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iv



v

Zusammenfassung: Das in dieser Arbeit vorgestellte Experiment zur Messung des mag-

netischen Moments des Protons basiert auf der Messung des Verhältnisses von Zyklotron-

frequenz und Larmorfrequenz eines einzelnen, in einer kryogenen Doppel-Penning Falle

gespeicherten Protons. In dieser Arbeit konnten erstmalig zwei der drei Bewegungsfrequen-

zen des Protons gleichzeitig im thermischen Gleichgewicht mit entsprechenden hochsen-

sitiven Nachweissystemen nicht-destruktiv detektiert werden, wodurch die Messzeit zur

Bestimmung der Zyklotronfrequenz halbiert werden konnte. Ferner wurden im Rah-

men dieser Arbeit erstmalig einzelne Spin-Übergänge eines einzelnen Protons detektiert,

wodurch die Bestimmung der Larmorfrequenz ermöglicht wird. Mithilfe des kontinuier-

lichen Stern-Gerlach Effekts wird durch eine sogenannte magnetische Flasche das mag-

netische Moment an die axiale Bewegungsmode des Protons gekoppelt. Eine Änderung

des Spinzustands verursacht folglich einen Frequenzsprung der axialen Bewegungsfrequenz,

welche nicht-destruktiv gemessen werden kann. Erschwert wird die Detektion des Spinzu-

stands dadurch, dass die axiale Frequenz nicht nur vom Spinmoment, sondern auch vom

Bahnmoment abhängt. Die große experimentelle Herausforderung besteht also in der

Verhinderung von Energieschwankungen in den radialen Bewegungsmoden, um die De-

tektierbarkeit von Spin-Übergängen zu gewährleisten. Durch systematische Studien zur

Stabilität der axialen Frequenz sowie einer kompletten Überarbeitung des experimentellen

Aufbaus, konnte dieses Ziel erreicht werden. Erstmalig kann der Spinzustand eines einzel-

nen Protons mit hoher Zuverlässigkeit bestimmt werden. Somit stellt diese Arbeit einen

entscheidenden Schritt auf dem Weg zu einer hochpräzisen Messung des magnetischen

Moments des Protons dar.

Summary: The presented experiment for the determination of the magnetic moment of

the proton is based on the measurement of the ratio of cyclotron frequency and Larmor

frequency of a single proton confined in a cryogenic double-Penning trap. In the course

of this thesis, the simultaneous non-destructive measurement of two of the three eigenfre-

quencies of the proton in thermal equilibrium with corresponding detection systems was

demonstrated, which reduces the measurement time of the cyclotron frequency by a factor

of two. Furthermore, this thesis presents the first detection of individual spin transitions

of a single proton, which allows for the determination of the Larmor frequency. The con-

tinuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode

of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of

the axial frequency, which can be measured non-destructively with highly-sensitive detec-

tion systems. However, not only the spin momentum is coupled to the axial motion but

also the angular momentum. Thus, the main experimental challenge is the elimination of

energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to

systematic studies on the stability of the axial frequency and a complete revision of the

experimental setup, this goal was achieved. The spin state of the proton can be determined

with very high fidelity for the very first time. Thus, this thesis represents an important

step towards a high-precision determination of the magnetic moment of the proton.
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Chapter 1

Introduction

The Standard Model of elementary particle physics describes many aspects observed in

nature, and two of the four known interactions, electromagnetism and weak interaction,

were unified in its framework [1]. However, not all experimental observations in nature can

be explained by the Standard Model, such as dark matter, gravitation, neutrino oscillations

and the matter-antimatter asymmetry. Moreover, some aspects of the theory itself lack of

a deeper understanding, such as for example the 18 free parameters for particle masses,

CKM mixing angles and coupling constants. Thus, physicists all around the world conduct

various experiments to search for new physics beyond the Standard Model which could

settle these questions and perhaps guide the way towards a grand unified theory [2].

At high energy, the search for new physics is carried out at particle colliders to produce and

detect exotic particles or to observe unexpected processes. Complementary, low energy

precision studies of quantities that can be described by the Standard Model can give a hint

to new phyiscs, which would manifest as difference between the predicted and experimental

values.

The potential of Penning traps as a tool for a high-precision determination of fundamental

properties of particles was demonstrated by Dehmelt and coworkers in 1987 with the

measurement of the magnetic moment of the electron with a relative uncertainty of 4 ppt

[3]. The impressive achieved precision mainly arose from two aspects:

1. Single particle storage at cryogenic temperatures, which enables infinite storage times

and eliminates possible corrections due to thermal line-broadening and interaction

with other particles and the environment.

2. Outstanding experimental and theoretical control of the oscillatory motion of the

single electron, which in turn can be measured non-destructively to determine the

magnetic moment.

The single trapped electron was called geonium atom, as an anologon to that bound to a

nucleus [4]. The realization of the geonium atom was honored with the 1989 Nobel Prize.

It was the starting point for a long success story of high-precision experiments performed in

Penning traps [5]. Any charged particle with sufficient lifetime can be investigated which
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indicates the variety of possible experiments to determine for example masses, decay en-

ergies and magnetic moments. In particular, high-precision measurements of magnetic

moments proved as sensitive probe for fundamental theories. A new measurement of g-2

yields the most precise test of quantum electrodynamics (QED) [6, 7]. Comparison of

the measured electron g-factor with QED calculations up to the tenth order led to the

hitherto most precise determination of the fine structure constant [8]. The predictions of

QED in extreme situations can be tested by a measurement of the magnetic moment of

the electron in the strong binding field of hydrogenlike ions [9, 10, 11, 12].

Furthermore, high-precision experiments in Penning traps can be used to obtain tight

bounds for potential CPT-violation [13]. The CPT-transformation is formed by three dis-

crete symmetries: charge conjugation (C), parity transformation (P) and time reversal

(T). A violation of CPT-symmetry would imply a breaking of Lorentz symmetry [14].

The Standard Model is a locally Lorentz-invariant quantum field theory. Thus, an obser-

vation of CPT-violation would guide the development of new physics beyond the Standard

Model. The asymmetry between matter and antimatter in the universe, also known as

baryogenesis, could be explained by CPT-violation [15]. CPT-symmetry implies that cer-

tain properties as mass and the magnetic moment of a particle and its antiparticle must

have identical values. Low energy Penning trap experiments are well-suited to test these

quantities at highest precision. The comparison of the magnetic moments of electron and

positron in a Penning trap is considered the most precise test of the matter-antimatter

symmetry for leptons [3]. However, stringent CPT tests have to be carried out with

different systems since it is unknown which physical system is the most sensitive for CPT-

violating effects.

Therefore another approach to test CPT-symmetry is the measurement of the magnetic

moment of the proton and the antiproton, which in combination would yield a stringent

test of CPT-symmetry in the baryon sector [13].

A series of experiments were conducted to measure the magnetic moment of the proton

µp = (gp/2)µN = (gp/2)(e~)/(2mp), where gp is the Landé g-factor of the proton, µN is

the nuclear magneton and e/mp the charge-to-mass-ratio of the proton. Starting in 1933,

Stern and Gerlach observed the deflection of a molecular hydrogen beam in a homogeneous

magnetic field, yielding a value for the magnetic moment of the proton of µp = 2.5(3)µN

[16, 17]. The deviation of more than a factor of two compared to the value, which is

predicted by Dirac-theory [18] was the first indication of the substructure of the proton

which we nowadays identify as a composition of quarks and gluons. This remarkable

observation was awarded with the 1943 Nobel Prize. Later experiments determined the

proton magnetic moment using molecular beam methods [19], nuclear magnetic resonance

in water [20] and the omegatron method [21, 22], which continuously improved the relative

precision to 14 ppm.

The currently most precise value for the g-factor of the proton is determined from a mea-

surement of the splitting of the hyperfine sublevels in atomic hydrogen [23], where the

magnetic moment ratio of the proton and the electron µp(H)/µe(H) was measured. The



3

free proton g-factor is obtained using

gp = ge
µp(H)

µe(H)

ge(H)

ge

gp
gp(H)

mp

me
. (1.1)

The two correction terms ge(H)/ge and gp(H)/gp give the ratio of bound to free g-factors,

which have been calculated in [24] with a relative uncertainty of less than < 1 ppb. The

relative uncertainties of the experimental values for the electron g-factor ge and the proton-

to-electron mass ratio mp/me are less than 0.001 ppb [6] and 1 ppb [25], respectively. The

overall uncertainty is dominated by the precision of the ratio µp(H)/µe(H), which was

determined to 10 ppb, yielding a value for the proton g-factor of gp = 5.585694713(46).

The experiment which is presented in this thesis, aims for the determination of the

magnetic moment of a single proton stored in a cryogenic Penning trap [26, 27, 28]. Thus,

no binding-correction terms and particle interactions have to be considered. In the course

of this thesis it will be shown, that an improvement of the accuracy of the proton g-factor

by at least one order of magnitude compared to the most precise value obtained in [23, 24]

is feasible. Capture [29] and storage of a single antiproton in a Penning trap for months

[30] has already been demonstrated. Moreover, all techniques and methods which are

developed for the determination of the proton g-factor are directly applicable for the an-

tiproton, which proves the feasibility of a stringent CPT-test with baryons. A competing

experiment at the Harvard-University also aims for the determination of the g-factor of

the (anti)proton [31, 32].

The determination of the g-factor in a Penning trap can be realized by the measurement

of two frequencies, the cyclotron frequency and the Larmor frequency. The first frequency

results from the circular motion of a charged particle in a magnetic field. The possibility

to determine the cyclotron frequency of a single trapped proton with a relative precision

of the order of 1 ppb is demonstrated in this thesis. The measurement of the Larmor

frequency is carried out by probing spin transitions as a function of the frequency of an

external driving field. The so-called Continuous Stern-Gerlach effect [33] is utilized to non-

destructively detect spin transitions as a jump of the axial eigenfrequency of the trapped

proton. This technique was already succesfully applied in case of the experiments to de-

termine the magnetic moment of the electron. However, the size of this frequency jump is

proportional to the ratio of magnetic moment over mass of the trapped particle. Thus, the

signature of spin transitions is by about six orders of magnitude smaller compared to the

free electron, which illustrates the experimental challenge. This thesis presents the first

detection of individual single proton spin transitions which is an important step towards

a high-precision determination of the g-factor of the proton and the antiproton.

The most accurate value for the g-factor of the antiproton was determined from spec-

troscopy experiments of exotic antiprotonic atoms in [34, 35]. However, the relative pre-

cision of these measurements is of the order of 10−3, only. Thus, a millionfold improved

value for the antiproton g-factor is feasible. Very recently, a new collaboration named

BASE (Baryon Antibaryon Symmetry Experiment) has started to set up an experiment
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at CERN to determine the magnetic moment of the antiproton [36]. Thus, a stringent test

of the CPT-symmetry in the baryon sector is in reach.

This thesis is organized as follows:

• Chapter 2 describes the principles of charged particle storage in a Penning trap.

• Chapter 3 describes the continuous Stern-Gerlach effect, the motion of a proton in

a magnetic bottle field and the double-trap technique to determine the g-factor.

• Chapter 4 describes the non-destructive detection of the eigenmotions of the trapped

proton.

• Chapter 5 describes the experimental setup.

• Chapter 6 describes the production of a single proton.

• Chapter 7 reports on the high-precision determination of the free cyclotron frequency

of a single proton in the precision trap. The realization of the first detection of a

single proton cyclotron noise-dip is discussed.

• Chapter 8 reports on the first detection of individual spin transitions of a single

proton. This was realized by systematic studies on the stability of the axial eigen-

frequency of the proton in the analysis trap.

• Chapter 9 summarizes the experimental status and gives an outlook on future per-

spectives.



Chapter 2

Penning trap

A Penning trap confines charged particles by a superposition of static magnetic and electric

fields [37, 38]. A homogeneous magnetic field restricts the motion of the ion in the radial

plane. The strength of the magnetic field B0 defines the free cyclotron frequency

ωc =
q

m
B0 , (2.1)

where q/m is the charge-to-mass ratio of the ion, which is in case of the proton e/mp. The

confinement along the axis ~ez of the magnetic field is achieved by a quadrupole electrostatic

potential. A possible realization by a set of hyperbolic electrodes is shown in Fig. 2.1. A

Figure 2.1: A hyperbolical Penning trap which consists of a ring electrode with radius

ρ0 and two endcaps at distance 2z0. The electrostatic quadrupole potential is realized by

applying a voltage V0 to the ring electrode. The magnetic field B0 in z-direction confines

the particle in the radial plane. The electric field confines the particle in the axial direction.

voltage V0 is applied to the ring electrode and the endcaps are kept on ground potential.

Infinitely extended electrodes of hyperbolic shape produce a purely quadrupolar potential

Φ(z, ρ) = V0
z2 − ρ2/2

2d2
with d2 =

1

2

(

z20 +
ρ20
2

)

. (2.2)
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Figure 2.2: The motion of a charged particle inside a Penning trap is a superposition of

three eigenmotions [40]: The magnetron motion around the trap center in the radial plane

at frequency ω−, the circular motion at the modified cyclotron frequency ω+ and the axial

motion along the magnetic field lines at frequency ωz.

Here z0 and ρ0 are the distances from the center of the trap to the endcaps and the ring

electrode, respectively, which define the characteristic trap parameter d.

2.1 Particle motion I: The three eigenmotions

The motion of the ion is described by three independent eigenmodes as shown in Fig. 2.2:

The axial oscillation along the magnetic field lines and the two radial modes called mag-

netron motion and modified cyclotron motion. The frequencies of these modes can be

obtained by solving the equations of motion [39]:

ωz =

√

qV0

md2
, (2.3)

ω− =
ωc

2
−
√

(ωc

2

)2
− ω2

z

2
, (2.4)

ω+ =
ωc

2
+

√

(ωc

2

)2
− ω2

z

2
. (2.5)

The axial frequency ωz is independent of the magnetic field. The electric field shifts the

free cyclotron frequency to ω+. The magnetron frequency ω− is defined by the balance of
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the Lorentz force and the attractive force of the electric field in radial direction. Stable

storage is only realized if the radicand in Eq. (2.4) and Eq. (2.5) is positive.

For our experiment1, a magnetic field of B0 = 1.899T and a trapping voltage of V0 = 3.1V

is used to trap a single proton. With d = 5.7mm the three eigenfrequencies are given by

ωz = 2π · 674 kHz, ω− = 2π · 8.4 kHz and ω+ = 2π · 28.97MHz .

The axial frequency is related to the radial frequencies by

ω+ω− =
ω2
z

2
. (2.6)

The frequency of interest, the free cyclotron frequency, is related to the eigenfrequencies

by the following equations:

ωc = ω+ + ω− , (2.7)

ω2
c = ω2

+ + ω2
z + ω2

− . (2.8)

The later equation, the so-called Invariance Theorem [41], does not only hold for ideal

traps as described above but also in case of a misalignment between the magnetic field

and the symmetry axis of the electrostatic trapping potential and in case of an ellipticity

of the trapping potential. This allows to determine the free cyclotron frequency to high

accuracy even in the presence of alignment errors or an ellipticity. Thus, Eq. (2.8) is used

to determine the free cyclotron frequency. Due to the hierarchy of the eigenfrequencies

ω+ ≫ ωz ≫ ω− , (2.9)

the resulting precision of the free cyclotron frequency is mainly limited by the uncertainty

of the measurement of the modified cyclotron frequency. Thus, for the determination of the

free cyclotron frequency, the experimental focus is set on a fast and accurate measurement

of the modified cyclotron frequency.

In the magnetic field the spin may orientate parallel or antiparallel to the magnetic field

lines. The two spin states called up and down are separated by the energy ~ωL, where the

spin precession frequency, also referred to as Larmor frequency, ωL is given by

ωL = g
q

2m
B0 . (2.10)

The total energy of the system can be written as a sum of the spin precession with quantum

number mL =
(

−1
2 , +

1
2

)

and the three independent harmonic oscillators [42]

E = EL + E+ + Ez + E−

= ~mLωL + ~ω+

(

n+ +
1

2

)

+ ~ωz

(

nz +
1

2

)

− ~ω−

(

n− +
1

2

)

, (2.11)

1Numerical examples of physical quantities for typical parameters in our experiment are highlighted in

italics.
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where ni are the quantum numbers of the eigenmotions. The negative sign of the mag-

netron motion arises from the metastable character of this oscillation. The energy in the

magnetron mode is given by

E− =
1

2
m

(

ω2
− − ω2

z

2

)

ρ2− ≈ −1

4
mω2

zρ
2
− , (2.12)

where in the last step the kinetic term 1
2mω2

−ρ
2
− has been neglected since ω2

−/ω
2
z ≪ 1.

Thus, reducing the magnetron energy E− actually increases the magnetron radius ρ−

since it is primarily potential energy. However, the magnetron mode is effectively stable

since in case of the proton the radiation rate is negligible [39].

The energy of the axial motion and the modified cyclotron motion are given by

Ez =
1

2
mω2

zz
2 , (2.13)

E+ =
1

2
mω2

+ρ
2
+ . (2.14)

2.2 Particle motion II: Energy dependence

The trapping potentials in an actual Penning trap experiment are not uniform and homo-

geneous [39]. The purely quadratic electrostatic potential of Eq. (2.2) cannot be achieved

in a real experiment due to imperfections in machining and alignment of the electrodes and

patch effects which disturb the potentials on the electrodes. In addition, the homogeneity

of the magnetic field is limited due to the finite length of the generating coils and due to

the presence of the apparatus in the bore of the solenoid. The interesting question is how

these disturbances affect the mode frequencies and whether these shifts can be compen-

sated.

In case of the electrostatic potential this can be investigated by a Taylor expansion around

the center of the trap. For a small magnetron radius ρ− ≪ ρ0, this can be reduced to an

expansion in the axial direction

Φ(z, ρ) ≈ Φ(z) =
∞
∑

k=0

Ckz
k with Ck =

1

k!

∂kΦ

∂zk

∣

∣

∣

∣

(0)

= ckV0 . (2.15)

Due to the mirror symmetry of the trap all odd terms can be neglected. The lowest even

order k = 2 describes the harmonic oscillation at frequency

ωz =

√

2qV0c2
m

. (2.16)

The particle amplitudes are in the range of several µm which is orders of magnitude smaller

than the trap size. Thus, only orders up to k = 6 have to be taken into account. For the

axial mode these higher order terms change the equation of motion to

z̈ = − q

m
∇

6
∑

k=0

V0ckz
k = −2q

m
V0

(

c2z + 2c4z
3 + 3c6z

5
)

. (2.17)
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Neglecting the quintic term z5 one obtains an equation of a cubic Duffing Oscillator of the

form

z̈ = ω2
0z + βz3 . (2.18)

The effect of the so-called Duffing term βz3 on the oscillation is discussed in many course

books [43]. The solution of Eq. 2.18 can be expressed as

ω2
1 = ω2

0 + f(β)z2 , (2.19)

where the parameter f(β) is given by the strength of the anharmonicities. Thus, the

frequency is shifted by a part which depends on the motional amplitude, which causes line

broadening and systematic shifts - a highly undesired feature. Solving Eq. (2.17), the axial

frequency shift ∆ωz can be expressed as a function of the axial energy Ez as

∆ωz =
3

4
ωz

(

c4
c22

+
5

6

c6
c32

(

Ez

qV0

))

Ez

qV0
. (2.20)

For a proton at cryogenic axial temperatures Tz = 4.2K (Ez = 0.36meV) and c4/c
2
2 = 10−4

the relative shift of the axial frequency amounts to ∆ωz/ωz = 9 ·10−9. The contribution of

the higher order term c6/c
3
2 = 10−4 causes a shift of ∆ωz/ωz = 9 · 10−13 only. However,

considering an excited ion with an energy of Ez = 100meV, the same anharmonicities

cause shifts of the order of ∆ωz/ωz(c4) = 2 · 10−6 and ∆ωz/ωz(c6) = 6 · 10−8, respectively.

Thus for higher particle energies, higher order corrections become more significant.

A systematic shift of the axial frequency due to a certain energy Ez could be compen-

sated. However, this requires precise knowledge of Ez and that Ez is stable during the

measurement of the frequency.

But as we will see in Chapter 4 the axial mode energy is thermally distributed. This means

that for non-vanishing c4 and c6 the axial frequency will be smeared out which makes a

high-precision measurement very difficult.

A non-harmonic potential (c4 6= 0) does not only affect the axial mode but results in a

coupling of all eigenmodes and thus in a dependence on the mode energies Ei [42]. The

frequency shift for the axial frequency is given by

∆ωz

ωz
=

3

qV0

c4
c22

(

−1

2

(

ωz

ω+

)2

E+ +
1

4
Ez + |E−|

)

, (2.21)

the modified cyclotron frequency is shifted by

∆ω+

ω+
=

3

qV0

c4
c22

(

1

4

(

ωz

ω+

)4

E+ − 1

2

(

ωz

ω+

)2

Ez −
(

ωz

ω+

)2

|E−|
)

(2.22)

and for the magnetron frequency one obtains

∆ω−

ω−

=
3

qV0

c4
c22

(

−
(

ωz

ω+

)2

E+ + Ez + |E−|
)

. (2.23)

The effect of an inhomogeneous magnetic field on the eigenfrequencies is described in

chapter 3.
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Figure 2.3: A 5-electrode cylindrical Penning trap with inner radius ρ0 providing open

access on the symmetry axis is shown. The voltage Vc applied to the correction electrodes

with length lce is used to achieve a quadrupole potential in the center of the trap. The

length of the ring electrode and the endcaps are denoted by lre and lec, respectively. The

electrodes are spaced by the length ld.

2.3 Cylindrical Penning trap design

In our experiment cylindrical Penning traps [44] are utilized since they have several ad-

vantages:

1. Cylindrical electrodes are easier to machine than hyperbolical shaped electrodes.

2. The trap can be easily extended by additional electrodes or even by extra traps.

3. Due to the open access on the symmetry axis the ions can easily be exchanged

between these traps.

4. The potential is analytically calculable which simplifies the design of the trap.

The electrostatic design of a Penning trap focuses on two aspects, the orthogonality and

the compensation.

The cylindrical Penning trap shown in Fig. 2.3 has additional correction electrodes in-

between the ring electrode and the endcaps. These correction electrodes are biased to tune

out some of the anharmonicities (c4, c6). The relation between the voltages of correction

Vc and ring electrode V0 is called tuning-ratio

TR =
Vc

V0
. (2.24)

The coefficients c4 and c6 are minimized for the tuning-ratios T c4
R and T c6

R , respectively.

The difference between the two tuning-ratios ∆TR = T c4
R − T c6

R should be small in order

to eliminate higher order contributions simultaneously. The feature to achieve c4 = c6 = 0

for a specific tuning-ratio ∆TR = 0 is called compensation.

A modification of the tuning-ratio will influence the potential and thus change the axial

frequency by

d2 = ∂ωz/∂TR . (2.25)
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AT PT

Inner radius of ring electrode ρ0 (mm) 1.8 3.5

Length of ring electrode lre (mm) 0.39 0.92

Length of correction electrode lce (mm) 1.36 2.85

Length of endcap lec (mm) 8.65 6.91

Distance between electrodes ld (mm) 0.14 0.14

Quadrupolar contribution c2 (m)−2 115 · 103 30.5 · 103
Orthogonality d2 (Hz/mUnit) 0.065 3.3

compensation ∆TR (mUnit) −0.037 −24.3

d4 = ∂c4/∂TR (mm−4/mUnit) 48 · 10−3 3.4 · 10−3

d6 = ∂c6/∂TR (mm−6/mUnit) −14 · 10−3 0.7 · 10−3

Magnetic field B0 (T) 1.167 1.9

Ring voltage V0 (V) -1.02 -4.32

Axial frequency νz (kHz) 742.1 785.1

Magnetron frequency ν− (kHz) 16.3 10.6

Modified cyclotron frequency ν+ (MHz) 17.78 28.97

Table 2.1: The geometric and potential parameters of the analysis trap (AT) and the

precision trap (PT) and the motional frequencies of a trapped proton.

This behavior is no limit for the achievable experimental accuracy. However, the axial

frequency can only be measured in a narrow range as will be explained in chapter 4. Thus,

optimizing the tuning-ratio requires tedious additional adjustment of the ring voltage.

