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Abstract
The asymptotic safety scenario allows to define a consistent theory of quantized gravity
within the framework of quantum field theory. The central conjecture of this scenario is
the existence of a non-Gaussian fixed point of the theory’s renormalization group flow,
that allows to formulate renormalization conditions that render the theory fully predictive.
Investigations of this possibility use an exact functional renormalization group equation
as a primary non-perturbative tool. This equation implements Wilsonian renormalization
group transformations, and is demonstrated to represent a reformulation of the functional
integral approach to quantum field theory.

As its main result, this thesis develops an algebraic algorithm which allows to
systematically construct the renormalization group flow of gauge theories as well as
gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel
techniques to efficiently handle the non-minimal differential operators which appear due to
gauge symmetries. The central virtue of the algorithm is that no additional simplifications
need to be employed, opening the possibility for more systematic investigations of the
emergence of non-perturbative phenomena. As a by-product several novel results on
the heat kernel expansion of the Laplace operator acting on general gauge bundles are
obtained.

The constructed algorithm is used to re-derive the renormalization group flow of
gravity in the Einstein-Hilbert truncation, showing the manifest background independence
of the results. The well-studied Einstein-Hilbert case is further advanced by taking the
effect of a running ghost field renormalization on the gravitational coupling constants
into account. A detailed numerical analysis reveals a further stabilization of the found
non-Gaussian fixed point.

Finally, the proposed algorithm is applied to the case of higher derivative gravity
including all curvature squared interactions. This establishes an improvement of existing
computations, taking the independent running of the Euler topological term into account.
Known perturbative results are reproduced in this case from the renormalization group
equation, identifying however a unique non-Gaussian fixed point.
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Zusammenfassung
Das Konzept der Asymptotischen Sicherheit ermöglicht die Konstruktion einer konsistenten
Theorie der Quantengravitation in Form einer Quantenfeldtheorie. Die zentrale Annahme
ist hierbei die Existenz eines nicht-gaußschen Fixpunktes des Renormierungsgruppenflusses,
der es erlaubt Renormierungsbedingungen zu formulieren. Zur Untersuchung dieses
Szenarios findet eine nicht-störungstheoretische exakte Renormierungsgruppengleichung
Anwendung. Diese beschreibt Wilsonsche Renormierungsgruppentransformationen und
stellt eine äquivalente Formulierung einer Quantenfeldtheorie im Pfadintegralzugang dar.

Die vorliegende Arbeit entwickelt einen algebraischen Algorithmus zur system-
atischen Konstruktion der Renormierungsgruppenflüsse von Eichtheorien und Quan-
tengravitation. Dieser verwendet die nicht-diagonale Wärmekernentwicklung, die eine
Auswertung von Operatorspuren über nicht-minimale Differentialoperatoren erlaubt. Der
Vorteil dieses Algorithmus ist, dass keine weiteren vereinfachenden Annahmen (z.B. über
Hintergrundfelder) gebraucht werden und ermöglicht damit die systematische Analyse
von nicht-störungstheoretischen Phänomenen. Im Zuge dieser Entwicklung enthält die
vorliegende Arbeit auch neue Ergebnisse im Bezug auf die Wärmekernentwicklung des
Laplaceoperators auf einem beliebigen Vektorbündel.

Der erarbeitete Algorithmus wird verwendet um den Renormierungsgruppenfluss der
Quantengravitation in der Einstein-Hilbert Trunkierung abzuleiten. Dabei wird explizit die
Hintergrundunabhängigkeit des Ergebnisses demonstriert. Weiterhin werden die Effekte
der Wellenfunktionsrenormierung im Geistsektor auf das Laufen der Kopplungskonstanten
der Gravitation untersucht. Eine detaillierte Analyse zeigt, dass die zusätzlichen Beiträge
zu einer Stabilisierung des nicht-gaußschen Fixpunktes beitragen.

Abschließend wird der Algorithmus auf Gravitation mit allen marginalen Wech-
selwirkungsoperatoren angewendet. Dieser Ansatz bildet die Grundlage für die weitere
Erforschung des Theorienraumes der Quantengravitation, unter Berücksichtigung der
topologischen Euler-Invarianten. Diese Rechnung zeigt die Konsistenz des neuen Zugangs
mit klassischen störungstheoretischen Ergebnissen, und kann die Zweideutigkeit der bisher
gefundenen nicht-gaußschen Fixpunkte auflösen.
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1. Overture

1.1. High Energy Metaphysics

It is the foundation of theoretical physics to pursue the logical structure of a formalized
description of nature. Thereby, it is the phenomenon of uniformity in experimental
physics which serves as the basis for any attempt to capture the spectrum of possible
observations in such a theoretical paradigm and is what allows to speak about a structure
of nature itself. Primarily, the result of any experiment is a collection of data. In terms
of its information content, this data may be compressible in form of an algorithm, a
prescription which reproduces the full set of data, provided that any remaining discrepancy
is statistically accounted for as error of measurement. A theory can in this sense be
thought of as a representation of an infinite amount of data in a compact way, since
it encodes for implications on an infinite number of possible experiments. This means
that a theory which is concerned with observable phenomena can only be acquired as an
extrapolation of already established observations, and is therefore a hypothesis about
the regularity in nature. In reverse, any phenomena are compatible with any number of
models, all being distinct in logically unrelated aspects.

The concept of an effective theory can be defined as a description that is constructed
under neglection of a class of effects, considered to be inessential for the investigation of a
problem at hand, in order to achieve an artificial compression of informational content.
For the purpose of a significant reduction of the mathematical complexity of a model,
this reduction can help to make a formalization accessible, without being fully consistent
beyond a reign of validity of the description. Due to the principal preliminary status
of descriptions of nature, every theory must be seen as an effective one, acknowledging
the impossibility to identify any as fundamentally true. On the other hand however, no
future insight can shatter the validity of thoroughly confirmed theories, as long as they
are restricted to their respective limiting reigns of validity. Therefore, progress in the field
of theoretical physics is sought in form of a generalization of an established mathematical
formalism to extend its reign of validity, while at the same time rendering the known to
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1. Overture

be a special case, which thus retains its validity in a limit case.

Although generalizations of existing concepts cannot be logically constrained, ad-
vances on purely theoretical grounds can be achieved through unification. The guiding
principle for uniting models with different ranges of applicability into one is not just the
resulting simplification, but is motivated by the need for consistency. Indeed, the effects
found in distinct experimental situations must combine to produce a certain outcome for
any constellation imaginable, even if never practically realized. Such thought experiments
yield predictions that will depend on underlying theoretical assumptions, in as far as
any empirical law requires to be generalized in a particular way. While in the paradigm
of pure mathematics one has to rely on logic exclusively, theoretical physics often relies
on the overall consistency of nature itself, the fact that every experiment has a unique
outcome, corresponding to an exact algebra. This is what allows to trust the mathemati-
cal structures, as long as they have proven to accurately represent at least an aspect of
nature, even if used only as calculation instructions rather than a complete theory. The
importance of rigour in mathematical descriptions is essential, but in a way relaxed to the
requirement that there has to exist only some way to unambiguously define all operations
that are required for the representation of physical principles. Without preconceptions
about what to consider as standard definition, there does not exist a notion of naturality
in mathematical physics. If rigour is abandoned even in the sense of allowing for weaker
versions of certain concepts, one leaves the ground of logic [1].

Although it is only rarely the case that a collection of theoretical insights on a
class of phenomena are restrictive enough to lead to conclusive statements, investigations
on the robust predictions associated to any involved assumption are useful. Robust
are such consequences that are necessarily connected to an assumption, allowing no
further choices that would manifest in observable features. Therefore, all non-unique
ways to construct formulations should respect certain defining structural principles, so
that all essential consequences do not depend strongly on the alternatives. Note that
any equivalent formulation of a model points to alternative ways to generalize it, thus
shifting the emphasize on which of its contents is to be considered as a more fundamental
principle, and which merely appear in particular realizations. However all extensions
introduce more freedom of choice. So at least key observables should be robust against
small variations of inner parameters to encode physical information in a sensible way.
This requirement applies to effective theories while abstaining from any statement about
nature in itself.
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1.1. High Energy Metaphysics

For the phenomenology of high energy particle physics, quantum field theory plays
the role of a meta-theory [2]. This is to say that it is proposed to represent the logical
structure which captures the microscopic dynamics in nature. The elementary algebra
encoded this way allows for a multitude of models, describing different possible systems,
using probability amplitudes of elementary events as the primary observable. Within
the domain of theoretical high energy physics today remain a number of conceptual
questions concerning the mathematical representation of phenomenologically relevant
features. Quantum field theory is in several toy models, usually in reduced dimensionality,
successfully treated rigorously with the use of analytical continuations [3]. This serves
as a justification for the generalized application of equivalent manipulations in more
complicated realistic models, although there are no known proofs of well-definedness.

For example, a standard attempt to constructively formulate a local quantum field
theory uses excitations based on a Hilbert space, classified in terms of representations of
internal and external symmetry groups. Although being the basic objects of observation,
an interacting particle becomes an excessively complicated object, being formally defined
by the time evolution of a one particle state

lim
t→∞

eiHt Ψ†(x) |0〉 , (1.1.1)

with the Hamiltonian H and an operator valued distribution Ψ(x) as quantum field.
Already in the case of pure quantum electrodynamics (QED), the result is a product state
including any number of electron-positron pairs and photons, completely inaccessible by
any known method of analysis. As another manifestation of the quasi-particle problem,
consider the usual approach of quantizing free particle states by canonical commutation
relations, which are in turn coupled in perturbation theory. Without a mass gap, spurious
infrared divergences will appear in the resulting amplitudes. In this case, the concept
of a finite detector resolution needs to be introduced, rendering all such states with
position space field excitations sufficiently close to each other indistinguishable, since they
would be observed as a single particle carrying the total momentum. This construction
turns out to be sufficient to cancel the infrared divergence of virtual effects of infinitely
low momenta [4]. That well defined observables are indeed found by such remarkable
resummations of the perturbative expansion should hint at the principal soundness of the
theoretical approach, with only a simple, compact formulation missing.

A further obstacle presents itself as the concept of renormalization. It is one
of the major structural consequences of quantum field theory, reappearing in any of
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1. Overture

its formulations [5]. It was realized already early on in the development of quantum
field theory, that expressions supposed to represent observable features were strictly
divergent. The proper mathematical treatment remained an integral point of concern
until the discovery of Yang-Mills theory, which culminated in the establishment of the
standard model of particle physics. The initial problem of the UV divergence of functional
representations of scattering amplitudes in momentum space was rigorously resolved
within the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme. It
does however not provide a resummable renormalized perturbative series in general, as
seen for example in QED where precision observables like the electron’s magnetic moment
can be computed, despite the theory being ill-defined by itself.1 With the generalization
of QED’s unitary gauge symmetry to non-abelian symmetry groups in Yang-Mills theory,
these remaining issues disappeared due to the Borel-summability of its perturbative
series, related to the asymptotic freedom of the theory [6]. In the form of quantum
chromodynamics (QCD), this gave the first example of a phenomenologically relevant
theory without an obvious deficiency, describing non-trivial interactions in a renormalizable
way. However even today, a fully rigorous construction of phenomenologically relevant
quantum field theories is still missing, mainly due to an insufficient understanding of
renormalization and its embedding in the structure of such theories. After proving to be
successful at describing the physics of high energy scattering experiments, attempts have
been started to elaborate the notion of curved spacetime into quantum field theory. The
generalization of concepts based on Minkowski space to construct a quantized theory of
dynamical gravity seems again to threaten the status of quantum field theory, due to its
incompatibility with renormalization as it came to be understood in the foundation of
the standard model.

Both the theory of General Relativity describing gravity classically and quantum field
theory as it is used for the construction of models of high energy scattering experiments
are remarkably successful in their predictions of observations. In a semi-classical estimate
for a fully localized particle, general relativity would imply a Schwarzschild horizon
which causally isolates the particle inside from its surrounding. This contradicts the
phenomenology of high energy particle physics, with various distinct species of particles
interacting according to specific rules. Arguing that the energy should be considered as

1This can be seen as the triviality problem, stating that QED does not describe interactions when
treated in a self-consistent manner.
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1.1. High Energy Metaphysics

smeared in a region of the Compton wavelength still requires unconvincing extrapolations,
since genuine gravitational interactions are with respect to a quantized metric degree of
freedom. It is also inconsistent to have gravitation in a classical form when coupled to
quantized degrees of freedom, since a quantum field theory of matter fields on curved
spacetime induces running gravitational coupling constants via the renormalization of the
matter fields alone. The central question to be addressed here is weather quantum field
theory is a suitable formalism to include gravitation in a consistent way.

Since renormalization entails much of the phenomenology and reoccurs in any formal-
ization of quantum field theory, it must be seen as a structurally essential component of the
theory itself. The algebraic form of renormalization manifests itself in a scale dependence
with immediate observable consequences. The scaling behaviour of coupling constants,
leading to variable interaction strengths, as well as the emergence of quantum anomalies
are in fact required to match experimentally confirmed phenomena. Furthermore, the
Yang-Mills interactions appearing in the standard model are renormalizable in a predictive
manner specifically by being asymptotically free. The vanishing of coupling constants in
the high energy limit, known as asymptotic freedom, can be seen as the emergence of a
fixed point of a renormalization group transformation which corresponds to only a few
attractive directions given by the terms already present in the action. This means that
any possible higher order operator would be rendered irrelevant and suppressed in the low
energy limit. The structure of the renormalization group thus reveals a mechanism by
which the perturbatively renormalizable interactions are selected from the complete set of
possible operators in an effective field theory. By virtue of this insight, the main practical
problem of non-renormalizability occurring in a perturbative attempt to quantize gravity
may be avoided in a similar way. The conceptual idea of asymptotic safety [7, 8] is to
formulate renormalization conditions in relation to a generalized fixed point. To have a
renormalizable theory, it is sufficient for such a fixed point to possess only finitely many
UV-attractive directions, which may but include interactions, in which case it would be
called a non-Gaussian fixed point.

Since renormalization about an interacting fixed point action is not in general
accessible by perturbative techniques, the investigation of the asymptotic safety scenario
requires the use of non-perturbative methods. In principle theories entailing a strong
coupling limit are compatible with the framework of quantum field theory, and several
approaches to extract relevant information in such cases are known. Important examples
for such techniques are Dyson-Schwinger equations, lattice simulations, perturbative
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1. Overture

approximations using strong-weak coupling dualities, and exact renormalization group
equations. The latter presents a most convenient tool for a discussion on a conceptual level
while being algebraically accessible, and will serve as the foundation of the discussions
in this thesis. Renormalization group methods adopting Wilson’s modern viewpoint
on renormalization [9] are constructed on a functional formulation of quantum field
theory and provide the means to extract information on the correlation functions without
referring to a notion of asymptotic states at any time.

Another virtue of an analysis based on the scaling behaviour of coupling constants
is that it allows to extrapolate critical phenomena. Determining the phase portrait of a
given theory can reveal qualitative changes in its behaviour, since the fixed points do not
only allow for renormalization but dictate the topology of possible renormalization group
trajectories. Related studies are especially relevant to elicit the phase structure in infrared
QCD and to understand phenomena in solid state physics like Bose-Einstein condensation
and supra conduction [10]. Fixed points controlling the high energy limit are well known
from, e. g., O(N)-sigma-models [11], the Thirring model [12], and the Wilson-Fisher fixed
point in scalar field theories [13]. More recently, non-Gaussian fixed points have been
considered in Yukawa-systems [14] and the Higgs sector [15] to realize mechanisms in
the standard model beyond the ones allowed within perturbative renormalization. With
such a fixed point, gravity can have a well-defined description within the framework of
non-perturbatively renormalizable quantum field theories, as will be explained in more
detail in the next section.

For its many demonstrated successes quantum field theory underwent a change in
perspective, gaining more trust in the formalism despite the lack of mathematical rigour.
Particularly the concept of renormalization, initially perceived as a sign for deficiency,
received much clarification in the context of the structure of the renormalization group.
These developments motivate to pursue an approach to quantum field theory that is
much more centred around this structure. The renormalization group is a key algebraic
structure that while not being appropriately appreciated in current formalisms may allow
for an ambiguity free formulation of high energy physics when put on rigorous grounds.
It is one of the main concerns of this thesis to contribute to an overall understanding of
renormalization and its role played in quantum field theory, particularly combined with
curved spacetime.
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1.2. The Quest for Quantum Gravity

1.2. The Quest for Quantum Gravity

Formulating a consistent and predictive quantum theory for gravity is one of the prime
challenges of theoretical high energy physics today. The construction of quantum gravity as
a perturbative quantum field theory based on a metric degree of freedom has many parallels
to the case of Yang-Mills theory. Despite the formal similarity, such a straightforward
attempt to the quantized description of gravity fails, due to the presence of a dimensionful
coupling constant spoiling renormalizability. In this respect, 4-dimensional gravity behaves
like Yang-Mills theory in more than 4 spacetime dimensions, where its coupling constant
acquires negative mass dimension. Newton’s constant GN is already present in the
Einstein-Hilbert action

SEH = 1
16πGN

∫
d4x

√
|g|
(
R− 2Λ

)
, (1.2.1)

describing the classical theory of general relativity. As one can see from power counting
arguments, it implies that the gravitational interaction vertices come with positive powers
of momenta, which make the contributions of UV modes diverge. The cancellation of
UV divergence in the process of renormalization then requires the inclusion of an infinite
number of higher derivative terms, each introducing a further coupling constant. In pure
gravity, it is still possible to renormalise the action SEH at the 1-loop level [16]. However
the 2-loop contributions introduce the Goroff-Sagnotti term [17,18], which corresponds
to the first appearing interaction that cannot be absorbed into the Einstein-Hilbert
action. All higher loop orders produce ever more such terms. Although being formally
well defined, it is therefore not possible to formulate renormalization conditions in a
meaningful way, as observables will in general depend on all the coupling constants
introduced by renormalization.

The inclusion of higher derivative terms beyond the Einstein-Hilbert action can cure
this issue. Adding the curvature squared terms

SHD = 1
16πGN

∫
d4x

√
|g|
(
aRµνR

µν + bR2 +R− 2Λ
)
, (1.2.2)

which come with dimensionless coupling constants in 4 dimensions make the theory
asymptotically free and thus renormalizable [19, 20]. The mechanism in such higher
derivative gravity models can be understood as a modified propagator scaling, with a
momentum dependence like

G(p2) = m2

p2(p2 +m2) = 1
p2 −

1
p2 +m2 . (1.2.3)
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1. Overture

For large momenta one has G(p2) ∼ p−4, so that amplitudes become stronger suppressed
compared to the usual p−2-behaviour, thus fixing the power counting. This suppression
can also be conceived as a Pauli-Villars regulated propagator, subtracting the contribution
of a massive copy of the original degree of freedom. Unfortunately, this way negative
energy or negative norm states are introduced, leading to a dynamical instability or loss
of S-matrix unitarity. In total the above action describes massless spin-2, accompanied
by massive spin-2, and massive spin-0 modes with negative norm. This raises a serious
question about the possibility of a consistent formulation, that is both unitary and
renormalizable within quantum field theory.

Many attempts have since been started to find a suitable UV completion for a
quantum theory of spin-2 excitations. For one, modifications of the action of curvature
squared gravity SHD have been considered to change the number and nature of the
propagating degrees of freedom. Constructions like the Pauli-Fierz mass term can be used
to describe topologically massive gravity. Some related models of Hořava gravity [21]
pursue a balancing of the unitarity violating degrees of freedom by the use of spacetime
isotropy violating terms. This class of models may thus achieve formal consistency,
but their quantum corrections accordingly do not respect Lorentz symmetry, so that
compatibility with experimental observation is unclear.

A different line of research is stronger oriented on the conceptual implications of a
quantized spacetime geometry. Loop Quantum Gravity is motivated by the attempt of
canonically quantizing gravity, see [22] for a review. The singularity encountered in the
Wheeler-deWitt equation is therein avoided with the introduction of a finite step length
via the choice of representation of the Heisenberg algebra. The formalism makes use of
holonomies as degrees of freedom which allows to write the Hamiltonian constraints in
a simplified form. The resulting Gauss and Diffeomorphism constraints are solved on a
Hilbert space of spin networks, but the remaining Hamiltonian constraint could not yet
be fully taken into account. Due to this technical problem, the status of the theory is still
unclear.

Initially considered as a way to reproduce the Regge trajectories of mesons, the ap-
proach of string theory generalizes the variables of quantum mechanics to one-dimensional
objects. These basic objects are coordinates of an embedding geometry with the interpre-
tation of spacetime subject to fixed (open strings) or periodic (closed strings) boundary
condition [23]. An analysis of the resulting closed string excitation spectrum reveals an
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1.2. The Quest for Quantum Gravity

ubiquitous spin-2 mode. Furthermore, the conditions for anomaly cancellation in this
theory resemble Einstein’s equations for the target space geometry, so that the known
dynamics of gravitation are reproduced in a limit. The elegance of the approach to
describe any interactions geometrically however culminates practically in very involved
mathematical problems. Also, the theory requires at least in its better studied forms
supersymmetry as well as extra dimensions for consistency, which both lack experimental
evidence.

A yet more radical conceptual paradigm shift is realized in the use of pregeometric
variables. If the gravitational degrees of freedom defined only on an abstract group
manifold are such that they form a metric field only as a condensate, spacetime becomes
an emergent phenomenon. For example, a very general formulation of this sort is Group
Field Theory [24]. Herein, the equivalents of Feynman graphs receive a reinterpretation,
with each n-vertex replaced by an (n − 1)-dimensional simplex connected to form a
discretized spacetime manifold. A partition sum then corresponds to a weighted average
over those quantum geometries, which allows it to describe quantum gravitational effects.
Due to the abstract nature of such theories, many dynamical phenomena like the splitting
of universes into topologically disconnected regions become possible. It is thus not known
to what extent realism is maintained.

All the above mentioned proposals, among various others, may of course turn out to
be accurate theories of quantum gravity. However for the lack of experimental signatures
guiding modifications of established physics, a more conservative approach to the problem
is favoured. Indeed, despite the apparent breakdown of quantum field theory due to
gravitational effects, the standard model of particle physics works very well in perturbation
theory. The standard model does by itself include a few unresolved issues, for example
related to the magnitude of CP violation or the mechanism of confinement.2 Nevertheless,
the question about the consistency of gravity in this picture is, without any direct
experimental signal, on a purely logical level. Since the structure of the renormalization
group emerges directly within a field theoretic quantization, the implied possibility
of non-perturbative renormalizability is worth consideration. The mere failure of the
perturbative approach to quantum field theory as the origin of the conceptual problems is,
from this perspective, much less speculative than alternative research programs. With the
confirmation of a standard model-like Higgs particle, together with the lack of signatures

2One may also consider the gauge anomaly cancellation in the standard model, involving the conspiracy
of several logically unrelated parameters, to expect a deeper underlying structure.
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1. Overture

of new physics (e.g. supersymmetry) strongly hints at asymptotic safety as the mechanism
uniting high energy physics with gravity realized in nature. In this proposal quantum
gravity does not need any unobserved features, like extra dimensions or additional particles,
to be consistent.

Based on the fixed point structure of gravity in d = 2 + ε dimensions [25, 26], it
was conjectured by Weinberg [7], that the UV-behaviour of gravity in four dimensions
is controlled by an interacting fixed point, so that the theory is non-perturbatively
renormalizable or asymptotically safe. Similar to Yang-Mills theory in 4 dimensions,
gravity in d = 2 dimensions is power counting renormalizable, and accordingly shows
a free, Gaussian fixed point. For higher dimensionality, a non-Gaussian fixed point
(NGFP) of the gravitational renormalization group flow emerges. The key idea of
asymptotic safety is that this fixed point serves as a way to restrict the parametrical
freedom of the theory, replacing the power counting argument of perturbation theory.
For renormalization group trajectories attracted to it at high energies, the fixed point
ensures that dimensionless coupling constants remain finite, so that physical quantities
are safe from UV divergences. Importantly, this allows to generalize the perturbative
way to formulate renormalization conditions, so that only finitely many free parameters
remain to determine the renormalization group trajectory realized in nature. Estimating
the critical exponents that control the nature of the fixed point by a mean field power
counting suggests that at most the marginal coupling constants become relevant, while
all higher ones become enslaved by the fixed point. In four dimensions, this implies that
all interactions beyond curvature squared terms are irrelevant, assuming that quantum
effects will not turn out to be too strong to invalidate the argument [27]. This would
suffice to define a quantum field theory of gravity as a UV complete, renormalizable
theory, rendering merely the perturbative technique inapplicable.

To arrive at a fully consistent theory, its unitarity has to be established in order to
guarantee the conservation of probability. In contrast to the higher derivative actions in
perturbation theory, the propagator in asymptotically safe gravity carries a non-trivial
scale dependence, estimated as

G(p2) ∼ p−2+η , (1.2.4)

with the anomalous dimension η [28]. While at high energies close to the fixed point,
one has η ≈ −2 leading to a similar correction of power counting as described above, for
lower energies the propagator remaines essentially unchanged. This way, a mechanism

18



1.2. The Quest for Quantum Gravity

controlling the dynamical degrees of freedom can be envisioned.

The asymptotic safety mechanism is non-trivially improving the situation as com-
pared to perturbative computations as demonstrated in [29–31] by the inclusion of matter
fields. In a perturbative treatment, gravity is no longer 1-loop renormalizable when it
becomes coupled to matter. Instead, the additional contributions to the gravitational β
functions have no strong impact in a renormalization group study, and so do not endanger
the non-perturbative renormalizability. Similarly, the inclusion of the Goroff-Sagnotti
term, appearing as the first non-absorbable divergence at 2-loop perturbation theory, can
be expected not to have any severe effect, as it would not have in higher derivative gravity.

More specifically, the absence of corrections at the order of the Planck scale as
they would be expected from semi-classical estimates in the coupling of gravity to the
standard model implies a non-relevance of this scale. This can be understood as a strong
sign for the need to take renormalization group effects on gravity into account, which
render all intrinsic scales relative to resolution. In fact, the application of the ideas
of asymptotic safety to the standard model coupled to gravity leads to an accurate
prediction of the Higgs mass [32]. Furthermore, the interplay of gravity with the gauge
fields improves their renormalization behaviour so that the triviality problem of pure
QED is circumvented [33]. The defining signature of asymptotically safe gravity is
the dominance of the renormalization group behaviour at high energies by the NGFP,
leading to a strong suppression of gravitation as compared to the expectation following
perturbative arguments. Besides this phenomenon, the proposal that gravity is subject
to substantial renormalization effects also leads to a comparably strong influence on the
low energy limit, due to the dimensionality of its coupling constants. This way, some yet
unexplained cosmological phenomena, e.g. dark matter, may be accounted for due to the
quantum nature of the spacetime geometry itself [34].

In general it can be said that if a UV fixed point exists in the renormalization group
flow, it will have an influence on the high energy behaviour, and might even provide the
mechanism to make gravity renormalizable. The concept of asymptotic safety alone does
thereby not determine the entire theory of quantum gravity. A specific fixed point action
describing the precise phenomenology could be given in terms of different and possibly
inequivalent degrees of freedom, and contain alternating interaction monomials. The main
point to note is however that a quantized version of ordinary Einstein gravity along these
lines is well imaginable to be a consistent theory, and to be in full accordance with all
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observed data. Although the true theory of quantum gravity may turn out to require
much more severe changes in the mathematical framework than one could anticipate
now, it still needs to contain classical general relativity in a limit. The asymptotic safety
program is to show a viable pathway to contain gravity in standard quantum field theory
as a mere consequence of the intrinsic structure of renormalization, and is in this sense in
contrast to any proposed paradigm shift in high energy physics.

A key ingredient in the investigation of this possibility is the gravitational version
of an exact renormalization group equation [35]. Generally, there does not exist a notion
of an exact solution of such an equation, since the choice of initial conditions represents
an input of information in its own right, and is lacking a strict prescription. This is why
in practice, only certain interaction terms are taken into account in order to find non-self-
consistent approximate solutions of renormalization group equations. This procedure of
truncating the most general form of action is justified in the sense of an effective field
theory, interpreting any neglected terms as secondarily generated in renormalization,
which carry only inessential information for the considered couplings.

Especially for the case of gravity, to elucidate the fixed point structure of the
renormalization group flow and to understand its properties is of central importance
for the asymptotic safety program. For reviews and detailed references on this subject
see [36–42]. In this class, the truncation ansatz is spanned by diffeomorphism invariant
operators, which are build from the metric of the spacetime manifold.3 The most studied
case, the so called Einstein-Hilbert truncation, encompasses a scale-dependent Newton’s
constant Gk and cosmological constant Λk. This setup has been analysed in a number
of works, for example [35,44–50], studying the influence of different gauge fixing, cutoff
dependence, and the effect of extra spacetime dimensions. These investigations led to
an impressive body of evidence that gravity indeed possesses a suitable NGFP, located
at positive Newton’s constant and cosmological constant, being very robust against any
change of parameters present. Notably, the essential features of this picture already emerge
from the structurally significantly simpler renormalization group equations obtained by
the reduction of the gravitational degrees of freedom to the scalar conformal factor [51–53].

Subsequently, the Einstein-Hilbert ansatz was extended in a series of works, to
include further interactions. The first refining computations included a higher derivative R2

interaction [54–56]. Higher order polynomials in the scalar curvature within the framework

3It is as well viable to realize this scenario in terms of different degrees of freedom. For example a spin
connection formulation was investigated in [43] with promissing results.
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of f(R)-gravity were studied in [27,57–60] and with non-minimal coupling to scalar fields
in [61]. Some non-local operators in [57,62], and the Weyl-squared interactions in [31,63,64].
All these computations have identified a NGFP of the gravitational renormalization group
flow, providing substantial evidence for the asymptotic safety scenario. The latter started
an important line of research, since the interactions encoded by contractions of higher
powers of the curvature tensor are characteristic features of gravity. In comparison
with the f(R) approach, which can even allow for studies of a basis including infinite
coupling constants [65,66], computations involving such tensor structures are as of now
still restricted to the curvature squared terms. The reason for this discrepancy is found
in the fact that a simple spherical background geometry can be employed in the former
case to reduce the computational involvement significantly. In contrast to this case, the
most general graviton propagator including higher derivative terms can only be given on
a generic background geometry.

All of the above mentioned computations hint at the proposition that it is a charac-
teristic of actions describing graviation to give rise to the NGFP. If this indeed turns out
to be the case, it should be possible to elicite the conditions of the emergence of this fixed
point by analytical means. Specifically, the remarkable stability of the properties found
in the comparably simple Einstein-Hilbert truncation, demands clarification. Although it
seems very much to be a robust feature and not as an artifact of the used methods of
computation, most of what has been done is a case-by-case study, being able to compare
only the numerical values of fixed point position and its critical properties. Investigating
the behaviour of solutions of the renormalization group equation under the inclusion or
neglection of interaction terms in a systematic way should provide insights into the un-
derlying mechanism and may thus allow to find analytical statements about the existence
of fixed points. It is in this context especially important to learn to what extent the
sign of critical exponents is conserved upon inclusion of further terms, since these are
used to classify the corresponding interactions as relevant or irrelevant. So far, this was
possible only in very limited ways, because the technicalities of the computations required
simplifying assumptions, foremost concerning the choice of gauge fixing and background
geometry, to be manageable. It is one of the main advances elaborated in this thesis
to present an algorithm for the solution of renormalization group equations, capable of
dealing with the related complications. As this algorithm can be fully automated, a lot of
applications become possible, that would not be feasible by manual calculations.
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1.3. Outline

The rest of this thesis is organized as follows.

In chapter 2 we lay the conceptual foundation of the renormalization group. The
first section gives a recap of the euclidean functional integral approach to quantum field
theory and its perturbative treatment. This serves as the basis for a detailed conceptual
discussion of the emergence of the renormalization group in the following section. Herein
we also elaborate on its relation to the perturbative approach to improve the common
understanding of its place within the framework of quantum field theory, and to motivate
the attempt to define quantum field theories via the renormalization group. The third
section finally presents the derivation of the exact renormalization group equation in
several functional forms. This way we introduce the renormalization group equation at
the level of the quantum effective action, which is the central tool for computations in
the remainder of this thesis. The derived equation is generally applicable to models with
complicated non-linear dynamics such as Yang-Mills theory and gravity, which makes its
use a formidable technique for the systematic extraction of relevant and non-perturbative
quantum effects, that avoids the evaluation of many Feynman diagrams.

The concept of curved spacetime is introduced into the context of quantum field
theory in the first section of chapter 3. We make use of the heat kernel expansion to define
covariant propagators and exemplify the perturbative computation of quantum corrections
in the presence of gravitational fields. The second section gives a detailed discussion of
the off-diagonal heat kernel method. Here we employ the deWitt algorithm to compute all
heat kernel coefficients on a general vector bundle with non-minimal operator insertions to
third order in the curvature. In the third section, these results are embedded into a novel
formalism which allows to evaluate very general operator traces including non-minimal
derivatives, as they appear in any quantum field theory of gauge degrees of freedom.

Chapter 4 combines the results of chapters 2 & 3, to establish a general algorithm
for the solution of the renormalization group equation in the context of gauge symmetries.
The first section reviews the quantized description of gauge theories. Here we focus on
the specific complications arising due to gauge symmetries in practical computations, and
introduce suitable decompositions for vector and tensor fields with according projection
operators. The second section presents the computation of heat kernel coefficients being
constrained to the subspaces defined via these projectors. These newly derived coefficients
show a singularity structure which is reminiscent of infrared divergencies in quantum field
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theory. The meaning of these findings for gauge theories and the practical treatment of
gauge fields in the renormalization group equation are discussed. Finally, as one of the
main accomplishments of this thesis, an algorithm for the solution of renormalization
group equations using an arbitrary expansion scheme is developed in the third section. Its
virtue lies with the applicability to general gauge theories, in principle not requiring any
prerequisites and does in particular not rely on specific simplifying choices for background
geometry or gauge fixing, intrinsic to previous methods. With the implementation
in computer algebra, the foundation of an extension of the studies of the quantum
gravitational renormalization group flow including higher tensorial interactions is laid.

The renormalization group equation is solved for the Einstein-Hilbert case in chapter
5. Using the general algorithm presented in the preceding chapter, we derive the β
functions for Newton’s and the cosmological constant, thus demonstrating their background
independence explicitly. Moreover, a new method of analysis is proposed, focusing on the
term structure of the β functions in an attempt to elicit the mechanism which gives rise to
the remarkable stability of the non-Gaussian fixed point. The second section extends the
previous setup by a non-trivial running field renormalization in the Faddeev-Popov ghost
sector. Making contact with the standard Einstein-Hilbert computation in the literature,
we engage in a detailed analysis of the properties of the persisting gravitational fixed
point. Here we include a study of the stability of the flow and a discussion of the effect of
extra spacetime dimensions.

In chapter 6 we engage in the completion of the curvature squared ansatz for the
renormalization group equation. With the mathematical foundations for this endeavour
established in form of the above mentioned algorithm, we are able to perform the full
non-perturbative computation. The first section outlines this computation, deriving all
operators appearing in the functional traces. The second section continues the evaluation
of the final result in a perturbative limit, demonstrating the reproduction of the associated
β functions in a closed and systematic way. Furthermore, the non-universal terms found
in this way improve the known results by allowing for only one unique non-Gaussian fixed
point, thereby identifying a second one as unphysical.

Chapter 7 gives a concluding summary of the work presented in this thesis, and
comments on the meaning of the accomplishments for future research.

In three appendices, we cover some reoccurring topics, which are relevant in multiple
chapters. Appendix A reviews the derivation of a general basis of curvature monomials
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up to third order, which is used to represent the results of heat kernel computations. In
appendix B we collect numerous commutation relations of covariant derivatives, which
are used in many computations throughout the thesis. Appendix C defines and discusses
the threshold functions, used to conveniently capture the cutoff dependence appearing
in the renormalization group equation, and gives a comparison of some commonly used
choices of infrared cutoffs.

Parts of the content of this thesis is already published in [67–70].
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2. Functional Renormalization

2.1. The Structure of Quantum Field Theory

There exist a number of ways to define a quantum field theory, which is a quantum
theory of infinitely many degrees of freedom, represented by fields assuming independent
values on each spacetime point. On an abstract account, the theory presents an arrow
mapping a category with the interpretation of spacetime into an observable algebra of
local measurement operators [71, 72]. One rather elegant way to realize this structure
is the use of a functional formulation [73], which allows to represent the mapping by
operator valued distributions, forming a basis for the quantum fields. In the euclidean
version, a probability measure can be constructed which provides the correct distribution
of observables in a manifestly stochastic formalism. This so called path integral approach
will serve as the basis for the discussions in this thesis.

The basic observables of a quantum field theory are scattering cross sections σ, given
by the matrix elements as

σin→out ∼ |〈Ψout|T e−i
∫

ddx h[X ]|Ψin〉|2 , (2.1.1)

with a Hamiltonian density operator h[X ] defining the time evolution of the model at
hand, acting on the interacting Hilbert space vectors Ψ. Here, X denotes the full collection
of fields under consideration, abbreviated into a notation with any spacetime or internal
group indices suppressed. Via the famous LSZ reduction formula [74], these matrix
elements can be expressed as integrals over the n-point correlation functions

Gn(x1, . . . , xn) = 〈0|T X (x1) . . .X (xn)|0〉 , (2.1.2)

given as normalized time ordered vacuum expectation values of the quantum fields X .1

For a compact notation, the set of these functions can be formally collected into a single
1The Gn are also known as the Wightman functions, which are usually studied on a complex continuation
of spacetime. For the purpose of this chapter it is more convenient to use their Wick-rotated
counterpart, the Schwinger functions.
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generating functional Z, defining

Gn(x1, . . . , xn) = δ

δJ(x1) . . .
δ

δJ(xn)Z[J ]
∣∣∣∣
J=0

, (2.1.3)

as its n-th functional derivative. The explicit form of Z[J ] follows immediately in terms
of a formal power series

Z[J ] =
∞∑
n=0

1
n!

∫
ddx1 . . .

∫
ddxn Gn(x1, . . . , xn)J(x1) . . . J(xn) , (2.1.4)

thus allowing the use of functional techniques to represent many essential identities in
quantum field theories in a compact form. The infinite number of integrations appearing in
this formula does not cause any ambiguities since the expression serves merely the purpose
of introducing a notation which units the equations (2.1.2) into one. The functional Z
preserves the identities (2.1.3) in its moments expansion, and thus convergence of the sum
will not be required at any time. With the definitions (2.1.2), for simplicity written in
the form Gn(x1, . . . , xn) =< X (x1) . . .X (xn) >, the generating functional Z[J ] becomes

Z[J ] =
∞∑
n=0

1
n!

∫
ddx1 . . .

∫
ddxn < X (x1) . . .X (xn) > J(x1) . . . J(xn)

= <
∞∑
n=0

1
n!

∫
ddx1 X (x1)J(x1) . . .

∫
ddxn X (xn)J(xn) >

= < e
∫

ddx X (x)J(x) > ,

(2.1.5)

the (Wick-rotated) characteristic function of the associated distribution, in complete
analogy to the usual definition in probability theory [75]. From this expression one
can construct the expectation values of any function of the fields in terms of functional
derivatives

< F [X ] >= F
[
δ

δJ

]
Z[J ]

∣∣∣∣
J=0

. (2.1.6)

In order to give explicit account for the expectation values, and thus determine the specific
predictions of a model, the definition of a probability measure µ on the space of quantum
fields is required. This can in general be written as

< F [X ] >= µ(F [X ]) = 1
N

∫
dµ(X ) F [X ] , (2.1.7)

including a normalization factor N =
∫

dµ(X ). Establishing this definition grounds the
formalism in a stochastic framework, where the fields X are no longer operator valued,
but are now represented as random variables, subject to a distribution on the right
hand side of (2.1.7). While the statistical nature of the theory is captured naturally, to
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preserve the canonical commutation relations it is sufficient to realize bosonic fields as
ordinary complex valued, and fermionic fields as Grassmann valued random variables.
The functional Z[J ] becomes

Z[J ] = 1
N

∫
dµ(X ) e

∫
ddx X (x)J(x)

= 1
N

∫
DX Z̃[X ] e

∫
ddx X (x)J(x) ,

(2.1.8)

introducing the standard notation in quantum field theory as functional Laplace transfor-
mation in the second line. At this point it is sufficient to understand the integration over
functions DX as a formal integral, for which substitution and partial integration rules
hold by definition, without reference to the existence of the integral.2

To connect the stochastic formulation to a specific theory, we demand that its
equations of motion are respected in the sense of expectation values

<
δS[X ]
δX

− J >= 0 , (2.1.9)

giving the interpretation of external sources to the functions J . It is now an easy task to
recover the Dyson-Schwinger equations in functional form by

0 =
∫
DX Z̃[X ]

(
δS[X ]
δX

− J
)

e
∫

ddx X (x)J(x)

=
∫
DX

(
δS[X ]
δX

Z̃[X ] + δZ̃[X ]
δX

)
e
∫

ddx X (x)J(x) ,

⇒ δS[X ]
δX

Z̃[X ] + δZ̃[X ]
δX

= 0 ,

(2.1.10)

which determines the distribution function Z̃[X ] = e−S[X ].
To summarize the above derivation of the euclidean functional integral formulation

of quantum field theory, the observables are essentially determined by the generating
functional

Z[J ] =
∫
DX e−S[X ]+(X ,J)∫
DX e−S[X ] , (2.1.11)

with a normalization such that Z[0] = 1 and the usual scalar product (X , J) =
∫
xX (x)J(x).

One does also arrive at this expression as a field theoretical generalization of the path
integral in quantum mechanics, which provides a formula for the matrix elements of the
time evolution operator

< x′|e−i
∫

dt H |x >=
∞∏
n=0

[∫
dx(tn)

]
eiS(x)

∣∣∣∣x(∞)=x′

x(−∞)=x
. (2.1.12)

2This is a generalization guided by the intuition of an ordinary integral, analogous to formal sums, for
which the operations of adding and multiplying are defined without requiring the convergence of the
sum.
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To achieve better analytical control and ensure the convergence, it is common practice to
perform an analytical continuation to an imaginary time variable, thus eliminating the
factor i in the exponent. This step of euclideanization preserves the structure of the theory,
guaranteed by the Osterwalder-Schrader theorem, establishing explicitly the euclidean
analogues of the Wightman axioms within the stochastic formulation [76].3 Furthermore,
the expression (2.1.11) can be understood, in statistical terms, as a partition function.
This is due to the fact that the mathematical structure of measure theory provides a
general formalism to describe probabilistic observables by the use of a weighted sum,
given the probabilities of elementary events. The factors determining this distribution are
generalized Boltzmann weights, as one has in statistical field theory

Z = Tr e−βH , (2.1.13)

showing an inherent similarity to quantum physics. This comparison can also be exploited
to find a finite temperature formulation of quantum field theory, since a Boltzmann factor
is identical to a time evolution operator with the inverse temperature β appearing as an
imaginary time variable.4

Although the statistical formulation is conceptually more transparent than alterna-
tive constructions of quantum field theories, it hides some mathematical difficulties in the
explicit definition of the functional integral. It turns out to be quite a hard task to give
mathematically precise meaning to an appropriate measure, as denoted DX above. The
reason why a straightforward interpretation fails is that there does not exist a Lebesgue
measure on infinite dimensional spaces. One way to make direct use of such an expression
is by employing a lattice regularization, where the functional integration is replaced by a
finite product DX = ∏

i∈L dX (xi) over the set of lattice nodes L, with a certain discrete
spacing xi+1 = xi+a. This definition eliminates at the same time UV divergences, since no
momenta bigger then 1

a
can appear. However the approach forfeits spacetime symmetries,

which can only be restored at the continuum limit a→ 0. A rigorous construction can be
attempted using cylinder sets, which are the preimages of linear maps of a vector space
into measurable spaces, thus inducing a (pre-)measure on the infinite dimensional vector

3In the case of gravity, the Lorentzian and Euclidean signature field equations are known to have in
general inequivalent solution spaces. Nevertheless a statistical sampling of geometries still entails
comparable features. See [77] for more details.

4Note that therefore the euclidean continuation becomes ambiguous for finite temperature calculations
of non-equilibrium phenomena, as it mixes time and temperature in an indistinguishable way. This
will however be of no concern for the purposes of this thesis.

