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Zusammenfassung

Zu Beginn des zwanzigsten Jahrhunderts entwickelten Gouy, Chapman und Stern eine
Theorie der elektrochemischen Doppelschicht in verdünnten Elektrolytlösungen. Die-
se erlaubt die Berechnung der Kapazität einer Elektrolyt/Elektroden-Grenzfläche aus
der Ionenverteilung nahe der Elektrode. Nach einem Jahrhundert intensiver Forschung
konnten entscheidende Fortschritte im Verständnis der Elektrolyt/Elektroden-Grenzflä-
che erzielt werden. Allerdings wirft die genaue molekulare Grenzflächenstruktur und
deren Zusammenhang mit dem angelegten Elektrodenpotential gegenwärtig noch im-
mer Fragen auf. Insbesondere ionische Flüssigkeiten, eine neue Klasse von lösungs-
mittelfreien Elektrolyten, können durch klassische Modelle nicht beschrieben werden.
Jüngste Molekulardynamiksimulationen und phänomenologische Theorien haben ver-
sucht die Kapazität der ionischen Flüssigkeit/Elektroden-Grenzfläche durch die moleku-
lare Struktur und die Dynamik der ionischen Flüssigkeit nahe der Elektrode zu erklären.
Allerdings sind experimentelle Belege rar.

In der vorgelegten Arbeit wurde die Ionenverteilung einer ionischen Flüssigkeit
nahe der Elektrodengrenzfläche und deren Reaktion auf ein angelegtes Elektrodenpo-
tential mit submolekularer Auflösung untersucht. Hierfür wurde eine Probenzelle ent-
worfen, welche sowohl für in situ Röntgenreflektometrie unter Potentialkontrolle als
auch für elektrochemische Impedanzspektroskopiemessungen geeignet ist. Die Kom-
bination von struktureller und elektrochemischer Information ermöglicht einen tiefen
Einblick in das Wesen der elektrochemischen Doppelschicht. So wurden oszillierende
Ladungsdichteprofile bestehend aus alternierenden Kation- und Anion-angereicherten
Lagen nachgewiesen, welche sowohl bei anodischem als auch kathodischem Potenti-
al vorhanden sind. Diese Grenzflächenstruktur ist eine direkte Folge von intrinsischen
Ladungskorrelationen, welche auch die Volumenstruktur prägen und als charakteristi-
sche Röntgenstrukturpeaks beobachtet wurden. Zur Beschreibung dieser Korrelationen
wurden bereits existierende physikalisch motivierte Modelle erweitert und durch un-
abhängige Messungen bestätigt.

Die induzierte Relaxationsdynamik der Grenzflächenstruktur nach einem Potenti-
alsprung wurde mittels zeitaufgelöster Röntgenreflektometrie mit einer Zeitauflösung
unterhalb einer Millisekunde untersucht. Die gemessenen Relaxationszeiten stimmen
mit Impedanzspektroskopieergebnissen überein. So konnten drei getrennte Prozesse auf
drei unterschiedlichen Zeitskalen identifiziert werden. Der Ionentransport senkrecht zur
Grenzfläche geschieht im Bereich einer Millisekunde. Ein zweiter Prozess, auf einer
Zeitskala von hundert Millisekunden, konnte einer molekularen Umorientierung an der
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Grenzfläche zugeordnet werden. Schließlich wurde ein langsamer Prozess auf Minu-
tenskala beobachtet, der möglicherweise einer lateralen Ordnung der adsorbierten Io-
nenlage zugeschrieben werden kann.
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Abstract

In the early 20th century, Gouy, Chapman, and Stern developed a theory to describe the
capacitance and the spatial ion distribution of diluted electrolytes near an electrode. Af-
ter a century of research, considerable progress has been made in the understanding of
the electrolyte/electrode interface. However, its molecular-scale structure and its varia-
tion with an applied potential is still under debate. In particular for room-temperature
ionic liquids, a new class of solventless electrolytes, the classical theories for the elec-
trical double layer are not applicable. Recently, molecular dynamics simulations and
phenomenological theories have attempted to explain the capacitance of the ionic liq-
uid/electrode interface with the molecular-scale structure and dynamics of the ionic liq-
uid near the electrode. However, experimental evidence is very limited.

In the presented study, the ion distribution of an ionic liquid near an electrode and
its response to applied potentials was examined with sub-molecular resolution. For
this purpose, a new sample chamber was constructed, allowing in situ high energy X-
ray reflectivity experiments under potential control, as well as impedance spectroscopy
measurements. The combination of structural information and electrochmical data pro-
vided a comprehensive picture of the electric double layer in ionic liquids. Oscillatory
charge density profiles were found, consisting of alternating anion- and cation-enriched
layers at both, cathodic and anodic, potentials. This structure was shown to arise from
the same ion-ion correlations dominating the liquid bulk structure that were observed as
a distinct X-ray diffraction peak. Therefore, existing physically motivated models were
refined and verified by comparison with independent measurements.

The relaxation dynamics of the interfacial structure upon potential variation were
studied by time resolved X-ray reflectivity experiments with sub-millisecond resolu-
tion. The observed relaxation times during charging/discharging are consistent with the
impedance spectroscopy data revealing three processes of vastly different characteristic
time-scales. Initially, the ion transport normal to the interface happens on a millisecond-
scale. Another 100-millisecond-scale process is associated with molecular reorientation
of electrode-adsorbed cations. Further, a minute-scale relaxation was observed, which
is tentatively assigned to lateral ordering within the first layer.
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Chapter 1

Introduction

Ionic liquids (ILs) are salts with melting points below 100 ◦C. Their history1 dates back
to 1914 when Walden reported the discovery of ethylammonium nitrate, a salt with a
melting point of 12 ◦C [167]. This temperature is remarkably low compared to the melt-
ing temperatures of other salts like sodium chloride (801 ◦C).2 Recently, the topic draw
increasing attention, after the first synthesis of air and water stable ILs was reported in
1992 [172]. Up to the present day a vast number of ILs has been synthesized. They
commonly consist of large, asymmetric, molecular ions (figure 1.1). By altering the
chemical structure of anion and cation, compounds with low vapor pressure, low melt-
ing point, high thermal stability, wide electrochemical window, and high conductivity
have been synthesized. These superior electrochemical properties give rise to a wide
range of possible applications of ILs as electrolytes in environmentally safe and energy
efficient electrochemical processes, e.g. electroplating, batteries, organic solar cells, fuel
cells and supercapacitors. In these applications the electrolyte/electrode interface plays
a crucial role. Therefore, a detailed knowledge of the spatial arrangement of ILs near
the liquid/solid interface is most desirable.

This thesis aims to elucidate the molecular-scale structure of the IL/electrode in-
terface and its response to applied electrode potentials. It is divided into three parts.
The first part IONIC LIQUIDS comprises an overview on the field of ionic liquids and
the theoretic background necessary to understand the properties of ionic liquids. The
fundamental thermodynamics of simple liquids are presented in Chapter 2. It is out-
lined how the inter-molecular structure arises from two-particle forces. Further, general
asymptotic correlations are presented in bulk and at the interface. The interface between
a charged wall and an electrolyte is discussed in Chapter 3. Here, models are presented
that link the capacitance to the ion arrangement at the interface. The dynamic response
of the ion arrangement upon electrode potential variation is shown to be dependent on
the local charge concentration profile at the interface and on the macroscopic ion diffu-

1For a comprehensive overview on the history of ionic liquids, the interested reader is referred to
[170, 171].

2Also salt mixtures can have a very low meting points. For instance, the eutectic melt of sodium
chloride and aluminum chloride has a melting temperature of only 107 ◦C.
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1 INTRODUCTION

+[tba]
+[bmpy] +[hmim]

-
[FAP] -[TFSI] -[PF ]6

(a)

(b)

Figure 1.1: A selection of cations (a) and anions (b) used in ILs: tetra-
butylammonium [tba]+, 1-butyl-1-methylpyrrolidinium [bmpy]+, 1-hexyl-3-
methylimidazolium [hmim]+, tris(pentafluoroethyl)trifluorophospate [FAP]−,
bis(trifluoromethylsulfonyl)imide [TFSI]−, hexafluorophosphate [PF6]−.

sion between the electrodes. Further, the impact of steric effects and ion-ion correlations
is discussed. After presenting the theoretical basis, an overview on the recent experi-
mental findings is given in Chapter 4. A common observation is that ILs exhibit strong
ion-ion correlations in bulk and at the interface. They strongly effect charge transport
and electrochemical properties.

The second part MATERIALS AND METHODS begins with a presentation of
the ILs investigated in this work. In Chapter 5 the physical properties of the ILs
[bmpy]+[FAP]− and [tba]+[FAP]− are presented, followed by a discussion on electrode
materials. Chapter 6 outlines the fundamentals of X-ray scattering. This technique
is used to extract structural information from bulk liquid and the liquid/solid interface.
Phenomenological models are developed describing long range ion-ion correlations in
bulk and at the interface. Chapter 7 gives an introduction in electrochemical methods
and the general phenomenological description of relaxation processes. In Chapter 8 the
experimental setup is described which was used to perform the in situ X-ray diffraction
and impedance spectroscopy experiments.

The third part RESULTS AND DISCUSSION is divided into two chapters each
comprising the results of an IL/electrode system under investigation. In Chapter 9
the results of impedance spectroscopy, X-ray reflectivity and bulk X-ray diffraction are
combined, giving a comprehensive picture of the [bmpy]+[FAP]−/electrode interface.
The content of this chapter is the basis of a manuscript, which will be published soon
[121]. The results of the second IL [tba]+[FAP]− are discussed in Chapter 10 con-
firming the findings of the previous chapter. Finally, conclusions of thesis are drawn in
Chapter 11 and its relevance to related fields of research and applications is discussed.
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Chapter 2

Theory of liquids

ILs can be described in the thermodynamic framework of classical liquids1. The liquid
state of matter is distinguished from the crystalline solid state by a lack of long-range
order. However, the great importance of collision processes leads to short-range corre-
lations, which are not present in the gaseous state2. The comparable values of potential
and kinetic energy result in a microscopic structure balancing inter-particle forces and
thermal excitation. The following sections outline how the collective correlations arise
from two-particle forces. Further, the asymptotic decay of the correlations is discussed
both in bulk and at the interface. A comprehensive overview on the general thermody-
namics of liquids can be found in literature [44, 62].

2.1 Inter-particle forces
In ILs, the inter-particle forces arise from different contributions to the potential φαβ(r)
between ions of species α and β separated by a distance r

φαβ(r) = φsr
αβ(r) +

ZαZβe
2

4πεrε0r
− Aαβ

r6
. (2.1)

The short-range potential φsr
αβ(r) results from the Pauli repulsion of overlapping elec-

tron orbitals and is approximately described by a term proportional to r−12 as in the
famous Lennard-Jones potential. The second term describes the Coulomb interaction
between the ions of charge Zα,β leading to repulsion for like ions and attraction for ions
of different charge. In spite of its r−1 dependence, the Coulomb interaction in ILs is
effectively short-ranged due to screening by counter ions. The third, attractive disper-
sion term originates from several effects, which are all of r−6 dependence. Namely,
these are the Keesom interaction between permanent dipoles, the Debye interaction be-
tween induced dipoles, and the London dispersion interaction stemming from quantum

1For classical liquids, the de Broglie wavelength of a liquid particle is smaller than its diameter. Thus,
quantum effects, e.g. giving rise to super-fluidity, can be neglected.

2below the critical point
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2 THEORY OF LIQUIDS

mechanical fluctuations of the electron cloud [22]. These interactions are generally
summarized as van der Waals interaction with an overall amplitude of Aαβ . The po-
tential (2.1) well describes the interaction in atomic molten salts like sodium chloride
[127]. For ILs, which consist of large organic molecules, the inter-molecular potential
is much more complex. One has to sum the contributions of all atomic sites in each
molecule and include steric effects stemming from the intra-molecular structure [76].
Nevertheless, by applying the simple potential (2.1) it is possible to reproduce physical
properties of ILs similar to results from MD simulations based on more complex inter
particle forces [47, 103].

2.2 Total correlation function
The microscopic structure of liquids results from correlations balancing inter-particle
forces and thermal excitation. A measure of this structure is the radial distribution
function g(r) (cf. section 6.1). It gives the average probability of finding a liquid particle
at a distance r from a test particle. The average is taken over an ensemble of micro
states of the liquid. In the following it is more convenient to speak of correlations than
distributions. Thus, the total correlation function is defined

h(r) = g(r)− 1 . (2.2)

The two functions differ in their asymptotic behavior. For large distances the probability
of finding a second particle becomes unity, i.e. g(r → ∞) = 1, while the particles
become more and more uncorrelated, i.e. h(r →∞) = 0. The total correlation function
h(r) is accessible via neutron and X-ray scattering experiments. The scattered intensity
is equal3 to the Fourier transform of h(r), the so-called the liquid structure factor4

S(q) =
4πρ̄

q

∫ ∞
0

h(r)r sin(qr)dr . (2.3)

The asymptotic behavior of h(r) can be determined applying functional density the-
ory [44, 62]. In this framework the total correlation function h(r) can be deduced from
the direct correlations based on the inter-particle potential (2.1). The total correlation
function h(r) and the direct correlation function5 c(r) are related via the Ornstein-
Zernike relation (OZR)

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′ (2.4)

3This is valid only in case of neutron scattering. In case of X-ray scattering the q-dependent atomic
form factor has to be taken into account as discussed in chapter 6.

4This definition deviates from the mono-atomic structure factor (equation 6.19) usually given in text-
books [3] by not including self scattering of the atoms. This, however, is advantageous in case of X-ray
scattering as will be discussed in chapter 6.

5Equation (2.4) is often used to define c(r).
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2 THEORY OF LIQUIDS

r

r´
r–r´

1

2

Figure 2.1: (a) The correlation between particle 1 and 2 is expressed by the OZR. It
stems mainly from indirect correlations propagated by intermediate particles. (b) Total
correlation function h(r) and direct correlation function c(r) obtained by Monte Carlo
simulations for a Lennard-Jones fluid (taken from Hansen and McDonald [62]).

in a uniform and isotropic liquid [115]. This relation has the following physical in-
terpretation (figure 2.1): the total correlation h(r) between two particles is not only
determined by the direct correlation c(r) of the particles, but also by the indirect cor-
relation propagated via a set of intermediate particles described by the second term in
(2.4). The OZR can easily be generalized for multi-component systems [62] giving the
partial total correlation functions

hαβ(r) = cαβ(r) + ρ
∑
γ

xγ

∫
cαγ(|r− r′|)hγβ(r′)dr′ (2.5)

with the number concentration xγ = Nγ/N and the coefficients α, β, and γ represent-
ing the different constituents, e.g. cations and anions. The OZR can be solved in the
mean spherical approximation where the direct correlation function is assumed to be
proportional to the pair potential [62]

cαβ(r) = − 1

kBT
φαβ(r) . (2.6)

Inserting (2.6) in (2.5) the OZR can be solved in Fourier space. In case of a binary mix-
ture of cations and anions with a inter-particle potential of (2.1) neglecting the dispersion
term, it can be shown [44, 91] that, asymptotically, all partial correlation functions yield
either monotonic exponential decay

rhαβ(r) ∼ Aαβ exp

(
−r
ξ

)
, r →∞ (2.7)

or an oscillatory behavior

rhαβ(r) ∼ Aαβ exp

(
−r
ξ

)
cos

(
2πr

d
− θαβ

)
, r →∞ . (2.8)

7



2 THEORY OF LIQUIDS

Figure 2.2: Phase diagram of a liquid consisting of charged hard spheres with
equal diameter R and charge eZ. The diagram is plotted vs. reduced temperature
T ∗ = kBεR/(eZ)2 and total density ρ∗ = cR3. The solid line marks the liquid-vapor
coexistence curve and the long-dashed curve is the related spinodals. The short dashed
curve represents the Fisher Widom line (FW) and the dotted curve is the Kirkwood line
(K). The cross-over lines were calculated using a generalized mean spherical approxi-
mation (taken from Evans and Leote de Carvalho [44]).

For all correlation functions the correlation length ξ and the periodicity d are the same,
while the amplitude Aαβ and phase θαβ are different. This also holds for the number-
number total correlation function hNN and the charge-charge total correlation function
hZZ measuring the correlations in total number density and charge density, respectively
[129]. Whether the asymptotic correlations are monotonous decaying (2.7) or oscilla-
tory (2.8) depends on the thermodynamic state set by temperature and concentration. If
Coulomb forces are present, charge oscillation occurs for small Debye screening length
λD (cf. chapter 3), i.e. for λD being in the order of the particle diameter. The transi-
tion between monotonous and oscillatory decaying correlations is either called Fisher
Widom line [50] or Kirkwood line [84]. The former is associated with transitions in
number density, the other with transitions in concentration or charge density. Both tran-
sitions are represented by lines in the phase diagram (figure 2.2). In the presence of
long-range dispersion forces, h(r) will decay with r−6 for r → ∞. However, for high
density, meaning high ion concentration in ILs, the oscillatory decaying term (2.8) dom-
inates the correlation on intermediate range up to several intermolecular distances [44].

The partial total correlation functions (2.5) can be determined by scattering experi-
ments (cf. chapter 6). The mesoscopic oscillatory correlations of form (2.8) lead to a so
called first sharp diffraction peak at low wave vector transfer q. This phenomenon has
been intensively studied in neutron scattering experiments of network-forming vitreous
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2 THEORY OF LIQUIDS

materials [129]. In ILs, however, a larger variety of correlations is present resulting in
two or more low-q peaks (cf. chapter4). These correlations originate from the large and
asymmetric shape of the ions.

2.3 Ion-ion correlations at the interface
The interfacial structure of ILs at a solid wall results from the interplay between ion-wall
interactions and ion-ion correlations. The ion-wall interactions include particle exclu-
sion, van der Waals forces and Coulomb forces. Additionally, ions can be specifically
adsorbed at the interface, e.g. due to hydrogen bonding and any physi- or chemisorption
process. If the ion-wall interactions are short range or weak, the ion arrangement is
dominated by ion-ion correlations already one or two molecular distances away from
the wall. This is the case for Coulomb forces that are screened after the first ion layer,
as the Debye length λD is usually smaller than an ionic diameter in ILs. Compared to
Coulomb forces, van der Waals forces are weak. However, they are not directly screened
and can influence the ions at long distance.

The general discussion of bulk correlations can be extended to interfacial correla-
tions induced by short ranged ion-wall interactions. As stated in section 2.2, the total
correlation function between a test particle and a second particle is dominated by inter-
actions over intermediate particles. Thus, the potential of the test particle φ(r) can be
considered as an external potential for the other particles. In analogy to the discussion
in the previous section, a potential V (z) of a wall acting on the particles at the interface
should induce the same asymptotic behavior as in the bulk liquid. Indeed, one can show
that the number density fluctuations ρ(z)−ρ̄ from the mean number density ρ̄ of a liquid
adjacent to a wall has the asymptotic behavior [44]

ρ(z)− ρ̄ ∼ AW exp

(
−z
ξ

)
cos

(
2πz

d
− θW

)
, z →∞ . (2.9)

The decay length ξ and the periodicity d are the same as in bulk while the amplitude
AW and phase θW depend on the wall potential. The relation (2.9) has been calculated
for a short range inter-particle potential without Coulomb forces and a wall potential
decaying faster than the direct correlation function c(r). However, the same asymptotic
behavior should also hold for potentials including Coulomb forces as the the wall po-
tential is screened on the sub molecular Debye length λD leading effectively to a short
range interaction. So far, there has been only limited experimental evidence [102, 113].

9
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Chapter 3

The electric double layer

At the liquid/solid interface between a charged wall and an electrolyte, the ions in the
liquid form a so-called electric double layer (figure 3.1). The first layer consists of
surface charge bound to the solid substrate. It can be comprised of electrons on metal
electrodes and adsorbed ions in the so-called Stern layer. The second layer is formed
by counter ions that are attracted from bulk liquid to the interface by Coulomb interac-
tion. Thus, the electric field originating from the surface charge is screened and the bulk
liquid is nearly field free. The electric double layer is of significant interest in surface
and colloidal science [22, 97] and has been subject of investigation for a hundred years.
In the early 20th century Gouy, Chapman and Stern developed a theory to describe the
capacitance and the spatial ion distribution in diluted salt solutions near an electrode
[26, 57, 147]. First attempts for extending this theory to highly concentrated solutions
and molten salts were made in the early 50s, taking into account the finite size of ions
and solvent molecules [16, 38, 51, 127]. With the growing scientific interest in ionic
liquids (ILs), i.e. electrolytes consisting solely of ions [167], this topic recently gained
increasing attention [86]. In this chapter, the theory of Gouy Chapman and Stern is de-
rived based of the Poisson-Boltzmann equation. As this theory is only valid for dilute
salt solutions, some modified theories are presented thereafter, which are suitable for
describing the electric double layer in highly concentrated electrolytes and ILs. Then,
the dynamics of the double layer upon time dependent electrode potential variation is
discussed. In fact, dilute and concentrated electrolytes show the same asymptotic re-
sponse, illustrating its diffusive origin.

3.1 Poisson-Boltzmann theory of the diffuse double layer
Gouy and Chapman derived the electric potential in an electrolyte near a charged wall
assuming a Boltzmann-distributed ion concentration. In this mean-field theory each
ion is treated as a point charge interacting with the mean-field generated by the other
ions. This model is only valid in the limiting case of dilute solutions and small po-
tentials compared to the thermal excitation kBT . While it cannot describe the high ion
concentrations of ILs, this model can be extended to highly concentrated electrolytes

11



3 THE ELECTRIC DOUBLE LAYER
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Figure 3.1: (a) Ion distribution in an aqueous solution near a charged wall. The Stern
layer (SL) is located between the inner and the outer Helmholtz plane, Hi and Ho re-
spectively. The diffuse layer DL is enriched with counter ions. (b) Ion distribution in an
IL near a charged wall.

(cf. section 3.2).
The starting point to derive the structure of the diffuse double layer is electrostatics.

In electrostatics the electric potential ψ(z) is generally related to the charge ρc(z) via
the Poisson equation1

d2

dz2
ψ(z) = −ρc(z)

εrε0

. (3.1)

The charge can be written in terms of cation and anion concentrations cc(z) and ca(z),
respectively,2

ρc(z) = e(cc(z)− ca(z)) . (3.2)

For dilute solutions the assumption of a Boltzmann distributed ion concentration is made

ca/c(z) = c̄e
−
Wa/c
kBT (3.3)

where c̄ is the mean concentration in the bulk solution. In a one dimensional problem
the work Wa/c is required to bring an anion/cation from bulk solution to a position near
the charged wall. In the mean field of all other ions this work is Wa = −eψ(z) for
anions and Wc = eψ(z) for cations. Combining equations (3.1)−(3.3) we obtain the
Poisson-Boltzmann equation

d2

dz2
ψ(z) =

ec̄

εrε0

(
e
eψ(z)
kBT − e

− eψ(z)
kBT

)
=

2ec̄

εrε0

sinh

(
eψ(z)

kBT

)
. (3.4)

1As the potential at a planar wall is derived, only the one dimensional Poisson equation in z direction
normal to the wall is considered.

