effective field of the ferromagnet (see
section 2.3.2 and equation (3.8)). Within the finite element framework, we transform
the effective field to its weak formulation

1

Bs

∫

V

d3r
(
Beff · v

)
=− l2ex

∫

V

d3r
(
∇v · ∇u

)

+
Bu
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(
u · ẑ

)(
v · ẑ
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B
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v · ẑ
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∫

V

d3r
[

(∇ · u) (v · ẑ)− v · ∇ (u · ẑ)
]

+
lDM

2

∮

∂V

d2r
[
u×

(
dŜ× ẑ

)]
· v, (4.21)

where u is the (unknown) trial function to be calculated and v the corresponding
test function (see section 2.3.1)9. We solve the projected Landau-Lifshitz-Gilbert
equation (2.31) numerically until the right hand side does not produce a torque
on the magnetization vector anymore (zero-torque condition). During this process,
we make sure that convergence is reached within the numerical precision of the
simulation by tracking the change of the magnetization vector every few steps. The
resulting texture m is the equilibrium state.

The model is parametrized by the saturation magnetization, exchange stiff-
ness, uniaxial anisotropy constant, external magnetic field and the Dzyaloshinskii-
Moriya interactions constant. We choose the parameter values to be in the range
typical for ferromagnetic thin films with perpendicular anisotropy (see references

9See also section 5.1 and the corresponding code in listing 5.5.
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Parameter Value Unit

Ms 1.0 MA m−1

Aex 15.0 pJ m−1

Ku 371.4 kJ m−3

D 3.5 mJ m−2

Rescaled parameter Value Unit

Bs 1.26 T
lex 4.89 nm
Bu 0.74 T
lDM 5.57 nm

Table 4.4: List of the parameters used to obtain the ferromagnetic skyrmion ground-
state and its excitations. Here, Ms(Bs) is the saturation magnetization (field),
Aex(lex) the exchange stiffness parameter (exchange length), Ku(Bu) the uniaxial
anisotropy constant (field), D(lDM) the Dzyaloshinskii-Moriya interactions constant
(length) and B = 0 T the external magnetic field. We show both the physical and
the rescaled parameters that enter the energy functional (3.7) and the weak formu-
lations (4.21) and (4.23), respectively. For the eigenspectrum calculation we set the
Lagrange multiplier to Λ = 500Bs.

[29, 36, 105]) and list them in Table 4.4. The relevant lengthscales of the model are
the exchange length lex = 4.89 nm, Dzyaloshinskii-Moriya length lDM = 5.57 nm,
characteristic length (domain wall width) x0 = 6.36 nm and the cycloid length
2πξFM = 4πAex/D = 53.85 nm10 [26] (see also the right part of Table 4.4). The
cycloid length is comparable to the nanodisk radius, which already suggests that
skyrmions are possible in the present setup.

Depending on the chosen initial state, different equilibrium configurations can
be reached. We investigate these and compare their energies in Appendix D.2. We
find that the skyrmion configuration has the lowest energy and is, therefore, the
groundstate.

The initial state we use to obtain the skyrmion is defined in Appendix D.1 and
shown in figure 4.411. It consists of magnetization m(r) pointing in the positive
ẑ-direction within a radius Rinit and in the positive ẑ-direction outside of it. At

Parameter Value Unit

saturation field Bs µ0Ms T

exchange length lex

√
2Aex/(MsBs) m

anisotropy field Bu 2Ku/Ms T
DM length lDM 2D/(MsBs) m

Table 4.5: Definition of the rescaled parameters that enter the weak formulation in
equation (4.21). Here, µ0 is the vacuum permeability, DM stands for Dzyaloshinskii-
Moriya and the corresponding physical parameters are listed in Table 4.4.

10As a consequence, for the present set of parameters the chosen characteristic (discretization)
length lchar = 1 nm is sufficiently small to not introduce spurious numerical effects.

11See also Appendix D.3 for a discussion on the stability of the skyrmion with respect to the
quasi-uniform state.
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(a) mx (b) my (c) mz

(d) Color Bar

Figure 4.4: Visualisation of the magnetization components of the initial skyrmion
state with Rinit = 15 nm.

about r = Rinit, the magnetization vector starts canting in the radial direction, so
that a (relatively sharp) Néel domain wall occupies the transition region.

The relaxed state is shown in figure 4.5. We find that, for the chosen set of param-
eters, the Néel domain wall in the transition region of the skyrmion is smoothened
with respect to the initial state. This increases the exchange and anisotropy en-
ergies, but lowers the Dzyaloshinskii-Moriya energy, so that the total energy is
reduced. The canting of the magnetization remains in the radial direction, since
this type of rotation is favored by the interfacial Dzyaloshinskii-Moriya interactions
assumed in the present model. Further, we observe that the magnetization at the
boundary of the nanodisk does not remain uniform and tilts radially inwards, as pre-
scribed by the Dzyaloshinskii-Moriya-induced boundary conditions (see Appendix
A.2 and reference [26]). The chirality of tilting here is determined by the sign of the
Dzyaloshinskii-Moriya constant D; here it is negative.

Following the work by Rohart et al. [26], we calculate the confined skyrmion
profile by minimizing the energy functional (3.7), while taking into account the
modified boundary conditions induced by the Dzyaloshinskii-Moriya interactions.
The resulting skyrmion profile equation (3.14) by fixing as initial conditions θ(r =
0) = 0 and dθ/dr(r = 0) such, that the modified boundary condition (D.8) is
met (see Appendix D.3). We plot the skyrmion profile solution in figure 4.6 and
include for comparison the simulation results for different values of Rinit. We find
a very good agreement between the numerically relaxed and analytically predicted
skyrmion profiles.

The present skyrmion is stabilized largely due to DM-induced boundary condi-
tions and the resulting confining potential of the nanodisk edges [26]. An impor-
tant consequence is that for values of D > D0, the skyrmion radius depends on
the size of the nanodisk (see Appendix D.3 and figure D.8). For the parameters
used here this condition is fulfilled, as the threshold Dzyaloshinskii-Moriya constant
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(a) mx (b) my (c) mz

(d) Color Bar

Figure 4.5: Visualisation of the relaxed skyrmion groundstate. Shown are the compo-
nents of the magnetization vector m. Note the spread out Néel domain wall between
the core and the outer part of the skyrmion, as well as the canting at the nanodisk
boundaries compared to the initial state in figure 4.4.

D0 = 4/π
√
AexKu = 3 mJ m−2 (see section 3.2.2) is smaller than D = 3.5 mJ m−2.

For D < D0, the skyrmion radius is fixed and independent of the nanodisk, because
the skyrmion is too small to feel the effect of the edges.

0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

Ρ HnmL

m
z Rinit = 5 nm

Rinit = 25 nm

analytical calculation

Figure 4.6: Profile of the relaxed ferromagnetic skyrmion for the parameter set shown
in Table 4.4. The solid line is the numerical integration of the profile equation
(D.7) with the boundary condition (D.8). The open circles are the results of the
numerical simulations for different values of the initial radius: the profiles for Rinit =
5, 10, 15, 20 nm and Rinit = 25, 30, 35, 40 nm are identical and we have plotted one
from each group in blue and green color, respectively.
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Dynamics

Having obtained the equilibrium skyrmion state, we turn our attention now to find-
ing its low-energy excitations. We consider small deviations δm from the equilibrium
m0, plug them into the dissipationless Landau-Lifshitz-Gilbert equation (2.36) and
expand to first order in δm. After transforming to frequency space, we find the
linearized Landau-Lifshitz-Gilbert equation (see section 2.3.2)

iωδm =− γm0 ×Beff[δm]− γδm×Beff[m0] + Λ (m0 · δm) m0, (4.22)

where ω is the frequency of the eigenmode δm, Beff the effective field and Λ a
Lagrange multiplier that ensures that the modes we obtain are not longitudinal
excitations of the magnetization vector m0. For the model under consideration
(3.7), we transform equation (4.22) to its weak formulation

− iω

γBs

∫

V

d3r (u · v) =− l2ex

∫

V

d3r

[
∇
(
v ×m0

)
· ∇u +∇

(
v × u

)
· ∇m0

]

+
Bu

Bs

∫

V

d3r

[
(u · ẑ) (m0 × ẑ) · v + (m0 · ẑ) (u× ẑ) · v

]

+
B

Bs

∫

V

d3r (u× ẑ) · v

+ lDM

∫

V

d3r

[
(∇ · u) (m0 × ẑ) · v −m0 ×∇ (ẑ · u) · v

+ (∇ ·m0) (u× ẑ) · v − u×∇ (ẑ ·m0) · v
]

+
lDM

2

∮

∂V

d2r

[
(v ×m0) · u×

[
dŜ× ẑ

]

+ (v × u) ·m0 ×
[
dŜ× ẑ

]]

+
Λ

Bs

∫

V

d3r (m0 · u) (m0 · v) , (4.23)

where this time u represents the deviations and is the (unknown) trial function and
v its corresponding test function. As discussed in section 2.3.2, equation (4.23)
represents a generalized eigenvalue problem

λMũ = Aũ, (4.24)

which we solve numerically. Here, we denoted the eigenvalue as λ = −iω/γ and the
corresponding eigenvector by ũ. For the simulations, we use the previously relaxed
skyrmion as the equilibrium state m0 and calculate its lowest eight modes.

Due to the formulation of the problem, we find pairs of complex eigenfrequencies
and eigenmodes12. The physical modes are obtained from the complex eigenvectors

12Specifically, this is an artefact of using the Fourier transform m(t) ∝m(ω)eiωt.
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through

δm(t) = Re{ũ} cos(ωt)− Im{ũ} sin(ωt), (4.25)

which also determines their time evolution.
Finally, we construct the full magnetization vector m(t) of the excitation modes

as defined in equation (2.35). For visualization purposes13, we scale the magnitude
of δm(t) by a factor of 100

m̃(t) = m0 + 100× δm(t), (4.26)

and, subsequently, normalize m̃(t).
We list the frequencies of the lowest eight eigenmodes in Table 4.6) and show

their time evolution in figures 4.8 and 4.9. Among these, we find excitations of
different nature - two gyrotropic modes rotating in opposite directions, a breathing
mode and several rotating modes in which the skyrmion core is deformed in higher
orders (twofold elongation, triangular distortion, etc.).

The numerical errors listed in Table 4.6 are due to the imprecision of the relax-
ation solver14. The profile of the relaxed ferromagnetic skyrmion as a function of the
initial radius Rinit is shown in figure 4.6. It can be seen that there is a slight deviation

(a) δmx (b) δmy (c) δmz

(d) Color Bar (δmx,y) (e) Color Bar (δmz)

Figure 4.7: Visualization of the lowest excited mode of the ferromagnetic skyrmion -
the clockwise gyrotropic mode (see Table 4.6 and figures 4.8a - 4.8d for reference).
Shown are the components of the magnetization vector δm at t = 0 that represents
the deviation from the groundstate m0 shown in figure 4.5. Importantly, the mag-
nitude of δm is two orders of magnitude smaller than m0. The full magnetization
vector m̃(t), according to equation (4.26) is shown in figure 4.8a.

13We show the magnetization components δm of the lowest excitation mode at t = 0 in figure
4.7. Note, that the excitation vector is more than two orders of magnitude smaller than the
groundstate magnetization vector m0, as shown in figure 4.5.

14The numerical error of the eigenvalue solver alone is found to be smaller when the relaxation
solver is turned off (see the discussion in Appendix D.4).
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of the relaxed profile for radii smaller or larger than the analytically predicted one.
We present in this section the dynamics of a skyrmion groundstate relaxed from an
initial state with Rinit = 15 nm; the numerical errors are calculated by comparing
its frequencies to the ones obtained for the skyrmion shown with green symbols in
figure 4.6.

The lowest excited mode is a clockwise (CW) gyrotropic mode and has a fre-
quency of f = 1.13 GHz. We visualize its time evolution in four snapshots at different
times during the a full rotation around the nanodisk center in figures 4.8a - 4.8d.
Higher in the spectrum we find also a counterclockwise (CCW) gyrotropic mode15

(see figures figures 4.9e - 4.9h). Its frequency is an order of magnitude higher at
f = 13.04 GHz, so that it is well separated from the clockwise mode – compatible
with the numerical results for skyrmion lattices [34]. The sense of rotation of both
gyrotropic modes depends on the polarity of the skyrmion. In the present case we
have p = 1 (skyrmion core pointing in the positive ẑ-direction), whereas for p = −1
we find that the rotation of both modes is reversed. This behaviour is consistent
with recent literature results [34, 119, 121, 125, 126]16.

The second-lowest mode is at f2fold = 1.31 GHz and represents an elongation of
the skyrmion core along one axis in the plane. Since this mode exhibits a twofold
rotational symmetry, we refer to it as the twofold-deformed skyrmion, see figures

Mode Frequency (GHz) Type Rotation

1 1.13 ± 0.08 Gyrotropic CW
2 1.31 ± 0.13 Twofold-deformed CW
3 3.61 ± 0.35 Threefold-deformed CW
4 4.95 ± 0.10 Breathing −
5 8.47 ± 0.91 Fourfold-deformed CW
6 13.04 ± 0.28 Gyrotropic CCW
7 15.76 ± 1.65 Fivefold-deformed CW
8 19.67 ± 0.12 Twofold-deformed CCW

Table 4.6: List of the lowest eight excited mode frequencies of the ferromagnetic
skyrmion (see figure 4.5 for the equilibrium state). These are obtained for a nanodisk
of radius Rdisk = 50 nm, thickness t = 1 nm and the material parameters listed in
Table 4.4. The excited modes are shown in figures 4.8 and 4.9. CW and CCW stand
for clockwise and counterclockwise, respectively.

15In reference [126] the authors argue that such a mode does not fulfill all the criteria to be
considered gyrotropic, as it is not the lowest-frequency mode. Since it gyrates around the nanodisk
center, for simplicity we still refer to it as ”gyrotropic” in the following.

16We note that the analytic work by Guslienko et al. [126] (the same convention is used in
reference [119]) predicts a counterclockwise (clockwise) rotation of the gyrotropic mode for polarity
p = +1(−1), which is opposite of what we find. However, the authors claim that their prediction
is in agreement with the results of reference [125], which match our own results. The confusion
originates in the opposite definition of the polarity in the present work and in reference [126] –
compare equation (B.29) for which p = −1, to the definition of the gyrovector in equation (3) of
reference [126], where p = +1.
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(a) t = 0 (b) t = 0.2 T (c) t = 0.5 T (d) t = 0.8 T

(e) t = 0 (f) t = 0.2 T (g) t = 0.5 T (h) t = 0.8 T

(i) t = 0 (j) t = 0.2 T (k) t = 0.5 T (l) t = 0.8 T

(m) t = 0 (n) t = 0.2 T (o) t = 0.5 T (p) t = 0.8 T

(q)

Figure 4.8: Visualization of the ferromagnetic skyrmion excitation modes, shown
in order of increasing frequency. From top to bottom - clockwise gyrotropic mode,
twofold-deformed skyrmion, threefold-deformed skyrmion and breathing mode (see
also Table 4.6). The arrows denote the sense of rotation of each mode, where CW
stands for clockwise. Continues in figure 4.9.
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(a) t = 0 (b) t = 0.2 T (c) t = 0.5 T (d) t = 0.8 T

(e) t = 0 (f) t = 0.2 T (g) t = 0.5 T (h) t = 0.8 T

(i) t = 0 (j) t = 0.2 T (k) t = 0.5 T (l) t = 0.8 T

(m) t = 0 (n) t = 0.2 T (o) t = 0.5 T (p) t = 0.8 T

(q)

Figure 4.9: Visualization of the ferromagnetic skyrmion excited modes, shown in
order of increasing frequency (continuation from figure 4.8). From top to bot-
tom - fourfold-deformed skyrmion, counterclockwise gyrotropic mode, five-deformed
skyrmion and counterclockwise twofold-deformed skyrmion (see also Table 4.6). The
arrows denote the sense of rotation of each mode, where CW and CCW stand for
clockwise and counterclockwise, respectively.
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4.8e - 4.8h. This skyrmion mode rotates in the CW direction around the center of
the nanodisk without being displaced from it, so that it has no gyrotropic nature.
[35, 37]

The twofold-deformed skyrmion is the lowest of a series of excitation modes that
exhibit a deformed shape of the skyrmion core. We find a threefold-, fourfold- and
fivefold-deformed skyrmions at frequencies of f3fold = 3.61 GHz, f4fold = 8.47 GHz
and f5fold = 15.76 GHz (figures 4.8i - 4.8l, 4.9a - 4.9d and 4.9i - 4.9l), respectively.
All of these deformed modes are similar in the sense that they do not have gyrotropic
nature and rotate in the CW direction. Switching the skyrmion polarity reverses
the sense of rotation to CCW, as for the gyrotropic mode.

Further, we find a breathing mode at fbreathing = 4.95 GHz and show it in figures
4.8m - 4.8p. Here, the skyrmion shrinks and expands uniformly and periodically in
a way that the radial symmetry is preserved, unlike the rest of the excited modes
[36]. We find no discernible effect of the skyrmion polarity on the breathing mode.
The order of the breathing and the lowest gyrotropic modes in the spectrum agrees
well with the numerical results of references [119, 125].

The highest-frequency mode in the present range is a twofold-deformed skyrmion
rotating in the CCW direction with a frequency of f = 19.67 GHz (see
figures 4.9m - 4.9p). Similar to the CCW gyrotropic mode, the frequency of the
CCW twofold-deformed mode is an order of magnitude higher than its CW coun-
terpart. This is a further manifestation of fact that for p = +1 the preferred sense
of direction is counterclockwise.

The lowest few eigenmodes of the ferromagnetic skyrmion have frequencies lower
than the corresponding ferromagnetic resonance (FMR) frequency of the uniform
state (fFMR ∼ 20 GHz, see Appendix D.4). The presence of frequencies of the order
of several GHz in the ferromagnetic nanodisk excitation spectrum can be used as a
characteristic feature to identify skyrmions in confined nanodisks in experiment [36].

Dependence of the frequencies on the external magnetic field

Next, we investigate the behaviour of the ferromagnetic skyrmion excitations as a
function of the applied magnetic field. To do so, we sweep B in the range 0 T− 1 T
in steps of ∆B = 5 mT and perform successive relaxation of the magnetic texture:
we take the relaxed skyrmion at B = 0 T (see figure 4.5) as an initial state, increase
the field by ∆B, relax and repeat until we reach B = 1 T. We calculate the eigen-
frequencies at each step of the successive relaxation and analyze the corresponding
eigenmodes to take into account the effect of level crossings.

For the present setup (p = −1) the skyrmion core points in the opposite direction
of the applied external field. As a consequence, the Zeeman energy at the core
becomes too large as the field is increased and the equilibrium skyrmion shrinks
until it disappears completely above B = 0.55 T. In the following, we focus in the
range 0 T < B < 0.2 T, as it is easily accessible in experiment and provides a good
overview of the behaviour of the ferromagnetic excitation modes.

The results are plotted in figure 4.10. The clockwise and counterclockwise gy-
rotropic modes react differently to the magnetic field – the lowest gyrotropic mode17

17Note, that the lowest gyrotropic mode is CW(CCW) for the p = +1 (p = −1) skyrmion.

81



4.2. Eigenmodes of confined skyrmions CHAPTER 4

0.00 0.05 0.10 0.15 0.20

0

5

10

15

20

25

Bext HTL

F
r
e
q
u
e
n
c
y

HG
H

z
L CCW Gyrotropic

CCW Twofold-deformed

CCW Threefold-deformed

Breathing

CCW Fourfold-deformed

CW Gyrotropic

CCW Fivefold-deformed

CW Twofold-deformed

Figure 4.10: Frequencies of the lowest eight excitation modes of the p = −1 ferro-
magnetic skyrmion as a function of the external magnetic field. See Tables 4.6 and
4.7 for a list of the frequencies at both ends of the range studied here.

decreases in frequency when the field is increased, whereas the higher-frequency gy-
rotropic mode does the opposite. The spread of these frequencies with an applied
magnetic field follows the same trend as the frequency splitting of the degenerate
gyrotropic modes of magnetic vortices [118].

Four modes are found to be more sensitive to the external field than the rest, as
their frequencies vary in a much larger range. This leads to several level crossings,
where for particular values of B pairs of modes of different nature become degenerate
(see figure 4.10). These four modes are the CCW excitations that exhibit a deformed
core: the two-, three-, four- and fivefold-deformed modes. A similar behaviour of the
twofold- and threefold-deformed mode as a function of the external field was found
by Schütte et al. [37]18, as well as Lin et al. [35], whereas in the latter reference also

Mode fB=0 T (GHz) fB=0.2 T (GHz) Rotation

Gyrotropic 1 0.06 CCW
Breathing 5 10 −

Twofold-deformed 1 16 CCW
Gyrotropic 13 24 CW

Twofold-deformed 20 25 CW

Table 4.7: List of the five lowest-frequency excitation modes at B = 0.2 T (middle-
right column) and their respective values at B = 0 T (middle-left column). The
evolution of the modes as a function of B is shown in figure 4.10. The values listed
here have been rounded to the leading decimal place.

18Note, however, that the authors in reference [37] consider a purely two-dimensional ferromag-
net with Dzyaloshinskii-Moriya interactions of bulk type (relevant for cubic chiral magnets), no
anisotropy or dipolar fields for which a finite external magnetic field is crucial for the stability of
the single skyrmion.
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a similar behaviour for the fourfold- and fivefold modes is shown.
We find that the breathing mode increases in frequency with increasing external

field, which agrees well with previous results [35, 36, 37]. This increase is less rapid
than for the twofold- and threefold-deformed modes and as a result the order of
modes changes between B = 0 T and B = 0.2 T, consistent with references [35, 37].

Dependence of the frequencies on the sample radius

Here, we discuss the behaviour of the ferromagnetic skyrmion eigenmodes as a func-
tion of the nanodisk radius Rdisk. For that purpose, we relax an initial skyrmion
state with radius Rinit = 15 nm on different nanodisks, where the radius ranges from
Rdisk = 40 nm to Rdisk = 100 nm in steps of ∆Rdisk = 10 nm. In all cases the thick-
ness and characteristic length remain t = 1 nm and lchar = 1 nm, respectively. We
calculate the spectrum of each configuration and track the respective eigenmodes,
so that possible level crossings are taken into account.

As discussed previously, the material parameters are such that the Dzyaloshinskii-
Moriya constant is larger than the threshold value, D > D0 (see Appendix D.3 and
figure D.8). Consequently, the skyrmion size is fixed by the confining potential of
the boundaries and is different for each nanodisk.

The results are plotted in figure 4.11. We focus on the eight lowest modes
discussed previously in the case of Rdisk = 50 nm (see Table 4.6 and figures 4.8-4.9).
We find that the frequencies of all modes follow a decreasing trend when the sample
radius is increased. Similar trend is found also in references [121] and – for different
setups – [43, 125]19.
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Figure 4.11: Frequencies of the excitation modes of the p = −1 ferromagnetic
skyrmion as a function of nanodisk radius. Here, we focus on eight modes listed
in Table 4.6 – they are the lowest modes for the Rdisk = 50 nm nanodisk, but not
for the nanodisk with Rdisk = 40 nm. Note that the CCW twofold- and threefold-
deformed modes disappear above Rdisk = 70 nm and Rdisk = 80 nm, respectively.

