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Abstract

We study the mathematics of a �nite particle system coupled to a heat bath.

The Standard Model of Quantum Electrodynamics at temperature zero yields a Hamiltonian

H describing the energy of particles interacting with photons. In the Heisenberg picture the

time evolution of the physical system is the action of a one-parameter-group (τt)t∈R on a set of

observables A:

τt : A 7→ τt(A), t ∈ R, A ∈ A

Note, that τ is related with solutions of the Schrödinger equation for H.

To consider states of A describing the physical system near its thermal equilibrium at temper-

ature T > 0, we follow the ansatz of Jaksic and Pillet to construct a representation of A.

Now, states are unit vectors in this representation and the time evolution, is described with

the aid of the Standard Liouvillean L.

The following results are derived or proved, respectively, in this thesis:

- the construction of the representation

- the self-adjointness of the Standard Liouvillean

- the existence of an equilibrium state in the representation

- the limit of large times for the physical system.
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Zusammenfassung

Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme.

Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-

Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im

Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-

Parameter-Gruppe (τt)t∈R auf eine Menge von Observablen A gegeben:

τt : A 7→ τt(A), t ∈ R, A ∈ A.

Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H.

Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleich-

gewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und

Pillet, eine Darstellung von A zu konstruieren.

Die Vektoren in dieser Darstellung de�nieren die Zustände, die Zeitentwicklung wird mit Hilfe

des Standard Liouville-Operators L beschrieben.

In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet:

- die Konstuktion einer Darstellung

- die Selbstadjungiertheit des Standard Liouville-Operators

- die Existenz eines Gleichgewichtszustandes in dieser Darstellung

- der Limes des physikalischen Systems für groÿe Zeiten.
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Chapter 1

Introduction

In this work a system of n particles is considered with the aid of quantum mechanics. The

particles are described in a non relativistic setting, so the kinetic energy is T =
∑n

j=1
1

2mj
(~pj)

2.

In this context is ~pj the momentum of the j-th particle and mj is its mass, the position in R3 is

~xj. The potential energy is V (x) = V (~x1, . . . , ~xn). Thus, the classical expression for the total

energy is

H = T + V (x) =
n∑
j=1

1

2mj

(~pj)
2 + V (~x1, . . . , ~xn). (1.1)

To take e�ects like uncertainty of the momentum ~pj and the position ~xj into account, one

quantizes the system, i.e. H, ~pj and V (x) are replaced by operators acting on complex-valued

wave functions ψ. The momentum is ~pj := −ı~∇xj
and V (x) means now, multiplication of a

wave function with the potential energy V (x). The Hamiltonian H is de�ned to be the operator

on the right hand side of (1.1). The wave function ψ is the state of the system, the probability

density to �nd the particles 1, . . . , n at time t in the positions x1, . . . , xn is

(~x1, . . . , ~xn) 7→ N−1 ·
∣∣ψt(~x1, . . . , ~xn)

∣∣2,
N is the normalization constant. The Hamiltonian H determines the time evolution of a state,

in the sense that ψ obeys the Schrödinger equation,

− ı

~
(∂tψ)(~x1, . . . , ~xn) = (Hψt)(~x1, . . . , ~xn). (1.2)

~ is the Planck constant divided by 2π. Usual we write states time independent, the connection

is

ψt(~x1, . . . , ~xn) = (eı
t
~Hψ)(~x1, . . . , ~xn). (1.3)

7
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A measurement of a quantity, called observable, is modeled as follows, one expresses the ob-

servable by an operator A, for example H for the energy, xj for the position of the j-th particle.

The expectation value of an observable corresponding to A in a state ψ is

N−1 ·
∫
ψ(~x1, . . . , ~xn)(Aψ)(~x1, . . . , ~xn)d

3x1 · · · d3xn. (1.4)

The second ingredient is a gas of in�nitely many bosons that surrounds the particles. The

bosons are for example photons of an electromagnetic �eld. The states for such a gas is a

sequence of n particle states, (ψ
(ph)
m )∞m=0. The m-particle state is ψm(x) = ψ

(ph)
m (x1, . . . , xm), we

assume that ψ is symmetric, i.e. invariant under a permutation of xi and xj. The Hamiltonian

Ȟ for the gas is

(Ȟψ(ph)
m )(x1, . . . , xm) =

m∑
j=1

(
|pj|ψ(ph)

m

)
(x1, . . . , xm). (1.5)

It corresponds to the relativistic kinetic energy of m photons.

The states of the coupled system are now vectors in the tensor product H of the particle states

and the photon states. The Hamiltonian Hλ is sum of the particle and the photon Hamiltonian

and an interaction operator W ,

Hλ = H ⊗ 1 + 1⊗ Ȟ +W. (1.6)

We remark again, that we now consider time independent states. The time evolution is ex-

pressed by a group action on the observables

τλt : A 7→ eı
t
~HλAe−ı

t
~Hλ . (1.7)

A is in this context an observable for the coupled system. The expectation of A in ψ is

ω(A) := N−1 · 〈ψ|Aψ〉, N := ‖ψ‖2. (1.8)

In this work an algebra A of observables is speci�ed, such as the ∗-automorphism group τλ.

Our aim is to study the physical system at an inverse temperature β, therefore a representation

π of A in a Hilbert space K is introduced, so that the vectors of K shall describe state over

A. In this representation the time evolution is de�ned by a unitary group eıtLλ , generated by

the so-called Standard Liouvillean Lλ being a self-adjoint operator that does not represent the

energy of the physical system. The parameter λ ∈ R is the coupling constant, describing the

coupling strength between particles and bosons. If the particle system is con�ned, i.e. the
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Gibbs condition Z := Tr{e−βH} <∞ is ful�lled, we investigate the existence of an equilibrium

state. Moreover we study the property, that states represented as vectors in K return to the

equilibrium state in the large time limit.

At this point we give a short overview of related results in mathematical physics on this topic.

The representations of the canonical commutation relations (CCR) describing an in�nite free

Bose gas of �nite density are considered in a work of Araki andWoods [3]. An other fundamental

work is due to Haag, Hugenholtz and Winnink [15], therein the representations of a C∗-algebra

corresponding to thermal equilibrium of a system at given temperature T is studied. Moreover,

properties of these representation are discussed in relation with the KMS-condition. A coupled

system, consisting of a small system (�nite level atom) and a heat bath is considered by Jaksic

and Pillet in [16, 17]. They give a characterization of "Return to Equilibrium" in terms of

spectral properties of the Liouvillean. However, their proof of return to equilibrium needs the

assumption |λβ| � 1, i.e. the product of inverse temperature β and coupling constant λ is

small. In a work of Bach, Fröhlich and Sigal [5] the "Return to Equilibrium" for the same model

is shown for small coupling constant and a less restrictive infrared condition on the coupling

function. To our knowledge the most general existence theorem for a KMS-state for the coupled

system is formulated by Derezinski, Jaksic and Pillet in [9, 10].

Thermal Ionization is an other related topic, Fröhlich, Merkli and Sigal have shown in

[12, 13] an atom coupled to the heat bath will be ionized in the limit of large times, if the atom

is not con�ned.

The dipole approximation of a harmonic oscillator plays an important role in our work, it was

treated rigorously by Arai [1, 2] at temperature zero. In those papers asymptotic completeness

is shown the spectrum of the Hamiltonian is completely determined. We apply these results

to the case of positive temperature. The analysis of an anharmonic oscillator in context of the

Langevin equation is studied by Maassen in [18]. The same anharmonic oscillator is considered

by Spohn [25] to prove asymptotic completeness of photon scattering.

To the contribution of this thesis we count

• The de�nition of a W ∗-dynamical system (M, τλ), that represents a particle system

in a heat bath (Bose gas). Models with minimally coupled interaction are included.

Self-adjointness of the Liouvilleans is proved in Theorem 4.1.2, the existence of a ∗-

automorphism is proved in 4.2.8. In Theorem 4.1.2 one do not need a commutator condi-
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tion, that is for example assumed in [19], hence Liouvilleans describing thermal ionization

are included.

• Assuming the existence Tr{e−(β−ε)H} <∞, of the partition function of the small system

at inverse temperature β � ε > 0 we formulate conditions on the coupling constant λ,

and on the interaction W , that ensure the existence of a thermal equilibrium state ωβλ ,

see Theorem 4.2.1. It is also shown, that the KMS-boundary conditions are ful�lled and

the vector representative of this state is cyclic and separating. The proof draws on ideas

of the one given in [6] for a simpler model. In general the condition for existence of a

KMS-state, ‖eβ/2QΩβ
0‖ <∞ formulated in [9, 10] includes not the same class of models.

• In Theorem 4.3.1 a speci�c variant of Theorem 4.2.1 geared to a harmonic oscillator with

a dipole interaction is applied. In this case we show existence for small |λ| independent of

β. This result can not be obtained by applying abstract results of [9, 10], confer Remark

4.3.4.

• In the case of a harmonic oscillator with a dipole interaction we derive a second approach

to establish existence of a KMS-state essentially using results stated in [1, 2]. In this

case Return to Equilibrium is shown and a time-decay rate is given. Its positivity is due

to Fermi Golden rule for the Hamiltonian, not for the Liouvillean. This is treated in

Theorem 5.2.6. Moreover, both approaches are compared in Theorem 5.3.4. It turns out,

that both models are mathematically equivalent and a complete spectral analysis of the

Standard Liouvillean is obtained.

• The property of "Return to Equilibrium" in the harmonic oscillator case is preserved if

a potential ( depending on the coupling constant) is added. The rate of decay decreases

if the potential increases, confer Theorem 5.4.1. The proof uses ideas formulated by

Maassen in [18].

The work is subdivided into �ve chapters.

The �rst chapter is the introduction.

In the second chapter a few fundamental de�nitions and theorems are recalled to be self-

contained. Some theorems are proved if they deal with W ∗-algebras. For the remaining proofs

the reader is referred to textbooks. The examples given in this chapter are mostly relevant
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for the later discussion. W ∗-dynamical systems, the formalism of second quantization and the

Weyl algebras are the main topics. In the most important part deals with a perturbation-theory

for W ∗-dynamical system, it uses ideas we found in [10]. The other statements and proofs have

there origin in the textbooks of Bratteli and Robinson [7, 8] and the Lecture Notes on open

quantum systems [4] by Attal et.al. In chapter three an equilibrium state for an Ideal

Bose Gas, such as Gibbs states, are considered. Hamiltonians, generating the dynamics in the

temperature zero case are presented. The Gibbs condition for several Hamiltonians describing

con�ned particles is discussed. Furthermore, a representation of the algebra of observables and

corresponding Liouvilleans are de�ned.

Here, statements concerning self-adjointness of the Liouvilleans , existence of KMS-states

are formulated and proved. Theorem 4.1.2, Theorem 4.2.1, and Theorem 4.3.1 are found

there. In the last chapter the dipole approximation of a harmonically bounded, respectively

anharmonically bounded, particle is considered. This includes Theorem 5.2.6, Theorem 5.3.4,

and Theorem 5.4.1.

Finally, we give a list of related problems or questions that seem to be interesting, but (far)

out of the scope of this work.

1. The condition Tr{e−βHel} < ∞ encodes that the particle is con�ned, which should be

necessary for the existence of a thermal equilibrium state. But the condition might be

too strong. Confer Section 3.3.

2. Is there a way to get rid of the smallness condition for |λβ| in the Standard Model, which

does not occur if Hel is just a �nite level atom or if Hel is the harmonic oscillator ? Is

|λ| � 1 su�cient ?

3. Is there a way to generalize Theorem 4.3.1 to the model considered by Arai independent

of the UV-cuto� ? This would imply that ωβλ is in generally ωβ0 normal.

4. What happens if the inverse temperature tends to in�nity ? Why does the Nelson Model

have a thermal equilibrium state, even without restrictions to λ and β, but in the tem-

perature zero case, there is no ground state in the Fock space?

5. It is possible to obtain spectral informations for the Liouvillean Lλ in the general case,

although the techniques and methods for the �nite level atom do not solve the problem
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alone ? What is dim ker(Lλ), σc(Lλ) or σac(Lλ)?



Chapter 2

Mathematical Theory

2.1 C∗-Algebras, States and Representations

First, we give a short introduction in the theory of C∗-algebras and their states. The elements

of a C∗-algebra are also called observables, they describe the physical system. The states stand

for our information of a physical system.

De�nition 2.1.1 (C∗-Algebra). 1. An algebra A is a vector space with coe�cient �eld C

equipped with a multiplication, that is associative and distributive, i.e. for A,B,C ∈ A

and a, b ∈ C is AB ∈ A and

(AB)C = A(BC) (2.1)

(A+B)C = AC +BC (2.2)

a(bA) = (ab)A. (2.3)

2. An algebra A is called normed with norm ‖ · ‖, if (A, ‖ · ‖) is a normed vector space and

the norm is compatible with the multiplication, i.e.

‖AB‖ ≤ ‖A‖ · ‖B‖, A,B ∈ A (2.4)

3. A ∗-algebra A is an algebra, such that for all A ∈ A exists A∗ ∈ A and

(A∗)∗ = A, (2.5)

(aA+ bB)∗ = āA∗ + b̄B∗ (2.6)

(AB)∗ = B∗A∗. (2.7)

13



14 CHAPTER 2. MATHEMATICAL THEORY

4. An identity 1 is an element of A, uniquely determined by

A = 1A = A1, A ∈ A. (2.8)

An algebra with identity is called unital.

5. A C∗-algebra A is a normed, complete ∗-algebra, such that

‖A∗A‖ = ‖A‖2. (2.9)

6. B ⊂ A is a ∗-subalgebra of a ∗-algebra A, if A∗ ∈ B for A ∈ B.

If additionally, A is a C∗-algebra and B is closed, then B is a C∗-subalgebra.

We give a few examples for C∗-algebras.

Example 2.1.2. • C is a unital C∗-algebra, a∗ = ā.

• The unital C∗−algebra B(h) of bounded operator on a Hilbert space h. ‖ · ‖B(h) is the

operator norm and A∗ is the adjoint operator of A.

• Com(h) ⊂ B(h) the compact operators on a Hilbert space h de�ne a C∗-subalgebra of

B(h). Com(h) is not unital in the case of an in�nite dimensional h.

• Let Ξ be a topological space and Cb(Ξ;C) the continuous bounded functions with values in

C. Cb(Ξ;C) equipped with the uniform norm ‖ · ‖∞ is a commutative, unital C∗-algebra.

For f ∈ Cb(Ξ;C), one de�nes f ∗ by pointwise complex conjugation.

• Let (X,µ) be a measure space. L∞(X,µ;C) is the commutative, unital C∗-algebra of

µ-essentially bounded, complex-valued functions. Again, f ∗ is obtained by pointwise

complex conjugation, the norm is the µ-essential supremum of f .

The next de�nition deals with maps that preserve the structure of C∗-algebras. An impor-

tant role play the maps into the bounded operators of a Hilbert space.

De�nition 2.1.3 (Representation). Let A,B be C∗-algebras and π : A → B be a linear map.

1. π is a ∗-morphism, i�

π[AB] = π[A]π[B] (2.10)

π[A∗] = π[A]∗. (2.11)



2.1. C∗-ALGEBRAS, STATES AND REPRESENTATIONS 15

2. A ∗-morphism π is isometric, if ‖π[A]‖ = ‖A‖ for all A ∈ A. π is a ∗-isomorphism,

if it is bijective. If additionally A = B, then an isometric ∗-isomorphism is called an

∗-automorphism.

3. If π is a ∗-morphism and B = B(h), then π is a representation map of A in h.

Remark 2.1.4. Let A be unital.

• The range π[A] of π is a C∗-subalgebra of B.

• For A ∈ A we have ‖π[A]‖ ≤ ‖A‖.

Confer ([7], Prop. 2.3.1 ).

The next example shows, in which way an isometric isomorphism between two Hilbert spaces

yields an isometric ∗-isomorphism between the C∗-algebras of bounded operators.

Example 2.1.5. • Let U : h → h′ be an isometric isomorphism between two Hilbert

spaces. αU : B(h) → B(h′), A 7→ UAU−1 is an isometric ∗-isomorphism.

• For Hilbert spaces h, h′ one can de�ne a representation map π : B(h) → B(h ⊗ h′) by

means of π[A]φ⊗ ψ := (Aφ)⊗ ψ.

De�nition 2.1.6 (States). Let A be a unital C∗-algebra. A linear map ω : A → C is a state,

i�

ω(A∗A) ≥ 0, A ∈ A (2.12)

ω(1) = 1. (2.13)

It can be shown, that states are always continuous maps with operator norm ‖ω‖ = 1. For

every A ∈ A one has ω(A∗) = ω(A). The set of states is obviously closed and convex.

Example 2.1.7. • Let φ ∈ h and ‖φ‖ = 1. The vector state over B(h) associated with φ is

ωφ(A) = 〈φ|Aφ〉. A vector state is the �nest preparation of a physical system, it encodes

full information and is therefore called pure, as well.
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• Let 1 ≥ p1 ≥ p2 ≥ . . . > 0, such that
∑

ν pν = 1. Moreover, let (φn)n be an orthonormal

system of vectors in h. The operator ρ ∈ B(h) de�ned by

ρ(ψ) =
∑
ν

pν〈φν |ψ〉φν , ψ ∈ h (2.14)

is referred to as density operator. The corresponding state is

ωρ(A) := Tr{ρA} =
∑
ν

pν〈φν |Aφν〉, A ∈ B(h). (2.15)

ωρ is called a normal state. One can interpret that the physical system is with probability

pi in the state ωφi
, ωρ is a mixed state.

De�nition 2.1.8 (Cyclic and Separating Vectors). Let φ ∈ h and A ⊂ B(h) a subalgebra.

1. φ is cyclic for A, i� c`Aφ = h.

2. φ is separating for A, i� Aφ = 0 implies A = 0, for all A ∈ A.

Theorem 2.1.9 (GNS-Representation). Let A be a unital C∗-algebra and ω a state.

1. There exists a Hilbert space hω, a normed vector Ωω, and a representation map πω : A →

B(hω), such that πω[1] = 1. Furthermore Ωω is cyclic for πω[A] and

ω(A) = 〈Ωω|πω[A]Ωω〉, A ∈ A (2.16)

(hω, πω,Ωω) is a GNS-Triple corresponding to ω.

2. Let (hω, πω,Ωω) and (h, π,Ω) be GNS-triple. There is a natural isometric isomorphism

U : hω → h, such that UΩω = Ω and αU ◦ πω = π.

Proof of 2.1.9: We only prove the second statement, for the �rst see ([7], Thm. 2.3.16). For

A ∈ A we de�ne

U(πω[A]Ωω) := π[A]Ω. (2.17)

First, we check that U : πω[A]Ωω → π[A]Ω is a well-de�ned map. Assume πω[A]Ωω = πω[A
′]Ωω,

it follows directly from the de�nition of the scalar product.

‖U(πω[A]Ωω)− U(πω[A
′]Ωω)‖2 = 〈π[A− A′]Ω|π[A− A′]Ω〉 (2.18)

= 〈Ω|π[(A− A′)∗(A− A′)]Ω〉 = ω((A− A′)∗(A− A′))

= 〈Ωω|πω[(A− A′)∗(A− A′)]Ωω〉 = ‖πω[A]Ωω − πω[A
′]Ωω‖2 = 0.
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To show linearity, pick a, b ∈ C and A,B ∈ A, the linearity of π and πω yields

U(aπω[A]Ωω + bπω[A]Ωω) = U(πω[aA+ bB]Ωω) = π[aA+ bB]Ω (2.19)

= aπ[A]Ω + bπ[B]Ω = aU(πω[A]Ωω) + bU(πω[B]Ωω).

U is isometric,

〈(Uπω[A]Ωω)|U(πω[A]Ωω)〉 = 〈π[A]Ω|π[B]Ω〉 = 〈Ω|π[A∗B]Ω〉 (2.20)

= ω(A∗B) = 〈Ωω|πω[A∗B]Ωω〉 = 〈πω[A]Ωω|πω[B]Ωω〉.

Since Ωω is cyclic for π[A], the subspace πω[A]Ωω is dense in hω. Hence U extends isometrically

to a map hω → h.

U is surjective. Let ψ ∈ h. Since Ω is cyclic for πω[A], there is a sequence (φn)n ⊂ hω such that

limn→∞ Uφn = ψ. Since U is isometric,

‖φn − φm‖ = ‖Uφn − Uφm‖. (2.21)

Hence (φn)n is a Cauchy-sequence in hω and therefore convergent. Thus

ψ = lim
n→∞

Uφn = U lim
n→∞

φn ∈ ranU. (2.22)

since U is bounded. For αU de�ned in (2.1.5)

αU(πω[A])(π[B]Ω) = UAU−1π[B]Ω = Uπω[A]U−1(Uπω[B]Ωω) (2.23)

= Uπω[A]πω[B]Ωω = Uπω[AB]Ωω = π[AB]Ω = π[A](π[B]Ω),

hence αU ◦ πω = π, since π[A]Ω is dense in h. �

We remark, that the assumption for A to be unital is not necessary.

De�nition 2.1.10 (ω-normal States). Let ω be a state over A and (hω, πω,Ωω) the GNS-

triple. A state µ is ω-normal, if there exists a density operator ρ ∈ B(hω), such that µ(A) =

Tr{ρ πω[A]}, A ∈ A.

The GNS-representation gives us a tool to de�ne states, that are closely related to a given

state ω. We remark, that ρ is in general not uniquely determined by µ. In the following example

we give an explicit construction of a GNS-Triple, if ωρ is a normal state over B(h).
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Example 2.1.11 (GNS-Representation for a Normal State). Let ρ ∈ B(h) be a density opera-

tor, de�ned in Example 2.1.7 and g := (ker ρ)⊥ ⊂ h. Choose π as de�ned in Example 2.1.5 for

h′ = g. We de�ne

Ωρ :=
∑
ν

p1/2
ν φν ⊗ φν ∈ hρ := h⊗ g. (2.24)

The vector state corresponding to Ωρ is

〈Ωρ|πρ[A]Ωρ〉h⊗g =
〈 ∑

ν

p1/2
ν φν ⊗ φν

∣∣∣ ∑
µ

p1/2
µ (Aφµ)⊗ φµ

〉
h⊗g

(2.25)

=
∑
ν,µ

p1/2
ν p1/2

µ 〈φν |Aφµ〉h · 〈φν |φµ〉g =
∑
ν

pν〈φν |Aφν〉h = Tr{ρA} = ωρ(A).

Let ψ ∈ h and φν ∈ g �xed and Aφ := p
−1/2
ν 〈φν |φ〉ψ, φ ∈ h. We observe that πρ[A]Ωρ = ψ⊗φν .

Therefore

c` πρ[A]Ωρ ⊇ c`LH{ψ ⊗ φν ∈ hρ : ψ ∈ h, ν = 1, 2 . . .} = hρ. (2.26)

Moreover, Ωρ is separating for πρ[B(h)], i� ker ρ = {0}.

2.2 W ∗-Algebras

In this section we consider unital C∗-algebras A embedded in B(h). We are interested in

algebras, that are closed in weaker topologies, and therefore it is possible to apply more technics

and theorems.

De�nition 2.2.1 (Commutant). Let S be a non-empty subset of B(h), such that S∗ ∈ S for

S ∈ S. We denote by S′ := {A ∈ B(h) : AS = SA, ∀S ∈ S} the commutant of S.

Theorem 2.2.2 (Properties of the Commutant). 1. S′ is a unital C∗-subalgebra of B(h).

2. S′ is weakly closed, i.e. if for a C ∈ B(h) and for all ε > 0 and φ1, . . . , φn ∈ h,

ψ1, . . . , ψn ∈ h exists A ∈ S′, such that

∣∣〈ψi|(C − A)φi〉
∣∣ < ε, i = 1, 2, . . . , n, (2.27)

then C ∈ S′.
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Proof of 2.2.2. Obviously, 1 ∈ S′. To show that S′ is a subalgebra, we pick S ∈ S and

A,B ∈ S′, a, b ∈ C. Since

S(aA+ bB) = aSA+ bSB = aAS + bBS = (aA+ bB)S (2.28)

S(AB) = (AS)B = A(BS) = (AB)S,

we obtain (aA+ bB) ∈ S′ and AB ∈ S′. Since S∗ ∈ S we have

SA∗ = (AS∗)∗ = (S∗A)∗ = A∗S. (2.29)

Thus A∗ ∈ S′. It su�ces to show now the second statement. Assume C 6∈ S′, then exists an

ε > 0, and φ, ψ ∈ h such as S ∈ S, for which

∣∣〈φ|(SC − CS)ψ〉
∣∣ ≥ 2ε. (2.30)

Hence for all A ∈ S′,

2ε ≤
∣∣〈φ|(SC − AS)ψ〉

∣∣ +
∣∣〈φ|(AS − CS)ψ〉

∣∣ (2.31)

=
∣∣〈S∗φ|(C − A)ψ〉

∣∣ +
∣∣〈φ|(A− C)Sψ〉

∣∣.
Hence C does not belong to the weak closure of S′. �

Theorem 2.2.3 (Bicommutant Theorem). Let A a unital ∗-subalgebra.

1. A′′ is a weakly closed, unital C∗-algebra containing A.

2. For all A′′ ∈ A′′, ε > 0 and every sequence (ψn)n ⊂ h with
∑∞

n=1 ‖ψn‖2 < ∞ exists

A ∈ A, such that
∞∑
n=1

‖Aψn − A′′ψn‖2 < ε2, (2.32)

i.e. A′′ is the σ-strong closure of A.

Lemma 2.2.4. Let A′′ ∈ A′′. For all ε > 0 and ψ ∈ h exists an A ∈ A, such that

‖Aψ − A′′ψ‖ < ε. (2.33)
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Proof of 2.2.4. Let B ∈ B(h) be �xed and assume for all A ∈ A

‖Aψ −Bψ‖ ≥ ε. (2.34)

To prove 2.2.4 we will show B 6∈ A′′. First, de�ne h0 := c`Aψ and P0 to be the orthogonal

projection onto h0. For A1, A2 ∈ A we obtain

A1P0A2ψ = A1A2ψ = P0A1A2ψ = P0A1P0A2ψ. (2.35)

We conclude A1P0 = P0A1P0, since Aψ is dense in h0. Analogously, we conclude A∗1P0 =

P0A
∗
1P0. Furthermore, since P ∗ = P we have

A1P0 = P0A1P0 = (P0A
∗
1P0)

∗ = (A∗1P0)
∗ = P0A1. (2.36)

Hence P0 ∈ A′. Now we will show that P0 and B do not commute.

P0ψ = ψ because A is unital. From Equation (2.34) follows

‖BP0ψ − P0Bψ‖ ≥ ‖BP0ψ − AP0ψ‖ − ‖AP0ψ − P0Bψ‖ (2.37)

≥ ε− ‖AP0ψ − P0Bψ‖.

Since P0Bψ ∈ h0 and Aψ is dense in h0 we obtain

‖BP0ψ − P0Bψ‖ ≥ ε− inf
A∈A

‖Aψ − P0Bψ‖ = ε > 0. (2.38)

It follow [B,P0] 6= 0 and therefore B 6∈ A′′. �

Proof of 2.2.3. The �rst statement is a consequence of Theorem 2.2.2.

Let g =
⊕∞

n=1 h and ‖φ‖2
g =

∑∞
n=1 ‖φn‖2

h for φ = (φn)n ∈ g and

π : B(h) → B(g), π[A]φ = (Aφ1, Aφ2, . . .). (2.39)

The reader can easily check, that π is a representation map. π[A] is a unital ∗-subalgebra of

B(g), By Lemma 2.2.4 we �nd for ψ = (ψn)n ∈ g and ε > 0 a C ∈ π[A]′′, such that

‖π[A]ψ − Cψ‖g ≤ ε. (2.40)

Next, we shall show that π[A′′] ⊇ π[A]′′. We write operators as in�nite matrices, the entries

are bounded operators on B(h) that map one subspace in the in�nite direct sum to another.

Hence π[A] = (δijA)i,j∈N. Let B ∈ B(g), we write

B = (Bij)i,j∈N, C = (Cij)i,j∈N, Bij, Cij ∈ B(h). (2.41)
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To the commutator π[A]B −Bπ[A] belongs the matrix

(ABij −BijA)i,j∈N. (2.42)

We conclude B ∈ π[A]′ i� Bij ∈ A′ for all i, j ∈ N. Let Ekl := (δk,i · δl,j1)i,j∈N. Clearly,

Ekl ∈ π[A]′. Otherwise

EklC = (Ckj · δli)i,j∈N, CEkl = (Cil · δjk)i,j∈N (2.43)

coincide, hence all matrix entries are equal and we obtain

C = (C11 · δij)i,j∈N. (2.44)

Direct calculation yields C11 ∈ A′′ and therefore C = π[C11] ∈ π[A′′]. Equation (2.40) now

implies
( ∑∞

n=1 ‖Aψn − C11ψn‖2
)1/2

≤ ε. �

Lemma 2.2.5 (Cyclic and Separating Vectors for A and A′). Let A be a unital subalgebra of

B(h) and φ ∈ h. We have:

φ is cyclic for A ⇔ φ is separating for A′.

Proof of 2.2.5. Let be φ ∈ h a cyclic vector for A, hence h = c` Aφ. Assume now B ∈ A′

with Bφ = 0. We need show that B = 0. Taking A ∈ A one has BAφ = ABφ = 0. Thus

B(Aφ) = {0}. Since B is a bounded operator, B is zero on h.

Conversely, let φ ∈ h be a separating vector for A′ and h0 := c` Aφ. Our goal is to show

that h0 = h. Let P0 be the orthogonal projection h0. As in the proof of 2.2.3, we conclude

P ∈ A′. From φ ∈ h0 we obtain (1−P0)φ = 0, but 1−P0 in A′. It follows P = 1 and h0 = h. �

Lemma 2.2.6. S′ = S′′′, S′′ = S′′′′ for every non-empty subset S of B(h), for which S =

{S∗ : S ∈ S}.

Proof of 2.2.6. Obviously, A ⊂ B ⇒ B′ ⊂ A′. Since S ⊂ S′′, it follows S′′′ ⊂ S′. But the

inverse inclusion S′ ⊂ S′′′ holds, as well.S′ = S′′′ implies S′′ = S′′′′. �

Example 2.2.7. • (C1)′ = B(h)
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• B(h)′ = C1

• For a separable Hilbert space h it is easy to show that Com(h)′′ = B(h). We consider

the case dim h = ∞. Let (φn)
∞
n=1 be an ONB of B(h) and Pn the orthogonal projection

onto LH{φ1, . . . , φn}. For A ∈ B(h) the operator PnA is compact, since Pn has �nite

range. But obviously A = w-limn→∞ PnA. We remark that Theorem 2.2.3 holds even for

algebras without unit.

De�nition 2.2.8 (W ∗-Algebras). A unital C∗-subalgebra A of B(h) is called a (concrete)

W ∗-algebra, i� A = A′′.

