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Zusammenfassung

Das Hauptinteresse der A4-Kollaboration am Mainzer Mikrotron MAMI
gilt dem Beitrag der Strangequarks zu den elektromagnetischen Formfaktoren
des Nukleons. Diese werden durch Messung von Einzelspin-Asymmetrien im
Wirkungsquerschnitt der elastischen Streuung polarisierter Elektronen an
unpolarisierten Nukleonen bestimmt. Hierzu ist es notwendig, die Polarisa-
tion des Elektronstrahls präzise und nichtdestruktiv zu bestimmen. Deshalb
wurde das A4-Compton-Rückstreu-Polarimeter entworfen und gebaut, welch-
es eine absolute Messung der Polarisation parallel zum Paritäts-experiment
erlaubt.

Die hier vorgelegte Arbeit dokumentiert den Entwurf einer speziellen
Strahl-führung für das Compton-Rückstreu-Polarimeter, die als Schikane be-
zeichnet wird. Diese erlaubt es, einen Wechselwirkungsbereich zwischen La-
ser- und Elektronstrahl herzustellen. Die Eigenschaften dieser Strahlführung
werden vorgestellt. Zusätzlich wurde ein Steuerungssystem implementiert,
welches in kurzer Zeit und einfach bedienbar einen Überlapp zwischen Laser-
und Elektronstrahl herstellt und im Regelbetrieb verwendet werden kann.

Weiterhin wird in dieser Arbeit die Entwicklung eines Faserdetektors
vorgestellt, welcher die Compton-gestreuten Elektronen nachweist und den
statistischen Fehler in der Messung der Elektronpolarisation reduziert. Dieser
Faserdetektor wurde von Grund auf neu entworfen und im Jahre 2008 in
Koinzidenz mit dem Photon-Detektor betrieben. Die Meßdaten weisen eine
Untergrund-Unterdrückung von etwa 80% auf, während die Compton-Spekt-
ren nahezu unverändert bleiben. In der hier vorgelegten vorläufigen Analyse
konnte so der statistische Fehler in der Messung der Elektron-Polarisation um
40% gegenüber dem Betrieb ohne Faser-Detektor gesenkt werden. Dies stellt
einen signifikanten Fortschritt auf dem Gebiet der Polarisationsmessungen
dar.





Abstract

The main concern of the A4 parity violation experiment at the Mainzer
Microtron accelerator facility is to study the electric and magnetic contri-
butions of strange quarks to the charge and magnetism of the nucleons at
the low momentum transfer region. More precisely, the A4 collaboration in-
vestigates the strange quarks’ contribution to the electric and magnetic vec-
tor form factors of the nucleons. Thus, it is important that the A4 exper-
iment uses an adequate and precise non-destructive online monitoring tool
for the electron beam polarization when measuring single spin asymmetries
in elastic scattering of polarized electrons from unpolarized nucleons. As a
consequence, the A4 Compton backscattering polarimeter was designed and
installed such that we can take the absolute measurement of the electron
beam polarization without interruption to the parity violation experiment.

The present study shows the development of an electron beam line that
is called the chicane for the A4 Compton backscattering polarimeter. The
chicane is an electron beam transport line and provides an interaction region
where the electron beam and the laser beam overlap. After studying the
properties of beam line components carefully, we developed an electron beam
control system that makes a beam overlap between the electron beam and
the laser beam. Using the system, we can easily achieve the beam overlap
in a short time. The electron control system, of which the performance is
outstanding, is being used in production beam times.

And the study presents the development of a scintillating fiber electron
detector that reduces the statistical error in the electron polarization mea-
surement. We totally redesigned the scintillating fiber detector. The data
that were taken during a 2008 beam time shows a huge background suppres-
sion, approximately 80 percent, while leaving the Compton spectra almost
unchanged when a coincidence between the fiber detector and the photon
detector is used. Thus, the statistical error of the polarization measurement
is reduced by about 40 percent in the preliminary result. They are the sig-
nificant progress in measuring a degree of polarization of the electron beam.
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Chapter 1

Introduction

An electron is assumed to be a point-like particle and is classified as a lep-
ton within the Standard Model framework. We also assume a quark has no
structure. Electrons and quarks are believed to be truly elementary particles
and the fundamental constituents of matter in nature. An electron is a free
particle and is observable. Quarks, however, are not observable and can exist
in bound states. This phenomenon is called quark confinement. The strong
interaction by the exchange of a gluon explains the confinement.

A proton is observable, is a stable particle based on our knowledge, and
is described as the bound state of three quarks (two up and one down). In
the nonrelativistic approximation, this quark model is successful, especially,
in describing the magnetic moment of the proton. However, the simple model
does not take account of the dynamics of quarks and gluons. From quark dis-
tribution functions from neutrino experiments, we know that quark-antiquark
pairs and gluons contribute to the proton structure. Moreover, they make a
contribution to fundamental properties of the proton.

Nowadays, polarized leptons, especially electrons, are being used as a
tool in experiments that study the fundamental constituents of matter and
that understand their interactions that is known as electromagnetic and weak
interactions. The electromagnetic interaction is mediated by the photon. The
weak interaction has two mediators: (1) the intermediate charged bosons
for the charged-current weak interaction, and (2) the neutral boson for the
neutral-current weak interaction. Masses of these weak bosons are around
100 times larger than the proton mass.

The A4 experiment at the Mainzer Microtron accelerator facility (MAMI)
uses a polarized electron beam to investigate the structure of the nucleon by
measuring single spin asymmetries in elastic scattering of polarized electrons
from unpolarized nucleons. Using longitudinally polarized electrons with al-
ternating helicities, one asymmetry APV , which is called parity violating
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asymmetry, allows us to access the electromagnetic vector form factors of
the nucleon. These electromagnetic vector form factors are decomposed into
several form factors according to quark contributions. Thus, we can study
the electromagnetic contribution of strange quarks to the charge and mag-
netism of the nucleon at the low momentum transfer region. In addition, us-
ing transversely polarized electrons, another asymmetry A⊥ allows to access
the combination of the imaginary parts of three generalized form factors of
the proton arising from the exchange of two hard photons.

In order to determine both asymmetries, it is crucial to measure the degree
of polarization of the electron beam, so polarimeters are of great importance
in the A4 experiment. We used a Møller polarimeter of the A1 collaboration
at MAMI to measure the beam polarization. Two experimental programs for
APV [1, 2] and one program for A⊥ [3] were accomplished by using this Møller
polarimeter. Since the Møller polarimeter is located in the experimental hall
of the A1 collaboration, we cannot use it in order to monitor the polarization
of the electron beam in parallel with asymmetry measurements. The main
drawback of using the Møller polarimeter is that we must consider an addi-
tional error of the electron beam polarization when we use the polarization
done by the Møller polarimeter to determine the asymmetries. And it takes
roughly six hours to change the beam line to the A1 experimental hall, to
measure the electron beam polarization, and to change the beam line to the
A4 experimental halls in total. For this reason, in recent years, the A4 Comp-
ton backscattering polarimeter has been designed and has been installed as a
non-destructive online monitoring tool for the electron beam polarization, so
it is expected to make significant strides in reducing the error and in saving
time.

The Compton polarimeter uses Compton events between an electron and
a laser beam in order to determine the polarization of the electron beam if
the polarization of the laser beam is known. This thesis describes the de-
velopment of the Compton backscattering polarimeter chicane that contains
the interaction region of the Compton backscattering and serves as the beam
transport line for the A4 experiment. In addition, we study properties of
this chicane and, eventually, find an electron beam control system that is
cost-effective in time, easy to use, and reliable. Furthermore, we develop a
scintillating fiber electron detector so as to reduce the statistical error in the
polarization measurement.

The Compton polarimeter was designed for the parity violating asymme-
try program and for the measurement of the longitudinal polarization of the
electron beam. Thus, in chapter 2, we discuss the parity violation experiments
in general and the A4 experiment in detail. In chapter 3, we summarize the
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concept and implementation of the A4 Compton backscattering polarimeter.
In chapter 4, we present how the chicane of the A4 Compton backscattering
polarimeter works. And we study each component of the chicane and its ideal
behavior. In chapter 5, we extend the study on the chicane with considering
non-ideal properties of chicane components and develop an electron beam
control system. In chapter 6, we describe a new design concept of the scin-
tillating fiber detector, discuss a construction process of the detector, and
present its preliminary result when this redesigned fiber detector was first
used in the A4 Compton backscattering polarimeter.





Chapter 2

The Parity Violation
Experiment

Weak neutral currents were introduced to make the theory of the weak in-
teraction a renormalizable theory. In 1973, the existence of weak neutral cur-
rents was first confirmed at CERN in the Gargamelle bubble chamber [4].
Since the weak neutral currents violate parity conservation, we see the parity
violation in the interference between the electromagnetic scattering ampli-
tude and the weak one in electron-nucleon reactions. And the renormalizable
theory that is called the electroweak theory can predict this interference.
In this chapter, we review the first-generation parity violation experiments
that supported the electroweak theory and determined coupling coefficients
of electron-nucleon reactions concisely. Then we summarize strangeness con-
tributions to the proton and its theoretical relations with the parity violation.
Finally, we will discuss the second-generation parity violation experiments,
which are the A4 and other parity violation experiment programs, related to
the strangeness contribution to the charge and magnetism of the proton at
the low momentum transfer region, i.e. the strange vector form factors of the
proton.

2.1 First-Generation Parity Violation Exper-

iments

The parity violating (PV) effective Lagrangian, which describes the parity
violating part of the neutral weak current interactions between electrons and
nucleons, contains four coupling coefficients α̃, β̃, γ̃, and δ̃, and is given by

5
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[5, 6]

LPV = −GF√
2

{

ēγµγ5e

[

α̃

2

(

ūγµu − d̄γµd
)

+
γ̃

2

(

ūγµu + d̄γµd
)

]

+ ēγµe

[

β̃

2

(

ūγµγ5u − d̄γµγ5d
)

+
δ̃

2

(

ūγµγ5u + d̄γµγ5d
)

]}

,

(2.1)

where GF is the Fermi coupling constant, ēγµγ5e and ēγµe are referred to as
the leptonic axial vector and vector current respectively, and u and d refer
to up and down quarks. The hadronic currents are a combination of strong
isovector (ūu− d̄d)/2 and isoscalar (ūu+ d̄d)/2 currents. These phenomeno-
logical PV couplings α̃, β̃, γ̃, and δ̃ mean isovector vector, isovector axial
vector, isoscalar vector, and isoscalar axial vector respectively. They are ac-
cessible by experiments and can be predicted by theories.

And the four coupling coefficients are redefined in terms of their combi-
nations as follows:

ǫeuAV =
α̃ + γ̃

2
, ǫedAV =

−α̃ + γ̃

2
,

ǫeuVA =
β̃ + δ̃

2
, ǫedVA =

−β̃ + δ̃

2
.

(2.2)

Thus, the PV effective Lagrangian is rewritten [7, 8]

LPV = −GF√
2

{

ēγµγ5e
[

ǫeuAV ūγµu + ǫedAV d̄γµd
]

+ ēγµe
[

ǫeuVAūγµγ5u + ǫedVAd̄γµγ5d
]

}

,

(2.3)

in terms of the hadronic axial vector current q̄γµγ5q and the hadronic vector
current q̄γµq where q represents each quark flavor u and d.

Using the scattering of longitudinally polarized electrons from deuterons,
the SLAC ~eD experiment measured the parity violating effect [9, 10, 6].
In this case, these PV effects are manifested in the asymmetry A = (σR −
σL)/(σR + σL), where σR(σL) is the cross section for scattering of right-(left-
)handed electrons from deuterons. The SLAC experiment was more sensitive
to the hadronic vector current than to the hadronic axial vector current,
and determined linear combinations of the PV coupling constants. In the
Weinberg-Salam model, the four coupling constants are related to just one
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parameter sin2 θW , which is called the weak-mixing angle, as follows [6]:

α̃ = −(1 − 2 sin2 θW ),

β̃ = −(1 − 4 sin2 θW ),

γ̃ =
2

3
sin2 θW ,

δ̃ = 0

(2.4)

Thus, the SLAC experiment obtained the weak mixing angle

sin2 θW = 0.224 ± 0.020.

This result was in good agreement with the determinations of sin2 θW from
various neutrino experiments. As a result, the ~eD experiment independently
contributed the vital support for the electroweak theory in the late 1970s.

In 1989, the Mainz ~e 9Be experiment measured the parity violating asym-
metry for quasi-elastic scattering of polarized electrons from a 9Be target
in the backward direction [11]. The experiment was designed for a separate
determination of the four coupling constants and was more sensitive to the
hadronic axial vector current than to the hadronic vector current. In this
experiment, the PV asymmetry is directly related to a linear combination of
the four coupling constants. The weak mixing angle was obtained as

sin2 θW = 0.221 ± 0.015,

where the error is calculated by the quadratic sum1 of their original errors.
This result improved the previous error limits on the region of β̃ and δ̃, which
are related to the hadronic axial vector current, by a factor of three compared
with the SLAC experiment.

One year later, the Bates ~e 12C parity violation experiment measured the
parity violating asymmetry in elastic scattering of polarized electron from
12C nuclei [12]. In this experiment, the PV asymmetry depends on γ̃ that
is the coupling constant for an axial vector coupling to the electron and
an isoscalar vector coupling to the hadronic components. Then, the Bates
experiment obtained

γ̃ =
2

3
sin2 θW = 0.136 ± 0.033.

1From now on we show only the quadratic sum of errors for brevity.
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2.2 Strangeness in the Proton

According quantum chromodynamics (QCD), the nucleon consists of three
constituent quarks and is their bound state by the strong force, which is
mediated by gluons. With deep inelastic scattering and e+e− annihilation
data, QCD makes it possible to understand the internal structure of the
nucleon to some degree, i.e. existence of gluons and quark-antiquark (qq̄)
pairs, which are considered to be a “sea”, inside the nucleon [13, 14, 15]. The
quark-gluon sea contribution to the fundamental properties of the nucleon
such as its mass, spin, charge radius, and magnetic moment has been an
important concern, because it might provide us with vital clues about the
nucleon internal structure as well as non-perturbative treatment for QCD.

The CCFR collaboration used neutrino charm production by neutrino-
nucleon deep inelastic scattering to determine the size of the strange sea rel-
ative to the non-strange sea at the Fermilab Tevatron [16]. This result indi-
cated that there is a difference between the strange and non-strange quarks
in the sea of the nucleon and that the strange quarks carry about 2% of the
nucleon momentum [17]. The recent result of the NuTeV collaboration was in
agreement with the previous experiment [18] and they studied the difference
between the nucleon strange and anti-strange quark distributions [19].

A contribution of strange quarks to the nucleon mass arises from the so-
called the “σπN puzzle” that is a factor-of-two discrepancy between the em-
pirical data for the pion-nucleon sigma term ΣπN (t) with momentum trans-
fer2 t = −Q2 and the estimate of the σ-term from the baryon mass difference
when the flavor SU(3) breaking exists [20, 21]. The empirical data of ΣπN

can be obtained from analysis of on-shell pion-nucleon scattering amplitudes
at the Cheng-Dashen point (t = 2m2

π) [22, 20, 21, 23, 24]. One possible ex-
planation of the discrepancy is that strange quarks in the nucleon make a
large contribution to the nucleon mass [25, 21]. After ΣπN(0) and ΣπN(2m2

π)
were re-examined with various corrections by dispersion relations [26], it was
concluded that there is no evidence for a large strange quark contribution to
the nucleon mass [27]. In addition, within QCD analysis, it was argued the
total strange contribution is quite small [28]. However, on the other hand one
recent analysis of ΣπN (2m2

π) shows the larger strangeness contribution to the
nucleon than the previous predictions [29].

The longitudinal spin-dependent structure function g1(x,Q
2), with the

Bjorken scaling variable x, as determined by deep inelastic lepton scattering
from a polarized nucleon target, contains experimental information about the
strange quark contribution to the nucleon spin and can be extracted from the

2Q2 is the squared four momentum transfer.
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asymmetry A = (σ++−σ−+)/(σ+++σ−+), where σ++ and σ−+ refer to cross
sections for parallel and anti-parallel lepton and nucleon spins [13, 24]. For
the proton, the integral over the spin-dependent structure function provides
explicit information on the quark spin structure at long distance scales and
is [24]

Γp1(Q
2) =

∫ 1

0

dxg1(x,Q
2) =

4

18
∆u +

1

18
∆d +

1

18
∆s,

where ∆u, ∆d, and ∆s are the first moments of the polarized u, d, and s
quark distribution. The u quark distribution is defined as

∆u =

∫ 1

0

dx
(

u+(x) − u−(x) + ū+(x) − ū−(x)
)

,

where +(−) denotes that quark whose helicity is parallel (anti-parallel) to
that of the nucleon and ū is the u anti-quark. The similar definition applies
∆d and ∆s. It is convenient to write the integral in terms of the isovector
(∆q3), octet (∆q8), and singlet (∆q0) combinations, such that

Γp1(Q
2) =

∆q3

12
+

∆q8

36
+

∆q0

9
, (2.5)

where

∆q3 = ∆u − ∆d,

∆q8 = ∆u + ∆d − 2∆s,

∆q0 = ∆u + ∆d + ∆s,

(2.6)

in the naive parton model. The isovector combination ∆q3, which will be
discussed later, can be obtained from neutron beta decay, and ∆q8 from
hyperon beta decay. Thus, ∆q0, which is the fraction of the spin of the proton
carried by the spins of the quarks, can also be determined. Since the Ellis-
Jaffe sum rule assumed that polarized strange quarks do not contribute to the
spin-dependent structure function (∆s = 0), the integral is rewritten [30, 24]

Γp1(Q
2) =

1

12
∆q3 +

5

36
∆q8, (2.7)

where ∆q0 = ∆q8. The first measurement of this integral was taken by Euro-
pean Muon Collaboration (EMC) and found a disagreement with the Ellis-
Jaffe sum rule. This result indicated that the quark spins carry (1 ± 27)%
of the proton spin if ∆s 6= 0 was assumed [31]. The EMC collaboration
combined their data with the SLAC-Yale E80 and E130 data to extend the
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kinematic range of the spin-dependent structure function. This result indi-
cated that the strange quarks polarized antiparallel to the proton spin and
the quark spins carry (12 ± 17)% of the proton spin [32]. The E143 collab-
oration found that their result is more than two standard deviations below
the Ellis-Jaffe sum rule prediction and that the strange quark contribution
is ∆s = −0.10±0.04, inconsistent with zero by using the naive quark-parton
model [33]. The Spin Muon Collaboration (SMC) found that the integral
is also below the prediction of the Ellis-Jaffe sum rule and that the quark
spin contributions to the proton spin as a function of the gluon contribution
∆g in QCD [34]. They obtained the gluon contribution to the proton spin
(∆g ≃ 2) in the Adler-Bardeen renormalization scheme. This gluon contri-
bution implies that ∆s = 0. However, they mentioned that the gluon contri-
bution could be smaller than what they obtained. In this case, ∆s could be
negative. More recently, the COmmon Muon Proton Apparatus for Structure
and Spectroscopy (COMPASS) experiment at CERN measured the deuteron
spin-dependent structure function gd1 . They found that the strange quark dis-
tribution is ∆s = −0.08 ± 0.02 [35].

2.3 Parity Violation and Strangeness

Feasible measurements of the strange-quark vector current matrix element
for the proton 〈p|̄sγµs|p〉, which is related to the electromagnetic properties
of the proton, were suggested to perform parity violating electron scattering
from protons [36, 37, 38]. These measurements provide one opportunity to
study a possible strange quark contribution to the nucleon electromagnetic
properties such as charge distribution and magnetism if the existing data on
the nucleon electromagnetic form factors are used.

2.3.1 Theoretical Formalism

The parity violating asymmetry is

APVphys =
dσR − dσL
dσR + dσL

,

where dσR(dσL) is the cross section for right(left)-handed electron scattering.
For convenience, APVphys is called the physics asymmetry so as to distinguish
between APVphys and the experimental asymmetry APVexp . Since the cross section
is proportional to the square of the scattering amplitude

dσ ∝ |M|2 =
∑

spins

|M|2,
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γ

e−(k1, s1)

e−(k2, s2)

P (p1, S1)

P (p2, S2)

(a) Electromagnetic scattering

Z0

e−(k1, s1)

e−(k2, s2)

P (p1, S1)

P (p2, S2)

(b) Neutral weak scattering

Figure 2.1 The two lowest-order Feynman diagrams for the electron pro-
ton scattering. The initial four momentum and the spin state of the elec-
tron (the proton) are denoted as k1 and s1(p1 and S1) and the final one
k2 and s2(p2 and S2) respectively. The four momentum q of the internal
line is q = k1 − k2 = p2 − p1 due to momentum conservation.

where
∑

spins represents an average and a sum over the spin orientations of
particles, the asymmetry is

APVphys =
|MR|2 − |ML|2
|MR|2 + |ML|2

. (2.8)

Figure 2.1 shows the two lowest-order Feynman diagrams for the electron
proton scattering that contribute to the squared amplitude |M|2. The first
diagram 2.1(a) represents the electromagnetic interaction and the other one
2.1(b) the weak interaction. Thus we rewrite the squared scattering amplitude

|MR,L|2 = |Mγ
R,L + MZ0

R,L|
2

= |Mγ
R,L|2 + 2M†γ

R,LMZ0

R,L + |MZ0

R,L|2,

where † is the Hermitian adjoint and M†γ
R,LMZ0

R,L = Mγ
R,LM†Z0

R,L. The first
term is the contribution from the electromagnetic interaction, the last one
from the weak interaction, and the middle one the interference between both
interactions. The parity violating asymmetry becomes

APVphys ≈ 2
M†γ

RMZ0

R −M†γ
L MZ0

L

|Mγ
R|2 + |Mγ

L|2
= 2

∑

M†γ
RMZ0

R −
∑

M†γ
L MZ0

L
∑ |Mγ|2

, (2.9)

where
∑

represents
∑

s1

∑

s2

∑

S1

∑

S2
, which means the spin sum over all

initial and final spins of the proton and the electron, and we use the relation

∑

|Mγ
R|2 =

∑

|Mγ
L|2 ≡

1

2

∑

|Mγ|2,
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which means that the electromagnetic interaction conserves a parity. We can
ignore the interference term in the denominator and the weak contribution

term |MZ0

R,L|2, because of the low momentum transfer region (−q2 ≪M2
Z).

The invariant matrix element of the electromagnetic interaction in the
ultra-relativistic limit, where the electron mass can be ignored (me ≈ 0), is
[39]

Mγ
R,L = −ie

2

q2
Ū(p2, S2)Γ

µU(p1, S1)ū(k2, s2)γµuR,L(k1, s1), (2.10)

where

Γµ = γµF p
1 (q2) +

iσµνqν
2Mp

F p
2 (q2),

uR,L(k1) =
1 ± γ5

2
u(k1),

(2.11)

Mp is the proton mass, u(ki, si) represents the Dirac spinor with the four
momentum ki and the spin si for the electron with i = 1, 2, and U(pi, Si)
is the proton spinor. F p

1 and F p
2 are two independent electromagnetic form

factors that describe the structure of a proton. F p
1 is called the Dirac form

factor and F p
2 the Pauli form factor of the proton. In the same manner, the

invariant matrix element of the weak interaction in the ultra-relativistic limit
and the low momentum transfer region is

MZ
R,L = +i

g2
Z

16M2
Z

Ū(p2, S2)Γ̃
µU(p1, S1)ū(k2, s2)γ̃µuR,L(k1, s1), (2.12)

where

Γ̃µ = γµF̃ p
1 (q2) +

iσµνqν
2Mp

F̃ p
2 (q2) + γµγ5G̃p

A(q2),

γ̃µ = qeZγµ + aeZγµγ5,

g2
Z

16M2
Z

=
GF

2
√

2
,

(2.13)

with F̃ p
1 and F̃ p

2 being the two weak form factors, G̃p
A the weak axial form

factor, θW the weak mixing angle, gZ the neutral weak coupling constant for
the Z0 boson, and GF the Fermi coupling constant. The coefficients qeZ and

aeZ are defined in table 2.1. The expression
g2Z

16M2
Z

for the leading coefficient of

(2.12) can be easily interpreted that the neutral weak current interaction is
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f I3 qfγ qfZ afZ

e− −1
2

∗ −1 −1 + 4 sin2 θW +1

u quark +1
2

+2
3

+1 − 8
3
sin2 θW −1

d quark −1
2

−1
3

−1 + 4
3
sin2 θW +1

s quark −1
2

−1
3

−1 + 4
3
sin2 θW +1

Table 2.1 Electroweak couplings of electron and quarks [17, 13]. The

weak vector coupling denotes as qfZ , the weak axial coupling afZ , the elec-

tromagnetic coupling or the electric charge qfγ , and the third component of

the weak isospin I. Here qfZ = 2I3 − 4qfγ sin2 θW . And the symbol ∗ means
that I3 of the left-handed electron is −1/2, and the right-handed electron
has I = 0.

weak owing to the mass of Z0 boson. The expression GF

2
√

2
, however, is more

convenient when calculating radiative corrections at one-loop order [40].
The asymmetry therefore can be calculated from (2.9) at tree level and is

APVphys = − GFQ
2

4
√

2πα

×
{

(

2τ tan2 θ

2
(F p

1 + F p
2 )(F̃ p

1 + F̃ p
2 ) + F1F̃

p
1 + τF p

2 F̃
p
2

)

− E + E ′

Mp

tan2 θ

2
(1 − 4 sin2 θW )G̃p

A(F p
1 + F p

2 )

}

×
{

(F p
1 )2 + τ (F p

2 )2 + (F p
1 + F p

2 )22τ tan2 θ

2

}−1

,

(2.14)

where

α =
e2

4π
, Q2 = −q2 > 0, τ =

Q2

4Mp
,

E + E ′

Mp
=

√

4τ(1 + τ) csc2
θ

2
,

with θ is the electron scattering angle. Note that the physics asymmetries in
the references [37, 38] have different constant factors compared with (2.14),
because the weak form factors (F̃ p

1 , F̃ p
2 , and G̃p

A) are defined in the different
forms. Since we consider only the low momentum transfer, it is preferable to
use the Sachs form factor notation

GE = F1 − τF2, GM = F1 + F2,

G̃E = F̃1 − τF̃2, G̃M = F̃1 + F̃2,
(2.15)
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where GE and GM of the proton describe the distribution of charge and mag-
netization within the proton. The physics asymmetry, therefore, is rewritten
as [41]

APVphys = − GFQ
2

4
√

2πα

ǫGp
EG̃

p
E + τGp

MG̃
p
M − ǫ′(1 − 4 sin2 θW )G̃p

AG
p
M

ǫ (Gp
E)

2
+ τ (Gp

M)
2 , (2.16)

where

ǫ−1 = 1 + 2(1 + τ) tan2 θ

2
,

ǫ′ =
√

τ(1 + τ)(1 − ǫ)(1 + ǫ).

Considering only u, d, and s quarks, nucleon form factors, by which the
hadronic structure of the electroweak interaction is parametrized, are decom-
posed into three different flavor quark form factors [38]. Using the electroweak
coupling constants defined in table 2.1, we can write

Γµ =
∑

f

qfγ

[

F f
1 γ

µ +
iσµνqν
2Mp

F f
2

]

,

Γ̃µ =
∑

f

[

qfZ

(

F f
1 γ

µ +
iσµνqν
2Mp

F f
2

)

+ afZG
f
Aγ

µγ5

]

,

(2.17)

with f = u, d, s. Then, the electromagnetic and weak form factors are

Gp
E,M =

∑

f

qfγG
f
E,M =

2

3
Gu
E,M − 1

3
Gd
E,M − 1

3
Gs
E,M ,

G̃p
E,M =

∑

f

qfZG
f
E,M =

(

1 − 8

3
sin2 θW

)

Gu
E,M

+

(

−1 +
4

3
sin2 θW

)

Gd
E,M +

(

−1 +
4

3
sin2 θW

)

Gs
E,M ,

G̃p
A =

∑

f

afZG
f
A = Gu

A −Gd
A −Gs

A.

(2.18)

In the above equation, the proton weak axial form factor G̃p
A without higher

order terms is [41]

G̃p
A(Q2) = −2G

(3)
A (Q2) +G

(s)
A (Q2), (2.19)
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where

G
(3)
A (Q2) =

∆q3

2
(

1 + Q2

M2
A

)2 ≡ −1

2
G̃T=1
A (Q2),

G
(s)
A (Q2) =

G
(s)
A (Q2 = 0)
(

1 + Q2

M2
A

)2 ≡ G̃T=0
A (Q2),

with G̃T=0,1
A (Q2) being the isoscalar (T = 0) and isovector (T = 1) com-

ponents of Gp
A(Q2). In these equations, MA is the axial vector dipole mass

parameter obtained from neutrino scattering. ∆q3 is the same quantity as in
(2.5) and is determined from neutron beta decay. G

(s)
A (0) may be rewritten

in terms of ∆q8 and ∆q0, also defined in (2.5) and can be extracted from
measurements of

∫

dxg1(x) [41, 17, 14, 42].
Assuming isospin symmetry, i.e. proton and neutron are treated as an

isospin doublet of the nucleon, we get the following relations

Gu
E,M ≡ Gu,p

E,M = Gd,n
E,M ,

Gd
E,M ≡ Gd,p

E,M = Gu,n
E,M ,

Gs
E,M ≡ Gs,p

E,M = Gs,n
E,M .

(2.20)

Then, the neutron electromagnetic form factor becomes

Gn
E,M =

2

3
Gd
E,M − 2

3
Gu
E,M − 1

3
Gs
E,M , (2.21)

and the weak vector form factor G̃p
E,M of the proton is shown in terms of

Gp
E,M , Gn

E,M , and Gs
E,M as

G̃p
E,M =

(

1 − 4 sin2 θW
)

Gp
E,M −Gn

E,M −Gs
E,M . (2.22)

With (2.16) and (2.22), we can rewrite the asymmetry APVphys without elec-
troweak radiative corrections as

APVphys = AV + AA = A0
V + AsV + AA, (2.23)

where

A0
V = − GFQ

2

4
√

2πα

[

(

1 − 4 sin2 θW
)

− ǫGp
EG

n
E + τGp

MG
n
M

ǫ (Gp
E)

2
+ τ (Gp

M)
2

]

,

AsV = +
GFQ

2

4
√

2πα

[

ǫGp
EG

s
E + τGp

MG
s
M

ǫ (Gp
E)

2
+ τ (Gp

M)
2

]

,

AA = +
GFQ

2

4
√

2πα

[

(

1 − 4 sin2 θW
)

ǫ′Gp
MG̃

p
A

ǫ (Gp
E)

2
+ τ (Gp

M)
2

]

.

(2.24)
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The term AV represents the asymmetry that comes from the vector coupling
on the proton vertex and AA does the asymmetry that comes from the axial
vector coupling. In addition, AV can be rewritten in terms of A0

V and AsV in
order to separate the strangeness contribution to the vector coupling. The
PV physics asymmetry APVphys, therefore, depends on Gp

E , Gn
E , Gp

M , and Gn
M

that are well-known form factors for the proton and neutron. Using them
and (2.19), in principle, the equation (2.23) leads us to get A0

V + AA and a
linear combination of the Sachs form factors Gs

E and Gs
M , in the AsV term,

when neglecting electroweak radiative corrections and assuming the isospin
symmetry. For more detailed information about radiative corrections and
charge symmetry, see the references [40, 43, 17]. The linear combination of
the strange electric and magnetic form factors is

Gs
E + ηGs

M =
4
√

2πα

GFQ2

ǫ (Gp
E)

2
+ τ (Gp

M)
2

ǫGp
E

(

APVphys − A0
V −AA

)

, (2.25)

with η = τGp
M/ǫG

p
E .

2.3.2 Beam Polarization Effect

The PV experimental asymmetry APVexp is related to the physics asymmetry
via

APVexp =
NR −NL

NR +NL
= Pe · APVphys, (2.26)

where NR(L) is the number of elastic scattering events for each polarization
state of electrons and Pe the longitudinal polarization of the electron beam.
Thus, it is crucial to measure the beam polarization Pe so as to extract
the physics asymmetry. For an absolute Pe measurement, the A4 Compton
backscattering polarimeter has been installed. A detailed study of the po-
larimeter will be discussed in chapter 3.

2.3.3 Experimental Programs

The SAMPLE experiment

The first experiment to determine the strange quark-antiquark (ss̄) contri-
butions to the electromagnetic properties of the proton by the parity violat-
ing asymmetry in electron scattering was the SAMPLE experiment at the
MIT/Bates Linear Accelerator Center. Using a 200 MeV longitudinally po-
larized electron, they measured the asymmetry at backward angles with an
average Q2 = 0.1 (GeV/c)2 [44, 45]. The electron beam polarization was
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measured using a Møller apparatus and is typically 35%. Under these kine-
matic conditions, the PV asymmetries for a hydrogen target (SAMPLE I)
and a deuterium target (SAMPLE II) [46] were measured. The results can
be interpreted as a small strange quarks contribution to the proton magnetic
moment. Moreover, the experimental result of G̃T=1

A (Q2 = 0.1)3 has the sub-
stantially different value compared with the theoretical expected value. This
may indicate that the electroweak radiative corrections to the axial vector
form factor are larger than the theoretical expectation [47, 48, 49]. Because of
this discrepancy, the third SAMPLE experiment (SAMPLE III) measured the
parity violating asymmetry in quasielastic electron scattering from deuterons
at backward angles at Q2 = 0.038 (GeV/c)2 so as to determine the axial vec-
tor form factor experimentally [50]. In the same manner of the analysis of
SAMPLE III, they re-evaluated the theoretical asymmetry and the measured
asymmetry for the SAMPLE II data. The resulting theoretical asymmetry is

Ad(Q
2 = 0.091) =

(

−7.06 + 1.66G̃T=1
A + 0.77Gs

M

)

ppm, (2.27)

where d stands for a deuterium target and ppm is part per million. The
physics asymmetry is

Ad(Q
2 = 0.091) = (−7.77 ± 0.92) ppm. (2.28)

These results from the SAMPLE III (Q2 = 0.038) data and from the up-
dated SAMPLE II (Q2 = 0.091) data are in agreement with the theoretical
calculations of the neutral weak axial vector form factor G̃A [47]. With the
confirmation of the theoretical estimation of the weak axial vector form fac-
tor, they re-evaluated the SAMPLE I hydrogen data. Thus, the theoretical
asymmetry is obtained as

Ap(Q
2 = 0.1) =

(

−5.56 + 1.54G̃T=1
A + 3.37Gs

M

)

ppm, (2.29)

where p stands for a hydrogen target and the asymmetry is

Ap(Q
2 = 0.1) = (−5.61 ± 1.11) ppm. (2.30)

Using equations (2.27), (2.28), (2.29), (2.30), and the theoretical calculation
of G̃T=1

A = −0.83 ± 0.26, the results of the SAMPLE experiment [51, 52] are
shown in figure 2.2 and the strange magnetic form factor is

Gs
M(Q2 = 0.1) = 0.37 ± 0.34. (2.31)

3For the sake of simplicity, we omit (GeV/c)2, the unit of Q2.
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Figure 2.2 The result of the SAMPLE experiment at Q2 = 0.1 (GeV/c)2

[52, 51]. In the plot, G̃T=1
A is denoted as Ge

A(T = 1) and the band labeled
Zhu, et al represents the theoretical expectation [47]. The deuterium and
hydrogen data are denoted as D2 and H2 respectively. The small ellipse
is the overlap between the hydrogen data and the theoretical expectation
and the large one between the hydrogen and deuterium data. The plotted
uncertainties are calculated by the sum in quadrature of the statistical and
systematic uncertainties.
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The HAPPEX experiment

Just as the SAMPLE experiment determined the strange magnetic form fac-
tor Gs

M of the proton, similarly, the HAPPEX experiment in Hall A at the
Thomas Jefferson National Accelerator Facility (TJNAF) was designed to
determine the strange electric form factor Gs

E.The first HAPPEX experi-
ment (HAPPEX I) chose a small forward angle (θlab = 12.3◦) and the higher
Q2 = 0.477 (GeV/c)2 in order to measure a combination of Gs

M and Gs
E .

Using elastic scattering of longitudinally polarized electrons from protons,
the linear combination of strange form factors [53, 54, 55] is

Gs
E + 0.392Gs

M |Q2=0.477 = 0.014 ± 0.022. (2.32)

The second HAPPEX experiment (HAPPEX-4He) opted for 4He target
with a very small forward angle (θlab = 6◦) and Q2 = 0.1 (GeV/c)2 so as to
isolate Gs

E. Since 4He is an isoscalar target, which consists of equal number
of protons and neutrons, the parity violating asymmetry is sensitive to only
Gs
E . The strange electric form factor Gs

E is [56]

Gs
E(Q2 = 0.091) = −0.038 ± 0.043. (2.33)

The third HAPPEX experiment (HAPPEX-H) used a proton target at
Q2 = 0.091. The linear combination of Gs

E and Gs
M [57] is

Gs
E + 0.080Gs

M |Q2=0.091 = 0.030 ± 0.066. (2.34)

The most recent HAPPEX experiment [58, 59] reported the strange elec-
tric form factor for 4He target with Q2 = 0.077 (GeV/c)2 and an angle
(θlab ∼ 6◦)

Gs
E(Q2 = 0.077) = +0.002 ± 0.016. (2.35)

And they reported the linear relation between Gs
E and Gs

M with Q2 =
0.109 (GeV/c)2 for a hydrogen target

Gs
E + 0.09Gs

M |Q2=0.109 = 0.007 ± 0.013. (2.36)

Using extrapolation to Q2 = 0.1 (GeV/c)2 with assumptions that Gs
E ∝ Q2

and thatGs
M is constant, the HAPPEX collaboration combined (2.35), (2.36),

(2.33), (2.34) and extracted Gs
E and Gs

M as [58]

Gs
E(Q2 = 0.1) = −0.005 ± 0.019,

Gs
M(Q2 = 0.1) = +0.18 ± 0.27.

