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Computer simulation studies of two-dimensional colloi-
dal crystals under confinement and shear
In this thesis we are presenting a broadly based computer simulation study of two-dimensional
colloidal crystals under different external conditions. In order to fully understand the phenom-
ena which occur when the system is being compressed or when the walls are being sheared,
it proved necessary to study also the basic motion of the particles and the diffusion processes
which occur in the case without these external forces.

In the first part of this thesis we investigate the structural transition in the number of rows
which occurs when the crystal is being compressed by placing the structured walls closer
together. Previous attempts to locate this transition were impeded by huge hysteresis ef-
fects. We were able to determine the transition point with higher precision by applying both
the Schmid-Schilling thermodynamic integration method and the phase switch Monte Carlo
method in order to determine the free energies. These simulations showed not only that the
phase switch method can successfully be applied to systems with a few thousand particles and
a soft crystalline structure with a superimposed pattern of defects, but also that this method is
way more efficient than a thermodynamic integration when free energy differences are to be
calculated. Additionally, the phase switch method enabled us to distinguish between several
energetically very similar structures and to determine which one of them was actually stable.
Another aspect considered in the first result chapter of this thesis is the ensemble inequiva-
lence which can be observed when the structural transition is studied in the NpT and in the
NVT ensemble.

The second part of this work deals with the basic motion occurring in colloidal crystals
confined by structured walls. Several cases are compared where the walls are placed in differ-
ent positions, thereby introducing an incommensurability into the crystalline structure. Also
the movement of the solitons, which are created in the course of the structural transition,
is investigated. Furthermore, we will present results showing that not only the well-known
mechanism of vacancies and interstitial particles leads to diffusion in our model system, but
that also cooperative ring rotation phenomena occur. In this part and the following we applied
Langevin dynamics simulations.

In the last chapter of this work we will present results on the effect of shear on the colloidal
crystal. The shear was implemented by moving the walls with constant velocity. We have
observed shear banding and, depending on the shear velocity, that the inner part of the crystal
breaks into several domains with different orientations. At very high shear velocities holes
are created in the structure, which originate close to the walls, but also diffuse into the inner
part of the crystal.
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Computersimulationen eines zweidimensionalen Kolloid-
kristalls in beschränkter Geometrie und unter Scherung
In dieser Dissertation stellen wir die Ergebnisse von Computersimulationen zweidimensio-
naler Kolloidkristalle unter verschiedenen äusseren Bedingungen vor. Um die Phänomene
voll und ganz zu verstehen, die auftreten, wenn dieses System komprimiert wird oder wenn
die implementierten Wände geschert werden, ist es notwendig, zunächst die Teilchenbewe-
gungen und Diffusionsprozesse zu untersuchen, die im Fall ohne solche äusseren Einflüsse
auftreten.

Im ersten Teil dieser Doktorarbeit untersuchen wir den strukturellen Übergang in der
Anzahl der Kristallreihen, der auftritt, wenn man den Kristall komprimiert, indem man die
strukturierten Wände näher zusammen rückt. In früheren Untersuchungen an diesem Modell-
system konnte der Übergangspunkt aufgrund von ausgeprägten Hystereseeffekten nicht genau
bestimmt werden. Uns war es möglich, ihn exakt zu bestimmen, indem wir sowohl die
Schmid-Schilling-Methode der thermodynamischen Integration als auch die Phase-Switch-
Monte-Carlo-Methode angewendet und mit ihnen die freien Energien bestimmt haben. Un-
sere Simulationen haben nicht nur gezeigt, dass die Phase-Switch-Methode erfolgreich auf
Systeme aus mehreren tausend Teilchen mit einer weichen Kristallstruktur und einem damit
überlagerten Defektmuster angewendet werden kann, sondern auch, dass diese Methode deut-
lich effizienter ist als eine thermodynamische Integration, wenn Differenzen in der freien
Energie bestimmt werden sollen. Darüberhinaus kann man mit Hilfe der Phase-Switch-
Methode mehrere energetisch nah beieinander liegende Strukturen unterscheiden und bes-
timmen, welche von ihnen stabil ist. Ein anderer Aspekt, der im ersten Ergebniskapitel dieser
Dissertation behandelt wird, ist die Nicht-Gleichwertigkeit verschiedener Ensembles, die bei
diesem strukturellen Übergang beobachtet werden kann.

Der zweite Teil dieser Arbeit beschäftigt sich mit den grundlegenden Teilchenbewegun-
gen in Kolloidkristallen, die von strukturierten Wänden begrenzt werden. Mehrere Fälle wer-
den verglichen, bei denen die Wände in verschiedenen Abständen voneinander eingesetzt sind
und dadurch teilweise die Kristallstruktur komprimieren. Auch die Bewegung der Solitonen,
die im Zuge des strukturellen Übergangs entstehen, wird untersucht. Darüberhinaus präsen-
tieren wir Ergebnisse, die beweisen, dass nicht nur der bekannte Mechanismus, der auf dem
Auftreten von Löchern und Teilchen an Zwischengitterplätzen beruht, zur Diffusion in un-
serem Modellsystem beiträgt, sondern dass auch kooperative Rotationsphänomene auftreten.
In diesem und dem nachfolgenden Teil der Arbeit wurden Langevindynamiksimulationen
durchgeführt.

Im letzten Teil dieser Arbeit untersuchen wir den Einfluss von Scherung auf Kolloid-
kristalle. Die Scherung wurde implementiert, indem die strukturierten Wände mit konstan-
ter Geschwindigkeit bewegt wurden. Dies führt zum Auftreten von Scherungsbändern und,
in Abhängigkeit von der Schergeschwindigkeit, dazu, dass der innere Teil des Kristalls in
mehrere Domänen unterschiedlicher Ausrichtung zerbricht. Bei sehr hohen Schergeschwindig-
keiten treten Löcher in der Struktur auf, die sich an den Wänden bilden und ins Innere des
Kristalls diffundieren.
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Introduction

In this thesis we are going to present results of computer simulation studies of a col-
loidal crystal. Colloids are omnipresent as the word “colloid” refers to any dispersion
of small particles in a solvent. Typically, these small particles are of a size between
several nanometres and several micrometers, while the solvent particles are signifi-
cantly smaller. Well-known examples of colloidal dispersions include milk, ketchup
and blood, where the solvent is in a liquid state. But in addition, dispersions of solid
particles or liquid drops in a gas (like hairsprays) and dispersions of a liquid within a
solid (gels) can also be referred to as colloids.

Colloidal crystals are usually composed of solid particles in a liquid solution.
These solid particles form a crystalline lattice with long-ranged order analogous to
atoms or molecules in regular crystals. A prominent example of such a solid is the
gem opal which forms in highly siliceous pools by sedimentation of silicon dioxide
SiO2 and under the influence of hydrostatic pressure. But also electrically charged
macromolecules in water suspensions can form colloidal crystals due to their repul-
sive interaction. In experiments, however, usually monodisperse spherical (or differ-
ently shaped) particles are used which are tailored to the needs of the planned inves-
tigation. These particles can, for example, contain iron-oxide which leads to a mag-
netic repulsion between these particles once an external magnetic field is switched
on. These repulsive particles can then form a colloidal crystal.

“Real” colloidal crystals (as opposed to the idealized ones used in computer sim-
ulations) are interesting as they often form areas of interstitials between purely crys-
talline areas which leads to periodically repeating areas of high and low dielectric
constant, thus forming a photonic crystal. This repetition of different areas allows
only certain wavelengths of electromagnetic waves to propagate through them, while
other wavelengths are reflected as they cannot enter the crystal. These “forbidden”
wavelengths are termed “photonic band gap” by analogy with the electronic band gap
observed in semiconductors. This leads to interesting phenomena like the inhibition
of spontaneous emission and also makes them useful for highly reflective mirrors and
low-loss-waveguiding.
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But colloidal dispersions and crystals are also very interesting as model systems
with which phenomena like self-assembly, (structural) phase transitions, kinetics of
crystallization and other condensed matter topics can be investigated, because the
structures formed by colloidal particles resemble “real” liquids and solids. Thus they
play an important role in the thriving field of material science.

Another feature which makes colloids interesting for physicists and chemists is
the fact that colloids are easily accessible in experiments. They can be manufactured
from both polymers and minerals by either dissolving larger particles in an appropri-
ate solution until the particle size reaches the proper size of colloidal particles or by
aggregation of smaller molecules into properly-sized colloids. Depending on the size
of the colloidal particles, confocal miscroscopy provides a resolution which can be
high enough to track single particles inside the colloidal dispersion. Due to the many
possibilities of producing colloidal particles out of different materials, the possible
interaction potential of these particles are also manyfold and can be taylored to the
needs of the experiment.

Tracking particles in colloidal dispersions or crystals is especially easily feasible
if only two-dimensional layers of particles are studied. In this thesis we will also
focus on studies of a two-dimensional colloidal crystal. Of course, in principle there
are no crystals in two dimensions as long-wave thermal fluctuations destroy the trans-
lational order. This is not the case for three-dimensional crystals, because due to the
higher dimensionality the energy required to destroy the long-range order inside of
the crystal increases with the size of the crystal, while it remains finite in the case
of two-dimensional crystals. Nevertheless, the disorder due to long-wave thermal
fluctuations only plays a role for very large two-dimensional crystals which we are
not going to study here. Additionally, the crystalline structure is stabilized in our
simulations by walls in one direction which consist of frozen particles arranged in a
crystalline order.

Although colloids have been extensively studied over the past decades, there are
still many interesting aspects even in the area of fundamental research that have not
yet been investigated. This PhD thesis was carried out in the framework of the Son-
derforschungsbereich Transregio (SFB TR6) “Colloidal dispersions in external fields”
(CODEF), which was founded by the Universities of Utrecht, Düsseldorf, Konstanz
and Mainz and the Forschungszentrum Jülich in 2005, funded by the Deutsche For-
schungsgemeinschaft (DFG). It aims at a widespread investigation of phenomena oc-
curring when colloids are exposed to all kinds of external conditions like for example
laser fields, shearing or restrictions of the particles’ movement imposed by walls. It
has been prolonged twice, which shows not only the great success of the efforts under-
taken in this SFB, but also reflects on the importance of studying colloidal particles.
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This thesis consists of three parts, all of them dealing with computer simulations
of a two-dimensional colloidal crystal under confinement. Over the past decades,
computer simulations have gained more and more importance not only in physics, but
everywhere in science, industry and finance. They are an essential addition to exper-
iment and theory, especially in areas where experiments are impossible (finance) or
very expensive, dangerous and/or time-consuming (science and industry) and where
theories exist only for simplified cases or even not at all (industry, e.g. invention of
novel materials).

In classical statistical physics, two general methods of computer simulations have
been developed. The Molecular Dynamics (MD) method aims at simulating systems
by calculating the forces acting between particles (or, in coarse-grained simulations,
between groups of atoms represented by one effective particle) and solving Newton’s
equation of motion in order to obtain the velocities of the particles. Thus, the trajec-
tories of the particles through the system can be simulated.

A different approach is taken by the Monte Carlo (MC) simulation method. This
technique does not aim at calculating the realistic path which particles would take
in a given system, but instead tries to sample the most important configurations of
the particles in a given system by making random attempts at placing particles in the
system (or moving them around) and accepting or rejecting the hereby created config-
urations according to their statistical weight. Due to the ergodic hypothesis, the two
simulation methods yield the same results for the statistical averages calculated for
observables. While MC simulations are necessary for calculating high-dimensional
integrals and can also be used to model Brownian motion, MD simulations are indis-
pensable when the dynamics of a system are being studied. Different variants of the
two methods have been used in this thesis. One version of MD simulations which we
have used for the present studies is described in Sec. 1.3, two different versions of
MC simulations are described in Sec. 2.1 and 2.3.

An advantage of the simulation of colloidal systems is the fact that the colloidal
particles are several orders of magnitude larger than the solvent particles, which al-
lows us to simulate only the larger colloidal particles explicitly and to reduce the effect
of the solvent to stochastic kicks as is done in Langevin dynamic simulations, which
are one variant of MD simulations. Of course, this is a very simplified approach and
might dampen or enhance some effects. But it is also impossible to simulate the sol-
vent particles explicitly by simply adding them to the standard molecular dynamics
simulation as additional particles interacting with each other and with the colloidal
particles as this would exceed the amount of CPU time available to us. Therefore, the
only alternative to implicit solvent are more sophisticated methods which integrate the
motion of the solvent particles approximately and model their effect on the colloidal
particles. But as we are rather interested in the qualitative behaviour of the system
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and the phenomena occurring here, we leave such more complicated approaches for
future work.

The first part of this thesis investigates the static properties of a two-dimensional
colloidal crystal, which is compressed between structured walls in one direction.
These confining walls consist of frozen particles. The second part deals with dy-
namic properties of the particle motion and diffusion inside the crystal, while in the
last part shear is introduced into the system.

As a first step, the structured walls confining the system have been placed at var-
ious distances apart from each other, thereby becoming incommensurate with the
crystalline structure and compressing the crystal. This incommensurability is termed
“misfit” here. Earlier work by Chui et al [1–3] on this system has already shown
that at a certain value of the misfit a structural transition (reducing the number of
rows in the crystal) takes place and a defect pattern –which is superimposed onto the
crystalline lattice structure– is created, but with the methods used there, the value of
this transition point could not be determined accurately. Therefore, we will present
results of two different methods with which we have determined this value with high
precision and additionally the value of another structural transition occurring at even
higher values of the misfit. These two methods, the Schmid-Schilling-method [4, 5]
and the phase switch method [6–12], are both based on MC simulations. The phase
switch method has been extended to larger and more complex systems here. The
results of these two methods show a good agreement with each other, but the phase
switch method proved to be considerably better suited for our problem. With this
method, we were able to compare several metastable states of the colloidal crystal
with different defect superstructures and determine which of them is stable and which
are only metastable. We are hoping that our, albeit very basic, studies might be useful
for the invention of novel materials, where a prediction of the stability of structures
in question might lead to more successful experiments.

Our simulations with the phase switch method have also yielded another result
which is interesting in the context of fundamental statistical physics: we discovered
that for this particular system the ensemble equivalence between simulations carried
out at constant pressure (NPT ensemble) and simulations carried out at constant vol-
ume (NVT ensemble) is violated. This is due to the specific nature of the structural
phase transition which alters the number of rows: in this particular system, at ev-
ery given volume only one phase is stable, either the one with n crystalline rows or
the one with n − 1 rows and a superimposed defect pattern. There is no two-phase
region where it is energetically preferrable for the system to exhibit partly one and
partly the other phase and an interface between them. This is the case because at
every value of the wall distance, one of the two possible particle arrangements is en-
ergetically favourable and it does not get any better if in other parts of the crystal the
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other arrangement is taken on. This is fundamentally different from, for example, the
liquid-vapour transition where at a density between the equilibrium densities of the
liquid and the vapour it is energetically preferrable for the system to exhibit partly a
vapour and partly a liquid, each at its own equilibrium (or almost equilibrium) den-
sities, so that the combination of the two fulfills the constraints of the given volume
and the given overall number of particles.

If one investigates the structural transition in this particular system in the NVT
ensemble, increasing the misfit between the walls leads to an increasing pressure at
first. As there is no two-phase region, there will not be any transition pressure which
remains constant during a scan through this two-phase region, but instead, at the
transition point the pressure will instantaneously drop to a smaller value when the
system rearranges itself into n− 1 rows. Increasing the misfit between the walls even
more will lead to a further increase in the pressure, which is the “usual” behaviour
again.

If one studies the same transition in the NpT ensemble, the simulation can jump
back and forth between the two phases with different volumes at each given value
of the pressure. At small values of the pressure, only the phase with n rows will be
stable, but close to the transition pressure, which is well defined in this ensemble, both
phases will exist with different (or exactly at the transition pressure: equal) statistical
weights. This situation corresponds to a two-phase region in the NVT ensemble,
which does not exist for this system. Further increase of the pressure will lead to a
further reduction of the volume again, of course.

Such ensemble inequivalences are very interesting from the point of view of gen-
eral statistical physics as they contradict intuition. Neither of the two ensembles is
“incorrect” in this context, they simply correspond to different physical situations.
We have mostly concentrated on the NVT ensemble as we were interested in the case
where the walls are fixed (as is feasible, for example, by applying laser fields). The
NpT ensemble corresponds to situations where the pressure is controlled, like for
example in a surface force apparatus.

In the context of computer simulations it has become popular recently to use
graphic cards instead of CPUs as processing units. Their advantage is that they can
carry out the same arithmetic operation on many different data points (i.e. on all
particle coordinates) in parallel, which can lead to a huge speed up of simulations.
One drawback, however, is the fact that consumer graphic cards typically use single
precision for their calculations. We therefore used a molecular dynamic simulations
programme package called “HooMD-blue” [13, 14] for the investigation of the dy-
namic properties of the system which are described in the second and third part of
this thesis. This programme package has the ability to run on graphic cards, but we
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had to carry out most of our simulations on regular CPUs due to the lack of preci-
sion on GPUs. There are programme packages available which carry out simulations
on graphic cards with higher precision by using the memory of two single precision
numbers in order to build larger memory units that are similar to double precision
[15, 16], but unfortunately these programme packages do not provide those particular
options yet which we need for our simulations. Additionally, new graphic cards often
support double precision calculations already, but these graphic cards are still rather
expensive.

The second part of this thesis comprises a thorough investigation of the particle
motion and diffusion processes occurring inside of two-dimensional colloidal crystals
and was carried out using HooMD-blue. Although colloidal crystals in confinement
have been extensively studied over the past years, a systematic study of the move-
ment of the particles (and the solitons) in dependency of the confining walls was still
missing. We are trying to fill in this gap. Same applies to the diffusion processes
inside of colloidal crystals, where our findings were even more surprising: While the
well-known theory of diffusion in crystals states that diffusion takes place via the for-
mation of a hole and a corresponding interstitial particle, which both diffuse through
the crystal before recombining again, we found that additionally cooperative ring ro-
tation movements of groups of particles appeared, which contribute to the diffusion
as well.

Interestingly, in the beginning of the research on diffusion in the 1930s and 1940s
different diffusion mechanisms were discussed [17, 18] and the idea of diffusion be-
ing carried out by groups of particles making cooperative rotations and even direct
exchange between two particles was very popular. However, the Kirkendall experi-
ment showed that when a block of a pure metal and a block of an alloy containing this
metal are placed next to each other and heated to temperatures where diffusion can
easily take place, the interface between the blocks moves into the region where for-
merly the pure metal was [19]. After much discussion at that time, this was generally
accepted as a proof for a diffusion mechanism which involves holes and/or interstitial
particles and which exist in a greater number in one of the two blocks, leading to
the moving interface. If diffusion had taken place mostly by rotation processes, the
interface would not have moved in such an asymmetric way. Since there has been no
experimental evidence for other diffusion mechanisms, the general belief is that co-
operative rotation processes play no important role (or do not even exist) in diffusion
processes in three-dimensional crystals [20–22].

It is known that cooperative diffusion processes occur in glassy materials [23].
They have also been reported for two-dimensional interfaces [24] and in a layer of
crystalline atoms in a periodic potential [25]. However, both of these studies report
that the cooperative ring rotation processes were rare events in those simulations. In
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contrast to this, in our simulations of a two-dimensional colloidal crystal these co-
operative diffusion processes were not rare at all. They occured significantly more
often than diffusion events mediated by holes and interstitials. In spite of this, they
contributed less to the diffusion constant as there were only a few particles involved
in each of the ring rotation processes, while between a few hundred and a few thou-
sand particles were involved in the diffusion processes with holes and interstitials.
Due to this, such diffusion processes involving cooperative movements of groups of
particles might easily have been overlooked elsewhere. We are going to present re-
sults showing the contribution of this process to the diffusion inside of the crystal, the
timescale on which these processes take place and how they vary with temperature.
These simulations were carried out using Langevin dynamics.

In the last part of this thesis we will discuss simulations, where in addition to the
misfit shear has been introduced. The shear is implemented by moving the walls with
constant velocity in opposite directions. As the walls consist of frozen particles which
interact with the mobile particles inside of the crystal, this leads to shear stress. We
have observed several different phenomena resulting from this shear, depending on
the shear velocity, the temperature and the value of the misfit, including the formation
of shear bands, the fragmentation into several domains with different orientations and
the creation of holes inside of the crystal. These simulations were also carried out
with the programme package HooMD-blue using a Langevin thermostat.

Note to the reader: The main contents of the three result chapters of this thesis
(including the description of the phase switch Monte Carlo method in comparison to
the thermodynamic integration method) have already been published, or the publica-
tion is at least in preparation, in three papers [26–28]. In order to avoid unnecessary
rephrasing, the text of these papers closely follows the wording of the following chap-
ters in large parts, as indicated in the respective chapters in more detail.
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Chapter 1

Model system and methods

In the first sections of this chapter we will describe our model system and its most
important features. We will include references to previous studies on the same system
by Ricci et al, Chui et al and Medina et al. In the following sections we will briefly
introduce the main ideas of Monte Carlo computer simulations and of Molecular Dy-
namics, specifically of Langevin Dynamics. Advanced Monte Carlo techniques such
as the phase switch method in combination with the transition matrix method and the
thermodynamic integration will be introduced in the next chapter. The description of
the model system is similar to the one we are going to publish in Ref. [26], which is
based on the present chapters.

1.1 Model system and important parameters

In this thesis we will investigate a colloidal crystal. As we have already mentioned
in the introduction, colloids are suspensions of micro- or nanometre sized particles
in solvent. They are a very popular model system when fundamental properties of
condensed matter are studied, such as phase transitions, order-disorder-transitions,
crystal nucleation, elastic properties or crack formation [29–40].

Experimentally, colloidal particles can be produced out of different materials and
their interactions are tunable in many ways. For instance, when a solution of charged
colloidal particles is considered, adding salt can modify the strength and range of the
effective Yukawa potential acting between the particles. If the colloids are not charged
and interact only via hard core repulsion, polymers can be added and introduce an at-
tractive depletion interaction between the colloids, which can be controlled by varying

9



10 1.1. MODEL SYSTEM AND IMPORTANT PARAMETERS

the concentration of the non-adsorbing polymers. The well-known Asakura-Oosawa
model is a simple model which already incorporates all of these features.

Another example for an experimentally realizable colloidal system are polystyrene
spheres containing a superparamagnetic core. If these particles are trapped at an air-
water-interface, a two-dimensional layer can be obtained. Applying a magnetic field
perpendicular to this interface leads to a purely repulsive dipole-dipole interaction
between the particles with an r−3-dependency on the interparticle distance [29, 33–
37, 41–46], while the magnitude of the interaction strength can be controlled via the
magnetic field [47, 48]. A lateral confinement similar to the one we are using in our
computer simulations can be experimentally realized either in a mechanical way or
by applying laser fields [43, 46, 49].

In our simulations we will consider a two-dimensional system comprised of purely
repulsive monodisperse particles similar to the superparamagnetic polystyrene spheres.
But as there are at present no experiments available for direct comparison of results
and the r−3-dependence of the dipole-dipole interaction is long ranged and thus com-
putationally very inefficient, we will use an r−12-potential with a cutoff (to make it
strictly short-ranged) and shift (so that it ends at zero) instead. We added a smoothing
factor in order to make it differentiable, which is important for the computation of the
stress tensor. Thus, the resulting potential reads:

V (r) = ε
[
(σ/r)12 − (σ/rc)

12
][ (r − rc)

4

h4 + (r − rc)4

]
, (1.1)

with parameters rc = 2.5σ and h = 0.01σ. Thus the particle diameter σ = 1 is our
unit of length, and ε = 1 sets the scale for the temperature. Note that in qualitative
respects Eq. 1.1 can be taken as a generic model for a broad class of colloidal particles
with short-range repulsive interactions (due to screened Coulomb interactions or due
to polymer brush coating, etc).

We chose a density of ρ = 1.05 for the simulations in the commensurable case.
Assuming the physical effect of truncating the potential can be neglected, only the
choice of the combination X = ρ(ε/kBT )1/6 controls the phase behavior [50]. Thus,
it suffices to choose a single density when the temperature variation is considered
[1, 51]. For the particular choice ρ = 1.05, the melting transition occurs at about
Tm = 1.35 [34, 51, 52] in the bulk. All of our simulations were carried out clearly
below this temperature (we used T ≤ 1.0), where the colloidal particles are arranged
in a basically defect-free hexagonal lattice structure. This crystallization is possible
due to the repulsive nature of their interaction. The lattice structure is stabilized by
walls which were implemented in the y-direction. In this direction, the system is only
a few rows of particle wide. The walls consist of two rows of frozen particles each,
which interact with the mobile particles via the same purely repulsive potential with
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which the mobile particles interact with each other. Particles cannot jump “into” or
even beyond the walls, but the second row of wall particles is necessary nevertheless
as the particles in the first “mobile” row still feel its effect due to the finite length
of the cutoff. The system was strongly elongated in the x-direction, where we have
also applied periodic boundary conditions in order to rule out any effects of the finite
system length in this direction. A sketch of the system geometry is shown in Fig. 1.1

Figure 1.1: Sketch of the system ge-
ometry, showing the fixed wall parti-
cles (black spheres) and the mobile
particles (gray spheres). The orien-
tation of the coordinate axes is in-
dicated, as well as the lattice spac-
ing of the triangular lattice (a) and
the linear dimensions Lx, D of the
system.

We have used different system sizes depending on the computational possibilities:
For simulations using the thermodynamic integration method and the phase switch
Monte Carlo method, we had to use a relatively small system comprised of N = 3672
particles (including wall particles; thus 3240 mobile particles), which were originally
arranged in 30 rows with 108 particles per row. The simulations carried out using
Langevin dynamics utilized the program package hooMD-blue [13, 14], which is
originally desinged to run on graphic cards. If graphic cards are used, there is a
huge speed-up and we were able to make the system twenty times as large as before
by placing 2160 particles in each of the 30 rows, yielding a total number of N =
73440 particles (again including walls; thus 64800 mobile particles). Unfortunately
we realized that the single precision used on graphic cards is not sufficient for our
crystalline system at temperatures lower than T = 1.0 (see Appendix C). Thus,
we had to run all simulations at lower temperatures on regular CPUs. As this took
considerably more time, we reduced the system size to the initial 3672 particles again
for these runs wherever possible. In those simulations where the walls were sheared
against the crystal, we had to carry out all simulations on CPUs due to the necessity
for high accuracy (and due to the low temperatures we considered there), but we
still used the larger system size as we needed the statistics and did not want to risk
experiencing problems with effects of the finite system size in the x-direction.

Strictly speaking there are no crystals in two dimensional systems due to the lack
of positional long-ranged order, but the colloids in our model system do arrange them-
selves into an ordered structure which can be classified as crystalline according to the
Lindemann-criterion or the pair-distribution function. The Lindemann-criterion states
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that a system can be regarded as crystalline as long as the Lindemann-parameter δLind,
which is esentially the width of the distribution of the nearest-neighbour distances in
the crystal, is below a threshhold of δLind ≤ 0.1. The definition of the Lindemann-
parameter reads:

δLind =
1

a

√√√√ 1

N

N∑
i=1

(~ui)2 , (1.2)

a being the lattice constant, which is a = 1.04867 at the chosen density in our system.
~ui denotes the displacement of particle i from its reference site:

~ui(t) = ~Ri(t) + ~Ri(0) . (1.3)

As we are going to place the walls at various distances D apart from each other in
the following studies (therby introducing an incommensurability into the crystalline
structure), it is necessary to define a misfit parameter ∆. We define this misfit between
the actual distance D between the walls and their distance D0 = nya

√
3/2 in the

commensurate case as
D = (ny −∆)a

√
3/2 , (1.4)

where a is again the lattice constant in the commensurate case and ny denotes the
number of rows (of mobile particles) parallel to the walls.

