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Zusammenfassung

Wir haben Monte Carlo undMolekulardynamik-Simulationen an Suspensionen
monodisperser, harter Ellipsoide durchgeführt. Harte-Teilchen-Modelle spielen
eine Schlüsselrolle in der Statistischen Mechanik. Sie sind einfach und erlauben
Einblicke in Systeme, in denen die Form der Teilchen wichtigist, einschließlich
atomarer, molekularer, kolloidaler und granularer Systeme.

Im Phasendiagramm prolater Ellipsoide fanden wir bei hohenDichten eine
neue Kristallphase, die stabiler ist als die bislang bekannte gestreckte FCC-Phase
[1]. Die neue Phase, SM2, ist simpel-monoklin mit einer Basis von zwei Ellip-
soiden, die ungleiche Orientierungen haben. Der Neigungswinkelβ ist sehr weich
bei Länge-zu-Breite-Verhältnis (Aspekt-Verhältnis)l/w = 3, wohingegen die an-
deren beiden Winkel nicht weich sind. Es gibt eine symmetrische Anordnung der
Einheitszelle. Diese wurde in Verbindung gebracht mit den dichtesten bekannten
Packungen von Ellipsoiden [2]; sie ist nicht immer die stabilste. Die gestreckte
FCC-Phase wird also beim Aspekt-Verhältnisl/w = 3 durch SM2 ersetzt, sehr
wahrscheinlich auch bei 3≤ l/w≤ 6, und vermutlich auch jenseits dieser Gren-
zen. Außerdem zeigen die Ellipsoide in SM2 beil/w= 1.55 180◦-Drehungen, die
einer näheren Untersuchung, z.B. des Einfrierens dieser Dynamik, würdig sind.

Zweitens haben wir die Dynamik fast kugelförmiger Ellipsoide untersucht. Im
Gleichgewicht zeigen sie einen Phasenübergang erster Ordnung von der isotropen
Phase in eine Rotatorphase, in der die Positionen kristallin und die Orientierun-
gen frei sind. Bei Überkomprimierung der isotropen Phase inden Bereich der
Rotatorphase haben wir Super-Arrhenius-Verlangsamung der Diffusion und Re-
laxation, und Signaturen des Käfig-Effekts beobachtet. Diese Merkmale von
Glasdynamik sind so deutlich, dass asymptotische Gesetze der Modenkopplungs-
theorie (MCT) verifiziert werden konnten. Translatorischeund Orientierungs-
freiheitsgrade sind stark gekoppelt, mit der Konsequenz, dass ein gemeinsamer
MCT-Glasübergangs-Volumenbruchφc existiert (l/w= 1.25: φc = 0.615±0.005,
l/w = 0.80: φc = 0.618±0.005). 180◦-Drehungen sind dagegen nicht betroffen.
Unsere Resultate hängen nicht von der Simulationsmethode ab, wie von der MCT
vorhergesagt. Bereits die Bewegung innerhalb der Käfige istkooperativ. Dy-
namische Heterogenitäten wurden auch nachgewiesen. Der Transit zwischen Kä-
figen findet zwar in kurzen Zeitspannen statt, jedoch zeigt erkeine von der Bewe-
gung innerhalb der Käfige unterscheidbare Verschiebungen.Die Existenz glasiger
Dynamik war durch molekulare MCT [3] (MMCT) vorhergesagt worden, jedoch
ignoriert MMCT Kristallisation; ein Test per Simulation war nötig. Kristallisation
verhindert typischerweise Glasdynamik in monodispersen Systemen. Polydisper-
sität oder andere Asymmetrien sind nötig, um die Kristallisation zu unterbinden.
Also fungiert die Anisometrie der Teilchen als Quelle von Unordnung. Dies wirft
ein neues Licht auf die Bedingungen zur Glasbildung.



Abstract

We have performed Monte Carlo and molecular dynamics simulations of suspen-
sions of monodisperse, hard ellipsoids of revolution. Hard-particle models play
a key role in statistical mechanics. They are conceptually and computationally
simple, and they offer insight into systems in which particle shape is important,
including atomic, molecular, colloidal, and granular systems.

In the high density phase diagram of prolate hard ellipsoidswe have found
a new crystal, which is more stable than the stretched FCC structure proposed
previously [1]. The new phase, SM2, has a simple monoclinic unit cell containing
a basis of two ellipsoids with unequal orientations. The angle of inclination,β , is
very soft for length-to-width (aspect) ratiol/w= 3, while the other angles are not.
A symmetric state of the unit cell exists, related to the densest-known packings
of ellipsoids [2]; it is not always the stable one. Our results remove the stretched
FCC structure for aspect ratiol/w = 3 from the phase diagram of hard, uni-axial
ellipsoids. We provide evidence that this holds for 3≤ l/w ≤ 6, and possibly
beyond. Finally, ellipsoids in SM2 atl/w = 1.55 exhibit end-over-end flipping,
warranting studies of the cross-over to where this dynamicsis not possible.

Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilib-
rium, they show a first-order transition from an isotropic phase to a rotator phase,
where positions are crystalline but orientations are free.When over-compressing
the isotropic phase into the rotator regime, we observed super-Arrhenius slow-
ing down of diffusion and relaxation, and signatures of the cage effect. These
features of glassy dynamics are sufficiently strong that asymptotic scaling laws
of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and
were found to apply. We found strong coupling of positional and orientational de-
grees of freedom, leading to a common value for the MCT glass-transition volume
fraction φc (l/w = 1.25: φc = 0.615±0.005, l/w = 0.80: φc = 0.618±0.005).
Flipping modes were not slowed down significantly. We demonstrated that the
results are independent of simulation method, as predictedby MCT. Further, we
determined that even intra-cage motion is cooperative. We confirmed the presence
of dynamical heterogeneities associated with the cage effect. The transit between
cages was seen to occur on short time scales, compared to the time spent in cages;
but the transit was shown not to involve displacements distinguishable in charac-
ter from intra-cage motion. The presence of glassy dynamicswas predicted by
MMCT [3]. However, as MMCT disregards crystallization, a test by simulation
was required. Glassy dynamics is unusual in monodisperse systems. Crystalliza-
tion typically intervenes unless polydispersity, network-forming bonds or other
asymmetries are introduced. We argue that particle anisometry acts as a sufficient
source of disorder to prevent crystallization. This sheds new light on the question
of which ingredients are required for glass formation.
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3.1 Top: Constructed sFCC (cf. Figure 1.4) which was input. Bottom:
Snapshot of the SM2 crystal which spontaneously formed fromit.
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3.2 Left: Snapshot of SM2 (P= 46,N = 1728) in which the collective
re-orientation took place along an oblique angle with respect to
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is clearly visible. Right: Illustration of the possible directions of
re-orientation from sFCC. The yellow line indicates the onethe
system on the left had chosen, the red ones indicate the othertwo
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3.3 Unit cell of SM2 forl/w= 3. The open circles indicate the centers
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SM2 (blue solid squares) is higher than that of sFCC (red open
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Symbols and Units

Constants and Variables

kB Boltzmann’s constant
T temperature
E energy
U potential energy
N number of particles
V volume
φ volume fraction (filled space / all space)
ρ number density
P pressure
F Helmholtz free energy
G Gibbs free energy
Z partition function
m particle mass
l ellipsoid length
w ellipsoid width
l/w aspect ratio of each ellipsoid
r position
u orientation
r (scalar) displacement
a, b, c unit cell vectors
β crystal: angle of inclination; glass: stretching parameter
q, q wave vector, its magnitude
τ relaxation time
λ MCT exponent parameter
a, b, γ MCT exponents
δmax max. trial move size
RA acceptance ratio
rMSD mean cage radius
rI instantaneous cage radius
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Units
length particle widthw
mass particle massm
moment of inertia mw2

temperature irrelevant in hard-particle systems
energy kBT
pressure kBT/[(l/w)w3]

volume fraction dimensionless
number density 1/[(l/w)w3] (same as in Frenkel and Mulder [1])
time (MC) MC step (see Section 2.1.3)
time (MD) MD step (see Section 2.2.2)

Conversions

volume fraction =π/6 number density

Abbreviations
MC Monte Carlo
MD Molecular Dynamics
FCC face-centered cubic
sFCC stretched face-centered cubic
SM2 simple-monoclinic with a basis of two ellipsoids
MSD Mean-squared displacement
NGP Non-Gaussian parameter
MCT Mode-Coupling Theory
MMCT Molecular Mode-Coupling Theory



Chapter 1

Introduction

1.1 Colloidal Suspensions

A colloidal suspension is any system in which particles are dissolved in a con-
tinuous solvent. The particles typically have sizes from nanometers to microme-
ters. With such a general definition, it comes as no surprise that there are many
examples: In milk, there are fat droplets in water; in paint,there are pigments
in a solvent; dust in air forms a colloidal suspension; motoroil carries metal
particles—and so on. An even more general definition includes systems which
have any structure on theµm to nm scale, not just particles.

Instead of “colloidal suspensions”, one often simply says “colloids”. Occa-
sionally, an individual particle in a suspension is called acolloid. The original
meaning of the word is “glue-like” and comes from the Greek “kolla” (glue) and
“eidos” (appearance). The term was introduced in 1861 by Thomas Graham, the
reputed founder of colloid chemistry [4].

Figure 1.1 shows an illustration of a colloidal suspension (left) and a real ex-
ample (right). In the schematic, we see an isotropic (disordered) phase, and in
the bottom-right corner a crystal phase is indicated. Thereexists a rich variety of
phases in colloidal suspensions, depending on the properties of the particles and
the solvent. We will encounter some more below. The real colloidal suspension
in Figure 1.1 (right) contains spherical polymer particleswhose index of refrac-
tion is close to that of the solvent. Hence, they cannot be seen in the isotropic
phase (top, dark region); but they display Bragg scatteringof green light in the
(poly)crystalline phase at the bottom.

Apart from their beauty and interesting properties, colloidal suspensions are
popular since they allow the study of many-particle physicsin a direct way: The
size of the particles makes them visible under the microscope, their dynamics is
slow enough to be followed in experiment, and the scale of particle interactions
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Figure 1.1: Left: schematic colloidal suspension. Right: real colloidal suspension (cour-
tesy of T. Palberg, http://kolloid.physik.uni-mainz.de/). In the schematic, a crystal is al-
luded to in the bottom-right corner. The real suspension contains spherical polymer parti-
cles whose index of refraction is close to that of the solvent. Hence, they cannot be seen
in the isotropic phase (top, dark region); but they display Bragg scattering of green light
in the crystalline phase at the bottom.

is on the order ofkBT at room temperature. On the other hand, the phase behav-
ior and non-equilibrium phenomena of colloids may translate to those of other
systems. For example, Pusey and van Megen [5] discovered that suspensions of
nearly-hard spheres display equilibrium and glass phases found in atomic sys-
tems. Thus, the understanding of the statistical physics ofcolloids promises the
understanding of other systems, including atomic, molecular, or granular ones.

1.2 Hard-Particle Models

Consider a system ofN identical, hard molecules in the canonical ensemble. The
potential energy is zero everywhere in phase space except when particles overlap,
where it is infinite. Therefore, the particles never overlap, and the potential energy
is always zero. The internal energyE has only the kinetic contribution for 6N
degrees of freedom, so that the Helmholtz free energy is

F(N,V,T) = E(N,V,T)−TS(N,V,T) =
6N
2

kBT−TS(N,V,T)
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Note that the configurational space available to the system is independent of in-
ternal energy, so thatS is not a function ofE or T:

F(N,V,T) = kBT

[
6N
2
− 1

kB
S(N,V)

]
and we see thatT is nothing but an overall scaling parameter in hard-particle
systems. We therefore express the free energy in units ofkBT. Also, sinceN is
constant, the kinetic term will not contribute to the equilibrium behavior, and can
be disregarded. We have

F(N,V,T)
kBT

=− 1
kB

S(N,V) (1.1)

Hence, the equilibrium behavior of hard-particle systems is fully determined by
entropy. For this reason, they are also calledentropic systems.

In terms of the partition function in the canonical ensemble, we have

Z(N,V,T) =
1

N!λ 6N

∫
V

drN
∫
4π

duN exp[−U({r i},{ui})/kBT] (1.2)

whereλ =
√

h2/(2πmkBT) is the thermal de Broglie wavelength1, r i is the posi-
tion andui the orientation of particlei, U({r i},{ui}) is the potential energy, and
the curly braces denote that the potential energy is a function of all positions and
orientations. We will in the following drop the prefactors,which have no influ-
ence on the equilibrium behavior. Given the nature of the potential energy, the
exponential in Eq. (1.2) will be unity everywhere except forthe case of overlap,
where it is zero. So we may write

Z(N,V) =
∫
V

∫
4π

no overlap

drNduN (1.3)

This is precisely the configurational space available to thesystem, so that

S(N,V) = kB lnZ(N,V)

Recalling that
F =−kBT lnZ

we note that Eq. (1.3) is equivalent to Eq. (1.1).

1assuming unit moment of inertia for simplicity.
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The simplicity of Eq. (1.3) is one reason why hard-particle models are so at-
tractive. The behavior of the system is only a matter of geometry. This also makes
computer simulations relatively easy. One of the first applications of computer
simulations was a study of the liquid-solid phase transition in hard spheres [6].

But the chief motivation for the study of hard-particle models is that all struc-
tural properties are purely a result of the shape of the particles (the dynamics also
depend on the moment of inertia of the particles). The importance of shape was
highlighted by Onsager in 1949 [7], who showed that particleanisotropy alone can
lead to an isotropic-nematic transition2. The understanding of hard-particle mod-
els expedites the understanding of more complicated systems, where effects from
particle shape may be anticipated and contrasted with othereffects. For further
reading on hard-particle models, we recommend the reviews by Care and Cleaver
[8] and by Wilson [9].

We point out that the trivial kinetic contribution in the above equations does
not make the dynamics, the time evolution, of a system trivial. While the instan-
taneous distribution of momenta will follow the familiar results at all times, the
properties of diffusion and relaxation may nevertheless beintricate. Particles may
be constrained to local motion for long times (Section 1.4).

1.3 Hard Ellipsoids of Revolution

1.3.1 Definition

One hard-particle model is the suspension of hard ellipsoids. In our study, the
ellipsoids are uni-axial, i.e. they possess two equal axes of sizew, and one spe-
cial axis of sizel . w, the width of the particles, provides the unit of length used
throughout this work. The ratiol/w is the aspect ratio. Ifl/w is larger than unity,
the ellipsoids are called prolate; if it is smaller than unity, they are oblate. Since
uni-axial ellipsoids can be constructed by revolving an ellipse around one axis,
they are also called ellipsoids of revolution. Our ellipsoids are monodisperse; i.e.,
they all have the same size and aspect ratio. The suspension is a collection of ellip-
soids in a box of fixed or variable size, depending on the choice of thermodynamic
ensemble. Figure 1.2 illustrates the model.

2The nematic phase is introduced in Section 1.3.2.1.
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l

Figure 1.2: Ellipsoids of revolution.

1.3.2 Earlier Work

1.3.2.1 Equilibrium Results

The Monte Carlo (MC) simulation of hard ellipsoids began with the work of
Vieillard-Baron [10] in 1972, whose algorithm for the detection of particle overlap
is partly used even today, but whose results were otherwise limited by the com-
puting power at the time. The efficiency of overlap detection, which is the bottle
neck in the simulation, was improved by Perram and Wertheim [11, 12]. Using
this, Frenkel and Mulder [1]3 established a phase diagram for hard ellipsoids in
1985; it has seen little modification since then.

Figure 1.3 shows the mentioned phase diagram. At low densities, there is an
isotropic (or liquid) phase in which all degrees of freedom are disordered. At high
densities, we have a solid phase, with orientational and positional order. If the el-
lipsoids are sufficiently anisometric (l/w < 0.36 or l/w > 2.75), a nematic phase
exists between liquid and solid; there one has orientational order only: all ellip-
soids point in nearly the same direction, but their positions are disordered as in
the liquid phase. Finally, nearly spherical ellipsoids (0.7 < l/w < 1.4) can form a
plastic solid phase (or rotator phase), with positional order and orientational disor-
der. The partially ordered phases are examples of liquid crystals, a vast subject of
research [14]. Especially the nematic phase has been a chiefmotivation to study
ellipsoids.

Hence, the focus of attention since the work of Frenkel and Mulder has been on
the nematic phase and the isotropic-nematic transition [15, 16, 17]. These works

3Ref. 1 is a reprint; original paper: Ref. 13.
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l/w

Figure 1.3: Frenkel and Mulder’s phase diagram of hard ellipsoids (adapted from [1] with
permission). At low densities, there is an isotropic phase (I, illustrated in green), in which
all degrees of freedom are disordered. At high densities, wehave a solid phase (S, black),
with orientational and positional order. Beyond moderate anisometry, a nematic phase
exists in between (N, dark blue), where one has orientational order only (all ellipsoids
point in nearly the same direction). Finally, nearly spherical ellipsoids can form a plastic
solid phase (PS, light blue), with positional order and orientational disorder. Grey regions
mark coexistence.
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determined the coexistence parameters more precisely and confirmed Onsager’s
theory for the nematic phase [7] forl/w & 3, a common geometry in liquid crys-
tals. Finally, we note that biaxial hard ellipsoids have also been studied [18, 19],
which exhibit more liquid crystalline phases. For further reading we suggest the
review articles [8, 9, 20]

The high-density phases, however, have not been investigated further. Knowl-
edge of these phases is relevant for studies of elongated colloids in general, and it
is critical for the study of nucleation and glassy dynamics in hard ellipsoids. The
solid phases are one subject of the present investigation and, as we will see, they
have surprises in store.

The crystal phase at high densities wasassumedby Frenkel and Mulder [1]
to be a solid of a certain structure. This step was necessary since crystallization
is a rare event and in a simulation requires techniques unavailable at the time. It
was argued that the chosen solid should at least be near the free-energy minimum
due to its high symmetry. We close this section by describinghow it is constructed
(see Figure 1.4). We begin with an FCC system of spheres (top part of the Figure).
An affine stretch by a factorx is performed in an arbitrary directionz, in this
case the [111] direction. Thereby we stretch both the lattice and the constituent
particles. This transformation results in a crystal structure of ellipsoids of aspect
ratio l/w= x, which are oriented alongz. Since filled space is stretched as much as
empty space, the volume fraction of closest packing is the same as for the closest
packing of spheres,φ = π/

√
18≈ 0.7405. In the work of Frenkel and Mulder,

this structure was then simulated at finite pressures. We will refer to it as stretched
face-centered cubic (sFCC).

1.3.2.2 Close-Packing

Recently, Donev et al. [2] showed that close-packings of ellipsoids can be con-
structed which exceed the volume fraction for sFCC. They keywas to take non-
lattice periodic packings into account, i.e. packings in which a unit cell con-
tains several ellipsoids at different orientations.φ ≈ 0.7707 can be achieved for
l/w >

√
3 andl/w 6 1/

√
3 if the unit cell contains two ellipsoids.

While this result concerns only close-packing, it is important for our thermo-
dynamic results as the infinite-pressure limit. Therefore,we outline the construc-
tion in this section. Consider two layers of an FCC packing ofspheres (see Figure
1.5a), a lower one (filled in light blue) and an upper one (transparent with dark
outline). The red square highlights one face of the FCC. Suchpairs of layers can
be stacked to fill all space with FCC. The spheres are now deformed to ellipsoids
as indicated by the red arrows, until they touch an additional two neighbors (n is
the number of touching neighbors). The directions of deformation alternate per-
pendicularly from layer to layer. The ellipsoids remain at their lattice sites, as
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y

x

x y

l/w=1

sFCC

x yy

FCC

l/w=3

x

Figure 1.4: Construction of the sFCC crystal of ellipsoids as done in Ref. 1. The upper
part shows an FCC crystal of spheres in the [111] direction (left) and in the two perpen-
dicular directions labeledx andy (middle and right). The lower part shows the same struc-
ture after an affine stretch in the [111] direction. The volume fraction (at close-packing
φ ≈ 0.74) remains unchanged.
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= 0.74φ
n = 12

l/w = 3

l/w =   3

c) d)

a) b)

n = 14

= 0.77φ

Figure 1.5: Construction of densest-known packings of ellipsoids [2].In each sketch,
two layers of particles are shown, a lower one (filled with light blue) and an upper one
(transparent with dark outline). Such pairs of layers can bestacked to fill all space. a)
Layers of FCC-packed spheres. The spheres are deformed to ellipsoids until they touch
an additional two neighbors (n is the number of touching neighbors). The directions of
deformation alternate perpendicularly from layer to layer. The ellipsoids remain at their
lattice sites, as one can check with the red reference square. b) The resulting structure has
the maximal volume fractionφ ≈ 0.7707. The diagonal line indicates a plane of symmetry
in which an affine stretch keeps all ellipsoids congruent. c)Same as b), but rotated by 45o.
d) Same as c), but after an in-plane stretch to obtain ellipsoids with l/w = 3, packed at
φ ≈ 0.7707.
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one can check with the red reference square. As it happens, neighbors touching
previously remain touching in the process. The resulting structure (Figure 1.5b)
has the maximal volume fractionφ ≈ 0.7707. A hint towards this effect comes
from the darker appearance of the illustration. The number of touching neigh-
bors has increased ton = 14, also indicative of a denser packing. The aspect
ratio l/w =

√
3 at this point, but higher values can be reached. The diagonal line

indicates a plane of symmetry in which an affine stretch keepsall ellipsoids con-
gruent. We recall that such a stretch leaves the packing fraction unchanged, since
filled space is stretched as much as empty space. For clarity we now rotate the
view by 45o (move on to Figure 1.5c), and then perform an example stretchin
the vertical direction to arrive at a packing of ellipsoids with l/w = 3, packed at
φ ≈ 0.7707 (Figure 1.5d). To be precise, we note that the ellipsoids have become
biaxial in the last step, since the stretch was not parallel to the long axisl . This can
be remedied by performing an according stretch perpendicular to the plane of the
page, so that the rotational symmetry is restored. In addition, one may perform a
larger stretch perpendicular to the plane of the page, to obtain a densest packing
of oblateuni-axial ellipsoids withl/w = 1/3. Depending on the in-plane stretch
beforehand, densest packings of oblate ellipsoidsl/w 6 1/

√
3 are possible.

In addition to ordered close-packing of ellipsoids, the same group has been
studying random close-packing of ellipsoids [21], partly in the search for a ther-
modynamically stable “glass”; i.e. a random packing which forms the ground
state. This search is motivated by the fact that these packings achieveφ ≈ 0.74,
not far from the ordered case. We understand a glass as a non-equilibrium state,
however (Section 1.4).