(2.37)

This result at Q2 = 0.1 (GeV/c)2 is shown in figure 2.3.
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Figure 2.3 The result of the HAPPEX experiment at Q2 = 0.1 (GeV/c)2

[58]. Two elliptical circles represent 68% and 95% confidence level con-
straints from the HAPPEX experiment. The helium and hydrogen data
are denoted as 4He and H respectively. The dashed lines are central values
and the solid lines represent the uncertainties calculated by the quadratic
sum of the statistical and systematic uncertainties.
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Figure 2.4 The result of the G0 experiment [63]. The inner error bars
represent the statistical uncertainty and the outer the sum in quadrature
of the statistical and systematic uncertainties. The upper gray error band
represents the systematic uncertainties from the measurement and the
lower one is due to the electroweak radiative corrections to A0

V + AA,
defined in (2.23) (See [63] for details).

The G0 experiment

The main aim of the G0 experiment in Hall C at TJNAF is a separation of the
three contributions, Gs

E , Gs
M , and G̃N

A , to the proton structure, and will be
achieved by performing two separate experiments: (1) electron-proton scat-
tering at forward angles over the Q2 range between 0.12 and 1.0 (GeV/c)2,
and (2) electron-proton and electron-deuteron scattering at backward angles
for two Q2 values, 0.23 and 0.62 (GeV/c)2 [60, 61, 62]. In the forward ex-
periment, asymmetries are measured by detecting the proton recoiling from
a liquid hydrogen target. A toroidal spectrometer was designed to focus re-
coil protons, which have the same momentum and the same recoil angle,
onto a focal plane and to make the asymmetry measurements possible over a
wide range of Q2 simultaneously. The result of the G0 forward measurement
is shown in figure 2.4. The linear combination of Gs

E + ηGs
M is defined in

(2.25). With the G0 data of the forward angle measurements, the hypothesis
of Gs

E + ηGs
M = 0 was disfavored with 89% confidence level, and nonzero

strange quark contributions that are dependent on Q2 are implied [63]. The
G0 backward angle measurements are now underway and they will provide
data on the strange quark contributions to the nucleon over a large Q2 range
soon [61, 62].
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2.4 The A4 Experiment

2.4.1 The Realization of the A4 Experiment

The A4 experiment at MAMI investigates the inner structure of the nucleon
by measuring single spin asymmetries from elastic electron-proton scatter-
ing. The floor map of MAMI is shown in figure 2.5. The continuous-wave
(cw) electron accelerator MAMI is formed from three cascaded racetrack mi-
crotrons (RTMs) and a harmonic double sided microtron (HDSM). The lon-
gitudinally polarized electrons are produced using a strained layer GaAs crys-
tal onto which a circularly polarized laser beam is incident, and their aver-
age beam polarization is roughly 80%. The polarization state of the electron
beam is switched between two patterns (+−−+ and −+ +−) randomly at
20 ms intervals by a Pockels cell in the optical system of the electron source.
After the spin rotation system that is based on a Wien filter and is located
in the 100 keV injection beam line, the polarized electrons are transferred
to an injector linac and are accelerated up to 3.97 MeV. There follow three
RTMs that accelerate the beam up to 855.1 MeV and HDSM that does the
beam up to 1508 MeV. After that, the polarized electron beam is delivered
into the experimental halls.

The expected parity violating asymmetry is in the order of 10−5. Thus, a
precise beam control system is necessary for the implementation of the par-
ity violation experiment. Beam monitors watch and check three important
beam parameters, which are the beam positions (XYMO), the beam current
(PIMO), and the beam energy (ENMO) and make it possible for the beam
control system to stabilize the beam parameters. The signals of the beam
monitors also are recorded by the A4 data acquisition system during mea-
surement [64, 65].

Figure 2.6 shows the target and detector system in the forward angle con-
figuration. A powerful liquid hydrogen target system was developed for the
precise study of parity violating electron scattering from hydrogen and deu-
terium [66]. The heat absorbed in the liquid hydrogen and in the aluminum
window of the 10 cm liquid hydrogen target at a 20 µA electron beam current
is approximately 100 W. The target cell has been designed to dissipate the
absorbed heat transversely by a high turbulent flow that improves the trans-
verse mixing of the liquid hydrogen in the target cell. In addition, the target
cell has an 140◦ wide aperture for scattered electrons and an axial symmetry
around the beam axis as required by the A4 parity violation experiment.
The target cooling system in figure 2.6 consists of a closed liquid hydrogen
circulation loop and a cold helium gas cooling loop. The helium cooling loop
was designed to keep the liquid hydrogen temperature close to the freezing
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Figure 2.5 The floor map of MAMI. The accelerator is composed of three
racetrack microtrons, which are denoted as RTM1, RTM2, and RTM3,
and a harmonic double sided microtron, HDSM. A1, A2, and X1 are other
collaborations at MAMI and represent their corresponding experimental
halls. The Møller polarimeter is used to measure the absolute polarization
of the electron beam and the Transmission Compton polarimeter measures
the relative polarization.
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Figure 2.6 A sectional drawing of the PbF2 calorimeter with the hy-
drogen target and the luminosity monitors in the forward angle measure-
ment. The direction of the polarized electrons is from left to right. The
electron beam enters the 10 cm liquid hydrogen target cell, which is made
of thin aluminum. The scattered electrons are detected by the lead fluoride
calorimeter at electron scattering angles θe of 30◦ < θe < 40◦. The eight
water Cherenkov luminosity monitors are placed at electron scattering an-
gles θe of 4.4◦ < θe < 10◦, and they measure the luminosity and monitor
the target stability.
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point so as to prevent the boiling point of the target from the absorbed heat.
A water Cherenkov luminosity monitor system detects target density fluc-

tuations. When a liquid hydrogen target begins to boil due to the absorbed
electron energies, this leads to target density fluctuations detected as lumi-
nosity fluctuations. These fluctuations can be reduced by optimization of the
target position and beam diameter. The luminosity fluctuations introduce
false asymmetry into the measured experimental PV asymmetry APVexp . The
signals of the luminosity monitors (LUMI) are recorded by the A4 data ac-
quisition system during measurement. Then, the experimental asymmetry
can be corrected by this luminosity measurement [64, 67].

The lead fluoride calorimeter consists of 1022 crystals and figure 2.6 shows
a sectional view of the calorimeter. It is arranged in 146 support frames
with 7 calorimeter modules. Each support frame covers an azimuthal angle
of 2.47◦. One calorimeter module consists of one lead fluoride crystal with
a photomultiplier and covers a range of an electron scattering angle δθe =
1.43◦. As a result, each support frame covers a scattering angle of 30◦ <
θe < 40◦. The solid angle coverage of the PbF2 calorimeter is 0.63 sr. A
pure Cherenkov radiator PbF2 was selected as a detector material and the
associated photomultiplier was also selected to match the properties of PbF2

[68, 69]. The radiation hardness of the lead fluoride detector is ten times
higher than that of a lead glass detector. In addition, damaged crystals can be
regenerated by blue light [70]. The calorimeter can detect scattered electrons
with an energy resolution of 3.9%/

√
E(GeV). Figure 2.7 shows the associated

readout electronics (MEDUSA). The losses of the total event rate, which is
the sum of inelastic events (roughly 90 MHz) and elastic events (roughly 10
MHz), are 1% at a 20 µA electron beam current due to the short dead time.

The signals from a 3 × 3 cluster (9 crystals) are summed and are inte-
grated for 20 ns in the analog module that corresponds to the center crys-
tal of the cluster. Then, the integrated signal is digitized by a 8-bit analog-
to-digital converter (ADC), and the digitized energy value is saved in the
VMEbus based memory. Figure 2.8 shows typical energy spectra of scattered
electrons from the liquid hydrogen target at 20 µA beam current and at the
854.3 MeV electron beam during a standard data taking run (5 min.). The
energy spectrum is a direct output of the VMEbus based memory and the
elastic scattering events are easily distinguished from inelastic background.
The number of elastically scattered electrons for each helicity state NR,L

can be used to determine the experimental parity violating asymmetry APVexp .
Since an asymmetry from the background events would dilute the relevant
physics asymmetry, background subtraction is essential. And it is necessary
to choose the region of elastic events by introducing elastic cuts. For detailed
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Figure 2.7 A sectional view of the readout electronics MEDUSA. The
tower for the readout electronics consists of a radial array of 146 analog
frames, 146 histogram frames, and 8 power supplies. One analog frame
contains 7 analog modules that correspond to 7 crystals of the calorimeter.
Each analog module is connected with one histogram module. The height
of the tower is approximately 2.7 m and its inner diameter of the radial
arrangement of the frame is roughly 1.6 m. For more information about
the readout electronics, see the references [69, 71].
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Figure 2.8 Energy spectra of a 3 × 3 cluster at 854.3 MeV. The spectra
with a broken line represent the raw energy spectra of the different helicity
states. The raw spectrum is read from the hardware memory of the readout
electronics and is corrected for the differential nonlinearity of ADC. The
spectra with a continuous line represent the corrected ones for the two
helicities. ∆ on the plot denotes the ∆ resonance, π0 the threshold for
π0 production, and NR,L the number of elastically scattered electrons for
each helicity state according to the elastic cuts.

information about elastic cuts, consult the references [65, 72].
A transmission Compton polarimeter (TCP) was developed so as to mon-

itor in parallel to the experiment and relatively the longitudinal polarization
of the electron beam between the absolute Møller measurements. In addi-
tion, TCP can check the spin angle of the electron beam. The polarimeter
is located between the target and the beam dump and is aligned along the
beam axis inside a wide beam pipe with an 60 cm inner diameter. Figure 2.9
shows a simplified schematic drawing.

The polarized electron beam produces polarized photons inside the target
by Bremsstrahlung. Because of the spin-dependent of the Compton cross sec-
tion, the Compton asymmetry is proportional to the longitudinal beam polar-
ization and can be measured when polarized photons are transmitted through
the water-cooled Samarium-Cobalt permanent magnet, which is magnetized
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Figure 2.9 A schematic drawing of the transmission Compton polarime-
ter. The target, the scatterers, the magnet, the converter, the flange, and
the beam dump on the drawing are symmetric around the beam axis [73].

axially. Two graphite scatterers are used to separate the photons from the
electrons. The converter is used to convert the transmitted photons to elec-
trons that are measured [74]. Since exact determination of the transmitted
Compton photon flow and the analyzing power of the magnet is impossible,
TCP is available to measure the electron beam polarization relatively. The
measured Compton asymmetry Apola of the transmitted photons is approx-
imately 55.2 ppm at 854.3 MeV and is 94.0 ppm at 570 MeV. TCP can be
used to check the sign of the parity violating asymmetry. In addition, the
spin angle of the electron beam can be determined by a spin rotation mea-
surement with the Wien filter, which is a spin rotation system of MAMI [75].
Figure 2.10 shows the spin rotation measurement at 570 MeV.

2.4.2 Results of the A4 Parity Violation Experiment

at Forward Scattering Angles

The A4 experiment uses the counting technique to measure the parity violat-
ing asymmetry by the elastic scattering of longitudinally polarized electrons
from an unpolarized proton target. We completed the two experiments in the
forward angle configuration, which is shown in figure 2.6, at beam energies
of 854.3 MeV and 570.4 MeV.

The first measurement of the parity violating asymmetry at the 854.3
MeV beam energy and at Q2 = 0.23 (GeV/c)2 is [1]

APVphys(Q
2 = 0.23) = (−5.44 ± 0.60) ppm. (2.38)

The four momentum transfer Q2 = 0.23 (GeV/c)2 was selected according
to a maximum strangeness contribution predicted by [77]. And the calcu-
lated asymmetry is A0

V + AA = −6.30 ± 0.43 ppm. The second one at
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Figure 2.10 The spin rotation measurement at 570.4 MeV [73]. The trans-
mission Compton asymmetry is displayed as a function of the magnet cur-
rent of the Wien filter. This current is proportional to the spin rotation
angle and the data point αe on the plot corresponds to the spin angle of
96.8 ± 0.8◦ [76]. The zero crossing point corresponds to transverse polar-
ization of the electron beam.

Q2 = 0.108 (GeV/c)2 and at 570.4 MeV is [2]

APVphys(Q
2 = 0.108) = (−1.36 ± 0.32) ppm. (2.39)

The four momentum transfer Q2 = 0.108 (GeV/c)2 was selected to match
the SAMPLE measurement conditions, so that Gs

E and Gs
M can be isolated

by combining the results of both measurements. The asymmetry A0
V +AA is

−2.06 ± 0.16 ppm. Using the two measurements at Q2 = 0.23 (GeV/c)2 and
at Q2 = 0.108 (GeV/c)2, we extract the linear relations Gs

E + ηGs
M defined

in (2.25) as follows:

Gs
E + 0.225Gs

M |Q2=0.230 = 0.039 ± 0.034, (2.40)

Gs
E + 0.106Gs

M |Q2=0.108 = 0.071 ± 0.036, (2.41)

and these are shown in figure 2.11.
In addition, if we combine the SAMPLE result for Gs

M (2.31) with our
result for the linear relation (2.41), we extract the strange electric form factor
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Figure 2.11 The results of the A4 experiment at Q2 = 0.23 (GeV/c)2 [1]
and at Q2 = 0.11 (GeV/c)2 [2]. The dashed lines are central values and
the solid lines represent the uncertainties.

of the proton Gs
E as

Gs
E(Q2 = 0.108) = 0.032 ± 0.051, (2.42)

with an assumption that Gs
M is constant.

2.4.3 Measurements of the Parity Violating Asymme-

tries at Backward Scattering Angles

The next program for the parity violation experiment is the measurement of
APV for longitudinally polarized electron scattering in the backward direction
from unpolarized protons and unpolarized deuterons at Q2 = 0.23 (GeV/c)2.
In the backward angle configuration, the range of the electron scattering
angle θe, which the PbF2 calorimeter covers, is 140◦ < θe < 150◦. As a result,
we opted for 315.1 MeV as the electron beam energy. When we use a proton
target, we can separate Gs

E and Gs
M by using the forward measurement at

Q2 = 0.23 (GeV/c)2.
In the backward angle configuration, we use the 23 cm target cell, which

is longer than the target cell of the forward angle configuration, so as to
increase the luminosity, because the backward angle cross section and its Q2

dependency are much smaller than the forward angle one. And we developed
a rotatable platform and an extension of the scattering chamber that are
shown in figure 2.12 [78, 79]. The new platform makes it possible that the
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PbF2 calorimeter can be rotated between the forward and backward angle
measurements.

And, at backward angles, it is hard to separate elastic events from in-
elastic events, in contrast to the situation at the forward angles, in the en-
ergy spectrum of the PbF2 calorimeter. Photons from π0− decay mainly con-
tributes to these inelastic events. Since these photons produce similar electro-
magnetic showers in the calorimeter as elastic electrons do, the calorimeter
is unable to distinguish them. For this reason, we developed a plastic scin-
tillator trigger system to distinguish the elastic electrons and the photons
[71, 80]. The system consists of 72 scintillator detectors, a steel support, and
an interface electronics. The steel support is located between the scattering
chamber and the calorimeter. Figure 2.12 shows the 72 plastic scintillator
detectors and the support. The interface electronics were developed in order
to handle the scintillation trigger signals properly and to send the signals
to the existing data acquisition electronics (MEDUSA). Currently, the back-
ground contributions to the calorimeter spectra are being studied by Monte
Carlo simulations [81]. The preliminary parity violating asymmetry at the
backward angles is

APVphys(Q
2 = 0.23) = (−16.22 ± 1.15) ppm (2.43)

and the calculated asymmetry is A0
V + AA = −16.3 ± 1.2 ppm [82]. The

corresponding linear relation is

Gs
M + 0.25Gs

E|Q2=0.23 = 0.004 ± 0.146. (2.44)

After we combine the forward measurement (2.38) with the backward mea-
surement (2.44), we extract the strange electric and magnetic form factor as

Gs
M(Q2 = 0.23) = −0.01 ± 0.15,

Gs
E(Q2 = 0.23) = +0.03 ± 0.05,

(2.45)

and this preliminary result is shown in figure 2.13.
Furthermore, the A4 collaboration conducts experiments, which are re-

lated with the asymmetry from transversely polarized electrons. Using the
proton target, the asymmetry A⊥ was preliminarily extracted at 315 MeV
electron beam [83]. And the asymmetry with a deuterium target was studied
[84]. For more information about A⊥, consult the references [3, 85, 86, 87].
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Figure 2.12 A schematic drawing of the PbF2 calorimeter in the back-
ward angle configuration, installed on the rotatable platform [78, 79]. The
extension of the scattering chamber is necessary to keep the luminosity
monitors in the same positions as in the forward angle configuration. The
rotatable platform has three hydraulic oil sliding feet in order to rotate
the calorimeter easily and to minimize vibration and shocks from rotation.
The plastic scintillator trigger system was developed so as to separate the
elastic events from the inelastic events [71, 80].
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Figure 2.13 The preliminary result of the A4 experiment at Q2 =
0.23 (GeV/c)2. The dashed lines are central values and the solid lines
represent the uncertainties.





Chapter 3

Compton Backscattering
Polarimeter

A Compton backscattering polarimeter is based on the polarized cross sec-
tion in the scattering of circularly polarized photons from polarized elec-
trons. With known photon polarization, the electron beam polarization can
be determined by detecting the backscattered photons. Figure 3.1 shows the
conceptual drawing of the A4 Compton backscattering polarimeter. Since
a small percentage of incident electrons are associated with the scattering
before a target, which is located in the experimental hall 4, it can be used
to measure the electron beam polarization in parallel to the parity violating
electron scattering experiment of the A4 collaboration.

After Compton backscattering, the scattered electrons and the backscat-
tered photons move in the forms of highly collimated beams into the direc-
tion of incident electrons in the laboratory frame. A dipole magnet can sepa-
rate both beams owing to the electric charge of the electron beam. The scat-
tered electrons can be detected by a scintillating fiber electron detector and

Figure 3.1 The conceptual drawing of the A4 Compton backscattering
polarimeter

35
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the backscattered photons can be done by a photon detector. We record the
backscattered photon spectra with and without a coincidence between the
photon detector and the electron detector. And we use the photon spectra
so as to calculate the experimental Compton asymmetry ACTexp.

The experimental Compton asymmetry is related to an analyzing power
Compton asymmetry ACTap through the electron polarization Pe and the pho-
ton polarization Pγ by

ACTexp = PePγA
CT
ap , (3.1)

where ACTap depends on a theoretical asymmetry ACTth and a detector response
function. Since ACTexp and Pγ are measurement variables, ACTth can be calculated
within the framework of quantum electrodynamics (QED), and the detector
response function can be determined by a measurement of the Compton
edge in the photon spectrum, by a measurement with a radioactive source,
and by a detector simulation independently, we can determine the electron
polarization Pe. In this chapter, we discuss the Compton scattering process,
the asymmetry in the Compton cross section, and the design concept and
components of the A4 Compton backscattering polarimeter.

3.1 Compton Scattering

After Compton published his quantum theory of the scattering of X-rays by
light elements [88], the Compton effect or Compton scattering has become
eminent in physics. In this case of Compton scattering, a photon loses its
energy and an electron, which is considered to be at rest, gains the energy. In
the Compton backscattering, however, the electron loses its energy and the
photon gains the energy. In high energy astrophysics, this process is called
inverse Compton scattering because of the inverse energy transfer. In this
section, we discuss the Compton backscattering process, its differential cross
section, and the Compton asymmetry of the cross section.

3.1.1 Kinematics

Figure 3.2 shows the Lorentz transformation from the laboratory frame to
the electron rest frame as

kµi → kµ0 = Λµ
νk

ν
i ,

kµf → kµ = Λµ
νk

ν
f ,

(3.2)
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Figure 3.2 Two reference frames for the Compton scattering.

where Λµ
ν , a so-called Lorentz tensor, is

Λµ
ν =









γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ









,

the velocity β is along the z axis, γ = 1/
√

1 − β2, and the incident and
scattered 4-momentum vectors of the photon are

kµ0 = (k0, 0, 0,−k0), kµ = (k, k sin θ′, 0, k cos θ′), (3.3)

in the electron rest frame and

kµi = (ki, 0, 0,−ki), kµf = (kf , kf sin θ, 0, kf cos θ), (3.4)

in the laboratory frame, where k0 and ki are the initial momentum vectors
of the photon and k and kf are the final momentum vectors. These give the
kinematic relations between the frames as

k0 = (1 + β)γki, (3.5)

k = γkf(1 − β cos θ), (3.6)

k sin θ′ = kf sin θ, (3.7)

k cos θ′ = γkf(cos θ − β). (3.8)

Note that the angle θ′ is introduced to be consistent with the common angle
notation for the Compton formula [88].
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Figure 3.3 Scattered photon energy for four different electron energies as
a function of the scattering angle θ. The wavelength of the green laser is
514.5 nm and its corresponding energy is 2.41 eV. Note that all scattered
photons with a reasonable energy are within the very small range of θ.

In the electron rest frame, the well-known relation between k0 and k is

k =
k0

1 + k0
m

(1 − cos θ0)
, (3.9)

where m is the electron mass. If we use the 4-momentum conservation m2 =
(p + ki − kf)

2, we obtain the relation between ki and kf in the laboratory
frame as

kf =
ki

1 + ki−p
E+p

(1 + cos θ)
, (3.10)

where the electron energy E = γm and its momentum p = βE. Since figure
3.3 shows that the very small values of the scattered angle θ are of great
importance, the energy of the scattered electron can be approximated as

kf ≈
kmax
f

1 +
kmax

f

2ki
(ki−p
E+p

)θ2
, (3.11)
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ki (eV) E (MeV) kmax
f (MeV) a θγ (mrad) ργ

2.41 1508.00 79.52 0.95 0.34 0.51
2.41 854.30 26.12 0.97 0.60 0.51
2.41 570.40 11.76 0.98 0.90 0.51
2.41 315.25 3.63 0.99 1.62 0.50

Table 3.1 The values of kmax
f , a, θγ , and ργ for different kinematics.

where the maximum scattered energy kmax
f with θ = 0 is defined as

kmax
f =

ki

1 + 2(ki−p)
E+p

= ki
(1 + β)2γ2

1 + 2kiγ
m

(1 + β)
.

In the ultra-relativistic limit, where the velocity of the electron is nearly equal
to the speed of light (β ≈ 1), kmax

f becomes

kmax
f ≈ ki

4γ2

1 + 4kiγ
m

= 4aγ2ki, (3.12)

where the kinematic parameter a is

a = (1 + 4kiγ/m)−1. (3.13)

This limit is a good approximation for our case.
When the incident energies of the electron and the photon are assigned,

the kinematic parameter a is a constant owing to the dependence on the
incident energies of the two particles. In addition, for simplicity, a normalized
energy ρ is defined as

ρ ≡ kf
kmax
f

=
1

1 − kmax
f

2ki

ki−p
E+p

θ2

∼= 1

1 + aγ2θ2
, (3.14)

where β ≈ 1 is used and θ the scattered angle of the photon in the laboratory
frame. When θ is close to θγ = 1/γ, ρ is close to ργ = 1/(1 + a). The angle
θγ and the normalized energy ργ are the important features of the Compton
cross section. They will be taken up in section 3.1.2 and 3.1.3.

Table 3.1 shows the maximum scattered photon energy kmax
f , the kine-

matic parameter a, the angle θγ , and the normalized energy ργ for the differ-
ent incident energies of the electron.
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3.1.2 Cross Section

The Compton cross section for a circularly polarized photon scattering from
a polarized electron in the electron rest frame [89] can be written as

dσ±
dΩ

=
dσ0

dΩ
∓ PePγ

[

dσ1

dΩ
cosψ +

dσ2

dΩ
sinψ cosφ

]

, (3.15)

where

dσ0

dΩ
=

1

2
r2
0

k2

k2
0

[

(k0 − k)2

kk0
+ 1 + cos θ2

0

]

,

dσ1

dΩ
=

1

2
r2
0

k2

k2
0

(

k

k0
− k0

k

)

cos θ0,

dσ2

dΩ
=

1

2
r2
0

k2

k2
0

(

1 − k

k0

)

sin θ0,

with the classical electron radius r0, the solid angle dΩ = dφd cos θ′, and a
scattering angle θ0 and an azimuth angle φ of the scattered photon. The spin
of the electron lies in the x − z plane defined in figure 3.2. Thus, Pe cosψ is
along the z−axis and Pe sinψ along the x−axis. See figure 2 in more detail
in the reference [89]. This cross section is mainly divided into two parts:
(1) the unpolarized cross section dσ0/dΩ that is known as the Klein-Nishina
formula; and (2) two terms, which contain dσ1/dΩ and dσ2/dΩ, that include
polarization effects from the electron and the photon. σ+ is chosen for the
case of the longitudinal component of the photon spin parallel to its direction
of motion [89]. The sign for Pe is positive for electron spins parallel to incident
electron direction, which is the z−axis.

Since the photon detector is an electromagnetic calorimeter and mea-
sures energy spectra of the scattered photon, the cross sections per unit en-
ergy for the scattered photon are relevant, as we will see later. Each cross
section dσi/dΩ in the electron rest frame can be transformed to the labo-
ratory frame in terms of the normalized energy ρ, defined in (3.14), by the
following relation

d2σi
dφdρ

=
d2σi

dφd cos θ′
d cos θ′

dρ
=

dσi
dΩ

d cos θ′

dρ
,

where i = 0, 1, 2. Therefore, the Compton cross section in the laboratory
frame can be expressed as

d2σ±
dφdρ

=
d2σ0

dφdρ
∓ PePγ

[

d2σ1

dφdρ
cosψ +

d2σ2

dφdρ
sinψ cosφ

]

. (3.16)
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To transform each cross section dσi/dΩ to d2σi/dφdρ, it is necessary to
express k0, k, and cos θ0 in terms of more convenient laboratory variables.
Using (3.6) and (3.8), we obtain

k =
kf

γ(1 + β cos θ′)
. (3.17)

And using (3.5) and (3.17), k0 and k are substituted into (3.9). Thus, cos θ0
can be expressed as

cos θ0 = − cos θ′ = −
mγ
kf

− m
kiγ(1+β)

− 1

1 − mγβ
kf

≈ 1 − ρ(1 + a)

1 − ρ(1 − a)
, (3.18)

In addition, (3.5), (3.17), and (3.18) give the following relations

(k0 − k)2

kk0

=
ρ2(1 − a)2

1 − ρ(1 − a)
,

k

k0

− k0

k
= 1 − ρ(1 − a) +

1

1 − ρ(1 − a)
,

1 − k

k0

= ρ(1 − a),

1

2

k2

k2
0

d cos θ′

dρ
= a,

sin θ0 =
kf
k

sin θ ≈ γθ(1 + cos θ′) =

√

4aρ(1 − ρ)

1 − ρ(1 − a)
.

Therefore, the three cross sections in terms of the normalized energy ρ and
the kinematic parameter a, which is defined in (3.13), are

d2σ0

dφdρ
= r2

0a

[

ρ2(1 − a)2

1 − ρ(1 − a)
+ 1 +

(

1 − ρ(1 + a)

1 − ρ(1 − a)

)2
]

, (3.19)

d2σ1

dφdρ
= r2

0a

[

(1 − ρ(1 + a))

(

1 − 1

(1 − ρ(1 − a))2

)]

, (3.20)

d2σ2

dφdρ
= r2

0a

[

ρ(1 − a)

√

4aρ(1 − ρ)

1 − ρ(1 − a)

]

. (3.21)

If the electron polarization has a transverse component, the azimuthal
symmetry is broken in the Compton scattering. In that case, (3.21) plays a
role as a transverse spin contribution to the cross section. For an effect of two-
photon exchange in the elastic electron-nucleon scattering, we are interested
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in the transverse component. However, we do not consider the transverse
component in this thesis, as mentioned in chapter 1. Therefore, the Compton
cross section for the longitudinal spin contribution is obtained by integrating
over all azimuthal angles φ,

dσ±
dρ

=
dσ0

dρ
∓ PePγ cosψ

dσ1

dρ
. (3.22)

The differential cross section now has two parts: (1) a spin independent part
dσ0

dρ
; and (2) a spin-dependent part PγPe cosψ dσ1

dρ
. Note that we call dσ1

dρ
the

spin-dependent part for simplicity. Figure 3.4 shows two differential cross
sections as a function of the normalized photon energy ρ.

When θ → θγ , i.e. the scattering angle is close to 1/γ as mentioned in
section 3.1.2, the above cross section (3.22) becomes the unpolarized cross
section

dσ±
dρ

=
dσ0

dρ
, (3.23)

where
dσ0

dρ
= πr2

0ρ(1 + 3a2),

and the spin-dependent part of the cross section dσ1/dρ becomes zero at
ργ , which is also shown in figure 3.4. Thus, the Compton cross section is
independent of the polarizations of the electron and the photon at θγ . The
precise values of the scattered angle θγ and the normalized energy ργ are
listed in table 3.1.

3.1.3 Compton Asymmetry

The significance of the cross section σ± can be understood by computing the
theoretical Compton asymmetry that is defined as

Ath(ρ) =
dσ+/dρ− dσ−/dρ

dσ+/dρ+ dσ−/dρ
= −PePγ cosψ

dσ1/dρ

dσ0/dρ
.

For the sake of simplicity, we redefine the theoretical Compton asymmetry
as

ACTth (ρ) =
dσ1/dρ

dσ0/dρ
. (3.24)

It is also called the longitudinal Compton asymmetry. Since the kinematic
parameter a is a constant owing to the kinematics, ACTth is only a function
of the normalized photon energy ρ. And the asymmetry is represented as a
function of the angle θ due to (3.14). The theoretical Compton asymmetry
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Figure 3.4 The differential Compton cross sections. The top picture is the
spin independent part dσ0/dρ and the bottom picture the spin-dependent
part dσ1/dρ with four different electron energies and green laser light (2.41
eV). ργ with four different incident electron energies and the calculated
cross sections at ρ = 0, 1 are shown.
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is plotted in figure 3.5 and has interesting features: (1) ACTth (ρ) becomes zero
when ρ → ργ and (2) ACTth (ρ) has the largest asymmetry when ρ → 1. In
chapter 6, we study these interesting features of the theoretical Compton
asymmetry in measurement of the experimental Compton asymmetry ACTexp.

3.2 Polarimeter

As mentioned earlier, the polarization of the electron beam Pe can be ob-
tained by the following relation

ACTexp =
n+ − n−
n+ + n−

= PePγA
CT
ap , (3.25)

where cosψ = 1 is assumed and ACTap is called an analyzing power. The
number of the scattering events of the different helicity states, denoted by
the ± symbol, is [90]

n± = L±T±σ
tot
± , (3.26)

where L± is the luminosity, T± the total measurement time, and σtot
± the

total scattering cross section. The expression of n± varies according to the
measurement method that is applied to obtain the experimental Compton
asymmetry ACTexp.

There are three variations of the measurement: (1) differential polariza-
tion measurement; (2) integrated polarization measurement; and (3) energy
weighted polarization measurement [91]. In differential polarization measure-
ment, the numbers of the Compton scattering events ni+ and ni− are measured
as a function of the normalized energy ρ per one energy bin ∆ρi, where i is
the bin number. The electron polarization per each bin, P i

e , can be calculated
by the asymmetry from ni+ and ni−. Thus the weighted average of P i

e is the
electron polarization Pe. In integrated polarization measurement, the num-
bers of the scattering events integrated over the normalized energy range,
N+ and N−, can be measured. Using the asymmetry from N+ and N−, the
electron polarization Pe can be determined. In energy weighted polarization
measurement, the deposited energies integrated over the normalized energy
range, E+ and E−, are measured and the asymmetry can be calculated by
using E+ and E−. Therefore, the electron polarization Pe can be calculated.

For example, using differential polarization measurement, the number of
the events per ∆ρi is given by

ni± = L±T±

∫

∆ρi

dρ
dσ0

dρ
ǫ(ρ)

[

1 ∓ PePγA
CT
th (ρ)

]

, (3.27)
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Figure 3.5 The theoretical asymmetry ACT
th . The top picture is the asym-

metry as a function of ρ and the bottom one the asymmetry as a function
of the laboratory angle θ with four different electron energies and green
laser light (2.41 eV). The calculated asymmetries, ργ , and θγ are shown.
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where dσ0/dρ is the unpolarized differential cross section defined in (3.22),
ACTth the theoretical Compton asymmetry defined in (3.24) and ǫ(ρ) the de-
tection efficiency of the photon detector. Here, we assume that cosψ = 1 and
ǫ(ρ) = ǫ+(ρ) = ǫ−(ρ).

3.2.1 Measurement Time and the Luminosity

The most interesting parameter during polarization measurement is the mea-
surement time that is required to achieve an accuracy ∆Pe/Pe. The required
measurement time t is [91]

t ∝ 1

L · σ · A2 · (∆Pe/Pe)2
, (3.28)

where the mean luminosity L with the total time T = T+ + T− is

L =
L+T+ + L−T−

T
, (3.29)

σ is the detector efficiency-weighted average of the unpolarized cross section
over the range of the energy threshold ρt to the maximum energy

σ =

∫ 1

ρt

dρǫ(ρ)
dσ0

dρ
(ρ), (3.30)

and A2 is a quantity that has three different forms for the three polariza-
tion measurement methods. Since the differential polarization measurement
method has the largest A2, the required measurement time is the shortest
one. In this case, A2 is given by

A2 =

∫ 1

ρt
dρǫ(ρ)dσ0

dρ
(ρ)
[

ACTth (ρ)
]2

∫ 1

ρt
dρǫ(ρ)dσ0

dρ
(ρ)

. (3.31)

To achieve the shortest measurement time, maximizing the mean lumi-
nosity L is far preferable to maximizing σ, A2, or both, because σ and A2

are determined by kinematics, detector efficiency, and measurement methods
and ∆Pe/Pe is the desired accuracy. If the energy of the electron beam is
855 MeV, the energy of the laser beam 2.41 eV for green light, the photon
polarization Pγ = 1.0, the electron polarization Pe = 0.8 with no background
assumption, the mean luminosities L with 5%, 3%, and 1% accuracies for 15
min. are 4.59, 12.76, and 114.86 kHz/barn, respectively, according to the re-
sults obtained in [92]. In addition, the luminosity L strongly depends on the
beam focusing and beam crossing angle αc between the electron and the laser
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beam. The expected luminosities of different laser beam profiles were calcu-
lated [93]. The maximum of the expected luminosity is under 4 kHz/barn at
αc = 0 and the luminosity decreases to around 1 kHz/barn when αc increases
up to 0.1 mrad.

3.2.2 Requirements for High Luminosity

According to the study on the luminosity L and the crossing angle αc [91],
the total luminosity Ltot is

Ltot ∝ C · PL, (3.32)

where C = (1 + cosαc)/sinαc and PL is the laser power, when the angular
divergences of the electron and the laser beams are smaller than αc. As a
result, maximum power PL of a laser and a minimum crossing angle αc are
crucial in order to achieve maximum luminosity of a Compton backscattering
polarimeter. Here, two cavity designs are discussed here.

Fabry-Pérot cavity design

Inside a laser device, two mirrors and a gain medium form an optical resonant
cavity. One of the mirrors is a highly reflective mirror and the other one
is a partly reflective mirror. A fraction of the photons inside the cavity is
transmitted through the partly transmissive mirror. These photons, the laser,
enter an additional external cavity with two highly reflective mirrors. Since it
is necessary to build up the power of the laser inside the external cavity, this
cavity design needs a feedback control system between the laser device and
the external cavity. This design is called the Fabry-Pérot cavity design. The
Compton polarimeter built at TJNAF uses the external Fabry-Pérot cavity
that has a fixed crossing angle αc = 23 mrad (C = 87) due to a safety of the
mirrors [94, 95] . The maximum power of the cavity was measured at around
1600 W using a 229 mW laser with 85% circularly polarized light.

Internal cavity design

One can extend the laser cavity length and replace a partly reflective mirror
with a highly reflective mirror. The power of the laser is built up inside one
internal cavity with two highly reflective mirrors. Thus, in an internal cavity
design, the feedback control system is non-essential. As a result, the internal
cavity is much less complex than the Fabry-Pérot cavity. We use this internal
cavity so as to build the A4 Compton backscattering polarimeter [93]. A
maximum cavity power of 83 W with 90% circularly polarized light has been
achieved by using a 10 W laser [96]. This maximum power achieved by the
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Figure 3.6 A schematic top view of the A4 Compton backscattering po-
larimeter.

internal cavity is less than the external cavity one. However, using a beam
control system that will be discussed in chapter 5, we can make the crossing
angle αc smaller than the fixed crossing angle of the external cavity. It is
easy to achieve the crossing angle αc below 0.5 mrad (C ≥ 4000) with the
beam control system. If we consider only αc and PL to estimate Ltot, the
total luminosity for the internal cavity design is 2.4 times higher than the
Fabry-Pérot cavity design one.

3.2.3 The A4 Compton Backscattering Polarimeter

The A4 Compton backscattering polarimeter, a destruction-free tool for elec-
tron polarization measurement, is shown in figure 3.6 schematically. The po-
larized electron beam is guided into the interaction region between the two
quadrupole magnets by the first two dipole magnets. The second two dipole
magnets guide the scattered electron beam into a scintillating fiber electron
detector and the main electron beam, independent of the scattering, to the
parity violation experiment. Each dipole magnet has a shunt that is con-
nected in parallel to the dipole magnet in order to fine-tune the electron
beam trajectory. This topic will be discussed in chapter 5. Two quadrupole
magnets are installed so as to compensate horizontal beam dispersions that
are caused by the four dipole magnets. This issue will be taken up in more
detail in chapter 4. Transverse positions of the electron beam and the laser
beam are determined by three wire scanners, installed in the interaction re-
gion. Using this position information and control of shunts, the optimum
overlap can be achieved. We will discuss them in chapter 5.