This can be overcome by a vanishing d2, which is called orthogonality.

The design of an orthogonal and compensated trap can be achieved by an appropriate

geometry of the trap. For a given inner radius of the electrodes, the length of the ring

and the correction electrodes as well as the tuning-ratio are the three required degrees

of freedom. In [45] an expression for the coefficients of Eq. (2.15) in terms of the trap

dimensions is given. This allows for the design of an orthogonal and compensated trap.

Our experiment utilizes two Penning traps, the so-called precision trap (PT) and the so-

called analysis trap (AT), which will be motivated in chapter 3. However, the parameters

for both Penning traps are already summarized in table 2.1, giving an overview of the

dimensions and the electrostatic coefficients. The parameters d4 = ∂c4/∂TR and d6 =

∂c6/∂TR are extracted from a potential-calculation with COMSOL [46]. The details of

the design of the analysis trap can be found in [46] and [47].



Chapter 3

The magnetic bottle

The determination of the g-factor can be reduced to the measurement of the free cyclotron

frequency ωc and the Larmor frequency ωL

g = 2
ωL

ωc
. (3.1)

The free cyclotron frequency is deduced from the three eigenfrequencies of the trapped

proton by application of the Invariance Theorem (Eq. (2.8)). The non-destructive deter-

mination of the eigenfrequencies is based on the detection of the movement of the proton

in the trap (see chapter 4). Since the precession of the spin is not a movement of a charge,

this detection scheme is not applicable for the determination of the Larmor frequency.

However, the energy splitting ∆EL between the two spin states in a magnetic field

∆EL = ~µ · ~B = g
e~

2mp
B0 = ~ωL (3.2)

can be utilized to probe spin transitions. The spin flip probability is scanned as a function

of the frequency of an external driving field. From the resulting Larmor resonance curve ωL

can be extracted. A fundamental requirement for this measurement scheme is the ability

to observe spin transitions. This is accomplished by a coupling between the magnetic

moment of the proton in the trap and its axial oscillation frequency in the presence of an

inhomogeneous magnetic field, the so-called continuous Stern-Gerlach effect [33]. A ring

electrode made of ferromagnetic material produces a quadratic magnetic field component

B2 symmetric around the z-axis in addition to the homogeneous part B0, which results in

a magnetic field of

~B = B0~ez +B2

[(

z2 − ρ2

2

)

~ez − z~ρ

]

. (3.3)

Due to the interaction of the µz-component of the magnetic moment with this so-called

magnetic bottle, the effective axial potential is given by the sum of the electrostatic po-

tential Φel
z and the magnetic potential Φmag

z

Φz = Φel
z +Φmag

z = c2V0z
2 + µzB2

(

z2 − ρ2/2
)

. (3.4)
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This modifies the axial equation of motion

z̈ = −
(

2qc2V0

mp
+

2µzB2

mp

)

z , (3.5)

which alters the axial frequency

ω2
z = ω2

z,0

(

1 +
2µzB2

mpω2
z,0

)

, (3.6)

with ωz,0 being the unperturbed axial frequency in a homogeneous magnetic field. Since

the second term in the brackets is typically small compared to 1 and consequently ωz ≈ ωz,0

the axial frequency shift can be expressed as

∆ωz =
2µzB2

mpωz
. (3.7)

A spin transition of ∆mL = ±1 leads to a frequency shift of

∆ωz,SF = ∓g
µNB2

mpωz
. (3.8)

By measuring ωz before and after irradiation of an external driving field, the success

of the attempt to induce a spin transition can be detected. Accordingly, the spin flip

probability PSF for a given driving frequency ωRF can be obtained in a series of spin flip

attempts. Finally, by scanning the external driving frequency ωRF the Larmor resonance

curve PSF(ωRF) is obtained from which the Larmor frequency can be deduced.

The realization of the magnetic bottle is discussed in the following section 3.1. As in case of

the electrostatic anharmonicities discussed in the previous chapter, a quadratic component

of the magnetic field shifts the eigenmotions depending on their motional amplitudes. This

causes a broadening (see section 3.2) and a shift (see section 3.3) of the resonance curves,

which precludes a high-precision measurement of the g-factor in the magnetic bottle. This

can be overcome by the introduction of a double-trap setup (see section 3.4), which means

that the trap with the magnetic inhomogeneity is only used for the spin state analysis.

However, inside a magnetic bottle, the axial frequency does not only depend on the spin

magnetic momentum but also on the orbital magnetic momentum. Accordingly, the axial

frequency fluctuates due to energy changes in the radial modes. Two detection schemes

for ωL and ωc for a fluctuating axial frequency are discussed in section 3.5.

3.1 Magnetic bottle design - the analysis trap

A Penning trap with a very strong superimposed magnetic bottle of B2 = 300mT/mm2

(see Fig. 3.1) had been designed in the Ph.D.-thesis of Cricia de Carvalho Rodegheri [46].

A spin flip in this magnetic bottle causes an axial frequency jump of ∆ωz,SF = 2π ·171mHz

at an absolute axial frequency of ωz = 2π · 742 kHz.
In principle, the magnetic bottle can be increased by the reduction of the inner diameter

of the trap. However, a smaller trap diameter has several experimental drawbacks. First,
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Figure 3.1: In a) a sketch of the analysis trap with the ferromagnetic ring electrode

is shown. The magnetic field lines are calculated by an FEM-calculation done with

COMSOL. The resulting z-component of the magnetic field Bz as a function of the

cylindrical coordinates z and ρ is shown b) and c), respectively. The center of the analysis

trap is given by z = ρ = 0. The magnetic field increases as a function of z and decreases

as a function of ρ.
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the electrostatic potential is much more sensitive on patch potentials on the electrodes

which complicates the trap optimization (see chapter 8). Second, great care has to be

taken when manufacturing and assembling the trap to avoid impurities on the surfaces of

the electrodes (see chapter 5). In order to obtain the maximum possible bottle B2 for a

given inner radius the ring electrode is made of cobalt-iron (Co/Fe), which saturates in

the strong magnetic field. On the other hand, a special geometry was chosen in order to

increase the magnetic inhomogeneity for a given inner trap radius. Thus, the radius of the

trap had to be decreased to ρ0 = 1.8mm, only. The parameters of the so-called analysis

trap are summarized in Tab. 2.1 in the previous chapter.

3.2 Magnetic bottle lineshape

The determination of the Larmor frequency is based on the measurement of the spin

transition rate as a function of an external driving frequency. In this section the thermal

broadening of the resonance line in the presence of a magnetic inhomogeneity shall be

discussed. The corresponding systematic shifts are discussed in section 3.3. In section 3.5.1

we will see that also the determination of the modified cyclotron frequency in the magnetic

bottle is based on the observation of quantum jumps as a function of an external driving

frequency. Thus, the discussion of the line shape covers both the Larmor resonance as well

as the modified cyclotron resonance.

The average magnetic field sampled by the axial motion of the proton is given by

B(z0) = B0 +B2

〈

z20
〉

. (3.9)

Thus, both the modified cyclotron frequency ω+ and the Larmor frequency ωL, which are

both denoted by ω depend on the axial amplitude

ω = ω0

(

1 +
B2

B0

〈

z20
〉

)

= ω0 + δω , (3.10)

where ω0 is the frequency in the minimum of the magnetic bottle and δω defines the

linewidth of the resonance curve. The goal is to extract ω0 from the lineshapes giving

the modified cyclotron frequency and the Larmor frequency for vanishing axial ampli-

tude z0 = 0. Since the axial motion is in thermal equilibrium with its detection sys-

tem the thermal energy is related to the kinetic energy by the equipartition theorem

Ez =
1
2mω2

z

〈

z20
〉

= 1
2kBTz. Thus, δω can be expressed in terms of the axial temperature

Tz

δω = ω0
B2

B0

kBTz

mω2
z

. (3.11)

For Tz = 10K, ωz = 740 kHz and ω0 = 50MHz, a linewidth of δω = 2π ·49 kHz is obtained.
The following discussion is based on a semiclassical theory presented by Brown [48]. The

parameter which defines the line shape is γz/δω where γz is the coupling constant of the
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Figure 3.2: The lineshape in the magnetic bottle reflects the thermal distribution of the

axial states. The Larmor resonance and the modified cyclotron resonance are given by

this lineshape. The abrupt rising at ω0 gives the respective frequencies in the center of

the magnetic bottle. δω defines the width of the curve and δω/ω0 is about one percent for

our experimental conditions.

axial detection system (see chapter 4). Since γz ≪ δω for our experimental conditions, the

lineshape is given by

χ(ωrf, δω, γz) =
1

πδω



arctan





γz

(

ωrf −
(

ω0 +
γz

2Reγ̃ δω
))

2Reγ̃



+
π

2





· exp



−
ωrf −

(

ω0 +
γz

2Reγ̃ δω
)

δω



 , (3.12)

with γ̃ =
√

γ2z + 4iγzδω. This line reflects the Boltzmann distribution of the axial states

with a sharp edge at ω0 as shown in Fig. 3.2. Thus, the Larmor frequency and the modified

cyclotron frequency can be extracted from this abrupt rising in the resonance line.

3.2.1 Transition rate for the Larmor resonance

In order to drive spin transitions an external magnetic field with amplitude ~brf is irradiated

to the trap. The vector ~brf is orientated perpendicular to the magnetic field B0 rotating

at the frequency νrf. On resonance νrf = νL the particle sees a constant magnetic field

in the ρ-direction and the spin will start to precess around this field component with the
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Figure 3.3: The dotted line shows the spin transition rate for an axial temperature of

Tz = 10K, an external rf-field of brf = 2µT and an irradiation time of t0 = 10 s. Since

PSF(ω0) = 50% a further increase of the Rabi frequency ΩR leads to saturation (solid line).

A doubling of the external field amplitude brf has the same effect as an increase of the

irradiation time by a factor of four. A higher axial temperature Tz leads to a broadening

and a reduction of the maximal spin flip probability PSF (dashed line).

Rabi frequency ΩR = 2πνLbrf/B0 [49]. Inside the magnetic bottle the spin-flip probability

is given by [48]

PSF =
1

2

(

1− exp

(

−1

2
Ω2
Rt0χ(2πνrf,B2,Tz)

))

, (3.13)

where t0 is the irradiation time. A driving field below the resonance frequency νL has no

effect. PSF increases abruptly to its maximum at the resonance frequency. Increasing brf

or t0 leads to an increase of the spin flip probability. However, the maximum probability

is limited to PSF = 50%. This means that for PSF(νL) = 50% a further increase of brf or

t0 saturates the resonance curve, leading to a line broadening. Moreover, the linewidth of

the resonance curve broadens by an increase of the axial temperature Tz. This increases

the magnetic field region which is sampled by the motion of the proton. Thus, in order to

determine νL as precisely as possible the Larmor resonance curve should be measured for

the lowest achievable temperature Tz. Calculated resonance curves for varying values of

Tz and ΩR are shown in Fig. 3.3.

3.3 Limits for the determination of g in the magnetic bottle

In this section the limitations of a g-factor measurement in the magnetic bottle due to

the systematic shifts of the Larmor frequency ∆νL, the modified cyclotron frequency ∆ν+
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and the axial frequency ∆νz shall be discussed.

The relative error in the g-factor is given by

∆g

g
= 2

1

νc
∆νL + 2

νL
ν2c

∆νc . (3.14)

The dependency of the Larmor frequency on the axial energy has already been discussed

in the previous section giving rise to the broad lineshape with a sharp threshold at

νL(Ez = 0). However, this frequency is shifted systematically due to the energy in the

two remaining eigenmodes E+ and E− by

∆νL =
νL

4π2mpν2z

B2

B0

(

− ν2z
ν2+

E+ − 2|E−|
)

. (3.15)

For a magnetic bottle of B2 = 300mT/mm2 this corresponds to a shift of ∆νL/T+ =

−8.4Hz/K and ∆νL/T− = −9733Hz/K.

The free cyclotron frequency is deduced by the application of the invariance theorem. The

contribution of the the magnetron frequency shift can be neglected due to the hierarchy

of the three eigenfrequencies leading to the systematic shift

∆νc =
ν+
νc

∆ν+ +
νz
νc

∆νz . (3.16)

For the energy dependence of ν+ on the axial energy the same argumentation holds as for

the Larmor frequency. Since a measurement of ν+ reflects the thermal distribution of the

axial mode, the frequency ν+(Ez = 0) can be identified as the sharp edge in the resonance

curve. The systematic shift due to E+ and E− is given by

∆ν+ =
ν+

4π2mpν2z

B2

B0

(

− ν2z
ν2+

E+ − 2|E−|
)

. (3.17)

For a magnetic bottle of B2 = 300mT/mm2 this corresponds to a shift of ∆ν+/T+ =

−3Hz/K and ∆ν+/T− = −3481Hz/K.

The axial frequency inside a magnetic bottle is independent of the axial oscillation am-

plitude since no magnetic moment is generated by this movement. However, the axial

frequency strongly depends on the radial momentum. The experimental challenges con-

nected to this scaling are discussed in section 3.5. The systematic shift due to E+ and E−

is given by

∆νz =
νz

4π2mpν2z

B2

B0
(E+ + |E−|) . (3.18)

For a magnetic bottle of B2 = 300mT/mm2 this corresponds to a shift of ∆νz = 72Hz/K

for both radial modes.

Combining Eq. (3.14) to (3.18) gives the relative shift of the g-factor

∆g

g
=

2

4π2mpν2z

B2

B0

(

−ν2zνL
ν2+νc

E+ +

(

−2
νL
νc

+ 2
νLν

2
+

ν3c
− νLν

2
z

ν3c

)

|E−|
)

. (3.19)
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For a magnetic bottle of B2 = 300mT/mm2 this corresponds to a relative shift of ∆g/gT+ =

−9 · 10−7 /K and ∆g/gT− = −2.8 · 10−6 /K.

Summarizing, a determination of the g-factor with a relative precision of less than 10−9

would require the knowledge of the absolute energy of the radial modes at a precision of

about 0.1µeV. In addition, this energy has to be stable at a level of 0.1µeV during the

whole measurement. This is far from experimental feasibility.

3.4 The double-trap setup

In order to overcome the limitations of a g-factor determination in the magnetic bottle, a

setup with two separate traps is used. This gives the opportunity to separate the accurate

measurement of the eigenfrequencies from the determination of the spin state. The preci-

sion trap is located 44mm from the magnetic bottle of the analysis trap which reduces the

magnetic inhomogeneity by a about a factor of 100000 compared to the analysis trap. A

magnetic bottle strength of B2(PT ) ≈ 4.7µT·mm−2 at the position of the precision trap

was extracted from a calculation of the axial magnetic-field component done with COM-

SOL. This B2 keeps the bottle-broadening effect to a few ppb. The spin state analysis

takes place in the analysis trap (AT) with the strong superimposed magnetic inhomogene-

ity. The idea of this double trap method was introduced by Häffner and Herrmanspahn

[50]. It was successfully applied for the determination of magnetic moments of a single

electron bound to a hydrogen-like ion for different ion species [51, 9, 10, 11]. The main

challenge of transferring the measurement of the magnetic moment of the bound electron

to the proton is the smaller magnetic moment and larger mass of the proton. Accordingly

a stronger inhomogeneity is needed (see section 3.1).

The two traps are connected by a transport section, consisting of six electrodes. A

schematic of the whole trap stack is shown in Fig. 3.4. The geometric properties of the

two traps are listed in Tab. 2.1.

The proposed measurement scheme for the g-factor depicted in Fig. 3.4 is the following:

1. The spin orientation is detected in the analysis trap by driving a spin flip. From

the direction of the frequency change the initial and the final spin state can be

determined.

2. The proton is transported adiabatically to the precision trap.

3. In the precision trap a spin-flip transition is driven near the expected Larmor fre-

quency. Simultaneously the free cyclotron frequency is measured.

4. The proton is transported adiabatically to the analysis trap.

5. The spin orientation is detected in the analysis trap by driving a spin flip. From

the direction of the frequency change the initial and the final spin state can be

determined. By comparison of the initial state with the final spin state of step 1
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Figure 3.4: The double-Penning trap setup consists of the analysis trap on the left and

the precision trap on the right side. Transport electrodes between both traps are used for

the transport of the proton.

(i. e. the spin state of the proton before the transport to the precision trap and

after the return from the precision trap) the success of the spin flip attempt in the

precision trap can be judged.

This cycle is repeated several hundred times for different driving frequencies νrf in the pre-

cision trap. Thus, the measurement of νL takes place in the homogeneous magnetic field

of the precision trap. Since the free cyclotron frequency is determined simultaneously to

the spin transition, the measurement is not sensitive to magnetic field drifts or fluctuations.

3.5 The magnetic bottle - a challenging experimental envi-

ronment

The main experimental challenge for the determination of the g-factor of the proton is the

ability to resolve spin transitions. In the presence of a magnetic inhomogeneity not only

the spin magnetic momentum but also the orbital magnetic momentum changes the axial

frequency. Thus, the axial frequency shift in terms of the quantum numbers is given by

∆νz(n+, n−,ms) =
hν+

4π2mpν2z

B2

B0

(

n− +
1

2
+

ν−
ν+

(

n+ +
1

2

)

+
g

2
mL

)

. (3.20)

The axial frequency shift due to a quantum jump of the modified cyclotron motion is

∆νz(∆n+ = ±1) = 61mHz. A change of the magnetron quantum number causes a fre-

quency jump of ∆νz(∆n− = ±1) = 49µHz. A spin flip leads to ∆νz,SF = 171mHz.

The remarkable property of Eq. (3.20) is

∆νz(∆mL = 1)

∆νz(∆n+ = 1)
=

g

2
. (3.21)
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Figure 3.5: Histogram of the axial frequency differences αSF for three different magnitudes

of the background fluctuation Ξback. For a stable axial frequency three sharp peaks are

obtained as shown by the solid lines. For an axial frequency fluctuation of Ξback = ∆νz,SF/3

the three peaks broaden (dashed curve). For the dotted curve where Ξback = ∆νz,SF the

three distributions cannot be distinguished anymore.

Already three quantum jumps of the modified cyclotron mode cause a larger shift of the

axial frequency than a spin transition. This ratio cannot be modified by the size of the

magnetic bottle or any adjustable parameter.

The energy of the modified cyclotron motion E+ is defined by the interaction with a ded-

icated detection system connected to the precision trap. Thus, the mean energy of a

proton transported to the analysis trap is given by E+ ≈ 0.3meV (T+ ≈ 4K). Conse-

quently, for a successful detection of a spin transition the radial energy has to be stable at

∆E+/E+ ≈ 10−4.

However, changes in the radial quantum numbers cannot be avoided completely. But due

to different optimization steps we were able to suppress these fluctuations more and more.

In this section two different detection schemes for the g-factor will be discussed. The

feasibility of these methods depends on the achievable axial frequency stability.

We define α as the frequency difference between to consecutive axial frequency measure-

ments separated by the time t and t+ T

∆νz = νz(t)− νz(t+ T ) = α . (3.22)

The frequency difference between two axial frequency measurements separated by a spin

flip drive is defined as αSF. The three possible values for αSF are

αSF = −∆νz,SF ∨ αSF = 0 ∨ αSF = +∆νz,SF . (3.23)
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The solid line in Fig. 3.5 shows the corresponding three sharp peaks in a histogram for α

for a series of trials. The instability of the axial frequency leads to a broadening of these

peaks. We quantify this instability by the standard deviation Ξ of the axial frequency

differences αi

Ξ =

√

√

√

√

1

N − 1

N
∑

i=1

(αi − ᾱ)2 , (3.24)

which we call the axial frequency fluctuation. We define αback as the difference between

two axial frequency measurements without an external driving field. Consequently, the

three peaks will be broadened by Ξback as shown by the dashed curve in Fig. 3.5 or by the

dotted curve for even larger Ξback.

3.5.1 Determination of the g-factor via a statistical detection scheme

We will first discuss the case where Ξback ≈ ∆νz,SF. The triple signature is smeared out

but still αSF will be larger than αback on average. This means that M spin flips in N

cycles will lead to a broadening of the frequency fluctuations ΞSF compared to the case

where no spin flips are induced by

ΞSF =

√

√

√

√

M
∑

i

(αi ±∆νz,SF − ᾱ)2

N − 1

N
∑

i=M

(αi − ᾱ)2

N − 1

≈
√

Ξ2
back + PSF∆ν2z,SF . (3.25)

Turning it around, the spin flip probability for a given driving frequency can be determined

by comparing ΞSF and Ξback

PSF ≈ Ξ2
SF − Ξ2

back

∆ν2z,SF
. (3.26)

By scanning the external driving frequency, the Larmor resonance curve can be detected.

We call this a statistical detection of the Larmor frequency since spin flips can only be

observed for an ensemble of attempts [52].

To obtain a value for g, the modified cyclotron frequency has to be measured in the

magnetic bottle. Here, we want to discuss the statistical detection of ν+ which is carried

out in the same way as for the Larmor frequency (a less precise but much faster method

is described in chapter 8).

Quantum transitions ∆n+ are induced between two axial frequency measurements α∆n+ by

an external driving field. An explicit relation like Eq. (3.26) for the transition probability

in terms of the frequency fluctuations Ξ∆n+ and Ξback cannot be given. Since the modified

cyclotron mode is not a two-level-system the number of quantum transitions for each α∆n+

can be more than just one. Nevertheless, an increase of Ξ∆n+ can still be observed for

a resonant driving field. Thus, the axial frequency fluctuation Ξ∆n+ as a function of the
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Figure 3.6: Theoretical Larmor resonance curves obtained for the statistical method. The

frequency fluctuation ΞSF The grey band indicates the error for N = 100 cycles for each

datapoint. In a) a background fluctuation of Ξback = ∆νz,SF/3 was assumed. For a higher

background fluctuation Ξback = ∆νz,SF as shown in b) the resolution limit is reached.

external driving frequency reassembles the lineshape χ of Eq. (3.12) from which ν+(Ez = 0)

can be extracted [47].

In order to avoid systematic errors in the measurement of ν+ the amplitude of the driving

field is kept very weak. Thus, approximately the same quantum state n+ is maintained

over the whole measurement process.

In pinciple, the statistical method is applicable for any magnitude of the background

fluctuations Ξback. However, the error of Ξ for N sequences is given by

σΞ =
Ξ√

2N − 2
. (3.27)

Thus the resolution limit is reached if the error

∆PSF =
2

∆ν2z,SF
√
2N − 2

√

Ξ4
back + Ξ4

SF (3.28)

is larger than the difference between the maximum and the minimum of the resonance

curve which we define as β = PSF,max − PSF,min. To illustrate this limit, resonance curves

for different magnitudes of Ξback are shown in Fig. 3.6.

3.5.2 Analysing individual spin flip drives to determine the g-factor

The statistical method is a very effective scheme to extract the Larmor frequency in the

analysis trap for a comparably large instability of the axial frequency. However, this

scheme is not suited for the double-trap technique presented in section 3.4. Here, the

proton arrives with an unknown spin state in the analysis trap. But the knowledge of this

initial spin state is required for the determination of the success of the spin flip attempt in

the precision trap. Thus, spin transitions are induced until a frequency jump of +∆νz,SF

or −∆νz,SF is detected, giving the desired spin state information. Comparing this to the

statistical method means that every single α has to be assigned to

Spin state changed ∨ Spin state remained unchanged . (3.29)
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Figure 3.7: Simulated successive measurements of the axial frequency are plotted for vari-

ous background fluctuations Ξback to illustrate the challenge of identifying spin transitions.

Between the crossed data points a spin flip is induced. In a) all spin transitions are clearly

visible. In b) the fluctuations complicate the identification. Even higher background

fluctuations are shown in c) and d).
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give the probability that a spin flip has been detected although the spin state remained

unchanged. for more details see text.

For an unstable axial frequency the distributions of spin flip attempts overlap as already

shown in Fig. 3.5 in the previous section. Accordingly, the same axial frequency difference

α can either correspond to a spin transition or not. In Fig. 3.7 sequences for axial frequency

measurements for various background fluctuations are shown, indicating that the correct

assignment of spin transitions gets more difficult for increasing Ξback. False classifications

of α will decrease the resolution β of the resonance curve. The Rabi frequency is adjusted

to obtain β ≈ 50% without saturation. Two cases have to be considered:

• A: a spin flip has been assigned although the spin state was not changed. Thus, the

baseline of the resonance rises by the corresponding probability PA.