28



2.1. The Structure of Quantum Field Theory

space. It is most convenient in quantum field theory to employ the Wiener measure, which
is a version of this procedure for probability distributions restricted to be of Gaussian
form. This allows to reside with a formal treatment of the functional integrals, which
is preferable as the main interest is to capture the underlying algebraic structure, and
demonstrates the role of renormalization in quantum field theory. As a starting point to
derive the perturbative expansion, we split the action functional into a quadratic kinetic
part and an interaction part,

S[X ] = 1
2

∫
x
XD0X + Sint[X ] , (2.1.14)

where D0 abbreviates any differential operator and Sint[X ] = O(X 3).5 It is then possible to
extract the higher powers of the fields out of the functional integral to be left with a purely
Gaussian integral, which is defined by decomposition into infinitely many one-dimensional
integrals. This is a way to realize the Feynman-Kac formula to find

Z[J ] = 1
N

∫
DX e−S[X ]+

∫
x
XJ

= 1
N

e−Sint[
δ
δJ

]
∫
DX e

∫
x

(
−1

2XD0X+XJ
)

= 1
N

e−Sint[
δ
δJ

] c det(D−
1
2

0 ) e
∫
x

1
2JD

−1
0 J

= e−Sint[
δ
δJ

] e
∫
x

1
2JD

−1
0 J

e−Sint[
δ
δJ

] e
∫
x

1
2JD

−1
0 J |J=0

,

(2.1.15)

where the functional determinant of D0 and an infinite constant c cancel with the
normalization factor in the last step.6 Recalling the formula for the n-point functions
(2.1.3), we have

Gn(x1, . . . , xn) ∼ δ
δJ(x1) . . .

δ
δJ(xn)e

−Sint[
δ
δJ

] e
∫
x

1
2JD

−1
0 J |J=0 , (2.1.16)

giving rise to the perturbative series of a given model, found from this expression by
expanding in the coupling constants, parametrizing the interaction terms contained in
Sint. The term structure following from this scheme has a diagrammatic representation
in terms of Feynman graphs as follows. Any two derivatives with respect to J produce
a free propagator G(x − y) = D−1

0 δ(x − y), determined by the quadratic part of the
action, represented in a graph by a line connecting the points x and y. The n coordinates

5The integration over x will later be generalized for curved spacetimes of arbitrary dimension, defining∫
x

=
∫

ddx
√
|g|.

6The exponent of D0 in the determinant changes sign for integration over fermionic fields.
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in the argument of Gn remain as external lines, while the integrations residing in Sint

imply the connection of lines to one point, called an interaction vertex. It is exactly these
integrations which lead to the UV divergence of quantum field theories.7 Therefore one
can see that the normalization N will cancel exactly the contribution of the so called
vacuum graphs, which have no external lines. The perturbative approximation scheme
thus relies on the coupling constants to be small parameters to expand in. However even
if they are, the series converges poorly in many cases, and in practice only a finite number
of terms is taken into account.

So far in this discussion, we used the so called disconnected n-point functions. These
turn out to be less convenient, since even in a free theory there are purely combinatorial
contributions to expectation values, as can be seen from the formula (2.1.16). Instead, to
focus on genuine interaction processes, it is desirable to restrict the discussion to terms
corresponding to connected graphs. This can be achieved fairly easy, since all disconnected
graphs can be retrieved as a direct product of connected ones. Put in stochastic terms,
the moments expansion provided by the generating functional Z[J ] should be replaced
by a cumulant expansion, generated by the functional W [J ] = logZ[J ].8 The connected
n-point correlation functions δ

δJ(x1) . . .
δ

δJ(xn)W [J ] have the property to fall off rapidly for
spacelike separation of any two of its arguments (because the propagators do). This
makes their momentum space equivalents

δ
δJ(p1) . . .

δ
δJ(pn)W [J ]

∣∣∣∣
J=0

= δ
δJ(p1) . . .

δ
δJ(pn) log e−Sint[

δ
δJ

] e
∫
p

1
2J(p)G(p)J(−p)

∣∣∣∣
J=0

, (2.1.17)

preferable to be used in scattering theory for practical phenomenological calculations.

Since the field expectation values are given as the first functional derivatives

Φ(x) :=< X (x) >= δW

δJ(x) , (2.1.18)

it is possible to find a description of quantum field theory entirely in terms of these. The
switch of variables is achieved by a generalized Legendre transformation, defining the
functional

Γ[Φ] = sup
J

(∫
x

ΦJ −W [J ]
)
, (2.1.19)

7These integrals are usually written in momentum space. The notorious divergences are then created by
the upper (UV) limit going to infinity.

8This is because the exponential map assigns exactly the correct combinatorial factors to generate all
possible connected contributions to a full disconnected function.
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in relation to W .9 The functional Γ is called the quantum effective action, since its first
derivative

δΓ[Φ]
δΦ(x) = J(x) (2.1.20)

can be read as the equations of motion for the classical fields Φ with external source fields
J(x), and thus incorporates the quantum corrections effectively in a classical description.
The Legendre transformation relates the HessiansW (2) and Γ(2) as inverse matrices in field
space. Therefore, Γ generates the one-particle irreducible (1PI) graphs of a model, from
which it is possible to reproduce all graphs, as illustrated by resumming the self-energy
part of the full propagator (or connected 2-point function),

W (2) = G
∞∑
n=0

(
(G−1 − Γ(2))G

)n
=
(
Γ(2)

)−1
, (2.1.21)

where products of functions are understood as convolution, and (G−1−Γ(2)) is introduced
to contain by definition all non-trivial 1PI contributions of a given model. Thus in analogy
to (2.1.4), one can write the expansion

Γ[Φ] =
∞∑
n=0

1
n!

∫
ddx1 . . .

∫
ddxn Γn(x1, . . . , xn)Φ(x1) . . .Φ(xn) , (2.1.22)

defining the proper vertices Γn(x1, . . . , xn). From the definition (2.1.19) one can relate Γ
to the generating functional Z by

e−Γ[Φ] = Z e−
∫
x

Φ δΓ
δΦ

= 1
N

∫
DX e−S[X ]+

∫
x
(X−Φ) δΓ

δΦ

= 1
N

∫
DX e−S[X+Φ]+

∫
x
X δΓ
δΦ ,

(2.1.23)

shifting the integration variable in the second step. An expansion of the action in the
exponent around the average field Φ yields the effective action organized in contributions
of specific number of loop integrals

Γ[Φ] = − log
∫
DX e−S[Φ]+

∫
x
X ( δΓ

δΦ−S
′[Φ])−1

2
∫
x
X·S(2)[Φ]·X−

∑∞
n=3

1
n!
∫
x
S

(n)
int [Φ]·Xn . (2.1.24)

The leading quantum corrections are found by neglecting higher powers of the fluctuation
field X . Tracking only the 1-loop contribution, one can perform the Gaussian integration
to establish

Γ[Φ] = − log
∫
DX e−S[Φ]+

∫
x
X ( δΓ

δΦ−
δS
δΦ )−1

2
∫
x
X·S(2)[Φ]·X

= S[Φ] + 1
2Tr logS(2)[Φ] ,

(2.1.25)

9This transformation is unique and reversible in the case of convex functionals, otherwise the back
transformation gives the convex hull.
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with appropriate normalization of the logarithm.10 Note that here the full Hessian of the
action appears as a function of the background field, so that in contrast to the perturbative
expansion (2.1.15), Γ1−loop contains already all orders of the coupling constants.

2.2. The Renormalization Group

The expressions discussed in the last section typically suffer from UV divergence. This can
be seen by a counting of powers of momenta appearing in any specific n-point function,
as a measure for the superficial degree of divergence. Since for a full correlation function,
any number of vertices may appear in the corresponding Feynman graphs, one requires
the degree of divergence not to increase with the number of vertices. This condition
can be translated to the restriction of coupling constants to not carry negative mass
dimension. If this condition is met, the procedure of perturbative renormalization can be
applied. Algebraically, this is done by analytic continuation of the products of distributions
occurring in the perturbative expansion (2.1.15).11

The perspective taken in this thesis is that of renormalization being an essential
part in the phenomenology of quantum field theory. This is in contrast to the point of
view that the appearance of divergence points at an inherent deficit of quantum field
theory, which thus must be seen as an in itself incomplete theory, an approximation to
some yet to be found completion, or at the very least requiring certain auxiliary features
to serve as consistent description of nature microscopically. Taking on the other hand its
acquired successes as hint for the structural soundness of renormalization and with it of
quantum field theory as such, the study of related features attempted in the following
may help on the way to find a simpler and more compact formulation and in fact will
prove to allow insights that do not depend on perturbative methods.

Starting from the expression for a divergent n-point function (2.1.17), it is essential to
preserve the dependence on the external momenta in all manipulations, since these encode
the information of scattering processes. In a first step of regularization, a replacement
of the form W (n)(p) → W (n)(p, a) provides a regular supplement expression, which is
connected to the original one in a limit a → a′. Since the integrand of the divergent
integral itself is an analytic function, a continuation in the sense of a formal integral

10Here we used the operator identity log detA = Tr logA.
11Several schemes for doing so are known, most significantly the BPHZ subtraction method or the

Epstein-Glaser construction, which gives an axiomatic definition at least for sufficiently simple cases.
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measure is defined as the difference

W (n)
ren (p) = lim

a→a′
W (n)(p, a)−W (n)(k, a) , (2.2.1)

with respect to a reference momentum scale k, where the singularities cancel between the
limits of the two terms. The so defined renormalized quantities W (n)

ren are now finite, but
carry a dependence on the arbitrary scale k, which should be understood analogously to
a choice of units. As can be seen from the definition (2.2.1), the subtraction is formally
equivalent to the introduction of another set of Feynman graphs with opposite sign.
The corresponding new vertices required to achieve the above cancellation for a given
theory are called its counter terms. The counter terms of the same form as those already
present in the classical action can be absorbed into a redefinition of coupling constants.
Thus renormalization simply replaces every occurrence of a divergent sub-graph by a
renormalized version containing effective vertices, in a recursive manner, for counterterms
stemming from some fixed loop order inserted as vertices contribute in turn only to higher
orders.

To remain in the functional integral formulation manifestly, the equivalent prescrip-
tion is to modify the integration measure to include the counter terms so that∫

(DX )′ e−S[X ] =
∫
DX e−Sc.t.[X ]e−S[X ] =

∫
DX e−Sren[X ] . (2.2.2)

Notably, the required counter terms may not necessarily be selectable to satisfy all
symmetries of the action, in which case a lost symmetry is said to be anomalous. In this
context, renormalization can be thought of as introducing an anomaly in the classically
scale invariant description and is therefore a genuine quantum effect. As a consequence
of the counter terms, observables become subject to renormalization group flow, which
can be seen as follows. Each counter term introduces a new parameter, which is fixed by
imposing a renormalization condition, fitting a measurement at certain momentum scale k.
Now, this renormalization scale can be chosen arbitrarily, yet measurements at different
scales may not give equal results, but must only satisfy a consistency condition, set by
the renormalization procedure. Specifically, since a model can be renormalized at any
scale, there must be a systematic relation of the phenomenology at all such scales. This is
the structure of the renormalization group. The notion of a perturbatively renormalizable
theory is such that only finitely many counter terms are required, so that its action always
contains the same terms with only the coupling constants changing with scale, which is
to say the action is self-similar under renormalization group transformations.
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A renormalization condition like Γ(n)(p = k) = gnren,k defines renormalized coupling
constants as proper vertices, and it is only by this step that the physical meaning of the
coupling constants is fixed, because their meaning will be changed if different finite parts
of the counter terms are chosen. To have all renormalization effects be grasped by the
effective action, one assumes a parametrization of the form

Γk[Φ] =
∫
x

∑
i

gi,kIi[Φ] , (2.2.3)

with the renormalized dimensionless coupling constants gi,k. Because observables may
not be influenced by the arbitrary scale parameter k, we can demand

k d
dk

Γ(n)
k =

(
k
∂

∂k
+ βi

∂

∂gi
− 1

2nη
)

Γ(n)
k = 0 , (2.2.4)

known as the Callan-Symanzik equation. Its significance lies with the fact that herein is
expressed that the explicit scale dependence of the counter terms is cancelled by the so
called running of the renormalized coupling constants. This effect is captured by the β
functions

βi(g1, . . . , gn) = k
∂gi,k
∂k

, (2.2.5)

and the anomalous dimension

η(g1, . . . , gn) = −k ∂
∂k

logZk , (2.2.6)

where Zk is a field renormalization, introduced as Φk = Z
−1/2
k Φ in order to absorb a scale

dependence of the fields and in turn to have the leading terms of the 2-point function
< Φ(p)Φ(−p) >1PI become scale independent. An infinitesimal change in the scale
parameter k → k + dk thus becomes absorbed into a change of the coupling constants
gi → gi + βi dk/k. Both β and η do not explicitly depend on k, which is a manifestation
of the group structure of renormalization. The crucial implication is that the relations
between different finite scales and the unrenormalized theory are of the same form.

To formulate this insight at first in an abstract language, we start with an effective
action of the form (2.2.3), viewing the coupling constants gi as coordinates of a vector
space spanned by the field monomials {Γ} = {I1, . . . }, on which a renormalization map
R is defined by

Γren,k = R(k,∞)(Γbare) , (2.2.7)

and represent the renormalization group by an operation

R(k1,k3) = R(k1,k2)R(k2,k3) . (2.2.8)
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Figure 2.1.: Illustration of the relation induced by the renormalization of a bare action at
two different scales k1 and k2, mediated by the renormalization group (RG).

Here the unrenormalized (bare) theory corresponds to an infinite scale, where the counter
terms vanish. The emergence of the renormalization group as consistency requirement
is illustrated in figure 2.1. In order not to remain dependent on the limitations of
perturbation theory, this allows to give a generalized definition of renormalizability. An
effective action Γ is renormalizable with respect to R if a continuum limit (k →∞) can
be defined, such that only a finite number of coefficients remain undetermined. For this
purpose the definition (2.2.7) should not simply be inverted, so instead one can study
infinitesimal renormalization group transformations and integrate their trajectories. Thus
renormalizability can be formulated as a condition on the existence of a fixed point action

Γ∗ =
∫ ∞

0
R(k+dk,k)(Γk) = lim

N→∞

N∑
n=0
R(k+n+1

N
,k+ n

N
)(Γk) , (2.2.9)

with {Γ∗} being finite dimensional. Herein Γ∗ is defined at infinite scale but in a still
renormalized form in the sense that UV divergences remain absent. The condition on
finite dimensionality is required to assure that even in the presence of infinitely many
coupling constants, they are constrained to be functions of only a finite number among
them. This is realized by having the fixed point of the renormalization map possess a
basin of attraction which selects a finite dimensional subspace of {Γ}. As seen following
the idea of (2.2.9), Γ∗ defines a fixed point of the RG map since

Γ∗ = lim
N→∞

RNΓk , ⇒ Γ∗ = RΓ∗ , (2.2.10)

symbolically for a sequence of infinitesimal transformations R. The phenomenon of
asymptotic freedom in perturbation theory is thereby generalized to the mechanism
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Figure 2.2.: Typical examples for the smooth cutoff functions CIR and CUV dressing
the corresponding propagators to represent the separation of high and low
momentum modes. To reproduce the full fields unambiguously, they are
chosen to add to 1 at every point, while suppressing the respective momentum
regions defined with respect to the scale parameter k.

called asymptotic safety [7]. The essential common property is that Γ∗ does not itself
carry a scale dependence, and therefore defines an end-point of renormalization group
trajectories. A generalized notion of renormalization along these lines is essential for the
proper realization of a quantized theory of gravity, which generates an infinite number of
counter terms in a perturbative treatment [78].

A continuous realization of the renormalization group (2.2.7) with (2.2.8) is found
with the Wilsonian idea of successive integration of momentum shells [9], ultimately
allowing to study its structural consequences by means of a differential equation. To
establish a split of the fields into low (IR) and high (UV) momentum modes according to

X = XIR + XUV , (2.2.11)

a reference scale k has to be given, in relation to which the separation is explained. For
this purpose, we define the modified momentum space propagators

GIR/UV(p2) = CIR/UV

(
p2

k2

)
G(p2) , (2.2.12)

dressed with the cutoff functions CIR and CUV, respectively. As illustrated in figure
2.2, these functions are chosen to extrapolate monotonously between 0 and 1, with the
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condition that CIR + CUV = 1 everywhere, and an inflection point at p2 = k2. With the
propagators (2.2.12) that are accordingly suppressing the fields in the IR or UV region,
the split (2.2.11) can be written with the use of formally independent fields XIR and XUV,
representing the two regions of momentum modes of each field X . One can thus give an
expression for the generating functional Z (2.1.11) with an action S = Skin + Sint (2.1.14)
by

Z[J ] = 1
N ′

∫
DXIR DXUV e−

1
2
∫
x
XIR

D0
CIR
XIR−

1
2
∫
x
XUV

D0
CUV

XUV−Sint[XIR+XUV]+
(
XIR+XUV,J

)

= 1
N ′

∫
DXIR DX e−S[X ]+

(
X ,J
)
e−

1
2

∫
x

(
XIR−CIRX

)
D0

CIRCUV

(
XIR−CIRX

)

= 1
N

∫
DX e−S[X ]+(X ,J) ,

(2.2.13)

which reduces to the original form after a shift in the XUV integration, and redefinition
of the normalization constant to absorb the Gaussian XIR integral, following the ideas
in [79]. The manifest separation of momentum modes implies a doubling of types of lines
appearing in the generated Feynman graphs. While the full set of graphs will always
reproduce the amplitudes independent of the scale k as seen from (2.2.13), individual
graphs will depend on the exact shape of the cutoff functions. More specifically, any
loop integrals become restricted to the corresponding momentum regions of the fields,
due to the cutoff functions, smoothly suppressing IR or UV contributions. Since the UV
divergence of the original full momentum integrals thus becomes restricted to XUV loops,
the modified Feynman rules leave loop integrals over XIR finite, as they are constrained to
momenta p2 . k2. This fact motivates the definition of an effective generating functional
Zk[XIR, J ] for the low momentum fields by

Z[J ] =
∫
DXIR Zk[XIR, J ] e−

1
2
∫
x
XIR

D0
CIR
XIR , (2.2.14)

with the high momentum contributions integrated according to

Zk[XIR, J ] = 1
N ′

∫
DXUV e−

1
2
∫
x
XUV

D0
CUV

XUV−Sint[XIR+XUV]+
(
XIR+XUV,J

)

= e−Sint[XIR] 1
N ′

∫
DXUV e−

1
2
∫
x
XUV

D0
CUV

XUV−
∑∞

n=1
1
n!S

(n)
int [XIR](XUV)n+

(
XIR+XUV,J

)
.

(2.2.15)

Only the proper kinetic term for the low momentum fluctuations remains in the full
functional Z[J ] explicitly, so that Zk[XIR, J ] accounts for their effective interactions.
The interaction part of the action Sint appears in the second line of (2.2.15) with the
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modification by virtual high momentum modes, contributing to any order in XIR. These
correspond to effective vertices that are created from the bare vertices connected by
the high momentum propagators, when replacing all their internal lines by a new point-
like vertex. Thus the high momentum modes act like heavy particles whose interactions
produce effective (non-renormalizable) interactions among the light particle modes. Herein,
the IR field plays the role of a background field. As argued above, divergences are
constrained to the UV integration, which thus requires regularization. The crucial point
of the construction above is the finiteness of the remaining functional. Since the scale of
separation k is left arbitrary, the means to study renormalization group transformations
analytically is provided. Analogous to the definition of β functions (2.2.5) in perturbation
theory, the unphysical dependence on k leads to the definition of a renormalization group
equation.

To grasp the structure of the renormalization group in a differential equation and to
give a precise definition to the fixed point action (2.2.9), we will now focus on infinitesimal
changes of k. The low momentum generating functional Zk produces loop integrals that
are essentially covering the interval [k,∞], depending on the exact shape of the cutoff
function CUV. Therefore a small shift in k gives rise to the difference Zk+dk−Zk which will
be dominated by loop integrals over the interval [k, k+dk], where ∂CIR/UV

∂k
peaks. Likewise,

an associated effective action Γk[XIR,Φ] via generalization of (2.1.23) and parametrized
as in (2.2.3) allows to write

Γk+dk − Γk = ∂Γk
∂k

dk =
∫
x

∑
i

βiIi[XIR,Φ] dk
k
, (2.2.16)

which is independent of the chosen scheme of UV regularization. At the same time, a
genuine generalization of the perturbative method of renormalization is achieved in this
way, since all terms of an expansion of the functional integral are reproduced, and thus
the scale dependence naturally captures the virtual particle contributions. The difference
to the Wilsonian point of view is that here the effects of renormalization are translated
from shifts in the renormalization conditions into changes of the scale k, corresponding
to finite renormalization group transformations exclusively. It is a manifestation of the
group structure of renormalization that running coupling constants can be found this way.

In the following section, we will derive a renormalization group equation in terms
of the effective action Γk based on the concepts discussed so far, which is suitable for
practical calculations. The functional Γk can be understood as a one parameter family of
effective descriptions, valid at energy scales p2 ≈ k2, because the lower momentum modes
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left out in the integration give only negligible contributions in that case. For this reason,
it also accounts for a change in resolution of an observation, capturing the quantum effects
of resolution scale dependent structure functions, as they famously appear in hadron
physics.

2.3. Functional Renormalization Group Equations

A number of different renormalization group equations exist in the literature, mostly
depending on the details of how cutoff functions are introduced, as well as on which
generating functional is used in their derivation. For example, there is the Wegner-
Houghton equation [80], the Polchinski equation [81], and the Wetterich equation [82]
which will be used for practical computations in the later chapters of this thesis. Since
our main concern lies on theories subject to gauge symmetries and especially on gravity,
the split of an action into kinetic and interaction part (2.1.14) should be avoided, as
non-abelian gauge transformations will require a cancellation between derivative and
interaction terms to ensure invariance. For the purpose of representing the idea of
Wilsonian renormalization, it is sufficient to introduce a damping of low momentum
modes in the functional integral representation of the generating functional. To suppress
the low momentum contributions and thus to effectively decouple them, we define

Zk[J ] =
∫
DX e−S[X ]−∆Sk[X ]+

(
J,X
)
, (2.3.1)

which in comparison with (2.2.15) does not keep explicit track of the IR modes. The
connection to the previous definition is realized by

Zk[J ] = Zk[XIR = 0, J ] , (2.3.2)

with a cutoff action quadratic in the quantum fields accounting for an analogue of the
modification of propagators (2.2.12)

∆Sk[X ] = 1
2

∫
p
X Rk(p2)X , (2.3.3)

so that the full action S remains unmodified. In this implementation, the infrared cutoff
function Rk(p2) satisfies Rk ∝ k2 for p2 � k2 and vanishes for high-momentum modes
Rk → 0 as p2 � k2. In this way, it provides a k-dependent mass term for fluctuations
with momenta p2 . k2, that thus freeze out.
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From (2.3.1) one can immediately find the equation

∂kZk =
∫
DX

(
− 1

2

∫
p
X ∂kRk X

)
e−S[X ]−∆S[X ]+

(
J,X
)

=− 1
2

∫
DX

(
Tr ∂kRk X 2

)
e−S[X ]−∆S[X ]+

(
J,X
)

=− 1
2 Tr ∂kRk

∫
DX X 2 e−S[X ]−∆S[X ]+

(
J,X
)

=− 1
2 Tr ∂kRk

δ2Zk
δJ2 ,

(2.3.4)

by applying the k derivative and writing the momentum integration as functional trace.
For the corresponding generating functional of connected correlation functions Wk[J ] =
logZk[J ], this implies

∂kWk = −1
2 Tr ∂kRk

[
δ2Wk

δJ2 +
(
δWk

δJ

)2]
. (2.3.5)

A renormalization group equation describing the running of proper vertices formulated
in terms of a scale dependent generalization of the effective action Γk can be found
using its relation to Wk according to the Legendre transformation (2.1.19). Taking the k
dependence of Jk = δΓk

δΦ induced by the property (2.1.20) into account, the derivatives
relate simply by

∂kWk[J ] = −∂kΓk[Φ] , (2.3.6)

wherein J is understood as scale independent. The r.h.s. of (2.3.5) can by translated
using the definition of the average field (2.1.18), and the rule for the Hessian Γ(2)

k = δ2Γk
δΦ2

of a Legendre transform (2.1.21), yielding

∂kΓk = 1
2 Tr ∂kRk

[
(Γ(2)

k )−1 + Φ2
]
. (2.3.7)

The additive Φ2 term produces the derivative of the cutoff action ∆Sk, which is absorbed
into a shift in the definition of Γk. This redefinition implies

Γk[Φ] = Γk[Φ] + ∆Sk[Φ] ,

⇒


∂kΓk[Φ] = ∂kΓk[Φ] + 1

2
∫
p Φ ∂kRk(p2) Φ

= ∂kΓk[Φ] + 1
2 Tr ∂kRk Φ2 ,

Γ(2)
k [Φ] = Γ(2)

k [Φ] +Rk ,

(2.3.8)

which will be accounted for when discussing the proper initial conditions for the resulting
differential equation. The final form of the 1PI functional renormalization group equation
is now found as

∂kΓk = 1
2 Tr ∂kRk

(
Γ(2)
k +Rk

)−1
. (2.3.9)
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This equation was first derived in [82], and is also known as the RG or flow equation. It
has a conceptual similarity to the Callan-Symanzik equation (2.2.4), with the difference
that the unphysical scale dependence originates from the cutoff action and the separation
of momentum modes encoded by it, rather then counter terms. The renormalization
group equation in this form provides the foundation of the computations in this thesis.

The factor ∂kRk on the r.h.s. ensures that the trace in the RG equation is finite
and peaked at momenta p2 ≈ k2, so that no UV regularisation is required. To find the
appropriate initial conditions for this integro-differential equation, a relation of the so
called effective average action Γk to scale independent quantities is needed. From (2.1.23)
one can derive the expression

e−Γk[Φ] = e−Γk[Φ]+∆Sk[Φ]

= Zk e−
∫
x

Φ δΓk
δΦ +∆Sk[Φ]

=
∫
DX e−S[X ]−∆Sk[X ]+∆Sk[Φ]+

∫
x
(X−Φ) δΓk

δΦ

=
∫
DX e−S[X ]−1

2
∫
x
(X−Φ)Rk(X−Φ)+

∫
x
(X−Φ) δΓk

δΦ

=
∫
DX e−S[X+Φ]−1

2
∫
x
X Rk X+

∫
x
X δΓk

δΦ ,

(2.3.10)

with the help of which the limits k → 0 and k → ∞ can be investigated. Since Rk

vanishes at k = 0, the functional Γk=0 can be identified with the ordinary effective action
Γ. To simplify the opposite limit where

lim
k→∞
Rk =∞ , (2.3.11)

we use a field rescaling X → X√
Rk

to obtain

e−Γk[Φ] =
∫
DX e−S[X+Φ]−1

2
∫
x
X Rk X+

∫
x
X δΓk

δΦ

=
∫
DX e−S[ X√

Rk
+Φ]−1

2
∫
x
X 2+

∫
x
X√
Rk

δΓk
δΦ

→
∫
DX e−S[Φ]−1

2
∫
x
X 2 = e−S[Φ] .

(2.3.12)

Thus Γk is in this limit given by the bare action S.12 In the following the bar on the
shifted functional Γk will be dropped, since the connection to the ordinary functionals is
established via the boundary conditions for the RG equation, summarized as

Γk=0[Φ] = Γ[Φ] , Γk=∞[Φ] = S[Φ] . (2.3.13)
12See [83] for more details on this point.
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For the practical use of the RG equation one starts with an ansatz for the effective
action, parametrizing the field monomials Ii[Φ] with dimensionful coupling constants ui(k)
that carry the full k dependence, like

Γk[Φ] =
∫
x

∑
i

ui(k)Ii[Φ] . (2.3.14)

The coupling constants describe the relative weight of the various terms. Observables
however are always dimensionless ratios of quantities, which is to say that a system of units
has to be chosen for dimensionful observables. For in the context of the renormalization
group all scales are compared to the parameter k, the dimensionful coupling constants ui
can be translated to dimensionless couplings gi by factors of the scale parameter k like

gi = k−niui , [ui] = [k]ni , (2.3.15)

without any assumption. It follows for the β functions (2.2.5) that

βi = ∂tgi =
(
− nigi + k−ni∂tui

)
, (2.3.16)

where the dimensionless derivative ∂t = k d
dk with t = log k was defined. From (2.3.16)

we see that in general the βi vanish only for gi = 0, due to the dimensional running
induced by the first term for canonical dimensions ni 6= 0. If the dimensional running
dominates the β function, quantum effects are accounted for as small corrections, since no
actual scaling behaviour would be expressed by a coupling constant with ∂tui = 0. At the
same time, it is this term that may allow for non-trivial fixed points βi = 0 for coupling
constants with negative mass dimension, that would spoil a perturbative renormalization.

From a parametrization of the effective action (2.3.14), the scale derivative

∂tΓk[Φ] =
∫
x

∑
i

∂tuiIi[Φ] =
∫
x

∑
i

(
βi + nigi

)
kniIi[Φ] , (2.3.17)

becomes a generating functional for the (shifted) β functions. Therefore the RG equation
(2.3.9), rewritten as

∂tΓk = 1
2Tr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
, (2.3.18)

provides a definition for the vector field of β functions by

βi = − nigi + k−ni
δ(∂tΓk)
δIi

∣∣∣∣
Φ=0

= − nigi + k−ni
1
2
δ

δIi
Tr
[(

Γ(2)
k +Rk

)−1
∂tRk

] ∣∣∣∣
Φ=0

,

(2.3.19)
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where (2.3.18) was used in the second step. This equation describes the renormalization
group flow expressed in terms of a projection of the functional trace on the base monomials
in the original ansatz. The RG equation (2.3.18) has the general form of a 1-loop amplitude,
graphically represented as a single propagator Γ(2)

k dressed by the cutoff function Rk,
integrated with an insertion ∂tRk. This can also be seen by

∂tΓk = 1
2Tr

[
∂tRk

δ

δRk

log
(
Γ(2)
k +Rk

)]
= 1

2 ∂̃t Tr log
(
Γ(2)
k +Rk

)
, (2.3.20)

where ∂̃t acts by definition only on the cutoff function. From this last expression one can
see that if the full k dependence resides in Rk, then Γk is given as the 1-loop contribution
for an action Sk[Φ] = Γ[Φ] + ∆Sk[Φ] according to (2.1.25). Employing an expansion
Γk = S + Γ1,k + Γ2,k + . . . in loop orders, the RG equation can also reproduce higher loop
orders by reinsertion of the Γn−1,k under the trace [84].

For the example of a scalar field theory in the local potential approximation we have

Γk[Φ] = −1
2

∫
x
∂µΦ∂µΦ + Vk[Φ] ,

with Vk[Φ] =
∑
n

un
n!

∫
x

Φn .
(2.3.21)

Plugging this expression into the RG equation allows to give the flow of the full potential
V [Φ], yielding

∂tVk[Φ] = 1
2Tr

[(
2 +Rk + V ′′k [Φ]

)−1
∂tRk

]
= 1

2

∫ ddp

(2π)d
∂tRk(p2)

p2 +Rk(p2) + V ′′k [Φ] .
(2.3.22)

Here, the trace is expressed as an ordinary integral in momentum space. The resulting
integro-differential equation can be studied numerically, for instance to verify the existence
of the Wilson-Fischer fixed point in d = 3 dimensions. The local potential approximation
can in principle be refined by addition of higher derivative terms [85]. Similar and further
complications arise however when dealing with gauge theories. Handling these will be a
concern of the following chapters, with a special emphasize put on gravity.

Once the β functions are derived, they can be used to analyse the renormalization
group behaviour of the underlying model. For this purpose all relevant information is
encoded in a phase diagram, consisting of the trajectories of the coupling constants,
generated by the β functions (2.2.5). The global structure of such diagrams is determined
by the fixed points β = 0, since any trajectory can end only there or must escape to
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Figure 2.3.: Examples for 2-dimensional phase portraits around the vicinity of a fixed
point with only attractive eigendirections (left) and with one attractive and
one repelling eigendirection (right), respectively.

infinity, and curves of smooth vector fields cannot cross each other. Expanding around a
fixed point g∗

∂tgi = βi(g) = βi(g∗)︸ ︷︷ ︸
=0

+dβi
dgj

(gj − g∗j ) +O
(

(gj − g∗j )2
)
, (2.3.23)

the leading term is defined by the stability matrix (Dβ)ij = dβi
dgj . The linearised flow

around a fixed point in terms of ḡi = gi − g∗i thus becomes

∂tḡi = (Dβ)ij ḡj , (2.3.24)

which has an exact solution in terms of the eigenvalues and eigenvectors of (Dβ)ij. This
is given by

(Dβ)ijvj = λivi ,

⇒ ḡi(k) =
∑
n

ci,neλntvn =
∑
n

ci,nk
−θnvn ,

(2.3.25)

where the negative eigenvalues θn = −λn appear as critical exponents. Their sign
determines whether the fixed point is UV-attractive (θn > 0) or UV-repelling (θn < 0) in
the associated eigendirections vn for increasing k. These cases are exemplified by typical
pictures of phase portraits in figure 2.3, showing the implied local form of trajectories.
As renormalization scheme independent quantities, the critical exponents present an
important characterisation of quantum field theories. Drawing the analogy to the theory
of critical phenomena, the scale parameter k can be seen as an order parameter, controlling
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2.3. Functional Renormalization Group Equations

the continuum limit as a second order phase transition of a formally regularized model.
Interestingly, from this point of view the UV divergences can be expected to appear in
the same way as the correlation length is known to diverge at a critical point, without
spoiling the soundness of the mathematical description.

The functional renormalization group equations derived in this chapter constitute a
rather universal and highly flexible tool for unlocking non-perturbative information, in
the sense that all powers of the coupling constants appear in the inverse propagator Γ(2)

k

in (2.3.18), and their magnitude is not required to be small. Furthermore, it even allows
to renormalise theories with infinitely many coupling constants like (2.3.22), provided
only finitely many are attracted to a UV fixed point, which is impossible by perturbative
renormalization. For this reason, the RG equation is especially well suited to study
effective field theories, which are constructed by including all leading terms into an
action functional, that are allowed by the assumed degrees of freedom and symmetries
(conservation laws), with only their coefficients remaining unknown. Assuming that
quantum effects are not too big, we can estimate from (2.3.16) that βi ∼ −nigi, neglecting
the derivative term. This implies a suppression of exactly those coupling constants with
negative canonical mass dimension ni in the infrared limit, which would spoil perturbative
renormalizability. Such coupling constants accordingly do not appear in the Standard
Model of particle physics, rendering it likely to be understood as low energy limit of an
effective field theory, with any non-renormalizable coupling constants effectively absent in
the observable low energy regime. In turn, the solution of the RG equation determines
the scale dependence of the coupling constants. Thus, it is one of the main practical
virtues of functional renormalization group equations that non-perturbative features of
a theory, like phase transitions or fixed points of the renormalization group flow can
be accessed by comparably simple approximations. This method is regularly used in a
plethora of settings ranging from condensed matter, over statistical and particle physics
up to gravity [86–90].

Despite these advantages over other means to do calculations in quantum field
theory, the renormalization group approach also has some practical limitations. Foremost,
it relies on the fact that a single typical scale exists to which a renormalization parameter
can be related. In multi-scale problems, the concept of running coupling constants is
less clear, which also makes a definition of precision observables practically impossible.
Asymptotic safety as a generalized form of renormalizability can be realized and studied
within RG equations. However, assuming the existence of a fixed point action, it is still
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largely unclear how to obtain it in explicit form, since a choice of an action must always
be given as initial condition. Instead, the β functions computed within a certain effective
field theory ansatz can be interpreted irrespective of such an attempt. In this approach,
all terms rejected in the projection (2.3.19) are read as corresponding to only effective
couplings, that are inevitably generated in a Wilsonian RG step as explained before. In
conclusion, the mechanism of asymptotic safety can be expected to control the behaviour
of many models that effectively encode physical information, and should accordingly be
taken into consideration.
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3. The Heat Kernel Expansion

3.1. Quantum Field Theory on Curved Spacetime

The heat kernel is a mathematical method with a wide range of applicability both in
mathematics and theoretical physics, providing analytical means to study the spectrum
of operators [91–93]. The main virtue of its use within quantum field theory is grounded
in the fact that the heat kernel offers a systematic way to generalize many of its central
quantities in a covariant way to general curved spacetimes, which is required for the study
of a quantized theory of gravity.

The functional renormalization group equation discussed in the last chapter allows
to define a quantized version of general relativity by taking the metric field gµν of a
Riemannian manifold with the interpretation of spacetime as dynamical degree of freedom.
Since in this formulation the fields have a simple representation as random variables that
capture their quantum nature, the metric will still play the role of a distance measure of
spacetime by relating covariant and contravariant vectors

vµ = gµνv
ν , vµ = gµνvν , gµνg

νρ = δρµ , (3.1.1)

like in the classical theory. Furthermore, the metric induces a unique torsion free connection

Γαµν = 1
2g

αβ
(
∂µgβν + ∂νgβµ − ∂βgµν

)
, (3.1.2)

the Levi-Civita connection, defining the covariant derivative

Dµvα = ∂µvα − Γλµαvλ ,

Dµv
α = ∂µv

α + Γαµλvλ ,
(3.1.3)

that generalizes the ordinary directional derivative in flat spacetime, in a way that leaves
the metric covariantly constant (Dµgρσ = 0). Thus Dµ describes infinitesimal parallel
transports of vectors along smooth curves on the curved manifold.1 Considering a closed

1More correctly, an affine connection defines a mapping of vector fields between the tangent spaces of
infinitesimally close points of the manifold, and thus induces a notion of transport on the manifold.
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3. The Heat Kernel Expansion

path of such transports, a vector will in general not be mapped into itself but instead
show a relative rotation, the deficit angle. A universal measure of this effect is given by
the Riemann curvature tensor, defined via the commutator

[Dµ, Dν ]vα = Rµνα
λvλ . (3.1.4)

More general and higher commutators which are useful for practical calculations on curved
spacetime are collected in appendix B. Explicitly the curvature tensor is given in terms
of the connection (3.1.2) as

Rµ
νρσ = ∂νΓµρσ − ∂ρΓµνσ + ΓµνγΓγρσ − ΓµργΓγνσ . (3.1.5)

It satisfies the symmetry properties (A.1.1) and the Bianchi identities (A.1.3) and (A.1.4),
discussed in appendix A. The tensor Rµνρσ and its non-trivial contractions, the Ricci
tensor Rµν = Rα

µαν and Ricci scalar R = Rµ
µ, are by construction covariant under

reparametrisations of spacetime. This property allows to formulate an action principle,
respecting the reparametrisation or diffeomorphism invariance as a symmetry in the
description of the dynamics of gravity. The basis of monomials of the curvature tensor in
terms of which a gravitational action can be given is discussed in appendix A.

The expressions discussed in the last chapter can now be generalized to arbitrary
curved spacetimes using the replacement rules

∂µ → Dµ ,

ddx→ ddx√g ,
(3.1.6)

to covariantize the underlying action. The kinetic operator of a field will then typically
be of general second order form

∆0 = −gµνDµDν + E , (3.1.7)

including an endomorphism term E. Given such a differential operator of Laplace-type
on a closed and torsionless Riemannian manifold, the associated heat kernel operator is
defined as the exponential

H(s) = e−s∆0 , (3.1.8)

which represents a formal solution to the generalized heat flow equation

(∂s + ∆0)H(s) = 0 . (3.1.9)
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3.1. Quantum Field Theory on Curved Spacetime

This definition has immediate use in perturbative calculations at 1-loop order. In terms
of the off-diagonal matrix elements of the heat kernel

H(x, y; s) = 〈y|e−s∆0 |x〉

= e−s∆0,x δ(x− y) ,
(3.1.10)

a definition of the propagator can be given as

G(x− y) = ∆−1
0 δ(x− y)

=
∫ ∞

0
ds e−s∆0 δ(x− y)

=
∫ ∞

0
ds H(x, y; s) ,

(3.1.11)

using its relation to the kinetic second order differential operator. In flat space, where
∆0 = −∂µ∂µ, this can be expressed easily in momentum space using the Schwinger-
representation

G(p2) = 1
p2 +m2 =

∫ ∞
0

ds e−s(p2+m2) , (3.1.12)

for the example of a massive scalar field. In this form, the integration over any loop
momenta can always be performed, since the UV limit is exponentially suppressed.
Therefore one can rewrite 1-loop integrals, as for example the contribution to the quantum
correction to the 2-point function
∫
ddp′ G(p′2)G((p− p′)2) =

∫ ∞
0

ds1

∫ ∞
0

ds2

∫
ddp′ e−s1(p′2+m2)−s2((p−p′)2+m2) , (3.1.13)

shifting their divergence to the remaining integrations over s. While in general curved
spaces there is no simple momentum space representation, the extension is straightforward
in terms of the replacement

∫ ddp

(2π)d e−sp2 → Tr e−s∆ , (3.1.14)

expressed as trace over the heat kernel.
Moreover, the heat kernel allows to compute counterterms and anomalies in an

elegant way, by rewriting the 1-loop effective action (2.1.25) in the form

Γ1−loop = 1
2Tr log ∆0 = 1

2

∫ ∞
0

ds

s
Tr [e−s∆0 ] . (3.1.15)

In conclusion, the significance of the heat kernel in quantum field theory lies in its ability
to generalize such expressions on flat space in a direct way to Riemannian manifolds as
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background geometry. After exponentiation of an operator like in (3.1.14) and (3.1.15),
all computation is reduced to the functional trace

Tr e−s∆0 =
∫
x
〈x|e−s∆0|x〉 =

∫
x
H(x, x; s) , (3.1.16)

which has a systematic expansion in terms of curvature monomials. In fact, a general
trace involving a function of ∆0 can formally be related to the traced heat kernel by a
Laplace transform

f(x) =
∫ ∞

0
ds f̃ (s) e−sx ,

⇒ Tr f(∆0) =
∫ ∞

0
ds f̃ (s) Tr H(s) .

(3.1.17)

Thus, a wide class of computations in quantum field theory involving the same differential
operator ∆0 are reduced to the calculation of the single object Tr H(s), and can be kept
in explicit covariance [94].

The trace of the heat kernel has two main such expansion schemes. For one, there
is the local or early-time expansion in terms of powers of s

Tr H(s) = (4πs)−d/2
∞∑
n=0

∫
ddx
√
gsn trAn , (3.1.18)

generally referred to as the Seeley-deWitt expansion [95,96]. The quantities An[R](x) are
the so called heat kernel coefficients and are local functions of the curvature invariants
and their covariant derivatives. The other scheme is based on a non-local expansion in
terms of curvature tensors and schematically represented by [97]

Tr H(s) = (4πs)−d/2
∑
n

sn
∫ n∏

i=1

(
ddxi

√
g(xi)

)
F (s∆i1 , . . . , s∆in)Ri1 . . .Rin . (3.1.19)

This expansion involves arbitrary powers of derivatives at every order in the curvature
tensors Ri = Ri(xi), and thus realizes a derivative expansion. In (3.1.19) each operator ∆i

is acting only on the corresponding invariant Ri and the tensor structure of the invariants
has been suppressed for brevity.

With the use of these expressions, it is quite easy to reproduce some general
properties of perturbative quantum gravity. Considering a simple model of a scalar field
on curved spacetime, the second variation of the action assumes the form

S(2)[Φ] = ∆ + V ′′[Φ] , (3.1.20)

where ∆ = −√g−1∂µ
√
g∂µ denotes the Laplace-Beltrami operator. The corresponding

1-loop quantum corrections to the effective action in terms of the average field and the
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3.1. Quantum Field Theory on Curved Spacetime

background curvature tensor are found as

Γ1−loop[Φ, R] = 1
2

∫ ∞
0

ds

s
Tr e−s(∆+V ′′[Φ])

= 1
2

∫ ∞
0

ds

s
(4πs)−d/2

∞∑
n=0

∫
ddx
√
g snAn[R] e−sV ′′[Φ]

= 1
2(4π)−d/2

∞∑
n=0

Γ(n− d
2)
∫
ddx
√
g (V ′′[Φ])d/2−nAn[R] ,

(3.1.21)

neglecting terms ∼ O(∆V ′′), by applying the identities (3.1.15), (3.1.18) and identifying
the integral representation of the Euler gamma function in the last step. Here, dimensional
regularization was used to avoid the poles at Γ(−N0). These are a direct manifestation of
the UV divergence, stemming from the lower bound of the s integration. The integral
may also diverge at the upper bound if V ′′ is not strictly positive. Such IR divergences
originate from a zero eigenvalue of the Laplacian and should cancel in any observable
with a fixed detector resolution taken into account. One can read off that the first three
terms in the sum (3.1.21) are UV divergent for d = 4 spacetime dimensions, and thus
induce counter terms of the same form. By dimensional analysis one can establish that the
coefficients are An ∝ Rn. Therefore we conclude that the renormalization of matter fields
on curved spacetime already induces running coupling constants for dynamical gravity.2

This is a sign for the need to quantize gravitational degrees of freedom in order to have a
consistent theory. Specifically, there will be a contribution to the renormalization of the
cosmological constant by √gA0, to Newton’s constant by √gA1, and a term proportional
to A2.