Remark 2.2.9 (Further Topologies). There a several other local convex topologies on B(h),

for which A′′ is the closure of a unital ∗-subalgebra A. We only have introduced two: the weak

topology and the σ-strong topology, they belong to the systems of semi-norms

•
{
ρ1
φ,ψ : φ, ψ ∈ h, ρ1

φ,ψ(A) = |〈ψ|Aφ〉|
}

•
{
ρ2
φ : φ ∈ ⊕∞

n=1h, ρ2
φ(A) =

( ∑∞
n=1 ‖Aφn‖2

h

)1/2}
We use in the following to more topologies

• The σ-weak topology :
{
ρ3
φ,ψ : φ, ψ ∈ ⊕∞

n=1h, ρ3
φ,ψ(A) =

∑∞
n=1 |〈ψn|Aφn〉h|

}
• The σ-strong∗ topology :

{
ρ4
φ : φ ∈ ⊕∞

n=1h, ρ4
φ(A) =

( ∑∞
n=1(‖Aφn‖2

h + ‖A∗φn‖2
h)

)1/2}
The reader is referred to ([7], Chap. 2.4) for the proofs and a more comprehensive representation

of this topic.

Remark 2.2.10 ( (Abstract) W ∗-Algebras). In literature the concept of W ∗-algebras is not

restricted to subalgebras of B(h). There is an intrinsic de�nition, but we do not need it.

2.3 Tomita-Takesaki-Theory

Let A be a W ∗-algebra and Ω a cyclic and separating vector for A. One can de�ne

SAΩ = A∗Ω, A ∈ A, dom(S) = AΩ. (2.45)
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S is an anti-linear, closeable operator on h. Its closure S has a unique polar decomposition

S = J∆1/2, (2.46)

where J is an anti-unitary operator and ∆ is a positive self-adjoint operator. J is called the

modular conjugation and ∆ is the modular operator associated with A and Ω, since J = J2.

Theorem 2.3.1 (Tomita-Takesaki theorem). Under the above assumptions one has

JAJ = A′ (2.47)

∆ıtA∆−ıt = A, t ∈ R. (2.48)

(∆ıt)t∈R is the modular group associated with A and Ω.

Proof of 2.3.1. See ([7], Thm 2.5.14). �

De�nition 2.3.2 (Natural Positive Cone). The natural positive cone associated with A and Ω

is

C := c`{AJAΩ : A ∈ A}. (2.49)

The following theorem holds:

Theorem 2.3.3 (Representation of Normal States). 1. C is convex.

2. C is self-dual, i.e.

C = {φ ∈ h : 〈ψ|φ〉 ≥ 0, ∀ψ ∈ C}. (2.50)

3. For all φ ∈ C one has

φ is separating for A ⇔ φ is cyclic for A.

4. For an arbitrary normal state ω of A exists a uniquely determined φ ∈ C, for which

ω(A) = 〈φ|Aφ〉, A ∈ A. (2.51)

Proof of 2.3.3. See ([7], Prop 2.5.28, Prop 2.5.30, Thm 2.5.31). �
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Remark 2.3.4. The Tomita-Takesaki-theory yields a characterization of the commutant of a

W ∗-algebra A, if a cyclic and separating vector exists. Moreover a ∗-automorphism group can

be de�ned, such as a simple description of normal states. It turns out, confer Theorem 2.4.11,

that there is a strong connection between KMS-states and the modular structure. In our case

we can explicitly calculate J and ∆.

Example 2.3.5 (Modular Structure). 1. Let h be a separable Hilbert space. The two-sided

ideal K := L2(h) ⊂ B(h) of Hilbert-Schmidt operators is a Hilbert space equipped with

the scalar product 〈τ |σ〉K := Tr{τ ∗σ}.

We de�ne a representation map B(h) → B(K) by π[A]σ = Aσ. Now,

〈τ |π[A]σ〉K = Tr{τ ∗Aσ} = Tr{(A∗τ)∗σ} = 〈π[A∗]τ |σ〉K (2.52)

yields that π is a ∗-morphism. One can show, that A := π[B(h)] is a W ∗-algebra. Let

% ∈ K be a positive operator with ker % = {0} and ‖%‖K = 1. It follows directly from

ran % = (ker %)⊥ = K, that % is separating for A.

Let (φn)n ⊂ h be an ONB of eigenvectors for % and %φn = εnφn. We de�ne for φ ∈ h the

operator Aφ := ε−1
j 〈φj|φ〉φi.

Obviously, π[A]% = Eij, where Eijφ := 〈φj|φ〉φi. From

c` π[A]% ⊇ c`LH{Eij ∈ K : i, j ∈ N} = K

follows cyclicity of % for A. Let us now consider the modular conjugation and the modular

operator. For σ ∈ K, A ∈ B(h) and τ ∈ dom(∆1/2) := {τ ∈ K :
∑∞

i=1 ‖%τ%−1φi‖2
h < ∞}

we de�ne

Jσ = σ∗, ∆1/2τ = %τ%−1. (2.53)

We check Jπ[A]∗% = %A = ∆1/2π[A]%. J is obviously anti-linear J2 = 1, moreover

〈Jσ|Jτ〉K = Tr{(σ∗)∗τ ∗} = Tr{στ ∗} = Tr{τ ∗σ} = 〈τ |σ〉K. (2.54)

2. ∆1/2 is self-adjoint: Let Pm = 1[% ≥ m−1]. For τ, τ ′ ∈ dom(∆1/2) we have:

〈∆1/2τ |τ ′〉K = lim
m→∞

〈∆1/2τPm|τ ′Pm〉K = lim
m→∞

Tr{%−1τ ∗%τ ′Pm} (2.55)

= lim
m→∞

Tr{τ ∗%τ ′%−1Pm} = lim
m→∞

〈τPm|∆1/2τ ′Pm〉K = 〈τ |∆1/2τ ′〉K.
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Assume |〈∆1/2τ |σ〉K| ≤ C‖τ‖K for all τ ∈ dom(∆1/2). Choose τm = %σPm%
−1.

C‖τm‖K ≥ |〈∆1/2τm|σ〉K| = |Tr{%−2Pmσ
∗%2σ}| (2.56)

= Tr{(%σPm%−1)∗(%σPm%
−1)} = ‖τm‖2

K.

We conclude that ‖τm‖2
K =

∑∞
i=1 ‖%σPm%−1φi‖2

h ≤ C2. Hence
∑∞

i=1 ‖%σ%−1φi‖2
h ≤ C2 and

σ ∈ dom(∆1/2).

3. ∆1/2 is positive: Since

Tr{Pmσ∗%σ%−1Pm} = Tr{(%1/2σPm%
−1/2)∗(%1/2σPm%

−1/2)} ≥ 0. (2.57)

We obtain for σ ∈ dom(∆1/2) that

〈σ|∆1/2σ〉K = lim
m→∞

Tr{Pmσ∗%σ%−1Pm} ≥ 0. (2.58)

4. A′ := JAJ = {B ∈ B(K) : ∃A ∈ B(h) : ∀σ ∈ K Bσ = σA∗}.

5. C = c`{AJA% : A ∈ B(h)}. Since AJA% = A%A∗ all elements of C are positive operators.

Let η ∈ K be a positive operator. We de�ne A = η1/2%−1/2Pm. We conclude ηm :=

A%A∗ = η1/2Pmη
1/2 ∈ C.

‖η − ηm‖2
K = Tr{(η1/2(1− Pm)η1/2)2} = Tr{(1− Pm)η(1− Pm)η(1− Pm)}(2.59)

≤ Tr{(1− Pm)η2(1− Pm)} ≤ ‖η(1− Pm)‖2
K → 0

as m→∞. Hence η ∈ C and C = {σ ∈ K : σ ≥ 0}.

6. Let ρ ∈ B(K) be a density operator and (σn)n ⊂ K. an ONB of eigenvectors, such that

ρσn = pnσn. The corresponding normal state ωρ over A is

ωρ(A) :=
∞∑
n=1

pn〈σn|Aσn〉K =
∞∑
n=1

pn Tr{σ∗nAσn} (2.60)

=
∞∑
n=1

pn Tr{σnσ∗nA} = Tr
{ ∞∑
n=1

pnσnσ
∗
nA

}
.

Let σ :=
( ∑∞

n=1 pnσnσ
∗
n)

1/2. Since Tr{σnσ∗n} = 1, we obtain that σ is a positive Hilbert-

Schmidt operator with ‖σ‖K = 1 and

ωρ(A) = 〈σ|Aσ〉K. (2.61)
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2.4 Dynamical-Systems

De�nition 2.4.1 (W ∗-dynamical System). Let A be a C∗-algebra.

1. A ∗-automorphism group τ = (τt)t∈R is a group

τt+s(A) = τt(τs(A)) ∈ A, τ0(A) = A, ∀A ∈ A, ∀t, s ∈ R (2.62)

and for �xed t ∈ R one has

τt(AB) = τt(A)τt(B), τt(aA+ bB) = aτt(A) + bτt(B), τt(A
∗) = (τt(A))∗. (2.63)

2. For a W ∗-algebra A ⊂ B(h) a ∗-automorphism group τ is σ-weakly continuous, if for

every A ∈ A

R 3 t 7→ τt(A) ∈ B(h) (2.64)

is continuous and B(h) carries the σ-weak topology.

3. (A, τ) is a W ∗-dynamical system, if A is a W ∗-algebra and τ is a σ-weakly continuous

automorphism group.

4. Let τ a ∗-automorphism group and ω a state over A. ω is τ -invariant, if

ω(τt(A)) = ω(A) (2.65)

for all A ∈ A and t ∈ R.

Example 2.4.2 ( AW ∗-dynamical System). Let H be a self-adjoint (not necessarily bounded)

operator on h. For A ∈ B(h) we de�ne τt(A) = eıtHAe−ıtH , t ∈ R. (B(h), τ) is a W ∗-dynamical

system and ωφ(A) := 〈φ|Aφ〉 is a τ -invariant state, whenever φ is a normed eigenvector of H.

We sketch the proof:

Choose ψ = (ψn)n, φ = (φn)n ∈
⊕∞

n=1 h. For �xed s ∈ R and A ∈ B(h) we de�ne fn(t) =

|〈ψn|
(
τt(A) − τs(A)

)
φn〉|. By Stone's theorem R 3 t 7→ eıtHχ for χ ∈ h is continuous. It

follows that fn is continuous, moreover |fn(t)| ≤ ‖ψn‖ · ‖φn‖ · ‖A‖. Hence f(t) :=
∑n

n=1 fn(t) =

ρ3
ψ,φ(τt(A) − τs(A)) is the uniform limit of continuous functions and therefore continuous. We

obtain limt→s ρ
3
ψ,φ(τt(A)− τs(A)) = f(s) = 0. ρ3

ψ,φ is an arbitrary semi-norm that generates the

σ-weakly topology.
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Lemma 2.4.3 (Analytic Elements of aW ∗-Algebra). Let (A, τ) aW ∗-dynamical system. There

exists a ∗-subalgebra A0 of A of τ -analytic elements, such that A′′
0 = A.

An element is τ -analytic, if

R 3 t 7→ τt(A) ∈ A0 (2.66)

has an analytic extension to

C 3 z 7→ τz(A) ∈ A0. (2.67)

Proof of 2.4.3. The proof can be found in ([4], page 170) �

Lemma 2.4.4. Let A be a W ∗-algebra. Every ∗-automorphism is σ-weakly continuous.

Proof of 2.4.4. The proof can be found in ([4], page 115, Cor 2.12) �

Let Sβ := {z ∈ C : 0 < =z < β}.

De�nition 2.4.5 (KMS-States). Let (A, τ) be a W ∗-dynamical system and β > 0. A normal

state ω is (τ, β)-KMS-state, if for A,B ∈ A there is a function Fβ(A,B, ·), that is analytic on

Sβ and continuous on its closure and taking the boundary conditions

Fβ(A,B, t) = ω(Aτt(B)) (2.68)

Fβ(A,B, t+ ıβ) = ω(τt(B)A)

for t ∈ R.

Example 2.4.6 (Gibbs state). Let h be a separable Hilbert space. Assume furthermore, that

H is a self-adjoint operator, such that

Zβ := Tr{e−βH} <∞ (2.69)

for some β > 0. For A ∈ B(h) we de�ne τt(A) = eıtHAe−ıtH , t ∈ R and ω(A) := Z−1
β ·

Tr{e−βHA}. ω is positive by cyclicity of the trace, and normed since ω(1) = 1. We show, that

ω is a (τ, β)-KMS state over B(h). Let F (A,B, z) = Z−1
β ·Tr{e−(β+ız)HAeızHB} for z ∈ Sβ. Let

0 ≤ τ1 := <(β + ız) and 0 ≤ τ2 = <(−ız). Obviously τ1 + τ2 = β. Since e−(β+ız)H ∈ Lβ/τ1(h)

and eızH ∈ Lβ/τ2(h) we conclude that e−(β+ız)HAeızHB is an operator of trace class. (Lα(h)
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are the operators of Schatten α-class). The analyticity properties for F (A,B, ·) follow directly.

Moreover, the boundary conditions in Equation (2.68) are derived from the cyclicity of the

trace.

Lemma 2.4.7. Let ω be a (τ, β)-KMS-state and B ∈ A0 an analytic element. We have for

z ∈ C and A ∈ A

ω(Aτz+ıβ(B)) = ω(τz(B)A). (2.70)

In particular,

ω(Aτıβ(B)) = ω(BA). (2.71)

Proof of 2.4.7. By assumption

G : C→ C, z 7→ ω(Aτz(B)) (2.72)

H : C→ C, z 7→ ω(τz(B)A)

are entire analytic. Fβ(A,B, z) and G(z) are equal on ıR. By Schwarz re�ection principle

Fβ(A,B, z) and G(z) are identical on c` Sβ and

G(t+ ıβ) = Fβ(A,B, t+ ıβ) = H(t), t ∈ R. (2.73)

Since G(z + ıβ) and H(z) coincide for z ∈ R, they are identical. �

Theorem 2.4.8 (Time-Invariance of KMS-states). Let ω be a (τ, β)-KMS state. It follows that

ω is τ -invariant.

Proof of 2.4.8. Let A be an analytic element and M := maxs∈[0,β] ‖τz(A)‖. Then for s ∈ [0, β]

and t ∈ R

|ω(τt+ıs(A))| = |ω(τt(τıs(A)))| ≤ ‖τıs(A)‖ ≤M, (2.74)

since ‖ω‖ = 1 and since τt is an isometric ∗-automorphism for t ∈ R. Hence |ω(τz(A))| ≤ M

for z ∈ c` Sβ. By Lemma 2.4.7 ω(τz(A)) = ω(τz+ıβ(A)), hence is entire analytic and bounded.

By Liouville's theorem it is constant. In particular,

ω(τt(A)) = ω(A), t ∈ R (2.75)

for A ∈ A0. By Lemmata 2.4.3 and 2.4.4 and since ω is normal, Equation (2.75) holds for

A ∈ A. �
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Theorem 2.4.9 (Unitary Implementation of Automorphism Groups). Let (A, τ) be a W ∗-

dynamical system and ω a normal τ -invariant state. Let (h, π,Ω) be the GNS-representation

corresponding to ω. There is a uniquely determined strongly continuous group (Ut)t∈R, such

that for A ∈ A

Utπ(A)U∗
t = π(τt(A)), UtΩ = Ω. (2.76)

The in�nitesimal generator Lω is the ω-Liouvillean.

Proof of 2.4.9. Let h0 := π[A]Ω. One has to de�ne Utπ[A]Ω = π[τt(A)]Ω. First we check

well-de�nedness

‖π(τt(A))Ω− π(τt(B))Ω‖2
ω = ω((τt(A−B))∗τt(A−B)) (2.77)

= ω
(
τt

(
(A−B)∗(A−B)

))
= ω

(
(A−B)∗(A−B)

)
= ‖π(A)Ω− π(B)Ω‖2.

Hence π[τt(A)]Ω is determined by t and π[A]Ω. By time-invariance of KMS-state

‖Utπ[A]Ω‖2 = ω(τt(A)∗τt(A)) = ω(τt(A
∗A)) = ω(A∗A) = ‖π[A]Ω‖2. (2.78)

Ut is isometric on h0. As in the proof of Theorem 2.1.9 one obtains that Ut is unitary. Since τt

is a σ-weakly continuous group and ω is normal, one has

lim
t→0

‖Utπ(A)Ω− π(A)Ω‖2 = 2ω(A∗A)− 2 lim
t→0

<ω(A∗τt(A)) = 0. (2.79)

The continuity at zero follows from Lemma 2.4.3 and Lemma 2.4.4. �

Lemma 2.4.10. Let ω be a (τ, β)-KMS-state. For a A,B ∈ A0 one has

ω(τ−ıβ/2(A)τıβ/2(B)) = ω(BA). (2.80)

Proof of 2.4.10. Let

G(z) := ω(τz(A)τz+ıβ(B)). (2.81)

G is entire analytic, for z = t ∈ R we obtain

G(t) := ω(τt(A)τt+ıβ(B)) = ω(τt(Aτıβ(B))) = ω(Aτıβ(B)) = ω(BA). (2.82)

Hence G(z) = ω(BA) for all z ∈ C. The statement follows by setting z = −ıβ/2. �
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The next theorem clari�es the connection between KMS-states and the modular structure.

Theorem 2.4.11 (KMS-State/ Modular Structure). Let Ω ∈ h a normed vector, cyclic and

separating for A. Assume ω(A) := 〈Ω|AΩ〉 is a (τ, β)-KMS-state. Then the modular conjuga-

tion can be de�ned as

JAΩ := τıβ/2(A
∗)Ω, A ∈ A0. (2.83)

The modular operator is ∆ = e−βLω , where Lω is the ω-Liouvillean.

Proof of 2.4.11. Since Ω is separating for A, one can de�ne for A ∈ A0

JAΩ := τıβ/2(A
∗)Ω. (2.84)

First we remark, that τz(cC + dD)Ω = cτz(C)Ω + dτz(D)Ω and τz(C)∗Ω = τz(C
∗)Ω for C, D ∈

A0 and c, d ∈ C. Hence

J(aAΩ + bBΩ) = J(aA+ bB)Ω = τıβ/2
(
(aA+ bB)∗

)
Ω (2.85)

= aτıβ/2(A
∗)Ω + bτıβ/2(B

∗)Ω = aJAΩ + bJBΩ.

For A,B ∈ A0

〈JAΩ|JBΩ〉 = 〈τıβ/2(A∗)Ω|τıβ/2(B∗)Ω〉 = 〈Ω|τ−ıβ/2(A)τıβ/2(B
∗)Ω〉 (2.86)

= ω(τ−ıβ/2(A)τıβ/2(B
∗)) = ω(B∗A) = 〈BΩ|AΩ〉.

Let h0 := A0Ω. Since Ω is cyclic for A = A′′
0, we have h = c` h0. Because J is anti-linear and

isometric on h0, it can be uniquely extended to a conjugation on h. Let Lω be the ω-Liouvillean.

Choose φ ∈
⋃∞
n=1 ran{1[|Lω| ≤ n]}. For A ∈ A0 we de�ne

fφ(z) = 〈φ|τz(A)Ω〉, gφ(z) = 〈e−ızLωφ|AΩ〉. (2.87)

Both fφ and gφ are entire analytic, for z = t we have

fφ(t) = 〈φ|τt(A)Ω〉 = 〈φ|(eıtLωAe−ıtLω)Ω〉 = gφ(t). (2.88)

Hence fφ = gφ. For z = ıβ/2 one has

〈e−β/2Lωφ|AΩ〉 = 〈φ|JA∗Ω〉 = 〈Ω|AJφ〉. (2.89)

Equation (2.89) extends to A′′
0 = A, hence for A ∈ A 〈e−β/2Lωφ|AΩ〉 = 〈φ|JA∗Ω〉. Since⋃∞

n=1 ran{1[|Lω| ≤ n]} is a core of e−β/2Lω , we obtain AΩ ∈ dom(e−β/2Lω) and e−β/2LωAΩ =

JA∗Ω. �
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Example 2.4.12. Assume now h ⊆ L2(X, dµ) is a separable, closed subspace. By − we denote

the complex conjugation. Assume also, that f ∈ h whenever f ∈ h. For an operator A on h we

de�ne

Af = Af, dom(A) := dom(A). (2.90)

For a Hamiltonian H with Tr{e−βH} < ∞ as in Example 2.4.6 we have a (τ, β)-KMS-state

ω. In Example 2.3.5 the modular structure on K = L2(h) for a cyclic and separating vector is

de�ned. The link between both is the following:

Let (φj)
∞
j=1 be a ONB of eigenvectors of H. We denote by Eij the operator

Eijφ = 〈φj|φ〉φi, φ ∈ h. (2.91)

The set {Eij : i, j ∈ N} is an ONB of K. We identify K with h ⊗ h ⊂ L2(X × X, dµ ⊗ dµ)

via the unitary p, that is de�ned by p : Eij 7→ φi(x)φj(y). We understand elements of h ⊗ h

as L2-functions of (x, y) ∈ X × X. The modular conjugation becomes to Jκ(x, y) = κ(y, x).

The Liouvillean reads L = Hx −Hy, where the subscript x means that H acts for �xed y, and

similarly, the subscript y means that H acts for �xed x. Instead of π[A] we only write Ax. The

vector Ω(x, y) := Z
−1/2
β

∑∞
j=1 e

−β/2Ejφj(x)φj(y) is the cyclic vector, so that

ω(A) = 〈Ω|AxΩ〉h⊗h. (2.92)

2.5 Perturbation of W ∗-dynamical systems

De�nition 2.5.1. A closed operator A is a�liated with A, if

A′ dom(A) ⊂ dom(A) AA′ ⊃ A′A, ∀A′ ∈ A′. (2.93)

Lemma 2.5.2. If A is self-adjoint and a�liated with A, then all bounded Borel functions of A

belong to A.

Proof of 2.5.2. The proof follows from ([7], Lemma 2.58) and the spectral theorem, confer also

([10], Thm 2.1) �

Theorem 2.5.3. Let αt(A) = eıtLAe−ıtL, t ∈ R be a ∗-automorphism group acting on A, i.e.

L is a self-adjoint operator and eıtLAe−ıtL ∈ A for A ∈ A. Let Q be a self-adjoint operator
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a�liated with A, such that dom(L) ∩ dom(Q) is a core for L, Q and L + Q. (In particular,

L+Q is assumed to be essentially self-adjoint.)

Then

αQt (A) = eıt(L+Q)Ae−ıt(L+Q), t ∈ R, A ∈ A (2.94)

de�nes a ∗-automorphism group acting on A.

Proof of 2.5.3. In the sense of weak convergence in B(h) we obtain using Trotter's product

formula

αQt (A) = eıt(L+Q)Ae−ıt(L+Q) = w-limn→∞
(
eı

t
n
Leı

t
n
Q
)n
A

(
e−ı

t
n
Qe−ı

t
n
L)n (2.95)

= w-limn→∞ α t
n

(
eı

t
n
Q · · ·α t

n
(eı

t
n
QAe−ı

t
n
Q) · · · e−ı

t
n
Q
)
.

Since Q is a�liated with A, one has eı
t
n
Q ∈ A and eı

t
n
QAe−ı

t
n
Q ∈ A, whenever A ∈ A. More-

over, α leaves A invariant. Hence αQt (A) is the weak limit of operators in A, and therefore

αQt (A) ∈ A. �

Theorem 2.5.4. Let Ω ∈ h be a cyclic and separating vector and J be the modular conjugation

associated with Ω and A. Let αt(A) = eıtLAe−ıtL be a ∗-automorphism, where L is a self-

adjoint operator. Furthermore let Q be a self-adjoint operator a�liated with A, such that

dom(L) ∩ dom(JQJ) is a core for L, JQJ and L− JQJ . (In particular L− JQJ is assumed

to be essentially self-adjoint.)

Then

αt(A) = eıt(L−JQJ)Ae−ıt(L−JQJ), t ∈ R, A ∈ A. (2.96)

Proof of 2.5.4. Obviously, eıtJQJ = Je−ıtQJ ∈ A′. As in the proof of Theorem 2.5.3, we obtain

for A ∈ A

eıt(L−JQJ)Ae−ıt(L−JQJ) = lim
n→∞

(
eı

t
n
Le−ı

t
n
JQJ

)n
A

(
eı

t
n
JQJe−ı

t
n
L)n (2.97)

= lim
n→∞

α t
n

(
e−ı

t
n
JQJ · · ·α t

n
(e−ı

t
n
JQJα t

n
(e−ı

t
n
JQJAeı

t
n
JQJ)eı

t
n
JQJ) · · · eı

t
n
JQJ

)
= lim

n→∞
α t

n

(
e−ı

t
n
JQJ · · ·α t

n
(e−ı

t
n
JQJα t

n
(A)eı

t
n
JQJ) · · · eı

t
n
JQJ

)
= αt(A),

since αt(A) ∈ A for all t ∈ R. �
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We prove a simple statements, that will be needed:

Lemma 2.5.5. Let H be a self-adjoint operator on a separable Hilbert space. β > 0 and

φ ∈ dom(e−β/2H). Then φ ∈ dom(e−zH), whenever 0 ≤ <z ≤ β/2.

Proof. Proof of 2.5.5 We assume that φ is normed. Let µ be the probability measure corre-

sponding to µ and H. By the spectral theorem we obtain
∫
R
e−βsµ(ds) <∞. But for z ∈ Sβ/2

we have∫
R

|e−zs|2µ(ds) =

∫
]−∞,0]

e2<zsµ(ds) +

∫
]0,∞[

e2<zsµ(ds) ≤ 1 +

∫
R

e−βsµ(ds) <∞. (2.98)

The spectral theorem yields Lemma 2.5.5. �

Theorem 2.5.6. Assume Ω ∈ dom(e−β/2(L+Q)) be a cyclic and separating vector for a W ∗-

algebra A. L and J are the Standard Liouvillean and the modular conjugation corresponding to

A and J . Let ΩQ := e−β/2(L+Q)Ω ∈ h

The following it true:

1. JΩQ = ΩQ

2. ΩQ = eβ/2(L−JQJ)Ω

3. LQΩQ = 0

4. JA∗ΩQ = e−β/2LQAΩQ for A ∈ A

5. ΩQ is separating for A

6. ΩQ is cyclic for A

7. Let ωQ(A) := ‖ΩQ‖−2 · 〈ΩQ|AΩQ〉. ωQ is a (αQ, β)-KMS-state.

Proof of 2.5.6. First, we de�ne Ω(z) = e−z(L+Q)Ω for z ∈ Sβ/2 and E(t) := eıt(L+Q)e−ıtL ∈ B(h).

eıt(L+Q)e−ıtL = s-limn→∞
(
eı

t
n
Leı

t
n
Q
)n
e−ıtL (2.99)

= s-limn→∞ α t
n
(eı

t
n
Q)α 2t

n
(eı

t
n
Q) · · ·αnt

n
(eı

t
n
Q)

= s-limn→∞
(
eı

t
n

(L−JQJ)eı
t
n
Q
)n
e−ıt(L−JQJ)

= eıt(L+Q−JQJ)e−ıt(L−JQJ).
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From the second line in (2.99) follows that E(t) is the strong limit of operators in A, therefore

E(t) = eıt(L+Q−JQJ)e−ıt(L−JQJ) ∈ A.

1. We choose φ ∈
⋃
n∈N ran1[|L| ≤ n]. Let

f(z) := 〈φ|JΩ(z)〉 and g(z) := 〈e−(β/2−z)Lφ|e−z(L+Q)Ω〉.

Both f and g are analytic on Sβ/2 and continuous on its closure. Since

f(ıt) = 〈φ|JE(t)Ω〉 = 〈φ|e−βL/2E(t)∗Ω〉 = g(ıt), t ∈ R. (2.100)

By Schwarz theorem f and g are equal, particularly in z = β/2. It follows since e−z(L+Q)

is self-adjoint, and since φ is an arbitrary element of a core, that JΩ(β/2) = Ω(β/2).

2. Similarly, we choose φ ∈
⋃
n∈N ran1[|L − JQJ | ≤ n]. Now we de�ne

g(z) = 〈ez(L−JQJ)φ|e−zLΩ〉. Since JE(t)J = eıt(L−JQJ)e−ıtL, g coincides for real z =

ıt with f(z) := 〈φ|JΩ(z)〉. Hence they are equal in z = β/2 and therefore Ω ∈

dom(eβ/2(L−JQJ)) and Ω(β/2) = eβ/2(L−JQJ)Ω.

3. Choose φ ∈
⋃
n∈N ran1[|LQ| ≤ n]. We de�ne g(z) := 〈e−zLQφ|ez(L−JQJ)Ω〉 and f(z) :=

〈φ|Ω(z)〉 for z in the closure of Sβ/2. Again both functions are equal on the line z =

ıt, t ∈ R. Hence f and g are identical, and therefore Ω(β/2) ∈ dom(e−β/2LQ) and

e−β/2LQΩ(β/2) = Ω(β/2). We conclude that LQΩ(β/2) = 0.

4. Let A ∈ A0 be an αQ-analytic element of A. Hence

JA∗Ω(−ıt) = JA∗E(t)Ω = e−β/2LE(t)∗AΩβ
0

= e−(β/2−ıt)Le−ıt(L+Q)AΩβ
0 = e−(β/2−ıt)LαQ−t(A)e−ıt(L+Q)Ω. (2.101)

Let φ ∈
⋃
n∈N ran1[|L| ≤ n]. We de�ne

f(z) = 〈φ|JA∗Ω(z)〉 and g(z) = 〈e−(β/2−z)Lφ|αız(A)Ω(z)〉.

Since f and g are analytic and equal for z = ıt, we have JA∗Ω(β/2) = αıβ/2(A)Ω(β/2).

To �nish the proof we choose φ ∈
⋃
n∈N ran1[|LQ| ≤ n]. Let

f(z) := 〈φ|αQız(A)Ω(β/2)〉 and g(z) := 〈e−zLQφ|AΩ(β/2)〉.
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For z = ıt we see

g(ıt) = 〈φ|e−ıtLQAeıtLλΩ(β/2)〉 = 〈φ|αQ−t(A)Ω(β/2)〉 = f(ıt). (2.102)

Hence AΩ(β/2) ∈ dom(e−β/2LQ) and JA∗Ω(β/2) = e−β/2LQAΩ(β/2).

As in Equation (2.89) one can extend the result to all A ∈ A.

5. Let A ∈ A0. We choose φ ∈
⋃
n∈N ran 1[|(L+Q)| ≤ n]. First, we have

JA∗Ω(β/2) = αıβ/2(A)Ω(β/2). (2.103)

Let fφ(z) = 〈φ|αz(A)Ω(β/2)〉 and gφ(z) = 〈ez(L+Q)φ|Ae−(β/2+z)(L+Q)Ω〉 for −β/2 ≤ <z ≤

0. Both functions are continuous and analytic if −β/2 < <z < 0. Furthermore , fφ(ıt) =

gφ(ıt) for t ∈ R. Hence fφ = gφ and for z = −β/2

〈φ|JA∗Ω(β/2)〉 = 〈e−β/2(L+Q)φ|AΩ〉. (2.104)

This equation extends to all A ∈ A, we obtain AΩ ∈ dom(e−β/2(L+Q)) and e−β/2(L+Q)AΩ =

JA∗Ω(β/2) for A ∈ A. Assume A∗Ω(β/2) = 0, then e−β/2(L+Q)AΩ = 0 and AΩ = 0. Since

Ω is separating, it follows that A = 0 and therefore A∗ = 0.