• B: no spin flip has been assigned although the spin state changed. This decreases

the measured probability by PB.

Whether the resonance curve can be resolved strongly depends on the magnitude of the

axial frequency fluctuations in the analysis trap. The following discussion focuses on the

measurement of a Larmor resonance curve in the analysis trap.

The attainable resolution in terms of Ξback can be calculated if we choose a decision rule
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Figure 3.9: Theoretical Larmor resonance curves for the direct detection scheme. In a) the

effect of a varying threshold αt is shown for a background fluctuation of Ξback = ∆νz,SF/3.

In b) the effect of a varying background fluctuation for a threshold of αt = 0.7 ·∆νz,SF is

shown.

for α as shown in Fig. 3.8. All α > αt are assigned to a spin flip and all α < αt are related

to an unchanged spin state. The error probabilities PA and PB are given by

PA =

[∫ ∞

αt

g(Ξback, 0)dα+

∫ −αt

−∞

g(Ξback, 0)dα

]

(1− PSF) (3.30)

PB =

[∫ ∞

−αt

g(Ξback,−∆νSF)dα+

∫ αt

−∞

g(Ξback,+∆νSF)dα

]

PSF/2 , (3.31)

where g(σ, x) is the Gauss-function with standard deviation σ centered around x. The

effect of αt on the Larmor resonance is shown in Fig. 3.9a). The resolution of the resonance

curve decreases with increasing Ξback as shown in Fig. 3.9b). Again, the resolution limit is

reached if the error ∆PSF is larger than the resolution β. The error ∆PSF in terms of the

number of measurements N is described by the standard deviation of the corresponding

binomial distribution

∆PSF =
(

PSFN +
√

NPSF(1− PSF)
)

/N . (3.32)

In Fig. 3.10 the direct method and the statistical method are compared for Ξback = ∆νz,SF/3

and αt = 0.5 ·∆νz,SF. An obvious drawback of the direct detection scheme is the decreased

resolution of the Larmor resonance due to the overlap of the distributions for α. Thus,

for a measurement of the Larmor frequency in the magnetic bottle, the statistical method

should be applied.

However, even in the presence of background fluctuations of Ξback = ∆νz,SF/3, the Larmor

resonance curve can be resolved utilizing the direct detection scheme as shown in Fig. 3.10.

This means that the success of each individual spin flip drive in the analysis trap can be

determined with low uncertainty. This is exactly the purpose of the analysis trap in the

double-trap technique, where the spin state of the proton arriving in the analysis trap

has to be determined. Thus, the double-trap technique is feasible despite low background
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Figure 3.10: Theoretical Larmor resonance curves for background fluctuations of

Ξback = ∆νz,SF/3. The statistical detection scheme is shown in black. The threshold

for the direct detection scheme shown in red is given by αt = 0.5 ·∆νz,SF. For the direct

detection scheme, the baseline is slightly raised by 7% due to the overlap of the three

distributions of α. The error bands for both techniques are comparable.

fluctuations Ξback. The reduction of Ξback, which would render possible the application

of the double-trap technique, was one of the main tasks of this thesis. In chapter 8 reso-

nance curves for both detection schemes will be presented indicating that the double-trap

technique can be applied.



Chapter 4

Detection of eigenmotions

A significant benefit of Penning traps is the weak coupling of the trapped particle to

the outer environment which makes it an ideal system for high-precision measurements.

However, to determine the g-factor of the proton the motional frequencies have to be

measured. The difficulty is to build a detector which is sensitive to the motion of a single

particle. Thus, the design and optimization of the detection systems is one of the key

issues for a successful high-precision Penning trap experiment.

In principle the interaction of the ion inside the trap with a resistor attached to one of

the electrodes has to be investigated [53, 54]. Two different cases have to be discussed:

In the first case, the ion acts as a current source leading to a voltage drop across the

resistor. This voltage is amplified by a cryogenic amplifier to become the detected signal.

In the second case, the ion acts as a perfect conductor at its resonance frequency, thus

shortening the thermal noise of the resistor. The resulting signal also passes the cryogenic

amplifier and is monitored in frequency domain. In both cases, the frequency can be

determined by a fit to the resulting lineshape in the frequency spectrum. For a fast

and precise determination of the particles frequency, a high signal-to-noise-ratio SNR

is required. As will be explained in this chapter this requires a high resistance for both

detection schemes. The realization of the detection system is explained in the first section.

The two detection schemes are discussed in section 4.2 and section 4.3. In principle, only

one detection system for one motional mode is needed to measure all eigenfrequencies of

the ion. The frequency information of the two remaining modes can be obtained by a

sideband-coupling to the detectable mode as explained in section 4.4. The possibility to

manipulate the detector and the energy of the particle by active electronic feedback is the

topic of section 4.5. In section 4.6 the so-called transient recorder is described - a tool for

the continuous monitoring of a motional frequency.

The last part summarizes the main parameters of our detection systems.
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Figure 4.1: Sketch of the detection system. A coil with inductance L and parasitic capac-

itance Cp is attached to one electrode with parasitic capacitance CT . The amplifier with

input impedance RAmp and parasitic capacitance CAmp is connected to the tank circuit

by the coupling capacitance Cc. The signal is monitored with an FFT-analyser

4.1 The detection system

The realization of a high resistance in parallel to the trap is hindered by the parasitic

capacitances of the trap electrodes. This can be overcome by connection of an inductance

to the electrode, which forms a parallel circuit with a high resistance at its resonance

frequency. The properties of the tank circuit are discussed in this section.

The whole detection system consists of an inductor L attached to one electrode followed

by a low-noise amplifier as shown in Fig. 4.1. The inductor forms together with the trap

capacitance CT , its own parasitic capacitance CP and the amplifier capacitance CAmp a

resonant circuit. In order to calculate the resonance frequency

ωLC = 1/
√

LCsys , (4.1)

the system capacitance Csys has to be determined. Taking into account the coupling

capacitance CC between tank circuit and amplifier, the system capacitance is given by

Csys = CT + CP +
CAmp

κ
, (4.2)

where the coupling constant κ is defined by

κ =
CC + CAmp

CC
. (4.3)

The impedance of a parallel LC-circuit is given by

Z(ω) =
1

1
Rp

+ i
(

ωCsys − 1
ωL

) , (4.4)

where Rp is the effective resistance on resonance

Z(ωLC) = Rp = QωLCL , (4.5)

which is proportional to the Q-value of the tank circuit, a measure of the energy loss

per oscillation cycle. As we will see in section 4.2 and 4.3 a high resonance resistance is
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mandatory for the detection of the oscillation of a single ion. The first task in order to

obtain a high resonance resistance Rp is the design of a high-Q resonant circuit. Detailed

descriptions of the optimization process to obtain tank circuits with high quality factors

can be found in [45, 55, 56, 57].

In the following, the influence of the amplifier on the parallel resistance is investigated.

The input resistance RAmp of the amplifier modifies the total system resistance

Rsys =
1

κ2
RpRAmp

Rp +RAmp/κ2
(4.6)

=
Rp

1 + κ2Rp/RAmp
. (4.7)

In order to avoid a decrease of Rp by connecting the amplifier to the tank circuit, a high

input resistance of the amplifier is needed. A weaker coupling of amplifier and tank circuit

by reducing CC would have the same effect but also affects the signal strength which will

be discussed in the next section when the signature of the ion’s motion is introduced.

Thus, the design of a cryogenic amplifier with high input resistances is the second crucial

task for a high resonance resistance which is presented in [45, 57, 58].

For the discussion of the SNR, the noise properties of the detection system are investigated.

The noise en of the whole system at the input of the amplifier is given by the thermal

noise of the tank circuit eth, the input voltage noise eAmp and the current noise iAmp of

the amplifier by

e2n = e2th + e2Amp + i2AmpR
2
sysκ

2 . (4.8)

The thermal noise is given by the Johnson-Noise [59]

eth =
√

4kBTRsysκ2 (4.9)

of the tank circuit. It is reduced by κ2 due to the coupling capacitance CC . Since the

contribution of the thermal noise is much higher than that by the current noise Eq. (4.8)

can be simplified to

e2n = e2th + e2Amp . (4.10)

4.2 Peak detection - signature of an excited ion

In this section the signature of an excited ion shall be discussed. Excited means, that the

motional amplitude ρi of the mode i (i denoting the three eigenmotions +,−, z) is larger

than in thermal equilibrium with the detection system. We are able to excite the three

eigenmodes by application of an rf-field at frequency ωi to one electrode of the trap. In

case of the axial mode we call this a dipole-excitation. For the radial modes one half of a

split electrode is used which we call a quadrupole-excitation. Consequently, the oscillatory

motion of the ion induces a current

I =
q

Di
ρ̇i =

q

Di
ωiρi (4.11)
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in the trap electrodes. The parameter Di is called the effective electrode distance and

characterizes the coupling strength of the ion to the resonant circuit. The magnitude of

Di can be calculated analytically by the determination of the Green’s-function of a specific

trap geometry [45]. The signal at the input of the amplifier is given by the voltage drop

across the system resistance Rsys:

U = RsysIκ
2 . (4.12)

Thus, a peak appears in the frequency spectrum on top of the noise resonance of the tank

circuit from which the oscillation frequency of the ion can be determined.

The SNR can be calculated by the ratio of Eq. (4.12) and Eq. (4.10)

SNR2 =
(RsysIκ)

2

4kBTRsysκ2 + e2Amp

, (4.13)

which is proportional to the square of the motional amplitude ρi. However, a higher

amplitude increases the sensitivity to inhomogeneities of the trapping fields which would

cause unwanted shifts of the motional frequencies. Thus, low-noise amplifiers and high

system resistances are needed to obtain a high SNR for the detection of small motional

amplitudes. There exists an optimal coupling factor κopt for which the SNR is maximized

κopt ≈
(

e2Amp

4kBTR2
p/RAmp

) 1

4

. (4.14)

Summarizing, the sensitivity of a single particle detector is based on the careful design of

• an inductance with a high quality factor Q

• an amplifier with high input resistance RAmp and low-noise characteristics eAmp.

4.3 Dip detection - signature of a thermalized ion

The voltage drop induced by the motion of the ion produces a force which modifies the

equation of motion

ρ̈i + ω2
i ρi = − q2

mpD2
i

ρ̇iZi(ω) . (4.15)

The additional force opposes the motion of the ion and results in a damping with the time

constant

τ =
1

γ
=

mD2
i

Re |Zi| q2
. (4.16)

After several τ the motion of the ion will reach thermal equilibrium with the tank circuit.

The time averaged energy in the mode i will then be equal to the thermal energy at the

detector temperature Ti

〈Ei〉 =
1

2
mω2

i

〈

ρ2i
〉

=
1

2
kBTiv. (4.17)
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Figure 4.2: The interaction of the thermalized ion with the tank circuit can be modeled as

a series lc-circuit in parallel to a parallel LC-circuit. The real part Re |Zi| of the transfer

function is plotted for various particle frequencies. The detection system parameters are

listed in Tab. 4.1. Since the inductance of the tank circuit is orders of magnitudes smaller

than the equivalent inductance l of the ion, the linewidth of the dip signal is about two

orders of magnitude narrower than the resonance curve of the tank circuit.

Since the detection systems are operated at cryogenic temperatures, this process, called

resistive cooling, is the standard technique to cool the motion of the particle.

The characteristics of a thermalized ion can be investigated by inserting the induced

current of Eq. (4.11) into Eq. (4.15). One obtains

m
D2

i

q2
İ + Zi(ω)I +

mω2
iD

2
i

q2

∫

dtI = 0 (4.18)

an equation similar to that of a series lc-circuit

lİ + rI + 1/c

∫

dtI = 0 . (4.19)

Thus, the particle can be interpreted as a series lc-circuit with

l = m
D2

i

q2
and c =

q2

mω2
iD

2
i

, (4.20)

which has a vanishing resistance on resonance. This means that the particle shortens the

thermal noise resonance of the tank circuit at its oscillating frequency ωi = (lc)−1/2, which

provides a second possibility to measure the eigenfrequency but in contrast to the scheme

presented in the previous section now at low particle energies.

The exact line shape of the so-called dip can be determined by investigation of the
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Figure 4.3: A single proton in thermal equilibrium with the axial detection system in the

analysis trap is shown (for parameters see Tab. 4.1).

impedance of a series lc-circuit in parallel to a parallel LC-circuit. The observed frequency

spectrum is given by the thermal noise of the real part of the impedance

Re |Zi| =
1/Rsys

1/R2
sys +

(

(

ωCsys − 1
ωL

)

−
(

ωl − 1
ωc

)−1
)2

=
Rsys

1 +

(

Q
(

ω
ωLC

− ωLC

ω

)

−∆ωi

(

ω − ω2
i

ω

)−1
)2 , (4.21)

which is shown in Fig. 4.2 for various particle frequencies. ∆ωi = Rsys/l defines the width

of the dip on resonance (ωi = ωLC)

∆νi =
∆ωi

2π
=

1

2πτ
=

Rsysq
2

2πmD2
i

. (4.22)

For small particle numbers N (uncorrelated case) the width scales proportional to N [60]

∆νi =
NRsysq

2

2πmD2
i

, (4.23)

which is utilized for the production of a single proton in the trap as will be discussed in

chapter 6.

The resulting frequency spectrum consists of the thermal noise of Re |Zi|, the current noise
iAmp and the voltage noise eAmp of the amplifier. A spectrum of a single proton in thermal

equilibrium with the axial detection system in our analysis trap is shown in Fig. 4.3.

The frequency information of the ion’s motion is encoded in the thermal noise giving the
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Figure 4.4: Simulated frequency uncertainty ΞFFT as a function of averaging time T for

the dip technique. The parameters for the axial detection system for the analysis trap were

utilized for the simulation. The effective electrode distance D was varied, which modifies

the linewidth of the noise dip. The frequency uncertainty decreases due to averaging of

the thermal noise. A sharper dip yields a more precise determination of the motional

frequency. For short averaging times, the dip cannot be resolved reliably for large effective

electrode distances, which increases the frequency uncertainty.

SNR per unit bandwidth

SNR2 =
4kBTRe |Zi|+ i2AmpRe |Zi|2κ2

e2Amp

. (4.24)

Since a higher SNR allows for a faster measurement, a large resistance Rsys is required.

However, increasing Rsys also affects the width of the dip and thus the precision with

which the frequency of the ion can be determined.

This is investigated by a Monte Carlo Simulation, reproducing n = 5000 noise spectra of a

single proton (as shown in Fig. 4.3) for various averaging times. In Fig. 4.4 the frequency

uncertainty ΞFFT is plotted for various effective electrode distances Dz(AT) as a function

of the averaging time. Two informations can be obtained:

• the frequency uncertainty scales ∝ 1/
√
T favoring a longer averaging process.

• in general a sharper dip allows for a more precise frequency determination. In prac-

tice there is a limit for short measurement times due to the Fourier limit.

However, both conclusions are only valid for an absolutely stable motional frequency, which

is not fulfilled in a real experiment. A drift or fluctuations of the oscillation frequency

counteract the benefit of a longer averaging time. The experimental optimal averaging



4.4 Sideband coupling 35

time Topt strongly depends on the achievable stability of the motional frequency as will be

discussed in chapter 8. Typical averaging times are in the range of 40 to 90 s. Thus, the de-

sign of a detection system should be focused on highest frequency resolution in this regime.

4.4 Sideband coupling

A detection system for the axial mode is connected to both of our traps which is used for

two different purposes: First, we can cool the eigenmode to the ambient cryogenic temper-

ature. Second, we can measure the axial frequency with the dip technique. In addition we

can couple the remaining modes to the axial mode by application of a quadrupole field of

the form z~eρ + ρ~ez [61]. In this section we describe how this coupling allows us to control

the temperature of the radial modes and measure ω− and ω+ with the axial detection

system.

For a resonant coupling field ωrf = ωz ± ω∓ we obtain classical Rabi oscillations [49].

In time domain this appears as an amplitude modulation of each mode

z(t) = z0 sin

(

Ω0

2
t

)

sin (ωzt) (4.25)

ρ± = ρ±,0 cos

(

Ω0

2
t

)

sin (ω±t) , (4.26)

where Ω0 is the Rabi frequency

Ω0 =
qE0

2m
√
ωzω±

, (4.27)

which depends on the strength E0 of the coupling field. We can use this energy exchange

between the two modes to cool the radial mode. For further discussion we focus on

the coupling of the modified cyclotron mode to the axial mode with respective quantum

numbers n+ and nz. For cooling we use a sideband at the difference of the two frequencies.

An absorption of an rf-photon with energy ~ωrf = ~(ω+−ωz) leads either to (nz−1, n++1)

or (nz + 1, n+ − 1). For long time scales of the coupling field, the equilibrium state will

be reached, which is defined by equal quantum numbers nz = n+. Since the axial mode

is in contact to its detection system the average axial quantum state is defined by the

temperature of the tank circuit. Accordingly, the temperature of the modified cyclotron

mode is given by

T+ =
ω+

ωz
Tz . (4.28)

For a sideband of frequency ~ωrf = ~(ωz + ω+) an absorption of an rf photon leads to

(nz +1, n++1). Thus, the energy of both modes increases in the presence of the coupling

field.

The same argumentation holds for the magnetron mode. However, due to the negative
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energy of E− the two sidebands change role compared to the modified cyclotron mode.

For a sideband with frequency ωrf = ωz + ω− the equilibrium state is given by

T− =
ω−

ωz
Tz . (4.29)

Due to the frequency scaling of Eq. (4.28) and (4.29) the final temperature of the magnetron

mode is below the temperature of the cryogenic environment and it is higher for the

modified cyclotron mode. Moreover, after a sideband coupling of both radial modes to

the axial mode, the modified cyclotron temperature is a factor of ω+/ω− higher than the

temperature of the magnetron mode. This means that the radii of both radial modes are

equal after coupling to the axial detection system (see Eq. (2.13)). For further cooling of

the modified cyclotron mode, we utilize a dedicated detection system which is connected

to the precision trap and provides resistive cooling to the ambient cryogenic temperature.

As we will see in chapter 8 this temperature reduction is crucial for the detection of spin

transitions in the analysis trap.

In order to determine the radial frequency information by the application of sideband

coupling we can rewrite Eq. (4.25)

z(t) =
1

2
z0

[

sin

((

ωz +
Ω0

2

)

t

)

+ sin

((

ωz −
Ω0

2

)

t

)]

. (4.30)

Thus, in frequency domain the axial dip in the power spectrum splits into two dips ωl,

ωr with a separation equal to the rabi frequency Ω0

ωl = ωz −
Ω0

2
(4.31)

ωr = ωz +
Ω0

2
. (4.32)

The radial frequency is obtained by a measurement of the axial frequency ωz and the

double-dip frequencies ωl,r by

ω+ = ωl + ωr − ωz + ωrf (4.33)

ω− = −ωl − ωr + ωz + ωrf, , (4.34)

where the first equation corresponds to a resonant coupling of the modified cyclotron mode

ωrf = ω+−ωz and the second equation corresponds to a resonant coupling of the magnetron

mode ωrf = ωz + ω−. For a small detuning δ of the coupling field ωrf = δ + ωz ± ω∓ the

Rabi frequency is given by Ω =
√

Ω2
0 + δ2. Additionally, the double-dip frequencies are

shifted

ωl = ωz −
1

2
(δ +Ω) (4.35)

ωr = ωz +
1

2
(δ +Ω) . (4.36)

The two radial frequencies can be calculated by Eq. (4.33) and (4.34) despite a detuned

coupling field. Thus, the double-dip technique is a very robust method to determine the

radial eigenfrequencies.
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Figure 4.5: Schematic of the feedback loop. The LC-circuit with resistance R is attached

to one correction electrode. Part of the amplified signal is capacitively fed back to the

tank circuit. The signal is phase shifted by Φ. The gain GFB is controlled by the amplifier

and a voltage regulated attenuator VCA.

4.5 Feedback - control of the ion temperature

The concept of active electronic feedback [62, 63, 64, 65] is schematically shown in Fig. 4.5.

The signal derived at the output of the amplifier is phase-shifted and fed back to the tank

circuit. Since the induced voltage drop is proportional to the ion current we can write the

additional force due to the feedback FFB = mγiGFBρ̇i, where GFB is the feedback gain.

The equation of motion (Eq. (4.15)) is modified

ρ̈i + ω2
i ρi = −γiρ̇i − FFB/mp

= −γiρ̇i −GFBγiρ̇i

= −γiρ̇i(1−GFB) . (4.37)

Thus, feedback can be utilized to enhance or suppress the damping term depending on

the sign of GFB. The sign of GFB can be controlled by adjusting the phase of the feedback

signal. For a phase shift of Φ = 0◦ the feedback adds constructively resulting in a stronger

damping (GFB < 0, positive feedback). For Φ = 180◦ the particle is less damped (GFB > 0,

negative feedback). The effect of active feedback can be modeled by an effective resistance

Reff seen by the particle

Reff = Rsys(1−GFB) . (4.38)

The ratio of effective parallel resistance Reff and particle temperature Teff is a fluctuation-

dissipation invariant, and thus Teff = T (1 ± GFB), where T is the temperature of the

detection system without feedback (GFB = 0).

Active electronic feedback is commonly used in our experiment for different purposes

• negative feedback is utilized to cool the eigenmotions below the physical temper-

ature of the detection systems. In the magnetic bottle the linewidth of the Larmor
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resonance as well as the modified cyclotron resonance scale proportional to the par-

ticle temperature (see section 3.2). Thus, a reduction of the axial temperature by

application of negative feedback to the axial detection system allowed us to reduce

the linewidth, which increases the precision of the frequency determination (see chap-

ter 8). Furthermore, we apply negative feedback to the modified cyclotron detection

system to reduce axial frequency fluctuations in the analysis trap which scale with

T+ (see chapter 8).

• positive feedback is utilized to increase the effective resistance of the tank circuit.

Thus, the linewidth of the noise-dip can be increased. Using positive feedback for

to the detection system for the modified cyclotron motion allowed us to resolve the

cyclotron noise-dip of a single proton (see chapter 7).

4.6 Transient recorder - a real-time data acquisition system

In this section a tool for the continuous monitoring of motional frequencies is presented.

With the so-called transient recorder the real time signal of a thermalized ion can be

recorded. Thus, the FFT-analysis can be performed after data taking for the same data

set for various parameters. The advantages of the transient recorder analysis for systematic

studies as well as detector optimization are discussed in this section.

In chapter 3 the frequency fluctuation Ξ was introduced, which is defined as the standard

deviation of the difference of two consecutive frequency measurements α = ν(t)− ν(t+T )

separated by the time T . We can distinguish between three different types of background

fluctuations

• Ξdec describes fluctuations which decrease with increasing averaging time T . This is

for example ΞFFT, which is given by the uncertainty of the frequency determination

with the dip technique as discussed in section 4.3.

• Ξinc describes fluctuations which increase with increasing averaging time T . This is

for example Ξradial which is given by energy fluctuations in the radial modes in the

magnetic bottle as discussed in section 3.5. These fluctuations can be described by

a random walk.

• Ξconst describes fluctuations which are constant for increasing averaging time T . For

example ΞV, which is given by voltage fluctuations. Since the voltage fluctuates

around a mean value with a less pronounced drift component, ΞV has a negligible

time dependence compared to Ξradial.

A measurement of Ξ2
tot = Ξ2

inc+Ξ2
dec+Ξ2

const as a function of the averaging time T (shown

in Fig. 4.6) provides useful information of the time scaling of Ξtot and enables the investi-

gation of the source for the frequency fluctuation. Since the error of Ξtot scales ∝ 1/
√
2N

a large number of measurements N is required for a specific averaging time T . About six

hours of data taking are needed for each Ξtot(T ). With the transient recorder, a dataset of
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Figure 4.6: a) Calculated frequency fluctuation Ξtot (solid black line) as a function of the

averaging time T . The dotted curve corresponds to the frequency uncertainty ΞFFT of the

frequency measurement which decreases with T . The contribution of voltage fluctuations

ΞV with a very low T -dependence is shown in grey. The dashed curve corresponds to

a phenomena in the magnetic bottle field of the analysis trap: A random walk of the

radial energy causes an axial frequency fluctuation Ξradial which increases with T . b)

Experimental data of the axial frequency stability in the analysis trap, which was recorded

and analysed with the transient recorder.

about six hours can be evaluated for about twelve different averaging times in one night.

