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Kurzfassung

Unter den verschiedenen Zugängen zur Konstruktion einer fundamentalen Quanten-
theorie der Gravitation beruht das Prinzip der Asymptotischen Sicherheit auf der
Annahme, dass die Quantengravitation im Rahmen einer üblichen Quantenfeldtheorie
formuliert werden kann, die allerdings nicht-perturbativ konstruiert werden muss. In
diesem Fall wird das Hochenergieverhalten der Theorie durch einen nicht-Gaußchen
Fixpunkt des Renormierungsgruppenflusses kontrolliert, so dass der Limes eines un-
endlichen Cutoffs wohldefiniert ist. Eine solche Theorie wird als nicht-perturbativ
renormierbar bezeichnet. Im letzten Jahrzehnt wurden zahlreiche Hinweise gefunden,
dass in vierdimensionaler, metrischer Gravitation ein solcher, für die Konstruktion
einer asymptotisch sicheren Theorie geeigneter Fixpunkt in der Tat existiert.
Die vorliegende Arbeit erweitert das Programm der Asymptotischen Sicherheit um
drei voneinander unabhängige Studien, die sich im Feldgehalt der untersuchten Quan-
tentheorien unterscheiden, aber in der durch ein semi-direktes Produkt gegebenen
Struktur der zugrundeliegenden Eichgruppe gleichen. Die Arbeit erlaubt damit zum
ersten Mal den direkten Vergleich von drei asymptotisch sicheren Theorien der Grav-
itation, die auf unterschiedlichen fundamentalen Feldern beruhen.
Die erste Studie untersucht dabei das gekoppelte System von metrischer Gravitation
und SU(N) Yang-Mills Theorie. Insbesondere wird dabei der Einfluss der Gravita-
tion auf das Laufen der Yang-Mills Kopplungskonstante analysiert und dessen Folgen
für QED und das Standardmodell diskutiert. In der zweiten Untersuchung wird zum
ersten Mal eine asymptotisch sichere Theorie der Gravitation betrachtet, die allein
durch das Vielbein beschrieben wird. Ihr Renormierungsgruppenfluß wird mit der
entsprechenden Approximation der metrischen Theorie verglichen und der Einfluß der
vergrößerten Eichgruppe analysiert. Die dritte Studie untersucht die Asymptotische
Sicherheit der Gravitation im Einstein-Cartan Zugang. Dabei dient der Spinzusam-
menhang neben dem Vielbein als zweite fundamentale Feldvariable. Aufgrund der
höheren Anzahl unabhängiger Feldkomponenten und der größeren Eichgruppe ist jede
Renormierungsgruppenanalyse dieses Systems ungleich schwieriger als die analoge
Rechnung im metrischen Zugang. Um die technische Komplexität der Aufgabe zu
verringern wird in dieser Arbeit eine neuartige funktionale Renormierungsgruppengle-
ichung eingeführt, die die Auswertung des Flusses auf ein rein algebraisches Problem
reduziert. Um ein erstes Beispiel ihrer Eignung zu geben, wird die neue Gleichung
auf eine dreidimensionale Trunkierung von Form der Holst Wirkung angewendet, die
die Newton-Konstante, die kosmologische Konstante und den Immirzi-Parameter als
laufende Kopplungen enthält. In einem detaillierten Vergleich mit einer früheren
Studie desselben Systems wird dabei die Zuverlässigkeit der neuen Gleichung demon-
striert, die sie für künftige Untersuchungen von allgemeineren Trunkierungen quali-
fiziert.





Abstract

Among the different approaches for a construction of a fundamental quantum theory
of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be
defined within the framework of conventional quantum field theory, but only non-
perturbatively. In this case its high energy behavior is controlled by a non-Gaussian
fixed point of the renormalization group flow, such that its infinite cutoff limit can be
taken in a well defined way. A theory of this kind is referred to as non-perturbatively
renormalizable. In the last decade a considerable amount of evidence has been collected
that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic
Safety construction, indeed exists.
This thesis extends the Asymptotic Safety program of quantum gravity by three inde-
pendent studies, that differ in the fundamental field variables the investigated quan-
tum theory is based on, but all exhibit a gauge group of equivalent semi-direct product
structure. It allows for the first time for a direct comparison of three asymptotically
safe theories of gravity constructed from different field variables.
The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In
particular the gravitational effects to the running of the gauge coupling are analyzed
and its implications for QED and the Standard Model are discussed. The second
analysis amounts to the first investigation on an asymptotically safe theory of grav-
ity in a pure tetrad formulation. Its renormalization group flow is compared to the
corresponding approximation of the metric theory and the influence of its enlarged
gauge group on the UV behavior of the theory is analyzed. The third study explores
Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad,
the spin connection is considered a second fundamental field. The larger number of
independent field components and the enlarged gauge group render any RG analysis
of this system much more difficult than the analog metric analysis. In order to re-
duce the complexity of this task a novel functional renormalization group equation is
proposed, that allows for an evaluation of the flow in a purely algebraic manner. As
a first example of its suitability it is applied to a three dimensional truncation of the
form of the Holst action, with the Newton constant, the cosmological constant and
the Immirzi parameter as its running couplings. A detailed comparison of the result-
ing renormalization group flow to a previous study of the same system demonstrates
the reliability of the new equation and suggests its use for future studies of extended
truncations in this framework.
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1 Introduction

In the search for an adequate description of the fundamental principles of nature the

conception of quantum field theory (QFT) has been developed over the last century.

After an elementary understanding of this new type of quantum theory had been

achieved, QFT has proven to be an immensely successful concept, and it is by now

a widely accepted fact that the physics of all particles discovered so far and their

interactions is best described in this framework by a model known as the Standard

Model (SM) of particle physics.

Together with the development of the SM a generic procedure for the quantization

of a given classical field theory has been worked out. Using the so-called path integral

quantization the transition from classical to quantum theory is achieved by a functional

integration over the exponentiated classical action. This functional integration arises

as we do not only have to consider the path in configuration space that is a solution to

the classical field equations, but rather sum over all paths weighted by their probability

amplitude, in order to compute the time evolution of a quantum theory.

For realistic field theories, however, this path integral is an extremely complicated

object, such that its exact evaluation seems an unattainable goal. For that reason

one typically evaluates the path integral of the corresponding free theory and takes

into account all interactions of the fields only as a perturbative series in the coupling

constants.

Already in the early days of quantum electrodynamics (QED) it was noted that

the new theory leads to infinite energy shifts [Opp30, Wal30b, Wal30a] of observable

quantities. Later on, it was understood that the computation of observable quantities

in the perturbative setting generically leads to divergent results, as soon as (virtual)

photons of arbitrarily high momentum are taken into account in the path integral.

Without a deeper understanding of their meaning the divergences arising in QED could

be classified and the technique of perturbative renormalization was invented. These
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1 Introduction

achievements were mainly due to Bethe, Dyson, Feynman, Schwinger and Tomonaga

(see their articles in [Sch58]).

This technique amounts to a prescription how the divergences can be hidden in

unphysical (counter-)terms of the bare, classical action, such that the resulting quan-

tum effective action, from which all observable quantities are to be computed, stays

finite. At first only the tremendous success of QED predictions using this prescription

silenced the doubts concerning this procedure [Wei].

Later on, a classification of perturbatively renormalizable theories was carried out,

and it was understood, that the absorption of divergences into a finite number of bare

coupling constants is generically possible, if the coupling constants have positive mass

dimension. On this ground, the SM of particle physics was built. It incorporates the

three forces of electromagnetic, weak and strong interaction, that at the classical level

can all be described as Yang-Mills (YM) theories, together with the known matter

content in one renormalizable QFT.

Simultaneously, it was tried to apply this successful procedure of quantization to the

Einstein-Hilbert action describing classical general relativity. The main motivation for

a quantization of gravity thereby lied in the prospect to find a universal (quantum)

framework that describes all fundamental forces of nature, rather than to make more

accurate predictions, as classical general relativity describes gravity very well at all

energy scales that are accessible even to present-day experiments. If gravity was not

quantized, Einstein’s equation would necessarily combine classical quantities describ-

ing the geometry of spacetime with quantum objects, that describe its matter content

causing the curvature of spacetime. For most theoreticians this would amount to a

very unsatisfactory model of nature most probably hinting at a lack of understanding

of the genuinely fundamental principles of nature.

However, it soon became clear that Einstein-Hilbert gravity belongs to the class

of perturbatively non-renormalizable theories. While at 1-loop pure gravity is found

on-shell finite [HV74] the inclusion of matter spoils renormalizability already at this

level [HV74]. Later on, it was shown that at 2-loop level even pure gravity is non-

renormalizable in the perturbative sense [GS86, Ven92]. The uncontrollable appear-

ance of ever new divergences at every higher loop order in perturbative quantum

gravity, that renders it impossible to hide them in finitely many bare coupling con-

stants, can thereby be traced back to the negative mass dimension of its coupling, the

Newton constant.
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These discouraging results led to the search for alternate theories that can be quan-

tized properly and give rise to the well tested properties of classical general relativity

only in their low momentum regime as an effective field theory. One idea to elimi-

nate the problematic divergences was to introduce an additional symmetry between

bosonic and fermionic degrees of freedom, the supersymmetry, such that each diver-

gent contribution from a certain graviton diagram is exactly canceled by its fermionic

partner particle. Besides the fact that all supersymmetric theories predict particles

that have not been observed so far, it turned out an extremely involved task—still to be

completed—to find out whether in a maximally supersymmetric field theory of gravity

indeed all divergences can be removed this way. String theory, a different approach to

quantum gravity most often combined with the concept of supersymmetry, leaves the

framework of QFT in order to remove the divergences. Here, the fundamental degrees

of freedom are changed from pointlike excitations of the metric field to excitations of a

string of finite length, which results in the absence of UV divergent integrals. However,

string theory in its present first quantized form is based on perturbation theory and

it is far from clear how a non-perturbative definition of string theory or a string field

field theory would look like.

In addition we want to mention two further approaches to quantum gravity, namely

loop quantum gravity (LQG) and causal dynamical triangulations (CDT). Contrary

to string theory, these theories avoid the use of perturbative methods from the outset,

as they assume that the immanent divergences in perturbative quantum gravity are

only due to a non-applicability of perturbation theory.

In LQG the so-called Holst action, which describes gravity in a first order formu-

lation and will also play a major role in this work, serves as the starting point. In

contrast to the approach we employ later on, LQG relies on a Hamiltonian formalism

that uses a special choice of variables to parametrize phase space [Ash91], that are

then quantized by canonical quantization. Here the main difficulty lies in correctly

imposing a Hamiltonian constraint, that describes the time evolution of the theory.

In CDT, on the other hand, the Euclidean path integral of the Einstein-Hilbert

action is evaluated by Monte-Carlo simulations. Thereby, the sum over all spacetimes

is discretized by summing over all possible triangulations with a given edge length

and a fixed maximal number of simplices. As a crucial result it was found that only

if the sum over all geometries is restricted to a subset that satisfies certain causality

conditions the resulting quantum theory shows indeed a phase with the hoped-for but
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nontrivial property that spacetime is smooth and four dimensional on macroscopic

scales [AJL04].

For more details on these alternate approaches to quantum gravity we refer to the

standard textbooks [Kie07, Rov04] and the review article [Woo09].

In the meantime, while all these ideas were developed, a deeper understanding of

the necessity of the renormalization procedure and conditions for the existence of fun-

damental field theories was obtained. Pioneered by Wilson [WK74, Wil75] renormal-

ization group (RG) techniques were developed that are based on the idea of evaluating

the path integral not all at once, but in a piecewise manner. Starting from this idea an

RG flow of action functionals can be defined, that describes the same system at differ-

ent momentum scales. In the following it was understood that the general condition

for a theory to be considered fundamental is satisfied whenever its RG flow approaches

a fixed point (FP) in the high momentum (UV) limit. This condition ensures that no

divergences occur in observable quantities. Moreover, the fundamental theory turns

out predictive if the FP shows only finitely many UV attractive directions, that cor-

respond to the number of external parameters of the theory. Once these parameters

are determined by (finitely many) measurements, the theory is uniquely defined by

the requirement that its UV limit is taken at the FP under consideration. Therefore

all other observables can then be predicted.

This non-perturbative definition of renormalizability also applies to all perturba-

tively renormalizable, fundamental theories—like Yang-Mills theory or quantum chro-

modynamics (QCD)—as these approach the Gaussian fixed point (GFP) in the UV

limit, which corresponds to an asymptotically free, non-interacting theory. In case

of the GFP it is particularly easy to determine its UV attractive directions: They

correspond to all field monomials, whose coupling constants have a positive mass di-

mension.

This insight provided a deeper understanding why theories with couplings of positive

mass dimesions generically turn out perturbatively renormalizable, but at the same

time raised the question whether perturbatively non-renormalizable theories could

turn out non-perturbatively renormalizable. In this case the RG flow approaches a

non-Gaussian FP (NGFP), that corresponds to an interacting theory, which may occur

outside the realm of perturbation theory. Theories whose continuum limit is defined

at such a NGFP are referred to as asymptotically safe. Indeed toy models, like the

4



Gross-Neveu model in three dimensions, could be constructed that were shown to

belong to this class [GK85a, GK85b].

These considerations also renewed the interest in metric gravity, that might as

well be defined as a QFT only non-perturbatively. From results available from an

ε-expansion for gravity in d = 2 + ε-dimensions, which indicated the existence of a

NGFP near two dimensions, Weinberg conjectured in 1979 [Wei79] that this fixed point

should not be destroyed by dimensional continuation and therefore might also exist in

four dimensions. Unfortunately, at that time no computational tool was known that

would have allowed for a thorough investigation of this conjecture.

It took until the ’90s that such an appropriate tool was found: The functional

renormalization group equation (FRGE) for the effective average action (EAA) which

was first derived for scalar [Wet93] and Yang-Mills theory [RW93a, RW93b, RW94a,

RW94b], and later on generalized such that it could be applied to gravity [Reu98]. It

is an exact functional equation for a running effective action functional, that typically

cannot be solved in full generality but allows for non-perturbative approximations by

choosing an ansatz for the form of the action functional, a so-called truncation. This

FRGE rendered the investigation of the RG flow of metric gravity possible in arbitrary

dimensions of spacetime. Since then numerous studies of different approximations

have been carried out1, all of which indicate the existence of a NGFP for metric

gravity in d = 4 spacetime dimensions. Also the inclusion of matter fields, that

causes first divergences in the perturbative approach, has been explored in some detail

[DP98, PP03b, PP03a, VZ10], and it was found that Asymptotic Safety of gravity is

compatible with the matter content of the SM, although general bounds on the number

of matter fields were found to exist. Taken together an impressive amount of evidence

for Asymptotic Safety of metric gravity at a NGFP in the space of diffeomorphism

invariant action functionals has been collected, such that it is very likely to be a true

feature of this theory space and not merely an artifact of the approximations applied.

Theories of metric gravity whose continuum limit is taken at this NGFP are called

Quantum Einstein Gravity (QEG).

Despite its success, it is important to be aware of the fact that the Asymptotic Safety

scenario for quantum gravity is by no means restricted to the metric formulation of

classical general relativity. In the search for an asymptotically safe theory of gravity

the only restriction one has to obey is that the space of action functionals on which the

1For an overview of this field of research we refer to the review articles [NR06, Per09, RS12].

5



1 Introduction

RG flow is considered, the “theory space”, contains an action functional that gives rise

to Einstein’s equation. Otherwise the resulting quantum theory will lack the classical

regime of general relativity. As there is a remarkable number of Lagrangian variational

principles that all give rise to Einstein’s equation, we find a variety of different theory

spaces, that are equally plausible to be investigated. Besides the metric theory space,

containing the Einstein-Hilbert action, we will explore in this thesis the tetrad theory

space, comprising the Einstein-Hilbert action reexpressed in terms of the tetrad, and

the Einstein-Cartan theory space of action functionals constructed from the tetrad and

an independent spin connection. It contains the Hilbert-Palatini and the Holst action

that are suitable to describe the classical regime of the resulting quantum theory.

It should be noted that these spaces of action functionals do not have very much in

common, except for the fact that they contain points which give rise to equivalent field

equations: In particular, they are of different “size” (the action functionals contained

are not in one-to-one correspondence to each other), the constituent fields differ in the

number of independent field components, and the symmetry group is not the same,

although all action functionals considered should, of course, retain diffeomorphism

invariance. For this reason the RG flows on these spaces and their fixed point structure

are a priori completely unrelated from each other such that the investigation of the

Asymptotic Safety scenario of quantum gravity has to be carried out separately for each

of these spaces.

Even if two or more theory spaces were found to contain a fixed point suitable for

the Asymptotic Safety construction, we do not expect the quantum theories defined

at these fixed points to be similar or even equivalent. Nonetheless, two such theories

might give rise to certain similar predictions, but these can only be assessed on the

level of observable quantities.

But why should we not stick to the metric formulation as long as no results are

known that disfavor the Asymptotic Safety construction in metric theory space?

Although the effect of fermionic matter in QEG has been investigated in [DP98,

PP03b, PP03a, VZ10], these results can only claim the status of an approximation,

not only because the studies are restricted to truncations of the metric theory space,

but mainly because fermionic actions require the introduction of a vielbein field in

order to generalize spinors—being representations of the Lorentz transformations in

Minkowski spacetime—to curved spacetimes. For that reason fermionic matter terms

naturally extend theory spaces that contain the tetrad rather than the metric as their

6



fundamental field variable. In this respect both, tetrad and Einstein-Cartan theory

space, appear as the more adequate framework to describe a fundamental theory of

gravity coupled to fermionic matter, and are certainly most natural to be explored.

The first step for the investigation of the tetrad theory space is undertaken in this

thesis. We thereby consider the truncation obtained by reexpressing the metric in

the Einstein-Hilbert action in terms of the tetrad field. Using an otherwise equivalent

setting to the original work on metric gravity in this truncation [Reu98] we are able

to trace the differences due to the change of theory space quite explicitly. There are

two main reasons to expect both RG flows to differ.

First, it is well-known that the exact FRGE is not covariant under diffeomorphisms

in field space. Therefore, the resulting RG flow will change under field reparametriza-

tions, but at the level of observables this parametrization dependence should be can-

celed out. This expectation is due to the fact that we do not change the theory space

by a simple reparametrization; it rather corresponds to a different choice of basis in

the same theory space.

Second, conceptually more interesting than the additional contributions due to the

field reparametrization is the effect of the change in symmetry group, that inevitably

accompanies the change of field variables from metric to tetrad gravity. As we will

see later on the group of gauge transformations in tetrad gravity is enlarged from the

group of diffeomorphisms underlying metric gravity to a group with the semi-direct

product structure

G = Diff(M) ⋉ O(d)loc . (1.1)

It reflects the fact that in (Euclidean) tetrad gravity we can choose among an O(d)-

manifold of equivalent frames in each point of spacetime. It is mainly this change of

symmetry group why the transition from metric to tetrad gravity amounts to a change

of theory space, and we will find that this change indeed shows significant effects on

the RG flow: First, we shall find that the dependence of the resulting RG flow on the

precise cutoff procedure becomes more pronounced—an effect that is probably due to

the larger ratio of gauge to physical field components in the tetrad formulation—and,

second, the contributions of the additional Faddeev-Popov ghost fields related to the

O(d)loc part of the gauge transformations will turn out crucial to the UV behavior of

the flow.

In a second study presented in this thesis, the Einstein-Cartan theory space is ex-

plored using a three dimensional Holst-type truncation, that also has been investigated
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1 Introduction

in the first non-perturbative study of this theory space [Dau, DR]. In addition to the

vielbein, with its 16 field components, we encounter here a spin connection field of

24 independent components. Taken together this amounts to a quadruplication of

independent field components compared to the metric case. This is the main technical

reason why RG studies on this theory space are immensely more involved than those

in metric theory space when truncations containing the same number of invariants are

considered.

Although the first investigation on this space [Dau] could be carried out using a

conventional, well-tested FRGE, an inclusion of additional fermionic matter terms,

that would be the most interesting extension of this analysis, seems currently out of

reach in this very same setting due to its enormous technical complexity.

As a solution to this problem we propose, construct, and test a novel approxima-

tive FRGE in this thesis, that simplifies the evaluation of the RG flow as it reduces

its computation to a mere algebraic task. In order to assess the reliability of this

new FRGE we will carefully compare our results with the previous study [Dau, DR].

We shall indeed find a sufficient amount of structural similarities of the RG flows to

recommend this new functional flow equation for the investigation of more general

truncations including e. g. fermionic matter terms.

Before we could start to investigate the RG flow on tetrad and Einstein-Cartan

theory space, we had to overcome another conceptual problem that is related to the

semi-direct product structure of its symmetry group (1.1):

If one employs the background field formalism [Abb81, Abb82] and uses the stan-

dard Faddeev-Popov procedure to construct the ghost action from the gauge fixing

condition, one finds that the resulting ghost action is not background gauge invariant

and thus spoils the central idea of the background field method. For this reason a

generalization of the background field method had to be developed, which meets the

requirement of a background gauge invariant ghost action.

As an example of manageable complexity this new, generalized method was first

applied to the system of metric gravity coupled to SU(N) Yang-Mills theory. The

corresponding theory space shows a structurally equivalent group of gauge transfor-

mations, namely G = Diff(M) ⋉ SU(N)loc. As a result of this study we were able

to compute gravitational corrections to the running of the Yang-Mills gauge coupling,

first published in [DHR10], that are presented in this thesis as well.

8



Thus, in total this thesis is dedicated to the investigation of theories of gravity with

a gauge group of the above semi-direct product structure. We will start in metric

theory space extended by a Yang-Mills gauge field, shift to the pure tetrad description

of gravity, and then also include the spin connection as an independent field variable.

For each of these three investigations we will employ an appropriate FRGE adapted

to the respective problem.

In detail, the rest of this thesis is organized as follows:

In Chapter 2 we review the field theoretical concepts for the RG analysis of gravity

theories, that were qualitatively described above, in more mathematical terms. We

thereby concentrate on the correct extension of the RG framework to gauge groups of

the semi-direct product type (1.1) and the introduction of the different FRGEs that

are applied in the course of the thesis.

In Chapter 3 we study the effect of gravitational contributions to the Yang-Mills

coupling constant and discuss its implications for QED and the SM coupled to asymp-

totically safe gravity. Chapter 4 contains the first study of the tetrad theory space

using a truncation obtained from the Einstein-Hilbert action of metric gravity trans-

lated to the vielbein fields. In particular, we investigate the effect of the enlarged

gauge group and the additional O(d)-ghost fields it involves.

Chapter 5 is devoted to an RG analysis of the Holst action, that describes gravity

in a first-order formulation and considers the spin connection, besides the tetrad, as a

second independent field variable. Here, we present the first application of the new flow

equation, that we characterize as a Wegner-Houghton(WH)-like flow equation, due to

its structural similarity to this well known equation. We discuss in some detail the

properties of the resulting RG flow and compare them to the existing study [Dau, DR]

of the same theory space in order to judge the applicability of the new WH-like FRGE.

Chapter 6 contains a summary of the most important results obtained and points

out some open questions that are left for future investigation.

The main body of the thesis is amended by several appendices. In Appendix A

we present the notational conventions used throughout this work and summarize the

often used abbreviations. Appendix B contains a derivation of the original Wegner-

Houghton RG equation, and its structural similarity to the new WH-like FRGE is

discussed. Appendices C–E display results obtained in Chapters 3–5 in their general

form, that would otherwise impair the reading fluency in these chapters. Finally,

Appendix F discusses the relevant classical aspects of spacetimes exhibiting torsion,

9



1 Introduction

concentrating on quadratic torsion invariants, action functionals for gravity in space-

times with torsion, and the field equations they give rise to.

Remark: The main body of this thesis is written in such a way that the content

of the three studies we report on in Chapters 3, 4 and 5 is essentially self-contained.

Therefore each of these chapters includes its own introductory and concluding section,

and refers only to the background material presented in Chapter 2.
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2 Field Theoretical Background

In this chapter we introduce the field theoretical foundations that form the basis

of the functional renormalization group techniques in general and their application to

gravity, in particular. Of course, this rather short chapter cannot treat the subject in

a comprehensive manner; therefore we will emphasize the aspects most important for

our investigations in the subsequent chapters and will otherwise refer to the extensive

literature on the subject for further details. Most of the background material on the

topic is covered in the classic review articles [BB01] on exact functional renormalization

group equations (FRGEs) in general, [BTW02] on the FRGE for the effective average

action and [NR06] on the Asymptotic Safety scenario for gravity. The present state of

research on this field is reviewed in the recent article [RS12].

In the first section we present the conception of the Asymptotic Safety scenario and

its relation to the very fundamental notion of theory space. In a second section we

concentrate on some peculiarities of gauge theories that come into play when we want

to apply renormalization group techniques to gravity or other gauge theories. In the

last section the four different flow equations that play a major role in this work are

introduced and we will discuss in some detail how they are related to each other.

2.1 Theory space and Asymptotic Safety

2.1.1 Renormalization group

The central idea at the very heart of the renormalization group is that the quantum

fluctuations to be integrated over in the path integral can be taken into account in

a piecewise manner. This approach was pioneered by Wilson [WK74, Wil75], who

applied this idea directly at the level of the path integral, dividing it into several inte-

grations each corresponding to a certain “momentum shell” of quantum fluctuations.

To be more concrete, let SΛ[φ] denote the bare action of a dynamical system de-

scribing a scalar field φ with UV momentum cutoff Λ. We may decompose φ into the

11



2 Field Theoretical Background

eigenmodes of the operator −� = −∂µ∂µ, the momentum modes, carrying momen-

tum p. In consequence, the quantum field φ may contain modes of all momenta in the

interval |p| ∈ [0,Λ]. Now we split φ according to φ = Φ + ϕ, such that Φ contains

only the modes of φ with |p| ∈ [0,Λ′] and ϕ the ones with |p| ∈ [Λ′,Λ]. In addition,

we split the path integral into two functional integrations over these two domains. On

this basis we are able to define a second, “coarse grained” bare action SΛ′ [Φ] that only

depends on the lower momentum modes but describes the same quantum system as

we demand that the partition function both actions give rise to stays the same. Thus

we have

Z=

∫
[Dφ][0,Λ] e

−SΛ[φ] =

∫
[DΦ][0,Λ′]

[∫
[Dϕ][Λ′,Λ] e

−SΛ[Φ+ϕ]

]
!
=

∫
[DΦ][0,Λ′] e

−SΛ′ [Φ], (2.1)

so that the coarse grained action is defined by

e−SΛ′ [Φ] =

∫
[Dϕ][Λ′,Λ] e

−SΛ[Φ+ϕ]. (2.2)

Here,
∫
[Dφ][a,b] denotes the functional integral over momentum modes |p| ∈ [a, b].

By considering an infinitesimal momentum shell integration of the above type it is

possible to derive the Wegner-Houghton renormalization group equation for the bare

action SΛ, that expresses the scale derivative ∂ΛSΛ in terms of functional derivatives

δSΛ/δφ of the action at that scale. This derivation is carried out in detail in Appendix

B.

Instead of using a sharp momentum cutoff splitting the functional integration into

two domains one might also use smooth regulator functions, that essentially have the

same effect. Different choices of these functions lead to different renormalization group

equations [BB01, Mor94, SSA+], as e. g. the Polchinski equation, all of which have in

common that their solutions relate bare actions describing the same quantum system

with different UV cutoff scales. Thus, in all these cases a further functional integration

of the low momentum quantum fluctuations has to be carried out in order to obtain

the corresponding Green’s functions, from which all physical observables are to be

calculated.
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2.1 Theory space and Asymptotic Safety

In contrast to this “bare action” approach to the renormalization group it is possible

to implement the underlying idea only at the level of the effective action Γ, leading to

the exact FRGE for the EAA Γk [Wet93]1.

In this case we achieve the coarse graining effect by the addition of a (scale-depen-

dent) mode suppression term ∆kS[ϕ] = 1
2

∫
ϕRk(p

2)ϕ to the bare action S[ϕ]. The

mode suppression kernel Rk(p
2) thereby is subject to certain conditions: It must be

a continuous function in p2 and k, which is monotonically decreasing in p2 for fixed k

and increasing in k for a fixed argument p2. Moreover it satisfies

lim
p2→0
Rk(p

2) > 0, Rk(p
2) ≈ 0 for p2 ≫ k2 and lim

k→0
Rk(p

2) = 0 . (2.3)

Usually these properties are achieved by choosing the mode suppression kernel to

be of the form

Rk(p
2) = Zkk2R(0)(p2/k2), (2.4)

where the shape function R(0) is dimensionless and interpolates smoothly between

R(0)(0) = 1 and limz→∞R(0)(z) = 0, and Zk is, in the general case, a matrix in field

space, which is to be adapted to the system under consideration as we will describe

below. Physically speaking the addition of the mode suppression term can be thought

of as assigning a mass to all modes of momentum smaller than k, thus suppressing

their propagation in the path integral.

The one parameter family of bare actions S+∆kS together with a source term
∫
J ·ϕ

gives rise to a family of generating functionals Wk[J ] = lnZk[J ]. The corresponding

scale-dependent generalization of the effective action, the EAA Γk[φ], depending on

the classical field φ = 〈ϕ〉, is given by

Γk[φ] = Γ̃k[φ]−∆kS[φ] , (2.5)

where Γ̃k[φ] denotes the Legendre transform of Wk[J ]. It was first shown in [Wet93]

that it satisfies the following exact FRGE

∂tΓk =
1

2
Tr

∂tRk

Γ
(2)
k +Rk

, (2.6)

1For reviews see: [BTW02, Wet01].
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2 Field Theoretical Background

where Γ(2) denotes the Hessian of the effective action functional, Tr is a functional

trace over all fluctuation field modes and t ≡ ln k.

A convenient property of this flow equation is that it does not rely on the UV

regularization of the original path integral any more: Due to the scale derivative of

the mode suppression kernel Rk the contributions to the trace on the RHS quickly

tend to zero in the UV, while its occurrence in the denominator of (2.6) acts as an

IR regulator. Thus, effectively, the trace only takes into account modes of momenta

|p| ≈ k, and we can safely take the infinite cutoff limit of the functional trace on

the RHS of the flow equation. This has the direct advantage that in the search for a

fundamental, UV complete quantum field theory all difficulties related with a properly

defined UV regularization of the path integral are circumvented.

The solutions to (2.6) are one-parameter families of (effective) action functionals,

which we refer to as RG trajectories. The RG flow along these trajectories—reflecting

the underlying coarse graining procedure—is thereby directed from the UV (large k)

to the IR (small k). The limit k → 0 corresponds to removing the mode suppression

term as ∆k=0S = 0, such that we obtain an ordinary effective action Γ = Γk=0 at the

IR endpoint of each trajectory. From this effective action all Green’s functions of the

quantum theory can be computed directly and no additional functional integration is

needed. If we can find a complete trajectory, that connects the IR endpoint continu-

ously with a well defined UV limit, i. e. it runs into a UV attractive fixed point of the

RG flow, this amounts to a proper definition of a fundamental quantum field theory.

However, from the fixed point action Γk=∞ we cannot directly infer the bare action

SΛ for Λ → ∞, that when being quantized gives rise to the effective action Γk=0,

since its exact form will depend on the precise regularization of the path integral. As

noted above this information is not encoded in the running Γk, since the FRGE is

independent of the specific regularization of the path integral. Thus, only in a second

step it is possible to reconstruct the bare action SΛ from the complete trajectory Γk,

which has been shown explicitly for the case of QEG in [MR09]. Indeed it turns out

that the difference Γ∞ − SΛ is a simple, explicitly calculable functional.

Taken together the flow of the EAA, compared to the running bare action, is much

more closely related to the physics at scale k as the functional Γk directly corresponds

to an effective action at the scale k such that no further functional integral has to

be carried out in order to connect it with physical observables. Note however, that

the trajectory Γk for k 6= 0 depends on the precise form of the mode suppression
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2.1 Theory space and Asymptotic Safety

kernel Rk(p
2), while only its IR endpoint, corresponding to a vanishing kernel, is

universal. This variability is referred to as RG scheme dependence. Exact predictions

for observable quantities at any momentum scale should therefore, in principle, be

calculated from the universal effective action Γ = Γk=0. Direct predictions from the

course of the trajectory Γk at k 6= 0 can only approximate the exact ones as good as

the action S + ∆kS effectively describes the bare action of the system at scale k.

The more direct relation of the EAA, Γk, to actual physics at a given momentum

scale k, compared to the Wilsonian flow of the bare action, SΛ, is paid for by a

less direct relation between Γk and the classical action SΛ→∞ that, by a quantization

procedure, gives rise to the quantum effective action Γk=0.

2.1.2 Asymptotic Safety

As we have seen that the existence of fundamental theories is closely related to

the existence of complete RG trajectories of the EAA it becomes clear that in this

setting also the notion of renormalizability gets a generalized meaning compared to

the perturbative approach.

Instead of asking whether a certain given action, whose form is taken from some

classical dynamical system, is renormalizable in the sense that we are able to prevent

divergences from appearing in physical observables by adding the correct counterterms,

the corresponding question in the functional RG approach must be whether the space

of all action functionals, the theory space T , contains UV attractive fixed points and

complete trajectories emanating from them, each of which is a candidate for a well-

defined fundamental quantum field theory.

The set of all trajectories pulled into a certain fixed point under the inverse RG flow

is called the UV attractive hypersurface SUV of the fixed point. If SUV is finite dimen-

sional, with s = dim(SUV), we can pin down the one trajectory realized in nature by

measuring s independent observables at a fixed scale k0. These measured observables

correspond to one point on SUV that is taken as the initial condition for Γk=k0 and

thus specifies the trajectory completely. Hence only finitely many measurements are

needed as input parameters of our theory. They give rise to a complete trajectory

inside SUV such that all other observables are predictions of the theory. Moreover,

also the corresponding fundamental bare action is a prediction of the RG flow; it can

be reconstructed from the complete trajectory, and does not serve as an input in this

setting.
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2 Field Theoretical Background

This generalized notion of renormalizability, that only depends on the existence of

UV attractive fixed points in theory space, comprises the possibility of asymptotically

free theories, i. e. UV well-behaved, renormalizable theories in the perturbative sense

of the term. An asymptotically free theory, like QCD, corresponds to an RG trajectory

whose UV limit is taken at the Gaussian fixed point. This FP is defined as the point

in theory space that corresponds to an action functional of a non-interacting, free

theory. For the case of QCD the approach of the GFP amounts to a vanishing of the

coupling constant, and it has been verified that both, perturbative methods and non-

perturbative RG techniques, yield equivalent results [RW94a, RW97] for the running

of coupling constant in the deep UV.

Besides this class of theories we should also expect to find fundamental theories

whose UV limit is taken at a non-Gaussian, interacting fixed point in theory space.

Although their behavior does not become trivial in the deep UV, it is controlled by the

scaling properties of the fixed point, such that no divergences arise. Thus, from a global

perspective this kind of UV limit seems equally plausible as the asymptotically free

case. Theories of this second class are called asymptotically safe or non-perturbatively

renormalizable as they typically elude a purely perturbative analysis if the fixed point

is located outside the part of theory space that is accessible by perturbation theory.

Thus, non-perturbative methods as the exact FRGE (2.6) for the EAA or related

(approximate) functional RG equations are needed in order to explore the Asymptotic

Safety scenario.

2.1.3 Exploring Asymptotic Safety in truncated theory space

Theory space. The theory space is the most important ingredient to any RG study

as it indirectly defines the system under consideration. Its defining properties are the

field content Φ of which all its points, i. e. all action functionals A : Φ 7→ A[Φ] are

built from, and the symmetry group G under whose action these functionals are left

invariant.

Generally we will assume that the theory space

T = {A : Φ 7→ A[Φ] |A invariant under G} (2.7)
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2.1 Theory space and Asymptotic Safety

allows for a (typically infinite) set {Pα[Φ]} of basis functionals, such that any point

in theory space can be expanded as a unique linear combination of these functionals

according to

A[Φ] =

∞∑

α=1

ūαPα[Φ]. (2.8)

Thus, the generalized couplings ūα serve as coordinates in theory space and any trajec-

tory in theory space is therefore parametrized by an infinite set of coordinate functions,

or “running couplings”, ūα(k),

Γk[Φ] =

∞∑

α=1

ūα(k)Pα[Φ]. (2.9)

Any FRGE we could use to explore a given theory space defines a vector field on

that theory space whose integral curves are the trajectories solving the FRGE. By

expanding both sides of the FRGE in terms of a set of basis functionals, replacing the

couplings by their dimensionless counterparts uα(k) = ūα(k)k
−dα and equating the co-

efficients we are able to transform the FRGE into an equivalent system of autonomous

differential equations

∂tuα(k) = βα(u1, u2, · · · ) , (2.10)

where the RHS defines a β-function that does not depend on k explicitly, βα, for each

coupling uα.

Truncations. Usually it is not possible to solve or even derive this complete system

of differential equations for a given theory space. Thus, one has to approximate the

exact flow (the exact FRGE gives rise to) in a non-perturbative way, which can be

done by reducing the basis {Pα[Φ]} to a finite (or infinite) subset {Pi[Φ]} ⊂ {Pα[Φ]},
in order to render the calculation technically feasible. This kind of approximation is

known as a truncation of theory space.

Geometrically a truncation of theory space corresponds to neglecting all components

of the vector field generated by the FRGE that do not lie inside the subspace of the

truncation. As the vector field is first projected onto the subspace of the truncation

and then its integral curves are determined, the resulting trajectories do not coincide

with the exact trajectories projected onto the subspace under consideration: The

difference is exactly the error in the predictions of the running couplings that we pick

up by truncating the theory space.
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2 Field Theoretical Background

Obviously, the magnitude of this error will depend very much on the truncation

chosen. We should expect that extending a given truncation by adding additional

invariants will decrease the error of the truncation. However, truncations of the same

number of invariants will differ largely in reliability depending on the extend to which

they cover the physics content of the full theory. Thus, in any functional RG study it

is a major challenge to find a truncation large enough to reliably describe the physics

of the model while at the same time being small enough to allow for an explicit

computation.

Note that in gravity, due to the large number of independent field components, RG

studies are particularly complicated: In metric gravity already the two dimensional

truncation {
∫√

g,
∫√

gR} and its three dimensional extension {
∫√

g,
∫√

gR,
∫√

gR2}
truncation amount to demanding calculations [Reu98, LR02]. With the help of com-

puter algebra systems it has been possible to extent these truncations up to
∫√

gR8

[CPR08, CPR09, MS08] and only recently first studies of the infinite dimensional f(R)-

truncation have been published [BC12, DSZ]. However, an analysis of the complete

(curvature)2-subspace is still awaited to be carried out. Being aware of this fact helps

to understand why in the even more involved setting of Einstein-Cartan gravity, as

yet only up to three dimensional truncations could be analyzed [Dau, DR].

Symmetries of the theory space and the choice of FRGE. Generally, the RG

equation employed to analyze a theory space

T = {A : Φ 7→ A[Φ] |A invariant under G} (2.11)

should be invariant under the symmetry group G, i. e. it should retain the symme-

tries, as otherwise the flow generated by the FRGE will leave T . This consideration

is particularly important when gauge theories like gravity are considered. Here, the

theory space can be reduced to gauge invariant functionals of the fields, if it is possible

to construct a FRGE that preserves gauge invariance. We will show below how the

FRGE (2.6) can be generalized to a gauge invariant setting by the use of the back-

ground field method. The resulting exact FRGE is the best known tool to investigate

the RG flow of gauge theories in a completely gauge covariant setting.

On the other hand, any theory space whose functionals exhibit a certain symme-

try can be seen as embedded in, and hence a truncation of, the larger theory space

constructed from the same field content but without the additional symmetry require-
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2.1 Theory space and Asymptotic Safety

ment. Using an exact FRGE that retains the symmetry on this larger space will lead

to an RG flow in which the symmetric subspace forms a self-consistent truncation, i. e.

the resulting trajectories lie entirely either inside the subspace or outside of it. Thus, if

we find a UV attractive FP in the symmetric subspace, it gives rise to a complete RG

trajectory whose IR endpoint is, as well, symmetric. Using a different exact FRGE

in the larger space that, however, does not retain the symmetry, we should expect to

find the same FP as its existence should be a property of the underlying theory space

rather than relying to the exact form of the RG equation. If we take an asymptoti-

cally safe trajectory emanating from this FP and follow it to the IR, it will leave the

symmetric subspace at some point, but its IR endpoint, eventually, will be symmetric

again, as we then have integrated out all fluctuation modes of a symmetric theory,

albeit in a non-covariant manner. Thus, it should be possible to describe and analyze

the RG flow of a symmetric theory, using both types of FRGE, one that retains the

symmetry throughout and one that restores it only at the level of the effective action

Γk=0.

On the other hand, when considering practical calculations that always involve a

truncation of theory space, the covariant approach, besides being the most natural to

choose for a symmetric problem, becomes even more advantageous. Using a truncation

of a fixed number of invariants we can always approximate the symmetric subspace

better than the larger total theory space. Thus, the quality of the truncation can be

increased the more, the larger the symmetry group is, such that with a comparable

calculational effort the covariant approach is expected to lead to more accurate results.

Nonetheless it should be kept in mind that using a non-covariant approach for a

symmetric theory is comparable to choosing a worse truncation, but should not be

despised as being inappropriate from the outset.

Relating different studies within the Asymptotic Safety program. From the

above we have learned that particularly well suited tools to investigate the Asymptotic

Safety scenario are the exact FRGE for the EAA (2.6), its generalization to gauge

theories, to be introduced later, or related (approximate) functional RG equations

on the level of the effective action. Using such a FRGE the program to find and

investigate asymptotically safe theories consists of the following major steps:

(i) Define a theory space of action functionals.

(ii) For practical reasons: Choose a truncation of theory space to be analyzed.
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2 Field Theoretical Background

(iii) Choose an appropriate FRGE and compute the resulting RG flow in this trun-

cation.

(iv) Analyze the structure of the resulting flow, search for UV attractive fixed points

and find complete RG trajectories.

Within this program it is obvious that different theory spaces should lead to dif-

ferent quantum theories, as their fixed point structures are generally not related to

each other. Even if two theory spaces are motivated by the same classical theory,

it could well be that one of them exhibits a FP suitable for the Asymptotic Safety

construction while the other does not, indicating that the corresponding fundamental

QFT can only be formulated in terms of the field content of one of the theory spaces.

Nonetheless, similarities between fundamental theories formulated in different theory

spaces might exist. However, these can only be evaluated on the basis of the quantum

properties both theories imply; a question that is beyond the present scope of research

in asymptotically safe quantum gravity, that primarily focusses on the mere existence

of a fundamental QFT of gravity in different theory spaces. Hence, we keep in mind

that the existence of NGFPs has to be investigated independently for every theory space

under consideration.

Considering the same theory space the application of different FRGEs to the same

truncation should lead, however, to comparable results. The most trustable results

should be obtained by the FRGE (2.6) and its generalization to gauge theories, as

it is exact on the untruncated level. Often approximate FRGEs are applied, whose

approximations usually can only be justified in comparison to this exact equation or to

other well-approved approximations. In particular, any new approximate RG equation

should be tested this way.

Similarly, one should expect that different truncations of the action functional Γk

lead to consistent results, if the essential physics is captured by both truncations.

Extending a given truncation should obviously lead to a better approximation of the

exact, untruncated flow, such that the stability of fundamental properties, as e. g.

the critical exponents of a given fixed point, under extension of the truncation can

be considered a measure for its quality. Usually this kind of quality check requires a

second complete RG analysis of a more involved truncation. In Chapter 5 we introduce

a method that allows for a similar test of the truncation within only one computation.

Note that, in most cases, we are bound to consider a finite or infinite dimensional

truncation of theory space, as an untruncated calculation is not feasible. Thus a strict
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2.1 Theory space and Asymptotic Safety

proof of existence of a NGFP in theory space within a usual RG analysis is out of reach,

as it could always be an artifact of the truncation considered, in principle, no matter

how highly dimensional it is chosen. Nonetheless, every RG study on the same theory

space, using different truncations or a different RG equation, helps to understand

the structure of the underlying theory space and may add further evidence for the

existence of fixed points found in previous calculations.

In the next subsection we introduce the four theory spaces that are investigated in

course of this work, all of which can be considered to construct a well-defined quantum

theory of gravity. After having generalized (2.6) to the case of gauge theories in Section

2.2, we move on and discuss the second main ingredient to the RG studies of this work,

namely the different approximations to the exact FRGE that will be employed.

2.1.4 Theory spaces of metric, tetrad and

Einstein-Cartan gravity

In classical General Relativity there exists a remarkably rich variety of different

variational principles which give rise to Einstein’s equation, or equations equivalent

to it but expressed in terms of different field variables. The best known examples

are the Einstein-Hilbert action expressed in terms of the metric, SEH[gµν ], or the

tetrad, respectively, SEH[eaµ]. The latter action functional is obtained by inserting the

representation of the metric in terms of vielbeins into the former: gµν = ηabe
a
µe
b
ν .

Another classically equivalent formulation, at least in absence of spinning matter,

is provided by the first order Hilbert-Palatini action SHP[eaµ, ω
ab
µ] which, besides the

tetrad, depends on the spin connection ωabµ assuming values in the Lie algebra of

O(1, 3). Variation of SHP with respect to ωabµ leads, in vacuo, to an equation of

motion which expresses that this connection has vanishing torsion. It can be solved

algebraically as ω = ω(e) which, when inserted into SHP, brings us back to SEH[e] ≡
SHP[e, ω(e)].

Another equivalent formulation is based upon the self-dual Hilbert-Palatini action

Ssd
HP[eaµ, ω

(+) ab
µ ], which only depends on the (complex, in the Lorentzian case) self-dual

projection of the spin connection, ω
(+) ab

µ [Ash91, AL04, Rov04, Thi07, Kie07]. This

action in turn is closely related to the Plebanski action [Ple77], containing additional 2-

form fields, and to the Capovilla-Dell-Jacobson action [CJD89, CJD91] which involves

essentially only a self-dual connection. Similarly, Krasnov’s diffeomorphism invariant
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Yang-Mills theories [Kra11a, Kra11b] allow for a “pure connection” reformulation of

General Relativity as well as deformations thereof.

The above variational principles are Lagrangian in nature; the fields employed pro-

vide a parametrization of configuration space. The corresponding Legendre transfor-

mation yields a Hamiltonian description in which the “carrier fields” of the gravita-

tional interaction parametrize a phase-space now. In this way the ADM-Hamiltonian

[ADM62] and Ashtekar’s Hamiltonian [Ash87], for instance, make their appearance.

Regarding the ongoing search for a quantum (field) theory of gravity this multitude

of classical formalisms offers many equally plausible possibilities to explore. A priori

it is not clear which one of the above hamiltonian systems, if any, is linked to the as

yet unknown fundamental quantum theory in the simplest or most easy to guess way.

The most prominent advantage of the functional RG approach to quantum gravity

compared to other approaches is now, that we do not have to specify the classical

dynamical system we are going to quantize from the outset. In this sense, it depends

on the classical input data to a lesser extent. The only inspiration we draw from the

classical system is its field content Φ and its group of symmetry transformations G that

together form the theory space, the respective system gives rise to. The RG analysis

then allows us to search for fixed points in this space, which, if found, predicts the

fundamental action of the system being quantized. The correct classical limit at low

momentum scales k is achieved by choosing among the asymptotically safe trajectories

the one that runs through the point in theory space that corresponds to the action of

the classical system.

The above examples of classical actions for gravity are motivate the investigation of

the following theory spaces:

(i) Einstein gravity. In case of the common metric description of gravity we have

Φ = gµν , and the gauge group is given by the diffeomorphisms of the manifold M,

G = Diff(M). We denote the corresponding theory space by

TE =
{
A[gµν , · · · ] | inv. under G = Diff(M)

}
. (2.12)

Most of the investigations on asymptotically safe gravity have been carried out

within this theory space or extensions thereof, when additional matter fields are cou-

pled to gravity. All of these studies have found a NGFP suitable for the Asymptotic

Safety construction and, taken together, they form an impressive amount of evidence

for the existence of a NGFP in this theory space.
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2.1 Theory space and Asymptotic Safety

We will encounter an extension of this space, TE,YM, in Chapter 3, when we discuss

the gravitational effects on the running of the Yang-Mills gauge coupling. This theory

space is obtained by the inclusion of an additional Yang-Mills field Aaµ coupled to

gravity, which at the same time enlarges the total gauge group according to

TE,YM =
{
A[gµν , A

a
µ, · · · ] | inv. under G = Diff(M) ⋉ SU(N)loc

}
. (2.13)

(ii) “Tetrad only” gravity. Expressing the metric in terms of the tetrad does not

merely amount to a change of field variables on the level of theory space. As (in

Euclidean spacetimes, that we consider throughout) there exists an O(d) manifold of

tetrads that correspond to the same metric, this ambiguity is usually treated as an

additional O(d)loc gauge freedom. Thus, the theory space of “tetrad only” gravity is

given by

Ttet =
{
A[eaµ, · · · ] | inv. under G = Diff(M) ⋉ O(d)loc

}
. (2.14)

Note thereby the structural similarity between the gauge groups of Ttet and TE,YM.

This theory space Ttet was first explored in the article [HR12], that forms the basis

of Chapter 4 of this work. It is intermediate between TE and the Einstein-Cartan

theory space to be introduced next, in the sense that the gauge group is already

enlarged compared to metric gravity, while the connection is still fixed to the Levi-

Civita choice. Exploring Ttet thus can help to understand the cause of differences

found between RG studies of metric and Einstein-Cartan gravity.

(iii) Einstein-Cartan gravity. In comparison to the “tetrad only” case in Einstein-

Cartan gravity we introduce the spin connection ωabµ as an additional independent

field variable. The corresponding theory space is, hence, defined by

TEC =
{
A[eaµ, ω

ab
µ, · · · ] | inv. under G = Diff(M) ⋉ O(d)loc

}
. (2.15)

First fully non-perturbative investigations of this space with d = 4 have been published

recently [Dau, DR12, DR]. We consider this theory space in Chapter 5 using the same

truncation and d = 4 as in this previous study, but we employ a new, approximative

RG equation whose reliability can be tested in direct comparison to the findings of

[DR].
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2 Field Theoretical Background

(iv) Chiral gravity. As noted before, also the restriction of the Hilbert-Palatini

action to spin connections of a defined chirality gives rise to Einstein’s equation. A

first RG analysis of the corresponding theory space

T ±
EC =

{
A[eaµ, (ω

(±))abµ, · · · ] | inv. under G = Diff(M) ⋉ O(4)loc

}
. (2.16)

is carried out in this work in Chapter 5.5.

2.2 Generalization of the FRGE to gauge theories

In this section we generalize the exact FRGE for scalar fields, (2.6), to the case of

gauge theories. The main challenge here is to find a formulation of the FRGE that

retains the gauge symmetry, such that the resulting flow does not leave the theory space

of gauge invariant action functionals, while at the same time allows for a well defined

propagator (Γ(2))−1 being the central object from which the RG flow is calculated.

These two seemingly irreconcilable goals can be reached by the use of the background

field method that is outlined in a first subsection. With the help of this method we

are able to write down the sought for generalization of (2.6) in a second subsection.

The last subsection is devoted to the construction of an appropriate ghost action, that

meets the requirements set by the background field formalism even if the total gauge

group G has the structure of a semi-direct product as is the case in the theory spaces

TE,YM, Ttet and TEC from above.

2.2.1 Background field method

Let us shortly review the main ideas underlying the background field method, that

is crucial to the functional RG of gauge theories. For more details on the method in

general and its application to gravity in particular we refer to the extensive literature

on the subject as e. g. [Abb81, Abb82, DeW67, GNW75, CDRM85, Adl82].

The partition function of gauge theories is given by a path integral of the following

schematical form:

Z[J ] =

∫
DΦ̂DΞ̂D ˆ̄Ξ e−S[Φ̂]−Sgf [Φ̂]−Sgh[Φ̂,Ξ̂, ˆ̄Ξ]+

R

J ·(Φ̂,Ξ̂, ˆ̄Ξ) . (2.17)
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2.2 Generalization of the FRGE to gauge theories

Here, Φ̂ and {Ξ̂, ˆ̄Ξ} collectively denote all quantum fields and (quantum) ghost fields,

respectively, that are present in the theory under consideration, and J denotes their

sources. Throughout this work we encounter the quantum fields

Φ̂ ⊂
{
γµν ,Aaµ, êaµ, ω̂abµ

}
, (2.18)

i. e. the metric, an SU(N) gauge field, the tetrad and the spin connection. The (anti-)

ghost fields corresponding to the gauge symmetries of spacetime diffeomorphisms,

SU(N)loc and O(d)loc-transformations are denoted by

Ξ̂ ⊂
{
Cµ,Σa,Σab

} ˆ̄Ξ ⊂
{
C̄µ, Σ̄a, Σ̄ab

}
, (2.19)

respectively. The fact that we denote the SU(N) ghosts and the O(d) ghosts by the

same symbol will not lead to any confusion, as we do not consider theories that obey

both symmetries at a time.

In the above path integral the bare action S[Φ̂] is invariant under gauge transfor-

mations of Φ̂. For the diffeomorphisms these are given by the Lie derivatives

δD(v)φ = Lvφ for any φ ∈ Φ̂ . (2.20)

Under SU(N)loc and O(d)loc transformations we have

δYM(λ)Aaµ = −∂µλa − fabcAbµλc ≡ −∇̂µλ
a (2.21)

and

δL(λ)êaµ = λabê
b
µ, δL(λ)ω̂abµ = −∂µλab − ω̂acµλcb − ω̂bcµλac ≡ −∇̂µλ

ab , (2.22)

respectively. Here, ∇̂ denotes the covariant derivative formed from the respective

quantum connection Aaµ or ω̂abµ and fabc are the antisymmetric structure constants of

SU(N). The quantum metric γµν is a scalar w. r. t. these transformations. The ghost

fields transform under all gauge transformations as tensors of the rank their index

structure implies.

The gauge invariant action S, however, has to be supplemented by a gauge fix-

ing action Sgf and a ghost action Sgh that is obtained by the usual Faddeev-Popov

method, in order to avoid an overcounting of gauge equivalent configurations in the
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2 Field Theoretical Background

path integral. To serve its purpose Sgf necessarily has to single out one configuration

in each gauge orbit, such that it cannot be chosen invariant under the above gauge

transformations.

The starting point of the background field formalism is a split of the quantum fields

into a sum of a (classical) background field and a quantum fluctuation Φ̂ = Φ̄+ϕ. We

denote the individual fields by

Φ̄ =
{
ḡµν , Ā

a
µ, ē

a
µ, ω̄

ab
µ

}
and ϕ =

{
hµν , a

a
µ, ε

a
µ, τ

ab
µ

}
. (2.23)

It is important to stress that this split is completely arbitrary, so that in particular

the fluctuations do not have to be “small” in any perturbative sense.

Together with the field split we have to specify how the variation of the full quantum

fields Φ̂ under gauge transformations is distributed over their components (Φ̄, ϕ), such

that δΦ̄ + δϕ = δΦ̂. Let us consider the following two possibilities:

(i) Background gauge transformations δB. In this case the background fields

transform in the same manner as the respective full quantum field, while all fluctuation

fields transform as tensors. In particular, we thus have

δB
D(v)φ = Lvφ ∀φ ∈ Φ̄ ∪ ϕ (2.24)

for the diffeomorphisms and

δB
YM(λ)Āaµ = −∂µλa − fabcĀbµλc, δB

YM(λ)aaµ = fabcλbacµ

δB
L (λ)ω̄abµ = −∂µλab − ω̄acµλcb − ω̄bcµλac, δB

L (λ)τabµ = λacτ
cb
µ + λbcτ

ac
µ

δB
L (λ)ēaµ = λabē

b
µ, δB

L (λ)εaµ = λabε
b
µ

(2.25)

for SU(N)loc and O(d)loc transformations.

(ii) True gauge transformations δG. Here, the complete transformation is shifted

to the fluctuation fields, such that only these are affected by the transformation, while

the background fields stay constant. Concretely they read

δG
D(v)φ = δG

YM(λ)φ = δG
L (λ)φ = 0, φ ∈ Φ̄ (2.26)
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2.2 Generalization of the FRGE to gauge theories

for the background fields, and for the fluctuation fields we have

δG
D(v)hµν = δD(v)γµν ,

δG
D(v)aaµ = δD(v)Aaµ, δG

YM(λ)aaµ = δYM(λ)Aaµ
δG
D(v)εaµ = δD(v)êaµ, δG

L (λ)εaµ = δL(λ)êaµ,

δG
D(v)τabµ = δD(v)ω̂abµ, δG

L (λ)τabµ = δL(λ)ω̂abµ .

(2.27)

After these technical considerations the crucial observation at the heart of the back-

ground field method is now that we may use a different partition function Z[J ; Φ̄] to

calculate the effective action that the partition function Z[J ] gives rise to. This second

partition function parametrically depends on the background fields and is given by

Z[J ; Φ̄] =

∫
DϕDΞ̂D ˆ̄Ξ e−S[Φ̄+ϕ]−Sgf [ϕ;Φ̄]−Sgh[ϕ,Ξ̂, ˆ̄Ξ;Φ̄]+

R

J ·(ϕ,Ξ̂, ˆ̄Ξ) . (2.28)

Here, the ghost action is constructed by the Faddeev-Popov method using the variation

of the gauge fixing condition w. r. t. the above true gauge transformations δG.

By a shift of the integration variable, assuming a translationally invariant path

integral measure, it can be shown [Abb82] that it is related to the ordinary partition

function (2.17) according to

Z[J ; Φ̄] = Z[J ] · e−
R

J ·Φ̄ (2.29)

under the condition that on the RHS the gauge fixing action SΦ̄
gf [Φ̂] = Sgf [Φ̂− Φ̄; Φ̄] is

used in the definition of the partition function Z[J ]. This choice of gauge fixing may

seem a bit unorthodox in view of the conventional approach as it involves an external

field Φ̄, but turns out perfectly viable from the technical point of view [Abb82].

The most important consequence of (2.29) is obtained at the level of the effective

actions that are implied by both partition functions and have the expectation values

of the fields ϕ̄ = 〈ϕ〉 and Φ = Φ̄ + ϕ̄ = 〈Φ̂〉 as well as Ξ = 〈Ξ̂〉, Ξ̄ = 〈 ˆ̄Ξ〉 as their

arguments. The individual fields used in this work are denoted by

ϕ̄ =
{
h̄µν , ā

a
µ, ε̄

a
µ, τ̄

ab
µ

}
, Φ =

{
gµν , A

a
µ, e

a
µ, ω

ab
µ

}
,

Ξ =
{
ξµ,Υa,Υab

}
, Ξ̄ =

{
ξ̄µ, Ῡa, Ῡab

}
.

(2.30)
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For the effective actions we then find the relation [Abb82]

Γ[ϕ̄,Ξ, Ξ̄; Φ̄] = Γ[Φ̄ + ϕ̄,Ξ, Ξ̄] , (2.31)

and thus, by setting the fluctuations to zero at this point, we obtain the usual effective

action from the path integral (2.28) according to

Γ[Φ̄,Ξ, Ξ̄] = Γ[0,Ξ, Ξ̄; Φ̄] . (2.32)

Moreover, and most importantly for our purposes, we can learn from (2.32) that if

we construct Z[J ; Φ̄] in such a way that it is invariant under the background field

transformations δB then also the resulting effective action Γ[Φ̄,Ξ, Ξ̄] is a background

gauge invariant functional. Inspecting (2.28) we find that we can achieve this goal

by choosing a background gauge covariant gauge fixing condition, that renders Sgf

invariant, and in turn results in a background gauge invariant ghost action Sgh as

well.