19Reference [43] deals with skyrmion gyrations excited by spin-polarized electric currents,
whereas in reference [125] a different ferromagnetic model is investigated (see the summary at
the end of the present section for more details).
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Mode f40 nm (GHz) fRdisk=100 nm (GHz)

CCW Gyrotropic 1 0.05
Breathing 7 1

CW Gyrotropic 16 5

Table 4.8: List of the gyrotropic and breathing modes frequencies at both ends of
the range shown in figure 4.11: Rdisk = 40 nm (middle column) and Rdisk = 100 nm
(right column). The values are rounded to the leading decimal place and serve as a
complementary qualitative guide to figure 4.11.

We note that the counterclockwise (twofold-, threefold-, fourfold- and fivefold-)
deformed modes are more sensitive to the sample radius than the remaining modes
(analogous to the variation of the external magnetic field). In addition, the twofold-
and threefold-deformed mode disappear above Rdisk = 70 nm and Rdisk = 80 nm,
respectively, and the lowest gyrotropic mode decreases in frequency by nearly two
orders of magnitude (see Table 4.8).

Summary

We performed numerical simulations of the ferromagnetic model presented in sec-
tion 3.2 on a thin nanodisk to obtain a skyrmion groundstate and calculate its
low-frequency excitations. Here, the skyrmion is stabilized at zero external field
through the interplay of the exchange interactions, uniaxial anisotropy and the in-
terfacial Dzyaloshinskii-Moriya interactions. We do not take dipolar interactions
into account, as they are expected to be negligible for thin films [25, 26]20. Dipo-
lar interactions have been included in the analysis of references [25, 36], where in
the latter reference also the uniform breathing mode has been investigated. The
authors find the breathing mode for zero field and D = 3.5 mJ m−2 at a frequency
of f ' 5 GHz, which agrees very well with our result of fbreathing = 4.95 GHz for
the same material parameters. We also find a good qualitative agreement for the
behaviour of the previously studied excited modes as a function of the external mag-
netic field – the breathing mode of the Néel skyrmion [36] and the deformed-core
modes of the Bloch skyrmion references [35, 37].

An entirely different model is considered in reference [123], where only exchange,
dipolar and bulk Dzyaloshinskii-Moriya interactions are taken into account. Further,
the authors take into account a variation of the magnetization vector in the out-
of-plane direction, use thicker nanodisks (t = 10 nm) and set the external field and
magnetocrystalline anisotropy to zero. In such a setup a Bloch skyrmion groundstate
is reported. In a follow-up study [125], the authors analyze the eigenspectrum of
the zero-anisotropy Bloch skyrmion. A quantitative comparison with the present
work is not possible due to the different nature of the ferromagnetic models and the
corresponding skyrmion groundstates. However, there are qualitative similarities –
in particular the appearance of gyrotropic, breathing and deformed-core excitation

20The setup considered in this work resembles most the one studied by Rohart et al. [26]
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modes. There are also similarities in the declining trend of the gyrotropic and
lowest breathing modes as a function of the external field and nanodisk radius. We
note that the lowest breathing mode found in reference [125] exhibits a modulated
contour ring rotating in the clockwise direction on top of the periodic breathing of
skyrmion. We do not find such a mode in our low-frequency spectrum.

In summary, we find good agreement – qualitatively and (where possible) quanti-
tatively – between our results for the ferromagnetic skyrmion dynamics and existing
works in the literature. This establishes the validity of our approach and verifies
the code that we developed to study skyrmion excitations. Next, we turn towards
uncharted territory to investigate the antiferromagnetic skyrmion dynamics.

4.2.3 Antiferromagnetic skyrmions

Here, we extend the numerical analysis presented in the previous section to the
confined skyrmion dynamics in antiferromagnets. We obtain an antiferromagnetic
skyrmion groundstate and calculate its low-frequency spectrum.

The discussion in this section is based on the same nanodisks of radiusRdisk = 50 nm,
thickness t = 1 nm and a characteristic length lchar = 1 nm (see figure 4.3) as for the
ferromagnet in section 4.2.2, unless explicitly stated otherwise.

First, we investigate the equilibrium state of the antiferromagnet with the meth-
ods presented in section 2.3.2. The antiferromagnet is modelled according to the
sublattice energy functional (3.17)21.

The relaxation process for the antiferromagnet is governed by the sublattice effec-
tive fields shown in equation (3.20). The weak formulation of the antiferromagnetic
effective fields is given by
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)

− Bd

Bs

∫

V

d3r
(
εij (ui × ẑ) · vj
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)]
· v∆, (4.27)

21The formulation in terms of the individual sublattices is more general than the one in terms
of the Néel vector and total magnetization (in the latter, certain terms are neglected due to the
assumption n2 � m2). In addition, the sublattice formulation lends itself better to the normal-
ization of the magnetization vectors at every iteration step, due to the nature of the projection
method that we use (see section 2.3.2).
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where δij is the Kronecker delta, εij the Levi-Civita symbol and summation over
repeated indices i, j = 1, 2 (denoting the two sublattices) is implied. Here, ui denotes
the (unknown) trial function and vi the corresponding test function for the sublattice
i and we have defined u∆ = u1 − u2 and v∆ = v1 − v2

22. The antiferromagnetic
projected Landau-Lifshitz-Gilbert equation is solved numerically until the right hand
side does not produce a torque on the magnetization vector (zero-torque condition).
We make sure that convergence is reached within the numerical precision of the
simulation by tracking the change of the magnetization vector every few steps. The
resulting texture for m1 and m2 is the equilibrium state.

The antiferromagnetic model is parameterized by the saturation magnetization,
homogeneous and inhomogeneous exchange constant, uniaxial anisotropy constant,
external magnetic field and the homogeneous and inhomogeneous Dzyaloshinskii-
Moriya constant. For a better comparison between the ferromagnet and antifer-
romagnet (see also section 3.3.2), we use the same material parameters for the
exchange stiffness, anisotropy and Dzyaloshinskii-Moriya interactions as for the fer-
romagnet (see Table 4.4). We choose the homogeneous exchange constant to be
sufficiently larger than the remaining energy scales and such that it is the same
order of magnitude as typical antiferromagnets [127]23. The parameters are listed
in Table 4.924. The corresponding lengthscales of the problem are lex = 4.89 nm,
lDM = 5.57 nm, x0 = 6.36 nm and the cycloid length 2πξAFM = 8πA/D = 53.85 nm
(see section 3.3.2). The cycloid length is comparable to the nanodisk radius, so that
skyrmions are expected to appear in this setup (as for the ferromagnet).

Parameter Value Unit

Ms 1 MA m−1

Jex 91 MJ m−3

Aex 15 pJ m−1

Jani 743 kJ m−3

D 7 mJ m−2

Rescaled parameter Value Unit

Bs 1.26 T
Bexch 90.90 T
lex 4.89 nm
Ban 0.74 T
lDM 5.57 nm

Table 4.9: List of the parameters used to obtain the antiferromagnetic skyrmion
groundstate and its excitations. Here, Ms(Bs) is the saturation magnetization (field),
Jex(Bexch) the homogeneous exchange constant (field), A(lex) the exchange stiff-
ness parameter (exchange length), Jani(Ban) the uniaxial anisotropy constant (field),
D(lDM) the inhomogeneous Dzyaloshinskii-Moriya interactions constant (length),
Bd = 0 T the homogeneous Dzyaloshinskii-Moriya field and B = 0 T the external
magnetic field. We show both the physical and the rescaled parameters that enter the
energy functional (3.17) and the weak formulations (4.27) and (5.15-4.31), respec-
tively. For the spectrum calculation we set the Lagrange multiplier to Λ = 500Bs.

22See also section 5.2 and the corresponding code in listing 5.10.
23Note that there is no reference set of parameters, since antiferromagnetic skyrmions are yet

to be observed experimentally.
24For completeness, we introduced the energy densities Jex and Jani, which correspond to the

exchange field Bexch and the anisotropy field Ban, respectively (see Table 4.10).
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(a) m1x (b) m1y (c) m1z

(d) m2x (e) m2y (f) m2z

Figure 4.12: Visualisation of the initial antiferromagnetic skyrmion-like state (radius
15 nm) - shown are the vector components of both sublattice magnetizations.

We investigate the relaxation of different initial states and compare the energies
of the obtained equilibrium states (see Appendix D.2). We find that, for the present
set of parameters, the skyrmion configuration has the lowest energy and, therefore,
represents the groundstate, as for the ferromagnet.

The antiferromagnetic skyrmion is obtained by starting from a skyrmion-like
initial state (see Appendix D.1), which is extended to cover two mirrored sublattices

Parameter Value Unit

saturation field Bs µ0Ms T
exchange field Bexch Jex/Ms T

exchange length lex

√
2A/(MsBs) m

anisotropy field Ban Jani/Ms T
DM length lDM D/(MsBs) m

Table 4.10: Definition of the rescaled parameters that enter the weak formulation in
equation (4.27). Here, µ0 is the vacuum permeability, DM stands for Dzyaloshinskii-
Moriya and the corresponding physical parameters are listed in Table 4.9.
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(a) m1x (b) m1y (c) m1z

(d) m2x (e) m2y (f) m2z

Figure 4.13: Visualisation of the relaxed antiferromagnetic skyrmion state - shown
are the magnetization components of both sublattice vectors m1 and m2.

(with m1 = −m2). The two sublattices of the initial state are shown in figure 4.12.
We show the relaxed antiferromagnetic skyrmion in figure 4.13. Similar to the

ferromagnet, for the chosen set of parameters, the equilibrium skyrmion exhibits a
smoother transition region – where the Néel vector rotates in the radial direction –
compared to the initial state (see figure 4.12). During the relaxation process the
anisotropy and inhomogeneous energies are increased (compared to the initial state),
whereas the Dzyaloshinskii-Moriya energy is lowered. The homogeneous exchange
remains largely unchanged25 and does not affect the skyrmion profile at zero external
field26. As for the ferromagnet, there is an additional canting of the magnetization
vectors at the nanodisk edges, which is induced by the Dzyaloshinskii-Moriya in-
teractions. It is clearly visible that the canting is chiral – m1 is canting radially
outward and m2 radially inward (compare the in-plane components of m1 and m2

at the edges of the nanodisk in figure 4.13)27.
In chapter 3, we emphasized that the profile equation for the ferromagnet and

antiferromagnetic skyrmion are identical at zero external field. This allows us to

25For the relaxed skyrmion we find m1 ·m2 = −0.999 (that is, a deviation from the perfect
alignment between of the order of 10−3).

26As can be seen in equations (3.34), the exchange field enters the profile equation only in
combination with the external field.

27The chirality depends on the sign of D, as discussed in chapter 3.
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0 10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

Ρ HnmL

n
z
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Rinit = 25 nm

Rinit = 40 nm

analytical calculation

Figure 4.14: Profile of the relaxed antiferromagnetic skyrmion for the parameter
set shown in Table 4.9. The solid red line is the numerical solution of the profile
equation (3.34) with the boundary condition (3.35). The open circles are the nu-
merical simulation results for different values of the initial radius: the profiles for
Rinit = 5, 10, 15, 20 nm and Rinit = 30, 35, 40 nm are identical and we have plotted
one from each group in blue and black color, respectively.

obtain analytically the expected profile for the confined antiferromagnetic skyrmion
(see section 3.3.2). We solve the profile equation (3.34) with initial condition
θ(ρ = 0) = π and apply the shooting method to find dθ/dρ(ρ = 0) such, that the
boundary condition (3.35) is fulfilled. The antiferromagnetic skyrmion is a texture of
the Néel vector; therefore, we transform the sublattice magnetization vectors to the
Néel vector according to equation (3.22) and plot both the analytical and numerical
results in figure (4.14)

All the results for the confined ferromagnetic skyrmion hold in the present case
as well. The antiferromagnet skyrmion is stabilized largely due to modified bound-
ary conditions and the resulting confining potential of the nanodisk edges, anal-
ogous to the ferromagnetic skyrmion [26]. An important consequence is that for
values of D > D0, the skyrmion radius depends on the size of the nanodisk (see
Appendix D.3 and figure D.8). For the parameters used here this condition is ful-
filled, as D = 7 mJ m−2 is larger than the threshold Dzyaloshinskii-Moriya con-
stant D0 = 4/π

√
2ABanMs = 6 mJ m−2 (see equation (3.33) and section 3.3.2). For

D < D0, the skyrmion radius is fixed and independent of the nanodisk, because the
skyrmion is too small to feel the effect of the edges (see figure D.8).

Dynamics

Next, we investigate the low-frequency excitations of the antiferromagnetic skyrmion
groundstate. We extend the formalism presented in section 2.3.2 to a collinear
antiferromagnet with two sublattices, by considering small deviations δm1 and δm2

to the equilibrium magnetizations m01 and m02 . This leads to the linearized Landau-
Lifshitz-Gilbert equation for each sublattice

iωδmi =− γm0i ×Beff[δmi, δmi]− γδmi ×Beff[m0i ,m0i ] + Λ (m0i · δmi) m0i ,
(4.28)
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where i = 1, 2 denotes the sublattice, ω is the frequency of the corresponding eigen-
mode, Beff the effective field (see equations (3.20)) and Λ a Lagrange multiplier that
ensures that the modes we obtain are not longitudinal excitations of the magne-
tization vector m0. Equation (4.28) is the direct extension of equation (2.39) to
two-sublattice collinear antiferromagnets.

We transform equations (4.28) to their weak formulation, by multiplying each
equation with the corresponding test functions v1 and v2, integrate over space
and renormalize the prefactors by the saturation field Bs to make the equations
dimensionless. Added together, they lead to the eigenvalue equation for the six-
dimensional vector ũ

λMũ = Aũ, (4.29)

with the eigenvalues λ = −iω/γ,

Mũ =
1

Bs

∫

V

d3r
(
ui · vi

)
(4.30)

and the right hand side given by

Aũ =− Bexch

Bs

∫

V

d3r
(

1− δij
)[(

m0i × uj

)
· vi +

(
ui ×m0j

)
· vi
]

− l2ex

∫

V

d3r

[
∇
(
vi ×m0i

)
· ∇ui +∇

(
vi × ui

)
· ∇m0i

]

+
Ban

Bs

∫

V

d3r

[
(ui · ẑ) (m0i × ẑ) · vi + (m0i · ẑ) (ui × ẑ) · vi

]

+
B

Bs

∫

V

d3r (ui × ẑ) · vi

+
Bd

Bs

∫

V

d3r εij

[
m0i ×

(
uj × ẑ

)
· vi + ui ×

(
m0j × ẑ

)
· vi
]

+ lDM

∫

V

d3r εij

[(
∇ · u∆

)
(m0i × ẑ) · vi −m0i ×∇

(
ẑ · u∆

)
· vi

+
(
∇ ·m0∆

)
(ui × ẑ) · vi − ui ×∇

(
ẑ ·m0∆

)
· vi
]
∣∣m0j

∣∣

+
lDM

2

∮

∂V

d2r εij

[
(vi ×m0i) · u∆ ×

[
dŜ× ẑ

]

+ (vi × ui) ·m0∆
×
[
dŜ× ẑ

]] ∣∣m0j

∣∣

+
Λ

Bs

∫

V

d3r (m0i · ui) (m0i · vi) . (4.31)

Here, δij is the Kronecker delta, εij the Levi-Civita symbol and summation over
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repeated indices i, j = 1, 2 (denoting the two sublattices) is implied28. Again, ui de-
notes the (unknown) trial function and vi the corresponding test function for the sub-
lattice i and we have defined u∆ = u1−u2, v∆ = v1 − v2 and m0∆

= m01 −m02
29.

The excitations of the antiferromagnetic skyrmion are obtained by solving equa-
tion (5.15) numerically (see section 2.3.2). We plug in the relaxed skyrmion in the
equilibrium sublattice magnetization vectors m01 and m02 and calculate the lowest
nine eigenmodes.

The physical eigenvectors for the individual sublattices are obtained from the
complex eigenvectors through (see footnote 12)

δmi(t) = Re{ũi} cos(ωt)− Im{ũi} sin(ωt), (4.32)

and transformed into the language of the order parameters as

δn(t) =
1

2

[
δm1(t)− δm2(t)

]
,

δmAFM(t) =
1

2

[
δm1(t) + δm2(t)

]
.

(4.33)

The full sublattice magnetization vectors mi(t) of the excitation modes are con-
structed according to equation (2.35). For visualization purposes30, we scale the
magnitude of each δmi(t) by a factor of 100

m̃i(t) = m0i + 100× δmi(t), (4.34)

normalize m̃i(t) and transform to the Neel vector δn(t) in equation (4.33).
We list the frequencies of the lowest nine eigenmodes in Table 4.11 and show their

time evolution in figures 4.16-4.18. Similar to the ferromagnet, we obtain modes of
different nature – displaced, breathing and deformed-core modes. However, since at
zero magnetic field there is no preferred sense of rotation, the modes do not rotate,
but rather oscillate between different configurations. Another important difference is
that we find two modes for each type in the antiferromagnet; this can be traced back
to the doubled number of degrees of freedom due to the presence of two sublattices.

The numerical errors listed in Table 4.11 originate from the imprecision of the
relaxation solver31. We have shown the profile of the relaxed antiferromagnetic
skyrmion as a function of the initial radius Rinit in figure 4.14. It can be seen that
there is a slight deviation of the relaxed profile for initial radii smaller or larger

28For a more compact representation we have included the magnitude of the unit vector
∣∣m0j

∣∣
in the volume terms proportional to lDM.

29See also section 5.2 and the corresponding code in listing 5.18.
30We show the Néel excitation vector components δn of the lowest two excitation modes at t = 0

in figure 4.15. Note, that the excitation vector is more than two orders of magnitude smaller than
the groundstate Néel vector n0 (see figure 4.13 for the magnitude of the corresponding sublattice
magnetization vectors m01 and m02).

31We have determined the numerical error of the eigenvalue solver alone to be of the order
of kHz. The error of the resonance frequencies of the uniform state increases by three orders of
magnitude when numerical errors from the relaxation solver are included (see the discussion in
Appendix D.4).
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(a) δn1x (b) δn1y (c) δn1z

(d) δn2x (e) δn2y (f) δn2z

(g) Color Bar (δnx,y) (h) Color Bar (δnz)

Figure 4.15: Top view visualization of the lowest two excited modes of the antifer-
romagnetic skyrmion (the linear displacement modes) at t = 0 (see Table 4.11, and
figures 4.16a - 4.16d and 4.16e - 4.16h for reference). Shown are the components of
the Néel excitation vector δn1,2(t = 0), corresponding to the equilibrium skyrmion
state in figure 4.13. The corresponding total magnetization of both modes is found
numerically to be negligible – |δmAFM,1,2| ' 10−7 − 10−11.

than the analytically predicted equilibrium radius; however, for the chosen material
parameters, there is one case that matches the analytical profile very well32 (shown
with green symbols in figure 4.14). To avoid the effects of coincidence, we present
in this section the dynamics of the Rinit = 15 nm skyrmion and then calculate the
numerical error by comparing its frequencies to the ones obtained for the skyrmion
shown with green symbols in figure 4.14.

The lowest two modes in the current setup exhibit a skyrmion core displaced
from its equilibrium position. Thus, they correspond to the lowest gyrotropic mode
observed for the ferromagnetic skyrmion. However, the two modes here do not ro-
tate, but rather oscillate back and forth in orthogonal directions, as shown in figures
4.16a-4.16h, at frequencies of f1 = 59.63 GHz and f2 = 59.66 GHz. Within the nu-
merical errors these are identical, as is expected from the point of view of symmetry:

32This is due to the initial radius being almost identical with the target radius. For material
parameters different from the ones listed in Table 4.9, the target equilibrium radius will be different
(see chapter 3) and the resulting numerical profile will not match it perfectly.
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Mode Frequency (GHz) Type

1 59.63 ± 0.38 Linear displacement
2 59.66 ± 0.35 Linear displacement
3 66.65 ± 0.25 Twofold-deformed
4 66.67 ± 0.26 Twofold-deformed
5 72.59 ± 0.01 Breathing
6 119.74 ± 1.48 Threefold-deformed
7 119.74 ± 1.48 Threefold-deformed
8 189.14 ± 2.42 Fourfold-deformed
9 189.14 ± 2.42 Fourfold-deformed

Table 4.11: List of the lowest nine excited mode frequencies of the antiferromagnetic
skyrmion (see figure 4.13 for the equilibrium state). These are obtained for a nan-
odisk of radius Rdisk = 50 nm, thickness t = 1 nm and the material parameters listed
in Table 4.9. We show the excited modes in figures 4.16-4.18.

there is nothing within our model that distinguishes one in-plane direction from the
other.

The second-lowest pair of modes is found at f3 = 66.65 GHz and f4 = 66.67 GHz
and represents a skyrmion with an elongated core with a two-fold rotational sym-
metry (see figures 4.16i-4.16p). Due to the same consideration as above, the modes
are degenerate and oscillate between two elongated configurations each – one along
the x̂- and ŷ-direction (figures 4.16i-4.16l) and the other diagonally (4.16m-4.16p).
In complete analogy to the ferromagnet, the skyrmion core is not displaced from its
equilibrium position so that the modes cannot be regarded as gyrotropic.

Higher in the low-frequency spectrum we find further modes that are char-
acterized by a deformed skyrmion core – a pair of threefold-deformed skyrmion
modes at f6,7 = 119.74 GHz (figures 4.17a-4.17h) and a fourfold-deformed skyrmion
at f8,9 = 189.14 GHz (figures 4.17i-4.17p).

We find a breathing mode at fbreathing = 72.59 GHz and depict it in figures
4.18a-4.18e. As for the ferromagnet, the skyrmion expands and shrinks uniformly
in such a way that the radial symmetry is preserved.