1.3.2.3 Dynamics

The first molecular dynamics (MD) simulation of ellipsoids,and the first of all
molecular, hard-particle fluids, was that of prolate hard ellipsoids with aspect ra-
tios 2 and 3 by Allen and Frenkel [22]. The event-driven MD algorithm was
developed by Allen, Frenkel, and Talbot [23], and it is the one we employ as well
(Section 2.2.2). The investigation confirmed dynamic precursors of the isotropic-
nematic transition, viz. the slowing-down of collective re-orientation indicative of
the weakly first-order nature of the transition. Subsequently, Allen [24] showed
with the same technique that in the nematic phase, diffusionalong the long axis
(prolate) or perpendicular to the short axis (oblate) becomes enhanced as the
density is increased, before it is finally slowed down again.Further, Bereolos
et al. [25] have studied diffusion, shear viscosity, and thermal conductivity in the
isotropic region of the phase diagram, using the same MD. More results are re-
viewed in Ref. 20.

More recently, Letz et al. [3] have applied idealized molecular mode-coupling
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theory4 (MMCT [26, 27, 28]) to the hard-ellipsoid fluid. Amending conventional
mode-coupling theory (MCT [29]), MMCT takes orientationaldegrees of freedom
into account. They predicted a glass transition of type B; that is, the long-time
limit of the correlation functions jumps to a finite value as the transition line is
crossed. Positional and even-parity orientational degrees of freedom become non-
ergodic there. For nearly spherical ellipsoids this transition is driven by the cage
effect, and is located inside the coexistence region between the isotropic fluid and
the positionally ordered phases (solid and plastic solid).For more anisometric
ellipsoids (l/w < 0.5 andl/w > 2.0) it is driven by pre-nematic order, i.e. by the
formation of nematic domains, and located in the vicinity ofthe isotropic-nematic
transition. In addition, a type-A glass transition was predicted, where the long-
time limit of the correlators becomes finite continuously asthe transition line is
crossed. This transition affects only the odd-parity orientational degrees of free-
dom, i.e. 180◦ flips. It was predicted to occur in nearly-spherical ellipsoids, upon
further compression in the plastic-solid regime of the equilibrium phase diagram.

De Michele et al. [30] have subsequently studied the dynamics of hard ellip-
soids by molecular dynamics simulations. The simulated state points are mostly
located in the isotropic region. The calculated isodiffusivity lines showed that
the positional and orientational degrees of freedom are decoupled, since the po-
sitional isodiffusivity lines cross the orientational ones at nearly 90◦. The be-
havior of correlation functions corroborated this decoupling. The self-part of
the intermediate scattering function displayed slight stretching only when over-
compressing nearly-spherical ellipsoids, while the second-order orientational cor-
relator showed such stretching only for sufficiently anisometric particles, i.e. near
the isotropic-nematic transition. But significant indicators of glassy dynamics,
e.g. two-step relaxation in correlators or drastic slowing-down, were not seen as
over-compression was weak. The last two studies are summarized in Figure 1.6.

Our study of glassy dynamics is motivated by the mentioned MMCT predic-
tions of Letz et al. [3], and as a complement to the molecular dynamics investi-
gation of de Michele et al. [30] which did not focus on the over-compressed fluid
states.

1.3.2.4 Experiment

A celebrated experiment of granular ellipsoids is the studyof random packings of
M&M candies [21]. As mentioned in Section 1.3.2.2, the result was that random
packings of ellipsoids can achieve packing fractions as high asφ ≈ 0.74, near the
sFCC result.

As for colloidal suspensions, a procedure is available for making almost monodis-

4A brief introduction tomode-coupling theory is given in Section 1.4.2.
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Figure 1.6: Equilibrium phase diagram of hard ellipsoids (adapted from[1] with permis-
sion) showing the Molecular Mode-Coupling Theory results of Letz et al. [3]. The red
line marks a discontinuous (Type B) glass transition line, which follows the coexistence
region delimiting the isotropic regime; and a continuous (Type A) transition line inside the
plastic-solid region, affecting flipping modes only. In addition, the blue arrows indicate
that positional freedom of the particles is governed by density, while the turquoise arrows
indicate that orientational freedom is governed by anisometry. This decoupling was found
by de Michele et al. [30]. In green we preview our result that both orientational and posi-
tional degrees of freedom are strongly slowed down by the indicated over-compression.
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perse ellipsoids [31, 32], as follows: Polystyrene (PS) or poly(methyl-methacrylate)
(PMMA) spheres, which are commercially available in narrowsize ranges, are
dispersed in a polyvinyl-alcohol (PVA) / water solution. The mixture is spread
onto a flat surface, and upon drying (i.e. evaporation of the water), a PVA film re-
sults, which contains the particles. This film is then heatedto≈ 140oC, i.e. above
the glass transition temperature of the particles. Stretching of the film then de-
forms the spheres to ellipsoids of controllable aspect ratio. After cooling, the film
is dissolved in a water/alcohol mixture, and the solution centrifuged to sediment
the particles. The liquid is decanted. Several more dispersions in water/alcohol
and subsequent separations washes the remnant PVA from the particles. Figure
1.7 shows a micrograph of such particles prepared by the author during a visit to
the group of Prof. Jan Vermant (Katholieke Universiteit Leuven). The spheres
had an initial radius of 3.1µm, and the aspect ratio of the resulting ellipsoids is
estimated nearl/w = 3.5 Such ellipsoids of course are not exactly hard; but the
use of steric stabilization, which avoids coagulation by attaching a polymer brush
to the surface, allows for promisingly hard realizations.

The behavior of PS ellipsoids confined to water-air interfaces has been studied.
This confinement occurs because the surface free-energy is significantly lower for
the ellipsoid-air and ellipsoid-water interfaces than forthe water-air interface. The
presence of the particles at the interface thus lowers the total free energy of such
a system. The ellipsoids are not fully immersed in water, andthe anisometry of
the particles brings about a deformation of the interface, inducing an effective
interaction (capillary forces) tending to minimize the deformation. The surface
deformation and its consequences has been studied both experimentally [33] and
theoretically [34]. In addition, the packing of ellipsoidsat high surface coverages
was studied experimentally [35].

Furthermore, 3D structural properties of a sedimentation of these particles
have been successfully characterized [36], showing nematic domains. Fluores-
cently labeled PMMA particles were imaged by confocal microscopy. Recently,
this technique has been extended to dynamics [37]. Both translational and ro-
tational motion could be followed. A study of glassy dynamics in this fashion
seems promising, so does the investigation of the equilibrium phases of colloidal
ellipsoids in bulk.

5It is thus demonstrated that a theoretician can perform thisprocedure after some training.
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Figure 1.7: Micrograph of polystyrene ellipsoids (l/w≈ 2.5, w≈ 3µm), prepared by the
author during a visit to the group of Prof. Jan Vermant (Katholieke Universiteit Leuven).

1.4 Glasses

1.4.1 Overview

Glasses are familiar materials in every-day life. The reader may have visited fac-
tories or artists forming shapes from the glowing hot, viscous mass which then
somehow freezes in the given shape when allowed to cool, to finally yield the
useful and beautiful products we know.

From the scientific perspective, glasses form a peculiar “phase” of matter in
that they are solid and liquid at the same time. They are solidin appearance, but
their microscopic structure is indistinguishable from their liquid phase. It is their
dynamical properties which make the difference. Viscosityand relaxation times
are 12-14orders of magnitudelarger than those of liquids, after only a modest
change in temperature (e.g. a factor of three). As a consequence, glasses are
non-equilibrium systems, since even slow cooling from the liquid state eventually
occurs too fast for the system to adjust.

There are various definitions of the glass transition and associated transition
temperature:

• the system falls out of equilibrium during cooling

• the viscosity has reached 1013 Poise

• special conditions in theoretical models arise, e.g. the arrest of dynamics in
Mode Coupling Theory.
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Typically (but not necessarily) glassy characteristics develop upon supercooling
the liquid below its freezing point. The competing mechanism is crystallization.
Whether or not a system remains amorphous during cooling depends on material
properties and the cooling rate. If the system crystallizesreadily, rapid cooling
(a “quench”) is required to reach a glass state. In archetypal glass formers, such
as silica mixtures, the slowing-down becomes significant well before the freezing
point is reached, so moderate cooling rates suffice.

If the cooling rate is slow enough, and if crystallization does not intervene,
glassy dynamics may be studied in quasi-equilibrium. The term glassy dynamics
refers to the significant slowing-down of diffusion and relaxation (as compared
to the microscopic time scale6), non-exponential relaxation, and their strong de-
pendence on a control parameter. In our case, density (or volume fraction) is the
control parameter, rather than temperature.

A concise and accessible introduction to glasses is given byKob [38].

1.4.2 The Mode-Coupling Theory of the Glass Transition

The dynamics of glassy systems and the glass transition in particular have been the
subject of intense research for the past 25 years. However, many phenomena are
still poorly understood. The only microscopic theory so faris the mode-coupling
theory (MCT) [39]. Our study of the dynamics will include tests of this theory.
We give here a brief introduction to MCT. For more details seethe review articles
[40, 38, 41, 42, 43]. MCT has been extended to orientational degrees of freedom
[26, 27, 28], called Molecular Mode-Coupling Theory (MMCT).

We will first discuss MCT with temperature as the control parameter, because
this is the more common situation; but glassy dynamics may just as well be in-
duced by over-compression, rather than supercooling. At the end of this section,
we will point out how all results apply to our situation, where density, or volume
fraction, is the control parameter. Moreover, for simplicity we will first ignore
orientational degrees of freedom, and discuss their inclusion at the end as well.

A remarkable feature of the dynamics of supercooled liquidsis the stark in-
crease of typical relaxation timesτ upon cooling the liquid from its liquid state to
the glass transition temperatureTg.7 In the liquid state,τ is on the order of ps; near
Tg, it may well be hundreds of seconds. But this slowing down is accompanied
by no significant change in structure; e.g. there is no diverging length scale as
in a second-order phase transition. MCT describes this slowing down as strongly
increasing nonlinear feedback effects in the microscopic dynamics, whereby par-

6That time scale on which local processes occur (e.g. particle vibrations).
7Tg is here defined (arbitrarily) as the temperature at which theviscosity has reached 1013

Poise.
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ticles are trapped incagesformed by their nearest neighbors. We emphasize that
MCT is an equilibrium theory (ignoring crystallization); it does not apply to sys-
tems which have fallen out of equilibrium during cooling.

The appropriate observable for the slowing down of the relaxation dynamics
in glassy systems is theintermediate scattering function:

F(q, t) =
1
N
〈ρ∗(q, t)ρ(q,0)〉 where ρ(q, t) =

N

∑
i=1

exp(iq · r i(t)), (1.4)

whereq is the wave vector,N the number of particles andr i(t) the position of the
ith particle at timet. F(q, t) is a density-density correlator which is accessible in
scattering experiments and may be calculated from simulation. It is therefore of
practical interest.8

Starting from the Liouville equation, and using the Mori-Zwanzig projec-
tion operator formalism, one may derive an equation of motion for F(q, t). For
isotropic systems, this equation of motion, calledMori–Zwanzig equation,may
be written as

F̈(q, t)+Ω2(q)F(q, t)+
∫ t

0

[
M0(q, t− t ′)+Ω2(q)m(q, t− t ′)

]︸ ︷︷ ︸
memorykernel

Ḟ(q, t ′)dt′ = 0,

(1.5)
whereΩ(q), a microscopic frequency, depends on the static structure factorS(q)
(see Section 4.2.2) via

Ω2(q) =
q2kBT
mS(q)

, (1.6)

wherem is the mass of the particles andkB Boltzmann’s constant. So far the
equation of motion forF(q, t) is exact; the problem has been merely restated in a
form which makes the following approximations possible.

Thememory kernelconsists of two parts:M0(q, t) describes the dynamics at
short (i.e. microscopic) times and is important only near the triple point;m(q, t)
becomes important when the liquid is strongly supercooled.Assuming, then, that
the only relevant contribution ofM0(q, t) occurs att = 0, we approximate

M0(q, t) = ν(q)δ (t). (1.7)

Eq. (1.5) then becomes that of a damped harmonic oscillator with the addition of
a retarded friction term proportional tom(q, t).

8We introduce it in detail in Section 4.3.2.1.
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In the factorization approximation(see Götze [44]),m(q, t) is taken to be a
quadratic form of the correlatorsF(q, t), i.e.

m(q, t) = ∑
k+p=q

V(q;k;p)F(k, t)F(p, t). (1.8)

This yields the so-calledmode-coupling equations(first proposed by Bengtzelius
et al. [39]), a closed set of coupled equations forF(q, t), the solution of which
is the full time dependence of the intermediate scattering functions. The vertices
V(q;k;p) can be calculated fromS(q) and static three-point correlation functions.

In this idealizedversion of MCT, it is believed that these equations (Eq. (1.5)
through Eq. (1.8)) give a correct (self-consistent) description of the dynamics on
time scales while particles typically remain trapped incagesformed by surround-
ing particles; and at long time scales, on which they typically manage to escape
these cages and exhibit diffusive motion. Particles will not escape such a cage un-
less their destination cage has been vacated, which will notbe the case beforeits
inhabitant has found a new cage to go to, etc. Therefore, the motion of the parti-
cles is collective, and so the description of motion must incorporate feedback. The
mode-coupling approximation (Eq. (1.8)), in conjunction with Eq. (1.5), satisfies
that requirement [45].

The quantitiesΩ2(q), M0(q, t) andV(q;k;p) depend on temperature, the ma-
jor influence ultimately stemming fromS(q). Correspondingly, lower temperature
leads to longer times before escape from a cage occurs. We will see momentar-
ily that in (idealized) MCT, one may pinpoint a critical temperatureTc at which
particles hinder each other so much as to produce structuralarrest of the system.

Due to the complexity of the mode-coupling equations, one must resort to
numerical approaches. However, the situation improves significantly if we make
another approximation, whereby the structure factor is replaced by aδ–function
at its main peak; we call this positionq0. The mode-coupling equations then
reduce to just one equation atq0, all others vanish identically. ReplacingΦ(t) =
F(q0, t)/S(q0), we find

Φ̈(t)+Ω2Φ(t)+νΦ̇(t)+Ω2
∫ t

0
m

[
Φ(t− t ′)

]
Φ̇(t ′)dt′ = 0. (1.9)

Herem[Φ] is a polynomial of low order inΦ. The temperature dependence ofS(q)
enters here via a temperature dependence of the coefficientsof the polynomial
m[Φ]. An equation obtained in this fashion is calledschematic model.The appeal
of such models is that the general features of their solutions, asymptotic laws in
particular, are the same as the ones of the full MCT-equations. However, since
they are significantly simpler, they facilitate a general overview on the possible
time dependence of the solutions.
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Now, if the nonlinear feedback, given by the kernelm[Φ], exceeds a certain
threshold, the solution to Eq. (1.9), henceF(q0, t), no longer decays to zero (the
system has become nonergodic). It is this condition which isidentified with the
glass transition; it occurs at a critical temperatureTc.

Before turning to the predictions ofidealizedMCT, we discuss an important
limitation. Upon reaching very low temperatures (i.e. close to Tc), the dynamic
behavior departs from that described by idealized MCT because hopping pro-
cessesstart to become important. They are processes whereby cagesare left in
an activated fashion, leading to structural relaxation, and idealized MCT neglects
these. The result is that even at lowT, the system is still ergodic, and correlators
eventually decay to zero. The domain to which idealized MCT applies is thereby
limited; it ranges from the liquid regime, where relaxationtimes are on the or-
der of ps, down to tens of ns in the supercooled state, before hopping processes
become important.

The so-calledextended versionof MCT incorporates such hopping processes;
due to complications, however, the treatment does not yet include as much detail.
We will focus our attention to idealized MCT and take note of hopping when
necessary.

Let us turn to the predictions (for more detail see [42, 41, 46, 47, 44, 43]).
Most of them concern the decay of correlation functions. In Figure 1.8 we demon-
strate the general behavior of such functions. We distinguish three regimes: the
microscopicregime, a time scale during which microscopic relaxation takes place;
since it strongly depends on the details of microscopic interactions, hardly any
general predictions are possible.9 Next comes theβ -relaxation regime, during
which dynamics are dominated by caging - visible as a plateauwhich increases
in width towards low temperatures; and theα-relaxationregime, which describes
the decay of the correlators from the plateau to zero. One of the main predictions
of MCT is the existence of these three regimes; and it makes detailed predictions
about the latter two, as follows.

• There exists a critical temperatureTc, and in its vicinity the self-diffusion
constantD and the inverse of theα–relaxation timeτ vanish according to10

D ∝ τ−1 ∝ (T−Tc)γ , (1.10)

whereγ > 1.5 is universal for the system (i.e. the same for all correlators).
Note that the following predictions all assume proximity ofTc.

9The microscopic regime is preceded by theballistic regime, during which particles move with
essentially constant velocity and (hence) decay of correlators is quadratic. The ballistic regime is
absent in colloidal systems, where Brownian motion occurs.

10Theα–relaxation timeτ may be defined as the time when the correlator has decayed to 0.1 or
another fixed value within theα–relaxation regime.
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Figure 1.8: Schematic time dependence of correlators, for liquid to supercooled regimes
and the glass case (high to low temperatures, or low to high densities).
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• In theβ - andα-relaxation regimes, the correlators obey the so-called time-
temperature superposition principle (TTSP), which statesthat the correla-
tors map onto a single curve by rescaling the time dependenceusingt/τ (τ
being theα–relaxation time); that is,

Φ(t) = Ψ(t/τ(T)) . (1.11)

• Numerical predictions from MCT show that theKohlrausch–Williams–Watts
functionmay be used as a fit function for the master curve Eq. (1.11), with
an effective exponentβ

Φ(t) = Aexp
(
−(t/τ(T))β

)
, (1.12)

whereβ is thestretching parameter.It depends on the correlator (in partic-
ular, onq in F(q, t)).

• All correlation functions’α–relaxation times diverge according to a power
law with exponentγ (see Eq. (1.10)). This exponent is related to two pa-
rametersa andb concerning theβ–relaxation regime (discussed below):

γ = 1/(2a)+1/(2b). (1.13)

Thus, from the temperature dependence of theα–relaxation time we can
learn about the time dependence of the relaxation in theβ -relaxation regime
and vice versa.a andb are related to one another via

Γ2(1−a)/Γ(1−2a) = Γ2(1+b)/Γ(1+2b) = λ (1.14)

so that knowledge of one of these three exponents yields the other two.λ is
called theexponent parameter.

• In theβ–relaxation regime the correlators may be written as

Φ(q, t) = f c
q +h(q)g(t/τ), (1.15)

wheref c
q , the height of the plateau at the transition, is termednon-ergodicity

parameter. h(q) is an amplitude.g(t/τ) doesnot depend on q; this entails
thefactorization property.Defining [48]

R(t) =
Φ(q, t)−Φ(q, t ′′)
Φ(q, t ′)−Φ(q, t ′′)

(1.16)

one finds that allq-dependence has been removed. This operation can be
directly applied toF(q, t) data, allowing one to check whether the factor-
ization property holds: if it does, allF(q, t) will fall onto a master curve.



1.4. Glasses 21

• The lateβ–relaxation regime (when the curve slowly begins to leave the
plateau) and the earlyα–relaxation regime in the intermediate scattering
functions may be described by

Φ(q, t) = f c
q −h(1)

q tb+h(2)
q t2b. (1.17)

f c
q is again the non-ergodicity parameter. When dealing with coherent11

intermediate scattering functions,f c
q is also called theDebye-Waller factor;

in incoherent intermediate scattering functions, it is theLamb-Mößbauer

factor. h(1)
q is referred to ascritical amplitude. All quantities subscribed

with q depend only onq, not on timet. The first two terms in Eq. (1.17)
are calledvon Schweidler law,to which the last term is a leading-order
correction;b is thevon Schweidler exponent,and according to MCT it is
independent of type of correlator (hence independent ofq).

• The time scale of theβ–relaxation regime (its width) is predicted by MCT
to diverge as

t ∝ |T−Tc|1/2a, (1.18)

whenT is close toTc, and we have 0< a < 1/2. Light scattering experi-
ments have confirmed the validity of Eq. (1.18) [49, 50].

• The relaxation dynamics are, apart from an overall shift in time scales, in-
dependent of the microscopic dynamics (e.g. Brownian vs. Newtonian dy-
namics). Hence, the above predictions are independent thereof.

In molecular systems, where there are orientational degrees of freedom, one can
define orientational analogues of the intermediate scattering functions (see also
Section 4.3.2.2),

Li(t) = 〈Pi {cos[θ(t)]}〉 (1.19)

wherePi is theith Legendre polynomial, andθ(t) is the angle between a molecule’s
orientation at timet and its initial orientation. These orientational correlation
functions play the same role as the intermediate scatteringfunctions, and the
above MCT predictions apply analogously, if we bear in mind thatq is replaced
by the discrete indexi. This analogy is limited, however: It is possible that ori-
entational degrees of freedom are not affected by a positional glass transition, or
even that different values ofi are affected by separate glass transitions (see Sec-
tion 1.3.2.3). This concerns the factorization property and the degree to which
exponents are system-universal.

11For the distinction between coherent and incoherent intermediate scattering functions, see
Section 4.3.2.1.
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In hard-particle systems, temperature is a trivial, overall scaling parameter.
The only relevant quantity for glassy dynamics is here particle density, or equiva-
lently, volume fraction. To apply the above predictions to this case, supercooling
translates to over-compression, and one must simply replace all expressionsT−Tc

by φc−φ , whereφc is the MCT critical volume fraction.
Many of the qualitative predictions of MCT have been confirmed for super-

cooled liquids. See, for example, [51, 52, 53, 54, 55, 56].



Chapter 2

Simulation - Theory and Technique

We have employed two techniques of simulation in our work, Monte Carlo sim-
ulation and molecular dynamics simulation. This allowed usto compare the two
methods and test a MCT prediction about such a comparison (Sections 1.4.2 and
4.3).

Since we are interested in the bulk properties of our systems, all simulations
were done withperiodic boundary conditionsto minimize boundary effects. The
simulated system is perpetuated periodically in all directions by images of itself.
A particle leaving the system on the right-hand side re-enters it on the left-hand
side, and so on. Each particle interacts either with the original of other particles in
the box or with the closest image in a neighboring image box, whichever is closer.
The absolute position of the particles is irrelevant in sucha setup [57].