Notably, the 1-loop effective action of pure gravity based on the Einstein-Hilbert
action with appropriate gauge fixing will have a second variation of the same form (3.1.20).
Making use of the Gauss-Bonnet theorem to rewrite RµνρσR

µνρσ = 4RµνR
µν − R2 + E

with the topological invariant E (see appendix A.3), and taking the equations of motion
for the matter free case into account, one has the on-shell condition

Rµν − 1
2gµνR = −Λgµν ⇒ Rµν = gµν

R

d
, R = 2dΛ

d− 2 , (3.1.22)

for d 6= 2, allowing to absorb the curvature squared terms residing in A2 in a non-
linear renormalization of the form gµν → Z−1/2(1 + cR)gµν , thus establishing the 1-loop
renormalizability of pure gravity. However, as soon as any matter fields are included, this

2Similarly, the kinetic term of a Yang-Mills field would be induced as a counter term for a bare action
that describes only matter fields on a corresponding gauge bundle.
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3. The Heat Kernel Expansion

property is lost and the counter terms ∼ R2 imply the perturbative non-renormalizability
at 1-loop order.

The heat kernel also proves to be of essential importance in the solution of a
renormalization group equation of the form (2.3.18), since it is in general exactly of 1-loop
form. For the purpose of investigating the renormalization group behaviour of gravity, an
expansion in terms of curvature invariants as it is provided by (3.1.18) is essential. Due
to the implementation of the cutoff function (2.3.3) containing full dependence on the
Laplacian, the operator under the trace becomes significantly more complicated, compared
to the examples given above. Moreover, calculations based on gauge fields with general
kinetic terms of non-Laplacian form can be reduced to the evaluation of

Tr [Dµ1 . . . Dµke−s∆0 ] =
∫
x
Dµ1 . . . DµkH(x, y; s)

∣∣∣∣
y=x

, (3.1.23)

using the off-diagonal heat kernel. In the following, the required techniques are developed
and expansion coefficients computed.

3.2. Off-diagonal Heat Kernel Coefficients

In order to establish a universal solution scheme for the exact renormalization group
equation (2.3.18), the evaluation of operator traces must be handled systematically. This
is achieved with the help of the heat kernel expansion, allowing for a recurrence relation
for the off-diagonal heat kernel coefficients. The main virtue of the deWitt method used
here is that it allows to compute operator traces of the general non-minimal form

Tr
[
Dµ1Dµ2 . . . Dµn H(s)

]
, (3.2.1)

by making use of the off-diagonal coefficients An(x, y), generalizing the An(x). This is in
contrast to a direct computation of only the diagonal ones appearing in

TrH(s) =
∫
x
H(x, x; s) = (4πs)−d/2

∫
x

∞∑
n=0

snAn(x, x) , (3.2.2)

as seen from the minimal trace (3.1.18). In the following, a detailed description of the
procedure is given.

3.2.1. Recurrence Relation for Off-diagonal Heat Kernel Coefficients

We assume that spacetime is a closed Riemannian manifold without boundary and of
arbitrary dimension d. The Laplace operator ∆0 in the heat kernel (3.1.8) is taken to be
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of general second order form

∆0 = − gµν∂µ∂ν + aµ∂µ + b

= − gµνDµDν + E

= ∆ + E ,

(3.2.3)

where in the second line it is cast into standard notation [91], involving a covariant
derivative operator Dµ = ∇µ + Aµ and an endomorphism E.3 The Laplacian built
from the covariant derivative only is denoted by ∆ = −DµDµ, and ∇µ is the covariant
torsionless spacetime derivative compatible with the metric gµν . We define Aµ to be a
general connection on an internal bundle over the spacetime manifold and assume without
loss of generality, that E is an endomorphism on the same bundle. Whenever this is not
the case, it is sufficient to take it to be a direct product of the different respective bundles.
Further, the sum of the curvatures of the connection Aµ and the Levi-Civita connection
is defined as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] + [∇µ,∇ν ] . (3.2.4)

For notational simplicity, all internal indices are suppressed, so that the quantities Aµ,
Fµν and E are understood as matrices on the internal space.

The heat kernel H(s) owes its name to the fact that it solves a generalized heat
equation with boundary condition H(0) = 1, where 1 denotes the identity on the internal
space. To arrive at the heat equation in the form of an ordinary partial differential
equation, it is convenient to express H(s) in terms of its matrix elements,

H(x, y; s) ≡ 〈y|H(s)|x〉 = 〈y|e−s∆0|x〉 , (3.2.5)

called off-diagonal since their basis is formed at different points x and y of the manifold.
The definition (3.2.5) is equivalently given as an initial value problem of the heat-equation

(∂s + ∆0,x)H(x, y; s) = 0 , H(x, y; 0) = 〈y|x〉 = δx,y1 . (3.2.6)

The solution of this differential equation has the interpretation of heat propagating on
the manifold, according to the operator ∆0,x, from a source located in y. Here s plays the
role of a diffusion-time for the process.

The initial value problem (3.2.6) can be solved explicitly in the simple case of a
flat manifold, where both the connection Aµ and the endomorphism E vanish. Here, the

3This can always be done as long as the manifold is torsionless [98].
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matrix elements (3.1.10) are given by

H(x, y; s)
∣∣∣∣
flat

= e−s∆0,xδ(x− y)

=
∫
k

ddk
(2π)d e−sk2eikx−iky

= (4πs)−d/2e−
(x−y)2

4s .

(3.2.7)

This expression serves as an ansatz to find the general solution. Introducing a function
Ω(x, y; s), it is parametrized by

H(x, y; s) = (4πs)−d/2 e−
σ(x,y)

2s Ω(x, y; s) . (3.2.8)

Here σ(x, y) is half the squared geodesic distance between x and y, called the “world
function” [94]. It generalizes the flat space distance measure in (3.2.7) in a covariant way
and satisfies

1
2σ;µσ

;µ = σ , (3.2.9)

for arbitrary spacetime points x, y, and σ(x, x) = 0.4 In the flat limit, (3.2.9) implies the
identification σ(x, y) = 1

2(x− y)2, but will depend on the metric in the general case.
In order to find the partial differential equation satisfied by Ω(x, y; s), one substitutes

the ansatz (3.2.8) into the heat-equation (3.2.6) to obtain

(∂s + ∆0,x)H = 1
(4πs)d/2

e−
σ
2s

(
− d

2sΩ + 1
2sσ;µ

µΩ + 1
s
σ;µΩ;

µ + ∂sΩ− Ω;µ
µ + EΩ

)
.

(3.2.10)
The heat-equation is solved if the bracket on the right hand side vanishes.5 Note that
a solution of the heat equation is thus given for any pair of functions Ω and σ fulfilling
this condition. The identification of σ with the world function is however crucial for the
simplification of this problem. Inserting the early-time expansion of the heat kernel

Ω(x, y; s) =
∑
n≥0

snAn(x, y) , (3.2.11)

and requiring that the bracket in (3.2.10) vanishes at all orders of s independently, this
yields the recursive equation(

n− d
2 + 1

2σ;µ
µ
)
An + σ;

µAn;µ − An−1;µ
µ + EAn−1 = 0 , n ≥ 0 , (3.2.12)

4We use a semicolon to abbreviate any covariant derivative, Dµa ≡ a;µ. All derivatives are understood
to be with respect to the coordinate x.

5This fact shows that the general solution can indeed be written as (3.2.8), provided an appropriate
function Ω(x, y; s) exists. A van Vleck determinant does not explicitly appear in the heat kernel
expansion this way.
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3.2. Off-diagonal Heat Kernel Coefficients

R0 R1/2 R1 R3/2 R2 R5/2 R3

D2σ D3σ D4σ D5σ D6σ D7σ D8σ

0 A0 D1A0 D2A0 D3A0 D4A0 D5A0 D6A0

1 A1 D1A1 D2A1 D3A1 D4A1

2 A2 D1A2 D2A2

3 A3

Table 3.1.: Analysis of the terms entering the recursion relation (3.2.12) at coincidence
limit (we omit the overline for brevity). In order to compute an entry, one
needs to compute every object that is above and on its left. Here R counts the
number of curvature tensors and of square covariant derivatives. (For example
DmRn counts Rn+m/2.)

subject to the initial conditions A−1 = 0 and A0 = 1. On a non-trivial bundle, the
additional indices carried by the covariant derivatives are inherited to the coefficients An.

Equation (3.2.12) still constitutes a complicate partial differential equation for the
coefficients An(x, y). In order to solve it, we exploit that the full off-diagonal heat kernel
coefficients for non-coinciding points can be expressed as the geodesic expansion [99]

An(x, y) =
∑
m≥0

(−1)m
m! Dµ1 . . . DµmAn σ

;µ1 . . . σ;µm , (3.2.13)

where the overline denotes the coincidence limit of any bi-tensor C(x, y),

C(x) := lim
y→x

C(x, y) . (3.2.14)

Notice that here, it is sufficient to know the quantities D(µ1 . . . Dµm)An symmetrized in
their indices.6 Substituting (3.2.13) into (3.2.12) allows to recursively determine the
expansion-coefficients (3.2.13) at coincident points y → x. Since only covariant expressions
are used in its derivation, the An(x, y) are given as an expansion in curvature monomials.

To solve (3.2.12) for any An, the coincidence limits of derivatives of An−1 as well
as σ are required. Comparing powers of the curvatures occurring in these objects,
the systematics is easily found as summarized in Table 3.1. For example, to compute
all coefficients up to the 6-derivative order (R3), one needs the coincidence limit of 8
derivatives acting on σ, 6 derivatives acting on A0 and so on.

6It is important to note that in general D(µ1 . . . Dµm)An 6= D(µ1 . . . Dµm)An.
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The coincidence limit of the derivatives of σ(x, y) can be computed by making use
of the property [100]

σ;µ(α1...αn) = 0 , n ≥ 2 , (3.2.15)

implying that the only contribution beyond two derivatives will come from commutator
terms. To exploit this, one can successively rewrite non-symmetric combinations of the
derivatives as a sum of symmetric and antisymmetric pieces, and expressing the latter in
terms of curvatures using the commutation rule (B.1.1). This method however proves to
be inconvenient for the derivation of higher derivative terms without any symmetrization
present. Instead, the quantities σ;µ1...µn are computed much more efficiently with the help
of the defining equation (3.2.9) [101]. With the initial condition σ = 0, it is straightforward
to find the first few expressions, by successively applying derivatives to the equation.
After taking n derivatives of (3.2.9), terms appearing with n + 1 derivatives vanish in
the coincidence limit because σ;µ does. Inserting all lower order results and commuting
the n indices in the remaining terms into a unique order immediately reveals the result.
The method is conceptually straightforward and requires only simple algebra, yet the
higher order terms increase in size quickly and render a manual computation unfeasible.
With the help of computer algebra, up to the eighth derivative of σ was computed in
the coincidence limit in the preparation of this thesis, to be readily accessible for heat
kernel computations. However with the algorithm described above, it is only a matter of
computation time to produce arbitrarily high derivatives in the same way. The coincidence
limits up to fifth order in the derivatives are

σ = 0 , σ;µ = 0 , σ;µν = gµν ,

σ;µνρ = 0 , σ;µνρσ = −1
3 (Rµρνσ +Rµσνρ) ,

σ;µνρσα = − 1
4 (Rµνρσ;α +Rµνρα;σ +Rµσρν;α +Rµσνα;ρ +Rµανρ;σ +Rµανσ;ρ) ,

(3.2.16)

and to sixth order with symmetrization

σ;αβ(µνρσ) = − 12
5 R(µ|α|ν|β|;ρσ) − 4

5R(µν|α|
γRρ|β|σ)γ − 4

5Rγ(µν|α|Rρσ)β
γ + 8

15Rγ(µν|α|Rρ|β|σ)
γ

+ 16
45Rγ(µνρRσ)αβ

γ − 8
15Rγ(µνρRσ)βα

γ + 4
9Rγ(µνρRσ)

γ
αβ .

(3.2.17)

The full unsymmetrized, as well as the expressions including seven and eight derivatives
are too large to be presented here.7

7For the sake of demonstrating the fast increase in complexity, we state that D6σ contains 92 terms,
D7σ contains 790 terms, and D8σ close to 12000 terms.
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With the derivatives of σ known to sufficient order, equation (3.2.12) is solved for
the quantities Dµ1 . . . DµmAn, for any n,m ≥ 0, using the same method. It is because
of the second order nature of the Laplacian operator ∆0 that makes the recursion close,
which is reflected by the fact that only positive powers of s are required in the ansatz
(3.2.8) with (3.2.11) [100]. One can obtain an infinite set of algebraic equations by
applying derivatives to (3.2.12) and taking the coincidence limit. These can then be
solved recursively, substituting all lower order objects to find the next higher order in
curvature quantities. Once all required derivatives are found for any n, one can proceed
to n+ 1, until all ingredients to the heat kernel expansion up to a desired order are found.
The results found by this procedure are listed in the next section.

Notably, the recursive relation for the heat kernel coefficients (3.2.12) becomes
independent of the spacetime dimension, once the coincidence limit is taken, since σ;µµ = d

cancels the multiplicative d in (3.2.12). This is an important observation because it implies
that the heat kernel coefficients of Laplace-type operators cannot depend on the dimension
explicitly. We stress that this property does not hold for more general, non-minimal
operators.

3.2.2. Heat Kernel Coefficients on a Vector Bundle

To solve traces of the general form (3.2.1), the deWitt-algorithm is used for determining
their curvature expansion recursively. Following the discussion of the previous section, it
is straightforward to implement the recursive equations (3.2.9) and (3.2.12) in a computer
algebra software [102,103] to find the An;µ1..µm explicitly. With this algorithm realized in
Mathematica, we are able to generalize the previously known results of [68,99,100,104]
to differential operators on a general gauge bundle including an arbitrary endomorphism.
All coefficients contributing up to third order in the curvatures (R3) were computed that
way.

Up to second order in the curvatures, the coincidence limit of the heat kernel
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3. The Heat Kernel Expansion

coefficients and their derivatives are found as

A0 = 1 ,

DµA0 = 0 ,

D(νDµ)A0 = 1
6Rµν ,

D(αDνDµ)A0 = 1
4R(µν;α) ,

D(βDαDνDµ)A0 = 3
10R(µν;αβ) + 1

12R(βαRµν) + 1
15Rγ(β|δ|αR

γ
ν
δ
µ) ,

A1 = − E + 1
6R ,

DµA1 = − 1
2E;µ −

1
6Fνµ;

ν + 1
12R;µ ,

D(νDµ)A1 = − 1
3E;(µν) −

1
6RµνE −

1
6Fα(µ;

α
ν) + 1

6Fα(νF
α
µ)

+ 1
20R;(µν) −

1
60∆Rµν + 1

36RRµν

− 1
45RναR

α
µ + 1

90RαβR
α
ν
β
µ + 1

90R
αβγ

νRαβγµ ,

A2 = 1
6∆E + 1

2E
2 − 1

6RE + 1
12FµνF

µν

− 1
30∆R + 1

72R
2 − 1

180RµνR
µν + 1

180RµναβR
µναβ .

(3.2.18)

The terms containing five and six symmetrized derivatives of A0 read

D(γDβDαDνDµ)A0 = 1
3R(νµ;αβγ) + 5

12R(γβRνµ;α) + 1
3Rρ(γ|θ|βR

ρ
ν
θ
µ;α) , (3.2.19)

and

D(δDγDβDαDνDµ)A0 = 5
14R(νµ;αβγδ) + 3

4R(δγRνµ;αβ) + 4
7Rρ(δ|θ|γR

ρ
ν
θ
µ;αβ)

+ 15
28Rρ(γ|θ|β;δR

ρ
ν
θ
µ;α) + 5

8R(γβ;γRνµ;α)

+ 5
72R(δγRβαRνµ) + 1

6R(δγR|ρ|β|θ|αR
ρ
ν
θ
µ)

+ 8
63R

ρ
(δ|θ|γR

θ
β|λ|αR

λ
ν|ρ|µ) .

(3.2.20)

The expressions for three symmetrized derivatives acting on A1 and one derivative acting
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3.2. Off-diagonal Heat Kernel Coefficients

on A2 contain both the endomorphism and curvature of the bundle. They are given by

D(αDνDµ)A1 = − 1
4E;(µνα) + 1

30R;(µνα) −
1
4ER(µν;α) −

1
4E;(αRµν)

− 3
20Fρ(µ;

ρ
να) + 1

5Fρ(αF
ρ
ν;µ) + 3

10Fρ(µ;αF
ρ
ν) −

1
12Fρ(α;

ρRµν)

− 1
30Fρ(µ;αR

ρ
ν) −

1
10Fρ(αRµν);

ρ + 1
10Fρ(αR

ρ
ν;µ)

− 1
15Fρ(α;|σ|R

ρ
µ
σ
ν) −

1
40(∆R(µν);α) + 1

24RR(µν;α)

+ 1
24R;(αRµν) −

1
15Rρ(αR

ρ
ν;µ) + 1

60RρσR
ρ

(µ
σ
ν;α)

+ 1
60Rρσ;(αR

ρ
µ
σ
ν) + 1

30R
ρστ

(αR|ρστ |ν;µ) ,

(3.2.21)

and

DµA2 = 1
12(∆E);µ + 1

3E;µE + 1
6EE;µ + 1

12E;ρF
ρ
µ + 1

12F
ρ
µE;ρ

+ 1
12EF

ρ
µ;ρ + 1

12F
ρ
µ;ρE −

1
12E;µR−

1
12ER;µ + 1

60∆(F ρ
µ;ρ)

− 1
60FρµF

ρσ
;σ + 1

45F
ρσFρµ;σ + 1

30Fρσ;µF
ρσ + 1

30Fρµ;σF
ρσ

+ 1
45F

ρσFρσ;µ −
1
60F

ρ
σ;ρF

σ
µ −

1
36F

ρ
µ;ρR−

1
30F

ρ
µR;ρ

+ 1
30F

ρσRρµ;σ −
1
90Fρµ;σR

ρσ + 1
180F

ρ
σ;ρR

σ
µ −

1
45Fρσ;γRµ

ρσγ

− 1
60(∆R);a + 1

72RR;µ −
1

180R
ρσRρσ;µ + 1

180R
ρστκRρστκ;µ ,

(3.2.22)

respectively. Recall that E and Fµν may be matrix-valued with respect to the internal
bundle and therefore, in general, do not commute. The coefficients D(µDνDαDβ)A1 and
D(αDβ)A2 which, following table 3.1 also enter the recursive construction of A3(x) are
not given here, because they are very lengthy expressions and therefore of little practical
value when written explicitly. For the purpose of automated heat kernel computations,
all these objects of cubical order in the curvature are readily obtained. Lastly, we state
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3. The Heat Kernel Expansion

the non-derivative coefficient at third order in the curvatures

A3 = − 1
6E

3 − 1
12(∆E)E + 1

12E;µE;
µ − 1

12E(∆E)− 1
60(∆∆E)

+ 1
60E;νF

µν
;µ −

1
60F

µν
;µE;ν −

1
20EFµνF

µν − 1
90FµνEF

µν − 1
45FµνF

µνE

− 1
90(∆Fµν)F µν + 1

45Fµν;ρF
µν;ρ − 1

180Fµν(∆F
µν)

+ 1
180F

µ
ν;µF

ρν
;ρ + 1

45F
µνFµ

ρ
;ρν + 1

90F
µρ

;ρνFµ
ν − 1

90FµνF
νρF µ

ρ

+ 1
12E

2R + 1
36(∆E)R− 1

30E;µR;
µ + 1

30E(∆R)− 1
90E;µνR

µν

− 1
72ER

2 + 1
180ERµνR

µν − 1
180ERµνρσR

µνρσ

+ 1
72FµνF

µνR + 1
30FµνF

µρRν
ρ −

1
180FµνFρσR

µνρσ

+ 1
280(∆∆R)− 1

280R(∆R) + 17
5040R;µR;

µ + 1
420R;µνR

µν + 1
630Rµν(∆Rµν)

− 1
2520Rµν;ρR

µν;ρ − 1
1260Rµν;ρR

νρ;µ − 1
420Rµνρσ(∆Rµνρσ) + 1

560Rµνρσ;λR
µνρσ;λ

+ 1
1296R

3 − 1
1080RRµνR

µν + 1
5670RµνR

µρRν
ρ

− 1
1890RµνRρσR

µρνσ + 1
1080RRµνρσR

µνρσ − 1
945RµνR

µ
ρστR

νρστ

+ 1
567R

µ
ν
ρ
σRµαρβR

νασβ + 11
11340R

µν
ρσRµναβR

ρσαβ .

(3.2.23)

This formula generalizes previous computations of A3 with traced internal space indices [91],
and in the limit of trivial connection (Fµν = 0) [99]. The reproduction of those results as
special cases provides a strong cross-check for the Mathematica code. Note that in the
above expressions, a full covariant derivative D is identical to the covariant spacetime
derivative ∇ when it acts on the spacetime curvature tensors R.

Lastly, it remains to be shown how the heat kernel coefficients for the case of a
Laplace operator acting on scalar-, vector- and symmetric tensor fields is obtained from
the general formulas given above.8 In the case of a pure tangent bundle, we set E = 0
and Aµ = 0, so that the field strength becomes Fµν = [∇µ,∇ν ]. This commutator is then
to be evaluated, acting on the various representations,

[∇µ,∇ν ]φ = 0 ,

[∇µ,∇ν ] vα = Rµν
α
βv

β ,

[∇µ,∇ν ]hαβ = 2Rµν
(α

(γδ
β)
δ)h

γδ ,

(3.2.24)

8See [96] for some early work on the spin-dependence of the An(x, y).
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where φ, vα and hαβ are test scalar-, vector- and symmetric tensor fields, respectively.
Thus, the relations

Fµν |scalar = 0 ,

Fµν
α
β|vector = Rµν

α
β ,

Fµν
αβ

γδ

∣∣∣
tensor

= 2Rµν
(α

(γδ
β)
δ) ,

(3.2.25)

between field strengths and Riemann curvatures are implied. The index structure in
(3.2.25) is to be understood as a soldering of the internal indices carried by the field
strength, so that Fµναβ = Fµν

a
b e

α
a e

b
β and Fµναβγδ = Fµν

a
b e

αβ
a ebγδ, with normalization

and completeness conditions holding for the solder forms e:

eαa e
a
β = δαβ , eαβa eaγδ = 1

2(δαγ δ
β
δ + δαδ δ

β
γ ) . (3.2.26)

Substituting the appropriate field strength (3.2.25) into the traced heat kernel coefficients
trjDµ1 . . . DµkAn, the specific expansion coefficients of the heat kernel, traced over the
corresponding field space are obtained. Here the subscript j = 0, 1, 2 indicates that
the trace is summing eigenvalues of its argument when acting on scalars, vectors and
symmetric 2-tensors, respectively. The diagonal heat kernel expansion up to third order
in the curvature takes the form

Trj
[
e−s∆

]
=(4πs)−d/2

∫
ddx
√
g

{
trj A0 + s trj A1 + s2 trj A2

}

=(4πs)−d/2
∫
ddx
√
g

{
c0 + s c1R1 + s2

3∑
i=1

c2
i R2

i + s3
10∑
i=1

c3
i R3

i

}
,

(3.2.27)

with the coefficients cni listed in table 4.2 in the next chapter, and the basis monomials
Rn
i defined in (A.1.2).

3.3. Evaluation of Non-minimal Traces

The derivatives of the heat kernel coefficients derived in the last section can be used to
evaluate operator traces with non-minimal derivative insertions. The trace of the heat
kernel defined in terms of its matrix elements (3.2.5) is

Tr[e−s∆0 ] = tr
∫
ddx
√
g 〈x| e−s∆0 |x〉

= tr
∫
ddx
√
g H(x, x; s) ,

(3.3.1)
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3. The Heat Kernel Expansion

where “tr” denotes the trace in the internal space. Putting the definitions (3.2.8) and
(3.2.11) together, we have the heat kernel at non-coincident points

H(x, y; s) := 〈y|e−s∆|x〉 = (4πs)−d/2 e−
σ(x,y)

2s

∞∑
n=0

snAn(x, y) . (3.3.2)

The generalization to the non-minimal case including arbitrary insertions of uncontracted
covariant derivatives inside the trace becomes

Tr[Dµ1 . . . Dµne
−s∆0 ] = tr

∫
ddx
√
g 〈x|Dµ1 . . . Dµne

−s∆0 |x〉 . (3.3.3)

Operators of this form will appear in any kind of gauge theories and are thus of great
importance. The relevance of these traces lies in the fact that very general expressions
involving a Laplacian operator and uncontracted derivatives can be computed. For a
general function general function of ∆0, we have

Tr[Dµ1 . . . Dµnf (∆0)] = tr
∫
ddx
√
g
∫
ds f̃ (s)Dµ1 . . . DµnH(x, y; s) , (3.3.4)

where f is written as the Laplace-transform f (∆0) =
∫
ds f̃ (s) e−s∆0 . The use of this

technique has been successfully applied to sophisticated traces appearing in functional
renormalization group calculations [67–69,105], where it allowed to generalize the compu-
tations to operator traces which are not accessible by standard heat kernel techniques.

For a general operator insertion O, the matrix elements in (3.3.3) can be reduced to
the off-diagonal heat kernel coefficients by insertion of a complete set of states, yielding

〈x| O e−s∆0|x〉 =
∫
ddx′

√
g(x′) 〈x| Ox |x′〉〈x′|e−s∆0 |x〉

=
∫
ddx′

√
g(x′) 〈x|x′〉 Ox H(x, x′; s)

=
∫
ddx′ δ(x− x′) Ox H(x, x′; s)

= Ox H(x, x′; s) ≡ Ox H(x, x′; s)
∣∣∣∣
x=x′

,

(3.3.5)

by making use of the fact that Ox acts on the coordinate x only. This manipulation is the
central building block for the computations in quantum gravity pursued in this thesis. For
the important special case of uncontracted covariant derivative operators, (3.3.5) implies

〈x|Dµ1 . . . Dµne
−s∆0 |x〉 = Dµ1 . . . DµnH(x, y; s) =: Hµ1...µn(x, s) , (3.3.6)

introducing the abbreviations Hµ1...µn for the coincidence limits, in terms of which the
non-minimal traces

Tr[Dµ1 . . . Dµne−s∆0 ] = tr
∫
ddx
√
g Hµ1...µn(x, s) (3.3.7)
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3.3. Evaluation of Non-minimal Traces

are given.

The remaining task is to compute the quantities Hµ1...µn(x, s). In order to express
these in terms of the heat kernel coefficients (3.2.18), the derivatives acting on H(x, y; s)
can be applied explicitly to the definition (3.3.2), whereby they will act on both σ(x, y)
and the An(x, y). With the help of (3.2.15) and σµ = 0, totally symmetrized covariant
derivatives acting on σ(x, y) can only produce contributions when exactly two derivatives
are present, yielding

σ;(µν) = gµν . (3.3.8)

Using this fact simplifies the form of the resulting expressions significantly.

We give here the results for the first six of the matrix elements with symmetrized
derivatives:

H(x, s) = (4πs)−d/2
∑
n≥0

snAn

Hµ(x, s) = (4πs)−d/2
∑
n≥0

snDµAn

H(µν)(x, s) = (4πs)−d/2
∑
n≥0

sn−1
(
−1

2gµνAn +D(µDν)An−1

)

H(µνρ)(x, s) = (4πs)−d/2
∑
n≥0

sn−1
(
−3

2g(ρνDµ)An +D(ρDνDµ)An−1

)

H(µνρλ)(x, s) = (4πs)−d/2
∑
n≥0

sn−2
(3

4g(λρgνµ)An − 3g(λρDνDµ)An−1

+D(λDρDνDµ)An−2

)
(3.3.9)

H(µνρλα)(x, s) = (4πs)−d/2
∑
n≥0

sn−2
(15

4 g(αλgρνDµ)An

−5g(αλDρDνDµ)An−1 +D(αDλDρDνDµ)An−2

)
H(µνρλαβ)(x, s) = (4πs)−d/2

∑
n≥0

sn−3
(
−15

8 g(βαgλρgνµ)An

+45
4 g(βαgλρDνDµ)An−1 −

15
2 g(βαDλDρDνDµ)An−2

+D(βDαDλDρDνDµ)An−3

)
.

In these expressions, the sums are understood with the boundary conditions A−1 =
A−2 = · · · = 0. The general unsymmetrized formulas can always be recovered from the
symmetrized ones by commutation of the derivatives, writing for each pair of indices a
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3. The Heat Kernel Expansion

sum of symmetrized and anti-symmetrized terms. For example we have

Hµν(x, s) =H(µν)(x, s) +H[µν](x, s)

=H(µν)(x, s) +D[µDν]H(x, y, s)

=H(µν)(x, s) + Fµν H(x, s)

= (4πs)−d/2
∑
n≥0

sn−1
(
−1

2gµνAn + FµνAn−1 +D(µDν)An−1

)
,

(3.3.10)

where the commutator in the second term becomes the curvature tensor Fµν(x). Thus,
all traces of the form (3.3.7) are given with the explicit expressions for the expansion
coefficients (3.2.18), (3.2.19), (3.2.20), (3.2.21), (3.2.22), and (3.2.23).

For the matrix elements with even number of derivatives, using the heat kernel
coefficients on a trivial bundle

A0 = 1 , A1 = 1
6R , DµDνA0 = 1

6Rµν , (3.3.11)

we can write in general the fully symmetric expression

Hµ1...µ2n = (4πs)−d/2
{

(−2s)−n (2n)!
2nn! g(µ1µ2 · · · gµ2n−1µ2n)

(
1 + 1

6sR
)

+1
6 (−2s)−(n−1) (2n)!

2n(n−1)! g(µ1µ2 · · · gµ2n−3µ2n−2Rµ2n−1µ2n)

}
,

(3.3.12)

valid up to terms of O(R2). For later reference, the first two of these read

Hαβ = (4πs)−d/2
{
− 1

2s gαβ
(
1 + 1

6sR
)

+ 1
6Rαβ

}
,

Hαβµν = (4πs)−d/2
{ 1

4s2 (gαµgβν + gανgβµ + gαβgµν)
(
1 + 1

6sR
)

− 1
12s (gαµRβν + gανRβµ + gβµRαν + gβνRαµ + gαβRµν + gµνRαβ)

}
.

(3.3.13)

Note that the H-tensors with any number of derivative indices give contributions to all
orders of the curvature.

A generalization of (3.3.9) based on the non-local heat kernel expansion (3.1.19)
is possible, as shown in [106], where an expansion including only the first order in
the curvatures is studied. Notably, such a generalization would give many insights to
important physical problems, and further increases the range of applicability of the
methods discussed in this chapter.
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4.1. Gauge Theory & Field Decompositions

Quantum field theories which are known to describe realistic interaction processes are
usually defined in terms of gauge fields, which entail unphysical off-shell components in
order to maintain a manifestly covariant formalism. Theories with such internal gauge
degrees of freedom are formulated on a fiber bundle, which is a manifold E equipped
with a projection π : E →M into another lower-dimensional base manifold M . Locally,
this projection induces a split of the bundle into E = M × F , where F is called the fiber
and is given the interpretation of internal spaces, attached to the base manifold at each
point. A gauge field is the connection on a bundle over the spacetime manifold M and
with the fiber equipped with the action of a structure or gauge group.1 Invariance of the
action functional under a gauge transformation, which is a local change of coordinates of
the fiber, ensures the dynamical irrelevance of the associated components of the fields.
Any field being a non-trivial representation of the gauge group will be involved in this
transformation and thus describes particles charged with respect to an implied conserved
current.

In the example of Yang-Mills theory on flat spacetime, one has a 1-form connection
field Aµ which is in the adjoint representation of an underlying Lie group. Thus, it
transforms like an element of the associated Lie algebra [ta, tb] = fabctc, yielding

δξAµ = ∂µξ + [Aµ, ξ] = Dµξ , (4.1.1)

with a Lie algebra valued field ξ, and the covariant derivative Dµ as defined in the last
chapter. Establishing the invariance of the action

δξS[Aµ] = 0 , (4.1.2)

leads to the conclusion that not all of the components of Aµ will actually appear as
on-shell degrees of freedom. Specifically, the gauge transformation is allowed to change

1In gravity, a metric connection can be used, as described in the last chapter.
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only those components of Aµ on which the action does not depend. The Yang-Mills action

SYM[Aµ] =
∫
ddx trFµνF µν , (4.1.3)

with field strength Fµν = [Dµ, Dν ] gives rise to the inverse propagator

G−1
µν = −gµν∂α∂α + ∂µ∂ν , (4.1.4)

which has a zero mode G−1
µν ∂

νφ = 0. Therefore, the propagator appearing in the perturba-
tive expansion (2.1.15) and thus in the n-point functions (2.1.16) does not exist.

The consistent quantization of a model subject to gauge invariance requires to
work around this issue, which is done by the implementation of gauge fixing. This
procedure involves the removal of the zero eigenvalues from the propagator, formally
making the unphysical gauge degrees of freedom propagate. To compensate for the
resulting contributions, any non-abelian gauge theory has to include additional ghost
fields. In order to be able to cancel corresponding modes of the gauge field, these ghosts
are required to be subject to Fermi statistics despite being an integer spin representation.
The formal breaking of gauge invariance is mediated via the BRST construction [107,108],
to preserve the physical content of the model. The central object of this construction
is a BRST symmetry transformation δB, that replaces the original gauge symmetry by
extension of the field space by the fermionic ghost degrees of freedom, thus being a form
of (off-shell) supersymmetry [109]. Specifically, δB acts on the gauge field like a gauge
transformation, parametrized by the ghost

δBAµ = Dµc , (4.1.5)

and on the ghost and anti-ghost fields such that the transformation becomes nilpotent

δ2
B = 0 . (4.1.6)

Understood as a graded derivation with this property, δB induces a cohomology, providing
the means to give a topological classification of observable algebras by the study of
non-trivial solutions of δBF = 0, with F being a functional in the space of quantum fields.
A notion of gauge invariance is defined in this context in terms of the cohomology classes
[F ] = {F +δBG}, expressing that two objects A, B are gauge equivalent if they differ only
by a BRST-closed term, such that A−B = δBC. By virtue of the nilpotency condition,
the set of gauge invariant objects is identified with the cocycle {F, δBF = 0} = Ker δB,
which has the subset of trivial solutions given as the coboundary {F, F = δBG} = Im δB.
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Observables are finally explained by restriction of the set of all functionals to the quotient
space

Fobs ∈ Ker δB
/

Im δB . (4.1.7)

The extension to BRST symmetry allows a shift of the action by an arbitrary coboundary
element Sgf

S → S + Sgf , Sgf = δBK , (4.1.8)

since the invariance δBS = 0 remains preserved, without changing the physical content
of the model. The gauge fixing term Sgf picks a coordinate system in the invariant
supersymmetric configuration space, which remarkably allows to modify the term quadratic
in the gauge field in the full action. Thus, the ambiguity to define inverse propagators in
a gauge theory can be removed, establishing BRST as the genuine gauge symmetry of the
quantum theory.

In turn, the n-point functions (2.1.3) are not gauge independent by themselves, but
need to be restricted to the observable subspace (4.1.7). This is conveniently expressed in
terms of the generating functional∫

DX δB e−S[X ]+
∫
x
JX

=
∫
DX

(∑
i

∫
x
Ji δBXi

)
e−S[X ]+

∫
x
JX

=
∑
i

∫
x
Ji

[
δBXi

]
( δ
δJ

) Z[J ] := 0 ,

(4.1.9)

since δB acts like a derivative, and invariance of the functional integral measure is assumed.
The last expression together with all functional derivatives thereof are known as the
Slavnov-Taylor identities. These encode relations among the n-point correlation functions,
by virtue of which the scattering amplitudes become independent of the gauge fixing.
The identities (4.1.9) can easily be expressed in terms of the effective action

∑
i

∫
x

[
δBXi

]
(Φ) δΓ

δΦi

= Ŵ Γ = 0 , (4.1.10)

using the relations (2.1.20) and (2.1.23). On a more general account, the operator Ŵ
measures the magnitude by which invariance is violated. In the context of the RG
equation (2.3.18), the action becomes modified by the cutoff term (2.3.3), which leads to
the modified Slavnov-Taylor identities

Ŵ Γk =
∑
i

∫
x

[
δBXi

]
(Φ) Rk,i Φi . (4.1.11)
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These recover the original form for k = 0 where Rk vanishes [35].
To reproduce the well known Faddeev-Popov Lagrangian as special case, the gauge

fixing term Sgf is chosen with

K =
∫
x
C̄ F [A] ,

δBC̄ = 1
2αF [A] ,

δBF [A] = δF [A]
δAµ

δBAµ ,

(4.1.12)

defining a smeared gauge fixing condition F [A] ≈ 0, linear in the gauge field, to yield

Sgf = δBK = 1
2α

∫
x
F [A]2 +

∫
x
C̄
δF [A]
δAµ

DµC , (4.1.13)

for Yang-Mills theory.2 In the case of gravity, the gauge symmetry is given as the group of
local diffeomorphisms. These define general coordinate transformations on the manifold,
infinitesimally realized by the Lie derivative Lv

Lv T µ1...µm
ν1...νn = vαT µ1...µm

ν1...νn;α −
m∑
k=1

vµk ;αT
µ1...α...µm

ν1...νn +
n∑
k=1

vα;νkT
µ1...µm

ν1...α...νn ,

(4.1.14)
acting on a tensor T as directional derivative along the vector field vα. For the metric on
a torsion-free manifold we find

Lv gµν = vαgµν;α + vα;µgαν + vα;νgµα = vν;µ + vµ;ν , (4.1.15)

so that a change of the local coordinate system described by xµ by a vector field ξµ is
given by

δξxµ = ξµ(x) ,

δξgµν(x) = Dµξν(x) +Dνξµ(x) .
(4.1.16)

For a theory of gravity with a metric degree of freedom, an appropriate gauge fixing term
analogous to (4.1.13) is thus realized in the expression

Sgf = δB

∫
x
C̄µFµ[g]

= 1
2α

∫
x
F µ[g]Fµ[g] +

∫
x
C̄µ δFµ[g]

δgρσ
(DρCσ +DσCρ) ,

(4.1.17)

2The BRST transformation defined here is only on-shell nilpotent. For our purpose it is sufficient to
note that it can always be extended to hold off-shell by the inclusion of a Nakanishi-Lautrup field
with on-shell condition B = 1

2αF [A], if required.
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with the vector valued ghost fields C̄µ and Cµ. The original Faddeev-Popov construction
[110] attempts to exclude an integration over gauge equivalent configurations from the
functional integral measure. This is done by insertion of unity in the form∫

Da δ(F [Aa]) det(dF [Aa]
da

) = 1 (4.1.18)

inside the functional integral, that allows to isolate an infinite factor corresponding to
the volume of gauge orbits, after a gauge transformation parametrized by a. In this
perspective, the ghost term is understood as exponentiation of the determinant of a gauge
transformation

det(M) =
∫
DC̄ DC e−

∫
x
C̄MC , (4.1.19)

with the ghost kernel given by

M = δF [A]
δAµ

Dµ ,

Mµ
ν = δFµ[g]

δgρσ
(Dρδ

ν
σ +Dσδ

ν
ρ) ,

(4.1.20)

for Yang-Mills and gravity, respectively. Although it is the formal supersymmetrization
of the gauge degrees of freedom by the ghost fields that guarantees the cancellation of
gauge dependence in the observables of the quantized theory, the choice (4.1.12) suffers
from the Gribov ambiguity, related to the appearance of zero modes in the ghost kernel
M [111]. Since this affects the IR behaviour of a theory more then the UV, we can ignore
this problem for the present purpose.

Finally, by virtue of the gauge condition F , smeared by a Gaussian weight with
the width α, a non-ambiguous definition of a propagator can be given. The gauge fixed
action with F [A] = ∂µAµ replaces the inverse Yang-Mills propagator (4.1.4) by

G−1
µν = −gµν∂α∂α +

(
1− α−1

)
∂µ∂ν , (4.1.21)

for α < ∞. It is useful to formalize the decomposition of fields to isolate the gauge
dependent part, as it can simplify the computation of functional traces for the case of
gauge theories.

Decomposition of Vector Fields

In Yang-Mills theory it is a common practice to decompose the fluctuations of the vector
field Aµ

Aµ = AT,µ + AL,µ , (4.1.22)
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into its transversal and longitudinal part [74] by a generalization of Helmholtz’s theorem.
Following [112], this decomposition is readily given on a general Riemannian (background)
manifold in the context of gravity or quantum field theory on curved spacetime. Specifically,
the local decomposition of a generic vector field vµ [113] is given by

vµ =vµT +Dµφ , Dµv
µ
T ≡ 0 , (4.1.23)

describing the split into transversal part vµT and longitudinal part vµL = Dµφ, with the
former subject to a differential transversality constraint. This split is uniquely defined
under the assumption of a closed manifold, up to a constant shift in φ.3 The transversal
decomposition of a Yang-Mills field Aµ = AT

µ + Dµφ isolates the gauge invariant part
according to the transformation (4.1.1), since

A′µ = Aµ +Dµξ = AT
µ +Dµ(φ+ ξ) , (4.1.24)

leaving the transversal component invariant and constituting the longitudinal to be a
gauge degree of freedom.4

The decomposition (4.1.23) can be implemented by the projection operators

ΠLµ
ν ≡ −Dµ

1
∆Dν , ΠTµ

ν ≡ δνµ +Dµ
1
∆Dν , (4.1.25)

acting on the space of unconstrained vector fields. These satisfy the projector properties
of idempotency and orthogonality

ΠL · ΠL = ΠL , ΠT · ΠT = ΠT , ΠL · ΠT = ΠT · ΠL = 0 , (4.1.26)

which ensure the orthogonality of the decomposition. Furthermore, one has the relations

ΠLµ
νDν = Dµ , DµΠLµ

ν = Dν , [ΠT]µν = [11]µν − [ΠL]µν , (4.1.27)

with the identity operator [11]µν = δµ
ν , following directly from the definition. By virtue

of these, a vector vµ is projected onto its irreducible components

ΠTµ
νvν = vT,µ , ΠLµ

νvν = vL,µ = Dµφ . (4.1.28)

3The assumption of the background being closed could be relaxed if appropriate assumptions on the
fall-off of the metric and fluctuation fields are fulfilled.

4The reduction to the two on-shell helicity states requires to also take the equations of motion into
account.
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For practical computations it is convenient to have an explicit expression for ΠL,
where the Laplacian is commuted to either side. This can be achieved with the curvature
expansion (B.2.4), to obtain in terms of the n-fold commutators (B.1), when commuting
to the very left

ΠLµ
νvν =− 1

∆

∞∑
n=0

( 1
∆n

(−1)n [Dµ , ∆ ]n
)
Dνvν

=
[
−∆−1DµD

ν + ∆−2RµαD
αDν +O(R2)

]
vν ,

(4.1.29)

or the very right

ΠLµ
νvν =−Dµ

∞∑
n=0

(
[Dν , ∆ ]n

1
∆n

) 1
∆ vν

=
[
−DµD

ν∆−1 +DµDαR
αν∆−2 +O(R2)

]
vν ,

(4.1.30)

respectively. The explicit expressions for the multi-commutators appearing in these
expansions up to order n = 4 are given in appendix B, in (B.1.2) and (B.1.5).

The employment of a decomposition of vector fields (4.1.23) requires an adaptation
of the functional integral measure by a Jacobian Jvec such that

D[vµ] = Jvec D[vT
µ ]D[φ] . (4.1.31)

Following [114] the Jacobian can be found by explicit evaluation of a normalized Gaussian
integral with the decomposition inserted

1 =
∫
D[vµ] exp

[
− 1

2

∫
ddx
√
g vµvµ

]
= Jvec

∫
D[vT

µ ]D[φ] exp
[
− 1

2

∫
ddx
√
g
(
vTµvT

µ + φ∆φ
)
.

(4.1.32)

Solving for Jvec we find

⇒ Jvec =
{∫

D[φ] exp
[
− 1

2

∫
ddx
√
g φ∆φ

]}−1

= det(∆)ε .
(4.1.33)

The remaining functional integral evaluated according to the rules for bosonic fields
implies the exponent ε = 1

2 , whereas for fermionic fields we have ε = −1.

Decomposition of Symmetric 2-Tensor Fields

The gravitational fluctuations of a metric degree of freedom hµν can be decomposed in a
transverse-traceless part hT

µν , a vector ξµ, and a scalar h, representing the trace-part. The
York-decomposition [113] reads explicitly

hµν = hT
µν +Dµξν +Dνξµ − 2

d
gµνD

αξα + 1
d
gµνh , (4.1.34)
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with the component fields subject to the constraints

DµhT
µν = 0 , gµνhT

µν = 0 , gµνhµν = h . (4.1.35)

The comparison with the coordinate transformation (4.1.16) reveals that here the vector
ξµ absorbs the unphysical gauge dependence, however including also a shift of the trace
part h [114]. The unconstrained vector ξµ can be further decomposed according to (4.1.23),
so that with ξµ = ξT

µ +Dµσ the complete transverse-traceless (TT) decomposition is

hµν = hT
µν +Dµξ

T
ν +Dνξ

T
µ + 2DµDνσ − 2

d
gµνD

2σ + 1
d
gµνh . (4.1.36)

In this form, all components are in their irreducible representations. However, it can
be more convenient to reside with the “minimal” TT-decomposition (4.1.34), if only
projection on the hT

µν component is required. Ambiguities in this decomposition arise if
the background metric admits Killing vectors or conformal Killing vectors, since these
constitute zero modes of the ξµ or ξT

µ parts.
To formalize the decomposition (4.1.34), covariant projection operators onto the

transverse-traceless, vector and scalar subspaces can be constructed. Firstly, on has

[ 12 ]αβρσ = 1
2 (δαρδβσ + δα

σδβ
ρ) ,

[ Πtr ]αβρσ = 1
d
gαβg

ρσ ,
(4.1.37)

the unit-operator 12 on the space of symmetric matrices, and Πtr projecting on the trace
part. After applying a projection on the trace-free part via 12 − Πtr, and acting with
a covariant derivative on the decomposition, only the vector ξµ remains. To bring this
remaining expression into standard form, we define

[ Π2L ]αβ
ρσ = [P1]µαβ

[
P−1

2

]ν
µ

(−Dγ) [ 12 − Πtr ]γν
ρσ , (4.1.38)

with

[P1]µαβ = 2D(αδ
µ
β) − 2

d
gαβD

µ ,[
P−1

2

]ν
µ

=
[
∆δµν −Rµ

ν − d−2
d
DµDν

]−1
,

⇒ −Dα [P1]µαβ = [P2]µβ .