Thus we conclude that the partition function (2.28) in conjunction with a gauge-

fixing condition that breaks the invariance under true gauge transformations but re-

tains background gauge invariance is a suitable starting point for the generalization

of the exact FRGE (2.6) to the case of gauge theories.

2.2.2 Exact FRGE for gauge theories

In order to construct an exact renormalization group equation for gauge theories

we start with (2.28) and add, as in the scalar case, a mode suppression term to the

exponent. It is of the form

∆kS =
1

2

∫
ddx
√
ḡ
(
ϕ, Ξ̂, ˆ̄Ξ

)
Rk[Φ̄]



ϕ

Ξ̂
ˆ̄Ξ




=
1

2

∫
ddx
√
ḡ ϕ R̆k[Φ̄]ϕ+

∫
ddx
√
ḡ ˆ̄ΞRgh

k [Φ̄] Ξ̂ .

(2.33)

The mode suppression kernel Rk[Φ̄] is block diagonal in field space and decomposes

into a diagonal part R̆k[Φ̄] that cuts off the Grassmann-even fields ϕ and a skew-
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2.2 Generalization of the FRGE to gauge theories

symmetric block that takes care of ghost-fields {Ξ̂, ˆ̄Ξ} and can be expressed in terms

of Rgh
k [Φ̄].

Note that according to the conception of the RG the momentum modes of all fields

have to be cut off in an equivalent manner, so that ghost fields and all physical fields

are treated on the same footing here. Later on we will explain in detail how the exact

form of the mode suppression kernel should be adapted to a given truncation.

With this mode suppression kernel the derivation of the flow equation for the EAA

is completely analogous to the scalar case [Wet93] and can be found e. g. in [RW94a,

Reu98, RS10]. The resulting FRGE, which governs the scale dependence of the EAA

Γk[Φ, Φ̄,Ξ, Ξ̄] ≡ Γk[Φ− Φ̄,Ξ, Ξ̄; Φ̄], reads

∂tΓk =
1

2
STr
[(

Γ
(2)
k +Rk

(
∆
))−1

∂tRk

(
∆
)]
. (2.34)

Here, Γ
(2)
k denotes the Hessian of Γk with respect to all fluctuation and ghost expec-

tation values, and as before t ≡ ln k is the “RG time”. The operator ∆ denotes

some suitably chosen generalized Laplacian w. r. t. whose spectrum the modes of the

fluctuation fields in the trace are cut off. The most straightforward generalization of

the coarse graining idea in momentum space therefore is to choose ∆ = D̄2, i. e. the

Laplacian constructed from the G-covariant derivative D̄µ based on the background

connection. This choice corresponds to a type I cutoff operator in the classification of

[CPR09]. Furthermore, in (2.34) the supertrace “STr” refers to an operator trace, that

sums over all independent field components and takes into account the Grassmann-odd

fields with an additional minus sign.

At this point we encounter a second argument for the need of a background field:

At the heart of the RG lies the idea to classify the modes of the quantum fields

into high momenta, that are integrated out, and low momentum modes, that remain

and effectively describe the theory. In gauge theories this notion should be defined

covariantly, such that the cutoff operator ∆ has to be constructed from covariant

derivatives that necessarily contain a fixed background connection. Nonetheless this

approach retains background field independence, which is particularly important in

the case of gravity, by the fact that the background field never has to be specified

throughout the calculation, such that all results are independent of its exact form; see

[RW09, MR10] for details.
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As we will not consider any renormalization effects in the ghost sector throughout

this work, the part of Γk that corresponds to the ghost action with the quantum fields

replaced by their expectation values, Sgh[ϕ̄,Ξ, Ξ̄; Φ̄], is left unrenormalized in this

class of approximations. This has the effect, that we can set the fluctuations ϕ̄ = 0

in the ghost action even before computing the Hessian Γ
(2)
k , which in turn results in a

decomposition of the FRGE (2.34) into the two blocks

∂tΓk =
1

2
Tr
[(

Γ̆
(2)
k +R̆k

(
∆
))−1

∂tR̆k

(
∆
)]
−Tr

[(
S

(2)
gh +Rgh

k

(
∆
))−1

∂tRgh
k

(
∆
)]
, (2.35)

where Γ ≡ Γ̆ + Sgh.

This is the form of the exact FRGE that is used in Chapter 4 to investigate the

RG flow of “tetrad only” gravity, while the more compact form of (2.34) serves as the

starting point for several approximations to the exact FRGE that are compared in

Section 2.3.

2.2.3 Construction of the ghost action

According to the standard Faddeev-Popov method the ghost action Sgh that rep-

resents the Faddeev-Popov determinant det δFJ/δvI in the path integral, is obtained

by applying an infinitesimal gauge transformation δ(v) to the gauge condition FJ ,
replacing the parameter of the transformation by the corresponding ghost field and

contracting the expression with its anti-ghost field. Here, the indices I, J stand for

an arbitrary general index structure of the objects under consideration. Schematically

the ghost action is thus of the form

Sgh[Φ̂, Ξ̂,
ˆ̄Ξ] = −

∫
ddx ˆ̄ΞJ

∂FJ
∂Φ̂I

δ(Ξ̂)Φ̂I . (2.36)

Employing the background field method as described above we should use the true

gauge transformations in the construction of the ghost action. As then only the

fluctuation fields transform and their infinitesimal variation equals the one of the

full quantum field, we find in this case

Sgh[ϕ, Ξ̂,
ˆ̄Ξ; Φ̄] = −

∫
ddx ˆ̄ΞJ

∂FJ
∂ϕI

δG(Ξ̂)ϕI = −
∫

ddx ˆ̄ΞJ
∂FJ
∂ϕI

δ(Ξ̂)Φ̂I . (2.37)
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2.2 Generalization of the FRGE to gauge theories

If the total gauge group consists only of a single component as e. g. only diffeomor-

phisms in metric gravity or the SU(N) in case of pure YM theory, this ghost action

is background gauge invariant if and only if the gauge condition F I transforms as a

tensor under the group action. To see this, let us consider the different factors in the

ghost action: Clearly ˆ̄ΞJ transforms as a tensor, and also the derivative ∂FJ/∂ϕI is

a tensor, as under background gauge transformations all fluctuation fields transform

tensorially. Finally, also δ(Ξ̂)Φ̂I is a tensor since every gauge transformation of a

full quantum field preserves the character of the field (tensor, connection), such that

its infinitesimal variation must transform as a tensor w. r. t. the gauge group under

consideration.

If we consider YM theory coupled to gravity or gravity in the vielbein formalism,

the total gauge group has a product structure and consists of the spacetime diffeo-

morphisms and some inner group SU(N)loc or O(4)loc, respectively. The naive gener-

alization of the above approach would be to introduce a second gauge fixing condition

GI for the inner group and apply both types of gauge transformations to each gauge

fixing condition. The corresponding ghost action would then be of the form

Sgh[h, a, C, C̄,Σ, Σ̄; ḡ, Ā] = −
∫

ddx
√
ḡ

(
κ−1 C̄µḡµν

∂Fν
∂hρσ

δD(C)γρσ+

+ κ−1 C̄µḡµν
∂Fν
∂hρσ

δYM(Σ)γρσ + ĝ Σ̄a∂Ga
∂abµ

δD(C)Abµ + ĝ Σ̄a∂Ga
∂abµ

δYM(Σ)Abµ
)
,

(2.38)

where we specialized for the case of YM theory coupled to gravity (formulated in a

spacetime of vanishing torsion) and considered gauge fixing conditions of the form

Fµ(hµν ; ḡµν , Āaµ) and Ga(aaµ; ḡµν , Āaµ) for the diffeomorphisms and the SU(N) transfor-

mations, respectively. We will stick to this example for the rest of this section. The

treatment of tetrad gravity is completely analogous due to the structural equivalence

of its gauge group; see [DR, DR10] for the explicit formulae.

The problem with the ghost action (2.38) lies in the last factor of the third term,

that reads explicitly:

δD(C)Abµ = LCAbµ = Cρ∂ρAbµ + (∂µCρ)Abρ = CρDρAbµ + (DµCρ)Abρ . (2.39)
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From the last expression we observe the manifestly covariant character of the term

w. r. t. diffeomorphisms.2 From the same expression it becomes obvious that the ten-

sorial character of Abµ w. r. t. the SU(N) transformations is not retained by the dif-

feomorphisms: The Lie derivative is not covariant under SU(N) transformations, and

hence we see that the diffeomorphisms do not map SU(N) tensors onto SU(N) ten-

sors. Thus the ghost action (2.38) spoils the background gauge invariance crucial to

our approach and is therefore not suitable for the construction of an invariant effective

average action Γk.

In order to find the proper generalization of the ghost action (2.37) that retains

background gauge invariance it is helpful to analyze the structure of the total gauge

group in a bit more detail. To this end we introduce the so-called Ward operators, the

generators of the gauge transformations in the space of functionals which depend on

the full quantum fields,

WD(v)=−
∫

ddx

[
δD(v)Φ̂I(x)

δ

δΦ̂I(x)
+δD(v)Ξ̂I(x)

δ

δΞ̂I(x)
+δD(v)ˆ̄ΞI(x)

δ

δ ˆ̄ΞI(x)

]

WYM(λ)=−
∫

ddx

[
δYM(λ)Φ̂I(x)

δ

δΦ̂I(x)
+δYM(λ)Ξ̂I(x)

δ

δΞ̂I(x)
+δYM(λ)ˆ̄ΞI(x)

δ

δ ˆ̄ΞI(x)

]
.

(2.40)

They satisfy the following algebra

[WD(v1),WD(v2)] =WD([v1, v2]) ,

[WYM(λ1),WYM(λ2)] =WYM(fλ1λ2) ,

[WD(v),WYM(λ)] =WYM(Lvλ) .

(2.41)

The first two relations state the usual composition rules for diffeomorphisms and

SU(N) transformations. The fact that the mixed commutator of the Ward opera-

tors does not vanish but results in an SU(N) transformation shows that only the

2Notational remark: Since we deal in this work with theories exhibiting two gauge invariances we
have to distinguish three different kinds of covariant derivatives. We write D ≡ ∂+Γ for the covariant
derivatives that are constructed by means of the spacetime connection Γρ

µν and∇ ≡ ∂+A or∇ ≡ ∂+ω

for those constructed from the SU(N) connection Aa
µ or the spin connection ωab

µ, respectively; the
covariant derivative containing both of these connections is denoted by D ≡ ∂ + A/ω + Γ. By adding
a bar, we denote their analogs evaluated on the background configurations.
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2.2 Generalization of the FRGE to gauge theories

SU(N)loc is a normal subgroup of the total gauge G. Hence, it has the structure of a

semi-direct product of the two subgroups

G = Diff ⋉ SU(N)loc. (2.42)

Also the spoiled gauge covariance in the ghost action can be traced back to this non-

vanishing commutator. If we explicitly write down the infinitesimal transformation of

the problematic term δD(C)Aaµ under SU(N)loc transformations we find

δYM(λ)δD(C)Aaµ =WYM(λ)WD(C)Aaµ
= Cρ∂ρ(−∂µλa − fabcAbµλc) + (∂µCρ)(−∂ρλa − fabcAbρλc)
6= fabcλb

(
Cρ∂ρAcµ + (∂µCρ)Acρ

)

=WD(C)WYM(λ)Aaµ ,

(2.43)

and conclude that δD(C)Aaµ would transform as an SU(N)loc tensor if the two types of

Ward operators commuted.

This observation evokes the question whether it is possible to reparametrize the

total group of gauge transformations by a linear combination of its generators, such

that these modified Ward operators have a vanishing mixed commutator.

Indeed this turns out possible and there even arise two different choices for a mod-

ification of the diffeomorphisms, that make the mixed commutator vanish. Let us

present these two possibilities in the following. In both cases the new, modified diffeo-

morphisms include an additional SU(N)loc transformation whose parameter depends

on the vector field vµ generating the diffeomorphism. Loosely speaking, the SU(N)loc

covariantization of the Lie derivative in (2.39) is achieved by shifting a certain v-

dependent part of SU(N)loc into the diffeomorphism sector [Jac78].

(i) In the first case the parameter of the SU(N)loc transformation is obtained as the

contraction of the vector field vµ with the full quantum field Aaµ: λa = Aaµvµ. The

modified diffeomorphisms are then defined as

W̃D(v) ≡ WD(v) +WYM(A · v) . (2.44)
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The notion of an “invariant functional” and therefore the total theory space obvi-

ously remains unchanged by this reparametrization

Finv = {F | W̃D(v)F = 0 ∧ WYM(λ)F = 0 ∀ vµ, λa}
= {F | WD(v)F = 0 ∧ WYM(λ)F = 0 ∀ vµ, λa} ,

(2.45)

while the algebra is modified according to ((v1v2 · F̂ )a ≡ vµ1 v
ν
2 F̂

a
µν)

[W̃D(v1), W̃D(v2)] = W̃D([v1, v2])−WYM(v1v2 · F̂ ) ,

[WYM(λ1),WYM(λ2)] =WYM(fλ1λ2) ,

[W̃D(v),WYM(λ)] = 0 ,

(2.46)

where F̂ a
µν is the field strength tensor of the quantum gauge field Aaµ.

By replacing the original true diffeomorphisms δD in (2.38) by these new, modified

diffeomorphisms δ̃D we finally arrive at a background gauge invariant ghost action of

the form

Sgh[h, a, C, C̄,Σ, Σ̄; ḡ, Ā] = −
∫

ddx
√
ḡ
(
κ−1 C̄µḡµν

∂Fν
∂hρσ

δ̃D(C)γρσ+

+ κ−1 C̄µḡµν
∂Fν
∂hρσ

δYM(Σ)γρσ + ĝ Σ̄a∂Ga
∂abµ

δ̃D(C)Abµ + ĝ Σ̄a∂Ga
∂abµ

δYM(Σ)Abµ
)
.

(2.47)

Compared to (2.38) the first term did not change since

δ̃D(C)γρσ = δD(C)γρσ = LCγρσ, (2.48)

but the term that caused all trouble, (2.39), now reads

δ̃D(C)Abµ = F̂ b
ρµCρ , (2.49)

and has hence a manifestly tensorial character w. r. t. both, diffeomorphisms and

SU(N)loc transformations.

(ii) The second choice of reparametrization differs from the first one only in the

SU(N)loc parameter used for the definition of the modified diffeomorphisms. Here it is
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2.2 Generalization of the FRGE to gauge theories

obtained by contracting the vector field vµ with the background field Āaµ: λ
a = Āaµv

µ.

Then we define the modified diffeomorphisms as

˜̃WD(v) ≡ WD(v) +WYM(Ā · v) . (2.50)

As before the notion of an “invariant functional” and the total theory space remains

unchanged

Finv = {F | ˜̃WD(v)F = 0 ∧ WYM(λ)F = 0 ∀ vµ, λa}
= {F | WD(v)F = 0 ∧ WYM(λ)F = 0 ∀ vµ, λa} ,

(2.51)

while the algebra now is modified according to ((v1v2 · F̄ )a ≡ vµ1 v
ν
2 F̄

a
µν)

[
˜̃WD(v1),

˜̃WD(v2)] =
˜̃WD([v1, v2]) +WYM(v1v2 · F̄ ) ,

[WYM(λ1),WYM(λ2)] =WYM(fλ1λ2) ,

[
˜̃WD(v),WYM(λ)] =WYM(v · ∇̄λ) ,

(2.52)

where F̄ a
µν is the field strength tensor of the background gauge field Āaµ. The difference

compared to the algebra (2.46) is explained by the fact that the parametric background

field dependence of the argument is not subject to the action of the Ward operators.

However, if we consider the corresponding background gauge transformations we

re-obtain an algebra of the former type, i. e.

[
˜̃WB

D(v1),
˜̃WB

D(v2)] =
˜̃WB

D([v1, v2])−WB
YM(v1v2 · F̄ ) ,

[WB
YM(λ1),WB

YM(λ2)] =WB
YM(fλ1λ2) ,

[
˜̃WB

D(v),WB
YM(λ)] = 0 ,

(2.53)

and we will see below, that the vanishing mixed commutator of the background Ward

operators is sufficient to construct a background gauge invariant ghost action.

The formal expression for the ghost action differs only by an additional tilde on top

of the infinitesimal diffeomorphisms

Sgh[h, a, C, C̄,Σ, Σ̄; ḡ, Ā] = −
∫

ddx
√
ḡ
(
κ−1 C̄µḡµν

∂Fν
∂hρσ

˜̃
δD(C)γρσ+

+ κ−1 C̄µḡµν
∂Fν
∂hρσ

δYM(Σ)γρσ + ĝ Σ̄a∂Ga
∂abµ

˜̃
δD(C)Abµ + ĝ Σ̄a∂Ga

∂abµ
δYM(Σ)Abµ

)
,

(2.54)
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but the explicit expression of the formerly problematic term (2.39) now reads

˜̃
δD(C)Abµ = F̄ b

ρµCρ +
(
D̄ρabµ

)
Cρ + abρ

(
D̄µCρ

)
. (2.55)

Thus we obtain again a tensor under background gauge transformations and, hence,

we succeeded in constructing a suitable ghost action, but its explicit form is more

complicated than before.

It is difficult to assess which of the above two possibilities should generally be used in

an RG analysis. The formalism seems to suggest the first choice: As in the expression

for the ghost action only transformations of the undecomposed quantum fields occur,

it seems only natural also to choose the full quantum field Aaµ as the parameter in the

modified diffeomorphisms. Moreover, it generally leads to a ghost-action of a simpler

form as all fluctuation fields will combine to full quantum fields therein.

From the conceptual point of view, however, several questions arise when opting for

the first possibility, that require a deeper analysis. Primarily one would have to find

out how to deal with infinitesimal gauge transformations that contain the quantum

field itself as their parameter. A first important observation is that these are no

longer linear in the quantum fields, such that it is not clear, whether or how they are

related to finite transformations via an exponential map. Moreover, one would have

to carefully check whether the Faddeev-Popov method itself remains unchanged, i. e.

that the ghost-action we constructed gives rise to the correct functional determinant

in the path integral.

Thus, conceptually, the second alternative seems more attractive. Although intro-

ducing the background field into the parameter of the gauge transformation may seem

a bit artificial, it has the virtue that it serves merely as an external parameter at this

point. Hence, the conceptually problematic mixing of the gauge transformations with

the actual configuration of the quantum fields is avoided.

Luckily, within our approximation we do not have to make a definite choice between

the two possibilities. As we will neglect the renormalization effects in the ghost sector

in all our studies, we can set the fluctuation fields to zero in the ghost action Sgh even

before the Hessian is computed. In this case both possibilities from above become

equivalent, as eqns. (2.49) and (2.55) differ only in terms containing fluctuation fields.

Whenever an RG study including the ghost sector is carried out, however, one

should be aware of the fact that the two possibilities of constructing the ghost action
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2.3 Comparison of RG flow equations

will lead to different results. Before opting for the first alternative, in particular, the

issues raised above should be solved.

With this construction of an appropriate ghost action we have defined all ingredients

of the exact FRGE for gauge theories (2.35). Next we are going to introduce a number

of different approximations to this exact equation that will be applied to the different

theory spaces, later on.

2.3 Comparison of RG flow equations

In this section we want to introduce certain approximations to the exact FRGE

for the effective average action, which will be used in the subsequent chapters on to

analyze the renormalization group flow of quantum gravity in the different theory

spaces introduced above.

The derivation of the flow equations presented here, that are related to each other

by three successive approximative steps, clearly has the logical status of a motivation

only, since the validity of each of these steps can eventually be proven only by a

comparison to results obtained from the exact equation. The main reason for using

an approximative instead of the exact RG equation is that the computational effort

for a given truncation can be reduced in consequence. This is especially useful when

considering the Einstein-Cartan theory space TEC: RG studies on this space show a

dramatically increased complexity mainly due to the quadruplication of independent

field components compared to the metric formulation. If we further want to include

fermionic matter to the model in future calculations, the exact treatment is rendered

a hopelessly involved task. Here, a well-tested simplified approximative FRGE would

be more than welcome.

We start from the FRGE for the effective average action, (2.34),

∂tΓk =
1

2
STr

[
∂tRk(∆)

Γ
(2)
k +Rk(∆)

]
with Rk(∆) = Zkk2R(0)

(
∆

k2

)
. (2.56)

As introduced above, R(0)(x) is a dimensionless shape function, which interpolates

smoothly between 1 and 0 according to

R(0)(0) = 1 and lim
x→∞

R(0)(x) = 0, (2.57)
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2 Field Theoretical Background

but is arbitrary apart from that. The argument ∆ is called cutoff operator since the

discrimination between “low” and “high” momentum fluctuations is obtained with

respect to its eigenmodes with eigenvalues λ < k2 and λ > k2, respectively. Therefore,

the cutoff operator ∆ is usually chosen to a generalized momentum squared operator

e. g. the flat Laplacian −� for a scalar theory or the (background) covariant Laplacian

−D̄2 in the case of metric gravity. For the equation to be exact any positive operator

is permissable as a cutoff operator, whose eigenmodes form a complete set of functions

in Hilbert space. Following the RG flow from the scale k to k − δk corresponds

to integrating out the modes of the cutoff operator of approximately this range of

eigenvalues. Therefore, the conditions the cutoff operator is subject to guarantee that

we end up at k = 0 having integrated out the fluctuations at all scales.

At this point we want to explain how the factor Zk, being a matrix in field space,

is conventionally adapted to a given truncation by the so-called Zk = ζk-rule: Zk
should be chosen such that for any eigenmode of Γ

(2)
k with eigenvalue ζkp

2 the sum

Γ
(2)
k + Rk has eigenvalue ζk(p

2 + k2R(0)(p2/k2)). It has proven most useful to apply

this kind of adaptation even for ζk < 0: In case of metric gravity in the Einstein-

Hilbert truncation [Reu98], divergences that may arise due to the conformal factor

problem, can be circumvented by this choice. In higher order f(R)-truncations and for

polynomials of even order in R, the conformal factor problem ceases to exist as in the

UV all ζk become positive. It has been shown [LR02, CPR09] that these truncations

show a very similar UV behavior to the one found in [Reu98], which can been seen as

a justification of the Zk = ζk-rule even for ζk < 0. For a more detailed discussion of

this point see [LR02].

In a first step of approximation we employ a “spectrally adjusted” or “type III”

[CPR09] cutoff operator, namely we choose ∆ = Z−1
k Γ

(2)
k [Φ̄, Φ̄], depending on the

background fields Φ̄ only (i. e. with the fluctuations ϕ̄ set to zero). This choice of

operator can be seen as an approximation to the covariant Laplacian ∆ = −D̄2 by the

following argument: Since the matrix Zk is adapted to the inverse propagator Γ
(2)
k such

that the addition Γ
(2)
k +Rk shifts its modes according to ζkp

2 → ζk(p
2+k2R(0)(p2/k2)),

we obtain for the background field independent part Γ
(2)
0 k of the inverse propagator Γ

(2)
k

the identity Z−1
k Γ

(2)
0 k = −∂2

1. Differences to using the covariant Laplacian therefore

only occur in the background field dependent terms of the cutoff operator.

In general Z−1
k Γ

(2)
k is not necessarily a positive operator, and moreover a new de-

pendence on the scale parameter k is introduced into the flow equation by this choice
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2.3 Comparison of RG flow equations

of cutoff operator. Thus the picture of integrating out the eigenmodes of the cutoff

operator shell by shell becomes somewhat unclear by this approximation. On the

other hand we gain that the RHS of the flow equation now allows for a simple spec-

tral representation as it only depends on a single differential operator. Inserting the

spectrally adjusted cutoff operator into the flow equation we obtain

∂tΓk =
1

2
STr

[
2
(
R(0)

(
x
k2

)
− x

k2R
(0)′( x

k2

))
− ηR(0)

(
x
k2

)
+ ∂tx

k2 R
(0)′( x

k2

)

x
k2 +R(0)

(
x
k2

)
]∣∣∣∣∣
x=Z−1

k
Γ

(2)
k

=
1

2
STr

[
W1(x)− ηW2(x) +

∂t
(
Z−1
k Γ

(2)
k

)

k2
W3(x)

]∣∣∣∣∣
x=Z−1

k
Γ

(2)
k

,

(2.58)

where η = −Z−1
k (∂tZk). The last term in the square brackets reflects the newly

introduced scale dependence of the cutoff operator. Deriving this equation one has to

keep in mind that the operators ∂t(Z−1
k Γ

(2)
k ) and Z−1

k Γ
(2)
k as well as the matrix η in

general do not commute. But since ∂t(Z−1
k Γ

(2)
k ) and η only occur (at most) once in

each summand under the trace, all possible orderings of the operators in these terms

become equivalent due to the cyclicity of the trace. Only because of that we arrive at

an equation of such a simple form.

As a next step we perform an inverse Laplace transform with respect to the variable

x resulting in

∂tΓk =
1

2
STr

[ ∫ ∞

0

ds

(
W̃1(s)− ηW̃2(s) +

∂t
(
Z−1
k Γ

(2)
k

)

k2
W̃3(s)

)
e−sZ

−1
k

Γ
(2)
k

]

=
1

2

∫ ∞

0

ds

[
W̃1(s) STr

[
e−sZ

−1
k Γ

(2)
k

]
− W̃2(s) STr

[
η e−sZ

−1
k Γ

(2)
k

]

+
W̃3(s)

k2
STr

[
∂t
(
Z−1
k Γ

(2)
k

)
e−sZ

−1
k Γ

(2)
k

]]
.

(2.59)

This FRGE is used in Chapter 3 to analyze the gravitational contributions to running

gauge couplings. The three different terms in (2.59) correspond to different approxi-

mations: If we only take into account the first term, the computation amounts to a

usual 1-loop calculation with a non-standard regulator. Including the second trace is

a first step of RG improvement: The η matrix corresponds to the running couplings

being fed back into the RHS of the flow equation. Finally, the third term takes into
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2 Field Theoretical Background

account the additional k-dependence of the RHS, due to the running of the couplings

in the type III cutoff operator; it can be seen as a second step of RG improvement.

In view of the further approximations to be applied it is useful to rewrite (2.59) in

yet another form:

∂tΓk =
1

2
STr

[∫ ∞

0

ds

(
W̃1(s)− ηW̃2(s) +

∂t
(
Z−1
k Γ

(2)
k

)

k2
W̃3(s)

)
e−sZ

−1
k

Γ
(2)
k

]

=
1

2
STr

[∫ ∞

0

ds

(
−∂tfk(s)

s

)
e−sZ

−1
k

Γ
(2)
k

]

=
1

2
STr

[∫ ∞

0

ds

(
−Dtfk(Zks)

s

)
e−sΓ

(2)
k

]
,

(2.60)

where the second equality sign is meant as a definition for the matrix valued function

fk(s), and the scale derivative Dt only acts on the explicit k-dependence of the function

fk (i. e. not on its argument Zks).
In a second step of approximation we substitute fk(s) in the integrand by a simpler

function of s, which is chosen such that the above definition nonetheless qualitatively

reproduces the desired properties ofRk. In particular, the chosen function fk(s) should

regularize the integral in (2.60) both, in the UV and the IR. Thus, it should fall off

to zero quickly for arguments s > k−2 and s < Λ−2, where Λ denotes some UV cutoff

scale. A common choice is the one parameter set of functions fmk (s) given by [BR05]

fmk (s) =
Γ(m+ 1, sk2)− Γ(m+ 1, sΛ2)

Γ(m+ 1)
, (2.61)

where m is an arbitrary real, positive parameter, and Γ(α, x) =
∫∞
x

dt tα−1e−t denotes

the incomplete Gamma function. Note that Λ, thanks to the scale derivative in the

integrand, can safely be taken to infinity at the level of the flow equation. As a result

this yields a FRGE of the form

∂tΓk = −1

2
STr

[∫ ∞

0

ds

s
Dtf

m
k (Zks) e−sΓ

(2)
k

]
, (2.62)

which is known as the “proper-time” (PT) flow equation [Reub].

A flow equation of this type has widely been used in the literature [Lia96, Lia97,

SBW02, SP99, PSPW00]; it is well known to give accurate results for several scalar

theories [BZ01] and has also been applied to metric gravity [BR05].
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2.3 Comparison of RG flow equations

The first fully non-perturbative study of the theory space TEC has also been carried

out using a flow equation of the proper-time type [Dau, DR12, DR]. Therein first

evidence for the existence of asymptotically safe theories, called Quantum Einstein

Cartan Gravity (QECG), in this space was found, and we will compare our findings

on QECG in Chapter 5 carefully to it.

As a small aside we note that the proper-time flow equation can also be derived

by “RG improvement” of the one-loop effective action. At first we have to regularize

the UV divergences and introduce an IR cutoff scale k in the one-loop expression.

This can be done, using Schwinger’s proper-time representation for the logarithm, by

cutting off the proper-time variable s which results in a restriction of the integration

to the interval s ∈ [Λ−2, k−2].

Γ1-loop
∣∣∣
REG

= S +
1

2
STr lnS(2)

∣∣∣∣
REG

= S − 1

2
STr

∫ k−2

Λ−2

ds

s
e−sS

(2)

(2.63)

In a more general setting the same effect can be obtained by inserting the “smearing

functions” fmk (Zs) into the integrand, whose domain is essentially restricted to this

interval:

Γ1-loop
∣∣∣
REG

= S − 1

2
STr

∫ ∞

0

ds

s
fmk (Zs) e−sS(2)

. (2.64)

Taking the scale derivative ∂t of this equation and subsequently employing RG im-

provement (S(2) → Γ
(2)
k , Z → Zk) we get back to equation (2.62).

Let us come back to the proper-time flow equation (2.62) and perform the last

step of approximation. The main idea here is to use different smearing functions fmk
depending on the momentum dependence of the exponentiated operator. At this point

we specialize for the case of constant background fields Φ̄, such that Γ
(2)
k is diagonal

in momentum space. Then we can represent the functional trace by a momentum

integral according to

∂tΓk = −1

2
STr

[∫ ∞

0

ds

s
∂tf

m
k (s)e−sZ

−1
k

Γ
(2)
k

]

= −1

2
str

[∫ ∞

0

ds

s
∂tf

m
k (s)

∫
ddx ddp 〈x|p〉〈p|e−sZ−1

k Γ
(2)
k |x〉

]

Φ̄=const
= −1

2

∫ ∞

0

ds

s
∂tf

m
k (s)

∫
ddx

∫
ddp

(2π)d
str
[
e−sZ

−1
k Γ

(2)
k (p)

]
.

(2.65)
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Here str denotes the remaining algebraic supertrace which is due to the matrix struc-

ture of the operator. Now we make use of the fact, that Zk is adapted to Γ
(2)
0 k as

described above, such that we can pull out the dominant quadratic momentum depen-

dence in the exponent and expand the remainder as a power series in the momentum

variable p:

Z−1
k Γ

(2)
k = Z−1

k Γ
(2)
0 k + Z−1

k Γ
(2)

Φ̄ k
= p2

1 + Z−1
k Γ

(2)

Φ̄ k

⇒ e−sZ
−1
k

Γ
(2)
k = e−sp

2

eZ
−1
k

Γ
(2)

Φ̄ k = e−sp
2

( ∞∑

n=0

pnAn

)
.

(2.66)

In this series expansion the quantities An carry the matrix character of the expres-

sion. In principle we have to sum over different possible momentum dependences in

each order (e.g. p2 and pµpν in second order), but due to the symmetric momentum

integration those will combine to a single contribution for every even power p2n, while

the odd powers vanish. Therefore we have

∂tΓk = −1

2

∫ ∞

0

ds

s
∂tf

m
k (s)

∫
ddx

∫
ddp

(2π)d
str

[
e−sp

2
∞∑

n=0

p2nA2n

]

= −1

2
str

[∫ ∞

0

ds

s

∫
ddx

∞∑

n=0

∂t

(
fmk (s)

∫
ddp

(2π)d
e−sp

2

p2n

)
A2n

]
.

(2.67)

At this point we employ our last approximation, namely to choose the parameter m

of the smearing function for each term in the expansion to the value m = n+ d/2− 1.

We will see in a moment how this specific choice of m changes the character of the

cutoff procedure [Lia96]. Inserting the explicit form of the family fmk (s) of smearing

functions (2.61) we obtain

f
n+d/2−1
k (s)

∫
ddp

(2π)d
e−sp

2

p2n =
Γ(n + d/2, sk2)− Γ(n+ d/2, sΛ2)

Γ(n+ d/2)
·

· 2vd
∫ ∞

0

dy e−sy yn+d/2−1

=
2 vd
sd/2+n

(
Γ(n + d/2, sk2)− Γ(n+ d/2, sΛ2)

)

=

∫ Λ

|p|=k

ddp

(2π)d
e−sp

2

p2n,

(2.68)

where vd = (2d+1πd/2Γ(d/2))−1.
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From (2.68) we observe that this last step of approximation actually corresponds to a

transition from proper-time regularization to momentum cutoff regularization [Lia96]:

Using the proper-time cutoff with one smearing function fm only, a specific power of

the momentum p2m−d+2 is cut off sharply, while the others are cut off smoothly in such

a way that background gauge invariance is retained. Adapting the smearing functions

for each power of momentum p2n we obtain a sharp momentum cutoff in all orders of

p.

A principal drawback of this step of approximation is that we spoil the background

gauge invariance of our approach, since we now cut off the gauge dependent quantity

p instead of the gauge invariant proper-time parameter s.

Recall, however, from Section 2.1.3 that breaking the covariance of an FRGE applied

to a gauge theory should have a similar effect as choosing a less good truncation of

the theory space. Hence, we will have to assess the reliability of this approximative

step at the level of the resulting RG flow and its universal properties.

Inserting relation (2.68) into the flow equation (2.67) and resumming the series to

an exponential we obtain

∂tΓk = −1

2
str

[∫ ∞

0

ds

s

∫
ddx

∞∑

n=0

∂t

(∫ Λ

|p|=k

ddp

(2π)d
e−sp

2

p2n

)
A2n

]

= −1

2
str

[∫ ∞

0

ds

s

∫
ddx Dt

∫ Λ

|p|=k

ddp

(2π)d
e−sZ

−1
k

Γ
(2)
k

]

=
1

2
Dt STr

∣∣∣∣
k

ln
(
Γ

(2)
k

)
,

(2.69)

where STr|k denotes the infrared (IR) regularization of the trace by a sharp cutoff of

the momentum integral and Dt is a scale derivative acting only on the explicit scale

dependence of this IR cutoff. Note that at this level we can safely take the limit

Λ → ∞ as the expression is UV finite due to the scale derivative Dt. It is this form

of the FRGE that we use to study the RG flow of quantum gravity in the first order

formulation (Chapter 5).
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Discussion of the new approximative flow equation. As we have seen above,

the derivation of the new flow equation, (2.69), involves the following three approxi-

mative steps

• Use the complete Hessian Γ
(2)
k as the cutoff operator ∆ in the exact FRGE

(2.34) in order to obtain a spectral representation of its RHS by a Laplace

transformation.

• Replace the exact Laplace transform of the RHS by one member (fixed m) of

the set of functions fmk (s)/s that is chosen to reproduce certain convergence

properties of the exact Laplace transform.

• Choose a different value for m for the terms of different momentum dependence

in the integrand. Explicitly we choose m = n+d/2−1 for the terms proportional

to p2n.

These seemingly rather crude approximations of the exact RG equation become

necessary since the Hessian in the first order (e,ω)-formulation of pure gravity is a

40 x 40-matrix operator, compared to the corresponding 10 x 10 operator in metric

gravity. Using the approximative FRGE (2.69) we can reduce the evaluation of its

RHS to a completely algebraic task, as we show in Section 5.2.1. Compared to the

proper-time equation the major simplification of the resulting β-functions lies in the

fact, that here the proper-time integral can be carried out explicitly, such that only

one dimensionful scaling parameter k is left over.

Since the derivation of this approximation, unavoidably, lacks a strict mathematical

justification we shall demonstrate its validity by a comparison to the result obtained

from the proper-time equation for pure gravity [DR]. If it turns out reliable, the new

FRGE (2.69) suggests itself for the analysis of even more involved systems, like first

order gravity coupled to fermionic matter, in future investigations.

As a final comment it is worth noting that our approximation to the exact FRGE,

(2.69), for the effective average action Γk is now formally equivalent to the Wegner-

Houghton equation (for the Wilsonian running bare action Sk) in the special case of

constant background fields. In this case only the term corresponding to 1PI contribu-

tions on the RHS of the WH equation is non-vanishing. Therefore, it is plausible that

the same equation may serve as an approximation for both Sk and Γk. In Appendix

B the WH equation is introduced and this correspondence is demonstrated in more

detail. Due to this formal equivalence we will refer to the new FRGE (2.69) also as

WH-like flow equation.
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3 Effects of Quantum Gravity in

Gauge Theories

3.1 Motivation

This chapter is devoted to the effects of asymptotically safe gravity, when it is

coupled to gauge theories. We thereby focus onto the two cases of SU(N) Yang-Mills

theory and QED, which divide the chapter two main parts.

The first part deals with a question that has caused considerable debate over the

last few years, namely the existence and explicit form of gravitational corrections to

the β-function of the Yang-Mills gauge coupling.

In a first study on this topic Robinson and Wilczek [RW06, Rob] found a non-zero

correction at the one-loop level within an effective field theory setting. It shows the

same negative sign as the well-known gluon contribution and thus supports the ap-

proach of asymptotic freedom in the deep UV. Later on, Pietrykowski [Pie07] realized

that this result is gauge fixing dependent, such that also a vanishing one-loop contri-

bution can be obtained when considering a certain gauge condition. This observation

motivated a manifestly gauge invariant as well as gauge fixing independent study of

the effect by Toms [Tom07] using the Vilkovisky-deWitt method. Therein, a vanish-

ing gravitational contribution was found that only gets modified when in addition a

cosmological constant is present [Tom08]. However, this result was put into question

by Ebert et al. [EPR09], who noted that the use of the dimensional regularization

technique applied in [Tom07, Tom08] is not suitable to the problem, as it does not keep

track of the quadratic divergences, that are expected to cause the effect. Nonetheless,

in their study [EPR09] Ebert et al. obtain a vanishing correction, as well, by applying

a cutoff regularization. In [TW10] Tang and Wu argued that this regularization tech-

nique is not permissable either, as it does not respect gauge invariance. Performing a

calculation in a scheme which both retains quadratic divergences and preserves gauge
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3 Effects of Quantum Gravity in Gauge Theories

invariance (“loop regularization”) they obtained a non-zero gravitational correction to

the one-loop β-function.

At this point of the discussion our RG study of the running gauge coupling [DHR10]

was published, that forms the basis of the first part of this chapter. In contrast to

all studies mentioned before, it is carried out within the framework of the Asymptotic

Safety approach to quantum gravity and thus takes into account metric gravity not

only as an effective but rather a fundamental quantum field theory. Besides that func-

tional RG methods for effective actions are a perfectly well suited tool to circumvent

the shortcomings of other regularization schemes that were criticized in previous calcu-

lations, being in this sense most comparable the study by Tang and Wu [TW10]: When

the construction of the ghost action is correctly generalized to the semi-direct prod-

uct structure of the pertinent gauge group, as described in Section 2.2.3, the FRGE

approach is manifestly (background) gauge invariant and at the same time retains all

quadratic divergences that are crucial to the problem. At the perturbative level the

non-zero result we obtain turns out to be in line with the original computation [RW06]

and [TW10], accelerating the approach of asymptotic freedom.

In view of these new findings Toms reanalyzed the problem [Tom10] for the case of

gravity coupled to QED, using the Vilkovisky-deWitt method, but this time employing

a proper-time cutoff. As this scheme is gauge fixing independent, keeps track of

powerlike divergences and preserves gauge invariance, the study [Tom10] amounts

to the most complete perturbative analysis of the problem to date. It leads to the

following one-loop RG equation for the running of the electric charge with the energy

scale E:

E
de(E)

dE
=

e3

12π2
− e

π

(
GE2 +

3

2
GΛ

)
. (3.1)

The first term on the RHS of (3.1) is the familiar one due to the fermion loops and tends

to increase e at large energies. The second term amounts to the gravity correction and

involves Newton’s constant G as well as the cosmological constant Λ. It has a negative

sign and tries to drive e to smaller values as E increases. In fact, it has been claimed

[Tom10] that the electric charge vanishes at high energies and may be regarded an

asymptotically free coupling therefore. This result follows directly from (3.1) as in

the perturbative context G is considered fixed, such that the gravity contribution

increases with the energy squared and will at some finite scale outweigh the fermionic

contributions. Of course, it remains questionable whether at this scale the perturbative

setting is still applicable.
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3.2 The running Yang-Mills coupling constant

In the second part of this chapter we therefore reconsider this picture in the light of

asymptotically safe gravity. In this context, the running of the dimensionful Newton

constant is taken into account. Using the result of the first part of the chapter we

shall demonstrate that QED coupled to QEG is asymptotically safe, and that, besides

asymptotic freedom of the electric charge, there exists a second option for its behavior

at high energies: it may assume a non-zero fixed point value e∗ 6= 0. If this option

is realized the asymptotic behavior of QED + QEG is governed by a non-Gaussian

fixed point whose hypersurface SUV is likely to have a lower dimension than in the

corresponding asymptotically free case e∗ = 0. We shall exploit this larger degree of

predictivity to show within a simple truncation of theory space that in the asymp-

totically safe theory with e∗ 6= 0 the infrared value of the electron charge, or the

fine-structure constant α ≡ e2/(4π), is a computable number which is completely fixed

by the electron mass in Planck units.

No matter which option for the UV limit of the coupled system is realized in nature

our results suggest that the triviality problem of pure QED will eventually be solved

by the onset of quantum gravitational effects.

3.2 The running Yang-Mills coupling constant

In order to determine the gravitational corrections to the running Yang-Mills gauge

coupling we explicitly evaluate the FRGE (2.59) on the theory space TE,YM in this

section. We thereby truncate TE,YM to a set of invariants which is general enough

to allow for an approximate determination of the β-function for the scale dependent

Yang-Mills coupling gYM(k). This truncation is given by the following ansatz:

Γk[g, ḡ, A, Ā, ξ, ξ̄,Υ, Ῡ] = ΓEH
k [g] + ΓYM

k [g, A] + Γgf
k [g − ḡ, A− Ā; ḡ, Ā]

+Sgh[g − ḡ, A− Ā, ξ, ξ̄,Υ, Ῡ; ḡ, Ā]
(3.2)

Here,

ΓEH
k [g] = 2κ2ZN(k)

∫
ddx
√
g (−R(g) + 2Λ(k)) (3.3)

is a k-dependent form of the Einstein-Hilbert action. The corresponding dimensionful

running parameters are the cosmological constant Λ(k) and Newton’s constant G(k) ≡
Ĝ/ZN(k), where Ĝ is a fixed reference value.
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3 Effects of Quantum Gravity in Gauge Theories

Furthermore,

ΓYM
k [g, A] =

ZF (k)

4 ĝ2
YM

∫
ddx
√
g gµρgνσF a

µνF
a
ρσ (3.4)

is the standard second-order Yang-Mills action, with a k-dependent prefactor ZF (k)

though. Hence the (dimensionful, except in d=4) running gauge coupling is ḡYM(k) =

ĝYMZF (k)−1/2 with some constant ĝYM. Finally,

Γgf
k [g − ḡ, A− Ā; ḡ, Ā] =

∫
ddx
√
ḡ

(
ZN(k)

2αD
ḡµνFµFν +

ZF (k)

2αYM
GaGa

)
(3.5)

implements the gauge fixing conditions for the diffeomorphisms, Fµ, and the SU(N)

gauge transformations, Ga. As in [Reu98] and [RW94a] we factored out the wave

function renormalizations ZN and ZF from the gauge fixing parameters αD and αYM,

respectively. In principle the latter are still k-dependent but we shall neglect their

running here. In fact, later on we set αD = αYM = 1. Our choice for the gauge

conditions complies with the requirements set by the background field method that

were discussed in Section 2.2.1:

Fµ(h̄; ḡ) =
√

2κ

(
δβµ ḡ

αγD̄γ −
1

2
ḡαβD̄µ

)
h̄αβ , (3.6)

Ga(ā; ḡ, Ā) = ĝ−1ḡµνD̄µāaν . (3.7)

The resulting ghost action constructed according to the method introduced in Section

2.2.3, with aaµ 6= 0 and hµν 6= 0 still and opting for the second choice of modified

diffeomorphisms,
˜̃
δD, reads

Sgh[h, a, ξ, ξ̄,Υ, Ῡ; ḡ, Ā] =

−
∫

ddx
√
ḡ
(√

2ξ̄µ
(
ḡµρḡσλD̄λ (gρνDσ + gσνDρ)− ḡρσḡµλD̄λgσνDρ

)
ξν

+ ῩaḡµνD̄µ
(
F̄ a
ρνξ

ρ + (D̄ρaaν)ξρ + aaρ(D̄νξ
ρ)
)

+ Ῡa
(
ḡµρδabD̄µ∇ρ

)
Υb
)
. (3.8)

It can be checked that Sgh of eq. (3.8) is invariant under background gauge transfor-

mations: WB
YMSgh = 0 =WB

DSgh. While this is true even for non-vanishing fluctuations

h and a, in the present calculation we shall need Sgh only for h = 0 = a, as we are

going to neglect all renormalization effects of ghost couplings.

At this point a remark concerning the expected reliability of this truncation ansatz

might be in order. As for its gravitational part, all generalizations of the Einstein-
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3.2 The running Yang-Mills coupling constant

Hilbert truncation explored during the past decade did not change the qualitative

picture it gives rise to, at least close to the non-Gaussian fixed point. In the Yang-

Mills sector we retained only the first monomial of a systematic derivative expansion.

From the analysis in [RW94a] without gravity we know that this truncation is not only

sufficient to reproduce one-loop perturbation theory exactly, but even approximates

the two-loop result for the β-function with a small error of a few percent. Therefore we

may expect that this truncation, too, is perfectly sufficient as long as k is sufficiently

large (well above dynamically generated “confinement” scales, say). In particular, it

should thus reliably describe the FP regime of the coupled system.

Let us briefly review at this point how we arrive at a FRGE of the type (2.59)

and how it subsequently decomposes into a Grassmann-even and a ghost part for the

specific truncation that we study here. First, we insert the truncation ansatz (3.2) into

the exact FRGE (2.35) resulting in a decomposition of the supertrace into a “bosonic”

and a ghost contribution:

∂tΓk =
1

2
Tr

[
∂tR̆k

(
Z−1
k Γ̆

(2)
k

)

Γ̆
(2)
k + R̆k

(
Z−1
k Γ̆

(2)
k

)
]
− Tr

[
∂tRgh

k

(
Z−1

gh S
(2)
gh

)

S
(2)
gh +Rgh

k

(
Z−1

gh S
(2)
gh

)
]

(3.9)

Here, the bosonic part of the action is given by Γ̆k ≡ ΓEH
k + ΓYM

k + Γgf
k , and Γ̆

(2)
k is its

Hessian. The coarse graining operators in the two sectors of (3.9) have the structure

R̆k(x) = Z̆kk2R(0)(x/k2) Rgh
k (x) = Zgh

k k
2R(0)(x/k2) . (3.10)

As introduced in Section 2.3 R(0)(y) is a “shape function” continuously interpolating

between R(0)(0) = 1 and lim
y→∞

R(0)(y) = 0. The constants Z̆k and Zgh
k are matrices in

field space that are adapted to the truncation according to the Z = ζ-rule (cf. Section

2.3). We shall see that this requirement is met if Z̆k and Zgh
k have the following block

structure in (h̄, ā, ξ, ξ̄,Υ, Ῡ)-space:

[(
Z̆k
)
h̄h̄

]µν
ρσ

=
ZN(k)κ2

2
(δµρ δ

ν
σ+δ

ν
ρδ

µ
σ−ḡµν ḡρσ)

[(
Zgh
k

)
ξ̄ξ

]µ
ν

=
√

2 δµν

[(
Z̆k
)
āā

]aµb
ν

=
ZF (k)

ĝ2
δabδµν

[(
Zgh
k

)
ῩΥ

]ab
= δab

(3.11)

Note that Zgh
k is actually k-independent.
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In setting up eq. (3.9) we opted for the complete Hessian operator Γ
(2)
k to play the

role of ∆. More precisely, we set ∆ = Z̆−1
k Γ̆

(2)
k and ∆ = Z−1

gh S
(2)
gh in the (h̄, ā)- and

the ghost-sectors, respectively. The multiplication by the inverse Z matrices brings ∆

closer to an ordinary (covariant) Laplacian; symbolically, if Γ
(2)
k = −ζk∂2 + · · · , Zk =

ζk, we employ ∆ = −∂2 + · · · rather than ∆ = −ζk∂2 + · · · .

As described in Section 2.3 this approximation of the exact FRGE is useful as it

allows for a simple spectral representation of the RHS of the flow equation (3.9) as

given in (2.59). Its decomposition into a Grassmann-even and a ghost sector reads

∂tΓk =

∫ ∞

0

ds

[
1

2

˘̃
W 1(s) Tr

[
e−sZ̆

-1
k Γ̆

(2)
k

]
− W̃ gh

1 (s) Tr
[
e−sZ

gh -1
k

S
(2)
gh

]

− 1

2

˘̃
W 2(s) Tr

[
η̆ e−sZ̆

-1
k Γ̆

(2)
k

]
+

˘̃
W 3(s)

2k2
Tr
[
∂t(Z̆ -1

k Γ̆
(2)
k )e−sZ̆

-1
k Γ̆

(2)
k

] ]
. (3.12)

We observe that due to the k-independence of Zgh
k and S

(2)
gh in our approximation, the

ghost sector enters only the first part of the expression that corresponds to one-loop

contributions, while the “RG improvement” terms remain free from it.

The strategy to further evaluate this FRGE is as follows. After having calculated

Γ
(2)
k we may set ḡµν = gµν and Āaµ = Aaµ as we are not going to extract any “extra”

background field dependence [MR10]. Then we expand the traces up to a certain

order in derivatives and in the fields, which allows us to determine the β-functions

as the prefactors of the invariants present in our truncation. At this point it turns

out possible to carry out the integration over the proper-time variable s explicitly,

leading to “threshold functions” {Φp
n, Φ̃

p
n,

˜̃Φp
n} that only depend on the exact form of

the shape functions R(0). The resulting β-functions are then obtained as functions of

the couplings depending on the threshold functions.

Following this general strategy the first step is to calculate the complete Hessian

Γ(2). Its most complicated part is the Hessian of the bosonic action Γ̆
(2)
k , i. e. the

matrix of its second functional derivatives with respect to the dynamical fields (h̄, ā),

or equivalently (g, A), at fixed backgrounds (ḡ, Ā). This Hessian is most transparently

displayed by means of the associated quadratic form Γquad
k , which appears in the

expansion

Γ̆k[ḡ+ h̄, Ā+ ā, ḡ, Ā] = Γ̆k[ḡ, Ā, ḡ, Ā] +O(h̄, ā)+Γquad
k [h̄, ā; ḡ, Ā] +O({h̄, ā}3) . (3.13)
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3.2 The running Yang-Mills coupling constant

Explicitly, Γquad
k is the sum of the following terms, that reflect the block structure of

Γ̆
(2)
k in (h̄, ā)-space:

(
Γquad
k

)
h̄h̄

= ZNκ
2

∫
ddx
√
ḡ h̄χξ

((
Uχξ

ηζ − ḡρσD̄ρD̄σK
χξ
ηζ

)
+

+

(
1− 1

αD

)
Lρσχξ ηζD̄ρD̄σ +

ZF
2ZNκ2

Nµνρσχξ
ηζ

1

4
F̄ a
µνF̄

a
ρσ

)
h̄ηζ , (3.14)

(
Γquad
k

)
āā

=
ZF

2 ĝ2
YM

∫
ddx
√
ḡ āaξ

(
− δabδξηḡρµD̄ρD̄µ + 2ḡξρfabcF̄ c

ρη + δabḡξρR̄ρη+

+

(
1− 1

αYM

)
δabḡξρD̄ρD̄η

)
ābη, (3.15)

(
Γquad
k

)
h̄ā

=
ZF

2ĝ2
YM

∫
ddx
√
ḡ h̄ηζ

((
1

2
δσξ ḡ

ηζ ḡµρ+δηξ ḡ
ζρḡσµ+δρξ ḡ

σζ ḡµη
)
F̄ a
ρσD̄µ

)
āaξ, (3.16)

(
Γquad
k

)
āh̄

=
(
Γquad

)
h̄ā
. (3.17)

The above quadratic functionals contain the kernels

Kχξ
ηζ =

1

4

(
δχη δ

ξ
ζ + δξηδ

χ
ζ − ḡχξḡηζ

)
, (3.18)

Uχξ
ηζ =

1

4

(
δχη δ

ξ
ζ + δξηδ

χ
ζ − ḡχξḡηζ

) (
R̄− 2Λ

)
+ ḡχξR̄ηζ − δχη R̄ξ

ζ − R̄ χ ξ
ζ η , (3.19)

Lρσχξ ηζ =

(
1

4
ḡχξḡρσḡηζ −

1

2
δρηδ

σ
ζ ḡ

χξ − 1

2
ḡχρḡξσḡηζ + δχη δ

σ
ζ ḡ

ξρ

)
, (3.20)

Nµνρσχξ
ηζ =

1

2

(
1

2
ḡχξḡηζ − δχη δξζ

)
ḡµρḡνσ+

+ 2
(
δµη δ

ρ
ζ ḡ

νχḡσξ − δµη δρζ ḡχξḡνσ + 2δξηδ
ρ
ζ ḡ

µχḡσν
)
. (3.21)

The corresponding part of the Hessian in the ghost sector S
(2)
gh can be read off directly

from the ghost action (3.8) by setting a = 0 = h, as it is purely quadratic in the ghost

fields.

Using these formulae it can be checked that the Z-factors (3.11) are correctly chosen.

The truncation contains three running couplings, ḡYM(k), G(k) and Λ(k). As de-

scribed above, their β-functions can be found from the FRGE (3.12) by “projecting

out” the corresponding invariants in the derivative expansion of the traces and equat-

ing them to the corresponding field monomials on the LHS of the flow equation. The
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resulting system of differential equations becomes autonomous if we employ the di-

mensionless counterparts of ḡYM, G and Λ respectively:

g2
YM(k) ≡ kd−4

ZF (k)
ĝ2
YM, g(k) ≡ kd−2

32πZN(k)κ2
= kd−2G(k), λ(k) ≡ k−2Λ(k) . (3.22)

In terms of these variables the three coupled RG equations have the structure

∂tg
2
YM = βYM ≡ (d− 4 + ηF ) g2

YM ,

∂tg = βg ≡ (d− 2 + ηN) g ,

∂tλ = βλ .

(3.23)

Here, we introduced the anomalous dimensions related to the Yang-Mills and the

gravitational field, respectively:

ηF = −∂t lnZF , ηN = −∂t lnZN . (3.24)

The scope of this chapter is restricted to the gravitationally corrected Yang-Mills

β-function βYM. Therefore it is sufficient to extract the F 2
µν-term from the derivative

expansion of the traces. For identifying this monomial and reading off its prefactor we

may insert any metric. We shall employ the most convenient choice, gµν = ḡµν = δµν .

Furthermore, we set αD = αYM = 1 from now on. The remaining calculation is in

principle straightforward, but rather lengthy. One has to expand the traces up to

terms with two fields Aaµ(x) and two derivatives acting on them. Because of the built-

in background gauge invariance those terms should combine to F a
µνF

aµν . As a check

we verified that this indeed happens.

Let us now discuss the result. Here we specialize for d = 4 spacetime dimensions; for

general d the reader is referred to Appendix C. We present three different formulae

for ηF ; they differ with respect to the degree of “RG improvement” they take into

account.

To start with, we “switch off” all RG improvements. This means that we discard

all terms in ∂tRk on the RHS of the flow equation where ∂t hits either a Zk-factor

or the Γ
(2)
k in the argument of Rk which corresponds to only considering the first

traces in (3.12) containing contributions from the “bosonic” and the ghost sector, or

equivalently setting
˘̃
W 2 = 0 =

˘̃
W 3. In this way the evaluation of the FRGE amounts
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3.2 The running Yang-Mills coupling constant

to a one-loop calculation, with a non-standard regulator though. Expanding the result

in λ we find

ηF = −6

π
gΦ1

1(0)− 11

24π2
Ng2

YM +O(λ2) , (3.25)

so that in this approximation

∂tg
2
YM = −6

π
g g2

YM Φ1
1(0)− 11

24π2
Ng4

YM . (3.26)

Here, Φ1
1(0) is one of the threshold functions which were encountered in the pure

gravity calculation [Reu98] already:

Φp
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1R
(0)(z)− zR(0)′(z)

[z +R(0)(z) + w]p
(n > 0) ,

Φp
0(w) = (1 + w)−p (n = 0) .

(3.27)

The second contribution on the RHS of (3.26) is the familiar “asymptotic freedom”

term due to the self-interaction of the gauge bosons, while the first one, due to the

virtual gravitons, is new.

Several comments are in order here.

(A) The gravitational correction is manifestly cutoff scheme dependent, i. e. it de-

pends, via Φ1
1(0), on the shape function R(0). However, for any admissible choice of

R(0) the constant Φ1
1(0) is positive. As a result, the gravity term has a qualitatively

similar impact on gYM(k) as the gauge boson loops, namely to drive gYM(k) smaller

at larger k. It tends to speed up the approach of asymptotic freedom.

For the exponential cutoff R(0)(y) = y/(ey−1), for instance, one finds Φ1
1(0) = π2/6,

while the “optimized” one [Lit00, Lit01], R(0)(y) = (1− y)Θ(1− y), yields Φ1
1(0) = 1.

(B) The gravitational correction, in perturbative language, originates from a quadratic

divergence or, in FRGE language, a quadratic running with k. For this reason its

scheme dependence is by no means surprising or alarming. Rather, it is the usual

situation which is always encountered when the effective average action is applied

to matter theories with a quadratic running of parameters, masses, say. However,

one should note that the couplings in Γk as such are not observable or “physical”

quantities. Only the latter must be R(0)-independent, and this independence comes

about by a compensation of the scheme dependence among different running couplings.

(In truncations this compensation might not be perfect.) In general there will be
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compensations between effective propagators and vertices, for instance. Analogous

remarks apply to the gauge fixing dependence.

(C) The β-function for g2
YM depends on all three couplings, g2

YM, g and λ. In the

approximation of (3.26) it happens to be independent of λ, but it does depend on

g(k) ≡ k2G(k), the dimensionless Newton constant. Hence the differential equation

for gYM cannot be solved in isolation. In principle the full system (3.23) should be con-

sidered, and this would include the backreaction of the matter fields on the running of

the gravitational parameters g and λ. We shall not study this backreaction within this

work. Instead, let us assume that the complete RG trajectory k 7→ (gYM(k), g(k), λ(k))

admits a classical regime [RW04] in which Newton’s constant does not run appreciably

so that we may approximate

G(k) ≈ G0 = const, g(k) = G0k
2 . (3.28)

This approximation, implicitly, has been made in all perturbative studies [RW06, Rob,

Pie07, Tom07, EPR09, TW10, Tom08]. With (3.28), for an abelian field (N = 0), say,

∂tg
2
YM = −6

π
Φ1

1(0)G0 k
2 g2

YM . (3.29)

Incidentally this β-function has the same general structure as the result by Robinson

and Wilczek [RW06]; it is proportional to G0g
2
YM and depends explicitly on the energy

scale k. Its k2-dependence indicates that the underlying quantum effect is related to

a quadratic divergence.

