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Tag der mündl. Prüfung: 12. Februar 2009

ii



Jochen Zausch
Dynamik, Rheologie und kritische Eigenschaften von kolloidalen Mischungen:

Molekulardynamik-Simulationen im Gleichgewicht und unter Scherung

Unter dem Einfluss externer Felder zeigen Flüssigkeiten ein großes Spektrum interessanter
Phänomene, die sich sehr von denen in ungestörten Systemen unterscheiden. Mittels Mole-
kulardynamik-Simulationen (MD) in Verbindung mit dissipativer Teilchendynamik werden
in dieser Arbeit zwei verschiedene Systeme untersucht: ein glasbildendes Yukawa-System
sowie eine Kolloid-Polymer-Mischung.

Ersteres ist eine binäre 50-50 Mischung gleichnamig geladener Kolloide verschiedener
Größe, die über ein abgeschirmtes Coulomb-Potenzial wechselwirken. In der Nähe des Glas-
übergangs wird der Einfluss eines äußeren Scherfeldes untersucht. Insbesondere der Über-
gang vom elastischen Verhalten zum plastischen Fließen ist hierbei von Interesse. Zunächst
wird dazu das Modell im Gleichgewicht bei verschiedenen Temperaturen charakterisiert.
Hierbei zeigt sich mit abnehmender Temperatur die typische Dynamik einer glasbilden-
den Flüssigkeit, d. h. ein starkes Anwachsen der strukturellen Relaxationszeit τα in einem
kleinen Temperaturbereich. Diese Dynamik wird im Zusammenhang mit der Modenkopp-
lungstheorie des Glasübergangs (MCT) diskutiert. Um nun ein

”
bulk“-System unter Sche-

rung untersuchen zu können, werden Lees-Edwards-Randbedingungen benutzt. Bei kon-
stanter Scherrate γ̇ ≫ 1/τα ist die relevante Zeitskala durch 1/γ̇ gegeben und das System
zeigt Scherverdünnung. Um die deutlichen Unterschiede zwischen einem ungestörten und
einem System unter Scherung zu verstehen, wird das Verhalten nach dem instantanen Ein-
bzw. Ausschalten des externen Scherfeldes betrachtet. Nach dem Einschalten der Scherung
zeigt sich am Übergang von elastischer zu plastischer Deformation ein Überschwingen der
Scherspannung, das mit einem superdiffusiven Anwachsen des mittleren Verschiebungs-
quadrates verknüpft ist. Die mittlere statische Struktur hängt dabei nur vom Wert der Span-
nung ab und unterscheidet nicht zwischen diesen beiden Regimen. Die Verteilung der lokalen
Spannungen dagegen wird breiter, sobald das System zu fließen beginnt. Diese zusätzlichen
Fluktuationen sorgen dafür, dass die Spannungen nach dem Ausschalten des Scherfeldes im
plastischen Regime auf der Zeitskala 1/γ̇ zerfallen. Im Gegensatz dazu geschieht der Abbau
der Scherspannungen beim Ausschalten im elastischen Regime auf der viel längeren Zeits-
kala τα der strukturellen Relaxation. Während die Spannungen nach dem Ausschalten für
Temperaturen oberhalb des Glasübergangs auf Null zurückgehen, zerfallen sie für niedrige-
re Temperaturen auf einen endlichen Wert. Die gewonnenen Resultate sind wichtig für die
Weiterentwicklung neuer theoretischer Zugänge im Rahmen der Modenkopplungstheorie.
Ferner ergeben sich Vorschläge zu neuen experimentellen Untersuchungen an kolloidalen
Systemen.

Die Kolloid-Polymer-Mischung wird im Zusammenhang mit dem Verhalten in der Nähe
des kritischen Punktes der Phasentrennung untersucht. Für diese MD-Simulationen wird ein
neues effektives Modell mit weichen Potenzialen eingeführt und sein Phasendiagramm vor-
gestellt. In dieser Arbeit werden hauptsächlich die Gleichgewichtseigenschaften dieser Mi-
schung untersucht. Obgleich die Selbstdiffusionskonstanten von Kolloiden und Polymeren
nicht stark vom Abstand zum kritischen Punkt abhängen, zeigt sich in der Interdiffusions-
konstante kritische Verlangsamung. Die Fluktuationen des Ordnungsparameters werden im
Limes langer Wellenlängen aus statischen Strukturfaktoren bestimmt. Es wird gezeigt, wie
man in dieser stark asymmetrischen Mischung den relevanten Strukturfaktor durch Diago-
nalisieren einer Matrix, die die partiellen Strukturfaktoren enthält, extrahiert. Erste Simula-
tionen unter Scherung belegen, dass dieses Modell auch für Nichtgleichgewichtssimulatio-
nen geeignet ist.
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Jochen Zausch
Dynamics, Rheology and Critical Properties of Colloidal Fluid Mixtures:

Molecular Dynamics Studies in Equilibrium and Under Shear

Liquids under the influence of external fields exhibit a wide range of intriguing phenomena
that can be markedly different from the behaviour of a quiescent system. This work con-
siders two different systems — a glassforming Yukawa system and a colloid-polymer mix-
ture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle
dynamics.

The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids
interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influ-
ence of an external shear field is studied. In particular, the transition from elastic response to
plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreas-
ing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural
relaxation time τα grows strongly in a rather small temperature range. This is discussed
with respect to the mode-coupling theory of the glass transition (MCT). For the simulation
of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant
shear rates γ̇ ≫ 1/τα the relevant time scale is given by 1/γ̇ and the system shows shear
thinning behaviour. In order to understand the pronounced differences between a quiescent
system and a system under shear, the response to a suddenly commencing or terminating
shear flow is studied. After the switch-on of the shear field the shear stress shows an over-
shoot, marking the transition from elastic to plastic deformation, which is connected to a
super-diffusive increase of the mean squared displacement. Since the average static structure
only depends on the value of the shear stress, it does not discriminate between those two re-
gimes. The distribution of local stresses, in contrast, becomes broader as soon as the system
starts flowing. After a switch-off of the shear field, these additional fluctuations are respons-
ible for the fast decay of stresses, which occurs on a time scale 1/γ̇. The stress decay after a
switch-off in the elastic regime, on the other hand, happens on the much larger time scale of
structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures
above the glass transition, they decay to a finite value for lower temperatures. The obtained
results are important for advancing new theoretical approaches in the framework of mode-
coupling theory. Furthermore, they suggest new experimental investigations on colloidal
systems.

The colloid-polymer mixture is studied in the context of the behaviour near the critical
point of phase separation. For the MD simulations a new effective model with soft interac-
tion potentials is introduced and its phase diagram is presented. Here, mainly the equilib-
rium properties of this model are characterised. While the self-diffusion constants of colloids
and polymers do not change strongly when the critical point is approached, critical slowing
down of interdiffusion is observed. The order parameter fluctuations can be determined
through the long-wavelength limit of static structure factors. For this strongly asymmetric
mixture it is shown how the relevant structure factor can be extracted by a diagonalisation
of a matrix that contains the partial static structure factors. By presenting first results of this
model under shear it is demonstrated that it is suitable for non-equilibrium simulations as
well.
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Chapter 1

General introduction

Under the influence of external forces soft materials can display a wide range of interesting
behaviour. For the use in certain applications it is important to know about the response of
a given material on these forces. In particular non-linear effects of driven systems are poorly
understood on a microscopic level. Therefore, it is necessary to study the behaviour of those
materials in a systematic way. In the context of this work fluid mixtures under shear will
be examined. For the investigation of sheared systems ‘colloidal suspensions’ are very well
suited since their shear modulus is very low compared to an atomistic system (see below).
For this reason, their behaviour under shear will be in the focus of the studies presented in
the following chapters.

Colloidal fluid mixtures are ubiquitous in everyday life and describe, generally speaking,
particles immersed in a solvent. The particles, the ‘colloids’a, are of nanometre to micrometre
size, while the surrounding medium is made of much smaller constituents of atomistic or
molecular size. A typical colloidal system consists of solid colloid particles suspended in a
liquid (e.g. ketchup, wall paint). But also liquids in liquids (emulsions like milk), gases in li-
quids (foams like styrofoam or whipped cream) or solid/liquid particles in gas (aerosols like
fog or smoke) fall into the large class of colloidal suspensions. Important for the character-
isation as a colloidal system is that the particles exhibit Brownian motion, which is caused by
collisions with the thermally moving solvent molecules. In other words, ‘a colloid is defined
by its behaviour’ [Fre00] — its behaviour is described by the laws of statistical mechanics.
Colloids can appear in different shapes (e.g. spheres, rods, plates, irregular shapes) and can
carry a charge. Today, a lot of research is concerned with colloidal systems.

The roots of colloid science reach back to the 19th, early 20th century and were stimulated
by controversies regarding the existence of molecules [RSS89]. After a decline of interest in
the years around the Second World War, the importance of colloid science started to grow in
the 1960s due to new technological challenges like the manufacture of synthetic dispersions,
enhanced oil recovery, the fabrication of ceramics, corrosion phenomena, etc. [RSS89]. Be-
sides its technological value it became important for environmental science, biotechnology
and medicine. However, colloid science is not only important because of its many applica-
tions, it can be used to illuminate basic physical questions as well since in certain respects
colloids behave as ‘big atoms’ [Poo04] — e.g. they interact by similar effective interaction po-
tentials as atoms, they perform Brownian motion (colloid’s analogue to the thermal motion
of atoms), and can undergo different kinds of phase transitions, like crystallisation.

afrom the Greek kìlla for glue



2 Chapter 1. General introduction

Figure 1.1: Typical geometries for producing shear flows: concentric cylinders, parallel disks, cone-plate geo-
metry and two sliding plates (from left to right). In this work shear flow according to the rightmost geometry is
considered. (Drawings from [Lar99])

Due to their mesoscopic size of the order of micrometres, colloidal systems have the ad-
vantage of being accessible by microscopy and scattering techniques with optical light. Their
size is responsible for the relatively large time scale on which processes can be observed. The
time needed for a typical colloid to diffuse a distance comparable to its size can be estimated
(using the Stokes-Einstein relation) to be of the order of milliseconds and larger. Often, this
is experimentally more convenient than the time scale of picoseconds of atomistic systems.
Colloidal systems are very suitable for rheological studies since their shear modulus G is
low (of the order of 1 Pa), which is the reason why these systems are often called ‘soft mat-
ter’ in contrast to ‘hard matter’ with a shear modulus of the order of 1011 Pa [Poo00, McL00].
While the latter materials break already at low deformations, soft systems can maintain large
strains and thus allow, for example, for the investigation of nonlinear response. Possible ex-
perimental realisations of such rheological experiments are shown schematically in Figure
1.1. The two-plate geometry closely resembles the geometry that is used in the simulation
studies of the present work.

There is another advantage of colloidal systems over atomistic ones: The interactions
of colloids can be tuned to a large degree, for example by adding salt to the solvent or by
modifying their surface (e.g. by coating or grafting polymers). This way, one can for ex-
ample synthesise hard sphere-like systems, which are popular theoretical model systems.
Although these systems seem to be rather simple at first sight, colloids mixed with (almost
non-interacting) polymers can show a phase separation, which is driven by entropy alone
and depends on the concentration of polymers. Consequently, colloidal suspensions are very
suitable for the study of glassy dynamics or phase separation under shear.

In this work two colloidal model systems are considered and investigated by Molecular
Dynamics computer simulations: On the one hand a system of equally charged particles and
on the other hand a colloid-polymer mixture. The former system is modelled by a Yukawa
potential, which accounts for the screening of the pure Coulomb interaction between charged
particles by ions in the solvent. At low temperatures such a system shows glassy dynamics,
i.e. the time scale of the microscopic dynamics increases drastically leading to an increase
of viscosity by orders of magnitude. Thus, the system becomes solid-like while still show-
ing a disordered, liquid-like structure. There are several theories that aim at understanding
the glass transition, e.g. phenomenological approaches like the theory of Adam and Gibbs
[AG65], the free volume theory [CT59], trap models [MB96], kinetically constrained models
[FA84, RS03] or the mode-coupling theory of the glass transition (MCT) [Göt08]. The res-
ults of this work will be discussed mainly in the context of the latter theory and its recent
extensions.

Glassy systems under external shear have attracted interest in the last couple of years. It
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was found in experiments [BWSP07] and computer simulations [VH06] that the behaviour
of these liquids is quite different from the quiescent state and exhibits a much accelerated dy-
namics expressed by distinctly different transport coefficients. A very prominent example
known as ‘shear thinning’ is the decrease of viscosity upon increasing shear rate [Lar99],
which is also found in many everyday fluids (e.g. wall paint). Also within MCT the acceler-
ation of the dynamics can be described [FC03, MRY04]. However, the processes that lead to
these effects are not well understood. Therefore, it is interesting to investigate the response
of a system to a sudden change in shear rate. This way one can study the time evolution of
the system in the transient states and learn about the microscopic processes that distinguish
a sheared system from an equilibrium one. This is the topic of Chapter 3 where a mixture of
Yukawa particles is characterised in equilibrium and under steady shear and then investig-
ated under suddenly commencing and terminating shear flows.

To synthesise colloidal systems that show a liquid-vapour phase transition, it is neces-
sary for the colloid interaction to have an attractive part. This can be achieved by oppositely
charged colloids or mixtures of hard sphere-like colloids with polymers, which lead to an
effective attraction between colloids by depletion effects. The latter case is experimentally
advantageous since the strength of the interaction can be tuned by the polymer concentra-
tion. Colloid-polymer mixtures have been studied extensively in equilibrium but they can
show interesting behaviour under shear as well. It is for example predicted theoretically,
that the critical behaviour, which lies in the 3D Ising universality class, changes to a mean
field behaviour under shear if the shear rate is large enough [OK79]. In Chapter 4, a new
model for colloid-polymer mixtures is presented, which is closely related to the well-known
Asakura-Oosawa model (AO) [AO54, AO58, Vri76]. The latter is characterised by hard-
sphere interactions between colloids and polymers as well as among colloids themselves,
while the polymer-polymer interaction is zero. Since this model is unsuitable for Molecu-
lar Dynamics simulations, a ‘soft’ AO model is proposed, which also includes interactions
among polymers. It is Important for the investigation of its critical behaviour to properly
define the order parameter, which is not straightforward in this system. Together with a
general characterisation of this model in equilibrium for different distances to the critical
point of phase separation, it will be shown how the order parameter can be defined in or-
der to calculate the critical exponents. Additionally, it will be shown that it is in principle
suitable for shear simulations.

This work is organised as follows: Chapter 2 gives an introduction to the Molecular
Dynamics simulation technique, which is the basis of all results obtained in this work. As
mentioned above, Chapter 3 is concerned with a Yukawa mixture that exhibits glassy dy-
namics. This model is thoroughly characterised in equilibrium and studied under commen-
cing, steady, and terminating shear flow. With a colloid-polymer mixture Chapter 4 treats a
completely different system by a newly developed model. Its critical properties are studied
and it is shown that this model is suitable for future investigations under shear. The final
Chapter 5 summarises the main conclusions.
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Chapter 2

Molecular dynamics simulation in
equilibrium and under shear

In computer simulations of condensed matter systems there exist several simulation tech-
niques with certain advantages and disadvantages depending on the question under consid-
eration. As two well-known classical, particle-based methods the Monte Carlo and the Mo-
lecular Dynamics scheme shall be mentioned. The former is a stochastic, numerical method
to evaluate integrals of high dimensionality, which means in the context of statistical physics
the ensemble average of observables. Monte Carlo defines a set of allowed particle moves
that are carried out at random and are accepted by certain criteria. For example, a randomly
selected particle can be displaced by a random vector r if the chosen acceptance criterion is
fulfilled. Other possible moves are the insertion or removal of a particle, rotations (in the
case of non-spherical objects), identity changes, spin flips, etc. These moves do not neces-
sarily describe physically realistic processes on a microscopic level. In Molecular Dynamics,
by contrast, one solves Newton’s equations of motion numerically. If the system which is
simulated obeys classical mechanics, it can be expected that MD also describes microscopic
details. This method is (as is classical mechanics) deterministic and does not contain any
kind of randomness. Which method is adequate for a given problem deserves careful con-
sideration. Due to the somewhat arbitrary simulation moves, it is not easily possible to
extract dynamical information from MC. On the other hand, if the moves are not too unreal-
istic it is possible to obtain also results from dynamic quantities as was done, e.g., for glassy
polymer melts in [OWBB97, Bas94] or a glass-forming Lennard-Jones mixtures in [BK07].

However, the more direct route to dynamic properties is via Molecular Dynamics simu-
lations. With MD the microscopic motion of particles is not only physically more realistic but
allows additionally for the simulation of shear flow. As Molecular Dynamics simulations are
employed throughout this work their basics shall be briefly described in the next sections. It
will be explained how shear flow can be simulated by a modification of the usual periodic
boundary conditions and, finally, the issue of thermostats is discussed.
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2.1 Molecular Dynamics simulations

2.1.1 The velocity Verlet algorithm

As already mentioned, in Molecular Dynamics simulations Newton’s equations of motion
are solved. Given some interaction potential V(r) and N particles in the system of volume
L3, a set of 3N coupled differential equations is obtained:

mi r̈i = − ∑
j( 6=i)

∇iV(|ri − rj|) ≡ ∑
j( 6=i)

Fij , (2.1)

where mi is the mass of particle i, ri is its position and Fij the force between particles i and j.
It shall be noted that very often (and also in the present work) the range of the potential is
limited to a finite distance. For that a cutoff range rc is introduced such that V(r > rc) ≡ 0.

Given initial positions and velocities at time t, with MD one calculates positions and
velocities at a time t + δt from Eq. (2.1) by a proper integration scheme. Such an integrator
should be fairly accurate, easy to implement, symmetric under time reversal and conserve
the total energy. A well-known and widely used integrator is the Verlet scheme [Ver67],
which is a symplectic integration algorithm, particularly it keeps the occupied phase space
volume constant. The error of positions in this approach is of order δt4. In principle the Verlet
algorithm can be generalised to higher order schemes which would lead to a higher accuracy
of particle trajectories or, alternatively, would allow for a larger time step δt with similar
accuracy. On the other hand, these schemes require more memory and are often neither
time reversible nor area preserving [FS02]. Anyway, this is not necessary as the computed
trajectories will inevitably diverge from the ‘true’ particle trajectories after a certain time
[FS02]. Therefore, of all integrators that fulfil the mentioned criteria the easiest one, the
velocity Verlet algorithm (a variant of the original scheme [Ver67]), is perfectly suitable and
works as follows:

Let δt be the time increment between two successive integration steps. Let further be
ri(t), vi(t) and Fi(t) = ∑j( 6=i) Fij(t) be position, velocity and force of particle i at time t,
respectively. The new position is then determined by

ri(t + δt) = ri(t) + δt vi(t) +
δt2

2

Fi(t)

mi
. (2.2)

Now it is checked whether the new positions are still compatible with the boundary condi-
tions of choice and can be modified if necessary. In case of periodic boundary conditions,
for instance, all particles that have left the simulation box are mapped back into the box by
adding ±L to the relevant coordinates (see Sec. 2.1.2 on boundary conditions). With these
new positions the new force Fi(t + δt) is evaluated. The new velocities are then given by

vi(t + δt) = vi(t) +
δt

2mi
[Fi(t) + Fi(t + δt)] . (2.3)

Positions, forces and velocities are updated in a loop until the maximal simulation time tmax

is reached. After every time step quantities of interest can be calculated or configurations
(i.e. particle velocities and coordinates) can be saved for later analysis. The velocity Verlet
algorithm is explained in detail in Refs. [AT90, FS02].

The equations of motion (2.1) imply that energy is conserved. This corresponds to the
micro-canonical or NVE ensemble of statistical mechanics, which is therefore considered as
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Figure 2.1: Illustration of periodic boundary conditions. The actual simulation box (shaded) is considered as
periodically replicated in all spatial directions. A particle j, for example, that leaves the box through the upper
boundary will reenter from below by subtracting L from the relevant coordinate.

the natural ensemble of MD. Despite energy conservation, small fluctuations ∆E around the
mean value of the energy E are observed due to numerical errors that arise from a finite time
step δt. Since the error of velocities is proportional to δt2 for the velocity Verlet algorithm
[AT90], the energy fluctuations ∆E are proportional to δt2 as well. This dependence can
serve as a check for the proper integration of the equations of motion (cf. Figures 3.4(b) and
4.15(b)).

In simulations of systems under external shear energy is not conserved and would in-
crease during the simulation run due to entropy production, which results in an increase of
temperature. Theoretically such processes are described in the framework of non-equilibrium
thermodynamics [dGM84]. In an experiment the increase of temperature is usually irrelev-
ant because the environment of the sample acts as heat bath that keeps T constant. In the
computer, on the other hand, it is not feasible to simulate a heat bath because it would have
to be much larger than the actual system of interest. Therefore, a different route is taken: By
special algorithms the system is coupled to external variables that allow for an outflow of
entropy such that the temperature stays constant. These algorithms are called ‘thermostats’.
The thermostats relevant for the present work are discussed in the Sec. 2.2.

2.1.2 Boundary conditions for equilibrium and shear

In all simulations of this thesis only bulk behaviour is of interest. Therefore, the simulated
systems shall not contain any walls or surfaces. Typically finite bulk systems are simulated
by the use of ‘periodic boundary conditions’. In this case one considers the original simula-
tion box periodically replicated in all spatial directions (Fig. 2.1). A particle’s position with,
say, a coordinate x > L is then transformed back into the simulation box by subtracting L.
For all calculations where particle pairs are involved the ‘minimum image convention’ ap-
plies: For a pair of particles i and j only those positions ri and rj are considered for which
|ri − rj| < L/2. For this approach it is important that the interaction range rc is limited to
rc

< L/2. For forces of larger range more sophisticated schemes like the Ewald summation
[Ewa21] have to be employed. As this is not necessary for the present work, it will not be
discussed further.

The simulation of shear flow requires a modification of these boundary conditions. In an
experiment this is usually achieved by the relative displacement of the sample walls where
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Figure 2.2: Illustration of Lees-Edwards boundary conditions, which are a modification of the usual periodic
boundaries. Here, different layers (in gradient direction y) of image boxes are considered as moving with shear
velocity vs = γ̇L in flow direction x. When a particle j leaves the box in y-direction the displacement d = γ̇tL
in x-direction has to be taken into account. Additionally, vs is subtracted from the x-component of the particle’s
velocity, i.e. vj′ ,x = vj,x − vs.

friction conveys the wall motion to the liquid. In principle it would be possible in the sim-
ulations to use explicit walls that move relative to each other. This, however, can introduce
surface effects that are not present in a bulk system, which is the focus of this work. A way
of introducing shear flow for bulk liquids is by modifying the periodic boundary conditions.
The new boundary conditions, illustrated in Fig. 2.2, are called ‘Lees-Edwards boundary
conditions’ [LE72]. The different layers of image boxes in the direction of the flow gradient
are considered as moving with a shear velocity vs. The quotient of shear velocity and box
length L defines the shear rate

γ̇ =
vs

L
. (2.4)

A particle that crosses the boundary at y = L or y = 0 is then mapped back into the actual
simulation box as follows:

1. Subtract (y = L) or add (y = 0) L to y (such that 0 ≤ y < L).

2. Subtract/add the actual box displacement d = γ̇tL to the x-coordinate.

3. Subtract/add vs to the velocity component vx.

In flow and vorticity direction, i.e. x and z, the periodic boundary conditions remain un-
changed. If γ̇ = 0 and d = 0, Lees-Edwards boundary conditions reduce to the usual peri-
odic ones. This is different in simulations where an initial shear field is switched off as in
Sec. 3.6. Although γ̇ = 0 in this case, the displacement d must not be set to zero. It has to
retain its value from the moment when the shear field was switched off.

As explained in the previous subsection in each time step it is checked whether particles
have left the simulation volume. How these particles are mapped back with Lees-Edwards
boundary conditions has just been described. Because of item 2 in the above procedure, the
simulation programme should check the boundary conditions in gradient direction y before
the flow direction x. Of course, the minimum image convention still applies and has to be
modified accordingly.

An often used additional modification for shear simulations affects the equations of mo-
tion by introducing additional terms. With this algorithm, known as SLLOD [EM84a], one
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can enforce a linear flow velocity profile in the system. For the systems considered in this
work, however, Lees-Edwards boundary conditions alone are sufficient to create linear shear
flow. Moreover, the startup of flow when switching on the external shear field can only be
studied naturally without SLLOD. In this work it is therefore not employed and will not be
explained here. More details can be found in the literature [AT90, EM90].

If shear flow is simulated as explained in this section, the upper and lower layers (with
respect to the gradient direction) flow with velocities vs/2 and −vs/2, respectively, in x-
direction. The centre of the simulation box is at rest. It should be stressed that the motion of
particles is a superposition of a ‘peculiar’ or ‘thermal’ velocity and a ‘streaming’ or ‘affine’
motion [EM90]. While the former is the result of thermal fluctuations, the latter one describes
the mean particle velocity γ̇y at height y due to shear.

2.1.3 Speeding up the simulation: Verlet and linked cell lists

The main part of any MD code consists of the time-loop in which the equations of motion are
integrated. The most time-consuming part is the calculation of the force because in principle
all pairs of particles have to be evaluated, for which the computational load is proportional
to N2 (with N the total number of particles). By optimising the force routine one can there-
fore gain a lot in terms of simulation time. By making use of Newton’s third law the number
of pairs considered can be cut by one half. A further commonly used optimisation for forces
with a maximal range rc (cut-off range) is the use of ‘neighbour lists’. Two possible imple-
mentations, the Verlet neighbour list and the linked cell list shall be briefly described here:

Verlet neighbour lists A Verlet neighbour list uses the fact that for a particle i only particles
j within the cut-off range of the force can contribute to the force Fi on particle i. The
idea is to construct a list of neighbours for each particle, which can be done efficiently.
In force calculations only those pairs have to be considered. The crucial point is, that
not only particles within the cut-off range of the potential are considered as neighbours
but all particles within a radius rnlist = rc + rskin. The skin thickness rskin has to be large
enough that an update of the neighbour list is not necessary every time step but at the
same time sufficiently thin such that the number of particles that do not contribute to
the interaction is not too large. The neighbour list is rebuilt as soon as a particle has
moved half of the skin thickness with respect to its position after the last update. It is
important that rc + rskin

< L/2, where L is the length of the cubic simulation box. The
speed-up of this methods depends on the mobility of particles, on the time-step and
on rskin, of course.

Linked cell lists This approach is useful if the interaction range is sufficiently small com-
pared to the system size. Here the system is subdivided into M cells. The size of these
cells should be as small as possible but larger than the interaction range of the potential
rc. After each position update, particles are sorted into their actual cell. This is a pro-
cedure which can be performed very efficiently. In the computation of the force only
particles of the same cell and the 26 neighbouring cells have to be considered. This
methods works well for large systems of relatively short interaction because the num-
ber of pairs considered here is 27N2/M3 compared to N2 for the brute force method.

Further details of these widely used methods can be found in the literature [AT90, FS02].
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For the parameters considered in the present studies, the Verlet neighbour list requires
no modifications for shear simulations. Compared to the fastest particles in the system,
the shear velocities are too small in order to have an influence on the update frequency:
The highest shear rate considered in Chapter 3 is γ̇ = 0.003 (in units of inverse time; for the
definition of the considered model and the corresponding units see Sec. 3.2). Since the centre
of mass velocity of the simulation box is zero, the maximal flow velocity is vx = γ̇L/2 = 0.02.
The width of the velocity distribution at T = 0.14, however, is already 〈(∆vx)2〉1/2 = 0.37,
almost 20 times more. More than 10% of all particles have a velocity |vx| > 0.6. Therefore,
the update frequency of the neighbour list is dominated by the thermal motion of particles.
In the linked cell list approach, in contrast, the possible movement of image boxes has to be
taken into account when the neighbouring cells of a cell in the top or bottom layer of the
simulation box are determined [AT90].

2.2 Simulating the canonical ensemble: Thermostats

The term ‘thermostat’ describes a class of MD algorithms that keep the temperature of the
simulated system at a desired value by modifying the particle velocities. Without this the
natural statistical ensemble is the NVE ensemble where temperature fluctuates and energy
is strictly conserved. The external drive of a shear field is increasing the energy of the simu-
lated system and therefore a constant temperature has to be maintained by such a procedure.
Moreover, for the initial equilibration after setting up the system simple thermostats can be
applied to arrive at the target temperature.

The easiest thermostat, which is also used for equilibrating the system, draws random
velocities from a Maxwell-Boltzmann distribution in regular intervals. While between two
velocity reassignments the total energy E is conserved, E jumps when new velocities are
drawn. Although this procedure can be used for thermostatting a fluid at rest it is unsuitable
for shear simulations because the microscopic particle motion is strongly affected and the
flow field is destroyed.

Several thermostats have been proposed, e.g. [And80, EM84b, SS78, Hoo85, Low99]. For
shear simulations it is important that the thermostat only acts on the thermal velocities of
particles which excludes the contributions of the flow. Two ways to achieve that are possible:

1. The expected flow velocity γ̇y can simply be subtracted from vx of each particle. After
the thermostat has acted on it this velocity is added again. This has the disadvantage
that one has to assume how the flow field looks like. Especially if startup or stop of
shear are considered this is not sensible.

2. The action of the thermostat can be limited to two or even only one coordinate perpen-
dicular to flow direction. Although this might lead to anisotropic effects it has been
used quite successfully in simulations of steady state flow, e.g. [Var06, BB00]. How-
ever, this shall not be done in this work because non-steady states will be examined
here as well.

For a thermostat called ‘dissipative particle dynamics’ (DPD) both problems are not relevant,
however. As DPD was used for the shear simulation of the binary Yukawa mixture, Chapter
3, it will be explained in more detail. Additionally, a recently developed, new thermostat
that was implemented and tested for simulations of a near critical colloid-polymer mixture,
Chapter 4, is described.
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2.2.1 Dissipative Particle Dynamics

DPD belongs to the class of stochastic thermostats. One well-known thermostats of this class
is the Langevin thermostat which modifies the equations of motion (2.1) to

mi r̈i = FR
i + FD

i + ∑
j( 6=i)

Fij . (2.5)

The last term is the usual conservative pairwise force. While FD
i = −ζvi is a dissipative force

with friction constant ζ, FR
i is a stochastic white noise term with zero mean and a variance of

〈FR
i (t) · FR

j (t′)〉 = A2 δijδ(t − t′) . (2.6)

The choice of the amplitude of the stochastic force A =
√

6kBTζ is a consequence of the
fluctuation-dissipation theorem. This choice keeps the temperature at the bath temperature
T. For ‘cold’ (i.e. slow) particles the random force dominates and increases their energy
while for the fast, ‘hot’ particles the friction force is large and dissipates energy. These two
forces can be thought of as imitating the presence of a surrounding viscous medium with
friction and random collisions.

For shear simulations this thermostat has the drawback that one has to consider the
streaming motion of particles as discussed before. Moreover, due to the violation of Galilean
invariance it does not conserve momentum — neither locally between pairs of particles nor
globally for the system as a whole. These problems are overcome with dissipative particle
dynamics which is not very different from the Langevin approach.