(4.1.39)

These operators are chosen so that Π2L applied to hµν reproduces the ξ-part as it appears
in the decomposition (4.1.34). Applying the projectors (4.1.37) and (4.1.38) to the minimal
TT-decomposition (4.1.34), thus gives

[ Πtrh ]µν = 1
d
gµν h ,

[ Π2Lh ]µν = [P1]αµνξα = Dµξν +Dνξµ − 2
d
gµνD

αξα ,
(4.1.40)
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the vector- and trace-parts of hµν , respectively. Finally the projector on the transverse-
traceless part hT

µν follows to be given as

Π2T = 12 − Π2L − Πtr , [Π2Th]µν = hT
µν . (4.1.41)

Since the complicated pseudo-differential operator
[
P−1

2

]ν
µ
(4.1.39) severely com-

plicates working with the projector Π2T, it is necessary to recast this operator into an
expansion in the background curvature. Systematically, the inverse assumes the form

[
P−1

2

]β
α
ξβ =

(
∆−1δα

β + [P2,0]βα + [P2,R]βα
)
ξβ +O(R2, DR) , (4.1.42)

where P2,0 captures the resummed contribution of the DµDν-term at zeroth order, and
P2,R the terms at first order in R. Explicitly, we compute as a geometric series in
q = (d− 2)/d < 1

[P2,0]βα ξβ =
∞∑
n=0

qn+1 1
∆Dα

(
Dγ 1

∆Dγ

)n
Dβ 1

∆ ξβ

=
∞∑
n=0

qn+1 1
∆ Dα

(
−1 + 1

∆2R
µνDµDν

)n
Dβ 1

∆ ξβ

=
[
d− 2

2(d− 1)
1
∆DαD

β 1
∆ + (d− 2)2

4(d− 1)2R
µνDµDνDαD

β 1
∆4

]
ξβ ,

(4.1.43)

and

[P2,R]βα ξβ

=
[

1
∆Rα

β 1
∆ +

∞∑
n=1

qn

∆n+2

(
2R(α

µDµD
β)D2(n−1) + (n− 1)D2(n−2)RµνDµDνDαD

β
)]
ξβ

=
[

1
∆Rα

β 1
∆ +

∞∑
n=1

(−q)n
(
− 2

∆3R(α
µDµD

β) + n− 1
∆4 RµνDµDνDαD

β
)]
ξβ

=
[

1
∆Rα

β 1
∆ + d− 2

d− 1
1

∆3R(α
µDµD

β) + (d− 2)2

4(d− 1)2
1

∆4R
µνDµDνDαD

β

]
ξβ .

(4.1.44)

The resummations (4.1.43) and (4.1.44) are exact up to terms O(R2, DR). Higher orders
can be calculated in the same way, taking higher commutators into account. Substituting
these results into (4.1.42) and applying the commutator expansion (B.2.4) to the first
term in (4.1.43) finally reveals

[
P−1

2

]β
α
ξβ =

[
1
∆δα

β + 1
2
d−2
d−1DαD

β 1
∆2 +Rα

β 1
∆2 + d−2

d−1Rα
µDµD

β 1
∆3

+ 1
2

(d−2)2

(d−1)2R
µνDµDνDαD

β 1
∆4

]
ξβ +O(R2, DR) .

(4.1.45)
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With the expansion of the inverse of P−1
2 at hand, it is now straightforward to give

the projector Π2L (4.1.38) in terms of a perturbative series in the background curvature.
Again, we give this operator both with the Laplacian commuted through to the left and
right, written in the form

[ Π2L ]µνρσφρσ =
[

Π0l
2L + Π1l

2L + Π1
2L

]
µν

ρσφρσ +O(R2, DR)

=
[

Π0r
2L + Π1r

2L + Π1
2L

]
µν

ρσφρσ +O(R2, DR) ,
(4.1.46)

where, Π0l
2L and Π0r

2L denote the part with no curvature terms, Π1l
2L and Π1r

2L capture the
corresponding commutator contributions, and Π1

2L is the linear curvature contribution
originating from the inversion formula (4.1.45). These parts are given by

[ Π0r
2L ]αβρσ = − 2D(αδ

(ρ
β)D

σ) 1
∆ + 1

d−1g
ρσD(αDβ)

1
∆ + 1

d−1gαβD
(ρDσ) 1

∆

− d−2
d−1D(αDβ)D

(ρDσ) 1
∆2 + 1

d(d−1)gαβg
ρσ ,

[ Π0l
2L ]αβρσ = − 2 1

∆D(αδ
(ρ
β)D

σ) + 1
d−1

1
∆g

ρσD(αDβ) + 1
d−1

1
∆gαβD

(ρDσ)

− d−2
d−1

1
∆2D(αDβ)D

(ρDσ) + 1
d(d−1)gαβg

ρσ ,

(4.1.47)

with the commutators corrections

[ Π1r
2L ]αβρσ =

(
2D(αδ

τ
β) − 1

d−1gαβD
τ + 2(d−2)

(d−1) D(αDβ)D
τ 1

∆

)
×

×
(
RλµDλδ

ν
τ − 2Rτ

µλνDλ

)
[ 12 − Πtr ]µν

ρσ 1
∆2

− d−2
d(d−1) gαβ R

λµDλD
ν 1

∆2 [ 12 − Πtr ]µν
ρσ ,

[ Π1l
2L ]αβρσ =

[
1

∆2

(
2R(α

λDλδ
ν
β) − 4Rµ

(α
ν
β)Dµ + 2

d(d−1)gαβR
µνDµ

)
+ 2(d−2)

d−1
1

∆3

(
2R(α

λDβ)DλD
ν − 2Rλ

α
σ
βDλDσD

ν −D(αDβ)DµR
µν
) ]
×

× Dγ [ 12 − Πtr ]γν
ρσ ,

(4.1.48)

and the commutator free part appearing in both expressions

[ Π1
2L ]αβρσ =

(
2D(αδ

µ
β) − 2

d
gαβD

µ
)
×

×
(
Rµ

ν 1
∆2 + d−2

d−1Rµ
γDγD

ν 1
∆3 − (d−2)2

2(d−1)2R
γδDγDδDµD

ν 1
∆4

)
×

×
(
D(ρδσ)

ν − 1
d
gρσDν

)
.

(4.1.49)

Note that at the level of the approximation (neglecting all terms of O(R2, DR)), all
covariant derivatives in (4.1.48) and (4.1.49) can be commuted freely.
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The employment of the minimal TT-decomposition (4.1.34) of the metric tensor
requires to insert an appropriate Jacobian JTT in the functional integral. It contributes a
compensating factor to the measure

D[hµν ] = JTT D[hT
µν ]D[h]D[ξµ] . (4.1.50)

This Jacobian is again found by solving a Gaussian integral. We find the relation

1 =
∫
D[hµν ] exp

[
− 1

2

∫
ddx
√
g hµνhµν

]
= JTT

∫
D[hT

µν ]D[h]D[ξµ] exp
[
− 1

2

∫
ddx
√
g
(
hTµνhT

µν + 1
d
h2 + 2ξµMµ

νξ
ν
) ]

∝ JTT det(M)−
1
2 ,

(4.1.51)

up to constant factors, with the operator

Mµ
ν = ∆ δµν − (1− 2

d
)DµDν −Rµ

ν . (4.1.52)

Solving for JTT yields

JTT ∝ det(M)
1
2 = det(M)−

1
2 det(M)1

=
∫
D[Υµ]D[b̄µ]D[bµ] exp

[
− 1

2

∫
ddx
√
g
(
ΥµMµ

νΥν + b̄µMµ
νb
ν
) ]
,

(4.1.53)

where in the last line Mµ
ν was exponentiated using the Faddeev-Popov trick (4.1.19)

with the newly introduced auxiliary bosonic (Υ) and fermionic (b̄, b) vector fields.
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4.2. Projected Heat Kernel Expansions

In order to simplify the functional traces appearing in the RG equation (2.3.18) in the case
of gauge and gravitational theories, it is often useful to employ a field decomposition like
(4.1.23) or (4.1.34). The method of transversal field decomposition was first advocated
in [45] and subsequently employed by a number of groups [57,58,115] to diagonalize the
propagator. Defining heat kernel expansions on the subspaces of transversal vector and
transverse-traceless tensor fields allows to evaluate operator traces constrained to according
modes in the same way as for unconstrained fields (3.2.27). The corresponding heat kernel
coefficients are known for the special classes of maximally symmetric backgrounds [45] or
Lichnerowicz-Laplacians on Einstein spaces [31]. In this section, we engage in a detailed
study of constrained heat traces, and compute their expansion coefficients for a general
background, based on the off-diagonal heat kernel technique, discussed in chapter 3.

Heat Kernel Coefficients for Transverse Vector Fields

In this section we compute the early-time expansion of the heat kernel resulting from a
projected Laplace operator acting on transverse vector fields, up to third order in the
curvature. To simplify matters, we assume Dµ = ∇µ to contain only the Levi-Civita
connection and adopt the former notation throughout. In this computation we will make
extensive use of the off-diagonal heat kernel coefficients derived in the previous chapter.

In order to construct a well-defined operator trace, it is crucial to observe that the
eigenvalue equation for the standard Laplace operator is, in general, incompatible with
the transverse condition. This can be seen as follows: Suppose that ξµi is an eigenfunction
of ∆ on the space of transverse vector fields

∆ξµi = λiξ
µ
i , Dµξ

µ
i = 0 . (4.2.1)

Applying Dµ to this equation, the left-hand-side becomes

Dµ∆ξµi = [Dµ,∆] ξµi = −DµRµνξ
ν
i , (4.2.2)

where we used the transverse condition together with (B.1.5). Since the right hand side
vanishes identically, we obtain the condition

DµRµνξ
ν
i = 0 . (4.2.3)

On a general Riemannian manifold, this identity does not hold. Thus the eigenspace of ∆
does not decompose into the direct sum of transverse and longitudinal vector fields in
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general. Notably, the special case of Einstein manifolds discussed in appendix A.2 are an
exception, as they have the property that Rµν ∝ gµν , ensuring that (4.2.3) is satisfied.
This implies that ∆ does respect the split of vectors into transverse and longitudinal
components expressed by [∆,ΠT

µ
ν ]vν = 0, which can be verified by use of the equations

(4.2.33).
To compute heat traces on the restricted space of transverse vector fields ξµ satisfying

the constraint Dµξ
µ = 0, we define the projected Laplace operator

∆̃µ
ν ≡ ΠT

µ
α∆ΠT

α
ν . (4.2.4)

The projectors ΠT ensure, that ∆̃µ
ν propagates only transversal modes. Moreover, even

for the case of a general Riemannian manifold, all eigenfunctions of ∆̃µ
ν are transversal

vector fields by construction. However, it is due to the projectors entering the definition
(4.2.4) that ∆̃µ

ν is a non-local, pseudo-differential operator. Thus it is a priori unclear to
which extend the standard results for the Seeley-deWitt expansion (3.1.18) carry over to
the case of differentially constrained fields. This will be investigated in the following.

The heat-trace on the space of transverse vector fields as the object of interest can
now be defined by a heat operator of the projected Laplacian ∆̃, reading

S1T ≡ Tr1 ΠT e−sΠT∆ΠT . (4.2.5)

The additional projector in front of the exponential serves the purpose to remove the
contribution of the longitudinal vector modes from the zeroth order of the exponential
series. Since ∆̃ is not of generalized Laplace-type, the results of the previous chapter
cannot be applied straightforwardly to find the early-time expansion of S1T. Its explicit
computation starts from expanding the exponential appearing in (4.2.5) in a power series

S1T =
∑
n≥0

(−s)n
n! Tr1 ΠT (∆ΠT)n , (4.2.6)

where the idempotency of ΠT was taken into account. Subsequently, the series is resummed
by forming commutators of the projectors and the (unprojected) Laplacian, to collect all
remaining powers of ∆ into an exponential. This will provide a curvature expansion since
multi-commutators and products of lower order commutators with a certain total number
of Laplacians are bound to contain an increasing number of (derivatives of) curvatures.
Working out the combinatorics in (4.2.6), the curvature expansion of S1T up to order R3

is given by

S1T =
4∑

n=0

(−s)n
n! S

(n)
1T +O(R4) , (4.2.7)
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where

S
(0)
1T = Tr1 ΠT e−s∆ ,

S
(1)
1T = Tr1 ΠT [ ∆ , ΠT ] e−s∆ ,

S
(2)
1T = Tr1 ΠT

(
[ ∆ , ΠT ]2 + [ ∆ , [ ∆ , ΠT ]]

)
e−s∆ ,

S
(3)
1T = Tr1 ΠT

(
2 [ ∆ , ΠT ] [ ∆ , [ ∆ , ΠT ]] + [ ∆ , [ ∆ , ΠT ]] [ ∆ , ΠT ] (4.2.8)

+ [ ∆ , [ ∆ , [ ∆ , ΠT ]]] + [ ∆ , ΠT ]3
)

e−s∆ ,

S
(4)
1T = Tr1 ΠT

(
3 [ ∆ , ΠT ] [ ∆ , [ ∆ , [ ∆ , ΠT ]]] + 3 [ ∆ , [ ∆ , ΠT ]]2

+ [ ∆ , [ ∆ , [ ∆ , ΠT ]]] [ ∆ , ΠT ] + [∆ , [ ∆ , [ ∆ , [ ∆ , ΠT ]]]]
)

e−s∆ .

To find these expressions in terms of the basis monomials (A.1.2) defined in appendix A,
it is sufficient to keep track of all operator insertions which contain up to three powers
of the curvature or terms where two covariant derivatives act on two curvature tensors.
Terms with more derivatives acting on a curvature tensor can only give rise to surface
terms and may thus be discarded.

In order to apply the off-diagonal heat kernel technique to the curvature expansion
(4.2.7), we have to deal with the inverse powers of the Laplacians appearing in the
projectors and their commutators. To this end, we employ the identity

1
∆n

=
∫ ∞

0

tn−1

(n− 1)!e
−t∆ dt . (4.2.9)

By combining the exponentials of the Laplace operator, the traces in (4.2.8) can be cast
into the form

Tr1

[
O 1

∆n
e−s∆

]
=
∫ ∞

0

tn−1

(n− 1)! Tr1

[
O e−(s+t)∆

]
dt , (4.2.10)

where O = RDµ1 . . . Dµn denote any non-minimal operator insertions of the form (3.3.7).
Thus the operator traces on the right hand side can be evaluated via the off-diagonal heat
kernel techniques explained in section 3.3. The non-locality of the projection operators
thus leads to auxiliary t-integrals under the trace. Upon inserting the H functions (3.3.9),
these integrals assume the generic form

I(n, k − d
2) :=

∫ ∞
0

tn−1

(n− 1)!(s+ t)k−d/2dt =
Γ(d2 − k − n)

Γ(d2 − k)
sn+k−d2 . (4.2.11)

The gamma functions appearing here show the typical form of an IR divergence as
seen within dimensional regularization. Indeed the r.h.s. of (4.2.11) becomes singular
for n + k ≥ d/2, that is, if the order of the heat kernel expansion Rn+k exceeds d/2.
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One would thus expect that the coefficients in the Seeley-deWitt expansion of S1T will
develop divergences at O(Rd/2). For explicit computation in the next subsection, we
will use (4.2.11) to regularize the Seeley-deWitt coefficients by analytically continuing
in the spacetime dimension d, assuming that it is sufficiently large for all integrals to
converge. In this context, we remark that it is necessary to keep the spacetime dimension
unspecified, so that no terms are lost in the traced heat-equation

Tr
[
∆H(s)

]
= − d

ds
Tr
[
H(s)

]
= (4π)−d/2

∑
n≥0

(d2 − n)sn−1−d/2An . (4.2.12)

Integrating this relation should reproduce the standard heat kernel

Tr
[
H(s)

]
=
∫ ∞

0
Tr
[
∆H(s+ t)

]
dt , (4.2.13)

which requires that none of the factors (d2 − n) vanishes in the above formula.

We will now proceed with the evaluation of the expressions S(n)
1T defined in (4.2.8).

Substituting the explicit form of ΠT given in (4.1.25) into S(0)
1T and using (4.2.9) the trace

can be written as

S
(0)
1T = Tr1

[
δνµe−s∆

]
+
∫ ∞

0
Tr1

[
Dµe−t∆Dνe−s∆

]
dt . (4.2.14)

Here the first trace is a standard heat trace on the space of unconstrained vector fields and
is readily evaluated by substituting the heat kernel coefficients given in the second column
of table 4.2 according to (3.2.27). The second trace is evaluated via the off-diagonal
heat kernel. We first combine the two exponentials using the Baker-Campbell-Hausdorff
formula

Tr1

[
Dµe−t∆Dνe−s∆

]
=
∞∑
n=0

1
n! (−t)n Tr1

[
[Dµ,∆]nDνe−(s+t)∆

]

=
∞∑
n=0

1
n! (−t)n T (n)

1 ,

(4.2.15)

where [Dµ,∆]n denote the n-fold commutators defined in (B.1). The commutators
appearing on the r.h.s. ensure that (4.2.15) constitutes a curvature expansion. All terms
contributing to the basis (A.1.2) are generated by the first five terms of this expansion,
so that we truncate (4.2.15) at n = 4. Substituting the commutators (B.1.2), it is a
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straightforward application of the off-diagonal heat kernel to evaluate the T (n)
1 , yielding

T
(0)
1 = 1

(4π(s+ t))d/2
∫
ddx
√
g

[
−d

2(s+t) −
4+d
12 R

1 + (s+ t)
(
− d+8

144R
2
1 + d−34

360 R
2
2 − d−4

360R
2
3

)

+ (s+ t)2

24

(
− 5d+12

140 R
3
1 − d+36

70 R
3
2 − d+12

108 R
3
3 + d−30

90 R
3
4 + 16d+345

945 R
3
5

− 4d+207
315 R

3
6 − d

90R
3
7 − d−174

630 R
3
8 − 17d−102

3780 R
3
9 + d−6

135R
3
10

)]
,

T
(1)
1 =− 1

(4π(s+ t))d/2
∫
ddx
√
g

[
1

2(s+t)R
1 + 1

12R
2
1 + 1

3R
2
2

+ s+ t

24

(
− 6

5R
3
1 + 8

5R
3
2 + 1

6R
3
3 + 19

15R
3
4 − 22

15R
3
5 + 56

15R
3
6 + 1

15R
3
7 − 4

15R
3
8

)]
,

T
(2)
1 = 1

(4π(s+ t))d/2
∫
ddx
√
g

[
− 1

2(s+t)R
2
2 + 1

12

(
3R3

1 −R3
4 + 2R3

5 − 6R3
6

)]
,

T
(3)
1 = 1

(4π)d/2(s+ t)d/2+1

∫
ddx
√
g

[
1
2R

3
1 + 1

2R
3
2 + 1

2R
3
5 −R3

6

]
,

T
(4)
1 = 1

(4π)d/2(s+ t)d/2+2

∫
ddx
√
g

[
1
2R

3
1 +R3

2 +R3
5 −R3

6

]
.

(4.2.16)

After computing the auxiliary t-integration and adding the vector-trace contribution in
(4.2.14), the final result for S(0)

1T is found. Together with the following partial results, this
is written in the general form

S
(n)
1T = 1

(4πs)d/2
∫
ddx
√
g

[
c0 + s c1R + s2

3∑
i=1

c2
i R2

i + s3
10∑
i=1

c3
i R3

i

]
, (4.2.17)

with the d-dependent coefficients explicitly given in the second column of table 4.1.
In S(1)

1T appears the lowest order commutator, evaluating to
[
∆,ΠTµ

ν
]
vν =

(
ΠLµ

αRα
ν −Rµ

αΠLα
ν
)
vν . (4.2.18)

With the orthogonality of the projectors ΠT · ΠL = 0, this trace becomes

S
(1)
1T = −Tr1

[
ΠTµ

αRα
β ΠLβ

νe−s∆
]
. (4.2.19)

In order to cast this expression into standard form, we express the projection operators
via (4.1.29) and (4.1.30), where the inverse Laplacians appear to the very left and very
right of the commutator insertions. This leads to

S
(1)
1T ' Tr1

[(
δµ
α + 1

∆

3∑
n=0

(
(−∆)−n [Dµ , ∆ ]n

)
Dα

)
Rα

βDβ

( 3∑
n=0

[Dν , ∆ ]n
1

∆n

)
1
∆e−s∆

]
,

(4.2.20)
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S
(0)
1T S

(1)
1T S

(2)
1T

c0 d− 1 0 0

c1 d
6 −

d+6
6d = (d−3)(d+2)

6d 0 0

c2
1

d
72 −

1
72
d+10
d−2 = (d−5)(d+2)

72(d−2) − 1
d(d+2) − 1

d(d+2)

c2
2 − d

180 + d2−32d+180
180d(d−2) = −d3−3d2+32d−180

180d(d−2)
1

(d+2)
1

(d+2)

c2
3

d−1
180 −

1
12 = d−16

180 0 0

c3
1

d
336 + 1

120 −
5d2+32d+464

1680(d−4)(d+2) − d3+4d2+24d−24
6(d−2)d(d+2)(d+4)

d2−14d+8
2(d−2)d(d+2)(d+4)

c3
2

d
840 −

1
30 −

d3+40d2−64d−1120
840(d−4)d(d+2)

d2+4d−24
6(d−2)d(d+4) − 4

(d−2)(d+2)(d+4)

c3
3

d
1296 −

d+14
1296(d−4) − 1

6(d−2)d − d2+12d−4
6(d−2)d(d+2)(d+4)

c3
4 − d

1080 + d2−30d+236
1080(d−4)(d−2)

d2+d+10
6(d−2)d(d+2)

d3+14d2−4d+40
6(d−2)d(d+2)(d+4)

c3
5 − 4d

2835 + 1
30 + 16d4+377d3−1954d2+2272d−30240

11340(d−4)(d−2)d(d+2) − d2+8d+32
6d(d+2)(d+4) − d2−2d+16

3d(d+2)(d+4)

c3
6

d
945 −

1
30 −

4d2+223d−1460
3780(d−4)(d+2)

d3−12d−32
3(d−2)d(d+2)(d+4) − 4(d2+8)

3(d−2)d(d+2)(d+4)

c3
7

d
1080 −

1
72 −

d+2
1080(d−4) 0 0

c3
8

d
7560 −

1
90 −

d−172
7560(d−4) 0 0

c3
9

17(d−1)
45360 −

1
180 0 0

c3
10 − d−1

1620 + 1
90 0 0

Table 4.1.: Summary of the traced heat kernel coefficients of the partial traces S(n)
1T entering

the computation (4.2.7). These coefficients appear in the general form (4.2.17),
with the basis monomials defined in (A.1.2).

where the series of higher-order commutators can be terminated at order n = 3, since
(4.2.19) already contains one explicit power of the curvature. Substituting the explicit
expressions for the commutators (B.1.2) and (B.1.5), the sub-traces are evaluated with
Mathematica. The final result for S(1)

1T in the form (4.2.17) is given with the coefficients
in the third column of table 4.1.

The S(2)
1T part (4.2.8) decomposes into two traces containing the product of two

single commutators (4.2.18) and the double-commutator [∆, [∆,ΠT]]. The latter can be
constructed recursively from the single commutator (4.2.18). In order to collect all Laplace
operators in a single function one has to take into account that the curvature tensors are
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not covariantly constant and thus do not commute with the (inverse) Laplacians. The
corresponding commutation relation is given by

[
∆−1, Rµν

]
vν =

(
2Rµν;αD

α − (∆Rµν) + 4Rµν;αβD
βDα∆−1

)
∆−2vν +O(D3R) , (4.2.21)

which captures all terms contributing to the required order. With this formula, the explicit
results are found via Mathematica and read

Tr1 ΠT [ ∆ , ΠT ]2 e−s∆ =

1
(4πs)d/2

∫
ddx
√
g

[
1

d(d+2)

(
R2

1 − dR2
2

)
+ s

(d−2)d(d+2)

[
d3+d2+6d−8

2(d+4) R3
1 −

2(d2−8)
d+4 R

3
2 + d2+20

6(d+4)R
3
3

− d3−4d2+32d+40
6(d+4) R3

4 + d3+8d2−4d−32
3(d+4) R3

5 − 3d3+2d2−24d−32
3(d+4) R3

6

]]
,

(4.2.22)

and

Tr1 ΠT [ ∆ , [ ∆ , ΠT ]] e−s∆ =

1
(4πs)d/2

∫
ddx
√
g

[
− 2

d(d+2)

(
R2

1 − dR2
2

)
− s

6(d−2)d(d+2)

[
3(d3+20d−16)

d+4 R3
1 −

12(d−4)(d+2)
d+4 R3

2 + 2(d+ 2)R3
3

− 2(d2 + d+ 10)R3
4 + 4(d−2)(d2+4d+16)

d+4 R3
5 −

2(d−4)(3d2+10d+16)
d+4 R3

6

]]
.

(4.2.23)

The final result for S(2)
1T is the sum of (4.2.22) and (4.2.23) and is in terms of the curvature

expansion (4.2.17) given by the coefficients in the fourth column of table 4.1.

The contributions of S(3)
1T and S(4)

1T can be computed along the same lines and are
conveniently presented in terms of the abbreviations

C1 ≡
1

(4πs)d/2
1

d(d+ 2)(d+ 4)

∫
ddx
√
g
[
d(d− 1)R3

1 + (d2 − 8)R3
2 − 2R3

3

+ 3dR3
4 + d(d+ 4)R3

5 − 2d(d+ 2)R3
6

]
,

C2 ≡
1

(4πs)d/2
1

(d+ 2)(d+ 4)

∫
ddx
√
g
[
(d− 6)R3

1 + 2(d+ 2)R3
2 + 2dR3

5 − 2dR3
6

]
.

(4.2.24)
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The sub-traces appearing in S(3)
1T are given by

2 Tr1

[
ΠT [ ∆ , ΠT ] [ ∆ , [ ∆ , ΠT ]] e−s∆

]
= 2 C1 ,

Tr1

[
ΠT [ ∆ , [ ∆ , ΠT ]] [ ∆ , ΠT ] e−s∆

]
= − C1 ,

Tr1

[
ΠT [ ∆ , [ ∆ , [ ∆ , ΠT ]]] e−s∆

]
= − C2 ,

Tr1

[
ΠT [ ∆ , ΠT ]3 e−s∆

]
= 0 ,

(4.2.25)

and for the traces contributing to S(4)
1T we find

3 Tr1

[
ΠT [ ∆ , ΠT ] [ ∆ , [ ∆ , [ ∆ , ΠT ]]] e−s∆

]
= 3 s−1 C2 ,

3 Tr1

[
ΠT [ ∆ , [ ∆ , ΠT ]]2 e−s∆

]
= − 3 s−1 C2 ,

Tr1

[
ΠT [ ∆ , [ ∆ , [ ∆ , ΠT ]]] [ ∆ , ΠT ] e−s∆

]
= s−1 C2 ,

Tr1

[
ΠT [∆ , [ ∆ , [ ∆ , [ ∆ , ΠT ]]]] e−s∆

]
= 2 s−1 C2 .

(4.2.26)

Substituting these results in (4.2.8) yields

S
(3)
1T = C1 − C2 , (4.2.27)

and

S
(4)
1T = 3 s−1 C2 . (4.2.28)

The final result for S1T defined in (4.2.5) is obtained by substituting the intermediate
results given in table 4.1, (4.2.27) and (4.2.28) into the expansion (4.2.7). In terms of the
basis (A.1.2) it is given as

S1T '
1

(4πs)d/2
∫
ddx
√
g

[
c0 + s c1R + s2

3∑
i=1

c2
i R2

i + s3
10∑
i=1

c3
i R3

i

]
,

with

c0 = d− 1 , c1 = (d−3)(d+2)
6d ,

c2
1 = d4−d3−16d2+16d−72

72(d−2)d(d+2) , c2
2 = −d4−d3+116d2−296d−360

180(d−2)d(d+2) , c2
3 = d−16

180 ,

c3
i=1,..,8 ∼ 1

d−4 , c3
9 = 17d−269

45360 , c3
10 = −d−19

1620 ,

(4.2.29)

with all coefficients cni to curvature order R3 defined in the last column of table 4.2 at the
end of this section. These coefficients for the transverse vector trace do not decompose
into the difference of those of the vector and the scalar trace, as one might expect by
counting the degrees of freedom. This is due to the interaction between transverse and
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longitudinal modes. Instead, it is possible to write any coefficient of the transverse trace
as

cni,1T = cni,1 − cni,0 +Q1 (d) /Q2 (d) , (4.2.30)

with the aforementioned difference, modulo a correction term where Q2 (d) is a polynomial
of one degree higher than Q1 (d). This means that, in the limit d → ∞, the partial
decoupling of degrees of freedom becomes exact, a situation that is reminiscent of many
mean field computations at large d.

As expected from the t-integrals (4.2.11), which are finite for sufficiently large d
only, the S1T trace has poles in even spacetime dimensions, with coefficients at order
Rn diverging for n > d/2. Notably, all results can be safely continued to any odd
dimensionality, since for odd d, the gamma functions in (4.2.11) never become singular.

In the context of these dimensional poles, it is interesting to consider Einstein spaces,
reviewed in appendix A.2. These constitute a special class of Riemannian manifolds where
the projection operators (4.1.25) commute with the unmodified Laplacian ∆, so that the
replacement with ∆̃ (4.2.4) is unnecessary. The corresponding heat kernel coefficients are
readily obtained from the general result (4.2.29), taking the geometrical identities (A.2.4)
into account. This defines the trace in terms of the Einstein space basis Eni as

S1T

∣∣∣∣
ES

= 1
(4πs)d/2

∫
ddx
√
g
{

(d− 1) + (d−3)(d+2)
6d s E1

+ s2
(

5d3−7d2−58d−180
360d2 E2

1 + d−16
180 E

2
2

)
+ s3

(
35d4−77d3−604d2−3512d−7560

45360d3 E3
1 + 7d2−111d−127

7560d E3
2 + 17d−269

45360 E
3
3 − d−19

1620 E
3
4

)}
.

(4.2.31)

Remarkably, in the Einstein space limit, the heat kernel coefficients in (4.2.29) combine
in such a way that all the singularities in even dimensionality d cancel, rendering all
coefficients finite in any dimension d > 0. For this reason, it is illustrative to re-derive
(4.2.31) by using the Einstein condition from the beginning. Since [∆,ΠT]|ES = 0, all S(n)

1T

for n ≥ 1 in the expansion (4.2.7) vanish and

S1T

∣∣∣∣
ES

= S
(0)
1T (4.2.32)

holds exactly. Exploiting further that on an Einstein space

Dα f
(
∆
)
φ = f

(
∆ + R

d

)
Dαφ , Dα f

(
∆
)
vα = f

(
∆− R

d

)
Dαv

α , (4.2.33)
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for a general function of the Laplacian, the trace S(0)
1T (4.2.14) can directly be cast into

the form

S1T

∣∣∣∣
ES

= Tr1

[
δνµ e−s∆

]
+
∫ ∞

0
Tr1

[
DµD

νe−(s+t)∆
]
e−t

R
d dt . (4.2.34)

The resulting traces are easily evaluated with the off-diagonal heat kernel (3.3.7), con-
firming the result (4.2.31). Here the Ricci scalar in the exponential corresponds to a
summation of the multi-commutators in (4.2.15). Notably, this factor leads to an expo-
nential suppression of the integrand for large values of t, rendering the auxiliary integrals
finite. Thus it is this exponential that ensures that the heat kernel coefficients in S1T

∣∣∣
ES

are free from dimensional poles to all orders in the curvature. Moreover, the fact that
the general computation restricted to the Einstein space limit and the Einstein space
computation lead to the same finite result indicates that the origin of the dimensional
poles is not due to the use of the early-time expansion of the off-diagonal heat kernel. We
will elaborate this point further at the end of this section.

Heat Kernel Coefficients for Transverse-Traceless Tensor Fields

A similar computation of heat traces for 2-tensors constrained to the transverse-traceless
subspace by the projector Π2T (4.1.41) is significantly more involved. Using the insights
we gained from the transverse vector case, we can estimate that dimensional poles will
appear here because of the non-locality introduced by the projectors. These poles will
however not disappear on Einstein spaces, because instead [∆,Π2T

µν
ρσ]hρσ = 0 holds only

on a maximally symmetric manifold. Due to the increase in computational effort and the
limited usefulness of such heat kernel coefficients, we will resort to the computation of
the trace

S2T = Tr2
[
Π2T e−s∆

]
. (4.2.35)

As an approximation to the fully projected heat kernel, the use of the ordinary Laplacian
operator in the exponential, as opposed to Π2T∆Π2T, corresponds to the full propagator of
unconstrained fields, with merely the trace being constrained to the modes of transverse-
traceless field configurations. Following the estimate for the integrals (4.2.11), this
expression will give finite results up to order R2 in d = 4 dimensions.

Using the definition of the projector (4.1.41) we find

S2T = Tr2
[
e−s∆

]
− Tr2

[
e−s∆Π2L

]
− Tr2

[
e−s∆Πtr

]
=:S(2)

2T + S
(1)
2T + S

(0)
2T .

(4.2.36)
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Both S(2)
2T and S(0)

2T reduce to standard heat kernel formulas, noting that

S
(0)
2T = −Tr2

[
e−s∆ Πtr

]
= −Tr0

[
e−s∆

]
, (4.2.37)

so their contribution is directly given by (3.2.27). In order to obtain S(1)
2T we substitute

Π2L, (4.1.38), and use the cyclicity of the trace to write

S
(1)
2T = Tr1

[
(−Dγ) [12 − Πtr]γβ

µνe−s∆ [P1]αµν
[
P−1

2

]β′
α

]
= Tr1

[
e−s∆

]
+ sTr1

[
e−s∆ [Dγ,∆] [P1]αγβ

[
P−1

2

]β′
α

]
− s2

2 Tr1

[
e−s∆ [[Dγ,∆],∆] [P1]αγβ

[
P−1

2

]β′
α

]
+O(R3)

=: T (0)
2 + T

(1)
2 + T

(2)
2 +O(R3) .

(4.2.38)

To arrive at the second line, we exploited the orthogonality of the projectors Πtr · P1 = 0,
used the commutator expansion (B.2.2) and −Dγ[P1]αγβ[P−1

2 ]β′α = δβ
′

β , following from
(4.1.39). Subsequently, the commutators (B.1.7) and the perturbative inverse P−1

2 (4.1.45),
can be substituted explicitly. After expanding the products, the full trace is built from
linear combination of basis integrals, which can be evaluated with the off-diagonal heat
kernel. These are summarized here for d = 4 to second order in the curvature:

sTr0
[

1
∆e−s∆R2

]
= 1

(4π)2

∫
d4x
√
gR2

sTr0
[

1
∆e−s∆RµνDµDν

]
= 1

(4π)2

∫
d4x
√
g
[
− 1

4sR−
1
12R

2 + 1
6RµνR

µν
]

sTr0
[

1
∆2 e−s∆RµαRα

νDµDν

]
= 1

(4π)2

∫
d4x
√
g
[
−1

4R
µνRµν

]
sTr0

[
1

∆2 e−s∆RRµνDµDν

]
= 1

(4π)2

∫
d4x
√
g
[
−1

4R
2
]

sTr0
[

1
∆3 e−s∆RµνRαβDµDνDαDβ

]
= 1

(4π)2

∫
d4x
√
g
[

1
24R

2 + 1
12R

µνRµν

]
sTr0

[
1

∆2 e−s∆RαβR
αµνβDµDν

]
= 1

(4π)2

∫
d4x
√
g
[

1
4R

µνRµν

]

In the evaluation of these operator traces, it is crucial to evaluate any commutators before
the open indices may be traced, since β′ must thereby be treated as contracted with a
vector φβ′ to the right of the expression. Following this route a lengthy but straightforward
computation yields

T
(1)
2 = 1

(4πs)2

∫
d4x
√
g
[

5
3sR + 19

27s
2R2 − 22

27s
2RµνR

µν − 4
3s

2RµνρσR
µνρσ

]
,

T
(2)
2 = 1

(4πs)2

∫
d4x
√
g
[

17
18s

2RµνR
µν + 2

3s
2RµνρσR

µνρσ
]
,

(4.2.39)
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which together with the standard vector-trace T (0)
2 combine to

S
(1)
2T = 1

(4πs)2

∫
d4x
√
g
[
4 + 7

3sR + 41
54s

2R2 + 29
270s

2RµνR
µν − 131

180s
2RµνρσR

µνρσ
]
.

(4.2.40)
With all partial results given, the heat kernel coefficients for the 2T-trace (4.2.36) in d = 4
are defined by the expansion

S2T = 1
(4πs)2

∫
d4x
√
g
[
5− 5

6 sR−
137
216 s

2R2 − 17
108 s

2RµνR
µν + 5

18 s
2RµνρσR

µνρσ
]
,

(4.2.41)
up to terms of order R3.

Zero Modes and Spherical Background Manifolds

The heat kernel coefficients for constrained vector and tensor fields (4.2.29) and (4.2.41)
still contain zero modes of the corresponding decompositions. For the case of a transverse
vector, the decomposition (4.1.23) involves the derivative of a scalar field, whose constant
mode therefore does not contribute therein. In a split of the transverse vector trace into
unconstrained vector and scalar trace

Tr1T e−s∆ = Tr1 e−s∆ + Tr′1 Dµ∆−1Dν e−s∆

= Tr1 e−s∆ − Tr′0 e−s∆+sR
d

= Tr1 e−s∆ − Tr0 e−s∆+sR
d + esRd ,

(4.2.42)

according to the projection operator (4.1.25), a prime is used to indicate summation over
non-constant modes only. In the second step, use has been made of the identity (4.2.33)
on Einstein spaces. If a more general geometry is required, the commutator [Dν , e−s∆]
can always be worked out by expansion. Finally in the last step, the contribution of a
constant scalar mode was explicitly subtracted from the scalar trace Tr′0 following

Tr′0 f(∆) = Tr0 f(∆)− f(0) , (4.2.43)

to compensate for the overcounting in Tr0. In order to find the zero mode correction
of the heat kernel coefficients stemming from this subtraction, it has to be written in
the form of a spacetime integration. Since this correction is independent of the volume
element, it has to contribute to a topological term, given as the Euler-character χE of the
manifold, as reviewed in appendix A.3. Inserting unity in the form of 1 = χE/χE, the
zero mode contribution in d = 4 can be written as

esRd = 1
(4π)2

1
2χE

∫
d4x
√
g
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
esRd . (4.2.44)
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The heat kernel coefficients of S(0)
1T in table 4.1 therefore receive the corrections in d = 4

proportional to the inverse Euler character

tr1TA0 = 3 , tr1TA1 = 1
4R ,

tr1TA2 =
(
− 1

24 + 1
2χE

)
R2 +

(
1
40 −

2
χE

)
RµνR

µν −
(

1
15 −

1
2χE

)
RµνρσR

µνρσ ,
(4.2.45)

starting at order R2.
The heat kernel coefficients for transverse vectors on a spherical manifold are

reproduced form the Einstein space result (4.2.31), using the definitions of a sphere
(A.2.6). Since S4 is a maximally symmetric space, all its curvature tensors can be
expressed in terms of the metric and the covariantly constant Ricci scalar. This way we
obtain

S1T

∣∣∣∣
Sphere

= 1
(4πs)d/2

∫
ddx
√
g
{

(d− 1) + (d−3)(d+2)
6d sR + 5d4−12d3−47d2−186d+180

360d2(d−1) s2R2

+ 35d6−147d5−331d4−3825d3−676d2+10992d−7560
45360d3(d−1)2 s3R3

}
,

(4.2.46)

which for d = 4 becomes

S1T

∣∣∣∣
Sphere,d=4

= 1
(4πs)2

∫
d4x
√
g
{

3 + 1
4sR−

67
1440s

2R2 − 4321
362880s

3R3
}
. (4.2.47)

This trace still contains the contribution of the constant scalar mode, which does not
contribute to the transverse decomposition (4.1.23). In order to obtain the final result,
we subtract this part as indicated in (4.2.42) with (4.2.44) and χE(S4) = 2, computed
in (A.3.10). Taking the correction term into account, the heat kernel coefficients for
transversal vectors on the 4-sphere become

tr1TA0 = 3 , tr1TA1 = 1
4 R ,

tr1TA2 = − 7
1440 R

2 , tr1TA3 = − 541
362880 R

3 .
(4.2.48)

Notably, this result is in complete agreement with previous computations [45,57,58].

Similarly, the minimal transverse-traceless decomposition for tensor fields (4.1.34)
admits zero modes which have to be subtracted from the heat kernel coefficients (4.2.41).
In this case, vector fields satisfying the conformal Killing equation

Dµξν +Dνξµ − 1
2gµνD

αξα = 0 , (4.2.49)

will not contribute to the tensor field, and therefore have to be excluded from the operator
traces. The number of modes to be excluded is given by the number of Killing vectors
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nKV (satisfying Dµξν + Dνξµ = 0) plus the number of conformal Killing vectors nCKV

(which solve (4.2.49) with DαξCKV
α 6= 0). Following the discussion of the zero modes

for the transverse vector case (4.2.42), these modes give rise to corrections expressed as
the Euler character χE. This extra contribution is absent in the generic case where the
manifold does not posses particular symmetries. For the general case of a manifold with
N = nKV + nCKV, the heat kernel coefficients on the space of transverse traceless tensors
are accordingly given by

tr2TA0 = 5 , tr2TA1 = −5
6R ,

tr2TA2 =
(
−137

216 + N
2χE

)
R2 −

(
17
108 + 2N

χE

)
RµνR

µν +
(

5
18 + N

2χE

)
RµνρσR

µνρσ .
(4.2.50)

Finally, we reproduce the results for a spherical background geometry [45,57,58].
The symmetries of the 4-sphere admit nKV = 10 Killing- and nCKV = 5 conformal Killing
vectors. Using the relations (A.2.5) defining the sphere, together with χE = 2 and N = 15,
one obtains

tr2TA0 = 5 , tr2TA1 = −5
6 R , tr2TA2 = − 1

432 R
2 , (4.2.51)

from the general result (4.2.50). Thus we establish that the projection method employed
here recovers the heat kernel coefficients, found via other methods.

Regularization of the Poles

The infrared divergences of the auxiliary integrals (4.2.11) appear in the heat kernel
expansion of S1T in the form of poles in even dimensions, as shown in table 4.2. The
first divergence in d = 4 spacetime dimensions appears at order R3, neglecting the
boundary term ∆R. Notably, however, the coefficients of R3

9 and R3
10 are finite for any

dimensionality.
Remarkably, the occurrence of the singularities is not related to the use of the

early-time expansion of the heat kernel employed in (4.2.7). Based on power-counting
arguments, we estimated that divergences are present also if a non-local expansion (3.1.19)
of the projected trace is employed. This estimate leads to the same divergence structure
in the form of dimensional poles, as that indicated by the results reported in table 4.2.
We take this as a strong indication that our poles are not an artifact of the expansion,
but rather a genuine feature of the projected traces.

Any attempt to regularize (4.2.29) has to be implemented with care in order not
to affect the unambiguous result for Einstein spaces, since in this limit the poles cancel
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with a factor (d− 4) forming in the numerator. If no pole is present, these contributions
would otherwise go to zero. In order to take the limit d→ 4, we expand in ε = d− 4 and
make use of the formula

sn−d/2
f(d)
d− 4 = sn−2

(
f ′(4) + f(4)

(
1
ε
− 1

2 log
(
s
s0

)))
+O(ε)

= sn−2
(
f ′(4)− 1

2f(4) log
(
s
s′0

))
+O(ε) ,

(4.2.52)

where the 1
ε
-pole is absorbed into a (infinite) redefinition of the scale s′0 = s0 e2/ε. In this

way s′0 plays the role of an infrared cutoff and allows us to obtain the limit as

S1T

∣∣∣
d→4

= 1
(4πs)2

∫
d4+εx

√
g

{
3 + 1

4 sR + s2
(
− 1

48 R
2 − 7

120 R
2
2 − 1

15 R
2
3

)
+ s3

((
1363
20160 + 1

30 log
(
s
s′0

))
R3

1 −
(

67
2016 + 1

60 log
(
s
s′0

))
R3

2

+
(

41
3456 + 1

144 log
(
s
s′0

))
R3

3 −
(

263
2880 + 11

360 log
(
s
s′0

))
R3

4

+
(

233
1512 + 1

45 log
(
s
s′0

))
R3

5 −
(

397
5040 + 1

90 log
(
s
s′0

))
R3

6

−
(

1
90 −

1
360 log

(
s
s′0

))
R3

7 −
(

3
280 + 1

90 log
(
s
s′0

))
R3

8

− 67
15120 R

3
9 + 1

108 R
3
10

)}
.