Thus a plot of Ξtot as a function of T can be obtained approximately four times faster

than with the convential FFT-analyzer. Moreover, during a convential measurement of

Ξtot(T ) the different contributions and the total magnitude of Ξtot would vary which would

reduce the significance of the measurement. Since the analysis with the transient recorder

is based on the same dataset, the corresponding sources for the frequency fluctuations are

exactly the same.

The optimal averaging time Topt can be easily obtained from such an analysis which is

given by the minimum of Ξtot(T ).

Moreover, we can vary additional FFT-parameters as for example the resolution to obtain

the lowest ΞFFT. Once more - since the analysis is based on the same data, we can assign

changes of Ξtot(T ) to the variation of the FFT-parameters only. Thus, we can optimize

our FFT-parameters very effectively.

The transient recorder can be separated into the data taking and data analysing part.

The data taking is accomplished with a standard soundcard in a personal computer. The

data analysis is accomplished with a program written in Labview. In the first part the FFT

is performed. The frequency determination is conducted afterwards. Different parameters

are varied automatically to create a plot as in Fig. 4.6.
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Axial AT Axial PT Cyc PT Axial AT&PT (old)

L (mH) 1.91 1.2 0.00168 1.45

νLC (MHz) 0.742 0.785 28.97 0.68

Q 9500 5000 1250 5800

Rsys (MΩ) 85 63 0.382 36

Di (mm) 13.9 7.7 15.5 4.5 and 7.7

∆νi (Hz) 1.1 1.2 0.004 4.3 and 1.5

SNR (dB) 25 12 18 16

Table 4.1: The parameters for the three detection systems are listed. L is the inductance

of the coil, νLC is the resonance frequency, Q is the quality factor, Rsys is the effective

parallel resistance, Di is the effective electrode distance and SNR gives the signal-to-noise

ratio of the resonator as defined by Eq. (4.24)

4.7 Experimental realization of the detection systems

Our experiment utilizes three different detection systems:

• A detection system for the axial mode which is connected to one endcap of the

analysis trap. (Axial AT)

• A detection system for the axial mode which is connected to a correction electrode

of the precision trap. (Axial PT)

• A detection system for the modified cyclotron mode which is connected to one half

of a split correction electrode in the precision trap. (Cyc PT)

The parameters for the detection systems are listed in Tab. 4.1. The last column gives

the parameters of the former axial detection system [45] which was connected to both

traps. The benefit of two separate axial detection systems is the reduction of the trap

capacitance in parallel to each tank circuit. Thus, higher inductances L and consequently

higher quality factors could be achieved. However, due to space restrictions toroidal coils

had to be employed rather than the single solenoid before which are more complex to

design and construct. The design, assembly and optimization of these tank circuits was

part of the PhD thesis of Andreas Mooser [57]. He performed elaborate investigations of

loss mechanisms in superconducting tank circuits. This allowed to build separate axial

tank circuits with very high quality factors. The design of the cyclotron detection system

was accomplished by Stefan Ulmer in the course of his PhD thesis [45]. Summarizing,

highly sensitive detection systems are available to detect the motion of a single proton in

our trap.
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Experimental setup

The Penning traps and the detection systems compose the heart of our experiment. They

form the basis for the determination of the g-factor of a single proton and hence have been

discussed in detail in the previous chapters 2, 3 and 4. However, a high-precision measure-

ment of the g-factor also requires for a cryogenic environment to obtain small motional

amplitudes of the proton, a stable magnetic field and low-noise electronics. The complete

experimental setup, which contains these additional components is briefly described in this

chapter. For further details see also [46] and [66].

In the first section 5.1, the liquid helium dewar which provides the cryogenic tempera-

tures and the superconducting magnet are presented. The Penning traps are housed in

a vacuum chamber (section 5.2) which is located in the homogeneous field of the super-

conducting magnet. The detection systems are placed as close to the traps as possible

(section 5.3). The electrical connections between the electronics located in the cryogenic

region and room temperature electronics are described in section 5.4. The performance of

the high-precision voltage source, which provides the voltages for the electrostatic trap-

ping potential is discussed in section 5.5. Frequency synthesizers, spectrum analyzers and

voltage supplies are used to manipulate, detect and control the motion of the proton. In

section 5.6, computer programs written in Labview are presented, which automate these

processes and analyse the acquired data.

A complete revision of the whole experiment led to a lot of changes. A summary of

all changes in comparison to the description of the former apparatus given in [45, 46] is

presented in section 5.7.

5.1 Apparatus

The experimental setup is shown in Fig. 5.1. The Penning traps are located in the homo-

geneous region of a superconducting magnet with field strength B0 = 1.899T and with

an 88mm diameter horizontal warm bore. A liquid helium and liquid nitrogen cryostat

located on top of a CF200 double-cross vacuum chamber provides the cryogenic temper-

atures for the traps. The cryostat replaced the former pulse tube cooler due to vibration
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Figure 5.1: Schematic diagram of the experimental setup adopted from [47]. The double-

Penning trap setup is located in the homogeneous region of the superconducting magnet.

A liquid cryostat provides the cryogenic temperatures. The trap chamber and the su-

perconducting detection systems are connected to the cryostat by a high-purity copper

rod. The cryostat is mounted on top of a CF-200 double-cross, which is connected to the

magnet by a flexible bellow.
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Figure 5.2: Top: Photograph of the electrode stack and the cyclotron detection system.

Bottom: Cross-sectional view of the trap chamber adopted from [47]. The position of the

analysis trap is shifted towards the precision trap compared to the photograph since the

new transport section is shorter [45].

issues (see section 5.7). The double-cross is mounted on an adjustable table and is con-

nected by a bellow to the bore of the magnet. Thus, it is possible to vary the position

of the traps within all three dimensions. A pressure of 5 · 10−8mbar is achieved for the

insulation vacuum of the double-cross and the magnet bore. The trapping region is con-

nected to the cold finger of the helium dewar by a high-purity copper rod surrounded by

thermal heat shields which are connected to the liquid nitrogen reservoir. The reservoirs

have a capacity of 35 l liquid helium and 35 l liquid nitrogen, respectively. The hold time

for liquid helium is five days and liquid nitrogen has to be filled every three days. A cool

down of the experiment from room temperature to 4.2K takes about 24 hours and 80 l

of liquid helium. We achieved a temperature of T = 4.3K at the trapping region and

T = 80K at the heat shields mounted around the traps. Details of the cryo-mechanical

design can be found in [67]. The design of the new cryostat is discussed in [57].

The whole experiment is surrounded by a wooden box which is temperature stabilized. As

a result, the daily peak-to-peak fluctuations of the temperature of the double-cross could

be reduced by a factor of 40 to a level of about 50mK [57].

5.2 Trap chamber

The double-trap setup shown in Fig. 5.2 is placed in a vacuum chamber made of oxygen-free

electrolytic (OFE) copper. The indium sealed flange on one side of the chamber contains
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all soft-soldered electronic feedthroughs to the chamber. The tube on the opposite side is

used to evacuate the chamber at room temperature to a pressure better than 1 ·10−6mbar.

Having achieved this pressure, the chamber is closed by a pinch-off tool which creates a

permanent cold-welded seal. After cooling down, the pressure inside the trap chamber is

reduced by orders of magnitude due to cryo-pumping. As a result a vacuum better than

10−16mbar is achieved in such a system [30]. Thus, protons can be stored for arbitrarily

long times and collisions with rest gas atoms can be neglected.

The closed setup requires the in-trap production of protons. To this end, the trap stack

is extended by an electron beam source on one side and a target plate on the opposite

side as shown in Fig. 5.2. Electrons are emitted from the field emission point (FEP) for

a voltage of about 1 kV on the acceleration electrode relative to ground. The energy of

the electrons is defined by a negative voltage of the order of 50V applied to the FEP. The

emitted electrons follow the magnetic field lines and sputter atoms and molecules from

the surface of the polyethylene target which are subsequently ionized in the potential of

the precision trap. Electron currents of about 10 nA for about 2 s are sufficient to produce

protons (see chapter 6).

The electron source is fixed to a holding plate. A second holding plate on top of the target

is pressed to the first by three copper rods. This centers and compresses the electrode

stack. The rf-field to drive spin transitions is generated by disc coils which consist of about

6 concentric windings fixed to a teflon-holder [68]. The coils are mounted to the copper

rods, next to the ring electrode of each trap.

All trap electrodes are made of OFE copper which are gold plated to avoid oxidation. In

case of the analysis trap special care has to be taken in order to obtain the calculated

potential. First, the mechanical tolerance was decreased to 3µm since a smaller trap size

implies a higher sensitivity on machining errors. Second, the surface has to be polished

since the grooves of the machining tool prevent a uniform gold layer. In order to prevent

deviations of the electrode dimensions a very gentle polishing technique using Q-tips is

applied [46]. The resulting surface is electrolytically gold-plated with an average thickness

of about 5µm. A silver barrier-coating of 15µm prevents diffusion of the gold layer into

the copper. For the analysis trap electrodes, a nickel barrier-coating had been employed,

since nickel is a more suited barrier and the resulting magnetic inhomogeneity is negligible.

Sapphire rings are used as spacers between the electrodes to guarantee electrical isolation

and assure thermal conductivity.

5.3 Detection systems

Three detection systems are available for the determination of the g-factor:

• The detection system for the modified cyclotron frequency consists of a helical res-

onator and a low-noise amplifier. The amplifier is mounted on top of the resonator.

The solenoid and its cylindrical housing are made of oxygen-free electrolytic (OFE)

copper. Superconducting materials have no benefit for this detection system since rf-
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losses in superconductors are significant in this frequency regime [55]. The detection

system is located inside the trap chamber to avoid the additional capacitance and

loss resistance of the trap chamber feedthrough. The parameters of the cryogenic

part of the cyclotron detection system are given in Tab. 4.1. The signal is guided

to room temperature where it is further amplified by a low-noise Minicircuits ZFL-

500LN amplifier. For FFT-analysis the signal is converted to audio frequencies by

a Minicircuits ZAD-6+ mixer and is analysed with Stanford Research SR780 FFT

spectrum-analyzer.

• The two axial detection systems for each trap are located outside the trap chamber

since the loss mechanisms in the feedthroughs are of less importance at their oper-

ating frequencies. Moreover, by utilizing special feedthroughs made of sapphire, the

corresponding losses could be further reduced. The axial detection systems consist

of two toroidal coils in separate cylindrical housings. Here, superconducting ma-

terials of niobium-titanium are used for the wire and the housing to obtain high

quality factors. The two low-noise amplifiers are placed right next to the resonators

to avoid additional parasitic capacitances. Tab. 4.1 summarizes the parameters of

the cryogenic section of the axial detection systems. A second amplification stage

at room temperature is followed by a single-sideband mixer (both Stahl Electron-

ics). Down-conversion of a signal at frequency νrf to νIF with a double-sideband

mixer at frequency νLO = νrf − νIF has the following drawback [69]: The signal at

the lower sideband νimage = νLO − νIF is also converted to νIF. Thus, noise at the

lower sideband, which is caused by our amplifiers, would decrease the SNR of the

detection systems. Thus, a single-sideband mixer from Stahl Electronics is utilized,

which suppresses the lower sideband by about 60 dB. The down-converted spectrum

at νIF is analyzed with a a Stanford Research SR780 FFT spectrum-analyzer. By

comparison of this spectrum with the original spectrum at νrf, which was analyzed

with a R&S FSP13 spectrum-analyzer, we observed no degradation of the SNR.

5.4 Wiring and filtering

This section gives an overview of all electronic connections in our apparatus. The wires

represent thermal bridges between room temperature and the cryogenic region, which

lowers the hold time of our cryostat and increases the temperature of our detection systems

and the traps. In order to reduce the corresponding heat load, materials of low thermal

conductivity and small diameters have to be chosen. However, the focus of this summary is

not the heat input of the wires but the possible introduction of noise to our trap electrodes,

especially to those of the analysis trap. We assume that a radial field drives the modified

cyclotron mode. Thus, the filtering concept is presented in this section, motivating the

changes given in the section 5.7. A detailed overview of the wiring also covering the

respective thermal input is given in [46].

We can distinguish between three different groups of connections: DC, RF and HV (high
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voltage):

• The DC-lines are used for biasing of the trap electrodes and the amplifiers. Three

low-pass filter stages at 300K, 77K and 4K are implemented. The position of the

stages is indicated in Fig. 5.1. Each filter consists of two 820 kΩ resistors in parallel

and a 2.7 nF capacitor connected to ground. The only unfiltered DC-lines going

down to 4K are the drain supplies for the cryogenic amplifiers since they require a

current to flow. Dissipation in the resistor of a DC-filter would cause an additional

heat load. However, the corresponding detection systems attached to the precision

trap should be of no concern since they are far from the analysis trap. For the

axial detection system attached to the analysis trap we reduced a possible impact

on the proton by connecting the tank circuit to the endcap instead of the correction

electrode (see section 5.7).

• The RF-lines are used for excitation, detection and feedback. All excitation lines

are attenuated by 20dB at room temperature. The signals are guided to the trap

and the spin flip coils by shielded twisted pair lines. Each excitation line which is

connected to trap electrodes passes a voltage divider at 4K consisting of a 4.7 pF

capacitor in series and a 15 pF capacitator connected to ground.

• One unfiltered HV-line is needed to bias the acceleration electrode of the electron

gun. Shielding of the connection is realized by guiding the corresponding cable inside

a metal tube which is anchored to ground. Additional shielding of the analysis trap

from possible noise of the acceleration electrode is realised by the holding plate which

is placed in between and is set on ground potential.

5.5 DC supply

The trapping potentials are generated by a high-precision voltage source UM1-14 LN from

Stahl Electronics. It features ten fast-channels with 16-bit resolution providing a voltage of

0 to −14V. These channels are used for biasing the transport electrodes and the endcaps

of both traps. The six 24-bit precision-channels are used for the correction electrodes and

the ring electrode of both traps. The voltage range is 0V to −14V for the precision trap

and 0V to −4V for the analysis trap.

As discussed in section 3.1 the axial frequency in the analysis trap has to be stable enough

to detect single spin transitions. For a spin flip measurement, the endcaps are set on ground

potential. Thus the potential depth is given by the voltage applied to the ring electrode.

A spin flip measurement consists of at least two axial frequency measurements and a spin

flip drive in between, which overall takes approximately T = 180 s. This means, that the

frequency fluctuations due to voltage fluctuations should be less than ∆νz,SF/νz = 2 ·10−7

for the period T .

The relative voltage stability of the UM1-14LN was measured with an 8.5-digit Fluke
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Figure 5.3: Relative voltage stability of the UM1-14 LN voltage supply as a function of

the measuring time. The right axis shows the expected equivalent frequency fluctuations

of the axial frequency.

8508A multimeter taking one data point every 20 s. The relative uncertainty of the mul-

timeter in the 2V-range for a confidence level of 95% (for a period of 24 hours and

temperature variations of maximum ±1K) is given by 0.2 ppm of the range plus 0.5 ppm

of the reading [70]. For a measurement of 1V, this corresponds to an absolute uncertainty

of 900 nV. However, no information on the short-term stability is given in the datasheet.

Thus, the presented measurement of the voltage stability of the UM1-14 LN can only be

interpreted as an upper limit of the voltage fluctuations of the voltage supply since the

measurement noise or a possible drift of the multimeter could not be determined.

The performance of one precision channel of the UM1-14LN for the biasing of the analysis

trap is shown in Fig. 5.3. The equivalent frequency fluctuations are below one third of a

spin transition for a period of T = 10min. Thus, voltage stability is no obstacle for spin

state analysis. In order to further reduce the short term fluctuations, the voltage source

is surrounded by a massive copper housing. Thus, fluctuations of the ambient tempera-

ture are smoothed and averaged. The long term temperature drifts are suppressed by the

temperature stabilization of the whole apparatus. The measured fluctuations of the axial

frequency of a single proton in the precision trap are even lower than expected from the

measured voltage fluctuations (see section 7.1.3).

5.6 Control program

Automation is one of the most important points for a successful data acquisition and

analysis. Obtaining an information just by pushing a button rather than by manual
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read-out and analysis by hand is crucial for building up complex routines like a g-factor

measurement as described in section 3.4. However, setting up this automation is not only

a very time consuming exercise but also a crucial part since any mistake can cause loss

of the proton and systematic uncertainties. It became one of my main priorities within

this thesis. We chose Labview 8.2. as programming environment since it is the standard

language for device control and data acquisition. Control programs for nearly every com-

mercial device with a suited interface (USB, LAN, GPIB or RS-232) are provided by the

corresponding manufacturer. Our experiment incorporates several frequency synthesizers,

voltage sources, a spectrum- and an FFT-analyzer for particle control and detection. For

environmental monitoring and controlling, temperature- and pressure-monitors as well as

appropriate control systems are utilized. All these instruments have to be operated si-

multaneously and in combination. Our main focus for automation was set on modularity

giving a toolbox of little self-explanatory programs to control and manipulate devices and

to build more complex modules. Thus, any user can set up his own program in a very short

time without worrying about the details of each sub-program. Since Labview is a very

intuitive programing language it is even suited for unexperienced programmers. We also

thought of programming our own script language as in [71] but discarded this possibility

since it would mean a huge amount of work for implementation and also for maintenance.

Still, I spent a lot of time setting up this toolbox and wiring all these little Labview pro-

grams. The everyday experimental routines were combined to a main control program

shown in Fig. 5.4 which was also frequently modified and extended during my PhD thesis

to meet the actual requirements. Up to now, 60 different routines were combined in this

master program. Simple routines as for example for excitation, transport, cooling of the

proton and also more complex routines as for example for tuning-ratio optimization and

asymmetry compensation are implemented. The data acquisition requires an appropriate

organization of all collected spectra on our hard disk. We chose a chronological order

which gives for a single spectrum a path like

Data{\}June{\}13062011{\}TuningRatio{\}

FFT_06_13_14_54_38_TR_0.863_VR_3.16_Avg_60s_Magnetron.lvm.

The filename is composed of a timestamp and the parameters of the corresponding rou-

tine. The timestamp (FFT_m_d_H_M_S) assures the uniqueness of a single measurement

and facilitates the mapping of measurements to the documentation in the lab book. The

set of parameters (TR_0.863_VR_3.16_Avg_60s) is chosen to cover the main aspects of

the given routine. Special circumstances can be added manually as a text (Magnetron) to

the filename.

However, data acquisition is only half of the story since automated routines create a

lot of data. In the early days of the experiment in summer 2008 we took about 5.000

spectra in one month. At the end of my thesis this was increased to more than 100.000

per month. The increased complexity of the measurement tasks does not only require



5.6 Control program 49

a) b)

c) d)

Figure 5.4: Screenshot of the proton control program. a) contains the control elements for

the voltage supply of the trap electrodes. The control elements for particle excitation and

sideband coupling are shown in b). The control and monitoring elements for mass-spectra

are located in the lower left quarter c). The exchange of the proton between the two traps

can be configured and executed with the control elements shown in d). In order to obtain

a clear arrangement, the remaining tasks are placed on additional pages of the tab control.
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Figure 5.5: Screenshot of the Larmor resonance program. The program evaluates the

differences of two subsequent axial frequency measurements as explained in section 3.5.1

and 3.5.2 to obtain a Larmor resonance curve. Labview offers the possibility to arrange

several plots on the front panel for diagnostics and data comparison. Combinations of

different data sets can be easily evaluated and compared.

a simple way to set up a program but also an easy way to analyse the data. A simple

tuning ratio optimization consists of 10 spectra only differing by the voltage applied to

the correction electrodes. The corresponding data could still be acquired and analysed

manually. But a Larmor resonance curve consists of about 40.000 measurements with

several intermediate tasks like sideband cooling, spin driving and many more steps. The

analysis of this data can also be accomplished with Labview programs since it offers the

great possibility to monitor data in a very well-arranged way. Complex data analysis as

fitting routines can be integrated as external scripts. Accordingly, also difficult analysing

can be executed within a Labview program. In Fig. 5.5, our analysis program for the

Larmor frequency measurement is shown. It evaluates the spin flip attempts for different

driving frequencies for the statistical- and the threshold-method presented in section 3.5.1

and 3.5.2, respectively.
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5.7 Technical improvements

Our main motivation for a complete revision of our experimental setup was the reduction of

axial frequency fluctuations in the analysis trap. These fluctuations precluded a spin state

analysis as needed for the application of the double-trap method described in section 3.4.

We tackled this problem from two sides:

On one hand we reduced the time needed to perform an axial frequency measurement.

This means that we decreased the frequency uncertainty ΞFFT for a given averaging time

(see Fig. 4.6). To this end, new axial detection systems were implemented which have been

designed in the course of the PhD thesis of A. Mooser [57].

On the other hand we minimized the sources of the frequency fluctuations. We observed

correlations of the frequency instabilities with the radial mode energies (see chapter 8).

Based on the scaling of this effect, we concluded that background noise was responsible

for the frequency fluctuations Ξradial. Thus, we tried to remove or at least reduce any

possible noise sources:

• For all DC-connections of the analysis trap electrodes, the capacitors of the 4K

filter-stage were increased by a factor of ten.

• The voltage divider of the dipole-excitation line of the analysis trap located at 4K

was increased to 3.3 pF versus 18 pF to ground.

• The quadrupole excitation, which had been connected to a split electrode was com-

pletely removed. Thus, any noise introduced by the quadrupole-excitation-line is

eliminated. Alternatively, we can couple the radial modes to the axial modes by

application of a suited rf-field to the spin flip coil. In order to create a comparable

field at the trap center, we have to increase the signal of the frequency synthesizer

by approximately 30 dB.

• Although the axial resonator can be considered as a perfect short at the frequencies

of the radial modes, we moved the axial detection from the correction electrode to

the endcap. This results in an increased effective electrode distance for the radial

mode. Thus, a possible noise source has less impact on the proton.

The achieved frequency stability (see chapter 8) clearly indicates that at least one of the

listed changes was an improvement. However, we did not evaluate each of the steps sep-

arately since this would have taken too much time but implemented all simultaneously.

Thus, we cannot judge which of the changes was the most significant.

A second motivation for an alteration of the setup were the vibrations of the puls tube

cooler [72]. These precluded a high-precision measurement of the free cyclotron frequency

in the precision trap - an essential ingredient of the g-factor measurement. Thus, the puls

tube cooler was replaced by a liquid cryostat.
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Production of single protons and

their transport

We produce protons by the bombardment of a polyethylene target with electrons from a

field emission point as described in section 6.1. However, not only protons are produced

by the electron beam but all kind of (low-charged) ions which have to be removed in the

following. To this end different cleaning techniques described in section 6.2 are applied.

Further reduction of the number of protons to a single proton is presented in section 6.3.

The last part of this chapter deals with the transport of protons between the two traps.

6.1 Production of an ion cloud

By application of a positive voltage of about 1 kV to the acceleration electrode (see

Fig. 5.2), an electron beam of about 10 nA is emitted. A negative voltage of 50V ap-

plied to the field emission point sets the kinetic energy of the electrons. The electrons

follow the magnetic field lines and hit the target plate at the opposite side of the electrode

stack, which contains the target made of black polyethylene. Atoms and molecules are

emitted which are subsequently ionized by the electron beam. Particles which are ionized

in the trapping potential of the precision trap are consequently trapped. The electron gun

is turned on for about 2 s to produce a cloud of ions.

6.2 Removing impurity ions

We can analyze the constituents of the ion cloud with a so-called mass spectrum. To this

end, we apply a voltage ramp V (t) to our ring and correction electrodes while maintaining a

constant tuning-ratio. The axial frequency of different ion species will match the resonance

frequency of the axial detection system at different points of the voltage ramp.

νz(t) =
1

2π

√

2qc2
m

V (t) . (6.1)
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Figure 6.1: Mass spectra after trap loading a) and after cleaning b) [45]. Due to the limited

voltage range of the voltage supply UM1-14 (shaded area), only H+
2 and protons can be

monitored routinely. Extension of the mass spectrum requires an exchange of the biasing

supply. After the cleaning procedure explained in the text only protons are observed in

the mass-spectrum b).