Eq. (3.29) is easily solved: g2
YM(k) = g2

YM(0) · exp (−ωYM(k/mPl)
2). Here ωYM ≡

3Φ1
1(0)/π and mPl ≡ G

−1/2
0 is the (ordinary, constant) Planck mass. To first order in

the k/mPl-expansion we obtain

g2
YM(k) = g2

YM(0)

[
1− ωYM ·

(
k

mPl

)2

+O
(
k4

m4
Pl

)]
. (3.30)

We note that to leading order Newton’s constant itself [Reu98] has an analogous scale

dependence, including the sign of the correction: G(k) = G0 [1− ω · (k/mPl)
2 + · · · ].

(D) In order to illustrate how the above result fits into the Asymptotic Safety picture

of Quantum Einstein Gravity [Wei79, RS10, LR07a, LR07b, NR06, Per09, RS12] we

consider a free Maxwell field again. It is known that, in the Einstein-Hilbert trunca-
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3.2 The running Yang-Mills coupling constant

tion, the RG flow of the average action possesses a non-Gaussian fixed point for the

two gravitational couplings, (g∗, λ∗), both in pure gravity [Reu98, Sou99, LR01] and in

presence of a free Maxwell field [PP03b, PP03a]. At this fixed point the dimensionless

Newton constant equals a positive constant, g(k) = g∗, while the dimensionful one

runs to zero quadratically: G(k) = g∗/k2 → 0 for k →∞. In this regime we have

∂tg
2
YM = −6

π
Φ1

1(0) g∗ g2
YM . (3.31)

The solution to this equation reads

g2
YM(k) ∝ k−ΘYM, ΘYM =

6

π
g∗ Φ1

1(0) . (3.32)

At the fixed point the gauge coupling approaches zero according to a power law with a

critical exponent ΘYM, a positive number of order unity.1 Thus the total system has a

non-trivial fixed point of the form (g∗YM = 0, g∗ > 0, λ∗ > 0). Obviously the approach

of gYM = 0 is much faster than without gravity where gYM(k) ∝ 1/ ln(k). Note that

gYM is a relevant parameter, it grows when k is lowered, and hence it contributes one

unit to the dimensionality of the fixed point’s UV critical manifold.

Next we present the results for ηF with the RG improvements included. In a first step

we retain only the terms which arise when ∂t hits the Zk-factors in Rk, thus including

the term containing
˘̃
W (s) in (3.12). These additional terms are proportional to ηF

and ηN , respectively. As now ηF appears also on the RHS of the RG equation we

obtain an implicit equation for it. Its solution reads

ηF =
− 6
π
gΦ1

1(0)− 11
24π2Ng

2
YM − 2

π
ηN λ g

1− 3
π
g Φ̃1

1(0)− 5
24π2Ng

2
YM − 2

π
λ g

+O(λ2) . (3.33)

In this approximation ηF depends not only on Newton’s but also on the cosmological

constant already at linear order of the λ-expansion. Eq. (3.33) resums terms of

arbitrary order both in gYM and g; it generalizes a known result [RW94a] for pure

1One cannot easily extract the precise numerical value of ΘYM from existing calculations since
the determination of g∗ in the Einstein-Maxwell system in ref. [PP03b, PP03a] employs a cutoff
different from the present one.
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Yang-Mills theory. If we go on and include also the terms coming from the scale

derivative of Γ
(2)
k in the argument of Rk up to terms of order O(λ3) we obtain

ηF =
− 6
π
gΦ1

1− 11
24π2Ng

2
YM+ 1

π
ηNg

(
3 ˜̃Φ1

2−2λ−(2 ˜̃Φ1
0+3Φ̃1

1)λ
2
)
− 4

π
gλ(2λ+βλ)

˜̃Φ1
0+

4
π
λ2gΦ1

-1

1− 3
π
g
(
Φ̃1

1 − ˜̃Φ1
2

)
− 5

24π2Ng
2
YM − 2

π
λ g − 2

π
λ2 g ˜̃Φ1

0 + 1
π
λ2gΦ̃1

-1

(3.34)

The eqs. (3.33) and (3.34) contain the following integrals involving R(0):

Φ̃p
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1 R(0)(z)

[z +R(0)(z) + w]p
(n > 0)

Φ̃p
0(w) = (1 + w)−p (n = 0)

˜̃Φp
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1 R(0)′(z)

[z +R(0)(z) + w]p
(n > 0)

˜̃Φp
0(w) =

R(0)′(0)

(1 + w)p
(n = 0)

(3.35)

For n < 0 we define in addition

Φ1
n(0) = (−1)−n

d−n

dz−n
R(0)(z)− zR(0)′(z)

z +R(0)(z)

∣∣∣∣
z=0

Φ̃1
n(0) = (−1)−n

d−n

dz−n
R(0)(z)

z +R(0)(z)

∣∣∣∣
z=0

˜̃Φ1
n(0) = (−1)−n

d−n

dz−n
R(0)′(z)

z +R(0)(z)

∣∣∣∣
z=0

(3.36)

The threshold functions Φ̃p
n(w) appeared already in the Einstein-Hilbert truncation

of pure gravity [Reu98]. In eq. (3.34) we abbreviated Φp
n ≡ Φp

n(0), Φ̃p
n ≡ Φ̃p

n(0) and
˜̃Φp
n ≡ ˜̃Φp

n(0), respectively. What is new in (3.34) is the occurrence of the complete

β-function of the cosmological constant, βλ. It originates from the differentiation of

the Λ-term contained in Γ
(2)
k .

To conclude this section let us mention a first application of our results: By a

standard argument, knowledge about the k-dependence of wave function normalization

constants such as ZF (k) can be used in order to deduce information about the related

fully dressed propagator implied by Γ ≡ Γk=0. In the case at hand the running

inverse propagator of the gauge field, on a flat background, has the form ZF (k)p2 ∝
g−2
YM(k)p2. At high momenta, if there is no other relevant physical cutoff scale but
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the momentum itself, the dressed propagator D(p) obtains by setting k = |p|, whence

D(p)−1 ∝ g−2
YM(|p|)p2. For the example of eq. (3.30), for instance, this leads us to

expect that the photon propagator gets modified by a p4-term when p approaches the

Planck scale:

D(p)−1 = p2 + ωYM p4/m2
Pl +O(p6/m4

Pl) . (3.37)

Likewise the fixed point running of (3.32) implies the following behavior for p2 →∞:

D(p) ∝ 1/p2(1+ΘYM/2) . (3.38)

As ΘYM is positive the gauge field propagator falls off faster than 1/p2, thanks to the

quantum gravity corrections. In fact, the same argument when applied to the graviton

propagator leads to a 1/p4-behavior for p2 → ∞ [LR01]. The asymptotic propagator

(3.38) suggests that the quantum gravity corrections improve the finiteness properties

of the matter field theory, and this precisely fits into the picture of Asymptotic Safety.

It is also interesting to note that (3.38) leads to a modified static electromagnetic

potential A0(r) of a classical point charge.2 The 3-dimensional Fourier transform of

(3.38) yields the potential A0(r) ∝ rΘYM−1 which, if ΘYM is large enough, could even

be regular at r = 0. This makes it obvious that the gravity induced running of the

gauge coupling is closely related to the old problem of divergent self energies.

3.3 Effects of asymptotically safe gravity on QED

3.3.1 The RG equations of the coupled system

In this section we shall use a projected form of the gravitational average action

[Reu98] to describe the non-perturbative RG behavior of QED coupled to QEG in

terms of a simple 3-dimensional theory space, treating the charge e(k), or equivalently

the fine-structure constant α(k) ≡ e(k)2/(4π), along with Newton’s constant and the

cosmological constant as running quantities. Combining the results of [Reu98] for pure

gravity in the Einstein-Hilbert truncation with the findings of the previous section for

2Treating the source dynamically, also form factor effects need to be included [Reua].
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the gravity corrections to the running of α we are led to the following “caricature” of

the flow equations:

∂tg = βg ≡
[
2 + ηN(g, λ)

]
g (3.39a)

∂tλ = βλ(g, λ) (3.39b)

∂tα = βα ≡
(
Ah2(α)− 6

π
Φ1

1(0)g

)
α (3.39c)

with the coefficient

A ≡ 2

3π
nF . (3.40)

Here, we consider for illustrative purposes a variant of quantum electrodynamics with

nF “flavors” of electrons.

Several comments are in order now.

(A) The equations are written in terms of the dimensionless running couplings g(k) ≡
k2G(k), λ(k) ≡ Λ(k)/k2 and α(k), where k is the IR cutoff built into the average

action. As usual, the dimensionless “RG time” is denoted by t ≡ ln(k/k0).

(B) The first two equations, (3.39a) and (3.39b), are taken to be those of pure gravity

in the Einstein-Hilbert truncation. The anomalous dimension of Newton’s constant,

ηN(g, λ), and the β-function for the cosmological constant, βλ(g, λ), were found in

ref. [Reu98].3 Neglecting the backreaction of the matter fields on the renormalization

in the gravity sector is (at least partially) justified by the investigations in [PP03b,

PP03a], where is was found that a Maxwell field and one or a few Dirac fields do not

qualitatively alter the RG flow of g and λ; this calculation had assumed free matter

fields though.

(C) For small g the anomalous dimension ηN can be expanded in a power series in

the Newton constant according to

ηN = B1(λ)h1(λ, g) = B1(λ)
(
g +B2(λ)g2 + . . .

)
(3.41)

with functions B1 and B2 given in [Reu98]4. From several non-perturbative calcula-

tions [RS12, NR06] we know the function h1(g, λ) rather precisely and we find that

3For the explicit formulae see eqs. (4.41) and (4.43) in ref. [Reu98].
4See eqs. (4.40) in ref. [Reu98].
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B1(λ) < 0 for all λ. Those calculations show in particular that the running of g(k)

does not change very much if one approximates λ(k) ≈ 0, B1(λ) ≈ B1(0), B2(λ) ≈ 0,

whence

ηN (g, λ) ≈ B1(0) g < 0. (3.42)

In terms of the standard threshold functions Φn
p (w) introduced in the last section we

have explicitly B1(0) = −1/(3π)
[
24Φ2

2(0)− Φ1
1(0)

]
.

(D) The β-function for α in the third equation, eq. (3.39c), involves a pure matter

contribution, written as Ah2(α)α, and the gravity correction ∝ g taken from the

Yang-Mills case (cf. Section 3.2). The former has been computed in perturbation

theory, with the first two terms being (for nF = 1)

βα(α)|g=0 ≡ Ah2(α)α = α

[
2

3

(α
π

)
+

1

2

(α
π

)2

+O(α3)

]
. (3.43)

To obtain a qualitative understanding it will be sufficient to employ the 1-loop ap-

proximation

h2(α) = α. (3.44)

Indeed, several lattice and flow equation studies [GHL+98, KKL01, KKL02, GJ04]

indicate that there exists no non-trivial continuum limit for QED (without gravity),

and this means that βα(α)|g=0 has no zero at any α > 0. Therefore, h2(α) = βα/(Aα)

starts out as h2(α) = α in the perturbative regime α . 1, and for larger α it is still

known to be an increasing function: h′2(α) > 0. To be able to solve the RG equations

analytically we shall set h2(α) = α for all values of α. This is a qualitatively reliable

approximation since, as we shall see, at most a zero of h2(α) could change the general

picture.

(E) As it stands, βα applies only above the threshold due to the mass of the electron

at k = me. At k . me the fermion loops no longer renormalize α. In the full fledged

average action formalism this decoupling is described by a certain threshold function.

Here a simplified description will be sufficient where we set A = 0 if k < me.

(F) The gravity contribution on the right hand side of (3.39c) was derived in Section

3.2 within a truncation of the theory space TE,YM that included the gauge field action
1

4e2(k)

∫
ddx
√
gFµνF

µν besides the Einstein-Hilbert terms. Within the approximation

considered there the gravity correction to ∂tgYM is seen to be independent of the in-

teractions within the matter sector, if any. Therefore it is the same for QED and
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the non-abelian Yang-Mills field considered before so that we may obtain (3.39c) by

simply replacing in (3.26) the non-abelian gauge boson contribution with the corre-

sponding fermion term (of the opposite sign!). Besides the leading 1-loop correction

also subleading corrections to ∂tgYM involving the cosmological constant were found

in the Yang-Mills case. They, too, within their domain of reliability do not change the

qualitative picture we are interested in here and are omitted therefore.

(G) Identifying the scales E and k, the two terms inside the brackets on the RHS of

the perturbative result (3.1), in our notation, translate to g + 3
2
gλ. Thus, for λ = 0,

the perturbative gravitational correction has the same structure as (3.39c) from the

average action. Since λ is small in the applications below, subleading corrections such

as the term 3
2
gλ are inessential for the qualitative properties of the flow.

We close the discussion of the β-functions (3.39) with a word of warning. In view

of the non-universality of the gravitational corrections found in the last section it is

important to stress that a priori all our results hold true only for the very definition of

e(k) used here, namely via the prefactor of the
∫
F 2-term in Γk. As such e(k) is not

a directly observable quantity and since the gravitational corrections to it are due to

quadratic divergences, we expect them to be of a lesser degree of universality compared

to those contributions stemming from logarithmic divergences. This enhanced scheme

dependence, however, is expected to drop out e. g. by a compensation of effective prop-

agators and vertices, when observables are calculated from Γk. Thus, the considerable

debate in the literature about the gravitational corrections to the β-function of gauge

couplings, on their precise form [RW06, Rob, Pie07, Tom07, EPR09, TW10, Tom08,

Tom10], as well as their usefulness [ADEH11] and observability [EM12] in scattering

experiments may not be directly applicable to our approach as every comparison with

different definitions of e(k) in other settings or schemes requires a separate analysis.

We emphasize that within the Asymptotic Safety program these issues are of secondary

interest, anyway, and not (yet) relevant. Our goal is first of all to construct a quantum

field theory by devising a way to take the infinite cutoff limit of the corresponding

functional integral; we do this by replacing the functional integral computation by the

task of solving an exact RG equation for the effective average action Γk and trying to

take the continuum limit at a fixed point of its flow. Only once this is achieved one

can start to analyze and interpret the resulting theory, and only then questions such

as those above on scattering experiments can (and should) be asked.
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For the time being we are still in the first phase, and so the RG equations used

here should be seen as a tool towards understanding the flow of Γk and the possible

continuum limits it might hint at.

3.3.2 The fixed points

Let us start the analysis of the system (3.39) by finding its fixed points, i. e. common

zeros (g∗, λ∗, α∗) of all three β functions. Obviously there is a trivial or Gaussian fixed

point GFP at g∗ = λ∗ = α∗ = 0.

Furthermore we know that the subsystem of flow equations for pure gravity in the

Einstein-Hilbert truncation, eqs. (3.39a, 3.39b), admits for a NGFP at (g∗0, λ
∗
0) 6= 0.

This fixed point lifts to a NGFP of the full system located at (g∗0, λ
∗
0, α

∗ = 0). We

will denote it by NGFP1. This fixed point is trivial from the QED perspective,

the electromagnetic interaction is “switched off” there, while the gravitational self-

interaction is the same as in pure gravity.

There exists a second NGFP, non-trivial also in the QED sense, if the equation

h2(α) =
6

π

g∗

A
Φ1

1(0) (3.45)

has a solution for some α = α∗ 6= 0. We shall see in a moment that this is indeed the

case. This fixed point we will call NGFP2.

In the following we will be particularly interested in an Asymptotic Safety scenario

with respect to this NGFP. Near the fixed point the (linearized) flow is governed by

the stability matrix Bij = ∂uj
βui

(u∗) according to

∂tui(k) =
∑

j

Bij
(
uj(k)− u∗j

)
, (3.46)

where u = (g, λ, α). For the system under consideration the stability matrix is of the

form

B =



∂gβg ∂λβg 0

∂gβλ ∂λβλ 0

∂gβα ∂λβα ∂αβα




∣∣∣∣∣∣∣
u=u∗

(3.47)
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Two of its eigenvalues are therefore identical to the case of pure gravity in the Einstein-

Hilbert truncation, giving rise to the familiar two UV attractive directions [RS02,

LR01]. The third eigenvalue is given by

∂αβα(u
∗) =

(
Ah2(α

∗)− 6

π
Φ1

1(0)g∗
)

+ Ah′2(α
∗)α∗ = Ah′2(α

∗)α∗. (3.48)

If α∗ is positive, which will actually turn out to be the case, the sign of ∂αβα(u
∗) agrees

with the sign of h′2(α
∗).

At this point we take advantage of the information from the lattice and flow equa-

tions studies [GHL+98, KKL01, KKL02, GJ04] trying to find a non-trivial continuum

limit of QED without gravity. In (D) of Section 3.3.1 we saw that their negative

results suggest that h′2(α
∗) > 0 holds true even beyond perturbation theory. As a

consequence, the third eigenvalue ∂αβα(u
∗), corresponding to the α direction in the

3-dimensional g-λ-α–theory space, is UV repulsive. With two UV attractive and one

repulsive direction the UV critical hypersurface SUV pertaining to NGFP2 is a two-

dimensional surface in a 3-dimensional space, i. e. s2 = dim SUV(NGFP2) = 2.

In comparison, let us also analyze the eigenvalues of the stability matrix of the other

fixed point NGFP1. As βg and βλ do not depend on α in our approximation the first

two eigenvalues remain the same as for NGFP2. However, for the third eigenvalue

we obtain

∂αβα(u
∗) =

(
Ah2(α

∗)− 6

π
Φ1

1(0)g∗
)

+ Ah′2(α
∗)α∗ α∗=0

= −6

π
Φ1

1(0)g∗ < 0, (3.49)

such that the third direction turns out to be UV attractive as well. Hence, NGFP1

has a 3-dimensional UV critical hypersurface, i. e. s1 = dim SUV(NGFP1) = 3. The

fact that s2 < s1 reflects the enhanced predictivity of an Asymptotic Safety scenario

with respect to NGFP2 compared to NGFP1.
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3.3.3 Explicit RG trajectories

Let us now analyze the flow in a simple analytically tractable approximation. For

that we expand the functions h1 and h2 to first order in g and α, respectively,

h1(g) = g +O(g2) and h2(α) = α+O(α2). (3.50)

Furthermore, we neglect the running of the cosmological constant and fix λ = λ0 to a

constant value. The remaining system of flow equations reads

∂tg =
[
2 +B1(λ0) g

]
g , (3.51a)

∂tα =

(
Aα− 6

π
Φ1

1(0) g

)
α. (3.51b)

In this approximation there clearly exists a NGFP2 with fixed point values

g∗ = − 2

B1(λ0)
and α∗ =

6

π

g∗

A
Φ1

1(0). (3.52)

In the following we will express the constant B1(λ0) in terms of the fixed point value

g∗ according to B1(λ0) = −2/g∗.

The approximation allows us to solve (3.51a) in separation; its solution is given by

g(k) =
G0k

2

1 + G0k2

g∗

. (3.53)

The constant of integration G0 ≡ limk→0 g(k)/k
2 can be interpreted as the IR value of

the running Newton constant. The simple RG trajectory (3.53) for g shares a crucial

feature with any asymptotically safe trajectory of the exact system for pure gravity,

namely that it connects the classical regime g(k) ≈ G0k
2 for k ≪ mPl ≡ G

−1/2
0 and

the fixed point regime g(k) ≈ g∗ for k ≫ mPl. Note that the Planck mass is defined

in terms of the constant G0.

Due to the simplified form of (3.51b), the RG equation for α is now an ordinary

differential equation of Riccati type, which can therefore be solved in closed form

without the need for a specification of the function g(k).
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Its general solution reads, with Φ1
1 ≡ Φ1

1(0),

1

α(k)
=

1

α0
exp

(
6

π
Φ1

1

∫ k

k0

g(k′)

k′
dk′
)
− A

∫ k

k0

exp

(
6

π
Φ1

1

∫ k

k′

g(k′′)

k′′
dk′′
)

dk′

k′
, (3.54)

where α0 = α(k0) is the value of the fine-structure constant at a fixed reference scale k0.

If we now specialize for the function g(k) of eq. (3.53) we can perform the integrations

in (3.54) and we find

1

α(k)
=

[
g∗+G0k

2

g∗+G0k
2
0

]3
π

Φ1
1g

∗[
1

α0

− 1

α∗

(
1+

g∗

G0k
2
0

)
2F1

(
1, 1, 1+

3

π
Φ1

1g
∗;− g∗

G0k
2
0

)]

+
1

α∗

(
1+

g∗

G0k2

)
2F1

(
1, 1, 1+

3

π
Φ1

1g
∗;− g∗

G0k2

)
,

(3.55)

where 2F1(a, b, c; z) denotes the (ordinary) hypergeometric function.

From eq. (3.55) we infer that there exist three kinds of possible UV behavior for

α(k). They differ by the value of the terms inside the square brackets [· · · ] on the

RHS of (3.55). This value is independent of the scale k. As the prefactor of [· · · ]
diverges proportional to k6Φ1

1g
∗/π when k → ∞, we find the limit limk→∞ α(k) = 0

for every strictly positive value [· · · ] > 0. This corresponds to asymptotic freedom

of the fine-structure constant, and is similar to the behavior found by Robinson and

Wilczek [RW06] and Toms [Tom10], but here with a concomitant running of Newton’s

constant. The corresponding RG trajectories of the full system are asymptotically safe

with respect to NGFP1.

For a negative value [· · · ] < 0 there will be a scale kLP at which the two terms on the

RHS of (3.55) cancel, so that α diverges at finite energies, corresponding to a Landau

type singularity.

A third type of limiting behavior is obtained for the case that the bracket vanishes

exactly: [· · · ] = 0. As we are then left only with the second term of the RHS of

(3.55), and since 2F1(a, b, c; 0) = 1, we find limk→∞ α(k) = α∗, corresponding to an

asymptotically safe trajectory with a non-zero coupling at the FP. This is precisely the

behavior to be expected due to the UV repulsive direction of the fixed point. Since

for k → ∞ the trajectory will only flow into NGFP2 for one specific value of α0,

this value of α0, and hence the whole trajectory α(k), can be predicted under the

assumption of Asymptotic Safety.
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Figure 3.1. The RG flow on the g-α–plane implied by the simplified equations (3.51).
It is dominated by two non-Gaussian fixed points. Their respective value of dim SUV

differs by one unit. (The arrows point in the direction of decreasing k.)

The situation is illustrated by the (α,g)–phase portrait in Fig. 3.1. Bearing in mind

that the arrows always point towards the IR, we see that NGFP1 is IR repulsive in

both directions shown, while NGFP2 is IR attractive in one direction. This is consis-

tent with our earlier discussion which showed that in the 3-dimensional (λ,g,α)–space

NGFP1 has 3 and NGFP2 has only 2 IR repulsive (or equivalently, UV attractive)

eigendirections.

In Fig. 3.1, the trajectories inside the triangle GFP–NGFP1–NGFP2 are those

corresponding to the case [· · · ] > 0 above; they are asymptotically safe with respect

to NGFP1. The NGFP2 → GFP boundary of this triangle is the unique trajectory

(heading towards smaller g and α values) which is asymptotically safe with respect to

the second non-trivial fixed point, NGFP2.

The diagram in Fig. 3.1 corresponds to a massless electron for which A keeps its

non-zero value at arbitrarily small scales. In reality the α-running due to the fermions

stops near me, of course.
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3 Effects of Quantum Gravity in Gauge Theories

3.3.4 Asymptotic Safety construction at NGFP2

Let us investigate the unique asymptotically safe trajectory emanating from NGFP2

in more detail. First, we note that the condition of a vanishing bracket [· · · ] in (3.55)

is self-consistent in the sense, that the resulting function α0(k0) is of identical form as

the remaining function α(k):

1

α(k)
=

1

α∗

(
1 +

g∗

G0k2

)
2F1

(
1, 1, 1+

3

π
Φ1

1g
∗;− g∗

G0k2

)
. (3.56)

Second, let us approximate this function for scales k ≪ mPl much below the Planck

scale. Later on we shall need it at k = me, for instance, where me is the mass of the

electron. Then the argument g∗

G0m2
e

= g∗
(
mPl

me

)2

≈ 1044 is extremely large and this

will be an excellent approximation. Hence we may safely truncate the general series

expansion of the hypergeometric function,

2F1(a, a, c; z) =
Γ(c)

Γ(a)Γ(c− a)(−z)
−a

∞∑

n=0

(a)n(1− c+ a)n
(n!)2

z−n·

·
(

ln(−z) + 2ψ(n+ 1)− ψ(a+ n)− ψ(c− a− n)
)
, (3.57)

after its first term, and approximate the resulting factor 1 + G0k
2/g∗ ≈ 1, such that

our final result for scales k ≪ mPl reads

1

α(k)
=
g∗

α∗ ·
3

π
Φ1

1 ·
[
ln

(
g∗

G0k2

)
− γ − ψ

(
3

π
Φ1

1g
∗
)]

. (3.58)

Here ψ denotes the Digamma function and γ is Euler’s constant. Using (3.52) in order

to reexpress the ratio g∗/α∗ we can write (3.58) also in the following form:

1

α(k)
=
A

2

[
ln

(
g∗

G0k2

)
− γ − ψ

(
3

π
Φ1

1g
∗
)]

. (3.59)

Recall that A ≡ 2
3π
nF is a completely universal constant, sensitive only to the number

of (hypothetical) electron species. Hence, for k ≪ mPl, we recover the logarithmic

running α(k)−1 = −A ln k + const familiar from pure QED.

In the opposite extreme of k comparable to, or larger than the Planck mass the

gravity corrections set in, stop this logarithmic behavior, and cause the coupling to
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3.3 Effects of asymptotically safe gravity on QED

freeze at a finite value α(k → ∞) = α∗. Obviously, along this RG trajectory no

Landau pole singularity is encountered!

Note also that according to eq. (3.59) we have α(k) ∝ 1/nF for every value of k. As

a consequence, if we consider a toy model with a large number of electron flavors, all

α-values that appear along the RG trajectory can be made as small as we like, and

this renders perturbation theory in α increasingly precise. At the fixed point we have

for instance

α∗ = 9 Φ1
1(0)

g∗

nF
. (3.60)

In an Asymptotic Safety scenario based upon the fixed point NGFP2, within

the truncation considered, the infrared value of the fine-structure constant αIR ≡
limk→0 α(k) is a computable number. Using eq. (3.59) to calculate αIR we must re-

member however that as it stands it holds true only for k & me. When k drops below

the electron mass the standard QED contribution to the running of α(k) goes to zero,

and the gravity corrections are zero there anyhow. Hence approximately, ∂tα(k) = 0

for 0 ≤ k . me. Thus eq. (3.59) leads to the following prediction for αIR ≈ α(me):

1

αIR

=
A

2

[
2 ln

(
mPl

me

)
+ ln(g∗)− γ − ψ

(
3

π
Φ1

1g
∗
)]

. (3.61)

As the fixed point coordinates are an output of the RG equations, the only input

parameter needed to predict αIR in this approximation is the electron mass in Planck

units, me/mPl.

It is tempting to insert numbers into eq. (3.61). With me = 5.11 · 10−4 GeV and

mPl = 1.22 · 1019 GeV one finds me/mPl = 4.19 · 10−23, and for the optimized cutoff

[Lit00, Lit01] we have Φ1
1 = 1. The value of g∗ = −2/B1(λ0) depends on the value

chosen for λ0. For λ0 = 0 or λ0 = λ∗ ≈ 0.193, the fixed point value of λ in the

Einstein-Hilbert truncation, we get g∗ ≈ 1.71 or g∗ ≈ 0.83, respectively. From that we

obtain
1

αIR

λ0=0≈ 10.91nF or
1

αIR

λ0=λ∗≈ 10.96nF . (3.62)

We observe that the result is relatively insensitive to the value of g∗ and/or Φ1
1, but it

scales linearly with the number of electron species, nF .

Obviously, for nF = 1, this estimate differs from the fine-structure constant mea-

sured in real nature, α ≈ 1/137, by a factor of roughly 13. However, even within

the limits of our crude approximation (3.50), a serious comparison with experiment
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must include the renormalization effects due to the other particles besides the electron,

all those of the Standard Model, and possibly beyond. Within the “nF flavor QED”

considered here we could mimic their effect by appropriately choosing nF . It would

then follow that the observed αIR is consistent with Asymptotic Safety at NGFP2 if

nF = 13.

It is reassuring that for this large number the value of the natural expansion pa-

rameter of QED perturbation theory, (α/π), is rather small already. At NGFP2, for

example, one has (α∗/π) ≈ 0.38 and (α∗/π) ≈ 0.18, respectively.

Next let us try the full Standard Model and its minimal supersymmetric extension

(MSSM).5 Applying the above discussion to the weak hypercharge rather than the

electromagnetic U(1) one again has a one loop flow equation of the type ∂tα1 = Aα2
1,

this time with A = 41/(20π) for the SM and A = 33/(10π) for the MSSM, respectively

[ABF+92]. Here α1 ≡ 5α/(3 cos2 θW ), where θW is the Weinberg angle. It is most

convenient to compare the prediction of Asymptotic Safety to the experimental value

at the Z mass. From eq. (3.61) with the new value of A and me replaced by MZ we

obtain (with λ0 = 0):

αSM
1 (MZ) ≈ 1/25.7 (3.63a)

αMSSM
1 (MZ) ≈ 1/41.3 (3.63b)

As compared to the experimental value αexp
1 (MZ) ≈ 1/59.5 both of these predictions

are too high, the supersymmetric one less so. Clearly we may not take these numbers

too seriously. After all, while for the reasons discussed above we believe that the one

loop form of the matter β-functions is a reliable guide with respect to the general

structure of the RG flow, its quantitative status is questionable.

Nevertheless the following observation might be of interest. The predictions (3.63)

turn out larger than the experimental value since in the SM and MSSM the coefficient

A is too small. As a consequence, the matter driven renormalizations which reduce

α1(k) when k is lowered are too weak. If we could take the RG equations seriously

at the quantitative level the conclusion would be that Asymptotic Safety at NGFP2

is possible if there exist more particles with a U(1) charge than those of the SM or

MSSM. We find it remarkable that not very many more seem to be needed; it is

sufficient to increase A by a small factor of order unity.

5For a related discussion see [SW10].
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3.3 Effects of asymptotically safe gravity on QED

On the other hand, if ultimately it turns out that the Standard Model coupled to

QEG is not asymptotically safe with respect to NGFP2 then its RG trajectory would

be one of those inside the GFP–NGFP1–NGFP2 triangle in Fig. 3.1. In this case it

is asymptotically safe with respect to the other non-trivial fixed point, NGFP1. As

for being free from divergences and predictive at all energies this is still not too much

of a drawback, though. It only means that the U(1) coupling is not a prediction but

necessarily an experimental input.

3.3.5 Numerical results

Returning to QED coupled to QEG we shall now go beyond the analytically tractable

approximation of the previous subsection and employ exact numerical solutions g(k),

λ(k) for the pure gravity subsystem of eqs. (3.39a) and (3.39b). Thereby the exact form

of the functions ηN = B1(λ)h1(g, λ) and βλ(g, λ) as implied by the Einstein-Hilbert

truncation [Reu98] are used, and then the two coupled equations for g and λ are solved

numerically as in [RS02]. Then, for every given RG trajectory k 7→ (g(k), λ(k)),

we calculate the corresponding α(k) by inserting g(k) into (3.39c) and solving this

decoupled differential equation numerically, too.

Staying within the one-loop approximation of βα we thus confirm the existence of

both non-Gaussian fixed points, NGFP1 and NGFP2. In accord with the general dis-

cussion above, the latter is seen to have two UV attractive and one repulsive direction.

All RG trajectories heading for k → ∞ towards NGFP2 lie in its two dimensional

UV critical surface SUV. It is visualized in Fig. 3.2 by a family of trajectories starting

on SUV close to the FP, which were traced down to lower scales k.

As the backreaction of the matter on the gravity sector is neglected, the flow in a

projection onto the (λ,g)–plane is identical to the one of pure gravity (Fig. 3.2(a)). We

can therefore classify the trajectories as in [RS02], being of type Ia, IIa, and IIIa, when

the IR value of the cosmological constant is negative, zero, or positive, respectively.

As we rotate the coordinate frame (Fig. 3.2(c),3.2(b)), we see how the critical surface

is bent in coupling space. Especially we note that the fine-structure constant only

gets renormalized to small values α ≪ 1, if the (λ,g)–projection of the trajectory is

sufficiently close to the type IIa trajectory of pure gravity (the “separatrix” [RS02]).

This is because only these trajectories give rise to a long classical regime with G,Λ ≈
const [BR07, BR08, RW04]. They spend a tremendous amount of renormalization
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(a) (b)

(c)

Figure 3.2. Trajectories running inside the UV critical surface SUV of NGFP2 in
(λ,g,α)–theory space.
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group time close to the Gaussian fixed point of the gravity sector. The classical

regime of gravity is needed for the logarithmic running of α to be of effect.

As a concrete example of a trajectory with a long classical regime we consider the

“realistic” RG trajectory discussed in [RW04] and [BR07, BR08]. In these references

a specific (λ,g)–trajectory has been identified which matches the observed values of G

and Λ. It is of type IIIa and can be characterized by its turning point (the point of

smallest λ) whose coordinates are

(gT , λT ) =

(
gT ,

Φ1
2(0)

2π
gT

)
with gT ≈ 10−60. (3.64)

The turning point is passed at the scale kT ≈ 10−30mPl. To make the numerical

solution of the RG equations feasible we transform the equations to double logarithmic

variables using τ(k) ≡ ln(k/kT ) = ln(k/mPl)+30 ln(10) as the RG time variable. The

transition at the Planck scale between the classical and fixed point scaling regime

therefore takes place at about τ(k = mPl) = 30 ln(10) ≈ 69.

Having fixed the (λ,g)–trajectory to be the “realistic” one, there is a unique asymp-

totically safe trajectory relative to NGFP2 in the three dimensional coupling space.

The corresponding α(kT ) can now be found by a shooting method: If we start slightly

above SUV ≡ SUV(NGFP2) and evolve towards the UV the coupling α(k) will head

to infinity at a finite scale, while starting below SUV will result in an asymptotically

free trajectory: α(k → ∞) = 0. This trajectory is asymptotically safe with respect

to NGFP1, and in Fig. 3.1 it corresponds to one of those inside the triangle GFP–

NGFP1–NGFP2. The closer we get to SUV the more the trajectory gets “squeezed”

into the corner of the triangle at NGFP2, ultimately leading to two separate pieces,

the NGFP1 → NGFP2 and the NGFP2 → GFP branch, respectively. Due to

unavoidable numerical errors any starting value α(kT ) will eventually opt for one of

the two cases, but if we fine tune it to happen at sufficiently large τ , we will end up

with a good estimate for the trajectory which is asymptotically safe with respect to

NGFP2, the boundary line NGFP2 → GFP of the triangle in Fig. 3.1.

The result of this procedure is depicted in Fig. 3.3 where we set nF = 1. As can

be seen, there is a rapid transition to the fixed point scaling regime at the Planck

scale (τ ≈ 69), above which all three dimensionless couplings remain constant at their

fixed point values. By fine tuning we were able to choose the initial parameter to
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Figure 3.3. Double logarithmic plot of the running couplings of the “realistic” trajec-
tory.

1/α(kT ) = 14.65 which ensures that the trajectory stays at the fixed point value for

about five orders of magnitude in k before it shoots away to infinity.

The scale of the electron mass corresponds to a τ -value τ(k = me) = ln(4.19 ·
10−23)+30 ln(10) ≈ 17.55, which is far above the turning point scale. At this scale the

asymptotically safe trajectory predicts a value α(me)
−1 ≈ 10.93 which is in perfect

agreement with (3.62). Hence, we can conclude that the running of λ, as well as the

exact functional form of h1(g, λ), are of little effect to the IR value of α.

3.4 Discussion and Conclusion

In the first part of this chapter we presented a non-perturbative RG study computing

the gravitational corrections to the running of the YM gauge coupling constant. This

way we obtained a β-function for gYM(k), which in our setting is defined as a coefficient

in the derivative expansion of the effective average action. Our approach has two

features which are essential here: First, it retains all quadratic divergences (as opposed

to dimensional regularization, say), and second, by the background field technique,

the regularization (the cutoff Rk) preserves gauge invariance.6 In this setting, we do

get a non-zero gravitational correction. This correction is scheme and gauge fixing

dependent but, as we explained, this is by no means unexpected but rather the usual

6As in all traditional applications of the average action, Γk is not gauge fixing independent,
though, i. e. we do not use the Vilkovisky-deWitt method.
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situation. When observable quantities are computed from Γk the scheme and gauge

fixing dependences will cancel among the different running couplings involved.

In the recent literature on the gravitational corrections to the Yang-Mills β-function

[RW06, Rob, Pie07, Tom07, EPR09, TW10, Tom08] there has been a certain amount

of confusion as some of the computations do get a non-zero result while others do not.

However, we believe that different calculations have no reason to yield the same result

unless they agree on virtually all details of the regularization and renormalization

procedure. The quantum effects of interest are related to quadratic divergences (or

a k2-running), and so we should not expect the same high degree of universality as

in the case of the familiar gauge boson contribution which is related to a logarithmic

divergence.

Among the above mentioned perturbative calculations the two studies, [TW10] by

Tang and Wu and the later published [Tom10] by Toms, are directly comparable to

ours. Both of them employ a regulator which retains quadratic divergences and treats

them in a gauge invariant manner. Moreover, ref. [Tom10] obtains a gauge fixing

independent result by employing the Vilkovisky-deWitt method. It is gratifying to see

that these, too, get a non-zero gravitational correction which has the same structure

as ours when we omit the RG improvements.

In a subsequent RG study Folkerts et al. [FLP12] conjectured that the gravitational

correction to the running Yang-Mills coupling is substantially influenced by the extra

background field dependence that is introduced by the mode suppression kernel. In our

view this question can only be assessed thoroughly in a future full fledged “bi-metric”

computation [MR10], that keeps track of the extra background field dependence of

both fields ḡµν and Āaµ.

In the second part of this chapter we coupled Quantum Electrodynamics to quan-

tized gravity and explored the possibility of an asymptotically safe UV limit of the

combined system. Using a simple truncation of the corresponding effective average

action we found evidence indicating that this is indeed possible. There exist two

non-trivial fixed points which lend themselves for an Asymptotic Safety construction.

Using the first one, NGFP1, the fixed point value of the fine-structure constant is

zero, and its infrared value αIR is a free parameter which is not fixed by the theory itself

but has to be taken from experiment. Basing the theory on the second non-Gaussian

fixed point NGFP2 instead, the fixed point value α∗ is non-zero, and the (“renormal-

ized”) low energy value of the fine-structure constant αIR can be predicted in terms
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of the electron mass in Planck units. In either case the coupled theory QED + QEG

is well behaved in the ultraviolet, there is no Landau singularity in particular, and it

is not trivial, i. e. the continuum limit is an (electromagnetically and gravitationally)

interacting theory.

The key ingredient in the RG equations considered is the quantum gravity contri-

bution to βα that was adopted from the YM result obtained in the first part of the

chapter. It is proportional to g α ≡ G(k)k2α, and its sign is such that for increasing

k it counteracts the growth of α(k) caused by the fermions. This can lead to two

qualitatively different scenarios for the high energy behavior of QED + QEG. In the

first one, which is also seen in perturbation theory [RW06, Tom10], the gravitational

effects win over the fermionic ones and α(k) is driven to zero in the UV: it has become

an asymptotically free coupling. For RG trajectories of this type the k-dependence of

Newton’s constant plays no essential role; the decrease of G(k) becomes substantial

only after α(k) is almost zero already. Instead, in the second scenario, the initial (low

energy) value of α(k) is such that it has not yet become very small when the weak-

ening of gravity due to the decrease of G(k) sets in. In particular in the asymptotic

scaling regime it decreases rapidly, G(k) = g∗/k2, so that the fermions, still trying to

increase α for k → ∞, have a better chance to win over the gravitons now. Along

certain trajectories they indeed do, but what is more interesting is the possibility of

an exact compensation of the two trends. This is exactly what happens at the second

non-trivial fixed point, NGFP2, which is characterized by a non-zero α∗.

Note that this second possibility is closely related to the Asymptotic Safety of (pure)

gravity. It could not be found in perturbation theory which, while using a similar

gravity correction to βα, treats the factor of G it contains as a constant and therefore

misses the weakening of gravity at high scales.

The most remarkable feature of the second fixed point is the reduced dimensionality

of its UV critical manifold and the resulting higher degree of predictivity than in

perturbation theory. We take this as a first hint indicating that after coupling the

Standard Model to asymptotically safe gravity it might perhaps be possible to compute

some of its as to yet free parameters from first principles.
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4.1 Motivation

In this chapter we perform a first RG study of the “tetrad only” theory space Ttet,
whose main results have previously been published in [HR12]. We thereby investigate

a truncation of Ttet that is obtained by “translating” the Einstein-Hilbert truncation in

TE, i. e. by expressing the metric in terms of the vielbein according to gµν = eamuηabe
b
ν .

Thus, a direct comparison to the results of the metric computations [Reu98, LR01,

RS02] using the same exact FRGE is possible, that allows for a detailed analysis of

differences due to the change of theory space.

There are three main reasons that motivated our investigation:

(A) The first functional RG based results obtained on the Einstein-Cartan theory

space TEC, in a truncation with a scale dependent Hilbert-Palatini action (including a

running Immirzi term), show certain characteristic differences in comparison with the

familiar case of TE truncated with a running Einstein-Hilbert action; in particular, the

TEC results show a stronger RG scheme and gauge fixing dependence than the older

ones on the “Einstein” case [DR12, DR]. It would be interesting to know whether

these differences are mainly due to the use of the different truncations, different field

variables, or both. Especially when we are going to evaluate the new WH-like FRGE

on TEC in the next chapter, this knowledge will become important in order to judge

the applicability of this new approximation. In the following investigation we shall

therefore change only the field variable (and the group G correspondingly), but not

the truncation, and so it should be possible to disentangle the two sources of deviations

to some extent.

We note here that, like most settings of quantum field theory, the flow equation of

the average action is not invariant under diffeomorphisms in field space, Φ 7→ Φ′(Φ).

Thus, at intermediate steps, as long as one does not compute observables, there is

no reason to expect any field parametrization independence. Moreover, and perhaps
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this is even more important, the gauge fixing and ghost sectors are quite different for

Diff(M) and Diff(M)⋉O(d)loc, respectively. Therefore the β-functions for the running

Newton constant Gk or cosmological constant Λk, for instance, may well depend on

whether the FRGE is formulated in terms of the metric or tetrad. Similar remarks

apply also to a recent study of the perturbative RG running of Gk and the Immirzi

parameter [BS11].

(B) On theory spaces involving fermions coupled to gravity introducing vielbeins is

compulsory (as far as we do not consider the special case of Dirac-Kähler fermions).

Besides the pure gravity couplings, such as Gk, Λk, etc. the average action will then

depend on additional couplings related to the matter field monomials. If we collectively

denote these couplings by ugrav and umat, respectively, their β-functions are of the form

βgrav = βgrav
grav(ugrav) + βmat

grav(ugrav, umat) (4.1)

βmat = βmat
mat(umat) + βgrav

mat (ugrav, umat) (4.2)

Diagrammatically speaking, the two parts βgrav
grav and βmat

grav of the pure gravity β-

functions stem from the graviton and matter loops, respectively. Conversely, the

running of the matter couplings has a part due to pure matter loops, βmat
mat , plus mixed

matter-gravity contributions, βgrav
mat .

In order to get a first impression of the impact the fermions have on the gravitational

RG flow one might neglect the running of the matter couplings, and try to compute

βgrav only. While the evaluation of βmat
grav from the fermion loops clearly requires a

vielbein and a spin connection, the pure gravity part βgrav
grav does not obviously do so.

From a pragmatic point of view it is therefore tempting to take the βgrav
grav part from

a (much simpler, and already available) computation in the metric formalism. The

invariants I[gµν ] occurring in the latter one would interpret as I[e] ≡ I[gµν = ηabe
a
µe
b
ν ].

For some (but not all) field monomials in Ttet this establishes a correspondence to

monomials in TE, and one can try to identify their running prefactors; for instance,

Λk

∫
ddx
√
g ∈ TE ↔ Λk

∫
ddx e ∈ Ttet, when g and e denote the determinants of gµν

and eaµ, respectively.

Thus, it seems that only the fermion loops, βmat
grav, need to be calculated. This

requires fixing a Lorentz gauge in order to associate a unique eaµ to a given gµν , and

for ωabµ one might take the unique Levi-Civita connection associated to this vielbein,

ω ab
LC µ(e).
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We shall refer to this procedure as a hybrid calculation. Clearly it can be meaningful

at most within a truncation of TE and Ttet that allows an identification of monomials;

an example is the Einstein-Hilbert action regarded as a functional of gµν and eaµ,

respectively, with the same two couplings Gk and Λk occurring in both cases. At the

exact level there exists certainly no such one-to-one correspondence between action

monomials in TE and Ttet. Nevertheless, if it was possible to establish the “hybrid”

scheme as a reliable approximation, this would be of considerable importance for the

feasibility of practical calculations.

As to yet, all investigations for the gravity + fermions theory space, in particular in

the Asymptotic Safety context, are, in fact, hybrid computations of this form [DP98,

PP03b, PP03a, VZ10, EG11]. They combine the metric-formalism β-functions for

Gk and Λk in the Einstein-Hilbert truncation with certain matter contributions βmat
grav,

solve for ugrav(k), and insert the result into (4.2) to obtain the running of the matter

couplings. In ref. [EG11] the gravity corrections to certain 4-fermion couplings umat

were studied in this way.

A necessary condition for the consistency of the hybrid approach is that the pure

gravity part βgrav
grav does not change much when we switch from gµν to eaµ as the fun-

damental field variable in the Einstein-Hilbert truncation. Only in direct comparison

to the corresponding RG study in Ttet, as presented in this chapter, we are able to

explicitly test whether or not this is actually the case. Eventually, the results of our

investigation indicate, that the hybrid scheme is very hard, if not impossible to justify,

at least at the quantitative level. We shall demonstrate in detail that if one aims at

some degree of numerical precision, one should consistently work with the vielbein and

its corresponding ghost system already at the pure gravity level.

(C) Picking the vielbein as the fundamental field variable requires fixing an O(d)loc

gauge. In perturbation theory, a popular choice is the Deser-van Nieuwenhuizen alge-

braic gauge fixing condition where the antisymmetric part of the d × d matrix eaµ is

required to vanish [DN74]. As O(d) has 1
2
d (d−1) parameters, this reduces the d2 inde-

pendent components of eaµ to 1
2
d(d+1), which is precisely the number of independent

fields gµν has in d dimensions.

It was shown that, for this gauge, and in perturbation theory, no Faddeev-Popov

ghosts need to be introduced for the O(d)loc factor of G, and that it allows to explicitly

express vielbein fluctuations purely in terms of metric fluctuations [Woo84]. Therefore
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the point of view was advocated that even in presence of fermions the vielbein can be

eliminated in favor of the metric.

While this method was proven to be correct in a well defined perturbative context,

recently it has been proposed to use this same procedure, in particular the omission

of the O(d)loc ghosts, also in the context of a nonperturbative flow equation for the

gravity–fermion system [VZ10, EG11]. If applicable, it would provide a very economic

framework for hybrid computations of the type sketched above.

However, as we are going to discuss in detail, there are reasons to doubt that the per-

turbative arguments justifying the omission of the O(d)loc ghosts carry over to the non-

perturbative setting of the FRGE. In fact, in perturbation theory the ghosts are omit-

ted since their inverse propagator contains no derivatives, they are non-propagating,

leading to a trivial Faddeev-Popov determinant. In the FRGE, instead, a straightfor-

ward evaluation of the functional traces cuts off all field modes in a uniform fashion,

no matter if their kinetic term contains 2, or more, or no derivatives at all.

In the following RG study we shall therefore explicitly evaluate the contributions

to βgrav from the non-propagating O(d)loc ghosts pertaining to the symmetric vielbein

gauge, and we shall analyze whether they really can be discarded in setting up the

flow equation for the average action.

In the next two sections we will first present the derivation the β-functions of Gk and

Λk in tetrad theory space followed by a detailed numerical analysis of the properties

of the resulting RG flow. The last section of this chapter contains a discussion of the

results obtained focussing in particular on the issues raised above.

4.2 RG flow on Ttet in Einstein-Hilbert truncation

4.2.1 The RG framework

Throughout this chapter we will consider the theory space Ttet (cf. Section 2.1.4). It

contains all functionals A[eaµ, ē
a
µ, ξ

µ, ξ̄µ,Υ
ab, Ῡab] that are invariant under the back-

ground gauge transformations of the total gauge group G = Diff ⋉O(d)loc. Besides the

expectation value of the vielbein field and its background configuration they depend

on the diffeomorphism ghosts (ξµ, ξ̄µ) and the O(d)loc ghosts (Υab, Ῡab). Instead of

eaµ we shall often consider the vielbein fluctuation ε̄aµ ≡ eaµ − ēaµ the independent

argument of the action.

78



4.2 RG flow on Ttet in Einstein-Hilbert truncation

In this theory space we will consider a truncation of the form

Γk = ΓEH
k + Γgf

k + Sgh ≡ Γ̆ + Sgh . (4.3)

In particular, the only invariant containing ghost fields is the classical ghost action

Sgh, whose renormalization, moreover, will be neglected. In addition the truncation

will be of the single-metric type [MR10], such no extra background field dependence is

determined and we can set the fluctuations to zero once the Hessian of the truncation

ansatz has been computed.

In order to compute the RG flow on Ttet we decide for the exact FRGE (2.34) that

decomposes for a truncation of the above type into the two blocks

∂tΓk =
1

2
Tr
[(

Γ̆
(2)
k + R̆k

(
∆
))−1

∂tR̆k

(
∆
)]
−Tr

[(
S

(2)
gh +Rgh

k

(
∆
))−1

∂tRgh
k

(
∆
)]
. (4.4)

Further we will employ a cutoff of type Ia [CPR09], i. e. we choose ∆ = −D̄2 and do

not decompose the vielbein fluctuations into their spin components, before the cutoff

kernel is adapted to the truncation.

Hence, our setting is completely analogous to the metric calculations [Reu98] so

that all differences we shall find can be attributed to the change of theory space.

4.2.2 The truncation

Let us now introduce the details of our truncation. Its Einstein-Hilbert part is found

by expressing the metric in terms of the tetrad in the well known Einstein-Hilbert

action for metric gravity:

ΓEH
k [e] = − 1

16πGk

∫
ddx

√
g(e)

(
R(g(e))− 2Λk

)
. (4.5)

This action involves two running couplings, the cosmological constant Λk and Newton’s

constant Gk; the latter is frequently expressed in terms of the dimensionless function

ZNk according to Gk ≡ Z−1
Nk Ĝ with a constant Ĝ.

To be as general as possible we re-express the metric in terms of the new field

variable eaµ in the following way:

gµν = ξ−1eaµe
b
νηab. (4.6)
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4 Tetrad Gravity

This representation resembles the usual vielbein decomposition of the metric, except

for the additional free parameter ξ > 0. For this reason we will refer to the field eaµ

as a generalized vielbein for a given gµν . Treating eaµ as the independent variable we

assume that the basis 1-forms ea = eaµdx
µ indeed form a non-degenerate co-frame.

The parameter ξ is merely a mathematical tool that enables us to study a continuous

class of field redefinitions at a time.

As for the usual vielbein this generalized decomposition of the metric is not unique,

but there exists an O(d) manifold of vielbein fields corresponding to the same metric.

This arbitrariness is treated as an additional gauge freedom, such that the total group

of gauge transformations is enlarged compared to the metric case: G = Diff(M) ⋉

O(d)loc. Thus we are also in need of a second gauge fixing term and the corresponding

background gauge invariant ghost-action is constructed according to the formalism

presented in Section 2.2.3.

If we decompose both the metric gµν ≡ ḡµν + h̄µν and the vielbein eaµ ≡ ēaµ + ε̄aµ

into background fields and fluctuations, we find1

ḡµν + h̄µν = gµν = ξ−1(ēaµ+ ε̄aµ)(ē
b
ν + ε̄bν)ηab = ξ−1ēaµē

b
νηab+ ξ−1ε̄(µν) +O(ε̄2). (4.7)

Here and in the following we use the background vielbein ēaµ to change the type of

the first (i. e., frame) index of the vielbein fluctuation: ε̄µν = ηabē
a
µε̄
b
ν . We see that

the symmetric part of the vielbein fluctuations, 1
2
ε̄(µν), is proportional to the metric

fluctuations h̄µν in lowest order, while we can relate the additional d(d − 1)/2 gauge

degrees of freedom carried by eaµ to the antisymmetric part of the fluctuations, 1
2
ε̄[µν].

This observation motivates the following choice of gauge conditions. For the diffeo-

morphisms we choose the usual harmonic gauge fixing function for metric fluctuations,

replacing h̄µν 7→ ξ−1ε̄(µν), with κ ≡ (32πḠ)−1/2:

Fµ =
√

2κ ξ−1
(
D̄ν ε̄(µν) − D̄µε̄

ν
ν

)
. (4.8)

The O(d) transformations are gauge fixed using

Gab = ξ−
1
2 ḡµν ε̄[a

µē
b]
ν = ξ−

1
2 ε̄[ab], (4.9)

corresponding to a suppression of the antisymmetric vielbein fluctuations.

1Note that in our notation the (anti-)symmetrization brackets do not contain any weighting factor,
i. e. . symbolically (ab) = ab + ab. More on our conventions can be found in Appendix A.
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4.2 RG flow on Ttet in Einstein-Hilbert truncation

With these gauge conditions the gauge fixing term in the effective average action

assumes the usual form, involving parameters αD and αL:

Γgf
k [e, ē] =

1

2αD

∫
ddx
√
ḡḡµνFµFν +

1

2αL

∫
ddx
√
ḡ GabGab. (4.10)

In the following we fix the diffeomorphism gauge parameter αD to αD = 1/ZNk which

leads to the same cancelation in the kinetic operator as in metric gravity [Reu98].

In order to obtain a background G-invariant ghost action with respect to both

O(d)loc transformations and diffeomorphisms, we can make use of the Faddeev-Popov

construction only if we first reparametrize the gauge transformations in such a way,

that the new generators of diffeomorphisms and O(d) transformations commute. This

corresponds to an O(d) covariantization of the Lie derivative (cf. Section 2.2.3). Fol-

lowing this procedure, while treating the ghost sector classically (i. e. we can set e = ē

already at the level of the ghost action) we arrive at

Sgh[ξ, ξ̄,Υ
′, Ῡ′; ē] = −

∫
ddxē

(
ξ̄µ

Ῡ′
ab

)T(√
2ξ−1

(
δµρD̄

2+R̄µ
ρ

)
0

2 ξ−
1
2 µ̄ ēbµēaρD̄µ ξ−

1
2 µ̄2δ

[a
c δ

b]
d

)(
ξρ

Υ′cd

)
. (4.11)

Here ξ̄µ, ξ
µ represent the diffeomorphism ghosts and Ῡab, Υab the O(d) ghost fields.

As the infinitesimal transformation under diffeomorphisms contains a derivative,

while the corresponding O(d) transformation does not, the diffeomorphism ghosts

have a canonical mass dimension of one unit less compared to the O(d) ghosts. In

order to obtain a Hessian operator of a well-defined mass dimension we have rescaled

the fields Ῡab = µ̄Ῡ′
ab, Υab = µ̄Υ′ab with an arbitrary mass parameter µ̄; consequently

the Hessian operator obtains a mass dimension of 2.

4.2.3 Structure of the vielbein sector

After having presented the details of our truncation we can now pass on to the

evaluation of the FRGE (4.4) in this truncation. On the LHS of the equation, after

setting ē = e, we obtain the same result as in the metric version of the Einstein-Hilbert

truncation [Reu98]:

∂tΓk[e, e] = 2κ2

∫
ddx

√
g(e)

[
− R(g(e))∂tZNk + 2∂t

(
ZNkΛk

)]
(4.12)
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On the RHS of the FRGE, however, we find two types of additional contributions to

the supertrace as compared to those already present in the metric description. While

the second type of contributions is due to the extended gauge group of the theory, the

first type is closely linked to the off-shell character of the FRGE. This can be seen as

follows.

In order to obtain Γ̆(2) we expand Γ̆k to second order in the vielbein fluctuations

and read off the operator from the quadratic term Γ̆quad
k . As Γgf is already quadratic

in the fluctuations we only have to expand ΓEH,k. For

Γquad
EH =

1

2
δ2
eΓEH

∣∣∣
e=ē

(4.13)

we find

Γquad
EH =

1

2
· 1

ξ2

∫
ddx1d

dx2
δ2ΓEH

δgρσ(x2)δgµν(x1)

∣∣∣∣
g=ḡ

ε̄(µν)(x1)ε̄(ρσ)(x2)

+
1

2
· 1
ξ

∫
ddx

δΓEH

δgµν(x)

∣∣∣∣
g=ḡ

ε̄a(ν(x)ε̄
a
µ)(x) .

(4.14)

Here we have used the chain rule for functional derivatives. Obviously, the first term on

the RHS of (4.14) corresponds exactly to the one known from the metric calculation,

while the second term is due to the field redefinition. We note that those two terms

come with different powers of ξ, which enables us to keep track of their respective

origin during the entire calculation and in the final result. This was in fact our main

motivation for introducing this book-keeping device.

Note also that in (4.14) the term due to the field redefinition is proportional to

the first variation δΓEH/δgµν . So it would vanish if we were to go “on shell”, i. e. to

insert a special metric or vielbein which happens to be a stationary point of ΓEH. We

emphasize that in the process of computing β-functions this would be a severe mistake.

To see this, consider an (exact) average action expanded as

Γk[Φ, Φ̄] =
∑

α

ūα(k)Pα[Φ, Φ̄], (4.15)

where ūα(k) denote the running couplings and the Pα’s are G-invariant basis func-

tionals (integrated field monomials, say) independent of k. When represented in this

fashion one may think of Γk as a “generating function” for the set of running couplings,

{ūα(k)}, which are “projected out” by expanding Γk in the basis {Pα[ · , · ]}. In this
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4.2 RG flow on Ttet in Einstein-Hilbert truncation

picture the fields Φ, Φ̄ have a subordinate status only. They serve as arguments of

the Pα’s, and their only role is that of a dummy variable needed in order to define the

basis functionals Pα. Therefore, in order for the set {Pα} to remain complete it is in

general not possible to narrow down the function space Φ, Φ̄ are drawn from in any

way, for instance by stationary point conditions or the like. In this sense, the average

action and its associated FRGE are intrinsically “off shell” in nature.

At most at the level of truncations where the set {Pα} is incomplete anyhow we may

opt for special choices of the fields (e. g. satisfying convenient symmetry conditions)

as long as the invariants in the truncation ansatz when calculated for these fields can

still be distinguished from all other invariants and from each other. This is an often

used computational trick that simplifies practical calculations without affecting the

result in any way.

