The oxidation capacity of the atmosphere

OH and HO_2 radical measurements in a boreal forest environment using laser induced fluorescence spectroscopy

Dissertation

zur Erlangung des Grades "Doktor der Naturwissenschaften" im Promotionsfach Physik

am Fachbereich Physik, Mathematik und Informatik der Johannes Gutenberg-Universität Mainz, ausgeführt am Max-Planck-Institut für Chemie, Mainz

vorgelegt von Korbinian Hens

Oktober 2013

Abstract

The main oxidant in the degradation process of volatile organic compounds (VOCs) in the atmosphere is the hydroxyl radical (OH), which is in fast equilibrium with the hydroperoxyl radical (HO₂). Previous observation and model comparison of these radical species in forest ecosystems have unveiled a significant gap in understanding of the underlying processes.

Within the framework of this PhD thesis, OH and HO₂ were measured using laser-induced fluorescence (LIF) in a pine dominated forest in Southern Finland during the HUMPPA–COPEC–2010 (*Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study*) field campaign in summer 2010. Different components of the LIF instrument were optimized and a modified background signal detection method (*InletPreInjector technique*) was integrated and applied for the first time. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS) and LIF, showing good agreement. The instrument intercomparison proves the ability and performance of the modified LIF instrument to measure atmospheric OH concentrations accurately. Subsequently, the LIF instrument was moved to the top of a 20 m tower, above the canopy, to investigate the radical chemistry at the ecosystem-atmosphere interface. Comprehensive measurements including observations of the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model.

Production rates of OH calculated from measured OH precursors, are under conditions of moderate OH reactivity $(k'_{\rm OH} \leq 15 \, {\rm s}^{-1})$, consistent with those derived from the steady state assumption and measured total OH loss. The primary photolytic sources of OH contribute up to one third of the total OH production. It was shown that under conditions of moderate OH reactivity hydroxyl recycling occurs mainly by HO₂ reacting with NO and O₃. In periods when high total OH reactivity $(k'_{\rm OH} > 15 \, {\rm s}^{-1})$ was observed, additional recycling pathways, forming OH directly, not via reaction of HO₂ with NO or O₃ were identified.

Box model simulations agree with measurements for atmospheric hydroxyl radicals $(OH_{mod.}/OH_{obs.}=1.04 \pm 0.16)$, while HO₂ mixing ratios are significantly underpredicted $(HO_2^{mod.}/HO_2^{obs.}=0.3 \pm 0.2)$ and simulated OH reactivity does not match the observed OH reactivity. The simultaneous underprediction of HO₂ and OH reactivity in periods in which OH concentrations were simulated well, suggests that the missing OH reactivity is an unaccounted source of HO₂. Additional RO₂/HO₂ sources that are independent of OH, such as the thermal decomposition of transported peroxyalcyl nitrates (PAN) and the photolysis of glyoxal, are indicated.

Zusammenfassung

Das wichtigste Oxidationsmittel für den Abbau flüchtiger Kohlenwasserstoffverbindungen (*VOC, engl.: volatile organic compounds*) in der Atmosphäre ist das Hydroxylradikal (OH), welches sich in einem schnellen chemischen Gleichgewicht mit dem Hydroperoxylradical (HO₂) befindet. Bisherige Messungen und Modellvergleiche dieser Radikalspezies in Waldgebieten haben signifikante Lücken im Verständnis der zugrundeliegenden Prozesse aufgezeigt.

Im Rahmen dieser Doktorarbeit wurden Messungen von OH- und HO₂-Radikalen mittels laserinduzierten Fluoreszensmesstechnik (LIF, engl.: laser-induced fluorescence) in einem Nadelwald in Süd-Finnland während der Messkampagne HUMPPA–COPEC–2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) im Sommer 2010 durchgeführt. Unterschiedliche Komponenten des LIF-Instruments wurden verbessert. Eine modifizierte Methode zur Bestimmung des Hintergrundsignals (engl.: Inlet PreInjector technique) wurde in den Messaufbau integriert und erstmals zur Messung von atmosphärischem OH verwendet. Vergleichsmessungen zweier Instrumente basierend auf unterschiedlichen Methoden zur Messung von OH-Radikalen, chemische Ionisationsmassenspektrometrie (CIMS - engl.: chemical ionization mass spectrometry) und LIF-Technik, zeigten eine gute Übereinstimmung. Die Vergleichsmessungen belegen das Vermögen und die Leistungsfähigkeit des modifizierten LIF-Instruments atmosphärische OH Konzentrationen akkurat zu messen. Nachfolgend wurde das LIF-Instrument auf der obersten Plattform eines 20m hohen Turmes positioniert, um knapp oberhalb der Baumkronen die Radikal-Chemie an der Schnittstelle zwischen Ökosystem und Atmosphäre zu untersuchen. Umfangreiche Messungen - dies beinhaltet Messungen der totalen OH-Reaktivität - wurden durchgeführt und unter Verwendung von Gleichgewichtszustandsberechnungen und einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, analysiert. Wenn moderate OH-Reaktivitäten $(k'_{\rm OH} \leq 15 \, {\rm s}^{-1})$ vorlagen, sind OH-Produktionsraten, die aus gemessenen Konzentrationen von OH-Vorläuferspezies berechnet wurden, konsistent mit Produktionsraten, die unter der Gleichgewichtsannahme von Messungen des totalen OH Verlustes abgeleitet wurden. Die primären photolytischen OH-Quellen tragen mit einem Anteil von bis zu einem Drittel zur Gesamt-OH-Produktion bei. Es wurde gezeigt, dass OH-Rezyklierung unter Bedingungen moderater OH-Reaktivität hauptsächlich durch die Reaktionen von HO₂ mit NO oder O₃ bestimmt ist. Während Zeiten hoher OH-Reaktivität $(k'_{OH} > 15 \,\mathrm{s}^{-1})$ wurden zusätzliche Rezyklierungspfade, die nicht über die Reaktionen von HO_2 mit NO oder O_3 , sondern direkt OH bilden, aufgezeigt.

Für Hydroxylradikale stimmen Boxmodell-Simulationen und Messungen gut überein $(OH_{mod.}/OH_{obs.}=1.04\pm0.16)$, während HO₂-Mischungsverhältnisse in der Simulation signifikant unterschätzt werden $(HO_2^{mod.}/HO_2^{obs.}=0.3\pm0.2)$ und die simulierte OH-Reaktivität nicht mit der gemessenen OH-Reaktivität übereinstimmt. Die gleichzeitige Unterschätzung der HO₂-Mischungsverhältnisse und der OH-Reaktivität, während OH-Konzentrationen von

der Simulation gut beschrieben werden, legt nahe, dass die fehlende OH-Reaktivität in der Simulation eine noch unberücksichtigte HO_2 -Quelle darstellt. Zusätzliche, OH-unabhängige RO_2/HO_2 -Quellen, wie z.B. der thermische Zerfall von herantransportiertem Peroxyacetylnitrat (PAN) und die Photolyse von Glyoxal sind indiziert.

Contents

1.	The oxidation capacity of the atmosphere	1
2.	2.3. Oxidation of volatile organic compounds and HO_x recycling	5 8 8 10
3.	 3.1. Techniques for HO_x radical measurements	13 13 13 18 19 20 23 30 34 35
	4.1. Measurement site and instrumentation4.2. HO_x observations4.3. Primary HO_x production4.4. OH budget – calculated based on observations4.5. OH / HO_2 ratio4.6. OH reycling probability and cycling-lifetime4.7. HO_x reycling pathways	43 43 46 52 54 58 58 63
5.	Box model simulations 5.1. Son model CAABA/MECCA 5.1.1. Significance and sensitivity 5.1.1.	

	5.2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 75
6.	Sum	mary and conclusions 8	85
Α.	Mea	surements of trace gas species and meteorological parameters during HUMPPA	-
	COF	EC 2010 8	39
B.	Che	nical mechanism – MTM)3
C.	C.1. C.2. C.3. C.4. C.5.	sheets12Pen-ray line source – LOT-QuantumDesign, Europe12NIST NO standard12Dew Point Generator - LI-610 & H2O-Monitor - LI-700012Gas Flow Calibrator – DryCal, BIOS, USA12Optical Fiber – Thorlabs GmbH, Germany13Laser Dye Pyrromethene-597 – Exciton, USA13	23 24 25 27 30
D.	Abb	reviations 13	3
Bil	bliog	aphy 13	57

List of tables

3.1.	Parameters of temperature dependency for collisional quenching rate coefficients.	23
3.2.	Systematic uncertainties during actinometric measurement	
4.1.	Instrumentation applied for above canopy observations during HUMPPA-COPEC2010	47
4.2.	HO_{x} budget under different conditions of observed radiation and total OH reactivity.	67
	Deposition rates/velocities used in the model	71
0.2.	parameters	78
A.1.	Median levels and variability of relevant trace gases under different conditions of observed radiation and total OH reactivity.	90

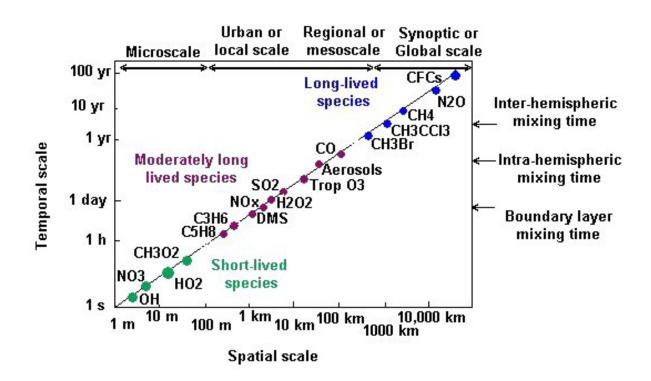
List of figures

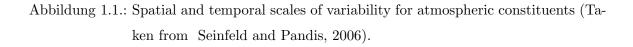
1.1.	Spatial and temporal scales of variability for atmospheric constituents	2
2.1. 2.2.	Schematic overview of the HO_x radical photochemistry in the troposphere Reaction scheme for OH and HO_2 radical formation following 1-OH addition	6
2.2.	to isoprene by a 1,5- and a 1,6-H-shift, respectively	10
3.1.	Three pressure dependent components of the LIF sensitivity.	16
3.2. 3.3.	Schematic representation of the timing of photon counting process Schematic of the branches in the rotational structure of OH showing the	17
	transitions used for laser excitation $(A^2\Sigma^+ - X^2\Pi, v'=0 \leftarrow v''=0)$	21
3.4.	Dye laser setup	24
3.5.	Transmission curves for isosceles brewster prisms (for p-polarized, s-polarized	
	and mixed-polarized light) of different glass types.	25
3.6.	Suppression of laser pulse backreflections and OH fluorescence signal	26
3.7.	Setup of the HORUS detection system.	27
3.8.	Schematic representation of the optical path inside a White Cell.	28
3.9.	Two ways to determine OH background signal.	29
	Characteristics of the vacuum system.	30
	. Schematic of the setup used for calibration of the HORUS instrument Calibration of the NO analyzer (C42, Thermo Environmental Instruments)	31
	for NO in N_2 and N_2O .	32
3.13.	Actinic flux density of the mercury lamp used for calibration of the HORUS	
	instrument.	33
3.14.	. Sensitivity change inside the second detection axis of HORUS as a function	
	of the associated laser scatter signal.	36
	. NO dependency of the HO_2 signal during a calibration.	38
3.16.	NO dependency of the total $(HO_2 + RO_2)$ signal during ambient air measure-	
	ment and expected HO_2 signal (blue line) applying the conversion efficiency	40
0.17	derived from titration experiment during calibration.	40
	Titration experiments at different water vapour mixing ratios	41
3.18.	. Comparison of the measured H_2O_2 with simulation based on HO_2 measurements by LIE	40
	ments by LIF	42

4.1.	SMEAR II field station, Hyytiälä, Southern Finland (61° 51'N, 24° 17'E, 181 m a.s.l.)
4.2.	Setup of the HORUS instrument on the HUMPPA tower
4.3.	Comparison of OH measurements by IPI-LIF-FAGE technique and by CIMS on ground (University of Helsinki, Petäjä et al., 2009)
4.4.	Comparison of OH measurements by IPI-LIF-FAGE technique and by CIMS (University of Helsinki, Petäjä et al., 2009) based on 30-minute average data. 49
4.5.	Simultaneous OH measurements on the ground and above the canopy 50 $$
4.6.	Linear correlation of OH and $J_{\rm O(^1D)}$ during HUMPPA–COPEC–2010 51
4.7.	Contributions to the primary HO_x production
4.8.	Average diurnal OH production below and budget above the canopy 55 $$
4.9.	Observed OH / HO_2 ratio vs. NO / CO ratio
4.10.	Expected NO dependency of the recycling probability $r. \ldots \ldots \ldots 60$
4.11.	OH recycling probability (r) as a function of the ambient NO mixing ratio in
	different environments
5.1.	Data availability for model simulations
5.2.	Histogram of the Monte-Carlo simulation $(N = 9999)$ for the reaction rate
	coefficients on a single dataset in the early afternoon above canopy 72
5.3.	Simulated vs. observed OH concentrations and HO_2 mixing ratios, applying the MIM2 chemistry scheme and the recently proposed MIM3 including new
	additions in the isoprene chemistry
5.4.	Simulations including the terpene mechanism MTM
5.5.	Tuning the model to the observed total OH reactivity by introducing an additional α -pinene equivalent
5.6.	Uncertainties of HO_x simulations
5.7.	Simulated contributions to the OH production during HUMPPA–COPEC–
	2010
5.8.	Simulated contributions to the observed total OH reactivity during HUMPPA– COPEC–2010
5.9.	Simulated production and loss rates of HO_2 during HUMPPA–COPEC–2010 under conditions of different radiation and total observed OH reactivity 83
	Timeseries of trace gas species and meteorological parameters during HUMPPA– COPEC–2010
A.1.	(continued): Timeseries of trace gas species and meteorological parameters
	during HUMPPA–COPEC–2010
C.1.	Discontinuous spectrum of the pen-ray line source

C.2.	National Institute of Standards & Technology - NO standard used for actinic
	flux density calibration of the mercury lamp that was applied for calibration
	of the HORUS instrument
C.3.	Certificate of Calibration, Dew Point Generator Licor, LI-610
C.4.	Calibration of the H ₂ O-Monitor - Licor, LI-7000, using the Dew Point Gene-
	rator Licor, LI-610
C.5.	Certificate of Calibration, DryCal, DC-LC-1 & HC-LC-1, BIOS International,
	USA
C.6.	Specifications of coated silica fiber used for transportation of the $308\mathrm{nm}$ UV
	light within HORUS
C.7.	Pyrromethene-597 laser dye, Exciton, USA, www.exciton.com

1. The oxidation capacity of the atmosphere


The gaseous envelope surrounding the earth - the atmosphere of earth - mainly consists of nitrogen (~ 78 % by vol.), oxygen (~ 21 % by vol.), argon (~ 0.93 % by vol.), and a variable fraction of water (~ 0-2 % by vol.). Beside those main constituents, trace gases, such as the greenhouse gases and numerous volatile organic compounds (VOCs), are significantly influencing physical and chemical properties of the earth's atmosphere. Chemical compounds are continuously emitted into the atmosphere by geological, biogenic, and anthropogenic processes (Seinfeld and Pandis, 2006; Guenther et al., 1995, and ref. therein) including substances harmful to health. Thus, environmental pollution by emissions and the capability of the atmosphere to remove pollutants strongly affects the quality of life. This fact led to an enhanced interest in understanding the underlying processes within the last decades.


Removal of pollutants and trace gases from the atmosphere is mostly initiated by oxidation processes. Products like carbon dioxide (CO₂), water (H₂O), and water soluble compounds, that can be subsequently removed from atmosphere by wet and dry deposition, are formed. Only a few species are not affected by tropospheric oxidation chemistry, such as N₂O and chlorofluorocarbons (CFCs), which reach the stratosphere by vertical transport where they finally degrade.

The most important oxidant in the troposphere during daytime is the hydroxyl radical (OH). Furthermore, the OH radical is initiating the formation of a wide variety of secondary species, e.g. ozone and secondary organic aerosol. Ozone (O₃) and hydrogen peroxide (H₂O₂) in the case of oxidation within cloud droplets are also contributing to the oxidation capacity of the atmosphere. The photolabile nitrate radical (NO₃) can be an important nighttime oxidant in the polluted atmosphere. Though, due to its outstanding reactivity the OH radical dominates the cleansing capacity of the atmosphere.

The oxidation capacity in turn defines the atmospheric lifetime and consequently affects the abundance of most trace gases. An overview of typical lifetimes and associated transport ranges for important atmospheric trace gas species is given in Figure 1.1.

Environmental changes, like increasing anthropogenic emissions, enhanced energy consumption, change in landuse, such as urbanisation and deforestation influence the physical and chemical properties of the atmosphere, leading to a continuous change of the atmospheric composition. Nonetheless, the global OH concentration remained almost constant in the past (Lelieveld et al., 2002). This indicates that the atmospheric oxidation capacity is to some extent a buffered system with respect to changes in atmospheric trace gas concentrations. OH radicals are not necessarily removed from the system by oxidation processes. In

fact, they are efficiently recycled, for example via the strongly linked hydroperoxyl radical (HO_2) , which forms back OH in presence of nitrogen oxide (NO). Such buffering mechanisms are crucial to preserve the oxidation capacity and to prevent from catastrophic conditions, when toxic gases and gases relevant to climate would accumulate to harmful levels.

Relevance of forest ecosystems

Forests cover about one third of the earth's total land surface (FAO, 2010). They are known to be an important global source of biogenic volatile organic compounds (BVOCs) that are very reactive towards OH (Williams, 2004). A major contribution to BVOCs, such as isoprene, monoterpenes (e.g. α -pinene), and sesquiterpenes (e.g. farnesene), is emission by vegetation (Fehsenfeld et al., 1992; Guenther et al., 1995; Kesselmeier and Staudt, 1999). Therefore, forest emissions are expected to significantly influence the oxidation capacity of the atmosphere. Measurement of OH and HO₂ radicals in forest environments, however, unveils serious deficits in our understanding of the underlying processes. Different types of forests are known to emit various characteristic BVOCs influencing the oxidation chemistry. Several studies in and above isoprene-rich forest environments have been conducted in the past. Aircraft measurements of atmospheric trace gases performed over the pristine Amazon rainforest during the GABRIEL¹ campaign (Lelieveld et al., 2008; Kubistin et al., 2010) unexpectedly showed higher OH concentrations than predicted from box and global models. Furthermore, Kubistin et al. (2010) reported that isoprene acts as a buffer for the hydroxyl radicals, which is related to an increased HO_x recycling in the oxidation mechanism of BVOCs at low NO_x conditions, when the OH recycling reaction of HO_2 with NO is inhibited. Similarly, other studies from tropical forest regions (Stone et al., 2011; Whalley et al., 2011) reported that increased recycling would be necessary to explain the measured HO_x values. An increase of the deposition rates for OH reactants, like methyl vinyl ketone (MVK) and methacrolein (MACR), can help explain the measurement results for groundbased observations during the $OP3^2$ campaign in Borneo (Pugh et al., 2010a). It is unclear if measurements of the total OH reactivity are available as the observations are not compared with observations of the reactivity in the latter study. The authors conclude that the inadequacies apparent in the model are related to the representation of detailed physical and micrometeorological effects rather than errors in the chemical scheme. Measurements conducted in a deciduous forest (Tan et al., 2001) also showed an underestimation of observed OH concentrations from box model simulations. Although two follow up studies at the same site showed model predicted OH generally being in reasonable agreement with the measured OH, the model did underestimate the OH concentrations observed by a factor of about three in the afternoon during warmer periods (Griffith et al., 2013). It remains unclear if higher biogenic VOC emissions within those periods caused an instrumental interference as recently suggested by Mao et al. (2012).

Further, Kim et al. (2013) reported reasonable agreement between observed OH and that from steady-state calculations using observations, particularly measurements of HO_2 , in a monoterpene dominated forest environment. Constrained box model calculations underpredicted the observed HO_2 by as much as a factor of eight and underestimated the observed OH by a factor of four. The authors conclude that the OH recycling occurs mainly via the reaction of HO_2 with NO in this forest, which is characterized by high 2-methyl-3-buten-2-ol (MBO) and monoterpene emissions (Kim et al., 2013).

Studies on oxidation processes in monoterpene dominated environments are rare. Direct OH reactivity measurements in a boreal forest, conducted by Sinha et al. (2008) and a box model study investigating the OH reactivity budget (Mogensen et al., 2011), revealed a significant fraction of "unknown OH reactivity". Comprehensive measurements in the same boreal forest were conducted during the HUMPPA-COPEC-2010 campaign (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive

 $^{^{1}}G$ uyanas Atmosphere-Biosphere Exchange and Radicals Intensive Experiment with the Learjet

 $^{^{2}}$ OP3 - Oxidant and Particle photochemical processes above a South-East Asian tropical rain forest project

Organic Precursor Emission and Concentration study) (Williams et al., 2011). HUMPPA– COPEC–2010 included observations of many VOCs, HO_x and the total OH reactivity to increase our understanding of atmospheric oxidation processes based on detailed analysis of production and loss processes of the hydroxyl radical and exploring the HO_x budget in a coniferous forest, using direct calculations from measured species as well as an observationally constrained chemical box model in steady state.

The "Mainz Isoprene Mechanisms," a set of reduced chemical reaction schemes considering only isoprene as the predominant primary BVOC (Taraborrelli et al., 2009 based on Pöschl et al., 2000; Taraborrelli et al., 2012), is compared to a preliminary terpene mechanism, also taking the most abundant terpenes measured during HUMPPA–COPEC–2010 (e.g. α -pinene, β -pinene, β -myrcene, farnesene, and Δ^3 -carene) and their oxidation products into account. The modification of the chemical mechanism is analysed and discussed.

2. HO_x photochemistry in the troposphere

In the lower troposphere, the main primary source of OH on a global scale is the photolysis of ozone (O_3) and the subsequent reaction of the excited oxygen atom with water vapour (Levy II, 1971):

$$O_3 + h\nu \to O_2 + O(^1D), \qquad \lambda < 320 \text{ nm},$$

$$O(^1D) + H_2O \to 2 \text{ OH}. \qquad (R2.1)$$

Other sources of OH, e.g. photolysis of peroxides or ozonolysis of alkenes, are known as well and were described elsewhere (Jaegle et al., 2000; Ren et al., 2008, and references therein). Once formed, OH reacts rapidly - within a typical lifetime of less than one second - with many atmospheric compounds (e.g. CO or O₃) producing hydroperoxyl radicals (HO₂). The oxidation of hydrocarbons by OH leads to the formation of peroxy radicals (RO_x = RO₂ + HO₂). In the presence of nitric oxide (NO) the RO₂ is converted to HO₂, which reacts with O₃ or NO forming OH (e.g. Martinez et al., 2003). Under atmospheric background conditions the HO₂ radical occurs typically at about 100 times higher concentrations compared to OH with atmospheric lifetimes in the order of $\tau_{\rm HO_2} \approx 100$ s, acting as a buffer for the OH radical in catalytic cycles (Weinstock, 1969; Levy II, 1971; Crutzen, 1973). The main HO_x sinks are self reactions with radicals and the formation of acids. A schematic overview of the basic HO_x chemistry is shown in Figure 2.1.

The spatial and temporal variability of HO_x radicals is typically large. Due to the short atmospheric lifetime the radicals are produced and recycled or consumed locally, depending on solar radiation, atmospheric ozone column, absolute humidity, and various trace gas concentrations. Typical OH concentrations in the lower troposphere during daytime are in the order of $[OH] \approx 10^6$ molec. cm⁻³ (equivalent to mixing ratios in the sub-ppt_V range), while HO₂ concentrations are in the order of $[HO_2] \approx 10^8$ molec. cm⁻³ (equivalent to mixing ratios in the lower ppt_V range).

The most relevant production, loss, and recycling pathways of HO_x will be treated in detail in the following sections.

2.1. HO_x production

Ozone molecules absorbing a photon with a wavelength $\lambda < 320$ nm dissociate into molecular oxygen and an excited oxygen atom, O(¹D). This oxygen atom loses its excitation energy

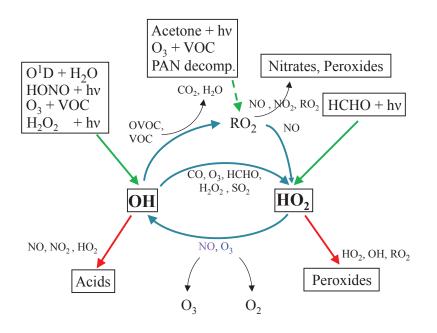


Abbildung 2.1.: Schematic overview of the HO_x radical photochemistry in the troposphere. Radical production (green), recycling (blue), and loss (red) pathways are indicated by bold arrows. Some reactions are simplified. Refer to text for details.

predominantly by collision with molecular nitrogen and oxygen and returns to the ground state, $O(^{3}P)$. Oxygen and $O(^{3}P)$ recombine, forming back ozone. A minor portion of the excited oxygen atoms react with water vapour forming two OH radicals (Reaction R2.5).

$$O_3 + h\nu \to O_2 + O(^{1}D), \qquad \lambda < 320 \text{ nm}, \qquad (R2.2)$$
$$O(^{1}D) + M \to O(^{3}P) + M \qquad M = N_2 O_2 \qquad (R2.3)$$

$$O(^{2}D) + M \to O(^{3}P) + M, \qquad M = N_{2}, O_{2}, \qquad (R2.3)$$

$$O(^{\circ}P) + O_2 + M \to O_3 + M.$$
 (R2.4)

$$O(^{1}D) + H_{2}O \rightarrow 2 OH.$$
(R2.5)

The resulting primary production rate of OH radicals is given by

$$\frac{d [OH]}{dt} = 2b_{O(^{1}D) \to OH} J_{O(^{1}D)} [O_{3}], \qquad (2.1)$$

where ${\rm J}_{{\rm O}(^1{\rm D})}$ is the associated photolysis frequency and $b_{{\rm O}(^1{\rm D})\to{\rm OH}}$ denotes the branching ratio

$$b_{O(^{1}D)\to OH} = \frac{k_{O(^{1}D)+H_{2}O} [H_{2}O]}{k_{O(^{1}D)+H_{2}O} [H_{2}O] + k_{O(^{1}D)+O_{2}} [O_{2}] + k_{O(^{1}D)+N_{2}} [N_{2}]}.$$
 (2.2)

At 298 K and 1% water vapour content about 14% of the excited $O(^{1}D)$ atoms lead to the formation of OH radicals (Atkinson et al., 2006).

The ozonolysis of alkenes, and particularly terpenes, represents a non-photolytic primary OH source. A primary ozonide and subsequently a Criegee Intermediate is formed within this reaction, which can release OH radicals during its decomposition (Criegee, 1975).

Alkene +
$$O_3 \rightarrow \alpha OH$$
 + products. (R2.6)

The photolysis of nitrous acid (HONO) at wavelenghts below 380 nm yields OH and nitric oxide (Reaction R2.7). HONO itself is formed on surfaces by reaction of nitrogen dioxide (NO_2) and water. It typically accumulates during nighttime and starts to decompose in the morning hours, when solar radiation increases (Aumont et al., 2003; Kleffmann et al., 2002, 2005).

$$\text{HONO} + h\nu \rightarrow \text{OH} + \text{NO}, \qquad \lambda < 380 \,\text{nm}.$$
 (R2.7)

 HO_2 is produced within the radical channel of the photolysis reaction of formaldehyde (HCHO):

$$\text{HCHO} + h\nu \xrightarrow{+2O_2} 2\text{HO}_2 + \text{products.}$$
(R2.8)

From ozonolysis of hydrocarbons HO₂ radicals can form as well.

Beside those primary HO_x sources, the photolysis of hydrogen peroxide as well as organic peroxides, which are products in the oxidation process of VOCs contribute as secondary OH sources.

$$H_2O_2 + h\nu \to 2OH, \qquad \lambda < 557 \,\mathrm{nm}, \qquad (R2.9)$$

$$\text{ROOH} + h\nu \to \text{OH} + \text{RO}, \qquad \lambda < 360 \,\text{nm}.$$
 (R2.10)

Especially in the upper troposphere, where the water vapour content in air is reduced and therefore, Reaction R2.5 is inhibited, hydrogen peroxide photolysis becomes more important.

2.2. HO_x sinks

 HO_{x} radicals are primarily lost within radical-radical reactions forming peroxides and other products.

$$\mathrm{HO}_2 + \mathrm{HO}_2 \to \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2, \tag{R2.11}$$

$$\mathrm{RO}_2 + \mathrm{HO}_2 \to \mathrm{ROOH} + \mathrm{O}_2,$$
 (R2.12)

$$OH + HO_2 \rightarrow H_2O + O_2. \tag{R2.13}$$

The photolysis of peroxides (see Reaction R2.9-R2.10) leads to the production of OH. However, peroxides are mainly lost by wet and dry deposition processes, thus, being removed from the HO_x cycle.

The formation of acids is another sink for OH and HO_2 radicals.

$$NO + OH \xrightarrow{M} HONO,$$
 (R2.14)

$$NO_2 + OH \xrightarrow{M} HNO_3,$$
 (R2.15)

$$NO_2 + HO_2 \xrightarrow{M} HNO_4.$$
 (R2.16)

Heterogeneous chemistry and radical deposition can also contribute to the HO_{x} radical loss.

. .

2.3. Oxidation of volatile organic compounds and HO_x recycling

The OH-initiated oxidation of carbon monoxide (CO) is on global average one of the most important loss reactions of the OH radical. Furthermore, HO_2 is produced when CO is converted into CO_2 by oxidation reaction.

$$CO + OH \rightarrow H + CO_2,$$
 (R2.17)

$$H + O_2 + M \to HO_2 + M. \tag{R2.18}$$

Beside CO, ozone (O_3) , formaldehyde (HCHO), hydrogen peroxide (H_2O_2) , and SO₂ also react with OH radicals forming HO₂.

$$OH + O_3 \longrightarrow O_2 + HO_2$$
 (R2.19)

$$OH + HCHO \xrightarrow{+O_2} H_2O + CO + HO_2$$
(R2.20)

$$OH + H_2O_2 \longrightarrow H_2O + HO_2$$
 (R2.21)

$$OH + SO_2 \xrightarrow{+O_2, H_2O} H_2SO_4 + HO_2$$
(R2.22)

At NO levels of about 100 ppt_V and higher the HO₂ radicals reacting with NO can recycle the hydroxyl radical, providing it for another oxidation process. Similarly the reaction of HO_2 with ozone forms back OH (Reactions R2.23 - R2.24).

$$HO_2 + NO \rightarrow OH + NO_2,$$
 (R2.23)

$$\mathrm{HO}_2 + \mathrm{O}_3 \to \mathrm{OH} + 2\mathrm{O}_2. \tag{R2.24}$$

The OH-initiated oxidation of volatile organic compounds represents another HO_x recycling pathway. The most abundant atmospheric VOC is the greenhouse gas methane (CH₄). Due to its long chemical lifetime of about 8 years it is homogeneously distributed spatially within the troposphere. Methane is mainly oxidized by reaction with the OH radical, leading to the formation of methylperoxy radicals (CH₃O₂). CH₃O₂ reacting with NO yields methoxy radicals (CH₃O), which react rapidly with oxygen forming HO₂ and formaldehyde.

$$CH_4 + OH \rightarrow CH_3 + H_2O, \qquad (R2.25)$$

$$CH_3 + O_2 + M \to CH_3O_2 + M, \qquad (R2.26)$$

$$CH_3O_2 + NO \rightarrow CH_3O + NO_2,$$
 (R2.27)

$$CH_3O + O_2 \rightarrow HCHO + HO_2.$$
 (R2.28)

The HO_x -cycle is completed forming back OH radicals by Reactions R2.23 & R2.24. The oxidation of other VOCs follows a similar reaction chain:

$$RH + OH \to R + H_2O, \tag{R2.29}$$

$$\mathbf{R} + \mathbf{O}_2 + M \to \mathbf{RO}_2 + M, \tag{R2.30}$$

$$\mathrm{RO}_2 + \mathrm{NO} \to \mathrm{RO} + \mathrm{NO}_2,$$
 (R2.31)

$$\mathrm{RO} + \mathrm{O}_2 \to \mathrm{R'CHO} + \mathrm{HO}_2,$$
 (R2.32)

where R denotes an organic group.

Organic peroxy radicals (RO_2) are formed in the reaction of the hydrocarbon with OH. The subsequent reaction of RO_2 with NO leads to the formation of alkoxy radicals (RO), which rapidly react with oxygen, producing HO_2 radicals and organic aldehydes.

In close analogy to the HO_x sinks described above, RO_2 radicals can be lost from the radical cycle by reactions with other RO_2 radicals, HO_2 (Reaction R2.12), and NO_x forming peroxides and peroxynitrates.

$$\mathrm{RO}_2 + \mathrm{R'O}_2 \to products,$$
 (R2.33)

$$\operatorname{RO}_2 + \operatorname{NO} \xrightarrow{M} \operatorname{RONO}_2,$$
 (R2.34)

$$\mathrm{RO}_2 + \mathrm{NO}_2 \xrightarrow{M} \mathrm{RO}_2 \mathrm{NO}_2.$$
 (R2.35)

Peroxynitrates thermally decompose, forming back peroxy radicals and NO_2 , thus acting as a reservoir species for the peroxy radicals and NO_x .

$$\mathrm{RO}_2\mathrm{NO}_2 \to \mathrm{RO}_2 + \mathrm{NO}_2.$$
 (R2.36)

The reaction of specific alkylperoxy radicals with HO₂, which was previously only considered as a radical termination process, represent an additional OH recycling pathway. Laboratory studies investigating the OH production from the reactions of ethyl peroxy, acetyl peroxy, and acetonyl peroxy radicals with HO₂ revealed OH yields up to 70 % (Thornton et al., 2002; Hasson et al., 2004; Jenkin et al., 2007; Dillon and Crowley, 2008). A direct recycling mechanism, forming back OH from RO₂ in the absence of NO, by a 1,5-H-shift, was proposed by Peeters et al. (2009) for the OH-initiated degradation of isoprene. The occurence of a 1,6-H-shift leads to the recycling of an HO₂ radical (Figure 2.2).

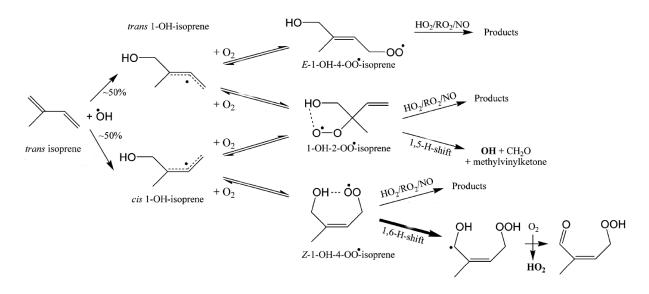


Abbildung 2.2.: Reaction scheme for OH and HO₂ radical formation following 1-OH addition to isoprene by a 1,5- and a 1,6-H-shift, respectively (Taken from Peeters et al., 2009, and modified).

2.4. The relationship between HO_x and $J_{O(^1D)}$

When primary production is the predominant source of OH, the hydroxyl radical concentration follows the course of $J_{O(^1D)}$ (Rohrer and Berresheim, 2006). During daytime the main primary source of OH is the photolysis of O₃ and the reaction of O(¹D) with water vapour (Reaction R2.5). Under conditions of low NO, O₃, and non-methane hydrocarbon concentrations (clean background atmosphere) the secondary OH production, i.e. the recycling reactions forming back OH from HO₂ (Reactions R2.23 - R2.24), is inhibited. Stationarystate can be assumed for OH due to its short lifetime:

$$\frac{\mathrm{d}\left[\mathrm{OH}\right]}{\mathrm{d}t} = P_{\mathrm{OH}}^{total} - L_{\mathrm{OH}}^{total} = 0.$$
(2.3)

The production of OH under clean background atmosphere conditions is mainly determined by Reactions R2.5 and R2.24:

$$P_{\rm OH}^{total} = 2b_{\rm O(^1D) \to OH} J_{\rm O(^1D)} \ [O_3] + k_{\rm HO_2+O_3} \ [O_3].$$
(2.4)

The most relevant OH loss processes are Reactions R2.17 and R2.25:

$$L_{\rm OH}^{total} = k_{\rm CH_4+OH} \ [{\rm CH_4}] \ [{\rm OH}] + k_{\rm CO+OH} \ [{\rm CO}] \ [{\rm OH}].$$
 (2.5)

When $k_{O(^1D)+H_2O}$ [H₂O] $\ll k_{O(^1D)+O_2}$ [O₂]+ $k_{O(^1D)+N_2}$ [N₂] and $k_{HO_2+O_3} \ll 2b_{O(^1D)\to OH}J_{O(^1D)}$ the hydroxyl radical concentration is approximately

$$[OH] = \frac{2J_{O(^{1}D)} [O_{3}] [H_{2}O]k_{O(^{1}D)+H_{2}O}}{k_{O(^{1}D)+M} [M] + k_{CH_{4}+OH} [CH_{4}]k_{CO+OH} [CO]},$$
(2.6)

where $M = O_2$, N₂. The variability of the photolysis frequency $J_{O(^1D)}$ is typically large compared to the variability of CH₄, O₃, CO, and H₂O concentrations resulting in a quasilinear relationship between OH and $J_{O(^1D)}$ (Holland et al., 2003; Rohrer and Berresheim, 2006).

As shown by the following equations, the HO₂ concentration is proportional to $\sqrt{J_{O(^1D)}}$ under clean background atmosphere conditions. The production of HO₂ is dominated by Reaction R2.17. HO₂ is mainly lost by reaction with O₃ and in radical-radical reactions (Reactions R2.11-R2.12, R2.24):

$$P_{\rm HO_2}^{total} = k_{\rm CO+OH} [\rm CO] [\rm OH],$$

$$L_{\rm HO_2}^{total} = k_{\rm HO_2+O_3} [\rm HO_2] [\rm O_3] + 2k_{\rm HO_2+HO_2} [\rm HO_2]^2 + \dots$$

$$k_{\rm HO_2+CH_3O_2} [\rm HO_2] [\rm CH_3O_2].$$
(2.7)
(2.7)
(2.7)
(2.7)
(2.7)
(2.7)
(2.7)

Methylperoxy radicals are formed in the OH-initiated oxidation of CH_4 (Reactions R2.25 - R2.26) and mainly lost by reaction with other radicals:

$$P_{\rm CH_3O_2}^{total} = k_{\rm CH_4+OH} \ [\rm CH_4] \ [\rm OH], \tag{2.9}$$

$$L_{\rm CH_3O_2}^{total} = k_{\rm HO_2+CH_3O_2} \ [\rm HO_2 \] \ [\rm CH_3O_2 \].$$
 (2.10)

For the sum of CH₃O₂, HO₂, and OH radicals the steady-state is

$$\frac{\mathrm{d([OH] + [HO_2] + [CH_3O_2])}}{\mathrm{d}t} = 2b_{\mathrm{O(^1D) \to OH}} \mathrm{J}_{\mathrm{O(^1D)}} [\mathrm{O_3]} - 2k_{\mathrm{HO_2 + HO_2}} [\mathrm{HO_2}]^2 + \dots - 2k_{\mathrm{HO_2 + CH_3O_2}} [\mathrm{HO_2}] [\mathrm{CH_3O_2}] = 0.$$
(2.11)

The resulting HO₂ concentration is proportional to the square root of the photolysis frequency $J_{O(^1D)}$ (Penkett et al., 1997):

$$[HO_2] = \left(\frac{b_{O(^1D)\to OH} J_{O(^1D)} [O_3]}{k_{HO_2+HO_2} + \alpha k_{HO_2+CH_3O_2}}\right)^{\frac{1}{2}},$$
(2.12)

where α denotes the ratio $\frac{[CH_3O_2]}{[HO_2]}$. Observed relationships between HO_x and the photolysis frequency $J_{O(^1D)}$ may differ significantly from the basic relations (Equations 2.6 & 2.12), when the assumptions are not applicable. Nonetheless, often linear correlation between OH and $J_{O(^1D)}$ is found, at which the proportionality factor is different for different chemical regimes (Holland et al., 2003).

3. HO_x measurements using the HORUS instrument

3.1. Techniques for HO_x radical measurements

Because of their high reactivity towards trace gases and surfaces, the lifetime of hydroxyl radicals in the troposphere is typically less than one second. Average OH concentrations are in the order of $10^5 to 10^7$ molec. cm⁻³ during daytime. The strongly coupled HO₂ radical is about a factor of 100 times more abundant with a typical tropospheric lifetime in the range of seconds to minutes. Therefore, highly sensitive detection systems are required for measurements of these radicals. In the last decades several direct and indirect methods have been developed. The most relevant atmospheric HO_x radical measurement techniques are discussed in the following paragraphs.

3.1.1. Techniques for the detection of atmospheric OH

¹⁴CO method

Based on the assumption of carbon monoxide being mainly oxidized by hydroxyl radicals, the OH concentration in sample air can be derived by addition of isotopically labeled ¹⁴CO and subsequent freeze desalination of the CO₂ produced (Felton et al., 1988). The observed concentrations of ¹⁴CO and ¹⁴CO₂ in combination with the known reaction rate constant of the reaction of CO with OH provide access to the OH concentration in sample air. The lower limit of detection of the radiochemical ¹⁴CO method is about 2×10^5 molec. cm⁻³ at an integration time of 2 minutes. Integration times of several minutes and the elaborate sample handling are the disadvantages of this method.

Spin trapping - electron paramagnetic resonance

Electron paramagnetic resonance (EPR, also known as: electron spin resonance, ESR) spectroscopy is a method to detect substances with unpaired electrons, based on the resonant absorption of electromagnetic radiation (microwaves) by the sample substance in a magnetic field. Since the chemical lifetime of OH is short, highly resolved EPR spectroscopy is too slow for detection of hydroxyl radicals. In combination with spin trapping methods the measurement of atmospheric OH becomes feasible. Janzen et al. (1978) used this method for measurement of OH in aqueous solution. Watanabe et al. (1982) accomplished measurements of atmospheric OH using α -4-pyridyl-N-tert-butylnitrone α -1-oxide (4-POBN) for spin trapping. The hydroxy-adduct of 4-POBN can subsequently be measured by EPR, to quantify the OH radicals. The lower limit of detection of this method is on the order of 5×10^5 molec. cm⁻³ at an integration time of 20 minutes.

Differential optical absorption spectroscopy – DOAS

The differential optical absorption spectroscopy (DOAS) is based on the wavelenght-dependent absorption of light by the molecules present in the atmosphere, following Beer-Lambert's law:

$$I(\lambda) = I_0(\lambda) \exp\left(\int_0^l -\sigma_{\rm OH}(\lambda) \,\left[\rm OH\,\right] dl\right). \tag{3.1}$$

 I_0 and I are the intensities of light before and after transmission through the sampled air along the path l, with the absorption cross section of the OH radical at the wavelength λ , $\sigma_{\rm OH}(\lambda)$. Light from artificial (e.g. laser) or natural (e.g. the sun) light sources passes the atmosphere and the absorption spectrum is recorded using spectrographs with a high spectral resolution. Subsequently the OH absorption spectrum is extracted. DOAS is an absolute technique, thus, calibration of the instrument is not necessary. The biggest uncertainty in OH measurement by DOAS is due to the uncertainty in the absorption cross section, which is about 7 % (Dorn et al., 1995). The lower limit of detection of this method depends on the length of the lightpath, scattering by aerosols, and absorption due to other trace gases. Typically values of about 1.5×10^6 molec. cm⁻³ at an integration time of 15 minutes (2σ) can be reached.

Chemical ionization mass spectroscopy – CIMS

Chemical ionization mass spectroscopy (CIMS) is an indirect method to determine the OH mixing ratio. The OH is titrated with isotopically labeled ${}^{34}SO_2$ and the emerging sulfuric acid ($H_2^{34}SO_4$) is measured subsequently.

$$OH + {}^{34}SO_2 + M \to H^{34}SO_3,$$
(R3.1)

$$H^{34}SO_3 + O_2 \to {}^{34}SO_3 + HO_2,$$
 (R3.2)

$$^{34}SO_3 + H_2O + M \to H_2^{34}SO_4 + M.$$
 (R3.3)

 34 SO₂ is injected into the sample air in excess for efficient conversion of the OH radicals into sulfuric acid within a few miliseconds (Eisele and Tanner, 1991; Tanner and Eisele, 1995; Tanner et al., 1997; Berresheim et al., 2002; Petäjä et al., 2009). Ions of nitrate (NO₃⁻) are used for ionization of the sulfuric acid by a charge transfer reaction. The nitrate ions exist mainly in a chemical complex with HNO₃ or H₂O.

$$\mathrm{H}_{2}^{34}\mathrm{SO}_{4} + \mathrm{NO}_{3}^{-} \bullet \mathrm{HNO}_{3} \to \mathrm{H}^{34}\mathrm{SO}_{4}^{-} \bullet \mathrm{HNO}_{3} + \mathrm{HNO}_{3}.$$
 (R3.4)

The resulting chemical complex $H^{34}SO_4^- \bullet HNO_3$ becomes fragmented in a collision chamber and the fragments are detected by mass spectroscopy. Since the stable isotope ³⁴S makes only about 4 % of the naturally occurring sulfur, it can be distinguished between atmospheric H_2SO_4 and $H_2^{34}SO_4$ generated by OH titration. The measured concentration of $H^{34}SO_4^-$ is proportional to the OH concentration in sample air. The biggest uncertainty of this method is due to the uncertainty of reaction rate constants. In order to improve the uncertainty of the CIMS technique, calibrations are conducted. The lower limit of detection is on the order of 1×10^5 molec. cm⁻³ at an integration time of 5 minutes.

Laser-induced fluorescence - fluorescence assay by gas expansion - LIF-FAGE

Wang and Davis (1974) reported the first measurement of hydroxyl (OH) in air by detecting the resonance fluorescence excited by a tunable laser source in the ultraviolet. OH radicals were selectively exited at a wavelength $\lambda = 282.58$ nm on resonance with the P₁(2) line in the $A^2\Sigma^+ - X^2\Pi, v'=1 \leftarrow v''=0$ transitions of OH. The transition back to the ground state occurs via various rotationally and vibrationally excited states with a high fluorescence intensity in the wavelength range between 307 - 315 nm. However, at atmospheric pressure, most of the electronically excited OH molecules lose their energy by collisional quenching due to other molecules present in air at a typical collision lifetime of about 1 ns (Heard and Pilling, 2003). The lifetime of the excited state of OH is approximately 700 ns, and hence very few of the initially excited OH molecules will fluoresce. Large background signals due to laser scatter at aerosols, other molecules in sample air and walls inside the detection system and the low yield from OH fluorescence led to a lower limit of detection of 5×10^6 molec. cm⁻³ (Wang and Davis, 1974). Furthermore, the measurement of atmospheric OH by LIF technique as described by Wang and Davis (1974) is subject to severe limitations. The laser radiation at $\lambda \approx 282$ nm which is used to excite the OH molecules, leads also to photodissociation of atmospheric ozone, yielding $O(^{1}D)$ atoms. The subsequent reaction of the laser-generated $O(^{1}D)$ atoms with atmospheric water vapour leads analog Reaction R2.1 to the formation of hydroxyl radicals, so the laser radiation itself is a source of OH (Ortgies et al., 1980). The development of the FAGE (fluorescence assay by gas expansion) method was a major step in order to overcome the disadvantages of atmospheric OH measurements by LIF due to low fluorescence yields and the interference caused by laser radiation, ozone and water vapour. Hard et al. (1979) for the first time detected atmospheric OH at reduced pressure $(\sim 1-5 \text{ hPa})$. OH detection at low pressure reduces the number density of water vapour and ozone, thus, limiting the production of laser-generated OH. The reduction of pressure leads to a smaller number of OH radicals available for detection and increased wall losses, due to the larger mean free path for the OH molecules inside the detection cell. Nonetheless, there is an increase in the OH fluorescence quantum yield, as the rate of collisional quenching of the excited OH radicals is reduced. The lifetime of the excited state extends to several hundred nanoseconds inside the FAGE detection system. An overview of the combined effects is presented in Figure 3.1.

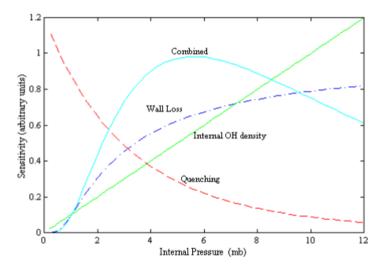


Abbildung 3.1.: Three pressure dependent components of the LIF sensitivity: the internal density (green solid line), OH transmission (blue dash-dotted line), and quenching (red dashed line). The product of these three functions (turqoise solid line) is the expected form of the pressure dependent sensitivity (Taken from Faloona et al., 2004, and modified).

Furthermore, background signals are suppressed efficiently. Background from sunlight is reduced by the sampling nozzle, used to suck ambient air into the low pressure detection cell. Baffles and black anodized walls inside the detection system are used to further suppress background photons by multiple reflections on these black surfaces. The laser-scattered background signal due to Rayleigh scattering and Mie scattering (fluorescence from aerosols) and fluorescence from the walls of the detection system can be discriminated against the OH fluorescence using a pulsed laser for excitation and a gated photon counting detection scheme (Figure 3.2). The detectors are switched off during the laser pulse by electronic gating, enabling discrimination against the much more intense background signals that exhibit the same temporal characteristics as the laser pulse (Heard and Pilling, 2003).

Present-day LIF-FAGE instruments widely use the electronic transition $A^2\Sigma^+ - X^2\Pi$, $v'=0 \leftarrow v''=0$ at around 308 nm for excitation of the OH radicals, and the fluorescence is subsequently detected at similar wavelengths. This became feasible with the introduction of gated photon counting. The interference due to laser-generated OH is about a factor of 25

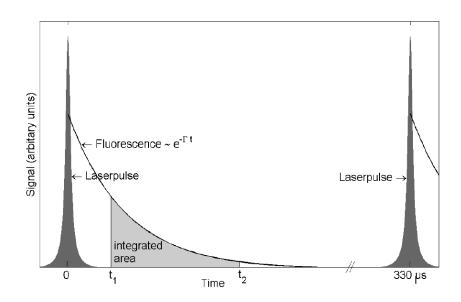


Abbildung 3.2.: Schematic representation of the timing of photon counting process that is used to quantify OH concentrations by LIF-FAGE technique. The detectors are switched off during the laser pulse by electronic gating, to discriminate against the much more intense background signals that exhibit the same temporal characteristics as the laser pulse. The integrated fluorescence signal is proportional to the number concentration of hydroxyl radicals in sample air (Taken from Faloona et al., 2004, and modified).

times smaller compared to the excitation at around 282 nm, because of the lower absorption cross section of O_3 and the reduced $O(^1D)$ quantum yield at $\lambda = 308$ nm. The absorption cross section of OH at 308 nm is about four times larger compared to $\lambda = 282$ nm, leading to a larger OH fluorescence signal (Chan et al., 1990). The lower limit of detection of this method is typically on the order of 1×10^5 molec. cm⁻³ at an integration time of 30 seconds. Recently further development of the LIF-FAGE method in order to avoid interferences in hydroxyl radical measurements due to other atmospheric compounds is under progress and will be discussed in more detail in Section 3.2.5.

3.1.2. Techniques for the detection of atmospheric HO_2

Matrix isolation ESR

Measurement of atmospheric HO₂ radicals with Matrix isolation and electron spin resonance spectroscopy (MIESR) was developed by Mihelcic et al. (1978) and is currently the only selective method to detect HO₂ directly. The air is sampled by expansion through a nozzle into a chamber with reduced pressure (~ 10 hPa) and the radicals are subsequently frozen out in a matrix formed by D₂O molecules on a sampling finger which is cooled with liquid nitrogen in order to avoid further chemical interactions between reactive molecules. Subsequently, the measurement is accomplished by electron spin resonance (ESR) spectroscopy in the laboratory. Furthermore, MIESR spectroscopy has the capability to measure the concentrations of HO₂, RO₂, CH₃C(O)O₂, NO₃, and NO₂ simultaneously in one sample. Typical sampling times of about 30 minutes are required to collect sufficient number of HO₂ radicals. The lower limit of detection of this method is about 1×10^7 molec. cm⁻³ for HO₂. The sample handling, i.e. taking the samples and the necessity to store them cryogenically, results in a relatively low time resolution. The subsequent ESR analysis of the samples in laboratory is also time-consuming. However, the MIESR method does not require calibrations, thus, it is appointed as a reference method for intercomparison to other instruments.

Chemical ionization mass spectroscopy – CIMS

Chemical ionization mass spectroscopy can be used to detect HO₂ and RO₂ radicals indirectly by chemical conversion to OH (Reiner et al., 1997; Cantrell et al., 2003). The conversion is accomplished by addition of NO and O₂:

$$\mathrm{RO}_2 + \mathrm{NO} \to \mathrm{RO} + \mathrm{NO}_2,$$
 (R3.5)

$$\mathrm{RO} + \mathrm{O}_2 \to \mathrm{R}^{\circ}\mathrm{CHO} + \mathrm{HO}_2,$$
 (R3.6)

$$\text{HO}_2 + \text{NO} \to \text{OH} + \text{NO}_2.$$
 (R3.7)

The resulting OH radicals can be subsequently detected by addition of SO₂, which leads to the formation of sulfuric acid (Reactions R3.1 - R3.3). Chemical ionization mass spectroscopy is used for quantification, as already described above. In contrast to measurements of atmospheric OH it is not necessary to use isotopically labeled SO₂, since the HO₂ + RO₂ radical concentration is about 100 times larger compared to OH, thus, the atmospheric H₂SO₄ background on the signal is small. The conversion efficiency from RO₂ to OH strongly depends on the amount of NO, O₂, and SO₂ injected into sample air. To detect HO₂ selectively, nitrogen instead of oxygen is injected, suppressing Reaction R3.6. Only ambient O₂ remains for conversion of RO to HO₂. Under these conditions 70 % to 75 % of the H₂SO₄ stem from atmospheric HO₂ (Heard and Pilling, 2003). The lower limit of detection of this method is about 7 × 10⁵ molec. cm⁻³ for HO₂ at an intergration time of 1 minute.

Laser induced fluorescence - fluorescence assay by gas expansion - LIF-FAGE

Another indirect method for the detection of HO₂ radicals is also based on the chemical conversion of HO₂ to OH by adding NO in excess to the sample air (Reaction R2.23). Following the conversion, the OH radicals are detected by LIF-FAGE technique (Heard and Pilling, 2003; Faloona et al., 2004). In order to achieve a high conversion efficiency within the short period (typically a few milliseconds) between injection of NO into the sample air and excitation of the resulting hydroxyl radicals by laser light and the subsequent detection of the fluorescence signal, high mixing ratios of NO (~ 500 - 1500 ppm_V) are used. Nonetheless, the conversion efficiency is limited by the efficiency of mixing the injected NO with the sample air, and wall losses. At very high NO mixing ratios the Reaction R2.14

$$OH + NO + M \rightarrow HONO + M$$

becomes a relevant loss process. Conversion efficiencies up to 95% were established in LIF-FAGE instruments (Heard and Pilling, 2003). According to Reaction R2.31, organic peroxy radicals quickly react with NO forming RO. These RO radicals can form additional HO₂ by reaction with atmospheric oxygen (Reaction R2.32). Due to the low pressure inside the LIF-FAGE detection system this reaction is slow compared to ambient conditions and contributes less than 10% to the total signal (Holland et al., 2003). However, it is meanwhile known, that RO₂ radicals from OH plus alkene- and aromatic precursors including isoprene (mainly OH-addition) can form specific RO by reaction with NO. These RO radicals can decompose under low pressure conditions forming HO₂ rapidly (Fuchs et al., 2011; Dillon, 2011). Interferences from these RO₂ species can be significantly reduced by reducing the reaction time and/or the NO concentration in the detection cell at the expense of a reduced HO₂ detection sensitivity. A lower detection limit of less than 1×10^6 molec. cm⁻³ at an integration time of 30 seconds is typically achieved by HO₂-LIF-FAGE instruments.