6. Let C be the natural positive cone associated with J and Ω. To prove that φ ∈ C it is

su�cient to check that 〈φ|AJAΩβ
0 〉 ≥ 0 for all A ∈ M. We have

〈Ω(β/2)|AJAΩβ
0 〉 = 〈JA∗Ω(β/2)|AΩβ

0 〉 = 〈e−β/2(L+Q)AΩβ
0 |AΩβ

0 〉 ≥ 0.

7. For A,B ∈ A and z ∈ Sβ we de�ne

Fβ(A,B, z) = c〈e−ız/2LQA∗ΩQ|eız/2LQBΩQ〉, (2.105)

where c := ‖ΩQ‖−2. First, we observe

Fβ(A,B, t) = c〈e−ıt/2LQA∗ΩQ|eıt/2LQBΩQ〉 = c〈ΩQ|AαQt (B)ΩQ〉 (2.106)

= ωQ(AαQt (B))

and

ωQ(αQt (B)A) = c〈αQt (B∗)ΩQ|AΩQ〉 = c〈JAΩQ|JαQt (B∗)ΩQ〉 (2.107)

= c〈e−β/2LQA∗ΩQ|e−β/2LQαQt (B)ΩQ〉 = c〈e−ı(ıβ+t)/2LQA∗ΩQ|eı(ıβ+t)/2LQBΩQ〉

= Fβ(A,B, t+ ıβ).
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The requirements on the analyticity of Fβ(A,B, ·) are directly ful�lled, hence ωQ is a (αQ, β)-

KMS-state. �

Lemma 2.5.7. Let Q ∈ B(h) self-adjoint and αQt (A) = eıt(L+Q)Ae−ıt(L+Q) one has for t > 0

αQt (A) = αt(A) +
∞∑
n=1

ın
∫

0≤tn≤...≤t1≤t
[αt−t1(Q), [αt−t2(Q), · · · [αt−tn(Q), αt(A)] · · · ]] dt. (2.108)

The convergence is in the norm on B(h). The integral is de�ned in a weak sense. For t < 0 the

statement is analog.

Proof of 2.5.7. First, we de�ne for all t ∈ R

Yt = e−ıtLeıt(L+Q)Ae−ıt(L+Q)eıtL, Y0 := A. (2.109)

It is well known, that dom(L) = dom(L+Q) and that eıtL and eıt(L+Q) leave dom(L) invariant.

For φ, ψ ∈ dom(L) we obtain directly

d

dt
〈φ|Ytψ〉 =

d

dt
〈e−ıt(L+Q)eıtLφ|Ae−ıt(L+Q)eıtLψ〉 (2.110)

= 〈e−ıt(L+Q)(−ı)QeıtLφ|Ae−ıt(L+Q)eıtLψ〉+ 〈e−ıt(L+Q)eıtLφ|Ae−ıt(L+Q)(−ı)QeıtLψ〉

= 〈φ|ı[α−t(Q), Yt]ψ〉.

It is a simple calculation to check that for all bounded operator C,D ∈ B(h) and χ ∈ h the

function R 3 Ceıt(L+Q)DeıtLχ is in C(R; h). Since ‖Yt‖ ≤ ‖A‖ the fundamental theorem of

calculus yields

|〈φ|(Yt − Ys)ψ〉| ≤
∣∣∣ ∫ t

s

〈φ|ı[αr(Q), Yr]ψ〉 dr
∣∣∣ ≤ 2‖φ‖ ‖ψ‖ |t− s| ‖Q‖ ‖A‖. (2.111)

The density of dom(L) in h implies Y· ∈ C(R;B(h)).

For �xed t0 ∈ R and T > 0 we de�ne

F : C([t0 − T, t0 + T ];B(h)) → C([t0 − T, t0 + T ];B(h)) (2.112)

F [Z](t) := At0 + ı

∫ t

t0

[α−r(Q), Zr] dr.

The integral can be de�ned in a weak sense, since the integrand is weakly continuous. This

means ı
∫ t

t0
[α−r(Q), Zr] dr is the bounded operator corresponding to the form

(φ, ψ) 7→ ı

∫ t

t0

〈φ|[α−r(Q), Zr]ψ〉 dr, φ, ψ ∈ h.
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For T small enough is F a contraction:

‖F [Z]− F [Z ′]‖[t0−T,t0+T ] ≤ 2T ‖Q‖ ‖Z − Z ′‖[t0−T,t0+T ], (2.113)

where ‖Z‖[t0−T,t0+T ] = supt∈[t0−T,t0+T ] ‖Z(t)‖ is the norm of C([t0 − T, t0 + T ];B(h)). Choosing

At0 = Yt0 implies that Y is a �xed point of F .

We construct a solution by the Picard-Lindelöf iteration, formally Ỹ = limn→∞ F (n)(A), and

de�ne

Ỹ (t) = A+
∞∑
n=1

ın
∫

0≤tn≤...≤t1≤t
[α−t1(Q), [α−t2(Q), · · · [α−tn(Q), A] · · · ]]dt. (2.114)

since
∣∣ ∫

0≤tn≤...≤t1≤t 1dt
∣∣ ≤ |t|n

n!
and

‖[α−t1(Q), [α−t2(Q), · · · [α−tn(Q), A] · · · ]]‖ ≤ 2n‖Q‖n‖A‖,

the series is norm-convergent resp.‖ · ‖ and all t ∈ R. Moreover, Ỹ is continuous and weakly

di�erentiable, and

Ỹ (t) = A+ ı

∫ t

0

[α−r(Q), Ỹ (r)]dr = Ỹ (t0) +

∫ t

t0

d

dr
Ỹ (r)dr (2.115)

= Ỹ (t0) + ı

∫ t

t0

[α−r(Q), Ỹ (r)]dr.

Hence Ỹ ∈ C([t0 − T, t0 + T ];B(h)) is a �xed point for F . Since F is a contraction we obtain

Ỹ = Y on [t0 − T, t0 + T ] and hence for t ∈ R. But αQt (A) = αt(Y (t)) = αt(Ỹ (t)). �

2.6 Ergodic Properties

Let (A, α) be a W ∗-dynamical system. Ω is a normed, cyclic and separating vector and ω(A) =

〈Ω|AΩ〉 is the vector state associated with Ω.

De�nition 2.6.1. 1. (A, α, ω) is ergodic, if for all ω-normal states µ, one has

lim
T→∞

1

2T

∫ T

−T
µ(αt(A))dt = ω(A), ∀A ∈ A. (2.116)

2. (A, α, ω) is mixing, if for all ω-normal states µ

lim
t→∞

µ(αt(A)) = ω(A), ∀A ∈ A. (2.117)
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An immediate consequence is

Corollary 2.6.2. If (A, α, ω) is mixing, then (A, α, ω) is ergodic. If (A, α, ω) is ergodic, then

ω is time-invariant.

Lemma 2.6.3 (Mean Ergodic Theorem). Let L be self-adjoint, then for ψ ∈ h.

lim
T→∞

1

2T

∫ T

−T
eıtLψdt = 1[L = 0]ψ. (2.118)

Proof of 2.6.3. For the proof see ([4],Thm. 3.13). �

Theorem 2.6.4 (Koopman Ergodic Theorem). Let Lω be the ω-Liouvillean of α. (A, α, ω) is

ergodic, i� ker{Lω} = {CΩ}.

Proof of 2.6.4. First we consider the states µ, that can be written as µ(A) = 〈RΩ|ARΩ〉 for

A ∈ A, R ∈ A′. From the Mean Ergodic Theorem follows

lim
T→∞

1

2T

∫ T

−T
µ(αt(A))dt = lim

T→∞

1

2T

∫ T

−T
〈RΩ|αt(A)RΩ〉dt (2.119)

= lim
T→∞

1

2T

∫ T

−T
〈R∗RΩ|αt(A)Ω〉dt = lim

T→∞

1

2T

∫ T

−T
〈R∗RΩ|eıtLω(A)Ω〉dt

= 〈R∗RΩ|1[Lω = 0]AΩ〉.

Let P be the orthogonal projection onto Ω. Since Ω is separating for A, it is cyclic for A′,

furthermore

h = c`LH{R∗RΩ : R ∈ A′, ‖RΩ‖ = 1} = c`LH{AΩ : A ∈ A}. (2.120)

Since ω(A) = 〈R∗RΩ|1[Lω = 0]AΩ〉 we have for all A ∈ A and all µ as speci�ed above

lim
T→∞

1

2T

∫ T

−T
µ(αt(A))dt = ω(A) ⇔ 1[Lω = 0] = P. (2.121)

Let µ be an arbitrary ω normal state. From the Tomita-Takesaki-theory follows, that there is

a φ ∈ C with µ(A) = 〈φ|Aφ〉 for A ∈ A. Assume 1[Lω = 0] = P and R ∈ A′, ‖RΩ‖ = 1.

lim sup
T→∞

∣∣∣ 1

2T

∫ T

−T
µ(αt(A))dt− ω(A)

∣∣∣ (2.122)

= lim sup
T→∞

∣∣∣ 1

2T

∫ T

−T

(
〈φ|αt(A)φ〉 − 〈RΩ|αt(A)RΩ〉

)
dt

∣∣∣
≤ 2‖A‖ ‖RΩ− φ‖. (2.123)

Since Ω is cyclic for A′, one has infR∈A′, ‖RΩ‖=1 ‖RΩ− φ‖ = 0. �
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Lemma 2.6.5. Assume σac(Lω) = σ(Lω) \ {0} and dim kerLω = 1, then (A, α, ω) is mixing.

Proof of 2.6.5. First, we consider states µ(A) = 〈RΩ|ARΩ〉 for R ∈ A′ with 1 = 〈RΩ|RΩ〉. We

obtain

µ(αt(A))− ω(A) = 〈RΩ|αt(A)RΩ〉 − 〈Ω|AΩ〉 (2.124)

= 〈R∗RΩ|eıtLωAΩ〉 − 〈R∗RΩ|Ω〉〈Ω|AΩ〉 = 〈R∗RΩ|(1− 1[Lω = 0])eıtLωAΩ〉.

By the spectral theorem we can �nd a Borel measure dν on σ(Lω) \ {0} such that

〈R∗RΩ|(1− 1[Lω = 0])eıtLωAΩ〉 =

∫
σ(Lω)\{0}

eıtλν(dλ). (2.125)

Since σ(Lω) \ {0} = σac(Lω), there is an absolutely integrable function ρ with respect to the

Lebesgue-measure dλ, such that dν = ρdλ. Hence we obtain

lim
t→∞

µ(αt(A))− ω(A) = lim
t→∞

∫
σ(Lω)\{0}

eıtλρ(λ)dλ = 0, (2.126)

by the Riemann-Lebesgue Lemma. An approximation argument extends Equation (2.126) to

all normal state µ. �

2.7 In�nite Particle Space

2.7.1 Symmetrization

Let (h, 〈·, ·〉1) be a separable Hilbert space. We remark that for the n-fold tensor product

hn := (
⊗n

i=1 h, 〈·, ·〉n) one has
n⊗
i=1

h = c` gn, gn := LH{f1 ⊗ · · · ⊗ fn : fi ∈ h} (2.127)

and 〈
f1 ⊗ · · · ⊗ fn|g1 ⊗ · · · ⊗ gn〉n =

n∏
i=1

〈fi|gi〉1. (2.128)

The symmetric projection Sn is de�ned by

Sn(f1 ⊗ · · · ⊗ fn) =
1

n!

∑
π∈S(n)

fπ(1) ⊗ · · · ⊗ fπ(n). (2.129)

In this context S(n) is the symmetric group of permutations acting on{1, 2, . . . , n}.
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Lemma 2.7.1. Sn is an orthogonal projection.

Proof of 2.7.1. For any τ ∈ S(n) one has τS(n) = {τ ◦ π : π ∈ S(n)} = S(n). That yields

S2
nf1 ⊗ · · · ⊗ fn =

1

(n!)2

∑
τ,π∈S(n)

fτ(π(1)) ⊗ · · · ⊗ fτ(π(n)) (2.130)

=
1

(n!)2

∑
τ∈S(n)

∑
π′∈τS(n)

fπ′(1) ⊗ · · · ⊗ fπ′(n)

=
( 1

n!

∑
τ∈S(n)

1
)( 1

n!

∑
π′∈S(n)

fπ′(1) ⊗ · · · ⊗ fπ′(n)

)
= Snf1 ⊗ · · · ⊗ fn.

Since S(n) = {π−1 : π ∈ S(n)} we have

〈g1 ⊗ · · · ⊗ gn|Snf1 ⊗ · · · ⊗ fn〉n (2.131)

=
1

n!

∑
π∈S(n)

〈g1 ⊗ · · · ⊗ gn|fπ(1)1⊗ · · · ⊗ fπ(n)〉n

=
1

n!

∑
π∈S(n)

n∏
i=1

〈gi|fπ(i)〉1 =
1

n!

∑
π∈S(n)

n∏
i=1

〈gπ−1(i)|fi〉1

=
1

n!

∑
π∈S(n)

〈gπ−1(1) ⊗ · · · ⊗ gπ−1(n)|f1 ⊗ · · · ⊗ fn〉n

= 〈Sng1 ⊗ · · · ⊗ gn|f1 ⊗ · · · ⊗ fn〉n.

It follows, that Sn extends linearly to f ∈ gn. By de�nition of the norm, we have

‖Snf‖2
n ≤ ‖Snf‖2

n + ‖f − Snf‖2
n = ‖f‖2

n. (2.132)

Sn can therefore be extended to a bounded operator on hn by continuity. Since S2
n = Sn and

S∗n = Sn on gn, it is true on hn. �

2.7.2 Fock Space

The Fock space is the vector space

F [h] := C⊕
∞⊕
n=1

hn (2.133)

equipped with the norm

‖ · ‖F :=
(
| · |2 +

∞∑
n=1

‖ · ‖2
n

)1/2

. (2.134)
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The elements of F [h] are sequences f = (fn)
∞
n=0, such that f0 ∈ C and fn ∈ hn, n ∈ N and

‖f‖F <∞.

F [h] is a separable Hilbert space. In this context hn is the n-particle subspace. Ω :=

(1, 0, . . .) is the vacuum vector. A short calculation yields that

F0[h] := {(fn)∞n=0 ∈ F [h] : ∀n∈N fn ∈ gn, ∃n0∈N∀n≥n0 fn = 0} (2.135)

is a dense subspace of F [h]. On F0[h] creation- and annihilation-operators are de�ned for h ∈ h

by,

b∗(h)f1 ⊗ · · · ⊗ fn := (n+ 1)1/2 · h⊗ f1 ⊗ · · · ⊗ fn, b∗(h)Ω := h (2.136)

b(h)f1 ⊗ · · · ⊗ fn := n1/2〈h|f1〉1 · f2 ⊗ · · · ⊗ fn, b(h)Ω := 0.

We obtain

〈b∗(h)f1 ⊗ · · · ⊗ fn|g1 ⊗ · · · ⊗ gn+1〉n+1 (2.137)

= (n+ 1)1/2〈h|g1〉1
n∏
j=1

〈fj|gj+1〉1 = 〈f1 ⊗ · · · ⊗ fn|b(h)g1 ⊗ · · · ⊗ gn+1〉n

for n ∈ N0. It follows 〈b∗(h)f |g〉F = 〈f |b(h)g〉F for f, g ∈ F0[h].

2.7.3 Bosonic Fock-Space

Not all vectors in F [h] describe bosons, one has to restrict to the subspace

Fb[h] := C⊕
∞⊕
n=1

Snhn (2.138)

called the Bosonic Fock Space. F0
b [h] is de�ned analogously. Snhn is the symmetric n-particle

subspace. We de�ne (bosonic) creation operators by

a∗(h)f1 ⊗ · · · ⊗ fn := Sn+1b
∗(h)Snf1 ⊗ · · · ⊗ fn (2.139)

= (n+ 1)1/2Sn+1h⊗ f1 ⊗ · · · ⊗ fn.

and a∗(h)Ω = h. The (bosonic) annihilation operators are

a(h)f1 ⊗ · · · ⊗ fn := Sn−1b(h)Snf1 ⊗ · · · ⊗ fn (2.140)

= n−1/2

n∑
m=1

〈h|fm〉 Sn−1f1 ⊗ · · · ⊗ f̂m ⊗ · · · ⊗ fn
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and a(h)Ω = 0. The symbol f̂m means, that the factor fm is omitted. A straightforward

calculation yields the so called Canonical Commutator Relations (CCR).

[a(h1), a(h2)] = 0, [a∗(h1), a
∗(h2)] = 0, [a(h1), a

∗(h2)] = 〈h1|h2〉1 (2.141)

That are identities of operators on F0
b [h]. From

〈a∗(h)f |g〉F = 〈f |a(h)g〉F , f, g ∈ F0
b [h] (2.142)

follows that a∗(h) ⊂ (a(h))∗ and a(h) ⊂ (a∗(h))∗, i.e. a∗(h) is a restriction of the adjoint

operator of a(h) and vice versa. From now on we identify a∗(h) and a(h) with their closures.

The �eld operators are de�ned on F0
b [h] as

Φ(h) :=
a∗(h) + a(h)√

2
. (2.143)

Φ(h) is obviously symmetric and

a∗(h) =
Φ(h)− ıΦ(ıh)√

2
, a(h) =

Φ(h) + ıΦ(ıh)√
2

. (2.144)

Furthermore, it follows from (2.139) and 4.2 that

F0
b [h] = LH{a∗(f1) · · · a∗(fn)Ω : n ∈ N0, f1, . . . , fn ∈ h} (2.145)

= LH{Φ(f1) · · ·Φ(fn)Ω : n ∈ N0, f1, . . . , fn ∈ h}.

Let dom(N) := {f = (fn)
∞
n=0 ∈ Fb[h] :

∑∞
n=1 n

2‖fn‖2
n <∞} and

Nf := (nfn)
∞
n=0, for f = (fn)

∞
n=0. (2.146)

N is the number operator, it is self-adjoint. One easily, that F0
b [h] is a core of N . Applied to∑

(i1,...,in) fi1 ⊗ · · · ⊗ fin ∈ Snhn we obtain∥∥∥a∗(h) ∑
(i1,...,in)

fi1 ⊗ · · · ⊗ fin

∥∥∥2

n+1
≤ (n+ 1)

∥∥∥h⊗ ∑
(i1,...,in)

fi1 ⊗ · · · ⊗ fin

∥∥∥2

n+1
(2.147)

= (n+ 1)‖h‖2
1 ·

∥∥∥ ∑
(i1,...,in)

fi1 ⊗ · · · ⊗ fin

∥∥∥2

n
= ‖h‖2

1 ·
∥∥∥(N + 1)1/2

∑
(i1,...,in)

fi1 ⊗ · · · ⊗ fin

∥∥∥2

n
.

The yields the relative bound

‖a∗(h)f‖F ≤ ‖h‖1 · ‖(N + 1)1/2f‖F . (2.148)



2.7. INFINITE PARTICLE SPACE 43

Otherwise,

‖a(h)f‖F ≤ ‖h‖1 · ‖N1/2f‖F (2.149)

follows if additionally the CCR are used,

‖h‖2
1 · ‖(N + 1)1/2f‖2

F ≥ 〈a∗(h)f |a∗(h)f〉F = 〈f |a(h)a∗(h)f〉F

= 〈f |a∗(h)a(h)f〉F + 〈h|h〉1 · 〈f |f〉F = ‖a(h)f‖2
F + ‖h‖2

1 · ‖f‖2
F .

Consequently, we obtain for the �eld operator the relative bound

‖Φ(h)f‖F ≤
√

2 · ‖h‖1 · ‖(N + 1)1/2f‖F . (2.150)

2.7.4 Second Quantization

Let A be an essentially self-adjoint operator with coreD ⊆ h. We de�ne the second quantization

of A by

dΓ(A)
∣∣∣
Sn

Nn
m=1D

:=
n∑

m=1

(
1⊗ · · · ⊗ A︸︷︷︸

m

⊗ · · · ⊗ 1
)
, dΓ(A)Ω := 0. (2.151)

dΓ(A) is essentially self-adjoint on

F0
b [D] = LH{a∗(f1) · · · a∗(fn)Ω : fi ∈ D, n ∈ N0}. (2.152)

In the following we do not distinguish between dΓ(A) and its closure. Given A the spectrum

and the pure point spectrum of dΓ(A) is well known:

σ(dΓ(A)) = c`
(
{0} ∪

∞⋃
n=1

{ n∑
m=1

λm ∈ R : λm ∈ σ(A)
})

(2.153)

σpp(dΓ(A)) = {0} ∪
∞⋃
n=1

{ n∑
m=1

λm ∈ R : λm ∈ σpp(A)
}
. (2.154)

2.7.5 The Natural Isomorphism Fb[g1 ⊕ g2] = Fb[g1]⊗Fb[g2]

Let h = g1 ⊕ g2 and g1 ⊥ g2, such as fi ∈ g1 and gi ∈ g2. There is a unitary map U : Fb[h] →

Fb[g1]⊗Fb[g2] determined by

n∏
j=1

a∗(fj)
m∏
j=1

a∗(gj)Ω 7→
( n∏
j=1

a∗(fj)Ω
)
⊗

( m∏
j=1

a∗(gj)Ω
)

(2.155)
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for all m,n ∈ N0.

For an essentially self-adjoint operator Ai on gi with core Di for i = 1, 2, one has that A1⊕A2

is essentially self-adjoint on h with core D1 ⊕D2 and for fj ∈ D1 and gj ∈ D2

UdΓ(A1 ⊕ A2)
n∏
j=1

a∗(fj)
m∏
j=1

a∗(gj)Ω (2.156)

= U
( n∑
k=1

a∗(f1) · · · a∗(A1fk) · · · a∗(fn)
) m∏
j=1

a∗(gj)Ω

+U
n∏
j=1

a∗(fj)
( m∑
k=1

a∗(g1) · · · a∗(A2gk) · · · a(gm)
)
Ω

=
(
dΓ(A1)a

∗(f1) · · · a∗(fn)Ω
)
⊗

m∏
j=1

a∗(gj)Ω +
n∏
j=1

a∗(fj)Ω⊗
(
dΓ(A2)a

∗(g1) · · · a(gm)Ω
)
.

Hence UdΓ(A1 ⊕ A2) =
(
dΓ(A1)⊗ 1 + 1⊗ dΓ(A2)

)
U . For the �eld operators one can show

Φ(f ⊕ g)U = UΦ(f)⊗ 1 + U1⊗ Φ(g). (2.157)

2.7.6 The Fock Space Fb[L
2(R3, dµ)]

We consider now the case, where h = L2(R3, dµ) for some Borel measure µ. In the following

we will identify

Sn
(
⊗n
j=1 L

2(R3, dµ)
)

(2.158)

= {f ∈ L2((R3)n,⊗n
j=1dµ) : f(k1, . . . , kn) = f(kπ1, . . . , kπn), π ∈ S(n), a.e.}.

In this case creation and annihilation operators read for f = (fn)
∞
n=0 ∈ Fb[L2(R3, dµ)]

(a(h)fn+1)(k1, . . . , kn) = (n+ 1)1/2

∫
dµ(kn+1)h(kn+1)fn+1(k1, . . . , kn, kn+1),

(a∗(h)fn)(k1, . . . , kn+1) = (n+ 1)−1/2

n∑
i=1

h(ki)fn+1(k1, . . . , k̂i . . . , kn+1).

Let α be a real valued measurable function, we observe

(dΓ(α)fn)(k1, . . . , kn) =
n∑
i=1

α(ki)fn(k1, . . . , kn) (2.159)
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for f ∈ dom(dΓ(α)) = {(fn)∞n=0 :
∑∞

n=1 |
∑n

i=1 α(ki)|2|fn(k1, . . . , kn)|2 <∞}.

For h ∈ L2(Ω) and if µ(supp(α) \ supp(h)) = 0 we have∫
|a(h)fn+1(k1, . . . , kn)|2dµ(k1) . . . dµ(kn) (2.160)

= (n+ 1)

∫
dµ(k)

∣∣ ∫
dµ(kn+1)h(kn+1)fn+1(k1, . . . , kn, kn+1)

∣∣2
≤ (n+ 1)

∫
dµ(k)

( ∫
supp(h)

dµ(kn+1)
|h(kn+1)|2

|α(kn+1))|

)
( ∫

dµ(kn+1)|α(kn+1)||fn+1(k1, . . . , kn, kn+1)|2
)

=
( ∫

supp(h)

|h(k)|2dµ(k)

|α(k))|

)
‖dΓ(|α|)1/2fn+1‖2

L2(R3(n+1)).

Hence one obtains the relative bounds

‖a(h)f‖2 ≤ C2‖dΓ(|α|)f‖2 (2.161)

‖a∗(h)f‖2 = ‖a(h)f‖2 + ‖h‖2
1‖f‖2 ≤ C2‖dΓ(|α|)f‖2 + ‖h‖2

1‖f‖2

for f ∈ dom(dΓ(|α|))and C =
( ∫

supp(h)
|h(k)|2dµ(k)
|α(k))|

)1/2

.

2.7.7 Weyl Algebra in the Fock Representation

Theorem 2.7.2. Let h, g ∈ h.

1. Φ(h) is essentially self-adjoint on F0
b [h]. After identifying Φ(h) with its closure, we de�ne

the Weyl operator by WF (h) := exp(ıΦ(h)).

2. If ψ ∈ dom(Φ(h)) then

WF (g)ψ ∈ dom(Φ(h)), WF (g)Φ(h)ψ − Φ(h)WF (g)ψ = =〈h|g〉WF (g)ψ.

3. WF (h)WF (g) = e−ı/2=〈h|g〉WF (h+ g)

Proof of 2.7.2. Let em(t) := (ıtΦ(h))m

m!
Φ(f1) · · ·Φ(fn)Ω. An iterated application of estimate

(2.150) yields

‖em(t)‖F ≤
2(m+n)/2[(m+ n+ 1)!]1/2

m!
(|t|‖h‖1)

m

n∏
j=1

‖fj‖1. (2.162)

Since (m+n+1)!
m!(n+1)!

≤ 2m+n+1 we derive

‖em(t)‖F ≤
2(2m+2n+1)/2[(n+ 1)!]1/2

[m!]1/2
(|t|‖h‖1)

m

n∏
j=1

‖fj‖1. (2.163)
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From the quotient criterion follows, that
∑∞

m=0 em(t) converges normally for |t| ≤ R, R > 0.

Nelson's analytic vector theorem completes the proof of the �rst part.

Let ψ ∈ dom(Φ(h)) and η ∈ F0
b [h]. Since η, Φ(g)mη, Φ(h)η ∈ F0

b [h] they are analytic

vectors and

〈
η
∣∣WF (g)Φ(h)ψ

〉
F =

〈
WF (−g)η

∣∣Φ(h)ψ
〉
F (2.164)

= lim
m→∞

m∑
n=0

1

n!

〈(
(−ı)Φ(g)

)n
η
∣∣Φ(h)ψ

〉
F = lim

m→∞

m∑
n=0

1

n!

〈(
Φ(h)(−ı)Φ(g)

)n
η
∣∣ψ〉

F

= lim
m→∞

m∑
n=0

1

n!

〈(
[Φ(h), (−ı)Φ(g)

)n
]η

∣∣ψ〉
F + lim

m→∞

m∑
n=0

1

n!

〈(
(−ı)Φ(g)

)n
Φ(h)η

∣∣ψ〉
F

= lim
m→∞

m∑
n=1

1

(n− 1)!

〈
=〈h|g〉

(
(−ı)Φ(g)

)n−1
η
∣∣ψ〉

F +
〈
WF (−g)Φ(h)η

∣∣ψ〉
F

= =〈h|g〉1
〈
WF (−g)η

∣∣ψ〉
F +

〈
WF (−g)Φ(h)η

∣∣ψ〉
F .

That is equivalent to

〈
Φ(h)η

∣∣WF (g)ψ
〉
F =

〈
η|

(
WF (g)Φ(h) + =

〈
h
∣∣g〉

1
WF (g)

)
ψ〉F . (2.165)

Since F0
b [h] is a core of Φ(h) the second part follows by the de�nition of self-adjointness.

Let φ, ψ ∈ F0
b [h] and ρ(t) =

〈
φ
∣∣WF (th)WF (tg)WF (−t(h + g))ψ〉F . It is ρ(0) = 〈φ|ψ〉F ,

furthermore

ρ(t+ δ)− ρ(t) (2.166)

=
〈
(WF (−δh)− 1)WF (−th)φ

∣∣WF ((t+ δ)g)WF (−(t+ δ)(h+ g))ψ
〉
F

+
〈
(WF (−δg)− 1)WF (−tg)WF (−th)φ

∣∣WF (−(t+ δ)(h+ g))ψ
〉
F

+
〈
WF (th)WF (tg)φ

∣∣(WF (−δ(h+ g))− 1)WF (−t(h+ g)ψ
〉
F .

Since

WF (−th)φ, WF (−tg)WF (−th)φ ∈ dom(Φ(th)) ∩ dom(Φ(tg)

and ‖W (f)‖ = 1 for all f ∈ h, and s-limδ→0 δ
−1(WF (−δk) − 1) = −ıΦ(k) for k = h, g, h + g,
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we obtain that ρ is di�erentiable and

ρ̇(t) =
〈
ıΦ(−h)WF (−th)φ

∣∣WF (tg)WF (−t(h+ g))ψ
〉
F (2.167)

+
〈
ıΦ(−g)WF (−tg)WF (−th)φ

∣∣WF (−t(h+ g))ψ
〉
F

+
〈
WF (th)WF (tg)φ

∣∣ıΦ(−(h+ g)WF (−t(h+ g)ψ
〉
F

= −ı
〈
WF (−th)φ

∣∣[Φ(−h),WF (tg)]WF (−t(h+ g))ψ
〉
F

= −ı=
〈
h
∣∣tg〉ρ(t).

Solving this initial value problem for ρ yields

ρ(t) = exp(−ıt2/2=〈h|g〉)〈φ|ψ〉F . (2.168)

Hence WF (h)WF (g)WF (−(h+ g)) = e−ı/2=〈h|g〉 for t = 1. �

Theorem 2.7.3. Let WF (h) := c`LH
{
WF (f) ∈ B(Fb[h]) : f ∈ h

}
. Then

WF (h)′ = {C1}. (2.169)

Proof of 2.7.3. Let T ∈ WF (h)′ for f1, . . . , fn ∈ h and g1, . . . , gm we have

〈Φ(f1) · · ·Φ(fn)Ω|TΦ(g1) · · ·Φ(gm)Ω〉F (2.170)

= lim
t→0

〈W (tf1)− 1

ıt
Φ(f2) · · ·Φ(fn)Ω

∣∣∣TΦ(g1) · · ·Φ(gm)Ω
〉
F

= lim
t→0

〈
Φ(f2) · · ·Φ(fn)Ω

∣∣∣T W (−tf1)− 1

−ıt
Φ(g1) · · ·Φ(gm)Ω

〉
F

=
〈
Φ(f2) · · ·Φ(fn)Ω

∣∣TΦ(f1)Φ(g1) · · ·Φ(gm)Ω
〉
F

=
〈
Ω

∣∣TΦ(fn) · · ·Φ(f1)Φ(g1) · · ·Φ(gm)Ω
〉
F .