For the total quadratic part of the action Γ̆k we obtain, with
√
ḡ ≡ ē,

Γ̆quad
k [ε̄; ē] =

ZNkκ
2

ξ2

∫
ddx
√
ḡ ε̄(µν)

[
−Kµν

ρσD̄
2 + Uµν

ρσ

]
ε̄(ρσ)

+
ZNkκ

2

ξ

∫
ddx
√
ḡ

(
R̄µν + Λkḡ

µν − R̄

2
ḡµν
)
ε̄a(ν ε̄

a
µ)

+
1

2αL

1

ξ

∫
ddx
√
ḡ ε̄[ab]ε̄[ab]

(4.16)

where

Kµν
ρσ ≡

1

4

(
δµρ δ

ν
σ + δµσδ

ν
ρ − ḡµν ḡρσ

)
(4.17)

and

Uµν
ρσ ≡

1

4

([
δµρ δ

ν
σ + δµσδ

ν
ρ − ḡµν ḡρσ

](
R̄− 2Λk

)

+ 2
[
ḡµνR̄ρσ + ḡρσR̄

µν
]
− δ(µ

(ρ R̄
ν)
σ) − R̄

(ν µ)
(ρ σ)

)
. (4.18)

We observe that the first term on the RHS of (4.16) is exactly the contribution known

from the metric computation [Reu98]; in particular thanks to αD = 1/ZNk all non-

minimal terms in the differential operator canceled. The second and third terms in

(4.16) correspond to the already mentioned first and second type of new contributions,

respectively.
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4 Tetrad Gravity

In a next step we decompose the vielbein fluctuations ε̄µν into their symmetric

traceless part ε̂µν , antisymmetric part ε̃µν , and trace part φε, according to

ε̄µν = ε̂µν + ε̃µν +
1

d
ḡµνφε (4.19)

with ε̂µν = ε̂νµ, ε̂
µ
µ = 0 and ε̃µν = 1

2
ε̄[µν].

In addition we specify the background spacetime to be a maximally symmetric

Einstein space with

R̄µνρσ =
1

d(d− 1)

[
ḡµρḡνσ − ḡµσḡνρ

]
R̄ and R̄µν =

1

d
ḡµνR̄. (4.20)

This spacetime is still sufficiently general to identify the contributions to the relevant

invariants
∫√

ḡ and
∫√

ḡR̄ unambiguously. Within the present truncation it is thus

a permissable restriction of the function space of the metric; it does not affect the

generality of the calculation and so is an example of the computational trick mentioned

above.

Using the relations (4.19) and (4.20) the quadratic part of the action reads

Γ̆quad
k [ε̄; ē] =

ZNkκ
2

2

4

ξ2

∫
ddx
√
ḡ

{
ε̂µν

[
−D̄2 + (ξ − 2)Λk + CT (ξ)R̄

]
ε̂µν

+ε̃µν ξ

[
1

ZNkκ2αL
+ Λk −

d− 2

2d
R̄

]
ε̃µν

−d − 2

2d
φε

[
−D̄2 −

(
2 +

2ξ

d− 2

)
Λk + CS(ξ)R̄

]
φε

}
(4.21)

with the constants

CT (ξ) ≡ d(d− 3) + 4

d(d− 1)
− d− 2

2d
ξ, CS(ξ) ≡

d− 4 + ξ

d
. (4.22)

Note that whereas the symmetric tensor ε̂µν has a standard positive definite kinetic

term, its antisymmetric counterpart is non-propagating; the ε̃µν-bilinear contains no

derivatives at all, but only a (gauge dependent) mass term. Note also that in d > 2

the trace part φε has a “wrong sign” kinetic term, reflecting the well known conformal

factor instability [Reu98].
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4.2 RG flow on Ttet in Einstein-Hilbert truncation

Let us now fix the precise form of the cutoff operator Rk in the various sectors of

field space. We choose it to be of the generic form

Rk = Zkk2R(0)(−D̄2/k2), (4.23)

where Zk is a matrix in field space, and R(0)(u) is a dimensionless “shape function”

that interpolates smoothly between R(0)(0) = 1 and limu→∞R(0)(u) = 0. The matrix

Zk is chosen by the Z = ζ-rule introduced in Section 2.3, that also has been applied

in the metric calculation in [Reu98]: If a certain field mode has a kinetic operator of

the form [−D̄2 + · · · ], the Zk is fixed in such a way that in the sum Γk + ∆kS this

operator gets replaced by [−D̄2 + k2R(0)(−D̄2/k2) + · · · ].

In the case at hand it is straightforward to implement this rule for ε̂µν and φε. In

the different sectors we choose

(Zk)bεbε = 2ZNkξ
−2κ2, (Zk)ε̃ε̃ = 2ξ−1ZNkκ

2, (Zk)φεφε = −2ξ−2ZNkκ
2d− 2

2d
. (4.24)

As for the antisymmetric tensor ε̃µν , we fixed the corresponding Zk in such a way that,

taking the overall prefactor into account, the addition of Rk to the inverse propagator

replaces the square brackets in the ε̃µν-bilinear of (4.21) by

[
k2R(0)(−D̄2/k2) +

1

ZNkκ2αL
+ Λk −

d− 2

2d
R̄

]
. (4.25)

Now we have specified all ingredients entering the supertrace on the RHS of (4.4)

in the different sectors.

First of all we note that the contributions of the antisymmetric sector vanish in the

limit of αL → 0, as this part of the trace is given by

1

2
Trε̃ε̃

[
∂t
(
ZNkk

2R(0)(−D̄2/k2)
)

ZNk
(
k2R(0)(−D̄2/k2) + Λk + 1

ZNkκ2αL
− R̄d−2

2d

)
]

=
αL

2
Trε̃ε̃

[
∂t
(
ZNkk

2R(0)(−D̄2/k2)
)

ZNk
(
αLk2R(0)(−D̄2/k2) + αLΛk + 1

ZNkκ2 − αLR̄
d−2
2d

)
]

αL→0−−−→ 0. (4.26)
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This behavior is easy to understand as the limit αL → 0 corresponds to a sharp

implementation of the O(d) gauge condition that introduces a delta functional δ[ε̃µν ]

into the path integral. Since the domain of tensors with ε̃µν = 0 is invariant under the

coarse graining operation it is obvious that the antisymmetric fluctuations should not

contribute to any RG running in this limit. From now on we will choose the gauge

αL = 0 in order to simplify the discussion.

In this particularly simple gauge the quadratic form (4.21) is structurally similar

to the corresponding equation in the metric formalism, see eq. (4.12) in [Reu98].

However, the prefactors of Λk in the various terms of Γ̆quad
k and the now ξ-dependent

coefficients CS(ξ), CT (ξ) of the curvature scalar R̄ are different and this will have a

rather significant impact on the resulting RG flow. Replacing these constants appro-

priately in the original metric calculation we can obtain the “bosonic” contributions

to the β-functions without a new calculation from those of [Reu98].

4.2.4 Propagating and non-propagating ghosts

Let us move on and discuss the ghost sector. Here we choose the cutoff operator to

be

Rgh
k =

(√
2ξ−1δµρk

2R(0)(−D̄2/k2) 0

0 1
2
Zgh
Lkδ

[a
c δ

b]
d k

2R(0)(−D̄2/k2)

)
. (4.27)

In the diffeomorphism-ghost sector we have adjusted Zgh
k to the kinetic term according

to the above rule.

In the O(d) ghost sector, however, there is no kinetic term; the ghosts do not

propagate. Nevertheless, a consistent application of the FRGE requires us not to

ignore, but to systematically integrate out these non-propagating modes in the same

way as all the others, i. e. ordered, and eventually cut off according to their D̄2-

eigenvalue. Therefore we introduce a cutoff-operator (with a prefactor unrelated to

the couplings in Γk, denoted by Zgh
Lk) in this sector as well.2

In the gauge chosen, the inverse ghost propagator S
(2)
gh +Rgh

k is a triangular matrix,

such that the contributions of the different sectors to the trace decouple.

2Recall that ideally, at the exact level, the cutoff action ∆kS would be independent of the running
couplings present in Γk [Wet93].
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4.2 RG flow on Ttet in Einstein-Hilbert truncation

For any constant choice of Zgh
Lk = Zgh

L we obtain contributions of the O(d) ghost

sector of the form

Tr

[
∂t(Z

gh
L k

2R(0))

−M2 + Zgh
L k

2R(0)

1

2
δ[a
c δ

b]
d

]
= Tr

[
k−2∂t(k

2R(0))

− M2

Zgh
L k2

+R(0)

1

2
δ[a
c δ

b]
d

]
(4.28)

with the abbreviation M2 ≡ 2µ̄2ξ−1/2. Introducing the dimensionless mass parameter

µ ≡ µ̄/k, and then neglecting any further running of µ, we observe that the trace

(4.28) depends only on the k-independent dimensionless quantity

− M2

Zgh
L k

2
≡ − 2µ2

Zgh
L ξ

1/2
. (4.29)

In order to avoid divergences due to a vanishing denominator in (4.28) we have to

choose a negative value for Zgh
L , as known from the conformal sector. Since both

parameters, µ and Zgh
L , occur only in the combination (4.29) we can mimic any choice

of Zgh
L < 0 by choosing a suitable µ. (In particular Zgh

L 7→ −1, upon replacing

µ2 7→ −µ2/Zgh
L .)

In the following we will discuss three distinguished choices of Zgh
L :

(i) Zgh
L = −1: the cutoff term is unrelated to Γk, the O(d) ghost contribution will

therefore depend on µ and ξ.

(ii) Zgh
L = −M2/k2 = −2µ2ξ−1/2: the cutoff is optimally adapted to the form of Γk

leading to a cancelation of the parameters µ and ξ. This procedure is closest to the

above rule for usual kinetic term adaptation and we therefore expect the most reliable

results for this choice.

(iii) Zgh
L → 0: no cutoff term introduced. This choice corresponds to neglecting the

O(d) ghost modes completely; the trace (4.28) vanishes.

As explained above, these three choices are equivalent to using Zgh
L = −1 and setting

µ2 equal to µ2, ξ1/2/2, and µ → ∞, respectively. We shall refer to them as the ghost

adaptation schemes (i)–(iii) from now on.

4.2.5 The interpolating beta functions

The remaining part of the calculation consists of projecting out the invariants
∫√

ḡ

and
∫√

ḡR̄ from the supertrace in order to find the β-functions for Gk and Λk; it

follows exactly the metric calculation in [Reu98].
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If we turn over to dimensionless couplings

gk =
kd−2

32πZNkκ2
= kd−2Gk, λk = k−2Λk (4.30)

the resulting system of coupled RG equations is autonomous and has the structure

∂tgk = βg(gk, λk) ≡
[
d− 2 + ηN(gk, λk)

]
gk, (4.31)

∂tλk = βλ(gk, λk) (4.32)

with the anomalous dimension ηN = −∂t lnZNk. We shall employ the standard thresh-

old functions Φ, Φ̃ of [Reu98] along with a new type of threshold function, Φ̌, defined

according to

Φp
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1R
(0)(z)− zR(0)′(z)

[z +R(0)(z) + w]p
(4.33)

Φ̃p
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1 R(0)(z)

[z +R(0)(z) + w]p
for n > 0 (4.34)

Φ̌p
n(w) =

1

Γ(n)

∫ ∞

0

dz zn−1R
(0)(z)− zR(0)′(z)

[R(0)(z) + w]p
(4.35)

and Φ̌p
0(w) = Φ̃p

0(w) = Φp
0(w) = (1 + w)−p. We can write down an explicit expression

for ηN in terms of the couplings g, λ then:

ηN(g, λ) =
gB̄1(λ)

1− gB̄2(λ)
. (4.36)

The functions B̄1 and B̄2 are ξ-dependent generalizations of similar ones occurring in

[Reu98]:

B̄1(λ) =
1

3
(4π)1−d/2

[
(d− 1)(d+ 2) Φ1

d/2−1

(
(ξ − 2)λ

)

+ 2Φ1
d/2−1

(
− 2λ

d− 2 + ξ

d− 2

)
− 4dΦ1

d/2−1(0)

− 2d(d− 1) Φ̌1
d/2−1

(
2µ2

√
ξ

)
− 6(d− 1)(d+ 2)CT (ξ) Φ2

d/2

(
(ξ − 2)λ

)

− 12CS(ξ) Φ2
d/2

(
− 2λ

d− 2 + ξ

d− 2

)
− 24Φ2

d/2(0)

]
(4.37)
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and

B̄2(λ) = −1

6
(4π)1−d/2

[
(d− 1)(d+ 2) Φ̃1

d/2−1

(
(ξ − 2)λ

)

+ 2Φ̃1
d/2−1

(
− 2λ

d− 2 + ξ

d− 2

)
− 6(d− 1)(d+ 2)CT (ξ) Φ̃2

d/2

(
(ξ − 2)λ

)

− 12CS(ξ) Φ̃2
d/2

(
− 2λ

d− 2 + ξ

d− 2

)]
. (4.38)

For the β-function of the cosmological constant we obtain

βλ =− (2− ηN)λ

+
1

2
gk(4π)1−d/2

[
2(d− 1)(d+ 2) Φ1

d/2

(
(ξ − 2)λ

)
+ 4Φ1

d/2

(
−2λ

d− 2 + ξ

d− 2

)

− 8dΦ1
d/2(0)− 4d(d− 1) Φ̌1

d/2

(
2µ2

√
ξ

)
− (d− 1)(d+ 2) ηN Φ̃1
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)]
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(4.39)

These general ξ-dependent expressions are in exact correspondence to the eqns. (4.40)

and (4.43) of ref. [Reu98] for metric gravity. Analyzing the ξ-dependence of the

RG flow they give rise to is a convenient way of exploring the field parametrization

dependence of the flow.

An important observation is that for a constant, ξ-independent choice of µ (i. e. in

the ghost adaptation schemes (i) and (iii)) the above β-functions reduce precisely to

those of the metric result in the limit ξ → 0. All prefactors and arguments of the

threshold functions coincide and the function Φ̌ vanishes in this limit. Although this

result is far from obvious when considering the definition of ξ in eq. (4.6), we can now

regard this one parameter family of field redefinitions as an interpolation between the

metric description (for ξ → 0) and the usual vielbein decomposition (for ξ = 1).

In scheme (ii) however, the argument of Φ̌ is constant, so that in the limit ξ → 0 the

β-functions match the metric result except for the additional Φ̌ contributions, which

are precisely the terms due to the O(d) ghosts.
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4.3 Numerical analysis of the RG flow

In this section we will analyze the RG flow in d = 4 dimensions. We will compare

results of different cutoff schemes, namely with the optimized shape function, R(0)(z) =

(1− z)θ(1− z), and the exponential one, R(0)(z) = sz/(esz − 1), for shape parameters

s ranging from 2 to 20.

4.3.1 The standard vielbein case ξ = 1

To start with, let us consider the usual vielbein representation of the metric in (4.6)

and set ξ = 1 for the time being. With ξ fixed the flow continues to depend on the mass

parameter µ ≡ µ̄/k. We shall analyze this dependence in the following, highlighting

especially the implications of those choices of µ that correspond to the three ghost

adaptation schemes (i)–(iii).

A first encouraging result is that there exists a non-Gaussian fixed point, for any

value of the dimensionless constant µ 6= 0, and in all cutoff schemes we studied.

(A) Fixed point properties. Figure 4.1 shows, for the case of the optimized cutoff,

the µ-dependence of three quantities one might expect to be universal, namely the

critical exponents θi at the fixed point and the product g∗λ∗. We notice that, while

the very existence of the fixed point is indeed universal, its properties heavily depend

on the value of µ: For µ . 0.8 we find a UV attractive FP with two real critical

exponents, which then turn into a complex conjugated pair. At µ ≈ 1.35 the FP

changes its character and becomes UV repulsive in both directions. For large µ-values

the dependence on µ weakens for all three “universal” quantities.

Employing the exponential cutoff (not shown here) essentially leads to the same

picture: real critical exponents turn into a complex pair before the otherwise UV

attractive FP gets UV repulsive for large µ. In all cases the product g∗λ∗ changes its

sign from negative to positive within the interval of µ, in which the FP is attractive

and has complex critical exponents.

It is important to stress that even in a much better truncation with many more

invariants we would not expect these quantities to become independent of µ: The

parameter µ should not be considered a free parameter corresponding e. g. to different

cutoff schemes, but it rather corresponds to an additional coupling. In principle its

running is prescribed by an additional β-function which however is not determined
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Figure 4.1. The critical exponents θi = θ′i + iθ′′i split into real and imaginary part
(solid and dashed line, respectively) of the NGFP and the product g∗λ∗ (dotted line)
as a function of the mass parameter µ for the optimized cutoff. The straight horizontal
lines represent the values of the corresponding quantities in the metric calculation.

by the present calculation. Therefore one should not worry too much about the µ-

dependence of the “universal” quantities.

In the ghost adaptation scheme (i) the best we can do, as we did not calculate

the running of µ in our truncation, is to sensibly choose a fixed value for the constant

µ. Most naturally we would choose a value of the order of 1 as any other choice would

correspond to the introduction of an additional unmotivated physical scale other than

k.

Strikingly, in all cutoff schemes studied there exists indeed a µ-interval including, or

at least close to µ = 1 in which the situation is similar to the metric theory: We find

the NGFP, it is UV attractive, has g∗λ∗ > 0, and a pair of complex conjugate critical

exponents.

As an alternative to choosing µ = 1 it is therefore tempting to find the “best fit”

to the metric calculation by selecting a µ-value such that there is also a quantitative

agreement of the universal quantities.

In Fig. 4.1 the values corresponding to the metric calculation are given by the

horizontal lines. We observe that the crossings of the lines of the same type are quite

close to each other and are all located at a µ of the order of 1. For the optimized cutoff

we find the crossing for the real part of the critical exponent θ′i very much at µ ≈ 1
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and for the product g∗λ∗ at about µ ≈ 1.1; the imaginary part θ′′i takes on its metric

value at µ ≈ 1.45 in a region where the FP turned UV repulsive already. Taking the

average of these values we arrive at µ ≈ 1.2, for which we expect the best agreement

between the vielbein and the metric theory.

The fact that we find this agreement of metric and vielbein values in a relatively

small µ-interval close to the most natural value of µ = 1 can be interpreted as an

indication that also the full quantum theories are similar to each other or perhaps

equivalent.

The adaptation scheme (ii) is expected to be the most reliable one. It yields the

value µ = 1/
√

2 ≈ 0.7 for ξ = 1. However, in this scheme the results of scheme (i)

are not confirmed: For the smaller value of the parameter µ we find a UV attractive

NGFP at g∗λ∗ < 0, with two real critical exponents.

The adaptation scheme (iii) corresponds to large µ→∞, so that we find a UV

repulsive FP in this scheme.

(B) The phase portrait. Let us now discuss the entire RG flow. In Fig. 4.2 we have

plotted its phase portrait for different values of µ. Figs. 4.2(b) and 4.2(c) correspond

to the first adaptation scheme (i). We observe that the best fit case µ = 1.2 is

indeed most similar to the metric flow known from Quantum Einstein Gravity in the

Einstein-Hilbert truncation [Reu98, RS02, LR01]: We find a NGFP in the positive

(λ, g)-quadrant with two attractive directions; the trajectories spiral into it due to

the nonzero imaginary part of the critical exponents. It is in an interplay with the

Gaussian fixed point and there exists a “separatrix” that separates trajectories with

positive and negative IR values for the cosmological constant λ. Also a major difference

to the metric case is to be noted: The UV repulsive direction of the GFP has changed

and points now into the negative λ-halfplane. Therefore the separatrix starts off with

negative λ before heading to the NGFP at λ∗ > 0. This effect can be traced back to

be due to the O(d) ghost contributions.

For smaller µ (as e. g. µ = 1/
√

2 in adaptation scheme (ii)) these contributions are

enhanced in such a way, that the NGFP itself lies at λ∗ < 0 (cf. Fig. 4.2(a)). Now the

fixed point has real critical exponents, but is still UV attractive. Qualitatively this

picture resembles much the RG flow of Quantum Einstein Cartan Gravity (QECG) in

the planes of vanishing and infinite Immirzi parameter as found in [DR, DR12].

For large µ (scheme (iii)), as exemplarily shown for the case of µ = 2 in Fig. 4.2(d),

we find a rather different behavior. Although the flow looks similar to the metric case
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(a) µ = 1/
√

2, ghost adaptation scheme (ii):
The phase portrait resembles the one in
QECG.
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(b) µ=1: A value close to µ = 1 seems the
most natural choice when using ghost
adaptation scheme (i).
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(c) µ=1.2: For this value we obtain a situa-
tion most similar to the metric theory in
scheme (i).
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(d) µ=2: The limit cycle arises as a qualita-
tively new feature of the phase portrait
when scheme (iii) is applied.

Figure 4.2. RG phase portraits for different values of the mass parameter µ at ξ =1.
The figures show the impact of the O(d) ghost contribution: While for large µ, when it
is suppressed, we obtain a limit cycle, for smaller µ we find flow diagrams similar to the
ones known from QEG and QECG, respectively.
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in large parts of the (λ, g)-plane, the NGFP is repulsive now; the critical exponents

form a complex conjugate pair with a negative real part. These two circumstances lead

to the formation of a limit cycle around the NGFP. This limit cycle is UV attractive

for trajectories approaching it both from outside and from the interior.

Clearly such a limit cycle is an interesting and intriguing new possibility for the

nonperturbative UV completion of a quantum field theory. It is “asymptotically safe”

in a novel sense. However, in this concrete case the picture of a limit cycle is hardly

credible against the background of all RG flow studies of gravity to date. Nevertheless

it is inspiring to see its formation for the first time in quantum gravity.

(C) Non-propagating ghosts. The fact that we should not choose the parameter

µ too large teaches us another important lesson: Consider the β-functions as given in

the previous section. They involve the new threshold function Φ̌1
d/2(w) that vanishes

for w → ∞ and diverges for w → 0. In both β-functions, the terms with Φ̌1
d/2(w)

are exactly the ghost contributions of the O(d) gauge group. Since the Φ̌ argument is

always w = 2µ2/
√
ξ we can control the magnitude of these contributions by changing

µ: We obtain a suppression for large µ and an infinite enhancement in the limit µ→ 0.

If we had not added a cutoff for the O(d) ghosts, the situation would correspond to the

limit µ → ∞, i. e. adaptation scheme (iii). In this case we find a UV repulsive fixed

point, quite different from all results known from metric calculations. We therefore

conclude that contrary to the situation of perturbation theory [Woo84] it is crucial

to include all modes of the non-background fields into the renormalization procedure,

whether they are propagating or not, by introducing a cutoff-operator for all of them

and retaining their contribution to the supertrace in the FRGE. This implies that we

should choose adaptation scheme (i) or (ii) but not (iii).

Similar remarks might also apply to perturbative calculations with regularization

schemes which retain power divergences.3

4.3.2 Field parametrizations with ξ 6= 1

When altering the value of ξ, we do not change theory space as both field content

and symmetry group remain the same. Therefore we expect to find the same fixed

point properties in the RG flow for all values of ξ, resulting in universal quantities that,

3It might be interesting to reconsider the calculation [BS11] in this light since there a proper-time
regulator has been used.
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Figure 4.3. Critical exponents and g∗λ∗ calculated using the optimized cutoff, for
different values of the mass parameter µ, as functions of ξ: The real part of the critical
exponents θ′i (solid), its imaginary part θ′′i (dashed) and the product of the fixed point
coordinates g∗λ∗ (dotted).

in case of a good approximation to the exact flow, are largely independent of ξ. We

will use this criterion in order to test the reliability of the different ghost adaptation

schemes in this section.

(A) Adaptation scheme (i). In Fig. 4.3 we have plotted the universal quantities

(critical exponents and the product of the fixed point coordinates) for various values of

the mass parameter µ as functions of ξ. As µ does not depend on ξ in these examples,

all of them correspond the adaptation scheme (i), although Fig. 4.3(d) already shows

typical characteristics of the large µ limit and can therefore also be seen as an example

of scheme (iii).

In all four cases we start with the values of the metric theory at ξ = 0 and find

for each of them a quite pronounced dependence on ξ. While for small µ as shown in

Fig. 4.3(a) the critical exponents turn from complex to real and g∗λ∗ turns negative

as we move towards ξ = 1, for large µ (Fig. 4.3(d)) g∗λ∗ stays positive but the fixed
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Figure 4.4. Critical exponents and g∗λ∗ for different values of an adapted mass param-
eter µ as a function of ξ (θ′ solid, θ′′ dashed, g∗λ∗ dotted), calculated with the optimized
cutoff.

point gets repulsive. Only in the region of µ ≈ 1 the situation improves a little,

as no quantity changes its sign in the interval of ξ ∈ [0, 1]. However the quantities

plotted are far from being constant with respect to ξ; furthermore if we compare the

analogous results obtained with the family of s-dependent exponential cutoffs (as is

done in Appendix D) we find that these results still show a substantial cutoff scheme

dependence. Can we do better than this?

(B) Adaptation scheme (ii). If we employ the optimally adapted cutoff (ii) instead

(Fig. 4.4(b)), the O(d) ghost contribution is now independent of ξ. Therefore ξ = 0

does not correspond to the metric theory any more. In this case we find the universal

quantities almost independent of ξ.

Variants of this cutoff adaptation differing by a factor of
√

2 (Figs. 4.4(a), 4.4(c))

show that the universality can even be improved when choosing a smaller µ. This

effect, however, does not really improve the reliability of the flow.: In the limit µ→ 0
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Figure 4.5. The product g∗λ∗ in ghost cutoff scheme (iii) applying the optimized and
the exponential cutoff for various values of the shape parameter s. We observe that, as
expected for an on-shell quantity, its RG scheme dependence and its ξ dependence is
fairly small.

the constant O(d) ghost contribution diverges and governs the RG flow, so that the

effect of the physical field modes becomes negligible. Therefore it is evident that the

ξ-dependence weakens when going to smaller values of µ, but only at the cost of losing

the physics content of the flow.

(C) Adaptation scheme (iii). Neglecting the ghost contributions, the typical pic-

ture for the optimized as well as for the exponential cutoff looks very similar to Fig.

4.3(d). In particular we always find that in the vielbein case (at ξ = 1) the FP turned

repulsive, such that a limit cycle has formed. This drastic change in the UV behavior

of the theory disfavors the neglection of the ghosts compared the other adaptation

schemes.

From Fig. 4.3 we also observe that the product g∗λ∗ becomes the more independent

of ξ the more the ghost contributions are suppressed. This behavior is analyzed in

more detail in Fig. 4.5, where we plotted the product g∗λ∗ in the limit µ → ∞ for

the optimized and various shape parameters of the exponential cutoff. We find that

the product is almost scheme independent in the metric limit ξ = 0, but its scheme

dependence for non-zero ξ stays fairly small as well. Moreover, within each scheme it

depends far less on ξ than for any finite fixed value of µ.

Recall that in cutoff scheme (iii) the only difference to the metric calculation lies

in the terms proportional to the equations of motion that additionally appear in the

Hessian w. r. t. the vielbeins (cf. eq. (4.14)). The product g∗λ∗, however, is considered
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an on-shell quantity [LR01], such that it should be virtually independent of these off-

shell contributions. Thus, the stability observed in Fig. 4.5 is actually to be expected

and impressively verifies the on-shell character of g∗λ∗.

(D) Discussion. The properties of the universal quantities calculated in this section

show, that the influence of the O(d) ghosts on the fixed point properties is quite

significant. While neglecting these contributions (adaptation scheme (iii)) leads to the

implausible result that the fixed point changes its character and gets UV repulsive for

some ξ ∈ [0, 1], the simple unadapted cutoff (scheme (i)) leads to universal quantities

strongly dependent on ξ.

Only the optimally adapted ghost cutoff (scheme (ii)) predicts relatively stable val-

ues for the universal quantities. These values indicate a fixed point at λ∗ < 0 with real

critical exponents, that therefore may not be the one known from the metric theory.

If this picture is correct, part of the ξ-dependence found in scheme (i) is clearly due

to the fact, that in this scheme the quantities are forced to take on their metric values

at ξ = 0. This way we would have constructed an interpolation between theories of

different universality class which obviously leads to a ξ-dependence of the “universal

quantities”.

Nevertheless, all results show a cutoff scheme, i. e. R(0)( · )-dependence that is more

severe than in the metric case. It is analyzed further in Appendix D to which the

reader might turn at this point.

Apparently the truncation chosen is less reliable than the Einstein-Hilbert trunca-

tion of metric gravity, although it can be considered as its exact “translation” to the

tetrad theory space. Together with the different FP properties this indicates that the

quantum theories of metric and tetrad gravity (if both should turn out nonpertur-

batively renormalizable) are perhaps not similar to each other. For this reason it is

crucial to use tetrads as fundamental field variables whenever an RG study of fermions

coupled to gravity is performed even if only the pure gravity β-functions are investi-

gated. Our results can be considered a warning that in a nonperturbative RG analysis

the O(d) ghost sector cannot be ignored (as opposed to perturbation theory [Woo84]).

Seen in this light, the status of hybrid calculations which add fermionic contributions

to metric QEG seems questionable.
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4.4 Summary and Conclusions

In this chapter we performed a first analysis of the renormalization group flow on the

“tetrad only” theory space Ttet = {A[eaµ, · · · ]}. Its points are action functionals which,

besides the indispensable background and ghost fields, depend on the vielbein eaµ only,

and which are invariant under the semidirect product of spacetime diffeomorphisms

and local Lorentz transformations. Contrary to Einstein-Cartan theory, that is studied

in the next chapter, the spin connection is not an independent field, but rather is

identified with the Levi-Civita connection implied by eaµ. This excludes the possibility

of field configurations with torsion. We truncated Ttet so as to consist of a running

Einstein-Hilbert term, along with the classical gauge fixing and ghost terms. As a

result, the only difference in comparison to QEG in the Einstein-Hilbert truncation

[Reu98, LR01, RS02] is the use of eaµ rather than the metric gµν as the fundamental

field variable and the larger group of gauge transformations Diff(M)⋉O(d)loc replacing

Diff(M). In the present treatment the latter has the status of a composite field:

gµν = ηabe
a
µe
b
ν . Our main tool was the gravitational effective average action on Ttet,

and in particular the exact FRGE which governs its scale dependence. Since this

framework is not covariant under field reparametrizations, and since the respective

groups G are different, the RG flow on Ttet is likely to differ from the one of QEG,

even at the exact level.

This expectation was confirmed by our explicit calculation. The details of the

Einstein-Hilbert flows with eaµ and gµν , respectively, as fundamental fields are indeed

different in a significant way. However, their gross topological features are still similar,

nevertheless. In particular we found on Ttet one, and only one, non-Gaussian fixed

point, exactly as in QEG. Provided it is not a truncation artifact it seems suitable for

taking a nonperturbative continuum limit there, thus defining an asymptotically safe

field theory.

To assess the reliability of the approximations made we investigated the dependence

of “universal” quantities such as critical exponents and the product g∗λ∗ on the cutoff

shape function R(0)(·) and the mass parameter µ. The latter had to be introduced in

order to give equal canonical dimensions to diffeomorphism and O(d)loc ghosts. While

in a more complete truncation it would be treated as a running coupling with its own

β-function, we neglected its running in the present investigation. The upshot of the

analysis is that the very existence of the NGFP indeed seems to be a universal feature,

in the sense that it exists for all admissible cutoffs and values of µ.
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However, further details, even the critical exponents show a variability with R(0)(·)
and µ which is significantly larger than in QEG with the same truncation. (In par-

ticular, in QEG there is no analog of the parameter µ.) Thus we must conclude that,

using the same type of flow equation and the same (Einstein-Hilbert) truncation, the

use of the vielbein instead of the metric leads to a less robust RG flow.

Can we understand on general grounds why the flow of the metric theory might

have better robustness properties than the one based upon the tetrad? A possible

explanation is as follows.

The running couplings parametrizing a general functional Γk are, per se, not mea-

surable quantities, that is, typical observables are complicated combinations of these

couplings, and in forming these combinations the scheme dependence which the indi-

vidual couplings have (even in the exact theory!) cancels among them. Consider now

a theory space whose actions are constrained to be invariant under a group G of gauge

transformations which we make larger and larger. As a result, more and more exci-

tations carried by the (fixed) set of fields considered are declared “unphysical” gauge

modes. Nevertheless all those modes continue to contribute to the supertrace in the

FRGE, but are counteracted by an increasing number of ghosts needed to gauge-fix

G. Loosely speaking, increasing the size of G reduces the amount of “physical” (in

the sense of “non-gauge”) or “observable” contents encoded in the running couplings.

In diagrammatic terms, the ratio of physical excitations relative to gauge excitations

gets smaller when G grows. However, since those features of the RG flow which are

due to the gauge modes have no reason to be scheme independent, one can expect

that the larger is G the more scheme dependent is even the exact RG flow.

While, in d = 4, metric gravity has 4 gauge parameters per spacetime point related

to the diffeomorphisms, this number increases to 4+6 in tetrad gravity since local

Lorentz invariance is demanded in addition. If we assume that both theories have

the same number of physical degrees of freedom, it is clear that tetrad gravity has a

smaller ratio of physical to unphysical field modes, and this might explain to some

extent why its RG flow has the more delicate scheme dependence we observed.

To close with, let us come back to the issues raised at the beginning of this chapter

which motivated the present analysis.

(A) In ref. [DR12, DR] the RG flow was computed for a 3D truncation of TEC =

{A[e, ω, · · · ]} which has the same gauge transformations Diff(M) ⋉ O(d)loc as Ttet =

{A[e, · · · ]}, but treats the spin connection as an independent field. There, too, the
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very existence of a NGFP is a robust feature which is obtained for all cutoff and

gauge choices, but the quantitative details are more scheme dependent then we are

used to from QEG. In this respect the results of [DR12] are very reminiscent of what

we found in the present investigation. In [DR12] both the truncated action and the

fundamental variables are different from QEG (“Holst” instead of “Einstein-Hilbert”,

and (e, ω) instead of the metric). In the light of our present results we can say that

the hitherto unexplained relatively strong scheme dependence seen in [DR12] could

be entirely due to the different variables used and the related larger group of gauge

transformations; even though the running actions used were quite different in the two

cases (first vs. second order in derivatives, etc.) this is not necessarily the cause for

the observed differences.

With respect to our RG study on TEC carried out using the WH-like RG equation

in the next chapter, we keep in mind that even for a good approximation of the exact

equation the details of the flow are expected to differ from those found in [DR12] due

to this enhanced scheme dependence. Thus, for judging the applicability of the new

approximate FRGE we should only consult the gross features of the flow for a direct

comparison.

(B) In the literature [EG11, VZ10, ZZVP10, PP03b, PP03a, DP98] “hybrid” calcu-

lations were proposed in order to avoid re-calculating parts of the β-functions for the

gravitational couplings in presence of fermionic matter. The idea is to use the tetrad

formalism only when it comes to evaluating fermion loops, but to keep the metric

as the fundamental variable for the gravity loops. While this can be legitimate in

perturbation theory [Woo84], the present investigation revealed that the quantitative

details of the flow of Newton’s constant and the cosmological constant are significantly

different in the metric and the vielbein formalism. Hence, adding the fermionic loops

to the “old” metric β-functions does not seem a consistent procedure, even within the

limited scope of a truncation. Thus we must conclude that one should refrain from

such hybrid calculations when one aims at quantitative results.

After the publication of [HR12] on which this section of the thesis is based, a second

RG study of Ttet appeared [DP], which independently verifies our results in [HR12]. In

addition, for the same truncation of Ttet a type I and a type II cutoff is applied after the

fluctuation fields have been decomposed into their spin components. This procedure

allows to investigate values of the gauge fixing parameter αD other than αD = 1. It

is observed that the pronounced µ-dependence of the critical exponents considerably
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weakens in the (most physical) limit of αD → 0 and their value is thus close to

the metric result for all µ. Moreover, for the type II cutoff the critical exponents are

insensitive of αD to a good approximation such that the weak µ-dependence is obtained

for all values 0 < αD < 1. Hence, it is explicitly demonstrated, that among the various

RG schemes there are some which lead to results most similar to the metric theory.

In these schemes also the correct treatment of the Lorentz ghosts does not seem to

play an as crucial role as it does in our computation, since the complete neglection of

these ghost contributions, corresponding to the limit µ→∞, does not generally lead

to a change of the fixed point’s character from UV attractive to repulsive any more.

The authors draw the conclusion, that metric and tetrad gravity do lead to compa-

rable results, but due to the enhanced gauge and RG scheme dependence one should

refrain from explicit computations on Ttet “as a matter of practical convenience”. In-

stead one should try to analyze the effects of fermions within the metric theory space

TE as far as possible, by hiding the explicit tetrad dependence of their kinetic term

using the computational trick of squaring the Dirac operator.

We do not entirely share this conclusion. While the proposed procedure is certainly

useful concerning its practicability, the results obtained will lack ultimate legitima-

tion from the conceptional point of view: Any action containing dynamical spinorial

fermions will always be an element of a suitable extension of Ttet, but it is alien to

TE. On the exact level it is therefore clear that any RG study of gravity + fermions

naturally has to be carried out in the extended Ttet. Here, the question arises whether

we can take over results from metric gravity to the tetrad theory, since every element

of TE is in direct correspondence to an invariant of Ttet. This is done in the “hybrid

computations”, and the new results [DP] indicate, that there might exist certain RG

schemes and gauges, that justify this as an approximation. The inverse procedure is

far more indirect, as we then relate the square of a field monomial in Ttet to an element

of TE in order to take into account fermions effectively. Technically we may achieve

a reduced gauge and RG scheme dependence by this step, but we cannot expect the

accuracy of our predictions to improve. It might be that we trade an unstable result

for a stable one that, however, is subject to an approximation error of at least that

size hidden in the result.

(C) In the symmetric vielbein gauge the O(d)loc ghosts are non-propagating. It was

therefore argued, in perturbation theory, that they simply may be ignored in practical

calculations [Woo84]. As we saw quite explicitly, the same is not true in the FRGE
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framework. The Lorentz ghosts do have a considerable impact on the RG flow we

found, and moreover the arguments put forward in [Woo84] are easily seen not to

carry over to Γk at k > 0.

Several semi-quantitative calculations, like [SW10] or the one presented in the Chap-

ter 3 ([HR11]), have shown that the Standard Model coupled to asymptotically safe

gravity may lead to a theory with enhanced predictivity, that is some of the pertur-

batively undetermined parameters of the Standard Model (like the mass of the Higgs

boson [SW10] or the fine-structure constant [HR11]) can be calculated in the coupled

gravity + matter theory. The RG study of tetrad gravity presented in this chapter has

identified possible pitfalls in RG calculations of such coupled systems of gravity and

fermions and indicated how to avoid them. This paves the way for a fully quantitative

treatment of the considerations in refs. [SW10] and [HR11]. Even though this might

require more work than thought before, the chance to compute the Higgs mass or the

fine-structure constant clearly will be worth the effort.
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5 QECG in Holst Truncation

In this chapter we analyze the RG flow on the Einstein-Cartan theory space TEC

using the new Wegner-Houghton type RG equation for the effective action Γk that was

introduced in Section 2.3.

The main difference to “tetrad only” gravity, that we dealt with in the last chapter,

lies in the fact, that in TEC the spin connection ωabµ is considered an independent field

variable. Thus, the spacetime connection Γλµν is no longer restricted to the Levi-Civita

choice, but is allowed to carry torsion. A fundamental QFT of gravity whose UV limit

is taken at a NGFP in this theory space is called Quantum Einstein Cartan Gravity

(QECG). First evidence for the existence of a suitable NGFP has been collected in

[Dau].

The truncation of TEC which we are going to employ is motivated by the Holst action

SHo[e, ω] = − 1

16πĜ

∫
ddx e

[
ea
µeb

ν
(
F ab

µν −
1

2γ
εabcdF

cd
µν

)
− 2Λ

]
. (5.1)

It generalizes the Hilbert-Palatini action of classical Einstein-Cartan gravity by the

addition of the Immirzi term (with the Immirzi parameter γ as its coupling), that

vanishes on spacetimes without torsion and hence does not have a counterpart in Ttet.
Thus, by the presence of this term, our truncation explicitly reflects the fact that TEC

is a generalization of Ttet. Note, however, that also the other two terms in SHo differ

from the torsionless case ω = ω(e) (cf. Appendix F.3).

In addition, the inclusion of the Immirzi term is motivated by two further reasons.

The first more conceptual reason being that the Holst action is the starting point

for several other approaches to the quantization of gravity as there are canonical

quantum gravity in Ashtekar’s variables [Ash91, AL04, Rov04], LQG [Thi07] or spin

foam models [Per03]. Thus, the RG analysis of the Holst action may help to find and

understand relations between the Asymptotic Safety scenario and these alternative

approaches to quantum gravity. In particular, in LQG the coupling associated to the

Immirzi term, the dimensionless Immirzi parameter γ, is of interest since it is present
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5 QECG in Holst Truncation

in the spectrum of area and volume operators and thus enters also the expression for

the entropy of black holes [Rov04]. Usually in LQG γ is considered a parameter of

fixed value parametrizing different quantum theories of gravity. In the RG approach,

however, γ has the status of an additional coupling and we will find that as such it

will generically be subject to a non-trivial RG running. In order to directly compare

the two approaches to Quantum Gravity it would be important to relate these two

quite different conceptions of the Immirzi parameter in some way.

The second reason is of more phenomenological nature. When we include fermionic

matter in the truncation, the fermions will act as a source of torsion in the classical

field equations. Here the presence of the Immirzi term gives rise to a CP violating

four-fermion interaction, whose coupling constant depends on the value of the Immirzi

parameter. Thus in this case the Immirzi parameter leads to an observable effect

[PR06], at least in principle, that may have had consequences for the evolution of the

early universe [FMT05]. The study of pure gravity, that we present here, can be seen

as a first step in this direction as we try to simplify the calculation as far as possible

by the application of the new WH-like flow equation. If this procedure turns out

reliable it may be generalized to include fermions, rendering this even more complex

task technically feasible. By identifying the domain of validity of the new WH-like

equation we therefore provide substantial preliminary work for future projects on this

field of research.

The study presented in the following is the second fully non-perturbative RG analysis

of Einstein-Cartan gravity, while the first RG study on TEC has been carried out in

[Dau, DR, DR10, DR12]. For the present calculation we deliberately chose a similar

setting, using the same truncation with comparable gauge-fixing and ghost terms, so

that, except for minor details, the only difference between the two calculations lies in

the RG equation used to study the flow. While in [Dau] a well-tested RG equation

which makes use of the PT approximation (similar to (2.62)) has been employed, we

present here the first application of the new WH-like flow equation. Due to the similar

framework we are able to directly compare both RG equations; as neither of them is an

exact equation we cannot judge the absolute validity of the respective approximations

they make use of, but searching for common features of the two resulting RG flows

both calculations may support each other, such that the credibility of these results is

strengthened.
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5.1 Truncating the theory space

This chapter is organized as follows: In a first section (5.1) we introduce the trun-

cation studied and give details about the gauge-fixing conditions used as well as the

resulting ghost action. Section 5.2 contains the main part of the calculation, namely

the computation of Γ(2) and the corresponding traces on the RHS of the flow equa-

tion up to second order in the spin connection ω, evaluated for constant background

fields. Before we can derive the exact form of the resulting β-functions at the end of

Section 5.3 we discuss different possibilities for projecting the RHS onto the invariants

under consideration in this section. The last section (5.4) contains a detailed analysis

of the resulting RG flow as well as a comparison to the similar study carried out in

[Dau, DR].

5.1 Truncating the theory space

In Chapter 2.1 we introduced the notion of theory space and discussed its role

as a fundamental ingredient to the Asymptotic Safety program. In this chapter we

deal with gravity in a formulation where the tetrad ea and the spin connection ωab

form the set of independent fundamental fields and functionals thereof span the theory

space. This choice clearly is inspired by the classical theory of Einstein-Cartan gravity;

however, as we want to stress once more, this does not mean that we try to “quantize”

classical Einstein-Cartan gravity: By taking into account the full theory space of

all gauge invariant functionals of ea and ωab the classical action SΛ (which can be

reconstructed from the fixed point effective action Γk→∞ [MR09, MR11]) corresponding

to the quantum theory Γk=0 we wish to construct almost certainly does not coincide

with the classical Einstein-Cartan action.

Besides the field content, theory space is defined by the group of gauge transfor-

mations one wants to impose. Here our choice is lead as well by the classical theory

of Einstein-Cartan gravity: In addition to the group of diffeomorphisms, that forms

the gauge group of metric gravity, in the tetrad formulation we demand invariance

under a second group of gauge transformations, namely the O(4)loc. As we already

explained in the last chapter this is due to the fact, that at each point of space-

time an O(4)-manifold of tetrads eaµ gives rise to the same metric gµν = eaµηabe
b
ν =

ecµΛ
a
cηabΛ

b
de
d
ν , ∀Λ ∈O(4), and this arbitrariness shall be treated as an additional

gauge freedom. However, as the diffeomorphisms relate properties of the spacetime at

different points, while the O(4)-transformations act ultralocally, only the O(4)loc forms
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5 QECG in Holst Truncation

a normal subgroup of the total group of gauge transformations G. The structure of

G is therefore given as the semi-direct product G = Diff ⋉ O(4)loc. The theory space

inferred from classical Einstein-Cartan gravity is thus defined as

TEC =
{
A[eaµ, ω

ab
µ, · · · ];G = Diff(M) ⋉ O(4)loc

}
, (5.2)

where A denotes an arbitrary (action) functional that is invariant under the action of

the gauge transformations G, while the dots stand for ghost and background fields

that eventually have to be introduced in our approach.

In comparison to the theory space Ttet that was analyzed in Chapter 4, the only

difference lies in the spin connection ωabµ that is an independent field variable here,

whereas it could be expressed in terms of the vielbein before.

In the following subsections we discuss the nature of the space TEC and introduce

the details of the truncation we use to study the RG flow on it.

5.1.1 A Holst type truncation

In order to construct a “basis” of the theory space TEC from its field content we

have to find a complete set of linearly independent integrated field monomials that

can be composed from the basic fields {ea, ωab} and are invariant under the action of

the total symmetry group G.

This problem can be reformulated in a more geometrical fashion: In our setting we

deal with a four dimensional Euclidean manifold M without boundary (∂M = 0).

Thus we may ask equivalently: How many different 4-forms can be constructed from

a generic (not necessarily invertible) tetrad one-form ea and the spin connection one-

form ωab that form a (pseudo-)scalar w. r. t. the O(4)loc-transformations?

As basis building blocks we can use the tetrad ea and its covariant exterior derivative,

the torsion two-form T a = dea + ωab ∧ eb. Since the spin connection itself transforms

inhomogeneously under O(4)loc-transformations and we want to construct an O(4)loc-

tensor, we can only use its exterior covariant derivative, the curvature two-form or

field strength tensor F ab, as a third building block

F ab = dωab + ωac ∧ ωcb . (5.3)
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5.1 Truncating the theory space

From these three building blocks we can construct 4-forms using the wedge product

and form O(4)-(pseudo)-scalars by contracting the O(4)-indices with the flat Euclidean

metric ηab or the fully anti-symmetric ε-tensor εabcd. Following this procedure we find

6 different field monomials, that, however, are partly related to each other according

to
(a) εabcd e

a ∧ eb ∧ ec ∧ ed

(b) εabcd e
a ∧ eb ∧ F cd

(c) ea ∧ eb ∧ Fab
(d) εabcd F

ab ∧ F cd = εabcd d
(
ωab ∧

(
dωcd + 2

3
ωce ∧ ω d

e

))

(e) F ab ∧ Fab = d
(
ωab ∧

(
dωab + 2

3
ω c
a ∧ ωcb

))

(f) T a ∧ Ta = ea ∧ eb ∧ Fab + d(ea ∧ Ta) .

(5.4)

All monomials that are contracted by the ε-tensor correspond to O(4)-scalars, while

the others form O(4)-pseudo-scalars. This is due to the fact that any 4-form, being a

maximal form on the manifold, contains another ε-density (dxµ ∧ dxν ∧ dxρ ∧ dxσ =

εµνρσd4x).

The first monomial (a) is proportional to the volume form of the manifold such

that its corresponding coupling is the cosmological constant. The second term (b) is a

scalar curvature term, with the Newton constant as its related coupling; together the

first two terms form the Hilbert-Palatini action of classical gravity in the first order

formalism. The third monomial (c) is known as the Immirzi term that is connected to

the Immirzi parameter γ as its coupling. It is parity-odd and from relation (f) we find

that it vanishes on torsionless manifolds. When added to the Hilbert-Palatini action

the terms (a)-(c), including their related couplings, form yet another action that leads

to Einstein’s equation for any value of the parameter γ; we will refer to this action as

the Holst action [Hol96].

We observe that only the first three monomials contain local information about the

manifold, while the field strength squared terms (d,e) turn out as being of topological

nature, giving rise to the Euler and the Pontryagin invariant, respectively. The last

equation (f) reveals a relation between the torsion squared invariant and the Immirzi

term. On any manifold of a given topology this relation is fixed as the exterior deriva-

tive term in (f) corresponds to a third topological invariant, the Nieh-Yan invariant.

If we restrict ourselves to considering local invariants only, the Holst action therefore
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5 QECG in Holst Truncation

amounts to the most general ansatz possible, as long as the invertibility of the tetrad

is not postulated.

Unfortunately, the formalism we use to compute the RG flow requires us to add

a gauge-fixing term Sgf and a cutoff action ∆Sk to the truncation ansatz, which,

in the background field formalism, both can only be constructed if we assume the

invertibility of the background vielbein ēa. Once introduced, these terms couple the

RG flow of the above 3 invariants to the infinitely many additional invariants, that

can be constructed using the inverse background vielbein. Thus, the three-dimensional

theory space described by an ansatz of the form of the Holst action

ΓHo k[e, ω] = − 1

16πGk

(
1

2

∫
εabcd e

a ∧ eb ∧ F cd − 1

γk

∫
ea ∧ eb ∧ Fab

−Λk

12

∫
εabcd e

a ∧ eb ∧ ec ∧ ed
)

= − 1

16πGk

∫
d4x e

[
e µ
a e

ν
b

(
F ab

µν −
1

2γk
εabcdF

cd
µν

)
− 2Λk

]
(5.5)

necessarily becomes a three-dimensional truncation of an infinite dimensional theory

space, when its RG flow is calculated using the exact FRGE (2.34) or related functional

RG techniques. The truncation (5.5) forms the starting point of our investigations of

the RG flow of QECG.

5.1.2 Logical relation of the RG flows on TEC and TE

Relation between the classical theories. It is often stated that, loosely speaking,

the classical theories of metric gravity resulting from the Einstein-Hilbert action SEH

and gravity in the first-order formalism based on the Holst action SHo are equivalent.

Let us carefully review this statement to see which implications we may expect for the

resulting quantum theories.

For γ 6= ±1 the Holst action SHo contains 24 independent field components due to the

new field ωabµ and 16 due to the field eaµ. As the, compared to the metric formulation,

additional O(4) gauge group is 6 dimensional we can employ a gauge fixing condition

that requires the antisymmetric part of eaµ to vanish. Then the remaining 10 field

components of its symmetric part correspond to the usual 10 metric field components.

This gauge is known as the Deser–vanNieuwenhuizen algebraic vielbein gauge [DN74].
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5.1 Truncating the theory space

From a variation of the action w. r. t. the spin connection ωabµ we obtain 24 equations

of motion, that are linear in ωabµ as the action is at most quadratic in ωabµ. If we

assume the invertibility of the tetrad eaµ, we can solve these linear equations for

the 24 components of ωabµ(e). One can show [Giu94, Dau] that these solutions of the

equations of motion are equivalent to requiring the 24 components of the torsion tensor

to vanish (T aµν = 0). Hence, ωabµ(e) corresponds to the unique metric and torsionless

connection, the Levi-Civita connection ωabµ(e) = ωLC
ab
µ.

Substituting this solution into the equations of motion for eaµ and thus assuming the

invertibility of the tetrad, we are led to 10 independent equations that are equivalent

to Einstein’s equation [Giu94].

The case of γ = ±1 is special, as the action SHo then only depends on one chirality

of the spin connection ωabµ, i. e. on its self-dual or anti-selfdual part. This can be seen

as follows:

First, let us define the notion of duality w. r. t. the O(4)-indices. The duality operator

is defined as (⋆)abcd = 1
2
εabcd; antisymmetric objects with eigenvalues +1 w. r. t. this

operator are called selfdual, those with eigenvalues −1 anti-selfdual. In addition one

can define a projector on the (anti-)selfdual part of any antisymmetric second rank

O(4)-tensor by (P±)abcd = 1
4
(δa[cδ

b
d] ± εabcd) and decompose it into a selfdual and anti-

selfdual part, e.g. F ab = F (+) ab + F (−) ab.

Second, we observe that the combination of the scalar curvature term and the Im-

mirzi term in the case of γ = ±1 leaves us with

1

2

∫
d4x e

[
e µ
a e

ν
b

(
F ab

µν∓
1

2
εabcdF

cd
µν

)]
=

∫
d4x e

[
e µ
a e

ν
b

(
P∓ab

cdF
cd
µν

)]
. (5.6)

In a last step, one can show by direct computation that (anti-)selfdual part of the

field strength tensor of a generic spin connection equals the field strength tensor of

the (anti-)selfdual part of that spin connection:

(P±F )ab(ω) = F (±) ab(ω) = F ab(ω(±)) = F ab(P±ω) . (5.7)

Due to this fact we only have 12 independent components of the spin connection

(ω(+) or ω(−)) the action depends on in the case γ = ∓1, leading to 12 equations of

motion, that can be solved for ω(±)(e), when the invertibility of the tetrad is assumed.

One can show that ω(±)(e) is the (anti-)selfdual projection of the spin connection
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5 QECG in Holst Truncation

corresponding to the Levi-Civita connection, i. e. ω(±)(e)abµ = (P±ωLC)abµ. Note that

this spin connection necessarily gives rise to a spacetime that exhibits a non-vanishing

torsion. Nonetheless, substituted to the tetrad equations of motions we, again, arrive

at Einstein’s equation.1 Thus we find the field equations of general relativity among the

classical solutions of chiral gravity, albeit formulated in a spacetime with a connection

differing from the usual Levi-Civita connection. Within classical gravity this difference

in the connection cannot be observed; it will only become observable if we couple

(fermionic) matter to the system.

As we have seen above the Holst action comprises a theory of gravity in (anti-)

selfdual variables for the case γ = ±1, that depends on less independent field compo-

nents. When we try to formulate a quantum theory based on a path integral over this

action for a general value of γ, we have to expect divergences in the limit γ → ±1,

as the integration over the other duality component will not be suppressed at all. In

order to study the RG-flow of the (anti-)selfdual case we thus have to eliminate the

redundant field components before the operator traces on the RHS of the flow equation

are evaluated. It will turn out that this elimination is rather simple if we employ an

appropriate decomposition of the fluctuation fields before. This way we were able to

study the RG flow of gravity in selfdual variables in this thesis for the first time (cf.

Section 5.5).

Let us come back to the equations of motion of the Holst action. As each term in

the action (5.1) is at least quadratic in the vielbein eaµ we can infer that the action

as well as its variation w. r. t. ωabµ and eaµ is zero for a vanishing tetrad. Hence,

(eaµ = 0, ωabµ = arbitrary) is an additional solution to the equations of motion of the

Holst action, such that the stationary points of SEH and SHo are not in a one-to-one

correspondence. It may be speculated that a path integral of the Holst action receives

essential contributions from field configurations close to this additional stationary

point, that corresponds to “no spacetime at all”, while they do not contribute in the

case of metric gravity. Obviously, this would lead to a significant differences between

the quantum theories constructed from the two actions, SEH and SHo.

In a final remark let us stress that even the equivalence of a subset of solutions

to the equations of motions of the Holst action with those of the Einstein-Hilbert

action breaks down when fermions are present in the truncation. If we consider just

1The field equations of the tetrad and the spin connection for the chiral case are discussed in
more detail in Appendix F.4.
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5.1 Truncating the theory space

a standard fermionic kinetic term of the form ψ̄γae µ
a ∇µψ − ∇µψγ

ae µ
a ψ with the

covariant derivative acting on spinors according to ∇µψ = (∂µ + 1
4
ωabµγaγb)ψ, we find

that it is linear in ωabµ and thus enters its equations of motion as a constant (i. e.

ωabµ-independent) term. Since these equations demand for a vanishing torsion of the

spacetime in absence of fermions, we can infer that fermions act as a source of torsion.

Again, it is possible to solve these equations for ω(e, ψ̄, ψ)abµ = ω(e)abµ+e
bνK(ψ̄, ψ)aµν ,

that now decomposes into the torsion-free part from before and a contorsion tensor

K depending on the fermion fields. Substituting this solution into the action, the

torsionless contributions add up to the Einstein-Hilbert equivalent action depending

on the tetrad eaµ only, while the contorsion terms constitute an effective four fermion

interaction term. In contrast to pure gravity, where the Immirzi parameter drops out

of the equations of motion, this 4-fermion interaction comes with a coupling constant

proportional to γ2

γ2+1
. Hence, it offers, at least in principle, the possibility to measure

the value of the Immirzi parameter γ. However, as the interaction term is suppressed

by one power of the Newton constant, it is compatible with all experiments to date,

that it has not been observed so far. For further details see e. g. [PR06, FMT05, FS,

BSV07].

Relation between QEG and QECG. We have seen in the last paragraph that

the similarity of the classical theories resulting from the Holst and the Einstein-Hilbert

action, respectively, relies on the equations of motion and therefore on the notion of

“on-shell-ness”. In stark contrast to this, the calculation of the RG flow on a theory

space is a fundamentally off-shell procedure; indeed, the notion of “on-shell-ness” is

not even defined until a UV fixed point in the infinite dimensional theory space is

found. The fixed point action, being a prediction of the RG analysis, serves (up to

a simple explicitly constructible functional[MR09]) as the fundamental action of the

theory. Before the form of it is known, we cannot derive the fundamental equations

of motion, and even the number of fundamental degrees of freedom of the theory is

unknown. Thus, similarities between theories stemming from different classical actions

based on their field equations cannot be expected to carry over to quantum theories

constructed by the Asymptotic Safety program.

In fact, following the Asymptotic Safety program, the only inspiration we draw from

the classical theories is their field content and their symmetries in order to construct

a theory space whose fixed point structure is to be computed. Only when their theory
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5 QECG in Holst Truncation

spaces coincide and two theories are constructed from the same UV fixed point we can

consider them similar: In this case they belong to the same universality class. However,

inspired by classical metric gravity and Einstein-Cartan gravity we were led to different

theory spaces TE and TEC, that differ in both, field content and symmetry requirements.

For TE numerous RG studies have been carried out, all of them indicating the existence

of a UV fixed point in this space, most probably allowing for the construction of a

predictive quantum theory called Quantum Einstein Gravity (QEG). The theory space

TEC is far less well explored: Up to now, there exists only one fully non-perturbative

study of its RG flow [Dau, DR], which is encouraging though, as it found first evidence

for the existence of UV fixed points in this space, as well. Thus, it might be possible

to construct a quantum theory, called Quantum Einstein-Cartan Gravity (QECG), at

these points. It has to be stressed that the results of [Dau, DR] and the ones obtained

in this chapter of the thesis are conceptually independent from all QEG results as the

fixed point structures of different theory spaces are completely independent from each

other.

Of course, this reasoning does not exclude that similarities between the quantum

theories QEG and QECG might nevertheless exist. However, it is important to be

aware of the fact, that the existence of both theories has to be verified independently

of each other and that we cannot expect any similarities from the outset. Only when

both theories have been constructed, we can analyze their similarities and differences

on the basis of the quantum properties they imply.

5.1.3 Gauge fixing conditions

Let us return to more practical considerations and properly define the ingredients

still missing in our truncation. As we are dealing with a gauge theory we need to fix

a gauge and add the corresponding ghost action to the truncation ansatz 5.5. From

this point on we have to assume the invertibility of the background vielbein ēaµ.