Compared to the ferromagnetic skyrmion, the lowest modes here appear at fre-
quencies higher by at least an order of magnitude. This is a consequence of the faster
magnetization dynamics of antiferromagnets, due to the large value of the exchange
field Bexch [44]. In addition, the modes are spread out more in the spectrum – for
the ferromagnetic skyrmion we find eight different modes in a range of ∼ 20 GHz,
whereas here there are five different modes in a range of ∼ 130 GHz. The antiferro-
magnetic resonance frequency of the uniform state for the present set of parameters
is ∼ 330 GHz (see Appendix D.4), which is considerably higher than the lowest-
frequency excitation of the antiferromagnetic skyrmion (∼ 60 GHz). These results
indicate that the low-frequency excitation spectrum of the confined antiferromag-
netic skyrmion exhibits features distinct from the spectrum of the uniform state, and
could provide a guide towards the experimental observation of an antiferromagnetic
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(a) t = 0 (b) t = 0.2 T (c) t = 0.5 T (d) t = 0.8 T

(e) t = 0 (f) t = 0.2 T (g) t = 0.5 T (h) t = 0.8 T

(i) t = 0 (j) t = 0.2 T (k) t = 0.5 T (l) t = 0.8 T

(m) t = 0 (n) t = 0.2 T (o) t = 0.5 T (p) t = 0.8 T

(q)

Figure 4.16: Visualization of the antiferromagnetic skyrmion excitation modes,
shown in order of increasing frequency - the two linear displacement modes and
both twofold-deformed skyrmion modes (see also Table 4.11). The arrows denote the
direction of motion; the deformed-modes oscillate first in the direction of the solid
arrow and then continue along the dashed arrow. Continues in figures 4.17 and 4.18.
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(a) t = 0 (b) t = 0.2 T (c) t = 0.5 T (d) t = 0.8 T

(e) t = 0 (f) t = 0.2 T (g) t = 0.5 T (h) t = 0.8 T

(i) t = 0 (j) t = 0.2 T (k) t = 0.5 T (l) t = 0.8 T

(m) t = 0 (n) t = 0.2 T (o) t = 0.5 T (p) t = 0.8 T

(q)

Figure 4.17: (Continuation from figure 4.16) Antiferromagnetic skyrmion excitation
modes 6 to 9 (see Table 4.11) shown in order of increasing frequency. From top to
bottom - threefold-deformed skyrmion and fourfold-deformed skyrmion. The modes
are deformed first in the direction of the solid arrow and subsequently, the dashed
arrow. See also figure 4.18.
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(a) t = 0 (b) t = 0.2 T (c) t = 0.5 T (d) t = 0.8 T (e) t = 1.0 T

(f)

Figure 4.18: Visualization of the antiferromagnetic skyrmion breathing mode (see
Table 4.11). Continuation from figures 4.16 and 4.17.

skyrmion, similar to ferromagnets [36].

Dependence of the frequencies on the external magnetic field

Next, we investigate the behaviour of the antiferromagnetic skyrmion excitations
as a function of the applied magnetic field. To do so, we sweep B in the range
0 T− 2 T33 in steps of ∆B = 50 mT and perform successive relaxation of the mag-
netic texture: we take the relaxed skyrmion at B = 0 T (see figure 4.13) as an initial
state, increase the field by ∆B, relax and repeat until we reach B = 2 T. We cal-
culate the eigenfrequencies at each step of the successive relaxation and analyze the
corresponding eigenmodes to take into account the effect of possible level crossings.

We plot the resulting frequencies in figure 4.19. There are two features that are
different from the ferromagnetic skyrmion. First, the antiferromagnetic skyrmion
is significantly more robust to the external field, in agreement with the analytical
calculations shown in section 3.3.2: whereas its ferromagnetic counterpart vanishes
at values higher than 0.6 T, the antiferromagnetic skyrmion persists in the range
studied here. This is not surprising, since antiferromagnets are known to be insen-
sitive to magnetic fields [44]. Second, due to the large spread of the modes within
the spectrum, we do not observe any level crossings.

As the magnetic field is applied to the system, the in-plane symmetry is lifted
and the eigenmodes’ time evolution changes – apart from the breathing mode – from
oscillations between different configurations to in-plane rotations. This happens in
such a way that the lower-frequency mode of the two (of the same type) rotates
counterclockwise and the higher, clockwise. Contrary to the ferromagnetic skyrmion,
the sense of rotation does not depend on the polarity of the skyrmion and the
lower-frequency mode is counterclockwise for both p = ±1. The sense of rotation
is determined by the direction of the applied magnetic field – reversing the field to
point in the negative ẑ-direction reverses the direction of all the modes in Table 4.12.

33We choose the range 0 T < B < 2 T to highlight the differences between the ferromagnet and
the antiferromagnet. The latter skyrmion remains stable also for stronger magnetic fields.
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Figure 4.19: Frequencies of the lowest nine excitation modes of the p = −1 antifer-
romagnetic skyrmion as a function of the external magnetic field. See Tables 4.11
and 4.12 for a list of the frequencies at both ends of the range studied here.

Further, we find that increasing the magnetic field increases also the magnitude of
the total magnetization excitation vector δmAFM, consistent with the trend predicted
by equation (3.28). At zero magnetic field we found that |δmAFM| ' 10−7 − 10−11

for the lowest excitation mode (see figure 4.15), whereas at B = 2 T the magnitude
increases by at least three orders of magnitude (see figure 4.20). We show this effect
only for the lowest mode, but the trend is valid for all nine modes.

(a) (b)

Figure 4.20: Total magnetization vector δmAFM of the lowest-frequency excitation
mode of the antiferromagnetic skyrmion at B = 2 T (snapshot at t = 0). The arrows
represent the direction of the vector δmAFM and the color code, its magnitude. Here,
we find |δmAFM| ' 10−4 − 10−7, which is three orders of magnitude higher than in
the zero-field state (see figure 4.15). See also equation (4.33) for the definition of
the total magnetization vector.
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Mode fB=0 T(GHz) fB=2 T(GHz) Rotation

Linear displacement 60 64 CCW
Linear displacement 60 64 CW
Twofold-deformed 67 70 CCW
Twofold-deformed 67 71 CW

Breathing 73 77 -
Threefold-deformed 120 120 CCW
Threefold-deformed 120 123 CW
Fourfold-deformed 189 187 CCW
Fourfold-deformed 189 193 CW

Table 4.12: List of the antiferromagnetic skyrmion excitation frequencies as a func-
tion of the external field. Shown are the nine modes from Table 4.9 for two values
of the magnetic field – at B = 0 T and B = 2 T. The evolution of the modes as a
function of B is shown in figure 4.19. The values listed here have been rounded to
the nearest integer; the numerical errors shown in Table 4.9 apply here as well.

Dependence of the frequencies on the sample radius

We create an initial skyrmion state of Rinit = 15 nm on a sample with Rdisk = 40 nm
and relax until an equilibrium state is reached. We calculate the corresponding
eigenfrequencies and eigenmodes, increase the nanodisk radius by ∆Rdisk = 10 nm
and repeat the procedure until we reach Rdisk = 100 nm. We keep B = 0 T and use
the material parameters listed in Table 4.9. In that case, we have D > D0, so that
the skyrmion size is fixed by the nanodisk dimensions due to the confining potential
of the boundaries. As a consequence, for each Rdisk the skyrmion has a different
size.

The results are plotted in figure 4.21. Similar to the ferromagnet, all investigated
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Figure 4.21: Frequencies of the excitation modes of the p = −1 antiferromagnetic
skyrmion as a function of the nanodisk radius. We show the modes listed in Table
4.11. See Table 4.13 for the frequencies at both ends of the range considered here.
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Mode f40 nm (GHz) f100 nm (GHz)

Linear displacement 70 33
Breathing 95 35

Twofold-deformed 116 27
Threefold-deformed 212 21
Fourfold-deformed 315 24

Table 4.13: List of the antiferromagnetic skyrmion excitations as a function of Rdisk:
shown are the five types of modes from Table 4.11 at both ends of the range con-
sidered in this chapter: Rdisk = 40 nm (middle column) and Rdisk = 100 nm (right
column). The values are rounded to the nearest integer and serve as a complemen-
tary qualitative guide to figure 4.21.

excitation modes of the antiferromagnetic skyrmion decrease in frequency as the
nanodisk radius Rdisk is increased. As a further similarity, we find that the deformed-
core modes (twofold-, threefold- and fourfold-deformed ones) are more sensitive to
changes in the nanodisk radius than the other modes. However, the displaced modes
decrease in frequency roughly by a factor of two, whereas the lowest gyrotropic mode
of the ferromagnet decreases by two orders of magnitude.

4.2.4 Summary

In this section, we studied numerically the lowest-frequency excitation modes of
both ferromagnetic and antiferromagnetic skyrmions confined in nanodisk samples,
based on the phenomenological models developed in chapter 3.

In the ferromagnet, we obtained a skyrmion groundstate at zero external field
that agrees with the analytical predictions. The low-frequency spectrum of the
skyrmion groundstate exhibits gyrotropic, deformed-core and breathing modes, con-
sistent with previous theoretical [34, 35, 36, 119, 125] and experimental results
[38, 39, 40, 41]34. The rotation sense of the lowest modes of each type depend
on the skyrmion polarity35: clockwise for p = +1, and counterclockwise for p = −1.
This is also in agreement with recent literature results [34, 119, 121, 125, 126]. In
conclusion, we find a good agreement with literature and take this as a verification
of our micromagnetic code.

Next, we presented the numerical calculations of the confined skyrmion eigen-
modes in a two-sublattice antiferromagnet. First, we obtained a skyrmion ground-
state consistent with the analytical predictions [13]. The material parameters of
the antiferromagnet were chosen in such a way that the effective parameters (e.g.,
characteristic domain wall width x0 and cycloid lengths ξFM,AFM; see also chapter
3) are identical to the ferromagnet. We find that the resulting skyrmion profiles

34We note that there is no consensus yet on the gyrotropic modes, as these experiments report
different results; see the discussion in the introduction of section 4.2

35This does not include the breathing mode, as the mode does not represent a rotation of the
skyrmion.

99



4.2. Eigenmodes of confined skyrmions CHAPTER 4

are also identical, in agreement with the analytical treatment (see the discussion in
section 3.3.2).

We investigated the nine lowest-frequency excitation modes of the antiferromag-
netic skyrmion. We found that the modes come in pairs, which is a consequence of
the doubled amount of degrees of freedom in the antiferromagnet due to the exis-
tence of two sublattices. There is one exception to this observation, which is the
breathing mode: the lowest-frequency spectrum shows only one such mode.

The types of excitations modes are the same as for the ferromagnet: “transla-
tion,” deformed-core and breathing modes. Importantly, at zero magnetic field the
modes do not rotate, but rather oscillate between two configurations. This reflects
the fact that there is no preferred sense of rotation in the antiferromagnet at zero
field. When the field is applied in the out-of-plane direction, the modes transform
from oscillations to rotations. In particular, the “translation” modes transform to
rotation in a way that the skyrmion core is displaced from the center of the nan-
odisk. Therefore, we identify the antiferromagnetic linear-displacement modes as
the counterpart of the ferromagnetic gyrotropic mode. Here, the sense of rotation
depends on the relative orientation of the magnetic field and the skyrmion core:
for opposite orientations the lowest mode of each pair is counterclockwise and the
highest, clockwise; for parallel orientations the rotations are reversed. This is found
to be true also for the deformed-core modes.

There is a numerical indication that the two modes in each pair split in frequency
as a function of the external field; this will be a direction to pursue in future work.

Further, we find that the antiferromagnetic skyrmion modes have frequencies
larger by at least an order of magnitude than the corresponding ferromagnetic
modes. This is simply a manifestation of the faster magnetization dynamics in
antiferromagnets, as was discussed in chapter 1.

Similar to the ferromagnet, the lowest antiferromagnetic skyrmion excitation
frequencies are lower than the antiferromagnetic resonance frequency of the uniform
state. Therefore, the presence of such low-frequency features in the spectrum could
be used as a signature to identify antiferromagnetic skyrmions experimentally.

Finally, we found a similar declining trend of the excitation frequencies of both
ferromagnetic and antiferromagnetic skyrmions as a function of the nanodisk ra-
dius. The skyrmions considered in this work are in the regime D > D0, so that
the skyrmion size is fixed by the sample dimensions. Further studies of skyrmions
independent of the sample size (that is, in the opposite regime D < D0) will shed
more light onto the influence of the sample on the skyrmion dynamics, which is
important for any device applications.

We emphasize that the finite-element eigenvalue method was used in this work to
calculate the low-frequency spectrum of both ferromagnetic and antiferromagnetic
skyrmions confined in a nanodisk. With this method, we are able to go beyond the
modes that have been observed experimentally [38, 39, 40, 41], and calculate the full
spectrum of confined skyrmions. A possible approach to determine how the modes
are likely to be excited in experiment is to perturb the equilibrium state by intro-
ducing an external excitation into the model (e.g., a time-dependent magnetic field)
and subsequently calculate the power spectral density of the skyrmion excitations
[36, 125]. Previous studies for ferromagnets have suggested that
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• oscillating magnetic fields applied in the out-of-plane direction [36, 37, 121,
125]36, as well as both oscillating magnetic and electric fields applied in-plane
can be used to excite the breathing mode [37];

• to excite the gyrotropic mode, external magnetic field need to be applied within
the plane [121, 125];

• the deformed-core skyrmion modes can be excited by a local probe, such as
the spin-polarized scanning tunneling microscope [35].

The situation in antiferromagnets is more complicated, as the observation of anti-
ferromagnetic order is notoriously difficult [44]. Due to the vanishingly small static
magnetization, external magnetic fields are not expected to be able to excite the
skyrmion excitation modes. Possible alternative approaches are to employ the dy-
namic magnetization that arises due to skyrmion motion, which can be coupled to
time-dependent external magnetic fields37, or use the recently observed Néel spin-
orbit torques [49] that can electrically manipulate the Néel order parameter.

36The breathing mode is radially symmetric, so that external perturbations that preserve the
radial symmetry are expected to be able to excite it.

37See the dynamic term in equation (4.13), which describes the total magnetization of an anti-
ferromagnet.
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Chapter 5

Reference and numerical code

This chapter serves as a reference for the numerically relevant characteristics of the
phenomenological model, both for a ferromagnet and an antiferromagnet. We list the
energy functionals, effective fields, projected and linearized Landau-Lifshitz-Gilbert
equations, as well as their weak formulations.

5.1 Ferromagnetic model

The ferromagnetic micromagnetic model consists of the exchange interactions (Aex),
out-of-plane uniaxial anisotropy (Ku), Dzyaloshinskii-Moriya interactions (D) and
external field (B). The order parameter of the model is the unit vector of the
magnetization m

FFM =

∫
d3r

{
Aex(∇m)2 −Ku(m · ẑ)2 −BMs(m · ẑ)

−D
[
(m · ẑ)(∇ ·m)− (m · ∇)(m · ẑ)

]}
. (5.1)

This energy functional is coded as shown in listing 5.3.

Parameter Unit

Aex J m−1

Ku J m−3

B T
D J m−2

Ms A m−1

Table 5.1: Overview of the parameter units in equation (5.1).
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Parameter Unit

2Aex/Ms T m2

2Ku/Ms T
B T

2D/Ms T m
Ms A m−1

Table 5.2: Overview of the parameter units in equation (5.2).

Effective field

The effective field of the ferromagnetic model is (see section 3.2.1)

Beff,FM =
2Aex

Ms

∇2m +
2Ku

Ms

(m · ẑ)ẑ +Bẑ +
2D

Ms

[
ẑ(∇ ·m)−∇(m · ẑ)

]
. (5.2)

As discussed in section 2.3.1, we divide equation (5.2) by a reference saturation
field Bs = µ0Ms to obtain the dimensionless effective field

B̂eff,FM = l2ex

(
∇2m

)
+
Bu

Bs

(m · ẑ)ẑ +
B

Bs

ẑ + lDM

[
ẑ(∇ ·m)−∇(m · ẑ)

]
, (5.3)

where the rescaled parameters are listed in Table 5.3.

Projected Landau-Lifshitz-Gilbert equation

The projection method leads to the following equation (see section 2.3.2)

1

Bs

∫

V

d3r
(
Beff · v

)
=− l2ex

∫

V

d3r
(
∇v · ∇u

)

+
Bu

Bs

∫

V

d3r
(
u · ẑ

)(
v · ẑ

)

+
B

Bs

∫

V

d3r
(
v · ẑ

)

+ lDM

∫

V

d3r
[

(∇ · u) (v · ẑ)− v · ∇ (u · ẑ)
]

+
lDM

2

∮

∂V

d2r
[
u×

(
dŜ× ẑ

)]
· v, (5.4)

Parameter Expression Unit

exchange length l2ex 2Aex/MsBs m
anisotropy field Bu 2Ku/Ms T

DM length lDM 2D/MsBs m

Table 5.3: Overview of the parameter units in equation (5.4).
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where dŜ is a unit vector normal to the surface of the sample and u is the trial
function to be calculated within the finite-element method (see listing 5.5).

Linearized Landau-Lifshitz-Gilbert equation

The eigenmodes of a magnetization structure is calculated from the linearized Landau-
Lifshitz-Gilbert equation (see section 2.3.2) in frequency space

iωδm =− γm0 ×Beff[δm]− γδm×Beff[m0] + Λ (m0 · δm) m0, (5.5)

where ω is the frequency of the corresponding eigenmode, Beff the effective field
given in equation (5.2), m0 the equilibrium magnetization configuration and δm
the linear deviations transverse to m0, as described by equation (2.35). The weak
formulation of the above equation becomes

− iω

γBs

∫

V

d3r (u · v) =− l2ex

∫

V

d3r

[
∇
(
v ×m0

)
· ∇u +∇

(
v × u

)
· ∇m0

]

+
Bu

Bs

∫

V

d3r

[
(u · ẑ) (m0 × ẑ) · v + (m0 · ẑ) (u× ẑ) · v

]

+
B

Bs

∫

V

d3r (u× ẑ) · v

+ lDM

∫

V

d3r

[
(∇ · u) (m0 × ẑ) · v −m0 ×∇ (ẑ · u) · v

+ (∇ ·m0) (u× ẑ) · v − u×∇ (ẑ ·m0) · v
]

+
lDM

2

∮

∂V

d2r

[
(v ×m0) · u×

[
dŜ× ẑ

]

+ (v × u) ·m0 ×
[
dŜ× ẑ

]]

+
Λ

Bs

∫

V

d3r (m0 · u) (m0 · v) , (5.6)

where the deviations are now denoted by u. Here, it was explicitly assumed, that
both anisotropy and external field point in the ẑ-direction. The corresponding code
script is given in listing 5.16.
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5.2 Antiferromagnetic model

Here, we are considering a collinear two-sublattice antiferromagnet that is described
by the magnetic moments M1 = Msm1 and M2 = Msm2. Here, Ms is the sat-
uration magnetization of the antiferromagnet and m1, m2 are the sublattice unit
magnetization vectors.

The antiferromagnetic micromagnetic model includes the homogeneous (Bexch)
and inhomogeneous exchange interaction (A), out-of-plane uniaxial anisotropy (Ban),
Dzyaloshinskii-Moriya interactions (D) and external field (B). The order param-
eter of the model is the unit Néel vector of the magnetization n = (m1 −m2)/2,
complemented by the unit antiferromagnetic magnetization m = (m1 + m2)/2 [55]

FAFM =

∫
dr

{
2A (∇n)2 + 2BexchMsm

2 −BanMs(n · ẑ)2 − 2BMs(m · ẑ)

+ 2BdMs(m× n) · ẑ −D
[
(ẑ · n)(∇ · n)− (n · ∇)(ẑ · n)

]}
. (5.7)

However, for the numerical simulations it is more convenient to rewrite the energy
functional (5.7) in terms of the sublattice magnetization vectors:

FAFM =

∫
d3r

{
A
[
(∇m1)2 + (∇m2)2

]
+BexchMs (m1 ·m2)

− BanMs

2

[
(m1 · ẑ)2 + (m2 · ẑ)2

]
−BMs

[
(m1 · ẑ) + (m2 · ẑ)

]

−BdMs

[
m1 ×m2

]
· ẑ + fDM,surface

}
, (5.8)

where the Dzyaloshinskii-Moriya functional is given by

fDM = −D
4

{[
(m1 −m2) · ẑ

][
∇ · (m1 −m2)

]
− (m1 −m2) · ∇

[
(m1 −m2) · ẑ

]}
.

(5.9)

The corresponding code script is shown in listing 5.8.

Parameter Unit

Bexch T
A J m−1

Ban T
B T
Bd T
D J m−2

Ms A m−1

Table 5.4: Overview of the parameter units in equation (5.7).
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Effective fields

The effective field of the antiferromagnetic model is derived from the energy func-
tional (5.8). The sublattice form of the effective field is defined by

BAFM
eff,1 = − 1

Ms

δFAFM

δm1

, and BAFM
eff,2 = − 1

Ms

δFAFM

δm2

. (5.10)

The effective fields become

BAFM
eff,1 =

2A

Ms

∇2m1 −Bexchm2 +Ban(m1 · ẑ)ẑ +Bẑ +Bd(m2 × ẑ) + BAFM
DM ,

BAFM
eff,2 =

2A

Ms

∇2m2 −Bexchm1 +Ban(m2 · ẑ)ẑ +Bẑ −Bd(m1 × ẑ)−BAFM
DM ,

(5.11)

where the Dzyaloshinskii-Moriya field is

BAFM
DM =

D

2Ms

[
ẑ
(
∇ · (m1 −m2)

)
−∇

(
(m1 −m2) · ẑ

)]
. (5.12)

Projected Landau-Lifshitz-Gilbert equations

To proceed, we cast the effective fields dimensionless, by dividing equations (5.11)
by the reference saturation field Bs = µ0Ms. The corresponding weak formulation
for both sublattices can be combined in a six-vector expression (see section 2.3.2)

1

Bs

∫

V

d3r
(
BAFM

eff,i · vi
)

=− Bexch

Bs

∫

V

d3r
(

1− δij
)(

ui · vj
)

− l2ex

∫

V

d3r
(
∇ui · ∇vi

)
+
Ban

Bs

∫

V

d3r
(
ui · ẑ

)(
vi · ẑ

)

+
B

Bs

∫

V

d3r
(
vi · ẑ

)
− Bd

Bs

∫

V

d3r
(
εij (ui × ẑ) · vj

)

+ lDM

∫

V

d3r

[(
∇ · u∆

)
ẑ −∇

(
u∆ · ẑ

)]
· v∆

+
lDM

2

∮

∂V

d2r
[
u∆ ×

(
dŜ× ẑ

)]
· v∆, (5.13)

where δij is the Kronecker delta, εij the Levi-Civita symbol and summation over

repeated indices i, j = 1, 2 (denoting the two sublattices) is implied. Here, dŜ is
the unit vector normal to the surface of the sample, ui denotes the (unknown) trial
function and vi the corresponding test function for the sublattice i, and we have
defined u∆ = u1 − u2 and v∆ = v1 − v2. The code script is shown in listing 5.10.