3.2. HORUS

Observations of OH and HO₂ concentrations within the scope of this thesis, in particular during the HUMPPA-COPEC2010 field campaign, were conducted using the Max Planck Institute for Chemistry (Mainz, Germany) HO_x instrument based on laser-induced fluorescence, HORUS (HydrOxyl Radical Measurement Unit based on fluorescence Spectroscopy). The HORUS instrument is originally based on the design of GTHOS (Ground-based Tropospheric Hydrogen Oxides Sensor), the Penn State HO_x instrument described by Faloona et al. (2004). HORUS is described in detail by Martinez et al. (2010). HORUS has been deployed for a variety of campaigns on ground-based, shipborne, and airborne platforms (Schlosser et al., 2009; Hosaynali Beygi et al., 2011; Kubistin et al., 2010; Martinez et al., 2010; Regelin et al., 2012).

3.2.1. Measurement principle

The LIF-FAGE method used by HORUS is based on the resonant absorption of laser light by the OH molecules and the subsequent detection of the fluorescence signal. The intensity of the fluorescence signal is proportional to the OH radical concentration. The excitation of OH radicals used in HORUS can be explained by transitions between the ground state $X^2\Pi$ and the first excited state $A^2\Sigma^+$ (Figure 3.3). The electron configuration of the ground state is $(1\sigma)^2 (2\sigma)^2 (3\sigma)^2 (\pi^+)^2 (\pi^-)^1$ with an unpaired electron in the π -orbital (Freeman, 1958). The electron configuration of the first electronically excited state $A^2\Sigma^+$ is $(1\sigma)^2 (2\sigma)^2 (3\sigma)^1 (\pi^+)^2 (\pi^-)^2$. The rotational states of the ground state separate because of the spin-orbit coupling (fine structure) into two electronic substates $X^2\Pi_{1/2}$ and $X^2\Pi_{3/2}$. There is no spin-orbit coupling in the excited electronic state $A^2\Sigma^+$ due to the lack of any angular momentum.

Quantum numbers in Figure 3.3 refer to:

- K: angular momentum (rotation+orbit)
- J: total angular momentum (including spin)

The energy levels of the substates within the ² Π state are labeled with $f_i(K)$ and $f'_i(K)$, where i = 1 denotes $(K + \Sigma)$ and i = 2 refers to $(K - \Sigma)$, in which Σ is the projection of the spin to the molecule axis (z-axis). The energetically higher level (caused by lambda doubling interaction) is labeled $f'_i(K)$. In analogy to this, the substates within the ² Σ^+ state (γ -splitting) are labeled with $F_i(K)$ and $F'_i(K)$. Absorption lines are labeled by $X_i(K)$ whereby X denotes the rotational branch $P(\Delta K = -1)$, $Q(\Delta K = 0)$, or $R(\Delta K = 1)$ and K is the quantum number of the angular momentum in the ground state. Subscripts *i* represent again the fine structure of the ground state. For transitions with changing spin projection $(K \pm \frac{1}{2})$, so-called satellite branches that occure at similar energies but show lower intensities compared to main branches, the index *i'* for the excited state is added in front of the ground state index (e.g. $Q_{21}(2)$). A more detailed description of the OH absorption spectrum can be found in Freeman (1958); Dieke and Crosswhite (1962); Langhoff et al. (1982) and references therein.

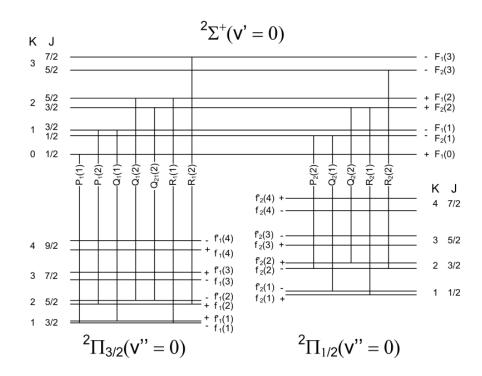


Abbildung 3.3.: Schematic of the branches in the rotational structure of OH showing the transitions used for laser excitation $(A^2\Sigma^+ - X^2\Pi, v'=0 \leftarrow v''=0)$. K is the quantum number of the angular momentum (rotation + orbit) and J is the quantum number of the total angular momentum (including spin). For notation of transition lines refer to text.

In HORUS OH molecules are selectively excited at low pressure by pulsed UV light at around 308 nm on resonance with the $Q_1(2)$ transition line. Subsequently, the fluorescense signal from the excited hydroxyl radical molecules is detected at low pressure ($\sim 3-5$ hPa). Since the fluorescence is detected at around 308 nm, similar to the excitation wavelength, a gated photon counting technique as presented in Figure 3.2 using micro channel plate detectors (MCP) is applied. The integrated fluorescence signal is proportional to the concentration of hydroxyl radicals in sample air:

$$S \sim \int_{t_1}^{t_2} I(t) dt \sim [OH^*] \int_{t_1}^{t_2} e^{-\Gamma t} dt$$
 (3.2)

The concentration of excited OH radicals $[OH^*]$ is proportional to the total OH concentration, the Boltzmann correction factor f_b and the laser power P. With the fluorescence efficiency factor

$$Q = \int_{t_1}^{t_2} e^{-\Gamma t} \, dt \tag{3.3}$$

and the constant of proportionality C' we obtain

$$S = C' \cdot Q f_b P \quad [OH]. \tag{3.4}$$

The product of fluorescence efficiency factor, Boltzmann correction factor and C' is the normalized sensitivity of the LIF instrument:

$$\zeta = C' \cdot Q \cdot f_b. \tag{3.5}$$

The total instrument sensitivity is given by

$$\mathscr{C}_{\text{LIF}} = \zeta \cdot P \tag{3.6}$$

and can be determined by calibration of the HORUS instrument (see Section 3.2.3).

The decay rate of the excited OH radicals, Γ , is defined by the natural lifetime of the excited state, γ_{nat}^{-1} and the deactivation by collisional quenching due to other molecules X:

$$\Gamma = \gamma_{nat} + \sum k_X(T) \ [X], \qquad (3.7)$$

where $X=N_2$, O_2 , and H_2O are the most relevant collision partners in ambient air. The temperature dependency of the associated rate constants can be approximated within a temperature range of -70° C to 50° C (Faloona et al., 2004):

$$k_X(T) = aT^{\frac{1}{2}} - bT^{\frac{3}{2}} + c.$$
(3.8)

The coefficients a, b, c are experimentally determined (Bailey et al., 1997, 1999) and listed in Table 3.1. Particularly H₂O is an efficient quenching gas for the excited OH molecules, leading to a decrease of the fluorescence efficiency factor Q and therefore a decrease in instrument sensitivity with increasing water concentration.

Collision gas	a (in cm ³ (molec. s $K^{\frac{1}{2}}$) ⁻¹)	b (in cm ³ (molec. s $K^{\frac{3}{2}})^{-1}$)	c (in $cm^3 molec.^{-1} s^{-1}$)
N_2	-1.668×10^{-11}	-1.731×10^{-14}	2.313×10^{-10}
O_2	1.008×10^{-11}	$1.655{ imes}10^{-14}$	5.129×10^{-11}
H_2O	-4.017×10^{-10}	-4.4686×10^{-14}	5.3137×10^{-9}

Tabelle 3.1.: Parameters of temperature dependency for collisional quenching rate coefficients.

3.2.2. Instrument setup

HORUS consists of four main components: the laser system, the low pressure detection system, the vacuum system, and the instrument control and data acquisition unit. A comprehensive description of the HORUS instrument setup is given in Kubistin et al. (2010). The most relevant characteristics for HUMPPA-COPEC-2010 and recent instrument developments are presented in the following paragraphs.

Laser system

The UV light for excitation of the hydroxyl radicals is provided by a Nd:Yag pumped, pulsed, tunable dye laser system (Martinez et al., 2010; Wennberg et al., 1994) operated at a pulse repetition frequency of 3 kHz. A diode-pumped, quality-switched Nd:Yag laser (Type Navigator I, Spectra Physics) is applied for optical pumping of the custom-made dye laser system at 532 nm (frequency doubled). In order to focus the beam of the pumplaser precisely on the dye cell the beam (with an approximate initial diameter of 0.65 mm) is expanded, using a tenfold beam expander (Linos - Qioptic) and a collecting lens (f = 100 mm, Thorlabs). Furthermore, the incoupling of the green laser beam is actively controlled by two piezo-actuated mirrors to compensate changes due to thermal and mechanical influences on the laser base plate.

The dye laser setup is shown in Figure 3.4. The incoming beam of the pump laser $(\lambda = 532 \text{ nm})$ hits the dye cell under the brewster angle. The laser dye, Pyrromethene-597 (Exciton, USA) dissolved in high purity grade isopropanol (> 99.9%), has an absorption maximum in the green and fluoresces in the green to red wavelength range. To avoid saturation of the excited states of the laser dye, the dye solution is continuously circulated through a reservoir at a high flow rate of 1.7 liters per minute in order to exchange the dye inside the dye cell between two consecutive laser pulses. The fluorescence light is collected and amplified within the cavity. The cavity is defined on one end by the end mirror and on the other by the outcoupling mirror (see Figure 3.4). Primary wavelength selection in the

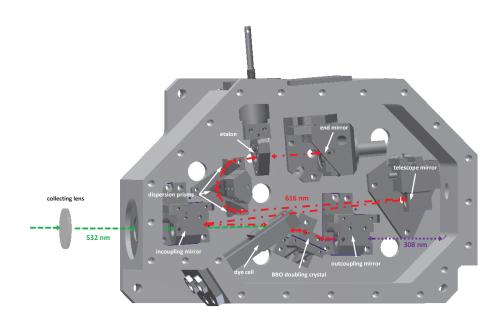


Abbildung 3.4.: Dye laser setup. The incoming beam of the pump laser ($\lambda = 532 \text{ nm}$) is focussed on the dye cell. The fluorescence from laser dye (Pyrromethene-597) at $\lambda = 616 \text{ nm}$ is amplified inside the optical resonator. UV light at $\lambda = 308 \text{ nm}$ is produced using a nonlinear doubling crystal (BBO) for intracavity frequency doubling.

cavity is achieved by means of a dispersion prism array, then further narrowed by a rotatable intracavity etalon, which is actively controlled by a stepper motor. When the intracavity power builds up sufficiently to permit frequency doubling in the doubling crystal (BBO - β -barium borate) the UV light then exits via the outcoupling mirror.

Since the instrument sensitivity \mathscr{C}_{LIF} is directly proportional to the laser power P (see Equation 3.6) it is desired to achieve high and stable laser power at the excitation wavelength of OH. Furthermore, the lower limit of detection improves at higher UV power. This is important, when long optical fibers causing high losses have to be used to transport the UV light to the detection system. To improve the UV power output of the laser system the design of the cavity was analyzed and slightly modified. The biggest positive impact on the UV power was gained by the exchange of the dispersion prisms material. The transmission of

the p-polarized light is strongly dependend on the incidence angle. Previously three isosceles brewster prisms ($\alpha = 60^{\circ}$) made in LaFN8 were used in the HORUS dye laser system. For the mechanical setup - three prisms with theoretical brewster angle of 60° and total deflection angle between input and output plane of 60° (for each prism) - a different material (e.g. SF10) fits the requirements better. The transmission for such a prism (for p-polarized, s-polarized and mixed-polarized light) is shown in Figure 3.5 for different glass types. During

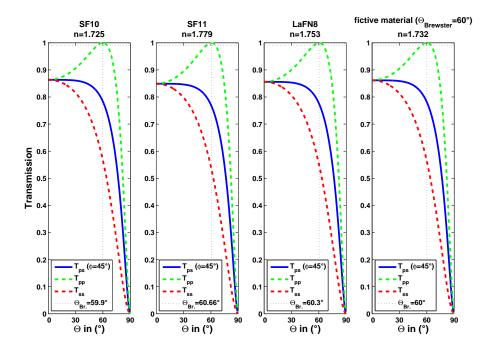


Abbildung 3.5.: Transmission curves for isosceles brewster prisms (for p-polarized, spolarized and mixed-polarized light) of different glass types. The material SF10 fits the requirements of the HORUS dye laser system best.

the HUMPPA–COPEC–2010 campaign, optical fibers about 4 meters in length were used to transfer the 308 nm light to the detection system. Optical fibers allow complicated pathways and provide robust and stable coupling of the UV light into the detection system. However, along with the transmission losses also backreflections of the laser pulses are a disadvantage of using optical fibers. Depending on the length of the optical fiber (l) and the refractive index of the fiber material (n_{fiber}), the delay between laser pulse and its first backreflection can be calculated:

$$t = \frac{2l \cdot n_{fiber}}{c} \tag{3.9}$$

where c is the speed of light in vacuum.

In case of the fibers used during HUMPPA–COPEC–2010 the first backreflection would occure approximately 40 ns after the laser pulse and a second backreflection with another 40 ns delay. Thus, backreflections of the laser pulse can (especially for long fibers, e.g. of ~ 10 meters in length) overlap parts of the fluorescence signal and reduce the instrument sensitivity. To overcome this issue, angled polished fibers were used the first time during HUMPPA–COPEC–2010. The angled polished incoupling and outcoupling surfaces helped to suppress backreflections significantly (see Figure 3.6).

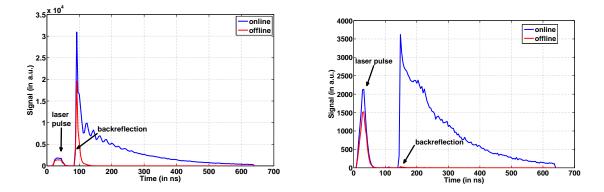


Abbildung 3.6.: Suppression of laser pulse backreflections and OH fluorescence signal. A flat polished fiber produces backreflections that can overlap the fluorescence signal (left panel). Using an angled polished fiber helps to suppress the backreflection of the laser pulse significantly (right panel).

Low pressure detection system

A schematic overview of the detection system setup of HORUS is shown in Figure 3.7. The sample air is drawn through a critical orifice (pinhole size of about 1.2 mm) into the low pressure detection cells, achieving a constant volume flow of about 10 slm (p = 1013 hPa, T = 273.15 K). The resulting exchange rate of sample air is necessary to avoid excitation of the sample air by two consecutive laser pulses, producing laser-generated OH. In order to maximize the fluorescence signal at a certain radical level (i.e. maximizing the instrument sensitivity) a White Cell setup crossing the detection volume with 32 light paths is used (see Figure 3.8), (White, 1942).

The detection of HO_2 is achieved via chemical conversion to OH by adding NO in excess to the total flow of sample air downstream of the OH detection. The sum of remaining ambient OH plus OH originating from HO_2 conversion is measured in a second detection axis (see Figure 3.7).

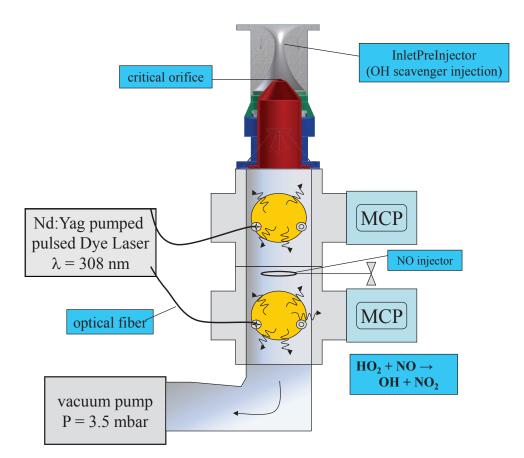


Abbildung 3.7.: Setup of the HORUS detection system. The sample air is drawn through a critical orifice into the low pressure detection cell. OH radicals are excited by laser light at around 308 nm and the fluorescence of these molecules is detected using a multi channel plate detector (MCP). In a second detection axis, placed in line with the OH detection cell, HO₂ is detected after conversion to OH by reaction with NO, which is injected between the first and the second detection cell. An InletPreInjector is mounted on top of the standard LIF inlet for chemical background detection. For details refer to text.

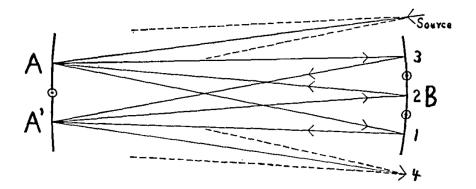


Abbildung 3.8.: Schematic representation of the optical path inside a White Cell. The incoming laser beam is multiple reflected using three mirrors before exiting the cell (Taken from White, 1942).

Taking the information from the so-called first axis OH measurement into account, the HO_2 concentration is calculated. The proportionality between fluorescence signal and hydroxyl radical concentration is given by the instrument sensitivity C_{LIF} , which is normalized by laser power. Nevertheless, the sensitivity still depends on many other parameters, including the density inside the fluorescence cell, the water vapour concentration in sample air (quenching effects), the transition probability, the overlap of the laser and fluorescence transition lines, the transmissivity of the White Cell setup, as well as the sensitivity of the detector. Some of those parameters are difficult to be determined separately and might even change in time (e.g. contamination of optical surfaces or changing detector efficiency due to ageing). Therefore, calibrations of the HORUS instrument were performed on a regular basis (see Section 3.2.3).

The usual LIF method to determine the background signal is changing the excitation wavelength, to get off-resonant for the OH molecule and measure the background signal periodically. In HORUS 5 seconds of "online" measurement are followed by 5 seconds "offline", which is 1000 etalon steps (~ 37 GHz) alternating left and right of the $Q_1(2)$ transition line. Furthermore, the ambient OH can be removed from sample air by periodic addition of a chemical OH reactant (e.g. propane, propene, C_3F_6) to determine the background signal (Figure 3.9). Since both methods do not exclude each other the addition of a chemical reactant was done on top of the wavelength modulation method for the HORUS instrument during HUMPPA-COPEC-2010.

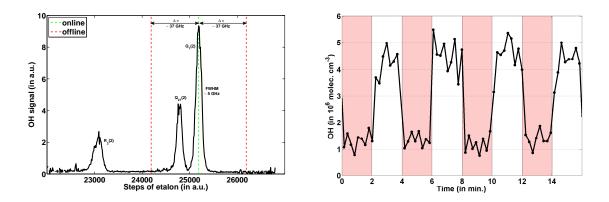


Abbildung 3.9.: Two ways to determine OH background signal: (left panel) by wavelength change and (right panel) by periodic addition of an OH reactant (periods with colored background) using an InletPreInjector (Brune et al., 2010; Novelli et al., 2012; Mao et al., 2012).

Vacuum system

The HORUS instrument requires a vacuum system to create a low pressure, forcing the sample air through a critical orifice into the detection cells. Therefore, a compressor (roots blower, Type M90, Eaton) and a vacuum pump (scroll pump, Type XDS-35, Edwards) are connected in series. With this setup the sample air is compressed and the pressure in front of the vacuum pump is enhanced, leading to an improved pumping efficiency, which is mandatory to achieve the low pressure of a few hPa inside the detection cells. The characteristics of the vacuum system are shown in Figure 3.10. It is proved to be stable within longterm measurements running continuously for several weeks.

Instrument control and data acquisition unit

The HORUS instrument is controlled using an embedded PC running a Debian LINUX operating system. Analogue and digital sensors as well as actuators, such as valves or stepper motors, are connected to the data acquisition using a modular system of electronic cards, which was developed at the Max-Planck-Institute, Mainz. The connection to the embedded PC is established via the ISA bus. The software design of HORUS is based on the client-server model, programmed in "C". The server controls the communication with the hardware and periodically stores records from the sensors on a harddrive. UDP sockets are used to query data from clients and/or send actuator commands (e.g. move stepper motor). The graphical user interface (GUI, programmed in MatLab, Mathworks, Inc.) is also realized as a client. Thus, the data acquisition is running as an independent process and will not be

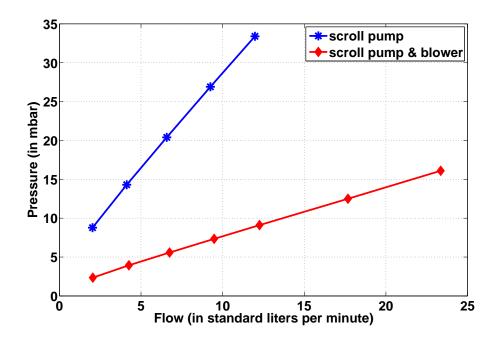
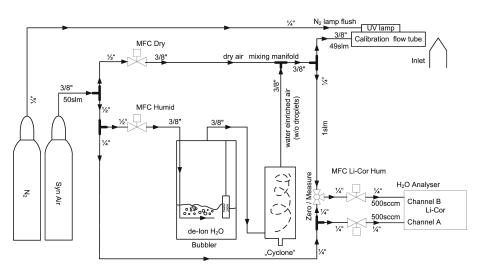



Abbildung 3.10.: Characteristics of the vacuum system. To improve the pumping efficiency of the scroll pump (Type XDS-35, Edwards) a roots blower (Type M90, Eaton) is used for precompaction.

affected by malfunctions of the GUI. Furthermore, it is possible to run the graphical user interface on a different computer (within the same network) than the data acquisition.

3.2.3. Calibration

The instrument sensitivity \mathscr{C}_{LIF} is determined by regular calibrations of the LIF system. For calibration of the HORUS instrument, different mixtures of dry and humid air was flown turbulently through a 16 mm square aluminium tube at a rate of 50 liters per minute. The resulting water vapour concentration is measured with an infrared absorption instrument (LI-7000, Licor), which is calibrated against a dew point generator (LI-610, Licor) within a typical range of 0-25 mmol mol⁻¹ of H₂O in calibration air. The dew point generator itself is calibrated against a certified primary standard (NIST). A mercury lamp (Penray line source, LOT-QuantumDesign, Europe) is attached to the tube to produce equal concentrations of OH and HO₂ radicals by photolysis of water vapour. From the flow speed, which is derived from the measured mass flow (DryCal sensor, NIST traceable certified

Calibration Unit Principle of operation

Abbildung 3.11.: Schematic of the setup used for calibration of the HORUS instrument. Different mixtures of dry and humid air are established using a bubbler device and subsequently the water vapour mixing ratio is measured by a H₂O analyser. The humidified air is flown through the calibration flow tube, where OH and HO₂ radicals are produced in equal amounts by photolysis of the water vapour at 184.9 nm (Taken from Kubistin et al., 2010).

by Westphal, Germany), and the resulting residence time, t, of calibration air within the illuminated volume, the absorption cross section of water at 185 nm, $\sigma_{\rm H_2O}$, and the actinic flux density of the lamp, Φ_0 , the radical concentration can be calculated (Faloona et al., 2004). The absorption by oxygen and the resulting reduction of the actinic flux density across the tube height, h, is taken into account by application of a correction factor, f_{O_2} , following Beer-Lambert's law.

$$[OH] = [HO_2] = \Phi_0 \sigma_{H_2O} [H_2O] t f_{O_2}, \qquad (3.10)$$

31

with the correction factor for absorption by oxygen

$$f_{O_2} = \frac{\int\limits_{0}^{h} e^{-\sigma_{O_2}[O_2]x} dx}{h}.$$
 (3.11)

A schematic of the setup used for calibration of the HORUS instrument is shown in Figure 3.11.

Exact knowledge of the actinic flux density is crucial for this calibration method. The mercury lamp used for calibration of the HORUS instrument during HUMPPA-COPEC-2010 was calibrated using the actinometry method by N₂O photolysis, as described by Martinez et al. (2010), immediately before and after the campaign. N₂O photolysis produces $O(^{1}D)$ molecules which partly react with N₂O producing NO. The actinic flux density of the lamp is determined by measuring NO from the photolysis of known concentrations of N₂O in nitrogen with a NO_x chemiluminescence analyzer (C42, Thermo Environmental Instruments). The analyzer itself is calibrated using a NIST standard. It is to be considered that the sensitivity of the analyzer varys with different quenching efficiency of the carrier gas, as shown in Figure 3.12.

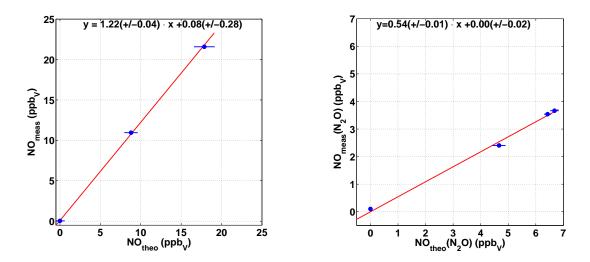


Abbildung 3.12.: Calibration of the NO analyzer (C42, Thermo Environmental Instruments) for NO in N₂ and N₂O. The sensitivity of the analyzer varys with different quenching efficiency of the carrier gas.

At mixing ratios of about 15 % N₂O, NO concentrations reach up to 5 ppb_V, well above the detection limit of the NO_x analyzer ($< 50 \text{ ppt}_V @ 120 \text{ sec}$ averaging time). The absorption of the 185 nm light across the calibrator tube increases with increasing N₂O concentration. This effect was taken into account for the calculation of the lamp actinic flux (Kubistin, 2009). The resulting actinic flux density at different N₂O mixing ratios is shown in Figure 3.13.

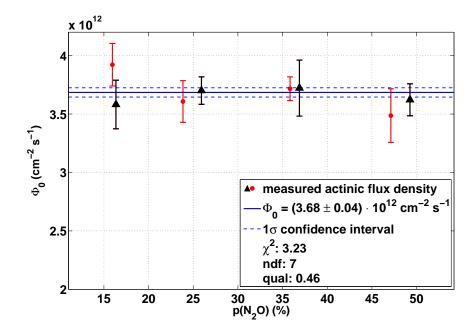


Abbildung 3.13.: Actinic flux density of the mercury lamp used for calibration of the HORUS instrument. The actinic flux density Φ_0 is derived from the photolysis of N₂O at different mixing ratios and the subsequent detection of the NO yields. The data shown here is the combined dataset from two actinometric measurements, one of them conducted before (red dots) and a second one after (black triangles) the field campaign, indicating a good long-term stability of the lamp actinic flux density. Errorbars indicate the propagated statistical variability of the calculated flux density.

Both measurements of the actinic flux density, Φ_0 , before and after the field campaign, agree within uncertainties and indicate the long-term stability of the actinic flux density. From the overall fit we obtained $\Phi_0 = (3.68 \pm 0.04) \times 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$ with a reasonable quality of fit. The systematic error of the actinic flux density measurement is calculated to be about 17 %, similar to the value by Martinez et al. (2010) taking the contribution of all components summarized in Table 3.2 into account.

Instrument/Quantity	systematic uncertainty
NO Monitor (TEI)	6%
NO Standard (NIST)	1%
Mass flow controler (MKS)	2%
Absorption cross section $\sigma_{\rm H_2O}$	2%
Quantum yield	1%
Kinetic rate coefficients	12%
Dimensions of reaction chamber	3%
Pressure sensor (MKS)	2%
Long-term stability of act. meas.	10%
Overall system. error estimate	17%

Tabelle 3.2.: Systematic uncertainties during actinometric measurement.

3.2.4. Other dependencies of the instrument sensitivity

Furthermore, the instrument sensitivity is limited by quenching of the fluorescence, which happens mainly due to water vapour. To minimize this effect, the HORUS system is operated at low pressure ($\sim 3 - 5$ hPa), but still high enough to keep wall losses small and provide enough molecules for excitation. The quenching effect by H₂O is considered in our calculations. An additional dependency on water vapour of about 12% and 17% decrease in sensitivity per 1% increase in water vapour mixing ratio was observed for the first and second fluorescence cell, respectively. This additional water effect indicates further losses at higher water mixing ratios possibly due to formation of OH-water clusters during the cold-adiabatic expansion of the sample air while entering the low pressure detection system. Changing instrument sensitivity with respect to water vapour mixing ratio, which is not

caused by quenching, was reported by others (Hofzumahaus et al., 1996; Holland et al., 1998) hypothesizing that condensation processes during the cold-adiabatic expansion are causing this effect. The above mentioned quantification of the additional water dependency during instrument calibration was used to correct for this dependency.

Unfortunately, the MCP detectors changed in sensitivity during the HUMPPA–COPEC– 2010 field campaign, decreasing over time. Calibrations of the instrument were conducted about every second day to keep track of changes in sensitivity. Within some limitations, the behaviour of the laser scattering inside the system is an indicator of the sensitivity changes in the system. For the laser scatter signal, factors such as laser power fluctuations and background reflections have to be taken into account. Differing amounts and composition of aerosols in the sample air therefore might cause variable scatter. However, comparison of the laser scatter signal in ambient air with the quasi-simultaneous measured sensitivity during calibration shows a linear dependency. This functional dependency was applied to correct for the changing sensitivity (see Figure 3.14).

3.2.5. Interferences

Knowledge about possible interferences and avoiding those when indicated is required in order to measure OH and HO_2 reliably. Interferences can be caused by processes in the instrument itself and/or atmospheric substances which fluoresce at wavelengths similar to the hydroxyl radical. Laboratory studies testing the effect of sulfur dioxide, formaldehyde, nitrous acid, nitric acid, acetone, hydrogen peroxide, and various hydrocarbons on the OH signal did not show any significant interference for measurements in the atmosphere (Kubistin, 2009; Faloona et al., 2000; Ren et al., 2004). A negative interference on the OH signal by naphtalene was observed in polluted urban environments and can be used for the specific measurement of this compound (Martinez et al., 2004). It was recently reported that LIF measurements can be affected from internally generated OH (Mao et al., 2012; Novelli et al., 2012). Therefore, a chemical modulation method to determine the background signal for the measurement of atmospheric OH (as proposed by Brune et al., 2010) was applied to the HORUS-LIF for the first time during HUMPPA-COPEC-2010. A new injection unit IPI (Inlet PreInjector) was developed and optimized to scavenge more than 95% of atmospheric OH by periodic injection of a chemical reactant in front of the standard inlet. In order to minimize wall losses, a bypass flow, large compared to the sample flow into the detection system, was established. Optimization of this injection system included tests using different reactants, e.g. propylene and hexafluoropropene, and varying injection and bypass flow conditions to determine the best parameters for continuous operation. A different publication on the characterisation of the OH scavenger injection device *IPI* is in preparation by Novelli et al. (2013).

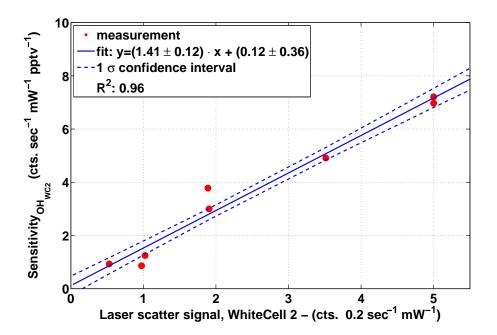


Abbildung 3.14.: Sensitivity change inside the second detection axis of HORUS as a function of the associated laser scatter signal. A linear correlation (R²=0.96) with a non-significant offset was observed during instrument calibrations. The functional dependency obtained from linear regression was applied to the measurements to correct for changes in instrument sensitivity by continuously monitoring the laser scatter signal. A similar correction function for the change in sensitivity of the first detection cell has also been determined empirically and applied.

Measurements of HO_2 concentrations are conducted using chemical conversion into OH via the reaction with NO and the subsequent detection of the hydroxyl radicals by the LIF technique (Reaction R3.8):

$$HO_2 + NO \rightarrow OH + NO_2$$
 (R3.8)

In the atmosphere, RO₂ is also converted into HO₂ in the presence of NO (Reactions R3.9 - R3.10). These reactions were expected to be negligible in low pressure FAGE detection systems due to the reduced oxygen concentration and the short reaction time between

injection of NO and detection of OH within the system (Heard and Pilling, 2003).

$$RO_2 + NO \rightarrow RO + NO_2$$
 (R3.9)

$$RO + O_2 \rightarrow R'CHO + HO_2$$
 (R3.10)

We observed a small interference (< 10%) originating from methyl peroxy radicals in the laboratory for the HORUS instrument, comparable to the results reported by Holland et al. (2003), who detected an interference smaller than 5% for their LIF-FAGE instrument. Significant interferences in HO₂ measurements by the LIF-FAGE technique from RO₂ species resulting from the OH-initiated oxidation of alkenes and aromatics have been observed by Fuchs et al. (2011) and others (Dillon, 2011). In contrast to alkane-based peroxy radicals, which are formed in the reaction of VOC + OH via H-atom abstraction, alkene-based peroxy radicals (mainly produced via OH-addition on the C-C double bond) form specific RO by reaction with NO, that can decompose under the low pressure conditions forming HO₂ rapidly. The conversion efficiency is limited by Reaction R3.9. The ratio of HO₂ to RO₂ converted by reaction with NO under excess conditions (see Reactions R3.8 & R3.9) is given by the pseudo-first-order approximation

$$\frac{[\text{HO}_2](\text{t})}{[\text{RO}_2](\text{t})} = \frac{[\text{HO}_2]_0}{[\text{RO}_2]_0} \cdot \frac{e^{-k_{R3.8}} [\text{NO}]^{\text{t}}}{e^{-k_{R3.9}} [\text{NO}]^{\text{t}}} = \frac{[\text{HO}_2]_0}{[\text{RO}_2]_0} \cdot e^{-(k_{R3.8} - k_{R3.9})} [\text{NO}]^{\text{t}},$$
(3.12)

while $k_{R3.8} > k_{R3.9}$.

The ratio in Equation 3.12 becomes small, i.e. HO_2 is converted more efficiently compared to RO_2 when the product $[NO] \cdot t$ is small. Thus, any potential interference from alkenes on HO_2 can be reduced by reducing reaction time and/or NO concentration. During HUMPPA– COPEC–2010 NO mixing ratios of about 400 ppm_V occurred inside the detection system of HORUS by injection of pure NO into sample air, yielding a conversion efficiency from HO_2 to OH of more than 95% at the operating conditions of the instrument. This could also have caused a high conversion efficiency for interfering RO_2 species as described above. Nevertheless, this interference depends strongly on the available VOCs for the production of RO_2 in the investigated environment as well as on the instrumental setup which defines the conversion efficiency of those peroxy radicals inside the instrument. The observed HO_2 can be interpreted as the sum of atmospheric HO_2 and a contribution from the effective interference by specific RO_2 :

$$[HO_2]^{obs.} = [HO_2]^{atm.} + \sum_i (\alpha^i_{RO_2} \times [RO_2]_i)$$
 (3.13)

The relative detection sensitivities $\alpha_{RO_2}^i$ for the specific RO₂ compared to HO₂ are strongly dependend on the instrumental setup and can reach values up to about 0.9 (Fuchs et al., 2011; Lu et al., 2012; Whalley et al., 2013). However, the speciation of RO₂ in the observed environment strongly influences the effective interference. Based on model simulations the

magnitude of the RO₂ interference on HO₂ measurements by some LIF instruments in different environments was estimated between 10 % up to about 30 % (Lu et al., 2012; Fuchs et al., 2011; Mao et al., 2012; Whalley et al., 2013; Griffith et al., 2013).

NO titration experiments during calibration and ambient air measurements in two forest environments in Germany have been conducted after HUMPPA–COPEC–2010, quantifying the maximum interference by RO_2 in the HORUS instrument in these environments to be less than 20% (Tatum Ernest et al., 2012). For the purpose of these titrations the NO injection of HORUS was varied to accomplish internal NO mixing ratios of approximately 1 to 1600 ppm_V. The resulting NO dependency of the signal caused by a constant HO_2 concentration during a calibration is presented in Figure 3.15.

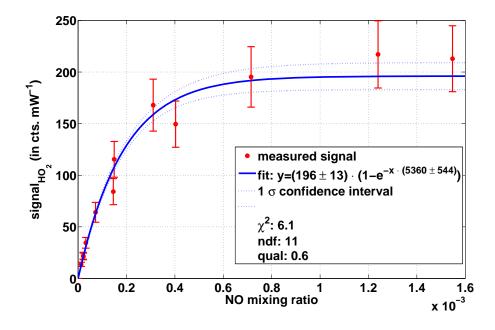


Abbildung 3.15.: NO dependency of the HO_2 signal during a calibration. A constant HO_2 concentration is provided to the LIF instrument by the calibrator unit. The NO mixing ratio for conversion from HO_2 to OH inside HORUS is varied from approximately 1 to 1600 ppm_V. Above ~ 800 ppm_V a rather constant conversion efficiency is found.

From this dependency a conversion efficiency from HO_2 to OH as a function of the NO mixing ratio is derived. The observed signal can be expressed by

$$S_{\mathrm{HO}_{2}}(\mathrm{NO}) = \mathscr{C}_{\mathrm{LIF}}^{\mathrm{NO}_{Cal}} \cdot \epsilon'(\mathrm{NO}) \cdot [\mathrm{HO}_{2}]^{\mathrm{Cal}}, \qquad (3.14)$$

where $\mathscr{C}_{LIF}^{NO_{Cal}}$ is the instrument sensitivity at the NO level during HORUS calibration and $\epsilon'(NO)$ represents the NO-dependent conversion efficiency, fullfilling the constraint

$$\epsilon'(\mathrm{NO}_{Cal}) = 1. \tag{3.15}$$

The signal during a titration experiment using ambient air shows a similar NO dependency, representing the conversion efficiency for the sum of HO_2 and interfering RO_2 species, assuming constant conditions, i.e. only minor changes in HO_2 and RO_2 concentrations during the titration. It can be written as

$$S_{\text{HO}_2+\text{RO}_2}(\text{NO}) = S_{\text{HO}_2}(\text{NO}) + S_{\text{RO}_2}(\text{NO})$$
$$= \mathscr{C}_{\text{LIF}}^{\text{NO}_{Cal}} \cdot \epsilon'(\text{NO}) \cdot [\text{HO}_2] + S_{\text{RO}_2}(\text{NO}).$$
(3.16)

At a very low reference NO level, NO_{ref} , the contribution from RO_2 to the total signal is assumed to be less than 10%, which is the upper limit for the RO_2 interference by methyl peroxy radicals determined in laboratory experiments. Under these conditions Equation 3.16 simplifies to

$$0.9 \cdot S_{\text{HO}_2 + \text{RO}_2}(\text{NO}_{ref}) = S_{\text{HO}_2}(\text{NO}_{ref})$$
$$= \mathscr{C}_{\text{LIF}}^{\text{NO}_{Cal}} \cdot \epsilon'(\text{NO}_{ref}) \cdot [\text{HO}_2].$$
(3.17)

Therefore, it is possible to quantify the HO₂ concentration as well as the contribution from RO₂ interference to the total signal at a certain NO level. The result of a titration in ambient air and the expected HO₂ signal are shown in Figure 3.16. The difference between the two curves provides the magnitude of the interference. In the presented titration (Figure 3.16) this difference makes $\sim 12\%$ of the total signal at the maximum NO level. However, even the expected HO₂ curve is systematically lower compared to the total observed signal, the observed deviation is not significant.

Furthermore, titration experiments were conducted at different water vapour mixing ratios within the calibration air, to rule out a potential dependency of the conversion efficiency on the water vapour mixing ratio. Between 20% and 90% of the calibration air were flushed through the bubbler of the calibration unit, yielding H₂O mixing ratios of 3.7-12.5 mmole mole⁻¹. The normalized instrument sensitivities are plotted in Figure 3.17.

There is no clear water dependency observed on the HO₂ conversion efficiency. Nonetheless, the titration curves show at the highest NO level a variability of ~ 20 %, which provides an estimate on the precision of these titration experiments.

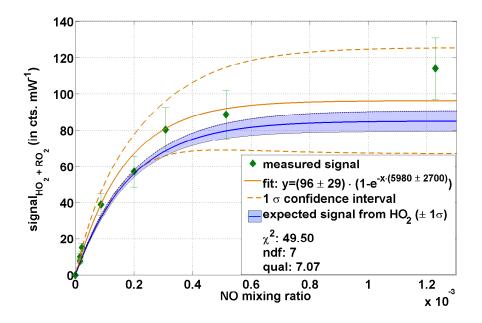


Abbildung 3.16.: NO dependency of the total (HO₂+ RO₂) signal during ambient air measurement and expected HO₂ signal (blue line) applying the conversion efficiency derived from titration experiment during calibration. At maximum NO mixing ratio the signals differ by ~ 12%. However, even the expected HO₂ curve is systematically lower compared to the total observed signal, the observed deviation is not significant.

To further investigate the effect of RO₂ interference on the measurement of HO₂ concentrations during HUMPPA–COPEC–2010, we calculated the H₂O₂ budget taking the production by the self-reaction of HO₂ and the loss via photolysis and deposition into account and compared the calculated hydrogen peroxide with the measurements (Figure 3.18). The production of H₂O₂ by HO₂ shows a quadratic dependency and is therefore highly sensitive to the HO₂ concentration. The decay of hydrogen peroxide in the afternoon is mainly determined by the deposition process. A reasonable deposition rate of $4 \times 10^{-5} \, \text{s}^{-1}$, corresponding to a deposition velocity of $4 \, \text{cm} \, \text{s}^{-1}$ in a 1 km high boundary layer, was used for the calculation. This is comparable to values reported by Hall and Claiborn (1997) for a boreal forest, ranging from 1 to 5 cm s⁻¹. Removal of hydrogen peroxide by photolysis makes up to

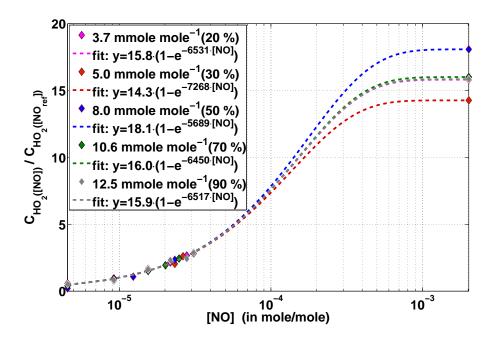


Abbildung 3.17.: Titration experiments at different water vapour mixing ratios within the calibration air, to rule out a potential water dependency on the HO₂ conversion efficiency. The titration curves show at the highest NO level a variability of ~ 20 %, which provides an estimate on the precision of these titration experiments. Percentages in parentheses denote the portion of humidified air to the total flow of calibration air.

10% of the total H_2O_2 loss. Hydrogen peroxide concentrations derived using the measured HO_2 is in reasonable agreement with the measured H_2O_2 . In some cases measured HO_2 is still not sufficient to explain the measured H_2O_2 concentrations. Even though under some conditions hydrogen peroxide measurements might be affected by mixing with different air masses, e.g. from the residual layer, which have not been considered in our calculation, the comparison gives confidence that the measurements of HO_2 are not subject to a major interference. Although the magnitude of the RO_2 interference during HUMPPA-COPEC-2010 cannot be conclusively derived there is no evidence for an extraordinary large interference in the HORUS instrument compared to other LIF systems. Therefore, a contribution of 30 % to the observed HO_2 signal (presently the maximum value observed in LIF instruments) is considered as an upper limit estimate of the RO_2 -interference for further analysis.

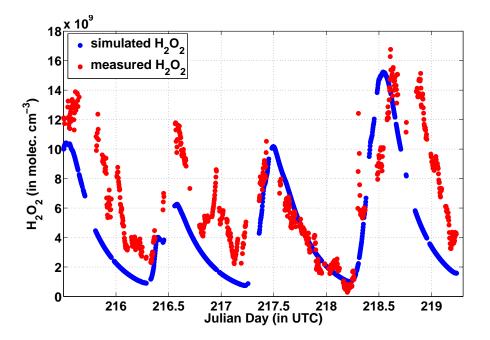


Abbildung 3.18.: Comparison of the measured H_2O_2 with simulation based on HO_2 measurements by LIF. The measured HO_2 is needed to explain the observed hydrogen peroxide.

4. HUMPPA-COPEC-2010

The boreal forest ecosystem represents the world largest interconnected woodland. It extends over an area of about 15×10^6 km² between 50 and 65° N and makes up 27% of the world's forest (FAO, 2010). Hence, the boreal forest is expected to influence significantly the chemistry and physics of the atmosphere. The vegetation of the boreal forest comprises mainly coniferous trees, such as pine and spruce, that are known to emit significant quantities of reactive biogenic volatile organic compounds (e.g. monoterpenes) to the atmosphere as a function of temperature and to a lesser extent light (Williams et al., 2011, and references therein).

During HUMPPA-COPEC (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) a comprehensive dataset including measurements of the main oxidants OH, O₃, and NO₃; important trace gases such as CO, NO_x, H₂O₂, HCHO, HONO; anthropogenic and biogenic VOCs, and their oxidation products, inorganic chemical constituents, aerosol properties, aerosol size distributions, as well as photolysis frequencies and other meteorological parameters was collected at the boreal forest field station SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations). An overview can be found in Williams et al. (2011).

The general objective of the HUMPPA–COPEC–2010 campaign was to comprehensively characterize the atmospheric physics and chemistry over a boreal forest site in summer. This includes the characterization and speciation of volatile organic compounds, investigation of the formation and growth mechanisms of secondary organic aerosol, and the observation and analysis of radical chemistry as well as the extent of OH recycling processes.

In order to measure OH and HO_2 radicals the HORUS instrument was deployed during the intensive HUMPPA-COPEC field experiment in summer 2010.

4.1. Measurement site and instrumentation

The field site is located in a boreal forest in Hyytiälä, Southern Finland (61° 51'N, 24° 17'E, 181 m a.s.l.) (Vesala et al., 1998). The largest city near the station is Tampere (about 200 000 inhabitants), located about 60 km S-SW of the measurement site (Figure 4.1), (Hari and Kulmala, 2005). The SMEAR II station is equipped with several masts and towers surrounded by a more than 40-year-old pine dominated forest (*Pinus Sylvestris L.*). The canopy height during the measurement period was about 20 meters (For more detailed

4. HUMPPA-COPEC-2010

information about the continuous measurements and the infrastructure see Vesala et al., 1998; Kulmala et al., 2001; Hari and Kulmala, 2005).

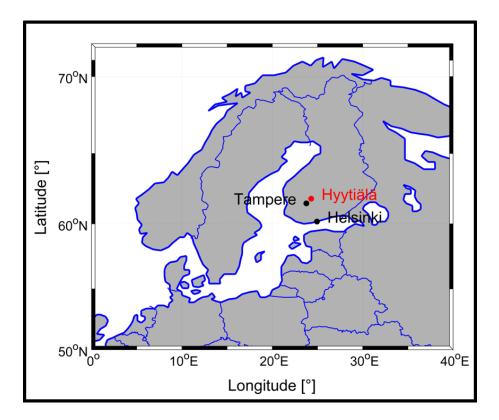


Abbildung 4.1.: SMEAR II field station, Hyytiälä, Southern Finland (61° 51'N, 24° 17'E, 181 m a.s.l.)

During the intensive measurement period of the HUMPPA–COPEC–2010 campaign an additional scaffolding tower was set up at the field site within a clearing (the HUMPPA tower, ~ 24 m high), reaching about 2-3 m above the canopy top. The sensors and inlet lines of instruments measuring reactive species like OH, HO₂, O₃, NO_x, NO₃, HONO, H₂O₂, organic peroxides, HCHO, monoterpenes, as well as the associated photolysis frequencies $(J_{NO_2}, J_{O(^1D)})$, and the total OH reactivity were collocated on the top platform of the HUMPPA tower to investigate the photochemistry at the ecosystem-atmosphere interface (see Figure 4.2).

Since the campaign instrumentation and meteorological conditions are described elsewhere (Williams et al., 2011), only a brief description of the instruments used in this study is given here; time resolution and lower limits of detection are summarized in Table 4.1.

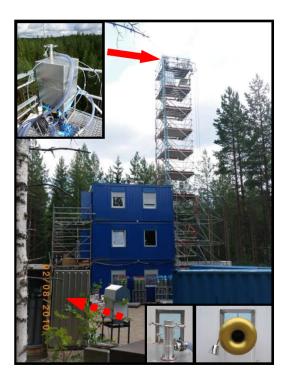


Abbildung 4.2.: Setup of the HORUS instrument on the HUMPPA tower. Simultaneous side-by-side measurements of hydroxyl radicals were conducted at the start of the campaign with two instruments using chemical ionization mass spectrometry (CIMS) and laser induced fluorescence within the forest. The two instrument inlets (shown on the pictures in the lower right corner) were co-located at the side of the container, about 1m a.g.l. .

Ozone was measured using a UV instrument, sharing an inlet line with the chemiluminescence detection system (CLD) for measuring NO and NO₂. NO₂ was measured indirectly by conversion to NO using a blue light converter. The instrument setup was similar to the wellestablished one described by Hosaynali Beygi et al. (2011) for a different field campaign. NO₃ and N₂O₅ were measured by cavity-ring-down spectroscopy (Schuster et al., 2009; Crowley et al., 2010). Two long path absorption photometer systems (LOPAP) were set up within the forest and on the HUMPPA tower, measuring HONO (Kleffmann et al., 2002). Hydrogen peroxide and the sum of organic peroxides were observed with a wet chemical system based on derivatisation and fluorescence enzyme (DEF) described by Klippel et al. (2011). Measurements of carbon monoxide were conducted using a commercial vacuum-UV resonance fluorescence CO instrument (AeroLaser GmbH, Garmisch-Partenkirchen, Germany). Detection of HCHO was based on the Hantzsch reaction and subsequent quantification of the reaction product via fluorescence detection. BVOCs were measured by several mass spectrometers. Gas chromatograph mass spectrometry (GC-MS) was used to investigate alkanes, alkenes, and particularly isoprene and monoterpenes (Yassaa et al., 2012). Proton transfer reaction mass spectrometry (PTR-MS) was applied for the observation of methanol, acetone, acetonitrile, isoprene, total monoterpenes, benzene and toluene. In the case of isoprene measurements, GC-MS data is used for further analysis, due to higher uncertainty in PTR-MS measurements, probably caused by a cold-trap connected to the PTR-MS instrument. Furthermore, the PTR-MS isoprene data might be affected by an interference due to 2-methyl-3-buten-2-ol (MBO) which is detected at the same mass to charge ratio as isoprene using conventional H_3O^+ ionization (Goldan et al., 1997; Williams et al., 2001; Karl et al., 2012).

Photolysis frequencies $(J_{NO_2}, J_{O(^1D)})$ were measured within the clearing at the forest ground, as well as on top of the HUMPPA tower with a set of filter radiometers at each position (Junkermann et al., 1989; Bohn et al., 2008; B.Bohn, personal communication, 2012). Water vapour, temperature, and pressure were recorded at several different levels on a 75 m meteorological mast located about 100 m away. The total reactivity towards OH was determined by a comparative reactivity method (Sinha et al., 2008; Nölscher et al., 2012). This method is based on the competitive scavenging of OH by a reference gas (pyrrole) and atmospheric trace gases. A chemical ionization mass spectrometry (CIMS) instrument was deployed to measure OH on ground (Petäjä et al., 2009).

4.2. HO_x observations

During the HUMPPA–COPEC–2010 field experiment gradients of the hydroxyl radical were measured using the CIMS instrument from University of Helsinki on ground (Petäjä et al., 2009) and the HORUS-LIF instrument above the canopy. To assure the comparability of both instruments and techniques they had to be compared side-by-side under ambient conditions. The HORUS-LIF instrument already participated in the international HO_xComp 2005 project, a ground-based intercomparison of six OH instruments (4 LIF, 1 CIMS, 1 DOAS) performing measurements in the atmosphere simulation chamber SAPHIR as well as in ambient air. The HORUS-LIF showed good agreement with CIMS measurements ($R^2 = 0.96$) during daytime. However, we were expecting from that study to see a nighttime signal in ambient air whereas the CIMS method usually does not detect nighttime OH (Schlosser et al., 2009).

During HUMPPA–COPEC–2010 the two OH instruments were intercompared at the beginning of the field experiment $(27^{\text{th}}-30^{\text{th}} \text{ of July})$ before starting the gradient measurement of OH concentrations. The inlet system of the LIF was placed next to the CIMS inlet on

Species/Quantity	Time re-	Accuracy	Precision	Lower limit of detecti-	${ m Technique}^{\dagger}$
	solution	(1σ)	(1σ)	on	
НО	~4 min	$30~\%~(2\sigma)$	$\sim 5 \times 10^5$ molec. cm ⁻³	-9×10^{5} molec. cm ⁻³	IPI-LIF-FAGE
HO_2	$\sim 15 \text{ s}$	$30\%~(2\sigma)$	$< 0.8 { m ppt_V}$	$0.4 \; \mathrm{ppt_V}$	LIF-FAGE
НО	$30\mathrm{s}$	32~%		${\sim}5{\times}10^4\mathrm{molec.cm^{-3}}$	CIMS
O_3	$3\mathrm{s}$	1%		$\sim 1 \ \mathrm{ppb_V}$	UV
NO, NO_2	$1_{\rm S}$	${}^{\sim}5\%$	$\sim\!14\mathrm{ppt}_\mathrm{V}$	$5 \mathrm{ppt}_\mathrm{V}$	CLD (+Bluelight
					converter)
NO_3	$5\mathrm{s}$			$2-4 \mathrm{ppt}_\mathrm{V}$	CRD
N_2O_5	$5\mathrm{s}$			$5\text{-}10\mathrm{ppt_V}$	CRD
ONOH	$30\mathrm{s}$	10~%	$_{-1-2}\%$	$< 5 \mathrm{ppt_V}$	LOPAP
H_2O_2 and $ROOH$	$5\mathrm{min}$	$25 extrm{-}30\%$	$8{ m ppt}_{ m V}(3\sigma)$	$15 \mathrm{ppt}_\mathrm{V}$	Dual enzyme
CO	$1_{\rm S}$	< 10 ~%	< 10 ~%	$\sim 1 \mathrm{ppb_V}$	UV
НСНО	$5 \min$	19~%	$_{\sim}700\mathrm{ppt}_\mathrm{V}(3\sigma)$	$9{ m ppt_V}$	Hantsch
Alkanes, alkenes, isopre-	$60\mathrm{min}$			$1 \mathrm{ppt_V}$	GC-MS
ne, monoterpenes					
Methanol, acetone, ace-	$6\mathrm{min}$			${\sim}50{ m ppt_V}$	PTR-MS
tonitrile, total terpenes,					
benzol, toluene isoprene *					
Total OH reactivity	$1 \mathrm{min}$	16~%	$3-4 { m s}^{-1}$	$3{ m s}^{-1}$	CRM
$J_{O(^1D)}, J_{NO_2}$	$1_{ m S}$	$_{\sim}15\%$	1%		Filterradiometer
* Isoprene measurements might be affected by 2-methyl-3-buten-2-ol (MBO) detected at the same mass to charge ratio. [†] IPI-LIF-FAGE = InletPreIniector - Laser Induced Fluorescence - FAst Gas Expansion: CIMS = Chemical Ionization Mass Spec-	ight be affect. Iniector - Las	ed by 2-methy er Induced Fh		stected at the same mass to spansion: CIMS = Chemics) charge ratio. M Ionization Mass Spec-
trometry; $UV = UltraViol$	et absorption	/fluorescence;	CLD=ChemiLuminense	trometry; UV = UltraViolet absorption/fluorescence; CLD=ChemiLuminensence Detector; CRD= Cavity Ring Down; LOPAP =	r Ring Down; LOPAP =
Long Path Absorption Phe	otometer; GC	-MS = Gas Cl	nromatography - Mass S _j	Long Path Absorption Photometer; GC-MS = Gas Chromatography - Mass Spectrometry; PTR-MS = Proton Transfer-Reaction	roton Transfer-Reaction
Mass Spectrometer; CRM = Comparative Reactivity Method.	= Comparat	ive Reactivity	Method.		

4.2. HO_x observations

ground. The meteorological conditions at the field site within the four days of instrument intercomparison were dominated by above average temperatures, exceeding 25° C during noon, and mainly south-easterly winds, without rainy periods. Timeseries of meteorological parameters and trace gas concentrations can be found in Appendix A.

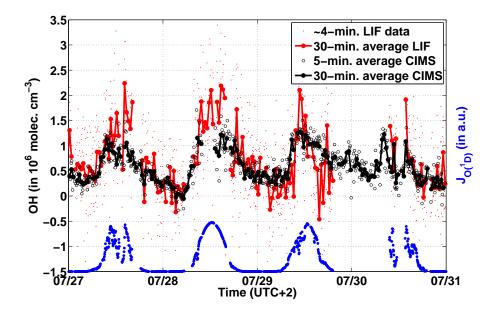


Abbildung 4.3.: Comparison of OH measurements by IPI-LIF-FAGE technique and by CIMS on ground (University of Helsinki, Petäjä et al., 2009). Nighttime OH was observed by both techniques.