(4.2.53)

The appearance of the logarithmic terms is an immediate consequence of the dimensional
regularization employed. The Seeley-deWitt expansion is still valid after dimensional
regularization, in the sense that the singular log(s) terms are always multiplied by a
power of s, and so maintain a continuous s→ 0 limit. Using this regularization scheme,
in principle no information is lost with a finite choice of s′0 in (4.2.53). In fact, it is
still possible to recover the correct Einstein space limit from (4.2.53), provided that the
explicit dependence of s′0 on ε = d− 4 is taken into account, so that it can combine with
the d-dependence of the Ricci- and scalar curvature tensors in their Einstein space limit.

To demonstrate that the origin of the divergence lies in the low momentum limit
of the spectrum of the inverse Laplacian in the projectors (4.1.25), we consider a one-
parameter family of modified operators

Π̌T
µν = gµν + aDµ

1
∆Dν , (4.2.54)

that are idempotent for a = 1 only. With this definition the modified projected Laplacian
can be expanded in the form

∆̌µν = (Π̌T ∆ Π̌T)µν = ∆gµν + a(2− a)DµDν +O
(
R,∆−1

)
, (4.2.55)
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where all the pseudo-differential contributions due to the commutators of the inverse
Laplacian with the covariant derivatives are schematically contained in O(R,∆−1). At
zeroth order in the curvature, the heat kernel of ∆̌ is singular at a = 1, due to the
degeneracy of the operator [92, 116]. Since for other values of a, Π̌T is not a projector
any more, we can exclude the degeneracy, that is specifically its infinite number of zero
eigenvalues corresponding to the volume of the subspace of longitudinal modes, as source of
the divergence. Tracking this modification in the traces (4.2.8) reveals a simple polynomial
dependence of (4.2.29) on the parameter a. Therefore a discontinuity for the special value
a = 1 is not present. An explicit calculation in fact shows that the dimensional poles
vanish only for a = 0, reproducing the heat kernel of the standard Laplacian.

Alternatively, we can remove the zero eigenvalue from the spectrum of the Laplacian
specifically by shifting it with an infrared scale m2 > 0, defining the operator

ΠT,m2

µν = gµν +Dµ

(
∆ +m2

)−1
Dν . (4.2.56)

The scale m2 can be chosen arbitrarily small, suppressing the low momentum modes while
leaving the high momentum spectrum, essentially, unaltered. Using this modified operator
in place of the projectors in (4.2.5), the exponentiation via (4.2.9) would be done with the
regulated inverse Laplacian (∆+m2)−1. This accounts for an additional regularizing factor
e−tm2 , which renders the modification of the integrals (4.2.11) convergent at any order of
the curvature. We conclude that the long range (infrared) modes of the pseudo-differential
projection operators cause the breakdown of the heat kernel expansion (4.2.29). This
situation is analogue to the case of a scalar field on curved spacetime, whose propagator
can be defined via the heat kernel in a local expansion only if it is massive (or otherwise
IR regulated).

For practical purposes, it is conceivable to use a modified operator like (4.2.56), if
m2 can be identified with an infrared scale already present in a particular problem. For
example in the context of the renormalization group, the identification m2 = k2 can be
used. In general however, such a procedure has the disadvantages that the limit m2 → 0
is discontinuous and arbitrary powers of the dimensionless combination (sm2) will occur
in heat kernel traces. Instead, we suggest to follow (4.2.52) and to introduce an infrared
scale in a purely dimensionally regulated setup.
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scalar [0] vector [1] symmetric tensor [2] transverse vector [1T ]
c0 1 d d2 d1T

c1 1
6

d
6

d2
6

d1T
6 −

1
d

c2
1

1
72

d
72

d2
72

d1T
72 −

d2−d+6
6(d−2)d(2+d)

c2
2 − 1

180 − d
180 − d2

180 −d1T
180 −

2d2−5d−6
3(d−2)d(2+d)

c2
3

1
180

d
180 −

1
12

d2
180 −

d+2
12

d1T
180 −

1
12

c3
1

1
336

d
336 + 1

120
d2
336 + d+2

120
d1T
336 + 1

120 + 8d4−73d3+208d2−428d+240
30(d−4)(d−2)d(d+2)(d+4)

c3
2

1
840

d
840 −

1
30

d2
840 −

d+2
30

d1T
840 −

1
30 + 2d4−17d3+42d2+88d−320

10(d−4)(d−2)d(d+2)(d+4)

c3
3

1
1296

d
1296

d2
1296

d1T
1296 −

d4−2d3−4d2+8d+288
72(d−4)(d−2)d(d+2)(d+4)

c3
4 − 1

1080 − d
1080 − d2

1080 − d1T
1080 −

19d3−82d2+148d−1200
180(d−4)(d−2)d(d+4)

c3
5 − 4

2835 − 4d
2835 + 1

30 − 4d2
2835 + d+2

30 −4d1T
2835 + 1

30 + 41d4−136d3−44d2−896d+960
90(d−4)(d−2)d(d+2)(d+4)

c3
6

1
945

d
945 −

1
30

d2
945 −

d+2
30

d1T
945 −

1
30 −

29d4−139d3−86d2+376d+960
45(d−4)(d−2)d(d+2)(d+4)

c3
7

1
1080

d
1080 −

1
72

d2
1080 −

d+2
72

d1T
1080 −

1
72 −

1
180(d−4)

c3
8

1
7560

d
7560 −

1
90

d2
7560 −

d+2
90

d1T
7560 −

1
90 + 1

45(d−4)

c3
9

17
45360

17d
45360 −

1
180

17d2
45360 −

d+2
180

17d1T
45360 −

1
180

c3
10 − 1

1620 − d
1620 + 1

90 − d2
1620 + d+2

90 − d1T
1620 + 1

90

Table 4.2.: The traced heat kernel coefficients in the early-time expansion (3.2.27) on the
space of scalars, vectors, symmetric 2-tensors and transversal vectors (1T ),
respectively. The number of components in these field spaces in dependence
of the spacetime dimension are given by d2 = 1

2d(d + 1) and d1T = d − 1,
respectively.

4.3. Algorithmic Solution of the Renormalization Group

Equation

In this section, we analyse the structure of Wetterich-type functional renormalization group
equations (2.3.18), which provide an exact description of the Wilsonian renormalization
group flow, in the presence of gauge symmetries. The prime computational challenge when
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extracting non-perturbative physical information from this equation is the evaluation of
the operator traces appearing on its right hand side. This becomes particularly difficult
in the context of curved spacetime, since in that case the spectra of the differential
operators appearing inside the RG equation are generically unknown. To bypass the
related obstacles, we present here an explicit algorithm to compute approximate solutions
of the exact RG equation in a flexible and systematic way. Its key element is the
algorithmic reduction of the (usually very complicated) operators appearing in the RG
equation to become accessible by the off-diagonal heat kernel expansion, discussed in
chapter 3. This procedure is very general and in particular does not rely on the choice of a
particular background geometry, showing the background independence of the formalism
manifestly. Thus, the algorithm provides access to the β functions, unlocking information
that was previously restricted by the choice of the background as well as gauge fixing
conditions. This procedure can be performed by purely algebraic methods, not requiring
any numerics. The bookkeeping required in a practical computation can be easily handled
by computer algebra software, which provides access to computations which have until
now been out of reach due to technical limitations. Indeed, an automation of the solution
of RG equations is required for increasingly involved problems to be approached in the
future. In previous calculations a number of simplifying choices specifically tuned to
a given problem were preventing the generalization. However when reaching a certain
threshold complication which does not allow for many simplifying assumptions anyway, it
will in fact become the easier route to code an algorithm. This point is reached in gravity
with the attempt of a full curvature squared ansatz, for which a handling of the appearing
tensor structures and huge heat kernel coefficients is manually unfeasible.

The RG equation (2.3.18) for the effective average action Γk[Φ, Φ̄] with background
fields denoted as Φ̄, on which the algorithm is based, takes the form [82]

∂tΓk[Φ, Φ̄] = 1
2STr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
, (4.3.1)

where “STr” was written to indicate a generalized functional trace which includes a minus
sign for the ghost and fermion fields, and a factor two for complex fields. Schematically,
the RG flow ∂tΓk is found in three steps: one has to compute the second variation Γ(2)

k ,
invert the dressed operator (Γ(2)

k +Rk), and finally evaluate the trace. In contrast to the
treatment of purely scalar field theories as demonstrated in (2.3.22), complications arise for
the case of gauge theories. These are mostly related to the fact that the functional Hessian
Γ(2)
k inherits the index structure of the quantum fields and the presence of non-minimal
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differential operators therein.
The following presentation is based on the case of gravity, but we stress that the

algorithm is applicable to other gauge theories like Yang-Mills theory as well.

The Background Field Method

The inclusion of a standard gauge fixing term like (4.1.13) or (4.1.17) would forfeit the
ordinary gauge invariance of the effective action, with the consequence that no simple
organizing principle for the construction of an effective field theory exists. This difficulty
can be lifted with the background field method [117]. The essential idea is to employ a
background field split, which for the example of a metric field reads

gµν = hµν + ḡµν , (4.3.2)

defining a fluctuation field hµν shifted by a classical background field ḡµν , so that a gauge
fixing (w.r.t. h) can be used while a remnant invariance (w.r.t. ḡ) is maintained. To this
end, a full gauge transformation (4.1.15) is accordingly split as

δξgµν = δ̂ξhµν + δ̄ξḡµν , (4.3.3)

where δ̂ξ and δ̄ξ act only on the fluctuation and background fields, respectively. With
these definitions, the invariance of an action functional can be written in the form

δξ S0[gµν ] = (δ̂ξ + δ̄ξ) S0[hµν + ḡµν ] = 0 . (4.3.4)

This relation is now to be replaced by a gauge fixed action S[hµν , ḡµν ], with a priori
arbitrary dependence on the background field. While herein the full gauge symmetry is
lost, one can always retain the background invariance

δ̄ξS[hµν = 0, ḡµν ] = 0 , (4.3.5)

by covariantization of the gauge fixing condition with respect to ḡ. This is easily achieved
by replacing any partial derivatives in the non-invariant terms with a background covariant
derivative, defined as

D̄µvν = ∂µvν − Γ[ḡ]αµνvα , (4.3.6)

and ∆ = −D̄µD̄
µ is accordingly understood in this context.

A corresponding effective action Γ[Φ, Φ̄] following (2.1.23) will assume the form

e−Γ[Φ,Φ̄] =
∫
DX e−S[X+Φ̄]−Sgf [X ,Φ̄]+

∫
x
J(X−Φ)

=
∫
DX e−S[X ]−Sgf [X−Φ̄,Φ̄]+

∫
x
J(X−Φ−Φ̄) ,

(4.3.7)

94



4.3. Algorithmic Solution of the Renormalization Group Equation

which implies that the background field dependence Φ̄ is sufficient to recover the ordinary
effective action as

Γ[Φ = 0, Φ̄] = Γ[Φ]
∣∣∣∣
Φ=Φ̄

. (4.3.8)

Note that the gauge fixing action Sgf [X − Φ̄, Φ̄] carries an unusual dependence on the
average fields in order for this relation to hold [118], however its explicit form is up to
this point left arbitrary.

The background field construction ensures that the gauge fixed functional Γk[Φ, Φ̄],
although not being an observable, can be organized in (background) covariant terms
exclusively. This way, the background independence of the β functions derived with the
RG equation is explicit. Consequently, an ansatz in the form of

Γk[Φ, Φ̄] =
∫
ddx
√
ḡ
∑
i

ui(k)Ii[Φ, Φ̄] (4.3.9)

can be used to determine the the RG flow by projection on the base monomials Ii, in a
straightforward generalization of (2.3.19). However, the most general form of Γk does now
allow for separate dependence on its two arguments, studied for example for bi-metric
gravity in [53,119].

Construction of the Dressed Full Propagator in Field Space

After computing the second variation of an ansatz used for the effective average action Γk
via [

Γ(2)
k

]
ij

(x, y) = 1√
ḡ(x)

√
ḡ(y)

δ2Γk
δΦi(x)δΦj(y) , (4.3.10)

to find the dressed full propagator [Γ(2)
k +Rk]−1, a suitable cutoff Rk has to be constructed

and the resulting operator has to be inverted as a matrix in field space. The main challenge
in this procedure is the occurrence of non-minimal derivative terms in gauge theories,
requiring either a decomposition of the fields or an involved resummation. The general
operator structure appearing in the functional Hessian can be schematically written as

[
Γ(2)
k

]
ij

= Ki(∆) 1ij︸ ︷︷ ︸
kinetic terms

+ Dij(D̄µ)︸ ︷︷ ︸
non−minimal derivatives

+ Vij(R̄, D̄µ)︸ ︷︷ ︸
background vertices

, (4.3.11)

where i, j abbreviate the indices on the underlying field space. Here, Ki(∆) is the diagonal
part of the inverse full propagator of the i-th field, containing only Laplacian operators
constructed from the background metric. The other two pieces group the off-diagonal
operators, with Vij including all vertices that include at least one power of a background
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quantity to expand the inversion in, and with Dij containing all the remaining terms with
derivatives but no such object. Such terms generically appear since the second variation
of Γk inherits the index structure of the fields. The formalism allows to expand in any
structure, here for single metric gravity taken as the curvature tensor of the background
metric R̄, enabling to retain manifestly covariant expressions.

In order for the cutoff term (2.3.3) to modify the inverse propagator Γ(2)
k of every

field in a comparable manner, the cutoff insertion Rk has to be adapted to all kinetic
terms individually. The specific way to adjust the cutoff admits some freedom concerning
the prescription to do so. Following [58], the standard (Type I) regularization would dress
any appearance of the Laplace operator with a cutoff term. In contrast, with the content
of Γ(2)

k classified as in (4.3.11), we suggest to tailor the cutoff to the free kinetic term K
only, leaving out Laplacians in the vertices V . Hence the momentum dependent IR cutoff
is introduced according to the replacement rule

∆ 7→ Pk = ∆ +Rk(∆) , (4.3.12)

with a shape function Rk, applied to K. This corresponds to the mapping Γ(2)
k 7→ Γ(2)

k +Rk,
implying the definition of Rk. As a consequence, the matrix-valued kinetic terms in the
regulated functional Hessian take the form

K(∆) 7→ P(∆) := K(Pk) = K(∆) +Rk(∆) . (4.3.13)

We thus have the definition Rk(∆) = K(Pk)−K(∆) from which the scale derivative ∂tRk

can be determined. This construction guarantees that the IR cutoff Rk is diagonal in
field space. Note that at no step in the derivation of β functions do we have to specify
the explicit form of the shape function Rk.

It is in particular for the D terms that a direct expansion in V is prohibited, since
these can contribute with any power to every order in the curvature. As an example
for a typical non-minimal operator, the gauge fixed free Yang-Mills propagator (4.1.21)
assumes the form

Gµν =
(
gµν∆ +

(
1− 1

α

)
D̄µD̄ν

)−1
, (4.3.14)

with background covariant derivatives. One way to remove these terms which is commonly
used is to choose an adapted gauge fixing, as the Feynman gauge α = 1 in the above
example. This practice does however suffer from technical limitations. For one, the gauge
fixing condition must be restricted to a very particular choice, which does not allow
for a comprehensive study of gauge dependence. Secondly, for effective field theories
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with higher derivative terms, there is not enough freedom in the choice of gauge fixing
to remove all D-type terms. For the example of higher derivative gravity, the leading
four-derivative terms can be removed with conveniently chosen gauges, but two-derivative
terms still remain [120].

A systematic prescription for the elimination of D-type terms is the employment
of a transverse decomposition of vector- or tensor-valued fields according to (4.1.23)
and (4.1.34), respectively [68, 112, 121]. After inserting the projection operators as
11 = ΠT + ΠL for a vector field (4.1.25), and 12 = Π2T + Π2L + Πtr for a symmetric tensor
field (4.1.41), all differential operators can be written as Laplacians acting on the various
subspaces of the field spaces. This is a consequence of the transverse constraints of the
fluctuation fields, by virtue of which derivatives in D contracting with them vanish. The
remaining components of the unconstrained fields carry fewer spacetime indices and thus
force derivatives to contract with each other. Using again the example (4.3.14), with a
transverse decomposition we have

Aµ
[
gµν∆ +

(
1− 1

α

)
D̄µD̄ν

]
Aν = AµT

[
gµν∆

]
AνT + φ

[
D̄µ∆D̄µ +

(
1− 1

α

)
∆2
]
φ , (4.3.15)

which organizes into diagonal terms for arbitrary α.
Following the steps described above, the regulated functional Hessian in field space

assumes the form [
Γ(2) +Rk

]
ij

= Pi(∆) δij + Vij . (4.3.16)

Herein we defined the dressed inverse propagators Pi(∆) = Ki(Pk) = Ki(∆ + Rk(∆)),
and the Vij are understood as suitably projected onto the subspaces spanned by the
fluctuation fields. The inversion of

[
Γ(2)
k +Rk

]
is now well defined as an expansion,

since Vij contains the background quantity organizing the expansion scheme of the RG
equation, ensuring that only a finite number of terms contribute to a specified order. This
scheme resembles a perturbative expansion in the generalized interaction vertices Vij with
propagator insertions P−1, following from (4.3.16) as[

Γ(2) +Rk

]−1

ij
= 1
Pi
δij −

1
Pi
Vij

1
Pj

+ 1
Pi
Vik

1
Pk
Vkj

1
Pj
∓ . . . . (4.3.17)

Note that here only diagonal elements of this block matrix need to be computed, owed to
the fact that the cutoff operator and thus ∂tRk is diagonal in field space by construction,
so no other parts contribute to the trace in the RG equation. The drawback of this
method is that the projection operators implementing the field decompositions appear
in the trace, so that a projected heat kernel expansion, as discussed in the last section,
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has to be used. The heat traces thus constrained to the corresponding subspaces have
diverging coefficients on general backgrounds beyond a certain order in the curvature.
For the computation of results in full generality, a regularization like (4.2.53) is therefore
required.

An alternative method lifting this complication is the full resummation of the non-
minimal operators appearing in Γ(2)

k [69,92]. For this purpose, we write the form of the
regulated Hessian as [

Γ(2) +Rk

]
ij

= Pi(∆) 1ij + Dij + Vij

= Qij + Vij .
(4.3.18)

In contrast to (4.3.16), this expression still contains the non-minimal D terms, and
combines them with the diagonal derivative terms in Q. In order to expand the inverse in
the form of (4.3.17) with Q in place of P , the inverse operator Q−1

ij is required. It can be
found systematically in a curvature expansion as follows. Since a full set of projectors
provides a basis in field space, a general operator decomposes on a flat background into
components acting on each subspace like

Qij =
(∑

a

Πa
ik

)
Qkl

(∑
a

Πa
lj

)
=
∑
a

Πa
ikQa Πa

kj +O(R) .
(4.3.19)

Neglecting all curvatures, such a decomposition is always diagonal, and thus immediately
allows to give the inverse in flat space by

Q−1
ij =

∑
a

Πa
ik

1
Qa

Πa
kj +O(R) . (4.3.20)

In the example of the Yang-Mills propagator (4.3.14), the transversal and longitudinal
parts are easily found to yield

Gρσ =
{(

ΠT
ρµ + ΠL

ρµ
)[
gµν∆ +

(
1− 1

α

)
D̄µD̄ν

](
ΠT

νσ + ΠL
νσ
)}−1

= ΠT
ρ
µ

1
∆ ΠT

µσ + ΠL
ρ
µ
α

∆ ΠL
µσ + O(R) ,

(4.3.21)

where the rewriting D̄µD̄ν = −∆ΠLµν +O(R) has been used. Note that it is by virtue
of this last expression that the use of the projection operators is unproblematic on flat
space, and no decomposition of the fluctuating fields is implied.

The full inverse of an operator Q is then defined as

Q−1 = Q−1
0 + B , (4.3.22)
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with the curvature free part Q−1
0 = ∑

a Πa
ik

1
Qa Πa

kj, and B containing all orders in the
curvatures. To find this correction term, we derive

QQ−1 = Q(Q−1
0 + B) = 1

⇔ QB = 1−QQ−1
0

⇔ B = (Q−1
0 + B)(1−QQ−1

0 )

⇔ B = Q−1
0

∞∑
n=1

(
1−QQ−1

0

)n
.

(4.3.23)

Inserted in the definition (4.3.22), we find the resummation formula

Q−1 = Q−1
0

∞∑
n=0

(
1−QQ−1

0

)n
, (4.3.24)

which expresses the inverse of any operator as the operator itself and its inverse on flat
space. Furthermore, since B = O(R) by definition, we have

W :=
(
1−QQ−1

0

)
∝ R , (4.3.25)

establishing (4.3.24) as an expansion in the curvature. In conclusion, we arrive at the
complete inverted operator, schematically written as

[
Γ(2) +Rk

]−1
= Q−1 ∑

n≥0

[
VQ−1

]n
= Q−1

0
∑
k≥0
Wk

∑
n≥0

[
VQ−1

0
∑
k≥0
Wk

]n
, (4.3.26)

wherein the expansion in V andW to any desired order is explained. Using this technique
to invert the operator structure in (4.3.18) is not limited by any prerequisites. In practice
however, it involves significantly more computational effort than the alternatives discussed
before. The achieved software implementation of the algorithm will therefore remove any
of the technical limitations of previously used solution schemes and make much more
sophisticated computations available.

Decoupling of Physical Degrees of Freedom In Landau Gauge

The BRST construction of the Lagrangian of a gauge theory manages the degrees of
freedom by employing a gauge fixing term, accompanied with the Faddeev-Popov ghost
term (4.1.13). We will demonstrate here that it is possible to separate the contributions
of these gauge variant terms to the running of coupling constants from those of the
physical part of the action. To achieve this, a gauge field A is split into physical and
gauge components A = Ap +Ag such that the gauge invariant action depends on Ap only,
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and Ag carries the full gauge dependence.5 For the important examples of Yang-Mills
theory and gravity, realizations of such splits are given by the transverse (4.1.23) and
transverse-traceless (4.1.34) decompositions, respectively.

A properly chosen gauge fixing condition contains besides background fields Ā only
fluctuations of Ag linearly, here denoted as

F [A, Ā] = F [Ag, Ā] = F [Ā] Ag . (4.3.27)

Accordingly, the gauge fixing term can be written in the form

Sgf = 1
2α

∫
ddx
√
ḡ F [A]2

= 1
2α

∫
ddx
√
ḡ AgGAg ,

(4.3.28)

where the operator G = F † ◦ F depends on background fields only. The choice α = 0 of
the gauge fixing parameter leads to a factorization of the operator traces into a physical
sector, containing only the contribution of gauge invariant field components, and a gauge
dependent sector. The latter captures the contributions of the gauge fixing, ghost and
auxiliary terms, which arise in the application of the field decompositions. This part is
universal and, once computed to sufficient order, it can be reused in many setups as it
does not depend on the choice of the matter part of Γk.

To write the structure of the RG equation in terms of the decomposed gauge fields,
they are arranged in a multiplet Φ = (φ,Ag), where only the gauge dependent part Ag is
separated and φ stands for all other fields occurring in the action, including Ap and the
Faddeev-Popov ghosts. Any of these fields may be further decomposed into component
fields later on. With the gauge part formally separated, the quadratic part of the effective
average action can schematically be written as

Γquad
k = 1

2

∫
ddx
√
ḡ Φ

 L Q

Q̃ 1
α
G+H

Φ , (4.3.29)

where the block structure is chosen such that the lower right is the quadratic part of the
pure gauge component, L denotes the contributions from all remaining fields and Q and
Q̃ are mixed terms. The contribution of the gauge fixing term is written separately to
track the α dependence explicitly. With appropriately chosen cutoff terms Ri, the RG

5See [122] for a more careful discussion of this decomposition for the case of gravity.
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equation becomes

∂tΓk = 1
2STr

 L+RL Q+RQ

Q̃+R
Q̃

1
α

(G+RG) +H +RH


−1

∂t

 RL RQ

R
Q̃

1
α
RG +RH

 .

(4.3.30)
The crucial thing to note here is that a suitably constructed cutoff for the gauge component
RG must come with the same pre-factor, where only the gauge parameter has been written
explicitly. The Landau-deWitt gauge (α = 0) presents a preferred choice for the gauge
parameter since in this case there is no smearing of the gauge condition F [A, Ā] = 0,
and it corresponds to a fixed point value [123]. In contrast to perturbation theory, the
form of the RG equation allows to implement this choice before any actual computations.
However the occurrence of α−1 in the cutoff term does not allow to take the limit α→ 0
right away. Rather, we must keep track of α in linear order to cancel the inverse. The
block matrix inverted by an expansion around α = 0 yields L Q

Q̃ 1
α
G+H


−1

=

 L−1 0
0 0

+ α

 L−1QG−1Q̃L−1 −L−1QG−1

−G−1Q̃L−1 G−1

+O(α2) .

(4.3.31)
This formula requires the invertibility of L and G. We have to keep this in mind for the
explicit construction of the gauge fixing term.

Multiplication with the cutoff matrix and taking the limit α→ 0, we find

∂tΓk = 1
2STr

 (L+RL)−1∂tRL 0
0 (G+RG)−1∂tRG

+O(α)

= 1
2STr

(
(L+RL)−1∂tRL

)
+ 1

2STr
(
(G+RG)−1∂tRG

)
.

(4.3.32)

Thus we see that in the Landau gauge limit, the structure of the RG equation simplifies
such that the mixed terms Q and Q̃ as well as H drop out identically. Furthermore, the
pure gauge components decouple from the remaining fields, and their contribution is
determined by the gauge fixing term only.

Following (4.1.13), a standard ghost term of the form

Γgh
k =

∫
ddx
√
ḡ C̄

δF

δA
δCA

=
∫
ddx
√
ḡ C̄MC

(4.3.33)

is needed in the case of non-abelian gauge theories. Because of the simple quadratic form
of (4.3.33), it is possible to examine the structure of L by separating the ghost fields from
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the remaining ones. Making use of the background independence of the RG equation, we
can set the background ghost field to zero, eliminating the cross-terms stemming from the
ghost-gauge field interaction. This choice does however not allow to identify contributions
to coupling constants of ghost terms, which will be considered in the following chapter.
The block structure becomes

L =

 K 0
0 M

 , (4.3.34)

whereM is the kernel of the ghost action (4.3.33) and K is the still undetermined block
containing all other second variations of the action. Since the cutoff RL must be of the
same form, the resulting trace in the RG equation decomposes as

1
2STr(L+RL)−1∂tRL = 1

2Tr(K +RK)−1∂tRK − Tr(M+RM)−1∂tRM , (4.3.35)

and thus

∂tΓk = 1
2Tr(K +RK)−1∂tRK + 1

2Tr(G+RG)−1∂tRG−Tr(M+RM)−1∂tRM . (4.3.36)

In order to arrive at an entirely self-contained treatment of the gauge degrees of
freedom, it is necessary to include auxiliary fields that account for the correct Jacobian
of the applied field decompositions. For Yang-Mills theory and gravity, these are given
in (4.1.33) and (4.1.53), respectively. The resulting auxiliary contributions are found
by exponentiating the Jacobians, analogous to (4.1.19). Since the projection operators
implementing the transverse field decompositions act always linearly, the resulting terms
will be strictly quadratic in the auxiliary fields and therefore decouple from the other
fields like the ghost sector. Therefore the gauge and ghost as well as the auxiliary terms
decouple from the physical field components in the Landau-deWitt gauge. This result
allows to evaluate their contribution to the RG flow completely independently, leaving
the matter field content of the model arbitrary, and to give universal expressions to be
reused in a broad class of computations.

Evaluating the Traces via Off-diagonal Heat Kernel Expansion

Substituting the expanded regulated propagator
[
Γ(2)
k +Rk

]−1
in the form of (4.3.17) or

(4.3.26) into the r.h.s. of the RG equation (4.3.1) results in a series of individual operator
traces

STr
[(

Γ(2)
k +Rk

)−1
∂tRk

]
=
∑
n

Trjn
[
fn(∆) Ôn

]
, (4.3.37)
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on field spaces distinguished by j ∈ {0, 1, 2, 1T, 2T} for scalar, vector, symmetric 2-tensor,
or transversal vector and tensor fields, respectively. In the absence of non-minimal operator
insertions (Ô = 1), these traces are directly given in terms of the heat kernel coefficients
according to (3.2.27). The evaluation of general traces that contain background insertions
with derivative operators of non-Laplacian form is done with the use of the off-diagonal
heat kernel method, following (3.3.4).

Employing the commutation relations collected in appendix B to arrange the trace
arguments so that all Laplacians are collected in a single function f , the trace can be
written as

Trj
[
f(∆) Ô

]
=
∫ ∞

0
ds f̃(s) 〈xi| e−s∆ Ô |xi〉

=
∫ ∞

0
ds f̃(s) tr ÔxH(x, x′; s) ,

(4.3.38)

performing an (inverse-) Laplace transformation

f(∆) =
∫ ∞

0
ds f̃(s) e−s∆ , (4.3.39)

and using (3.3.5) for a basis of fields |xi〉 in the representation indicated by j. More
explicitly, representing the operator insertion in the form

Ô =
n∑
k=0

Mα1...αk D̄(α1 · · · D̄αk) , (4.3.40)

with the Mα1...αk denoting any tensors depending on the background fields, written
symmetrically without loss of generality, the traces (4.3.38) assume the form

Trj
[
f(∆) Ô

]
=
∫ ∞

0
ds f̃(s) Trj

[
e−s∆

n∑
k=0

Mα1...αk D̄(α1 · · · D̄αk)

]

=
∫
ddx
√
ḡ
∫ ∞

0
ds f̃(s) trj

[
n∑
k=0

Mα1...αk Hα1...αk(s)
]

= 1
(4π)d/2

∫
ddx
√
ḡ
∫ ∞

0
ds f̃(s)

∑
i

ski Ii .

(4.3.41)

In the last line, the base monomials Ii defined in (4.3.9) are used to indicate that the
covariant expressions for the H-tensors, contracted with the tensor part of the insertion
M , identifies the corresponding β functions for the couplings ui. Notably, to any order in
a curvature expansion, the maximum number of derivatives n in the above formulas is
restricted to be twice the number of curvature tensors in the case of a scalar trace, since
each power of the curvature contained in V can at most be contracted with two covariant
derivatives. For traces over vector or 2-tensors fields, the number of required derivatives
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increases by 2 and 4 respectively, since here the V term carries according open indices.
Having all required H-tensors (3.3.9) at our disposal, it is easy to systematically evaluate
the traces (4.3.41).

The final form of the result is most conveniently written in terms of the Mellin-
transforms

Qn[f ] =
∫ ∞

0
ds s−n f̃(s) . (4.3.42)

These functionals can be re-expressed in terms of the original function f as

Qn[f ] = 1
Γ(n)

∫∞
0 dz zn−1 f(z) , n > 0 ,

Q−n[f ] = (−1)n dn
dzn f(z)

∣∣∣∣
z=0

, n ≥ 0 ,
(4.3.43)

for positive or negative powers of s, respectively. For additional bare powers of the
Laplacian inside the argument of these functionals, it follows the property

Qn[∆p f(∆)] = Γ[n+ p]
Γ[n] Qn+p[f(∆)] , n > 0 ∧ p > 0 , (4.3.44)

which is useful for the simplification of the evaluated form of the functional traces.
The solution of the RG equation (4.3.1) can be schematically given with the use of

(4.3.37), (4.3.41) and finally (4.3.42) as

∂tΓk = 1
2STr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
= 1

2
∑
n

Trjn
[
fn(∆) Ôn

]
= 1

2(4π)d/2
∫
ddx
√
ḡ
∑
n

∫ ∞
0

ds f̃n(s)
∑
i

ski,n Ii

= 1
2(4π)d/2

∫
ddx
√
ḡ
∑
n,i

Q−ki,n [fn] Ii .

(4.3.45)

With the scale derivative on the l.h.s. assuming the form (2.3.17), the β functions for
the coupling constants multiplying the interaction monomials Ii are found by projecting
onto these according to (2.3.19). Comparing the last line of (4.3.45) with the initial form
(4.3.9), the scale derivative of the coupling constants is determined and we find

βi = −nigi + k−ni
δ

δIi
∂tΓk

∣∣∣∣
Φ=0

= −nigi + k−ni
1

2(4π)d/2
∑
n

Q−ki,n [fn] .
(4.3.46)

The projection of the RG flow onto the subspace of all possible interaction monomials
spanned by the Ii[Φ, Φ̄] presents a technique to find an approximate solution of the RG
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equation. This is so because in general no self-consistent flow is described in terms of the
monomials present in an ansatz for Γk of the form (4.3.9), in which case any interactions
left out in the projection are said to be truncated. Usually, symmetric truncations are
studied, where the same terms serving as input on the r.h.s. of the RG equation and
thus generating the scale dependence of coupling constants by their fluctuations, are
projected on to find their scaling behaviour. In general though, it is possible to determine
the individual contributions of each possible monomial to the β function associated to
any other. To understand this approach, note that any renormalization group equation
emerges in the general context of quantum field theory and therefore does not transport
any information about a specific class of models, e.g. gravity. The ansatz employed as
initial condition for the RG equation is what serves as a definition of the fluctuating degrees
of freedom and is thus to be seen as an important input in its own respect. As already
pointed out in chapter 2, assuming a specific ansatz as representing an effective field theory,
one can read the resulting scaling behaviour under Wilsonian renormalization group flow
as the generation of effective vertices stemming from the integration of high momentum
modes. Since also those β functions for vertices left out in the projection (4.3.46) would
depend on the coupling constants taken into consideration, the corresponding interaction
is effectively switched on, even with its coupling constants set to zero initially. Any
such higher order interaction being generated dynamically would be in principle given
in terms of the couplings present in the renormalized action functional. However, when
starting from an effective action formulation, this relation is lost, so that any of the proper
vertices are treated as independently running. Back-reactions between the running of
such effective vertices are encoded due to the dependence of all the β functions on all
possible coupling constants. It is in this sense that a neglection of higher interactions
presents an approximation of the full renormalization group behaviour.

Systematically motivated schemes commonly used as organizing principles for a
truncated ansatz (4.3.9) constitute, foremost, the derivative or the vertex expansions.
Herein, one includes all interactions containing up to a maximal number of derivatives,
or up to a certain order of the fluctuation field Φ, respectively. The former approach
allows to access information which is relevant for the UV limit of a model more easily
using a basis of local invariants, while the latter keeps track of the full momentum
dependence in structure functions for each vertex.6 These approximations allow to extract
non-perturbative information from the RG equation (4.3.1), without having to rely on a

6For reviews on the derivative expansion in the case of scalar field theory see [79,124].
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small parameter to expand in.

Depending on the complexity of the ansatz (4.3.9), inverting its second variation
and projecting the operator traces onto these monomials can in practice become quite
involved. In previous works, the task was significantly simplified by the choice of a
particular class of background geometries. While the formalism guarantees that β
functions will not depend on this choice, the major drawback of this method is that
some of them will be rendered indistinguishable on such backgrounds, because generally
different Ii[Φ, Φ̄] become proportional to each other. In this way potentially important
structural information is hidden, for one is really only determining the running of a
certain combination of otherwise independent coupling constants.7 The algorithm for
the approximate solution of the RG equation introduced in this section is able to retain
an entirely unspecified background geometry, lifting these limitations. We stress that
the possibility to study the disentangled contribution of arbitrary tensor structures is
crucial for a comprehensive analysis of the asymptotic safety scenario, in particular to
determine the relevant directions in the RG flow and to engage in an investigation of
the underlying mechanism. This can be done in a structural analysis of the β functions,
commencing in a study of the stability of fixed points to extent the results of [125] for
increasingly sophisticated approximations. Incorporating the projection method (4.3.46),
this algorithm can be used to keep track of the origin and effect of contributions to β
functions in the RG equation, so that more precise conditions on the existence of fixed
points can be elicited in the future.

Summary

In this section we developed a universal algorithm for the approximate solution of the RG
equation (4.3.1). This procedure is applicable irrespective of the underlying degrees of
freedom and is especially tailored to bypass the complications arising due to the presence
of gauge symmetries. The algorithm is summarized by the following explicit steps:

7For the example of gravity, the background metric can be restricted to be that of a spherical manifold,
in which case all curvature monomials reduce to powers of the Ricci scalar. See appendix A for more
details.
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1. expand Γk to quadratic order in the fluctuation fields to find the
second variation (4.3.11);

2. implement the cutoff Rk via replacement rule (4.3.13);
3. invert the dressed propagator [Γ(2)

k +Rk] as a series expansion (4.3.17)
using field decompositions, or performing the resummation (4.3.26);

4. apply commutation rules to collect all derivatives in the trace argu-
ments and write it in the form (4.3.37);

5. evaluate the traces as shown in (4.3.41), inserting the H-tensors via
replacement rule;

6. project the resulting terms onto the monomials Ii to identify the β
functions (4.3.46).

Each one of these steps is entirely algebraic and can thus be handled by computer algebra
software. This is not only convenient but necessary for treating truncations beyond a
certain complexity, since the size of intermediate results grows quickly over what can
be managed manually. The method has already been successfully applied to handle
sophisticated operator traces in [67–69,105]. The algorithm presented here in liaison with
its implementation on a computer brings a multitude of applications into computational
reach.

The algorithm aids practical computations in any expansion scheme of the RG
equation. Notably, the construction does not require any reference to a particular
choice of background geometry, nor does it depend on a specific gauge fixing. This is
one of its main improvements compared to previous computation methods. For the
systematic investigation of the derivative expansion in gravity theories, relaxing this
technical limitation is of central importance. It is due to this generality that makes the
proposed method well suited for the automated processing of the RG equation.
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In this chapter, the renormalization group equation (2.3.18) derived in chapter 2, will
be applied to the case of gravity in first order in the derivative expansion. This so
called Einstein-Hilbert truncation is the most extensively studied approximation of the
gravitational renormalization group flow, see for example [35, 45–47,58]. Here we employ
a metric degree of freedom, which is sufficient to define a quantization of the spacetime
geometry in the absence of fermions. Making use of the algorithm developed in chapter
4, we re-derived the β functions of the single-metric Einstein-Hilbert truncation in a
completely background invariant calculation. Subsequently, this computation will be
extended to include non-trivial contributions stemming from the renormalization of the
Faddeev-Popov ghost fields. The aim of this chapter is to demonstrate the existence of a
non-Gaussian fixed point in a way that can be generalized to improved approximations.
This allows for a more systematic investigation underlying the emergence of the fixed
point in the future.

5.1. The Einstein-Hilbert truncation

Following the discussion of the technical difficulties arising in the solution of the RG
equation for theories with gauge symmetries in the last chapter, we will now demonstrate
the practical application of the algorithm suggested therein. This method allows to
evaluate the RG equation for a completely generic background metric, showing that the
resulting β functions depend on the gauge fixing and cutoff scheme, but are manifestly
independent of the background geometry.1 In this section, we consider the Einstein-Hilbert
truncation in d = 4, treated within the universal algorithm constructed in section 4.3,
to demonstrate the robustness of the gravitational fixed point. To find the β functions
in a background independent way, our construction leaves the background metric ḡµν
unspecified. The only technical assumption is that ḡµν is a (Euclidean) metric on a compact,

1See also [58] for a related discussion.
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closed, and complete manifold, which guarantees that the minimal TT-decomposition and
heat kernel expansion are well defined.2

The ansatz for the gravitational part of the effective average action for in the present
case reads

Γgrav
k [g] = 1

16πGk

∫
d4x
√
g
(
−R + 2Λk

)
, (5.1.1)

with a scale dependent Newton’s constant Gk and cosmological constant Λk. For conve-
nience we introduce the couplings

u0 = Λk

8πGk

, u1 = − 1
16πGk

, (5.1.2)

together with their dimensionless counterparts

g0 = u0k
−4 , g1 = u1k

−2 . (5.1.3)

Attributed with the gauge fixing and ghost actions defined in (4.1.17), the effective average
action for single metric gravity can be written in the form

Γk[h, C̄, C; ḡ] = Γgrav
k [ḡ + h] + Sgf [h, ḡ] + Sghost[h, C̄, C; ḡ] + Saux[h, ḡ]︸ ︷︷ ︸

Suni

. (5.1.4)

As shown in section 4.3, the use of standard gauge fixing terms and field decomposi-
tions leads to recurring terms, which for geometric Landau gauge (α = 0) decouple in the
RG equation, and therefore can be evaluated independently of the specific model under
consideration. Here, the RG equation decomposes in the form (4.3.36), separating the
combined universal addition of the action Suni from the gravitational part, so that we can
write

∂tΓk = Sgrav + Suniv = Sgrav + Sgf + Sgh + Saux . (5.1.5)

Herein Sgrav captures the trace contributions of the physical degrees of freedom in the
gravitational sector, represented as the transverse-traceless tensor hT

µν and the trace h
defined in (4.1.34). By definition Suniv contains all terms that reoccur in any action
for single metric gravity, including gauge fixing, ghost terms and Jacobians for the
implemented decompositions.

2For a computation on a manifold with boundary, see [126].
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5.1. The Einstein-Hilbert truncation

5.1.1. Universal Contributions

The transverse traceless decomposition (4.1.34) employed in the computation of the
gravitational contributions in the RG equation serves as a way to isolate the degrees of
freedom that are subject to a gauge fixing condition in the vector component ξµ. In the
following, we compute the corresponding re-occurring contributions Suniv, arising from the
gauge fixing-, ghost- and auxiliary actions, to leading orders in the background curvature.
The final results are given in d = 4 dimensions for simplicity, but the generalization to
arbitrary d is straightforward.

The Gauge Fixing Contribution

In the case of gravity, the general coordinate transformation invariance is broken with a
standard harmonic gauge fixing condition of the form

Fµ =Dνhµν − βDµh

=D2ξµ + (1− 2
d
)DµD

νξν +Rµ
νξν + (1

d
− β)Dµh ,

(5.1.6)

retaining the background gauge invariance as an intact symmetry.3 If we allow the
trace part h to occur in the gauge fixing condition, the Hessian of Sgf will carry a zero
eigenvalue. To ensure the invertibility of the operator G in (4.3.28) one has to choose
β = 1/d, eliminating h from the gauge term. The explicit form of the gauge fixing term
now reads

Sgf = 1
2α

∫
ddx
√
g gµνFµFν

= 1
2α

∫
ddx
√
g ξµ

[
δµα∆− (1− 2

d
)DµDα −Rµ

α

] [
δαν∆− (1− 2

d
)DαDν −Rα

ν

]
ξν

= 1
2α

∫
ddx
√
g ξµ

[
δµν∆2 − 3d2−8d+4

d2 ∆DµDν − 2Rµ
ν∆− d2−4d+4

d2 Rµ
αD

αDν

+ 2d−4
d
Rα

νD
µDα +RµαRαν

]
ξν .

(5.1.7)

The second term in the last line contains a non-minimal operator without a background
curvature. Following the first strategy outlined in section 4.3, this D-type contribution is
eliminated with a transverse decomposition (4.1.23) of the vector ξµ = ξT

µ + Dµω with

3To lighten the notation, we drop the bar on the background metric ḡµν , whenever it is the only metric
field besides the fluctuations hµν , appearing in the computations in this chapter.
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DµξT
µ = 0. This finally leads to

Sgf = 1
2α

∫
ddx
√
g

{
ξT
µ

[
δµν∆2 − 2Rµ

ν∆ +RµαRαν

]
ξTν

+ξT
µ

[
4−6d
d
Rµν∆Dν + 4−2d

d
Rµ

αR
ανDν

]
ω

+ω
[

2d+4
d
Rµ

ν∆Dµ + 2Rµ
νRµαD

α − 6RαβRαµβνD
µ
]
ξTν

+ω
[

4(d−1)2

d2 ∆3 + 8(d−1)
d

Rµν∆DµDν + 8−7d
d
RµαRν

αDµDν

+ 6d−8
d
RαβRαµβνD

µDν
]
ω

}

= 1
2α

∫
ddx
√
g
{
ξT
µ

[
Kgf

1T + Vgf
1T

]µ
νξ

Tν + ω
[
Kgf

0 + Vgf
0

]
ω

+ ξT
µ

[
Vgf
×

]µ
ω + ω

[
Vgf
×

]†
ν
ξTν

}
,

(5.1.8)

which allows to identify the kinetic terms

[
Kgf

1T

]µ
ν = ∆2δµν ,

[
Kgf

0

]
= 4(d−1)2

d2 ∆3 , (5.1.9)

and vertices[
Vgf

1T

]µ
ν = −Rµ

ν∆−∆Rµ
ν +RµαRαν ,[

Vgf
0

]
= 4(1− 1

d
) (∆DµR

µνDν +DµR
µνDν∆)− 4DµR

µαRα
νDν ,[

Vgf
×

]µ
= −4(1− 1

d
)RµνDν∆− 2∆RµνDν + 2RµνRν

αDα ,[
Vgf
×

]†
ν

= 4(1− 1
d
)∆DµRµν + 2DµRµν∆− 2DµRµαR

α
ν .