The polarized photon beam is generated by an Argon-Ion laser, a Coher-
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Figure 3.7 New Stokes meter [99] (all covers removed)

ent Innova 425. It is operated on a single line (514.5 nm). The right and left
circularly polarization states of the photon beam can be changed by a rotat-
able quarter-wave plate. Only 0.6% laser light is coupled out by one of the
vacuum windows, which is named W45 in figure 3.6, and is used to measure
the polarization state of the photon beam by a Stokes meter. The prototype
Stokes meter has been successfully operated since 2003 [93, 97, 98]. The new
Stokes meter [99] is under development and its drawing is shown in figure
3.7.

The total length of the polarimeter internal cavity is approximately 8 m
and the length of the interaction region is 2 m. Since the cavity length is
long and all optical components are attached to vacuum chambers directly
or indirectly, mechanical vibrations that come from vacuum pumps, cooling
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Figure 3.8 Laser beam axis variations with and without the stabilization
system. Three top plots are obtained without the stabilization system and
bottom plots with the stabilization system. The rightmost plots show the
fluctuation about a linear fit to the data. The beam axis stabilization
system lessens the laser beam variations significantly [101].

water flow of the dipole and quadrupole magnets, and so on can adversely
affect the stability of the laser beam position. A stabilization system of the
laser beam position has been installed to keep the instability as small as pos-
sible to achieve the better overlap and high laser power [100]. The laser posi-
tions on the beam axis are measured by position sensitive detectors (PSDM1,
PSDM2, PSDW45) and led to a feedback system that optimizes the align-
ment of the laser mirrors according to the measured displacements. There-
fore, two of mirrors are attached to piezo platforms. Figure 3.8 shows the
laser beam positions with and without the stabilization system. During 30
min., the horizontal fluctuations are reduced from 4.2 to less than 0.8 µm
and the vertical one are reduced from 9.2 to less than 0.8 µm. And the hor-
izontal long-terms drifts of the laser beam position are changed from 21 to
0.3 µm/h and the vertical long-terms drifts are significantly reduced from 13
to 0.6 µm/h [101].

Two detectors, a photon and an electron detector, play an important
role in the A4 Compton backscattering polarimeter. The photon detector
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is composed of nine LYSO1 crystals in the form of the 3 × 3 matrix. The
dimensions of each LYSO crystal are 20 × 20 × 200 mm and each crystal is
wrapped by a reflective foil and an additional aluminized-Mylar foil [102]. The
radiation length X0 of the LYSO crystal is 1.22 cm, its decay time is 41 ms,
and its peak emission wavelength is 420 nm. The LYSO photon calorimeter
is shown in figure 3.11 and the whole detector is in a lead cylinder so as to
reduce background rates.

As mentioned before, the scattered electrons have less energy than the
main electron beam that is independent of the scattering, and have larger
transverse displacement than the main one. Therefore, these scattered elec-
trons can be detected by the electron detector. The fibers that are hit by the
scattered electrons are used to select the corresponding energy range of the
scattered photons by a coincidence between both detectors. Figure 3.9 shows
a diagram of the data acquisition electronics for the A4 Compton backscat-
tering polarimeter.

The prototype electron detector that was composed of 24 scintillating
fibers improved the ratio of signal to noise from 1:7.1 to 1:2.1 [92, 97], and
gave a limited possibility to analyze the coincidence and background spectra.
A new fiber detector, especially a fiber bundle array and mechanical compo-
nents, was designed to improve each ADC signal quality, detector geometry,
and a movement of the detector. This issue will be discussed in detail in
chapter 6.

Figure 3.10 shows the results of an asymmetry measurement with the
854.3 MeV electron beam and 92% circularly polarized light, obtained in
August 2005 [96]. This measurement was done by a BaF2 calorimeter as a
photon detector and data taking time of one run is 5 minutes. As described
before, the polarized electrons are produced by the strained layer GaAs crys-
tal with circularly polarized laser light produced from the MAMI laser sys-
tem and its helicity is changed within 20 ms. The data around of the green
solid line were taken with a λ/2 plate inserted between the laser system and
the GaAs crystal. This reverses the polarization of the electron beam and is
used to study systematic effects. Gray bars are runs without the laser beam
in order to measure the background. The 5 hours interruption of the asym-
metry measurement exists owing to test measurements of the trigger system.
Because of the data consistency, this measurement verified the stability of
the Compton polarimeter at the early stage.

1Saint-Gobain PreLude R© 420 (Lu1.8Y0.2SiO5 : Ce)
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Figure 3.9 A diagram of the data acquisition electronics to take coinci-
dence spectra and electron spectra. There are 9 analog signals of the pho-
ton detector and 24 signals of the electron detector. FIFO is a linear fan-
in fan-out module, CFD a constant fraction discriminator, LED a leading
edge discriminator, P − delay a programmable delay unit,

∑

the sum of
9 analog signals of the photon detector, and GATE the gate input of each
ADC module.
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Figure 3.10 The Compton asymmetry as a function of the run number [96]

Figure 3.11 The LYSO photon calorimeter without a lead cylinder, which
reduces background rates [102]. Above, a Mu-metal cylinder for reducing
influence of dipole magnetic fields; below right, a photomultiplier orienta-
tion plate for the same purpose.





Chapter 4

Compton Backscattering
Polarimeter Chicane

In the last chapter, we have described what the Compton backscattering po-
larimeter is and how it works for the electron beam polarization measure-
ment. In addition, we have presented the A4 Compton backscattering po-
larimeter. In this chapter, we mainly study an electron beam optics of the
A4 Compton backscattering polarimeter. These optics consist of four dipole
magnets, that guides electrons along a desired path, and two quadrupole
magnets, which hold electrons close to the path. They are also elements of
an electron beam transport line, which is called a chicane.

The Compton backscattering polarimeter chicane will provide the Comp-
ton interaction region and is able to deliver the electron beam to a target
for the parity violation experiment without any disturbances to the electron
beam. Therefore, in this chapter, we will review the electron beam optics,
describe the chicane elements, and study the basic and important properties
of the chicane for the A4 Compton backscattering polarimeter.

4.1 Beam Optics

In a magnetic field B, a charged particle experiences the Lorentz force F ,
which is

F = qv × B, (4.1)

where v is its velocity and q the charge of the particle. Thus, charged particles
can be guided or focused by that force. This application is called beam optics
or beam dynamics [103, 104].

55
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4.1.1 Reference Particle and Beam Coordinate

To design and realize a beam transport line in an experimental hall, one
should define its start point A and its end point B. A reference trajectory1

defines an ideal line that connects A and B. A particle on the reference
trajectory is called a reference particle and its momentum, the reference
momentum, is denoted as p0. In the first-order approximation, the position
of the reference particle represents a center position of the beam.

If a uniform and static magnetic field perpendicular to the reference tra-
jectory is activated in a region of the beam transport line, charged particles
move along a circular path within that region. The static magnetic field per-
pendicular to the reference trajectory can be generated by a dipole magnet.
The relation between the reference momentum p0 and the magnetic field B0

is expressed by
p0 = q · B0 · ρ, (4.2)

where q is the electric charge of the reference particle and ρ the radius of
curvature of the reference trajectory. Note that (4.2) can be applied not only
to the reference particle but also to any charged particles within the region
of B0. In more practical units, the relation is rewritten in the following form:

33.356 · p0(GeV/c) = B0(kGauss) · ρ(m). (4.3)

A charged beam is a distribution of charged particles. If a position of the
reference particle along the reference trajectory is known, positions of any
other particle, of which the beam is composed, can be defined by introducing
three quantities as follows: a longitudinal component li, a horizontal com-
ponent xi, and a vertical component yi. They are shown in figure 4.1. The
longitudinal component li is the difference in path length between a given
trajectory and the reference trajectory. And three more components are nec-
essary to describe the direction of motion and are defined as follows:

x′ =
px
pt
, y′ =

py
pt
, δ =

∆p

p0
, (4.4)

where p0 is the reference momentum, x′ and y′ the ratios of transverse to
longitudinal components of momentum pt, and δ the fractional momentum
deviation. The ratios x′ and y′ at times are called the horizontal angle and
the vertical angle respectively with respect to p0 because px and py are small
compared with pt [103]. The momentum of a charged particle can be ex-
pressed in terms of p0 and δ as

p = p0 + ∆p = p0(1 + δ),

1It is also called a design trajectory, a design path, or a reference position.
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t
x

y

reference particleT
reference trajectory

xi

yi

ith particle

(xi, yi, li)

Li

ith trajectory

Figure 4.1 Beam coordinate. T represents the travel distance of the ref-
erence particle that travels along the reference trajectory and Li the travel
distance of ith particle along ith trajectory. The difference between T and
Li is given as li = T − Li. And xi is the horizontal position with respect
to the reference trajectory, yi the vertical position, and t the longitudinal
component of the beam coordinate.

and can be done in terms of its components as

p2 = p2
x + p2

y + p2
t .

As a result, we can define a vector x, a single column matrix, that represents
an arbitrary charged particle at a position i along the beam line:

xi =

















xi
x′i
yi
y′i
li
δi

















. (4.5)

4.1.2 Transfer Matrix

In a static magnetic system, the properties of a beam line element can be
described by a transfer matrix M instead of solving (4.1). If a beam line is
composed of a drift space, a dipole magnet, and a quadrupole magnet, the
transfer matrix of the beam line could be constructed by multiplying three
transfer matrices of elements and is

M = Mquad ·Mdipole ·Mdrift, (4.6)
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where Mdrift is the transfer matrix of the drift space, Mdipole the dipole mag-
net one, and Mquad the quadrupole magnet one. Notice that these transfer
matrices Mdrift, Mdipole, and Mquad are independent of each other.

If we define a start point A and an end point B of a beam line, this beam
line is represented by the transfer matrix MBA. At the point A, a charged
particle is described as the vector xA, which is defined in (4.5). Using MBA
and xA, the vector xB that describes the charged particle at B can be written
by

xB = MBA · xA, (4.7)

where MBA can be the transfer matrix of a single element or the resulting
matrix of many elements.

If we assume midplane symmetry, i.e.

Bx(x, y, t) = −Bx(x,−y, t),
By(x, y, t) = By(x,−y, t),

(4.8)

a transfer matrix M in any static magnetic element takes its most simple
form

M =

















R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R34 0 0
R51 R52 0 0 1 R56

0 0 0 0 0 1

















. (4.9)

As a result, the matrix can be decomposed into two-by-two submatrices, and
these submatrices can be treated independently. In the first-order approxi-
mation, the determinant of a transfer matrix is unity whether or not we as-
sume the midplane symmetry [103]. This means that the transfer matrix cor-
responds to an orthogonal transformation. Moreover, since its determinant is
+1, the transfer matrix represents a right-handed coordinate system, which
is shown in figure 4.1.

4.1.3 Collective Description of a Beam

In principle, the vector x of a charged particle along a beam line will be
calculated by using the transfer matrix of the beam line. This method can
describe only one particle at once. Since a beam is composed of many charged
particles, it would be useful to consider many particles at a time. For this
reason, we consider four-dimensional phase space representation so that we
can handle many charged particles at once. For example, the phase space of



4. Compton Backscattering Polarimeter Chicane 59

the beam at a position i along a beam line is written by

phase spacei ≡ {xi, x′i, yi, y′i} . (4.10)

Beam ellipse matrix The contour of the phase space is called a beam
ellipse and contains all possible states of charged particles. The beam ellipse
can be described by a so-called beam ellipse matrix σ. Assuming that the
horizontal plane is independent of the vertical one, the symmetric beam el-
lipse matrix is defined as

σ =

(

σ11 σ12

σ12 σ22

)

, (4.11)

in two-dimensional phase space. The beam matrix can also be expressed in
accelerator notation2:

σ = ǫ

(

β −α
−α γ

)

, (4.12)

where ǫ is a beam emittance. Thus, the area A inside the beam ellipse is
represented by

A = π
√

|σ| ≡ πǫ, (4.13)

where |σ| is the determinant of σ and the relation βγ − α2 = 1 is used. This
relation among Twiss parameters is the result of the properties of the trans-
fer matrix (See section 6.5 in the reference [103]). The beam emittance is
constant along the beam transport line owing to Liouville’s theorem in the
first-order approximation [104, 105].

Using (4.7), we can write the transformation of the beam matrix between
the position A and B as

σ(B) = MBA · σ(A) ·MT
BA, (4.14)

where MT is the transpose of M .
And, in the two-dimensional phase space, the beam matrix elements σij

can define maximum beam extents xmax and x′max and a correlation r12 be-
tween them as

xmax =
√
σ11, x′max =

√
σ22, r12 =

σ12√
σ11σ22

. (4.15)

2It is also called Courant-Snydr, beam ellipse, or Twiss parameters



60 4.1. Beam Optics

Gaussian distribution A beam composed of N charged particles can be
characterized as a bivariate Gaussian distribution in the two-dimensional
space if there is no correlation between the transverse phase spaces [106, 107].
The Gaussian distribution is given by

f(xi) =
1

2π
√

|σ(i)|
exp

[

−1

2
x
T
i · σ−1(i) · xi

]

, (4.16)

where xi is the single column matrix at a position i along a beam line, x
T
i

the transpose matrix, σ(i) the first-order beam matrix, σ−1(i) the inverse
matrix, and |σ(i)| its determinant. Using (4.5) and (4.11), the distribution is
expressed as

f(x, x′) =
1

2π
√

σ11σ22(1 − r2
12)

exp

[

− 1

2(1 − r2
12)

(

x2

σ11
− 2σ12xx

′

σ11σ22
+
x′2

σ22

)]

,

and can be rewritten in accelerator notation as

f(x, x′) =
1

2πǫ
exp

[

− 1

2ǫ

(

γx2 + 2αxx′ + βx′2
)

]

,

where ǫ is the beam emittance, α = −σ12/ǫ, β = σ11/ǫ, and γ = σ22/ǫ.

Beam emittance One standard deviation, one σ, of the Gaussian distribu-
tion in the beam phase space defines the electron beam emittance [108, 109].
The horizontal (h) and vertical (v) emittances of the MAMI electron beam
with an energy of 854.3 MeV are [110]

ǫNh = 13π mm · mrad, ǫNv = 0.84π mm · mrad, (4.17)

respectively. They are normalized emittances ǫN that are defined when par-
ticles are accelerated. Since the chicane is a beam transport line, it is neces-
sary to convert the normalized emittance ǫN to the emittance ǫ. The relation
between them is [111]

ǫNh,v =

(

p

mec

)

ǫh,v = βγǫh,v, (4.18)

where γ the Lorentz factor,me the rest mass of the electron, p the momentum,
c the speed of light, and β the velocity in terms of the speed of light. Table
4.1 shows the beam emittance inside the chicane for different electron beam
energies.



4. Compton Backscattering Polarimeter Chicane 61

Ee (MeV) ǫh (π10−3mm · mrad) ǫv (π10−3mm · mrad)
854.30 7.78 0.50
570.40 11.65 0.75
315.25 21.07 1.36

Table 4.1 Beam emittance inside the chicane at different beam energies.
These emittance are calculated by (4.18). ǫh denotes horizontal beam emit-
tance and ǫv does vertical one. We assume that the MAMI beam emittance
at 570.40 and 315.25 MeV are the same as the emittance at 854.30 MeV.

4.2 Chicane Components

The A4 Compton polarimeter chicane has many components: dipole magnets,
quadrupole magnets, vacuum pumps, wire scanners, laser optical devices,
cooling system, and so on. If we consider the properties of the electron beam,
the chicane consists of four dipole magnets, two quadrupole magnets, and
drift spaces. The other components do not contribute to the electron beam
properties of the chicane. As a result, in this section, we focus on these
components that contribute significantly to the electron beam properties.

4.2.1 Drift Space

A drift space is a region between magnetic components. Thus, it is a field
free region. The transfer matrix of a drift space is written by

Md =

















1 d 0 0 0 0
0 1 0 0 0 0
0 0 1 d 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















, (4.19)

where d is the length of the drift space. Figure 4.2 shows the definition of
all drift spaces of the chicane, and their corresponding lengths are listed in
table 4.2.

4.2.2 Dipole Magnet

A vertical static magnetic field B can be generated by two poles of a dipole
magnet3. Two poles have different polarities. Therefore, we call B a dipole

3It is also called a bending magnet



62 4.2. Chicane Components

Figure 4.2 Chicane floor layout. di denotes the drift space, scA, scB,
and scC are three wire scanners that will be described in section 5.1. And
o connotes the geometric center of the chicane, DIPL the dipole magnets,
and QUAD the quadrupole magnets. The drift spaces from d2 to d6 are
introduced in order to compare electron beam profiles of a simulation with
scanner measurement ones at three wire scanner positions.

drift space (m)
d0 1.00
d1 0.23
d2 0.22
d3 0.67
d4 0.04
d5 0.63
d6 0.22
d7 0.23
d8 1.00

Table 4.2 The lengths of the drift spaces were obtained from a CAD
drawing. This drawing is shown in figure 4.9.
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Figure 4.3 Cross section of a dipole and a quadrupole magnet. The beam
is going into the paper according to the beam coordinate in figure 4.1.
g is the pole gap of the dipole magnet and a the aperture radius of the
quadrupole magnet. The magnetic polarities N and S, which are shown
here, define the sign of the magnetic field as being positive.

magnet field. The poles are surrounded by a coil that an electric current I
flows through. In more practical units, the relation between them is

nBwI(A · turns) = 795.77 · B(kGauss) · g(cm), (4.20)

where nBw is the winding number of the coil around the poles, nBwI the total
current, and g is the pole gap that is the distance between the poles. Figure
4.3 shows the cross section of a dipole magnet schematically [112, 113].

Sector magnet A sector dipole magnet has an entrance and exit pole face
perpendicular to the reference trajectory of the beam. Its first-order transfer
matrix is given by


















cos kxld
1

kx
sinkxld 0 0 0 h

k2
x

(1−cos kxld)

−kx sin kxld cos kxld 0 0 0 h
kx

sinkxld

0 0 cos ky ld
1

ky
sin kyld 0 0

0 0 −ky sin kyld cos kyld 0 0
h

kx
sinkxld

h

k2
x

(1−cos kxld) 0 0 1 − h2

k3
x

(kxld−sinkxld)+
ld
γ2

0 0 0 0 0 1



















,

where ld is the magnetic length that is the length of the reference trajectory
of the beam inside the sector magnet, the curvature h is equal to 1/ρ, γ is
the Lorentz factor, and kx and ky are

k2
x = (1 − n)h2, k2

y = nh2,
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where the normalized field index n is

n = − 1

hB0

∂B

∂x
,

where x is the transverse coordinate and B0 the reference trajectory magnetic
field. For more detailed information, see the references [103, 112]. If n is zero,
the first-order transfer matrix of the sector magnet has a simple form:

Msec =

















cos θα ρ sin θα 0 0 0 ρ(1−cos θα)

− 1
ρ

sin θα cos θα 0 0 0 sin θα

0 0 1 ld 0 0
0 0 0 1 0 0

sin θα ρ(1−cos θα) 0 0 1 −ρ
“

θα(1− 1

γ2 )−sin θα

”

0 0 0 0 0 1

















, (4.21)

where ρ is the radius of curvature and θα the bending angle, which is equal
to ld/ρ. As we see in the above equation, the magnet acts as a drift space in
the vertical plane [103]. We assume that the normalized field derivative n of
the dipole magnet is equal to zero.

Pole face rotation matrix If the reference trajectory is not perpendicular
to the boundary at the pole face, a so-called fringing field is generated. This
field makes an additional focusing or defocusing effect of the dipole magnet
depending on the pole face rotation angle. The pole face rotation angle β
is defined as the angle between the pole face boundary and the horizontal
axis of the reference trajectory. The positive rotation angle means that the
defocusing effect is in the horizontal, strictly bending, plane and the defo-
cusing effect exists in the vertical plane. For more detailed information, see
the reference [112] page 126 or figure 3.2 in the reference [103]. The transfer
matrix of the pole face rotation is

Mβ =



















1 0 0 0 0 0
tanβ
ρ0

1 0 0 0 0

0 0 1 0 0 0

0 0 − tan(β−ψ)
ρ0

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1



















, (4.22)

where ρ0 in meters is the bending radius of the reference trajectory and

ψ = κ1

(

g

ρ0

)(

1 + sin2 β

cos β

)[

1 − κ1κ2

(

g

ρ0

)

tanβ

]

, (4.23)
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radius of curvature ρ (m) 1
magnetic field B (kGauss) 12
material HYPERM 0
weight (t) 5
pole gap g (mm) 63.90 ± 0.02
current I (A) 158
number of turns nBw (turns) 392
ampere turns nwI (A·turns) 62000
β1 and β2 (◦) 0 and 26.26

Table 4.3 The original properties of the dipole magnet.

where g is the pole gap in meters, κ1 an integral related to an extent of
the fringing field of the dipole magnet, and κ2 a second integral related to
the extent of the fringing field [114]. We assume that the dipole magnet is
a square-edged nonsaturating magnet. With this assumption, κ1 = 0.45 and
κ2 = 2.8 are used to do the chicane simulation [112].

First-order transfer matrix with fringing fields Each dipole magnet
has its own entrance pole face angle β1 and exit angle β2 because of the
geometry of the chicane. Using (4.21) and (4.22), the first-order transfer
matrix of the dipole magnet with fringing fields is

Mdipole = Mβ2
·Msec ·Mβ1

. (4.24)

Dipole magnet properties The dipole magnets, which are components
of the A4 Compton backscattering polarimeter, were designed originally for
a 360 MeV electron beam. The initial properties of the magnet are listed in
table 4.3. Modification of the magnets is necessary for the chicane of the A4
Compton backscattering polarimeter. Using (4.3), the maximum magnetic
field B = 12 kGauss of the original properties and the reference momentum
P0 = 1.3 GeV/c were used to calculate the radius of the curvature of the
reference trajectory and the effective magnetic length of the dipole magnet
as follows:

ρ0 = 3.61 m, ld = 0.73 m. (4.25)

We removed four coil plates per each original dipole magnet because of dam-
aged coil plates. Since nBw per each coil plate is 28, the modified nBw of the
dipole magnet is 280. Since coils in each coil plate were packed and invisible,
we cannot count nBw directly. Thus, using (4.20) and magnetic field measure-
ment that will discussed in chapter 5, we can estimate it. Twelve measure-
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DIPL β1 (mrad) β2 (mrad)
20 0 −114.81
21 +114.81 0
22 0 +114.81
23 −114.81 0

Table 4.4 Pole face rotation angles of each dipole magnet.

ments provide the mean of nBw = 278 and its standard deviation 4. In addi-
tion, modified pole face rotation angles of the magnets are listed in table 4.4.

4.2.3 Quadrupole Magnet

The reference trajectory passing through a quadrupole magnet is a straight
line and the trajectories of the other particles composing the beam are focused
in one plane and are defocused in the other one. Figure 4.3 shows a cross
section of the quadrupole magnet that has a horizontal focusing and a vertical
defocusing. A magnetic field B0 at the pole tip is generated by a current I
and their relation [115] is

nQwI(A · turns) = 398 · B0(kGauss) · a(cm), (4.26)

where nQw is the number of turns per pole, a the aperture radius. The so-called
effective magnetic length of the quadrupole magnet is given by

lq = lm + c · a, (4.27)

where lm is the mechanical length of the pole piece and c a constant vary-
ing between 0.8 and 1.1 depending on dimensions and a position of the
quadrupole magnet coil.

The main purpose of the quadrupole magnets is to minimize the spatial
and angular dispersion, which will be described in section 4.3.2. To minimize
them, we should find the corresponding pole-tip magnetic field B0 that will
be taken up in section 4.3.3.

Quadrupole transfer matrix The first-order transfer matrix of a hori-
zontal focusing quadrupole with a positive magnetic field is given by
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where lq is the effective magnetic length, γ is the relativistic factor. In addi-
tion, k2

q is written as

k2
q =

G

(Bρ)R
,

where (Bρ)R is the magnetic rigidity of the reference trajectory and the
gradient G is

G =
B0

a
.

If the magnetic field is negative, the first two diagonal submatrices are inter-
changed. As a result, the quadrupole magnet defocuses an electron beam in
the horizontal plane and focuses it in the vertical plane.

Quadrupole magnet properties The mechanical length lm and the ra-
dius of the aperture a for the quadrupole magnets used in the chicane are

lm = 200 mm, a = 40 mm. (4.28)

The constant c, which defines the fringing field effect of the quadrupole mag-
net, is chosen as an average value between 0.8 and 1.1 by the suggestion of a
former MAMI engineer [116]. Thus c = 0.95 and lq = 238 mm.

4.3 Study on the Chicane

Since the four dipole magnets, which define the geometry of the chicane
for the A4 Compton backscattering polarimeter, are sources of synchrotron
radiation when an electron beam is bent inside them. Thus, the synchrotron
radiation might be one of disturbances to the parity violating experiment.
However, because this subject is outside the scope of the main concern for
this thesis, which is a beam control system, we will study an effect of the
synchrotron radiation in appendix A. Thus, in this section, we consider only
the well-known disturbance, which is known as dispersion. And, we study an
periodic system for the chicane and a method of reproducing the idealized
beam line with a computer simulation.

4.3.1 Dispersion

If there are dipole magnets in a beam line, dispersion functions are introduced
in order to describe a correlation of momentum with transverse position [112].
As mentioned before, since the midplane symmetry is assumed, (4.9) can be
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split into the horizontal plane and the vertical one. Using (4.7), the horizontal
plane is





xB
x′B
δB



 =





R11 R12 R16

R21 R22 R26

0 0 1









xA
x′A
δA



 . (4.29)

Thus,

xB = R11xA +R12x
′
A +R16δA, x′B = R21xA +R22x

′
A +R26δA, (4.30)

where R16 represent the position dispersion function Dx and R26 the angular
dispersion function D′

x respectively. We should minimize the dispersion at the
end of the chicane with two quadrupole magnets, which were installed in the
center region of the chicane. Finding two optimized magnetic field strengths
of the quadrupole magnets is one purpose of the simulation. This issue will
be taken up later in section 4.3.3.

4.3.2 Periodic System

To study beam properties and monitor beam profiles along the chicane pre-
cisely, it is necessary to measure beam profiles at the entrance of the chicane
[117]. But we have no device to do the measurement, and there is not enough
room for a new device. To overcome this problem and to understand the
properties of the electron beam, we therefore select a periodic system for the
chicane even if the chicane is a single pass beam transport line. The periodic
system transfers a region in phase space from the entrance to the exit of the
chicane without first-order change [103], which can be expressed in terms of
the Twiss parameters as follows:





β
α
γ





exit

≡





β
α
γ





entrance

. (4.31)

As a result, we can determine initial Twiss parameters, which are β, α, and
γ, of the chicane, which set off a chain of advantages: (1) we calculate the
beam size along the chicane; (2) we decide a Rayleigh length of the electron
beam in the interaction region, so that we can estimate the luminosity of
the A4 Compton backscattering polarimeter; and (3) we use the initial Twiss
parameters as input values of the chicane simulation. Note that these advan-
tages are ideal-properties of the chicane.
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Initial Twiss parameters

The transfer matrix of the chicane by (4.9) is

Mcomponent =

(

R11 R12

R21 R22

)

, (4.32)

where Rij is the element of the transfer matrix. And the transfer matrix with
the periodic condition can be written in terms of the Twiss parameters [103]
as

Mperiod =

(

cosµ+ α sin µ β sinµ
−γ sinµ cosµ− α sin µ

)

, (4.33)

where µ is the phase advance per period. Thus, since the two transfer matrices
are the same

Mcomponent ≡Mperiod, (4.34)

one can calculate that µ is

µ = cos−1

(

R11 +R22

2

)

, (4.35)

and the Twiss parameters are

α =
R11 − R22

2 sinµ
, (4.36)

β =
R12

sin µ
, (4.37)

γ = − R21

sin µ
. (4.38)

Using (4.12) and (4.15), α, β, and γ are used to calculate the beam size
along the chicane and are the input values of the chicane simulation. Note
that (4.34) is only valid for the following condition [103, 105].

|Tr(M)| = |R11 +R22| ≤ 2, (4.39)

where Tr(M) is the trace of the transfer matrix M . The above condition
is strongly related with two quadrupole magnets in the chicane and will be
investigated later.

Electron beam Rayleigh length

The periodic system gives a waist condition of the electron beam at the center
of the chicane, which is o in figure 4.2. At the waist position denoted by sw,
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xw

√
2xw

√
2xw

sR

Figure 4.4 The definition of the Rayleigh length sR. The red solid line is
the beam envelope. xw is the beam transverse size at the waist position.

there are the minimum transverse beam size and an upright phase ellipse,
i.e. αh,v = 0 and γh,v = 1/βh,v. For a Gaussian beam, the Rayleigh length sR
is defined as the distance from the waist to a position where the beam size is
increased by a factor

√
2 in figure 4.4. As the electron beam can be described

by a Gaussian beam, as mentioned in section 4.1.3, we can calculate sR of
the electron beam.

The transverse beam sizes are given by

xh =
√

ǫhβh xv =
√

ǫvβv, (4.40)

where ǫ is the emittance and β the Twiss parameter, and the Rayleigh con-
dition is

xR =
√

2xw,

where xR is the transverse beam size at sR and xw at sw. Using (4.40) we
obtain

βR = 2βw. (4.41)

As there is only drift space in the interaction region of the chicane, we
can use the well-known formula

β(s) = β0 − 2α0s+ γ0s
2,

where β0, α0, and γ0 are Twiss parameters at an initial position s0 and β(s)
at the distance s from s0. Therefore, βR from at the waist position is

βR = βw +
s2
R

βw
.

Thus, using (4.41), we have the remarkably simple result

sR = ±βw, (4.42)

where its unit is meter. If we calculate βw at the waist position, this cor-
responds to the Rayleigh length sR of the electron beam. Note that sR is
independent of the electron beam energy.
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4.3.3 The Chicane Simulation with TRANSPORT

The TRANSPORT program uses a matrix formalism to design static mag-
netic beam transport systems [112]. A beam line is described as a sequence of
elements in the simulation of the TRANSPORT program. As mentioned in
section 4.2, such elements are the dipole magnets, the quadrupole magnets,
and the drift spaces. Furthermore, in the simulation program, we must define
additional information that can describe initial electron beam profiles, types
of the magnets, and the fringing fields of the dipole magnet. In this section,
we assume that a beam centroid, a geometric center of the electron beam
in first order, coincides with the reference trajectory at the entrance of the
chicane. We call it an on-axis beam centroid and will consider an off-axis
beam centroid in section 5.1. Main purpose of the chicane simulation in this
section is to reproduce the reference trajectory and to understand chicane
properties by using the periodic system.

Simulation procedure

The procedure of the chicane simulation has three steps:

• Step 0 calculates the input values of the TRANSPORT simulation.
These are the electron beam energy according to typical results from
MAMI energy measurements, the corresponding beam emittance, which
is listed in table 4.1, and other values as defined in section 4.2

• Step 1 makes one TRANSPORT run with the results of Step 0. The
run returns the transfer matrix M of the chicane. Using (4.34), initial
Twiss parameters can be calculated and are used as additional input
values of the next step. In this step, if we replace the two quadrupole
magnets with the drift spaces, which means both quadrupole magnets
are off, it is impossible to calculate the initial Twiss parameters owing
to a violation of the condition (4.39). Thus, it is important to turn on
both quadrupole magnets so as that the chicane can be described as a
periodic system.

• Step 2 performs another TRANSPORT run with the results of Step

0 and Step 1. For minimizing the dispersions of the chicane, which are
defined in section 4.3.2, this TRANSPORT run has two internal steps.
In the first step, it calculates the transfer matrix of the chicane by the
beam line elements, then in the second step it tries to find quadrupole
magnetic fields in order to satisfy constraints that Dx and D′

x should
be zero.
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Figure 4.5 The reference trajectory with the four dipole magnets and the
two quadrupole magnets in the horizontal plane. The external dimensions
of the magnets are selected arbitrary for plotting purposes.

Simulation results

Here, we show the four results of the ideal chicane simulation: (1) the refer-
ence trajectory of the chicane; (2) the dispersions along the chicane with and
without the quadrupole magnets; (3) the electron beam Rayleigh length; and
(4) the Twiss parameters and the electron beam extents along the chicane.

The reference trajectory Figure 4.5 shows the reference trajectory of
the electron beam. This trajectory is used for further studies of the chicane,
which will be discussed in the next chapter.

The dispersions Figure 4.6 shows the dispersions along the chicane. With-
out the quadrupole magnets, Dx and D′

x are not zero at the end of the chi-
cane. However, if we use the quadrupole magnets, Dx and D′

x are close to
zero at the end. The simulation returns the magnetic field strength for each
quadrupole magnets. Using these magnetic fields, in principle, we can mini-
mize the dispersions.

The electron Rayleigh length and luminosity The treatment as a
periodic structure leads to a waist condition of the electron beam in the
chicane. Therefore, the electron beam Rayleigh length is equal to the Twiss
parameter βw at the waist, which is located in the center of the chicane
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Figure 4.6 Dispersion Dx and D′
x with and without the quadrupole mag-

nets. The left picture is the position dispersion and the right one the angu-
lar dispersion in the horizontal plane. The red solid line shows the effects
of two quadrupole magnets and the blue dotted line shows the dispersion
without the quadrupole magnets. D is the region of a dipole magnet and Q
is the region of a quadrupole magnet. s is the distance along the reference
trajectory. 854.3 MeV is used as the electron beam energy.

denoted as o in figure 4.2. The numerical results, which is provided by the
simulation, are

sehR = 4.97 m, sevR = 12.97 m, (4.43)

where sehR is the horizontal Rayleigh length and sevR the vertical one.
Former studies assumed that sehR and sevR were the same and used seR = 10

m as the electron Rayleigh length so as to estimate the luminosity of the
polarimeter [93, 118]. With this assumption, the luminosity with the zero
crossing angle, i.e. αc = 0, is written as

Lformer(l) =
Ie
e

PLλ

πhc2
2

ǫe + ǫγ
E+1√

(E+1)2+ E
K

(K−1)2
tan−1

(

l

2seR

√

1+EK

1+E/K

)

, (4.44)

where l is the length of an overlap between the two beams, Ie the electron
current, e the electric charge, PL the laser power, λ the wavelength of the
laser, ǫγ the laser emittance, h the Planck constant, c the speed of light,
E = ǫγ/ǫe, K = seR/s

γ
R, and ǫe =

√
ǫeh · ǫev the effective emittance of the

electron beam. For convenience, we call (4.44) the former luminosity Lformer.
Since the assumption is not valid in the case of sehR 6= sevR , we calculate

the luminosity Lpresent(l) as [91]

Lpresent(l) =

∫ l/2

−l/2

dLpresent(z)

dz
dz = 2

∫ l/2

0

dLpresent(z)

dz
dz, (4.45)
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Figure 4.7 Expected luminosities with l = 2 m and the 854.3 MeV elec-
tron beam. Here, the wavelength of the green laser λ = 514.5 nm, its power
PL = 10 W, and Ie = 20 µA are used. Lformer uses the former luminos-
ity definition (4.44) and Lpresent the present luminosity definition (4.45).
Lmax represents the maximum luminosity with the corresponding photon
Rayleigh length sγR. The black dotted line represents the former results
[93, 118]. The former studies used the different electron beam emittances.
The geometry of the Compton polarimeter determined that sγR is 2.5 m.
The expected luminosities are 2.44, 2.47, and 2.48 kHz/barn respectively
at sγR = 2.5 m.

where the differential luminosity dLpresent(z)/dz is

dLpresent(z)

dz
=
Ie
e

PLλ

πhc2
1

s

ǫehs
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Here, we call (4.45) the present luminosity for convenience.
Figure 4.7 shows three expected luminosities when l = 2. The blue solid

line is the result of the former studies [93, 118] and is calculated from (4.44)
by using ǫeh = 8.0π × 10−3 mm · mrad and ǫev = 0.5π × 10−3 mm · mrad. For
convenience, we call this emittance the former emittance ǫformer. In this case,
the maximum luminosity is 4.80 kHz/barn, and the corresponding photon
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l (m) Lpresent (kHz/barn) Lformer (kHz/barn)
ǫpresent ǫpresent ǫformer

2.00 2.44 2.48 2.47
1.50 1.86 1.89 1.89
1.33 1.66 1.69 1.68
1.00 1.26 1.28 1.27
0.50 0.63 0.64 0.64

Table 4.5 Expected luminosities of the former and the present studies.
Here, l is the length of an overlap between the electron and the laser
beams, Lpresent is given in (4.45), and Lformer in (4.44). ǫpresent represents
the emittances listed in table 4.1 and ǫformer does them that were used in
the former studies. l = 1.33 m is the distance between the wire scanner A
and C.

Rayleigh length sγR is 0.41 m. The black dotted line is calculated by using the
same former luminosity equation (4.44), but the different beam emittances,
which is listed in table 4.1, and the maximum luminosity is 4.77 kHz/barn at
sγR = 0.41 m. We call this the present emittance ǫpresent. The red solid line is
calculated from (4.45) by using ǫpresent and the maximum luminosity is 4.86
kHz/barn at sγR = 0.38 m.

Since the geometry of the Compton backscattering polarimeter deter-
mines that the photon Rayleigh length is 2.5 m, these luminosities at sγR = 2.5
m are calculated and are listed in table 4.5. According to these results, we
have no significant difference between the former and the present. Therefore,
the assumption, which is that sehR and sevR were the same and seR = 10 m, of
the former studies is also valid to estimate the luminosity of the polarimeter
with the periodic condition.