In complete analogy to the study [Dau] we will choose a gauge fixing action of the

form

Γgf
k [ē, ω̄; ε̄] =

1

2

1

16πGk

∫
d4x ē ḡµνFµFν +

1

2

∫
d4x ēGabGab , (5.8)

where Fµ is the diffeomorphism and Gab the Lorentz/O(4)-gauge fixing condition.
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Explicitly, we have chosen the gauge fixing conditions

Fµ =
1√
αD

ē ν
a

(
D̄ν ε̄aµ + βDD̄µε̄aν

)
(5.9)

and

Gab =
1√
αL
ḡµν
(
ēbν ε̄

a
µ − ēaν ε̄bµ

)
. (5.10)

Let us now discuss the form of the gauge fixing action. The prefactors occurring in

Γgf
k containing the running Newton constant Gk but no gauge fixing parameters may

seem unusual at first sight: First, note that the usual gauge fixing parameters for the

diffeomorphisms, αD, and the O(4)-transformations, αL, are shifted to the definition of

the gauge fixing condition. In consequence the ghost action derived from these gauge

conditions will depend on the gauge parameters and we will see later that only this

choice allows us to discuss the limit of Landau gauge, αL, αD → 0. As it can be argued

that this limit is a fixed point of the generically running gauge fixing parameters

[EHW96], this gauge is considered a specifically reliable choice in truncations that do

not treat αD and αL as running couplings.

The prefactor in the diffeomorphism part containing the Newton constant, on the

other hand, is useful as it simplifies the combination of contributions to the Hessian

from the action and the gauge fixing term, while it renders αD dimensionless at the

same time; for this reason it is widely used in the literature.

For the O(4)-part we start with a gauge fixing action of the standard form. Note

that αL has mass dimension −4 leading to a dimensionless action Γgf
k . In order to

establish an overall prefactor of (16πGk)
−1 of the gauge fixing action we redefine

αL = 16πGkα
′
L (5.11)

with α′
L having a remaining mass dimension of −2.

In the diffeomorphism gauge condition (5.9) we encounter an additional gauge pa-

rameter βD; it has been shown in [Dau] that this choice of gauge conditions indeed

fixes the gauge of the 10 dimensional total gauge group G = Diff ⋉ O(4)loc completely

for all βD 6= −1. It is hence confirmed that the gauge fixing term breaks the invari-

ance of the action under true gauge transformations, δG(λ, w), such that the resulting

propagator is well-defined.
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On the other hand, it can be found by inspection that the above gauge fixing ac-

tion retains background gauge invariance: As the tetrad fluctuation ε̄aµ transforms as

a tensor w. r. t. background transformations and all other objects appearing contain

only background quantities, the gauge fixing conditions are tensors under background

transformations δB(λ, w) of the rank their index structure suggests. These are com-

bined to scalars in the gauge fixing action Γgf
k , such that it turns out invariant under

background gauge transformations.

Thus, the above set of gauge conditions satisfies the requirements set by the general

background field method as introduced in Chapter 2.2.1.

5.1.4 Construction of the ghost action

As explained in Chapter 2.2.3 the usual Faddeev-Popov construction for the ghost

action, that contains the true gauge transformations of the gauge fixing condition,

does not lead to a background gauge invariant ghost action. This was shown to be

rooted in the non-trivial structure of the gauge group G = Diff ⋉O(4)loc of the system:

Pure diffeomorphisms do not map O(4) tensors onto O(4) tensors. For that reason we

have to reparametrize the gauge group G in such a way that the pure diffeomorphisms

are augmented by an O(4)loc transformation that O(4)-covariantizes the Lie derivative

generating the diffeomorphisms; in this case the covariantization reads

˜̃
δG
D(w)εaµ =

(
δG
D(w) + δG

L (w · ω̄)
)
εaµ

= Lwe
a
µ + wρω̄abρe

b
µ

= eaρD̄µw
ρ + wρD̄ρeaµ + wρT̄ νρµe

a
ν .

(5.12)

Only in the last form the background covariant tensor character of the expression

becomes obvious.

With this covariant reparametrization of the group of gauge transformations G

at hand the ghost action is constructed, as usual, by replacing the transformation

parameters of diffeomorphisms and O(4)loc-transformations with the corresponding

diffeomorphism and O(4)-ghost fields, (wµ, λab) 7→ (ξµ,Υab). As the ghost sector is

treated classically, i. e. all renormalization effects of the ghost couplings are neglected,

we can set all tetrad and spin connection fluctuations to zero, even before the Hessian
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5.2 Application of the WH-like flow equation to the Holst truncation

is computed. The resulting ghost action (where we already have replaced the quantum

fields by their expectation values) reads,

Sgh[ε̄, τ̄ ,ξ̄, ξ, Ῡ,Υ; ē, ω̄]

∣∣∣∣
ε̄=0
τ̄=0

=

= −
∫

d4x ē

(
ξ̄µḡ

µρ ∂Fρ
∂εaν

˜̃
δG
D(ξ)εaν + ξ̄µḡ

µρ ∂Fρ
∂εaν

δG
L (Υ)εaν

+Ῡab
∂Gab
∂εcν

˜̃
δG
D(ξ)εcν + Ῡab

∂Gab
∂εcν

δG
L (Υ)εaν

) ∣∣∣∣
ε=0
τ=0

= −
∫

d4x ē
[
ξ̄µḡ

µν
(
D̄σD̄ν+βDD̄νD̄σ−D̄αT̄

α
νσ−βDD̄νT̄

α
ασ

)
ξσ

+ ξ̄µ(ē
µ
b ē

ρ
a ∇̄ρ)Υ

ab

+ Ῡab 2 ḡ
µν ēbν ē

a
α(δ

α
σD̄µ − T̄ αµσ)ξσ

+Ῡab(2 δ
a
cδ
b
d)Υ

cd
]
,

(5.13)

where the different covariant derivatives act on all objects to their right.

5.2 Application of the WH-like flow equation to

the Holst truncation

This section describes how the WH-like flow equation (2.69) is applied to the Holst

truncation introduced in the previous section. We will thereby focus on the general

method applied to evaluate the traces on the RHS as well as conceptual difficulties

that arise in comparison to metric gravity. The actual calculation is, due to the

quadruplication of the number of independent field components compared to the metric

case, an extremely tedious task that was, to a large part, carried out using the tensor

manipulation package MathTensor for Mathematica [PC94].

The calculation described in this section consists of the following major steps. Start-

ing point is the WH-like equation (cf. Chapter 2.3) of the form

∂tΓk[ē, ω̄] =
1

2
Dt STr

∣∣∣∣
k

ln Γ
(2)
k . (5.14)

In a first subsection we discuss how this rather formal equation has to be interpreted

concretely and how its RHS will be expanded in the constant background fields ē and
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5 QECG in Holst Truncation

ω̄. In a second step we compute the main basic ingredient to the equation, Γ(2), from

our general truncation ansatz

Γk = ΓHo
k + Γgf

k + Sgh ≡ Γ̆k + Sgh , (5.15)

whose constituents were introduced in the last section. In order to calculate the trace

we will introduce a decomposition of the fluctuation fields (ε̄aµ, τ̄
ab
µ) that retains the

value of the trace, thus giving Γ
(2)
k in a different basis, in the third subsection. In

a last subsection we discuss the structure of the result obtained, when the RHS is

evaluated up to second order in the background field ω̄, but before it is projected onto

the invariants of the Holst truncation.

5.2.1 General procedure to evaluate the flow equation

In this section we give a concrete meaning to equation (5.14) by explaining how its

different constituents will be evaluated.

Definition of the Hessian. The Hessian Γ
(2)
k is defined as the second variation of

the effective action Γk w. r. t. the (generalized) fluctuation fields ϕ̄i evaluated on the

background field configuration Φ̄i = Φi

∣∣
ϕ̄j=0

= Φ̄i + ϕ̄i|ϕ̄j=0:

[
Γ

(2)
ij (x, y)

]aibj
=

1

ē

δ

δϕ̄
bj
j (y)

1

ē

δ

δϕ̄ai

i (x)
Γ

∣∣∣∣
ϕk=0

= 〈x, i, ai|Γ(2)|y, j, bj〉 (5.16)

Here, the indices i, j, · · · label different field variables and the indices ai, bj , · · · denote

their respective index structure. Thus ϕ̄ is the set of all fluctuation fields considered;

as long as the fluctuations are not further decomposed we simply have

ϕ̄ = {ε̄, τ̄}, Φ̄ = {ē, ω̄} and Φ = Φ̄ + ϕ̄ = {e, ω} (5.17)

in the Grassmann even sector. If the value of i is fixed, ϕ̄i denotes a specific fluctuation

field. Similarly ϕ̄ai

i denotes a specific component of this field.

Note that we have suppressed the dependence of Γ on the “RG-time” t in the above

formula in order to avoid unnecessary notational complexity.

The second equality introduces a notation, that resembles the bra-ket notation of

quantum mechanics and should remind us of the fact, that the Hessian is a Hermitian
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5.2 Application of the WH-like flow equation to the Holst truncation

operator, that can be defined by matrix elements in a certain basis. Here it is given

in a basis labeled by the field types i, j, their components ai, bj and the position

variables x, y. Later on we will see how a basis transformation to momentum space

and decomposed field variables leads to the most simple form of this Hessian operator.

For the further evaluation of (5.14) it is crucial that the Hessian is computed for

an x-independent background field configuration {ēaµ, ω̄abµ} = const. Only in this

case the position dependence of the operator can be separated off, leading to the

following form of the matrix elements in field space (with the component indices ai, bj

suppressed):

Γ
(2)
ij (x, y) = Γ

(2)
ij (∂xµ)

δ(4)(x− y)
ē

. (5.18)

As we will see below, this structure corresponds to the fact, that the operator is

diagonal in a generalized momentum space. Since this special form is preserved if the

operator is applied multiple times, functions of this operator decompose according to

[
f
(
Γ(2)
)]

ij
(x, y) =

[
f
(
Γ(2)(∂xµ)

)]
ij

δ(4)(x− y)
ē

, (5.19)

where the function f is understood as a power series in its (matrix-valued) argument.

A generalized basis in momentum space. For the evaluation of the trace it is

convenient to choose a basis that is adapted to the form of the Hessian operator and

that at the same time allows for a simple IR cut-off procedure for modes of momentum

smaller than the cutoff scale k.

In a covariant setting the notion of momentum is typically defined by a generalized

covariant Laplacian operator −D̄2: Its eigenfunctions with eigenvalue p2 correspond

to fluctuations carrying momentum p2. The (IR regulated) trace is then obtained by

summing over its eigenfunctions with p2 ≥ k2.

Using the WH-like flow equation we give up background gauge covariance in or-

der to obtain a structurally simpler form of the RHS, where all integrations can be

carried out explicitly, leading to β-functions that are (except for logarithmic contri-

butions to the running of Λk) rational functions in all couplings. To this end we take

the trace by integrating over the complete set of eigenfunctions of the flat Laplacian

−� = −ḡµν∂µ∂ν and using an IR cutoff w. r. t. its eigenvalues p2 ≥ k2. The precise

form of its eigenfunctions depends, of course, on the background spacetime chosen: As

already mentioned, it is crucial to our approach that we choose constant background
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5 QECG in Holst Truncation

fields {ē, ω̄}, resulting in a flat manifold with non-vanishing torsion. As we want to

consider the case of a boundaryless manifold, we choose the flat torus T 4 as back-

ground manifold, or equivalently a 4-cube in R
4 of volume L4 with periodic boundary

conditions.

One could naively think that on a flat torus the covariant derivative reduces to the

partial derivative, but here this is not the case as torsion is induced by the presence of

the constant spin connection ω̄abµ. Explicitly, we can split the spacetime connection

into its Levi-Civita part and the contorsion Kλ
µν according to

Γ̄λµν =
(
ΓLC(ē)

)λ
µν︸ ︷︷ ︸

=0

+K̄λ
µν (5.20)

such that

K̄λ
µν = Γ̄λµν = ēa

λω̄abµē
b
ν . (5.21)

The torsion on the torus is hence given by the antisymmetric part of the contorsion,

T̄ λµν = K̄λ
[µν], but also the corresponding symmetric part of the contorsion is generi-

cally non-vanishing.

Now we are in the position to express the action of the covariant Laplacian −D̄2 in

terms of the d’Alembertian −� and contorsion terms. Acting on a scalar we obtain

−D̄2φ = −∂2φ+ ḡµνK̄τ
µν∂τφ , (5.22)

while for a vector field we find

−D̄2vρ=−�vρ−2ḡµνK̄ρ
µτ∂νv

τ+ḡµνK̄τ
µν∂τv

ρ+ḡµνK̄α
µνK̄

ρ
ατv

τ−ḡµνK̄ρ
µαK̄

α
ντv

τ. (5.23)

Thus, we see explicitly how the two cutoff operators −D̄2 and −� differ by contorsion

terms. We observe that the additional terms are at most first order in derivatives,

while in the highest (second) order of derivatives both choices coincide. Hence, we

might expect that both cutoff operators will lead to comparable results in the high

momentum regime. In this respect the change of cutoff operator, D̄2 → �, is similar

to switching from a type I to a type II or III cutoff operator [CPR09]. While the

latter still amount to manifestly covariant choices, here we have to face the additional

approximation that lies in the abandoning of background gauge invariance.
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5.2 Application of the WH-like flow equation to the Holst truncation

On the flat torus T 4 the eigenfunctions of −�, that form a complete set of basis

functions on that manifold, are well-known to be the periodic (“plane wave”) functions

ψn(x) = 〈x|n〉 =
1

L2
exp

[
i
2π

L
naē

a
µx

µ

]
, (5.24)

where na is a four-component vector of (dimensionless) integers. All eigenvalues of the

−�-operator are thus of the form p2 = (2π/L)2nan
a.

If we now trace an operator Ô of the form

〈x|Ô|y〉 = O(∂xµ)
δ(4)(x− y)

ē
(5.25)

applying a UV cutoff at N(L) = L
2π
P to the components na we find

Tr Ô
∣∣∣
P

=

N∑

n1,··· ,n4=−N
〈n|Ô|n〉 =

N∑

n1,··· ,n4=−N

∫
d4x d4y ē2〈n|x〉〈x|Ô|y〉〈y|n〉

=
1

(2π)4

∫
d4x ē

[(
2π

L

)4 N∑

n1,··· ,n4=−N
O

(
i
2π

L
naē

a
µ

)]

=

∫
d4x ē

1

(2π)4

[∫ P

−P
d4pO(ipµ) +O

( 1

L

)]
.

(5.26)

In the last step we have approximated the sum over equidistant sampling points by the

corresponding integral over pµ. This approximation gets exact in the limit of infinitely

many sampling points, i. e. L→∞. Alternatively, this approximation is obtained by

employing the Euler-MacLaurin formula, using its first term only.

In our calculation we can use the prefactor of the momentum integral in order

to identify the running of the couplings (Λk, γk, Gk) under consideration: Since the

corresponding invariants evaluated at constant background fields are proportional to

the spacetime volume
∫

d4x in front and therefore scale with L4, we know that, even

in the case of a finite spacetime volume L4, the correction terms O(1/L), that scale at

most like L3, do not contribute to the running of the couplings. We thus conclude that

the RG flow of the three couplings (Λk, γk, Gk) on a finite torus is equivalent to the

limit of an infinite torus, although the value of the invariants diverges in this (formal)
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5 QECG in Holst Truncation

limit. In the following we therefore choose to work in this infinite volume limit. In

this limit the basis functions of −� are given by

ψp(x) = 〈x|p〉 =
1
√

2π
4 exp

[
ipµx

µ
]
, (5.27)

with pµ ∈ R
4, and the functional trace can then be evaluated using formula

Tr Ô =

∫
d4x ē

∫
d4p

(2π)4
trO(ipµ) (5.28)

for any operator of the form (5.25). Here, tr denotes the remaining trace over the

algebraic part of the operator Ô.

Irreducible basis in field space. For the computation of the algebraic part of

the trace we have to be careful not to overcount the number of independent field

components of ϕai

i , that may be less than the range of the index ai due to imposed

symmetry or transversality conditions. For this reason we introduce a new basis for

the algebraic part of the operator, given by Ii basis fields ΦIi for each type of field i.

The transformation matrices v Iii ai
(p), that depend on the direction of the momentum

variable pµ for transversal fields ϕai

i , connect the two bases. The new index Ii runs

from 1 up to the number of independent field components of the field ϕi. We will refer

to this new basis as “irreducible”.

As an example consider the symmetric metric fluctuation field hµν . The above

reparametrization corresponds to the introduction of a new fieldHI with I = 1, · · · , 10,

that corresponds to the 10 independent components of the metric fluctuation. The

transformation between the field types is then given by the relation

hµν =
10∑

I=1

(vh)
I
µνHI . (5.29)

The irreducible basis fields are chosen orthonormal such that the transformation

matrices satisfy

∑

ai

v Iii ai
v ai

iJi
= δIiJi

or with suppressed indices vi v
T
i = 1. (5.30)
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Moreover, we can construct the operators

(Pi)
ai
bi =

∑

Ii

v ai

iIi
v Iii bi or P̃i = vTi vi , (5.31)

that are defined on the space of tensors with index structure ai and are projectors

onto the subspace spanned by the basis fields ΦIi , i. e. project a tensor onto its part

exhibiting the symmetry and transversality properties of the field ϕi.

Of course, we can transform any matrix that shows the symmetry and transversality

properties of the fields ϕi from one basis to the other. When the indices are suppressed

we will denote the matrix expressed in the “reducible” basis by a tilde on top. This

also explains the notation in (5.31). For a general matrix M we thus have:

(Mij)
Ii
Jj

=
∑

ai,bj

(vi)
Ii
ai

(Mij)
ai

bj
(vj)

bj
Jj

⇔ Mij = viM̃ijv
T
j ,

(Mij)
ai

bj
=
∑

Ii,Jj

(vi)
ai

Ii
(Mij)

Ii
Jj

(vj)
Jj

bj
⇔ M̃ij = vTi Mijvj .

(5.32)

The trace of the algebraic part of an operator, tr , is independent of the basis as

trM =
∑

i

(Mii)
Ii
Ii

=
∑

i

(
viM̃iiv

T
i

)Ii
Ii

=
∑

i

(
vTi viM̃ii

)ai

ai

=
∑

i

(
P̃iM̃ii

)ai

ai
=
∑

i

(
M̃ii

)ai

ai

= tr M̃ ,
(5.33)

where the symmetry properties of M̃ amount to the fact that P̃iM̃ii = M̃ii = M̃iiP̃i.

The new basis of the total field space is thus given by the set of basis elements

that are characterized by the 4-momentum p and the index Ii and will be abstractly

denoted by |p, Ii〉. Their representation in the previous “position space” basis is given

by

〈x, i, ai|p, j, Ij〉 = δij v
Ij
i ai

(p)
eipµxµ

√
2π

4 . (5.34)

Evaluation of the trace. Now we are able to evaluate the trace in the generalized

momentum space basis |p, i, Ii〉 introduced above, by expressing the matrix elements

of the Hessian in terms of the position space basis |x, i, ai〉. For notational simplicity
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we discuss the Grassmann-even part of the trace in detail and include the ghost sector,

that should be treated in complete analogy, only at the very end:

Tr
[
ln Γ̆(2)

]
=
∑

i,Ii

∫
d4p 〈p, i, Ii| ln Γ̆(2)|p, i, Ii〉

=
∑

i,j,k,
Ii,aj,bk

∫
d4x d4y ē2d4p 〈p, i, Ii|x, j, aj〉〈x, j, aj | ln Γ̆(2)|y, k, bk〉

· 〈y, k, bk|p, i, Ii〉

=
∑

i,j,k,
Ii,aj,bk

∫
d4x d4y d4p ē2 δijv

Ii
i aj

e−ipµxµ

√
2π

4

[
ln Γ̆(2)(∂xµ)

]aj

jk bk

δ(4)(x−y)
ē

· δkiv bk
iIi

eipµyµ

√
2π

4

=

∫
d4x ē

∫
d4p

(2π)4

∑

i,Ii,ai,bi

v bi
iIi

v Iii ai

[
ln Γ̆(2)(ipµ)

]ai

ii bi

=

∫
d4x ē

∫
d4p

(2π)4

∑

i,ai,bi

(Pi)
bi
ai

[
ln Γ̆(2)(ipµ)

]ai

ii bi
.

(5.35)

In the next step we rewrite the momentum integration in spherical coordinates

splitting it into a radial and an angular part, where the former is cut off at the IR

momentum scale k:

STr

∣∣∣∣
k

[
ln Γ̆(2)

]
=

1

(2π)4

∫
d4x ē

∫ ∞

k

dp (p2)3/2

∫
dΩp

∑

i,ai,bi

(Pi)
bi
ai

[
ln Γ̆(2)(ipµ)

]ai

ii bi
. (5.36)

The angular part of the momentum integration can be carried out using the rules

of symmetric integration, such that odd powers of pµ in the integrand vanish and

even ones are replaced by certain combinations of the metric (see e. g. Appendix B in

[Ynd06]), e. g. :

∫
dΩp pµpνf(p2) = 2π2 ḡµν

4
p2f(p2) (5.37)

or

∫
dΩp pµpνpρpσf(p2) = 2π2 ḡµν ḡρσ + ḡµρḡνσ + ḡµσ ḡνρ

4 · (4 + 2)
p4f(p2) . (5.38)
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Performing this integration is obviously a simple algebraic task leaving us with an

integrand of the radial integration depending only on p2.

In a last step we include the scale derivative Dt in our discussion, denoting a scale

derivative that only acts onto the IR cutoff of the trace and does not act onto the

k-dependent couplings inside the Hessian Γ̆
(2)
k . (At this point we restore the as yet

suppressed k dependence of Γ̆
(2)
k .) It thus removes the radial momentum integration

leaving us with minus the integrand evaluated at the lower boundary p = k.

If we finally include the ghost sector with the usual minus sign the full WH-like flow

equation (5.14) can hence be written in the form

∂tΓk[ē, ω̄] = − k4

(2π)4

∫
d4x ē

[∫
dΩp

∑

i,ai,bi

1

2
(Pi)

bi
ai

[
ln Γ̆

(2)
k (ipµ)

]ai

ii bi

−
∫

dΩp

∑

i∈
ghosts

,ai,bi

(Pi)
bi
ai

[
lnS

(2)
gh k(ipµ)

]ai

ii bi

]

p=k

.

(5.39)

At this point only the logarithm of the Hessian is left awaiting evaluation. First of

all, we should mention that the logarithm lnM is only defined for a matrix M given in

the “irreducible” basis, i. e. with capital indices Ii, Jj. This is due to the fact that the

determinant of any matrix fulfilling e. g. transversality conditions is zero, det M̃ = 0,

as its rows are not independent. Hence it is not invertible in the larger matrix space

with index structure ai, bj and thus its logarithm ln M̃ is not defined.

As we want to project the RHS onto invariants that are at most quadratic in the

(constant) background field ω̄abµ, we will expand the logarithm up to second order in

this field. To this end we split the Hessian into a part independent of ω̄ and a part

containing all ω̄-dependence,

Γ̆(2) = H0 + V (ω̄) , (5.40)

with V being a matrix whose elements are at least linear in ω̄. Thus, the logarithm

can be expanded in V according to

ln Γ̆(2) = ln
[
H0+V (ω̄)

]
= ln

[
H0

(1+H−1
0 V (ω̄)

)]
= ln

[
H0

]
+ln

[1+H−1
0 V (ω̄)

]

= ln
[
H0

]
+H−1

0 V (ω̄)− 1

2

(
H−1

0 V (ω̄)
)2

+O(ω̄3) .
(5.41)

While the parts depending on ω̄ can be computed by simple matrix multiplication,

the logarithm of H0 remains. Here we will employ the well-known matrix identity
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tr lnM = ln detM in order to simplify the evaluation of this term. We thus find in

the two bases

tr ln Γ̆(2) =
∑

i,ai,bi

(Pi)
bi
ai

[
ln Γ̆(2)(ipµ)

]ai

ii bi

= ln detH0 + trH−1
0 V − 1

2
tr (H−1

0 V )2 +O(ω̄3)

= ln det vH̃0v
T + tr P̃ H̃−1

0 Ṽ − 1

2
tr P̃ (H̃−1

0 Ṽ )2 +O(ω̄3) .

(5.42)

To be able to compute the inverse of H0 we will have to perform a complete transverse-

traceless decomposition of the fluctuation fields ε̄, τ̄ , that will be introduced in Section

5.2.3. In this field basis H0 will have a very simple structure: It is block diagonal in

the field space (indices i, j) and diagonal in the space of field components ai, bj, i. e.

we can write
(H0)

ai

ij bj
= (H0)ij ⊗ P ai

i bj
for ai ∼ bj ,

(H0)
ai

ij bj
= 0 for ai ≁ bj .

(5.43)

The block-diagonality is here reflected in the fact, that the elements of H0 are only

non-zero if the corresponding fields ϕi and ϕj have an index structure of the same

type (ai ∼ bj), e. g. both are scalars, divergence-free vectors etc. Hence, in this basis

H0 can be inverted easily by inverting the first factor of the tensor product

(H−1
0 ) ai

ij bj
= (H−1

0 )ij ⊗ P ai

i bj
(5.44)

and the above determinant simplifies to

det vH̃0v
T = det

[
(H0)ij ⊗ vIiai

P ai

i bj
v

bj
Jj

]
= det

[
(H0)ij ⊗ 1IiJj

]
. (5.45)

In a last step we can apply the formula for the determinant of a tensor product of

matrices

det
[
M ⊗N

]
= (detM)rankN · (detN)rankM (5.46)

and arrive at

det vH̃0v
T =

∏(
det(H0)ij

)δIi
Jj , (5.47)

where the symbolic product sign denotes the product over the different blocks of the

matrix (H0)ij in field space. In each block the fields have the same index structure,

126



5.2 Application of the WH-like flow equation to the Holst truncation

and δIiJj
therefore results in the number of independent field components, the fields in

each block have.

Concluding remarks. Taken together eqns. (5.39), (5.42) and (5.47) give a con-

crete meaning to the RHS of the WH-like flow equation (5.14) and show up the way we

are going to evaluate it. Note that, using the WH-like flow equation, we have reduced

this task to purely algebraic manipulations of matrices in field space, which amounts

to a great simplification compared to the use of the FRGE or a proper-time flow equa-

tion. Moreover, we note that using the last line of (5.42) together with (5.47), we

never have to construct the basis of independent field components, and in particular

the transformation matrices vi, explicitly as we were able to reformulate all algebraic

matrix contributions in terms of the “reducible” basis using only the projectors to the

irreducible subspaces.

However, this procedure has some limitations. First, as our technique requires the

use of constant background fields, we can only project out invariants that do not

vanish in this case and thus have at least some part that stays non-zero for algebraic

reasons (in our case the ω̄2-term of the field strength F̄ ). Nonetheless, even if this is

the case it might not be possible to uniquely map the remaining constant parts onto

the invariants one started with. Projecting out the flow of couplings that correspond

to certain invariants from the RHS then becomes ambiguous; a problem which we will

address in more detail in Section 5.3.

Second, our approach does not retain background gauge invariance. Thus, we do not

quantize the system w. r. t. all possible background spacetimes, but the flat background

plays a distinct role. Note that the loss of background gauge invariance is not due

to the very use of a constant background field to evaluate the RHS; when employing

the FRGE, for example, it is also possible to choose a specific background spacetime

to project out the invariants one is interested in. The important difference here is,

that we use a cutoff operator −� to evaluate and cut off the trace, that does not

correspond to the covariant momentum operator evaluated on that background, i. e.

−D̄2
∣∣
ē,ω̄=const

6= −�.

However, as pointed out before, the loss of background gauge invariance is not too

much a drawback. At the level of the effective action Γ = Γk=0, where all fluctua-

tions have been integrated out and from which all observables are to be calculated, it

does not matter which background was used to classify the fluctuation fields according
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5 QECG in Holst Truncation

to their momentum. Hence, the exact untruncated flow in the backround invariant

approach leads to the same effective action as the one using a distinct background

spacetime. The difference is the theory space the trajectory lies in: In the background

invariant approach the fields {ē, ω̄} arrange themselves to gauge invariant field mono-

mials, that amount to a subspace of the theory space spanned by all possible field

monomials of {ē, ω̄}, where the trajectory in our case lives in. As we should expect

that the existence of a UV fixed point does not depend on the details of the cutoff

procedure chosen, both approaches should in principle be suitable to investigate the

UV behavior of the theory. Seen in this light, the loss of background invariance is

equivalent to an additional approximation, as we truncate a larger theory space to the

same number of invariants in the truncation ansatz.

5.2.2 The Hessian Γ̆
(2)
k in (ε̄, τ̄)-basis

In this section we give the result of the second variation Γ̆quad
k of our truncation

ansatz Γk with respect to the fields eaµ and ωabµ, where δeaµ = ε̄aµ and δωabµ = τ̄abµ .

Suppressing all indices, it is connected to the Hessian Γ̆
(2)
k according to

Γ̆quad
k =

1

2

∫
d4x d4y ē2

(
ε̄(x), τ̄ (x)

)
Γ̆

(2)
k (x, y)

(
ε̄(y)

τ̄(y)

)
. (5.48)

Thus, the Hessian can be obtained from Γ̆quad
k by first symmetrizing the quadratic

form w. r. t. both fluctuation fields and their index symmetries, and then cancelling

the 1
2

factor, the integrations and the leftmost fluctuation field, while replacing the

rightmost fluctuation field by δ(4)(x− y)/ē.
We will present Γ̆quad

k = Γquad
Ho k + Γquad

gf k as a sum of the contributions stemming from

the Holst action and those from the gauge fixing terms. Note that the latter only

contributes to the (ε̄, ε̄)-block of the quadratic form and that Γgf k is already quadratic

in the fluctuations such that Γquad
gf k = Γgf k. The evaluation of Γquad

Ho k is straightforward.

From the basic building blocks

δF ab
µν = ∇[µτ̄

ab
ν], δ2F ab

µν = 2τ̄ac[µτ̄
cb
ν] ,

δ(e e
[µ
a e

ν]
b ) = εabcdε

µνρσecρε̄
d
σ, δ2(e e

[µ
a e

ν]
b ) = εabcdε

µνρσε̄cρε̄
d
σ ,

δ2(e) =
1

2
εabcdε

µνρσecρe
d
σε̄
a
µε̄
b
ν ,

(5.49)

128



5.2 Application of the WH-like flow equation to the Holst truncation

we find

Γquad
Ho k =−1

2

ZN

16πĜ

∫
d4x

[
ε̄cρ

[
εµνρσεabcd

(1

4

(
δc[eδ

d
f ]−

1

γk
εcdef

)
F̄ ef

µν−ēaµēbνΛk

)]
ε̄dσ

+
1

2
ε̄eρε

µνρσεabef ē
f
σ

(
δa[cδ

b
d] −

1

γk
εabcd

)
∇̄µτ̄

cd
ν

+2 τ̄ ceµ

[
ē ē µ

a ē
ν
b

(
δa[cδ

b
d] −

1

γk
εabcd

)
ηef

]
τ̄ fdν .

(5.50)

In principle, we also need to construct the Hessian in the ghost sector. But as

the ghost action Sgh (cf. eq. (5.13)) is by construction quadratic in the ghost fields

(ξµ,Υ
ab) we find here, as for the gauge fixing part, Squad

gh = Sgh such that the Hessian

can be directly read off from the ghost action.

5.2.3 Decomposition of the fluctuations and ghost fields

Decomposition of ε̄ and τ̄ . In the above undecomposed form it turns out techni-

cally not feasible to directly invert the total ω̄-independent part of the bosonic Hessian

operator H0 = Γ̆
(2)
k |ω̄=0 even for constant background fields ē. This is owed to the fact,

that H0 is a 40 x 40-matrix operator (16+24 independent components of ε̄aµ and τ̄abµ)

with a complicated matrix structure.

For that reason it is helpful to decompose the fluctuation fields into transverse and

longitudinal parts w. r. t. the generalized “plane wave” basis introduced before which

we are going to employ in order to evaluate the trace later on. For the vielbein

fluctuation we write

µ̄
1
2 ε̄aµ(x) =

∂a∂µ
−�

a(x) +
∂µ√
−�

ba(x) +
∂a√
−�

cµ(x) + daµ(x) , (5.51)

while the spin connection fluctuation is decomposed according to

τ̄abµ(x)=
µ̄

1
2√
2

[
∂µ∂

[a

−�
Ab](x)+

∂[a

√
−�

Bb]
µ(x)+ε

ab
cd

∂µ∂
c

−�
Cd(x)+εabcd

∂c√
−�

Dd
µ(x)

]
(5.52)
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Several comments on this decomposition are in order:

(A) All fields occurring in the decomposition have a vanishing divergence in all their

indices, i. e.

∂ab
a = 0 = ∂µcµ , ∂ad

a
µ = 0 , ∂µdaµ = 0 (5.53)

and

∂aA
a = 0 = ∂aC

a , ∂aB
a
µ = 0 = ∂aD

a
µ , ∂µBa

µ = 0 = ∂µDa
µ . (5.54)

Here, partial derivatives with an O(4)-index contain the background vielbein implicitly,

∂a = ē µ
a ∂µ, ∂

a = ēaµ∂
µ = ēaµḡ

µν∂ν .

(B) We have introduced a rescaling of the fluctuations using the positive definite op-

erator −� = −ḡµν∂µ∂ν ; the powers of
√
−� present in the different terms hereby

correspond to the number of partial derivatives acting on the respective component

field. Thus, we achieve that, first, all component fields have the same mass dimension

and, second, all � operators appearing in the Hessian that are only due to the de-

composition will be canceled by the denominators, such that they cannot be confused

with “true” kinetic terms. Hence, the Hessian operator Γ
(2)
Ho will be first order in the

derivatives, before and after the decomposition. Note that when passing to the gener-

alized plane wave basis, we find the simple replacement rules ∂µ → ipµ,
√
−�→

√
p2,

for derivatives acting to the right.

(C) As it may not be evident that (5.51) and (5.52) indeed form a complete decompo-

sition of the full original field space, let us construct the system of projectors onto the

contributions of each component field. To this end we define the projectors onto the

longitudinal and the transversal part of a vector (under diffeomorphisms) according

to (
PL
)µ
ν

= − ∂
µ∂ν

(−�)
,

(
PT
)µ
ν

= δµν +
∂µ∂ν
(−�)

. (5.55)

The analogous objects with Greek indices replaced by Latin ones are used to decompose

O(4)-vectors.

For the component fields of the vielbein we then find

(
Pa

)a ν

µb
=
(
PL
)ν
µ

(
PL
)a
b
,
(
Pb

)a ν

µb
=
(
PL
)ν
µ

(
PT
)a
b
,

(
Pc

)a ν

µb
=
(
PT
)ν
µ

(
PL
)a
b
,
(
Pd

)a ν

µb
=
(
PT
)ν
µ

(
PT
)a
b
.

(5.56)
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When acting on a vielbein fluctuation ε̄bν these projectors map onto the summand of

the respective component field. From (5.56) we directly see that (5.51) is indeed a

decomposition into longitudinal and transverse parts w. r. t. both indices. The projec-

tors (5.56) form a complete set of projectors, i. e. Pa + Pb + Pc + Pd = 1( =̂ δabδµ
ν
)

and are orthogonal to each other, i. e. PaPb = 0 etc.

For the spin connection fluctuation we work in a field space, that only contains

tensors antisymmetric w. r. t. the O(4)-indices. Projecting onto the longitudinal part

of one index, directly affects the other index via anti-symmetrization. In this space

the above projectors therefore generalize to

(
PL
)ab

cd
= −1

2

δ
[a
[c∂

b]
∂d]

(−�)
,

(
PT
)ab

cd
=

1

2

(
δ
[a
cδ
b]
d +

δ
[a
[c∂

b]
∂d]

(−�)

)
. (5.57)

We denote them by the same symbols as we can distinguish them by the number of

indices they carry. With these definitions the projectors onto the components of the

spin connection read

(
PA

)ab ν

µcd
=
(
PL
)ν
µ

(
PL
)ab

cd
,
(
PB

)ab ν

µcd
=
(
PT
)ν
µ

(
PL
)ab

cd
,

(
PC

)ab ν

µcd
=
(
PL
)ν
µ

(
PT
)ab

cd
,
(
PD

)ab ν

µcd
=
(
PT
)ν
µ

(
PT
)ab

cd
.

(5.58)

Again, one can check that they form an orthogonal set, fulfilling the completeness

relation PA + PB + PC + PD = 1 ( =̂ 1
2
δ ν
µ δ

[a
c δ

b]
d

)
.

By taking the trace of the above projectors we can count the number of independent

field components in each sector. With
(
PL
)µ
µ

= 1,
(
PT
)µ
µ

= 3,
(
PL
)ab

ab
= 3 and

(
PT
)ab

ab
= 3 we find that the vielbein degrees of freedom decompose according to

16 = 1 + 3 + 3 + 9 and the spin connection according to 24 = 3 + 9 + 3 + 9. These

counts make it plausible that the independent field components of each sector can be

represented by a scalar field a, divergence-free vector fields {b, c, A,D} and divergence-

free tensor fields {d,B,D}.

(D) In the decompositions (5.51), (5.52) we have introduced a mass scale µ̄, that may

appear artificial at first sight, but is crucial in order to define a Hessian operator of

definite mass dimension from the quadratic form Γquad: As the tetrad is dimensionless

but the spin connection (being a connection) has mass dimension 1, the different

blocks of the matrix resulting from splitting off the fluctuations differ in dimension.
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5 QECG in Holst Truncation

Such a matrix, however, does not give rise to an operator whose spectrum and trace

are well defined, as we then have to sum up quantities of different mass dimension.

By introducing the additional mass scale µ̄ we equalize the mass dimensions of all

component fields. In principle, this can be done in an arbitrary way, rescaling for

example only the vielbein fluctuation by µ̄1, but as in [Dau] we opted for the symmetric

scheme.

In contrast to [Dau] we used a different numerical prefactor in the decomposition

(5.52). Only with this choice the trace of an operator is invariant under the decompo-

sition. Otherwise, the component fields contribute with different weights to the trace.

As a simple check of the decomposition the following equation should hold without

any additional numerical prefactors in front of the component fields:

∫
d4x τ̄ µ

ab τ̄
ab
µ =

∫
d4x

(
AaAa +B µ

a B
a
µ + CaCa +D µ

a D
a
µ

)
(5.59)

For the decomposition of the tetrad an analog relation holds.

In a second step we want to further decompose all tensor fields in the above decom-

positions, {d,B,D}, into trace, antisymmetric and symmetric-traceless part. Using

the daµ-field as an example the decomposition reads

daµ = − 1√
3

(
ēaµ +

∂a∂µ
(−�)

)
d+

1√
2
εabcdē

b
µ

∂c√
−�

dd + d̂aµ . (5.60)

Here, d describes the scalar trace mode, da is a divergence-less vector field representing

the antisymmetric part of daµ and d̂aµ is a traceless symmetric tensor (ē µ
a d̂

a
µ = 0,

ēbµd̂aµ = ēaµd̂bµ), with vanishing divergence in both indices separately.

As for the first decomposition analogous remarks to point (B) and (D) apply here,

concerning the rescaling with the operator −� and the numerical prefactors chosen.

Again, it is instructive to analyze the corresponding projectors for each of the parts.

If we introduce the trace projector Ptr and the antisymmetry projector Pas according

to (
Ptr

)a ν

µb
=

1

4
ēaµē

ν
b ,

(
Pas

)a ν

µb
=

1

2

(
δab δ

ν
µ − ēaν ēbµ

)
(5.61)
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we can decompose the full d-subspace by the three orthogonal projectors Pd,tr, Pd,as,

and Pd,st defined by

Pd,tr :=
4

3
PdPtrPd, Pd,as := PdPasPd, and Pd,st := Pd

(1− 4
3
Ptr − Pas

)
Pd . (5.62)

Indeed,

Pd = Pd,tr + Pd,as + Pd,st . (5.63)

Note that we have to rescale the trace projector by a factor of 4
3

in order to define

an idempotent operator Pd,tr. This is owed to the fact that due to the transversality

conditions the d-subspace has a lower dimension than the full rank-two tensor space,

in particular we have ē µ
a

(
Pd
)a ν

µb
ēbν = 3 as opposed to ē µ

a 1a ν
µb ē

b
ν = 4. One can check

that the three operators defined in (5.62) indeed project onto the three parts of the

decomposition (5.60) splitting the independent field components of daµ according to

9 = 1 + 3 + 5.

For the other tensor fields, {B,D}, we proceed in complete analogy. As we will work

only in the completely decomposed setting, the tensor fields {d,B,D} will not be of

importance any more. For that reason, we will drop the hat on the last component

field {d̂, B̂, D̂} → {d,B,D} such that the latter denote divergence-less, symmetric and

traceless tensors, from now on.

Decomposition of the ghost fields. The decomposition of the ghost fields follows

the same logic as for the commuting fluctuations, but due to their simpler tensor

structure the ghost fields decompose into far less component fields. In principle, the

remarks concerning the previous decompositions also apply in the ghost sector so that

we will merely state the corresponding formulas here.

The diffeomorphism ghost ξµ can be split into a transverse part gµ and a longitudinal

component f according to

ξµ =
∂µ√
−�

f + gµ , (5.64)

with ∂µgµ = 0.
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The O(4)-ghost Υab is split into two parts {F,G} that are dual to each other and

are rescaled by a factor of µ̄:

µ̄−1Υab =
1√
2

(
∂[a

√
−�

F b] + εabcd
∂c√
−�

Gd

)
, (5.65)

where ∂aF
a = 0 = ∂aG

a .

The decomposition of the anti-ghosts ξ̄ and Ῡ is completely analogous and can thus

be obtained by putting a bar on every field in eqns. (5.64) and (5.65).

5.2.4 The Hessian in the decomposed field basis

By substituting the decompositions of the fluctuations introduced in the last sub-

section into the expression of the quadratic forms (5.50), (5.8) and for the ghost sector

(5.13) we can transform the quadratic forms to the component field basis. After this

substitution we use integration by parts until all derivatives act to the right. As we

work with a closed background manifold (flat torus) in doing so no boundary terms

have to be considered. A large fraction of the occurring terms vanishes due to the

transversality conditions that all component fields satisfy. Nonetheless, the decompo-

sition to the component fields generates a huge number of terms: The bosonic sector

consists in total of 14 component fields, so that the corresponding Hessian is a 14 x 14

matrix in field space whose 196 entries are, due to their remaining index structure,

still complicated expressions in terms of ēaµ, ω̄
ab
µ and the partial derivative operator

∂µ. For that reason we calculated the Hessian in the component field basis using the

tensor manipulation package MathTensor for Mathematica [PC94].

For the evaluation of the flow equation we have to split the Hessian according to

Γ̆(2) = H0 + V (ω̄) and S
(2)
gh = Hgh

0 + V gh(ω̄) into a “free” part H0 and an interaction

part V (ω̄) (cf. Section 5.2.1). The next two paragraphs will be devoted to these

building blocks.

The H0 part of the Hessian. While the total Hessian is a considerably complicated

object in the decomposed field basis, its free part H0 is comparatively simple although

it can not be written in an as compact form as in (5.50). The free part of the total
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quadratic form stemming from the Holst action (5.50) and the gauge fixing term (5.8)

in the component field basis reads

Γ̆quad
k

∣∣∣
ē=const,ω̄=0

=
1

2

ZN k

16πĜ

∫
d4x ē×

×







a

d

B

D




T


(1+βD)2

αDµ̄
P̂2

√
3

µ̄

“

2Λk+
βD(1+βD)

αD
P̂2

”

0 0

√
3

µ̄

“

2Λk+
βD(1+βD)

αD
P̂2

”

1
µ̄

„

4Λk+3
β2
D

αD
P̂2

«

2
√

2P̂ − 2
√

2
γk

P̂

0 2
√

2P̂ 2µ̄ − 2
γk
µ̄

0 − 2
√

2
γk

P̂ − 2
γk
µ̄ 2µ̄







a

d

B

D




+




ba

ca

da

Aa

Ba

Ca

Da




T


2
α′
L

µ̄
− 2

µ̄

„

Λk+ 1
α′
L

«

0 0 0 0 0

− 2
µ̄

„

Λk+ 1
α′
L

«

1
µ̄

„

P̂2

αD
+ 2

α′
L

«

0 0 − 2
γk

P̂ 0 2P̂

0 0 1
µ̄

„

2Λk+ 4
α′
L

«

0
√

2P̂ 0 −
√

2
γk

P̂

0 0 0 0 −
√

2
γk
µ̄ 0

√
2µ̄

0 − 2
γk

P̂
√

2P̂ −
√

2
γk
µ̄ µ̄

√
2µ̄ − 1

γk
µ̄

0 0 0 0
√

2µ̄ 0 −
√

2
γk
µ̄

0 2P̂ −
√

2
γk

P̂
√

2µ̄ − 1
γk
µ̄ −

√
2

γk
µ̄ µ̄







ba

ca

da

Aa

Ba

Ca

Da




+



d µ
a

B µ
a

D µ
a




T


− 2
µ̄
Λk −

√
2P̂

√
2

γk
P̂

−
√

2P̂ −µ̄ µ̄
γk√

2
γk

P̂ µ̄
γk

−µ̄






daµ

Ba
µ

Da
µ





 .

(5.66)

Here, we have introduced the abbreviatory notations ca = ēaµc
µ and for the absolute

momentum operator P̂ :=
√
−�.

H0 can be read off from this result, being the 14 x 14 block diagonal matrix operator

in field space, whose blocks are given by the above matrices, including the overall

prefactor ZN k/(16πĜ).

Let us comment on the form of H0:

(A) While the above form of H0 is notationally more complicated than in the unde-

composed basis, structurally it is the most simple form: We observe that it is diagonal

in the remaining index structure and block diagonal in field space, such that scalar,

vector and tensor components only couple to themselves.

This simple form can be expected from the outset, as all component fields are

transverse and the partial derivative ∂µ in the free part H0 is the only object carrying

an index (the constant tetrads ēaµ are being absorbed by partial derivatives changing
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the type of their index). Thus, they can only combine to −�-operators in H0 as all

free indices give a vanishing contribution due to the transversality of the fields. For

the same reason, no coupling between component fields of different tensor type can

occur in H0.

Due to this simple structure H0 can be inverted by inverting its matrix structure in

field space and taking the tensor product with the identity operators on the respective

field space i. e. scalars, transverse vectors and transverse symmetric traceless tensors

(cf. eqns. (5.43), (5.44)). Thus, by the decomposition of the fields we have reached

our main goal, namely the explicit invertibility of H0.

(B) One can check the plausibility of the result (5.66) by several consistency checks

[Dau]. As the component fields with small/capital letters correspond to the fluctua-

tions ε̄/τ̄ we can easily compare with the ε̄/τ̄ -block structure in the undecomposed

basis.

First of all we see that all elements stemming from the ε̄ε̄-block are proportional to

µ̄−1, while those from the τ̄ τ̄ -block come with µ̄ and the ε̄τ̄ -blocks are not affected.

Thus the µ̄-rescaling has the desired effect of giving H0 a well defined mass dimension.

Second, the first order derivatives of the Holst action appearing in the ε̄τ̄ -block are

here reflected in the P̂-operators in the corresponding blocks. All P̂2-operators in H0

appear in the ε̄ε̄-block and correspond to the second order derivatives that are part of

the diffeomorphism gauge fixing action.

At last, one can divide the component fields into tensors and pseudo tensors. Since

the complete fluctuation τ̄ transforms as a tensor under parity, the tensor components

come with an even number and the pseudo-tensor components with an odd number of

εabcd pseudo-tensors as prefactors in the field decomposition (5.52), (5.60). As noted

before, the Immirzi term in the Holst action corresponds to its pseudo scalar part;

thus, all pseudo scalar contributions to Γ̆quad are proportional to 1
γk

, while the scalar

contributions do not contain the Immirzi parameter. As one can check, the Immirzi

parameter occurs in all matrix elements coupling tensors with pseudo tensors (and

only there) forming pseudo scalar contributions.

(C) As the decomposition of the fields was carried out with the help of a computer

algebra system, we have cross-checked our result for H0 with the corresponding result

from [Dau] in order to ensure the functionality of our algorithm. We were able to

verify that all differences occurring are due to the different numerical prefactors in the
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5.2 Application of the WH-like flow equation to the Holst truncation

decomposition of the fields and a factor of 2 traced back to a different definition of

the O(4)-gauge condition.

In the ghost sector the decomposition is much simpler. For the free part Hgh
0 of the

quadratic form Sgh we find:

Sgh

∣∣∣
ē=const,

ω̄=0

=

∫
d4x ē




f̄

ḡa

F̄a

Ḡa




T


− (1+βD)√
αD

P̂2 0 0 0

0 0 − µ̄√
2αD

P̂ 0

0 −
√

2µ̄√
αL

P̂ 2µ̄2
√
αL

0

0 0 0 2µ̄2
√
αL







f

ga

F a

Ga




(5.67)

Again the correspondence to the analogous expression in [Dau] has been verified. From

(5.67) we see explicitly that for βD = −1 the diffeomorphism gauge fixing condition

breaks down and the ghost operator develops a zero mode in the scalar sector, while

it is invertible for all other values of βD.

The interaction part V (ω̄). For the interaction part V (ω̄) of the Hessian the index

structure of its elements does not simplify in a comparable manner: Here we have the

objects ω̄abµ, εabcd and ∂µ carrying indices that can be contracted in various ways using

the background vielbein ēaµ and its inverse. As long as the free indices of the resulting

expressions do not belong to partial derivatives, they may contribute to V (ω̄). For this

reason, most of the matrix elements of V (ω̄) are so complicated expressions that it is

not instructive to write down V (ω̄) in the decomposed basis. (The total expression

would fill many pages.)

Let us mention, however, that if we split V (ω̄) = V 1(ω̄)+V 2(ω̄), where V 1 is linear

and V 2 quadratic in ω̄ (note that there are no higher order terms in the action), these

matrices have a certain block structure in field space, that can already be read off

from the (ε̄, τ̄) representation (5.50) and (5.8), and this can be exploited to simplify

the calculation of the traces later on. For constant background fields {ē, ω̄} we find

schematically:

V 1(ω̄) =




(
Γ

(2)
gf

)
ε̄ε̄

(
Γ

(2)
Ho

)
ε̄τ̄(

Γ
(2)
Ho

)
τ̄ ε̄

0



∣∣∣∣∣∣

linear
in ω̄

, V 2(ω̄) =



(
Γ

(2)
gf + Γ

(2)
Ho

)
ε̄ε̄

0

0 0



∣∣∣∣∣∣

quadratic
in ω̄

(5.68)
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5.2.5 Evaluation of the flow equation

After having defined all ingredients to the flow equation

∂tΓk[ē, ω̄] = − k4

(2π)4

∫
d4x ē

[ ∫
dΩp

∑

i,ai,bi

1

2
(Pi)

bi
ai

[
ln Γ̆(2)(ipµ)

]ai

ii bi

−
∫

dΩp

∑

i∈
ghosts

,ai,bi

(Pi)
bi
ai

[
lnS

(2)
gh (ipµ)

]ai

ii bi

]

p=k

(5.69)

we are now able to evaluate both of its sides.

Let us first consider the left hand side of the equation. If we substitute the Holst

truncation (5.5) into it and switch to dimensionless couplings,

gk = k2Gk, λk = k−2Λk, (5.70)

in order to obtain an autonomous system of β-functions, we find

∂tΓk[ē, ω̄] =− k2

16πgk

(
2− ∂tgk

gk

)
·
∫

d4x ē ē µ
a ē

ν
b F̄

ab
µν

+
k2

16πgk

(
2− ∂tgk

gk
− ∂tγk

γk

)
1

γk
·
∫

d4x ē
1

2
ē µ
a ē

ν
b ε

ab
cdF̄

cd
µν

+
k2

16πgk

(
2− ∂tgk

gk
+ 2 +

∂tλk
λk

)
2λkk

2 ·
∫

d4x ē .

(5.71)

We can further evaluate the field monomials for the constant background fields ē

and ω̄ leading to

ē ē µ
a ē

ν
b F̄

ab
µν = ē (ω̄abcω̄

acb − ω̄acaω̄bcb),
1

2
ē ē µ

a ē
ν
b ε

ab
cdF̄

cd
µν = ēεabcdω̄

ab
e ω̄ecd . (5.72)

Here, we have used the background vielbein to formally change the spacetime index of

ω̄ to an O(4)-index. This is only done for notational simplicity; if needed, the tetrads

can be restored at any point of the calculation.

Now, let us turn to the right hand side of (5.69). We have to extract all terms from

the logarithms that are independent of or second order in ω̄, as the invariants we want
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5.2 Application of the WH-like flow equation to the Holst truncation

to project on are either of zeroth or of second order in ω̄. For this case the expansion

of the logarithms (5.42) simplifies to

tr ln Γ̆(2) =
1

2
ln

[∏(
det(H0)ij

)δIi
Jj

]2

+ tr P̃ H̃−1
0 Ṽ 2 − 1

2
tr P̃ (H̃−1

0 Ṽ 1)2 + · · · (5.73)

(and analogous for the ghost sector). The dots stand for terms linear in ω̄ and O(ω̄3)-

terms. Note, that all terms linear in ω̄ vanish anyway when the momentum integration

is carried out, as no field monomials exist that have a linear part for a constant field ω̄.

Thus, (5.73) still represents a full expansion of the right hand side up to second order in

ω̄. In the ω̄-independent part of (5.73) we have applied another computational trick:

As the spectrum of H0 is not necessarily positive, the logarithm of its determinant

could be ill-defined. For that reason we replace ln detH0 → 1
2
ln detH2

0 , defining a

method how to treat the negative part of its spectrum.

As a next step we now substitute H0, V
1 and V 2 in the decomposed field basis into

(5.73) and the result into (5.69). Then we are left with an expression containing all

possible monomials that are quadratic in ω̄; in order to prepare for a comparison of

their coefficients on both sides of the flow equation (5.69) we would like to cast it into

the form

∂tΓk = rhsF · k2

∫
d4x ē (ω̄abcω̄

acb−ω̄acaω̄bcb) + rhsF∗ · k2

∫
d4x ē εabcdω̄

ab
e ω̄ecd

+ rhsΛ · k4

∫
d4x ē+ k2

∫
d4x ē (further, independent ω̄2-monomials) .

(5.74)

Here, rhsF, rhsF∗, and rhsΛ are (dimensionless) functions of the dimensionless cou-

plings (λ, γ, g) and the gauge fixing parameters (αD, α
′
L, βD).

If we analyze the expression (5.74) in more detail, we find that the exact form of

the coefficients rhsF and rhsF∗ depends on the basis of independent field monomials

quadratic in ω̄ we choose; i. e. only if we fix the form of the remaining independent

terms in (5.74), corresponding to a particular choice of basis in theory space, we can

define the coefficients of the invariants we are interested in.2 The details of this projec-

2The explicit form of the complete RHS containing all independent ω̄2-monomials does not depend
on the basis of theory space chosen, but only on the gauge parameters. Since the result for general
gauge parameters fills about 20 pages without being illuminative, we only display this unambiguous
result for the (αD, α′

L, βD)=(0, 0, 0) gauge in Appendix E.
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tion ambiguity are discussed in the next section. Let us only note here that this effect

is neither astonishing nor alarming as the couplings are not directly measurable quan-

tities. Observable quantities (up to truncation artifacts) only contain combinations of

couplings that do not depend on the choice of basis in theory space any more.

While the exact expressions for the functions rhsF and rhsF∗ is basis dependent, we

can, however, discuss the general form of the result, i. e. how these functions struc-

turally depend on the couplings. This is possible as the generic form of all prefactors

of the ω̄2-expressions corresponding to the same parity is equal. In any basis chosen

the functions rhsF and rhsF∗ are linear combinations of these prefactors and, thus, of

the same form.

We find that neither rhsF nor rhsF∗ depends on the Newton constant g, and their

functional form in terms of the Immirzi parameter is very simple. This can be under-

stood as Γ̆quad contains the Newton constant only as a global prefactor that drops out

in the expansion of the logarithm and is only present in the ω̄-independent determi-

nant i. e. in rhsΛ. On the other hand Γ̆quad contains a factor γ−1 in every parity-odd

element, leading to a simple γ-dependence of its inverse. We therefore expect, that

the parity-even prefactor rhsF only contains even powers and, in contrast, rhsF∗ only

odd powers of γ. The dependence on the cosmological constant is, however, very in-

volved and comprises a complicated dependence on the gauge fixing parameters as

well, whose details depend on the basis chosen. Explicitly the coefficient functions are

of the form

rhsF(λ, γ) =
1

γ2

P8(λ)

N(λ)
+
P10(λ)

N(λ)
,

rhsF∗(λ, γ) =
1

γ

P9(λ)

N(λ)
.

(5.75)

Here, N(λ) is a common denominator, which is a polynomial in λ of degree 10 given

by

N(λ) = (λ− 1)2(α′
Lλ+ 2)2

(
3αDλ

2 + (2β2
D + βD − 1)λ+ β2

D + 2βD + 1
)
·

·
(
2αDα

′
Lλ

2 + 4αDλ− 1
)2(

1 + βD

)2
(5.76)

and turns out basis independent. The functions Pn(λ) are polynomials in λ of degree

n. Their explicit form is basis dependent and each of them fills several pages as long

as the gauge parameters are not chosen to specific values.
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5.2 Application of the WH-like flow equation to the Holst truncation

The coefficient function rhsΛ is basis independent. It is given by

rhsΛ(λ, γ, g) = − 1

32π2

[
ln
(γ2 − 1

γ2

)24

+ ln
[
(λ− 1)10(2 + α′

Lλ)6
]

+ ln
[
(3αDλ

2+(2β2
D+βD−1)λ+β2

D+2βD+1)2(2αDα
′
Lλ

2+4αDλ−1)6
]

− ln
[
g68π68M160µ32(1 + βD)4

]
− lnN

]
(5.77)

Here, µ and M are dimensionless mass parameters: µ = µ̄/k stems from the rescaling

of the fluctuation fields performed earlier and M = M̄/k is a mass parameter, that

has to be introduced in order to render the argument of the logarithm dimensionless.

As both parameters only occur in the combination µM5 we can substitute them by a

single parameter m = M = µ in the following. N is a purely numerical factor with

lnN ≈ 167.74.

Note that in the above expression for rhsΛ the limit of (α′
L, αD)→ 0 is well-defined

as no argument of the logarithm vanishes completely. If we, however, decompose

rhsΛ = rhsΛgrav +rhsΛgh into graviton and ghost contributions we find that both parts

contain logarithmic terms that diverge in this limit, but cancel each other in the sum.

Here we see explicitly that this cancelation of divergences is due to the incorporation

of the gauge parameters into the gauge conditions; otherwise the ghost contributions

would have been (α′
L, αD)-independent and the limit of the (α′

L, αD) = (0, 0)-gauge

would not be well defined.

Independent of the exact expressions for the coefficients in (5.75) we can derive the

form of the resulting β-functions for the couplings (λ, γ, g) by equating the coefficients

in (5.71) and (5.74), leading to

βg = ∂tg = g
[
2 + 16πg rhsF(λ, γ)

]

βγ = ∂tγ = −16πgγ
[
γ rhsF∗(λ, γ) + rhsF(λ, γ)

]

βλ = ∂tλ = 16πgλ rhsF(λ, γ) + 8πg rhsΛ(λ, γ, g)− 2λ

(5.78)

This system of β-functions states the main result of this section. We have studied

the resulting RG flow for various gauge choices and projection schemes that will be

introduced in the next section. The properties of the flow are discussed in detail in

Section 5.4.
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5 QECG in Holst Truncation

5.3 Projection schemes in theory space

5.3.1 Beta-functions and the choice of basis

It is clear from the outset that β-functions generically depend on the basis cho-

sen in theory space, since couplings serve as coordinates in theory space and the

β-functions obtain as their scale derivatives. Thus, β-functions themselves and the

running couplings they give rise to can not be considered physical quantities. All ob-

servable quantities therefore must depend on the couplings in such a way that their

basis dependence drops out.

e1

e2

λ1e1

λ2e2
v

e1

e′2

λ′1e1

λ′2e
′
2

v

Figure 5.1. Illustrative example: The vector v is decomposed w. r. t. the two bases
(e1, e2) and (e1, e

′
2). Although the basis vector e1 does not change under the basis

transformation, the corresponding coordinate λ1 → λ′
1 transforms non-trivially. This is

because the spaces spanned by e2 and e′
2

that form the kernel of the projection do not
coincide.