Using equation (2.144), we obtain

〈a∗(f1) · · · a∗(fn)Ω|Ta∗(g1) · · · a∗(gm)Ω〉F (2.171)

=
〈
Ω

∣∣Ta(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω

〉
F

= 〈T ∗Ω|Ω〉 ·
〈
Ω

∣∣a(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω

〉
F .

The last equation is to show. First we assume n > m, then

a(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω = 0 and the equality holds. Assume n < m, we obtain since
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T ∗ ∈ WF (h)′

〈a∗(f1) · · · a∗(fn)Ω|Ta∗(g1) · · · a∗(gm)Ω〉F (2.172)

= 〈a∗(g1) · · · a∗(gm)Ω|T ∗a∗(f1) · · · a∗(fm))Ω〉F

= 〈TΩ|Ω〉 · 〈Ω|a(gm) · · · a(g1)a∗(f1) · · · a∗(fn)Ω〉F

= 〈T ∗Ω|Ω〉 ·
〈
Ω

∣∣a(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω〉F .

If n = m one has a(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω = c · Ω for c ∈ R and

〈a∗(f1) · · · a∗(fn)Ω|Ta∗(g1) · · · a∗(gm)Ω〉F (2.173)

= 〈Ω|TcΩ〉F = 〈T ∗Ω|Ω〉F · 〈Ω|a(fn) · · · a(f1)a
∗(g1) · · · a∗(gm)Ω〉F .

By linearity follows for φ, ψ ∈ F0
b [h] that

〈φ|Tψ〉 = 〈T ∗Ω|Ω〉F · 〈φ|ψ〉F (2.174)

and T = 〈T ∗Ω|Ω〉F · 1. �

Corollary 2.7.4. For all A ∈ B(Fb[h]), ε > 0 and (ψn)
∞
n=1 ∈

⊕n
j=1Fb[h] exists W ∈ WF (h),

such that
( ∑∞

n=1 ‖Wψn − Aψn‖2
)1/2

< ε,

Proof of 2.7.4. Theorem 2.2.3 and B(Fb[h]) = WF (h)′′. �

2.8 The Abstract Weyl Algebra

Let h be a Hilbert space and f ⊂ h a (not necessarily closed) subspace.

De�nition 2.8.1. A C∗-algebra A is a Weyl algebra over f, if A = c`LH{W (f) ∈ A : f ∈ f}

The operators W (f) have to ful�ll the Canonical Commutation Relations (CCR), i.e.

W (f)W (g) = e−ı/2·=〈f |g〉W (f + g) f, g ∈ f. (2.175)

Furthermore W (f)∗ = W (−f), f ∈ f. W (f) is called a Weyl operator.

Obviously, W (0) = 1 and W (f) is a unitary of A.
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Theorem 2.8.2 (Uniqueness). Assume A1,A2 are Weyl algebras over f

Ai = c`LH{Wi(f) ∈ Ai : f ∈ f}, i = 1, 2, (2.176)

Then exists a unique ∗-isomorphism α : A1 → A2, such that

α(W1(f)) = W2(f), f ∈ f. (2.177)

Proof of 2.8.2. Confer ([8], Thm. 5.2.8). �

We write in the following W(f) for the Weyl algebra over f.

Theorem 2.8.3 (Bogoliubov-transform). Let fi ⊂ hi, i = 1, 2 and v : f1 → f2. v is real linear

and

=〈v(f)|v(g)〉2 = =〈f |g〉1. (2.178)

Furthermore, let Ai be Weyl-algebras over fi, then exists an unique, injective ∗-morphism α :

A1 → A2 with

α(W1(f)) = W2(v(f)). (2.179)

α is called a Bogoliubov-transform.

Proof of 2.8.3. Let W3(f) := W2(v(f)), f ∈ f1.

A3 := c`LH{W3(f) ∈ A2 : f ∈ f1} ⊂ A2 (2.180)

Since

W3(f)W3(g) = W2(v(f))W2(v(g)) = e−ı/2·=〈v(f)|v(g)〉2W2(v(f) + v(g))

= e−ı/2=〈f |g〉1W2(v(f + g)) = e−ı/2=〈f |g〉1W3(f + g),

and

W3(f)∗ = W2(v(f))∗ = W2(−v(f)) = W2(v(−f)) = W3(−f). (2.181)

We conclude that A3 is a Weyl-algebra over f1. α : A1 → A3 is the ∗-isomorphism of 2.8.2

de�ned by W1(f) 7→ W3(f). �
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Example 2.8.4. • The main example is the Weyl algebra in the Fock representation de-

�ned in Theorem 2.7.2.

• The range of a Weyl algebra under a ∗-morphism is a Weyl-algebra.

De�nition 2.8.5 (States over the Weyl algebra). Let ω be a state over W (f).

1. ω is regular, if R 3 t 7→ ω(W (tf)) ∈ C is continuous for all f ∈ f.

2. ω is quasi-free, if there is a real bilinear form q : f×f → C, and ω(W (f)) = e−q(f,f), f ∈ f.

Example 2.8.6. Let ω(W ) = 〈Ω|WΩ〉 for W ∈ WF (h) ⊂ B(Fb[h]) and let Ω be the vacuum

vector of Fb[h]. We de�ne x(t) = ω(WF (tf)). Obviously x(0) = 1 and

ẋ(t) = ı〈Ω|WF (tf)Φ(f)Ω〉 = ı2−1/2〈Ω|WF (tf)a∗(f)Ω〉 = ı2−1/2〈Ω|a∗t (f)WF (tf)Ω〉, (2.182)

where we have

a∗t (f) = WF (tf)a∗(f)WF (−tf) = a∗(f) + ı2−1/2t‖f‖2
h. (2.183)

It follows ẋ(t) = −(1/2)t‖f‖2
h · x(t) and solving the initial value problem for x yields

x(t) = exp(−(1/4)t2‖f‖2
h) =⇒ ω(WF (f)) = exp(−(1/4)‖f‖2

h). (2.184)

Hence ω is a quasi-free state of WF (h).

Theorem 2.8.7 (Regular States). Let ω be a regular state over W (f) and (hω, πω,Ωω) its

GNS-representation. For all f ∈ f exists a self-adjoint operator Φω(f) on hω, such that

W (tf) = eıtΦω(f). (2.185)

Proof of 2.8.7. R 3 t 7→ πω(W (tf)) ∈ B(hω) is a group of unitaries. The statement of the

theorem follows from Stone's theorem, whenever the group is strongly continuous.

Let h0 = πω(W (f))Ωω.

‖(πω(W (tf))− 1)πω(W (g))Ωω‖2 (2.186)

=
〈
Ωω|πω(W (g))∗(πω(W (tf))− 1)∗(πω(W (tf))− 1)πω(W (g))Ωω

〉
= ω

(
W (g)∗(W (tf)− 1)∗(W (tf)− 1)W (g)

)
= 2− eıt=〈f |g〉ω(W (−tf))− e−ıt=〈f,g〉ω(W (tf)) −→ 0,

if t tends to zero. Hence it is strongly continuous on h0, but h0 is dense in hω. �
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Theorem 2.8.8 (Wick's Theorem). Let ω be a regular state over W (f).

1. Assume

R
n 3 (t1, . . . , tn) 7→ ω(W (tnfn) · · ·W (t1f1)

)
(2.187)

is smooth, then for k = 1, . . . , n

Ωω ∈ dom(Φω(f1)), Φω(fk−1) · · ·Φω(f1)Ωω ∈ dom(Φω(fk)).

2. If ω is quasi-free, then

〈Ωω|Φω(f1) · · ·Φω(f2n−1)Ωω〉 = 0

〈Ωω|Φω(f1) · · ·Φω(f2n)Ωω〉 =
∑
P∈P2n

∏
{k<l}∈P

〈Ωω|Φω(fk)Φω(fl)Ωω〉.

Pn is the set of pairings of {1, . . . , 2n}. That is, Pn contains sets P of the power set of

{1, . . . , 2n}. Each P ∈ Pn is a decomposition of {1, . . . , 2n} into set with exactly two element.

Proof of 2.8.8. Theorem 2.8.8 is proved in the Appendix. �

Lemma 2.8.9. If H is a self-adjoint operator on a separable Hilbert space h and β, µ ∈ R, β >

0, such that H − µ ≥ ε > 0 and Tr{e−βH} <∞, then Tr{e−βdΓ(H−µ)} <∞.

The parameter µ is often called the chemical potential.

Proof of 2.8.9. Since Tr{e−βH} < ∞, H has only discrete spectrum and we may write the

eigenvalues in increasing order E1 ≤ E2 . . ., repeated according to multiplicity. Let Pm be the

projection onto the m-particle space Sm
⊗m

i=1 h of the bosonic Fock space. We obtain

e−βdΓ(H−µ)Pm =
( m⊗

i=1

e−β(H−µ)
)
Pm. (2.188)

In
⊗m

i=1 h the eigenstates of
⊗m

i=1 e
−β(H−µ) can be characterized by (Ei1 , . . . , Eim). But the

eigenstates in Sm
⊗m

i=1 h can be indexed by(
(Ei1 , n1), . . . , (Eim , nm))

)
, i1 < . . . < im, n1 + . . .+ nm = n, ni ∈ N0 (2.189)

due to symmetry. That yields for the trace

Tr{e−βdΓ(H−µ)Pm} =
∑

i1<i2<...<im

∑
(n1,...,nm)∈Nm

0
n1+···+nm=m

e−β
Pm

k=1 nk(Eik
−µ). (2.190)
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For the full trace we obtain using the Neumann series

Tr{e−βdΓ(H−µ)} =
∞∑
m=0

Tr{e−βdΓ(H−µ)Pm} ≤
∞∏
k=1

(
1 +

∞∑
n=1

e−βn(Ek−µ)
)

(2.191)

=
∞∏
k=1

1

1− e−β(Ek−µ)
≤ exp

( ∞∑
k=1

ln
(
1− e−β(Ek−µ)

))
.

Using concavity of ln we obtain

ln
( 1

1− e−β(Ek−µ)

)
≤ 1

1− e−β(Ek−µ)
− 1 =

e−β(Ek−µ)

1− e−β(Ek−µ)
≤ e−β(Ek−µ)

1− e−βε
. (2.192)

Inserting in Equation (2.191) yields

Tr{e−βdΓ(H−µ)} ≤ exp
(

Tr{e−β(H−µ)}(1− e−βε)−1
)

(2.193)

≤ exp
(

Tr{e−βH} eβµ

1− e−βε

)
<∞.

We have shown the trace class property of e−βdΓ(H−µ). �

Theorem 2.8.10 (Gibbs States of Second Quantized Operators). For f ∈ h and W (h) ⊂

B(Fb[h]) we have

ω(W (f)) := Z−1 · Tr{e−βdΓ(H−µ)WF (f)} (2.194)

= exp
(
− (1/4)〈f | coth((β/2)(H − µ))f〉

)
,

where Z := Tr{e−βdΓ(H−µ)} and H,µ, β as in Lemma 2.8.9.

Proof of 2.8.10. Pick ε > 0 such that H − µ ≥ 2ε > 0. For every m ∈ N we have

Tr{e−βdΓ(H−µ)(N + 1)m} = Tr{e−βdΓ(H−µ−ε)e−βεN(N + 1)m} (2.195)

≤ Tr{e−βdΓ(H−µ−ε)}‖e−βεN(N + 1)m‖ <∞,

since ‖e−βεN(N+1)m‖ <∞ because of the spectral theorem, Tr{e−βdΓ(H−µ−ε)} <∞ by Lemma

2.8.9. For any operator A, such that A(N + 1)−m is bounded be obtain that e−βdΓ(H−µ−ε)A

extends to operator of trace class. It is simple to show, that one can choose any polynomial of

creation- and annihilation operators for A. First, we remark that for n ∈ N0

Tr{e−βdΓ(H−µ)Φ(f)2n+1)} = 0, (2.196)
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since for the orthogonal projection Pm onto the m-particle space we have e−βdΓ(H−µ)Pm =

Pme
−βdΓ(H−µ) and PmΦ(f)2n+1)Pm = 0. Moreover,

Tr{e−βdΓ(H−µ)Φ(f)2n−1a(g)} = Tr{a(g)e−βdΓ(H−µ)Φ(f)2n−1} (2.197)

= Tr{e−βdΓ(H−µ)a(e−β(H−µ)g)Φ(f)2n−1}

=
2n− 1

2
〈e−β(H−µ)g|f〉Tr{e−βdΓ(H−µ)Φ(f)2n−2}

+ Tr{e−βdΓ(H−µ)Φ(f)2n−1a(e−β(H−µ)g)}.

For h := (1− e−β(H−µ))g we obtain

Tr{e−βdΓ(H−µ)Φ(f)2n−1a(h)} (2.198)

=
2n− 1√

2
〈(eβ(H−µ) − 1)−1h|f〉 Tr{e−βdΓ(H−µ)Φ(f)2n−2}.

Furthermore,

Tr{e−βdΓ(H−µ)Φ(f)2n−1a∗(h)} = Tr{e−βdΓ(H−µ)a(h)Φ(f)2n−1} (2.199)

= Tr{e−βdΓ(H−µ)Φ(f)2n−1a(h)}+
2n− 1√

2
〈h|f〉 · Tr{e−βdΓ(H−µ)Φ(f)2n−2}

=
2n− 1√

2
〈f |e−β(H−µ)(eβ(H−µ) − 1)−1h〉 Tr{e−βdΓ(H−µ)Φ(f)2n−2}.

That yields

Tr{e−βdΓ(H−µ)Φ(f)2n} (2.200)

=
2n− 1√

2
〈f | coth(β/2(H − µ))f〉 · Tr{e−βdΓ(H−µ)Φ(f)2n−2}

=
(2n− 1)(2n− 3) · · · 1

2n
〈f | coth(β/2(H − µ))f〉n · Tr{e−βdΓ(H−µ)}

=
(2n)!

4nn!
〈f | coth(β/2(H − µ))f〉n · Tr{e−βdΓ(H−µ)}.

For a Weyl operator W (f) = eıΦ(f) we have

ω(W (f)) := Z−1 ·
∑
n=0

ı2n

(2n)!
Tr{e−βdΓ(H−µ)Φ(f)2n} = exp

(
− (1/4)〈f | coth(β/2(H − µ))f〉

)
.

�
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Chapter 3

Models in Nonrelativistic QED

3.1 Particle-Photon Interaction

In the Standard Model of QED, the particles are described with spin and with a potential. We

are working in units, where the Planck-constant ~ and the speed of light c are equal to 1. The

Hilbert space Hel is a closed subspace of L2(R3N ;C2). If all particles are identical fermions,

then to Hel belong only antisymmetric wave functions, i.e for any permutation of {1, . . . , N},

we have

ψ(kπ1, . . . , kπN) = sgn(π)ψ(k1, . . . , kN) (3.1)

almost everywhere, for every ψ ∈ Hel. The Hamiltonian for the particles is

Hel =
N∑
i=1

[(
~σi · (−ı~∇xi

)
)2

]
+ V, (3.2)

where ~σi = (σxi , σ
y
i , σ

z
i ) is the vector of spin-matrices. V is a potential, i.e. a measurable

function V : R3N → R, that acts by multiplication and leaves Hel invariant.

The Hilbert space for the bosons is

Hf := Fb[h], hph := L2(R3 × {±};C). (3.3)

hph is a Hilbert space equipped with the scalar product 〈f |g〉hph
=

∑
µ=±

∫
fµ(k)gµ(k)d

3k. The

�eld Hamiltonian is the second quantization of the one-particle energy,

Ȟ = dΓ(|k|) (3.4)

55
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|k| denotes the function that acts by multiplication with |k| in each component.

The quantized radiation �eld is de�ned by

~A(x) = (2π)−3/2
∑
µ=±

∫
ρ̂(k)

(2|k|)1/2
e−ık·x~ε(k, µ)a∗(k, µ)d3k + h.c. (3.5)

~ε(k, λ) is a measurable functions overR3×{±}, for almost all k ∈ R3, the triple (~k, ~ε(k,+), ~ε(k,−))

de�nes an ONB in C3. Formally, one can check that ~A(x) is in Coulomb gauge, i.e. divx ~A(x) =

0. ρ is an arti�cial charge distribution of the particle, its Fourier transform ρ̂ yields an UV-

cuto�, in particular ρ̂(−k) = ρ̂(k). a∗(k, λ), a(k, λ) are creation- and annihilation- operators,

for a de�nition of these objects, see ([22], Sec X.7). In our notation we have

Ai(x) = Φ(Gi,x), Gi,x(k) = (2π)−3/2 ρ̂(k)

|k|1/2
e−ık·xεi(k, µ). (3.6)

Gi,x(k) is considered as an operator on Hel depending on (k, µ) ∈ R3 × {±}. We also use the

notation Φ(~Gx) =
(
Φ(G1,x), Φ(G2,x), Φ(G3,x)

)
.

The interaction between both particle system and photons is obtained by minimal coupling,

one replaces −ı~∇xi
→ −ı~∇xi

− λ3/2Φ(~Gλ1/2xi
). λ is the coupling constant its physical value is

1
137

. we allow in our model λ to take any value not equal to zero. The full Hamiltonian now

reads

Hλ =
N∑
i=1

[(
~σi · (−ı~∇xi

− λ3/2Φ(~Gλ1/2xi
))

)2
]

+ V ⊗ 1+ 1⊗ Ȟ. (3.7)

(3.8)

The units in this model are ~ = c = 1, the positions of the electrons are measured in units of

(1/2)rBohr = (2mele
2)−1~2, rBohr is the Bohr radius, e is the charge of the electron, mel is the

mass of the electron. The wave length is measured in units of (1/2)λrBohr, the energy is chosen

in unit of 4 Rydberg, with 4Ry = 2e2r−1
Bohr.

Other models describing the particle-photon interaction can be derived from the standard

model. For example one neglects the spin of the particles and the polarization of the photons.

The Hilbert space Hel is now a subspace of L2(R3N) and the Fock space corresponds to L2(R3).

As Hamiltonian one would consider

Hλ =
N∑
i=1

(−ı~∇xi
⊗ 1− λ3/2Φ(~Gλ1/2xi

))2 + V ⊗ 1+ 1⊗ Ȟ. (3.9)
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To obtain other models, that are simpler to study, we introduce

U := exp
(
− ıλ3/2

N∑
i=1

xi ⊗ Φ(~G0)
)

U is an operator-valued gauge transformaton, known as the Pauli-Fierz transformation. We

will not prove that U is a unitary, since the proof is simple. One obtains

U(−ı~∇xi
)U∗ = −ı~∇xi

⊗ 1 + λ3/2

N∑
i=1

xi ⊗ Φ(~G0) (3.10)

U Φ(Gj,λ1/2xi
)U∗ = Φ(Gj,λ1/2xi

) + λ3/2

N∑
m=1

=〈xm ~G0|Gj,λ1/2xi
〉hph

= Φ(Gj,λ1/2xi
)

UȞU∗ = 1⊗ Ȟ + λ3/2

N∑
i=1

xi ⊗ Φ(ı|k|~G0) + λ3
( N∑
i=1

xi ⊗ 1
)2

‖|k|1/2 ~G0‖2
hph
.

The unitary transformed Hamiltonian is

H1 := UHλU
∗ =

N∑
i=1

(−ı~∇xi
⊗ 1− λ3/2Φ(~Gλ1/2xi

− ~G0))
2 + V ⊗ 1+ Ȟ

+λ3/2

N∑
i=1

xi ⊗ Φ(ı|k|~G0) + λ3‖|k|1/2 ~G0‖2
hph

( N∑
i=1

xi

)2

⊗ 1. (3.11)

In the following we call a model Dipole Approximation, if we consider have ~G0 in the interaction,

i.e. the transformed Hamiltonian is

HDP
1 :=

N∑
i=1

(
−∆xi

⊗1+λ3/2xi⊗Φ(ı|k|~G0)
)
+V ⊗1+1⊗Ȟ+λ3

( N∑
m=1

xm

)2

‖|k|1/2 ~G0‖2
hph
. (3.12)

This Approximation seems to be justi�ed if one considers the bounded states of atoms, where xj

is small. The Pauli-Fierz Transformation has the property to improve the infrared singularity

in the interaction by the factor |k|.

An alternative model, introduced by Nelson, uses Gx := eıkxρ̂(k)

|k|1/2 . The particles have no

spin and the photons have no polarization, i.e. the Fock space Fb[L2(R3)] is considered. The

Nelson Hamiltonian is

HNM
λ := Hel ⊗ 1 + 1⊗ Ȟ + λ

n∑
i=1

Φ(Gxi
). (3.13)

This model is used to study the behavior of HNM
λ as ρ̂(k) tends to 1, i.e. the ultraviolet cuto�

is removed. Confer [20].
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3.2 The concrete Model

In the mathematical analysis we consider operators of the form

Hλ = Hel +W + Ȟ, (3.14)

acting on H = Hel ⊗ Fb[h], h := L2(R3). Hel is a Hilbert space of wave functions, i.e. a

separable subspace of L2(X;C). X = (X,A, µ) is measure space and ν is a σ-�nite, regular

Borel measure. In principle, one could take an arbitrary Hilbert space, if one introduce an

abstract conjugation map on it, we use in our case the pointwise complex conjugation. Its

also possible to consider particles with spin and photons with polarizations, but to keep things

simple we will not do.

The operator W denotes the interaction. We set

W =
3∑
i=1

λiWi (3.15)

W1 := λ1

r∑
i=1

(
Φ(Gi)Φ(Hi) + Φ(Hi)Φ(Gi)

)
W2 := λ2Φ(F )

W3 := λ3V,

which can be speci�ed to operators mentioned above. First, we remark, that we can write

H ⊂ {(fn)∞n=0 : fn ∈ L2(X ×R3n, dµ⊗ d3nk), f(x, ·) ∈ L2
sym(R3n)}. (3.16)

The free Hamiltonian is

H0 := Hel ⊗ 1 + 1⊗ Ȟ, (3.17)

where Hel is self-adjoint and bounded below. We will see, that one obtains the same Liouvillean

for Hel and Hel + E. Therefore, we may assume that

Hel ≥ 1. (3.18)

Partly, we need the assumption

Hypothesis 1 (Gibbs Condition).

Tr{e−(β−ε)Hel} <∞ for some 0 < ε� β. (3.19)
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The value β is of course the inverse temperature, the positive number ε > will yield a kind

of regularization in the proof of Theorem 4.2.1. We will discuss this condition in section 3.3.

Let G = {Gk}k∈R3 , H = {Hk}k∈R3 , F = {Fk}k∈R3 be families of closed operators (eventu-

ally depending on further indices). We assume, that dom(F#
k ) ⊃ dom(H

1/2
el ) and

R
3 3 k 7→ G#

k , H
#
k , H

−1/2
el F#

k ∈ B(Hel) (3.20)

belong to L2(R3;B(Hel)). Furthermore we assume∫
(|k|+ |k|−1)‖G#

k ‖
2
B(Hel)

d3k <∞,

∫
(|k|+ |k|−1)‖H#

k ‖
2
B(Hel)

d3k <∞ (3.21)∫
(|k|+ |k|−1)‖H−1/2

el F#
k ‖

2
B(Hel)

d3k <∞, ‖H−δ
el V ‖B(Hel) <∞,

where 0 ≤ δ < 1 is �xed and G#
k , H

#
k , F

#
k is either Gk, Hk, Fk or G

∗
k, H

∗
k , F

∗
k .

The critical singularity for G#
k , H

#
k or F#

k at the origin is |k|−1, that includes the physical case

|k|−1/2 resp. |k|1/2.

We de�ne for f = (fn)
∞
n=0,

(a∗(F )fn)(x, k1, . . . , kn+1) (3.22)

= (n+ 1)−1/2

n+1∑
i=1

(Fki
fn)(x, k1, . . . , k̂i, . . . , kn+1),

and a(F )f0(x) = 0, resp.

(a(F )fn+1)(x, k1, . . . , kn) (3.23)

= (n+ 1)1/2

∫
dkn+1(F

∗
kn+1

fn+1)(x, k1, . . . , kn, kn+1).

The following bounds are obtained directly from Equation 5.10.

‖H−1/2
el a(F )f‖2

Hg
≤

∫
|α(k)|−1‖H−1/2

el F ∗
k ‖2

B(Hel)
dk · ‖dΓ(|α|)1/2f‖2

Hg
(3.24)

‖H−1/2
el a∗(F )f‖2

Hg
≤

∫
|α(k)|−1‖H−1/2

el Fk‖2
B(Hel)

dk · ‖dΓ(|α|)1/2f‖2
Hg

+

∫
‖H−1/2

el Fk‖2
B(Hel)

dk · ‖f‖2
Hg
.

For Gk, Hk ∈ B(Hel), the regularization H
−1/2
el can be omitted. At this moment we say nothing

about self-adjointness of Hλ. In most parts of this work (except in Chapter 5) need not this

fact, nevertheless it can deduced by 4.1.2 and 4.1.3.
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3.3 Gibbs Condition

In this section we discuss in detail for same relevant operators, which conditions imply that Hel

as only discrete pure point spectrum and Tr{e−βHel} < ∞. Only in this section we will write

H for Hel.

In the �rst case we consider particles in a bounded region. Let Ω ⊂ R
3 be open and

bounded. We set

ΩN = Ω× · · · × Ω︸ ︷︷ ︸
N -times

.

The kinetic energy is H0 is de�ned on C∞0 (ΩN) by −∆x. H0 is de�ned by Friedrichs extension

on L2(ΩN). For the potential one can choose

W =
∑

1≤i<j≤N

V (xi − xj),

where V : R3 → R is a potential that is an in�nitesimally form bounded perturbation of H0.

Hence H = H0 +W can be de�ned as sum of quadratic forms in the sense of ([22], Thm. X.17).

It follows for all β > 0 that Tr{e−βH} <∞. For a proof see ([23], Thm. XIII.78).

In the second case we consider a particle system in R3 with con�ning potential. First

assume H = −∆x + V and V = V1 + V2 is potential, where V1 ∈ L1
loc(R

n) is positive and for

all N > 0 exists R > 0, so that the V1(x) ≥ N for almost all x with |x| ≥ R. V2 is a form

bounded perturbation of −∆x with relative bound a < 1. Then H de�ned as sum of quadratic

forms has a compact resolvent and hence only discrete pure point spectrum. For the proof of

self-adjointness see ([22], Thm. X.32 and Thm. X.17) for the rest see ([23], Thm. XIII.68).

To check the Gibbs condition we assume V1 ∈ L2
loc(R

n) and V2 is perturbation of −∆x with

relative bound a < 1. By ([22], Thm. X.29) H is essentially self-adjoint on C∞0 (Rn). Since in

the quadratic form sense V2 ≤ a(−∆x) + b we have

H ≥ (1− a)(−∆x) + V1 − b. (3.25)

By the Golden-Thompson inequality B.0.9 we have

Tr{e−βH} ≤ eβb Tr{e−β/2(1−a)(−∆x)e−βV1e−β/2(1−a)(−∆x)}. (3.26)
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We de�ne now A = e−(β/2)V1e−(β/2)(1−a)(−∆x). Using Fourier Transform F one calculate the

integral kernel kA of A,

(Aφ)(x) =

∫
kA(x, y)φ(y)dny = e−(β/2)V1(x)F−1[e−(β/2)(1−a)(p2)φ̂](x) (3.27)

= (2π)−n/2
∫
e−(β/2)V1(x)e−(β/2)(1−a)((x−y)2)φ(y)dny

for almost every x ∈ Rn. From Lemma 4.2.2 follows

‖A‖2
2 =

∫
|kA(x, y)|2dnxdny = (2π)−n

∫
e−βV1(x)dnx ·

∫
e−β(1−a)(y2)dny.

Since Tr{e−βH} ≤ eβb Tr{A∗A} = eβb‖A‖2
2, it follows∫

e−βV1(x)dnx =⇒ Tr{e−βH} <∞. (3.28)

This means, at least a logarithmical growth at in�nity is needed to ful�ll the Gibbs condition.

The Gibbs condition indicates that the particle is con�ned to �nite region. This is believed

to be su�cient for the existence of an equilibrium state, since otherwise an escape to in�nity

is expected.

Remark 3.3.1 (The Representation of the Dynamical System for the Particles). In our context

the Gibbs condition enables us to de�ne

ωβel(A) = Z−1
β · Tr{e−βHelA}, Zβ = Tr{e−βHel} (3.29)

for A ∈ B(Hel). Whether the Gibbs condition is satis�ed or not, one can de�ne a representation

of B(Hel) into B(Kel), Kel := Hel⊗Hel by π
el : A 7→ A⊗1. We use also the notation πel[A] = Ax

introduced in Example 2.4.12.

In our case is Mel := πel[B(Hel)] = B(Hel) ⊗ 1 a W ∗-algebra. Its the commutant M′
el is

1 ⊗ B(Hel). We have a modular conjugation Jel de�ned in 2.4.12 and in the case where the

Gibbs condition is ful�lled, we have a cyclic and separating vector Ωβ
el and (Kel, π

el, ωβel) is a

GNS-triple corresponding to ωβel, confer 2.4.12. In any case the Liouvillean is Lel := Hel,x−Hel,y

and τ elt (A) = eıLelAe−ıLel for A ∈ Mel.

3.4 Thermodynamic Limit

In this section we are interested in equilibrium states over (τ f ,W (f)), which describe a Bose

gas, in�nitely extended, without condensation with an particle density due to Planck's law. In



62 CHAPTER 3. MODELS IN NONRELATIVISTIC QED

a grand canonical setting the equilibrium state is the so called Gibbs state

ω(A) = Tr{ρβA}, ρβ = Tr{e−βH}−1 · e−βH (3.30)

It is not only a (τ, β)-KMS-state, ρβ is the maximum of the entropy

Ent(ρ) = −Tr{ρ ln ρ}, ρ ∈
{
σ ∈ L1(h) : 0 ≤ σ, Tr{σ} = 1, Tr{σH} = Eβ

}
. (3.31)

Eβ is a �xed energy depending on H and β. In a grand canonical setting, that belongs to

an in�nitely extended region, there is no explicit unique formula for an equilibrium state, in

general.

We start with a restriction to a box Λ of length L > 0, and a Hilbert space HΛ = L2(Λ, d3x).

We use the Laplacian −∆x with periodic boundary conditions. The Hamiltonian we consider

to describe a single boson in a box is hΛ := (−∆x)
1/2

We describe the Bose gas in the con�guration space, while before we considered the momentum

space, the one-particle Hamiltonian was the Fourier-transform of (−∆x)
1/2 in the whole R3.