The result of these four days of instrument intercomparison is shown in Figure 4.3. OH radical concentrations observed by both techniques are generally in agreement. The LIF data shows stronger fluctuations compared to the measurements by CIMS on the same averaging interval timescale of 30 minutes. Daytime maximum OH concentrations reached about $(1.5 - 2) \times 10^6$ molec. cm⁻³. During nighttime, both instruments observed OH concentrations below 5×10^5 molec. cm⁻³, but still well above the lower limit of detection of the CIMS, which was 5×10^4 molec. cm⁻³ at a time resolution of 30 s. For the LIF the detection limit was 4.8×10^5 molec. cm⁻³ at a time resolution of 60 minutes. The larger limit of detection as well as the increased fluctuations in the LIF observation compared to CIMS is mainly caused by application of the chemical modulation method. To determine atmospheric OH the interference signal is subtracted from the total observed signal. The detection limit is therefore not only given by instrument properties, like laser power, optical properties, and detector efficiency. It is also prone to the atmospheric variability both of

OH and of the species causing the interference inside the detection unit. Nevertheless, the good agreement during the intercomparison (Figure 4.4) provides confidence in the chemical modulation method and that the LIF measurements are not affected by additional unknown OH interferences resulting from the laser fluorescence technique (Novelli et al., 2012).

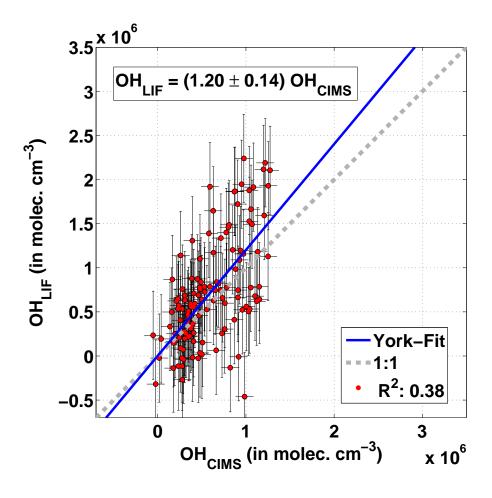


Abbildung 4.4.: Comparison of OH measurements by IPI-LIF-FAGE technique and by CIMS (University of Helsinki, Petäjä et al., 2009) based on 30-minute average data. Errorbars indicate the precision of the associated measurements. Linear regression following the method by York et al. (2004) yields a slope of 1.20 ± 0.14 and an insignificant offset (Offset: $(2 \pm 93) \times 10^3$ molec. cm⁻³).

Finally, the LIF instrument was moved to the top of the HUMPPA tower to investigate the radical chemistry at the interface between atmosphere and ecosystem while the CIMS stayed on the ground. The resulting hydroxyl radical measurements are presented in Figure 4.5.

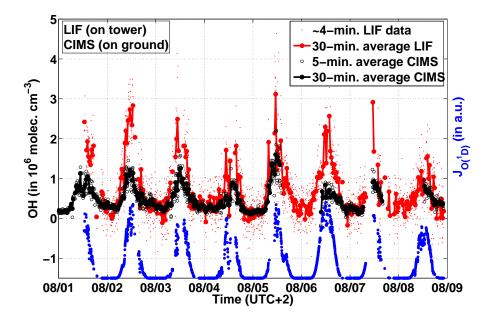


Abbildung 4.5.: Simultaneous OH measurements on the ground and above the canopy. Concentration maxima observed on the tower are up to a factor of 3 times higher than on the ground. Both instruments measured similar values during night.

Simultaneous OH measurements on ground and above canopy revealed a factor of 2-3 difference in observed concentration maxima, reaching values up to about 3×10^6 molec. cm⁻³ on the tower. During nighttime, the hydroxyl radical observations above canopy and on ground showed similar values. Linear correlation of OH and photolysis frequency $J_{O(^1D)}$ was previously found during ground-based campaigns (Rohrer and Berresheim, 2006). However, the slope varies with location, depending on the abundance of VOCs and NO_x (see Section 2.4). The comparison of the correlation on ground and above canopy shows that higher OH values on the tower are driven by higher radiation but does not suggest differences in the chemical regime (Figure 4.6).

The nighttime OH, which was occassionally well above the detection limit of both instruments, can not be explained by the supporting observations, with known sources accounting for about 20% of the total OH production necessary to explain the measured concentrations. NO₃ was always below the lower limit of detection of about 1 ppt_V (at 5 min. time

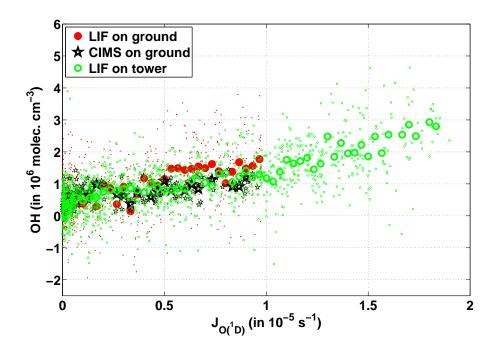


Abbildung 4.6.: Linear correlation of OH and $J_{O(^1D)}$ is found during HUMPPA-COPEC-2010. The comparison of the correlation on ground and above canopy shows that higher OH values on the tower are driven by enhanced radiation. Similar slopes, mainly depending on the abundance of VOCs and NO_x, do not suggest differences in the chemical regime. Small symbols show 5-minute dataset, large symbols are means of data binned in steps of $3 \times 10^{-7} \, \text{s}^{-1}$.

resolution) for the CRD instrument (Rinne et al., 2012). However, the production rate for NO₃ from the reaction of NO₂ and O₃ is of the order of 1×10^6 molec. cm⁻³ s⁻¹. Assuming this would directly cause an equally high OH production in the oxidation process of VOCs, which is an unlikely high upper estimate, this would still only explain an additional 10 to 15% of the missing production during nighttime. The ozonolysis of unmeasured VOCs and their oxidation products, as well as enhanced HO_x recycling are potential candidates to explain the missing OH production. A more detailed analysis of the most relevant OH production terms is given in Section 4.4.

4.3. Primary HO_{x} production

Subsequent to the ground-level comparison with the OH-CIMS $(1^{st} - 8^{th})$ of August), the HORUS instrument was moved to the top of the HUMPPA tower to investigate the photochemistry at the ecosystem-atmosphere interface. Making use of the comprehensive measurements of atmospherically relevant species, described in section 4.1, the known primary production rates of HO_x can be calculated considering the Reactions R4.1 - R4.5.

$$O(^{1}D) + H_{2}O \rightarrow 2OH, \tag{R4.1}$$

$$HONO + h\nu \to OH + NO, \tag{R4.2}$$

$$BVOCs + O_3 \rightarrow HO_x + products,$$
 (R4.3)

$$\text{HCHO} + h\nu \xrightarrow{+\text{O}_2} \text{HO}_2 + \text{products}, \qquad (\text{R4.4})$$

$$H_2O_2 + h\nu \to 2OH. \tag{R4.5}$$

The contributions to the primary HO_x production during HUMPPA–COPEC–2010 are presented in Figure 4.7.

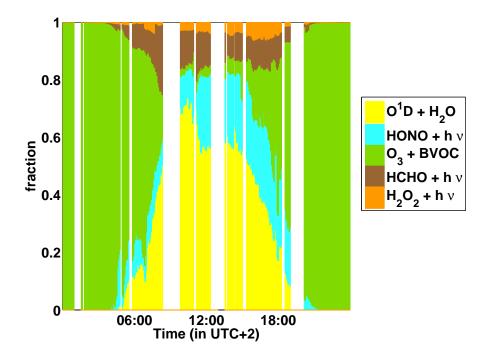


Abbildung 4.7.: Contributions to the primary HO_x production.

During daytime the photolytic production from $O(^{1}D) + H_{2}O$ emerges as the most important HO_x source with a contribution of more than 50% around noon. The photolysis of hydrogen peroxide contributes less than 10% at maximum in the late afternoon hours. Slightly more relevant for the primary HO_x production is the direct formation of HO₂ from formaldehyde photolysis. The contribution to the HO_x production by photolysis of HONO is remarkable. The steady-state concentration of HONO due to reaction of NO with OH and photolysis backreaction (Reaction R4.2) was calculated and subtracted from the measured HONO concentration, to separate the primary OH production by HONO. This starts earlier in the morning and lasts longer in the evening hours compared to the production via $O(^{1}D) + H_{2}O$. Furthermore, it is comparable in magnitude in the early morning and late afternoon hours. During nightime, when the photolytic sources vanish, the ozonolysis of BVOCs remains. During daytime the contribution due to $O_{3} + BVOC$ is negligible.

The primary HO_x production seems to be dominated by the primary OH production. Nonetheless, other direct HO₂ sources, such as RO₂ radicals produced from acetone photolysis reacting with NO or the photolysis of glyoxal, forming hydroperoxyl radicals, were not considered. Acetone photolysis provides only a RO₂ production rate on the order of 1×10^4 molec. cm⁻³ s⁻¹. This rate, considered as an upper limit of the additional HO₂ production does not contribute significantly to the total HO_x production. Glyoxal was not measured during HUMPPA–COPEC–2010. However, glyoxal is detected at the same mass like acetone in the PTR-MS instrument. Therefore, the acetone mixing ratio (Median: ~ 3 ppb_V) can be assumed as an upper limit estimate for the glyoxal mixing ratio. A HO₂ production rate on the order of 1×10^6 molec. cm⁻³ s⁻¹ by photolysis of glyoxal is feasible, which is equivalent to a contribution of about 10 to 30% to the total HO_x production. Similarly peroxyacyl nitrates (PAN) that can be transported, i.e. it is not necessarily locally produced, decompose forming peroxyacyl radicals. These peroxy radical species can react with HO₂ forming OH (see Section 2.3). Thus, PAN does not directly contribute to the HO_x production, but it can represent a radical source, driving additional OH recycling processes.

4.4. OH budget – calculated based on observations

Similarly to the primary HO_x production, the budget of hydroxyl radicals is derived using the comprehensive measurements of atmospheric species. Besides the photolytic sources (Reaction R4.6 - R4.7), ozonolysis of different biogenic VOCs (Reaction R4.8) contributes to the primary production of OH. Secondary sources, e.g. the recycling of HO₂ by NO and O₃ (Reaction R4.11 - R4.12) and peroxide photolysis (Reaction R4.9 - R4.10), additionally play an important role in OH radical production. Based on available observations we define:

Primary production

$$O(^{1}D) + H_{2}O \rightarrow 2OH, \qquad (R4.6)$$

$$HONO + h\nu \to OH + NO, \tag{R4.7}$$

$$BVOCs + O_3 \rightarrow OH + products.$$
 (R4.8)

Secondary production/Recycling

$$H_2O_2 + h\nu \to 2 \text{ OH},\tag{R4.9}$$

$$\text{ROOH} + h\nu \to \text{OH} + \text{RO},$$
 (R4.10)

$$\mathrm{HO}_2 + \mathrm{NO} \to \mathrm{OH} + \mathrm{NO}_2,$$
 (R4.11)

$$\mathrm{HO}_2 + \mathrm{O}_3 \to \mathrm{OH} + 2\,\mathrm{O}_2. \tag{R4.12}$$

Under steady-state conditions, which can be assumed for short-lived compounds like OH, the sum of these production rates should equal the total loss of hydroxyl radicals, which can be derived from the product of the measured OH concentration and the measurements of the total OH reactivity (k'_{OH}) .

$$P_{\rm OH}^{total} = \sum_{i} P_{\rm OH,i} \tag{4.1}$$

$$L_{\rm OH}^{total} = \sum_{i} L_{\rm OH,i} = k'_{\rm OH} \ [\rm OH] = \tau^{-1} \ [\rm OH]$$
(4.2)

$$P_{\rm OH}^{total} \stackrel{!}{=} L_{\rm OH}^{total} \tag{4.3}$$

The calculated hydroxyl radical production reaches a maximum of about 1×10^7 molec. cm⁻³ s⁻¹ on ground and 1.4×10^7 molec. cm⁻³ s⁻¹ above canopy around local solar noon as shown in Figure 4.8. Since NO and NO₂ were not measured at ground level, they were derived from the above canopy measurements assuming constant NO_x with height, using the filter radiometer measurements of the photolysis frequency J_{NO_2} on ground and above the canopy to calculate partitioning between NO₂ and NO. The enhanced radical production above canopy is caused by higher $J_{O(^1D)}$ observed on the tower and the enhanced recycling (Figure 4.8). The dominant primary source of OH (21%) is the reaction of O(¹D) with water. HONO photolysis, with a contribution during noon time of about 7%,

is also significant. However, the conversion of HO_2 to OH via the reactions with NO and O_3 dominates the total production of hydroxyl radicals (60-80%). The ozonolysis of measured biogenic VOCs plays a minor role as a source of OH during daytime but becomes more important during nighttime.

The budget of steady-state OH was calculated as described above, using the available measurements of the chemical species contributing to the production rates and the total OH reactivity observed above canopy as constraints. Mean OH reactivity measured during this period was 11.5 s^{-1} varying typically between the lower limit of detection $(3-4 \text{ s}^{-1})$ and about 30 s^{-1} , with some peaks reaching above 70 s^{-1} (Nölscher et al., 2012). The known

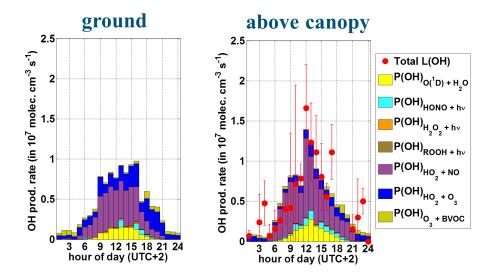


Abbildung 4.8.: Average diurnal OH production below (left panel) and budget above (right panel) the canopy. The whiskers indicate the variability of the total loss rate, calculated from total OH reactivity and hydroxyl radical measurement using LIF data.

OH sources are almost sufficient to close the budget above the canopy. Isoprene contributes less than 10% at maximum to the total OH reactivity measured during HUMPPA–COPEC– 2010 due to its low mixing ratio (typically below 200 ppt_V). Measured terpenes, being similar or slightly less reactive than isoprene, e.g. α –pinene (up to 5%), β –pinene (up to 4%), β –myrcene (up to 6%), and Δ^3 –carene (up to 9%) were more abundant, thus providing in sum a higher reactivity towards OH. The reactions of OH with CO, O_3 , HCHO, H_2O_2 , and SO₂ are important sources of HO₂ radicals:

$$OH + CO \xrightarrow{+O_2} CO_2 + HO_2 \tag{R4.13}$$

$$OH + O_3 \longrightarrow O_2 + HO_2$$
 (R4.14)

$$OH + HCHO \xrightarrow{+O_2} H_2O + CO + HO_2$$
(R4.15)

$$OH + H_2O_2 \longrightarrow H_2O + HO_2$$
 (R4.16)

$$OH + SO_2 \xrightarrow{+O_2, H_2O} H_2SO_4 + HO_2$$
(R4.17)

In addition, HCHO photolysis is a direct radical source, also contributing to HO_2 production during daytime. The cycling reactions of RO_2 species with NO can become the largest contributor to hydroperoxyl radical production, depending on the abundance of organic peroxy radicals and NO.

$$\text{HCHO} + h\nu \xrightarrow{+2\text{O}_2} \text{CO} + 2\text{HO}_2 \tag{R4.18}$$

$$RO_2 + NO \longrightarrow HO_2 + products$$
 (R4.19)

The loss of HO_2 is dominated by reactions with NO and O_3 , which are at the same time the predominant source of OH. Radical-radical termination reactions (Reactions R4.22-R4.24) yielding peroxides and water act as a sink for HO_x radicals.

$$\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2$$
 (R4.20)

$$\mathrm{HO}_2 + \mathrm{O}_3 \to \mathrm{OH} + 2\,\mathrm{O}_2 \tag{R4.21}$$

$$\mathrm{HO}_2 + \mathrm{OH} \to \mathrm{H}_2\mathrm{O} + \mathrm{O}_2 \tag{R4.22}$$

$$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2 \tag{R4.23}$$

$$HO_2 + RO_2 \rightarrow ROOH + O_2$$
 (R4.24)

Unfortunately, RO_2 was not measured during HUMPPA–COPEC–2010 prohibiting the calculation of a HO_2 budget from observations in a similar manner as the OH budget. Nevertheless, assuming steady-state conditions for HO_2 and taking the hydroperoxyl radical measurements into account, the RO_2 concentration can be estimated.

$$\frac{d [HO_{2}]}{dt} = 0$$

$$= P_{HO_{2}}^{total} - L_{HO_{2}}^{total}$$

$$= P_{HO_{2}}^{known} + bk_{R4.19} [NO] [RO_{2}] - L_{HO_{2}}^{known} - k_{R4.24} [HO_{2}] [RO_{2}]$$

$$= P_{HO_{2}}^{known} - L_{HO_{2}}^{known} + (bk_{R4.19} [NO] - k_{R4.24} [HO_{2}]) [RO_{2}]$$
(4.4)

56

where b is a branching ratio and k_i denotes the reaction rate constant associated with Reaction i. From this it follows

$$[\text{RO}_2] = \frac{L_{\text{HO}_2}^{known} - P_{\text{HO}_2}^{known}}{bk_{R4.19} [\text{NO}] - k_{\text{R4}.24} [\text{HO}_2]}.$$
(4.5)

Typically there was about twice as much RO_2 as HO_2 (RO_2/HO_2 : median 1.8; min. 0.5; max. 4.5). This result was confirmed by calculation of the modified Leighton ratio (RO_2/HO_2 : median 1.8; min. 0.1; max. 6.3) (Leighton, 1961).

$$\Phi := \frac{J_{NO_2} [NO_2]}{[NO](k_{NO + O_3} [O_3] + k_{R4.19}([RO_2] + [HO_2]))},$$
(4.6)

$$\left[\mathrm{RO}_{2}\right]_{\Phi \doteq 1} = \frac{\mathrm{J}_{\mathrm{NO}_{2}}\left[\mathrm{NO}_{2}\right]}{k_{R4.19}\left[\mathrm{NO}\right]} - \frac{k_{\mathrm{NO}} + \mathrm{O}_{3}}{k_{R4.19}}\left[\mathrm{O}_{3}\right] - \left[\mathrm{HO}_{2}\right]. \tag{4.7}$$

Thus, organic peroxy radicals seem to play a major role in the radical photochemistry in the observed boreal forest environment, providing a strong link between OH and HO_2 .

The importance of radical cycling via HO₂ shown in the budget demands careful examination of the reliability of HO_2 measurements. The measurement of HO_2 by conversion to OH using NO can be severely affected by RO_2 reacting with NO also producing hydroxyl radicals (Fuchs et al., 2011). However, this interference depends on the instrumental setup (Whalley et al., 2013). It is to be quantified specifically for each instrument and depends on the composition of RO₂ in ambient air. The HO₂ observed during HUMPPA-COPEC-2010 therefore gives an upper limit for the atmospheric HO_2 including an unknown contribution from RO_2 . To put limits on the atmospheric HO_2 , the budget of H_2O_2 was analyzed. The H_2O_2 intercomparison (Figure 3.18) does not suggest that the HO_2 measurements by HORUS during HUMPPA–COPEC–2010 were affected by a major RO_2 interference (see Section 3.2.5). Nevertheless, assuming an interference by RO_2 species on the HO_2 measurements during HUMPPA-COPEC-2010 of 30% would increase the gap between total OH production and total loss of OH. Recycling via HO_2 would still be the predominant source of OH. Not yet considered in the budget is the reaction of specific alkylperoxy radicals with HO_2 forming back OH (see Section 2.3). Assuming, as an upper limit, all RO_2 reacts with HO₂ like the peroxy acetyl radical does, this causes an additional OH production rate of up to 1×10^7 molec. cm⁻³ s⁻¹. The speciation of RO₂ for HUMPPA-COPEC-2010 is unknown, thus the contribution of RO₂ species forming OH in the reaction with HO₂ cannot be estimated. Nonetheless, as shown above such recycling mechanisms have the potential to close the hydroxyl radical budget.

4.5. OH / HO_2 ratio

The chemistry of OH and HO₂ in the atmosphere is closely linked by various hydroxyl recycling mechanisms. The ratio OH / HO₂ can be used to describe the state of equilibrium between both radicals. The equilibrium shifts depending on the concentrations of NO, O₃, CO,VOCs, and radiation. Typically during daytime a minimum of about 100 to 200 times more HO₂ was abundant compared to OH. During the dark $(J_{O(1D)} < 10^{-6} s^{-1})$ the HO₂ concentrations were up to three orders of magnitude higher than the hydroxyl radical concentrations observed. The observed radical ratio (Figure 4.9) shows a good correlation $(R^2 = 0.80)$ with the NO / CO ratio for average and high photolysis frequencies $(J_{O(1D)} > 10^{-6} s^{-1})$. Increasing NO concentrations and decreasing CO shift the equilibrium towards the hydroxyl radical, as it is expected for an environment dominated by classical HO_x recycling pathways. The variability of CO is typically small compared to the variability of NO which therefore dominates the variability of the NO / CO ratio. At lower photolysis frequencies, when classical recycling via HO₂ + NO is no longer the predominant hydroxyl radical source (see Figure 4.8) the OH / HO₂ ratio shows no clear dependency on the ratio of NO and CO.

4.6. OH reycling probability and cycling-lifetime

The hydroxyl radical concentration significantly defines the oxidation capacity of the atmosphere. Beside primary production of the oxidant, recycling mechanisms are of major importance in hydroxyl radical production. The stability of tropospheric HO_x chemistry strongly depends on the occurrence of such processes. Self-amplifying radical production (auto-catalytic conditions) would cause the chemical system to be unstable. Similarly, total absence of recycling processes might lead to an accumulation of reduced gases in the atmosphere (catastrophic conditions) (Lelieveld et al., 2002). Thus, the probability for an OH radical to be recycled can be interpreted as a measure for the stability of tropospheric hydroxyl radical chemistry. Furthermore, a lifetime for the hydroxyl radical in units of cycles completed - the "cycling-lifetime" - can be derived from this quantity.

During HUMPPA–COPEC–2010 primary production (P) of hydroxyl radicals by photolysis of ozone and HONO together with ozonolysis of biogenic VOCs only contributes up to one third of the total OH production (Figure 4.8). Regeneration of OH from recycling reactions (Reaction R4.11 - R4.12) and photodissociation of peroxides (Reaction R4.9 -R4.10), which are products in the OH oxidation chain, can play an important role in the total OH formation. The ratio of these secondary OH sources (S) to the total hydroxyl radical production was defined by Lelieveld et al. (2002) as the OH reycling probability r:

$$r = \frac{S}{P+S} \tag{4.8}$$

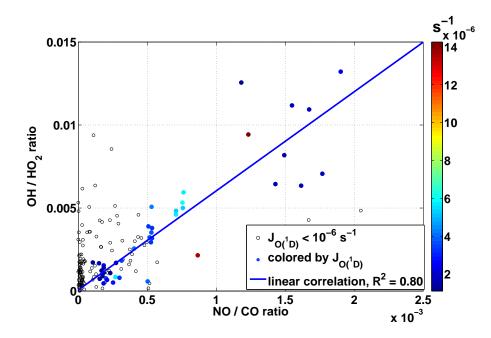


Abbildung 4.9.: Observed OH / HO₂ ratio vs. NO / CO ratio. For $J_{O(^{1}D)} > 10^{-6} s^{-1}$ a linear correlation was found ($R^{2} = 0.80$). At lower photolysis frequencies the radical ratio does not show a clear dependency on the ratio of NO and CO.

The recycling probability as a function of the NO concentration can be approximated considering only the predominant contributions to P and S:

$$r([\text{NO}]) = \frac{S([\text{NO}])}{P + S([\text{NO}])} \approx \frac{k_{R4.11} [\text{NO}] [\text{HO}_2] + k_{R4.12} [\text{O}_3] [\text{HO}_2]}{2b_{\text{O}(^1\text{D}) \to \text{OH}} \text{J}_{\text{O}(^1\text{D})} [\text{O}_3] + k_{R4.11} [\text{NO}] [\text{HO}_2] + k_{R4.12} [\text{O}_3] [\text{HO}_2]}.$$
 (4.9)

The expected NO dependency of the recycling probability r (Equation 4.9) is shown in Figure 4.10. In case of high NO levels the secondary production terms exceed the magnitude of the primary production due to ozone photolysis, yielding high recycling probability values close to unity. The course of the NO dependency of r in Equation 4.9 is influenced by three parameters; the HO₂ concentration, the O₃ concentration and the photolysis frequency $J_{O(^{1}D)}$. The latter one only acts on the production term P. Increasing photolysis causes an increased primary production and thus, a diminished r-value. O₃ shows the same influence

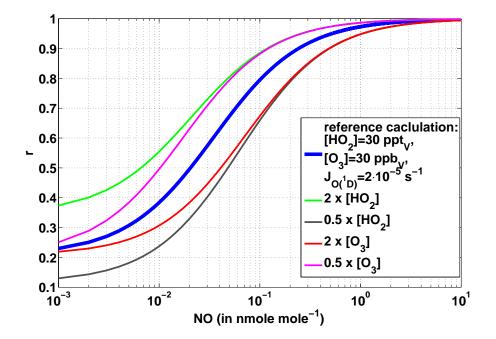


Abbildung 4.10.: Expected NO dependency of the recycling probability r at constant levels of HO₂, O₃ and photolysis frequency $J_{O(^1D)}$ (blue line). Sensitivity to these parameters is presented in different colors (see legend). Doubling the photolysis frequency (not shown in Figure) leads to a similar dependency like reducing the HO₂ concentration by 50 %.

on the primary production. Furthermore, the secondary OH production includes the term $k_{R4.12}$ [O₃] [HO₂], which is important, when $k_{R4.12}$ [O₃] is similar or large in magnitude compared to $k_{R4.11}$ [NO]. Therefore, the overall sensitivity on O₃ is strongly depending on the NO level (see Figure 4.10). At very low NO mixing ratios $k_{R4.11}$ [NO] can be small compared to $k_{R4.12}$ [O₃]. When NO converges to zero, Equation 4.9 yields:

$$r(\text{[NO]}) \approx \frac{k_{R4.12} \text{ [O_3] [HO_2]}}{2b_{O(^1D) \to OH} J_{O(^1D)} \text{ [O_3]} + k_{R4.12} \text{ [O_3] [HO_2]}} \\\approx \frac{k_{R4.12} \text{ [HO_2]}}{2b_{O(^1D) \to OH} J_{O(^1D)} + k_{R4.12} \text{ [HO_2]}} \\\approx \frac{k_{R4.12}}{2b_{O(^1D) \to OH} \frac{J_{O(^1D)}}{\text{[HO_2]}} + k_{R4.12}}$$
(4.10)

1 (*** 0 1

60

The recycling probability is no longer dependent on the concentration of O_3 and the limit of r is defined by the ratio of $J_{O(^1D)}$ and the concentration of HO₂ (see Equation 4.10).

OH recycling probabilities calculated from observations as a function of the ambient NO mixing ratio for different environments are shown in Figure 4.11.

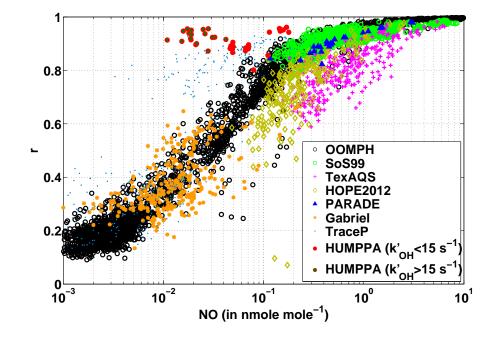


Abbildung 4.11.: OH recycling probability (r) as a function of the ambient NO mixing ratio in different environments. OOMPH – marine boundary layer, ship stack plume; SOS99 – metropolitan, biogenic VOCs; HOPE12 and PARADE – biogenic and anthropogenic VOCs; TexAQS – metropolitan, anthropogenic VOCs; Gabriel – tropical rainforest; Trace-P – east asia and western pacific; HUMPPA–COPEC–2010 – boreal forest.

Nighttime data $(J_{O(^1D)} < 1 \times 10^{-5} \text{ s}^{-1})$ is omitted for this calculation. Data from aircraft campaigns is filtered for observations below 2 km altitude. Measurements in the marine boundary layer (OOMPH³) are typically characterized by low NO mixing ratios and low concentrations of biogenic and/or anthropogenic VOCs. However, during the OOMPH ship cruise depending on the wind direction sometimes the chemistry in the stack plume of the

³Organics over the Ocean Modifying Particles in both Hemispheres.

4. HUMPPA-COPEC-2010

ship was observed, rather than uninfluenced air from the marine boundary layer. Therefore, the OOMPH dataset includes also conditions of high NO_x levels. When the emissions from the ship stack plume perturb the chemical system of the marine boundary layer, a strong sensitivity of the recycling probability to the NO_x concentration is observed. The enhanced NO leads to a stronger conversion from HO_2 to OH, finally reaching values of r close to unity for high NO_x levels. Measurements in an environment with enhanced NO levels $(NO > 100 \text{ ppt}_V)$, dominated by biogenic VOC emissions $(SOS99^4)$ the recycling probability is slightly reduced compared to the observations during OOMPH. Another field campaign at similar NO mixing ratios in an anthropogenically polluted environment ($TexAQS^5$) show even lower calculated recycling probabilities, i.e. at the same primary production (P), the secondary production of OH(S) is reduced under the influence of additional VOCs. The reduced S at one NO level is equivalent to a reduced HO₂ concentration due to weaker production and/or enhanced destruction of the hydroperoxyl radicals, caused by the biogenic as well as anthropogenic influences. Measurements in two german forests during $HOPE12^{6}$ and $PARADE^7$ are influenced by biogenic as well as anthropogenic VOC emissions. The resulting recycling probabilities lie in between the observations from SOS99 and TexAQS. At low NO mixing ratios (ppt_V-range) observed above the tropical rainforest during Gabri e^{18} the calculated recycling probabilities are similar to the values calculated for the marine boundary layer. However, the recycling probability considering the reactions of HO_2 with NO and O_3 as secondary OH production pathways is not representative for this environment. Direct OH recycling mechanisms, not via HO₂, as proposed for Gabriel (Kubistin et al., 2010; Lelieveld et al., 2008) are not taken into account. Efficient OH recycling in isoprene chemistry of the order of 40 to 80% was reported by Lelieveld et al. (2008). Observations from an aircraft campaign over the pacific (Trace- P^9) are in large part consistent with the results from OOMPH. Nonetheless, for a part of the measurements during Trace-P enhanced recycling probabilities were calculated compared to OOMPH at similar NO levels. This might be caused by two different effects. Higher values of r occure, when the primary production P is not well represented by the reaction of $O(^{1}D)$ with water vapour, since other primary sources that are not considered are dominant. An additional direct HO₂ source, i.e. not from OH + VOC, would lead to an increase of S and thus, yield elevated r values that do not necessarily represent a pure recycling probability of OH. The enhanced recycling probabilities during Trace-P were observed above the east china sea and the sea of japan, southwest of Korea and Japan, respectively, where enhanced alcyl nitrate concentrations were measured. As already mentioned in Section 4.3 PAN decomposes forming RO_2 radi-

 $^{^{4}}S$ outhern Oxidants Study.

⁵Texas Air Quality Study

 $^{^{6}}HO{\rm henpeissenberg}$ Photochemistry Experiment 2012

 $^{^{7}}PA$ rticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions

 $^{^{8}}$ Guyanas Atmosphere-Biosphere Exchange and Radicals Intensive Experiment with the Learjet

 $^{^9} TRA$ nsport and Chemical Evolution over the Pacific

cals. By reaction of these RO₂ species with NO, this radical source can act as a source of HO₂, which is not due to OH. Furthermre, the reaction of alcylperoxy radicals with HO₂ represent an additional OH source. In case of HUMPPA–COPEC–2010 the dataset, separates for moderate and high observed total OH reactivity into two regimes. When moderate conditions prevail ($k'_{OH} \leq 15$), the recycling probabilities are in line with the observations from SOS99, dominated by biogenic VOC emissions that reduce the recycling probability only slightly compared to the results from OOMPH. Under conditions of high observed total OH reactivity ($k'_{OH} > 15$) and lower NO levels enhanced recycling probabilities were calculated compared to OOMPH. This points to a missing primary OH production rate in the calculation, which is important compared to the photolysis of H₂O₂ decreases r. It is also possible that an additional direct HO₂ source, e.g. ozonolysis of terpenes producing RO₂ that are converted by reaction with NO to HO₂, leads to the enhanced recycling probabilities under these conditions.

Recycling probabilities calculated from the observations during HUMPPA–COPEC–2010 considering all known primary and secondary production pathways are in the range 0.7 < r < 0.95. These high values of r are consistent with the importance of radical recycling in the OH budget.

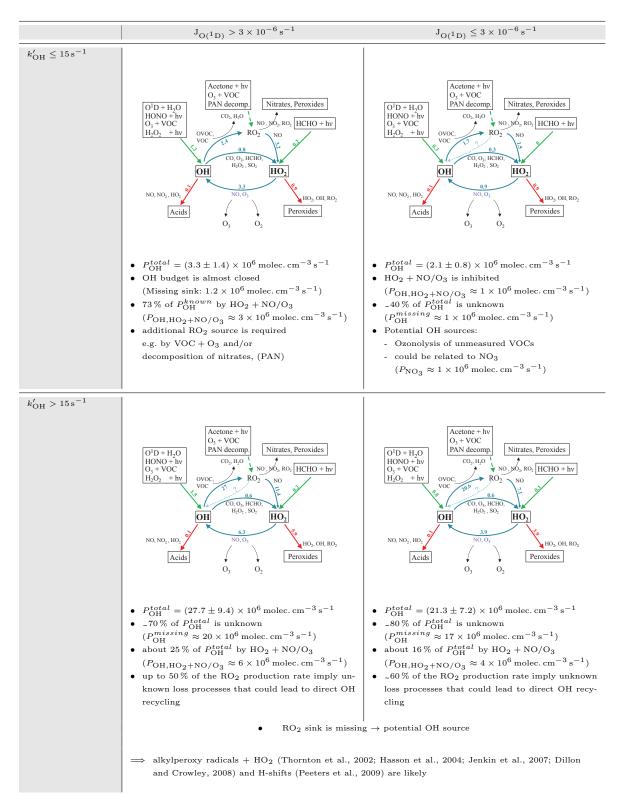
The recycling probability r can be used to calculate the cycling-lifetime, which is the number of cycles n the OH radicals completed until only 1/e of the initial radical concentration remains:

$$n = -\frac{1}{\ln(r)} \tag{4.11}$$

The observed median OH recycling probability of $r = (0.86 \pm 0.05)$ results in typical cycling-lifetimes of about n = (6.6 + 4.0 / -1.9) cycles. Due to their relevance in the observed boreal forest environment, recycling pathways are further investigated by rate calculations based on observations.

4.7. HO_x reycling pathways

Production, loss, and recycling pathways of HO_x above the canopy under various conditions are shown in Table 4.2. Average rates calculated from observations highlight once more the importance of OH recycling via HO_2 . Ozonolysis of BVOCs is an important primary radical source at low radiation levels. Photolytic OH production from O_3 as well as HONO photolysis are more relevant primary radical sources during daytime. The contribution of acetone photolysis to HO_2 formation is small at the surface, typically less than 1% of the total direct radical sources. The main sink terms are radical self-reactions, particularly $HO_2 + RO_2$. Since RO_2 was not measured during HUMPPA-COPEC-2010, it is estimated from HO_2 steady-state (see Section 4.4). The total OH production, P_{OH}^{total} , is calculated from total OH reactivity data and the hydroxyl radical measurements assuming steady-state (Equations 4.2 & 4.3). The loss rate of OH via reaction with VOCs and oxygenated VOCs (OVOCs) is derived by subtracting the known OH loss rates caused by CO, O₃, HCHO, H₂O₂, NO₂, NO, SO₂, and HO₂ from the total loss observed (k'_{OH} [OH]).


The dataset can be grouped by conditions of low and high radiation, and moderate and high observed total OH reactivity. The resulting four cases (see Table 4.2) are described in more detail in the following paragraphs. Associated average tace gas concentrations and variabilities are summarized in Section A, Table A.1.

Assuming steady-state, the total OH production is equal to the product of the measured total OH reactivity and the OH concentration (Equation 4.2, 4.3). Under daylight conditions $(J_{O(^{1}D)} > 3 \times 10^{-6} \text{ s}^{-1})$, at **moderate** observed total **OH reactivity** $(k'_{OH} \le 15 \text{ s}^{-1})$ (Table 4.2, upper left) $L_{OH}^{total} \approx 3.3 \times 10^{6}$ molec. cm⁻³ s⁻¹ is calculated from observations. Primary production of OH radicals is on average 1.2×10^6 molec. cm⁻³ s⁻¹. The reactions of HO₂ with NO (χ (NO) \approx 46ppt_V) and O₃ produce about 3.3×10⁶ molec. cm⁻³ s⁻¹ OH, which is 73% of the known summed OH production. The known OH sources are more than sufficient to close the OH budget. An OH loss rate of about 1.2×10^6 molec. cm⁻³ s⁻¹ is missing under these conditions, which is close to the combined uncertainty of 40%. OH is directly lost at a rate of 0.1×10^6 molec. cm⁻³ s⁻¹ by radical termination reactions with NO₂, NO, and HO₂. OH reacts with CO, O₃, HCHO, SO₂, and H₂O₂ yielding HO₂ radicals at a rate of 0.8×10^6 molec. cm⁻³ s⁻¹. The remaining observed total OH reactivity (equivalent to an average OH loss rate of 2.4×10^6 molec. cm⁻³ s⁻¹) constrains the maximum production of RO₂ from the reaction of OH with VOCs. However, this is only 75% of the RO₂ loss rate via reaction with NO, which is the dominant source of HO_2 . This indicates a missing RO_2 source. Besides the ozonolysis of unmeasured BVOCs, reservoir species such as PAN, which thermally decompose (showing a strong temperature dependency), could contribute to the missing RO_2 production rate of the order of 1.2×10^6 molec. cm⁻³ s⁻¹. The photolytic HO₂ production by HCHO + $h\nu$ contributes with a rate of 0.2×10^6 molec. cm⁻³ s⁻¹. Radical-radical termination reactions govern the HO₂ loss (on average about 0.9×10^6 molec. cm⁻³ s⁻¹).

Under conditions of **low radiation** $(J_{O(^1D)} \le 3 \times 10^{-6} \text{ s}^{-1})$ and **moderate** observed total **OH reactivity** $(k'_{OH} \le 15 \text{ s}^{-1})$ (Table 4.2, upper right) the known primary production of OH radicals is only 0.3×10^6 molec. cm⁻³ s⁻¹. Also, the classical recycling of HO₂ to OH by reaction with NO $(\chi(NO) \approx 3\text{ppt}_V)$ and O₃ is inhibited $(0.9 \times 10^6 \text{ molec. cm}^{-3} \text{ s}^{-1})$, mainly due to the low NO concentration. Comparison with the derived total production rate (Equation 4.3) reveals a missing fraction of 40 % $(P_{OH}^{missing} \approx 1 \times 10^6 \text{ molec. cm}^{-3} \text{ s}^{-1})$. This is in the same order of magnitude of the observed NO₃ production rate of $1 \times 10^6 \text{ molec. cm}^{-3} \text{ s}^{-1}$. Since the NO₃ concentration always remained below the lower limit of detection its reactivity had to be fast, potentially to some extent producing OH. Also ozonolysis of unmeasured BVOCs could directly produce OH and possibly close the OH budget.

Under daylight conditions $(J_{O(^{1}D)} > 3 \times 10^{-6} s^{-1})$, with high observed total OH reactivity $(k'_{OH} > 15 s^{-1})$ (Table 4.2, lower left) the primary production of OH radicals is on average 1.5×10^6 molec. cm⁻³ s⁻¹. Less than 10 % of these primary produced OH radicals are directly lost by radical termination reactions with NO₂, NO, or HO₂, forming acids and H_2O . The largest known source of OH is again HO_2 recycling by reaction with NO $(\chi(NO) \approx 28 \text{ppt}_V)$ and O_3 with an average OH production rate of 6.3×10^6 molec. cm⁻³ s⁻¹. However, only about 30% of the total OH production is known. The excess OH reactivity (equivalent to an average OH loss rate of 27×10^6 molec. cm⁻³ s⁻¹) is available for production of RO₂ radicals. RO₂ radicals react with NO forming HO₂ with a yield of about 90%, representing the main source of HO_2 . In comparison to this, the direct production of HO_2 radicals from HCHO photolysis is negligible $(0.2 \times 10^6 \text{ molec. cm}^{-3} \text{ s}^{-1})$. Through the relationship between the RO_2 loss (forming HO_2) and the potential production rate of RO_2 by unaccounted observed total OH reactivity it can be estimated that about 50% of the remaining OH reactivity, equivalent to a rate of 14×10^6 molec. cm⁻³ s⁻¹, is from other processes, e.g. direct OH recycling, not via the reaction of $HO_2 + NO/O_3$. Furthermore, an OH production rate of the order of 20×10^6 molec. cm⁻³ s⁻¹ is missing, to close the OH budget under these conditions. The reaction of specific alkylperoxy radicals with HO_2 could represent an additional RO₂ sink and OH source. Laboratory studies investigating the OH production from the reactions of ethyl peroxy, acetyl peroxy, and acetonyl peroxy radicals with HO_2 revealed OH yields up to 70% (Thornton et al., 2002; Hasson et al., 2004; Jenkin et al., 2007; Dillon and Crowley, 2008). Assuming that all RO_2 species, as an upper limit, would react with HO₂ forming OH, this would contribute an additional 10×10^6 molec. cm⁻³ s⁻¹ to the OH production. However, this would still not be sufficient to close the OH budget under these conditions of high radiation and high OH reactivity. A direct recycling mechanism, returning OH from RO_2 in the absence of NO, by a 1,5-H-shift, was proposed by Peeters et al. (2009) for the OH-initiated degradation of isoprene. A recent chamber study suggests a reduced reaction rate constant by about a factor of two with respect to the value given by Peeters et al. (2009) for this 1,5-H-shift (Fuchs et al., 2013). Nevertheless, at low NO levels $(\chi(NO) \approx 100 \text{ ppt}_V)$ these isomerization reactions for isoprene-related RO₂ radicals forming OH directly become competitive with the traditional reactions of RO₂ with HO₂, RO₂, and NO. Similarly, other RO₂ radicals, specifically all conjugated alkadienes, e.g. myrcene, many mono-cyclic monoterpenes, and also sesquiterpenes, can undergo a fast H-shift isomerization (Peeters et al., 2001; Vereecken et al., 2007, 2012). Monoterpenes and sesquiterpenes have many more pathways to oxidise than isoprene, and the channels that allow for H-migration are therefore a smaller percentage than in isoprene. Still, an OH production rate of the order of 6×10^6 molec. cm⁻³ s⁻¹ is missing. A direct OH source or additional RO₂ production, balanced by an equivalent loss of RO_2 forming OH via mechanisms like the ones mentioned above could close the OH budget.

Similarly, at **low radiation** $(J_{O(^{1}D)} \leq 3 \times 10^{-6} \text{ s}^{-1})$ and **high** observed total **OH reactivity** $(k'_{OH} > 15 \text{ s}^{-1})$ (Table 4.2, lower right) the known production of OH radicals is on average only about 20 % of the total OH production. HO₂ reacts with NO ($\chi(NO) \approx 17 \text{ppt}_V$) and O₃ producing about 3.9×10^{6} molec. cm⁻³ s⁻¹ OH, the largest known contribution to P_{OH}^{total} . For the production of RO₂ radicals the remaining observed total OH reactivity suggests a rate of 20.6×10^6 molec. cm⁻³ s⁻¹. About 7×10^6 molec. cm⁻³ s⁻¹ of the RO₂ radicals react with NO forming HO₂. An RO₂ loss rate of about 12×10^6 molec. cm⁻³ s⁻¹ remains, e.g. for direct recycling mechanisms, recycling OH as proposed above, i.e. alkylperoxy radicals reacting with HO₂ and/or H-shift isomerization or similar mechanisms are likely, potentially providing a large fraction of the missing OH production rate of 17×10^6 molec. cm⁻³ s⁻¹. Tabelle 4.2.: HO_x budget under different conditions of observed radiation (high, left; low, right panels) and total OH reactivity (moderate, upper; high, bottom panels). Radical production (green), recycling (blue), and loss (red) pathways are indicated by bold arrows. All rates are given in 10^6 molec. cm⁻³ s⁻¹.

5. Box model simulations

Numerical models are applied to describe the complex nonlinear chemistry and physical processes in the atmosphere. For short-lived trace gas species, such as radicals, transport and mixing processes that typically occure on larger time-scales can be neglected. Zero-dimensional box models are used to simulate the chemistry disregarding the coupling to physical processes. Despite the chemical reactions, emission and deposition processes are usually represented in these models. In order to analyse the observations during HUMPPA–COPEC–2010, box model simulations using the CAABA/MECCA box model were conducted.

5.1. Box model CAABA/MECCA

To investigate the influence of unmeasured intermediate reaction products, the observations were compared to simulations with version 3.0 of the chemical box model CAABA/MECCA (*Chemistry As A Boxmodel Application / Module Efficiently Calculating the Chemistry of the Atmosphere*) by Sander et al. (2011a). The model was constrained with observed, complete 5-minute datasets. Each simulation was terminated when both OH and HO₂ reached steady-state, typically after about 48 hours.

MECCA contains a comprehensive atmospheric chemistry reaction scheme. However, since we focus on organics, we switched off halogen and sulfur chemistry, as well as heterogeneous and aqueous phase reactions. A list of the chemical reactions used in this study, including rate coefficients and references, is available in the appendix (Section B). In the base configuration, version 2 of the isoprene chemistry from the "Mainz Isoprene Mechanism" (MIM2) was used, considering 68 species and 195 reactions (Taraborrelli et al., 2009 based on Pöschl et al., 2000). For sensitivity studies, the recently developed isoprene mechanism MIM3 (Taraborrelli et al., 2012), which includes additions to the isoprene chemistry; such as the photo-oxidation of unsaturated hydroperoxy-aldehydes; and a preliminary version of the monoterpene mechanism MTM (Taraborrelli et al., in preparation) were also used. The latter is based on a MIM2-like version of MIM3 (MIM3^{*}), i.e. hydroperoxy-aldehyde chemistry, H-shifts, and $RO_2 + HO_2$ reactions are considered the way of MIM2, while updated estimates of rate constants from MIM3 were retained. Furthermore, it has a representation for the oxidation of the major terpenes during HUMPPA-COPEC-2010 that being α -pinene, β -pinene, β -myrcene, Δ^2 -carene, Δ^3 -carene, and α -farnesene chemistry. The oxidation

5. Box model simulations

of the first two monoterpenes is taken from the MCM¹⁰, with updates based on recent literature. Carene is assumed to yield the same products as α -pinene. Finally the oxidation of β -myrcene and α -farnesene is simplified and partially follows an isoprene-like oxidation. Deposition was included for the species listed in Table 5.1, according to values given in literature or derived from measurements. For the numerical integration of the resulting set of ordinary differential equations (ODEs), the KPP software (Sandu and Sander, 2006) with a positive definite Rosenbrock solver and automatic time-step control was used. For the photolysis frequencies of NO₂ and $O(^{1}D)$, measured values (as described above) were used. Photolysis frequencies for other observed photolabile species are calculated based on measured $J_{O(1D)}$ and J_{NO_2} and will be presented in a separate publication by B. Bohn et al. Therefore effects of cloud coverage and aerosols are considered implicitly. In case of missing methane (CH_4) data, box model simulations were conducted using the median value of CH₄ observed, 1.79 μ mol mol⁻¹. The 1 σ variability in CH₄ measurements during the entire campaign was $0.03 \,\mu mol \, mol^{-1}$. Measured photolysis frequencies below the lower limit of detection were set to zero, which affects the derived photolysis frequencies from other species accordingly. The uncertainty of simulated HO_x caused by these assumptions is less than 10%. Datasets missing any other of the species used as model input were omitted from this study. An overview of the data availability and the resulting model input datasets are shown in Figure 5.1.

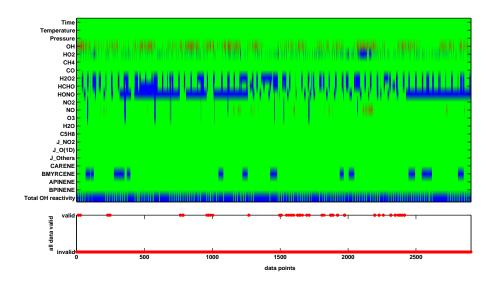


Abbildung 5.1.: Data availability for model simulations: OK (green), missing (blue), negative (red).

¹⁰Master Chemical Mechanism, MCM v3.2

Species	v_D $(\mathrm{cm}\mathrm{s}^{-1})$	Deposition rate (s^{-1})	Reference
03	0.56	-	mean value derived from measurements
			during HUMPPA–COPEC–2010
NO	0.44	-	Evans et al. (2000)
NO_2	0.44	-	Evans et al. (2000)
НСНО	0.50	-	Evans et al. (2000)
HNO_3 , org. nitrates	3.50	-	Evans et al. (2000)
PAN	0.29	-	Evans et al. (2000)
H_2O_2 , org. peroxides	-	4×10^{-5}	estimated by best fit of calculated
			to measured H_2O_2 mixing ratio

Tabelle 5.1.: Deposition rates/velocities used in the model

5.1.1. Significance and sensitivity

The significance of the discrepancies between observed and simulated HO_x concentrations depends on the uncertainty of the HO_x measurements as well as on the uncertainty of the model simulation. The latter comprises the uncertainties of all measured input variables such as trace gas concentrations and meteorological parameters as well as the uncertainties due to the chemical mechanism applied. Sensitivity analysis on measured species by varying constraint parameters within their uncertainty can be used to identify the impact on the model result. In the case of unmeasured species, e.g. oxidation products and intermediates, the uncertainties depend on the uncertainty of their production and destruction pathways as well as the uncertainty of the chemical mechanism. The uncertainties of the simulated OH and HO₂ concentrations related to the reaction rate coefficients were estimated by Monte-Carlo simulations as described by Sander et al. (2011a). Each Monte-Carlo simulation consists of 9999 model runs using a slightly different set of reaction rate coefficients for the individual runs. Different sets of rate coefficients are achieved by multiplying the original reaction rate coefficients from literature with a random uncertainty factor distributed around one and scaled on the uncertainty of the measured or estimated rate coefficient. This value can usually be found in publications of laboratory studies or summaries like the JPL or Atkinson evaluation (Sander et al., 2011b; Atkinson et al., 2006). If no value from literature is available a relative uncertainty of 25 % is assumed, which corresponds to a scaling factor of 1.25 (Sander et al., 2011a). The result of one Monte-Carlo simulation in case of OH applying the isoprene mechanism (MIM2) is shown as an example in Figure 5.2. The histogram shows a binned frequency distribution of the model OH resulting from the individual Monte-Carlo runs, simulated with diverse sets of rate coefficients. This yields a 1σ -uncertainty of the simulated OH resulting from the uncertainty of rate coefficients of 15%.

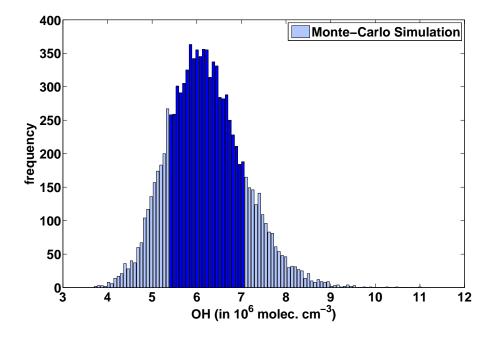


Abbildung 5.2.: Histogram of the Monte-Carlo simulation (N = 9999) for the reaction rate coefficients on a single dataset in the early afternoon above canopy. The resulting distribution shows a slight skewness with a median of 6.15×10^6 molec. cm⁻³ and a mean of $(6.21 \pm 0.86) \times 10^6$ molec. cm⁻³. The dark blue bars indicate the $\pm 1\sigma$ range.

5.2. HO_x simulations using CAABA/MECCA

The discussion of the observations in Section 4 indicates, that under conditions of low reactivity and high radiation, recycling of OH in this environment occurs mainly by HO_2 . In order to identify the influence of unmeasured oxidation products on the HO_x budget and to examine the current understanding of the underlying processes box model simulations have been conducted.

The CAABA/MECCA box model was applied in steady-state mode with concentrations of NO, CO, O₃, H₂O₂, organic peroxides, isoprene (C₅H₈), terpenes, HONO, HCHO, and H₂O as well as photolysis frequencies constrained to measured values. Simulations were only done when data of all key constraints were available (see Section 5.1).

Applying the chemistry scheme from the "Mainz Isoprene Mechanism" (MIM2), OH concentrations are overestimated by the model by about 40% on average (Figure 5.3). HO₂ is underestimated in the simulation. The model-measurement discrepancy can be divided into two groups: The ratio of simulated to observed HO₂ concentrations is about 0.7 for a minor part of the dataset, while the simulation significantly underestimates the observed total OH reactivity for the rest of the dataset. The ratio between simulated and observed HO₂ concentrations in this case is only about 0.3. A recently published chemical reaction scheme (MIM3) including new additions to the isoprene chemistry, such as the photo-oxidation of unsaturated hydroperoxy-aldehydes (Taraborrelli et al., 2012), produces even more hydroxyl radicals leading to an overestimation by a factor of up to three in the simulation as compared to the observations. The ratio between simulated and observed hydroperoxyl radicals increases to $HO_2^{mod.}/HO_2^{obs.}=0.6$ on average, still separating into two regimes with a minor part of the dataset showing a ratio of $HO_2^{mod.}/HO_2^{obs.}=1.5$, while most of the data shows a ratio of $HO_2^{mod.}/HO_2^{obs.}=0.6$.

Since isoprene was not the predominant biogenic VOC during HUMPPA–COPEC–2010, contributing less than 10% to the total OH reactivity measured, the terpene mechnism MTM was added to the chemistry mechanism. Inclusion of terpene chemistry helped to reproduce the OH reasonably in the simulation (Figure 5.4). The ratio between simulated and observed HO₂ slightly increased compared to the isoprene chemistry reference run, but still separates into two regimes. At lower observed HO₂ levels, a ratio of up to $HO_2^{mod.}/HO_2^{obs.}=0.8$ is reached for a minor fraction of the dataset. Only about 30% of the observed HO₂ concentration can be reproduced by the model on average, when the simulated total OH reactivity does not match the observed reactivity.

The underprediction of HO_2 , when OH reactivity is missing in the model while OH is reproduced accurately, indicates that the missing reactivity is an unaccounted source of HO_2 . Furthermore, the recycling reaction of NO and O_3 with the missing HO_2 has the potential under most conditions to compensate for the additional OH loss, which has not been considered yet. This preserves the good agreement of simulated and observed OH even when the model accounts for all the observed total OH reactivity.

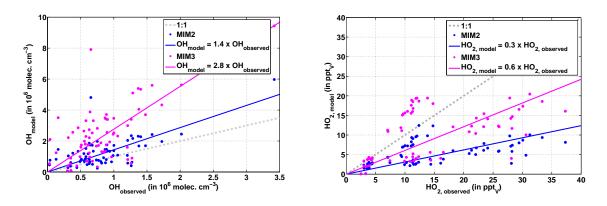


Abbildung 5.3.: Simulated vs. observed OH concentrations and HO₂ mixing ratios, applying the MIM2 chemistry scheme and the recently proposed MIM3 including new additions in the isoprene chemistry.

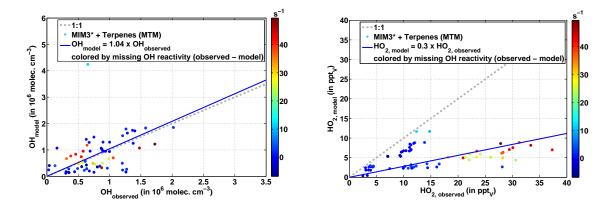


Abbildung 5.4.: Inclusion of the terpene mechanism MTM. HO₂ is still underpredicted in cases when the model reactivity does not match the measured reactivity. This indicates that the missing reactivity is an unaccounted source of HO₂. The OH is reproduced reasonably well, suggesting that the missing source of OH due to the underpredicted HO₂ is compensated by the missing OH reactivity in the simulation.

However, when high total OH reactivities (> $20 \,\mathrm{s}^{-1}$) were observed, the enhanced HO₂ recycling is not sufficient to reproduce the observed OH. Additional mechanisms, e.g. direct OH recycling as discussed for isoprene-dominated, low-NO_x environments, or an additional primary source of OH is required to explain the observed hydroxyl radical concentrations under these conditions.