2assuming a monovalent salt
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3 THE ELECTRIC DOUBLE LAYER

For small potentials ψ � kBT/e the exponential functions can be expanded leading to
the linearized Poisson-Botzmann equation

d2

dz2
ψ(z) =

2e2c̄

εrε0kBT
ψ(z). (3.5)

Applied to the problem of a planar electrode, this differential equation can be solved
easily with the boundary conditions of a fixed potential ψ(0) = ψ0 at the electrode
surface and a vanishing potential ψ(z →∞) = 0 in bulk solution. The solution reads

ψ(z) = ψ0e−z/λD , (3.6)

i.e. the electrode potential ψ0 decays with the Debye screening length

λD =

√
εrε0kBT

2c̄e2
. (3.7)

The Poisson-Boltzmann equation (3.4) can also be solved analytically. Its solution has
the same asymptotic exponential decaying behavior, i.e. far away from the electrode, as
the solution of the linearized problem (3.6). However, close to the electrode the potential
decreases faster than the linearized solution [23]. This effect is more pronounced for
high electrode potentials.

Neither the potential ψ(z) nor the concentration profile can be measured directly in
a simple way. However, an experimentally accessible quantity of the double layer is its
differential capacitance

C(ψ0) =
dσ(ψ0)

dψ0

. (3.8)

C(ψ0) gives the change of the total charge

σ(ψ0) = −
∫ ∞

0

ρc(z,ψ0)dz (3.9)

in the double layer and on the electrode, respectively, by variation of the electrode po-
tential dψ0. The differential capacitance can be calculated from the total charge in the
double layer. In case of the Poisson-Boltzmann equation (3.4) the total charge is given
by the Grahame equation

σ(ψ0) =
√

8c̄εrε0kBT sinh

(
eψ0

2kBT

)
. (3.10)

Inserting (3.10) in (3.8) gives the differential capacitance according to the Poisson-
Boltzmann equation

CPB =
εrε0

λD

cosh

(
eψ0

2kBT

)
. (3.11)

Equation (3.11) has a parabolic potential dependence with a minimum at the potential
of zero charge (PZC), i.e where σ = 0.
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3 THE ELECTRIC DOUBLE LAYER

Stern layer
In order to explain discrepancies between theory and experimental data, there have been
a lot of corrections and amendments to the Gouy-Chapman model, that corrects for
the unphysically divergence of CPB at high potentials. The most prominent extension
is the Stern layer. Stern combined the models of Gouy, Chapman and Helmholtz by
introducing an adsorbed layer, the so-called Stern layer with a potential independent
capacitance CS, in addition to the diffuse layer. Thus, the total differential capacitance
is given by a combination of two capacitors in series

1

C
=

1

CS

+
1

CPB

. (3.12)

The constant CS counteracts the divergent CPB at high potentials and, thus, limits the to-
tal differential capacitance. The capacitance of a layer of adsorbed ions can be estimated
by

CS =
εrε0

d0 − zσ
(3.13)

where d0 is the center of charge of the adsorbed layer in respect to the interface and
zσ the position of the surface charge on the electrode. The effective dielectric constant
εr equals not necessarily the bulk dielectric constant. Grahame refined this model for
aqueous solutions by distinguishing between an inner Helmholtz layer of specifically
adsorbed ions and an outer Helmholtz layer of solvated ions [58]. In lack of solvent
molecules in ILs the Stern layer only consists of surface adsorbed ions.

3.2 Diffuse double layers in ionic liquids
For ILs the assumptions made by Gouy and Chapman are certainly not valid anymore.
The adopted Boltzmann distribution of ions leads to unphysically high ion concentra-
tions near the IL/electrode interface. Due to the finite size of the ions, steric effects will
govern the concentration profile at elevated electrode potential, i.e. the ion concentration
cannot exceed a limiting value at the interface (figure 3.3). This problem is well-known
in the theory of the electric double layer in concentrated electrolytes and molten salts.
In this scope steric effects were first considered by Bikerman [16] and independently by
Eigen and Wicke [37, 38]. Subsequently, Freise solved a modified Poisson-Boltzmann
equation of a diffuse double layer and derived a differential capacitance differing sub-
stantially from the capacitance of the Gouy-Chapman model. Freise’s model predicts
a maximum at the PZC in contrast to the minimum predicted by the Gouy-Chapman
model. With the emerging interest in highly concentrated electrolytes and ILs the model
of Bikerman and Freise received attention anew in an article by Kornyshev [86]. Korny-
shev adopted the so called lattice gas model, previously developed by Borukhov [18],
to derive the ion distribution in ILs near a charged wall previously found by Bikerman

ca/c(z) = c̄
e
± eψ0

2kBT

1− γ + γ cosh
(

eψ0

2kBT

) . (3.14)
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3 THE ELECTRIC DOUBLE LAYER

Figure 3.2: Differential capacitance
of the modified Poisson-Boltzmann
equation (3.17) for different para-
meters γ. For γ → 0 the capaci-
tance (3.11) according to the Poisson-
Boltzmann equation is retrieved (taken
from Kornyshev et al. [86]).

Here the parameter γ is a measure of the maximal ion excess at the interface

γ =
2c̄

cmax

(3.15)

given by the ratio of the mean ion concentration in bulk c̄ and the maximal ion concen-
tration at the interface cmax. The ion distribution (3.14) resembles a Fermi distribution,
thus limiting the concentration for large potentials to cmax (dashed line in figure 3.4a).
In the limit of infinite maximal interfacial ion concentration cmax, i.e. γ → 0, equation
(3.14) approaches the Boltzmann distribution (3.3).

Combining equations (3.1), (3.2), and (3.14) leads to a modified Poisson-Boltzmann
equation

d2

dz2
ψ(z) =

2ec̄

εrε0

sinh
(
eψ(z)
kBT

)
1 + 2γ sinh2

(
eψ(z)
2kBT

) . (3.16)

which can be solved analytically [86]. The differential capacitance in this model reads

CMPB =
CPB

1 + 2γ sinh2
(

eψ0

2kBT

)
√√√√√ 2γ sinh2

(
eψ0

2kBT

)
ln
[
1 + 2γ sinh2

(
eψ0

2kBT

)] . (3.17)

The shape of CMPB strongly depends on the concentration limiting parameter γ (figure
3.2). For γ = 0 the differential capacitance CPB of the Gouy-Chapman model is re-
trieved, i.e. an infinite amount of ions can be dragged to the interface. For any finite
value of γ the capacitance decreases for high potentials ψ0 as

CMPB ≈
εrε0

λD

√
kBT

2γeψ0

(3.18)

This x−1/2 dependence is typical for lattice saturation, i.e. for high potentials all interfa-
cial sites are occupied by counter ions and the double layer has to expand additionally.
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Figure 3.3: Ion distribution in an IL near a charged wall. (a) For low potentials the
charge at the electrode is over-screened by counter ions. (b) For high potentials the
excess of counter ions leads to crowding of ions (taken from Bazant et al. [13]).

In literature this is referred to as crowding (figure 3.3b). A curiosity of this model is
the transition from a camel back shaped capacitance curve to a bell shaped curve with
a maximum at the PZC at γ = 1/3. This transition was reproduced by MD simula-
tions [46] in which the IL was modeled by spherical charged beats and, in a separate
simulation, by chains consisting of charged and uncharged beats. For the first model a
bell shaped differential capacitance was found, while the later exhibited a camel back
shaped curve. The authors concluded that the uncharged beats act as voids in the lattice
gas model and thus enhancing the maximal ion concentration at the interface in respect
to the bulk.

In the previously discussed models the intrinsic structure of liquids (cf. chapter 2)
was totally neglected. Ions are assumed to be point-like charges interacting via a mean-
field. Also the introduction of a maximal concentration at the interface is a phenomeno-
logical concept which does not include ion-ion correlations. In order to incorporate
ion-ion correlations, again in a phenomenological way, Bazant extended the model of
Bikerman and Freise based on a Landau-Ginzburg like continuum theory [13]. He intro-
duced a correlation length lc describing ion-ion correlations on a molecular scale. The
modified Poisson-Boltzmann equation becomes a fourth order differential equation

(
1− l2c

d2

dz2

)
d2

dz2
ψ(z) =

2ec̄

εrε0

sinh
(
eψ(z)
kBT

)
1 + 2γ sinh2

(
eψ(z)
2kBT

) (3.19)

which cannot be solved analytically anymore. Numerically derived ion densities and
concentration distributions are shown in figure 3.4. The fourth order differential equa-
tion leads to damped charge oscillations which represent the ion-ion correlations de-
scribed in chapter 2. In this context the oscillations are referred to as overscreening
(figures 3.3a). This term describes the fact that the excess ions next to the charged wall
exceeds the surface charge on the electrode. The differential capacitance has a similar
potential dependence compared to the model of Bikerman and Freise (figure 4.4b). For
small potentials, however, the differential capacitance is significantly reduced.
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3 THE ELECTRIC DOUBLE LAYER

Figure 3.4: (a) The dimensionless charge densities ρ̃ of the electric double layer at dif-
ferent potentials Ṽ = eV/kBT are compared for two dimensionless correlation lengths
δc = lc/λD. The charge density was derived after equation (3.19) from Bazant et al. [13].
δc = 0 corresponds to the lattice gas model (3.14). (b) Cation concentration c̃+ and
anion concentration c̃− for a dimensionless correlation length of δc = 10 at potential
Ṽ = 100 (taken from Bzant et al. [13]).

3.3 Charging/discharging dynamics
The dynamics of the double layer at the electrode can be investigated by electrochemical
methods such as impedance spectroscopy, chrono amperometry or cyclic voltammetry
(cf. chapter 7). In these methods, the response to a time-dependent voltage is usually
analyzed by fitting the data to an equivalent circuit which consist of capacitors, resistors
and other elements. The response is mainly governed by diffusion. Thus, the timescales
are much longer than molecular relaxations or spontaneous collective excitations on
timescales of the plasma frequency

ωP =

√
4πnZ2

i e
2

ε0εmi

. (3.20)

This equation includes the number density n, the ion charge number Zi, the elementary
charge e, vacuum permittivity ε0, the relative permittivity ε and the ion mass mi. For
instance, with an estimate of ε ≈ 10 the plasma frequency of the IL [tba]+[FAP]− is
about 0.5 THz.

Diffusion phenomenons can be treated in terms of thermodynamics. Any spatial
gradient in the chemical potential leads to a diffusive flow of ions. Assuming the phe-
nomenological hypothesis of linear response, the flux Jα of an ion species α is propor-
tional to the gradient of the chemical potential µα. This leads to Fick’s first law3 of
diffusion

Jα = − Dα

kBT
cα∇µα (3.21)

3A more common form for dilute solutions without electric fields can be obtained by applying µα =
kBT ln c
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3 THE ELECTRIC DOUBLE LAYER

where Dα is the diffusion coefficient4 and cα the concentration. The time evolution of
the concentration is given by Fick’s second law

∂cα
∂t

= −∇Jα = ∇
(
Dα

kBT
cα∇µα

)
. (3.22)

Equation (3.22) represents the differential form of mass conservation in absence of any
chemical reaction. To establish a set of differential equations describing the diffusion
process, one needs to determine the chemical potential of an electrolyte system in de-
pendence of ion concentration and electrode potential. The chemical potential of a ther-
modynamic system is given by the derivative of the Helmholtz free energy F in respect
to the number of particles N . This relation can also be written in terms of concentration
c and the Helmholtz free energy f per volume

µ =
∂F

∂N

∣∣∣∣
T,V

=
∂f

∂c

∣∣∣∣
T,V

. (3.23)

In an electrolyte the chemical potential of an ion species α yields [14]

µα = kBT ln cα + Zαeψ+ µex
α . (3.24)

The first term is the chemical potential of a dilute, or ideal solution while the second
term gives the influence of the local electric potential. The excess chemical potential µex

α

describes the deviation from the ideal value which can include steric effects and ion-ion
correlations.5

For diluted solutions the ion-ion interactions are negligible and the excess chemical
potential turns to zero. Thus the chemical potential given by (3.24) yields

µdil
α = kBT ln cα + Zαeψ . (3.25)

Inserting the chemical potential (3.25) into (3.22) gives the Nernst-Planck equation

∂cα
∂t

= Dα

[
∇2cα +

Zαe

kBT
∇ (cα∇ψ)

]
. (3.26)

Together with the Poisson-Boltzmann equation (3.4), it describes the time evolution of
the concentration profile in a dilute solution. These so called Poisson-Nernst-Planck
equations form a set of differential equations. Applying appropriate boundary con-
ditions these equations can be solved for model systems. For instance, Bazant et al.
performed a comprehensive analysis of the response of such a model system to time-
dependent voltages [15]. It is comprised of a dilute electrolyte in between two paral-
lel plate blocking electrodes. The evolution in time of charge density and potential is

4The diffusion coefficient Dα is connected to the mobility uα via the Einstein relation Dα = kBTuα
5The chemical potential can also be written in terms of activities: µ = kBT ln a + Zeψ where the

activity a = λc includes the ion-ion interactions via the chemical activity coefficient λwhich is connected
to the excess chemical potential µex = kBT lnλ.
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3 THE ELECTRIC DOUBLE LAYER

Figure 3.5: Charge profiles (a) and potential φ (c) between two electrodes after a
potential step for times t/τc = 0 (solid), 0.1 (dot), 0.5 (dash), 1 (dot-dash), 2 (dot-dot-
dot-dash) and∞ (long dash) (taken from Bazant eta. [15]).

shown in figure 3.5. Besides showing numerical results, Bazant et al. also investigated
the response to small excitations in the “weakly nonlinear“ limit by matched asymp-
totic expansions. At leading order, the model system behaves like a RC circuit with a
response time

τc =
λDL

2D
. (3.27)

Equation (3.27) reveals that the response depends on the microscopic Debye length λD

and the macroscopic separation L of the electrodes. Although this result is known for a
long time [101] it is not present in some standard textbooks [97], where only the Debye
time

τD =
λ2

D

D
(3.28)

is stated. Compared to τc, τD is rather small (ns to µs for aqueous solutions) and gives
the response of the diffuse layer itself to a given potential.

The analysis of the dynamic behavior of electrolyte electrode systems is not only
limited to dilute solutions. Ion-ion interactions can be included via the excess chemical
potential µex

α in equation (3.24). Following this approach Kilic et al. derived modified
Poisson-Nernst-Planck equations from (3.16) for the model of Bikerman and Freise
[82, 83]. Again, the leading order response time is given by τc of equation (3.27).
A comprehensive overview of induced charge kinetics in concentrated solutions can
be found in [14]. Recently, Zhao solved the modified Poisson-Nernst-Planck equations
resulting from Bazant’s modified Poisson-Boltzmann equation (3.19) [177]. In this case,
the included correlations cause a reduction of the leading order response time

τ ∗c =
λ

3/2
D L

2Dl
1/2
c

, (3.29)

which depends on the correlation length lc.
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Chapter 4

Structure and dynamics of ionic liquids

In this chapter the recent findings of experimental and simulation work on structure and
dynamics of ILs are presented. First, an overview of IL bulk properties is given. A com-
mon observation is the presence of inter-molecular correlations on several length-scales.
These correlations also influence their transport properties, which are discussed in the
following section. Here, the contributions of electrochemical experiments to the un-
derstanding of structure and ion transport properties are presented. Finally, the studies
on IL/solid interfaces are discussed. Those studies reveal that the interfacial structure
is governed by strong correlations as well. Thereafter, the impact of these correlations
on the electrochemical quantities of IL/electrode systems is examined. For more de-
tailed information the reader is referred to the recent review of ILs at charged interfaces
published by Fedorov and Kornyshev [48].

4.1 Bulk properties

Microscopic structure
X-ray and neutron scattering are classical techniques for studying the bulk structure of
vitreous matter [49]. Especially neutron scattering is an established technique to resolve
the structure of liquids. With the help of isotope variation, it is possible to determine the
partial structure factors of polyatomic liquids [127]. However, the complex molecular
structure of ILs hampers a quantitative separation of intra- and inter-molecular structure
just by means of partial deuteration of ions. This task can only be accomplished with the
help of advanced data analysis based on MD simulations. This approach is applicable
to the data analysis of both, neutron and X-ray scattering data.

Systematic diffraction and simulation studies on the influence of the cation alkyl
chain length on the bulk structure have been made for various ILs, such as imidazolium
PF6-based ILs [5, 63], pyrrolidinium TFSI-based ILs [78, 80, 93], protic alkylammo-
nium nitrate-based ILs [146], and ammonium TFSI-based ILs [144]. A common obser-
vation is the presence of two to three inter-molecular correlation lengths governing the
radial distribution function g(r). These correlations result in peaks in the structure fac-
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1 2
3 1

2
3

Figure 4.1: MD simulation (a) and small angle X-ray scattering (SAXS) data (b) for
pyrrolidinium TFSI based ILs with different chain lengths. Arrows indicate the temper-
ature dependence of the peaks while raising the temperature from 298 K to 363 K (taken
from Li et al. [93]).

tor S(q) at low q-values (figure 4.1). Oscillations at higher q-values, typically >2 Å
−1

,
originate mainly from their intra-molecular structure [79, 132]. The highest-q peak (3 in
figure 4.1) of the inter-molecular structure peaks mainly arises from the nearest neighbor
correlation of oppositely charged ions. The second peak 2 is assigned to the real space
correlation and anticorrelations of like ions, which can spread over several molecular
distances [78]. The lowest-q peak 1 arises from correlations of polar and apolar regions
comprised of aggregated alkyl chains and ionic head groups, respectively [5, 128, 160].
Therefore, its intensity and position strongly depends on the alkyl chain length of the
cation. For side chains smaller than a propyl-group this peak completely vanishes.

The temperature dependence of the peaks shown in figure 4.1 is noteworthy. The
two high-q peaks shift to lower q-values with increasing temperature corresponding to
thermal expansion of the IL. However, the low-q peak shifts inversely to higher q-values
indicating thermal contraction. This negative thermal expansion has also been observed
at the free surface with resonant soft X-ray reflectivity [106]. This phenomenon has been
assigned to the increased disordered conformation of the alkyl chains with increasing
temperature leading to a contraction of the apolar regions. The mean distance between
the molecules, however, increases so that the overall volume expansion is positive.
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Bulk ion dynamics
The existence of long-range bulk correlations is supported by the findings applying
spectroscopic techniques. For instance, utilizing coherent anti-Stokes Raman scattering
(CARS), a series of imidazolium PF6-based ILs showed microscopic optical inhomoge-
nieties suggesting mesoscopic local structures of several tens of nanometers [73, 140].
Also, collective motions of locally ordered domains in imidazolium and ammonium-
based ILs were observed with different techniques, such as heterodyne-detected Raman-
induced Kerr effect spectroscopy (OHDE-RIKES) [69, 128, 173], low-frequency Ra-
man spectroscopy [73, 125], THz spectroscopy [174], optical Kerr effect measurements
and dielectric relaxation spectroscopy [68, 163].

Further, combined time-dependent fluorescence Stokes shift experiments and MD
simulations revealed complex solvation dynamics around the dye coumarin 153 in a
imidazolium-based IL [152]. The origin of the solvation dynamics response was iden-
tified with the translation dynamics of the BF4 anion in and out of the dye solvation
shell. This translational origin is in contrast to the mechanism in conventional polar
liquids in which solvent rotations dominate the response and indicates the existence of
microscopic structures.

Charge transport and diffusion
In a series of publications, Tokuda et al. systematically investigated diffusion-based
properties of various ILs. This was done under variation of several parameters: anionic
species in imidazolium-based ILs [155], alkyl chain length in imidazolium TFSI-based
ILs [156], and the cation structure in TFSI-based ILs [157]. A summary of the findings
is given in [158]. In these studies all diffusion-related quantities such as viscosity, self-
diffusion coefficients and conductivity showed a Vogel-Fulcher-Tammann temperature
dependence [148] whereas the density decreased linearly with temperature. The cations’
diffusion coefficients were found to be higher compared to the respective anions, in
spite of the cations’ larger size. This finding was confirmed by MD simulations [124].
Further, Tokuda et al. compared the conductivity values with calculated values from
self diffusion coefficients measured with pulsed-field-gradient spin-echo NMR. This
was done by using the Nernst-Einstein relation [62]. From the discrepancy between the
values determined by conductivity measurements and NMR, the authors concluded that
only a part of the ions is dissociated in ILs and contributes to the conductivity. However,
the diffusion coefficient was found to be coupled to the ion conductivity not in a simple
way [169]. Thus, the conclusion of Tokuda et al. has to be considered with great care.

The diffusion of various tracer solutes in ILs was studied by Kaintz et al. [77].
They compared measured friction coefficients from pulsed-field gradient NMR with
predicted values from the Stokes-Einstein relation. For tracer molecules of the same
size and larger than the IL solvent, the experimental data is in good agreement with
theory. However, for smaller molecules deviations were observed. Small neutral tracer
molecules were found to be more mobile than predicted, whereas small charged tracer
molecules, especially lithium ions, are much less mobile. This tracer diffusion behav-
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ior is quite similar to what has been observed in conventional solvents. However, the
mobility did not evidently depend on the degree of micro-phase separation in polar and
apolar regions. Thus, the authors concluded that the difference of the diffusion coeffi-
cients originates from subtle packing effects and not from inter-molecular interactions.
Applying dye rhodamine 6G as tracer solute, a fast and a slow diffusion process were
observed in pyrrolidinium TFSI-based ILs [60]. The respective fluorescence correlation
spectroscopy study comprised ILs of various alkyl chain lengths. The two diffusion co-
efficients deviate about a factor of ten. The existence of two processes was ascribed to
the presence of polar and apolar micro-phases.

Similar findings were made by applying elastic and inelastic neutron scattering. In a
study by Triolo et al. also two processes were identified in 1-butyl-3-methylimidazolium
PF6 [161]. The first is an Arrhenius activated Debye-like process, observed at low
temperatures, which may be connected to methyl and butyl chain relaxation. Another
high temperature diffusive process exhibit a Vogel-Fulcher-Tammann temperature de-
pendence.