In order to investigate the behaviour of the system which occurs when the walls
are placed at distances D apart from each other which are incommensurate with the
crystalline structure, it proved useful to compute the anisotropy of the stress tensor
given by

δσ = σyy − σxx (1.5)

where σij are the Cartesian components of the pressure tensor, derived by applying
the virial formula, which yields [53–55]:

σij =
1

V

[∑

a 6=b

U ′(Rab)
Rab

i Rab
j

Rab
− nxnykBTδij

]
, (1.6)

V being the two-dimensional “volume” of the stripe, U ′(R) = dU
dR

, ~Rab = ~Rb − ~Ra

and nx · ny = N being the number of particles.

In these studies, we will use two different definitions of the mean square dis-
placement (MSD) of the particles: With MSDstart-conf we refer to the MSD with re-
spect to the starting configuration, defined as MSDstart-conf(t) = 〈(x(t) − x(0))2〉N ,
where 〈...〉N denotes the average taken over all (mobile) particles in the system, while
MSDtime−diff refers to the MSD with respect to the time difference between the con-
figurations defined as MSDtime-diff(∆t) = 〈(x(t)−x(t+∆t))2〉N,t, where now 〈...〉N,t
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denotes the average taken over all (mobile) particles in the system and over all con-
figurations which are a time interval ∆t apart from each other.

In order to avoid confusion, we will refer to the rows directly adjacent to the walls
as row 1 respectively row 30, and to the inner rows as row 2-29 in the following
chapters.

1.2 Properties of the chosen model system

In order to test whether our chosen model system exhibits a crystalline structure at
the temperatures and densities we used in our simulations, we calculated the next
neighbour distances. In Fig. 1.2 we have plotted the distribution of the distance of
each particle to its six nearest neighbors for several temperatures T , which yields a
peak with a squared width w2(T ) which is clearly below 0.01, so that the Lindemann-
criterion (see Eq. 1.2) is met for all temperatures that we have used. Therefore we do
not have to worry about the peculiarities of melting in two dimensions [51].
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Figure 1.2: a) The distribution of the distance r between nearest neighbor particles in the
crystal: For each particle, the distance to its six nearest neighbors was used. Different tem-
peratures T as indicated. Distributions normalized to area=1. b) Squared width of the distri-
bution, defined as w2(T ) = 〈r2(T )〉−〈r(T )〉2

〈r(T )〉2 . Simulations in the fully commensurate case with
30 crystalline rows.

Placing the walls closer together, so that they are not commensurate with the
crystalline structure of the mobile particles any more, leads to a structural transition.
In the course of this transition, the number of rows parallel to the walls is reduced.

In order to investigate this structural transition, Chui et al [1–3] have computed
the anisotropy of the stress tensor σij (see Eq. 1.5). Fig. 1.3 shows that this stress
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Figure 1.3: Stress curve showing at which val-
ues of the misfit ∆ the structural transition oc-
curs which reduces the number of rows parallel
to the walls. The broken line shows the exact
location of this transition in equilibrium, which
was obtained using the phase switch Monte
Carlo method [27]. 0 0.5 1 1.5 2 2.5 3

∆

-1

0

1

2

3

4

δσ

30 rows at start
29 rows at start

anisotropy is already nonzero for zero misfit due to the confining effect of the walls
in the y-direction, which somewhat hinders the vibrations of the mobile particles in
their potential wells, but this effect is of no importance here. Increasing misfit at
first increases the stress anisotropy for a system that started out with 30 crystalline
rows of particles. But at a misfit of ∆ ≈ 2.0, the stress suddenly decreases and then
slowly increases again. This behaviour can be explained by the fact that the system
spontaneously rearranges itself into 29 rows of crystalline particles at ∆ ≈ 2.0. As
the number of particles remains constant in these NVT ensemble simulations, the
particles which used to sit in the row which has disappeared in the transition therefore
have to distribute themselves in the remaining rows. Chui et al have found evidence
that the ideal distribution of these “extra” particles is given by putting four extra
particles in each of the 27 inner rows and leaving the rows directly adjacent to the
walls free of extra particles (as these rows are stabilized by the lattice structure of the
walls). Thus, in the inner part of the crystal a new crystalline structure emerges with
smaller lattice spacing in the x-direction (due to the increased number of particles)
which is no longer commensurate with the lattice spacing between the particles in
the row directly adjacent to the walls. Because of this incommensurability, there are
areas in the crystalline structure where the particles of the rows directly next to the
walls and the particles of the inner rows are in energetically unfavourable proximity
to each other. These regions of higher energy (and also increased particle mobility as
we will show in the next chapter) are called solitons. Fig. 1.4 illustrates such “soliton
staircases” [56, 57].

If a simulation starts off with just 29 rows of crystalline particles and the appro-
priate number of extra particles distributed into them, the stress curve looks different
(Fig. 1.3). At small misfits the structure still rearranges itself into 30 rows, but already
from a misfit of ∆ ≈ 1.3 onwards the 29 rows remain at least metastable. The exact
location of the transition was therefore obviously obscured by a large hysteresis. We
therefore applied two different methods of computing the free energy difference be-
tween the two structures in order to locate this transition more precisely. The results
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Figure 1.4: a) Putting n + 1 particles in a periodic potential with n minima creates a soliton
configuration, i.e. over a range of several lattice spacings particles are displaced from the
potential minima (schematic). b) Soliton configuration in a lattice of N = 3672 particles
(including walls) when the particles are arranged into 29 rows. Particles which are part of the
solitons have been marked in orange. “Ideal” configuration for T = 0 is shown.

of these simulations are shown in Chapter 2.

1.3 Langevin Dynamics Simulations

There are two general approaches to classical computer simulations of condensed
matter systems: If one is merely interested in statistical averages, Monte Carlo simu-
lations [54, 58] are a good option as they aim at sampling the possible configurations
of the system under consideration. As it is usually not an option to list every possi-
ble state of the system, importance sampling is typically applied, which ensures that
states with a higher probability are sampled more frequently. Many different Monte
Carlo methods have been developed over the past decades, two of which will be dis-
cussed in detail in Sec. 2.1 and 2.3.

However, sometimes it is necessary to obtain information about the trajectories
of the particles or to let the system evolve in a physically more realistic way. In
such cases Molecular Dynamics simulations have to be carried out, which aim at
integrating the equations of motion of the particles. As this approach to computer
simulations might be more intuitive than Monte Carlo simulations, we will outline the
main ideas of Molecular Dynamics first and briefly discuss Monte Carlo simulations
in the following section.
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The starting point for Molecular Dynamics are Newton’s equations of motion,
which read

mi
d2~ri

dt2
= −

∑

j 6=i

∇iV (|~ri − ~rj|) ≡
∑

j 6=i

~Fij (1.7)

for every particle i of the system, i.e. one needs to know all forces acting on this
particle from all other particles in order to compute its acceleration. This system
of 3N coupled differential equations can be solved approximately by making Taylor
expansions in terms of ∆t. The well-known Velocity Verlet algorithm [59–61], which
one obtains when developing up to the second order in ∆t, then yields:

~r(t + ∆t) = ~r(t) + ~v(t)∆t +
1

2

~f(t)

m
∆t2 (1.8)

~v(t + ∆t) = ~v(t) +
~f(t + ∆t) + ~f(t)

2m
∆t (1.9)

This Velocity Verlet integrator is very useful, as it shares the most important prop-
erties with Newton’s equations of motion: it conserves energy on long time scales,
it conserves the momentum of the system as a whole, it is time reversible and phase
space is conserved, as well [58]. In contrast to Monte Carlo simulations, molecular
dynamics simulations using only the Velocity Verlet scheme are strictly deterministic.
They do not yield exact trajectories, however, as the time steps are finite. But exact
trajectories are usually not needed anyway, as we do not want to calculate the exact
route of any specific particle, but only averaged proporties of the system. In fact, the
Lyapunov instability states that two configurations which are only slightly different
diverge exponentially with time anyway.

As energy is conserved, the Velocity Verlet scheme corresponds to experiments in
an NVE ensemble. As most real experiments are carried out at constant temperature
(or pressure) rather than at constant energy, a thermostat is necessary in order to
run simulations in the NVT ensemble. There are several options for thermostats,
both deterministic and stochastic, which adjust the velocities in order to ensure that
they follow the correct Boltzmann-distribution of the given temperature T . One such
thermostat is the Langevin thermostat which introduces a dissipative force slowing
the particles down as well as a stochastic force accelerating the particles by “kicking”
them around in arbitrary directions, thus creating the desired velocity distribution.
This is achieved by adding two new forces to the equations:

mi
d2~ri

dt2
= ~FC

i + ~FD
i + ~FR

i =
∑

j 6=i

~Fij − γ~vi + ~fi . (1.10)

~FC is the conservative force and ~FD is the dissipative force due to friction, which
slows down the particles and is proportional to their velocities, thus ensuring that
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particles which are too fast are being slowed down. ~FR is a random force which
“kicks” the particles around. In order to satisfy the Fluctuation-Dissipation theorem,
this random force has to satisfy the following equation [63]:

〈fα
i (t)fβ

i (t′)〉 = 2γkBTδijδαβδ(t− t′) (1.11)

where α and β refer to the cartesian components of the vector ~f and i and j are indices
of the particles.

As the direction of the kicks is arbitrary, the overall momentum of the system is no
longer conserved, but slightly fluctuates. This is not a problem here as the system we
have studied in the present thesis is a colloidal crystal, i.e. it is comprised of colloidal
particles and solvent. As we have only explicitly simulated the colloidal particles,
their momentum does not have to be conserved as the not explicitly simulated solvent
particles can take away and add momentum to the movement of the larger particles.
But at the same time, this leads to the disadvantage that Langevin Dynamics do not
account for hydrodynamic interactions.

Using only implicit solvent particles can also alter the results of simulations of
colloidal crystals, especially in the case where shear is present. Therefore, the very
simple nature of the model system we used certainly affects our results. For exam-
ple, the strongly non-newtonian flow profiles described in Chapter 4 might have been
less pronounced if solvent particles had been explicitly simulated. There are several
approaches to include solvent and hydrodynamic interactions into Molecular Dynam-
ics simulations: particle based methods such as Multiparticle Collision Dynamics
[152, 153], and lattice methods such as the Lattice Boltzmann method [65]. But as
all of these approaches increase the necessary computer time for the simulations by at
least a factor of 10, it was decided that this project would solely deal with the simple
model with only implicit solvent. Thus we chose to use Langevin Dynamics, which is
–alongside other thermostats and algorithms– included in the HooMD-blue program
[13, 14].

There are also thermostats like the Dissipative Particle Dynamics [63, 64], which
introduce hydrodynamic interactions into the simulations by conserving the momen-
tum, and yet do not necessarily increase the CPU time by a large amount. But unlike
Multiparticle Collision Dynamics or Lattice Boltzmann Simulations, the Dissipative
Particle Dynamics thermostat would have introduced hydrodynamic correlations di-
rectly between the colloidal particles. This would not have yielded a realistic be-
haviour, because in a real system these colloidal particles interact via solvent parti-
cles with which they exchange momentum. The Langevin thermostat which does not
conserve the momentum of the colloidal particles, is therefore better suited to this
problem: In Langevin Dynamics simulations, the interactions of the colloidal par-
ticles with the solvent particles are represented by the random “kicks”. Of course,
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in a real system the solvent particles do not move around randomly. Momentum is
strictly conserved while they collide with the much larger colloidal particles and with
other solvent particles. But as the time intervals between collisions of the solvent
particles with colloidal particles are much larger than the time between collisions of
solvent particles with other solvent particles, the solvent particles change the direc-
tion of their movement and their velocity several times before colliding with the next
colloidal particle. Therefore it is a valid approximation to model the interaction of
the solvent and colloidal particles as random “kicks” as we have done it here by using
the Langevin thermostat.

In all simulations, our particles have mass m = 1, and the time t is measured in
the standard molecular dynamics time unit τ = t

√
ε

mσ2 .

1.4 Monte Carlo Simulations

As it is in many cases not necessary to know the exact trajectory of every particle
in the system, but only statistical averages, Monte Carlo simulations can save a lot
of time and effort. The basic idea behind Monte Carlo simulations [54, 58, 66] is to
sample the phase space by randomly creating new configurations and accepting them
according to their propability. Thus the correct probability distribution is sampled
and averages of observables can be obtained by simply averaging over all sampled
configurations without further reweighting. As we are going to carry out simulations
in the NVT ensemble with fixed particle number, volume and temperature, the prob-
ability of a configuration depends on its internal energy E (which again depends on
the particle positions {~R}) and is given via the Boltzmann weight

p({~R})NV T ∝ e−βE({~R}) , (1.12)

where β = 1
kBT

.

So when setting up a Monte Carlo simulation, a start configuration is chosen,
for example by distributing the particles randomly in the given volume. If no ad-
vanced method is used, the only Monte Carlo steps are then local moves, where a
new position ~r′i is suggested for a randomly chosen particle i. The energy change
∆E = E({~r1, ~r2, ..., ~r′i, , ... ~rN})−E({~r1, ~r2, ..., ~ri, , ... ~rN}) associated with this local
move has to calculated. Of course, this new configuration is not completely indepen-
dent from the previous configuration as one local move can only introduce a small
change in the particle positions. However, this change should be independent from
earlier configurations. Thus, the succession of configurations can be described by a
Markow chain, in which each state of the system only depends on the preceding one.
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In order to model a system at equilibrium, the “flow” into one such state should
equal the flow out of it, where the flow from state i into state j is given by the product
of the probability pi for the system being in the particular state i and the transition
probability wij for the system to jump from state i to state j. The “Master Equation”
describing an equilibrium system therefore reads (in the time-independent case)

∑
i

piwij =
∑

j

pjwji . (1.13)

This requirement is always met if the stricter condition

piwij = pjwji (1.14)

is fulfilled, which is called “Detailed Balance”.

Detailed Balance can be enforced (and thus the correct sampling of the probability
distribution can be obtained) in simulations by applying the Metropolis Criterion: The
transition rates wij are chosen as [66]:

wij =

{
e−β∆E if ∆E > 0

1 else
(1.15)

This ensures that configurations with lower internal energies are always accepted,
while higher energies are only accepted with a certain probability. This can cause
problems if the phase space consists of two or more disjunct regions of high probabil-
ity, which are separated by an area of low probability. An example of such a situation
would be two phases, separated by a two-phase region with higher free energy. In
order to ensure that the simulation crosses the valley of low probability and samples
both phases correctly, simulations often have to be reweighted. In the simplest case,
this can be done by modifying the Hamiltonian of the system in such a way that
the probability becomes more or less equal for all states [67, 68]. This is especially
easy if the expected probability distribution is known approximately, for example by
extrapolating the probability distributions obtained by preceding runs to the desired
temperature. In this case, the acceptance criterion incorporates not only the energy
difference between the old and new configuration, but also their weight difference,
thus ensuring that all states are sampled with approximately the same probability. In
the end, the used weights have to be taken into account when averages are computed
or when the real, non-reweighted probability distribution is needed.

As the probability distribution of the system is usually not known beforehand and
also because this method of sampling regions of low probability is not always the most
efficient one, many different advanced simulation techniques have been developed
over the past decades [6, 69, 70], two of which will be introduced in detail in the next
chapter.
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Chapter 2

Introducing a Misfit

The results presented in this chapter have already been published in Ref. [27], which
is fully based on the work done for the present chapter. The wording of this publica-
tion is almost identical to the present chapter with the exception of a few sentences
in the introduction to the present chapter, the description of the details of the simula-
tion, the first paragraphs in the description of the phase switch method, parts of the
description of the thermodynamic integration method, a few sentences in the results
section and the addendum.

Periodically ordered arrays of nanoparticles, colloidal crystals, crystalline meso-
phases formed from surfactant molecules or block copolymers, etc. are all examples
of complex periodic structures that can occur in soft matter systems. Since often the
interactions between the constituent particles of these structures are to a large de-
gree tunable, one has the possibility of producing materials with “tailored” properties
which have potential applications in nanotechnological devices [71–75]. When seek-
ing to provide theoretical guidance for understanding structure-property relations in
such complex soft matter systems, a basic issue is how to judge the relative stabil-
ity of competing candidate structures, i.e. to distinguish the stable structure (having
the lowest free energy) from the metastable ones. For standard crystals formed from
atoms or small molecules, this question can be answered by comparing ground state
energies of the competing structures (and –if necessary– also taking entropic contri-
butions from lattice vibrations into account, within the framework of the harmonic
approximation). In soft matter systems, disorder in the structure and thermally driven
entropic effects rule out such an approach, and hence there is a need for computer
simulation methods that compute the free energy of the various complex structures.
However, as is well known, the free energy of a model system is not a direct output of
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either Molecular Dynamics or Monte Carlo simulations, and special techniques have
to be used [54, 58, 76–79].

In principle, one can obtain the absolute free energy of a structure by linking it to
some reference state of known free energy by means of thermodynamic integration
(TI) [4, 5, 54, 58, 76–82]. The strengths of TI are that it is both conceptually simple
and often straightforward to implement. Its principal drawback is that the quantity of
interest, namely the free energy difference between candidate structures is typically
orders of magnitude smaller than the absolute free energies of the individual structures
which TI measures. Essentially, therefore, TI estimates a small number by taking the
difference of two large ones. As a consequence, the precision of the method is limited
and an enormous (even sometimes wasteful) investment of computer resources may
be needed to resolve free energy difference accurately [77].

A much more elegant approach, albeit one which is not quite so easy to imple-
ment as TI, is the “phase switch Monte Carlo” [6–12] technique. This method is
potentially more powerful than TI because it focuses directly on the small free en-
ergy difference between the structures to be compared, rather than their absolute free
energies. In previous work, the precision of the method was demonstrated in the con-
text of measurements of the free energy difference between fcc and hcp structures of
hard spheres [9], the phase behaviour of Lennard-Jones crystals [9] and as a means of
studying liquid-solid phase transitions [7]. In the latter case, simple model systems
containing only a few hundred particles could be studied, while for the study of the
fcc-hcp free energy difference [6, 10] larger systems of up to 1728 particles could be
studied by virtue of the fact that these crystals only differ in their packing sequence
of close-packed triangular defect-free lattice planes. However, it is an open question
as to what system sizes one can attain with the phase switch method for more general
crystalline systems, including – as in the present work – ones which exhibit consid-
erable structural disorder (“soliton staircases”, see below). Furthermore, there have
hitherto been no like-for-like comparisons of the TI and phase switch methods on the
same system, so whilst there are good reasons for presuming the superiority of phase
switch (in terms of precision delivered for a given computational investment), this has
never actually been quantified.

In this chapter, we address these matters, considering as a generic example a two-
dimensional colloidal crystal in varying geometrical confinement [1–3, 83, 84]. As
we have already described in Sec. 1.1, an experimentally realizable example of such
a colloidal crystal is a layer of polystyrene spheres with superparamagnetic cores
trapped at an air-water-interface and influenced by a magnetic field. Lateral confine-
ment could in this case be implemented either mechanically or by laser fields.

Of course, there exist many related problems in rather different physical contexts
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(“dusty plasmas” [85, 86], i.e. negatively charged SiO2 fine particles with 10µm di-
ameter in weakly ionized rf discharges; lattices of confined spherical block copoly-
mer micelles [87]; vortex matter in slit channels [88], etc.). However, we will not
address a specific experimentally realizable system, rather we focus on the method-
ological aspects of how one can study such problems by computer simulation.

The outline of this chapter is as follows. In Sec. 2.1 we will describe the phase
switch Monte Carlo method on which the main emphasis of this part of the study lies.
Sec. 2.2 deals with the transition matrix method which we used in order to create
a weight function. In Sec. 2.3 we will introduce the thermodynamic integration
method of Schmid and Schilling [4, 5] which was used for comparison and to verify
our results.

In Sec. 2.4 we will summarize the key results for the chosen model system: like in
chapter 3 we are considering strips of two-dimensional crystals confined between two
walls. When the distance between the (corrugated) rigid boundaries is varied, struc-
tural phase transitions may occur [1–3, 84, 89–91] Here, a succession of transitions
in the number of crystalline rows n parallel to the walls occurs, n → n− 1 → n− 2,
with increasing compression, accompanied by the formation of a “soliton staircase”
at the walls [1–3, 84]. In Sec. 2.5 we show that phase switch Monte Carlo [7–9] can
accurately locate these phase transitions despite the need to deal with thousands of
particles, and is orders of magnitude more efficient than thermodynamic integration.
Sec. 2.6 sheds some light on the ensemble inequivalence observed for this particular
model system. Sec. 2.7 shows how the phase switch method is able to distinguish be-
tween different metastable candidate structures and to determine which one of them
is the stable one. Sec. 2.8 summarizes some conclusions.

The addendum describes an application of the Schmid-Schilling thermodynamic
integration method, where the interfacial free energy between a colloidal crystal and
a flat wall is calculated.

2.1 The Phase Switch Method

The “Phase Switch Monte Carlo method" was originally introduced by A.D. Bruce,
N.B. Wilding and G.J. Ackland in 1997 [6, 8] in order to calculate the free energy
difference between the fcc crystal phase and the hcp crystal phase of a hard sphere
system. Using this method, they were able to establish which of the two phases
represents the ground state under certain conditions. As this free energy difference is
quite small, preceding attempts using thermodynamic integration and thus calculating
the absolute free energies of each phase seperately instead of calculating the energy
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difference between them had led to results that were contradicting each other as the
errors were too large.

As the only difference between an hcp and an fcc phase is that an fcc structure
can be represented by a repetition of three layers of particles shifted against each
other, while the hcp phase consists of only two different layers shifted against each
other, all of these layers displaying the same lattice structure, the idea came up to
introduce a Monte Carlo move that would shift every third layer of the system by the
lattice constant and thus take the system from the fcc to the hcp phase and vice versa.
These moves were combined with the standard local Monte Carlo moves in an NVT
ensemble (and later on, in an NPT ensemble, too). By simply measuring how much
simulation time was spent in each of the two phases, it was possible to accurately
determine the difference in the free energies and therefore also to see which of the
phases represented the ground state, as ∆F = ln(A(1)/A(2)), A(1) and A(2) being the
times spent in the respective phases which are proportional to the statistical weight of
each phase [77]; T = kB = 1.

This method was later generalized to the computation of energy differences be-
tween a solid and a fluid phase of hard spheres [7] and additionally to systems with
soft potentials [9–12].

In order to calculate the free energy difference between two phases in a single
simulation run, the two phases have to be linked by a sampling path. In many popular
approaches, a direct path between the two phases is constructed in the form of a
continuous set of macrostates associated with the values of some order parameter
which distinguishes one phase from the other (common examples are the total energy
or density of a fluid). This path traverses mixed phase (interfacial) states [92] and
is negotiated using some form of extended sampling to overcome the free energy
(surface tension) barrier associated with the interfacial states. One way to do this is
the multicanonical method [67]. Alternatively one can directly measure free energy
differences between successive points along the path as is the case in the successive
umbrella sampling technique [70].

In many cases utilizing an inter-phase path that encompasses interfacial states
works well, particularly for fluid-fluid transitions or lattice models of magnets. How-
ever, in other cases such a path can be problematic [77]. For example in the case of
solid-liquid coexistence, a connecting path will typically run from a crystalline phase
through several different distinct states including droplets of liquid in a crystal, a slab
configuration and crystalline droplets in a liquid before finally reaching the pure liq-
uid phase [93]. In such cases the identification of a suitable order parameter to guide
the system smoothly from one pure phase to the other can be difficult, and as a result
the system may experience kinetic trapping (e.g. in defective crystalline states).
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Thus it is highly desirable to have a method which can directly “leap” between
the two pure phases (which we shall label α, with α = 1, 2), avoiding the problem-
atic mixed phase states. If the system jumps back and forth between these phases
a sufficient number of times within one simulation run, the relative probability with
which the system is found in each of them directly yields the free energy difference
between these phases via ∆F = − ln

(
P (α=1)

P (α=2)

)
. The phase switch method achieves

this by supplementing standard local particle displacement moves (and in the case of
a simulation in the NpT ensemble, moves which scale the volume of the simulation
box), with moves that switch the system from one phase directly into the other phase.
This switch is facilitated by the representation of particle configurations in the two
phases. Specifically we associate a fixed reference configuration {~R(α)} with each
phase. The reference configuration is an arbitary configuration drawn from the set
of configurations that are identifiable as ‘belonging’ to phase α. We then associate
each particle with a unique site of the reference configuration, allowing us to write its
position ~r

(α)
i in terms of the displacement ~ui from its reference site:

~r
(α)
i = ~R

(α)
i + ~ui (2.1)

Note that whilst there are two reference configurations (one for each phase), the
phase switch method only considers one set of displacement vectors which are re-
garded as common to both phases.

Suppose we are currently in phase α = 1, so that the particle coordinates are
~r

(1)
i = ~R

(1)
i + ~ui. For local moves in this phase we update particle coordinates (in the

manner to be described) which, owing to reference sites being fixed, is equivalent to
updating the displacement vectors. For a phase switch to phase α = 2, we propose a
new configuration which is simply formed by substituting the reference sites of phase
α = 1 with those of phase α = 2. Thus the proposed configuration is {~r (2)

i } =

{~R
(2)
i } + {~ui}. If this switch is accepted, i.e. if the resulting configuration of phase

α = 2 is energetically acceptable, the simulation will continue to run in phase α = 2,
again recording the displacements of all of the particles from the reference sites of
phase α = 2, and proposing switches back to phase α = 1. In this way the system
switches repeatedly back and forth between the phases, allowing one to record the
relative probability of finding the system in each phase.

The switch operation leaves open how one chooses the lattice-to-lattice mapping
between reference sites in the two phases ie. the relationship between the pairs of
sites ~R

(0)
i and ~R

(1)
i . In fact it turns out to be beneficial in terms of the efficiency of the

method to choose this mapping such as to maintain any local structural similarities
that may exist in the two phases. Thus having specified the reference sites for one
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phase by labelling all the lattice sites with the index i, one should consider how each
lattice site transforms under the structural phase transition, and assign the same index
to the corresponding lattice site in the other phase. In the present model some particles
(those not near the wall or the solitons) do not see a significant change to their local
environment under the phase transition and so the mapping is straightforward. Only
the particles redistributed from near the walls to the solitons see a significantly new
environment and for pairs of these particles it is essentially arbitrary which index they
receive.

Now generally speaking the displacement vectors that characterise phase α = 1
are not typical of phase α = 2 and thus it will not be energetically acceptable to
perform the switch from typical configurations of phase α = 1. As a consequence,
in a naive implementation such a global move will almost always be rejected by the
Monte Carlo lottery. This problem is circumvented by employing extended sampling
methods [77, 78, 94] that introduce a bias in the accept/reject probabilities for local
moves that enhances the probability of displacements being generated in phase α = 1
for which the phase switch to α = 2 is energetically acceptable. We have used the
transition matrix Monte Carlo method [94–96] in order to create a suitable weight
function for this biasing, which will be described in detail in sec. 2.2.