Parameter Expression Unit

exchange length l2ex 2A/MsBs m
DM length lDM D/MsBs m

Table 5.5: Overview of the parameter units in (5.13).
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Linearized Landau-Lifshitz-Gilbert equations

In the antiferromagnet, the linearized Landau-Lifshitz-Gilbert equations (see section
2.3.2) read

iωδmi =− γm0i ×Beff[δmi, δmi]− γδmi ×Beff[m0i ,m0i ] + Λ (m0i · δmi) m0i ,
(5.14)

where i = 1, 2 denotes the sublattice, ω the frequency of the corresponding eigen-
mode, Beff the effective field given in equations (5.11) and Λ the Lagrange multiplier.
The weak formulation of equations (5.14) leads to the eigenvalue equation for the
six-dimensional vector ũ

−iω
γ

Mũ = Aũ, (5.15)

where

Mũ =
1

Bs

∫

V

d3r
(
ui · vi

)
(5.16)

and the right hand side given by

Aũ =− Bexch

Bs

∫

V

d3r
(

1− δij
)[(

m0i × uj

)
· vi +

(
ui ×m0j

)
· vi
]

− l2ex

∫

V

d3r

[
∇
(
vi ×m0i

)
· ∇ui +∇

(
vi × ui

)
· ∇m0i

]

+
Ban

Bs

∫

V

d3r

[
(ui · ẑ) (m0i × ẑ) · vi + (m0i · ẑ) (ui × ẑ) · vi

]

+
B

Bs

∫

V

d3r (ui × ẑ) · vi

+
Bd

Bs

∫

V

d3r εij

[
m0i ×

(
uj × ẑ

)
· vi + ui ×

(
m0j × ẑ

)
· vi
]

+ lDM

∫

V

d3r εij

[(
∇ · u∆

)
(m0i × ẑ) · vi −m0i ×∇

(
ẑ · u∆

)
· vi

+
(
∇ ·m0∆

)
(ui × ẑ) · vi − ui ×∇

(
ẑ ·m0∆

)
· vi
]
∣∣m0j

∣∣

+
lDM

2

∮

∂V

d2r εij

[
(vi ×m0i) · u∆ ×

[
dŜ× ẑ

]

+ (vi × ui) ·m0∆
×
[
dŜ× ẑ

]] ∣∣m0j

∣∣

+
Λ

Bs

∫

V

d3r (m0i · ui) (m0i · vi) . (5.17)
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Here, δij is the Kronecker delta, εij the Levi-Civita symbol and summation over
repeated indices i, j = 1, 2 (denoting the two sublattices) is implied1. Again, ui
denotes the (unknown) trial function and vi the corresponding test function for the
sublattice i and we have defined u∆ = u1−u2, v∆ = v1 − v2 and m0∆

= m01 −m02 .
The corresponding code script is shown in listing 5.18.

5.3 Relaxation solver

Here, we list the Python script that describes the relaxation solver. We divide the
representation into two parts: for the ferromagnet and for the antiferromagnet. The
energy contributions are coded in unified form language (UFL).

Ferromagnet

Energy

Here, we list the code used to calculate the energy functional in (5.1).

1 # Create vec to r func t i on space and t e s t / t r i a l f u n c t i o n s .
2 V = VectorFunctionSpace (mesh , ’CG’ , 1)
3 u = Tria lFunct ion (V)
4 v = TestFunction (V)
5 m0 = Function (V)
6 m1 = Function (V)
7 tmp = Function (V)
8 m0 backup = Function (V)
9

10 # Manually ca s t ‘ GenericVector ‘ o b j e c t s i n to ‘ PETScVector ‘ o b j e c t s .
11 m0 vec = m0. vec to r ( )
12 m0 vec = as backend type ( m0 vec )
13 m1 vec = m1. vec to r ( )
14 m1 vec = as backend type ( m1 vec )
15 tmp vec = tmp . vec to r ( )
16 tmp vec = as backend type ( tmp vec )
17

18 # Measures
19 dx = Measure ( ’ c e l l ’ , mesh ) # volume element
20 ds = Measure ( ’ e x t e r i o r f a c e t ’ , mesh ) # s u r f a c e surrounding the volume
21 dP = Measure ( ’ ve r tex ’ , mesh ) # point−wise

Listing 5.1: Definition of functions for the ferromagnet.

1 # Input parameters
2 params [ ’ M sat ’ ] # s a t u r a t i o n magnet izat ion
3 params [ ’ A ex ’ ] # exchange s t i f f n e s s
4 params [ ’ K u1 ’ ] # u n i a x i a l an i so t ropy constant
5 params [ ’ B ext ’ ] # e x t e r n a l magnetic f i e l d s t r ength
6 params [ ’D ’ ] # Dzya lo sh in sk i i−Moriya i n t e r a c t i o n s constant
7 params [ ’ K uni vec ’ ] # u n i a x i a l an i so t ropy d i r e c t i o n
8 params [ ’ B ext vec ’ ] # e x t e r n a l magnetic f i e l d d i r e c t i o n

1For a more compact representation we have included the magnitude of the unit vector
∣∣m0j

∣∣
in the volume terms proportional to lDM.
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9

10 # I n t e r n a l conver s i on o f parameters
11 k vec = Constant ( params [ ’ K uni vec ’ ] )
12 B vec = Constant ( params [ ’ B ext vec ’ ] )
13

14 # Resca l ing o f the mesh
15 mesh sca le = 1 .0 e−9

Listing 5.2: Input variables for the ferromagnet.

1 # Def ine the f e r romagnet i c energy f u n c t i o n a l
2 e x c h u f l = Constant ( params [ ’ A ex ’ ] / ( mesh sca le ∗∗2) ) ∗
3 i nne r ( nabla grad (m1) , nabla grad (m1) )
4

5 a n i u f l = − Constant ( params [ ’ K u1 ’ ] ) ∗ i nne r ( k vec , m1) ∗∗2
6

7 dmi u f l = − Constant ( params [ ’D ’ ] / mesh sca le ) ∗
8 ( inner (m1, zhat ) ∗ div (m1) −
9 i nne r (m1, nabla grad ( inner ( zhat , m1) ) ) )

10

11 e x t u f l = − Constant ( params [ ’ B ext ’ ]∗ params [ ’ M sat ’ ] ) ∗
12 i nne r ( B vec , m1)
13

14 # Add up a l l c o n t r i b u t i o n s
15 t o t a l e n e r g y u f l = e x c h u f l + a n i u f l + dmi u f l + e x t u f l
16

17 # Assemble a l l terms
18 assemble ( e x c h u f l ∗ dx )
19 assemble ( a n i u f l ∗ dx )
20 assemble ( dmi u f l ∗ dx )
21 assemble ( e x t u f l ∗ dx )
22 assemble ( t o t a l e n e r g y u f l ∗ dx )

Listing 5.3: Calculation of the ferromagnetic energy; see equation (5.1).

Weak formulation

Here, we list the code used to define the effective field terms in equation (5.4).

1 # I n t e r n a l conver s i on o f parameters
2 B sat = mu0 ∗ params [ ’ M sat ’ ]
3 l e x s q r = 2 . ∗ params [ ’ A ex ’ ] / (mu0 ∗ params [ ’ M sat ’ ]∗∗2 )
4 B u = 2 . ∗ params [ ’ K u1 ’ ] / params [ ’ M sat ’ ]
5 l DM = 2 . ∗ params [ ’D ’ ] / params [ ’ M sat ’ ] / B sat
6 k vec = Constant ( params [ ’ K uni vec ’ ] )
7 B vec = Constant ( params [ ’ B ext vec ’ ] )
8

9 # Resca l ing o f the mesh
10 mesh sca le = 1 .0 e−9
11 l e x s q r /= ( mesh sca le ∗∗2)
12 l DM /= mesh sca le

Listing 5.4: Rescaled variables for the ferromagnetic effective field.
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1 fm exch u f l = Constant(− l e x s q r ) ∗
2 i nne r ( nabla grad (u) , nabla grad ( v ) ) ∗ dx
3

4 f m a n i u f l = Constant ( B u / B sat ) ∗
5 i nne r ( k vec , u ) ∗ i nne r ( k vec , v ) ∗ dx
6

7 f m e x t u f l = Constant ( params [ ’ B ext ’ ] / B sat ) ∗
8 i nne r ( B vec , v ) ∗ dx
9

10 fm dmi uf l = Constant ( l DM) ∗
11 ( inner (v , zhat ) ∗ div (u) −
12 i nne r (v , nabla grad ( inner (u , zhat ) ) ) ) ∗ dx
13 +
14 Constant ( 0 . 5 ∗ l DM) ∗
15 i nne r (v , c r o s s ( c r o s s ( zhat , nhat ) , u ) ) ∗ ds

Listing 5.5: Weak formulation of the ferromagnetic effective field; see equation (5.4).

Antiferromagnet

Energy

Here, we list the code used to calculate the energy functional in equation (5.8).

1 # Create vec to r func t i on space and t e s t / t r i a l f u n c t i o n s .
2 Q = VectorElement ( ’CG’ , mesh . u f l c e l l ( ) , 1 , 3)
3 V = FunctionSpace (mesh , MixedElement ( [Q, Q] ) )
4 u = Tr ia lFunct ions (V)
5 v = TestFunct ions (V)
6 m0 fu l l = Function (V)
7 m0 backup = Function (V)
8 m1 fu l l = Function (V)
9 tm p fu l l = Function (V)

10

11 # Manually ca s t ‘ GenericVector ‘ o b j e c t s i n to ‘ PETScVector ‘ o b j e c t s .
12 m0 vec = m0 fu l l . vec to r ( )
13 m0 vec = as backend type ( m0 vec )
14 m1 vec = m1 fu l l . vec to r ( )
15 m1 vec = as backend type ( m1 vec )
16 tmp vec = tm p fu l l . vec to r ( )
17 tmp vec = as backend type ( tmp vec )
18

19 # S p l i t the ” f u l l ” t e n s o r i a l v e c t o r s i n to two three−component ve c t o r s .
20 m0 = m0 fu l l . s p l i t ( )
21 m1 = m1 fu l l . s p l i t ( )
22 tmp = t mp fu l l . s p l i t ( )
23

24 # Measures
25 dx = Measure ( ’ c e l l ’ , mesh ) # volume element
26 ds = Measure ( ’ e x t e r i o r f a c e t ’ , mesh ) # s u r f a c e surrounding the volume
27 dP = Measure ( ’ ve r tex ’ , mesh ) # point−wise

Listing 5.6: Definition of functions for the antiferromagnet.

1 # Input parameters
2 params [ ’ Bs ’ ] # s a t u r a t i o n f i e l d
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3 params [ ’ B ex hom ’ ] # homogeneous exchange f i e l d
4 params [ ’ l e x i n h ’ ] # exchange l ength
5 params [ ’ B ani ’ ] # u n i a x i a l an i so t ropy f i e l d
6 params [ ’ B ext ’ ] # e x t e r n a l magnetic f i e l d s t r ength
7 params [ ’B DM hom ’ ] # homogeneous DM i n t e r a c t i o n s f i e l d
8 params [ ’ l DM inh ’ ] # Dzya lo sh in sk i i−Moriya i n t e r a c t i o n s l ength
9 params [ ’ B an i vec ’ ] # u n i a x i a l an i so t ropy d i r e c t i o n

10 params [ ’ B ext vec ’ ] # e x t e r n a l magnetic f i e l d d i r e c t i o n
11

12 # I n t e r n a l conver s i on o f parameters
13 Ms = params [ ’ Bs ’ ] /mu0
14 Aex = ( ( params [ ’ l e x i n h ’ ]∗ mesh sca le ) ∗∗2) ∗ params [ ’ Bs ’ ] ∗ Ms / 2
15 DMI = ( params [ ’ l DM inh ’ ]∗ mesh sca le ) ∗ params [ ’ Bs ’ ] ∗ Ms
16

17 # Resca l ing o f the mesh
18 mesh sca le = 1 .0

Listing 5.7: Input variables for the antiferromagnet.

1 # Def ine the AFM energy f u n c t i o n a l
2 e x c h i n h u f l = Constant (Aex) ∗
3 ( inner ( nabla grad (m1 [ 0 ] ) , nab la grad (m1 [ 0 ] ) ) +
4 i nne r ( nabla grad (m1 [ 1 ] ) , nab la grad (m1 [ 1 ] ) ) )
5

6 exch hom uf l = Constant ( params [ ’ B ex hom ’ ]∗Ms) ∗
7 i nne r (m1 [ 0 ] , m1 [ 1 ] )
8

9 a n i u f l = − Constant ( params [ ’ B ani ’ ]∗Ms/2) ∗
10 ( inner ( Constant ( params [ ’ B an i vec ’ ] ) , m1 [ 0 ] ) ∗∗2 +
11 i nne r ( Constant ( params [ ’ B an i vec ’ ] ) , m1 [ 1 ] ) ∗∗2)
12

13 dmi hom ufl = − Constant ( params [ ’B DM hom ’ ]∗Ms) ∗
14 i nne r ( c r o s s (m1 [ 0 ] , m1 [ 1 ] ) , zhat )
15

16 d m i i n h u f l = − Constant (DMI/4) ∗
17 ( inner (m1 [ 0 ] − m1[ 1 ] , zhat ) ∗ div (m1 [ 0 ] − m1 [ 1 ] ) −
18 i nne r (m1 [ 0 ] − m1[ 1 ] , nab la grad ( inner ( zhat , m1 [ 0 ] − m1 [ 1 ] ) ) ) )
19

20 e x t u f l = − Constant ( params [ ’ B ext ’ ]∗Ms) ∗
21 ( inner ( Constant ( params [ ’ B ext vec ’ ] ) , m1 [ 0 ] ) +
22 i nne r ( Constant ( params [ ’ B ext vec ’ ] ) , m1 [ 1 ] ) )
23

24 # Add up a l l c o n t r i b u t i o n s
25 t o t a l e n e r g y u f l = exch hom uf l + e x c h i n h u f l + a n i u f l +
26 dmi hom ufl + d m i i n h u f l + e x t u f l
27

28 # Assemble a l l terms
29 assemble ( e x c h i n h u f l ∗ dx )
30 assemble ( exch hom uf l ∗ dx )
31 assemble ( a n i u f l ∗ dx )
32 assemble ( dmi hom ufl ∗ dx )
33 assemble ( d m i i n h u f l ∗ dx )
34 assemble ( e x t u f l ∗ dx )
35 assemble ( t o t a l e n e r g y u f l ∗ dx )

Listing 5.8: Calculation of the antiferromagnetic energy; see equation (5.8).
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Weak formulation

Here, we list the code used to define the effective field terms in equations (5.13).

1 # Def ine a d d i t i o n a l v e c t o r s .
2 zhat = Constant ( ( 0 . , 0 . , 1 . ) )
3 nhat = FacetNormal ( mesh )
4

5 # Resca l ing o f the mesh
6 mesh sca le = 1 .0 e−9
7 l e x i n h /= mesh sca le
8 l DM inh /= mesh sca le

Listing 5.9: Variables for the antiferromagnetic effective field.

1 a f m e x c h i n h u f l = Constant(−params [ ’ l e x i n h ’ ]∗∗2 ) ∗
2 ( inner ( nabla grad (u [ 0 ] ) , nabla grad ( v [ 0 ] ) ) +
3 i nne r ( nabla grad (u [ 1 ] ) , nabla grad ( v [ 1 ] ) ) ) ∗ dx
4

5 afm exch hom ufl = Constant(−params [ ’ B ex hom ’ ] / params [ ’ Bs ’ ] ) ∗
6 ( inner (u [ 0 ] , v [ 1 ] ) + inner (u [ 1 ] , v [ 0 ] ) ) ∗ dx
7

8 a f m a n i u f l = Constant ( params [ ’ B ani ’ ] / params [ ’ Bs ’ ] ) ∗
9 ( inner ( k vec , u [ 0 ] ) ∗ i nne r ( k vec , v [ 0 ] ) +

10 i nne r ( k vec , u [ 1 ] ) ∗ i nne r ( k vec , v [ 1 ] ) ) ∗ dx
11

12 afm dmi hom ufl = Constant(−params [ ’B DM hom ’ ] / params [ ’ Bs ’ ] ) ∗
13 ( inner ( v [ 0 ] , c r o s s ( zhat , u [ 1 ] ) ) −
14 i nne r ( v [ 1 ] , c r o s s ( zhat , u [ 0 ] ) ) ) ∗ dx
15

16 a f m e x t u f l = Constant ( params [ ’ B ext ’ ] / params [ ’ Bs ’ ] ) ∗
17 ( inner ( Constant ( params [ ’ B ext vec ’ ] ) , v [ 0 ] ) +
18 i nne r ( Constant ( params [ ’ B ext vec ’ ] ) , v [ 1 ] ) ) ∗ dx
19

20 a fm dmi inh u f l = Constant ( params [ ’ l DM inh ’ ] ) ∗
21 ( inner ( v [ 0 ] − v [ 1 ] , zhat ∗ div ( 0 . 5 ∗ (u [ 0 ] − u [ 1 ] ) ) ) −
22 i nne r ( v [ 0 ] − v [ 1 ] ,
23 nabla grad ( inner ( zhat , 0 . 5 ∗ (u [ 0 ] − u [ 1 ] ) ) ) ) ) ∗ dx
24 +
25 Constant ( 0 . 5 ∗ params [ ’ l DM inh ’ ] ) ∗
26 i nne r ( v [ 0 ] − v [ 1 ] ,
27 c r o s s ( c r o s s ( zhat , nhat ) , 0 . 5 ∗ (u [ 0 ] − u [ 1 ] ) ) ) ∗ ds

Listing 5.10: Weak formulation of the antiferromagnetic effective fields; see equations
(5.13)

Solver Object

Here, we list the code that shows how the weak formulations are assembled into
matrices for the ferromagnet:

1 # Def ine the workspace PETSc vec to r / matrix pa i r .
2 A = PETScMatrix ( )
3 b = PETScVector ( )
4
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5 # Combine the weak forms depending on the ( time ) s tep s i z e ‘ h0 ‘ .
6 a u f l = Constant (1/ B s a t r e f ) ∗ i nne r (u , v ) ∗ dx
7 − Constant ( h0 ) ∗ ( fm exch u f l + f m a n i u f l + fm dmi uf l )
8

9 L u f l = Constant (1/ B s a t r e f ) ∗ i nne r (m0, v ) ∗ dx
10 + Constant ( h0 ) ∗ f m e x t u f l
11

12 assemble ( a u f l , t en so r=A, keep d iagona l=True )
13 assemble ( L uf l , t en so r=b)

Listing 5.11: Assembling the weak formulations into matrices for the ferromagnet.

and for the antiferromagnet:

1 # Def ine the workspace PETSc vec to r / matrix pa i r .
2 A = PETScMatrix ( )
3 b = PETScVector ( )
4

5 # Combine the weak forms depending on the ( time ) s tep s i z e ‘ h0 ‘ .
6 a u f l = Constant (1/ params [ ’ Bs ’ ] ) ∗
7 ( inner (u [ 0 ] , v [ 0 ] ) + inner (u [ 1 ] , v [ 1 ] ) ) ∗ dx
8 − Constant ( h0 ) ∗
9 ( afm exch hom ufl − a f m e x c h i n h u f l − a f m a n i u f l

10 − afm dmi hom ufl − a fm dmi inh u f l )
11

12 L u f l = Constant (1/ params [ ’ Bs ’ ] ) ∗
13 ( inner (m0 [ 0 ] , v [ 0 ] ) + inner (m0 [ 1 ] , v [ 1 ] ) ) ∗ dx
14 + Constant ( h0 ) ∗ a f m e x t u f l
15

16

17 assemble ( a u f l , t en so r=A, keep d iagona l=True )
18 assemble ( L uf l , t en so r=b)

Listing 5.12: Assembling the weak formulations into matrices for the
antiferromagnet.

The following script describes the solution of the resulting linear algebra problem
by standard Krylov methods (see section 2.3.1)

1 # Create a new PETSc Krylov−space l i n e a r s o l v e r .
2 s o l v e r = PETSc .KSP( )
3 s o l v e r . c r e a t e ( )
4 s o l v e r . setNormType ( s o l v e r . NormType .DEFAULT)
5 s o l v e r . s e tTo l e rance s ( r t o l =1.0e−10,
6 a t o l =1.0e−50,
7 d i v t o l =1.0e5 ,
8 max it =100000)
9 s o l v e r . setType ( s o l v e r . Type .GCR)

10 s o l v e r . s e tOperator s (A. mat ( ) , A. mat ( ) )
11 s o l v e r . s e t In i t i a lGue s sNonze ro ( True )
12 s o l v e r . setUseFischerGuess (1 , 50)
13

14 # Get and modify the ” p r e c o n d i t i o n e r ” ( ’PC ’ ) ob j e c t
15 pc = s o l v e r . getPC ( )
16 pc . setType ( pc . Type .HYPRE)
17

18 # Fina l ly , apply any user−de f ined opt ions .
19 s o l v e r . setFromOptions ( )
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20 # Solve the l i n e a r system f o r the unknown magnetic f i e l d . Store the
r e s u l t in ‘tmp ‘ because i t ’ s not normal ized yet .

21 s o l v e r . s o l v e (b . vec ( ) , tmp vec . vec ( ) )

Listing 5.13: Relaxation solver object.

The final step within the projection method is the normalization of the magnetiza-
tion vector at iteration step

1 # Perform a po intwi se r eno rma l i z a t i on o f the f e r romagnet i c ‘ tmp ‘ in to
the un i t vec to r f i e l d ‘m1‘

2 expr = c o n d i t i o n a l ( eq ( inner (tmp , tmp) , 0 . 0 ) ,
3 Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,
4 tmp / s q r t ( inner (tmp , tmp) ) )
5

6 assemble ( inne r ( expr , v ) ∗ dP , t enso r=m1 vec )
7

8 # Perform a po intwi se r eno rma l i z a t i on o f the a n t i f e r r o m a g n e t i c ‘ tmp ‘
in to the un i t vec to r f i e l d ‘m1‘

9 expr1 = c o n d i t i o n a l ( eq ( inner (tmp [ 0 ] , tmp [ 0 ] ) , 0 . 0 ) ,
10 Constant ( ( 0 . , 0 . , 0 . ) ) , tmp [ 0 ] / s q r t ( inner (tmp [ 0 ] , tmp [ 0 ] ) ) )
11 expr2 = c o n d i t i o n a l ( eq ( inner (tmp [ 1 ] , tmp [ 1 ] ) , 0 . 0 ) ,
12 Constant ( ( 0 . , 0 . , 0 . ) ) , tmp [ 1 ] / s q r t ( inner (tmp [ 1 ] , tmp [ 1 ] ) ) )
13

14 assemble ( ( inne r ( expr1 , v [ 0 ] ) + inner ( expr2 , v [ 1 ] ) ) ∗ dP ,
15 t enso r=m1 vec )

Listing 5.14: Renormalization of the magnetization vectors.

5.4 Eigenspectrum solver

Ferromagnet

The following scripts implement equation (5.6).

1 # Create vec to r func t i on space and t e s t / t r i a l f u n c t i o n s .
2 V = VectorFunctionSpace (mesh , ’CG’ , 1)
3 u = Tria lFunct ion (V)
4 v = TestFunction (V)
5 m0 = Function (V)
6

7 # Def ine a d d i t i o n a l v e c t o r s .
8 zhat = Constant ( ( 0 . , 0 . , 1 . ) )
9 nhat = FacetNormal ( mesh )

10

11 # Set up the weak formulat ion o f the r e l a x a t i o n problem .
12 dx = Measure ( ’ c e l l ’ , mesh )
13 ds = Measure ( ’ e x t e r i o r f a c e t ’ , mesh )
14 dP = Measure ( ’ ve r tex ’ , mesh )

Listing 5.15: Definition of functions for the ferromagnetic spectrum solver.