Twiss parameters and beam extents Figure 4.8 shows the Twiss pa-
rameters (β and α) and the beam sizes or extents along the chicane with the
quadrupole magnets. In principle, if the electron beam matches this periodic
condition at the entrance of the chicane, the chicane does not disturb the
properties of the electron beam at its exit.

4.4 Installation of the Compton Backscatter-

ing Polarimeter

Before the installation of the polarimeter, the electron beam went through the
whole experimental hall 3 (ExHall3) in a straight vacuum pipe, and entered
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Figure 4.8 Twiss parameters and beam profiles. The initial Twiss param-
eters are the same as the final ones because of the periodic system. The
result is the optimum condition of the chicane. Note that the beam extent
and the beam divergence depend on the electron beam energy, which is
854.3 MeV, because different energies have different emittance.
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into a liquid hydrogen target in experimental hall 4 (ExHall4), in which the
main apparatus for the parity violation experiment is located. The reference
trajectory and the poles of four dipole magnets had been designed according
to the properties of the dipole magnets and a consideration of the dimensions
of the ExHall3. First of all, we measured all basic components that define
the geometry of the chicane as follows: (1) stands for the dipole magnets,
vacuum chambers, and the quadrupole magnets; (2) return yokes, coil plates,
and cooling pipes of the dipole magnets; (3) two quadrupole magnets; and (4)
vacuum components. Then, we drew these components in the CAD drawing.
They restrict available spaces where we install other components that are the
laser optical devices, wire scanners, vacuum pumps, and so on. This CAD
drawing, therefore, has been and will be used to be the position reference of
the A4 Compton backscattering polarimeter. The top view of the polarimeter
is shown in figure 4.9. And, figure 4.10 shows a perspective view.

After removing the straight beam pipe, we defined new beam alignment
marks with several theodolites and the Axyz software of Leica Geosystems
according to pre-existing beam alignment marks that were on the floor and
the wall of the ExHall3. Then, the positions of the four dipole magnets were
determined by the beam alignment marks. The A4 Compton backscattering
polarimeter was installed in December 2002 and is now fully operational.
Figure 4.11 shows the panoramic view of the Compton polarimeter in the
ExHall3. More detailed information about the construction process of the
polarimeter can be found in the references [93, 100].
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Figure 4.9 The top view of the experimental hall 3 in the CAD drawing.
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Figure 4.10 The perspective view of the experimental hall 3. The small
blue beam alignment marks, which are on the walls and on the floor, are
used to define the reference trajectory.
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Figure 4.11 The panoramic view of the experimental hall 3.



Chapter 5

Chicane Development

The primary purpose of the chicane development is to design a beam control
system that makes an overlap between the electron beam and the laser beam
and that satisfies following criteria: (1) a system keeps the crossing angle αc
as small as possible, described in section 3.2.2, (2) a system is easy to use,
quick, and reliable, and (3) a system minimizes possible disturbances to the
PV experiment. In the last chapter, we studied the chicane with the reference
trajectory by using the ideal simulation. However, this idealized chicane is,
as we all know, difficult to realized like many ideals. Thus, we must take
account of the properties of the real chicane in the beam line simulation, and
we make the beam line simulation as close as possible to the real chicane.
In the first part of this chapter, we describe an analysis of the wire scanner.
And we use this analysis to determine the electron beam position and the
laser beam position simultaneously. In the second part of this chapter, we
consider the properties of the real chicane and describe how to apply the
realistic properties to the chicane simulation. In the last part, we combine
the beam position determination and the realistic chicane simulation in order
to develop the electron beam control system. And we present the end result
of the chicane development and discuss a limited range of the beam control
system.

5.1 Wire Scanner Analysis

We use wire scanners to determine the transverse positions of the electron
beam and the laser beam. The wire scanners located in the interaction region,
which is shown in figure 3.6, of the A4 Compton backscattering polarimeter
were developed at MAMI almost twenty years ago and are still used in the
MAMI beam line. We call them scA, scB, and scC (sc stands for a scanner

81
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Figure 5.1 A sectional view of the MAMI standard wire scanner

and A, B, C for their positions along the electron beam line). Figure 5.1 shows
a photograph of the MAMI standard wire scanner. The wire scanners1 in the
A4 chicane are fixed to six-way cross vacuum chambers. They are modified
with regard to the installation geometry and the number of wires. The MAMI
method for determining a beam position does not fulfill our purpose of de-
termining two beam positions simultaneously, because the method is valid
for only an electron beam. Furthermore, we already have the six-way cross
vacuum chamber. Thus, it is not necessary to follow the MAMI installation
geometry. The MAMI standard wire scanner has two wires. We add two more
wires to the wire scanners in order to improve accuracy of the wire scanner
measurement. These four wires also prevent the wire scanner measurement
from the risk that wires may be damaged accidentally.

For a scanner measurement during a beam time, we use a small electron
beam current (50 nA) and small internal cavity laser power (approximately
0.5 W). When the electron beam hits a wire, Bremsstrahlung and electrons
and positron pairs are generated. We record this radiation by a lead glass
detector. At the same time, we record the laser power, which decreases when
a wire passes through the laser beam. Furthermore, we record a signal that
is generated by reference switches of the motor of the wire scanner.

In this section, we study a detailed analysis of the wire scanner mechanics.
From this analysis, we derive the equation of motion in relations to three

1The first two wire scanners (scA and scB) use the 20 µm gold-plated tungsten wire
and the last wire scanner (scC) does the 60 µm tungsten wire.
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Figure 5.2 The schematic drawing of the wire scanner. The symbols A, B,

C, D, E, and F are essential points in order to describe the wire scanner
motion; see figure 5.3, 5.4, and 5.5. The motor of the wire scanner is
connected to the wheel.

measured signals. Then, we apply this so as to determine electron and laser
beam positions.

5.1.1 The Equation of Motion of the Wire Scanner

Figure 5.2 shows the schematic drawing of the wire scanner. In order to
find the equation of motion of the wire scanner easily, we separate it into
two parts: (1) plane four-bar linkage, a concept from mechanical engineering,
that is shown on the drawing by a purple dotted box; and (2) an extended
arm by a green one. The four-bar linkage of the wire scanner is a vital part
of the wire scanner movement and is used to convert the uniform continuous
motion of the wheel into the nonuniform oscillation of the scanner arm. The
extended arm movement is completely determined by the movement of the
plane four-bar linkage.

Plane four-bar linkage

Figure 5.3 shows a plane four-bar linkage schematically. From the vector loop
method, we define the plane four-bar linkage as

~r2 + ~r3 = ~r1 + ~r4. (5.1)
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Figure 5.3 The plane four-bar linkage with nodes at A,B,C, and D. A
and B are fixed, so they are called pivot points. We call each rk a link.
Since r1 has no movement, θ1 stays constant.

Considering the x− and y−components of the vectors, two algebraic equa-
tions are obtained as follows:

r3 cos θ3 = r1 cos θ1 + r4 cos θ4 − r2 cos θ2,

r3 sin θ3 = r1 sin θ1 + r4 sin θ4 − r2 sin θ2.
(5.2)

Since we want to find the relation between θ2 and θ4, we eliminate θ3. After
some algebra, we have

−2r2(r1 cos θ1 + r4 cos θ4) cos θ2 − 2r2(r1 sin θ1 + r4 sin θ4) sin θ2

+r2
1 + r2

2 − r2
3 + r2

4 + 2r1r4 cos(θ1 − θ4) = 0.

For simplicity, the above equation is rewritten as follows:

K1(θ1, θ4) cos θ2 +K2(θ1, θ4) sin θ2 +K3(θ1, θ4) = 0. (5.3)

Now, an intermediate variable µ = tan θ2
2

is introduced to obtain

µ± = tan
θ±2
2

=
K2(θ1, θ4) ±

√

K1(θ1, θ4)2 +K2(θ1, θ4)2 −K3(θ1, θ4)2

K1(θ1, θ4) −K3(θ1, θ4)
. (5.4)

Finally, we find expressions for θ2

θ±2 = 2 arctan (µ±) . (5.5)
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Figure 5.4 The extended arm of the wire scanner. In the drawing, wi is
the length of each wire and ∆w the gap between the wires. δ, ∆w, and L
are related via L = ∆w/ sin δ.

Furthermore, it is possible to calculate θ4 as a function of θ2 by the same
procedure. We obtain

2r4(r1 cos θ1 − r2 cos θ2) cos θ4 + 2r4(r1 sin θ1 − r2 sin θ2) sin θ4

+r2
1 + r2

2 − r2
3 + r2

4 − 2r1r2 cos(θ1 − θ2) = 0,

that is redefined as

K ′
1(θ1, θ2) cos θ4 +K ′

2(θ1, θ2) sin θ4 +K ′
3(θ1, θ2) = 0. (5.6)

Thus, θ4 as a function of θ2 is

ν± = tan
θ±4
2

=
K ′

2(θ1, θ2) ±
√

K ′
1(θ1, θ2)

2 +K ′
2(θ1, θ2)

2 −K ′
3(θ1, θ2)

2

K ′
1(θ1, θ2) −K ′

3(θ1, θ2)
. (5.7)

And expressions for θ4 is

θ±4 = 2 arctan (ν±) . (5.8)

These equations (5.5) and (5.8) are general solutions for a plane four-bar
linkage.

Extended arm

Figure 5.4 shows the schematic drawing for the extended arm. From this
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drawing, we see that the other parameters are

~r6 = {−r6 cos θ2, −r6 sin θ2} ,
~r7 = {w1 cos θ7 − r5 cos θ2, w1 sin θ7 − r5 sin θ2} ,
~r8 = {w2 cos θ8 − r6 cos θ2, w2 sin θ8 − r6 sin θ2} ,
~r9 = {w1 cos θ9 − r6 cos θ2, w1 sin θ9 − r5 sin θ2} ,
~r10 = {w2 cos θ10 − r5 cos θ2, w2 sin θ10 − r6 sin θ2} ,

(5.9)

where θ7 = π − δ + θ2 ≡ θ8 and θ9 = π + δ + θ2 ≡ θ10.

Scanner parameters

In order to demonstrate the motion of the wire scanner explicitly, it is nec-
essary to assign real numbers to its parameters. The parameters w1, w2, δ,
and ∆w are determined by taking measurements of the actual wire scanner
as follows:

δ = 53.5◦, ∆w = 5 mm,

w1 = 40 mm, w2 = 35 mm.
(5.10)

Note that the standard MAMI wire scanner has two wires with δ = 50◦. For
the other parameters, since we cannot measure them directly, we need to
find relations between two different notations: one based on the full vertical
motion of the wire scanner and the other linked to the definitions of figure
5.3 and 5.4. For convenience, we call the former the MAMI notation and
the latter the linkage notation. The MAMI notation is shown in figure 5.5.
Therefore, we know

r3 = 30 mm,

h = 47 mm,

h′ = 2r4 = 25 ± 1 mm,

l = r2 + r5 = 233 ± 1 mm,

(5.11)

where h is the full vertical motion range of the end point E and h′ the
corresponding range of the other end C.

Using these two notations, we obtain

h′

h
=

2r2 sin ϕ
2

2r5 sin ϕ
2

=
r2
r5

=
2r4
h
,

r5 =
l

1 + h′/h
, r2 =

l

1 + h/h′
, (5.12)

r3 = r1 sin θ1, r4 = r2 sin
ϕ

2
,

r1 =
√

r2
2 + r2

3 − r2
4.
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Figure 5.5 The MAMI notation of the parameters of the wire scanner.
This drawing shows the full range of the wire scanner motion. In the
drawing, r2 + r5 is called the scanner arm, ϕ the maximum range of the
angle θ2, and A and B the pivot points. The solid red line represents the
lowermost position of the motion at θ4 = π/2 and the solid blue line the
uppermost one at θ4 = 3π/2.

The values of the parameters, which are related to the linkage notation, are
determined as follows:

r1 = 85 mm, r2 = 81 mm,

r3 = 30 mm, r4 = 13 mm,

r5 = 148 mm, r6 = 154 mm,

θ1 = 20.6◦, ϕ = 17.8◦.

(5.13)

The range of θ2 and the θ4 range

Since tan θ
2

must be a real number, the values under the square root of the
equation (5.4) and (5.7) need to be greater than or equal to zero. This con-
dition constrains the θ2 range and the θ4 range.

From (5.7), the terms under the square root must fulfill the condition as

K ′
1(θ1, θ2)

2 +K ′
2(θ1, θ2)

2 −K ′
3(θ1, θ2)

2 ≥ 0.

Thus, θ2 has the following range

r2
1 + r2

2 − (r3 + r4)
2

2r1r2
≤ cos(θ1 − θ2) ≤

r2
1 + r2

2 − (r3 − r4)
2

2r1r2
. (5.14)

And, from (5.4), the condition for θ4 is

K1(θ1, θ4)
2 +K2(θ1, θ4)

2 −K3(θ1, θ4)
2 ≥ 0.
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Figure 5.6 Two possible solutions of the angle θ2. The blue color (lower)
plot shows θ−2 and the red (upper) one θ+

2 . Since the angle range is the
same as (5.16), θ−2 corresponds to the real solution to the wire scanner
motion. The dotted line represents that θ4 = 2π.

Therefore, the range of θ4 is

−r2
1 − r2

4 + (r2 − r3)
2

2r1r4
≤ cos(θ1 − θ4) ≤

−r2
1 − r2

4 + (r2 + r3)
2

2r1r4
. (5.15)

Using (5.13), (5.14), and (5.15), θ2 and θ4 are in the range of

−8.9◦ ≤ θ2 ≤ 8.9◦,

−2.8 + 1.5i ≤ θ4 ≤ 0.4 − 1.5i,
(5.16)

respectively. The complex number of θ4 represents no limit on the angle θ4,
which can therefore rotate continuously (−∞ ≤ θ4 ≤ ∞). And the full range
of θ2, which is 17.8◦, is the same value as the angle ϕ in (5.13). Therefore,
two methods yield the same result of the maximum range of θ2.

The equation of motion

Until now, we found the general solutions of the plane four-bar linkage and
calculated the possible range of θ2 and θ4. Now, we apply these to the real
wire scanner. Since we know that θ4 rotates continuously according to (5.16),
we plot two functions of the angle θ2 as a function of θ4 in figure 5.6. Then,
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Figure 5.7 Two solutions of the angle θ4. The dotted line shows θ+
4 and

the solid line θ−4 . We see that θ4 is within the range of −π to π when we
sum two solutions.

we see that θ−2 fulfills the angle range shown in (5.16). For this reason, we
know that θ−2 corresponds to the real wire scanner movement. And, using
this θ2 range, we plot two solutions of θ4 in figure 5.7. Thus, the sum of these
solutions describe the movement of the wheel of the wire scanner correctly.

5.1.2 Determination of the Beam Position

Figure 5.8 shows an approach to determine the beam position. For simplicity,
in the analysis of the position determination, we use only the outer wires,
which are denoted as wire 1 and wire 4 in figure 5.8, that correspond to ~r7
and ~r9 in figure 5.4 respectively.

When the motor is off, the rest positions of the wires are below the beam
position that is shown by the symbol • in figure 5.8. When the motor is on,
first, wire 1 crosses the beam at an arm angle θr5 (the superscript r stands
for red). The red color symbols represent this instant. After that wire 4 does
the same at another arm angle θb5 and this is represented by the blue symbols
(b stands for blue). During one cycle of the motor, which is the θ4 range of 0
to 2π, these moments in figure 5.8 will occur twice.

Since we know the geometric relation between them, we can find the beam
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Figure 5.8 Beam position determination. In the drawing, θ5 = θ2 + π,
n = sinβ/ sin δ, and A is the pivot point. E and r5 are defined in figure
5.4. The outer wires are denoted as wire 1 and wire 4. R is the distance
between A and the ideal beam axis (•). A similar drawing applies to the
inner wires.

position as
x = R cosα, y = R sinα, (5.17)

where

R =
r5 sin δ

sin(δ − β)
, (5.18)

α =
θr5 + θb5

2
, β =

∣

∣θr5 − θb5
∣

∣

2
,

where δ is defined in figure 5.4. When the inner wire pair is chosen, r5 is
replaced with r6. We call the movement from the red one to the blue one the
upward movement and call the movement from the blue one to the red one
the downward movement of the wire scanner. In both cases, the angle β is
defined as being positive. Thus, we use the absolute value of the difference
between θr5 and θb5 to calculate β.

In that θ2 is more pertinent to the beam position determination than θ5,
the beam position (5.17) should be rewritten in terms of θ2 as

x = −R cos γ, y = −R sin γ, (5.19)

where

γ =
θr2 + θb2

2
, β =

∣

∣θr2 − θb2
∣

∣

2
.
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If we know θr2 and θb2, we can calculate the beam position by using the above
equation. Since θ2 is a function of θ4 in (5.5), we have to know the corre-
sponding θr4 and θb4. Eventually, to determine the beam position is the same
as to find only two angles of θ4 that correspond to two moments when two
wires, e.g. wire 1 and wire 4 shown in figure 5.8, cross the beam.

The angle θ4

Three signals are necessary to perform the beam position determination.
When a wire passes through the electron beam, the radiation is generated and
is recorded by a lead glass detector. This detector is located in a beam tunnel
between the experimental hall 3 and 4. For convenience, we call this signal
recorded by the lead glass detector the electron signal. At the same time,
we record a significant drop in laser power due to scattering losses and call
the recorded power the laser signal. In addition, we record the pulser signal
that is generated by reference switches of the motor of the wire scanner. The
pulser signal is used as a position reference signal and to define a revolution of
θ4. During this revolution, each scanner generates eight peaks in the electron
signal as well as in the laser signal. The schematic drawing of these recorded
signals is shown in figure 5.9.

If we assume that the angular velocity ω of the motor is constant, we can
determine it as

ω =
2π

|s0 − s1|
, (5.20)

where s0 and s1 define one pulser signal period and are shown in figure 5.9.
Since we do not know the initial value of the angle θ4, θ

0
4, when the motor is

off, we define a raw angle θraw
4 at pi with i = 1, 2, · · · , 8 as

θraw
4 (pi) = θ4 (pi) + θ0

4, (5.21)

where θraw
4 (pi) = ωpi and θ4 (pi) the absolute value of θ4 according to the

angle definition of the plane four-bar linkage.
During one revolution of θ4, one wire crosses the beam position twice. One

is the upward motion, which is denoted as u, and the other is the downward
motion, which is denoted as d. In both case, the same wire has the same
angle θ2 and the different angle θ4 if we assume that a change of the beam
transverse position is slow as compared with the scanner motion. As a result,
we know the relation between θ4(pu) and θ4(pd)

θ4(pd) = θ4(pu) + θraw
4 (pd) − θraw

4 (pu), (5.22)

where the corresponding wire number of pu and pd is listed in table 5.1.
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Figure 5.9 A schematic drawing of the record signals. pi is the peak
position. The start of the pulser signal, s0, is selected arbitrarily. If d1 +
d3 > d2, the start position of the wire arm is around the lower turning
point. Thus the first peak W1r corresponds to the wire 1 during its upward
movement. The upward movement is shown as the green symbols. And if
d1 + d3 < d2, the start position is the upper turning point and the first
peak W4b corresponds to the wire 4 during the downward movement. Using
these methods, we keep on using W1r as p1 and W4b as p5.

wire number 1 2 3 4
pu p1 p2 p3 p4

pd p8 p7 p6 p5

Table 5.1 Relation between the peak number and the wire number.
pu represents the peak number with the upward movement and pd the
peak number does the peak number with the downward movement of the
wire scanner. The peak numbers in the same column are generated during
upward and downward movement of the same wire. For example, the wire
1 is linked with p1 and p8.
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Finally, using the function of θ−2 (5.5), we have the following relation

θ−2 (θ4(pu)) = θ−2 (θ4(pu) + δθ4), (5.23)

where δθ4 = θraw
4 (pd) − θraw

4 (pu). Since we calculate δθ4 even if we do not
know θ0

4, we therefore find θ4 in (5.23) by using a root-finding algorithm, e.g.
the well-known bisection method [119]. And θ2 follows θ4 according to θ2−

defined in (5.5).

Result of beam position determination

Now that we know θ2, which corresponds to the peak when a wire crosses a
beam, we can calculate three transverse positions of the beam at the positions
of scA, scB, and scC from (5.19). Since we record the electron signal and
the laser signal during one revolution of a wire scanner and the method
applies to both signals, we determine the electron beam position and the laser
beam position simultaneously. Figure 5.10 shows one typical result of the wire
scanner analysis. For simplicity we use the electron signal to determine the
electron beam position that is denoted the small red circle. We can obtain a
similar result when we use the laser signal. And we also present eight screen
captures of the full motion of the wire scanner for clarity. The direction of the
angle θ4 is a counterclockwise direction according to the angle definition of
the plane four-bar linkage. The real motor rotates clockwise. Two rotations
make the same peak number pairs, shown in table 5.1. For this reason, we
are not concerned with whether the motor rotates clockwise or not.

5.1.3 Determination of the Beam Emittance

In the MAMI accelerator, the wire scanners are installed with 45 degrees
inclination. An angle 2δ of the wire scanner is 100◦. In that case, when the
wire crosses the electron beam, one wire can determine a horizontal beam
size and the other one does a vertical beam size because the wire crosses the
beam in exactly horizontal or vertical direction. However, we installed the
wire scanner to the six-way cross vacuum chamber with 0 degrees inclination
and 2δ = 107◦. In this case, we measure only a correlation between the
horizontal and the vertical size of the beam. In the case of round beams
with equal horizontal and vertical beam size, one wire scanner should be
equipped with three wires oriented at 0◦, 90◦, and 45◦ and four wire scanner
are necessary to perform beam emittance measurement [111]. Since we have
three wire scanners and each wire scanner has only two wires with respect to
the orientation angle, we cannot perform the beam emittance measurement
correctly by using the wire scanner analysis.
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Figure 5.10 Eight screen captures of the full motion of the wire scanner.
The small red circle represents the calculated position of the electron beam.
We use an arbitrarily chosen number of its size for plotting purposes.
The green dotted circle represents the locus of the link ~r4 and its size
is obtained from (5.13). The direction of the electron beam is out of the
paper. Conveniently, the pivot point A, which is defined in figure 5.3, is
selected as the origin of the plot. The solid arrow represents that the motor
rotates counterclockwise and the dashed arrow does the clockwise rotation.
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5.2 Realistic Chicane Simulation

In this section, we improve the chicane simulation as close as possible to
the real chicane and we call it the realistic chicane simulation. We consider
non-ideal properties of the chicane and apply them to the simulation. And
we discuss the realistic chicane simulation in more detail.

5.2.1 Non-Ideal Properties of the Chicane

The realistic simulation of the chicane has much the same input parame-
ters as the real chicane has. The real input parameters are currents of the
four dipole magnets, percent settings of the shunts, and currents of the two
quadrupole magnets. But the chicane simulation needs magnetic fields as its
input parameters. Since the four dipole magnets are connected in series, they
have the same current. However, the resulting magnetic fields of the dipole
magnets may be slightly different from each other due to the intrinsic un-
certainty of the magnets. The shunt, which is known as a current controller
of the dipole magnet, of the dipole magnet was designed to compensate the
intrinsic uncertainty of the magnet and to fine-tune the electron beam trajec-
tory [100]. Thus, it is essential to measure the magnetic field of each dipole
magnet as a function of the dipole current and the shunt current as a func-
tion of the percent setting of the shunt. And, in effect, the beam centroid is
off-axis at the entrance of the chicane. We have to consider the off-axis beam
centroid at the entrance of the chicane in the simulation. Furthermore, we
study a possible uncertainty that comes from an instability of the current in
the dipole magnetic field measurement.

Magnetic field and current measurements

For the dipole magnet, we did not perform magnetic field measurement before
we installed the dipole magnet in the beam line. Thus, it is almost impossible
to measure magnetic field with high accuracy, because many components
of the polarimeter are connected with the magnet directly and indirectly
and an available space is limited. We measure the magnetic field strength of
each dipole magnet by using F.W.Bell Gaussmeter series 9900 with a probe
holder. The holder makes the probe be aligned perpendicular to the magnetic
field during the measurement. Although we use the holder in order to get
accurate magnetic fields, we do not know how much accuracy the magnetic
field measurement has. For the quadrupole magnet, a former MAMI engineer
measured the magnetic field of the quadrupole magnet before we installed it
in the chicane [116]. And there are only five data points. It is impossible to
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measure magnetic field of each quadrupole magnet again except large-scale
effort to dissemble and assemble many components of the polarimeter.

For this reason, we have to accept these limited situations, and we use
a statistical approach so that we handle these limited data carefully. This
statistical approach is used to find the best relation between the real input
parameter and the simulation input parameter. Note that we do not consider
systematic uncertainties for devices that we use in these measurements.

Field measurement of the dipole magnet From (4.20), we know the
magnetic field Bd should be a linear function of the applied current Id,

Bd = a+ b Id, (5.24)

where a and b are regression coefficients. We measure Bd of each dipole
magnet by increasing Id from 0 to 160 A and by decreasing Id from 160 to
0 A (the subscript d stands for dipole). Figure 5.11 shows Bd as a function
of Id for the first dipole magnet (DIPL20). In the measurement data, we
see the hysteresis that the magnetic fields are different for the increasing and
decreasing Id. We multiply the field difference ∆B by 100 so as to distinguish
it clearly in the same picture. The average value is 0.03 kGauss roughly. We
treat ∆B as uncertainties of the magnetic field that are included in a linear
regression.

Since the data points of the magnetic field measurement have no uncer-
tainties, we cannot use the chi-square χ2 test for goodness of fit. Thus, we
must check the linearity of the data points. The linearity describes how well
the data follow the linear relation between Id and Bd. If we have a strong
linear relation, then we can say that a and b are reliable to estimate Bd. It
can be checked by using the correlation coefficient r0 and using the probabil-
ity Pr(r0, N) with N data points. The correlation coefficient is

r0 =

∑

(Ii − Ī)(Bi − B̄)
∑

(Ii − Ī)2
∑

(Bi − B̄)2
(5.25)

where (Ii, Bi) is each data point and Ī and B̄ are the mean of Ii and Bi

respectively. And Pr(r0, N) is the probability thatN data points can produce
a correlation coefficient r with |r| ≥ r0 [120, 121] and is expressed by a so-
called incomplete beta function as

Pr(r0, N) ≡ Ix(l,m) =

∫ x

0
ul−1(1 − u)m−1du

∫ 1

0
ul−1(1 − u)m−1du

, (5.26)

where ν = N − 2, l = ν/2, m = 0.5, x = ν/(ν − t2), and t2 = r2
0ν/(1 −

r2
0). The correlation coefficient r0 and its probability per each magnetic field
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Figure 5.11 Magnetic field measurement for the first dipole magnet
(DIPL20). Here, we use the 95% confidence and prediction intervals. ∆B
is the field difference due to the hysteresis and is multiplied by 100 for
clarity. Since the data points, the liner fit, and the intervals are difficult
to distinguish, we draw the zoom plot in the current range of 75 to 80 A.
The magnetic field measurements for the other dipole magnets are shown
in appendix C.
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DIPL20 DIPL21 DIPL22 DIPL23

data points N 26 17 17 17
degrees of freedom ν 24 15 15 15
correlation
r0 0.99997 0.99995 0.99996 0.99997
Pr(r0, N) < 0.0001 < 0.0001 < 0.0001 < 0.0001

estimator
â (kGauss) 0.1197 0.086 0.135 0.1819
S.E.(â) 0.0071 0.013 0.011 0.0090

b̂ (kGauss/A) 0.053102 0.05343 0.05308 0.05274

S.E.(b̂) 0.000082 0.00014 0.00012 0.00010

g.o.f with σBd
= 1

χ̃2
0 0.00033 0.00061 0.00046 0.00031
P (χ2

0, ν) 1.0 1.0 1.0 1.0

g.o.f
σBd

(kGauss) 0.018 0.025 0.022 0.018
χ̃2

0 1 1 1 1
P (χ2

0, ν) 0.46 0.45 0.45 0.45

t-quantile
tQ(α

2
,ν) 2.06 2.13 2.13 2.13

Table 5.2 Fitting results for the dipole magnet field measurements. g.o.f
represents goodness of fit and χ̃2

0 the reduced chi-square. Since the number
of measurements is small, we use Student’s t distribution. tQ is the quantile
of the Student’s t distribution with degrees of freedom ν. Here α = 0.05,
which means the 95% confidence level, is used to calculate tQ, because the
result is considered to be significant only at confidence levels of 95% or
better in case of Student’s t distribution [124].

measurement are listed in the correlation row in table 5.2. From table 5.2,
each correlation is highly significant at 0.01% level, because r0 is close to 1
and Pr is less than 0.0001. Thus, the data points suggest the strong linear
relation between Id and Bd [122, 123, 124].

Therefore, we can find the linear relation (5.24), that is, we can find
the best least-squares estimators of a and b, â and b̂. We assume that the
uncertainties of Ii are negligible and that the magnetic field Bi follows the
Gaussian distribution with the standard deviation σBi

d
in the measurement.

And, we assume that the standard deviation are all equal, i.e. σBi
d

= σBd
.

Here, we call the applied current Ii the independent or predictor variable and
the measured magnetic field Bi the dependent or response variable. With
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these assumptions, the estimators â and b̂ are

b̂ =
SSxy
SSxx

, â = B̄ − b̂Ī , (5.27)

where Ī and B̄ are the mean values of Ii and Bi with i = 1, 2, · · · , N , and
the standard errors in the estimates of â and b̂ are

S.E.(â) =
σBd√
SSxx

, S.E.(b̂) = σBd

√

1

N
+

(Ī)2

SSxx
, (5.28)

where

SSxx ≡
N
∑

i=1

(Ii − Ī)2,

SSxy ≡
N
∑

i=1

(Ii − Ī)(Bi − B̄).

(5.29)

In addition, the chi-square probability P (χ2, ν) of obtaining a χ2 value larger
than an input χ2

0 is given by

P (χ2
0, ν) ≡ Q(l, x) =

1

Γ(l)

∫ ∞

x

e−uul−1du, (5.30)

where l = 0.5ν and x = 0.5χ2
0.

The standard deviation of the magnetic field σBd
is a prerequisite for

calculating the standard errors S.E.(â) and S.E.(b̂). However, we do not know
σBd

, because the data points have no uncertainties. As a result, first, we assign
σBd

in each magnetic field measurement to an arbitrary constant so as to

calculate S.E.(â) and S.E.(b̂). Then, we estimate the best-fit parameter values
in â and b̂ by using (5.28). The estimators and theirs standard errors are listed
in the estimator row in table 5.2. In the above calculation, we set σBd

≡ 1. In
this case, the chi-square probability, as always, is one, because this procedure
is equivalent to the assumption that a fit is good. The corresponding results
are listed in the g.o.f with σBd

= 1 row in table 5.2.
Second, the revised standard deviation σBd

can be calculated by

σBd
=

√

√

√

√

1

ν

N
∑

i=1

(

Bi − B̂i

)2

, (5.31)

where ν = N − 2 and B̂i = â− b̂Ii. After calculating σBd
, one should check

the reduced chi-square χ̃2 and its probability. We expect that the reduced χ2
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value is equal to one and its probability is approximately 0.5, i.e. so-called
no yes-or-no answer to test [124]. This is the reason to check the linearity of
the data points first. The corresponding σBd

, χ̃2
0, and P (χ2

0, ν) are listed in
the g.o.f row in table 5.2 and are the same as what we expect. As discussed
before, although we cannot test goodness of fit, we calculate them to check
whether the results agree with our expectations or not [121, 124, 125].

The 100(1−α) percent confidence interval on a mean response B0 corre-
sponding to Id = I0 is [126, 127]

[

B̂0 − CL, B̂0 + CL
]

, (5.32)

where

B̂0 = â+ b̂I0,

CL = tQ(α
2
,ν) · S.E.(B̂0),

S.E.(B̂0) = σBd

√

1

N
+

(I0 − Ī)2

SSxx
.

(5.33)

In the above equations, I0 is any value of the current Ii used in the fitting
procedure. And the quantile of the Student’s t distribution, tQ, is the upper
α/2 percentage point of the tν distribution (tα/2,ν). The quantile per each
measurement is listed in table 5.2. The average width of the confidence inter-
vals for the measurements is 0.03 kGauss approximately. Figure 5.11 shows
the upper and lower 95% confidence limits for the dipole magnet 20 field
measurement data.

In order to use the regression result of the dipole magnet field measure-
ments in the chicane simulation, it is vital to understand prediction of the
new magnetic field B̂new when applying a new current Inew. This new applied
current is not one of the measured data points but one of future applied
currents. The 100(1 − α) percent prediction interval on the mean magnetic
field strength Bnew given by the applied current Inew is given by [127, 128]

[

B̂new − PL, B̂new + PL
]

, (5.34)

where

B̂new = â+ b̂Inew,

PL = tQ(α
2
,ν) · S.E.(B̂new),

S.E.(B̂new) = σBd

√

1 +
1

N
+

(Inew − Ī)2

SSxx
.

(5.35)
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DIPL20 DIPL21 DIPL22 DIPL23

Inew (A) 52.8 52.8 52.8 52.8

B̂new−PL 2.89 2.85 2.89 2.93

B̂new (kGauss) 2.92 2.91 2.94 2.97

B̂new+PL 2.96 2.96 2.99 3.01

Table 5.3 The estimation of the four dipole magnetic fields with the input
current. Here, the 95% prediction intervals (PI) are used. Inew = 52.8A is
the demand current value for a 315 MeV electron beam.

We therefore know the uncertainty range of Bnew when Inew is used to calcu-
late Bnew. The average width of the 95% prediction intervals is around 0.09
kGauss. Figure 5.11 shows the upper and lower 95% prediction limits for the
dipole magnet 20.

Finally, using (5.35), we can calculate the new magnetic field strength
per each dipole magnet, which is used to do the chicane simulation. Table
5.3 shows one example for a specific beam energy.

Field measurement of the quadrupole magnet From (4.26), a linear
relation between the applied current Iq and the quadrupole magnetic field
Bq is known to be

Bq = c+ dIq, (5.36)

where c and d are regression coefficients. Figure 5.12 shows the measured Bq

as a function of Iq for the first quadrupole magnet (QUAD21). The fitting
procedure of the quadrupole field measurement is the same as in the dipole
magnet case. Using (5.32), (5.33), (5.34), and (5.35), we can estimate the
confidence and prediction intervals for the quadrupole field measurements.
The average width of the 95 percent confidence and prediction intervals are
around 0.06 and 0.12 kGauss respectively. The results of the regression are
listed in table 5.4. The upper and lower confidence and prediction limits are
shown in figure 5.12.

However, this calculation cannot be applied to the chicane simulation, be-
cause, in the quadrupole magnet case, the magnetic field is an input parame-
ter and the current an output parameter. The chicane simulation returns the
quadrupole magnetic fields that are necessary to minimize the dispersions.
And using these magnetic fields we can calculate corresponding currents that
are used to apply the real quadrupole magnets. More precisely, we want to
estimate a current Inew when the field strength Bnew is given. One possible
approach to estimate Inew is to do a linear regression in the inverse way as

Iq = c′ + d′Bq. (5.37)
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Figure 5.12 Magnetic field measurement for the first quadrupole magnet
(QUAD21) [116]. Here, we use the 95% confidence and prediction intervals.
The magnetic field measurement for the other quadrupole magnet is shown
in appendix C.
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QUAD21 QUAD22

data points N 5 5
degrees of freedom ν 3 3

correlation
r0 0.9998 0.9998
Pr(r0, N) <0.0001 <0.0001

estimator
ĉ (kGauss) 0.040 0.050
S.E.(ĉ) 0.017 0.015

d̂ (kGauss/A) 0.04073 0.04044

S.E.(d̂) 0.00053 0.00046

g.o.f with σBd
= 1

χ̃0
2 0.00028 0.00021

P (χ2
0, ν) 0.99999 1.00000

g.o.f
σBq

(kGauss) 0.017 0.015
χ̃0

2 1 1
P (χ2

0, ν) 0.39 0.39

t-quantile
tQ(α

2
,ν) 3.18 3.18

Table 5.4 Fitting results for the quadrupole magnet field measurements.
g.o.f represents goodness of fit and χ̃2

0 the reduced chi-square. Here α =
0.05, which means the 95% confidence level, is used to calculate tQ. Note
that P (χ2

0, ν) in the g.o.f with σBd
= 1 row is not one, because ν is too

small.
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QUAD21 QUAD22

Bnew (kGauss) 0.45 0.45
I−new 8.37 8.38

Înew (A) 10.05 9.86
I+
new 11.65 11.29

Table 5.5 The estimation of the two quadrupole currents by the magnetic
fields. Since we do not know the true current Inew, we use Înew as the
demand current. And we use the 95% prediction intervals.

However, this approach is not valid, because Iq is not an observable random
variable but is a controlled one in the quadrupole magnet field measurement.

Therefore, we use another approach that is called calibration or inverse
regression [127, 128]. Thus, the 100(1−α) percent prediction interval on Inew

corresponding to Bnew is given by

[

I−new, I
+
new

]

, (5.38)

where

I±new =
Înew − Īg

1 − g
± F,

Înew =
(Bnew − ĉ)

d̂
,

g =
tQ2

(α/2,ν)σ
2
Bq

(d̂)2SSxx
,

F =
tQ(α/2,ν)σBq

d̂ (1 − g)

√

√

√

√

(

Înew − Ī
)2

SSxx
+ (1 − g)

(

1 +
1

N

)

,

(5.39)

with tQ is the quantile of the Student’s t distribution and Ī the mean value
of Ii. Thus, we calculate the current Inew and estimate its uncertainty. Table
5.5 shows one example for a specific electron beam energy.