The obvious observable to which the bias should be administered is a quantity
related to the instantaneous energy cost of the switch, since this measures how likely it
is to be accepted. We have employed the switch energy order parameter M described
in Ref. [11], which for switches from phase α = 1 to α = 2 is defined as follows:

M (1)→(2)({~u}) = sgn(∆E(1)→(2)) · ln(1 + |∆E(1)→(2)|) (2.2)

where

∆E(1)→(2) = (E(2)({~u})− E
(2)
ref )− (E(1)({~u})− E

(1)
ref ) (2.3)

where E
(α)
ref is the energy of the reference configuration in phase α, and E(α)({~u})

is the energy in phase α, found by applying the displacement vectors {~u} to the
reference configuration {~R(α)}. An obvious substitution gives the order parameter
for the switch from α = 2 to α = 1. Note that an important feature of this definition
of this order parameter is the logarithm which ensures that the binning of the weight
function is finer for small values of the energy difference and thus serves to ensure
that the simulation can cover the entire range of M smoothly.

Now, when implementing local moves for particles, we consider not just the en-
ergy cost of the move within the current phase, but also the change in M associated
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with the local move via a weight function η(M). The acceptance criterion for the
local move is therefore given by:

p(α)({~u} → {~u′}) =

min(1, e−β(E(α)({ũ′})−E(α)({ũ}))+η(M′)−η(M)). (2.4)

Note that E(α)({~u′})) − E(α({~u}) is the energy difference due to the move in the
phase α that is currently being simulated. The energy difference in the other phase is
only needed for the computation of the new order parameter M ′ and therefore for the
weights η(M ′) associated with the move.

Phase switches are generally only accepted from states in which M is small –
the so called gateway states. One instance in which M becomes small is if the dis-
placement vectors are themselves small, i.e. if all particles are sitting close to their
reference positions in both phases. Another instance is if there is a high degree of
structural similarity among the phases, so that the displacements of many of the par-
ticles in one phase are typical of the displacements in the other phase. Note that one
does not need to know or specify the gateway states to use the method. They are
sought out automatically when one biases to small values of M .

The acceptance criterion for a phase switch from α = 1 to α = 2 itself reads:

p(1)→(2)({~u}) = min(1, e−β(E(2)({~u})−E(1)({~u})+ω(2)−ω(1)

) , (2.5)

and similarly for the reverse switch. This phase switch also includes a weight ω to
ensure that it occurs with a sufficiently high probability in both directions. Note that
since the phase switch move alters the absolute particle coordinates, the associated
energy change enters the switch acceptance criterion. We therefore chose the weights
ω in such a way that ω(2)−ω(1) = E

(1)
ref −E

(2)
ref , ensuring that a phase switch is always

accepted if all particles are sitting on their reference positions despite the fact that
the energies of the two phases might differ significantly. In the case of phase switch
simulations in the NpT ensemble, an additional volume scaling must also be taken
into account, see below.

Once suitable weights have been determined (see Sec. 2.2), one samples the statis-
tics of the two phases by accumulating a histogram of the biased order parameter
distribution P̃ (M). At the end of the simulation, the effects of the weights is un-
folded from this distribution in the standard manner for extended sampling [77] to
find the equilibrium distribution P (M). Close to a phase transition, this distribu-
tion will exhibit two well separated peaks, whose areas yield the free energy dif-
ference as described above. An example is shown in Fig. 2.1 (a). Also show in
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Figure 2.1: a) The order parameter distribution p(M) for simulations at ∆ = 1.70 and
∆ = 1.71 carried out in the NVT ensemble. b) For comparison the same distribution is
plotted against the internal energy difference between the two phases for fixed {~u}. The order
parameter M is deduced from this energy difference E29rows − E30rows via the definition
given in eq. 2.2.

Fig. 2.1 (b) is the distribution of the instantaneous energy change under the switch
E(α′)({~u})− E(α)({~u}) which similarly shows two peaks, one for each phase.

With regard to the choice of reference configuration in each phase, in principle
this can be an arbitrary configuration belonging to that phase. In practice, however,
for crystalline systems one finds that the degree of weighting required to access the
gateway states can be reduced by choosing a reference configuration which is a per-
fect lattice. For more general system, e.g. those with crystalline disorder, or for fluids
it may be advantageous to try to ensure that the particles are not sitting too close to
each other (e.g. by energy minimization of the configuration [10]), since particles
which are in close proximity reduce the number of gateway states significantly. (We
note in passing that for fluid systems [11] one requires special approaches to guide
particles to the gateway states that we will not discuss here as they were not necessary
for our system.)

When we applied the phase switch method to the present model of 2d colloids in
confinement, we discovered the phenomenon of cooperative ring rotation processes,
which we subsequently investigated in detail. The findings of these studies are de-
scribed in Chapter 3, where we present mostly simulations carried out with Langevin
dynamics. However, the first time we saw these rotation processes was in the context
of phase switch Monte Carlo simulations. Here, the ring rotation processes cause
problems with the simulations –albeit rarely as the rotation processes are a priori rare
and also, because the compression of the system reduces the movement of the parti-
cles further– as the ring rotation processes involve sets of particles on neighbouring
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Figure 2.2: a) A section of a configuration that includes particles which have swapped posi-
tions in the phase with 29 rows. Black squares denote the reference configuration, red (grey)
lines are the displacement vectors associated with the reference positions and red (grey) dots
are the new positions. This simulation was carried out with 3240 particles at a misfit of
∆ = 1.70 in an NVT simulation with 1280 bins for the weight function. b) Typical his-
tograms of the particle displacements in y-direction. The (almost completely invisible) very
small peaks at about +1 and −1 correspond to particles which have swapped their positions.

lattice sites in adjacent rows jumping between rows during the simulation, creating in
the process a ring of particles which occupy each others positions (cf. Fig. 2.2 (a))
and remain there. When this occurs it interferes with the operation of the phase switch
method because the weight function is not designed to deal with it, so one is prevented
from reaching the gateway states. Although one can envisage methods for solving this
problem along the lines of those used in fluids [11], our solution to the problem was
to simply suppress it. Measurements of the distribution of displacements in the y-
direction is shown in Fig. 2.2 (b) and show that preventing particles from fluctuating
any further in y-direction than ∆y = 0.5 introduces a negligible constraint with regard
to their natural fluctuations (and hence on free energy measurements). Doing so made
ring rotations impossible and thus cured the problems associated with it. Of course,
strictly speaking a constraint of the movement of the particles in the y-direction de-
stroys the ergodicity of the simulations as some configurations are no longer possible.
But these configurations did not contribute significantly to our measurements here.

Finally, we outline briefly how to apply the phase switch method in the NpT en-
semble. The advantage of the NpT ensemble is that the results obtained at one pres-
sure can easily be extrapolated to other values of the pressure by standard histogram
reweighting methods. The difference between the NVT and the NpT ensemble in this
case is that additional volume moves have to be carried out in the NpT ensemble. In
such moves, all particle coordinates are scaled (along with the box) in both phases
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in the standard way [11, 58]. Additionally, it can prove useful to combine the phase
switch move itself with a volume scaling move if the equilibrium densities of the
two phases differ from each other as it was the case for our system. For details on
the underlying statistical dynamics, and acceptance probabilities, see Ref. [11]. The
problem of particles switching their positions and thus creating configurations which
prevented any further phase switches from being accepted did not occur in the case
of simulations in the NpT ensemble for our system. However, this might simply be
due to the rarety of these ring rotation events and not a general feature of the simula-
tions in the NpT ensemble. We obtained (within the error bars) the same free energies
whether or not we restricted the movement of the particles in the y-direction in the
way we had to restrict them in the NVT ensemble.

2.2 The transition matrix method

There are many different methods of obtaining a weight function η(M) for a Monte
Carlo simulation. One quite popular method is the Wang-Landau-Sampling [69].
When using this method, the range of the order parameter M used in the simulation
is divided into several bins. Each time one of these bins is visited, a histogram H(M)
of this bin is increased by one and the weight associated with the same bin is in-
creased by a certain value ∆η. As the weights change after every step, this simulation
is obviously biased, but it also builds up a weight function rather quickly. Once the
histogram H is sufficiently flat, which means that a rough estimate for the weight
function has been obtained, all of the histograms are set back to zero and the incre-
ment for the weight function ∆η is decreased to a smaller value. This procedure is
repeated several times until a sufficiently good weight function has been obtained.

One drawback of this method is that the simulations are biased throughout the
whole time and therefore also the weight function belongs to a biased simulation. Of
course, this bias becomes smaller as the updates of the weight function ∆η decrease.
And even more importantly, this method is quite easy to implement and works suffi-
ciently well for most problems, which leads to its high popularity.

A simpler approach is the multicanonical reweighting, where an estimated weight
function has to be known beforehand and is used to reweight the simulation in a way
that all states are visited with approximately the same probability. Such estimates
for the weight function can be obtained by extrapolating preceding simulations at
different parameters, e.g. at a higher temperature where no weight function might
have been necessary. But as such a weight function is in many cases not known
beforehand, the multicanonical reweighting has been extended to more sophisticated
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methods. One such method for reweighting a simulation in order to overcome the
typical free energy barriers (associated for example with interfaces) is the successive
umbrella sampling [70]. In this method, the simulation range is also divided into a
number of bins (similar to Wang-Landau sampling), but the simulation is restricted
to just two of these bins at every time, sampling each pair of neighbouring bins one
after the other. Thus it is possible to calculate the ratio of probabilities Pi+1

Pi
for each

pair of neighbouring bins in the whole range, from which one can calculate the overall
probability distribution, and therefore also the weight function, by simply multiplying
these ratios, starting from the first pair of bins, up to the desired pair of bins, and
thus getting the ratio of the probabilities of any bin in relation to the first bin: Pi

P0
=

P1

P0
· P2

P1
· P3

P2
· ... · Pi

Pi−1
. As P0 is determined by the normalization, one can calculate the

probabilities of every bin in this way. In order to make this method work, it is crucial
that the bins are not too large, so that the simulation fully explores both bins which
are allowed to the simulation at each time. If necessary, one can additionally use an
extrapolation of the ratios of probabilities of the previous bins as a weight function
for the current bins. In this way, one should be able to simulate the full range of the
order parameter.

This method introduces less bias into the simulation than the Wang-Landau-Samp-
ling, but it can be a bit tedious to increase the accuracy of the weight function obtained
with successive umbrella sampling, because that would imply increasing the statistics
for every single pair of bins or alternatively choosing by hand which bins need more
statistics, while a method like the Wang-Landau-Sampling simply has to be restarted
with the already existing weights and will automatically increase its accuracy further
and further.

Here, we will use the transition matrix method for our simulations, as this method
combines the advantages of being (almost) unbiased like the successive umbrella sam-
pling and at the same time as convenient to handle as the Wang-Landau method. The
following description of the transition matrix method is taken from [27]. The de-
tails of the implementation can also be found in [10, 11, 94] and the references given
therein.

The general idea of the transition matrix method for determining weight functions
is to record the acceptance probabilities of all attempted transitions and extract the
ratio of the states’ probabilities from it. As all attempted transitions contribute to the
weight function, including those that were rejected, the weight function can be built
up rather quickly.

In the transition matrix method the weights are updated “on the fly” throughout the
simulation (as in Wang-Landau sampling), allowing the simulation to explore an ever
wider range of values of the order parameter M as the weight function evolves, until
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it eventually encompasses the gateway states of low M . But in contrast to Wang-
Landau sampling, the weight functions which are actually used in the simulation
runs are only updated every few thousand steps, thus ensuring that detailed balance
is observed at any given time (expect the rare moment where the weight function
is updated), while in Wang-Landau sampling every Monte Carlo step changes the
weight function. Therefore the transition matrix method collects equilibrium data
from the outset of the simulation. Once a sufficiently smooth weight function has
been obtained, one can cease updating the weight function and perform a simulation
run with a constant weight function.

To implement the transition matrix method, the range of the order parameter M ,
for which a weight function is desired, is divided into a number of bins. In our case
this range corresponds to the values of M that lie between the peaks in P (M) which
correspond to the two phases (cf. Fig. 2.1a). A good choice for the binning of the
order parameter is to choose the bins in such a way, that the weight difference between
adjacent bins satisfies [11] |η(Mi+1)− η(Mi)| < 2. Then, for every attempted move
the acceptance probability p, (which is calculated anyway for use in the Metropolis
criterion) is stored in a collection matrix C:

C(M → M ′) ⇒ C(M → M ′) + p (2.6)

At the same time, the probability for rejecting the move and thereby keeping the
current value of the order parameter is also stored:

C(M → M) ⇒ C(M → M) + (1− p) (2.7)

It is important to note that these probabilities p are the “bare” acceptance probabilities
and do not include any weights.

The transition probabilities are then simply calculated by a normalization of the
values in the collection matrix, with the sum on the right hand side including all
possible states to which the system can jump from a given state:

T (M → M ′) =
C(M → M ′)∑
k C(M → Mk)

(2.8)

In the most general case, this method would create an N × N matrix, N being
the number of bins or values of the order parameter M . In order to derive the correct
probability distribution from such an N ×N transition matrix, it is necessary to com-
pute the eigenvector to the largest eigenvalue of this matrix. Appendix B explains why
this yields the correct probability distribution. However, it is not necessarily required
to know the exact probability distribution in order to create a weight function that will



CHAPTER 2. INTRODUCING A MISFIT 33

work sufficiently well. Therefore it is possible to take only those transitions occuring
between neighbouring bins of the order parameter into account when computing the
weight function. In terms of the transition matrix, this means that only the diagonal
elements - corresponding to transitions from a state to itself - and the first off-diagonal
elements - corresponding to transitions from one state to the adjacent ones - are taken
into account. Using this approach the weight function can be calculated quite easily
without the need to compute eigenvalues or eigenvectors of the transition matrix. In
this case, the ratio of the probabilities of two adjacent states can be read off directly
from the transition matrix via

P (Mi+1)

P (Mi)
=

T (Mi → Mi+1)

T (Mi+1 → Mi)
(2.9)

yielding the weight difference

η(Mi+1)− η(Mi) = − ln

(
P (Mi+1)

P (Mi)

)
=

− ln

(
T (Mi → Mi+1)

T (Mi+1 → Mi)

)
. (2.10)

Of course, when running the simulation, the system is still free to perform tran-
sitions between any values of M . But these transitions are not registered in the tran-
sition matrix and thus are also not taken into account when calculating the weights.
In the present study this was found to produce accurate and useful weight functions
as transitions between distant values of M were rare and the entries in the second
off-diagonal elements of the transition matrix were already considerably smaller than
the ones we used for the calculation of the weights.

By accumulating the transition matrix in the course of a simulation, one obtains
an estimate for P (M) which can be used to update η(M), thereby allowing the simu-
lation to explore a wide range of M . Repeated updates of η(M) thus extend system-
atically the range of M over which one accumulates statistics for the weight function,
until ultimately one reaches the gateway states. However since updating the weight
function during a simulation violates detailed balance, we chose to do this at rather in-
frequent intervals of 20000 sweeps. Once the weight function extends to the gateway
states, we stop updating the transition matrix and perform a long phase switch sim-
ulation with a fixed weight function in order to accumulate equilibrium free energy
data.

An example of a weight function created for the system with N = 3240 particles
(plus 432 fixed wall particles) at a misfit of ∆ = 1.7 is given in fig. 2.3, also illus-
trating how the definition of the energy order parameter M given in eq. 2.2, which
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Figure 2.3: Weight functions for the two-dimensional colloidal crystal with N = 3240 par-
ticles and structured walls at a misfit of ∆ = 1.7. The left minimum corresponds to states
where the system was simulating the phase with 29 rows, the right minimum corresponds to
30 rows. Note that the weights have an exponential influence on the acceptance criterion. Part
a) shows the weights plotted against the order parameter M as defined in eq. 2.2, b) shows the
same weight function plotted against the energy difference between the two phases in order to
illustrate how the definition of the order parameter in the logarithm of the energy difference
stretches the part around M = 0, where phase switches are most likely to happen.

includes a logarithm of the energy difference, leads to a finer binning in the part closer
to M = 0, where the phase switches are most likely to happen. In fact to ensure that
the transition matrix estimate of the weight function was sufficiently smooth and re-
liable in this region we reduced the number of bins in this region somewhat.

2.3 The Schmid-Schilling thermodynamic integration
method

The description of the general approach of the Schmid-Schilling method – which is
one variant of thermodynamic integration – is taken from [27]. After this outline of
the method, we will discuss details of the implementation that were specific to our
model system.

The general strategy of thermodynamic integration is to consider a Hamiltonian
H(λ) that depends on a parameter λ that can be varied from a reference state (char-
acterized by λ0) whose free energy is known, to the state of interest (λ1), without
encountering phase transitions. The free energy difference ∆F can then be written as
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∆F1 = F (λ1)− F (λ0) =

λ1∫

λ0

dλ′〈∂H(λ′)/∂λ′〉λ′ . (2.11)

For a dense disordered system (fluid or a solid containing defects), Schilling and
Schmid [4, 5] proposed to take as a reference state a configuration chosen at random
from a well equilibrated simulation of the structure of interest, at values of the exter-
nal control parameters for which one wishes to determine the free energy. Particles
can be held rigidly in the reference configuration {~ri

ref} by means of suitable external
potentials. (We recall that a somewhat related thermodynamic integration scheme for
disordered systems known as the “Tethered spheres method” has already been pro-
posed by Speedy [97].) When these external potentials act, the internal interactions
can be switched off. In practice, we used the following pinning potential Uref(λ) to
create the reference state, where rcut is the cutoff range.

Uref(λ) = λ
∑

i

φ(|~ri − ~r ref
i |/rcut) with φ (x) =

{
x− 1 if x < 1

0 else
(2.12)

Instead of the linear pinning potential φ (x) it is also possible to use other shapes
of the pinning potential, of course. In fact, using a steeper potential might have helped
to decrease the necessary CPU time of our simulations, as a steeper potential might
help to ensure that particles are sitting closer to the center of their potential wells,
thus reducing the energy barrier of switching the interparticle potentials on and off.

Here it is to be understood that particle i is only pinned by well i at ~r ref
i , and

not by other wells. However, identity swaps need to be carried out to ensure the
indistinguishability of particles. The free energy of this non-interacting reference
system then is

Fref(λ) = ln(N/V )− ln[1 + (V0/V )gφ(βλ)] , (2.13)

where β = (kBT )−1, V0 (in d = 2 dimensions) is V0 = πr2
cut and

gφ(a) =
2

a2
[ea −

2∑

k=0

ak/k!] ,

(2.14)
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for the choice of φ(x) written in Eq. (2.12) and again for d = 2 dimensions. Note that
there is a typing mistake in Ref. [5] in Eq. 5, which leads to incorrect results for the
case of d = 3 dimensions, where the formula has to read: gφ(a) = d!

ad ....

Then intermediate models H(λ) to be used in Eq. (2.11) are chosen as

H′(λ) = Hint + Uref(λ) , (2.15)

whereHint describes interactions in the system, which then are switched on (if neces-
sary, in several steps). The free energy contribution of switching on these interactions
can easily be determined by a Monte Carlo simulation which includes a move that
switches the interactions on and off. The logarithm of the ratio of how many times the
states with and without interactions were visited gives the free energy contribution:
∆F2 = −kbT ln(Poff/Pon). The free energy difference between the intermediate
model where particle interactions are turned on and potential wells are also turned
on, and the target system with particle interactions but without potential wells, then
is computed by thermodynamic integration, for which

〈∂Href(λ)/∂λ〉 = 〈
∑

i

φ(|~ri − ~ri
ref |/rcut)〉 (2.16)

needs to be sampled [4, 5].

Before applying this method to the colloidal model system we were aiming at, we
implemented it for the one-dimensional Ising model as shown in Appendix A in order
to fully understand the method and to reproduce some analytically known results.

As we will show in Sec. 2.5 that the phase switch method has outperformed the
thermodynamic integration method in terms of efficiency and accuracy when com-
puting free energy differences between two crystalline phases of our colloidal model
system, we have also included simulations where the Schmid-Schilling-method was
applied to this two-dimensional system as well as to a three-dimensional hard sphere
system, both of them confined by walls, and where wall excess free energies were
sampled [98]. These results are shown in Section 2.9. In this case, the phase switch
method could not have been used at all and the thermodynamic integration method
proved to be useful.

When applying the Schmid-Schilling method to the soft two-dimensional col-
loidal crystal we are studying here, a few things have to be taken into account. A first
question that arises when implementing the method is which choice of λ1 is most ef-
ficient. As λ1 describes the strength of the potential wells in the intermediate model,
where the interaction between the particles and the pinning potential are acting on the
particles, a large value of λ1 means that the particles hardly move. This is advanta-
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geous for that part of the Schmid-Schilling method where the particle interactions are
turned on and off several times during one simulation run in order to estimate the free
energy difference between the intermediate state and the reference state. Switching
these interactions on would be very difficult if the particles were sitting very close
together as the potential which is attempted to be switched on is purely repulsive.
It is therefore better if the particles are sitting very close to their reference positions
where they are distributed with larger distances between each other.

On the other hand, a large value of λ1 means that the thermodynamic integration
connecting this intermediate model to the target state whose free energy we are trying
to compute will have to cover a large range as it integrates from λ′ = λ1 to λ′ = 0,
switching off the potential wells until only the particle-particle-interactions are left.

For our present model we chose a value of λ1 = 100 as this rather large value
ensures that the particles hardly move. It was still rather complicated to switch on
the interparticle interactions as the potential is strongly repulsive. We therefore had
to use the trick suggested in [5] and divide the process of switching the particle inter-
actions on and off into several steps. For this particular model we used 100 steps of
increasing/decreasing the interaction parameter η from η0 = 0 (no particle-particle in-
teractions, only potential wells) to η100 = 1 (particle interactions fully implemented).
We used a scheme similar to successive umbrella sampling [70] here: As we can write

∆F2 = F (η100 = 1, λ1)− F (η0 = 0, λ1)

= −kbT ln(P (η100 = 1)/P (η0 = 0))

=
99∑
i=0

−kbT ln(P (ηi+1)/P (ηi)) (2.17)

we only had to sample the probabilities (P (ηi+1)/P (ηi) by restricting the simula-
tion to each pair of successive values ηi and ηi+1. Although switching the particle
interactions further on always led to an increase of the internal energy (as the poten-
tial is purely repulsive), these steps were small enough to be accepted via the usual
Metropolis criterion.

Another question that might occur is how to choose the reference state of the
system. As the main feature of the Schmid-Schilling method is that this reference
configuration can be an arbitrary disordered configuration, any state belonging to the
desired phase of the system is valid. Nevertheless, the simulations are more efficient
if the particles in the reference configurations are distributed in a way that maximizes
their distances to each other, as this makes it easier to switch the particle potential on.
It is therefore preferable, for example, to use a perfect crystalline lattice instead of
an equilibrated one which belongs to the same crystalline phase. In our specific case,
however, we did not deal with perfect crystalline structures, but with defectuous ones
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Figure 2.4: The impact of the number of
grid points chosen for the thermodynamic
integration on the computed value of F .
Simulations were carried out at ∆ = 2.0 for
a system starting off with 29 rows.
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which were put between walls that were a distance D apart which was incommensu-
rate with the crystalline structure. Therefore, we let the structure relax into the given
misfit by equilibrating it. We used 10 independently equilibrated reference configu-
rations (and made 5 simulation runs with each of them) for each value of the misfit,
and averaged over the results (see Sec 2.5).

Turning to the thermodynamic integration part of the Schmid-Schilling method,
it is important to ensure that the system does not undergo a phase transition on the
path connecting the chosen reference state with the target state. But as we created
our reference state by equilibrating the target structure, such a phase transition could
hardly occur.

A possible problem in thermodynamic integration is, however, to ensure that
enough grid points are chosen and that the system is equilibrated long enough in
each of these points for the simulation to yield the correct value. Fig. 2.4 illustrates
how the number of grid points influences the result. Additionally, we have compared
two integration schemes, the “trapezium” integration where the data points are sim-
ply connected by lines in order to integrate the area below them, and the “simpson”
integration method where quadratic curves are fitted to the values computed at the
grid points in order to integrate the area under a smoother (and thus more realistic)
curve. As the result does not differ significantly any more (within the range of the
errors) for 500 or 1000 grid points, and not even for the two integration methods at
1000 grid points, we choose to use 1000 steps for the variable λ in the thermodynamic
integration.

But just as important as the choice of enough grid points is checking that the
simulation is equilibrated on each grid point of the thermodynamic integration long
enough. One way of ensuring this is to compare curves in which λ has been gradually
switched on with curves in which it has gradually been switched off. If there is no
hysteresis visible any more (and these two integration directions therefore yield the
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ent directions of the thermodynamic inte-
gration in order to ensure that the system
has been equilibrated well enough at each
grid point and that therefore the direction
of the integration does not effect the result-
ing curve. Simulations were carried out at
∆ = 2.0 for a system starting off with 29
rows.

same result), the simulation has run long enough as was the case for our simulations as
we show in Fig. 2.5. A thorough equilibration is especially important for simulations
at those values of ∆ where structural transitions occur.

An implementation of the “smart moves” suggested in [4] was fortunately not
necessary for our particular system. These “smart moves” aim – similar to the special
moves for liquid systems in the phase switch method – at bringing particles closer to
their reference sites when they have left their potential well. As our system is not in a
liquid state, but is “only” a soft crystal and we chose a cutoff radius of rcutoff = 0.5
for the potential wells, the particles almost never left these wells in the course of our
simulations, and if, then they stayed very close by and drifted back into them (as
the potential wells are attractive) without the need of additional Monte Carlo moves
promoting this.

But of course, we had to implement identity swap moves as it would interfere with
the indistinguishability of the particles not to do so. As a side effect, these identity
swaps also extinguished the problems we encountered with the phase switch method
when rings of particles made a coordinated movement, each of them jumping onto its
neighbour’s lattice site.

As a last comment, we would like to stress that the Schmid-Schilling method
produces results with an astonishing accuracy even if it is outperformed by the phase
switch method in our particular case by several orders of magnitude. Yet, taking into
account that both contributions to the calculated free energy ∆F1 and ∆F2 were of
the order of 105 (with different preceding signs) and also the contribution Fref is of
the order of 104 (but does of course not contribute to the error bars as it is exact),
the fact that the free energy F = Fref + ∆F1 + ∆F2 of each of the phases (with
29 resp. 30 rows) was accurate enough for the free energy difference between these
phases (which is of the order of 10) to exhibit the slope which we will show in Sec.
2.5, is a proof of the really high accuracy of this method. Additionally, it might have
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been possible to increase the accuracy (or alternatively reduce the necessary amount
of CPU time) by choosing a steeper pinning potential φ(x), which would have pushed
the particles closer to the center of their pinning sites and thus would have reduced
the energy barrier between switching the interparticle potentials on and off.

2.4 Details of the simulation

The model system used in this chapter is the one described in Sec. 1.1. We again con-
sider monodisperse colloidal particles in a strictly two-dimensional geometry, which
then are treated like point particles in a plane interacting with a purely repulsive ef-
fective potential V (r). Structured walls are confining the crystalline system in the
y-direction, while periodic boundary conditions are applied in the x-direction.

In this chapter we will focus on the effect of placing the walls closer together and
thus introducing a misfit ∆ into the crystalline structure. As we have described at
length in Sec. 1.1, introducing a misfit leads to a structural transition in the number
of rows and the creation of solitons. The transition from the initial ny = 30 rows
to ny − 1 = 29 rows was investigated by Chui et al [1–3] by computing the stress
anisotropy. In this case, the nx = 108 particles of the row that has disappeared (for the
system comprised of N = 3672 particles which we are considering in this chapter)
have to distribute themselves in the remaining rows and preferrably create a soliton
staircase where 4 solitons are created next to each wall.