1 # Weak formulat ion o f the l i n e a r i z e d Landau−L i f s h i t z−Gi lbe r t equat ion
2 fm exch u f l = Constant(− l e x s q r ) ∗
3 ( inner ( nabla grad (u) , nabla grad ( c r o s s (v , m0) ) ) +
4 i nne r ( nabla grad (m0) , nabla grad ( c r o s s (v , u ) ) ) ) ∗ dx

115



5.4. Eigenspectrum solver CHAPTER 5

5 f m a n i u f l = Constant ( B u1 / B s a t r e f ) ∗
6 ( inner ( k vec , u ) ∗ i nne r (v , c r o s s (m0, k vec ) ) +
7 i nne r ( k vec , m0) ∗ i nne r (v , c r o s s (u , k vec ) ) ) ∗ dx
8

9 f m e x t u f l = Constant ( params [ ’ B ext ’ ] / B s a t r e f ) ∗
10 i nne r (v , c r o s s (u , B vec ) ) ∗ dx
11

12 fm dmi uf l = Constant(−l DM) ∗
13 ( div (u) ∗ i nne r (v , c r o s s (m0, zhat ) ) −
14 i nne r (v , c r o s s (m0, nabla grad ( inner (u , zhat ) ) ) ) +
15 div (m0) ∗ i nne r (v , c r o s s (u , zhat ) ) −
16 i nne r (v , c r o s s (u , nabla grad ( inner (m0, zhat ) ) ) ) ) ∗ dx
17 +
18 Constant (−0.5 ∗ l DM) ∗
19 ( inner (v , c r o s s (m0, c r o s s ( c r o s s ( zhat , nhat ) , u ) ) ) +
20

21 l a g r a n g e u f l = Constant ( params [ ’ lambda ’ ] ) ∗
22 i nne r (v , m0) ∗ i nne r (m0, u) ∗ dx

Listing 5.16: Weak formulation of the linearized Landau-Lifshitz-Gilbert equation
for the ferromagnet; see equation (5.6)

Antiferromagnet

The following scripts implement equations (5.17).

1 # Create vec to r func t i on space and t e s t / t r i a l f u n c t i o n s .
2 Q = VectorElement ( ’CG’ , mesh . u f l c e l l ( ) , 1 , 3)
3 V = FunctionSpace (mesh , MixedElement ( [Q, Q] ) )
4 u = Tr ia lFunct ions (V)
5 v = TestFunct ions (V)
6 m0 fu l l = Function (V)
7

8 # Def ine a d d i t i o n a l v e c t o r s .
9 zhat = Constant ( ( 0 . , 0 . , 1 . ) )

10 nhat = FacetNormal ( mesh )
11 K vec = Constant ( params [ ’ B an i vec ’ ] )
12 B vec = Constant ( params [ ’ B ext vec ’ ] )
13

14 # S p l i t the ” f u l l ” t e n s o r i a l v e c t o r s i n to two three−component
15 # ve c to r s .
16 m0 = m0 fu l l . s p l i t ( )
17

18 # Set up the weak formulat ion o f the r e l a x a t i o n problem .
19 dx = Measure ( ’ c e l l ’ , mesh )
20 ds = Measure ( ’ e x t e r i o r f a c e t ’ , mesh )
21 dP = Measure ( ’ ve r tex ’ , mesh )

Listing 5.17: Definition of functions for the antiferromagnetic spectrum solver.

1 # Weak formulat ion o f the l i n e a r i z e d Landau−L i f s h i t z−Gi lbe r t equat ion
2 afm exch hom ufl = Constant ( params [ ’ B ex hom ’ ] / params [ ’ Bs ’ ] ) ∗ \
3 ( inner ( v [ 0 ] , c r o s s (u [ 0 ] , m0 [ 1 ] ) ) + \
4 i nne r ( v [ 0 ] , c r o s s (m0 [ 0 ] , u [ 1 ] ) ) + \
5 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , m0 [ 0 ] ) ) + \
6 i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , u [ 0 ] ) ) ) ∗ dx
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7 a f m e x c h i n h u f l = Constant ( params [ ’ l e x i n h ’ ]∗∗2 ) ∗ \
8 ( inner ( nabla grad (u [ 0 ] ) , nabla grad ( c r o s s ( v [ 0 ] , m0 [ 0 ] ) ) ) + \
9 i nne r ( nabla grad (m0 [ 0 ] ) , nab la grad ( c r o s s ( v [ 0 ] , u [ 0 ] ) ) ) + \

10 i nne r ( nabla grad (u [ 1 ] ) , nabla grad ( c r o s s ( v [ 1 ] , m0 [ 1 ] ) ) ) + \
11 i nne r ( nabla grad (m0 [ 1 ] ) , nab la grad ( c r o s s ( v [ 1 ] , u [ 1 ] ) ) ) ) ∗ dx
12

13 a f m a n i u f l = Constant(−params [ ’ B ani ’ ] / params [ ’ Bs ’ ] ) ∗ \
14 ( inner ( K vec , u [ 0 ] ) ∗ i nne r ( v [ 0 ] , c r o s s (m0 [ 0 ] , K vec ) ) + \
15 i nne r ( K vec , m0 [ 0 ] ) ∗ i nne r ( v [ 0 ] , c r o s s (u [ 0 ] , K vec ) ) + \
16 i nne r ( K vec , u [ 1 ] ) ∗ i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , K vec ) ) + \
17 i nne r ( K vec , m0 [ 1 ] ) ∗ i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , K vec ) ) ) ∗ dx
18

19 a f m e x t u f l = Constant(−params [ ’ B ext ’ ] / params [ ’ Bs ’ ] ) ∗ \
20 ( inner ( v [ 0 ] , c r o s s (u [ 0 ] , B vec ) ) + \
21 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , B vec ) ) ) ∗ dx
22

23 afm dmi hom ufl = Constant(−params [ ’B DM hom ’ ] / params [ ’ Bs ’ ] ) ∗ \
24 ( inner ( v [ 0 ] , c r o s s (u [ 0 ] , c r o s s (m0 [ 1 ] , zhat ) ) ) + \
25 i nne r ( v [ 0 ] , c r o s s (m0 [ 0 ] , c r o s s (u [ 1 ] , zhat ) ) ) − \
26 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , c r o s s (m0 [ 0 ] , zhat ) ) ) − \
27 i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , c r o s s (u [ 0 ] , zhat ) ) ) ) ∗ dx
28

29

30 a fm dmi inh u f l = Constant(−params [ ’ l DM inh ’ ] ) ∗ \
31 ( inner ( v [ 0 ] , c r o s s (u [ 0 ] , zhat ) ) ∗ div ( n 0 ) −
32 i nne r ( v [ 0 ] , c r o s s (u [ 0 ] , nabla grad ( inner ( n 0 , zhat ) ) ) ) + \
33 i nne r ( v [ 0 ] , c r o s s (m0 [ 0 ] , zhat ) ) ∗ div ( n 1 ) −
34 i nne r ( v [ 0 ] , c r o s s (m0 [ 0 ] , nabla grad ( inner ( n 1 ) , zhat ) ) ) ) − \
35 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , zhat ) ) ∗ div ( n 0 ) +
36 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , nabla grad ( inner ( n 0 , zhat ) ) ) ) −
37 i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , zhat ) ) ∗ div ( n 1 ) +
38 i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , nabla grad ( inner ( n 1 , zhat ) ) ) ) ) ∗ dx
39 +
40 Constant (−0.5 ∗ params [ ’ l DM inh ’ ] ) ∗
41 ( inner ( v [ 0 ] , c r o s s (m0 [ 0 ] , c r o s s ( c r o s s ( zhat , nhat ) , n 1 ) ) ) +
42 i nne r ( v [ 0 ] , c r o s s (u [ 0 ] , c r o s s ( c r o s s ( zhat , nhat ) , n 0 ) ) ) −
43 i nne r ( v [ 1 ] , c r o s s (m0 [ 1 ] , c r o s s ( c r o s s ( zhat , nhat ) , n 1 ) ) ) −
44 i nne r ( v [ 1 ] , c r o s s (u [ 1 ] , c r o s s ( c r o s s ( zhat , nhat ) , n 0 ) ) ) ) ∗ ds
45

46 a f m l a g r a n g e u f l = Constant ( params [ ’ lambda ’ ] ) ∗
47 ( inner ( v [ 0 ] , i nne r (m0 [ 0 ] , u [ 0 ] ) ∗ m0 [ 0 ] ) +
48 i nne r ( v [ 1 ] , i nne r (m0 [ 1 ] , u [ 1 ] ) ∗ m0 [ 1 ] ) ) ∗ dx
49

50 # Introduce f o r b e t t e r r e a d a b i l i t y
51 n 0 = 0 .5 ∗ (m0 [ 0 ] − m0 [ 1 ] )
52 n 1 = 0 .5 ∗ (u [ 0 ] − u [ 1 ] )

Listing 5.18: Weak formulation of the linearized Landau-Lifshitz-Gilbert equations
for the antiferromagnet; see eqs. (5.17).

Eigenspectrum Solver Object

1 # Assemble the LHS b i l i n e a r form a (u , v ) in to a PETSc matrix .
2 A = PETScMatrix ( )
3 assemble ( a u f l , t en so r=A, keep d iagona l=True )
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4 # Assemble the mass matrix .
5 M = PETScMatrix ( )
6 assemble ( Constant ( 1 . 0 / B s a t r e f ) ∗ i nne r (u , v ) ∗ dx , t enso r=M,

keep d iagona l=True )

Listing 5.19: Assemble the matrices for the ferromagnet.

1 # Assemble the LHS b i l i n e a r form a (u , v ) in to a PETSc matrix .
2 A = PETScMatrix ( )
3 assemble ( a u f l , t en so r=A, keep d iagona l=True )
4

5 # Assemble the mass matrix .
6 M = PETScMatrix ( )
7 assemble ( Constant ( 1 . 0 / params [ ’ Bs ’ ] ) ∗
8 ( inner (u [ 0 ] , v [ 0 ] ) + inner (u [ 1 ] , v [ 1 ] ) ) ∗ dx ,
9 t enso r=M, keep d iagona l=True )

Listing 5.20: Assemble the matrices for the antiferromagnet.

1 # Create a SLEPc ” Eigenvalue Problem So lve r ” ( ‘EPS ‘ ) ob j e c t and
2 # adjus t i t s parameters .
3 eps = SLEPc .EPS( )
4 eps . c r e a t e ( )
5 eps . setFromOptions ( )
6 eps . setType ( eps . Type .KRYLOVSCHUR)
7 eps . setProblemType ( eps . ProblemType .GNHEP)
8 eps . setWhichEigenpairs ( eps . Which .TARGET MAGNITUDE)
9 eps . se tTarget ( 0 . 1 )

10 eps . s e tTo l e rance s ( t o l =1.0e−8, max it =500)
11 eps . setDimens ions ( nev=10)
12 eps . s e tOperator s (A. mat ( ) , M. mat ( ) )
13

14 # Get and modify the ” b a s i s vec to r ” ( ‘BV‘ ) ob j e c t a s s o c i a t e d to the
15 # e i g e n s o l v e r ob j e c t .
16 bv = eps . getBV ( )
17 bv . s e tOr thogona l i z a t i on ( r e f i n e=bv . OrthogRefineType .ALWAYS)
18

19 # Get and modify the ” s p e c t r a l t rans fo rmat ion ” ( ‘ST ‘ ) ob j e c t
20 # a s s o c i a t e d to the e i g e n s o l v e r ob j e c t .
21 s t = eps . getST ( )
22 s t . setType ( s t . Type .SINVERT)
23

24 # Get and modify the ”Krylov subspace problem” ( ‘KSP‘ ) ob j e c t
25 # a s s o c i a t e d with the s p e c t r a l t rans fo rmat ion .
26 ksp = s t . getKSP ( )
27 ksp . setType ( ksp . Type .GCR
28 ksp . s e tTo l e rance s ( r t o l =1.0e−8)
29

30 # Get and modify the ” p r e c o n d i t i o n e r ” ( ‘PC‘ ) ob j e c t a s s o c i a t e d with
31 # the KSP ob j e c t .
32 pc = ksp . getPC ( )
33 pc . setType ( pc . Type .LU)
34 pc . se tFactorSo lverPackage ( ’mumps ’ )
35 pc . se tFactorOrder ing ( ord type=’ rcm ’ )
36 pc . s e tFac to rLeve l s (1 )
37
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38 # Run the EPS s o l v e r .
39 eps . s o l v e ( )

Listing 5.21: Eigenspectrum solver object.

5.5 Mesh

Here, we list the code used to generate the mesh of a nanodisk with radius Rdisk =
50 nm, thickness t = 1.0 nm and a characteristic length lchar = 1.0 nm with Gmsh [91].
We define four points (p1-p4) around the origin (p0) of a circle and connect them
via circular segments (l0-l3). Finally, we extrude the obtained circular surface in
the ẑ-direction to obtain the nanodisk of the desired thickness:

1 General . ExpertMode = 1 ;
2 Mesh . Algorithm = 6 ;
3 Mesh . Algorithm3D = 4 ;
4 Mesh . Format = 1 ;
5

6 he ight = 1 . 0 ;
7 rad iu s = 5 0 . 0 ;
8 l c ha r = 1 . 0 ;
9

10 p0 = newp ; Point ( p0 ) = {{ 0 . , 0 . , −0.5 ∗ height , l c ha r }} ;
11 p1 = newp ; Point ( p1 ) = {{ 0 . , rad ius , −0.5 ∗ height , l c ha r }} ;
12 p2 = newp ; Point ( p2 ) = {{ −radius , 0 . , −0.5 ∗ height , l c ha r }} ;
13 p3 = newp ; Point ( p3 ) = {{ 0 . , −radius , −0.5 ∗ height , l c ha r }} ;
14 p4 = newp ; Point ( p4 ) = {{ radius , 0 . , −0.5 ∗ height , l c ha r }} ;
15

16 l 0 = newl ; C i r c l e ( l 0 ) = {{ p1 , p0 , p2 }} ;
17 l 1 = newl ; C i r c l e ( l 1 ) = {{ p2 , p0 , p3 }} ;
18 l 2 = newl ; C i r c l e ( l 2 ) = {{ p3 , p0 , p4 }} ;
19 l 3 = newl ; C i r c l e ( l 3 ) = {{ p4 , p0 , p1 }} ;
20

21 l l 0 = newl l ; Line Loop ( l l 0 ) = {{ l0 , l1 , l2 , l 3 }} ;
22 s0 = news ; Plane Sur face ( s0 ) = {{ l l 0 }} ;
23

24 out [ ] = Extrude {{ 0 , 0 , he ight }} {{ Sur face {{ s0 }} ; }} ;
25 s1 = out [ 0 ] ;
26 v0 = out [ 1 ] ;
27

28 Phys i ca l Sur face (2001) = {{ s0 }} ;
29 Phys i ca l Sur face (2002) = {{ s1 }} ;
30 Phys i ca l Volume (3001) = {{ v0 }} ;

Listing 5.22: Mesh generation with the open-source software Gmsh.
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Chapter 6

Conclusions

In this work, we investigated the static and dynamic properties of ferromagnetic and
antiferromagnetic skyrmions stabilized by interfacial Dzyaloshinskii-Moriya interac-
tions in thin films. We performed both analytical and numerical calculations based
on the phenomenological models presented in chapter 3.

The static properties of ferromagnetic skyrmions have been widely studied, both
theoretically and experimentally [10, 12, 13, 20, 24]. In contrast, antiferromagnetic
skyrmions have not been experimentally observed yet and there are still many open
questions. Given the importance of thin films for technological applications, we
discussed the effect that finite-size samples have on antiferromagnetic skyrmions in
chapter 3, following the approach in reference [26]. Importantly, we derived the
boundary condition, induced by the Dzyaloshinskii-Moriya interactions, that deter-
mines the profile of an antiferromagnetic skyrmion confined in a circular nanodisk.

We extended the phenomenological theory describing uniaxial antiferromagnets
with interfacial Dzyaloshinskii-Moriya interactions to incorporate the current-
induced spin-orbit torques, together with the already studied spin-transfer torques.
We used this theory to analyze the translational skyrmion motion in the presence
of a time-independent external magnetic field and a DC electric current analytically
in section 4.1. We find that the magnetic field merely modifies the shape of the
antiferromagnetic skyrmion and does not contribute towards the skyrmion motion.
Further, our results show that the skyrmion moves in a straight line, along the
direction of the applied electric current. This agrees with the numerical results re-
ported in references [52, 53], which were obtained for skyrmions in the absence of a
magnetic field. Depending on the choice of parameters, we find skyrmion velocities
that are in the range of 1 − 1000 m s−1, in agreement with the numerical results of
references [52, 53].

Given the importance of the skyrmion excitation modes in ferromagnets [20],
we developed a micromagnetic code to calculate the eigenspectrum of a confined
antiferromagnetic skyrmion. We verified the code in section 4.2 on the ferromagnetic
skyrmion: we observe gyrotropic, breathing and deformed-core modes in the low-
frequency excitation spectrum, in good qualitative agreement with existing results
[34, 35, 36, 119]. Importantly, we also find a good quantitative agreement for the
frequency of the ferromagnetic skyrmion breathing mode obtained in reference [36],
for the same model as ours, but with a different numerical method.
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We applied the micromagnetic code to a two-sublattice antiferromagnetic thin
film and obtained numerically a skyrmion groundstate that is consistent with the
theoretical predictions, as described in chapter 3 and in reference [13].

The excitation modes of the antiferromagnetic skyrmions are found to be of the
same type as for the ferromagnet: “translational,” breathing and deformed-core
modes. The differences can be traced back to the unique properties of antiferromag-
nets:

(i) due to the exchange enhancement [44, 109], the frequencies of the skyrmion
modes in antiferromagnets are at least an order of magnitude higher than in
ferromagnets;

(ii) we find two pairs of each type of mode in the low-frequency spectrum in the
antiferromagnet, which is a consequence of the doubled amount of degrees of
freedom due to the presence of two magnetic sublattices;

(iii) the antiferromagnetic modes do not have a rotational nature at zero magnetic
field, in contrast to the ferromagnet. There is no preferred sense of rotation
in the antiferromagnet at zero field; however, this symmetry is lifted when the
magnetic field is turned on and the skyrmion excitations begin to rotate.

Importantly, the low-frequency spectrum of the antiferromagnetic skyrmion shows
characteristic features that are absent in the uniform antiferromagnetic state, which
could prove useful in the attempts to identify antiferromagnetic skyrmions experi-
mentally.

Finally, our method to calculate the skyrmion excitation modes numerically gives
us access to the full eigenmode spectrum. A direction for future research is to
identify a way to experimentally excite the obtained eigenmodes. Numerically, this
could be achieved by introducing an external excitation into the model (such as a
time-dependent magnetic field) and calculating the power spectral density of the
excitations, as proposed in references [36, 125] for ferromagnets. This approach
will be coupled with on-going research into the possible ways to experimentally
identify antiferromagnetic textures: e.g., employing the dynamical magnetization
that an antiferromagnetic texture develops when it is set in motion, or the recently
discovered Néel spin-orbit torques [48, 49] that can electrically manipulate the Néel
order parameter.
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Appendix A

Details of the numerical
formulation

A.1 Weak formulation of the eigenvalue equation

Here, we construct the weak formulation of linearized Landau-Lifshitz-Gilbert equa-
tion (2.39) of the ferromagnet. Equation (2.39) reads

iωδm = −γm0 ×Beff[δm]− γδm×Beff[m0] + Λ (m0 · δm) m0, (A.1)

where the ferromagnetic effective field is specified in equation (3.8)

Beff[m] =
2Aex

Ms

∇2m + 2Ku(m · ẑ)ẑ + 2Bẑ +
2D

Ms

[
ẑ(∇ ·m)−∇(ẑ ·m)

]
. (A.2)

Following the finite-element method nomenclature (see section 2.3.1), we denote the
excitation vector δm as the trial function u. To construct the weak formulation of
equation (A.1), we multiply it by a test function v and integrate over the entire
volume V . The left hand side of equation (A.1) becomes

iω

∫

V

d3r (u · v) , (A.3)

the first term of the right hand side

−γ
∫

V

d3r

{
2Aex

Ms

(
m0 ×∇2u

)
· v + 2Ku (u · ẑ) (m0 × ẑ) · v

+
2D

Ms

[
(∇ · u) (m0 × ẑ) · v −m0 ×∇ (ẑ · u) · v

]}
, (A.4)

the second term on the right hand side

−γ
∫

V

d3r

{
2Aex

Ms

(
u×∇2m0

)
· v + 2Ku (m0 · ẑ) (u× ẑ) · v + 2B (u× ẑ) · v

+
2D

Ms

[
(∇ ·m0) (u× ẑ) · v − u×∇ (ẑ ·m0) · v

]}
, (A.5)
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and the Lagrange multiplier term

Λ

∫

V

d3r (m0 · u) (m0 · v) . (A.6)

Next, we integrate by parts the exchange interaction terms in equations (A.4 -A.5)

∫

V

d3r (v ×m0) · ∇2u =

∮

∂V

d2r (v ×m0) · ∂u

∂S
−
∫

V

d3r∇
(
v ×m0

)
· ∇u,

∫

V

d3r (v × u) · ∇2m0 =

∮

∂V

d2r (v × u) · ∂m0

∂S
−
∫

V

d3r∇
(
v × u

)
· ∇m0.

(A.7)

Here, through the surface terms, the boundary conditions for ∂u/∂S and ∂m0/∂S
naturally enter the variational problem. Equation (A.27) describes the modified
boundary conditions for the ferromagnetic magnetization vector m in the presence
of Dzyaloshinskii-Moriya interactions (see Appendix A.2 for details). To obtain the
expressions for the deviation u (δm) we plug equation (2.35) in equation (A.27)

∂m0

∂S
+
∂u

∂S
=

D

2Aex

{
m0 ×

[
dŜ× ẑ

]
+ u×

[
dŜ× ẑ

]}
. (A.8)

We know already that the equilibrium magnetization m0 satisfies equation (A.27);
it follows that

∂u

∂S
=

D

2Aex

u×
[
dŜ× ẑ

]
. (A.9)

Consequently, the surface terms in equations (A.4 -A.5) and (A.7) become

2Aex

Ms

∮

∂V

d2r

[
(v ×m0) · ∂u

∂S
+ (v × u) · ∂m0

∂S

]

=
D

Ms

∮

∂V

d2r

[
(v ×m0) · u×

[
dŜ× ẑ

]
+ (v × u) ·m0 ×

[
dŜ× ẑ

]]
. (A.10)

Next, we bring together all contributions in equations (A.3 -A.6) and divide the
resulting equation by the saturation field Bs = µ0Ms, to obtain a dimensionless
differential equation (continues on the next page)

− iω

γBs

∫

V

d3r (u · v) =− 2Aex

MsBs

∫

V

d3r

[
∇
(
v ×m0

)
· ∇u +∇

(
v × u

)
· ∇m0

]

+
2Ku

Bs

∫

V

d3r

[
(u · ẑ) (m0 × ẑ) · v + (m0 · ẑ) (u× ẑ) · v

]

+
2B

Bs

∫

V

d3r (u× ẑ) · v

+
2D

MsBs

∫

V

d3r

[
(∇ · u) (m0 × ẑ) · v −m0 ×∇ (ẑ · u) · v
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+ (∇ ·m0) (u× ẑ) · v − u×∇ (ẑ ·m0) · v
]

+
D

MsBs

∮

∂V

d2r

[
(v ×m0) · u×

[
dŜ× ẑ

]

+ (v × u) ·m0 ×
[
dŜ× ẑ

]]

+
Λ

Bs

∫

V

d3r (m0 · u) (m0 · v) . (A.11)

We can write equation (A.11) in matrix form as

−iω
γ

Mũ = Aũ, (A.12)

and treat it as a generalized eigenvalue problem. Here, Aũ represent the entire right
hand side of equation (A.11) and Mũ = (1/Bs)

∫
V
d3r(u · v).