In DPD all forces (also random and dissipative force) act only between pairs of particles,
thus conserving momentum locally. Additionally, the friction force depends on the relative
velocity of particles rather their absolute velocity making the thermostat Galilean invariant.
Still, the equations of motion have the same form as (2.5) but with

FR
i = ∑

j( 6=i)

FR
ij and FD

i = ∑
j( 6=i)

FD
ij . (2.7)

The pairwise random and dissipative forces are given by

FR
ij = σwR(rij)θijr̂ij , (2.8)

FD
ij = −ζwD(rij) [r̂ij · vij] r̂ij . (2.9)

Here, vij = vi − vj and rij = ri − rj are the relative velocities and distances between particles
i and j and r̂ij = rij/rij. Further parameters are the friction constant ζ and the noise strength
σ. The variable θij = θji is a Gaussian noise term with

〈θij(t)〉 = 0 , (2.10)

〈θij(t) θkl(t′)〉 = (δikδjl + δilδjk) δ(t − t′) . (2.11)

The functions wR(rij) and wD(rij) are weight functions that have their origins in the original
intention of DPD: Before DPD was considered as thermostat it was used as a simulation
method, where a coarse-grained solvent was explicitely taken into account as ‘DPD fluid’.
In this approach many solvent molecules are grouped together and considered as a DPD
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particle with soft effective interactions. With this method it was possible to include hydro-
dynamic interactions [HK92]. The weight functions were introduced to describe an effective
interaction between those coarse-grained particles. In a subsequent paper [EW95] it was
pointed out that the original formulation of DPD violates the fluctuation-dissipation the-
orem which requires

σ2 = 2kBTζ , (2.12)

[wR(rij)]
2 = wD(rij) . (2.13)

With this choice DPD can be used as thermostat.
Like the interaction range, also the range of the thermostat is limited to a possibly differ-

ent cutoff range rc
DPD. The particular distance dependence of the weight functions wD and

wR is in principle arbitrary and can even be a simple constant for r < rc. Here, the weight
functions

wD(r) = 1 − r

rc
DPD

and wR(r) =

√

1 − r

rc
DPD

(2.14)

have been used. A recent publication [PKMB07] shows that for certain cases a different
choice of the weight functions can improve thermostat performance. In particular the au-

thors concluded that
√

wD = wR = 1 is not only computationally more efficient but also
improves temperature stability compared with the other weight functions under investiga-
tion. However, this was not relevant for this work.

In summary, besides the choice of the weight functions the only two parameters to ‘tune’
the coupling of the system to the thermostat are the cutoff range rc

DPD and the friction con-
stant ζ which by (2.12) determines the noise strength σ. For low values of ζ the coupling of
the thermostat is not very strong and the microscopic dynamics that is simulated closely cor-
responds to Newtonian dynamics (as without thermostat). With high values of ζ however,
the frictional and dissipative term dominate and lead to a stochastic dynamics.

Integration scheme The DPD equations of motion can be solved by numerical integration.
An important difference to the original equations of motion (2.1) is the random noise term
(2.8), which makes (2.5) a stochastic differential equation. There are several approaches to-
wards a numerical solution of the DPD equations of motion (see [NKV03] and references
therein). In this work the scheme of Peters [Pet04] is used. It generalises some ideas of
the Lowe thermostat [Low99] and maintains rigorously the Maxwell-Boltzmann distribu-
tion such that the only possible deviation from equilibrium statistics is due to discretisation
errors of the Verlet algorithm.

The first step of the Peters algorithm is the position and velocity update, which is carried
out according to the velocity Verlet algorithm, Eqs. (2.2, 2.3). Then an equilibration step is
performed where the velocities of all particle pairs i and j are updated via

vi ← vi +
(

−aij[vij · r̂ij]δt + bij δθij

√
δt

)

r̂ij ,

vj ← vj −
(

−aij[vij · r̂ij]δt + bij δθij

√
δt

)

r̂ij .
(2.15)

For the parameters aij and bij the relation

bij =

√

2kBTaij

[

1 − aij δt

2µij

]

(2.16)
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must hold, where µij = (1/mi + 1/mj)
−1 is the reduced mass of the particle pair. Here, the

parameters

aij = ζwD(rij) , (2.17)

bij =

√

2kBTζwD(rij)

[

1 − ζwD(rij) δt

2µij

]

(2.18)

were chosen, which is one of two possibilities proposed in [Pet04]. For each particle pair
the noise term δθij represents a Gaussian random number with zero mean and unit vari-
ance. Actually, it was shown [DP91] that the Gaussian random numbers can be replaced
by uniformly distributed ones, which have the same first and second moments. While this
procedure does not alter the temperature stability, it can be performed more efficiently by
choosing random numbers from the uniform distribution between ±

√
3.

2.2.2 Canonical sampling through velocity rescaling: A new approach

A very simple method for keeping the temperature at a constant value would be to rescale
the velocities of particles by a common factor such that the instantaneous total kinetic en-
ergy K corresponds to the kinetic energy K̄ = N f /2kBT of the target temperature T (N f is
the number of degrees of freedom). Because velocities enter quadratically into K, a multi-
plication of all velocity components with the rescaling factor α =

√
K̄/K will change the

temperature to T. If done in regular intervals the temperature stays constant.

Although this rescaling scheme is superior to a completely new reassignment of the
velocities, it still involves strong velocity discontinuities. Berendsen et al. [BPvG+84] pro-
posed a thermostat which includes an additional driving force in the equations of motion.
Its magnitude is proportional to the difference between instantaneous and target kinetic
energy, K and K̄. In this approach one computes in every time step the rescaling factor
α =

√

1 + δt/τ(K̄/K − 1), where the time constant τ determines the strength of the coup-
ling to the heat bath. This way, the changes of kinetic energy are not as abrupt as in the
simple rescaling technique which is recovered for δt = τ.

Bussi, Donadio and Parrinello criticise in a recent work [BDP07] that this thermostat
does not correspond to a well defined statistical ensemble. Based on [BPvG+84] they pro-
pose a thermostat that exactly resembles the canonical ensemble and has, in contrast to the
Berendsen thermostat, a conserved quantity. As [BPvG+84] they propose a scheme where
the kinetic energy after rescaling Kt is not forced to be exactly K̄. It is rather selected by a
stochastic procedure. The rescaling factor is then given by

α =

√

Kt

K
. (2.19)

One method to select Kt would be to draw the new kinetic energy from a canonical equi-
librium kinetic energy distribution. This, however, would again disturb the velocities of
particles considerably. The authors of [BDP07] therefore suggest a stochastic algorithm,
where the choice of Kt depends on the actual value of K in order to obtain a smoother evolu-
tion. They derive a stochastic differential equation that describes a random but smooth time
evolution of Kt such that the kinetic energies still resemble a canonical equilibrium distribu-
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tion. It reads

dK = (K̄ − K)
dt

τ
+ 2

√

KK̄

N f

dW√
τ

. (2.20)

The parameter τ, which has the dimension of time, determines the time scale of the thermo-
stat. The differential dW is a time differential of a Wiener process [Gar83]. The new target
temperature would then be Kt = K + dK. For a simulation time step δt the authors derive
from (2.20) an explicit expression for the rescaling factor

α2 = e−δt/τ +
K̄

N f K

(

1 − e−δt/τ
)

(

R2
1 +

N f

∑
i=2

R2
i

)

+ 2R1e−δt/2τ

√

K̄

N f K
(1 − e−δt/τ) . (2.21)

The Ri are independent random numbers from a Gaussian distribution with zero mean and
unit variance. The following prescription describes the actual algorithm:

1. Update positions and velocities according to the velocity Verlet algorithm (2.2, 2.3).

2. Compute the kinetic energy K.

3. Calculate the rescaling factor α according to (2.21).

4. Rescale all velocities vi ← αvi. This leads to the new kinetic energy Kt.

A nice feature of this thermostat is the existence of a conserved quantity, with which
the algorithm can be tested against discretisation errors. The conserved quantity H̃ is the
difference between total energy H and the accumulated increments of the kinetic energy
due to the thermostat

H̃(t) = H(t) −
t

∑
t′=0

(α(t′)2 − 1)K(t′) . (2.22)

Of course, unlike DPD this thermostat does not conserve momentum locally and it does
therefore not recover hydrodynamics. On the other hand, the authors note that their scheme
can be generalised to DPD version, where the rescaling acts only on relative coordinates
and velocities of particle pairs. To work out and implement this version into a simulation
programme remains a task for the future.



Chapter 3

A glassforming binary fluid mixture
under shear

3.1 A theory of undercooled liquids: Mode-coupling theory

The microscopic dynamics of glass-forming liquids is distinctly different from that of normal
liquids. While in the latter case relaxation processes happen on time scales of picoseconds,
there is a separation of time scales in glassy materials: fast phononic degrees of freedom
on the one hand and slow structural relaxation dynamics on the other hand. The latter can
even extend into the macroscopic time regime. This is expressed, for example, in the decay of
density correlation functions: In a certain small temperature range (close to a temperature
known as the ‘glass transition temperature’ a) their decay time increases by orders of mag-
nitude upon a gentle decrease of temperature. The very slow structural relaxation processes
of such a system make a comprehensive theoretical description very cumbersome. The first
theories considered the glass transition as some kind of thermodynamic phase transition like
the theory of Adam and Gibbs [AG65] or the free volume theory [CT59]. Later developments
include ‘trap models’ [MB96] and ‘kinetically constrained models’ [FA84, RS03], which are
lattice gas models. All these approaches have in common that they do not consider the
microscopic degrees of freedom. This changed with two articles in 1984 [BGS84, Leu84]
where a theory based on the microscopic equations of motion was presented that was able
to describe glass-forming liquids. This is known as mode-coupling theory of the glass trans-
ition (MCT). Although MCT involves some uncontrolled approximations, it is able to yield
many quantitative predictions. These initiated a number of experiments and computer sim-
ulations, which support the MCT results to a large extent. While also the aforementioned
theories are still used and advanced, MCT is the only theory for the description of under-
cooled liquids, which is based on the microscopic equations of motion. More than twenty
years after its presentation in 1984 it is still under constant development.

One recent extension of MCT is the incorporation of external shear fields that act on an
undercooled system. In the theoretical approach of Fuchs and coworkers this is done by
an ‘integration-through-transient’ formalism [FC02, FC05]. This approach starts from the
equilibrium distribution and integrates over the time evolution of the transient states. With

aThere is not a single definition of the glass transition temperature since the definition of the glassy state itself
is ambiguous. What is considered as glass depends on the observation time scale. An often used temperature is
Tg that defines the temperature where the viscosity of the system is η = 1012 Pa s.
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its focus on commencing and terminating shear flow the present simulation work aims to
shed light on this transient dynamics. This does not only lead to a better understanding of
the relevant processes but also provides a testing ground for the theory, which should be
able to reproduce similar features. Thus the theoretical approach can be justified.

In this section the fundamental ideas and predictions of MCT are briefly reviewed. A
complete account of the theory can be found in the literature [BK05, Göt08]. The second part
of this section will summarise the approach of Fuchs and coworkers to combine shear effects
with MCT.

3.1.1 Brief review of MCT

The mode-coupling approach has been used in different fields of condensed matter physics
and is not restricted to the treatment of glass-forming liquids. Kawasaki was one of the first
to propose a mode-coupling theory. He applied MCT for the treatment of phase transitions
and critical phenomena [Kaw67, Kaw70a]. The input parameters of this theory are the static
structure factors Near the critical point of a phase transition, e.g. an unmixing transition in a
colloid-polymer mixture (cf. Chapter 4), the structure factors themselves show a signature of
the transition by a strong increase at low wave vectors q, indicating a divergent length scale.
This is different for MCT of the glass transition: Also for this theory the static structure
factors serve as input parameters. In contrast to the Kawasaki theory, the structure factors
hardly change when the critical temperature is approached, but the time scale for structural
relaxation diverges. Thus the MCT of the glass transition leads to a dynamic phase transition,
where the slowing down of the dynamics is not driven by a divergent length scale in the
average static structure. Nevertheless, there is recent evidence for a divergent length scale,
which is seen in four-point correlation functions [BB04, BBB+05, BB07].

The idea of the theory is to identify slow variables, typically density fluctuations, and
to define time correlation functions φq(t) = N−1〈ρ∗q(t) ρq(0)〉, where q indicates the wave
number, N the particle number and ρq(t) the particle density at time t. It is then the aim to
derive an equation of motion for these correlators φq(t), based on the microscopic equations
of motion. This is achieved by the ‘Mori-Zwanzig projection operator’ formalism, which
is a theoretical method for the derivation of exact equations of motion via the definition of
projection operators that project onto density pairs. Subsequently mode-coupling approx-
imations are applied and one arrives at the ‘memory equation’ [BK05, Göt08]

φ̈q(t) + Ω2
q φq(t) + Ω2

q

t∫

0

[
M

reg
q (t − t′) + Mq(t − t′)

]
φ̇q(t′) dt′ = 0 , (3.1)

where the microscopic frequency Ωq depends on the static structure factor S(q), particle
mass m and temperature T,

Ω2
q =

q2kBT

mS(q)
. (3.2)

The term in square brackets in (3.1) is called memory kernel. It provides the nonlinear feed-
back mechanism that is necessary to describe the collective nature of particle motion. The
memory kernel consists of a ‘regular part’ M

reg
q (t) which describes the dependence of φq for

short times. This term is always present in liquids. For strongly super-cooled systems the
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main contribution arises from the memory function Mq(t) that is responsible for the long-
time decay of the correlator. With MCT approximations it is expressed as

Mq(t) =
∫

V
(2)
q,k φk(t)φ|q−k|(t) dk . (3.3)

The ‘vertex’ V
(2)
q,k includes the static structure factor S(q) and three-point correlation func-

tions. The latter are important for the description of network-forming systems like silica
[SK01], but can be approximated by the static structure factors in simple liquids.

From these equations, Eq. (3.1) through (3.3), it becomes apparent that all information
about a particular system enters essentially via the static structure factor S(q). With its
knowledge the mode-coupling equations can be solved. However, due to the complexity
of the equations, a solution can only be obtained by numerical computation. An often used
simplification of these equations can be achieved by essentially replacing the structure factor
by a δ-function positioned at its main peakb. In this case the q-dependence drops out. Those
models, referred to as ‘schematic models’, show the same general features as the full theory.

For the correlators φq the theory predicts a temperature Tc below which correlations do
not decay to zero anymore, even for infinite times. The mode-coupling critical temperature
Tc marks an ergodic to non-ergodic transition. Above this temperature, in contrast, the re-
laxation splits into two steps: For short times φq(t) decays from unity (at t = 0) to a value
of f c

q > 0, known as non-ergodicity parameter, from which the second decay step to zero is
much more slowly. If plotted versus the logarithm of time, φq(t) displays a plateau of height
f c
q between these two relaxation steps. Below Tc the second relaxation step never happens

and φq(t → ∞) = f c
q . The regime close to the plateau is called β-relaxation regime while the

final decay from the plateau to zero is termed α-relaxation regime.
For times in the β-regime MCT predicts that the time dependence of the correlators can

be written as

φq(t) = f c
q + h̃qG(t) . (3.4)

Both parameters f c
q and h̃q do not depend on temperature or time but on the nature of the

correlator alone, e.g. on the wave vector as indicated by the subscript q. The time and tem-
perature dependence enters only by the function G(t). Therefore, a quantity R(t) can be
constructed from (3.4) where the time independent parameters drop out:

R(t) =
φq(t) − φq(t′)

φq(t′′) − φq(t′)
. (3.5)

If the times t′ and t′′ lie inside the β-regime, the correlator ratios R(t) for, say, different wave
vectors q collapse onto a single curve. If t′ and t′′ are too far outside this regime then the
different curves coincide only exactly at t′ and t′′ and not in between. For the late β-regime
φq(t) is predicted to follow

φq(t) = f c
q − hqtb + h

(2)
q t2b + · · · , (3.6)

where the first two terms on the right-hand side are the von Schweidler law. The parameters

hq and h
(2)
q are again time and temperature independent. The exponent b > 0 is often called

bIn the memory kernel of the simple F12 model there is an additional linear term, i.e. M(t) = ν1φ(t) + ν2φ2(t).
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the von Schweidler exponent. For completeness it must be noted that there is another expo-
nent a describing the behaviour in the early β-regime. Both exponents are not independent
of each other but depend on a parameter λ that is known as exponent parameter (see below).

For the second relaxation step, the α-regime, MCT predicts that the ‘time-temperature
superposition principle’ holds, which means that close to Tc the correlators for different tem-
peratures T fall onto a master curve when time is rescaled by the respective α-relaxation time
τα which depends on T, i.e.

φq(t) = Fq(t/τα(T)) . (3.7)

There is no simple function that describes that final decay but it is found that the late α-
regime is well approximated by the Kohlrausch-Williams-Watts (KWW) function

φq(t) ≈ A exp

(

−
[

t

τ

]β
)

with β ≤ 1 . (3.8)

Within MCT it has been shown that the KWW approximation can become exact in the limit
of large q [Fuc94]. The decay with Kohlrausch exponent β < 1 is often called ‘stretched
exponential’ decay. It must be noted that a short-time expansion of (3.8) must not be identi-
fied with the von Schweidler law (3.6). While the exponent b has a system universal value,
the KWW exponent β depends on the considered correlator and hence both are in principle
different.

The time scale of the final decay is characterised by the α-relaxation time τα. Upon ap-
proaching Tc from above τα grows quickly and finally diverges at T = Tc. Within MCT one
can show that

τα ∝ (T − Tc)
−γ , (3.9)

which, in the idealised MCT, relates to a similar expression for the self-diffusion constant D

D ∝ (T − Tc)
γ . (3.10)

The exponent γ is not independent of the von Schweidler exponent b. In fact a, b and γ are
determined by the exponent parameter λ via

λ =
Γ2(1 − a)

Γ(1 − 2a)
=

Γ2(1 + b)

Γ(1 + 2b)
, (3.11)

where Γ(x) is the Γ function. Once a and b are determined by this formula the exponent γ is
given by

γ =
1

2a
+

1

2b
. (3.12)

The interdependence of the exponents and λ can be conveniently read off in Fig. 3.1.
The presented, idealised version of MCT has an important limitation: Very close to Tc

the dynamic behaviour predicted by MCT departs for the one observed in experiment or
simulations. Often, this is explained with ‘hopping processes’ where a particle, activated
by phonons, hops out of the cage formed by its neighbours — a process that is not within
the scope of idealised MCT. If these processes become important they restore ergodicity and
hence the singularity of the relaxation time is avoided. In an ‘extended mode-coupling the-
ory’ additional terms have been included in the equations of motion that restore ergodicity
at Tc as well [DM86, GS87, GS88]. These extensions of the theory will not be considered here.
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Figure 3.1: Interdependence of the exponent parameter λ and the exponents a, b and γ.
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λx λxt = 0

t > 0

Figure 3.2: Illustration of wave vector advection. Initial fluctuations in x-direction with wave length λx at t = 0
are depicted as light gray lines. Shear flow in x-direction with a shear rate γ̇ 6= 0 distorts these fluctuations
(tilted, dark gray lines) and leads to an additional component in y-direction λy which decreases with time. For
the thermal motion of particles, which is generally the reason for the decay of the corresponding correlator, it
thus becomes easier with time to destroy these density fluctuations.

3.1.2 Describing non-equilibrium: MCT extensions for sheared systems

In this section the efforts to extend MCT to sheared systems will be described. Besides the
work of Reichman and coworkers [MR02, MRY04], which uses as input the steady state
structure factor and expands around the steady state, there is also the alternative approach
of Fuchs and coworkers, which is based on the projection operator formalism and starts from
the equilibrium structure by applying the integration-through-transient formalism. Since the
latter theory has been compared to the simulations [ZHL+08] that will be presented in this
thesis, it is only this approach that will be sketched here. Further details can be found in
[FC02, FC03, FC05, BVCF07].

The underlying physical picture of the theory is the interplay of the cage effect, which
leads to the slow dynamics in the equilibrium case, and the advection of long-wavelength
fluctuations to short wavelength due to shear, which is responsible for the breaking of cages.
Shear advection is illustrated in Fig. 3.2.

The starting point of the theory is the many-body Smoluchowski equation for the prob-
ability distribution Ψ(t) of particle positions

∂Ψ

∂t
= Ω(t)Ψ(t) with Ω(t) = ∑

i

∇i · (D0(∇i − βFi) − κri) . (3.13)

Here, Ω(t) is the Smoluchowski operator, D0 the diffusion constant, Fi the conservative force
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on particle i and κ the shear rate tensor. For the present work, where shear in x-directions
with gradient along the y-axis is considered, the shear rate tensor is given by κij = γ̇δixδjy. In
the case where κ is independent of time it describes stationary shear flow. In non-stationary
shear flows, by contrast, the shear rate tensor becomes time-dependent. The flow leads to
shear advection of the wave vector q which thus becomes dependent on time,

q(t) =
√

q2 + 2qxqyγ̇t + q2
xγ̇2t2 . (3.14)

Under shear this advection has to be taken into account in the definition of the density cor-
relator which is defined as

φq(t) =
1

NS(q)
〈ρ∗q eΩ†t ρq(−t)〉 , (3.15)

where S(q) is the equilibrium static structure factor and the brackets 〈·〉 denote averages
with the equilibrium distribution. The application of Mori-Zwanzig type projection operator
techniques yields the following equation of motion for the correlator

φ̇q(t) + Γq



φq(t) +

t∫

0

dt′ mq(t − t′) φ̇q(t′)



 = 0 , (3.16)

where Γq = q2D/S(q) is the initial decay rate. In the framework of MCT the memory func-
tion mq(t) can be approximated to

mq(t) =
∫

dk V
(γ̇)
q,k (t) φk(t) φ|q−k|(t) , (3.17)

where the vertex V
(γ̇)
q,k (t) is a lengthy expression which only depends on the static structure

factors of the system. There, the quiescent and advected wave vectors enter as well as in
the correlator φq(t). The above equations form a closed set of self-consistent equations for
the theoretical description of dense sheared suspensions. As in the equilibrium case the
only input parameters of the theory are the equilibrium static structure factors, which are
determined by the interaction potential of the particles. The nature of the flow solely enters
by the shear rate tensor κ in the Smoluchowski operator (3.13).

For low shear rates a stability analysis can be performed. This leads to an equation for
the function G(t), cf. (3.4),

ǫ − c(γ̇)(γ̇t)2 + λG2(t) =
d

dt

t∫

0

dt′ G(t − t′) G(t′) . (3.18)

The parameter ǫ measures the ‘distance’ to the glass transition, λ is the exponent parameter
and c(γ̇) is a number of order unity. Since (γ̇t)2 dominates for long times, it can be seen from
this equation that under shear G(t) and hence the density fluctuation always decay. The
conclusion from this consideration is that arbitrarily small shear rates γ̇ will melt the glass.

Now some equations for shear stress and the mean squared displacement shall be presen-
ted because these are quantities that are investigated in the simulations. Equation (3.13) can
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be solved formally by the integration through transient formalism. The resulting time de-
pendent distribution function Ψ(t) is then used to calculate the shear stress which yields a
nonlinear generalised Green-Kubo relation

σxy(t) =
1

L3

t∫

−∞

dt′ γ̇(t′) 〈σ̂ e
∫ t

t′ dsΩ†(s)
− σ̂〉 . (3.19)

Here σ̂ = −∑i Fi,xyi is the potential part of the stress tensor and e− the time-ordered expo-
nential functionc. A generalised dynamic shear modulus g(t) can be defined such that

σxy(t) = γ̇

t∫

0

dt′ g(t′) . (3.20)

Within the mode-coupling approach the shear modulus can be approximated by the follow-
ing isotropic approximation

g(t) =
kBT

60π2

∫

dk
k5

k(t)

S′(k) S′(k(t))

S2(k)
φ2

k(t)(t) , (3.21)

where S′(k) is the first derivative of the static structure factor. With these equations the shear
stress can be computed in stationary flow as well as in non-stationary cases.

As for the density correlator MCT yields also an equation of motion for tagged-particle
correlations. For the mean squared displacement 〈∆r2(t)〉 the limit q → 0 has to be taken
and yields

〈∆r2(t)〉+
D0d

kBT

t∫

0

dt′ m(s)(t − t′)〈r2(t′)〉 = 6D0t . (3.22)

The tagged-particle memory kernel m(s)(t) can be further approximated to establish a con-
nection to the time-dependent shear stress [ZHL+08]

m(s)(t) ≈ d

kBT
3παg(t) =

3dπα

kBTγ̇

d

dt
σ(t) . (3.23)

Thus, it is possible to compute the MSD as follows: If the equilibrium structure is known
the time dependence of the correlators φq can be computed by solving Eq. (3.16) for the
given shear rate tensor κ. Afterwards the shear modulus can be calculated by (3.21). Its
insertion into (3.23) yields the tagged-particle memory kernel that can subsequently be used
to determine the mean squared displacement by (3.22).

This section showed that the theory is able to predict several quantities like the shear
stress σxy, the mean squared displacement 〈∆r2(t)〉 and of course the density correlation
function itself, which is also called intermediate scattering function F(q, t), see Sec. 3.3.2.
Since these quantities are accessible by the theory, they will also be central for the present
simulation work. The effects seen in the simulations of the transient dynamics then serve
as predictions that should be captured by theory and experiment. A first comparison of the
presented results with MCT has been published very recently [ZHL+08].

cThe time-ordered exponential e

∫ t2
t1

dsΩ†(s)

− = 1 +
∫ t2

t1
ds1 Ω†(s1) +

∫ t2

t1
ds1

∫ t2

s1
ds2 Ω†(s1)Ω†(s2) +

∫ t2

t1
ds1

∫ t2

s1
ds2

∫ t2

s2
ds3 Ω†(s1)Ω†(s2)Ω†(s3) + · · · is used here since Ω†(t) does not commute with itself at dif-

ferent times t.
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3.2 Model system and details of the simulation

Before turning to the actual simulation results, the model system that was used for the simu-
lations of a glass-forming liquid and some simulation details will be presented in this section.
In Chapter 2 it was explained how the Molecular Dynamics method, which is employed in
the present studies, work generally without specifying explicitly the interaction potential or
other model and simulation parameters. These gaps will be filled now by describing the
interaction potential and all relevant parameters of the system as well as technical details
concerning thermostat and integration time step.

3.2.1 Yukawa potential as model of colloids in solution

Many computer simulation studies of glasses and glass-forming liquids use particles inter-
acting by a hard sphere type interaction or a Lennard-Jones potential. A special and well-
known case of the latter one is the Kob-Andersen model [KA95a, KA95b]. Also more realistic
pair potentials for real melts have been developed from ab initio simulations and were then
used in Molecular Dynamics simulations. In this work it was not the aim to describe atom-
istic but rather colloidal systems which have become increasingly important model systems
in recent years. Colloidal systems yield more information since they are characterised by
larger time and length scales compared to atomistic systems. Digital video microscopy, for
example, allows for direct tracking of particle trajectories. Additionally, scattering experi-
ments can be carried out conveniently with visible light. Moreover, colloids permit to tune
the interactions to a large extent.

Often colloids in a solution acquire a charge. These charges give rise to a cloud of op-
positely charged solvent ions around them which are called counter-ions. The presence of
counter-ions leads to a screening of the Coulomb interactions between the bare colloids.
According to Derjaguin-Landau-Verweij-Overbeek (DLVO) theory [RSS89] the resulting po-
tential is a Yukawa potential which for colloids of diameter σ is generally of the form

V(r) =
ǫσ

r
e−κ(r−σ) , (3.24)

where the constant ǫ is proportional to the colloid charge and κ is the inverse Debye screen-
ing lengthd. Molecular Dynamics simulations with Yukawa potential can therefore be re-
lated to a real system that can be study in an experiment.

Another aspect is important as well: By a proper choice of the inverse screening length
κ the Yukawa potential can be tuned to be of intermediate range. Here, it is sufficiently
short-ranged that Ewald summation [Ewa21] is not necessary but sufficiently long-ranged
that a relatively dilute, repulsive glass can be formed. Such glasses are often called ‘Wigner
glasses’. The latter property is advantageous for a possible future coupling to an explicit
lattice-Boltzmann solvent: There, hydrodynamic effects become more pronounced if the col-
loid density is low. Moreover, it is technically easier to couple the Yukawa system to the
lattice-Boltzmann fluid. Together with the fact that glassy dynamics of Yukawa systems has
not yet been thoroughly studied (except for [ZASR08]), this led to the choice of the Yukawa
potential (3.24).

dGiven a solvent, where each microscopic ion species is labelled by i and has density ni and valency zi, the

inverse Debye screening length κ is given by κ2 =
e2 ∑ niz

2
i

ǫrǫ0kBT .
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Figure 3.3: Distance dependence of the potential energy of the Yukawa potential for AA, AB and BB interaction.

For the simulation a binary system is chosen. The particle species (called A and B) differ
slightly in their interaction range. The two kinds of particles differ slightly in their interac-
tion range, which is necessary to prevent crystallisation at low temperatures. There are three
different interaction potentials (A-A, B-B and A-B)

Vαβ(r) = ǫαβ

σαβ

r
e−κ(r−σαβ) , where α, β = A, B . (3.25)

Here, ǫαβ and σαβ set the interaction energy and a characteristic length, respectively, for the
interaction between two particles of species α and β separated by a distance r. The quantities
ǫAA and σAA are chosen as units for energy and length. Masses mα of all particles are set to
unity. In the following all quantities are measured in these units of energy, length and mass.
The choice of all model parameters is summarised in Tab. 3.1. The inverse Debye screening
length is κ = 6 (in units of 1/σAA). The interaction potential is plotted in Fig. 3.3. Note that
although σαβ originally describes a colloid diameter, the potential (3.25) does not include a
term that describes hard sphere repulsion, i.e. in principle particles can approach each other
much closer than σαβ.

With an equal number of A and B particles, NA = NB = 800, and the given size disparity
crystallisation of the system is not observed. Instead, slow, glassy dynamics together with
an amorphous structure is seen, as shown in Sec. 3.3. The 1600 particles are confined to a
volume of L3 = 13.33, which corresponds to a density of ρ = 0.675. At this point it should
be noted that the notion of volume fraction is ill defined for the Yukawa case because the
potential is very soft and particles, therefore, do not occupy a well defined volume. It is,
however, possible to define an effective hard-core diameter, see Sec. 3.3.1 and [BH67].

Table 3.1: Summary of model parameters of the binary Yukawa mixture.

AA AB BB

range σαβ 1.0 1.1 1.2
energy ǫαβ 1.0 1.4 2.0
mass mαβ 1.0 1.0 1.0
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3.2.2 More technical simulation details

In this section the choices of the remaining, more technical parameters shall be motivated.
They are all summarised in Tab. 3.2.

Cut-off radii As described in the previous chapter the potential is truncated at a certain
cut-off radius rc

αβ that depends on the three different kinds of interactions. For r > rc
αβ the

potential is strictly zero. The cut-off radius is chosen such that

Vαβ(r = rc
αβ) = 10−7 . (3.26)

In order to improve energy conservation the potential is shifted to zero at rc
αβ. If this is not

done, the total energy would be subject to larger fluctuations whenever a particle enters or
leaves the region defined by rc

αβ [AT90]. The actual simulation potential is thus given by

Ṽαβ(r) = Vαβ(r) − Vαβ(r = rc
αβ) . (3.27)

In order to save computing time a Verlet neighbour list is implemented, Sec. 2.1.3. In
this scheme all particles within a radius of rnlist

αβ = rc
αβ + 0.75 around a given particle are

considered as neighbours. With the chosen time step the neighbour list is updated on aver-
age every 38th step at temperature T = 0.14 (which is the lowest temperature for which the
system can be equilibrated). The linked cell list approach is not efficient here because cut-off
distance and system size allow only for three sub-boxes in each direction.

Thermostat and integration As explained before, it is necessary in the shear simulations
to remove the heat that is produced due to the external field. For that the dissipative particle
dynamics (DPD) thermostat with weight function (2.14) and interaction range rc

DPD = 1.25
is chosen. The Galilean invariance and the very short interaction range (meaning the inter-
action range of the thermostat, not of the conservative force) have the advantage that flow
effects under shear can be neglected because closely neighbouring particles flow with es-
sentially the same speed. Besides of the DPD-cutoff range rc

DPD also the friction constant ζ
has to be set for the thermostat. With a low value of ζ the conservative force dominates the
equations of motion and the microscopic dynamics is therefore Newtonian. A large friction
constant, on the other hand, would result in a stochastic dynamics because the fluctuat-
ing and dissipative forces dominate. Moreover, the viscosity would increase [Low99] and a
smaller time step would be necessary. Therefore, the rather small friction constant ζ = 12 is
selected. Only in Section 3.5.3 simulations with ζ = 1200 are considered in order to check
whether results depend on the particular kind of microscopic dynamics.