Since the axial motion of the ions is excited after production, a peak appears on top

of the noise resonance as described in section 4.2. Monitoring the signal strength at the

resonance frequency of the detection system as a function of ramping time or equivalently

ramping voltage yields a mass-spectrum as shown in Fig. 6.1.

Removal of unwanted ion species is accomplished by excitation of the axial motion. To

this end we utilize two different dipolar excitation drives in our precision trap:

1. All contaminants have a lower axial frequency than a proton for a given potential

since a proton has the highest q/m. Thus, a low-frequency broadband noise drive

realized by a stored wave inverse-fourier transform (SWIFT) [73] with a corner fre-

quency of 500 kHz is applied to the dipole-excitation line of the trap. The axial

motion of protons is additionally protected by a notch filter. Tuning the potential

to obtain an axial frequency of νz ≈ 700 kHz, a suppression of 60 dB of the axial

driving field for protons is achieved as shown in Fig. 6.2.

2. Narrow RF-sweeps (∆ν = 10 kHz, ∆t = 120 s) are applied at the axial frequencies

of unwanted ion species.

After each of these procedures the trapping potential is lowered to V0 = −0.1V to evapo-

rate hot ions. A potential of −7V is applied to the target electrode to attract the ions.

It is important to notice, that there is no known experimental routine which proves the

purity of a proton cloud. A mass-spectrum is not suited since only a few ion species

can be monitored and it is not sensitive to a single ion. Alternatively, we can search for

modifications of experimental routines (e.g. a cyclotron cooling curve) which can be as-

signed to the presence of contaminants. However, not observing such a modification does

not automatically indicate a clean trap. We chose the duration and the amplitude of the
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Figure 6.2: Frequency spectrum of the SWIFT signal followed by the notch filter [45].

This signal is applied to the dipolar excitation line to remove all undesired ions. The axial

frequency of protons is tuned to the center of the notch filter. Thus, the axial motion of

the proton is protected from the excitation.

SWIFT-signal in a way to leave only a few protons in the trap. It is assumed that all

unwanted ion species are removed since they experience a much stronger excitation and

therefore should be lost earlier than protons.

Still, every unexpected and at first glance unexplainable behaviour of the proton can be

easily assigned to a contaminant since the interaction of two ions is complicated and can

manifest itself in various effects [74]. Thus, an additional cleaning procedure was im-

plemented which focuses on the instability of the eigenmotion of undesired ion species.

According to Eq. (2.5) stable storage is only possible if the discriminant is positive

ω2
c − 2ω2

z > 0 . (6.2)

This means that ions get lost when the radial force due to the electric field is larger than

the Lorentz force

2
√

2c2V0 >

√

q

m
B0 , (6.3)

which is experimentally realized by ramping the ring voltage in our analysis trap to

V0 = −150V. Only protons experience stable trapping conditions for this potential depth

meanwhile all other ion species are lost. The analysis trap is perfectly suited for this

cleaning procedure since c2 is more than a factor of three larger than in the precision trap.

Moreover, the magnetic field B0 is reduced due to the ferromagnetic ring electrode. To

provide a ring voltage of V0 = −150V a separate voltage supply was employed and the

capacitors of the corresponding DC-filters were exchanged. We assume that this cleaning

procedure is much more robust than the SWIFT- and sweep-techniques since it is based

on the fundamental trapping conditions rather than on increasing the axial amplitude of
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Figure 6.3: a) Frequency spectra of the modified cyclotron mode of a cloud of protons. In

a) the discrete peaks indicate individual protons. The cleaning procedure is illustrated in

b). The left peak corresponds to an excited proton which can be further excited by an

external driving field swept down in frequency. The energy in the modified cyclotron mode

is increased until the proton leaves the trapping potential. Instead of further heating of

the modified cyclotron mode, the trapping potential can be lowered until the proton is

lost (see inset of b)). The larger amplitude of the right peak indicates, that this signal is

generated by more than one proton with approximately the same cyclotron energy.

undesired ion species.

6.3 Reducing the number of protons

Reducing the number of protons is under much better control than cleaning of contami-

nants since we are able to count the number of protons in our trap. According to Eq. (4.23)

the width of the axial noise dip is proportional to the number of trapped protons. Thus

we can count protons by measuring the width of the axial noise dip.

Having a cloud of more than one proton the modified cyclotron mode is excited to remove

hot protons until one proton is left. Due to imperfections of the trapping potential, an in-

crease of the cyclotron energy causes a decrease of the oscillation frequency (see chapter 2).

Thus, the peak of the excited proton cloud will be broadened due to the energy spread.

By application of several excitation sweeps, the broad signal splits into discrete peaks,

each indicating an individual proton. A spectrum of an excited proton cloud is shown in

Fig. 6.3. Two different techniques can be applied to reduce the number of protons:

• An rf-sweep can be applied to drive protons from the trap. The frequency is swept

downwards since a higher motional amplitude results in a lower motional frequency.

Thus, the particle is gradually heated until it leaves the trap. The starting frequency

is chosen low enough to leave the cold proton unaffected.
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Figure 6.4: a)-c) Axial frequency spectra for various numbers of protons [45]. The width

of the noise dip increases linearly with the particle number which is summarized in d).

• Protons with high motional amplitudes in the modified cyclotron mode are removed

by lowering the trapping potential. The evaporation rate can be controlled by the

potential depth which means that a proton with a certain modified cyclotron fre-

quency (equivalent to a certain energy) will leave the trap at a specific ring voltage.

This procedure requires a little experimental experience but works very reliable.

Both procedures can be utilized to prepare a single proton. In Fig. 6.4 the width of the

axial noise dip is shown as a function of the number of particles. By measuring the

linewdith of the axial noise dip, we can prove that a single proton is left in the trap.

6.4 Transport

The determination of the g-factor requires a fast and reliable exchange of the proton

between the AT and the PT. Therefore, appropriate voltage ramps are applied to the

transport electrodes separating both traps. The diameter of the transport electrodes

varies since the inner diameter of the AT is about a factor of two smaller than for the

PT. In a first design the constriction was realized within a single transport electrode as

shown in Fig. 6.5a). However, we were not able to pass a proton through this electrode

although we tried many different transport schemes. Investigating the transport efficiency

is complicated since diagnosis tools are only available in the PT. Moreover it is very time

consuming since every loss of protons requires a reloading and the preparation procedure

presented in the previous section. We finally succeeded by separating the constriction

into three electrodes as shown in Fig. 6.5b). Moreover, we split both endcaps of the
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Figure 6.5: a) Electrode stack with the former transport section (dark grey) between anal-

ysis trap (left) and precision trap (right). No protons returned to the precision trap when

transporting them into the transport electrode T1 (dashed). b) As a solution, the constric-

tion was split into three separate electrodes T1-T3 and both endcaps of the analysis trap

were split into two electrodes A5+A6 and A0+A1, respectively. With this configuration,

the transport of protons between both traps works reliably. Sketch adopted from [46].

analysis trap into two electrodes. Due to the shorter length of the transport electrodes

and endcaps of the analysis trap, the distance between both traps is reduced. With this

configuration, we immediately achieved a reliable exchange between both traps. From

our experimental observations we conclude that transport electrodes should in general

be short compared to their inner diameter [46]. Thus, the electrostatic potential is under

much better control. Moreover, the gold deposition in longer electrodes works not properly

resulting in a nonuniform surface of gold, silver (barrier-layer) and copper. The different

work functions of these materials result in a disturbed potential which might lead to

particle losses.

A transport of the proton between the precision trap PT and the analysis trap AT is

conducted in the following way: The transport starts by ramping down the ring voltage

of the PT to −14V. Then the adjacent electrode towards the AT (P2) is ramped down

to −14V meanwhile the opposite adjacent electrode (P4) is ramped to ground potential.

This procedure is subsequently repeated with the next electrodes towards the AT until

the proton reaches the ring electrode (A3) of the destination trap. The transport from AT

to PT works in the same way. Each ramp takes 2 s which results in an overall transport

time of 40 s.
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Free cyclotron frequency

measurement in the precision trap

The determination of the g-factor of the proton is based on the measurement of the Larmor

frequency νL in a well-known magnetic field. To this end, spin transitions are probed in

the homogeneous magnetic field in the precision trap. The magnetic field information

is obtained from a measurement of the free cyclotron frequency νc = 1
2π

q
mB0, which is

determined from the three eigenfrequencies of the trapped proton by application of the

invariance theorem (see Eq. (2.8)). The uncertainty of the free cyclotron frequency is given

by

∆νc =

√

(

ν+
νc

∆ν+

)2

+

(

νz
νc

∆νz

)2

+

(

ν−
νc

∆ν−

)2

. (7.1)

In this chapter, the corresponding uncertainties for the frequency determination of each

eigenmode will be discussed. Due to the hierarchy of the eigenfrequencies ν+ ≫ νz ≫ ν−,

the resulting precision of the free cyclotron frequency is mainly limited by the uncertainty

of the measurement of the modified cyclotron frequency ν+.

This chapter is separated into three parts, each covering the measurement of one of

the eigenfrequencies of the trapped proton:

The determination of the axial frequency νz is discussed in the first section 7.1. A precise

measurement of νz is not only important for the determination of νc but also for most

experimental routines.

The measurement of the magnetron frequency ν− by a sideband-coupling is presented in

section 7.2.

Different measurement schemes for the modified cyclotron frequency ν+ are discussed in

section 7.3.
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7.1 Measurement of the axial frequency

We detect the axial frequency as a dip in the noise spectrum, which provides the possi-

bility to measure νz at small motional amplitudes. Various optimization procedures as

harmonicity tuning (section 7.1.1), trap alignment (section 7.1.2), asymmetry compensa-

tion (section 8.2) and energy calibration [45] prove the variety of applications of the axial

detection system.

7.1.1 Harmonicity tuning

The precise determination of the axial frequency with the dip-technique requires the re-

duction of anharmonicities of the trapping potential. The proton is tuned into resonance

with the detection system by a proper voltage at the ring electrode. A non-vanishing an-

harmonicity of the trapping potential leads to a broadening and a reduction of the depth

of the noise-dip due to the Boltzmann-distributed energy of the axial mode. The lineshape

is given by the convolution of the Lorentzian lineshape (see Eq. (4.21) for νz = νLC) and

the thermal Boltzmann distribution [45]

χ(ω) =
A

πkBTz

∫ ∞

0
dEzexp

(

− Ez

kBTz

)

γz/2
(

ω − ωz

(

1 + 3
4
c4
c2
2

Ez

qV0

))2
+ γ2z/4

, (7.2)

where Ez is the axial energy, Tz is the temperature of the axial detection system, A is a

normalization factor and γz is the damping constant of the axial detection system. Only

the lowest order of the anharmonicity c4 has to be considered since higher order corrections

(c6,...) can be neglected due to the small particle amplitudes in thermal equilibrium with

the cryogenic detection system.

The electrostatic anharmonicities are reduced by optimization of the voltage applied to

the correction electrodes. The ratio between the correction and ring electrode voltages is

called tuning-ratio TR. Axial frequency spectra for different tuning-ratios are shown in

Fig. 7.1a). The narrowest dip with the largest depth indicates the most harmonic poten-

tial. With this method, the tuning-ratio can be optimized to a precision of 0.2mUnits.

Further optimization of the trapping potential is realized by a measurement of the energy-

dependent shift of the axial frequency, which scales proportional to the electrostatic anhar-

monicity (see Eq. (2.21)). The axial frequency is recorded as a function of the tuning-ratio

for two different axial energies. The higher axial energy is realized by an increased temper-

ature of the detection system due to a broadband white noise drive at the corresponding

feedback line. A vanishing frequency shift indicates the optimal tuning-ratio. Note that

the contribution of the c6-term is only negligible for a moderate increase of the axial tem-

perature. For higher temperatures, a vanishing frequency shift would correspond to finite

c4 and c6-terms with opposite signs and the resulting tuning-ratio would not be the opti-

mal tuning-ratio for the dip detection at low temperatures. Thus, the temperature is only

slightly increased until a significant difference between the axial frequencies for the hot
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Figure 7.1: a) Axial noise dip of a single proton for different tuning-ratios. The trap

is not completely orthogonal (D2 = 3.3Hz/mUnit), which results in a shift of the axial

frequency as a function of the tuning-ratio. The lowest c4-term is indicated by the dip

with the largest depth. The optimal tuning-ratio can be determined with a precision of

0.2mUnits. b) Axial frequency shift between two different axial temperatures as a function

of the tuning-ratio (squares). The shift scales linearly with the tuning-ratio, as expected

from Eq. (2.21). The optimal tuning-ratio of TRopt = 0.86449(4) can be determined from

a linear regression (solid line).

and the cold proton as a function of the tuning-ratio is observed as shown in Fig. 7.1b).

The temperature difference can be calculated from the slope ∆νz/∆TR (see Eq. 2.21) and

yields

∆Tz =
8

3

mpπ
2νz

kB

c2
d4

∆νz
∆TR

= 35K . (7.3)

The size of c2 and d4 = ∂c4/∂TR can be found in Tab. 2.1). For this low temperature, the

contribution of the c6-term is neglected.

From a fit to the data the optimal tuning-ratio TRopt = 0.86449(4) can be determined.

The uncertainty of 0.04mUnits corresponds to an anharmonicity of c4 = 1.3 · 10−7mm−4.

The corresponding systematic shift of the free cyclotron frequency can be calculated from

the resulting frequency shifts of the three eigenfrequencies (see Eq. (2.21) to Eq. (2.23)).

This results in a relative shift of νc of the order of 10−11 for energies of about 1meV in

the motional modes. Thus, corrections due to the electrostatic anharmonicities are no

limitation for a relative precision of 10−9 in the proton g-factor.

7.1.2 Trap alignment

The invariance theorem even holds for a small tilting angle θ between the symmetry axis of

the trap with respect to the magnetic field axis [41]. This means that a tilt does not cause

a systematic shift of the free cyclotron frequency. However, a misalignment would lead to

an unwanted increase of the magnetron radius when transporting the proton between the
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Figure 7.2: Axial frequency as a function of the tilting angle between the electrostatic axis

and the magnetic field axis. The optimization procedure was stopped for the largest axial

frequency, which corresponds to a vanishing tilt in the horizontal plane.

traps. Thus, a tilt should be avoided. The mechanical support of our experiment provides

the possibility to compensate a possible misalignment by adjusting the angle θ between

the electrostatic axis and the magnetic field axis. The axial frequency depends on the

tilting angle [41]

νz(θ) = νz,0

√

1− 3

2
sin2(θ) ≈ νz,0

(

1− 3

4
θ2
)

. (7.4)

Thus, the axial frequency can be utilized to monitor the tilt of the precision trap when

shifting the apparatus as shown in Fig. 7.2. The largest axial frequency indicates an

aligned precision trap in the horizontal plane. The decrease of the axial frequency for

a further rotation as expected from Eq. (7.4) was not recorded since hysteresis in the

adjustement mechanics would prevent a simple reproducibility of the minimzed angle. A

similar optimization process has to be performed for the vertical plane in order to obtain

a perfect aligned trap. After optimization, the magnetron radius was observed to be

unaffected by particle transport.

7.1.3 Axial frequency stability

To obtain a relative uncertainty better than ∆νc/νc < 1 ppb for the free cyclotron fre-

quency, the axial frequency has to be determined with a precision better than ∆νz < 1Hz

(see Eq. (7.1)).

The long-term stability of the axial frequency is shown in Fig. 7.3a). The peak-to-peak

fluctuations of 0.4Hz correspond to relative fluctuations of ∆νc/νc = 0.4 ppb. The stability

of the axial frequency Ξ, which is defined as the standard deviation of the difference be-

tween two subsequent measurements of νz, is shown in Fig. 7.3b) as filled squares. Further



62 Chapter 7: Free cyclotron frequency measurement in the precision trap

0 2 4 6 8 10 12 14 16 18 20 22 24

-0.1

0.0

0.1

0.2

0.3

 

 

a
x
ia

l 
fr

e
q

u
e
n
c
y
 -

 7
8
5

0
6
9
 H

z

measurement time (h)a) b)

100 1000
0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

 

fr
e
q
u
e
n

c
y
 f
lu

c
tu

a
ti
o
n
s
 (

H
z
)

averaging time (s)

Figure 7.3: a) Subsequent axial frequency measurements over a period of one day for an

FFT-averaging time of T = 100 s. The difference of the average of i subsequent frequency

measurements is calculated and the standard deviation of these frequency differences as a

function of the averaging time (i ·100 s) is shown in b) as unfilled circles. The filled squares

correspond to independent datasets which were obtained for different FFT-averaging times.

The datapoints are approximated by the solid line, which is given by the sum of two

contributions: The decreasing dotted curve corresponds to the frequency uncertainty due

to noise averaging of the FFT-spectrum. A drift of the voltage supply which biases the

electrodes causes an increase for longer averaging times, which is observed for averaging

times T > 800 s (dashed dotted line). The dashed line corresponds to the frequency

stability which is expected from the measured voltage stability (see section 5.5) being

significantly lower than expected from the measured voltage stability.
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informations for longer averaging times can be determined from the measurement shown

in Fig. 7.3a): The difference of the average of i subsequent axial frequency measurements is

calculated. The standard deviation of these differences as a function of the averaging time

(i · 100 s) is shown as unfilled circles in Fig. 7.3b). Noise averaging of the FFT-spectrum,

which allows for a more precise determination of the axial frequency from the dip in the

noise spectrum for longer averaging times, causes a decrease of the frequency uncertainty

(dotted line). An increase of the frequency fluctuations due to voltage fluctuations for

averaging times T > 800 s is observed. The solid line approximates the data, which is the

sum of the contributions of voltage fluctuations (dashed dotted line) and noise averaging

(dotted line). However, the observed scaling of the voltage fluctuations is not explainable

by the measured voltage stability (dashed line)(see section 5.5). This discrepancy can be

explained by the unknown noise- and drift-characteristics of the multimeter, which was

utilized to measure the voltage stability and the improved temperature stability of the

voltage supply.

The frequency fluctuations for an averaging time of T = 40 s correspond to an uncertainty

of the free cyclotron frequency of ∆νc/νc = 0.07 ppb. Thus, the uncertainty of the axial

frequency measurement is no limitation for a measurement of νc with a relative precision

of 10−9.

7.2 Measurement of the magnetron frequency

We measure the magnetron frequency ν− with the double-dip technique described in sec-

tion 4.4. A driving field at νrf = νz + ν− + δ is applied to one half of a split correction

electrode of the precision trap with an amplitude of −34 dBm at the room temperature

flange of the quadrupole-excitation line. The driving field leads to a coupling of the mag-

netron mode to the axial mode. The resulting double-dip spectrum is shown as solid line

in Fig. 7.4a) and b). The dotted curve shows the single dip spectrum, which is obtained

from an independent measurement with no coupling field. The magnetron frequency can

be determined from

ν− = −νl − νr + νz + νrf , (7.5)

where νl and νr are the left and right frequencies of the double-dip, νz is the frequency

of the single-dip and νrf is the driving frequency. For the plot shown in a), a magnetron

frequency of ν− = 10640.55(10)Hz is obtained which agrees well with the value for b)

ν− = 10640.48(9)Hz. The detuning of the coupling field from the resonance frequency is

given by δ = −4Hz and δ = +4.5Hz for Fig. 7.4a) and Fig. 7.4b), respectively. The double-

dip frequencies as a function of the coupling frequency are shown in Fig. 7.4c) which yields

an avoided crossing [61]. The relative precision of better than ∆ν−/ν− = 10−5 corresponds

to a contribution to the relative uncertainty of the free cyclotron frequency of less than

10−11. Thus, the measurement of the magnetron frequency is no limitation for a sub-ppb
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Figure 7.4: a) and b): A single proton in thermal equilibrium with the axial detection

system. Each spectrum was obtained in T = 50 s averaging time. The double-dip spectrum

(solid line) is obtained for a sideband-coupling field at frequency νrf = νz + ν− + δ. The

detuning from resonance is given by δ = −4Hz in a) and δ = +4.5Hz in b), respectively.

For a larger detuning, the separation of the dips increases. The dotted curve shows the

single-dip spectrum, which is obtained without coupling field. The magnetron frequency of

ν− = 10640.55(10)Hz for a) and ν− = 10640.48(9)Hz for b) is calculated using Eq. (7.5).

c) The frequencies of the double-dips are plotted as a function of the coupling frequency,

which yields an avoided crossing [61].
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Figure 7.5: The signal of an excited proton is shown.

determination of the free cyclotron frequency.

7.3 Measurement of the modified cyclotron frequency

This section gives an overview of different detection schemes for the modified cyclotron fre-

quency ν+, which have been implemented at our experiment. Since the modified cyclotron

frequency ν+ is approximately equal to the free cyclotron frequency (ν+/νc ≈ 0.9996), the

uncertainty of the measurement of the modified cyclotron frequency is the main limitation

for the measurement of the magnetic-field strength and thus for the determination of the

g-factor.

7.3.1 The cyclotron cooling-curve

The convential detection technique for the modified cyclotron frequency ν+, which utilizes

the cyclotron detection system, is based on the detection of the signal generated by an

excited proton. The proton is heated to an energy E+,1 of several eV by a driving field.

The frequency of the drive is swept down over a range of 1 kHz in a time of 10 s at

an amplitude of −55 dBm at the room-temperature flange of the quadrupole-excitation

line. After turning off the drive, the coherent signal is observed (see Fig. 7.5) and the

modified cyclotron frequency can be measured. However, at such high motional amplitudes

the oscillation frequency is shifted compared to the frequency at vanishing oscillation

amplitude due to the presence of anharmonicities

∆ν+
ν+

(E+) =

[

1

qV0

3c4
c22

(

1

4

νz
ν+

)4

− 1

mpν2z

B2

B0

(

νz
ν+

)2

− 1

mpc2

]

E+ . (7.6)
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Figure 7.6: a) Time evolution of the modified cyclotron frequency for the former setup

utilizing a puls-tube cooler to provide the cryogenic environment. The residuals of an

exponential decay reveal large oscillations which were associated to cooler vibrations. b)

A liquid cryostat provides the cryogenic temperatures for the new setup. The exponential

fit to the data gives a modified cyclotron frequency of ν+ = 28 970 739.955(92)Hz which

corresponds to a relative uncertainty of ∆ν+/ν+ = 3 ·10−9. The residuals of the cyclotron

cooling curve are reduced by a factor of 50 compared to a), indicating that the oscillation of

ν+ was caused by vibrations of the puls-tube cooler. Note that the whole scale of the decay

curve in b) is less than the scale of the residuals shown in a). The cooling time constant of

τ+ = 70.9(1.3) s for a) and τ+ = 98.8(2.1) s for b) agrees with the corresponding measured

quality factors of Q ≈ 700 and Q ≈ 500 of the cyclotron detection system. The quality

factor of the cyclotron detection system is changed for different experimental runs due to

different magnitudes of the rf-losses in the tank circuit. The highest achieved value for the

quality factor is Q = 1250 [45](see Tab. 4.1).

The last term in the brackets corresponds to the frequency shift caused by special relativity

[39]. The proton will dissipate energy in the tank circuit at the time constant τ+ until

it reaches thermal equilibrium with the detection system. Recording the evolution of the

modified cyclotron frequency over time

ν+(t) = ν+,0 (1− α+E+,1 exp (−t/τ+)) (7.7)

results in an exponential decay curve as shown in Fig. 7.6, where α+ is given by the sum

of the frequency shifts of Eq. (7.6). From an exponential fit to the data we can extrapolate

the frequency of the modified cyclotron mode at thermal equilibrium with the detection

system ν+,0.

Due to vibrations of the pulse tube cooler, utilized in the former setup, magnetic field

variations in the range of several µT were induced. The residuals of an exponential fit to

a cyclotron cooling curve clearly show these fluctuations (see inset of Fig. 7.6a)). The size

of the vibrations were measured with a position sensitive diode to be of the order of 40µm

[72]. However, the homogeneity of the magnetic field at the position of the precision trap

was measured with an NMR-probe, to vary at the level of 1µT for a volume of about

1 cm3, only [66]. The reason for the observed fluctuations of several µT due to oscillations
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Figure 7.7: Single- and double-dip spectra of a single proton in thermal equilibrium with

the axial detection system. By application of a sideband drive at νrf = ν+ − νz the axial

dip splits symmetrically. a) For the puls-tube cooler, the double-dips (arrows) are smeared

out due to magnetic field variations induced by cooler vibrations. b) These vibrations were

eliminated by use of a liquid cryostat instead of the puls-tube cooler. A modified cyclotron

frequency of 28 966 061.997(32)Hz is calculated from the frequencies of the double-dip and

the single dip, which allows us to measure the modified cyclotron frequency with the

double-dip technique with a relative precision of about one ppb.

in the µm-range is not understood.