2.1 Monte Carlo Simulation (MC)

2.1.1 General Features

In Monte Carlo simulation as introduced by Metropolis et al.[58], phase space
is traversed, orsampled, by a random walk. The underlying random process is a
Markov process, i.e. the(n+ 1)th state is a function of thenth state only. The
next state is tested by a trial move in one or more phase space coordinates, and in
the canonical ensemble accepted with probability

accn→n+1 = min(1,exp[−(En+1−En)/kBT]) (2.1)

whereEi is the energy of statei, kB Boltzmann’s constant andT the temperature.
In practice, a random number is generated in the interval[0,1], and the move is ac-
cepted if the number is smaller than accn→n+1. Eq. (2.1) is also called acceptance
criterion or acceptance rule.
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Properties of interest are monitored on the way and their average or full dis-
tribution is the final result. Note that the value of an integral, e.g. the volume of
phase space (hence the partition function)cannotbe evaluated in this way.

The sampling must be with known or with no bias in order to produce mean-
ingful results1. This concerns the choice of trial move and the acceptance criterion
Eq. (2.1). A sufficient condition is to maintaindetailed balance, i.e. the reverse of
a move must occur with equal probability. A deliberate bias is at the heart of the
method, since one can restrict the sampling to the statistically relevant regions of
phase space (importance sampling); in fact the above acceptance criterion implies
a bias which reproduces the Boltzmann distribution of energies. The implementa-
tion of importance sampling also entails that the simulation must first equilibrate,
i.e. reach the important parts of phase space, before calculations can begin.

The classical way to generate trial moves proceeds by first picking, at random,
a small subset of degrees of freedom; e.g. one particle’s position. For the position,
a displacement vector is chosen from a box. The size of this box is important for
the simulation’s efficiency, and is held fixed to yield an acceptance rate of typically
20% to 40%, depending on the computational bottlenecks of particle interactions.
The same pattern is applied to other degrees of freedom, suchas orientational
moves for molecules or box-shape variations; more details are given below.

A central feature of the Monte Carlo method is the use of more elaborate
moves which take the system through phase space efficiently,despite the presence
of barriers. A move which represents a large step in phase space (e.g., a cluster
move), but still achieves sufficient acceptance rates, can significantly expedite a
simulation.

For a thorough introduction to Monte Carlo see Frenkel and Smit [57] or Lan-
dau and Binder [59].

2.1.2 Constant-Pressure-and-Tension Ensemble

Monte Carlo simulation of this ensemble has been first described by Najafabadi
and Yip [60] and in more detail by Yashonath and Rao [61]. It isbased on the
corresponding molecular dynamics invented by Parrinello and Rahman [62]. The
essence is that the simulation box may vary in size and shape (take a preview of
Figure 2.1). This is critical for the equilibration of solids, where the box shape
has a direct influence on the lattice geometry. If oblique shapes are not allowed,
the solid will in general be under stress.

1As David Landau would have it, “... and unless you’re very careful, you will get results, it’s
just they don’t mean anything.”
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2.1.2.1 Partition Function

For the case relevant to us, namely zero tension, the configurational part of the
partition function in the named ensemble may be written as

Z(N,P,T) =
∞∫

−∞

dh11· · ·dh33

∫
H

drN
∫
4π

duN · (2.2)

exp{− [U({r i},{ui})+PV(H)]/kBT}
where we have ignored the prefactors(N!λ 6N)−1 which have no influence on the
equilibrium behavior.hi j are all 9 elements of the matrixH describing the box
shape. Each column vector inH = [h1h2h3] corresponds to one box edge, in the
same way as unit cell vectors correspond to the edges of the unit cell in a crystal
lattice. Hence,H completely specifies the box. It also follows that the box volume
V = detH. The integral over particle coordinates is over the box as determined by
H.

For convenience and clarity we introduce scaled particle coordinatess so that
r = Hs. s is in the unit cube, andH provides the mapping to the simulation box.
Eq. (2.2) becomes

Z(N,P,T) =
∞∫

−∞

dh11· · ·dh33

1∫
0

dsN
∫
4π

duN ·

exp{− [U({si},H,{ui})+PV(H)]/kBT}(detH)N

=
∞∫

−∞

dh11· · ·dh33

1∫
0

dsN
∫
4π

duN · (2.3)

exp{− [U({si},H,{ui})+PV(H)]/kBT +N lnV(H)}

=
∞∫

−∞

dh11· · ·dh33z
−V(H)
PT Z0(N,H,T)

where we have introduced the isochoric partition function

Z0(N,H,T)≡
1∫

0

dsN
∫
4π

duN exp{−U({si},H,{ui})/kBT +N lnV(H)}

and defined a “fugacity”zPT = eP/kBT for brevity.
In principle, Eq. (2.3) can be the starting point for the simulation. How-

ever, it is from the programming point of view more convenient to keepH upper-
triangular2, which is identical to fixing the global orientation of the box. Given

2Another possibility is to keepH symmetric.
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the orientational degeneracy of configurations, this should pose no problem.h1 is
then parallel to thex-axis, andh2 resides in thexy-plane. The expression for the
volume simplifies toV = detH = h11h22h33.

We would like to point out a subtlety in this step which has gone unnoticed
in the literature. The proper removal of orientational degeneracy is integrating it
out. Forh1 this implies a change of coordinates to spherical ones(rh1,θh1,φh1),
followed by integration over the angular variables. Eq. (2.3) becomes3:

Z(N,P,T) = 4π
∞∫

0

drh1

∞∫
−∞

dh12dh13dh22dh23dh32dh33r
2
h1z−V(H)

PT Z0(N,H,T)

Now we may fixh1 to be parallel to thex-axis, i.e. we may replacerh1 with h11
(and drop the prefactor):

Z(N,P,T) =
∞∫

0

dh11

∞∫
−∞

dh12dh13dh22dh23dh32dh33h
2
11z

−V(H)
PT Z0(N,H,T) (2.4)

As of now, the system is still free to rotate about thex-axis. This remaining
degeneracy is integrated out inh2. To do so,h2 must be changed to cylindrical
coordinates about thex-axis, i.e.(h12,ρh2,φh2). Angular integration follows. Eq.
(2.4) now reads

Z(N,P,T) = 2π
∞∫

0

dh11dρh2

∞∫
−∞

dh12dh13dh23dh33h
2
11ρh2z−V(H)

PT Z0(N,H,T)

Now we may fixh2 into thexy-plane, i.e. we may replaceρh2 with h22 (and drop
the prefactor):

Z(N,P,T) =
∞∫

0

dh11dh22

∞∫
−∞

dh12dh13dh23dh33h
2
11h22z

−V(H)
PT Z0(N,H,T) (2.5)

It is these factorsh2
11h22 which have been, to our knowledge, overlooked4: in

the literature, the matrixH is simply restricted to be triangular or symmetric,
without regard to the implied integration over the orientational degeneracy. But
the resulting weight factorsh2

11h22 must be properly included into the acceptance
criterion (below) for a bias-free simulation. Their presence favors larger values of

3In principle,h2 andh3 should be changed to variables relative toh1. But since the integrals in
h2 andh3 are over all space, ignoring this has no consequences. The integration over the angular
part inh1 nevertheless implies the integration over global orientations of the whole system.

4Or their analogues whenH is kept symmetric.
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h11 andh22 in the partition sum. One can see that this must be so: The phase space
volume orthogonal toh11, which we integrated out, is the surface area swept out
by h1 if it was still free to rotate. Hence, larger magnitudes ofh1 would be visited
more often if the box was still free to rotate. Now that it is fixed, we must favor
larger magnitudes with the given weight factor. The analogous argument applies
to h22.

There is an equivalent set of configurations for positive andnegativeh33. We
may remove this degeneracy, which is to keeph33 nonnegative. Eq. (2.5) picks up
an irrelevant factor of 2.

Next, we express the remaining off-diagonal terms as follows:

h12 = g12h22

h13 = g13h33 (2.6)

h23 = g23h33

Eq. (2.5) then becomes

Z(N,P,T) =
∞∫

0

dh11dh22dh33

∞∫
−∞

dg12dg13dg23 ·

h2
11h

2
22h

2
33z

−V(H)
PT Z0(N,H,T)

=
∞∫

0

dh11dh22dh33

∞∫
−∞

dg12dg13dg23 ·

V(H)2z−V(H)
PT Z0(N,H,T) (2.7)

The advantage of introducing the variablesgi j lies in the separation of size vari-
ables and pure shape variables.hii specify the separation of box walls, while
gi j specify box shear. For example,g12 = h12/h22 = dx/dy is the change inx-
direction of box edgeh2 as one moves along they-direction. The same separation
occurred in the process of integrating out orientational degeneracy, as the angular
variables also no longer carried size information. It is reassuring that the corre-
sponding factorshii in Eq. (2.7) combine to factors of volume.

The set of variableshii andgi j are also the relevant parameters in crystal lat-
tices, associated with distinct moduli of elasticity (bulkand shear, respectively),
and we anticipate that they will require individual MC move sizes.

Finally, we follow the literature in changing from integrating (hence sampling)
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overdhii to d lnhii :

Z(N,P,T) =
∞∫

−∞

d lnh11d lnh22d lnh33dg12dg13dg23 ·

h11h22h33V(H)2z−V(H)
PT Z0(N,H,T)

=
∞∫

−∞

d lnh11d lnh22d lnh33dg12dg13dg23 ·

V(H)3z−V(H)
PT Z0(N,H,T)

The advantage is here one of efficiency. The sampling will naturally occur in
smaller step sizes of the originalhii for smaller volumes; this is desirable since
smaller volumes, associated with larger pressures in the system, make these de-
grees of freedom stiffer. Once more we appreciate the advantage of keeping size
and shear apart. The final form of the partition sum is then

Z(N,P,T) =
∞∫

−∞

d lnh11d lnh22d lnh33dg12dg13dg23

1∫
0

dsN
∫
4π

duN · (2.8)

exp{− [U({si},H,{ui})+PV(H)]/kBT +(N+3) lnV(H)}

and the matrixH reads

H =

 h11 h22g12 h33g13
h22 h33g23

h33

 (2.9)

All weighting in Eq. (2.8) is absorbed into the exponential,so we can immediately
write down the acceptance rule:

accn→n+1 = min(1,exp

{
− [Un+1−Un+P(Vn+1−Vn)]/kBT +(N+3) ln

Vn+1

Vn

}
)

(2.10)
If we keepgi j = 0 andh11= h22= h33, the present results reduce to those of the

known constant-pressure ensemble—apart from the factor(N+3) where(N+1)
is found instead [57], “+1” coming from samplingd lnV. We show in Appendix A
that(N+3) is the correct result derived from the present, more generalbasis. This
correction, of order 1/N, surely does not render useless all simulations which used
(N+1). We find it important for the understanding of the derivation, and indeed
in small simulations the difference may be noticeable.
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Finally, we write down the simpler hard-particle results. Eq. (2.8) becomes

Z(N,P,T) =
∞∫

−∞

1∫
0

∫
4π

no overlap

d lnh11d lnh22d lnh33dg12dg13dg23dsNduN ·

exp

{
− P

kBT
V(H)+(N+3) lnV(H)

}
Monte Carlo moves are accepted if no overlap results, and within the no-overlap
phase space according to

accn→n+1 = min(1,exp

{
− P

kBT
(Vn+1−Vn)+(N+3) ln

Vn+1

Vn

}
) no overlap

(2.11)
Note that Eq. (2.11) must be evaluated only for moves which change lnhii since
V = h11h22h33.

2.1.2.2 Monte Carlo Moves

Having established the acceptance rule Eq. (2.11), we turn to the generation of
MC moves as implemented in this work. Figure 2.1 serves as illustration for
rectangular boxes (left), often synonymous with constant-pressure MC, and the
full zero-tension case (right).

There are particle moves and box shape moves; and the particle moves are
either displacement moves or orientational moves. First, the kind of move is ran-
domly chosen so that forN particle moves, there is on average one box shape
move. For the case of a particle move, a particle is chosen at random, and a coin
is flipped to decide between displacement move and orientational move.

To construct the displacement vector for the displacement move, a random

vector on the unit sphere is generated and then scaled by∆d · (V)
1
3 , where∆d is

a parameter andV the box volume.∆d was automatically adjusted during equili-

bration to achieve an acceptance rate near 30%.(V)
1
3 is included to relate the size

of the displacement to the present density. The acceptance rate then becomes less
sensitive to the density, and hence more stable; this also expedites the adjustment
of ∆d. Next, the component of the vector parallel to the symmetry axis of the
ellipsoid is scaled by 1.7 · l/w, where 1.7 is an empirical factor. This adjustment
accounts for the fact that a prolate ellipsoid can move a larger distance along its
symmetry axis than perpendicular to it without causing overlap (vice versa for
oblate ellipsoids). The resulting vector is added to the current position vector (in
unscaledr -space) of the ellipsoid. The move is accepted if no overlap results from
the displacement. The factor of 1.7 was obtained by monitoring the acceptance
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Figure 2.1: Illustration of Monte Carlo moves. In addition to particle moves, changes of
the box shape are indicated. Left: Constant-pressure MC. Right: Constant-pressure-and-
tension MC.

rates of purely longitudinal and purely transverse moves (occasionally carried out
for this purpose), and adjusting the factor until the acceptance rates were about
equal. In this way we achieved that the longitudinal and the transverse parts of a
regularly attempted displacement contribute roughly equally to causing rejection.
This optimizes local exploration of phase space.

The orientation of an ellipsoid is represented as a unit vector along the sym-
metry axis. For an orientational move, we add to this vector arandom vector on
the unit sphere, scaled by∆o. This number we also automatically set during equi-
libration to achieve an acceptance rate near 30%. The resulting vector is reduced
to unit length to obtain the new orientation. The move is accepted if no over-
lap results. (For dilute, nearly spherical systems, the maximal ∆o = 1 would still
produce acceptance rates somewhat larger than 30%.)

Box shape moves are composed of two sub-moves: compression moves, which
change the vertical separation of the walls (i.e. lnhii ), and shear moves, which
shear the box (i.e. changegi j ). At the beginning, these moves are independent
from each other, and shear moves are (on average) carried outtwice as often to
accelerate the move size adjustment (below). In each case, arandom vector is
chosen from the unit cube and scaled by a factor∆p for compression moves and
∆s for shear moves; they are once more automatically adjusted to reach 30% ac-
ceptance. When this is done,∆p and ∆s are held fixed, and the two moves no
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longer occur as such5. Only combined versions are carried out: A random vector
is chosen for each sub-move and scaled by the corresponding factor; then both are
scaled again, by a factor∆c, which is adjusted to obtain 30% acceptance for this
combined version. All shape-changing moves are affine, i.e.the particle positions
are mapped to the new box geometry, so that the system remainshomogeneous.
In practice this means re-evaluatingr = Hs for all particles.

In addition, we introduced an efficiency gain by rotating theparticles accord-
ing to changes in shear. A change in shear in a real suspensionof anisometric
particles causes these particles to reflect the curl in the flow field. We found that
up to twice as large shear moves were possible (while keepingthe acceptance ratio
near 30%) if the particles were rotated according to a rotation vector

ω =

 ∆h23/h̄33
−∆h13/h̄33

∆h12/h̄22


where the direction ofω is the axis of rotation and the empirical 0.7|ω| specifies
the angle in radians.∆hi j denotes the change in the corresponding component of
H, while h̄ii denotes the arithmetic mean of the old and new value. This construc-
tion satisfies detailed balance since exchange of old and newcomponents reverses
the sign of the rotation.

After all move sizes have been adjusted, the parameters are held fixed because
automatic adjustment violates detailed balance each time it occurs [63]. While this
did no harm during equilibration, no such risk was desired during measurement.

2.1.3 Other Monte Carlo Versions

The first spontaneous transition from sFCC to SM2 (Chapter 3)in fact occurred in
conventional constant-pressure MC (left part of Figure 2.1). The acceptance rule
Eq. (2.11) was used (but usingN+1, by tradition). The translational moves were
generated by choosing a random vector from a box of linear size δ , andδ was
automatically adjusted for 30% acceptance ratio. The rotational moves were as
described in the previous section. Regarding box shape, only compression moves
were done; they were carried out the same way as the corresponding sub-move
above (but aiming for 20%; no significant efficiency gain or loss was found).

For the equilibration of the glassy systems, the box was heldcubic (not only
rectangular), i.e. only isotropic volume changes were done, for computational
convenience regarding correlation functions. The MC production runs of the
glassy systems held the box fixed [(N,V,T)-ensemble]. Particle moves were car-
ried out as described in the previous paragraph. Only overlap decided acceptance.

5Except rarely for monitoring purposes.
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The moves were made small to mimic Brownian motion and to render grazing
collisions unimportant (Section 4.1 has more details). Thetime unit “MC step”
refers toN attempted moves.

2.1.4 Testing for Overlaps

Particle overlap was checked by a routine [23] which uses theVieillard-Baron [10]
and Perram-Wertheim [11, 12] criteria to test whether a pairof ellipsoids, given
the separation vector and the orientations, overlaps. It does so by progressing
from the circumscribed and inscribed spheres tests, which permit early decision,
to an evermore detailed examination.

The checking of particle overlap was made more efficient by implementing a
cell system [64]. The minimum cell wall separation is kept atleast as large as the
longest axis of the ellipsoids. The consequence is that an ellipsoid can overlap
only with others of the same cell or of the 26 neighboring ones. This keeps the
search for overlapping neighbors local, and improves the scaling of the algorithm
from O(N2) to O(N).

2.2 Molecular Dynamics Simulation (MD)

2.2.1 General Features

Molecular dynamics (MD) simulation amounts to numericallyintegrating New-
ton’s equations of motion:

mi r̈ i =−∇iV({rk})≡ Fi (2.12)

wheremi is the mass of particlei, r i its position, andFi the force on it.V({rk}) is
the potential.{rk}, k = 1, ...,N denotes the set of all position vectors, with N the
total number of particles. We ignore orientational degreesof freedom for brevity.
For ellipsoids of revolution the analogue of Eq. (2.12) is a system of5N coupled
linear partial differential equations. Its solution is a trajectory in phase space. Eq.
(2.12) are solved numerically by an appropriate integration scheme, which we will
discuss below. MD simulations rely on ergodicity, i.e. the equivalence of time and
ensemble averages, and care must be taken that the simulation is in fact ergodic.
For fluids, i.e. our case, this requires sufficient equilibration.

A thorough introduction to molecular dynamics simulation is given by Frenkel
and Smit [57] and Allen and Tildesley [65].
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2.2.2 Event-driven MD

The situation in hard-particle models is special in that thepotential is not differ-
entiable, so that usual integration schemes fail. The method of choice is an event-
driven algorithm, which progresses through time from collision to collision. One
such algorithm was described by Allen et al. [23], and we are indebted to Mike
Allen for providing us with the code. The description in Ref.[23] is quite detailed
so that the following brief outline shall suffice.

As mentioned, the general approach is to advance from collision to collision.
Collisions are implemented to obey the conservation of linear and angular momen-
tum, and of energy. Between collisions, the particles translate and rotate freely.
The ellipsoids are taken to have a smooth surface, so that theangular momentum
about the symmetry axis is constant and kept zero. The momentof inertia associ-
ated with end-over-end rotation is commonly (and in this work) chosen according

to uniform mass distribution,I = 1/20

[
(l/w)2+1

]
mw2.

The equation determining the next collision (if any) of a pair of particles is
quadratic int for hard spheres, but in general (and for ellipsoids) a transcenden-
tal one. Therefore, its root must be found numerically. The MD by Allen et al.
solves this problem retrospectively, so that an MD step proceeds as follows: First,
a small free-flight advance of the system is performed. The system is then exam-
ined for overlaps, implying missed collisions. The times ofthose collisions are
determined by numerical root-finding (using the Newton-Raphson method [66]),
and the collisions are sorted in chronological order. Each colliding pair is then
rewound to the time of its collision, the collision is performed, and the pair is
brought forward in time again. Resulting overlaps are checked. Their presence is
met with abandoning the attempted step, and trying half the step. The same holds
for any other complexity. If the step was halved, and carriedout successfully, the
remainder is attempted in the same fashion. If not, the step is halved again, and
so on.

The advantage of this approach is that collisions will not bemissed apart from
small grazing ones, and the root-finding is always begun withknowledge that a
root exists in the time interval considered. The size of the initial attempt is a
matter of efficiency only, and set so that abandoning and halving is infrequent. As
we also find in our work, this MD algorithm is efficient.

The program of Allen et al. [23] was adapted slightly for numerical stability
and to meet our data-taking requirements (Section 4.1).

The length of an MD step was 0.0005
√

m/kBT 3
√

l/ww. At φ = 0.598 (the
highest volume fraction simulated with MD in our work), about four collisions
per particle took place in 100 MD steps.
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Chapter 3

Simple Monoclinic Crystal Phase

Here we report our findings on the solid phases of hard ellipsoids. In an exercise
aiming to reproduce the equilibrium results of Frenkel and Mulder [1], we con-
structed an sFCC system of aspect ratiol/w = 3 (and others) and used constant-
pressure Monte Carlo to perform an expansion run. That is, welowered the pres-
sure between successive simulations, causing the density to settle at a lower value
each time. Already at the second simulated pressure, an unexpected rise in den-
sity called for attention. Inspection of a snapshot, followed by double-checking
all data and parameters, lead to the suspicion that a new solid phase was found,
replacing sFCC in parts of the equilibrium phase diagram. The snapshot is shown
in Figure 3.1. We then implemented constant-pressure-and-tension MC to ensure
that stresses were not an issue, and proceeded to repeat the transition and to study
the properties of the crystal.

3.1 Overview of Simulations

Simulations were performed at constant particle numberN, pressureP and tem-
peratureT. The shape of the periodic box was allowed to fluctuate, so that the
crystal unit cell could find its equilibrium shape. This was achieved by imple-
menting the Monte Carlo equivalent of the simulation methodby Parrinello and
Rahman (PR) [62, 60, 61], explained in Section 2.1.2. Some simulations kept
the box rectangular, i.e. employed constant-pressure MC. The simulations were
started with sFCC crystals identical to the ones studied by Frenkel and Mulder [1]
(Section 1.3.2.1).

Table 3.1 summarizes all simulations performed for this part of the project.
The runs are labeled in column “#” with an index for easy reference, column
“ l/w” indicates the aspect ratio, “runs” the number of independent runs, column
“MC” specifies the method of simulation (see legend), and “N” shows the particle
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Table 3.1: Overview of the simulations of phase equilibria.
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number in each run. “P” indicates the pressure or range of pressures1 simulated
in each run. When a range is shown, the separation of successive runs is∆P = 2.
“Equilibration” and “Production” indicate the minimum lengths of the mentioned
parts of each run, in MC steps. One MC step consisted ofN attempts to move or
rotate a particle and one attempt to change the box shape, on average. The last
column lists the simulated phases (see legend) and, in parentheses, the pressures
at which transitions took place. Ranges of pressures are given when the transition
occurred at various pressures in independent runs.