For �xed L and n ∈ Z3 we de�ne en(x) = L−3/2eı
2π
L
n·x, x ∈ Λ. {en : n ∈ Z3} is an ONB of

eigenvectors of hΛ, explicitly we have

hΛen =
2π

L
|n|en, |n| = (n2

1 + n2
2 + n2

3)
1/2 (3.32)

For every chemical potential µ < 0 we check, that

Z := Tr{e−β(hΛ−µ)} =
∑
n∈Z3

e−β( 2π
L
|n|−µ) ≤ 8eβµ

( ∞∑
n=0

e−β
2π
3L
n
)3

≤ 8eβµ
(
1− e−β

2π
3L

)3

<∞, (3.33)

in the calculation we used 1
3
(|n1| + |n2| + |n3|) ≤ |n| and the Neumann series. By Lemma

2.8.9 we deduce from e−β(hΛ−µ) ∈ L1(HΛ) that e−β(dΓ(hΛ−µ)) ∈ L1
(
Fb[HΛ]

)
. Let f ∈ HΛ. By

Theorem 2.8.10 we obtain for the Gibbs state over the Weyl operators:

ωΛ
β,µ(W (f)) = (ZΛ

β,µ)
−1 Tr{e−β(dΓ(hΛ−µ))W (f)} = exp

(1

4

〈
f | coth((β/2)(H − µ))f

〉
HΛ

)
. (3.34)

For a f with compact support and all Λ ⊃ supp f we obtain for the Fourier coe�cient

〈en|f〉HΛ
= f̂

(2π

L
n
)
·
(2π

L

)3/2

. (3.35)

f̂ is the Fourier transform of f in L2(R3). Since f =
∑

n∈Z3〈en|f〉HΛ
en, we obtain

ωΛ
β,µ(W (f)) = exp

(1

4

∑
n∈Z3

coth
(
(β/2)

(2π

L
|n| − µ

))(2π

L

)3
∣∣∣f̂(2π

L
|n|

)∣∣∣2) (3.36)

L→∞−→ exp
(
− 1

4

〈
f̂ | coth((β/2)(|k| − µ))f̂

〉)
.
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using a Riemann approximation. To calculate the particle density, we use the formula for the

photon number operator NΛ on Fb[L2(Λ, d3x)]:

NΛ =
∑
n∈Z3

a∗(en)a(en). (3.37)

The convergence is in a weak sense. We remark that

ωΛ
β,µ(Φ(en)

2) := −∂2
t ω

Λ
β,µ

(
W (ten)

)∣∣∣
t=0

=
1

2
coth((β/2)(

2π

L
|n| − µ)), (3.38)

confer Theorem 2.8.8. From Φ(en)
2 = (1/2)a(en)a(en)+(1/2)a∗(en)a

∗(en)+a∗(en)a(en)+(1/2)

and from ωΛ
β,µ(a(en)a(en)) = 0 = ωΛ

β,µ(a
∗(en)a

∗(en)) we conclude

ωΛ
β,µ(a

∗(en)a(en)) =
(

exp
(
β(

2π

L
|n| − µ)

)
− 1

)−1

. (3.39)

For the particle number density one obtains

ωΛ
β,µ(NΛ)

|Λ|
= L−3

∑
n∈Z3

(
exp

(
β(

2π

L
|n| − µ)

)
− 1

)−1

(3.40)

L→∞−→ (2π)−3

∫ (
exp

(
β(|k| − µ)

)
− 1

)−1

d3k.

Since ωΛ
β,µ is a (β, τΛ

t )-KMS state, where τΛ
t (A) = eıtdΓ(hλ−µ)Ae−ıtdΓ(hλ−µ), and, formally,

dΓ(hΛ − µ)
L→∞−→ Ȟ − µN, (3.41)

we de�ne the dynamical system, as follows:

De�nition 3.4.1. Let

Af := W (f), f = {f ∈ L2(R3) :

∫
(1 + |k|−1)|f(k)|2d3k <∞}.

We de�ne a linear functional by

ωβf : Af → C, W (f) 7→ exp
(
− 1

4

〈
f | coth

(
(β/2)|k|

)
f
〉)
.

The ∗-automorphism group is τ ft (A) = eıtȞAe−ıtȞ for A ∈ Af . Ȟ is de�ned in 3.4. We

also introduce the Planck density %(k) = (eβ|k| − 1)−1. In terms of this function, we have

ωβf (W (f)) = exp
(
− 1

4

〈
f |(1 + 2%)f

〉)
.
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3.5 A Derivation for the concrete Model at inverse Tem-

perature β

Lemma 3.5.1. There is an injective ∗-morphism

πAW : Af → W [h⊕ h], W (f) 7→ W ((1 + %)1/2f ⊕ %1/2f), (3.42)

such that for the vacuum vector Ωβ
f

ωβf (W ) = 〈Ωβ
f |πAW [W ]Ωβ

f 〉Fb[h⊕h]. (3.43)

πAW is the so called Araki-Woods-Isomorphism.

It follows directly, that ωβf is a state over Af .

Proof of 3.5.1. Let v : f ⊂ h → h ⊕ h be de�ned by v(f) = (1 + %)1/2f ⊕ %1/2f . v is a real

linear map and

=〈v(f)|v(g)〉h⊕h = =〈(1 + %)1/2f ⊕ %1/2f |(1 + %)1/2g ⊕ %1/2g〉h⊕h (3.44)

= =〈f |(1 + %)g〉h + =〈f |%g〉h = =〈f |g〉h.

Theorem 2.8.3 and Example 2.8.6 yield the morphism πAW . �

Lemma 3.5.2. (Fb[h⊕h], πAW , Ωβ
f ) is a GNS-triple for ωβf . That is, Ωβ

f is cyclic for πAW [Af ].

Proof of 3.5.2. We have to show, that

Fb[h⊕ h] = c`{πAW [W ]Ωβ
f : W ∈ Af}. (3.45)

Let U := c`{πAW [W ]Ωβ
f : W ∈ Af}. We will show Φβ(fn) · · ·Φβ(f1)Ω

β
f ∈ U, fi ∈ f, where

Φβ(f) = Φ
(
(1 + %)1/2f ⊕ %1/2f

)
Note that πAW [W (f)] = eıΦβ(f). We proceed by mathematical

induction. For n = 0 it is clear. By induction hypothesis Φβ(fn) · · ·Φβ(f1)Ω
β
f ∈ U and hence

for all t ∈ R.

πAW [W (tfn+1)]− 1

ıt
Φβ(fn) · · ·Φβ(f1)Ω

β
f

t→0+−→ Φβ(fn+1) · · ·Φβ(f1)Ω
β
f ∈ U. (3.46)

because πAW [W (fi)] leaves U invariant. Hence using CCR we have

a∗
(
(1 + %)1/2fn ⊕ %1/2fn

)
· · · a∗

(
(1 + %)1/2f1 ⊕ %1/2f1

)
Ωβ
f ∈ U. (3.47)
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Since f 7→ a∗(f) is linear, one obtains

a∗(
(
(1 + %)1/2f ⊕ 0

)
= (1/2)a∗

(
(1 + %)1/2f ⊕ %1/2f

)
− (1/2)ıa∗

(
(1 + %)1/2ıf ⊕ %1/2(ıf)

)
a∗(

(
0⊕ %1/2f

)
= (1/2)a∗

(
(1 + %)1/2f ⊕ %1/2f

)
+ (1/2)ıa∗

(
(1 + %)1/2ıf ⊕ %1/2(ıf)

)
.

Therefore for g1, . . . , gn ∈ f ,

a∗
(
(1 + %)1/2fn ⊕ %1/2gn

)
· · · a∗

(
(1 + %)1/2f1 ⊕ %1/2g1

)
Ωβ
f ∈ U. (3.48)

Since c`h⊕h{(1+%)1/2f ⊕%1/2g : f, g ∈ f} = h⊕h, the statement follows with Equation (2.158)

and Equation 2.145. �

We de�ne Mf := πAW [Af ]
′′. At this point we remark, that Mf is not B(Fb[h⊕ h]). Indeed,

πAW [Af ] ∼= W (f) up to a ∗-isomorphism, but it is not the Fock-representation of the CCR.

Lemma 3.5.3. Ωβ
f is separating for Mf .

Proof of 3.5.3. For f, g ∈ f we have

W ((1 + %)1/2f ⊕ %1/2f)W (%1/2g ⊕ (1 + %)1/2g) (3.49)

= exp
(
− ı/2=〈(1 + %)1/2f ⊕ %1/2f |%1/2g ⊕ (1 + %)1/2g〉h⊕h

)
·W (%1/2g ⊕ (1 + %)1/2g)W ((1 + %)1/2f ⊕ %1/2f)

= W (%1/2g ⊕ (1 + %)1/2g)W ((1 + %)1/2f ⊕ %1/2f).

Hence W (%1/2g ⊕ (1 + %)1/2g) ∈ πAW [Af ]
′ = M′

f . As in Lemma 3.5.2, we obtain that Ωβ
f is

cyclic for M′
f and therefore separating for Mf . �

Next we observe, that

πAW (τ ft (W (f))) = W ((1 + %)1/2eıt|k|f ⊕ %1/2e−ıt|k|f) = eıLfπAW (W (f))e−ıLf , (3.50)

where Lf := dΓ(|k| ⊕ −|k|).

Lemma 3.5.4. ωβf (A) := 〈Ωβ
f |AΩβ

f 〉 is a (τ f , β)-KMS-state over Mf , where τ
f
t (A) = eıtLfAe−ıtLf

for A ∈ Mf .
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Proof of 3.5.4. First, we observe

ωβf (W (f) τ ft (W (g))) = ωβf
(
exp(−(ı/2)=〈f |eıt|k|g〉)W (f + eıt|k|g)

)
(3.51)

= exp
(
− (1/2)〈f |(1 + %)eıt|k|g〉 − (1/2)〈g|%e−ıt|k|f〉

)
· exp

(
− (1/4)‖(1 + %)1/2f‖2 − (1/4)‖(1 + %)1/2g‖2

)
,

and analogously,

ωβf (τ
f
t (W (g))W (f)) (3.52)

= exp
(
− (1/2)〈g|(1 + %)e−ıt|k|f〉 − (1/2)〈f |%eıt|k|g〉

)
· exp

(
− (1/4)‖(1 + %)1/2f‖2 − (1/4)‖(1 + %)1/2g‖2

)
.

Using %(k) = (eβ|k| − 1)−1, we de�ne

F (πAW [W (f)], πAW [W (g)], z) (3.53)

= exp
(
− (1/2)

〈
f
∣∣∣e(β+ız)|k|

eβ|k| − 1
g
〉
− (1/2)

〈
g
∣∣∣ e−ız|k|

eβ|k| − 1
f
〉)

· exp
(
− (1/4)

∥∥∥(1 + %)1/2f
∥∥∥2

− (1/4)
∥∥∥(1 + %)1/2g

∥∥∥2)
.

A short calculation yields, that F is analytic on Sβ, continuous on c` Sβ and takes the necessary

boundary conditions de�ned in 2.4.5. By linearity we can de�ne F (A,B, ·) for A,B ∈ U :=

LH{πAW [W (f)] : f ∈ f}. since πAW [W (f)] = c`‖·‖ U . and Mf is the σ-strong∗ closure of

πAW [W (f)], we can pick for every given B ∈ Mf a Bn ∈ U , such that

‖(B∗ −B∗
n)Ω

β
f‖ ≤

1

n
and ‖(B −Bn)Ω

β
f‖ ≤

1

n
. (3.54)

Immediately, for A ∈ U∣∣Fβ(A,Bn, t)− ωβf (Aτ
f
t (B))

∣∣ =
∣∣〈Ωβ

f |Ae
ıtLfBnΩ

β
f 〉 − 〈Ω

β
f |Ae

ıtLfBΩβ
f 〉

∣∣ (3.55)

≤ ‖A‖ ‖(Bn −B)Ωβ
f‖ ≤ n−1‖A‖,

and ∣∣Fβ(A,Bn, t+ ıβ)− ωβf (τ
f
t (B)A)

∣∣ =
∣∣〈Ωβ

0 |Bne
−ıtLfAΩβ

f 〉 − 〈Ω
β
f |Be

−ıtLfAΩβ
f 〉

∣∣ (3.56)

≤ ‖A‖ ‖(B∗
n −B∗)Ωβ

f‖ ≤ n−1‖A‖.

Hence Fβ(A,Bn, ·) and Fβ(A,Bn, ·+ıβ) converge uniformly against ωβf (Aτ
f
(·)(B)), resp. ωβf (τ

f
(·)(B)A).

The Phragmen Lindelöf theorem states that ( under further weak assumptions ) an analytic
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functions de�ned on the strip Sβ take their maximal modulus at the boundary of Sβ. This

means in our case

sup
z∈c` Sβ

|Fβ(A,Bn, z)− Fβ(A,Bm, z)| (3.57)

≤ max{sup
t∈R

|Fβ(A,Bn, t)− Fβ(A,Bm, t)|, sup
t∈R

|Fβ(A,Bn, t+ ıβ)− Fβ(A,Bm, t+ ıβ)|}.

We conclude, that Fβ(A,Bn, ·) is a Cauchy-sequence the uniform norm. Let Fβ(A,B, ·) be the

limit, hence Fβ is the function that yields the (τ f , β)-KMS property of ωβf .

Now let A, B ∈ Mf and An ∈ U , such that

‖(An − A)Ωβ
f‖ ≤ n−1 and ‖(A∗n − A∗)Ωβ

f‖ ≤ n−1. (3.58)

As before, it follows Fβ(A,B, z) := limn→∞ Fβ(An, B, z) is the uniform limit on c` Sβ. �

Remark 3.5.5. We identify Kf := Fb[h ⊕ h] ∼= Fb[h] ⊗ Fb[h]. and Lf := dΓ(|k| ⊕ −|k|) ∼=

Ȟ ⊗ 1− 1⊗ Ȟ = Ȟl − Ȟr, using the notation Al := A⊗ 1 and Ar = 1⊗ A.

A summary:

Theorem 3.5.6. (Mf , τ
f , ωβf ) is a W ∗-dynamical system (Mf , τ

f , ωβf ). ω
β
f is a (τ f , β)-KMS-

state. Ωβ
f ∈ Fb[h]⊗Fb[h] is a cyclic and separating vector, such that ωβf (A) := 〈Ωβ

f |AΩβ
f 〉, A ∈

Mf . Lf is the ωβf -Liouvillean for τ f in the sense of (2.4.9) and also the Standard Liouvillean

for (Mf ,Ω
β
f ). The modular conjugation Jf is de�ned by

Jfa∗l (f1) · · · a∗l (fn)a∗r(g1) · · · a∗r(gm)Ωβ
f = a∗l (g1) · · · a∗l (gm)a∗r(f1) · · · a∗r(fn)Ω

β
f . (3.59)

Remark 3.5.7. One easily obtains a representation π of A := Ael ⊗ Af in B(K), where

K := Kel ⊗ Kf , by setting π := πel ⊗ πf . The W ∗-dynamical system shall be M := π[A]′′.

Furthermore we have

π[τ 0
t (A)] = eıtL0π[A]e−ıtL0 , t ∈ R, (3.60)

where L0 = Lel ⊗ 1 + 1 ⊗ Lf = Hel, x − Hel, y + Ȟl − Ȟr, confer Remark 3.5.5. The modular

conjugation is J := Jel⊗Jf . If Hel ful�lls the Gibbs condition, there is a cyclic and separating

vector Ωβ
0 = Ωβ

el ⊗ Ωβ
f . For A ∈ A we have

ωβ0 (A) = 〈Ωβ
0 |π[A]Ωβ

0 〉. (3.61)
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For A ∈ M we take the right side of (3.61) as de�nition and choose

τ 0
t (A) := eıtL0Ae−ıtL0 (3.62)

as the ∗-automorphism group.

Although, an ∗-automorphism group τλt (A) = eıtHλAe−ıtHλ on A may not exist, one can

de�ne an ∗-automorphism group τλ on M that describes the dynamics of an interacting system.

Therefore one replaces for example H0 in the de�nition of Hλ by L0 and for Φ(Gi), Φ(Hi), Φ(F )

by Φβ(Gi), Φβ(Hi), Φβ(F ). The interaction term reads now

Q := λ1

r∑
j=1

(
Φβ(Gj)Φβ(Hj) + Φβ(Hj)Φβ(Gj)

)
+ λ2Φβ(F ) + λ3Vx. (3.63)

For families of operators de�ned in Equation 3.20 we de�ne Φβ(F ) = Φ((1 + %)1/2F ⊕ %1/2F )

and Φ((1 + %)1/2F ⊕ %1/2F ) = 2−1/2a((1 + %)1/2F ⊕ %1/2F ) + h.c., confer Equation 3.22. To

study the dynamics we introduce a Liouvillean that anti-commutes with J ,

Lλ = L0 +Q− JQJ (3.64)

and de�ne

τλt (A) = eıtLλAe−ıtLλ , A ∈ M. (3.65)

In the following we prove that Lλ is self-adjoint. That allows to de�ne τλ and apply the theory

of perturbations of W ∗-dynamics, confer Theorem 2.5.6.



Chapter 4

Existence of Thermal Equilibrium States

4.1 The Liouvillean Lλ

First, we de�ne four auxiliary operators, which we use in Nelson's commutator theorem for Lλ.

Let �x notation:

L(1)
aux := (Hel, x +Hel, y

)
+ (Ȟaux, l + Ȟaux, r + 1) (4.1)

L(2)
aux :=

(
Hel, x +Q

)
+

(
Hel, y + JQJ

)
+ c1(Ȟaux, l + Ȟaux, r + 1) + c2

L(3)
aux :=

(
Hel, x +Q

)
+Hel, y + c1(Ȟaux, l + Ȟaux, r + 1) + c2

L(4)
aux := Hel, x +

(
Hel, y + JQJ

)
+ c1(Ȟaux, l + Ȟaux, r + 1) + c2

be de�ned on dom(L(1)
aux) := dom(L(2)

aux) := dom(Hel) ⊗ dom(Hel) ⊗ dom(Ȟaux) ⊗ dom(Ȟaux),

where Ȟaux := dΓ(1 + |k|). Recall, that J = Jel ⊗ Jf . In Example 2.4.12 we de�ned

Hel, x := Hel ⊗ 1⊗ 1⊗ 1 and Hel, y := 1⊗Hel ⊗ 1⊗ 1.

Furthermore, following Remark 3.5.5 we have

Ȟaux, l = 1⊗ 1⊗ Ȟaux ⊗ 1 and Ȟaux, r = 1⊗ 1⊗ 1⊗ Ȟaux.

Lemma 4.1.1. For su�ciently large values of c1, c2 ≥ 0 is L(i)
aux, i = 1, 2, 3, 4 self-adjoint and

positive. Moreover, there is a constant c3 > 0 such that

c−1
3 ‖L(1)

auxφ‖ ≤ ‖L(i)
auxφ‖ ≤ c3‖L(1)

auxφ‖, φ ∈ dom(L(1)
aux). (4.2)

69
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Proof of 4.1.1. Let N = dΓ(1) be the number operator.

Φa(ηGz)Φa′(η
′Hz)

(
Nr +Nl + 1

)−1
(4.3)

= Φa(ηGz)
(
Nr +Nl + 1

)−1
Φa′(η

′Hz)

−ıΦa(ηGz)
(
Nr +Nl + 1

)−1
Φa′(ıη

′Hz)
(
Nr +Nl + 1

)−1
,

where a, a′ ∈ {l, r}, z ∈ {x, y} and η, η′ ∈ {%1/2, (1 + %)1/2}.

Equation (4.3) together with Equation (2.148) and (2.149) yields

‖Φa(ηG)Φa′(η
′H)

(
Nr +Nl + 1

)−1‖ ≤ const ‖ηG‖f · ‖η′H‖f , (4.4)

where ‖K‖2
f =

∫ (
‖K∗(k)‖2

B(Hel)
+ ‖K(k)‖2

B(Hel)

)
d3k. Furthermore, we have

‖Φa(ηFz)H
−1/2
el,z (Na + 1)−1/2‖ ≤ const ‖ηH−1/2

el F‖f . (4.5)

Note, that

‖H1/2
el,z(Na + 1)1/2(qHel,z + q−1Na + 1)−1‖ ≤ 1 (4.6)

for all 0 < q. From ‖Nφ‖ ≤ ‖dΓ(|k|+ 1)φ‖ follows that

‖Qφ‖+ ‖JQJ φ‖ ≤ q′‖(Hel,x +Hel,y

)
φ+ c1(Ȟaux,l + Ȟaux,r + 1)φ‖. (4.7)

for all 0 < q′ < 1 and for c1 � 0 depending on q′. By the Kato-Rellich theorem ( [22], Thm

X.12) follows self-adjointness, boundedness from below of L(i)
aux and that L(1)

aux is L(i)
aux-bounded

for every c2 ≥ 0 and i = 2, 3, 4. �

Theorem 4.1.2. The operators

L0, Lλ := L0 +Q− JQJ , L0 +Q, L0 − JQJ (4.8)

are self-adjoint with domains including dom(L(1)
aux). Every core of L(1)

aux is a core of the operators

in Equation (4.1).

Recall, that L0 was de�ned in Remark 3.5.7 and J = Jel ⊗ Jf .

Proof of 4.1.2. We restrict ourselves to the case of Lλ. We check the assumptions of Nelson's

commutator theorem ([22], Thm X.37). Using Lemma 4.2.7 it su�ces to show that for φ ∈
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dom(L(2)
aux),

‖Lλφ‖ ≤ C‖L(1)
auxφ‖ (4.9)∣∣〈Lλφ∣∣L(2)

auxφ
〉
−

〈
L(2)
auxφ

∣∣Lλφ〉∣∣ ≤ C
∥∥L(1)

auxφ
∥∥2
. (4.10)

The �rst inequality follows from Equation (4.7). For the second inequality we observe∣∣〈Lλφ∣∣L(2)
auxφ

〉
−

〈
L(2)
auxφ

∣∣Lλφ〉∣∣ (4.11)

≤ c1
∣∣〈Qφ∣∣(Ȟaux,l + Ȟaux,r)φ

〉
−

〈
(Ȟaux,l + Ȟaux,r)φ

∣∣Qφ〉∣∣
+c1

∣∣〈JQJ φ∣∣(Ȟaux,l + Ȟaux,r)φ
〉
−

〈
(Ȟaux,l + Ȟaux,r)φ

∣∣JQJ φ〉∣∣
+

∣∣〈Lfφ∣∣Qφ〉
− 〈Qφ

∣∣Lfφ〉∣∣ +
∣∣〈Lfφ∣∣JQJ φ〉

−
〈
JQJ φ

∣∣Lfφ〉∣∣,
where we used, that in a strong sense[

Hel,x +Q, Hel,y + JQJ
]

= 0. (4.12)

We remark that

[Φa(ηG)Φa(η
′H), dΓa(1 + |k|)] (4.13)

= ıΦa(ı(1 + |k|)ηG)Φa(η
′H) + ıΦa(ηG)Φa(ı(1 + |k|)η′H)

and

[Φa(ηF ), dΓa(1 + |k|)] = ıΦa(ı(1 + |k|)ηF ), (4.14)

hence the terms on the right side of (4.11) are in�nitesimal perturbations of L(1)
aux. For L0 +Q

and L0−JQJ one has to consider the commutator with L(3)
aux, resp. L(4)

aux in Equation 4.10. �

Remark 4.1.3. In the same way one can show, that Hλ is essentially self-adjoint on any core

of Hel + Ȟaux, even if Hλ is not bounded below and is de�ned Ȟaux = dΓ(1 + |k|).

4.2 Equilibrium States

The goal of the following theorem is to give explicit conditions for Hel and W , which ensure

Ωβ
0 ∈ dom(e−β/2(L0+Q)). Recall, that Q is de�ned in 3.63 and Ωβ

0 in 3.5.7.

Let γ, δ ≥ 0, so that∫
(|k|+ |k|−1)‖H−γ

el F
#
k ‖

2
B(Hel)

d3k <∞, ‖H−δ
el V ‖B(Hel) <∞. (4.15)
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We are interested in small values for γ and δ.

Theorem 4.2.1. There are two cases,

1. If 0 ≤ γ < 1/2, then for |λ1| < Cβ−1, λ2, λ3 ∈ R and all β > 0 we have Ωβ
0 ∈

dom(e−β/2(L0+Q))

2. If γ = 1/2 then there is a constant C < ∞, such that for |λ1|, |λ2| < Cβ−1 and λ3 ∈ R

we have Ωβ
0 ∈ dom(e−β/2(L0+Q)).

Furthermore we assume that the Gibbs condition is ful�lled for a small, but �xed ε > 0:

Tr{e−(β−ε)Hel} <∞, if γ + δ > 0. (4.16)

When γ = 0 and δ = 0 only have to assume Tr{e−βHel} < ∞. In this case the constant C

depends on ε > 0.

First we introduce a regularized version of Q.

QN := λ1

r∑
j=1

(
Φβ(Gj,N)Φβ(Hj,N) + Φβ(Hj,N)Φβ(Gj,N)

)
+ λ2Φβ(FN) + λ3Vx,N , (4.17)

where Gj,N := PNGjPN , Hj,N := PNHjPN , FN := PNFPN and Vx,N := PNVxPN . PN :=

1[Hel ≤ N ] is a spectral projection of Hel.

Lemma 4.2.2. QN is self-adjoint with dom(QN) ⊃ dom(1⊗ dΓ(1⊕ 1)). QN is a�liated with

M, i.e. QN is closed and commutes with all elements in M′, confer De�nition 2.5.1.

Proof of 4.2.2. By assumption, Vx,N is bounded and Vx,N ∈ M, hence it su�ces to consider the

case Vx,N = 0. Let K0 :=
⋃∞
n=1 ran1[1⊗ (Nl + Nr) ≤ n]. Obviously, QN : K0 → K0. On K0 we

have

− ı[Φβ(FN), 1⊗ (Nl + Nr)] = Φβ(ıFN), (4.18)

the same is true for Φβ(Gj,N) and Φβ(Hj,N). Therefore

− ı[QN , 1⊗ (Nl + Nr)] = λ1

r∑
j=1

(
Φβ(ıGj,N)Φβ(Hj,N) + Φβ(Gj,N)Φβ(ıHj,N) + h.c.

)
+λ2Φβ(ıFN). (4.19)
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Since Equation (4.4) holds, we have

‖QNφ‖ ≤ const ‖(Nl + Nr +1)φ‖ (4.20)

‖[QN ,Nl + Nr]φ‖ ≤ const ‖(Nl + Nr +1)φ‖ (4.21)

for φ ∈ K0, we can apply Nelson's commutator theorem ([22], Thm X.37) to show that QN is

essentially self-adjoint on K0. Next, we remark that Ay · JfπAW [W(f)]Jf : K0 → dom(QN),

and

QN

(
Ay · JfπAW [W(f)]Jf

)
φ =

(
Ay · JfπAW [W(f)]Jf

)
QNφ, φ ∈ K0. (4.22)

By closedness of QN the above equation extends to all φ ∈ dom(QN). Since the strong closure

of U := LH{Ay ·JfπAW [W(f)]Jf : A ∈ B(h), f ∈ f} is π[A]′ = M′ = JMJ , we have for every

Y ∈ M′, a sequence Yn ∈ U , such that Yn → Y strongly. Hence

QNYnφ = YnQNφ→ Y QNφ, Ynφ→ Y φ, n→∞. (4.23)

From the closedness of QN follows Y φ ∈ dom(QN) and QNY ⊃ Y QN . Hence QN is a�liated

with M. �

We observe, that (e−sL0QNe
sL0) leaves ran{PN ⊗PN ⊗ 1⊗ 1} invariant and ran{PN ⊗PN ⊗

1⊗ 1}⊥ ⊂ ker(e−sL0QNe
sL0). Therefore, we can de�ne

ψ(t, s, n,N) := etL0(e−snL0QNe
snL0) · · · (e−s1L0QNe

s1L0)Ωβ
0 . (4.24)

for 0 ≤ sn ≤ sn−1 ≤ . . . ≤ s1 ≤ β/2, n ∈ N0

Lemma 4.2.3. With the assumptions of Theorem 4.2.1 we have

Ωβ
0 ∈ dom(e−β/2(L0+QN )), sup

N
‖e−β/2(L0+QN )Ωβ

0‖ <∞, (4.25)

and

e−β/2(L0+QN )Ωβ
0 =

∞∑
n=0

(−1)n
∫

∆n
β

dsψ(0, s, n,N) (4.26)

for ψ de�ned in Equation (4.24). Here, ∆n
β = {(s1, . . . , sn) ∈ Rn : 0 ≤ sn ≤ . . . ≤ s1 ≤ β} is

a simplex of dimension n.
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Proof of 4.2.3. For φ ∈ ran1[|L0 +QN | ≤ k] we have

〈e−x(L0+QN )φ| exL0Ωβ
0 〉 =

m∑
n=0

(−1)n
∫

∆n
β/2

ds
〈
φ|ψ(0, s, n,N)

〉
+(−1)m+1

∫
∆m+1

β/2

ds
〈
e−sm+1(L0+QN )φ|ψ(sm+1, s, n,N)

〉
, (4.27)

From Lemma 4.2.4 and Lemma 4.2.5 we obtain

∞∑
n=1

∫
∆n

β/2

‖ψ(0, s, n,N)‖ds <∞. (4.28)

Since ‖e−sm+1(L0+QN )φ‖ ≤ eβk‖φ‖, the limit m→∞ for (4.27) exists and equals

〈e−β/2(L0+QN )φ|Ωβ
0 〉 =

〈
φ|

∞∑
n=0

(−1)n
∫

∆n
β/2

dsψ(0, s, n,N)
〉
. (4.29)

Since φ ∈
⋃
k∈N ran{1[|L0 +QN | ≤ k]} is a core of e−β/2(L0+QN ), we get Ωβ

0 ∈ dom(e−β/2(L0+QN ))

and

e−β/2(L0+QN )Ωβ
0 =

∞∑
n=0

(−1)n
∫

∆n
β/2

dsψ(0, s, n,N). (4.30)

Furthermore, Lemmata 4.2.4 and 4.2.5 allow to choose λ and β > 0 so small, that

sup
N
‖e−β/2(L0+QN )Ωβ

0‖2 ≤ sup
N
〈Ωβ

0 |e−β(L0+QN )Ωβ
0 〉 (4.31)

= sup
N

∞∑
n=0

∫
∆2n

β

ds 〈Ω|ψ(0, s, 2n,N)〉 <∞.

�

Lemma 4.2.4. Let ψ(t, s, n,N) be de�ned as in Equation (4.24).

1. For all m,n,N ∈ N one has∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
ψ(0, r,m,N)|ψ(0, s, n,N)

〉
(4.32)

=

∫
∆n+m

β

dz 1[zm ≥ β/2 ≥ zm+1]
〈
Ωβ

0

∣∣ψ(0, z, n+m,N)
〉
,

2. and ∥∥∥∫
∆n

β/2

ψ(0, s, n,N)ds
∥∥∥2

≤
∫

∆2n
β

∣∣∣〈Ωβ
0 |ψ(0, s, 2n,N)

〉∣∣∣ds. (4.33)
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Proof of 4.2.4. First, we introduce the short cut ψ(s, n) := ψ(0, s, n,N). Since (e−sL0QNe
sL0), s ∈

R is a�liated with M, one has∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
ψ(r,m)|ψ(s, n)

〉
=

∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
(e−rmL0QNe

rmL0) · · · (e−r1L0QNe
r1L0)Ωβ

0

|(e−snL0QNe
snL0) · · · (e−s1L0QNe

s1L0)Ωβ
0

〉
=

∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
J (e−rmL0QNermL0) · · · (e−r1L0QNer1L0)Ωβ

0

|J (e−snL0QNesnL0) · · · (e−s1L0QNes1L0)Ωβ
0

〉
=

∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
e−β/2L0(es1L0QNe

−s1L0) · · · (esnL0QNe
−snL0)Ωβ

0

∣∣∣
e−β/2L0(er1L0QNe

−r1L0) · · · (ermL0QNe
−rmL0)Ωβ

0

〉
.