A more subtle consequence of the basis dependence is that β-functions of a given

invariant may transform non-trivially even if we perform a change of basis involving

only the other basis invariants.

In a general vector space the coordinate of a fixed basis element only stays constant

if the space spanned by the other basis elements is invariant under the basis transfor-

mation (cf. Fig. 5.1). Thus, in order to fix a coordinate of some vector w. r. t. a given

basis element we also have to specify the space spanned by all other basis elements.

This corresponds to the definition of a projection operator onto the basis element:

Its kernel defines the space spanned by the other basis elements while its range is

spanned by the element we want to project on. Note that only if the vector space is

equipped with a scalar product, orthogonal projections can be defined, that allow the

construction of the kernel from the range of the projector. Thus, for the definition of

a projection scheme in a vector space lacking the notion of orthogonality, like theory

space, we not only need to specify the invariants we want to project on, but also those

which should be projected out.
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5.3 Projection schemes in theory space

If we use a systematic expansion of the invariants in theory space, as e. g. the

derivative expansion, the β-functions of couplings corresponding to invariants up to

a given order will not change any more once all basis invariants up to that order

are fixed. From the above general considerations this is easily understood since in

this case the kernel of the projection scheme used is implicitly defined as the space of

higher derivative invariants. As this kernel does not change no matter which invariants

are used as its basis, the β-functions of the lower derivative couplings are defined

unambiguously once a basis in the range of the projection scheme has been chosen.

Within a subspace of a fixed order of derivatives, however, we have to define the

kernel of the projection scheme explicitly before the β-function of a single coupling

can be determined.

This effect can be illustrated by a well-known example from metric gravity: In d 6= 4

we find 3 independent field monomials (RµνρσR
µνρσ, RµνR

µν , R2) in the curvature-

squared subspace, that may serve as its basis. Even if we only want to compute

the β-function of the R2 coupling, we have to define the space spanned by the other

two basis elements and thus give some information about the choice of basis in the

3-dimensional subspace before it can be determined.

Note that a projection scheme can also be defined implicitly by using a specific

background spacetime: In [LR02] a truncation of metric gravity has been considered

that only includes the R2 term and none of the other curvature-squared invariants. In

order to determine the β-function of its coupling a maximally symmetric background

spacetime has been used with

Rµν =
1

d
gµνR and Rµνρσ =

1

d(d− 1)
(gµρgνσ − gµσgνρ)R . (5.79)

Using these relations one can see immediately that the combinations

RµνR
µν − 1

d
R2 and RµνρσR

µνρσ − 2

d(d− 1)
R2 (5.80)

of the curvature-squared invariants (and all linear combinations of them) are mapped

to zero once we employ a maximally symmetric spacetime. Thus they define the kernel

of the projection scheme that is implicitly defined by the choice of the maximally

symmetric background spacetime.

In d = 4 the three curvature squared monomials from above can be combined

to a topological term, the Euler invariant χE of the manifold using the Gauss-Bonnet

143



5 QECG in Holst Truncation

theorem (see e. g. [Ort07]). Thus, on spacetimes with χE = 0 the three invariants form

an overcomplete basis of the curvature squared subspace. Clearly, the β-functions will

depend on our choice which of the three monomials is considered as linearly dependent

on the other two and thus is excluded from the basis. Reducing an overcomplete basis

to a complete one hence also amounts to the definition of a projection scheme and can

been seen as an example of the projection ambiguity of the β-functions, albeit a more

trivial one.

In the case of tetrad gravity, we find an analogous ambiguity: We expanded the right

hand side of the flow equation up to second order in the spin connection and from

this expression we want to extract the coefficient of the terms that correspond to the

Immirzi term. On any manifold of the same topology as the flat torus we work on, the

value of the Nieh-Yan invariant is zero and therefore
∫
ea∧eb∧F ab =

∫
T a∧Ta. Hence,

the Immirzi term lies within the subspace of parity-odd torsion squared monomials.

In Appendix F we show that of the four different contractions of two torsion tensors

with the ε-symbol (T
2(−)
1 , · · · , T 2(−)

4 ) only two are linearly independent. Thus, the

subspace is two dimensional and in order to determine the prefactor of the Immirzi

term, rhsF∗(λ, γ), we have to first choose the second basis monomial in this space.

Up this point, all observations apply even for an ideal untruncated calculation and

are thus independent of the details of our calculation. Working with the WH-like flow

equation (5.14), however, requires us to use constant background fields {ē, ω̄}. For this

reason a second ambiguity of the above kind arises for the curvature term: As from

the field strength tensor evaluated on a constant background only the ω̄2-part remains

(F̄ ab
µν = ω̄ac[µω̄

cb
ν]), the curvature term in the action becomes indistinguishable from

a certain combination of parity-even torsion squared monomials (T
2(+)
1 , T

2(+)
2 , T

2(+)
3 )

evaluated on the same background. This space is three dimensional (cf. Appendix F)

such that we have to first specify the space spanned by the other two basis vectors

before we can extract the corresponding prefactor rhsF(λ, γ).

In the remaining two subsections we describe which choices of basis have been

considered in out study and how the inherent ambiguity can be exploited to find an

optimized gauge condition. In the discussion we will make use of the decomposition

of the torsion tensor into irreducible components (cf. [BH11, Sha02]) according to

T λµν =
1

3

(
δλνTµ − δλµTν

)
+

1

6e
ελµνσS

σ + qλµν (5.81)

144



5.3 Projection schemes in theory space

with qλµλ = 0, qλµν = −qλνµ and εµνρσqνρσ = 0. The details of this decomposition are

further explained in Appendix F.1.

5.3.2 Subspace of parity-odd T 2-invariants

As already mentioned above, the subspace of parity-odd torsion squared monomials

turns out two dimensional and with the help of the decomposition (5.81) a quite

natural choice of basis of this space arises, which is given by the two monomials

I4 = SµT
µ and I5 = e−1εαβγδq

αβµqγδµ . (5.82)

If one wanted to carry out a more general calculation including all the subspace in

the truncation considered, one would probably choose to work with this basis, as the

choice I4, I5 seems less arbitrary than any choice of 2 invariants among the T
2(−)
i ,

i = 1, · · · , 4.

However, as our truncation only contains the Immirzi term, which is given as the

linear combination

∫
ea ∧ eb ∧ F ab =

1

4

∫
d4x e T

2(−)
1 =

∫
d4x e

(
−1

3
I4 + I5

)
, (5.83)

we are bound to choose this combination as one of our basis elements. For the second

basis element we have a free choice among all other linear independent combinations

of I4 and I5.

In the following we will motivate how this freedom can be used in order to optimize

the truncation and the choice of gauge parameters. The very idea of choosing a

good truncation is that all RG trajectories of the exact, untruncated flow that start

in the subspace defined by the truncation invariants lie almost completely within

this subspace of theory space anyway, such that the truncation captures all essential

features of the flow. This requires that the components of the exact RG flow causing

the departure from the subspace are considered in some sense “small”. A truncation

becomes exact only when the corresponding subspace in theory space is mapped onto

itself under RG transformations.

Usually it is not possible to judge the reliability of a given truncation by this cri-

terion without performing a completely independent second RG analysis considering

a more general truncation. This is because the right hand side of the flow equation
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is usually directly projected onto the invariants contained in the truncation such that

all information about other invariants generated by the flow is lost at that point.

In our calculation we have projected the right hand side onto the space of torsion

squared invariants and by doing that, we have computed how the RG flow starting

within the Holst truncation “leaks” from the truncation into this larger part of theory

space. If the Holst truncation was an exact truncation, the right hand side would

contain the invariants I4 and I5 only in the linear combination corresponding to the

Immirzi term. In this case the choice of a second basis invariant would be obsolete,

as the coordinate of the Immirzi invariant would not depend on it, while this second

coordinate stays zero.

This consideration suggests that in an inexact truncation the ratio of the two co-

ordinates may serve as an indicator for the reliability of the truncation. Pictorially

speaking, this ratio of the coordinates, which generically depends on all couplings, is

related to the angle at which the RG flow departs from the subspace of the truncation

at this point in theory space.

Unfortunately one would need to define a scalar product in theory space in order to

give this illustrative interpretation of the ratio a quantitative meaning: As long as we

cannot normalize the basis elements, we can rescale one of them resulting in an inverse

scaling of the respective coordinate which alters the ratio of the two coordinates and

as long as we cannot choose the basis orthogonally, the ratio will also depend on the

angle between the basis elements.

Thus, with no scalar product at hand, we can only draw qualitative conclusions

from the ratio of coordinates. These conclusions will implicitly assume that if we were

to introduce a scalar product in theory space, the norm of the most natural basis

elements {I4, I5} should be of the same order of magnitude and they should not turn

out practically collinear. Taken together, we assume that the elements of theory space

parametrized by ϕ according to

v(ϕ) = sin(ϕ)I4 + cos(ϕ)I5 (5.84)

should all have a norm within the same order of magnitude. If we choose the monomial

v(ϕ), besides the Immirzi term, as a second basis element, we can discuss a continuous

class of bases which we will denote by B(−)
v(ϕ).
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Besides this family of bases we introduce a discrete set of bases according to

B(−)
i :=

{
1

4

∫
d4x e T

2(−)
1 ,

1

2

∫
d4x e T

2(−)
i

}
with i = 2, 3, 4 (5.85)

and

B(−)
I5

:=

{
1

4

∫
d4x e T

2(−)
1 ,

3

2

∫
d4x e I5

}
. (5.86)

Here, T
2(−)
i denote the four different parity-odd torsion squared monomials, that result

from contracting two torsion tensors with the ε-symbol. Their explicit form is given

in Appendix F.

As v(ϕ) describes a rotation in the (I4, I5)-plane, the basis B(−)
v(ϕ) is, up to a rescaling

of the second basis element, equivalent to each of the discrete bases for a certain value of

ϕ. Explicitly these values are given by tan(ϕ) = {∞, 1
6
, 2

3
, 0} for the bases {B(−)

i ,B(−)
b }.

With these bases defined we can discuss the coordinate ratios as a measure for the

reliability of our truncation explicitly. To this end we decompose the result for the

RHS of the flow equation (5.74) first into its parity-even and -odd parts

rhs = rhs(+) + rhs(−) (5.87)

and the parity-odd part rhs(−) is further decomposed into a linear combination of the

basis invariants. In the basis B(−)
i we introduce the notation

rhs(−) =
(
rhs*F

)
B(−)

i

· 1
4

∫
d4x e T

2(−)
1 + rhsT

2(−)
i · 1

2

∫
d4x e T

2(−)
i , (5.88)

for i = 2, 3, 4.

Thus,
(
rhs*F

)
B(−)

i

and rhsT
2(−)
i play the role of coordinate functions in the basis

B(−)
i . From the discussion of the general form of the RHS (cf. eq. (5.75)) we know

that these are functions of the couplings λ and γ, but that the γ-dependence drops

out when we compute the ratio of both functions. Thus we are led to a function of

the form

R(−)(λ) =

(
rhs*F

)
B(−)

i

rhsT
2(−)
i

=
P

B(−)
i

9 (λ)

P
T

2(−)
i

9 (λ)
. (5.89)

As it is the ratio of two polynomials of degree 9 and a polynomial of degree n

generally has n zeroes, not all of which have to be real, we expect these functions to

exhibit up to 9 zeros and 9 poles on the real axis.
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Figure 5.2. Typical plots of the coordinate ratio R(−)(λ) for two different bases as
a function of the cosmological constant λ, shown here for the (αD, α′

L, βD) = (1, 1, 0)
gauge.
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Figure 5.3. The coordinate ratio R(−)(λ) for the same bases as in Fig. 5.2 as a function
of λ in the (αD, α′

L, βD) = (0, 0, 0) gauge.

In Fig. 5.2 we have plotted the coordinate ratio as a function of λ for the bases B(−)
2

and B(−)
3 . From the figure we observe that many of these poles and zeros generically

occur in the most interesting part of the phase diagram, namely at small (positive

or negative) cosmological constant λ. For that reason the ratio function is wildly

fluctuating at small λ indicating that the reliability of the truncation strongly depends

on the value of λ. Taking this into account it does not make sense to simply choose

one basis and further discuss specific properties of the resulting RG flow in different

gauges, as the reliability of these results would be highly questionable.

Instead we should try to find a specific gauge that improves the situation. As most

of the zeros of the polynomials P9(λ) depend on the gauge parameters, we can try to

move them such that they are situated outside the region of small λ. It turns out that

almost all movable zeros tend to larger values of λ for small values of α′
L, αD. In the
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limit α′
L, αD → 0 the polynomials simplify: Because the prefactors of all higher orders

in λ vanish, only polynomials of degree two remain. Stated differently, all but two

zeros are removed by moving them to infinity. If we, in addition, send βD → 0 the

ratio of the polynomials further simplifies as in this limit a common factor (1− λ) of

numerator and denominator can be canceled, such that we are left with a single pole.

In Fig. 5.3 the coordinate ratios are shown for the same bases as in Fig. 5.2

but for the (αD, α
′
L, βD) = (0, 0, 0)-gauge. We observe a tremendous simplification in

the graphs and find that the ratio now is a constant function except for the vicinity

of the one remaining pole, which, unfortunately, cannot be removed within our gauge

freedom. Moreover, we find that the asymptotic value and the width of the pole remain

basis depend quantities (note the different scales of the two plots). Nonetheless, the

comparison between Figs. 5.2 and 5.3 shows strikingly that the (0, 0, 0)-gauge should

be preferred compared to other gauges in any basis. Besides the fact that the (0, 0, 0)-

point in gauge parameter space can be argued to be a fixed point of the RG flow in

this space [EHW96], we find here a new argument in favor of this gauge, namely that

it optimizes the consistency of a given truncation.

In a last step of basis optimization we consider the asymptotic value of the ratio

functions R
(−)
∞ = limλ→±∞R(−)(λ). As we can freely scale each of the corresponding

basis functionals, which leads to an inverse scaling of the ratio, it is difficult to compare

the different discrete bases. For that reason, we now turn over to the continuous set

of bases B(−)
v(ϕ) and discuss the asymptotic value as a function of its parameter ϕ. The

corresponding graph is shown in Fig. 5.4.

The resulting function is of the expected form: If we decompose a fixed vector

v w. r. t. different bases whose first element is held fixed and the second rotates, we

should find a 2π-periodic function for the coordinate ratio. It has poles at those points

where the second basis element points into the direction of the vector v, such that

the first coordinate (the denominator) vanishes. The minima of the absolute value of

the function occur when the second basis element is chosen orthogonal to the vector v

we wish to decompose. At the angle at which both basis elements are collinear, both

coordinates diverge in opposite direction to ±∞ resulting in a ratio of −1; this angle

corresponds to the point labeled by T
2(−)
1 in Fig. 5.4.

Under the assumption that the basis elements v(ϕ) are of approximately the same

norm all these observations also apply to the graph in Fig. 5.4. Here we have also

marked the points that correspond to the directions of the discrete torsion squared
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Figure 5.4. Asymptotic value R
(−)
∞ = limλ→±∞ R(−)(λ) of the coordinate ratio for

the continuous set of bases B(−)
v(ϕ) in (αD, α′

L, βD) = (0, 0, 0) gauge as a function of the
parameter ϕ.

monomials T
2(−)
i and I5 as second basis elements. We find that the monomial T

2(−)
3

is almost collinear with our result for right hand side of the flow equation, as it lies

very close to the pole of the function. On the other hand, T
2(−)
2 , lies in the vicinity

of the minimum of the function, indicating that it is “almost orthogonal” to our right

hand side expression. For this reason, we have chosen the basis B(−)
2 in the parity-odd

subspace for the further detailed analysis of the resulting RG flow.

As a last remark let us mention that the width of the pole, given by the angle

difference between the point T
2(−)
1 and the pole, may serve as a measure for the

reliability of the truncation. In our case we find that it is of order π/8 and thus not

particularly small, indicating that an extension of the Holst truncation to the full

torsion squared subspace could be sensible in order to improve the stability of the

results.

5.3.3 Subspace of parity-even T 2-invariants

In the subspace of parity-even T 2-invariants the situation is more complicated as

the space is 3-dimensional. Let us stress again, that the basis ambiguity here is

only due to the choice of constant background fields, which, however is inevitable

if one wants to make use of the WH-like flow equation. In an RG analysis that
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uses a general background the curvature term could be identified unambiguously from

the terms that are first order in derivatives and the spin connection. Evaluated on

a constant background, however, we cannot distinguish the curvature term from a

certain combination of torsion squared invariants. This kind of approximation is well

known and often used to make the most complicated computations feasible; choosing

e. g. maximally symmetric spacetimes as a background in metric gravity results in

an indistinguishability of the curvature squared monomials [LR02]. In contrast to

this example from metric gravity, here the choice of constant background does not

completely fix the projection scheme that maps onto our truncation space, but it

only maps the curvature term into the torsion squared subspace. Thus we pick up

an additional basis ambiguity here, that has to be fixed by completing the projection

scheme.

As for the parity-odd case the basis monomials constructed from the irreducible

torsion components,

I1 = TµT
µ, I2 = SµS

µ and I3 = qµνρqµνρ, (5.90)

appear as the most natural choice for a basis in the parity-even subspace. Alternatively,

one could choose the three torsion squares T
2(+)
i , i = 1, 2, 3, defined in Appendix F.2.

However, if we evaluate the curvature term on the constant background (ē, ω̄) we find:

ēa ∧ ēb ∧ ∗F̄ ab =
(
ω̄abcω̄

acb − ω̄abaω̄cbc
)
ē d4x

=
1

4

(
T̄

2(+)
1 + 2T̄

2(+)
2 − 4T̄

2(+)
3

)
ē d4x

=

(
− 2

3
Ī1 −

1

24
Ī2 +

1

2
Ī3

)
ē d4x .

(5.91)

Thus, it does not coincide with any of the basis vectors but is a combination of all

three basis elements in both natural bases. As this combination has to be held fixed

as the first basis element that we want to project on, arbitrary choices of the other

two basis invariants among the T
2(+)
i and the Ii, but also among the spin connection

squares ω̄abcω̄
abc, ω̄abcω̄

acb, ω̄ab
aω̄c

bc are equally plausible.

Unfortunately also the discussion of the coordinate ratios for the different bases does

not lead to a unique preference of one specific basis: Although also in this subspace

an enormous simplification of the ratio functions can be reached by using the (0,0,0)-
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gauge, the structure of the right hand side expression (5.75) causes the ratios to be

functions of the two couplings (λ, γ), which complicates a systematic analysis.

Since we were not able to single out one specific basis as being optimal w. r. t. the

consistency of the truncation, we analyzed the RG flow for four different, more or less

arbitrarily chosen bases, which are defined by their elements according to

B(+)
1 =

{∫
ē(ω̄abcω̄

acb − ω̄abaω̄cbc),
∫
ē(ω̄abcω̄

acb + ω̄ab
aω̄cbc), 2

∫
ē ω̄abcω̄

abc
}
,

B(+)
2 =

{∫
ē(ω̄abcω̄

acb − ω̄abaω̄cbc), 2
∫
ē ω̄ab

aω̄cbc, 2

∫
ē ω̄abcω̄

abc
}
,

B(+)
3 =

{∫
ē(ω̄abcω̄

acb − ω̄abaω̄cbc), 2
∫
ē ω̄abcω̄

acb, 2

∫
ē ω̄abcω̄

abc
}
,

B(+)
4 =

{∫
ē(ω̄abcω̄

acb − ω̄abaω̄cbc),−
1

4

∫
ē I2,

3

2

∫
ē I3

}
,

(5.92)

where
∫

=
∫

d4x. The prefactors of the different invariants are chosen such, that the

bases are related to each other by transformation matrices of unit determinant.

With these bases specified we are now able to discuss the properties of the RG flow

of the Holst truncation in the next section.

5.4 Analysis of the RG flow

After having introduced the different projection schemes we are going to analyze, we

are now able to write down the explicit form of the β-functions for the three couplings

of the Holst action. From (5.78), (5.75), and (5.77) we find that for all the bases the

β-functions are of the general form

βg(λ, γ, g) = g [2 + ηN(λ, γ, g)] , (5.93a)

βγ(λ, γ, g) = −16πgγ

N(λ)

[
P9(λ) +

1

γ2
P8(λ) + P10(λ)

]
, (5.93b)

βλ(λ, γ, g) = −2λ+
16πgλ

N(λ)

[
1

γ2
P8(λ) + P10(λ)

]

− g

4π

[
12 ln

(
γ2 − 1

γ2

)2
+5 ln(1− λ)2−96 lnm2−34 ln g2−lnN ′

]
, (5.93c)
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with the anomalous dimension of Newton’s constant

ηN(λ, γ, g) =
16πg

N(λ)

(
1

γ2
P8(λ) + P10(λ)

)
. (5.94)

Here, we have already specialized the logarithmic terms in βλ to the case of the pre-

ferred (0, 0, 0)-gauge, as we will restrict the discussion to this case. N ′ is a purely

numerical quantity given by

lnN ′ = lnN + 68 ln π − 6 ln 2 ≈ 241.42 . (5.95)

In the (0,0,0)-gauge also the Pn(λ) polynomials simplify and their degree is then

smaller than n, but for notational consistency we will stick to this notation. In addition

it reminds us of true complexity of the β-functions in terms of λ for a general choice

of gauge.

As we have discussed before, the virtue of choosing βD = 0 in addition to (αD, α
′
L) =

(0, 0) lies in the fact, that the polynomials Pn(λ) then contain a factor of (1−λ). In the

β-functions every polynomial Pn(λ) is divided by the denominator N(λ) such that this

factor is canceled. In the (0, 0, 0)-gauge the new common denominator is thus given

by N(λ)/(1− λ) and the numerators are composed of the polynomials Pn(λ)/(1− λ).

Since the following discussion is restricted to this preferred gauge, we will present only

the explicit expressions of these “rescaled” quantities.

The denominator N(λ) simplifies considerably in the (0, 0, 0)-gauge and takes on

the explicit form
N(λ)

1− λ
(0,0,0)
= 4(λ− 1)2 . (5.96)

For the rest of this section we will consider four distinct bases in the subspace of

torsion-squared invariants. As we have shown in the last section the optimal basis in

the parity-odd sector is B(−)
2 , while for the parity-even part we have introduced the four

bases B(+)
{1,2,3,4}. As a shorthand notation for the bases of the complete torsion squared

subspace we will denote to the combinations of these bases by Bi = (B(−)
2 ,B(+)

i ),

i = 1, 2, 3, 4.
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For each of these bases Bi the polynomials Pn(λ) take on different explicit forms.

As the polynomial P9(λ) only depends on the basis in the parity-odd sector, it is equal

for all four bases considered. In the (0, 0, 0)-gauge it assumes the simple linear form

P9(λ)

1− λ = − 5

64π2
(15λ− 11) . (5.97)

The polynomials P8(λ) and P10(λ) take on different forms in the different bases. Their

explicit form for the (0,0,0)-gauge is given in Table 5.1. We observe that basis B1 plays

a special role as the polynomial P8 vanishes in this case. We will investigate the deep

implications of this fact during the rest of this section.

B1 B2 B3 B4

P8(λ)
1−λ 0 5

96π2 − 5
96π2 − 5

32π2

P10(λ)
1−λ

55λ2−42λ−18
128π2 −43λ2−186λ+178

384π2
373λ2−438λ+70

384π2

(λ−1)(52λ−25)
32π2

Table 5.1. Explicit forms of the polynomials P8(λ) and P10(λ) in (αD, α′
L, βD) =

(0, 0, 0)-gauge for the four bases Bi, which we will explore in detail.

The analysis of the system of flow equations (5.93) in this section is organized as fol-

lows: In the first two subsections we will explore the RG flow in two two-dimensional

truncations beginning with the (λ, g)-truncation for a fixed value of the Immirzi pa-

rameter γ followed by the analysis of the (γ, g)-system for a fixed cosmological constant

λ. In the third subsection we discuss the full three dimensional RG flow of the Holst

truncation, including its fixed point structure and its phase portrait. In all these sub-

sections we will first compare the results for the four distinct bases Bi, i = 1, · · · , 4,

before we evaluate the qualitative similarities with the analysis carried out in [DR].

We thereby keep in mind that the ultimate justification for the applicability of our

new, structurally simplified WH-like flow equation can only lie in the accordance of its

predictions with other—either exact or at least well approved approximate— RG flow

equations. In a final subsection we will analyze the RG flow of chiral gravity for the

first time, which in our formalism requires only a slight modification of the derivation

for the general case.
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5.4 Analysis of the RG flow

5.4.1 The (λ, g)-subsystem

The system of flow equations we are going to discuss in this subsection is given by

the two equations (5.93a) and (5.93c),

βg(λ, γ, g) = g [2 + ηN (λ, γ, g)] ,

βλ(λ, γ, g) = −2λ +
16πgλ

N(λ)

[
1

γ2
P8(λ) + P10(λ)

]

− g

4π

[
12 ln

(
γ2 − 1

γ2

)2

+5 ln(1− λ)2−96 lnm2−34 ln g2−lnN ′

]
.

(5.98)

Throughout this subsection we treat γ as an external parameter, that can be chosen

to an arbitrary fixed value; in particular we will discuss how the RG flow depends

on the value of γ. Before we analyze its fixed point structure let us first discuss the

limitations of this truncation due to divergences inherent in the β-functions.

We find that the β-functions are not well defined for the values γ = 0 and γ = ±1.

While the latter divergence was expected from the outset, as the action depends in

this limit only on one chiral component of the spin connection, the reason for the

former remains somewhat unclear. It should be noted that the quadratic divergence

in both β-functions at γ → 0 is basis dependent since it ceases to exist in basis B1

where P8 = 0. Nevertheless a logarithmic divergence of βλ at γ → 0 still remains even

in this basis. The limit γ → ±∞ is, however, perfectly well defined in all bases. When

we discuss properties of the RG flow that apply for any value of γ in the following, we

implicitly exclude these pathological cases of γ = 0,±1.

Within the phase portrait in all (λ, g)-planes we find a barrier of the flow at λ = 1

for any value of γ. As not only the logarithmic term in βλ diverges on this line, but

also the denominator N(λ), the ratio βλ/βg stays finite in the limit λ→ 1. Hence, the

RG flow simply stops at this line, similar to the situation at λ = 0.5 in metric gravity

[Reu98, RS02]. In contrast to the metric case the singularity here is a pole of even

order, such that the flow does not change direction at this line.
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λ = 1

g

GFP

λ

NGFP1

NGFP2

Figure 5.5. Sketch of the fixed point structure of the (λ, g)-system. Besides the position
of the three fixed points, the barrier of the flow at λ = 1 is depicted.

Fixed point structure. As we will see shortly the (λ, g)-system exhibits in total

three FPs, the Gaussian FP (GFP) and two non-Gaussian fixed points (NGFP1,

NGFP2). Their approximate location in theory space is depicted in Fig. 5.5 in order

to illustrate the situation, before the details of their properties are discussed.

The Gaussian fixed point. First we observe that the system (5.98) allows for a

Gaussian fixed point at (λ, g) = (0, 0). However, the critical exponents, defined as the

negative eigenvalues of the stability matrix at the fixed point

B|g=g∗,λ=λ∗ =

(
∂gβg ∂λβg

∂gβλ ∂λβλ

)∣∣∣∣∣
g=g∗,λ=λ∗

(5.99)

cannot be determined as the flow cannot be expanded at the GFP: Although βλ is

well defined at the GFP its partial derivative w. r. t. g is not. Thus, it is not possible

to linearize the RG flow in the vicinity of the GFP in the usual way. Nonetheless

it possible to approximate the system in this region by taking into account only the

terms linear in the couplings and the logarithmic term that causes the divergence of

the derivative at the GFP. The resulting approximate system of flow equations reads

βg = 2g

βλ = −2λ+
17

2π
g ln g2 − Cg ,

(5.100)
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where C = (4π)−1[12 ln(1−1/γ2)2−96 lnm2−lnN ′] is a constant. It turns out feasible

to integrate this system of β-functions, and its solution subject to the initial condition

(λ0, g0) at the scale k = k0 is given by

g(k) = g0

(
k
k0

)2

λ(k) = λ0

(
k
k0

)−2
+
g0

4

(
C + 17

2π

(
1− ln g2

0

))[(
k
k0

)−2−
(
k
k0

)2]
+ 17

2π
g0

(
k
k0

)2
ln
(
k
k0

)
.

(5.101)

Although the flow cannot be linearized in the usual sense, we observe that it is perfectly

well-defined in the vicinity of the GFP, exhibiting non-polynomic terms, though. In

metric gravity contributions of this form are known from the running bare action

SΛ that can be reconstructed from any asymptotically safe trajectory of the effective

average action Γk [MR09]. We suppose that the logarithmic contributions here are

rather typical for the new WH-like equation, as it is structurally similar to the Wegner-

Houghton equation, being an RG equation for the running bare action (cf. Appendix

B).

Non-Gaussian fixed points. Besides the Gaussian fixed point the system (5.98)

generically allows for non-Gaussian fixed points as well. This is seen as follows: We

can solve the condition βg(λ, g) = 0 for

g∗(λ) = − 1

8π

N(λ)

P8/γ2 + P10(λ)
. (5.102)

This solution is substituted into the second fixed point condition βλ(λ, g
∗(λ)) = 0. The

zeros of this function of λ correspond to all non-Gaussian fixed points in the (λ, g)-

plane. Explicitly this condition amounts to the solution of the following equation for

λ:

4λ = − 1

4π
g∗(λ)

[
12 ln

[γ2 − 1

γ2

]2
+ 5 ln(λ− 1)2− 96 lnm2− 34 ln g∗(λ)2− lnN ′

]
. (5.103)

From the asymptotic behavior of this equation, which is linear on the LHS while it

is logarithmic on the RHS (g∗(λ) tends to a constant value for large |λ|), we expect

that there is at least one solution to equation (5.103). In addition, further solutions

can be generated by the variation of g∗(λ). Especially there will appear solutions in

the vicinity of the poles of g∗(λ). These latter solutions, however, were observed to

give rise to fixed points with a tiny basin of attraction, such that they do not at all

157



5 QECG in Holst Truncation

βλ(λ, g∗(λ))
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Figure 5.6. Fixed point condition βλ(λ, g∗(λ)) of the (λ, g)-system: At γ = 5 we find a
fixed point at λ ≈ 0.9 for all four bases (B1 solid, B2 dashed, B3 dot-dashed, B4 dotted).
In basis B3 the function βλ(λ, g∗(λ)) exhibits a pole close to λ = 1 giving rise to another,
however unphysical, fixed point.

influence the overall structure of the flow. Therefore these fixed point solutions should

not be considered physical.

Typically we find two solutions of eq. (5.103) that can be considered physical. We

denote the corresponding fixed points by NGFP1 and NGFP2 and discuss their

properties separately in the subsequent paragraphs.

(A) The fixed point NGFP1. The most stable solution that gives rise to the fixed

point NGFP1 occurs at λ ≈ 0.9: As the RHS falls to zero at λ = 1 and the LHS grows

linearly to 4 at that point, we generically find a solution to the fixed point condition

in the interval λ ∈ [0, 1]. This behavior is depicted for the four bases Bi and γ = 5 in

Fig. 5.6.

For other values of γ the situation is very similar. For γ > 1 we generally find that

0.8 < λ∗ < 0.9 while for γ < 1 the FP moves towards smaller λ∗. Only in basis B2 it

ceases to exist for γ . 0.75.

In Fig. 5.7 the fixed point position is plotted as a function of γ for all four basis

considered. We find that except for basis B2 the fixed point exists in all bases for all

values of γ. For γ > 1 the fixed point lies at almost the same position for all bases.

For small γ, however, the g∗ coordinate diverges in basis B1, while in the bases B3 and

B4 the fixed point merges with the Gaussian one.

Let us move on and analyze the stability properties of the fixed point NGFP1. In

Fig. 5.8 the real parts of the critical exponents for the four bases are plotted as a
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Figure 5.7. Fixed point position for all four bases (B1 solid, B2 dashed, B3 dot-dashed,
B4 dotted) and m = 1 as a function of γ. While for γ > 1 the fixed point position is
almost independent of the basis, for small λ we find their behavior differing: In basis B1

the g∗ coordinate diverges, in basis B2 the FP ceases to exist at γ ≈ 0.75 and in B3,4 the
FP merges with the GFP.
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Figure 5.8. Real part of the critical exponents for all four bases (B1 solid, B2 dashed,
B3 dot-dashed, B4 dotted) and m = 1 as a function of γ.
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Figure 5.9. Fixed point position for the three bases B1 (solid), B3 (dot-dashed) and B4

(dotted) and m = 1 as a function of γ. Compared to the first fixed point, the FP position
here depends severely on the basis chosen. However, for each basis the g∗ coordinate is
almost independent of γ, although λ∗ varies significantly.

function of γ. At the bifurcation points the critical exponents become real, while in

the range of γ with a single line only the critical exponents form a complex conjugated

pair, whose imaginary part is not depicted.

As a first observation we find that for all bases and all values of γ both critical

exponents are positive, i. e. that the fixed point is always UV attractive in both

directions. Moreover, the qualitative dependence of the critical exponents on γ turns

out similar for the different bases: At infinity they start real and we find a peak of the

curves close to γ = 1, that probably is an artefact of the singularity of the β-functions

at that point. Shortly after that the critical exponents turn complex, at least for some

interval in γ. The dashed line, corresponding to basis B2, stops at γ ≈ 0.75 as the

FP vanishes for smaller γ. Note that the absolute value of the critical exponents is

fairly large over the whole range of γ, which might cast some doubt on the physical

significance of this FP. For large γ, on the other hand, the functions corresponding to

3 out of 4 bases coincide to a remarkably good degree, showing a special robustness

of the result in the limit γ →∞.

(B) The fixed point NGFP2. Let us turn over to the discussion of the second FP

solution. It is only present in the bases B1, B3 and B4, while for basis B2 we generally

find only the first physical fixed point NGFP1 from above. The fixed point NGFP2
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Figure 5.10. Real part of the critical exponents for the three bases B1 (solid), B3

(dot-dashed) and B4 (dotted), and m = 1 as a function of γ. For all γ the fixed
point is attractive in both directions. The critical exponents are almost constant and
independent of the basis in a large part of total range in γ.

is located at large negative λ∗ and the corresponding g∗ coordinate typically lies within

the range g∗ ∈ [−4,−1].

The graphs showing the fixed point coordinates as functions of γ are shown in Fig.

5.9. We find that, except for a small region close to γ ≈ 0, that is dominated by the

logarithmic divergence, λ∗ starts off decreasing in value up to γ = 1 where it shows

a significant peak, while it stays approximately constant for γ > 1. What catches

the eye, however, is that g∗(γ, λ∗) is constant to a good approximation, although λ∗

shows such a pronounced variation. Hence, a remarkable compensation in the function

g∗(λ∗) seems to take place.

In comparison to the first fixed point we discussed, here, the FP position is quite

variable, depending on both γ and the choice of basis. Also the coordinates take on

large absolute values. However, the fixed point position is not a physical observable

so that we should not be concerned about these results but first analyze the absolute

value and stability of the critical exponents, which are considered physically more

meaningful.

In Fig. 5.10 the real parts of the critical exponents corresponding to the second

fixed point are depicted. We observe that the fixed point is UV attractive in both

directions as well and that the absolute value of the critical exponents lies in a perfectly

reasonable range. Moreover, the critical exponents are real, constant and almost
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independent of the basis chosen for all γ > 0.5. Taken together these findings strongly

support the physical significance of the fixed point.

(C) Discussion. We conclude that both fixed points in principle allow for the asymp-

totic safety construction and show the same predictivity as both critical hypersurfaces

are two dimensional. In comparison it is difficult to judge which of the two fixed

points should be considered most reliable. While the first one lies in the positive

(λ, g)-quadrant at a position similar to the one known from metric gravity, but its

large critical exponents question its reliability, the second one occurs in the negative

(λ, g)-quadrant at large coordinate values—which is hard to reconcile with the phe-

nomenological reasoning in favor of g∗ > 0—, but shows a remarkable stability of its

critical exponents. In the following we will therefore assign the same level of credibility

to both fixed points, NGFP1 and NGFP2, and treat them on the same footing.

The above discussion and Fig. 5.7 refers to the case with the mass parameter m

chosen to m = 1. As there is no physical mechanism which could generate a second

momentum/mass scale besides k, a choice of m ≈ 1 seems most natural. We tested

that qualitatively the situation does not change for other choices of m ∈ [0.5, 5]. As

in basis B1 all γ-dependence besides the logarithmic term drops out, we can infer

that changing m in this case is equivalent to choosing a different γ: Small m then

correspond to γ ≪ 1 and larger m to γ ≈ 1. Qualitatively this correspondence is also

found for the other bases. The explicit m dependence of the FP properties will be

analyzed in more detail when we discuss the corresponding “lifts” of the fixed points

in the 3-dimensional truncation.

The phase portrait. In this paragraph we discuss the resulting phase portrait of

the (λ, g)-truncation. As the two non-Gaussian fixed points occur at very different

coordinate scales, it is not possible to depict the resulting flow in the vicinity of both

FPs equally good in only one diagram. For that reason the two Figs. 5.11 and 5.12

each focus on one of the fixed points and its interplay with the Gaussian FP. The

figures are restricted to the B1 basis, but the qualitative features of the flow were

found to be similar for all bases that show the respective fixed point.

Fig. 5.11 pictures the NGFP1 in the positive (λ, g)-quadrant. Qualitatively all

panels of different γ resemble each other, while only the fixed point position moves

slightly.
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Figure 5.11. Phase portraits of the (λ, g)-truncation for different fixed values of γ in
basis B1 focussing on NGFP1 in the positive (λ, g)-quadrant. While the fixed point
position changes slightly, the qualitative features of the flow are remarkably similar for
all choices of γ.
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Figure 5.12. Phase portraits of the (λ, g)-truncation for different fixed values of γ in
basis B1 focussing on NGFP2 in the negative (λ, g)-quadrant. Again only the fixed
point moves, leaving the RG flow qualitatively unchanged for all choices of γ.
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The λ-axis, being the critical surface SUV of the GFP is an IR attractive line that

cannot be crossed by any trajectory. All points above this axis with λ < 1 lie on

trajectories that are asymptotically safe w. r. t. NGFP1. The divergence of the β-

functions at λ = 1 is approached in a controlled way, such that the flow stops on this

line.

The similarity to the phase portrait of metric gravity in Einstein-Hilbert truncation

is striking. In complete analogy to the metric case a classification of the asymptotically

safe RG trajectories is possible: We find the NGFP connected to the GFP by a

separatrix (type IIa trajectory) that separates the trajectories with a negative IR

cosmological constant (type Ia) from those with a positive one (type IIIa). However,

one significant difference to the metric description should be noted: Following the

separatrix from NGFP1 at positive λ to the IR we find that the cosmological constant

turns negative before ending in the GFP. In general such a situation occurs if the

second eigendirection of stability matrix at the GFP points in a direction of negative

λ. Here, due to the logarithmic divergence of the stability matrix at the GFP the

separatrix even ends up parallel to the λ-axis in the GFP.

In Fig. 5.12 the second NGFP in the negative (λ, g)-quadrant is depicted. Again,

qualitatively all panels of different γ resemble each other, but the fixed point position

changes. We see that the points in the negative g-halfplane with λ < 1 are all attracted

to NGFP2 in the UV. Also here, we find a separatrix connecting the FP and the GFP

that separates positive from negative IR cosmological constants. Due to the limiting

nature of λ-axis no trajectory that is asymptotically safe w. r. t. NGFP2 will run to

positive g in the IR. Hence, the physical significance of these trajectories is question-

able, as we should expect a positive Newton constant in the IR for phenomenological

reasons.

Comparison to the proper-time flow. If we compare the results obtained here

with the RG study using a proper-time flow equation in [Dau, DR] we find that

the fixed point structures do not coincide. In [DR] the (λ, g)-truncation shows three

non-Gaussian fixed points, all of which occur at g∗ > 0. Two of them have one

UV attractive and one repulsive direction, while the third one is attractive in both

directions. Thus, only this last one is comparable to our two NGFPs. If we were to

identify it with one of our FPs, we would choose our second fixed point at negative

g: Both have large absolute values of their (λ∗, g∗)-coordinates, that are of the same
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order of magnitude and the critical exponents are similar. In [DR] they are given as

{3.4, 1.8} while we find in the limit γ → ∞ on average {4.1, 2.2}. However, while in

Chapter 4 a simple mechanism capable of switching the sign of the λ∗ coordinate was

found, we do not know of such a mechanism concerning the g∗ coordinate. For that

reason more evidence should be collected before one can rely on this identification of

the fixed points.

5.4.2 The (γ, g)-subsystem

The (γ, g)-truncation, that we are about to discuss next, is based on the two β-

functions (5.93a) and (5.93b),

βg(λ, γ, g) = g [2 + ηN(λ, γ, g)] ,

βγ(λ, γ, g) = −16πgγ

N(λ)

[
P9(λ) +

1

γ2
P8(λ) + P10(λ)

]
.

(5.104)

Now λ is thought of as a fixed external parameter, and we can study the properties

of the flow in dependence of its value. We observe that the system (5.104) does not

suffer from the limitations due to logarithmic divergences as these only occur in βλ;

nevertheless we again find the λ = 1-barrier of the flow due to the (double) zero of

the denominator N(λ). In the bases B2, B3 and B4, where the polynomial P8(λ) is

non-vanishing an additional divergence at γ = 0 is found. Surprisingly, the limit of

chiral gravity, γ = ±1, is perfectly well defined in this two-dimensional truncation.

Besides these limitations we find that βg is an even function of γ, while βγ is odd.

Together this leads to a symmetry of the flow under γ 7→ −γ, under which the flow

remains unchanged.

Fixed point structure. Let us, first of all, illuminate the general situation in theory

space by a schematical plot of the fixed points we are going to discuss and the names

given to them (cf. Fig. 5.13). We find, that in the (γ, g)-subsystem the fixed point

structure depends on the basis chosen. For basis B1 there is a NGFP at γ = 0

(NGFP′
0
), while in the bases B2,3,4 we find a pair of NGFPs at finite non-zero γ

(NGFP′
fin

). Besides that a second NGFP (NGFP′
∞) and a fixed line at g = 0 is

present in all bases, that includes the GFP.
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Figure 5.13. Sketch of the fixed point structure of the (γ, g)-system.

(A) The Gaussian fixed point. The first and most obvious solution of the fixed

point condition (βγ, βg) = (0, 0) is the limit of vanishing Newton constant g. It gives

rise to a fixed line g = 0 with γ arbitrary that comprises the GFP at (γ, g) = (0, 0).

This fixed line turns out IR attractive (in g-direction) for all values of λ as the stability

matrix along this line is of the form

B

∣∣∣
g=0

=

(
2 0

∂gβγ(λ, γ, g=0) 0

)
. (5.105)

For the search of non-Gaussian fixed points we have to distinguish basis B1 from

the other bases B2, B3, B4 as the absence of P8(λ) changes the mechanism how the

non-Gaussian fixed point at finite γ is established. For this reason the fixed point

NGFP′
0

which is found in B1 exhibits properties that differ from those obtained by

taking the limit P8 → 0 of the fixed point NGFP′
fin

found for the other three bases.

(B) The fixed point NGFP′
fin

. Let us first discuss NGFP′
fin

, that exists in the

bases B2, B3 and B4. Since P8 is non-zero in this case, the only possibility to satisfy

the condition βγ = 0 for g 6= 0 is that the terms in the square brackets add up to zero

(cf. (5.104)). Hence the fixed point coordinate γ∗ is determined by the condition

(
γ∗(λ)

)2
= − P8

P9(λ) + P10(λ)
. (5.106)

We observe that the condition can only be satisfied by real γ if the right hand side

is positive. As P8 takes on a constant value in (0, 0, 0)-gauge for all three bases, sign
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changes of the RHS only occur at the zeros of P9 + P10, which therefore limit the

domain of existence of the FP in λ. At these limiting values of λ the fixed point

coordinate γ∗ diverges. Moreover, as P9 + P10 does not have any poles,
(
γ∗
)2

= 0 is

only obtained in the limit λ → ∞. For any fixed value of λ, except for the zeros of

P9 + P10, we thus find a fixed point solution NGFP′
fin

arising at finite non-zero γ∗.

Note that the solutions to (5.106) come in pairs of ±γ∗, which is not surprising as the

total RG flow is invariant under the transition γ 7→ −γ.
The corresponding g∗-coordinate is found from βg(γ

∗(λ), g) = 0 resulting in

g∗(λ) =
1

8π

N(λ)

P9(λ)
. (5.107)

Since N(λ) ≥ 0 the fixed point lies at positive g∗ if P9(λ) is positive.

With analytical expressions for the fixed point coordinates at hand, we can also

find an analytical expression for the critical exponents of the fixed point NGFP′
fin

.

As ∂gβγ |NGFP′
fin

= 0 the stability matrix at the fixed point is triangular, such that

one of its eigenvectors points in the direction of the g-axis. The corresponding critical

exponents are found to

θg = 2, θ2 = 4
P9(λ) + P10(λ)

P9(λ)
. (5.108)

Note that the divergence of the critical exponent at P9 = 0 occurs at the same

position as the pole of g∗(λ), such that both quantities change sign there. The zeros

of θ2, on the other hand, occur at the poles of γ∗(λ).

In Fig. 5.14 we have plotted the position of NGFP′
fin

as functions of λ for the

three bases B2, B3 and B4. However, g∗(λ) is found basis independent because it only

depends on P9(λ), whose explicit form is fixed by our choice of basis in the parity-odd

torsion squared subspace.

We find that g∗ > 0 for all λ ≤ 0.733 and therefore in particular also for small

|λ| ≪ 1. The domain of existence of the FP differs for the three bases: While for B3

and B4 the FP exists up to λ ≤ 0.603 and λ ≤ 0.651, respectively, for B2 is ceases

to exist for λ ≤ 0.53. Thus, there is a small interval in λ in which the FP exists

for all three bases. Nonetheless, we find confirmed the observation from the (λ, g)-

truncation, that predictions concerning fixed point existence and stability in basis

B2 differ considerably from the other bases. For that reason we will consider the β-
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Figure 5.14. Position of the fixed point NGFP′
fin

as a function of λ. While g∗ only
depends on the (in our case fixed) choice of basis in the parity-odd T 2 sector, γ∗ differs
for the three bases B2 (dashed), B3 (dot-dashed) and B4 (dotted).
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Figure 5.15. The critical exponent θ2 of the fixed point NGFP′
fin

as a function of λ.
In the region −1 ≤ λ ≤ 0.5 the function is positive for all three bases B2 (dashed), B3

(dot-dashed) and B4 (dotted), corresponding to a second UV attractive direction.

functions in basis B2 as the exception from the rule, which can be traced back to the

fact, that all coefficients in P10(λ) for this basis have the opposite sign compared to

the other bases.

Considering basis B2 less credible, we find that the results of bases B3 and B4 lie

perfectly in line with each other. Both predict a pair of fixed points which lies for

λ < 0.5 at very small |γ∗|. In the range 0.5 < γ < 0.733 both coordinates diverge,

which is considered a hint that the results in this range become less trustworthy for

these large values of the cosmological constant. In Fig. 5.15 we have plotted the critical

exponent θ2 of the fixed point. For the bases B3 and B4 we find that it corresponds

to a UV attractive direction (θ2 > 0) exactly over the whole range in λ in which the

fixed point exists.
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Figure 5.16. g∗-coordinate and critical exponent θγ of the fixed point NGFP′
0

that is
only present in basis B1 as functions of λ.

Taken together with the result θg = 2 we conclude that for small λ both bases predict

a pair of fixed points NGFP′
fin

at finite γ, that is attractive in both directions. The

absolute value of θ2, as a little blemish, turns out fairly large.

(C) The fixed point NGFP′
0
. As already pointed out above, for basis B1 we find

a different fixed point solution NGFP′
0
. With all P8-terms absent in the β-functions

(5.104) there is only one non-Gaussian fixed point solution given by

g∗(λ) = − 1

8π

N(λ)

P10(λ)
, γ∗ = 0 . (5.109)

In this case the stability matrix at the fixed point NGFP′
0

is diagonal as also ∂γβg = 0.

Thus, both critical exponents can be associated with the g and γ axes in theory space

and we find

θg = 2, θγ = −2
P9(λ) + P10(λ)

P10(λ)
. (5.110)

We observe that both g∗ and θγ of this new fixed point NGFP′
0

cannot be obtained

by taking the limit P8 → 0 of the corresponding quantities of NGFP′
fin

. Thus, in

basis B1 a truly different fixed point is present.

In Fig. 5.16 (left panel) the position of the fixed point is depicted. While γ∗ = 0

for all λ we find that the fixed point value of the Newton constant is positive for all

−0.306 ≤ λ ≤ 1, where g∗ diverges at the lower boundary. In the right panel we see,

that θγ diverges at the same point and is positive up to a value of λ ≈ 0.573.

We conclude that in basis B1 the pair of fixed points NGFP′
fin

at finite non-zero γ∗

gets replaced by NGFP′
0
, located at γ∗ = 0 for all λ. Despite this difference both fixed

points have in common, that for small |λ| they are UV attractive in both directions

of the (γ, g)-plane.
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(D) Absence of the Immirzi term and duality map. In order to explore the

full part of theory space that is spanned by the Immirzi and the curvature term, we

certainly also have to consider its 1-dimensional subspace where the Immirzi term is

absent. This space corresponds to the limit γ → ∞ with g arbitrary and is thus not

contained in the coordinate chart we have chosen so far. For this reason it turns out

useful to introduce a different coordinate chart γ̂, which in the overlapping region is

related to γ by γ̂ = 1
γ
. Hence, similar to the stereographic projection of a sphere S1,

the charts overlap at all values of γ except for the two points γ = 0 and γ̂ = 0, that

are covered by only one of the two charts.

If we analyze the behavior of the β-functions under this change of coordinates, we are

not only enabled to examine the γ →∞-limit properly, but we also find a most remark-

able property of the RG flow in the (γ, g)-truncation. Under the coordinate change

γ 7→ 1/γ̂ the β-functions are transformed according to βg(λ, γ, g) 7→ βg(λ, 1/γ̂, g) and

βγ(λ, γ, g) 7→ βγ̂(λ, γ̂, g) = −γ̂2βγ(λ, 1/γ̂, g) giving rise to the explicit form

βg(λ, γ̂, g) = g

[
2 +

16πg

N(λ)

(
γ̂2P8(λ) + P10(λ)

)]
,

βγ̂(λ, γ̂, g) =
16πgγ̂

N(λ)

[
P9(λ) + γ̂2P8(λ) + P10(λ)

]
.

(5.111)

If we now compare the system (5.111) with the original β-functions (5.104), that read

βg(λ, γ, g) = g

[
2 +

16πg

N(λ)

(
1

γ2
P8(λ) + P10(λ)

)]
,

βγ(λ, γ, g) = −16πgγ

N(λ)

[
P9(λ) +

1

γ2
P8(λ) + P10(λ)

]
,

(5.112)

we observe that in the case P8(λ) = 0 (i. e. in basis B1) βg is left invariant under the

coordinate change and the flow of the Immirzi parameter satisfies

βγ̂(λ, γ, g) = −βγ(λ, γ, g) . (5.113)

Thus, for the same arguments the β-functions coincide up to a minus sign. We con-

clude that in the case P8(λ) = 0 the RG flow at large values of the Immirzi parameter

γ contains the same information as at small values (1/γ). Therefore we refer to the

transformation γ 7→ 1/γ as a duality map.

171



5 QECG in Holst Truncation

g∗(λ)

λ
0.5 1.0−0.5−1.0

10

20

30

-10

-20

-30

λ

θγ̂

0.5 1.0−0.5−1.0

10

20

-10

-20

Figure 5.17. g∗-coordinate and critical exponent θγ of the fixed point NGFP′
∞

present
in all bases (B1 solid, B2 dashed, B3 dot-dashed, B4 dotted) as a function of λ. While
the functions for small λ differ considerably due to the basis-dependent position of their
pole, there is a region of remarkably good agreement of all bases at λ ∈ [0.7, 0.85].

(E) The fixed point NGFP′
∞

. Let us now discuss the additional fixed point that

arises at γ̂ = 0 and which we refer to as NGFP′
∞

. It is found in all four bases at the

coordinate values

γ̂∗ = 0, g∗ = − 1

8π

N(λ)

P10(λ)
. (5.114)

Also at this fixed point we find that the stability matrix is diagonal such that the

critical exponents can be associated with the coordinate directions. Explicitly we find

for them

θg = 2, θγ̂ = 2
P9(λ) + P10(λ)

P10(λ)
. (5.115)

Although this fixed point exists in all bases, we find (cf. Fig. 5.17) that the predic-

tions concerning its position and attractivity properties are severely basis-dependent

for small |λ|. However there is an interval λ ∈ [0.65, 0.85] where the functions g∗(λ)

and θγ̂(λ) coincide surprisingly well for all four bases. Also the limits at large negative

λ (< −10) are qualitatively similar at least for the bases B1, B3 and B4. Our findings

in the previous subsection on the (λ, g)-truncation suggest already that it is precisely

these regions of λ where 3-dimensional “lifts” of the FPs in the (λ, g)-truncation will

be found. Hence, we conclude that the (γ, g)-truncation in the limit γ →∞ is partic-

ularly good at those fixed λ that correspond to the 3-dimensional fixed point values,

not only because βλ vanishes there, but also due to the enhanced basis-independence.

(F) The interplay of the fixed points. A final important observation concerning

the properties of the fixed points is that the zeros of θγ̂ of NGFP′
∞

coincide exactly

with those of θγ or θ2 for NGFP′
0

and NGFP′
fin

, respectively, and the functions cross
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zero in such a way, that the fixed points are antagonistic for all bases and all λ as long

as both exist, i. e. one is UV attractive while the other is repulsive along the second

direction. Recall, however, that the zeros of θ2 are also the points at which NGFP′
fin

ceases to exist, such that in each basis NGFP′
fin

does not change its attractivity

properties.

In basis B1, however, this antagonism of the fixed points NGFP′
∞

and NGFP′
0

is

taken to another level: Besides having the same fixed point value g∗(λ) we find that

the critical exponents satisfy θγ = −θγ̂ for all λ. This is because for B1 the β-functions

in the two coordinate charts are of the same form, except for a sign change in βγ

compared to βγ̂. Thus under the duality map γ 7→ 1/γ only the γ component of flow

switches its sign and the fixed points are mapped onto each other.

Note that for λ = 0.573 we have θγ = 0 = θγ̂ . As this value of λ corresponds to the

zero of the sum P9(λ)+P10(λ), βγ(γ, g) vanishes for all γ and g. Hence, in this special

case, the Immirzi parameter stops running and the straight line connecting NGFP′
∞

and NGFP′
0

at fixed g∗ becomes a UV attractive fixed line. The corresponding phase

portrait will be discussed below.

Phase portraits. In Fig. 5.18 we have plotted the phase portraits of the (γ, g)-

truncation in basis B3 for three different values of the cosmological constant. We used

an arctangent rescaling of the γ-axis in order to compactify it such that the fixed

point at γ̂ = 0 can be depicted in the same diagram. Clearly, this results in a highly

non-linear scale of the γ-axis.

We observe that NGFP′
∞

is present in all three panels of Fig. 5.18, and it always

gives rise to a complete RG trajectory on the γ̂ = 0 line with the fixed point as the

UV limit and the γ-axis as its IR endpoint.

The pair of fixed points NGFP′
fin

only exists in the first panel with λ = 0.45 and it

is UV attractive in both directions as discussed above, while NGFP′
∞

only has one

attractive direction in this case. We find a trajectory that connects both non-Gaussian

fixed points and one linking NGFP′
fin

with the origin. These trajectories act as sepa-

ratrices: All trajectories below them are complete: In the UV they approach NGFP′
fin

while in the IR they end on the fixed line g = 0. Therefore we find an asymptotically

safe trajectory for any IR value of the Immirzi parameter. This statement remains

true for all phase portraits of the (γ, g)-truncation we analyzed. Note also that the

flow in γ direction changes sign on the line γ = γ∗ of NGFP′
fin

. For that reason each
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trajectory lies completely either in the region of larger or of smaller γ compared to the

fixed point value. In the region |γ| < |γ∗| the Immirzi parameter runs to smaller (ab-

solute) values in the IR, while for |γ| > |γ∗| it runs to larger values. In the first panel

we may assert the latter to be the predominant direction of the γ-flow as |γ∗| < 1. (In

the g < 0-halfplane the running is just reversed.)

For larger values of λ (as e. g. λ = 0.8 in the second panel of 5.18) this is no longer

true: The pair of fixed points NGFP′
fin

moves to larger values |γ∗| until it merges

with NGFP′
∞

and ceases to exist for even larger values of λ. By moving the fixed

points outwards the predominant direction of the γ flow changes until in the whole

upper halfplane the γ flow points to smaller values in the IR. Then, as depicted in

the second panel, all trajectories in the g > 0-halfplane are asymptotically safe w. r. t.

NGFP′
∞

.

To conclude the discussion of the phase portraits in basis B3 we want to point out an

interesting mechanism that is present in all bases. As P8(λ) is, for any basis (and any

gauge), a polynomial in λ whose degree is smaller by 2 compared to the denominator

N(λ), the corresponding terms in the β-functions are suppressed quadratically for

large λ, while the P9 terms are suppressed only linearly and the P10 terms become

constant. Thus, at large |λ| the duality of the β-functions known from basis B1 is

established approximately in the whole (γ, g)-plane, except for a narrow strip around

the origin of the order |γ| . 1/|λ|. For this reason the third panel of Fig. 5.18 is

very similar to the phase portraits in basis B1, which we will discuss next. The only

qualitative difference is that no fixed point on the g-axis arises, as the γ-divergence in

the β-functions persists.

Let us turn over to the RG flow resulting from basis B1, which is depicted in Fig.

5.19 for three different values of λ. We find the two fixed points NGFP′
∞

and NGFP′
0

as deduced above, which govern the flow in the whole g > 0-halfplane. Depending on

the value of λ, one of the fixed points has two attractive directions while the other

shows only one. This antagonistic behavior prescribes the predominant direction of

the γ-flow. As in basis B3 we find for small λ (λ = 0, upper panel) that it is directed

to larger values of the Immirzi parameter in the IR while for larger values (λ = 0.8,

lower panel) it reverses its direction. Different to the case of B3 this change does not

happen due to a movement of one of the fixed points but only due to a change of their

attractivity properties. For that reason we find a specific value of the cosmological

constant (λ ≈ 0.57, centered panel) for which the flow of the Immirzi parameter stops
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Figure 5.18. Phase portraits of the (γ, g)-flow in basis B3 for various fixed values of
λ. At small λ both NGFP′

∞
and NGFP′

fin
exist. For increasing λ NGFP′

fin
moves to

larger |γ| until it merges with NGFP′
∞

and ceases to exist. For large (negative) λ the
duality found in basis B1 is approximately established.
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Figure 5.19. Phase portraits of the (γ, g)-flow in basis B1 for various fixed values of λ.
We always find the fixed points NGFP′

∞
and NGFP′

0
, while λ determines the direction

of the γ-flow. For λ ≈ 0.57 it vanishes such that all trajectories run vertically.
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completely. In this special case all complete RG trajectories lie between the fixed lines

g = 0 (IR limit) and g = g∗ (UV limit). If the exact RG flow showed this behavior

we could construct a quantum theory of gravity with a prescribed fixed value of the

Immirzi parameter, that would not change under RG transformations.