Run #1 is the constant-pressure expansion run of ellipsoidswith l/w= 3 which
first showed the transition from sFCC to the new crystal phase, called SM2. Equi-
libration and production run lengths were on the order of 104-106 MC steps, where
lower densities required shorter runs. During the expansion, the transition from
sFCC to SM2 occurred, followed later by melting to the nematic (N) and isotropic
(I) phases. Run #2 was a compression run which began isotropic and ended in an
over-compressed nematic phase. Runs #1 and #2 yielded equation-of-state data
for the isotropic and nematic phases.

In #3, we simulatedl/w = 4 at P = 46 which displayed a transition from
sFCC to SM2 with a planar defect. This system was later simulated using the PR
constant-pressure-and-tension MC at the same and lower pressures (#4 and #5).

In runs #6-11 we attempted the transition sFCC/SM2 for aspect ratiosl/w =
1
3,2,3,6 using PR and larger systems. We simulated eight independent systems in
each case, performing expansion runs (#6-10 except #8), compression runs (#8)
and single-pressure runs (#11 atP = 46).

Runs #12: Realizing that the study of the soft angle of inclination in the SM2
crystal required much longer runs, we set up smaller systems(N = 432) forl/w=
3 at various angles of inclination, and ran them for∼ 108 MC steps at pressures
P = 46,36.

Runs #13: Since the transition to SM2 did not spontaneously occur for l/w <
3, but stability was expected on theoretical grounds, we performed runs decreas-
ing the aspect ratio in small steps∆(l/w) = 0.05. Nine independent such series of
runs were performed, which differed by the angle of inclination. It was held fixed,
so that SM2 phases with various inclinations were obtained at lower aspect ra-
tios. Transitions to strained sFCC and plastic solid phasestook place in the range
1.50< l/w < 2.00 (indicated in Table 3.1 where otherwise transition pressures
are written). Three inclinations remained SM2 down tol/w= 1.55. The output of
these series were used for long runs (#14-17) at various aspect ratios in the spirit
of runs #12. The inclination was allowed to vary again. “2x9”means that two
independent long runs were done for each of nine initial inclinations.

Finally, in #18 two runs withN = 1728,P = 46 at the possible stability limit

1The units of pressure arekBT/[(l/w)w3]. See also pg. xx
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l/w= 1.55 were initialized with sFCC and run for∼ 108 MC steps, to see whether
a spontaneous transition to SM2 would occur here.

As for efficiency, in a simulation of a system withl/w = 3 andN = 1728, 1
million MC steps took about twelve hours of CPU time on a 1.8GHz processor.

3.2 The SM2 Phase at Aspect Ratio 3

All systems with aspect ratiosl/w≥ 3 left the initial sFCC structure in favor of
a simple-monoclinic lattice with a basis of two ellipsoids (SM2). We will now
study its properties forl/w = 3.

3.2.1 Characterization of Structure

Figure 3.1 compares the initial sFCC structure (top) to a subsequent snapshot
of the system in the SM2 phase (bottom) as first observed. The color code dis-
tinguishes orientations. The sFCC was constructed as described at the end of
Section 1.3.2; all ellipsoids were oriented along the [111]direction (left: perpen-
dicular to the plane of the page; middle and right: vertical). After a collective
re-orientation, a different structure emerged, which has two distinct directions of
orientation. They alternate in layers which are inclined with respect to the [111]
direction. Within layers perpendicular to the [111] direction, the centers of mass
of the ellipsoids still form a nearly triangular lattice. Itdiffers from the initial
sFCC crystal by a distortion, resulting from the slightly closer spacing of equally
oriented ellipsoids. Thetipsof the ellipsoids, however, no longer form a triangular
lattice; the collective re-orientation displaced the tipsin such a way that they now
form a rectangular lattice. This can be discerned in the lower-left part in Figure
3.1. The tips of the neighboring layers interlace. As a result, each ellipsoid now
has four nearest neighbors above and below, whereas in sFCC,it had three. The
total number of nearest neighbors has increased from 12 to 14, which is indicative
of a higher packing efficiency.

The initial triangular symmetry about the [111] direction allows for two addi-
tional, equivalent SM2 configurations, which are rotated with respect to the one
in Figure 3.1 by±60◦. We observed these possibilities as well. Figure 3.2 (left)
shows a snapshot of SM2 (P = 46, N = 1728, #9) in which the collective re-
orientation took place along an oblique angle with respect to the box walls. The
choice of color and contrast highlights here also the arrangement of the tips on
a rectangular lattice. Figure 3.2 (right) illustrates the possible directions of re-
orientation from sFCC. The yellow line indicates the one thesystem on the left
had chosen, the red ones indicate the other two possibilities. In fact, only two
out of our eight systems withN = 1728 (#9) assumed the global orientation seen
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x yy

l/w=3

x
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Figure 3.1: Top: Constructed sFCC (cf. Figure 1.4) which was input. Bottom: Snapshot
of the SM2 crystal which spontaneously formed from it. The color code distinguishes
orientations.
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Figure 3.2: Left: Snapshot of SM2 (P = 46, N = 1728) in which the collective re-
orientation took place along an oblique angle with respect to the box walls. The arrange-
ment of tips on a rectangular lattice is clearly visible. Right: Illustration of the possible
directions of re-orientation from sFCC. The yellow line indicates the one the system on
the left had chosen, the red ones indicate the other two possibilities.

in Figure 3.1. It is reassuring that our algorithm has no preference regarding the
global orientation.

We determined the unit cell of SM2 following standard conventions [67, 68,
69]. It is shown in Figure 3.3. The open circles indicate the centers of the two
ellipsoids which form the basis. The yellow one forms the origin, the green one
is at 1

2(a+ b). The parameters used to produce parts a) and b) of Figure 3.3
are thermal average values obtained from simulations #9 (N = 1728) atP = 46.
They are (statistical errors in parentheses):α = 90.01(3)◦ and γ = 90.00(2)◦,
making the cell monoclinic;β = 105.2(4)◦; |a|= 1.907(1), |b|= 1.0695(1), and
|c| = 2.400(4); the calculated position of the green ellipsoid is 0.49998(1)a+
0.50002(3)b + 0.00003(6)c, suggesting that its equilibrium position is exactly
1
2(a+ b); the orientations of the ellipsoids form an angle of 27.2(6)◦, which is
bisected by theac-plane; both orientations form an angle of 10.6(9)◦ with the
bc-plane.

The angle of inclinationβ is very soft, and it did not settle to an equilibrium
value in runs #9 or elsewhere in the regimel/w > 2. We will see below that it
may assume a wide range of values in a single simulation. The values for the cell
geometry are thus exemplary and are validprovidedthatβ = 105.2(4)◦. However,
the cell always remained monoclinic, even when the pressurewas lowered to the
melting transition into the nematic phase. The same holds for the symmetry in
orientation and the placement of the green ellipsoid. We conclude that the crys-
tal structure is simple-monoclinic with a basis of two ellipsoids, hence the name
“SM2.”
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Figure 3.3: Unit cell of SM2 for l/w = 3. The open circles indicate the centers of the
two ellipsoids which form the basis. The yellow ellipsoid isat the origin, the green one is
at 1

2(a+ b). The orientations are symmetric about theac-plane. The cell is monoclinic.
β exhibits large variations. The parameters in Parts a) and b)are average values for
N = 1728 andP = 46. Part c) shows the cell at close-packing withβ ≈ 148.3◦, where it
is an instance of the family of packings introduced by Donev et al. [2]. Part d) illustrates
thatβ specifies the angle which the planes of equal orientations form with the basis of the
simulation box from Figure 3.1.

Figure 3.3c) shows an instance of the unit cell with an additional symmetry,
which allows for the maximum packing fraction (Section 3.2.2). Finally, part
d) demonstrates thatβ specifies the angle which the planes of equal orientations
form with the basis (the “floor”) of the simulation box from Figure 3.1. This holds
whenevera andb are parallel to the box edges, which is the result of the collective
re-orientation parallel to one edge (i.e. along the horizontal red line in the right
part of Figure 3.2).

3.2.2 Close-Packing Limit

The simulations #1-9, displaying the relatively steep unitcell of Figure 3.3a)
and b), raised the question of how SM2 is related to the close-packings of el-
lipsoids described by Donev et al. [2] (Section 1.3.2.2). Recall that they also have
two orientations and 14 touching neighbors. Related is the question of what the
maximum density of SM2 is. The Donev packings achieve a packing fraction of
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a)

b)

Figure 3.4: a) Maximizing the density of SM2.β increases and planes of equal orien-
tations slide past each other in the process. The resulting structure is an instance of the
family of packings reported by Donev et al. [2]. b) Perspective from which to view the
Donev packing to identify it with close-packed SM2.

φ ≈ 0.7707, which is larger than that of sFCC,φ = π/
√

18≈ 0.7405. To answer
both questions, we generated a system in which all ellipsoids are at their ideal lat-
tice positions and orientations, and performed simulations sampling only the unit
cell parameters and collective particle orientations, andimposing all symmetries
of (steep) SM2. This procedure produces a lower bound for themaximum density
of SM2. The initial parameters were average values obtainedfrom the simula-
tions #9 withN = 1728 andP = 46. In the process of maximizing the density,β
increased from 105◦ to about 150◦, and the common tilt of the ellipsoids with re-
spect to thebc-plane disappeared. Figure 3.4a) illustrates the process.Inspection
of the resulting structure revealed that it is very similar to the Donev construction
when the latter is viewed from an in-plane perspective [Figure 3.4b)], and identical
if one has the right angle in the unit cell shown in Figure 3.3c). We then imposed
this right angle, i.e. that(a− c) be perpendicular toc. Hereβ ≈ 148.3◦. This
optimization achieved the highest packing fraction, differing from φ ≈ 0.770732
(the value reported by Donev et al.) by only 3 parts per million, confirming the
identification with the Donev construction. We emphasize that this identification
holds for the limit of infinite pressure only—the equilibrium value ofβ may be a
different one at lower pressures.

Interestingly, we found a jamming density of 99.663% of the maximum al-
ready atβ ≈ 105◦. Simulations at intermediate values indicate a smooth approach
towards the maximum density asβ increases. Thus, the close-packing density
varies very weakly for 105◦ < β < 148◦. While this range is traversed, ellipsoids
of one orientation move past neighbors of the other orientation by almost half
their length. This can be seen by comparing Parts b) and c) of Figure 3.3. For rea-
sons of symmetry, this translation may even continue by the same amount while
the density remains above 99.663% of the maximum. These observations are in
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accord with the fact thatβ is soft at finite pressures, which we discuss next.

3.2.3 Softness of Inclination

The angle of inclination,β , relaxes extremely slowly. The simulations #9 with
N = 1728 were too slow to equilibrate this degree of freedom. To learn more about
it, we carried out a set of very long simulations for a smallersystem (N = 432,P=
46 and 36, #12) with nine initial values ofβ in the range 105◦ < β < 150◦. Figure
3.5 reports the inclination in terms of the shear variableg23 = tan(90◦+ β ) (g23

belongs to the matrixH introduced in Section 2.1.2). After more than 300 million
Monte Carlo steps, there was still no clear evidence for a preferred geometry.
Variations ofg23 corresponding to 15◦ in β were typical at both pressures even
within a single simulation. Hence, we expect the shear modulus of elasticity in
this degree of freedom to be very small.

The other two angles,α andγ, were stable at 90◦, with fluctuations of< 1◦.
The curves ofg13, corresponding toγ, are shown in blue in Figure 3.5. They
remain near zero and fluctuate much less. We conclude that theassociated shear
moduli are much larger.

The runs atP = 36 (lower plot in Figure 3.5) raise the suspicion thattwo
angles are at least metastable, one for steep SM2, and one centered near (but
still different from) the Donev geometry. Forβ we have 105◦ . β . 120◦ and
138◦ . β . 148◦, respectively. For comparison, the value for the Donev geometry
is β ≈ 148 atP = 36.2 Free-energy calculations, assessing the relative stability
of steep SM2 with SM2 at the Donev geometry, are underway at the time of this
writing [70]. Preliminary results [71] place an upper boundon the difference,
|∆G|/N < 0.3kBT (P = 36) and|∆G|/N < 0.2kBT (P = 46), with the Donev
geometrylessstable. Also interesting would be the application of a histogram-
reweighting technique to determine the full dependenceG(β ). Given the large
fluctuations, we expect the free energy to be a weak function of β ; recall the
similar behavior of the jamming density. And in addition to the equilibrium value
of β , one could extract fromG(β ) an effective modulus of elasticity viacβ =
dG(β )/dβ .

We conclude that SM2 withl/w = 3 is soft in one direction only. The reason
for this interesting rheological property is that planes ofequal orientation slide
well past each other in thec-direction, and only in that direction. We illustrate
this sliding in Figure 3.6a). The softness manifests itselfalso in another way. In
some of the long simulations, we found undulations of the lattice in thec-direction

2The value cannot be quoted exactly since it is a function of other unit cell parameters. We
quote the average value obtained while the symmetry in the unit cell [Figure 3.3c)] was approxi-
mately obeyed. This was not meaningful forP = 48, given the large fluctuations.



44 Chapter 3. Simple Monoclinic Crystal Phase

0

0.5

1

1.5

2

g23

0 100 200 300
10

6
 MC steps

0

0.5

1

1.5

2

g23

Figure 3.5: Inclination as monitored by the shear variableg23, for the runsl/w = 3, N =
432,P = 46 (top) andP = 36 (bottom).g23 fluctuates over a broad range, corresponding
to values ofβ in the range 105◦ < β < 150◦. Variations ofg23 corresponding to 15◦ in β
were typical at both pressures even within a single simulation. This implies a small shear
modulus of elasticity. Also shown for comparison isg13 (blue) which remains near zero
(i.e. the angleγ remains near 90◦); it fluctuates much less, corresponding to a much larger
shear modulus. The lower plot (P = 36) suggests metastability of two angles.
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c)b)

a)

Figure 3.6: a) Planes slide well past each other in the direction indicated by the arrows.
b) Defect as a result of the softness. The orientations in oneplane (fifth from right) have
slightly changed. c) Centers of mass of the same configuration, exposing the undulations
in the lattice.

to the point of planar defects, which would spontaneously heal again. A snapshot
of such a defect is shown in Figure 3.6b). The slightly different color of one
plane (the fifth from the right) shows that the defect also affects the orientations.
In Figure 3.6c) we show the centers of mass of the same configuration, and we
clearly see the mentioned undulations.

3.2.4 Equation of State Data

Figure 3.7 shows equation of state data of SM2 (blue solid squares) from our sim-
ulations withN = 1728 particles (runs #9). The density of SM2 is higher than
that of sFCC (red open squares [1]) for all pressures. Five ofthe eight systems #9
underwent the transition to SM2 already at the highest simulated pressureP= 48,
the remaining three atP = 46. Note also that in all our expansion runs, SM2
melted to the nematic phase without ever re-visiting the sFCC phase from which
it developed; this is strong evidence that SM2 is lower in free energy than sFCC.
Free-energy calculations are in progress also for this comparison [70], and the pre-
liminary data [71] confirm the greater stability of SM2 with|∆G|/N = 0.4(2)kBT
(P = 46), with some evidence that this difference becomes small on reaching the
solid/nematic transition.

We also show in Figure 3.7 the nematic branch (triangles) from the(N,P,T)
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Figure 3.7: Equation of state data for hard ellipsoids atl/w = 3. Errors are smaller than
symbol size. Lines guide the eye. The density of SM2 (blue solid squares) is higher
than that of sFCC (red open squares [1]) for all pressures. SM2 melts directly to the
nematic phase without revisiting the sFCC phase. The nematic branch (triangles) is shown
including over-compressed states. The isotropic fluid states are shown as circles.

compression run withN = 784 particles (#2) and up to 6 million MC steps per
run. Even at strong over-compression, no spontaneous crystallization took place.
This indicates that the nucleation barrier to the SM2 phase is high. Also shown
is the isotropic fluid branch (circles) as obtained from(N,P,T) compression and
expansion runs withN ≈ 780 (#1 and #2). The isotropic/nematic transition, by
contrast, readily occurs in simulation.

3.3 Other Aspect Ratios and Phase Diagram

3.3.1 Aspect Ratios Greater Than 3

All eight simulations (#11) atl/w= 6 formed SM2 as well, atP= 46, and the tran-
sitions from sFCC occurred along all of the possible directions of re-orientation.
However, four of the systems retained a planar defect. Different regions in the
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Figure 3.8: SM2 with aspect ratiol/w = 6, N = 3072, andP = 46. Left: defect-free
structure. Right: two vertical planar defects, separatingtwo conflicting orientations of
SM2.

periodic box were able to simultaneously develop differentglobal orientations of
SM2 as the systems were larger (N = 3072) than those withl/w = 3 (N = 1728).
Figure 3.8 displays the defect-free case (left) and an example of two domains with
unequal orientations of SM2. One can see two planar defects,or grain boundaries,
separating the two regions.

The series #11 was preceded by the eight runs #10 (l/w = 6, N = 2352,
P ≤ 46) where SM2 formed with defects throughout, in this case related to a
geometrical mismatch between the simulation box and the SM2unit cell. A plane
of one orientation did not find itself after one periodic length, but a plane of the
other orientation. Figure 3.9 shows an example. Healing of this defect did not
happen, at any simulated pressure, as it would require a change in box shape cor-
responding to a full particle displacement, and involving one of the stiff angles.
Defect-free SM2 would have been accessible when re-orienting parallel to the box
wall, but all systems chose the other two options.

We also simulated a system withl/w= 4,N = 1200 andP= 46, initially using
conventional (N,P,T) sampling (#3), i.e. keeping the box rectangular. The system
formed SM2 with a planar defect, also stemming from the geometrical mismatch
between box and unit cell. Follow-up simulations of this system using constant-
pressure-and-tension sampling at the same and lower pressures (#4 and #5) did not
change this result. It is worth emphasizing that forl/w = 3 and 4, SM2 formed
from sFCC even in simulations sampling only rectangular boxshapes (#1 and #3).
It is therefore more stable than sFCC even when subjected to the associated stress,
and even in the presence of the discussed defect.
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Figure 3.9: SM2 with defect due to a geometrical mismatch of the simulation box and
the unit cell (l/w = 6, N = 2352,P = 36). Planes of one orientation meet with planes of
the other orientation after one periodic length.

3.3.2 Aspect Ratios Smaller Than 3

By contrast, ellipsoids withl/w= 2 and the oblatel/w= 1
3 showed no tendency to

leave the initial stretched-FCC structure. We studied expansions of these systems
with eight independent simulations each (#7 and #6, respectively). In none of
them did two preferred directions of ellipsoid orientationdevelop. All of them
melted to the nematic phase on expansion, directly from sFCC. Compressions of
the system withl/w = 2 (#8) also stayed in the sFCC phase.

But note that the apparent stability of sFCC in our simulations may well be
due to a free-energy barrier, rather than indicating genuine stability. The work
of Donev et al. [2] supports this possibility, at least for high pressures, since the
record volume fractionφ ≈ 0.7707 exists down tol/w =

√
3≈ 1.73. To study

the properties of SM2 at shorter aspect ratios, we performeda series of runs at
P = 46 with successive decreases of aspect ratio (∆(l/w) = 0.05, runs #13). Nine
systems were set up with anglesβ in the range 105◦ < β < 150◦. With the stable
value ofβ as a function of aspect ratio unknown, we held it fixed so as to have a
range of values available at lower aspect ratios for furtherstudy. In the process,
some systems left the SM2 phase in favor of a strained versionof sFCC or plastic
solid. Only SM2 was considered further (#14-17).

At l/w = 2.50, all systems were still SM2, and we performed long runs to
study the behavior ofβ and to look for departures from SM2. The systems re-
mained SM2, and the distribution ofβ appeared bimodal, similar to the lower
part of Figure 3.5. We have 112◦ . β . 129◦ for the steep version and 139◦ .
β . 144◦ for the Donev geometry, and here the cell was observed to fluctuate
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around the associated symmetry (recall that this was not thecase forl/w = 3,
P = 36). The analogous analysis forl/w = 2.00 found only the Donev geom-
etry, with 132◦ . β . 138◦. The same holds forl/w = 1.75 andl/w = 1.55
(126◦ . β . 129◦ for both).

These results admit the tentative conclusion that steep SM2becomes unimpor-
tant for l/w < 2.50, and only one geometry remains, coinciding with the Donev
one forl/w. 2.50. Forl/w= 3.00, we point out that both geometries are distinct
from the Donev case (as observed atP= 36), highlighting the limited information
available from close-packing results.

We also see from the ranges ofβ that this soft angle in the crystal becomes
harder during the traversal to lowl/w, approaching the behavior of the stiffer
anglesα andγ. The fluctuations of the latter were observed to vary only weakly as
a function of aspect ratio. The hardening ofβ is not surprising since the curvature
of the particles becomes stronger, hindering the sliding ofplanes.

The last three systems still in the SM2 phase atl/w= 1.55 left the phase upon
reduction tol/w= 1.50 (to plastic solid and in one case to sFCC). Since SM2 was
still stable atl/w = 1.55 for up to 700 million MC steps, we suspect the end of
(meta)stability of SM2 in the range 1.50< l/w < 1.55 atP = 46. At the possibly
limiting l/w= 1.55, we performed two long simulations (N = 1728,P= 46, #18)
to test whether the spontaneous transition from sFCC to SM2 would take place. It
did not, sFCC was found metastable, for 400 million MC steps.