Note that DPD is not only used in shear simulations but also in equilibrium. Although
DPD increases the viscosity and therefore enlarges the relaxation times this is necessary in
order to obtain comparable results.

Table 3.2: Important technical parameters for the simulations of the binary Yukawa mixture.

rc
AA rc

AB rc
BB rnlist

αβ rc
DPD ζ δt

3.48 3.64 3.81 rc
αβ + 0.75 1.25 12 0.0083
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Figure 3.4: (a) Time step dependence of the total energy in the system. For better visualisation the value E0 =

5.03551365071 · 10−08 obtained with δt = 0.00083 was subtracted from all energies. (b) Fluctuations ∆Etot of the
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following simulations.
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The equations of motion are integrated as described in Section 2.2.1 with a time step of

δt = 0.0083. In terms of the units defined above the unit of time is given by
√

mAσ2
AA/ǫAA.

This time step is small enough to allow for stable integration. At the same time no computing
time is wasted by a time step that is too small. Figure 3.4 shows the total energy E obtained in
micro-canonical simulation runs with different time steps. From panel (a) it is visible that too
large time steps lead to a drift in the total energy. The numerical fluctuations ∆E around the
mean energy increase with increasing time step and are proportional to δt2 as they should
be for the velocity Verlet algorithm (Fig. 3.4(b)). Results of a test run with DPD thermostat
are shown in Fig. 3.5. Unfortunately, DPD is not connected with a conserved quantity. Thus,
only the time step dependence of temperature and potential energy are shown. Also these
results support that the chosen time step of δt = 0.0083 is sensible. If not otherwise noted,
this time step is used in all simulations of the Yukawa system, which are shown in this
chapter.
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3.3 System properties in equilibrium

In order to be able to appreciate the effects of shear and the transient dynamics it is necessary
to know about the equilibrium properties of the present Yukawa system and to show that
it indeed exhibits glassy dynamics. So the first step is to determine its static and dynamic
properties in thermal equilibrium. This chapter defines the quantities under investigation
and shows how they can be extracted in a computer simulation. For the most part this
also applies to shear simulations. The results are shown and discussed in connection to
mode-coupling theory. Although MCT is well tested and verified in equilibrium (e.g. in
Lennard-Jones systems [KA95a, KA95b, NK97], silica melts [HK01], metallic melts [DHV08]
or water [SHQ95, GSTC96]; more references are found in the review article [Göt99]) it shall
be demonstrated that its main predictions are also valid for the present Yukawa mixture.

3.3.1 Equilibrium structure

The particular kind of particle interactions determines the structure of the system, which is
characterised by the radial distribution function or, equivalently, the static structure factor.
The latter quantity serves as the static input for mode-coupling theory and can be directly
obtained in experiments and simulations or indirectly by solving numerically the Ornstein-
Zernike equation with some closure relation [HM86].

Both structural quantities are not only defined in this section but also their derivation
is briefly explained, since a modification of the radial distribution function will be of im-
portance in a later chapter. Subsequently, results are presented and the main features are
discussed.

Definition of structural quantities

The pair correlation function The structure of a fluid can be characterised by the n-particle
distribution functions (see e.g. Ref. [HM06]). A special case (n = 2) of these functions is the
pair distribution function g(r1, r2) which is defined as

g(r1, r2) =
L6(N − 1)

NZ

∫

e−βV(r1,r2,...,rN)dr3 · · ·drN . (3.28)

Here Z =
∫

exp(−βV(r1, r2, . . . , rN))dr1 · · ·drN is the configurational part of the partition
function, L the length of the cubic simulation box, V(r1, r2, . . . , rN) the interaction potential
and N the total particle number. This quantity is related to the probability of finding a
particle at position r1 and another one at r2.

By defining relative and centre of mass vectors, r = r2 − r1 and R = (r2 + r1)/2, respect-
ively, and taking into account the relative distance r alone, it is possible to integrate R over
the whole volume and one obtains

g(r) =
1

L3

∫

g(r, R)dR

=
L3

N2

〈
N

∑
i

N

∑
j( 6=i)

δ(ri − rj − r)

〉

. (3.29)
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For isotropic fluids an integration over the whole solid angle Ω leads to the widely used
‘radial distribution function’ (RDF)

g(r) =
1

4π

∫

Ω

g(r)dΩ , with dΩ = sin θdθdφ

=
L3

4πr2N2

〈
N

∑
i

N

∑
j( 6=i)

δ(|ri − rj| − r)

〉

, (3.30)

which depends only on the distance r = |r| between particles. The radial distribution func-
tion gives the mean number of particles separated by a distance r from a given particle
divided by the number one would find in an ideal gas at the same distance. Thus g(r →
∞) = 1.

In the present case partial radial distribution functions have to be introduced due to the
two species (A and B) of particles in the system. The sums in (3.29) and (3.30) are split into
three sums to account for the AA, AB and BB correlations. If the partial radial distribution
functions are defined as

gαβ(r) =
L3

4πr2NαNβ

〈
Nα

∑
i

Nβ

∑
j( 6=i)

δ(|rα
i − r

β
j | − r)

〉

with α, β ∈ [A, B] , (3.31)

then the total RDF can be written as

g(r) = c2
AgAA(r) + c2

BgBB(r) + 2cAcBgAB(r) , (3.32)

where cα = Nα/N are the particle concentrations.
Equation (3.31) is used to determine g(r) in the simulation by constructing a histogram

of particle separations for a given configuration and normalising appropriately (cf. Ref.
[AT90]). The quality is improved by averaging over the results of several statistically in-
dependent configurations. In the case of α = β care has to be taken because the derived
results are only exactly true in the thermodynamic limit. In a simulation, in contrast, the
number of particles is finite. This matters, if the distances of neighbouring particles of type
α to given tagged particle of the same type are considered. The number of these neighbours
is (Nα − 1). Therefore, it is sensible to replace the product NαNα in the denominator of (3.31)
by Nα(Nα − 1).

The partial static structure factor Obtaining the radial distribution function directly in an
experiment is a difficult task. Although digital video microscopy nowadays offers a way to
achieve that in colloid experiments, light-, neutron- or X-ray-scattering are used to determine
the structure in reciprocal space by measuring the ‘static structure factor’ S(q), where q is
the difference between incident and scattered wave vector, i.e. the momentum transfer. The
structure factor is a measure of density-density correlations

S(q) =
1

N
〈ρ(q)ρ(−q)〉 , (3.33)

where ρ(q) is the particle density in reciprocal space

ρ(q) = ∑
i

exp(−iq · ri) . (3.34)
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With the definition of g(r) (3.29) one can see from this equation that S(q) and g(r) are Fourier
transforms of each other and thus contain the same information. Just as the pair correlation
function, S(q) can be split into partial structure factors. In terms of these partial quantities
they are connected by

Sαβ(q) = cαδαβ + cαcβρ
∫

gαβ(r)e−iq·rdr . (3.35)

Inserting (3.34) into (3.33) leads to an expression that is used to compute the structure factor
in the computer simulations

Sαβ(q) =
1

N

〈
Nα

∑
i

Nβ

∑
j

e
−iq·(rα

i −r
β
j )

〉

. (3.36)

Of course, only the real part is of interest. For isotropic fluids it can be averaged over all
wave vectors of the same modulus to obtain Sαβ(q).

For q → ∞ the partial quantities Sαα and SAB approach cα and 0, respectively. Contrary
to computer simulations, the partial structure factors are often not accessible in scattering
experiments. In this case only the total structure factor

S(q) = SAA(q) + SBB(q) + 2SAB(q) (3.37)

can be determined. In the context of Bhatia-Thornton structure factors [BT70] this total
quantity is often called density-density structure factor Snn(q), where n denotes the number
density. Another useful linear combination of partial structure factors is the concentration-
concentration structure factor [BT70]

Scc(q) = c2
BSAA(q) + c2

ASBB(q) − 2cAcBSAB(q) . (3.38)

It measures the correlations of concentration fluctuations in reciprocal space, i.e. the spatial
extent of a certain concentration. This can be used for the identification of demixing trans-
itions, where the particle concentrations vary on a macroscopic length scale. It is reflected by
a strong increase of Scc(q) at the corresponding low values of q. For completeness the third
of the Bhatia-Thornton structure factors,

Snc(q) = cBSAA(q) − cASBB(q) + (cB − cA)SAB(q) , (3.39)

shall be defined as well. It measures the interference of number density and concentration
fluctuations.

For an isotropic system the direction of q is irrelevant. Therefore, when computing Sαβ(q)
from simulation data by (3.36) it is averaged over maximally about 120 q-vectors, the mod-
ulus of which fall into a certain range. Finally, as with g(r) the mean of several statistically
independent configurations is taken.

Simulation details

The general simulation procedure is as follows: After having generated a starting config-
uration, an ‘equilibration run’ has to be performed in order to obtain a configuration in an
equilibrium state, which corresponds to the desired temperature. Subsequently, the actual
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‘production run’ is started during which particle configurations and other quantities of in-
terest are computed and saved for later analysis. It is useful to generate more than one start
configuration for a given state point (e.g. characterised by temperature) and to run the sim-
ulation for each of them. This can be done in parallel. By averaging the quantities of interest
over all equivalent production runs the statistical fluctuations are reduced and statistical
errors can be reliably estimated.

The present simulations have been performed as follows: For eight different temperat-
ures 30 independent starting configurations were generated. The equilibration run lasted
up to 40 million time steps at the lowest temperature T = 0.14. This rather long equilib-
ration time ensured that all dynamic correlations (as visible in the incoherent intermediate
scattering function) have decayed. The DPD thermostat was not used for equilibration of
the system because due to the friction term in the equations of motion (2.5) the viscosity
is increased [Low99] and hence the dynamics, i.e. the decay of time correlation functions,
is slowed down. Instead, equilibration was done by simply drawing new velocities from
a Maxwell-Boltzmann distribution at a certain frequency. Due to its influence on dynamic
properties DPD is used for the production runs (with again a maximum of 40 million time
steps). Otherwise the results would not have been comparable to the shear simulations. The
structure in equilibrium, on the other hand, is not affected by the thermostat.

In regular intervals positions and velocities of particles were saved such that every sim-
ulation run yields 100 configurations. These were used afterwards to compute the radial
distribution function g(r) and the static structure factor S(q). For dynamic quantities a sep-
arate set of coordinates was kept, which only stored particle displacements between two
successive time steps. These ‘running positions’ were saved at about 200 logarithmically
spaced time steps. This is of advantage since the correlation functions are typically plotted
on a logarithmic scale. Additionally, up to three different times were used as origins of this
scale. This way it was possible to average over three different times per simulation run and
improve statistics.

Results and discussion

Radial distribution function The partial pair distribution function is shown in Fig. 3.6.
The shape of g(r) is typical for dense liquids. The peaks correspond to different shells of
neighbouring particles around a given one and become more and more pronounced at lower
temperatures, which indicates stronger ordering. Nevertheless no crystallisation occurs, as
this would manifest itself by discrete peaks in g(r). The most prominent peak around r ≈ 1
corresponds to the shell of nearest neighbours around a given particle.

Based on Equation (3.30) the number of particles zαβ in the first neighbour shell (‘coordin-
ation number’) can be obtained by integrating [HM86, BK05]

zαβ = 4π
Nβ

L3

rmin∫

0

r2 gαβ(r) dr (3.40)

over the first peak up to the minimum rmin. The partial coordination number zαβ is the av-
erage number of particles of type β around a particle of type α. The complete knowledge of
particle positions in computer simulations offers a more direct way to obtain the coordina-
tion number: From all the saved configurations it is easily possible to build up a histogram
of neighbouring particles. A pair of particles of any kind is considered as neighbours if their
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Figure 3.6: Partial radial distribution func-
tions in equilibrium for the temperatures
T = 0.14, 0.15, 0.16, 0.18, 0.21, 0.34, 1.0 (from top to
bottom). For clarity curves with T < 1.0 are shifted
upwards by multiples of 0.25.
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minimum of gαβ(r) shown for temperature T = 0.14. For the other temperatures investigated the peak position
does not change and the height decreases only slightly (about 10% at T = 1.0). Numbers zαβ and ztotal define the
partial and total coordination, respectively.

Figure 3.9: Illustration of the emergence of the double peak structure in gαβ at r ≈ 2 in Fig. 3.6. There are
different ways to arrange a second shell (grey) of particles around the central one (black). Particles can occupy
the dips between the first shell particles (white) as indicated by particle 1 or stay outside (2). This figure is just a
two dimensional visualization. In three dimensions there is also the possibility for a particle to sit on the saddle
between two edges.

separation is less than the position of the first minimum in the corresponding partial radial
distribution function gαβ(r). The coordination number distributions are shown in Figure
3.8, where rAA

min = 1.52, rAB
min = 1.67 and rBB

min = 1.79 were used. A dense fluid of identical
spherical particles would show a distribution of coordination number with an average of
about 12. For our system ztotal is slightly larger, namely ztotal ≈ 13, because particles are
soft and bidisperse. Another observation is the different probability between zAA and zBB:
The smaller A particles are mainly fivefold coordinated with A particles while the analogue
coordination number for the larger particles is zBB ≈ 8. The mixed coordination number is
peaked between zAB ≈ 6 and zAB ≈ 7.

At distances beyond the nearest neighbour shell more peaks appear in g(r). The second
peak, which corresponds to the next nearest neighbour layer, consists of two humps which
are clearly apparent at low temperatures. This is due to different ways a second neighbour
shell can be arranged around a particle (cf. Fig. 3.9 and e.g. Ref. [vdW95]).

Static structure factor The partial static structure factors are shown in Fig. 3.7. As one
expects from g(r) the structures become more pronounced at low T. Like in g(r) there is a
splitting of the second peak visible, which has its origin in the topological short range order
of particles [vdW95]. An interesting feature is the pre-peak at SAA(q) which developes at low
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T at q ≈ 3. This indicates structural correlations of the small A-particles on an intermediate
length scale and was also found in experiments of a two-dimensional, bidisperse colloidal
system [HEL+06]. These authors attributed the clustering to the ‘non-additive’ nature of the
interactions. The additivity ∆ of a binary mixture describes to what extent the interactions
between AA and BB particles are comensurate with the AB interaction. It is defined as
follows: Let dαβ with α, β = A,B be the hard core diameter of the particles. For soft potentials
the Barker-Henderson effective hard core diameters [BH67] may be used:

dαβ =

∞∫

0

[

1 − exp

(

−Vαβ(r)

kBT

)]

dr . (3.41)

Then the additivity parameter is given by

∆ = 2dAB − (dAA + dBB) . (3.42)

A hard sphere mixture is therefore strictly additive (∆ = 0) while colloid-polymer mixtures
are positively non-additive (∆ > 0). In these kinds of mixtures partial clustering is absent
[HEL+06]. A mixture of charged colloids on the other hand is typically negatively non-
additive (∆ < 0). In particular this is true for the present Yukawa mixture, where at T =
0.14 the non-additivity parameter is ∆ = −0.003. However, despite the presence of a pre-
peak, snapshots of the system do not reveal partial clustering. Moreover, this effect is not
to be confused with a demixing transition: Fig. 3.10 shows the concentration-concentration
structure factor (3.38) which does not display any increase at low wave vectors q. Therefore
demixing can be ruled out.

It shall be pointed out that the structural changes between the two lowest temperatures
T = 0.15 and T = 0.14 are small. From other glass-forming systems (e.g. the Kob-Andersen
mixture [KA95a]) it is known that while the structure changes very little when approach-
ing the glass transition temperature the dynamics changes dramatically. This will be under
investigation in the next section.
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tion was measured (see Fig. 3.13)

3.3.2 Equilibrium dynamics

This section introduces the dynamic quantities that are central in the analysis of the simula-
tions in equilibrium and under shear.

First the diffusion dynamics in real space is analysed using the mean squared displace-
ment (MSD) and the closely related self part of the van Hove correlation function Gs(r, t).
This function describes the displacement distribution of particles for different times. From
the MSD at different temperatures self-diffusion constants can be obtained allowing for an
estimation of the mode-coupling critical temperature Tc.

In the second part density correlations in reciprocal space are investigated. Mainly by
analysing the incoherent intermediate scattering function the main predictions of MCT are
tested.

Diffusion dynamics

The way how particles diffuse through a sample can be nicely described by the mean squared
displacement (MSD). It measures the average distance between a particle’s position at time
0 and a time t. In the present binary mixture one can define a MSD for each species α = A,B

〈∆r2
α(t)〉 = 〈|rα(t) − rα(0)|2〉 . (3.43)

The brackets 〈·〉 denote an average over different configuration, time origins, particles and
all three spatial directions.

Figure 3.11 shows a log-log-plot of the MSD for different temperatures for both particle
species. In Newtonian dynamics a quadratic increase of the MSD at very small times t ≪ 0.1
is observed (‘ballistic regime’) where particles move freely, not interacting with their neigh-
bours. The interactions with all other particles on a long time scale lead to diffusion (‘diffus-
ive regime’) and the MSD increases linearly. At low temperatures, where particles have little
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thermal energy, an additional regime develops at intermediate times. There, a plateau indic-
ates that particles barely move and remain localised. The plateau value of 〈∆r2

α(t)〉 defines a
localisation length rA

loc ≈ 0.24 and rB
loc ≈ 0.2 for T = 0.14. Thus, on this time scale particles

move significantly less than the nearest neighbour distance (which is a bit larger than unity,
cf. Sec. 3.3.1). Because of that, the plateau is interpreted as sign for ‘caging’, i.e. the trapping
of a particle by its nearest neighbours. The localisation in cages at low temperatures slows
down the relaxation processes by orders of magnitude. Only at large time scales particles
can escape their cages and undergo diffusive motion. Therefore, with the given system size
and the chosen parameters it is not possible to perform equilibrium simulations at lower
temperatures in a reasonable time.

From the MSD the self-diffusion constant Dα can be extracted via the Einstein relation
which is given in three dimensions as

Dα = lim
t→∞

〈∆r2
α(t)〉
6t

. (3.44)

The dependence of Dα on T can be visualised in an Arrhenius plot (Fig. 3.12). The slowing
down of the dynamics manifests itself here in the strong decrease of the diffusion constant.
Although in this representation the curve for the smaller A-particles seems to follow the one
of the B-particles closely, the inset demonstrates that at low temperatures small particles are
more mobile than the large ones.

According to (3.10) the mode-coupling glass transition temperature Tc can be estimated.
Fits of (3.10) are shown and explained in Fig. 3.22(a) together with the data of the relaxation
times, that are determined in the next section. A summary of the results is given in Table 3.3.

Another way of describing the diffusive motion of particles is the van Hove correlation
function G(r, t). Here its self-part Gs(r, t) shall be of interest as it is closely related to the
MSD. It is defined as

Gα
s (r, t) =

1

Nα

〈
Nα

∑
i=1

δ(r − |rα
i (t)− rα

i (0)|)
〉

, (3.45)

where α denotes again one of the particle species A or B. The function Gs(r, t) is proportional
to the probability that a particle has moved the distance r in time t.
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Figure 3.13: The self-part of the van Hove correlation function Gs(r, t) at the times t =
0.86, 44.2, 1747, 10057, 82170, 305399 (marked in Fig. 3.11) for the lowest simulated temperature T = 0.14.
The straight lines are guides for the eye.

In Fig. 3.13 Gα
s (r, t) is displayed for A and B particles at T = 0.14. At short times particles

are located around their initial position as the distribution is sharply peaked at r = 0. Only
for times larger than the time scale at which caging is observed, particles can move con-
siderably and with increasing t the distribution becomes flatter and flatter. When plotted
with logarithmic ordinate different regimes are revealed: At distances smaller than r = 0.5
the distribution is Gaussian while it crosses over to an exponential at larger distances. The
Gaussian regime is most prominent for very short times, where nearly all particles are still
trapped in their cages and perform quasi-harmonic vibrations. With growing time an expo-
nential tail develops where particles undergo non-Fickian motion. In Ref. [CBK07], where
similar features are presented, the authors argue that the exponential decay is due to the ex-
istence of spatially heterogeneous dynamics. They describe it as a superposition of localised
particles that contribute to the central Gaussian part and mobile particles contributing to the
exponential tail. According to [CBK07], for very long times particle motion is expected to
become Fickian again, changing the distribution to a Gaussian. The onset of this behaviour is
seen in Fig. 3.13(b) for the largest times considered. Furthermore, the authors claim that the
described behaviour of Gα

s (r, t) is universal for glass-forming systems and consider it as real-
space analogue to the stretched exponential decay of time correlation functions which will
be discussed next. The present Yukawa system at least seems to corroborate this statement.

Although Gs(r, t) is commonly plotted versus distance as in Fig. 3.13, it will turn out
useful later, to show Gs(r, t) in a different representation, where Gs is plotted versus time t
for several distances r, Fig. 3.14. In this representation it is nicely visible how the particle
distribution changes with time on different length scales. For very short times, particles
do not move considerably and thus the main contribution comes from very short distances
r ≈ 0.005. As time increases particles initially move ballistically which leads to an increase
of Gs also on length scales up to about r ≈ 0.25. At t ≈ 1, where the plateau in the MSD
begins, these small and intermediate length scales display a plateau as well, indicating the
vibration of particles in their cages. During that some particles can hop out of their cages,
thus increasing their displacement which leads to an increase of Gs at larger length scales.
For very long times where particles have reached the diffusive regime all displacements
become homogeneously distributed and thus follow the same curve. It is interesting to note
that the length scale of the lowest curve which is flat at intermediate times corresponds to
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Figure 3.14: The self-part of the van Hove correlation function Gs(r, t) (same data as Fig. 3.13) plotted versus
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the localisation length estimated before from the MSD.

Time-dependent density correlation functions

Another important and often studied quantity is the incoherent intermediate scattering func-
tion Fs(q, t). Its significance with respect to dynamics of undercooled and glassy systems is
due the fact, that it is one of the central quantities of mode-coupling theory. Many predic-
tions of MCT refer to and can be checked by Fs(q, t) and the coherent scattering function
F(q, t).

The incoherent intermediate scattering function measures density correlations in recip-
rocal space and is defined as

Fα
s (q, t) =

1

Nα

Nα

∑
i

〈ρi(q, t) ρi(q, 0)〉 . (3.46)

This quantity can be experimentally determined by incoherent dynamic scattering, e.g. dy-
namic light scattering on colloids [vMMWM98]. In the simulation it can be calculated by the
following expression, where (3.34) was inserted into (3.46),

Fα
s (q, t) =

1

Nα

Nα

∑
i

〈
exp

(
− iq · [rα

i (t) − rα
i (0)]

)〉
. (3.47)

The incoherent intermediate scattering function Fs(q, t) is a one-particle quantity. The defin-
ition can be extended to a collective quantity which is known as coherent intermediate scat-
tering function

Fαβ(q, t) =
1

√
NαNβ

Nα

∑
i

Nβ

∑
j

〈
exp

(
− iq · [rα

i (t)− r
β
j (0)]

)〉
. (3.48)

It will be checked in the following, whether the MCT predictions (Sec. 3.1.1) hold for (3.47)
and (3.48).

Like the van Hove correlation function Fs(q, t) depends on two independent variables.
Figure 3.15 shows the time dependence of the incoherent intermediate scattering function
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Figure 3.16: Time dependence of the ratio R(t) defined in equation (3.5) for the incoherent intermediate scatter-
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for B particles at T = 0.15. (b) Same correlator as in (a) but at T = 0.14.

for three selected values of q: wave-vectors q = 2.3, 6.0 and 12.3 are before, directly at and
after the position of the first peak in the structure factor SBB(q) (Fig. 3.7). In addition a wide
range of temperatures from T = 1.0 down to T = 0.14 is included. For all temperatures
investigated the correlations decay to zero in the long time limit. This shows that it is indeed
possible to equilibrate the system properly. At high temperatures correlations quickly decay
to zero. Upon lowering T a shoulder develops, the height of which depends on q and is
higher at low q. At T = 0.14 it extends over almost four decades in time. The shoulder
and the plateau in the MSD appear on the same time scale, i.e. they are both due to the
aforementioned cage effect. This time regime is called β-relaxation.

MCT makes several predictions for the β-regime. One of them is the factorisation prop-
erty (3.4). It claims that the ratio (3.5) is independent of the wave vector. This is confirmed in
Fig. 3.16 for the temperatures T = 0.15 and T = 0.14 where at intermediate times all curves
for the various q values collapse onto a single master curve as long as the times t, t′ and t′′

of (3.5) lie within the time window of the β-relaxation. Upon lowering the temperature from
T = 0.15 (where t′ = 4.2 and t′′ = 83) to T = 0.14 (with t′ = 8.3 and t′′ = 830) one observes
not only an increase of the decay time by one order of magnitude but also the time range
where the factorisation property is valid grows about a factor of ten.

Having verified the factorisation property the von Schweidler law (3.6) shall be tested,
that describes the decay in the β-regime. Figure 3.17 shows the incoherent intermediate
scattering function Fs(q, t) for T = 0.14 for various values of q together with fits of (3.6) to
the β-regime. Here, it is not the aim to analyse the MCT predictions in detail and to perform
a complex fitting procedure to fix the von Schweidler exponent b as suggested in [Kob04].
For this reason, the exponent b was fixed to b = 0.5, which is a typical value for these
simple systems, cf. [KA95b]. This choice of b describes the data in the relevant regime quite
well. The same holds for the coherent intermediate scattering function F(q, t) in Fig. 3.18. As
F(q, t) is a collective quantity the statistics is visibly worse. Nevertheless, the von Schweidler
fits describe the β-relaxation satisfactorily.

One fit parameter of Eq. (3.6) is the non-ergodicity parameter f c(q) for F(q, t) and, sim-
ilarly, f c

s (q) for Fs(q, t). The non-ergodicity parameters are shown in Fig. 3.19. Within the
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to equation (3.6) with exponent b = 0.5. The dashed-dotted lines are examples of KWW fits.
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Figure 3.18: Time dependence of the coherent intermediate scattering function Fs(q, t) at T = 0.14 for the same
wave vectors q as in Fig. 3.17. Panels (a) and (b) display the correlations for A and B particles respectively. The
dashed lines show exemplarily von Schweidler fits according to equation (3.6) with exponent b = 0.5.
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Figure 3.19: Wave vector dependence of the non-ergodicity parameters f c (open circles) and f c
s (solid line) as

obtained by von Schweidler fits to data of figures 3.18 and 3.17 for A and AA correlations (a) and B and BB
correlations (b). According to fits of (3.50) to the self-non-ergodicity parameter the localisation lengths are 0.22
and 0.19 for A and B particles respectively.

Gaussian approximatione,

Fs(q, t) = e−
1
6 q2〈∆r2(t)〉 , (3.49)

it is possible to extract a localisation length r̃loc from f c
s (q) by fitting

f c
s (q) = e−

1
6 q2 r̃2

loc . (3.50)

For the two particle species this yields r̃A
loc = 0.22 and r̃B

loc = 0.19, which is comensurate with
the values obtained from the MSD (cf. page 35). In the Kob-Andersen mixture [KA95a] a loc-
alisation length of similar size is found: r̃loc,KA = 0.2 for the larger particles. The present sys-
tem, however, is only about half as dense. Due to its more long-range, soft potential it leads
to the same localisation length. The localisation lengths can be interpreted in the context of
the Lindemann criterion [Lin10]. This criterion states that if the amplitude of particle vibra-
tions in a crystal are greater than about 10% of the interparticle distance the crystal will melt.
Although the present system is amorphous, the typical interparticle distance as given by the
first peak of radial distribution function (Fig. 3.6) can be compared to r̃c. Depending on the
particle species the ratio is between 15% and 20% and hence the system can be considered
liquid-like in the sense of the Lindemann criterion. Changing focus to the wave vector de-
pendence of f c(q) it is interesting to note that the oscillations in the present system are much
weaker than in a Kob-Andersen Lennard-Jones mixture [KA95b, NK97]. Moreover, in con-
trast to the majority species in the LJ mixture or an Al-Ni-melt [DHV08] f c(q → 0) = 1 for
both particle species. The fact that the majority species in the aforementioned mixtures leads
to f c(q → 0) < 1 is attributed to sound modes that become important for the collective cor-
relations at low q. It is not clear whether these sound modes are unimportant in the present
Yukawa system because of a higher compressibility (this is the presumption in [ZASR08],
where a similar Yukawa system was investigated by simulations). It is further possible that

eA cumulant expansion of Fs(q, t) in powers of q2 up to order q2 is called ‘Gaussian approximation’. It is
equivalent with the assumption that the van Hove correlation function Gs(r, t) is Gaussian for all times. It is
exact for the free particle case and in the hydrodynamic limit. See [HM06].
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Figure 3.20: Illustration of the time-temperature superposition principle. Exemplarily this plot shows the same
data as Fig. 3.15(d) (q = q0, B particles) but the time axis is rescaled by the relevant α-relaxation time τα defined
by (3.51).

this reasoning is not valid at all since both systems, the present one and [ZASR08], are 50-50
mixtures and thus do not possess a majority species, unlike the Kob-Andersen mixture. In
any case the results of [ZASR08] and the data presented in Fig. 3.19 seem to agree.

Having discussed the main results in the β-regime the α-relaxation will be discussed now.
This final decay from the plateau strongly depends on the temperature, e.g. it takes about
ten times longer for the decay when changing from T = 0.15 to T = 0.14. To quantify this
decay the α-relaxation time τα is introduced, which depends not only on T but also on the
wave vector q. It is defined here by

Fs(q, t = τα) = 0.1 . (3.51)

Note that within the framework of MCT on time scales, which are large enough, any defini-
tion of relaxation time is valid since time-temperature superposition holds and therefore any
time that measures the time scale of the α-relaxation shows the same temperature depend-
ence [KA95b]. In this work τα was extracted from Fs(q, t) by taking the mean of the two data
points directly above and below the threshold value of 0.1.

With the extracted α-relaxation times the time-temperature superposition principle (3.7)
can be checked: In Fig. 3.20 the same correlators as in 3.15(d) are plotted versus rescaled time
t/τα. According to MCT in this representation the second relaxation steps of all curves with
sufficiently low temperature should collapse onto a single master curve. Indeed, the lowest
temperatures obey the time-temperature superposition principle while clear deviations from
the master curve are visible at high T. Similar plots can be made for different wave vectors.

As mentioned before, the relaxation time τα depends on temperature and wave vector.
In order to visualise its dependence on q the product ταq2 is plotted versus q in Fig. 3.21. In
this representation the influence of the local structure on τα becomes visible because ταq2 can
be interpreted as inverse q-dependent diffusion constant since in the hydrodynamic limitf

Fs(q, τα) = exp(−Dq2τα) (cf. Eq. 3.49). Thus, at length scales of nearest neighbour distances
ταq2 becomes relatively large because of the slow diffusion processes due to the local order.
In fact, the maximum is reached between q = 7 to q = 8 while the nearest neighbour peak in

fThe hydrodynamic limit corresponds to the regime of long wavelength and high frequency [HM86].
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Figure 3.21: The product of the q-dependent α-relaxation time τα and q2 as a function of q for (a) A and (b)
B particles. Temperatures shown are T = 0.14, 0.15, 0.16, 0.17, 0.18, 0.21, 0.34, 1.0. The α-relaxation times are
determined from the incoherent intermediate scattering functions in Fig. 3.17. Crosses on the ordinate mark the
magnitude of the inverse diffusion constant Dα.

the static structure factor is at q = 6. Crosses on the ordinate mark the inverse of the diffusion
constants D calculated from the MSD. Since D is a hydrodynamic transport coefficient, it
should correspond to the long wavelength limit of 1/ταq2. In order to make ταq2 comparable
to D and because of the definition (3.51), τα is divided by ln(10). This way 1/D agrees with
the extrapolation of ταq2 to q = 0.