For all other values of the cosmological constant we find an asymptotically safe

trajectory for any prescribed IR value of γIR (with gIR = 0) which in the UV either

runs to γ = 0 or γ̂ = 0, i. e. to the value of the fixed point with two UV attractive

directions. In this case we only find γ unrenormalized if we start with the fixed point

values γIR = 0 or γ̂IR = 0 in the IR.

Comparison to the PT flow. When we compare the results of this subsection with

the corresponding results of the proper-time flow analysis of [DR] we find indeed a lot

of similarities. Besides the fixed line at g = 0, which is present in both studies, our

most stable result is the existence of a NGFP at γ̂ = 0, which shows one attractive and

one repulsive direction at small λ, but is attractive in both directions if we prescribe

the physical fixed point values λ∗ of the (λ, g)-truncation. This qualitative behavior

was also found in [DR].

Besides that, the proper-time RG study reports a second NGFP at γ = 0, which

shows an antagonistic behavior to the first NGFP that results in a predominant di-

rection of the RG flow of the Immirzi parameter. While this direction coincides with

our findings in both bases B3 and B1, the second fixed point is only found at γ = 0

if we decide for basis B1. In this case, however, the analogies between the results of

both studies can be extended even further, as we will point out in the following.

In [DR] the β-functions are too complicated to be written down explicitly. Never-

theless to a good approximation they showed a very simple dependence on the Immirzi

parameter γ which gave rise to a conjecture concerning their form in an exact treat-

ment, with the conclusion being that βg was expected to be independent of γ and βγ

being proportional to γ. In basis B1 we find that our β-functions are exactly of this

predicted form (cf. (5.104) for P8 = 0)!

Moreover, the complete halt of the RG running of γ is only possible if βγ shows

such a simple γ dependence. Although the Immirzi parameter staying unrenormalized

under RG transformations appears as a very special case in the above discussion (only

in basis B1 and only at λ ≈ 0.57), one can argue that this behavior should actually

be expected for an RG study of the Holst truncation with vanishing cosmological
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constant, that properly treats parity-even and -odd contributions on the same footing:

Since the Immirzi parameter is a relative coupling between the parity-even curvature

term and the parity-odd Immirzi term, a vanishing of its flow means that both terms

are renormalized exactly the same way and therefore share the Newton constant as

their mutual coupling, while the Immirzi parameter only sets a fixed (k-independent)

ratio between parity-even and -odd terms in Γk.

We can only expect such a symmetry between both sorts of terms, if we study a

truncation ansatz which exhibits the same symmetry between its scalar and pseudo-

scalar constituents and make sure that the method applied to calculate the RG flow

respects this symmetry throughout. With this in mind it is clear that our method

cannot maintain such a symmetry even if it is present in the original truncation.

This is due to the gauge-fixing action (and resulting ghost action) we used, that only

contains scalar and no pseudo-scalar terms.

It has been shown in [Dau] that the terms in βγ corresponding to the square bracket

[P9(λ) + P10(λ)] in (5.104) (for basis B1) are proportional to the difference of scalar

and pseudo-scalar contributions to the running of γ. If the symmetry of the truncation

was maintained, this bracket would therefore vanish for λ = 0. By choosing λ 6= 0

we deliberately break the symmetry of the underlying truncation, as the cosmological

constant term corresponds to an additional scalar constituent, that has no pseudo-

scalar counterpart.

On the other hand it seems quite natural that we can use the value of the cosmolog-

ical constant to control the amount of scalar contributions to the renormalization of

the Immirzi parameter. From this point of view we find that it is possible to effectively

restore the symmetry between parity-even and -odd terms in Γk, that was broken by

the gauge-fixing procedure, by choosing λ ≈ 0.57. Thus, our result corroborates im-

pressively the conjecture of an inherent symmetry between scalar and pseudo-scalar

terms in the (γ, g)-truncation that was put forward in [Dau] referring to the simple

form of βγ , as we are able to restore this symmetry for a specific value of λ in basis

B1.

Conclusion. In summary, the results of this subsection have shown that the RG

analysis of the (γ, g)-truncation using the new WH-like flow equation and the proper-

time RG study of the same system carried out in [Dau, DR] reinforce each other.

Moreover, among the a priori equally suitable bases Bi in theory space, B1 is singled
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out as the one that, first, maximizes the physically significant similarities between

both studies and, second, incorporates a symmetry property of the truncation, that

leads to a β-function of the Immirzi parameter of the simple form

βγ = g γ f(λ), (5.116)

which is lost otherwise. For these reasons we shall consider basis B1 as being the most

physical from now on; hence, we will concentrate on this basis in the discussion of the

RG flow in the full 3-dimensional truncation covered in the next subsection.

5.4.3 The complete (λ, γ, g)-system

In this subsection we analyze the RG flow in the complete 3-dimensional coupling

space of the Holst truncation. As before we will first discuss its fixed point structure for

all four bases Bi and study the dependence of their properties on the mass parameter

m that was held fixed to unity up to now. From the above we keep in mind that B1

amounts to the most physical basis in theory space. Therefore the subsequent analysis

of the phase diagram will be restricted to this basis.

The system of flow equations under consideration in this subsection is given by

(5.93). Concerning its global properties we find that the γ 7→ −γ symmetry of the

flow is preserved as βλ is an even function of γ as well. Moreover, we observe that

the 3-dimensional coupling space is divided by three planes, which no trajectory of

the flow can cross: The g = 0-plane, where βg = 0, the γ = 0-plane (with βγ = 0)

and the λ=1-plane, where all three β-functions diverge. The line g = 0 = λ can, by

inspection, be identified as a fixed line and it corresponds to the GFP known from

the (λ, g)-truncation for all values of γ. As all trajectories in the half-space λ > 1

are separated from the classical regime close to this Gaussian fixed line, we will not

consider this part of the coupling space any further.

Fixed point structure. Since βγ̂ vanishes in the γ̂ = 0-plane, it amounts to a

self-consistent 2-dimensional (λ, g)-truncation, i. e. trajectories starting in this plane

will never leave it. Thus, the trajectories of the three dimensional flow in this plane,

coincide with the flow of the (λ, g)-system in the γ → ∞ limit (cf. Section 5.4.1).

From this observation we can already conclude that in the γ̂ = 0-plane we find two

NGFPs, NGFP1

∞
and NGFP2

∞
, that are UV attractive in both directions of the
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(γ, g) NGFP′
0

NGFP′
fin

NGFP′
∞

(λ, g) (B1) (B2, B3, B4)

NGFP1 NGFP1

0
? - NGFP1

∞

NGFP2 NGFP2

0
? - NGFP2

∞

J
J
J

Table 5.2. Overview of the fixed points present in the different truncations: The first
row contains the fixed points of the (γ, g)-truncation, while the first column displays the
ones of the (λ, g)-truncation. The main body of the table contains the names given to
the corresponding fixed points in the (λ, γ, g)-truncation, in case they exist.

plane, exhibiting the critical exponents found in Section 5.4.1. Therefore, we only

have to analyze their third critical exponent, that describes the attractivity property

in γ̂-direction. We conclude that the fixed points NGFP′
∞

and {NGFP1,NGFP2}
that we found in the 2-dimensional truncations are the projections of the 3-dimensional

fixed points {NGFP1

∞
,NGFP2

∞
} for fixed λ and γ, respectively.

Similarly the γ= 0-plane amounts to a self-consistent truncation as βγ vanishes in

this plane. However, since βλ diverges here, this limit eludes further investigation.

Nonetheless we want to stress that the mechanism giving rise to {NGFP1,NGFP2}
works for arbitrarily small γ, such that in basis B1 we should expect the existence of the

three dimensional lifts {NGFP1

0
,NGFP2

0
} in the γ = 0-plane if only the—probably

unphysical—logarithmic divergence of βλ at γ → 0 could be removed.

In contrast to this situation, the fixed point solutions NGFP′
fin, that were found

in bases B{2,3,4}, are lost when the third coupling λ is subject to renormalization as

well. Thus, in the 3-dimensional truncation for these bases no fixed point at finite γ∗

is found.

We have summarized the above discussion on the different fixed points and their

presence in the different truncations in Table 5.2.

In the next two paragraphs we will analyze the fixed points NGFP1

∞
and NGFP2

∞

and will thereby focus on their third critical exponent, that describes the attractivity

property in γ̂-direction. In addition we will investigate the dependence of all fixed

point properties on the mass parameter m, that has been discussed only qualitatively

in Section 5.4.1 so far.

In a third paragraph, we will explore an additional mechanism present only in the

full three dimensional truncation that in basis B1 gives rise to a pair of fixed points
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Λ
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g

0

∞

-∞

NGFP1
∞

NGFP2
∞

NGFP1
∞

NGFP2
∞

NGFPfin

Figure 5.20. Sketch of the fixed point structure of the (λ, γ, g)-system. The pair of
fixed points NGFPfin is shaded in gray as it is only present in basis B1, and absent in
the other bases.

at finite |γ∗|. We will denote this fixed point by NGFPfin. In the other bases no

equivalent to this fixed point is observed.

Before we start to discuss the details of the individual fixed points let us again

schematically depict the situation in the 3-dimensional theory space in Fig. 5.20.

(A) The fixed point NGFP1

∞
. The first NGFP in the γ̂=0-plane lies in the positive

(λ, g)-quadrant. Its position as a function of the mass parameter m is depicted in Fig.

5.21. We find the results for the 4 different bases perfectly aligned. Moreover, the

position does not depend very much on the value of m, at least for m & 1. At small

m we find a rapid variation of the FP position with m, which seems, in the light of

the almost flat curves for larger m, unphysical. Thus this is a first indication that our

truncation should be trusted in only for m & 0.5.

In Fig. 5.22 we have plotted the corresponding critical exponents. In the left panel

we find depicted the real parts of θ1 and θ3 that correspond to the eigendirection lying

inside the γ̂ = 0-plane. They start off as a complex pair and turn real at m ≈ 0.8.

While one of the critical exponents becomes unreasonably large the other one stays at

moderate values of about 5-8.

In the right panel the critical exponent corresponding to the γ̂-direction is plotted

and we observe that it is increasing with m.

For all bases we find that, in the trusted region of m & 0.5, the fixed point is

attractive in all three directions. Besides this qualitative similarity found in all bases,
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Figure 5.21. The fixed point coordinates of NGFP1
∞

as functions of m. For not
to small values of m the curves are almost constant functions and match each other
perfectly for the four bases (B1 solid, B2 dashed, B3 dot-dashed, B4 dotted).
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Figure 5.22. The critical exponents of NGFP1
∞

as functions of m. Here the results
for the bases B1 (solid), B2 (dashed) and B4 (dotted) are well aligned. While for these
bases the FP exists up to large m, in basis B3 (dot-dashed) it vanishes at m ≈ 3.

the attractivity properties in the bases B1, B2 and B4 are very similar as functions of

m, even quantitatively. In basis B3, on the other hand, the fixed point vanishes at

m ≈ 3 and the critical exponents θγ̂ gets considerably larger than in the other bases.

(B) The fixed point NGFP2

∞
. In Fig. 5.23 the position of the second fixed point,

situated in the negative (λ, g)-quadrant, is shown. Note that this FP does not exist

in basis B2 such that we are left with three different types of lines in Figs. 5.23 and

5.24. We find that λ∗ is decreasing to very large negative values, for increasing m,

while g∗ approaches small absolute values. At small m the g∗ coordinate begins to
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Figure 5.23. The fixed point coordinates of NGFP2
∞

that exists in the three bases
B1 (solid), B3 (dot-dashed) and B4 (dotted) as functions of m. While the λ∗-coordinate
varies with m and the choice of basis, for the g∗-coordinate this dependence is far less
pronounced.

diverge, which we should interpret as the boundary of the trusted region in m which

here occurs at m ≈ 0.3.

The corresponding critical exponents are plotted in Fig. 5.24. We find a very stable

prediction of three real and positive critical exponents whose values do not depend

on the choice of basis and that show only a slight variation with m, for m & 0.7.

Moreover, in contrast to NGFP1

∞
all critical exponents take on reasonably small

absolute values.
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Figure 5.24. The critical exponents of NGFP2
∞

as functions of m. Here the results
for the bases B1 (solid), B2 (dashed) and B4 (dotted) are well aligned and are almost
constant for m ≥ 0.8 and stay in a reasonable range.
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(C) The fixed point NGFPfin. In basis B1, besides the above fixed points in the

γ̂=0-plane, an additional NGFP at finite γ exists. Its λ∗ coordinate is given by the

condition βγ = 0 and thus corresponds to the zeros of P9(λ) + P10(λ) at λ ≈ 0.573

and λ ≈ 2.918. As the latter lies behind the λ = 1 divergence of the β-functions, we

will only consider the former. Its corresponding g∗-coordinate is found from βg = 0 to

g∗ = 1.525.

These two coordinates are substituted into βλ(λ
∗, γ, g∗) = 0, and each solution of

this equation for γ amounts to a fixed point of the 3-dimensional flow. This last fixed

point condition has the following general form:

βλ = 0 = C1(g
∗, λ∗, m) + C2(g

∗) ln

(
γ2 − 1

γ2

)2

, (5.117)

where C1 and C2 < 0 are constants that only depend on the other (already fixed)

FP coordinates and the mass parameter m. From this form we can infer that there

is always at least one solution to the condition (5.117) in the interval γ2 ∈ (0, 1), as

the logarithm is a smooth function interpolating between ±∞ for the limits γ → 0

and γ → 1, respectively. We refer to the fixed point corresponding to this solution

as NGFPfin. Whether or not a second solution with γ2 > 1 exists, depends on the

value of m: For γ > 1 the RHS is a monotonically decreasing function and in the

limit γ →∞ the logarithmic term vanishes. Thus, a second fixed point solution with

|γ̃∗| > 1 exists for those values of m for which C1(g
∗, λ∗, m) < 0.

Note that for the other bases this mechanism is not at work as the dependence of

βg and βγ on γ is different. In this case we can only infer functions γ∗(λ) and g∗(λ)

from βg and βγ. However, the last condition βλ(λ, γ
∗(λ), g∗(λ)) = 0 does not have a

solution, such that we do not find a fixed point at finite γ in the other bases.

The exact values of the coordinate γ∗ and the critical exponents can only be obtained

numerically. The resulting functions of m are depicted in Fig. 5.25. In the left panel

we find the fixed values g∗ and λ∗ represented by constant functions, as well as the

function γ∗(m), corresponding to the solution that exists for all m. It starts off at

γ∗(0) = ±1 and approaches 0 rapidly for m & 0.8. The second solution γ̃∗ exists

only for m . 0.35; as this region of m has been proven to obtain questionable results

before, we will not consider this second pair of fixed point solutions any further.

In the right panel the real parts of the critical exponents corresponding to the fixed

point NGFPfin are shown. We observe that there is one UV repulsive eigendirection
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Figure 5.25. Position and critical exponents of NGFPfin as a function of m. For
m > 0.8 the fixed points have moved to γ∗ ≈ 0 and the functions are constant from
there on. At small m < 0.35 a second pair of fixed points (with coordinate γ̃∗) exists,
which is not further analyzed.

for all m. The other two critical exponents, that are real and positive for small m,

become a complex conjugated pair at m ≈ 0.4 with positive real part. Once the

fixed point coordinate γ∗ approaches 0 with increasing m, the values of the critical

exponents do not change any more.

Phase portrait. The resulting phase portrait of the full 3-dimensional RG flow is

depicted in Figs. 5.26 and 5.27. As it is difficult to visualize a 3-dimensional vector

field in every point of space, we have decided to display sets of trajectories, whose

starting points lie in planes of fixed |γ|. The red trajectories start close to the γ=0-

plane at γ = ±0.06, the blue ones at γ = ±1.38 and the black ones lie entirely in the

γ̂=0-plane. In addition to the three-dimensional view in (a) we have given a frontal

view onto the (γ, g)-plane in (b) and the (λ, γ)-plane in (c) for a better understanding

of the spatial course of the trajectories in theory space.

In Fig. 5.26 we have plotted a region of theory space with g > 0. The fixed point

NGFP1

∞
is clearly visible in (a) and (b), lying on the lateral faces of the box that

correspond to the |γ| → ∞ limit. All trajectories shown have this fixed point as

their UV limit. The second fixed point NGFPfin is not visible, as its UV critical

hypersurface is only two dimensional.

Note that the flow in the lateral faces, due to the self-consistency of the γ̂ = 0-

truncation, corresponds exactly to the flow depicted in the lower right panel of Fig.

5.11.

From Fig. 5.26 (c) we observe that the flow first stays very much in the γ-plane

of its starting points. Only when λ exceeds its fixed point value, the running of γ
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becomes predominant. For that reason (b) looks very similar to the last panel of Fig.

5.19 as most of the visible part of the trajectories in this projection lies in the small

region λ∗ < λ < 1. This behavior of the flow can be related to the critical exponents

of the fixed point NGFP1

∞
: The huge value of θ1 ≈ 20 results in a predominantly

fast running of λ. Only when it has become close to its fixed point value, the other

couplings, which are related to critical exponents of much smaller magnitude, are seen

to run as well.

Fig. 5.27 shows a similar set of plots, only for the g < 0 part of coupling space.

Again we find that the fixed point at γ̂ = 0, NGFP2

∞
, is dominating the flow. This

time the plane γ̂ = 0 (black trajectories) corresponds to the flow depicted in the lower

right panel of Fig. 5.12, but we observe that the other trajectories (blue, red), in

contrast to the above case, do not stay in their starting plane of fixed γ, as the fixed

point NGFP2

∞
has three positive critical exponents of the same order of magnitude.

We conclude that in our truncation both FPs, NGFP1

∞
and NGFP2

∞
, allow for the

construction of an asymptotically safe quantum theory and show a basin of attraction

that spans the whole part of coupling space with g > 0 and g < 0, respectively, that

we have analyzed.

Let us finally comment on the influence of the logarithmic divergences in βλ on the

gross properties of the flow:

We have seen from the above examples that the divergence of βλ at γ = 1 is crossed

by the trajectories smoothly. Indeed this divergence only has a very local effect on the

trajectories, that pass the γ=1 plane being tangential to it, similarly to the function

x ln x2 crossing x = 0. Fig. 5.27 (c) gives an idea of this behavior by the sharp bend

in the red trajectories at γ = 1, while in Fig. 5.26 (c) the effect is to localized for

being visible at the given scale.

Similarly, the fixed point NGFP′
0

from the (γ, g)-truncation vanishes due to a

logarithmic divergence of βλ. Again this effect is very local, such that e. g. Fig. 5.26

(b) would not look much different, if an additional fixed point at γ = 0 was present.

If we take into account that the logarithmic contributions to βλ correspond to pref-

actors of a quartic momentum divergence of the path integral, that are most sensitive

to all details of the renormalization procedure, we should not take their exact form too

seriously. Therefore we should not exclude the existence of one (or more) additional

fixed point(s) at γ = 0 with two UV attractive directions in the three dimensional

coupling space on the basis of the above results.
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(a)

(b)

(c)

Figure 5.26. RG flow in the part of the 3-dimensional coupling space with g > 0. All
trajectories of the same color pass through points with the same |γ|: |γ| = 0.06 (red),
|γ| = 1.38 (blue) and |γ̂| = 0 (black). The flow is directed such that all trajectories share
the fixed point NGFP1

∞
as their UV limit.
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(a)

(b)

(c)

Figure 5.27. RG flow in the part of the 3-dimensional coupling space with g < 0. All
trajectories of the same color pass through points with the same fixed |γ|: |γ| = 0.06
(red), |γ| = 1.38 (blue) and |γ̂| = 0 (black). The flow is directed such that all trajectories
share the fixed point NGFP2

∞
as their UV limit.
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Comparison to the PT flow. In summary we find that also the 3-dimensional flow

shows certain characteristic similarities to the flow obtained in the PT approximation

[DR]. Besides the existence of a NGFP in the γ̂=0-plane that is UV attractive in all

three directions we also find the predominant direction of the γ-flow towards larger

absolute values in the UV that was reported in [DR].

The most prominent differences to the PT study are the exact position of the fixed

points in the γ̂ = 0-plane and the existence of a fixed point at γ = 0. Both fea-

tures heavily depend on the exact form of the contributions from quartic momentum

divergences, that are notoriously unstable under different renormalization procedures.

Thus, both studies support each other concerning the form of the β-functions βg and

βγ as well as most properties of the fixed points in the γ̂=0-plane. Another common

feature of both calculations is the absence of a reliable fixed point at finite γ. Thus

all asymptotically safe trajectories either take on the value γ̂ = 0, corresponding to

freely fluctuating torsion, or possibly also γ = 0, where certain torsion components are

suppressed completely, in the deep UV. Note that none of these limits can be considered

as being equivalent to metric gravity, since some torsion components fluctuate freely

in both cases.

5.5 RG flow of chiral gravity

This section contains the first RG analysis of chiral gravity. It is carried out using

the WH-like flow equation, whose evaluation was performed in a completely analogous

manner to the study of the full QECG presented in the previous sections of this chapter.

Thus, we will only highlight the differences compared to QECG in a first subsection

before we directly proceed with the presentation of the resulting RG flow in the second

subsection.

5.5.1 Modifications compared to the RG study of QECG

Field content. The most obvious modification in comparison to QECG is that we

restrict the field space of spin connections to one chirality. Thus we only allow spin

connections that are either selfdual or anti-selfdual, which, in the Euclidean setting,

corresponds to eigenvectors of the duality operator ⋆ = 1
2
εabcd with eigenvalues +1 or

−1, respectively.
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As any generic spin connection ω can be decomposed into a selfdual and an anti-

selfdual part ω(±) by the projectors P± = 1
2
(1 ± ⋆) according to ω = (P+ + P−)ω =

ω(+) + ω(−), this restriction corresponds to halving the number of independent com-

ponents of the spin connection field variable. Thus we are left with 28 = 16 + 12

independent field components of vielbein and spin connection, respectively. This dif-

ferent counting will be reflected in the dimension of the Hessian, that in the chiral

case corresponds to a 28 x 28-matrix operator. We will see later on how an adapted

decomposition of the fluctuation fields gives rise to a simple reduction of the Hessian

that was obtained for the general Holst truncation to the chiral case.

Gauge symmetry. As the gauge field ω(±) contains only half the number of inde-

pendent field components compared to the full spin connection ω, that is related to

the O(4)-gauge symmetry, one can naively expect that this part of the gauge group

is reduced to half of its size in the chiral case. To make this statement more precise

let us shortly discuss how the chirality projectors P± decompose the total O(4)loc into

two chiral components.

If we denote the six generators of the full O(4)-gauge group by Mab, with Mab =

−Mba, by definition they satisfy the algebra

[Mab,Mcd] = i(δacMbd + δbdMac − δbcMad − δadMbc) . (5.118)

One can show by direct computation that the 3 generators M±
ab = (P±M)ab of each

sign satisfy an algebra of the same form, individually. Moreover, the generators of

different duality commute with each other, i. e. [M±
ab,M

∓
cd] = 0. Using the t’Hooft η-

symbols [Hoo76] that map (anti-)selfdual O(4)-tensors onto SO(3)-vectors it is an easy

task to show that the generators L±
i = 1

4
ηi
abM±

ab satisfy the usual angular momentum

algebra [Li, Lj ] = iεij
kLk. Thus we have shown that the O(4)-algebra decomposes into

two chiral factors of SO(3) such that locally also the groups satisfy

O(4) =̃SO
+(3)× SO

−(3). (5.119)

This construction in Euclidean spacetime is analogous to the decomposition of the

group of Lorentz transformations in Minkowski spacetime, SO(3,1), into two chiral

SU(2) components which is used in order to classify all its representations. In contrast

to our case and due to the distinct role of the time direction in Minkowski space the
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5.5 RG flow of chiral gravity

generators of boosts and rotations in the Lorentz group SO(3,1) obtain as complex

combinations of the SU(2) components. Moreover, there, the Lorentz duality star

squares to −1, ⋆2 = −1, such that its eigenvalues are given by ∓i, corresponding to

(anti-)selfdual components.

When we restrict ourselves to spin connections of one chirality we, thus, also reduce

the gauge group to one chiral component of the above decomposition. In summary,

we therefore conclude that the theory space of chiral gravity is reduced in both, the

field content and the total symmetry group G, and is hence is given by

T ±
EC =

{
A[eaµ, ω

±ab
µ, · · · ] | inv. under G = Diff(M) ⋉ SO

±(3)loc

}
, (5.120)

where the dots stand for additional background- and ghost-field dependence.

Gauge conditions and ghost fields. With the reduced gauge group at hand also

the 6 gauge fixing conditions Gab of the former O(4)loc-group have to be reduced to

only 3 that are needed to gauge-fix the remaining SO
±(3)loc component. Most easily

this is done by a projection of Gab to its (anti-)selfdual part, such that we will use the

conditions

G±ab = (P±G)ab , (5.121)

with the explicit form of Gab given in (5.10). In consequence of this projection also the

O(4)-ghost fields Ῡab,Υab get replaced by their (anti-)selfdual components Ῡ±
ab,Υ

±
ab.

As a final comment we want to mention that due to the restriction to one chirality

of the spin connection, of course, also the diffeomorphism gauge-condition Fµ gets

modified slightly, since the covariant derivative inside it now is constructed from the

chiral spin connection.

Decomposition of the fluctuation fields. Analyzing the decomposition of the

spin connection fluctuations that was used for the Holst truncation, eq. (5.52), we

observe that the sets of fields (A,B) and (C,D), respectively, switch their roles under

O(4)-dualization and thus describe fluctuations dual to each other:

(A,B)
⋆←−−−→ (C,D). (5.122)
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5 QECG in Holst Truncation

For the chiral case it is most useful to employ a different decomposition splitting

the fluctuations into selfdual and anti-selfdual components. It is obtained from the

decomposition (5.52) according to

τ̄abµ(x)=
µ̄

1
2√
2

[
∂µ∂

[a

−�
Ab](x)+

∂[a

√
−�

Bb]
µ(x)+ε

ab
cd

∂µ∂
c

−�
Cd(x)+εabcd

∂c√
−�

Dd
µ(x)

]
(5.123)

=
√

2
∑

±

((
P±)ab

cd

∂µ∂
c

−�

(
Ad ± Cd

)
+
(
P±)ab

cd

∂c√
−�

(
Bd

µ ±Dd
µ

))

=: 2
∑

±

((
P±)ab

cd

∂µ∂
c

−�
Ad± +

(
P±)ab

cd

∂c√
−�

B d
± µ

)
. (5.124)

The last equality defines the four new component fields by

A± :=
1√
2
(A± C) and B± :=

1√
2
(B ±D). (5.125)

We observe that now the fields with the plus/minus index describe the selfdual/anti-

selfdual components of the fluctuation field τ̄ , respectively.

It is important to note that up to this point both decompositions, (5.123) and

(5.124), are completely equivalent and that the same RG flow of the full Holst trun-

cation with a running Immirzi parameter can be obtained using either decomposition.

In the chiral case, however, we fix the Immirzi parameter to γ = ∓1 such that the

action only depends on the selfdual/anti-selfdual part of the spin connection. This

fact results in a quadratic form Γquad
± that only depends on the fields A±, B± of the

respective sign index, leading to vanishing rows and columns in the Hessian, that

correspond to the fields of the other sign index.

The reason for the vanishing rows and columns, and the obvious zero modes of the

Hessian they give rise to, is that using the decomposition (5.124) we did not restrict

the field space of fluctuations to one chirality. This restriction can be carried out at

this stage by simply discarding the (vanishing) rows and columns of the Hessian that

correspond to the other chirality. Thus we have a simple method at hand that reduces

the 40 x 40 matrix operator of QECG to the 28 x 28 Hessian of chiral gravity, reflecting

the reduced number of independent field components in the spin connection.
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5.5 RG flow of chiral gravity

For the reduction of the O(4)-ghosts we proceed in complete analogy. First we define

a general chiral decomposition

µ̄−1Υab =
1√
2

(
∂[a

√
−�

F b] + εabcd
∂c√
−�

Gd

)

= 2
∑

±

((
P+
)ab

cd
∂cF d

+ +
(
P−)ab

cd
∂cF d

−

)
,

(5.126)

where F± := 1√
2
(F±G). After having calculated the Hessian w. r. t. this decomposition

in the chiral case we skip the rows and columns corresponding to the opposite chirality.

With this reduced Hessian operator at hand, we proceed with the evaluation of

the WH-like flow equation the same way as described for the full Holst truncation in

Section 5.2.

5.5.2 Derivation of the β-functions

Keeping the differences to the full Holst truncation in mind we are now in the

position to derive the β-functions of Newton’s constant and the cosmological constant

in chiral gravity. We thus start with a truncation of the form

Γ±
k = − 1

8πGk

∫
d4xe

[
ea
µeb

νF (ω(±))abµ,ν − Λk

]
+ Γ±

gf + S±
gh, (5.127)

which corresponds to the Holst truncation (5.5) with γ = ∓1 and the gauge fixing and

ghost terms modified as discussed in the last subsection.

The left hand side of the flow equation, with the fluctuations set to zero, reads

∂tΓ
±
k [ē, ω̄±] =− k2

8πgk

(
2− ∂tgk

gk

)
·
∫

ddx ē ēa
µēb

νF̄ (ω(±))abµν

+
k2

8πgk

(
2−∂tgk

gk
+2+

∂tλk
λk

)
λkk

2 ·
∫

ddx ē .

(5.128)

Inserting the constant background fields ē and ω̄(±) we will identify the prefactor of

the field strength term on the right hand side, denoted rhsF±, by the combination of(
ω̄(±)

)2
-contractions:

ē ē µ
a ē

ν
b F̄

ab
µν = ē

[(
ω̄(±)

)
abc

(
ω̄(±)

)acb −
(
ω̄(±)

)a
ca

(
ω̄(±)

)bc
b

]
. (5.129)
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5 QECG in Holst Truncation

As for the full Holst truncation, this can not be done unambiguously. In Appendix

F.2 we show that for an (anti-)selfdual background spin connection all contractions

quadratic in ω̄(±) can be expressed in terms of the above two and thus of all 5 inde-

pendent torsion squared invariants of the general case, on this background only two

remain linearly independent. Hence, we need to specify exactly one additional basis

invariant besides the curvature term in order to identify its prefactor unambiguously.

Following this reasoning we evaluate the RHS of the flow equation and finally cast

it into the form

∂tΓ
±
k =rhsF± · k2

∫
ddx ē

((
ω̄(±)

)
abc

(
ω̄(±)

)acb −
(
ω̄(±)

)a
ca

(
ω̄(±)

)bc
b

)

+ rhsΛ± · k4

∫
ddx ē+ rhsI±i · k2

∫
ddx ē Ī

(±)
i .

(5.130)

Here, Ī
(±)
i is the additional field monomial that completes the basis in the projected

part of theory space. In particular we will consider the choices Ī
(±)
1 and Ī

(±)
3 defined

in Appendix F.2 along with the one parameter family

Ī(±)
ϕ = sin(ϕ)

(
ω̄(±)

)abc(
ω̄(±)

)
acb

+ cos(ϕ)
(
ω̄(±)

)ab
a

(
ω̄(±)

)c
bc (5.131)

of (ω̄(±))2-contractions. Note that for ϕ = 0, Ī
(±)
ϕ and Ī

(±)
1 coincide, while for ϕ =

arctan(3), Ī
(±)
ϕ is proportional to Ī

(±)
1 . Thus the continuous family of monomials

contains the two discrete choices in a certain sense. Together with the curvature

invariant as a first basis element we denote the corresponding (chiral) bases by Bch
1 ,

Bch
3 and Bch

ϕ .

Let us move on and discuss the general form of the functions rhsF±, rhsI±i and

rhsΛ±. For a general choice of gauge parameters we find that rhsF±(λ), rhsI±i (λ)

only depend on the cosmological constant λ, and that these functions in λ are given

as the ratio of two polynomials of degree 10, with a common denominator. In the

(αD, α
′
L, βD) = (0, 0, 0)-gauge these polynomials simplify, such that the remainder is a

ratio of polynomials of degree 4. Unfortunately, the simplification is not as impressive

as in the case of the full Holst truncation, where a reduction to degree 1 was obtained.

Nonetheless this gauge leads to the most extensive simplification possible and we will

thus stick to this preferred gauge for the rest of the discussion.

In order to judge the reliability of the different choices of bases we could discuss

the ratio functions rhsF±(λ)/rhsI±i (λ), as in the QECG case. Being a ratio of degree
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Figure 5.28. Asymptotic ratio of the coordinate functions R∞ = limλ→∞ rhsF±/rhsĪ±i
as a function of the basis parameter ϕ.

4 polynomials even in (0, 0, 0)-gauge, this is, however, not very instructive. For the

same reason one could argue that also the dependence of the limiting value R∞(ϕ) =

limλ→∞ rhsF±(λ)/rhsI±ϕ (λ) on ϕ is only of limited value for measuring the quality of

the truncation in a given basis. As we will find an astonishingly good correspondence

between the form of its graph and the existence of NGFPs in our truncation of chiral

gravity, we nevertheless have plotted the function in Fig. 5.28. We find that the

direction of monomial I
(±)
1 (ϕ = 0) results in a much larger limiting value than that

of I
(±)
3 (ϕ = arctan(3) ≈ 0.4 π). For the time being we will not classify the quality of

the basis choice according to this observation, but analyze the RG flow for all bases

on the same footing.

The last function rhsΛ±(λ, g) depends on both couplings (λ, g) and, independent of

the basis chosen, takes on the form

rhsΛ±(λ, g) = − 1

32π2

(
ln

[
(λ− 1)12λ6

g50m50

]
− lnN±

)
, (5.132)

in (0,0,0)-gauge, with lnN± ≈ 151.5.

As the main result of this subsection let us now write down the β-functions obtained

for chiral gravity

βg(λ, g) = +2g + 8πg2 rhsF±(λ)

βλ(λ, g) = −2λ+ 8πgλ rhsF±(λ) + 8πg rhsΛ±(λ, g) .
(5.133)
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5 QECG in Holst Truncation

Therein, the explicit form of the function rhsF±(λ) is given by

Bch
1 : rhsF±(λ) = −12λ4 − 277λ3 + 244λ2 − 40λ− 4

512π2(λ− 1)2λ2
(5.134a)

Bch
3 : rhsF±(λ) =

57λ4 − 49λ3 − 80λ2 + 56λ− 4

256π2(λ− 1)2λ2
(5.134b)

Bch
ϕ : rhsF±(λ) = −(−156λ4 + 223λ3 + 132λ2 − 136λ+ 12) sin(ϕ)

512π2(λ− 1)2λ2(sin(ϕ) + cos(ϕ))

− (12λ4 − 277λ3 + 244λ2 − 40λ− 4) cos(ϕ)

512π2(λ− 1)2λ2(sin(ϕ) + cos(ϕ))
(5.134c)

depending on the basis chosen. As expected from the symmetry of the RG flow of the

Holst truncation under γ 7→ −γ in each basis the result obtained is the same for both

chiralities.

5.5.3 Analysis of the RG flow

In this subsection we are going to analyze the RG flow of chiral gravity resulting from

the system of β-functions (5.133), whose explicit form depends on the basis chosen

(cf. (5.134)).

A first look onto the β-functions reveals a divergence of both function on the line

λ = 0, which comes in addition to the divergence at λ = 1, that we know already

from the QECG case. Keep in mind that for a generic choice of gauge parameters

there are usually more divergences for fixed λ, all of which are moved to infinity when

approaching the (αD, α
′
L, βD) = (0, 0, 0) limit. Thus the “new” divergence at λ = 0

just corresponds to a zero of the denominator that approaches zero in this limit.

However, this divergence has an interesting effect: As the pole in βg is of one degree

higher than the one in βλ, the trajectories of the flow do not reach this line. Thus all

trajectories in the positive quadrant are confined to this quadrant and we will see that

in the IR they either run to small values of g and large values of λ (which we know as

type IIIa trajectories from metric gravity and QECG) or to small λ and large values

of g, which amounts to a completely new IR behavior seen for the first time in gravity.

For the discussion of the RG flow in the rest of this subsection we set the dimen-

sionless mass parameter to its most natural value, m = 1, in all concrete examples.
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5.5 RG flow of chiral gravity

Fixed point structure. An immediate consequence of the second divergence line

is that the origin in coupling space now lies on this line, such that a Gaussian fixed

point cannot be properly defined there.

Besides that, we can find all non-Gaussian fixed points by solving the condition

βg(λ, g) = 0 for

g∗(λ) = − 1

4π rhsF±(λ)
, (5.135)

substituting this solution into the second condition βλ(λ, g
∗(λ)) = 0 and searching for

its zeros. This final step can only be carried out numerically, due to the logarithmic

terms in rhsΛ±(λ).

We have performed this task for the continuous set of bases Bch
ϕ and generically

found two fixed points at λ < 1, one at small positive λ, which we will denote by

NGFP1

±, and the second at large negative λ (NGFP2

±), resembling very much to the

situation in any (λ, g)-plane of fixed γ 6= ±1 of the full Holst truncation. However,

we find that the existence of the fixed points depends on the value of ϕ, i. e. on the

basis chosen. We will discuss this issue in more detail below, after having analyzed

the properties of the fixed points in the next two paragraphs.

Besides these two most stable fixed point solutions we found additional solutions,

that were considered unphysical, as they occur very close to singularities of the function

βλ(λ, g
∗(λ)) and and the influence on the RG flow of the fixed points they give rise to

is very localized.

The position of the two fixed points we are going to discuss in detail is plotted in

Fig. 5.29, together with the two barriers of the flow at λ = 0 and λ = 1.

λ = 0 λ = 1

g

λ

NGFP1
±

NGFP2
±

Figure 5.29. Sketch of the fixed point structure in the chiral case. The two barriers of
the RG flow at λ = 0 and λ = 1 are depicted schematically as well.
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Figure 5.30. Position and critical exponents of NGFP1
± as functions of the continuous

parameter ϕ of the basis Bch
ϕ .

(A) The fixed point NGFP1

±. In Fig. 5.30(a) we have plotted the fixed point

position of the first NGFP as a function of the basis parameter ϕ. As the coordinate

function rhsI±i switches its sign, while rhsF± stays constant under ϕ 7→ ϕ + π, this

and the following figures are π-periodic in ϕ. We observe that the fixed point is only

present in the interval π/4 . ϕ . 3/4π (and its π-periodic counterpart). Moreover,

both FP coordinates decrease with increasing ϕ although both coordinate values stay

within one order of magnitude and, in particular, g∗ turns out remarkably stable.

From the figure we can also conclude, that the fixed point does not exist in the

discrete basis Bch
1 (ϕ = 0). For the basis Bch

3 the explicit fixed point coordinates read

λ∗ = 0.818, g∗ = 0.343 . (5.136)

Fig. 5.30(b) shows the corresponding plot of the critical exponents θ1 and θ3. At the

lower boundary of the interval in which the FP exists, there seems to be a bifurcation

point, where the critical exponents become real. Quickly thereafter θ1 approaches a

value of about 6 − 7 while θ3 fluctuates around 20, before it diverges at the upper

boundary of the interval. Most importantly both critical exponents are positive, such

that the fixed point is UV attractive and allows for the Asymptotic Safety construction.

For the discrete basis Bch
3 the critical exponents are given by

θ1 = 6.66, θ3 = 17.78 . (5.137)

Qualitatively, but also quantitatively this fixed point resembles much the fixed point

NGFP1

∞
of the full Holst truncation. Both fixed point coordinates are smaller than
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Figure 5.31. Position and critical exponents of NGFP2
± as functions of the continuous

parameter ϕ of the basis Bch
ϕ .

one and relatively stable, but especially one critical exponent takes on a fairly large

value.

(B) The fixed point NGFP2

±. Let us turn over to the second fixed point. Its

position as a function of ϕ is depicted in Fig. 5.31(a). We observe that it exists for a

slightly larger interval in ϕ: The lower boundary is shifted to ϕ ≈ 0.1, while the upper

boundary occurs at virtually the same value ϕ ≈ 3/4π as in the case of NGFP1

±.

We find that the fixed point position heavily depends on the value of ϕ: It starts at

infinite negative values at the lower boundary and moves close to the origin at the

upper boundary. In between it always stays within the negative (λ, g) quadrant.

As for the first fixed point, NGFP2

± does not exist in basis Bch
1 ; in basis Bch

3 it

occurs at

λ∗ = −13.2, g∗ = −3.86 . (5.138)

The corresponding critical exponents are depicted in Fig. 5.31(b). Their almost

perfect independence on ϕ, taking into account the huge variation of the fixed point

position is most striking: Both critical exponents are approximately constant with

θ1 ≈ 2.3 and θ3 ≈ 4.3. In particular, both exponents are real and positive, giving rise

to a UV attractivity of the FP in both directions. In basis Bch
3 the critical exponents

read explicitly

θ1 = 2.26, θ2 = 4.33 . (5.139)

Thus we can conclude that also the properties of NGFP2

± are comparable to those

of its “counterpart” NGFP2

∞
in the full Holst truncation.
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5 QECG in Holst Truncation

(C) Discussion. Let us finally comment in more detail on the interval of existence

of both fixed points. Naively one could think that universal properties of the flow

like the existence of fixed points, should also be independent of the basis chosen.

This is not the case, as the projection method clearly can be chosen in a particularly

disadvantageous way, such that the physical content of the theory is projected out.

While it is impossible to identify the best projection of the flow without knowing its

exact untruncated form, in the case at hand we know two of these disadvantageous

choices for ϕ:

(i) Those ϕ at which the poles in Fig. 5.28 occur, correspond to a basis, where the

second invariant points exactly into the direction of the expanded RHS of the flow

equation. Hence, rhsF± gets zero in this case and the information we are interested

in is projected out.

(ii) At ϕ = 3/4π both invariants of the basis point in the same direction, i. e. are

linearly dependent. Thus, in this limit, both coordinate functions rhsF± and rhsĪ±ϕ

diverge and, although their ratio stays finite, the extracted RG flow becomes ques-

tionable.

It is certainly no mere coincidence that the boundaries of the interval of existence of

NGFP2

∞
(and also the upper boundary for NGFP1

∞
) lie very close to these extreme

cases. From this point of view one should consider a basis in the middle of this interval

as most reliable. Hence, we favor basis Bch
3 over Bch

1 and will discuss the phase portrait

using the specific example of this basis in the next paragraph.

The phase portrait. In Fig. 5.32 we plot the phase portrait of the RG flow of chiral

gravity obtained for the basis choice Bch
3 . In subfigure (a) of Fig. 5.32 the vicinity of

NGFP1

± and the flow towards the origin is depicted. We observe that the trajectories

shortly before arriving at the origin are bent to one side or the other, such that they

either run towards large values of λ and small g (as known from metric gravity) or to

large g and small λ in the IR. This new behavior is clearly due to the existence of the

additional divergence at λ = 0 compared to both metric gravity and the QECG case.

Subfigure (b) focusses on NGFP2

± and the negative (λ, g) quadrant. It shows no

particular differences compared to the (λ, g)-truncations for fixed γ 6= ±1 of the Holst

action, except for the divergence at λ = 0 (cf. Fig. 5.12).

This additional divergence, however, should probably not be taken to seriously. We

were able to trace back its origin to the modified gauge condition G±ab in eq. (5.121).
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Figure 5.32. Phase portrait of chiral gravity obtained in basis Bch
3 .

Picking the “+” chirality for the sake of the argument, it leads to the gauge fixing

term

G+
abG+ab = (P+G)ab(P+G)ab . (5.140)

Instead it should also be admissible to use the complete gauge condition Gab in the

gauge fixing action S±
gf . It decomposes according to

GabGab = (P+G)ab(P+G)ab + (P−G)ab(P−G)ab , (5.141)

where the second term on the RHS is simply invariant under selfdual, i. e. SO
+(3)loc

transformations, while the first still gauge fixes them, exactly as in (5.140). Using

this second gauge condition, the divergence at λ = 0 is not present in the β-functions.

However, it has the disadvantage that it is not possible to take the limit of the pre-

ferred (0, 0, 0)-gauge in this case. For that reason we opted for the chiral gauge condi-

tion, which irrespective of the practical considerations seems the most natural choice.

Nonetheless this observation puts the physical meaning of the divergence arising at

λ = 0 into question.

Taking together all our findings on the RG flow of chiral gravity, we conclude that

the cases γ = ∓1 result in an additional self-consistent “sub-truncation” within the

general Holst action ansatz. Most strikingly the resulting phase portrait and the
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5 QECG in Holst Truncation

properties of the two NGFPs we found correspond, qualitatively and quantitatively,

very well to the other self-consistent sub-truncation, namely the γ̂ = 0-plane, in which

the Immirzi parameter is not renormalized, too.

5.6 Discussion and Conclusion

Recall that the primary motivation for the RG analysis on TEC was to assess the

viability of the approximations that the WH-like flow equation relies on in direct

comparison to the proper-time flow study carried out in [Dau, DR]. After having

analyzed the resulting flow in some detail we are now in a position to answer this

question to a large part affirmatively. Already in the general setting we find β-functions

for g and γ that are of comparable form to those found in [Dau], in the sense that they

share a similar and simple dependence on the couplings g and γ, while as a function

of λ the β-functions are most complicated.

In the following we have seen that the consistency of our truncation is optimized by

choosing the preferred (αD, α
′
L, βD) = (0, 0, 0) gauge, which in turn leads to a simplified

dependence of the β-functions on λ. Besides the freedom of choosing the gauge fixing

parameters, we had to deal with an additional projection ambiguity compared to the

PT study, that somehow is the price to pay for the purely algebraic character of the

new WH-like flow equation: Since we are bound to use constant background fields, the

flow of the curvature and the Immirzi term can not be disentangled from the flow of

certain torsion squared invariants. We therefore analyzed a set of different projection

schemes, which were defined by introducing different bases in theory space, and we

were able to show that the similarities to the PT study even grow further if we opt

for basis B1.

Disregarding the flow of the cosmological constant and its notorious instabilities

(stemming from quartic divergences), we find a system of β-functions {βg, βγ} that

is of the same structure as the corresponding one in [Dau]. In particular, it satisfies

exactly the in [Dau] only conjectured duality property under the mapping γ 7→ 1/γ

of the Immirzi parameter. Under this duality transformation the non-Gaussian fixed

points NGFP′
0

at γ = 0 and NGFP′
∞ at γ̂ = 0 are mapped onto each other. These

fixed points generically show an antagonistic behavior, one being UV attractive in two

and the other in one direction, leading to a predominant direction of the γ-flow, that

depends on the fixed value of λ.
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5.6 Discussion and Conclusion

For the special choice of λ ≈ 0.57 it was observed that the γ-flow stops completely.

We argued that by this value the symmetry of scalar and pseudo-scalar terms in the

truncation ansatz, that is spoiled by the introduction of gauge fixing and ghost terms,

can be effectively restored, leading to an equal renormalization of the curvature and

the Immirzi term. In a setting that respects this symmetry throughout, we therefore

expect the flow of the Immirzi parameter to vanish, as long as no volume term is

present in the (Holst-)truncation (i. e. λ = 0).

In this setting the different conceptions of the Immirzi parameter used in LQG as

a fixed external quantity and in the RG approach as a running coupling are easy to

reconcile: In both cases the value of γ is not scale dependent and therefore also in

the RG setting the different quantum theories can be parametrized by fixed values

of the Immirzi parameter. However, the cosmological constant is known to be non-

zero, which inevitably leads to a non-trivial running of the Immirzi parameter and in

consequence renders a comparison of the role of the Immirzi parameter in LQG and

in asymptotically safe gravity more complicated.

At this point we also want to make contact to a related perturbative study on the

running of the Immirzi parameter. In [BS11, BS12] a one loop renormalization of the

Holst action is carried out, keeping track of the powerlike divergences by employing a

proper-time cutoff regularization. In this setting the following β-functions are obtained

βg = g
(
2− 17

3π
g
)
, βγ =

4

3π
g γ , (5.142)

that are to be compared with our findings at λ = 0

βg = g
(
2− 9

16π
g
)
, βγ = −23

8π
g γ . (5.143)

We observe that both calculations lead to β-functions of the same form. Moreover,

the sign of the anomalous dimension ηN of the Newton constant coincides for both

studies and allows for a fixed point value g∗ > 0.

The predominant direction of the γ-flow is found opposite to our result; however,

as a vanishing result should be expected in a symmetry preserving setting, the sign

of the outcome of a calculation that spoils this symmetry may depend on the very

details of the calculation. Unfortunately the analysis [BS11] is restricted to the case

of a vanishing cosmological constant, such that we can not investigate the expected

sign change of the γ-flow depending on λ. The main differences, apart from being
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5 QECG in Holst Truncation

a one-loop calculation, in the setting of [BS11] compared to our calculation are a

different gauge-fixing condition for the diffeomorphisms and the complete neglection

of O(4)-ghost contributions, that may have a crucial influence as we have pointed

out in Chapter 3. On the technical side also the regularization procedure is different

(proper-time cutoff vs. sharp momentum cutoff). Taken together these differences

might very well account for the sign difference in the γ-flow at λ = 0.

When including λ as a running coupling to our truncation, the fixed point at γ̂ = 0

gets lifted to the higher dimensional theory space and we find two NGFPs in the γ̂ = 0-

plane. The fixed point at γ = 0, however, ceases to exist due to a, probably unphysical,

divergence of βλ that arises at γ = 0. Thus, the similarities to [DR] are weaker

in the three dimensional truncation, but nonetheless our computation independently

supports the existence of NGFPs suitable for the Asymptotic Safety scenario in the

γ̂ = 0-plane.

In the last section we used the WH-like setting to carry out a first RG study of

chiral gravity. Here we found little to no qualitative difference to the RG flow of g and

λ in other planes of fixed γ 6= ±1. Especially the positive quadrant shows a striking

similarity to the metric Einstein-Hilbert truncation, although the critical exponents

of the fixed point are real here and their absolute value is quite large.

Thus, in total we conclude that the approximations the WH-like flow equation relies

on lead only to minor changes of the flow as far as only its gross topological features are

considered. Within this setting we were able to single out a preferred choice of gauge

parameters, (αD, α
′
L, βD) = (0, 0, 0), and of the projection scheme, namely to use basis

B1 in the torsion squared subspace. Due to the immense reduction in computational

effort, which we gain when opting for the WH-like equation instead of the PT flow

equation, we can only recommend to employ this preferred setting in future RG studies

of enlarged truncations that in addition may also include fermionic matter.
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6 Summary and Conclusions

In this thesis three independent RG studies of asymptotically safe gravity have been

carried out. While the structure of the group of gauge transformations is of semi-direct

product type in all three cases, the field content of the three theories differs and also

three different types of FRGE have been employed for the analysis of their respective

RG flow. A major achievement of this thesis is hence that for the first time the RG

flows of metric, tetrad and Einstein-Cartan gravity could be directly compared and

the relation between the different theory spaces could be explored. Moreover, a new

approximative functional RG equation, the “WH-like flow equation”, was developed,

tested, and applied; it allowed for a purely algebraic evaluation of the RG flow in the

Einstein-Cartan case.

Let us summarize here the principal achievements of each of the three studies sepa-

rately. For the more detailed description of the results obtained the reader is referred

to the concluding section of the respective chapter of this thesis.

Asymptotically safe gravity and gauge theories. The study presented in Chapter

3 amounts to a first fully non-perturbative analysis of the corrections of metric gravity

to the running of the Yang-Mills coupling constant. Previously numerous perturbative

studies on the subject had appeared that employed different computational techniques

which had partly led to contradicting results. The analysis in this thesis is a valuable

contribution to this lively debate, as it helps to clarify the situation by circumventing

two major shortcomings of previous perturbative studies: It retains all contributions

due to quadratic divergences as well as (background) gauge invariance. In order to

ensure the latter it turned out crucial to employ a generalization of the usual Faddeev-

Popov method for the construction of the ghost-action [DHR10, Dau] that takes into

account the semi-direct product structure of the symmetry group of the underlying

theory space TE,YM.

As the main result of this study we showed that gravitons and gluons have a similar

effect on the running of the gauge coupling, i. e. that both support the approach of
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asymptotic freedom in the UV, and that this effect of the gravitons is already present

at one-loop level. It is encouraging that coupling Yang-Mills theory to asymptotically

safe gravity does not destroy asymptotic freedom of the gauge field sector, but rather

improves its UV properties.

This result awakened the interest in how other parts of the SM are affected by

the presence of asymptotically safe gravity. In particular, we studied the effects on

QED and on the U(1)-sector of the electroweak interaction. Here, we found that

gravitons and fermions have a competing effect on the running of the fine-structure

constant/weak hypercharge, such that the quantum gravitational effects may prevent

the couplings from running into a Landau type singularity. In this case the coupled

theory can be considered fundamental. Concerning the UV limit of this fundamental

theory we found two different scenarios: In the first case the graviton contributions

outweigh the fermionic ones leading to asymptotic freedom of the respective gauge

coupling of the coupled system. The more interesting possibility, however, lies in

the exact balancing of the competing contributions in the UV limit, that results in

a finite non-zero fixed point value of the gauge coupling. We were able to show that

this scenario generically corresponds to a fundamental theory with a lesser number of

free parameters. In our concrete examples we demonstrated this fact by computing

a first estimate of the fine-structure constant and the weak-hypercharge in terms of

the electron/Z-boson mass in Planck units, which turned out in the correct order of

magnitude.

As these results indicate, it may be possible to “heal” the ill-defined UV behavior of

QED by coupling it to QEG. This raises the hope that also the 100-year-old problem of

the divergent electron self-energy can finally be solved by the effects of (asymptotically

safe) quantum gravity. Our result seems to confirm the longstanding speculation that

it is the fluctuations of spacetime taken into account in quantum gravity that effectively

smear out the problematic singular points.

Taken together the new investigations on gauge theories coupled to asymptotically

safe gravity carried out in this thesis suggest that also the Standard Model coupled

to gravity may turn out asymptotically safe once Asymptotic Safety of pure gravity

is fully established. Moreover, we found an interesting mechanism that demonstrates

how Asymptotic Safety may even enhance the predictive power of the coupled system.
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“Tetrad only” gravity. In Chapter 4 we reported on the first RG study of gravity in

the theory space constructed from the tetrad field only [HR12]. Here, the application

of the exact FRGE for the EAA on a truncation derived from the Einstein-Hilbert

truncation of metric gravity allowed us to directly compare the results obtained to the

corresponding metric analysis in [Reu98]. We pointed out that the resulting RG flow

differs from its metric counterpart for two reasons: First, due to the off-shell character

of the FRGE every field reparametrization may lead to additional contributions to its

RHS, but second, and most importantly, the transition to the tetrad as the fundamen-

tal field variable amounts to a change of theory space, TE → Ttet, that enlarges the

group of gauge transformations from G = Diff(M) in the metric case to

G = Diff(M) ⋉ O(d)loc (6.1)

in tetrad gravity. Moreover, it can be shown that Ttet is larger than TE such that the

couplings in both spaces are not in a one-to-one correspondence. At the level of our

truncation, the effect of the change of theory space was encoded in the contributions

of the additional O(d) ghost fields, that crucially influenced the UV properties of the

theory. While a complete neglection of the additional ghost fields rendered the non-

Gaussian fixed point UV repulsive, in turn giving rise to a limit cycle, a consistent

treatment of the ghost fields restored the existence of a UV attractive fixed point.

Thus, we found first evidence for the existence of a NGFP suitable for the Asymptotic

Safety construction in Ttet, while demonstrating at the same time that in a non-

perturbative RG approach the O(d) ghost contributions cannot be neglected, unlike

in perturbation theory [Woo84].

In direct comparison to the metric RG flow it became clear that the tetrad for-

mulation of the Einstein-Hilbert flow is much more sensitive to the value of external

parameters like the mass parameter µ, that had to be introduced to define a Faddeev-

Popov operator of definite mass dimension, or the explicit RG scheme used. This

behavior was attributed to the larger ratio of gauge to physical field components com-

pared to the metric case. For that reason a future analysis aiming at quantitative

evidence whether and how the theories of metric and tetrad gravity defined at the

respective fixed points of their theory spaces are related to each other can ultimately

only be based on predictions of observable quantities both theories give rise to, as only

at this level gauge and RG dependences are expected to be compensated.
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QECG in the Holst truncation. Chapter 5 was devoted to the RG analysis of the

Holst truncation of gravity formulated in Einstein-Cartan theory space TEC. In this

analysis three main methodological advancements have been achieved:

• A novel approximative WH-like flow equation for a running effective action has

been developed. It is structurally equivalent to the Wegner-Houghton flow equa-

tion for the running bare action for the special case of constant background

fields. We showed how this new flow equation is related to the exact FRGE

by a series of approximations and that it renders the evaluation of the RG flow

a purely algebraic task. In consequence also the resulting β-functions simplify

considerably as the momentum integration contained in the trace on the RHS

can be carried out explicitly.

• A projection technique allowing for the optimization of a truncation containing a

fixed set of invariants was introduced. In order to do that, it was pointed out that

a truncation is only properly defined, if we, in addition to the set of invariants,

concretely specify a projection scheme. This can be done by defining the space of

field monomials that form the kernel of the projection. It was shown that it may

be advantageous to first only specify part of the projection kernel and thereby

project the RHS of the flow equation onto a subspace of theory space that is

larger than the space spanned by the set of field monomials of the truncation. (In

our case this larger space contained all invariants that are at most quadratic in

the spin connection.) In a second step it is then possible to choose the remaining

kernel elements among the invariants of this larger subspace in such a way that

the resulting RG flow stays to a good approximation inside the subspace spanned

by the truncation invariants. Using this technique the Holst truncation could be

optimized by a choice of basis. Moreover, it was understood that at least part of

the strong gauge parameter dependence that is generically found in RG studies

of TEC is due to fact that the quality of the truncation in the above sense depends

very much on the gauge chosen. In this respect the (αD, α
′
L, βD) = (0, 0, 0)-gauge

was singled out as the preferred choice.

• The decomposition of the fluctuation fields that had been introduced in [Dau]

was modified in such a way that the component fields describe (anti-)selfdual

fluctuation modes. By this reparametrization of the fluctuations it was possible
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to analyze the RG flow of chiral gravity for the first time, as it arises as a simple

modification of the general Einstein-Cartan case.

Applying the above developments to the Holst truncation of TEC we arrived at a

system of β-functions for its three couplings λ, γ and g as a major result of the

chapter. The RG flow they give rise to was analyzed in detail, and to a large part this

analysis could be carried out analytically due to the enormous simplification of the

β-functions compared to the study of [Dau, DR]. In direct comparison to [Dau, DR]

many structural similarities of the RG flow have been observed, which at the same time

can be seen as an independent verification of these previous results and an approval

of the applicability of the new WH-like flow equation to the Einstein-Cartan theory

space.

Most strikingly the similarity of the resulting RG flows was seen in the (γ, g)-

subsystem, that does not suffer from the notorious instabilities of the λ-flow. The

above mentioned optimization procedure of the truncated flow led to a choice of four

bases Bi (i = 1, · · · , 4) in theory space, from which B1 was singled out as the one

maximizing the structural similarities in comparison to [DR]. In this most physical

basis B1 not only the position and stability properties of the fixed points coincide but

also the conjectured duality map γ 7→ 1/γ was verified analytically at the level of the

β-functions.