5.2.1. OH loss tuning

To investigate the hypothesis that the OH reactivity missing in the model using the terpene mechanism acts as a source of HO_2 , additional reactivity towards OH was introduced by adding the surrogate molecule X which behaves chemically identically to α -pinene and its concentration was iteratively tuned for each dataset in such a way that the total OH reactivity in the model agreed with the observed OH reactivity. To match the observed total OH reactivity, up to 3 ppb_{V} of X (typically a factor of 5 to 10 times the measured α -pinene) had to be added. Tuning the simulation to the observed total OH reactivity improves the HO₂ agreement slightly $(HO_2^{mod.}/HO_2^{obs.}=0.4)$, as shown in Figure 5.5. The production of OH from the additional HO_2 , however, is not sufficient to compensate for the enhanced reactivity in the model, leading to underprediction of hydroxyl radicals in the simulation. The unaccounted OH reactivity in the simulation might still be linked to the missing source of HO₂, nevertheless, this shows that α -pinene-like chemistry for the compound X does not suffice to provide this connection. A direct HO_2/RO_2 source like decomposition of transported PAN, which is not represented in the box model simulation, could explain the underprediction of HO_2 , independent of the unaccounted OH reactivity in the simulation.

5.2.2. Significance and uncertainties

To quantify the significance of model-measurement discrepancies the uncertainties in both, observations and simulations, have to be considered. The uncertainties of HO_x measurements are listed in Table 4.1. The uncertainties of simulated HO_x related to the reaction rate coefficients were determined via Monte-Carlo simulations as described in Section 5.1.1. Monte-Carlo-Analysis using the terpene mechanism yields uncertainties of 14% and 11% for the simulated OH and HO₂, respectively. Measured and simulated HO_x concentrations including their 1 σ -uncertainties are compared in Figure 5.6. Modelled and observed OH within their uncertainties partly agree within a factor of two. Significant discrepancies by more than a factor of two are present for a minor part of the dataset (22%). For HO₂ the underestimation by more than a factor of two in the model is significant for a large part of the dataset (52%).

The uncertainties in observed trace gas species and photolysis frequencies used to constrain the model can also have a direct impact on the uncertainty of simulated HO_x . Even

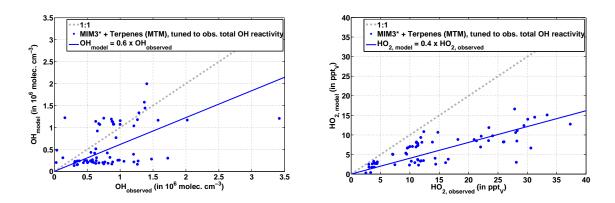


Abbildung 5.5.: Tuning the model to the observed total OH reactivity by introducing an additional α -pinene equivalent slightly improves the HO₂ agreement. The production of OH from the additional HO₂ is not sufficient to compensate for the enhanced reactivity in the model.

less obviously these parameters which are kept fixed at the observed values within the simulation, influence the abundance of unmeasured trace gases and intermediate products, therefore also showing an indirect effect on the resulting calculation of HO_x concentrations. Sensitivity studies were conducted by varying the observed trace gas concentrations separately by a factor between 0.5-10 to investigate the overall influence on the simulated HO_x (Table 5.2) with the terpene mechanism.

Substances relevant for primary production of HO_x show the highest impact in this sensitivity study. Doubling the O₃ or water vapour concentration leads to about 25 % increase in simulated OH and about 15 % enhanced HO₂. An even larger effect (OH: +37 %, HO₂: + 26 %) is found for photolysis elevated by a factor of two. Constraining the model with twice the amount of NO observed causes 24 % more hydroxyl radicals in the simulation. The simulated HO₂ decreases by 23 %. Reducing the CO concentration by a factor of two leads to a 8 % increase in simulated OH and a 8 % decrease in simulated HO₂ while doubling the observed CO yields a 13 % decrease in OH and a 13 % increase in HO₂. Doubling formaldehyde or H₂O₂ only has a minor influence on the simulated HO_x. Changing the deposition rates by a factor of two causes at most a 12 % change in HO_x. None of these input parameter variations yield a change in OH and/or HO₂ of a factor of two or more. All photolysis frequencies multiplied by a factor of ten could cause such changes in simulated HO_x. Unless the uncertainties of the species used to constrain the simulation (Table 4.1) exceed the variation intervals, these uncertainties individually can neither explain the discrepancies between observation and modelled HO₂, nor cause a significant disagreement for OH.

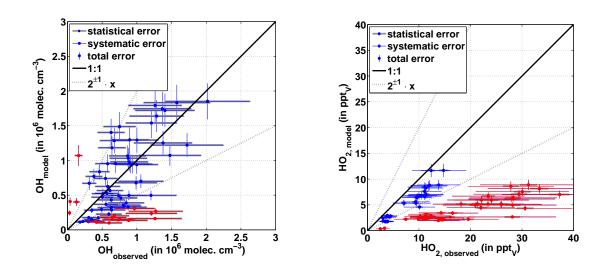
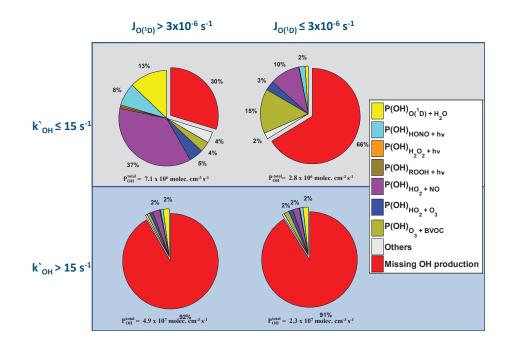


Abbildung 5.6.: Uncertainties of HO_x simulations (using the terpene mechanism) with respect to measurement uncertainties. The solid line represents the 1:1 ratio of observed and simulated HO_x . Data points showing significant discrepancies within their uncertainties by more than a factor of $2^{\pm 1}$ (dashed lines) are shown in red.

Free running HCHO, i.e. not constraining the simulation to the HCHO observations, leads to enhanced OH and HO_2 concentrations (up to 30%), which is for a minor part of the dataset sufficient to produce good agreement between measured and simulated HO_2 , while OH is overestimated in these simulations. Formaldehyde concentrations in the free running model are up to four times higher than observed levels. This suggests a formaldehyde sink not represented in the box model, possibly due to transport processes or uptake by plants (Lowe and Schmidt, 1983; Benning and Wahner, 1998). However, it was shown that changes in the deposition velocity have only a small impact on the simulated HO_x. The overprediction of formaldehyde in this case is more likely due to inadequate representation of the HCHO sources in the simulation. Another sensitivity simulation by also constraining the model to estimated 2-methyl-3-buten-2-ol (MBO) concentrations was conducted. Unfortunately, MBO, which is often referred to as "the isoprene of coniferous forests" was not directly measured during HUMPPA-COPEC-2010, though PTR-MS measurements of isoprene were affected by an MBO interference, as described in section 4.1. Previous measurements in this forest showed that MBO accounts only for 1-3% of the total monoterpene emission rate (Tarvainen et al., 2005). In American pine forests it can be more important. However, the

Tabelle 5.2.: Sensitivity analysis with respect to changes in observed, model constraining parameters. The values presented refer to a dataset around local solar noon (1pm in UTC+2).

	OH (molec. cm ⁻³)	$\mathrm{mod}/\mathrm{mod}_{\mathrm{reference}}$	HO ₂ (molec. cm ⁻³)	$\mathrm{mod}/\mathrm{mod}_{\mathrm{reference}}$
Observation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mou/moureference	$\frac{1}{3.63\times10^8}$	mou/mourerence
Reference simulation	5.20×10^{6}	1	2.87×10^{8}	1
2x NO	6.47×10^{6}	1.24	2.22×10^{8}	0.77
$2 x O_3$	6.42×10^{6}	1.23	3.32×10^{8}	1.16
$2x H_2O$	6.62×10^{6}	1.27	3.31×10^{8}	1.15
0.5x CO	5.63×10^{6}	1.08	2.65×10^{8}	0.92
$2 \mathrm{x} \mathrm{CO}$	4.55×10^{6}	0.88	3.23×10^{8}	1.13
$2x H_2O_2$	5.27×10^{6}	1.01	2.92×10^{8}	1.02
2x HCHO	5.30×10^{6}	1.02	3.07×10^{8}	1.07
0.5x deposition	$5.59{ imes}10^6$	1.08	$3.17{ imes}10^8$	1.10
2x deposition	5.83×10^{6}	1.12	3.12×10^{8}	1.09
2x photolysis	7.11×10^{6}	1.37	3.63×10^{8}	1.26
10x photolysis	1.77×10^{7}	3.40	6.88×10^8	2.40


PTR-MS signal was used as an upper limit estimate of MBO for this simulation to investigate the influence on the simulated HO_x . This MBO causes, on average, about $0.5 \,\mathrm{s}^{-1}$ additional reactivity towards OH, similar to the reactivity by methane. Only about 20% of the observed HO_2 can be explained by the model and the observed OH is underpredicted by 40-60% in this simulation. Considering the results from the above mentioned sensitivity tests and significance analysis, the discrepancy between measured and simulated HO_2 is significant, thus, the chemical mechanism applied in the simulations needs further improvement to reproduce the HO_2 for the observed boreal forest environment.

5.2.3. Sources and sinks of HO_x

The production rates of the hydroxyl radical in the box model using the terpene mechanism are shown in Figure 5.7, with respect to their contribution to the total OH production derived from measurements. The dataset is again grouped by conditions of different radiation and total OH reactivity (see Table 4.2). When the total OH reactivity is high $(k'_{OH} > 15 \,\mathrm{s}^{-1})$, the total production rate of hydroxyl radicals in the simulation accounts only for about $10\,\%$ of the observed production. This is mainly due to the strong underestimation of HO_2 by the model under these conditions (see Sections 4.4 & 4.7). Photolytic production accounts for one third of the OH formation in the simulation. A similar contribution is found by HO₂ recycling via reaction with NO and O_3 . Ozonolysis of BVOCs and a minor contribution by other species produced in the model account for the remaining OH production. At lower radiation $(J_{O(^{1}D)} \leq 3 \times 10^{-6} \, \text{s}^{-1})$, the ozonolysis of BVOCs becomes relatively more important and the recycling reaction of HO_2 with O_3 more relevant in comparison to the reaction with NO. Under conditions of moderate total OH reactivity $(k'_{OH} \leq 15 \,\mathrm{s}^{-1})$ and low radiation $(J_{O(^{1}D)} \leq 3 \times 10^{-6} \text{ s}^{-1})$ about 33% of the observed total OH production is represented by the box model simulation. Ozonolysis of observed biogenic VOCs accounts for on average 15% of the total production rate. Even though the hydroxyl radical production rates due to recycling of HO_2 via the reactions with NO and O_3 are based on the underestimated HO_2 by the box model, they are relevant source terms contributing 13% to the total OH production. Photolytic sources and production due to other species play a minor role. By assuming observed rather than model calculated HO_2 , this contribution would increase to 30%.

Almost one quarter of the OH during periods characterized by high radiation values $(J_{O(^1D)} > 3 \times 10^{-6} \,\mathrm{s^{-1}})$ and moderate total OH reactivity $(k'_{OH} \leq 15 \,\mathrm{s^{-1}})$ is produced by photolytic sources. Ozonolysis of BVOCs and other sources in the simulation contribute 4% each to the total observed OH production. HO₂ recycling via NO dominates the OH production (37%). Nonetheless, about 30% of the total OH observed production is not represented in the simulation, due to the underestimation of HO₂ and the associated recycling pathways.

OH reactivity contributions calculated from individually measured compounds compared to directly measured OH reactivity revealed 58 % missing OH reactivity under "normal" boreal conditions and up to about 90 % under "stressed" boreal conditions (i.e. prolonged high temperature) during HUMPPA-COPEC-2010 (Nölscher et al., 2012). About 50 % of missing OH reactivity was reported from the same site during summer in 2008 by Sinha et al. (2010) when more typical boreal conditions at lower temperatures than in 2010 prevailed. The loss of OH in terms of OH reactivity in the simulation is presented in Figure 5.8. Similar to the findings of another modeling study based on different measurements conducted at the field station SMEAR II (Mogensen et al., 2011), the inorganic contribution (CO, O₃, H₂, H₂O₂, NO, NO₂, HO₂, and HONO) is significant (15%). A large sink for OH is due to organic compounds, most importantly monoterpenes (5%), methane (4%), and

Abbildung 5.7.: Simulated contributions to the OH production during HUMPPA-COPEC-2010. Partitioning at different conditions of radiation and observed total OH reactivity with respect to the total OH production derived from measured OH concentrations and the total OH reactivity.

isoprene (2%). In contrast to the study by Mogensen et al. (2011), second and higher order organic reaction products by the model contribute an additional 42% to the total OH reactivity. On average, almost one third of the observed total OH reactivity remains unexplained. The large contribution by second and higher order organic reaction products in the model is mainly caused by aldehydes coming from monoterpene oxidation ($\sim 30\%$) and secondary products of isoprene oxidation (MVK + MACR $\sim 4\%$). Primary biogenic emissions, e.g. unmeasured monoterpenes and sesquiterpenes, photooxidation products, as well as anthropogenic pollutants occasionally transported to the measurement site are likely candidates causing the "missing" fraction of total OH reactivity.

 $\rm HO_2$ radicals are lost by reaction with other radicals as well as recycled towards OH by reaction with NO and O₃ (Figure 5.9). The biggest contribution to the loss of HO₂ under all conditions is the reaction with nitrogen dioxide yielding peroxynitric acid (HNO₄).

Abbildung 5.8.: Simulated contributions to the observed total OH reactivity during HUMPPA–COPEC–2010.

However, under standard conditions, HNO_4 is rather unstable and decomposes typically within a few seconds. This creates an equilibrium between HNO_4 and $HO_2 + NO_2$ which is strongly temperature dependent (Dentener et al., 2002). In the simulation the production and decomposition of HNO_4 occur at the same rate, thus HNO_4 acts as a reservoir species for the hydroperoxyl radicals.

At conditions of low radiation $(J_{O(^{1}D)} \leq 3 \times 10^{-6} s^{-1})$ hydroperoxyl radicals reacting with RO₂ and HO_x contribute to the total loss of HO₂ in a similar amount as the recycling reactions with NO and O₃. This is still the case at conditions of enhanced observed OH reactivity and low radiation. The higher absolute HO₂ loss is caused by enhanced recycling as well as enhanced loss by radical-radical reactions.

At high photolysis frequencies $(J_{O(^1D)} > 3 \times 10^{-6} s^{-1})$ both the total HO₂ production and loss increase by about a factor of two compared to nighttime. The HO₂ loss contribu-

tion from the recycling reaction with NO is predominant (41%) at a total OH reactivity $k'_{\rm OH} \leq 15 \, {\rm s}^{-1}$. This is followed by the reaction with RO₂ contributing about 12%. Other reactions, e.g. $HO_2 + NO_3$ or $HO_2 + HO_x$, contribute only a few percent. When the total OH reactivity is high, $k'_{\rm OH} > 15 \, {\rm s}^{-1}$, the OH recycling reaction of HO₂ with NO becomes less important (23%) in the simulation, whereas the reaction with RO₂ contributes about 20% to the total HO₂ loss. In addition to HNO₄ decomposition, the reaction of OH with carbon monoxide and the reaction of RO_2 with NO are the main sources of HO_2 in the model. The photolysis of formaldehyde contributes less than 1% to the total HO₂ production under all conditions. Ozonolysis of monoterpenes yields up to 8% when photolysis is low but is rather unimportant at higher J-values. OH reactions with O_3 , HCHO, and H_2O_2 are minor contributors (typically in total about 4%) in HO₂ production. Differences between conditions of moderate and high total OH reactivity show up in the reactions of OH + COand $RO_2 + NO$, forming HO_2 . The absolute HO_2 production under conditions of enhanced radiation and high observed total OH reactivity is smaller compared to the case with enhanced radiation and moderate total OH reactivity. Under these conditions, the simulation underestimates the observed HO₂ most, indicating that important species and HO₂ production pathways are missing in the chemical mechanism, very likely including unmeasured BVOCs and their oxidation products. Unfortunately, there were no direct observations of RO_2 during HUMPPA-COPEC-2010. Thus, we are lacking the possibility to constrain the model by RO_2 observations, which would improve our understanding of the underlying processes. The hydroperoxyl radical as well as organic peroxy radicals play an important role in the production of ozone. Ozone is mainly formed and destroyed in the photochemical cycle of NO and NO_2 :

$$NO_2 + h\nu \longrightarrow NO + O(^{3}P)$$
 (R5.1)

$$O(^{3}P) + O_{2} \xrightarrow{+M} O_{3}$$
(R5.2)

$$O_3 + NO \longrightarrow NO_2 + O_2$$
 (R5.3)

For O₃ Reactions R5.1 - R5.3 represent a "null-cycle", i.e. net ozone production and destruction is zero. However, NO is also consumed in the reaction with peroxy radicals (see Reactions R2.23 & R2.31). Thus, NO₂ is formed without consumption of O₃, leading to a net ozone production in the photolysis of NO₂ (Reaction R5.1). Whereas ozone is produced in radical reactions in polluted environments, it is destroyed by radicals in very clean airmasses, when the reaction of HO₂ with O₃ becomes dominant compared to the reaction with NO. The radical mechanism of ozone production is the major O₃ source in the polluted troposphere (Seinfeld and Pandis, 2006). Therefore, the underestimation of HO₂ in the box model simulations for HUMPPA-COPEC-2010 has a direct impact on the ozone formation in the observed and other boreal forest environments.

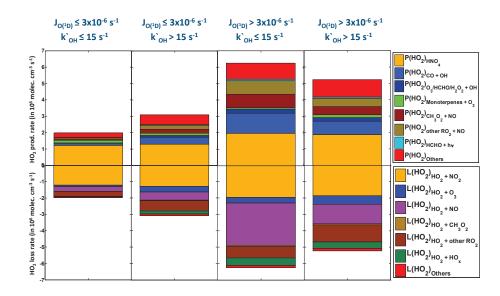


Abbildung 5.9.: Simulated production and loss rates of HO_2 during HUMPPA-COPEC-2010 under conditions of different radiation and total observed OH reactivity.

6. Summary and conclusions

Recent efforts to model HO_x concentrations in forest environments characterized by high concentrations of BVOCs and low concentrations of NO_x revealed serious discrepancies with observations of OH and HO₂ (Tan et al., 2001; Lelieveld et al., 2008; Kubistin et al., 2010; Martinez et al., 2010; Pugh et al., 2010b; Whalley et al., 2011). In contrast to well-known OH recycling pathways via HO_2 by reaction with NO and O_3 , various mechanisms recycling OH directly in the absence of NO have been proposed and tested in different studies to improve the understanding of HO_x-chemistry influenced by forest emissions (Paulot et al., 2009; Peeters et al., 2009; Hofzumahaus et al., 2009; Crounse et al., 2011). Griffith et al. (2013) measured OH during two subsequent summers in a deciduous forest in northern Michigan during the PROPHET 2008 and CABINEX 2009 campaigns. The authors found good modelto-measurement agreement during the colder summer of CABINEX 2009 campaign, when lower temperatures led to lower observed mixing ratios of isoprene, its oxidation products MVK and MACR, and formaldehyde. During the warmer summer of PROPHET 2008 the model underestimates the OH concentration in the afternoon. Kim et al. (2013) reported reasonable agreement between observed OH and that from steady-state calculations using observations, particularly measurements of HO_2 , in a forest environment dominated by emissions of monoterpenes and MBO. Constrained box model simulations underpredicted the observed HO_2 and OH concentrations significantly in this forest. Mao et al. (2012), addressing the impact of measurement artefacts in LIF measurements, showed reasonable agreement between model predictions and observations using their new "chemical removal method" for detection of OH in a California ponderosa pine forest during the BEARPEX09¹¹ campaign.

Within the framework of this thesis the HORUS instrument was operated for the first time using the IPI-LIF-FAGE technique to measure OH during HUMPPA-COPEC-2010. To identify possible measurement interferences an instrument intercomparison between the CIMS and HORUS-LIF instruments was conducted at the beginning of the campaign on the ground. The hydroxyl radical measurements by the two independent techniques show generally good agreement. During daytime, OH concentrations up to 3.5×10^6 molec. cm⁻³ were observed above canopy, a factor of two to three times higher than the measurements on ground. Higher OH concentrations above canopy were driven by higher radiation. There is no evidence for differences in the chemical regime on ground and above the canopy on a timescale comparable to, or less than the timescale of mixing processes.

 $^{11}\mathrm{BEARPEX09} = \mathrm{Biosphere}$ Effects on AeRosols and Photochemistry EXperiment

Comparison of the calculated total OH production rate with the total loss rate calculated from observed OH concentrations and total OH reactivity measurements showed that the known OH sources are almost sufficient to close the budget above the canopy. Detailed analysis of the radical production, loss, and recycling pathways revealed that OH recycling in the observed boreal forest environment occurs mainly by recycling via HO₂ under conditions of high radiation and moderate observed total OH reactivity ($J_{O(1D)} > 3 \times 10^{-6} \text{ s}^{-1}$, $k'_{OH} \leq 15 \text{ s}^{-1}$). Under conditions of enhanced total OH reactivity ($k'_{OH} > 15 \text{ s}^{-1}$) recycling mechanisms of OH, not via reaction of HO₂ with NO/O₃, are likely in addition. Furthermore, a source of HO₂ is missing under these conditions.

During some nights both instruments, CIMS (on ground) and IPI-LIF-FAGE (above canopy), detected significant amounts of OH that cannot be explained by known production rates calculated from observations. The missing OH source during nighttime of the order of 1×10^6 molec. cm⁻³ s⁻¹ could partly be related to NO₃. The NO₃ mixing ratio during HUMPPA-COPEC-2010 was always below the lower limit of detection of the CRD instrument (Rinne et al., 2012). However, it was produced at a rate of up to 1×10^6 molec. cm⁻³ s⁻¹ from the reaction of NO₂ with O₃. RO₂ radicals from NO₃-initiated VOC oxidation potentially undergo isomerization reactions or react with HO₂ as well, forming OH. Thus, NO₃ might, at least under some conditions, contribute to the missing OH source during nighttime. Ozonolysis of unmeasured VOCs is also likely to contribute.

The role of potentially undetected VOCs and oxidation products in the chemistry of HO_x can not be understood from observations alone. Hence, box model simulations have been considered for further investigation. The chemistry of the condensed isoprene mechanism ("Mainz Isoprene Mechanism") is shown to be deficient for the observed monoterpenedominated boreal forest environment. Isoprene levels of typically less than $200 \,\mathrm{ppt}_{\mathrm{V}}$ contributed at most 10% to the total observed OH reactivity thus leading to an overprediction of OH due to the missing sinks by a factor of up to 3 and HO₂ being significantly underpredicted $(HO_2^{mod.}/HO_2^{obs.}=0.3)$. Inclusion of the Mainz Terpene Mechanism (MTM) to account for the reactivity towards OH due to observed terpene species and their oxidation products leads to much better agreement between observed and simulated OH concentrations. However, this is due to two compensating effects. On average about one third of the observed total OH reactivity is not reproduced in the simulation, thus leading to underestimation of the total sink of OH. On the other hand, the production of OH is significantly underestimated due to the underpredicted HO_2 available for recycling by reaction with NO and O_3 which was shown to be an important source of OH by direct calculation from observations. Tuning the simulation on the observed total OH reactivity by adding an unknown compound which behaves like α -pinene produced a somewhat better HO₂^{mod.}/HO₂^{obs.} agreement. Nevertheless, the additional HO₂ being recycled towards OH was not sufficient to compensate for the resulting enhanced OH loss. The biggest model-observation discrepancies for HO₂ occured when "missing" OH reactivity was highest. Therefore, this provides evidence that the "missing" OH reactivity in the simulation is a source of HO₂. However, a single terpene following the chemical mechanism of α -pinene as described in the preliminary terpene mechanism

cannot account for this alone. Additional RO_2/HO_2 sources that are independent of OH, such as the thermal decomposition of transported peroxyalcyl nitrates and the photolysis of glyoxal, are indicated.

 HO_2 being underestimated in simulations for terpene dominated environments implies that the net O_3 production in global model simulations using the state-of-the-art chemical reaction schemes is potentially underestimated in boreal regions.

The OH production in this forest environment seems to be understood reasonably well under moderate total OH reactivity conditions (Table 4.2). In periods of high observed total OH reactivity a source of OH is missing. Only a small fraction of the loss of OH can be explained, even through inclusion of higher order oxidation products by application of a box model. HO₂ is underestimated in simulations, indicating missing BVOCs, which could also account for the missing reactivity in the model. Additional recycling processes of OH, not via HO₂ + NO/O₃ are indicated under conditions of high observed total OH reactivity by detailed analysis of the HO_x budget calculated from observations.

Future observations in forest environments should include RO_2 measurements, that could help constrain simulations better and further improve the understanding of the radical cycling processes in this boreal forest (and elsewhere). Particularly, identification of the fraction of alcyl peroxy radical species that can directly recycle OH by reaction with HO_2 would enable a more detailed analysis of radical recycling processes under conditions of enhanced OH reactivity. Observations of additional HO_2 and RO_2 precursor species, such as glyoxal, PAN, and acetone, would enhance the capabilities to investigate the oxidation capacity. Chemical mechanisms used in simulations need to include a comprehensive representation of the most abundant biogenic VOCs, e.g. in this case monoterpenes and their oxidation chemistry in order to reproduce the radical photochemistry when isoprene is not the predominant BVOC.

A. Measurements of trace gas species and meteorological parameters during HUMPPA-COPEC 2010

		J _{O(11}	$_{0}$ > 3 × 10 ⁻⁶ s ⁻¹		J _{O(1}	$(3) \le 3 \times 10^{-6} \mathrm{s}^{-1}$
$k'_{\rm OH} \le 15{\rm s}^{-1}$						
	ОН	\approx	$(1.0\pm 0.8)\times 10^6{\rm molec.cm}^{-3}$	OH	\approx	$(3.8\pm3.0)\times10^{5}{\rm molec.cm}^{-3}$
	HO ₂	\approx	$(10 \pm 1) \operatorname{ppt}_{V}$	HO_2	\approx	$(10\pm6){\rm ppt}_{\rm V}$
	O ₃	\approx	$(33\pm2){\rm ppb}_{\rm V}$	O ₃	\approx	$(35\pm7)\rm{ppb}_V$
	NO	\approx	$(46\pm16)\mathrm{ppt}_\mathrm{V}$	NO	\approx	$(3\pm 39){\rm ppt}_{\rm V}$
	NO ₂	\approx	$(280\pm40)\mathrm{ppt}_{\mathrm{V}}$	NO_2	\approx	$(570\pm210)\mathrm{ppt}_\mathrm{V}$
	со	\approx	$(85\pm1){\rm ppb}_{\rm V}$	CO	\approx	$(96\pm5)\mathrm{ppb}_\mathrm{V}$
	C_5H_8	\approx	$(145\pm30)\mathrm{ppt}_\mathrm{V}$	C_5H_8	\approx	$(62\pm65)\mathrm{ppt}_\mathrm{V}$
	$\alpha - pinene$	\approx	$(63\pm15)\mathrm{ppt}_\mathrm{V}$	$\alpha - \text{pinene}$	\approx	$(68\pm67)\mathrm{ppt}_\mathrm{V}$
	$\beta - pinene$	\approx	$(16\pm4){\rm ppt}_{\rm V}$	$\beta-\mathrm{pinene}$	\approx	$(20\pm17)\mathrm{ppt}_\mathrm{V}$
	β – myrcene	\approx	$(5\pm1){ m ppt}_{ m V}$	$\beta-{ m myrcene}$	\approx	$(5 \pm 4) \mathrm{ppt}_{\mathrm{V}}$
	Δ^3 -carene	\approx	$(30\pm8){\rm ppt}_{\rm V}$	Δ^3 – carene	\approx	$(44 \pm 44) \mathrm{ppt}_{\mathrm{V}}$
$k'_{\rm OH} > 15 {\rm s}^{-1}$						
	ОН	\approx	$(6.4 \pm 5.6) \times 10^5$ molec. cm ⁻³	OH	\approx	$(6.3 \pm 2.0) \times 10^5$ molec. cm ⁻³
	HO ₂	\approx	$(27 \pm 2) \mathrm{ppt}_{\mathrm{V}}$	HO_2	\approx	$(22 \pm 4) \operatorname{ppt}_{V}$
	O ₃	\approx	$(51 \pm 1) \text{ ppb}_{\text{V}}$	O ₃	\approx	$(51.0\pm0.3)\mathrm{ppb}_\mathrm{V}$
	NO	\approx	$(28\pm7){\rm ppt}_{\rm V}$	NO	\approx	$(17\pm5)\mathrm{ppt}_\mathrm{V}$
	NO_2	\approx	$(320\pm20)\mathrm{ppt}_{\mathrm{V}}$	NO_2	\approx	$(290\pm30)\mathrm{ppt}_\mathrm{V}$
	CO	\approx	$(93\pm1)\mathrm{ppb}_\mathrm{V}$	CO	\approx	$(92 \pm 1) \mathrm{ppb}_{\mathrm{V}}$
	C_5H_8	\approx	$(112\pm13){\rm ppt}_{\rm V}$	C_5H_8	\approx	$(110\pm5)\mathrm{ppt}_\mathrm{V}$
	$\alpha - pinene$	\approx	$(80\pm4)\mathrm{ppt}_\mathrm{V}$	$\alpha - \text{pinene}$	\approx	$(61\pm8)\mathrm{ppt}_\mathrm{V}$
	$\beta - \text{pinene}$	\approx	$(17 \pm 1) \mathrm{ppt}_{\mathrm{V}}$	$\beta - \mathrm{pinene}$	\approx	$(14 \pm 1) \mathrm{ppt}_{\mathrm{V}}$
	β – myrcene	\approx	$(5.0\pm0.3)\mathrm{ppt}_\mathrm{V}$	$\beta-{ m myrcene}$	\approx	$(4.0\pm0.5)\mathrm{ppt}_\mathrm{V}$
	Δ^3 – carene	\approx	$(38\pm2){\rm ppt}_{\rm V}$	Δ^3 – carene	\approx	$(27\pm5)\mathrm{ppt}_\mathrm{V}$
				<u> </u>		

Tabelle A.1.: Median levels and variability of relevant trace gases under different conditions of observed radiation and total OH reactivity.

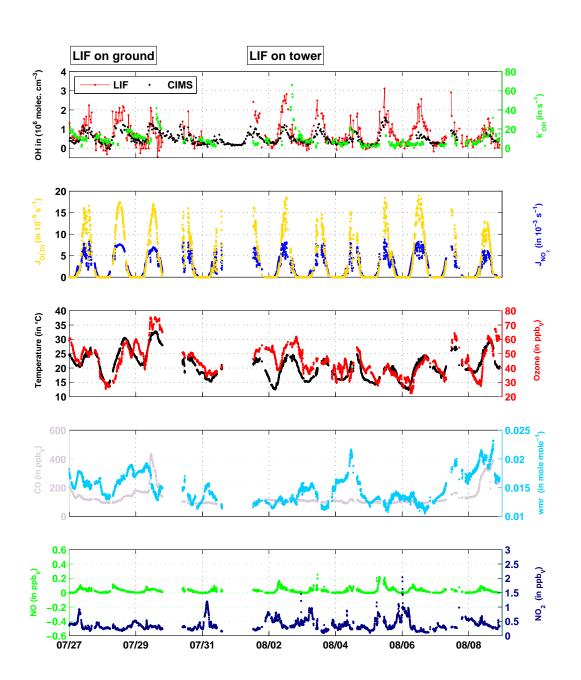


Abbildung A.1.: Timeseries of trace gas species and meteorological parameters during HUMPPA–COPEC–2010.

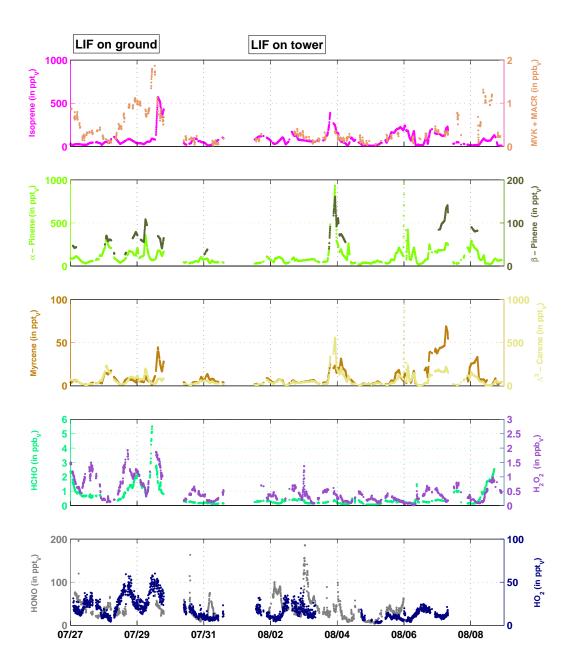


Abbildung A.1.: (continued): Timeseries of trace gas species and meteorological parameters during HUMPPA–COPEC–2010.

B. Chemical mechanism – MTM

The Chemical Mechanism of MECCA
KPP version: 2.2.1_rs5
MECCA version: 3.3
Date: October 9, 2013.
Selected reactions: "Tr && G && !S && !Cl && !Br && !I && !Hg"
Number of aerosol phases: 0
Number of species in selected mechanism: Gas phase: 394 Aqueous phase: 0 All species: 394 Number of reactions in selected mechanism: Gas phase (Gnnn): Gas phase (Gnnn): 952 Aqueous phase (Annn): 0 Henry (Hnnn): 102 Heterogeneous (HETnnn): 0 Equilibria (EQnn): 0 Isotope exchange (DGnnn): 0 Dummy (Dnn): 1054

B. Chemical mechanism – MTM

#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \rightarrow O(^3P) + O_2$	3.2E-11*EXP(70./temp)	Sander et al. (2003)
G1001	StTrG	$O_2 + O(^{3}P) \rightarrow O_3$	6.E-34*((temp/300.)**(-2.4))*cair	Sander et al. (2003)
G2100	StTrG	$\rm H + O_2 \rightarrow \rm HO_2$	k_3rd(temp,cair,5.7E-32,1.6,7.5E-11,0., 0.6)	Sander et al. (2003)
G2104	StTrG	$OH + O_3 \rightarrow HO_2 + LOHOX$	1.7E-12*EXP(-940./temp)	Sander et al. (2003)
G2105	StTrG	$OH + H_2 \rightarrow H_2O + H + LOHOX$	2.8E-12*EXP(-1800./temp)	Sander et al. (2006)
G2107	StTrG	$HO_2 + O_3 \rightarrow OH + POHOX$	1.E-14*EXP(-490./temp)	Sander et al. (2003)
G2109	StTrG	$HO_2 + OH \rightarrow H_2O + LOHOX$	4.8E-11*EXP(250./temp)	Sander et al. (2003)
G2110	StTrG	$HO_2 + HO_2 \rightarrow H_2O_2$	k_H02_H02	Christensen et al. (2002
				Kircher and Sander (1984)*
G2111	StTrG	$H_2O + O(^1D) \rightarrow 2 OH + 2 POHOX + 2 POHPR$	2.2E-10	Sander et al. (2003)
G2112	StTrG	$H_2O_2 + OH \rightarrow H_2O + HO_2 + LOHOX$	2.9E-12*EXP(-160./temp)	Sander et al. (2003)
G3101	StTrG	$N_2 + O(^1D) \rightarrow O(^3P) + N_2$	1.8E-11*EXP(110./temp)	Sander et al. (2003)
G3103	StTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2003)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2003)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Sander et al. (2003)
G3109	StTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Sander et al. (2003)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(3.E-27*EXP(10990./temp))	Sander et al. (2003)*
G3200	TrG	$NO + OH \rightarrow HONO + LONOX$	k_3rd(temp,cair,7.E-31,2.6,3.6E-11,0.1, 0.6)	Sander et al. (2003)
G3201	StTrGN	$NO + HO_2 \rightarrow NO_2 + OH + PONOX$	3.5E-12*EXP(250./temp)	Sander et al. (2003)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3 + LONOX$	k_3rd(temp,cair,1.48E-30,3.,2.58E-11, 0.,0.6)	Mollner et al. (2010)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. (2003)
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2 + PONOX$	3.5E-12	Sander et al. (2003)
G3205	TrG	$HONO + OH \rightarrow NO_2 + H_2O + LONOX$	1.8E-11*EXP(-390./temp)	Sander et al. (2003)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3 + LONOX$	k_HNO3_OH	Sander et al. (2003)*
G3207	StTrGN	$HNO_4 \rightarrow NO_2 + HO_2$	k_NO2_HO2/(2.1E-27*EXP(10900./temp))	Sander et al. (2003)*
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O + LONOX$	1.3E-12*EXP(380./temp)	Sander et al. (2003)
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O + POHORG$	1.85E-20*EXP(2.82*log(temp)-987./temp)	Atkinson (2003)
G4102	TrG	$CH_3OH + OH \rightarrow HCHO + HO_2 + POHORG$	7.3E-12*EXP(-620./temp)	Sander et al. (2003)
G4103a	StTrG	$\rm CH_3O_2 + HO_2 \rightarrow \rm CH_3OOH$	4.1E-13*EXP(750./temp)/(1.+1./ 497.7*EXP(1160./temp))	Sander et al. $(2003)^*$

Table 1: Gas phase reactions (... continued) rate coefficient 4.1E-13*EXP(750./temp)/(1.+ 497.7*EXP(-1160./temp)) 2.8E-12*EXP(300./temp) 1.3E-12 2.*R0249.5E-14*EXP(390./temp)/(1.+1./ CC 02XPU(120.6/mcm)) # G4103b labels StTrG reference Sander et al. (2003) $\frac{\text{reaction}}{\text{CH}_3\text{O}_2 + \text{HO}_2 \rightarrow \text{HCHO} + \text{H}_2\text{O} + \text{O}_2}$ StTrGN TrGN StTrG $\begin{array}{l} \mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO} \rightarrow \mathrm{HCHO} + \mathrm{NO}_2 + \mathrm{HO}_2 \\ \mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO}_3 \rightarrow \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{NO}_2 \\ \mathrm{CH}_3\mathrm{O}_2 \rightarrow \mathrm{HCHO} + \mathrm{HO}_2 \end{array}$ Sander et al. (2003) Atkinson et al. (1999) Sander et al. (2003) G4104 G4105 G4106a 26.2*EXP(1130./temp)) 2.*R02*9.5E-14*EXP(390./temp)/(1.+ G4106b StTrG $\rm CH_3O_2 \rightarrow .5~\rm HCHO$ + .5 $\rm CH_3OH$ Sander et al. (2003) $\begin{array}{c} 26.2*\texttt{EXP}\,(-\texttt{1130./temp}))\\ \texttt{CH}_3\texttt{OOH}+\texttt{OH}\rightarrow .6\;\texttt{CH}_3\texttt{O}_2+.4\;\texttt{HCHO}+.4\;\texttt{OH}+\texttt{H}_2\texttt{O} \quad \texttt{k_CH3OOH_OH} \end{array}$ StTrG G4107 see note Sivakumaran et al. (2003) Sander et al. (2003)* McCabe et al. (2001) IUPAC (2013) IUPAC (2013) IUPAC (2013) Jenkin et al. (2007) G4108 StTrG G4108 G4109 G4110 G4111 G4112e G4113e G4114e StIrG TrGN StTrG TrG TrGC TrGC TrGC TrGC G4115e TrGC Sander et al. (2003) G4116e G4117e TrGC TrGC see note see note G4118e G4119e TrGC TrGC see note see note G4200 G4201e TrGC TrGC Atkinson (2003) Sander et al. (2003)^{*} G4202 TrGC Sander et al. (2003) 0.6) 7.5E-13*EXP(700./temp) TrGC Sander et al. (2003) G4203 TrGNC TrGNC TrGC TrGC Sander et al. (2003) Sander et al. (2003) Atkinson et al. (1999) Rickard and Pascoe (2009)* see note G4204 G4205 G4206 G4207 3

		Table 1: Gas phase reac	tions (continued)	
#	labels	reaction	rate coefficient	reference
	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O)OO + H_2O + POHORG$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)
G4208eb	TrGC	$\label{eq:CH3} \begin{array}{l} \mathrm{CH3}\mathrm{CHO} + \mathrm{OH} \rightarrow .84 \ + .1 \ \mathrm{HCHO} + .1 \ \mathrm{CO} + .06 \ \mathrm{GLYOX} \\ \mathrm{+} \ .16 \ \mathrm{OH} + \mathrm{H_2O} + .16 \ \mathrm{POHORG} \ + \ \mathrm{POHORG} \end{array}$	4.4E-12*EXP(365./temp)*0.05	Atkinson et al. (2006)
G4209	TrGNC	$CH_3CHO + NO_3 \rightarrow CH_3C(O)OO + HNO_3$	KNO3AL	Sander et al. (2003)
G4210e	TrGC	$CH_3COOH + OH \rightarrow CH_3O_2 + CO_2 + H_2O + POHORG$	4.2E-14*exp(850./temp)	IUPAC (2013)
G4211et1	TrGC	$CH_3C(O)OO + HO_2 \rightarrow OH + CH_3O_2 + CO_2 + POHORG$	KAPHO2*0.70	Taraborrelli (2013a)*
G4211et2	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3C(O)OOH$	KAPH02*0.12	Taraborrelli (2013a)*
G4211et3	TrGC	$CH_3C(O)OO + HO_2 \rightarrow CH_3COOH + O_3$	KAPHO2*0.18	Taraborrelli (2013a)*
G4212	TrGNC	$CH_3C(O)OO + NO \rightarrow CH_3O_2 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001)
G4213	TrGNC	$CH_3C(O)OO + NO_2 \rightarrow PAN$	k_CH3CO3_NO2	Tyndall et al. (2001)
G4214	TrGNC	$CH_3C(O)OO + NO_3 \rightarrow CH_3O_2 + NO_2 + CO_2$	4.E-12	Canosa-Mas et al. (1996)
G4217	TrGC	$CH_3C(O)OO \rightarrow .7 CH_3O_2 + .7 CO_2 + .3 CH_3COOH$	1.00E-11*R02	Rickard and Pascoe (2009)
G4218	TrGC	$CH_3C(O)OOH + OH \rightarrow CH_3C(O)OO + H_2O + POHORG$	0.6*k_CH3OOH_OH	Rickard and Pascoe (2009)*
G4220	TrGNC	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O + POHORG$	9.50E-13*EXP(-650./temp)	Rickard and Pascoe (2009)
G4221	TrGNC	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. (2003)*
G4223e	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	8.00E-12	Rickard and Pascoe (2009)
G4224e	TrGNC	$HOCH_2CHO + NO_3 \rightarrow + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G4255et2	TrGC	\rightarrow HOCH ₂ CO ₃	KDEC*.97	Taraborrelli (2013a)*
G4255et3	TrGC	\rightarrow OH + HCHO + CO + POHORG	KDEC*.03	Taraborrelli (2013a)*
G4256et2	TrGC	\rightarrow GLYOX + HO ₂	KDEC	Taraborrelli (2013a)
G4225	TrGC	$\rm HOCH_2CO_3 \rightarrow .7~HCHO$ $+$.7 $\rm CO_2$ $+$.7 $\rm HO_2$ $+$.3 $\rm HOCH_2CO_2H$	1.00E-11*R02	Rickard and Pascoe (2009)
G4226ea	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HCHO + HO_2 + OH + CO_2 + POHORG$	KAPHO2*rco3_oh	Taraborrelli (2013a)*
G4226eb	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_3H$	KAPHO2*rco3_ooh	Taraborrelli (2013a)*
G4226ec	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_2H + O_3$	KAPH02*rco3_o3	Taraborrelli (2013a)*
G4227	TrGNC	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G4228	TrGNC	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G4229	TrGNC	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.60	Rickard and Pascoe (2009)
G4230e	TrGC	$HOCH_2CO_2H + OH \rightarrow .09 HCHO + .09 CO_2 + .91 HCOCO_2H + HO_2 + H_2O + POHORG$	kco2h+ks*fsoh*fco2h	Taraborrelli (2013a)
G4231ea	TrGC	$HOCH_2CO_3H + OH \rightarrow HOCH_2CO_3 + H_2O + POHORG$	0.6*k_CH300H_0H	Taraborrelli (2013a)
G4231eb	TrGC	$HOCH_2CO_3H + OH \rightarrow HCOCO_3H + HO_2 + POHORG$	ks*fsoh*fco2h	Taraborrelli (2013a)
G4232	TrGNC	$PHAN \rightarrow HOCH_2CO_3 + NO_2$	k PAN M	Rickard and Pascoe (2009)

		Table 1: Gas phase react	· · · · ·	
#	labels	reaction	rate coefficient	reference
G4233	TrGNC	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	1.12E-12	Rickard and Pascoe (2009)
G4234e	TrGC	$\label{eq:GLYOX} \begin{array}{llllllllllllllllllllllllllllllllllll$	3.1E-12*EXP(340./temp)	IUPAC (2013)
G4235e	TrGNC	$GLYOX + NO_3 \rightarrow 1.2 CO + .6 HO_2 + .4 + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G4235et2	TrGNC	\rightarrow 1.5 CO + .5 HO ₂ + .5 OH + .5 CO ₂ + .5 POHORG	KDEC	Taraborrelli (2013a)
G4236	TrGC	$HCOCO_3 \rightarrow .7 \text{ CO} + .7 \text{ HO}_2 + .7 \text{ CO}_2 + .3 \text{ HCOCO}_2\text{H}$	1.00E-11*R02	Rickard and Pascoe (2009)
G4237e	TrGC	$\mathrm{HCOCO}_3^{'} + \mathrm{HO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{CO}_2 + \mathrm{OH} + \mathrm{POHORG}$	KAPHO2	Feierabend et al. (2008), Tara relli (2013a)
G4238	TrGNC	$HCOCO_3 + NO \rightarrow HO_2 + CO + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G4239	TrGNC	$HCOCO_3 + NO_3 \rightarrow HO_2 + CO + NO_2 + CO_2$	KR02N03*1.60	Rickard and Pascoe (2009)
G4239t2	TrGNC	$\mathrm{HCOCO}_3 + \mathrm{NO}_2 \rightarrow \mathrm{HO}_2 + \mathrm{CO} + \mathrm{NO}_3 + \mathrm{CO}_2$	k_CH3CO3_NO2	Orlando and Tyr (2001),Taraborrelli (2013a)*
G4240	TrGC	$\rm HCOCO_2H$ + OH \rightarrow CO + HO_2 + CO_2 + H_2O + POHORG	kco2h+kt*fo*fco2h	Taraborrelli (2013a)
G4241	TrGC	$HCOCO_3H + OH \rightarrow .2 HCOCO_3 + .8 CO + .8 OH + .8 CO_2 + H_2O + POHORG + .8 POHORG$	0.6*k_CH3OOH_OH+kt*fo*fco2h	Taraborrelli (2013a)
G4242	TrGC	$HOCH_2CH_2O_2 \rightarrow .6 HOCH_2CH_2O + .2 HOCH_2CHO + .2 ETHGLY$	2.00E-12*R02	Rickard and Pascoe (2009)
G4244	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HYETHO2H$	2.00E-13*EXP(1250./temp)	Rickard and Pascoe (2009)
G4243	TrGNC	$HOCH_2CH_2O_2 + NO \rightarrow .24875 HO_2 + .4975 HCHO + .74625 HOCH_2CH_2O + .995 NO_2 + .005 ETHOHNO3$	KRO2NO	Orlando et al. (1998)
G4245	TrGNC	ETHOHNO3 + OH \rightarrow .93 + .93 HO ₂ + .07 HOCH ₂ CHO + .07 NO ₂ + H ₂ O + POHORG	ks*(fsoh*fch2ono2+fono2*fpch2oh) +krohro	Taraborrelli (2013a)
G4246a	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CH_2O_2 + H_2O + POHORG$	0.6*k_CH300H_0H	Rickard and Pascoe (2009)
G4246b	TrGC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ks*fsooh*fpch2oh	Taraborrelli (2013a)
G4246c	TrGC	$HYETHO2H + OH \rightarrow + HO_2 + H_2O$	ks*fsoh*fpch2oh+krohro	Taraborrelli (2013a)
G4247a	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp)*C(ind_02)	Orlando et al. (1998)
G4247b	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E+13*EXP(-5988./temp)	Orlando et al. (1998)
G4248	TrGC	ETHGLY + OH \rightarrow HOCH ₂ CHO + HO ₂ + H ₂ O + POHORG		Taraborrelli (2013a)
G4249e	TrGC	\rightarrow 0.6 HCHO + 0.6 CO + 0.6 HO ₂ + 0.2 GLYOX + 0.2 HOCH_2CHO	2.00E-12*R02	Taraborrelli (2013a)
G4250e	TrGC	$+$ HO_2 \rightarrow 0.85 $+$ 0.15 HCHO $+$ 0.15 CO $+$ 0.15 HO_2 $+$ 0.15 OH $+$.15 POHORG	KR02H02*0.387	Taraborrelli (2013a)

#	labels	reaction	rate coefficient	reference
G4251e	TrGC	$+ \text{NO} \rightarrow \text{NO}_2 + \text{HCHO} + \text{CO} + \text{HO}_2$	KR02N0	Taraborrelli (2013a)
G4252e	TrGC	$+ NO_3 \rightarrow HCHO + CO + HO_2 + NO_2$	KR02N03	Taraborrelli (2013a)
G4253e	TrGC	+ OH \rightarrow .71 OH + .31 HCHO + .31 CO + .40 GLYOX + .29 + .71 POHORG + POHORG	0.6*k_CH300H_0H+ks*fsooh*fcho+.8*8.E-12	Taraborrelli (2013a)
G4254e	TrGNC	$+ NO_3 \rightarrow OH + HCHO + CO + HNO_3 + POHORG$	KNO3AL	Rickard and Pascoe (2009)
G4257e	TrGC	+ OH \rightarrow HCHO + CO ₂ + NO ₂ + H ₂ O + POHORG	1.E-11	Paulot et al. (2009a), Taraborre (2013a)
G4258e	TrGNC	$+ NO \rightarrow NO_2 + OH + HCHO + CO_2 + POHORG$	KAPNO	Taraborrelli (2013a)
G4259e	TrGNC	$+ NO_3 \rightarrow NO_2 + OH + HCHO + CO_2 + POHORG$	KR02N03*1.60	Taraborrelli (2013a)
G4260e	TrGC	$+ HO_2 \rightarrow 2 OH + HCHO + CO_2 + 2 POHORG$	KAPHO2*rco3_oh	Taraborrelli (2013a)
G4260et2	TrGC	$+ HO_2 \rightarrow$	KAPH02*rco3_ooh	Taraborrelli (2013a)*
G4260et3	TrGC	$+ HO_2 \rightarrow + O_3$	KAPH02*rco3_o3	Taraborrelli (2013a)*
G4261e	TrGC	\rightarrow .7 OH + .7 HCHO + .7 CO ₂ + .3 + .7 POHORG	1.00E-11*R02	Taraborrelli (2013a)
G4262e	TrGC	$+ \text{ OH} \rightarrow + \text{H}_2\text{O} + \text{POHORG}$	2.*0.6*k_CH300H_0H	Taraborrelli (2013a)
G4263e	TrGC	+ OH \rightarrow HCOCO ₃ H + OH + H ₂ O + POHORG + POHORG	ks*fsooh*fco2h	Taraborrelli (2013a)
G4265e	TrGC	+ OH \rightarrow HCOCO ₂ H + OH + H ₂ O + POHORG + POHORG	ks*fsooh*fco2h+kco2h	Taraborrelli (2013a)
G4266e	TrGC	+ OH \rightarrow .6 HCHO + .6 HO ₂ + .6 CO + .4 + POHORG	2.8E-12*exp(510./temp)	Baulch et al. (2005),Taraborrel (2013a)*
G4267e	TrGC	$+ OH \rightarrow CH_3COOH + OH + POHORG + POHORG$	kt*ftooh*ftoh + krohro	Taraborrelli (2013a)
G4268e	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	0.6*k_CH300H_0H	Taraborrelli (2013a)
G4269e	TrGC	\rightarrow CH ₃ CHO + HO ₂	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Tarabo relli (2013a)
G4270e	TrGC	$\rm CH_3CHO + HO_2 \rightarrow$	3.46E12*EXP(-12500./(1.98*temp)) /(6.34E26*EXP(-14700./(1.98*temp)))	Hermans et al. (2005), Tarabo relli (2013a)
G4271e	TrGC	$+$ HO_2 \rightarrow .5 $+$.3 CH_3COOH $+$.2 CH_3O_2 $+$.2 HCOOH $+$.2 OH	5.6E-15*EXP(2300./temp)	Taraborrelli (2013a)
G4272e	TrGC	\rightarrow CH ₃ O ₂ + HCOOH + OH	1.4E-12*R02	Taraborrelli (2013a)
G4273e	TrGC	$+ \text{NO} \rightarrow \text{CH}_3\text{O}_2 + \text{HCOOH} + \text{OH} + \text{NO}_2$	KR02N0	Taraborrelli (2013a)
G4300	TrGC	$C_3H_8 + OH \rightarrow .736 iC_3H_7O_2 + .264 C_2H_5O_2 + .264 CO_2 + .264 HO_2 + H_2O + POHORG$	1.55E-17*temp*temp*EXP(-61./temp)	Rickard and Pascoe (2009)*

	labels	reaction	rate coefficient	reference
# G4301et2	TrGC	$C_3H_6 + O_3 \rightarrow .0855 + .4389 \text{ CH}_3\text{CHO} + .4389 \text{ H}_2\text{O}_2$		Taraborrelli (2013a)
04301662	1160	$C_{3}H_{6} + O_{3} \rightarrow .0855 + .4569 CH_{3}CHO + .4569 H_{2}O_{2}$ + .0456 CH ₃ COOH + .285 + .0855 CH ₄ + .0855 CO ₂	0.5E-15*EXF(-1900./cemp)	Taraborrein (2013a)
		$+ .0342 + .0513 \text{ CH}_3\text{OO} + .0228 \text{ CH}_4 + .0603 \text{ CO}_2$ $+ .0342 + .0513 \text{ CH}_3\text{OH} + .0228 \text{ CH}_3\text{C}(\text{O})\text{OO} + .57$		
		$+ .0342 + .0513 CH_3OH + .0228 CH_3C(0)OO + .57$ HCHO + .2709 CO + .0688 HO ₂ + .1591 HOCH2OOH		
		$+.43 \text{ CH}_3\text{CHO} + .3766 \text{ OH} + .3766 \text{ POHORG}$		
G4302	TrGC	$C_{3}H_{6} + OH \rightarrow HYPROPO2 + POHORG$	k_3rd(temp,cair,8.E-27,3.5,3.E-11,0.,	Atkinson et al. (1999)
04002	1100	0316 011 / 1111101 02 1011010	0.5)	rtekinson et al. (1555)
G4303	TrGNC	$C_3H_6 + NO_3 \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Atkinson et al. (1999)
G4304	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G4305	TrGNC	$iC_3H_7O_2 + NO \rightarrow .96 CH_3COCH_3 + .96 HO_2 + .96 NO_2$		Atkinson et al. (1999)
		+ .04 iC ₃ H ₇ ONO ₂	1	
G4306	TrGC	$iC_3H_7O_2 \rightarrow CH_3COCH_3 + .8 HO_2$	4.E-14*R02	Rickard and Pascoe (2009)*
G4307	TrGC	$iC_3H_7OOH + OH \rightarrow .27 iC_3H_7O_2 + .73 CH_3COCH_3 + .73$	1.66E-11 + 0.6*k_CH300H_OH	Rickard and Pascoe (2009)*
		$OH + H_2O + .73 POHORG + POHORG$		
G4311	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O + POHORG$	1.33E-13+3.82E-11*EXP(-2000./temp)	Sander et al. (2003)
G4312e	TrGC	$CH_3COCH_2O_2 + HO_2 \rightarrow .15 \text{ OH} + .15 CH_3C(O)OO +$	8.6E-13*EXP(700./temp)	Taraborrelli (2013a)
		$.15 \text{ HCHO} + .85 \text{ CH}_3 \text{COCH}_2 \text{O}_2 \text{H} + .15 \text{ POHORG}$		
G4313	TrGNC	$CH_3COCH_2O_2 + NO \rightarrow CH_3C(O)OO + HCHO + NO_2$	2.9E-12*EXP(300./temp)	Sander et al. (2003)
G4314	TrGC	$CH_3COCH_2O_2 \rightarrow .6 CH_3C(O)OO + .6 HCHO + .2$	7.5E-13*EXP(500./temp)*2.*R02	Tyndall et al. (2001)
		$MGLYOX + .2 CH_3COCH_2OH$		
G4321	TrGNC	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O)OO + HCHO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4315a	TrGC	$\mathrm{CH_3COCH_2O_2H} \ + \ \mathrm{OH} \ \rightarrow \ \mathrm{CH_3COCH_2O_2} \ + \ \mathrm{H_2O} \ + \ + \ \mathrm{H_2O} \ + \ \mathrm{H_2O} \ + \ + \ + \ + \ + \ + \ + \ + \ + \ $	0.6*k_CH300H_0H	Rickard and Pascoe (2009) [*]
	T GG	POHORG		T 1 11 (2012)
G4315b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O + POHORG + POHORG$	KS*ISOON*ICO	Taraborrelli (2013a)
G4316e	TrGC	$CH_3COCH_2OH + OH \rightarrow + H_2O + POHORG$	1.60E-12*EXP(305./temp)	Taraborrelli (2013a)
G4336ea	TrGC	\rightarrow MGLYOX + HO ₂	0.8485	Taraborrelli (2013a)
G4317e	TrGC	\rightarrow MGLTOX + HO ₂ MGLYOX + OH \rightarrow .4 CH ₃ O ₂ + .6 CH ₃ C(O)OO + 1.4 CO		Baeza-Romero et al. (2007).
040176	1100	+ POHORG	1.5E 12*EAI (0/0.7 temp)	PAC (2013)
G4331	TrGNC	$MGLYOX + NO_3 \rightarrow CH_3C(O)OO + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
G4320	TrGNC	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2 + POHORG$	6.2E-13*EXP(-230./temp)	Atkinson et al. (1999)
G4322	TrGC	$HYPROPO2 \rightarrow CH_3CHO + HCHO + HO_2$	8.80E-13*RD2	Rickard and Pascoe (2009)
G4323	TrGC	$HYPROPO2 + HO_2 \rightarrow HYPROPO2H$	KR02H02*0.520	Rickard and Pascoe (2009)
G4324	TrGNC	$HYPROPO2 + NO \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4325	TrGNC	$HYPROPO2 + NO_3 \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
G4326a	TrGC	$HYPROPO2H + OH \rightarrow HYPROPO2 + POHORG$	0.6*k_CH300H_0H	Rickard and Pascoe (2009)
G4326b	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	ks*fsoh*fpch2oh+kt*ftooh*fpch2oh	Taraborrelli (2013a)
G4327	TrGNC	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	KR02H02*0.520	Rickard and Pascoe (2009)
G4328	TrGNC	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4329	TrGNC	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4330a	TrGNC	$PR2O2HNO3 + OH \rightarrow PRONO3BO2 + POHORG$	1.90E-12*EXP(190./temp)	Rickard and Pascoe (2009)
G4330b	TrGNC	$\label{eq:product} \begin{array}{llllllllllllllllllllllllllllllllllll$	kt*ftooh*fch2ono2	Rickard and Pascoe (2009)
G4332	TrGNC	$NOA + OH \rightarrow MGLYOX + NO_2 + POHORG$	ks*fco*fono2+kp*fco	Taraborrelli (2013a)
G4333e	TrGC	HOCH2COCHO + OH \rightarrow .8609 + .8609 CO + .1391 + .1391 HO ₂ + POHORG	1.9E-12*EXP(575./temp)+ks*fsoh*fco	Taraborrelli (2013a)
G4334e	TrGNC	$HOCH2COCHO + NO_3 \rightarrow + CO + HNO_3$	KNO3AL*2.4	Taraborrelli (2013a)
G4337e	TrGC	$+ \ \mathrm{OH} \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} + \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2 + \mathrm{POHORG}$	4.9E-14*EXP(276./temp)	Mellouki and (2003),Taraborrelli (2013a)
G4338e	TrGC	\rightarrow HCHO +	R02*2.0E-12	Taraborrelli (2013a)
G4339e	TrGC	$+$ HO_2 \rightarrow .15 HCHO $+$.15 $+$.15 OH $+$.85 $+$.15 POHORG	KR02H02*0.520	Taraborrelli (2013a)
G4340e	TrGC	$+ \text{ NO} \rightarrow \text{HCHO} + + \text{ NO}_2$	KR02N0	Taraborrelli (2013a)
G4341e	TrGC	$+ OH \rightarrow HOCH2COCHO + OH + POHORG + POHORG$	ks*fsooh*fco	Taraborrelli (2013a)
G4342e	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$.6*k_CH300H_0H	Taraborrelli (2013a)
G4343e	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2 + \text{POHORG}$	0.9295*1.60E-12*EXP(305./temp)	Taraborrelli (2013a)
G4344e	TrGC	$\rightarrow 0.6 + 0.6$ HCHO + 0.2 + 0.2 HOCH2COCHO	2.00E-12*R02	Taraborrelli (2013a)
G4345e	TrGC	$+ \text{ NO} \rightarrow + \text{HCHO} + \text{ NO}_2$	KR02N0	Taraborrelli (2013a)
G4346e	TrGC	$+ \ {\rm HO}_2 \rightarrow 0.85 \ + \ 0.15 \ + \ 0.15 \ {\rm HCHO} + \ 0.15 \ {\rm OH} + \ .15 \ {\rm POHORG}$	KR02H02*0.520	Taraborrelli (2013a)
G4347e	TrGC	$+ NO_3 \rightarrow + HCHO + NO_2$	KR02N03	Taraborrelli (2013a)
G4348e	TrGC	$+ \text{ OH} \rightarrow + \text{ CO} + \text{H}_2\text{O} + \text{POHORG}$	kt*fo*fco	Taraborrelli (2013a)
G4349e	TrGC	$+ \text{ OH} \rightarrow + \text{ OH} + \text{H}_2\text{O} + \text{POHORG} + \text{POHORG}$	ks*fsooh*fco	Taraborrelli (2013a)
G4350e	TrGC	$+ \text{ OH} \rightarrow + \text{H}_2\text{O} + \text{POHORG}$	0.6*k_CH300H_OH	Taraborrelli (2013a)
G4351e	TrGC	$+ NO_3 \rightarrow + CO + HNO_3$	KNO3AL*2.4	Taraborrelli (2013a)
G4352e	TrGC	$+ \text{ OH} \rightarrow + \text{CO} + \text{POHORG}$	2*kt*fco*fo	Taraborrelli (2013a)
G4353e	TrGC	$+$ OH \rightarrow .72 CO $+$.72 CH_3CHO $+$.72 HO_2 $+$.21 $+$.07	7.6E-11	Hatakeyama et
		$CH_3CHO + .07 HO_2 + .07 CO_2 + POHORG$		(1985), Taraborrelli (2013a)*