According to MCT the α-relaxation times can be used to estimate the critical temperature
Tc of the system, cf. (3.9). In principle it should be possible to simply fit (3.9) to the data of
the eight simulated temperatures using as fit parameters the exponent γ, the critical temper-
ature Tc and some pre-factor. Unfortunately there are some subtleties here: The prediction
(3.9) only holds for temperatures close to Tc, which excludes high temperatures from the
fits. On the other hand at temperatures very close to Tc, processes known as hopping pro-
cesses become important and alter the behaviour predicted by MCT [Kob04]. Thus not the
whole temperature range is usable. Additionally, the exponent γ and the von Schweidler
exponent b are directly related to each other by (3.11) and (3.12). As only an estimate of Tc

should be attempted here, the exponent is fixed to γ = 2.7, which corresponds to the pre-
viously used b = 0.5. Given this exponent, Fig. 3.22(b) shows the relaxation times raised
to the power of 1/γ. Thus, in the regime where (3.9) holds τα linearly depends on T. The
figure shows the relaxation times for the different particle species and three values of q. It
is obvious that temperatures above T = 0.18 are already to far away from Tc and have to
be excluded from the fits. The lowest temperature T = 0.14 is disregarded as well as the
upturn from the linear dependence indicates the growing importance of hopping processes.
Equation (3.9) is then fitted to the four remaining data points of each data set with only two
free fit parameters one of which is the mode-coupling critical temperature Tc. In Fig. 3.22(a)
the same procedure is carried out using (3.10) for the diffusion constants that have been ex-
tracted from the MSD before. The fit results for Tc are all summarised in Tab. 3.3. Apparently
the results obtained from the relaxation times all agree and yield Tc = 0.14. The value ex-
tracted from the diffusion constants is slightly lower although MCT predicts them to be the
same. The small discrepancy between these results can be further highlighted by plotting
the temperature dependence of the product Dατα as shown in the inset of Fig. 3.22(a). MCT
predicts this product to be a constant close to Tc but obviously Dα is not proportional to τ−1

α .
This already known issue [Kob04, HK01] has been attributed to the presence of dynamical
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Figure 3.22: (a) Temperature dependence of the diffusion constant Dα. (b) Temperature dependence of the
inverse α-relaxation time τα for the wave vectors q = 4.2, 6.0, 10.0 (data points for lowest and highest q are
shifted by ±0.05 for better visibility). In both panels A and B particles are marked by open and full symbols,
respectively. The same is true for the inset of (a) where the product of Dα with the different relaxation times is
shown. Note that inverse temperature is shown on the abscissa for better visibility. In order to determine the
mode-coupling critical temperature Tc by fitting Eq. (3.10) resp. (3.9), the ordinate values are raised to the power
of 1/γ. The exponent γ was fixed to γ = 2.7 and only temperatures T = 0.15, 0.16, 0.17, 0.18 were used for the
fits, which are indicated by the solid lines. The results for Tc are shown in Table 3.3.

heterogeneities: A few particles that hop out of their cage already change the value of Dα

substantially, whereas this would only weakly affect the relaxation time. Therefore the an-
ticipated temperature dependence is different and τα is more likely to show the behaviour,
which is expected from of mode-coupling theory. To what extent these heterogeneities can
be described by idealised MCT is not clear. Nevertheless, the relaxation times and diffusion
constants show no untypical behaviour and thus allow for an estimation of Tc = 0.14.

It was shown above that the time-temperature superposition principle holds for low tem-
peratures: The second relaxation step, the α-relaxation, follows the same master curve irre-
spective of T (but not independent of q). This master curve can be approximated by the
Kohlrausch-William-Watts function (3.8), which involves a characteristic exponent β, often
called stretching exponent. In Fig. 3.17 fits of the KWW-function are shown exemplarily for
some values of q. The stretching exponent β, the time constant τ and the pre-factor were
used as fit parameters and only data with t > 100 and t > 250 are considered for correla-
tions of A and B particles, respectively. Figure 3.23 shows the wave vector dependence of
exponent β. Indeed, as predicted by the theory β < 1, i.e. the α-relaxation can be well ap-
proximated by a stretched exponential. Moreover, it has been shown that in the framework
of MCT the KWW function (3.8) becomes an exact description of the α-relaxation for simple
liquids in the limit q → ∞ [Fuc94]. In this case the von Schweidler law can be considered as

Table 3.3: Mode coupling critical temperatures Tc as determined from the self diffusion constants Dα and the
α-relaxation times at different wave vectors q (cf. Fig. 3.22). The first and second lines show the results for A and
B particles respectively.

Dα τα(q = 4.2) τα(q = 6.0) τα(q = 10.0)
TA

c 0.130 0.139 0.141 0.142
TB

c 0.135 0.140 0.141 0.143
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Figure 3.23: Wave vector dependence of the exponent β of the Kohlrausch-fits to the incoherent intermediate
scattering function Fs(q, t) of Fig. 3.17. Symbols distinguish between A (●) and B (■) particles. The cross denotes
the value of the von Schweidler exponent b.

short time expansion of the KWW law. Thus β would become equal to the von Schweidler
exponent b. For the present system this seems to be valid as well as β approaches the value
of b with increasing wave vector q.

3.3.3 Conclusion

In this section the equilibrium properties of the present system were investigated. The struc-
ture was analysed at different temperatures using the pair correlation function g(r) and the
static structure factor S(q). Upon lowering the temperature the short-range structure be-
comes more pronounced though no crystallisation occurs. Thus over the whole covered
temperature range the structure is liquid-like. Dynamic quantities on the other hand show
quite a dramatic T-dependence: The diffusion constants and α-relaxation times increase by
roughly a factor of ten when changing the temperature from T = 0.15 to T = 0.14. The slow-
ing down manifests itself in the development of a plateau in the mean squared displacement.
From its height it was found that particles are localised on a length scale smaller than about
a fifth of the typical interparticle distance. In summary one can conclude that the binary
Yukawa mixture indeed exhibits glassy dynamics.

Some more predictions of mode-coupling theory have been confirmed: The β-regime
obeys the factorisation property and follows the von Schweidler law from which the non-
ergodicity parameters have been extracted. The stretched exponential decay of the α-regime
is verified and the stretching exponent β approaches the von Schweidler exponent b for
large q. Finally, the mode-coupling critical temperature was estimated from the temperature
dependence of the α-relaxation times to Tc = 0.14.

Concluding this section it can be noted that besides of the archetypical glass-formers like
the Kob-Andersen Lennard-Jones mixture also the present Yukawa system shows glassy
dynamics. In fact, many features, which are predicted by MCT and tested in the LJ system,
have been found here as well. In contrast to the former, the Yukawa system shows these
effects at much lower densities, which is due to the soft, more long-ranged potential.
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3.4 Stationary shear flow

Having characterised the present binary Yukawa mixture in equilibrium the system prop-
erties under stationary shear shall be discussed and differences to the former case shall be
pointed out. After a description of specific simulation details some general features like the
shear velocity profile or the temperature stability are shown. Also the questions of struc-
tural changes will be addressed, which requires the definition of a structural quantity that is
more sensitive to the differences between equilibrium and steady shear. The main focus will
be on the system’s dynamics under shear, which is strongly accelerated. For that, many of
the quantities already shown before (mean squared displacement, incoherent intermediate
scattering function) will be analysed.

It should be stressed once more that this section will only deal with steady state prop-
erties, i.e. time translational invariance holds. The understanding of the behaviour under
stationary flow is a necessary prerequisite for the discussion of the transient dynamics in
later sections.

3.4.1 Details of the simulation

For the investigation of the steady state properties a range of shear rates has to be chosen.
In order to be in a sensible range, the shear velocity has to be much slower than the speed
of sound in the system, otherwise supersonic effects, which are usually not relevant for real
systems, would become important. The speed of sound in a liquid is given by [LL91]

c =

√

1

ρκS
, (3.52)

where ρ is the particle density and κS the adiabatic compressibility. The isothermal com-
pressibility of a binary mixture can be estimated from the partial static structure factors via
[HM86]

ρkBTκT = S̃(q → 0) , with S̃(q) =
SAA(q) SBB(q) − [SAB(q)]2

c2
ASBB(q) + c2

BSAA(q) − 2cAcBSAB(q)
, (3.53)

where the concentrations cα must not be confused with the sound velocity c. Since S̃(q)
becomes flat at low q, S̃(q) of the lowest accessible q-value was taken as the extrapolation to
q = 0. At temperature T = 0.14 this yields ρkBTκT = 0.0048. The adiabatic compressibility
κS, on the other hand, is not as easily accessible. In principle it can be extracted from dynamic
structure factors, but they have not been calculated for this system because some more effort
is required in this case. Here, only a rough estimation on the sound velocity is needed.
Because κT/κS > 1 (this ratio is usually not very far from 1), it is possible to determine a
lower bound of c by inserting κT into (3.52). The estimated lower bound of the speed of
sound is in this case c = 5.4. Thus, a typical time scale that is given by the time needed
for a sound pulse to propagate through the simulation box of linear dimension L = 13.3 is
tsound ≈ 2.5. Comparing its inverse 1/tsound = 0.4 and the highest shear rate that is used in
this work γ̇ = 0.012 (Tab. 3.4), one notices that γ̇ is still much smaller. In this respect, the
considered range of shear rates is sensible.

For the actual simulations 30 independent runs were performed over which the quantit-
ies of interest were averaged. Before a production run could be started it was necessary to
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set up a steady state start configuration. This was prepared as follows: A well-equilibrated
configuration of the quiescent system was subjected to the desired shear rate for a certain
number of time steps. During this preparative simulation a velocity profile develops and all
the structural and dynamical rearrangements occur. The time that is needed for the system
to reach stationary conditions could be estimated by inspection of, for example, the inco-
herent intermediate scattering function: If the decay with respect to different time origins
does not change anymore then the system has reached the steady state (for a more detailed
explanation on the choice of time origins for dynamic correlation functions see Sec. 3.5.1).
The final configuration of such a simulation was then used for the actual production run for
which results are shown in the following. It should be noted that due to the Lees-Edwards
boundary conditions and the finite number of particles a small net momentum is introduced
to the system [KPRY03] that has to be removed such that the simulation box is at rest before
the production runs are started. In Tab. 3.4 the simulation times for the preparative and the
actual simulation runs are summarised for the different shear rates. All other parameters
like the settings for the DPD thermostat remain unchanged to ensure comparability.

If not noted otherwise, in each production run 100 configurations of particle positions
and velocities were stored for later analysis (mainly for structural quantities but also for
the shear velocity profiles). Additionally, for the dynamics the already mentioned running
positions were saved on a logarithmic time scale such that each run yielded about 200 data
sets. Moreover, four equidistant time origins were used for the running positions in order to
improve statistics (details were already discussed in Sec. 3.3.1).

The behaviour of a system with temperature below the glass transition temperature un-
der shear is of interest as well in order to study differences and similarities to the case were
the system is merely under-cooled but still ergodic. As external shear can melt a glass (dis-
cussed in the context of Eq. (3.18)), steady state simulations can be performed even below Tc.
This was done for the present system at temperatures T = 0.12 and T = 0.10. As discussed
before, however, it is not possible to prepare an equilibrated start configuration for these
temperatures. Therefore, a steady state configuration of some given value of γ̇ at T = 0.14
was taken as initial configuration for a simulation run where the thermostat’s target tem-
perature was set to the desired value T < Tc. After having run this preparative simulation
sufficiently long (a time of the order of the inverse shear rate), the actual production run was
started with the final configuration, and quantities of interest were measured. As before 30
independent runs were done in parallel.

3.4.2 General properties under stationary flow

As explained in Sec. 2.1.2 the SLLOD equations of motion were not used for the shear simu-
lations but only Lees-Edwards boundary conditions alone. Therefore, no linear flow profile

Table 3.4: Summary of simulation times of preparative and production runs for the different shear rates at
temperature T = 0.14.

γ̇/10−5 6 12 30 60 120 300 1200
million steps (prep. run) 3 0.1 0.1 0.1 0.1 0.1 0.1
million steps (prod. run) 4 1 1 0.2 0.1 0.1 0.1



48 Chapter 3. A glassforming binary fluid mixture under shear

0 2 4 6 8 10 12
y

-0.02

-0.01

0.00

0.01

0.02

<
v x(y

)>

γ
.

= 3×10
-3

γ
.

= 6×10
-4
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Figure 3.25: Concentration profile in gradient direction y for A particles at shear rate γ̇ = 0.003. On the ordinate
cA(y) = 1 − cB(y) denotes the concentration of A particles in a layer at hight y. The dotted line marks the
expected value of cA = 0.5.

is imposed and it is thus obvious to check how the mean velocity in flow direction 〈vx〉
depends on the position y in gradient direction. In order to calculate the velocity profile
from the saved configurations, the simulation box is divided into ten layers perpendicular
to gradient direction. For each layer the average velocity in x-direction is computed. The
result is shown in Fig. 3.24 for three different shear rates. Indeed, a linear shear profile is
visible, most clearly for γ̇ = 0.003. For lower shear rates the thermal fluctuations become
comparatively stronger, thus the mean velocity of each layer fluctuates around the dotted
lines, which mark the expected linear profile. Nevertheless, no sign of shear banding is
observed and the system can be considered as homogeneously sheared.

To make sure that also the chemical composition does not change due to the external
drive, Fig. 3.25 shows the concentration cA(y) of A particles calculated for twenty layers in
gradient direction y. As the system is perfectly periodic in x and z this is the only direction in
which one can possibly see a deviation from the average concentration cA = 0.5. It is obvious
though, that the composition of particles is homogeneous throughout the whole system as
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Figure 3.26: (a) Temperature profile in gradient direction y for shear rates γ̇/10−5 = 300 (●) and γ̇/10−5 = 1200
(■) at T = 0.14. (b) Shear rate dependence of the temperature as check of the thermostat, which was set to the
temperatures marked by the dashed lines. Temperature T = 0.14 is the lowest temperature where equilibration
of the quiescent system was possible. At T = 0.1 a stationary state of the system is only reachable under steady
shear. The error bars mark the standard deviation of the temperature fluctuations around their average. For all
temperature calculations only the velocity components perpendicular to shear direction were used.

in equilibrium.
Now it shall be checked whether the DPD thermostat maintains a constant temperature

correctly. Moreover, it will be made clear that the temperature is distributed homogeneously
in gradient direction. The temperature profile for two selected shear rates γ̇ is presented in
Fig. 3.26(a). For the calculation of T once again the saved configurations were used and
particles sorted into layers in gradient direction. The temperature is then calculated using
the equipartition theorem. For that only velocities perpendicular to shear direction are con-
sidered, i.e.

kBT =
1

2
m

(

〈v2
y〉 + 〈v2

z〉
)

. (3.54)

Since there are no walls in the system and the particle concentration is homogeneous, a
dependence of T on the position y is not expected. The figure shows that this is indeed not
the case.

The second curve in Fig. 3.26(a) shows the temperature profile at the rather high shear
rate of γ̇ = 0.012. For this shear rate a significant deviation from the desired temperature of
T = 0.14 can be observed. Figure 3.26(b) presents the shear rate dependence of the temper-
ature for some more values of γ̇ for the two target temperatures T = 0.14 and T = 0.10. For
the latter one the system would be in a glassy state if no shear is applied. It is a known phe-
nomenon that depending on the weight function (2.14) the DPD thermostat does not work
properly anymore if the shear rate is too high because dissipation (set by the friction constant
ζ) is not fast enough to compensate for the influx of energy [PKMB07]. In the present system
only the highest shear rate considered, γ̇ = 0.012, is affected by this deficiency. Neverthe-
less, in the following some results for this shear rate are presented as well. In these cases it
is important to keep in mind the temperature drift.

Shear stress In order to create shear flow in a system an external force has to be applied.
The counteracting force is provided by the system and manifests itself in internal stress σ.
The macroscopically measurable quantity connected with this internal stress is the shear
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viscosity η, which is a measure for the internal friction of the fluid. Shear stress and viscosity
are connected by the shear rate γ̇ via

σ = ηγ̇ . (3.55)

In general internal stresses are built up by shearing and compression in any spatial direction.
Thus they are described by a tensorial quantity, the ‘stress tensor’

σαβ = − 1

L3

N

∑
j=1

mjvjαvjβ

︸ ︷︷ ︸

kinetic part

− 1

L3

N−1

∑
i=1

N

∑
j=i+1

rijαFijβ

︸ ︷︷ ︸

potential part

, (3.56)

where indices α and β indicate the three Cartesian directions x, y, z [HM06, AT90]. Each
of the diagonal parts corresponds to one third of the system pressure while for the present
setup of shear and gradient direction the only non-vanishing, non-diagonal contribution is
the σxy component. This is the component of interest for this work. The first part of (3.56)
is called kinetic part, the second one is the configurational part, which arises from the inter-
particle potential. Since the kinetic part of σxy contains the velocity in shear direction vix

the appropriate flow velocity has to be subtracted first. However, for liquids the kinetic
contribution is generally negligible [IK50], which is true here as well.

Equation (3.56) can be calculated easily in MD computer simulations because positions,
velocities and forces are directly accessible. Note that σαβ is a multi-particle property, i.e. the
only way to improve statistical precision is to average over many equivalent configurations.
In the following this will be indicated by 〈·〉. It is this lack of self-averaging which makes the
computation quite expensive.

Figure 3.27 shows the relevant stress tensor element 〈σxy〉 as function of shear rate for
the temperatures T = 0.14, 0.15, 0.21. For shear rates low enough to be in the linear response
regime the viscosity is expected to be independent of γ̇, i.e. shear stress plotted versus shear
rate should show a linear dependence. Besides the fact, that the statistics becomes increas-
ingly worse for lower shear rates, the linear response regime can be identified for T = 0.15
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and T = 0.21. For T = 0.14 linear response was not reached due to the large time it would
take to run the system until it is in steady state. For temperatures in the glassy phase the
shear stress can be expected to remain constant irrespective of how low the shear rate is. For
a LJ model this was shown in a simulation by Varnik [Var06]. For large γ̇ the stress increases
and becomes progressively independent of temperature. This temperature independence
will also be found for the diffusion constant when the dynamics is discussed in the next
section.

Structural changes Now the influence of shear on the structure shall be discussed. The
radial distribution function gαβ(r) and the static structure factor Sαβ(q) have been defined in
Sec. 3.3.1. Although the computation is basically the same as for the equilibrium case, some
technical subtleties have to be considered:

gαβ(r) When applying the minimum image convention in the calculation, the box displace-
ment due to the Lees-Edwards boundary conditions has to be taken into account, i.e. if
a particle’s y-coordinate is shifted by ±L then one has to add the correct box displace-
ment onto the x-position according to the actual configuration, cf. Sec. 2.1.2.

Sαβ(q) Due to Lees-Edwards boundary conditions the periodic structure of the image cells
changes every time step and so do the available wave vectors, see e.g. Eq. (4.7) in
[MRY04]. This makes the computation slightly more involved. An alternative route
that circumvents this problem is to consider wave vectors with qx = 0 only. This way
the structure factor can be calculated exactly as in equilibrium although some statistics
(especially for low q) is lost.

In Fig. 3.28, gαβ(r) is shown in steady state for two different wave vectors. The corres-
ponding equilibrium result is shown for comparison. Similarly, Fig. 3.29 displays the static
structure factors Sαβ(q) . For both quantities a change in structure is hardly visible. To high-
light the differences between equilibrium and steady state each panel additionally shows the
differences

∆gαβ(r) = g
αβ
eq (r)− g

αβ
ss (r) , (3.57)

∆Sαβ(q) = S
αβ
eq (q) − S

αβ
ss (q) . (3.58)

Although it is possible to identify deviations from the equilibrium structure, these differ-
ences are very small. A structural quantity more sensitive to shear is needed.

In order to make the shear induced anisotropy more apparent the structural quantities
are often expanded into a series of suitable functions. Examples are the expansion of g(r)
of a two-dimensional system into a Fourier series [HMWE88] or the expansion of g(r) and
S(q) (in three-dimensional systems) into spherical harmonics [RHH88, HRH87, GE92]. The
expansion of the pair correlation function (3.28) into spherical harmonics shall be done also
for the present case. If Ylm(θ, φ) is the spherical harmonic of degree l and order m of the
usual spherical coordinates θ and φ [AS72] then the expansion of g(r) reads

g(r) =
∞

∑
l=0

l

∑
m=−l

glm(r)Ylm(θ, φ) . (3.59)
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Figure 3.28: Dependence of the partial radial distribu-

tion function gαβ(r) on the distance r for (a) AA, (b)
AB and (c) BB correlations. For comparison the dot-
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of Fig. 3.6. The solid line corresponds to the highest
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Figure 3.30: Parametric plot of the imaginary part of Y22(θ, φ) as illustration which directions are mainly taken

into account in the calculation of Im g
αβ
22 (r).

The expansion coefficients are given by

glm(r) =
∫

Ω

g(r)Y∗
lm(θ, φ)dΩ , (3.60)

with Ω the solid angle and dΩ = sin θdθdφ its volume element. Inserting the definition
of the pair correlation function (3.29) into (3.60) and changing to the notation for different
particle species this leads to an expression similar to (3.31)

g
αβ
lm(r) =

L3

NαNβ

〈
Nα

∑
i

Nβ

∑
j( 6=i)

δ(|rα
i − r

β
j | − r)

r2
Y∗

lm(θ, φ)

〉

with α, β ∈ [A, B] . (3.61)

It is obvious that g
αβ
00 (r) corresponds to the usual radial distribution function gαβ(r). It de-

pends on the system’s symmetry which other coefficients are relevant: The coefficients with
l = 1 vanish for the present system because it is symmetric under one or more of the trans-
formations x → −x, y → −y, z → −z while the spherical harmonics are antisymmetric.
Likewise, all components with l = 2 vanish except for the coefficient with m = ±2, that is
to say only the imaginary part of g22(r) is non-vanishing. This can be seen when the corres-
ponding spherical harmonic is written in Cartesian coordinates

Im Y22(θ, φ) = Im

(√

15

32π
sin2 θe2iφ

)

=

√

15

8π

xy

r2
. (3.62)

The product xy indicates the dependence on coordinates in the gradient-shear plane. Figure
3.30 shows a parametric plot of (3.62) to illustrate which directions are mainly considered

in Im g
αβ
22 (r). Further contributions arise from degree l = 4. Since the amplitudes of these

coefficients are small compared to the noise, projections of higher degrees (l > 2) are not
considered here.
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The calculation of Im g
αβ
22 (r) is straightforward and follows closely the procedure for the

radial distribution function. Therefore,

Im g
αβ
22 (r) =

√
15L3

√
8πNαNβ

〈
Nα

∑
i

Nβ

∑
j( 6=i)

δ(|rα
i − r

β
j | − r)

(xα
i − x

β
j )(yα

i − y
β
j )

(rα
i − r

β
j )

4

〉

(3.63)

was used for the analysis.

In Fig. 3.31 the imaginary part of g
αβ
22 (r) is shown for the same shear rates and equilibrium

as before. Within statistical precision, Im g
αβ
22 (r) is zero for the latter case as it should be.

The same curves for the shear rates γ̇ = 0.003 and γ̇ = 12 · 10−5 on the other hand show
quite a clear structure that is more pronounced for the higher shear rate. This demonstrates
clearly that there is an anisotropy due to shear that increases with increasing γ̇. Further

observations can be made when Im g
αβ
22 (r) is compared to the equilibrium radial distribution

function gαβ(r): Firstly, it is notable that instead of the first peak in gαβ(r), the expansion

coefficients Im g
αβ
22 (r) show an upward and a downward peak. This behaviour is also visible

for the smaller peaks, albeit less pronounced. Thus, the peak positions in Im g
αβ
22 (r) seem

to be a little bit compressed towards smaller r compared to the one of gαβ(r). The second
observation is concerned with the magnitude of the peaks: While the height of the main
peak is not too different for the partial quantities gαβ(r), the main peak of Im gBB

22 (r) is about
twice as high as the main peak of Im gAA

22 (r). Finally, note that while gαβ(r → ∞) goes to

unity, Im g
αβ
22 (r → ∞) is zero.

The expansion of the pair correlation function into spherical harmonics offers a nice way
to highlight structural changes in sheared systems. It is far more sensitive than simply calcu-
lating g(r) (even when calculated for each spatial direction separately, which involves some

ambiguities). In addition, Im g
αβ
22 (r) has a clear physical meaning: By Equation (3.67) in Sec-

tion 3.5.2 it can be related to the shear stress. But this discussion is deferred to later. Now
the dynamic behaviour under steady shear will be discussed.

3.4.3 The acceleration of the dynamics

Diffusion dynamics As first dynamic quantity the mean squared displacement under sta-
tionary shear shall be discussed. The calculation is done in principle as explained in Sec. 3.43.
Of course, the sheared system is not isotropic anymore. Most obvious is the influence of the
flow on the MSD in shear direction (x). Additionally, one can suspect that there might be
a difference between gradient (y) and vorticity (z) direction. Therefore, in the following the
MSD is computed by simply ignoring the x direction

〈∆r2
α(t)〉 =

3

2
〈(yα(t) − yα(0))2〉 +

3

2
〈(zα(t) − zα(0))2〉 . (3.64)

The pre-factor 3/2 is introduced to make the MSD comparable to the equilibrium results. In
order to examine the difference between y and z the MSD was sometimes calculated along
one direction only. In these cases only one of the terms in (3.64) is used with a pre-factor of
3.

The results according to (3.64) for T = 0.14 (the lowest temperature for which the system
can be equilibrated) are shown in Fig. 3.32 while the MSD for T = 0.1 < Tc is shown in
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Figure 3.31: Imaginary part of the expansion coefficient g
αβ
22 (r) for (a) AA, (b) AB and (c) BB correlations under
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rium, where this coefficient is supposed to vanish. For comparison the dotted line shows the equilibrium radial
distribution function from Fig. 3.6 scaled by 1/8.
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ary shear as example of a temperature regime which is not accessible in equilibrium. The considered shear rates
are γ̇/10−4 = 3, 6, 12, 30, 60, 120.



3.4 Stationary shear flow 57

0.0 2.0 4.0 6.0 8.0 10.0
1/T

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
A

(a)

incr. γ
.

0.0 2.0 4.0 6.0 8.0 10.0
1/T

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
B

incr. γ
.

(b)

Figure 3.34: Temperature dependence of the self-diffusion constant (a) DA and (b) DB for shear rates γ̇/10−5 =
6, 12, 30, 60, 120, 300, 600, 1200 (crosses). Connected points correspond to the same shear rate. Open circles mark
the equilibrium results shown already in Fig. 3.12.

10
-4

10
-3

10
-2

γ.

10
-4

10
-3

D
A

(a)

T = 0.10

T = 0.18

10
-4

10
-3

10
-2

γ.

10
-4

10
-3

D
B

(b)

T = 0.10

T = 0.18
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Fig. 3.33. The acceleration of the dynamics by the external shear field is immediately ap-
parent: The plateau almost disappears and the diffusive regime sets in much earlier. Even
at T = 0.1 the dynamics is comparatively fast. This is reflected in the increase of the diffu-
sion constants, which gain more than an order of magnitude at T = 0.14, see Fig. 3.34. In
addition, it is apparent that at high γ̇ and/or low T the diffusion dynamics becomes almost
independent of temperature. In this case, the relevant time scale is given by the inverse shear
rate γ̇−1. In Fig. 3.35 Dα is plotted versus shear rate in a double-logarithmic plot for several
temperatures. This representation suggests that Dα and γ̇ are related by a power law at low
temperatures and high shear rates. At the lowest temperature T = 0.10 the exponents 0.79
and 0.84 are obtained for A and B particles, respectively. At T = 0.14 a power law fit (where
the two data points with lowest shear rate are dropped due to deviations from the straight
line) yields 0.68 and 0.75. A similar power law has recently been found in shear experiments
on a three-dimensional hard-sphere colloidal glass. There, a dependence D ∝ γ̇0.8 has been
obtained [BWSP07].

The difference between the MSD in gradient and vorticity direction is small but vis-
ible: Figures 3.32(c,d) show the ratio 〈y2(t)〉/〈z2(t)〉 between these two components, which
demonstrates that particles along the gradient direction are slightly faster. For the slow B-
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Figure 3.37: As in Fig. 3.36 the self-part of the van Hove correlation function Gs(r, t) for (a) A and (b) B particles

but here at shear rate γ̇ = 3 · 10−3. The curves correspond to the times t = 0.28, 1.4, 7.01, 35.1, 78.7, 176, 394, 701,
which are marked in Fig. 3.32 by open squares.

particles the MSD differs by about a factor of 1.15 at the highest shear rates considered while
the difference for A-particles is a little bit less pronounced. An illustrative explanation for
this behaviour is the relative motion of particles due to the velocity gradient in y-direction:
Since the layer above/below a given particle moves, there is a chance that voids pass by,
which would allow the particle to move upwards/downwards in gradient direction. Hence,
particle jumps in gradient direction are slightly favoured.

Now the self-part of the van Hove correlation function (3.45) shall be considered. Similar
to the MSD the x-component of the particles is not considered and Gs(r, t) is thus computed
in y and z direction separately by

Gα
s (r, t) =

1

Nα

〈
Nα

∑
i=1

δ(r − |yα
i (t)− yα

i (0)|)
〉

with α, β ∈ [A,B] (3.65)

and likewise for the vorticity direction. Figures 3.36 and 3.37 show Gs(r, t) for a relatively
low and a high shear rate, respectively. As the data is a little bit noisy and no difference
between gradient and vorticity direction could be seen, it was averaged here over both direc-
tions. The short time distributions, where particles move only within their respective cages,
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Figure 3.38: Self-part of the van Hove correlation function Gs(r, t) for the same para-
meters as in Fig. 3.37. Here Gs(r, t) is plotted versus time t for the distances r =
0.005, 0.016, 0.026, 0.036, 0.057, 0.089, 0.130, 0.193, 0.257, 0.354, 0.451, 0.612, 1.064, 1.742 (from top to bottom).
The red curves represent Gs in steady state at γ̇ = 0.003 while the gray ones show the equilibrium result from
Fig. 3.14 for comparison.

are quite similar as in equilibrium and are of Gaussian shape. For the low shear rate the
exponential tail develops at intermediate times. This phenomenon is hardly visible at high
shear rates. On the long time scale the distribution is Gaussian again in both cases. This is
consistent with the fact that the caging effect is very weak and diffusion sets in very quickly.
For the high shear rate localisation in cages barely happens and therefore no exponential tail
in Gs(r, t) is seen in contrast to the system at low γ̇.

In the alternative representation introduced before, where Gs is plotted versus time t
the acceleration of the dynamics is visible more directly (Fig. 3.38). While for times t . 1
and distances r . 0.4 equilibrium and steady state results lie on top of each other, this is
different for larger times: At large length scales r & 0.1 the van Hove function increases
faster than in equilibrium. On shorter length scales in contrast, Gs acquires the same value
for all r . 0.1 and decreases, coinciding with Gs for long distances at larger times. It is
interesting to note that at long times (t & 50) the envelope of all steady state curves seems to
follow a power law. At γ̇ = 0.003 the exponents are −0.52 ± 0.01 for both particle species.
The exact values depend on the number of data points that are taken into account for the fits.
For lower shear rates these exponents increase only slightly to −0.59± 0.01 and −0.58± 0.01
at shear rate γ̇ = 0.0003 for A and B particles, respectively. To determine whether or not the
envelope really follows a power law or if and how the exponents depend on γ̇ requires
longer simulation runs under steady shear and a more thorough analysis of the van Hove
correlation function.