In a first attempt [72], the trapping region was mechanically decoupled from the vibrating

cooler stages, which reduced fluctuations in the magnetic field by a factor of ten. However,

the resulting fluctuations of ±1.1Hz still limited the relative precision of the modified

cyclotron frequency to ∆ν+/ν+ = 3 · 10−8. Thus, the puls tube cooler was replaced

by a liquid cryostat to avoid any vibration-induced magnetic field variations. A cyclotron

cooling curve, which was measured with the new setup is shown in Fig. 7.6b). The residuals

clearly indicate that no periodic fluctuations of the magnetic field are present when utilizing

a liquid cryostat. With the improved setup, the modified cyclotron frequency can be

determined with a relative precision of ∆ν+/ν+ = 3ppb in several minutes from a cooling

curve.

7.3.2 Sideband coupling of the modified cyclotron mode to the axial

mode

The liquid cryostat enabled us to perform more precise measurements of the modified

cyclotron frequency ν+ by a sideband-coupling to the axial mode than possible with the

former setup. The two double-dip spectra shown in Fig. 7.7a) and b) were measured with

the former setup utilizing a puls-tube cooler and the new setup utilizing a liquid cryostat,

respectively. The improved frequency stability of the modified cyclotron mode due to the

elimination of vibrations is clearly visible. The single- and the double-dip spectra shown

in Fig. 7.7b) were recorded for an averaging time of T = 90 s, respectively. The modified
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Figure 7.8: The time evolution of the modified cyclotron frequency (black) is strongly

correlated to the temperature (grey) of the CF-200 double-cross (see Fig. 5.1).

cyclotron frequency is given by

ν+ = νl + νr − νz + νrf , (7.8)

yielding a modified cyclotron frequency of 28 966 061.997(32)Hz, which corresponds to a

relative uncertainty of 1.1 ppb. The measurement time of ν+ with the double-dip technique

is reduced by about a factor of three compared to the cyclotron cooling curve scheme. Due

to the lower measurement time and the higher accuracy, the sideband-coupling technique

is usually used to determine ν+.

However, the observed long term stability was very poor as shown in Fig. 7.8. Peak-to-

peak drifts of up to ∆ν+ = 40Hz were observed for a time period of one day. A correlation

of these drifts to temperature variations of the experimental setup was observed as shown

in Fig. 7.8. The temperature was measured with a PT-100 sensor, thermally anchored

to the CF-200 double-cross (see Fig. 5.1). A possible explanation for this correlation is

the thermal expansion of the CF-200 double-cross (see Fig. 5.1). Assuming, that the

observed drift is caused by the same physical effect as for the vibration induced fluctuations

(see Fig. 7.6) would require a shift of the Penning traps of about 50µm. The traps are

mechanically coupled to the cold finger of the helium dewar which is mounted on top

of the CF-200 double-cross (see Fig. 5.1). The double-cross itself is connected to the

magnet with a flexible bellow. The distance from the middle of the double-cross to the

magnet is about 30 cm. For stainless steel the thermal expansion coefficient is 16.1 ·
10−6K−1 [75], which yields a thermal expansion for a temperature difference of 2K of

about 10µm. Thus, a shift of the traps with respect to the superconducting magnet could

be the reason for the observed correlation. However, the discrepancy by a factor of 5

requires further investigation. A temperature stabilization has recently been set up by

Andreas Mooser, which stabilizes the temperature of the whole apparatus including the

superconducting magnet. The performance of the temperature stabilization system and



7.3 Measurement of the modified cyclotron frequency 69

the resulting fluctuations of the modified cyclotron frequency will be part of the Ph.D.-

thesis of Andreas Mooser [57].

7.3.3 The cyclotron noise-dip

A third possibility to measure the modified cyclotron frequency ν+ is discussed in the

following section: The first determination of ν+ in thermal equlibrium with the cyclotron

detection system from the noise dip is presented 1. A corresponding publication is in

preparation [76].

The main experimental challenge for the application of the dip-technique for the cyclotron

mode is the lower resonance resistance R of the cyclotron detection system compared to

the axial detection system. Due to the high frequency of the modified cyclotron mode

the inductance L of the coil for the cyclotron mode is only L = 1.5µH, which is three

orders of magnitude smaller than for the axial system (see Tab. 4.1). Furthermore, the

quality factor is limited by losses in the LC-circuit, which scale proportional to the reso-

nance frequency νLC, such as for example the skin-effect [77]. The resulting quality factor

of Q ≈ 700 results in a resonance resistance of R = 200 kΩ, which corresponds to a dip

width for a single proton of only δν = 3mHz. This requires a much higher averaging

time due to the Fourier limit. However, the modified cyclotron frequency ν+ shifts several

line widths over these time scales due to magnetic field drifts and fluctuations, and thus

prevents the detection of the dip. Therefore, the dip-technique has not been applied for

the measurement of the modified cyclotron frequency so far.

To overcome this problem we use active electronic feedback as described in section 4.5

in order to increase the effective resistance of the cyclotron detection system and thus

the width of the noise-dip. In Fig. 7.9 a schematic of the feedback-loop for the cyclotron

detection system is shown. The strength of the feedback signal GFB is adjusted with a

voltage controlled attenuator VCA MC ZX73-2500S+, which is followed by a bandpass

chain consisting of two MC BLP-30+ low-pass filters and two MC BLP-25+ high-pass

filters. The phase Φ is adjusted by a voltage controlled phase shifter MC JSPHS-32+.

Thermal noise resonances of the cyclotron detector for different feedback gains are shown

in Fig. 7.9b). In order to resolve the cyclotron dip of a single proton, quality factors of the

order of 106 are required, which requires precise control of the gain GFB and the phase Φ.

The VCA and the cryogenic amplifier turned out to be the most critical componenents of

the loop in order to obtain a stable quality factor of the order of 106. The attenuation of

the VCA as a function of the control voltage is shown in Fig. 7.10. In order to obtain a

stable gain, the VCA was operated at high control voltages, which reduces the sensitivity

on voltage fluctuations of the corresponding biasing supply. Fixed attenuators from Mini-

circuits were utilized for the coarse-tuning of GFB. In case of the cryogenic amplifier the

fluctuation of the gain was reduced by using a stable voltage source (∆Vbias/Vbias ≈ 10−6)

for the biasing of the amplifier.

1The experimental realization of the cyclotron noise-dip is also part of the Ph.D.-thesis of Andreas

Mooser [57]
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Figure 7.9: a) Schematic of the feedback loop for the detection of the cyclotron dip. The

tank circuit for the modified cyclotron mode is attached to one half of the upper correction

electrode P4. It consists of an inductance L with parasitic capacitance C yielding an

effective resistance R on resonance. The detector signal is amplified (AMP) and divided

to two equal fractions using a power splitter. One part is mixed down and guided to a Fast

Fourier Transform (FFT) spectrum analyzer. The other one is attenuated (VCA), filtered

with a bandpass, phase shifted and fed back to the upper endcap electrode P5 which

is capacitvely coupled to the detector. b) The thermal noise resonance of the cyclotron

detection system for different magnitudes of the feedback gain GFB is shown. For details

see text.
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Figure 7.10: a) attenuation and b) phase shift as a function of the control voltage for the

VCA MC ZX73-2500S+. To obtain a stable feedback gain GFB and phase Φ, the VCA was

operated at control voltages of about 0.7V and was therefore only utilized for fine-tuning

of the gain. Thus, the influence of voltage fluctuations of the corresponding biasing supply

on the quality factor was greatly suppressed. The coarse-tuning of GFB was realized with

fixed attenuators from Minicircuits.
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Figure 7.11: Single proton detection in thermal equilibrium with the cyclotron detection

system. The quality factor of the tank circuit was enhanced to Q ≈ 200 000 by appli-

cation of active electronic feedback. This corresponds to a line width of the noise-dip

of ∆ν+ ≈ 800mHz. From a fit of the lineshape (see Eq. (4.21)) to the data, a modified

cyclotron frequency of ν+ = 28 972 591.075(24)Hz was determined.

We achieved effective resistances of Reff ≈ 58MΩ corresponding to Q ≈ 200 000, which

enabled us for the first time to resolve a cyclotron dip spectrum of a single trapped

proton in thermal equilibrium with the detection system, as shown in Fig. 7.11. This

spectrum was recorded with 100 s averaging time. A modified cyclotron frequency of

ν+ = 28 972 591.075(24)Hz was determined from a fit of the lineshape (see Eq. (4.21)) to

the data.

Due to the strong correlation of the modified cyclotron frequency with the environmental

temperature of the experimental setup (see Fig. 7.8) the cyclotron noise-dip could only be

detected in periods of stable lab temperature. This obstacle should be overcome in the

future by the temperature stabilization system [57].

The effective temperature T+,eff of the cyclotron detection system is given by

T+,eff = T+
Reff

R
≈ 1800K , (7.9)

for a temperature of the cyclotron detection system without feedback of T+ = 6.4K (see

section 8.4). This yields a motional amplitude of ρ+ ≈ 30µm (see Eq. (2.13)) during the

measurement of ν+, which is a factor of 7 larger compared to the double-dip technique. The

resulting shifts of ν+ due to anharmonicities of the trapping potentials and the relativistic

mass effect are calculated using Eq. (7.6) and are summarized in Tab. 7.1. The main

contribution arises from the magnetic inhomogeneity B2. Despite the high temperature

of the cyclotron mode, the corresponding frequency shift is still smaller than the shift

caused by the energy of the axial mode. This becomes clear when considering the effect
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Source Size of parameter ∆ν+ (Hz)

Electrostatic anharmonicity C4 = 1.3 · 10−7mm−4 6 · 10−5

Magnetic inhomogeneity B2 = 4.7T/m2 -0.032

Relativistic mass effect -0.005

Total -0.037

Table 7.1: Systematic shifts ∆ν+ of the modified cyclotron frequency due to anharmonic-

ities of the trapping potentials and the relativistic mass effect for a cyclotron radius of

ρ+ = 30µm .

of a variation of the corresponding motional amplitudes in the magnetic bottle. The axial

component of the magnetic field Bz is given by

Bz = B0 +B2(z
2 − ρ2/2) , (7.10)

which means that Bz increases on average for a larger axial oscillation amplitude and de-

creases with increasing cyclotron radius. The cyclotron radius ρ+ and the axial oscillation

amplitude z0 of the proton can be expressed as

ρ+ =
1

2πν+

√

2kBT+

mp
≈ 0.7

√

T+
µm√
K

(7.11)

z0 =
1

2πνz

√

2kBTz

mp
≈ 26

√

Tz
µm√
K

. (7.12)

Thus, the systematic shift of ν+ for an axial temperature of Tz = 4.2K is a factor of 3

larger than the corresponding shift of ν+ for a cyclotron temperature of T+ = 1800K.

The determination of ν+ with the dip-technique allows for the simultaneous measurement

of the axial frequency νz with the corresponding detection system, which reduces the re-

quired measurement time for the free cyclotron frequency by a factor of two. Alternatively,

strong negative feedback can be applied to the axial detection system, which reduces the

shift of the modified cyclotron frequency and therefore allows for a more precise deter-

mination of ν+ than with the double-dip technique. The technical realization of stable

quality factors of the order of 106 is challenging, which complicates a reliable use of the

cyclotron dip on long time scales. Thus, for the upcoming measurement of the g-factor,

which is expected to take several weeks to months, the double-dip technique will be used.

The reliability of the cyclotron-dip technique can be improved by a further optimization

of the critical components of the feedback loop. Moreover, the presented measurement of

the cyclotron dip utilized a cyclotron detector with a quality factor of Q ≈ 700. Quality

factors of the cyclotron detector of up to Q = 1250 were already achieved in former ex-

perimental runs, which would reduce the required gain to resolve the cyclotron dip and

also reduce the effective temperature in the cyclotron mode, yielding systematic shifts of

ν+ below the ppb-level.

The feasibility to resolve the cyclotron dip for highly charged ions at moderate feedback

gains and thus at even lower temperatures is discussed in appendixA.



Chapter 8

A single proton in the analysis

trap

The analysis trap is designed to enable the discrimination between the two spin states of the

proton by the application of the continuous Stern-Gerlach effect [33]. This is an essential

ingredient of the experimental routine to determine the g-factor as presented in section 3.4.

Therefore, the analysis trap incorporates a magnetic bottle of B2 = 300mT/mm2, which is

the largest inhomogeneity ever superimposed to a single particle Penning trap experiment

[47]. As a consequence, already tiny amplitude variations of the eigenmotions cause huge

frequency shifts (see section 3.3). Only the axial frequency is insensitive to thermal fluctu-

ations of its motional amplitude. Thus, only the axial mode can be detected directly with

a dedicated detection system. The small trap size (ρ0 = 1.8mm) increases the sensitivity

on patch effects which can cause significant deviations from the calculated electrostatic

potential [78]. This complicates the process of finding the dip signature with the axial

detection system as discussed in section 8.1. However, we developed an optimization pro-

cedure presented in section 8.2 to experimentally detect and compensate the various offset

potentials present on all electrodes.

The convential double-dip technique to measure the radial frequencies as presented for

the precision trap (see section 7.2 and 7.3.2) can not be applied in the strong magnetic

inhomogeneity. Thus, special measurement routines for ν+ and ν− as discussed in sec-

tion 8.3 are required. A precise knowledge of the strength of the magnetic inhomogeneity

gives the opportunity to interesting measurements: Due to the strong scaling of the axial

frequency with the radial energies, the axial mode can be used as a thermometer of the

mode temperatures as will be discussed in section 8.4.

The observation of a spin transition requires the ability to resolve an axial frequency shift

of 171mHz at a total axial frequency of 742 kHz. However, the stability of the axial fre-

quency is limited due to energy fluctuations in the radial modes. We performed systematic

studies on the origin of theses fluctuations which is presented in section 8.5. These investi-

gations led to the modifications of the experimental setup as described in section 5.7 which

decreased the instability of the axial frequency by a factor of 3. The increased stability of
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Figure 8.1: A single proton in resonance with the axial detection system in the magnetic

bottle field of the analysis trap. Both spectra are obtained with an averaging time of

T = 80 s. In a) the former axial detection system connected to both traps is utilized.

The new tank circuit in b) is explicitly attached to the analysis trap (for parameters see

Tab. 4.1). The new detection system is attached to the endcap instead of the correction

electrode. Thus, despite the higher resonance resistance the line-width of the noise dip is

decreased due to the higher effective electrode distance. The resonance frequencies of the

different detection systems differ by 70 kHz, which requires an adjustement of the trapping

potential.

the axial frequency is a significant improvement:

For the first time we were able to resolve individual spin transitions of a single proton

(see section 8.6). Moreover, lower frequency fluctuations allow for a faster statistical de-

termination of the Larmor frequency as discussed in section 8.7. But most important,

the ability to resolve individual spin transitions allows for a direct determination of the

Larmor frequency as described in section 3.5.2, which is demonstrated in section 8.7. The

importance of this result for the g-factor measurement utilizing the double-trap technique

is discussed in the last section.

8.1 Detecting the proton noise-dip

All measurements performed in the analysis trap are based on a measurement of the

axial frequency. Thus, the very first task is to tune the proton in resonance with the

detection system and detect the particle dip. Sample spectra of a single proton in thermal

equilibrium with the former and the actual axial detection system are shown in Fig. 8.1.

However, the detection of the dip is hindered in the analysis trap since offset potentials

play a much more important role than in the precision trap due to the smaller trap size.

To tune the axial frequency of the proton in resonance with the detection system we have

to apply a ring voltage of about −1V, only. Offset potentials due to patch effects and

thermal contact potentials are in the range of 100mV [78]. Thus, the calculated values
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Figure 8.2: Frequency spectrum of a parametrically excited proton. The SNR is defined

by the height of the peak with respect to the noise resonance of the tank circuit. The

spectrum was recorded with 4 s averaging time.

for the ring voltage as well as the optimal tuning-ratio may significantly vary from the

experimental values, which complicates the task of detecting the proton dip since we have

to perform a two-dimensional scan:

• Ring voltage: The ring voltage is scanned in steps of 1mV since the axial frequency

has to match the resonance frequency of the detection system by ±200Hz. Larger

detunings than ±200Hz lower the SNR of the dip signature which decreases the

detectability.

• TR: To resolve the dip signature the tuning-ratio has to match the optimal tuning-

ratio to at least 0.5mUnits, corresponding to c4 = 24mm−4. For larger anharmonic-

ities the depth of the noise-dip decreases (see Eq. (7.2)).

A single dip-spectrum can be recorded in about 40 s implying that the whole scan would

take several days.

We can speed up the scanning process by utilizing the 2νz-parametric-resonance of the

axial mode. The phenomena of parametric excitation of an eigenmotion of a trapped

particle in a Penning trap is discussed in detail in [79]. To excite the axial motion of the

proton we apply a drive at νrf ≈ 2 ·νz to one endcap of the analysis trap. A peak at νrf/2

on top of the noise resonance of the tank circuit as shown in Fig. 8.2 can be observed if

the axial frequency of the proton is in the range νrf/2 ± ǫ. The response width 2 · ǫ is

defined by the strength h of the drive

2 · ǫ = 1

2
νz

√

h2 − h2T , (8.1)

where hT = γz/(πνz) is the threshold amplitude above which parametric excitation oc-

curs, which is proportional to the damping constant γz of the axial detection system. For
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Figure 8.3: Plots of the signal strength of a parametrically excited proton. For each

tuning-ratio, the ring voltage is changed in steps of 250µV. The tuning-ratio is varied in

steps of 1mUnit. The scale of the z-axis is identical for both plots. In a) axial responses

are visible over a wide range of the tuning-ratio but the ring-voltage A3 has to match the

condition νz(A3) = νrf/2. The resonance voltage shifts as a function of the tuning-ratio

due to the non-vanishing D2-coefficient. The values for tuning-ratio and ring voltage for

the maximum signal differ from the optimized values for the dip detection by ∆TR =

0.7mUnits and ∆A3 = 0.15mV, respectively. In b) axial responses are not only visible

for νz(A3) = νrf/2 but also for smaller ring-voltages in case of a tuning-ratio which is

smaller than the optimal tuning-ratio TRopt = 0.896. For this scan, the optimized offset

potentials A1 = −448.56mV, A2 = −21.977mV, A3 = −90mV and A4 = 21.977mV were

applied, which correspond to a more symmetric potential than in a) (for more details see

section 8.2).

stronger driving amplitudes than hT the amplitude of the oscillation grows exponential.

However, anharmonicities prevent the motion from expanding infinitely and lead to satu-

ration of the motional amplitude. Thus, the particle can be monitored non-destructively.

Due to the high SNR of the axial response we can detect a proton signal in less than 4 s

compared to the 40 s required for the dip technique. A significant benefit of the para-

metric excitation is the low sensitivity on the tuning-ratio: We detect signals over a very

wide range of the tuning-ratio which simplifies the first detection of a proton-signal. A

two-dimensional scan of the ring voltage and the tuning-ratio utilizing the parametric exci-

tation of the axial mode is shown in Fig. 8.3a). The maximum signal is obtained for a ring

voltage of A3 = −0.817V and a tuning-ratio of TR = 0.926. Turning off the excitation,

the dip signature becomes visible and after optimization of the tuning-ratio as described

in section 7.1.1 the single proton dip is found for A3 = −0.81685V and TR = 0.9253

as shown in Fig.8.1a). The expected ring voltage A3 and tuning-ratio TR can be ex-

tracted from analytical calculations of the trapping potential. The calculated values of

A3 = −0.80659(3)V and TR = 0.8821(2) deviate considerably from the experimentally

determined values.

However, a more typical signature of a parametric scan in the analysis trap is shown in
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Fig. 8.3b). Here, the maximum signals are obtained for tuning-ratios and ring voltages

below the optimum, which is not yet understood. The only difference between Fig. 8.3a)

and b) is the asymmetry of the trapping potential. However, the latter is recorded for

the more symmetric potential (for further details on asymmetry see section 8.2). More de-

tailed investigations showed that this effect is independent of the scanning-direction and

the off-resonant-peaks are even visible for very low driving amplitudes near hT . Still, we

can estimate the optimum values of TR and A3 quite well since the broadening is only

present for tuning-ratios TR < TRopt. The values for the ring voltage and the tuning-

ratio obtained from Fig. 8.3b) differ by ∆A3 = 0.1mV and ∆TR = 0.1mUnits only. This

knowledge helped us to significantly reduce the time to find the dip signature in our anal-

ysis trap after the change of the setup. Instead of several months it took us only three

days to tune the proton into resonance with our detection system and to resolve the dip

signature.

8.2 Asymmetry optimization

As already discussed in section 8.1, the optimal tuning-ratio TRopt and the resonance

voltage A3(νz = νLC) deviate significantly from the expected values. This is a first indi-

cator for patch potentials on the trap electrodes. Most likely, these patch potentials also

cause deviations of the orthogonality and the compensation which are key properties of

a Penning trap. The design process of the analysis trap was focused on optimizing these

two parameters to obtain a harmonic potential [47]. In this section, a scheme to detect

and compensate the patch potentials in order to approximate the calculated potential is

presented [47].

The basic principle is the detection and compensation of an asymmetry of our trapping

z

ρ

Figure 8.4: Sketch of the five-electrode analysis trap [46]. Asymmetries due to patch

potentials on the electrodes are compensated by adjustement of offset voltages applied to

the correction electrodes A2 and A4 and the endcap A1.
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Figure 8.5: Calculated axial frequency shift as a function of an additional voltage applied to

the correction electrodes A2 (red circles) and A4 (blue squares). For a symmetric potential

in a) the curves are nearly symmetric (the deviation originates from the small but non-

vanishing D2-term) and equal. For a patch potential of δA2 = −50mV in b) the curves

are shifted by δA2 and −δA2, respectively. A more complex configuration δA2 = −50mV

and δA5 = 350mV is shown in c).

potential. To this end, we measure the axial frequency as a function of additional volt-

ages applied to the correction electrodes A2 and A4 (see Fig. 8.4). Simulated curves for

different patch potential configurations are shown in Fig. 8.5. For a symmetric potential

(with respect to the ring electrode) the axial frequency shift as a function of an additional

voltage applied to one correction electrode (or endcap) is positive and symmetric as shown

in Fig. 8.5a). Moreover, in a symmetric potential the axial frequency shift is equal for both

correction electrodes. In Fig. 8.5b) the simplest case for an asymmetric potential is shown.

A patch potential present on one correction electrode shifts the curves. This can be com-

pensated by application of an offset voltage to one correction electrode. An asymmetry

scan for an even further disturbed potential is shown in Fig. 8.5c). The additional patch

potential on the endcap cannot be compensated by offset voltages applied to the correction

electrodes but requires an additional offset voltage applied to one endcap.

The experimental compensation process is performed in a smaller voltage range than the

asymmetry-scans shown in Fig. 8.5 since the axial frequency can only be detected in a

narrow range around the resonance frequency of the axial detection system. Experimen-

tal scans are shown in Fig. 8.6a)-c) where the voltages of the correction electrodes A2

and A4 have been varied by 800µV only. We classify the grade of asymmetry by the

slopes of the axial frequency as a function of the corresponding offsets ∆νA2
z and ∆νA4

z .

The compensation process depicted in Fig. 8.6 then basically consists of two optimization

steps:

1. Voltage changes of the correction electrodes should cause the same frequency shifts

∆νA2
z = ∆νA4

z . Starting from a scan like Fig. 8.6a), additional voltages δCE are

applied to the correction electrodes to achieve a configuration as shown in Fig. 8.6b).