Table 1: Gas phase reactions (... continued) rate coefficient 1E-10*acho labels TrGC # G4354e $\frac{\rm reaction}{\rm + OH \rightarrow CO + + POHORG}$ Hatake Hatakeyama et (1985),Taraborrelli (2013a)* Hatakeyama et (1985),Taraborrelli (2013a)* Atkinson (2003)* Rickard and Pascoe (2009)* G4355e TrGC $+ \ \mathrm{OH} \rightarrow \mathrm{CO} + \ + \ \mathrm{POHORG}$ 7.6E-11*acoch3 al. G4400 G4401 TrGC TrGC Rickard and Pascoe (2009) Rickard and Pascoe (2009)* TrGC G4402 TrGNC G4403 G4404 TrGC Rickard and Pascoe (2009)* TrGC Taraborrelli (2013a) G4405e $0.02402 \text{ MGLYOX} + 0.02402 \text{ H}_2\text{O}_2 + 0.007176 + 0.1860$ TrGC TrGC TrGC TrGC 2.6E-12*EXP(610./temp) 3.24E-18*temp*temp*EXP(414./temp) KR02H02*0.625*rcoch2o2_ooh KR02H02*0.625*rcoch2o2_oh Taraborrelli (2013a)* Rickard and Pascoe (2009)* Taraborrelli (2013a) Taraborrelli (2013a) G4406e G4403e G4413 G4414ea G4414eb TrGNC G4415 Rickard and Pascoe (2009)* G4416 TrGC Rickard and Pascoe (2009)* G4417 TrGNC Rickard and Pascoe (2009)* 9

		Table 1: Gas phase react	ions (continued)	
#	labels	reaction	rate coefficient	reference
G4418	TrGNC	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2 + POHORG$	3.2E-11	Orlando et al. (2002)
G4419	TrGNC	$MPAN \rightarrow MACO3 + NO_2$	k PAN M	see note
G4420	TrGC	$\begin{array}{rcl} {\rm LMEKO2} & \rightarrow & 0.538 \ {\rm HCHO} \ + \ 0.538 \ {\rm CO}_2 \ + \ 0.459 \\ {\rm HOCH_2CH_2O_2} \ + \ 0.079 \ {\rm C_2H_5O_2} \ + \ 0.462 \ {\rm CH_3C(O)OO} \ + \\ {\rm 0.462 \ CH_3CHO} \end{array}$	1.483E-12*R02	Rickard and Pascoe $(2009)^\ast$
G4421e	TrGC	$\mathrm{MACR} + \mathrm{OH} \rightarrow .45 \ \mathrm{MACO3} + .55 \ \mathrm{MACRO2} + \mathrm{POHORG}$	8.E-12*EXP(380./temp)	Orlando et (1999b),Taraborrelli (2013a)
G4422e	TrGC	$\begin{array}{l} {\rm MACR}+{\rm O}_3\rightarrow0.5481~{\rm CO}+0.1392~{\rm HO}_2+0.1392~{\rm OH}\\ +0.3219~{\rm HOCH2OOH}+.87~{\rm MGLYOX}+.13~{\rm HCHO}+\\ .13~{\rm OH}+.065~{\rm CO}+.065~{\rm CH}_3{\rm C}({\rm O}){\rm OO}+0.2692\\ {\rm POHORG} \end{array}$	1.36E-15*EXP(-2112./temp)	Taraborrelli (2013a)
G4423	TrGNC	$MACR + NO_3 \rightarrow MACO3 + HNO_3$	KNO3AL*2.0	Rickard and Pascoe (2009)
G4424e	TrGC	$MACO3 \rightarrow .7 + .3 MACO2H$	1.00E-11*R02	Taraborrelli (2013a)
G4425e	TrGC	$MACO3 + HO_2 \rightarrow + OH + POHORG$	KAPHO2*rco3_oh	Taraborrelli (2013a)
G4425et2	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPHO2*rco3_ooh	Taraborrelli (2013a)
G4425et3	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPHO2*rco3_o3	Taraborrelli (2013a)
G4426e	TrGNC	$MACO3 + NO \rightarrow + NO_2$	8.70E-12*EXP(290./temp)	Taraborrelli (2013a)
G4427	TrGNC	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G4428e	TrGNC	$MACO3 + NO_3 \rightarrow + NO_2$	KR02N03*1.60	Taraborrelli (2013a)
G4429e	TrGC	$\rm MACRO2 \rightarrow .7~CH_3COCH_2OH$ $+$.7 HCHO $+$.7 HO_2 $+$.3 MACROH	9.20E-14*R02	Taraborrelli (2013a)
G4430e	TrGC	$MACRO2 + HO_2 \rightarrow + OH + POHORG$	KR02H02*0.625*rcoch2o2_oh	Taraborrelli (2013a)
G4430et2	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	KR02H02*0.625*rcoch2o2 ooh	Taraborrelli (2013a)
G4431e	TrGNC	$MACRO2 + NO \rightarrow .85 + .85 NO_2 + .15$	KRO2NO	Taraborrelli (2013a)
G4432e	TrGNC	$MACRO2 + NO_3 \rightarrow + NO_2$	KR02N03	Taraborrelli (2013a)
G4433ea	TrGC	$MACROOH + OH \rightarrow MACRO2 + POHORG$	0.6*k CH300H 0H	Taraborrelli (2013a)
G4433eb	TrGC	$\begin{array}{l} {\rm MACROOH} + {\rm OH} \rightarrow {\rm CO} + {\rm OH} + {\rm CH_3COCH_2OH} + \\ {\rm POHORG} + {\rm POHORG} \end{array}$	kt*fo*ftch2oh*falk	Taraborrelli (2013a)
G4433ec	TrGC	MACROOH + OH \rightarrow CO + MGLYOX + HO ₂ + POHORG	ks*fsoh*fpch2oh + krohro	Taraborrelli (2013a)
G4434e	TrGC	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kt*fo*ftch2oh*falk	Taraborrelli (2013a)
G4434et2	TrGC	\rightarrow .885 CH_3COCH_2OH + .885 CO + .115 MGLYOX + .115 HCHO + HO_2	KDEC	Taraborrelli (2013a)

#	labels	reaction	rate coefficient	reference
G4435e	TrGC	$\begin{array}{rl} \mathrm{MACO2H} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{HO_2} + \mathrm{CO_2} + \\ \mathrm{POHORG} \end{array}$	(kadt+kadp)*aco2h+kco2h	Taraborrelli (2013a)
G4436e	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	0.6*k_CH300H_OH+(kadt+kadp)*aco2h	Taraborrelli (2013a)
G4437e	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	1.014E-12*R02	Taraborrelli (2013a)*
G4438e	TrGC	$\begin{array}{rcl} LHMVKABO2 &+ HO_2 \rightarrow OH &+ & HOCH_2CHO &+ \\ CH_3C(O)OO &+ & POHORG \end{array}$	KR02H02*0.625*.88*rcoch2o2_oh	Taraborrelli (2013a)
G4438et2	TrGC	$LHMVKABO2 + HO_2 \rightarrow LHMVKABOOH$	KR02H02*0.625*(.12+.88*rcoch2o2_ooh)	Taraborrelli (2013a)
G4439ea	TrGNC	LHMVKABO2 + NO \rightarrow .12 + .88 HOCH ₂ CHO + .88 CH ₃ C(O)OO + .12 HCHO + NO ₂	KR02N0*(10.11)	Taraborrelli (2013a)*
G4439eb	TrGNC	$LHMVKABO2 + NO \rightarrow$	KR02N0*0.11	Taraborrelli (2013a)
G4440e	TrGNC	LHMVKABO2 + NO ₃ \rightarrow .12 MGLYOX + .88 HOCH ₂ CHO + .88 CH ₃ C(O)OO + .12 HCHO + .12 HO ₂ + NO ₂	KR02N03	Taraborrelli (2013a)*
G4441e	TrGC	$LHMVKABOOH + OH \rightarrow .12$ CO2H3CHO + .88 BIACETOH + OH + POHORG + POHORG	0.6*k_CH300H_0H+.12*ks*fsooh*fpch2oh+ .88*kt*ftooh*fpch2oh*fco	Taraborrelli (2013a)*
G4449e	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3 + POHORG$	kt*fo*falk	Taraborrelli (2013a)
G4449et2	TrGC	$CO2H3CHO + OH \rightarrow + HO_2 + H_2O + POHORG$	kt*fco*ftoh*fcho	Taraborrelli (2013a)
G4450	TrGNC	$CO2H3CHO + NO_3 \rightarrow CO2H3CO3 + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G4451e	TrGC	$CO2H3CO3 \rightarrow + CO_2$	1.00E-11*RD2	Taraborrelli (2013a)
G4452e	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + + CO_2 + POHORG$	KAPH02*rco3_oh	Taraborrelli (2013a)
G4452et2	TrGC	$CO2H3CO3 + HO_2 \rightarrow + O_3$	KAPH02*rco3_o3	Taraborrelli (2013a)
G4452et3	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPH02*rco3_ooh	Taraborrelli (2013a)
G4453e	TrGNC	$CO2H3CO3 + NO \rightarrow + NO_2 + CO_2$	KAPNO	Taraborrelli (2013a)
G4454e	TrGNC	$CO2H3CO3 + NO_3 \rightarrow + NO_2 + CO_2$	KR02N03*1.60	Taraborrelli (2013a)
G4455	TrGC	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	kt*fco2h*fco*ftoh+0.6*k_CH3OOH_OH	Taraborrelli (2013a)*
G4455t2	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2 + \text{POHORG}$	kt*fco2h*fco*ftoh+kco2h	Taraborrelli (2013a)
G4456a	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2 + POHORG$	kt*ftoh*falk*fco	Taraborrelli (2013a)
G4456b	TrGC	$HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2 + POHORG$	ks*fsoh*falk	Taraborrelli (2013a)
G4457e	TrGC	$\rightarrow .65 \text{ CH}_3\text{O}_2 + .65 \text{ CO} + .65 \text{ HCHO} + .35 \text{ OH} + .35 \text{ CH}_3\text{COCH}_2\text{O}_2 + \text{CO}_2 + .35 \text{ POHORG}$	KDEC	Taraborrelli (2013a)

		Table 1: Gas phase react	tions (continued)	
#	labels	reaction	rate coefficient	reference
G4458e	TrGC	LHMVKABO2 \rightarrow .88 MGLYOX + .88 HCHO + .12 + .12 CH ₃ C(O)OO + OH + POHORG	KHSD	Taraborrelli (2013a)
G4459e	TrGNC	$MACRO2 \rightarrow MGLYOX + HCHO + OH + POHORG$	KHSB	Taraborrelli (2013a)
G4460e	TrGNC	+ OH \rightarrow .7 MGLYOX + .7 HCOOH + .7 NO ₃ + .3 CO2H3CHO + .3 NO ₂ + H ₂ O + POHORG	5.6E-12	Taraborrelli (2013a)
G4461e	TrGC	$\begin{array}{l} + {\rm OH} \rightarrow .08 \ {\rm CH_3COOH} + .08 \ {\rm HCHO} + .15 \ {\rm NO_3} + .07 \\ {\rm HCOOH} + .07 \ {\rm MGLYOX} + .85 \ {\rm CH_3COCH_2OH} + .85 \ {\rm NO_3} \\ + .93 \ {\rm CO_2} + {\rm H_2O} + {\rm POHORG} \end{array}$	5.E-11	Taraborrelli (2013a)
G4462e	TrGC	\rightarrow .9 + .1 CH_3C(O)OO + .01 GLYOX + .18 CO + .09 HO_2 + OH + POHORG	k16HS	Taraborrelli (2013a)*
G4463e	TrGC	\rightarrow + OH + POHORG	K16HS	Taraborrelli (2013a)
G4500e	TrGC	$ \begin{array}{l} C_{5}H_{8} + O_{3} \rightarrow .3508 \; \mathrm{MACR} + 0.01518 \; \mathrm{MACO2H} + .2440 \\ \mathrm{MVK} + .7088 \; \mathrm{HCHO} + .11\; \mathrm{HOCH2OOH} + .1275 \; \mathrm{CH}_{6} \\ + .1575 \; \mathrm{CH}_{3}\mathrm{C}(\mathrm{O})\mathrm{OO} + .0510 \; \mathrm{CH}_{3}\mathrm{O}_{2} + 0.2625 \; \mathrm{HO}_{2} + \\ .27\; \mathrm{OH} + .09482 \; \mathrm{H}_{0}\mathrm{O}_{2} + .255 \; \mathrm{CO}_{2} + .522 \; \mathrm{CO} + .007182 \\ \mathrm{HCHO} + .03618 + .01782 \; \mathrm{CO} + .27\; \mathrm{OHORG} \end{array} $	1.03E-14*EXP(-1995./temp)	Taraborrelli (2013a)*
G4501e	TrGC	$C_5H_8 + OH \rightarrow .63 + .30 + .07 + POHORG$	2.7E-11*EXP(390./temp)*(1iseg)	Taraborrelli (2013a)*
G4502	TrGNC	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.15E-12*EXP(-450./temp)	Rickard and Pascoe (2009)
G4503e	TrGC	$+ O_2 \rightarrow LISOPACO2$	5.530E-13	Taraborrelli (2013a)*
G4504e	TrGC	$+ O_2 \rightarrow ISOPBO2$	3.E-12	Taraborrelli (2013a)*
G4505e	TrGC	$+ O_2 \rightarrow$	6.780E-13	Taraborrelli (2013a)*
G4506e	TrGC	$+ O_2 \rightarrow ISOPDO2$	3.E-12	Taraborrelli (2013a)*
G4507e	TrGC	$LISOPACO2 \rightarrow + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Taraborrelli (2013a)*
G4508e	TrGC	$ISOPBO2 \rightarrow + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Taraborrelli (2013a)*
G4509e	TrGC	\rightarrow + O ₂	5.65E12*exp(-8410./temp)*.42+ 1.4E14*exp(-9110./temp)*.58	Taraborrelli (2013a)*
G4510e	TrGC	$ISOPDO2 \rightarrow + O_2$	5.0E14*exp(-10120./temp) +8.25E14*exp(-10220/temp)	Taraborrelli (2013a)*
G4511e	TrGC	$LISOPACO2 \rightarrow + HO_2$	K16HS	Taraborrelli (2013a)
G4512e	TrGC	\rightarrow + HO ₂	K16HS	Taraborrelli (2013a)
G4513et3	TrGC	$\mathrm{LISOPACO2} \rightarrow .9 \ \mathrm{LHC4ACCHO} + .8 \ \mathrm{HO}_2 + .1 \ \mathrm{ISOPAOH}$	2.4E-12*R02	Rickard and Pascoe (2009)
G4514t2	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$.706*KR02H02	Rickard and Pascoe (2009)

11	111		rate coefficient	6
# G4515et2	labels TrGNC	reaction LISOPACO2 + NO \rightarrow 0.95 LHC4ACCHO + 0.95 HO ₂ +	rate coemcient KR02N0	reference Lockwood et al. (2010), Tarab
G4515et2		0.95 NO ₂ + .05 LISOPACNO3	KRUZNU	relli (2013a)
G4506et3	TrGNC	$LISOPACO2 + NO_3 \rightarrow LHC4ACCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4507et3	TrGC	\rightarrow .9 LHC4ACCHO + .8 HO ₂ + .1 ISOPAOH	2.4E-12*R02	Rickard and Pascoe (2009)
G4511et3	TrGC	$+ HO_2 \rightarrow LISOPACOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4512et3	TrGNC	+ NO $\rightarrow 0.95$ LHC4ACCHO + 0.95 HO2 + 0.95 NO2 + .05 LISOPACNO3	KR02N0	Lockwood et al. (2010),Tarab relli (2013a)
G4513et4	TrGNC	$+ NO_3 \rightarrow LHC4ACCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4514e	TrGC	LISOPACOOH + OH \rightarrow LISOPACO2 + POHORG	0.6*k_CH300H_OH	Taraborrelli (2013a)
G4514et2	TrGC	$LISOPACOOH + OH \rightarrow + HO_2 + POHORG$	ks*fallyl*fsoh	Taraborrelli (2013a)
G4514et3	TrGC	$\label{eq:lisopacod} \begin{array}{l} \mbox{LISOPACOOH} + \mbox{OH} \rightarrow \mbox{LHC4ACCHO} + \mbox{OH} + \mbox{POHORG} \\ + \mbox{POHORG} \end{array}$	ks*fsooh*fallyl+ krohro	Taraborrelli (2013a)
G4514et4	TrGC	$LISOPACOOH + OH \rightarrow + OH + POHORG + POHORG$	(kadt+kads)*ach2oh*ach2ooh	Taraborrelli (2013a)
G4515	TrGC	$\label{eq:ISOPAOH} \mathrm{ISOPAOH} + \mathrm{OH} \rightarrow \mathrm{LHC4ACCHO} + \mathrm{HO}_2 + \mathrm{POHORG}$	(kadt+kads)*ach2oh*ach2oh+ ks*fsoh*fallyl+krohro	Taraborrelli (2013a)
G4516e	TrGNC	LISOPACNO3 + OH \rightarrow + POHORG	9.5E-11	Paulot et al. (2009a), Taraborr (2013a)
G4517e	TrGC	$ISOPBO2 \rightarrow .8 MVK + .8 HCHO + .8 HO_2 + .2 ISOPBOH$	8.E-13*R02	Rickard and Pascoe (2009)
G4518	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4519e	TrGNC	ISOPBO2 + NO \rightarrow .947 MVK + .947 HCHO + .947 HO2 + .947 NO2 + .053 ISOPBNO3	KR02N0	Lockwood et al. (2010),Tarab relli (2013a)
G4520e	TrGNC	$\begin{array}{l} \mathrm{ISOPBO2} + \mathrm{NO}_3 \rightarrow \mathrm{MVK} + .75 \ \mathrm{HCHO} + .75 \ \mathrm{HO}_2 + .25 \\ \mathrm{CH}_3\mathrm{O}_2 + \mathrm{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)
G4521ea	TrGC	ISOPBOOH + OH \rightarrow + OH + POHORG + POHORG	(kads+kadp)*ach2ooh	Paulot et al. (2009b), Taraborr (2013a)
G4521eb	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2 + POHORG$	0.6*k_CH300H_OH	Taraborrelli (2013a)
G4521ec	TrGC	$\begin{array}{l} {\rm ISOPBOOH} + {\rm O}_3 \rightarrow 0.1368 \ {\rm MACROOH} + 0.1368 \ {\rm H}_{\rm OQ} \\ + 0.2280 \ {\rm HO}_2 + 0.4332 \ {\rm CH}_3 {\rm COCH}_2 {\rm OH} + 0.2280 \ {\rm CO}_2 + \\ 0.6384 \ {\rm OH} + 0.2052 \ {\rm CO} + .57 \ {\rm HCHO} + .43 \ {\rm MACROOH} \\ + 0.06880 \ {\rm OH} + 0.2709 \ {\rm CO} + 0.1591 \\ {\rm HOCH2OOH} + 0.7072 \ {\rm POHORG} \end{array}$	1.E-17	Taraborrelli (2013a)*
G41911	TrGC	ISOPBOOH + OH \rightarrow MGLYOX + HOCH ₂ CHO + POHORG	krohro+ks*falk*fsoh	Taraborrelli (2013a)
G4522e	TrGC	ISOPBOH + OH \rightarrow MVK + .75 HCHO + .75 HO ₂ + .25 CH ₃ O ₂ + POHORG	ks*falk*fsoh+(kadp+kads)*ach2oh	Taraborrelli (2013a)

		Table 1: Gas phase react	ions (continued)	
#	labels	reaction	rate coefficient	reference
G4523e	TrGNC	$ISOPBNO3 + OH \rightarrow + POHORG$	1.3E-11	Paulot et al. (2009a), Taraborre (2013a)
G4524	TrGC	$\rm ISOPDO2 \rightarrow .8~MACR + .8~HCHO + .8~HO_2 + .1~HCOC5 + .1~ISOPDOH$	2.9E-12*R02	Rickard and Pascoe (2009)
G4525	TrGC	$ISOPDO2 + HO_2 \rightarrow ISOPDOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4526e	TrGNC	$\begin{array}{l} \mathrm{ISOPDO2} + \mathrm{NO} \rightarrow .85 \ \mathrm{MACR} + .85 \ \mathrm{HCHO} + .85 \ \mathrm{HO}_2 + \\ .85 \ \mathrm{NO}_2 + .15 \ \mathrm{ISOPDNO3} \end{array}$	KR02N0	Lockwood et al. (2010), Tarabo relli (2013a)
G4527	TrGNC	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4528ea	TrGC	ISOPDOOH + OH \rightarrow + OH + POHORG + POHORG	(kadt+kadp)*ach2ooh	Paulot et al. (2009b),Taraborre (2013a)
G4528eb	TrGC	ISOPDOOH + OH \rightarrow ISOPDO2 + POHORG	0.6*k_CH300H_0H	Taraborrelli (2013a)
G4528ec	TrGC	ISOPDOOH + OH \rightarrow HCOC5 + OH + POHORG + POHORG	kt*ftooh*fallyl*fpch2oh	Taraborrelli (2013a)
G4528ed	TrGC	ISOPDOOH + $OH \rightarrow CH_3COCH_2OH + GLYOX + OH + POHORG + POHORG$	ks*fpch2oh*fsoh	Taraborrelli (2013a)
G45222	TrGC	$\begin{array}{l} {\rm ISOPDOOH}\ +\ {\rm O}_3\ \rightarrow\ 1.393\ {\rm OH}\ +\ 1.393\ {\rm POHORG}\ +\\ {\rm BIACETOH}\ +\ .67\ {\rm HCHO}\ +\ 0.05280\ {\rm HO}_2\ +\ 0.2079\ {\rm CO}\\ +\ 0.1221\ {\rm HOCH2OOH} \end{array}$	1.E-17	Taraborrelli $(2013 \mathrm{a})^*$
G4529e	TrGC	$\rm ISOPDOH + OH \rightarrow \rm HCOC5 + \rm HO_2 + \rm POHORG$	2.*krohro+(kt*ftoh*fallyl+ks*fsoh) *fpch2oh+(kadt+kadp)*ach2oh	Taraborrelli (2013a)
G4530e	TrGNC	$\rm ISOPDNO3+OH\rightarrow+POHORG$	1.3E-11	Paulot et al. (2009a), Taraborre (2013a)
G4531	TrGNC	$NISOPO2 \rightarrow .8 NC4CHO + .6 HO_2 + .2 LISOPACNO3$	1.3E-12*R02	Rickard and Pascoe (2009)
G4532	TrGNC	$NISOPO2 + HO_2 \rightarrow NISOPOOH$.706*KR02H02	Rickard and Pascoe (2009)
G4533	TrGNC	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4534	TrGNC	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G4535	TrGNC	NISOPOOH + OH \rightarrow NC4CHO + OH + POHORG + POHORG	1.03E-10	Rickard and Pascoe (2009)
G4536	TrGNC	$NC4CHO + OH \rightarrow LNISO3 + POHORG$	4.16E-11	Rickard and Pascoe (2009)
G4537e	TrGNC	$\begin{array}{l} {\rm NC4CHO}+O_3\rightarrow.27{\rm NOA}+.027{\rm HCOCO_2H}+.0162\\ {\rm GLYOX}+.0162{\rm H_2O_2}+.1458+.0405{\rm HCOOH}+.0405\\ {\rm CO}+.8758{\rm OH}+.8758{\rm POHORG}+.365{\rm MGLYOX}+.73{\rm NO_2}+0.7705{\rm HCHO}+.4055{\rm CO_2}+.73{\rm GLYOX} \end{array}$	2.40E-17	Taraborrelli (2013a)*
G4538	TrGNC	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G4539	TrGNC	$LNISO3 + HO_2 \rightarrow LNISOOH$.5*.706*KR02H02 + .5*KAPH02	Rickard and Pascoe (2009)

#	labels	reaction	rate coefficient	reference
	TrGNC	$LNISO3 + NO \rightarrow NOA + .5 + .5 CO + .5 HO_2 + NO_2$.5*KAPNO +.5*KRO2NO	Rickard and Pascoe (2009)
		+ .5 CO ₂		
G4541e	TrGNC	LNISO3 + NO ₃ \rightarrow NOA + .5 + .5 CO + .5 HO ₂ + NO ₂ + .5 CO ₂	1.3*KR02N03	Rickard and Pascoe (2009)
G4542	TrGNC	$LNISOOH + OH \rightarrow LNISO3 + POHORG$	2.65E-11	Rickard and Pascoe (2009)
G4543e	TrGC	$LHC4ACCHO + OH \rightarrow LC578O2 + POHORG$	(kadtertprim+kads)*acho*ach2oh	Taraborrelli (2013a)
G4543et2	TrGC	LHC4ACCHO + OH \rightarrow LHC4ACCO3 + POHORG	kcho	Taraborrelli (2013a)
G4543et3	TrGC	$LHC4ACCHO + OH \rightarrow + HO_2 + POHORG$	ks*fsoh*fallyl	Taraborrelli (2013a)
G4544	TrGC	$\begin{array}{l} LHC4ACCHO + O_3 \rightarrow .2225 \ CH_3C(0)OO + .89 \ CO \\ + .0171875 \ HOCH_2CO_2H + .075625 \ H_2O_2 + .0171875 \\ HCOCO_2H + .2775 \ CH_3COCH_2OH + .6675 \ HO_2 + .2603125 \ GIYOX + .2225 \ HCHO + .89 \ OH + .2603125 \\ HOCH_5CHO + .5 \ MGLYOX + .89 \ OHORG \end{array}$	2.40E-17	Rickard and Pascoe (2009)
G4545	TrGNC	$LHC4ACCHO + NO_3 \rightarrow LHC4ACCO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G4546e	TrGC	$LC578O2 \rightarrow .25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ MGLYOX} + .25 + .75 \text{ HOCH}_2\text{CHO} + .75 \text{ HO}_2$	9.20E-14*R02	Rickard and Pascoe (2009)
G4547e	TrGC	$\label{eq:loss_loss} \begin{array}{l} {\rm LC57802+HO_2 \rightarrow MGLYOX+HOCH_2CHO+OH+}\\ {\rm POHORG} \end{array}$	KR02H02*0.706*rcoch2o2_oh	Rickard and Pascoe (2009)
G4547et2	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	KR02H02*0.706*rcoch2o2_ooh	Rickard and Pascoe (2009)
G4548e	TrGNC	$LC578O2 + NO \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25 + .75 HOCH_2CHO + .75 HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)
G4549e	TrGNC	LC578O2 + NO ₃ \rightarrow .25 CH ₃ COCH ₂ OH + .75 MGLYOX + .25 + .75 HOCH ₂ CHO + .75 HO ₂ + NO ₂	KR02N03	Rickard and Pascoe (2009)
G4586e	TrGC	LC57802 \rightarrow .25 CH ₃ COCH ₂ OH + .75 MGLYOX + .25 HOCH ₂ CHO + .75 HOCH ₂ CHO + HO ₂ + OH + POHORG	KHSB	Taraborrelli (2013a)
G4550e	TrGC	$LC578OOH + OH \rightarrow LC578O2 + POHORG$	0.6*k_CH300H_0H	Taraborrelli (2013a)*
G4550et2	TrGC	$LC578OOH + OH \rightarrow + HO_2 + POHORG$	kt*fo*ftch2oh*falk+	Taraborrelli (2013a)*
			kt*ftoh*fpch2oh*fpch2oh+	
			ks*fsoh*fpch2oh	
G4551e	TrGC	LHC4ACCO3 \rightarrow .3 LHC4ACCO2H + .7 OH + .35 MACRO2 + .35 LHMVKABO2 + .7 CO ₂ + .7 POHORG	1.00E-11*R02	Taraborrelli (2013a)*
G4552e	TrGC	LHC4ACCO3 + HO ₂ \rightarrow 2 OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂ + 2 POHORG	KAPHO2*rco3_oh	Taraborrelli (2013a)*
G4552et2	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPHO2*rco3_ooh	Taraborrelli (2013a)

#	labels	reaction	rate coefficient	reference
G4552et3	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO2H + O_3$	KAPHO2*rco3_o3	Taraborrelli (2013a)
G4553e	TrGNC	LHC4ACCO3 + NO \rightarrow .5 MACRO2 + .5 LHMVKABO2 + NO ₂ + CO ₂	KAPNO	Taraborrelli (2013a)*
G4554	TrGNC	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G4555e	TrGNC	LHC4ACCO3 + NO ₃ \rightarrow .5 MACRO2 + .5 LHMVKABO2 + NO ₂ + CO ₂	1.6*KR02N03	Taraborrelli (2013a)*
G4556e	TrGC	LHC4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂ + POHORG + POHORG	2.52E-11	Taraborrelli (2013a)
G4557	TrGC	$LHC4ACCO3H + OH \rightarrow LHC4ACCO3 + POHORG$	2.88E-11	Rickard and Pascoe (2009)
G4558	TrGNC	$LC5PAN1719 \rightarrow LHC4ACCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G4559	TrGNC	$\label{eq:loss_loss} \begin{array}{l} {\rm LC5PAN1719} + {\rm OH} \rightarrow .5 \ {\rm MACROH} + .5 \ {\rm HO12CO3C4} + \\ {\rm CO} + {\rm NO}_2 + {\rm POHORG} \end{array}$	2.52E-11	Rickard and Pascoe (2009)
G4560a	TrGC	$HCOC5 + OH \rightarrow C59O2 + POHORG$	3.81E-11	Rickard and Pascoe (2009)
G4560eb	TrGC	$\begin{array}{l} {\rm HCOC5}+{\rm O}_3\rightarrow {\rm BIACETOH}+.335{\rm H_2O_2}+0.67{\rm HCHO}\\ +0.2079{\rm CO}+0.1221{\rm HOCH2OOH}+0.05280{\rm OH}+\\ 0.0528{\rm POHORG} \end{array}$	7.51E-16*EXP(-1521./temp)	Taraborrelli (2013a)
G4561	TrGC	$C59O2 \rightarrow CH_3COCH_2OH +$	9.20E-14*R02	Taraborrelli (2013a)
G4562e	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + + POHORG$	KR02H02*0.706*rcoch2o2_oh	Taraborrelli (2013a)
G4562et2	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	KR02H02*0.706*rcoch2o2_ooh	Taraborrelli (2013a)
G4563	TrGNC	$C59O2 + NO \rightarrow CH_3COCH_2OH + + NO_2$	KR02N0	Taraborrelli (2013a)
G4564	TrGNC	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + + NO_2$	KR02N03	Taraborrelli (2013a)
G4565	TrGC	$C59OOH + OH \rightarrow C59O2 + POHORG$	9.7E-12	Taraborrelli (2013a)
G4566e	TrGC	$+ \text{ OH} \rightarrow \text{LC578O2} + \text{H}_2\text{O} + \text{POHORG}$	5.78E-11*EXP(-400/temp)	Paulot et al. (2009b), Taraborrel (2013a)
G4567e	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH + POHORG$	KHSB	Taraborrelli (2013a)
G4568e	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH + POHORG$	KHSD	Taraborrelli (2013a)
G4577ea	TrGC	$+ \text{ OH} \rightarrow .6 + .4 + \text{POHORG}$	kadt*acho*ach2ooh	Taraborrelli (2013a)
G4577eb	TrGC	$+ \text{ OH} \rightarrow .6 + .4 + \text{POHORG}$	kads*acho*ach2ooh	Taraborrelli (2013a)
G4577e	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	kt*fo*falk+0.6*k_CH300H_OH	Taraborrelli (2013a)
G4577et2	TrGC	$+ OH \rightarrow OH + + POHORG + POHORG$	ks*fsooh*fallyl	Taraborrelli (2013a)

#	labels	reaction	rate coefficient	reference
G4577et3	TrGC	$+$ O ₃ \rightarrow .4672 OH $+$.2336 $+$.2336 CO $+$.2336	2.4E-17	Taraborrelli (2013a)*
		CH ₃ C(O)OO + .4672 + .1728 MGLYOX + .1901 OH +		
		$.0864 \text{ GLYOX} + .02765 + .02765 \text{ H}_2\text{O}_2 + .02592 \text{ CH}_3\text{OOH}$		
		+ .02592 CO ₂ + .01037 + .01555 HOCH2OOH + .01555		
		CO + .006912 + .2628 OH + .1314 MGLYOX + .1314		
		$OH + .1314 + 0.2628 \text{ GLYOX} + .0972 \text{ CH}_3 COCH_2 O_2 H$		
		+ .00972 HCOCO ₂ H + .005832 GLYOX + .005832 H ₂ O ₂		
		+ .05249 OH + .05249 + .01458 HCHO + .01458 CO ₂ +		
		.01458 HCOOH + .01458 CO+ 1.104 POHORG		
G4578e	TrGC	\rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 + .22 CO2H3CHO + .22	8.00E-13*R02	Taraborrelli (2013a)
		HCHO + .22 OH + .22 POHORG		
G4579e	TrGC	+ NO \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 + .22 CO2H3CHO	KR02N0	Taraborrelli (2013a)
		+ .22 HCHO + .22 OH + .22 POHORG + NO ₂		T 1 1 (2010.)
G4580e	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.706	Taraborrelli (2013a)
G4580ea	TrGC	\rightarrow CH ₃ COCH ₂ O ₂ H + GLYOX + OH + POHORG	KHSB	Taraborrelli (2013a)
G4581e	TrGC	\rightarrow OH + + POHORG	K15HSDHB	Taraborrelli (2013a)
G4581et2	TrGC TrGC	$+ OH \rightarrow + OH + POHORG + POHORG$	ks*fsooh*fpch2oh	Taraborrelli (2013a)
G4581et3	IrGC	$+ OH \rightarrow CH_3COCH_2O_2H + OH + 2 CO + 2 HO_2 + POHORG + POHORG$	kt*iton*ipch2on*ipch2on	Taraborrelli (2013a)
G4581et4	TrGC	$+ OH \rightarrow + POHORG$	0.6*k_CH300H_0H	Taraborrelli (2013a)
G4581et6	TrGC	\rightarrow MGLYOX + + HO ₂	2.90E-12*R02	Taraborrelli (2013a)
G4581et7	TrGC	$+ \text{NO} \rightarrow \text{MGLYOX} + + \text{HO}_2 + \text{NO}_2$	KR02N0	Taraborrelli (2013a)
G4581et8	TrGC	$+$ HO ₂ \rightarrow .5 CH ₃ C(O)OO $+$.5 CO $+$.5 MGLYOX $+$.5		Taraborrelli (2013a)*
01001000	1100	HO ₂ +		fuluborieni (2010a)
G4581et9	TrGC	\rightarrow MGLYOX + OH + + POHORG	KHSD	Taraborrelli (2013a)
G4581et10	TrGC	\rightarrow .625 MGLYOX + 2 CO + 1.625 HO ₂ + .375	K15HSDHB	Taraborrelli (2013a)*
		$CH_3C(O)OO + .375 CO_2 + OH + POHORG$		
G4582e	TrGC	$LHC4ACCO3 \rightarrow + HO_2$	K16HS	Taraborrelli (2013a)
G4583e	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	2*kt*fo*falk+(kadt+kads)*acho*acho	Taraborrelli (2013a)
G4584e	TrGC	$+ HO_2 \rightarrow OH + POHORG + MGLYOX +$	KR02H02*0.706*rcoch2o2_oh	Taraborrelli (2013a)
G4584et2	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.706*rcoch2o2_ooh	Taraborrelli (2013a)
G4585e	TrGC	$+ \text{ NO} \rightarrow \text{NO}_2 + \text{MGLYOX} +$	KR02N0	Taraborrelli (2013a)
G4585et2	TrGC	\rightarrow MGLYOX +	8.00E-13*R02	Taraborrelli (2013a)
G4585et3	TrGC	+ OH \rightarrow MGLYOX + 2 CO + .5 OH + POHORG + .5		Taraborrelli (2013a)*
		POHORG	kt*ftoh*fcho*fpch2oh	

		Table 1: Gas phase react	ions (continued)	
#	labels	reaction	rate coefficient	reference
G4587e	TrGC	+ NO \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12C03C4 + .49 HCHO + .49 NO ₂ + .045 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 + .225 H ₂ O ₂ + NO ₂	KR02N0	Taraborrelli (2013a)
G4587et2	TrGC	→ .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12CO3C4 + .49 HCHO + .49 NO ₂ + .045 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 + .225 H ₂ O ₂	8.00E-13*R02+KR02H02*0.706*c(ind_H02)	Taraborrelli (2013a)
G4587et3	TrGC	$+$ NO \rightarrow .6 CH ₃ COCH ₂ OH + .6 HOCH ₂ CHO + .26 + .14 + .4 HCHO + .4 HO ₂ + 1.6 NO ₂	KR02N0	Taraborrelli (2013a)
G4587et4	TrGC	\rightarrow .6 CH ₃ COCH ₂ OH + .6 HOCH ₂ CHO + .26 + .14 + .4 HCHO + .4 HO ₂ + .6 NO ₂	2.9E-12*R02+KR02H02*0.706*c(ind_H02)	Taraborrelli (2013a)
G4588e	TrGNC	$ \begin{array}{l} LISOPACN03 + \bar{O}_3 \rightarrow .8704 \ OH + .365 \ HO_2 + .73 \\ MGLYOX + .4325 + .135 \ CH_2OH0675 \ GLYOX \\ + .4325 \ NO_2 + .0891 \ H_2O_2 + .135 \ NOA + .0675 + .3866 \\ HOCH_2CHO + .0405 \ CH_3OH + .0405 \ CO + .0054 + .8704 \\ POHORG \end{array} $	4.E-16	Taraborrelli (2013a)
G4599e	TrGC	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4.829E-16	Taraborrelli (2013a)
G4598et3	TrGC	+ OH \rightarrow .62 CO2H3CHO + .62 OH + .62 CO ₂ + .38 MGLYOX + .38 HCOCO ₃ H + .38 HO ₂ + POHORG + .62 POHORG	kadt*acho*aco2h	Taraborrelli (2013a)*
G4598et4	TrGC	$+ \text{OH} \rightarrow .62 + 1.24 \text{ CO} + 1.24 \text{ HO}_2 + .38 + .38 \text{ CO} + .38 \text{ HO}_2 + .38 \text{ OH} + .38 \text{ CO}_2 + \text{POHORG} + .38 \text{ POHORG}$	kads*acho*aco2h	Taraborrelli (2013a)*
G41311	TrGC	\rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂	2.40E-12*R02	Taraborrelli (2013a)
G41341	TrGC	+ NO \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂ + NO ₂	KRO2NO	Taraborrelli (2013a)
G41351t2	TrGC	$+$ HO ₂ \rightarrow .7143 MACR $+$.2857 MVK $+$ HCHO $+$ HO ₂	KR02H02*0.706	Taraborrelli (2013a)
G41361	TrGC	+ NO ₃ \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂ + NO ₂	KR02N03	Taraborrelli (2013a)
G41378	TrGC	\rightarrow	9.39E9*EXP(-7322/temp)	Taraborrelli (2013a)

#	labels	reaction	rate coefficient	reference
# G41341t2	TrGC	\rightarrow .7143 MACR + .2857 MVK + HCHO + OH +		Taraborrelli (2013a)
G41341t2	IIGU	\rightarrow .7145 MACR + .2857 MVR + HCHO + OH + POHORG	./143*ABD+.200/*ABB	Taraborrein (2015a)
G413112	TrGC	\rightarrow + HO ₂	8.00E-13*R02	Taraborrelli (2013a)
G413416	TrGC	$+ NO \rightarrow + HO_2 + NO_2$	KR02N0	Taraborrelli (2013a)*
G413519	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.706	Taraborrelli (2013a)
G413618	TrGC	$+ NO_3 \rightarrow + HO_2 + NO_2$	KR02N03	Taraborrelli (2013a)
G413417	TrGC	\rightarrow + OH + POHORG	KHSB	Taraborrelli (2013a)
G413619	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	0.6*k_CH3OOH_OH	Taraborrelli (2013a)
G413621	TrGC	$+ \text{ OH} \rightarrow \text{MGLYOX} + 2 \text{ CO} + 2 \text{ HO}_2 + \text{POHORG}$	kt*ftoh*falk*fpch2oh	Taraborrelli (2013a)*
G413622	TrGC	+ OH \rightarrow .8405 HCHO + .8405 OH + .8405 CO2H3CHO + .1595 + .1595 HO ₂ + POHORG + .8405 POHORG	ks*fsoh*falk+ks*fsooh*falk	Taraborrelli (2013a)
G4136	TrGC	$+ OH \rightarrow CH_3C(O)OO + CO_2 + 2 HCHO + POHORG$	kt*fo*ftch2oh	Taraborrelli (2013a) [*]
G413610	TrGC	$+ OH \rightarrow GLYOX + CH_3C(O)OO + HCHO + POHORG$	ks*fcho*fsooh	Taraborrelli (2013a)
G41361t2	TrGC	$+ \text{ OH} \rightarrow \text{MGLYOX} + \text{GLYOX} + \text{HO}_2 + \text{POHORG}$	ks*fco*fsooh	Taraborrelli (2013a)
G45mbo1	TrGC	+ OH \rightarrow	8.1E-12*EXP(610/TEMP)	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo2	TrGC	+ O_3 \rightarrow HCHO + .16 CH_3COCH_3 + .16 HO_2 + .16 CO + .16 OH + .84	1.0E-17*0.57	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo3	TrGC	$+$ O ₃ \rightarrow $+$.63 CO $+$.37 HOCH2OOH $+$.16 OH $+$.16 HO ₂	1.0E-17*0.43	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo4	TrGC	$+$ NO ₃ \rightarrow	4.6E-14*EXP(-400/TEMP)	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo5	TrGC	$+$ HO ₂ \rightarrow	KR02H02*0.706	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo6	TrGC	+ NO \rightarrow	KRO2NO*(0.064+0.026)/2.	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo7	TrGC	$+ \mathrm{NO} \rightarrow \mathrm{HOCH_2CHO} + \mathrm{CH_3COCH_3} + \mathrm{HO_2} + \mathrm{NO_2}$	KR02N0*(0.936+0.974)/2.*.67	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo8	TrGC	$+$ NO \rightarrow $+$ HCHO $+$ HO ₂ $+$ NO ₂	KR02N0*(0.936+0.974)/2.*.33	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo9	TrGC	$\rightarrow \rm HOCH_2CHO + CH_3COCH_3 + HO_2$	8.8E-13*R02*.67	Rickard and Pascoe (20 Taraborrelli (2013b)
G45mbo10	TrGC	\rightarrow + HCHO + HO ₂	8.8E-13*R02*.33	Rickard and Pascoe (20 Taraborrelli (2013b)

		Table 1: Gas phase re	eactions (continued)	
#	labels	reaction	rate coefficient	reference
G45mbo11	TrGC	$+ \text{ OH} \rightarrow + \text{ OH}$.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (200
				Taraborrelli (2013b) [*]
G45mbo12	TrGC	$+ \text{ OH} \rightarrow$.6*k_CH300H_OH	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo13	TrGC	$+ h\nu \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)*.67	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo14	TrGC	$+ h\nu \rightarrow + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)*.33	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo15	TrGC	$+ \text{ OH} \rightarrow + \text{NO}_2$.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (200
				Taraborrelli (2013b)*
G45mbo16	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2$	3.79E-12	Rickard and Pascoe (2009)
G45mbo17	TrGC	$+ h\nu \rightarrow HCHO + HO_2 +$	J_ACETOL	Rickard and Pascoe (2009)
G45mbo18	TrGC	$+ \text{ OH} \rightarrow \text{CO} +$	1.38E-11	Rickard and Pascoe (2009)
G45mbo19	TrGC	$+ h\nu \rightarrow CO + HO_2 +$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
G45mbo20	TrGC	$+ \text{ OH} \rightarrow$	1.4E-11	Rickard and Pascoe (2009)
G45mbo21	TrGC	$+ h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	J_ACETOL	Rickard and Pascoe (2009)
G45mbo22	TrGC	$+ HO_2 \rightarrow CH_3COCH_3 + HO_2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo23	TrGC	$+ HO_2 \rightarrow + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo24	TrGC	$+ HO_2 \rightarrow$	KAPH02*rco3_ooh	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo25	TrGC	$+ \text{ NO} \rightarrow \text{CH}_3\text{COCH}_3 + \text{HO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G45mbo26	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45mbo27	TrGC	$+ NO_3 \rightarrow CH_3COCH_3 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45mbo28	TrGC	$\rightarrow CH_3COCH_3 + HO_2$	1.00E-11*R02*0.7	Rickard and Pascoe (2009)
G45mbo29	TrGC	\rightarrow	1.00E-11*RD2*0.3	Rickard and Pascoe (2009)
G45mbo30	TrGC	$+ \text{ OH} \rightarrow \text{CH}_3\text{COCH}_3 + \text{HO}_2$	1.72E-12	Rickard and Pascoe (2009)
G45mbo31	TrGC	$+ h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)
G45mbo32	TrGC	$OH + \rightarrow$	4.80E-12	Rickard and Pascoe (2009)
G45mbo33	TrGC	\rightarrow + NO ₂	K_PAN_M	Rickard and Pascoe (2009)
G45mbo34	TrGC	$+ OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G45mbo35	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.706	Rickard and Pascoe (200
				Taraborrelli (2013b)

		Table 1: Gas phase react	ions (continued)	
#	labels	reaction	rate coefficient	reference
	TrGC	$+ \text{ NO} \rightarrow .65 + .65 \text{ CH}_3 \text{COCH}_3 + .65 \text{ HO}_2 + .35 + .35$	KR02N0	Rickard and Pascoe (200
		$HCHO + .35 NO_2 + NO_2$		Taraborrelli (2013b)
G45mbo37	TrGC	$+ NO_3 \rightarrow .65 + .65 CH_3COCH_3 + .65 HO_2 + .35 + .35$	KR02N03	Rickard and Pascoe (200
		$HCHO + .35 NO_2 + NO_2$		Taraborrelli (2013b)
G45mbo38	TrGC	$\rightarrow .65 + .65 \text{ CH}_3\text{COCH}_3 + .65 \text{ HO}_2 + .35 + .35 \text{ HCHO}$	8.8E-13*R02	Rickard and Pascoe (200
		+ .35 NO ₂		Taraborrelli (2013b)
G45mbo39	TrGC	$+ \text{ OH} \rightarrow .65 + .35 + \text{ OH}$.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo40	TrGC	$+ \text{ OH} \rightarrow$.6*k_CH3OOH_OH	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo41	TrGC	$+ h\nu \rightarrow + CH_3COCH_3 + HO_2 + OH$	1.14*jx(ip_CH3OOH)*.65	Rickard and Pascoe (200
			5 1 -	Taraborrelli (2013b)
G45mbo42	TrGC	$+ h\nu \rightarrow + HCHO + NO_2 + OH$	1.14*jx(ip_CH300H)*.35	Rickard and Pascoe (200
			5 1 1 2 1 2 2	Taraborrelli (2013b)
G45mbo43	TrGC	$+ \text{ OH} \rightarrow \text{CH}_3\text{COCH}_3 + \text{HCHO} + \text{CO}_2 + \text{NO}_2$	1.23E-12	Rickard and Pascoe (200
				Taraborrelli (2013b)*
G45mbo44	TrGC	$+ \text{ OH} \rightarrow$	4.26E-12	Rickard and Pascoe (2009)
G45mbo45	TrGC	$+ HO_2 \rightarrow + NO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo46	TrGC	$+ HO_2 \rightarrow$	KAPHO2*(rco3_o3+rco3_ooh)	Rickard and Pascoe (200
		-		Taraborrelli (2013b)
G45mbo47	TrGC	$+ NO \rightarrow + NO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45mbo48	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45mbo49	TrGC	$+ NO_3 \rightarrow + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45mbo50	TrGC	$\rightarrow + NO_2$	1.00E-11*RD2	Rickard and Pascoe (2009)
G45mbo51	TrGC	$+ \text{ OH} \rightarrow$	4.50E-12	Rickard and Pascoe (2009)
G45mbo52	TrGC	\rightarrow + NO ₂ + OH	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)
G45mbo53	TrGC	$+ \text{OH} \rightarrow + \text{CO} + \text{NO}_2 + \text{NO}_2$	1.27E-12	Rickard and Pascoe (2009)
G45mbo54	TrGC	$\rightarrow + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G45mbo55	TrGC	\rightarrow	1.60E-17*C(ind_H2D)*(0.08+0.15)	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo56	TrGC	$\rightarrow + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (200
				Taraborrelli (2013b)
G45mbo57	TrGC	$+ CO \rightarrow$	1.20E-15	Rickard and Pascoe (2009)
G45mbo58	TrGC	$+ NO \rightarrow + NO_2$	1.00E-14	Rickard and Pascoe (2009)

		Table 1: C	I	
#	labels	reaction	rate coefficient	reference
G45mbo59	TrGC	$+ NO_2 \rightarrow + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G45mbo60	TrGC	$+ SO_2 \rightarrow + H_2SO_4$	7.00E-14	Rickard and Pascoe (2009)
G410apin1	TrGC	+ OH \rightarrow	1.47E-11*EXP(467/TEMP)*(.50+.25)	Vereecken et al. (2007), Tarah relli (2013b)*
G410apin2	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2$	1.47E-11*EXP(467/TEMP)*.25*.60	Vereecken et al. (2007), Tarab relli (2013b)*
G410apin3	TrGC	+ OH \rightarrow	1.47E-11*EXP(467/TEMP)*.25*.40	Vereecken et al. (2007), Tarab relli (2013b)*
G410apin4	TrGC	$+ \text{ NO} \rightarrow + \text{HO}_2$	KR02N0*0.770	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin5	TrGC	+ NO \rightarrow	KR02N0*0.230	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin6	TrGC	$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin7	TrGC	\rightarrow + HO ₂	R02*(.33*9.20E-14+.67*8.80E-13)	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin9	TrGC	$+ \text{ OH} \rightarrow .33 \ + .67$.33*1.83E-11+.67*3.28E-11	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin10	TrGC	$+ \ h\nu \rightarrow \ + \ HO_2 + \ OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin11	TrGC	$+ \ \mathrm{OH} \rightarrow .33 \ + .67 \ + \ \mathrm{NO}_2$.33*5.50E-12+.67*3.64E-12	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apin12	TrGC	+ OH \rightarrow	(kads+kadt)*acoch3	Vereecken et al. (2007), Tarab relli (2013b)
G410apin13	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Vereecken et al. (2007), Tarab relli (2013b)
G410apin14	TrGC	$+ \mathrm{NO} \rightarrow + \mathrm{HO}_2 + \mathrm{NO}_2$	KRO2NO	Vereecken et al. (2007), Tarab relli (2013b)
G410apin15	TrGC	$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.914	Vereecken et al. (2007), Tarab relli (2013b)
G410apin16	TrGC	\rightarrow + HO ₂	R02*9.20E-14	Vereecken et al. (2007), Tarah relli (2013b)
G410apin17	TrGC	+ OH \rightarrow LCARBON	1E-11	Vereecken et al. (2007), Taral relli (2013b)