We have extended this investigation to stronger misfits, where another structural
transition occurs and the system rearranged itself into ny − 2 = 28 rows, see Fig. 2.6.
Albeit, the stress anisotropy exhibits a large hysteresis which obscures the exact lo-
cation of the transition. We have therefore applied the two methods for calculating
free energies respectively free energy differences which have been described in the
previous sections. But these methods require reference configurations which repre-
sent the phases for which the free energy is to be determined. In our case, this means
that typical configurations with ny − 1 = 29 and ny − 2 = 28 rows and appropriate
soliton patterns had to be created. One method of obtaining these configurations is
by running a simulation at a misfit where the structure will spontaneously rearrange
itself into the desired number of rows.

In practice, the actual structure having ny − 1 = 29 rows that is formed in the
simulations on increasing the misfit ∆ beyond the critical value ∆c ≈ 2.0, is generally
less regular than the ’idealized’ one suggested by Chui et al (shown in Fig. 1.4).
Specifically, the relative distance between neighboring solitons showed a considerable
variation. This comes about because (i) the solitons are formed from the stressed
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Figure 2.6: Stress anisotropy δσ plotted vs.
misfit ∆, for a system of N = 3240 particles,
and using different starting configurations hav-
ing ny = 30, ny = 29, and ny = 28, as indi-
cated in the figure. Note the huge hysteresis of
the ny = 30 → ny = 29 and ny = 29 → ny =
28 transitions. For further explanations see the
main text.

Figure 2.7: Configurations with N = 3240 particles and ny − 2 = 28 rows, but different
configurations of the solitons. In the text, they are referenced as “configuration nr. 1, 2, 3, 4”
from top to bottom. For a clear identification of the positions of the solitons, the method
described in [3] was used.

crystal with ny = 30 rows via random defect nucleation events [2], and (ii) the mutual
interaction between neighboring solitons, which is the thermodynamic driving force
towards a regular soliton arrangement, is very small [3]. It is therefore reasonable
to construct “by hand” the expected regular structure of 4 solitons near each wall
as a starting configuration for a system with 29 rows, which can subsequently be
equilibrated [1]. Of course, there is no guarantee that this guessed structure actually
is the one with the lowest free energy; but it does exhibit slightly less stress than all
other structures that had been tested, for misfits in the range 1.5 ≤ ∆ ≤ 3, and hence
has been used as a starting point for studies in which ∆ was varied in this range.

A similar picture arises if one starts out from the 29 row structure but increases
the misfit beyond ∆ = 3. As Fig. 2.6 shows, a transition occurs to structures with
ny − 2 = 28 rows (at about ∆ ≈ 4.1). Unfortunately, there seem to be no unique
candidates for stable structures having ny − 2 = 28. Fig. 2.7 displays four candidate
structures that we have identified, each of which is at least metastable on simulation
timescales. Depending on which of these 28 row candidates one takes, the transition



42
2.5. FREE ENERGY DIFFERENCES AND COMPUTATIONAL

EFFICIENCY

from 28 to 29 rows on reducing the misfit occurs at anything between ∆ = 3.2 and
3.75. As regards the nature of the candidate structures, in each case 2nx = 216 extra
particles have to be distributed across the system. If we again keep the rows adjacent
to the walls free of extra particles, the particle number per inner row becomes n′x =
nx +2nx/(ny−4) ≈ nx +8.3, i.e. is non-integer. If we kept two rows adjacent to the
wall rows free of extra particles, we would have 9 extra particles per row, and thus this
structure has been tried (this is configuration number 1 in Fig. 2.7). Another structure
was obtained if we place 4 extra particles in the rows directly adjacent to the walls
and 8 extra particles in each of the 26 inner rows (configuration number 2). By energy
minimization of a somewhat disordered structure resulting from a transition from 29
to 28 rows a structure was obtained which had 9 solitons on one wall but only 8 on
the other wall (configuration number 3). Finally another configuration with 8 solitons
on each wall (configuration number 4) was found. Note that the configurations shown
in Fig. 2.7 are not the actual structures at T = 1.0 but the corresponding “inherent
structures” found from the actual structures by cooling to T = 0, to clearly display
where the solitons occur. Clearly, it again is a problem to (i) identify which of these 4
configurations with 28 rows is the stable one (at T = 1.0), and (ii) determine at which
misfit the transition to the structure with 29 rows occurs. As we shall demonstrate
below, both problems can be elegantly dealt with by employing the phase switch
Monte Carlo method.

2.5 Free energy differences and computational
efficiency

Fig. 2.8a shows the absolute free energies in the NVT ensemble for the phase with
30 rows (and no defects) and the phase with 29 rows and the “soliton staircases”
(Fig. 1.4) as a function of the misfit ∆, as obtained from the thermodynamic integra-
tion method (Sec. III.1). One sees that these free energies are very large (note the
ordinate scale) and vary rather strongly with ∆. However, the free energy curves with
these two structures are barely distinct from each other, and hence a very substantial
computational effort is needed to locate, with meaningful accuracy, the intersection
point marking the equilibrium transition between n = 30 and n = 29 rows.

Fig. 2.8b plots the free energy difference ∆F versus the misfit, comparing the
results from the thermodynamic integration method (points with error bars) with the
results from the phase switch method, and focusing on the region near the transition.
One can see that within the errors the results of both methods agree very well with
each other, although for the thermodynamic integration method the error is at least
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an order of magnitude larger than that of the phase switch method. We note that the
predicted equilibrium value of the misfit at the transition point (∆t ≈ 1.7) falls well
within the hysteresis loop of Fig. 2.6.

Since the absolute free energies are of the order of 20000 (for our system with
N = 3240 particles) but, in the region of interest, free energy differences are only
of order ±40, the relative error δF/F is of order 1/500. Thus for thermodynamic
integration, it would be difficult to bring the error bars down further in Fig. 2.8b. The
error bars for the phase switch simulation were computed from the results of four
independent runs for each value of the misfit, and are hardly visible on the scale of
Fig. 2.8b.

In addition to this significant difference with respect to the size of the statistical
errors, phase switch Monte Carlo also outperformed the thermodynamic integration
method with respect to the necessary investment of computer resources. In order to
obtain a suitable weight function for our system, at a certain value of the misfit, we
let the simulation run for about 15 million steps (each step consisting of one sweep
of local moves and one attempt to switch the phases). On the ZDV cluster of the
University of Mainz, this takes about 4.5 days on a single core (though in hindsight
we could have got away with a less smooth weight function, further reducing the
computing time of this step). Having determined the weight function, we initiated
four production runs for every value of the misfit. These runs needed again 10 million
steps each (i.e. about 3 days each) in order to perform a sufficient number of phase
switches to yield results of the desired precision. Overall, then, computing each point
of the free energy difference curve of Fig. 2.8b by phase switch took about 16.5 days
of CPU time.

In contrast to this, the thermodynamic integration method required a calculation
not only of the free energy difference in which we are interested, but of the free energy
difference along the path of the thermodynamic integration, gradually switching off
the wells of attraction used there, and of the free energy difference between the state
where the particle interactions were turned on and the state where they were turned
off. This needs to be done for both phases separately. It is therefore not surprising,
that considerably more CPU time was needed: roughly 250 days of CPU time were
invested for each phase and for each value of the misfit to obtain the absolute free
energy (again converting units to a single core). Thus, each of the 12 values of free
energy differences needed for Fig. 2.8b required 500 days (rather than 16.5 days),
i.e. a factor of 30 more computational effort! However, if we were to bring the
statistical errors of the thermodynamic integration method a factor of 10 down (to
make it comparable to the phase switch method), we would need another factor of 100
in computer time; the benefit of using the (clearly much more powerful) phase switch
approach hence amounts to a gain of the order of 103 in computational resources!
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Figure 2.8: a) Absolute free energy F of systems of N = 3240 particles interacting with the
potential given in Eq. (1.1) in L×D geometry with L = 108a, a being the lattice spacing, and
periodic boundaries in x-direction, confined by two rows of fixed particles on either side in
y-direction (Fig. 1.1, as a function of the misfit ∆ (Eq. (1.4)). Two structures are compared:
(i) a (compressed) triangular lattice with ny = 30 rows containing nx = 108 particles per
row; (ii) a lattice with ny = 29 rows and corresponding soliton staircases (Fig. 1.4).
b) Free energy differences between structures with 29 and 30 rows plotted versus the misfit
∆. Both results obtained from thermodynamic integration and from the phase switch method
are shown, as indicated.
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Of course, this is no surprise when we remember that the free energy differences of
interest are only of the order of (1/500) of the total free energies for the present model
system.

2.6 Ensemble inequivalence

We turn now to a discussion of a puzzling aspect of the physics, namely the fact
that we treat here a first-order structural phase transition obtained by variation of the
distance D between the walls formed by the rigidly fixed particles, i.e. an extensive
rather than an intensive thermodynamic variable. If we were concerned with the study
of a vapor to liquid transition of a fluid in such a geometry, the proper way to locate a
discontinuous transition is the variation of the intensive variable thermodynamically
conjugate to D, which is the normal pressure pN (force per area acting on the walls;
in the following the index N will be omitted. Of course, at fixed lateral dimensions L
a variation of D is equivalent to a variation of the volume V ).

To fix ideas, we remind the reader about this classical vapor-liquid problem in
Fig. 2.9a: In the NpT ensemble, we would have a jump in volume V = LD from
Vv = LDv (density of the vapor ρv = N/Vv) to V` = LD` (density of the liquid
ρ` = N/V`) at the transition pressure pt. If we work in the conjugate NVT ensemble,
of course, the behavior simply follows from a Legendre transform, the volume jump
from Vv to V` translates into a horizontal plateau at p = pt, and any state of this plateau
is a situation of two-phase coexistence, as schematically indicated in Fig. 2.9a.

Of course, it is also possible to consider the present transition between a state of
n rows to n− 1 rows in the NpT ensemble (Fig. 2.9b and Fig. 2.10c). Then it is clear
that the transition will show up as a jump in the thickness D from Dn(= nan) to
Dn−1 (= (n−1)an−1), where an, an−1 are the (average) distances between the lattice
rows (or lattice planes, in three dimensional films, respectively). The corresponding
phases of the n-layer state and (n− 1) layer state are indicated below the isotherm in
the (p−D) plane schematically.

However, one simply cannot construct a state of two-phase coexistence out of
these two “pure phases” at a value of D intermediate between Dn−1 and Dn: locally
the n-layer state requires a thickness Dn, the (n − 1) layer state a thickness Dn−1,
so one would have to “break” the walls. Of course, it is not just sufficient to have a
state with n layers separated by a grain boundary from a state with (n − 1) layers at
the same value of D: these domains are not the coexisting pure phases in the NpT
ensemble!
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Figure 2.9: Schematic
description of phase
transitions in thin films
of thickness D in the
conjugate NpT (left)
and NVT (right) en-
sembles, for the case
of a vapor to liquid
transition (a) and the
present transition where
the number of rows is
reduced (n → n − 1)
when either the (normal)
pressure p increases
(left) or the thickness
decreases (right). Note
that in the latter case
two-phase coexistence
is possible for the
vapor-liquid transition,
but not for the transition
where the number of
rows parallel to the
boundaries change. For
further explanations cf
text.
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So the phase coexistence drawn (horizontal broken curve) in Fig. 2.9b is unphys-
ical, it requires a state where the constraining walls were broken. Requesting the
integrity of the walls is a global constraint which makes phase coexistence in the
standard sense impossible for the present transitions! Thus, the rule that the differ-
ent ensembles of statistical mechanics yield equivalent results in the thermodynamic
limit is not true for the present system; in the transition region Dn−1 < D < Dn the
NVT ensemble and the NpT ensemble are not equivalent.

Actually this is not the first time that such an ensemble inequivalence has been
pointed out. A case much discussed in the literature is the “escape transition” of a
single polymer chain of N beads grafted at a planar surface underneath a piston held at
a distance D above the surface to compress the polymer [99–105]. For pressures p <
pt (where the piston is at distance Dt,1) the chain is completely confined underneath
the piston (which has the cross section of a circle in the directions parallel to the
surface) while for p > pt the chain is (partially) escaped into the region outside
of where the piston acts (the piston distance at pt jumps to a smaller value Dt,2).
When we use instead D as the control variable, again a sharp transition occurs (for
N → ∞) at some intermediate value Dt (Dt,2 < Dt < Dt,1), since obviously it is
simply inconceivable to have within a single chain phase coexistence between states
“partially escaped” and “fully confined”, since these states are only defined via a
global description of the whole polymer chain.

Another case where transitions of the number n of layers in layered structures in
thin films occurs is the confinement of symmetric block copolymer melts (which may
form a lamellar mesophase of period λ0 in the bulk) in thin films between identical
walls [106–109]. When then the thickness D of such films is varied, one observes
experimentally discontinuous transitions in the number n of lamellae parallel to the
film [107, 108]. However, when one considers block copolymer films on a substrate
and does not impose the constraint of a uniform thickness but rather allows the upper
surface to be free, then indeed mixed phase configurations of a region where n − 1
layers occur (and take a thickness Dn−1) and of a region where n layers occur (and
take a thickness Dn) are conceivable [109] and have been observed, see e.g. [110].
In summary of these remarks, we note that it is not uncommon that global geometric
constraints may destroy the possibility of phase coexistence.

In view of the above discussion, it is of interest also in the present case to in-
vestigate the use of the (normal) pressure p (instead of the strip width D) as the
control variable. Taking, in the spirit of the general remarks on the phase switch
method, the appropriate phase switch energy cost as an order parameter M , we can
sample the probability distribution function p(M) which exhibits two well separated
peaks of generally different weights. These peaks are even more clearly visible in
the distribution of the energy difference p(E30rows − E29rows) at fixed {~u} as the or-
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Figure 2.10: a) Free energy difference ∆F

for the transition from n = 30 to n = 29
rows as a function of pressure. (b) The
distribution of the internal energy differ-
ence between the two phases p(E30rows −
E29rows) at fixed {~u}. Curves for 4 pres-
sures near and at the transition pressure pt =
22.146 ± 0.015 are shown, as generated via
histogram reweighting. The simulation was
run at a pressure of p = 22.13. (c) System
length D as a function of pressure. Clearly,
the curve for the stable phase exhibits a jump
at the transition pressure. Statistical errors
are smaller than the symbol sizes.
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der parameter M is related to this energy difference via a logarithmic function (cf.
eq. 2.2). The transition pressure pt is that for which the peaks have equal weight
(Fig. 2.10) and can be determined accurately via histogram reweighting. From this
we estimate that pt = 22.146± 0.015. At the transition, the measured misfit ∆ jumps
from ∆1 = 1.684 ± 0.044 (for n = 30) to ∆2 = 1.323 ± 0.046 (for n = 29). Please
note that there was an error in the values given in Ref. [27]: the misfit where the
transition in the NVT ensemble occurs (∆t ≈ 1.71) is (using the correct values) not
the average of these two values.

2.7 Comparison of competing stable candidate struc-
tures

Returning again to the NVT ensemble, we now consider the transition from states
with 29 layers to states with 28 layers. We recall (Fig. 2.7) that several different
candidate structures do exist, and it is not at all clear a-priori, which of them should
be favored. Again, the phase switch Monte Carlo is a convenient tool to solve such a
problem: we utilize reference states from all four of the candidate structures having
n = 28 (as shown in Fig. 2.7) and calculate the free energy difference ∆F between
the (unique) structure with n = 29 and these four candidates.
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Figure 2.11: Free energy differences be-
tween various structures with n = 28 rows
and the structure with n = 29 plotted vs. the
misfit ∆. As configurations number 2 and
number 4 turned out to be the same, their free
energy curves fall on top of each other.

The results (Fig. 2.11) clearly show that configurations number 1 and number 3 are
metastable, because they have distinctly higher free energy differences throughout the
range of ∆ than configurations number 2 and 4 which practically coincide. In fact, this
coincidence between the free energies of configurations nr. 2 and 4 is not accidental: a
closer evaluation of their time evolution shows that they transform into each other via
sequences of “easy” local moves, and although the instantaneous snapshot pictures
reproduced in Fig. 2.7 were different, they do not belong to different phases in a
thermodynamic sense.
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It is also interesting to note that the conclusion that structure number 2 is the stable
one would not have been obtained by a simply comparison of the internal energies of
the four structures: indeed configuration number 2 has the highest energy of all four
structures.

Thus, entropy matters in soft crystals, such as those studied here.

2.8 Concluding remarks

The principle findings of our study are two-fold: (i) We have performed a thorough
test of the suitability of the phase switch Monte Carlo method for the task of deter-
mining the relative stability of imperfectly ordered structures of typical soft-matter
systems, where one must deal with systems which have at least one very large linear
dimension. For such a test, it is crucial to provide full information on the model that
is studied, and to give a careful description of the method and its implementation.
Moreover we have studied precisely the same model system by a thermodynamic in-
tegration method thereby allowing the first like-for-like comparison between the two
approaches. We find that the results from both methods are compatible, but the ac-
curacy that can be achieved using phase switch MC is at least an order of magnitude
better (Fig. 2.8b), despite requiring a factor of 30 less computational time.

The reasons for this efficiency gain can be appreciated from a glance at Fig. 2.8a:
the absolute free energies of our system of 3240 particles vary from about 22000 to
24000 (in suitably scaled units), for a misfit parameter ∆ varying from 1 to 2, while
the free energy difference between the two states that we wish to compare vary only
from −60 to +60 in the same range. These numbers illustrate vividly the basic con-
cept of phase switch Monte Carlo: one does better in focusing directly on the small
free energy difference between the states that one wishes to compare, rather than
extracting them indirectly by subtracting two measurements of large absolute free en-
ergies. Thus (in the present context at least) phase switch Monte Carlo seems a much
more powerful approach than thermodynamic integration. In fact, if one were to try to
bring the errors of the thermodynamic integration method down by an order of mag-
nitude – to make the error bars of both methods in Fig. 2.8b comparable – one would
have to invest a factor of 3000 more computational time. We feel that the case of
relatively small free energy differences between competing phases and/or structures
is rather typical for soft matter systems. Indeed for many soft matter systems, such
as block copolymer mesophases, the relative magnitude of free energy differences is
much less than the factor of about 1/500 encountered here, and hence such problems
could never be tackled successfully with thermodynamic integration methods since



CHAPTER 2. INTRODUCING A MISFIT 51

the computational effort to reach the requisite accuracy would be prohibitive.

The first problem to which phase switch Monte Carlo was applied (in the form
of the "Lattice-switch" method), evaluated the free energy difference of perfectly or-
dered face-centered cubic and hexagonal close packed crystals. Such an application
might be regarded as a somewhat special case due to the perfect long-range order
in these defect-free crystals. However, the present work shows that the method can
equally be applied to imperfectly ordered crystals. Here, due to the confinement by
structured walls together with a misfit between the distance between the walls and the
appropriate multiple of the distance between the lattice rows, somewhat irregular long
range defect structures form along the walls (“soliton staircase”). Additionally sev-
eral similarly ill-crystallized structures can present themselves as candidates for the
optimal structure (Fig. 2.7). It would be absolutely impossible to identify which is
the equilibrium structure and which structures are only metastable without the phase
switch Monte Carlo method (Fig. 2.11).

(ii) Our second main finding is that this type of system has an interesting physical
property, namely the inequivalence between conjugate ensembles of statistical me-
chanics. When we fix the distance D between the confining “walls”, the total particle
number N and the total (two-dimensional) “volume” V of the system, we realize the
NVT ensemble. When one studies first order transitions in the bulk using such an
ensemble containing two extensive variables (N , V ), a first order transition normally
shows up as a two-phase coexistence region (e.g., at fixed N the two-phase coexis-
tence extends from VI to VII). However, here such a two-phase coexistence is not
possible (Fig. 2.9), and thus one has the unusual behaviour that at the equilibrium in
the “constant D”-ensemble the conjugate intensive variable (the normal pressure pN ,
as well as the stress anisotropy δσ, cf. Fig. 2.6) exhibit jumps (in Fig. 2.6, we display
the hysteresis loops, but the positions of the jumps in equilibrium can be inferred from
∆F = 0 in Figs. 2.8b and 2.11, respectively). When we use a “constant p”-ensemble
(which is physically reasonable if the confinement of the crystal is effected mechan-
ically in a Surface Force Apparatus), it is the “volume” (i.e., the distance between
the walls D) which jumps from DI to DII at a well-defined transition pressure, cf.
Figs. 2.9, 2.10.

One should not confuse this ensemble inequivalence with the well-known ensem-
ble inequivalence between NVT and NpT ensembles in systems where N is finite: in
the latter case, the ensemble inequivalence is dominated by interfacial contributions
(in the NVT-ensemble, when VI < V < VII , the system is in a two-phase config-
uration, as suggested for V → ∞ by the “lever rule”, but for finite V the relative
contribution due to the interface between the coexisting phases dominate the finite
size effects). But for V → ∞ these interfacial effects become negligible, the prop-
erties in the two conjugate ensembles are just related by the appropriate Legendre
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transformation. This equivalence between the ensembles holds also for liquid-vapor
or liquid-liquid unmixing under confinement in a thin film geometry: when D is finite
and the particle number N → ∞, i.e. the lateral linear dimensions become macro-
scopic, we still have ordinary two-phase coexistence in the thin films (cf. Fig. 2.9).
The ensemble inequivalence in the present system arises from the lack of commensu-
rability between the thickness D of the slit and the appropriate multiple of the lattice
distance. At a transition pressure pt in the NpT ensemble we inevitably have dif-
ferent distances DI , DII between the walls for the two phases I , II . Thus, they
cannot coexist for any uniform value of D. Similar phenomena (where the number of
layers of a layered lamellar structure confined between walls exhibits jump disconti-
nuities when D is varied) are already known, both experimentally and theoretically,
for block copolymer mesophases, but the aspect of ensemble inequivalence has not
been addressed, to our knowledge, in these systems studied here.
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2.9 Addendum: Determining interfacial tension using
the Schmid-Schilling method

While we have demonstrated in the previous sections that the phase switch method
is more suitable for the determination of free energy differences between various
crystalline structures, there are –of course– also cases where the absolute free en-
ergy needs to be known and the thermodynamic integration method by Schmid and
Schilling [4, 5] can be used. One such example is the computation of surface or
interface free energies, which we will describe in this section.

The basic idea is here to consider crystals of different sizes, but with the same
interface area. For example, in the case of a two-dimensional colloidal crystal, one
might use walls in the y-direction (which create an interface with the crystalline struc-
ture) and consider crystals of different numbers of rows NR in the y-direction, but
with a constant length Lx of the walls (see Fig. 2.12). All of these crystals thus have
the same interface free energy. Additionally, there is a contribution to the free energy
which scales with the number of particles respectively with the thickness of the crys-
tal (we only consider ideal lattice structures with constant densities here). Thus, the
free energy can be written as

F = Fbulk + 2 · γ · Lx (2.18)

where γ is the interfacial tension between the colloidal particles and the wall and the
factor 2 is due to the fact there there are two walls. Fbulk is proportional to the number
of particles N and thus to the number of rows NR as N = NR ·Nx. Therefore we can
write:

F

N
=

Fbulk

N
+

2 · γ · Lx

Nx ·NR

(2.19)

and plotting F
N

versus 1/NR yields a straight line where Fbulk

N
can be read off as the

intersection of the curve with the y-axis as it is independent of the system size, while
2γLx

Nx
is given by the slope. From the latter, γ can be determined. Calculating the

absolute free energy of these crystals therefore yields an estimate of the interfacial
free energy.

In this case we do not use structured walls consisting of frozen particles, because
the interfacial tension between such walls and the commensurate crystalline structure
of the same hexagonal lattice geometry is extremely small. Instead, we are using
planar walls with a Lennard-Jones potential

V (r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(2.20)
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Figure 2.12: Sketch of differently sized
crystals with the same interface “area”
2 · Lx and planar walls.

with σ = 1. The ε-parameter was optimized in such a way that at a given density
ρ = N/(Lx ·D) –D = NR ·

√
3

2
a being the distance between the walls– the distance

between the walls and the first crystalline row was as large as the distances between
the crystalline rows

√
3

2
a in order to ensure that the crystal was not compressed.

As planar walls cannot stabilize the crystalline structure in the way structured
walls do, we had to increase the density in order to remain in the crystalline regime:
Instead of ρ = 1.05 which we used in the rest of this thesis for the uncompressed
case, we used ρ = 1.30 in order to obtain a Lindemann parameter of pLind = 0.09,
which is below the threshhold for crystallinity defined as pLind = 0.1.

The results for the two-dimensional crystal with planar walls are shown in Fig. 2.13.
As expected, the absolute free energy of the system as a whole increases with in-
creasing number of rows (and therefore also proportionally increasing number of par-
ticles), but the free energy per particle decreases. The fit shown in Fig. 2.13 yielded
y = 11.9065 + 3.61236x, i.e. Fbulk/N = 11.9065 and γ = 1.9165.

Of course, one can also determine the contribution of the walls to the free energy
by carrying out a simulation of a crystal in the bulk and comparing it directly to
the free energy of the same crystal when walls are implemented. This might lead
to some finite size effects as the free energy difference between bulk systems and
systems with walls might not only stem from the interfacial free energies, but the
crystal might also be slightly compressed by the walls and its structure might become
more disordered in the case without them. All of these additional effects will only
vanish for large enough system sizes. And indeed we encountered some trouble for
the smaller system sizes as these crystals proved to be rather instable without the
walls (i.e. the Lindemann parameter was not below pLind = 0.1 any more for the
system with 12 rows). Therefore we only used the bulk system with 30 rows for these
simulations, where pLind was on average below 0.1 and the pair distribution function
showed clear peaks (see Fig. 2.14). Here, we obtained a value for the bulk free energy
of Fbulk/N = 11.9048 and for the interfacial tension of γ = 1.9531, which agrees
very well with the values calculated above.

In order to compare this method of determining the interfacial tension with other
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Figure 2.13: a) Absolute free energies F for crystals with the indicated number of rows NR

and planar walls. b) Free energy per particle F/N plotted against 1/NR for the same systems.
All simulations were carried out at T = 1.0 and ρ = 1.30.

methods, we have also implemented it for a three-dimensional system of hard spheres
in a box confined by walls in one direction which interact with the spheres via a
Weeks-Chandler-Andersen potential [165] of the form:

VWCA(z) = 4ε

[(σw

z

)12

−
(σw

z

)6

+ 1/4

]
, 0 ≤ z ≤ (σw · 21/6) (2.21)

with parameters ε = 1 and σw = 1. One has to note, however, that the wall potential
is a soft potential, which means that the spheres can in principle approach the walls
until the centers of the spheres touch the walls. We oriented the crystal in such a
direction that the 111-layer was next to the walls.
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Figure 2.14: a) Pair distribution function g(r) versus particle distance r and b) Lindemann
parameter for a crystal with 30 rows in the bulk at T = 1.0 and ρ = 1.30.



56
2.9. ADDENDUM: DETERMINING INTERFACIAL TENSION USING

THE SCHMID-SCHILLING METHOD

When using the Schmid-Schilling method to compute the absolute free energy of
such a hard sphere system of a certain thickness D, D being the distance between the
walls, one has to use the equations given in Ref. [5] for the three-dimensional case
(note the error in the formula given in Eq. (5) of Ref. [5]: the correct equation reads

in this case glinear(a) = d!
ad

(
ea −

d∑
k=0

ak

k!

)
where all parameters are defined as in Ref.

[5]).