The first RG study of chiral gravity (γ = ±1), that in our approach could be car-

ried out by only minor modifications of the general Einstein-Cartan case, using the

reparametrized decomposition of the fluctuation fields, revealed a picture very simi-

lar to the (λ, g)-truncations of other fixed values of γ 6= ±1 with two UV attractive

NGFPs, in the positive and the negative (λ, g)-quadrant, the latter exhibiting a re-

markable stability of its critical exponents. The only evident difference between the

chiral case and other fixed values of γ, namely the existence of an additional barrier

of the RG flow at λ = 0, was traced back to the different gauge condition used, and

is hence probably unphysical. Among the two-dimensional truncations of fixed γ, the

planes γ → ∞ and γ = 0 as well as the chiral case γ → ±1 play a special role as

they amount to self-consistent truncations, in which the Immirzi parameter is not

renormalized.

In view of future calculations in the Einstein-Cartan theory space it seems very de-

sirable to search for a gauge-fixing condition that in the general case retains the sym-

metry of the Holst truncation w. r. t. scalar and pseudo-scalar contributions, and/or
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in the chiral case allows for the (αD, α
′
L, βD) = (0, 0, 0)-limit without exhibiting the

λ = 0 divergence.

Apart from an optimization of the gauge fixing condition, the inclusion of fermionic

matter seems most interesting for a future project. With the simplified WH-like flow

equation, that nonetheless preserves many structural properties of the flow, we paved

the way for such an even more involved computation, that would allow for the inves-

tigation of the CP-violating effect of the Immirzi term in theories of fermions coupled

to asymptotically safe gravity and its possible implications for the cosmology of the

early universe.
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A Abbreviations and Conventions

In this appendix we list the abbreviations used in the thesis and introduce our

notation conventions. We thereby define the notation of various physical quantities

and list the most important relations among them.

Abbreviation Meaning

EAA effective average action

FP fixed point

FRGE functional renormalization group equation

GFP Gaussian fixed point

IR infrared

LHS left hand side

LQG loop quantum gravity

MSSM minimal supersymmetric standard model

NGFP non-Gaussian fixed point

PT proper-time

QCD quantum chromodynamics

QED quantum electrodynamics

QEG quantum Einstein gravity

QFT quantum field theory

RG renormalization group

RHS right hand side

SM Standard Model

UV ultraviolet

WH Wegner-Houghton

YM Yang-Mills
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Object Notation/Convention/Relations

(Anti-)Symmetrization δµ[ρδ
ν
σ] = δµρ δ

ν
σ − δµσδνρ , δµ(ρδνσ) = δµρ δ

ν
σ + δµσδ

ν
ρ , etc.

Euclidean (curved) metric gµν

Euclidean (flat) metric ηab, ηab ≡ δab

Tetrad/vielbein field eaµ

Determinant of the metric g ≡ det(gµν)

Determinant of the tetrad e ≡ det(eaµ)

Levi-Civita connection ΓLC(g)λµν = 1
2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν)

ΓLC(e)λµν = ea
λ(∂µe

a
ν+ω(e)abµe

b
ν) = ΓLC(g(e))λµν

Levi-Civita spin connection ω(e)abµ= 1
2
eaλ(ecν∂[µe

c
λ]+ecλ∂[νe

c
µ]−ecµ∂[λe

c
ν])e

bν

General spacetime connection Γλµν = ea
λ(∂µe

a
ν + ωabµe

b
ν) = ea

λ∇µe
a
ν

Γλµν = ΓLC(e)λµν +Kλ
µν

Riemann curvature tensor R λ
µνρ = ∂[νΓ

λ
µ]ρ + Γσ[µ|ρΓ

λ
ν]σ

Ricci tensor Rµν = R λ
µλν

Ricci scalar R = gµνRµν

Field strength tensors F a
µν = ∂[µA

a
ν] + fabcAbµA

c
ν

F ab
µν = ∂[µω

ab
ν] + ωac[µω

cb
ν]

Torsion tensor T λµν = Γλ[µν]

Contorsion tensor Kλ
µν = 1

2
(T λµν − Tµνλ + Tν

λ
µ)

Covariant derivatives D = ∂ + Γ

(symbolically) ∇ = ∂ + ω/A O(d)/SU(N) connection

D = ∂ + Γ + ω/A

Curvature operator:

a) for vectors Aλ [Dµ, Dν ]Aλ = R ρ
µνλ Aρ − T ρµνDρAλ

b) for tensors Hλσ [Dµ, Dν ]Hλσ = R ρ
µνλ Hρσ +R ρ

µνσ Hλρ−T ρµνDρHλσ

Remark: In the Chapters 3 and 4 we only consider torsionless spacetimes with T λµν =

0 = Kλ
µν . Therefore we have Γλµν = ΓLC

λ
µν in these cases, and we drop the subscript

LC throughout these Chapters.
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B The Wegner-Houghton Equation

In this appendix we derive the Wegner-Houghton RG equation for the running bare

action and discuss its structural similarity to the new WH-like flow equation derived

in Section 2.3 and first applied in Chapter 5. The below presentation is based on

the original work [WH73] as well as [HH96, Mor94, SSA+], but is aimed to be self-

contained.

The Wegner-Houghton equation is an exact renormalization group equation for the

Wilsonian effective action. Starting point for its derivation is the general idea behind

Kadanoff-Wilson renormalization, namely to compute the path integral over fluctua-

tions on all scales piecewise, taking into account only fluctuations in a shell of momenta

k′ ≤ |p| ≤ k. This way one obtains a “running bare action” Sk, defined by the property

that the partition function stays the same, when fast fluctuating modes are intergrated

out:

Z =

∫
[DΦ][0,k′] e

−Sk′ [Φ] =

∫
[Dφ][0,k] e

−Sk[φ] =

∫
[DΦ][0,k′]

[∫
[Dϕ][k′,k] e

−Sk[Φ+ϕ]

]
(B.1)

so that

e−Sk′ [Φ] =

∫
[Dϕ][k′,k] e

−Sk[Φ+ϕ], (B.2)

where the notation [Dφ][a,b] denotes the path integral for Fourier modes of the field φ

in the momentum interval [a, b].

From this result we can derive a differential equation relating the bare actions at

different scales by taking into account only an infinitesimal momentum shell k′ =

k − δk. To this end we have to analyze the right hand side of equation (B.2) and

truncate the action Sk to those terms, that contribute to the differential of the action

Sk − Sk−δk to at most linear order in δk. With this truncated action, Sδkk , the path

integral in (B.2) turns out to be computable, leading to a closed form differential

equation for the Wilson effective action, the Wegner-Houghton equation.
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Let us work out this general procedure in a bit more detail. Consider a real scalar

field φ(x) and its Fourier transform

φ(p) =
1

(2π)d/2

∫
ddxφ(x)e−ipx with φ(−p) = φ∗(p). (B.3)

A generic action functional S[φ] can be expanded in momentum space according to

S[φ] =
1

2

∫
ddp v2(p)φ(p)φ(−p)

+

∞∑

n=3

1

n!

∫
ddp1 . . .d

dpn vn(p1, . . . , pn)φ(p1) . . . φ(pn) δ(p1 + . . .+ pn),
(B.4)

where the functions vn are symmetric in their arguments and v2(p) = v2(−p), without

loss of generality. In the case of a running bare action Sk the scale dependence of

the action is described as a scale dependence of the functions vn. Fluctuations with

momenta above this scale are already integrated out, so that φ(p) = 0 for |p| > k.

Now we split the field φ into two fields Φ and ϕ corresponding to the low and high

momentum modes, respectively:

φ(p) = Φ(p) + ϕ(p) with





Φ(p) = 0 for |p| ≥ k − δk
ϕ(p) = 0 unless k − δk ≤ |p| ≤ k.

(B.5)

The first term in (B.4), corresponding to a generalized kinetic term, can be separated

off according to

S ′ = S − S0 with S0 =
1

2

∫
ddp v2(p)φ(p)φ(−p). (B.6)

Since, by definition, the product Φ(p)ϕ(−p) vanishes for all momenta p, S0 has the

property

S0[φ] = S0[Φ + ϕ] =
1

2

∫
ddp v2(p) (Φ(p) + ϕ(p))(Φ(−p) + ϕ(−p))

=
1

2

∫
ddp v2(p) Φ(p)Φ(−p) +

1

2

∫
ddp v2(p)ϕ(p)ϕ(−p)

= S0[Φ] + S0[ϕ].

(B.7)
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S ′ does not have this additivity property and therefore we define a new quantity Ŝ as

the difference

Ŝ[Φ + ϕ] = S ′[Φ + ϕ]− S ′[Φ]

=

∫
ddp

δS ′[Φ]

δϕ(p)
ϕ(p) +

1

2

∫
ddp1 ddp2 ϕ(p1)

δ2S ′[Φ]

δϕ(p1)δϕ(p2)
ϕ(p2) + . . .

=
∞∑

n=1

1

n!

∫
ddp1 . . .d

dpn Ŝ
(n)[Φ]ϕ(p1) . . . ϕ(pn),

(B.8)

so that the expansion of Ŝ[Φ + ϕ] contains no term independent of ϕ. Note that the

integrations are effectively integrations over the momentum shell k−δk≤|p|≤k, since

ϕ(p) = 0 otherwise.

Using these definitions, we now have

S[Φ + ϕ] = S0[Φ + ϕ] + S ′[Φ + ϕ]

= S0[Φ] + S ′[Φ] + S0[ϕ] + Ŝ[Φ + ϕ]

= S[Φ] + S0[ϕ] + Ŝ[Φ + ϕ].

(B.9)

Since the path integral will only be carried out over the fluctuation field ϕ, this

identity corresponds to a separation of the action S[Φ + ϕ] into a fixed part S[Φ]

depending only on the “external field” Φ, a kinetic term of the fluctuations S0[ϕ], and

an interaction terms Ŝ[Φ+ϕ]. Inserting the identity into (B.2), with k′ = k−δk, gives

eSk[Φ]−Sk−δk[Φ] =

∫
[Dϕ][k−δk,k] e

−S0
k [ϕ]−Ŝk[Φ+ϕ]

=

[
e−Ŝk [Φ+ δ

δJ
]

∫
[Dϕ][k−δk,k] e

−S0
k [ϕ]+

R

ddp J(−p)ϕ(p)

]

J=0

,

(B.10)

where the last step is only valid in the sense of an asymptotic expansion. J shall only

couple to modes in the shell, so that J(p) = 0 unless k − δk ≤ |p| ≤ k.
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Now the functional integration can be carried out. As a first step, by a shifting

the integration function according to ψ(p) = ϕ(p) − 1
v2(p)

J(p) with [Dψ] = [Dϕ], the

exponent reduces to a term quadratic in the field ψ:

∫
[Dϕ][k−δk,k] e

−S0
k[ϕ]+

R

ddp J(−p)ϕ(p)

=

∫
[Dψ][k−δk,k] e

− 1
2

R

ddpψ(p)v2(p)ψ(−p)+ 1
2

R

ddp J(p) 1
v2(p)

J(−p)
. (B.11)

Second, we split the integration over the modes in the momentum shell

Bk−δk,k = {p
∣∣ |p| ∈ [k − δk, k]}

into two half shells

B±
k−δk,k = {p

∣∣ |p| ∈ [k − δk, k], p0 ≷ 0}

such that
∫

[Dϕ][k−δk,k] =
∫

[Dψ]p∈B+
k−δk,k

[Dψ]p∈B−
k−δk,k

=
∫

[Dψ]p∈B+
k−δk,k

[Dψ]−p∈B+
k−δk,k

=∫
[Dψ]p∈B+

k−δk,k
[Dψ∗]p∈B+

k−δk,k
.

In addition we note that, due to the symmetry v2(−p) = v2(p) and ψ(−p) = ψ∗(p),

we can rewrite the exponent according to

∫
ddp ψ(p)v2(p)ψ(−p) = 2

∫

B+
k−δk,k

ddp ψ(p)v2(p)ψ
∗(p)

such that the complete path integral reads:

=

∫
[Dψ]p∈B+

k−δk,k
[Dψ∗]p∈B+

k−δk,k
e
−

R

B+ ddpψ(p)v2(p)ψ∗(p)+ 1
2

R

ddp J(p) 1
v2(p)

J(−p)
. (B.12)

Now we make a further change of integration variables and integrate separately over

the real and imaginary part of ψ

=

∫
[DReψ]p∈B+

k−δk,k
[DImψ]p∈B+

k−δk,k
e−

R

B+ ddp v2(p)
(
(Reψ(p))2+(Imψ(p))2

)

· e
1
2

R

ddp J(p) 1
v2(p)

J(−p)
. (B.13)
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At last, we can restore the integration over the full momentum shell Bk−δk,k by noting

that the analogous integration over the modes in B−
k−δk,k leads the same result:

=

[∫
[DReψ][k−δk,k] [DImψ][k−δk,k] e

−
R

ddp v2(p)
(
(Reψ(p))2+(Imψ(p))2

)]1/2

· e
1
2

R

ddp J(p) 1
v2(p)

J(−p)

=

[
∏

k−δk≤p≤k

1√
v2(p)

]
· e

1
2

R

ddp J(p) 1
v2(p)

J(−p)
, (B.14)

where a (infinite) constant coming from the Gaussian integrals was absorbed in the

functional measure. After the functional integration eq. (B.10) therefore becomes

eSk [Φ]−Sk−δk[Φ] =

[
∏

k−δk≤p≤k

1√
v2(p)

] [
e−Ŝk[Φ+ δ

δJ
] · e

1
2

R

ddp J(p) 1
v2(p)

J(−p)
]
J=0

. (B.15)

If we now expand Ŝk, as in (B.8), and the exponential exp(−Ŝk), we can think of

(B.15) as a series of Feynman diagrams:

Each coefficient Ŝ
(n)
k gives rise to a vertex with an arbitrary number of external lines

whose momentum is smaller than k−δk described by its Φ-dependence and n internal

lines carrying momenta in the shell. There is momentum conservation at each vertex

due to the delta distributions in (B.4). All internal lines are connected by propagator

terms 1/v2(p) and each internal line picks up an integration over the momentum shell

k − δk ≤ |p| ≤ k.

To find an expression for Sk[Φ]−Sk−δk[Φ] we just have to take the logarithm of

equation (B.15)

Sk[Φ]−Sk−δk[Φ] = −1

2

∫ ′
ddp ln v2(p)+ln

[
e−Ŝk[Φ+ δ

δJ
] · e

1
2

R

ddp J(p) 1
v2(p)

J(−p)
]
J=0

, (B.16)

where
∫ ′

ddp denotes the integration over the momentum shell k − δk ≤ |p| ≤ k. As

usual, the logarithm amounts to the sum of the connected diagrams of the above type.

Up to now, we have not made use of the fact that δk is an infinitesimal quantity,

so that we only need to take into account the connected diagrams contributing to

linear order in δk. As each internal line corresponds to a shell integration of order δk,

diagrams with only one internal line will contribute. These diagrams are built from

two vertices connected by one internal line, which have arbitrarily many external lines
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Ŝ(1) Ŝ(1)

(a) Diagram with one
internal line

∑
pi=0

Ŝ(1) Ŝ(1)Ŝ(2)

∑
pi=0

∑
pi=0

Ŝ(1) Ŝ(1)Ŝ(2)

Ŝ(2)

(b) Insertion of additional vertices to the diagram from Fig. B.1(a)

Figure B.1. Tree-level diagrams contributing to linear order in δk.

∑
pi=0 Ŝ(2) ∑

pi=0
∑
pi=0 Ŝ(2) Ŝ(2)

Ŝ(2)

Ŝ(2)

Ŝ(2)
∑
pi=0

∑
pi=0

∑
pi=0

Figure B.2. One-loop diagrams contributing to linear order in δk.

at each vertex (cf. Fig. B.1(a)). Diagrams with more than one internal line will only

contribute, when the internal momenta on all lines are constrained to the same value,

so that only one independent shell integration remains. Diagrams of this type can

be obtained in two ways. First, we can insert one or more vertices with two internal

lines into the diagrams from above. If the sum of external momenta vanishes at each

of these vertices, the internal lines are constrained to the same momentum due to

momentum conservation at the vertex (cf. Fig. B.1(b)). Second, we can built up

a one-loop diagram of these vertices with two internal lines containing an arbitrary

number of vertices (cf. Fig. B.2).

In summary all connected diagrams which contain only two types of vertices con-

tribute: the vertex with one internal line, which is due to Ŝ
(1)
k , and the vertex with
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two internal lines carrying the same momentum, due to Ŝ
(2)
k . Restricting the right

hand side of (B.16) to terms linear in δk is therefore equivalent to truncating Ŝ to

Ŝδkk [Φ + ϕ] =

∫
ddp

δS ′
k

δϕ(p)
[Φ]ϕ(p) +

1

2

∫
ddp ϕ(p)

δ2S ′
k

δϕ(p)δϕ(−p) [Φ]ϕ(−p). (B.17)

These diagrammatic considerations only aimed at identifying all those terms in Ŝk

that contribute to (B.10) to at most linear order in δk. We may thus replace Ŝk in

(B.10) by Ŝδkk , and with S = S ′ + S0 the first line of (B.10) reads:

eSk[Φ]−Sk−δk[Φ] =

∫
[Dϕ][k−δk,k] exp

{
−
∫

ddp
δSk[Φ]

δϕ(p)
ϕ(p)

− 1

2

∫
ddp ϕ(p)

δ2Sk[Φ]

δϕ(p)δϕ(−p) ϕ(−p)
}

+O(δk2) . (B.18)

Substituting

ψ(p) = ϕ(p) +

(
δ2Sk[Φ]

δϕ(p)δϕ(−p)

)−1
δSk

δϕ(−p) [Φ], (B.19)

we are left with a Gaussian functional integral, which can be evaluated easily. Taking

the logarithm, we end up with

Sk[Φ]− Sk−δk[Φ] =− 1

2

∫ ′
ddp ln

[
δ2Sk[Φ]

δϕ(p)δϕ(−p)

]

+
1

2

∫ ′
ddp

δSk
δϕ(p)

[Φ]

(
δ2Sk[Φ]

δϕ(p)δϕ(−p)

)−1
δSk

δϕ(−p) [Φ].

(B.20)

In a last step we take the limit of infinitesimal δk, in which we can separate off the

δk-dependence of the shell integration by a transformation to spherical coordinates

∫ ′
ddp =

∫
dΩ

∫ ′
pd−1dp = kd−1δk

∫
dΩ (B.21)

and we thus obtain the Wegner-Houghton equation

∂tSk[Φ] =
kd

2

∫
dΩ

(
δSk[Φ]

δϕ(k)

[
δ2Sk[Φ]

δϕ(k)δϕ(−k)

]−1
δSk[Φ]

δϕ(−k) − ln

[
δ2Sk[Φ]

δϕ(k)δϕ(−k)

])
, (B.22)

where t = ln k. Here, the first term describes the contribution from the tree-level

graphs, while the second term is due to the loop diagrams.
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B The Wegner-Houghton Equation

Despite its similarity to the usual one-loop contribution to the effective action

Γ1-loop[Φ]− S[Φ] =
1

2
Tr
[
ln
(
δ2S[Φ]

)]
=

1

2

∫
ddp ln

(
δ2S[Φ]

)
, (B.23)

it is important to keep in mind, that in the case of the WH equation, we have to

sum up the logarithms of the diagonal elements of δ2S, while in the case of the one-

loop effective action, we have to sum up the diagonal elements of the logarithm of

the operator δ2S. This can be traced back to the fact, that in the Wegner-Houghton

one-loop diagrams all lines are confined to the same momentum, while in a general

one-loop diagram the momenta on the lines are arbitrary.

Let us examine the special case of a constant field Φ. Then the operator δ2S[Φ]

is diagonal in momentum space, since it is a function of derivatives only. Therefore

the operations of taking the logarithm and taking the trace of δ2S[Φ] commute. In

addition, the first term in the WH equation (B.22) vanishes for a constant field Φ, due

to momentum conservation at the vertex with one internal line. Thus, in this special

case, the WH equation for the Wilson effective action Sk,

∂tSk[Φ] = −k
d

2

[∫
dΩp ln(δ2Sk[Φ])

]

|p|=k
, (B.24)

becomes formally equivalent to the new WH-like flow equation, that was derived as

an approximation of the exact FRGE for the EAA in Section 2.3,

∂tΓk =
1

2
Dt STr

∣∣∣∣
k

ln
(
Γ

(2)
k

)
= −k

d

2

[∫
dΩp ln(δ2Γk[Φ])

]

|p|=k
. (B.25)

As the effective action Γ is the generating functional of the 1PI Green’s functions

we expect for any (approximate) flow equation for a running effective action Γk that

its RHS contains only terms corresponding to 1PI graphs, while any Wilsonian flow

equation additionally contains tree graph terms. We conclude that it is only due to the

vanishing contributions of the tree graphs in the WH equation for constant background

fields, that the same flow equation approximates both the Wilsonian and the running

effective action in the subspace spanned by those invariants that are non-vanishing on

this class of backgrounds.
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C Running Gauge Coupling in

Arbitrary Dimensions

This appendix contains supplementary material to Section 3.2 of the main body of

this thesis. We display here the general result for the anomalous dimension ηF of the

gauge coupling gYM in d spacetime dimensions. With all RG improvements included,

it assumes the form:

(4π)d/2ηF = −32πg

[
Aχ d

2
−1(−2λ) + C (2λ)−1

(
χ d

2
(−2λ)− χ d

2
(0)
)]

− g2
YMN

(
26− d

3

)
χ d

2
−2(0)

+ 16πηNg

[
Aχ̃ d

2
−1(−2λ)

+ C
(
(2λ)−1χ̃ d

2
(−2λ)− (2λ)−2

(
χ̃ d

2
+1(−2λ)− χ̃ d

2
+1(0)

))]

+ 16πηFg
[
C
(
−(2λ)−1χ̃ d

2
(0) + (2λ)−2

(
χ̃ d

2
+1(−2λ)− χ̃ d

2
+1(0)

))]

+ ηF g
2
YMN

(
24− d

6

)
χ̃ d

2
−2(0)

− 16π(ηF − ηN )g

[
A ˜̃χ d

2
(−2λ) + C (2λ)−1

(
˜̃χ d

2
+1(−2λ)− ˜̃χ d

2
+1(0)

)]

+ 32πg(2λ+ βλ)

[
A ˜̃χ d

2
−1(−2λ)

+ C
(
(2λ)−1 ˜̃χ d

2
(−2λ)− (2λ)−2

(
˜̃χ d

2
+1(−2λ)− ˜̃χ d

2
+1(0)

))]
.

(C.1)

Eq. (C.1) contains the following functions of d:

A =
d3 − 9d2 + 10d+ 16

4(d− 2)
, C =

2d2 − 5d

d− 2
. (C.2)
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Furthermore we introduced the following new threshold functions:

χn(w) =
1

Γ(n)

∫ ∞

w

dz (z − w)n−1R
(0)(z)− zR(0)′(z)

z +R(0)(z)

χ̃n(w) =
1

Γ(n)

∫ ∞

w

dz (z − w)n−1 R(0)(z)

z +R(0)(z)
(n > 0)

˜̃χn(w) =
1

Γ(n)

∫ ∞

w

dz (z − w)n−1 R(0)′(z)

z +R(0)(z)

(C.3)

and

χn(w) = (−1)−n
d−n

dz−n
R(0)(z)− zR(0) ′(z)

z +R(0)(z)

∣∣∣∣
z=w

χ̃n(w) = (−1)−n
d−n

dz−n
R(0)(z)

z +R(0)(z)

∣∣∣∣
z=w

(n ≤ 0)

˜̃χn(w) = (−1)−n
d−n

dz−n
R(0)′(z)

z +R(0)(z)

∣∣∣∣
z=w

(C.4)

In particular we find the relations

χn(0) = Φ1
n(0), χ̃n(0) = Φ̃1

n(0) and ˜̃χn(0) = ˜̃Φ1
n(0) (C.5)

between the χ- and the Φ-functions, that hold for all n. Moreover, one can check that

the χ-functions satisfy the following differential equation for all n ∈ Z:

χn−1(w) = − d

dw
χn(w) . (C.6)

We can exploit these two facts in order to expand the χ-integrals in their argument w

into an infinite sum of the corresponding Φ-integrals according to

χn(w) =

∞∑

k=0

(−w)k

k!
Φ1
n−k(0), (C.7)

and analogously for χ̃ and ˜̃χ. In practice this expansion corresponds to an expansion

in the cosmological constant λ. It has been performed in the main part of this thesis

in order to derive the various approximations (3.26), (3.33) and (3.34) in d = 4 from

the general result (C.1).
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The 1-loop result for a general spacetime dimension d is obtained from Eq. (C.1)

by omitting from its RHS all terms containing ηF , ηN , or any ˜̃χ integral. The latter

terms arise from the differentiation of Γ̆
(2)
k in the arguments of Rk.

Note, that the result (C.1) differs from the corresponding equation (A.1) in the

previously published study [DHR10]. This is due to an inconsistency in [DHR10] as

the result (A.1) therein actually corresponds to a different choice of Z̆k than given in

(3.11) (or equivalently eq. (4.10) in [DHR10]). If the calculation is carried out with the

choice (3.11), that is consistent with the Zk = ζk-rule, we obtain (C.1) as the result for

an arbitrary spacetime dimension d. Evidently (C.1) amounts to a major simplification

compared to (A.1) in [DHR10]. Note, however, that both results coincide in the most

important case of d = 4, such that the results in the main body of the article are not

affected by this modification.

A second correction compared to [DHR10] should be remarked: In (A.4) of [DHR10]

it was claimed that the expansion of the χ-functions ends after finitely many terms.

This is, however, not true: The correct form of the expansion contains an infinite

number terms as it is given in (C.7). In consequence this leads to the fact that the

eqns. (3.33) and (3.34) correspond to a truncated series expansion in λ and therefore

are only valid up to the neglected higher order terms.
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D Exponential Cutoff

in Tetrad Gravity

In this appendix we want to further explore the cutoff scheme dependence of the

“universal” quantities that were studied in Section 4.3 for the optimized cutoff. We

do this by employing a one parameter family of exponential cutoff functions R(0)(z) =

sz/(esz − 1) for shape parameters s ranging from 2 to 20. The resulting dependence

of g∗λ∗ and the critical exponents on the shape parameter s and the mass parameter

µ is obtained numerically and is depicted in two sets of figures.

The first set of figures, Figs. D.1 to D.3, corresponds to the application of ghost

adaptation scheme (i), with each figure representing a different choice of µ (µ =

0.5, 1, 5 in Figs. D.1, D.2, D.3, respectively). Fig. D.3 where µ is already rather

large can also be seen as representing ghost adaptation scheme (iii). Each of the figures

contains a series of plots ordered from small to large shape parameters employed in

the exponential cutoff function.

In a good approximation of the exact flow we would expect the plots to show only

little ξ-dependence of the universal quantities, resulting in horizontal lines, as well as

only small variations of the same picture for different shape parameters, i. e. almost

equal plots within each of the figures. The dependence on µ, on the other hand, could

be more pronounced, as it should be seen as an additional coupling set to a fixed value.

We see, however, that there is a severe dependence on the parameter ξ in all three

figures; it leads to a change of sign of g∗λ∗, changing critical exponents from complex

to real, and even a change of character of the fixed point from UV attractive to

repulsive. Although we already made similar observations for the optimized cutoff

function (cf. Fig. 4.3), only the exponential cutoff functions reveal the full degree of

scheme dependence in these results: While for the optimized cutoff we were able to

choose a value of µ ≈ 1 such that none of the above problematic changes occurred

in the interval ξ ∈ [0, 1] (cf. Fig. 4.3 b, c), we now find that changing s has an
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effect similar to choosing a different µ. For that reason we find qualitatively the same

plots (Fig. 4.3 a, b, c, d) obtained for the optimized cutoff function and distinguished

choices of µ all within the family of exponential cutoff functions for the same value of

µ = 1 (Fig. D.2 a, c, d, f).

Only for large µ the variation of the plots within Fig. D.3 is relatively weak. But

here we find a large ξ-dependence of the critical exponents leading to a change of

character of the fixed point in all plots, as we already found for the optimized cutoff

in the same limit.

Taken together these observations show, that both adaptation schemes (i) and (iii)

lead to severely scheme dependent results, that make it almost impossible draw any

universally valid conclusion besides the existence of a NGFP.

Let us therefore go on and discuss the second set of figures (Figs. D.4 to D.6). Again

each figure represents a certain choice of the parameter µ and contains a series of plots

showing values of the same quantities obtained for different shape parameters s of the

exponential cutoff function. In this case however, we employed the three variants of

the ghost adaptation scheme (ii) differing by a factor of
√

2, that we already introduced

when we discussed this scheme for the optimized cutoff function in the main part of

this paper (cf. Fig. 4.4).

The first and most prominent observation is that the ξ-dependence in the plots is

considerably weaker for all three variants of scheme (ii) compared to schemes (i) and

(iii). While we still find some dependence on the shape parameter s (in all the three

figures there are real critical exponents for small s turning complex for larger s), except

for the plots D.6(e) and D.6(f), all plots show almost horizontal lines, i. e. virtually

no ξ-dependence of the universal quantities.

Secondly, as for the optimized cutoff, we find the weakest scheme dependence for

the variant of adaptation scheme (ii) with the smallest value of µ (cf. Fig. D.4). This,

however, is probably due to the effective suppression of the physical degrees of freedom

in the limit of small µ, as explained in Section 4.3.2.

For these reasons we conclude that, within the limits of the present truncation, the

most reliable results are from the plots employing adaptation scheme (ii) as shown in

Fig. D.5. They suggest, in accordance with the optimized cutoff result in Fig. 4.4(b),

a UV attractive FP in the λ∗ < 0 region, presumably with real critical exponents.
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Figure D.1. Critical exponents and g∗λ∗ for different shape parameters s depending
on ξ with mass parameter µ = 0.5 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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Figure D.2. Critical exponents and g∗λ∗ for different shape parameters s depending
on ξ with mass parameter µ = 1 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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Figure D.3. Critical exponents and g∗λ∗ for different shape parameters s depending
on ξ with mass parameter µ = 5 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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Figure D.4. Critical exponents and g∗λ∗ for different shape parameters s depending on
ξ with an adapted mass parameter µ = (ξ/4)1/4/

√
2 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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Figure D.5. Critical exponents and g∗λ∗ for different shape parameters s depending
on ξ with an adapted mass parameter µ = (ξ/4)1/4 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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Figure D.6. Critical exponents and g∗λ∗ for different shape parameters s depending on
ξ with an adapted mass parameter µ =

√
2 · (ξ/4)1/4 (θ′ solid, θ′′ dashed, g∗λ∗ dotted).
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E RHS of the QECG Flow

Equation prior to Projection

In this appendix we display the RHS of the WH-like flow equation (5.69) applied to

the Holst truncation (5.15), that is studied in Chapter 5.

Expanding the RHS of the flow equation, evaluated for a constant background field

configuration, {ē, ω̄}, in terms of ω̄ up to second order we find

∂tΓk

∣∣∣∣
ω̄,ē=
const

=− p4

32π2

(
ln

(1− γ2)24(1− λ)12

γ48g68
− lnM160µ32N ′

)∫
d4x ē

− p2

1536π2

1

(1− λ)2

[((
70− 438λ+ 373λ2

)
− 20

γ2

)∫
d4x ē ω̄pq

pω̄r
qr

+

((
106− 174λ+ 43λ2

)
− 20

γ2

)∫
d4x ē ω̄pqrω̄

pqr

+

((
178− 186λ+ 43λ2

)
− 20

γ2

)∫
d4x ē ω̄pqrω̄

prq

]

− p2

128π2

23− 33λ

(1− λ)2

1

γ

∫
d4x ē εpqrsω̄t

ptω̄qrs

− 5 p2

256π2

11− 15λ

(1− λ)2

1

γ

∫
d4x ē εpqrsω̄t

pqω̄rts

+O(ω̄3),

(E.1)

where N ′ is a pure number with lnN ′ ≈ 241.42.

Here we have specialized the result for the choice of gauge parameters (αD, α
′
L, βD) =

(0, 0, 0), which considerably simplifies the result. The analogous expression for general

gauge parameters fills many pages, due to its complicated polynomial structure in λ

and the gauge parameters.

At this level, the result does not show any ambiguity. However, in order to identify

the coefficient functions rhsF and rhsF∗ as defined in Chapter 5.2.5, we have to define
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E RHS of the QECG Flow Equation prior to Projection

a projection scheme onto the invariants of the Holst truncation. This can be done

by specifying a basis in the space of ω̄2-monomials. Depending on the choice of basis

we are led to different explicit expressions of the functions rhsF and rhsF∗; an effect

which we refer to as a projection ambiguity. The explicit expressions for rhsF and

rhsF∗ projected using the four bases Bi (i = 1, · · ·, 4) which are given in Chapter 5.4

in fact all have been derived from (E.1).
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F Classical Aspects of Torsion

In this appendix we discuss several classical aspects of spacetimes exhibiting torsion.

In a first section we introduce the torsion tensor and its decomposition into irreducible

components. Then we investigate the subspace of theory space spanned by torsion

squared monomials and introduce different bases monomials in this space. The third

section contains the Holst action rewritten in several equivalent forms, depending on

the metric and various choices of torsion field variables. In the last section we derive

the classical field equations of the spin connection and the tetrad in chiral gravity.

F.1 Preliminaries

Identities of the Levi-Civita symbol. The Levi-Civita symbol εabcd denotes the

unique totally antisymmetric O(4)-tensor with ε0123 = 1 ⇒ ε0123 = 1 that is defined

in every local frame eaµ(x). The above implication, however, does only hold for a

spacetime of Euclidean signature; in the Lorentzian case we pick up a minus sign here.

For that reason the following identities only hold for a Euclidean spacetime, but differ

from their Lorentzian counterparts only by corresponding minus signs.

Due to its antisymmetry one immediately infers the property

εabcdεstuv = δ[a
s δ

b
tδ
c
uδ

d]
v (F.1)

of the product of two ε-tensors. From that one can deduce by contraction of index

pairs the following identities

εabcdεstud = δ[a
s δ

b
t δ
c]
u ,

εabcdεstcd = 2δ[a
s δ

b]
t ,

εabcdεsbcd = 6δas ,

εabcdεabcd = 24 .

(F.2)
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F Classical Aspects of Torsion

Note that throughout this work the (anti-)symmetrization brackets do not contain a

weighting factor in our conventions, i. e. symbolically we have [ab] = ab − ba and

(ab) = ab+ ba (cf. Appendix A).

Another algebraic identity for the Levi-Civita symbol can be derived from the prod-

uct of three ε-symbols, using the above identities:

−δ[e
s δ

f
t δ

g]
u ε

a
ghi = εabcdε

def
gε
g
hia = −εabcdδ[d

h δ
e
i δ
f ]
a (F.3)

⇔ ε
[f
bc[hδ

e]
i] = −ε[f

hi[bδ
e]
c] . (F.4)

Using the Levi-Civita symbol we can express the determinant of the inverse vielbein

by

e−1 = e 0
a e

1
b e

2
c e

3
d ε

abcd . (F.5)

Multiplying this equation by the vielbein determinant motivates the definition of the

ε-tensor density on the spacetime by

εµνρσ = e e µ
a e

ν
b e

ρ
c e

σ
d ε

abcd . (F.6)

It obviously inherits the total antisymmetry from the Levi-Civita tensor and satisfies

ε0123 = 1 as well, but it transforms as a tensor density under diffeomorphisms of

spacetime.

The ε-tensor density satisfies the identities (F.2) with a factor of e2 on the right

hand side as well as (F.4), both with the (flat) O(4)-indices substituted by (curved)

spacetime ones.

We often apply the identities (F.2) and (F.4) in this appendix but also throughout

the main body of this thesis.

Torsion and contorsion. The torsion tensor on an affinely connected spacetime is

defined as the vector valued two-form

T (X, Y ) = DXY −DYX − [X, Y ], (F.7)

where the brackets denote the Lie-bracket of vector fields. In components we thus find

T λµν = Γλ[µν] ⇒ Γλµν =
1

2

(
Γλ(µν) + T λµν

)
. (F.8)
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F.1 Preliminaries

Using the Ricci condition (metricity of the connection) and (F.7) one can derive a

generalized Koszul formula, that results in an equation relating the general connection

and the Levi-Civita connection according to

Γλµν =
(
ΓLC

)λ
µν

+
1

2

(
T λµν − T λ

µν + T λ
ν µ

)
≡
(
ΓLC

)λ
µν

+Kλ
µν . (F.9)

Here, we have defined the contorsion tensor Kλ
µν as the difference between the Levi-

Civita connection ΓLC and the metric-compatible connection Γ exhibiting torsion T .

In comparison to (F.8) we note that the symmetric part of Γλ(µν) does not coincide

with
(
ΓLC

)λ
µν

.

If we consider the vielbein eaµ and the spin connection ωabµ as fundamental variables,

it is obvious that the Levi-Civita connection, being a function of the metric, can be

expressed purely in terms of the vielbein, such that only the contorsion part of the

connection depends on ωabµ:

Γ(e, ω)λµν = e λ
a

(
∂µe

a
ν + ωacµe

c
ν

)
=
(
ΓLC(e)

)λ
µν

+K(e, ω)λµν . (F.10)

If one calculates the Riemann curvature tensor from the above connection Γ(e, ω), one

finds that it is related to the field strength tensor F in the following way:

F ab
µν = eaρe

bσR(e, ω) ρ
µν σ (F.11)

Moreover, the Riemann tensor can be decomposed into the curvature tensor of the

Levi-Civita connection and contorsion terms

R(e, ω) ρ
µν σ =

(
RLC

) ρ

µν σ
+DLC

[µ K
ρ
ν]σ +Kρ

[µ|τK
τ
ν]σ . (F.12)

Irreducible decomposition of the torsion tensor. In order to identify the in-

dependent invariants quadratic in the torsion tensor, we will decompose the torsion

tensor into its irreducible components. The resulting orthogonal decomposition reads

[BH11, Sha02]

T λµν =
1

3

(
δλνTµ − δλµTν

)
+

1

6e
ελµνσS

σ + qλµν (F.13)

with qλµλ = 0, εµνρσqνρσ = 0, and qλµν = −qλνµ. Here, Tµ = T λµλ is the trace of the

torsion tensor and Sµ = 1
e
ε ρσµ
ν T νρσ is its totally antisymmetric part. The vielbein
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F Classical Aspects of Torsion

determinant e in the decomposition ensures that all torsion components defined here

transform as tensors under spacetime diffeomorphisms.

Let us further investigate the symmetry properties of q. First, we note that all

contractions of two of its indices vanish due to qλµλ = 0 and its antisymmetry in the

last two indices. Second, as its totally antisymmetric part vanishes, εµνρσqνρσ = 0 ⇔
q[νρσ] = 0, we obtain with the antisymmetry in the last two indices

0 = q[µνρ] = q[µν]ρ − q[µ|ρ|ν] − qρ[νµ] = 2
(
q[µν]ρ + qρµν

)
⇔ q[µν]ρ = −qρµν . (F.14)

Now it is easy to classify all independent invariants quadratic in these irreducible

torsion components.

For the parity-even invariants we are left with three possible independent combina-

tions: As Sµ is a pseudo-vector and T µ as well as qµνρ are (true) tensors that can only

couple to itself to form a scalar. If we contract T µ with qµνρ the other two indices of q

have to be contracted and thus the combination vanishes. In principle, we could also

combine S and q using an additional ε-density, but these combinations vanish as q has

no totally antisymmetric part. Hence, we are left with the three parity-even invariants

I1 = T µTµ, I2 = SµSµ, I3 = qµνρqµνρ . (F.15)

At first sight one could wonder whether there are additional independent q2-contrac-

tions. This is, however, not the case: In total we start with 6 contractions that

correspond to the 6 permutations of the indices of the second q-factor. The terms

with odd permutations are related to the remaining cyclic permutations by the an-

tisymmetry of q in the last two indices. For the cyclic permutations we find with

(F.14)

qµνρq
νρµ =

1

2
qµνρq

[νρ]µ = −1

2
qµνρq

µνρ, qµνρq
ρµν =

1

2
q[µν]ρq

ρµν = −1

2
qρµνq

ρµν ,

(F.16)

such that only I3 remains independent.

For the parity-odd combinations there are only two independent invariants, namely

I4 = SµT
µ, I5 =

1

e
εαβγδ q

αβµ qγδµ . (F.17)
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F.2 Invariants quadratic in the torsion tensor

The two other εq2 combinations one might think of as independent, namely those

where either both first indices of the q tensors are contracted or the first index of the

first q factor is contracted with the last index of the second factor, are related to I5

according to

1

e
εαβγδ q

µαβ q γδ
µ = 4I5,

1

e
εαβγδ q

µαβ qγδµ = −2I5 . (F.18)

These relations can be shown using the identity (F.4) of the ε-symbol.

F.2 Invariants quadratic in the torsion tensor

In this section we discuss all possible field monomials quadratic in the torsion tensor

and give their decomposition in the irreducible components introduced above as well

as the expressions in terms of the spin connection that remain when the monomials

are evaluated for constant background fields {ē, ω̄}.

Parity-even monomials. There are three different contractions of the torsion ten-

sor with itself that are not related to each other by its symmetries. As we know already

that the space of parity-even monomials is three dimensional and spanned by I{1,2,3}

we can conclude that they correspond to a different basis of this space. In detail we

find that the two bases are related by

T
2(+)
1 = T µνρTµνρ =

2

3
I1 +

1

6
I2 + I3 =̂ 2 ω̄abcω̄abc − 2 ω̄abcω̄acb

T
2(+)
2 = T µνρTνµρ =

1

3
I1 −

1

6
I2 +

1

2
I3 =̂− ω̄abcω̄abc + 3 ω̄abcω̄acb

T
2(+)
3 = T µνµT

ρ
νρ = I1 =̂ ω̄abaω̄

c
bc .

(F.19)

On the right hand side we have evaluated the monomials on constant background

fields {ē, ω̄}. In addition we have incorporated the vielbein into the spin connection,

changing its index structure. The explicit vielbein expressions can be reconstructed

uniquely.
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F Classical Aspects of Torsion

Parity-odd monomials. In the parity-odd sector we find four torsion squared

monomials contracted with the ε-symbol. Those four expressions are not linearly

independent from each other, as the corresponding subspace of theory space is two di-

mensional (spanned by I4 and I5); while in the decomposed setting the linear relation

between the four monomials becomes obvious, it can also be shown for the undecom-

posed torsion tensor using the identity (F.4). In the irreducible component basis the

parity-odd torsion squared monomials read

T
2(−)
1 = e−1εµνρσT τµνTτρσ = −4

3
I4 + 4I5 =̂ 4 εpqrs ω̄

pq
t ω̄trs

T
2(−)
2 = e−1ερ στν T µµρT

ν
στ = I4 =̂− 2 εpqrs ω̄

pt
t ω̄qrs

T
2(−)
3 = e−1εµν σ

ρ T τµνT
ρ
τσ =

1

3
I4 + 2I5 =̂− 2 εpqrs ω̄

pt
t ω̄qrs + 2 εpqrs ω̄

pq
t ω̄trs

T
2(−)
4 = e−1ε ρσ

µν T µτρT
ντ
σ = −2

3
I4 − I5 =̂ 2 εpqrs ω̄

pt
t ω̄qrs − εpqrs ω̄

pq
t ω̄trs.

(F.20)

As for the torsion tensor there exist four contractions of the spin connection, that are

related via (F.4); in the above we have used in particular

εpqrsω̄
pqtω̄rs t = −4 εpqrsω̄

pt
t ω̄qrs + 4 εpqrsω̄

pq
t ω̄trs

εpqrsω̄
pqtω̄ rs

t = εpqrsω̄
pt
t ω̄qrs − 2 εpqrsω̄

pq
t ω̄trs

(F.21)

in order to reexpress the right hand side of (F.20) in terms of the other two independent

contractions only.

Modifications in the (anti-)selfdual case. If we consider a torsion tensor that

is constructed from an (anti-)selfdual spin connection ω(±) we could expect that there

are less independent quadratic torsion invariants, as the spin connection has only half

the number of independent components. However, this does not seem to be the case

as the following consideration shows.

A selfdual spin connection, ω(+), can be represented as the sum of the selfdual part

of the spin connection that corresponds to the Levi-Civita connection, ω
(+)
LC , and a

selfdual remainder Λ(+). In a second step we substitute ω
(+)
LC = ωLC − ω(−)

LC such that

we arrive at

ω(±) = ω
(±)
LC + Λ(±) = ωLC − ω(∓)

LC + Λ(±) . (F.22)
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F.2 Invariants quadratic in the torsion tensor

The connection constructed from this selfdual spin connection can, hence, be written

as

Γλµν = ea
λ (±)∇µe

a
ν = ea

λ LC∇µe
a
ν + ea

λ
(
−
(
ω

(∓)
LC

)a
bµ +

(
Λ(±)

)a
bµ

)
ebν

=
(
ΓLC

)λ
µν

+ Kλ
µν ,

(F.23)

such that the resulting torsion tensor reads

T λµν = Γλ[µν] = Kλ
[µν] = ea

λ
(
−
(
ω

(∓)
LC

)a
b[µ +

(
Λ(±)

)a
b[µ

)
ebν] . (F.24)

We observe that this torsion tensor is constructed from a contorsion K that always

contains both, a self-dual and an anti-selfdual component. In this respect the torsion

tensor of a selfdual spin connection is completely generic; in particular we therefore

cannot simplify any contraction of the torsion tensor with the ε-symbol, which would

give rise to relations between the parity-even and -odd invariants from above in the

chiral case.

The only fact that is special in the case of a selfdual spin connection, is that the

anti-selfdual part of the contorsion is given by the anti-selfdual projection of the Levi-

Civita connection, and is thus fixed by the vielbein e. Only if it is possible to make use

of this fact in an explicit calculation of the above invariants I1, · · · , I5 a reduction of

the number of independent torsion squared monomials in the chiral case would arise.

We do not want to discuss this possibility in more detail as the more important

question for our concrete RG study is which invariants we can distinguish when they

are evaluated on the background spacetime chosen. As we used the WH-like flow equa-

tion for our RG study of chiral gravity that requires us to employ constant background

fields {ē, ω̄(±)}, we can directly infer that the Levi-Civita connection vanishes for any

constant choice of background fields: ΓLC = 0 = ωLC. Hence, in this case we have

Λ(±) = ω̄(±) and the contorsion tensor only contains one spin connection of definite

chirality. Therefore we can now use the selfduality of ω̄(±) to simplify the contraction

of the torsion tensor with the ε-symbol and find that the components T̄
(±)
µ and S̄

(±)
µ

of the torsion tensor (evaluated on constant background fields) become proportional

to each other

S̄(±)
µ =

1

e
ελ
ρσ
µ(T̄

(±))λρσ = ∓4ēνaēbµ(ω̄
(±))abν = ±4(T̄ (±))νµν = ±4T̄ (±)

µ . (F.25)
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From that we conclude that the invariants I1, I2 and I4 from above are related to

each other when evaluated on the constant background field configuration {ē, ω̄(±)}
according to

Ī
(±)
1 =

1

16
Ī

(±)
2 = ±1

4
Ī

(±)
4 = (ω̄(±))aba(ω̄

(±))cbc . (F.26)

Similarly also the invariants I3 and I5 are related by

Ī
(±)
3 = ±2Ī

(±)
5 =

2

3

(
(ω̄(±))aba(ω̄

(±))cbc + 3(ω̄(±))abc(ω̄(±))acb

)
. (F.27)

This can be seen by direct computation of the invariants on the background field

configuration using the following identities in order to express all possible contractions

of the (anti-)selfdual spin connection in terms of the two used above:

εpqrs(ω̄
(±))tpt(ω̄

(±))qrs = ∓2(ω̄(±))tpt(ω̄
(±))sps

εpqrs(ω̄
(±))pqt(ω̄(±))rst = ±4

(
(ω̄(±))tpt(ω̄

(±))sps + (ω̄(±))pqr(ω̄(±))prq

)

εpqrs(ω̄
(±))tpq(ω̄(±))rst = ∓2(ω̄(±))pqr(ω̄(±))prq

εpqrs(ω̄
(±))t

pq(ω̄(±))trs = ∓
(
(ω̄(±))tpt(ω̄

(±))sps − (ω̄(±))pqr(ω̄(±))prq

)

(ω̄(±))pqr(ω̄(±))pqr = 2(ω̄(±))pqp(ω̄
(±))rqr + 2(ω̄(±))pqr(ω̄(±))prq

(F.28)

We conclude that in the case of chiral gravity by employing constant background

fields all torsion squared monomials are projected onto two-dimensional space spanned

by the monomials Ī
(±)
1 and Ī

(±)
3 .

F.3 Holst action in metric and torsion variables

In this section starting from the Holst action with the tetrad and the spin connection

as field variables we deduce several equivalent actions that depend on the metric and

one independent field, that is either a general connection Γ (allowing for torsion but

satisfying the metricity condition), the contorsion K, the torsion T or its irreducible

components T, S, q.
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F.3 Holst action in metric and torsion variables

The Holst action in terms of tetrads and the spin connection is given by

SHo = − 1

16πG

∫
d4x e

[
e µ
a e

ν
b

(
F (e, ω)abµν −

1

2γ
εabcdF (e, ω)cdµν

)
− 2Λ

]
. (F.29)

Using (F.11) we can reexpress the field strength F (e, ω) by a Riemann tensor R(Γ),

with a connection Γ exhibiting torsion, according to

= − 1

16πG

∫
d4x
√
g

[
R(Γ)− 1

2γ
√
g
εµνρ

σR(Γ)µν
ρ
σ − 2Λ

]
. (F.30)

In a next step the Riemann tensor R(Γ) is written in terms of its Levi-Civita counter-

part RLC and contorsion terms as given in (F.12) resulting in

= − 1

16πG

∫
d4x
√
g

[
RLC +DLC

[ρ K
ρ
ν]
ν +Kρ

[ρ|τK
τ
ν]
ν

− 1

γ

εµνρ
σ

√
g

(DLC
µ Kρ

νσ +Kρ
µτK

τ
νσ)− 2Λ

]
. (F.31)

Now we can switch from the contorsion variable K to the torsion tensor T using (F.9)

= − 1

16πG

∫
d4x
√
g

[
RLC+2DLC

ρ T νρν+
1

4
TµνρT

µνρ+
1

2
TµνρT

νµρ−T µνµT ρνρ

− 1

γ

εµνρσ√
g

(
− 1

2
DLC
µ Tνρσ + T τ µνTτρσ

)
− 2Λ

]
. (F.32)

In a last step we decompose the torsion tensor into its irreducible components (F.13)

and obtain

= − 1

16πG

∫
d4x
√
g

[
RLC + 2DLC

µ T µ − 2

3
TµT

µ − 1

24
SµS

µ +
1

2
qµνρq

µνρ

− 1

γ

(
1

2
DLC
µ Sµ − 1

3
TµS

µ +
εµνρσ√
g
qµν

τqρστ

)
− 2Λ

]
. (F.33)
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F.4 Field equations of chiral gravity

In this section we derive the equations of motion for the tetrad and the chiral spin

connection the Holst action gives rise to in case of γ = ∓1 in order to show that they

comprise Einstein’s equation. A similar consideration applies to the case γ 6= ∓1,

which was carried out in detail in [Dau]. Our presentation here follows the reasoning

of [Giu94], where the same has been shown, the only difference being, that we adapt the

notation to our conventions and work throughout with explicit component expressions.

Starting from the chiral Holst action (γ = ∓1)

S±[eaµ, ω
(±)ab

µ] = − 1

8πG

∫
d4x e

(
ea
µeb

νF (±) ab
µν − Λ

)

= − 1

8πG

∫
d4x
(
± 2 ecρe

d
σε

µνρσP±
cdabF

(±) ab
µν − eΛ

) (F.34)

we obtain the equations of motion for the chiral spin connection, using δω(±)F (±) ab
µν =

∇±
[µτ

ab
µ] and partial integration, which read

δω(±)S(±)[eaµ, ω
(±) ab

µ] = 0 ⇔ εµνρσP±ab
cd∇±

ν

(
ecρe

d
σ

)
= 0 , (F.35)

where ∇±
µ denotes the SO(3)±-covariant derivative constructed from the chiral spin

connection ω(±). In the following we will show that (F.35) has a solution, ω(±)(e), that

turns out to be the chiral projection of the spin connection ω(e) which corresponds

to the Levi-Civita spacetime connection ΓLC, i. e. ω(±)(e) = P±ω(e), if the vielbein is

invertible.

In order to prove this assertion we decompose ω(±) in (F.35) without loss of gener-

ality according to

ω(±) = ω(±)(e) + Λ(±) = ω(e)− ω(∓)(e) + Λ(±) , (F.36)

where Λ(±) is a tensor with the same index structure as ω, which is antisymmetric

and of the respective chirality in its first two indices, but arbitrary apart from that.

Eventually we will show that (F.35) implies Λ(±) = 0.
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F.4 Field equations of chiral gravity

Substituting (F.36) into (F.35) yields

εµνρσP±ab
cd

(
LC∇ν(e

c
ρe
d
σ) + (Λ(±) c

eν − ω(∓)(e)ceν)e
e
ρe
d
σ+

+ (Λ(±) d
eν − ω(∓)(e)deν)e

c
ρe
e
σ

)
= 0 . (F.37)

The first term on the LHS vanishes due to the metricity condition and the symmetry

of the Levi-Civita connection, as we can write

εµνρσLC∇ν(e
c
ρe
d
σ)

= εµνρσ
(

LCDν(ecρedσ)︸ ︷︷ ︸
=0

+
(
ΓLC

)τ
νρ
ecτe

d
σ +

(
ΓLC

)τ
νσ
ecρe

d
τ

)
= 0 . (F.38)

The rest of equation (F.37) can be cast in the form

1

2
εµνρσP

±ab[c
[dδ

f ]
e]

(
Λ(±)

cfν − ω(∓)(e)cfν
)
eeρe

d
σ = 0 . (F.39)

Now we can apply a property of the projector P±, that is directly inferred from the

analog identity (F.4) of the ε-tensor,

P
±ab[c

[dδ
f ]
e] = −P± cf [a

[dδ
b]
e] , (F.40)

such that (F.39) now reads

−1

2
εµνρσδ

[b
[e

[(
P±Λ(±)
︸ ︷︷ ︸

=Λ(±)

)a]
d]ν
−
(
P±ω(∓)(e)︸ ︷︷ ︸

=0

)a]
d]ν

]
eeρe

d
σ = 0 . (F.41)

Hence, we are left with a condition for the tensor Λ(±), that, by contraction with

another ε-tensor density, can be brought to the form

Λ(±) [a
d[νe

b]
ρe
d
σ] = 0 . (F.42)

From (F.42) we derive two further conditions for Λ(±) by contraction with the inverse

vielbein. If we first contract with eb
ρ we find

Λ(±) a
d[νe

d
σ] − eaσebρΛ(±) b

d[ρe
d
ν] − eaνebρΛ(±) b

d[σe
d
ρ] = 0 . (F.43)
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A further contraction with ea
σ yields

eb
ρΛ(±) b

d[ρe
d
ν] = 0 . (F.44)

Finally, we insert (F.44) back into (F.43), and obtain

Λ(±)
ad[νe

d
σ] = 0 ⇔ Λ(±)

adν = eeνΛ
(±)

aeµed
µ (F.45)

Hence we have shown that Λ(±) satisfies a second symmetry condition (apart from

being anti-symmetric in its first two indices), that concerns its last two indices. Now,

by successively switching the last and the first two indices for three times, we find

Λ(±)
adν = ed

σΛ(±)
aeσe

e
ν = −edσΛ(±)

eaσe
e
ν

= −edσeaτΛ(±)
efτe

f
σe
e
ν = ea

τΛ(±)
deτe

e
ν

= ea
τee

αΛ(±)
dgαe

g
τe
e
ν = −Λ(±)

adν .

(F.46)

and therefore

Λ(±)
adν = 0 . (F.47)

Thus, it is proven that ω(±)(e) = P±ω(e) solves the equations of motion of the spin

connection δω(±)S± = 0.

As a second step we want to substitute this solution into the action and hence

compute S±[ω(±)(e), e]. To this end we first compute the contorsion K(±) the solution

ω(±)(e) gives rise to. We have

Γ(±)(e)λµν = ea
λ
(
∂µe

a
ν + ω(±)(e)abµe

b
ν

)

= ea
λ
(
∂µe

a
ν + ω(e)abµe

b
ν − ω(∓)(e)abµe

b
ν

)

= ΓLC
λ
µν − eaλω(∓)(e)abµe

b
ν .

(F.48)

From the last line we can simply read off the contorsion as

K(±)(e)λµν = −eaλω(∓)(e)abµe
b
ν . (F.49)
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Substituting this contorsion into the chiral Holst action expressed in vielbein and

contorsion variable (cf. (F.31)) we find

S±[e, ω(±)(e)] = − 1

16πG

∫
d4x e

[
RLC +DLC

[ρ K
(±)ρ

ν]
ν +K(±)ρ

[ρ|τK
(±)τ

ν]
ν

± εµνρ
σ

e
(DLC

µ K(±)ρ

νσ +K(±)ρ

µτK
(±)τ

νσ)− 2Λ

]

= − 1

16πG

∫
d4x e

[
RLC − 2Λ

]
,

(F.50)

as it is easy to show that the contorsion terms cancel due to their chirality property.

Since we are left with the well-known Einstein-Hilbert action expressed in terms of

the vielbein it is now obvious that the field equation for the vielbein resulting from

this action is Einstein’s equation.

Finally, we want to mention that, in principle, we should first vary w. r. t. eaµ and

then substitute the solution into the field equation of the spin connection in order to

obtain the correct tetrad field equation. Obviously substitution and variation generally

do not commute at this point. However, at a stationary point δω(±)S± = 0 of the action

they do:

δeS
±[e, ω±(e)] = 0

⇔ δS±

δω(±)

∣∣∣∣∣
ω(±)=ω(±)(e)︸ ︷︷ ︸
=0

δω(±)

δe
+
δS±

δe
[ω(±), e]

∣∣∣∣∣
ω(±)=ω(±)(e)

= 0 (F.51)

⇔ δeS
±[ω(±), e]

∣∣∣∣∣
ω(±)=ω(±)(e)

= 0

Thus we have shown that the action S±[e, ω±] gives rise to the Einstein equation,

when varied w. r. t. eaµ, if we substitute for ω(±) the solution to its field equation,

ω(±)(e), before or after the variation.

It is interesting to note that the way classical metric gravity is contained in chiral

gravity is different to the cases of all other values of the Immirzi parameter. For γ 6= ±1

the analog solution to the field equations of the spin connection ω(e) corresponds to the

torsionless Levi-Civita connection. Hence, the manifold defined by eaµ and equipped

with the spin connection ω(e)abµ is itself a Riemann spacetime (T λµν = 0) that could be

described by the metric g(e) alone. In chiral gravity, however, the spacetime specified
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by (e, ω(±)(e)) exhibits torsion, and thus cannot be described equivalently as a solution

of Einsteins equation in metric gravity. Nevertheless, as we have seen above, the action

principle leads to Einsteins equation for the vielbein eaµ on this spacetime, and we can

reconstruct the corresponding spacetime of classical metric gravity using its solution

eaµ together with the unique Levi-Civita connection ΓLC(e) this vielbein gives rise to.
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Parts of the results of Chapter 3, and especially the generalization of the ghost action to

gauge groups of semi-direct product type as presented in Chapter 2, have already been

published in [DHR10], while most of the results presented in Chapter 3 and 4 appeared

already in [DHR10, DHR11, HR11] and [HR12], respectively. Chapter 5 contains as

yet unpublished material.
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