4.2 Electrochemistry experiments

Electrochemical experiments provide valuable information of the electrolytic proper-
ties of ILs such as conductivity [155], differential capacitance [95, 96, 149], relaxation
times [32] and diffusion coefficients [85]. Such measurements are often performed sup-
plementary. In publications raw data only is provided in the supporting information,
if at all. However, the way of extracting physical quantities from such electrochemi-
cal experiments is controversially discussed in literature. For instance, very different
differential capacitance curves of similar ILs at the same electrode were reported by
different authors (figure 4.2a). These discrepancies might originate from subtle differ-
ences of electrode surface qualities, which varies even for same electrode materials. MD
simulations have shown that e.g. electrode roughness has an immense impact on the dif-
ferential capacitance of ILs at graphite and gold electrodes [65]. At a rough surface,
differential capacitance curves were found to exhibit more features than on an atom-
ically flat surface. Further, the electronic properties of the electrode material have a
huge impact on the differential capacitance. In an impedance spectroscopy study of 1-
butyl-3-methylimidazolium TFSI, the influence of electrode materials was investigated
[24]. The electrode materials included platinum, glassy carbon, boron doped diamond,
and carbon nitride. Another study on the influence of semiconducting electrodes is pre-
sented in [72]. Unfortunately, no raw impedance data was provided in these studies.
Another explanation for the discrepancy of reported data might be of systematic quality
[32, 65]. For instance, probing the electronic response with only a single frequency
leads to ambiguous results as illustrated in figure 4.2b where the temperature depen-
dence of broadband impedance spectra of an IL is shown plus the quasi temperature
dependence of a single frequency measurement [71, 111].

The determination of diffusion coefficients from impedance measurements is con-
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Figure 4.2: (a) Comparison of differential capacitance from different single frequency
experiments (taken from Hu et al. [65]). (b) Broad band impedance spectroscopy data at
different temperatures. Marked dot indicates the complex capacitance of the frequency
10 Hz (taken from Drüschler et al. [32]).

troversial as well. Comparison of impedance results with pulsed-field gradient NMR
showed discrepancies of over four orders of magnitude [169]. These findings are in
contrast to another study where results match well with pulsed-field gradient NMR mea-
surements [130, 131]. Here the charge transport was assigned to a much faster process
and interpreted in terms of charge carrier hopping in an energy landscape [35]. How-
ever, this process was only observed at low temperatures where the IL can be assumed
to be in a glass-like state and electrode polarization is strongly reduced.

Impedance spectroscopy

Broadband impedance spectroscopy was used by several groups to study the electric
response of various IL/electrode systems. Applying a three electrode setup, the effect of
a constant bias potential was examined. For instance, the Roling group observed three
capacitive processes at the interface of the IL [bmpy]+[FAP]− and a single-crystalline
gold, (111) face, electrode [8]. A fast process on millisecond timescale was ascribed to
double layer formation while a ultra-slow process was associated with specific ion ad-
sorption. The intermediate process was found to be heavily potential dependent and was
tentatively ascribed, with the help of STM measurements, to Herringbone reconstruction
of Au surface. In a subsequent publication the temperature dependence of the processes
was studied [32]. A Vogel-Fulcher-Tammann temperature dependence was found for
the fast process as well as for the ion conductivity, whereas the intermediate process
shows a Arrhenius temperature dependence. With these findings, the authors concluded
that the fast process is diffusion driven while the other process is connected to interface
relaxations. A summary of the previous publications is given in reference [9]. Simi-
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lar findings were made in the study of an imidazolium-based IL [33, 54, 55, 116] and
hexaalkylguanidinium-based IL [53] on single-crystalline gold electrodes.

The interpretation of Roling et al. is in accordance with the findings of broad-
band impedance spectroscopy in two electrode setups1. In these experiments electrode
polarization effects were measured in an imidazolium-based IL. This polarization ef-
fect corresponds to the fast process observed by Roling et al. The decreasing relax-
ation time with decreasing electrode separation length clearly reveals its diffusive origin
[131, 137]. However, the dependence on the electrode material indicates that this pro-
cess is not solely diffusion based. The second slower relaxation process is not limited
to ILs as shown by a study of a wide range of electrolytes [40]. The authors of this
study attribute the slow relaxations to the decreased mobility of ions in the space charge
region. However, the 1D approximations, made in the data analysis of the presented
studies, neglect the influence of the finite electrode size. Numerical calculations sug-
gest that electrode edge effects might explain the anomalous effects at low frequencies
[104].

Finally, at high frequencies and low temperature the dielectric function can by de-
scribed by the Dyre model, which describes the charge transport process in glasses by a
hoping of charge carriers in an energy landscape [35]. The relaxation times calculated
from this model can be related to diffusion coefficients via the Einstein relation and fit
well to values obtained from pulsed-field-gradient NMR [130, 131]. Deviations from
the Dyre model were observed for high frequencies at very low temperature. This so-
called β-relaxation process has been assigned to librational motions of the imidazolium
ring [87].

Electrocapillarity measurements

Besides modern broadband spectroscopy techniques, the differential capacitance can
also be determined with classical electrocapillarity measurements deploying the Hg-
drop method. For instance, electrocapillarity measurements were performed on mix-
tures of imidazolium TFSI-based ILs with different alkyl chain lengths, which show
preferential adsorption of long tailed cations[30]. Electrocapillarity curves of various
ILs are presented in [1, 92]. However, one has to be cautious comparing the results from
electrocapillarity with other methods. Recent in-situ X-ray reflectivity experiments in
aqueous solutions challenge the correctness of this method to determine the absolute
surface charge [34].

4.3 Interfacial structure

There has been a lot of recent work, in both simulation and experiment, to elucidate
the interfacial structure of ILs at hard walls. Interfacial layering structures comprised

1In this context the technique is called broadband dielectric spectroscopy.
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Figure 4.3: Force-distance curve of an
AFM tip approaching a Au(111) elec-
trode in [bmpy]+[FAP]− at open circuit
potential (taken from Hayes et al. [64]).

of cation and anion enriched layers were observed in X-ray reflectivity (XRR) experi-
ments for imidazolium, pyrrolidinium and ammonium-based ILs on various substrates
[108, 109, 178]. Also atomic force microscopy (AFM) provided evidence of layers
at the interface for several imidazolium and pyrrolidinium-based ILs [10, 32, 176]. A
typical force distance curve of an AFM tip penetrating distinct layers while approach-
ing a Au(111) substrate is shown in figure 4.3. In a recent AFM study the qualitative
comparison with MD simulations showed good agreement of force-distance curves and
concentration profiles [17]. Though, a quantitative interpretation of the force-distance
curves is hampered by the complex interplay between the electrode, the confined IL,
and the AFM tip. Furthermore, MD simulation studies confirmed an interfacial struc-
ture comprised of alternating cation and anion enriched layers decaying gradually into
the bulk [98]. However, these oscillatory correlations at the interface are not necessarily
limited to ILs. Also hard sphere fluids may exhibit oscillatory correlations [59, 113], as
discussed in chapter 2 .

Experiments under electrochemical control

The interfacial structure at given electrode potential, i.e. in presence of surface charge,
has been investigated both in experiments and in simulations. AFM experiments indi-
cated that the layering is most pronounced at high electrode potential [8, 64]. Especially
the first cation layer, adsorbed directly to the electrode, was found to be strongly affected
by the electrode potential. Its width and the force to penetrate this layer with the AFM
tip strongly depends on the applied voltage [17, 176]. This finding is in accordance with
scanning tunneling microscopy (STM) measurements, revealing distinct adstructures in
imidazolium-based ILs on the electrode at elevated potential [25, 54, 55, 149]. Also
induced molecular reorientation of the adsorbed layer was found by surface sensitive
sum frequency generation (SFG) spectroscopy experiments [2, 11, 136]. In these ex-
periments, the orientation of the adsorbed imidazolium ring was found to be dependent
on the applied potential. This is similar to findings from MD simulations [99]. Further,
attempts were made to study the response of the interfacial structure to electrode poten-
tials by XRR [175] and neutron reflectivity [90]. However, substrate reconstruction on
gold surfaces [8] and a limited q-range in neutron reflectivity rendered an unambiguous
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Figure 4.4: (a) Distribution of anions (red) and cations (blue) sorted into single lay-
ers at different surface charges. Solid bars are calculated from the modified Poisson-
Botzmann equation (3.19) after Bazant et al. while empty bars are derived from MD
simulations. (b) Differential capacitance calculated after equation (3.19) (blue line and
red dashed line) and MD simulations (dashed black line). The values were derived from
the same models as shown in (a) (taken from Bazant et al. [13]).

extraction of the molecular-scale ion structure near the interface impossible.

Differential capacitance in MD simulations

The interfacial structure determines the relation between the applied potential and the
surface charge on the electrode. Thus it is closely related to the differential capaci-
tance (cf. chapter 3). This relation has been studied intensively by MD simulations.
Fedorov et al. found interfacial layering structures in MD simulations of simple charged
Lennard-Jones spheres at a charged wall [47]. The authors extracted bell-shaped capac-
itance curves from their simulations which qualitatively correspond to the predictions
made by Freise and Kornyshev in their mean-field model. The capacitance values be-
come quantitatively correct if a Stern layer is introduced. In subsequent papers [46, 52]
deviations from the bell-shaped capacitance are explained by introducing uncharged
moieties, representing alkyl tails, which act as “latent voids”. This leads to a double
peak of the differential capacitance around the potential of zero charge which they call a
“camel back”-shaped capacitance. Moreover, the inclusion of dispersion forces can lead
to double peaks [162]. In more advanced models of imidazolium- and pyrrolidinium-
based ILs, layering was observed even at a neutral wall [99, 165, 166]. The interfacial
structure extended over 20 Å into bulk. Thus, the extended layering structure seems
to be more or less independent from the electrode potential which is already screened
within the first 1− 2 nm. Finally, the found layering structure and the associated capac-
itance has been reproduced by classical density functional theory of fluids [75, 89].
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Specific ion adsorption
Distinct adstructures were observed in imidazolium-based ILs on electrodes by STM.
[25, 54, 55, 149]. Even at the non-charged electrode a cation enrichment was found in
the first layer by MD simulations [99]. This specific adsorption of cations has dramatic
effects on the differential capacitance [65] such as a positive potential of zero charge
[141]. However, this structured adsorption is not a general characteristic of ILs, as
no adstructure was observed in an hexaalkylguanidinium based IL on singlecrystalline
Au electrodes [53]. Furthermore, the surface termination of electrodes influences the
adsorbed layer. A surface force apparatus study showed that an imidazolium-based IL
exhibits adstructures at mica surfaces but not at hydrocarbon terminated self-assembled
monolayer (SAM) surfaces [20].

Interfacial dynamics
Experimentally, extremely slow dynamics of the interfacial structure were observed
upon electrode potential variation. In electrochemical surface plasmon resonance ex-
periments, interfacial relaxation processes on timescales of 100 s after a potential step
were observed in an ammonium-based IL on a polycrystalline gold electrode [112]. The
relaxation time in positive direction was found to be two orders of magnitude slower
than in negative direction. Similar observations were made in XRR experiments where
dynamics on the second scale were found in an imidazolium-based IL [164]. These
slow dynamics might be related to the enhanced viscosity of ILs in the interfacial re-
gion. Such strong viscosity enhancement and solid like behavior was found by surface
force apparatus experiments between charged mica surfaces [20]. Furthermore, both in-
vestigated imidazolium-based ILs exhibited pronounced layering. However, in the same
study, no such behavior was observed on hydrocarbon terminated SAM surfaces.

Also MD simulations provided evidence for slow dynamics at the interface between
ILs and a hard wall. In a study of imidazolium-based ILs, the diffusion coefficient of
the first layer next to the interface was found to be reduced to a fraction of the bulk
diffusion coefficient [31, 138]. This diffusion reduction is most pronounced normal to
the surface. The adsorbed layer showed an Arrhenius-like behavior. The dynamics of
the adsorbed layer were proofed to be very slow, probably solid-like, but simulation
times were too short to give clear evidence [143].
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Chapter 5

Material properties

5.1 Ionic liquids
This study aims on the determination of the structure of the IL/electrode interface and
its response to applied potentials with a combination of X-ray reflectivity (XRR) and
electrochemical methods. For this purpose, ILs are required that are electrochemi-
cally stable and that have structures on length scales accessible by XRR experiments
on buried interfaces. For this study the ILs 1-butyl-1-methylpyrrolidinium tris(penta-
fluoroethyl)trifluorophosphate1 [bmpy]+[FAP]− and tetrabutylammonium tris(pentaflu-
oroethyl)trifluorophosphate [tba]+[FAP]− [70] have been chosen. Their strong ion-ion
correlations result in intense XRD peaks in a q-range detectable in XRR. The interfacial
structure of both ILs has been sucessfully determined at dielectric sapphire substrates
[109, 134]. These properties makes them the ideal model systems to study electrochemi-
cal phenomenons with XRR at the IL/electrode interface. Furthermore, ILs based on the
[FAP]− anion are chemically very stable. They have a large electrochemical window,
up to 7 V for the [tba]+[FAP]−, a superior hydrolytic stability, and a low maximal water
uptake which is an order of magnitude smaller compared to ILs with commonly used
anions [PF6]− or [BF4]−. A maximum water content of less than 10 ppm was achieved
in dried liquid [134]. The physio-chemical properties of both ILs is summarized in table
5.1.

The IL [bmpy]+[FAP]− has been subject of several experimental studies applying
different techniques. In AFM experiments, [bmpy]+[FAP]− showed distinct layering
on Au(111) electrodes (figure 4.3) [8, 41, 64]. At potentials far from the open circuit
potential an increased number of layers was observed. The first electrode-adsorbed layer
was found to be most affected by the applied potential. Its width and the force needed
to penetrate this layer with the AFM tip depends evidently on the applied potential.
From these observations the authors concluded that the adsorbed layer is enriched with
cations at open circuit potential and at negative potentials while the anion is adsorbed
at positive potentials. These findings are affirmed by in situ STM measurements in
which island-formation at anodic potential indicates ion exchange [8, 32, 41]. Further,

1also tris(perfluoroalkyl)trifluorophosphate
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(a)   
+

[bmpy] (b)   +[tba]
-(c)   [FAP]

Figure 5.1: Structure of the cations [bmpy]+ (a), [tba]+ (b) and the anion [FAP]− (c).
Carbon atoms are painted dark gray, hydrogen atoms light gray, nitrogen atoms pur-
ple, fluorine light blue, and phosphor orange. Highlighted regions indicate the charged
blocks. (taken from Schröder [134]).

Table 5.1: Physio-chemical properties of the studied ILs: anion molecular weightMa =
445.01 g mol−1, cation molecular weight Mc, melting temperature Tm, crystallization
temperature Tc, density ρ0 at reference temperature T0, and linear thermal expansion
coefficient α.

[bmpy]+[FAP]− [tba]+[FAP]−

Mc (g mol−1) 142.26 242.26
weight ratio c:a 1 : 2 1 : 1
T ∗m (◦C) 4 70
T ∗c (◦C) ≈ −30 40
ρ0 (g cm−3) 1.59 1.34
T0 (◦C) 21 72
αρ (10−3 g cm−3 K−1) 1.0 0.8
RT viscosity (mm s−2) 184 n/a
electrochem. window (V) 6.6 7.0
max. water uptake (ppm) < 100 n/a
∗ at 10 K min−1 cf. figure 5.2a
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Figure 5.2: DSC data of [bmpy]+[FAP]− (a) and [tba]+[FAP]− (b) during cooling (blue
line) and heating (red line) with a rate of 10 K min−1.

herringbone reconstruction of the Au(111) surface was observed at cathodic potential.
This reconstruction was not seen in imidazolium-based ILs. Thus, the authors speculate
that the adsorbed [bmpy]+ cations might have a templating effect for the reconstruction.
The adsorption/desorption process is reversible and happens on the timescale of hours.
However, in the described STM measurements no atomic resolution could be achieved
for which the authors blame the strongly adsorbed ions. So far, atomic resolution was
only achieved in a study of a thin [bmpy]+[FAP]− layer at an Au(111) substrate in
vaccum at low temperatures [168]. This study showed checkerboard like ordering of the
ions in the thin film, also found with gracing incidence X-ray diffraction in a Langmuir
film on liquid mercury [150].

Finally, the relaxation dynamics of the interfacial structure was probed by impedance
spectroscopy experiments on gold electrodes [8, 32, 126]. Besides the ion diffusion
process also much slower processes were observed which were ascribed to interfacial
relaxations (cf. section 4.2).

Density and phase transitions
The temperature dependent mass density ρm (T ) is given by [134]

ρm (T ) = ρ0 [1 + αρ (T0 − T )] (5.1)

where ρ0 is the reference mass density at reference temperature T0 and αρ is the coef-
ficient of expansion. The parameters for both ILs are summarized in table 5.1. Fur-
ther, the melting and crystallization points were determined by differential scanning
calorimetry (DSC) (scan rate 10 K min−1; DSC-822 Mettler Toledo). The DSC curve
in figure 5.2a shows that [bmpy]+[FAP]− can be substantially undercooled undergo-
ing a glass transition below −100 ◦C. While heating, the ion mobility increases and
crystallization starts at about −30 ◦C. This is directly followed by the melting process.
The melting temperature is 4 ◦C which differs considerably from the literature value of
below −50 ◦C [70]. The crystallization was verified by X-ray diffraction (figure 5.3).
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Figure 5.3: XRD images of [bmpy]+[FAP]− during heating from −23 ◦C (left) to 5 ◦C
(right).

Figure 5.4: Polarized light microscopy images of [tba]+[FAP]− at 55 ◦C (left) and
57 ◦C (right).

The second IL [tba]+[FAP]− can also be undercooled to a temperature of 40 ◦C
where a crystallization peak appears in the DSC curve (figure 5.2b). The existence of
two separate dips while heating indicates two subsequent phase transitions. Indeed,
polarized light microscopy images taken below and above the first phase transition tem-
perature reveal a solid-solid phase transition at 56 ◦C. The melting temperature is found
to be 70 ◦C which is again different from the literature value of 62 ◦C [70]. This kind of
solid-solid phase transition is not unusual in ILs and was also observed in imidazolium-
based ILs [36]. The complex molecular structure of the ions and their range of possible
conformers imply a complex energetic landscape of the solid state giving rise to uncon-
ventional phase transitions.

Maximal interfacial ion excess
In chapter 3 the lattice gas model was introduced, describing the free energy of an IL
at a solid wall. In this model a crucial parameter is the maximal ion excess γ at an
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interface. It can be estimated from the molar volume VM of the ions. For that purpose,
equation (3.15) can be written in terms of mass densities

γ =
2c̄

cmax

=
2ρ̄a/c

ρ
a/c
max

. (5.2)

Here, ρa/c
max is the maximal mass density of the adsorbed anion/cation layer and ρ̄a/c is

the mean mass density of the adsorbed species in bulk IL:

ρ̄a/c = ρm

Ma/c

Ma +Mc

. (5.3)

with the anion/cation molar mass Ma/c.
ρmax can be derived from the molecular volume fraction V a/c

M of the specific ion
species in the IL. First, the molar volume VM(T ) of the IL is calculated from its molar
mass M = Ma +Mc and its mass density ρm(T ):

VM(T ) =
Ma +Mc

ρm(T )
. (5.4)

VM(T ) can also be expressed in terms of the effective molar volumes of its constituents
V

a/c
M [43]:

VM = V a
M + V c

M . (5.5)

With equation (5.5) and knowing the effective volume of a specific anion allows to cal-
culate the effective molar volumes of a series of cations and anions. Thus, the effective
molar volume of a spherical shaped anion is estimated from its ionic radius ra :

V a
M = (0.74)−1NA

3

4
r3

aπ . (5.6)

The prefactor is the volume fraction of closed packed spheres. To validate this method
the effective molar volume of the [tba]+ anion was derived from two different ILs,
namely [tba]+[Br]− and [tba]+[PF6]−. The ion radius of Br− yields 1.96 Å [139] while
the ion radius of [PF6]− is 3.08 Å [43]. The maximal cation density then yields

ρc
max(T ) =

Mc

VM(T )− V a
M

. (5.7)

The values of ρa
max of the [tba]+ cation calculated from the two different anion radii is

shown in table 5.2. The values deviate less than one percent despite the difference in
ion radius and their different composition. Inserting the values from table 5.1 and 5.2
into equations (5.7), (5.3) and (5.2), γ can be calculated for the ILs used in this study.
The ion excess yields γ = 0.80 for [bmpy]+[FAP]− and γ = 1.15 for [tba]+[FAP]−.
These values reflects the size ratios between cation and the [FAP]− anion. As [bmpy]+

is smaller than the anion, its maximal volume concentration at the interface is larger
than in bulk. The [tba]+ cation, on the other hand, is larger than the anion. Therefore,
its volume concentration is reduced at the interface.
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Table 5.2: Densities of various ILs [94, 134] and the calculated maximal ion densities.
IL ρm(g cm−3) ρa

max(g cm−3) ρc
max(g cm−3) T (◦C)

[tba]+[PF6]− 1.092 2.587 0.812 82
[tba]+[Br]− 1.037 5.534 0.818 82
[tba]+[FAP]− 1.331 2.025 0.818 82
[bmpy]+[FAP]− 1.629 2.113 0.949 −14

5.2 Electrode materials
In situ XRR experiments under potential control require substrates with special prop-
erties. They have to be not only chemically stable, but they also have to meet the re-
quirements for high resolution XRR measurements such as evenness and atomic-scale
roughness.

Noble metal electrodes
Potential materials are single crystals of noble metals, like gold or platinum, which can
be polished to the desired roughness. Suitable alternatives are thin noble metal films
that can be deposited on silicon wafers by physical vapor deposition. Those metal films
can be bonded with epoxy resin to a glass substrate. By stripping the metal film together
with the glass substrate from the silicon wafer, the superior roughness and evenness of
a silicon wafer can be transferred to the noble metal film. Also, liquid mercury exhibits
a smooth surface on an atomic-scale, which is suitable for potential controlled XRR
experiments [39]. The high surface tension of mercury, however, leads to a high surface
curvature of the IL/mercury interface. This curvature has to be minimized by using large
sample cells. Therefore, the X-ray beam has to penetrate a long distance through the IL
leading to small signals and a huge background from bulk scattering.

Preliminary experimental results and calculations showed that the XRR curve from
IL/noble metal interfaces is mostly dominated by the vast difference in electron density
between bulk IL and bulk metal. Thus, the signal of the interfacial layering structure is
strongly suppressed. In contrast, reflectivity curves from IL/sapphire interfaces showed
a clear dip stemming from the oscillatory layering structure [109]. Hence, substrate
materials with lower electron densities, like sapphire, are most suitable for extracting
information of the interfacial IL structure.