Figure 2.15: Absolute free energy
F/D for a hard sphere fluid con-
fined by WCA walls, which were
placed a distance D apart from
each other. Density η = 0.3868.
The intercept at the ordinate is
known exactly from the Carnahan-
Starling equation.
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When the contribution of switching the particle interactions on and off in the
case of the intermediate system is being computed, one has to deal with the fact that
the particles interact as hard spheres. Switching a hard sphere interaction on is a
severe problem when the particles have moved for several steps without feeling any
interactions, as the chances are high that at least some particles will at least slightly
overlap, which would lead to a rejection of the switch-on-move. Thus, again one
has to divide the process of switching the interaction on into several steps (we chose
100 steps), in which overlaps between particles are fined with an increasing energy
barrier, until there are no overlaps any more and the hard sphere potential can finally
be switched on in a last step.

We were able to reproduce the value given by the Carnahan-Starling equation of
state for hard spheres by simulating a system in the bulk, which corresponds to the
case of D →∞, where the walls would be placed infinitely far apart from each other.
Running simulations with walls which were placed only a finite distance D apart
from each other yielded the results shown in Fig. 2.15. The straight line can be fitted
to the data points with high accuracy and the resulting value of γ = 1.01 ± 0.01 is
fully compatible with results obtained with different methods: In Ref. [111, 112] we
have compared this method of obtaining the interfacial tension via thermodynamic
integration with the “ensemble mixing method” where one gradually switches the
walls on and of and with simulations where the interfacial tension is extracted from
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the anisotropy of the pressure tensor. But as our simulations showed that the results
of all three methods agree, but that especially the ensemble mixing method produces
results of the same (or much better) accuracy in considerably less CPU time, we
did not follow this particular approach much further. The reasons for this difference
in accuracy respectively necessary CPU time are the same ones we observed before
when comparing the thermodynamic integration method to the phase switch method:
Again, the thermodynamic integration method yields the absolute free energies, while
the ensemble mixing method is similar to the phase switch method in that it directly
computes the free energy differences which we needed here. Thus, it is better suited
to this particular problem.
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Chapter 3

Motion and Diffusion mechanisms in
colloidal crystals

We are currently preparing a publication on the basis of this chapter (Ref. [26]). The
wording of this paper is probably going to be at least in parts similar to the one of this
chapter.

In this chapter we will investigate the motion and diffusion of particles and soli-
tons in colloidal crystals under confinement; in contrast to the previous chapter we
will now study the dynamics of the system. Such colloidal systems have been exten-
sively studied, as they are a very useful model system not only for statistical physics,
but also for modelling nanotechnological devices and self-assembly processes. As
we have described in Chapter 1, the great advantage of using colloids lies in the fact
that they can be produced with tunable interactions, in different shapes and sizes,
and that convenient techniques are available to observe their structure and dynamics
[52, 113–116].

Therefore colloidal systems have been investigated under various external condi-
tions both by experiment and simulation. Two-dimensional layers of colloids have
been created [29, 33–37, 41–46], they have been confined mechanically or by laser
fields [43, 46, 49, 117] and layers of colloids have been sheared observing soliton-
like excitations, namely moving kinks and antikinks [118]. They have been used
as a model system to study phase transitions [29–35, 119] and crystal nucleation in
two-dimensional colloidal systems [37], and the crack formation in two-dimensional
colloidal crystals has been studied [39]. They have been used to model the glass
transition [45, 120]. Different boundary conditions [121] and the effect of incom-
mensurate walls on colloidal crystals in two dimensions have been investigated by
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simulations in which soliton formation was observed [1–3, 27].

But although colloidal systems under confinement have been extensively studied
with various questions in mind, a thorough study of the basic motion of the parti-
cles and solitons and of the diffusion processes inside of colloidal crystals is still
missing, and with this study we are attempting to fill this gap. We describe in our
simulations the damping of oscillations of the particles due to solvent by carrying out
a Langevin dynamics simulation (rather than microcanonical Molecular Dynamics),
thereby ignoring hydrodynamic backflow effects, of course, but the latter should not
be important for colloidal crystals in thermal equilibrium. Both perfect (defect-free)
crystals and crystals containing solitons at the confining walls shall be studied.

In a crystal formed from atoms or small molecules, the dominating type of mo-
tion of all particles are small scale (somewhat damped) oscillating motions (due to
thermally excited phonons); the amplitude of these motions can only be of the order
of 10% of the nearest neighbor distance, or less, otherwise the crystal melts (“Lin-
demann criterion”) [122]. In a colloidal crystal where micrometer-sized particles are
suspended in a solvent, these lattice vibrations are overdamped by the random colli-
sions with the solvent molecules, but with respect to the static mean square amplitude
of particles, the behaviour is still analoguous to crystals formed from small particles.

Another important contribution to the movement within colloidal crystals is diffu-
sion. The well-known theory of diffusion in crystals states that diffusion either takes
place via vacancies or - in perfect crystals like the one we are studying here - via
the formation of a hole and a corresponding interstitial particle. In this study we will
show that in our model system diffusion also takes place by cooperative rotations of
groups of particles.

Such cooperative rotation diffusion processes are known to play an important role
in glassy materials [23]. In two-dimensional layers of crystals, such as surfaces, a
variety of different diffusion mechanisms have been described: Most studies concen-
trate on hopping vacancies as the direct mechanism [123] or at least as the underlying
principle mediating surface diffusion [124] and on the diffusion mechanism of so
called “adatoms” which are atoms adsorbed on a surface [125–130] and on the ques-
tions how thermal vacancies are created and destroyed and which role the surface
plays in this process [131].

But to our knowledge there are only two studies reporting on cooperative ring ro-
tation processes: Using temperature-accelerated dynamics (TAD) [132, 133], Mon-
talenti et al. have found evidence of such machanisms in a two-dimensional layer
of crystalline atoms in a periodic potential [25] and in Cu grain boundaries [24], al-
though they were extremely rare especially in the latter case. In this chapter we will
show, that in our two-dimensional model system cooperative ring rotation phenomena
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occured quite frequently and involved different numbers of particles.

In the next section we will describe details of the simulation. In Sec. 3.2 we
will present our results for the motion of the particles in the case without solitons,
during the equilibration into the defect structure (Sec. 3.3), and for the case where
the transition has taken place. We will also investigate the motion of the solitons (Sec.
3.4). In Sec. 3.5 we will describe the diffusion mechanism which we have observed,
and in Sec. 3.6 we will summarize our findings.

3.1 Details of the simulation

In this chapter, we will study the motion and diffusion of particles in a two-dimensional
colloidal crystals by using the same model system as described in Sec. 1.1. So the
particles are interacting via a purely repulsive potential and arrange themselves into
an hexagonal crystalline lattice at the temperatures studied here. Walls are imple-
mented in the y-direction and consist of two rows of frozen particles. As a reminder,
the system geometry is shown in Fig. 3.1 again.

Figure 3.1: Sketch of the system ge-
ometry, showing the fixed wall parti-
cles (black spheres) and the mobile
particles (gray spheres). The orien-
tation of the coordinate axes is in-
dicated, as well as the lattice spac-
ing of the triangular lattice (a) and
the linear dimensions Lx, D of the
system.

Simulations are carried out at various values of the misfit (see definition of the
misfit and its consequences for the crystalline structure in Sec. 1.2): At ∆ = 0 the
system exhibits perfect crystalline order and is comprised of 30 rows of particles in
the y-direction, while from ∆ ≈ 2.0 onwards only the configuration consisting of 29
crystalline rows and the appropriate number of solitons is stable. Between ∆ ≈ 1.3
and ∆ ≈ 2.0, configurations with 29 rows as well as configurations with 30 rows are
at least metastable.

The simulations are carried out using Langevin dynamics by applying the pro-
gram package HooMD-blue [13, 14]. This program is designed to run on graphic
cards, where due to the parallelization on the internal processing units large system
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sizes can be used. Thus, most simulations were carried out using M = 73440 par-
ticles (including walls), i.e. 64800 mobile particles. However, graphic cards usually
only use single precision, which proved to be not accurate enough for our system at
temperatures T < 1.0 (see Appendix C). Therefore, we had to run the simulations at
the lower temperatures on CPUs. As this led to a considerable increase in the com-
putational times, we reduced the system size to N = 3672 particles including walls,
i.e. 3240 mobile particles wherever possible when we had to run the simulations on
CPUs.

The program HooMD-blue uses the well-known Velocity Verlet integration method
(see also Sec. 1.3). In this integration scheme, a force ~F = −γ~v + ~Frand is added
to the force exerted on each particle by the interaction with its neighbouring particles
[60, 61]. Here, γ is a friction coefficient to be specified, ~v is the particle’s velocity
and ~Frand is a random force with a magnitude chosen via the fluctuation-dissipation
theorem to be consistent with the specified drag γ and the chosen temperature T . We
used a time step of ∆t = 0.002, a friction coefficient of γ = 0.5 (unless otherwise
specified) and a temperature of T = 1.0 (unless otherwise specified). Note that our
particles have mass m = 1, and that the time t is measured in the standard Molecular
Dynamics time unit τ = t

√
ε

mσ2 .

All simulations were carried out below the melting temperature of Tm = 1.35
[1, 34, 52] for our chosen density of ρ = 1.05. As we have already discussed in Sec.
1.2 (compare also Fig. 1.2 shown there), the relative fluctuations are therefore –for all
values of the temperature which we used here– clearly smaller than what would be
expected near melting (from a Lindemann-type criterion). In the commensurate case,
the confined crystal has an essentially defect-free triangular crystal structure.

3.2 Localized Motions of Particles Confined in “Cages”
formed by their Neighbors

When the system starts out with 30 crystalline rows, N = 64800 mobile particles, and
without misfit, we obtain the MSD with respect to the time difference MSDtime-diff for
the particles in x- and y-direction shown in Fig. 3.2. Here, like in all graphs of this
kind (unless otherwise stated), we printed out configurations after every 50 steps and
averaged over 500 configurations. In the following we define one MD time unit by
multiplying the number of integration steps with the time step ∆t = 0.002. So one
MD time unit corresponds to 500 integration steps. The starting configurations were
equilibrated for 2 · 106 steps before the simulation runs were started. One can see an
overshoot at small time scales. This is expected in a crystal as it is due to the repelling



CHAPTER 3. MOTION AND DIFFUSION MECHANISMS 63

forces which the particles experience when they are displaced from their ideal lattice
position and thus come closer to their neighbouring particles. These forces act simi-
lar to a harmonic potential pinning particles to their lattice sites, therefore they cause
this oscillatory behaviour in the MSD. But as the oscillation is strongly damped and
modified by random kicks, only this overshoot is clearly visible. At slightly larger
time scales, the MSD reaches a plateau. This plateau is also expected, because the
structured walls are pinning the crystal (as a whole) to its position and do not allow
any center-of-mass movement. Thus, the particles are localized near their equilibrium
sites. One can also see that in y-direction the values are of the same order of mag-
nitude as the crystal is not compressed. They do differ a bit, however, as it makes a
difference whether there are fixed wall particles or periodic boundary conditions, of
course.

If one studies the same MSDs at a misfit of ∆ = 1.5, where the transition to 29
rows has not taken place yet, the values are smaller as the system is compressed and
less space is available to the particles (Fig. 3.3). Apart from this, the proximity of the
transition does not show up in the MSDs.
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Figure 3.2: MSDtime-diff in x- (a) and y-direction (b) for a system with 30 rows without misfit.
Due to the symmetry of the system, rows 1 and 30, 2 and 29 etc should on average yield the
same curves. Temperature T = 1.0. Each MD-time unit corresponds to a difference of 500
integration steps as the time step was ∆t = 0.002.

Note that the time-dependent mean-square displacements show in the inner rows
(e.g. row 8 and 23, or 15 and 16, respectively) some flat maximum at time ≈ 2.
While rows 15 and 16 are adjacent to each other, and hence motions of particles in
these rows are strongly correlated to each other, rows 8 and 23 are rather remote from
each other (they are only equivalent due to the symmetry of the system, since both
corrugated walls are equivalent). Hence this particular feature of the MSD is not a
consequence of insufficient averaging, but a real effect. It also is easily understand-
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Figure 3.3: Same like Fig. 3.2, but for a system with 30 rows at a misfit of ∆ = 1.5, where
the transition to 29 rows has not taken place yet.

able that the mean square displacements are larger in the center of the slit: due to
the corrugated walls, all phonon-type excitations are constrained to have zero ampli-
tude at the boundaries. A phonon with wavelength λ/2 = D has then its maximum
amplitude at y = D/2.

Figure 3.4: MSDtime-diff in x- and y-direction
for a system with 240 · 270 particles (“square
system”) and for an elongated system with
2160 · 30 particles without misfit. Temper-
ature T = 1.0. Each MD-time unit cor-
responds to a difference of 500 integration
steps as the time step was ∆t = 0.002. 0 2 4 6 8 10
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Fig. 3.4 shows the MSDtime-diff for an uncompressed bulk system for comparison.
As expected, the averaged MSDs are larger when no walls are present. Furthermore,
they do not exhibit a real plateau as the center of mass is not fixed without structured
walls. Additionally, this figure shows the influence of finite-size effects in connection
with the shape of the system in the case where no walls are present: The “square
system” behaves like a real bulk crystal where the particles are pinned to their lattice
site rather strongly, while in the elongated system only the MSD in the x-direction
shows this behaviour. As the number of rows is significantly smaller than the number
of particles per row here, it is energetically possible for the rows to bend and assume
an almost wave-like configuration, which leads to significantly larger values of the
MSD in the y-direction. But of course this effect does not occur when walls stabilize
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the rows.

3.3 Slow Dynamics due to Soliton Formation

If one starts out with 29 rows at a misfit of ∆ = 2.2 or alternatively waits long
enough until the configuration which started out with 30 rows at this misfit has fully
equilibrated and a regular soliton pattern has evolved, one obtains the values for the
MSDtime-diff as shown in Fig. 3.5.

One can read off from Fig. 3.5, that the MSD has not reached a plateau, even
at an MD-time difference of 30, for the inner rows, which means that there is some
diffusion, which clearly does not involve the rows directly adjacent to the walls. This
is not suprising as the rows directly adjacent to the walls retain their original number
of particles and are therefore still commensurate to the walls and pinned to their
position by them. Whereas the inner rows have a different number of particles now as
one row has disappeared and the particles from this row have been distributed among
the inner rows. Therefore they are not commensurate with the structure of the walls
any more and can thus make a translational movement along the walls as the potentials
created by the wall particles cannot hold them in their original positions any more. In
fact, for infinite two-dimensional crystals it is well-known that the static mean-square
displacement of a particle relative to its reference position in the ideal perfectly rigid
crystal lattice diverges as the center of mass drifts. In the x-direction parallel to the
walls we hence expect for the rows 2,...,29 which are no longer pinned by the walls
that MSD(∆t → ∞) → ∞, unlike the commensurate case of Figs. 3.2, 3.3, where
the whole crystal is pinned by the boundaries, and for any finite slit thickness D we
have a finite value of the MSD(∆t →∞) for all rows.

One can also see that generally the diffusion in row 2 and row 29 has the largest
values, while the MSD is smaller again for rows further inside of the crystal, and
has a minimum value for the rows directly next to the walls. This is fundamentally
different from the situation shown in Fig. 3.2 and 3.3, where row 1 and row 30 also
had the smallest values of the MSD, but the MSD grew larger with increasing distance
from the walls instead of displaying a maximum in the rows 2 and 29 and becoming
smaller again inside of the crystal. This can be explained by the influence of the
solitons (in the simulations with 29 rows) which cause considerable movement in the
crystal. As we will show in the following section, these solitons are present in the
rows next to the rows directly at the walls, i.e. they are sitting close to the walls, thus
creating the maximum of the MSD in row 2. They also cause a certain amount of
disorder and movement in the rows next to them, therefore the MSD now decreases
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towards the inner part of the crystal, while the MSD used to increase due to the
decreasing influence of the stabilizing walls in the case without solitons. The rows
directly adjacent to the walls were stabilized by the walls in both cases and thus
always showed the smallest values of the MSD.

Figure 3.5: MSDtime-diff in x-direction for a
system which started with 29 rows and was
equilibrated at a misfit of ∆ = 2.2 (where
29 rows are stable). Temperature T = 1.0.
Each MD-time unit corresponds to a differ-
ence of 500 integration steps as the time step
was ∆t = 0.002. 0 5 10 15 20 25 30
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When the walls are placed closer together, creating a misfit of ∆ = 2.2, it takes
a while until all solitons are created in this very large system. While this happens,
one can watch the “MSD with respect to the time difference” grow. This is especially
visible for those rows in which the solitons are created, i.e. rows number 2, 3 and 4.
The effect is visible both in the x-direction and the y-direction of the MSD, although
now one can see differences in the size of the MSD in x- and in y-direction. Examples
of this are shown in Fig. 3.6.

While in the commensurate case characteristic times needed to equilibrate the
system are of the order of a few MD time units, Fig. 3.6 reveals that the time needed
to equilibrate MSD (∆t) in the incommensurate case is of the order of about 2000
MD time units (for the large system comprised of 64800 mobile particles; for smaller
systems it is quicker). These large times are understandable, since the formation of the
soliton staircase pattern requires the nucleation of defects moving from one boundary
to the opposite boundary, as described in detail by Chui et al. [2] in the framework of
Monte Carlo simulations.

Fig. 3.6 also shows that the amplitudes of the curves obtained for row 3 are larger
than the ones for row 2. The curves for row 4 are qualitatively very similar, but
exhibit an even larger amplitude than the ones for row 3. The fact that the amplitudes
of the particles in the inner rows remain slightly larger than those in row 2 indicates
that if the system is equilibrated from a 30-row-structure into a 29-row-structure and
the solitons are formed at random positions, there is more disorder in the inner rows
(which is typical for the case of 30 rows, compare Figs. 3.2 and 3.3), while if the
system starts off with 29 rows and a corresponding “perfect” soliton pattern, there
is more movement in the rows closer to the walls (see Fig. 3.5). This behaviour
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Figure 3.6: Change of the MSDtime-diff in x-direction (a) and y-direction (b) as solitons are
created. Large graphs show curves for row 2, small ones for row 3 and 4. System started out
with 30 rows at a misfit of ∆ = 2.2 and slowly solitons are created and the structure changes
into 29 rows. Temperature T = 1.0.

can in principle change on very long time scales as the solitons repel each other and
thus push each other closer to the walls and into a more regular staircase pattern.
But usually the structure forming by equilibrating a 30-row-structure into 29 rows
gets stuck in a more disordered state and exhibits a less regular soliton pattern and a
slightly higher stress even on long time scales.

One can also study the MSDtime-diff for different values of the misfit ∆ as shown in
Fig. 3.7 for different rows. One can see that for relatively small misfits the structure
with 30 rows remains stable (as Chui et al have seen in their hysteresis curves as well),
but the MSD of the particles shrinks with increasing misfit since there is less space
available for local motion in this compressed crystalline structure. At larger misfits
(shown are ∆ = 2.2 and ∆ = 2.5) the structure has changed to 29 rows and solitons
have been created, which changes the shape of the curve of the MSDs in the direction
parallel to the walls due to the solitons’ mobility. But it is also visible in the MSDs
in the direction perpendicular to the walls: Instead of decreasing further due to the
decreasing space between the walls, the MSD at ∆ = 2.2 is significantly larger than
at ∆ = 1.8 (prior to the transition) and instead resemble the values at ∆ = 1.5 as the
formation of solitons increases the mobility of the particles also in the y-direction. Of
course, a further increase of the misfit reduces the MSD again, which is demonstrated
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Figure 3.7: MSDtime-diff in x-direction (a) and y-direction (b) in row 2 of the system (large
graphs) and row 3 and 4 (small graphs) for a system starting out with 30 rows at the indicated
values of the misfit ∆. Temperature T = 1.0.

for the case of ∆ = 2.5, where the MSD in y-direction is only of the order of that at
∆ = 1.8 prior to the transition. Also in Fig. 3.7 the values of the MSDs are larger for
row 3 than for row 2, and even larger for row 4, as we used starting configurations
consisting of 30 rows at every value of the misfit.

3.4 Relaxation Dynamics of Equilibrated Soliton Struc-
tures

If one tries to calculate the MSDtime-diff of the solitons itself (which was done only in
the small system with 3240 mobile particles), one has to be careful to subtract their
center of mass movement. Because despite the fact that the particles itself show a
very small (on the timescale we are studying here: almost invisible) center of mass
movement, the soliton pattern moves around. In this movement, the soliton pattern
hardly changes, i.e. the distances between the solitons remain more or less constant,
but the pattern as such can easily move along the x-direction. Because after all, soli-
tons are only those areas where some particles are closer to each other than they are
on average, because some of the extra particles that stem from the row that has disap-
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peared in the n → n− 1 transition in the number of rows now are localized there, so
it only takes a few particles to make a small lateral movement and the soliton already
changes its position.

0 10 20 30 40
MD-time difference

0

1

2

3

M
SD

T=0.1, MSD_x
T=0.1, MSD_y
T=0.2, MSD_x
T=0.2, MSD_y

Figure 3.8: MSDtime−diff in x- and y-direction of the solitons at the indicated temperatures
for simulations at ∆ = 2.2, averaged over the 8 solitons that appeared, and averaged over 20
runs. Please note that the center of mass diffusion of the soliton pattern as a whole has been
subtracted from the solitons’ movements. This center of mass diffusion of the pattern was
quite large (of the order of half a distance between solitons). Simulations started with 29 rows
and were equilibrated before measuring. System size is N = 3672 particles (including walls).
Snapshots give examples of which particles are identified as solitons (black) in simulations at
∆ = 2.2, starting out with 29 rows, at T = 0.1 (upper) and at T = 0.2 (lower snapshot).

When one compares the amplitude of the mean square displacement of solitons
shown in Fig. 3.8 with that of the individual colloidal particles (Figs. 3.2, 3.3) of the
rows close to the immobile walls, several differences are worth mentioning: for indi-
vidual particles, mean square displacements in x- and y-direction are of the same or-
der of magnitude. For solitons, in contrast, mean square displacements in y-direction
are completely negligible, while in x-direction they are an order of magnitude larger
than the corresponding value for the colloidal particles. This is the case, because
solitons strongly repel each other and therefore remain very close to the walls and
thus almost immobile in the y-direction. At the same time, they can easily move in
x-direction as they are regions of increased particle density, which already moves if
only a few particles make a small coordinated movement in the same direction. Also
the timescale for the oscillatory convergence to the plateau now is of the order of 10
MD steps, while it was of the order of 1 MD step for the particles themselves. This
result is expected, recalling the estimates for the small “spring constant” that main-
tains the average distance between solitons [3]. It also confirms that in this particular
case Monte Carlo simulations like the ones used by Chui et al in order to determine
the potential and spring constant acting between the solitons yield reasonable results
for the movements of the particles.
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The snapshots shown in the same figure show some representative soliton con-
figurations, where all particles which the code identifies as “possibly being part of
a soliton” are marked in black. These particles were obtained with the “blocking
method” described in Ref. [3] by Chui et al.: A “block” of a fixed area is moved
along the rows in the x-direction in steps of the ideal next neighbour distance a (re-
spectively in steps of a reduced nearest neighbour distance for the inner rows which
contain extra particles) and the number of particles in this “block” area is counted. We
chose a circular test area with a radius of r = (1 + εa)a which should contain seven
particles in the ideal crystalline case (one central particle and its six nearest neigh-
bours), εa being adjusted to the temperature: we have used εa = 0.07 for T = 0.1 and
εa = 0.11 for T = 0.2 in order to obtain a clear picture of the solitons. Thus we were
able to identify areas where particles were surrounded by either less or more than six
nearest neighbours. Of course, only clusters of a certain number of these particles
are actually counted as solitons, so the wrongly identified particles somewhere in the
middle of the system (especially at slightly higher temperatures) do not disturb the
statistics. As it is quite difficult to distinguish particles which do or do not belong to
solitons for higher temperatures, only T = 0.1 and T = 0.2 were used here.

3.5 Observations of Diffusion in Simulations of Col-
loidal Crystals

We now return to uncompressed commensurate crystals (∆ = 0), where at T = 1.0
the snapshots reveal in the overwhelming majority of cases a defect free triangular
crystal structure (a typical example is shown in Fig. 3.9). This is not surprising as it is
known that the density of vacancies and interstitials in d = 2 for any nonzero temper-
ature is also nonzero in thermal equilibrium [122, 134], but very small at temperatures
significantly below the melting transition [1, 51], which occurs at Tm = 1.35 for our
system. We ask, whether in such almost ideal crystals still some diffusion of particles
occurs. In principle, this question is relevant for unconfined crystals (to be simulated
using periodic boundary conditions in both x- and y-direction) as well, but we fo-
cus here on diffusion in a system confined by structured walls as a by-product of our
studies in the preceding section. To study this question, we consider a large system
comprised of 73440 particles and long time scales. Also MSDs of the particles need
to be investigated over much longer time intervals than the ones we considered before.

If one studies the MSD with respect to the starting configuration MSDstart-conf

shown in Fig. 3.10 (again for T=1.0 and for the larger system), for the case without a
misfit, one gets a first idea about diffusion processes inside of the crystal: Although
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Figure 3.9: Typical snapshot of the system at T = 1.0 showing a basically defect free trian-
gular crystalline structure. Black dots denote wall particles, grey dots are mobile particles.

the crystal structure is stable, there is a considerable amount of diffusion. This diffu-
sion does not happen continuously, but every now and then larger groups of particles
change their position. Although only in x-direction translational invariance is present,
the diffusion of particles involves both the x- and the y-coordinate as the particles have
to move from one crystalline lattice site to another one. A center-of-mass movement
is excluded due to the presence of the structured walls which fix the crystal also in
x-direction. And as the values of the MSD are typically quite small in this system
(most particles only move by a few lattice spacings, if at all), we will study the MSD
as a whole and not specifically its x- or y-component here (which would mostly differ
from each other due to the orientation of the crystalline rows along the x-axis). Of
course, the size of the MSDs as a whole would probably be larger in the case without
walls.
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Figure 3.10: Example of a MSDstart-conf for
a system with N = 73440 particles (includ-
ing walls), ∆ = 0 and 30 rows at T = 1. In
spite of this diffusion, the structure remains
crystalline.

In order to investigate this phenomenon, one can look at snapshots of the system,
where all particles which are not in their initial lattice position any more, have been
marked. A few typical sections of such snapshots are shown in Figs. 3.11 and 3.12.
Obviously, there are a few circular or ring-like dislocations, where in a group of
particles, each particle has jumped onto the lattice site of its neighboring particle, and
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as the ring is closed, the motion stopped here (Fig. 3.11). In other parts of the crystal,
a lot of particles have left their initial lattice site and have jumped onto some other
particle’s initial position instead (Fig. 3.12). The crystal is still crystalline here and
shows a clear hexagonal lattice structure despite the fact that so many particles are
not in their initial positions any more as one can see in the lower figure. Also the
disorder present due to phonons (particles being somewhat displaced from their ideal
positions in the perfectly rigid structure at temperature T = 0 in a coherent, collective
way) can be virtually recognized.