#	labels	reaction	rate coefficient	reference
G410apin18	TrGC	$+ h\nu \rightarrow LCARBON + OH$	1.14*jx(ip_CH300H)	Vereecken et al. (2007), Tara
				relli (2013b)
G410apin18t2	TrGC	$+ \text{ OH} \rightarrow$	4.20E-11*0.772	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apin19	TrGC	$+ \text{ OH} \rightarrow$	4.20E-11*0.228	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apin20	TrGC	\rightarrow + CO + HO ₂	jx(ip_HOCH2CHO)	Rickard and Pascoe (2)
	m aa			Taraborrelli (2013b)
G410apin21	TrGC	$+ NO_3 \rightarrow + HNO_3$	3.80E-14	Rickard and Pascoe (2)
G410apin	TrGC	$\rightarrow 0.3 + 0.7$	1.00E-11*R02	Taraborrelli (2013b) Rickard and Pascoe (2
ичтоярти	IIGU	$\rightarrow 0.0 \pm 0.1$	1.00E=11*R02	Taraborrelli (2013b)
G410apint2	TrGC	$+ HO_2 \rightarrow$	KAPHO2*rco3 ooh	Rickard and Pascoe (2
0410ap11162	1100	1 110/2 7	NAI 102-1003_001	Taraborrelli (2013b)
G410apint3	TrGC	$+ HO_2 \rightarrow + O_3$	KAPHD2*rco3 o3	Rickard and Pascoe (2
		2		Taraborrelli (2013b)
G410apint4	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2
-				Taraborrelli (2013b)
G410apint5	TrGC	$+ \text{ NO}_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint6	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KAPNO	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint7	TrGC	$+ NO_3 \rightarrow + NO_2$	KR02N03*1.60	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint8	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint9	TrGC	$+ \text{OH} \rightarrow + \text{CO} + \text{NO}_2$	3.66E-12	Rickard and Pascoe (2 Taraborrelli (2013b)
G410apint10	TrGC	\rightarrow	1.30E-12*R02	Rickard and Pascoe (2)
u+roapintio	1160	\neg	1.30E-12*RU2	Taraborrelli (2013b)
G410apint11	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.157	Rickard and Pascoe (2)
	1100		11102110 - 01201	Taraborrelli (2013b)
G410apint12	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.890	Rickard and Pascoe (2)
				Taraborrelli (2013b)

		Table 1. Ga	s phase reactions (continued)		
#	labels	reaction	rate coefficient	reference	
G410apint13	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0*0.843	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint14	TrGC	$+ h\nu \rightarrow + NO_2$	J_IC3H7NO3+J_ACETOL	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint15	TrGC	$+ \text{OH} \rightarrow + \text{NO}_2$	2.88E-12	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint16	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH3OOH)+J_ACETOL	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint17	TrGC	$+ \text{ OH} \rightarrow$	1.90E-12*EXP(190/TEMP)	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint18	TrGC	$+ \text{ OH} \rightarrow + \text{ OH}$	1.30E-11	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint19	TrGC	\rightarrow	6.70E-15*R02	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint20	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint21	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.890	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint22	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe	(200)
				Taraborrelli (2013b)	
G410apint23	TrGC	$+ \text{ OH} \rightarrow$	1.05E-11	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint24	TrGC	\rightarrow + CH ₃ COCH ₃	6.70E-15*R02	Rickard and Pascoe	(200)
				Taraborrelli (2013b)	
G410apint25	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.118	Rickard and Pascoe	(200)
				Taraborrelli (2013b)	
G410apint26	TrGC	$+ \text{ NO} \rightarrow + \text{CH}_3\text{COCH}_3 + \text{NO}_2$	KR02N0*0.882	Rickard and Pascoe	(2009)
				Taraborrelli (2013b)	
G410apint27	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.890	Rickard and Pascoe	(200)
				Taraborrelli (2013b)	
G410apint28	TrGC	$+ h\nu \rightarrow + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe	(2009)
				Taraborrelli (2013b)	(
G410apint29	TrGC	$+ \text{ OH} \rightarrow$	2.05E-11	Rickard and Pascoe Taraborrelli (2013b)	(200)

#	labels	reaction	rate coefficient	reference
G410apint30	TrGC	$+ \text{ OH} \rightarrow$	6.65E-12	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint31	TrGC	$+ h\nu \rightarrow + HO_2$	J_ACETOL	Rickard and Pascoe (200
	m a a			Taraborrelli (2013b)
G410apint32	TrGC	$+ \text{ OH} \rightarrow$	2.64E-11	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint33	TrGC	$+ h\nu \rightarrow + CO + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (200
G410apint55	IIGC	$+ \text{ II} \nu \rightarrow + \text{CO} + \text{HO}_2$	JX(IP_HUCH2CHU)	Taraborrelli (2013b)
G410apint34	TrGC	$+ NO_3 \rightarrow + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (200
0410ap11004	1100	1 1103 7 1 11103	INDOAL+0.0	Taraborrelli (2013b)
G410apint35	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (200
			J	Taraborrelli (2013b)
G410apint36	TrGC	$+ \text{ OH} \rightarrow$	9.73E-12	Rickard and Pascoe (200
-				Taraborrelli (2013b)
G410apint37	TrGC	\rightarrow	1.00E-11*R02	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint38	TrGC	$+ NO \rightarrow + NO_2$	KAPNO	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint39	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint40	TrGC	$+ HO_2 \rightarrow$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (200
	m a a			Taraborrelli (2013b)
G410apint41	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint42	TrGC	\rightarrow	6.70E-15*R02	Rickard and Pascoe (200
G410apint42	IIGC	\rightarrow	6.70E=15*R02	Taraborrelli (2013b)
G410apint43	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.859	Rickard and Pascoe (200
0410ap11040	1100	1102 /	RI02102+0.000	Taraborrelli (2013b)
G410apint44	TrGC	$+ NO \rightarrow + NO_2$	KR02N0	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint45	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (200
				Taraborrelli (2013b)
G410apint46	TrGC	$+ \text{ OH} \rightarrow + \text{ CO} + \text{ NO}_2$	6.60E-12	Rickard and Pascoe (200
				Taraborrelli (2013b)

		Table 1: Gas	· · · /	
#	labels	reaction	rate coefficient	reference
G410apint47	TrGC	\rightarrow + OH	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint48	TrGC	+ OH \rightarrow	1.02E-11	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint49	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint50	TrGC	+ OH \rightarrow	1.29E-11	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint51	TrGC	\rightarrow + CH ₃ COCH ₃	6.70E-15*R02	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint52	TrGC	$+ \text{ NO} \rightarrow + \text{CH}_3\text{COCH}_3 + \text{NO}_2$	KR02N0	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint53	TrGC	$+$ HO ₂ \rightarrow	KR02H02*0.859	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint54	TrGC	$+ h\nu \rightarrow + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+ jx(ip_HOCH2CH0)	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint55	TrGC	+ OH \rightarrow	3.45E-11	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint56	TrGC	$+$ HO ₂ \rightarrow	KR02H02*0.914	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint57	TrGC	+ NO \rightarrow	KR02N0*0.050	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint58	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0*0.950	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint59	TrGC	\rightarrow	6.70E-15*R02	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint60	TrGC	+ OH \rightarrow	2.75E-11	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint61	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint62	TrGC	$+ \ \mathrm{OH} \rightarrow \ + \ \mathrm{CH}_3 \mathrm{COCH}_3 + \mathrm{NO}_2$	2.25E-11	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint63	TrGC	$+ h\nu \rightarrow + NO_2$	J_IC3H7NO3+jx(ip_HOCH2CH0)	Rickard and Pascoe (20 Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410apint64	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint65	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.125	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint66	TrGC	$+ \text{ NO} \rightarrow + \text{CH}_3\text{COCH}_3 + \text{NO}_2$	KR02N0*0.875	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint67	TrGC	\rightarrow + CH ₃ COCH ₃	6.70E-15*R02	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint68	TrGC	$+ \text{ OH} \rightarrow$	8.01E-11	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint69	TrGC	$+ h\nu \rightarrow + CH_3COCH_3 + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint70	TrGC	$+ \text{ OH} \rightarrow + \text{CH}_3\text{COCH}_3 + \text{NO}_2$	7.03E-11	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint71	TrGC	$+ h\nu \rightarrow + CH_3COCH_3 + NO_2$	J_IC3H7NO3+ jx(ip_HOCH2CHO)	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint72	TrGC	$+ NO_3 \rightarrow + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint73	TrGC	$+ \text{ OH} \rightarrow$	6.70E-11	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint74	TrGC	$+ h\nu \rightarrow + CH_3C(O)OO$	<pre>2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint75	TrGC	$+ HO_2 \rightarrow$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2
-		-		Taraborrelli (2013b)
G410apint76	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2
•				Taraborrelli (2013b)
G410apint77	TrGC	$+ NO \rightarrow + NO_2$	KAPNO	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint78	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2
•		-		Taraborrelli (2013b)
G410apint79	TrGC	\rightarrow	1.00E-11*R02	Rickard and Pascoe (2
•				Taraborrelli (2013b)
G410apint80	TrGC	$+ \text{ OH} \rightarrow$	4.75E-12	Rickard and Pascoe (2
•				Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410apint81	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint82	TrGC	$+$ HO ₂ \rightarrow	KR02H02*0.770	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint83	TrGC	$+$ NO \rightarrow $+$ HCHO $+$ NO ₂	KR02N0	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint84	TrGC	\rightarrow + HCHO	2.00E-12*R02	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint85	TrGC	$+ \text{ OH} \rightarrow + \text{ CO} + \text{ NO}_2$	8.83E-13	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint86	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (2009) Taraborrelli (2013b)
G410apint87	TrGC	+ OH \rightarrow	1.01E-11	Rickard and Pascoe (2009) Taraborrelli (2013b)
G410apint88	TrGC	+ h $\nu \rightarrow$ + HCHO + OH	1.14*jx(ip_CH300H)+ 2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint89	TrGC	$+$ HO ₂ \rightarrow	KR02H02*0.820	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint90	TrGC	$+ \text{ NO} \rightarrow + \text{CH}_3\text{C}(\text{O})\text{OO} + \text{NO}_2$	KR02N0	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint91	TrGC	\rightarrow + CH ₃ C(O)OO	8.80E-13*R02	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint92	TrGC	$+ \text{ OH} \rightarrow + \text{ OH}$	1.20E-10	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint93	TrGC	$+~h\nu \rightarrow ~+~CH_3C(O)OO~+~OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint94	TrGC	\rightarrow CH ₃ C(O)OO +	8.80E-13*R02	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint95	TrGC	$+ \ \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{OO} + \ + \ \mathrm{NO}_2$	KR02N0	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint96	TrGC	$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.706	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410apint97	TrGC	$+ \ h\nu \rightarrow CH_3C(O)OO + \ + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2009 Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410apint98	TrGC	$+ \text{OH} \rightarrow$	7.49E-11	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint99	TrGC	$+ \text{ OH} \rightarrow$	4.29E-11	Rickard and Pascoe (2)
	m aa			Taraborrelli (2013b)
G410apint100	TrGC	$+ h\nu \rightarrow + HO_2 + CO$	jx(ip_HOCH2CHO)*2	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint101	THEC	$+ NO_3 \rightarrow + HNO_3$	2*KN03AL*2.4	Rickard and Pascoe (2)
0410apintiti	1160	$+$ $MO_3 \rightarrow +$ MMO_3	Z*RNUSHL*2.4	Taraborrelli (2013b)
G410apint102	TrGC	\rightarrow + HCHO + HO ₂	8.80E-13*R02	Rickard and Pascoe (2)
diioupinoioz	1100	, + nono + no ₂		Taraborrelli (2013b)
G410apint103	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.098	Rickard and Pascoe (2)
-				Taraborrelli (2013b)
G410apint104	TrGC	$+ \text{ NO} \rightarrow + \text{HCHO} + \text{HO}_2 + \text{NO}_2$	KR02N0*0.902	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint105	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.770	Rickard and Pascoe (2)
	m aa			Taraborrelli (2013b)
G410apint106	TrGC	$+ h\nu \rightarrow + HCHO + HO_2 + NO_2$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2)
G410apint107	T -00	$+ \text{ OH} \rightarrow + \text{ NO}_2$	7.11E-12	Taraborrelli (2013b) Rickard and Pascoe (2)
G410ap1nt107	IIGU	$+ \text{OH} \rightarrow + \text{NO}_2$	7.11E=12	Taraborrelli (2013b)
G410apint108	TrGC	$+ h\nu \rightarrow + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)+2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2)
			J J J	Taraborrelli (2013b)
G410apint109	TrGC	$+ \text{OH} \rightarrow + \text{OH}$	8.69E-11	Rickard and Pascoe (2)
•				Taraborrelli (2013b)
G410apint110	TrGC	$+ h\nu \rightarrow + HOCH_2CO_3$	J_ACETOL	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint111	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2$	3.22E-12	Rickard and Pascoe (2)
	m aa	GT ((0)00 · T(CTO · CO		Taraborrelli (2013b)
G410apint112	TrGC	\rightarrow CH ₃ C(O)OO + HCHO + CO	2.00E-12*R02	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint113	THEC	$+ HO_2 \rightarrow$	KR02H02*0.625	Rickard and Pascoe (2)
0410apintii3	1160	$+1102 \rightarrow$	RR02R02*0.025	Taraborrelli (2013b)
G410apint114	TrGC	$+ \text{ NO} \rightarrow \text{CH}_3\text{C}(\text{O})\text{OO} + \text{HCHO} + \text{CO} + \text{NO}_2$	KR02N0	Rickard and Pascoe (2)
r		1.100 . 01.30(0)00 . 10110 . 00 . 1.02		Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
# G410apint115	TrGC	$+ OH \rightarrow + OH$	ks*fco*fsooh	Rickard and Pascoe (2
0410apintiis	1160	+ 011 -> + 011	KS*100*1500H	Taraborrelli (2013b)
G410apint116	Tree	$+ \text{ OH} \rightarrow$.6*k_CH3OOH_OH	Rickard and Pascoe (2
ditoapinciio	1100		.0*k_0h30bh_bh	Taraborrelli (2013b)
G410apint117	TrGC	$+ h\nu \rightarrow + OH + HO_2$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2
diroupinoiri	1100	1 110 / 1 011 1 1102	1.11. Ja (1p_onoodn)	Taraborrelli (2013b)
G410apint118	Tree	$+ h\nu \rightarrow CH_3C(O)OO + CO + OH + HCHO$	J_ACETOL	Rickard and Pascoe (2
diluapinciio	1100	1 110 7 61136(0)00 1 60 1 611 1 116110	3_ROLIDE	Taraborrelli (2013b)
G410apint119	TrGC	$+ h\nu \rightarrow CH_3C(O)OO + HCOCO_3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2
diioupinoiio	1100	+ m	2.10 Ja (1p_ndbion)	Taraborrelli (2013b)
G410apint120	TrGC	$+ \text{OH} \rightarrow + \text{CO}$	1.33E-11	Rickard and Pascoe (2
r				Taraborrelli (2013b)
G410apint121	TrGC	$+ h\nu \rightarrow + CO + HO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2
			5 1 1 1	Taraborrelli (2013b)
G410apint122	TrGC	$+ NO_3 \rightarrow + CO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2
-				Taraborrelli (2013b)
G410apint123	TrGC	$+ \text{ OH} \rightarrow$	6.65E-11	Rickard and Pascoe (2
-				Taraborrelli (2013b)
G410apint124	TrGC	$+ h\nu \rightarrow + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint125	TrGC	$+ h\nu \rightarrow CH_3C(O)OO +$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint126	TrGC	$+ NO_3 \rightarrow + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint127	TrGC	\rightarrow	1.00E-11*R02	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint128	TrGC	$+ NO \rightarrow + NO_2$	KAPNO	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint129	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint130	TrGC	$+ HO_2 \rightarrow$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2
	maa			Taraborrelli (2013b)
G410apint131	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2 Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference	
G410apint132	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe	(20
				Taraborrelli (2013b)	
G410apint133	TrGC	$+ h\nu \rightarrow$	4.23E-12	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint134	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint135	TrGC	$+ \text{ OH} \rightarrow + \text{ CO} + \text{ NO}_2$	3.12E-13	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint136	TrGC	$\rightarrow 0.7 + 0.3$	1.00E-11*R02	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint137	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KAPNO	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint138	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint139	TrGC	$+ HO_2 \rightarrow$	KAPH02*rco3_ooh	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint140	TrGC	$+ HO_2 \rightarrow + O_3$	KAPH02*rco3_o3	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint141	TrGC	$+ HO_2 \rightarrow + CO_2 + OH$	KAPH02*rco3_oh	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint142	TrGC	\rightarrow + NO ₂	k_PAN_M		(20)
				Taraborrelli (2013b)	
G410apint143	TrGC	$+ \text{ OH} \rightarrow \text{GLYOX} + \text{CO} + \text{NO}_2$	2.10E-11	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint144	TrGC	$+ \text{ OH} \rightarrow$	2.14E-11	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint145	TrGC	$+ h\nu \rightarrow + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint146		$+ O_3 \rightarrow$	1.01E-15*EXP(-732/TEMP)*.50*.18	Capouet et al. (2008)	
G410apint147	TrGC	$+ O_3 \rightarrow$	1.01E-15*EXP(-732/TEMP)*.50*.16	Capouet et al. (2008)	
G410apint148		$+ O_3 \rightarrow OH + + CO + HO_2$	1.01E-15*EXP(-732/TEMP)*.50*.66	Capouet et al. (2008)	
G410apint149		$+ O_3 \rightarrow$	1.01E-15*EXP(-732/TEMP)*.50*.12	Capouet et al. (2008)	
G410apint150	TrGC	$+ O_3 \rightarrow OH +$	1.01E-15*EXP(-732/TEMP)*.50*(.22+.66)	Capouet et al. (2008)*	
G410apint151	TrGC	\rightarrow + H ₂ O ₂	1.00E-17*c(ind_H2D)		(20)
				Taraborrelli (2013b)	

			Gas phase reactions (continued)	
#	labels	reaction	rate coefficient	reference
G410apint152	TrGC	$+ CO \rightarrow$	1.20E-15	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint153	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	1.00E-14	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint154	TrGC	$+ \mathrm{NO}_2 \rightarrow + \mathrm{NO}_3$	1.00E-15	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint155	TrGC	$+$ SO ₂ \rightarrow $+$ H ₂ SO ₄	7.00E-14	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint156	TrGC	\rightarrow	1.00E-17*c(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint157	TrGC	$\rightarrow + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint158	TrGC	+ CO \rightarrow	1.20E-15	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint159	TrGC	$+ \mathrm{NO} \rightarrow + \mathrm{NO}_2$	1.00E-14	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint160	TrGC	$+ \ \mathrm{NO}_2 \rightarrow \ + \ \mathrm{NO}_3$	1.00E-15	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint161	TrGC	$+ {\rm ~SO}_2 \rightarrow \ + {\rm H}_2 {\rm SO}_4$	7.00E-14	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint162	TrGC	\rightarrow + HCHO	2.00E-12*R02	Rickard and Pascoe (2) Taraborrelli (2013b)*
G410apint163	TrGC	$+ \ \rm NO \rightarrow \ + \rm HCHO + \rm NO_2$	KR02N0	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint164	TrGC	$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint165	TrGC	$\rightarrow ~+{\rm HCHO} + {\rm OH}$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint166	TrGC	+ OH \rightarrow + OH	5.47E-11	Rickard and Pascoe (2)
G410apint167	TrGC	+ h ν $\rightarrow~$ + HCHO + OH	J_ACETOL	Taraborrelli (2013b) Rickard and Pascoe (2 Taraborrelli (2013b)
G410apint168	TrGC	$+ \text{ OH} \rightarrow + \text{CO}$	5.47E-11	Rickard and Pascoe (2) Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
	TrGC	$+ h\nu \rightarrow + CO + HO_2$	jx(ip_MGLYOX)+jx(ip_HOCH2CHO)	Rickard and Pascoe (2
				Taraborrelli (2013b)
G410apint170	TrGC	$\rightarrow .56 + .14 + 0.3$	1.00E-11*R02	Rickard and Pascoe (2)
G410apint171	T -00	$+ HO_2 \rightarrow$	KAPHO2*rco3_ooh	Taraborrelli (2013b) Rickard and Pascoe (2)
G410apint1/1	IIGU	$+ HO_2 \rightarrow$	KAPHU2*rcos_00n	Taraborrelli (2013b)
G410apint172	TrGC	$+ HO_2 \rightarrow + O_3$	KAPHO2*rco3 o3	Rickard and Pascoe (2)
Giloupinoiti	1100	1 1102 / 1 03	1111102-1000_00	Taraborrelli (2013b)
G410apint173	TrGC	$+ HO_2 \rightarrow .80 + 0.20 + OH$	KAPH02*rco3_oh	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint174	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint175	TrGC	$+$ NO \rightarrow 0.80 $+$ 0.20 $+$ NO ₂	KAPNO	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint176	TrGC	$+ \text{ OH} \rightarrow 0.80 + 0.20$	2.69E-11	Rickard and Pascoe (2)
	m aa		. (Taraborrelli (2013b)
G410apint177	TrGC	$+ h\nu \rightarrow 0.80 + 0.20 + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2)
G410apint178	T -00	$\rightarrow 0.80 + 0.20 + OH$	1.14*jx(ip_CH3OOH)+jx(ip_HOCH2CHO)	Taraborrelli (2013b) Rickard and Pascoe (2)
G410apint178	IIGU	$\rightarrow 0.80 + 0.20 + OH$	1.14*JX(1p_chSuuh)+JX(1p_huch2chu)	Taraborrelli (2013b)
G410apint179	TrGC	$+ \text{ OH} \rightarrow$	3.00E-11	Rickard and Pascoe (2)
Giloupinoiro	1100		0.001 11	Taraborrelli (2013b)
G410apint180	TrGC	$\rightarrow + NO_2$	k PAN M	Rickard and Pascoe (2)
1 1				Taraborrelli (2013b)
G410apint181	TrGC	$+ \text{ OH} \rightarrow \text{CH}_3\text{COCH}_3 + + \text{CO} + \text{NO}_2$	2.52E-11	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint182	TrGC	$\rightarrow 0.7 + 0.3$	1.00E-11*RD2	Rickard and Pascoe (2)
				Taraborrelli (2013b)
G410apint183	TrGC	$+ HO_2 \rightarrow$	KAPHO2*rco3_ooh	Rickard and Pascoe (2)
0410	T -00		VADU00+22	Taraborrelli (2013b) Dishand and Damas (2)
G410apint184	IIGU	$+ HO_2 \rightarrow + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2) Taraborrelli (2013b)
G410apint185	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2)
0-110apinci00	1100	+102 $+ 01$	1.RI HUZ#1 C03_0H	Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
# G410apint186	TrGC	$+ NO \rightarrow + NO_2$	KAPNO	Rickard and Pascoe (20
0410ap10100	1160	$\pm 100 \rightarrow \pm 1002$	KAFNU	Taraborrelli (2013b)
G410apint187	Tree	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (20
0410apincio/	1160	$+ 102 \rightarrow$	K_013003_102	Taraborrelli (2013b)
G410apint188	Tree	$+ \text{ OH} \rightarrow$	7.29E-12	Rickard and Pascoe (20
0410ap110100	1100		1.201 12	Taraborrelli (2013b)
G410apint189	Tree	\rightarrow	1.30E-12*R02	Rickard and Pascoe (20
0410ap1110109	1160	\rightarrow	1.30E-12*R02	Taraborrelli (2013b)
G410apint190	Tree	$+ HO_2 \rightarrow$	KR02H02*0.859	Rickard and Pascoe (20
0410apinc150	1100	102 /	111021102**0.000	Taraborrelli (2013b)
G410apint191	TrGC	$+ NO \rightarrow + NO_2$	KR02N0	Rickard and Pascoe (20
unioupinoioi	1100	1 100 7 1 102	mozno	Taraborrelli (2013b)*
G410apint192	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (20
diroupinoioz	1100	1 110 7 1 011	1.11. Ja (1p_0n000n)	Taraborrelli (2013b)
G410apint193	TrGC	$+ \text{ OH} \rightarrow$	1.04E-11	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint194	TrGC	\rightarrow + NO ₂	k PAN M	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint195	TrGC	$+ \text{OH} \rightarrow + \text{CO} + \text{NO}_2$	6.77E-12	Rickard and Pascoe (20
-				Taraborrelli (2013b)
G410apint196	TrGC	\rightarrow	9.20E-14*R02	Rickard and Pascoe (20
-				Taraborrelli (2013b)*
G410apint197	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint198	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.859	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint199	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint200	TrGC	$+ \text{ OH} \rightarrow$	1.09E-11	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint201	TrGC	\rightarrow CH ₃ COCH ₃ +	6.70E-15*R02	Rickard and Pascoe (20
				Taraborrelli (2013b)*
G410apint202	TrGC	$+ \text{ NO} \rightarrow \text{CH}_3\text{COCH}_3 + + \text{NO}_2$	KRO2NO	Rickard and Pascoe (20 Taraborrelli (2013b)*

#	labels	reaction	rate coefficient	reference
G410apint203	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.859	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint204	TrGC	$+ h\nu \rightarrow CH_3COCH_3 + + OH$	1.14*jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (20 Taraborrelli (2013b)
G410apint205	TrGC	$+ \text{ OH} \rightarrow$	1.86E-11	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint206	TrGC	$+ NO_3 \rightarrow + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint207	TrGC	$+ \text{ OH} \rightarrow$	2.63E-11	Rickard and Pascoe (20
•				Taraborrelli (2013b)
G410apint208	TrGC	\rightarrow + CO + HO ₂	jx(ip_HOCH2CHO)	Rickard and Pascoe (20
-			5 1 -	Taraborrelli (2013b)
G410apint209	TrGC	$+ HO_2 \rightarrow$	KAPHO2*rco3 ooh	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint210	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint211	TrGC	$+ HO_2 \rightarrow + O_3$	KAPHD2*rco3_o3	Rickard and Pascoe (20
-				Taraborrelli (2013b)
G410apint212	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KAPNO	Rickard and Pascoe (20
-				Taraborrelli (2013b)
G410apint213	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint214	TrGC	$+ NO_3 \rightarrow + NO_2$	KR02N03*1.74	Rickard and Pascoe (20
		· · · · · · · ·		Taraborrelli (2013b)
G410apint215	TrGC	\rightarrow	1.00E-11*R02*0.7	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint216	TrGC	\rightarrow	1.00E-11*RD2*0.3	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint217	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.820	Rickard and Pascoe (20
		· · · ·		Taraborrelli (2013b)
G410apint218	TrGC	$+ NO \rightarrow + NO_2$	KR02N0	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint219	TrGC	\rightarrow	1.30E-12*RD2	Rickard and Pascoe (20
				Taraborrelli (2013b)

# labels G410apint220 TrGC G410apint221 TrGC	reaction $+ \text{OH} \rightarrow$	rate coefficient	reference
		9.65E-12	Rickard and Pascoe (200
G410apint221 TrGC			Taraborrelli (2013b)
	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200
		J=	Taraborrelli (2013b)
G410apint222 TrGC	$+ \text{ OH} \rightarrow$	6.57E-12	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint223 TrGC	$+ \text{OH} \rightarrow + \text{CO} + \text{NO}_2$	2.96E-12	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint224 TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint225 TrGC	$+ \text{ OH} \rightarrow$	1.27E-11	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint226 TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH3OOH)	Rickard and Pascoe (200
		5 1-	Taraborrelli (2013b)
G410apint227 TrGC	$+ HO_2 \rightarrow$	KR02H02*0.820	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint228 TrGC	$+ \text{ NO} \rightarrow \text{CH}_3\text{COCH}_3 + + \text{NO}_2$	KRO2NO	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint229 TrGC	\rightarrow CH ₃ COCH ₃ +	6.70E-15*R02	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint230 TrGC	$+ \text{ OH} \rightarrow$	3.31E-11	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint231 TrGC	$+ h\nu \rightarrow CH_3COCH_3 + + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint232 TrGC	$+ HO_2 \rightarrow$	KR02H02*0.625	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint233 TrGC	$+ \text{ NO} \rightarrow + \text{HO}_2 + \text{NO}_2$	KR02N0	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint234 TrGC	\rightarrow + HO ₂	8.80E-13*R02	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint235 TrGC	$+ \text{ OH} \rightarrow$	7.46E-11	Rickard and Pascoe (200
			Taraborrelli (2013b)
G410apint236 TrGC	$+ h\nu \rightarrow + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (200

#	labels	reaction	rate coefficient	reference
G410apint237	TrGC	\rightarrow	1.30E-12*R02	Rickard and Pascoe (200
G410apint238	TrGC	$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.706	Taraborrelli (2013b)* Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint239	TrGC	$+ \ \rm NO \rightarrow \ + \ \rm NO_2$	KR02N0	Rickard and Pascoe (200 Taraborrelli (2013b)*
G410apint240	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint241	TrGC	$+ \ \mathrm{OH} \rightarrow \ + \ \mathrm{OH}$	1.01E-10	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint242	TrGC	\rightarrow GLYOX +	8.80E-13*R02	Rickard and Pascoe (200 Taraborrelli (2013b)*
G410apint243	TrGC	$+ \ \mathrm{NO} \rightarrow \mathrm{GLYOX} + \ + \ \mathrm{NO}_2$	KR02N0	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint244		$+ \ {\rm HO}_2 \rightarrow$	KR02H02*0.706	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint245	TrGC	+ OH \rightarrow	1.33E-10	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint246	TrGC	$+ h\nu \rightarrow + CO + HO_2$	jx(ip_HOCH2CH0)*2	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint247	TrGC	$+ \text{ NO}_3 \rightarrow + \text{ HNO}_3$	2*KN03AL*5.5	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint248		$+ h\nu \rightarrow GLYOX + + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint249		$+ \text{ OH} \rightarrow + \text{ OH}$	9.23E-11	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint250		\rightarrow	1.00E-11*R02	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint251		$+$ HO ₂ \rightarrow	KAPH02	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint252		$+ {\rm NO}_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint253	TrGC	$+ NO \rightarrow + NO_2$	KAPNO	Rickard and Pascoe (200 Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference	
G410apint254	TrGC	\rightarrow + HCHO	2.00E-12*R02		(200
				Taraborrelli (2013b)	
G410apint255	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.625	Rickard and Pascoe	(20)
*		-		Taraborrelli (2013b)	
G410apint256	TrGC	$+ \text{ NO} \rightarrow + \text{HCHO} + \text{NO}_2$	KR02N0	Rickard and Pascoe	(20)
-				Taraborrelli (2013b)	
G410apint257	TrGC	$+ OH \rightarrow + CO + CO$	2.64E-11	Rickard and Pascoe	(20)
				Taraborrelli (2013b)	
G410apint258	TrGC	$+ h\nu \rightarrow + HO_2 + CO + CO$	jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)		(20
-				Taraborrelli (2013b)	
G410apint259	TrGC	$+ \text{ OH} \rightarrow$	8.33E-11	Rickard and Pascoe	(200)
-				Taraborrelli (2013b)	
G410apint260	TrGC	$+ h\nu \rightarrow + HCHO + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe	(20)
-			+J_ACETOL	Taraborrelli (2013b)	
G410apint261	TrGC	$+ \text{ OH} \rightarrow$	7.55E-11	Rickard and Pascoe	(20)
-				Taraborrelli (2013b)	
G410apint262	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+jx(ip_HOCH2CH0)	Rickard and Pascoe	(20)
-			+J_ACETOL	Taraborrelli (2013b)	
G410apint263	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe	(200)
-				Taraborrelli (2013b)	
G410apint264	TrGC	$+ OH \rightarrow + CO + NO_2$	7.19E-11	Rickard and Pascoe	(200)
-				Taraborrelli (2013b)	
G410apint265	TrGC	$+ \text{ OH} \rightarrow$	3.39E-11	Rickard and Pascoe	(200)
-				Taraborrelli (2013b)	
G410apint266	TrGC	$+ h\nu \rightarrow + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint267	TrGC	$+ h\nu \rightarrow + HO_2 + CO$	jx(ip_MGLYOX)	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint268	TrGC	$+ NO_3 \rightarrow + HNO_3$	2*KNO3AL*4.0	Rickard and Pascoe	(200
				Taraborrelli (2013b)	
G410apint269	TrGC	\rightarrow	1.00E-11*R02		(200
				Taraborrelli (2013b)	
G410apint270	TrGC	$+ HO_2 \rightarrow$	KAPHO2*rco3_ooh	Rickard and Pascoe	(200
				Taraborrelli (2013b)	

#	labels	reaction	rate coefficient	reference
G410apint271	TrGC	$+ HO_2 \rightarrow + OH$	KAPHO2*(1-rco3_ooh)	Rickard and Pascoe (20)
•				Taraborrelli (2013b)
G410apint272	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint273	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KAPNO	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint274	TrGC	$+ \text{ OH} \rightarrow$	1.63E-11	Rickard and Pascoe (20)
				Taraborrelli (2013b)
G410apint275	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint276	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint277	TrGC	$+ \text{ OH} \rightarrow + \text{ CO} + \text{ NO}_2$	1.27E-11	Rickard and Pascoe (20)
				Taraborrelli (2013b)*
G410apint278	TrGC	$\rightarrow 0.7 \text{ HOCH}_2\text{CH}_2\text{O}_2 + 0.3$	1.00E-11*R02	Rickard and Pascoe (20)
	maa	NO HOOL CHO NO	V 1 D V 0	Taraborrelli (2013b)
G410apint279	TrGC	$+ \text{ NO} \rightarrow \text{HOCH}_2\text{CH}_2\text{O}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (20)
	maa	HO	WARWOO. 0 1	Taraborrelli (2013b) Rickard and Pascoe (20
G410apint280	TrGC	$+ HO_2 \rightarrow$	KAPHO2*rco3_ooh	Rickard and Pascoe (20) Taraborrelli (2013b)
G410apint281	T-00	$+ HO_2 \rightarrow HOCH_2CH_2O_2 + OH$	KAPHO2*rco3 oh	Rickard and Pascoe (20)
0410ap1110201	noc	$+ 102 \rightarrow 1001201202 + 011$	KAPH02*1003_0H	Taraborrelli (2013b)
G410apint282	TYCC	$+ HO_2 \rightarrow + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (20)
G410apint262	IIGC	$+ HO_2 \rightarrow + O_3$	KAPHU2*FC03_03	Taraborrelli (2013b)
G410apint283	TrCC	$+ NO_2 \rightarrow$	k CH3CO3 NO2	Rickard and Pascoe (20
0410ap1110200	1100	1102 /	k_00000_002	Taraborrelli (2013b)
G410apint284	TrCC	$+ \text{ OH} \rightarrow \text{HOCH}_2\text{CH}_2\text{O}_2$	1.39E-11	Rickard and Pascoe (20
041082110204	1100	011 / 110011201202	1.555 11	Taraborrelli (2013b)
G410apint285	TrGC	$+ \text{ OH} \rightarrow$	1.73E-11	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410apint286	TrGC	$+ h\nu \rightarrow HOCH_2CH_2O_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (20
÷				Taraborrelli (2013b)
G410apint287	TrGC	\rightarrow + NO ₂	k_PAN_M	Rickard and Pascoe (20
				Taraborrelli (2013b)

Table 1: Gas phase reactions (continued)					
#	labels	reaction	rate coefficient	reference	
G410apint288	TrGC	$+ \text{ OH} \rightarrow \text{HOCH}_2\text{CHO} + \text{CO} + \text{NO}_2$	4.51E-12	Rickard and Pascoe (2)	
				Taraborrelli (2013b)	
G410apint289	TrGC	$+ NO_3 \rightarrow$	1.2E-12*EXP(490./temp)	Rickard and Pascoe (2)	
				Taraborrelli (2013b)	
G410apint290	TrGC	\rightarrow + NO ₂	(.65*6.70E-15+.35*2.50E-13)*R02	Rickard and Pascoe (2)	
				Taraborrelli (2013b)	
G410apint291	TrGC	$+ \text{NO} \rightarrow + \text{NO}_2 + \text{NO}_2$	KR02N0	Rickard and Pascoe (2)	
				Taraborrelli (2013b)	
G410apint292	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (2)	
				Taraborrelli (2013b)	
G410apint293	TrGC	$+ NO_3 \rightarrow + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2)	
	m aa			Taraborrelli (2013b)	
G410apint294	TrGC	$+ h\nu \rightarrow + NO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2)	
	maa	OIL		Taraborrelli (2013b)	
G410apint295	IrGC	$+ \text{ OH} \rightarrow$.65*6.87E-12+.35*1.23E-11	Rickard and Pascoe (20	
	TrGC	$+ \text{ OH} \rightarrow$		Taraborrelli (2013b)* Vereecken and Peeters (2012	
G410bpin	IIGU	$+ \text{OH} \rightarrow$	1.47E-11*EXP(467/TEMP)*(0.8326*0.3+ 0.068)/(0.8326+0.068)	vereecken and Feeters (2012	
G410bpint2	TrGC	$+ \text{ OH} \rightarrow$	1.47E-11*EXP(467/TEMP)*0.8326*0.7/	Vereecken and Peeters (2012	
04100p11102	1160	+ 011 ->	(0.8326+0.068)	vereecken and reeters (2012	
G410bpint3	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (2)	
G410bpints	IIGU	$+ HO_2 \rightarrow$	KRU2RU2*0.914	Taraborrelli (2013b)	
G410bpint4	TrGC	$+ NO \rightarrow$	KR02N0*0.240	Rickard and Pascoe (2)	
04100pinc4	1160	+ NO ->	KR02N0*0.240	Taraborrelli (2013b)	
G410bpint5	TrGC	$+ \text{ NO} \rightarrow + \text{HCHO} + \text{HO}_2 + \text{NO}_2$	KR02N0*0.760	Rickard and Pascoe (20	
0110021100	1100	1.10 / 1.1010 / 1102 / 1102	11102110 - 017 00	Taraborrelli (2013b)	
G410bpint6	TrGC	\rightarrow + HCHO + HO ₂	9.20E-14*B02	Rickard and Pascoe (20	
				Taraborrelli (2013b)	
G410bpint7	TrGC	$+ \text{ OH} \rightarrow$	1.33E-11	Rickard and Pascoe (20	
		• • •		Taraborrelli (2013b)	
G410bpint8	TrGC	$+ h\nu \rightarrow + HCHO + HO_2 + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (20	
			5 . 1 =	Taraborrelli (2013b)	
G410bpint9	TrGC	$+ \text{ OH} \rightarrow + \text{HCHO} + \text{NO}_2$	4.70E-12	Rickard and Pascoe (2)	
-		-		Taraborrelli (2013b)	

#	labels	reaction	rate coefficient	reference
G410bpint10	TrGC	$+ \text{ NO} \rightarrow + \text{CH}_3\text{COCH}_3 + \text{NO}_2$	KR02N0*0.892	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint11	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.108	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint12	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint13	TrGC	\rightarrow + CH ₃ COCH ₃	1.60E-13*R02	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint14	TrGC	\rightarrow	5.68E10*exp(-8745/TEMP)	Vereecken and Peeters (201
				Taraborrelli (2013b)*
G410bpint15	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0*0.890	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint16	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.110	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint17	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.820	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint18	TrGC	\rightarrow	2.50E-13*R02	Vereecken and Peeters (201
				Taraborrelli (2013b)
G410bpint19	TrGC	\rightarrow + HO ₂	5.7E10*exp(-2949/TEMP)	Vereecken and Peeters (201)
-			-	Taraborrelli (2013b)*
G410bpint20	TrGC	\rightarrow + OH	9.17E10*exp(-8706/TEMP)	Vereecken and Peeters (201)
-			-	Taraborrelli (2013b)*
G410bpint21	TrGC	$+ NO \rightarrow + NO_2$	KR02N0*0.747	Vereecken and Peeters (201)
-		_		Taraborrelli (2013b)
G410bpint22	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.253	Vereecken and Peeters (201
-				Taraborrelli (2013b)
G410bpint23	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Vereecken and Peeters (201
• • •				Taraborrelli (2013b)
G410bpint24	TrGC	\rightarrow	8.80E-13*R02	Vereecken and Peeters (201
-				Taraborrelli (2013b)
G410bpint25	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0*0.893	Vereecken and Peeters (201
-				Taraborrelli (2013b)
G410bpint26	TrGC	$+ \text{ NO} \rightarrow$	KR02N0*0.107	Vereecken and Peeters (201)
-				Taraborrelli (2013b)

	labels	reaction	rate coefficient	reference
# G410bpint27	TrGC	reaction $+ HO_2 \rightarrow$	rate coemcient KR02H02*0.914	Vereecken and Peeters (2012
G4105p1nt27	IFGC	$+ HO_2 \rightarrow$	KRU2HU2*0.914	Taraborrelli (2013b)
G410bpint28	TrGC	\rightarrow	5.00E-12*R02	Vereecken and Peeters (2012
04100p111028	1160		5.00E-12*R02	Taraborrelli (2013b)
G410bpint29	TrGC	$+ \text{ OH} \rightarrow$	1.55E-11	Lewis et al. (2005), Ricka
		1 000 1		and Pascoe (2009), Taraborre
				(2013b)
G410bpint30	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.890	Rickard and Pascoe (2009
-				Taraborrelli (2013b)
G410bpint31	TrGC	$+ \text{ NO} \rightarrow + \text{ NO}_2$	KR02N0	Rickard and Pascoe (2009
				Taraborrelli (2013b)
G410bpint32	TrGC	\rightarrow	2.00E-12*R02	Rickard and Pascoe (2009
				Taraborrelli (2013b)
G410bpint33	TrGC	$+ \text{ OH} \rightarrow + \text{ OH}$	2.63E-11	Rickard and Pascoe (2009
	maa		4.44.5.(). (2000000)	Taraborrelli (2013b)
G410bpint34	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410bpint35	TrGC	$+ \text{ OH} \rightarrow$	3.07E-12	Rickard and Pascoe (2009
04100p111035	1160	$\pm 011 \rightarrow$	3.07E-12	Taraborrelli (2013b)
G410bpint36	TrGC	$+$ O ₃ \rightarrow $+$.63 CO $+$.37 HOCH2OOH $+$.16 OH $+$.16	1 5E-17* 051/(1- 027)	Nguyen et al. (2009), Tarabo
diioopinooo	1100	HO ₂	1.02 11.001/(1.021/)	relli (2013b)
G410bpint37	TrGC	$+ O_3 \rightarrow$	1.5E-17*.368/(1027)	Nguyen et al. (2009), Tarabo
1 1				relli (2013b)
G410bpint38	TrGC	$+ O_3 \rightarrow + OH$	1.5E-17*.283/(1027)	Nguyen et al. (2009), Tarabo
-				relli (2013b)
G410bpint40	TrGC	$+ O_3 \rightarrow + CO_2$	1.5E-17*(.104+.167)/(1027)	Nguyen et al. (2009), Tarabo
				relli (2013b)*
G410bpint41	TrGC	$+ \text{ OH} \rightarrow$	3.04E-12	Rickard and Pascoe (2009
				Taraborrelli (2013b)
G410bpint42	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.859	Rickard and Pascoe (2009
	maa	$+ \text{ NO} \rightarrow$	V720010 - 0 4 00	Taraborrelli (2013b) Rickard and Pascoe (2009
G410bpint43	TrGC	$+ NO \rightarrow$	KR02N0*0.138	Rickard and Pascoe (2009 Taraborrelli (2013b)
G410bpint44	TrGC	$+ NO \rightarrow + NO_2$	KR02N0*0.862	Rickard and Pascoe (2009
04100p1fit44	1100	$\pm 100 \rightarrow \pm 1002$	RR0280#0.002	Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410bpint45	TrGC	\rightarrow	2.50E-13*R02	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410bpint46	TrGC	$+ \text{ OH} \rightarrow + \text{ OH}$	1.62E-11	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410bpint47	TrGC	$+ h\nu \rightarrow + OH$	1.14*jx(ip_CH300H)	Rickard and Pascoe (20
	maa			Taraborrelli (2013b)
G410bpint48	TrGC	$+ \text{ OH} \rightarrow + \text{NO}_2$	1.84E-12	Rickard and Pascoe (20
	maa	. 200		Taraborrelli (2013b)
G410bpint49	TrGC	\rightarrow + NO ₂	J_IC3H7NO3	Rickard and Pascoe (20
0410b=i=+50	TrGC	$+ \text{ OH} \rightarrow$	2.045 10	Taraborrelli (2013b) Bishand and Bassas (20
G410bpint50	IrGC	$+ \text{OH} \rightarrow$	3.94E-12	Rickard and Pascoe (20
	maa		0.007 (0. (1.) 707)	Taraborrelli (2013b) Rickard and Pascoe (20
G410bpint51	TrGC	\rightarrow + H ₂ O ₂	6.00E-18*c(ind_H2D)	Rickard and Pascoe (2) Taraborrelli (2013b)
G410bpint52	TrGC	$+ CO \rightarrow$	1.2E-15	Rickard and Pascoe (20
G4105p1nt52	IFGC	$+$ CO \rightarrow	1.2E=15	Taraborrelli (2013b)
G410bpint53	TrGC	$+ NO \rightarrow + NO_2$	1.E-14	Rickard and Pascoe (20
04100p111003	1160	$\pm NO \rightarrow \pm NO_2$	1.6-14	Taraborrelli (2013b)
G410bpint54	TrGC	$+ NO_2 \rightarrow + NO_3$	1.E-15	Rickard and Pascoe (20
04100p111004	1100	1102 / 1103	1.1. 10	Taraborrelli (2013b)
G410bpint55	TrGC	$+ SO_2 \rightarrow + H_2SO_4$	7.E-14	Rickard and Pascoe (20
dirobpinooo	1100	1 552 7 1 12554		Taraborrelli (2013b)
G410bpint56	TrGC	$+ NO_3 \rightarrow$	2.51E-12	Rickard and Pascoe (20
		1		Taraborrelli (2013b)
G410bpint57	TrGC	$+ HO_2 \rightarrow$	KR02H02*0.914	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410bpint58	TrGC	$+ \text{ NO} \rightarrow + \text{HCHO} + \text{NO}_2 + \text{NO}_2$	KRO2NO	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410bpint59	TrGC	$+ NO_3 \rightarrow + HCHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (20
•				Taraborrelli (2013b)
G410bpint60	TrGC	\rightarrow + HCHO + NO ₂	9.20E-14*R02*0.7	Rickard and Pascoe (20
				Taraborrelli (2013b)
G410bpint61	TrGC	\rightarrow	9.20E-14*R02*0.3	Rickard and Pascoe (20
				Taraborrelli (2013b)*

#	labels	reaction	rate coefficient	reference
G410bpint62	TrGC	$+ \text{ OH} \rightarrow$	9.58E-12	Rickard and Pascoe (200
G410bpint63	TrGC	$+ h\nu \rightarrow + HCHO + NO_2 + OH$	1.14*jx(ip_CH300H)	Taraborrelli (2013b) Rickard and Pascoe (200 Taraborrelli (2013b)
G410apint296	TrGC	+ OH \rightarrow	8.7E-11*(.50+.25)	Wolfe et al. (2011), Taraborr (2013b)*
G410apint297	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2$	8.7E-11*.25*.60	(2013b) Wolfe et al. (2011), Taraborr (2013b)
G410apint298	TrGC	+ OH \rightarrow	8.7E-11*.25*.40	Wolfe et al. (2011), Taraborre (2013b)
G410apint299	TrGC	$+ O_3 \rightarrow$	2.E-16*.50*.18	Wolfe et al. (2011), Taraborre (2013b)
G410apint300		$+ O_3 \rightarrow$	2.E-16*.50*.16	Wolfe et al. (2011), Taraborre (2013b)
G410apint301		$+ O_3 \rightarrow OH + + CO + HO_2$	2.E-16*.50*.66	Wolfe et al. (2011), Taraborre (2013b)
G410apint302		$+ O_3 \rightarrow$	2.E-16*.50*.12	Wolfe et al. (2011), Taraborre (2013b)
G410apint303		$+ O_3 \rightarrow OH +$	2.E-16*.50*(.22+.66)	Wolfe et al. (2011), Taraborre (2013b)*
G410apint304		$+ \mathrm{NO}_3 \rightarrow$	9.5E-12	Wolfe et al. (2011), Taraborre (2013b)
G410myrc	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	9.19E-12*exp(1071./temp)*0.64	Hites and Turner (2009), C lando et al. (2000), Taraborre (2013b)
G410myrct2	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	9.19E-12*exp(1071./temp)*0.36	Hites and Turner (2009), C lando et al. (2000), Taraborre (2013b)
G410myrct3	TrGC	+ O ₃ \rightarrow .25 CH ₃ COCH ₃ + .75 OH + .75 CH ₃ COCH ₂ O ₂ + + .75 POHORG	4.7E-16	Atkinson and Arey (2003 Taraborrelli (2013b)
G410myrct4	TrGNC	$+ \mathrm{NO}_3 \rightarrow$	1.1E-11	Atkinson and Arey (200 Taraborrelli (2013b)
G410myrct5	TrGC	\rightarrow CH ₃ COCH ₃ + HO ₂ +	8.E-13*R02	Taraborrelli (2013b)
G410myrct6	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410myrct7	TrGCN	$+$ NO \rightarrow .80 CH ₃ COCH ₃ $+$.80 HO ₂ $+$.80 $+$.80 NO ₂ $+$	KR02N0	Taraborrelli (2013b)*
		.20		
G410myrct8	TrGCJ	$+ h\nu \rightarrow CH_3COCH_3 + OH + HO_2 + + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410myrct9	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	1.55E-10	Baker et al. (2004), Taraborre
				(2013b)
G410myrct10	TrGC	$+ NO_3 \rightarrow CH_3COCH_3 + + NISOPO2$	4.7E-13	Baker et al. (2004), Taraborre (2013b)
G410myrct11	TrGC	$+ OH \rightarrow iC_3H_7ONO_2 + + POHORG$	1.55E-10	see note
G410myrct12	TrGC	\rightarrow	1.E-12*R02	Taraborrelli (2013b)
G410myrct13	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410myrct14	TrGC	$+ NO \rightarrow .8 + .8 NO_2 + .2$	KR02N0	Taraborrelli (2013b)
G410myrct15	TrGC	\rightarrow + HO ₂	K16HS	Taraborrelli (2013b)
G410myrct16	TrGC	\rightarrow CH_3COCH_3 + + .43 MVK + .27 MACR + .7 HCHO + .29 LHC4ACCHO + HO_2	KDEC	Taraborrelli (2013b)
G410myrct17	TrGC	$+$ OH \rightarrow CH ₃ COCH ₃ $+$ HO ₂ $+$ $+$ ISOPBNO3 $+$ POHORG	kadt+kads	Taraborrelli (2013b)
G410myrct18	TrGC	$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410myrct19	TrGC	$+$ OH \rightarrow $+$.43 ISOPBOOH $+$.27 ISOPDOOH $+$.29 LISOPACOOH $+$ CH ₃ COCH ₃ $+$ HO ₂ $+$ POHORG	kadt+kads	Taraborrelli (2013b)
G410myrct20	TrGCJ	$+ h\nu \rightarrow OH + + HO_2 + POHORG$	J_HPALD	Taraborrelli (2013b)
G410myrct21	TrGC	$+ OH \rightarrow + HO_2 + CH_3COCH_3 + POHORG$	kadt+kads	Taraborrelli (2013b)
G410myrct22	TrGC	$+ OH \rightarrow + + HCHO + GLYOX + HO_2 + POHORG$	(kadt+kads)*acho*ach2ooh	Taraborrelli (2013b)
G410myrct23	TrGC	$+$ $\mathrm{O}_3 \rightarrow$ $+$.25 $\mathrm{CH}_3\mathrm{COCH}_3$ $+$.75 OH $+$.75 $\mathrm{CH}_3\mathrm{COCH}_2\mathrm{O}_2$ $+$.75 POHORG	4.7E-16	Taraborrelli (2013b)
G410myrct24	TrGC	$+ \text{ OH} \rightarrow + + \text{POHORG}$	1.55E-10	Baker et al. (2004), Taraborre (2013b)
G410myrct25	TrGC	$+ NO_3 \rightarrow + NISOPO2$	4.7E-13	Baker et al. (2004), Taraborre (2013b)
G410myrct26	TrGC	\rightarrow	1.E-12*R02	Taraborrelli (2013b)
G410myrct27	TrGC	$+$ HO_2 \rightarrow $+$.43 ISOPBOOH $+$.27 ISOPDOOH $+$.29 LISOPACOOH	KR02H02	Taraborrelli (2013b)
G410myrct28	TrGC	$+ \text{ NO} \rightarrow .8 + .8 \text{ NO}_2 + .2 + .2 \text{ ISOPBNO3}$	KR02N0	Taraborrelli (2013b)
G410myrct29	TrGC	\rightarrow + HO ₂	K16HS	Taraborrelli (2013b)
G410myrct30	TrGC	\rightarrow + .43 MVK + .27 MACR + .7 HCHO + .29	KDEC	Taraborrelli (2013b)

		Table 1: Gas phase react	ions (continued)	
#	labels	reaction	rate coefficient	reference
G410myrct31	TrGCJ	$+ h\nu \rightarrow + OH + + HO_2 + POHORG$	J_HPALD	Taraborrelli (2013b)
G410myrct32	TrGC	$+ \text{ OH} \rightarrow + .3 + .2 + .3 + .2 + POHORG$	(kadt+kads)*acho*ach2ooh	Taraborrelli (2013b)
G410myrct33	TrGC	\rightarrow	1.E-12*R02	Taraborrelli (2013b)
G410myrct34	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410myrct35	TrGC	+ NO \rightarrow .8 + .8 NO ₂ + .2 CH ₃ COCH ₃ + .2 + .2 ISOPBNO3	KRO2NO	Taraborrelli (2013b)
G410myrct36	TrGC	\rightarrow + HO ₂	K16HS	Taraborrelli (2013b)
G410myrct37	TrGC	\rightarrow CH_3COCH_3 + + .43 MVK + .27 MACR + .7 HCHO + .29 LHC4ACCHO + HO_2 + OH + POHORG	KDEC	Taraborrelli (2013b)
G410myrct38	TrGCJ	$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410myrct39	TrGCJ	$+ h\nu \rightarrow CH_3COCH_3 + HO_2 + + .43 \text{ ISOPBOOH} + .27$ ISOPDOOH + .29 LISOPACOOH + OH + POHORG	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410myrct40	TrGCJ	+ $h\nu \rightarrow CH_3COCH_3 + OH + + OH + + HO_2 + 2$ POHORG	J_HPALD	Taraborrelli (2013b)
G410myrct41	TrGC	+ OH \rightarrow CH ₃ COCH ₃ + OH + + .3 + .2 + .3 + .2 + POHORG + POHORG	(kadt+kads)*acho*ach2ooh	Taraborrelli (2013b)
G410myrct42	TrGC	$+ \text{ OH} \rightarrow + \text{H}_2\text{O} + \text{POHORG}$	4.4E-12*EXP(365./temp)	Taraborrelli (2013b)*
G410myrct43	TrGC	$+ h\nu \rightarrow HCHO + HO_2 + HO_2 + CO$	jx(ip_CH3CH0)	Taraborrelli (2013b)
G410myrct44	TrGC	$+ NO_3 \rightarrow HNO_3 +$	KNO3AL	Taraborrelli (2013b)
G410myrct45	TrGC	\rightarrow HCHO + HO ₂ + CO ₂	1.00E-11*0.7*RD2	Taraborrelli (2013b)
G410myrct46	TrGC	\rightarrow	1.00E-11*0.3*RD2	Taraborrelli (2013b)
G410myrct47	TrGC	$+ HO_2 \rightarrow OH + HCHO + HO_2 + CO_2 + POHORG$	KAPHO2*0.44	Taraborrelli (2013b)
G410myrct48	TrGC	$+ HO_2 \rightarrow$	KAPHO2*0.41	Taraborrelli (2013b)
G410myrct49	TrGC	$+ HO_2 \rightarrow + O_3$	KAPHO2*0.15	Taraborrelli (2013b)
G410myrct50	TrGC	$+ NO_2 \rightarrow$	k_CH3CO3_NO2	Taraborrelli (2013b)
G410myrct51	TrGC	$+ \text{ NO} \rightarrow \text{NO}_2 + \text{HCHO} + \text{HO}_2 + \text{CO}_2$	KAPNO	Taraborrelli (2013b)
G410myrct52	TrGC	$+ NO_3 \rightarrow NO_2 + HCHO + HO_2 + CO_2$	KR02N03*1.60	Taraborrelli (2013b)
G410myrct53	TrGC	$+ OH \rightarrow HCHO + HO_2 + CO_2 + POHORG$	4.2E-14*exp(850./temp)	Taraborrelli (2013b)*
G410myrct54	TrGC	$+ h\nu \rightarrow HCHO + HO_2 + OH + CO_2 + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410myrct55	TrGC	$+ OH \rightarrow + H_2O + POHORG$	0.6*k_CH300H_0H	Taraborrelli (2013b)
G410myrct56	TrGC	\rightarrow + NO ₂	k_PAN_M	Taraborrelli (2013b)
G410myrct57	TrGC	$+ OH \rightarrow HCHO + CO + NO_2 + POHORG$	9.50E-13*EXP(-650./temp)	Taraborrelli (2013b)
G410afarn	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	2.7E-11*EXP(390./temp)	Taraborrelli (2013b)*
G410afarnt2	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	2.*1.9E-11*exp(450./temp)	Taraborrelli (2013b)*