3.3.3 Phase Diagram

In Figure 3.10 we show a phase diagram of prolate hard ellipsoids of revolution.
It includes part of the results of Frenkel and Mulder [1], andtheir suggested phase
boundaries and coexistence regions. We have inserted our state points and a ver-
tical dashed line to delimit the region in which we found SM2 more stable by
spontaneous transition. To the left of it, and down tol/w = 1.55, both sFCC and
SM2 are metastable. Assessing their relative stabilities requires free-energy calcu-
lations (in progress [70]). Preliminary results [71] show that SM2 is more stable
at l/w = 2 [|∆G|/N = 0.7(2)kBT], but that sFCC is more stable atl/w = 1.55
[|∆G|/N = 0.4(2)kBT]. This implies that a phase boundary exists in the regime
1.55< l/w < 2. Further, recall that the work of Donev et al. [2] shows thatthe
packing advantage over sFCC begins with arbitrarily small elongations. If sFCC is
more stable atl/w= 1.55 andP= 46, there must be a solid-solid phase transition
at a larger pressure, since the Donev version of SM2 must become more stable as
P→ ∞. Further study is clearly warranted here. Finally, we remark that our solid
state points are isobar atP = 46 (except for the lower SM2 one atl/w = 3, where
P = 30).
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Figure 3.10: Phase diagram of hard, uni-axial ellipsoids (l/w≥ 1). The scaling of the
abscissa is reciprocal. The diagram shows the results of Frenkel and Mulder [1] (open
symbols), and their suggested phase boundaries and coexistence regions. The data points
at l/w = 1 are taken from Hoover and Ree [72]. We have inserted our state points (filled
symbols, errors less than symbol size) and a vertical dashedline to delimit the region
in which SM2 was found more stable than sFCC. To the left of it,both sFCC and SM2
are metastable, and assessing their relative stabilities requires free-energy calculations (in
progress [70]). Preliminary results [71] indicate that SM2is more stable down tol/w= 2,
but that sFCC is more stable atl/w = 1.55. Our solid state points are isobar atP = 46
(except for the lower SM2 one atl/w = 3, whereP = 30).
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3.3.4 Flipping Mode in SM2 at Aspect Ratio 1.55

Figure 3.11 (left) displays a snapshot of SM2 atl/w = 1.55 (N = 432, P = 46,
#17). Since the elongation has become relatively short, larger fluctuations around
the preferred orientation are expected. The more colorful appearance of the snap-
shot confirms this view. Note also that the two major orientations are at about
90◦ with respect to each other, consistent with the Donev geometry at this aspect
ratio. The surprise comes with the actual distribution of orientations on the unit
sphere (right), including the distinction between “up” and“down” (this is ignored
in the color code to account for the head-tail symmetry of ourellipsoids). The
existence of four preferred orientations implies that the particles have been able
to flip upside-down since the beginning of runs #17 (where we found only two
preferred orientations). It is expected that rotation eventually becomes possible
on decreasing the aspect ratio (plastic solid phase). It is intriguing, however, that
flipping becomes possible prior to that, in the crystal phase. Note that this re-
sult concerns the dynamics only since, given the head-tail symmetry, the structure
is unaltered when ellipsoids are flipped upside-down. A closer investigation of
flipping would be promising: Looking in the reverse direction, i.e. increasing
l/w from values where flipping is possible, one should observe a slowing-down
and arrest of flipping, which may lend itself to an interpretation in terms of glass
physics. Or, givenl/w = 1.55 (for instance), one should see a slowing-down and
arrest upon increasing the density. In the following Chapter 4 (Section 4.3.2.2),
we do study the behavior of flipping modes, but in the over-compressed isotropic
phase. We will see that they play a special role there, too.

3.4 Summary

In the high density phase diagram of prolate hard ellipsoidsof revolution we have
found a crystal which is more stable than the stretched FCC structure proposed by
Frenkel and Mulder [1]. The new phase, SM2, has a simple monoclinic unit cell
containing a basis of two ellipsoids.

The angle of inclinationβ is a very soft degree of freedom forl/w = 3,
whereas the other angles are not. This softness disappears with decreasing as-
pect ratio. A symmetric state of the unit cell exists which could be identified with
an instance of the family of packings introduced by Donev et al. [2]. Evidence was
found that this state is unstable forl/w= 3 with respect to steeper geometries. By
contrast, the symmetric geometry becomes important for lower aspect ratios.

Our results unequivocally remove the stretched FCC structure for aspect ratio
l/w = 3 from the phase diagram of hard, uni-axial ellipsoids. Our state points
for l/w = 4 and 6 suggest that this holds for the entire range of 3≤ l/w≤ 6, and
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Figure 3.11: Left: snapshot of SM2 atl/w = 1.55 (N = 432, P = 46). The colorful
appearance documents the expectedly large fluctuations around the preferred orientations.
Right: distribution of orientations on the unit sphere fromthe same system. The existence
of four preferred orientations shows that the particles have been able to flip upside-down
(this does not reflect onto the color code of the snapshot).
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possibly beyond. Preliminary free-energy calculations [71] indicate stability also
for l/w= 2, and possibly that sFCC is more stable atl/w= 1.55. The latter result
implies a phase boundary both for a limiting aspect ratio anda limiting density
above the simulated one.

Finally, SM2 atl/w = 1.55 displays an interesting dynamical feature, in that
flipping of ellipsoids is possible, warranting studies of the cross-over to where this
is not possible. And certainly, the application of recent experimental advances in
colloidal ellipsoids [36, 37] seems very promising.
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Chapter 4

Glassy Dynamics in Almost
Spherical Ellipsoids

We report here on our findings of glassy dynamics in hard ellipsoids. The study
was motivated by the Molecular Mode-Coupling Theory (MMCT)predictions of
Letz et al. [3], and as a complement to the molecular dynamicsinvestigation of
de Michele et al. [30] which did not focus on the over-compressed fluid states. Un-
derstanding the slowing-down of a system is also of interestoutside the context of
glass physics; for instance, it is critical for studies of nucleation. As we will see,
nearly spherical ellipsoids display glassy dynamics in positional and orientational
degrees of freedom. This by itself is surprising for a monodisperse, relatively
simple system. Typically, polydispersity in size, a mixture of particle species, or
network-forming covalent bonds are prerequisite to prevent the competing crys-
tallization. We hence show that a slight particle anisometry acts as a sufficient
source of disorder. This sheds new light on the question of which ingredients are
required for glass formation.

This part of our work was done in collaboration with a visiting Master student,
whose internship (two times two months) the author co-supervised. She prepared
and performed the MD side of the simulations, and assisted with programming and
data-analysis tasks. She also performed a modified repetition of an MC simulation
(l/w= 0.8, φ = 0.614), and early analysis thereof, for the study of heterogeneous
dynamics.

4.1 Overview of Simulations

Figure 4.1 shows snapshots of the simulated systems. At firstsight, they all look
the same. However, the upper systems contain prolate (l/w = 1.25) ellipsoids,
while the lower ones contain oblate (l/w = 0.8) ellipsoids; and the left-hand sys-
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Figure 4.1: Snapshots of the simulated suspensions. The color code indicates orientation.
At first sight, they all look the same. However, the upper systems contain prolate (l/w =
1.25) ellipsoids, while the lower ones contain oblate (l/w = 0.8) ellipsoids; and the left-
hand systems are isotropic, while the right-hand systems are plastic solids. Especially for
l/w = 0.8, the plastic solid is not easy to identify by eye.
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tems are isotropic, while the right-hand systems are plastic solids. The similarity
of the prolate and oblate systems will in fact recur in our results. This is, however,
not trivial, since the two bodies are fundamentally different: In the limit of large
anisometry, prolate ellipsoids approach one-dimensionalneedles, while oblate el-
lipsoids approach two-dimensional disks. Nevertheless, earlier work on ellipsoids
(see Section 1.3.2) has found an approximate symmetry in properties under ex-
change ofl/w with its inverse. Regarding the two phases “isotropic” and “plastic
solid”, we note that the distinction by eye is not easy, especially if the planes of
symmetry are oblique with respect to the simulation box. In the Figure, the plastic
solid in l/w = 0.8 is hard to see. An order parameter is in order, we describe it
below.

Table 4.1 summarizes all simulations for the glassy dynamics work. The sys-
tems were equilibrated using MC at constant particle numberN, pressureP and
temperatureT [73, 74] in a cubic box with periodic boundaries (see Section2.1).
Each system contained more than 3000 particles. Forl/w= 0.80, a dilute, random
configuration was compressed atP= 4 andP= 71 for 106 MC steps each, and the
resulting configuration served as input for the run atP = 10. Forl/w = 1.25, a
dilute, random configuration was input for the run atP = 10 directly. The output
of each equilibration run was used as the starting configuration for the next higher
pressure.2 During equilibration, the MC step size was automatically adjusted so
that an acceptance rate close to 30% (20% for volume moves) was obtained. Up
to P = 23 (l/w = 1.25) andP = 17 (l/w = 0.80), this was not done for rotation
moves because even the largest possible setting resulted ina higher acceptance
rate. This largest setting was used there, i.e. the sphere from which a random vec-
tor was chosen (and added to the current orientation, followed by normalization)
had unit radius.

The systems were considered equilibrated3 when the volume fraction had set-
tled and all positional and the orientational correlators were independent of abso-
lute simulation time. The latter requirement was verified inthe production runs.
Towards the end of each equilibration run, a configuration with a volume fraction
close to the average volume fraction was chosen and scaled tothe average volume
fraction exactly. It served as the input for the production runs.

For production, we used MC and MD. In the MC simulations (now at constant
volume) the step sizes were fixed to small values (displacement: 0.007w; rota-
tion: 0.1); the acceptance rate was then near 70% at the highest simulated volume
fractions. The particles mimic Brownian motion, similar tocolloidal ellipsoids
suspended in a liquid. The step sizes were the same for all runs, hence a unique

1The units of pressure arekBT/[(l/w)w3]. See also pg. xx.
2Equilibration runs atP = 27,28,29 were all based on the output of the run atP = 26.
3For the case of over-compression, “equilibrated” here means within the metastable isotropic

basin.
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Table 4.1: Overview of glassy dynamics simulations.
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time scale could be established and unphysical grazing moves, violating the hard
ellipsoid model, occurred to the same degree in all MC simulations. Comparison
with the MD method shows that their effect is not significant.4

The MD simulations implemented free flight and elastic collisions [23]. The
method is outlined in Section 2.2.2. The code of Allen et al. [23], kindly pro-
vided by M.P. Allen, was adapted to initialize uniformly-distributed angular mo-
menta, to output configurations on the logarithmic time scale and reflecting the
full displacements of particles, and to be numerically morestable for long runs
with N ≈ 3000. The moment of inertia for end-over-end rotation was set to
I = 1/20

[
(l/w)2+1

]
mw2, which corresponds to uniform mass distribution. The

angular momentum about the symmetry axis was kept zero (smooth ellipsoid sur-
faces). The length of an MD step was 0.0005

√
m/kBT 3

√
l/ww. At φ = 0.598,

about four collisions per particle took place in 100 MD steps. The input config-
urations were assigned Maxwell-Boltzmann velocity distributions at unit temper-
ature, and then run for at least 10,000 steps so that local temperature and density
fluctuations could come to correspond. Mismatches therein were visible in the
intermediate scattering functions at short time scales.

The limitation in simulating glassy dynamics in our systemslies in the fact that
upon over-compression, the time scale of crystallization eventually becomes com-
parable to that of theα-relaxation. Thus, our systems acquired a tendency to crys-
tallize to the rotator phase at high volume fractions. To monitor crystallinity, we
computed the local positional order using the bond-orientational order parameter
q6 [76]. It is based on the symmetry of the arrangement of neighboring particles
around a given particle, by use of spherical harmonics. A neighbor is considered
bonded ifits arrangement is sufficiently similar in symmetry and orientation. A
particle is considered solid if it has at least 4 bonded neighbors. Finally, a standard
cluster algorithm identifies clusters of solid particles. In our systems used for the
study of glassy dynamics, the fraction of particles which were part of crystalline
clusters never exceeded 2.6% and was typically below 0.5%.

We used all of the production data summarized in Table 4.1, with the exception
of the MC and MD runs ofl/w= 1.25 atφ = 0.598. In the MC case, aging could
not be ruled out before 5·106 steps, and crystallization set in past 7.2 ·106 steps.
In the MD case, crystallization set in past 1·105 steps.

With regard to efficiency, we found that both methods performabout equally,
the MD method being slightly faster. The longest runs were onthe order of several
days on a single PentiumTM 4 CPU. Equilibration was done more efficiently using
standard MC. Decay of correlation functions took only∼ 3/4 as long there. The
MD method had a slightly higher propensity towards crystallization, which for

4In fact, for the study of long-time dynamics, the independence from microscopic details even
allows for considerably larger MC steps, increasing efficiency [75].
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our purposes was a disadvantage.
Interestingly, the mentioned symmetry of the prolate and oblate systems breaks

down with regard to crystallization. The prolate system crystallizes more readily.
The details of this, however, are the subject of future studies.

4.2 Structure

4.2.1 Local Order: Pair Correlation Function

To gain insight into the local structure, we first consider thepair correlation func-
tion. It is defined as follows:

g(r) =
1

4πr2ρ
1

N−1

〈
N

∑
i, j

δ (r−|r i − r j |)
〉

, (4.1)

where|r i − r j | is the separation between particlesi and j. N is the number of
particles,ρ is the number density; the average is the ensemble average.g(r) is
also calledradial distribution function.It is a special kind of density, which can
be summarized as follows: From the point of view of a particle, there will be (on
average)ρg(r) particles at distancer per element of volume. In Figure 4.2 we
show the pair correlation functions for both the prolate andthe oblate systems,
for several volume fractionsφ . MC and MD data fully agree and so their average
was taken. The pair correlation function shows the nearest neighbor shells as
individual peaks. The higher the volume fraction, the larger the distance at which
we can still see such peaks.g(r) approaches unity asr → ∞. The maximum
represents the nearest-neighbor distance; it moves to smaller values and becomes
sharper as the volume fraction is increased. Its location for the highest volume
fraction is 1.131 (prolate system,φ = 0.598) and 0.994 (oblate system, for both
φ = 0.598 andφ = 0.614).

4.2.2 Intermediate Range: Static Structure Factors

The static structure factor is defined as

S(q) =
1
N
〈ρ∗(q)ρ(q)〉=

1
N

〈
N

∑
i, j

exp[iq · (r i − r j)]

〉
, (4.2)

where

ρ(q, t)≡
N

∑
i=1

exp(iq · r i(t))
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Figure 4.2: Pair correlation functionsg(r) for the prolate (top) and the oblate (bottom)
systems, for several volume fractionsφ (see legend). MC and MD data fully agree and
so their average was taken. The maximum represents the nearest-neighbor distance; it
moves to smaller values as the volume fraction is increased.Its location for the highest
volume fraction is 1.131 (prolate system,φ = 0.598) and 0.994 (oblate system, for both
φ = 0.598 andφ = 0.614).
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is the Fourier transform of the particle density.
S(q) is essentially the Fourier transform of the pair correlation function. In

isotropic systems, it is a function of the magnitudeq only, and so we can spheri-
cally average over the directions ofq.

S(q) enables us to examine structure on intermediate length scales. Even when
placed in a disordered fashion, repetitiveness produced bystructural units such as
tetrahedra, and larger features, will produce corresponding peaks inS(q). It is
thus a good variable to study inhomogeneities—or prove their absence.

In Figure 4.3 we show the structure factors for both the prolate and the oblate
systems, for several volume fractionsφ . MC and MD data again fully agree and
so their average was taken. The maximum represents a recurring length scale
due to the neighbor spacing. It moves to higher values ofq and becomes more
pronounced as the volume fraction is increased. The black dotted line indicates
the valueqmax used for much of the analysis of the dynamics. It was chosen tobe
near the maximum over a range of volume fractions. Its value for l/w = 1.25 is
qmax= 6.85, and forl/w= 0.8 it isqmax= 7.85. At first, it is surprising to consider
the corresponding length scales: 0.92 for l/w= 1.25 and 0.80 for l/w= 0.8. How
can particles be closer together than their width? The reason is thatS(q) does not
place emphasis on thenearestneighbors. While the nearest neighbors are at least
w (prolate) or aboutw (oblate) apart, the second (ornth) neighbor shell is less than
2w (nw) away due to the gap-filling packing geometry.5 Soqmax is an important
length scale for the system beyond the local scale.

What we also see from Figure 4.3 is that there are no features on length scales
larger than the neighbor spacing, as there are no peaks inS(q) for q < qmax. An
exciting feature of glassy dynamics is that nonetheless, the dynamicsdoeshave
correlations on larger length scales.

4.3 Average Dynamics

4.3.1 Mean Squared Displacement and Diffusion

The mean squared displacement (MSD)

〈r2(t)〉=

〈
1
N

N

∑
i=1

|r i(t)− r i(0)|2
〉

(4.3)

is a measure of how far (on average) a particle has come after time t has elapsed.
Several points in time may serve as starting points of measurement (t = 0), so that

5It is for this reason that we use the term “neighbor spacing”,rather than “nearest-neighbor
spacing”.
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Figure 4.3: Static structure factorsS(q) for the prolate (top) and the oblate (bottom)
systems, for several volume fractionsφ (see legend). MC and MD data fully agree and
so their average was taken. The maximum represents a recurring length scale due to
the neighbor spacing; it moves to higher values ofq as the volume fraction is increased.
The black dotted line indicatesqmax used for the analysis of the dynamics (l/w = 1.25:
qmax = 6.85; l/w = 0.8: qmax = 7.85). There are no features forq < qmax, i.e. on length
scales larger than the neighbor spacing.
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we obtain several measurements during the same run. They will not be entirely
uncorrelated, but nevertheless improve statistics significantly when we average
over them. The angle brackets therefore indicate the ensemble average and the
time average in this special sense. In our simulation, configurations were stored
on logarithmic time scales, one such scale beginning at the start, and three more
after 1/4, 1/2, and 3/4 of the run had passed.

In Figure 4.4 we demonstrate the properties of the MSD. Each curve of the MD
simulations begins with the ballistic regime, where the MSDrises quadratically,
and ends with the diffusive regime, where it rises linearly in time. In the MC
simulations, the initial regime also corresponds to a diffusive one, owing to the
Brownian motion-like evolution. In both simulations, the transition between the
initial and final regimes ranges from a slight bend at low volume fractions to a
pronounced sub-diffusive regime, growing longer for increasing volume fractions.
This plateau marks here theβ -relaxation regime, the time scale during which
particles typically remain localized (in their cages). Theonset of the diffusive
regime corresponds to theα-relaxation. We can thus identify features of glassy
dynamics in the MSD. We note that the increase in plateau width is predicted by
MCT (even quantitatively [38]). Furthermore, from the plateau height we may
estimate the mean radius of the cagesrMSD. We obtain it by evaluating the root
of the plateau height, i.e. the root-mean-squared displacement. It is nearrMSD ≈
0.2w for all systems atφ > 0.598. But see Section 4.3.2.1 for our discussion on
cages.

From the MSD one can compute the self-diffusion constantD, by means of
the Einstein relation

D = lim
t→∞

〈r2(t)〉/6t. (4.4)

In practice, we fitted straight lines to the MSDs at large values oft and used the
slopes of the fits to evaluateD = 1

6 · d〈r2(t)〉/dt. The results are presented in
Section 4.3.3.

4.3.2 Relaxation

4.3.2.1 Intermediate Scattering Functions

The intermediate scattering function is defined as follows:

F(q, t) = 〈 1
N

ρ∗(q, t)ρ(q,0)〉=

〈
1
N

N

∑
i, j

exp
[
iq · (r i(t)− r j(0)

)]〉
(4.5)

whereρ(q, t)) is again the Fourier transform of the number density. The average
is the ensemble average (and treated numerically in the samefashion as was done



4.3. Average Dynamics 65

10
2

10
3

10
4

10
5

10
6

10
7

MC steps

10
-2

10
-1

10
0

10
1

10
2

M
S

D
0.80
0.473
0.504
0.533
0.550
0.565
0.578
0.589
0.598
0.606
0.614

10
-2

10
-1

10
0

10
1

10
2

M
S

D
1.25
0.474
0.511
0.533
0.551
0.565
0.578
0.588
0.598

10
2

10
3

10
4

10
5

10
6

MD steps

l/w=0.8

l/w=1.25
MC

MC MD

MD
l/w=1.25

l/w=0.8

Figure 4.4: Mean-squared displacements (MSD) of all systems at severalvolume frac-
tions φ (see legend). One can see the ballistic regime (MD only) at early time scales
and the diffusive regime at late time scales. Towards high volume fractions there is a
sub-diffusive regime on intermediate time scales, indicative of glassy dynamics.



66 Chapter 4. Glassy Dynamics in Almost Spherical Ellipsoids

for MSDs), and a spherical average over all directions ofq, once more exploiting
that our systems are isotropic. Thus,F(q, t) also depends only on the magnitude
q of the wave vector.

We can extract from the double sum the diagonal terms, and hence write

F(q, t) = Fs(q, t)+Fd(q, t), (4.6)

where

Fs(q, t) =

〈
1
N

N

∑
i=1

exp[iq · (r i(t)− r i(0))]

〉

Fd(q, t) =

〈
1
N

N

∑
i 6= j

exp
[
iq · (r i(t)− r j(0)

)]〉
(4.7)

are theself partand thedistinct part, respectively. These are also calledincoherent
andcoherentintermediate scattering functions. Note thatF(q,0) = S(q). We will
in fact always normalizeF(q, t) by S(q) so that they start at unity and in the end
decay to zero.

Roughly speaking, the self part is a measure of how much the position of the
average particle is related to its own initial position, when we look at a resolution
specified byq. For example, if we chooseq = 2π/w, it makes essentially no
difference when the particles have moved on a scale much smaller thanw, soFs is
still close to unity. And it makes a big difference when the particles have moved on
the order of their widthw, and soFs approaches zero. The latter condition implies
that structural relaxation has occurred on that length scale. The distinct part plays
the same role, but relating the position of the particle to the initial position of the
averageotherparticle. We do not consider it in this study.

In Figure 4.5 we showFs(qmax, t) for all simulations, withqmax near the maxi-
mum of the static structure factor (Section 4.2.2); i.e. it corresponds to the neigh-
bor spacing. One can clearly see the development of a plateauwith increasing
volume fraction. This means that there are two distinct stages of relaxation, and
the later one slows down dramatically upon increase of volume fraction (note
the logarithmic time scale). This two-step decay is the hallmark in glass formers
[29]. As already mentioned, the conventional interpretation is in terms of particles
being trapped in cages formed by their nearest neighbors. The initial decay corre-
sponds to motion within the traps, and the final decay to escape. At high volume
fractions, exceedingly cooperative rearrangements are required for escape, mak-
ing such processes rare. We note that indicators of caging have not been seen in
hard ellipsoids before (unless the moment of inertia was strongly increased [77]).
The presence of cages is demonstrated in Section 4.4.2 (Figure 4.20 on page 90).
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Figure 4.5: Self-intermediate scattering functionsFs(qmax, t) at several volume fractions
φ (see legend), withqmax near the maximum of the static structure factor (see Figure 4.3).
Towards high volume fractions there develops a plateau on intermediate time scales. The
final relaxation is slowed down strongly with increasing volume fraction, indicative of
glassy dynamics.
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Inspired by Berthier and Kob [75], and in an attempt to refine the notion
of cages, we consider sizes associated with the cages. We already saw in Sec-
tion 4.3.1 that the localization on intermediate time scales, the “cage size”, is
rMSD ≈ 0.2w in our systems. It is instructive to compare the volume whichis in-
stantaneously available to the particles; i.e. the volume with fixed nearest neigh-
bors. We may estimate it from the end of the MC equilibration runs: The at-
tempted translational move was randomly chosen out of a cubeof volumeδ 3

max,
andδmax was set in such a way that the acceptance ratioRA ≈ 0.3. That is, about
30% of the moves would be accepted. Geometrically, this means that 30% of the
volume of the cubeδ 3

max is free, on average. This fraction is small enough that
the boundaries of the available volume are mostly insideδ 3

max, and so the product
RA · δ 3

max yields a good estimate of this volume. In the MC production runs with
small steps andRA ≈ 0.75, this is no longer the case. Assuming an approximately
spherical shape of the “instantaneous cage”, we may obtain its radiusrI:

RA ·δ 3
max ≈ 4π

3
r3
I

rI ≈ 3

√
3RA

4π
δmax (4.8)

Forφ = 0.598, the prolate system hasrI = 0.015w and the oblate onerI = 0.013w,
and forφ = 0.614 we haverI = 0.011w in the oblate system. This is up to a factor
of 20 (!) smaller than the cage sizerMSD ≈ 0.2w. This has consequences for the
nature of the motion within the rangerMSD ≈ 0.2w, local motion usually thought
of as “rattling in the cage”. It must be cooperative, involving particles well beyond
the nearest-neighbor shell. Cages should thus be understood as soft objects, their
softness allowing motion in the rangerMSD≈ 0.2w even though the local packing
is more tight at any instant.