Boron doped diamond
There are only few low-electron density materials available that possess the desired
properties of electrochemical inertness, electrical conductivity and atomic-scale rough-
ness. A material that fulfills all requirements is single-crystalline boron doped diamond
(BDD), an electrically conducting material of low electron density, which can be pol-
ished below nanometer roughness. CVD boron doped diamonds are commercially avail-
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Figure 5.5: (a) Impedance spectra of silver-paint/BDD interface in the complex
impedance plane at different bias potentials: −2.5 V (blue squares), −0.5 V (yellow
diamonds), 0 V (green circles), 1.5 V (red triangles). The black lines are fits to equa-
tions (5.9a) and (5.9b) represented by a equivalent circuit (inset). (b) Fit results.

able specifically for electrochemical applications. Those low-cost highly boron doped
electrodes have a very low resistance, below 0.18 Ω cm. However, their polycrystallinity
inhibits atomically flat polishing. Therefore, a single-crystalline BDD plate was pur-
chased from the R&D division of Element Six, Great Britain (table 5.3), which was
polished by best effort to sub-nm roughness. Due to lower boron concentration the
single crystalline BDD has a higher resistance than the standard boron doped diamond
electrodes for electrochemistry purposes. Essentially, its electrical properties are those
of a doped semiconductor.

The electrical properties of the BDD were characterized by impedance spectroscopy
measurements (cf. chapter 7). The BDD was bonded with silver paint between metal
electrodes and impedance spectra were recorded for bias potentials ranging from−2.5 V
to 1.5 V. The impedance spectra were fitted to an equivalent circuit consisting of a
resistor RS in series with a parallel circuit of a capacitance CE and a resistor RP (inset
figure 5.5). This equivalent circuit yields a complex impedance of

Ẑ(ω) = RS +
RP

1 + iωRPCE

, (5.8)

which can be separated in its real part Z ′(ω) and imaginary part Z ′′(ω):

Z ′(ω) = RS +
RP

1 + (ωRPCE)2
(5.9a)

Z ′′(ω) =
ωCER

2
P

1 + (ωRPCE)2
(5.9b)
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The fits to equations (5.9a) and (5.9b) at different bias potentials are shown in fig-
ure 5.5a. The resulting capacitance and resistance show the typical potential dependence
of a series of metal-semiconductor Schottky junctions (figure 5.5b), formed of the two
silver paint/BDD interfaces. At zero bias potential the overall resistance RS + RP ≈
4.5 kΩ is relatively high. For bias potentials larger than 0.5 V, the charge carriers can
easily pass the Schottky barrier at the metal/semiconductor interface and the resistance
decreases to about 0.2 kΩ. Also the capacitance shows a typical potential dependence:
Because of the relatively low charge carrier density, the surface charge is not situated
directly at the interface as compared to metal electrodes, but it is distributed in a space-
charge region. It shows a similar parabolic potential dependence as the capacitance of a
dilute solution (cf. chapter 3).

Table 5.3: Physical properties of the singlecrystalline boron doped diamond
size∗ (mm−3) 4× 4× 0.3
boron concentration∗ (cm−3) 1019

resistivity∗ (Ω cm) < 20
resistivity at 0 V (Ω cm) 24 000
resistivity at −2.5 V (Ω cm) 1000
misscut∗ (°) < 3
orientation faces∗ (100)
orientation edges∗ 〈110〉
roughness∗ (best effort) (Å) < 10
∗ information provided by supplier

Reference electrodes

In order to measure potentials in non-aqueous solutions, such as ILs, quasi reference
electrodes are often used [12, 74]. These electrodes consist of noble metals e.g. plat-
inum or silver. In contrast to redox-based reference electrodes, such as Ag/Ag+, those
electrodes do not have a fixed potential difference to the standard hydrogen electrode
potential. Thus, the potential is calibrated in each experiment by adding a substance,
which has a reproducible redox potential. However, potential drifts versus the standard
hydrogen electrode potential can occur over time. For instance, in an imidazolium-based
IL, the potential was found to vary ±5 mV over several weeks [67]. In this experiment
the reference electrode was separated from electroactive compounds by a glass frit.

In the presented study the platinum quasi reference electrode was directly immersed
in the IL because of design constraints (cf. figure 8.1). This arrangement can lead to
potential drifts of several 100 mV [66]. In order to determine the approximate potential
vs. standard electrode, a cyclic voltammetry (CV) measurement was performed on a
solution of [tba]+[FAP]− and the calibrant ferrocene, which has a strong peak at 0.31 V
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Figure 5.6: CV curve of ferrocene in
[tba]+[FAP]− using a platinum quasi ref-
erence electrode with a cycling speed
of 100 mV s−1 at 83 ◦C under nitrogen
atmosphere.

versus SCE2 [12]. Figure 5.6 shows the respective CV recorded with a cycling speed
of 100 mV s−1 at 83 ◦C under nitrogen atmosphere. The oxidation and reduction peaks
are quite weak compared to reported data [66]. One reason might be the generally poor
solubility of ferrocene in ILs [74]. Though, the half-wave potential3 could be estimated
to approx. 0.08 V. Basically, this calibration has to be done after each electrochemical
experiment. However, to do so, the experimental chamber has to be opened and the
working electrode has to be removed. Such a calibration procedure would be question-
able due to possible contamination. Therefore, all measured potentials in this study are
given versus platinum quasi reference electrode and not standard electrode potential.

2Hg/Hg+ standard calomel electrode: 0.242 V versus normal hydrogen electrode
3mean potential of the oxidation and reduction peak
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Chapter 6

X-ray scattering

X-rays are electromagnetic waves with wavelengths in the region of 10−10 m = 1 Å, i.e.
on atomic length-scales. Since their discovery by Wilhelm Conrad Röntgen in 1895, X-
rays became an invaluable tool to unravel the atomic structure of matter. With the advent
of synchrotron sources in the 70s and the progressive increase in intensity by a factor
of 1012 compared to the first sources, a myriad of new techniques emerged and X-rays
became a standard tool in material science. In this chapter the fundamentals of X-ray
scattering are briefly introduced and applied to the problem of scattering from liquid
structures. Then, the phenomenological Teubner-Strey model for long-range correla-
tions in liquids is presented. Afterwards, the special geometry of X-ray reflectivity will
be described which is a powerful technique to investigate surface and buried interfacial
profiles. Finally, a modified distorted crystal model is presented describing the IL/solid
interface. A more comprehensive treatment of X-ray scattering and X-ray reflectivity
can be found in [3, 159]. A rigorous discussion of liquid structures is presented in [62].

Scattering from one free electron

The interaction of X-rays with matter is described by the scattering formalism. A funda-
mental quantity in all scattering experiments is the differential scattering cross-section(

dσ

dΩ

)
=

IS

Φ0 ∆Ω
. (6.1)

It describes the intensity IS scattered into the solid angle ∆Ω divided by the incident X-
ray flux Φ0. For X-rays scattered by a free electron, (dσ/dΩ) is given by the Thomson
differential cross-section (

dσ

dΩ

)
= r2

e |ε · ε′|
2
. (6.2)

Equation (6.2) can be derived by means of classical electric dipole radiation, but also
from a full quantum mechanical treatment [3]. Here, re = 2.82× 10−5 Å is the Thom-
son scattering length of the electron, also known as the classical electron radius. As
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Figure 6.1: Scattering geometry of an in-
cident X-ray beam with wave vector ki

and scattered wave vector kf into the solid
angle ∆Ω. The scattering angle 2θ be-
tween ki and kf corresponds to a scatter-
ing vector of q = kf − ki.

ΔΩ

2θ

kf

ki

q

X-rays are transverse waves, the scattered intensity depends on the polarization of the
incident ε and the scattered wave ε′ [3]:

|ε · ε′|2 =

{1 vertical scattering plane (synchrotron)
cos2 (2θ) horizontal scattering plane (synchrotron)
1
2

[1 + cos2 (2θ)] unpolarized source (e.g. X-ray tube)
(6.3)

Scattering from one atom
In matter electrons are usually bound to atoms. Thus, the electron cannot be regarded as
a point like particle anymore but as a diffuse charge distribution ρat(r) around the atomic
nucleus. This leads to an angular dependent cross-section. The scattering process can
be described in a typical scattering geometry (figure 6.1). Here, we introduce the wave
vector k = 2π

λ
e in direction e = k/|k|. For electromagnetic waves the wavelength λ

is related to the photon energy by λ = 12.4 Å/E [keV] . The difference between the
incident wave vector ki and the scattered wave vector kf is called wave vector transfer,
momentum transfer or scattering vector q = kf − ki. In the case of elastic scattering,
i.e. no energy transfer between sample and photon, the absolute value of the wave vector
is constant, i.e. |kf | = |ki| = k, and the scattering vector yields

q = 2k sin θ =
4π

λ
sin θ . (6.4)

The differential cross-section of an atom reads(
dσ

dΩ

)
= r2

e |ε · ε′|
2 |f(q, ω)|2 . (6.5)

The atomic form factor f(q, ω) describes the deviation from the Thomson scattering of
a free electron and depends on the scattering vector q and the energy ~ω of the X-rays.
f(q, ω) can be separated in an angular dependent and energy dependent part:

f(q, ω) = f 0(q) + f ′(ω) + if ′′(ω) (6.6)

The angular dependent part f 0(q) is equal to the Fourier transform of the electron den-
sity distribution ρat(r) of the atom

f 0(q) =

∫
ρat(r)e

−iqrdr (6.7)
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The energy dependent terms f ′(ω) and f ′′(ω) are called dispersion corrections. Their
origin can be understood by regarding the bound electrons as damped harmonic oscilla-
tors with resonance frequency ωs. Their contribution is significant at X-ray energies of
about ~ωs, leading to the well known absorption edges. In this thesis only high energy
X-rays are used with energies well above all absorption edges of the studied materials.
Therefore, the dispersion corrections will be neglected in the following and the form
factor is written

f(q, ω) ≈ f 0(q)
!

= f(q) (6.8)

Compton scattering

Until now, only elastic scattering was considered. However, the incident X-rays can also
be regarded as particles, i.e. photons. Thus, collisions between photons and electrons
will lead to energy transfer, i.e. inelastic scattering. This process is called Compton
scattering and cannot be described by classical electrodynamics. For the scattering of an
X-ray photon and a free electron the following relation can be derived from relativistic
energy conservation:

|ki|
|kf |

= 1 + λC|ki| (1− cos 2θ) (6.9)

with the Compton scattering length λC = ~/(mec) = 3.86× 10−3 Å. Compton scatter-
ing is incoherent in contrast to Thomson scattering. Thus, no interference effects occur
and the scattering is, in first order, independent of the electron arrangement. It gives
rise to a broad background scattering, which can be subtracted from the total scattered
intensity.

6.1 The liquid structure factor
The derivation of the liquid structure factor presented in this section follows [62] with
particular extension for X-ray scattering [3].

In most elastic neutron and X-ray experiments on bulk amorphous samples, the scat-
tered intensities are weak, if the sample thickness is about the inverse of the absorption
length. Weak means that the incident X-rays or neutrons are only scattered once and
that the scattered wave can be regarded as a spherical elementary wave. Therefore,
the kinematic approximation1 can be used and the differential cross-section2 (dσ/dΩ)
at scattering angle q is equal to the square of the Fourier transform of the scattering
density ρ̂(q): (

dσ

dΩ

)
= 〈|ρ̂(q)|2〉 = 〈ρ̂(q)ρ̂∗(q)〉 (6.10a)

1In quantum mechanics the kinetic approximation is also called Born approximation
2For clarity the differential cross-section is given in electron units r2e and the polarization factor (6.3)

is set to 1
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ρ̂(q) =

∫
ρ(r)e−iqrdr . (6.10b)

In equation (6.10a) a thermodynamic average 〈 〉 over an ensemble of micro states
is applied. This average is valid for scattering experiments in which the beam size
(µm − mm) is usually much larger than the characteristic length scale of the system.
Also, the integration time in a typical scattering experiment is usually much longer than
molecular diffusion times. In the simple case of a mono-atomic or mono-molecular
liquid, the real space scattering density can be written as a sum of the scattering densities
ρat(r) of all single atoms at positions rn:

ρ(r) =
∑
n

ρat(r− rn) (6.11)

With equation (6.11) the Fourier transform of the scattering density (6.10b) can be writ-
ten as

ρ̂(q) =
∑
n

f(q)e−iqrn (6.12a)

f(q) =

∫
ρat(r)e

−iqrdr (6.12b)

with the atomic form factor f(q)3. Then, the differential cross-section (6.10a) reads(
dσ

dΩ

)
= 〈|ρ̂(q)|2〉 = f(q)2

〈∑
n

e−iqrn
∑
m

eiqrm

〉
. (6.13)

Now the scattering amplitude of the single atom can be separated from the the amplitude
originating from the spacial arrangement of the atoms by defining the structure factor
Sm(q) of a mono-atomic liquid(

dσ

dΩ

)
= Nf(q)2Sm(q) . (6.14)

The structure factor can be rewritten:

Sm(q) =

〈
1

N

∑
n

e−iqrn
∑
m

eiqrm

〉

=

〈
1

N

∑
n

∑
m

e−iq(rn−rm)

〉

= 1 +

〈
1

N

∑
n

∑
m6=n

e−iq(rn−rm)

〉

= 1 +

〈
1

N

∑
n

∑
m6=n

∫∫
e−iq(r−r′)δ(r− rn)δ(r′ − rm)drdr′

〉

= 1 +
1

N

∫∫
ρ̄g(r− r′)e−iq(r−r′)drdr′ . (6.15)

3f(q) is equal to f0(q) in equation (6.7) neglecting the dispersion corrections
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In the last step, the mean particle density ρ̄ and the pair distribution function g(r − r′)
were introduced:

ρ̄g(r− r′) =

〈∑
n

∑
n6=m

δ(r− rn)δ(r′ − rm)

〉
. (6.16)

The pair distribution function g(r−r′) states the probability of finding a second particle
at a distance r − r′ from a test particle (cf. chapter 2). As only the difference of the
scattering density from the mean density contributes to the signal, we add and subtract
a term to Sm(q) corresponding to the local mean scattering density4:

Sm(q) = 1 +
ρ̄

N

∫∫
(g(r− r′)− 1)e−iq(r−r′)drdr′

+
ρ̄

N

∫∫
e−iq(r−r′)drdr′ . (6.17)

The last term describes scattering density variations on large length-scales and is only
present at small q. This term contributes to the prominent SAXS5 signal, but can be
omitted for higher q vectors. As liquids are isotropic, their structure is invariant under
translations and rotations. Thus, one of the integrals over the whole volume yields the
number of scatterers N and the second integral can be rewritten as an radial integral, i.e.
e−iqrdr → 4πr2 sin(qr)/(qr)dr. With this, Sm(q) can be written in terms of the radial
distribution function g(r):

Sm(q) = 1 + ρ̄

∫
(g(r)− 1)4πr2 sin(qr)

qr
dr . (6.18)

With the definition of the total correlation function h(r) = g(r)− 1 (cf. chapter 2), the
final result for the mono-atomic liquid structure factor yields

Sm(q) = 1 +
4πρ̄

q

∫ ∞
0

h(r)r sin(qr)dr . (6.19)

Polyatomic systems

For polyatomic systems the structure factor can be divided into partial structure factors
describing the correlations between different atomic species. The partial structure fac-
tors can be derived in analogy to the monoatomic structure factor, as demonstrated in
the following. If only correlations up to the second order are considered, the differential

4This is a didactic derivation often used in textbooks [3]. ρ̄ is not really a constant, but its variation
is small. Thus the large-scale scattering density variations can be separated from the fluctuations on
molecular length-scales.

5small angle X-ray scattering
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cross-section can be written as [62]:(
dσ

dΩ

)
= 〈ρ̂α(q)ρ̂∗β(q)〉

=

〈∑
α,n

fα(q)e−iqrnα
∑
β,m

f ∗β(q)eiqrmβ

〉
(6.20)

where the sum over α and β is taken over all atomic species. The self scattering term
can be separated from the mixed term:(

dσ

dΩ

)
= N

∑
α

cαfα(q)f ∗α(q) +

〈∑
α,β

∑
n,m 6=n

fα(q)f ∗β(q)eiq(rmβ−rnα)

〉

= fα(q)f ∗β(q)

(
N
∑
α

cαδαβ+〈∑
α,β

∑
n

∑
m6=n

∫
e−iqrδ(r + rnα − rmβ)dr

〉)

= Nfα(q)f ∗β(q)

(∑
α

cαδαβ +
∑
α,β

cαcβ ρ̄

∫
gαβ(r)e−iqrdr

)
. (6.21)

In the first step the translation symmetry of the system is used and the origin is arbi-
trarily set to zero. In the second step the partial pair distribution function gαβ(r) was
introduced:

cαcβ ρ̄gαβ(r) =

〈
1

N

∑
n

∑
n6=m

δ(r + rnα − rmβ)

〉
. (6.22)

gαβ(r) states the probability of finding an atom of species β at a distance r from an atom
of species α. As liquids are isotropic one can apply an angular average on the integral
over the sample volume, i.e. e−iqrdr → 4πr2 sin(qr)/(qr)dr. Omitting long-range
density variations in analogy to the mono-atomic case, only differences of the scattering
density from the mean density contribute to the scattered signal, i.e.

gαβ(r)→ (gαβ(r)− 1) = hαβ(r) . (6.23)

Here the partial total correlation function hαβ(r) (2.5) was introduced. Thus, the differ-
ential cross section (6.21) can be rewritten:(

dσ

dΩ

)
= Nfα(q)f ∗β(q)

(∑
α

cαδαβ +
∑
α,β

cαcβ
4πρ̄

q

∫ ∞
0

hαβ(r)r sin (qr) dr

)
.

(6.24)
With the definition of the partial structure factor after Pings and Waser [118]

Sαβ(q) =
cαcβfα(q)f ∗β(q)4πρ̄

q

∫∞
0
hαβ(r)r sin(qr)dr

|
∑

α cαfα(q)|2
(6.25)
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the differential cross section finally reads(
dσ

dΩ

)
= N

∑
α

cα|fα(q)|2 +N

∣∣∣∣∣∑
α

cαfα(q)

∣∣∣∣∣
2∑
α,β

Sαβ(q) . (6.26)

This definition is most suitable for X-ray scattering. In common X-ray experiments it
cannot be distinguished easily between the different atomic species and thus, the partial
structure factors are not accessible. The partial structure factors can only be deter-
mined indirectly by advanced simulation-aided data analysis as described in chapter 4.
However, X-ray scattering experiments are still sensitive to the total scattering density
variation of all electrons. Consequently, a total structure factor S(q) can be defined for
which the differential scattering cross section yields(

dσ

dΩ

)
= N

∑
α

cα|fα(q)|2 +N

∣∣∣∣∣∑
α

cαfα(q)

∣∣∣∣∣
2

S(q) (6.27)

S(q) =
∑
α,β

Sαβ(q) . (6.28)

In contrast to the mono-atomic structure factor (6.19), S(q) does not include the self-
scattering term. In the presence of more than one atom species, the atomic form fac-
tors cannot easily be separated from the structure factor anymore. This separation of
self scattering and inter-atomic scattering is the reason why the definition of the partial
structure factor (6.25) is advantageous for X-ray scattering. Other definitions used in
different scientific communities are presented below.

Real space information is accessible via the total pair correlation function h(r) =
g(r)− 1 which can be directly extracted from the total structure factor S(q)

S(q) =
4πρ̄

q

∫ ∞
0

h(r)r sin(qr)dr (6.29)

h(r) =
∑
α,β

Uαβ hαβ(r) . (6.30)

The transformation matrix

Uαβ =
cαcβ

∫∞
0
fα(q)f ∗β(q) sin(qr)dq

|
∑

α cαfα(q)|2
(6.31)

connects the partial total correlation functions hαβ(r) with the total correlation function
h(r). Measured scattered intensities IS ∝ (dσ/dΩ) (6.1) can be fitted to the expression

S(q) =
1
N

(
dσ
dΩ

)
−
∑

α cα|fα(q)|2

|
∑

α cαfα(q)|2
(6.32)

from which the real space total correlation function can be obtained by the inverse
Fourier transformation of equation (6.29).
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Alternative partial structure factors
In literature alternative definitions of the partial structure factor can be found depending
on the field of research. For instance, the partial structure factor after Ashcroft and
Langreth [7]

SAL
αβ (q) = cαδαβ + cαcβ

4πρ̄

q

∫ ∞
0

(gαβ(r)− 1) r sin(qr)dr (6.33)

(
dσ

dΩ

)
= N

∑
α,β

fα(q)f ∗β(q)SAL
αβ (q) (6.34)

is mostly used in MD simulations [62], while the partial structure factor according to
Faber and Ziman [45]

SFZ
αβ (q) = 1 +

4πρ̄

q

∫ ∞
0

(gαβ(r)− 1) r sin(qr)dr (6.35)

(
dσ

dΩ

)
= N

∑
α

cα|fα(q)|2 +N
∑
α,β

cαcβfα(q)f ∗β(q)
[
SFZ
αβ (q)− 1

]
(6.36)

is commonly used in neutron scattering work [49]. A comprehensive overview of dif-
ferent structure factors can be found in [81].

6.2 Teubner-Strey model
In neutron and X-ray scattering of network-forming liquids and glasses it is known
that molecular ordering on an intermediate range leads to a so-called prepeak or first
sharp diffraction peak in the structure factor at small scattering angels [129]. This phe-
nomenon is also observed in the structure factor of ILs, in which two or three low-q
peaks occur as ILs usually consist of large asymmetric ions (cf. chapter 4). Comparison
of scattering data and MD simulations revealed that these low-q peaks originate from
different ion-ion correlations [79]. The character of the correlations can be estimated by
the low-q peaks’ position and width. The position q0 of the peak corresponds approxi-
mately to the spacial oscillation period 2π/q0 and the width ∆ to a correlation length of
2/∆ of the underlying molecular correlations [129].

A more exact description is achieved by considering general correlations in liquids
obtained from thermodynamical considerations. In chapter 2 it was demonstrated that,
given an intermolecular potential of finite range, all correlation functions show the same
asymptotic behavior for large distances, i.e. they exhibit the same periodicity and cor-
relation length. If the amplitudes of the correlations are large enough, also intermediate
range correlations can be described approximately by equation (2.8), yielding

hTS(r) =
A

r
exp

(
− r

ξB

)
cos

(
2πr

dB

− θ
)
. (6.37)
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Figure 6.2: Teubner-Stey structure factor
after equation (6.38b) with ∆ = q0/2 for
different θ: 1/2π (blue line), 5/4π (green
line), and 3/2π (red line).

Here the correlation length ξB determines the decay of the correlation with periodicity
dB and phase θ relating to the test particle. From hTS(r) an analytic form of the bulk
structure factor can be determined:

STS(q) =
4πρ̄

q

∫ ∞
0

h(r)r sin(qr)dr (6.38a)

=
4πAρ̄

∆2

[
1 +

(
q2
0−q2

∆2

)2
] (sin θ − q2

0 − q2

∆2
cos θ

)
. (6.38b)

The first factor in equation (6.38b) corresponds to a Lorentzian function in q2 with
peak position q2

0 = 4π2

d2
B
− 1

ξ2
B

and width ∆2 = 4π
dBξB

. The oscillation period dB and the
correlation length ξB can be determined from q2

0 and ∆2:

ξB =

√
2

∆2

(
q2

0 +
√

∆4 + q4
0

)1/2

(6.39a)

dB =
√

8π

(
q2

0 +
√

∆4 + q4
0

)−1/2

. (6.39b)

In the special case of θ = 3/2π, (6.38b) reduces to a Lorentzian function in q2.
This function was used by Teubner and Strey to describe the structure factor of density
fluctuations in microemulsions [135, 153] and was also applied to complex IL surfactant
mixtures [4].