We used that J is a the modular conjugation with respect to Ωβ
0 . Next, we introduce new

variables for r, namely xi := β − rm−i+1. Let D
m
β/2 := {x ∈ Rm : β/2 ≤ xm ≤ . . . ≤ x1 ≤ β}.

Hence we get, using eβL0Ωβ
0 = Ωβ

0 , that∫
∆n

β/2

ds

∫
∆m

β/2

dr
〈
ψ(r,m)|ψ(s, n)

〉
=

∫
∆n

β/2

ds

∫
Dm

β/2

dx
〈
(es1L0QNe

−s1L0) · · · (esnL0QNe
−snL0)Ωβ

0

∣∣∣
(e−xmL0QNe

xmL0) · · · (e−x1L0QNe
x1L0)Ωβ

0

〉
=

∫
∆n+m

β

dz 1[zm ≥ β/2 ≥ zm+1]
〈
Ωβ

0

∣∣∣(e−zn+mL0QNe
zn+mL0) · · · (e−z1L0QNe

z1L0)Ωβ
0

〉
.

Choosing n = m yields the second part of the statement. �

For this section we write Zβ−ε
el = Tr{e−(β−ε)Hel}.

Lemma 4.2.5. Let n > 0. There are constants C0, C1, C2, C3 > 0 independent of β, λ,N , such

that ∫
∆n

β

∣∣∣〈Ωβ
0 |ψ(0, s, n,N)

〉∣∣∣ds ≤ (Zβ−ε
el /Zβ

el)C0

∑
n1+2n2+n3=n

(C1(1 + β)|λ1|)n1 (4.34)

( C2ε
−2γ(1 + β)λ2

2

(1 + 2(1− γ)n2)1−2γ

)n2
( C3ε

−δβ|λ3|
((1− δ)n3)1−δ

)n3

.
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for some ε > 0. If γ = δ = 0 one can choose ε = 0. γ and δ are de�ned in Equation 4.15. ε is

a small real, de�ned in Theorem 4.2.1.

Proof of 4.2.5. We observe that∫
∆n

β

∣∣∣〈Ωβ
0 |ψ(0, s, n,N)

〉∣∣∣ds =

∫
∆n

1

ds In(β, s,N), (4.35)

where

In(β, s,N) = βnωβ0

((
e−βsnH0Wλe

βsnH0
)
· · ·

(
e−βs1H0Wλe

βs1H0
))

(4.36)

= (Zβ
el)

−1βn
∑

κ∈{1,2,3}n

ωβf

(
TrHel

{
e−βHel

(
e−βsnH0λκ(n)Wκ(n)e

βsnH0
)
· · ·

(
e−βs1H0λκ(1)Wκ(1)e

βs1H0
)})

.

Next, we give a short summary how to evaluate the quasi-free state in this case. From Wick's

theorem about quasi-free states we conclude for (1 + |k|−1/2)f1, . . . , (1 + |k|−1/2)f2m ∈ L2(R3)

and σ ∈ {+,−}2m

ωβf (a
σ2m(e−σ2ms2m|k|f2m) · · · aσ1(e−σ1s1|k|f1)) (4.37)

=
∑
P∈Z2

∏
{i,j}∈P

i>j

ωβλ(a
σi(e−σisi|k|fi)a

σj(e−σjsj |k|fj)
)
.

Z2 are the pairings, that is

P ∈ Z2 i� P = {Q1, . . . , Qm}, #Qi = 2 and
⋃m
i=1Qi = {1, . . . , 2m}.

Of course a+ = a∗ and a− = a. For the expectation of the so called two-point functions, we

obtain:

ωβf (a
+(eβsi|k|fi)a

+(eβsj |k|fj)) = 0 = ωβf (a(e
−βsi|k|fi)a(e

−βsj |k|fj)) (4.38)

ωβf (a
+(eβsi|k|fi)a

−(e−βsj |k|fj)
)

=

∫
d3kfi(k)fj(k)

eβ(si−sj)|k|

eβ|k| − 1

ωβf (a
−(eβsi|k|fi)a

+(e−βsj |k|fj)
)

=

∫
d3kfj(k)fi(k)

e(β+βsj−βsi)|k|

eβ|k| − 1
.

That implies for the expectation value of 2m creation- or annihilation operators:

ωβf (a
σ2m(e−σ2mβs2m|k|f2m) · · · aσ1(e−σ1βs1|k|f1)) (4.39)

=

∫
ν(d3(2m)k ⊗ d2mτ) fσ2m

2m (k2m, τ2m) · · · fσ1
1 (k1, τ1),
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where f+(k, τ) := f(k)1[τ = +] and f−(k, τ) := f(k)1[τ = −].

ν is a measure on (R3)2m×{+,−}2m, which expresses the pairings by means of Dirac-measures

ν(d3(2m)k ⊗ d2mτ) (4.40)

=
∑

P∈Z2m

∑
τ∈{+,−}2m

∏
{i>j}∈P

δτi,−τjδki,kj

(
δτi,+

eβ(si−sj)|ki|

eβ|ki| − 1
+ δτi,−

e(β−β(si−sj))|ki|

eβ|ki| − 1

)
d3(2m)k.

Let M(m1,m2,m3) = {κ ∈ {1, 2, 3}n : #κ−1({i}) = mi, i = 1, 2, 3}, it is the set vectors that

have m1 times the value 1 in a component, m2 times the value 2 and m3 times the value 3. We

obtain

In(x, s,N) =
∑

(n1,n2,n3)∈N3
0

n1+2n2+n3=n

∑
κ∈M(n1,2n2,n3)

m:=n1+n2

λn1
1 λ

2n2
2 λn3

3

∫
ν(d3(2m)k ⊗ d2mτ) (4.41)

(Zβ
el)

−1βn TrHel
{e−(β−β(s1−s2m))HelI2me

−β(s2m−1−s2m)Hel · · · e−β(s1−s2)HelI1},

where we have for κ(j) = 1, 2, 3

Ij =


Ij(m, τ,m

′, τ ′), κ(j) = 1

Ij(m, τ), κ(j) = 2

Ij, κ(j) = 3

(4.42)

=



∑
σ∈{+,−}2r

∑r
i=1 1[(τ, τ

′) = (σ2i−1, σ2i)]G
σ2i−1

i (m)Hσ2i
i (m′) + h.c., κ(j) = 1

F+(m)1[τ = +] + F−(m)1[τ = −], κ(j) = 2

V κ(j) = 3,

where we have suppressed the index N . In the integral (4.41) we insert for (m, τ) and (m′, τ ′)

from left to right k2m, τ2m, k2m−1, τ2m−1, . . . , k1, τ1.

In the next step we want to take the norm within the integral of (4.41). Additionally we

use

ν(d32m⊗ d2mτ) ≤
∑

P∈Z2m

∑
τ∈{+,−}2m

∏
{i>j}∈P

(
δki,kj

coth(β|ki|/2)
)
d3(2m)k. (4.43)

Next, we apply Hölder's-Inequality for the trace, i.e.

|Tr{A2mB2m · · ·A1B1}| ≤
2m∏
j=1

‖Bj‖ ·
2m∏
j=1

Tr{Apj

i }p
−1
j , (4.44)

if pi ≥ 1 and
∑2m

i=1 p
−1
i = 1, such as Ai ≥ 0. Confer Theorem B.0.8. Let

p1 := (1− s1 + s2m)−1, pi := (si−1 − si)
−1, i = 2, . . . , 2m (4.45)
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We de�ne

(Aj, Bj) :=



(
e−βp

−1
j Hel , Ij(m, τ,m

′, τ ′)
)
, κ(j) = 1(

e−βp
−1
j HelHγ

el, H
−γ
el Ij(m, τ, )

)
, κ(j) = 2(

e−βp
−1
j HelHδ

el, H
−δ
el Ij

)
, κ(j) = 3

. (4.46)

Let

η1(k) = max
σ=±, i=1,...,r

{‖Gσ
i (k)‖, ‖Hσ

i (k)‖}, η2(k) = max
σ=±

‖H−γ
el F

σ(k)‖. (4.47)

We obtain after applying Hölder's inequality and integrating over ν, using Equation (4.43),

factors like ∫
ηi(k)ηj(k) coth(β/2|k|)d3k (4.48)

≤
( ∫

η2
i (k) coth(β/2|k|)d3k

)1/2( ∫
η2
j (k) coth(β/2|k|)d3k

)1/2

≤
( ∫

η2
i (k)(2 + 4(β|k|)−1)d3k

)1/2( ∫
η2
j (k)(2 + 4(β|k|)−1)d3k

)1/2
.

Note that the number of pairings is #Z2 = (2m)!
2mm!

. That yields for the evaluation of In

|In(βs,N)| ≤ (Zβ
el)

−1βn
∑

(n1,n2,n3)∈N
n1+2n2+n3=n

∑
κ∈M(n1,2n2,n3)

m:=n1+n2

λn1
1 λ

2n2
2 λn3

3

(2m)!

2mm!
22n1r+2n2

2∏
i=1

( ∫
η2
i (k)(2 + 4(β|k|)−1)d3k

)ni
∏

i:κ(i)=1

TrHel

{
e−βHel

}p−1
i

∏
i:κ(i)=2

TrHel

{
e−βHelHpiγ

el

}p−1
i

∏
i:κ(i)=3

TrHel

{
e−βHelHpiδ

el

}p−1
i ‖H−δ

el V ‖
n3 .(4.49)

Furthermore, for ε > 0

TrHel

{
e−βHelHpiγ

el

}p−1
i ≤ ‖e−εHelHpiγ

el ‖
p−1

i TrHel

{
e−(β−ε)Hel

}p−1
i . (4.50)

The spectral theorem for Hel states, that the norm in Equation (4.50) is less than the maximum

of the function f(r) = e−εrrpiγ, r ≥ 0. For 0 ≤ γ ≤ 1/2 we obtain

TrHel

{
e−βHelHpiγ

el

}p−1
i ≤ ε−γpγi TrHel

{
e−(β−ε)Hel

}p−1
i . (4.51)

The same inequality holds for δ instead of γ. We obtain∫
∆n

1

I(x, s,N)ds ≤ βn(Zβ−ε
el /Zβ

el)
∑

(n1,n2,n3)∈N
n1+2n2+n3=n

∑
κ∈M(n1,2n2,n3)

m:=n1+n2

λn1
1 λ

2n2
2 λn3

3

(2m)!

2mm!
(4.52)

2∏
i=1

( ∫
η2
i (k)(2 + 4(β|k|)−1)d3k

)niε−2n2γ−n3δ

∫
∆n

1

Cκ(s)ds,
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where

Cκ(s) = (1− s1 + sn)
−α1

n−1∏
i=1

(si − si+1)
−αi , (4.53)

and

αj =


0, κ(j) = 1

γ, κ(j) = 2

δ, κ(j) = 3

. (4.54)

We remark, that
∑

κ∈M(n1,2n2,n3) 1 ≤ 3n1+2n2+n3 and (2m)!
2mm!

≤ 2n1+n2(n1 + n2)!. Thus Lemma

4.2.6 yields the assertion. �

Lemma 4.2.6. For the function Cκ we have

Γ(n1 + n2 + 1)

∫
∆n

Cκ(s)ds (4.55)

≤ (n+ 1)2C ′
0C

′n
1

(
n1 + 2(1− γ)n2

)−(1−2γ)n2
(
(1− δ)n3

)−(1−δ)n3 .

Proof of 4.2.6. We turn now to the integral

∫
∆n

Cκ(s)ds =

∫
∆2n

1

ds(1− s1 + sn)
−α1

n−1∏
i=1

(si − si+1)
−αi . (4.56)

We de�ne for k = 1, . . . , 2n, a change of coordinates by sk = r1−
∑k

j=2 rj, the integral transforms

to ∫
Sn

(1− (r2 + · · ·+ rn))
−α1

n∏
i=2

r−αi
i dnr =

∫
Tn−1

(1− (r2 + · · ·+ rn))
1−α1

n∏
i=2

r−αi
i dn−1r

=
Γ(1− α1)

−1Γ
(
1− γ

)2n2Γ
(
1− δ

)n3

Γ
(
n1 + 2n2(1− γ) + n3(1− δ)

) , (4.57)

where S2n := {r ∈ R2n : 0 ≤ ri ≤ 1, r2 + · · ·+ r2n ≤ r1} and T 2n−1 := {r ∈ R2n−1 : 0 ≤ ri ≤

1, r2 + · · · + r2n ≤ 1}. From the �rst to the second formula we integrate over dr1. The last

equality follows from a formula in [14] Formula 4.635 (4).

From Stirling's formula we obtain

(2π)1/2xx−1/2e−x ≤ Γ(x) ≤ (2π)1/2xx−1/2e−x+1, x ≥ 1. (4.58)
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Since m = n1 + n2 and n = n1 + 2n2 + n3 we have for n1 + n2 ≥ 1

Γ(n1 + n2 + 1)

Γ(n1 + 2(1− γ)n2 + (1− δ)n3)
=

(n1 + n2 + 1)Γ(n1 + n2)

Γ(n1 + 2(1− γ)n2 + (1− δ)n3)
(4.59)

≤ (n+ 1)2
(n1 + 2(1− γ)n2

e

)−(1−2γ)n2
((1− δ)n3

e

)−(1−δ)n3

. (4.60)

�

Lemma 4.2.7. If supN∈N ‖e−β/2(L0+QN )Ωβ
0‖ <∞ then Ωβ

0 ∈ dom(e−β/2(L0+Q)).

Proof of 4.2.7. For f ∈ C∞0 (R) and φ ∈ K we de�ne ψN := f(L0 + QN)φ. Obviously, for

g(r) = e−β/2rf(r) ∈ C∞0 (R) we have e−β/2(L0+QN )ψN = g(L0 +QN)φ. Since L0 +QN −→ L0 +Q

for N →∞ in the strong resolvent sense, we know from [21] that

e−β/2(L0+QN )ψN = g(L0 +QN)φ −→ g(L0 +QN)φ, N →∞, (4.61)

and

ψN −→ ψ := f(L0 +QN)φ, N →∞. (4.62)

Hence for 0 ≤ x ≤ ε

|〈e−β/2(L0+QN )ψ|Ωβ
0 〉| = lim sup

N→∞
|〈e−β/2(L0+QN )ψN |Ωβ

0 〉| ≤ a‖ψ‖, (4.63)

Since {f(L0 + Q)φ ∈ K : φ ∈ K, f ∈ C∞0 (R)} is a core of e−β/2(L0+Q), we obtain Ωβ
0 ∈

dom(e−β/2(L0+Q)). �

Corollary 4.2.8. Let τλt (A) := eıtLλAe−ıtLλ , A ∈ M. τλ is a ∗-automorphism group for M.

By the assumptions of Theorem 4.2.1 , ωβλ(A) := 〈Ωβ
λ|AΩβ

λ〉 is a (β, τλ)-KMS-state.

Proof of 4.2.8. SinceQN → Q and JQNJ → JQJ strongly forN →∞, we have eıt(L0+QN ) →

eıt(L0+QN ), eıt(L0−JQNJ ) → eıt(L0−JQJ ) and eıtLQN → eıLλ . Therefore, for A ∈ M

w-limN→∞ eıtLQNAe−ıtLQN = τλt (A) ∈ M (4.64)

w-limN→∞ eıtLQN e−ıt(L0−JQNJ ) = w-limN→∞ eıt(L0+QN )eıtL0 = E(t) ∈ M, (4.65)

where E(t) := eıtLλe−ıt(L0−JQJ ) = eıt(L0+Q)eıtL0 de�ned in Theorem 2.5.3. The rest follows by

mimicking the proof of Theorem 2.5.3 using E(t) ∈ M. �



4.3. THE HARMONIC OSCILLATOR 81

4.3 The Harmonic Oscillator

In this section we consider a concrete model to check, if one can get rid of the assumption on

|λβ| � 1 in Theorem 4.2.1. Let

Hλ = Hel + λΦ(F ) + Ȟ, (4.66)

where F = x ·f(k), with (|k|−1/2 + |k|1/2)f ∈ L2(R3). The form-factor is obtained by the dipole

approximation. Furthermore, Hel = L2(R) and Hel = (1/2)(−∆x + α2x2).

Hel is the harmonic oscillator with friction constant α > 0. The Liouvillean for this model is

denoted by

Losc = Hel,x −Hel,y + Lf +Q− JQJ . (4.67)

We can show.

Theorem 4.3.1. Ωβ
0 is in the domain of dom(e−β/2(L0+Q)) for all β ∈ (0,∞), whenever

|2α−1λ|‖|k|−1/2f‖ < 1.

Proof of 4.3.1. We de�ne the ladder operators for the harmonic oscillator

A∗ =
α1/2x− ıα−1/2p√

2
, A =

α1/2x+ ıα−1/2p√
2

, p = −ı∂x, (4.68)

Φ(c) = 2−1/2(cA∗ + cA), for c ∈ C.

These operators ful�ll the CCR-relations and the harmonic oscillator is the number operator

up to constants.

[A,A∗] = 1, [A∗, A∗] = [A,A] = 0, Hel = αA∗A+ α/2, (4.69)

[Hel, A] = −αA, [Hel, A
∗] = αA∗.

The vector Ω =
(
α
π

)1/4

e−αx
2/2 is called the vacuum vector. Note, that one can identify Fb[C]

with L2(R), since LH{(A∗)nΩ : n ∈ N0} is dense in L2(R). By Theorem 2.8.10 follows

ωoscβ

(
W (c)

)
= Z−1

β Tr
{
e−βHelW (c)

}
= exp

(
− 1/4 coth(βα/2)|c|2

)
,

where Zβ := Tr{e−βHel}. First, we remark, that Equation 4.24 is de�ned for this model

without regularization by PN := 1[Hel ≤ N ]. Moreover we obtain from Lemma 4.2.4, that∥∥∥∫
∆n

β/2

ψ(0, s, n,∞)ds
∥∥∥2

≤
∫

∆2n
β

∣∣∣〈Ωβ
0 |ψ(0, s, 2n,∞)

〉
.
∣∣∣ds =: h2n(β, λ). (4.70)
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To show that Ωβ
λ ∈ dom(e−β/2(L0+Q)) is su�ces to prove, that

∑∞
n=0 h2n(β, λ)1/2 < ∞. Using

that ωoscβ is quasi-free, Wick's Theorem 2.8.8 yields

h2n(β, λ) :=
(−βλ)2n

Zβ
el

∫
∆2n

1

ds Tr
{
e−βHel

(
e−βs2nHelxeβs2nHel

)
. . .

(
e−βs1Helxeβs1Hel

)}
·ωβf

(
(e−βs2nȞΦ(f)eβs2nȞ) . . . (e−βs1ȞΦ(f)eβs1Ȟ)

)
.

Moreover, we have

e−βsiHelxeβsiHel = (2α)−1/2
(
e−βαsiA∗ + eβαsiA

)
e−βsiȞΦ(f)eβsiȞ = 2−1/2

(
a∗(e−βsi|k|f) + a(eβsi|k|f)

)
. (4.71)

Inserting the identities of Equation (4.71) in Equation (4.3) yields

h2n(β, λ) := (βλ)2n

∫
∆2n

1

ds
∑
P∈Z2

∏
{i,j}∈P

Kosc(|si − sj|, β)
∑
P ′∈Z2

∏
{k,l}∈P ′

Kf (|sk − sl|, β)

=
(βλ)2n

(2n)!

∫
[0,1]2n

ds
∑

P,P ′∈Z2

∏
{i,j}∈P

{k,l}∈P ′

Kosc(|si − sj|, β)Kf (|sk − sl|, β), (4.72)

where for k < l and i < j

Kf (|sk − sl|, β) := ωβf ((e
−βskȞΦ(f)eβskȞ)(e−βslȞΦ(f)eβslȞ)) (4.73)

= 2−1

∫
cosh(β|sk − sl||k| − β|k|/2)

sinh(β|k|/2)
|f(k)|2d3k,

and

Kosc(|si − sj|, β) := ωoscβ (e−βsiHelxeβsiHele−βsjHelxeβsjHel) (4.74)

= (2α)−1 cosh(βα|si − sj| − βα/2)

sinh(βα/2)
.

The last equality in (4.72) holds, since the integrand is invariant with respect to a change of

the axis of coordinates.

We interpret two pairings P and P ′ ∈ Z2 as an indirected graph G = G(P, P ′), where

M2n = {1, . . . , 2n} is the set of points. Any graph in G has two kinds of lines, namely lines in

Losc(G), which belong to elements of P and lines in Lf (G), which belong to elements of P ′.

Let G(A) be the set of undirected graphs with points in A ⊂M2n, such that for each point

"i" in A, there is exact one line in Lf (G), which begins in "i", and exact one line in Losc(G),

which begins with "i". Gc(A) is the set of connected graphs. We do not distinguish, if points



4.3. THE HARMONIC OSCILLATOR 83

are connected by lines in Lf (G) or by lines in Losc(G).

Let

Pk := {P : P = {A1, . . . , Ak}, ∅ 6= Ai ⊂M2n, Ai ∩ Aj = ∅ for i 6= j,
k⋃
i=1

Ai = M2n} (4.75)

be the family of decompositions of M2n in k disjoint set. It follows

h2n(β, λ) =
(βλ)2n

(2n)!

∑
G∈G(M2n)

∫
M2n

ds
∏

{i,j}∈Losc(G)

{k,l}∈Lf (G)

Kosc(|si − sj|, β)Kf (|sk − sl|, β)

=
(βλ)2n

(2n)!

2n∑
k=1

∑
{A1,...,Ak}∈Pk

∑
(G1,...,Gk)

Ga∈Gc(Aa)

k∏
a=1

I(Ga, Aa, β)

=
(βλ)2n

(2n)!

2n∑
k=1

1

k!

∑
A1,...,Ak⊂M2n,

{A1,...,Ak}∈Pk

∑
(G1,...,Gk)

Ga∈Gc(Aa)

k∏
a=1

I(Ga, Aa, β), (4.76)

where

I(Ga, Aa, β) :=

∫
Aa

ds
∏

{i,j}∈Losc(Ga)

{k,l}∈Lf (Ga)

Kosc(|si − sj|, β)Kf (|sk − sl|, β). (4.77)

∫
Aa
ds means,

∫ 1

−1
dsj1

∫ 1

−1
dsj2 . . .

∫ 1

−1
dsjm , where Aa = {j1, . . . , jm} and #Aa = m.

From the �rst to the second line we summarize terms with graphs, having connected compo-

nents containing the same set of points. From the second to the third line the order of the com-

ponents is respected, hence the correction factor 1
k!
is introduced. Due to Lemma 4.3.3 the inte-

gral depends only on the number of points in the connected graph, i. e. I(G,A, β) = I(#A, β).

Moreover, Lemma 4.3.3 states that β#A ·I(#A, β) ≤ (2‖|k|−1/2f‖h (αβ)−1)#A · (Cβ+1). To en-

sure that Gc(Aa) is not empty, #Aa must be even. For (m1, . . . ,mk) ∈ Nk withm1+. . .+mk = n

we obtain ∑
A1,...,Ak⊂M2n,#Ai=2mi

{A1,...,Ak}∈Pk

1 =
(2n)!

(2m1)! · · · (2mk)!
. (4.78)

Let now be Aa ⊂ M2n with #Aa = 2ma > 2 �xed. In Ga are #Aa lines in Losc(Ga), since

such lines have no points in common, we have (2ma)!
ma!2ma choices. Let now be the lines in Losc(Ga)

�xed. We have now
(
(2ma − 2)(2ma − 4) · · · 1

)
choices for ma lines in Lf (Ga), which yield a

connected graph. Thus∑
Ga∈Gc(Aa),

1 =
(2ma)!

ma!2ma

(
(2ma − 2)(2ma − 4) · · · 1

)
=

(2ma)!

2ma

. (4.79)
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For #Aa = 2 exists only one connected graph. We obtain for h2n

h2n(β, λ) = (λ)2n

2n∑
k=1

1

k!

∑
(m1,...,mk)∈Nk

m1+...+mk=n

k∏
a=1

I(2ma, β)(β2)ma

2ma

(4.80)

≤ (2α−1‖|k|−1/2f‖λ)2n

2n∑
k=1

1

k!

∑
(m1,...,mk)∈Nk

m1+...+mk=n

k∏
a=1

(Cβ + 1)

2ma

≤ (2α−1‖|k|−1/2f‖λ)2n

2n∑
k=1

(
(Cβ + 1)/2

∑n
m=1

1
m

)k
k!

.

Since the
∑n

m=1
1
m

can be considered as a lower Riemann sum we have
∑n

m=1
1
m
≤ ln(n + 1).

Thus,

h2n(β, λ) ≤ (2α−1‖|k|−1/2f‖λ)2n

2n∑
k=1

(
(Cβ + 1)/2 ln(n+ 1)

)k
k!

(4.81)

≤ (2α−1‖|k|−1/2f‖λ)2n(n+ 1)(Cβ+1)/2.

Since 2|λ| · ‖|k|1/2f‖ < α the series
∑∞

n=0 h2n(β, λ)1/2 converges absolutely for all β > 0. It

follows, that

e−β/2(L0+Q)Ωβ
0 =

∞∑
n=0

∫
∆n

β/2

ψ(0, s, n,N)ds

exists. �

Conversely, Equation (4.80) and Lemma 4.3.3 imply

h2n(β, λ) ≥ (λ/2)2n I(2n, β)β2n

2n
=

(
α−1

∫ β2λ2/4|f(k)|2
sinh(|k|β/2) sinh(βα/2)

dk
)n

2n
. (4.82)

Hence for every β > 0 exists a λ ∈ R, such that h2n(β, λ) ≥ 1
2n
. Thus

∑∞
n=1 h2n(β, λ)1/2 = ∞

Remark 4.3.2. We can therefore not extended Theorem 4.3.1 to an existence proof for all

λ > 0.

Lemma 4.3.3. Following statements are true.

I(G,A, β) = I(#A, β), G ∈ Gc(A) (4.83)

I(#A, β) ≤ (2‖|k|−1/2f‖h (αβ)−1)#A · (Cβ + 1) (4.84)

I(#A, β) ≥
(
α−1

∫
|f(k)|2

sinh(|k|β/2) sinh(αβ/2)
dk

)#A/2

, (4.85)

where #A = 2m and C = (1/2) ‖f‖2
‖|k|1/2f‖2 .
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Proof of 4.3.3. A relabeling of the integration variables yields

I(G,A, β) =

∫
[0,1]2m

dtKosc(|t1 − t2|, β)Kf (|t2 − t3|, β) · · · (4.86)

Kosc(|t2m−1 − t2m|, β)Kf (|t2m − t1|, β)

≤
∫

[0,1]2m

dtKosc(|t1 − t2|, β)Kf (|t2 − t3|, β) · · ·Kosc(|t2m−1 − t2m|, β)

sup
s∈[0,1]

Kf (s, β).

We transform due to si := ti−ti+1, i ≤ 2m−1 and s2m = t2m, hence−1 ≤ si ≤ 1, i = 1, . . . , 2m,

since integrating a positive function we obtain

I(G,A, β) ≤
∫

[−1,1]2m

Kosc(|s1|, β)Kf (|s2|, β) · · ·Kosc(|s2m−1|, β)ds sup
s∈[0,1]

Kf (s, β)

=
( ∫ 1

−1

Kosc(|s|, β) ds
)m( ∫ 1

−1

Kf (|s|, β) ds
)m−1

· sup
s∈[0,1]

Kf (s, β). (4.87)

We recall that

∫ 1

−1

Kosc(|s|, β) ds = (2α)−1

∫ 1

−1

cosh(βα|s| − αβ/2)

sinh(αβ/2)
ds = 2(α2β)−1

and ∫ 1

−1

Kf (|s|, β) ds =

∫ 1

−1

∫
cosh(β|s||k| − β|k|/2)|f(k)|2

2 sinh(β|k|/2)
dk ds = 2

∫
|f(k)|2

β|k|
dk.

Using coth(x) ≤ 1 + 1/x, we obtain

sup
s∈[0,1]

Kf (s, β) ≤ 2−1

∫
cosh(β|k|/2)|f(k)|2

sinh(β|k|/2)
dk ≤ (1/2)

∫
|f(k)|2dk +

1

β

∫
|f(k)|2

|k|
dk. (4.88)

Due to the fact, that t 7→ Kf (t, β) and t 7→ Kosc(t, β) attain their minima at t = 1/2, we obtain

the lower bound for I(#A, β). �

Remark 4.3.4. In the literature there is one criterion for Ωβ
0 ∈ dom(e−β/2(L0+Q)), to our

knowledge, that can be applied in this situation [10]. One has to show that ‖e−β/2QΩβ
0‖ <∞.
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If we consider the case, where the criterion holds for ±λ, then the expansion in λ must converge,

‖e−β/2QΩβ
0‖2 =

∞∑
n=0

(λβ)2n

(2n)!
ωβel(x

2n)ωβf (Φ(f)2n) (4.89)

=
∞∑
n=0

(λβ)2n

(2n)!

((2n)!

n!2n

)2

Kosc(0, β)nKf (0, β)n

=
∞∑
n=0

(λβ)2nα−n
(

2n

n

)
2−2n

(
coth(αβ/2)

∫
|f(k)|2 coth(β|k|/2)dk

)n
≥

∞∑
n=0

(λβ)2n(4α)−n
( ∫

|f(k)|2dk
)n
. (4.90)

Obviously, for any value of λ 6= 0, there is a β > 0, for which ‖e−β/2QΩβ
0‖ <∞ is not ful�lled.



Chapter 5

Return to Thermal Equilibrium

In this chapter a slightly modi�ed model is considered, it originates from a from an one di-

mensional harmonic oscillator coupled to the quantized radiation �eld by means of the dipole

approximation.

This model was studied by Arai in [1, 2] for temperature zero. Therein the existence of a unique

ground state is shown, such as asymptotic completeness of Hλ and Ȟ. We introduce the ladder

operators for the harmonic oscillator,

A∗ =
x− ıp√

2
, A∗ =

x+ ıp√
2
. (5.1)

de�ned as operators on the Schwartz space S(R) ⊂ L2(R). The operator x is the position

operator de�ned by (xψ)(x) = xψ(x) and p is the momentum operator for the particle, it is

de�ned by (pψ)(x) = −ı∂ψ(x)
∂x

on S(R). It is an easy calculation to check that, A and A∗ ful�ll

the Canonical Commutator Relations (CCR),

[A,A] = 0 = [A∗, A∗], [A,A∗] = 1. (5.2)

Moreover, there is a (up to a complex phase) unique normed vector Ω0 in L2(R) in the kernel

of A,

Ω0(x) = π−1/4e−x
2/2. (5.3)

It is well known, that

c`LH{(A∗)nΩ0 ∈ L2(R)|n ∈ N0} = L2(R) =: Hel.