A.2 Boundary conditions in the presence of

Dzyaloshinskii-Moriya interactions

Rohart et al. [26] showed that when Dzyaloshinskii-Moriya interactions are present
in ferromagnetic nanodisks nontrivial natural boundary conditions arise and have
to be taken into account for a correct description of the magnetic texture. Here,
using a variational principle, we rederive the boundary condition for ferromagnets
and extend the approach to derive the corresponding boundary condition in antifer-
romagnets.

A.2.1 Ferromagnets

The ferromagnetic energy functional (3.7) considered in this work incorporates ex-
change interactions, uniaxial anisotropy, external magnetic field and the interfacial
Dzyaloshinskii-Moriya interactions

FFM[m] = Fexch[m] + Fani[m] + Fext[m] + FDM[m], (A.13)

where m is the unit magnetization vector. Within the variational principle, the
equilibrium magnetization structure is found from the condition

δFFM

δm
= 0, (A.14)

where δ denotes functional differentiation [128]. Due to the constraint |m| = 1, the
possible variations δm of the magnetization vector need always be orthogonal to m,
so that δm ·m = 0. This can be incorporated by introducing arbitrary infinitesimal
rotation vector δω such that

δm = δω ×m. (A.15)
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Next, we calculate the functional derivative in equation (A.14) using the defini-
tion [128]

δFFM

δm
= FFM[m + δm]− FFM[m], (A.16)

for each term in equation (A.13) separately. Up to leading order in δm we get for
the exchange term

δFexch

δm
= Fexch[m + δm]− Fexch[m]

= 2Aex

∫

V

d3r (∇m) · (∇δm)

= −2Aex

∫

V

d3r
(
∇2m

)
· δm + 2Aex

∮

∂V

d2r
∂m

∂S
· δm, (A.17)

where we have integrated by parts and made use of the divergence theorem. Here,
∂m/∂S represents the derivative in the direction normal to the surrounding surface
∂V . We plug in the definition of δm from equation (A.15) to obtain

δFexch

δm
= −2Aex

∫

V

d3r
(
m×∇2m

)
· δω + 2Aex

∮

∂V

d2r

(
m× ∂m

∂S

)
· δω. (A.18)

Similarly, we find for the anisotropy and external field components

δFani

δm
= −2KuMs

∫

V

d3r(m · ẑ)(m× ẑ) · δω,
δFext

δm
= −BMs

∫

V

d3r(m× ẑ) · δω.
(A.19)

For the Dzyaloshinskii-Moriya term δFDM/δm we need to integrate by parts again

δFDM

δm
= −D

∫

V

d3r

[
(δm · ẑ)(∇ ·m)− δm · ∇(m · ẑ)

+ (m · ẑ)(∇ · δm)−m · ∇(δm · ẑ)

]

= −2D

∫

V

d3r

[
(δm · ẑ)(∇ ·m)− δm · ∇(m · ẑ)

]

−D
∮

∂V

d2r

[
(m · ẑ)(dŜ · δm)− (m · dŜ)(δm · ẑ)

]
, (A.20)

to obtain

δFDM

δm
= −2D

∫

V

d3r

[
(∇ ·m)(m× ẑ)−m×∇(m · ẑ)

]
· δω

−D
∮

∂V

d2r

[
(m · ẑ)(m× dŜ)− (m · dŜ)(m× ẑ)

]
· δω. (A.21)
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With this, we have found all the terms that constitute the functional derivative
δFFM/δm. The equilibrium condition (A.14) can be split into a volume part

∫

V

d3r

{
− 2Aex

(
m×∇2m

)
− 2KuMs(m · ẑ)(m× ẑ)

−BMs(m× ẑ)− 2D
[
(∇ ·m)(m× ẑ)−m×∇(m · ẑ)

]}
· δω = 0,

(A.22)

and a surface part

∮

∂V

d2r

{
2Aex

(
m× ∂m

∂S

)
−D

[
(m · ẑ)(m× dŜ)− (m · dŜ)(m× ẑ)

]}
· δω = 0,

(A.23)

both of which have to hold for arbitrary δω. We rewrite equation (A.22) as

m× B̃eff = 0, (A.24)

where the effective “energy density” is given by

B̃eff = 2Aex∇2m + 2KuMs(m · ẑ)ẑ +BMsẑ + 2D
[
(∇ ·m)ẑ −∇(m · ẑ)

]
. (A.25)

With B̃eff = MsBeff,FM we reproduce the effective field in equation (3.8).
The surface equation provides a condition on the normal derivative of m

2Aex
∂m

∂S
−D

[
(m · ẑ)dŜ− (m · dŜ)ẑ

]
= 0, (A.26)

where dŜ is the unit vector normal to the surface and, using the vector product
identity a× (b× c) = b(a · c)− c(a · b), we find

∂m

∂S
=

1

ξFM

m×
[
dŜ× ẑ

]
, (A.27)

where ξFM = 2Aex/D. This equation has first been obtained by Rohart et al. [26].
As the authors pointed out, equation (A.27) originates entirely from the volume
energies considered in present model and is, consequently, a “natural” boundary
condition. The model contains no specific micromagnetic energies at the sample
edges. In the absence of Dzyaloshinskii-Moriya interactions the boundary condition
reduces to the trivial condition ∂m/∂S = 0. In Appendix B.1 we express equation
(A.27) in spherical coordinates.

In the context of the finite element method equation (A.24) represents a bulk
partial differential equation and equation (A.27), its corresponding “natural” (Neu-
mann) boundary condition (see section 2.3.1). Together, both equations define a
variational problem that can be tackled with the techniques presented in section
2.3.
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A.2.2 Antiferromagnets

We investigate the model described in terms of the antiferromagnetic sublattices,
as this is the description we use in the numerical simulations. The antiferromag-
netic energy functional (3.17) contains homogeneous and inhomogeneous exchange
interactions, uniaxial anisotropy, external magnetic field and homogeneous and in-
homogeneous interfacial Dzyaloshinskii-Moriya interactions

FAFM =Fhom.exch + Finh.exch + Fani + Fext + Fhom.DM + Finh.DM, (A.28)

where all terms are functionals of both m1 and m2.

The equilibrium condition in this case involves the functional derivatives with
respect to both magnetization vectors

δFAFM

δmi

= 0, (A.29)

where i = 1, 2. As in the ferromagnetic case, we introduce variations δmi that do
not change the magnitude of mi

δmi = δωi ×mi, (A.30)

for arbitrary vectors δωi. We calculate the functional derivatives according to the
definition

δFAFM

δm1

= FAFM[m1 + δm1,m2]− FAFM[m1,m2],

δFAFM

δm2

= FAFM[m1,m2 + δm2]− FAFM[m1,m2].

(A.31)

In the following, we list the expressions for the functional derivatives of each
term in equation (A.28) separately. We do not show the intermediate steps, since
they are equivalent to the ferromagnetic calculation in section A.2.1. Up to leading
order in δmi we get for the homogeneous exchange term

δFhom.exch

δmi

= BexchMs (1− δij)
∫

V

d3r
(
mi ×mj

)
· δωi, (A.32)

where δij is the Kronecker delta and no summation over repeated indices is implied.
For the anisotropy, external field and homogeneous Dzyaloshinskii-Moriya terms we
find, respectively,

δFani

δmi

= −BanMs

∫

V

d3r (mi · ẑ) (mi × ẑ) · δωi,
δFext

δmi

= −BMs

∫

V

d3r (mi × ẑ) · δωi,
δFhom.DM

δmi

= −BdMs εij

∫

V

d3r
[
mi ×

(
mj × ẑ

)]
· δωi,

(A.33)
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where εij is the two-dimensional Levi-Civita symbol. The inhomogeneous contribu-
tions to the energy functional need to be integrated by parts, as shown first on the
example of the exchange interactions

δFinh.exch

δmi

= −2A

[∫

V

d3r
(
mi ×∇2mi

)
+

∮

∂V

d2r

(
mi ×

∂mi

∂S

)]
· δωi. (A.34)

The inhomogeneous Dzyaloshinskii-Moriya terms become

δFinh.DM

δmi

=∓D
∫

V

d3r
[

(∇ · n) (mi × ẑ)−mi ×∇ (n · ẑ)
]
· δωi

∓ D

2

∮

∂V

d2r
[

(n · ẑ)
(
mi × dŜ

)
−
(
n · dŜ

)(
mi × ẑ

)]
· δωi, (A.35)

where the negative (positive) sign applies to sublattice 1 (2) and, for a better
overview, we used the definition of the Néel vector 2n = m1 −m2.

Plugging all of the above contributions into the equilibrium conditions (A.29)
leads to equations involving integrals both over the whole volume V and over the
surrounding surface ∂V . These equations have to hold for all δωi. First, we list the
volume terms for both sublattices

∫

V

d3r

{
− 2A

(
mi ×∇2mi

)
+BexchMs (1− δij) (mi ×mj)−BMs (mi × ẑ)

−BanMs (mi · ẑ) (mi × ẑ)−BdMsεij

[
mi × (mj × ẑ)

]

−Dεij
[

(∇ · n) (mi × ẑ)−mi ×∇ (n · ẑ)
]}
· δωi = 0, (A.36)

and rewrite them as the Landau-Lifshitz-Gilbert equations in equilibrium

mi ×BAFM
eff,i = 0. (A.37)

Up to a factor of Ms we recover the effective fields in equations (3.20-3.21).
The surface terms that complement equations (A.36) are

∮

∂V

d2rmi ×
{

2A
∂mi

∂S
− D

2
εij

[(
n · ẑ

)
dŜ−

(
n · dŜ

)
ẑ

]}
· δωi = 0, (A.38)

and define the boundary conditions at the sample boundaries for both magnetization
vectors

∂m1

∂S
=

1

2ξAFM

(m1 −m2)×
[
dŜ× ẑ

]
,

∂m2

∂S
= − 1

2ξAFM

(m1 −m2)×
[
dŜ× ẑ

]
,

(A.39)

where ξAFM = 4A/D. Equation (A.39) is the extension of the result in reference [26]
to collinear two-sublattice antiferromagnets. No specific micromagnetic energies are
considered at the sample boundaries in this case, so that equations (A.39) represent
a “natural” boundary condition. We show its expression in spherical coordinates in
Appendix B.1.
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Skyrmion algebra

B.1 Skyrmion profile equation

Here, we derive the one-dimensional profile equation for both ferromagnetic and anti-
ferromagnetic skyrmions. We consider a steady state of the Landau-Lifshitz-Gilbert
equation for each of the systems and parameterize the corresponding magnetization
vectors (m for ferromagnets and n for antiferromagnets) in spherical coordinates
and the position vector r in cylindrical coordinates. Two forms of each profile equa-
tion are presented – one suitable for skyrmions in infinite planes (with a rescaled
dimensionless radial coordinate) and the other, for confined skyrmions. Finally,
we rewrite the boundary conditions relevant for finite samples with Dzyaloshinskii-
Moriya interactions (see Appendix A.2) in spherical coordinates.

B.1.1 Ferromagnetic skyrmions

The dissipationess Landau-Lifshitz-Gilbert equation (3.10) for a steady state in fer-
romagnets is

m(r)×Beff,FM(r) = 0, (B.1)

with the effective field in equation (3.8)

Beff,FM =
2Aex

Ms

∇2m + 2Ku(m · ẑ)ẑ +Bẑ +
2D

Ms

[
ẑ(∇ ·m)−∇(ẑ ·m)

]
. (B.2)

We parametrize the magnetization vector m in spherical coordinates as

m(r) =




sin θ(ρ) cosψ(φ)
sin θ(ρ) sinψ(φ)

cos θ(ρ)


 , (B.3)

the position vector in cylindrical coordinates

r = ρ




cosφ
sinφ

0


 . (B.4)
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Using the identities in Appendix C) we rewrite each term in equation (B.1) in
spherical coordinates

m×∇2m =

[
1

ρ

dθ

dρ
+
d2θ

dρ2
− 1

ρ2
sin θ cos θ

]
êψ,

(m · ẑ)(m× ẑ) =
[
− sin θ cos θ

]
êψ,

(m× ẑ) =
[
− sin θ

]
êψ,

m×
[
ẑ(∇ ·m)−∇(ẑ ·m)

]
=
[
− 1

ρ
sin2 θ

]
êψ, (B.5)

where êψ is the azimuthal unit vector defined in equation (C.1). Since all terms are
pointing in the direction of êψ, we obtain the scalar equation

2Aex

Ms

[
1

ρ

dθ

dρ
+
d2θ

dρ2
− sin θ cos θ

ρ2

]
− 2Ku sin θ cos θ −B sin θ − 2D

Ms

sin2 θ

ρ
= 0. (B.6)

There are different representations of equation (B.6) that are more suitable for
analysis, depending on the problem at hand.

Infinite-plane skyrmions

For the infinite-plane skyrmion it is instructive to rescale the radial coordinate ac-
cording to ρ̃ = ρ/x0, where x0 is the characteristic domain wall width in ferromagnets

x0 =

√
Aex

KuMs

. (B.7)

We rewrite the left hand side of equation (B.6) in terms of ρ̃

2Aex

Ms

1

x2
0

[
1

ρ̃

dθ

dρ̃
+
d2θ

dρ̃2
− sin θ cos θ

ρ̃2

]
− 2Ku sin θ cos θ −B sin θ − 2D

Ms

1

x0

sin2 θ

ρ̃

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− sin θ cos θ − B

2Ku

sin θ − D√
AexKuMs

sin2 θ

ρ̃
,

and, finally, obtain the dimensionless profile equation

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− sin θ cos θ − B

2Ku

sin θ − 4D

πD0

sin2 θ

ρ̃
= 0. (B.8)

Here, we introduced the threshold value for the Dzyaloshinskii-Moriya constant, as
in equation (3.13)

D0 =
4

π

√
AexKuMs. (B.9)
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Confined skyrmions

In this case there is no translational invariance and it is better not to rescale the
radial coordinate. We divide equation (B.6) by 2Aex/Ms and use the definition of
the characteristic length x0 to rewrite

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

ρ2
− sin θ cos θ

x2
0

− B
2Aex

Ms

sin θ − D

Aex

sin2 θ

ρ
= 0

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

(
1

ρ2
+

1

x2
0

)
− B

2Ku

sin θ

x2
0

− 2
sin2 θ

ξFMρ
= 0. (B.10)

Here, we introduced the lengthscale

ξFM =
2Aex

D
. (B.11)

In finite samples with Dzyaloshinskii-Moriya interactions equation (B.10) needs
to be complemented by the boundary condition (A.27). Without loss of generality,
we consider here a magnetization variation along the x̂-axis and rewrite the boundary
condition in spherical coordinates. Uniform states or skyrmions in perpendicularly
magnetized samples experience in this case a canting of the magnetization vector in
the xz-plane as a result of the modified boundary condition (A.27). For a nanodisk
sample the normal vector at both edges of the disk points along dŜ = ±x̂. Then,
using the identities in Appendix C and setting φ = 0, we obtain

dθ

dx
=

1

ξFM

. (B.12)

Equation (B.12) has first been presented in reference [26].

B.1.2 Antiferromagnetic skyrmions

For the antiferromagnet, we parameterize the Néel vector in spherical coordinates

nsk =




sin θ(ρ) cosψ(φ)
sin θ(ρ) sinψ(φ)

cos θ(ρ)


 , (B.13)

and the position vector as in equation (B.4). The dissipationless Landau-Lifshitz-
Gilbert equation (3.31) for the antiferromagnetic Néel vector simplifies for a steady
state to1

n×BAFM
eff,n −

B2

2Bexch

(n× ẑ)(n · ẑ) = 0, (B.14)

where the effective field is shown in equation (3.20) and reads

BAFM
eff,n =

2A

Ms

∇2n +Ban(n · ẑ)ẑ +
D

Ms

[
(∇ · n)ẑ −∇(n · ẑ)

]
. (B.15)

1Here, we consider a static antiferromagnetic texture in the absence of electric currents.
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Analogous to the ferromagnet, we use the identities in Appendix C and express each
term in equation (B.14) in spherical coordinates

n×∇2n =

[
1

ρ

dθ

dρ
+
d2θ

dρ2
− 1

ρ2
sin θ cos θ

]
êψ,

(n · ẑ)(n× ẑ) =
[
− sin θ cos θ

]
êψ,

n×
[
ẑ(∇ · n)−∇(ẑ · n)

]
=
[
− 1

ρ
sin2 θ

]
êψ. (B.16)

All terms are proportional to the azimuthal unit vector êψ, which allows us to write

2A

Ms

[
1

ρ

dθ

dρ
+
d2θ

dρ2
− sin θ cos θ

ρ2

]
−Ban sin θ cos θ − D

Ms

sin2 θ

ρ
+

B2

2Bexch

sin θ cos θ = 0.

(B.17)

Infinite-plane skyrmions

We rescale the radial coordinate in equation (B.17) according to ρ̃ = ρ/x0, where
the antiferromagnetic domain wall width is given by

x0 =

√
2A

BanMs

. (B.18)

The left hand side of equation (B.17) is expressed in terms of ρ̃

2A

Ms

1

x2
0

[
1

ρ̃

dθ

dρ̃
+
d2θ

dρ̃2
− sin θ cos θ

ρ̃2

]
−Ban sin θ cos θ − D

Ms

1

x0

sin2 θ

ρ̃
+

B2

2Bexch

sin θ cos θ

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− sin θ cos θ − D√

2ABanMs

sin2 θ

ρ̃
+

B2

2BexchBan

sin θ cos θ,

and defines the dimensionless profile equation

d2θ

dρ̃2
+

1

ρ̃

dθ

dρ̃
− sin θ cos θ

ρ̃2
− 4D

πD0

sin2 θ

ρ̃
−
(

1− B2

B2
0

)
sin θ cos θ = 0. (B.19)

Here, we introduced the threshold value of the Dzyaloshinskii-Moriya constant and
the spin-flop field

D0 =
4

π

√
2ABanMs,

B0 =
√

2BexchBan. (B.20)
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Confined skyrmions

In the case of confined skyrmions there is no translational invariance and there is no
benefit in casting the radial coordinate dimensionless. We divide equation (B.17)
by 2A/Ms and simplify the coefficients

d2θ

dρ2
+

1

ρ

dθ

dρ
+

sin θ cos θ

ρ2
− sin θ cos θ

2A
BanMs

− D

2A

sin2 θ

ρ
+

B2

2Bexch
2A
Ms

sin θ cos θ = 0

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

ρ2
− sin θ cos θ

x2
0

− 2
sin2 θ

ξAFMρ
+

B2

2BexchBanx2
0

sin θ cos θ = 0,

to obtain the profile equation

d2θ

dρ2
+

1

ρ

dθ

dρ
− sin θ cos θ

[
1

ρ2
+

1

x2
0

(
1− B2

B2
0

)]
− 2

sin2 θ

ξAFMρ
= 0. (B.21)

Here, the characteristic domain wall width x0 is shown in equation (B.18), the spin-
flop field B0, in equation (B.20) and we introduced the characteristic cycloid length
in antiferromagnets

ξAFM =
4A

D
. (B.22)

Analogous to ferromagnets, in finite antiferromagnetic samples equation (B.21)
needs to be complemented by a boundary condition at the sample edges when
Dzyaloshinskii-Moriya interactions are present. In Appendix A.2.2, we derive the
corresponding boundary condition for the individual sublattices m1 and m2 and
show it in equation (A.39). We translate this condition in terms of the Néel vector
by using the definition in equation (3.22)

∂n

∂S
=

1

ξAFM

n×
(
dŜ× ẑ

)
, (B.23)

where dŜ is the unit vector normal to the sample surface. Without loss of generality,
we consider the magnetization variation along the x̂-axis and rewrite the boundary
condition in spherical coordinates. Uniform states or skyrmions in perpendicularly
magnetized samples will experience a canting of the Néel vector in the xz-plane as a
result of the modified boundary condition (B.23). For a nanodisk sample the normal
vector at both edges of the disk in the x̂-direction becomes dŜ = ±x̂. Then, using
the identities in Appendix C and setting φ = 0, we obtain

dθ

dx
=

1

ξAFM

. (B.24)
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B.2 Collective coordinates in ferromagnets

Here, we elaborate on the collective coordinate description of the equation of motion
for the ferromagnetic skyrmion. To arrive from equation (4.4) to equation (4.5) we
use the ansatz [72, 73, 74]

ṁ =
∑

i

∂m

∂ξi
ξ̇i, (B.25)

where ξi are the collective coordinates and are chosen to be the center of mass coor-
dinates of the skyrmion {ξi} = {Rx, Ry}. The time dependence of the magnetization
vector is implicitly given by the collective coordinates with m(r, t) = m(r−R(t)),
so that one needs to use the following identity when calculating its derivatives

∂m

∂ξi
= −∂m

∂xi
, (B.26)

where i = x, y. To obtain the equation of motion for the skyrmion texture, we
multiply the Landau-Lifshitz-Gilbert equation (4.4) by m × ∂m/∂xβ for β = x, y
and integrate over space (for the infinite plane that we consider here, this amounts to
a two-dimensional integral). We represent the magnetization vector m in spherical
coordinates and the position vector r in cylindrical coordinates (see Appendix B.1).
We consider a Néel skyrmion with p = −1 so that ψ = φ and θ(ρ = 0) = π (see
figure 3.2b).