The decay of density correlations From the accelerated dynamics just discussed in the
context of diffusion it can be expected that a speed-up is found as well for the decay of dens-
ity correlations measured by the incoherent intermediate scattering function Fs(q, t). How-
ever, as for the static structure factor, the constant change of the wave vector due to Lees-
Edwards boundary conditions has to be accounted for (cf. discussion of S(q) in Sec. 3.4.2).
Again, this problem is avoided by considering only those wave vectors with qx = 0 in (3.47).

Figure 3.39 shows the decay of Fs(q, t) for three different wave vectors under steady
shear compared to equilibrium at T = 0.14. It is apparent that the decay is enhanced by
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Figure 3.39: Incoherent intermediate scattering function Fs(q, t) of the sheared system for different wave vectors
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Figure 3.40: Incoherent intermediate scattering function Fs(q, t) of the sheared system for (a) A and (b) B particles
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Figure 3.41: Time dependence of the ratio R(t) defined in (3.5) for the incoherent intermediate scattering function
Fs(q, t) for B particles at the following wave vectors q: 0.66, 0.95, 1.05, 1.4, 1.9, 2.3, 3.4, 4.2, 4.9, 5.4, 6.0, 6.9, 7.7,
8.1, 8.4, 8.8, 10.0, 11.2, 12.3, 13.5, 14.6, 15.7, 16.8, 17.9. Crosses mark the times t′ and t′′ (see (3.5)). The shear rates
shown in panels (a) and (b) are γ̇ = 3 · 10−3 and γ̇ = 6 · 10−5 respectively.

shear and that the shoulder at intermediate times shrinks as γ̇ increases. As seen before, also
for temperature T = 0.10 below the glass transition temperature the system is not jammed
and correlations still decay on time scales similar to the case T = 0.14 (Fig. 3.40).

Some of the characteristics of Fs(q, t) discussed for the equilibrium case in Sec. 3.3.2 shall
be examined for steady shear, too. To this end, a system at temperature T = 0.14 is con-
sidered for the shear rates γ̇ = 3 · 10−3 and γ̇ = 6 · 10−5. At first, the factorisation property
(3.5) is tested for a large range of wave vectors q for the aforementioned shear rates. It was
tried to separate times t′ and t′′ as much as possible in the β-relaxation regime such that in
between all correlators follow the same master curve. As Fig. 3.41 clearly shows, this prop-
erty holds for the present non-equilibrium case as well. The time window where it is valid at
shear rate γ̇ = 0.003 is t′′ − t′ = 8.3 − 1.7 = 6.6, whereas at the lower shear rate γ̇ = 6 · 10−5

this regime is larger, t′′ − t′ = 25 − 1.7 = 23.3. It is this time window where fits of the von
Schweidler law (3.6) were made. As in equilibrium the exponent b was held fixed at b = 0.5.
Exemplarily, some fits are shown in Fig. 3.42 and it is visible that the von Schweidler law can
still be used to describe the β-regime. The validity of these β-relaxation properties under
stationary shear has also been found in computer simulations of a Lennard-Jones mixture
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Figure 3.42: Time dependence of the incoherent intermediate scattering function Fs(q, t) at T = 0.14 for B

particles and the same wave vectors as in Fig. 3.41. Panels (a) and (b) show shear rates γ̇ = 3 · 10−3 and
γ̇ = 6 · 10−5 respectively. The dashed lines show exemplarily von Schweidler fits with exponent b = 0.5 to the
region where the factorisation property holds.
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Figure 3.43: Test of the time-shear superposition principle for (a) A and (b) B particles. The time axis of the
Fs(q, t) at q = 6 from Figures 3.39(c,d) have been rescaled by their respective α-relaxation time. At the lowest
shear rates the curve of the second relaxation process collapse onto a singel master curve.

by Berthier and Barrat [BB02].

Additionally, these authors found in their shear simulations for the α-relaxation regime
that an equivalence to the time-temperature superposition principle holds which they termed
‘time-shear superposition property’. This was also tested for the present system by rescaling
t with the α-relaxation time τα (defined in (3.51)) which corresponds to the respective shear
rate γ̇. From the results in Fig. 3.43 it can be seen that this property holds only for the two
lowest shear rates. At higher γ̇ deviations from this ‘master curve’ set in.

The dependence of the curve shape of the second relaxation step on the shear rate is also
apparent when a Kohlrausch function (3.8) is fitted to this regime: For B particles these fits
are included in Fig. 3.39. There, the pre-factor A was set ‘by hand’ and kept constant for
all fits of a given wave vector while only those data point were considered for the fit that
were below 80% of the plateau value. The resulting exponents β are shown in Fig. 3.44.
The following can be observed: First of all it is obvious that under steady shear β is larger
than in equilibrium. Therefore, the decay is not as ‘stretched’ as in the quiescent system. In
fact, for the highest shear rates the exponent is of order 1, meaning that the decay is merely
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Figure 3.45: The product of the q-dependent α-relaxation time τα and q2 as function of q for (a) A and (b) B
particles at temperature T = 0.14. Solid curves with full symbols correspond to stationary shear with shear
rates γ̇/10−5 = 6, 12, 30, 60, 120, 300, 1200. For comparison the dashed curve repeats the equilibrium result of
Fig. 3.21. The crosses on the ordinate mark the value of the inverse self diffusion constant.

exponential. Secondly, the spread in the values of the exponents for a given wave vector
is small for low q and increases as q grows. This means that the time-shear superposition
property is better fulfilled for small wave vectors.

At the end of this section the wave vector dependence of the α-relaxation time τα is
presented. This is done in Fig. 3.45 in the same way as before by plotting the product ταq2

versus q. Compared to the equilibrium result the height of the peak at q ≈ 8 strongly de-
creases, reflecting the fast decay of density correlations. Also under constant shear the in-
verse diffusion constant nicely fits to the extrapolation of ταq2 towards q = 0.

3.4.4 Conclusion

In this section it has been shown that the exclusive use of Lees-Edwards boundary conditions
(i.e. no modifications of equations of motion) leads to a linear velocity profile for the range of
the considered shear rates. Specifically, no shear bands were observed in the present Yukawa
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system. Further, it was demonstrated that the DPD thermostat is able to remove additional
in-flowing energy for γ̇ . 0.003, which corresponds to a shear velocity of about 1% of the
speed of sound in this system at T = 0.14.

The rheological response of the mixture was studied by the shear stress 〈σxy〉. Its depend-
ence on shear rate γ̇ clearly shows shear-thinning as found in many simple liquids [Var06]
as well. For very low shear rates the linear response regime is reached and the dependence
between 〈σxy〉 and γ̇ changes to a linear relationship. Unfortunately, it was not possible to
reach this regime for the lowest temperature in the undercooled regime, T = 0.14. Much
longer simulations are needed here due to the stress tensor’s lack of self-averaging.

The structure was analysed by an expansion of the pair correlation function into spherical
harmonics because the usual pair correlation function and the static structure factor are not
sensitive to anisotropies caused by the flow. In contrast, the expansion coefficient Im g22(r),
which is sensitive mainly in the flow-gradient plane, nicely shows oscillations whose amp-
litude increases as the shear rate grows. In fact, shear stress 〈σxy〉 and Im g22(r) are closely
related. This relationship will be studied during the transient dynamics in the next section.

The dynamic properties analysed by the MSD and the incoherent intermediate scatter-
ing function show a behaviour that has been found already in theories [BB02, FC03], sim-
ulations [Var06, BB02] and experiments [BWSP07]: The diffusion constant and the inverse
α-relaxation times increase by orders of magnitude compared to equilibrium. The shear rate
dependence of the former follows a power law with exponent less than unity. This is also
true for temperatures far below Tc, where systems still behave liquid-like when subjected
to external shear. The tested (equilibrium) mode-coupling predictions like the factorisation
and the von Schweidler law hold also under shear in a regime far away from linear response.
The time-shear superposition property found in [BB02] can only be considered valid for the
lowest shear rates because fits of the KWW law to the α-relaxation step yield stretching ex-
ponents β that depend on the shear rate. It is possible that the shear rates considered here
are still too large and the time-shear superposition applies only to lower shear rates. What
is more, the stretching exponents acquire values close to unity, which means that the final
decay step is only slightly stretched.

The exponents β will increase even more when the transition from equilibrium to steady
state is considered. This will be among the topics discussed in the next section.
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3.5 From equilibrium to steady state: Switching on the shear field

In the two previous sections it became apparent that the dynamics of the considered Yukawa
system in quiescent equilibrium is markedly different from the one found under steady
shear. This raises the question how the system’s microscopic dynamics evolves in response
to a sudden change in the externally applied shear. Therefore, this section is concerned with
a suddenly commencing flow that is imposed upon a quiescent system in equilibrium. Not
only the microscopic dynamics of these transient states are of interest but also the rheolo-
gical response measured by the shear stress 〈σxy〉, which increases from zero in equilibrium
to the steady state value. How it builds up during the transition to the steady state and
how it is connected to structural rearrangements will be the first part of this section. Linked
to this macroscopic quantity is the underlying microscopic dynamics (cf. Sec. 3.1), which is
subsequently studied by transient time correlation functions.

Changing the friction constant of the DPD thermostat (Sec. 2.2.1) can significantly alter
the type of the microscopic dynamics. In order to show that the features, which are obtained
with Newtonian dynamics, are essentially the same in a stochastic dynamics, the last sub-
section presents a comparison between both. At first, however, the technical details like the
simulation procedure are briefly described.

3.5.1 Simulation details

As mentioned before, the transition of the system from equilibrium to stationary flow shall
be simulated, where the external shear field is switched from zero to γ̇ 6= 0 at time t = 0.
Hence, the initial configuration for such a simulation can be any sufficiently equilibrated
configuration (cf. Sec. 3.3.1). Such a configuration is then subjected to the desired constant
shear rate at the beginning of the ‘switch-on’ simulations. The simulation runs until the sys-
tem is stationary. This can be monitored, for example, by Fs(q, t), which becomes invariant
under time translation in this case (see below).

During the transition from equilibrium to steady state, the Lees-Edwards boundary con-
ditions can introduce a small net momentum in shear direction [KPRY03]. One can easily
correct for this by subtracting this centre of mass velocity from each particle. In the simu-
lations this was done every 50th time step in the first 104 steps of the simulation. Although
still a small centre of mass velocity remains which is naturally different (positive or negative)
for each simulation run and maximally of the order of 10−5, it is negligible especially after
having averaged over all independent runs.

A further technical difficulty arises in the ‘switch-on’ simulations: The system is not time
translational invariant anymore because its properties change until a steady state is reached.
Therefore, it is not possible in the calculation of two-time correlation functions to average
over different configurations which were taken at different times. The only possibility to
improve statistics is by averaging over particles and over several independent simulation
runs. While the former is only useful for single particle quantities like the mean squared
displacement, it is not applicable for collective quantities like the stress tensor. In order to
calculate the latter with reasonable statistics 250 new independent configuration were equi-
librated to serve as start configurations for 250 production runs from which the stress tensor
〈σxy〉, the shear velocity profile 〈vs(y)〉 and the expansion coefficient for the pair correla-
tion function Im g22(r) were calculated for different times during the transition. For mean
squared displacement 〈∆r(t)2〉, incoherent intermediate scattering function Fs(q, t) and van
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Figure 3.46: Time axis for the illustration of waiting times for ‘switch-on’ simulations. The simulation is started
with a fully equilibrated configuration (EQ). At time t = 0 the external shear field with shear rate γ̇ 6= 0 is
switched on. For very long times the system has reached a steady state (SS). Two-time correlation functions can
now refer to different reference times, called waiting times tw.

Hove correlation function Gs(r, t) it sufficed to use only 30 independent runs. This com-
paratively low number saves large amounts of disk space while still obtaining satisfactory
statistics.

The lack of time translational invariance has a further consequence for dynamic quantit-
ies, which usually correlate a quantity at time t with the same quantity at an earlier time t0.
Due to the time translational invariance in steady states the choice of the time origin t0 was
arbitrary and it was possible to choose several origins in order to improve statistics. Here,
properties are not stationary anymore and thus the choice of time origins makes a difference.
The following convention is therefore adopted here: The time at which the shear is switched
on defines the time origin t0 = 0. Now, the correlation functions are measured with respect
to several different time origins which are called ‘waiting times’ tw in the following. This is
illustrated in Fig. 3.46. Correlation functions are then dependent on the two times t and tw

and are plotted for several waiting times tw versus t − tw. For example, the mean squared
displacement of Eq. (3.43) becomes

〈∆r2
α(t, tw)〉 = 〈|rα(t) − rα(tw)|2〉 . (3.66)

Similarly, Gs(r, t) and Fs(q, t) are altered to Gs(r, t, tw) and Fs(q, t, tw).

3.5.2 The build-up of shear stresses and structural rearrangements

While in equilibrium the average total stress tensor is zero, the previous section showed that
for non-zero shear rates a finite steady state shear stress 〈σxy〉 can be calculated, Eq. (3.56).
How the shear stress develops when shear sets in is presented in Fig. 3.47. One of the salient
features that becomes visible in this plot is an overshoot at intermediate times. It divides
the time evolution into two regimes: For shorter times the stress increase follows a power
law. This regime corresponds to solid-like elastic deformations of the system. Interestingly,
Fig. 3.47(b) shows that the build-up in this regime is independent of the shear rate. The
power law exponent for all three considered shear rates can be determined to 0.90 ± 0.01.
Within linear response theory there should be a linear dependence between shear stress
〈σxy〉 and strain γ = γ̇t. The observed deviations from this linearity are not yet understood
in detail but they can be attributed to the rather high shear rates, which do not lie within the
linear response regime anymore.

The stress increase in this regime continues even beyond the steady state value until it
reaches a maximum σmax > 〈σxy(t → ∞)〉. This happens at a strain γ = γ̇t of about 10%
of a particle diameter. The position of this maximum slightly depends on the strain. For
times after the maximum the stress decays to a plateau, which corresponds to the steady
state value shown in Fig. 3.27. This is the regime of plastic deformation. The height of
the plateau increases with increasing γ̇, indicating that faster flow induces higher internal
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Figure 3.47: (a) Time dependence of the shear stress 〈σxy〉 after switching on the shear field with shear rates

γ̇/10−4 = 3, 6, 30 at temperature T = 0.14. Lines mark the stress computed by equation (3.56). Symbols are
calculated from Im g22(r) (cf. Fig. 3.48) according to (3.67). (b) Same data as panel (a) but now plotted versus
strain γ = tγ̇ in order to show the γ̇-independence of the stress increase at short times.

stresses. Note that the plateau is reached after a strain of the order unity, meaning that the
steady shear stress is reached after a time of the order 1/γ̇. Similar features have been found
in experiment [OII00, IA01, LVAC07] and simulation [VBB04, Hey86, RR03, TLB06].

Since the separation rij between particle pairs enters the potential part in the definition
of the stress tensor (3.56), the question arises whether the stress build-up is related to struc-
tural rearrangements. It was shown in Sec. 3.4.2 that there is indeed a structural difference
between equilibrium and steady state. Therefore, its change during the startup of flow shall
be considered now. As shown for the steady state case, an expansion of the pair correlation
function into spherical harmonics can highlight anisotropies and structural changes by ana-
lysis of the imaginary part of expansion coefficient g22(r), Eq. (3.63), which was computed
for different times t. Exemplarily, the time evolution of Im g22(r) for shear rate γ̇ = 0.003 is
shown in Fig. 3.48. For t = 0 there are no anisotropies present in Im g22(r) = 0. As expected,
with increasing time Im g22(r) developes oscillations, reflecting structural rearrangements.
Interestingly, oscillations grow intitially and then slightly decrease again to the asymptotic
steady state structure. This ‘overshooting’ is reminiscent of the behaviour of the shear stress.
In fact, 〈σxy〉 (more specifically its dominant potential part) and Im g22(r) are related by

〈σxy〉 = −ρ2

4

√

32π

15
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(3.67)

where Vαβ(r) is the interaction potential. This connection is derived in Appendix A. For each
curve in Fig. 3.48 the integral was calculated numerically by (3.67). Although the range of in-
tegration is limited to L/2 due to the finite system size, the results, shown in Fig. 3.47 as open
symbols, are in agreement with 〈σxy〉, as calculated from the microscopic virial expression
(3.56).

Further insight can be gained from the time dependence of Im g22(r) when its growth
on different length scales is examined. Figure 3.49 shows the value of Im g22(r) for four
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Figure 3.50: Distance dependence of Im g22(r) at T = 0.14 for B particles. Panels (a), (b) and (c) show the

transient structure for shear rates γ̇/10−4 = 30, 6, 3 respectively. The curves are measured at certain times t
before (solid lines) and after (dotted lines) the stress overshoot as indicated in the insets by symbols of the same
colour (cf. Fig. 3.47). For clarity, curves belonging to the larger value of shear stress are shifted upwards by 0.6
in (a) and (b).

different distances ri as function of time. Distance ri corresponds to the ith peak of Im g22(r).
Additionally, all curves are rescaled such that the maximal magnitude, which is reached
at t ≈ 33, has a value of 1. In this representation all curves basically lie on top of each
other. Therefore, the build-up of shear stress seems to happen — at least on average —
homogeneously on all length scales.

This fact can be further highlighted by comparing Im g22(r) at two times before (t1) and
after (t2) the stress overshoot where the stresses are equal. Figure 3.50 shows that, in simple
terms, same stress means same structure. This raises the question in which respect two state
points of the same shear stress are different if their structure is the same. It is this question
that will be in the focus for the remainder of this section and will be resumed as well in
Sec. 3.6.

One possibility to discriminate between two states with the same stress might be provided
by higher order contributions in the expansion of the pair correlation function. This was
checked up to degree l = 4 of the expansion coefficients glm(r). The only additional, notice-
able contribution in this range arises from Re g44(r), see Fig. 3.51. However, its magnitude
is small and the statistical noise too large for picking out a difference in Re g44(r) for state
points of the same stress at t1 and t2. For now it must be concluded therefore that the pair
correlation function is not able to discern those two states.
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Besides the positions of particles (i.e. the system structure) their velocities determine the
time development of the system. Although velocity is a fast variable and its auto-correlation
function decays to zero in a time of order t ≈ 1, one can suspect that due to the commencing
flow, the velocities are different at t1 and t2. Therefore, the transient shear velocity profile
〈vx(y)〉 is monitored for ten layers at different positions in gradient direction for several
times t after shear was switched on, Fig. 3.52. Except for the last of these times, where 〈σxy〉
has already reached its steady state value, all times lie within the elastic regime, where the
stress shows an almost linear increase. Although this covers only a relatively small time
interval, it is obvious that the velocity profile develops completely. Thus, it can be stated
that the linear flow profile is already established at the times that have been used in the
measurement of Fig. 3.50. Therefore, the velocities before and after the overshoot should be
the same. This is corroborated by the velocity distributions shown in Fig. 3.53. There, one
can hardly discriminate between the curves corresponding to equal stresses before and after
the stress overshoot. Therefore, as Im g22(r) also the velocities do not distinguish states of
equal shear stress.

It is worth looking at the curves of Fig. 3.52 in more detail: For time t = 0.6, which
is briefly after switching on the shear field, only particles at the border of the simulation
box have experienced the external drive. The inner region with 2 . y . 11 is still flat
as in the quiescent system. As the maximum velocity with which the perturbation at the
borders of the simulation box can propagate is the speed of sound, the shear effects should
have propagated at least a distance ct = 5.4 · 0.6 = 3.2. With the words ‘at least’ it was
taken into account, that the isothermal speed of sound c = 5.4 marks a lower bound to the
‘correct’ speed of sound, cf. Sec. 3.4.1. This is evident here because particles within a layer
with thickness of about 3.0 on each side of the simulation box are flowing while the others
in the aforementioned interval do not move collectively. At time t = 2.3 the slope of the
curve is even steeper than the expected flow profile. Analysing velocity profiles with much
higher time resolution reveals that the curves oscillate around the steady state profile. These
oscillations are strongly damped and cannot be recognised after two periods. At a time
of about t = 8.1, a stable linear velocity distribution is reached and only small statistical
fluctuations around the expected profile are visible.

It can be concluded that the velocity profile builds up very quickly, within a time still
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Figure 3.54: (a) Normalised histograms of the local shear stress distribution P(σ
xy
loc) during the startup of shear.

Both curves are measured at times of equal shear stress t1 = 11.25 and t2 = 150.0 as indicated in the inset.
(b) Time dependence of the local shear stress fluctuations 〈(∆σ

xy
loc)

2〉 during the transition from equilibrium to
steady state. For comparison the dashed curve shows the stress increase of Fig. 3.47 (for which the y-axis is not
to scale). For both cases the shear rate is γ̇ = 0.003.

in the elastic regime, while the shear stress needs a time of the order of 1/γ̇ to reach its
stationary value. Therefore, there is no connection to the stress overshoot and the build-up
of shear stress and shear profile are two processes that seem to be entirely independent.

It is still not explained in which respect two state points of the same stress differ. Note
that the quantities considered so far, e.g. the expansion coefficients of the pair correlation
function, are average quantities. Therefore, it is possible that the distribution around the
average structure is different before and after the stress overshoot. This will be considered
now by examining the distribution of the local shear stress σ

xy
loc exerted on a particle. Since

the dominant part of the stress tensor (3.56) is given by the potential term, the local shear
stress on a particle i is defined as

σ
αβ
loc,i = − 1

L3

N

∑
j 6=i

rijαFijβ . (3.68)

This quantity is calculated for all particles in 250 statistically independent particle configur-
ations, which correspond to the same strain γ = γ̇t during the transition from equilibrium
to steady state. The local stress distribution is shown in Fig. 3.54(a) for two states of equal
shear stress. One notes immediately that the distribution is very broad compared to its av-
erage value. It is apparent that the peak height, calculated for the early time, is a bit larger
than after the stress overshoot but the peak is slightly narrower. This can be visualised more
clearly by showing the stress fluctuations 〈(∆σ

xy
loc)

2〉 = 〈(σ
xy
loc)

2〉 − 〈σxy
loc〉2 for several transi-

ent states in Fig. 3.54(b). This figure shows that there are indeed two regimes of different
fluctuations: For short times after the shear rate is switched on the fluctuations remain con-
stant. At time t ≈ 10 (before reaching the stress maximum) the fluctuations start to grow and
quickly reach a larger value which remains constant thereafter. The strong increase ends ap-
proximately at the time where the stress has its peak. Unfortunately, in the interesting time
window, where the fluctuations increase, only very few data points are available. Although
the magnitude of the increase is only about 10%, it is a systematic effect and shows explicitly
that the fluctuations around the average local stress in the elastic regime are different from
those in the plastic regime. This means that there are structural differences before and after
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Figure 3.55: (a) Transient mean squared displacement for B particles measured perpendicular to shear direction.

Different colours indicate the applied shear rates γ̇/10−5 = 6, 60, 300. Different line styles indicate the waiting
times tw = 0, 1342, 14763 for γ̇/10−5 = 6 and tw = 0, 28.1, 421.9 for the other two cases. The dotted black
line is the corresponding equilibrium curve at temperature T = 0.14. Open symbols indicate the time used for
Gs(r, t, tw) in Fig. 3.58. (b) MSD only for shear rate γ̇ = 0.003 and same waiting times tw as in (a). Here gradient-
(dashed lines) and vorticity (solid lines) directions are shown separately.

the stress overshoot, which are not captured by the average quantity Im g22(r).

Although it seems that these differences are small they have a strong effect when the
sudden switch-off of the external shear field is considered. This is a topic in Sec. 3.6.2. Be-
fore this issue is addressed, the transient dynamics from equilibrium to steady state will be
discussed.

3.5.3 Transient dynamics

The transient MSD and super-diffusion

More information on the transient dynamics of the system can be obtained from two-time
correlation functions. First, the mean squared displacement will be discussed. In this chapter
it is calculated either perpendicular to shear direction or for gradient and vorticity direction
separately as in Section 3.4.3. As discussed in Sec. 3.5.1, it is necessary here to distinguish
between different waiting times tw. Taking this into account the computation of the MSD is
straightforward: Figure 3.55(a) shows the MSD at temperature T = 0.14 for three shear rates
and three waiting times. Since the waiting times have to be chosen before the simulation run,
it was not always possible to get as nicely spaced curves as for γ̇ = 0.003.

From Fig. 3.55(a) it is visible that the short time dynamics does not change because all
curves fall on top of each other for small t − tw independent of γ̇ and tw. When the wait-
ing time is large enough, the MSD becomes independent of tw because the steady state is
reached. This is the case for the upmost curves for the different shear rates in Fig. 3.55(a)
(compare with Fig. 3.32). For short waiting times (and strongest for tw = 0) on the other
hand, the startup of shear flow has a drastic effect on the MSD: It initially follows the equi-
librium curve into the plateau regime (strain γ . 0.1). Then it increases rapidly and co-
incides with the steady state MSD already at t ≈ 1/γ̇. This effect is seen in both direc-
tions perpendicular to the flow, albeit somewhat less pronounced in the vorticity direction,
as demonstrated in Fig. 3.55(b). At this intermediate time window the MSD thus grows
‘super-diffusively’, i.e. 〈∆r2

B〉 ∝ tα with α > 1. This is more clearly seen when plotting
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Figure 3.56: (a) Mean squared displacement plotted as 〈∆r2
B(t, tw)〉/(t − tw). Shear rates and waiting times are
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Figure 3.57: Transient mean squared displacement for B particles at temperature T = 0.1 below the glass trans-
ition temperature. The MSD is shown in vorticity (z) and gradient (y) direction for shear rates indicated in
panels (a) and (b). Waiting times tw are (a) 0.0, 11.1, 1342.1, (b) 0.0, 122.0, 1342.1, where the largest waiting time
is identical to the steady state. The arrow in (b) indicates where the curve for tw = 122.0 crosses the steady state
curve. The insets show the effective exponent µ, Eq. (3.69), for waiting time tw = 0 in both directions.

〈∆r2
B(t, tw)〉/(t − tw), as shown in Fig. 3.56(a). In equilibrium the curve would monoton-

ically fall to 6D, where D is the diffusion constant of the quiescent system. In contrast,
the pronounced dip with the subsequent increase at intermediate times is the signature of
super-diffusion.

This effect can be quantified through the logarithmic derivative

µ(t, tw) =
d log〈∆r2

B(t, tw)〉
d log(t − tw)

, (3.69)

where µ(t, tw) can be interpreted as an effective exponent which is µ = 1 for ordinary diffu-
sion and µ = 2 for ballistic motion. These are the two limiting cases for long and short times,
respectively. On the time scale where particles are trapped (cage effect) and the MSD is flat
the exponent is almost zero. At about γ̇t ≈ 0.1 the exponent µ quickly increases to about
two before it settles finally at µ = 1 where the dynamics becomes diffusive. Thus, an almost
ballistic regime is revealed.

The behaviour just described is also found at temperatures below the glass transition
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Figure 3.58: Self part of the van Hove correlation function (B particles) for times t =
0.17, 0.45, 1.2, 3.4, 9.3, 25.4, 69.6, 190.8, 523.3, 1435.3 (as indicated in Fig. 3.55) at temperature T = 0.14 dur-
ing the transition from equilibrium to steady state with shear rate γ̇ = 0.003. The correlations in panels (a) and
(b) are measured in gradient direction for waiting times tw = 0 and tw = 421.9 respectively. The latter time
corresponds already to steady state conditions.

temperature. For that, eight quiescent systems at T = 0.1 were prepared by quenching the
equilibrium configurations at T = 0.14 using the DPD thermostat. The quenched systems
were then simulated for 2 · 105 steps at T = 0.1. Of course, it was not possible to equilibrate
the systems at this temperature. The final configurations, used as starting configurations for
the ‘switch-on’ simulations, thus represent a particular cooling history (i.e. a sudden temper-
ature quench and subsequent partial relaxation for 2 · 105 time steps). Hence, the obtained
results might be quantitatively different for another cooling history. The mean squared dis-
placements for the transition from equilibrium to steady state for two shear rates are shown
in Fig. 3.57. Again, gradient and vorticity direction are presented separately. At T = 0.14 the
same features as above the glass transition are found but more pronounced. This becomes
evident in the effective exponent µ, which is shown in the insets. In the time window of
super-diffusivity for tw = 0 the MSD grows almost like t3 in the gradient direction. Another
interesting feature is marked by an arrow in Fig. 3.57(b): There, the curve for tw = 122.0
crosses the steady state curve and approaches the asymptotic regime from above — a beha-
viour that is not visible in this clarity in the other cases. However, it is not surprising to find
that the effects are more pronounced at lower temperatures because the mismatch of time
scales, given by the quiescent relaxation time and the inverse of the shear rate, is larger.

As shown in the previous section, particles at the top and bottom layers (in gradient
direction) are the first to ‘feel’ the external shear field. Therefore, one might think that this is
reflected in the MSD (or other quantities) when computed for different layers in y-direction
separately. However, after having subdivided the simulation box into 5 layers in the xz-
plane for which the MSD was calculated, no difference at all arose. This can be rationalised
with the fast development of the shear velocity profile. Of course, the time scale on which
this profile is established depends on the system size. However, as discussed in Sec. 3.4.1
this time scale (i.e. the sound velocity) has to be much larger than the time scale set by the
shear rate in order to be realistic.

Completing the discussion about the diffusion dynamics, the self-part of the van Hove
correlation function Gs(r, t, tw) is now considered. Note that Gs(r, t, tw) does depend now
also on the waiting time tw, similar to the MSD (3.66). Results for waiting time tw = 0 and
tw = 421.9 (the latter one corresponds to steady state) at shear rate γ̇ = 0.003 are shown in
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Figure 3.59: Self part of the van Hove correlation function (B particles) plotted versus time t for the distances
r = 0.005, 0.016, 0.026, 0.036, 0.057, 0.089, 0.130, 0.193, 0.257, 0.354, 0.451, 0.612, 1.064, 1.742, where r increases from
top to bottom and is measured in y-direction only. Red lines in both panels show the same data for the transient
Gs(r, t, tw) with tw = 0 at T = 0.14 and γ̇ = 0.003. Gray curves are for comparison with equilibrium (a) and the
steady state (b) at the corresponding temperature and shear rate.

Fig. 3.58. Unfortunately, this representation disguises the effects seen in the MSD. It is visible
though in panel (a) that for short times particles do not move further than r ≈ 0.5, which is
also found in equilibrium, but which is different in steady state, where the distribution for
these times is about twice as broad. For long times, on the other hand, the curves at tw = 0
can hardly be distinguished from the steady state result. A better way of demonstrating the
peculiar super-diffusive dynamics with Gs(r, t, tw) is of course to plot it versus time t for
several distances r as done in previous sections. This is shown in Fig. 3.59. For comparison
the transient dynamics is presented together with the equilibrium results in panel (a) and
with steady state results in panel (b). Initially at all length scales Gs behaves as in equilib-
rium. At a time γ̇t ≈ 0.1, however, Gs displays an upturn for distances r & 0.2 which is
another manifestation of the super-diffusive increase of the MSD. If many particles quickly
move large distances, there are of course only few particles left which have travelled only
a short distance. Therefore, the envelope of Gs decreases much earlier than in equilibrium.
The envelope in the transient case coincides with the one found in steady state at a time
t ≈ 1/γ̇. Length scales below r . 0.2 are not affected by the startup of shear except for the
early decrease of their envelope.