Current measurement of the shunt The dipole current Idipole per each
magnet is

Idipole = IMAMI − Ishunt, (5.40)

where IMAMI is the current provided by the power supply2 and Ishunt the
shunt current. The current range of the shunt is approximately three percent

2DANFYSIK System 8000
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Figure 5.13 Shunt current measurement for the shunt 20 with IMAMI =
52.8 A. We include the saturation points in a linear regression in the left
plot and we exclude the saturation points in the right plot. There is one
data point appears to disagree with all the others. We suspect that we
read the data point by mistake.

of IMAMI. To achieve the maximum possible movement of the electron beam
trajectory, 50 percent of the current range of the shunt is recommended as a
default setting. Thus, the possible adjusting current range is

Ishunt = ±0.015 · IMAMI.

The shunt current is set by a digital-to-analog converter (DAC) card. The
actual current was measured by a scanning ADC, a common multimeter, and
a current sourcemeter3 as a function of the percent setting of the shunt in
order to use it in the chicane simulation. The multimeter and sourcemeter
measurement are more relevant than the scanning ADC one, because the
former are taken on the shunt circuits directly [100]. Figure 5.13 shows the
shunt current as a function of the percent setting for the shunt 20. Since
the common multimeter and the current sourcemeter yield almost the same
values for the current, the sourcemeter measurement is used to plot. The
other plots for the shunt measurement are shown in appendix C.

The data show us that the current increases linearly with the shunt setting
until reaching its saturation point that is approximately 80 percent of the

3Keithley SourceMeter 2400
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DAC range. When we use IMAMI = 52.8 A, the saturation points of the
shunt 20, 21, 22, and 23 are 81.2%, 83.1%, 85.9%, and 80.3% respectively.
For detailed information about the shunt saturation, consult the reference
[100]. When the shunt setting is larger than the saturation point for each
dipole magnet, we use the saturation point as the maximum shunt setting.
In addition, we apply the same linear regression method as the magnet field
measurements to the shunt measurements in order to use them in the chicane
simulation. As we ignore the data points that are larger than the saturation
point, we have the better regression result. Figure 5.13 shows the result for
the shunt 20. For the shunt 21, 22, and 23, the results are shown in figures
C.5, C.5, and C.5 in appendix C.

Uncertainties of the measurement We have three measurements that
are related with each other directly and indirectly. The magnetic field mea-
surement of the dipole magnet is directly related to the shunt setting mea-
surement in (5.40). And these two measurements are indirectly related to the
magnetic field measurement of the quadrupole magnet in the chicane sim-
ulation. Furthermore, three measurements are related to the electron beam
position in the chicane simulation.

If we consider the uncertainty of the electron beam positions in the inter-
action region of the polarimeter, these prediction intervals in table 5.3 are not
able to guarantee that the uncertainty of the electron beam position remains
small.

For example, if true magnetic fields of DIPL20 and DIPL21 are close to
2.89 and 2.85 kGauss respectively, the horizontal position of the electron
beam in that region is in the range of +1.4 to −6.2 mm by the ideal chicane
simulation. If the magnetic fields are close to 2.89 and 2.96 kGauss, the posi-
tion is in the range of +4.2 to +17.4 mm. And since the measurement of the
quadrupole magnet has only five data points and three degrees of freedom,
the predicted value of the quadrupole magnet is more larger uncertainty than
the dipole magnet one. In addition, the shunt percent setting is the input pa-
rameter in the real chicane and is converted into Ishunt as the input parameter
in the chicane simulation by using the linear regression (5.34). Moreover, the
chicane simulation, TRANSPORT, has its own fitting procedure and returns
optimized Ishunt in order to move the electron beam close to the laser beam.
And we convert Ishunt to the shunt percent setting as the input parameter
of the real chicane by using the inverse regression (5.38). As a result, in the
interaction region of the chicane, when we combine all uncertainties, it is
hard to understand a cumulative contribution from these uncertainties to
the electron beam trajectory.
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We use the statistical approach to overcome the limitations of the mag-
netic field measurements, to find the best relation between the input pa-
rameter of the real chicane and the chicane simulation one, and to estimate
the uncertainty of the relation. However, we do not fully understand the cu-
mulative contribution from the uncertainties to the electron beam position.
Nevertheless, from the practical point of view, we can ignore the cumulative
contribution to the electron beam position, because we measure the electron
beam position by the wire scanner at three different positions within the in-
teraction region. It will be discussed in section 5.4.

Off-axis beam centroid

As mentioned before, the beam centroid is the geometric center of the electron
beam ellipsoid and has four parameters (x, x′, y, y′). Here we consider only
the horizontal and vertical phase spaces for simplicity. In the ideal case, the
electron beam centroid is considered to be on-axis at the chicane entrance, so
that the beam trajectory coincides with the design trajectory and the beam
centroid is (0, 0, 0, 0). In reality, however, the beam centroid is off-axis at the
chicane entrance, and this initial beam centroid is (x0, x

′
0, y0, y

′
0). Since, in the

center region of the chicane, we obtain three measurements of the electron
beam position as explained in section 5.1.2, we can determine the electron
beam centroid at the chicane entrance.

Using the matrix formalism, the initial beam centroid is given by

(

x0

x′0

)

= M−1
A0

(

xA
x′A

)

, (5.41)

where

x′A =
xB − xAM

11
BA

M12
BA

, (5.42)

with the electron beam positions xA and xB, determined by the wire scanner
A and the wire scanner B respectively, M−1

A0 the inverse matrix of the transfer
matrix from the chicane entrance to the scanner A, and MBA the matrix from
the scanner A to B. In addition, M11

BA and M12
BA are the elements of MBA.

When we consider the transfer matrix formalism up to third-order so as to
increase a simulation accuracy, the transfer matrices are complicated by the
fact that the first- and second-transfer matrices are redefined in terms of the
first-, second-, and third-order transfer matrices [129]. Since TRANSPORT
can calculate the first-, second-, and third-order matrices whether a beam is
off-axis or not and has an internal fitting algorithm, we use them so as to
calculate the beam centroid at the entrance of the chicane. The displacement
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design value 3 min. 30 min. 8 hr.
∆I/I (ppm) 3 < 0.5 < 1 < 2

Table 5.6 Current stability of the power supply unit by the manufacturer.
∆I/I from the mean output current I of the short term stability, defined
as 30 min., is under 1 ppm and ∆I/I of the long term stability, defined as
8 hr., is less than 2 ppm.

of the beam centroid from the reference trajectory is shown with the first-
order transfer matrix in one example output of TRANSPORT in appendix B.

Uncertainty of the dipole magnet field due to a current instability

We study a possible uncertainty that comes from an instability of the cur-
rent of the dipole magnet, Idipole, in the magnetic field measurement of the
dipole magnet. Table 5.6 shows a stability test of the power supply at the
maximum current 400 A, which was done by the manufacturer. If we ignore
the uncertainty of the shunt current, we can rewrite the dipole current Idipole

with the 1σ confidence

Idipole = I ± ∆I

2
√

2 ln 2
= I ± δI. (5.43)

We assume that the dipole current Idipole is well-controlled and has more
precision than the measured magnetic fields during the field measurements.
As a result, we does not consider δI when we find the linear relation (5.24).
However, we have to verify this assumption when δI exists.

The total uncertainty σBd
can be written by

(σBd
)2 = (σDB )2 + (σIB)2, (5.44)

where σDB is a direct contribution from the purely statistical fluctuations in
the magnetic field measurements and σIB an indirect contribution from δI.
The first-order indirect contribution is

σIB = δI · b̂, (5.45)

where b̂ is defined in (5.24). Using (5.45) and (5.44), we calculate the ratio
RB = σDB /σBd

that is almost one even if we use ∆I/I = 3 ppm. Furthermore,
by using two current I + δI and I − δI, we calculate two magnetic fields per
each dipole. We round the magnetic fields to six significant figures and we
see no difference between them. Therefore, the assumption, Idipole is well-
controlled, is always valid whether δI exists or not [124].
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5.2.2 The Realistic Chicane Simulation

We use TRANSPORT in order to do the beam line simulation. The release
version of TRANSPORT is Linux binary v1 5a4. The realistic chicane sim-
ulation has two major steps. Each step needs the input parameters of the
real chicane, i.e. the current of the dipole magnet, the percent setting of each
shunt, and the current of the quadrupole magnet. Then we convert them
to the input parameters of the simulation by using the statistical approach
described in section 5.2.1.

• Step 1 uses the wire scanner analysis, described in section 5.1, to deter-
mine the electron beam position and the laser beam position and then
reproduces an electron beam trajectory in the simulation. This step has
two TRANSPORT runs. The first run calculates a set of ideal Twiss pa-
rameters for the given electron beam energy, described in section 4.3.2.
And the horizontal and vertical beam emittance are calculated from
the MAMI normalized horizontal and vertical emittance, described in
section 4.1.3. These Twiss parameters and beam emittances are used
in the following run and in the following step. The second run finds
out the off-axis beam centroid at the entrance of the chicane, described
in 5.2.1. Using the off-axis beam centroid at the entrance of the chi-
cane, finally we can simulate the more realistic electron beam line. We
compare the simulated electron beam trajectory to the electron beam
position, measured by the wire scanner.

• Step 2 moves the reproduced electron beam trajectory in step 1 close to
the measured laser beam positions and minimizes the beam centroid at
the exit of the chicane. To do this, TRANSPORT calculates the shunt
setting by using a fitting procedure in which the laser beam position is
defined as a constraint and the shunt setting as fitting parameter. On
example input and output of the TRANSPORT is shown in appendix
B. In addition, this step find an optimized magnetic field strength of
the quadrupole magnet, described in section 4.3.1. We use the inverse
regression, described in section 5.2.1, to calculate the corresponding
current of the quadrupole magnet. The calculated shunt setting and
the calculated current are used as the input parameters of the real
chicane.

The realistic chicane simulation plays a vital role in an electron beam con-
trol system for the A4 Compton backscattering polarimeter. Results of the
realistic chicane simulation, therefore, will be discussed in section 5.4.

4FORTRAN 19990614 14:55:00
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shunt 20 shunt 21 shunt 22 shunt 23 top
description

(%) (%) (%) (%) view

p20 p21 p22 p23 − initial settings

p20 + α p21 + 2α p22 − 2α p23 − α � clockwise

p20 − α p21 − 2α p22 + 2α p23 + α 	 counterclockwise

p20 + α p21 + α p22 + α p23 + α ↑ +x direction

p20 − α p21 − α p22 − α p23 − α ↓ −x direction

Table 5.7 Combination of the shunt percent settings for a decoupled
transformations of the electron beam so as to achieve good overlap and to
eliminate the dispersions. p20 is the initial setting of the shunt 20 and α is
an additional percent amount of the shunt setting. The axis of the rotation
is the geometric center of the chicane and is denoted as o in figure 4.2.

5.3 Spatial Beam Overlap at the Early Stage

Using the wire scanner analysis, described in section 5.1, we can determine
the electron beam position and the laser beam position simultaneously. With
this, we calculate the distance between the electron beam position and the
laser beam position. And we calculate the crossing point5 and the crossing
angle αc. Using the distance, the crossing point, and the crossing angle, we
can estimate the quality of the beam overlap.

There are two criteria for the good quality of the beam overlap. One is
the smallest crossing angle αc and the other is the crossing point within the
interaction region. In reality, it is a complex and time-consuming process
to achieve the crossing point within the interaction region (IR). Thus, the
position close to the interaction region is also acceptable. For convenience,
we quantify the interaction region with respect to the geometrical center
o, shown in figure 4.2, of the chicane. We define the interaction region as
dIR =

∑6
i=2 di by using the drift space, listed in table 4.2. Thus the interaction

region is from −0.89 m to 0.89 m. If we have a poor quality of the beam
overlap, we move the electron beam close to the laser beam by changing the
each percent setting of the shunt. We choose the shunt settings to make a
good overlap and to minimize the dispersions. Table 5.7 shows results of a
calculation how to perform specific decoupled transformations of the electron
beam. The calculation is based on the ideal chicane simulation, described in
section 4.3.3. According to table 5.7, a MAMI engineer designed a knob in
order to move the electron beam close to the laser beam.

5For simplicity, we consider only z coordinate to describe the crossing point.
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Figure 5.14 Spatial beam overlap. The red circle represents the electron
beam and the blue one the laser beam. The origin was set to the ideal beam
trajectory as defined by the theodolite measurements, described in section
4.4. On the plot, Medusa is the direction of the MEDUSA electronics
and Door the direction of the door of the ExHall 3. Thus, the direction
of the electron beam is out of the paper. scA, scB, and scC represent
the scanner A, B, and C respectively. Meas.210307 6 represents that
the measurement was performed in March 21, 2007 and 6 is the sixth
measurement in the same day. Here we use that the diameter of the electron
beam is about 0.5 mm. The electron beam diameter is estimated from the
ideal chicane simulation in figure 4.8 in section 4.3.3. And we use that
the diameter of the laser beam is 1.3 mm. The laser beam diameter is
estimated from the configuration of the laser resonator [99]. The unit of
the horizontal and vertical axis is millimeter.

At the early stage, we used the combination of the percent settings, shown
in table 5.7, in order to move the electron beam close to the laser beam.
Figure 5.14 shows a plot of the spatial beam overlap that was performed
on March 21, 2007 by using the combination of the shunt settings. An we
achieved that the crossing point is 0.1 m, the crossing angle αc = 0.87 mrad,
and C = (1 + cosαc)/ sinαc = 2290, described in section 3.2.2. However, as
we mentioned earlier, this is a complex and time-consuming process. For this
reason, an automation of the beam overlap procedure is indispensable for the
A4 Compton backscattering scattering and it will be discussed in the next
section.

5.4 End Result of the Chicane Development

In this section, we present the end result of the chicane development for the
A4 Compton backscattering polarimeter described in the previous sections.
In the first half of this section, we explain the electron beam control system
that makes an overlap between the electron beam and the laser beam and
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that is easy to use, quick, and reliable. In the second of this section, we present
the performance and limitations of the electron beam control system.

5.4.1 Beam Alignment Program

We design a beam alignment program in order to make the electron beam
control system and call the program xChicane. As TRANSPORT has no
graphical user interfaces, we use the root system [120] to make graphical
user interfaces between end users and TRANSPORT. And the beam align-
ment program incorporates an algorithm for the beam position determina-
tion from the wire scanner analysis, which is described in section 5.1, the re-
alistic chicane simulation with TRANSPORT, which is described in section
5.2, and a data transfer of the chicane settings between the A4 experiment
and the MAMI operator. The chicane settings contain the MAMI current
IMAMI, the quadrupole magnet currents, the shunt percent settings, and the
wedler 6 currents. Thus, the beam alignment program can partly automate
the spatial beam overlap procedure between the electron beam and the laser
beam. Figure 5.15 shows a flow chart of the partial automation. The MAMI
operator uses the initial chicane settings to optimize the chicane. The initial
settings are denoted as (1) in figure 5.15. Then we determine the electron
beam position and the laser beam position simultaneously and check the
quality of the beam overlap. If the overlap quality is not good, we ask the
MAMI operator to send the initial chicane settings (1) to us. Using the set-
tings (1), we simulate the electron beam trajectory that is close to the elec-
tron beam positions by the wire scanner analysis. And we find the suggested
chicane settings that are denoted as (2) in figure 5.15 so that we move the
simulated electron trajectory close to the laser beam positions, measured by
the wire scanner analysis, in the realistic chicane simulation. We transfer the
suggested settings (2) to the MAMI operator such that the operator uses
the suggested settings to optimize the chicane again. The modification of the
suggested chicane settings for shunt 22 and shunt 23 are necessary. We will
discuss it in section 5.4.2. The modified chicane settings are shown as (3) in
figure 5.15. After that, we determine the electron beam position and the laser
beam position again, check the quality of the beam overlap, and compare the
measured electron positions to the simulated electron beam trajectory. If the
overlap quality is good and is acceptable, we finish the beam overlap proce-
dure. Figure 5.16 shows the screen capture of the beam alignment program.

6A steering magnet is called a wedler at MAMI.
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Figure 5.15 Automation of the beam overlap procedure. The chicane set-
tings in the partial sequence are also shown: (1), the initial chicane set-
tings (the input parameters of the real chicane); (2), the suggested chicane
settings (the output parameters of the realistic chicane simulation); and
(3), the modified chicane settings (the new input parameters of the real
chicane).
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Figure 5.16 Electron beam alignment program - xChicane.
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chicane settings (1) (2) (3)
MAMI current IMAMI (A) 53.245 53.245 53.245
shunt 20 (%) 47.141 40.132 40.132
shunt 21 (%) 49.531 45.126 45.126
shunt 22 (%) 27.323 17.911 17.671
shunt 23 (%) 34.940 26.848 27.478
quadrupole 21 current (A) 0.000 0.000 0.000
quadrupole 22 current (A) 0.000 0.000 0.000
wedler 24x (A) -0.698 -0.698 -0.817
wedler 24y (A) -0.002 -0.002 -0.005

Table 5.8 Chicane settings of figure 5.17. (1), (2), and (3) are described
in figure 5.15. We see the small modification, which is the boldface number,
of the chicane settings for shunt 22 and shunt 23 between (2) and (3). In
addition, the different values of wedler 24x and wedler 24y between (2)
and (3) are due to the MAMI beam stabilization system.

5.4.2 Performance and Limitations

Performance

The upper plot in figure 5.17 shows the electron beam position and the laser
beam position with the initial chicane settings (1), defined in figure 5.15. The
initial chicane settings are listed in (1) column in table 5.8. And the lower
plot in figure 5.17 shows a measurement of the beam positions after the beam
overlap procedure. This measurement is performed with the modified chicane
settings (3), defined in figure 5.15. The modified chicane settings are listed
in (3) column in table 5.8.

If we compare the upper plot with the lower plot in figure 5.17, we clearly
see that the good quality of the beam overlap is achieved with only one loop
of the beam overlap procedure, described in figure 5.15. The crossing point
is changed from −4.3 m to −1.1 m and the crossing angle from 0.64 mrad
(C = 3132) to 0.30 mrad (C = 6564). Since the crossing point −4.3 m is the
outside A4 Compton backscattering polarimeter, the corresponding crossing
angle, αc = 0.64, has no physical meaning. Note that the crossing point −1.1
m is acceptable, because the position is approximately the entrance of the
quadrupole magnet 21 (QUAD21). In addition, this outstanding overlap was
achieved within only two wire scanner measurements. This result guarantees
that we can control the electron beam to make a beam overlap as fast and
simple as possible.

Figure 5.18 shows simulated electron beam trajectories in the horizontal
plane. On the upper plot, there is the simulated electron trajectory with the
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Figure 5.17 The position measurement of the two beams with the ini-
tial chicane settings (1) and with the modified chicane settings (3). The
upper plot represents the beam position measurement with (1). This is a
typical situation for the electron beam position and the laser beam posi-
tion, when the MAMI operator turns on the electron beam. This is the
first measurement on November 24. The lower plot represents the position
measurement of the two beams with (3). This is the second measurement
on November 24. The solid blue circle is the laser beam position and the
solid red one the electron beam position. The notation on the plot is the
same as figure 5.14.
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initial chicane settings (1). The electron trajectory with (1) matches three
electron beam positions, determined by the wire scanner. Furthermore, on
the lower plot, the simulated electron trajectory with the modified chicane
settings (3) and the measured electron positions match.

Since the simulated electron beam trajectory by the realistic chicane sim-
ulation describes the electron trajectory in the real chicane well, we can ig-
nore the cumulative uncertainties, described in section 5.2.1, of the simulated
electron trajectory from the magnetic field and shunt current measurements.

Limitations

Now that we develop the electron beam control system, we can determine
the relative positions of the electron and the laser beam, we can simulate the
electron beam trajectory with the initial chicane settings, we can move the
simulated trajectory close to the laser beam position by the realistic chicane
simulation in the computer program, and we can move the electron beam
trajectory in order to make the beam overlap in the real chicane by using the
suggested chicane settings.

However, we have the limitations of the beam control system. First, we
find that the quadrupole magnet current, one of the results of the chicane sim-
ulation, is inappropriate to the real chicane. When we apply the quadrupole
current to set into the MAMI chicane settings, we always met the problem
that the electron trajectory at the chicane exit is unmanageable by the MAMI
operator and there is a warning for a high radiation level in the experimental
hall because the beam scrapes on the beam pipes. This problem reminds us
of the assumptions: the dipole magnet has the zero normalized field index
(n = 0); and the magnet is a square-edged nonsaturating magnet, which are
discussed in section 4.2.2. These assumptions might be invalid to describe
the real dipole magnets. Thus, one of the simulation purposes, minimizing
the dispersions, cannot be achieved by the chicane simulation.

Second, it is necessary to modify the suggested chicane settings (2). Fig-
ure 5.19 shows the beam transport line between the chicane exit and the tar-
get has two positions monitors, so-called XYMO24 and XYMO27. Since the
beam overlap exists between two quadrupole magnets, DIPL22 and DIPL23
have no contribution to the electron beam trajectory within this region.
Thus, the MAMI operator uses DIPL20 and DIPL21 to move the electron
beam close to the laser beam, can control the electron beam to center it on
XYMO24 by using the shunt 22 and shunt 23, and center it on XYMO27 by
using WEDL24. As a result, the suggested chicane settings of shunt 22 and
shunt 23 are slightly changed and these modifications are listed in table 5.8.
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Figure 5.18 Simulated electron beam trajectories calculated by xChicane

in the horizontal plane. On the plot scX represents the position deter-
mination by the wire scanner. The purple line is the geometric center of
the chicane, denotes as o in figure 4.2. The red solid line is the simulated
electron beam trajectory with the initial chicane setting (1), shown in
figure 5.15 and in table 5.8. The red dotted line represents the simulated
electron trajectory with the modified chicane settings (3). The black solid
line is the reference trajectory of the chicane. The blue solid line shows
the simulated electron trajectory with the suggested chicane settings (2).
The simulated electron trajectories match the beam positions, determined
by the wire scanner.
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Figure 5.19 The beam transport line with the chicane and the beam
monitors. WEDL represents a wedler, which is a steering magnet.

Thus, the MAMI operator can practically control and minimize additional
effects, which are not controlled by the chicane simulation.

Third, we cannot optimize the vertical position of the electron beam,
because the percent setting of the shunt affects only the horizontal position
of the electron beam and the current of the quadrupole magnet is unsuitable
to move the vertical position.

However, even if the developed beam control system, which is the partial
automation, has these limitations, it provides us the most cost-effective way
of avoiding a manual overlap procedure that is complex and time-consuming
and of achieving a reliable beam overlap quickly. And, end users can use the
beam control system easily enough during a typical beam time.





Chapter 6

Scintillating Fiber Detector
Development

In the Compton backscattering process, the electron loses its energy and
the backscattered photon gains the energy. Thus, the scattered electron is
more deviated than the reference electron in the magnetic field of the last
two dipole magnets. And it passes through a scintillating fiber that is the
distance from the reference trajectory. Therefore, the position, where the
scattered electron passes through, on the scintillating fiber system provides
information on the energy of the scattered electron. And the position is also
related with the energy of the backscattered photon because of the energy
transfer in the backscattering process.

The purpose of the scintillating fiber detector, as mentioned in chapter 3,
is to reduce background in photon spectra by requiring coincidence between
the scintillating fiber detector and the photon detector. A prototype fiber
detector had been installed and been tested. The signal-to-noise ratio of the
photon detector spectra was slightly improved [97]. Our experiences of the
prototype detector help us to design an improved detector that is based on
the same mechanical concept as the prototype. The scintillating fiber detector
has three main components: (1) plastic scintillating fibers that are sensitive to
charged particles; (2) a photomultiplier tube that collects optical photons and
generates electrical signals for further signal processing; and (3) a movable
support frame that allows to adjust the detector position and supports other
mechanical parts attached. Minimum design changes of the electron detector
are preferable, since we want to take electronics and mechanical parts to be
reused.

In this chapter, we present a short introduction about plastic scintillating
fibers, discuss the new design concept and several requirements of the detec-
tor, and describe the construction of the new detector briefly. Finally, we will
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discuss measurements by using the new fiber detector.

6.1 Plastic Scintillating Fiber

Scintillating fibers are widely used for charged particle tracking devices in
sundry applications [130, 131]. The scintillating fibers, which we use in the A4
Compton backscattering polarimeter, are a typical organic plastic scintillator.
A plastic scintillating fiber is composed of a core and cladding. The core
consists of plastic material, such as polystyrene (PS) with dopants that is
known as scintillation material. When ionizing particles pass through the
core, optical photons are generated inside the material. The core, also called
the active area, is coated with thin materials, such as polymethylmethacrylate
(PMMA) for single cladding and PMMA and fluorinated polymer (FP) for
multi-cladding. The refractive index of the cladding is smaller than the core
one. As a result, light can be trapped inside the core in contrast to no cladding
due to total internal reflection.

6.1.1 Scintillation Light

To estimate the number of optical photons that can reach the photomulti-
plier tube, let us define the following two steps: generation and collection
of optical photons. At the first stage, generation, charged particles generate
optical photons by a scintillating process in the core. These optical photons
are distributed in the emission spectrum of a scintillating fiber. If we assume
no wavelength dependence, the average number 〈Nphoton〉 can describe the
number of optical photons well. In the second stage, collection, optical pho-
tons are emitted isotropically in the core, and a fraction of photons can be
transferred to the photomultiplier. With the same assumption, the second
stage may be parametrized by light collection and transfer efficiency 〈LCTE〉
that depends on the construction and optical properties of the fiber. In sum,
the number of detected optical photons, Noptical, is [130]

Noptical = 〈Nphoton〉 · 〈LCTE〉 . (6.1)

Optical photons

The average photon number is defined as

〈Nphoton〉 =

〈

dE

dx

〉

· 〈∆x〉 · LY, (6.2)
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where 〈∆x〉 is an average path length, LY the light yield of the scintillating
fiber, and 〈dE/dx〉 an average energy loss per unit path length.

When an electron passes through a fiber at normal incidence, the average
path length is

〈∆x〉 =
π

4
· dcore, (6.3)

where dcore is the diameter of a core, because only this core contributes to
the scintillation process.

The average deposited energy is

〈

dE

dx

〉

=
dE

d(ρx)
· ρcore, (6.4)

where dE/d(ρx) is the collision stopping power of scintillation material and
ρcore the density of a core.

The light yield LY is defined as the number of optical photons n produced
per deposited energy ∆E :

LY =
n

∆E
. (6.5)

Light collection and transfer efficiency

The light collection and transfer efficiency 〈LCTE〉 is written as

〈LCTE〉 =
δΩ

4π
[A(x) +R · AR(x)] · T, (6.6)

where the trapping efficiency δΩ/4π represents the fraction of scintillation
light that is trapped in the fiber, A(x) the attenuation of the scintillation
light that is emitted toward the photomultiplier, AR(x) the attenuation of
the scintillation light that is emitted away from the photomultiplier, R the
reflection coefficient for the light away from the photomultiplier, T the trans-
mission coefficient between the fiber and the photomultiplier, and x the emit-
ting position of the scintillation light inside the fiber. A(x) and AR(x) can
be expressed as

A(x) = exp (−x/La) ,

AR(x) = exp ( − 2(2Ls − x)/La),

where La is the fiber attenuation length and Ls the fiber length.
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Parameter Description

Core Material Polystyrene (PS)
Refractive index nc 1.59
Density 1.05 g/cm3

Thickness 94% of fiber diameter
Inner Cladding Material Polymethylmethacrylate (PMMA)

Refractive index ni 1.49
Density 1.19 g/cm3

Thickness 3% of fiber diameter
Outer Cladding Material Fluorinated polymer (FP)

Refractive index no 1.42
Density 1.43 g/cm3

Thickness 3% of fiber diameter

Emission Peak 450 nm
Color blue

Decay Time 2.8 ns
Attenuation length La >4.0 m
Numerical Aperture NA 0.72
Trapping Efficiency δΩ/4π 0.054
Diameter 0.83 mm

Table 6.1 Kuraray SCSF-78M fiber properties [133]

6.1.2 Kuraray SCSF-78M Fiber

We use Kuraray SCSF-78M scintillating fibers with the diameter 0.83 mm
so as to construct the new scintillating fiber detector for the scattered elec-
tron detection. Table 6.1 shows the detailed characteristics of a Kuraray
SCSF-78M fiber. Using these properties of the scintillating fiber, we estimate
Noptical at the 854.3 MeV electron beam. The average collision stopping power
dE/d(ρx) in the Compton electron energy range is 2.31 MeV cm2/g [132],
the light yield LY is 1/120 photon/eV [130], and the average path length
is 0.61 mm. Thus 〈Nphoton〉 = 1238 photon. The fiber length Ls is approxi-
mately 147 mm, the emitting position x is 135.5 mm, and the transmission
coefficient T among the polystyrene, the air, and the window material of
the photomultiplier tube is 0.91. Thus, when R = 0 is assumed, the light
collection and transfer efficiency 〈LCTE〉 is 0.047. On the other hand, using
R = 1, 〈LCTE〉 = 0.093. As a result, the number of optical photons that can
touch the photocathode of the photomultiplier tube is in the range of 59 to
115.
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6.2 Construction of the Fiber Detector

6.2.1 Scintillating Fiber Array

Since the measured position of the scattered electron characterizes the elec-
tron momentum, a well-aligned fiber array is a crucial component for the elec-
tron fiber detector. Furthermore, large numbers of optical photons are essen-
tial for detection efficiency. Thus, following restrictive requirements must be
considered to design a new fiber array.

1. The external size of a new fiber array must be compatible with proto-
type detector components that we want to reuse.

2. The number of fibers that is used to make one fiber layer should be the
same as the prototype one, since we want to reuse electronics parts of
the prototype. We call a group of fibers a fiber layer for convenience.
Each fiber, which exists in the same layer, has the same z coordinate
in the beam coordinate. See figure 6.1.

3. The path length in the detector is larger than the prototype one. Since
the fiber diameter is smaller than the prototype one, we have to increase
a number of fiber layers, compared with the prototype.

4. The variation of the path length over the detector width should be
minimized. See figure 6.1.

5. The overlapping between neighboring fibers should be smaller than the
prototype so as to achieve better electron momentum resolution.

Figure 6.1 and table 6.2 shows possible layouts for the fiber array because
of the requirement 1. According to table 6.2, we select the layout with the
symbol ⋆ is selected to construct the new fiber array. The (1) layout seems to
be a good candidate. But, its path length is originated from the overlapping
between neighboring fibers. This does not fulfill the requirement 5.

We used 12 fibers for a layer, and 4 layers to construct the fiber array.
Since the two critical parameters (dx and ø) are the same as the fiber detector
of the A1/KAOS collaboration [134], we reused their assembly tools that are
a position matrix and position jigs with V-shaped grooves. The cross section
of the position matrix and fibers are shown in figure 6.3.

The V-shaped grooves of the position matrix and the position jigs prevent
fibers from misalignment during painting procedure. The fibers are stuck to-
gether by Bicron BC-620 reflector paint. The advantages of this paint are
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Figure 6.1 Possible layouts for the fiber array
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Figure 6.2 Detector path length and schematic layout of the new and
prototype fiber array. The solid red arrow represents the direction of the
electron beam. In order to stay consistent with the numbering scheme of
the prototype detector, we call two fibers, which have the same transverse
beam coordinate, which is defined in figure 4.1, Fia and Fib with i =
1, 2, · · · , 24.

Figure 6.3 Position matrix and fibers cross section
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ø nlay dx 〈∆x〉 〈∆x〉σ x z
prototype 1.00 2 1.0 1.17 0.28 12.50 1.87
⋆ 0.83 4 1.2 1.37 0.20 14.63 2.55
(1) 0.83 4 1.0 1.63 0.35 12.33 2.82
(2) 0.83 4 1.1 1.49 0.26 13.48 2.69
(3) 0.83 4 1.3 1.28 0.19 15.78 2.38
(4) 0.83 4 1.4 1.19 0.27 16.93 2.17
(5) 0.83 2 1.2 0.69 0.10 14.63 1.40
(6) 0.83 6 1.2 2.06 0.29 14.63 3.70
(7) 0.83 8 1.2 2.75 0.39 14.63 4.85

Table 6.2 Eight possible layouts for the scintillating fiber array. Here ø is
the fiber diameter, nlay the number of layers, dx the distance between two
neighboring fibers in the same layer, 〈∆x〉 the detector path length, 〈∆x〉σ
the standard deviation of the path length, and x and z the external sizes
of the fiber array. For convenience, we call x the detector width and z the
detector thickness. The unit is millimeter.

good adhesion, excellent resistance to yellowing with age, and ease of appli-
cation by brushing [135]. And, the paint may minimize the cross-talk between
fibers, because its reflectivity is larger than 90 percent in the emission range
of the Kuraray SCSF-78M fiber.

Assembly

We sanded the end surfaces of the fibers down lightly before fiber array as-
sembly to prevent accidental damage to the fiber array from polishing. Figure
6.4 shows the 24 fiber pairs Fi that are main parts of the electron detector
and 6 dummy fibers that support the fiber array during the assembly. Twelve
fibers and three dummy fibers were carefully put in the particular positions
of layer 1 on the position matrix, and were painted by soft brushes. Before
hardening of the paint of the layer 1, we put twelve fibers and two dummy
fibers in the position of layer 2. Furthermore, we corrected misalignment of
fibers by the position jigs, put the jigs on the layer 2, and left them with the
two layers for 20 min. roughly. After that, we removed the jigs, and painted
fibers thoroughly. In the same manner, we made the other layers. After po-
sitioning fibers in layer 4, we corrected misalignment by the jigs. Then, we
weighted the fiber array down with aluminum rods during 24 hours so as to
keep all fibers of the fiber array in place. The fiber array then was separated
from the position matrix, and the six dummy fibers were detached from the
array carefully. Finally, the fiber array was painted again completely.
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Figure 6.4 Fiber array ordering and dummy fibers. Note that the order of
the fibers is different to one of figure 6.2 due to the construction procedure.

We used the inside fiber bundle holder shown in figure E.1 and E.2 in
appendix E in order to polish the end surface of the fibers. And we used
the different grit sizes that are P400, P600, P800, and P1000. After applying
sandpapers with distilled water, we polished them again with a special abra-
sive1 and a soft cloth. Figure 6.5 shows the fiber array with the holders after
the polish.

Wire mount

Ideally, at the end of the chicane, a non-scattered electron with a momentum
p0, which does not get involved in the Compton scattering, is always on the
reference trajectory. In that case, the distance between the fiber array and
the trajectory can be determined according to the designed geometry of the
electron detector. In section 5.2, we discussed the real situation for the beam
trajectory. According to the real situation, we do not know the electron beam
position precisely. Since there is no room to install beam position monitors
between the chicane end and the fiber detector, we have designed a wire
mount that is attached to the fiber array directly. The CAD drawings of the
wire mount are shown in figure E.10, in figure E.11, and in figure E.12.

The designed distance between the wire and the closest boundary of the
fiber array is 6.1 mm in the drawing. However, one also needs to consider the
thickness of the paint. The designed width of the fiber array is 14.63 mm, its
true value after paint is 15.10 mm, so the additional thickness is estimated
at 0.47 mm. Thus, the distance between the wire and the closest boundary
is approximately 5.9 mm.

The fiber array that is connected to a movable cart is able to move in the
direction perpendicular to the electron beam. We can determine the relative
position of the cart by using a potentiometer2.

1Diamant Universal extra fein Polierpaste
2Megatron MBH K50
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Figure 6.5 The painted fiber array with the V-shaped grooves holders.

6.2.2 Multianode Photomultiplier Tube

Since we have 48 scintillating fibers, in principle, 48 photomultiplier tubes
are necessary to collect the scintillation light. However, for this purpose,
we use a multianode photomultiplier tube. The HAMAMATSU multianode
photomultiplier tube H7546, which is a 8×8 multianode, fast, and low cross-
talk photomultiplier tube, is used to collect the scintillation light from the
fibers. A housing of H7546 is in the form of a square with the dimensions
� 30 ± 0.5 mm. The window material of H7546 is Borosilicate glass. The
spectral and time response of H7546 are suitable for the scintillation light of
the SCSF-78M fiber [133]. The left picture in figure 6.6 shows the spectral
response of H7546. The detailed characteristics are given in table 6.3. A
multianode pattern of H7546 is shown in the right picture of figure 6.6. Each
number from P1 to P64 corresponds to one anode pixel. The first electrode
plate has four holes of 0.3 mm in diameter used as guide marks for positioning
when the fibers are coupled to H7546 [136]. However, the geometrical center
of the photomultiplier housing is not the center of the four guide marks.
We, therefore, measured the difference between them, and made a correction
plate for the particular H7546 used in the detector. Figure E.5 in appendix
E shows the correction plate.
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Figure 6.6 Spectral response and anode pattern of the HAMAMATSU
multianode photomultiplier tube H7546 [136]. The labels from P1 to P64,
correspond to 64 anodes. The 24 used pixels in the right picture are marked
by the blue squares. The red circles are the hole pattern of the new fiber
array mount.

Parameter Description
Spectral response 300 ∼ 650 nm
Wavelength of maximum response 420 nm
Photocathode material Bialkali
Window material Borosilicate Glass
Dynode number of stages 12
Anode size � 2 mm
Quantum efficiency at 390 nm 21 %
Maximum supply voltage -1000 V
Gain 3.0 × 105

Cross-talk with 1mm optical fiber 2 %
Anode pulse rise time 1 ns
Housing size � 30 ± 0.5 mm

Table 6.3 Properties of the multianode photomultiplier tube H7546 [136].
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6.2.3 Fiber Array Mount

Since we want to reuse the electronic part of the prototype, we use only 24
pixels of the photomultiplier tube. For this reason, two fibers, which are in
the same pair Fi, are connected to one pixel. The used pixel is denoted by
the blue square with two red circles in the left picture of figure 6.6. The red
circles represent two holes for the corresponding fibers. The fiber hole pattern
was designed to minimize cross-talk between fibers and to reduce difficulties
in the production process due to machine tolerance.