(5.1.10)

Here we neglected terms involving covariant derivatives of the curvature tensor, since
they would not contribute to the projection on the monomials in (5.1.1). The cutoff
function is adapted following the rule (4.3.13) of regularizing the kinetic terms, yielding
the corresponding cutoff operators

Rgf,1T
k = (P 2

k −∆2)δµν , Rgf,0
k = 4(d−1)2

d2 (P 3
k −∆3) . (5.1.11)

The regularized inverse propagators are defined by Pgf
j = Kgf

j +Rgf,j
k , where j = 0, 1T.

Using the inversion formula (4.3.17), the final step consists of evaluating the individ-
ual resulting operator traces, following the prescription (4.3.45). Since the vertices (5.1.10)
are defined on the transverse and longitudinal field subspaces, they have to be traced with
the projection operators (4.1.25). As for the present purpose, the results are required
only to linear order in V and in d = 4, we terminate the curvature expansion inversion at
this order. Since V× and V†× are both linear in R, the cross-terms do not contribute here.
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5.1. The Einstein-Hilbert truncation

With the trace split into a transverse vector and scalar part, the 1T-sector evaluates to

Sgf
1T = 1

2Tr1

[
1
Pgf

1T
∂tRgf,1T

k ΠT

]
− 1

2Tr1

[
1
Pgf

1T
Vgf

1T · ΠT
1
Pgf

1T
∂tRgf,1T

k

]

= 1
(4π)2

∫
d4x
√
g
[
3Q2[f 1] +R

(
1
4Q1[f 1] + 3Q3[f 3]

) ]
,

(5.1.12)

while the scalar sector gives

Sgf
0 = 1

2Tr0

[
1
Pgf

0
∂tRgf,0

k

]
− 1

2Tr0

[
1
Pgf

0
Vgf

0
1
Pgf

0
∂tRgf,1T

k

]

= 1
(4π)2

∫
d4x
√
g
[

3
2 Q2[f 1] +R

(
1
4Q1[f 1] + 6Q4[f 4]

) ]
.

(5.1.13)

Here the Q functionals are defined in (4.3.42), and their argument indicates the number
of propagators in a term by

fn(∆) = 1
(Pk)n

∂tRk . (5.1.14)

The complete contribution of the gauge sector is then given by

Sgf =Sgf
1T + Sgf

0

= 1
(4π)2

∫
d4x
√
g
[

9
2 Q2[f 1] +R

(
1
2Q1[f 1] + 3Q3[f 3] + 6Q4[f 4]

) ]
+O(R2) .

(5.1.15)

Ghost Contributions

The ghost term corresponding to the gauge fixing (5.1.6) with β = 1/d is given by

Sghost =
∫
ddx
√
ḡ C̄µ ḡ

µν δFν
δhαβ

LC(ḡ + h)αβ

=
∫
ddx
√
ḡ C̄µMµ

ν C
ν ,

(5.1.16)

with the Faddeev-Popov operator

Mµ
ν = ḡµαḡλσ

[
D̄λgανDσ + D̄λgσνDα − 2βD̄αgλνDσ

]
. (5.1.17)

Here we distinguish the full quantum metric gαβ = hαβ + ḡαβ from the background metric
ḡαβ, with respect to which derivatives with a bar are covariant. Since only variations with
respect to the ghost fields are required to obtain the contribution to the gravitational
coupling constants, we set gαβ = ḡαβ in the following. Thus the action (5.1.16), dropping
an irrelevant overall sign, reduces to

Sghost =
∫
ddx
√
g C̄µ

[
∆δµν − (1− 2

d
)DµDν −Rµ

ν

]
Cν , (5.1.18)

which immediately reveals the quadratic variation in the ghost fields.
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Again we carry out the transverse decomposition of the anti-ghost field C̄µ =
C̄T
µ + Dµη̄ and likewise for the ghost, to have Sghost assume a two-by-two block form

without D-type operators. In terms of the decomposed fields, with covariantly constant
curvature, the action reads

Sghost =
∫
ddx
√
g
{
C̄T
µ [∆δµν −Rµ

ν ]CTν + η̄
[
(2− 2

d
)∆2 + 2RµνDµDν

]
η

+ η̄ [2RµνD
µ]CTν − C̄T

µ [2RµνDν ] η
}

=
∫
ddx
√
g
{
C̄T
µ

[
Kgh

1T + Vgh
1T

]µ
ν
CTν + η̄

[
Kgh

0 + Vgh
0

]
η

+ η̄
[
Vgh
×

]†
ν
CTν + C̄T

µ

[
Vgh
×

]µ
η
}
.

(5.1.19)

The operator structure found herein, classified according to (4.3.16) defines the entries

[
Pgh

1T

]µ
ν = δµνPk ,

[
Pgh

0

]
= (2− 2

d
)P 2

k ,[
Vgh

1T

]µ
ν

= −Rµ
ν ,

[
Vgh

0

]
= 2DµR

µνDν ,[
Vgh
×

]µ
= −2RµνDν ,

[
Vgh
×

]†
ν

= 2DµRµν ,

(5.1.20)

where the cutoff operators are again introduced by application of the rule (4.3.13), with
Pk = ∆ +Rk. Explicitly they read

Rgh,1T
k = δµνRk , Rgh,0

k = (2− 2
d
)
(
P 2
k −∆2

)
. (5.1.21)

The operators (5.1.20), restricted to their corresponding transverse subspaces with the
projection operators (4.1.25), enter the inversion formula (4.3.17). The contributions of
the ghost sector Sgh entering into (5.1.5), split into transverse vector and scalar parts
read

Sgh
1T = − Tr1

[
1
Pgh

1T
∂tRgh,1T

k ΠT

]
+ Tr1

[
1

(Pgh
1T)2

∂tRgh,1T
k ΠT Vgh

1T ΠT

]

− Tr1

[
1

(Pgh
1T)3

∂tRgh,1T
k Vgh

1T ΠT Vgh
1T ΠT

]

− Tr1

[
1

(Pgh
1T)2

1
Pgh

0
∂tRgh,1T

k (Vgh
× )† Vgh

× ΠT

]

+ Tr1

[
1
Pgh

1T
∂tRgh,1T

k

[
ΠT ,

1
Pgh

1T

]
ΠT Vgh

1T ΠT

]

=: − 1
(4π)2

∫
d4x
√
g
{
C1

1T + C2
1T + C3

1T + C4
1T + C5

1T

}
+O(R3) ,

(5.1.22)
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and

Sgh
0 = − Tr0

[
1
Pgh

0
∂tRgh,0

k

]
+ Tr0

[
1

(Pgh
0 )2

∂tRgh,0
k Vgh

0

]

− Tr0

[
1

(Pgh
0 )3

∂tRgh,0
k (Vgh

0 )2
]

− Tr0

[
1

(Pgh
0 )2

1
Pgh

1T
∂tRgh,0

k Vgh
× ΠT (Vgh

× )†
]

=: − 1
(4π)2

∫
d4x
√
g
{
C1

0 + C2
0 + C3

0 + C4
0

}
+O(R3) .

(5.1.23)

The overall negative sign here stems from the supertrace for fermionic fields. The individual
partial traces are evaluated with the off-diagonal heat kernel expansion up to second order
in the curvature. Setting d = 4 they this yields

C1
1T = 3Q2[f 1

1T] + 1
4RQ1[f 1

1T] +
[
− 1

24R
2 + 1

40RµνR
µν − 1

15RµνρσR
µνρσ

]
Q0[f 1

1T] ,

C2
1T = 3

4RQ2[f 2
1T] +

[
1
8R

2 − 1
4RµνR

µν
]
Q1[f 2

1T] ,

C3
1T =

[
1
24R

2 + 7
12RµνR

µν
]
Q2[f 3

1T] ,

C4
1T =

[
− 1

12R
2 + 1

3RµνR
µν
]
Q3[f̃×] ,

C5
1T = 0 ,

C1
0 =Q2[f 1

0 ] + 1
6RQ1[f 1

0 ] +
[

1
72R

2 − 1
180RµνR

µν + 1
180RµνρσR

µνρσ
]
Q0[f 1

0 ] ,

C2
0 =RQ3[f 2

0 ] +
[

1
6R

2 − 1
3RµνR

µν
]
Q2[f 2

0 ] ,

C3
0 =

[
R2 + 2RµνR

µν
]
Q4[f 3

0 ] ,

C4
0 =

[
− 1

12R
2 + 1

3RµνR
µν
]
Q3[f×] .

(5.1.24)

Here the functions

fn1T(∆) := 1
(Pgh

1T)n
∂tRgh,1T

k = fn(∆) ,

fn0 (∆) := 1
(Pgh

0 )n
∂tRgh,0

k = 2dn−1

(2d− 2)n−1 f
2n−1(∆) ,

f×(∆) := 1
(Pgh

0 )2

1
Pgh

1T
∂tRgh,0

k = d

d− 1 f
4(∆) ,

f̃×(∆) := 1
(Pgh

1T)2

1
Pgh

0
∂tRgh,1T

k = d

2d− 2 f
4(∆) ,

(5.1.25)

capture the scalar parts of the trace arguments. Accounting for the relative factors herein,
they reduce to the plain functions fn(∆) defined in (5.1.14). The full contribution of the
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ghost sector is obtained upon insertion to give

Sgh =Sgh
1T + Sgh

0

= − 1
(4π)2

∫
d4x
√
g

{
5Q2[f 1] +

(
7
12Q1[f 1] + 3

4Q2[f 2] + 4
3Q3[f 3]

)
R

+
(
− 1

72Q0[f 1] + 1
8Q1[f 2] + 19

72Q2[f 3]− 1
6Q3[f 4] + 8

9Q4[f 5]
)
R2

+
(

1
72Q0[f 1]− 1

4Q1[f 2] + 5
36Q2[f 3] + 2

3Q3[f 4] + 16
9 Q4[f 5]

)
RµνR

µν

− 1
18Q0[f 1] RµνρσR

µνρσ

}
+O(R3) .

(5.1.26)

Jacobians of the Transverse Decompositions

The final contribution to the universal sector comes from the Jacobians arising from the
transverse decompositions of the fluctuation fields, employed to simplify the operator
structure under the trace in the RG equation. The Jacobian from the minimal transverse-
traceless decomposition of the metric fluctuation is given in (4.1.53) are accounted for with
the help of auxiliary fields. Notably, the operatorMµ

ν defined in (4.1.52) coincides with
the one arising in the ghost action (5.1.18). Therefore the contribution of the auxiliary
fields will be proportional to the ghost contribution. With the correct factors for bosonic
and fermionic vector fields, we find the result

Saux
TT = 1

2S
gh , (5.1.27)

where Sgh is given by (5.1.26).
Furthermore, the decomposition of vector fields into their transversal and longitudinal

components throughout the computation also leads to Jacobian factors. In total, we have
decomposed the bosonic vector ξµ in the gauge fixing action (5.1.8), the fermionic vectors
C̄µ, Cµ in the ghost action (5.1.19), and another auxiliary set of one bosonic and one
complex fermionic vector in (4.1.53) in order to arrive at (5.1.27). The Jacobians for two
bosonic and two complex fermionic vectors given in (4.1.33) yield the complete correction
of the functional measure

J total
vec = det(∆)1/2 det(∆)1/2 det(∆)−1 det(∆)−1 = det(∆)−1 . (5.1.28)

This determinant can be exponentiated by introducing two real auxiliary bosonic scalar
fields ω1 and ω2 like

J total
vec = det(∆)−1 =

∫
Dω1Dω2 exp

[
− 1

2

∫
x
ω1∆ω1 − 1

2

∫
x
ω2∆ω2

]
. (5.1.29)
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The contribution of this term to the RG flow is consequently given by a simple scalar
trace, evaluated with the standard heat kernel coefficients to give

Saux
vec = Tr0

[ 1
Pk

∂tRk

]
= 1

(4π)2

∫
d4x
√
g

{
Q2[f 1] + 1

6R Q1[f 1]

+
(

1
72R

2 − 1
180RµνR

µν + 1
180RµνρσR

µνρσ
)
Q0[f 1]

}

+O(R3) .

(5.1.30)

Finally, the combined contribution of all auxiliary fields appearing due to field
decompositions is given by

Saux =Saux
TT + Saux

vec

= 1
(4π)2

∫
d4x
√
g

{
− 3

2Q2[f 1] +
(
− 1

8Q1[f 1]− 3
8Q2[f 2]− 2

3Q3[f 3]
)
R

+
(

1
48Q0[f 1]− 1

16Q1[f 2]− 19
144Q2[f 3] + 1

12Q3[f 4]− 4
9Q4[f 5]

)
R2

+
(
− 1

80Q0[f 1] + 1
8Q1[f 2]− 5

72Q2[f 3]− 1
3Q3[f 4]− 8

9Q4[f 5]
)
RµνR

µν

+ 1
30Q0[f 1] RµνρσR

µνρσ

}
+O(R3) .

(5.1.31)

Combining the Universal Contributions

In total, the gauge fixing, ghost and auxiliary terms contribute with

Suni = 1
(4π)2

∫
d4x
√
g

{
(9

2agf − 5agh − 3
2aaux)Q2[f 1]

+R
(

(1
2agf − 7

12agh − 1
8aaux)Q1[f 1] + (−3

4agh − 3
8aaux)Q2[f 2]

+ (3agf − 4
3agh − 2

3aaux)Q3[f 3] + 6agf Q4[f 4]
)}

= 1
(4π)2

∫
d4x
√
g

{
k4
(

9
2agf − 5agh − 3

2aaux
)

+Rk2
(

5
2agf − 85

36agh − 61
72aaux

)}
.

(5.1.32)

Here we substituted the threshold functions (C.7) and evaluated them for the optimized
cutoff (C.12) in the second line. The coefficients agf , agh, aaux ≡ 1 are introduced here only
for the purpose of tracing the origin of the full contribution back to the corresponding
terms in the action. This allows for a more systematic analysis of the structure of the
resulting β functions.
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We can see here that the gauge fixing and ghost terms are almost cancelling each
other, so that the complete result for the universal part is well approximated by the
auxiliary contributions alone. We argue that this feature is not accidental, but a remnant
of the BRST supersymmetry discussed in section 4.1. Indeed, the quadratic parts G and
M of the gauge fixing action in (5.1.7) and the ghost action in (5.1.18) satisfy the relation
G = M2. More generally, for a gauge fixing condition F [A] = F Ag = F Πg A with a
projector on the gauge dependent components Πg, the quadratic form of the gauge fixing
action will be of the form G = ΠgF †FΠg. Comparing with (5.1.16), a corresponding
Faddeev-Popov operator can be written asM = F Πg, because a gauge transformation
must act as a projector on the pure gauge part. Therefore, the relation remains valid for
other choices of gauge fixing conditions, and implies

1
2Tr(G+RG)−1∂tRG − Tr(M+RM)−1∂tRM ≈ 0 , (5.1.33)

for the gauge and ghost traces in (4.3.36). The cancellation becomes exact only if the
cutoffs are chosen so that (G+RG) = (M+RM)2, which is a consequence of the breaking
of BRST invariance as witnessed in (4.1.11). This condition could always be implemented
by setting RG = RM(2M+RM). However, this strongly suggests that in general the
combined contribution of the gauge fixing and ghost sector should never have strong
influence on physically relevant features. The full contribution of all universal sectors, as
it is found in the computation above reads

Suni = 1
(4π)2

∫
d4x
√
g

{
− 2Q2[f 1] +R

(
− 5

24Q1[f 1]− 9
8Q2[f 2] +Q3[f 3] + 6Q4[f 4]

)}
.

(5.1.34)
Note that this does not coincide with the result found in [27,57] because of the difference
in cutoff scheme implementation and gauge choice.

5.1.2. Analysis of the Gravitational Renormalization Group Flow

The contribution of the physical fields in the gravitational sector denoted as Sgrav in
(5.1.5), with the ansatz (5.1.1) for Γgrav

k , is now determined following the solution routine
for the RG equation (4.3.1) laid out in section 4.3. In terms of the coupling constants
(5.1.2), we will here consider the Einstein-Hilbert form

Γgrav
k [g] =

∫
d4x
√
g
(
u0 + u1R

)
. (5.1.35)
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After expanding to second order in the fluctuation field hµν , and subsequently carrying
out the minimal transverse-traceless decomposition (4.1.34), we find the quadratic part

Γgrav,quad
k = 1

2

∫
d4x
√
ḡ

{
hT
αβ

[
Kαβµν2T + Vαβµν2T

]
hT
µν + h

[
K0 + V0

]
h

}
. (5.1.36)

Here only the terms with the transverse-traceless tensor hT
µν and the scalar trace h are

retained, with the vector component ξµ dropping out due to the decoupling for α = 0 as
explained in section 4.3. Neglecting the bar on background quantities, the operators in
(5.1.36) are given by

Kαβµν2T = −gαµgβν (u1∆ + u0) ,
Vαβµν2T = u1(−gαµgβνR + 2Rαµgβν + 2Rαµβν) ,
K0 = 3

8u1∆ + 1
4u0 ,

V0 = 0 .

(5.1.37)

Notably, there are no cross-terms and a potential is only present in the transverse part. The
operators K2T and V2T are understood as restricted to the transverse-traceless subspace
via the projection operator (4.1.41). Accordingly, this projector has to be included when
computing functional traces in the following.

For the gravitational sector, the matrix valued IR cutoff Rk introduced by a
modification of the action corresponding to (2.3.3) assumes the form

∆Sk = 1
2

∫
d4x
√
g
{
hT
αβ [R2T

k ]αβµν hT
µν + hR0

k h
}
. (5.1.38)

According to the scheme (4.3.13), only the kinetic terms Ki are regulated, so that there
are no curvature terms entering Rk. For the operators (5.1.37), this is achieved by

[R2T
k ]αβµν = − gαµgβν u1Rk , R0

k = 3
8u1Rk . (5.1.39)

This way, the inclusion of Rk results in replacing

K2T → P2T = K2T +R2T
k , K0 → P0 = K0 +R0

k , (5.1.40)

which, instead of ∆, now includes the regulated inverse propagators Pk = ∆ + Rk as
arguments, with Rk(∆) denoting the yet undetermined scalar shape function. Note that
the kinetic operators K2T and K0 have opposite signs, corresponding to the conformal
instability in euclidean gravity. This circumstance does not pose any problem in the
context of the RG equation, since it is insensitive to any constant pre-factors, which
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cancels between (Γ(2)
k +Rk) and ∂tRk. Thus it will have all fields contribute to the β

functions with the sign determined by their bosonic or fermionic nature.
The full regulated propagator

[
Γ(2)
k +Rk

]−1
is found from the inversion formula

(4.3.17). The contribution of the gravitational sector in the RG equation then assumes
the form

Sgrav = T2T + T0 +O(R2) , (5.1.41)

decomposing into the transverse-traceless tensor and scalar parts. The traces are given by

T2T = 1
2Tr2

[
Π2T

( 1
P2T
− 1
P2T

Π2T V2T Π2T
1
P2T

)
Π2T ∂tR2T

k

]
, (5.1.42)

and
T0 = 1

2Tr2

[
Πtr

1
P0

Πtr ∂tR0
k

]
= 1

2Tr0

[ 1
P0

∂tR0
k

]
, (5.1.43)

respectively. In order to identify the contributions to the running of the coupling constants
u0 and u1 in (5.1.35), it is sufficient to expand only to linear order in the curvature, so all
terms of the order (V2T)2 and higher do not contribute in the present computation. The
projection operators Πtr and Π2T are defined in (4.1.37) and (4.1.41) and ensure that all
terms are restricted to their proper subspaces.

Since the scalar trace (5.1.43) contains only Laplacian operators, it is given in terms
of the heat kernel coefficients summarized in table 4.2. The tensorial operator trace
(5.1.42) consists of the two terms

T 1
2T = 1

2Tr2

[
Π2T

1
P2T

Π2T ∂tR
2T
k

]
,

T 2
2T = − 1

2Tr2

[
Π2T

1
P2T

Π2T V2T Π2T
1
P2T

Π2T ∂tR
2T
k

]
.

(5.1.44)

In the first of these traces the projectors can be moved together, creating a commutator
term

1
2Tr2

[
Π2T

[ 1
P2T

,Π2T

]
∂tR

2T
k

]
= O(R2) , (5.1.45)

which vanishes at first order in the curvature since it is trace-free. To see this, we compute

[Π2T]µν
ρσ
[

[Π2T]ρσ
αβ, f(∆)

]
hαβ = f ′(∆) [C2T]µν

αβ hαβ +O(R2) , (5.1.46)

with use of the formula (B.2.4), yielding

[C2T]µν
αβ = [Π2T]µν

ρσ
(
−2R(ρ

λδ
(α
σ)D

β)Dλ + 4Rλ
(ρ
τ
σ)Dλδ

(α
τ D

β)
)

1
∆ . (5.1.47)

This expression is obtained from the first term in (4.1.47), with all other terms being
proportional to either gαβ, Dα, or Dβ and are therefore annihilated when contracted with
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Π2T. Finally we can verify

tr2 [C2T]µν
αβ = 1

2

(
δµαδ

ν
β + δµβδ

ν
α

)
[C2T]µν

αβ = 0 , (5.1.48)

ensuring that the commutator does not contribute in the present computation, and the
partial trace can be written as

T 1
2T = 1

2Tr2

[ 1
P2T

∂tR
2T
k Π2T

]
. (5.1.49)

This expression is now easily evaluated with the heat kernel coefficients for constrained
tensor fields, given in (4.2.41). In the remaining piece T 2

2T it is sufficient for the present
computation to replace the projector with its zero-order part (4.1.47) and to commute all
covariant derivatives freely, since V2T already contains one power of the curvature. Thus
we can write

T 2
2T = −1

2Tr2

[
1
P 2

2T
∂tR

2T
k V2T Π0r

2T

]
+O(R2) , (5.1.50)

which requires the off-diagonal heat kernel scheme (3.3.7) for its evaluation.
The resulting partial contributions from the gravitational action (5.1.35) are given

as

T0 = 1
2

1
(4π)2

∫
d4x
√
g
{
Q2[f 1

0 ] + 1
6 Q1[f 1

0 ]R
}
,

T 1
2T = 1

2
1

(4π)2

∫
d4x
√
g
{

5Q2[f 1
2T]− 5

6 Q1[f 1
2T]R

}
,

T 2
2T = 1

2
1

(4π)2

∫
d4x
√
g
{

10
3 u1Q2[f 2

2T]R
}
,

(5.1.51)

with the scalar functions of the Laplacian under the operator traces being captured by

fn2T(∆) := 1
(P2T)n∂tR

2T
k = −∂t(u1Rk)

(−u1Pk − u0)n ,

fn0 (∆) := 1
(P0)n∂tR

0
k =

3
8 ∂t(u1Rk)(

3
8u1Pk + 1

4u0
)n . (5.1.52)

In terms of these functions, the total result for the gravitational contribution reads

Sgrav = 1
2

1
(4π)2

∫
d4x
√
g

{(
Q2[f 1

0 ] + 5Q2[f 1
2T]
)

+R
(

1
6Q1[f 1

0 ]− 5
6Q1[f 1

2T] + 10
3 u1Q2[f 2

2T]
)}

.

(5.1.53)

Notably, this result for the RG flow of the Einstein-Hilbert truncation coincides with
that obtained in earlier computations [57], where the background metric was set to be
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the one of the four-sphere and only the standard heat kernel expansion was used. The
direct comparison provides confirmation for the new techniques, whose virtue lies in their
generalized applicability, not requiring for any such specific choice. The demonstrated
derivation with the background metric gµν left completely unspecified demonstrates
explicitly the background-independence of the result (5.1.53).

To arrive at the final expression for ∂tΓk in (5.1.5), we combine the result from
the gravitational part (5.1.53) with the universal contributions given in (5.1.34). The β
functions governing the running of the cosmological constant and Newton’s constant are
found by projection on the monomials I0 = √g and I1 = √gR according to (4.3.46). This
way we find the scale derivatives

∂tu0 = 1
(4π)2

(
1
2Q2[f 1

0 ] + 5
2Q2[f 1

2T]− 2Q2[f 1]
)
,

∂tu1 = 1
(4π)2

(
1
12Q1[f 1

0 ]− 5
12Q1[f 1

2T] + 5
3u1Q2[f 2

2T]

− 5
24Q1[f 1]− 9

8Q2[f 2] +Q3[f 3] + 6Q4[f 4]
)
.

(5.1.54)

Switching to the dimensionless constants (5.1.3), and using the identities (C.7) to express
the functionals Qn[f ] in terms of the threshold functions Φp

n(ω) defined in appendix C,
the β functions assume the form

∂tg0 =− 4g0 + 1
(4π)2A0(g0

g1
) + 1

(4π)2

(
1 + 1

2
∂tg1
g1

)
B0(g0

g1
) ,

∂tg1 =− 2g1 + 1
(4π)2A1(g0

g1
) + 1

(4π)2

(
1 + 1

2
∂tg1
g1

)
B1(g0

g1
) ,

(5.1.55)

with the cutoff shape dependent functions given by

A0(λ) =5Φ1
2(−2λ) + Φ1

2(−4
3λ)− 4Φ1

2(0) ,

B0(λ) =5Φ̃1
2(−2λ) + Φ̃1

2(−4
3λ) ,

A1(λ) =− 5
6Φ1

1(−2λ) + 1
6Φ1

1(−4
3λ)− 10

3 Φ2
2(−2λ)

− 5
12Φ1

1(0)− 9
4Φ2

2(0) + 2Φ3
3(0) + 12Φ4

4(0) ,

B1(λ) =− 5
6Φ̃1

1(−2λ) + 1
6Φ̃1

1(−4
3λ)− 10

3 Φ̃2
2(−2λ) .

(5.1.56)

Finally, the expressions (5.1.55) can be solved for the β functions for the dimensionless
Newton’s constant g = k2Gk and cosmological constant λ = k−2Λk. Introducing the
anomalous dimension of Newton’s constant, defined as

ηN = −∂tu1

u1
= 2gA1(λ)

2π + gB1(λ) , (5.1.57)
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we find the relations

∂tλ = (ηN − 2)λ+ g

2π
(
A0(λ)− 1

2ηNB0(λ)
)
,

∂tg = (ηN + 2)g .
(5.1.58)

In such a system of β functions, the origin of every term can be traced to the
field monomials present in the effective action (5.1.35) by their coupling constants. The
simplest ansatz for a non-trivial gravitational action is realized with only a scalar curvature
term. By neglecting all contributions of the cosmological constant (setting λ = 0), we
can reproduce this case. With only the coupling constant g remaining, there is a unique
gravitational non-Gaussian fixed point (NGFP) at

g∗ = − 2π
A1(0) +B1(0) . (5.1.59)

Evaluation with a Fermi-type cutoff (C.14) with T−1 = 100, and with optimized cutoff
(C.10) gives the fixed point values

g∗
∣∣∣∣
Fermi

= 1.15827 , g∗
∣∣∣∣
opt

= 1.59855 , (5.1.60)

respectively. The corresponding critical exponent can also be found algebraically as

θ = −∂(∂tg)
∂g

(g∗) = 2
(

1 + B1(0)
A1(0)

)
, (5.1.61)

which has a value of θ = 2.521646 with the Fermi-cutoff, and θ = 2.58447 with the
optimized cutoff. Surprisingly, a fixed point with similar exponent can be found in much
more complicated computations, where contributions of higher curvature terms mix with
those present here, and do not allow for an algebraic solution. A more detailed study of
the RG flow including a cosmological constant and a non-trivial ghost field renormalization
is given in the next section.

Examining the full set of β functions (5.1.58), one verifies that with an anomalous
dimension ηN 6= −2, the only fixed point is the Gaussian one at (g = 0, λ = 0). Any
non-trivial solution of the fixed point equations ∂tλ = 0, ∂tg = 0 thus has to satisfy
ηN = −2, which allows to eliminate the coupling constant g. This way we find the
condition

A0(λ) +B0(λ) + 4λ
(
A1(λ) +B1(λ)

)
= 0 , (5.1.62)

in terms of λ alone. For every solution of this equation λ∗, there is a value for g∗ =
− 2π
A1(λ∗)+B1(λ∗) , such that the pair corresponds to a fixed point. For instructional purposes

alone, we cast the condition (5.1.62) into numerical form, substituting (5.1.56) and using
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the optimized cutoff (C.12). Assuming (λ 6= 1/2) and (λ 6= 3/4) to get rid of the
denominators, we obtain

180a2T + 36a0 + 243agf − 270agh − 81aaux

+λ
(
− 1350a2T − 90a0 − 756agf + 930agh + 249aaux

)
+λ2

(
+ 2020a2T − 72a0 − 612agf + 200agh + 220aaux

)
+λ3

(
− 720a2T + 216a0 + 3744agf − 3320agh − 1276aaux

)
+λ4

(
− 2880agf + 2720agh + 976aaux

)
= 0 ,

(5.1.63)

with the coefficients ai indicating the origin of the corresponding contribution. As already
observed in (5.1.32) the gauge and ghost contributions (multiplied by agf and agh) typically
cancel otherwise significant factors mutually. For small λ the transverse-traceless sector
(a2T) clearly dominates, as one would expect from a genuinely gravitational feature, while
the conformal scalar mode (a0) is mostly negligible.

The positions and critical exponents for all real valued fixed points found in the full
system of β functions (5.1.58) or under neglection of specific contributions are respectively
shown in table 5.1. The fixed point in the first line generalizes the NGFP (5.1.59). Note
that here the critical exponents become a complex pair of numbers. Furthermore, a second
fixed point appears with the inclusion of the scalar contributions. In general there may be
more fixed point solutions in extended systems of β functions. Typically, these additional
fixed points can however be identified as artifacts of the computation by studying their
dependence on unphysical parameters as well as their critical exponents. It is in contrast
to these spurious fixed points that a unique gravitational fixed point is to be considered a
robust feature of gravitational quantum theories investigated this far.

Of course the genuine spin-2 degree of freedom in form of the transverse-traceless
contribution is what gives rise to the fixed point. The remaining terms are important
corrections that will have to be taken into account for any computation in the full
theory. However, to understand the mechanism behind the stability of the fixed point, the
situation becomes more transparent when systematically tracing the effect of individual
terms. This technique of analysis may shed some light onto the mechanism underlying
the emergence of the non-Gaussian fixed point, when applied to more sophisticated
computations including higher orders of the curvature tensor. An NGFP was already
found in a number of different computational schemes [35, 45–47, 58], but it is for the
generalizability of the method used here that allows this new approach, going beyond a
numerical comparison. Since gauge fixing and cutoff dependences will always change the

124



5.2. Running Ghost Field Renormalization

g∗ λ∗ g∗λ∗ θ

all ai = 1 1.0021 0.134414 0.134696 2.37141± 2.27954 i
2.31123 0.721226 1.66691 3.55617 , −289.16

a0 = 0 1.11987 0.0936343 0.104858 2.42937± 1.86549 i
agf = agh = 0 0.918917 0.149409 0.137294 2.49265± 2.34403 i

2.18328 0.721161 1.5745 3.50987 , −277.625
only a2T = 1 0.863188 0.177487 0.153205 2.92881± 2.61774 i

−39.0277 1.87807 −73.2967 5.28929 , 10.2049

Table 5.1.: Fixed point values of the Einstein-Hilbert truncation for dimensionless New-
ton’s constant g, and cosmological constant λ, as well as their product and
associated critical exponents θ. In the full systems of β functions (first line), a
second unphysical non-Gaussian fixed point appears as a result of the approxi-
mation. This fixed point vanishes if the contributions of the scalar gravitational
mode is neglected (second line). The real parts of the critical exponents reveal
that a fixed point with similar properties as in the one coupling approximation
(5.1.59) persists in the full system, but also when taking only the transverse-
traceless contributions into account (see last line). The neglection of gauge
fixing and ghost terms (third line) changes very little.

results slightly, it is important to engage in a more systematic investigation of the validity
of the asymptotic safety scenario.4 The present analysis provides a further contribution
in this direction.

5.2. Running Ghost Field Renormalization

In this section the purely gravitational renormalization group flow will be extended to
include the quantum effects captured by the field renormalization of the Faddeev-Popov
ghosts. Since a ghost term is essential for the standard quantization of non-abelian gauge
fields, its back-reaction to the physical coupling constants needs to be taken into account
for consistency. Specifically we will augment the Einstein-Hilbert ansatz discussed in the

4See [125] for a related study.

125



5. Quantum Einstein Gravity

last section by the power-counting marginal field renormalization of the ghost fields.
A strong motivation to engage in this ghost-improved computation originates from

the analogy to QCD where the interplay of the gluon and ghost scaling behaviour is
essential for the IR physics of the theory [88, 127–129]. Specifically, the phenomenon
of ghost enhancement is an integral part of the Gribov-Zwanziger confinement criterion
and related to the anti-screening behaviour of QCD. While it is clear, that there is also
a non-trivial interplay between the ghosts and the metric fluctuations in gravity, its
conceptual role is much less clear. Here we compute the anomalous dimension of the ghost
propagator and study its effect on the running of Newton’s constant and the cosmological
constant to contribute to an improved understanding.

Effects of the ghost sector in quantum gravity where first considered in [130], followed
by a comparable computation of the ghost anomalous dimension using a spectrally adjusted
cutoff and a flat-space projection technique in [131]. Using off-diagonal heat kernel methods
to solve the RG equation as explained in section 4.3, we are able to derive our results
under more general conditions, allowing for a systematic analysis.

5.2.1. Derivation of the β Functions

To compute the gravitational β functions in the ghost-improved Einstein-Hilbert trunca-
tion, we use an ansatz for the effective average action containing the three terms

Γk[g, C, C̄; ḡ, c, c̄] = Γgrav
k [g] + Sgf [g; ḡ] + Sghost

k [g, C, C̄; ḡ, c, c̄] , (5.2.1)

depending on the metric gµν and the average ghost fields C, C̄ and their corresponding
background fields ḡ and c, c̄. They are related by

gµν = ḡµν + hµν , Cµ = cµ + fµ , C̄µ = c̄µ + f̄µ , (5.2.2)

where hµν and fµ, f̄µ denote the expectation value of the quantum fluctuations around the
background. Note that these fluctuations are not required to be small in any sense. In a
purely gravitational approximation as exemplified in the last section, computations are
simplified by setting the background ghost fields to zero. This does however not allow to
keep track of the ghost kinetic term, so that we must use a non-trivial ghost background
in the following. Due to the presence of these fermionic fields the super-trace in the RG
equation (4.3.1) is important to take the different statistics into account.

The gravitational part Γgrav
k is again taken to be of the Einstein-Hilbert form

Γgrav
k [g] = 2κ2 ZN

k

∫
ddx√g (−R + 2Λk) , (5.2.3)
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where κ2 = (32πG0)−1 with G0 is a fixed reference scale and ZN
k denotes the field

renormalization for the graviton.5 This way we express the running Newton’s constant
Gk = G0/Z

N
k in analogous terms to the ghost field renormalization Zc

k. The action is
supplemented by the gauge fixing term Sgf [g; ḡ] according to (4.1.17) with the harmonic
gauge (5.1.6). Since the decoupling of physical and gauge degrees of freedom is not as
useful for the computation in this section, here we choose the gauge fixing parameters
α = 1 and β = 1/2 for direct comparability with older results [35,46]. Thus we have

Sgf [h; ḡ] = κ2 ZN
k

∫
ddx
√
ḡ ḡµνFµFν , Fµ = D̄ρhρµ − 1

2D̄µḡ
αβhαβ . (5.2.4)

With this gauge fixing scaled by the pre-factor of the gravitational action, all non-minimal
derivative terms in its second variation are cancelled. The corresponding Faddeev-Popov
determinant is captured by the ghost term

Sghost
k [g, C, C̄; ḡ, c, c̄] = −

√
2Zc

k

∫
ddx
√
ḡ C̄µMµ

ν C
ν , (5.2.5)

containing the field renormalization of the ghosts Zc
k and the operator

Mµ
ν = ḡµρḡσλD̄λ(gρνDσ + gσνDρ)− ḡρσḡµλD̄λ(gσνDρ) . (5.2.6)

The gauge-choice (5.2.4) has the main virtue, that it allows for a straightforward com-
parison to earlier results obtained in the Einstein-Hilbert truncation without ghost-
improvement, by setting Zc

k = 1. Taking the ∂t-derivative of the ansatz (5.2.1) and setting
the fluctuation fields to zero afterwards yields

∂tΓk = 2κ2
∫
ddx
√
ḡ
[
−(∂tZN

k )R̄ + 2 ∂t(ZN
k Λk)

]
−
√

2(∂tZc
k)
∫
ddx
√
ḡ c̄µD̄2cµ . (5.2.7)

In the ghost term we identify only the minimal kinetic part, which is sufficient for the
present purpose. Thus to identify the interaction monomials whose coefficients encode the
running of the coupling constants ZN

k , Z
c
k and Λk, it suffices to keep the Einstein-Hilbert

monomials and the ghost kinetic term. The projection of these terms as indicated in the
schematic solution of the RG equation (4.3.45) yields the desired β functions.

Since non-minimal operators do not appear with the gauge choice (5.2.4), it is
convenient to decompose the metric fluctuations hµν only into their traceless and trace
part

hµν = ĥµν + 1
d
ḡµνh , h = ḡµνhµν , ḡµν ĥµν = 0 . (5.2.8)

5More precisely, the coupling constant ZNk encodes the running of the background Newton’s constant in
the present context.
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A projector on the traceless part is given by

[12t]µνρσ = 1
2

(
δµ
ρδν

σ + δµ
σδν

ρ
)
− 1

d
gµνg

ρσ , (5.2.9)

satisfying ĥµν = [12t]µνρσhρσ, as it follows from (4.1.37). The second variation of Γk in
(5.2.1) with respect to these fluctuations was already given in [35]. For Γgrav

k + Sgf the
result is

Γgrav,quad
k = 1

2κ
2ZN

k

∫
ddx
√
ḡ
{
ĥµν

[
∆− 2Λk + CT R̄

]
ĥµν − d−2

2d h
[
∆− 2Λk + CSR̄

]
h
}
,

(5.2.10)
with

CT = d2 − 3d+ 4
d(d− 1) , CS = d− 4

d
, (5.2.11)

and ∆ = −D̄2 denoting the covariant Laplacian constructed from the background metric.
This result is given with the background metric ḡ chosen as the one of a d-dimensional
sphere (A.2.5), which is general enough to distinguish the interaction monomials in the
Einstein-Hilbert ansatz (5.2.1).

The new contributions originate from the ghost action and are of a more complicated
form owed to the non-trivial background ghost field. Thus we first give the intermediate
results obtained from expanding (5.2.6) in hµν when contracted with a dummy vector Cν

Mµ
ν C

ν =
[
D̄2 + 1

d
R̄
]
Cµ ,

δhM
µ
ν C

ν = ḡµρḡσλD̄λ

[
hραD̄σ + hσαD̄ρ + (D̄αhρσ)

]
Cα

− ḡρσḡµλD̄λ

[
hσαD̄ρ + 1

2(D̄αhρσ)
]
Cα ,

δ2
hM

µ
ν C

ν = 0 .

(5.2.12)

Here the bar indicates background quantities, obtained by setting g = ḡ. Remarkably,
the second variation in the last line vanishes independently of the choice of background
or gauge. Based on these results, we obtain the quadratic form in the ghost sector

Sghost,quad
k =

√
2Zc

k

∫
ddx
√
ḡ
{
f̄µ
[
∆− 1

d
R̄
]
fµ − hAαf̄α − hĀαfα

− ĥµνQµν
αf̄α − ĥµνQ̄µν

αf
α
}

=
√

2Zc
k

∫
ddx
√
ḡ
{
f̄µ
[
∆− 1

d
R̄
]
fµ − f̄αÃαh− fα ˜̄Aαh

− f̄αQ̃α
µν ĥ

µν − fα ˜̄Qα
µν ĥµν

}
.

(5.2.13)

Here the two lines are equivalent up to surface terms and define the Grassmann-valued
operators A, Ā,Q, Q̄, and their adjoints, respectively. To keep track of the ghost kinetic
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term it is sufficient to take the background ghost field as transversal

D̄µc
µ = 0 , D̄µc̄

µ = 0 . (5.2.14)

In the sequel, we resort to this choice of background to simplify all expressions. The
explicit expressions read

Aα =1
d

[
D̄σc

αD̄σ + D̄αcσD̄σ − (1− d
2)cσD̄σD̄

α
]
,

Āα = − 1
d

[
D̄σ c̄αD̄σ + D̄αc̄

σD̄σ

]
,

Ãα = 1
d

[
D̄2cα + R̄ασcσ + D̄σc

αD̄σ + (2− d
2)D̄αcσD̄σ + (1− d

2)cσD̄αD̄σ

]
,

˜̄
Aα =− 1

d

[
D̄2c̄α + D̄σ c̄αD̄σ + R̄ασ c̄

σ + D̄αc̄
σD̄σ

]
,

(5.2.15)

and

Qµν
α = δα(µD̄

σcν)D̄σ − cσD̄σD̄(νδ
α
µ) + D̄αc(µD̄ν) − D̄(µcν)D̄

α

− 1
d
ḡµν

[
−cσD̄σD̄α + D̄σcαD̄σ + D̄αcσD̄σ

]
,

Q̄µν
α = D̄αD̄

(ν c̄µ) − δ(ν
α D̄σ c̄

µ)D̄σ − δ(ν
α D̄

µ)c̄σD̄
σ + D̄(ν c̄µ)D̄α

+ 1
d
ḡµν

[
D̄σ c̄αD̄σ + D̄αc̄σD̄

σ
]
,

Q̃α
µν = δα(µD̄

2cν) +R(µ
α
ν)
σcσ + δα(µc

σD̄ν)D̄σ

+ δα(µD̄
σcν)D̄σ + D̄αc(νD̄µ) + δα(µD̄ν)c

σD̄σ − D̄(µcν)D̄
α

− 1
d
ḡµν

[
D̄2cα + R̄ασcσ + D̄σcαD̄σ + 2D̄αcσD̄

σ + cσD̄αD̄σ

]
,

˜̄
Qα

µν = − δ(µ
α

[
D̄σ c̄

ν)D̄σ + D̄2c̄ν) + D̄ν)c̄σD̄
σ + R̄ν)σ c̄σ

]
+ D̄(µc̄ν)D̄α

+ 1
d
ḡµν

[
D̄σ c̄αD̄σ + D̄2c̄α + D̄αc̄σD̄

σ + R̄ασ c̄
σ
]
,

(5.2.16)

where the covariant derivatives to the left of the ghost fields act on c or c̄ only, and
(µν) = 1

2(µν + νµ) denotes symmetrization with unit strength. The respective last lines
in the Q operators ensure that they are traceless in the indices µν.

Following the derivation of the RG equation, the action is supplemented by an IR
regulating term (2.3.3) of the form

∆Sk =
∫
ddx
√
ḡ
{

1
2 ĥ

µν [R2
k]µνρσ ĥαβ + 1

2 hR
0
k h+ f̄µ [Rc

k]µν fν
}
, (5.2.17)

dressing the Laplacians appearing in the kinetic terms. The insertions are adapted to
the quadratic forms (5.2.10) and (5.2.13) according to the prescription (4.3.12). This
determines

[R2
k]µνρσ = κ2 ZN

k Rk [12t]µνρσ , R0
k = −d−2

2d κ
2 ZN

k Rk ,

[Rc
k]µν =

√
2Zc

k Rk δµ
ν ,

(5.2.18)
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with the traceless projector given in (5.2.9). Observe that Rk inherits a non-trivial
k-dependence via the field renormalization factors ZN

k and Zc
k.