This configuration is called local asymmetry compensated.
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Figure 8.6: Top - Flow chart of the asymmetry compensation. Bottom - The corresponding

asymmetry-scans: The axial frequency as a function of an additional voltage applied to

the correction electrodes A2 (red) and A4 (blue) is shown. The slopes ∆νA2
z and ∆νA4

z are

determined from a linear fit to the data. In a) the slopes differ, indicating an asymmetric

potential. Due to an additional offset potential δCE applied to the correction electrodes the

slopes in b) are equal, indicating a local asymmetry compensated trap. In c) the vanishing

slopes indicate a global asymmetry compensated trapping potential.

2. Voltage changes of the correction electrodes should cause small frequency shifts

∆νA2
z = ∆νA4

z ≈ 0. This can be achieved by additional offset potentials applied

to the endcaps. The endcaps are usually kept on ground potential to achieve a

stable trapping potential. Thus, we apply only one offset voltage δEC to A1 utiliz-

ing an ultra-stable Fluke 343A voltage source to minimize instabilities due to the

additional voltage supply. In Fig. 8.7 the slope ∆νA2
z for each local asymmetry com-

pensated configuration as a function of the offset δEC is shown. The asymmetry-scan

shown in Fig. 8.6c) corresponds to the global asymmetry compensated configuration

for δEC = −300mV for the red data points.

Besides the information of ∆νA2
z , we obtain for each data point of Fig. 8.7 values for the

orthogonality D2, the optimal tuning-ratio TRopt and the resonance voltage A3(νz = νLC)

[46]. Comparing these values with calculations as shown in Fig. 8.5 indicated, that the

electrostatic deviations cannot be explained by patch potentials, only. We assume that
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Figure 8.7: The graph shows the slope ∆νA2
z of the local asymmetry compensated con-

figurations as a function of the endcap offset δEC. The black squares were obtained for

the former setup. Due to an improved setup of the analysis trap, the global asymmetry

compensated configuration is achieved for lower offset potentials δEC. This indicates a less

disturbed potential in the new setup.

a larger gap between one endcap and the adjacent correction electrode additionally dis-

turbed the electrostatic potential. Thus, for the new setup we took even more care when

setting up the electrodes of the analysis trap. The comparison of ∆νA2
z (δ) for the former

setup and the new setup shown in Fig. 8.7 indicates that we improved the geometric prop-

erties of the analysis trap considerably.

8.3 Measurement of radial frequencies

At first glance, the routine for the g-factor measurement (see section 3.4) only requires

measurements of the axial frequency. However, to determine the Larmor frequency to

drive spin transitions, the magnetic field strength has to be determined which calls for a

measurement of ν+ and ν− in addition. Moreover, a measurement of νc as a function of

the axial position of the proton in the analysis trap yields the strength of the magnetic

bottle.

The application of the double-dip technique to measure the radial frequencies is not pos-

sible in the strong magnetic inhomogeneity: The motional amplitude of the axial mode

is thermally broadened since it is in contact with a thermal bath. In the presence of a

coupling field νrf = νz ± ν∓, the energy of the radial mode is not constant over time

too. Consequently, the axial frequency itself fluctuates due to the strong dependence on

the temperature in the radial modes. In case of the magnetron mode this would lead to
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frequency fluctuations up to δνz = 50Hz which is orders of magnitude larger than the

line-width of the noise dip. For the modified cyclotron mode the corresponding axial fre-

quency fluctuations would be δνz = 5kHz. However, we can utilize these energy-dependent

shifts of νz to determine the radial frequencies with a different measurement scheme. The

measurement consists of a series of burst signals to excite the radial modes. After each

excitation attempt the axial frequency is measured. For a resonant excitation the fre-

quency difference between two subsequent axial frequency measurements is large due to

energy absorption in the radial mode. As discussed in section 3.2 the linewidth of the

modified cyclotron resonance is defined by the temperature of the axial mode. We apply

negative feedback to the axial detection system to decrease the thermal broadening of the

resonance. Fig. 8.8 shows two measurements of the modified cyclotron frequency. The

measurement in Fig. 8.8a) was performed with our new axial detection system. Due to

the improved SNR, we reach lower axial temperatures, which reduces the linewidth of the

modified cyclotron resonance. Moreover, the spectral width ∆νrf of the excitation pulse

was decreased to approximately half the width of the modified cyclotron resonance by

increasing the number of burst cycles and thus the puls length. These changes lead to a

narrower response compared to the former detection, shown in in Fig. 8.8b), where axial

frequency fluctuations are observed over a wide range of the excitation frequency. We give

a conservative error of twice the resonance width 2 ·∆ν+ yielding a relative uncertainty of

1.5 · 10−4 for the modified cyclotron frequency. We applied the same method to determine

the magnetron frequency to ν− = 15.39(1) kHz.

8.3.1 Magnetic bottle measurement

We utilize the measurement scheme for ν+ to scan the magnetic bottle field of the analysis

trap. To this end, we shift the position of the proton along the symmetry axis of our trap

by additional asymmetric potentials applied to the correction electrodes. The minimum

of the electrostatic potential for each configuration can be analytically calculated giving

the position of the proton. At each position we measure ν+ and νz to determine the free

cyclotron frequency νc by application of the invariance theorem (Eq. (2.8)). The magnetron

frequency is measured the same way as the modified cyclotron frequency. But it is sufficient

to measure ν− for one position of the proton in the magnetic bottle. In Fig. 8.9 the

magnetic field strength as a function of the axial position is shown. From a quadratic fit to

the data the strength of the magnetic bottle term was determined B2 = 297(10)mT/mm2,

which is in perfect agreement to the theoretical value of B2 = 300.3807(63)mT/mm2 [47].

8.4 Temperature of eigenmodes

The strong scaling of the axial frequency on the radial energies in the AT implies that

the axial mode can be utilized as a thermometer of the radial temperatures T+ and T−.
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Figure 8.8: Successive measurements of the axial frequency to determine the modified

cyclotron frequency in the magnetic bottle. An external driving field at ν+ is applied

between two subsequent axial frequency measurements. On resonance the energy in the

modified cyclotron mode is changed which causes an axial frequency shift. In a) the axial

temperature was reduced by negative feedback to a temperature of Tz ≈ 0.8K. This yields

a linewidth of the modified cyclotron resonance of ∆ν+ ≈ 1.4 kHz. The spectral width

of the excitation pulse was chosen to be of the order of ∆ν+ by choosing an appropriate

number of cycles of the burst signal. Thus, a single response is observed. The curve shown

in b) was measured with the former axial detection system. The temperature was decreased

to Tz ≈ 2.2K resulting in a linewidth of ∆ν+ ≈ 3.8 kHz. Here, the width of the driving

field, defined by the number of cycles of the pulse, is about a factor of five larger than ∆ν+,

which results in a broad response. Negative frequency jumps correspond to a decrease of

the cyclotron energy, which is at first glance an unexpected result. However, the driving

field does not necessarily cause an increase of the energy in the cyclotron mode: An energy

change in the cyclotron mode leads to an instant change of the oscillation frequency due

to the strong magnetic bottle. This means that the drive is resonant to the cylotron mode

for a very short time. Thus, the phase difference of the driving field with respect to the

phase of the cyclotron motion has to be considered. This can either result in an increase

or a decrease of the cyclotron radius.
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Figure 8.9: Measurement of the magnetic bottle field [47]. The proton is shifted in ax-

ial direction by application of asymmetric potentials to the correction electrodes. For

each configuration the displacement is calculated analytically and the free cyclotron fre-

quency is measured. From a parabola fit to the data a magnetic bottle strength of

B2 = 297(10)mT/mm2 was obtained.

The knowledge of the magnetic bottle strength B2 gives the scaling of the axial frequency

according to Eq. (3.6) as ∆νz = 72Hz/K. Thus the absolute axial frequency is given by

νz(T+, T−) = νz(T+ = 0K, T− = 0K) + 72Hz/K · T+ + 72Hz/K · T− . (8.2)

We will see in section 8.5 that the temperatures of the radial modes play a very important

role for the axial frequency stability. Thus, an absolute temperature calibration as given

by Eq. (8.2) helped us to investigate the systematics of the axial frequency fluctuations in

the analysis trap.

The first application of the thermometer is the measurement of the magnetron tem-

perature. To this end, we couple the magnetron mode to the axial mode by a sideband

drive at frequency νz + ν−. Due to energy exchange the axial frequency fluctuates since

the temperature T−, according to Tz, is Boltzmann-distributed in the presence of the cou-

pling field. However, after turning off the coupling field, an axial frequency measurement

reflects one specific temperature of this thermal distribution. In Fig. 8.10 two successive

axial frequency measurements separated by a resonant coupling of νz and ν− are shown.

The frequency difference of about 6Hz corresponds to a magnetron temperature difference

of 83mK. Plotting a histogram of a series of axial frequency measurements as shown in

Fig. 8.11 gives several informations:

• We obtain the axial frequency for vanishing temperature in the magnetron mode

from the lower cutoff of the distribution νz,min = νz(T− = 0K). Thus, we can

deduce the absolute temperature T− from an axial frequency measurement.
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Figure 8.10: Two axial frequency spectra of a single proton in the analysis trap. The

frequency difference arises from a sideband-coupling of magnetron and axial mode. The

dotted curve corresponds to a 83mK lower temperature in the magnetron mode than the

solid curve.

• The temperature of the axial mode can be calculated from the width of the distri-

bution according to Eq. (8.2). The left y-axis of Fig. 8.11 shows the axial frequency

shift and the right y-Axis shows the corresponding temperature of the magnetron

mode. The axial temperature can be calculated by the relation Tz = νz/ν− · T−.

We obtain a temperature of Tz = 8.23(0.61)K for the axial detection system without any

feedback (Fig. 8.11b)). By application of negative feedback we can reduce this tempera-

ture by almost a factor of ten to Tz = 1.06(0.22)K, which corresponds to a magnetron

temperature of T− = ν−/νz · Tz = 22mK, only. This is an improvement of more than a

factor of two compared to the previous setup where a temperature of Tz = 2.22(0.19)K

was achieved [47].

The second application of our thermometer is the measurement of the modified cy-

clotron temperature. At first we measure the thermal distribution of the modified

cyclotron mode in our analysis trap in the same way as for the magnetron mode. How-

ever, the modified cyclotron mode is thermalized in the precision trap due to the coupling

to the dedicated detection system. This means, that each data point of the distribu-

tion requires an exchange of the proton between both traps for thermalization (PT) and

temperature measurement (AT) which is much more time consuming than for the mag-

netron mode. Moreover, the higher temperature of T+ compared to T− complicates the

detection of νz(T+). The magnetron temperature is reduced due to the coupling to the

axial mode by νz/ν− ≈ 50. Thus, the distribution of the axial frequency is less than

50Hz (see Fig. 8.11b)) which is less than the width of the resonator. For the modified

cyclotron mode, axial frequency differences up to 2 kHz (corresponding to ∆T+ = 28K)
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Figure 8.11: Measurement of the magnetron temperature and the temperature of the axial

detection system without feedback (top) and with negative feedback (bottom) applied to

the axial detection system. On the left, successive axial frequency measurements separated

by a resonant coupling of magnetron and axial mode at νz + ν− are shown. Note the

factor of 10 difference in scaling.t’Every axial frequency measurement corresponds to a

certain magnetron temperature according to Eq. (8.2). In b) and d) the distribution of

axial frequency shifts is shown, which directly maps the thermal distribution of the axial

mode. The average magnetron temperature is obtained from an exponential fit to the

data (solid line). The corresponding axial temperature can be calculated by the relation

Tz = νz/ν− · T−.
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Figure 8.12: Measurement of the temperature of the cyclotron detection system without

feedback. The frequency measurement is conducted in the analysis trap. Thermalization

takes place in the precision trap. A waiting time of 5 · τ+ assures thermalization in the

precision trap where τ+ is the cooling time constant. Every axial frequency measurement

corresponds to a certain cyclotron temperature according to Eq. (8.2). The right graph

shows the distribution of axial frequency shifts, which directly maps the thermal distri-

bution of the modified cyclotron mode. The temperature of T+ = 6.36(0.84) is obtained

from an exponential fit to the data (solid line).

are expected. Thus, in order to measure νz(T+) we have to readjust the ring voltage for

each energy E+ to tune the particle in resonance with our detection system. Results of

a cyclotron temperature measurement are shown in Fig. 8.12. The 60 data points were

acquired in about 26 hours giving a temperature for the detection system for the modified

cyclotron frequency of T+ = 6.36(0.84)K. This temperature can be further reduced by

application of negative feedback similar as described above for the axial detection sys-

tem. However, due to unwanted parasitic effects at the high resonance frequency of the

cyclotron detection system and the lower SNR, the temperature could only be reduced to

T+ = 3.15(0.11)K [45].

Summarizing, a proton arriving in the analysis trap can first be cooled in the magnetron

mode by a sideband coupling drive to the axial mode. By application of negative feedback

to the axial detection system we can reliably cool the magnetron mode to a temperature

of less than T− < 50mK in a few minutes. Having achieved a magnetron temperature of

a few mK, the axial frequency directly reflects the temperature of the modified cyclotron

mode (see Fig. 8.12).
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8.5 Axial frequency stability in the magnetic bottle

The main experimental challenge is the determination of the spin state of the proton in

the analysis trap. The tiny frequency jump of ∆νz,SF = 172mHz due to a spin transi-

tion requires a very stable axial frequency. As discussed in section 3.5 we quantify the

instability Ξ of the axial frequency by the standard deviation of two subsequent axial

frequency measurements. The optimal case is an absolutely stable axial frequency cor-

responding to Ξ = 0Hz. However, as discussed in section 3.5, a stability of the order of

the size of a frequency jump due to a spin flip Ξ ≈ ∆νz,SF already allows for a statisti-

cal determination of the Larmor frequency. For even lower fluctuations Ξ < ∆νz,SF, the

successful detection of individual spin transitions becomes accessible which is the main

frontier towards a sub-ppb-determination of the g-factor. However, the first series of ax-

ial frequency measurements performed in the analysis trap showed a large instability of

Ξ(T = 80 s) = 1.8Hz. In this section, the investigations of the origin of these fluctuations

and the improvements are discussed.

The axial frequency in the magnetic bottle is defined by the electrostatic potential (Eq. (2.16)),

the radial energies (Eq. (3.6)) and the spin state (Eq. (3.18)):

νz =
1

2π

√

2qV0c2
mp

+
1

2π
√

2qV0c2mp

B2

B0
(E+ + |E−|)±

gµNB2
√

2qV0c2mp

= νz,0 +
1

4π2νz,0mp

B2

B0
(E+ + |E−|)±

gµNB2

2πνz,0mp
. (8.3)

The expected limitations of the frequency stability due to the electrostatic contribution

can be determined from the voltage stability of the UM1-14LN -supply (see section 5.5).

Moreover, since we utilize the same voltage source to bias both traps, we can also esti-

mate the axial frequency fluctuations in the analysis trap due to voltage fluctuations from

the measured instability of the axial frequency in the precision trap (see section 7.1.3).

However, the observed fluctuations in the analysis trap were more than one order of mag-

nitude larger than expected. We therefore concluded that radial energy fluctuations were

responsible for the large instabilities since the large magnetic inhomogeneity is the main

difference between both traps. Thus, the main experimental task is to avoid any changes

of the energy of the magnetron mode and the modified cyclotron mode.

To further clarify the origin and to obtain a scaling of the large axial frequency fluctu-

ations mentioned above we performed systematic studies on the axial frequency stability.

Here, the transient recorder presented in section 4.6 revealed its power as a tool to measure

the axial frequency fluctuation Ξ as a function of the averaging time T . We will first dis-

cuss the influence of the modified cyclotron mode temperature on the frequency stability.

Fig. 8.13a) shows measurements of Ξ(T ) for different energies in the modified cyclotron

mode. For each cyclotron temperature we observe an increase of Ξ with
√
T , which we

attribute to quantum jumps in the modified cyclotron mode. In [45], a quantum mechan-

ical model is given relating the quantum transitions in the modified cyclotron mode to a

driving field with amplitude E0:
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Figure 8.13: a) Axial frequency fluctuation Ξ as a function of the averaging time T for

different temperatures of the modified cyclotron mode. The data was obtained from mea-

surements of the real-time signal of the axial detection system utilizing the transient

recorder. b) The rate of quantum transitions in the modified cyclotron mode is plotted as

a function of the temperature of the modified cyclotron mode.

The transition amplitude between two states |n+〉 and |n+ ± 1〉 is given by

Γn+→n+±1 = 〈n+ |qE0ρ+|n+ ± 1〉

= qE0

√

~

mω+

n+

2
, (8.4)

where in the last step the valid approximation n+ ≫ 1 was used, which means that the

transition amplitudes for |n+〉 → |n+ − 1〉 and |n+〉 → |n+ + 1〉 are equal. The evolution

of the axial frequency can be described by a random walk with standard deviation

Ξ(T ) =
√

pcycT∆ν2z,+ , (8.5)

where ∆νz,+ is the size of the axial frequency jump due to one quantum transition in the

modified cyclotron mode and pcyc is the transition rate. Eq. (8.5) describes the observed

scaling of Ξ with
√
T . From the dataset shown in Fig. 8.13a) we obtain the scaling of the

transition rate pcyc as a function of the temperature of the modified cyclotron mode. As

shown in Fig. 8.13b) the transition rate scales linearly with T+, as expected from Eq. (8.4).

A temperature dependence of the transition rate of pcyc/T+ = 0.030(1) s−1K−1 is obtained

from a linear fit to the data.

This transition rate can be used to quantify the strength E0 of the driving field. If we

assume E0 to be a white-noise driving field with constant amplitude over the linewidth of

the modified cyclotron resonance ∆ν+, the transition rate pcyc is obtained from Fermi’s

golden rule

pcyc = ∆ν+
2π

~
ρ(E+)Γ

2
i→f . (8.6)

Here ρ(E+) = 1/~ω+ =const. is the density of states of the one-dimensional harmonic

oscillator. We obtain an amplitude of E0 = 7nV/
√
Hz which illustrates the sensitivity of
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Figure 8.14: Axial frequency fluctuation as a function of the magnetron mode temperature

T−. The magnetron mode is thermalized by a sideband-coupling to the axial mode. By

application of strong negative feedback to the axial detection system, we are able to reach

temperatures of T− = 22mK on average as shown in Fig. 8.11. For further discussion see

text.

the modified cyclotron mode.

Energy fluctuations in the magnetron mode are also of concern but less important as

we will see. Fig. 8.14 shows the axial frequency fluctuation for different temperatures

in the magnetron mode. We also observe an increasing instability as the energy in the

magnetron mode is raised. However, we are able to cool the magnetron mode reliably to

temperatures of only several mK (see Fig. 8.11). Moreover, the magnetron radius itself is

very stable which means that the magnetron temperature varies only by a few mK over a

period of several days. We therefore concluded that the observed instabilities of the axial

frequency scale with the magnetron temperature but are caused by cyclotron quantum

jumps. Thus, the contribution of the magnetron mode to the axial frequency fluctuation

can be neglected - if the mode is properly cooled.

Summarizing, the following informations on the origin and scaling of the axial frequency

fluctuations were obtained:

1. The fluctuations increase with the absolute radial energy.

2. The fluctuations mainly arise from spurious quantum jumps in the cyclotron mode.

3. The fluctuations are caused by a white noise drive.

t’ In order to increase the axial frequency stability, the amplitude E0 of the driving field has

to be minimized. Due to the tiny magnitude of the noise field we are not able to measure

E0 with a classical spectrum analyzer. This means, that the success of a change of any

parameter can only be judged by a measurement of Ξ. It was found that for a reproducible
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Figure 8.15: Frequency fluctuation of the axial mode as a function of the FFT-averaging

time for the former setup in a) and the new setup in b). The differences of the apparatus

are discussed in section 5.7. The decreasing dotted curve corresponds to the frequency

uncertainty due to noise averaging of the FFT-spectrum. The dashed curve corresponds

to noise driven quantum jumps in the cyclotron mode at a rate of 0.026 s−1 for a) and

0.002 s−1 for b), respectively. The contribution of voltage fluctuations (dashed dotted line)

was obtained from the measured frequency stability in the precision trap. The solid line

represents the sum of the three contributions which approximates the experimental data

(black circles) very well.

result, we have to take data for about eight hours with the transient recorder.

The main aspects to avoid a noise drive at the trap electrodes are listed in [45] and [46].

A stability as shown in Fig. 8.15a) was reached which allowed for a statistical detection

of the Larmor resonance as described in section 3.5.1. In order to suppress the driving

field even more, we changed the whole apparatus as described in section 5.7. With these

changes, we were able to reduce the transition rate pcyc by about a factor of four compared

to the rate pcyc(T+ = 1K) = 0.125(21) s−1 of the former setup. Moreover, due to the

improved detection systems the contribution to Ξ by noise averaging of the FFT-spectrum

is significantly lowered [57]. Thus, we are able to resolve the dip signature in less averaging

time which further reduces the observed axial frequency fluctuation.

Having achieved this level of stability we investigated the influence of an asymmetric

trapping potential on the axial frequency stability. To this end, Ξ(T ) was measured for

different offsets applied to the endcap A1 which is shown in Fig. 8.16. For each offset ∆A1,

the correction electrodes are tuned to achieve a local asymmetry compensated potential

as described in the previous section. The global asymmetry compensated configurations

for ∆A1 = −300mV and ∆A1 = +525mV correspond to the potential configurations

which approximate the calculated potential best. However, the best stability is obtained

for ∆A1 = 0mV. We assume that voltage fluctuations of the additional voltage supply to

bias A1 decrease the frequency stability and therefore keep A1 at ground potential for all

further measurements.
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Figure 8.16: Axial frequency fluctuation as a function of the FFT-averaging time for

different offset-voltages applied to the endcap A1. For each offset ∆A1, the trap is local

asymmetry compensated by application of appropriate offset-voltages to the correction

electrodes. For the offsets ∆A1 = −300mV and ∆A1 = +525mV the trap is global

asymmetry compensated. However, the best stability is obtained for ∆A1 = 0mV which

indicates that the additional voltage source to bias A1 has a negative influence on the axial

frequency stability.

Summarizing, we 1 achieved a frequency stability of Ξ = 60mHz. This is about one

third of a frequency jump due to a spin flip, which implies that the detection of individual

spin transitions is possible as presented in the following section.

8.6 Individual spin transitions

In order to detect spin flips the axial frequency is repeatedly measured for an averaging

time of T = 90 s. Spin transitions are induced after twelve successive axial frequency

measurements. To this end, a resonant rf-field is applied to the disc coil attached to the

trap tower to generate the required radial B-field as shown in Fig. 8.17. The signal is

generated by an RS SMB 100A signal generator followed by an RS HVV10 power am-

plifier. Both devices are turned off during axial frequency measurements. The proton is

further protected from the output noise of the power amplifier by an additional relay. A

bandpass chain consisting of two MC BLP-70+ low-pass filters and two MC BLP-50+

high-pass filters is used to suppress unwanted sidebands. The amplitude of the rf-signal at

the room-temperature flange is +27 dBm at a frequency of νrf = 50.0MHz. The duration

of t0 = 10 s is chosen to saturate the transition implying that a spin flip probability of

PSF = 50% is achieved.

1The presented optimization of the axial frequency stability and the detection of individual spin tran-

sitions is also part of the Ph.D.-thesis of Andreas Mooser [57]
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Figure 8.17: Experimental setup to drive spin transitions [46]. The radial magnetic field

is generated by an rf-drive applied to the disc coil next to the analysis trap. For details of

the signal chain see text.
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Figure 8.18: Axial frequency as a function of time. In a) the whole measurement sequence

is shown. Spin flip attempts after twelve successive axial frequency measurements are

indicated by the red datapoints. The interval of the dashed area is shown in b) in detail.

Spin flips are induced after the crossed datapoints. The two large frequency jumps indicate

spin transitions which allows us to directly determine the spin orientation of a single proton

for the first time.

Fig. 8.18a) shows the evolution of the axial frequency as a function of time for a period

of about 60 hours. The red datapoints indicate spin flip attempts. A zoom of the dashed

interval is shown in Fig. 8.18b). The spin flip drive was turned on after the crossed data-

points. Two large frequency jumps are visible after a spin flip attempt which can be un-

ambiguously assigned to spin transitions. The size of the frequency jump of −180(10)mHz

perfectly agrees with the expected value of 171mHz. Moreover, the assumption that the

first frequency jump is caused by a change of the spin state from ’down’ to ’up’ is confirmed

by an opposite second frequency jump of 181(12)mHz, where the spin flips back from ’up’

to ’down’. This is the first detection of individual spin transitions of a single proton.