Hence we can identify L2(R) ∼= Fb[C]. Ω0 is the vacuum vector. The position- and momentum-

operator are the �eld operators Φ(1) and Φ(ı).

87
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We turn now to the model. The Hamiltonian for the particle is Hel = 1
2
(p2 + x2) of the

bosons the Hamiltonian is Ȟ =
∫
|k|a(k)∗a(k)d3k. Hence the non-interacting Hamiltonian is

H0 := Hel + Ȟ on the Hilbert space H = L2(R) ⊗ Fb[L2(R3)] ∼= Fb[C ⊕ L2(R3)]. The full

Hamiltonian is

Hλ = Hel ⊗ 1 + 1⊗ Ȟ + λW + λ2/2 ‖|k|−1ρ̂‖2
h · x2 ⊗ 1, (5.4)

W is given by x · Φ(|k|−1/2ρ̂). Confer with the derivation in Section 3.1.

We assume

• (1 + |k|−1)ρ̂ ∈ L2(R3), ρ̂(k) > 0, k ∈ R3.

• ρ̂ is rotation invariant.

• In polar coordinates: [0,∞) 3 r 7→ ρ̂(r) has an anal. cont. to {z ∈ C : |=z| ≤ 2πβ−1}

• sup|s|≤2πβ−1

∫
|(r + ıs)ρ̂(r + ıs)|2dr <∞.

• ρ̂(r) = ρ̂(−r), r ∈ R

Note, that ρ̂ > 0 is a relict of the analysis of Arai.

The main advantage of this model is that Hλ is a quadratic operator in creation- and annihi-

lation operators. Hence one expects, that

eıtHλΦ(c⊕ f)e−ıtHλ = Φ(wt(c⊕ f))

for a real linear operator wt on C⊕ h, such that

=〈wt(c⊕ f)|wt(c′ ⊕ f ′)〉C⊕h = =〈c⊕ f |c′ ⊕ f ′〉C⊕h.

This fact allows us to de�ne a C∗-algebra of observables

A = c`LH
{
W (c⊕ f) ∈ B(H) : c ∈ C, f ∈ f

}
,

f = {f ∈ h :

∫
(1 + |k|−1)|f(k)|2d3k <∞},

where the closure is taken in the operator norm of B(H), and a ∗-automorphism group τλt (A) =

eıtHλAe−ıtHλ , t ∈ R for A ∈ A. The operator W (c ⊕ f) := exp(ıΦ(c ⊕ f)) is called a Weyl

operator, c⊕ f is a form factor and A a Weyl algebra.

The Equilibrium of the dynamical system (A, τλ) is a state ωβλ that su�ces the so called
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(β, τλ)-KMS-condition, i.e. for all A,B ∈ A exists a complex function Fβ(A,B, ·) that is

analytic in the strip {z ∈ C : 0 < =z < β}, continuous on its closure and taking the boundary

conditions

Fβ(A,B, t) = ωβλ(Aτ
λ
t (B)), Fβ(A,B, t+ ıβ) = ωβλ(τ

λ
t (B)A). (5.5)

The positive parameter β is the inverse temperature.

5.1 A Summary of Results due to Arai

In this section we recall de�nition and statements, that Arai made in [1, 2]. Therein a explicit

unitary transform of Hλ into Ȟ is de�ned. Therefore time dependent �eld operators Φk(t) for

a sharp momentum k ∈ R3 are considered, i.e.

Φk(t) := eıtHλΦke
−ıtHλ , x(t) := eıtHλxe−ıtHλ , (5.6)

where Φk := 1√
2|k|

(
ak + a∗k

)
is a operator valued distribution. These objects obey Heisenberg's

equations of motion:

d2

dt2

 x(t)

Φk(t)

 =

 −1− λ2‖|k|−1ρ̂‖2
h −λ

∫
d3k ρ̂(k) [·]

−λρ̂ −k2

  x(t)

Φk(t)

 . (5.7)

One can explicitly solve them for the Laplace transform with respect to t of x(·) and Φk(·).

The explicit formulas for it, are formulated with the help of the functions

De�nition 5.1.1.

D(z) := −z + 1 + λ2‖|k|−1ρ̂‖2
h + λ2

∫
d3k

ρ̂(k)2

z − k2
, z ∈ C \ [0,∞) (5.8)

D±(r) := lim
ε→0+

D(r ± ıε), r ∈ [0,∞) (5.9)

Q(k) := −λ ρ̂(k)

D+(k2)
(5.10)

Q±(k) := (1/2)(|k|1/2 ± |k|−1/2)Q(k). (5.11)

and the operators on h
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De�nition 5.1.2.

(Gεg)(k) :=

∫
g(k′)

(|k| · |k′|)1/2(k2 − k′2 + ıε)
dk′. (5.12)

G := lim
ε→0+

Gε (5.13)

Tg := g + λ|k|1/2QG|k|1/2ρ̂g (5.14)

T ∗g := g − λ|k|1/2ρ̂G|k|1/2Qg (5.15)

W+g := (1/2)
{
|k|−1/2T ∗|k|1/2 + |k|1/2T ∗|k|−1/2

}
g (5.16)

W−g := (1/2)
{
|k|−1/2T ∗|k|1/2 − |k|1/2T ∗|k|−1/2

}
g. (5.17)

Using the Laplace transforms one can �nd explicit formulas for the asymptotic incoming

creation- and annihilation operators. Since we have to calculate with the objects in De�nition

5.1.1 and 5.1.2, we recall some results of Arai for these objects. The reader may skip the rest

of this section and consult the Lemmata later.

The hypothesis on the analyticity and positivity of ρ̂ implies directly

Lemma 5.1.3. 1. D is analytic in C \ [0,∞),

2. D±(s) := limε→0+D(s+ ıε) exists and is continuous for s ∈ [0,∞),

3. infs∈[0,∞) |D±(s)| > 0,

4. |D(z) + z| < c1 and |D(z)| > c2 for all z ∈ C \ [0,∞) and c1, c2 <∞.

Let Mα(R
3) = {f : ‖f‖α = ‖|k|αf‖h < ∞}, for α ∈ R. For the operators introduced in

Equation (5.11) and (5.12) we have:

Lemma 5.1.4. 1. Gε is bounded on h, uniformly for ε > 0.

2. G := s− limε→0+Gε exists as an operator on h.

3. G is bounded on h and M−1/2(R
3).

4. G∗ = −G, i.e G is skew-symmetric on h.

Given a bounded operator A on h we denote by A an operator acting on g ∈ h by means of

(Ag)(k) := (Ag)(k). The bar is of course the complex conjugation.

Lemma 5.1.5. 1. T and T ∗ (see Equation (5.13)) are bounded onMα(R
3) for α = 1/2, 0,−1.
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2. T ∗ is the adjoint of T .

3. For a rotation invariant function h on R3, we have T ∗hT = T
∗
hT

4. Furthermore, if hQ ∈ h, then T ∗hQ = T
∗
hQ.

5. T ∗Q = 0

The next algebraic relations ensure that the incoming creation- and annihilation operators

ful�ll the CCR.

Lemma 5.1.6. The operators W+ and W− de�ned in (5.15) and (5.16) are bounded onMα(R
3)

for α = −1/2, 0 and ful�ll

W ∗
+W+ −W ∗

−W− + P+ − P− = 1, W+W
∗
+ −W−W

∗
− = 1, (5.18)

W
∗
+W− −W

∗
−W+ + P+− − P−+ = 0, W−W

∗
+ −W+W

∗
− = 0, (5.19)

where

P±f = 〈Q±|f〉h ·Q±, P+−f = 〈Q−|f〉h ·Q+, P−+f = 〈Q+|f〉h ·Q−. (5.20)

Furthermore W− is a Hilbert-Schmidt operator with integral kernel

W−(k, k′) =
λρ̂(k)Q(k′)

2(|k||k′|)1/2(|k|+ |k′|)
. (5.21)

The starting point of our work is the following result:

Lemma 5.1.7. The asymptotic creation- and annihilation- operators a#
in(f) exist for f ∈

M0(R
3) ∩M−1/2(R

3),

a#
in(f) = s-limt→−∞ eıtHλe−ıtH0a#(f)eıtH0e−ıtHλ , (5.22)

dom(a#
in(f)) ⊃ dom(Hλ) and

ain(f) = 〈Q−|f〉hA∗ + 〈Q+|f〉hA+ a∗(W−f) + a(W+f). (5.23)
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5.2 Return to Equilibrium for the Harmonic Oscillator

In this section we de�ne a C∗-algebra of observables, a time-evolution group and an equilibrium

state for the isolated bosonic system. A comparison with the dynamical system (A, τλ) yields

the existence of an equilibrium state of (A, τλ).

In Lemma 5.2.1 the analyticity and the zeros of D+(·) in the complex plane depending on

the coupling parameter λ 6= 0 are studied. A dense set of form-factors is speci�ed, which de�ne

a ∗-subalgebra Aanal of observables.

In Theorem 5.2.6 is proved Return to Equilibrium for a set of states. The exponential rate

of decay is speci�ed by the imaginary part of zeros of D+(·), it follows Fermi's Golden Rule for

Hλ.

5.2.1 Existence of an Equilibrium State

The free bosonic system is de�ned by a C∗-algebra W(f) of observables and a ∗-automorphism

group τ ft (A) = eıtȞAe−ıtȞ , A ∈ W(f). The corresponding thermal Equilibrium State ωβf is

ωβf (W(h)) = exp
(
− 1/4〈h|(1 + 2%)h〉h

)
, (5.24)

where %(k) = 1
eβ|k|−1

is the density due to Planck's law. It is well known that ωβf is a (β, τ f )-

KMS-state. For the coupled system without interaction (λ = 0) the Equilibrium state over

W(C⊕ f) is

ωβ0 (W(c⊕ h)) = exp
(
− 1/4〈c⊕ h|(1 + 2%0)c⊕ h〉C⊕h

)
, (5.25)

for %0(k) = 1
eβ−1

⊕ 1
eβ|k|−1

. We remark that

τ 0
t (W(c⊕ h)) = eıtH0W(c⊕ h)e−ıtH0 = W(eıtc⊕ eıt|k|h). (5.26)

To de�ne a thermal Equilibrium State A = W (C ⊕ f) for λ 6= 0 we start from a result due to

Arai [1, 2], where an explicit formula for the incoming creation- and annihilation- operators is

given for Hλ at temperature zero.

Lemma 5.1.7 implies directly for Φin(f) = 1√
2

(
ain(f) + a∗in(f)

)
, that

Φin(f) = Φ
(
(〈Q+|f〉h + 〈f |Q−〉h)⊕ (W+f +W−f)

)
. (5.27)

We remark that eıtHλΦin(f)e−ıtHλ = Φin(e
ıt|k|f). A simple but lengthly calculation using Lem-

mata 5.1.6 and 5.1.7 yields Φ(c ⊕ h) = Φin(v(c ⊕ h)), where v is a real linear operator from
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C⊕ h to h de�ned by

v(c⊕ h) := W
∗
+h+ c ·Q+ −W

∗
−h− c ·Q−. (5.28)

Note that v is surjective since

h = v
(
(〈Q+|h〉h + 〈Q−|h〉h)⊕ (W+h+W−h)

)
. (5.29)

Hence it follows, that

τλt (Φ(c⊕ h)) = eıtHλΦin(v(c⊕ h))e−ıtHλ = Φin(e
ıt|k|v(c⊕ h)) = Φ(wt(c⊕ h)). (5.30)

for the real linear, time dependent operator wt de�ned by

wt(c⊕ h) =
(
〈Q+|eıt|k|v(c⊕ h)〉h + 〈eıt|k|v(c⊕ h)|Q−〉h

)
(5.31)

⊕
(
W+e

ıt|k|v(c⊕ h) +W−e
−ıt|k|v(c⊕ h)

)
.

Since Φin(e
ıt|k|v(c⊕ h)) = Φin(v(wt(c⊕ h))) we have

eıt|k|v(c⊕ h) = v(wt(c⊕ h)). (5.32)

Furthermore we have

=〈c⊕ h|c′ ⊕ h′〉C⊕h = −ı[Φ(c⊕ h),Φ(c′ ⊕ h′)] (5.33)

= −ı[Φin(v(c⊕ h)),Φin(v(c
′ ⊕ h′))] = =〈v(c⊕ h)|v(c′ ⊕ h′)〉h.

Moreover, v is injective:

Assume v(c⊕h) = 0, hence for all f ∈ f and c′ ∈ C we have 0 = =〈v(c′⊕f)|v(c⊕h)〉h = =〈c′⊕

f |c⊕h〉C⊕h. Since =〈(−ı)(c′⊕f)|c⊕h〉C⊕h = <〈c′⊕f |c⊕h〉C⊕h = 0, it is 〈c′⊕f |c⊕h〉C⊕h = 0.

Hence c⊕ h = 0 follows from the density of f in h.

Let

i : A → W (f), W (c⊕ h) 7→ W (v(c⊕ h)). (5.34)

Hence i de�nes a ∗-isomorphism, in particular a Bogoliubov-transform. It follows that ωβλ :=

ωβf ◦ i, i.e

ωβλ(W (c⊕ h)) = exp(−(1/4)‖(1 + 2%)1/2v(c⊕ h)‖2
h) (5.35)

is a (β, τλ)-KMS state over W(C⊕ f). We have

A
τλt

> A
ωβλ > C

W (f)

i
∨ τ ft

>W (f).

i
∨

ωβf
>
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5.2.2 Return to Equilibrium

Lemma 5.2.1. There is a function Gλ : Sλ → C, such that Gλ is an analytic continuation of

R 3 r 7→ D+(r2) ∈ C in Sλ = {z ∈ C : |=z| < |=κ+(λ)|} that has no zeros. Furthermore,

κ+(·) is even, analytic and

κ+(λ) = 1 + κ2λ
2 + . . . , (5.36)

where =κ2 = −2π2ρ̂2(1). The result holds for small values of λ.

We remark that the same is true for r 7→ D+(r2).

De�nition 5.2.2. Let κ be a real number, depending on λ 6= 0, , so that 0 < κ < |=κ+(λ)| and

κ < 2πβ−1. κ is the so-called decay rate.

Proof of 5.2.1. Let G be de�ned for |=z| < η and λ ∈ C by

G(z, λ) = −z2 + 1 + ‖|k|−1ρ̂‖2
hλ

2 + 2πλ2

∫ ∞

−∞

ρ̂2(r + ıη)(r + ıη)

z − (r + ıη)
dr + 4π2ıλ2ρ̂2(z)z. (5.37)

Since ρ̂(r) is an even function, we may write

D(z2) = −z2 + 1 + ‖|k|−1ρ̂‖2
hλ

2 + 2πλ2

∫ ∞

−∞
.
ρ̂2(r)r

z − r
dr, =z > 0. (5.38)

The residue theorem yields that Gλ(·) := G(·, λ) is an analytic continuation of D(z2) into the

lower half plane and hence

G(z, λ) = G(−z, λ) = G(z,−λ). (5.39)

Let s ≥ 0. We can choose pε(s), such that s2 + ıε = pε(s)
2, <z ≥ 0 and =z > 0, then

G(s, λ) = lim
ε→0+

G(pε(s), λ) = lim
ε→0+

D(s2 + ıε) = D+(s2). (5.40)

Next, we de�ne P (z) = −z2 + 1. For 0 < η′ < η we have

sup
{z : |=z|<η′}

|P (z)−G(z, λ)| ≤ Cη′|λ|2. (5.41)

Since ∂zG(±1, 0) = ∓2 the implicit function theorem states that we can �nd λ′0 > 0 and

0 < ε < η′ such that for (z, λ) ∈ Bε(±1)×Bλ′(0)

G(z, λ) = 0 ⇔ z = κ±(λ) (5.42)

for two analytic functions κ± : Bλ′0
(0) → Bε(±1) with κ±(0) = ±1. Using (5.41) we can choose

0 < λ0 < λ′0 that ensures G(z, λ) 6= 0 for |z − 1| ≥ ε and |z + 1| ≥ ε for all |λ| ≤ λ0.
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By symmetry of G and uniqueness of κ± we have κ−(λ) = −κ+(λ) and κ+(λ) = κ+(−λ), in

particular ∂
(2n+1)
λ κ+(0) = 0. For the second derivative we have

∂2
λκ+(0) = −(∂2

λG)(1, 0)

(∂zG)(1, 0)
= ‖|k|−1ρ̂‖2

h + 2πP
∫ ∞

−∞

ρ̂2(r)r

1− r
dr − 4π2ρ̂2(1)ı, (5.43)

where P
∫∞
−∞ means the Cauchy Principal value. �

For f ∈ h we de�ne

f̃(r,Θ) =

 f(r,Θ), r ≥ 0

f(−r,Θ), r < 0

 , (5.44)

where (r,Θ) ∈ [0,∞)× S2 and f is written in polar coordinates.

De�nition 5.2.3. Let

H2(κ) :=
{
f ∈ h : R 3 r 7→ f̃(r, ·) ∈ L2(S2) has an anal. contin. to Sκ,

sup
|s|≤κ

∫
R

|r + ıs|2‖f̃(r + ıs, ·)‖2
L2(S2)dr <∞

}
Ganal :=

{
aı|k|1/2 f

D+(k2)
+ b|k|−1/2 f

D+(k2)
∈ h : f ∈ H2(κ), a, b ∈ R

}
Hanal := {c⊕ f ∈ C⊕ h : v(c⊕ f) ∈ Ganal}. (5.45)

Lemma 5.2.4. Ganal is dense in M0(R
3) ∩ M−1/2(R

3). Hanal is dense in C ⊕ (M0(R
3) ∩

M−1/2(R
3)).

Proof of 5.2.4. Clearly, Ganal is a dense real subspace of f, respectively the norms ‖ · ‖j, j =

0,−1/2. To show that Hanal is dense in C⊕ (M0(R
3) ∩M−1/2(R

3)), we observe, that c⊕ 0 ∈

Hanal, since for c = a+ ıb

v(c⊕ 0) = a|k|−1/2Q− ıb|k|1/2Q, (5.46)

and Equation (5.10).

Let f ∈ h. We observe f = W+g+W−g for g = W
∗
+f−W

∗
−f ∈ h. We choose now (gν)ν ⊂ Ganal

with gν → g, ν →∞. Therefore we have

fν := W+gν +W−gν → f, ν →∞. (5.47)

Moreover, for cν := 〈Q+|gν〉h − 〈Q−|gν〉h we obtain

gν = v(cν ⊕ fν), (5.48)
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hence cν ⊕ fν ∈ Hanal and 0⊕ f ∈ clHanal. �

Lemma 5.2.5. For f, g ∈ Ganal one has

|<〈f |(1 + 2%)eıt|k|g〉h| ≤ const e−κt (5.49)

|=〈f |eıt|k|g〉h| ≤ const e−κt. (5.50)

Proof of 5.2.5. We choose f = ıa|k|1/2f ′+b|k|−1/2f ′

D+(k2)
and g = ıa′|k|1/2g′+b′|k|−1/2g′

D+(k2)
for a, b, a′, b′ ∈ R

and f ′, g′ ∈ H2(κ). For (5.49) we obtain

<〈f |(1 + 2%)eıt|k|g〉h (5.51)

= 1/2

∫ (
|k|aa′ + bb′|k|−1

)
(1 + 2%(k))

f ′(k)g′(k)eıt|k| + h.c.

|D+(k2)|2
d3k

+1/2

∫ (
ıa′b− ıab′

)
(1 + 2%(k))

f ′(k)g′(k)eıt|k| − h.c.

|D+(k2)|2
d3k.

Let (Pradf)(r) = (4π)−1
∫
S2 f(r,Θ)dΘ, where f is written in polar-coordinates. We have

<〈f |(1 + 2%)eıt|k|g〉h (5.52)

= 2π

∫ ∞

0

r2
(
raa′ + bb′r−1

)
coth(βr/2)

(Pradf ′)(r)Prad(g
′)(r)eıtr + h.c.

|D+(r2)|2
dr

+2π

∫ ∞

0

r2
(
ıa′b− ıab′

)
coth(βr/2)

(Pradf ′)(r)Prad(g
′)(r)eıtr − h.c.

|D+(r2)|2
dr

= 2π

∫
R

r2
(
raa′ + bb′r−1

)
coth(βr/2)

(̃Pradf ′)(r)P̃rad(g′)(r)e
ıtr

|D+(r2)|2
dr

+2π

∫
R

r2
(
ıa′b− ıab′

)
coth(βr/2)

˜(Pradf ′)(r)P̃rad(g′)(r)e
ıtr

|D+(r2)|2
dr.

The last line follows if we split the integrals in (5.51) in a part with eıtr and e−ıtr. In the second

we substitute r → −r and then we integrate over R. ∼ is de�ned in Equation (5.44). By

Lemma 5.2.1 we obtain that the integrand is analytic on the strip Sκ = {z ∈ C : |=z| ≤ κ}.

By the Cauchy's integral theorem, we can shift the contour to R 3 r 7→ r+ ıκ. That yields the

decay rate for t→∞.

The proof of inequality (5.50) is analog. �

Let

Aanal := LH{W (c⊕ f) ∈ A : c⊕ f ∈ Hanal}. (5.53)
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Theorem 5.2.6. For A,B,C ∈ A we have

• ωβλ is strongly clustering, i.e. limt→∞ ωβλ(Aτ
λ
t (B)C) = ωβλ(AC)ωβλ(B).

Moreover, if A,B,C ∈ Aanal one has

• |ωβλ(Aτλt (B)C)− ωβλ(AC)ωβλ(B)| ≤ const e−κt.

Proof of 5.2.6. We prove the second part of the statement. Let vi := v(ci⊕fi) for ci⊕fi ∈ Hanal

and i = 1, 2, 3.

ωβλ(W (c1 ⊕ f1)τ
λ
t (W (c2 ⊕ f2))W (c3 ⊕ f3)) (5.54)

= ωβλ(W (c1 ⊕ f1 + wt(c2 ⊕ f2) + c3 ⊕ f3))

· exp(−(ı/2)={〈c1 ⊕ f1|wt(c2 ⊕ f2)〉C⊕h + 〈c1 ⊕ f1 + wt(c2 ⊕ f2)|c3 ⊕ f3〉C⊕h})

In the above calculation we used τλt (W (c2⊕f2)) = W (wt(c2⊕f2)) and twice the CCR relation,

de�ned in De�nition 2.8.1. Using now Equations (5.32) and (5.33) we obtain

ωβλ(W (c1 ⊕ f1)τ
λ
t (W (c2 ⊕ f2))W (c3 ⊕ f3)) (5.55)

= exp(−1/4‖(1 + 2%)1/2(v1 + eıt|k|v2 + v3)‖2
h)

· exp
(
− (ı/2)={〈v1|eıt|k|v2〉h + 〈v1 + eıt|k|v2|v3〉h}

)
.

From

ωβλ(W (c1 ⊕ f1)W (c3 ⊕ f3))ω
β
λ(W (c2 ⊕ f2)) (5.56)

= exp(−ı/2=〈v1|v3〉h) exp(−1/4‖(1 + 2%)1/2(v1 + v3)‖2
h) exp(−1/4‖(1 + 2%)1/2eıt|k|v2‖2

h)

we conclude

ωβλ(W (c1 ⊕ f1)τ
λ
t (W (c2 ⊕ f2))W (c3 ⊕ f3)) (5.57)

= ωβλ(W (c1 ⊕ f1)W (c3 ⊕ f3))ω
β
λ(W (c2 ⊕ f2))

· exp(−(1/2)<〈v1 + v3|(1 + 2%)eıt|k|v2〉h) exp(−(ı/2)=〈v1 − v3|eıt|k|v2〉h).

The rest follows by Lemma 5.2.5 and linearity. To prove the �rst statement, we assume

f1, f2, f3 ∈ M−1/2(R
3) ∩M0(R

3). As before we obtain Equation 5.57, but only v1, v2, v3 ∈

M−1/2(R
3) ∩M0(R

3) is satis�ed. The Riemann-Lebesgue Lemma yields

lim
t→∞

ωβλ(W (c1 ⊕ f1)τ
λ
t (W (c2 ⊕ f2))W (c3 ⊕ f3)) = ωβλ(W (c1 ⊕ f1)W (c3 ⊕ f3))ω

β
λ(W (c2 ⊕ f2)).

(5.58)
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By linearity we obtain

lim
t→∞

ωβλ(W1τ
λ
t (W2)W (W3)) = ωβλ(W1W3)ω

β
λ(W2). (5.59)

for W1, W2, W3 ∈ A0 := LH{W (c ⊕ f) ∈ W (C ⊕ f) : c ∈ C, f ∈ f}. Since A0 is dense in A

respectively the operator norm, we have

lim
t→∞

ωβλ(Aτ
λ
t (B)C) = ωβλ(AC)ωβλ(B)

for A, B, C ∈ A. �

5.3 Comparison with the Liouvillean Approach

At this point we summarize, what is discussed in Chapter 3 and Chapter 4:

In the Liouvillean approach the algebra Ã := B(Hel)⊗W(f) is considered. One starts from

the (τ 0, β)-KMS-state

ωβ0 (A⊗W (f)) := Z−1
β Tr{Ae−βHel} · exp(−(1/4)‖(1 + 2%)1/2f‖2

h), (5.60)

where Zβ := Tr{e−βHel} <∞ and A ∈ B(Hel). Next, one makes an explicit GNS-construction

(Ã,K,Ωβ
0 ) with ωβ0 (B) = 〈Ωβ

0 |π̃[B]Ωβ
0 〉K, B ∈ Ã. One may choose K := L2(R) ⊗ L2(R) ⊗

Fb[h] ⊗ Fb[h] and Ωβ
0 = Z

−1/2
β · kβ/2 ⊗ Ωh ⊗ Ωh, where kβ/2 is the Hilbert-Schmidt kernel of

e−β/2Hel in L2(R2) ∼= L2(R)⊗ L2(R).

The ∗-isomorphism π̃ is given by

π̃[A⊗W (f)] = A⊗ 1⊗W ((1 + %)1/2f)⊗W (%1/2f). (5.61)

The time evolution is

π̃[τ t0(A⊗W (f)] = eıtL0 π̃[A⊗W (f)]e−ıtL0 , (5.62)

where L0 = Lel ⊗ 1 + 1⊗ Lf , Lel := Hel ⊗ 1− 1⊗Hel and Lf = Ȟ ⊗ 1− 1⊗ Ȟ. We de�ne

Hel := 1/2
(
−∆x + (1 + λ2‖|k|−1ρ̂‖2

h)x
2
)
. (5.63)

Let M := π̃[Ã]′′. Furthermore, the so-called modular conjugation J on K is de�ned by

JA∗Ωβ
0 = e−β/2L0AΩβ

0 , A ∈ M. (5.64)
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Using Q := λπ̃[W ] one can de�ne the standard Liouvillean

Lλ := L0 +Q− JQJ . (5.65)

Note, that the de�nition of π̃ must be extended from Weyl operators to �eld operators, as done

in Remark 3.5.7. The time evolution of the interacting system is

τ̃λt(A) = eıtLλAe−ıtLλ , A ∈ M. (5.66)

In our context one has to verify, that the canonical imbedding j of A into Ã ful�lls:

A
j

> Ã
π̃

> M

A

τλt
∨ j

> Ã
π̃
> M.

τ̃λt
∨

Moreover,

Ωβ
λ = c · e−(β/2)(L0+λQ)Ωβ

0 (5.67)

is cyclic for π̃[Ã] and separating for M, and normed for some c > 0. Furthermore, Ωβ
λ is in the

kernel of Lλ and

ω̃βλ(A) := 〈Ωβ
λ|AΩβ

λ〉Hβ
(5.68)

is a (τ̃λ, β)-KMS-state over M, if λ ∈ R is small. The main theorem in this context is Theorem

4.3.1 with α2 := 1 + λ2‖|k|−1ρ̂‖2
h.

Remark 5.3.1. In Theorem 2.5.6 is a fatal factor 2, that inhibits to prove existence of a

(β, τ̃λ)-KMS-state with the Liouvillean approach for all λ 6= 0. We think, that Theorem 2.5.6

can be improved using a better estimate in Equation (4.87). Therein we used −1 ≤ si ≤ 1, but

−1 ≤
∑m

i=1 si ≤ 1 for m = 1, . . . , n− 1 is true, as well.

Lemma 5.3.2. (π̃ ◦ j)[A]′′ = M.

Proof of 5.3.2. By the Bicommutant-Theorem it su�ces to show, that for every X ∈ π̃[Ã],

φ ∈ K and ε > 0 exists a Y ∈ (π̃ ◦ j)[A] such that

‖Xφ− Y φ‖K ≤ ε. (5.69)

Using density and linearity arguments one can assume X = π̃[A ⊗W (f)] = A ⊗ 1 ⊗W ((1 +

%)1/2f)⊗W (%1/2f), where A ∈ B(Hel), φ = φ1 ⊗ φ2 ⊗ φ3 ⊗ φ4, where φi ∈ Hel for i = 1, 2 and
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φi ∈ Fb[h] for i = 3, 4. Since W (C)′′ = B(Hel) the Bicommutant-Theorem yields, that there

is a W ∈ W (C) such that ‖Aφ1 −Wφ1‖Hel
≤ ε. Hence Y := π̃[W ⊗W (f)] is an appropriate

choice. �

Theorem 5.3.3. If a cyclic KMS-state Ωβ
λ ∈ K exists, one has

ωβλ(A) =
˜
ωβλ((π̃ ◦ j)[A]), A ∈ A. (5.70)

Hence,

A
π̃ ◦ j

> M

C.

˜
ωβλ

∨ωβλ >

Proof of 5.3.3. Let φ := (π̃ ◦ j)(B)Ωβ
λ ∈ K with ‖φ‖2

K = ωβ0 (B∗B) = 1

|〈Ωβ
λ|π̃ ◦ j(A)Ωβ

λ〉K − 〈φ|e
ıtLλ π̃ ◦ j(A)e−ıtLλφ〉K| (5.71)

= |〈Ωβ
λ|e

ıtLλ π̃ ◦ j(A)e−ıtLλΩβ
λ〉K − 〈φ|e

ıtLλ π̃ ◦ j(A)e−ıtLλφ〉K|

≤ 2‖φ− Ωβ
λ‖K · ‖A‖B(K).