To construct the inverse of the dressed Hessian (Γ(2)
k +Rk), we define the multiplets

Φ = {ĥµν , h, fα, f̄α} , Φ̄ = {ĥµν , h,−f̄α, fα} , (5.2.19)

adopting the convention of a skew-symmetric metric in field space [88,132], to deal with
the anti-commuting fields more conveniently. Without further modifications to the RG
equation, instead of (4.3.10) the Hessian is thus equivalently defined as

[
Γ(2)
k

]
ij

(x, y) = 1√
ḡ(x)

√
ḡ(y)

δ2Γk
δΦ̄i(x)δΦj(y)

, (5.2.20)

with all variations acting from the left. With the cutoffs (5.2.18) in place, we have the
full dressed inverse propagator of the block matrix form

(
Γ(2)
k +Rk

)
ij

=

 K Q

Q̃ M

 , (5.2.21)

with the entries given from the quadratic forms (5.2.10) and (5.2.13). They read for the
graviton sector

K = κ2 ZN
k


(
Pk − 2Λk + CT R̄

)
[12t]µνρσ 0

0 −d−2
2d

(
Pk − 2Λk + CSR̄

)
 , (5.2.22)

the ghost sector

M =
√

2Zc
k


(
Pk − 1

d
R̄
)
δµ
ν 0

0
(
Pk − 1

d
R̄
)
δµν

 , (5.2.23)

and for the mixed terms

Q =
√

2Zc
k

 Q̄µν
α Qµν,α

Āα Aα

 , Q̃ =
√

2Zc
k

 Q̃α,µν Ãα

− ˜̄Qα
µν − ˜̄Aα

 , (5.2.24)

defined by the operators (5.2.15) and (5.2.16). In terms of these blocks, the inverse of
(5.2.21) is found as
 K Q

Q̃ M


−1

=


(
K−QM−1Q̃

)−1
−K−1Q

(
M− Q̃K−1Q

)−1

−M−1Q̃
(
K−QM−1Q̃

)−1 (
M− Q̃K−1Q

)−1

 . (5.2.25)
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Expanding the inverse up to second order in the background ghost fields, and taking
into account the minus sign originating from the supertrace, the RG equation (4.3.1)
becomes

∂tΓk = 1
2 Tr(2,0)

[(
K−1 + K−1QM−1Q̃K−1

)
∂tRgrav

k

]
− 1

2 Tr(1,1)

[(
M−1 + M−1Q̃K−1QM−1

)
∂tRgh

k

]
,

=: S2 + S0 + Sc + G2 + G0 + Gc ,

(5.2.26)

with the cutoff terms Rgrav
k = diag[R2

k,R0
k], and R

gh
k = diag[Rc

k,Rc
k], up to terms not

contributing to the β functions of interest here. As indicated in the last line, the full trace
decomposes into operator traces on the space of traceless symmetric tensors (2), scalars
(0) and vectors (1), where the two separate vector traces from the ghost fields yield equal
contributions, combining to (Sc + Gc). The Si are defined as the terms not including Q
and Q̃ and are thus independent of the background ghost fields, while the Gi denote the
new contributions originating from these. Substituting the explicit expressions for the
block matrices, we obtain

S2 = 1
2 Tr2

[
[12T]µνρσ

ZN
k (Pk − 2Λk + CT R̄)

∂t(ZN
k Rk)

]
,

S0 = 1
2 Tr0

[
1

ZN
k (Pk − 2Λk + CSR̄)

∂t(ZN
k Rk)

]
,

Sc = − Tr1

[
δα

β

Zc
k(Pk − 1

d
R̄)

∂t(Zc
k Rk)

]
.

(5.2.27)

These partial traces give rise to the β functions for Newton’s constant and the cosmological
constant. The β function for Zc

k is captured by the terms of second order in the background
ghost fields. Neglecting the curvature terms and making use of the cyclicity of the trace,
these are found as

G2 = − Zc
k√

2κ2(ZN
k )2

Tr2

[
∂t(ZN

k Rk)
(Pk − 2Λ)2

(
Qµν

α
1
Pk

˜̄
Q
α

ρσ − Q̄µν
α

1
Pk
Q̃α

ρσ

)]
,

G0 = 2d
d− 2

Zc
k√

2κ2(ZN
k )2

Tr0

[
∂t(ZN

k Rk)
(Pk − 2Λ)2

(
Aα

1
Pk

˜̄
Aα − Āα

1
Pk
Ãα
)]

,

Gc = − 1√
2κ2ZN

k

Tr1

[
∂t(Zc

kRk)
P 2
k

(
Q̃α

µν 1
Pk − 2ΛQ̄µν

β − ˜̄
Q
µν

α
1

Pk − 2ΛQµν
β

− 2d
d− 2

(
Ãα

1
Pk − 2ΛĀ

β − ˜̄
Aα

1
Pk − 2ΛA

β
))]

.

(5.2.28)

Notably, the insertions appear here always in pairs, with each part giving exactly the
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same contribution to the Gi. Evaluating both parts individually thus provides a highly
non-trivial crosscheck for the evaluation of these traces.

The β functions for the coupling constants ZN
k , Z

c
k, and Λk can now be computed

from (5.2.27) and (5.2.28). It is useful to introduce the anomalous dimensions of Newton’s
constant and the ghost field renormalization

ηN = −∂t ln(ZN
k ) , ηc = −∂t ln(Zc

k) , (5.2.29)

together with the dimensionless coupling constants

gk = Gkk
d−2 = (ZN

k )−1G0 k
d−2 , λk = Λkk

−2 . (5.2.30)

The β functions for gk and λk are encoded in the monomials of the gravitational sector in
(5.2.3). These are generated by the traces Si (5.2.27), which are evaluated straightfor-
wardly by applying the early-time heat kernel expansion (3.2.27). Equating the resulting
coefficients with (5.2.7) provides the flow equations for Λk and Gk = (32πZN

k κ
2)−1.

Rewriting the functions of the Laplacians in the traces captured following the scheme
(4.3.45), by inserting the identity (C.5) we obtain

∂t
(

Λk
8πGk

)
= kd

(4π)d/2
{
d(d+1)

2

[
Φ1,0
d/2(−2λk)− 1

2ηN Φ̃1,0
d/2(−2λk)

]
− 2d

[
Φ1,0
d/2(0)− 1

2ηcΦ̃
1,0
d/2(0)

]}
,

−∂t
(

1
16πGk

)
= kd−2

(4π)d/2

{
d(d+1)

12

[
Φ1,0
d/2−1(−2λk)− 1

2ηN Φ̃1,0
d/2−1(−2λk)

]
− d(d−1)

2

[
Φ2,0
d/2(−2λk)− 1

2ηN Φ̃2,0
d/2(−2λk)

]
− d

3

[
Φ1,0
d/2−1(0)− 1

2ηcΦ̃
1,0
d/2−1(0)

]
− 2

[
Φ2,0
d/2(0)− 1

2ηcΦ̃
2,0
d/2(0)

] }
.

(5.2.31)

The threshold functions Φp
n(ω) herein capture the cutoff dependence of the result as

discussed in appendix C. In the limit Zc
k = 1, ηc = 0, neglecting the quantum corrections

from the ghost fields, this result agrees with earlier computations [35, 46]. The terms
proportional to ηc are novel and capture the back-reaction of the quantum effects in the
ghost sector on the running of the gravitational coupling constants.

The final step is the computation of ηc. This requires extracting the background
ghost kinetic term from (5.2.28). The differential operators entering into these traces
are not minimal, so that the early-time heat kernel expansion is no longer applicable
and the more sophisticated off-diagonal heat kernel technique (3.3.5) is needed. This
method allows the computation of the traces Gi, containing operator insertions involving
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the background ghost fields. Retaining the ghost kinetic term only, we find

G2T =−
√

2
(4π)d/2

Zck
κ2(ZN

k
)2

[
4d2−d−8

4d Qd/2+1[fN1 ]− d2−2
2d Qd/2+2[fN2 ]

] ∫
ddx
√
ḡ c̄µD̄2cµ ,

G0 =−
√

2
(4π)d/2

Zck
κ2(ZN

k
)2

[
d−4
d(d−2)Qd/2+1[fN1 ]− 1

d
Qd/2+2[fN2 ]

] ∫
ddx
√
ḡ c̄µD̄2cµ,

G1 = − 1
(4π)d/2

1√
2κ2ZN

k

[
2d2−5d−2

2(d−2) Qd/2+1[f c1 ] + dQd/2+2[f c2 ]
] ∫

ddx
√
ḡ c̄µD̄2cµ .

(5.2.32)

Here the Q functionals are defined in (4.3.42) and

fN1 ≡
∂t(ZNk Rk)
(Pk−2Λ)2

1
Pk
, fN2 ≡ −

∂t(ZNk Rk)
(Pk−2Λ)2

d
dx

1
Pk(x)

∣∣∣
x=∆

,

f c1 ≡
∂t(ZckRk)

P 2
k

1
Pk−2Λ , f c2 ≡ −

∂t(ZckRk)
P 2
k

d
dx

1
Pk(x)−2Λ

∣∣∣
x=∆

,
(5.2.33)

denote the functions of the Laplacian appearing in the trace arguments. Substituting the
relations of the above functionals to the threshold functions (C.8) and equating the result
with the ghost kinetic term in (5.2.7), we find

∂tZ
c
k = 4Zc

k gk
(4π)d/2−1

{
Cgr

(
Φ2,1
d/2+1(−2λk)− 1

2ηN Φ̃2,1
d/2+1(−2λk)

)
+ Cgh

(
Φ1,2
d/2+1(−2λk)− 1

2ηcΦ̃
1,2
d/2+1(−2λk)

)
+ d (ηN − ηc)

(
Φ̃2,2
d/2+2(−2λk) + Φ̂2,2

d/2+2(−2λk)
)}

,

(5.2.34)

with the constants

Cgr = 4d2 − 9d− 2
d− 2 , Cgh = 2d2 − 5d− 2

d− 2 . (5.2.35)

The terms containing Φ2,2
d/2+2 and Φ̌2,2

d/2+2 originating from the Qd/2+2[f I2 ] drop out, due to
the cancellation of the corresponding coefficients.

The β functions are finally obtained by solving (5.2.31) and (5.2.34) for ∂tλk, ∂tgk
and ηc. This yields

∂tλk = βλ , ∂tgk = βg = (d− 2 + ηN) gk , (5.2.36)

with

βλ = − (2− ηN)λk + 1
2gk(4π)1−d/2[

2d(d+ 1)Φ1,0
d/2(−2λk)− 8dΦ1,0

d/2(0)− d(d+ 1)ηN Φ̃1,0
d/2(−2λk) + 4dηcΦ̃1,0

d/2(0)
]
,

(5.2.37)
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and the anomalous dimensions

ηN =
gB1(λ) + g2

[
C3(λ)C4(λ)−B1(λ)C2(λ)

]
1− g

[
B2(λ) + C2(λ)

]
+ g2

[
B2(λ)C2(λ)− C1(λ)C3(λ)

] ,

ηc =
gC4(λ) + g2

[
B1(λ)C1(λ)−B2(λ)C4(λ)

]
1− g

[
B2(λ) + C2(λ)

]
+ g2

[
B2(λ)C2(λ)− C1(λ)C3(λ)

] .
(5.2.38)

The functions Bi(λ) and Ci(λ) are defined in terms of the threshold functions (see appendix
C for details), which in the following will all be evaluated at the argument ω = −2λ,
which is suppress for notational simplicity. The Bi reproduce exactly the terms obtained
in [35], neglecting the ghost corrections

B1(λ) = 1
3 (4π)1−d/2

(
d(d+ 1)Φ1,0

d/2−1 − 6d(d− 1)Φ2,0
d/2 − 4dΦ0,1

d/2−1 − 24Φ0,2
d/2

)
,

B2(λ) = − 1
6(4π)1−d/2

(
d(d+ 1)Φ̃1,0

d/2−1 − 6d(d− 1)Φ̃2,0
d/2

)
.

(5.2.39)

The quantum corrections from the field renormalization of the ghosts are encoded in

C1(λ) = (4π)1−d/2
(

2CgrΦ̃2,1
d/2+1 − 4d(Φ̃2,2

d/2+2 + Φ̂2,2
d/2+2)

)
,

C2(λ) = (4π)1−d/2
(

2CghΦ̃1,2
d/2+1 + 4d(Φ̃2,2

d/2+2 + Φ̂2,2
d/2+2)

)
,

C3(λ) = 1
3 (4π)1−d/2

(
2dΦ̃0,1

d/2−1 + 12Φ̃0,2
d/2

)
,

C4(λ) = − (4π)1−d/2
(

4CgrΦ2,1
d/2+1 + 4CghΦ1,2

d/2+1

)
,

(5.2.40)

with the coefficients Cgr and Cgh defined in (5.2.35).
The expressions (5.2.37) and (5.2.38) in terms of which the desired β functions

(5.2.34) and (5.2.36) are given constitute the central result of this section. As expected,
the inclusion of the field renormalization for the ghosts gives non-trivial contributions to
the β functions for g and λ. These encompass the terms proportional to ηc in βλ and the
qualitatively new g2-terms in ηN . The leading contributions from the ghost sector are
suppressed by one power of g, relative to the leading Einstein-Hilbert term

ηN = gB1(λ) + g2
(
B1(λ)B2(λ) + C3(λ)C4(λ)

)
+O(g3) . (5.2.41)

Thus in the classical regime, g � 1, the ghost-improvement may be neglected. In the
quantum regime close to the NGFP where g ≈ 1, however, we expect that these corrections
become important.
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The results obtained within the standard Einstein-Hilbert truncation [35, 39] are
recovered exactly by setting Ci = 0. Because of the direct comparability of the computa-
tions, these new terms allow for the effects of the ghost fields to be traced analytically.
Although the β functions are not observables themselves and will thus in general carry
unphysical information, the access to their term structure makes more detailed fixed
point analyses possible, not restricted to numerical comparisons. A similar investigation
with the inclusion of further interaction terms is proposed as providing the means to
new structural insights in the emergence of the gravitational fixed point. This way,
the mechanism establishing it not to be an artifact of the used approximations may be
revealed.

5.2.2. The Ghost-improved Renormalization Group Flow

Investigating the influence of the new terms on the gravitational RG flow is the subject
of the following discussion. In this context, it is useful to observe that Zc

k enters into
βλ via ηc only and is in turn completely determined by gk, λk. Thus, substituting the
explicit formula for ηc into βλ, the running of Zc

k decouples and allows to analyse the
gravitational RG flow in the two-dimensional g, λ-subsystem. Once an RG trajectory
for gk, λk is found, it can be plugged back into ηc to obtain the running of the ghost
anomalous dimension. We will now exploit this decoupling and first discuss the fixed point
structure of the ghost-improved Einstein-Hilbert truncation for d = 4, before focusing on
the phase portrait and the fixed point structure including extra-dimensions.

The crucial requirement of the asymptotic safety scenario is the fixed point structure
of the gravitational β functions. Thus, we start our investigation by looking for fixed
points g∗, λ∗ where βg = βλ = 0 simultaneously. In the vicinity of such a point, the
linearised β functions are given by

∂tgi = Bij(gj − g∗j ) , (5.2.42)

where Bij = ∂gjβgi |g=g∗ , and gi = {g, λ}. The critical exponents θi defined in (2.3.25) as
minus the eigenvalues of Bij, provide an important characterisation of the fixed point.
In particular, eigendirections with a positive (negative) real part of θ are UV-attractive
(UV-repulsive) for trajectories close to the fixed point.

Inspecting the β functions (5.2.36) immediately reveals the Gaussian fixed point
(GFP)

g∗ = 0 , λ∗ = 0 , η∗N = η∗c = 0 . (5.2.43)
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Truncation λ∗ g∗ g∗λ∗ η∗c Re(θ) Im(θ) cutoff
EH + ghost 0.135 0.859 0.116 −1.774 1.935 2.012 opt
EH + ghost 0.260 0.355 0.092 −1.846 2.070 2.439 exp (s = 1)

EH 0.193 0.707 0.136 − 1.475 3.043 opt

Table 5.2.: Properties of the NGFP arising from the ghost-improved β functions (5.2.36).
The first two lines show the position, the marginal product g∗λ∗, the ghost
anomalous dimension η∗c , and the critical exponents of the fixed point obtained
with the optimized cutoff (C.10) and exponential cutoff (C.13) with s = 1,
respectively. For comparison, the third line displays the characteristics of the
NGFP found in the standard Einstein-Hilbert truncation [58].

This fixed point corresponds to the free theory, and constitutes a saddle point in the
g-λ-plane. It has one attractive and one repulsive eigendirection with critical exponents
given by the canonical mass dimensions of G and Λ, respectively. The numerical analysis
of the ghost-improved β functions also shows a unique NGFP. Its position and properties
are shown in the first two lines of table 5.2. Herein and in the remainder of the fixed point
analysis, we will set d = 4, before commenting on general d at the end of the section.

The non-Gaussian fixed point is situated at g∗ > 0, λ∗ > 0 and UV-attractive in
both g, λ. Substituting its position into ηc determines the ghost anomalous dimension
η∗c ≈ −1.8.6 For comparison, the third line of table 5.2 displays the properties of the NGFP
obtained within the standard Einstein-Hilbert truncation without ghost-improvement. We
observe that the actual numerical values of the product g∗λ∗ and the critical exponents
are shifted by approximately 30%.7 This is in the typical range for the cutoff scheme
dependence observed in [58]. Most remarkably, both the standard and the ghost-improved
Einstein-Hilbert truncation give rise to the same fixed point structure. This is highly
non-trivial, as the new contributions to the gravitational β functions are of the same
order of magnitude as the other previously known terms. We interpret this result as a
striking confirmation of the gravitational fixed point structure disclosed by the standard

6When including the marginal Zck in the set of coupling constants, η∗
c is also the critical exponent

associated with the new (UV-irrelevant) eigendirection. However, since the running of ηc is completely
determined by gk, λk,the field renormalization Zck is an inessential coupling.

7This product is expected to be less strongly dependent on the choice of cutoff, since it corresponding
to a power-counting marginal combination with gkλk = GkΛk.
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Figure 5.1.: Stability analysis for universal quantities in the Einstein-Hilbert truncation
(dashed line), previously obtained in [46], and upon including the ghost field
renormalization (solid line). The ghost-improvement significantly decreases
the cutoff scheme dependence.

Einstein-Hilbert truncation [44–47,58].8

The main virtue of the ghost-improvement becomes apparent, when investigating
the stability of the physical quantities g∗λ∗, θ, η∗c with respect to the variation of the
IR cutoff Rk. To illustrate this point, we resort to the exponential cutoff (C.13), and
determine the properties of the NGFP for varying shape parameter s. Figure 5.1 shows
the resulting cutoff scheme dependence of the physical quantities for the standard and
ghost-improved computation. Remarkably, the ghost-improvement reduces the unphysical
cutoff scheme dependence by factors 1.4, 2.0 and 3.2 for the product g∗λ∗, Re θ and Im θ,
respectively. The scheme-dependence of η∗c can only be determined in the ghost-improved
computation. Here the variation is approximately 2%.

The magnitude of cutoff scheme dependence of a result of the RG equation serves
as a measure for its reliability, since such unphysical input should be inessential. Our

8Qualitatively, our picture is also confirmed by the very recent results [131], which study the ghost-
improved Einstein-Hilbert truncation employing a spectrally adjusted cutoff. The numerical variations
observed in the two computations are within the typical range expected from the different cutoff
schemes.
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Figure 5.2.: The RG flow of gk, λk obtained from the numerical integration of the ghost-
improved β functions (5.2.36) using the optimized cutoff (C.10). The light-gray
line indicates a boundary of the coupling constant space where the β functions
diverge. The phase portrait is in complete agreement with the one obtained
from the standard Einstein-Hilbert truncation.

findings indicate that the ghost-improvement substantially increases the quality of the
Einstein-Hilbert approximation and therefore lends more credibility to the gravitational
fixed point being a robust feature. In particular the fixed point properties given in table
5.2 are more stable than anticipated from earlier computations alone.

After analysing the fixed point structure, we determine the phase portrait resulting
from the ghost-improved β functions. We start by investigating the gravitational RG
flow on the g-λ−plane, before studying the behaviour of the anomalous dimensions along
some typical sample trajectories.

The phase portrait resulting from the numerical integration of the β functions
(5.2.36) is depicted in figure 5.2. We first observe that gk = 0 is a fixed line, which cannot
be crossed by the flow. For gk > 0 the flow is dominated by the interplay of the NGFP
and the GFP. In this regime, the UV behaviour of the RG trajectories is controlled by the
NGFP, which acts as a UV attractor. Following the RG flow from this fixed point towards
the IR, the RG trajectories undergo a crossover from the NGFP to the “classical regime”
dominated by the GFP. Depending on whether the trajectory turns to the left (type Ia),
right (type IIIa) or hits the GFP (type IIa), the classical theory has a negative, positive
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Figure 5.3.: RG flow of the anomalous dimensions ηN (upper left) and ηc (upper right)
along the sample RG trajectories of type Ia (top line), type IIa (middle line)
and type IIIa (bottom line) shown in the lower left diagram. The ratio ηc/ηN
is depicted in the lower right diagram. In the IR, this ratio approaches zero,
a finite constant, or rapidly decreases after a peak for trajectories of type Ia,
type IIa and type IIIa, respectively.

or zero cosmological constant. The trajectories with positive cosmological constants,
however, cannot be continued to k = 0, but terminate at a finite value of k when reaching
the boundary of the phase space. The latter is indicated by the light-gray line, which
constitutes a singularity in the β functions at finite g, λ. Observe that the ghost-improved
phase portrait is in complete qualitative agreement with the standard Einstein-Hilbert
truncation [40,46,58].

It is now illustrative to pick one sample trajectory for each of the classes distingushed
above and study the k-dependence of the anomalous dimensions ηN and ηc along the
flow. The resulting diagrams are shown in figure 5.3. In the UV limit for large values of
t = ln(k/k0), the anomalous dimensions are determined by the NGFP, so that η∗N = −2
and η∗c = −1.77 for the optimized cutoff. Lowering t and approaching the IR limit, the
anomalous dimensions undergo a crossover towards the classical theory with ηN ≈ 0,
ηc ≈ 0. The steep increase at the end of the type IIIa trajectory is caused by the
singularity of the β functions (light-gray line in figure 5.2), and heralds the termination
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of the trajectory at a finite value k. The UV limit of the ratio ηc/ηN is governed by
the NGFP and takes the value η∗c/η∗N = 0.89. Following the flow towards the IR, the
ratio undergoes a crossover and asymptotes to 0, the cutoff scheme dependent value
54Φ0,3

3 /(24Φ0,2
2 − Φ0,1

1 ), or a finite value at the termination point, for trajectories of type
Ia, type IIa, and type IIIa, respectively.

It is worthwhile to have a closer look at the singularity causing the termination of
the type IIIa trajectories. Figure 5.3 shows, that at this point in coupling constant space,
the anomalous dimensions ηN and ηc diverge. This can be traced back to the vanishing
of the denominators in (5.2.38). Here, the additional terms from the running ghost field
renormalization has a very non-trivial effect. While the denominator arising from the
standard Einstein-Hilbert truncation has a term linear in g only, the ghost-improvement
adds an additional term quadratic in g. This may provide an elegant mechanism for lifting
this singularity by shifting the zeros of the denominator to complex values g. However, for
the Bi, Ci given in (5.2.39) and (5.2.40), this mechanism is not realized, and may require
a further improvement of the truncation before becoming operational.

The β functions (5.2.37) and (5.2.38) are continuous in the spacetime dimension. In
the sequel, we will exploit this feature and analyse the resulting gravitational fixed point
structure for varying dimension d. Based on the standard Einstein-Hilbert truncation,
a similar analysis has been carried out in [46, 48, 50]. Since some TeV-scale gravity
models [133–136], hinge on the existence of the NGFP in the presence of extra-dimensions,
it is worthwhile to complement the previous results by including the ghost-improvements.
Remarkably, the d-dimensional fixed point structure is strikingly similar to the one
obtained in four dimensions. This is in crucial contrast to the situation in perturbation
theory, where a change of the dimension alters the power counting criterium, so that any
given model is only renormalizable for sufficiently low dimension. Asymptotic safety is in
this respect a direct generalization that continues the perturbative fixed points to higher
dimensions.

Here, the GFP (5.2.43) exists for all d. Furthermore, there is a unique generalization
of the NGFP for all dimensions 3 ≤ d ≤ 25 considered here. Its properties are shown in
figure 5.4. The fixed point is situated at positive g∗ > 0, λ∗ > 0 and UV attractive in
both g and λ. Below d < 24 its critical exponents are given by a complex pair Reθ± iImθ.
For d ≥ 24 the imaginary part of the critical exponents vanishes and we have two real
critical exponents, which are still UV attractive. All these results are in perfect agreement
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5.2. Running Ghost Field Renormalization

Figure 5.4.: Properties of the NGFP for general spacetime dimension d, obtained with
the optimized cutoff (C.10). There is a unique NGFP for all 3 ≤ d ≤ 25
considered.

with earlier findings based on the standard Einstein-Hilbert truncation. An interesting
feature arises in the ratio η∗c/η∗N , with η∗N = 2 − d, shown in the top right diagram of
figure 5.4. This ratio is peaked at d = 4, where it reaches almost unity, and decreases for
both d > 4 and d < 4. It is a rather curious observation that in d = 4 the graviton and
ghost propagators have a similar anomalous dimension in the UV limit, highlighting this
particular value of the spacetime dimension.9 While it is clearly desirable to get a better
understanding of this result, the underlying analysis is beyond the scope of the present
discussion.

Notably, for d = 4 the fixed point value for the ghost anomalous dimension is very
close to the anomalous dimension of Newton’s constant η∗N = −2. It can be anticipated
that this is not accidental, but a consequence of spacetime becoming effectively two-
dimensional at short distances, where the physics is controlled by the non-Gaussian fixed
point [28,137]. The argument is based on the observation that the propagator of a field

9A related argument, concluding that d = 4 is special, is based on the spectral dimension of spacetime
computed from the running of Newton’s constant and the cosmological constant and has been put
forward in [28].
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with anomalous dimension η is proportional to p−2+η. Therefore, in the vicinity of the
UV fixed point, both the graviton and ghost propagator behave approximately as p−4,
which translates into a logarithmic correlator in position space. In this case the spacetime
seen by both fields is effectively two-dimensional, suggesting η∗c = −2 in the full theory.
A similar dynamical reduction of dimension has also been observed within the framework
of Causal Dynamical Triangulations [138], and in a variety of other quantum gravity
approaches [139]. For a more detailed discussion of the emergent properties of fractal
spacetimes see [140].
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The fixed point structure of a given theory can already be deduced from rather simple
approximations of the exact RG flow, as demonstrated in the previous chapter for the case
of gravity in the Einstein-Hilbert approximation. However, establishing the consistency
of the approximation and answering questions concerning, e.g., the critical exponents of
a given fixed point, and the number of relevant coupling constants appearing in a UV
complete model requires much more sophistication. A natural organizing principle for the
operators retained in the truncation ansatz for Γk best suited for an investigation that
focuses on the UV limit of a model is provided by the derivative expansion. This scheme,
ordering the interaction terms by the canonical mass-dimension of the corresponding
coupling constants, corresponds to a curvature expansion for the case of gravity. In this
chapter, we lay out the extension of existing results, aiming for the completion of the
four-derivative truncation, initiated in [56,63], by including the scale dependence of the
Gauss-Bonnet term (see appendix A.3 for details). The first section demonstrates the
computation of the non-perturbative β functions of a full curvature squared ansatz. In
the second section, the results are presented for the computation in a perturbative limit
in d = 4 dimensions.

6.1. The Renormalization Group Flow of Higher

Derivative Gravity

The gravitational part of the effective average action Γk is chosen here to contain all inter-
action monomials build from the curvature tensor with four or less powers of momentum,
neglecting only total derivative terms. This is commonly parametrized by

Γgrav
k =

∫
ddx
√
g

[
2ZkΛk − ZkR + 1

2σk
C2 − ωk

3σk
R2 + θk

σk
E

]
, (6.1.1)
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where Zk ≡ 1/(16πGk) contains the dimensionful Newton’s constant Gk, and all coupling
constants are allowed to depend on the RG scale k. In this action functional, we abbreviate

C2 ≡ CµνρσC
µνρσ = 2

(d−2)(d−1)R
2 − 4

d−2RµνR
µν +RµνρσR

µνρσ , (6.1.2)

the square of the Weyl tensor, and

E = R2 − 4RµνR
µν +RµνρσR

µνρσ

= d(d−3)
(d−2)(d−1)R

2 − 4(d−3)
(d−2) RµνR

µν + C2 ,
(6.1.3)

the integrand of the Euler topological invariant in d = 4 dimensions, given in (A.3.9). In
order to give the second variation of this ansatz more conveniently, we reparametrize the
action as

Γgrav
k =

∫
ddx
√
g
[
2ZkΛk − ZkR + akR

2 + bkRµνR
µν + ckE

]
. (6.1.4)

The coupling constants in this expression are related to the ones in (6.1.1) by

ak = − 1
σk

(
d(d−3)

2(d−2)(d−1) + ωk
3

)
, bk = 2

σk

d−3
d−2 , ck = 1

σk

(
θk + 1

2

)
. (6.1.5)

Due to its topological character, the metric variations of the Euler term E will become
relevant only in dimensions d > 4.

The gauge fixing action accompanying Γgrav
k is here taken to be of the form

Sgf = 1
2

∫
ddx
√
ḡ Fµ Y

µν Fν , (6.1.6)

where Fµ = D̄νhµν − βD̄µh
ν
ν , and the bar denotes covariant derivatives with respect to

the background metric. Since the gravitational part of the action contains terms with
up to four derivatives of the fluctuation fields, we also allow for four derivatives in Sgf ,
employing the minimal gauge [141]

Y µν = bk
[
ḡµν ∆ + γb D̄µD̄ν + V µν

b

]
, (6.1.7)

where ∆ ≡ −D̄2. To remove all non-minimal four derivative terms in the second variation
of Γk, the gauge parameters are chosen as

β = 1 + bk
4ak

, γb = 1 + 2ak
bk

, V µν
b = R̄µν . (6.1.8)

This type of higher derivative gauge fixing results in two ghost terms in the action which
take the Faddeev-Popov determinant [120] into account. The operator Fµ defines a ghost
action in the usual way, defined in (4.1.20). For the above choice, it becomes

Sgh
c =

∫
ddx
√
ḡ C̄µ

[
∆δµν + (1 + bk

2ak
) D̄µD̄ν − R̄µ

ν

]
Cν . (6.1.9)

144
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The determinant of the additional operator Y µν in the gauge fixing action (6.1.6) is
captured by the real third ghost field bµ in the action

Sgh
b = 1

2

∫
ddx
√
ḡ bµ Y

µν bν . (6.1.10)

Putting the gauge fixing and the ghost terms together with the gravitational action (6.1.1),
the complete effective average action assumes the form

Γk[h, C̄, C, b; ḡ] = Γgrav
k [ḡ + h] + Sgf [h, ḡ] + Sgh

c [h, C̄, C; ḡ] + Sgh
b [h, b; ḡ] . (6.1.11)

We now proceed with the solution of the RG equation (4.3.1) for this functional following
the algorithm laid out in section 4.3.

Upon substituting the ansatz (6.1.11), the supertrace in (4.3.1) splits into a gravita-
tional and the two ghost contributions, ∂tΓk = T grav + T c + T b, defined by

T grav := 1
2Tr

(δ2(Γgrav
k + Sgf)
δh δh

+Rgrav
k

)−1

∂tRgrav
k

 ,
T gh

c := − Tr
(δ2Sgh

c
δc̄ δc

+Rc
k

)−1

∂tRc
k

 ,
T gh

b := − 1
2Tr

(δ2Sgh
b

δb δb
+Rb

k

)−1

∂tRb
k

 .
(6.1.12)

We proceed with the evaluation of the ghost traces before engaging the more involved
gravitational trace.

Computation of the Ghost Traces

The operators in the two ghost terms (6.1.9) and (6.1.10) are of the same form, and with
a standard cutoff Rk (4.3.12) can both be written as

[Sgh,(2) +Rk]µν = Pk(∆) δµν + γD̄µD̄
ν + Vµ

ν = Qgh
µ
ν + Vµ

ν , (6.1.13)

where γ is a fixed parameter depending on the coupling constant ωk and Vµ
ν is an

endomorphism proportional to the Ricci tensor. Here we defined the operator

Qgh
µ
ν = Pk δµ

ν + γD̄µD̄
ν

= Pk ΠTµ
ν +

(
Pk − γ∆

)
ΠLµ

ν +O(R) ,
(6.1.14)

according to the scheme (4.3.18). With the use of the projection operators ΠT and ΠL

given in (4.1.25), the inverse operator in flat space is easily found. Neglecting all curvature
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terms, we obtain

Qgh,−1
0 µ

ν = 1
Pk

ΠTµ
ν + 1

Pk − γ∆ΠLµ
ν

= 1
Pk

δµ
ν − γD̄µD̄

ν 1
Pk(Pk − γ∆) .

(6.1.15)

Based on this expression, the inverse of Qgh is given as a curvature expansion with the
formula (4.3.24). The curvature correction appearing therein is here found by

Wgh
µ
ν = δµ

ν −Qgh
µ
αQgh,−1

0 α
ν

= − γD̄µD̄
ν 1
Pk

+ γPkD̄µD̄
ν 1
Pk(Pk − γ∆) − γ

2D̄µ∆D̄ν 1
Pk(Pk − γ∆)

= γ
(

[Pk, D̄µD̄
ν ] + γD̄µ[D̄ν ,∆]

) 1
Pk(Pk − γ∆) ,

(6.1.16)

which is written in terms of commutators in the last step. The commutator involving the
function Pk(∆) can be evaluated with the formula (B.2.4), up to the required order in
the curvature. Subsequently, the inverse of Qgh is acquired in the form

Qgh,−1
µ
ν = Qgh,−1

0 µ
α
(
δα

ν +Wgh
α
ν +Wgh

α
βWgh

β
ν
)

+O(R3)

= Qgh,−1
0 µ

α
(
δα

ν +Wgh
1 α

ν +Wgh
2 α

ν +Wgh
1 α

βWgh
1 β

ν
)

+O(R3) ,
(6.1.17)

introducing a separation Wgh =Wgh
1 +Wgh

2 into terms including one or two curvature
terms, respectively. Together with the inverse of the second variation (6.1.13) expanded
in the endomorphism Vµ

ν we find the full dressed propagator

[
Sgh,(2) +Rk

]−1
µ
ν = Qgh,−1

µ
α −Qgh,−1

µ
αVα

βQgh,−1
β
ν

+Qgh,−1
µ
αVα

βQgh,−1
β
γVγ

δQgh,−1
δ
ν +O(R3) .

(6.1.18)

The ghost traces T gh in (6.1.12) can be obtained after substituting (6.1.18) and (6.1.17).
To second order in the curvature, the result is given in terms of eight partial traces

T gh = Tr
[
Sgh,(2) +Rk

]−1
∂tRk

= Tr
[
Qgh,−1

0 +Qgh,−1
0 Wgh

1 −Q
gh,−1
0 VQgh,−1

0

+Qgh,−1
0 Wgh

2 +Qgh,−1
0 Wgh

1 W
gh
1

−Qgh,−1
0 Wgh

1 VQgh,−1
0 −Qgh,−1

0 VQgh,−1
0 Wgh

1

+Qgh,−1
0 VQgh,−1

0 VQgh,−1
0

]
∂tRk +O(R3) ,

(6.1.19)
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which can now be evaluated via the off-diagonal heat kernel expansion. In d = 4 dimensions
and using the optimized cutoff (C.10) the result for this generic ghost trace becomes

T gh = 1
(4π)2

∫
d4x
√
g
[
k4
(
3− 2

γ
− 2

γ2 ln(1− γ)
)

+ k2
(
1 + 1

2ψ −
1

3γ ln(1− γ)
)
R− k2

(
3
4 + 1

2γ(1−γ) + 1
2γ2 ln(1− γ)

)
V

+
(

1
24ψ

2 + 1
6ψ + 1

9

)
R2 +

(
1
12ψ

2 + 1
6ψ −

2
45

)
RµνR

µν − 11
90RµνρσR

µνρσ

−
(

1
12ψ

2 + 1
6ψ + 1

3

)
RV −

(
1
6ψ

2 + 2
3ψ
)
RµνV

µν

+ 1
24ψ

2V 2 +
(
1 + 1

2ψ + 1
12ψ

2
)
VµνV

µν
]
,

(6.1.20)

where ψ ≡ γ/(1− γ) and V ≡ Vµ
µ. Notably, the fourth order part is universal, and does

not depend on the form of the cutoff. It agrees with earlier results [92] and thus provides
an independent verification. Moreover, the γ dependence in these terms is such that the
limit γ → 0 is smooth and the result reduces to the trace for the minimal differential
operator corresponding to (6.1.13). The explicit expressions for T gh

c and T gh
b are finally

obtained from (6.1.20) by substituting

γb = 1 + 2ak
bk

= 1
3(1− 2ωk) , V µν

b = R̄µν ,

γc = 1 + bk
2ak

= 2ωk−1
2(ωk+1) , V µν

c = −R̄µν ,

(6.1.21)

and taking the corresponding prefactors into account.

Second Variation of the Gravitational Action

For the second variation of the gravitational part together with the gauge fixing action
(Γgrav

k + Sgf) we have

Γgrav,quad
k = 1

2

∫
ddx
√
ḡ
[
hµν Hµνρσ h

ρσ
]
, (6.1.22)

with the insertion assuming the general form [141]

Hµνρσ = Kµνρσ∆2 + D̂µνρσ
αβD̄(αD̄β) + Ŵµνρσ . (6.1.23)

A non-minimal four derivative piece (∼ D(αDβDγDδ)) does not appear here, because
such terms cancel with the contributions of the gauge fixing term (6.1.6). Although
the algorithm used here is capable to handle the operator in full generality, it is more
convenient to set the computation up in this way in order to retain comparability with
known results and to reduce the computational effort. Furthermore, a one derivative piece
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is irrelevant as it would only contribute to surface terms. In the following we drop the bar
on background quantities, and neglect the variations of the Euler term E. The individual
tensors in (6.1.23) are given by [120]

Kµνρσ = bk
2

(
δµν,ρσ −

(
1 + bk

4ak

)
gµνgρσ

)
, (6.1.24)

in the minimal Laplace-squared term,

D̂µνρσ
(αβ) =

(
akR−

Zk
2
)(
δµν,ρσg

αβ − gµνgρσgαβ + 2gµνδρσ,αβ − 2gµρδνσ,αβ
)

+ 4akRρσ

(
gµνg

αβ − δµν,αβ
)

+ bkR
αβ
(
δµν,ρσ − 1

2gµνgρσ
)

+ 2bkRµρνσg
αβ + 2bkgµνRρ

(αδσ
β) − 4bkgµρRν

(αδσ
β) ,

(6.1.25)

in the non-minimal two derivative term, and

Ŵµνρσ =
(
akR−

Zk
2
)(
Rµρνσ + 3Rµρgνσ − 2gµνRρσ

)
+ 2akRµνRρσ

− 1
2

(
δµν,ρσ − 1

2gµνgρσ
)(

2ZkΛk − ZkR + akR
2 + bkRαβR

αβ
)

+ bk

(
RµρRνσ − gµνRαβRρασβ − gµνRρ

αRασ

+ 3gµρRαβRνασβ + 2Rµ
α
ν
βRρασβ

)
,

(6.1.26)

where the symmetries (µ ↔ ν), (ρ ↔ σ) and ((µν) ↔ (ρσ)) in the lower indices are
understood implicitly in all of these expressions.1 The unit operator on symmetric 2-
tensors is here denoted by δµν,ρσ = 1

2(gµρgνσ + gµσgνρ). For the result in general spacetime
dimensions the Euler term can easily be included, because its second variation δ2E ∝ R

includes at least one curvature in each term. Therefore, the following discussion applies
entirely unchanged.

To find the inverse of the operator H given in (6.1.23) accompanied by the cutoff
Rk, following (4.3.18) it is cast in the form

Hµνρσ +Rgrav
k,µνρσ = Qµνρσ + Vµνρσ , (6.1.27)

with V containing all terms with at least one curvature. The curvature free part is given

1At this stage it is consistent to drop all terms containing derivatives of curvatures, since these do not
carry any information about the flow of the coupling constants contained in the ansatz (6.1.1).
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by

Qµνρσ = P(∆) δµν,ρσ + P̂(∆) gµνgρσ

− 1
4Zk

(
gµνDρDσ + gµνDσDρ + gρσDµDν + gρσDσDρ

)
+ 1

8Zk

(
gµρDνDσ + gµρDσDν + gµσDνDρ + gµσDρDν

+ gνρDµDσ + gνρDσDµ + gνσDµDρ + gνσDρDµ

)
,

(6.1.28)

with all symmetries written explicitly, and the functions of the Laplacian defined as

P(∆) = 1
2bk Pk(∆)2 + 1

2Zk ∆− ZkΛk ,

P̂(∆) = −1
2bk
(
1 + bk

4ak

)
Pk(∆)2 − 1

2Zk ∆ + 1
2ZkΛk .

(6.1.29)

For the construction of the cutoff, we chose Rk in such a way that it regulates the highest
highest power of the Laplacians appearing in the kinetic terms, following the replacement
rule ∆→ Pk(∆) ≡ ∆ +Rk(∆/k2). Thus we have

Rgrav
k,µνρσ(∆) = Kµνρσ

(
Pk(∆)2 −∆2

)
, (6.1.30)

for the cutoff operator in (6.1.27).

Inverting the Gravitational Operator

Using the projector technique (4.3.20) for the decomposition of 2-tensors (4.1.41), the
inverse of Q (6.1.28) in flat space is found in the form

Q−1
0 αβµν =DαDβDµDν f1(∆) +

(
gαβDµDν + gµνDαDβ

)
f2(∆)

+
(
gαµDβDν + gανDβDµ + gβµDαDν + gβνDαDµ

)
f3(∆)

+ gαβgµν f4(∆) + δαβ,µν f5(∆) .

(6.1.31)

Here the functions of the Laplacian read

f1(∆) = 1
4(d− 2)Z2

k

(
P + 2P̂ + 1

2Zk∆
)
X−1 ,

f2(∆) = 1
2Zk

(
P − 1

2Zk∆
)(
P + 2P̂ + 1

2Zk∆
)
X−1 ,

f3(∆) = − 1
4Zk

(
dPP̂ + P2 − 1

2(d− 1)Zk∆(2P̂ + 1
2Zk∆)

)
X−1 ,

f4(∆) = −
(
P − 1

2Zk∆
)(
PP̂ − ZkP̂∆− 1

4Z
2
k∆2

)
X−1 ,

f5(∆) = P−1 ,

X(∆) = P
(
P − 1

2Zk∆
)(
dPP̂ + P2 − 1

2(d− 1)Zk∆(2P̂ + 1
2Zk∆)

)
,

(6.1.32)
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given in terms of the functions (6.1.29) and the common denominator denoted as X(∆).
Before we can write the curvature expansion of the inverted operator Q, the correction
Wgrav = 1−QQ−1

0 defined in (4.3.25) must be computed. Thus we evaluate this expression
and rewrite it in terms of commutators to find

QρσαβQ−1
0 αβµν − δρσ,µν =

[P , DρDσDµDν ] f1 +
{
− 1

2gρσ[P̂ ∆, DµDν ] f1

−1
4Zk gρσ

(
[∆2, DµDν ]−Dα[∆, Dα]DµDν

)
f1 − 1

4ZkDρDσ[∆, DµDν ] f1

+1
8Zk

(
2[Dβ, Dρ]DσD

β + 3Dρ[Dβ, Dσ]Dβ −Dρ[∆, Dσ]
)
DµDν f1

+1
2 gρσ[P , DµDν ] f2 + d

2gρσ[P̂ , DµDν ] f2 + 1
4Zk gρσ[∆, DµDν ] f2

+1
4Zk gµν

(
− 2Dρ[∆, Dσ] + [Dβ, Dρ]DβDσ

)
f2 (6.1.33)

−1
8Zk gµν gρσ

(
Dα[Dβ, Dα]Dβ −Dβ[∆, Dβ]

)
f2

+2gµρ[P , DσDν ] f3 + 2gρσ[P̂ , DµDν ] f3

−1
4Zk

(
− [Dµ, Dρ]DσDν − 2Dρ[Dµ, Dσ]Dν

)
f3

−1
2Zk gρµ

(
2Dσ[∆, Dν ]− [Dβ, Dσ]DβDν

)
f3

−1
2Zk gρσ

(
− 2Dµ[∆, Dν ] + [Dβ, Dµ]DβDν

)
f3

+1
4Zk gρµ[Dν , Dσ] f5 +

(
ρ↔ σ

)}
,

which is understood as acting on a symmetric tensor hµν to the right, and the argument
for the functions P(∆) and P̂(∆) is suppressed. After evaluating the simple commutators,
this expression becomes(

QρσαβQ−1
0 αβµν − δρσ,µν

)
hµν =(

[P , DρDσDµDν ] f1 − gρσ[P̂ ∆, DµDν ] f1 + gρσ[P , DµDν ] f2 + d gρσ[P̂ , DµDν ] f2

+2
(
gµρ[P , DσDν ] + gµσ[P , DρDν ]

)
f3 + 4gρσ[P̂ , DµDν ] f3

−1
2Zk gρσ[∆2, DµDν ] f1 − 1

2ZkDρDσ[∆, DµDν ] f1 + 1
2Zk gρσ[∆, DµDν ] f2

)
hµν

−1
4Zk

(
2Rρ

β
σ
αDαDβ − 3Rσ

αDρDα − 3Rρ
αDσDα

)
DµDνh

µν f1

−1
2Zk gρσR

αβDαDβDµDνh
µν f1 − 1

2Zk gρσR
αβDαDβhµ

µ f2 (6.1.34)

−1
4Zk

(
2Rρ

α
σ
βDαDβ − 3Rρ

αDσDα − 3Rσ
αDρDα

)
hµ

µ f2

−2Zk gρσRµ
α
ν
βDµDνh

αβ f3 − 1
4Zk

(
Rρβσ

αDαDνh
βν +Rρ

α
σβDαDνh

βν
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+2Rρ
β
σαDβDνh

αν + 2Rρ
α
σβDβDνh

αν + 4Rραβ
γDσDγh

αβ + 4Rσαβ
γDρDγh

αβ

−3RβσDρDνh
βν − 3RβρDσDνh

βν − 2Rβ
σDβDνhρ

ν − 2Rβ
ρDβDνhσ

ν

)
f3

−1
2Zk

(
2Rρβσνh

βν −Rσβhρ
β −Rρβhσ

β
)
f5 .