The picture that the decay ofFs(qmax, t) to the plateau corresponds to “rattling
in the cage” was recently challenged by Berthier and Kob [75], although based on
slightly different evidence. Their Monte Carlo simulations of a binary Lennard-
Jones mixture (the Kob-Andersen model [51, 52]) used step sizes on the order
of δmax≈ rMSD ≈ 0.15σ , but up to 104 MC steps were needed by the particles
to actually explore the volume associated withrMSD. More complex motion than
vibrations in a cage was inferred.

Finally, we define the relaxation timeτ associated withFs(q, t) as the time
when the named function has reached the value 0.1. We fitted a Kohlrausch-
Williams-Watts function Eq. (1.12) to each curve to improveprecision and to
allow extrapolation for the cases whenFs(q, t) = 0.1 was not reached during pro-
duction.
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4.3.2.2 Orientational Correlation Functions

Dynamics in the orientational degrees of freedom is observed in terms of the
second-order orientational correlator [22]

L2(t) =

〈
1
N

N

∑
i=1

[
3
2

cos2 θi(t)− 1
2

]〉
(4.9)

whereθi(t) is the angle between the orientation at timet and the original orien-
tation of ellipsoidi. SinceL2(t) is an even function in cosθ(t), the head-to-tail
symmetry of the particles is taken into account. Decay of this function indicates
that relaxation of orientational degrees of freedom has taken place, that a substan-
tially different orientation has been assumed by most particles. Figure 4.6 shows
the orientational correlation functions. As in the intermediate scattering functions,
plateaus develop at high volume fractions. Evidently, the cages hinder rotations
of the ellipsoids. As a consequence, orientational and positional degrees of free-
dom are coupled. This is in contrast with the decoupling found at lower volume
fractions [30]. The hindrance is relatively weak, however,since the plateau height
is quite low.

The dip after the initial decay in the MD plots is a remnant of the free-rotator
behavior ofL2(t) [78, 30]. Its presence is not surprising given the low anisometry.
At long times, the curves do not differ significantly among MDand MC (see
Section 4.3.4.1).

As with Fs(q, t), we define the relaxation timeτ associated withL2(t) as the
time when the named function has reached the value 0.02. Given the low plateau
height, such a small number was needed to capture theα-relaxation. Also here, we
fitted a Kohlrausch-Williams-Watts function Eq. (1.12) to each curve to improve
precision. Extrapolation was not necessary.

Thethird-order orientational correlation function is defined as

L3(t) =

〈
1
N

N

∑
i=1

[
5
2

cos3θi(t)− 3
2

cosθi(t)
]〉

Figure 4.7 showsL3(t) for all systems, comparing it toL2(t) which is shown in
grey. UnlikeL2(t), the third-order correlatorL3(t) shows insignificant slowing-
down in the range of volume fractions studied. The implication is that head-to-
tail flips, to whichL3(t) is sensitive, are not affected by the slowing-down of
the overall re-orientation. This is in accord with the MMCT prediction of Letz
et al. [3], according to which a separate glass transition for the flipping mode
occurs at a higher volume fraction. The same behavior has also been found for the
case of diatomic Lennard-Jones dumbbells [79], and symmetric Lennard-Jones
dumbbells [80]. The explanation [79] of this phenomenon relates to cages, in that
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Figure 4.6: Second-order orientational correlatorsL2(t) at several volume fractionsφ
(see legend). Again a plateau develops with increasing volume fraction, i.e. the glassy
dynamics affects the orientational degrees of freedom as well. Hence, orientational de-
grees of freedom are coupled to positional ones.
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their fluctuating shape makes flips possible, but not significant re-orientation. This
is in full agreement with the softness of cages we discussed above.

We note in passing that crystallization, if it occurs, releases the orientational
degrees of freedom: The orientational correlators accelerate by three orders of
magnitude and no longer have a plateau.

4.3.3 Slowing-down of Diffusion and Relaxation

We now turn to the slowing-down of diffusion and relaxation as a function of
volume fraction. Figure 4.8 presents inverse relaxation timesτ−1 obtained from
Fs(qmax, t) (triangles) and fromL2(t) (circles), and diffusion constantsD (squares),
as a function of volume fractionφ , for all systems. MC data: filled symbols (with
lines to guide the eye); MD data: open symbols. The MC values have been multi-
plied by a factor of 24 (prolate) and 18 (oblate) to match the MD time scale [L2(t):
19 and 16, respectively]. Note that in each system, one common factor for the po-
sitional variables yields excellent agreement between MC and MD. According to
MCT, there should be only one such value. The factor for the orientational relax-
ation times need not be the same since it depends on the choiceof orientational
move size (MC) and moment of inertia (MD). The errors are of symbol size or
less. D is in units of (2π/qmax)2/[t]; this choice is discussed in the next para-
graph. The slowing down of all variables is super-Arrhenius. According to MCT,
it should approach a power law, which we will test in Section 4.3.4.4.

In Figure 4.9, we compare diffusion constants (squares) andinverse relaxation
times (Fs: triangles,L2: circles) of the prolate (red, open symbols) and the oblate
(blue, solid symbols) system. Having established the agreement between MC and
MD, we use MC data only. The values are extremely similar, indicative of the pre-
viously observed symmetry under exchange ofl/w with its inverse [1, 30, 3]. For
the case ofD, this is only true because of our choice of units[D] = (2π/qmax)2/[t].
It was in fact motivated by the discrepancy inD when using[D] = w2/[t], despite
the match in the other variables. Motion in the system entails rearrangement on
the micro-structural scale. Its significance is therefore best measured in terms of a
structural length scale, for which the one given byqmax is the natural choice. We
mention that using the position of the maximum in the pair correlation function
g(r) yields a similar agreement, while the use of the unit of length 3

√
(l/w)w (as

in e.g. [23, 30]) yields an inferior agreement for our data.

4.3.4 Testing Mode-Coupling Theory

We have seen in the previous sections that dynamical variables in our systems
bear the features of glassy dynamics. In the following, we demonstrate that these
features are pronounced enough that predictions of MMCT canbe tested.
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Figure 4.7: Third-order orientational correlatorsL3(t) at the lowest and highest simulated
φ (see legend). Comparing toL2(t) (grey curves), they do not slow down significantly,
indicating that flipping modes are not affected by the onset of glassy dynamics.
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Figure 4.8: Inverse relaxation timesτ−1 obtained fromFs(qmax, t) (triangles) and from
L2(t) (circles), and diffusion constantsD (squares), as a function of volume fractionφ ,
for all systems. MC data: filled symbols (with lines to guide the eye); MD data: open
symbols. The MC values have been multiplied by a factor of 24 (prolate) and 18 (oblate) to
match the MD time scale [L2(t): 19 and 16, respectively].D is in units of(2π/qmax)2/[t]
to account for the structural length scale given by the neighbor spacing. See Figure 4.3
for the definition ofqmax. The plots show excellent agreement between MD and MC.
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Figure 4.9: MC data of diffusion constants (squares) and inverse relaxation times (Fs:
triangles,L2: circles), comparing the prolate (red, open symbols) and the oblate (blue,
solid symbols) system. The data are extremely similar, indicative of symmetry under
exchange ofl/w with its inverse; this is seen inD as well, thanks to the choice of units
[D] = (2π/qmax)2/[t].
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4.3.4.1 MD vs. MC

As mentioned in Section 1.4.2, MCT (and MMCT) predicts that the long-time dy-
namics of a system is independent from the microscopic dynamics (i.e. simulation
method), apart from an overall time shift. In Section 4.3.3 we already established
that this holds for relaxation times and diffusion constants. The statement goes
further, however, in that the shape of correlators should also not depend on sim-
ulation method. This property has been verified in the Kob-Anderson model [81]
and the polydisperse hard-sphere glass [56]. We now check whether our two sim-
ulation methods also produce the same shape of correlators on long time scales.

In Figure 4.10, we superpose the intermediate scattering functionsFs(qmax, t)
from MC (black) and MD (green) for all volume fractionsφ . The lowest and
highest volume fractions are annotated. The MD functions have been rescaled
in t to match with the MC data at long times. Forφ < 0.598 the ratio of indi-
vidual relaxation times was used; forφ = 0.598, more precise adjustment lead to
multiplication of MD times by 21.0 (l/w = 1.25) and 16.67 (l/w = 0.8). This
individual rescaling is superior to using the overall shiftsince the fluctuations in
decay time may obscure the fact that the shapes match well. From the Figure we
see excellent agreement with the MMCT prediction.

We perform the analogous test for the orientational correlatorsL2(t) (Figure
4.11). The lowest three volume fractions have been omitted since there is essen-
tially no long-time regime. As before, the MD functions havebeen rescaled int
to match with the MC data at long times (the ratio of relaxation times was used
except forl/w = 1.25,φ = 0.598, where we multiplied MD times by 19). Apart
from statistical fluctuations, the long-time dynamics are confirmed to be indepen-
dent of the microscopic dynamics. To our knowledge, this is the first test of this
MMCT prediction for orientational degrees of freedom.

Finally, we return toFs(q, t) and compare the long-time shapes forφ = 0.598
and wave vectors in the range 2.8≤ qw≤ 18. The MD functions of each system
have been rescaled int by one common factor to match with the MC data at long
times (l/w = 1.25: multiplied by 21.0; l/w = 0.8: multiplied by 16.67). The
shapes match well over this wide range of wave vectors after 105 time units, even
for the case ofl/w = 1.25 which has poor statistics.

4.3.4.2 Time-Volume Fraction Superposition Principle

Asymptotically close to the glass transition, all correlators should obey the time-
volume fraction superposition principle. It states that the correlators map onto
a single curve in theβ - and α-relaxation regimes when rescaled in their time
dependence usingt/τ (τ is theα–relaxation time). Thus, a master curve should
be seen after the initial decay to the end of the final decay.
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Figure 4.10: Comparing the long-time shapes of the intermediate scattering functions
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In Figure 4.13, we display allFs(qmax, t/τ), to look for the collapse to a master
curve for the highest volume fractions. Two curves seem to violate the prediction:
the cyan one inl/w = 1.25 MC (φ = 0.598), and the black one inl/w = 0.80
MC (φ = 0.606). The deviation of both is of statistical origin, since it has the
size of the fluctuations in the curves along absolute simulation time. The effect is
more drastic for the cyan curve inl/w = 1.25 MC since the relaxation time had
to be determined by extrapolation. This extrapolation poses an additional source
of error to the calculated relaxation time. The two outliersdo not change the
conclusion that the superposition principle holds.

Analogously, we have rescaled allL2(t), to look for the same property in ori-
entational degrees of freedom. The results are reported in Figure 4.14. In the MD
data, some of the lowest volume fractions’ curves are not considered as the near-
vanishing plateau made it impossible to extract the relaxation time. The MMCT
prediction is clearly confirmed.

4.3.4.3 Von Schweidler Law and Factorization Property

Next, we focus on theq-dependence of the intermediate scattering functions at
high volume fractionsφ . The upper panels of Figures 4.15 and 4.16 present
these functions for all systems at the highest available volume fraction, with wave
lengths in the range 2.8 < qw< 18. The plateau height is a monotonic function
of q. For largerq (i.e. smaller length scales), the plateau is lower, since local
motion will already lead to significant decay ofFs(q, t). For smallerq, the plateau
is higher, since the same local motion is insignificant on larger length scales and
thus will lead to little decay. We test two MMCT predictions for the vicinity of the
glass transition (see Section 1.4.2), the von Schweidler law and the factorization
property.

For the late stages of the plateau and the early stages of the final decay, these
functions should be well-fitted by the von Schweidler law (incl. the second-order

correction),Fs(q, t) = f c
q −h(1)

q tb +h(2)
q t2b. fq is the plateau height, and is called

non-ergodicity parameter.h(i)
q are amplitudes, andb is a system-universal expo-

nent, also independent of the microscopic dynamics. Agreement is excellent, as
shown for the examples in Figures 4.15 and 4.16 (red lines). The ranges for the
fits are presented in Table 4.2. MC and MD data of both the prolate and the oblate
system are consistent withb = 0.65±0.2. The range of values forb is so large
because the quality of the fits is rather insensitive tob.

Figure 4.17 shows theq-dependence of the fit parameters in the von Schwei-
dler law. Given the same shape ofFs(q, t), but shifted by a constant factor in time,

h(i)
q will be trivially different; to allow for a comparison of theMC and MD re-

sults, we rescaledh(i)
q of the MD fits to match time scales.h(1)

q of l/w = 1.25
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Figure 4.13: Time-volume fraction superposition principle forFs(qmax, t). All curves
have been rescaled by their relaxation timeτ to check whether a master curve results,
as MCT predicts for the vicinity of the glass transition. Twocurves seem to violate the
prediction: the cyan one inl/w = 1.25 MC (φ = 0.598), and the black one inl/w = 0.80
MC (φ = 0.606). The deviation of both is of statistical origin, and thedeviation of the
former is aggravated by the uncertainty due to extrapolation when determiningτ . The two
outliers do not change the conclusion that the superposition principle holds.
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Figure 4.14: Time-volume fraction superposition principle forL2(t). All curves have
been rescaled by their relaxation time to check whether a master curve results, as MMCT
predicts for the vicinity of the glass transition. In the MD data, some of the lowest volume
fractions’ curves are not considered as the near-vanishingplateau made it impossible to
extract the relaxation time. The MMCT prediction is clearlyconfirmed.
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Figure 4.15: Upper panels:Fs(q, t) for l/w = 1.25 and the highest volume fractionφ =
0.598, and forq-vectors (from top) 2.8, 4.0, 5.5, 7.1, 8.1, 10.1, 12.1, 14.1, 18.1. The
red lines show examples of the von Schweidler fitFs(q, t) = fq− h(1)

q tb + h(2)
q t2b with

b = 0.65. Lower panels: the same correlators after transformation to R(t) = [Fs(q, t)−
Fs(q, t1)]/[Fs(q, t2)−Fs(q, t1)], demonstrating the factorization property. The color code,
distinguishing wave vectors, shows that the curves remain ordered, i.e. a curve which is
above another one before the collapse is above the other one after as well.
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Figure 4.16: Same as Figure 4.15, but forl/w = 0.80; φ = 0.614 for MC andφ = 0.598
for MD.

1.25 0.80
MC MD MC MD

t1 t2 t1 t2 t1 t2 t1 t2

fit range 4·105 2·106 1·104 1·105 2·105 2·106 7·103 3·105

φ = 0.614: 3·105 2·107

fact. prop. 5·104 5·105 1·104 5·104 6·104 5·105 5·103 3·104

Table 4.2: Fit ranges for the von Schweidler fits and reference times forthe transformation
to R(t) testing the factorization property.φ = 0.598 unless otherwise indicated.
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(MD) was rescaled by 21.0b, and ofl/w = 0.8 (MD) by 16.67b (the same factors

as in Section 4.3.4.1);h(2)
q was rescaled by the squared value in each case.f c

q
resembles a Gaussian in all cases. For the highestφ = 0.614,l/w= 0.8 (MC), the
curve can in fact be well fitted byf c

q = exp(−r2
Lq2), with the localization length

rL = 0.072 (red dashed line). Only forq > 16 arises notable deviation.
Even though a fit to a Gaussian is less satisfactory for the systems atφ =

0.598, we observe qualitatively similar behavior from Figure4.17. And to have
an estimate for the localization length in the prolatel/w = 1.25 system, we quote
the fitted values:rL = 0.087 (MD) andrL = 0.091 (MC). All these values are
close to the Lindemann criterion for the melting of a solid [82]. These results
are similar to MCT calculations and simulations of hard spheres [83, 56], and
simulations of asymmetric Lennard-Jones dumbbells [53, 84], and silica [55]. We
confirmrL = rMSD/

√
6, which one expects from power-expanding the exponential

in Fs(q, t) and performing the spherical average. Finally, we remark that the curves
of the MC and MD data deviate from one another, but this deviation is within the
error resulting from changes inb or the fitting range.

The fitted values ofh(i)
q are presented in the lower two panels of Figure 4.17.

They are more sensitive tob and the fitting range, and accordingly, MC and MD
results deviate appreciably. Qualitatively, we find the same behavior as in other

glass formers throughout [83, 56, 53, 55], consisting of a maximum and forh(2)
q

a zero-crossing at small values ofqw. In summary, then, theq-dependence in the
von Schweidler fits bears strong similarity with those in other glass formers.

We now turn to the factorization property. Recall that wherethe Fs(q, t) are
near their plateaus, they should obeyFs(q, t) = f c

q + hqG(t), wherehq is an am-
plitude, andG(t) is a system-universal function. This relation entails thatFs(q, t)
can be split into aq-dependent and at-dependent part. To test this property for our
systems, we transformR(t) = [Fs(q, t)−Fs(q, t1)]/[Fs(q, t2)−Fs(q, t1)], as done in
Gleim and Kob [48], wheret1 andt2 are times in the regime where the property
holds. SinceR(t) is not a function ofq, all correlators should fall onto a single
master curve. Moreover, the curves should remain ordered, i.e. a curve which
is above another on the left-hand side remains above the other on the right-hand
side. The lower panels of Figures 4.15 and 4.16 demonstrate the validity of the
factorization property, and from the color we see that indeed they remain ordered.
The property holds for one decade, and inl/w = 0.8 (MC) atφ = 0.614 for two
decades. Table 4.2 has the reference timest1 andt2 we used.

4.3.4.4 MCT Glass Transition Volume Fraction

We noted in Section 4.3.3 that the slowing-down of diffusionand relaxation is
stronger than an Arrhenius law. According to MMCT, it shouldapproach a power
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Figure 4.17: q-dependence of the fit parameters in the von Schweidler lawFs(q, t) =

fq−h(1)
q tb +h(2)

q t2b. See legend for aspect ratio, simulation method, and volumefraction.

h(1)
q of l/w= 1.25 (MD) was rescaled by 16.67b, and ofl/w= 0.8 (MD) by 21.0b; h(2)

q was
rescaled by the squared value in each case.fq resembles a Gaussian, and forφ = 0.614,
l/w = 0.8 (MC) the curve can in fact be well fitted, up toq = 16, by fq = exp(−r2

Lq2),
with the localization lengthrL = 0.072 (red dashed line). Forφ = 0.598,l/w= 1.25 (MD)
we show the corresponding fit (cyan dashed line,rL = 0.087) which is less satisfactory.
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law of the formD ∝ τ−1 ∝ (φc− φ)γ , whereφc is the MMCT glass-transition
volume fraction, andγ is related to the von Schweidler exponentb via Eq. (1.13).
Both φc and γ should be system-universal. In Figure 4.18 we demonstrate the
validity of this prediction forFs(q, t) for several values ofq (from top: l/w =
1.25: qw = 6.85, 11, 16;l/w = 0.8: qw = 7.85, 16, 20) and forL2 (bottom).
The exponentγ = 2.3 was chosen in agreement withb = 0.65. The straight-line
fits comply with a commonφc = 0.615±0.005 for the prolate system and with
φc = 0.618±0.005 for the oblate system. The fact that there is a common value
for positional and orientational relaxation times furtherdemonstrates the strong
coupling of these degrees of freedom. We also note the agreement of MC and
MD data. The values we found forφc differ from the MMCT predictions of Letz
et al. [3], viz. φc = 0.540 and 0.536 (l/w = 1.25 and 0.8, respectively). The
mismatch between the numerical MCT calculations based on static structure, and
scaling law fits based on simulated dynamics is, however, notunusual [52, 85] and
has been attributed to activated (“hopping”) processes forwhich MCT does not
account. A similar mismatch is found in the hard-sphere system [56]. We will find
in Section 4.4.2 that the dynamics has features of hopping. Hopping (or jumps)
has a second consequence for the present discussion: the associated events have
a strong effect on the diffusion constant, causing the scaling law D ∝ (φc− φ)γ

to produce a different exponent. For this reasonD is not included in Figure 4.18.
This decoupling of diffusion and structural relaxation is also common in glass
formers [86, 87, 88].

4.4 Heterogeneous Dynamics

4.4.1 Non-Gaussian Parameter

As the volume fraction is increased, and the dynamics becomemore glassy, the
mobility of the particles is no longer the same everywhere inthe system. This
dynamical heterogeneity [89, 90] can be detected [90] with the non-Gaussian pa-
rameter (NGP) [91], which is defined as follows:

α2(t) =
3
〈
r(t)4

〉
5〈r(t)2〉2

−1 (4.10)

wherer(t) = |r(t)− r(0)| is the scalar displacement of a particle during the time
interval t. The NGP measures the deviation of the distribution of particle dis-
placements from a Gaussian one. In a perfectly homogeneous system, the Central
Limit Theorem implies that this distribution must be Gaussian. However, if there
are now several classes of particles with various mobilities, the distribution be-
comes more complicated and deviates from a Gaussian one.
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Figure 4.18: τ−1/γ multiplied by arbitrary factors for clarity, fromFs(q, t) (from top:
l/w = 1.25: qw = 6.85, 11, 16;l/w = 0.8: qw = 7.85, 16, 20) andL2 (bottom), demon-
strating the validity of the MCT scaling lawτ−1 ∝ (φc−φ)γ . The exponentγ = 2.3 was
chosen in agreement withb= 0.65. The straight-line fits indicate a glass transition volume
fraction ofφc = 0.615±0.005 (prolate system) andφc = 0.618±0.005 (oblate system).
MC and MD data agree.