Compressed exponential decay of density correlation functions

Having found a super-diffusive behaviour in the MSD for short waiting times, one can ex-
pect interesting effects to appear in the incoherent intermediate scattering function Fs(q, t, tw)
as well, which henceforth depends on the waiting time tw, too. Figure 3.60 shows the decay
of density fluctuations during the transition from equilibrium to steady state subject to shear
rates γ̇ = 6 · 10−4 and γ̇ = 3 · 10−3. The wave vectors considered are smaller (q = 2.3), equal
(q = 6.0), and larger (q = 12.3) than the position of the first peak of the static structure factor
and were taken, as before, only in the direction perpendicular to the flow. Initially the curves
for all waiting times follow their respective equilibrium curve (dotted lines) which corres-
ponds to the free motion of the ballistic regime. For small tw and especially at tw = 0 the
scattering function also displays a plateau which is, however, much shorter than in equilib-
rium, depending on γ̇. Suddenly, at a strain of γ̇t ≈ 0.1 these curves fall-off rather quickly.
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Figure 3.60: Incoherent intermediate scattering function Fs(q, t, tw) during transition from equilibrium to steady

state for B particles at temperature T = 0.14. Panels (a) and (b) show shear rates γ̇/10−5 = 60, 300 respectively.
The sets of equally coloured curves correspond to wave vectors q = 2.3, 6.0, 12.3 (from top to bottom). Each set
consists of curves for waiting times tw = 0, 28.1, 421.9. The dashed lines are the corresponding KWW fits. For
comparison, dotted lines are the equilibrium results.
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Figure 3.61: The product of the q-dependent relaxation time τα and q2 as function of q for waiting times tw =

0, 28.1, 421.9 (solid lines). The external shear rates (a) γ̇ = 3 · 10−3 and (b) γ̇ = 6 · 10−4 are switched on at time
tw = 0. For comparison the dashed-dotted and dashed lines mark the steady state and equilibrium results.

For larger waiting times the plateau shrinks and the fall-off becomes less drastic. Finally, for
waiting times of the order of the inverse shear rate steady state conditions are reached.

The α-relaxation times have been extracted, cf. (3.51), and plotted in the already previ-
ously used representation where ταq2 is plotted versus q, Fig. 3.61. For small wave vectors
q the product ταq2 has reached the steady state value already for waiting time tw = 0. Since
ταq2 corresponds to an inverse diffusion constant (which is a q = 0 quantity) and because
the same diffusion constants can be extracted from the MSD in steady state and for tw = 0,
this can be expected. For large q, on the other hand, ταq2 still depends on tw.

Figure 3.60 additionally contains fits of the Kohlrausch-function (3.8). Regardless of the
fact that it is not clear whether this functional form is applicable to the case of transient
dynamics at all, it will be used here to describe the second relaxation step in order to charac-
terise the phenomenology. In fact, especially for Fs(q, t, tw = 0) the Kohlrausch law does not
describe the data very well. Thus it is difficult to perform a proper quantitative analysis. For
the fits the pre-factor A, cf. Eq. (3.8), was fixed manually in order to achieve good agreement
between the fit and the long-time part of the correlation function. All data of the second
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Figure 3.63: Test of the Gaussian approximation. Gray curves represent the data of Fig. 3.60. Coloured dashed
lines are computed from the MSD of Fig. 3.55 by Eq. (3.49). Shear rates, waiting times and wave vectors are the
same as in Fig. 3.60.

relaxation step have been considered in the fits. The resulting wave vector, waiting time,
and shear rate dependent Kohlrausch exponent β is shown in Fig. 3.62. By varying slightly
the fit range and the pre-factor, the error of these data points can be estimated to be between
5% and 10%. It is apparent that β, which is less than unity for relaxation processes in equi-
librium, becomes distinctly larger now — an effect that is larger for increasing wave vector.
Therefore, if the second relaxation step is considered to be at all describable by a Kohlrausch
law, then it is not a stretched but rather a compressed exponential decay. With growing wait-
ing time this phenomenon becomes increasingly less pronounced until the steady state is
reached and β is of order 1 or smaller.

The compressed exponential decay for tw = 0 occurs at the same times as the super-
diffusive regime in the MSD. Thus one can expect that this behaviour is evidence of the
same physical process that underlies the super-diffusive MSD increase. In fact, within the
Gaussian approximation [HM06] the mean squared displacement and the incoherent inter-
mediate scattering function are connected by (3.49). This approximation is tested in Fig. 3.63
by comparing the directly calculated Fs with the result from the MSD and (3.49). Indeed, the
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Figure 3.64: Incoherent intermediate scattering function for B particles at temperature T = 0.10 (below the glass

transition temperature) during the startup of shear with shear rate (a) γ̇ = 0.003 and (b) γ̇ = 6 · 10−4. Waiting
times tw are (a) 0.0, 11.1, 1342.1, (b) 0.0, 122.0, 1342.1, where the largest waiting time is identical to the steady
state.

super-diffusive regime is related to the compressed exponential decay. Being an approxim-
ation it cannot be expected that (3.49) exactly describes the data. In the hydrodynamic limit
q → 0, however, it should become valid and the agreement for q = 2.3 is much better than
for larger values of q.

As for the MSD also Fs(q, t, tw) is shown for temperature T = 0.10 below the glass trans-
ition in Fig. 3.64. Qualitatively, the same steep fall-off is visible here as at T = 0.14. For the
latter one the KWW fit to the tw = 0 curves were not very satisfactory. At T = 0.1, however,
one can already see by visual inspection that for zero waiting time the decay is not a simple
(stretched or compressed) exponential anymore. Therefore, the Kohlrausch law cannot be
considered as a satisfactory description of the long-time decay of the correlation function.
The strong time dependence of the effective exponent µ of the MSD (which increases up to
µ = 3 at T = 0.1) corroborates this conclusion.

Influence of the microscopic dynamics

It was shown that the startup of shear leads to a super-diffusive regime in the MSD and
correspondingly to a compressed exponential decay of dynamic correlation functions for
small waiting times tw. These results were obtained by MD simulations that integrated the
DPD equations of motion (2.5). The coupling to the thermostat is given by the magnitude
of the friction constant ζ. All results shown so far were obtained with ζ = 12 which is
relatively small and the microscopic dynamics is closely Newtonian. However, particles
in colloid experiments are subject to stochastic dynamics due to Brownian motion of the
solvent. Therefore, it is important to clarify whether the results are transferable to systems
with stochastic dynamics.

Changing the type of microscopic dynamics is straightforward with the DPD thermostat:
If the friction constant is set to a large value, the stochastic terms in the equation of motion
dominate. Here ζ = 1200 was chosen which is a hundred times larger than in the other
simulations. In the case of over-damped dynamics the time step has to be adjusted. This is
necessary since the random force, defined in Eq. (2.8), will lead to large particle accelerations
for large ζ. During the ‘ballistic flight’ between two successive time steps, particles can thus
come very close to each other, which leads to an increase of potential energy. Therefore, for
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Figure 3.65: The mean squared displacement after switching on the shear rates γ̇ = 0.003 (panel (a)) and γ̇ =
0.0006 (panel (b)) with respect to the waiting times tw = 0, 421.9, 6328.1. The solid lines correspond to the
stochastic dynamics with friction constant ζ = 1200 while the dashed lines were obtained with Newtonian
dynamics ζ = 12 for waiting times as in Fig. 3.55. For the high-ζ case the dotted line shows the equilibrium
MSD. All results are calculated for B particles at temperature T = 0.14. The insets show the effective exponent
µ, Eq. (3.69).

the simulations with ζ = 1200 a ten times smaller time step δt = 0.00083 was used. All other
parameters were left unchanged. As the friction constant strongly influences the viscosity of
the system [Low99], it can be expected and was indeed found that the dynamics slows down
considerably. Therefore, it was not possible to perform equilibrium simulations that reach
the diffusive regime in the MSD, cf. Fig. 3.65. In order not to simulate for excessively long
times, equilibrium simulations were stopped at a time where the MSD has not yet left the
plateau because these simulations are only used for comparison with the results of the tran-
sient dynamics. They were not required for the production of starting configurations since
the previously prepared 30 configurations have been used. At the start of the simulation run
the desired shear rate γ̇, the friction constant ζ = 1200 and the time step δt = 0.00083 were
set and the rest of the simulation proceeded as before.

The mean squared displacement was extracted as before for different waiting times,
Fig. 3.65, and compared to the results obtained with Newtonian dynamics before. As expec-
ted (see above), the diffusive regime for the over-damped dynamics is reached more than a
decade later than before. While the dynamics is much slower, the height of the plateau re-
mains unchanged meaning that the localisation length, i.e. the size of cages, is not affected by
the dynamics. What is more, the super-diffusive increase of the MSD for short waiting times
tw is present here as well and is nicely visualised by the effective exponent µ that increases
to about µ ≈ 2. So qualitatively the transient dynamics is not affected by the underlying
microscopic details.

This can be seen as well when the incoherent intermediate scattering functions for both
cases are compared in Fig. 3.66. The short time dynamics changes and the α-relaxation time
increases. The compressed exponential decay, however, is present in the stochastic dynamics
as well, albeit at larger times. By rescaling the time axis such that the corresponding curves
for both types of microscopic dynamics coincide at the arbitrarily chosen value of Fs(q, t) =
0.2, Fig. 3.67, the curves lie on top of each other for the second relaxation step. Their shape,
i.e. their functional dependence, in the long time regime is therefore independent of the
particular type of microscopic dynamics — a fact that extends the analogous results for non-
sheared glass formers [GKB98] to the non-equilibrium case.
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Figure 3.66: The incoherent intermediate scattering function at temperature T = 0.14 for wave vectors q =
2.3, 6.0, 12.3 (from top to bottom) and same waiting times as in Fig. 3.65. Panel (a) shows the switch-on of shear
with shear rate γ̇ = 0.003 and panel (b) with γ̇ = 0.0006. Solid and dashed lines show the result for stochastic
(ζ = 1200) and Newtonian (ζ = 12) dynamics, respectively. The dotted line is calculated in equilibrium for the
high-ζ case.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

t-tw

0.0

0.2

0.4

0.6

0.8

1.0

F
s (

q,
 t,

 t w
=

 0
)

(a) γ
.

= 3×10
-3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

t

0.0

0.2

0.4

0.6

0.8

1.0

F
s (

q,
 t,

 t w
=

 0
)

(b) γ
.

= 6×10
-4

Figure 3.67: The incoherent intermediate scattering functions from Fig. 3.66 for waiting time tw = 0. For better
comparison the time for each curve for ζ = 1200 and ζ = 12 are rescaled such that they coincide at Fs = 0.2 at
t = 0.1 for q = 12, t = 1 for q = 6 and t = 10 for q = 2.4. As before panels (a) and (b) show shear rates γ̇ = 0.003
and γ̇ = 0.0006.
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3.5.4 Conclusions

Having characterised the Yukawa system in equilibrium and under steady shear in previous
sections, the present section provided the link between those two states by considering a
quiescent system in equilibrium that was subjected to a suddenly commencing shear flow. It
showed how stresses are built up in the system that are not present in equilibrium. The stress
build-up displays a distinct overshoot which separates the regimes of elastic and plastic
deformation. In the latter regime the steady state value of shear stress is acquired after a
strain of γ ≈ 1. This was found to be unrelated to the build-up of the flow velocity profile
〈vx(y)〉, which develops much faster than the shear stress.

Using the projection Im g22(r) of the pair correlation function, the structural changes oc-
curring on the same time scale as the stress build-up could be made visible. As Im g22 can be
related to the shear stress (3.67), its initially growing structure followed by a slight decrease
to the steady state pattern resembles the overshooting behaviour of the shear stress. Inter-
estingly, the peaks at different distances r grow proportionally to each other, indicating that
the structural degrees of freedom are decoupled from the time domain. Moreover, no struc-
tural difference at the same value of shear stress before and after the overshoot is visible.
This was surprising because both states were expected to show some difference since the
system develops differently afterwards. As was seen from the velocity distribution and the
fast build-up of the flow profile, the motion of particles could be ruled out as reason for that.
As the knowledge of positions and velocities of particles identify a given state completely
the considered quantities must be regarded as not suitable for uncovering a difference, espe-
cially since only average quantities have been considered. The computation of the local shear
stress distribution finally revealed that a small but systematic difference between the fluc-
tuations around the average stress distinguishes between states before and after the stress
overshoot. Although the difference in stress fluctuations is only about 10%, it will have large
effects when the switch-off of the shear field is considered in the next section, where this
topic is picked up again.

With the super-diffusive regime, the transient MSD displays an intriguing phenomenon,
which is more pronounced in gradient direction than in vorticity direction. It is also very
prominent in the displacement distribution as function of time, namely the van Hove cor-
relation function. On the same time scale where super-diffusivity occurs a quickly decaying
second relaxation step of the incoherent intermediate scattering function is found. Although
this decay is not accurately described by a KWW law as frequently found in equilibrium,
fitting such a function yields exponents β > 1, which was termed compressed exponen-
tial decay. It was demonstrated that super-diffusivity and the corresponding decay of the
correlation function are features of sheared glassy dynamics and are not specific to the un-
derlying microscopic dynamics. In the long time regime their behaviour under Newtonian
and stochastic dynamics is, albeit different in speed, qualitatively similar. Therefore, one can
hope to see those features in colloid experiments. In fact, the onset of super-diffusivity in
the mean squared displacement was seen in confocal microscopy experiments with a col-
loidal suspension [ZHL+08]. In the same work it was demonstrated that also the mode-
coupling approach, as outlined in Sec. 3.1.2, is fruitful since the stress overshoot and the
super-diffusive behaviour are reproduced (albeit quantitatively underestimated).

From the findings of this section a consistent picture emerges: The time window where
the super-diffusive regime is observed corresponds to the time of the stress overshoot. At
the same time the local stress fluctuations increase quickly. This means that once the system
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has started to flow, i.e. has left the elastic regime, particles have rearranged such that the
local structure has changed. At this time the particle cages are destroyed, which leads to a
strong decrease of the correlation function Fs(q, t) (reflected in the MSD as super-diffusion).
Hence, in colloid experiments one can for example measure the time of the stress overshoot
indirectly by determining when the deviation from the equilibrium MSD occurs. Further-
more, this behaviour justifies the approach within MCT, to use a generalised Stokes-Einstein
relation to directly relate the transient mean squared displacement to the time evolution of
the shear stress.

The following section will now consider the opposite case, where the shear field is in-
stantaneously switched off.



84 Chapter 3. A glassforming binary fluid mixture under shear

3.6 From steady state to equilibrium: Switching off the shear field

The previous section considered the response of a glassy liquid to a sudden ‘switch-on’ of an
external shear field. The properties of the transient states have been characterised in order
to learn more about the emerging phenomena, to provide a testing ground for new devel-
opments in mode-coupling theory and to stimulate experiments that can address similar
questions. The opposite case where the instantaneous ‘switch-off’ of the shear field is con-
sidered appears equally fruitful and will be the topic of the present section. Here, not only
the transition from a steady state to equilibrium is investigated but also the relaxation of
states that are not stationary (e.g. which are still in the elastic regime of stress increase). For
this case one expects the stress tensor to relax. This decay will be shown above and below
the glass transition temperature. In view of the different local stress distributions that were
identified in the regimes of elastic and plastic deformation, it is also interesting to study the
relaxation of the average stress for different initial strains. Having discussed these rheolo-
gical properties and their connection to structural changes, the transient dynamics will be
analysed. At first though, some simulation details will be explained.

3.6.1 Simulation details

The simulations discussed in the present chapter were started either with steady state con-
figurations or configurations taken at a given strain during the transition from equilibrium
to steady state. This way, different transition scenarios to equilibrium could be studied. Be-
fore an actual simulation was started, the shear rate was switched off. Although there is no
external drive anymore, it is important for the application of the periodic boundary condi-
tions to use the same strain γ (i.e. the same displacement of image boxes) that corresponds
to the start configuration. This means, particles that leave the top of the simulation box in
gradient direction will not only re-enter from the bottom, but they will also be subject to a
displacement in shear direction according to the (now constant) strain. In contrast to the
Lees-Edwards boundary conditions of course, no additional velocity is added in this case
(cf. Sec. 2.1.2). A rescaling of velocities as done in Sec. 3.5.1 in order to keep the total mo-
mentum at zero is not necessary here.

As in the switch-on case (Sec. 3.5.1), the system properties are not time translational in-
variant. So averages were taken only over independent simulation runs at the same times.
The stress tensor element σxy, the velocity profile and the expansion coefficient of the pair
correlation function Im g22(r) were thus calculated using 250 independent runs as before.
For dynamic quantities, which depend on time t and the waiting time tw, only 30 simula-
tions were used, which yield satisfactory statistics. To calculate the latter quantities with
250 runs, would require not only large amounts of disk space but also much more cpu time
since the relaxation time is very large. Now the time origin t = 0 marks the moment of the
switch-off of the shear field. The waiting time tw is the reference time with respect to which
MSD, Fs(q, t, tw), etc. are calculated. This is illustrated in Fig. 3.68.

3.6.2 Structural rearrangements and the decay of shear stress

The deceleration of shear flow In Sec. 3.5.2 it was shown that the velocity profile due
to flow develops very quickly — much faster than any other of the measured quantities.
That this is also true for the switch-off case is shown in Fig. 3.69. In fact, the same but
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Figure 3.68: Time axis for the illustration of waiting times for ‘switch-off’ simulations. The simulation is started
with a configuration under stationary shear (SS). At time t = 0 the external shear field with shear rate γ̇ 6= 0
is switched off. After waiting sufficiently long the system has reached equilibrium (EQ). Two-time correlation
functions can now refer to different reference times, called waiting time tw.
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Figure 3.69: The flow velocity profile for different times t after the external shear field is switched off from a
steady state with shear rate γ̇ = 0.003 at temperature T = 0.14.

reverse behaviour is found: Starting from steady state and having switched off the shear
field at t = 0, only the outermost layers with y . 2 and y & 11 deviate from the linear
steady state profile at t = 0.6. Particles closer to the box centre cannot yet experience the
slowing down of the flow due to the finite speed of sound. At t = 2.3 for a short time
the flow is even slightly reverse to the original flow. This is part of quickly damped out
oscillations around the final 〈vx(y)〉 = 0-curve that is reached at about t ≈ 8. Again it
shall be stressed that although the time scale on which the velocity profile evolves depends
on system size, parameters (i.e. shear rate and speed of sound in the system) should be
such that a perturbation propagates much faster through the system than 1/γ̇ in order to be
realistic (cf. Sec.3.4.1).

With regard to the time scale and the observed characteristics there is no difference
between the commencement and the termination of the shear.

Decay of shear stress above the glass transition When the shear field is switched off, one
can expect the shear stress to decay to zero again (at least above the glass transition), because
this is the normal state in equilibrium. Starting from a steady state configuration with shear
rate γ̇ the time dependence of the average shear stress 〈σxy(t)〉 as calculated by Eq. (3.56)
is shown in Fig. 3.70 for several shear rates. Of course, at t = 0 the calculated stress cor-
responds to the one found in steady state. The height of this initial plateau increases upon
increasing shear rate — a fact already seen in the discussions of the steady state properties.
For t > 0 it decays monotonically to zero. While Fig. 3.70(a) shows the absolute stress values,
panel (b) displays the same data where 〈σxy(t)〉 on the ordinate is rescaled by 〈σxy(0)〉 and
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Figure 3.70: (a) Time dependence of the shear stress 〈σxy〉 for the indicated initial shear rates γ̇ as calculated
from (3.56) at temperature T = 0.14. At time t = 0 the external shear field was switched off. Additionally, for
the case of γ̇ = 0.003 the shear stress was computed by (3.67) from Im g22(r, t) (open circles). (b) Same data as
(a) but with γ̇t on the abscissa and a rescaled ordinate. The dashed line is a KWW fit with stretching exponent
β = 0.7 to the curve corresponding to the initial shear rate γ̇ = 3 · 10−4.

the abscissa shows γ̇t g. In this representation it can be seen that the stress has completely
decayed to zero at γ̇t ≈ 1, i.e. it decays on a time scale of 1/γ̇. It is moreover visible that
within the statistical precision the shape of the decay is the same for all shear rates. It is re-
miniscent of a stretched exponential decay according to Eq. (3.8) with an exponent β = 0.7,
which is shown as dashed line in Fig. 3.70(b).

Figure 3.70 includes a rather low initial shear rate γ̇ = 9 · 10−6, which was simulated
in order to check whether there is a qualitative difference in the decay close to the linear
response regime. For that, 30 independent configurations were prepared by simulating each
one for 31 million time steps to be confident the steady state was reached (which can be
tested by checking the time translational invariance of, for example, Fs(q, t)). The actual
production runs, shown in the figure, were simulated for another 20 million time steps. The
large amount of computing time that was invested for the simulation of this shear rate did
not yield a behaviour that is markedly different from the one at higher shear rates. Although
it appears from Fig. 3.70(b) that stresses of lower initial shear rates decay slightly faster, this
cannot be quantified properly since the statistical fluctuations are large.

As presented in Sec. 3.5.2, the shear stress 〈σxy〉 can be related to the structural quant-
ity Im g22(r), see Eq. (3.67). If measured at different times after the switch-off of the shear
field, the amplitude of its oscillations decreases homogeneously and vanishes with the shear
stress, Fig. 3.71. From this fact one can already presume that the comparison of Im g22(r)
during the relaxation with Im g22(r) at the same value of 〈σxy〉 during the build-up of stress
in the switch-on case, does not display structural differences. Indeed, as Fig. 3.72 shows,
no such differences can be found in Im g22(r) and the structural anisotropies vanish homo-
geneously on all length scales. Together with the structure-shear stress relation that was
discussed for the switch-on case, one can conclude that to each value of the shear stress a
certain average structure is assigned, which does not discriminate between different flow
histories.

Having shown the stress decay by switching off the shear field in a steady state, one

gNote that although γ̇t usually corresponds to the strain γ, the strain in the switch-off simulations is constant
because the shear rate is zero. Therefore, here γ̇t should not be considered as strain but rather as a rescaling of
the time axis with the initial shear rate γ̇. See also Sec. 3.6.1.
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2〉 during the transition from steady state to equilibrium. The dotted lines indicate the fluctuations in
steady state and equilibrium. For extrapolation to longer times the dashed line serves as guide for the eye. In
both panels the temperature was T = 0.14 and the (initial) shear rate γ̇ = 0.003.

can also study a switch-off at an earlier time, meaning somewhen during the build-up of
stress when the steady state is not yet reached. Figure 3.73 shows the stress decay of con-
figurations that were taken at several times during the transition from equilibrium to steady
state. Interestingly, the time needed for the stress decay is about 3 orders of magnitude larger
when the shear field is switched off early in the elastic regime than in steady state. This time
reduces when the stress overshoot is approached (although the value of 〈σxy〉 is maximal)
and subsequently reduces further until the steady state behaviour is adopted. At first sight,
this effect is especially surprising when the decays of two switch-off times are compared that
correspond to the same shear stress but lie before and after the stress overshoot, Fig. 3.74. Al-
though the average structure is the same, the time-development of the stress is very different.
This issue has been discussed already in Sec. 3.5.2. There, a different velocity distribution of
two states of similar shear stress was ruled out as reason for this markedly different beha-
viour. This was also verified for the switch-off case, where at the beginning of the switch-off
simulation all velocities were drawn randomly from a Maxwell-Boltzmann distribution cor-
responding to T = 0.14. The time development of the shear stress was then compared to the
case, where velocities have not been altered and is shown in Fig. 3.74. Within the statistical
accuracy it is apparent that the velocities do not have an influence on the shear stress. As in
Sec. 3.5.2 it must be concluded, that the difference of the decay times is solely determined by
the structure, though the average structure is the same.

In Sec. 3.5.2 the distribution of the local stresses, Eq. (3.68), of each individual particle was
investigated. It turned out that states with the same shear stress differ slightly in the mag-
nitude of the local stress fluctuations, Fig. 3.54. The different stress fluctuations imply that
also the local structure is distributed differently around the average. The stress fluctuations
thus distinguish states of equal shear stress and lead to a very different stress relaxation.
Here, the local stress distributions after switching off the shear rate in a steady state shall be
compared to a corresponding state of equal shear stress during the startup of flow (similar
to Fig. 3.72). This is done in Fig. 3.75(a). It is visible that the distribution for the switch-off
case is slightly broader than during switch-on. As seen in Fig. 3.54(b), the width of the distri-
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Figure 3.76: Stress decay from initial shear rates γ̇ = 3 · 10−3 (a) and γ̇ = 6 · 10−4 (b) at temperatures below the
glass transition.

bution for the latter case is initially as small as in equilibrium and shows a sudden upward
jump only in a small time window around the stress peak. The development of the width
in the switch-off simulation is shown in Fig. 3.75(b). There, it becomes apparent that the
local stress fluctuations 〈(∆σ

xy
loc)

2〉 do not show a jump but decrease almost logarithmically

towards the equilibrium value of 〈(∆σ
xy
loc)

2〉 ≈ 6.34 · 10−7 (though the fluctuations were not
calculated at large times to show the complete decrease to this value). By an extrapolation of
the data, however, one can see that the time scale, on which the decrease to the equilibrium
fluctuation occurs, is of the order of the structural relaxation time τα ≈ 2 · 105 (cf. Fig. 3.15).
This is remarkable, since the total stress 〈σxy〉 decays on the much faster time scale of order
1/γ̇ as seen in Fig. 3.70.

Stress decay below the glass transition All this was done above the glass transition tem-
perature but the question arises whether it might change for much lower temperatures. By
the use of a schematic model in the framework of mode-coupling theory, Brader and Fuchs
[BF08] predicted that below Tc the initial plateau at short times as well as the long time plat-
eau increases with increasing shear rate and decreasing temperature. This shall be tested
now.

Under shear, stationary states can be obtained also for temperatures below the glass
transition, where the system cannot be equilibrated anymore. Therefore, four systems with
T = 0.05, T = 0.10, γ̇/10−4 = 6 and γ̇/10−4 = 30 were prepared. This was done by quench-
ing the system under constant shear to the desired temperature. These quenched systems
were sheared for 2 million time steps. In a subsequent simulation run, the shear rate was set
to zero and the stress decay monitored, Fig. 3.76.

From Figure 3.76 it can be recognised that at temperatures far below Tc there seems to
be no stress decay to zero anymore. In contrast to temperatures in the undercooled regime,
the stress falls down to a plateau with 〈σxy(t → ∞)〉 > 0. The first prediction of [BF08] con-
cerning the short time plateau can be confirmed: Increasing shear rate and/or decreasing
temperature results in a higher shear stress. The prediction that the long time plateau be-
haves similarly albeit less pronounced cannot be answered clearly as the amount and quality
of the data at T = 0.05 and γ̇ = 6 · 10−4 is insufficient. It is clear at least that 〈σxy(t → ∞)〉 is
larger at lower T and that at T = 0.1 the final stress is larger at γ̇ = 0.003 than at γ̇ = 6 · 10−4.
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Figure 3.77: (a) Mean squared displacement for B particles at temperature T = 0.14. The external shear field

with shear rates γ̇/10−5 = 6, 60, 300 is switched on at time tw = 0. Solid curves show the MSD with respect
to waiting times tw = 0, 225, 6750, 202500. For comparison the dashed-dotted and dashed lines mark the steady
state and equilibrium results, respectively. Open circles mark the times used for Gs(r, t, tw) in Fig. 3.78(a). (b)
Time dependence of the ratio 〈∆r2

B(t, tw)〉/(t − tw) for the same data as in (a). For better visibility the curves in
both panels that correspond to the two largest shear rates were shifted upwards by multiplication of 10 and 100.

3.6.3 The transient dynamics

Having seen that upon switching off the external shear field the stress decays on a time scale
of order 1/γ̇ in the undercooled temperature regime, it shall be now investigated whether
dynamic quantities (MSD and Fs(q, t)) decay equally fast. Additionally it is of interest, how
these quantities slow down from their initially fast dynamics to the slow one that is found in
equilibrium. Of course, simulation for the switch-off of the shear field will have to minimally
last as long as the α-relaxation time of the quiescent system. Therefore, these simulations are
much more expensive than the switch-on of shear.

Diffusion dynamics

The ‘measurement’ of the mean squared displacements were started with the beginning of
the simulation at the same time where γ̇ was set to zero. As in the switch-on simulations
this was done for several waiting times tw. The MSD results for three different initial shear
rates are shown in Fig. 3.77(a). Panel (b) displays the same data divided by t − tw. In both
cases the equilibrium and steady state results are included for comparison. Note that as be-
fore the MSD was calculated by using only the coordinates perpendicular to shear direction
according to (3.64).

Clearly, in the early time regime all mean squared displacements lie on top of each other
because particles move ballistically on this time scale. For waiting time tw = 0 the MSD
follows the steady state curve up to t − tw ≈ 0.03/γ̇. Then it grows much slower on an
almost straight (low γ̇) or even slightly concave line (high γ̇). As the waiting time increases
the plateau develops and the curve shape becomes more reminiscent of the final equilibrium
shape. Yet unpublished, preliminary experimental results on colloids yield mean squared
displacements with similar behaviour [LE08].

By comparing with the transition from equilibrium to steady state, Fig. 3.55, it is obvi-
ous that the relevant time scale here is not the inverse shear rate anymore but the much
larger α-relaxation time scale, which was determined in Sec. 3.3. Two further points shall
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Figure 3.78: (a) Self part of the van Hove correlation function (B particles) for times t =
0.13, 0.45, 1.56, 5.38, 18.6, 64.4, 223, 770, 2664, 9215, 31874, 110247, 381324 (indicated in Fig. 3.77(a)) at temperat-
ure T = 0.14 during the transition from steady state to equilibrium. The initial shear rate γ̇ =
0.003 was switched off at time t = 0. (b) Same data as (a) but plotted versus distance r with r =
0.005, 0.016, 0.026, 0.036, 0.057, 0.089, 0.130, 0.193, 0.257, 0.354, 0.451, 0.612, 1.064, 1.742, increasing from top to bot-
tom. The orange dashed curves show Gs(r = 0.005, t, tw) at the indicated larger waiting times. Gray curves
show the equilibrium result that is obtained for even larger tw.

be noted: First, the MSD was additionally computed in y and z direction separately. There
was, however, no anisotropy visible in contrast to the data shown in Fig. 3.55(b). Secondly,
it was checked that the MSD is homogeneous throughout the simulation box, i.e. it does not
make a difference whether particles are close to the boundaries (in gradient direction) of the
simulation box, where the drive enters by the boundary conditions, or somewhere in the
middle. Considering the fast development of the flow velocity profile, Fig. 3.69, this was not
expected anyway.

Figure 3.78 shows the displacement distribution Gs(r, t, tw) for the highest initial shear
rate γ̇ = 0.003. Both representations (versus t and versus r) are presented. Especially in
panel (b) of this figure the transition to equilibrium can be followed: It is visible that on
all presented length scales Gs(r, t, tw) increases faster than the corresponding equilibrium
curve. Similar to the tw = 0 curve of the MSD the envelope of Gs(r, t, tw = 0) shows t-
dependence that seems to be no simple function of time. For larger waiting time tw > 0, a
plateau develops, indicating that particle cages become stronger with increasing time.

Incoherent intermediate scattering function

Now the behaviour of the incoherent intermediate scattering function under terminating
shear flow shall be discussed. In Fig. 3.79 the ‘predictions’ of the simulation are presented for
several shear rates. Like the mean squared displacement also Fs relaxes back to equilibrium
on a time scale of the quiescent α-relaxation time. For waiting time tw = 0 curves follow the
steady state result up to a time t ≈ 0.1/γ̇. It is most obvious that their second relaxation
step is not of the functional form of the Kohlrausch law (3.8). In fact, they show a distinct
tail (for q = 6.0 below Fs = 0.3) that becomes well pronounced for small wave vectors.
This might be the signature of several overlapping relaxation processes. For larger tw the
shoulder develops and the curve shape is more equilibrium-like, i.e. it resembles a stretched
exponential decay.