As demonstrated in the previous section, the total structure factor S(q) and the total
correlation function h(r) can be expressed in terms of the partial structure factors Sαβ(q)
and partial real space correlations hαβ(r), respectively. Equivalently S(q) and h(r) can
be expressed by an arbitrary set of scattering density correlations Si(q) and real space
correlations hi(r):

S(q) =
∑
i

Si(q) (6.40)
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h(r) =
∑
i

Aihi(r) (6.41)

For intermediate and long distances larger than several molecular separation lengths, Si
and hi can be assumed to have the form (6.37) and (6.38b), respectively. Of course,
Si and hi will have contributions of different atoms, stemming from both anions and
cations. However, the [FAP]− anion of the investigated ILs has a much higher electron
density than the cation. Thus, the intermediate electron density correlations are domi-
nated by anion-anion and anion-cation correlations leading to prominent low-q peaks.

Comparison to direct Fourier transformation

In order to demonstrate that the parameterized correlations (6.37) can describe the real
space correlations, a fit of the parameterized model

S(q) =
∑
i

STS
i (q) (6.42)

is compared to the direct Fourier transform of high-quality XRD data from [bmpy]+[FPA]−

taken at beamline 15B, ESRF Grenoble (figure 6.3a). In figure 6.3b the parameterized
total correlation function

h(r) =
∑
i

hTS
i (r) (6.43)

is shown with hTS
i (r) of form (6.37) and the direct Fourier transform (6.29) of the total

structure factor S(q). The Teubner-Strey fit up to 1.8 Å
−1

reproduces very well the
total correlation function h(r) down to 5 Å. This is in good agreement with results of
Santos et al.[132] showing that the high-q structure in S(q) represents mainly intra-
molecular correlations and that the low-q peaks contain the major part of the inter-
molecular correlations.

Following [132] the two low-q peaks can be assigned to different ion-ion correla-
tions. The first very sharp peak originates form anion-anion correlations and dominates
the asymptotic behavior at long distances. The second much broader peak is assigned
to anion-cation correlations. Indeed, the peak positions at 0.8 Å

−1
and 1.4 Å

−1
corre-

sponds to length-scales of 8 Å and 4.5 Å reflecting the second and first neighbor dis-
tance, respectively. The third correlation function reflects the volume occupation of
the test particle leading to a negative correlation at short distances. This results in an
Lorentzian-like background (blue line in figure 6.3a).

More advanced analysis techniques involving MD simulations show that the true
ion-ion correlation function exhibit more complex partial structure factors Sαβ involv-
ing e.g. an Sac antipeak [78], which cannot be catched by the presented model. Never-
theless, it gives the correct asymptotic behavior for intermediate and long-range corre-
lations, at least for the studied highly correlated IL.
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Figure 6.3: (a) Measured total structure factor S(q) of [bmpy]+[FPA]− at 8 ◦C (black
symbols) with fit to Teubner-Strey model (6.43) (red line). (b) Total correlation func-
tions determined from the Teubner-Strey model (red line) and direct Fourier transfor-
mation (symbols). The inset shows the long-range asymptotic behavior of rh(r) in a
logarithmic plot. The different contributions STS

i (q) and rhTS
i (q) are in the same colors

for both S(q) and rh(r) (green, blue and yellow dotted lines).
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6.3 X-ray reflectivity

A special case of X-ray diffraction is the specular reflection of an X-ray beam from a
planar interface. This problem can be conveniently described in terms of optical refrac-
tion without necessarily applying the kinematic approximation. The discussion in this
section is based on the work of M. Mezger [105]. A more comprehensive examination
of the topic can be found in [159].

Optical refraction is an analogue description to the scattering formalism covered
in the previous section. In this picture an electromagnetic plane wave traveling in z-
direction through a linear medium is described by its electric field E(z) = E0ein(z)kzz

with the refractive index n(z) of the medium. The refractive index reflects the interac-
tion of the electromagnetic wave with the medium in which electronic transitions of the
constituent atoms and molecules give rise to resonant behavior at certain frequencies.
Below the resonance frequencies, i.e. in the visible part of the electromagnetic spec-
trum, n has a value of 1.2 to 2 for most transparent materials. The increase of n with
increasing frequency in this range is known as normal dispersion. For X-rays, i.e. above
most of the resonant frequencies, n is less than unity and the deviation from the vacuum
refractive index of 1 is small:

n = 1− δ + iβ . (6.44)

From the optical theorem the deviations read

δ =
λ2

2π
reρe

f 0(0) + f ′(ω)

Z
≈ λ2

2π
reρe (6.45)

β =
λ2

2π
reρe

f ′′(ω)

Z
=

λ

4π
µabs (6.46)

where δ and β depend on the atomic form factor (6.6) of the constituent atoms and the
electron density ρe of the medium. The imaginary part β is related to the absorption
coefficient µabs. The real part δ is related to the scattering strength of the medium. A
positive δ rise to the phenomenon of total reflection of an X-ray beam impinging on a
matter surface from vacuum. The critical angle of total reflection can be determined
by Snell’s law which relates the incident angle αi and transmitted angle αt with the
refractive indices of the materials

n1 cosαi = n2 cosαt . (6.47)

For an interface between a material with n2 = 1 − δ + iβ and vacuum with n1 = 1
the X-rays are totally reflected for angles smaller than the critical angle αc. By setting
αt = 0 in Snell’s law, αc yields

αc ≈
√

2δ . (6.48)

The relations between the incident, reflected and transmitted amplitudes are given by
the Fresnel formulae. They can be deduced from the fact that the tangential component
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Figure 6.4: XRR geometry: The incident
beam hits an interface between materials
of refractive index n1 and n2 under the an-
gle αi.

of the electric filed must be continuous at the interface. The reflection and transmission
coefficients yield

r =
Er

E0

=
ki,z − kt,z

ki,z − kt,z

(6.49)

t =
Et

E0

=
2ki,z

ki,z − kt,z

(6.50)

relating the z-components of the wave vectors ki,z and kt,z to the amplitudes E0, Er, Et.
The intensity is given by the absolute square of the amplitude reflection coefficient

RF = |r|2 ≈
(
αc

2αi

)4

. (6.51)

RF is called Fresnel reflectivity describing the angular dependent intensity of a perfectly
flat and homogeneous interface. In specular geometry, i.e. αi = αf = θ and |ki| =
|kf | = k, the wave vector transfer q = kf − ki has only a component normal to the
interface:

qz = 2k sin θ =
4π

λ
sin θ . (6.52)

Arbitrary electron density profiles
So far, only simple interfacial profiles were considered consisting of two phases of dif-
ferent refractive indices which are separated by a sharp interface. However, the real
strength of the XRR technique lies in the determination of arbitrary refractive index
profiles normal to the interface with atomic scale resolution. This task can be accom-
plished by dividing an arbitrary profile into a set ofN slices, each of refractive index nj .
The first and last slice with j = 1 and j = N + 1, respectively, are taken semi-infinite.
The refracted amplitudes Rj and transmitted amplitudes Tj can be evaluated recursively
at each slice via the transition coefficients Xj = Rj/Tj

Xj = ϕj,j
rj,j+1 +Xj+1ϕj+1,j

1 + rj,j+1Xj+1ϕj+1,j

(6.53a)

rj,j+1 =
kj,z − kj+1,z

kj,z + kj+1,z

(6.53b)

ϕl,m = exp
(
−2iei(l+m)πkl,zzm

)
(6.53c)
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Figure 6.5: (a) Electron density of a sharp interface (black line) and of a structured in-
terface (red line). (b) Fresnel reflectivity of a sharp interface (black line) and reflectivity
intensity of the structured interface (red line) calculated via the Parratt formalism.

starting with the deepest buried slice by setting RN+1 = XN+1 = 0. The measurable
intensity, i.e. the reflectivity of all slices, is then the absolute square of the reflected
amplitude of the first slice R = |R1|2 = |X1|2. This recursive algorithm is known as the
Parratt formalism [117]. In figure 6.5 the reflectivity intensity of a structured electron
density profile is compared with the Fresnel reflectivity of a sharp interface.

The Parratt formalism yields an exact solution in terms of dynamical X-ray scatter-
ing. Applying the kinematic approximation (cf. section 6.1) a simple analytic relation
between the measured reflectivity R(q) and a continuous electron density profile ρe(z)
can be derived, the so-called Master formula [3, 159]

R(q) = RF|F (q)|2 (6.54a)

F (q) =
1

ρ−∞ − ρ+∞

∫ +∞

−∞
dz

dρe(z)

dz
eiqz . (6.54b)

At small angles around the critical angle the kinematic approximation is not valid be-
cause multiple scattering effects are dominant. However, at angles α > 3αc equation
(6.54) is very accurate and allows a qualitative interpretation of reflectivity data.

6.4 Modified distorted crystal model
In order to extract real space information from the XRR signal via the Parratt formal-
ism, the interfacial profile has to be parameterized. An example of such a parameter-
ized model profile is the distorted crystal model that was successfully applied in pre-
vious XRR experiments on IL/solid interfaces [108, 109]. Originally it was used to
described the density oscillations at the free liquid mercury and gallium surfaces in a
XRR study[102, 120]. For the present study, the interfacial profile is described by a
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Figure 6.6: MDC model of the IL [bmpy]+[FAP]− at a boron doped diamond elec-
trode (black line). The IL is comprised of alternating cation (red) and anion (blue)
enriched layers while the elctrode is modeled by an error function (grey). The cation
concentration of the layer next to the electrode compensates for the surface charge on
the electrode.

Modified Distorted Crystal model (MDC), which extents the original model to a binary
system comprised of anions and cations. Furthermore, it accounts for the excess surface
charge in the surface adsorbed layer, induced by the applied potential.

In the MDC model the electron density profile ρe (z) at the liquid/solid interface is
separated into solid and liquid contributions

ρe (z) = [1− Ξ (z)] ρWE

+ Ξ (z)
∞∑
n=0

[
ρcc

c
n (z) + ρac

a
n+1/2 (z)

]
(6.55a)

Ξ (z) =
1

2

[
1 + erf

(
z√

2sWE

)]
. (6.55b)

The solid contribution of the working electrode is modeled by an error function with
bulk electron density ρWE and surface roughness sWE. The liquid contribution of the
IL near the interface is described by a set of discrete layers of cation and anion con-
centration profiles cc

n (z) and ca
n (z) respectively. The area electron density ρa/c =

dlZa/cρmNA/Ma/c is calculated in respect to the molar fraction of each ion species,
which guarantees charge neutrality of the bulk IL. Here, Za/c is the number of electrons
per anion/cation, ρm the IL bulk mass density, Ma/c the molecular weight of the ion
species and NA the Avogadro constant. Scaling the density with dl ensures the preser-
vation of molecular volume.
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To account for adsorption and desorption of counter ions, the first ion layer, sepa-
rated from the electrode by the distance d0, is modeled by a slab profile

cc
0 (z) = E (z − d0)− E (z − d0 −∆z) (6.56a)

E (z′) =
1

γ
erf

(
γ + 4z′

2
√

8w

)
. (6.56b)

The dimensionless parameter γ controls the maximum possible local ion concentration
cmax = 2c̄/γ within the adsorbed layer with respect to the partial bulk concentration c̄
of anions respectively cations. Thus, γ is analog to the parameter (3.15) introduced by
Kornyshev in his lattice gas model of the IL/solid interface [86]. The slab thickness ∆z
is determined by the surface charge σ (U) and was calculated numerically to obey the
condition of charge neutrality∫ +∞

−∞
Ξ (z) cc

0 (z) dz =
1

2
+
σ (U)

σML

. (6.57)

Here, the surface charge of a monolayer σML is given by

σML =
dlFρm

M
(6.58)

where F is the Faraday constant, ρm the mass density, and M the molar mass of the
ionic liquid. The evolution of cc

0 (z) with increasing ∆z, i.e. increasing surface charge
σ(U), is shown in figure 6.7. The interfacial width

w = γ

[
2
√

8 erf−1

(
γ√
8πsc

0

)]−1

(6.59)

is given by the constraints of equal area, equal maximum height and equal position
of the turning points of the slab profile at a surface charge of σML/2 compared to a
Gaussian density distribution with width sc

0 (see below). The position of the first layer
was defined by the center of charge, which was calculated numerically by

z0 =

∫ +∞
−∞ Ξ (z) cc

0 (z) zdz∫ +∞
−∞ Ξ (z) cc

0 (z) dz
(6.60)

The subsequent layers are modeled by Gaussian distributed concentration profiles
of anions and cations respectively.

ca
n (z) =

χa
n√

2πsa
n

e
− (ndl+d0+∆z−z)2

2sa 2
n (6.61a)

cc
n (z) =

χc
n√

2πsc
n

e
− (ndl+d0+∆z−z)2

2sc 2
n (6.61b)
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Figure 6.7: Concentration profile of the
first layer with sc

0 = 1 and γ = 0.5 for
different values of ∆z: 1 (red), 3 (green),
5 (yellow), and 7 (blue). A Gaussian with
width 1 is plotted as black dashed line.

The correction factors

χa/c
n =

[∫ +∞

−∞
Ξ(z)ca/c

n (z)dz

]−1

(6.62)

account for the cut electron density by the substrate surface Ξ(z). In equations (6.61)
the bulk layers are shifted by the position d0 and the broadening ∆z(U) of the first layer.
The broadening of the layers towards the bulk IL is described by an increasing width

s
a/c
n =

√
(s

a/c
0 )2 + s(U)2 + ns2

b, where the width of the first layer sa/c
0 is around the

molecular size of the ion species. For different electrode potentials the width of the ion
distributions cannot be assumed to be the same. So a potential depended broadening
s(U) is introduced.

Extraction of asymptotic real space correlations

Far away from the electrode, the electron density profile described by the MDC model
follows the asymptotic correlation of form (2.9), in accordance with the theory of simple
liquids. Thus, the interfacial correlation length ξI and periodicity dI can be extracted
from the electron density fluctuations ∆ρe(z) = ρe(z) − ρIL, where ρe(z) is given by
(6.55) and ρIL is the mean electron density in bulk. Indeed, at distances z > dl the
electron density profile follows the relation (figure 6.8)

∆ρe(z) ∼ AIexp

(
− z
ξI

)
sin

(
2πz

dI

+ θI

)
(6.63)

where AI is the amplitude at the electrode position z = 0 and θI is the phase of the
layering in respect to the electrode. The values of dI and θI, presented in chapters 9 and
10, were retrieved by determining the roots of ∆ρe(z), while AI and ξI were calculated
from the amplitudes at the center positions between the root. Note that in general dI 6=
dl.
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Figure 6.8: Electron density fluctua-
tions ∆ρe(z) described by the MDC
model. For clarity ∆ρe(z) is multi-
plied with ez/ξI/AI. The distance z
away from the interface is in units of
the layer separation length dl
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Asymptotic profile in kinematic approximation

Based on the asymptotic, oscillatory decaying electron profile (6.63), a simple model of
the interfacial electron density profile can be defined [108]:

ρe (z) = [1− Ξ (z)] ρWE

+ Θ(z − d0)

[
1 + A exp

(
−z − d0

ξ

)
sin

(
2π (z − d0)

d

)]
ρIL . (6.64)

From this electron density profile an analytic expression of the reflectivity R(q) can be
calculated via the Master formula (6.54):

R

RF

=

∣∣∣∣(1 + ρ′e) e−σ
2
WEq

2/2 − ρ′ee−d0q

[
1 + eiφ(q)A

2

√
qq0 [L+ (q)− L− (q)]

]∣∣∣∣2 (6.65a)

φ(q) = arctan

(
q2 − q2

0 − µ2

2µq

)
(6.65b)

L±(q) =
[
(q0 ± q)2 + µ2

]−1
(6.65c)

with q0 = 2π/d and µ = ξ−1, the relative electron density of the bulk IL ρ′e =
ρIL/(ρWE − ρIL) and of the electrode (1 + ρ′e) = ρWE/(ρWE − ρIL). In this model
the theta function causes a non-physical electron density jump at the interface. How-
ever, the electron density several intermolecular distances away from the interface is
modeled correctly. Thus, it cannot reproduce the reflectivity close to the critical angle,
but it gives decent results at high q-values [108].

Approximation of Gaussian with two error functions

The first layer of the MDC model is described by two error functions (6.56) mimicking
a Gaussian distribution. Here, the general discussion of this approximation is presented.
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ent parameters d: 1 (red line), 2.4 (green
line), 2.5 (blue line)

A Gaussian function with width ∆ is given by

G(z) =
1√

2π∆
e−z

2/2∆2

. (6.66)

This function can be approximately described by two error functions:

D(z) =
1

2d

[
erf

(
d+ 2z√

8σ

)
+ erf

(
d− 2z√

8σ

)]
. (6.67)

With the constraints of equal area and peak value of both functions, the following rela-
tion between σ, d and ∆ can be derived:

σ =
d

√
8erf−1

(
d√

2π∆

) . (6.68)

For d → 0 the functions (6.66) and (6.67) are identical. A set of Gaussian-like double
error functions of different d is compared to a similar Gaussian in figure 6.9. For further
information the reader is referred to [110].
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Chapter 7

Impedance spectroscopy

Impedance spectroscopy (IS) probes the electronic response of an electrochemical sys-
tem by applying an oscillatory potential of small amplitude. In the electrochemistry, a
common approach is to analyze the measured impedance spectra by means of equivalent
circuits. Such an equivalent circuit can be composed of electronic components such as
resistances, capacitors, and other elements [12, 21]. Here, another approach based on
the molecular picture of diffusion and relaxation is presented . This method facilitates
the microscopic interpretation of experimental data and implies the same frequency de-
pendence of the impedance as described by the equivalent circuits.

In the following a simple electrochemical system is considered. It is comprised of
an electrolyte that is confined between two parallel plate electrodes (figure 7.1). In
the absence of Faradaic processes, i.e. no redox reactions, no charge can pass the elec-
trolyte/electrode interface. Such electrodes are also called blocking electrodes. When
free movable charge carriers, e.g. ions, are present, the electronic response is dominated
by diffusion as described in chapter 3 and not by molecular relaxation. This diffu-
sive charging process is called electrode polarization. This process is also known in
impedance spectroscopy1 of solid dielectrics, where it is recognized as an unwanted
parasitic effect [88]. Although electrode polarization originates from diffusion on a
macroscopic length-scale, it can be described by a Debye-like process in analogy to the
description of molecular relaxation. In the following, the phenomenological concept
of molecular relaxation is introduced by means of the Debye relaxation function and
its more general form, the Cole-Cole relaxation function. This concept is then applied
to the macroscopic effect of electrode polarization. Finally, a generalized capacitance
model is presented including both molecular relaxations and electrode polarization.

1In the context of solid dielectrics such as polymers this technique is usually referred to as dielectric
spectroscopy.

63



7 IMPEDANCE SPECTROSCOPY

Figure 7.1: A simple electrochem-
ical system comprised of an elec-
trolyte confined between two par-
allel plate electrodes of separation
distance L. As soon as a poten-
tial between the electrodes is ap-
plied an electric double layer is
formed at each electrode. The elec-
tronic response of the system can
be modeled by a simple equivalent
circuit consisting of the bulk resis-
tance Req and the capacitance Ceq.
In this symmetric electrode config-
uration each interface contributes a
capacitance of 2Ceq.
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7.1 Debye process
The dynamic response of the polarization of matter is commonly studied by applying
an oscillatory electric field E(t) = E0eiωt of amplitude E0 and frequency ω. For lin-
ear, isotropic systems the polarization of the system leads to a dielectric displacement
D(t) = D0ei(ωt−δ(ω)) which is out of phase with the exciting electric field by a phase
δ(ω). In analogy to the electrostatic relation D = εE, the complex dielectric function
for linear dielectrics can be introduced:2

D(t) = ε̂(ω)E(t) (7.1a)

ε̂(ω) = ε′(ω)− iε′′(ω) =
|D0|
|E0|

e−iδ(ω) (7.1b)

with the real part ε′(ω) and the imaginary part ε′′(ω). For linear dielectrics, where the
superposition principle is valid, the frequency dependence of ε̂(ω) can be treated by
linear response theory. Thus, ε̂(ω) can be derived by the Laplace transform L of the
polarization pulse-response function fP [19]

ε̂(ω) = ε∞ + (ε− ε∞)L{fP(t)} (ω) (7.2a)

L{y(t)} (ω) =

∫ ∞
0

e−ωty(t)dt . (7.2b)

Here we introduced the dielectric constant of induced polarization ε∞ stemming from
intra-molecular processes, which are assumed to happen instantaneous compared to the
probed frequencies. The dielectric constant of orientational polarization ε − ε∞ origi-
nates from the reorientation of permanent dipoles.3

2D can also be expressed in terms of a polarization field: D = E + P with P = (ε− 1)E
3The polarization can be separated into an induced part Pin(t) and an orientational part Por(t):

D(t) = E(t) + Pin(t) + Por(t) with Pin(t) = (ε∞ − 1)E(t)
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In the Debye relaxation model the polarization follows the electric field after a step-
like excitation with an exponentially damped retardation. The pulse response function
of such a relaxation process is fP(t) = − d

dt
e−t/τ = 1

τ
e−t/τ with the relaxation time

constant τ . The complex dielectric function (7.2a) is then given by the Debye relaxation
function

ε̂(ω) = ε∞ +
ε− ε∞
1 + iωτ

. (7.3)

In real systems, deviations from the ideal Debye process (7.3) are observed. Thus, many
extensions and corrections were proposed in literature [19, 88]. A simple correction was
proposed by K. S. Cole and R. H. Cole who introduced an additional phase parameter
α:

ε̂(ω) = ε∞ +
ε− ε∞

1 + i(ωτ)α
, 0 ≤ α ≤ 1 . (7.4)

Equation (7.4) is known as Cole-Cole relaxation function [29]. The phase parameter α
can be associated with a distribution G(ln τ ′) of relaxation times τ ′ around τ [19]

G(ln τ ′) =
1

2π

sin πα

cosh [α ln (τ ′/τ)] + cos πα
(7.5)

7.2 Electrode polarization
The diffusion dynamics of free charge carriers in the electrolyte follow the Poisson-
Nernst-Planck equations (cf. chapter 3). These equations can be solved for a sinusoidal
electrode potentialψ0(t) = ψ1eiωt of small amplitudeψ1 [100, 101]. By assuming only
small deviations c1(z)eiωt from the equilibrium charge carrier concentration c0(z), the
ansatz c(z) = c0(z) + c1(z)eiωt for the local concentration c(z) can be made. Thus, the
variables t and z in the Poisson-Nernst-Planck equations (3.26) can be separated, lead-
ing to two independent differential equations for time and space. This approximation
is valid for thin diffuse layers of width λD, much smaller than the electrode separation
distance L, i.e. λD/L � 1. In this case the diffusion from electrode to electrode on
timescales L2/D is slow compared to the response of the electric double layer happen-
ing on timescales λ2

D/D. Thus, the charge distribution at time t can be described by a
quasi-static Poisson-Boltzmann distribution at electrode potential ψ0(t). From the fre-
quency dependent charge carrier concentration the polarization and finally the dielectric
function can be derived

ε̂EP(ω) = εB +
∆εEP

1 + iωτEP

(7.6a)

∆εEP =

(
L

2λD

− 1

)
εB (7.6b)

τEP =
λDL

2D
(7.6c)

with the bulk dielectric constant εB. The relaxation time τEP is equal to (3.27). A
simplified derivation can be found in [27, 28] together with some amendments by Klein
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et al. [85]. Equation (7.6a) is formally equal to the Debye relaxation function (7.3),
i.e. the electrolyte behaves like a macroscopic dipole.