The well-known theory of diffusion inside of crystals states that diffusion takes
place through the creation of a pair of one interstitial particle sitting no longer on the
“allowed” lattice sites, but moving somewhere in between them, and a hole, which it
leaves behind and which can diffuse as particles from adjacent lattice sites can jump
into it. The formation of such pairs of interstitials and vacancies is induced by thermal
fluctuations. This mechanism is prevalent in those areas of the snapshots where a lot
of particles have left their initial lattice sites and sit on different lattice sites instead.
Naturally, this process involves a lot of particles as the interstitial as well as the hole
perform a random walk. At the temperatures we studied here, the density of holes and
interstitials is still extremely low, so the interaction of two of such pairs is excluded.
Therefore the diffusion process only stops when this particular pair of vacancy and
interstitial happens to be in the same position again and recombines. Despite the fact
that they attract each other by being a high-pressure spot and a low-pressure-spot
in the crystalline structure, within the resulting recombination times up to several
thousand particles can be removed from their initial lattice site.

One snapshot showing the beginning of this “hole and interstitial”-diffusion pro-
cess is given in Fig. 3.13. One can see the hole at the end on the right hand side of
the wavy line of particles that have been displaced from their initial lattice sites as
well as the fact that there is one extra particle for the crystalline structure at the left
hand side inside of the “blob” of displaced particles. This is illustrated in the enlarged
sections showing that the number of nearest neighbor particles is not equal to six for
all particles around the vacancy and the interstitial: In the proximity of the vacancy
we found one particle with eight neighbors and two with seven; in the region with
the interstitial two particles have five neighbors and two have seven. The lower graph
shows the same section of the system at a later time: here, the recombination of hole
and interstitial has occurred quite soon, leaving behind a closed curve of particles that
have been displaced from their initial lattice sites, but are sitting in correct (different)
lattice sites again. The creation of these vacancy-interstitial pairs at T ≤ 1.0 are still
such rare events, that the interaction between two different pairs is still negligible.

But in the case of the smaller rings of particles that have been displaced from their
initial lattice sites by jumping into their neighbor’s position, the mechanism seems to
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Figure 3.11: Snapshots of differently sized clusters of particles which moved away from their
initial positions. A section of the system is shown, where at time zero the subsequent mobile
rows are marked by different colours in the y-direction (row 1 is black, row 2 is red, rows
3 is blue, etc, from bottom to top), to indicate the particles that have left their row at a later
time. The whole system consisted of N = 73440 particles (including walls). Simulations
were carried out at ∆ = 0, T = 1 and with 30 rows. These snapshots were taken at an
MD time of 4000 (relative to starting the simulation with the unequilibrated ideal crystalline
configuration). Those particles, which are not in their initial position any more, are displayed
as circles, all of the other particles as dots.
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Figure 3.12: Snapshots showing the results of the “normal” diffusion process. Those parti-
cles, which are not in their initial position any more, are displayed as circles, all of the other
particles as dots in the upper snapshot. Colouring scheme like in Fig. 3.11. Snapshot on the
right shows the same section of the system, but displaced particles are shown in blue here, so
that the crystalline structure, which is still clearly present in the system, becomes more obvi-
ous. The whole system consisted of N = 73440 particles (including walls), ∆ = 0, T = 1
and 30 crystalline rows.

be different: We observe the process referred to as “cooperative ring rotation process”
in [20].
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Figure 3.13: Snapshots illustrat-
ing the effect of “normal” diffu-
sion in a simulation at ∆ = 0,
T = 1, 30 rows. A section of
the system is shown at two differ-
ent time steps showing how such a
diffusion builds up. Displaced par-
ticles are shown as black dots here,
while all other particles are shown
in grey). The enlarged sections in
the middle panel indicate the near-
est neighbor particles of those par-
ticles which have more or less than
six neighbors due to the intersti-
tial particle (left) respectively due
to the vacancy (right snapshot), cf.
text.

In the beginning of the research on diffusion in the 1930s and 1940s, different
diffusion mechanisms were discussed [17, 18] and the idea of diffusion being car-
ried out by groups of particles making cooperative rotations and even direct exchange
between two particles was very popular. However, the Kirkendall experiment [19]
showed that in metallic alloys the prevalent diffusion mechanism is via vacancies
and/or interstitials. Since there has been no experimental evidence for different dif-
fusion mechanisms, the general belief is that cooperative rotation processes play no
important role (or do not even exist) in diffusion processes in three-dimensional crys-
tals [20–22]. In two-dimensional crystals like the one we are studying here, there are
only two other studies describing such cooperative rotations [24, 25]. In both of these
studies by Montalenti et al. this particular diffusion mechanism has been found to
be extremely rare and could only be observed by applying the rare event sampling
technique of temperature-accelerated dynamics (TAD) [132, 133]. Of course, they
were investigating more complex (and realistic) systems than the one we are study-
ing here, but still it is fascinating that such cooperative rotation phenomena can also
be observed in our simulations. Due to the less complex model system we used, we
were even able to use system sizes and time scales on which many of these rotations
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occurred, which allowed us to gather statistics of the number of particles involved in
them and to compare them to the “normal” diffusion phenomena.

Investigating these cooperative rotations in detail shows that there is not one dis-
tinct particle which starts the movement by being displaced from its original position
and leaving behind a hole, but that it is a joint movement of the whole group of parti-
cles which is induced by thermal fluctuations. While making this concerted rotation
movement, some disorder is visible in the crystal around the ring of particles, until
the ring has fully turned into its final position and all particles are sitting in lattice
sites again. Fig. 3.14 illustrates this process: Initially, there seem to be larger than
average fluctuations in the area of the crystal left of the ring. Note that there is no real
hole or interstitial particle, there is exactly the right number of particles for this part
of the crystal, they are only fluctuating strongly. This might “infect” the left particles
of the ring, motivating them to fluctuate with a larger amplitude than on average and
passing their momentum on to the other particles in the ring. The ring then jointly
begins to turn around. In the 3rd snapshot shown one can see how the local structure
around the ring has adapted to it: the ring of particles does not fit into the general
crystalline structure any more as it has a different angle, but the particles around the
ring have adjusted themselves to the ring and not to the rest of the crystal. Finally,
the crystalline structure is restored again (which is, after all, energetically preferable)
while the particles in the ring turn around further, ending in a position which is com-
mensurate with the crystalline lattice, and the movement stops. These snapshots were
taken at intervals of about 200 MD-steps, with ∆t = 0.002, so the series of snapshots
shown in this Fig. 3.14 covers an “MD-time” of 4 · 0.4 = 1.6 (with γ = 0.5 and at
T = 1.0). A short movie showing this cooperative circular movement of particles is
also included in the CD-Rom accompanying this thesis.

In order to quantify these diffusion phenomena, we recorded histograms showing
which cluster sizes occur at which temperature: Fig. 3.15. We also show in the same
graph, that the curves are independent of the friction coefficient γ as expected. The
clusters with sizes between 2 and about 25 particles correspond to situations where
particles have actually swapped positions. In the case of only 2 particles, which is
rare, these particles have probably swapped positions during a large fluctuation while
all of the other particles that took part in this fluctuation have returned to their initial
positions. From 3 particles onwards, mostly cooperative circular movements have
occurred. Cluster sizes of 3 and 6 particles seem to be favoured due to the hexagonal
lattice structure. Larger clusters correspond to cases where a hole and an interstitial
have been created and led to diffusion.

Particles were counted as being displaced if they moved more than half of the
average next-neighbor distance away from their initial position. In order to exclude
pure fluctuations of particles which moved back into their “own” position eventually,
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Figure 3.14: Cooperative ring rotation process shown in a series of snapshots between which
an MD-time difference of 0.4 lies (chronological order from upper left to lower right). Simu-
lation at T = 1, ∆ = 0 and with 30 rows.

displaced particles were identified in two snapshots, 10.000 MD-steps apart from each
other, and only those particles which were displaced in both snapshots were counted
here. 10000 MD-steps seems to be a good time interval here, as single particles easily
fluctuate back into their old position on this time scale, but those which have swapped
positions practically never go back into their old positions.

Using the values given in Fig. 3.15, it is possible to estimate the activation energy
for ring rotation processes. Fitting the number of occurrence of rings consisting of
3 particles versus temperature with the formula y = y0 · e−A/T , kB = 1, yields an
activation energy of A = 13.8. Fitting the corresponding curve of the number of
occurences of rings consisting of 6 particles yields a slightly higher activation energy
of A = 14.1, which is not surprising as larger rings are clearly more difficult to rotate.

In order to estimate the contribution of the cooperative ring rotation processes
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Figure 3.15: Histograms of the distribution of
cluster sizes at the indicated temperatures. As
expected, the curves are independent of γ (in
the range of their errors). Inset shows the dis-
tribution of larger clusters; please note that the
binning of the histogram is wider there. The
data was taken after the simulation had run for
2 · 106 steps; system size was N = 73442
particles (including walls) and it was averaged
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to the diffusion constant, one can show that each particle which is not in its initial
position any more, but insteads sits in one of its neighbors’ lattice site, contributes
1
N
· a2 to the MSD, a being the crystal’s lattice constant:

If m(t) = 1
N

N∑
i=1

[xi(t) − xi(0)]2 denotes the MSDstart−conf , let m0(t) denote the

MSD of such particles which do not participate in any rotation processes (and, for
simplification, also not in any other diffusion process). Let’s assume that this m0(t) =
c0 for all times t greater than a small time ts in which a harmonic movement of the
particles is visible (i.e. if one would plot m0(t) one would see an overshoot for very
small times t and then just a straight horizontal line).

Then we can calculate the MSD m1(t) of only particles which do participate in
a ring rotation process and each of which move onto a neighbor’s lattice site in this
process, thus they all move exactly one lattice constant a away from their initial lattice
site and then fluctuate around this new lattice site. For this m1(t) of the N0 particles
which participate in this rotation we can write:

m1(t) =
1

N0

N0∑
i=1

[xi(t)− xi(0)]2

=
1

N0

N0∑
i=1

[xi(t)− xi(T0) + xi(T0)− xi(0)]2 (3.1)

with T0 denoting a time where the particles have just moved onto the new lattice sites,
yielding xi(T0)− xi(0) = a and xi(t)− xi(T0) being the distance between a particle
and its new lattice position which is for t − T0 À ts on average the distance which
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the non-rotated particles have from their (initial) lattice positions aswell. Thus:

1

N0

N0∑
i=1

[xi(t)− xi(T0)]
2 =

1

N0

N0∑
i=1

[x2
i (t)− 2xi(t)xi(T0) + x2

i (T0)] = m0(t) = c0 (3.2)

Therefore we can write Eq. 3.1 as:

m1(t)

=
1

N0

N0∑
i=1

[x2
i (t)− 2xi(t)xi(T0) + x2

i (T0)

+ 2axi(t)− 2axi(T0) + a2]

= m0(t) + 2a
1

N0

N0∑
i=1

[xi(t)− xi(T0)] + a2

= m0(t) + a2 (3.3)

as 1
N0

N0∑
i=1

[xi(t) − xi(T0)] = 0 if we average over enough particles as some particles

move to the right hand side, some to the left (always measuring distances from their
new lattice site xi(T0)) and thus the average should be zero.

Thus the MSD of the whole system comprised of N particles out of which N0

participate in a rotation movement reads:

m(t) =

1

N
[(N −N0) ·m0(t) + N0 · (m0(t) + a2)] = m0(t) +

N0

N
a2 (3.4)

This can easily be checked through simulations, shown in Fig. 3.16: The differ-
ence between the averaged MSD before the particles have made a circular movement
is (within the small errors) exactly by a2 smaller than after the circular movement,
when each particle sits on its neighbors’ lattice site. The fluctuations are larger,
though, as the MSD is calculated with respect to the “old” lattice site.

In order to get an idea about the size of the contribution of the circular movements
to the MSD (and therefore to the diffusion constant), one can have a look at Fig. 3.15
again: It shows that in a typical run at T=1.0 after 2 million steps there are about 400
particles which are displaced from their initial lattice sites through circular move-
ments, but about a few thousand which are displaced due to the “normal” diffusion
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COLLOIDAL CRYSTALS

Figure 3.16: Contribution of a co-
operative ring rotation process to
the MSDstart-conf: Just as calcula-
tions show, the MSD of those par-
ticles which participated in the rota-
tion process (referred to as “ring par-
ticles” in the legend) is (on average)
increased by a2, a being the lattice
constant, in comparison to the MSD
of particles which did not participate
in the rotation process (“other parti-
cles”). Simulation at T = 1, without
misfit. System size was N = 73440
particles (including walls). 0 500 1000 1500 2000
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mechanism of hole and interstitial. Therefore the “normal” diffusion mechanism con-
tributes considerably more to the MSD. Actually, the contribution of a single event,
where for example a ring of 6 particles makes a circular movement, cannot be seen
in the MSD at all, as its contribution is just 6 · 1

N
· a2, which is smaller than the

fluctuations of the MSD, at least for the large system with 64800 mobile particles.
So the steep parts of the MSD shown in Fig. 3.10 are due to the “normal” diffusion
processes, which involve a few hundred or even a few thousand particles and not due
to such small circular movements. The small circular movements are therefore not
visible in this plot.

At slightly lower temperatures, however, such large-scale diffusion processes seem
to vanish (compare Fig. 3.15). Unfortunately, also circular movements become much
rarer in this case.

In order to quantify the diffusion, we calculated the diffusion constant CD by
fitting the MSD (which we obtained from averaging over 20 simulation runs at tem-
peratures T = 0.9, 1.0 and 1.1) with the formula MSDstart-conf = y0 + 6CDt. The
offset y0 was necessary, because we started out with equilibrated configurations. This
yielded the values of the diffusion constant given in Table 3.1.

T 0.9 1.0 1.1

CD 1.90 · 10−6 5.72 · 10−6 3.05 · 10−5

Table 3.1: Diffusion constants at different temperatures

Fitting these values via CD = CD,0 · e−A/T , kB = 1, in order to obtain an estimate
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for the activation energy of the diffusion, yields A ≈ 17.7, which is higher than for
the rings consisting of 3 or 6 particles. Again, this is not surprising as the formation
of a hole and an interstitial introduces more disorder into the crystal than a rotation
of some particles. This also indicates that ring rotations are to be expected to occur
at slightly lower temperatures than diffusion mechanisms based on holes and intersti-
tials. And even if the circular movements do not play an important role for the overall
diffusion constant in this particular system, they might do so in other systems where
the range of temperatures where ring rotations do already occur, but holes are not yet
created, might be larger than here.

But still it is interesting to see that there are two different diffusion mechanisms
and even if the circular movements might not play a very important role for the diffu-
sion constant in this particular system, they might do so elsewehere or under different
conditions.

The MD-timescale of the circular movements of small groups of particles is be-
tween 0.4 and 2.5, i.e. with ∆t = 0.002 they needed about 200 − 1200 MD steps.
Fig. 3.17 gives a rough idea of the timescale of the cooperative ring rotations and
its distribution. Larger clusters seem to need more time. For comparison: A cluster
which was built up by “normal” diffusion processes (but was comparably small for
such a cluster) consisting of 58 displaced particles needed an MD-time of 4.8.

Larger rings of particles seem to need rather more time (see Fig. 3.17).
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Figure 3.17: MD-time which the co-
operative ring rotation needed versus
cluster size. MD-time is only com-
puted down to an accuracy of 0.4 as
this already meant that snapshots had
to be written out after every 50 steps.
System size N = 73442 particles,
T = 1, no misfit. These data points
are only meant to give a rough idea of
the timescale of the cooperative ring
rotations.

The larger “normal” diffusion processes including a pair of a hole and an inter-
stitial need generally more time, but usually also affect much more particles. Their
timescale depends strongly on the cluster size. For example, a very small such clus-
ter comprised of 58 particles needed an MD-time of 4.8, while clusters comprised
of some thousand particles can easily need around 1 · 106 steps, i.e. an MD-time of
1 · 106 · 0.002 = 2000. It varies very strongly, of course, as sometimes hole and inter-
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stitial particle recombine very quickly and sometimes they do not. Typical timescales
of these processes can be read off from Fig. 3.10 as the “steps” in the MSD corre-
spond to these “normal” diffusion processes building up large clusters of displaced
particles.

3.6 Concluding remarks

To conclude, we have conducted a thorough study of the different types of motion
in two-dimensional colloidal crystals confined between walls, that were composed of
rigid particles and that were placed at commensurate or incommensurate distances.
We have observed motion on different length and time scales: in the case with com-
mensurate walls, where the crystal is not compressed, the MSD of the particles is
finite in x- as well as in y-direction, as the walls pinn the particles and prevent any
movement of the center of mass. The MSD is larger for rows inside of the crystal
than for rows close to the walls as the walls impose a boundary condition of zero
amplitude for the phonons.

If the walls are placed closer together, thus compressing the crystal, the MSD
of the particles becomes smaller as there is less space available per particle. The
MSD shows no sign of the proximity of the structural transition, which occurs when
the walls are placed even closer together and one of the crystalline rows disappears,
which leads to the creation of solitons.

Once this structural transition has taken place, the MSD changes significantly:
Now the MSD still has the smallest values for the rows directly adjacent to the walls,
but has the largest values for the rows directly next to the rows adjacent to the walls,
as the solitons are located there. Further inside of the crystal, the MSD decreases
(instead of increasing), but is still considerably larger than in the case without solitons.
Additionally, due to the incommensurability of the number of particles per row, the
inner rows are no longer pinned by the potential created by the walls and the center
of mass is free to move. Therefore, the MSDs of all rows except the rows directly
adjacent to the walls do not reach a plateau at all any more. This structural transition
needs considerably more MD time than the average equilibration time in this system.

The MSD of the solitons itself differs significantly from the MSD of the particles.
It is almost negligible in the y-direction, but an order of magnitude larger than the
MSD of the particles in the x-direction, as the center of the solitons can already move
by a few interparticle distances if the particles involved in it only make a small coor-
dinated movement in one direction. As the solitons are arranged in a lattice similar to
a crystal and interact with each other via a harmonic potential as previous work has
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shown [3], their mean square displacements also show an initial overshoot. As the
“spring constant” mediating the interaction of the solitons is small, this overshoot can
be seen at time differences which are again an order of magnitude larger than in the
case of the mean square displacement of the particles.

We have also presented results on the diffusion processes occurring in colloidal
crystals. In addition to the well-known diffusion mechanism in which a pair of a
hole and an interstitial is created, diffuses and finally annihilates itself again, we have
found that in this particular system cooperative ring rotation processes are common.
They can involve different numbers of particles, but 3 or 6 particles are the preferred
numbers due to the hexagonal lattice structure, and the diffusion occurs by a concerted
and simultaneous movement of all of these particles, which move into their neighbor’s
lattice site.

These rotation processes do not contribute to overall diffusion as much as the
hole-and-interstitial processes, but that is only due to the much smaller number of
particles involved in these ring rotation processes. They do, however, occur much
more frequently than the hole-and-interstitial processes. This is especially remarkable
as in other systems such ring rotation events have been observed only very rarely. For
instance, the study described in Ref. [25] had to be carried out using temperature-
accelerated dynamics, which is a kind of rare event sampling, while in the system and
at the temperatures that we studied, these events were not rare at all. Of course, this
is probably due to the fact that our model is much simpler. Still, we feel that these
cooperative ring rotations should not be neglected when diffusion in two-dimensional
crystals and at interfaces is studied, as it is possible that they play an even more
important role in other systems.



84 3.6. CONCLUDING REMARKS



Chapter 4

Shearing the walls

The results presented in this chapter have already been published in Ref. [28]. This
paper is very similar to the present chapter, on which it was based, with the exception
of a few graphs and snapshots which were not shown in the paper, small changes in
the introduction and some changes in the description of the details of the simulation
in the present text.

In this chapter we will investigate the effect of sheared walls on a two-dimensional
colloidal crystal. The effect of shear on crystallization and melting of colloidal hard-
sphere suspensions has been thoroughly investigated in three-dimensional systems
(e.g. [135]). In two dimensions, we are only aware of a recent study where highly
charged polystyrene spheres (with radius R = 1.95µm) were driven over a periodic
potential created by laser fields [118]. We expect that similar experiments could be
done with other colloidal systems where particles interact with repulsive potentials,
too.

The effect of shear on the homogeneous and heterogeneous nucleation of various
types of colloidal suspensions [136–139], on phase separation [140] and on colloidal
glasses [141] has also been addressed.

One of the important questions in this context is how the structure formation in
colloidal systems can be influenced by the various tunable parameters (interaction po-
tential, size, shape, mixtures of different kinds of particles) and by imposing external
conditions like confinement, shear, compression and temperature [142]. A thorough
understanding of these processes is necessary for the design of methods to create
nanostructures utilizing the self-assembly of particles. The aim here is to be able to
predict which pattern will form under which conditions.

85
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Several studies using Monte Carlo computer simulations have already been car-
ried out investigating the structure formation in colloidal crystals. Some of them have
focussed on the effect of different kinds of walls [83, 143], on the impact of external
fields [117] and on confinement incommensurate with the crystalline structure leading
to the formation of a soliton staircase (Chapter 2 and [1–3]) in a one-component col-
loidal system crystallizing in a triangular lattice structure. Additional studies have in-
vestigated the melting [89], the deformation [90], the correlation between channel ge-
ometry and pattern formation [91, 144] and frustration [145] of such two-dimensional
systems of purely repulsive particles under confinement. Others have considered bi-
nary mixtures which crystallize into a square lattice structure [38, 39, 146–150] and
fluid systems [151]. In this chapter we will concentrate on the influence of shear on
a one-component colloidal crystal with a hexagonal lattice structure. For the sake
of computational efficiency, no explicit solvent is used. Both the cases when the
periodicity of the confined crystal is commensurate with the periodicity of the rigid
boundary and when it is incommensurate will be considered. The aim of our work
is to clarify the range over which moving boundaries induce flow of particles in such
a soft crystal, and to study the extent to which such nonequilibrium phenomena can
still be described by local equilibrium concepts.

In the following section, we will describe details of the simulation which are
specific to the case with shear. In section 4.2 we will report on the results of our
simulations with sheared walls for the case where the effective periodic wall potential
is commensurate with the lattice period of the crystal. We will present snapshots of
the created configurations, velocity profiles and angular distributions. Then we will
move to the results for the case where the lattice period is no longer commensurate
with the wall potential and present the same quantities in order to compare them. As a
last step, we will look at the mean square displacement of the particles in both cases.
In section 4.3 we will briefly summarize the main conclusions of this work.

4.1 Details of the simulation

In the following, we will study the effect of shear on two-dimensional colloidal crys-
tals by using the same model system as described in Ch. 1. So the particles are
interacting via a purely repulsive potential and arrange themselves into an hexagonal
crystalline lattice at the temperatures studied here. Shear is implemented by moving
the two walls on either side of the stripe. These structured walls are moved in the
x-direction with the same, constant velocity, but in opposite directions as illustrated
in Fig. 4.1.
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Figure 4.1: Sketch of the system
geometry with the directions of the
axes and the sheared wall particles.
Black dots denote wall particles,
grey dots freely movable particles.

Simulations are carried out at two different values of the misfit (see definition of
the misfit and its consequences for the crystalline structure in Chapter 1.2): At ∆ = 0
the system exhibits perfect crystalline order and is comprised of 30 rows of particles
in the y-direction, while at ∆ = 2.2 in the case without shear only the configuration
consisting of 29 crystalline rows and the appropriate number of solitons is stable. We
considered systems consisting of N = 73440 particles.

Like in Ch. 3, the simulations were carried out using the program package HooMD-
blue [13, 14]. We chose a timestep of ∆t = 0.002 and a friction coefficient of γ = 0.5.
Because of the huge speed-up that occurs when MD simulations are run on graphic
cards we initially used them as well, but experienced problems with the accumulation
of systematic errors (see Appendix C). However, as the graphic card code uses sin-
gle instead of double precision, we had to carry out the simulations on regular CPUs
as the higher accuracy turned out to be necessary for our crystalline systems at the
temperatures T = 0.3 and T = 0.5 which we used here. These temperatures are
below the melting transition which would occur for this system at the chosen density
of ρ = 1.05 (for the case without misfit) at about T = 1.35 [1]. Nevertheless, the
Langevin thermostat only takes into account the velocities of the particles in the bulk
(and not the velocity of the wall particles which are moved with constant velocity in
order to introduce shear into the system). This leads to a higher effective tempera-
ture of the particles due to their interaction with the moving wall particles, because
the wall particles are constantly introducing friction and thereby increasing the tem-
perature (see Fig. 4.2). The Langevin dynamics are aiming at restalling the initial
temperature, but as the wall particles move again with every new time step, more heat
is added to the system, and an equilibrium between the cooling due to the Langevin
thermostat and the heating due to the sheared walls is reached. This equilibrium tem-
perature is higher than the temperature which was set in the Langevin thermostat.
But this temperature increase due to the sheared walls does not only depend on the
velocity of the walls, but also on the interactions of the particles with the walls. So at
rather low shear velocities between v = 0.1 and v = 3.5, the effective temperature of
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the system increases with increasing shear velocity, but for a very high shear velocity
of v = 50.0, the effect of the shearing on the temperature is almost negligibly small
again, because such a fast shearing has almost no effect on the particles next to it,
which feel only an averaged-out wall potential in this case.
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Figure 4.2: Effective temperature, calculated from the velocity distribution in x-direction (a)
and y-direction (b) by fitting it via f(vx) = a0 · e(vx−v̄x)2/(2Teff) (and likewise for vy, with
v̄y = 0). Shear velocities of the walls as indicated. Starting configuration with 30 rows
without misfit (∆ = 0), at T = 0.3. The inset in part (a) compares the effective temperatures
Teff,x (solid lines) and Teff,y (dotted lines) for v = 5.0, v = 1.0, v = 0.5 and v = 0.1 (from
top to bottom).

If we would include an explicit solvent (which would require orders of magnitude
more computer resources, and hence is not attempted) it is likely that the correspond-
ing enhancement of the effective temperature near the walls is much smaller, since
the explicit solvent acts as a more efficient thermostat.

Of course, using only implicit solvent is a very simplified model and might dampen
or enhance some effects which we are going to discuss in this chapter. But simulations
with explicit solvent molecules are not straightforward either, as it is impossible to
simulate the number of particles necessary for such simulations with standard molec-
ular dynamics. Therefore, one needs more sophisticated approaches which integrate
the motion of the solvent particles approximately like for example the multi-particle
collision dynamics method of Kapral and Malevanets [152, 153]. But this would not
only have required substantial implementation work, but it would also have slowed
down the simulations, which would then again have required to replace our simple
shared memory parallelization with a message passing one. Therefore we used only
implicit solvent particles.

Since near the walls the effective temperature extracted from the x and y-components
of the velocities of the particles disagree, it is clear that the “fluid layers” near the
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moving walls are completely out of equilibrium, since the concept of a “local temper-
ature” which is anisotropic does not make much sense. However, for small velocities
the “temperature” profiles Teff,x(y) and Teff,y(y) agree within statistical errors, and the
concept of a “local temperature” in the slit interior can be used. Then the observed
profile of this local temperature Teff(y) can be interpreted as follows: due to the large
friction between the fluid-like layers and the moving walls, these layers act like a
source where heat is constantly pumped into the system. This heat is transported via
conduction into the interior of the slit (due to the action of the thermostat, heat is
removed everywhere in the slit, and a steady-state temperature profile is established).
Motivated by corresponding solutions of the heat conduction equation, we can fit
these local temperature profiles by T (y) = A0[exp(−z/λ)+exp(−(D−z)/λ)]+A1,
where A0, A1 and λ are phenomenological parameters that depend on v. Unfortu-
nately, due to the large fluctuations the fitting of three parameters is somewhat un-
certain and hence we do not dwell on the velocity dependence of these parameters.
It would be interesting to study how this dependence changes when the friction con-
stant is varied, but a study of this problem would require very large computational
resources and hence is beyond the scope of the present work.