The determination of the α-relaxation time τα is done as before (3.51) and the product
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Figure 3.79: Time dependence of the incoherent intermediate scattering function Fs(q, t, tw) for B particles at
temperature T = 0.14 after switching off the external shear field at time t = 0. The initial shear rates were
(a) γ̇ = 3 · 10−3, (b) γ̇ = 6 · 10−4 and (c) γ̇ = 6 · 10−5. Each panel shows the decay for the wave vectors
q = 2.3, 6.0, 12.3. For clarity, sets of different wave vectors are shifted vertically by ±0.4. Every such set shows
Fs for the waiting times tw = 0, 225, 842, 6750, 33446, 202500 (solid lines). For comparison the dashed-dotted and
dashed lines mark the steady state and equilibrium results.
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Figure 3.80: The product of the q-dependent relaxation time τα and q2 as function of q for different waiting times

tw = 0, 225, 6750, 202500 (solid lines). The initial shear rates were (a) γ̇ = 3 · 10−3, (b) γ̇ = 6 · 10−4 and (c)
γ̇ = 6 · 10−5. For comparison the dashed-dotted and dashed lines mark the steady state and equilibrium results.
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ταq2 is shown in Fig. 3.80. The aforementioned long-time tail in the decay of the correlation
function at small tw, which is more pronounced at small values of q, is reflected in the fact
that at low q the relaxation time grows much faster than at large q. The interpretation of this
behaviour is that on large length scales (low q) the diffusive processes (remember ταq2 ∼
1/D) are already quite slow while on short length scales (large q) the accelerated dynamics
of the shear flow is still in effect. This makes sense since diffusion over large distances
needs a considerable amount of time during which the system relaxes (at least partly) back
to equilibrium where dynamics is slow. Moving short distances, on the other hand, does not
need much time and can therefore still ‘profit’ from the flow.

3.6.4 Conclusions

Now the central points of the analysis of the transition from equilibrium to steady state
shall be summarised. It was shown in the beginning that the flow velocity at different times
after the switch-off of the shear field quickly becomes flat as a function of gradient position,
i.e. the flow stops. This happens on the very short time scale of a few percent of 1/γ̇. The
shear stress decays as well after the switch-off, but contrary to the flow velocity this happens
on a time scale of 1/γ̇. Taking into account the results of the switch-off simulations where the
velocities have been chosen randomly, one can conclude that the decay of shear stress and
flow velocity are entirely independent processes. A third much longer time scale is given by
the structural relaxation time measured by the incoherent intermediate scattering function,
which reaches equilibrium on the time scale of the equilibrium α-relaxation time τα.

By analysing the decay of the shear stress it was found that for temperatures above the
glass transition the decay approximately follows the same functional form for the investig-
ated shear rates, which is reminiscent of a stretched exponential decay and seems to depend
on the initial shear rate γ̇ alone. Similar to the switch-on case, the stress decay is directly
related to the uniform decrease of structural anisotropies as measured by Im g22(r). Not only
the structural anisotropies given by Im g22(r) determine the shear stress by Eq. (3.67) but also
the reverse seems to be true: A given shear stress determines Im g22(r) on all length scales.
Thus, there is an one-to-one relationship between Im g22(r) and 〈σxy〉.

If shear is switched off already during the build-up of flow rather than in the steady
state, a different behaviour of the stress decay is found: A switch-off in the elastic regime
leads to a decay time of the order of τα (i.e. larger than 1/γ̇) even if the initial stress is
smaller than the steady state stress. This effect, which was especially surprising for states of
equal shear stress before and after the stress overshoot, where the average structure is the
same, was attributed to different fluctuations around the mean structure. These fluctuations
were characterised by the local stress distribution and showed only a small but systematic
difference between quiescent and sheared states (see also Sec. 3.5). In order to further track
down the microscopic differences between those states one should examine the differences
in local structure.

The study of the decay of the local stress fluctuations revealed that, in contrast to the
switch-on case, the fluctuations decrease almost logarithmically on a time scale comparable
to the structural relaxation time τα. This makes sense since it is this time scale τα that de-
termines when the structure is fully relaxed. Assisted by the larger fluctuations in the steady
state, the average shear stress, on the other hand, decays much faster. This means that also
the structural anisotropies (measured by Im g22(r)) decay on the time scale 1/γ̇, which is
different from what one might have naively expected.
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Another question that has to be addressed in more detail in the future is the decay of
shear stress at temperatures deep in the glass. The presented results suggest that the the-
oretical expectation [BF08], according to which stress does not decay to zero but to a finite,
shear rate dependent value, holds. There are certainly more and longer simulations with
different shear rates and temperatures required in order to make a conclusive statement on
that issue.

Finally, the behaviour of dynamic quantities was analysed. At short waiting times the
MSD and Fs show a behaviour, which does not seem to be described by a simple mathemat-
ical function: In the log-log plot the MSD shows a slightly concave increase while the second
relaxation step of Fs has a distinct tail — a behaviour that cannot be described by the typical
KWW law anymore. For larger waiting times, in contrast, the curves are already shaped as
in equilibrium, even if the dynamics is still faster. For the MSD first experiments support the
findings of the simulation [LE08].

The time that is necessary for the dynamic quantities to adopt their equilibrium beha-
viour is of the order of the α-relaxation time τα, which is the same time that is required for
the local stress fluctuations to decrease to their equilibrium value. In contrast to the switch-
on case where the sudden increase of stress fluctuations corresponds to the time regime of
super-diffusivity, the fluctuations decay slowly after switch-off, which fits to the fact that the
dynamic functions approach equilibrium rather smoothly.
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3.7 Summary and Outlook

It was the aim of the work presented in the current chapter to shed some light onto the
microscopic processes, which occur as response to a suddenly commencing or terminating
shear flow in undercooled, glass-forming liquids. This study was motivated by the fact that
the slow relaxation dynamics, which is found in these systems, is strongly accelerated even
by small shear rates, leading to effects like shear-thinning or shear melting phenomena. The
interest was focused on the change of stresses, structure and dynamic properties during the
transient states. These issues have been investigated by non-equilibrium Molecular Dynam-
ics simulations of a binary Yukawa mixture.

At first it was of course necessary to study the system properties in equilibrium. It was
shown, that the Yukawa mixture does indeed exhibit glassy dynamics at low temperatures:
Near the critical temperature of mode-coupling theory, which was found to be Tc ≈ 0.14,
the α-relaxation time increases strongly, while the structure stays liquid-like and shows only
minor changes. The temperature T = Tc was the lowest temperature where the system could
be equilibrated in reasonable computing time and was used for most of the simulations. The
investigated MCT predictions have been successfully verified. The long-time decay of the
incoherent intermediate scattering function, for example, which is often approximated by
a KWW law, can be described by a stretched exponential decay with a stretching exponent
β between 0.5 and 0.6 for not too small values of q. This changes under steady shear: Not
only are the transport coefficients markedly different (the relaxation time for the highest
shear rate was more than three orders of magnitude shorter than in equilibrium) but also
the stretching exponent increases to β ≈ 1 for the shear rates investigated. If 1/γ̇ ≤ τα,
then 1/γ̇ is the dominant time scale of the system and it becomes even possible to lower the
temperature far below Tc without significantly altering the transport coefficients.

By forcing the system to flow with a certain shear rate, the internal friction leads to non-
zero shear stresses. While at low γ̇ the stresses increase almost proportional with shear rate
(the linear response regime), at higher values of γ̇ the ‘flow curves’ become flatter, indicating
a decrease of viscosity. This well-known effect of shear-thinning is the rheological equivalent
of the strong decrease of the structural relaxation time τα. All these pronounced changes are
accompanied by rather small differences in structure as measured by the radial distribution
function g(r). However, if g(r) is projected onto the spherical harmonic Y22(θ, φ), one can
clearly identify structural anisotropies by the expansion coefficient Im g22(r), which vanishes
in equilibrium. This is not a surprise, since Im g22(r) can be directly related to the shear stress
〈σxy〉.

Altogether, the Yukawa system proved to be a suitable system for the study of glass-
forming liquids both in equilibrium and under shear. While not showing qualitatively new
features compared to similar works published in the literature, these simulations are ne-
cessary for the characterisation of the Yukawa system (whose properties as glass-forming
system have previously not been studied thoroughly) and set the stage for the simulations
of the transient dynamics.

During the commencing shear flow the shear stress increases almost linear in t (in fact a
power law with exponent 0.9 is seen). This indicates the regime of elastic response. Then, in
an intermediate time regime a maximum occurs, followed by a decrease towards the steady
state value for strains γ ≥ 1, i.e. t ≥ 1/γ̇. Since Im g22(r) is related to the shear stress,
the structural anisotropies measured by this quantity grow and fall according to the stress
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evolution. It is noteworthy, though, that the structure changes homogeneously on all length
scales, which indicates a decoupling of the structural degrees of freedom from the time do-
main. Noting, that the linear shear velocity profile builds up long before the maximum of
stress, a connection between the overshoot in 〈σxy〉 and the evolution of the velocity profile
can be ruled out.

It was shown, how the shear stress decays back to zero again if the shear field is switched
off at different times during this startup process. In all cases a monotonic decay is observed,
which is reminiscent of a stretched exponential decay. Remarkably, from states before the
stress overshoot the decay to zero happens on a much larger time scale than from those in
the steady state. While the time scale of the latter is of order 1/γ̇ the former is of the order
of the structural relaxation. At first glance, this was surprising since no difference between
states of similar shear stress before and after the stress overshoot has been found, neither in
the average structure Im g22(r) nor in the velocity distribution. As it finally turned out, the
distribution around the average structure is different in the elastic and plastic regimes. This
is quantified by a sudden 10% increase of the fluctuations of the local shear stress at a time
briefly before the stress overshoot. During the transition from steady state to equilibrium
the fluctuations sag to their original value but on the much longer time scale of structural
relaxation.

First results on the stress decay for very low temperatures below the glass transition have
been presented. In accordance with a theoretical prediction, results suggest that the stress
does not decay to zero anymore but to a value 〈σxy(t → ∞)〉 > 0. Since the simulation
time is too short and too few temperatures and shear rates have been examined, a more
thorough investigation of this issue should be done in the future in order to perform reliable
comparisons with MCT predictions.

By studying also dynamic quantities, the processes occurring during the transient states
can be further elucidated. During the transition from equilibrium to steady state the MSD
shows a pronounced super-diffusive regime for short waiting times tw at times t − tw that
correspond to the time of the stress overshoot. The same effect shows up in the decay of the
incoherent intermediate scattering function with a KWW exponent β, which is larger than
one. Moreover, the dynamic quantities become waiting time independent (i.e. the steady
state was reached) on a time scale of 1/γ̇. These findings stimulated experimental and the-
oretical work, where a super-diffusive regime has been identified as well and was closely
linked to the stress-overshoot.

For the switch-off of the shear field the dynamic quantities slowly approach their equi-
librium behaviour, which is adopted on a time scale that is entirely independent of the initial
shear rate and is given by the equilibrium α-relaxation time. Comparing with the behaviour
of the stress tensor one has to note that complete stress relaxation does not mean that the
system has already reached an equilibrium state.

By changing the parameters of the thermostat, the simulated microscopic dynamics was
changed from a Newtonian to a stochastic dynamics in order to demonstrate that the ob-
served features are universal to the transient dynamics of glass-forming liquids under shear.
Therefore, they should in principle be observable both in atomistic and colloidal systems.

Having gained some understanding of the processes during transient states after switch-
ing on or off the shear field instantaneously, it would be interesting to study slightly more
complex situations, e.g. time-dependent shear flow like oscillatory shear. Another issue that
could be studied is shearing of a system at a given shear stress rather than a given shear rate
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as in the present simulations. Considering the overshooting behaviour of the shear stress
during the presented switch-on simulations it would be very interesting to study the shear
deformation γ, dynamic quantities and the evolution of structural anisotropies as measured
in terms of Im g22(r). For constant stress simulations, however, Lees-Edwards boundary con-
ditions are inappropriate and one first has to develop, implement and test a suitable method.
A closely related problem is the pulling of an individual particle with constant force through
a (not sheared) glassy system. In both of the above cases a constant force is applied and it
is thus possible to study the relation between the macro-rheological response (at constant
shear stress) and the micro-rheological response (pulling of particle). These findings can be
compared to experimental and theoretical work.

All simulations considered so far have mimicked infinite systems using (modified) peri-
odic boundary conditions. By introducing explicit walls it would be possible to investigate
the influence of confinement. In this case shear flow is induced by the interaction of particles
with the moving wall particles. It would be interesting to study if and how the transient dy-
namics changes and whether shear localisation occurs due to the presence of walls.
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Chapter 4

A new colloid-polymer model in
equilibrium and under shear

4.1 Introduction to the Asakura-Oosawa model of colloid-polymer

mixtures

It was discussed before that colloidal suspensions are useful model systems for the study of
fluids and solids. Especially interesting are colloid-polymer (CP) mixtures that exhibit a de-
mixing transition into a colloid-rich liquid-like phase and a colloid-poor vapour-like phase.
Under special conditions even crystallisation of the colloids can be observed. Moreover, for
colloids of rod-like, i.e. unspherical, shape the phase diagram can be even richer. Not only
phase separation has been studied experimentally [GHR83, LPP+92, IOPP95] but also stat-
ics and dynamics of capillary wave-type interfacial fluctuations [ASL04], wetting layers on
the walls of containers [WBS03, Aar05, HAI+08] and also critical fluctuations [RAT07] were
subject to experimental scrutiny. Very interesting non-equilibrium studies are also possible,
such as shear-induced narrowing of interfacial widths [DAB+06] and studies of spinodal
decomposition [AL04].

In view of this wealth of experimental data on static and dynamic behaviour relating
to liquid-vapour type phase separation in colloid-polymer mixtures it is also desirable to
provide a detailed theoretical understanding of these phenomena in such systems. Interest-
ingly, many static phenomena (including the understanding of the phase diagram and bulk
critical behaviour [VH04a, VH04b, VHB05a], interfacial fluctuations [VHB05b] and interface
localisation transitions [DVHB07, BHVD08], capillary condensation/evaporation [BHVD08,
SFD03, SFD04, SFD06, VBH06, VDHB06] and wetting [Dv02, BESL02, FDSW05, DvRF06])
can all be understood by the simple Asakura-Oosawa (AO) [AO54, AO58, Vri76] model, at
least qualitatively. In this model colloids and polymers are described as spheres of radius
rA and rB, respectively. While there is a hard core interaction of the colloids both among
each other (AA) and also with the polymers (AB), the polymer-polymer interaction (BB) is
assumed to be strictly zero

VAA(r) =

{

∞ if r < 2rA

0 otherwise
, VAB(r) =

{

∞ if r < rA + rB

0 otherwise
,

VBB(r) = 0 .

(4.1)



102 Chapter 4. A new colloid-polymer model in equilibrium and under shear

Figure 4.1: Illustration of depletion interaction in the original AO model. (a) The minimum separation between
the centres of mass of colloid and polymer is rA + rB. Each colloid thus has a depletion zone around itself which
reduces the available volume for polymers. (b) Overlapping depletion zones of two or more colloids lead to an
increase of free volume to the polymers.

Thus, a suspension that would not contain any colloids but only polymers is treated just as
an ideal gas of point particles that are located at the centre of mass of the polymer coils.

At first sight one might conclude that this model cannot show demixing because of the
lack of attractive interactions in the potential (4.1), i.e. there is no way for the system to
minimise its energy. However, another mechanism that can drive demixing has its origin
in entropy, which is maximised in equilibrium. This ‘depletion interaction’ is illustrated in
Fig. 4.1. In terms of their respective centres of mass a polymer cannot approach a colloid
closer than rA + rB. Thus, to each colloid belongs a zone into which no polymer can enter —
the depletion zone. This way, the volume available to polymers is reduced by the volume
of the depletion zones of all colloids. If colloids are close together, their depletion zones can
overlap. In this case the entropy of polymers increases while the colloid entropy is reduced.
Depending on the system parameters the loss in colloid entropy can be smaller than the gain
of polymer entropy and the system will demix.

Although the AO model is a rather simple model, it shows an interesting, non-trivial
phase behaviour and describes the essential effects occurring in colloid-polymer mixtures.
Together with the development of new algorithms (using, e.g., ‘cluster moves’ [VH04a,
VH04b]) it became possible to determine the critical point of the model accurately and de-
termine its critical behaviour using Monte Carlo computer simulations.

In this chapter a very similar new model will be studied by Molecular Dynamics simu-
lations, since the original AO model is not suitable for MD (see beginning of next section).
The necessary modifications of the model will be presented in the next section together with
a comparison to the original AO model. Afterwards, the equilibrium static and dynamic
properties of this model are presented for different state points in the one-phase region. The
main focus lies on the dependence of these quantities on the distance to the critical point.
Finally it will be shown that it is suitable for shear simulations by presenting first results in
non-equilibrium. In this context also results with the Bussi-Donadio-Parrinello thermostat
(see Sec. 2.2.2) are discussed. The latter two topics are treated only very briefly as a deeper
analysis was out of the scope of this work. The present study shall only prepare the ground
for future work.
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4.2 The modified AO-model: Definition and phase diagram

As shown in the previous section the Asakura-Oosawa model with its relatively simple inter-
actions exhibits an interesting phase behaviour. For the study of a colloid-polymer mixture
under shear it is, however, not suitable for two reasons: Firstly, polymers do not interact
among themselves. This is unrealistic for a study of their dynamics. Secondly, in MD simu-
lations, which are necessary for the study of systems under shear, hard sphere interactions
are not well suited and it would be much easier if particles would interact by a differentiable
potential.

The first argument can be overcome by explicitely modelling the polymers as chain mo-
lecules either on the lattice [MF94, BLH02, BLHM01] or bead-spring-type chains in the con-
tinuum [CVPR06]. The disadvantage of such models is that the chain length of these mo-
lecules needs to be rather short in order to keep the numerical effort manageable. Clearly,
another shortcoming of this direct approach is that only particle sizes in the nanometre range
can be treated. However, one can use these simulations to justify an effective interaction
between two polymer coils which are thus described as soft particles which can ‘sit on top
of each other’, but not without energy cost. The usefulness of such an effective potential has
been amply demonstrated [BLH02, BLHM01, BL02, Lou02, RDLH04].

Therefore, this section presents a new model for colloid-polymer mixtures that is both
suitable for Monte Carlo and Molecular Dynamics simulations. The phase diagram, that was
obtained by grand-canonical MC (which is not part of this work), is presented and compared
to the original AO model.

4.2.1 Definition of the model

Considering the effective interaction between two polymer coils in dilute solution under
good solvent conditions by calculating the partition function of the two chains under the
constraint that the distance r between the centres of mass of the coils is fixed, a potential
of the type V(r) = V0 exp[−(r/Rg)2] is found, where the pre-factor V0 is of the order of
the thermal energy [BLH02, BLHM01, BL02, Lou02] and Rg is the radius of gyration of the
chains. Similarly the interaction potential between a polymer chain and a colloidal particle
is obtained.

However, considering solutions at higher polymer concentrations where many coils over-
lap, the situation gets slightly more involved and also the temperature of the polymer solu-
tion (in comparison with the Theta temperaturea) plays a role. Also, for computer simula-
tions it is more convenient to have a potential which is strictly zero if r exceeds some cutoff
rc. Therefore, none of the approximated effective potentials derived in the analytical work
[BLH02, BLHM01, BL02, Lou02] was used, but a potential was chosen that has qualitat-
ively similar properties, but is optimal for simulation purposes. For the colloid-colloid and
colloid-polymer potential the Weeks-Chandler-Andersen (WCA) potential [HM06], modi-
fied by a smoothing function S(r), is taken:

Vαβ(r) = 4ǫαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6

+
1

4

]

S(r) , (4.2)

aAt the Theta temperature T = Θ repulsion and attraction between the beads of the polymer chain com-
pensate each other and the polymer behaves as an ideal chain [Kho00].
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Figure 4.2: Distance dependence of the interaction potential Vαβ between colloids and polymers in the modified
AO model.

with

S(r) =
(r − rc

αβ)
4

h4 + (r − rc
αβ)

4
. (4.3)

Here ǫαβ controls the strength and σαβ the range of the (repulsive) interaction potential which

becomes zero at rc
αβ and stays identically zero for r ≥ rc

αβ with rc
αβ = 21/6σαβ. Following

previous work for the AO model [VH04a, VH04b, VHB05a, VHB05b, DVHB07, BHVD08,
VBH06, VDHB06], the size ratio of q = σBB/σAA = 0.8 between polymers and colloidal
particles is chosen, as well as

σAB = 0.5(σAA + σBB) = 0.9σAA . (4.4)

The parameter h of the smoothing function is set to h = 10−2σAA and ǫAA = ǫAB = 1. In
the following, units are chosen such that kBT = 1 and σAA = 1. Note that the smoothing
function is needed in Eq. (4.2) in order for Vαβ(r) to become twofold differentiable at rc

AA

and rc
AB without affecting the potential significantly for distances that are not very close

to the cutoffs. Without S(r) the force would not be differentiable at the cutoff distances
and hence a noticeable violation of energy conservation would be observed in the micro-
canonical Molecular Dynamics (MD) runs [AT90, Rap95].

For the soft polymer-polymer potential the following somewhat arbitrary but convenient
choices are made:

VBB(r) = 8ǫBB

[

1 − 10

(
r

rc
BB

)3

+ 15

(
r

rc
BB

)4

− 6

(
r

rc
BB

)5]

, (4.5)

where rc
BB = 21/6σBB(= 0.8rc

AA) and ǫBB = 0.0625. Note that the potential (4.5) is twofold
differentiable at r = rc

BB but also at r = 0 which is important because the polymers may
overlap. Of course, VBB(r > rc

BB) = 0. With the choice of ǫBB = 0.0625 the energy varies from
VBB(r = 0) = 1/2 kBT to zero. The interaction potentials are shown in Fig. 4.2. With these
choices of potentials the application of MD is straightforward and efficient.
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Figure 4.3: Coexistence curves as determined by MC simulations for the original AO model (from [VH04a,
VH04b]) and the present modified version [ZVH+08] in the plane of variables (a) ηA, ηB or (b) ηA, ηr

B (reservoir
representation). Open and full circles mark the locus of the original and the modified AO model, respectively.
Red triangles indicate state points in the one-phase region at which MD simulations were performed.

4.2.2 Phase diagram

Before the critical behaviour can be investigated, the phase diagram and the critical point,
characterised by colloid and polymer densities ρcrit

A and ρcrit
B , have to be determined. For MD

simulations this is a nontrivial matter for several reasons: A priori all the values of densities
along the coexistence curve in the (ρA, ρB)-plane are unknown. Thus, it would be necessary
to find the coexistence curve by running the simulations at many different state points in
the phase diagram. If such a simulation starts in the two-phase region, the initially homo-
geneous system will phase-separate by spinodal decomposition. The simulation of spinodal
decomposition is, however, a complicated and notoriously slow process [BF01, YVP+08].
Moreover, when approaching the critical point (from the one-phase region or along the co-
existence curve) simulations in the canonical ensemble suffer severely from ‘critical slowing-
down’ [HH77]: Close the critical point the relaxation time of the order parameter diverges.
In order to reach an equilibrium state very long simulation times are therefore required.

Thus, it is very desirable to study the phase behaviour by Monte Carlo simulations [LB05]
in the grand-canonical ensemble, which was found to be very useful for, e.g., the standard
AO model [VH04a, VH04b] or a symmetrical binary Lennard-Jones mixture [DFS+06]. The
soft potentials used for the present system add an additional difficulty to the Monte Carlo
algorithm, which is not straightforward already for the original AO model. There, a special
‘cluster move’ had to be implemented to make the simulation feasible [VH04a, VH04b]. If
applied to soft potentials the cluster move has to be slightly modified [ZVH+08].

From the grand-canonical MC (performed by P. Virnau [ZVH+08]) the phase diagram
was determined and is presented in different representations in Fig. 4.3. In this figure colloid
and polymer packing fractions,

ηA = ρAVA , ηB = ρBVB , (4.6)

are introduced (a standard practice in context of the AO model), where VA = πd3
AA/6 and

VB = πd3
BB/6 are the volumes taken by a colloid and polymer, respectively. In order to

define a diameter for the soft particles the Barker-Henderson effective diameter (3.41) is
used. With (4.2) the effective diameters for colloid-colloid and colloid-polymer interactions
are dAA = 1.01557σAA and dAB = 0.9dAA. If also dBB = 0.8dAA is used, densities can be
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transformed to packing fractions by the following formulae

ηA = 0.54844ρA , ηB = 0.28080ρB . (4.7)

Since both ηA and ηB are densities of extensive thermodynamic variables, it is useful to Le-
gendre transform to an intensive variable, namely the chemical potential of polymers µB,
which is alternatively expressed by the polymer fugacity zB = exp(µB/kBT). In this context
it is customary to use the ‘polymer reservoir packing fraction’ [LPP+92, VH04a, VH04b]

ηr
B =

zBπ

6
d3

BB = zB · 0.28080σ3 . (4.8)

This quantity, which in the original AO model with non-interacting polymers corresponds
to the volume fraction in the absence of colloids, plays the role of an inverse temperature.
Since in grand-canonical MC the chemical potentials, not the particle numbers, are fixed,
Fig. 4.3(b) is a convenient representation. For MD, however, the representation Fig. 4.3(a) is
preferred. The critical points can be determined very precisely with MC by an analysis of
moment ratios [Bin81, Bin97]. While this yields for the original AO model packing fractions
of

ηr
B,crit = 0.766 , ηA,crit = 0.134 , ηB,crit = 0.356 , (4.9)

the critical point is at

ηr
B,crit = 1.282 , ηA,crit = 0.150 , ηB,crit = 0.328 (4.10)

(for the present system with an accuracy of ±0.002). A parameter that defines the ‘distance’
to the critical point is defined by

ǫ = 1 − ηB

ηB,crit
. (4.11)

Although it cannot be expected for both model systems that their phase diagrams agree with
each other, it is interesting to note that in the representation of the experimentally accessible
variables ηA and ηB, Fig. 4.3(a), the differences are rather minor. There, the soft interactions
lead to a small shift of the critical point and a slight tilting of the coexistence curve only.
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4.3 MD simulations of the modified AO model: Results for equi-

librium

4.3.1 Details of the MD simulations

The Molecular Dynamics simulations are performed at several state points in the one-phase
region (cf. Fig. 4.3(a)) with the colloid packing fraction fixed to the critical value (4.10). The
simulation volume is L3 = 273 which translates to a colloid number of NA = 5373. The
values chosen for the number of polymers are summarised in Tab. 4.1 with the respective
volume fraction.

Before performing shear simulations of this model it is necessary to characterise it in
equilibrium. Therefore, simulation runs in the micro-canonical ensemble are carried out
with the simple velocity Verlet algorithm (cf. Sec. 2.1.1) without any thermostat to integrate
the equations of motion (2.1) for the potentials (4.2) and (4.5). The integration time step is

δt = 0.0005 in units of
√

σ2
AAmA/ǫAA, where all masses of polymers and colloids are set to

unity.

Start configurations are generated as follows: Using first a random configuration of
particles with a box linear dimension L = 9 and periodic boundary conditions (cf. Sec. 2.1.2),
equilibration at T = 1 is carried out for 20 million time steps, applying simple velocity res-
caling according to the Maxwell-Boltzmann distribution. Then the system is enlarged from
L = 9 to L = 27 by replicating it three times in all spatial directions. Now a periodic bound-
ary condition with L = 27 is used. Equilibration is continued for 2 million time steps, again
with a Maxwell-Boltzmann thermostat. During this equilibration, the original periodicity
with L = 9 is quickly lost. The production runs for static averages are done without apply-
ing any thermostat. First, 5 million time steps are performed during which (at eight different
times) statistically independent configurations are stored. These serve as starting configura-
tions for eight independent simulation runs, each with 5 million steps, for the computation
of static averages. During each run, 500 configurations are analysed in regular intervals.
Thus, it is averaged over 4000 statistically independent configurations for the computation
of the structure factor.

The force calculation is optimised by the use of linked cell lists, cf. Sec. 2.1.3. This is
effective for the system of size L = 27 because the largest cutoff is rc

AA = 21/6 ≈ 1.12 which
allows for 24 sub-boxes in each Cartesian direction.

4.3.2 Static structure and the determination of the order parameter

With colloids and polymers denoted by A and B particles, respectively, simulations are per-
formed for several state points and the partial structure factors SAA(q), SAB(q) and SBB(q)

Table 4.1: Polymer number Np used in the simulations with system volume L3 = 273. These numbers translate
into polymer packing fraction ηp and ‘distance’ to the critical point ǫ according to (4.7) and (4.11).

NB 4590 9045 13797 17847 22302
ηB 0.065 0.129 0.197 0.255 0.318

ǫ 0.800 0.606 0.400 0.223 0.030
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are computed according to (3.36). These results, presented in Fig. 4.4, show that the partial
structure factor for colloids (Fig. 4.4(a)) displays an oscillatory structure with a first peak
near q ≈ 6.5, which corresponds to 2π/∆r, where ∆r ≈ 1 is the typical nearest neighbour
distance between hard particles in a moderately dense liquid. The polymer-polymer struc-
ture factor (Fig. 4.4(c)) exhibits much less structure in the range of large q as expected, since
for the potential, Eq. (4.5), the polymers can still overlap rather easily. All these partial struc-
ture factors show a strong enhancement at small q, reflecting the critical scattering due to the
demixing tendency between colloids and polymers when the critical point is approached.
Note that the partial structure factors SAA(q) and SAB(q) also show oscillations at large q.

From the partial structure factors it is useful to construct combinations that single out
number-density fluctuations Snn(q) and concentration fluctuations Scc(q), defined via (3.37)
and (3.38). In addition, it is of interest to consider a structure factor relating to the coher-
ent interference of number density and concentration fluctuations (3.39). Figure 4.5 shows
that all three structure factors exhibit a strong increase at small q, reflecting the critical scat-
tering as the critical point is approached. Additionally, at large q they display oscillations,
which reflects the local packing of particles. The behaviour seen in Fig. 4.5 differs very much
from the behaviour found for the demixing of the symmetric binary Lennard-Jones mix-
ture [DHB03, DHB04, DFS+06, DHB+06]. In this model the interaction potentials between
particles of the same species are identical but different for the inter-particle interactions.
In this case Snn(q) was not sensitive to the critical fluctuations at all, which showed up in
Scc(q) only, due to the symmetry of the model. In the present model, in contrast, all structure
factors show critical enhancement for q → 0. These observations clearly show that neither
the total density in the system, nor the relative concentration of one species are a ‘good’ or-
der parameter of the phase separation that occurs (likewise, Fig. 4.4 shows that also neither
the colloid density alone nor the polymer density alone are ‘good’ order parameters since
both densities reflect the critical scaling in a similar way). Of course, from the phase dia-
gram (Fig. 4.3(a)) such a problem is expected since the shape of the coexistence curve shows
that the order parameter is a nontrivial linear combination of both particle numbers NA , NB.

In order to deal with this problem, one can try to construct a set of new structure factors,
where the critical divergence at low q is dominant in only one of them, which then describes
the order parameter fluctuations. Therefore, a symmetrical matrix is introduced which is
formed from the structure factors SAA(q), SAB(q) and SBB(q)

S(q) =

(
SAA(q) SAB(q)
SAB(q) SBB(q)

)

. (4.12)

By a principal axis transformation its diagonal form is obtained,

S(d)(q) =

(
S+(q) 0

0 S−(q)

)

(4.13)

with

S±(q) =
1

2
[SAA(q) + SBB(q)] ±

√

1

4
[SAA(q) − SBB(q)]2 + [SAB(q)]2 . (4.14)

Figure 4.6 shows a plot of S+(q) and S−(q) versus q. This plot shows that this procedure
indeed results in a decoupling between the order parameter fluctuations (which show a crit-
ical enhancement as q → 0), being measured by S+(q), and the structure factor S−(q), which
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Figure 4.4: Indicated partial structure factors for the
state points summarised in Tab. 4.1.
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Figure 4.5: Bhatia-Thornton structure factors for the
same state point as in Fig. 4.4.
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Figure 4.6: Wave vector dependence of the two eigenvalues S−(q) and S+(q) of the structure factor matrix (4.12)
for the polymer packing fractions of Tab. 4.1.

shows the characteristic oscillatory structure of a noncritical fluid. In the case of the sym-
metrical LJ mixture the transformation from the number density fluctuations of A and B
particles to the structure factors measuring the fluctuations of the total density of particles
and of their relative concentrations is unambiguous. In the case of the colloid-polymer mix-
ture it is none of these variables which plays the role of an order parameter, but a different
linear combination of both local densities of A and B particles, related to the eigenvector
corresponding to S+(q).