The prototype fiber array mount was made of aluminum with a small
plastic interface for the photomultiplier tube. The fibers were attached to the
prototype mount. The mount was connected to the vacuum chamber through
a bellow and directly attached to the motor spindle. In this configuration,
maintenance of the fiber array required large-scale disassembling that was
very inconvenient due to the limited space. As a result, in the new design, we
separate it into two parts: (1) a photomultiplier tube cart that is connected
to the vacuum chamber and to the motor directly and has a large hole for the
fiber array; and (2) the new fiber array mount that is connected to the cart
and has a fiber hole pattern and an interface for the photomultiplier tube.
We, therefore, are able to attach the fiber array to the electron detector
and detach the array from the detector without difficulties. Figure E.4 in
appendix E shows the CAD drawing for the fiber array mount. The more
information about the cart will be discussed later.

Fiber-Pixel matching

We have 24 fiber pairs of the fiber array and 24 corresponding hole pairs
in the fiber array mount. A fiber pair Fi has two fibers Fia and Fib. For
convenience, Fia and Fib are called sub-fibers of Fi. In the same manner, a
hole pair has two holes. Since a hole pair fits with a pixel of the multianode
photomultiplier tube, the pair is called the pixel Pi and the hole is called the
sub-pixel from now on. The number of pixels, which are used, is defined in
figure 6.6. To address the sub-pixels within one pixel, we call the sub-pixel
near the high voltage (HV) connector of the photomultiplier tube PiHV and
one near the ground (GND) connector PiGND.

The number of the possible connection between fiber pairs and pixels is
simply a permutation of numbers from 1 and 24, which is P (24, 24) = 24! =
6.2045 × 1023. In addition, there are two possible connections between sub-
fibers and sub-pixels. For example, if F1 is connected to P2, there are two
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Algorithm 1 Gale-Shapley stable marriage algorithm

all F(i)s and all P(i)s are free
while a free fiber F(i) and has not proposed to every pixels do

choose such a F(i).
let a pixel P(i) be the highest-ranked pixel in the fiber preference list
to which F(i) has not yet proposed.
if P(i) is free then

F(i) and P(i) become engaged.
else

P(i) is at this moment engaged to F(j)
if P(i) prefers F(j) to F(i) then

F(i) remains free
else

F(i) and P(i) become engaged
F(j) becomes free

end if
end if

end while

possibilities 1D and 2D as follows:

F1a − P2GND & F1b − P2HV · · · (1D);

F1a − P2HV & F1b − P2GND · · · (2D).

The number of the possible connection is even larger than the number 2×24!
because of three-dimensional space.

For simplicity, we project the pixel or hole pattern of the fiber array
mount and the cross section of the fiber array onto two-dimensional plane.
Then we calculate distances between the fibers and the pixels. We want to
use the same length for all fibers, because of the light collection and transfer
efficiency 〈LCTE〉. As a result, the sole criterion for a choice of the possible
connection is to keep the variance of these distances as small as possible.
Thus, in the connection between F1 and P2, if the variance of 1D is smaller
than that of 2D, we choose 1D, and vice versa. However, in the connection
between fiber pairs and pixels, it is difficult to find a method of matching fiber
pairs with pixels. For this reason, we use the Gale-Shapley stable marriage
algorithm [137, 138, 139] to find the optimum connection between them. This
algorithm is summarized in algorithm 1. Here, Fi is denoted as F(i) and Pi
as P(i).

The stable marriage algorithm is strongly dependent on so-called prefer-
ence lists that contain preferences of a fiber pair and a pixel. We, therefore,
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Propose PL of fiber PL of pixel Mean Variance
Fibers SPL SPL 3.79 6.17
Pixels SPL SPL 3.79 6.17
Fibers SPL DPL 5.35 0.61
Pixels SPL DPL 5.54 1.04
Fibers⋆ DPL DPL 6.72 0.28
Pixels DPL DPL 6.65 5.43
Fibers DPL SPL 6.40 0.32
Pixels DPL SPL 3.87 1.84

Table 6.4 Possible connections between fibers and pixels. PL is a prefer-
ence list, SPL Shortest distance Preference List, DPL smallest Deviation

Preference List, Mean the mean value of the distances between fibers and
pixels, and Variance the variance of the distances. The optimum connec-
tion is Fibers⋆. As expected, when the fiber pairs propose to the pixels,
the DPL returns the best result due to the criterion, which is the smallest
variance. However, using the same DPLs, the proposal of the pixels returns
larger variance than the fiber pairs one, because two possible connection
distances are twice as large as the other ones.

have to define good preference lists for them. First, a fiber pair Fi can be
connected with a pixel Pj where i = 1, 2, · · · , 24 and j = 1, 2, · · · , 24. The
distance between Fi and Pj is denoted by dij. Pj with the shortest dij is the
first rank in the preference list of Fi. This preference list is called Shortest
distance Preference List (SPL) for convenience. Second, using the following
equation,

δdij =
∣

∣d̄i − dij
∣

∣ and d̄i =

24
∑

j

dij
24
, (6.7)

we can define smallest Deviation Preference List (DPL), in which the Pj
with the smallest δdij is the first rank of Fi.

According to the stable marriage algorithm, the fiber pairs propose to
the pixels, and the same applies in reverse. With both proposal methods,
two preference lists for a fiber pair, and two preference lists for a pixel, there
are eight possible ways to the stable marriage algorithm. Table 6.4 shows
the result of the eight possibilities. The optimum result Fibers⋆ in table
6.4, in which the fibers propose to the pixels with fiber’s DPL and pixel’s
DPL, provided the smallest variance of the 24 connections, which means that
the distances between the fiber pairs and the pixels are almost the same for
all fibers. The detailed matching result is given in table 6.5 and is used to
connect the fiber array to the fiber array mount. Note that the connection
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Fiber pair Pixel sub-fiber Fia sub-pixel Fib
F1 P47 a-HV b-GND
F2 P34 a-HV b-GND
F3 P63 a-HV b-GND
F4 P20 a-HV b-GND
F5 P50 a-HV b-GND
F6 P54 a-HV b-GND
F7 P52 a-GND b-HV
F8 P4 a-HV b-GND
F9 P6 a-GND b-HV

F10 P43 a-GND b-HV
F11 P36 a-GND b-HV
F12 P27 a-GND b-HV
F13 P38 a-GND b-HV
F14 P29 a-GND b-HV
F15 P22 a-GND b-HV
F16 P59 a-GND b-HV
F17 P61 a-HV b-GND
F18 P13 a-GND b-HV
F19 P11 a-HV b-GND
F20 P15 a-HV b-GND
F21 P45 a-HV b-GND
F22 P2 a-HV b-GND
F23 P31 a-HV b-GND
F24 P18 a-HV b-GND

Table 6.5 Stable fiber pairs and pixels matching. Note that we consider
two dimensional space to make the preference lists for fibers and pixels.
Thus, there may be better possibilities of fiber pairs and pixels matching.

is considered in two dimensional plane, because it is hard to find proper
preference lists of fiber pairs and pixels in three dimensional space.

6.2.4 Hermetic Sealing with Epoxy

The fiber array and its mount are mounted in the interface between the
vacuum and the atmosphere. Figure 6.7 shows this interface. As a result,
the fiber array mount must have a hermetic sealing. To make it possible, we
used the Varian Torr Seal epoxy3 that has low outgassing properties and is

3Loctite Corporation - Hysol 1C
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Figure 6.7 Hermetic feedthrough. The right part of the picture, is in a
high vacuum (10−7 mbar). Scintillating fibers pass from a high vacuum
environment to the atmosphere. A hermetic sealing is necessary.

suitable for use in pressures of 10−9 mbar and below at temperatures from
-45◦C to 120◦C [140]. The vacuum epoxy also has an off-white color that
prevents cross-talk between fibers. Fluorinated polymer, which is the cladding
material of the fiber, cannot be ordinarily bonded with conventional epoxy
adhesives. There is a method that is described in the reference [141] in order
to obtain maximum joint strength. However, we do not need this bonding
method, but we need a potting method that make a hermetic feedthrough
by combining the fiber array with the fiber mount. Before applying the fiber
array mount with the epoxy, we made a small sample test module and it
successfully passed a vacuum leakage test.

Potting and polishing

Figure E.3 shows the outside fiber bundle holder. The outside fiber bundle
holders are combined with the inside fiber bundle holders in section 6.2.1 so as
to hold the fiber array and the fiber array mount in place during the potting
process. This is shown in the left picture of figure 6.8. For a complete cure,
the fiber array mount with the Torr Seal epoxy was left with an incandescent
electric lamp during three days.

The other end face of the fiber array mount, in the atmosphere of the
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Figure 6.8 Fiber array mount with the fibers
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experimental hall 3, is also needed to be polished, because we attach the
multianode photomultiplier tube with the correction plate to the fiber array
mount. A holder is also necessary so that we can polish them without serious
damage to the fibers, just as we used the inside fiber holder during polishing.
Since the diameter of the holes of the mount is 0.9 mm and the fiber diameter
0.83 mm, there is very small gap between them. We used a common epoxy4

to fill in these small gaps by a vacuum oven. Using the vacuum oven at 60◦C
for 15 min., we turned on a vacuum pump, and turned it off several times,
because the small gaps must be filled with the epoxy. Then the fiber array
mount was left in the vacuum oven at 60◦C for 45 min. without vacuum
for curing. Then, the fiber array mount was left for one day at the room
temperature for the full curing. After that, we polished the end face with the
same method as before. The upper right pictures in figure 6.8 show one face
of the fiber array mount before and after polishing. The fiber array mount
with the fibers and the hermetic sealing, which is shown in the lower right
picture in figure 6.8, also passed the vacuum leakage test successfully.

6.2.5 Mechanical Parts

Figure 6.9 shows the CAD drawing of all visible components of the new
fiber electron detector. The major change of the detector is the fiber array
that is invisible in the drawing. The components with the solid symbol (�)
were developed for the new electron detector and the other components are
reused from the prototype. Figure E.9 in appendix E shows the cart. The cart
connects to the spindle of the stepping motor for a linear motion, to linear
slides, and to the potentiometer. we can easily separate the fiber array mount
with the fibers from the beam line to perform the maintenance of the fibers
without dismantling the fiber detector and putting it back together again.
For this case, the replacement vacuum cover was designed to seal the vacuum
in the beam line. The drawing of the cover is shown in figure E.13. For the
linear motion of the detector, we replaced the rail guides of the prototype
with LZM miniature slides5. Thus, the slide support also was designed and
is shown in figure E.8. We also designed a light tight box so as to further
suppress ambient light on the photomultiplier tube (figures E.6 and E.7). In
the final assembly of the detector, the box has to be wrapped in black tape.

4UHU plus endfest 300
5SKF Actuation & Motion Control
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Figure 6.9 The scintillating fiber electron detector. The components with
the solid symbol (�) are designed so as to improve the detector. The new
fiber array inside the bellow is invisible in the drawing. The high voltage
pin is denoted as HV and the ground one as GND. The orientation of
the photomultiplier tube is important because of the correction plate and
the prototype signal and power connector. All detailed CAD drawings
except the vacuum box are shown in appendix E. The new vacuum box
was designed by one of the A4 collaborators [142].
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6.3 Formulas and Data Handling

In chapter 3, we discuss a general approach to extract the electron beam
polarization. However, this approach is not suitable because of experimental
consideration. Thus, in this section, we consider the experimental conditions
for polarization states of the electron and the photon and redefine the cross
sections σ± according to their polarization states. And we show how to handle
the number of events and how to calculate the Compton asymmetry, the
electron polarization, and their errors from the events.

6.3.1 Cross Section Formula

Figure 6.10 shows the cross sections according to polarization states of the
electron and the photon. The upper plot that is denoted by (I) is the sign
convention for the Compton cross sections (3.22). With this convention, we
use the electron beam with only one polarization state, which is the electron
spin parallel to its direction of motion, and the laser beam with two alterna-
tive polarization states, which are left and right circularly polarized states6.

However, in actual practice, the polarization state of the electron is ran-
domly changed, described in section 2.4. Thus we have to use the slightly dif-
ferent conventions according to the photon polarization state. If the incident
photon is right circularly polarized or has negative helicity, the middle plot
(II) in figure 6.10 shows the corresponding convention of the cross sections.
And when the incident photon is left circularly polarized or has positive he-
licity, the lower plot (III) represents the convention of the cross sections.

During a 2008 polarimeter development beam time, we took several runs
with two different λ/2 plate states. As mentioned in chapter 3, a λ/2 plate
is inserted (λ/2 plate in) or is taken out (λ/2 plate out) between the laser
system and the GaAs crystal in the polarized electron source at MAMI. This
reverses the polarization pattern of the electron beam, described in chapter
2, and gives us a chance to understand systematic effects of asymmetry mea-
surement. In addition, the polarization pattern is recorded by the A4 data
acquisition system. For convenience, we introduce the symbol µ so as to de-
scribe the λ/2 plate states. µ = 0 represents a λ/2 plate out and µ = 1 does
a λ/2 plate in. And we introduce the symbol k to describe to the polarization
pattern of the electron. k = 0 is called pol0 and k = 1 is called pol1. Note
that pol0 and pol1 are used to recognize only the relative polarization state
of the electron.

6A left circularly polarized photon has positive helicity. See the references [143, 89] in
detail.
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Figure 6.10 Cross sections σ± with respect to different polarization states
of the electron and the photon. The red arrow is the direction of motion
of the electron and the green wavy arrow is the photon one. The dotted
arrow is the electron polarization and the elliptical arrow represents the
photon polarization. LC/PH is the left circularly polarized photon that
has positive helicity and RC/NH is the right circularly polarized photon
that has negative helicity.
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From the transmission Compton polarimeter measurement, described in
section 2.4, we determine two electron polarization state when µ = 0 at
electron beam energy of 854.3 MeV. The positive helicity electron corresponds
to k = 1 (pol1) and the negative helicity electron corresponds to k = 0
(pol0). Furthermore, from the photon polarization measurement, done by
the prototype Stokes meter, we measure that the photon has positive helicity
and its polarization is 0.96317(11). According to these two measurements,
our experimental condition of the 2008 polarimeter development beam time
is shown in the plot (III) in figure 6.10. In addition, if we consider the
electron polarization when a λ/2 plate is inserted, i.e. µ = 1, the helicity of
the electron is changed. Thus, pol0 represents positive helicity and pol1 does
negative helicity of the electron.

6.3.2 Electron Polarization from ACT
exp

As mentioned in section 3.2, using differential polarization measurement, the
number of the events per each energy bin ∆ρi is

ni± = L±T±

∫

∆ρi

dρǫ±(ρ)
dσ±
dρ

=
LT
2

∫

∆ρi

dρǫ±(ρ)
dσ0

dρ

[

1 ∓ PePγA
CT
th

]

,

(6.8)

where L is the luminosity, T the total measurement time, and ǫ(ρ) is the
detection efficiency of the photon detector. Here we assume L+T+ = L−T− =
LT/2, ǫ+(ρ) = ǫ−(ρ) = ǫ(ρ), and cosψ = 1 for simplicity.

Thus, the experimental Compton asymmetry per ∆ρi is

(

ACTexp

)

i
=
ni+ − ni−
ni+ + ni−

= −P i
ePγ

∫

∆ρi
dρǫ(ρ)dσ0

dρ
ACTth

∫

∆ρi
dρǫ(ρ)dσ0

dρ

= −P i
ePγ

〈

ACTth

〉

i

= −P i
ePγ

(

ACT
th

)

i
,

(6.9)

where
(

ACT
th

)

i
is the center value of the theoretical Compton asymmetry

within ∆ρi. When a λ/2 plate is taken out (µ = 0), this experimental asym-
metry is expressed in terms of pol0 and pol1 as

(

ACTexp

)

i
=
nipol1 − nipol0

nipol1 + nipol0

. (6.10)
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Therefore, the electron polarization P i
e per each bin ∆ρi is

P i
e = − 1

Pγ

(

ACTexp

ACT
th

)

i

, (6.11)

and its error is

δP i
e =





√

(

δACTexp

)2
+ (ACT

th δPγ/Pγ)
2

|Pγ| |ACT
th |





i

, (6.12)

where δACTexp is the error of the experimental Compton asymmetry and δPγ
is the error of the photon polarization.

Finally, using a weighted average [122, 124, 144], the electron polarization
Pe is

Pe =

∑

iwiP
i
e

∑

i wi
, (6.13)

where

wi =
1

(δP i
e)

2 .

And the uncertainty in Pe is

δPe =
1

√
∑

i wi
, (6.14)

where the sum runs over the bins that we use to calculate the experimental
Compton asymmetry.

6.3.3 Photon Spectra and Event Number

Different types of photon spectra

We use two ADC modules for the data acquisition of the Compton backscat-
tering polarimeter. Figure 3.9 shows the diagram of the data acquisition elec-
tronics. One module, which is called the photon (γ) ADC, is for the photon
detector and the other one, which is called the electron (e) ADC, is for the
fiber electron detector. The photon ADC collects 10 signals, which are 9 for
the LYSO crystals and one for the sum of 9 signals, of the photon detector
with the gate signal. In this data analysis we use only the sum signal. We call
the recorded photon spectrum the photon spectrum with trigger γ. And, the
photon ADC records an attenuated signal from the coincidence between the
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symbol µ ν k l

0 λ/2 plate out trigger γ pol0 background
1 λ/2 plate in trigger γ + e pol1 signal + background

Table 6.6 The meaning of the symbols µ, ν, k, and l.

photon discriminator (CFD) and the electron discriminator (LED). If the at-
tenuated signal has an adequate charge in order to distinguish an event exists
on the electron detector, we save the corresponding event from the photon
detector in an additional spectrum by a software. And we call this additional
spectrum the photon spectrum with trigger γ and e. For convenience, we in-
troduce the symbol ν to represent these two trigger conditions, i.e. ν = 0
corresponds to trigger γ and ν = 1 corresponds to trigger γ and e.

In addition, when the attenuated signal exits, i.e. scattered electrons hit
any of the fibers, the software checks the status of each channel of the elec-
tron ADC. If one channel has an event, the backscattered photon event is
redistributed into an additional photon spectrum with respect to the channel
of the electron ADC. For convenience, we call this photon spectrum a pho-
ton spectrum of a fiber pair, because each ADC channel corresponds to each
fiber pair. We can activate channels of the electron ADC at the same time
by a so-called multiplicity that is in the range of 1 to 99. If the multiplicity
is one, the software saves a photon spectrum when only one channel of the
electron ADC has an event. Since we used ninety-nine multiplicity during
this development beam time, there are multiple counts in the photon spectra
of the fiber pairs.

And the photon spectrum has two different polarization states, which are
denoted as pol0 and pol1, of the electron. We use the symbol k to represent
the electron helicity, which are discussed in section 6.3.1.

Furthermore, there are two spectrum measurements : (1) signal and back-
ground spectrum measurement and (2) background measurement. We intro-
duce the symbol l to describe two measurements. l = 1 represents the signal
and background measurement and l = 0 does the background measurement.
During the signal and background spectrum measurement (l = 1), we use the
electron beam and the laser beam and see the Compton events in the photon
spectrum. And during the background measurement (l = 0), the laser beam
is blocked using a shutter. Therefore, no Compton event is detected by the
photon detector in this measurement.

In summary, table 6.6 shows the meaning of the four symbols, µ, ν, k,
and l.
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Number of the events

We define the number of the events that we record by the photon detector
according to table 6.6. Thus, the number of the events for a bin i and a run
j is

nij(µνkl), (6.15)

and its error is
δnij(µνkl) =

√

nij(µνkl), (6.16)

because nij follows the Poisson distribution.
The number of the Compton events is expressed by

nijc (µνk) = nij(µνk1) − nij(µνk0), (6.17)

where the subscript c stands for Compton. Here we use the direct and simple
bin-wise subtraction. And its error is

δnijc (µνk) =

√

[δnij(µνk1)]2 + [δnij(µνk0)]2

=
√

nij(µνk1) + nij(µνk0).
(6.18)

The experimental Compton asymmetry of a bin i and a run j is

Aij(µν) =
nijc (µν1) − nijc (µν0)

nijc (µν1) + nijc (µν0)
, (6.19)

and its error is

δAij(µν) = 2

√

[

δnijc (µν1)nijc (µν0)
]2

+
[

nijc (µν1)δnijc (µν0)
]2

[

nijc (µν1) + nijc (µν0)
]2 . (6.20)

Note that (6.19) is valid for only the 2008 polarimeter development beam
time, because the convention of the cross section formula is changed according
to initial polarization states of the electron and the photon.

Independent measurements

We carried out independent measurements of the Compton spectra and com-
bine several runs that have the same λ/2 plate state. When a λ/2 plate is
taken out (µ = 0), sixty-four signal and background runs (l = 1) and twenty-
three background runs (l = 0) have good quality to calculate Compton asym-
metry. When a λ/2 plate is inserted (µ = 1), seventy-nine signal and back-
ground runs (l = 1) and thirty-three background runs (l = 0) are suitable
for the same purpose. We summarize these run numbers in table 6.7.
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λ/2 plate status µ 0 1
laser status l 0 1 0 1

run number Jµl 23 64 33 79

Table 6.7 Available run number Jµl with respect to µ and l during the
2008 polarimeter development beam time.

Since we have different run numbers between l = 0 and l = 1, we average
the number of the events per each bin i such that we calculate the number
of the mean Compton events. We assume that nij(µνkl) per each bin i is
extracted from the same parent population and the same uncertainties. Thus
the mean event number per each bin i is

N i(µνkl) =
1

Jµl

Jµl
∑

j=1

nij(µνkl), (6.21)

and its error per each bin i [124] is

δN i(µνkl) =

√

N i(µνkl)

Jµl
. (6.22)

And the number of the mean Compton events is

N i
c(µνk) = N i(µνk1) −N i(µνk0), (6.23)

and its error is

δN i
c(µνk) =

√

[δN i(µνk1)]2 + [δN i(µνk0)]2. (6.24)

Thus, the mean Compton asymmetry of a bin i is

Ai(µν) =
N i

c(µν1) −N i
c(µν0)

N i
c(µν1) +N i

c(µν0)
, (6.25)

and its error is

δAi(µν) = 2

√

[δN i
c(µν1)N i

c(µν0)]2 + [N i
c(µν1)δN i

c(µν0)]2

[N i
c(µν1) +N i

c(µν0)]2
. (6.26)
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6.4 Preliminary Result of the Fiber Detector

Development

In this section, we present preliminary result that lives up to our expecta-
tions in the electron beam polarization measurement by using the redesigned
scintillating fiber electron detector. First, we use only two runs such that
we take a look at the status of the scintillating fiber detector and examines
background reduction by the coincidence between the electron fiber detector
and the photon detector. After that, we consider all available runs, taken dur-
ing the 2008 beam time for the polarimeter development, so as to minimize
the statistical fluctuations. Finally, we estimate the experimental Compton
asymmetry, the electron polarization, and their errors. This preliminary re-
sult provides a starting point for more studies that are needed to measure
the electron polarization precisely and that are in progress [142].

6.4.1 Detector Status and Background Reduction

One run, Run 56483, is a photon spectrum measurement with the 854.3 MeV
electron beam and the 2.41 eV laser beam. This measurement has µ = 0 and
l = 1. And the other run, Run 56482, is one with the electron beam and has
µ = 0 and l = 0.

Figure 6.11 shows three contour plots of the photon spectra of the fiber
pairs with the sum of two electron polarization states, i.e.

nij(l) =
1
∑

k=0

nij(0, 1, k, l).

The left upper plot, which is denoted as (1), and the right upper plot (2)
show the photon spectra in the coincidence with each fiber pair noted in
the x-axis with l = 1 and l = 0 respectively. Thus, the left upper plot (1)
contains the Compton events and background and the right upper plot does
only background. Using the direct and simple bin-wise subtraction of the
data of Run 56482 from the data of Run 56483, we obtain the lower plot (3).
No further corrections are applied.

We clearly see a linear correlation between the fiber pair number and the
photon energy (ADC channel) in the plots. After we find the peak positions
of each photon spectrum of the fiber pair by the Gaussian fit, we confidently
argue that the correlation between the fiber pair number and the ADC chan-
nel is shown. More precisely, the correlation is highly significant, because
the correlation coefficient r0, described in section 5.2.1, is 0.99994 and the
probability Pr of getting a correlation coefficient |r| ≥ 0.99994 from the fiber
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Figure 6.11 Contour plots of the photon detector spectra of the fiber
pairs. Two above plots (1) and (2) show the coincidence spectra of each
fiber pair with and without the laser beam. The below plot (3) shows
the naive subtraction and represents only the Compton events. Here we
perform no possible corrections that may be overlaps of the detector path
length and records of the multiple hit of the electron to the fibers. The F19
bin shows a malfunction of the corresponding amplifier and shows fewer
entries than other bins. For the sake of graphical simplicity, we merge four
bins of the ADC channel in one bin.
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pair number and the ADC channel is much less than 0.001%. In addition,
we simulate the horizontal deviation of the scattered electron at the exit of
the chicane as a function of the backscattered photon energy by using the
ideal chicane simulation, described in chapter 4. The simulation result shows
that r0 = 0.99997 and Pr = 2.2 < 10−16. Thus the correlation between the
backscattered photon energy and the horizontal deviation of the scattered
electron is highly significant because the probability is far less than 0.001%.
These two correlations suggest that the fiber array, of which we do the com-
plete redesign, is well-aligned.

In the background plot (2) shown in figure 6.11, we see interesting areas
that are a horizontal green area at about 300 ADC channel, a vertical area at
F24 and F12, and a green and light blue linear correlation area. We suspect
that they come from electron halos of the main electron beam trajectory,
random coincidences of the Bremsstrahlung, multiple hits of the scattered
electron on the fibers, and the multiplicity of the data acquisition software.
More studies on the background are needed for precise measurement of the
electron polarization and are in progress [142].

Using the same runs, figure 6.12 shows photon detector spectra with two
different states of the electron polarization (k = 0, 1), two different trigger
conditions (ν = 0, 1), and two different spectrum measurements (l = 0, 1). We
see a suppression of the background when imposing the coincidence (ν = 1)
in the above plot of figure 6.12. And, when we calculate the number of the
Compton events, nijc (µνk), by subtracting the background (l = 0) from the
signal and background (l = 1), in the below plot of figure 6.12, nijc (µνk) is
almost unchanged within the ADC channel range that the scintillating fiber
array covers. Note that we are interested in only the range, is covered by the
fiber array, because the outside range has smaller the theoretical asymmetry
than the range does, shown in figure 3.5.

In order to quantify them, we introduce the Compton event ratio Rc, the
Compton event error ratio Rδc, the background ratio Rb, and the asymmetry
error ratio Rij

δA as follows:

Rij
c (µk) =

nijc (µ1k)

nijc (µ0k)
, Rij

δc(µk) =
δnijc (µ1k)

δnijc (µ0k)
,

Rij
b (µk) =

nij(µ1k0)

nij(µ0k0)
, Rij

δA(µ) =
δAij(µ1)

δAij(µ0)
.

(6.27)

For convenience, these ratios are named for trigger efficiencies and are listed
in table 6.8. In the ADC channel range of 1000 to 2000, we see that Rc = 0.98,
Rδc = 0.67, Rb = 0.14, and RδA = 0.68. Therefore, when the coincidence
between the scintillating fiber detector and the photon detector is used, the
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Figure 6.12 Photon detector spectra with different trigger conditions
(ν = 0, 1) and different spectrum measurements (l = 0, 1). The simple and
direct subtraction is used to get the below plot. In the plots, nij(µνkl) and
nijc (µνk) are defined in (6.15) and (6.17) respectively. We merge 16 bins
of the ADC channel in one bin for sake of graphical simplicity.
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ADC channel Rc(µk) Rδc(µk) Rb(µk) RδA(µ)
from to (00) (01) (00) (01) (00) (01) (0)

1000 2000 0.98 0.98 0.67 0.67 0.14 0.14 0.68
735 2208 0.98 0.98 0.63 0.64 0.13 0.13 0.64

735 868 0.95 0.93 0.50 0.50 0.12 0.13 0.53
869 1002 0.99 0.99 0.56 0.56 0.12 0.13 0.56

1003 1136 0.99 1.00 0.59 0.59 0.13 0.14 0.59
1137 1270 1.00 0.99 0.62 0.62 0.14 0.13 0.61
1271 1404 0.98 0.98 0.65 0.64 0.14 0.14 0.65
1405 1538 0.98 0.98 0.67 0.68 0.14 0.14 0.68
1539 1672 0.98 0.96 0.70 0.70 0.14 0.15 0.71
1673 1806 0.96 0.96 0.72 0.72 0.15 0.14 0.74
1807 1940 0.98 0.98 0.73 0.74 0.14 0.15 0.75
1941 2074 0.98 0.97 0.74 0.74 0.15 0.15 0.75
2075 2208 0.95 0.99 0.69 0.70 0.15 0.15 0.70

Table 6.8 Trigger efficiencies. The ADC channel ranges are selected ac-
cording to the fiber pairs with a rough approximation. Rc(µk) is called
Compton event ratio, Rδc the Compton event error ratio, Rb the back-
ground ratio, and the asymmetry error ratio RδA. The Compton events
with the coincidence has only 2% less than the events without the coinci-
dence in the range of 735 to 2208 ADC channel.

background is reduced by more than 80%. Thus the uncertainty of the Comp-
ton asymmetry decreases by about 30% and the number of the Compton pho-
tons is almost unchanged.

In figure 6.12, there is no significant difference between the measured
Compton spectra of the two polarization states of the electron (k = 0, 1),
because of statistical fluctuations. But, if several runs that have the same λ/2
plate state are combined by using the method described in section 6.3.3, it is
significant that the one polarization state (k = 0) has larger Compton photon
number than the other state (k = 1) does. We clearly see the difference in
figure 6.13. And, table 6.9 shows that Rc = 0.97, Rδc = 0.58, Rb = 0.15,
and RδA = 0.60 in the range of 1000 to 2000. Therefore, when we use the
number of the mean Compton events, the uncertainty of the mean Compton
asymmetry decreases by about 40% and the number of the Compton photons
remains intact.
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Figure 6.13 Average photon detector spectra with different trigger con-
ditions (ν = 0, 1) and different spectrum measurements (l = 0, 1). The
simple and direct subtraction is used to get the below plot. In the plots,
N i(µνkl) and N i

c(µνk) are defined in (6.21) and (6.23) respectively. We
merge 16 bins of the ADC channel in one bin for sake of graphical sim-
plicity.
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ADC channel Rc(µk) Rδc(µk) Rb(µk) RδA(µ)
from to (00) (01) (00) (01) (00) (01) (0)

1000 2000 0.97 0.97 0.58 0.58 0.15 0.15 0.60
735 2208 0.97 0.97 0.55 0.55 0.15 0.15 0.57

Table 6.9 Average trigger efficiencies with λ/2 plate out. For simplicity,
we presents only the first two ADC channel ranges, which are in table 6.8.

6.4.2 Experimental Compton Asymmetry

Figure 6.14 shows the experimental Compton asymmetries with two different
λ/2 plate states (µ = 0, 1) and with two trigger conditions (ν = 0, 1) in the
ADC channel range of 600 to 2200. For convenience, we call this ADC channel
range the Compton range. As mentioned before, the theoretical Compton
asymmetry changes its sign at ργ and reaches the largest value at ρ = 1.
In these plots, we easily notice that the experimental Compton asymmetry
follows the theoretical asymmetry pattern, shown in figure 3.5, whether a
λ/2 plate is inserted or not. It changes sign at about 1000 ADC channel and
reaches the maximum value of the asymmetry at about 2000 ADC channel.
And, we see that the error of the experimental Compton asymmetry with
ν = 1 is smaller than the error with ν = 0 in the plots.

6.4.3 Electron Polarization Estimation

Before we study the detector response function, i.e. the photon detection ef-
ficiency and the energy calibration of the photon detector, we cannot deter-
mine the electron polarization and its error with accuracy. However, if we as-
sume a perfect detection efficiency and use a naive energy calibration, we can
estimate the electron polarization and the error of the electron polarization.

If we assume that the channel 2200 corresponds to ρ = 1 and the channel
114 does ρ = 0, the normalized energy ρi is expressed in terms of the ADC
channel i as

ρi =
kif
kmax
f

=
i− 114

2200 − 114
, (6.28)

where kmax
f is the maximum energy of the backscattered photon and kif is

the backscattered photon energy of the ADC channel i. Thus, using (3.24),
(6.11), and (6.12), we can calculate P i

e and δP i
e . Then, we can estimate the

electron polarization Pe(µν) and its error δPe(µν) using (6.13) and (6.14).
Table 6.10 shows the electron polarization and the error of the polarization

with two different trigger conditions (ν = 0, 1) and with two different λ/2
states (µ = 0, 1). In the table, we use four different ADC channel ranges
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Figure 6.14 Compton asymmetries and theirs errors with two different
λ/2 plate states within the Compton range. Here the asymmetries are cal-
culated by using all available runs that were taken during the 2008 beam
time. Above left, the Compton asymmetries without the coincidence and
with a λ/2 plate out; above right, the asymmetries with the coincidence
and the same plate state; below left, the asymmetries without the coinci-
dence and with the λ/2 plate in; below right, the asymmetries with the
coincidence and the plate in state. Data points represent asymmetries and
the solid lines do the errors associated with the points. Ai(µν) is defined
in (6.25). Here, we merge 8 bins of the ADC channel in one bin.
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λ/2 plate trigger ADC channel range (from → to)
status condition 1400 1400 1400 1400 1400

↓ ↓ ↓ ↓ ↓
(µ) (ν) 2000 1900 1800 1700 1600

(1) Pe(01) 0.632 0.665 0.695 0.710 0.732
out (1) δPe(01) 0.014 0.017 0.022 0.029 0.042

(0) Pe(00) 0.613 0.636 0.660 0.671 0.723
(0) (0) δPe(00) 0.022 0.027 0.034 0.048 0.067

RδPe(0) 0.64 0.64 0.63 0.60 0.62

(1) Pe(11) -0.584 -0.595 -0.617 -0.664 -0.735
in (1) δPe(11) 0.013 0.016 0.020 0.027 0.038

(0) Pe(10) -0.588 -0.592 -0.590 -0.631 -0.698
(1) (0) δPe(10) 0.020 0.025 0.032 0.043 0.062

RδPe(1) 0.65 0.65 0.64 0.63 0.61

Table 6.10 The error ratio of the electron polarization with two differ-
ent trigger conditions (ν = 0, 1) and with two different λ/2 plate states
(µ = 0, 1). Because of statistical fluctuations, the estimated Pe(µν) is
larger than 100% in several bins of the ADC channel. Since more than
100% polarization has no physical meaning, we merge 16 bins of the ADC
channel in one bin and exclude an electron polarization P i

e(µν) to calcu-
late Pe(µν) when P i

e(µν) has no physical meaning. Therefore, the channel
range from 1400 to 2000 represents the range from 1393 to 2000 more
precisely. In the calculations, the error ratio is rounded to two significant
figures and the rounding is done at the end of the calculations to reduce
the inaccuracies.



156 6.4. Preliminary Result of the Fiber Detector Development

to estimate Pe(µν) and δPe(µν). The electron polarization Pe(01) changes
from 63.2% to 73.2% with respect to the ADC channel range. However, if we
use the ADC channel 2000 as ρ = 1, Pe(01) changes from 52.5% to 54.4%
with respect to the same ADC channel range. Thus, we cannot calculate the
electron beam polarization correctly without a further study on the energy
calibration and the detector response function of the photon detector.

Nevertheless, we introduce an error ratio RδPe(µ) = δPe(µ1)/δPe(µ0) so
that we see how much the error of the electron polarization is reduced when
we use the coincidence between the fiber detector and the photon detector
in this preliminary result. They are shown as a bold type in table 6.10.
Thus, when we use the coincidence (ν = 1), the error of the electron beam
polarization decreases by about 40 percent.

Further, we can estimate how much the parity violating (PV) asymmetry
APVphys will be changed using these electron polarizations, if we assume that
the electron polarization is independent of an electron beam energy. Using
the Møller polarimeter measurement and considering the systematic effect
of applying the Møller measurement to APVphys, the electron polarization Pe is
0.683 ± 0.040. With this electron polarization, APVphys at the backward angles
is (−17.41±1.18) ppm. Note that this recent PV asymmetry is different with
the preliminary PV asymmetry at the backward angles, shown in (2.43).

From table 6.10, we choose the electron polarizations with µ = 0 and
ν = 0, 1 in the column of the ADC range of 1400 to 1800. When we use
Pe = 0.660 ± 0.034 (µ = 0, ν = 0), the PV asymmetry is (−18.01 ± 1.16)
ppm. And if we use Pe = 0.695± 0.022 (µ = 0, ν = 1), the PV asymmetry is
(−17.11 ± 1.00) ppm. Therefore, in this preliminary result, the error of the
PV asymmetry decreases two percent if we use only the photon detector, i.e.
ν = 0, during the electron polarization measurement. And when we use the
coincidence, ν = 1, between the scintillating fiber detector and the photon
detector, the error of the PV asymmetry is reduced by around 15 percent.

Since the photon spectra that were measured during only two days are
used to calculate the electron polarization, there may be room for error re-
duction in the electron beam polarization and in the PV asymmetry.



Chapter 7

Summary and Outlook

In this thesis, we have succeeded in developing the A4 Compton backscatter-
ing polarimeter chicane that provides the Compton interaction region. The
chicane is also the beam transport line that is able to deliver successfully
the electron beam to a target for the parity violation experimental program.
After studying the properties of the chicane components, we have developed
the electron beam control system, which is quick, easy to use, and reliable,
that makes an overlap between the electron beam and the laser beam. Using
the system, we can achieve that the beam crossing point is as close to the
Compton interaction region as possible and that the crossing angle is less
than 0.5 mrad. They guarantees to achieve the high luminosity of the A4
Compton backscattering polarimeter in the cost-effective method.