88 Chapter 4. Glassy Dynamics in Almost Spherical Ellipsoids

Figure 4.19 shows the NGP for all systems. On short time scales, the distribu-
tion of displacements is close to the Gaussian one, so that the NGP is near zero.
Towards higher volume fractions, a maximum develops, and its position on the
time axis coincides with the departure from the plateau in the intermediate scat-
tering function, i.e. with the onset of theα-relaxation, when particles begin to
leave cages. On long time scales, when cages have been left bymost particles, the
Central Limit Theorem applies to the correspondingly larger displacements, and
the Gaussian distribution is recovered. The curves for all systems are similar in
magnitude for equal volume fractions.

Hence, the dynamics becomes heterogeneous when the development of the
system is governed by the cage effect. Given that there are classes of particle mo-
bility6, the question is in what way the fast particles’ motion differs from that of
slower ones. We consider this issue in the following section. The spatial correla-
tions of mobility are the subject of a future publication.

4.4.2 Jumps

It has in other glass formers been demonstrated that as the glass transition is ap-
proached, the systems’ evolution is dominated by non-Fickian, jump-like motion
[92, 93, 94, 95, 96, 97, 98, 88]. In particular, Chaudhuri et al. [88] have recently
proposed a model whereby localized motion (in the cage) combines with quasi-
instantaneous jumps (cage-to-cage) to produce an exponential tail in the self-part
of the van Hove correlation function; the tail was confirmed for several glass for-
mers. Although we have insufficient data to study the tail in our system, we have
studied the trajectories of individual particles in our most over-compressed sys-
tem, the MC simulation ofl/w = 0.8 at φ = 0.614, to test for the presence of
jumps.

From the non-Gaussian parameter (lower left panel in Figure4.19) we see
that dynamical heterogeneities in this system are strongest after about 5·106 MC
steps. Thus, if jumps make fast particles fast, then we should find them in their
trajectories during such intervals. In Figure 4.20 we show arepresentative tra-
jectory of a fast particle, i.e. whose scalar displacement is large over that period.
The individual positions are separated by 104 MC steps. One can clearly see the
particle’s visits to three cages, and that such visits last much longer than transit
from one cage to another. Hence the cage picture is confirmed for this system.
The size of the cages agrees with the result from the mean-squared displacement,
rMSD ≈ 0.2w (Section 4.3.1). For a slow particle, only one such cage would be
visible. We also observe that moving to a new cage may later befollowed by the

6Or at least a systematic variation of mobility, which may be continuous and hence defy the
definition of classes.
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Figure 4.19: Non-Gaussian parameter for all systems. Towards higher volume fractions,
a maximum develops, and its position on the time axis coincides with the departure from
the plateau in the intermediate scattering function. Hence, the dynamics becomes het-
erogeneous when the development of the system is governed bythe cage effect. When
most particles escaped from their cages, the associated larger displacements dominate and
follow a Gaussian distribution, making the non-Gaussian parameter zero again.
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Figure 4.20: Trajectory of a fast particle from the MC simulation ofl/w = 0.8 at φ =
0.614. Three cages can be identified, whose size agrees with theresult from the mean-
squared displacement,rMSD ≈ 0.2w. Moving to a new cage may later be followed by the
return to the previous cage. The displacements between individual positions are of similar
size within a cage and during transit.

return to the previous cage.
But notice in Figure 4.20 that the displacements between individual positions

are of similar size within a cage and during transit. Corresponding pictures in pre-
vious studies suggest the same for the binary Lennard-Jonesmixture [88] (Kob-
Andersen model [51, 52]), colloidal hard spheres [92], and a2D, bidisperse gran-
ular system [93]. Therefore, we suspect quite generally that a jump does not
involve an exceptional displacement. Rather, the displacement (or series of dis-
placements) leading to the new cage happens to be permanent,i.e. it is not undone
by motion in the opposite direction.

We demonstrate in the following that fast particles indeed do not perform
outstanding displacements. For a well-defined distinctionof fast and slow par-
ticles, we consider the self-part of the van Hove correlation function [99] in its
spherically-averaged form:

Gs(r, t) =
1

4πr2

〈
1
N

N

∑
i

δ [r−|r i(t)− r i(0)|]
〉

It is the distribution of scalar displacementsr in an intervalt; the mean of the
squares of these displacements is just the MSD. In Figure 4.21 we display the
named function for several values oft, in linear (top) and semi-logarithmic (bot-
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tom) plots. The curves are normalized to unit area. The largest value oft cor-
responds to maximal dynamical heterogeneity, i.e. where the Non-Gaussian pa-
rameter (Figure 4.19) has its maximum. The dotted vertical lines indicate several
regimes of mobility into which we sort the particles for further analysis.

We have calculated the distributions of displacementdr of each particle dur-
ing the shorter intervals of 105 MC steps, for each of the mobility regimes. The
intervals of 105 MC steps overlapped with each other to exclude the chance of
splitting a jump in half or missing it. If jumps were to proceed in exceptional
displacements, we should be able to see them in the curves of the fast particles,
but not in those of the slower ones.

Figure 4.22 shows the distributions in linear (top) and semi-logarithmic (bot-
tom) plots. The shape of the curves is the same from the fastest down to the slow-
est set of particles. Fast particles merely show an overall shift of their short-term
displacements towards larger values, and not the addition of few large displace-
ments to an otherwise similar distribution. Hence, we have confirmed for this
system our suspicion that jumps do not involve exceptional displacements. We
mention that the distributions of displacements during shorter intervals, e.g. 104

MC steps, lead us to the same conclusion. Note that not even this overall shift is
necessary for a particle to leave a cage; it suffices if displacements combine their
directions to make a significant, longer-lasting displacement. It is not surprising,
however, that a mobile region allowing cage rearrangementsalso allows larger
short-term displacements.

4.5 Summary

We have performed molecular dynamics and Monte Carlo simulations of the hard-
ellipsoid fluid for nearly spherical ellipsoids. In this very simple anisometric
model we observed glassy dynamics sufficiently strong that MCT asymptotic scal-
ing laws could be tested and were found to apply. This includes time-volume-
fraction superposition, factorization property, von Schweidler law, and the scal-
ing laws of the slowing-down of relaxation. We found strong coupling of po-
sitional and orientational degrees of freedom, leading to acommon value for
the glass-transition volume fractionφc for positional and orientational relaxation
times (l/w = 1.25: φc = 0.615±0.005, l/w = 0.80: φc = 0.618±0.005). Flip-
ping modes, on the other hand, were not slowed down significantly. We also
demonstrated in considerable detail that the results are independent of simulation
method, as predicted by MCT. Further, we determined that even intra-cage mo-
tion must be cooperative, and identified an associated softness in the cages which
trap the particles. We confirmed the presence of dynamical heterogeneities asso-
ciated with the cage effect. The transit between cages was seen to occur on short
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time scales, compared to the time spent in cages; but the transit was shown not to
involve displacements distinguishable in character from intra-cage motion.

The presence of glassy dynamics has been predicted by MMCT [3]. However,
as MMCT cannot make a statement about crystallization, a test by simulation
was required. We stress that glassy dynamics is unusual in monodisperse sys-
tems. Crystallization typically intervenes unless polydispersity, network-forming
bonds or other asymmetries are introduced. We argue that particle anisometry
acts here as a sufficient source of disorder to prevent crystallization. This sheds
new light on the question of which ingredients are required for glass formation.
Recent advances of dynamic confocal microscopy with colloidal ellipsoids [37]
seem promising for a study of the glassy dynamics in ellipsoids.



Acknowledgments

I would like to thank (names had to be removed in this online version):
• My supervisor, for hiring me into her group, her patience andher kind support
• My second supervisor, for his support
• The head of the group, for admitting me into his group alreadyfor my Master
thesis, and for encouraging and supporting me in many ways
• Various people, for stimulating discussions and support
• Various people, for their critical reading of this text
• Many present and former group members, for stimulating discussions and sup-
port
• A professor in the UK, for sharing his MD code
• Three people whom I co-supervised with great pleasure. The work of one of
them is included in this thesis; her contribution is summarized on on page 55
• The computing support in the group, for keeping things up andrunning and
answering many questions
• The Zentrum für Datenverarbeitung at the Universität Mainz, for maintaining a
cluster I extensively used
• The Deutsche Forschungsgemeinschaft (SFB TR6 and Emmy Noether), and the
EU Network of Excellence SoftComp, for financial support
• The Forschungszentrum Jülich, for granting CPU time
• You, for reading this.



96



Appendix A

Corrected Constant-Pressure
Ensemble

We left off in Section 2.1.2.1 with the partition function Eq. (2.8) in the constant-
pressure-zero-tension ensemble:

Z(N,P,T) =
∞∫

−∞

d lnh11d lnh22d lnh33dg12dg13dg23

1∫
0

dsN
∫
4π

duN · (A.1)

exp{− [U({si},H,{ui})+PV(H)]/kBT +(N+3) lnV(H)}
We abbreviate it to

Z(N,P,T) =
∞∫

−∞

d lnh11d lnh22d lnh33dg12dg13dg23z
−V(H)
PT ZA(N,H,T) (A.2)

by defining

ZA(N,H,T)≡
1∫

0

dsN
∫
4π

duN exp{−U({si},H,{ui})/kBT +(N+3) lnV(H)}

and using once more the “fugacity”zPT = eP/kBT .
Constant-pressure MC is sufficient whenZA(N,H,T) is only a function ofV,

and not a function ofgi j or the ratioshii/h j j ; i.e., when it is independent of box
shear and box aspect ratio. This is essentially the case for homogeneous fluids
[57]. The task is once more to integrate out the associated degeneracies, keeping
track of resulting weight factors for the remaining variables.

Thegi j already specify box shear independently from box size (unlike hi j =
h j j gi j ). With ZA(N,H,T) invariant under changes in shear, we may carry out the
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integration overgi j . A complication arises from the fact that the limits of this
integral are infinite so that it does not converge. But for thepresent discussion,
this is not a problem. Recall that the integrations over the angular variables in
Section 2.1.2.1 yielded factors of 4π and 2π, which we then disposed of due to
their irrelevance. This means that the actual value of the integral does not matter.
The appropriate change of variables beforehand is the critical step. For the case
of gi j , we already have the correct set of variables. Instead of integration, we then
simply drop the integral to obtain

Z(N,P,T) =
∞∫

−∞

d lnh11d lnh22d lnh33z
−V(H)
PT ZA[N,V(H),T]

Our final task is to remove the degeneracy in box aspect ratios. We wish to
integrate over lnhii such that lnV remains constant. Hence, we are interested in
an appropriate change of variables such that one of them is lnV. Consider that

lnh11+ lnh22+ lnh33 = lnV

and notice that this equation has the form of a plane:

x+y+z= c (A.3)

A.3 specifies a plane perpendicular to the direction
√

1/3(1,1,1).
√

1/3 · c is its
distance from the origin, which is proportional to lnV. The set of values of lnhii ,
which is inR3, has therefore subsets in the form of parallel planes which corre-
spond to constant volume. The value of the latter is determined by the distance
of the plane from the origin. If we now rotate to a new coordinate system where
these planes are perpendicular to thex-axis, we have a set of variables with one
carrying the volume and the other two orthogonal to it, allowing integration over
box shapes of equal volume. Thus, our task is to find a rotationto a new set
of variablesx′,y′,z′ such thatx′ =

√
1/3 · c. The following matrix provides this

rotation:

R =


√

1/3
√

1/3
√

1/3

−√
1/2

√
1/2 0

−√
1/6 −√

1/6
√

2/3


and ones easily verifies that detR = 1 andRTR = I . The transformation to the
new variables is

x′ =
√

1/3(x+y+z)

y′ =
√

1/2(y−x)

z′ =
√

1/6(2z−x−y)
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and we find inx′ exactly what we wanted. We note that the radicals will enter the
partition function as prefactors which we can ignore. Our change of variables is
then

lnh11, lnh22, lnh33−→ ln(h11h22h33), ln(
h22

h11
), ln(

h2
33

h11h22
)

The Jacobian of a rotation is unity, so that the partition function becomes

Z(N,P,T) =
∞∫

−∞

d lnVdln(
h22

h11
)d ln(

h2
33

h11h22
)z−V(H)

PT ZA[N,V(H),T]

With regard to the actual integration over ln(h22
h11

) and ln( h2
33

h11h22
), we have the same

situation as forgi j , and once more we realize that the actual value of the integral
is immaterial; the change of variables was the important step. We have

Z(N,P,T) =
∞∫

−∞

d lnVz−V(H)
PT ZA[N,V(H),T]

so that the final result for the partition function is

Z(N,P,T) =
∞∫

−∞

d lnV

1∫
0

dsN
∫
4π

duN · (A.4)

exp{− [U({si},H,{ui})+PV]/kBT +(N+3) lnV}

and we remark that we did not acquire additional factors ofV; but none of them
disappeared.

Beyond the scope of this work is the treatment beginning witheven more
general box shapes, e.g. twisted ones. What must we integrate out to reduce an
arbitrary shape to a parallelepiped? We wonder whether morefactors of volume
have been overlooked.
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Simple monoclinic crystal phase in suspensions of hard ellipsoids
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We present a computer simulation study on the crystalline phases of hard ellipsoids of revolution. For aspect
ratios �3 the previously suggested stretched-fcc phase �Frenkel and Mulder, Mol. Phys. 55, 1171 �1985�� is
replaced by a different crystalline phase. Its unit cell contains two ellipsoids with unequal orientations. The
lattice is simple monoclinic. The angle of inclination of the lattice, �, is a very soft degree of freedom, while
the two right angles are stiff. For one particular value of �, the close-packed version of this crystal is a
specimen of the family of superdense packings recently reported �Donev et al., Phys. Rev. Lett. 92, 255506
�2004��. These results are relevant for studies of nucleation and glassy dynamics of colloidal suspensions of
ellipsoids.

DOI: 10.1103/PhysRevE.75.020402 PACS number�s�: 82.70.Dd, 64.60.Cn, 61.50.Ah, 82.20.Wt

Classical, hard particles such as nonoverlapping spheres,
rods, or ellipsoids are widely used as models for granular
matter, colloidal and molecular fluids, crystals, and glasses.
Their success—and their appeal—lies in the fact that the
problem of evaluating a many-body partition function is re-
duced to a slightly simpler, geometrical problem, namely, the
evaluation of entropic contributions only. This is an advan-
tage, in particular, for computer simulations. Hence one of
the first applications of computer simulations was a study of
the liquid-solid phase transition in hard spheres �1�.

In this Rapid Communication, we reexamine the high-
density phase behavior of hard ellipsoids of revolution with
short aspect ratios. This system has been studied in Monte
Carlo simulations by Frenkel and Mulder in 1985 �2�. Since
then, the focus of attention has been on the nematic phase
and the isotropic-nematic transition �3–5�. Biaxial hard ellip-
soids have also been studied �6,7�. But, to our knowledge,
the high-density phases have not been investigated further.
Knowledge of these phases is relevant for studies of elon-
gated colloids in general, and it is crucial for the study of
nucleation �8� and glassy dynamics �9� in hard ellipsoids.

At high densities, Frenkel and Mulder assumed that the
most stable phase was an orientationally ordered solid which
can be constructed in the following way. A face-centered
cubic �fcc� system of spheres is stretched by a factor x in an
arbitrary direction n. This transformation results in a crystal
structure of ellipsoids of aspect ratio x, which are oriented
along n. As the transformation is linear, the density of closest
packing is the same as for the closest packing of spheres �
=� /�18�0.7405. Recently, Donev and co-workers showed
that ellipsoids can be packed more efficiently if non-lattice-
periodic packings �i.e. packings in which a unit cell contains
several ellipsoids at different orientations� are taken into ac-
count �10�. For unit cells containing two particles, they con-
structed a family of packings which reach a density of �
=0.770 732 for aspect ratios larger than �3.

We have performed Monte Carlo simulations of hard el-
lipsoids of revolution with aspect ratios a /b= 1

3 ,2 ,3 ,4 ,6 and
found that, for large parts of the high-density phase diagram,

the lattice crystal suggested by Frenkel and Mulder is un-
stable with respect to a different crystalline phase. Its unit
cell is simple monoclinic and contains two ellipsoids at an
angle with respect to each other. We will refer to this phase
as SM2 �simple monoclinic with a basis of two ellipsoids�.

Simulations were performed at constant particle number
N, pressure P, and temperature T. The shape of the periodic
box was allowed to fluctuate, so that the crystal unit cell
could find its equilibrium shape. This was achieved by
implementing the Monte Carlo �MC� equivalent of the simu-
lation method by Parrinello and Rahman �11–13�. We con-
structed the initial solid structures by stretching a fcc hard
sphere crystal along the �111� direction by a factor of a /b.
Hence the simulations were started with crystals identical to
the ones studied by Frenkel and Mulder. For aspect ratios
a /b= 1

3 ,2 ,3, we simulated eight independent systems, each
containing N�1700 particles. Simulations started at P
=50 kBT /8ab2. The pressure was lowered in subsequent runs
until we observed melting to the nematic phase. In each run,
equilibration lasted roughly 2�106 MC sweeps, and was
followed by �1.8–3.2��106 MC sweeps for calculating ther-
modynamic averages. �One MC sweep consisted of N at-
tempts to move or rotate a particle and one attempt to change
the box shape, on average.� For aspect ratio a /b=6, we
simulated eight independent systems with N=3072 at a pres-
sure P=46 kBT /8ab2. Equilibration and data acquisition
summed up to more than 3�106 MC sweeps. One system
with a /b=4, N=1200, and P=46 kBT /8ab2 was first simu-
lated by sampling only rectangular box shapes for a total of
2.2�106 MC sweeps, and was then simulated including non-
rectangular box shapes at the same and lower pressures for
several million MC sweeps.

Particle overlap was checked by a routine �14� that uses
the Vieillard-Baron �15� and Perram-Wertheim �16,17� crite-
ria. In a simulation of a system with a /b=3 and N=1728,
1�106 MC sweeps took about 12 h of CPU time on a
1.8GHz processor.

All systems with aspect ratios a /b�3 left the initial fcc
structure in favor of a simple monoclinic lattice with a basis
of two ellipsoids �SM2�. We will discuss this structure for
a /b=3 and return to different aspect ratios toward the end of
this Rapid Communication.*Electronic address: pfleider@uni-mainz.de
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Figure 1 shows a snapshot of a system in the SM2 phase
with a /b=3. The color code �grayscale� helps distinguish the
two directions of orientation which are present in the crystal.
In the initial configuration, a stretched-fcc crystal, all ellip-
soids were oriented along the z axis. The SM2 phase is
mainly the result of a collective reorientation. The two direc-
tions of orientation alternate from layer to layer. Layers con-
taining ellipsoids of only one orientation are here parallel to
the y axis and form an angle with the x axis. Within layers
parallel to the xy plane, the centers of mass of the ellipsoids
form a nearly triangular lattice. It differs from the initial fcc
crystal by a slight elongation along the x axis. However, the
collective reorientation of the ellipsoids displaced their tips
in such a way that they now form a rectangular lattice. This
can be discerned in the top view in Fig. 1. The tips of the
neighboring layers interlace. As a result, each ellipsoid now
has four nearest neighbors above and below, whereas in the
fcc structure, it had three. The total number of nearest neigh-
bors has increased from 12 to 14, which is indicative of a
higher packing efficiency.

The initial triangular symmetry about the z axis allows for
two additional, equivalent SM2 configurations, which are ro-
tated with respect to the one in Fig. 1 by ±60°. We observed
these possibilities as well; in fact, only two out of our eight
systems assumed the global orientation seen in Fig. 1.

The unit cell of the SM2 structure is shown in Fig. 2. The
open circles indicate the centers of the two ellipsoids which
form the basis. The cell is monoclinic. The yellow �light
gray� ellipsoid is at the origin, the green �dark gray� one is at
1
2 �a+b�. The orientations are symmetric about the ac plane.
The parameters used to produce Figs. 2�a� and 2�b� are ther-
mal average values obtained from simulations with N
=1728 and P=46 kBT /8ab2; cf. Fig. 1. The cell remained
monoclinic even when the pressure was lowered down to the
melting transition into the nematic phase.

The angle of inclination, �, relaxes extremely slowly. The
simulations with N=1728 were too slow to equilibrate this
angle. Therefore we carried out a set of very long simula-
tions for a smaller system �N=432� with initial values of � in
the range 105° ���150°. After more than 100�106 Monte
Carlo sweeps, there was still no clear evidence for a pre-
ferred value of �. Variations of 15° in a single simulation
were typical, even at P=46 kBT /8ab2. Hence, we expect the
shear modulus in this degree of freedom to be very small.

The other two angles � and � were stable at 90°, with fluc-
tuations of less than 1°. The associated shear moduli are
much larger. The reason for this interesting rheological prop-
erty is that planes of uniform orientation slide well past each
other in the c direction only. In some of the long simulations,
this led to undulations of the lattice in the c direction to the
point of planar defects, which would spontaneously heal
again.

To find a lower bound for the maximum density of the
SM2 phase �a /b=3�, we performed simulations sampling
only the unit cell parameters and particle orientations, and
imposing all symmetries of SM2. The initial parameters were
average values obtained from the simulations with N=1728
and P=46 kBT /8ab2. In the process of maximizing the den-
sity, � increased from 105° to about 150°, and the common
tilt of the ellipsoids with respect to the bc plane disappeared.
We then imposed that �a+c� be perpendicular to c �see Fig.
2�c��, which is equivalent to ��148°. Under this condition
the SM2 structure becomes an instance of the family of pack-
ings introduced by Donev et al. �10�. This simulation
achieved the highest packing fraction, namely, �
�0.770 732 �the value reported by Donev et al.�.

But already at ��105° we found a jamming density of
99.663% of the maximum. Simulations at intermediate val-
ues indicate a smooth approach toward the maximum density
as � increases. Thus, the close-packing density varies very
weakly for 105° ���148°. While this range is traversed,
ellipsoids of one orientation move past neighbors of the other
orientation by almost half their length. This can be seen in
Figs. 2�b� and 2�c�. For reasons of symmetry, this translation
may even continue by the same amount while the density
remains above 99.663% of the maximum. These observa-
tions are in accord with the fact that � is soft at finite pres-
sures; evidently, the free volume distribution possesses a
similarly slight variation with �.

FIG. 1. �Color online� Snapshot of the SM2 crystal from differ-
ent angles, with a /b=3, N=1728, and P=46 kBT /8ab2. Color code
�grayscale� indicates orientation.