The eigenvalue approach can be given a plausible interpretation by constructing two

linear combinations of the operators ρA(q), ρB(q), defined via ρα(q) = ∑
Nα
i=1 exp(iq · rα), as

follows

ψ(q) = aρA(q) + bρB(q) , (4.15)

φ(q) = a′ρA(q) + b′ρB(q) , (4.16)

where the coefficients a, b are defined such that at the critical point the densities lie tangential
to the coexistence curves, while a′, b′ are chosen such that the densities vary in a perpendic-
ular direction to this slope. From the phase diagram Fig. 4.3(a) the following values are
found:

a = −0.24 b = 0.97 , (4.17)

a′ = −0.97 b′ = −0.24 . (4.18)

Constructing then structure factors

Sψψ(q) =
1

N
〈|ψ(q)|2〉 , Sφφ(q) =

1

N
〈|φ(q)|2〉 , (4.19)

it can be recognised from Fig. 4.7 that Sψψ(q) is very similar to S+(q) and Sφφ(q) very similar
to S−(q). The structure factors defined in this way are not strictly identical to S+(q), S−(q).
When the distance from the critical point changes, the relative weights b/a, b′/a′ of the
components of the ‘order parameter components’ ψ(q), φ(q) also change. Therefore, one
cannot expect this linear combination to describe the order parameter fluctuations exactly,
especially far away from the critical point.
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Figure 4.7: Wave vector dependence of the linear combinations Sψψ(q) and Sφφ(q) according to (4.19). Curves
correspond to the polymer volume fraction listed in Tab. 4.1.
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< 2 data points are fitted to the Ornstein-Zernike relation (4.20)

For q → 0 all those structure factors that show a critical increase can be described by the
Ornstein-Zernike relation which reads for the concentration structure factor

Scc(q) =
kBTχcc

1 + q2 ξ2
cc

, (4.20)

and similar for the other linear combinations. Here, χcc = Scc(0)/kBT is the susceptibility
and ξcc the correlation length. A plot 1/Scc(q) versus q2 indeed shows a linear increase for
small wave vectors. Equation (4.20) can then be used to extract susceptibility χcc and correl-
ation length ξcc as illustrated in Fig. 4.8. The susceptibilities relating to the various structure
factors defined above and the associated correlation ranges are shown in Fig. 4.9. It is satis-
fying to note that indeed the susceptibility related to S+(q) is the largest susceptibility that
can be found, while the estimates for the correlation lengths are all equal (within statistical
errors). Due to the coupling between variables, there is only a single correlation length in
the problem.

Figure 4.9 includes in the log-log plot two power laws according to the theoretical pre-
dictions for the critical exponents: One of the power laws has a slope that corresponds to
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Figure 4.9: Log-log plots of (a) kBTχ and (b) ξ versus ǫ = 1 − ηB/ηB,crit from MD simulations. Dashed and
dashed-dotted lines indicate the power laws with (a) the exponents kBTχ ∝ ǫ−γ and ǫ−γr and (b) ξ ∝ ǫ−ν or
ǫ−νr , where γ = 1.24 and ν = 0.63 are the standard Ising exponents [ZJ01, BL01] while γr = γ/(1 − α) and
νr = ν/(1 − α) are the Fisher renormalised exponents [Fis68] where α ≈ 0.11 is the critical exponent of the
specific heat [Fis68].

the standard Ising exponents γ = 1.24 (for the susceptibility) and ν = 0.63 (for the correla-
tion length), the other slope shows the exponents γr = γ/(1 − α) and νr = ν/(1 − α) with
α = 0.11, which results if ‘Fisher renormalisation’ applies [Fis68]. Fisher renormalisation
allows to obtain critical exponents from measurements (in an experiment or a simulation) of
exponents that do not correspond to the theoretically relevant scaling fields. In the present
simulations the variable that determines the distance ǫ to the critical point is NB. This is
related to the inverse temperature-like quantity µB by [Fis68]

NB = NB,crit + k1(µB − µB,crit)
1−α + k2(µB − µB,crit) + . . . , (4.21)

where α = 0.11 is the specific heat exponent and k1, k2 are constants. Hence, very close to
the critical point there is a relation between NB − NB,crit and µB − µB,crit, namely

ǫ = 1 − NB

NB,crit
∝

(

1 − µB

µB,crit

)1−α

. (4.22)

Therefore, the power laws [ZJ01, BL01]

χ ∝

(

1 − µB

µB,crit

)−γ

, ξ ∝

(

1 − µB

µB,crit

)−ν

(4.23)

translate into power laws with Fisher-renormalised [Fis68] exponents

χ ∝ ǫ−γ/(1−α) , ξ ∝ ǫ−ν/(1−α) . (4.24)

However, since the regular third term on the right hand side of Eq. (4.21) is comparable to the
(singular) second term that was only used in Eq. (4.22), except if one works extremely close
to µB,crit, it is difficult to ascertain whether or not the simulation data shows any signature of
Fisher renormalisation. High precision simulations for very much larger systems would be
required to clearly resolve this issue — a task that is beyond the scope of the present study.
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Figure 4.10: Time dependence of the incoherent intermediate scattering function of colloids (solid lines) and
polymers (dashed line) for polymer packing fractions as denoted in Tab. 4.1. The considered wave vectors are
(a) q = 0.93 and (b) q = 6.1, which corresponds to the first peak in the structure factor maximum.
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Figure 4.11: (a) Mean squared displacement of colloids and polymers at the same polymer packing fractions as

Tab. 4.1. (b) Derivatives g′α(t) = 1/6 d〈∆r2
α(t)〉/dt of the MSD that are shown in (a).

4.3.3 Near critical dynamics

From the MD runs one can obtain the incoherent intermediate scattering functions Fα
s (q, t)

defined in (3.47) as well as the mean squared displacements of the particles (3.43). For the
computation, 8 statistically independent runs and two time origins per run have been used,
so it was averaged over 16 time origins. Figure 4.10 shows typical data for both small and
large q. With increasing NB a uniform slowing down of the dynamics at small q is observed
for colloids. At large q (near the first peak of Sαβ(q)), in contrast, the decay of FA

s (q, t) occurs

in two parts: the first part (for FA
s (q, t) & 0.8) is basically independent of NB, while for

FA
s (q, t) . 0.5 the curves distinctly splay out. The analogous function for the polymers

FB
s (q, t), on the other hand, seems to be practically independent of NB, irrespective of q.

A similar asymmetry between the dynamics of colloids and polymers is also seen in the
mean square displacements, Fig. 4.11(a). Since the Einstein relation

〈∆r2
α(t)〉 = 6Dαt , t → ∞ , (4.25)

is expected to hold at large times, the derivative g′α(t) = 1/6 d〈∆r2
α(t)〉/dt is analysed,

Fig. 4.11(b). From the plateau of this quantity at large times, one can see that 〈∆r2
α(t)〉 ap-
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Figure 4.12: Self-diffusion constants of polymers and colloids at ηA = ηA,crit plotted versus ǫ = 1 − ηB/ηB,crit.

proaches its asymptotic behaviour for colloids monotonically while for polymers there is an
overshoot for intermediate times, 1 < t < 10. While being in the regime of this transient
maximum, the data depends rather distinctly on ηB. In the asymptotic regime (t → ∞) the
dependence is much weaker. For t ≪ 0.1 both colloids and polymers show a ballistic beha-
viour, 〈∆r2

α〉 ∝ t2, as expected [AT90, Rap95]. Of course, no such behaviour is expected for
real colloid-polymer mixtures: There the solvent molecules (no explicit solvent is included
in the simulations, of course!) damp out the ‘free flight’ motion present in this model. Ex-
perimentally one would rather find a diffusive motion controlled by the solvent viscosity.

Figure 4.12 shows that the resulting self-diffusion constants are of similar magnitude
for small ηB (very far from ηB,crit) but differ by almost an order of magnitude when ηB,crit

is approached. It is consistent with the behaviour of the incoherent intermediate scatter-
ing function that the diffusion constant of colloids DA depends more strongly on ǫ than
DB. Moreover, a pronounced dynamic asymmetry can be observed: While DA decreases
upon approaching the critical point (i.e. increasing the polymer packing fraction), the diffu-
sion constant of polymers DB increases slightly. The slowing down of the colloid dynamics
is expected since they interact via Eq. (4.2) with polymers: Due to the relatively steep, re-
pulsive potential the colloid motion is hindered with increasing polymer concentration. An
increasing number of polymers thus hinders the colloid motion. The increase of DB can be
explained by looking at the colloid-colloid structure factor SAA(q) in Fig. 4.4(a): Here, the
main peak shifts slightly to larger q-values as ηB increases, indicating a reduction of the av-
erage distance between nearest neighbours of colloids. When colloids move closer together
they leave more space for the polymers, which can interpenetrate each other, and thus might
lead to the observed small increase of DB. Despite these dynamic differences, both diffusion
constants depend only weakly on ǫ and do not show a significant critical slowing down as ǫ
goes to zero.

Interdiffusion Now the interdiffusion between colloids and polymers shall be considered.
It is related to collective mass transport that is driven by concentration gradients. While
the self-diffusion coefficients Dα characterise the diffusive motion of a tagged particle, the
interdiffusion constant DAB, which can be defined in mixtures only, describes how these
concentration gradients spread out. The interdiffusion constant can be calculated by a time
integral over the autocorrelation function (Green-Kubo relation) of the concentration current
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[HM86]

JAB = cB

NA

∑
i=1

v
(A)
i − cA

NB

∑
i=1

v
(B)
i . (4.26)

The Green-Kubo formula for DAB reads

DAB =
cA cB

kBTχcc
︸ ︷︷ ︸

TD factor

· N

3NANB

∞∫

0

〈JAB(t)JAB(0)〉dt

︸ ︷︷ ︸

Onsager coeff.

. (4.27)

The first factor, often referred to as ‘thermodynamic factor’, can be determined from the
concentration structure factor Scc(q → 0) as shown in the previous section. Here, only the
remaining part of (4.27) shall be of interest and defines the relevant Onsager coefficient Λ for
interdiffusion

Λ = lim
t→∞

Λ(t) with Λ(t) =
N

3NANB

t∫

0

〈JAB(t′)JAB(0)〉dt′ , (4.28)

of which the latter can be expressed in the form of a mean squared displacement

Λ(t) =
1

6t
〈∆r2

int(t)〉 (4.29)

with

〈∆r2
int(t)〉 =

(

1 +
NA

NB

)2 NANB

NA + NB

〈
[RA(t)− RA(0)]2

〉
. (4.30)

Here, RA(t) = N−1
A ∑ r

(A)
i (t) is the centre of mass displacement of all colloids (type A

particles). Note that the A-B symmetry of (4.26) is not violated in (4.30) because the centre
of mass motions of both species depend on each other since the total momentum of the sys-
tem is stricly zero at all times. The expression (4.30) can be used for the calculation of the
relevant Onsager coefficient in a computer simulation. However, due to periodic boundary
conditions a slight technical difficulty arises: The difference RA(t) − RA(0) has to be cal-
culated in an origin independent representation [AT90, HDG+07], which is done here by
integration:

RA(t)− RA(0) =

t∫

0

VA(t′)dt′ with VA(t) =
1

NA

NA

∑
i

v
(A)
i (t) . (4.31)

For that, the centre of mass velocity of colloids VA was calculated and saved every fifth time
step in each simulation run for later numerical integration. In the integration every 500th
time step served as new time origin over which was averaged afterwards.

The results for the mean squared displacement 〈∆r2
int(t)〉 and the Onsager coefficient

Λ(t) are shown in Fig. 4.13. Since the Onsager coefficient is a collective quantity like, for
example, the stress tensor, it is computationally demanding to determine Λ with proper
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Figure 4.13: Mean squared displacement (4.30) relating to interdiffusion (upper part) and its time derivative
Λ(t) (4.29) (lower part) for the indicated distances ǫ = 1 − ηB/ηB,crit from the critical point.

statistical precision. As it turns out, the accuracy of Λ(t) is not satisfactory. For a reasonable
determination of the limit (4.28) the simulation time has to be extended considerably (see
discussion below).

Theory [Kaw70a, Kaw70b, LSSO95, LSS96, Sen85] predicts that Λ contains two terms, a
background term Λb which is nonsingular and stays finite at the critical point and a critical
term ∆Λ which diverges at the critical point,

Λ = Λb + ∆Λ , ∆Λ ∝

(

1 − ηB

ηB,crit

)−νλ

(4.32)

with an exponent νλ ≈ 0.567 [SHH76, FB85, HFB05]. In fact, a recent MD study of the crit-
ical dynamics of the symmetric binary Lennard-Jones mixture [DFS+06, DHB+06] yielded
results compatible with this theoretical prediction, Eq. (4.32), allowing also an estimation of
the noncritical background term Λb at the critical point. Thus, it is also of great interest to
study the behaviour of Λ when the critical point of the present model system is approached,
Fig. 4.14. Here, also the simple prediction of the Darken equation [Dar49],

Λ = xADB + (1 − xA)DA , (4.33)

is included. While very far from criticality (1 − ηB/ηB,crit) ≥ 0.6 Eq. (4.33) indeed describes
the simulation results accurately, it underestimates Λ strongly for ηB closer to ηB,crit, and
clearly Eq. (4.33) violates Eq. (4.32). Thus, Darken’s equation fails near the critical point
of a fluid binary mixture as noted already for the binary Lennard-Jones mixture [BDF+07,
DKHB08].

As seen from Fig. 4.14 also in the present asymmetric mixture evidence is found for a sin-
gular behaviour of the Onsager coefficient for interdiffusion. However, the statistical accur-
acy of the data for Λ does not warrant an attempt to estimate the dynamic critical exponent
νλ (in particular since this is rather difficult here to estimate Λb). The statistical effort inves-
ted is just enough to allow an approach of criticality up to about ǫ = 1 − NB/NB,crit ≈ 0.03,
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ηB/ηB,crit (symbols with error bars). Full circles show the prediction of the Darken equation (4.33).

but not closer. In order to allow meaningful estimates of ξcc, χcc, and Λ, the time τrun of
a simulation run must be about an order of magnitude (at least!) longer than the time τ
needed for a concentration fluctuation to relax via interdiffusion. This time is

τ =
ξ2

cc

6DAB
=

kBTχccξ2
cc

6Λ
. (4.34)

From Fig. 4.9 and 4.14 one can determine for ǫ = 0.03 that kBTχcc ≈ 40, ξcc ≈ 6, and
Λ ≈ 1, which yields τ ≈ 240. Since τrun = 2500, the run at ǫ = 0.03 is just long enough,
but data closer to criticality cannot be used. The estimate (4.34) is compatible with a direct
examination of Λ(t), Fig. 4.13, where far away from criticality a plateau is only reached when
τ ≈ 100.

Another condition for the validity of the results is that the initial periodicity with Linit = 9
has fully relaxed. This equilibration time of the system is estimated in analogy to Eq. (4.34)
as τeq = (6DAB)−1L2

init ≈ 540 for ǫ = 0.03. The actual equilibration time of 103 MD time units
indeed exceeds this estimate by a factor of about two. So the data indeed should be valid
but it is hardly possible to approach criticality closer. Finally, since no attempt of a finite size
scaling analysis of the dynamical properties is made here (unlike [DFS+06, DHB+06]), it is
necessary that L ≫ 2ξ at the states of interest. Though this condition holds for ǫ = 0.03, it
would fail if the critical point is approached much closer. From this discussion it is clear that
a substantially larger computational effort would be required for a more detailed analysis of
the dynamic critical behaviour of this model.
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4.4 The colloid-polymer mixture under shear: Test of a new ther-

mostat

In future work the developed model shall be investigated further not only in equilibrium
but in non-equilibrium, namely shear flow, as well. It is, for example, of theoretical in-
terest how the critical behaviour under shear compares to the one of a quiescent system, for
which first results have been presented in the previous section. In this context some yet un-
proven theoretical predictions, e.g. the crossover from Ising to mean-field critical behaviour,
can be checked [OK79]. As discussed, shear simulations require the use of a thermostatting
procedure. Since DPD is not able to maintain the desired temperature at high shear rates
(cf. Fig. 3.26), which are necessary for the aforementioned investigations, a promising, re-
cently developed thermostat [BDP07] is implemented and its influence on the dynamics is
tested. It is also used for simulations of the colloid-polymer mixture under steady shear. The
results of this section are not meant to be exhaustive. But they demonstrate that the presen-
ted model can be used together with this thermostat to study this system under shear flow.
A thorough investigation will remain a task for future work.

4.4.1 The thermostat in equilibrium

At first the Bussi-Donadio-Parinello thermostat [BDP07] shall be investigated in a quiescent
system without shear. By that, the influence of the only adjustable parameter of the thermo-
stat, the time constant τ (cf. Sec. 2.2.2), on various quantities shall be examined. Specifically
it is of interest how the conserved quantity H̃, Eq. (2.22), depends on τ and the chosen integ-
ration time step. Moreover it is checked whether the thermostat has any influence on static
or dynamic quantities by considering the partial static structure factors Sαβ(q), Eq. (3.36),
and the mean squared displacement 〈∆r2

α(t)〉, Eq. (3.43).
A simulation of system size L = 27 and temperature T = 1.0 was set up with NA = 5373

colloids and NB = 17847 polymers by using an initial configuration from the simulations
described in the previous sections. This corresponds to packing fractions ηA = ηA,crit = 0.150
and ηB = 0.255. The simulation time step for integrating the equations of motion was δt =
0.0005 if not noted otherwise. It was simulated for 1 million time steps, where every 100th
time step temperature and H̃ were measured. For each simulation run 100 configurations
of particle positions were saved for the computation of the static structure factor. For the
computation of the mean squared displacement 4 time origins per simulation were defined
for each of which about 200 ‘running positions’ (cf. Sec. 3.3.1) were used.

Figure 4.15(a) shows a result of three simulation runs with time constants τ = 0.2, 2.0 and
20.0. It is obvious that, indeed, the energy-like quantity H̃ is conserved. The fluctuations of
magnitude of order 10−7 are only due to discretisation of time. This can be seen in Fig. 4.15(b)
where the fluctuations obey ∆H̃ ∝ δt2. Only the largest time step δt = 0.001 violates this
proportionality, which indicates that this time step is too large for a stable integration. From
Fig. 4.15(a) it is apparent that H̃ does not strongly depend on τ. Of course, the temperature
T = 1.0 is kept constant as shown in Fig. 4.18, although the fluctuations are about 3 times
larger with thermostat than in the purely micro-canonical simulation.

Although it is not expected that the thermostat influences structural properties, the par-
tial static structure factors Sαβ(q) have been calculated and are shown in Fig. 4.16(a) for the
same range of τ as before. Additionally, the result from a strictly micro-canonical run is in-
cluded and the differences between them is shown in the inset. As expected, no differences
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Figure 4.17: Shear velocity profile for shear rate γ̇ = 0.1 at thermostat time constants τ = 0.2, 2.0, 20.0. The
dashed line shows the expected flow profile for this shear rate.

are visible.
This might be different in dynamic quantities where thermostats can have an influence

(for example DPD can increase the viscoscity [Low99]). However, the mean squared dis-
placement 〈∆r2

α(t)〉, Fig. 4.16(b), does not show any difference between the micro-canonical
simulations and the one with different thermostat time constants τ = 0.2, 2.0, 20.0.

4.4.2 Steady shear flow

Now the model AO-mixture shall be subject to shear while using the Bussi-Donadio-Parri-
nello thermostat.

The same configurations as before served as initial configurations. The usual Lees-Ed-
wards boundary conditions are applied to create shear flow with a shear rate of γ̇ = 0.1
which is large compared to the relaxation time τrelax that can be extracted from Fig. 4.10
by, e.g., Eq. (3.51). The product of both obeys τrelaxγ̇ > 1. As in the Yukawa system, the
flow direction is x and the velocity gradient is the y direction. Again, it was simulated for
1 million time steps with step size δt = 0.0005. Because in the beginning of the simulation
the system is not yet in a steadily flowing state, only from the second half of the simulation
run 81 configurations with positions and velocities were used to compute the shear velocity
profile, which is shown in Fig. 4.17. For all thermostat time constants τ that were considered
the expected linear flow profile is clearly visible.

Even for this relatively high shear rate the thermostat keeps the temperature constant for
all considered values of τ as shown in Fig. 4.18. Therefore, the considered system and the
thermostat are suitable for, e.g., tests of the predictions of Onuki and Kawasaki [OK79].
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Figure 4.18: Temperatures for the simulations with and without shear, γ̇ = 0.1 and γ̇ = 0, for different thermo-
stat settings. The upper part shows the averaged temperatures 〈T〉 with error bars corresponding to the standard
deviation. The lower part shows 〈T〉 on an enlarged scale where the desired value T = 1 was subtracted for clar-
ity.
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4.5 Summary and Outlook

This chapter introduced a new model that closely resembles the Asakura-Oosawa model
for colloid-polymer mixtures. In contrast to the latter, there is a non-zero interaction poten-
tial between polymers and both, colloids and polymers, are considered as soft spheres rather
than hard spheres. This allows for the efficient application of Monte Carlo as well as Molecu-
lar Dynamics simulation methods. While the phase diagram can be efficiently determined
by MC simulations, this work was focused on results obtained by MD and allows for the
convenient calculation of static and dynamic quantities.

The usual partial static structure factors Sαβ(q) and also the linear combinations called
Bhatia-Thornton structure factors show critical enhancement at low q upon approaching the
critical point. It was the aim to find a proper linear combination of the Sαβ(q) that singles out
the order parameter of the demixing transition. Unlike other binary mixtures the concentra-
tion structure factor Scc(q) is not the proper order parameter. Therefore, a new combination
of structure factors was sought for by defining and diagonalising the matrix of partial struc-
ture factors. One of its eigenvalues shows critical enhancement for q → 0 while the other
describes the non-critical particle packing effects. The former thus characterises the order
parameter fluctuations. From the structure factors the susceptibilities and the correlation
lengths have been extracted and compared to the Ising critical behaviour, which is expected
for this mixture. It turned out that the results are roughly compatible. Further details, such
as whether Fisher renormalisation is relevant, could not be clarified since reliable data much
closer to the critical point is not yet available. It remains a task for the future to determine
the critical exponents more accurately.

The direct access to dynamic quantities is an advantage of MD simulations. Here, the
incoherent intermediate scattering function and the mean squared displacements have been
investigated. Both quantities for polymers are only very weakly dependent on the polymer
packing fraction. For colloids the decay of Fs(q, t) slows down and the diffusion constant
decreases with increasing polymer number. At the same time the diffusion constant of poly-
mers slightly increases. Thus, there is a pronounced dynamic asymmetry in this model.
The Onsager coefficient for interdiffusion was introduced and shows signs of a critical di-
vergence close to the critical point. However, an accurate determination of the Onsager
coefficient and the dynamic critical exponent requires more efficient algorithms and more
computing time.

Finally, a new thermostat [BDP07], which can be used in shear simulations, was imple-
mented and tested. The quantity H̃, which is the analogue of total energy in micro-canonical
runs, is well conserved. There is no obvious influence on structural or dynamic quantities.
Under shear the temperature is kept at the desired value even for relatively high shear rates,
where the mean temperature deviates less then 10−4 from the nominal temperature. The
linear shear profile is obtained via boundary driven flow, using the Lees-Edwards bound-
ary conditions; thereby, the linear flow profile is not enforced via the SLLOD equations of
motion. The advantage of DPD, which conserves momentum on a local scale and is hence
able to recover the correct hydrodynamic behaviour, is, unfortunately, not inherent to this
thermostat. A generalisation of this thermostatting scheme, which acts on relative particle
velocities and coordinates and conserves the momentum locally, is thus desirable.



Chapter 5

Final remarks

It was the aim of this work to study colloidal fluid mixtures in a non-equilibrium state caused
by an external shear field. In order to obtain a better understanding of the various effects
that these systems can exhibit, two very different systems have been studied: a suspension
of charged colloids and a colloid-polymer mixture. Both were studied near a ‘critical’ point
— the former close to the glass transition, the latter close to the critical point of phase separ-
ation.

The Yukawa mixture was used as a model system that shows glassy behaviour. By char-
acterising this system in equilibrium many of the typical features of those systems have been
identified. Thus, besides the typical models for glass-formers like the Kob-Andersen mix-
ture, this model is well suited to study the slow dynamics near the glass transition.

The work on glass-forming systems was motivated by recent evidence from experiments,
simulations and MCT that transport coefficients measured in equilibrium are distinctly dif-
ferent from those measured under steady shear since the shear rate γ̇ introduces a new time
scale that competes with the one of structural relaxation τα. It was demonstrated that under
shear also the present system displays an acceleration of the dynamics by about three orders
of magnitude at the highest considered shear rate and also restores ergodicity at temperat-
ures deep in the glassy regime.

Addressing the question of the differences between the quiescent and sheared states was
the main focus of this study. Therefore, the system’s response to a sudden change of the
external shear field was investigated. From these simulations the following picture of the
transient dynamics emerges: Directly after changing the shear rate from zero to some finite
value internal stresses are built up, due to the deformation of particle cages. The anisotrop-
ies caused by the deformations can be seen in Im g22(r), which is the imaginary part of a
projection of the pair correlation function onto the spherical harmonic Y22(θ, φ). The char-
acteristics of Im g22(r) become more pronounced upon increasing strain. Although particles
are still trapped by their neighbours, the shear velocity profile builds up quickly due to the
elastic deformation. For the initially very small strains the dynamic quantities like the MSD
or Fs(q, t) closely resemble the equilibrium behaviour. Once the strain is large enough the
cages are broken and the particles start to flow. This is where the regime of plastic deform-
ation is reached. It leads to a partial release of shear stress and is visible by the stress over-
shoot. Since cages are broken, correlations between particles as measured by Fs(q, t) quickly
vanish, which is expressed in the ‘compressed’ exponential decay of the second relaxation
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step and the super-diffusive increase of the MSD. With the shear stress also the marked struc-
ture of Im g22(r) decreases slightly. After a strain of γ ≈ 1 the steady state is reached. Then
stress and Im g22(r) remain constant and dynamic quantities show the accelerated behaviour
already seen in the steady state.

During this transition the average structure (measured by Im g22(r)) does not distinguish
between states of equal shear stress before and after the stress overshoot. However, as was
found by an analysis of the local stress distribution, the local structure indeed does change
during the transition: The magnitude of the fluctuations of the local shear stress increases at
the same time when cages are broken, i.e. the stress overshoot occurs. The larger fluctuations
around the average structure seem to be the reason for a surprising effect that occurs after the
shear is switched off: As expected, the average shear stress vanishes without the presence
of the external shear field. The way how its decay to zero proceeds depends, though, on
the actual strain at which the switch-off occurs. A switch-off from the steady state or any
other time after the stress overshoot leads to a stress decay on a time scale 1/γ̇. In the
cases considered here, this time scale is much shorter than the structural relaxation time τα,
which determines when dynamic quantities recover their equilibrium behaviour. Within
the regime of elastic deformation, on the other hand, a switch-off leads to a much slower
stress decay — now a value of zero is reached on a time scale of τα. These different decay
modes can be explained by the different local stress fluctuations: The larger fluctuations in
the plastic regime support the decay of stresses since particles are flowing and are thus more
mobile. Since the structural correlations decay in time τα, the stress relaxations in the elastic
regime (where the fluctuations around the average structure are smaller) are equally slow.

only slow structural rearrangements are possible leading to an equally slow stress relax-
ation.

While they are the reason for the fast decay of shear stress after the switch-off from the
steady state, the stress fluctuations themselves reduce to the equilibrium value on the slow
time scale of τα in an approximately logarithmic way. Since the local stress fluctuations are
equivalent to fluctuations around the average structure it is natural that they decay on the
same time scale τα as the structural relaxation.

This picture is compatible to the approach of Barrat and coworkers, who argue that the
stress evolution is a sum of single, localised plastic events [TTLB08]. However, by using
the distribution of local stresses as done in the present work, one does not have to consider
these single events. This might be the more direct way to relate these findings to theory,
which naturally considers distribution functions.

The colloid-polymer mixture. Based on the Asakura-Oosawa model a new model for col-
loid-polymer mixtures was introduced. It includes interactions between the polymers, which
make their dynamics under shear more realistic, and allows for the application of Molecular
Dynamics simulations as well as Monte Carlo methods. In order to prepare the grounds for
future work, it was shown that this model is suitable for shear simulations. Moreover, its
static and dynamic properties have been characterised in equilibrium. In particular it was
demonstrated that the order parameter fluctuations can be calculated by a diagonalisation
of a matrix containing the partial static structure factors. This way the critical exponents
can be obtained in equilibrium and under shear. Considering the dynamics of the mixture
it was found that there is a dynamic asymmetry between colloids and polymers. While the
self-diffusion constants of both species do not show a divergent behaviour near the critical
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point, the Onsager coefficient for inter-diffusion reveals signs of critical enhancement.
In the future the presented work on this model can be extended: Besides determining

the critical exponents and the Onsager coefficient more precisely and at states closer to the
critical point, the influence of shear can then be studied thoroughly. There, not only the
influence on the critical properties (cf. the predictions of Onuki and Kawasaki [OK79]) is
of interest, but one can also study the system within the two-phase region and investigate
thermal interfacial fluctuations (capillary waves) in equilibrium and under shear, which has
been studied experimentally in [ASL04, DAB+06]. It would also be interesting to consider
the system sheared by explicit walls, which replace the Lees-Edwards boundary conditions.
In this case confinement effects like capillary condensation or interface localisation (as stud-
ied in equilibrium by computer simulations in [VBH06, DVHB07]) can arise. These can now
be studied under shear flow as well.
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Appendix A

Relation between g(r) and the shear
stress 〈σxy〉

In this section the connection between the stress tensor 〈σxy〉 and the expansion coefficient
of the pair correlation function Im g22(r) (see chapter 3.5.2) is derived. Starting point is the
definition of the stress tensor (3.56). Since the kinetic term is small, it is not considered in the
following. The configurational part of the stress tensor is given by

σxy = − 1

2L3





NA
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i

NA
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Every double-indexed variable is short hand notation for a difference (e.g. xAB
ij = xA

i − xB
j or

FAB
ij,y = FAB

y (rAB
ij ) − FAB

y (rAB
ij )). First, this expression is rewritten by inserting δ-functions:

σxy = − 1
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With the definition of gαβ(r) from Eq. (3.30) and F
αβ
y = − y

r

∂Vαβ

∂r one obtains (after applying
thermal averages in (A.2))

〈σxy〉 =
1

2L6

[

N2
A

∫

dr
xy

r

∂VAA

∂r
gAA(r) + N2

B

∫

dr · · · + 2NANB

∫

dr · · ·
]

. (A.3)

The integrands resemble the sperical harmonic [AS72]

Im Y22 = Im

(√

15

32π
sin2 θ e2iφ

)

= 2

√

15

32π

xy

r2
. (A.4)

Inserting that and performing the angular integration by using (3.60) one arrives finally at

〈σxy〉 = −ρ2
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Appendix B

Contents of the attached CD-ROM

The source code of the simulation and analysis programmes can be found on the attached
CD-ROM. Furthermore, it includes the digital version of this thesis. Please consult the file
readme.txt for further details.
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