The remaining, more complicated commutators are best evaluated using computer algebra
software, since they increase in size significantly.

The gravitational contribution is then given in terms of partial traces, following
from the curvature expansion formula (4.3.26) for the full dressed propagator. This yields

T grav = Tr
[
Γgrav,(2)
k + Sgf,(2) +Rgrav

k

]−1
∂tRgrav

k

= Tr
[
Q−1

0 +Q−1
0 W

grav
1 −Q−1

0 V1Q−1
0

+Q−1
0 W

grav
2 +Q−1

0 W
grav
1 Wgrav

1 −Q−1
0 V2Q−1

0

−Q−1
0 W

grav
1 V1Q−1

0 −Q−1
0 V1Q−1

0 W
grav
1

+Q−1
0 V1Q−1

0 V1Q−1
0

]
∂tRgrav

k +O(R3) ,

(6.1.35)

where the potential defined in (6.1.27) is split as V = V1 + V2 into a piece containing only
one and containing two occurences of the curvature, respectively. This step is convenient
to reduce the computational expense in the automatized evaluation of these partial traces.

Following the algorithm presented in section 4.3, the traces in (6.1.35) can be
solved by a replacement rule, making use of identities of the form (3.3.7). Since the
resulting expressions are very large, the computation can only be handled reasonably by
an implementation of this step on a computer. The qualitative discussion of the result is
out of the scope of this thesis. In the next section, we will resort to the evaluation in the
perturbative limit to demonstrate its relation to known results.

6.2. Perturbative β Functions and Their Fixed Points

In this section we will re-derive the perturbative β functions of higher derivative gravity
[20,141] from the general discussion in the last section. Since the RG equation introduces
a dimensionful scale parameter, it keeps track of the quadratic and quartic divergences,
which drop out when using dimensional regularization.2 Similar studies have been carried

2More precisely, the dimensional regularization scheme allows to discard all but the power-counting
marginal divergences via analytic continuation.
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out before in [142,143], where it was observed that the contribution from terms with higher
divergence has a drastic effect on the fixed point structure of the renormalization group flow.
These contributions shift the fixed point for Newton’s constant and cosmological constant
to non-zero values, rendering the theory asymptotically safe instead of asymptotically free.
The main purpose of the present section is to demonstration that the proposed algorithm
used in the evaluation of the traces recovers these results. Surprisingly, the regularization
scheme intrinsic to this algorithm unveils certain features in the fixed point structure of
the theory, that have not been stressed before.

For the perturbative computation, it is sufficient to solve the RG equation in a
1-loop limit. Therefore we write the equation in the 1-loop form (2.3.20), from which it
can be inferred that the scale dependence of all coupling constants in its r.h.s. can here
be neglected. For the scale derivative of the cutoff operator (6.1.30), we can thus write

∂tRgrav
k,µνρσ(∆) = 2KµνρσPk(∆) ∂tRk(∆) , (6.2.1)

with the tensor Kµνρσ given in (6.1.24). Motivated by this form of the cutoff, it is
convenient to define the operators

Vµνρσ
(αβ) := [K−1]µνγδD̂γδρσ

(αβ) , Uµνρσ := [K−1]µνγδŴγδρσ , (6.2.2)

in relation to the pieces D̂ (6.1.25) and Ŵ (6.1.26). The inverse of K is easily found to be

[K−1]µνγδ = 2
bk
δµν,

γδ − 2(4ak+bk)
bk(−4ak+4dak+dbk) gµνg

γδ . (6.2.3)

In terms of these operators, the second variation of the action (6.1.23), supplemented by
the cutoff operator (6.1.30) assumes the form

Hµνρσ +Rgrav
k,µνρσ = Kµν

γδ
(
Pk(∆)2 δγδ,ρσ + Vγδρσ

(αβ)D̄αD̄β + Uγδρσ

)
. (6.2.4)

To find the inverse of this expression in the perturbative limit, we will expand in V

and U . In contrast to the full resummation (6.1.33) performed in the last section, this
computation takes only finite orders of Zk into account.

Thus treating V and U as interaction vertices of mass-dimension two and four,
respectively, the inverse of the regulated propagator in the gravitational trace (6.1.12) is
given by (

Pk(∆)2 δµν,ρσ + Vµνρσ
(αβ)D̄αD̄β + Uµνρσ

)−1

=
(
δµν,ρσ Pk(∆)−2 + Vµνρσ

(αβ)D̄αD̄β Pk(∆)−4 + Uµνρσ Pk(∆)−4

+ Vµν
λτ (αβ)Vλτρσ

(γδ)D̄αD̄βD̄γD̄δ Pk(∆)−6
)

+O(R3) ,

(6.2.5)
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up to terms with higher powers of the curvature, which are outside the truncation
considered here. The gravitational trace is in turn found as

T grav = 1
2Tr2

[(
Pk(∆)2 δµν,ρσ + Vµνρσ

(αβ)D̄αD̄β + Uµνρσ

)−1
2Pk(∆) ∂tRk(∆)

]

= Tr2

[
∂tRk
Pk

]
− Tr2

[
U ∂tRk

P 3
k

]
− Tr2

[
V (αβ)D̄αD̄β

∂tRk
P 3
k

]
+ Tr2

[
V (αβ)V (γδ)D̄αD̄βD̄γD̄δ

∂tRk
P 5
k

]
+O(R3) ,

(6.2.6)

where the tensor K cancelled between the second variation and the derivative of the cutoff
term (6.2.1), and summation over internal indices is implicit in the last line.

The evaluation of these traces is remarkably easy when employing the off-diagonal
heat kernel methods developed in chapter 3. Each of the four partial traces can be given
without specifying the tensors V and U , since all non-minimal derivative operators are
already written explicitly in the expansion (6.2.6). In d = 4 dimensions and using the
optimized cutoff (C.10) as shape function, the automatized computation yields

T grav = 1
(4π)2

∫
d4x
√
g
[
10k4 + k2

(
10
3 R + 1

6Vi
i
µ
µ
)

+ 5
18R

2 − 1
9RµνR

µν − 8
9RµναβR

µναβ

− 1
6RµνVi

iµν + 1
12RVi

i
µ
µ − Uii + 1

48Vijµ
µV ji

ν
ν + 1

24VijµνV
jiµν

]
.

(6.2.7)

This result encompasses the well-known expressions for the universal four-derivative terms.
The explicit gravitational trace is found by substituting the rather lengthy expressions for
V and U (6.2.2).

Finally, we can combine the three traces (6.1.12) to obtain the total result. The
final form of the RG equation with the gravitational contribution (6.2.7) and the ghost
contributions (6.1.20) with the parameters (6.1.21) substituted, yields

∂tΓk = 1
(4π)2

∫
d4x
√
g

[
133
20 C

2 − 196
45 E + 5

36
(
1 + 8ωk + 12ω2

k

)
R2

−
{
Zkσk
12ωk

p7 + k2

72(1−2ωk)p4 − k2

12(1−2ωk)2 p2 ln
(

2
3(1 + ωk)

)}
R

+ Z2
kσ

2
k(1+20ωk)

8ω2
k

+ Zσ((4+112ωk)Λk+k2p5)
6ωk

+ k4p3
36(1−2ωk) + k4 p1

6(1−2ωk)2 ln
(

2
3(1 + ωk)

) ]
.

(6.2.8)

Herein and in the following, we abbreviated

p1 = 6− 96ωk − 48ω2
k , p2 = 65 + 28ωk + 8ω2

k , p3 = 162− 540ωk ,
p4 = 35− 218ωk − 352ω2

k , p5 = −2− 20ωk , p6 = 1 + 86ωk + 40ω2
k ,

p7 = 3 + 26ωk − 40ω2
k ,

(6.2.9)
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to express the non-universal terms.

Discussion of the Results

The β functions ∂tgi = βgi governing the scale dependence of the coupling constants
contained in (6.1.1) can finally be read off by comparison with the coefficients of the
curvature polynomials appearing in (6.2.8). For the marginal couplings, the β functions
are universal in the sense that they do not depend on the regularization scheme. This is
due to the properties (C.9) of the threshold functions. Explicitly, we find

βσ = − 1
(4π)2

133
10 σ2 ,

βθ = − 1
(4π)2

7(56 + 171θ)
90 σ ,

βω = − 1
(4π)2

(25 + 1098ω + 200ω2)
60 σ ,

(6.2.10)

with the index k dropped. Despite our quite different computational approach, this result
agrees with earlier computations [141, 142]. The β functions governing the running of
Newton’s constant and the cosmological constant are most conveniently written in terms
of the dimensionless quantities g = k2/16πZk and λ = k−2Λ. Here we obtain

βg = 2g − σg
192π2ω

p7 − g2

12π

[
1

6(1−2ω) p4 − 1
(1−2ω)2 p2 ln

(
2
3(1 + ω)

)]
,

βλ = − 2λ+ σ2(1+20ω2)
4096π3gω2 + g

12π(1−2ω)2 (p1 + λp2)ln
(

2
3(1 + ω)

)
+ g

72π(1−2ω)(p3 − λp4) + σ
192π2ω

(p5 + λp6) .

(6.2.11)

These are non-universal results and will change in their explicit form with the applied
regularization scheme. Therefore they are expected to differ from the derivation [142],
which employs the RG equation with a Type III cutoff, adjusted to the second variation
with Rk = Γ(2)

k Rk. In particular, the logarithmic terms in (6.2.11) are a novel feature
in the present Type I cutoff computation. Their appearance can be traced back to the
denominators (Pk − a∆) appearing in the ghost sector (6.1.15), which are absent in the
spectrally adjusted case.

We will close this section with a discussion of the fixed point structure of the β
functions (6.2.10) and (6.2.11). The equation βσ(g∗i ) = 0 has the sole solution σ∗ =
0, indicating that σk vanishes logarithmically at high energies. Thus the coupling is
asymptotically free. The remaining equations in (6.2.10) give rise to the known fixed
point solutions

FP1,2 : σ∗ = 0 , θ∗ = −171/56 , ω∗1,2 = {−0.00228 , −5.47 } , (6.2.12)
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with two possible values for ω. However, substituting this result into (6.2.11) we find that
only FP1 constitutes a fixed point of the full system, at the values

NGFP : σ∗ = 0 , θ∗ = −171/56 , ω∗ = −0.00228 , λ∗ = 0.39 , g∗ = 2.39 .
(6.2.13)

This non-Gaussian fixed point is UV-attractive in all five coupling constants. Similarly to
the computations in [142],

the functional RG scheme employed here also takes into account quadratic and
quartic divergences in the regularization procedure [142, 143]. The latter give rise to a
fundamental contribution to the flow of Newton’s constant and the cosmological constant,
whose UV-behavior is then governed by a non-Gaussian fixed point λ∗, g∗ instead of the
Gaussian fixed point seen within dimensional regularization.

Concerning the second fixed point found before, we note that the non-universal β
functions are well-defined in the region ω > −1 only. This limit can be traced back to
the requirement of positivity of the ghost operator (6.1.13), and manifests itself in the
appearance of the logarithmic terms in (6.1.20). Since FP2 is not within this bound, it
cannot be completed to a FP on the full theory space. We take this as a strong indication
that this fixed point is unphysical, establishing a unique non-Gaussian fixed point for the
curvature squared case, at least in the perturbative limit analysed here.
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7. Conclusions

Renormalization group techniques are capable to reveal many structurally non-perturbative
features of a theory. In this thesis, we reviewed the derivation [35, 82] of an exact
renormalization group equation and highlighted its relation to perturbative methods in
quantum field theory. A main motivation to consider such an equation as a central object
in quantum field theory is the ongoing search for a proper UV completion of gravity
in a quantized description. Instead of pursuing to construct alternative models within
a perturbative approach, the concept of asymptotic safety may explain the mechanism
by which gravity can be quantized consistently. This scenario is presented as a direct
generalization of the perturbative renormalization, as it is successfully applied in Yang-
Mills theories. This renders Quantum Einstein Gravity a viable option for the realization
of gravitation in nature.

The practical use of functional renormalization group equations is mathematically
rather involved. This is especially so in the presence of gauge symmetries, which give
rise to complicated non-minimal differential operators. Since computations on a non-
trivial curved spacetime manifold furthermore require to express momentum integrals via
operator traces, renormalization group studies of quantum gravity depend on heat kernel
methods. The technique, being originally developed for the evaluation of amplitudes in
quantum field theories on curved spacetimes, generalizes the loop integrals to a trace that
captures the spectrum of the corresponding covariant Laplace operator. As a mathematical
tool, the heat kernel expansion is very useful in many calculations. The expansion of such
traces in terms of curvature monomials constitute reoccurring universal coefficients, which
reappear in perturbation theory on a non-trivial background manifold as well as in the
solution of renormalization group equations. Once these are computed, many applications
become accessible, justifying an interest in the heat kernel in its own respect.

In this thesis, the deWitt-method was used to recursively determine the off-diagonal
heat kernel expansion of a Laplace operator on a general bundle, including an arbitrary
endomorphism, up to third order in the curvature tensors. The algorithm has been
implemented on computer algebra systems [102, 103], making the manual handling of
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the huge expressions for higher orders unnecessary. Our results generalize previous
calculations [68, 99, 100, 104] by leaving the internal space and spacetime dimension
unspecified. All the results for the traced expansion of the heat kernel of the Laplace
operator acting on scalar-, vector- and symmetric tensor fields are conveniently summarized
in table 4.2. Our results allow the systematic evaluation of the traced heat kernel, including
insertions of covariant derivative operators with open indices inside the trace. This is
crucial for the treatment of gauge theories without simplifying gauge fixing or background
choices.

Furthermore projected heat kernel traces over the subspace of transversally con-
strained fields were defined and computed, extending the applicability of heat kernel
techniques in general. Notably, the Laplace operator projected on the transverse vector
subspace becomes non-local due to the projection operators. Owed to this non-locality,
the Seeley-deWitt coefficients of the heat trace, on a general d-dimensional manifold,
diverge starting from order Rd/2+1. The divergences are of infrared nature and appear as
dimensional poles, when dimensional regularization is adopted. Remarkably, we showed
that these singularities cancel for transversal vector fields if spacetime is an Einstein
manifold, ensuring that the standard Laplacian commutes with the projector onto the
transverse subspace.

The newly computed non-minimal heat-traces provide the basis for an algebraic
algorithm to find approximate solutions of the functional renormalization group equation
systematically. This algorithm, presented in chapter 4, allows to extent previous approxi-
mations of the renormalization group flow of gauge theories and gravity in numerous ways.
It is capable of inverting any operator given as a polynomial of covariant derivatives in
terms of an expansion in any background object. In combination with the background field
method, computations can be done in a manifestly covariant way, and to arbitrary order
in the curvature tensors. The occurring non-minimal kinetic operators can be handled
based on the off-diagonal heat kernel techniques. Thereby, each step in the computation
can be carried out while leaving the choice of gauge fixing and background geometry
completely arbitrary.

Thus overcoming the mathematical limitations of previously known methods, the
extension of effective gauge field theories to include higher derivative terms is now straight-
forward. In particular for the case of gravity, the most sophisticated renormalization
group studies [27,31,57,61,63,64] to date are mostly restricted to a spherical manifold (for
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f(R)-type truncations), or an Einstein manifold (including the Weyl-squared invariant)
as background. In this way it is not possible to distinguish all invariants that would be
independent on a generic manifold. The β functions obtained are accordingly describing
the running of certain linear combinations of coupling constants only. While providing
useful insights on the stability of the non-Gaussian fixed point, these computations are
insufficient for example to properly answer questions about the number of relevant direc-
tions. Therefore, to extend the present computations of the gravitational renormalization
group flow and to account for more involved interactions containing tensor structures, the
background must be left arbitrary.

One of the next milestones in the research program focussing around asymptotically
safe gravity is the inclusion of all curvature squared interactions. This computation
is demonstrated in chapter 6, where the algorithm is applied to invert the full second
variation in terms of a curvature expansion without imposing a specific background
geometry. The resulting traces encoding the non-perturbative running of the five coupling
constants involved can be evaluated with an implementation of the heat kernel rules
in computer algebra. It is further shown that the known results of higher derivative
gravity are reproduced in the perturbative limit from the renormalization group equation.
The universal part of the β functions agrees exactly in any method of computation and
admits two non-Gaussian fixed points. The present work improves upon this finding as
we explicitly show that the existence of one of the fixed points depends on the choice of
regularization scheme. This indicates that it is most probably unphysical, and implies a
unique UV fixed point in this computational setup.

Demonstrating the systematic solution of the RG equation in the Einstein-Hilbert
truncation we are able to establish the background independence of the resulting β

functions explicitly. In the course of this computation, it is shown that standard gauge
fixing and ghost terms create contributions to the renormalization group flow which
almost cancel mutually and are thus negligible. This phenomenon can be traced back to
the modified BRST symmetry of the generating functionals subject to the RG equation.
Furthermore, contributions from gauge dependent terms and physical proper vertices
decouple in the Landau gauge. In this context, a method of analysis is proposed, which
allows to compare β functions by their full term structure.

The gravitational renormalization group flow in the Einstein-Hilbert truncation
supplemented by a field renormalization of the ghosts is investigated in detail. The
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latter induces non-trivial corrections to the β functions for Newton’s constant and the
cosmological constant, giving rise to a non-Gaussian fixed point with strikingly similar
properties compared to the standard Einstein-Hilbert truncation. The ghost-improvement
leads to a significant decrease of the unphysical cutoff scheme dependence. This finding
further substantiates the asymptotic safety scenario of quantum gravity.

The β functions found in this computation contain the standard result explicitly,
revealing precisely the effect of the newly considered terms. This fact opens interesting
possibilities for the investigation of the algebraic structure giving rise to the gravitational
fixed point. This line of research may contribute to reveal more systematics behind the
renormalization group flow and may point the way to construct a proof of the existence
of an UV fixed point for gravity in the future.

With the technical limitations of earlier methods of computation out of the way,
we understand how to extend the present approximations further by the inclusion of
curvature cubed and higher terms. Thus the effect of the explicit tensor structure of
higher derivative gravity actions can be investigated, providing a highly non-trivial test
of the asymptotic safety scenario. Likewise, the developed techniques are applicable to
Yang-Mills theory. Here, they could contribute to an improvement of the understanding
of the phase structure of infrared QCD, allowing for higher derivative effective actions
with arbitrary spacetime dimension and gauge parameter.

Since the neccessary computational effort grows quickly when taking such extensions
into account, an automation of the mathematical steps involved in the evaluation of
the exact RG equation is not only convenient but inevitable to handle increasingly
complicated tensor structures. The universal algorithm provides this possibility and
has already been implemented in important parts using Mathematica to perform many
computations presented in this thesis. A full automation is clearly viable, from which the
future developments of renormalization group studies will greatly profit.
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A. Basis of Curvature Monomials on
Riemannian Manifolds

As discussed in chapter 3, to write covariant gravitational action functionals, a basis of
curvature momonials Rn

i is required. Such a basis is also conveniently used to represent
the results for the early-time expansion of the heat kernel, so that it is given in terms
of independent coefficients for a given order n. Because of the symmetries and Bianchi
identities fulfilled by the Riemann curvature tensor, it is not entirely trivial to find a
non-reducible set of such monomials. In this appendix, we construct such a basis of of
fully contracted curvature tensors up to third order, following the results of [104,144,145].
Throughout this appendix, we will consider the case of general d-dimensional Riemannian
manifolds without boundaries.

A.1. Curvature Basis for General Manifolds

The heat kernel expansions (3.2.27) and (4.2.29) require a basis for all curvature invariants
build from six or less covariant derivatives. The Riemann curvature tensor defined in
(3.1.4) has the symmetries

Rµνρσ = Rρσµν , Rµνρσ = −Rνµρσ , Rµνρσ = −Rµνσρ , (A.1.1)
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and is a suitable covariant object for this purpose. Following [144] the resulting basis
contains 15 elements, which we choose as follows1

R0 = 1 ,
R1 = R ,

R2
1 = R2 , R2

2 = RµνR
µν , R2

3 = RµναβR
µναβ

R3
1 = R D2R , R3

2 = Rµν D
2Rµν , R3

3 = R3 ,

R3
4 = RRµνR

µν , R3
5 = Rµ

νRν
αRα

µ , R3
6 = RµνRαβR

µανβ ,

R3
7 = RRαβµνR

αβµν , R3
8 = RµνR

µαβγRν
αβγ , R3

9 = Rµν
ρσRρσ

αβRαβ
µν ,

R3
10 = Rα

µ
β
νR

µ
ρ
ν
σR

ρ
α
σ
β ,

(A.1.2)
with D2 ≡ gµνDµDν = −∆. Note that in d = 4 dimensions the integrand of (A.3.11)
vanishes, so that only 9 independent R3 terms remain.

To arrive at this basis, one has to find relations which allow to express any additional
curvature monomials in terms of the above by the use of the first and second Bianchi
identities

Rµ[ναβ] = 0 , (A.1.3)

and

Rµναβ;ρ +Rµνβρ;α +Rµνρα;β = 0 , Rµναβ
;β = Rµα;ν −Rνα;µ , Rµν

;ν = 1
2R;µ . (A.1.4)

A very useful collection of curvature identities implied by these identities has been given
in [145]. For completeness we summarize the ones important for our construction in the
following.

At order R2, (A.1.3) implies

RµναβRµανβ = 1
2RµναβR

µναβ , (A.1.5)

while at order R3 there are three relations between different contractions of the Riemann
tensor

RµανβRµνρσRαβ
ρσ = 1

2Rµν
ρσRρσ

αβRαβ
µν ,

Rαβ
ρσRαµβνRρµσν = 1

4Rµν
ρσRρσ

αβRαβ
µν ,

RµανβR
µρνσRα

σ
β
ρ = − 1

4Rµν
ρσRρσ

αβRαβ
µν +Rα

µ
β
νR

µ
ρ
ν
σR

ρ
α
σ
β .

(A.1.6)

1Taking total derivatives into account, there is one more invariant at O(R2) and seven additional
curvature monomials at O(R3), see eqs. (A.1.9) and (A.1.10) below.
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In addition the combination of (A.1.3) and (A.1.4) allows to derive

Rµναβ∆Rµναβ = − 4Rµν;αβR
µανβ − 2RµνR

µ
αβγR

ναβγ +Rµν
ρσRρσ

αβRαβ
µν

+ 4Rα
µ
β
νR

µ
ρ
ν
σR

ρ
α
σ
β ,

(A.1.7)

and
RµνR

µα;ν
α = 1

2R;µνR
µν +Rµ

νRν
αRα

µ −RµνRαβR
µανβ . (A.1.8)

Once the curvature monomials appear under the volume integral, the condition of
working on a manifold without boundary allows to integrate by parts freely. At order R2

this eliminates the surface term ∫
ddx
√
g∆R = 0 , (A.1.9)

while at order R3 we obtain the seven additional identities∫
ddx
√
g∆∆R = 0 ,∫

ddx
√
g RµνR;µν = 1

2

∫
ddx
√
gR3

1,∫
ddx
√
g Rµν;αβR

µανβ =
∫
ddx
√
g
[
R3

2 − 1
4R

3
1 −R3

5 +R3
6

]
,∫

ddx
√
g R;µR

;µ = −
∫
ddx
√
gR3

1 ,∫
ddx
√
g Rαβ;µR

αβ;µ = −
∫
ddx
√
gR3

2 ,∫
ddx
√
g Rαβ;µR

αµ;β =
∫
ddx
√
g
[
−1

4R
3
1 −R3

5 +R3
6

]
,∫

ddx
√
g Rµναβ;ρR

µναβ;ρ =
∫
ddx
√
g
[
R3

1 − 4R3
2 + 4R3

5 − 4R3
6 − 2R3

8 +R3
9 + 4R3

10

]
.

(A.1.10)

In total, these establish the required relations to reduce any integrated combination of
fully contracted curvatures to the basis (A.1.2).

A.2. Curvature Basis for Einstein Spaces

A special class of Riemannian manifolds are Einstein spaces, where the Ricci tensor is
proportional to the metric

Rµν = 1
d
gµνR . (A.2.1)

In connection with the Bianchi-identities (A.1.4) this definition entails

R;µ = 0 , Rαβ;µ = 0 , Rαβγµ;
µ = 0 , (A.2.2)
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for any dimension d 6= 2.
As a direct consequence of these additional relations, the general basis of curvature

monomials (A.1.2) degenerates, so that, up to O(R3), an Einstein space has only eight
distinguished curvature monomials. Explicitly, these can be chosen as

E0 = 1 ,

E1 = R ,

E2
1 = R2 , E2

2 = RµναβR
µναβ ,

E3
1 = R3 , E3

2 = RRµναβR
µναβ ,

E3
3 = Rµν

ρσRρσ
αβRαβ

µν , E3
4 = Rα

µ
β
νR

µ
ρ
ν
σR

ρ
α
σ
β .

(A.2.3)

Using the equations (A.2.1) and (A.2.2), the additional basis elements in (A.1.2) can be
expressed in terms of the Enm by

R2
2 = 1

d
E2

1 ,

R3
1 = 0 , R3

2 = 0 , R3
4 = 1

d
E3

1 ,

R3
5 = 1

d2E3
1 , R3

6 = 1
d2E3

1 , R3
8 = 1

d
E3

2 .

(A.2.4)

Lastly, the d-spheres Sd pose a maximally symmetric special class of Einstein-
manifolds. In their case, the relations

Rµν = 1
d
gµνR , Rµνρσ = 1

d(d−1)(gµρgνσ − gµσgνρ)R ,

RµνR
µν = 1

d
R2 , RµνρσR

µνρσ = 2
d(d−1) R

2 ,
(A.2.5)

determine all curvature invariants in terms of a constant Ricci scalar or, equivalently, the
radius of the sphere. Consequently, the basis of curvature monomials contains only one
element at each order Rn, proportional to the corresponding power Rn. The additional
basis elements in (A.2.3) then satisfy

E2
2 = 2

d(d−1)R
2 ,

E3
2 = 2

d(d−1)R
3 , E3

3 = 4
d2(d−1)2R

3 , E3
4 = d−2

d2(d−1)2R
3 .

(A.2.6)

A.3. The Gauss-Bonnet Theorem

Further important implications for a quantum gravitational action principle are due to
topological identities. Here we give a brief discussion, which is conveniently adopting the
language of differential forms.2

2For a derivation in the special case of d = 4, see [16]
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A.3. The Gauss-Bonnet Theorem

An n-form A has a representation in local coordinates

A =
∑

Aµ1...µn dx
µ1 ∧ · · · ∧ dxµn , (A.3.1)

with components Aµ1...µn and the antisymmetric exterior wedge product. Integration of
n-forms on n-dimensional manifolds is explained via the totally antisymmetric tensor
εµ1...µn by ∫

M
A =

∫
M
dnx
√
g εµ1...µnAµ1...µn , dimM = n . (A.3.2)

The exterior derivative d maps n-forms on n+ 1-forms. An n-form in d < n dimensions is
identically zero, because at least two of the coordinates in (A.3.1) have to coincide. With
the help of Stokes’ theorem we can write∫

M
A−

∫
N
A =

∫
∂K
A =

∫
K
dA = 0 , (A.3.3)

for manifolds M , N being smooth deformations of one topology, so that their difference
is a closed path ∂K. Therefore we have∫

M
A =

∫
N
A , (A.3.4)

for any A, implying that the integral cannot depend on local differences, and is in
particular independent of the metric of these manifolds.

The significance of this fact is that non-trivial identities emerge when considering
integrands which themselves involve the metric tensor. Especially the covariant curvature
2-form

Rµν = Rµν
αβ dx

α ∧ dxβ , (A.3.5)

is useful as it is used to construct gravitational action functionals. On even dimensional
manifolds we can build a top dimensional form from the curvature, giving rise to a
topological action. The Gauss-Bonnet theorem relates this integral to the Euler character
χE of the manifold by

χE(M) ∼
∫
M
εµ1ν1···µnνn Rµ1ν1 ∧ · · · ∧ Rµnνn . (A.3.6)

Written in local coordinate form, the Euler character assumes the form

χE = 1
2(4π)n

∫
d2nx
√
g (2n)!

2n δα1
[µ1
δβ1
ν1 . . . δ

αn
µn δ

βn
νn] R

µ1ν1
α1β1 . . . R

µnνn
αnβn , (A.3.7)

in terms of the Riemann tensor on manifolds with even dimension d = 2n. This expression
is by construction independent of the metric on M , and turns out to be an index only
sensitive to the topology of the manifold.
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For d = 2, the Euler character becomes

χE

∣∣∣∣
d=2

= 1
16π

∫
d2x
√
g R , (A.3.8)

proportional to the Einstein-Hilbert action. In d = 4 dimensions, we have

χE

∣∣∣∣
d=4

= 1
2(4π)2

∫
d4x
√
g
(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)
, (A.3.9)

which is frequently used to simplify actions of higher derivative gravity to eliminate one
of the three curvature squared monomials. Since the Euler character appears in the
computation of constrained heat kernel coefficients in section 4.2 to appropriately account
for zero modes, we explicitly compute the expression on a sphere. Here the volume in
terms of the constant scalar curvature is Vol(S4) = 384 π2R−2, so that one obtains

χE(S4) = 1
2(4π)2 Vol(S4) 1

6 R
2 = 2 , (A.3.10)

using the relations (A.2.5).
Finally, we give the Euler term for d = 6

χE

∣∣∣∣
d=6

= 1
6(4π)3

∫
d6x
√
g
(

4R3
3−48R3

4 +64R3
5 +96R3

6 +12R3
7−96R3

8 +16R3
9−32R3

10

)
.

(A.3.11)
Note that the integrand in this expression is exactly zero in d = 4 dimensions, because it
corresponds to a 6-form. This fact can be used to eliminate one of the curvature cubed
monomials in the general d-dimensional basis (A.1.2).
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B. Commutator Identities

This appendix gives some explicit expressions for multi-commutators that appear in
the evaluation of traces over non-minimal operators. In order to simplify notation, we
introduce the n-fold commutators

[
Dµ , ∆

]
n
≡
[[
Dµ , ∆

]
n−1

, ∆] , (B.1)

with
[
Dµ , ∆

]
0

= Dµ and
[
Dµ , ∆

]
1

=
[
Dµ , ∆

]
. Here we identify Dµ = ∇µ excluding

a connection on an internal space and define the Laplacian ∆ = −gµνDµDν .

Throughout the thesis, symmetrization is with unit strength:

T(αβ) = 1
2 (Tαβ + Tβα) , (B.2)

for any tensor T .

B.1. Commutators of Covariant Derivatives on Curved

Spacetime

The commutator of two covariant derivatives acting on an arbitrary tensor Tα1...αn is given
by

[Dµ , Dν ]Tα1...αn =
n∑
k=1

Rµναk
ρ Tα1...αk−1ραk+1...αn . (B.1.1)

The computation of operator traces as they appear in the expansion (4.2.8) employs an
expansion in multi-commutators (B.1) involving the Laplacian acting on scalar and vector
fields, and the evaluation of the RG equation for gravity (4.3.1) requires commutators on
symmetric tensor fields. Here we summarize the corresponding expressions up to order

167



B. Commutator Identities

R7/2, whereby all surface terms in that order have also been neglected:[
Dµ,∆

]
φ =Rµ

αDαφ ,[
Dµ,∆

]
2
φ =

(
Rµ

αRα
β − (∆Rµ

β) + 2Rµ
α;βDα

)
Dβ φ ,[

Dµ,∆
]

3
φ =

(
Rµ

νRν
αRα

β − (∆(Rµ
αRα

β)) + 2(Rµ
αRα

β);γD
γ

− (∆Rµ
α)Rα

β + 4Rµα
;βγDγD

α
)
Dβφ+ 2Rµ

α;β
[
DβDα,∆

]
φ ,[

Dµ,∆
]

4
φ = 4Rµ

(α;β)γ
(

2Rν
αDγDβDν − 2Rα

ν
β
λDγDλDν

+Rγ
σDσDαDβ − 4Rσ

γ
ν
αDσDβDν

)
φ+O(R7/2) ,

(B.1.2)

with the commutator appearing in the third term given by[
DβDα,∆

]
φ =

(
2Rµ

(β;α) −Rαβ
;µ + 2Rµ

(αDβ) − 2Rα
µ
β
νDν

)
Dµφ . (B.1.3)

Notably, the first three commutators are exact, while in the fourth one we only displayed
terms up to O(R3).

For vector fields, we have the uncontracted commutator

[Dµ , ∆ ]φρ = Rµ
αDαφρ − 2Rα

µ
β
ρDαφβ − (DαR

α
µ
β
ρ)φβ , (B.1.4)

together with those with contracted indices:[
Dα,∆

]
1
φα = −Dα

(
Rαβφβ

)
,[

Dα,∆
]

2
φα =

(
2RαβR

αµβν −RµαRα
ν −R;µν + (∆Rµν)− 2Rαν;µDα

)
Dµφν

+ (Dµ(Rµ
αR

αβ))φβ + (Dα∆Rαβ)φβ ,[
Dα,∆

]
3
φα =

(
2RαβR

αµβν −RµαRα
ν −R;µν + (∆Rµν)

)(
Rµ

ρDρφν − 2Rρ
µ
σ
νDρφσ

)
− 2Rαν;µ [DαDµ,∆]φν − 4Rαν;µσDσDαDµφν +O(R7/2) ,[

Dα,∆
]

4
φα = − 4Rαν;µβ

(
2Rµ

λDλDβDαφν +Rα
λDλDβDµφν − 4Rµ

σ
ν
λDβDαDσφλ

− 2Rα
σ
ν
λDβDµDσφλ − 4Rµ

σ
α
λDβDσDλφν − 2Rµ

σ
β
λDσDαDλφν

)
+O(R7/2) .

(B.1.5)

These expressions are completed by the commutator[
DαDµ,∆

]
φν =Rµ

ρDαDρφν +RαρD
ρDµφν − 2Rµ

ρ
ν
σDαDρφσ − 2Rα

ρ
µ
σDρDσφν

− 2Rα
ρ
ν
σDρDµφσ −Rαµ;ρD

ρφν +Rαρ;µD
ρφν +Rµρ;αD

ρφν

−Rαν;
ρDµφρ +Rα

ρ
;νDµφρ −Rµν;

ρDαφρ +Rµ
ρ

;νDαφρ

− 2Rµ
ρ
ν
σ

;αDρφσ −Rµν;
ρ
αφρ +Rµ

ρ
;ναφρ .

(B.1.6)
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For the case of symmetric 2-tensors, the expressions including only two orders in
the curvature are

[Dµ , ∆ ]1 φρσ =Rµ
αDαφρσ − 4Rαµ

β
(ρD

αφσ)β − 2
(
DαR

α
µ
β

(ρ
)
φσ)β ,

[Dγ , ∆ ]2 φγβ = −Rγν
[
Rν

µDµφγβ + 4Rµ
(γναD

αφβ)µ
]

+ 2Rλ
β
γν
[
Rν

µDµφγλ + 4Rµ
(γναD

αφλ)µ
]

+ 4(DαR
λ
β
γν)DαDνaγλ .

(B.1.7)

B.2. Commutators Involving Composite Operators

For two continuous linear operators X, Y the Hadamard lemma states

eX Y e−X =
∞∑
n=0

1
n! (−1)n

[
Y,X

]
n
, (B.2.1)

where the n-fold commutator is defined recursively by
[
Y,X

]
n

=
[[
Y,X

]
n−1

, X
]
. With

the identification X = ±s∆, this formula provides an exact curvature expansion for the
commutator of the exponentiated Laplacian and an arbitrary operator Y ,

[
Y , e−s∆

]
= −

∞∑
n=1

1
n! s

n
[
Y , ∆

]
n

e−s∆

= e−s∆
∞∑
n=1

1
n! (−s)n

[
Y , ∆

]
n
.

(B.2.2)

Since arbitrary locally integrable functions can be represented as a formal Laplace-
transformation

f(s) =
∫
t
f̃(t) e−st , (B.2.3)

the expansion (B.2.2) implies the more general commutator with a function of the
Laplacian

[Y, f(∆)] =
∞∑
n=1

1
n! (−1)n−1

[
Y , ∆

]
n
f (n)(∆)

=
∞∑
n=1

1
n! f

(n)(∆)
[
Y , ∆

]
n
,

(B.2.4)

where f (n) denotes the n-th derivative of f , and all Laplacians have been moved to the
very right and very left, respectively.
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The solution of the RG equation in the form (4.3.45) still contains the Q functionals
(4.3.42), with their argument indicating the dependence of the functional traces on the
Laplacian. In order to capture the cutoff scheme dependence and highlight the structure of
the β functions it is convenient to write the expressions for the functionals Qn[f ] (4.3.43)
for n > 0 in terms of the dimensionless threshold functions [35]

Φp
n(ω) := 1

Γ(n)

∫ ∞
0
dz zn−1R

(0)(z)− zR(0)′(z)
(z +R(0)(z) + ω)p ,

Φ̃p
n(ω) := 1

Γ(n)

∫ ∞
0
dz zn−1 R(0)(z)

(z +R(0)(z) + ω)p .
(C.1)

In the computation of the ghost field renormalization in section 5.2, we encounter structures
that motivate the more general definitions

Φp,q
n (ω) := 1

Γ(n)

∫ ∞
0
dz zn−1 R(0)(z)− zR(0)′(z)

(z +R(0)(z) + ω)p (z +R(0)(z))q ,

Φ̃p,q
n (ω) := 1

Γ(n)

∫ ∞
0
dz zn−1 R(0)(z)

(z +R(0)(z) + ω)p (z +R(0)(z))q ,

Φ̌p,q
n (ω) := 1

Γ(n)

∫ ∞
0
dz zn−1 R(0)′(z)

(
R(0)(z)− zR(0)′(z)

)
(z +R(0)(z) + ω)p (z +R(0)(z))q ,

Φ̂p,q
n (ω) := 1

Γ(n)

∫ ∞
0
dz zn−1 R(0)(z) R(0)′(z)

(z +R(0)(z) + ω)p (z +R(0)(z))q .

(C.2)

Herein appears the dimensionless shape function R(0), defined with respect to the IR
cutoff function

Rk

(
∆
)

= k2R(0)
(∆
k2

)
, (C.3)

introduced in (4.3.12), and the prime denotes the derivative with respect to its argument.
The shape function interpolates monotonically between R(0)(0) = 1 and limz→∞R

(0)
k (z) =

0 to define the separation of IR and UV modes of the fluctuation fields.
Observe that the threshold functions (C.2) with p = 0 do not depend on ω. These

definitions naturally generalize the ones (C.1), which are recovered in the special cases

Φp,0
n (ω) = Φp

n(ω) , Φ0,q
n (ω) = Φq

n(0) , Φ̃p,0
n (ω) = Φ̃p

n(ω) , Φ̃0,q
n (ω) = Φ̃q

n(0) . (C.4)
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The relation to the Qn[f ] is given by

Qn

[
∂t(ZI

kRk)
ZI
k(Pk + ω)p

]
= 2k2(n−p+1)

[
Φp,0
n ( ω

k2 ) + 1
2
∂tZ

I
k

ZI
k

Φ̃p,0
n ( ω

k2 )
]
, (C.5)

where ZI
k denotes any dimensionless generalized field renormalization factor present in

the kinetic terms of Γ(2)
k . For the dimensionful coupling constant (5.1.2), we further have

Qn

[
∂t(u1Rk)

u1(Pk + ω)p

]
= 2Qn

[
Rk

(Pk + ω)p

]
+Qn

[
∂t(g1Rk)

g1(Pk + ω)p

]
, (C.6)

Together with (C.5) this implies for the functions defined in (5.1.14) and (5.1.52)

Qn[fp] = 2k2(n−p+1) Φp
n(0) ,

Qn[fp2T] = 2(−g1)1−pk2(n−2p+2)
(

Φp
n(g0

g1
) + 1

2(∂tg1
g1

+ 2)Φ̃p
n(g0

g1
)
)
,

Qn[fp0 ] = 2(3
8g1)1−pk2(n−2p+2)

(
Φp
n(2

3
g0
g1

) + 1
2(∂tg1

g1
+ 2)Φ̃p

n(2
3
g0
g1

)
)
.

(C.7)

For the functions occurring in the computation of the ghost field renormalization defined
in (5.2.33), we have

Qn[fN1 ] = 2ZN
k k2n−4

(
Φ2,1
n (−2λk)− 1

2ηN Φ̃2,1
n (−2λk)

)
,

Qn[f c1 ] = 2Zc
k k

2n−4
(

Φ1,2
n (−2λk)− 1

2ηcΦ̃
1,2
n (−2λk)

)
,

Qn[f I2 ] = 2ZI
k k

2n−6
(

Φ2,2
n (−2λk) + Φ̌2,2

n (−2λk)− 1
2ηI

(
Φ̃2,2
n (−2λk) + Φ̂2,2

n (−2λk)
))

.

(C.8)

These equations allow us to express the β functions for Newton’s and the cosmological
constant, as well as for the ghost field renormalization in section 5.2 with the remaining
dependence on the shape function residing in the threshold functions. Although the β
functions are not themselves observables, they encode some universal, cutoff-independent
information. In particular, for p = n+ 1 and ω = 0 we can write

Φn+1
n (0) = 1

Γ(n)

∫ ∞
0
dz zn−1R

(0)(z)− zR(0)′(z)
(z +R(0)(z))n+1

= 1
Γ(n)

∫ ∞
0
dz

∂

∂z

[
1
n

zn

(z +R(0)(z))n

]

= 1
Γ(n+ 1) .

(C.9)

Such a term does therefore not depend on the cutoff which guarantees that the 1-loop
contributions to the running of dimensionless coupling constants is universal.

In the analysis of fixed points and renormalization group trajectories, the shape
function dependence requires to choose an explicit cutoff scheme. For the numerical
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Figure C.1.: Typical examples for the shape function R(0)(z) appearing in the final results
for β functions. From left to right the plots show the optimized cutoff (C.10),
the exponential cutoff (C.13) for s = 2, and the Fermi-cutoff (C.14) for
T = 1/8.

studies of β functions, one typically employs one of the shape functions introduced in the
following. To compare these alternatives, plots are presented in figure C.1.

A particularly convenient choice is the optimized cutoff [146], defined by

R(0),opt(z) = (1− z) Θ(1− z) , (C.10)

with the Heaviside theta function Θ. With this choice we have

(R(0),opt)′(z) = −Θ(1− z) , (C.11)

so that the reign of integration in (C.2) is constrained to the interval [0, 1]. In this case
the integrals can be carried out analytically to yield

Φp,q
n (w) = 1

Γ(n+ 1)
1

(1 + w)p , Φ̃p,q
n (w) = 1

Γ(n+ 2)
1

(1 + w)p ,

Φ̌p,q
n (w) = − 1

Γ(n+ 1)
1

(1 + w)p , Φ̂p,q
n (w) = − 1

Γ(n+ 2)
1

(1 + w)p .
(C.12)

Here, the threshold functions degenerate such that they become independent of the index
q. Because of the simplicity of these expressions, the optimized cutoff is frequently used
especially when the β functions become very complicated.

The non-analytic behaviour of R(0),opt(z) at z = 1 can cause ambiguities,requiring
an analytic continuation for Qn with n < 1. This can be avoided by the use of a smooth
shape function. The most commonly used example is the exponential cutoff

R(0),exp(z; s) = sz

esz − 1 , (C.13)

The shape parameter s allows to smoothly vary the implementation of the IR cutoff. In
contrast to the optimized cutoff, the integrals in the threshold functions cannot be carried
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out analytically for this class of cutoffs. Thus one has to resort to numerical integration
when evaluating the threshold functions.

Finally, we advocate the use of a smooth shape function resembling a properly
normalized Fermi-distribution

R(0),fermi(z;T ) = e−1/T + 1
e(z−1)/T + 1 , (C.14)

with the temperature parameter T . In contrast to the above alternatives, its derivative is
peaked at z = 1. Therefore this choice realizes the conceptual ideas laid out in chapter 2
most accurately. As for the exponential cutoff, numerical integration is required when
applying this cutoff.
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