We illustrate the procedure explicitly for the term on the left hand side of equa-
tion (4.4):

∫
d2r ṁ ·

(
m× ∂m

∂xβ

)

= −
∑

α

∫
d2r

∂m

∂xα
·
(

m× ∂m

∂xβ

)
ξ̇α

= −
∑

α

∫
d2rm ·

(
∂m

∂xβ
× ∂m

∂xα

)
ξ̇α. (B.27)

Using the identities listed in section C.3 we simplify further to

−
∑

α

∫
d2r

[
sin θ

dθ

dρ

sin2 φ

ρ
+ sin θ

dθ

dρ

cos2 φ

ρ

]
εβαξ̇α. (B.28)

We evaluate the integral2 (continues on the next page)

∫
d2rm ·

(
∂m

∂xβ
× ∂m

∂xα

)
=

∫ ∞

0

dρ ρ

∫ 2π

0

dφ

[
sin θ

dθ

dρ

sin2 φ

ρ
+ sin θ

dθ

dρ

cos2 φ

ρ

]
εβα

= πεβα

∫ ∞

0

dρρ

[
dθ

dρ

sin θ

ρ
+
dθ

dρ

sin θ

ρ

]

2This integral is connected to the value of the topological charge, as shown in equation (3.5).
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= 2πεβα

∫ ∞

0

dρ
dθ

dρ
sin θ

= 2πεβα

∫ 0

π

dθ sin θ

= −4πεβα, (B.29)

where εβα is the two-dimensional Levi-Civita symbol (see section C.4). Finally, we
obtain

∫
d2r ṁ ·

(
m× ∂m

∂xβ

)
= −4πεβα. (B.30)

The remaining terms in equation (4.4) are transformed in the same fashion using
the identities listed in Appendix C. There are three more distinct integrals that
appear during the calculation:

∫
d2r

(
∂m

∂xα
· ∂m

∂xβ

)
= πδαβ

∫ ∞

0

dρ

[(
dθ

dρ

)2

ρ+
sin2 θ

ρ

]
,

∫
d2r

(
∂m

∂xβ

)

i

= πδβ,i

∫ ∞

0

dρ

[
dθ

dρ
cos θρ+ sin θ

]
, (B.31)

∫
d2r

(
∂m

∂xβ
×m

)

i

= −πεβi
∫ ∞

0

dρ

[
dθ

dρ
ρ+ sin θ cos θ

]
.

We rescale the radial coordinate ρ by the characteristic length of the system x0,
defined in equation (3.13),

ρ̃ =
ρ

x0

. (B.32)

This has the advantage that all the integrals over the skyrmion profile in equations
(B.32) can be casted dimensionless. We define

4D =

∫ ∞

0

dρ̃

[(
dθ

dρ̃

)2

ρ̃+
sin2 θ

ρ̃

]
,

4x0I
′ = x0

∫ ∞

0

dρ̃

[
dθ

dρ̃
ρ̃+ sin θ cos θ

]
, (B.33)

4x0I = x0

∫ ∞

0

dρ̃

[
dθ

dρ̃
cos θρ̃+ sin θ

]
,

and list the expressions for all the terms in equation (4.4)

∫
d2r ṁ ·

(
m× ∂m

∂xβ

)
= 4π

∑

α

εβαξ̇α,

γ

∫
d2r
(
m×Beff,FM

)
·
(

m× ∂m

∂xβ

)
= 0,

αG,FM

∫
d2r

(
m× ṁ

)
·
(

m× ∂m

∂xβ

)
= −4παG,FMD

∑

α

δαβ ξ̇α,
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αFM

∫
d2r (j · ∇) m ·

(
m× ∂m

∂xβ

)
= −4παFM

∑

α

εβα jα,

aFM

∫
d2r

(
m× (j× ẑ)

)
·
(

m× ∂m

∂xβ

)
= 4πaFMx0I

∑

α

εβαjα,

βFM

∫
d2r

(
m× (j · ∇) m

)
·
(

m× ∂m

∂xβ

)
= 4πβFMD

∑

α

δαβjα,

bFM

∫
d2r

(
m×

[
m× (j× ẑ)

])
·
(

m× ∂m

∂xβ

)
= 4πbFMx0I

′
∑

α

δβαjβ. (B.34)

After plugging these expressions into equation (4.4), dividing by 4π and observing
that every terms contains a sum over α = x, y, we obtain the equation of motion for
the center of mass coordinates of the ferromagnetic skyrmion

εβα

(
ξ̇α + αFMjα

)
= Dδαβ

(
−αG,FMξ̇α + βFMjα

)
+ aFMx0Iεβαjα + bFMx0I

′δβαjβ,

(B.35)

or, in vector form,

G̃×
(
Ṙ + αFMj

)
= −D

(
αG,FMṘ− βFMj

)
+ aFMx0I

(
ẑ × j

)
+ bFMx0I

′j, (B.36)

where G̃ = −Qẑ with the topological charge Q = −1. Finally, we multiply equation
(B.36) by a factor of Msx0/γ and arrive at the force equation (4.5).

B.3 Collective coordinates in antiferromagnets

In complete analogy to section B.2, here we elaborate on the collective coordinate
calculation of the antiferromagnetic skyrmion. The ansatz (B.37) is generalized to
[61, 74]

ṅ =
∑

i

∂n

∂ξi
ξ̇i,

n̈ =
∑

i

∂n

∂ξi
ξ̈i +O(ξ̇2

i ), (B.37)

where ξi are the collective coordinates and the second term in the last equation
can be neglected because it is quadratic in the velocities, which are assumed to be
small. The time dependence of the antiferromagnetic skyrmion texture is given by
n(r, t) = n(r−R(t)), where the Néel vector is composed of a static, cylindrical and
rigid component nsk and motion- and current-induced corrections δn that break
the cylindrical symmetry (see section 3.3.2), so that n = nsk + δn. As collective
coordinates, we take again {ξi} = {Rx, Ry}. The relation (B.26) holds for the Néel
vector as well.

We apply the same procedure as in section B.2 to equation (4.14) to arrive at
the final equation of motion for the antiferromagnetic skyrmion (4.16): multiply by
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n × ∂n/∂xα and integrate over space. Since the Néel vector is a unit vector, the
same integrals appear here as in section (B.2). We have

∫
d2r

(
∂n

∂xα
· ∂n

∂xβ

)
= 4πDδαβ,

∫
d2r

(
∂n

∂xβ
× n

)

i

= −4πI ′x0εβi,

(B.38)

where the numbers D and I ′ are defined in equation (B.33).

Next, we list the collective coordinate expressions for all the terms in equation
(4.14) that give a finite contribution

∫
d2r (n× n̈) ·

(
n× ∂n

∂xβ

)
= −4πD

∑

α

δαβ ξ̈α,

−βγBexch

∫
d2r

(
n× (j · ∇) n

)
·
(

n× ∂n

∂xβ

)
= −4πDβγBexch

∑

α

δαβjα,

C2γBexch

∫
d2r

(
n×

[
n× (j× ẑ)

])
·
(

n× ∂n

∂xβ

)
= 4πI ′x0C2γBexch

∑

α

δβαjβ,

2αGγBexch

∫
d2r

(
n× ṅ

)
·
(

n× ∂n

∂xβ

)
= −8πDαGγBexch

∑

α

δαβ ξ̇α.

(B.39)

The terms contained in the field Bshape in equation (4.14) define the skyrmion pro-
file n(r), which we use to evaluate the integrals within the current procedure (see
equation (3.31) and the discussion in section 3.3.2). As a consequence, within the
approximations we consider in this work, the terms in Bshape cancel each other out
and do not contribute to the equation of motion. The current-induced torque term
proportional to η in Bforces is proportional to n and also vanishes after the multipli-
cation by n× ∂n/∂xβ.

The equation of motion for the antiferromagnetic skyrmion becomes

δαβ ξ̈α = γBexch

[
βδαβjα − C2x0

I ′

D
δβαjβ

]
+ 2αGγBexchδαβ ξ̇α, (B.40)

or, in vector form

R̈ = γBexch

[
β − C2x0

I ′

D

]
j + 2αGγBexchṘ. (B.41)

Finally, multiplying by the factor Msx0/(2γ
2Bexch) and setting IAFM = I ′/D leads

to the end result in equation (4.16).
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B.4 Integral evaluation

Using the profiles obtained in sections 3.2 and 3.3 for the ferromagnet and antifer-
romagnet, respectively, we can evaluate the integrals in equations (B.33)

D =
1

4

∫ ∞

0

dρ̃

[(
dθ

dρ̃

)2

ρ̃+
sin2 θ

ρ̃

]
,

I ′ =
1

4

∫ ∞

0

dρ̃

[
dθ

dρ̃
ρ̃+ sin θ cos θ

]
,

I =
1

4

∫ ∞

0

dρ̃

[
dθ

dρ̃
cos θρ̃+ sin θ

]
.

(B.42)

In addition, we evaluate the value of the topological charge

Q =
1

2

∫ ∞

0

dρ̃
dθ

dρ̃
sin θ. (B.43)

As discussed in section 3.3, at zero external field the profiles of the ferromagnetic
and the antiferromagnetic skyrmions are identical. Then, for D/D0 = 0.9 we find
Q = −1 and

D = 1.578,

I ′ = 1.931, (B.44)

I = −0.001,

so that the constant in equation (4.17) becomes IAFM = I ′/D = 1.223.
For the antiferromagnetic skyrmion with D/D0 = 0.99 and B = 2 T (see figure

3.11 and Table 3.3) we find QAFM = −1 and

D = 5.246,

I ′ = 8.194,
(B.45)

and IAFM = 1.561.

B.5 Estimates

Here, we estimate the antidamping spin-orbit torque coefficient C2 in equation
(4.14). In reference [48] the authors consider a torque of the form

τM1 ∝M1 × [M1 × (ẑ × j)] , (B.46)

and give a numerical value of the field B1 ∝M1 × (ẑ × j) for interband processes.
The value of that field for magnetization vectors pointing along the ẑ-direction is
found to be |B1| ' 0.2 mT per 0.1 A cm−1 so that

|B1| ' 2× 10−5 T m A−1. (B.47)
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From equation (4.9) it follows that in the torque term (C2/2)m× [n× (ẑ × j)] the
coefficient has units of

[C2] =
[
m2A−1s−1

]
. (B.48)

Note the difference in dimensionality of [M1] = [A s−1] in reference [48] and [m] = [1]
in the present work. The correct correspondence is

C2

2
' µB

~
|B1| t = 1.7× 10−3 m2 A−1 s−1. (B.49)

Here, t = 1 nm is a typical value for the thickness of a thin film. It has to be
included i the calculation, because in reference [48] the authors consider a strictly
two-dimensional film.
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Appendix C

Identities

Here, we list identities that are used throughout this thesis.

C.1 Unit vectors in spherical and cylindrical co-

ordinates

We label the unit vectors in spherical coordinates as

êρ =




sin θ(ρ) cosψ(φ)
sin θ(ρ) sinψ(φ)

cos θ(ρ)


 , êθ =




cos θ(ρ) cosψ(φ)
cos θ(ρ) sinψ(φ)
− sin θ(ρ)


 , êψ =



− sinψ(φ)
cosψ(φ)

0


 ,

(C.1)

where we explicitly show that the polar angle θ is function only of the (cylindrical)
radial coordinate ρ and the azimuthal angle ψ, of the (cylindrical) azimuthal angle
φ. The position vector becomes in cylindrical coordinates

r =



ρ cosφ
ρ sinφ

0


 , with

{
ρ =

√
x2 + y2,

φ = arctan (y/x) ,
(C.2)

and the corresponding unit vectors read

êcyl
ρ =




cosφ
sinφ

0


 , êcyl

φ =



− sinφ
cosφ

0


 , ẑ =




0
0
1


 . (C.3)

In this work, we are studying Néel skyrmions. Therefore, in the following, we restrict
our attention to the case ψ = φ. The following relations hold

êρ × êθ = êψ,

êθ × êψ = êρ,

êρ × êψ = −êθ,

êρ ×




cosψ
sinψ

0


 =



− cos θ sinψ,
cos θ cosψ,

0


 = cos θêψ. (C.4)
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Derivatives

Cylindrical coordinates:

∂ρ

∂x
= cosφ,

∂φ

∂x
= −sinφ

ρ
,

∂ρ

∂y
= sinφ,

∂φ

∂y
=

cosφ

ρ
. (C.5)

Spherical coordinates:

∂m

∂x
=
dθ

dρ
cosφ êθ −

sin θ

ρ
sinφ êφ,

∂m

∂y
=
dθ

dρ
sinφ êθ +

sin θ

ρ
cosφ êφ, (C.6)

where we have used that ∂iθ = ∂iρ ∂ρθ, for i = x, y.

C.2 Skyrmion profile

The identities in this section are used in Appendix B.1. The parameters in spherical
coordinates are θ(ρ) and ψ(φ). We focus on Néel skyrmions, so that ψ(φ) = φ:

∂m

∂ρ
=
dθ

dρ
êθ,

∂2m

∂ρ2
= −

(
dθ

dρ

)2

êρ +
d2θ

dρ2
êθ,

∂m

∂φ
= sin θêψ,

∂2m

∂φ2
= 0. (C.7)

We rewrite the unit vector m = êρ in cylindrical coordinates

m = mρê
cyl
ρ + mφê

cyl
φ + mz ẑ, with





mρ = sin θ,

mφ = 0,

mz = cos θ.

(C.8)

The following identities hold for m with r in cylindrical coordinates

∇f =
∂f

∂ρ
êcyl
ρ +

1

ρ

∂f

∂φ
êcyl
φ +

∂f

∂z
ẑ,

∇ ·m =
1

ρ

∂ (ρmρ)

∂ρ
+

1

ρ

∂mφ

∂φ
+
∂mz

∂z
,

∇2m =
1

ρ

∂m

∂ρ
+
∂2m

∂ρ2
+

1

ρ2

∂2m

∂φ2
. (C.9)
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Using the identities in equation (C.7) we get

∇ ·m =
1

ρ
sin θ + cos θ

∂θ

∂ρ
,

∇2m =

[
1

ρ

dθ

dρ
+
d2θ

dρ2

]
êθ −

(
dθ

dρ

)2

êρ. (C.10)

C.3 Collective coordinates

∂m

∂x
× ∂m

∂y
=

(
sin θ

dθ

dρ

sin2 φ

ρ
+ sin θ

dθ

dρ

cos2 φ

ρ

)
êρ,

m ·
(
∂m

∂x
× ∂m

∂y

)
= sin θ

dθ

dρ

sin2 φ

ρ
+ sin θ

dθ

dρ

cos2 φ

ρ
,

∂m

∂x
· ∂m

∂x
=

(
dθ

dρ

)2

cos2 φ+
sin2 θ

ρ2
sin2 φ,

∂m

∂y
· ∂m

∂y
=

(
dθ

dρ

)2

sin2 φ+
sin2 θ

ρ2
cos2 φ,

∂m

∂x
×m = −dθ

dρ
cosφ



− sinφ
cosφ

0


− sin θ

ρ
sinφ




cos θ cosφ
cos θ sinφ
− sin θ


 ,

∂m

∂y
×m = −dθ

dρ
sinφ



− sinφ
cosφ

0


+

sin θ

ρ
cosφ




cos θ cosφ
cos θ sinφ
− sin θ


 . (C.11)

C.4 Levi-Civita symbol identities

In two dimensions we have

εαβ =





+1, for αβ = xy;

−1, for αβ = yx;

0, otherwise.

(C.12)

We need also the following identity
∑

α

εαβεαγ = δβγ, (C.13)

where δβγ is the Kronecker-Delta. Further,

∑

α

(j× ẑ)α δβα =




jy
−jx

0



β

=
∑

γ

εβγjγ,

∑

α

(j× ẑ)α εβα =
∑

α

εβα




jy
−jx

0



α

= −
∑

γ

δβγjβ. (C.14)
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C.5 List of constants

Symbol Value Units Constant

γ 1.7608596× 1011 rad s−1 T−1 electron gyromagnetic ratio
~ 1.0545718× 1034 J s reduced Planck constant
e 1.6021766× 10−19 C electron charge
µ0 1.2566371× 10−6 N A−2 vacuum permeability
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Appendix D

Numerical Simulations

D.1 Skyrmion initial state

Here, we present the ansatz for the initial skyrmion-like state used in the numerical
simulations. The relaxation procedure of the simulations finds the equilibrium state,
on which the effective field does not exert any torque (see section 2.3.2), which
corresponds to the closest energy minimum of the model. As a consequence, the
equilibrium state depends on the initial state (see also Appendix D.2) and it is
important to choose it carefully.

In this work, we focus our attention on skyrmions of the Néel type (see figure
3.1). A state with the same winding of the magnetization vector m as the Néel
skyrmion can be modelled by the following ansatz for the polar angle θsk

cos θsk(x, y) =
2[(

x−x0

Rinit

)2

+
(
y−y0

Rinit

)2
]n

+ 1

− 1, (D.1)

where x0, y0 are the coordinates of the center of the skyrmion, Rinit is the skyrmion
radius and n is a parameter controlling the smoothness of the winding (see figure D.1a).
The resulting skyrmion magnetization vector can be constructed as

msk = cos θsk(x, y)




0
0
1


+

sin θsk(x, y)√
(x− x0)2 + (y − y0)2



x− x0

y − y0

0


 . (D.2)

This ansatz is chosen in such a way, that it produces a magnetization pointing
in the positive ẑ-direction at the skyrmion core (θsk = 0, which corresponds to
polarity p = +1) and in the negative ẑ-direction outside the skyrmion (θsk = π)1.
The magnetization vector msk is depicted in figure D.1b. A state with the opposite
polarity (p = −1) is obtained by taking −msk.

1An alternative ansatz for the polar angle is provided in reference [24].
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Figure D.1: Visualization of the skyrmion-like state defined in equations (D.1-D.2):
(a) z-component of the magnetization vector msk for different values of the smooth-
ness parameter n and (b) full magnetization vector msk for n = 10. Both figures
show a state for x0 = y0 = 0 and Rinit = 10 nm.

D.2 Equilibrium states

For the simulations in this work we use a nanodisk of radius R = 50 nm, thickness
t = 1 nm and characteristic length of lchar = 1 nm.

D.2.1 Ferromagnets

Here, we present more details on the skyrmion groundstate discussed in section 4.2.2.
An equilibrium state is found according to the zero-torque criterion: the Landau-
Lifshitz-Gilbert equation (2.31) is solved iteratively until the torque acting on the
magnetization vector m due to the effective field is minimal (in other words, the
difference between the magnetization vector in two successive steps of the algorithm
is smaller than a specified threshold). Here, we investigate the equilibrium states

Initial state Final state FFM (aJ)

(i) Néel DW −3.44
(ii) Néel DW −3.44
(iii) Quasi-uniform state −3.36
(iv) Skyrmion −3.47
(v) Mixed state −3.42

Table D.1: Comparison of the different initial states, the corresponding equilibrium
states and energies in a ferromagnet. The last column shows the energy of the
equilibrium state calculated according to equation (D.3) and is given in units of
10−18 J. Legend: Uniform state in the (i)x̂-, (ii)ŷ-, (iii)ẑ-direction, (iv) skyrmion-
like and (v) random initial state. DW stands for domain wall. The equilibrium
states are shown in figures D.2 and D.3.
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(a) Néel DW (b) Néel DW (c) Quasi-uniform state

(d) Skyrmion (e) Legend

Figure D.2: Equilibrium states of the ferromagnet, obtained for four different initial
states: (a) uniform state in the x̂-direction (i),(b) uniform state in the ŷ-direction
(ii), (c) uniform state in the ẑ-direction (iii) and (d) skyrmion-like state (iv). DW
stands for domain wall. The color code in all images represents the mz-component
of the magnetization vector and is shown together with the coordinate axes in (e).

obtained during the relaxation process from the following initial states: (i-iii) uni-
form states in the x̂, ŷ and ẑ-direction, a (iv) skyrmion-like initial state and (v) a
random initial state. We calculate the energies of the different states according to
the energy functional (3.7)2

FFM = Fexch + Fani + Fext + FDM (D.3)

and list them in Table D.1. We use as simulation parameters Ms ' 1 MA m−1,
Aex ' 15 pJ m−1, Ku ' 371 kJ m−3 (in the ẑ-direction), B = 0 T andD ' 3.5 mJ m−2

(see Table 4.4).
We find that the in-plane uniform initial states (i) and (ii) relax to a Néel domain

wall, whereas the out-of-plane uniform state (iii) remains uniform in most of the
sample, up to the Dzyaloshinskii-Moriya-interactions-induced canting at the edges
(see figures D.2a, D.2b and D.2c) [26]. The two domain wall states have identical
energy. This is to be expected, since there is nothing to distinguish between the x̂-
and ŷ-direction in our model. Further, the domain walls are of Néel type due to the

2The corresponding numerical code is shown in listing 5.3.
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(a) Initial (b) Equilibrium (c) Legend

Figure D.3: Randomly selected initial state and its corresponding equilibrium state.

form of the Dzyaloshinskii-Moriya interactions that we have chosen for the model3.
Both domain wall states have lower energy than the equilibrium state of (iii).

The skyrmion-like initial state (iv) relaxes to a skyrmion state (figure D.2d).
The radius of the relaxed skyrmion depends on the nanodisk radius, as was also
discussed in recent works [25, 123]. Initial state (iv) leads to equilibrium state with
the lowest energy out of all that we studied here. We show all components of the
magnetization vector of the skyrmion equilibrium state in figure 4.5 in the main
text.

A randomly generated state (figure D.3a) takes considerable longer to relax than
initial state (i-iv). The relaxed state is shown in figure D.3b and has a higher energy
than the skyrmion state. We have tested other random initial states as well: some
take even longer to converge and still have lower energy than the skyrmion.

D.2.2 Antiferromagnets

Next, we relax the initial states (i)-(v), as labelled in Appendix D.2.1, in an anti-
ferromagnetic sample. The equilibrium states are found by applying the same zero-
torque criterion on the antiferromagnetic Landau-Lifshitz-Gilbert equations (3.19).
We calculate the energies of the equilibrium antiferromagnetic states according to
the energy functional (3.17)4

FAFM = Fhom.exch + Finh.exch + Fani + Fext + Fhom.DM + Finh.DM, (D.4)

and show them in Table D.2.
In antiferromagnets, the largest energy scale is the homogeneous exchange inter-

action (in the antiferromagnet NiO, for example, it takes the value of Bexch ' 100 T
[129, 130]). To obtain a good comparison between ferromagnets and antiferromag-
nets, the remaining parameters are chosen to be similar to that of a typical ferromag-
net, while respecting the dominance of the scale set by Bexch. Therefore, we choose

3In this work, we use interfacial Dzyaloshinskii-Moriya interactions. Bulk Dzyaloshinskii-
Moriya interactions will produce different results.

4The corresponding numerical code is shown in listing 5.8.
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as simulation parameters Bs = 1.26 T, Bexch = 90.90 T, lex = 4.89 nm, Ban = 0.74 T,
B = 0 T, Bd = 0 T and lDM = 5.57 nm (see Table 4.9)

We note, that at zero external and Dzyaloshinskii-Moriya fields the antiferromag-
netic magnetization vector is zero (see equation (3.28) and the discussion in section
3.3.2). In that case, the homogeneous exchange energy does not contribute to the
profile of the equilibrium texture, as can be seen from equations (3.32) and (3.34).
However, we find that the numerically calculated homogeneous energy is different
for each equilibrium state considered in Table D.2 and, consequently, changes the
energy balance between the different equilibrium states5. Further, all equilibrium
states exhibit a total magnetization that is at least four orders of magnitude smaller
than the Néel vector. This shows that we obtained realistic antiferromagnetic states,
for which the exchange approximation is justified and |n| � |m| (see section 3.3.1
[51]). This motivates us to disregard the homogeneous energy contribution for the
energy balance and consider instead FAFM−Fhom.exch, which we also list in Table D.2.