7.3 Capacitance model
In impedance spectroscopy experiments the electric response of the electrochemical
system stems from both molecular relaxation and electrode polarization. As the two
processes exhibit similar complex dielectric functions, they can be treated by a single
impedance model, which is derived in the following.

The complex impedance Ẑ(ω) = Û(ω)/Î(ω) is derived from the applied oscillatory
voltage Û(ω) = U0eiωt and the measured current Î(ω) = U0ei(ωt−δ(ω)), which is out of
phase by a frequency-dependent phase shift δ(ω). In the absence of Faradaic currents,
i.e. no charges can pass the electrolyte/electrode interface, relaxations are conveniently
described in terms of the complex capacitance [88]

Ĉ(ω) = ε̂(ω)C0 =
1

iωẐ(ω)
. (7.7)

For a parallel plate capacitor the dielectric function is related to the complex capacitance
by its vacuum capacitance A · C0 without dielectric where C0 is in units of capacitance
per unit area A. C0 depends on the geometry of the setup

C0 =
ε0

L
. (7.8)

For both the molecular relaxation and electrode polarization, the complex capac-
itance can be described by a similar expression. By inserting the complex dielectric
function (7.3) or (7.6a) in equation (7.7), respectively, the complex capacitance is ob-
tained4

Ĉ(ω) =
∆C

1 + iωτ
. (7.9)

Here, ∆C is the capacitive strength of the process. The value of ∆C depends on the
origin of the polarization. For molecular relaxation the capacitive strength yields5

∆CR = (ε− ε∞)C0 ≈ εC0 , (7.10)

while the capacitive strength of electrode polarization is6

∆CEP = ∆εEPC0 ≈
ε0εB
2λD

(7.11)

4In case of molecular relaxation (7.3) we neglected induced polarization, i.e. ε∞ � εR, and in
case of electrode polarization (7.6a) we assumed λD/L � 1, which is the case for highly concentrated
electrolytes.

5for ε∞ � εR
6for λD/L� 1
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Figure 7.2: Real (blue) and imaginary
(red) part of the complex capacitance de-
scribed by equations (7.13a) and (7.13b),
respectively. The solid lines describe the
frequency dependent capacitance of a De-
bye process (α = 1) or a RC circuit with
a single relaxation time. The dotted lines
describe the capacitance of a relaxation
process with a relaxation time distribution
(α = 0.8).

The capacitance (7.11) is half the Debye capacitance of the diffuse double layer (3.11)
at zero potential. The reduction of the Debye capacitance by a factor of 2 can be un-
derstood in the picture of an equivalent circuit in which the two electrolyte/electrode
interfaces of the system are considered as two capacitors in series (figure 7.1).

In order to account for relaxation time distributions, the phase factor α is introduced
in analogy to the Cole-Cole expression (7.4)

Ĉ(ω) = C ′(ω)− iC ′′(ω) =
∆C

1 + (iωτ)α
. (7.12)

The complex capacitance Ĉ(ω) can be separated into the real and imaginary part C ′(ω)
and C ′′(ω) ,respectively:

C ′(ω) = ∆C
1 + (ωτ)α cos(πα/2)

1 + 2(ωτ)α cos(πα/2) + (ωτ)2α
(7.13a)

C ′′(ω) = ∆C
(ωτ)α sin(πα/2)

1 + 2(ωτ)α cos(πα/2) + (ωτ)2α
. (7.13b)

C ′(ω) and C ′′(ω) are plotted in figure 7.2 for α = 1, corresponding to an ideal De-
bye process with a single relaxation time, and for α = 0.8 corresponding to a process
with a relaxation time distribution. Besides plotting C ′(ω) and C ′′(ω) versus frequency
separately, the complex capacitance can be visualized in the complex plane in a single
plot. Figure 7.3 shows the complex capacitance of three Cole-Cole relaxation functions
with different α and the associated relaxation time distributions. The complex capac-
itance is represented by an arc in the complex plane with the maximum at frequency
ω = 1/τ .7 The capacitive strength of the process is equal to the distance between the
intersections with the real axis. This means, in the relaxation model, that for low fre-
quencies ω � 1/τ the polarization P (t) follows the exciting field E(t) instantaneously.
This results in a maximal polarization and thus a maximal real capacitance C ′(ω). For

7note: without 2π
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Figure 7.3: Complex capacitance (a) in the complex plane and the corresponding relax-
ation time distributions G(ln τ ′) (b) for different parameters α: 1 (red solid line), 0.8
(green dotted line), 0.6 (blue dashed line). In figure (a) the lower arrows indicate the
asymptotic behavior for ω →∞ and ω → 0, while the upper arrow marks the frequency
ω = 1/τ .

broader time distributions, i.e. α smaller than unity, the arcs become more and more
shallow.

If more than one polarization process are present, the total complex capacitance can
be written as a sum over the complex capacitances of all present processes

Ĉ(ω) =
n∑
j=0

∆Cj
1 + (iωτj)αj

. (7.14)

Equation (7.14) includes both, molecular relaxation processes, and electrode polariza-
tion effects for wich the capacitive strength ∆Cj is given either by (7.10) or (7.11)
depending on its origin. Note that for electrode polarization effects α = 1 should hold
[28].

7.4 Equivalent circuit
The electronic response of the electrochemical system shown in figure 7.1 can also be
described by a equivalent circuit consisting of a resistance in series with a capacitance.
The response of this circuit to a periodic signal with angular frequency ω can be de-
scribed by its impedance

Ẑ(ω) = Req +
1

iωCeq

(7.15)

or its capacitance

Ĉ(ω) =
1

iωẐ(ω)
=

Ceq

1 + iωReqCeq

. (7.16)
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Equation (7.16) is formally equal to equation (7.9) with time constant τ = ReqCeq. For
an electrode polarization process, the capacitance Ceq = CPB,MPB/2 is given by the
capacitance of the electric double layer (3.11) or (3.17). The resistance Req = L/σL is
determined by the electrode separation length L and the bulk conductivity

σL =
NAe

2 (ccDc + caDa)

kBT
(7.17)

The Nernst-Einstein equation (7.17) relates the the conductivity to the diffusion coef-
ficients Dc,a of cations and anions at concentrations cc,a [62]. In this way, impedance
measurements can be used to determine the bulk conductivity:

σL =
CeqL

τ
(7.18)

The description of ion diffusion in this circuit model is equivalent to the diffusion
model based on the Poisson-Nernst-Planck equations (cf. section 3.3). Indeed, inserting
(7.17) in (7.18) together with (3.11) yield the same relaxation time τc (3.27) retrieved
from the Poisson-Nernst-Planck equations. Real systems are more complicated involv-
ing electrode effects and adsorbed Stern layers, for example (cf. chapters 4 and 3). Thus,
the measured capacitance Ceq is usually much smaller than the double layer capacitance
(7.11). Furthermore, equation (7.16) cannot describe deviations from ideal Debye re-
laxation processes with α < 1.
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Chapter 8

Experimental setup and data aquisition

In this chapter the experimental setup is described which was used to perform in situ
X-ray reflectivity experiments as well as impedance spectroscopy measurements at the
IL/electrode interface. First, the sample environment and sample preparation is pre-
sented followed by the brief description of the high energy synchrotron end-station at
the ESRF, where the in situ X-ray reflectivity measurements were conducted. After-
wards, an overview on the data treatment, the involved corrections and the description
of the analysis of the X-ray reflectivity data is given. The identical setup was used to
perform impedance spectroscopy experiments, which were conducted at the home lab-
oratory at the MPIP. Finally, the data acquisition of bulk X-ray diffraction patterns from
bulk ILs is presented.

8.1 Electrochemical sample cell for in situ X-ray reflec-
tivity

For in situ investigation of IL/electrode interfaces a new sample cell for combined XRR
and electrochemistry experiments was developed (figure 8.1). The working electrode
potential is controlled by a potentiostat in three electrode configuration (PGSTAT302,
Autolab, Netherlands). The working electrode (WE) consisted of a monocrystalline
boron doped diamond (BDD) plate (size 4 mm× 4 mm× 0.3 mm, boron concentration
1019 cm3, resistivity < 20 Ω cm; Element Six, Great Britain) in (100) orientation with
misscut < 3°. A polycrystalline highly boron doped diamond (electrochemistry grade,
boron concentration > 1020 cm3, resistivity < 0.18 Ω cm; Element Six, Great Britain)
and a ∅ 2 mm platinum wire served as counter electrode (CE) and quasi reference elec-
trode (RE), respectively. To get windowless access to the liquid/solid interface, the
working electrode was contacted to an IL-filled PTFE trough, forming a free-standing
liquid meniscus. The X-ray beam impinged on the meniscus formed between the BDD
working electrode and the PTFE trough.
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Figure 8.1: Sketch of the experimental setup for in situ IS and XRR experiments. The
potential between the BDD working electrode (WE) and the platinum quasi reference
electrode (RE) is controlled by a potentiostat in a three electrode configuration with
a polycrystalline highly boron doped diamond counter electrode (CE). For XRR mea-
surements with sub-millisecond time resolution, potential steps U (t) were set by an
external function generator. A Picoharp assigned a time stamp to each photon counting
event recorded by the detector and the rising edge of the applied potential.

Sample chamber
A cut through the sample chamber is shown in figure 8.2. During the experiment the
sample cell A1 was kept in the sealed sample chamber allowing a full control of the
sample environment. A glass vessel D allowed visual inspection of the sample during
alignment and measurements in vacuum or inert helium atmosphere. The pressure was
controlled by a gas flow control system attached to flange G comprising a vacuum pump,
a membrane pressure sensor and a control valve to vent with helium. The helium atmo-
sphere prevented uncontrolled gas adsorption and reduced the background scattering
in XRR experiments. To avoid temperature gradients across the sample, the temper-
ature was controlled by two separate control loops (Lake Shore Cryotronics, US) for
the working electrode and the IL containing PTFE trough. Thus, the substrate holder
B of the working electrode was equipped with a heating cartridge (40 W, 20 V) and
a PT-100 temperature sensor. The temperature of the PTFE trough A was controlled
via a copper block C. It incorporated four heating cartridges (800 W total, 40 V), two
PT-100 sensors and a cooling apparatus, which was connected to a isopropanol filled
thermostat (JULABO). The counter electrode was separated from the copper block by a
single-crystalline sapphire plate (thickness 0.5 mm) providing electric insulation while
ensuring decent heat conductance.

Because of the small X-ray beam height of 10 µm at the sample position the setup
is very sensitive to drifts in vertical direction. Thus, to reduce thermally induced height
drifts, the working electrode was mechanically decoupled from the copper block by an

1The notation of the parts refers to figure 8.2.
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Figure 8.2: Cut through the sample chamber. The sample position is marked by a red
circle. Some parts are highlighted with color: sealed volume (light blue), copper heating
blocks (brown), cooling system (dark blue), Karpton windows (orange).
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Figure 8.3: Scattering geometry of sample (Sa) at scattering angle θ = θmin. The back-
ground scattering from the entrance karpton window (KW) just passes the collimator
(CS) and detector (DS) slits. The background scattering stemming from the primary
X-ray beam impinging the exit window is blocked by the slit arrangement.

aluminum profile frame J (30 mm × 30 mm aluminum profile, Bosch Rexroth). The
electric wires were fed into the chamber through vacuum Lemo connectors at the upper
flange I for the working electrode and at the lower flange M for the counter and reference
electrode.

Entrance and exit window distance

Considerable background scattering arises from the primary X-ray beam passing through
the entrance and exit karpton windows E. This can be blocked by the collimator slit ar-
rangement (CS and DS in figure 8.3) at elevated angles by choosing the right window
separation distance. The dependence between the sample-window distance l and the
minimum scattering angle θmin, at which the background scattering is blocked, follows
the relation

l+/− = dcol
sin (γcol/2) cos (θmin)

sin (2θmin ± γcol/2)
(8.1)

where l− is the distance to the entrance window and l+ is the distance to the exit win-
dow. In the used setup (figures 8.3 and 8.6) the opening angle of the collimator slit
arrangement is γcol = 0.19° at a 1 mm slit opening. The sample to collimator distance
(center between CS and DS in figure 8.6) is fixed to dcol = 900 mm. In figure 8.4 the
sample-window distances l+/− are plotted versus the minimum scattering angle θmin.
For the present sample chamber both karpton windows are 210 mm away from the sam-
ple position. Thus, the background scattering is blocked at scattering angles larger than
0.25° corresponding to a q-value of 3.1 nm−1 at the X-ray energy of 69.8 keV.
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Figure 8.4: Sample-window distance l−
for the entrance window (blue line) and
l+ for the exit window (red line) vs. the
minimum scattering angle θmin at which
background scattering is blocked. The
dashed line indicates the sample-window
distance l = 210 mm of the sample cham-
ber shown in figure 8.2.

Sample insertion

For synchrotron experiments a fast sample exchange is important. The decoupling of
working electrode and PTFE trough allowed an effective sample insertion procedure
(figure 8.2). First, the flanges G and I, including the working electrode B, were removed.
After insertion of the sample and reattachment of the flanges, the IL was not in contact
with the working electrode. Thus, the chamber could be evacuated and set under inert
atmosphere before contacting the IL with the working electrode. The vertical translation
was employed via a manual z-stage F while the position of the working electrode was
fixed and decoupled by a bellow H. This procedure allowed facile realignment in XRR
experiments and prevented contamination of the sample as well as bubble formation at
the electrode.

Sample preparation

Prior to the experiment all electrodes were cleaned in acetonitrile, aceton, isopropanol,
and finally rinsed with ultra-pure water (18.2 MΩcm). The platinum wire was annealed
red-hot in a butane/propane flame. The ILs were kept at 90 ◦C under vacuum for over 12
hours to remove volatile solvent resistant and water. Then, the ILs were filled into the
sample cell under ambient conditions, degased again for several hours and transferred
to the sample chamber in a beaker filled with argon. During the alignment process of
about 8 hours, prior to the XRR measurements, the sample stayed in the sample chamber
under inert atmosphere. To ensure equivalent measuring conditions, the same protocol
was followed for IS measurements, which were performed independently at the MPIP.
Before each scan of either XRR or IS, the sample was equilibrated by applying a 50 Hz
oscillatory potential between −2.5 V and +1.5 V to remove the sample history. Af-
ter several minutes the amplitude was slowly decreased while the offset potential was
gradually set to the final value. Following this procedure it was possible to record re-
producible XRR signal from the IL/electrode interface for several potential alternations.
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Figure 8.5: HEMD setup (left) and sample chamber (right). The inset in the right
picture shows the meniscus at the BDD electrode.

8.2 High energy X-ray reflectivity

To study deeply buried structures, such as the IL/electrode interface, the use of X-ray
energies larger than 25 keV is highly desirable. In such experiments, the X-ray beam
has to penetrate at least some millimeters of material. For an X-ray energy of 8 keV
provided by standard X-ray laboratory sources using copper Kα radiation, this is not
possible. As the attenuation length in water is below 1 mm. In contrast, the attenuation
length in water is about 50 mm at an X-ray energy of 69.8 keV used in the present study.

HEMD setup

High energy XRR experiments were performed at the high energy micro diffraction
(HEMD) setup at ID15A, ESRF. This high energy scattering beamline is optimized for
X-ray energies between 40 keV and 300 keV. A layout of the the HEMD setup is shown
in figure 8.6. The energy is defined by a double crystal Laue monochromator (DM)
with a resolution of ∆E/E = 2.3× 10−3. The beam is focused to the sample position
(Sa) by a compound refractive lense (CRL) which is comprised of approx. 150 − 200
aluminum lenses. The beam size at the sample position was determined to 10 µm ×
50 µm. The incident beam intensity was monitored with the primary beam monitor
diode (D1) and a secondary beam monitor diode (D2). The absorber (Ab) and the fast
shutter (FS) are described in the following sections. Background scattering, stemming
mainly from the absorber and the CRL, is blocked by the shielding wall (SW) and the
two slit sets (S1) and (S2). In front of the scintillator counter (SC), the collimator
slits (CS) and the detector slits (DS) were mounted together with a flight tube (T) on the
detector arm. This arrangement blocks most of the background stemming from entrance
and exit windows or air scattering. With detector diode (D3) the direct beam could be
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Figure 8.6: HEMD setup (taken from Mezger et al. [110]).

measured without absorber.
The sample chamber (cf. section 8.1) was mounted on a high precision diffractome-

ter (HUBER Diffraktionstechnik GmbH & Co. KG, Rimsting, Germany). The diffrac-
tometer was custom made for the very small scattering angles in high energy diffraction
experiments. The angular accuracy is <20 µrad for the incident and <10 µrad for the
exit diffractometer angel. Further, the massive design allows to install large and heavy
custom sample chambers.

Absorber and beam monitor
Attenuating the incident beam with a poly(methyl methacrylate) (PMMA) absorber (tri-
angle with thickness from 0 to 60 cm) allowed to cover a dynamic range of more than
eight orders of magnitude. To account for the absorbed intensity, the XRR signal was
multiplied with eµPMMA∆s with the absorption coefficient µPMMA of PMMA and the
pathway distance ∆s of the X-ray beam. To account for incident flux variations, the
data was normalized by the signal of the primary beam monitor diode D1 situated be-
tween the CRL and the absorber.

Fast shutter
The fast shutter was installed to minimize radiation damage on the organic molecules
of the ILs. It was synchronized with the counting command of the detector electronics.
Thus, the sample was solely irradiated when the detector signal was recorded. However,
the opening of the shutter was delayed by a delay time τdelay compared to the counting
command. Thus, the measured counting rates Nmeas had to be corrected with

Ncorr = Nmeas

(
1 +

1

texp/τdelay − 1

)
. (8.2)

Equation (8.2) gives the corrected count rate Ncorr for an exposure time texp in which
data is collected. The delay time was determined by comparing the count rates for
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Figure 8.7: Measured count
rates for different exposure
times (red circles) and fit to
equation 8.2 (line) in order to
determine the shutter delay time
τdelay.
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different exposure times (0.05 s − 5 s) at constant incident flux (i.e. Ncorr = const.).
The deviation from the real count rate was fitted to equation (8.2) yielding a delay time
of τdelay = 24.3± 0.3 ms (figure 8.7).

Detector and deadtime correction
XRR data was collected with a NaI scintillation single photon count detector (Cyberstar
CBY48NA05B; Oxford Danfysik, Denmark). The incoming X-rays are converted to
visible light photons that produce an electric signal via photo multiplication. The elec-
tric signal of each counting event is then post-processed by a single channel analyzer.
By setting an adequate energy window, higher harmonics can be separated. Due to the
thickness of the scintillation crystal of 5 mm the conversion efficiency is over 99% for
X-rays with energy of about 70 keV.

The measured count rates Nmeas had to be corrected for the dead time τdead of the
detector. A good approximation for the dead time correction is given by

Ncorr =
Nmeas

1−Nmeasτdead

. (8.3)

This correction is applicable for intensities well below the detector saturation (over
300 000 cps). The dead time of the detector was determined by recording the count
rate for different absorber lengths. By fitting the deviations from the expected value
calculated from the absorption factor, a dead time of 0.7 µs was found. In all measure-
ments the count rates were less than 150 000 cps for which the correction factor is of
about 10%.

Data acquisition
Angular dependent XRR data in θ− 2θ geometry was measured at fixed potentials. The
background intensity, stemming mainly from bulk IL scattering, was collected at an off-
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set in the incidence angle of ∆αi = ±0.01◦ of the the specular peak. Data collected
during several subsequent scans proofed that reproducible XRR data up to a signal scat-
tering angle 2θ = 1.8◦ can be attained while keeping the radiation damage of the sample
at an acceptable level (figure 8.8). The dynamic range of the recorded XRR curves is
about 9 orders of magnitude. Thus, the X-ray beam had to be attenuated by the ab-
sorber wedge as the the maximal countrate of the detector is approx. 300 000 cps. The
2θ angle range from 0.04° to 1.8° was devided into 5 parts of different absorber settings.
The overlay between consecutive parts was more than 0.1° for the high angle scans and
about half for small angel scans.

Table 8.1: Technical parameters of the XRR experiments.
X-ray energy (keV) 69.8
energy resolution ∆E/E (keV) 2.3× 10−3

primary beam intensity (photons/s) 5× 1010

beamsize (µm2) 10× 50
vertical detector slit opening (mm) 1.0
horizontal detector slit opening (mm) 0.3
sample-detector distance (mm) 1196
maximum scattering vector (nm−1) 12
sample length (mm) 4
shutter delay time τdelay (ms) 24.3
detector dead time τdead (µs) 0.7

Previous experiments have shown that [bmpy]+[FAP]− is more effected by beam
damage than [tba]+[FAP]−, despite of the much lower temperature in the [bmpy]+[FAP]−

experiments. Thus, in order to reduce the influence of beam damage in [bmpy]+[FAP]−,
the sample was translated for each data point by a distance of 40 µm corresponding ap-
proximately to the horizontal beam size. For the scanned region of interest from 4 nm−1

to 11 nm−1 this amounts to a total distance of 1 mm. The data at lower q-values was
measured at fixed sample position where the incident X-ray intensity was considerably
reduced by the absorber and beam damage is insignificant. The reproducibility of the
in situ XRR signal during CV proves the stability of [bmpy]+[FAP]− (figure 9.9) and
[tba]+[FAP]− (figure 10.5) over typical measurement times of over 10 minutes. A com-
prehensive discussion of beam damage of the ILs under investigation can be found in
[134].