#	labels	reaction	rate coefficient	reference
G410afarnt3	TrGC	$+ O_3 \rightarrow + .25 \text{ CH}_3 \text{COCH}_3 + .75 \text{ OH} + .75 \text{ CH}_3 \text{COCH}_2 O_2$	6.51E-15*exp(-829./temp)	Taraborrelli (2013b)*
		+ .75 POHORG		
G410afarnt4	TrGC	$+$ O ₃ \rightarrow $+$ $+$.75 OH $+$.75 POHORG	6.51E-15*exp(-829./temp)	Taraborrelli (2013b)*
G410afarnt5	TrGNC	$+ NO_3 \rightarrow$	2E-12+2*9.37E-12	Taraborrelli (2013b)*
G410afarnt6	TrGC	\rightarrow	8.E-13*R02	Taraborrelli (2013b)
G410afarnt7	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410afarnt8	TrGC	$+ \text{ NO} \rightarrow .75 + .75 \text{ NO}_2 + .25$	KR02N0	Taraborrelli (2013b)
G410afarnt9	TrGCJ	$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410afarnt10	TrGC	$+ \text{ OH} \rightarrow + + \text{POHORG}$	2.7E-11*EXP(390./temp)	Taraborrelli (2013b)
G410afarnt11	TrGC	$+ \text{ OH} \rightarrow .5 + .5 + + \text{POHORG}$	2.*1.9E-11*exp(450./temp)	Taraborrelli (2013b)
G410afarnt12	TrGC	$\rightarrow .5 + .5 + .5 + .5 \text{ H}_3\text{COCH}_3 + \text{HO}_2$	KDEC	Taraborrelli (2013b)
G410afarnt13	TrGC	\rightarrow	1.E-12*R02	Taraborrelli (2013b)
G410afarnt14	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410afarnt15	TrGC	$+ \text{ NO} \rightarrow .75 + .75 \text{ NO}_2 + .25$	KR02N0	Taraborrelli (2013b)
G410afarnt16	TrGC	\rightarrow + HO ₂ +	K16HS	Taraborrelli (2013b)
G410afarnt17		\rightarrow +	KDEC	Taraborrelli (2013b)
G410afarnt18	TrGC	$+ \text{ OH} \rightarrow + \text{HO}_2 + \text{ISOPBNO3} + \text{POHORG}$	kadt+kads	Taraborrelli (2013b)
G410afarnt19	TrGC	$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410afarnt20	TrGC	$+ \text{ OH} \rightarrow + + \text{POHORG}$	kadt+kads	Taraborrelli (2013b)
G410afarnt21	TrGC	$+ O_3 \rightarrow + + .75 \text{ OH} + .75 \text{ POHORG}$	2.*6.51E-15*exp(-829./temp)	Taraborrelli (2013b)*
G410afarnt22	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	1.9E-11*exp(450./temp)	Taraborrelli (2013b)*
G410afarnt23	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	2.7E-11*EXP(390./temp)	Taraborrelli (2013b) [*]
G410afarnt24		$+ O_3 \rightarrow + + .75 \text{ OH} + .75 \text{ POHORG}$	6.51E-15*exp(-829./temp)	Taraborrelli (2013b)*
G410afarnt25		$+ \text{ NO}_3 \rightarrow$	2E-12	Taraborrelli (2013b)*
G410afarnt26	TrGNC	$+ \text{ NO}_3 \rightarrow$	9.37E-12	Taraborrelli (2013b) [*]
G410afarnt27	TrGC	\rightarrow	8.E-13*R02	Taraborrelli (2013b)
G410afarnt28		$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410afarnt29	TrGC	$+ \text{ NO} \rightarrow .75 + .75 \text{ NO}_2 + .25$	KR02N0	Taraborrelli (2013b)
G410afarnt30	TrGCJ	$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410afarnt31		$+ \text{ OH} \rightarrow + \text{HO}_2 + + \text{POHORG}$	2.7E-11*EXP(390./temp)	Taraborrelli (2013b)*
G410afarnt32	TrGC	$+ \text{ OH} \rightarrow + + \text{POHORG}$	1.9E-11*exp(450./temp)	Taraborrelli (2013b)*
G410afarnt33	TrGC	\rightarrow + + HO ₂	KDEC	Taraborrelli (2013b)
G410afarnt34		\rightarrow	1.E-12*R02	Taraborrelli (2013b)
G410afarnt35	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410afarnt36	TrGC	$+ \text{ NO} \rightarrow .75 + .75 \text{ NO}_2 + .25$	KR02N0	Taraborrelli (2013b)

#	labels	reaction	rate coefficient	reference
G410afarnt37	TrGC	\rightarrow + + HO ₂ +	K16HS	Taraborrelli (2013b)
G410afarnt38	TrGC	\rightarrow +	KDEC	Taraborrelli (2013b)
G410afarnt39	TrGC	$+ OH \rightarrow + HO_2 + ISOPBNO3 + POHORG$	kadt+kads	Taraborrelli (2013b)
G410afarnt40		$+ h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410afarnt41	TrGC	$+ \text{ OH} \rightarrow + + \text{POHORG}$	kadt+kads	Taraborrelli (2013b)
G410afarnt42	TrGC	$+ O_3 \rightarrow + + .75 \text{ OH} + .75 \text{ POHORG}$	6.51E-15*exp(-829./temp)	Taraborrelli (2013b)
G410afarnt43	TrGC	$+ \text{ OH} \rightarrow + \text{POHORG}$	1.37E-10	Smith et al. (1996), Taraborrel (2013b)*
G410afarnt44	TrGC	+ O_3 → .25 CH ₃ COCH ₃ + .125 + .25 GLYOX + .25 CH ₃ COCH ₂ O ₂ + .125 H ₂ O ₂ + .75 OH + .75 CH ₃ COCH ₂ O ₂ + .75 + .75 POHORG	3.9E-16	Grosjean et al. (1996), Tarabor relli (2013b)*
G410afarnt45	TrGC	$+ \text{ NO}_3 \rightarrow$	7E-12	Smith et al. (1996), Taraborrel (2013b)
G410afarnt46	TrGC	\rightarrow CH ₃ COCH ₃ + + HO ₂	8.E-13*R02	Taraborrelli (2013b)
G410afarnt47	TrGC	$+ HO_2 \rightarrow$	KR02H02	Taraborrelli (2013b)
G410afarnt48	TrGC	$+$ NO $\rightarrow .25 + .75$ CH ₃ COCH ₃ $+ .75 + .75$ HO ₂ $+ .75$ NO ₂	KR02N0	Taraborrelli (2013b)
G410afarnt49	TrGC	$+ \text{OH} \rightarrow + \text{POHORG}$	0.6*k_CH300H_0H	Taraborrelli (2013b)
G410afarnt50	TrGC	$+ \text{OH} \rightarrow + \text{HO}_2 + \text{POHORG}$	kt*ftoh*falk*falk	Taraborrelli (2013b)
G410afarnt51	TrGCJ	$+ h\nu \rightarrow CH_3COCH_3 + + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013b)
G410afarnt52	TrGCJ	+ $h\nu \rightarrow CH_3COCH_3 + CH_3COCH_2O_2 + + OH + POHORG$	1.14*jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)	Taraborrelli (2013b)*
G410afarnt53	TrGC	$+ \text{OH} \rightarrow + \text{HO}_2 + \text{POHORG}$	kt*ftoh*falk*fch2ono2	Taraborrelli (2013b)
G410afarnt54	TrGC	$+ h\nu \rightarrow CH_3COCH_3 + NO_2 + CH_3COCH_2O_2 +$	2.84*J_IC3H7NO3	Taraborrelli (2013b)
G410afarnt55	TrGC	$+ \text{ OH} \rightarrow \text{CH}_3\text{COCH}_2\text{O}_2 + + \text{POHORG}$	2.E-11	Fruekilde et al. (1997), Tarabor relli (2013b)*
G410afarnt56	TrGCJ	$+ h\nu \rightarrow CH_3COCH_2O_2 + + HO_2$	jx(ip_CH3CH0)+jx(ip_CH3COCH3)	Taraborrelli (2013b)

*Notes:

Rate coefficients for three-body reactions are defined via the function ${\bf k}_{-} {\rm 3rd}(T,M,k_{0}^{20},m,k_{0}^{20},m,f_{0})$. In the code, the temperature T is called temp and the con-centration of "air molecules" M is called cair. Using the auxiliary variables $k_{0}(T), k_{\rm inf}(T)$, and $k_{\rm ratio}, {\bf k}_{-} {\rm 3rd}$ is defined as:

$$\begin{aligned} k_0(T) &= k_0^{300} \times \left(\frac{300\text{K}}{T}\right)^n \\ k_{\text{inf}}(T) &= k_{\text{inf}}^{300} \times \left(\frac{300\text{K}}{T}\right)^m \\ k_{\text{ratio}} &= \frac{k_0(T)M}{k_{\text{inf}}(T)} \end{aligned}$$

$$k_3rd = \frac{k_0(T)M}{1+k_{ratio}} \times f_c^{\left(\frac{1+(\log_{10}(k_{ratio}))^2}{1+k_{ratio}}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$

$$k_{inf}(T) = k_{inf}^{300} \times \left(\frac{300R}{T}\right)$$

 $k_0(T)M$

$$h_{\text{ratio}} = \frac{1}{k_{\text{inf}}(T)}$$

 $N = 0.75 - 1.27 \times \log_{10}(f_c)$

k_3rd_iupac =
$$\frac{k_0(T)M}{1 + k_{ratio}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{ratio})/N)^2}\right)}$$

The rate coefficient is: G2110: k_H02_H02 (1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp) *cair)* (1.+1.4E-21*EXP(2200./temp)*C(ind_

48

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3206: The rate coefficient is: k_HNO3_ OH = 2.4E-14 * EXP(460./temp) + 1./ (1./ (6.5E-34 * EXP(1335./temp)*cair) + 1./

(1)

(8)

backward re-(3) action divided by equilibrium constant.

G4107: The rate coefficient is: k_CH300H_0H = 3.8E-12*EXP(200./temp). G4109: The same temperature dependence assumed as for $CH_3CHO+NO_3$.

G4206: The product C_2H_5OH , which reacts only with

OH, is substituted by its degradation products ≈ 0.1 HOCH_2CH_2O_2 + 0.9 CH_3CHO + 0.9 HO_2.

MOCH₃CH₂O₂ + 0.9 CH₃CHO + 0.9 HO₂.
 G4207: The rate constant 8.01E-12 is for the H abstraction in alpha to the −OOH group (Rickard and
 (5) Pascoe, 2009) and 0.6*k_CH300H_OH is for the C₂H₃O₂ channel. The branching ratios are calculated from the
 (6) terms of the rate coefficient at 298 K.

G4218: The rate coefficient is the same as for the CH_3O_2 channel in G4107 ($CH_3OOH+OH$). (7)

G4221: The rate coefficient isk_PAN_M = k_CH3CO3_N02/9.E-29+EXP(-14000/temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G4300: The product NC3H7O2 is substituted with its degradation products $\rm C_2H_5O_2$ + $\rm CO_2$ + $\rm HO_2.$

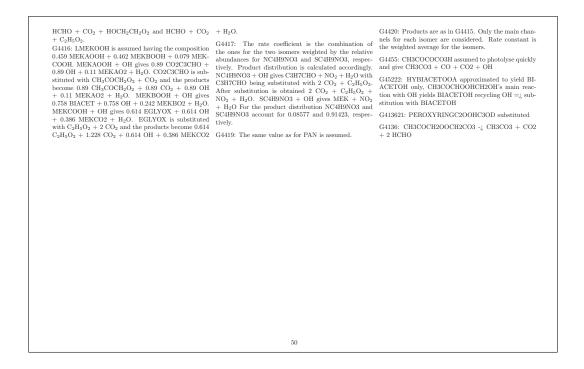
G4304: The value for the generic RO_2 + HO_2 reaction from Atkinson (1997) is used here.

49

H2D)). The value for the first (pressure-independent) gart is from Christensen et al. (2002), the water term from Kircher and Sander (1984).
G3109: The rate coefficient is: k_N03_N02 = k_Gard(temp, cair, 2.E-30, 4.4, 1.4E-12, 0.7, 0.6).
G3110: The rate coefficient is defined as backward re-

G4307: Analogous to G4207 for both rate coefficient and branching ratios.

G4400: $LC_4H_9O_2$ represents 0.127 NC4H9O2 + 0.873 SC4H9O2.


G4401: NC4H9O and SC4H9O are substituted with 2 CO₂ + C₂H₅O₂ and 0.636 MEK + HO₂ and 0.364 CH₂CHO + C₂H₂O₂, repectively. The stoichiometric coefficients on the right side are weighted averages.

G4403: The alkyl nitrate yield is the weighted avera yield for the two isomers forming from NC4H9O2 and SC4H9O2.

SC4H902. G4404: The product distribution is the weighted av-erage of the single isomer hydroperoxides. It is cal-culated from the rate constants of single channels and the ratio of the isomers NC4H902 and SC4H902. The overall rate constant for this reaction is calculated as weighted average of the channels rate constants. The relative weight of the products from NC4H90OH and SC4H90OH are then 0.0887 and 0.9113. The channels producing R0₂ are given the rate coefficient $0.6*k_{\rm CH300H_{\rm L}0H}$ as for G4107. For NC4H90OH the products are 0.327 NC4H9002 + 0.673 C3H7CH0 + 0.673 GAH C02 + 0.673 C3H7CH0 + 0.673 GAH C02 + 0.673 C3H7CH0 + 0.673 GAH C02 + 0.673 C4H90OH the products are 0.219 SC4H902 + 0.781 MEK + 0.781 OH. G4113: L1KENC2 represents 0.459 MEKA02 + 0.462 G4413: LMEKO2 represents 0.459 MEKAO2 + 0.462

MEKBO2 + 0.079 MEKCO2.

G4415: Alkyl nitrate formation is neglected. The prod-ucts of MEKAO and MEKCO are substituted with with

#	labels	reaction	rate coefficient	reference
J1000	StTrGJ	$O_2 + h\nu \rightarrow O(^{3}P) + O(^{3}P)$	jx(ip_02)	see note
J1001a	StTrGJ	$O_3 + h\nu \rightarrow O(^1D)$	jx(ip_01D)	see note
J1001b	StTrGJ	$O_3 + h\nu \rightarrow O(^{3}P)$	jx(ip_O3P)	see note
J2101	StTrGJ	$H_2O_2 + h\nu \rightarrow 2 \text{ OH} + 2 \text{ POHOX}$	JX(ip_H2O2)	see note
J3101	StTrGNJ	$NO_2 + h\nu \rightarrow NO + O(^{3}P)$	jx(ip_NO2)	see note
J3103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_NO2O)	see note
J3103b	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	jx(ip_NOO2)	see note
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N205)	see note
J3200	TrGJ	$HONO + h\nu \rightarrow NO + OH + PONOX$	JX(ip_HONO)	see note
J3201	StTrGNJ	$HNO_3 + h\nu \rightarrow NO_2 + OH + PONOX$	JX(ip_HNO3)	see note
J3202	StTrGNJ	${\rm HNO}_4 + {\rm h}\nu \rightarrow .667~{\rm NO}_2 + .667~{\rm HO}_2 + .333~{\rm NO}_3 + .333~{\rm OH} + .333~{\rm PONOX}$	JX(ip_HNO4)	see note
J4100e	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2 + POHORG$	1.14*jx(ip_CH300H)	see note
J4101a	StTrGJ	$HCHO + h\nu \rightarrow H_2 + CO$	jx(ip_COH2)	see note
J4101b	StTrGJ	$HCHO + h\nu \rightarrow H + CO + HO_2$	jx(ip_CHOH)	see note
J4104e	StTrGJ	$HOCH2OOH + h\nu \rightarrow OH + HO_2 + HCOOH + POHORG$	1.14*jx(ip_CH300H)	see note
J4200e	TrGCJ	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH + POHORG$	1.14*jx(ip_CH300H)	see note
J4201	TrGCJ	$CH_3CHO + h\nu \rightarrow CH_3O_2 + HO_2 + CO$	jx(ip_CH3CH0)	see note
J4202e	TrGCJ	$CH_3C(O)OOH + h\nu \rightarrow CH_3O_2 + OH + CO_2 + POHORG$	1.14*jx(ip_CH3CO3H)	see note
J4204e	TrGNCJ	PAN + hν → .6 CH ₃ C(O)OO + .6 NO ₂ + .4 CH ₃ O ₂ + .4 CO ₂ + .4 NO ₃	jx(ip_PAN)	see note
J4205ae	TrGCJ	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CHO)*0.70	Taraborrelli (2013a)
J4205be	TrGCJ	$\rm HOCH_2CHO + h\nu \rightarrow 1.16~OH + .84~ + .1~HCHO + .1~CO + .06~GLYOX + 1.16~POHORG$	jx(ip_HOCH2CHO)*0.15	Taraborrelli (2013a)
J4205ce	TrGCJ	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CHO)*0.15	Taraborrelli (2013a)
J4206e	TrGCJ	+ h ν \rightarrow OH + HCHO + CO + HO ₂ + POHORG	1.14*jx(ip_CH3OOH)+jx(ip_ HOCH2CHO)	Taraborrelli (2013a)
J4206et2	TrGCJ	$\mathrm{HOCH_2CO_3H} + \mathrm{h}\nu \rightarrow \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{OH} + \mathrm{CO_2} + \mathrm{POHORG}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4207	TrGCJ	$PHAN + h\nu \rightarrow HOCH_2CO_3 + NO_2$	jx(ip_PAN)	see note
J4208	TrGCJ	$GLYOX + h\nu \rightarrow 2 CO + 2 HO_2$	jx(ip_GLYOX)	see note
J4209	TrGNCJ	$\mathrm{HCOCO_2H} + \mathrm{h}\nu \rightarrow 2 \ \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2}$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)*

		Table 2: Photolysis reactions (continued)	
#	labels	reaction	rate coefficient	reference
J4210e	TrGNCJ	$HCOCO_3H + h\nu \rightarrow HO_2 + CO + OH + CO_2 + POHORG$	1.14*jx(ip_CH300H)+jx(ip_	Rickard and Pascoe
			HOCH2CHO)	(2009)*
J4211e	TrGCJ	$\rm HYETHO2H + h\nu \rightarrow \rm HOCH_2CH_2O + OH + \rm POHORG$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4212	TrGCJ	$ETHOHNO3 + h\nu \rightarrow HO_2 + 2 HCHO + NO_2$	J_IC3H7NO3	see note
J4213e	TrGCJ	$+ h\nu \rightarrow OH + HCHO + CO_2 + OH + 2 POHORG$	2*1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4214e	TrGC	$+ h\nu \rightarrow OH + HCHO + HO_2 + CO_2 + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4215e	TrGC	$+ h\nu \rightarrow .4 \text{ CO}_2 + .8 \text{ H} + .34 \text{ CO} + .34 \text{ OH} + .34 \text{ HO}_2 + .16$ HCHO + .16 O(³ P) + .1 HCOOH + CO + .34 POHORG	J_ketene* 0.36	Taraborrelli (2013a)
J4216e	TrGC	$+ h\nu \rightarrow CH_3O_2 + HCOOH + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4217e	TrGCJ	$+ h\nu \rightarrow HO_2 + CO + HCHO + NO_2$	1.59*J_IC3H7NO3+jx(ip_CH3COCH3)	Taraborrelli (2013a)
J4300e	TrGCJ	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH + POHORG$	1.14*jx(ip_CH300H)	von Kuhlmann (2001)*
J4301	TrGCJ	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O)OO + CH_3O_2$	jx(ip_CH3COCH3)	see note
J4302	TrGCJ	$CH_3COCH_2OH + h\nu \rightarrow CH_3C(O)OO + HCHO + HO_2$	J_ACETOL	see note
J4303	TrGCJ	$MGLYOX + h\nu \rightarrow CH_3C(O)OO + CO + HO_2$	jx(ip_MGLYOX)	see note
J4304e	TrGCJ	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O)OO + HCHO + OH + POHORG$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2013a)
J4305e	TrGCJ	$+ h\nu \rightarrow + HCHO + OH + POHORG$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2013a)
J4306	TrGNCJ	$\mathrm{iC_3H_7ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3COCH_3} + \mathrm{NO_2} + \mathrm{HO_2}$	J_IC3H7NO3	von Kuhlmann et al. (2003) [*]
J4307	TrGCJ	$NOA + h\nu \rightarrow CH_3C(O)OO + HCHO + NO_2$	J_IC3H7NO3+jx(ip_CH3COCH3)	see note
J4309e	TrGCJ	HYPROPO2H + $h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4310e	TrGNCJ	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4311e	TrGCJ	$HOCH2COCHO + h\nu \rightarrow + CO + HO_2$	jx(ip_MGLYOX)	Taraborrelli (2013a)
J4312e	TrGCJ	+ h $\nu \rightarrow$.5 CH ₃ CHO + .8 CO ₂ + .4 CH ₃ C(O)OO + .3 HO ₂ + .1 CH ₃ COOH + .1 OH + .2 CO + .1 POHORG	JX(IP_MGLYOX)	Taraborrelli (2013a)
J4313e	TrGCJ	$+ h\nu \rightarrow + HCHO + OH + POHORG$	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2013a)
J4314e	TrGCJ	$+ h\nu \rightarrow + CO + HO_2$	JX(IP_MGLYOX)	Taraborrelli (2013a)
J4315e	TrGCJ	$+ h\nu \rightarrow + HO_2 + CO$	2*JX(IP_MGLYOX)	Taraborrelli (2013a)
J4316e	TrGC	$+ h\nu \rightarrow CH_3C(O)OO + OH + POHORG + CO_2$	JX(IP_MGLYOX)+1.14*jx(ip_CH3OOH)	Taraborrelli (2013a)
J4317e	TrGC	$+ h\nu \rightarrow C_2H_4 + CO$	J_ketene*0.36*2.	Taraborrelli (2013a)*
J4400e	TrGCJ	$LC_4H_9OOH + h\nu \rightarrow OH + 0.254 CO_2 + 0.5552 MEK + 0.5552$ HO ₂ + 0.3178 CH ₃ CHO + 0.4448 C ₂ H ₅ O ₂ + POHORG	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*
J4401	TrGCJ	$MVK + h\nu \rightarrow C_3H_6 + CO$	jx(ip_MVK)	Taraborrelli (2013a)*

	labels		rate coefficient	reference
# J4403	TrGCJ	reaction $MEK + h\nu \rightarrow CH_3C(O)OO + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al.
14403			5 1-	(2003)*
J4404e	TrGCJ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.14*jx(ip_CH300H)+J_ACETOL	Rickard and Pascoe (2009)*
J4405	TrGCJ	$BIACET + h\nu \rightarrow 2 CH_3C(O)OO$	2.15*jx(ip_MGLYOX)	see note
J4406	TrGNCJ	$LC4H9NO3 + h\nu \rightarrow NO_2 + 0.254 CO_2 + 0.5552 MEK + 0.5552 HO_2 + 0.3178 CH_3CHO + 0.4448 C_2H_5O_2$	J_IC3H7NO3	see note
J4407e	TrGNCJ	$MPAN + h\nu \rightarrow .6 MACO3 + .6 NO_2 + .4 + .4 NO_3$	jx(ip_PAN)	Taraborrelli (2013a)*
J4409e	TrGCJ	$CO2H3CO3H + h\nu \rightarrow + OH + CO_2 + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4410	TrGCJ	$\mathrm{CO2H3CO3H} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} + \mathrm{HCOCO_3H}$	J_ACETOL	Rickard and Pascoe (2009)*
J4410t2	TrGCJ	$+ h\nu \rightarrow CH_3C(O)OO + HCOCO_2H + HO_2$	J_ACETOL	Taraborrelli (2013a)
J4411	TrGCJ	MACR + $h\nu \rightarrow .5$ MACO3 + $.5$ + $.5$ CO + HO ₂	jx(ip_MACR)	see note
J4412e	TrGCJ	MACROOH + $h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	see note
J4414	TrGCJ	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	see note
J4415e	TrGCJ	$MACO3H + h\nu \rightarrow + OH + POHORG$	1.14*jx(ip_CH300H)	Taraborrelli (2013a)
J4416e	TrGCJ	LHMVKABOOH + $h\nu \rightarrow .12$ + .88 CH ₃ C(O)OO + .88 HOCH ₂ CHO + .12 HCHO + OH + POHORG	1.14*jx(ip_CH300H)+J_ACETOL	Taraborrelli (2013a)
J4418e	TrGCJ	$CO2H3CHO + h\nu \rightarrow + CO + HO_2$	jx(ip_HOCH2CHO)+J_ACETOL	Taraborrelli (2013a)
J4419	TrGCJ	$\rm HO12CO3C4 + h\nu \rightarrow CH_3C(O)OO + HOCH_2CHO + HO_2$	J_ACETOL	Rickard and Pascoe (2009)*
J4420e	TrGCJ	$BIACETOH + h\nu \rightarrow CH_3C(O)OO +$	2.15*jx(ip_MGLYOX)	Taraborrelli (2013a)
J4421e	TrGC	$+$ h $\nu \rightarrow$.5 OH $+$.25 $+$.25 CH_3C(O)OO $+$.5 $+$.5 CO $+$.5 POHORG	J_KETENE	Taraborrelli (2013a)
J4422e	TrGC	+ h $\nu \rightarrow .0192$ + .1848 H ₂ O ₂ + .2208 MGLYOX + .36 OH + .36 CO + .56 CH ₃ C(O)OO + .2 CH ₃ CHO + .2 CO ₂ + .2 HCHO + .2 HO ₂ + .36 POHORG	J_KETENE*0.5	Taraborrelli (2013a)
J4422et2	TrGC	$+ h\nu \rightarrow + CO$	J_KETENE*0.5	Taraborrelli (2013a)
J4423e	TrGCJ	$+ h\nu \rightarrow CH_3C(O)OO + CO + CO + HO_2$	jx(ip_MGLYOX)	Taraborrelli (2013a)
J4424e	TrGCJ	$+ h\nu \rightarrow CH_3C(O)OO +$	2.15*jx(ip_MGLYOX)	Taraborrelli (2013a)
J4424et2	TrGC	$+ h\nu \rightarrow CH_3C(O)OO + CO + CO_2 + HO_2$	3.15*jx(ip_MGLYOX)	Taraborrelli (2013a)
J4502et2	TrGCJ	$LISOPACOOH + h\nu \rightarrow LHC4ACCHO + HO_2 + OH + POHORG$	1.14*jx(ip_CH300H)	Rickard and Pascoe

#		Table 2: Photolysis reactions (continued)						
	labels	reaction	rate coefficient	reference				
J4503et2	TrGNCJ	$LISOPACNO3 + h\nu \rightarrow LHC4ACCHO + HO_2 + NO_2$	0.59*J_IC3H7NO3	see note				
J4504e	TrGCJ	$\label{eq:sopbool} \text{ISOPBOOH} + \text{h}\nu \rightarrow \text{MVK} + \text{HCHO} + \text{HO}_2 + \text{OH} + \text{POHORG}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*				
J4505e	TrGNCJ	ISOPBNO3 + $h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*J_IC3H7N03	see note				
J4506e	TrGCJ	$\label{eq:soppool} \text{ISOPDOOH} + \text{h}\nu \rightarrow \text{MACR} + \text{HCHO} + \text{HO}_2 + \text{OH} + \text{POHORG}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*				
J4507	TrGNCJ	$ISOPDNO3 + h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	J_IC3H7NO3	see note				
J4508e	TrGNCJ	$\label{eq:NISOPOOH} \mathrm{NISOPOOH} + \mathrm{h}\nu \rightarrow \mathrm{NC4CHO} + \mathrm{HO}_2 + \mathrm{OH} + \mathrm{POHORG}$	1.14*jx(ip_CH300H)	Rickard and Pascoe (2009)*				
J4509	TrGNCJ	$NC4CHO + h\nu \rightarrow NOA + 2 CO + 2 HO_2$	jx(ip_MACR)	see note				
J4510e	TrGNCJ	LNISOOH + h v \rightarrow NOA + OH + .5 + .5 CO + .5 HO2 + .5 CO2 + POHORG	1.14*jx(ip_CH300H)	Taraborrelli et al. (2009)*				
J4511e	TrGCJ	$\label{eq:LHC4ACCH0} \begin{array}{l} {\rm LHC4ACCH0} + {\rm h}\nu \rightarrow .5 \ {\rm LHC4ACC03} + .5 \ {\rm HO}_2 + .5 \ {\rm OH} + .25 \\ {\rm MACR02} + .25 \ {\rm LHMVKAB02} + .5 \ {\rm POHORG} \end{array}$	jx(ip_MACR)	Taraborrelli (2013a)*				
J4512e	TrGCJ	LC578OOH + $h\nu \rightarrow .25$ CH ₃ COCH ₂ OH + .75 MGLYOX + .25 + .75 HOCH ₂ CHO + .75 HO ₂ + OH + POHORG	1.14*jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	Taraborrelli (2013a)				
J4513e	TrGCJ	LHC4ACCO3H + h $\nu \rightarrow$ OH + .5 MACRO2 + .5 LHMVKABO2 + OH + 2 POHORG + CO ₂	J_HPALD	Taraborrelli (2013a)*				
J4514	TrGNCJ	LC5PAN1719 + $h\nu \rightarrow .6$ LHC4ACCO3 + .6 NO ₂ + .2 MACRO2 + .2 LHMVKABO2 + .4 CO ₂ + .4 NO ₃	jx(ip_PAN)	see note				
J4515e	TrGCJ	$HCOC5 + h\nu \rightarrow +$	0.5*jx(ip_MVK)	Taraborrelli (2013a)				
J4516e	TrGCJ	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + + OH + POHORG$	J_ACETOL+1.14*jx(ip_CH300H)	Taraborrelli (2013a)				
J4517e	TrGCJ	$+ h\nu \rightarrow LHC4ACCO3 + OH + POHORG$	J_HPALD	Taraborrelli (2013a)				
J4518e	TrGCJ	$+ h\nu \rightarrow .62 + .38 + OH + CO_2 + POHORG$	J_HPALD	Taraborrelli (2013a)				
J4519e	TrGCJ	$+ h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2 + POHORG$	2.77*JX(IP_HOCH2CHO)	Taraborrelli (2013a)				
J4520e	TrGCJ	+ h $\nu \rightarrow .5$ CH ₃ COCH ₂ O ₂ H + .5 + .5 CO2H3CHO + .5 HCHO + 1.5 OH + 1.5 POHORG	2.*1.14*JX(IP_CH300H)	Taraborrelli (2013a)				
J4523e	TrGCJ	$+ h\nu \rightarrow MGLYOX + + OH + POHORG$	1.14*JX(IP_CH300H)	Taraborrelli (2013a)				
J4524e	TrGCJ	$+ h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH + POHORG$	2.*2.77*JX(IP_HOCH2CH0)	Taraborrelli (2013a)*				
J4525	TrGCJ	$+ h\nu \rightarrow + HO_2 + OH + POHORG$	1.14*JX(IP_CH300H)	Taraborrelli (2013a)				
J4526	TrGCJ	$+ h\nu \rightarrow HCHO + OH + HO_2 + CO2H3CHO + POHORG$	1.14*JX(IP_CH300H)	Taraborrelli (2013a)*				
J4525e	TrGCJ	$+ h\nu \rightarrow .5 + .5 + CO + HO_2 + OH + POHORG$	jx(ip_NO2)*0.1*0.5	Taraborrelli (2013a)				
J4526e J4527e	TrGCJ TrGCJ	$+ h\nu \rightarrow CH_3C(O)OO + HCHO + GLYOX + HO_2$ $+ h\nu \rightarrow CH_3C(O)OO + HCHO + HCHO + CO + HO_2$	1.14*JX(IP_CH300H)+J_ACETOL jx(ip_HOCH2CH0)	Taraborrelli (2013a) Taraborrelli (2013a)				

54

*Notes: J-values are calculated with an external module and then supplied to the MECCA chemistry. Values that originate from the Master Chemical Metains M(MCM) by Rickard and Pascoe (2009) are translated according in the following way: $J(11) \rightarrow jx(4p, COR2)$ $J(12) \rightarrow jx(4p, COR2)$ $J(12) \rightarrow jx(4p, COR2)$ $J(12) \rightarrow jx(4p, COR2)$ $J(22) \rightarrow jx(4p, COR2)$ $J(22) \rightarrow jx(4p, MCR2)$ $J(22) \rightarrow jx(4p, MCR2)$ $J(22) \rightarrow jx(4p, COR2)$ $J(23) \rightarrow Jx(4p, MCR2)$ $J(24) \rightarrow jx(4p, COR2)$ $J(24) \rightarrow jx(4p, COR2)$ $J(23) \rightarrow Jx(4p, MCR2)$ $J(24) \rightarrow jx(4p, MCR2)$ $J(23) \rightarrow Jx(4p, MCR2)$ $J(24) \rightarrow jx(4p, MCR2)$ $J(24) \rightarrow jx(4p, MCR2)$ $J(25) \rightarrow Ji(C_3H, ONO_2)$ $J(25) \rightarrow Ji(C_3H, ONO_2)$ $J(25) \rightarrow Ji(C_3H, ONO_2)$ $J(25) \rightarrow Ji(C_3H, ONO_2)$ $J(26) + J(57) \rightarrow jx(4p, MCR)$ $J(50) + J(57) \rightarrow jx(4p, MCR)$ J(50

References

- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes J. Phys. Chem. Ref. Data, 26, 215-290, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, 2003.
- Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chemical Reviews of Volatile Organic Compounds, Chemical Review 103(12), 4605–4638, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., Kunson, A., Daulet, D. E., Cox, R. A., Hampson, J., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Sum-mary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999, http://www.iupac-kinetic.ch.cam.ac.uk, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, tkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Sum-mary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005. http://www.iupac-kinetic.ch.cam.ac.uk, 2005.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N. tkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photo-chemical data for atmospheric chemistry: Volume II– gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, 2006.
- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D., Pilling, M. J., Rickard, A., and Scakins, P.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD rad-ical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, doi:10.1039/b702916k, 2007.

Baker, J., Arey, J., and Atkinson, R.: Kinetics of the Gas-Phase Reactions of OH Radicals, NO₃ Radicals and O₃ with Three C₇-Carbonyls Formed From The Atmospheric Reactions of Myrcene, Ocimene and and Terpinolene, J. Atmos. Chem., pp. 241–260, 2004.

- Baulch, D. L., Bowman, C. T., Cobos, C., Cox, R. A., Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Walker, R. W., and Warnatz, J.: Eval-uated Kinetic Data for Combustion Modeling: Sup-plement II, J. Phys. Chem. Ref. Data, 34, 757–1397, Neurosci. 2005
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time trop J. Chem. Soc. Faraday Trans., 92, 2211-2222, 1996
- Capouet, M., Müller, J.-F., Ceulemans, K., Compe nolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 8, doi:10.1029/ 2007.ID008995. 2008.
- Christensen, L. E., Okumura, M., Sander, S. P., Salaw-itch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$: implications for stratospheric H_2O_2 , Geophys. Res. Lett., 29, doi:10.1029/2001GL014525, 2002.
- derabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (Glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73-82, 2008.
- Fruekilde, P., Hiorth, J., Jensen, N., Kotzias, D., and Uckide, F., Hjorth, J., Jensen, N., Kotzlas, D., and Larsen, B.: Ozonolysis at vegetation surfaces: a source of acctone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acctone in the troposphere, At-

56

mos. Environ., doi:10.1016/S1352-2310(97)00485-8,

- Grosjean, E., Grosjean, D., and Seinfeld, J. H.: Gas+Phase Reaction of Ozone with Trans-2-Hexenal, Trans-2-Hexenyl Acetate, Ethylvinyl Ketone, and 6-Methyl-5-Hepten-2-One, Int. J. Chem. Kinetics, pp. 373-382, 1996.
- Hatakeyama, S., Honda, S., and Akimoto, H.: Rate con ataaceyanna, S., nonda, S., and Akimoto, h.: rate con-stants and mechanism for reactions of ketenes with OH radicals in air at 299±2K, Bull. Chem. Soc. Jpn., pp. 2157–2162, 1985.
- Hermans, I., Mulller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α-Hydroxy-alkylperoxyl Radicals in Oxidation Processes. HO₂-any peroxy radicals in Oxford on Processes. D2-Initiated Oxidation of Ketones/Aldehydes near the Tropopause, J. Phys. Chem. A, pp. 4303–4311, doi: 10.1021/jp044080v, 2005.
- Hites, R. A. and Turner, A. M.: Rate Constants for the Gas-Phase β -Myrcene+OH and Isoprene+OH Reactions as a Function of Temperature, Int. J. Chem. Kinetics, pp. 407–413, 2009.
- IUPAC: Evaluated Kinetic Data, http://iupac. pole-ether.fr/, 2013.
- Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel of the CH₂C(O)O₂ + HO₂ reaction in the gas phase, Phys. Chem. Chem. Phys. 9, 3149–3162, doi:10.1039/ b702757e, 2007.
- Kircher, C. C. and Sander, S. P.: Kinetics and n nism of HO₂ and DO₂ disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.
- Lewis, P. J., Bennett, K. A., and Harvey, J. N.: A computational study of the atmospheric oxidation of

- Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ray ishankara, A. R.: Kinetics of the reaction OH + CO inder atm spheric conditions, Geophys. Res. Lett. 28. 3135-3138. 2001
- Mellouki, A. and Mu, Y.: On the atmospheric degrada-tion of pyruvic acid in the gas phase, J. Photochem Photobiol. A: Chem., doi:10.1016/S1010-6030(03) 00070-4 2003
- Mollner, A. K., Valluvadasan, S., Feng, L., Sprague M. K., Okumura, M., Milligan, D. B., Bloss, W. J. Sander, S. P., Martien, P. T., Harley, R. A., McCoy A. B., and Carter, W. P. L.: Rate of Gas Phase Asciation of Hydroxyl Radical and Nitroge ience, doi:10.1126/science.1193030, 2010 n Diovide
- Nguyen, T. L., Peeters, J., and Vereecken, L.: Theo such that the probability of the gas-phase ozonolysis of β -pinene ($c_{10}H_{16}$), Phys. Chem. Chem. Phys., doi:10.1039/b822984h, 2009.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Ki-netics, 33, 149–156, 2001.
- J. J., Tyndall, G. S., Bilde, M., Ferronato C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and Theoretical Study of the Oxy Radicals in the OH- and Cl-Initiated Oxidation of Ethene, J. Phys. Chem. A, 102, 8116–8123, 1998.

- nopinone, Phys. Chem. Chem. Phys., pp. 1643–1649, doi:10.1039/b418909d, 2005. ockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, sevaration, identification, vields and atmospheric 1999a.
 - Orlando, J. J., Tyndall, G. S., and Paulson, S. E.: Mechanism of the OH-initiated oxidation of methacrolein, Geophys. Res. Lett., 26, 1999b.
 - Orlando, J. J., Nozier, B., Tyndall, G. S., Orze-chowska, G. E., Paulson, S. E., and Rudich, Y.: Prod-uct studies of the OH- and ozone-initiated axidation of some monoterpens, J. Geophys. Res., pp. 11561– 11572, 2000.
 - Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)(C)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, 2002.
 - Paulot, F., Crounse, J. D., Kiaergaard, H. G., Kroll, J.H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, 2009a.
 - Paulot, F., Crounse, J. D., Kiaergaard, H. G., Kürten A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, A., St. Clair, J. M., Schneid, S. H., and Weinberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, 325, doi: 10.1126/science.1172910, 2009b.
 - Rickard, A. and Pascoe, S.: The Master Chemi-cal Mechanism (MCM), http://mcm.leeds.ac.uk, 2000 2009
 - Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L.,

and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Stud-ies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.

Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo ander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Num-ber 15, JPL Publication 06-2, Jet Propulsion Lab-oratory, Pasadena, CA, http://jpldataeval.jpl. nace.cov. 2006. nasa.gov, 2006.

Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, 2003.

Smith, A. M., Rigler, E., Kwok, E. S. C., and Atkin-son, R.: Kinetics and Products of the Gas-Phase Reactions of 6-Methyl-5-hepten-2-one and trans-Cimnamaldehyde with OH and NO₃ Radicals and O₃ at 296(±2K), Environ. Sci. Technol., pp. 1781–1785, 1000 1996.

Taraborrelli, D.: MIM3, Geosci. Model Dev., (in prepa ration), 2013a

Taraborrelli, D.: MTM, Atmos. Chem. Phys., (in preparation), 2013b.

Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mecha nism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751-2777, http://www atmos-chem-phys.net/9/2751, 2009.

Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic percoxy radicals, J. Geophys. Res., 106D, 12157–12182, 2001.

Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of b-pinene (C₁₀H₁₀): first generation productsw, Phys. Chem. Chem. Phys., pp. 3802–3815, doi:10.1039/ c2cp23711c, 2012.

Vereecken, L., Müller, J.-F., and Peeters, J.: Lowvolatility poly-oxygenates in the OH-initiated atmospheric oxidation of α-pinene: impact of nontraditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241–5248, doi:10.1039/b708023a, 2007.

von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3Dmodeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.

von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, doi: $10.1029/2002JD002893,\,2003.$

10.1029/2002JD002893; 2003.
Wolfe, G. M., Thornton, J. A., Bouvier-Brown, N. C., Goldstein, A. H., Park, J.-H., McKay, M., Matross, D. M., Mao, J., Brune, W. H., LaFranchi, B. W., Browne, E. C., Min, K.-E., Wooldridge, P. J., Cohen, R. C., Crounse, J. D., Falcona, I. C., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Huisman, A., and Keutsch, F. N.: The Chemistry of Atmosphere-Forest Exchange (CAFE) Model Part 2: Application to BEARPEX-2007 observations, Atmos. Chem. Phys., 11, 1269–1294, doi:10.5194/acp-11-1269-2011, 2011.

C. Data sheets

C.1. Pen-ray line source – LOT-QuantumDesign, Europe

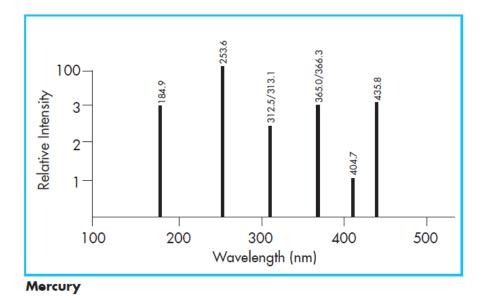


Abbildung C.1.: Discontinuous spectrum of the pen-ray line source used for calibration of the HORUS instrument (Taken from manual, LOT-QuantumDesign, Europe, www.lot-qd.com)

C.2. NIST NO standard

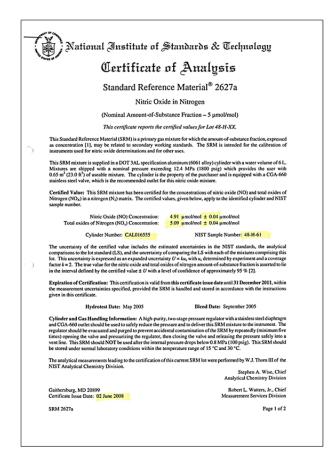


Abbildung C.2.: National Institute of Standards & Technology - NO standard used for actinic flux density calibration of the mercury lamp that was applied for calibration of the HORUS instrument.

C.3. Dew Point Generator - LI-610 & $\mathrm{H_2O}\text{-}Monitor$ - LI-7000

l	LI-610 Portable Dew Point Generator
	Serial Number: DPG-629B
and a second s	Standards Used: Precision Thermistor Serial Number: #2 Multimeter: Hewlett Packard Model 3468A Serial Number: 2137A16238 Platinum RTD Probe Serial Number: Minco Model S7297PA1L120S Serial Number: 1194 Standard Resistor: Julie Research Model NB-102 Serial Number: 1156
Ŀ	The copper condenser block temperature is used to calibrate the L1-610. The temperature of the condenser block can be measured with greater accuracy and resolution than the dew point of the output air stream as measured by a dew point hygrometer.
	The water temperature inside the condenser block is established by the block temperature, and air orought to saturation at the water temperature will have a dew point equal to the water temperature. Design testing has confirmed that air leaving the L1-610 is startared at flow rates up to 2 liters min ⁻¹ , with a dew point equal to the block and water temperature.
	The platinum Resistance-Temperature-Detector (RTD) mounted on the copper condenser block is calibrated at two temperatures: 0 °C and 49.90 °C. The slight non-linearity of the RTD is corrected electronically. A precision thermistor is used to calibrate the condenser block at 0 °C and 49.90 °C, as it offers much greater sensitivity than the RTD. See the instruction manual for more information on calibration standards.
	Cooling Block Temperature errors after calibration: At 0 °C .00 °C. At 25 °C .002 °C. At 49.90 °C .00 °C.
ŀ	This certifies that the dew point generated will be within \pm .2 °C of the setting when operated according to the instructions.
	Date of Calibration: November 20, 2003
l	Calibration Technician: <u>Jony azeko</u>

Abbildung C.3.: Certificate of Calibration, Dew Point Generator Licor, LI-610. Calibrated against NIST-traceable standard.

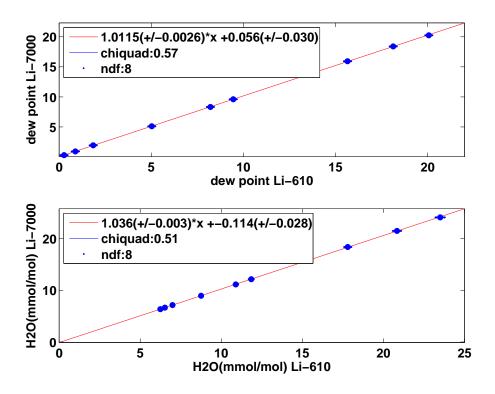
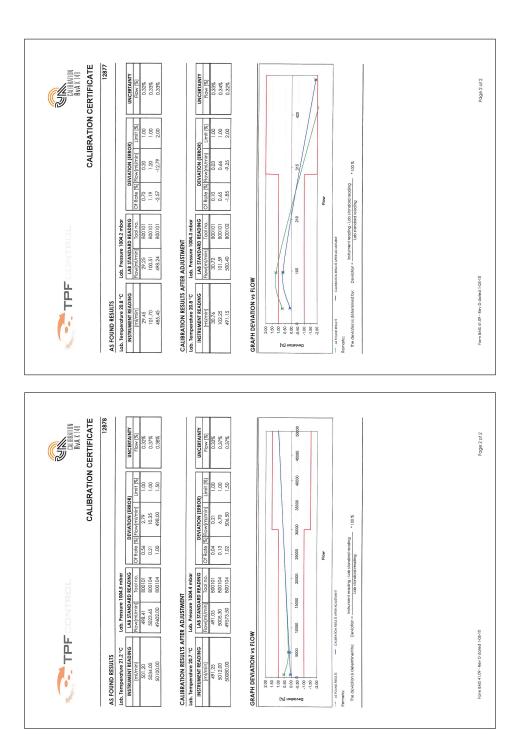



Abbildung C.4.: Calibration of the H_2O -Monitor - Licor, LI-7000, using the Dew Point Generator Licor, LI-610. Date of calibration: 10^{th} of June, 2010.

C.4. Gas Flow Calibrator – DryCal, BIOS, USA

	FCONTRO	3 L.		Nieuweweg 28 66038N WDO The Netherlan	83a Tel. +31 (0): HEN Fax +31 (0): ids Web: www.tj	24 379 212 24 379 106 pf-control.n
Cal Date : 08 Ju Page : 1 of	une 2010 1		Calib	oration C	Certificat	е
GENERAL DETAILS						
Customer name :	Westphal Mess-	und Regeltechnik	Manufacturer	: Bios Inter	national	
Customer ref :	R10-000379		Product	: DC-2 bas	se	
internal ref. :	12875		Serial no. Revision	: 104451 : 1.15		
			Revision	. 1.15		
AS RECEIVED TEST DA		ng the Bios procedure PR04-05 Rev	.E			
Tool Number	Description	Cal. Date	Due Do	ate	Cert.	
DVM001	Frequency coun	ter 10/8/2009	10/8/2	010		
T00101 P00107	PT100 sensor UNI3 pressure inc	9/11/2009 3. 11/27/2009	9/11/2		100750	
100107	UNIS pressure inc	a. 11/2//2009	11/2//.	2010	409752	
🔺 Ind freq. [µS]	99993.10	🔺 Ind. Temp [°C]	22.50	🔺 Ind. P [m		755.00
Frequency in tolerance	Yes	Temp in folerance ± 1.3 °C	Yes	Pressure in tolero	ance ± 11mmHg	Yes
Frequency [JS]	Temperature	[C]	Pres	ssure (mmHg)	
99993		22.5			755.00	
99950	100050	21.2		÷	A	8
11110			23.8			
			Lab temp 22.50	742.00	Lab press 753.00	764.0
 Minim 	num value / Maximun	n value 🔺 Measi	Lab temp 22.50 ured / indicated valu		Lab press 753.00	
AS SHIPPED TEST DAT	A	n value	22.30 ured / indicated valu		Lab press 753.00	
AS SHIPPED TEST DAT Temperature, pressure and in Tool Number	A equency are tested followin Description	ng the Bios procedure PRO4-05 Rev Cal. Date	22:30 ured / indicated valu		Lab press 753.00	
AS SHIPPED TEST DAT femperature, pressure and the Tool Number DVM001	A equency are tested followin Description Frequency count	ng the Bios procedure PR04-05 Rev Cal. Date ter 10/8/2009	zz.se ured / indicated valu & Due Date 10/8/2010		733.00	
AS SHIPPED TEST DAT	A equency are tested followin Description	ng the Bios procedure PR04-05 Rev Cal. Date ter 10/8/2009 9/11/2009	22:30 ured / indicated valu		733.00	
AS SHIPPED TEST DAT remperature, pressure and In Tool Number DVM001 T00101	A equency are tested followin Description Frequency count PT100 sensor	ng the Bios procedure PR04-05 Rev Cal. Date ter 10/8/2009 9/11/2009	22.39 ured / indicated valu .6 Due Date 10/8/2010 9/11/2010	Jac	733.00 Cert. 409752	
AS SHIPPED TEST DAT Temperature, pressure and the Tool Number DVM001 Tool 101 PC0107 A Ind freq. [µS]	A equency are lested followin Description Frequency count PTI00 sensor UNI3 pressure ind	ng the Bios procedure PR04-05 Rev Cal. Date 10/8/2009 9/11/2009 1. 11/27/2009	22.39 ured / indicated valu (c Due Date 10/8/2010 9/11/2010 11/27/2010		233.00 Cert. 409752 mHg]	164
AS SHIPPED TEST DAT Temperature, pressure and the Tool Number DVM001 Tool 101 PC0107 A Ind freq. [µS]	A equency are lested followin Pecquency count PT100 sensor UNI3 pressure ind 99993.10 Yes	ag the Bios procedure PR04-05 Rev Cal. Date ter 10/8/2009 9/11/2009 i. 11/27/2009 ▲ Ind. Temp [*C]	22.39 ured / indicated valu	▲ Ind. P [m Pressure in folerce	233.00 Cert. 409752 mHg]	ž 755.00
AS SHIPPED TEST DAT Temperature, pressure and In Tool Number DVM001 T00101 P00107 Ind freq. [µS] Trequency in tolerance	A equency are lested followin Pecquency count PT100 sensor UNI3 pressure ind 99993.10 Yes	ag the Bios procedure PR04-05 Rev Cal. Date ter 10/8/2009 9/11/2009 i. 11/27/2009 ▲ Ind. Temp [*C]	22.39 ured / indicated valu	▲ Ind. P [m Pressure in folerce	233.00 Cert. 409752 mHg] surce ± 11mmHg surce [mmHg]	ž 755.00
AS SHIPPED TEST DAT Temperature, pressure and the Tool Number DVM001 TOOI 01 PO0107 Ind freq. [µS] Trequency (µS) Frequency (µS)	A equency are lested followin Pecquency count PT100 sensor UNI3 pressure ind 99993.10 Yes	ter 10/8/2009 9/11/2009 9/11/2009 11/22/2009 11/22/2009 11/22/2009 11/22/2009 ▲ Ind. Temp [*C] Temp in bilerance ± 1.3*C	22.39 ured / indicated valu	▲ Ind. P [m Pressure in tolecc Pres	753.00 Cert. 409752 mHg] ance ± 11mmHg	ž 755.00 Yes
AS SHIPPED TEST DAT Temperature, pressure and th Tool Number DVM001 DVM001 DV0107 P00107 Ind (freq. [µS] frequency (in tolerance Frequency (ju	A equency are lested followin Pecquency count PT100 sensor UNI3 pressure ind 99993.10 Yes	ter 10/8/2009 9/11/2009 9/11/2009 11/22/2009 11/22/2009 11/22/2009 11/22/2009 ▲ Ind. Temp [*C] Temp in bilerance ± 1.3*C	22.50 ared / indicated value area / indicated value	▲ Ind. P [m Pressure in folerce	233.00 Cert. 409752 mHg] surce ± 11mmHg surce [mmHg]	ž 755.00
AS SHIPPED TEST DAT Temperature, presure and th Tool Number DVM0001 Tool 101 Prol 102 Frequency in Science Frequency 99930	A Description Frequency Cour PTI00 sensor UNI3 pressure inc \$99993.10 Yes Isl	g the Bios processus PEA 60 Eer Cal. Date 10/8/2009 9/11/2009 11/2/2009 ▲ Ind. Temp (*C) 22.5 21.5 24.5	22.50 ared / indicated value area / indicated value	Ind. P [m Presure in forect	733.00 Cert. 409752 mHg] sice ± 11mmHg surce ± 11mmHg 255.00 Lib press	ž 755.00 Yes

Abbildung C.5.: Certificate of Calibration, DryCal, DC-LC-1 & HC-LC-1,BIOS International, USA. Calibrated against NIST-traceable standard.