Comparing the results in Tables D.3 and D.4, we find that the hierarchy of equi-
librium states corresponding to (i)-(v) in both ferromagnets and antiferromagnets
are identical. This is a direct consequence of the equivalence between the profile
equations in both systems at zero external field, as discussed in section 3.3.2. The
difference of a factor of two between the ferromagnetic and antiferromagnetic ener-
gies is due to the different definition of the interaction constants – compare equations
(3.7) and (3.24) – and the chosen material parameters (see Tables 4.4 and 4.9).

The conclusions drawn in Appendix D.2.1 apply here as well. Both in-plane
uniform states (i) and (ii) relax to Néel domain walls, which have a lower energy
than the quasi-uniform equilibrium state, originating from the out-of-plane uniform
state (iii) (see figures D.4a-D.4c). The randomly generated state (iv) relaxes to
a mixed state, which here has a lower energy than all the uniform initial state
(figure D.5).

Initial state Final state FAFM (pJ) FAFM − Fhom.exch (aJ)

(i) Néel DW −72.03 −6.88
(ii) Néel DW −72.03 −6.88
(iii) Quasi-uniform state −72.05 −6.72
(iv) Skyrmion −72.01 −6.96
(v) Mixed state −72.00 −6.93

Table D.2: Comparison of the different initial states, their corresponding equilibrium
states and energies in an antiferromagnet. The full energy of the antiferromagnetic
equilibrium state is given in units of 10−15 J and the energy without the homogeneous
exchange contribution (last column), in 10−18 J. For the labelling of the initial states
see Table D.1. The equilibrium states are shown in figures D.4 and D.5.

5For a perfect antiferromagnetic alignment the two sublattices are antiparallel, so that
m1 ·m2 = −1. Here, we find that this scalar product differs for each equilibrium state from
the perfect alignment by a factor of 10−3 − 10−4 and, therefore, changes the energy in equation
(3.17).
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(a) Néel DW (b) Néel DW (c) Quasi-uniform state

(d) Skyrmion (e) Legend

Figure D.4: Equilibrium states of the antiferromagnet, obtained for four different
initial states; labeling as in figure D.2. In all figures what is depicted is the Néel
vector and its z-component is encoded into the color legend. DW stands for domain
wall.

Finally, we find the skyrmion to be the groundstate. We have depicted its ẑ-
component here in figure D.4d; the other components are shown in the main text in
figure 4.13.

(a) Initial (b) Equilibrium (c) Legend

Figure D.5: Randomly generated initial state of the antiferromagnetic Néel vector
and its corresponding equilibrium state.
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D.3 Magnetization canting at the boundaries

Recently, Rohart et al. [26] showed that to properly model a magnetization texture
on a finite sample (as opposed to infinite samples) in the presence of Dzyaloshinskii-
Moriya interactions, one has to take into account the induced magnetization canting
at the edges. We have derived the corresponding “proper” boundary conditions in
section 3.2.2 (see the discussion under “confined skyrmions”) and Appendix A.2.
Here, we reproduce the analytical and numerical results of reference [26] for ferro-
magnets with our code and use this a further validation of it.

The model we use in the present work contains exchange interactions, uniaxial
anisotropy, interfacial Dzyaloshinskii-Moriya interactions and we neglect external
fields and dipole-dipole interactions, as described in section 3.2.16.

In all simulations in this section we use a nanodisk of radius Rdisk = 50 nm, thick-
ness t = 1 nm and characteristic length of lchar = 1 nm, and the material parameters
Ms = 1 MA m−1, Aex = 16 pJ m−1, Ku = 510 kJ m−3 and D = 3 mJ m−2, unless
stated otherwise. To find equilibrium skyrmion states we use the skyrmion-like
initial states discussed in Appendix D.1 with radius Rinit = 10 nm.

Uniform states (one dimension)

First, we reproduce the magnetization canting that occurs in ferromagnetic uniform
states when Dzyaloshinskii-Moriya interactions are present.

The profile of the magnetization texture along the x̂-axis (in an effectively one-
dimensional problem) can be analytically described by the polar angle θ(x) and is
defined by the equation [26, 70]

d2θ

dx2
=

sin θ cos θ

x0

, (D.5)

dθ

dx
=

1

ξFM

, (D.6)

where equation (D.5) is valid within the sample (that is, for Rdisk < x < Rdisk)
and equation (D.6) – at the nanodisk boundary (x = −Rdisk or x = Rdisk). Here,
x0 =

√
Aex/Ku is the characteristic length of the ferromagnet (domain wall width)

and ξFM = 2Aex/D, the characteristic cycloid length in the ferromagnet7.
Equation (D.5) is obtained by variational methods from the ferromagnetic energy

functional (3.7) and is a well-known result for ferromagnetic infinite films. Equation
(D.6) is directly obtained from equation (A.27), where the surface normal dŜ is in
the positive (negative) x̂-direction at x = Rdisk (x = −Rdisk) and is essential for
finite samples in the presence of the Dzyaloshinskii-Moriya interactions. As noted
by Rohart et al., equation (D.6) arises from volume terms (see Appendix A.2) and
is, therefore, a “natural” boundary condition. Due to its presence the uniform state
is not a solution of the profile equation (D.5) in finite-dimensional samples with
Dzyaloshinskii-Moriya interactions.

6The same model is considered in reference [26]. By reproducing their results, we verify that
our code is working properly and can be used to study the problems in the present work.

7The corresponding cycloid period is given by L0 = 2πξFM in a zero-anisotropy sample [26].
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Figure D.6: Magnetization canting at the edges of a finite ferromagnetic sample in-
duced by the Dzyaloshinskii-Moriya interactions. Plotted are the results of analytical
calculations (green solid lines) and numerical simulations (red and black open circles)
for the material parameters Ms = 1 MA m−1, Aex = 16 pJ m−1, Ku = 510 kJ m−3

and D = 3 mJ m−2. We use a nanodisk of radius Rdisk = 50 nm and thickness
t = 1 nm, and analyze the radially-symmetric magnetization texture along the entire
diameter in the x̂-direction.

We integrate equation (D.5) numerically with boundary conditions θ(x = 0) = 0
and θ′(x = Rdisk) = 1/ξFM, and plot the results in figure D.6 with a solid line. For
the numerical simulations, we initialize a uniform state (in which the magnetization
points along the easy axis) on the nanodisk, apply the relaxation solver (see section
2.3.2) and investigate the change of the magnetization vector only in the x̂-direction8.
The simulation results are plotted in figure D.6 with thick open symbols.

We find a very good agreement between the numerical and analytical calcula-
tions9, as reported in reference [26]. Quantitatively, the numerical result for mx at
the edge deviates from the analytical result by less than 1 %. The value for mx can
be expressed through the characteristic values x0 and ξFM when the anisotropy is
sufficiently large to avoid cycloid configurations mx = ±x0/ξFM [26]. For the param-
eters we use here this amounts to x0 = 5.60 nm, ξFM = 10.67 nm and mx = 0.525.

Skyrmions

Next, to find the skyrmion solution, we consider a two-dimensional problem de-
scribed by the same model. As shown in section 3.2.2, the skyrmion profile equation
can be obtained from the energy functional [26] (continues on the next page)

d2θ

dρ2
= −1

ρ

dθ

dρ
+

sin 2θ

2

(
1

ρ2
+

1

x2
0

)
+

2

ξFM

sin2 θ

ρ
, (D.7)

8In reference [26] the authors consider a stripe that is infinite in the ŷ-direction and has a
width of 100 nm in the x̂-direction. Here, we investigate the change of the magnetization along
the diameter in the x̂-direction of the nanodisk. Since the model is radially-symmetric, the two
situations are equivalent.

9Note, that we refer to the solutions of equations (D.5) and (D.7) as analytical, even though
we use numerical integration to obtain them. In that way, we emphasize the difference with the
full numerical simulations based on the solution of the Landau-Lifshitz-Gilbert equation with the
finite-element method (see section 2.3.2).
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Figure D.7: (a) Polar angle θ(ρ) and (b) z-component of the magnetization vector m
of the quasi-uniform and skyrmion states in a nanodisk with radius Rdisk = 50 nm
and t = 1 nm. Shown are the results of analytical calculations (solid lines) and
numerical simulations (red and black open circles) for D = 4.5 mJ m−2 and the rest
of the parameters as in figure D.6. We do not show here higher-order states.

dθ

dρ
=

1

ξFM

, (D.8)

where, as before, equation (D.7) is valid within the sample (here the entire nanodisk)
and equation (D.8), at the sample edge.

We integrate the profile equation (D.7) numerically with boundary conditions
θ(ρ = 0) = 0 and dθ/dρ(ρ = 0) such, that the boundary condition (D.8) is matched
(see sections 3.1 and 3.2.2 for details). We show the results in figure D.7 (solid
lines). For the numerical simulations we use D = 4.5 mJ m−2 and the rest of the
parameters are as before.

We find a very good agreement between the simulations and the numerical inte-
gration of equations (D.7-D.8) – as reported in reference [26] – when the relaxation
is started from the skyrmion-like discussed in Appendix D.1. For both methods we
show two solutions10 – the quasi-uniform state and the skyrmions state. Both solu-
tions exhibit a canting at the edges that is induced by the boundary conditions. We
also note that the boundary condition (D.8) is chiral - the direction of canting (in-
wards or outwards) depends on the sign of D11 (see also the derivation in Appendix
A.2).

Size of the confined skyrmion

Next, we show that the confined-skyrmion radius depends both on the value of the
Dzyaloshinskii-Moriya constant D and the nanodisk radius Rdisk.

10There are two more magnetization configurations that exists for the current setup, namely 2π
and 3π rotation of the magnetization [26]. They are not relevant for the present work and we do
not discuss them further.

11The sign of D is negative, as in section 3.2.2. The only difference is the initial condition
θ(ρ = 0) = 0: compare to figure 3.5, where we have chosen θ(ρ = 0) = π.
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Figure D.8: Confined-skyrmion radius as a function of the nanodisk radius Rdisk for
two different values of the Dzyaloshinskii-Moriya constant: (a) D = 3 mJ m−2 and
(b) D = 4.5 mJ m−2. Solid lines represent the results of analytical calculations and
open circles, the corresponding numerical simulations.

Depending on the ratio D/D0 (see equation 3.13 for the definition of D0) the
skyrmion behaves qualitatively different [26]. For D < D0 the skyrmion radius is
independent of the size of the nanodisk and matches the radius of the infinite-plane
skyrmion (see section 3.2.2). The resulting skyrmion is too small to feel the effects of
the edge (see figure D.8a12). For D > D0 the skyrmion size is fixed by the nanodisk
and expands until it feels the edge (see figure D.8b). A single skyrmion can be
stabilized in the nanodisk if the disk radius is not too large compared to the cycloid
length L0 = 2πξFM (which is determined by D). Otherwise only configurations with
larger rotation of the magnetization vectors (that is, higher topological charge) are
possible (2π, 3π, etc.; see also reference [26]). Further, the magnetization vector
of the skyrmion does not rotate continuously along the entire radius, but does so
on a lengthscale of x0. In that sense, the confined skyrmion resembles a magnetic
bubble13.

Energy

We proceed by plotting the energy of the quasi-uniform and skyrmion state as a
function of the Dzyaloshinskii-Moriya constant. We perform numerical simulations
on the Rdisk = 50 nm nanodisk with the same material parameters as before, where
D is swept in steps of ∆D = 0.5 mJ m−2. To capture also the metastable equilibrium
states, we investigate separately the relaxation of both a uniform state polarized in
the ẑ-direction and an initial skyrmion state with radius Rinit = 10 nm.

The results are plotted in figure D.9. We find that the quasi-uniform state exists
for values of D ≤ 6 mJ m−2 and the skyrmion for 2.5 mJ m−2 ≤ D ≤ 7 mJ m−2.
These results reproduce well the ones by Rohart et al. [26]14.

12However, for the smallest nanodisk the skyrmion does feel the edge and shrinks as a result.
13A major difference being the stabilization due to Dzyaloshinskii-Moriya interactions, whereas

bubbles are stabilized by external fields and/or dipole-dipole interactions [26].
14We do not find a skyrmion for D = 2 mJ m−2; this is attributed to the inaccuracies of the
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Figure D.9: Energy of the quasi-uniform and skyrmion states as a function of
D. Shown are the results of numerical simulations on a nanodisk with radius
Rdisk = 50 nm in the range where equilibrium quasi-uniform and skyrmion states
have been found. The energy is depicted in units of 10−18 J.

D.4 Resonance calculations of uniformly-

magnetized nanodisks

Here, we apply the eigenspectrum solver (see section 2.3.2) to homogeneous magnetic
systems, for which the resonance frequencies can be derived analytically. We use
sample with the parameters specified in Appendix D.2.

D.4.1 Ferromagnets

In ferromagnetic thin films the resonance frequency can be obtained by investigating
the Landau-Lifshitz-Gilbert equation with the precession terms only. For simplicity,
here we consider a ferromagnetic model containing only uniaxial anisotropy and
external fields, both pointing in the ẑ-direction. In such a system, the resonance
frequency is given by [68]

fFM,analytical =
γ

2π

(
B +

2Ku

Ms

)
, (D.9)

where B is the external field, Ku the uniaxial anisotropy constant and Ms the
saturation magnetization.

To calculate the frequencies numerically, we initialize a uniform state pointing
in the ẑ-direction and calculate its spectrum with the eigenspectrum solver. In that
way, we avoid any extra errors that might come from the relaxation solver (see
Appendix D.5). We turn off the exchange and Dzyaloshinskii-Moriya interactions
(Aex = D = 0), and retain only the uniform fields. We use Ku = 371 kJ m−3,
B = 0 T, Ms = 1 MA m−1 and Λ = 500 as base values, and subsequently vary Ku

and B.

relaxation solver (see Appendix D.5).
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B(T) fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

0 20.83 20.83 4.21 2.02× 10−7

5 160.96 160.96 32.54 2.02× 10−7

10 301.08 301.08 60.87 2.02× 10−7

Ku/K
ref
u fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

2 41.67 41.67 8.42 2.02× 10−7

5 104.16 104.16 21.06 2.02× 10−7

10 208.33 208.33 42.12 2.02× 10−7

Table D.3: Comparison of the numerical and analytical results for the resonance
frequencies of a thin film ferromagnet, modelled by uniaxial anisotropy and external
magnetic fields only. The analytical frequency is calculated according to equation
(D.9), where the anisotropy constant is set to Kref

u = 371 kJ m−3 and the saturation
magnetization to Ms = 1 MA m−1. In the lower table we have set the external field
to zero. The last two columns show the absolute (given in kHz) and the relative
error of the numerical result with respect to the analytical result.

We show the numerically calculated frequencies and the corresponding devia-
tions from the analytical results in Table D.3, where we defined the absolute error
∆f = fanalytical − fnumerical and the relative error δf = ∆f/fanalytical. The results
show that the numerically calculated frequencies reproduce the analytical frequen-
cies very well, with a relative error of the order of O(10−7). In all cases we find a
relative error of

(
fanalytical − fnumerical

fanalytical

)

FM

= 2.02× 10−7. (D.10)

This serves as a validation of the eigenspectrum solver for ferromagnets.

D.4.2 Antiferromagnets

Similar to ferromagnets, the resonance frequency in antiferromagnets can be found
by studying the Landau-Lifshitz-Gilbert equations with the precession terms only.
We consider a model containing only homogeneous exchange interactions, uniaxial
anisotropy and external fields (both pointing in the ẑ-direction). In such a system,
the resonance frequency is given by [68, 127, 129, 130]

fAFM,analytical =
γ

2π

(
B ±

√
Ban (2Bexch +Ban)

)
, (D.11)

where B is the external magnetic field, Ban the anisotropy field and Bexch the ho-
mogeneous exchange interactions field. As opposed to the ferromagnet, for fixed
exchange and anisotropy fields, the antiferromagnet exhibits two resonance frequen-
cies for large enough external fields. Here, we focus only on the lowest frequency of
the two, which decreases with increasing external field.
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B(T) fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

0 326.46 326.46 66.00 2.02× 10−7

5 186.33 186.33 37.67 2.02× 10−7

10 46.21 46.21 9.34 2.02× 10−7

Ban/B
ref
an fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

2 462.62 462.62 93.53 2.02× 10−7

5 735.91 735.91 148.78 2.02× 10−7

10 1051.10 1051.10 212.51 2.02× 10−7

Table D.4: Comparison of the numerical and analytical antiferromagnetic resonance
frequencies in the presence of homogeneous exchange, uniaxial anisotropy and exter-
nal magnetic field only. The analytical frequency is calculated according to equation
(D.11), where we use an exchange field of Bexch = 90.90 T and saturation field of
Bs = 1.26 T. For the upper Table we have used an anisotropy field of Bref

an = 0.74 T
and for the lower Table, an external field of B = 0 T. The last two columns show the
absolute (given in kHz) and the relative error of the numerical result with respect to
the analytical result.

Again, we initialize a uniform state pointing in the ẑ-direction and calculate its
spectrum with the eigenspectrum solver. We turn off the all inhomogeneous fields,
as well as the homogeneous Dzyaloshinskii-Moriya interactions (A = D = Bd = 0).
We use Bexch = 90.90, T, Ban = 0.74 T, B = 0 T, Bs = 1.26 T and Λ = 500 as base
values, and subsequently vary Ban and B.

The numerically calculated frequencies, together with the corresponding errors
are shown in Table D.4 (see Appendix D.4.1 for the definition of the errors). Com-
paring the present results with the ones in Appendix D.4.1 shows that with similar
choice of parameters the antiferromagnetic resonance frequencies are at least an
order of magnitude larger than the ferromagnetic ones. Depending on the parame-
ters of the antiferromagnet under consideration, the frequencies can be even higher
(typical values are of the order of 102 − 103 GHz [127]).

The results show that the numerically calculated antiferromagnetic frequencies
reproduce the analytical frequencies very well, with the same relative error as for
the ferromagnets:

(
fanalytical − fnumerical

fanalytical

)

AFM

= 2.02× 10−7. (D.12)

This serves as a validation of the eigenspectrum solver for antiferromagnets.

D.5 Relaxation-solver effects on the resonance fre-

quencies

In Appendix D.4 we performed eigenspectrum calculations on magnetic states that
are perfectly aligned in the ẑ-direction. By doing this, we could obtain an estimate
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B(T) fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

0 20.83 20.83 5.02× 103 2.41× 10−4

5 160.96 160.96 1.61× 102 1.00× 10−6

10 301.08 301.08 1.21× 102 4.02× 10−7

Ku/K
ref
u fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

2 41.67 41.67 1.79× 103 4.31× 10−5

5 104.16 104.16 6.16× 102 5.91× 10−6

10 208.33 208.33 3.59× 102 1.72× 10−6

Table D.5: Comparison of numerical and analytical results for the ferromagnetic
resonance frequencies for a state that has been relaxed from the 111-direction to the
ẑ-direction. The simulation parameters are the same as shown in Table D.3. Note
the difference in the absolute error ∆f compared to the ideal case.

of the numerical error of O(10−7) that comes from the eigenspectrum solver alone.
This value represents the accuracy of the eigenspectrum solver.

Here, we investigate the additional numerical errors that appear due to the relax-
ation solver. Instead of initializing a state that is perfectly aligned in the ẑ-direction,
we choose an initial state that points in the 111-direction15 and let it relax according
to the corresponding energy functional. As in Appendix D.4, we model the magnetic
system only by uniaxial anisotropy and external magnetic field (and homogeneous
exchange interactions for the antiferromagnet). During the relaxation process the
anisotropy and external fields will relax the 111-state to point in the ẑ-direction. Fi-
nally, we apply the spectrum solver to the relaxed state. The mesh and simulation
parameters are the same as in Appendix D.4.

D.5.1 Ferromagnets

We show the numerically calculated frequencies of the ferromagnetic relaxed state
in Table D.5. The relaxation process has a sizeable effect on in the absolute error
- it is higher by at least two orders of magnitude for all parameter sets considerer
here. The relative error is affected less strongly. The largest error is found for zero
external field and anisotropy of Ku = 371 kJ m−3

(
∆f
)

FM
= 5.02 MHz,

(
δf
)

FM
= 2.41× 10−4. (D.13)

Further, we find that the relaxation-induced error diminishes with both increasing
external field and anisotropy. For large values of either of these parameters the
absolute error is still higher than in the ideal case (by two orders of magnitude),
whereas the relative error becomes comparable to the ideal case – of the order of
O(10−6)−O(10−7).

15That is, a state in which the magnetization vector m has equal components mx = my = mz.
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B(T) fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

0 326.46 326.44 1.54× 104 4.70× 10−5

5 186.33 186.33 8.86× 103 4.76× 10−5

10 46.21 46.21 2.55× 103 5.52× 10−5

Ban/B
ref
an fanalytical(GHz) fnumerical(GHz) ∆f(kHz) δf

2 462.62 462.62 5.76× 103 1.25× 10−5

5 735.91 735.90 1.31× 103 1.78× 10−6

10 1051.10 1051.10 5.62× 102 5.35× 10−7

Table D.6: Comparison of numerical and analytical results for the antiferromagnetic
resonance frequencies for a state that has been relaxed from the 111-direction to the
ẑ-direction. We use the same parameters described in Table D.4. Note the difference
in the absolute error ∆f compared to the ideal case.

D.5.2 Antiferromagnets

The antiferromagnetic resonance frequencies calculated numerically for the anti-
ferromagnetic relaxed state are listed in Table D.6. As for the ferromagnet, the
relaxation process affects considerably the calculated frequencies. The absolute er-
ror increases by two to four orders of magnitude. The relative error is affected less
strongly, but still increases by up to two orders of magnitude. We find that the
external field has a weaker effect on the antiferromagnet than in the ferromagnet –
in the present case, the relative error is largely unchanged at O(10−5) for the range
of values tested here, whereas in the ferromagnet the relative error decreases from
O(10−4) to O(10−7). This is a manifestation of the insensitivity of the antiferro-
magnets to external magnetic fields [44]. We find the largest absolute error16 for
zero external field and anisotropy of Ban = 0.74 T

(
∆f
)

AFM
= 15.35 MHz,

(
δf
)

AFM
= 4.70× 10−5. (D.14)

Further, we find that both the absolute and relative error decrease with increasing
anisotropy. When increasing the magnetic field, the absolute error is diminished,
but the relative error is (slightly) increased. The latter is due to the fact that we
consider the lowest resonance frequency, which for the antiferromagnet decreases
with increasing magnetic field.

16We emphasize this set of errors instead of the ones at B = 10 T (which show the largest relative
error), because we do not consider such high values of the external field within the numerical
simulations in the main part of this work.
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[57] B. Göbel, A. Mook, J. Henk, and I. Mertig, “Antiferromagnetic skyrmion crys-
tals: Generation, topological Hall, and topological spin Hall effect,” Physical
Review B, vol. 96, no. 6, p. 060406, 2017.
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