Data treatment
Prior to further analysis, all the presented corrections were applied to the recorded XRR
intensities. These corrections include the normalization by the signal of the primary
beam monitor diode, the absorption factor and the dead time correction. The shutter
delay correction was only applied to the high-q scans of the [bmpy]+[FAP]−/BDD in-
terface, as the fast shutter was only installed in these scans. In addition, a geometrical

79



8 EXPERIMENTAL SETUP AND DATA AQUISITION

10
-7

10-6

6 8 10

R
 (

a
.u

.)

q (nm-1)

Figure 8.8: XRR data of the [bmpy]+[FAP]−/BDD interface at a temperature of−12 ◦C
and at a potential of −2.5 V. Full symbols represent the measured intensity from three
signal scans (red), from a background scan with αi = 2θ

2
+∆αi (blue) and a background

scan with αi = 2θ
2
−∆αi (green). The open circles represent the interpolated data.

footprint correction was applied to account for the finite beam and sample size. For a
Gaussian shaped beam with width b this footprint correction for a sample of length l
reads [159]

FP = erf

(
l sin θ

8
√

ln 2b

)
. (8.4)

For further analysis, the specular and background signals from multiple scans were
interpolated to a regular q-grid with an equidistant separation of ∆q = 0.15 nm−1 (fig-
ure 8.8). As the background intensity depends on the absorber length, this procedure
was applied separately for each angle range of fixed absorber setting. The interpolation
function consisted of nearest-neighbor-weighted cubic polynomials. The standard devi-
ation of the Gaussian distributed weighting factor around a grid point was empirically
optimized to 0.75×∆q for the specular scans and 1.8×∆q for the background scans.
Thus, the statistical noise of the background could be suppressed while all features of
signal and background scans were conserved. Afterwards the scans were merged by
averaging the overlaying parts beginning with the highest angle scan. In this way, the
absolute intensities recorded at different electrode potentials could be compared.

Error estimation
The error of measurement is to a large extend composed of systematic errors, which are
hard to quantify. The contribution of the statistical error is rather small, which can be
estimated from the counting statistics of the region of interest at around 8 nm−1. At this
q-value the signal is determined by three specular scans of 4000 counts per point taken in
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2 s each and two background scans of 3000 counts per point also taken in 2 s each. The
statistical error of the number of counting events N recorded in the exposure time texp

can be estimated with
√
N assuming underlying Poisson statistics. Then, the statistical

error of the count rate N/texp of both specular and background scan is about 1%. The
difference of both count rates gives the actual signal. Its error can be estimated to 5%
via Gaussian error propagation. This value is small compared to the signal modulation
in respect to the count rate at 8 nm−1 which is 300% at 7 nm−1 and 50% at 9 nm−1.

Cost function and fit algorithm
In order to retrieve physical information from the XRR signal, the measured and pre-
processed curves were fitted to a calculated reflectivity curve. The calculated curve is
derived via the Parratt formalism (cf. section 6.3) from a parameterized electron density
profile, which is, in this study, the modified distorted crystal model (cf. section 6.4).

The commonly used method of least squares is not suitable for the evaluation of
XRR data because of its wide dynamic range. Instead of using the squared deviation of
experimental values Ii,exp and calculated values Ii,calc as cost function, it is much more
appropriate to use the logarithmic deviation δi = ln Ii,exp − ln Ii,calc as cost function:

χ2 = min
α
N−1

N∑
i=1

[ln (αIi,exp)− ln Ii,calc]
2 (8.5a)

= min
α

[
(lnα)2 + 2 lnα〈δ〉+ 〈δ2〉

]
(8.5b)

= 〈δ2〉 − 〈δ〉2 . (8.5c)

The constant lnα = −〈δ〉 is a normalization factor, which is adjusted after each param-
eter refinement. Thus, α is not a free fit parameter, but it makes the fit algorithm more
robust against misalignment and normalization errors.

To find the best fitting physical model, the cost function (8.5c) has to be minimized
in a multi-dimensional parameter space. However, the parameter space topology is
usually not smooth but rather corrugated. Thus, deterministic fitting algorithms like the
Levenberg-Marquard algorithm easily get stuck in local minima if the initial parameter
guess is not sufficiently close to the global minimum. With the increased computing
power stochastic approaches allow the exploration of the entire parameter space. Those
algorithms less likely get trapped in local minima and the global minimum is found
after a certain computation time. In this study a biased random-key genetic algorithm
by Resende and Toso [122, 123] was implemented, which lead to satisfactory fitting
results after several hours computation time on a standard PC.

Time resolved XRR
Time resolved XRR signal was recorded in the same geometry as the static XRR mea-
surements (figure 8.1). The scattering angle was fixed to 2θ = 0.7◦ corresponding to
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a momentum transfer q = 4π/λ sin(θ) = 4.3 nm−1 where excellent counting statistics
were obtained.

To study slow processes at a timescale of seconds, the XRR signal was recorded
during cyclic voltammetry. In cyclic voltammetry the current, flowing from counter to
working electrode, is recorded while the potential is swept between a maximum and
minimum value with a constant scanning speed. In the experiments described in chap-
ter 9 and 10, the potential was scanned between −2.5 V and 1.5 V at a scanning speed
of 10 mV s−1 or 40 mV s−1.

To achieve sub-millisecond time resolution, potential steps between −2.5 V and
+1.5 V with a frequency of 50 Hz were applied using a function generator. The de-
tector signal was recorded by a Picoharp (PicoQuant, Germany) logging each single
photon counting event of the detector. The electronic equipment was provided and in-
stalled by our collaborators, the group of M. M. Nielsen. Using the rising edge (rise
time of 0.02 µs) of the potential steps as trigger, a sub-millisecond time resolution was
achieved by rebinning of XRR data taken over several minutes at 50 Hz. For rebinning
the XRR data a MATLAB (MathWorks, MA) code was used, developed by the group
of M. M. Nielsen.

8.3 Impedance spectroscopy
Impedance spectroscopy experiments were performed separately from the XRR ex-
periments at the MPIP. To ensure reproducibility of the experiments, the experimen-
tal conditions and sample preparation was kept equal to the XRR experiments per-
formed at the ESRF. Because of feasibility reasons, the sample was kept under dry
nitrogen atmosphere instead of helium. Impedance spectra for electrode potentials
−2.5 V ≤ U ≤ +1.5 V were recorded in 0.25 V steps. For each potential the frequency
was scanned over five orders of magnitude from 10 kHz to 0.01 Hz with an amplitude
of 10 mV. At each potential a frequency scan of about 20 minutes was started after
an equilibration time of 10 minutes. To get reproducible results, impedance spectra
were recorded for three full periods, each consisting of a potential scan in positive and
negative direction. The spectra presented in chapter 9 were recorded in the last period.

The data was analyzed with a custom PYTHON code. First, the impedance spectra
were transformed to capacitance spectra via equation (7.7). Then, the real and imaginary
part of the capacitance were fitted simultaneously to equation (7.14) utilizing a generic
least square fit algorithm.

8.4 Bulk X-ray diffraction

Setup
Bulk x-ray diffraction (XRD) data of the ILs was taken in transmission geometry using
Cu Kα radiation (λKα = 1.54 Å, Rigaku MicroMax 007 x-ray generator, Osmic Confo-
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cal Max-Flux curved multilayer optics). The 1 mm thick sample was confined be-
tween two single-crystalline diamond windows to suppress background scattering. The
temperature was controlled in a custom made oven. Diffraction images were recorded
by a 2D image plate detector (Mar345 MarResearch) at a sample-detector distance of
342 mm up to a q-value of 2 Å

−1
. The 2D-data was calibrated using a lanthanum boride

standard.

Data treatment
Prior to the data reduction, a dark image was subtracted from the 2D diffraction images.
An empty image was not subtracted as the scattered intensity from the diamond sample
cell was negligible. Furthermore, the Compton scattering intensity was assumed to be
insignificant compared to the elastically scattered intensity in the examined q-range.
Also fluorescence and multiple scattering corrections were neglected as the sample was
thin and only comprised low-Z elements.

After the reduction of the 2D data via radial averaging, the intensity IS scattered by
the sample was retrieved from the measured 1D diffraction pattern IM applying standard
correction factors [145]:

IS(θ) =
IM(θ)geo(θ)

Satt(θ)pol(θ)filter(θ)
. (8.6)

Here, geo(θ) is the geometric correction fixing the solid angle projection on the planar
detector

geo(θ) = cos−3 (2θ) (8.7)

and pol(θ) is the polarization correction (6.3) for an unpolarized source

pol(θ) = |ε · ε′|2 =
1

2

[
1 + cos2 (2θ)

]
. (8.8)

filter(θ) corrects for the angle dependent absorption from the diamond window situ-
ated between sample and detector:

filter(θ) =
exp [−µDitfil/ cos(2θ)]

exp(−µDitfil)
(8.9)

where µDi = 1.52 mm−1 is the absorption coefficient of the diamond window at incident
X-ray wavelength λKα and tfil = 0.4 mm is the window thickness. The factor Satt(θ)
corrects for the absorbed X-rays of the sample itself

Satt(θ) =
exp

(
−µStS

sin(2θ+π/2)

) [
exp

(
µStS

sin(2θ+π/2)
− µStS

)
− 1
]

µStS
sin(2θ+π/2)

− µStS
. (8.10)

Here, µS is the absorption coefficient of the sample material and tS = 1 mm is the
thickness of the sample.
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The corrected scattered intensity IS was normalized by comparing the diffraction
pattern of [bmpy]+[FAP]− at 10 ◦C with high-quality synchrotron data (cf. figure 6.3).
Thus, the absolute differential cross section could be retrieved. Together with the X-
ray form factors from [61], the liquid structure factor S(q) was finally determined via
equation (6.32).
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Chapter 9

The [bmpy]+[FAP]−/electrode
interface

In this chapter, the results of the experimental study on the [bmpy]+[FAP]−/BDD-
electrode interface are presented. The impedance spectroscopy and XRR experiments
were performed with the same experimental setup at a temperature of −12 ◦C (cf. sec-
tion 8.1). Bulk XRD patterns were recorded separately (cf. section 8.4).

First, the results of the impedance spectroscopy measurements are presented reveal-
ing three capacitive processes on different timescales. Then, the interfacial structure is
examined by means of in situ XRR at different potentials and compared to the liquid
bulk structure. The deployed MDC model (cf. section 6.4) comprises the surface charge
determined by IS. Finally, the dynamics of the interfacial structure is compared with the
relaxation times found by IS

Compared to XRR curves measured measured by other groups at IL/gold interfaces
[175], the signal modulations in this study are significantly enhanced. This results from
a better scattering contrast between diamond and IL than the one between Au and IL,
demonstrating the high sensitivity of the used method for detecting potential-induced
ion rearrangement near the electrode.

9.1 Impedance spectroscopy results
Impedance spectroscopy experiments were conducted at the [bmpy]+[FAP]−/BDD elec-
trode interface at a temperature of −12 ◦C (cf. chapter 8). The impedance spectra,
recorded at electrode potentials U ranging from −2.5 V to 1.5 V, reveal two distinct ca-
pacitive processes on different timescales τ1,2 (U) and with different relaxation strengths
∆C1,2 (U). Each process is represented by an arc in the complex capacitance plane
(figure 9.1). Thus, the total differential capacitance C (U) = ∆C1 (U) + ∆C2 (U) is
comprised of the contributions ∆C1,2 (U) of the two processes. At low frequencies, the
onset of a third slow process is observed.

In order to extract physical quantities, the impedance spectra were fitted to the capac-
itance model (7.14) consisting of three Cole-Cole relaxation functions. The resulting fit
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Figure 9.1: (a) Complex capacitance data at 0 V (green circles) with fit to equation
(7.14) (black line). The yellow lines indicate the contributions of the three individual
processes (numbers). Arrows point to frequencies corresponding to the relaxation times
τ1 and τ2. The inset shows the total differential capacitance C = ∆C1 + ∆C2. (b)
Complex capacitance data at −2.5 V (blue squares), at 0 V (green circles), and at 1.5 V
(red triangles) with fits to equation (7.14) (black lines).

C
1
 (
μ

F
/c

m
2 )

C
2
 (
μ

F
/c

m
2 )

t 1
 (

m
s)

t 2
 (

m
s)

a
1

U (V)

a
2

U (V)

0.5

1.0

0.2

0.4

2.0

3.0

100

200

0.9

1.0

-2 -1 0 1 -2 -1 0 1

0.6

0.8

Figure 9.2: Resulting fit parameters (dots) with errors of the first process (left column)
and second process (right column). Red lines indicate the mean value of all parameter
values at different potentials.

88



9 THE [BMPY]+[FAP]−/ELECTRODE INTERFACE

σ
L 

(S
/c

m
)

1.8´10
-4

2.0´10
-4

-2 -1 0 1

U (V)

Figure 9.3: Conductivity σL (dots) with
errors determined from C1 and τ1 accord-
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parameters of the first and the second process are summarized in figure 9.2. The param-
eters τ1,2,3 (U), ∆C1,2,3 (U) and α1,2,3 (U) were calculated separately for each potential
U . The red lines indicate the mean of all parameter values taken in the investigated
potential range. The fit parameters of the third process are not shown as only the on-
set of this very slow process could be measured. Thus, large errors, compared to the
associated fit parameters, hampers a reasonable physical interpretation.

The first process happens on a ms timescale and yields the largest contribution
∆C1 (U) to the differential capacitance. Its complex capacitance describes an almost
perfect semicircle in the complex plane, i.e. its mean phase parameter α1 = 0.929 ±
0.003 is close to unity. Such behavior is typical for a diffusion driven process (cf. chap-
ter 7). Further, the ion conductivity1 σL (U) = ∆C1 (U)L/τ1 (U) (cf. equation (7.18))
yields a potential independent value of σL = 2.00 ± 0.01× 10−4 S cm−1 (figure 9.3),
which is similar to the values reported in [32]. Thus, the monotonic increase of τ1 (U)
solely originates from the increase in ∆C1 (U).

The second relaxation process has a small capacitive strength ∆C2 (U) compared
to the first process. It happens on a 100 ms time scale. All its parameters are constant
over the entire potential range, yielding a mean relaxation time τ 2 = 122± 7 ms, mean
capacitive strength ∆C2 = 0.23 ± 0.01 µF cm−2 and a mean phase parameter α2 =
0.68 ± 0.02. The deviation of α2 from unity is most noticeable, indicating a broad
relaxation time distribution (cf. figure 7.3).

Finally, the surface charge difference ∆σ (U) on the electrode can be calculated by
numerical integration of the total differential capacitanceC (U) = ∆C1 (U)+∆C2 (U):

∆σ (U) =

∫ U

U0

C (U ′) dU ′ . (9.1)

The surface charge differences relative to U0 = 0 V yield ∆σ (1.5 V) = 1.8 µC cm−2

and ∆σ (−2.5 V) = −1.9 µC cm−2. This amounts to approx. ±10% of a cation mono-
layer, having a surface charge of σML = 19 µC cm−2 calculated with equation (6.58).
The reduced capacitance of the [bmpy]+[FAP]−/BDD interface, compared to Au elec-
trodes [32], is a consequence of the potential drop across the semiconducting BDD
electrode (cf. section 5.2).

1L = 0.7 cm is the separation distance between working electrode and counter electrode.
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Figure 9.4: (a) Measured bulk XRD curve of [bmpy]+[FAP]− (red circles) and fitted
Teubner-Strey model (line). The dashed vertical line indicates q = 2πd−1

B . (b) Measured
XRR curves R (q) (symbols) normalized by the Fresnel reflectivity RF (q). Lines show
simultaneous fits of all three curves to the modified distorted crystal model. The 0 V
and −2.5 V curves are shifted vertically for clarity.

9.2 Interfacial structure
The interface-normal ion distribution was studied by XRR measurements (cf. section
8.2). XRR curves R(q) were measured at fixed potentials of 1.5 V, 0 V and −2.5 V
(figure 9.4b). The −2.5 V XRR curve shows a pronounced dip at q ≈ 8 nm−1, corre-
sponding to a distance of 2π/q ≈ 0.8 nm. Its position and width are close to those of
the first XRD peak of bulk samples (figure 9.4a, cf. section 8.4). Fitting the XRD peak
by a Teubner-Strey form yields a periodicity of dB = 0.79 nm and a correlation length
ξB = 1.27 nm (cf. section 6.2). This periodicity corresponds to the average bulk sepa-
ration between same-charge ions [63, 79, 133] (cf. chapter 4). Increasing the potential
from −2.5 V to 1.5 V results in an almost structureless XRR pattern.

Table 9.1: dB and ξB result from fits of the Teubner-Strey form to the bulk
[bmpy]+[FAP]− XRD pattern. The potential independent model parameters result from
the MDC model (cf. section 6.4). γ is dimensionless, the other values are in nm.

dB ξB dI ξI dl sc
0 sa

0 sWE γ

0.79 1.27 0.73 1.44 0.72 0.11 0.18 0.26 0.73

For a quantitative interpretation, the measured XRR curves were fitted by a mod-
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9 THE [BMPY]+[FAP]−/ELECTRODE INTERFACE

Table 9.2: Potential dependent model parameters of [bmpy]+[FAP]−/electrode inter-
face. The surface charge difference is in units of a full-monolayerσML = 19 µC cm−2.
The relative values were taken from IS data, while the absolute value was fitted.

U (V) AI/AI(U = 0 V) z0 (nm) σ/σML

+1.5 1.03 0.20 60%
0 1.00 0.23 70%
−2.5 0.84 0.28 80%
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Figure 9.5: Electron density
profiles extracted from the XRR
curves at the potentials 1.5 V
(red line), 0 V (green line) and
−2.5 V (blue line). The cation
(light red) and anion (light blue)
Gaussian distributions are plot-
ted for a potential of −2.5 V.
The first layer at 0 V (dotted
black line) and at 1.5 V (dashed
black line) are shown as well.

ified distorted crystal model (cf. section 6.4), using the Parratt formalism. The three
measured XRR curves recorded at different potentials were fitted simultaneously with
the same values for all bulk-related parameters, the same surface roughness sWE of
the BDD working electrode, and the fixed surface charge difference ∆σ (U), deter-
mined by IS. The fit results are summarized in table 9.1 showing the potential indepen-
dent parameters and table 9.2 showing the potential dependent parameters. The XRR
fits (lines in figure 9.4b) yield layered density profiles for both anion and cation (fig-
ure 9.5). The resultant effective interfacial layer periodicity dI = 0.73 nm and the decay
length ξI = 1.44 nm are in accordance with XRR measurements on negatively charged
sapphire substrates [109] and AFM measurements that revealed a layer periodicity of
0.9 nm [8]. The good correspondence between dI and dB as well as ξI and ξB indicates
that the interfacial structure is governed by the same ion-ion correlations dominating the
bulk structure (cf. chapter 2).

The ion concentrations in each layer, shown in figure 9.6, were determined by in-
tegration of the interfacial model profiles, derived from the XRR fits. The interfacial
profiles agree qualitatively with results from MD simulations and continuum theory at
comparable surface charges (cf. figure 4.4a). The four-times-enhanced bulk correlations
ξB/dB in the studied system account for the more pronounced oscillations in the relative
cation/anion concentrations.

At all three potentials a cation excess was found in the substrate adsorbed layer. The
overall surface charge at 1.5 V amounts to an equivalent of ∼ 60% of the charge in
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Figure 9.6: Anion (blue) and
cation (red) charges σ in the n-
th IL layer, counted from the
[bmpy]+[FAP]−/BDD interface,
at potentials −2.5 V (filled), 0 V
(hatched) and 1.5 V (empty). Charges
are normalized to the equivalent of a
full-monolayer σML = 19 µC cm−2.
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Figure 9.7: XRR patterns under variation
of the first layer position. The curves are
calculated with deviations of +20% (blue
line) and−20% (red line) from the best fit
value of XRR data at −2.5 V. The XRR
curves were calculated in kinematic ap-
proximation with model (6.65).
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a full cation monolayer. Thus, the potential of zero charge must occur at high anodic
potentials, where a maximum in C(U) is predicted for symmetric ions (cf. figure 3.2).
This is in agreement with the observation of a monotonically increasing C(U) between
a potential of −2.5 V and 1.5 V (inset figure 9.1a).

The most prominent difference between the ion density profiles at different poten-
tials is the shift of the center of mass z0 of the substrate-adsorbed layer from 0.2 nm
at 1.5 V to 0.23 nm and 0.28 nm at 0 V and −2.5 V, respectively (dashed, dotted and
solid lines in figure 9.5). This results in a phase shift of the IL’s oscillatory profile rel-
ative to the solid electrode, leading to a different interference, and hence to a different
R(q)/RF (q) shape (figure 9.7). This explains the strong variation of the XRR signal at
different potentials despite the rather small changes in the charge concentrations in all
layers, shown in figure 9.6. It is remarkable, that the layering amplitude AI is small-
est at −2.5 V, although the XRR curve shows the strongest modulation. Shifts in the
substrate-adsorbed layer position, similar to those reported here, were observed in AFM
force-distance curves [8, 17, 176]. Finally, while modeling assumptions different from
those employed above may slightly modify the parameter values derived from the fits,
the main conclusions detailed above remain unchanged and robust.
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Figure 9.8: Response of the
XRR signal R from the
[bmpy]+[FAP]−/electrode inter-
face to potential steps between
−2.5 V and 1.5 V at a frequency of
50 Hz (symbols). Solid lines are fits to
the time dependence discussed in the
text. Dashed lines are contributions
from the second relaxation process.

9.3 Dynamics
The dynamics of ion rearrangement at the IL/electrode interface during the charging/-
discharging process were studied by combining the IS measurements (cf. section 9.1)
with two time-resolved XRR measurements. The first, yielding sub-millisecond time
resolution, recorded the evolution of the XRR signal at a fixed q following an abrupt pos-
itive/negative switching of the potential U (figure 9.8). The second, providing informa-
tion on a longer time scale, recorded the evolution of the same fixed-q XRR signal during
a slow cyclic voltammetry (CV) scan of U (figure 9.9). Thus, the charging/discharging
process was investigated on timescales spanning several orders of magnitudes.

In the abrupt switching measurements, potential steps of 4 V were applied to the
IL/electrode interface while recording XRR (cf. section 8.2). The resultant XRR signal
shows a significant but small modulation with a relative amplitude of approximately
2%. Relaxation times were determined by fitting the measured XRR by a sum of two
decaying exponentials and a constant baseline

R = R0 +R1 exp (−∆t/T1) +R2 exp (−∆t/T2) . (9.2)

R0 was determined from the maximal amplitude of the CV scan in figure 9.9. In ta-
ble 9.3 the relaxation times T1,2 are compared with the results of IS. The fit (figure 9.8)
yields T1 = 1.9 ± 2.0 ms in good agreement with the relaxation time τ1 ≈ 2 ms of the
first, fast process observed above by IS (cf. section 9.1). The IS experiments revealed
that the phase parameter α1 is close to unity as expected for diffusion driven electrode
polarization. Further, on Au electrodes, a Vogel-Fulcher-like temperature dependence
was found for this relaxation process [32]. Such dependence is characteristic of the bulk
ion conductivity, suggesting that the fast relaxation process is connected to ion transport
from/to the interface, limited by the ion conductivity. Indeed, its capacitive strength,
∆C1 (U) dominates the total capacitance found by IS (figure 9.1a) and supports this
interpretation.