We emphasize, however, that for small velocities (v < 0.5) the deviations of the
temperature profile from a constant (which is the temperature defined by the thermo-
stat) are almost negligible. But already for these small velocities pronounced shear
banding occurs (see next section). Clearly, the non-uniform temperature profiles are
not the primary cause for the structural change caused by the shear, and thus it is
legitimate to disregard the nonuniformity of the temperature in the following.

4.2 Effect of shear on colloidal crystals

Without a misfit (i.e. ∆ = 0), where the crystal consists of 30 rows, slow shearing
of the walls has a relatively large effect on the velocities of the particles. Fig. 4.3
shows velocity profiles obtained by sorting the particles into rows depending on their
position in the y-direction and then calculating the average particle velocity for each
row of particles. As the maximum average particle velocity is given by the shear
velocity of the walls, we normalized the velocity profiles by the shear velocity. But
we also show the non-normalized velocities in an inset of the graphs (fig. 4.3) as a
higher absolute velocity will lead to more disorder in the crystal, while the normalized
velocities indicate how strong the effect of the shearing is.

At a temperature of T = 0.3 and for the case of ∆ = 0 this results in velocity
profiles (fig. 4.3a) where the two smallest shear velocities (v = 0.1 and v = 0.3)
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Figure 4.3: Velocity profiles, normalized by the velocity of the wall labelled as row number
zero, for different shear velocities of the walls as indicated. Starting configuration with 30
rows without misfit (∆ = 0), for two temperatures T = 0.3 (a) and T = 0.5 (b). Inserts show
the unnormalized velocity profiles.

lead to the (relatively) largest particle velocity in the first 4 − 5 rows closest to the
walls. This means that slow shearing of the walls has the strongest effect on pulling
the particles along with the walls. Of course, if one compares the absolute, non-
normalized velocities inside the crystal, these velocities are larger at a shear velocity
of v = 0.3 and v = 0.5, as particles next to the walls obtain a higher velocity due to
the faster walls, even if a smaller percentage of the walls’ velocity is transferred to
the particles next to them. The higher absolute velocity also leads to more disorder
inside the crystal, which then leads to a stronger influence of the shearing even on
particles in the inner rows of the crystal. Thus, there is clear evidence for shear band
formation, as will be discussed below.

This disorder is also reflected in the density profiles (fig. 4.4) and in the angular
distributions (fig. 4.6a). The density profiles show clear peaks indicating a crystalline
structure for higher shear rates, but at a shear rate of v = 0.3, the peaks correspond-
ing to the inner rows of the crystal are almost non-existent any more. This can be
explained by the changes in the crystalline structure discussed below.

Obviously the profiles of the velocity never resemble the (approximately) lin-
ear velocity profiles representing simple Couette flow, that one encounters when one
shears simple [154] or complex [155, 156] fluids and uses a thermostat which in-
cludes hydrodynamic effects. This is mainly due to the fact that we are shearing a
crystalline solid here. But the Langevin thermostat which we are using also alters the
flow profiles in the liquid phase as we will show on page 94 ff.

The shearing of the walls leads (at certain shear rates) to a tilting of the crystalline
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Figure 4.4: Density profiles. Simulations were carried out at a temperature of T = 0.3 for a
system with 30 rows without a misfit (∆ = 0). Shear velocities of the walls as indicated. The
strongly oscillating profile represents v = 0.8 and was omitted in the inset of the graph on the
left, where a magnified plot of the central part of the slit is shown. The normalization of the
density profile ρ(y) is given in terms of the total number of particles, N =

∫ D
0 ρ(y)dy.

layers and even to breaks in the crystalline structure, where parts of the crystal are
oriented in a different direction from the rest. This effect is illustrated in the snapshots
shown in fig. 4.5 and it is also shown in a short movie which is included in the CD-
Rom accompanying this thesis. In order to analyze it quantitatively, we computed for
each pair of two neighbouring particles the angle between the line connecting these
two particles and the x-axis. In a perfect hexagonal lattice without misfits and without
defects, this would lead to peaks at 0◦, 60◦, 120◦ and 180◦ (we did not compute any
angles larger than 180◦).

At a shear velocity of v = 0.1, the peaks are centered around slightly larger angles
due to a tilting of the crystalline layers which is induced by the shearing (fig. 4.5a and
fig. 4.6). At shear velocities of v = 0.3, v = 0.5 and (less pronounced) of v = 0.8
the angular distribution has two peaks as the crystal breaks into several pieces and
generally only the layers close to the walls are aligned with the walls (creating a peak
in the angular distribution close to 60◦, 120◦ etc), while the crystalline parts inside of
the crystal prefer a different orientation, thus creating the second peak in the angular
distribution (fig. 4.5b and fig. 4.6). These two peaks are very distinct at v = 0.3, while
at v = 0.5 there is more disorder inside of the crystal due to the higher shear velocity.
Starting from v = 0.8, this second peak disappears again as the walls are moving too
fast to have much influence on the crystalline structure any more. This is due to the
fact that the fast shearing of the walls leads to an averaged out wall potential which
the particles next to the wall feel, which is not able to drag particles along with the
walls any more.
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Figure 4.5: Snapshots of a section of a system with sheared walls. The starting configuration
contained 30 rows and the simulation was carried out at a temperature T = 0.3 and without a
misfit (∆ = 0). The particles in the two first rows on top and the two last rows at the bottom
(that are at rigidly fixed positions relative to one another and contribute the moving walls) are
highlighted by black dots while the mobile particles are shown as grey dots. Shear velocities
of the walls were chosen as (from top to bottom) v = 0.1, v = 0.3 and v = 0.8
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Figure 4.6: Distributions of angles between the line connecting each pair of two neighbouring
particles and the x-axis. Shear velocities of the walls as indicated. The graphs for different
shear velocities are shifted vertically by 4000 in order to give a better overview. Starting
configuration with 30 rows without misfit (∆ = 0), temperature T = 0.3 (a) and T = 0.5 (b).

It is interesting to note that the above results may be understood as follows. Firstly,
at low velocities, the velocity profile shown in fig. 4.3 may be interpreted as being
composed of three prominent shear bands [157], a feature of a typical non-Newtonian,
shear-thinning material. The two fast moving bands lie close to the boundaries and
flow in opposite directions sandwiching a central immobile region. In some respects
our flowing solid therefore behaves like a moving paste, or soft-glassy matter [158]
in a fashion which is complementary to that seen in the experiments of Coussot et
al. [159] where a central mobile region is flanked on either side by immobile shear
bands adjacent to the boundaries. As the shear rate is increased, the width of the
mobile shear bands initially increases as expected. In order to verify that we indeed
do have shear banding in our system, we plot the average stress as a function of shear
rate in fig. 4.7. “Average stress” means here that the stress was computed for all
particles in the system via the virial formula. In order to exclude any effects caused
by the walls, only particles which were at least 1.5 times the cutoff distance away
from the walls were taken into account for the averaging as stress profiles suggested
that the stress of these particles was not influenced by the walls any more.

The resulting flow curve shows non-monotonic behavior typical of shear thinning
systems. However, surprisingly, instead of obtaining a linear Newtonian region at
high shear rates, the stress stabilizes to a constant signifying the presence of a shear
band of vanishingly small viscosity. Referring back to the calculated velocity profiles,
(see fig. 4.3) we observe that the width of the shear bands decreases with increasing
velocity in this regime, so that at large velocities (shear rate), we obtain thin, highly
mobile boundary layers near the walls while most of the solid is immobile. For such
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Figure 4.7: Flow curve for T = 0.3 and start-
ing configurations with 29 rows at a misfit of
∆ = 2.2. σxx, σxy and σyy denote the re-
spective components of the stress tensor (as
defined in Eq. 1.6), while v indicates the ve-
locity with which the walls are being moved. 0 10 20 30
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velocities, the solid re-crystallizes.

Further, in order to characterize the behavior of the solid at high wall velocites,
we refer to the plot of the anisotropic, local, effective temperature (obtained by fitting
a Gaussian to the probability distribution of the x- and y-components of the veloc-
ity) already shown in fig. 4.2. We observe that both these effective temperatures
show non-monotonic behavior, initially increasing and then decreasing as the veloc-
ity increases leading to re-crystallization. Regaining crystalline order with high drive
velocities is also seen in crystals driven over random pinning potentials [160]. This
implies that our system never shows a Newtonian regime at any flow velocity if the
temperature is small enough to obtain crystallization.

But also the liquid observed above the melting transition does not exhibit a Newto-
nian flow profile if one uses a bulk Langevin thermostat: As the Langevin equation of
motion contains friction and random noise, the shear exerted by the walls is screened
by the particles in the layers close to it and does not necessarily lead to a motion of all
particles in the system. Mathematically, the presence of friction and random noise in
the Langevin equation leads to a modified Navier-Stokes equation. This modification
arises from the fact that the Navier-Stokes equation is equivalent to Newton’s equa-
tions of motion, which do not contain friction or random noise. Solving this modified
Navier-Stokes equation yields the following velocity profile (in the simplified case of
constant viscosity ηapp throughout the system, which can differ from the bulk viscosity
η0 and is a reasonable approximation at relatively slow shear rates) [63, 161]:

u(y) = u0

sinh(
√

ργ
η0

y)

sinh(
√

ργ
η0

D
2
)

(4.1)

where u0 indicates the velocity of the mobile particles (as opposed to the velocity v,
with which the walls are moved forward). y is defined in the range between −D

2
and

D
2

, ρ = 1.05 is the particle density and γ = 0.5 is the friction constant of the Langevin
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Figure 4.8: Velocity profiles for T = 2.0 (a) and T = 5.0 (b). Shear velocities of the walls
as indicated. Starting configuration with 30 rows without misfit (∆ = 0). For T = 5.0, the
hyperbolic sine (Eq. 4.1) fitted to the velocity profile of v = 0.8 is shown as an example of
the fitted curves.

thermostat as before. The variable u0 describes the velocity of the mobile particles
next to the walls and should be smaller or equal to the wall velocity.

In our system strong surface effects are present due to the corrugated nature of the
walls. Thus, the shape of the velocity profiles we have obtained differs from the pure
hyperbolic sine given in Eq. 4.1 in that the part close to the walls is slightly flattened
(fig. 4.8). Therefore we had to omit the velocities of the particles close to the walls
(we used the region between −0.85 · D

2
≤ y ≤ 0.85 · D

2
) in order to obtain a good

fit. Additionally, we had to use D in Eq. 4.1 as a fit parameter, because the effective
width Deff of the stripe, in which the hyperbolic sine can be observed, is smaller than
the (given) whole width D0 = 29.0617.

Fig. 4.8b shows a typical fit to the velocity profiles obtained at a temperature
of T = 5.0. Normalized to the same wall velocity, the curves collapse, allowing
us to average over the fitted values. Thus, we obtained a bulk viscosity of η0 =
5.372±0.066 and an effective width of Deff = 27.76±0.17 = (0.9551±0.0058) ·D0.

Fig. 4.8a illustrates that at T = 2.0, which is clearly above the bulk melting
temperature of T = 1.35, this theory does not hold yet. The curves for different wall
velocities can be fitted with the same hyperbolic sine function, but yield different
values for the viscosity as well as for the effective width of the system. With higher
shear velocity, the viscosity decreases and the effective width of the hyperbolic sine
profile increases as shown in Table 4.1. This can be explained by layering effects
close to the walls – as the structured walls have the effect of crystal nuclei – and
the generally still more “structured” order of the particles (in comparison to higher
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temperatures like T = 5.0). Shearing this system leads to a melting of the structures
close to the walls. Higher shear velocities therefore increase the viscosity up to a
value which is comparable to the viscosity at T = 5.0. Likewise, the effective width
which we obtained by shearing the walls with a velocity of v = 2.0 is comparable to
the effective width we obtained at T = 5.0.

Table 4.1: Viscosities and effective widths obtained at a tem-
perature of T = 2.0 by fitting the curves shown in Fig. 4.8a
with the hyperbolic sine given in Eq. 4.1.

v η0 Deff

0.5 7.24034 25.0108
0.8 6.25431 25.7628
1.2 5.76804 26.9726
2.0 5.31775 27.930

But as the main focus of this work is on the crystalline phase, we are returning to
significantly lower temperatures again: if one compares different temperatures (but
both of them clearly below the melting temperature, for example T = 0.3 and T =
0.5), it is at higher temperatures energetically easier for the crystal to split up into
several domains, which can then be tilted with respect to the walls and can be oriented
in different directions. Therefore the velocity profiles at temperature T = 0.5 have
a more pronounced shape even at higher shear velocities (see fig. 4.3b). The same
effect is visible in the angular distributions (fig. 4.6b): The “second peak” in the
angular distributions only disappears at considerably higher shear rates than in the
case of T = 0.3. Apart from this, all shear rates at T = 0.5 lead to higher average
particle velocities than in the case of T = 0.3 as the higher temperature makes it
easier for particles to move along with the walls.

A different picture arises if one introduces an incommensurability between the
crystal and the walls into these simulations. As described at length in Chapter 1.1,
this means that the structured walls are placed closer together. In simulations without
shearing, this would lead to the creation of a soliton staircase [1] (compare Fig. 1.4).
It is also already known that there is a significant hysteresis in the transition between
structures with 30 rows and structures with 29 rows with the same overall number of
particles. These structures with 29 rows are the energetically preferred configuration
for misfits greater than about ∆ = 1.7, but if a simulation is started with a structure
of 30 rows, it will not spontaneously change its structure to 29 rows (in simulations
without shear) until about a misfit of ∆ = 2.0. But even at larger misfits, simulations
without shear have to be equilibrated for a certain time until this transition takes
place. This transition happens much faster when sheared walls are introduced into
the system. For example, for a system starting with 30 rows at a misfit of ∆ = 2.2
and at a temperature of T = 0.3, the system still consisted of 30 rows after 1 million
time steps in the case without sheared walls, but had already 29 rows after just 20000
time steps in the case of a simulation where the walls were sheared with a velocity of
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v = 0.5. As will be discussed later on, at this shear velocity the structure breaks and
changes again if the simulation run is continued.

In the following, we will concentrate on simulations at a misfit of ∆ = 2.2, which
leads to a structure with 29 rows independently of whether the starting configuration
contained 30 or 29 rows. It is interesting to investigate the structures which develop
here as they do not contain solitons any more due to the shearing of the walls. Instead,
it is now possible for the system to re-arrange its particles continually in a way that
no particles have to sit on the maxima of the potentials, as there is enough disorder in
the system, especially close to the walls.
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the velocity of the wall labelled as row num-
ber zero. Shear velocities of the walls as in-
dicated. Temperature T = 0.3. Starting con-
figuration with 29 rows at a misfit of ∆ =
2.2. Insert shows the unnormalized velocity
profile.

There are several mechanisms of dealing with the different number of particles in
the different rows which lead to the formation of solitons in the case without shear.
At low shear rates and if the starting configuration already contains 29 rows, the row
next to the walls (which contains the same number of particles as the wall rows, but
less than all of the inner rows), moves along with the walls, while the inner rows
remain almost without movement (fig. 4.9, curves for v = 0.1 and v = 0.3). This
would in principle lead to solitons which are moved along with the walls as the rows
directly adjacent to the walls still do not have the same crystalline structure like the
inner rows. But as these rows are moving, the particles they contain are not always at
the ideal lattice positions and therefore the solitons are strongly “smeared out”.

If one starts with a structure of 30 rows at the same shear rate, the structure
changes into 29 rows. Apart from equilibration effects, we obtained the same results
as in the case where we started with a well-defined 29-row-structure.

At slightly higher shear velocities (around v = 0.8), the same effect as in the
case without misfit is observed: The crystalline layers are tilted and the inner part of
the crystal breaks off from the rest and changes its orientation, thus creating a rather
strong flow in the layers close to the wall and less flow inside of those parts of the
crystal, which have turned around. In this case, the solitons are a part of the general
disorder and therefore not clearly visible any more. The change of the structures
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Figure 4.10: Angular distributions. Shear
velocities of the walls as indicated. The
graphs for different shear velocities are
shifted vertically by 4000 in order to give a
better overview. Starting configuration with
29 rows at a misfit of ∆ = 2.2. Tempera-
ture T = 0.3.
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becomes visible in the angular distributions shown in fig. 4.10. It is also observable
in the density profiles shown in fig. 4.11: Unlike in the case without misfit, at very
small shear rates clear peaks in the density distribution (and peaks around 60◦, 120◦

etc in the plots of the angular distribution) indicate an ordered crystalline structure
as only the rows directly adjacent to the walls move along with the walls, while the
particles in the inner part of the crystal remain more or less in their ideal positions. At
shear rates around v = 0.8 the inner part of the crystal breaks into several domains in
the same way in which it does this around v = 0.3 in the case without misfit, which
again leads to strongly smeared-out peaks in the density distribution. Thus, this effect
is shifted to slightly higher shear rates due to the presence of the solitons.
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Figure 4.11: Density profiles. Simulations were carried out at a temperature of T = 0.3 for
a system with 30 rows at a misfit of ∆ = 2.2. Shear velocities of the walls as indicated. The
strongly oscillating profile represents v = 0.8 and was omitted in the inset of the graph on the
left, where a magnified plot of the central part of the slit is shown. The normalization of the
density profile ρ(y) is given in terms of the total number of particles, N =

∫ D
0 ρ(y)dy.

This is also illustrated in the snapshots shown in fig. 4.12: At v = 0.3 the structure
is still almost perfectly crystalline as only the outermost rows move along with the
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walls. The incommensurability between the non-moving inner part of the crystal
containing the extra particles and the rows directly adjacent to the walls which contain
no extra particles, but move along with the walls, can only be observed by very close
inspection of the two rows next to each wall, but is almost invisible in the presented
snapshots. At a velocity of v = 0.8 the inner part of the crystal breaks into several
domains, and at even higher shear velocities the crystalline structure is re-established,
albeit slightly more disordered than in the case without a misfit.

At even higher shear rates, less and less particles are dragged along with the walls,
decreasing the influence of the shearing on the crystalline structure again. Still, due
to the shear there is enough disorder in the rows close to the walls that there are no
distinguishable solitons. The fact that the density profile for v = 50.0 has higher
peaks in the case with a misfit of ∆ = 2.2 (compared to the case without a misfit)
is of course only due to the fact that the inner particles are arranged into 29 instead
of 30 rows and therefore there are more particles per row. Please note that the x-axis
is chosen as the row number. In most of the density profiles the peaks in the middle
of the stripe are more pronounced than in the rows number 5, 6 and 7, as the rows
very close to the walls tend to move along with the walls, while the inner rows tend
to stay in their initial position, which leads to some disorder in the rows between the
moving and the non-moving parts of the crystal. Only in the case where the middle of
the crystal breaks into several pieces there is more disorder (and thus less pronounced
peaks in the density distribution) in the middle of the crystalline stripe than anywhere
else.

Here, it is interesting to study the case of very high shear velocities (v = 50.0) as
the shearing seems to stabilize the structure with 30 rows. So, if the starting configu-
ration contains 30 rows which contain the same number of particles in each row and
therefore no solitons, this structure is stabilized by the fast moving walls.

If the starting configuration contains 29 rows and the appropriate number of extra
particles in the inner rows, a different effect can be observed: As the structured walls
are moving very fast, the rows directly adjacent to the walls only feel an averaged-
out wall potential and are thus not stabilized in a structure with the same number of
particles as the walls any longer. Therefore it becomes energetically preferable for
these rows to contain the same number of particles like the inner rows, which contain
extra particles. But as the number of particles in the crystal is constant, there are no
particles to fill up the outer rows. Due to this, holes are created in the outer rows
which take the role of additional particles. These holes can even diffuse further inside
the crystal. A snapshot showing this effect is presented in fig. 4.13.

Re-running all of these simulations at the same misfit and a higher temperature
(T = 0.5) leads to results that can be expected from the case without misfit: As there
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Figure 4.12: Snapshots of a section of a system with sheared walls. The starting configuration
contained 29 rows and the simulation was carried out at a temperature T = 0.3 and at a
misfit of ∆ = 2.2. The wall particles which are moved forward with constant velocity are
highlighted by black dots while the freely moving particles are shown as grey dots. Shear
velocities of the walls were chosen as (from top to bottom) v = 0.3, v = 0.8 and v = 2.0
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Figure 4.13: Snapshot of a section of a system with sheared walls. The starting configuration
contained 29 rows and the simulation was carried out at a temperature T = 0.3 and a misfit
of ∆ = 2.2. The high shear velocity of the walls (v = 50.0) leads to the creation of holes.

is generally more disorder in the system if the temperature is higher, the velocity
profiles become more pronounced for higher shear rates. In addition, the crystal
starts to split up into several domains and to change its orientation at lower shear
rates already than in the case of T = 0.3.

Another interesting property of these systems is the time-dependence of the mean
square displacement of the particles. In this chapter we consider the MSDtime-diff only,
which is defined as MSD =< [xi(t + t0) − xi(t0)]

2 >, where the average < ... >
includes an average over all particles in a row and over the initial time t0 (see Sec.
1.1). We are only presenting results for the MSD in the x-direction parallel to the
walls here.

The assignment of particles to rows is done according to the initial position of
each particle at the beginning of the time interval ∆t used as abscissa variable here
since in the course of time particles change their rows.

As described above, in cases with a misfit of ∆ = 2.2 and at low shear velocities
(v = 0.1), only the outermost row of particles moves along with the walls. This leads
to an MSD as shown in fig. 4.14, where the MSD of the particles in the first row is
an almost perfect quadratic curve of the form MSD = a · t2. As the MSD is the
quadratic displacement, this means that the fit parameter a = v2, v being the velocity
of the particles in this row. As one can read off from the graph, the velocity of the
particles in this case is almost exactly the velocity with which the walls are being
sheared. The MSD of the rows next to the outermost one have significantly smaller
values and a periodic shape as the particles in these rows are trying to cope with the
moving walls. The MSD of the inner rows is almost constant and independent of the
walls, which means that the particles just move around randomly.



102 4.2. EFFECT OF SHEAR ON COLLOIDAL CRYSTALS

0 5 10 15 20
MD time difference

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

M
SD

y = 0.0100273 x
2

(quadratic fit to row 1)
row 1
row 2
row 3
row 4
row 8

a)

0 1 2 3 4 5
MD time difference

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

M
SD

y = 0.000778738 x
2

(quadratic fit to row 1)
row 1
row 2
row 3
row 4
row 8

b)

0 1 2 3 4 5
MD time distance

0

0.1

0.2

0.3

0.4

M
SD

row 1
row 2
row 3
row 4
row 8

0 2 4 6 8 10
MD-time distance

0
0.01
0.02
0.03
0.04
0.05

M
SD

c)

Figure 4.14: MSD (in x-direction)
of the particles in different rows.
The starting configuration contained 29
rows in every case and the simulation
was carried out at a temperature T =
0.3 and a misfit of ∆ = 2.2. (a) The
shear velocity of the walls were chosen
as v = 0.1. The oscillation is due to the
movement of the wall particles which
leads to an oscillating wall potential for
the particles next to the walls. (b) Shear
velocity v = 0.5, (c) v = 1.2. The in-
set shows the MSD in the case without
shearing for comparison.
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At a shear velocity of v = 0.5 (fig. 4.14b), where the orientation of all the inner
parts of the crystal changes, the MSD looks completely different: The particles in the
first row are still moving more than the ones in the inner rows, but as the particles of
all rows are mixing in the course of the simulation, the MSDs of different rows are
getting more similar the longer the simulation runs, until finally the particles of all
rows are equally distributed in the crystal and the MSD of particles stemming from
different rows cannot be distinguished any more. Besides, all values of the MSDs are
very large here (note the different scale of the y-axis in fig. 4.14c in comparison to
the y-axes in fig. 4.14a,b).

At even higher shear velocities, where no parts of the crystal change their orien-
tations any more, the values of the MSD are generally smaller again. As illustrated in
fig. 4.14 (c), the MSD in the row directly adjacent to the walls is the second largest
one and cannot be fitted with a quadratic curve of the form MSD = a · t2 any more.
This is due to the fact that the particles’ movement is not primarily the movement
along with the walls any more. The MSD in the row next to this row is larger. This
is due to the incommensurability of the different lattice spacings. The row directly
adjacent to the walls originally contained as many particles as the walls while the
inner rows contain extra particles due to the disappearance of one row because of the
misfit. In the rows further inside of the crystal, the MSD is smaller as the effect of the
shear and of the incommensurabilities becomes smaller.

If one compares the MSD of these simulations under shear with simulations with-
out shear at the same misfit, the effect of the solitons becomes visible (see fig. 4.14,
inset of graph c): In the case without shear, the particles in the row directly adjacent
to the wall do not move much as their structure is commensurate with the walls and
the walls are not moving. Therefore their MSD is the smallest one and even shows the
overshoot, which one would expect to see in a crystal with harmonic potentials where
the particles are swinging around their ideal lattice positions with a certain period-
icity. The MSD of the rows adjacent to this one are significantly larger in this case
as the solitons are located in these rows, which causes the particles to move around
more. In the inner rows, the MSD becomes smaller again as there are no solitons
in these rows. This is clearly different from the values of the MSD in the case with
shear, where no clearly definable solitons are created and therefore all of the outer
rows exhibit comparable values of the MSD as the incommensurabilities are shared
between these rows and lead to a lot of movement. Besides this, the shape of the
curves is different and the absolute values of the MSD are larger as the shearing leads
to a small, but detectable movement along with the sheared walls, while in the case
without shear no direction is preferred.

Finally, we ask the question whether there are experimental results available that
shed some light on the phenomena studied by our simulations. in this context, we
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draw attention to a recent study of melting and crystallization of colloidal hard-sphere
suspensions under shear [135]. This work refers to a three-dimensional colloidal
crystal, of course, and necessarily also includes solvent. In these experiments the
crystals always melted at the highest shear rate. Again, this might be an effect of the
solvent which strives to have a smooth velocity profile, while crystalline bands would
probably cause a step-wise solvent velocity profile. If so, this would mean that the
highest shear rates applied in our model simulations might not be accessible in a real
colloidal crystal, because there the explicit solvent favours shear melting.

A further interesting experiment was performed for a system of strongly charged
polystyrene spheres in water, that form a two-dimensional triangular crystal at the bot-
tom of the container [118]. By interfering laser beams, one can expose the system to a
periodic potential, which can be chosen either commensurate or incommensurate with
the crystal. Translating the container with velocity v, lateral Stokes forces (F ∝ v)
are applied to all particles. It was found that in the commensurate case the motion of
the layer was associated with soliton or antisoliton formation throughout the crystal.
These kinks and antikinks are extended in the direction perpendicular to the direction
of the velocity, creating extended compression zones [118]. Of course, this feature is
different from the situation studied in the present model, where a periodic potential
acts only on two parallel boundaries of a two-dimensional crystal, rather than on all
particles of the crystal. Therefore soliton excitations in the present model (occuring
already in the static case when the transition from n to n− 1 rows has occured) have
only a rather small extension in the direction perpendicular to the walls. It should
also be noted that such kinks and antikinks are well-known concepts in the context
of friction between two crystalline surfaces formed from atoms [162–164], but again
then two two-dimensional lattices slide against each other, while in our case we have
sliding of one-dimensional boundaries confining a two-dimensional crystalline strip.
Thus, a direct application of these well-known studies is not straightforward.