The sequence shown in Fig. 8.18b) is the clearest signature for individual spin transitions

in the whole dataset of Fig. 8.18a). So the question arises how significant the frequency

jumps for the remaining spin flip attempts are. The framework discussed in section 3.5.2
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Figure 8.19: Distribution of axial frequency differences. a) shows the distribution when

no spin flip drive was applied. b) shows the distribution for spin flip attempts. The

statistics are a factor of twelve lower than in a). For the distribution shown in c) the

normalized distributions a) and b) were subtracted. The position of the maxima of the

two distributions agree with the expected size of an axial frequency jump due to a spin

flip ∆νz,SF = 171mHz.
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gives a very precise answer of how many spin transitions are detected correctly. For every

spin flip attempt the measured frequency shift is compared to a certain threshold αt. Each

αi, which is larger than αt, is assigned to a spin transition. Depending on the magnitude

of the background frequency instability Ξback and on the threshold αt we can calculate the

probability to misinterpret a spin flip attempt.

The model presented in section 3.5.2 assumed an overlap of three distributions correspond-

ing to spin state changes from ’up’ to ’down’, ’down’ to ’up’ and a steady spin state.

These distributions should be separated by the size of the frequency jump due to a spin

flip ∆νz,SF = 171mHz and broadened by the size of the background frequency instability

Ξback. Fig. 8.19 shows a detailed analysis of the dataset of Fig. 8.18a). The histogram

shown in Fig. 8.19a) gives the frequency instability Ξback = 55.0(0.6)mHz of the axial

frequency measurements without any spin-flip drive. The histogram shown in Fig. 8.19b)

corresponds to the distribution of axial frequency differences for spin flip attempts, which

shows the expected three peaks. We can further clarify the broadening of Fig. 8.19b)

compared to Fig. 8.19a) by subtraction of the normalized distributions. The resulting dis-

tribution shown in Fig. 8.19c) should only contain successful spin flip attempts. A Gaussian

fit gives the mean value of the left distribution of −177(16)mHz and 164(13)mHz for the

right distribution, which is in excellent agreement with the calculated change in the axial

frequency caused by a spin flip. Moreover, the width of both distributions of 106(32)mHz

and 109(27)mHz respectively is also in agreement with the measured background fluctu-

ation Ξback. Thus, a spin flip drive does not cause additional frequency fluctuations due

to a possible increase of the rate of cyclotron quantum jumps.

This is a very important result, since it shows the feasibility of the threshold-method to

obtain a Larmor resonance curve as described in section 3.5.2.

8.7 Larmor resonances

In order to obtain a Larmor resonance curve, the spin flip probability as a function of

the frequency of the external driving field is measured. To this end, the measurement

procedure presented in the previous section is slightly modified and extended.

The basic cycle i consists of a series of axial frequency measurements νz separated by an

excitation drive whose frequency νrf is varied in discrete steps:

• Axial frequency measurement νz,0

1. No excitation drive

• Axial frequency measurement νz,1

2. Off-resonant drive νrf = νref

• Axial frequency measurement νz,2

3a. Resonant drive νrf = νexc,a
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• Axial frequency measurement νz,3

3b. Resonant drive νrf = νexc,b

restart the cycle

For each cycle, the axial frequency differences αback = νz,1 − νz,0, αref = νz,2 − νz,1,

αexc, a = νz,3 − νz,2, αexc, b = ν ′z,0 − νz,3 are calculated, where ν ′z,0 is the axial frequency of

the following cycle. This yields the distributions of the axial frequency differences αi for

the different driving frequencies with the corresponding standard deviations Ξback, Ξref,

Ξexc,a, Ξexc,b. The cycle is repeated until the standard deviations Ξ converge to constant

values. By comparison of Ξback and Ξref, the effect of the driving field on the modified

cyclotron motion can be tested. For equal fluctuations Ξback and Ξref, it can be concluded,

that the modified cyclotron mode is unaffected by the drive and that an increase of Ξ is

due to spin transitions. The number of different resonant driving frequencies can of course

be increased in order to obtain a better resolution of the resonance curve in frequency

domain.

8.7.1 Larmor resonances measured with the previous setup

The spin flip probability of each driving frequency can be obtained by comparison of

the standard deviations Ξ as discussed in section 3.5.1 (see Eq. (3.26)) or by analysis of

each α as discussed in section 3.5.2. The power of the first method has already been

demonstrated for comparably high background fluctuations Ξback ≈ ∆νz,SF for the pre-

vious setup [52, 47]. In Fig. 8.20 resonance curves obtained with the statistical analysis

are shown. Each data point in Fig. 8.20a) was measured by repeating the above described

cycle for about 500 times, which took overall about one week [52]. The solid line gives

the best fit of Eq. (3.13) to the data. The parameters of the magnetic bottle strength

B2 = 300mT/mm−2, the irradiation time t0 = 10 s and the axial temperature Tz = 9.5K

are fixed. Free fit parameters are the amplitude of the magnetic driving field brf and the

Larmor frequency νL. A Larmor frequency of νL = 50.0351(52)MHz is obtained from the

fit, which corresponds to a relative uncertainty of 1.0 · 10−4.

As discussed in section 3.2, the lineshape of the resonance curve is given by the ther-

mal distribution of the axial mode in the magnetic bottle. Thus, the precision of the

Larmor frequency determination can be increased by reduction of the axial temperature.

The resonance curve shown in Fig. 8.20b) was obtained for a lower axial temperature of

Tz = 2.2(0.2)K [47]. For each spin flip attempt, the axial temperature is reduced by

application of strong negative feedback. The axial frequency measurement is performed

without feedback applied. The excitation frequency was varied in 15 discrete steps with

the highest resolution near the sharp edge of the resonance curve to obtain a precise in-

formation of the Larmor frequency. The solid line again is a fit of Eq. (3.13) to the data

points which yields a Larmor frequency of νL = 50.064971(91)MHz.
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Figure 8.20: Larmor resonance curves measured with the former setup. The solid line is a

fit of the resonance line shape given in Eq. (3.13) to the data. In a) the Larmor frequency

was determined to νL = 50.0351(52)MHz for an axial temperature of Tz = 9.5K [45].

For the measurement shown in b) negative feedback was applied to the axial detection

system resulting in an axial temperature of Tz = 2.2(0.2)K. The Larmor frequency was

determined to νL = 50.064971(91)MHz [46]. The second measurement was conducted for

a different electrostatic potential, which results in a shift of the proton in axial direction

and thus a different magnetic field strength. Accordingly, the measured Larmor frequency

is different. For details see text.

8.7.2 Larmor resonance measured with the new setup

With the new detection system we are now able to reach axial temperatures down to

Tz = 1.06(0.22)K as presented in section 8.4. Thus, a sharper resonance curve than that

shown in Fig. 8.20b) to obtain a Larmor frequency with a relative uncertainty better than

10−6 should be possible. However, this would require precise control of the temperature of

the magnetron mode as discussed in section 3.3. The obtain a relative uncertainty better

than 10−7 for the Larmor frequency, the magnetron temperature has to be kept constant

to a level of T− = 5mK.

The more relevant question is, whether the improved stability of the axial frequency is

good enough to allow for the determination of the g-factor in the precision trap. As a

demonstration, we measured a Larmor resonance in the analysis trap. The above described

cycle was repeated for three different excitation frequencies νexc,a < νexc,b < νexc,c for 100

times. The (familiar) statistical analysis of the data is shown in Fig. 8.21a). Due to the low

background fluctuations of Ξback = 56mHz a clear signature of the resonance is obtained

in less than 15 hours.

For the analysis shown in Fig. 8.21b) each axial frequency difference α is compared to

a certain threshold αt = 80Hz as described in section 3.5.2. Each spin flip attempt is

individually examined as in the case of the double-trap technique. Due to the finite width

of the background fluctuations, successful spin flips are obtained for vanishing spin flip

probability. Thus, the baseline of the resonance is raised to PSF(νexc,a) = 14.4(1.1)%.



8.8 Towards a sub-ppb measurement of the g-factor 97

-0.05 0.00 0.05

0

10

20

30

40

50

 s
p

in
 f
lip

 p
ro

b
a

b
ili

ty
 (

%
)

 

 

driving frequency - 50MHz

-0.05 0.00 0.05

0

10

20

30

40

50

 s
p

in
 f
lip

 p
ro

b
a

b
ili

ty
 (

%
)

 

driving frequency - 50MHza) b)

Figure 8.21: Larmor resonance curves measured with the new setup. The aim of this

measurement was not to resolve the line shape of the resonance curve as in Fig. 8.20 but

to test the direct detection scheme. In a) the data was evaluated with the statistical

method. In b) each frequency jump α was compared to the threshold αt = 80mHz. All

driving attempts with α > αt were assigned to be successful. The data shows that the spin

flip probability can be analysed with the direct detection scheme. For details see text.

This is in perfect agreement with the expected value of PSF(νexc,a) = 14.5%, which is

calculated from the magnitude of the background fluctuations (see Eq. (3.30)).

The comparison of Fig. 8.21a) and Fig. 8.21b) shows, that the threshold-method can be

utilized to resolve the Larmor resonance and thus employ the double-trap technique to

determine the g-factor in the precision trap.

8.8 Towards a sub-ppb measurement of the g-factor

In this section, the feasibility of the double-trap technique to determine the g-factor with

a precision of about 10−9 is discussed. The analysis of the Larmor resonance shown in

Fig. 8.21b) proofed the applicability of the threshold-method in the analysis trap. However,

transfer to the precision trap is complicated by two aspects:

1. Spin state preparation: In order to determine the success of a spin flip attempt

in the precision trap correctly, the spin state in the analysis trap has to be detected

correct twice. First, when the proton leaves the analysis trap and second when it

returns to the analysis trap. Thus, the baseline of the Larmor resonance in the pre-

cision trap is additionally raised, lowering the SNR of the resonance curve.

This problem can at least be reduced by the following spin state preparation proce-

dure performed in the analysis trap:

Spin flip attempts are conducted until a frequency difference |αp| > ǫ∆νz,SF, with

ǫ > 1, is detected. From the sign of αp, the final spin state can be determined. The

probability that the first frequency jump |αp| is not caused by a spin flip (and thus



98 Chapter 8:A single proton in the analysis trap

the initial spin state is not detected correctly with a probability of 50%) is given by:

Pfalse prepared =
∞
∑

N=0

(PSFPFlip)
N (1− PSF)PSteady , (8.7)

with

PFlip = 1−
∫ αp

−αp

g(Ξback,∆νz,SF)dα (8.8)

PSteady = 1−
∫ αp

−αp

g(Ξback, 0)dα , (8.9)

where PFlip gives the probability, that for a spin transition, a frequency difference

larger than αp is measured. Analogous, PSteady gives the probability, that for a

steady spin state, a frequency difference larger than αp is measured.

For axial background fluctuations of Ξback = 80mHz, PSF = 50% and αp = 250mHz,

PFlip = 16% and PSteady = 0.17% are obtained which yields Pfalse prepared = 0.2%.

Thus, the initial spin state can be prepared with a very low uncertainty in the

analysis trap.

2. Cyclotron temperature preparation: The probability to misinterpret a spin flip

attempt in the analysis trap is increased for larger axial frequency fluctuations. As

discussed in section 8.5 the frequency stability decreases for higher temperatures of

the cyclotron mode. Thus, spin state analysis in the AT gives reliable results for

small cyclotron radii, only. The cyclotron temperature of the proton is defined by

the detection system in the PT. By application of negative feedback temperatures of

T+ = 3.15(0.11)K were reached. However, for each spin flip attempt in the precision

trap, the modified cyclotron frequency is measured which implies a heating of the

modified cyclotron mode. Thus, each cycle requires time consuming cooling of the

modified cyclotron mode before transport to the AT. Moreover, the cyclotron radius

of the proton leaving the precision trap can only be detected in the analysis trap.

Thus, preparation of suitable cyclotron radii is the bottleneck of the double-trap

measurement of the g-factor.

This, however, reveals the importance of the decreased cyclotron transition rate as

a function of the cyclotron temperature, which was achieved with the new setup. It

significantly increases the acceptance range of cyclotron temperatures for successful

spin state analysis.

Summarizing, the increased axial frequency stability eliminates the last obstacle for a

g-factor measurement in the precision trap. The rate of spurious quantum jumps in

the cyclotron mode was significantly reduced. This allows to prepare the spin state in

the analysis trap with high reliability and reduces the time to achieve a sufficiently low

cyclotron temperature.

A Larmor resonance in the precision trap is feasible - opening the door towards a ppb

determination of the magnetic moment of a single proton an thus in a similar way also for

a single antiproton.
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Conclusion and outlook

In this thesis, important progress towards a high-precision determination of the proton

g-factor was achieved.

Several improvements concerning the precise determination of the free cyclotron frequency

in the precision trap were realized. The implementation of a new liquid cryostat proved

to solve the problem of oscillations of the magnetic field strength, which were induced

by the former utilized puls-tube cooler. This allows now for routinely measurements

of the free cyclotron frequency at the ppb-level. Moreover, the first detection of the

modified cyclotron frequency of a single particle in thermal equilibrium with the detection

system was demonstrated. Due to careful optimization of the cyclotron feedback loop we

were able to reach quality factors of the order of 106, which allowed us to resolve the

single proton noise-dip in resonance with the cyclotron detection system with a relative

statistical uncertainty of less than one ppb in 100 s averaging time. Systematic shifts for

the corresponding temperature of 1800K are about one ppb. The axial detection system

can be utilized to determine νz simultaneously, since the high-precision measurement of

the modified cyclotron frequency is not accomplished by a sideband-coupling to the axial

mode. Thus, the measurement time for the free cyclotron frequency is reduced by about

a factor of two, compared to the conventional sideband coupling technique.

Moreover, great progress was achieved for the spin state detection in the magnetic bottle

field of the analysis trap. The key issue over the past years was the realization of a

sufficiently stable axial frequency to enable the observation of spin flips as axial frequency

jumps. In this thesis, detailed investigations of the origin of axial frequency fluctuations

in the analysis trap were performed. The analysis of the axial frequency stability with

the transient recorder allowed us to identify energy fluctuations in the modified cyclotron

mode as the reason for the frequency fluctuations. Moreover, these investigations revealed

a scaling of the frequency fluctuations with the absolute radial energy. The preparation

of a proton with radial energies of a few µeV allowed us to perform a statistical detection

of spin flips in the analysis trap to determine the g-factor of the proton with a relative

precision of 9 ppm [46]. Further reduction of energy fluctuations in the radial modes was

realized by a complete revision of the experimental setup, which resulted in the detection
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of individual spin transitions of a single proton for the first time. It is now possible to

determine the spin state of a proton in our analysis trap with high fidelity.

Summarizing, the precise determination of the free cyclotron frequency as well as the

detection of the spin state of a single proton were realized in this thesis. These important

steps allow for the realization of the double-trap technique to measure the g-factor of a

single proton with a relative precision of about one ppb.

9.1 Future improvements

This section gives an overview of ideas to improve the experimental setup, which are related

to two different aspects: The first section describes possible improvements concerning the

high-precision measurement of the eigenfrequencies in the precision trap. The second part

introduces possible developments for an improved spin state fidelity in the analysis trap.

9.1.1 High precision frequency measurement in the precision trap

Temperature stabilization We observed a strong correlation of the modified cyclotron

frequency with the temperature of the apparatus. Thus, the realization of a temperature

stabilization is the first task, in order to eliminate the corresponding drifts of the modified

cyclotron frequency. This system has recently been implemented by Andreas Mooser in

the course of his Ph.D.-thesis and shows promising results.

Self shielding coil Further reduction of magnetic field fluctuations can be achieved

by the implementation of a self shielding coil [80]. This concept has been successfully

applied in several high-precision Penning trap experiments [30, 81, 82, 83]. It relies on

the principle of magnetic flux conservation in a closed superconducting loop. The closed

loop can for example be realized by a superconducting solenoid. For a suited geometry

of the coil, flux conservation corresponds to magnetic field conservation at the center of

coil. Thus, external magnetic field fluctuations are compensated. For our experiment the

self-shielding coil could be wound around the trap chamber, centered at the position of

the precision trap in axial direction.

Sharper resonance lines The ferromagnetic ring electrode of the analysis trap leads

to a considerable magnetic inhomogeneity in the precision trap of B2 = 4.7T/m−2. This

results in a broadening of the resonance curves of νc and νL of the order of a few ppb

due to the Boltzmann distributed energy in the axial mode. This is no obstacle for the

upcoming determination of the g-factor at the ppb-level. However, for an improved future

determination of the g-factor with a relative precision of the order of 100 ppt, this sys-

tematic limitation has to be considered. The first possibility to reduce B2 at the position

of the precision trap is a larger distance between analysis trap and precision trap. This

can be realized by an extension of the transport section by additional electrodes. For the

current dimensions of the trap chamber, a corresponding increase of the distance by a
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factor of about 1.7 can be realized (see Fig. 6.5). This would reduce the magnetic bottle

in the precision trap, originating from the ferromagnetic ring of the analysis trap, by a

factor of ten.

Further separation of both traps does not necessarily imply a reduction of the magnetic

inhomogeneity in the precision trap due to possible inhomogeneities caused by other ma-

terials in the bore of the magnet.

Another possibility to obtain sharper resonance lines, is the reduction of the axial tem-

perature during the measurement of νL and νc. The feasibility of a temperature reduction

by about a factor of ten was demonstrated for the axial detection system attached to the

analysis trap. However, the corresponding decrease of the linewidth and the SNR of the

axial dip has to be considered, which will reduce the measurement accuracy of the axial

frequency with increasing feedback strength. This obstacle can be overcome for a deter-

mination of ν+, which is independent of the axial detection system. A possible realization

is the measurement of ν+ with the dip-technique, which would allow for the application of

strong negative feedback to reduce the axial temperature during the measurement of ν+.

9.1.2 Advanced spin state analysis

Possible improvements to increase the spin flip fidelity, which would reduce the required

measurement time and increase the resolution of a Larmor resonance, are discussed in the

following.

Increasing the spin flip fidelity The probability to detect the correct spin state in the

analysis trap can be increased by the reduction of the resonance frequency νLC of the axial

detection system. The frequency uncertainty due to noise averaging of the FFT-spectrum

ΞFFT is independent on the absolute axial frequency. But the frequency jump due to a

spin flip is inverse proportional to the axial frequency. Thus, the relative contribution

of the measurement uncertainty ΞFFT is reduced for a smaller absolute axial frequency.

However, a smaller resonance frequency implies a decreased potential depth to tune the

proton into resonance with the detection system. The asymmetry optimization procedure

demonstrated that patch potentials in the order of the trapping potential can be detected

and compensated. A potential depth of 0.5V is feasible. This would reduce the relative

contribution of ΞFFT to the axial frequency fluctuations by a factor 1.5 , which would

increase the spin flip fidelity. However, the 1/f -noise of the amplifier has to be considered.

A possible degradation of the measurement accuracy due to an increased noise of the

amplifier has to be investigated.

Improved cyclotron feedback loop The axial frequency fluctuations in the analysis

trap scale proportional to the energy of the modified cyclotron mode, which corresponds

to a decreasing spin flip fidelity. Thus, only a small part of the Boltzmann-distributed en-

ergies in the modified cylotron mode after thermalization in the precision trap is suited for

a successful spin state analysis. This means, that several transport and thermalization cy-
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cles are required until an appropriate cyclotron energy is obtained. An improved feedback

loop to reduce the effective temperature of the cyclotron detection system would decrease

the time which is required to obtain a sufficient low energy of the modified cyclotron mode.

This would correspond to a reduction of the measurement time for the Larmor resonance

in the precision trap. The lowest attainable temperature is limited by additional noise

introduced by the components of the feedback loop. Thus, a lower temperature could be

realized by a cryogenic amplifier with improved noise characteristics, since the total noise

of the amplifier system is mainly defined by the first cryogenic stage. Cryogenic amplifiers

with low equivalent input-noise were developed for the axial detection systems [57, 58].

The feasibility to utilize these amplifiers for the cyclotron-detection system at higher fre-

quencies has to be investigated.

The realization of the proposed improvements would require an alteration of the ex-

perimental setup. However, already now spin state analysis of a single proton with high

fidelity is possible and the broadening of the resonances in the precision trap is only of the

order of a few ppb. Thus, the very next step is the measurement of the magnetic moment

with the double-trap technqiue in order to determine the g-factor with a relative precision

at the ppb-level.

The presented techniques and developments are directly applicable for the corresponding

experiment with the antiproton. The BASE-collaboration has very recently started to set

up an apparatus dedicated to the measurement of the g-factor of the antiproton [36]. Thus,

the realization of a stringent test of CPT-symmetry is under way. With these fascinating

prospectives this thesis is closed.



Appendix A

Cyclotron noise-dip for a cloud of

protons

This appendix discusses the application of the cyclotron-dip technique for Penning trap

experiments on highly charged ions. Due to the higher charge states, lower quality factors

than in case of a single proton are sufficient to resolve the cyclotron dip since the width of

the dip scales proportional q2/m (see Eq. 4.23), where q is the charge and m is the mass

of the ion. On the one hand, this would greatly relax the technical challenges concerning

the stability of the feedback gain and on the other hand it would allow for a measurement

of ν+ at temperatures below those which are obtained for the double-dip technique. This

possibility was demonstrated for a cloud of 25 protons, yielding a dip-width equivalent to

that for a single hydrogen-like iron ion 52Fe25+. Here, only a quality factor of Q ≈ 5000

was required to resolve the cyclotron dip in 90 s averaging time as shown in Fig.A.1a).

The corresponding cyclotron temperature of T+ ≈ 42K is a factor of 4 less than for the

sideband coupling technique. The determination of ν+ with the cyclotron dip allows for

a simultaneous measurement of the axial frequency as shown in Fig.A.1b), which is the

main experimental advantage of the cyclotron dip since it allows for a factor of 2 faster

determination of the free cyclotron frequency. From a fit to the corresponding spectrum

the motional frequencies were determined, which are summarized in Tab.A.1. The mag-

Measured frequency Relative uncertainty Contribution to relative

uncertainty in νc

ν+ = 28 972 580.313(10) 3.5 · 10−10 3.4 · 10−10

νz = 785 090.13(17) 2.2 · 10−7 1.2 · 10−10

ν− = 10640.2(0.4) 3.8 · 10−5 5.1 · 10−12

νc = 28 983 217.380(11) 3.6 · 10−12

Table A.1: The three eigenfrequencies of a cloud of 25 protons. The relative uncertainty

of each mode is given by the second column. The last column lists the contribution to the

relative uncertainty of the free cyclotron frequency.
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Figure A.1: a) Cyclotron noise dip of N ≈ 25 protons. The quality factor was only slightly

increased to Q ≈ 5000 - thus keeping the temperature of the modified cyclotron mode lower

than for the case of the sideband coupling technique. The modified cyclotron frequency

was determined by a fit to the data to ν+ = 28 972 580.313(10)Hz. b) A simultaneous

measurement of the axial frequency with a corresponding detection system yields an axial

frequency of νz = 785 090.13(17)Hz.

netron frequency was determined in a separate measurement. With this method, the free

cyclotron frequency was determined with a relative uncertainty of ∆νc/νc = 3.6 · 10−10.

Further reduction of the losses in the LC-circuit is feasible which would provide quality

factors of several thousands without feedback [84]. Thus, the cyclotron dip allows for a

continuous monitoring of the free cyclotron frequency at very low temperatures. This is an

important application for future mass experiments. In contemporary mass measurements,

two ions are alternately confined in the same trap. The time which is required to exchange

the ions is a dominant limitation of these experiments due to the limited temporal stabil-

ity of the magnetic field [81]. Simultaneous measurements of two ions in one trap have

already been demonstrated but are rather sophisticated [85, 86]. Tracing the magnetic

field strength while exchanging the ions as proposed in [87] requires an easy and direct

way to access νc, which could be realized with the cyclotron noise-dip as presented.
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[9] H. Häffner et al. High-accuracy measurement of the magnetic moment anomaly of the

electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85, 5308–5311 (2000).
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