CALIBRATION CERTIFICATE				The device under text is corrected in a parallel setup to the mentioned flow calibator to storabe flow readont, no approcition or wman gime is incorporated. Bios. Storaphodicts: follow source) sued to generate a flow. (meaning last storadad, in a vin introde generate a flow.		The reutil of the collection one prevented on toops 2 of 2. The reported uncertainty of microsiments in the collection one prevention, microsited by a coverage factor k=2 which provides a considence area of opprovinging 3/35. The standard incention's of measurement has been determined in accordance with EA4002.	The mediumments howe been executed using standards for which the traceadallity to (interinational standards has been demonstrated towards the RVA.			hechnical Montager Rie von de Bovenkamp X	reaction. Periodical Proceedings of Proceedings of Inter- ter synaptic control Proceedings of Proceedings of Proceedings of the UCC of Proceedings of Proceedings of Pro- ceedings of Proceedings of Proceedings of Pro- ceedings of Proceedings of Proceedings of Proceedings of Proceedings of Pro- ceedings of Proceedings of Pro- ceedings of Proceedings of Pro- ceedings of Proceedings of Pro- Proceedings of Pro- Proceedings of Proceedings of Pro- Proceedings of Pro- Pro- Pro- Pro- Pro- Pro- Pro- Pro-	Page 1 af 2
	Westphol Mess- und Regellechnik E. Reuveni Leufinveg 20 8521 - Ollobrunn Germany	R10-000379 12875	Primary Flow Calibrator Bos International 104034 DC+HC-1	The device under fest is conne calibratior to compare flow reo Bios - Drycal products; a flow sc This flow is measured in an A-8. (A=reading lab standard, B=re	8 juni 2010	The results of the collination are presented on page 2 of 3 messurement is based on the standard uncertainly multip which provides a confidence level of approximately 95%. The standard uncertainly of messurement had been defer	The measurements have been exe (inter)national standards has been		Wijchen, 8 juni 2010		As a median of the forcement Contempolation of constraintion that are and with approximate to the AA Autological Approximate IAAA () are mucual tercographic with the minuta recognition of the mucual recognition of the the minuta recognition of collegiotor coefficients.	1-05-10
ТРF	Applicant Customername Contact Address	Order reference applicant Order reference TPF Control	Instrument information (DUT) Instrument Manufacturer Sericl no. Madel Revision	Calibration method	Period of calibration	Callbration result	Calibration traceability	Remarks	Certificate issue date	Calibration technician Kholid Harkach	IPF Control b.v. Nieuweweg 283d 2830 k WULCHEN (11) 164 +31 24 379 2120 Fox +31 24 379 1063 Web: www.tpl-control.nl	Form BMS 41.09 - Rev D dated 1-05-10
	₹00₹	00		0								
Ingo Ing ATE 2877	∢ ∪∪ ₹											
CALIBRATION CERTIFICATE	< 0 0 2						laads for which the traceability to varia the RVA.			lectrical Monager Rix van de Boverkamp <i>N</i>	Periodication of the compariso calma A clamara for all of the compariso calma A clamara for all the comparison of the periodication and an entities periodication and and a second periodic transmission of the contrast and and a periodic transmission of the contrast and and periodic transmission of the contrast and periodic transmission of the periodic transmission of the contrast and periodic transmission of the periodic transmission of the contrast and periodic transmission of the periodic transmission of the periodic transmission of the contrast periodic transmission of the periodic transmission of the periodic transmission of the periodic transmission of the periodic transmiss	Page 1 of 2
	Araphotakweu und Regeletentrak.	RI0.00039 12875	Primory Flaw Catabater Sides International 104441 104441 104441 10441	The device under test is connected in a parallel setup to the mentioned flow the compreter through the compreter worms of the mentioned flow sector(compreter) of the sector and to generate or flow. The war parallel of the sector and the device under test).	Bjurii 2010	The reutils of the calibration red presented on page 2 of 5. The moduled uncertainty of measurement to broad on the motivad uncertainty multipled by a coverage factor kr2. The strandshift even of the motivation end and by 35%. The strandshift and the strandshift of measurement that seen determined in accordance with EA+402.	The measurement have been executed uning standards for which the traceobility to finite/mailoral standards has been demonstrated brunds he RvA.		Wichen. Bjuri 2010	Technical Noncager Ritk van de Booenkamp V.C.		Form BMS 41.07 - Rev D dated 1-05-10 Poge 1 of 2

C.5. Optical Fiber – Thorlabs GmbH, Germany

				TECS	6 Coated Silica	/Silica Fiber
TECS-	Coated Silica/S	Silica Fiber S	Specification	s		
TEC5-	Coated Sinca/	Silica Fiber s	specification	15		
Core Diame	eter	μm	200 ± 8	365 ± 14	550 ± 19	910 ± 30
Clad Diame	ater	μm	240 ± 5	400 ± 8	600 ± 10	1000 ± 15
Coating Dia	ameter	μm	260 ± 6	425 ± 10	630 ± 10	1035 ± 15
Buffer Diam	neter1	μm	400 ± 30	730 ± 30	1040 ± 30	1400 ± 50
Maximum A	Attenuation @ 820nm	dB/km	12	12	12	12
Maximum C	Core Offset	μm	5	7	9	10
Numerical A	Aperture2		0.22 ± 0.02	0.22 ± 0.02	0.22 ± 0.02	0.22 ± 0.02
Acceptance	a Angle (Full)		25°	25°	25°	25°
	Power Capability					
 – CW3 – Pulsed4 	1	kW MW	0.2 1.0	0.7 3.4	1.5 7.6	5.0 25.1
Operating 1	Femperature @ 820nm		-60°C to +125°C	-60°C to +125°0	-60°C to +125°C	-60°C to +125°C
Proof Test L	Level	kpsi	100	100	100	100
	end Diameter					
	mended Short Term5 mended Long Term6	mm mm	24 48	40 80	60 120	100 200
Standard L	ength	m	1100	500	300	50
Туре						
Low-OH	Part Number	FG-200-LCR	FG-365-L	.ER	FG-550-LER	FG-910-LER
	Stock Number	98-0400-1367-8	98-0400-	1361-1	98-0400-1362-9	98-0400-3373-4
High-OH	Part Number	FG-200-UCR	FG-365-U	JER	FG-550-UER	FG-910-UER
	Stock Number	98-0400-1368-6	98-0400-	1369-4	98-0400-1370-2	98-0400-3635-6

'Standard buffer coating is Tafzelle 210. 2 meters. 50% intensity, uncoated and mode stripped. Based on 1 MWicm2 for 1064nm Nd:YAG laser and input spot size equal to 80 percent of the core diameter. Based on 5 GWicm2 for 1064nm Nd:YAG laser with 10 nsec. pulse length and tout spot size equal to 80 percent of the core diameter. Recommende geometric strat unity in statiation is 10% of proof test level, based on statistical analysis of fiber failures. Recommende geometric strat unity in statiation is alweed to the second on statistical analysis of fiber failures.

Abbildung C.6.: Specifications of coated silica fiber used for transportation of the 308 nm UV light within HORUS. (Taken from manual, Thorlabs GmbH, Europe, Germany, www.thorlabs.com)

C.6. Laser Dye Pyrromethene-597 – Exciton, USA

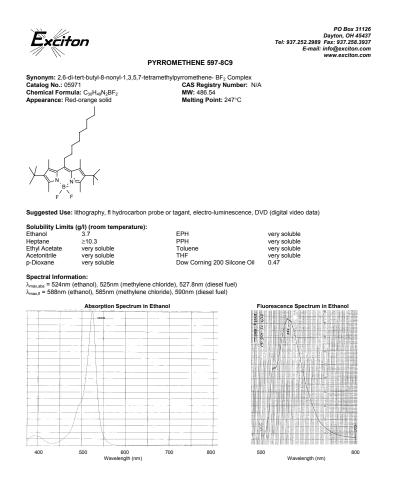


Abbildung C.7.: Pyrromethene-597 laser dye, Exciton, USA, www.exciton.com

D. Abbreviations

BVOC	Biogenic Volatile Organic Compound
BEARPEX09	Biosphere E ffects on $AeRosols$
	and Photochemistry EX periment 2009, USA
CAABA/MECCA	Chemistry As A Boxmodel Application /
	Module Efficiently Calculating the Chemistry of the Atmosphere
CABINEX	Community A tmosphere B iosphere
	IN teractions EX periments, USA
CIMS	Chemical Ionisation Mass Spectroscopy
CRD	Cavity Ring Down
DOAS	Differential $Optical Absorption Spectroscopy$
GABRIEL	Guyanas A tmosphere- B iosphere Exchange and R adicals I ntensive
	Experiment with the Learjet, Oct. 2005, Suriname
GTHOS	Ground-based T ropospheric H ydrogen O xides S ensor
HOPE12	HOhenpeissenberg Photochemistry Experiment
HORUS	HydrOxyl Radical Measurement Unit
	based on fluorescence Spectroscopy
HOxCOMP	$\mathrm{HO}_{\mathbf{x}}$ Inter <i>comp</i> arison Campaign 2005, Jülich, Germany
HUMPPA-COPEC	Hyytiälä United Measurements of Photochemistry and
	Particles in Air - Comprehensive Organic Precursor
	Emission and Concentration study, Finland
IPI	Inlet P re I njector
LIF	Laser Induced Fluorescence
LIF-FAGE	Laser Induced Fluorescence - Fluorescence Assay by Gas Expansion
NMHC	Non- M ethane H ydro C arbons
MCM	Master C hemical M echanism
MCP	Micro Channel Plate
MIESR	Matrix Isolation Electron Spin Resonance
MIM	Mainz I soprene M echanism
MTM	Mainz Terpene M echanism

D. Abbreviations

OP3	Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest	
PARADE PROPHET	PArticles and RA dicals: Diel observations of the impact of urban and biogenic Emissions Program for Research on Oxidants: PH otochemistry,	
	Emissions, and Transport, USA	
PTR-MS	Proton Transfer Reaction Mass Spectroscopy	
SMEAR II	Station for Measuring Forest Ecosystem-Atmosphere Relations	
SOS99	Southern Oxidants Study 1999	
TexAQS	Texas Air Quality Study	
Trace-P	Transport and Chemical Evolution over the Pacific	
UTC	Universal Time Coordinates	
VOC	Volatile Organic Compound	

Bibliography

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmospheric Chemistry and Physics, 6, 3625–4055, doi:10.5194/acp-6-3625-2006, http://www.atmos-chem-phys.net/6/ 3625/2006/, 2006.
- Aumont, B., Chervier, F., and Laval, S.: Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer, Atmospheric Environment, 37, 487 – 498, doi:http://dx.doi. org/10.1016/S1352-2310(02)00920-2, http://www.sciencedirect.com/science/article/pii/ S1352231002009202, 2003.
- Bailey, A., Heard, D., Henderson, D., and Paul, P.: Collisional quenching of OH by H₂O between 211 and 294 K and the development of a unified model for quenching, Chemical Physics Letters, 302, 132 - 138, doi:http://dx.doi.org/10.1016/S0009-2614(99)00076-7, http://www.sciencedirect. com/science/article/pii/S0009261499000767, 1999.
- Bailey, A. E., Heard, D. E., Paul, P. H., and Pilling, M. J.: Collisional quenching of OH (A²Σ⁺, v' = 0) by N₂, O₂ and CO₂ between 204 and 294 K. Implications for atmospheric measurements of OH by laser-induced fluorescence, J. Chem. Soc., Faraday Trans., 93, 2915–2920, doi:10.1039/A701582H, http://dx.doi.org/10.1039/A701582H, 1997.
- Benning, L. and Wahner, A.: Measurements of Atmospheric Formaldehyde (HCHO) and Acetaldehyde (CH3CHO) during POPCORN 1994 Using 2.4-DNPH Coated Silica Cartridges, Journal of Atmospheric Chemistry, 31, 105–117, doi:10.1023/A:1005884116406, http://dx.doi.org/10. 1023/A%3A1005884116406, 1998.
- Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H.-C., Rosman, K., Dal Maso, M., Mäkelä, J. M., Kulmala, M., and O'Dowd, C. D.: Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland, Journal of Geophysical Research: Atmospheres, 107, PAR 5–1–PAR 5–12, doi:10.1029/2000JD000229, http: //dx.doi.org/10.1029/2000JD000229, 2002.

Bohn, B., Corlett, G. K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E., Vrekoussis, M.,

Bloss, W. J., Clapp, L. J., Kortner, M., Dorn, H.-P., Monks, P. S., Platt, U., Plass-Dülmer, C., Mihalopoulos, N., Heard, D. E., Clemitshaw, K. C., Meixner, F. X., Prevot, A. S. H., and Schmitt, R.: Photolysis frequency measurement techniques: results of a comparison within the ACCENT project, Atmospheric Chemistry and Physics, 8, 5373–5391, doi:10.5194/acp-8-5373-2008, http://www.atmos-chem-phys.net/8/5373/2008/, 2008; B.Bohn, personal communication, 2012.

- Brune, W. H., Mao, J., and Ren, X.: OH and HO2 Measurements in Blodgett Forest, CA during BEARPEX 2009, abstract A51G-02 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec., 2010.
- Cantrell, C. A., Edwards, G. D., Stephens, S., Mauldin, L., Kosciuch, E., Zondlo, M., and Eisele, F.: Peroxy radical observations using chemical ionization mass spectrometry during TOPSE, Journal of Geophysical Research: Atmospheres, 108, doi:10.1029/2002JD002715, http://dx.doi.org/10. 1029/2002JD002715, 2003.
- Chan, C. Y., Hard, T. M., Mehrabzadeh, A. A., George, L. A., and O'Brien, R. J.: Third-generation FAGE instrument for tropospheric hydroxyl radical measurement, Journal of Geophysical Research: Atmospheres, 95, 18569–18576, doi:10.1029/JD095iD11p18569, http://dx.doi.org/10. 1029/JD095iD11p18569, 1990.
- Criegee, R.: Mechanism of Ozonolysis, Angewandte Chemie International Edition in English, 14, 745–752, doi:10.1002/anie.197507451, http://dx.doi.org/10.1002/anie.197507451, 1975.
- Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical isomerization in the oxidation of isoprene, Phys. Chem. Chem. Phys., 13, 13607–13613, doi:10.1039/C1CP21330J, http://dx.doi.org/10.1039/C1CP21330J, 2011.
- Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V - heterogeneous reactions on solid substrates, Atmospheric Chemistry and Physics, 10, 9059–9223, doi:10.5194/acp-10-9059-2010, http://www.atmos-chem-phys.net/10/ 9059/2010/, 2010.
- Crutzen, P.: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, Pure and applied geophysics, 106-108, 1385–1399, doi:10.1007/BF00881092, http://dx.doi.org/10.1007/BF00881092, 1973.
- Dentener, F., Williams, J., and Metzger, S.: Aqueous Phase Reaction of HNO4: The Impact on Tropospheric Chemistry, Journal of Atmospheric Chemistry, 41, 109–133, doi:10.1023/A: 1014233910126, http://dx.doi.org/10.1023/A%3A1014233910126, 2002.
- Dieke, G. and Crosswhite, H.: The ultraviolet bands of OH Fundamental data, Journal of Quantitati-

ve Spectroscopy and Radiative Transfer, 2, 97 – 199, doi:http://dx.doi.org/10.1016/0022-4073(62) 90061-4, http://www.sciencedirect.com/science/article/pii/0022407362900614, 1962.

Dillon, T.: Interactive comment on "Detection of HO_2 by laser-induced fluorescence: calibration and interferences from RO_2 radicals" by H. Fuchs et al., Atmos. Meas. Tech. Discuss., 4, 1255, 2011.

- Dillon, T. J. and Crowley, J. N.: Direct detection of OH formation in the reactions of HO₂ with CH₃C(O)O₂ and other substituted peroxy radicals, Atmospheric Chemistry and Physics, 8, 4877– 4889, doi:10.5194/acp-8-4877-2008, http://www.atmos-chem-phys.net/8/4877/2008/, 2008.
- Dorn, H., Brandenburger, U., Brauers, T., and Hausmann, M.: A new in situ laser long-path absorption instrument for the measurement of tropospheric OH radicals., Journal of the Atmospheric Sciences, 52, 3373-3380, http://search.ebscohost.com/login.aspx?direct=true&db= aph&AN=9512310260&site=ehost-live&scope=site, 1995.
- Eisele, F. L. and Tanner, D. J.: Ion-assisted tropospheric OH measurements, Journal of Geophysical Research: Atmospheres, 96, 9295–9308, doi:10.1029/91JD00198, http://dx.doi.org/10.1029/ 91JD00198, 1991.
- Evans, M., Shallcross, D., Law, K., Wild, J., Simmonds, P., Spain, T., Berrisford, P., Methven, J., Lewis, A., McQuaid, J., Pilling, M., Bandy, B., Penkett, S., and Pyle, J.: Evaluation of a Lagrangian box model using field measurements from EASE (Eastern Atlantic Summer Experiment) 1996, Atmospheric Environment, 34, 3843 3863, doi:10.1016/S1352-2310(00)00184-9, http://www.sciencedirect.com/science/article/pii/S1352231000001849, 2000.
- Faloona, I., Tan, D., Brune, W. H., Jaegle, L., Jacob, D. J., Kondo, Y., Koike, M., Chatfield, R., Pueschel, R., Ferry, G., Sachse, G., Vay, S., Anderson, B., Hannon, J., and Fuelberg, H.: Observations of HO x and its relationship with NO x in the upper troposphere during SONEX, Journal of Geophysical Research: Atmospheres, 105, 3771–3783, doi:10.1029/1999JD900914, http://dx.doi.org/10.1029/1999JD900914, 2000.
- Faloona, I., Tan, D., Lesher, R., Hazen, N., Frame, C., Simpas, J., Harder, H., Martinez, M., Di Carlo, P., Ren, X., and Brune, W.: A Laser-induced Fluorescence Instrument for Detecting Tropospheric OH and HO2: Characteristics and Calibration, Journal of Atmospheric Chemistry, 47, 139–167, doi:doi:10.1023/B:JOCH.0000021036.53185.0e, http://www.ingentaconnect.com/ content/klu/joch/2004/00000047/00000002/05257331, 2004.
- FAO: Global forest resources assessment 2010, FAO forestry paper, FAO, Rome, http://www.fao. org/docrep/013/i1757e/i1757e.pdf, available online., 2010.
- Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of volatile organic compounds from

vegetation and the implications for atmospheric chemistry, Global Biogeochemical Cycles, 6, 389–430, doi:10.1029/92GB02125, http://dx.doi.org/10.1029/92GB02125, 1992.

- Felton, C. C., Sheppard, J. C., and Campbell, M. J.: Measurements of the diurnal OH cycle by a ¹⁴C-tracer method, Nature, 335, 53–55, http://dx.doi.org/10.1038/335053a0, 1988.
- Freeman, A. J.: Configuration Interaction Study of the Electronic Structure of the OH Radical by the Atomic and Molecular Orbital Methods, The Journal of Chemical Physics, 28, 230–243, doi:10.1063/1.1744098, http://link.aip.org/link/?JCP/28/230/1, 1958.
- Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., and Wahner, A.: Detection of HO₂ by laser-induced fluorescence: calibration and interferences from RO₂ radicals, Atmospheric Measurement Techniques, 4, 1209–1225, doi:10.5194/amt-4-1209-2011, http://www. atmos-meas-tech.net/4/1209/2011/, 2011.
- Fuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H.-P., Haseler, R., Holland, F., Kaminski, M., Li, X., Lu, K., Nehr, S., Tillmann, R., Wegener, R., and Wahner, A.: Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation, Nature Geosci, advance online publication, –, http://dx.doi.org/10.1038/ngeo1964, 2013.
- Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C.: Nonmethane hydrocarbon measurements during the Tropospheric OH Photochemistry Experiment, Journal of Geophysical Research: Atmospheres, 102, 6315–6324, doi:10.1029/96JD01868, http://dx.doi.org/10.1029/96JD01868, 1997.
- Griffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., Carroll, M. A., Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kammrath, A., Keutsch, F. N., Lefer, B. L., Mielke, L. H., O'Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., and Zhou, X. L.: OH and HO₂ radical chemistry during PROPHET 2008 and CABI-NEX 2009; Part 1: Measurements and model comparison, Atmospheric Chemistry and Physics, 13, 5403–5423, doi:10.5194/acp-13-5403-2013, http://www.atmos-chem-phys.net/13/5403/2013/, 2013.
- Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, Journal of Geophysical Research: Atmospheres, 100, 8873–8892, doi:10.1029/94JD02950, http://dx.doi. org/10.1029/94JD02950, 1995.
- Hall, B. D. and Claiborn, C. S.: Measurements of the dry deposition of peroxides to a Canadian boreal forest, Journal of Geophysical Research: Atmospheres, 102, 29343–29353, doi:10.1029/97JD01113, http://dx.doi.org/10.1029/97JD01113, 1997.

- Hard, T. M., O'Brien, R. J., Cook, T. B., and Tsongas, G. A.: Interference suppression in HO fluorescence detection, Appl. Opt., 18, 3216-3217, doi:10.1364/AO.18.003216, http://ao.osa. org/abstract.cfm?URI=ao-18-19-3216, 1979.
- Hari, P. and Kulmala, M.: Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II), Boreal Environ. Res., 10, 315–322, 2005.
- Hasson, A. S., Tyndall, G. S., and Orlando, J. J.: A Product Yield Study of the Reaction of HO2 Radicals with Ethyl Peroxy (C2H5O2), Acetyl Peroxy (CH3C(O)O2), and Acetonyl Peroxy (CH3C(O)CH2O2) Radicals, The Journal of Physical Chemistry A, 108, 5979–5989, doi: 10.1021/jp048873t, http://pubs.acs.org/doi/abs/10.1021/jp048873t, 2004.
- Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in the Troposphere, Chemical Reviews, 103, 5163-5198, doi:10.1021/cr020522s, http://pubs.acs.org/doi/abs/10.1021/ cr020522s, 2003.
- Hofzumahaus, A., Aschmutat, U., Hessling, M., Holland, F., and Ehhalt, D. H.: The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN Field Campaign, Geophysical Research Letters, 23, 2541–2544, doi:10.1029/96GL02205, http: //dx.doi.org/10.1029/96GL02205, 1996.
- Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M., Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in the Troposphere, Science, 324, 1702–1704, 2009.
- Holland, F., Aschmutat, U., Hessling, M., Hofzumahaus, A., and Ehhalt, D.: Highly Time Resolved Measurements of OH during POPCORN Using Laser-Induced Fluorescence Spectroscopy, Journal of Atmospheric Chemistry, 31, 205–225, doi:10.1023/A:1005868520002, http://dx.doi.org/10. 1023/A%3A1005868520002, 1998.
- Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H.-W.: Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ, Journal of Geophysical Research: Atmospheres, 108, PHO 2–1–PHO 2–23, doi:10.1029/2001JD001393, http://dx.doi. org/10.1029/2001JD001393, 2003.
- Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., and Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state, Atmospheric Chemistry and Physics, 11, 8497-8513, doi:10.5194/acp-11-8497-2011, http://www.atmos-chem-phys.net/11/ 8497/2011/, 2011.

Jaegle, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes, B. G., Kondo, Y., Sachse,

G. W., Anderson, B., Gregory, G. L., Singh, H. B., Pueschel, R., Ferry, G., Blake, D. R., and Shetter, R. E.: Photochemistry of HO x in the upper troposphere at northern midlatitudes, Journal of Geophysical Research: Atmospheres, 105, 3877–3892, doi:10.1029/1999JD901016, http://dx.doi.org/10.1029/1999JD901016, 2000.

- Janzen, E. G., Nutter Jr., D. E., Davis, E. R., Blackburn, B. J., Poyer, J. L., and McCay, P. B.: On spin trapping hydroxyl and hydroperoxyl radicals, Canadian Journal of Chemistry, 56, 2237–2242, doi:10.1139/v78-368, http://www.nrcresearchpress.com/doi/abs/10.1139/v78-368, 1978.
- Jenkin, M. E., Hurley, M. D., and Wallington, T. J.: Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase, Phys. Chem. Chem. Phys., 9, 3149–3162, doi:10.1039/B702757E, http://dx.doi.org/10.1039/B702757E, 2007.
- Junkermann, W., Platt, U., and Volz-Thomas, A.: A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules, Journal of Atmospheric Chemistry, 8, 203–227, doi:10.1007/BF00051494, http://dx.doi.org/10.1007/BF00051494, 1989.
- Karl, T., Hansel, A., Cappellin, L., Kaser, L., Herdlinger-Blatt, I., and Jud, W.: Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO⁺ ionization mass spectrometry, Atmospheric Chemistry and Physics, 12, 11877–11884, doi:10.5194/acp-12-11877-2012, http: //www.atmos-chem-phys.net/12/11877/2012/, 2012.
- Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology, Journal of Atmospheric Chemistry, 33, 23–88, doi:10.1023/A: 1006127516791, http://dx.doi.org/10.1023/A%3A1006127516791, 1999.
- Kim, S., Wolfe, G. M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A., Greenberg, J., Hall, S. R., Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima, Y., Keutsch, F. N., DiGangi, J. P., Henry, S. B., Kaser, L., Schnitzhofer, R., Graus, M., Hansel, A., Zheng, W., and Flocke, F. F.: Evaluation of HO_x sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem, Atmospheric Chemistry and Physics, 13, 2031–2044, doi:10.5194/acp-13-2031-2013, http://www. atmos-chem-phys.net/13/2031/2013/, 2013.
- Kleffmann, J., Heland, J., Kurtenbach, R., Lorzer, J., and Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO), Environmental Science and Pollution Research, 9, 48–54, 2002.
- Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L., Schlosser,
 E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: A major source of OH radicals in a forest, Geophysical Research Letters, 32, n/a–n/a, doi:10.1029/2005GL022524, http://dx.

doi.org/10.1029/2005GL022524, 2005.

- Klippel, T., Fischer, H., Bozem, H., Lawrence, M. G., Butler, T., Jöckel, P., Tost, H., Martinez, M., Harder, H., Regelin, E., Sander, R., Schiller, C. L., Stickler, A., and Lelieveld, J.: Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOO-VER project, Atmospheric Chemistry and Physics, 11, 4391–4410, doi:10.5194/acp-11-4391-2011, http://www.atmos-chem-phys.net/11/4391/2011/, 2011.
- Kubistin, D.: OH- und HO₂-Radikale über dem tropischen Regenwald, Ph.D. thesis, Johannes Gutenberg-Universität Mainz, Germany, 2009.
- Kubistin, D., Harder, H., Martinez, M., Rudolf, M., Sander, R., Bozem, H., Eerdekens, G., Fischer, H., Gurk, C., Klüpfel, T., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Taraborrelli, D., Williams, J., and Lelieveld, J.: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: comparison of measurements with the box model MECCA, Atmospheric Chemistry and Physics, 10, 9705–9728, doi:10.5194/acp-10-9705-2010, http://www.atmos-chem-phys.net/10/9705/2010/, 2010.
- Kulmala, M., Hämeri, K., Aalto, P. P., Mäkelä, J. M., Pirjola, L., Nilsson, E. D., Buzorius, G., Rannik, U., Maso, M. D., Seidl, W., Hoffman, T., Janson, R., Hansson, H.-C., Viisanen, Y., Laaksonen, A., and O'Dowd, C. D.: Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR), Tellus B, 53, 324–343, doi:10.1034/j.1600-0889.2001.530402.x, http://dx.doi.org/10.1034/j.1600-0889.2001.530402.x, 2001.
- Langhoff, S. R., van Dishoeck, E. F., Wetmore, R., and Dalgarno, A.: Radiative lifetimes and dipole moments of the $A_2\Sigma^+$, $B_2\Sigma^+$, and $C_2\Sigma^+$ states of OH, The Journal of Chemical Physics, 77, 1379–1390, doi:10.1063/1.443962, http://link.aip.org/link/?JCP/77/1379/1, 1982.
- Leighton, P.: Photochemistry of air pollution, New York and London., Academic Press, 1961.
- Lelieveld, J., Peters, W., Dentener, F. J., and Krol, M. C.: Stability of tropospheric hydroxyl chemistry, Journal of Geophysical Research: Atmospheres, 107, ACH 17–1–ACH 17–11, doi: 10.1029/2002JD002272, http://dx.doi.org/10.1029/2002JD002272, 2002.
- Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452, 737–740, http://dx.doi.org/10.1038/nature06870, 2008.
- Levy II, H.: Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted, Science, 173, pp. 141-143, http://www.jstor.org/stable/1732208, 1971.
- Lowe, D. C. and Schmidt, U.: Formaldehyde (HCHO) measurements in the nonurban atmosphere,

Journal of Geophysical Research: Oceans, 88, 10844–10858, doi:10.1029/JC088iC15p10844, http://dx.doi.org/10.1029/JC088iC15p10844, 1983.

- Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmospheric Chemistry and Physics, 12, 1541–1569, doi:10.5194/acp-12-1541-2012, http://www.atmos-chem-phys.net/ 12/1541/2012/, 2012.
- Mao, J., Ren, X., Zhang, L., Van Duin, D. M., Cohen, R. C., Park, J.-H., Goldstein, A. H., Paulot, F., Beaver, M. R., Crounse, J. D., Wennberg, P. O., DiGangi, J. P., Henry, S. B., Keutsch, F. N., Park, C., Schade, G. W., Wolfe, G. M., Thornton, J. A., and Brune, W. H.: Insights into hydroxyl measurements and atmospheric oxidation in a California forest, Atmospheric Chemistry and Physics, 12, 8009–8020, doi:10.5194/acp-12-8009-2012, http://www.atmos-chem-phys.net/ 12/8009/2012/, 2012.
- Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, J. Geophys. Res., 108, 4617–, http://dx.doi.org/10.1029/2003JD003551, 2003.
- Martinez, M., Harder, H., Ren, X., Lesher, R. L., and Brune, W. H.: Measuring atmospheric naphthalene with laser-induced fluorescence, Atmospheric Chemistry and Physics, 4, 563-569, doi: 10.5194/acp-4-563-2004, http://www.atmos-chem-phys.net/4/563/2004/, 2004.
- Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klüpfel, T., Gurk, C., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A., Williams, J., and Lelieveld, J.: Hydroxyl radicals in the tropical troposphere over the Suriname rainforest: airborne measurements, Atmospheric Chemistry and Physics, 10, 3759–3773, doi:10.5194/acp-10-3759-2010, http://www.atmos-chem-phys.net/10/3759/2010/, 2010.
- Mihelcic, D., Ehhalt, D., Kulessa, G., Klomfass, J., Trainer, M., Schmidt, U., and Röhrs, H.: Measurements of free radicals in the atmosphere by matrix isolation and electron paramagnetic resonance, pure and applied geophysics, 116, 530–536, doi:10.1007/BF01636905, http: //dx.doi.org/10.1007/BF01636905, 1978.
- Mogensen, D., Smolander, S., Sogachev, A., Zhou, L., Sinha, V., Guenther, A., Williams, J., Nieminen, T., Kajos, M. K., Rinne, J., Kulmala, M., and Boy, M.: Modelling atmospheric OH-

reactivity in a boreal forest ecosystem, Atmospheric Chemistry and Physics, 11, 9709–9719, doi: 10.5194/acp-11-9709-2011, http://www.atmos-chem-phys.net/11/9709/2011/, 2011.

- Nölscher, A. C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A. M., Axinte, R., Bozem, H., Fischer, H., Pouvesle, N., Phillips, G., Crowley, J. N., Rantala, P., Rinne, J., Kulmala, M., Gonzales, D., Valverde-Canossa, J., Vogel, A., Hoffmann, T., Ouwersloot, H. G., Vilà-Guerau de Arellano, J., and Lelieveld, J.: Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010, Atmospheric Chemistry and Physics, 12, 8257–8270, doi:10.5194/ acp-12-8257-2012, http://www.atmos-chem-phys.net/12/8257/2012/, 2012.
- Novelli, A., Hens, K., Tatum Ernest, C., Trawny, K., Rudolf, M., Kubistin, D., Hosaynali Beygi, Z., Fischer, H., Williams, J.and Paasonen, P., Sipilä, M., Keronen, P., Petäjä, T., Elste, T., Plass-Duelmer, C., Vereecken, L., Martinez, M., Lelieveld, J., and Harder, H.: The role of stabilised Criegee intermediate in gas phase H₂SO₄ formation, abstract A24D-04 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec., 2012.
- Ortgies, G., Gericke, K.-H., and Comes, F. J.: Is UV laser induced fluorescence a method to monitor tropospheric OH?, Geophysical Research Letters, 7, 905–908, doi:10.1029/GL007i011p00905, http://dx.doi.org/10.1029/GL007i011p00905, 1980.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., KA¹/₄rten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, 325, 730-733, doi:10.1126/science.1172910, http://www.sciencemag.org/content/325/ 5941/730.abstract, 2009.
- Peeters, J., Vereecken, L., and Fantechi, G.: The detailed mechanism of the OH-initiated atmospheric oxidation of [small alpha]-pinene: a theoretical study, Phys. Chem. Chem. Phys., 3, 5489–5504, doi:10.1039/B106555F, http://dx.doi.org/10.1039/B106555F, 2001.
- Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regeneration in the oxidation of isoprene, Phys. Chem. Chem. Phys., 11, 5935–5939, doi:10.1039/B908511D, http://dx.doi.org/10.1039/ B908511D, 2009.
- Penkett, S. A., Monks, P. S., Carpenter, L. J., Clemitshaw, K. C., Ayers, G. P., Gillett, R. W., Galbally, I. E., and Meyer, C. P.: Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern Ocean, Journal of Geophysical Research: Atmospheres, 102, 12805–12817, doi:10.1029/97JD00765, http://dx.doi.org/10.1029/97JD00765, 1997.
- Petäjä, T., Mauldin III, R. L., Kosciuch, E., McGrath, J., Nieminen, T., Paasonen, P., Boy, M., Adamov, A., Kotiaho, T., and Kulmala, M.: Sulfuric acid and OH concentrations in a boreal

forest site, Atmospheric Chemistry and Physics, 9, 7435-7448, doi:10.5194/acp-9-7435-2009, http://www.atmos-chem-phys.net/9/7435/2009/, 2009.

- Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling, Journal of Atmospheric Chemistry, 37, 29–52, http://dx.doi.org/10.1023/A:1006391009798, 10.1023/A:1006391009798, 2000.
- Pugh, T. A. M., MacKenzie, A. R., Hewitt, C. N., Langford, B., Edwards, P. M., Furneaux, K. L., Heard, D. E., Hopkins, J. R., Jones, C. E., Karunaharan, A., Lee, J., Mills, G., Misztal, P., Moller, S., Monks, P. S., and Whalley, L. K.: Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model, Atmospheric Chemistry and Physics, 10, 279–298, doi:10.5194/acp-10-279-2010, http://www.atmos-chem-phys.net/10/ 279/2010/, 2010a.
- Pugh, T. A. M., MacKenzie, A. R., Langford, B., Nemitz, E., Misztal, P. K., and Hewitt, C. N.: The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest, Atmospheric Chemistry and Physics Discussions, 10, 18197–18234, doi:10.5194/ acpd-10-18197-2010, http://www.atmos-chem-phys-discuss.net/10/18197/2010/, 2010b.
- Regelin, E., Harder, H., Martinez, M., Kubistin, D., Tatum Ernest, C., Bozem, H., Klippel, T., Hosaynali-Beygi, Z., Fischer, H., Sander, R., Jöckel, P., Königstedt, R., and Lelieveld, J.: HO_x measurements in the summertime upper troposphere over Europe: a comparison of observations to a box model and a 3-D model, Atmospheric Chemistry and Physics Discussions, 12, 30619–30660, doi:10.5194/acpd-12-30619-2012, http://www.atmos-chem-phys-discuss.net/ 12/30619/2012/, 2012.
- Reiner, T., Hanke, M., and Arnold, F.: Atmospheric peroxy radical measurements by ion molecule reaction-mass spectrometry: A novel analytical method using amplifying chemical conversion to sulfuric acid, Journal of Geophysical Research: Atmospheres, 102, 1311–1326, doi: 10.1029/96JD02963, http://dx.doi.org/10.1029/96JD02963, 1997.
- Ren, X., Harder, H., Martinez, M., Faloona, I., Tan, D., Lesher, R., Di Carlo, P., Simpas, J., and Brune, W.: Interference Testing for Atmospheric HOx Measurements by Laser-induced Fluorescence, Journal of Atmospheric Chemistry, 47, 169–190, doi:10.1023/B:JOCH.0000021037.46866.81, http: //dx.doi.org/10.1023/B%3AJ0CH.0000021037.46866.81, 2004.
- Ren, X., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J., Long, R. B., Chen, Z., Chen, G., Avery, M. A., Sachse, G. W., Barrick, J. D., Diskin, G. S., Huey, L. G., Fried, A., Cohen, R. C., Heikes, B., Wennberg, P. O., Singh, H. B., Blake, D. R., and Shetter, R. E.: HOx chemistry

during INTEX-A 2004: Observation, model calculation, and comparison with previous studies, Journal of Geophysical Research: Atmospheres, 113, 2156–2202, doi:10.1029/2007JD009166, http://dx.doi.org/10.1029/2007JD009166, 2008.

- Rinne, J., Markkanen, T., Ruuskanen, T. M., Petäjä, T., Keronen, P., Tang, M., Crowley, J. N., Rannik, U., and Vesala, T.: Effect of chemical degradation on fluxes of reactive compounds - a study with a stochastic Lagrangian transport model, Atmospheric Chemistry and Physics, 12, 4843-4854, doi:10.5194/acp-12-4843-2012, http://www.atmos-chem-phys.net/12/4843/2012/, 2012.
- Rohrer, F. and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442, 184–187, http://dx.doi.org/10.1038/ nature04924, 2006.
- Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geoscientific Model Development, 4, 373–380, doi: 10.5194/gmd-4-373-2011, http://www.geosci-model-dev.net/4/373/2011/, 2011a.
- Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication Jet Propulsion Laboratory, Pasadena, 10, http://jpldataeval.jpl.nasa.gov, 2011b.
- Sandu, A. and Sander, R.: Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1, Atmospheric Chemistry and Physics, 6, 187–195, http: //www.atmos-chem-phys.net/6/187, 2006.
- Schlosser, E., Brauers, T., Dorn, H.-P., Fuchs, H., Häseler, R., Hofzumahaus, A., Holland, F., Wahner, A., Kanaya, Y., Kajii, Y., Miyamoto, K., Nishida, S., Watanabe, K., Yoshino, A., Kubistin, D., Martinez, M., Rudolf, M., Harder, H., Berresheim, H., Elste, T., Plass-Dülmer, C., Stange, G., and Schurath, U.: Technical Note: Formal blind intercomparison of OH measurements: results from the international campaign HOxComp, Atmospheric Chemistry and Physics, 9, 7923–7948, doi:10.5194/acp-9-7923-2009, http://www.atmos-chem-phys.net/9/7923/2009/, 2009.
- Schuster, G., Labazan, I., and Crowley, J. N.: A cavity ring down/cavity enhanced absorption device for measurement of ambient NO₃ and N₂O₅, Atmospheric Measurement Techniques, 2, 1–13, doi:10.5194/amt-2-1-2009, http://www.atmos-meas-tech.net/2/1/2009/, 2009.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics From Air Pollution to Climate Change (2nd Edition), John Wiley & Sons, http://www.knovel.com/web/portal/browse/

display?_EXT_KNOVEL_DISPLAY_bookid=2126, 2006.

- Sinha, V., Williams, J., Crowley, J. N., and Lelieveld, J.: The Comparative Reactivity Method – a new tool to measure total OH Reactivity in ambient air, Atmospheric Chemistry and Physics, 8, 2213-2227, doi:10.5194/acp-8-2213-2008, http://www.atmos-chem-phys.net/8/ 2213/2008/, 2008.
- Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T., Kajos, M., Patokoski, J., Hellen, H., Hakola, H., Mogensen, D., Boy, M., Rinne, J., and Kulmala, M.: OH Reactivity Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions, Environmental Science & Technology, 44, 6614– 6620, doi:10.1021/es101780b, http://pubs.acs.org/doi/abs/10.1021/es101780b, 2010.
- Stone, D., Evans, M. J., Edwards, P. M., Commane, R., Ingham, T., Rickard, A. R., Brookes, D. M., Hopkins, J., Leigh, R. J., Lewis, A. C., Monks, P. S., Oram, D., Reeves, C. E., Stewart, D., and Heard, D. E.: Isoprene oxidation mechanisms: measurements and modelling of OH and HO₂ over a South-East Asian tropical rainforest during the OP3 field campaign, Atmospheric Chemistry and Physics, 11, 6749–6771, doi:10.5194/acp-11-6749-2011, http://www.atmos-chem-phys.net/ 11/6749/2011/, 2011.
- Tan, D., Faloona, I., Simpas, J., Brune, W., Shepson, P., Couch, T., Sumner, A., Carroll, M., Thornberry, T., Apel, E., Riemer, D., and Stockwell, W.: HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign, Journal of Geophysical Research, 106, No. D20, 24 407–24 427, doi:10.1029/2001JD900016, 2001.
- Tanner, D. J. and Eisele, F. L.: Present OH measurement limits and associated uncertainties, Journal of Geophysical Research: Atmospheres, 100, 2883–2892, doi:10.1029/94JD02609, http://dx.doi. org/10.1029/94JD02609, 1995.
- Tanner, D. J., Jefferson, A., and Eisele, F. L.: Selected ion chemical ionization mass spectrometric measurement of OH, Journal of Geophysical Research: Atmospheres, 102, 6415–6425, doi:10.1029/ 96JD03919, http://dx.doi.org/10.1029/96JD03919, 1997.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmospheric Chemistry and Physics, 9, 2751–2777, doi:10.5194/acp-9-2751-2009, http://www.atmos-chem-phys.net/9/2751/2009/, 2009.
- Taraborrelli, D., Lawrence, M. G., Crowley, J. N., Dillon, T. J., Gromov, S., Grosz, C. B. M., Vereecken, L., and Lelieveld, J.: Hydroxyl radical buffered by isoprene oxidation over tropical forests, Nature Geosci, advance online publication, -, http://dx.doi.org/10.1038/ngeo1405, 2012.

- Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., and Kulmala, M.: Temperature and light dependence of the VOC emissions of Scots pine, Atmospheric Chemistry and Physics, 5, 989–998, doi:10.5194/acp-5-989-2005, http://www.atmos-chem-phys.net/5/989/2005/, 2005.
- Tatum Ernest, C., Novelli, A., Trawny, K., Hens, K., Rudolf, M., Elste, T., Werner, A., Englert, J., Gilge, S., Plass-Dülmer, C., Lelieveld, J., Martinez, M., and Harder, H.: OH and HO2 Measurements in a Rural Mid-Latitude Environment during HOPE2012, paper presented at the Atmospheric Chemical Mechanisms Conference, Davis, CA, 10 to 13 December 2012, https://sites.google.com/site/atmoschemmech2012/, 2012.
- Thornton, J. A., Wooldridge, P. J., Cohen, R. C., Martinez, M., Harder, H., Brune, W. H., Williams, E. J., Roberts, J. M., Fehsenfeld, F. C., Hall, S. R., Shetter, R. E., Wert, B. P., and Fried, A.: Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, Journal of Geophysical Research: Atmospheres, 107, ACH 7–1–ACH 7–17, doi:10.1029/2001JD000932, http://dx.doi.org/10.1029/2001JD000932, 2002.
- Vereecken, L., Muller, J.-F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated atmospheric oxidation of [small alpha]-pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241–5248, doi:10.1039/B708023A, http://dx.doi.org/10.1039/ B708023A, 2007.
- Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682-14695, doi: 10.1039/C2CP42300F, http://dx.doi.org/10.1039/C2CP42300F, 2012.
- Vesala, T., Haataja, J., Aalto, P., Altimir, N., Buzorius, G., Garam, E., Hämeri, K., Ilvesniemi, H., Jokinen, V., Keronen, P., Lahti, T., Markkanen, T., Mäkelä, J. M., E., N., Palmmroth, S., Palva, L., Pohja, T., Pumpanen, J., Rannik, U., Siivola, E., Ylitalo, H., Hari, P., and Kulmala, M.: Long-term field measurements of atmosphere-surface interaction in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry, Trends in Heat, Mass & Mommentum Transfer, 4, 17–35, 1998.
- Wang, C. C. and Davis, L. I.: Measurement of Hydroxyl Concentrations in Air Using a Tunable uv Laser Beam, Phys. Rev. Lett., 32, 349-352, doi:10.1103/PhysRevLett.32.349, http://link.aps. org/doi/10.1103/PhysRevLett.32.349, 1974.
- Watanabe, T., Yoshida, M., Fujiwara, S., Abe, K., Onoe, A., Hirota, M., and Igarashi, S.: Spin trapping of hydroxyl radical in the troposphere for determination by electron spin resonance and gas chromatography/mass spectrometry, Analytical Chemistry, 54, 2470-2474, doi:10.1021/ ac00251a015, http://pubs.acs.org/doi/abs/10.1021/ac00251a015, 1982.

- Weinstock, B.: Carbon Monoxide Residence Time in the Atmosphere, Science, 166, 224–225, doi: {10.1126/science.166.3902.224}, 1969.
- Wennberg, P., Cohen, R., Hazen, N., Lapson, L., Allen, N., Hanisco, T., Oliver, J., Lanham, N., Demusz, J., and Anderson, J.: An aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals, Rev. Sci. Instrum., 65, 1858–1876, 1994.
- Whalley, L. K., Edwards, P. M., Furneaux, K. L., Goddard, A., Ingham, T., Evans, M. J., Stone, D., Hopkins, J. R., Jones, C. E., Karunaharan, A., Lee, J. D., Lewis, A. C., Monks, P. S., Moller, S. J., and Heard, D. E.: Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest, Atmospheric Chemistry and Physics, 11, 7223–7233, doi:10.5194/acp-11-7223-2011, http://www.atmos-chem-phys.net/11/7223/2011/, 2011.
- Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of Laser Induced Fluorescence instruments used for HO₂ detection to an interference from RO₂ radicals and introducing a novel approach that enables HO₂ and certain RO₂ types to be selectively measured, Atmospheric Measurement Techniques Discussions, 6, 6249–6292, doi: 10.5194/amtd-6-6249-2013, http://www.atmos-meas-tech-discuss.net/6/6249/2013/, 2013.
- White, J.: Long Optical Paths of Large Aperture, J. Opt. Soc. Amer., 32, 285–288, 1942.
- Williams, J.: Organic Trace Gases in the Atmosphere: An Overview, Environ. Chem., 1, 125–136, http://dx.doi.org/10.1071/EN04057, 2004.
- Williams, J., Pöschl, U., Crutzen, P., Hansel, A., Holzinger, R., Warneke, C., Lindinger, W., and Lelieveld, J.: An Atmospheric Chemistry Interpretation of Mass Scans Obtained from a Proton Transfer Mass Spectrometer Flown over the Tropical Rainforest of Surinam, Journal of Atmospheric Chemistry, 38, 133–166, doi:10.1023/A:1006322701523, http://dx.doi.org/10.1023/A% 3A1006322701523, 2001.
- Williams, J., Crowley, J., Fischer, H., Harder, H., Martinez, M., Petäjä, T., Rinne, J., Bäck, J., Boy, M., Dal Maso, M., Hakala, J., Kajos, M., Keronen, P., Rantala, P., Aalto, J., Aaltonen, H., Paatero, J., Vesala, T., Hakola, H., Levula, J., Pohja, T., Herrmann, F., Auld, J., Mesarchaki, E., Song, W., Yassaa, N., Nölscher, A., Johnson, A. M., Custer, T., Sinha, V., Thieser, J., Pouvesle, N., Taraborrelli, D., Tang, M. J., Bozem, H., Hosaynali-Beygi, Z., Axinte, R., Oswald, R., Novelli, A., Kubistin, D., Hens, K., Javed, U., Trawny, K., Breitenberger, C., Hidalgo, P. J., Ebben, C. J., Geiger, F. M., Corrigan, A. L., Russell, L. M., Ouwersloot, H. G., Vilà-Guerau de Arellano, J., Ganzeveld, L., Vogel, A., Beck, M., Bayerle, A., Kampf, C. J., Bertelmann, M., Köllner, F., Hoffmann, T., Valverde, J., González, D., Riekkola, M.-L., Kulmala, M., and Lelieveld, J.: The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of

meteorological and chemical influences, Atmospheric Chemistry and Physics, 11, 10599-10618, doi:10.5194/acp-11-10599-2011, http://www.atmos-chem-phys.net/11/10599/2011/, 2011.

- Yassaa, N., Song, W., Lelieveld, J., Vanhatalo, A., Bäck, J., and Williams, J.: Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010, Atmospheric Chemistry and Physics, 12, 7215–7229, doi:10.5194/acp-12-7215-2012, http://www.atmos-chem-phys.net/12/7215/2012/, 2012.
- York, D., Evensen, N. M., Martínez, M. L., and Delgado, J. D. B.: Unified equations for the slope, intercept, and standard errors of the best straight line, American Journal of Physics, 72, 367–375, doi:10.1119/1.1632486, http://link.aip.org/link/?AJP/72/367/1, 2004.

Danksagung

[Die elektronische Version dieser Dissertation enthält aus Gründen des Datenschutzes keine Danksagung.]

Curriculum Vitae

Name	Korbinian Hens
Date of Birth	24^{th} of September 1983 in Wiesbaden-Dotzheim, Germany
Nationality	German
Education	
Since Feb. 2009	PhD student at the Max-Planck Institute for Chemistry
	in the department of Airchemistry, in cooperation with
	the J. Gutenberg-University Mainz, Germany,
	Member in the graduate programme of the International
	Max-Planck-Research School for Atmospheric Chemistry
	and Physics
May 2008 - Feb. 2009	M.Sc. (German diploma), J. Gutenberg-University Mainz,
	Germany, Topic of thesis: "Der bodennahe, vertikale,
	turbulente Transport von ²²² Rn, ²²⁰ Rn und anderen
	Spurengasen im Stammraum eines Fichtenbestandes",
	supervisor: Prof. Dr. M. Wendisch
Oct. 2003 - Feb. 2009	Study of physics at the J. Gutenberg-University of Mainz, Germany
1994 - 2003	Secondary school at Rabanus-Maurus-Gymnasium, Mainz, Germany
Field campaigns	
July - Aug. 2010	Hyytiälä United Measurements of Photochemistry
	and Particles in Air – Comprehensive Organic Precursor
	$E{\rm mission}$ and $C{\rm oncentration}$ study (HUMPPA–COPEC–2010)
Aug Oct. 2007	ExchanGE processes in mountainous $Regions$ (EGER)
May - July 2008	
Aug. 2006	LInden B erg RE ac T ive T race gas pr O files (LIBRETTO)
11ug. 2000	Differences in active riace gas promes (Diditerio)

Publications and Conference Contributions

Foken, T., Meixner, F. X., Falge, E., Zetzsch, C., Serafimovich, A., Bargsten, A., Behrendt, T., Biermann, T., Breuninger, C., Dix, S., Gerken, T., Hunner, M., Lehmann-Pape, L., Hens, K., Jocher, G., Kesselmeier, J., Lüers, J., Mayer, J.-C., Moravek, A., Plake, D., Riederer, M., Rütz, F., Scheibe, M., Siebicke, L., Sörgel, M., Staudt, K., Trebs, I., Tsokan-kunku, A., Welling, M., Wolff, V., and Zhu, Z.: Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site - results of the EGER experiment, Atmos. Chem. Phys., 12, 1923-1950, doi:10.5194/acp-12-1923-2012, 2012.

Hens, K., Novelli, A., Paasonen, P., Sipilä, M., Petäjä, T., Nölscher, A., Keronen, P., Trawny, K., Kubistin, D., Oswald, R., Axinte, R., Hosaynali Beygi, Z., Auld, J., Klüpfel, T., Mesarchaki, E., Song, W., Valverde Canossa, J., González Orozco, D., Königstedt, R., Bohn, B., Rudolf, M., Fischer, H., Williams, J., Crowley, J., Martinez, M., Harder, H.: Hydroxyl radical measurements in a boreal forest during HUMPPA-COPEC 2010, Geophysical Research Abstracts, Vol. 14, EGU2012-9051, 2012, EGU General Assembly 2012.

Novelli, A., **Hens, K.**, Paasonen, P., Sipilä, M., Petäjä, T., Keronen, P., Auld, J., Beygi, Z.H., Axinte, R., Trawny, K., Kubistin, D., Tatum Ernest, C., Rudolf, M., Adame, J.A., Fischer, H., Williams, J., Veerecken, L., Martinez, M. and Harder, H.: Assessment of the role of stabilized Criegee Intermediates in OH radical measurements by LIF, Geophysical Research Abstracts, Vol. 14, EGU2012-9491, 2012, EGU General Assembly 2012.

Tatum-Ernest, C., Novelli, A., Trawny, K., **Hens, K.**, Rudolf, M., Elste, T., Werner, A., Englert, J., Gilge, S., Plass-Dülmer, C., Lelieveld, J., Martinez, M., and Harder, H.: OH and HO₂ Measurements in a Rural Mid-Latitude Environment during HOPE2012, paper presented at the Atmospheric Chemical Mechanisms Conference, Davis, CA, 10 to 13 December 2012, https://sites.google.com/site/atmoschemmech2012/, 2012.

Novelli, A., **Hens, K.**, Tatum-Ernest, C., Trawny, K., Rudolf, M., Kubistin, D., Hosaynali Beygi, Z., Fischer, H., Williams, J.and Paasonen, P., Sipil["]a, M., Keronen, P., Petäjä, T., Elste, T., Plass-Duelmer, C., Vereecken, L., Martinez, M., Lelieveld, J., and Harder, H.: The role of stabilised Criegee intermediate in gas phase H_2SO_4 formation, Abstract A24D-04 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec., 2012.

Hens, K., Tatum Ernest, C., Novelli, A., Paasonen, P., Sipilä, M., Petäjä, T., Nölscher, A., Keronen, P., Trawny, K., Kubistin, D., Oswald, R., Axinte, R., Hosaynali Beygi, Z., Auld, J., Klüpfel, T., Mesarchaki, E., Song, W., Valverde Canossa, J., González Orozco, D., Königstedt, R., Bohn, B., Rudolf, M., Fischer, H., Williams, J., Crowley, J., Martinez, M., Harder, H.: Hydroxyl radical measurements and oxidation capacity in a boreal forest environment, Abstract A33K-0299 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec., 2012.

Williams, J., Crowley, J., Fischer, H., Harder, H., Martinez, M., Petäjä, T., Rinne, J., Bäck, J., Boy, M., Dal Maso, M., Hakala, J., Kajos, M., Keronen, P., Rantala, P., Aalto, J., Aaltonen, H., Paatero, J., Vesala, T., Hakola, H., Levula, J., Pohja, T., Herrmann, F., Auld, J., Mesarchaki, E., Song, W., Yassaa, N., Nölscher, A., Johnson, A. M., Custer, T., Sinha, V., Thieser, J., Pouvesle, N., Taraborrelli, D., Tang, M. J., Bozem, H., Hosaynali-Beygi, Z., Axinte, R., Oswald, R., Novelli, A., Kubistin, D., Hens, K., Javed, U., Trawny, K., Breitenberger, C., Hidalgo, P. J., Ebben, C. J., Geiger, F. M., Corrigan, A. L., Russell, L. M., Ouwersloot, H. G., Vilà-Guerau de Arellano, J., Ganzeveld, L., Vogel, A., Beck, M., Bayerle, A., Kampf, C. J., Bertelmann, M., Köllner, F., Hoffmann, T., Valverde, J., González, D., Riekkola, M.-L., Kulmala, M., and Lelieveld, J.: The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences, Atmos. Chem. Phys., 11, 10599-10618, doi:10.5194/acp-11-10599-2011, 2011.

Hens, K., Meixner, F.X., Riederer, M., Moravek, A., Bargsten, A., Zhu, Z., Andrea, M.O.: Trace gas exchange at the forest floor, Geophysical Research Abstracts, Vol. 11, EGU2009-5911, 2009, EGU General Assembly 2009.

Riederer, M., **Hens, K.**, Meixner, F.X., Foken, T.: Fluxes of reactive and non-reactive trace gases close to the forest floor, Geophysical Research Abstracts, Vol. 11, EGU2009-3248-4, 2009, EGU General Assembly 2009.

Meixner, F.X., Scheibe, M., Hens, K., Feig, G.T., Andreae, M.O.: An unconventional ap-

proach to estimate the exchange of reactive trace gases at the soil - trunk space interface of a steep mountain forest site, Geophysical Research Abstracts, Vol. 11, EGU2009-9739, 2009, EGU General Assembly 2009.

Sörgel, M., Trebs, I., Moravek, A., **Hens, K.**, Zetzsch, C.: Simultaneous measurements of HONO below and above a spruce forest canopy, Geophysical Research Abstracts, Vol. 11, EGU2009-10191, 2009, EGU General Assembly 2009.

Mayer, J.-C., **Hens, K.**, Rummel, U., Meixner, F. X., and Foken, T.: Moving measurement platforms - specific challenges and corrections, Meteorol. Z., 18, 477-488, doi:10.1127/0941-2948/2009/0401, 2009.

Pape, L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., **Hens, K.**, and Meixner, F. X.: An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems, Biogeosciences, 6, 405-429, doi:10.5194/bg-6-405-2009, 2009.

Hens, K., "Der bodennahe, vertikale, turbulente Transport von ²²²Rn, ²²⁰Rn und anderen Spurengasen im Stammraum eines Fichtenbestandes", Diplomarbeit, J. Gutenberg-University, Mainz, Germany, 2009.