Next, because of Theorem 5.2.6

lim
t→∞

〈φ|eıtLλ π̃ ◦ j(A)e−ıtLλφ〉K = lim
t→∞

ωβλ(B
∗τλt (A)B) = ωβλ(A). (5.72)

Hence

|〈Ωβ
λ|π̃ ◦ j(A)Ωβ

λ〉K − ωβλ(A)| ≤ 2‖φ− Ωβ
λ‖K · ‖A‖B(K). (5.73)

On the other hand

c` π̃ ◦ j[A]Ωβ
λ = c` π̃ ◦ j[A]′′Ωβ

λ = c`MΩβ
λ = K. (5.74)

Therefore ‖φ−Ωβ
λ‖K can be chosen arbitrarily small, so that

˜
ωβλ(π̃ ◦ j(A)) = ωβλ(A) follows. �

Let Hf = Fb[h]⊗Fb[h] and Ωβ
f := Ω⊗ Ω. The Araki-Woods-Representation is

πAW (W (g)) = W ((1 + %)1/2g)⊗W (%1/2g). (5.75)
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We de�ne Mf := πAW [W (f)]′′ ∈ B(Hf ) and ω̃βf (W (g)) = 〈Ωβ
f |πAW [W (g)]Ωβ

f 〉Hf
, such as

τ̃ f t(A) = eıtLfAe−ıtLf , A ∈ A. It is well known, that Ωβ
f is cyclic for πAW [W (f)] and sep-

arating for Mf . Moreover, the following diagram is commutative

W (f)
τ ft
>W (f)

ωβf
> C

Mf

πAW
∨

τ̃ f t

> Mf .

πAW
∨ ω̃βf

>

In the following we identify ωβf and ω̃βf , such as τ̃ f t and τ
f
t .

Theorem 5.3.4. There is an isometric isomorphism U : Hf → K, such that UeıtLf = eıtLλU

and UΩβ
f = Ωβ

λ. Let γ : B(Hf ) → B(K), γ(A) = UAU−1. Then γ ◦ πAW = π̃ ◦ j ◦ i−1.

(Hf ,Ω
β
f )

eıtLf

> (Hf ,Ω
β
f ) A

π̃ ◦ j
> B(K)

(K,Ωβ
λ)

U
∨

eıtLλ

> (K,Ωβ
λ)

U
∨

W (f)

i
∨

πAW
> B(Hf ).

γ
∧

Proof of 5.3.4. Let H1 := (πAW ◦ i)[A]Ωβ
f and H2 := (π̃ ◦ j)[A]Ωβ

λ. Since Ωβ
f is separating for

(πAW ◦ i)[A] one can de�ne

U : H1 → H2, (πAW ◦ i)[A]Ωβ
f 7→ (π̃ ◦ j)[A]Ωβ

λ. (5.76)

We observe that

〈(π̃ ◦ j)[A]Ωβ
λ|(π̃ ◦ j)[B]Ωβ

λ〉K =
˜
ωβλ(π̃ ◦ j)[A

∗B]) = ωβλ(A
∗B) (5.77)

= ωβf ((πAW ◦ i)[A∗B]) = 〈(πAW ◦ i)[A]Ωβ
f |(πAW ◦ i)[B]Ωβ

f 〉Hf
.

Therefore, U is an isometric isomorphism. Moreover,

eıtLλU(πAW ◦ i)[A]Ωβ
f = eıtLλ(π̃ ◦ j)[A]Ωβ

λ (5.78)

= eıtLλ(π̃ ◦ j)[A]e−ıtLλΩβ
λ = (π̃ ◦ j)[τλt (A)]Ωβ

λ = U(πAW ◦ i)[τλt (A)]Ωβ
f

= UeıtLf (πAW ◦ i)[A]eıtLf Ωβ
f = UeıtLf (πAW ◦ i)[A]Ωβ

f .

That is eıtLλU = UeıtLf . Now, we extend U to an isometric map from c`H1 onto c`H2. The

proof is complete, since c`H1 = c`(πAW ◦ i)[A]Ωβ
f = c` πAW [W (h)]Ωβ

f = Hf and c`H2 = K. �
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Corollary 5.3.5. 1. The W ∗-dynamical systems (M, τλ,Ωβ
λ) and (Mf , τ

f ,Ωβ
f ) are unitarily

equivalent.

2. Lλ is unitarily equivalent to Lf and dom(Lλ) = U dom(Lf ).

3. σ(Lλ) = R, σsc(Lλ) = ∅, σac(Lλ) = R \ {0}, σpp(Lλ) = {0} and Ωβ
λ is up to scalar

multiples the only vector in the kernel of Lλ. (M, τλ,Ωβ
λ) is mixing.

Proof of 5.3.5. 1. Since i(A) = W (f) and (π̃ ◦ j)[A] ⊂ M, we have

γ : πAW [W (f)] → M. (5.79)

Furthermore, since Mf (resp. M ) is the σ-weak closure of πAW [W (f)] (resp. (π̃ ◦ j)[A]),

and γ, γ−1 are σ-weakly continuous, we conclude that γ : Mf → M is a spatial ∗-

isomorphism.

2. follows from eıtLλ = UeıtLfU−1.

3. The spectral of Lf well known. By Lemma 2.6.5 implies, that (M, τλ,Ωβ
λ) is mixing.

�

5.4 Anharmonic Oscillator

In this section we consider an anharmonic oscillator in the dipole approximation, i.e. we replace

in our model Hel by Haosc := Hel + V (x). The potential V is de�ned by

V (x) =

∫
R

ν(dµ)eıxµ. (5.80)

ν is a complex-valued Borel-measure, such that ν(A) = ν(−A) for any Borel set A, where

−A := {−a ∈ R : a ∈ A}. V is therefore real valued. Moreover, the conditions

ai =

∫
R

|ν|(dµ)|µ|i <∞, i = 0, 1, 2, (5.81)

where |ν| is the absolute value of ν and

κ > 2(a0 + C3a2) (5.82)
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for C3 := 2π
∫
R

λ2
∣∣ρ̂(r+ıκ)2(r+ıκ)2

∣∣∣∣Gλ(r+ıκ)Gλ(r−ıκ)
∣∣dr have to be satis�ed. This choice for V is due to Maassen

[18], who studied the Langevin equation. V is also used by Spohn in a paper [25], in which a

three dimensional harmonic oscillator, coupled to a �eld with polarization at temperature zero.

For our reasons we de�ne P :=
∫
R
ν(dµ)W (ν(µ ⊕ 0)) ∈ Mf and the corresponding standard

Liouvillean

LP = Lf + P − JPJ. (5.83)

J is the modular conjugation corresponding to Ωβ
f . It is well known, that LP is self-adjoint and

τλ,Pt (A) := eıtLPAe−ıtLP ∈ Mf for A ∈ Mf .

Moreover a (β, τλ,Pt )-KMS-state is given by ωβλ,P , where ω
β
λ,P (A) := 〈Ωβ

λ,P |AΩβ
λ,P 〉Hf

and

Ωβ
λ,P := ‖e−β/2(Lf+P )Ωβ

f‖−1e−β/2(Lf+P )Ωβ
f . It is also textbook knowledge, confer ([8] Thm. 5.4.4)

and Theorem 2.5.6, that Ωβ
λ,P is cyclic and separating for Mf . We remark that

τλ,Pt (A) = τλt (A) +
∞∑
n=1

ın
∫

0≤tn≤...t1≤t
dt [τλt−t1(P ), [. . . [τλt−tn(P ), τλt (A)] . . .]]. (5.84)

Theorem 5.4.1. For A,B,C ∈ i(Aanal) we have

∣∣ωβλ(Aτλ,Pt (B)C)− ωβλ(AC)ω̃βλ,P (B)
∣∣ ≤ const exp(−(κ− 2(a0 + C3a2))t), (5.85)

where C3 := 2π
∫
R

λ2
∣∣ρ̂(r+ıκ)2(r+ıκ)2

∣∣∣∣Gλ(r+ıκ)Gλ(r−ıκ)
∣∣dr and ω̃βλ,P (B) = limt→∞ ωβλ(τ

λ,P
t (B)).

Proof of 5.4.1. It su�ces to assume A = W (c1 ⊕ f1), B = W (c2 ⊕ f2) and C = W (c3 ⊕ f3).

ωβλ(Aτ
λ,P
t (B)C) = ωβλ(Aτ

λ
t (B)C) (5.86)

+
∞∑
n=1

ın
∫

0≤tn≤...t1≤t
dt ωβλ

(
W (v(c1 ⊕ f1))[W (eı(t−t1)|k|v(µ1 ⊕ 0)), [. . .

[W (eı(t−tn)|k|v(µn ⊕ 0)),W (eıt|k|v(c2 ⊕ f2))] . . .]]W (v(c3 ⊕ f3))
)
.

For the commutator of Weyl operators we obtain

[W (f),W (g)] = 2ı sin
(
(1/2)=〈f |g〉h

)
·W (f + g). (5.87)

Let

C(t, n, µ) := (2ı)n
n∏
k=1

sin
( k−1∑
m=1

=〈eıtk|k|v(µk ⊕ 0)|eıtm|k|v(µm ⊕ 0)〉h/2 (5.88)

+=〈e−ıtk|k|v(µk ⊕ 0)|v(c2 ⊕ f2)〉h/2
)
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and

g(t, n, µ) :=
n∑

m=1

e−ıtm|k|v(µm ⊕ 0) + v(c2 ⊕ f2). (5.89)

We obtain

C(t, n, µ) ·W (eıt|k|g(t, n, µ)) (5.90)

= [W (eı(t−t1)|k|v(µ1 ⊕ 0)), [. . . [W (eı(t−t1)|k|v(µ1 ⊕ 0)),W (eıt|k|v(c2 ⊕ f2))] . . .]].

Therefore,

ωβλ(Aτ
λ,P
t (B)C) = ωβλ(Aτ

λ
t (B)C) (5.91)

+
∞∑
n=1

ın
∫

0≤tn≤...t1≤t
dt

∫
ν(dµ)C(t, n, µ)

ωβλ

(
W (v(c1 ⊕ f1))W (eıt|k|g(t, n, µ))W (v(c3 ⊕ f3))

)
= ωβλ(Aτ

λ
t (B)C) +

∞∑
n=1

ın
∫

0≤tn≤...t1≤t
dt

∫
ν(dµ)

ωβλ
(
W (v(c1 ⊕ f1))W (v(c3 ⊕ f3))

)
ωβλ

(
W (g(t, n, µ))

)
C(t, n, µ) · exp(∆(t, t, n, µ)),

where

∆(t, t, n, µ) := −(1/2)<〈v(c1 ⊕ f1) + v(c3 ⊕ f3)|(1 + 2%)eıt|k|g(t, n, µ)〉h

−(ı/2)=〈v(c1 ⊕ f1)− v(c3 ⊕ f3)|eıt|k|g(t, n, µ)〉h. (5.92)

Due to Theorem (5.2.6) we have

|ωβλ(Aτ
λ
t (B)C)− ωβλ(AC)ωβλ(τ

λ
t (B))| ≤ C0e

−κt. (5.93)

From |e∆(t,t,n,µ) − 1| ≤ |∆(t, t, n, µ)|e|<∆(t,t,n,µ)| and∣∣∣ωβλ(W (v(c1 ⊕ f1))W (v(c3 ⊕ f3))
)
ωβλ(W (g(t, n, µ))) exp(|<∆(t, t, n, µ)|)

∣∣∣ ≤ 1

follows that

|ωβλ(Aτ
λ,P
t (B)C)− ωβλ(AC)ωβλ(τ

λ,P
t (B))| (5.94)

≤ C0e
−κt +

∞∑
n=1

∫
0≤tn≤...t1≤t

dt

∫
|ν|(dµ)

∣∣C(t, n, µ)∆(t, t, n, µ)
∣∣.
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We observe

|∆(t, t, n, µ)| ≤ C1(
n∑
i=1

e−(t−ti)κ|µi|+ e−tκ) (5.95)

for some C1 > 0. Furthermore, Maassen's estimate (A.0.4) yields

|C(t, n, µ)| ≤ C2e
−κti|µi|

i−1∏
k=1

(1 + C3µ
2
k), (5.96)

where C2 > 0 and C3 ≥ 1, C3 is independent of v(ci ⊕ fi), i = 1, 2, 3.

|ωβλ(Aτ
λ,P
t (B)C)− ωβλ(AC)ωβλ(τ

λ,P
t (B))| (5.97)

≤ C0e
−κt + e−κtC1C2

∞∑
n=1

∫
0≤tn≤...t1≤t

dt

∫
|ν|(dµ)

( n∑
i=2

µ2
i

i−1∏
k=1

(1 + C3µ
2
k) + 1

)
≤ C0e

−κt + e−κtC1C2

∞∑
n=1

∫
0≤tn≤...t1≤t

dt

∫
|ν|(dµ)

n∏
k=1

(1 + C3µ
2
k)

≤ C0e
−κt + C1C2 exp(−t(κ− a0 − C3a2)).

Furthermore for 0 < t < s

|ωβλ(τ
λ,P
s (B))− ωβλ(τ

λ,P
t (B))|

≤
∞∑
n=1

∫
0≤tn≤...≤t1≤s

dt 1[t1 ≥ t]

∫
|ν|(dµ) |C(t, n, µ)|.

From Lemma A.0.4 follows

∣∣ωβλ(τλ,Ps (B))− ωβλ(τ
λ,P
t (B))

∣∣ (5.98)

≤ C2a0

∞∑
n=1

2n
∫

0≤tn≤...≤t1≤s
dt 1[t1 ≥ t](a0 + C3a2)

n−1e−κt1

= C2a0

∞∑
n=1

2n
∫ s

t

(r(a0 + C3a2))
n−1

(n− 1)!
e−κrdr

≤ 2C2a0

∫ ∞

t

exp(−(κ− 2(a0 + C3a2))r)dr

≤ 2C2a0

κ− 2(a0 + C3a2)
exp(−(κ− 2(a0 + C3a2))t).

We de�ne ω̃βλ,P (B) := lims→∞ ωβλ(τ
λ,P
s (B)) using the Cauchy criterion. �

Lemma 5.4.2. (πAW ◦ i)[Aanal]
′′ = Mf .
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Proof. First, we observe ran i = LH{W (f) ∈ W (f) : f ∈ Hanal}. Since Hanal is dense in

M0(R
3) ∩M−1/2(R

3), for every f ∈ M0(R
3) ∩M−1/2(R

3) exists a sequence (fn)n ⊂ Hanal, so

that √
1 + %fn ⊕

√
%fn −→

√
1 + %f ⊕√%f, n→∞,

where the limit is in the norm of h⊕ h. It follows, that

s-limn→∞W
(√

1 + %fn ⊕
√
%fn

)
= W (

√
1 + %f ⊕√%f).

We conclude, that (πAW ◦ i)[Aanal]
′′ = LH{W (

√
1 + %f ⊕√%f) : f ∈ f}′′ = Mf . �

Corollary 5.4.3. For every ωβλ,P -normal state µ over Mf and every C ∈ Mf we obtain

lim
t→∞

µ(τλ,Pt (C)) = ωβλ,P (C).

Hence ωβλ,P is mixing.

Proof of 5.4.3. Let now φ ∈ Hf , ‖φ‖ = 1 and A, B ∈ (πAW ◦ i)[Aanal], so that ‖AΩβ
λ‖ = 1.

|〈φ|τλ,Pt (B)φ〉Hf
− ω̃βλ,P (B)| (5.99)

≤ |〈φ|τλ,Pt (B)φ〉Hf
− 〈AΩβ

f |τ
λ,P
t (B)AΩβ

f 〉|+ |ωβλ(A
∗τλ,Pt (B)A)− ω̃βλ,P (B)|

≤ 2‖AΩβ
f − φ‖ · ‖B‖+ |ωβλ(A

∗τλ,Pt (B)A)− ω̃βλ,P (B)|

We obtain directly

lim sup
t→∞

|〈φ|τλ,Pt (B)φ〉Hf
− ω̃βλ,P (B)| (5.100)

≤ 2‖B‖ inf{‖AΩβ
f − φ‖ | A ∈ (πAW ◦ i)[Aanal], ‖AΩβ

f‖ = 1} = 0

Choosing φ = Ωβ
λ,P we obtain by time-invariance of KMS-states, that ωβλ,P = ω̃βλ,P over

(πAW ◦ i)[Aanal]. Assume now C ∈ Mf , (Cn)n ∈ (πAW ◦ i)[Aanal] and D ∈ M′
f , so that

C = s-limn→∞Cn. We have

〈DΩβ
λ,P |τ

λ,P
t (C − Cn)DΩβ

λ,P 〉 = 〈D∗DΩβ
λ,P |τ

λ,P
t (C − Cn)Ω

β
λ,P 〉 = 〈D∗DΩβ

λ,P |e
ıtLP (C − Cn)Ω

β
λ,P 〉

(5.101)
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Hence,

lim sup
t→∞

|ωβλ,P (C)− 〈DΩβ
λ,P |τ

λ,P
t (C)DΩβ

λ,P 〉| (5.102)

≤ lim sup
t→∞

|ωβλ,P (Cn)− 〈DΩβ
λ,P |τ

λ,P
t (Cn)DΩβ

λ,P 〉|

+ lim sup
t→∞

|ωβλ,P (C − Cn)− 〈DΩβ
λ,P |τ

λ,P
t (C − Cn)DΩβ

λ,P 〉|

≤ (1 + ‖D∗D‖) · ‖(C − Cn)Ω
β
λ,P‖.

For n → ∞ we obtain ωβλ,P (C) = limt→∞〈DΩβ
λ,P |τ

λ,P
t (C)DΩβ

λ,P 〉 Since Ωβ
λ,P is separating for

Mf , it is cyclic for (Mf )
′. A simple approximation argument yields now

ωβλ,P (C) = lim
t→∞

〈φ|τλ,Pt (C)φ〉 (5.103)

for all φ ∈ Hf . Apply now Theorem 2.3.3. �
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Appendix A

Two Additional Proofs

Lemma A.0.4 (Maassen,[18]). Let f0, . . . , fn be vectors in a Hilbert space h, and real numbers

0 ≤ t1 ≤ t2 ≤ . . . tn and λ1, λ2, . . . , λn ∈ R and α, β, γ > 0, such that

|=〈fk|f0〉| ≤ α|λk|e−tkγ, k > 0 (A.1)

|=〈fk|fj〉| ≤ β|λkλj| · e−(tk−tj)γ, k > j > 0. (A.2)

Then, ∣∣∣ n∏
k=1

sin
( k−1∑
j=0

=〈fk|fj〉
)∣∣∣ ≤ e−γtn|λn|α

n−1∏
k=1

(1 + βλ2
k). (A.3)

Proof of A.0.4. First we remark that for x, y ∈ R

| sin(x+ y)| ≤ | sin(x)|+ | sin(y)|, | sin(x)| ≤ |x|, | sin(x)| ≤ 1. (A.4)

We proceed by induction for n. Assume the statement of Lemma A.0.4 holds for j = 1, . . . , n−1.∣∣∣ n∏
k=1

sin
( k−1∑
j=0

=〈fk|fj〉
)∣∣∣ (A.5)

=
∣∣∣ sin

( n−1∑
j=0

=〈fn|fj〉
)∣∣∣ · ∣∣∣ n−1∏

k=1

sin
( k−1∑
j=0

=〈fk|fj〉
)∣∣∣

≤
n−1∑
j=1

∣∣ sin(=〈fn|fj〉)
∣∣ · j−1∏

k=1

∣∣ sin
( k−1∑
j=0

=〈fk|fj〉
)∣∣ + | sin

(
=〈fn|f0〉

)
|

≤
n−1∑
j=1

(
β|λnλj| · e−(tn−tj)γ

)
·
(
e−γtj |λj|α

j−1∏
k=1

(1 + βλ2
k)

)
+ α|λn|e−tnγ.

Since the right-hand side (r.h.s) of Equation (A.5) is less than the (r.h.s) of Equation (A.3). �
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Theorem A.0.5 (Wick's Theorem). Let ω be a regular state over W (f).

1. Assume

R
n 3 (t1, . . . , tn) 7→ ω(W (tnfn) · · ·W (t1f1)

)
(A.6)

is smooth, then for k = 1, . . . , n

Ωω ∈ dom(Φω(f1)), Φω(fk−1) · · ·Φω(f1)Ωω ∈ dom(Φω(fk))

2. If ω is quasi-free, then

〈Ωω|Φω(f1) · · ·Φω(f2n−1)Ωω〉 = 0

〈Ωω|Φω(f1) · · ·Φω(f2n)Ωω〉 =
∑
P∈P2n

∏
{k<l}∈P

〈Ωω|Φω(fk)Φω(fl)Ωω〉

Proof of A.0.5. Let

sn(t2n, . . . , t1) (A.7)

:= ω
(
W (−tn+1fn+1) · · ·W (−t2nf2n)W (tnfn) · · ·W (t1f1)

)
and

Sn(tn, . . . , t1) := πω(W (tnfn)) · · ·πω(W (t1f1))Ωω. (A.8)

We want to show that ∂tn · · · ∂t1Sn(tn, . . . , t1) exists if sn is smooth.

We proceed by induction for n. For n = 0 is nothing to show. Let

rn+1(tn+1) = ∂t2n+1 · · · ∂tn+2∂tn · · · ∂t1sn+1(tn+1 . . . , t1, tn+1 . . . , t1) (A.9)

and

Rn+1(tn+1) = ∂tn · · · ∂t1Sn+1(tn+1, . . . , t1). (A.10)

We want to show that Rn+1(tn+1) is di�erentiable in 0. Cauchy's criterion for the di�erential

quotient reads

‖x−1
(
Rn+1(x)−Rn+1(0)

)
− y−1

(
Rn+1(y)−Rn+1(0)

)
‖2 (A.11)

= x−2‖Rn+1(x)‖2 + y−2‖Rn+1(y)‖2 + (x−1 − y−1)2‖Rn+1(0)‖2

−2x−1y−1<〈Rn+1(x)|Rn+1(y)〉 − 2x−1(x−1 − y−1)<〈Rn+1(x)|Rn+1(0)〉

+2y−1(x−1 − y−1)<〈Rn+1(y)|Rn+1(0)〉



111

per induction we obtain 〈Rn+1(tn+1)|Rn+1(tn+1)〉 = sn+1(tn+1).

‖x−1
(
Rn+1(x)−Rn+1(0)

)
− y−1

(
Rn+1(y)−Rn+1(0)

)
‖2 (A.12)

= (x−2 + y−2 + (x−1 − y−1)2)sk+1(0)− x−1y−1(rn+1(x− y) + rn+1(y − x))

−x−1(x−1 − y−1)(rn+1(x) + rn+1(−x))

+y−1(x−1 − y−1)(rn+1(y) + rn+1(−y)).

We de�ne ∆(x) = x−2(rn+1(x) + rn+1(−x)− 2rn+1(0)), x 6= 0 and get

‖x−1
(
Rn+1(x)−Rn+1(0)

)
− y−1

(
Rn+1(y)−Rn+1(0)

)
‖2 (A.13)

= −x−1y−1(x− y)2∆(x− y)− x(x−1 − y−1)∆(x) + y(x−1 − y−1)∆(y)

= xy−1(∆(x)−∆(x− y)) + x−1y(∆(y)−∆(x− y)).

Since rn+1 is smooth, ∆ extends to a function in C1(R;C). From ∆(x) = ∆(−x) follows, that

the (r.h.s) of (A.13) tends to zero if x, y → 0.

Because [0,∞) 3 r 7→
√
r is uniformly continuous, ∂tn+1Rn+1(0) exists.

As a result of the di�erentiability of Sn(t) in zero, we obtain

Φω(fn−1) · · ·Φω(f1)Ωω ∈ dom(Φω(fn)). (A.14)

Let now ω be quasi-free. Hence

ω(s1, . . . , sn) := ω(W (s1f1) · · ·W (snfn)) (A.15)

=
n−1∏
k=1

exp
(
(−(ı/2)

n∑
l=k+1

=〈fk, fl〉sksl
)
ω
(
W (

n∑
l=1

slfl)
)

=
n−1∏
k=1

exp
(
(−(ı/2)

n∑
l=k+1

=〈fk, fl〉sksl
) n∏
k,l=1

exp(−q(fk, fl)sksl)

= exp
(
−

∑
1≤k<l≤n

ωklsksl −
n∑
k=1

ωkks
2
k

)
.

where ωkl :=
(
ı=〈fk, fl〉/2 + q(fk, fl) + q(fl, fk)

)
, if k < l, and ωkk := q(fk, fk).

Let Powm be the power set of {1, . . . ,m} and

P2n =
{
P ⊂ Pow2n : P := {A1, . . . , An} (A.16)

Ai ∩ Aj = ∅ for i 6= j, #Ai = 2
}

(A.17)
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the set of pairings of {1, . . . , 2n}. We obtain

∂s2n−1 · · · ∂s1ω(s1, . . . , s2n−1)
∣∣∣
s=0

= 0 (A.18)

∂s2n · · · ∂s1ω(s1, . . . , s2n)
∣∣∣
s=0

= (−1)n
∑
P∈P2n

∏
{k<l}∈P

ωkl (A.19)

Proof by induction for n.

∂s1ω(s1)
∣∣
s1=0

= −2ω11s1 exp(−ω11s
2
1)

∣∣
s1=0

= 0 (A.20)

∂s1∂s2ω(s1, s2)
∣∣
s1,s2=0

= ∂s1(−ω12s1) exp(−ω11s
2
1)

∣∣∣
s1=0

= −ω12

Assume it is true for n.

∂s2(n+1)−1
· · · ∂s1ω(s1, . . . , s2(n+1)−1)

∣∣∣
s=0

(A.21)

= ∂s2n · · · ∂s1
(
−

2n∑
k=1

ωk,2n+1sk − 2ω2n+1,2n+1s2n+1

)
exp

(
−

∑
1≤k<l≤2n+1

ωklsksl −
2n+1∑
k=1

ωkks
2
k

)∣∣∣
s=0

= ∂s2n · · · ∂s1
(
−

2n∑
m=1

ωm,2n+1sm

)
exp

(
−

∑
1≤k<l≤2n

ωklsksl −
2n∑
k=1

ωkks
2
k

)∣∣∣
s=0

= −
2n∑
m=1

ωm,2n+1sm∂s2n · · · ∂s1 exp
(
−

∑
1≤k<l≤2n

ωklsksl −
2n∑
k=1

ωkks
2
k

)∣∣∣
s=0

−
2n∑
m=1

ωm,2n+1∂s2n · · · ∂̂sm · · · ∂s1 exp
(
−

∑
1≤k<l≤2n

ωklsksl −
2n∑
k=1

ωkks
2
k

)∣∣∣
s=0

The �rst term of the (r.h.s) of Equation (A.21) is zero, since s = 0 The second term is zero by

induction since only 2n− 1 derivatives are taken into account. Analogously, we obtain

∂s2(n+1)
· · · ∂s1ω(s1, . . . , s2(n+1))

∣∣∣
s=0

(A.22)

= −
2n+1∑
m=1

ωm,2n+2∂s2n+1 · · · ∂̂sm · · · ∂s1 exp
(
−

∑
1≤k<l≤2n+1

k,l 6=m

ωklsksl −
2n+1∑
k=1
k 6=m

ωkks
2
k

)∣∣∣
s=0

.

Let

Pm
2n+1 =

{
P ⊂ Pow2n+1 : P := {A1, . . . , An} (A.23)

Ai ∩ Aj = ∅ for i 6= j, #Ai = 2, ∀ni=1m ∈ Ai
}

(A.24)
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the set of pairings of {1, . . . , 2n+1} \ {m}. By induction we obtain for the (r.h.s.) of Equation

(A.22) that

∂s2(n+1)
· · · ∂s1ω(s1, . . . , s2(n+1))

∣∣∣
s=0

(A.25)

= −
2n+1∑
m=1

ωm,2n+2(−1)n
∑

P∈Pm
2n+1

∏
{k<l}∈P

ωkl. (A.26)

Since

(−ı)n∂sn · · · ∂s1ω(s1, . . . , sn)
∣∣∣
s=0

= 〈Ωω|Φω(f1) · · ·Φω(fn)Ωω〉 (A.27)

and ωkl = 〈Ωω|Φω(fk)Φω(fl)Ωω〉 the proof is complete. �
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Appendix B

Operator Theory

For a bounded self-adjoint operator on a Hilbert space h we denote by |A| := (A∗A)1/2 absolute

value of A. |A| is obviously positive and A = |A|, whenever A is positive. From now on we

assume that h is separable.

De�nition B.0.6 (Trace of positive Operators). Let A be a positive, bounded operator on h

and (φn)
∞
n=1 any ONB of h.

Tr{A} :=
∞∑
n=1

〈φn|Aφn〉 (B.1)

is the trace of A, it is independent of the choice of (φn)
∞
n=1. If A has pure point spectrum, then

Tr{A} is the sum of the eigenvalues of A counted with multiplicity

De�nition B.0.7 (Operators of Schatten p-Class). For 1 ≤ p <∞ we de�ne for A ∈ B(h)

‖A‖p = Tr{|A|p}1/p ∈ [0,∞]

and ‖A‖∞ is the operator norm. Furthermore, for 1 ≤ p <∞

Lp(h) := {A ∈ B(h) : ‖A‖p <∞}. (B.2)

Lemma B.0.8. Let 1 ≤ p <∞.

1. (Lp(h), ‖·‖p) is a Banach space. A ∈ Lp(h) implies A∗ ∈ Lp(h). Moreover ‖A∗‖p = ‖A‖p.

2. Assume p, q, r ∈ [1,∞] and p−1 + q−1 = r−1. For A ∈ Lp(h) and B ∈ Lq(h) we have

AB ∈ Lr(h) and ‖AB‖r ≤ ‖A‖p · ‖B‖q. Only for this de�nition we set L∞(h) := B(h).
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3. For A ∈ L1(h) one can de�ne a bounded linear functional, the trace, Tr : L1(h) → C, by

Tr{A} :=
∞∑
n=1

〈φn|Aφn〉h.

where (φn)
∞
n=1 is an arbitrary ONB of h. The de�nition of Tr is independent of (φn)

∞
n=1.

L1(h) are the operators of trace class. For A,B ∈ B(h) the trace is cyclic, that means

AB, BA ∈ L1(h) ⇒ Tr{AB} = Tr{BA}. (B.3)

4. (L2(h), ‖ · ‖2) is a Hilbert space equipped with the scalar product 〈A|B〉2 := Tr{A∗B}. We

have

‖A‖2 = Tr{A∗A}1/2 =
( ∞∑
n=1

‖Aφn‖2
h

)1/2

.

for every ONB (φn)
∞
n=1 of h. (L2(h), ‖ · ‖2) are the Hilbert-Schmidt operators. If h =

L2(X,µ) and A ∈ L2(h) then exists an uniquely determined k ∈ L2(X × X,µ ⊗ µ)

with (Aφ)(x) =
∫
k(x, y)φ(y)µ(dy) for µ-almost every x ∈ X and all φ ∈ h. Moreover

‖A‖2 = ‖k‖L2(X×X,µ⊗µ).

Proof of B.0.8. The statements are textbook knowledge. The proof is partly in ([21],Chapter,

VII.6) and in ([24], Thm. 2.7 and Thm. 2.8) �

Theorem B.0.9 (Golden-Thompson-Inequality). Let A,B be self-adjoint operators, bounded

below. Assume, that A+B is essentially self-adjoint on dom(A) ∩ dom(B). Then

‖e−(A+B)‖p ≤ ‖e−A/2e−Be−A/2‖p, 1 ≤ p <∞. (B.4)

Proof of B.0.9. For the proof see ([24], Thm 8.5). Note, that one can prove the theorem under

weaker assumptions. �
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