FIG. 2. �Color online� Unit cell of SM2 with a /b=3. The open
circles indicate the centers of the two ellipsoids which form the
basis. The cell is monoclinic. � exhibits large variations. The yel-
low �light gray� ellipsoid is at the origin; the green �dark gray� one
is at �1/2��a+b�. The orientations are symmetric about the ac
plane. The parameters in �a� and �b� are average values for N
=1728 and P=46 kBT /8ab2; cf. Fig. 1. �c� shows the cell at close
packing with �=148.3°, where it is an instance of the family of
packings introduced by Donev et al. �10�.
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Figure 3 shows equation of state data of the SM2 phase
from our simulations with N=1728 particles. The density of
the SM2 is higher than that of the stretched-fcc structure for
all pressures. Five of eight systems underwent the transi-
tion to the SM2 structure already at the highest simulated
pressure P=48 kBT /8ab2, the remaining three at P
=46 kBT /8ab2. Note also that in all our runs the SM2 phase
melted to the nematic phase without revisiting the stretched-
fcc phase from which it developed; evidently, the SM2 not
only packs more efficiently than the stretched-fcc phase, it
also provides for a better distribution of free volume at all
densities until the transition to the nematic phase. Hence it is
more stable than the stretched-fcc structure. We also show
the nematic branch from an �N , P ,T� compression �i.e. the
pressure was raised between successive simulations� with
N�780 particles and up to 6�106 MC sweeps per run. Even
at strong overcompression, no spontaneous crystallization
occurred. This indicates that the nucleation barrier to the
SM2 phase is very high. Also shown is the isotropic fluid
branch as obtained from �N , P ,T� compression and expan-
sion runs with N�780.

All eight simulations at a /b=6 and P=46 kBT /8ab2

formed the SM2 phase as well, although four of them re-
tained a planar defect. Different regions in the periodic box
were able to develop different global orientations of SM2 as
the systems were larger �N=3072� than those with a /b=3
�N=1728�. We also simulated a system with a /b=4, N
=1200, and P=46 kBT /8ab2; it formed the SM2 phase as
well. It also developed a planar defect, this time owing to a
geometrical mismatch between the simulation box and the
SM2 unit cell. Note that for a /b=3 and 4, the SM2 phase
formed even in simulations sampling only rectangular box
shapes. It is therefore more stable than the stretched-fcc
phase even when it cannot assume its equilibrium shape.

By contrast, ellipsoids with a /b=2 and the oblate a /b

= 1
3 showed no tendency to leave the initial stretched-fcc

structure. We studied each of these systems with eight inde-
pendent simulations. In none of them did two preferred di-
rections of ellipsoid orientation develop. All of them melted
to the nematic phase on expansion, directly from the
stretched-fcc structure. But note that the apparent stability of
fcc in our simulations may well be due to a free energy
barrier, rather than indicating genuine stability.

In Fig. 4 we show a phase diagram of hard ellipsoids of
revolution. It includes part of the results of Frenkel and Mul-
der, and their suggested phase boundaries and coexistence
regions. We have inserted our state points and a vertical
dashed line to delimit the region in which we found the
SM2 phase; but our data are insufficient to locate a phase
boundary.

In the high-density phase diagram of hard ellipsoids of
revolution we have found a crystal that is more stable than
the stretched-fcc structure proposed by Frenkel and Mulder
�2�. This phase, SM2, has a simple monoclinic unit cell con-
taining a basis of two ellipsoids. The angle of inclination, �,
is a very soft degree of freedom, whereas the other angles are
not. At one value of � ��148.3° for a /b=3�, the close-
packed SM2 structure is an instance of the family of pack-
ings introduced by Donev et al. �10�. As for thermodynamic
stability, our results unequivocally remove the stretched-fcc
structure for aspect ratio a /b=3 from the phase diagram of
hard, uniaxial ellipsoids. Our state points for a /b=4 and 6
suggest that this holds for the entire range of 3	a /b	6,
and possibly beyond. However, this does not prove that SM2
is the ground state. A procedure has been developed for mak-
ing almost monodisperse ellipsoids �19,20�, which are of col-
loidal size. Their behavior at water-air interfaces has been
studied �21,22�; also three-dimensional structural properties
of a sedimentation of these particles have been successfully
characterized �23�. It would be interesting to perform experi-
ments probing colloidal crystals of ellipsoids.

FIG. 3. �Color online� Equation of state data for a /b=3 and N
=1728. The open squares show stretched-fcc data by Frenkel and
Mulder �2�, the filled squares the higher-density SM2 phase. Also
shown are the nematic and fluid branches �triangles and circles,
respectively�. Errors on our data are indicated by the size of the
symbols. The SM2 curve tends to underestimate the density slightly
since � was not equilibrated entirely.

FIG. 4. �Color online� Phase diagram of hard, uniaxial ellip-
soids, showing the results of Frenkel and Mulder �open symbols�
�2�, and their suggested phase boundaries and coexistence regions.
The data points at a /b=1 are taken from �18�. We have inserted our
state points �filled symbols� and a vertical dashed line to delimit the
region in which we found the SM2 phase; but our data are insuffi-
cient to locate a phase boundary.
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Abstract – We present evidence from computer simulations for glassy dynamics in suspensions
of monodisperse hard ellipsoids. In equilibrium, almost spherical ellipsoids show a first-order
transition from an isotropic phase to a rotator phase. When overcompressing the isotropic phase
into the rotator regime, we observe super-Arrhenius slowing-down of diffusion and relaxation,
accompanied by two-step relaxation in positional and orientational correlators. The effects are
strong enough for asymptotic laws of mode-coupling theory to apply. Glassy dynamics are unusual
in monodisperse systems. Typically, polydispersity in size, a mixture of particle species or network-
forming covalent bonds are prerequisite to prevent crystallization. Here, we show that a slight
particle anisometry acts as a sufficient source of disorder. This sheds new light on the question of
which ingredients are required for glass formation.

Copyright c© EPLA, 2008

Hard-particle models play a key role in statistical
mechanics. They are conceptually and computationally
simple, and they offer insight into systems in which
particle shape is important, including atomic, molecular,
colloidal, and granular systems. Ellipsoids are a classic
model of non-spherical particles. We report here that this
simple anisometry can hinder crystallization and facilitate
glassy dynamics —a phenomenon which does usually not
occur in monodisperse systems. Typically, polydispersity,
additional particle species, or other sources of disorder,
such as tetra-valency, are needed for the development
of glass-like behavior (i.e. drastic slowing-down of the
dynamics without a change in structure).
In recent years, there have been two studies closely

related to our topic, which we briefly summarize here:
Letz and coworkers [1] have applied idealized molecular
mode-coupling theory (MMCT [2,3]) to the hard-ellipsoid
fluid. In addition to conventional mode-coupling theory
(MCT) [4], MMCT takes orientational degrees of freedom
into account. For nearly spherical ellipsoids, they predicted
a discontinuous glass transition in positional and orienta-
tional degrees of freedom. MMCT locates the transition
inside the coexistence region between the isotropic fluid
and the positionally ordered phases. In addition, a contin-
uous transition was predicted upon further compression

(a)E-mail: pfleider@uni-mainz.de

into the rotator regime. This transition affects only the
odd-parity orientational correlators, e.g. 180◦ flips.
However, MCT cannot make statements about crystal

nucleation. Hence, the MCT prediction of a glass transi-
tion is not sufficient to conclude that the transition will
occur in a simulation or experiment. A prominent exam-
ple is the overcompression of monodisperse hard spheres.
Here, the nucleation barrier can be easily crossed, and
crystallization always prevents glass formation.
De Michele et al. [5] have recently studied the dynamics

of hard ellipsoids by molecular dynamics simulations.
The states which they simulated were mostly located in
the isotropic region. They computed isodiffusivity lines,
which showed that the dynamics of the positional and
orientational degrees of freedom were decoupled, since
the positional isodiffusivity lines crossed the orientational
ones at nearly 90◦. This decoupling also appeared in
correlation functions. The self-part of the intermediate
scattering function displayed slight stretching only when
overcompressing nearly spherical ellipsoids, while the
second-order orientational correlator showed such stretch-
ing only for sufficiently elongated particles, i.e. near the
isotropic-nematic transition. Clear indicators of glassy
dynamics, however, would include a strong increase of
relaxation times with volume fraction, even pointing
towards dynamical arrest. Typically, correlators then
develop a two-step decay, whose second step is affected by
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this slowing-down. Such phenomena were not seen in [5]
as overcompression was not significant.
We have performed Monte Carlo (MC) and molec-

ular dynamics (MD) simulations for hard symmetrical
ellipsoids of length-to-width ratios l/w= 1.25 (prolate)
and l/w= 0.8 (oblate). We overcompressed these systems
into the rotator regime (i.e. beyond volume fraction
φ≈ 0.55 [6]). We found two-step relaxation both in posi-
tional and even-parity orientational correlators. Positional
and orientational relaxation slow down more strongly than
an Arrhenius law. Odd-parity orientational correlators
indicate that flipping is not affected. The observed glassy
dynamics are strong enough to compare with MMCT.
Also, we compare the MC and MD results.
The systems were equilibrated using MC at constant

particle number N , pressure P and temperature T [7,8]
in a cubic box with periodic boundaries. Each system
contained more than 3000 particles. Random isotropic
configurations were used as starting configurations.
Towards the end of each run, a configuration with a
volume fraction close to the average volume fraction was
chosen and scaled to the average volume fraction exactly.
The systems were considered equilibrated1 when the
volume fraction had settled and all positional and the
orientational correlators were independent of absolute
simulation time. For production, we used MC and MD.
In the MC simulations (now at constant volume) the
step sizes were fixed to small values, so that unphysical
grazing moves were negligible. The particles then mimic
Brownian motion, similar to colloidal ellipsoids suspended
in a liquid. The step sizes were the same for all runs,
hence a unique time scale could be established. The
MD simulations implemented free flight and elastic
collisions [9].
The systems had a slight tendency to crystallize to the

rotator phase at high volume fractions. To monitor crys-
tallinity, we computed the local positional order using the
bond-orientational order parameter q6 [10]. The fraction
of particles which were part of crystalline clusters never
exceeded 2.6% and was typically below 0.5%.
To demonstrate the slowing-down of the positional

degrees of freedom, we consider the self-part of the inter-
mediate scattering function, Fs(q, t) = 〈exp[iq ·∆r(t)]〉,
where q is the wave vector, ∆r(t) the displacement of
an ellipsoid after time t, and the angle brackets denote
average over particles and ensemble average. In isotropic
systems, Fs is a function of the absolute value q only.
Decay of Fs(q, t) indicates that structural relaxation
has occured on the length scale set by q. In fig. 1 we
show Fs(q, t) for all simulations. The wavelength qmax
was chosen close to the first maximum of the static
structure factor (prolate: 6.85/w, oblate: 7.85/w), i.e.
it corresponds to the neighbor spacing. One can clearly
see the development of a plateau with increasing volume

1For the case of overcompression, “equilibrated” here means
within the metastable isotropic basin.
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Fig. 1: Self-intermediate scattering functions at several volume
fractions φ (prolate: 0.474, 0.511, 0.533, 0.551, 0.565, 0.578,
0.588, 0.598; oblate: 0.473, 0.504, 0.533, 0.550, 0.565, 0.578,
0.589, 0.598, 0.606, 0.614). At high volume fractions there is
a plateau on intermediate time scales. The final relaxation
is slowed down strongly with increasing volume fraction,
indicative of glassy dynamics.

fraction. This means that there are two distinct stages of
relaxation, and the latter slows down dramatically upon
increase of volume fraction (note the logarithmic time
scale). This two-step decay is a typical phenomenon in
glass formers [4]. It is interpreted in terms of particles
being trapped in cages formed by their nearest neighbors.
The initial decay corresponds to motion within the traps,
and the final decay to escape. At high volume fractions,
exceedingly cooperative rearrangements are required for
escape, making such events rare. Indicators of caging
have not been seen in hard ellipsoids before (unless the
moment of inertia was strongly increased [11]).
Dynamics in the orientational degrees of freedom

is observed in terms of the second-order orientational
correlator L2(t) = (1/2)〈3 cos2 θ(t)− 1〉, where θ(t) is the
angle between the orientation at time t and the original
orientation of an ellipsoid. Decay of this function indicates
that relaxation of orientational degrees of freedom has
taken place. Since L2(t) is an even function in cos θ(t),
the head-to-tail symmetry of the particles is taken into
account. Figure 2 shows the orientational correlation
functions. As in the intermediate scattering functions,
plateaus develop at high volume fractions. Evidently, the
cages hinder rotations of the ellipsoids. As a consequence,
orientational and positional degrees of freedom are
coupled. This is in contrast with the decoupling found at
lower volume fractions [5].
The shape of both positional and orientational corre-

lators differs between MC and MD on short time scales,
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Fig. 2: (Color online) Second-order orientational correlators at
several volume fractions φ as in fig. 1. Again a plateau develops
with increasing φ. Hence, orientational degrees of freedom are
coupled to the positional ones. Also shown are the third-order
correlators at the highest density (bold green lines). They do
not slow down, indicating that flipping modes are not affected.

reflecting the individual microscopic dynamics. On
intermediate and long time scales, they do not differ
significantly. Furthermore, when the correlators of the
highest few volume fractions are rescaled by their decay
time, their long time parts fall onto a master curve. These
properties confirm predictions of MCT [12].
Unlike L2(t), the third-order orientational correlation

function L3(t) = (1/2)〈5 cos3 θ(t)− 3 cos θ(t)〉 does not
show plateaus (bold green lines in fig. 2). Hence, while
the overall reorientation slows down, flipping is barely
hindered. This is in accord with the MMCT prediction
of Letz et al. [1] and has also been found for the case of
diatomic Lennard-Jones dumbbells [13], and symmetric
Lennard-Jones dumbbells [14]. We note in passing that
crystallization, if it occurs, releases the orientational
degrees of freedom: The orientational correlators acceler-
ate by three orders of magnitude and no longer have a
plateau.
Next, we show that the slowing-down in our systems is

strong enough to test MCT asymptotic laws. To this end,
we first return to the intermediate scattering functions
and focus on their q-dependence at high volume fractions.
Figure 3 presents these functions for a) the oblate system
(MC) and b) the prolate system (MD; in each case the
other method shows similar results), with wavelengths in
the range 2.8< qw < 20. We test two MCT predictions
for the vicinity of the glass transition [4]. Firstly, for
the late stages of the plateau and the early stages of
the final decay, these functions should be well-fitted
by the von Schweidler law (including the second-order

correction), Fs(q, t) = fq−h(1)q tb+h(2)q t2b, where fq is the
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Fig. 3: Self-intermediate scattering functions Fs(q, t) of a) the
oblate system (MC data) and b) the prolate system (MD data)
at the highest volume fraction, for the range 2.8< qw < 20.
The dashed lines show fits to the von Schweidler law
Fs(q, t) = fq−h(1)q tb+h(2)q t2b with b= 0.65. c) and d) show
the same data transformed to R(t) = [Fs(q, t)−Fs(q, t1)]/
[Fs(q, t2)−Fs(q, t1)]. The collapse of the functions onto master
curves demonstrates the factorization property.

plateau height, h
(i)
q are amplitudes, and b is a system-

universal exponent (also independent of the microscopic
dynamics). Agreement is excellent, as shown for two
examples in fig. 3 (dashed lines). MC and MD data of
both systems are consistent with b= 0.65± 0.2. Secondly,
where the Fs(q, t) are near their plateaus, they should
obey Fs(q, t) = fq+hqG(t), where hq is an amplitude, and
G(t) is a system-universal function. This relation entails
the “factorization property”, i.e. that Fs(q, t) can be
factorized into a q-dependent and a t-dependent part. To
test this property for our systems, we transform Fs(q, t)
to R(t) = [Fs(q, t)−Fs(q, t1)]/[Fs(q, t2)−Fs(q, t1)], as
done in [15], where t1 and t2 are times in the regime
where the property holds. Since R(t) is not a function of
q, all correlators should fall onto a single master curve.
Moreover, the curves should remain ordered, i.e. a curve
which is above another on the left-hand side remains
above the other on the right-hand side. Panels c) and
d) of fig. 3 demonstrate the validity of the factorization
property, and indeed they remain ordered.
We finally demonstrate the applicability of an MCT

scaling law for the slowing-down, which even allows us
to extract the MCT glass transition volume fraction.
Figure 4 shows relaxation times and diffusion constants
as a function of volume fraction. The relaxation times
are defined as the times at which the positional corre-
lators have reached the value 0.1, and the orientational
correlators have reached the value 0.02 (since the plateau
is quite low). The diffusion constants were determined
from the mean squared displacements via the Einstein

relation D= limt→∞ ddt 〈(∆r(t))2〉/6. The upper panels
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Fig. 4: Upper panels: inverse relaxation times τ−1 obtained
from Fs(qmax, t) (triangles) and from L2(t) (circles), and
diffusion constants D (squares), as a function of volume
fraction φ. MC data (filled symbols, lines to guide the eye,
and rescaled to match MD time scale) and MD data (open
symbols) show excellent agreement. Lower panels (MC data
only): τ−1/γ multiplied by arbitrary factors for clarity, from
Fs(q, t) (several values of q) and L2(t), demonstrating the
validity of the MCT scaling law τ−1 ∝ (φc−φ)γ . γ = 2.3. The
straight-line fits indicate a glass transition volume fraction
of φc = 0.615± 0.005 (prolate system) and φc = 0.618± 0.005
(oblate system). MD data agree.

of fig. 4 show inverse relaxation times τ−1 obtained
from Fs(qmax, t) (triangles) and from L2(t) (circles), and
diffusion constants D (squares). The MC values (filled
symbols) have been multiplied by a factor of 24 (prolate)
and 18 (oblate) to match the MD time scale (L2: 19 and
16, respectively). The errors are of symbol size or less.
Note that in each system, one common factor for the
positional variables yields excellent agreement between
MC and MD (open symbols), in agreement with MCT.
The factor for the orientational relaxation times need not
be the same since it depends on the choice of the orienta-
tional MC move size. The slowing-down of all variables is
super-Arrhenius. According to MCT, it should approach
a power law of the form D∝ τ−1 ∝ (φc−φ)γ , where φc is
the MCT glass-transition volume fraction, and γ is related
to the von Schweidler exponent b. Both φc and γ should be
system-universal. In the lower panels of fig. 4 we demon-
strate the validity of this prediction for the MC results of
Fs(q, t) (from top: prolate: qw = 6.85, 11, 16; oblate: qw =
7.85, 16, 20) and L2 (bottom). The exponent γ = 2.3 was
chosen in agreement with b= 0.65. The straight-line fits
comply with a common φc = 0.615± 0.005 for the prolate
system and with φc = 0.618± 0.005 for the oblate system.

The fact that there is a common value for positional and
orientational relaxation times further demonstrates the
strong coupling of these degrees of freedom. We found
agreement with the analogous analysis of the MD data.
The values we found differ from the MMCT predictions
of Letz et al. [1], viz. φc = 0.540 and 0.536 (l/w= 1.25
and 0.80, respectively). The mismatch between the
numerical MCT calculations based on static structure,
and scaling law fits based on simulated dynamics is,
however, not unusual [16,17] and has been attributed to
activated (“hopping”) processes for which MCT does not
account. A similar mismatch is found in the hard-sphere
system [18]. We note that the present study also displays
the prolate-oblate symmetry seen in previous work on the
equilibrium properties and dynamics of ellipsoids [1,5,6].
However, we observed that crystallization does not have
this symmetry: the prolate system crystallizes more
readily.
In summary, we have performed molecular dynamics

and Monte Carlo simulations of the hard-ellipsoid fluid.
In this very simple anisometric model we observe glassy
dynamics sufficiently strong that MCT asymptotic scaling
laws can be tested and are found to apply. We find strong
coupling of positional and orientational degrees of free-
dom, leading to a common value for the glass-transition
volume fraction φc for positional and orientational relax-
ation times (l/w= 1.25: φc = 0.615± 0.005, l/w= 0.80:
φc = 0.618± 0.005). The presence of glassy dynamics has
been predicted by MMCT. However, as MMCT cannot
make a statement about crystallization, a test by simula-
tion was required. We argue that particle anisometry acts
as a sufficient source of disorder to prevent crystallization.
This sheds new light on the question of which ingredients
are required for glass formation. Experimental studies of
glassy dynamics in the isotropic phase of liquid crystals
have been conducted [19], but not in ellipsoids. It is possi-
ble to synthesize ellipsoids of colloidal size [20,21] and to
study their dynamics with confocal microscopy [22]. In
the light of the above, an experimental study of glassy
dynamics in colloidal hard ellipsoids seems very promising.
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P. Pfleiderer
(a)
, K. Milinkovic and T. Schilling

Institut für Physik, Johannes Gutenberg-Universität - Staudinger Weg 7, D-55099 Mainz, Germany, EU

Original article: Europhysics Letters (EPL), 84 (2008) 16003.

PACS 99.10.Cd – Errata
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After the online publication, we realized some errors in the figures, none of which affect the line of arguments
or conclusions of our publication. Corrected versions of figs. 1–3 are published here below. In fig. 1, the curves of
the right-hand panels were swapped. In fig. 2, lower left panel, the curves corresponding to the two highest volume
fractions were missing. In fig. 3, the data in panels b) and d) is valid, and should be shown, only up to 105 MD
steps, as crystallization begins in this system thereafter. And regarding fig. 4, we would like to add that the diffusion
constants of the prolate (l/w= 1.25) system have been divided by 1.3 to match the structural length scale of the oblate
(l/w= 0.80) system as given by the maximum of the static structure factor.
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Fig. 1: Self-intermediate scattering functions at several volume fractions φ (prolate: 0.474, 0.511, 0.533, 0.551, 0.565, 0.578,
0.588, 0.598; oblate: 0.473, 0.504, 0.533, 0.550, 0.565, 0.578, 0.589, 0.598, 0.606, 0.614). At high volume fractions there is a
plateau on intermediate time scales. The final relaxation is slowed down strongly with increasing volume fraction, indicative of
glassy dynamics.
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Fig. 2: (Color online) Second-order orientational correlators at several volume fractions φ as in fig. 1. Again a plateau develops
with increasing φ. Hence, orientational degrees of freedom are coupled to the positional ones. Also shown are the third-order
correlators at the highest density (bold green lines). They do not slow down, indicating that flipping modes are not affected.

10
2

10
3

10
4

10
5

MD steps

0

0.2

0.4

0.6

0.8

1

F s

10
2

10
3

10
4

10
5

10
6

10
7

MC steps

-4

-2

0

2

4

R(t)

a) b)

c) d)

Fig. 3: Self-intermediate scattering functions Fs(q, t) of a) the oblate system (MC data) and b) the prolate system (MD data)
at the highest volume fraction, for the range 2.8 � qw� 20. The dashed lines show fits to the von Schweidler law Fs(q, t) =
fq−h(1)q tb+h(2)q t2b with b= 0.65. c) and d) show the same data transformed to R(t) = [Fs(q, t)−Fs(q, t1)]/[Fs(q, t2)−Fs(q, t1)].
The collapse of the functions onto master curves demonstrates the factorization property.
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