4.3 Concluding remarks

In this chapter we have discussed the influence of shear on the structure of a two-
dimensional colloidal crystal in confinement between parallel walls. We observed that
in the case where the crystal is commensurate with the periodicity of the boundary,
at slow shear velocities the layers of the crystal are tilted, while the crystal breaks
into several pieces with different orientations at medium shear velocities and remains
almost undisturbed at high shear velocities. We showed that the distribution of angles
inside of the crystal is an important quantity and gives a good insight into the structure
of the crystal, along with velocity profiles.
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In the incommensurate case, however, the behaviour is slightly different, espe-
cially at low and at high shear rates. At low shear rates, only one single row of
particles moves along with the walls and at high shear rates holes are created in the
structure. But the breaking up into several pieces also occurs at slightly different
shear velocities. This is due to the incommensurability between the periodicity of the
crystal and the periodicity of the rigid boundaries, which would lead to the creation
of solitons in the case without shear. Obviously, the shearing of the crystal changes
this behaviour significantly.

However, we caution the reader that the observed shear banding effects could be
somewhet exaggerated due to the lack of explicit solvent, as well as the enhancement
of effective temperature near the walls. It is possible (but due to the lack of enormous
computing resources that would be needed we cannot test this hypothesis) that all of
these effects are weaker when explicit solvent is included.

Clearly, our results are somewhat qualitative. One could in principle run more
simulations at different temperatures and different shear velocities in order to inves-
tigate the occuring structural transitions (e.g. from 30 to 29 rows and order-disorder-
transitions) with higher precision. But this does not seem very sensible at this moment
because there is no theory with which the results could be compared and because ex-
periments with such colloidal systems are possible [33–37, 41–46, 49, 148], but typ-
ically use slightly different parameters for the particle interactions, the box sizes and
the walls. Therefore a rather qualitative study makes sense in this particular case and
helps to understand the complex interplay of confinement and shear and its influence
on the structure formation of colloidal crystals.
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Summary and Outlook

In this work we have thoroughly investigated a two-dimensional, monodisperse, crys-
tallized colloidal system by means of computer simulations. We have considered a
system confined by walls consisting of two rows of frozen particles in one direction
and periodic boundary conditions in the other direction. This choice of walls stabi-
lizes the hexagonal crystalline structure. The particles were interacting via a purely
repulsive r−12-potential, which was also acting between the mobile particles and the
wall particles. In order to make the potential strictly short-ranged, we introduced a
cutoff at roughly 2.5 times the next neighbour distance in the crystalline structure. To
avoid jump discontinuities, we added a shift to the potential, and in order to make it
differentiable, which is important for the computation of the stress tensor, we multi-
plied it with a smoothing function. We did not simulate any explicit solvent particles.

A system similar to this one is experimentally realizable [29, 33–37, 41–46], for
example by using polystyrene spheres with a superparamagnetic core, which interact
via a purely repulsive dipole-dipole interaction potential when exposed to a magnetic
field. Such particles can be trapped at air-water-interfaces, where they can form a
two-dimensional layer. Of course, such a dipole-interaction would lead to an r−3-
potential. But as there are no experiments available at the moment to which we could
directly compare our results, we preferred to use the computationally more convenient
(short ranged and therefore less time consuming to compute) r−12-potential.

Compressing the crystal leads to a structural transition in the course of which
one of the crystalline rows disappears. As the number of particles in the system
is constant, the particles which used to sit in this row have to be distributed in the
remaining rows. This leads to the development of regions in the crystal where the
lattice structure is incommensurate with the walls and also with the inner part of
the crystal. Such high energy regions are called solitons. Preceding work on this
model system by Chui et al. has already discovered this structural transition and the
associated formation of a soliton staircase [1–3].

In the first part of this thesis we are revisiting the structural transition. Chui et

107



108 SUMMARY AND OUTLOOK

al. [1–3] have already tried to locate the transition by computing the anisotropy of
the stress tensor which exhibits a jump discontinuity at the value of the misfit where
the structure spontaneously rearranges itself into a different number of rows. These
stress curves, however, indicate a large hysteresis around the transition point, which
obscures its exact location. In order to resolve it with higher precision, we have ap-
plied two different Monte Carlo methods which are able to determine the free energy
of disordered phases.

The first one of these methods was the thermodynamic integration method de-
veloped by Schmid and Schilling [4, 5]. This method allowed us to determine the
free energy of each phase (with 30 respectively 29 rows) separately with very good
precision, taking into account that these free energies were of the order of several
thousands, while the free energy difference between the two phases was only of the
order of ten. Yet even better suited for our purposes was the phase switch Monte
Carlo method, which directly yields the free energy differences between two given
phases. This led to a considerable reduction in the necessary CPU time in compari-
son with the thermodynamic intergration method and still yielded the exact location
of the structural transition with much higher precision. We were also able to verify
that the results of both methods are in very good agreement.

Due to the efficiency of the phase switch method it was possible to continue the
investigation by increasing the misfit between the walls even further and inducing
another structural transition, where the number of crystalline rows is again reduced
by one and even more complex soliton patterns arise.

As the phase switch method requires the knowledge of a typical reference config-
uration of each phase prior to the simulation, we created several candidate structures
and compared their free energies to the free energy of the structure with 29 rows. We
were able to determine which one of these structures was actually the stable one and
which ones were only metastable. We were also able to identify that two seemingly
different soliton patterns quickly transformed into each other and thus had the same
free energy. It would not have been possible to guess which structure was the stable
one by knowledge of the internal energies of the configurations alone, as the entropy
proved to play an important role here and one of the structures with the highest inter-
nal energies actually had the lowest free energy.

There are many more model systems in soft matter, such as block copolymer
mesophases, where the free energy differences between different phases are only a
very small fraction of the absolute free energy of the phases. Applying a thermody-
namic integration method would not only yield results of low precision in these cases,
but also require wasteful amounts of computational time. Hopefully, the phase switch
method will be applied to such systems more often in the future.
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An interesting project in this context would be the prediction of the stable struc-
ture of some –possibly crystalline– novel material. Finding stable structures exper-
imentally can be especially difficult if there are several metastable structures which
are close in their energies and thus only transform very slowly into the stable one.
Yet it is essential for applications to know whether a structure is stable on long time
scales, which can be determined by calculating the respective free energies of several
candidate structures with the phase switch method as we have demonstrated here.

Another interesting phenomenon which we observed in the context of this partic-
ular structural transition is an ensemble inequivalence: in NVT simulations at fixed
values of the system width a two-phase coexistence cannot be observed for this partic-
ular system as there will always be one phase (with a certain number of rows) which
fits better into the given width. Due to this, there is a discontinuity of the pressure
associated with the transition value of the misfit, where without a precursor in form
of a two-phase region instantaneously the system transforms into the other phase. In
the NPT ensemble, however, the phase transition will not show this particular feature
as there will be a coexistence between two phases with different system widths at
every value of the pressure close to the transition pressure just like in standard phase
transitions in this ensemble. Thus, the two ensembles are not equivalent here.

As a next step we have studied the dynamics of the system, in particular the
motion of the particles in this two-dimensional colloidal crystal under confinement.
When computing the mean square displacement of the particles in the various rows for
the case without any misfit, it becomes clear that the particles in the inner rows have
a larger amplitude of movement as the confining effect of the rigid walls decreases
with distance.

The structural transition, which occurs when the crystal is compressed, is visible
in the motion of the particles as it enhances their mobility in those areas where the
solitons are present. Thus, the rows containing the solitons exhibit the largest values
of the mean square displacement now, while the inner rows show less movement and
the rows directly adjacent to the walls remain almost immobile due to the walls’ stabi-
lizing structure. Another consequence of the incommensurability is that it decouples
the inner part of the crystal from the walls, allowing a center-of-mass movement.

We also investigated the mean square displacement of the solitons itself. As soli-
tons are no real particles, but rather areas of increased particle density, they are much
more mobile than the particles themselves. This shows up in a mean square displace-
ment which is in the x-direction an order of magnitude larger than that of the particles.
In the y-direction the solitons are rather immobile as they repel each other and sitting
close to the walls is their energetically most favourable option. The mean square
displacements of the solitons exhibit an overshoot –similar to that of the crystalline
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particles– due to their repulsive interaction with each other which leads to a harmonic
potential felt by each individual soliton. This is in good agreement with previous
investigations of the soliton-soliton-interactions by Chui et al. [3].

Another interesting aspect of the particle movements in the case with fully com-
mensurate walls are the diffusion processes. We discovered that in addition to the
well-known diffusion mechanism –in the course of which a pair of a hole and an
interstitial particle is created due to thermal fluctuations, both the hole and the inter-
stitial particle diffuse through the crystal and finally recombine– cooperative rotation
processes occur. These have only been described in two previous publications by
Montalenti et al. [24, 25] and were observed only very rarely in their simulations.

In our model system, however, these cooperative ring rotation processes outnum-
bered by far the events where hole and interstitial particles were created, at the cho-
sen temperatures around T = 1.0, which is far away from the melting regime around
Tm = 1.35. Especially rings consisting of three and of six particles were common,
which can be explained with the hexagonal lattice structure. In spite of this, ring
rotations did not contribute to the diffusion constant as much as the “normal” dif-
fusion processes involving vacancies and interstitials, as the ring rotations occured
much more often, but involved typically only a few (up to about 25) particles, while
the “normal” diffusion events involved clusters with up to a few thousand particles,
depending on how fast the hole and the interstitial recombined.

The simulations investigating the motion and diffusion of the particles were car-
ried out using Langevin dynamics, where the solvent is modeled only via the friction
and the random kicks that are applied to all particles and which are also conveniently
thermostating the system. Of course, this is a very simplified approach and it would
be highly desirable to repeat such studies in the future with more sophisticated sim-
ulation methods involving hydrodynamics and possibly explicit solvent molecules.
Furthermore one should explicitly search for cooperative diffusion phenomena also
in other model systems. As they contribute little to the overall diffusion constant,
they might easily have been overlooked up to now. But especially at grain boundaries
they might play an important role for the rearrangement of particles and thus for the
precursors of nucleation processes.

In the last part of this thesis, we investigate the effect of shear on colloidal crystals,
again using Langevin Dynamics. The shear is implemented by dragging the structured
walls along the system. In order to avoid shear melting, we ran these simulations at
temperatures T = 0.3 and T = 0.5 well below the melting temperature of Tm = 1.35.

We observed that when the walls are moved slowly along the crystal, the crys-
talline rows become slightly tilted. The outermost rows are dragged along with the
walls, but the particles in the inner rows remain in their initial positions. If the shear
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rate is increased, shear banding can be observed: The rows next to the walls still move
along with them, while the inner part of the crystal breaks up into several –differently
orientated– domains. At even higher shear rates, this effect vanishes again as the fast
movement of the walls leads to an averaged-out wall potential which can no longer
affect the crystal.

If the same simulations are carried out in a system where the walls are placed
closer together, shearing significantly accelerates the transition from 30 crystalline
rows to 29 rows and also the shear banding can be observed at lower shear rates
than in the fully commensurate case. An interesting phenomenon occurs when the
compressed crystal is sheared with very high velocities: As the walls are moving
so fast that they practically interact with the mobile particles like planar walls, the
structure of the rows directly adjacent to the walls is no longer stabilized by the walls
and instead transforms in order to match the structure of the inner rows of the crystal.
As these inner rows contain the extra particles which had to be distributed when one
crystalline row disappeared in the course of the structural transition, these inner rows
consist of more particles than the rows directly adjacent to the walls. Thus, holes are
created in the rows next to the walls in order to make up for the “missing” particles.
These holes can then freely diffuse further into the crystal.

As the moving walls continuously introduce motion and thus heat into the sys-
tem, which the Langevin thermostat tries to cancel by applying friction and random
kicks to the movement of the mobile particles, we obtained temperature profiles for
the sheared colloidal crystals which clearly indicate that the temperature was higher
close to the walls than in the inner parts of the crystal, especially at very high shear ve-
locities. This shows that Langevin dynamics alone are not sufficient for thermostating
this system.

It would therefore be highly desirable to introduce hydrodynamics (for example
by using the DPD thermostat [63, 64] or the Lattice Boltzmann method in the version
where colloidal particles are coupled to a flow field created by the solvent particles
[65]) or to use an explicit solvent. Using explicit solvent could, for example, be fea-
sible by implementing the multi-particle collision dynamics method of Kapral and
Malevanets [152, 153]. This might dampen or enhance some of the effects we ob-
served as the solvent would develop a Newtonian flow profile, which might smoothen
the velocity profiles of the crystalline particles as well. Furthermore, explicit solvent
is usually an excellent thermostat and would therefore provide an almost constant
temperature profile throughout the system.

Another possibility for future improvements lies in the use of graphic cards. We
used the program package hooMD-blue [13, 14] for the simulations with Langevin
dynamics. This program is designed to run on graphic cards and as the processing
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units of graphics cards can calculate the interactions of many thousand particles in
parallel, their usage usually leads to a significant decrease in computational time.
Unfortunately we discovered that the accuracy of consumer graphic cards which typ-
ically only provide single precision is not high enough for our crystalline system. We
therefore had to carry out most of the simulations on CPUs. In the future, however,
it should be possible to use either programmes which are designed to run on graphic
cards and combine the memory of several processing units on graphic cards in order
to obtain higher precision for their calculation (e.g. HALMD [15]), or to buy graphic
cards which use full double precision. Such graphic cards are already available, but
still rather expensive.

As both CPU and GPU time become more easily available each year, it should
also soon be possible to rerun all of the simulations which we have presented here
not only with higher precision, but also with more realistic interparticle potentials.
It would, for example, be an improvement to the system if long ranged interactions
were included and an r−3-potential was used in order to make our simulations more
directly comparable to actual experiments with magnetized polystyrene spheres.
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Appendix A

Schmid-Schilling-Method, applied to
the one-dimensional Ising Model

In order to test (and fully understand) the Schmid-Schilling thermodynamic integra-
tion method ([4, 5]) for the computation of absolute free energies, we used the one-
dimensional Ising model as a first model system. Here, the free energy is known
exactly from analytical calculations that can be found in standard text books. For a
one-dimensional Ising stripe of length L with periodic boundary conditions applied
to the ends, J = 1, kB = 1 and with zero magnetical field, the Hamiltonian reads

H0 = −J
N∑

i=1

sisi+1 with sN+1 = s1. For zero magnetical field, the Transfer Matrix

method yields a free energy of:

F = −T ln(λN
+ + λN

− )

= −T ln
[
eβN(1 + e−2β)N + eβN(1− e−2β)N

]

≈ N
[−1− T ln(1 + e−2β)

]
(A.1)

where λ+ and λ− denote the eigenvalues of the diagonalized transfer matrix, of which
the smaller one can easily be neglected when taken to the power of N , for the range
of values of N and T , which are of interest here.

In order to apply the method of calculating the absolute free energy by use of
a reference system, one has to create a “representative” reference configuration by
equilibrating the system at a given temperature and picking a typical configuration.
These spin states of the reference configuration are denoted as sR

i .
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The Hamiltonian of this reference system is given by

Href(λ) = −λ

N∑
i=1

sis
R
i (A.2)

(note that here λ is a measure for the strength of the interaction between the particles
and their “potential wells” which attempt to ensure that the particles have the spin
direction sR

i ; i.e. λ is not an eigenvalue here!) and its free energy can be computed
easily via the partition function Z:

Zref(λ) =
N∑

n=0

(
N

n

)
e−βE(n)

=
N∑

n=0

(
N

n

)
e−β(−λ)(n×1+(N−n)×(−1))

= e−βλN

N∑
n=0

(
N

n

)
e2βλn

= e−βλN(1 + e2βλ)N

= (e−βλ + eβλ)N

= (2cosh(βλ))N (A.3)

which leads to a free energy of:

Fref(λ) = −T ln(Zref) = −TN ln(2cosh(βλ)) (A.4)

In order to connect this reference system to the original system, one introduces
the intermediate system with its Hamiltonian

Hintermed(λ) = H0 + Href(λ). (A.5)

The free energy difference between this intermediate system and the reference system
(whose free energy we know from (A.4)) can be calculated at a fixed value of λ by
“switching on and off” the interaction described by H0.

Two different Monte Carlo steps are necessary here: In one step the free energy
difference between this system interacting via the full Hamiltonian Hintermed(λ) and
the same particle configuration, but interacting only via the part Href(λ) has to be
computed. The decision to switch the full Hamiltonian on or off is then made using a
Metropolis criterion considering the energy change ∆E = H0(si), which depends on
the current spin configuration si. The other step, which is carried out alternating with
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the first one, is a sweep over all spins, deciding whether the spins are to be flipped or
not, depending on the current Hamiltonian, which is either Hintermed(λ) or Href(λ).

Thus we computed the ratio Pon
Poff

, where Pon/off is the fraction of configurations
where the Hamiltonian H0 as a part of the whole Hamiltonian Hintermed(λ) is switched
on (“on”), respectively where only Href is used (“off”). As the free energy is defined
by F = −T ln(Z), the free energy difference between the reference system of known
free energy and the intermediate system is given by

∆F2(λ) = Fintermed(λ)− Fref(λ)

= −T ln(Zon)− (−T ln(Zoff))

= −T ln
Zon

Zoff

= −T ln
Pon

Poff
(A.6)

On the other hand, Hintermed(λ) reduces to H0 at λ = 0. Therefore, we can cal-
culate the free energy difference between the intermediate system and the original
system by thermodynamic integration over λ′. So we had to compute

〈∂Hintermed(λ
′)

∂λ′
〉 = −〈

N∑
i=1

sis
R
i 〉 (A.7)

(using (A.5) and (A.2)) for a range of λ′ from zero up to the fixed value of λ that we
used in the case of the reference system and the intermediate system. This quantity

−〈
N∑

i=1

sis
R
i 〉 can of course easily be obtained by simulations in the case of the one-

dimensional Ising model without any further moves being neccessary except simple
spin flips, using the Hamiltonian Hintermed(λ

′) with the current choice of λ′ when
computing the energy change for the metropolis criterion of the spin flips.

By integrating out, we obtained the free energy difference between the intermedi-
ate system at the fixed value of ε and the original system:

∆F1(λ) = Fintermed(λ
′ = 0)− Fintermed(λ) = −

0∫

λ

dλ′〈
N∑

i=1

sis
R
i 〉λ′ (A.8)

In the end, these three values were simply added up:

Foriginal system = Fintermed(λ
′ = 0) = Fref(λ) + ∆F2(λ) + ∆F1(λ) (A.9)
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T λ Fanalytic Fsimulation

3.0 1.0 -224.3110 -224.3103
3.0 2.0 -224.3110 -224.3300
5.0 1.0 -356.5076 -356.5073
5.0 2.0 -356.5076 -356.5082

Table A.1: Schmid-Schilling thermodynamic integration method, applied to a one-
dimensional Ising strip of length L = 100 with ∆λ′ = 0.01 for the integration; and com-
parison to the analytical result.

We tried this method for several values of λ and of the temperature T and com-
pared them to the analytical result (see Table A.1). In the case of λ = J , the Hamilto-
nians of the original and the reference system were almost identical, so they produced
the same value for F , and the simulation results for ∆F1 and ∆F2 cancelled each
other almost perfectly as expected. But of course this is a very specific case and only
due to the usage of the one-dimensional Ising model.

The values for Fsimulation were calculated by averaging over 5 simulation runs for
each value of T and λ, which took less than one hour of CPU time on an ordinary
workstation for each choice of T and λ. Obviously, our results are in very good
agreement with the theoretical prediction of (A.1). One should note that using dif-
ferent reference configurations leads to different values for ∆F1, but also to different
values for ∆F2, so that the overall value for F remains the same. Of course, this is
only true if both reference configurations belong to the same phase.

Only at very low temperatures problems were encountered. They arose from the
fact that the probability of turning the interaction between the spins off was very low,
making it difficult to obtain an accurate value of ∆F2. Thus, in this case it would
have been necessary to switch the interactions gradually on and off in several steps as
was done in the case of the colloid crystals.



Appendix B

Transition matrix method: The
general case

The idea behind the transition matrix reweighting method is to register the accep-
tance probabilities of every attempted transition between two states in the so called
transition matrix T and to compute the weight function from this transition matrix.
As it might not be obvious how the exact weight function can be extracted from the
transition matrix in the general case when no simplifications are possible or wanted,
it will be explained in this part of the appendix.

Let’s start out with a system comprised of N states, all of these states connected
by possible transitions from each state to every other state. The current state of the
system can then be described by a vector with N elements. If the simulation starts
out in one known state of this system, this vector would be vs = (1, 0, 0, ..., 0), for
example. Letting the system evolve one step further would then mean to multiply
the transition matrix, which contains the transition probabilities from each state to
each other state, to the vector. This yields a new state vector v1 = T · vs giving
the probabilities for finding the evolved system in each one of the states. In order to
get to the equilibrium properties of the system, the transition matrix would need to
be applied n → ∞ times to the initial vector, thus making the system independent
from the starting configuration. This would then yield the equilibrium state vector
v∞ = Tn→∞ · vs. This vector v∞ contains the information about the probabilities of
all states and is therefore needed in order to create the weight function.

In order to obtain this vector, it is useful to transform the transition matrix T into
its diagonal form, thus containing its eigenvalues as elements:

T = U−1 · diag(λ1, λ2, ..., λN) ·U (B.1)
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which simplifies the exponentiating of T considerably:

Tn = U−1 · diag(λn
1 , λ

n
2 , ..., λ

n
N) ·U (B.2)

as the matrices U−1 and U cancel each other.

Additionally, one can split vs into a sum of eigenvectors of the transition matrix
T:

vs =
∑

i

vi (B.3)

For these eigenvectors the well-known relation Tvi = λivi holds and therefore (using
B.1) also [U−1 · diag(λ1, λ2, ..., λN) ·U]vi = λivi, which leads to the relation:

Tnvs =
∑

i

Tnvi =
∑

i

λn
i vi ≈ λn

maxvmax (B.4)

as n is a very large number and therefore the contribution of the largest eigenvalue
exceeds everything else. This means, that the eigenvector vmax describes the prob-
abilities of all states of the system in the equilibrated case. Therefore the general
approach is to calculate the eigenvector to the largest eigenvalue of the transition ma-
trix in order to extract the weight function, which will then simply be given by the
normalized entries of this eigenvector as they correspond directly to the probabilities
of the individual states.



Appendix C

Simulations of the crystalline system
on graphic cards using HooMD-blue

Molecular dynamic simulations can easily be carried out on graphic cards by using
standard program packages like “HooMD-blue”, “GROMACS” and many other op-
tions. Typically, these packages are very convenient as they only require a simple
script specifying the temperature, time step, the form of the potential acting between
certain particles and information about which groups of particles are to be integrated
with which of the given algorithms.

The use of graphic cards leads to a significant speed-up of the calculations. This is
mostly due to the fact that graphic cards are very suitable for the parallelization of the
calculation of the interactions between the particles as it can calculate the interactions
of many particles with their respective neighbours at the same time, while a CPU can
only calculate the interaction of one particle with one of its neighbours at a time. For
very small systems comprised of only 3672 particles which we studied in Ch. 2 and
partly also in Ch. 3, this speed-up is not very large yet, but it increases for larger
systems until the capacity of the graphic card is fully used and a further increase of
the system size leads to a proportionally longer simulation time. So for example when
shearing a system comprised of 73440 particles, thus moving the walls with constant
velocity and integrating the inner particles via Langevin dynamics, a simulation of
four mio. time steps needed roughly one hour of GPU time. As opposed to this, the
same simulation run needed roughly 24 days of CPU-time (respectively 4 days on 6
CPUs) when carried out on CPUs with double precision.

There is a problem, however: most consumer graphic cards can only carry out
calculations in single precision up to date (the double precision capabilities of these

121



122

0 500 1000 1500 2000 2500 3000
particle nr.

0.9

1

1.1

1.2

1.3

ds
ita

nc
e 

to
 n

ex
t p

ar
tic

le v=0.1
v=0.3
v=0.5
v=0.8
v=1.0

a)

0 500 1000 1500 2000 2500 3000
particle nr.

1

1.02

1.04

1.06

1.08

1.1

di
st

an
ce

 to
 n

ex
t p

ar
tic

le v=0.1
v=0.3
v=0.5
v=0.8
v=1.0

b)

0 500 1000 1500 2000 2500 3000
particle nr.

0.9

1

1.1

1.2

1.3

di
st

an
ce

 to
 n

ex
t p

ar
tic

le GPU
single prec. CPU

c)

Figure C.1: Simulations of a system only consisting of 2160 wall particles, initially equidis-
tantly distributed and moving at a constant velocity without interactions between the particles.
a) Distances between the particles after 4 mio integration steps carried out on a GPU at a time
step of ∆t = 0.002 and different velocities of the particles. b) Same as uppermost, but with
a time step of ∆t = 0.005. c) Comparison between 4 mio integration steps carried out on a
GPU at a time step of ∆t = 0.002 and a particle velocity of v = 0.1 and the same simulation
on a CPU using single precision.
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cards are trimmed on purpose; professional graphic cards with full double precision
capabilities are already available, albeit much more expensive). There are program
packages like HALMD [15, 16] which utilize single precision graphic cards and use
algorithms in order to build up memory units of almost double precision out of the
single precision ones, but unfortunately these program packages do not provide the
options yet which we needed for our simulations.

Single precision calculations proved to yield the same results as double precision
ones when we ran simulations at not too low temperatures, but in order to avoid any
risks, we only ran simulations at T ≥ 1.0 on graphic cards and everything else on
CPUs (and even most simulations at T = 1.0 were carried out on CPUs).
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Figure C.2: Velocity profiles obtained from simulations on CPUs and GPUs. Each system
was equilibrated for 3 mio. steps and each curve was averaged over 100 configurations. a)
Results for the case of a misfit ∆ = 2.2 and a starting configuration with 29 rows. b) Results
for the case without misfit and 30 rows. Shear velocities as indicated. In all cases, HooMD-
blue with Langevin dynamics at a temperature T = 0.3 was used.

Still, we would like to illustrate here how significant the effect of low precision
can be, especially for large systems which are integrated with small time steps and
small velocities: If, for example, a row consisting of 2160 particles without any in-
teractions is integrated with constant velocity and initially the same distance between
all particles, one should think that these distances remain constant. This is not neces-
sarily the case, however, as Fig. C.1 shows: As the system size in x-direction is quite
large here, the coordinates range from about −1130 to +1130 in the x-direction, thus
4 digits are needed to code the value of the x-position in front of the decimal point.
Thus only 3 of the 7 digits available in single precision are left for the part behind
the decimal point. If now the time step is chosen as ∆t = 0.002 and the velocity
of these particles as v = 0.1, the particles would move a distance 0.0002 forward in
x-direction per time step, which cannot be saved any more in the 3 digits available
behind the decimal point.
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This is not true for all particles, however, as only the particles at the ends of
the stripe need 4 digits leading the decimal point to encode their position. Particles
further inside of the stripe have more digits available and can be moved forward more
accurately. But of course, as the particles move along the length of the system, sooner
or later they all move through the area of low accuracy and the periodic boundary
conditions. Thus, Fig. C.1 shows such a confusing pattern of distances between the
particles.

Before we realized that the precision on GPUs is too low for running simulations
containing walls which have to be integrated with constant velocity and also for run-
ning simulations of particles at low temperatures and thus with small velocities, we
computed velocity profiles like the ones shown in Fig. C.2. Obviously, they are con-
siderably different when rerun with double precision on CPUs. We therefore conclude
that running simulations on graphic cards can be some orders of magnitude faster than
on CPUs, but it should not be neglected that most graphic cards use only single preci-
sion, which is in some (maybe rare) cases not precise enough for the simulations that
one wants to carry out.
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