Further, we have developed the scintillating fiber electron detector in
order to minimize the statistical error in the polarization measurement. We
have clearly seen that the background is reduced by about 80 percent and the
Compton spectrum remains intact when we use the coincidence between the
complete redesigned scintillating fiber detector and the photon detector. The
statistical error of the Compton asymmetry with the coincidence is reduced
by about 40 percent if it is compared with the asymmetry error without the
coincidence. As a result, the error of the electron beam polarization decreases
by about 40 percent. They are the significant progress in measuring a degree
of polarization of the electron beam.

Moreover, for future improvements of the Compton backscattering po-
larimeter, we suggest that a beam monitoring system, which can determine
the beam positions, directions, and emittances, to install at the beginning,
the center, and the end of the chicane. The more precise beam monitoring
system will help understand a luminosity of the Compton polarimeter in de-
tail. And, we suggest a precise study of the beam control system that contains
especially the dipole magnets, their shunts, and the quadrupole magnets ac-
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cording to a beam transport line of a whole accelerator beam line. Finally,
which background sources, that are visible in the photon spectra, contribute
to signals of the fiber electron detector remain hitherto unknown. This may
have to be taken into account using a Monte Carlo simulation.

The development of the chicane and the electron detector are parts of the
A4 Compton backscattering polarimeter and they are strongly connected
with the other parts, which are the laser optics system, the photon detector,
the Stokes meter, and the data analysis of the Compton asymmetry mea-
surement. The vibrant development of the other parts or, more precisely,
the new Stokes meter and the data analysis of the photon detector with a
Monte Carlo detector simulation are in progress. We will soon achieve the
electron beam polarization measurement with accuracy. At the same time,
the A4 Compton backscattering polarimeter will be a non-destructive online
monitoring tool for the beam polarization. This promising result may reduce
the error in the parity violating asymmetry and provide an opportunity for
studying the strangeness contributions to the structure of the nucleon with
a high degree of accuracy.
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[102] M. C. Mora Esṕı, Development of a new photon detector for the
A4-Compton backscattering polarimeter at MAMI. Diplomarbeit,
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik,
August, 2007.

[103] D. C. Carey, The Optics of Charged Particle Beams. Harwood
Academic Publishers, 1992.

[104] H. Wiedemann, Particle Accelerator Physics I: Basic Principles and
Linear Beam Dynamics. Springer-Verlag, 1999.

[105] J. B. Rosenzweig, Fundamentals of Beam Physics. Oxford University
Press, 2003.

[106] M. Della Negra, “Multiple Coulomb Scattering of Beam Particles in
the Phase Space Ellipse Formalism,”. SLAC-TN-71-001.

[107] M. Sands, “The Physics of Electron Storage Rings: An
Introduction,”. SLAC-R-121.

[108] K. Potter, “Beam Profiles,”. In *Gif-sur-yvette 1984, Proceedings,
General Accelerator Physics, Vol. 1*, 301-317.

[109] J. Rossbach and P. Schmueser, “Basic course on accelerator optics,”.
In *Jyvaeskylae 1992, Proceedings, General accelerator physics, vol.
1* 17-88. CERN Geneva - CERN-94-01 (94/01,rec.Mar.) 17-88.

[110] MAMI B1 Collaboration, “MAMI main parameters.”
http://www.kph.uni-mainz.de/B1/.

[111] M. Minty and F. Zimmermann, Measurement and Control of Charged
Particle Beams. Springer-Verlag, 2003.

[112] D. C. Carey et al., “Third order TRANSPORT with MAD input: A
Computer Program for Designing Charged Particle Beam Transport
Systems,”. SLAC-R-0530, FERMILAB-PUB-98-310.

[113] H. Wiedemann, Synchrotron Radiation. Springer-Verlag, 2003.

[114] A. Septier, Focusing of Charged Particles, vol. II. Academic Press
New York, 1967. 203-264.



BIBLIOGRAPHY 169

[115] H. Enge, “Quadrupole Enginnering Data.” Industiral Coils, Inc, Birch
Street, Middleton, Massachusetts 01949, USA.

[116] J. Müller and K.-H. Kaiser. private communication.

[117] P. J. Bryant, “Beam transfer lines,”. In *Jyvaeskylae 1992,
Proceedings, General accelerator physics, vol. 1* 219-238. CERN
Geneva - CERN-94-01 (94/01,rec.Mar.) 219-238.

[118] W. Ketter, Entwurf zum Bau eines optischen Resonators für ein
Comptonrückstreupolarimeter. Diplomarbeit, Johannes
Gutenberg-Universität Mainz, Institut für Kernphysik, December,
1998.

[119] A. Kelley and I. Pohl, A Book on C: Programming in C.
Addison-Wesley Professional, fourth ed., 1997.

[120] R. Brun et al., “ROOT-An Object Oriented Data Analysis
Framework,” Proceedings AIHENP 96 (1997) 81–86.

[121] W. H. Press et al., Numerical Recipes in C: the art of scientific
computing. Cambridge University Press, New York, NY, USA, 1988.

[122] J. R. Taylor, An Introduction to Error Analysis. University Science
Books, 1997.

[123] E. M. Puch and G. H. Wilslow, The Analysis of Physical
Measurements. Addison-Wesley, 1966.

[124] P. R. Bevington and D. K. Robinson, Data Reduction and Error
Analysis for the Physical Sciences. McGraw-Hill Higher Education,
2003.

[125] L. Lyons, Statistics for Nuclear and Particle Physicists. Cambridge
University Press, 1986.

[126] G. E. P. Box et al., Statistics for Experimenters. John Wiley & Sons,
Inc, 1978.

[127] D. C. Montgomery, Introduction to Linear Regression Analysis. John
Wiley & Sons, Inc, 2001.

[128] N. R. Draper, Applied Regression Analysis. John Wiley & Sons, Inc,
1981.



170 BIBLIOGRAPHY

[129] D. C. Carey, “Functional dependence, broad-band fitting, and
ancillary conditions,”. To be published in the proceedings of
International Computational Accelerator Physics Conference (ICAP
98), Monterey, CA, 14-18 Sep 1998.

[130] R. C. Ruchti, “The use of scintillating fibers for charged-particle
tracking,” Ann. Rev. Nucl. Part. Sci. 46 (1996) 281–319.

[131] K2K Collaboration, A. Suzuki et al., “Design, construction, and
operation of SciFi tracking detector for K2K experiment,” Nucl.
Instrum. Meth. A453 (2000) 165–176, hep-ex/0004024.

[132] M. Berger et al., ESTAR, PSTAR, and ASTAR: Computer Programs
for Calculating Stopping-Power and Range Tables for Electrons,
Protons, and Helium Ions (version 1.2.3). National Institute of
Standards and Technology, Gaithersburg, MD, 2005.
http://physics.nist.gov/Star.

[133] Kuraray Technical Information, Scintillation Materials, Kuraray Co.,
Ltd. Nihonbashi, Chou-ku, Tokyo 103-8254, Japan.

[134] C. A. Ayerbe Gayoso, Development of a fibre detector for a kaon
spectrometer at MAMI. Diplomarbeit, Johannes
Gutenberg-Universität Mainz, Institut für Kernphysik, April, 2004.

[135] BC-620 Reflector Paint for Plastic Scintillators Product Data Sheet,
Saint-Gobain Crystals. P.O. Box 3093, 3670 DB Soest, The
Netherlands.

[136] HAMAMATSU Photomultiplier Tube Assembly H7546A, H7546B
data sheet. 315-5, Shimokanzo, Toyooka-village, Iwata-gun,
Shizuoka-ken, 438-0193, Japan, 2002.

[137] D. Gale and L. S. Shapley, “College Admissions and the Stability of
Marriage,” Am. Math. Monthly 69 (1962) 9–15.

[138] R. Sedgewick, Algorithms in C. Addison-Wesley, 1990.
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Appendix A

Synchrotron Radiation

As we have mentioned in section 4.3, the four dipole magnets, which define
the geometry of the A4 Compton polarimeter chicane, are sources of syn-
chrotron radiation when an electron beam is bent inside them. We there-
fore should study the amount of energy loss of the electron and see if this
has an effect upon the A4 experiment. Furthermore, we should verify if the
synchrotron radiation could contribute to background of the photon detec-
tor. In this section, we assume perfect vacuum conditions in the vacuum
chamber, the midplane symmetry in the dipole magnets, and no effect of the
quadrupole magnets. With these assumptions, we discuss general properties
of the synchrotron radiation, then we study its practical effects on the parity
violation experiment and the photon detector.

A.1 Overview of Synchrotron Radiation

A.1.1 Instantaneous synchrotron radiation power

The instantaneous synchrotron radiation power of a relativistic electron,
which propagates in a direction perpendicular to the magnetic field, and
is given by [107, 145, 113]

P0 =
2

3

e2

4πǫ0c

γ4β4c2

ρ2
=

2

3
remc

3γ
4β4

ρ2
, (A.1)

where re is the classical electron radius, m the rest mass of the electron, c
the speed of light, γ the Lorentz factor, β the velocity in terms of the speed
of light, and ρ the bending radius of the dipole magnet. The above equation
can be written in more practical units as

P0 (GeV/s) =
c (m/s)

2π
C0

(

m/GeV3
) E4 (GeV4)

ρ2 (m2)
, (A.2)
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Figure A.1 The angular distribution of the synchrotron radiation of a
854.30 MeV electron. The normalized angle η = γ sin θ is used to plot the
distribution, thus x = η cos φ and y = η sin φ. In the contour plot that is
the x−y plane from an observer’s point of view, the synchrotron radiation
is known to be a highly collimated beam.

where C0 is Sand’s radiation constant C0 = 8.84628 × 10−5 (m/GeV3) and
E the electron energy [107]. The synchrotron radiation power is strongly
dependent on the energy of the electron.

A.1.2 Angular distribution

The angular distribution of the synchrotron radiation power is [145, 113]

dP

dΩ
= P0

3

2π

1

γ4

[

(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 φ

(1 − β cos θ)5

]

, (A.3)

where P0 is the instantaneous synchrotron radiation power (A.1), θ the angle
between the direction of electron momentum and the direction of the emitted
photon, and φ the azimuth angle. Figure A.1 shows the angular distribution
of the synchrotron radiation on a detector position. The emitted radiation
is strongly concentrated around the forward direction within an angle of
θγ = ±1/γ with respect to the direction of the electron momentum.

A.1.3 Spectral distribution

As we are interested in the number and energy of the emitted photon that
hits the photon detector, we need to discuss the spectral distribution of syn-
chrotron radiation.
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Critical photon energy Synchrotron radiation is continuously emitted
along the path of an accelerated particle. Since a fixed observer can see the
synchrotron light for a only short duration, the spectrum will reach up to
a critical photon energy during the duration. The critical photon energy is
given by [145, 113]

εc = ~ωc =
3

2
~c
γ3

ρ
, (A.4)

where ωc is the critical frequency, γ the Lorentz factor, and ρ the bending
radius of the dipole magnet. In more practical units, the critical photon
energy is

εc(eV) =
3~c

2(mc2)3

E3
e (GeV3)

ρ(m)
. (A.5)

This critical photon energy εc defines an upper limit of the spectrum of
synchrotron radiation.

Power spectrum The power spectrum is given by [107]

P(ω) =
P0

ωc
S(ω/ωc), (A.6)

where

S(ξ) =
9
√

3

8π
ξ

∫ ∞

ξ

K5/3(s)ds, (A.7)

with ωc is a critical frequency and K5/3(ξ) is a modified Bessel function of
the second kind. Here S(ξ) is called the spectral function or normalized power
spectrum of synchrotron radiation. Figure A.2 shows the form of S(ξ).

Photon flux The spectral photon flux per a deflection angle in a bending
magnet is generated by an electron beam and is defined as [113, 146]

dṅ0

dϕ
= CϕE (GeV) I(A)

∆ω

ω
S(ω/ωc), (A.8)

where ∆ω/ω is called a bandwidth (usually 0.1%), I the electron current, and

Cϕ = 3.967 × 1019 photons

s rad A GeV
.
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Figure A.2 Normalized power spectrum S(ξ) of synchrotron radiation.
P(ω) has the same shape as S(ξ) does with a different scale. The red
dotted line represents the critical energy of the emitted synchrotron light.

A.2 Energy Loss in the Chicane

By integrating (A.2) along the effective length ld of one dipole magnet, defined
in (4.25), the energy loss per dipole magnet can be written as

U0 =

∫

P0dt ≈
C0

2π

E4

ρ2
ld, (A.9)

where C0 is Sand’s radiation constant and ρ the bending radius of the dipole
magnet. Notice that the energy loss per dipole magnet depends on only the
fourth power of the electron energy E. As the electron beam energy range
854.30 − 315.25 MeV, the energy loss for one electron per dipole magnet is
between 0.42 and 0.01 keV, and the total energy loss Uc = 4U0 in the chicane
between 1.69 and 0.03 keV. Figure A.3 shows the energy loss Uc as a function
of the electron energy. Moreover, U0 and Uc for the different electron energies
are listed in table A.1. The energy loss of the electron in the chicane, which
is below 2 keV, is smaller than the error of the MAMI energy measurement.

In addition, we should evaluate the electron energy difference between
before and after the chicane. As we see in table A.2, we could say that
the energy loss is negligible, since the uncertainties of the electron beam
∆E = 160 keV and the energy loss Uc < 2 keV.
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Figure A.3 The energy loss of an electron in the chicane as a function of
the electron energy. Three energies are selected to calculate Uc, because
these energies are the A4 experimental beam conditions. In addition, we
also calculate Uc at 1.508 GeV.

E (MeV) U0 (keV) Uc (keV)

854.30(16) 0.42129(32) 1.6852(13)
570.40(16) 0.083726(94) 0.33490(38)
315.25(16) 0.007812(16) 0.031248(63)

1508.00(16∗) 4.0902(17∗) 16.3609(69∗)

Table A.1 The energy loss due to the synchrotron radiation. E is the
electron energy, U0 the energy loss of one electron, and Uc the energy loss
of the electron inside the chicane. As the chicane has the same four dipole
magnets, Uc = 4 × U0. The uncertainties are stated with two significant
figures in a concise form. Note that the uncertainty value of 1508 MeV
does not come from the MAMI energy measurement. We assume that the
uncertainty is the same as the other energy measurements. We denote
these uncertainties as the ∗ symbol.
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Uc (keV) Ebefore (MeV) Eafter (MeV)

1.6852(13) 854.30(16) 854.30(16)
0.33490(38) 570.40(16) 570.40(16)

0.031248(63) 315.25(16) 315.25(16)

16.3609(69) 1508.00(16∗) 1508.00(16∗)

Table A.2 The energy difference between before and after the chicane.
Ebefore is the electron energy before the chicane and Eafter the electron
energy after the chicane. Notice that there are no differences between
Ebefore and Eafter within two significant figures. In the 1508 MeV case,
Eafter = 1507.99591(16000∗ ) MeV with five significant figures.

Moreover, to confirm no effect of the energy loss on the parity violating
asymmetry measurement, we should check that a squared four momentum
transfer Q2 is unchanged. The momentum transfer is

Q2 = 4EE ′ sin2 θ

2
, (A.10)

with

E ′ =
E

1 + 2E
M

sin2 θ
2

,

and its uncertainty is

δQ2 = 2M

(

1 − E ′2

E2

)

δE, (A.11)

where E is the energy of the incident electron, E ′ the energy of the scattered
electron, and we assume, for convenience, that the scattering angle θ has no
uncertainty and can ignore the uncertainty of the proton mass M .

In case of the forward scattering, the scattering angle θ varies in the
range of 30◦ to 40◦ that covers seven rings of the calorimeter [65]. We use
mean scattering angles of the rings to calculate them. We calculate all Q2

over the rings of the calorimeter and their average Q̄2 without and with
Uc. In the calculations, the uncertainties were rounded to two significant
figures and the rounding was done at the end of the calculations to reduce
the inaccuracies. These results are listed in table A.3. We see that there are
some differences in Q2 and E ′, especially at 1.508 GeV, if we compare the
without Uc columns with the with Uc columns. However, when we directly
calculate the differences, listed in the difference columns, between with and
without the energy loss Uc in the chicane due to the synchrotron radiation,
the Q2 differences within their uncertainties are consistent with zero. It causes
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E 1.50800(16) 0.85430(16)
without Uc with Uc difference without Uc with Uc difference

R1 E′ 1.107142(86) 1.107139(36) 0.00000(12) 0.70890(11) 0.70889(11) 0.00000(16)
Q2 0.75223(14) 0.75222(14) 0.00000(20) 0.272859(94) 0.272858(94) 0.00000(13)

R2 E′ 1.129270(90) 1.129268(90) 0.00000(13) 0.71790(11) 0.00000(16)
Q2 0.71070(13) 0.00000(19) 0.255956(88) 0.00000(12)

R3 E′ 1.150921(93) 1.150918(93) 0.00000(13) 0.72659(12) 0.00000(16)
Q2 0.67007(13) 0.00000(18) 0.239650(83) 0.00000(12)

R4 E′ 1.171744(97) 1.171741(97) 0.00000(14) 0.73484(12) 0.00000(17)
Q2 0.63100(12) 0.00000(17) 0.224179(78) 0.00000(11)

R5 E′ 1.19183(10) 0.00000(14) 0.74269(12) 0.00000(17)
Q2 0.59330(11) 0.00000(16) 0.209448(73) 0.00000(10)

R6 E′ 1.21114(10) 1.21113(10) 0.00000(15) 0.75014(12) 0.00000(17)
Q2 0.55708(11) 0.55707(11) 0.00000(15) 0.195466(69) 0.000000(97)

R7 E′ 1.22977(11) 1.22976(11) 0.00000(15) 0.75724(13) 0.00000(18)
Q2 0.52212(10) 0.00000(14) 0.182134(64) 0.000000(91)

Q̄2 0.633787(45) 0.633784(45) 0.00003(64) 0.225670(30) 0.000000(42)

Table A.3 The effect of the synchrotron radiation on E′ (GeV) and
Q2 (GeV/c)2. Here, we state uncertainties with two significant figures. If
the incident electron energy is 570.4 MeV or 315.25 MeV, there are no
differences between without and with Uc. So, we omitted them from
this table. In the table, Q̄2 is the average of all Q2s and Ri rings of the
calorimeter with i = 1, 2, · · · , 7. Since the rounding is done at the end of
each calculation, we see some different values in without and with Uc.

this discrepancy that a number is rounded off at the end of each calculation.
Therefore, the Q2 and E ′ differences in the difference columns are correct. If
the incident electron energy is 854.30 MeV, 570.40 MeV, or 315.25 MeV, we
can ignore the energy loss due to the synchrotron radiation inside the chicane.
However, the result suggests that by the time we use 1508 MeV electron beam
in prospect, we should consider the synchrotron radiation effect in order to
analyze 1508 MeV experimental data, although it is considerably small.

A.3 Radiation on the Photon Detector

As the synchrotron radiation from the third dipole magnet (DIPL 22) has an
effect on the photon detector, in this section, we study a so-called exposure
angle and a transmitted photon number. The exposure angle is the fairly nar-
row angle within which the detector is exposed to the synchrotron radiation.
The transmitted photon number is the number of the emitted photon that
hits the photon detector.
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Figure A.4 Synchrotron radiation on the photon detector. The red box
represents the area of the magnetic field By oriented in the +y direction.
The blue solid lines (op0 and p′p′′) represent the center of the synchrotron
light along the electron momentum, the blue dotted ones define the bound-
ary of the light at ±θγ . Here, ∆ϕ± = ∆ϕ±θγ , γ detector the photon detec-
tor, and x and x± are defined as the horizontal distances between p0 and
positions where the synchrotron light are incident on the photon detector.

A.3.1 Exposure angle

An important feature of the synchrotron radiation is that the the photon
beam is highly collimated within 2θγ, which is in figure A.1. Only a small
amount of the collimated light is detected by the photon detector, because
the photon detector does not cover the full bending angle α, which is defined
in (4.21), of the dipole magnet. Figure A.4 shows a schematic picture of the
synchrotron radiation on the photon detector. We call ∆ϕ the exposure angle.
Within this narrow angle, the photon detector is exposed to the synchrotron
radiation. For convenience, in figure A.4, o, p0, p

′, and p′′ are chosen in terms
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Energy ∆ϕmax+ ∆ϕmax ∆ϕmax−
(MeV) (mrad) (mrad) (mrad)
854.30 9.19 9.79 10.38
570.40 8.89 9.79 10.68
315.25 8.16 9.79 11.41

1508.00 9.45 9.79 10.12

Table A.4 The maximum exposure angles ∆ϕmax and ∆ϕmax±

of coordinates as

o = (0, 0),

p0 = (z0, 0),

p′ = (ρ sin ∆ϕ, ρ (1 − cos ∆ϕ)) ,

p′′ = (0, x0),

(A.12)

where ρ is the bending radius of the dipole magnet, z0 the distance between
the entrance of DIPL 22 and the photon detector, and x0 the horizontal
detector size with respect to the beam coordinate defined in figure 4.1. Thus,
x and x± can be represented by the following equations:

x = z0 tan∆ϕ + ρ (1 − sec ∆ϕ) ,

x± = z0 tan∆ϕ± + ρ (1 − cos θγ sec ∆ϕ±) .
(A.13)

We therefore calculate the maximum exposure angles ∆ϕmax and ∆ϕmax± ,
which are reached if x and x± are equal to x0 respectively by either using
the bisection algorithm, the false position algorithm, or the Brent-Dekker
method [147]. These algorithms return the same results, which are listed in
table A.4.

We introduce a new parameter R so as to find the exposure angle

R =
E

|x+ − x−|
, (A.14)

where E is the horizontal spot size of the synchrotron radiation on the photon
detector

E =







|x+ − x−| 0 ≤ ∆ϕ < ∆ϕmax+

|x0 − x−| ∆ϕmax+ ≤ ∆ϕ < ∆ϕmax−
0 ∆ϕmax− ≤ ∆ϕ

.

Figure A.5 shows the plot of R as a function of ∆ϕ at 854.3 MeV. The
parameter R starts to decrease linearly at ∆ϕmax+ , is approximately 0.5 at
∆ϕmax, and is zero at ∆ϕmax− .
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Figure A.5 R is a function of ∆ϕ at 854.3 MeV.

Moreover, since the horizontal spot size of the synchrotron radiation is
around ±1.6 mm about the light center on the photon detector and 68%
intensity of the synchrotron radiation is within ±0.45 mm, we ignore the
spot size of the synchrotron radiation when ∆ϕ > ∆ϕmax. We therefore use
∆ϕmax as a good approximation as the exposure angle.

Transmitted photon number The synchrotron radiation is generated in
the vacuum of the beam pipe and the photon detector is in the air of the
experimental hall. Thus, the synchrotron radiation is absorbed by some ma-
terial, e.g. an aluminum flange of the beam pipe and the air of the exper-
imental hall. Figure A.6 shows possible absorption of the synchrotron radi-
ation. Since we are interested to know the synchrotron radiation effect on
the photon detector, it is necessary to calculate the number of transmitted
photons that is equivalent to the synchrotron light hits the photon detector.

Using (A.8) and the exposure angle ∆ϕmax, the number of transmitted
photons ṅ(ǫ) [144] is written by

ṅ(ε)

(

photons

sec

)

= ṅϕ0 (ε) exp

[

−
∑

i

{

µ

ρ
(ε)

}

i

xi

]

, (A.15)

where

ṅϕ0 (ε) = CϕEI
∆ε

ε
S(ε/εc)∆ϕ

max,
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Figure A.6 Possible absorption of the synchrotron radiation. The solid
wave line and the black box represent the synchrotron radiation and the
aluminum flange, respectively. The shield will be some materials in order
to reduce the synchrotron radiation on the photon detector and to protect
the detector from the synchrotron radiation. In addition, the shield must
be translucent for the Compton photons. The distance between the beam
pipe and the photon detector is tAir = 1.5 m, the thickness of the flange
tAl = 0.52 mm, and the thickness of the mirror tSiO2

= 9 mm.

and xi the mass thicknesses of the absorber materials, and {µ/ρ(ǫ)}i mass
attenuation coefficients, which are dependent on the photon energy. The ab-
sorber materials are the aluminum, the air, and the fused silica (synthetic
quartz glass). The energy band width ∆ε/ε = 0.001 is used. Detailed infor-
mation about the mass attenuation coefficients is shown in appendix D.

The total transmitted photon rate ṅ at 854.30, 570.40, and 315.25 MeV
are 2.4 × 10−10, 1.6 × 10−43, and 1.1 × 10−196 Hz, respectively. As the pho-
ton numbers seen by the photon detector are small, we could say that the
synchrotron radiation at the three beam energies has no effect on the photon
detector. However, the total transmitted photon rate at 1508 MeV is 4.9×106

Hz. Thus we need a shield in order to reduce the synchrotron radiation rate.
Figure A.7 shows the photon flux ṅϕ0 (ε) and the transmitted photon number
ṅ(ε) at 1508 MeV.

The measured rate of the Compton photon is on the order of 3 kHz
at 854.3 MeV. Since the Compton cross section at 1508 MeV is a slightly
different from the 854.3 MeV one, we can use the 3 kHz rate to estimate a pile-
up rate of the 1508 MeV electron beam on the photon detector. Without any
shield, the pile-up rate is approximately 2.9 kHz and is 98% of the Compton
rate. Since we want to reduce the pile-up rate below 1% of the Compton
photon rate by using a shield, the total transmitted photon rate has to be
less than 50 kHz. Figure A.8 shows the total transmitted photon rate ratios
ṅ(xshield)/ṅ where xshield is the thickness of the shield. In this calculation, we
use aluminum or lead as the shield. To reduce the pile-up rate below 1% of
the Compton photon rate, we need a 10 mm aluminum or a 0.1 mm lead.
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Figure A.7 The photon flux and the transmitted photon number at the
front of the photon detector. εc is the critical photon energy defined in
(A.5). The dashed red lines represent ε = εc. Here we do not present
the results for the incident electron beam energy E is 854.30, 570.40, or
315.25 MeV, because their transmitted photon numbers are smaller than
the number of the 1508 MeV electron beam. Thus, we ignore them.

Figure A.8 The total transmitted photon rate ratio as a function of the
Al and the Pb thickness at the 1.508 GeV electron beam.
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Figure A.9 The estimation of the translucence of the shields. The Comp-
ton edge energy represents the maximum photon energy of the Compton
scattering.

In addition, the shield must be translucent for the Compton photons
that have higher energies than the synchrotron radiation. If we use only the
exponential function in (A.15), we can estimate the translucence of the shield.
The corresponding exponential functions are shown in figure A.9. Without
any shield, almost 95% Compton photons can be detected by the photon
detector. When we use the 0.1 mm lead foil as the shield, 1% Compton
photons will be absorbed in this shield. However, with 10 mm aluminum
plate, we will lose more than 5% Compton photons over all the Compton
photon energy region. Thus, the 0.1 mm lead will be the suitable shield
in order that the photon detector is free from the synchrotron radiation
background.





Appendix B

Input and Output of
TRANSPORT

Here we present the input and the output of the TRANSPORT program
about the A4 Compton backscattering polarimeter chicane. The input and
the output are related to the movement of the reproduced electron beam
close to the laser beam in Step 2 as described in section 5.2.2.

B.1 Input
!=======================================================

’A4 Compton Backscattering Polarimeter Chicane at Mainz

!=======================================================

0

UMM

DRI0:=0.9999568; DRI1:=0.2309980; DRI2:=0.2209994; DRI3:=0.6684666;

DRI4:=0.0370209; DRI5:=0.6316000; DRI6:=0.2210004; DRI7:=0.2309996;

DRI8:=0.9999556; DRI9:=0.0500000;

EENERGY:=0.31525;

DMFS1:=+2.9100000; DMFS2:=-2.9100000;

DMFS3:=-2.9100000; DMFS4:=+2.9100000;

PARAM, F20= -0.0340715; PARAM, F21 = -0.0432654;

PARAM, F22= -0.0095116; PARAM, F23 = -0.0061925;

PARAM, QF1= -0.0395000; PARAM, QF2 = -0.0498000;

PARAM, XC1=-15.0534570; PARAM, XPC1= +1.1975832;

PARAM, YC1= -0.2052141; PARAM, YPC1= -0.2480189;

PLOT, L, ZFLOOR, XFLOOR, XC, XPC, YC, YPC, DLC;

MAGNET, WIDTH=0.385, HEIGHT=0.0639, TYPE=DM;

MAGNET, WIDTH=0.040, HEIGHT=0.0400, TYPE=QD;

PRINT, PRECISE;

NORDER: ORDER, N=3;

EBEAM : BEAM, BETAX=+7.9000086, ALPHAX=+0.1265824, EPSX=+0.0210721, &

BETAY=+9.7221079, ALPHAY=+0.1028578, EPSY=+0.0013616, P0=EENERGY;

PRINT, FLOOR;

187
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PRINT, TRANS, ON;

PRINT, BEAM, ON;

G2A : SPEC, HGAP =31.95000;

K1A : SPEC, FINT = 0.45000;

K2A : SPEC, FINT2= 2.80000;

EMASS : SPEC, PMASS= 0.00511;

CENTROID, X=XC1, Y=YC1, XP=XPC1, YP=YPC1, DEL=0.0000;

DM20 : SBEND, L=0.73355807, B=DMFS1, N=0, E1=0.0, E2=-114.8077582,&

RMPS=F20, TILT=0.0, TYPE=DM;

DRIFT0: DRIFT, L=DRI0;

DM21 : SBEND, L=0.73355807, B=DMFS2, N=0, E1=+114.8077582, E2=0.0,&

RMPS=F21, TILT=0.0, TYPE=DM;

DRIFT1: DRIFT, L=DRI1;

QUAD21: QUAD, L=0.238, B=QF1, APER=40, TILT=0.0, TYPE=QD;

DRIFT2: DRIFT, L=DRI2;

FITAL1: FIT, NAME=XC, VALUE=-0.8937939, TOLER=0.001;

FITAL2: FIT, NAME=YC, VALUE=-1.1160175, TOLER=0.001;

DRIFT3: DRIFT, L=DRI3;

DRIFT4: DRIFT, L=DRI4;

FITBL1: FIT, NAME=XC, VALUE=-0.7866950, TOLER=0.001;

FITBL2: FIT, NAME=YC, VALUE=-1.1223086, TOLER=0.001;

DRIFT5: DRIFT, L=DRI5;

FITCL1: FIT, NAME=XC, VALUE=-0.5942881, TOLER=0.001;

FITCL2: FIT, NAME=YC, VALUE=-0.9916791, TOLER=0.001;

DRIFT6: DRIFT, L=DRI6;

QUAD22: QUAD, L=0.238, B=QF2, APER=40, TILT=0.0, TYPE=QD;

DRIFT7: DRIFT, L=DRI7;

DM22 : SBEND, L=0.73355807, B=DMFS3, N=0, E1=0.0, E2=+114.8077582,&

RMPS=F22, TILT=0.0, TYPE=DM;

DRIFT8: DRIFT, L=DRI8;

DM23 : SBEND, L=0.73355807, B=DMFS4, N=0, E1=-114.8077582, E2=0.0,&

RMPS=F23, TILT=0.0, TYPE=DM;

FITE1 : FIT, NAME=XC, VALUE=+0.0000000, TOLER=0.001;

FITE2 : FIT, NAME=XPC, VALUE=+0.0000000, TOLER=0.001;

FITE3 : FIT, NAME=YC, VALUE=-1.1485550, TOLER=0.001;

FITE4 : FIT, NAME=YPC, VALUE=-0.1820150, TOLER=0.001;

VARY, F20; VARY, F21;

VARY, F22; VARY, F23;

SENTINEL

B.2 Output
CHANGEDATE(TRMAIN FORTRAN 19990614 14:55:00)
1
0 "A4 COMPTON BACKSCATTERING POLARIMETER CHICANE AT MAINZ "
0 0

5 UMM
+ ( 1 ELEMENTS)

+ ( 1 )
DRI0:=0.9999568; DRI1:=0.2309980; DRI2:=0.2209994; DRI3:=0.6684666;

+ ( 5 )
DRI4:=0.0370209; DRI5:=0.6316000; DRI6:=0.2210004; DRI7:=0.2309996;

+ ( 9 )
DRI8:=0.9999556; DRI9:=0.0500000;

+ ( 11 )
10 EENERGY:=0.31525;

+ ( 12 ELEMENTS)
DMFS1:=+2.9100000; DMFS2:=-2.9100000;

+ ( 14 )
DMFS3:=-2.9100000; DMFS4:=+2.9100000;

+ ( 16 )

+ ( 16 )
PARAM, F20= -0.0340715; PARAM, F21 = -0.0432654;
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+ ( 18 )
15 PARAM, F22= -0.0095116; PARAM, F23 = -0.0061925;

+ ( 20 ELEMENTS)
PARAM, QF1= -0.0395000; PARAM, QF2 = -0.0498000;

+ ( 22 )
PARAM, XC1=-15.0534570; PARAM, XPC1= +1.1975832;

+ ( 24 )
PARAM, YC1= -0.2052141; PARAM, YPC1= -0.2480189;

+ ( 26 )

+ ( 26 )
20 PLOT, L, ZFLOOR, XFLOOR, XC, XPC, YC, YPC, DLC;

+ ( 27 ELEMENTS)
MAGNET, WIDTH=0.385, HEIGHT=0.0639, TYPE=DM;

+ ( 28 )
MAGNET, WIDTH=0.040, HEIGHT=0.0400, TYPE=QD;

+ ( 29 )
PRINT, PRECISE;

+ ( 30 )
NORDER: ORDER, N=3;

+ ( 31 )
25

+ ( 31 ELEMENTS)
EBEAM : BEAM, BETAX=+7.9000086, ALPHAX=+0.1265824, EPSX=+0.0210721, &

+ ( 31 )
BETAY=+9.7221079, ALPHAY=+0.1028578, EPSY=+0.0013616, P0=EENERGY;

+ ( 32 )
PRINT, FLOOR;

+ ( 33 )
PRINT, TRANS, ON;

+ ( 34 )
30 PRINT, BEAM, ON;

+ ( 35 ELEMENTS)

+ ( 35 )
G2A : SPEC, HGAP =31.95000;

+ ( 36 )
K1A : SPEC, FINT = 0.45000;

+ ( 37 )
K2A : SPEC, FINT2= 2.80000;

+ ( 38 )
35 EMASS : SPEC, PMASS= 0.00511;

+ ( 39 ELEMENTS)

+ ( 39 )
CENTROID, X=XC1, Y=YC1, XP=XPC1, YP=YPC1, DEL=0.0000;

+ ( 40 )

+ ( 40 )
DM20 : SBEND, L=0.73355807, B=DMFS1, N=0, E1=0.0, E2=-114.8077582,&

+ ( 40 )
40 RMPS=F20, TILT=0.0, TYPE=DM;

+ ( 41 ELEMENTS)
DRIFT0: DRIFT, L=DRI0;

+ ( 42 )
DM21 : SBEND, L=0.73355807, B=DMFS2, N=0, E1=+114.8077582, E2=0.0,&

+ ( 42 )
RMPS=F21, TILT=0.0, TYPE=DM;

+ ( 43 )
DRIFT1: DRIFT, L=DRI1;

+ ( 44 )
45 QUAD21: QUAD, L=0.238, B=QF1, APER=40, TILT=0.0, TYPE=QD;

+ ( 45 ELEMENTS)
DRIFT2: DRIFT, L=DRI2;

+ ( 46 )
FITAL1: FIT, NAME=XC, VALUE=-0.8937939, TOLER=0.001;

+ ( 47 )
FITAL2: FIT, NAME=YC, VALUE=-1.1160175, TOLER=0.001;

+ ( 48 )
DRIFT3: DRIFT, L=DRI3;

+ ( 49 )
50 DRIFT4: DRIFT, L=DRI4;

+ ( 50 ELEMENTS)
FITBL1: FIT, NAME=XC, VALUE=-0.7866950, TOLER=0.001;

+ ( 51 )
FITBL2: FIT, NAME=YC, VALUE=-1.1223086, TOLER=0.001;

+ ( 52 )
DRIFT5: DRIFT, L=DRI5;

+ ( 53 )
FITCL1: FIT, NAME=XC, VALUE=-0.5942881, TOLER=0.001;

+ ( 54 )
55 FITCL2: FIT, NAME=YC, VALUE=-0.9916791, TOLER=0.001;

+ ( 55 ELEMENTS)
DRIFT6: DRIFT, L=DRI6;

+ ( 56 )
QUAD22: QUAD, L=0.238, B=QF2, APER=40, TILT=0.0, TYPE=QD;

+ ( 57 )
DRIFT7: DRIFT, L=DRI7;

+ ( 58 )
DM22 : SBEND, L=0.73355807, B=DMFS3, N=0, E1=0.0, E2=+114.8077582,&

+ ( 58 )
60 RMPS=F22, TILT=0.0, TYPE=DM;

+ ( 59 ELEMENTS)
DRIFT8: DRIFT, L=DRI8;

+ ( 60 )
DM23 : SBEND, L=0.73355807, B=DMFS4, N=0, E1=-114.8077582, E2=0.0,&

+ ( 60 )
RMPS=F23, TILT=0.0, TYPE=DM;

+ ( 61 )

+ ( 61 )
65 FITE1 : FIT, NAME=XC, VALUE=+0.0000000, TOLER=0.001;

+ ( 62 ELEMENTS)
FITE2 : FIT, NAME=XPC, VALUE=+0.0000000, TOLER=0.001;

+ ( 63 )
FITE3 : FIT, NAME=YC, VALUE=-1.1485550, TOLER=0.001;

+ ( 64 )
FITE4 : FIT, NAME=YPC, VALUE=-0.1820150, TOLER=0.001;

+ ( 65 )
VARY, F20; VARY, F21;

+ ( 65 )
70 VARY, F22; VARY, F23;

+ ( 65 ELEMENTS)
SENTINEL

0 65 ELEMENTS USED OUT OF A MAXIMUM ALLOWABLE 4001
251 NUMBERS USED OUT OF A MAXIMUM ALLOWABLE 12001
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1A4 COMPTON BACKSCATTERING POLARIMETER CHICANE AT MAINZ

( 31) *3RD ORDER* NORDER GAUSSIAN DISTRIBUTION 3. 3.
( 32) *BEAM* EBEAM 0.31525 GEV/C

0.000 M 0.0000 0.0000 7.9000 9.7221 0.1266 0.1029 0.0000 0.0000 0.0000 0.0000
( 36) *HGAP * G2A 0.31950E+02
( 37) *FINT * K1A 0.45000E+00
( 38) *FINT2 * K2A 0.28000E+01
( 39) *PMASS * EMASS 0.51100E-02
( 40) *CENT SHIFT*

-15.05346 MM 1.19758 MR -0.20521 MM -0.24802 MR 0.00000 MM 0.00000 PM
0.000 M 0.0000 0.0000 0.0000 M 0.000 0.000 0.000 MR

-15.053 0.408 MM
1.198 0.052 MR -0.126
-0.205 0.115 MM 0.000 0.000
-0.248 0.012 MR 0.000 0.000 -0.102
0.000 0.000 MM 0.000 0.000 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

( 41) * * DM20 0.00000 MR
( 41) *SBEND* DM20 0.73356 M 2.81085 KG 0.00000 ( 3.614 M , 202.99860 MR )
( 41) * * DM20 -114.80775 MR

0.734 M -0.0742 0.0000 0.7285 M -202.999 0.000 0.000 MR
-11.368 0.397 MM
9.219 0.064 MR -0.564
-0.387 0.115 MM 0.000 0.000
-0.263 0.013 MR 0.000 0.000 0.327
2.947 0.082 MM -0.999 0.602 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.98121 0.72612 0.00005 0.00010 0.00000 0.07119 -11.36794
-0.08523 0.95609 0.00000 0.00004 0.00000 0.19155 9.21948
-0.00005 0.00002 1.00142 0.73082 0.00000 0.00000 -0.38676
0.00001 -0.00005 0.03871 1.02684 0.00000 -0.00001 -0.26262
-0.20170 -0.07509 0.00001 0.00018 1.00000 -0.00477 2.94688
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 42) *DRIFT* DRIFT0 0.99996 M
1.734 M -0.2758 0.0000 1.7080 M -202.999 0.000 0.000 MR

-2.149 0.365 MM
9.219 0.064 MR -0.438
-0.649 0.119 MM 0.000 0.000
-0.263 0.013 MR 0.000 0.000 0.420
2.904 0.082 MM -0.983 0.597 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.89598 1.68218 0.00006 0.00014 0.00000 0.26273 -2.14886
-0.08523 0.95609 0.00000 0.00004 0.00000 0.19155 9.21948
-0.00004 -0.00002 1.04012 1.75761 0.00000 -0.00001 -0.64937
0.00001 -0.00005 0.03871 1.02684 0.00000 -0.00001 -0.26262
-0.20092 -0.08391 0.00002 0.00045 1.00000 -0.00627 2.90435
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 43) * * DM21 114.80775 MR
( 43) *SBEND* DM21 0.73356 M -2.78410 KG 0.00000 ( -3.614 M ,-202.99860 MR )
( 43) * * DM21 0.00000 MR

2.467 M -0.3500 0.0000 2.4365 M 0.000 0.000 0.000 MR
1.454 0.331 MM
0.493 0.081 MR -0.624
-0.860 0.127 MM 0.000 0.000
-0.288 0.015 MR 0.000 0.000 0.704
3.129 0.021 MM -0.315 0.938 0.000 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.79450 2.30518 -0.00002 -0.00016 0.00000 0.31985 1.45368
-0.15955 0.79565 -0.00002 -0.00006 0.00000 -0.02684 0.49264
0.00002 -0.00007 1.09659 2.55826 0.00000 0.00000 -0.85953
-0.00002 -0.00004 0.07924 1.09677 0.00000 -0.00002 -0.28828
-0.02785 0.31629 0.00009 0.00077 1.00000 0.05529 3.12873
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 44) *DRIFT* DRIFT1 0.23100 M
2.698 M -0.3500 0.0000 2.6675 M 0.000 0.000 0.000 MR

1.567 0.320 MM
0.493 0.081 MR -0.588
-0.926 0.129 MM 0.000 0.000
-0.288 0.015 MR 0.000 0.000 0.718
3.129 0.021 MM -0.271 0.938 0.000 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.75764 2.48897 -0.00003 -0.00017 0.00000 0.31365 1.56748
-0.15955 0.79565 -0.00002 -0.00006 0.00000 -0.02684 0.49264
0.00002 -0.00008 1.11490 2.81161 0.00000 0.00000 -0.92613
-0.00002 -0.00004 0.07924 1.09677 0.00000 -0.00002 -0.28828
-0.02783 0.31620 0.00009 0.00085 1.00000 0.05535 3.12869
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 45) *SROT* 0.00000 DEG
2.698 M -0.3500 0.0000 2.6675 M 0.000 0.000 0.000 MR

( 45) *QUAD* QUAD21 0.23800 M -0.03950 KG 40.00000 MM ( -44.70284 M )
2.936 M -0.3500 0.0000 2.9055 M 0.000 0.000 0.000 MR

( 45) *SROT* 0.00000 DEG
2.936 M -0.3500 0.0000 2.9055 M 0.000 0.000 0.000 MR

1.689 0.310 MM
0.529 0.078 MR -0.482
-0.992 0.131 MM 0.000 0.000
-0.267 0.013 MR -0.001 0.000 0.618
3.129 0.021 MM -0.222 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.72165 2.68513 -0.00003 -0.00019 0.00000 0.30809 1.68900
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
0.00002 -0.00009 1.13077 3.06494 0.00000 -0.00001 -0.99221
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02782 0.31610 0.00010 0.00092 1.00000 0.05541 3.12865
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 46) *DRIFT* DRIFT2 0.22100 M
3.157 M -0.3500 0.0000 3.1265 M 0.000 0.000 0.000 MR

1.806 0.302 MM
0.529 0.078 MR -0.438
-1.051 0.133 MM 0.000 0.000
-0.267 0.013 MR -0.001 0.000 0.632
3.129 0.021 MM -0.173 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.69004 2.87374 -0.00004 -0.00020 0.00000 0.30369 1.80591
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
0.00001 -0.00009 1.14274 3.29280 0.00000 -0.00002 -1.05118
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02780 0.31600 0.00010 0.00098 1.00000 0.05547 3.12861
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
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( 47) *FIT* FITAL1 XC -0.89379 /0.00100 ( 1.80591 )
( 48) *FIT* FITAL2 YC -1.11602 /0.00100 ( -1.05118 )
( 49) *DRIFT* DRIFT3 0.66847 M

3.826 M -0.3500 0.0000 3.7949 M 0.000 0.000 0.000 MR
2.160 0.283 MM
0.529 0.078 MR -0.283
-1.230 0.139 MM 0.000 0.000
-0.267 0.013 MR -0.001 0.000 0.669
3.128 0.021 MM -0.007 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.59443 3.44423 -0.00006 -0.00024 0.00000 0.29036 2.15953
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
0.00000 -0.00012 1.17892 3.98204 0.00000 -0.00004 -1.22955
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02775 0.31570 0.00011 0.00116 1.00000 0.05566 3.12850
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 50) *DRIFT* DRIFT4 0.03702 M
3.863 M -0.3500 0.0000 3.8320 M 0.000 0.000 0.000 MR

2.179 0.282 MM
0.529 0.078 MR -0.274
-1.239 0.139 MM 0.000 0.000
-0.267 0.013 MR -0.001 0.000 0.671
3.128 0.021 MM 0.002 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.58914 3.47583 -0.00006 -0.00025 0.00000 0.28963 2.17912
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
0.00000 -0.00012 1.18092 4.02021 0.00000 -0.00005 -1.23943
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02775 0.31568 0.00011 0.00117 1.00000 0.05567 3.12849
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 51) *FIT* FITBL1 XC -0.78670 /0.00100 ( 2.17912 )
( 52) *FIT* FITBL2 YC -1.12231 /0.00100 ( -1.23943 )
( 53) *DRIFT* DRIFT5 0.63160 M

4.494 M -0.3500 0.0000 4.4636 M 0.000 0.000 0.000 MR
2.513 0.273 MM
0.529 0.078 MR -0.104
-1.408 0.145 MM 0.000 0.000
-0.267 0.013 MR 0.000 0.000 0.702
3.128 0.021 MM 0.176 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.49880 4.01486 -0.00007 -0.00029 0.00000 0.27704 2.51324
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
-0.00001 -0.00014 1.21511 4.67144 0.00000 -0.00007 -1.40796
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02770 0.31540 0.00012 0.00135 1.00000 0.05584 3.12838
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 54) *FIT* FITCL1 XC -0.59429 /0.00100 ( 2.51324 )
( 55) *FIT* FITCL2 YC -0.99168 /0.00100 ( -1.40796 )
( 56) *DRIFT* DRIFT6 0.22100 M

4.715 M -0.3500 0.0000 4.6846 M 0.000 0.000 0.000 MR
2.630 0.272 MM
0.529 0.078 MR -0.041
-1.467 0.147 MM 0.000 0.000
-0.267 0.013 MR 0.000 0.000 0.712
3.128 0.021 MM 0.237 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.46719 4.20348 -0.00008 -0.00030 0.00000 0.27263 2.63015
-0.14303 0.85344 -0.00002 -0.00006 0.00000 -0.01993 0.52901
-0.00002 -0.00015 1.22708 4.89931 0.00000 -0.00008 -1.46694
-0.00002 -0.00003 0.05413 1.03107 0.00000 -0.00004 -0.26683
-0.02768 0.31530 0.00012 0.00141 1.00000 0.05590 3.12834
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 57) *SROT* 0.00000 DEG
4.715 M -0.3500 0.0000 4.6846 M 0.000 0.000 0.000 MR

( 57) *QUAD* QUAD22 0.23800 M -0.04980 KG 40.00000 MM ( -35.44889 M )
4.953 M -0.3500 0.0000 4.9226 M 0.000 0.000 0.000 MR

( 57) *SROT* 0.00000 DEG
4.953 M -0.3500 0.0000 4.9226 M 0.000 0.000 0.000 MR

2.765 0.272 MM
0.605 0.078 MR 0.125
-1.525 0.149 MM 0.000 0.000
-0.225 0.011 MR -0.001 0.000 0.504
3.128 0.021 MM 0.303 0.983 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.43468 4.42093 -0.00008 -0.00032 0.00000 0.26879 2.76502
-0.13033 0.97488 -0.00003 -0.00007 0.00000 -0.01238 0.60498
-0.00002 -0.00015 1.23583 5.12801 0.00000 -0.00009 -1.52545
-0.00002 -0.00003 0.01941 0.88972 0.00000 -0.00008 -0.22465
-0.02766 0.31517 0.00013 0.00146 1.00000 0.05597 3.12829
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 58) *DRIFT* DRIFT7 0.23100 M
5.184 M -0.3500 0.0000 5.1536 M 0.000 0.000 0.000 MR

2.905 0.275 MM
0.605 0.078 MR 0.189
-1.577 0.150 MM 0.000 0.000
-0.225 0.011 MR 0.000 0.000 0.516
3.128 0.021 MM 0.364 0.983 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.40457 4.64612 -0.00009 -0.00034 0.00000 0.26593 2.90477
-0.13033 0.97488 -0.00003 -0.00007 0.00000 -0.01238 0.60498
-0.00003 -0.00016 1.24032 5.33353 0.00000 -0.00011 -1.57735
-0.00002 -0.00003 0.01941 0.88972 0.00000 -0.00008 -0.22465
-0.02764 0.31504 0.00013 0.00151 1.00000 0.05603 3.12825
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 59) * * DM22 0.00000 MR
( 59) *SBEND* DM22 0.73356 M -2.88232 KG 0.00000 ( -3.614 M ,-202.99860 MR )
( 59) * * DM22 114.80775 MR

5.918 M -0.2758 0.0000 5.8821 M 202.999 0.000 0.000 MR
2.581 0.286 MM
-1.568 0.074 MR 0.065
-1.745 0.155 MM 0.000 0.000
-0.289 0.015 MR -0.001 0.001 0.795
3.759 0.069 MM 0.984 0.240 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.30149 5.26183 -0.00019 -0.00106 0.00000 0.17817 2.58104
-0.15965 0.53030 -0.00006 -0.00027 0.00000 -0.23184 -1.56813
0.00002 -0.00030 1.25671 5.99499 0.00000 -0.00015 -1.74477
-0.00004 -0.00020 0.06586 1.10991 0.00000 -0.00012 -0.28880
0.04432 1.32376 0.00022 0.00206 1.00000 0.10399 3.75862
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0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
( 60) *DRIFT* DRIFT8 0.99996 M

6.918 M -0.0742 0.0000 6.8615 M 202.999 0.000 0.000 MR
1.013 0.300 MM
-1.568 0.074 MR 0.308
-2.034 0.166 MM 0.000 0.000
-0.289 0.015 MR -0.001 0.001 0.826
3.757 0.069 MM 0.998 0.242 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.14185 5.79211 -0.00026 -0.00133 0.00000 -0.05366 1.01299
-0.15965 0.53030 -0.00006 -0.00027 0.00000 -0.23184 -1.56813
-0.00002 -0.00050 1.32257 7.10486 0.00000 -0.00027 -2.03356
-0.00004 -0.00020 0.06586 1.10991 0.00000 -0.00012 -0.28880
0.04407 1.32460 0.00024 0.00238 1.00000 0.10389 3.75735
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 61) * * DM23 -114.80775 MR
( 61) *SBEND* DM23 0.73356 M 2.89198 KG 0.00000 ( 3.614 M , 202.99860 MR )
( 61) * * DM23 0.00000 MR

7.651 M 0.0000 0.0000 7.5901 M 0.000 0.000 0.000 MR
0.285 0.308 MM
-0.376 0.069 MR 0.113
-2.297 0.179 MM 0.000 0.000
-0.364 0.020 MR 0.000 0.001 0.925
3.671 0.012 MM 0.462 -0.829 0.005 0.005
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.01929 5.92444 -0.00012 -0.00017 0.00000 -0.14645 0.28540
-0.16873 0.01731 0.00004 0.00032 0.00000 -0.02201 -0.37552
-0.00012 -0.00091 1.40449 8.09968 0.00000 -0.00040 -2.29712
-0.00002 0.00008 0.11459 1.37287 0.00000 -0.00017 -0.36403
0.02746 0.13154 0.00047 0.00383 1.00000 0.12683 3.67077
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 62) *FIT* FITE1 XC 0.0 /0.00100 ( 0.28540 )
( 63) *FIT* FITE2 XPC 0.0 /0.00100 ( -0.37552 )
( 64) *FIT* FITE3 YC -1.14856 /0.00100 ( -2.29712 )
( 65) *FIT* FITE4 YPC -0.18202 /0.00100 ( -0.36403 )

0 *LENGTH* 7.65123 M
0 *CORRECTIONS*

*NUMBER OF VARIED PARAMETERS = 4 *
*NUMBER OF CONSTRAINTS = 10 *

0.10000E+01 ( 0.27507E+08) 0.0074 0.0051 0.0095 0.0074
0.10000E+01 ( 0.15686E+07) -0.29E-03 -0.24E-03 -0.11E-03 -0.44E-04
0.10000E+01 ( 0.15323E+07) 0.92E-05 0.95E-05 -0.24E-07 -0.53E-07
0.10000E+01 ( 0.15322E+07) -0.29E-06 -0.38E-06 0.32E-09 -0.28E-10
0.10000E+01 ( 0.15322E+07) 0.11E-07 0.18E-07 -0.12E-10 -0.12E-09

0 *COVARIANCE (FIT 0.15322E+07 )
0.000
0.988 0.000
-0.856 -0.911 0.000
-0.539 -0.591 0.775 0.000

( 17) *PARAM* "F20 " -0.26944488E-01
VARIED

( 18) *PARAM* "F21 " -0.38426332E-01
VARIED

( 19) *PARAM* "F22 " -0.78748330E-04
VARIED

( 20) *PARAM* "F23 " 0.11277135E-02
VARIED

1A4 COMPTON BACKSCATTERING POLARIMETER CHICANE AT MAINZ

( 31) *3RD ORDER* NORDER GAUSSIAN DISTRIBUTION 3. 3.
( 32) *BEAM* EBEAM 0.31525 GEV/C

0.000 M 0.0000 0.0000 7.9000 9.7221 0.1266 0.1029 0.0000 0.0000 0.0000 0.0000
( 36) *HGAP * G2A 0.31950E+02
( 37) *FINT * K1A 0.45000E+00
( 38) *FINT2 * K2A 0.28000E+01
( 39) *PMASS * EMASS 0.51100E-02
( 40) *CENT SHIFT*

-15.05346 MM 1.19758 MR -0.20521 MM -0.24802 MR 0.00000 MM 0.00000 PM
0.000 M 0.0000 0.0000 0.0000 M 0.000 0.000 0.000 MR

-15.053 0.408 MM
1.198 0.052 MR -0.126
-0.205 0.115 MM 0.000 0.000
-0.248 0.012 MR 0.000 0.000 -0.102
0.000 0.000 MM 0.000 0.000 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

( 41) * * DM20 0.00000 MR
( 41) *SBEND* DM20 0.73356 M 2.83159 KG 0.00000 ( 3.614 M , 202.99860 MR )
( 41) * * DM20 -114.80775 MR

0.734 M -0.0742 0.0000 0.7285 M -202.999 0.000 0.000 MR
-11.893 0.397 MM
7.804 0.064 MR -0.565
-0.387 0.115 MM 0.000 0.000
-0.262 0.013 MR 0.000 0.000 0.324
2.947 0.082 MM -0.999 0.603 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.98092 0.72602 0.00005 0.00010 0.00000 0.07170 -11.89274
-0.08562 0.95610 0.00000 0.00005 0.00000 0.19290 7.80411
-0.00005 0.00002 1.00142 0.73078 0.00000 0.00000 -0.38675
0.00001 -0.00005 0.03831 1.02654 0.00000 -0.00001 -0.26246
-0.20168 -0.07509 0.00001 0.00018 1.00000 -0.00480 2.94659
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 42) *DRIFT* DRIFT0 0.99996 M
1.734 M -0.2758 0.0000 1.7080 M -202.999 0.000 0.000 MR

-4.089 0.365 MM
7.804 0.064 MR -0.439
-0.649 0.119 MM 0.000 0.000
-0.262 0.013 MR 0.000 0.000 0.416
2.916 0.082 MM -0.982 0.599 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.89531 1.68208 0.00006 0.00014 0.00000 0.26459 -4.08897
-0.08562 0.95610 0.00000 0.00005 0.00000 0.19290 7.80411
-0.00004 -0.00002 1.03972 1.75728 0.00000 -0.00001 -0.64921
0.00001 -0.00005 0.03831 1.02654 0.00000 -0.00001 -0.26246
-0.20101 -0.08255 0.00002 0.00045 1.00000 -0.00604 2.91610
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 43) * * DM21 114.80775 MR
( 43) *SBEND* DM21 0.73356 M -2.79818 KG 0.00000 ( -3.614 M ,-202.99860 MR )
( 43) * * DM21 0.00000 MR

2.467 M -0.3500 0.0000 2.4365 M 0.000 0.000 0.000 MR
-1.074 0.331 MM
0.246 0.082 MR -0.625



B. Input and Output of TRANSPORT 193

-0.859 0.127 MM 0.000 0.000
-0.288 0.015 MR 0.000 0.000 0.701
2.657 0.021 MM -0.317 0.938 0.000 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.79357 2.30555 -0.00002 -0.00016 0.00000 0.32219 -1.07394
-0.16008 0.79500 -0.00002 -0.00006 0.00000 -0.02699 0.24615
0.00002 -0.00007 1.09563 2.55771 0.00000 0.00000 -0.85920
-0.00002 -0.00004 0.07848 1.09593 0.00000 -0.00002 -0.28792
-0.02824 0.31849 0.00009 0.00077 1.00000 0.05599 2.65721
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 44) *DRIFT* DRIFT1 0.23100 M
2.698 M -0.3500 0.0000 2.6675 M 0.000 0.000 0.000 MR

-1.017 0.319 MM
0.246 0.082 MR -0.589
-0.926 0.129 MM 0.000 0.000
-0.288 0.015 MR 0.000 0.000 0.715
2.657 0.021 MM -0.273 0.938 0.000 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.75659 2.48919 -0.00003 -0.00017 0.00000 0.31596 -1.01708
-0.16008 0.79500 -0.00002 -0.00006 0.00000 -0.02699 0.24615
0.00002 -0.00008 1.11376 2.81086 0.00000 0.00000 -0.92571
-0.00002 -0.00004 0.07848 1.09593 0.00000 -0.00002 -0.28792
-0.02823 0.31845 0.00009 0.00085 1.00000 0.05605 2.65719
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 45) *SROT* 0.00000 DEG
2.698 M -0.3500 0.0000 2.6675 M 0.000 0.000 0.000 MR

( 45) *QUAD* QUAD21 0.23800 M -0.03950 KG 40.00000 MM ( -44.70284 M )
2.936 M -0.3500 0.0000 2.9055 M 0.000 0.000 0.000 MR

( 45) *SROT* 0.00000 DEG
2.936 M -0.3500 0.0000 2.9055 M 0.000 0.000 0.000 MR

-0.961 0.309 MM
0.224 0.078 MR -0.483
-0.992 0.131 MM 0.000 0.000
-0.266 0.013 MR -0.001 0.000 0.614
2.657 0.021 MM -0.224 0.962 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.72047 2.68519 -0.00003 -0.00019 0.00000 0.31037 -0.96115
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
0.00002 -0.00009 1.12946 3.06399 0.00000 -0.00001 -0.99171
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02822 0.31840 0.00010 0.00092 1.00000 0.05611 2.65718
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 46) *DRIFT* DRIFT2 0.22100 M
3.157 M -0.3500 0.0000 3.1265 M 0.000 0.000 0.000 MR

-0.912 0.301 MM
0.224 0.078 MR -0.439
-1.051 0.133 MM 0.000 0.000
-0.266 0.013 MR -0.001 0.000 0.628
2.657 0.021 MM -0.175 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.68874 2.87366 -0.00004 -0.00020 0.00000 0.30596 -0.91164
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
0.00001 -0.00009 1.14126 3.29167 0.00000 -0.00002 -1.05060
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02821 0.31836 0.00010 0.00098 1.00000 0.05617 2.65716
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 47) *FIT* FITAL1 XC -0.89379 /0.00100 ( -0.91164 )
( 48) *FIT* FITAL2 YC -1.11602 /0.00100 ( -1.05060 )
( 49) *DRIFT* DRIFT3 0.66847 M

3.826 M -0.3500 0.0000 3.7949 M 0.000 0.000 0.000 MR
-0.762 0.282 MM
0.224 0.078 MR -0.284
-1.229 0.139 MM 0.000 0.000
-0.266 0.013 MR -0.001 0.000 0.665
2.657 0.021 MM -0.009 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.59275 3.44373 -0.00006 -0.00024 0.00000 0.29261 -0.76186
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
0.00000 -0.00012 1.17695 3.98036 0.00000 -0.00005 -1.22873
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02819 0.31823 0.00011 0.00116 1.00000 0.05635 2.65712
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 50) *DRIFT* DRIFT4 0.03702 M
3.863 M -0.3500 0.0000 3.8320 M 0.000 0.000 0.000 MR

-0.754 0.282 MM
0.224 0.078 MR -0.274
-1.239 0.139 MM 0.000 0.000
-0.266 0.013 MR -0.001 0.000 0.667
2.657 0.021 MM 0.001 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.58744 3.47530 -0.00006 -0.00025 0.00000 0.29187 -0.75357
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
0.00000 -0.00012 1.17893 4.01850 0.00000 -0.00005 -1.23860
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02819 0.31823 0.00011 0.00117 1.00000 0.05636 2.65712
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 51) *FIT* FITBL1 XC -0.78670 /0.00100 ( -0.75357 )
( 52) *FIT* FITBL2 YC -1.12231 /0.00100 ( -1.23860 )
( 53) *DRIFT* DRIFT5 0.63160 M

4.494 M -0.3500 0.0000 4.4636 M 0.000 0.000 0.000 MR
-0.612 0.272 MM
0.224 0.078 MR -0.103
-1.407 0.145 MM 0.000 0.000
-0.266 0.013 MR 0.000 0.000 0.698
2.657 0.021 MM 0.174 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.49675 4.01392 -0.00007 -0.00029 0.00000 0.27926 -0.61205
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
-0.00001 -0.00014 1.21266 4.66921 0.00000 -0.00007 -1.40691
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02817 0.31811 0.00012 0.00134 1.00000 0.05653 2.65708
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 54) *FIT* FITCL1 XC -0.59429 /0.00100 ( -0.61205 )
( 55) *FIT* FITCL2 YC -0.99168 /0.00100 ( -1.40691 )
( 56) *DRIFT* DRIFT6 0.22100 M

4.715 M -0.3500 0.0000 4.6846 M 0.000 0.000 0.000 MR
-0.563 0.271 MM
0.224 0.078 MR -0.040
-1.466 0.147 MM 0.000 0.000
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-0.266 0.013 MR 0.000 0.000 0.708
2.657 0.021 MM 0.236 0.961 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.46502 4.20239 -0.00008 -0.00030 0.00000 0.27485 -0.56253
-0.14358 0.85280 -0.00002 -0.00006 0.00000 -0.01997 0.22406
-0.00002 -0.00015 1.22446 4.89689 0.00000 -0.00008 -1.46580
-0.00002 -0.00003 0.05340 1.03025 0.00000 -0.00004 -0.26648
-0.02816 0.31806 0.00012 0.00140 1.00000 0.05659 2.65707
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 57) *SROT* 0.00000 DEG
4.715 M -0.3500 0.0000 4.6846 M 0.000 0.000 0.000 MR

( 57) *QUAD* QUAD22 0.23800 M -0.04980 KG 40.00000 MM ( -35.44889 M )
4.953 M -0.3500 0.0000 4.9226 M 0.000 0.000 0.000 MR

( 57) *SROT* 0.00000 DEG
4.953 M -0.3500 0.0000 4.9226 M 0.000 0.000 0.000 MR

-0.511 0.272 MM
0.209 0.078 MR 0.125
-1.524 0.149 MM 0.000 0.000
-0.224 0.011 MR -0.001 0.000 0.499
2.657 0.021 MM 0.302 0.984 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.43237 4.41968 -0.00008 -0.00032 0.00000 0.27101 -0.51104
-0.13095 0.97420 -0.00003 -0.00007 0.00000 -0.01227 0.20894
-0.00002 -0.00015 1.23305 5.12540 0.00000 -0.00010 -1.52424
-0.00002 -0.00003 0.01876 0.88896 0.00000 -0.00008 -0.22433
-0.02815 0.31802 0.00012 0.00146 1.00000 0.05665 2.65706
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 58) *DRIFT* DRIFT7 0.23100 M
5.184 M -0.3500 0.0000 5.1536 M 0.000 0.000 0.000 MR

-0.463 0.275 MM
0.209 0.078 MR 0.190
-1.576 0.150 MM 0.000 0.000
-0.224 0.011 MR 0.000 0.000 0.511
2.657 0.021 MM 0.363 0.984 0.001 0.001
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.40212 4.64472 -0.00009 -0.00033 0.00000 0.26818 -0.46277
-0.13095 0.97420 -0.00003 -0.00007 0.00000 -0.01227 0.20894
-0.00003 -0.00016 1.23738 5.33076 0.00000 -0.00011 -1.57606
-0.00002 -0.00003 0.01876 0.88896 0.00000 -0.00008 -0.22433
-0.02815 0.31797 0.00013 0.00151 1.00000 0.05671 2.65704
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 59) * * DM22 0.00000 MR
( 59) *SBEND* DM22 0.73356 M -2.90977 KG 0.00000 ( -3.614 M ,-202.99860 MR )
( 59) * * DM22 114.80775 MR

5.918 M -0.2758 0.0000 5.8821 M 202.999 0.000 0.000 MR
-0.307 0.285 MM
0.224 0.074 MR 0.066
-1.743 0.154 MM 0.000 0.000
-0.287 0.014 MR -0.001 0.001 0.790
2.579 0.069 MM 0.984 0.244 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.29844 5.25897 -0.00019 -0.00106 0.00000 0.17952 -0.30678
-0.16022 0.52731 -0.00006 -0.00027 0.00000 -0.23433 0.22442
0.00002 -0.00030 1.25319 5.99175 0.00000 -0.00015 -1.74324
-0.00004 -0.00020 0.06431 1.10544 0.00000 -0.00012 -0.28737
0.04323 1.32652 0.00022 0.00205 1.00000 0.10505 2.57915
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 60) *DRIFT* DRIFT8 0.99996 M
6.918 M -0.0742 0.0000 6.8615 M 202.999 0.000 0.000 MR

-0.082 0.299 MM
0.224 0.074 MR 0.310
-2.031 0.166 MM 0.000 0.000
-0.287 0.014 MR -0.001 0.001 0.822
2.579 0.069 MM 0.998 0.244 0.000 0.000
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.13822 5.78626 -0.00026 -0.00133 0.00000 -0.05481 -0.08237
-0.16022 0.52731 -0.00006 -0.00027 0.00000 -0.23433 0.22442
-0.00002 -0.00050 1.31750 7.09715 0.00000 -0.00028 -2.03061
-0.00004 -0.00020 0.06431 1.10544 0.00000 -0.00012 -0.28737
0.04326 1.32640 0.00024 0.00237 1.00000 0.10537 2.57908
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 61) * * DM23 -114.80775 MR
( 61) *SBEND* DM23 0.73356 M 2.91328 KG 0.00000 ( 3.614 M , 202.99860 MR )
( 61) * * DM23 0.00000 MR

7.651 M 0.0000 0.0000 7.5901 M 0.000 0.000 0.000 MR
0.001 0.307 MM
0.000 0.069 MR 0.115
-2.292 0.179 MM 0.000 0.000
-0.362 0.020 MR 0.000 0.001 0.922
2.579 0.013 MM 0.464 -0.827 0.005 0.005
0.000 0.000 PM 0.000 0.000 0.000 0.000 0.000

*TRANSFORM 1* REF
0.01545 5.91708 -0.00012 -0.00018 0.00000 -0.14884 0.00087
-0.16896 0.01243 0.00004 0.00032 0.00000 -0.02291 -0.00044
-0.00012 -0.00091 1.39765 8.08568 0.00000 -0.00041 -2.29224
-0.00002 0.00008 0.11233 1.36536 0.00000 -0.00017 -0.36171
0.02764 0.13438 0.00047 0.00381 1.00000 0.12886 2.57866
0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

( 62) *FIT* FITE1 XC 0.0 /0.00100 ( 0.00087 )
( 63) *FIT* FITE2 XPC 0.0 /0.00100 ( -0.00044 )
( 64) *FIT* FITE3 YC -1.14856 /0.00100 ( -2.29224 )
( 65) *FIT* FITE4 YPC -0.18202 /0.00100 ( -0.36171 )

0 *LENGTH* 7.65123 M



Appendix C

Magnetic Field and Shunt
Current Measurements

The 95% confidence and prediction intervals are used in the following mea-
surements.
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Figure C.1 Magnetic field measurement for the dipole magnet 21. For
detailed information, see the section 5.2.1.
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Figure C.2 Magnetic field measurement for the dipole magnet 22. For
detailed information, see the section 5.2.1.
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Figure C.3 Magnetic field measurement for the dipole magnet 23. For
detailed information, see the section 5.2.1.
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Figure C.4 Magnetic field measurement for the quadrupole magnet 22
[116]. For detailed information, see the section 5.2.1.
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Figure C.5 Shunt current measurement for the shunt 21 with IMAMI =
52.8 A. For detailed information, see the section 5.2.1.
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Figure C.6 Shunt current measurement for the shunt 22 with IMAMI =
52.8 A. For detailed information, see the section 5.2.1.
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Figure C.7 Shunt current measurement for the shunt 23 with IMAMI =
52.8 A. For detailed information, see the section 5.2.1.



Appendix D

Mass Attenuation Coefficients

It is necessary to know the mass attenuation coefficients µ/ρ of aluminum,
air, lead, and fused silica so as to calculate the transmitted photon number,
described in section A.3.1. We use three databases of National Institute of
Standards and Technology (NIST): the XAAMDI database [148], the FFAST
database [149], and the XCOM database [150]. The XAAMDI database covers
energies from 1 keV to 20 MeV, the FFAST database does energies from
threshold to 433 keV, and the XCOM database does energies from 1 keV to
100 GeV. As a result, using the Akima spline interpolation [147], we combine
three databases to extend the energy range, thus this range can cover the
range of the synchrotron radiation and the Compton photon.

However, FFAST has no mass attenuation coefficient of the air. XAAMD
does not has the fused silica one, but XCOM has. Therefore, we have to
use the following equation with the assumption that these two absorbers
are homogeneous to calculate µ/ρ of the air and the fused silica from their
element mass attenuation coefficients.

(

µ

ρ

)

compounds

=
∑

i

wi

(

µ

ρ

)

i

, (D.1)

where i is the element and wi the fraction by weight of the ith atomic con-
stituent. Table D.1 shows detailed information about the absorbers and figure
D.1 shows the mass attenuation coefficients. The red points represent the
combined values from the three databases and the solid lines are the results
that show smooth interpolations of the original data points. We use these
interpolation results in order to calculate the transmitted photon rate and to
estimate the translucence of shields in section A.3.1.
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material Z/A ρ (g/cm3) Composition:Z w

Aluminum 0.48181 2.699 −:13 −
Lead 0.39575 11.35 −:82 −
Air 0.49919 1.205×10−3 C:6 0.000124

N:7 0.755268
O:8 0.231781

Ar:18 0.012827
Fused Silica 0.49930 2.200 Si:14 0.467435

(SiO2) O:8 0.532565

Table D.1 Material constants and composition of Al, Pb, air, and SiO2

[149, 148]. Z/A represents the atomic number-to-mass for Al and Pb and
does the mean ratio of atomic number-to-mass, ρ the density, and w the
fraction by weight.

Figure D.1 The mass attenuation coefficients of the absorbers. The red
circle data points [149, 148, 150] are well match to the result of the Akima
spline interpolation [147].



Appendix E

Drawings of the Scintillating
Fiber Electron Detector

Note that the drawings with a � symbol have some modifications during the
production process due to some technical reasons.

Figure E.1 Fiber Bundle Holder Inside Type A �
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Figure E.2 Fiber Bundle Holder Inside Type B �

Figure E.3 Fiber Bundle Holder Outside



E. Drawings of the Scintillating Fiber Electron Detector 203

Figure E.4 Fiber Array Mount Type I �

Figure E.5 H7546-GA07123 Correction Plate
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Figure E.6 Light Tight Box Type A for H7546

Figure E.7 Light Tight Box Type B for H7546



E. Drawings of the Scintillating Fiber Electron Detector 205

Figure E.8 SKF Slide Support �

Figure E.9 Photomultiplier Tube Cart �
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Figure E.10 Wire Mount Type A

Figure E.11 Wire Mount Type B-Down �



E. Drawings of the Scintillating Fiber Electron Detector 207

Figure E.12 Wire Mount Type B-Up �

Figure E.13 Vacuum Cover
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Figure E.14 Fiber Array Mount Type II



Appendix F

O-ring Gland for the Vacuum
Sealing

O-ring gland of the fiber array mount was designed according to the sugges-
tion of one vacuum engineer at MAMI. Even though the fiber mount array
passed the vacuum leakage test, the exact dimensions of the O-ring gland are
needed to select the proper O-ring.

Five dimensions, which are O-ring inner diameter(Oid), O-ring cross sec-
tion (Ocs), gland inner diameter (Gid), gland depth (Gd), and gland width
(Gw), are defined in order to select a suitable O-ring and a correct gland.
These dimensions are determined by considering four parameters: (1) inter-
ference or stretch; (2) gland fill; (3) compression squeeze; and (4) compres-
sion ratio. The interference is defined as

Interference =
Gid

Oid
− 1,

the gland fill

Gland Fill =
O − ring Cross Section Area

Gland Cross Section Area
=
π(Ocs/2)2

Gw ·Gd

,

the compression squeeze

Compression Squeeze = Ocs −Gd,

and the compression ratio

Compression Ratio = 1 − Gd

Ocs

.

The fiber array mount is the external pressure face seal. In this case,
there are recommended values for four parameters suitable for pressures up
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Design Recommended Value
Value Target Minimum Maximum

O-ring Inner Diameter (mm) 45.0 - - -
Cross Section (mm) 3.0 - - -

Gland Inner Diameter (mm) 46.0 - - -
Outer Diameter (mm) 53.8 - - -
Depth (mm) 2.4 - - -
Width (mm) 3.9 - - -

Interference (%) 2.2 2 0 5
Gland Fill (%) 75.5 75 65 85
Compression Squeeze (mm) 0.6 > 0.1 0.1 -
Compression Ratio (%) 20 25 10 35

Table F.1 Design values of dimensions and parameters for O-ring and
the gland for the vacuum seal

to 103 bar [151]. The designed values of dimensions and the corresponding
parameters are shown in table F.1. The resulting parts are shown in figure
E.13 and E.14.
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