The magnitude R2 of the intensity modulations associated with the second expo-
nential (dashed lines in figure 9.8) is 14 times larger than R1. The model fits of the
XRR curves, recorded at different static potentials, show that these large modulations
primarily originate from shifts of the first cation layer normal to the electrode surface
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Figure 9.9: Time resolved XRR mea-
surements at q = 4.3 nm from
the [bmpy]+[FAP]−/electrode inter-
face. Normalized XRR intensity
R (symbols, solid lines are guides
to the eye) and current density I
(dashed curve) vs. applied potential
U recorded during CV at a scanning
speed of 40 mV s−1. Arrows show the
scan directions.

0.9

1.0

1.1

-2 -1 0 1

-5

0

5

R
 (

a
rb

. 
u
n

it)

I 
(μ

A
/c

m
2 )

U (V)

Table 9.3: Relaxation times determined by XRR and IS on the [bmpy]+[FAP]−/BDD-
electrode system.

XRR IS

T1 1.9± 2.0 ms τ1 1.6 ms− 3.0 ms
T2 50± 16 ms τ2 122± 7 ms

R2/R1 14

(figure 9.7). SFG spectroscopy suggests such shifts to result from potential-dependent
reorientations of the asymmetric [bmpy]+ substrate-adsorbed cations [11]. The value
of the second relaxation time T2 = 50 ± 16 ms is less than half of τ 2 = 122 ± 7 ms of
the second relaxation process observed by IS. In IS, an equilibrated system is probed
by small perturbations, whereas in switching measurements potential steps of 4 V are
applied to the IL/electrode interface. This leads to a highly non-equilibrium ion con-
figuration and a relaxation pathway with a faster time constant T2. Apparently, this
reorientation is governed by specific ion-electrode interactions and happens on much
longer timescales T2 than the ion transport. The broad relaxation time distribution ob-
tained from IS with α2 = 0.68 ± 0.02 may reflect electrode surface inhomogeneities.
The Arrhenius-like temperature dependence of τ2 found on gold electrodes [32] sup-
ports the assignment of this process to molecular reorientation within the first adsorbed
cation layer. Finally, note that, compared to the fast ion transport process, the slower
reorientation process has only a small capacitive strength ∆C2 = 0.23± 0.01 µF cm−2.
This may arise from the relaxation of the first cation layer’s distance from the elec-
trode surface, as well as the adsorption of additional cations on vacancies formed after
reorientation.

In the low frequency regime, i.e. on the timescale above 10 s, the IS data (figure 9.1a)
indicates the onset of a third, very slow, process. This agrees with the existence of
a hysteresis loop in the XRR signal recorded during CV (figure 9.9). The presence
of such loop confirms the occurrence of structural rearrangements on a timescale over
which a significant potential variation is affected in a CV scan, i.e. 10−100 s. Such slow
dynamics could be caused by a lateral reorganization and eventually 2D ordering of the
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first layer of interface-adsorbed cations, as observed in scanning tunneling microscopy
[149] that also shows very slow dynamics upon potential variation [41].
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Chapter 10

The [tba]+[FAP]−/electrode interface

The second investigated IL [tba]+[FAP]− proofed to be much more stable under X-ray
irradiation than the IL [bmpy]+[FAP]−. Although the experiments were conducted at a
much higher temperature of 82 ◦C, well above the melting temperature of [tba]+[FAP]−,
it was possible to record the XRR signal during CV for three entire periods at a scan-
ning speed of 10 mV s−1, corresponding to over 30 min, without any noticeable beam
damage. In contrast, the IS measurements were not as reproducible as the ones reported
in section 9.1. Although, also three distinct processes were observed, the related relax-
ation times varied considerably, yielding τ1 ≈ 10−2 − 10−1 ms for the first process and
τ2 ≈ 101− 103 ms for the second process. Also the capacitive strengths did not provide
reliable values. Hence, the surface charge difference ∆σ(U) could not be determined.
Taking this into consideration, only the XRR data and its analysis is discussed in the fol-
lowing. While the data does not provide the full picture of the [tba]+[FAP]−/electrode
interface, it confirms the findings from the other IL/electrode system.

10.1 Interfacial structure
The XRR curves of the [tba]+[FAP]−/electrode interface were measured at fixed poten-
tials of 1.5 V, 0 V, and −2.5 V (figure 10.1b). They show a similar dependence on the
applied potential as the XRR curves recorded from the [bmpy]+[FAP]−/electrode inter-
face. The dip is most pronounced at −2.5 V, but shifted to lower q-values coinciding
with the first XRD peak of the bulk liquid at q ≈ 7 nm−1 (figure 10.1a). The broader
XRD peak indicates that correlations in [tba]+[FAP]− are less pronounced compared to
the ones observed in [bmpy]+[FAP]−. Indeed, the fit to a Teubner-Strey form reveals a
smaller bulk correlation length ξB = 0.91 nm at a larger periodicity dB = 0.91 nm.

The XRR curves were fitted to a MDC model with similar constraints as described
in section 9.2. The bulk related values and the electrode roughness sWE was kept equal
for all potentials. The fit results of the potential independent parameters are shown in
table 10.1, while the potential dependent parameters can be found in table 10.2. How-
ever, the surface charge could not be fixed because of the unreliable IS data. Thus,
it was fitted for each potential separately. Nevertheless, the same cation adsorption
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Figure 10.1: (a) Measured bulk XRD curve of [bmpy]+[FAP]− (red circles) and fitted
Teubner-Strey model (line). The dashed vertical line indicates q = 2πd−1

B . (b) Measured
XRR curves R (q) (symbols) normalized by the Fresnel reflectivity RF (q). Lines show
simultaneous fits of all three curves to the modified distorted crystal model. The 0 V
and −2.5 V curves are shifted vertically for clarity.

at 1.5 V is found as for the other IL. The calculated electron density profiles (fig-
ure 10.2) and the binned ion concentration (figure 10.3) are similar to the ones found
for the [bmpy]+[FAP]−/electrode interface. The interfacial periodicity dI = 0.89 nm
matches very well with the bulk periodicity dB = 0.91 nm. The bulk correlation
length ξB = 0.91 nm, however, is smaller than the interfacial correlation length of
ξI = 1.22 nm. A reason for this discrepancy might be the generic correlations assumed
in the Teubner-Strey model, that do not catch the molecular details (cf. chapter 4).

In the electron density profile (figure 10.2), the phase shift of the oscillatory profile
relative to the solid electrode is clearly visible. However, the position of the first layer
z0 does not follow the same trend (table 10.2) as for the [bmpy]+[FAP]−/electrode in-
terface. This can be explained considering the large size of the [tba]+ cation compared
to [bmpy]+. Because of its larger size, the [tba]+ cation occupies more volume at the
interface leading to a lower maximal concentration, i.e. γ > 1, and a decreased mono-
layer surface charge of σML = 16 µC cm−2. Thus, the width of the first [tba]+ cation
layer varies much stronger than a [bmpy]+ layer for the same amount of surface charge
difference.
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Figure 10.2: Electron density
profiles extracted from the XRR
curves at the potentials 1.5 V
(red line), 0 V (green line) and
−2.5 V (blue line). The cation
(light red) and anion (light blue)
Gaussian distributions are plot-
ted for a potential of −2.5 V.
The first layer at 0 V (dotted
black line) and at 1.5 V (dashed
black line) are shown as well.
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cation (red) charges σ in the n-
th IL layer, counted from the
[tba]+[FAP]−/electrode interface,
at potentials −2.5 V (filled), 0 V
(hatched) and 1.5 V (empty). Charges
are normalized to the equivalent of a
full-monolayer σML = 16 µC cm−2.

Table 10.1: dB and ξB result from fits of the Teubner-Strey form to the bulk
[bmpy]+[FAP]− XRD pattern. The potential independent model parameters result from
the MDC model (cf. section 6.4). γ is dimensionless, the other values are in nm.

dB ξB dI ξI dl sc
0 sa

0 sWE γ

0.91 0.91 0.89 1.22 0.86 0.14 0.18 0.37 1.36

Table 10.2: Potential dependent model parameters of [tba]+[FAP]−/electrode interface.
The surface charge difference is in units of a full-monolayer σML = 16 µC cm−2.

U (V) AI/AI(U = 0 V) z0 (nm) σ/σML

+1.5 0.94 0.33 43%
0 1.00 0.29 75%
−2.5 0.92 0.33 80%
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Figure 10.4: Response of
the XRR signal R from the
[tba]+[FAP]−/electrode interface
to potential steps between −2.5 V
and 1.5 V at a frequency of 50 Hz
(symbols). Solid lines are fits to the
time dependence discussed in the text.
Dashed lines are contributions from
the second relaxation process.
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Figure 10.5: Time resolved XRR mea-
surements at q = 4.3 nm from
the [tba]+[FAP]−/electrode interface.
Normalized XRR intensity R (sym-
bols, solid lines are guides to the eye)
and current density I (dashed curve)
vs. applied potential U recorded dur-
ing CV at a scanning speed of
10 mV s−1. Arrows show the scan
directions.
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10.2 Dynamics
The dynamics of the [tba]+[FAP]−/electrode interface were studied with the same two
time-resolved XRR measurements as the [bmpy]+[FAP]−/electrode interface. The XRR
signal recorded during the abrupt switching experiments was evaluated by a fit to equa-
tion (9.2). R0 was determined from the maximal amplitude of the CV scan in fig-
ure 10.5. The fit yields a fast relaxation time T1 = 0.78± 0.26 ms and a slow relaxation
time T2 = 129 ± 20 ms on the same order of magnitude than the relaxation times ob-
served for the other IL. Also, the amplitude ratio yields the same value R2/R1 = 14.
As the [tba]+[FAP]− has a similar interfacial structure like the [bmpy]+[FAP]−, simi-
lar dynamics can be assumed, where the fast process is again diffusion based and the
slower process is associated with interfacial molecular rearrangement. The XRR sig-
nal recorded during CV (figure 10.5) shows a hysteresis loop, similar to the one in
figure 9.9. This affirms the presence of ultra slow interfacial dynamics observed in
[bmpy]+[FAP]−. The almost constant intensity between −2.5 V and 0 V in figure 9.9
is in agreement with the only slight change of the electron density profile at those two
potentials. Passing a potential of 0.5 V, the XRR signal decreases rapidly with the
increasing potential, which might be related to the pronounced reduction of cation con-
centration in the static electron density profile at 1.5 V.
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Chapter 11

Conclusions

Combining electrochemical IS measurements and time resolved XRR, a comprehensive
picture of the molecular-scale structure of an IL/electrode interface has been developed.
Its response to applied potentials spans from a few milliseconds to hundreds of seconds.
At all investigated potentials, the interface-normal ion concentration profiles exhibit a
distinct layering structure. The measured XRR curves are reproduced by a single decay
length and a single periodicity, independent of the applied potential. They are close to
those of the bulk correlation, implying that bulk correlations dominate also the interfa-
cial structure. The time resolved measurements suggest a three-step structure-variation
scenario for the charging/discharging process at an IL/electrode interface (figure 11.1).
Specifically, switching the voltage from −2.5 V to 1.5 V reduces the surface charge by
∼ 20% of a monolayer-equivalent. The diffusion limited ion transport from and to the
interface happens on a millisecond timescale. In addition, a shift occurs in the first
cation layer’s position relative to the electrode surface. This process, with a small ca-
pacitive strength and slow relaxation time on the order of 100 ms, is tentatively assigned
to a reorientation of substrate-adsorbed cations. Due to ion-electrode interactions, this
reorientation process is strongly hindered and sensitive to electrode inhomogeneities,
leading to a broad relaxation time distribution. Finally, the observations by scanning
probe techniques [41, 149] imply that the third, even slower, 10− 100 s timescale, pro-
cess observed in cyclic voltammetry is a lateral reorganization of substrate-adsorbed
cations. Regrettably, this process cannot be probed directly by grazing-incidence X-ray
diffraction due to the high background in such measurements at deeply-buried inter-
faces.

The combination of XRR and IS, providing simultaneous structural and electro-
chemical information, proofed to be an excellent tool to investigate electrochemical
processes at interfaces. This combined approach has been steadily developed over the
last years [34, 56, 114, 151] and has reached an advanced state, so that nowadays it is
possible to examine interfacial structures of liquids with sub-molecular resolution. The
time resolution achieved in the reported XRR experiments is exceptional for buried liq-
uid/solid interfaces. It is over three magnitudes faster than the time resolution achieved
in a recent study on a different IL/electrode system [164]. It is only comparable with
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Figure 11.1: Schematic representation of the three relaxation processes during charg-
ing/discharging of the IL/electrode interface, along with their associated time scales.

studies of electrode kinetics, such as electrodeposition [151], electrode dissolution [56]
or electrode reconstruction [114], where the signal is much stronger due to the high
electron density of the electrode material. However, the dynamics of the mere liquid
structure adjacent to the electrode has never been studied, to my knowledge, on the time
scales reported in this study by means of X-ray diffraction.

This study provides a deep insight into the structure of ILs near electrodes, which
is of utmost importance for numerous applications. The presented results might have
considerable impact on the design of supercapacitors. A better understanding of the
interfacial structure could be the basis of specific design of ILs and electrode materials
in order to enhance their energy storage capacity [142]. The knowledge of interfacial
processes on different time scales might enhance the control of the charging/discharging
process, which is essential for operating electrical devices. Also, electroplating of metal
films and nano-structured semiconductors from IL-based electrolytes might be better
understood with awareness of interfacial structuring [6]. It is known that the interfacial
structure in ILs has a considerable impact on the properties of the deposited film, which
can be tuned by ion variation [42, 119]. However, the ion diffusion-based deposition
process is little understood.

Finally, the fundamental relation between bulk and interfacial correlations was ex-
amined in this work. In both studied ILs the correlation length and the periodicity were
found to be very similar in bulk and at the interface which is in well agreement with
predictions from density functional theory [44, 59]. So far, only limited experimental
evidence has been provided e.g. by studies on colloids [113] and on the free surface of
liquid metals [102]. The large molecular volume of ILs and the large electron density
difference between hydrocarbon-based cations and fluorinated anions makes them an
excellent model system studying intrinsic correlations in liquids with X-ray scattering
techniques.
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Chapter 12

Other results and outlook

Besides resolving the potential dependent interfacial structure of pure ILs, also the influ-
ence of solvents on the interfacial structure was investigated. By adding neutral solvents,
the correlations of the IL-solvent mixture can be tuned reducing the strong correlations
present in pure ILs. Thus, the transition between oscillatory and monotonic decaying
correlations can be investigated described by the Fisher-Widom line in classical density
functional theory (cf. section 2.2). Such experiments were performed in our group on
solutions of [bmpy]+[FAP]− and propylene carbonate (PC) of different mixing rations.
In a prospective publication the correlations in bulk and at a sapphire substrate will be
compared [107].

In applications, ILs are often blended with organic solvents to increase their ion con-
ductivity. The influence of the presence of solvent molecules on the interfacial dynamics
was investigated in preliminary experiments. Time resolved XRR data was collected for
a solution of [bmpy]+[FAP]− and PC in a 1:1 volume ratio at a BDD electrode (figure
12.1). The observed relaxation times τ1 = 1.2 s and τ2 = 11 s are three orders of
magnitude slower than for the pure IL. This deceleration is remarkable as the relax-
ation time is expected to decrease with the lower viscosity of the solution. Note that
the intensities at anodic and cathodic potential are inversed as compared to the pure IL,
which indicates a different rearrangement of the interfacial structure of the IL in pres-
ence of PC. A possible explanation could be an interfacial adsorption process which is
not governed by bulk diffusion but by a more complicated process involving both ions
and solvent molecules. Also, equation (3.29) predicts an increasing relaxation time for
weaker interfacial correlations. However, further experiments have to be conducted to
discover the origin of these decelerated dynamics. Electrochemistry experiments could
give an answer whether the diffusion process is slowed down or if the XRR signal is not
sensitive on this process anymore because of the much reduced layering.

Also pulsed-field gradient NMR can provide useful information on the diffusion
process in ILs. In preliminary experiments the diffusion coefficients of cations and
anions in the IL [bmpy]+[FAP]− were determined at room temperature, yielding Dc =
5.0× 10−12 m2 s−1 and Da = 3.8× 10−12 m2 s−1. The calculated conductivity σNMR

L =
2× 10−3 S cm−1 using the Nernst-Einstein relation (7.17) is one magnitude larger than
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12 OTHER RESULTS AND OUTLOOK

Figure 12.1: Response of the XRR signal
R to potential steps between −2.5 V and
1.5 V at a frequency of 30 mHz (symbols)
from a 1:1 [bmpy]+[FAP]−-PC solution.
Solid lines are fits to the time dependence
equation (9.2). Dashed lines are contribu-
tions from the second relaxation process.
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the measured conductivity σIS
L = 4× 10−4 S cm−1 by IS. This discrepancy was also

observed in other studies [155], where it was explained with only partial dissociation
of the ions. However, open questions still remain [169]. In future experiments on IL-
solvent mixtures of different mixing ratios, the separate determination of the diffusion
coefficients of anion, cation, and solvent molecules might help to understand the slow
dynamics observed in XRR.
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Appendix A

Abbreviations and acronyms

AFM Atomic Force Microscope
BDD Boron Doped Diamond
bmpy 1-butyl-1-methylpyrrolidinium
cf. confer, compare
CV Cyclic Voltammetry
CVD Chemical Vapor Deposition
DSC Differential Scanning Caliometry
e.g. exempli gratia, for example
ESRF European Synchrotron Radiation Facility
FAP tris(perFluoroAlkyl)trifluoroPhosphate; also tris(pentafluoroethyl)trifluorophospate
HEMD High Energy X-ray Micro Diffraction Setup
i.e. it est, that is
IL Ionic Liquid
IS Impedance Spectroscopy
MD Molecular Dynamics
MDC Modified Distorted Crystal model
NMR Nuclear Magnetic Resonance
OZR Ornstein-Zernike Relation
PC Propylene Carbonate
PTFE PolyTetraFluoroEthylene
PZC Potential of Zero Charge
SAM Self Assembled Monolayer
SFG Sum Frequency Generation
STM Scanning Tunneling Microscope
TFSI bis(TriFluoromethylSulfonyl)Imide
tba tetrabutylammonium
vs. versus
XRD X-Ray Diffraction
XRR X-Ray Reflectivity
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Appendix B

Symbols used in equations

Elementary constants
CODATA internationally recommended values of the fundamental physical constants
where taken from NIST [154].

c = 2.9979 · 108 ms−1 vacuum light speed
e = 1.6022 · 10−19 C elementary charge
ε0 = 8.8542 · 10−12 Fm−1 permittivity of free space
~ = 1.0546 · 10−34 Js Planck constant /2π
kB = 1.3807 · 10−23 JK−1 Boltzmann constant
λC = h

mec
= 2.4263 · 10−12 m Compton wavelength of an electron

me = 9.1094 · 10−31 kg electron mass
NA = 6.0221 · 10−23 mol−1 Avogadro constant
re = e2

4πε0mec2
= 2.8179 · 10−15 m classical electron radius

Symbols

α Cole-Cole phase parameter
αc ≈

√
2δ critical angle of total reflection

αf exit angle
αi incidence angle
AI interfacial layering amplitude
β optical constant (imaginary part)
χ2 deviation between fitted and experimental data
C differential capacitance
C0 vacuum capacitance
∆C capacitive strength
Ĉ(ω) complex capacitance

107



B SYMBOLS USED IN EQUATIONS

C ′(ω) real part of complex capacitance
C ′′(ω) imaginary part of complex capacitance
c(r) direct correlation function
ca/c(z) anion/cation concentration
c̄ mean concentration
cαβ(r) direct correlation function between species α and β
dB bulk periodicity
dl layer periodicity
dI effective interfacial periodicity
δ optical constant (real part)
δ(r) Dirac delta function
E X-ray energy
ε dielectric constant
ε∞ dielectric constant of induced polarization
ε̂(ω) complex dielectric function
ε polarization vector
F Helmholtz free energy
f 0 (q) angular dependent part of the atomic scattering form factor
fα (q) atomic scattering form factor of element α
f ′ (ω) real part of dispersion correction
f ′′ (ω) imaginary part of dispersion correction
γ relative maximal ion concentration at the interface
g(r) radial distribution function
h(r) total correlation function
hTS(r) Teubner-Strey correlation function
hαβ(r) partial total correlation function
IS scattered X-ray intensity
ki incidence wave vector
kf final wave vector
λ = hc

E
X-ray wavelength

λD Debye screening length
m mass
M molar mass
µabs absorption coefficient
µ chemical potential
N total number of scatterers
n = 1− δ + iβ complex optical constant or refractive index
∆Ω solid angle
Φ0 incident flux
φαβ(r) inter-particle potential
ψ(z) electric potential
q = kf − ki scattering vector
qc maximal wave vector transfer for total reflection
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qmax maximum momentum transfer achieved in an experiment
qz z-component of the scattering vector
R (qz) X-ray reflectivity
RF (qz) Fresnel reflectivity
ρ scattering density
ρc charge density
ρ̂(q) Fourier transform of scattering density
ρ̄ mean scattering density
ρe electron density
ρmax maximal mass density
ρm mass density
ρmol molar density(

dσ
dΩ

)
differential scattering cross-section

∆σ(U) surface charge difference
σ(U) surface charge
σML monolayer surface charge
σ standard deviation
σL conductivity
sa,c

0 width of Gaussian ion density distribution
sWE working electrode roughness
S (q) total liquid structure factor
Sm (q) mono-atomic liquid structure factor
Sαβ (q) partial liquid structure factor
STS (q) Teubner-Strey structure factor
τ relaxation time
t time
T temperature
Ti XRR relaxation time
2θ = αi + αf total scattering angle
U electrode potential
VM molar volume
ξB bulk correlation length
ξI interfacial correlation length
Z atomic number
z0 position of first ion layer
Ẑ(ω) complex impedance
Z ′(ω) real part of complex impedance
Z ′′(ω) imaginary part of complex impedance
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[93] S. Li, J. L. Bañuelos, J. Guo, L. Anovitz, G. Rother, R. W. Shaw, P. C. Hillesheim,
S. Dai, G. A. Baker, and P. T. Cummings. Alkyl chain length and temperature
effects on structural properties of pyrrolidinium-based ionic liquids: A combined
atomistic simulation and small-angle x-ray scattering study. The Journal of Phys-
ical Chemistry Letters, 3(1):125–130, 2012.

[94] J. E. Lind, H. A. A. Abdel-Rehim, and S. W. Rudich. Structure of organic melts1.
J. Phys. Chem., 70(11):3610–3619, 1966.

118



BIBLIOGRAPHY

[95] V. Lockett, M. Horne, R. Sedev, T. Rodopoulos, and J. Ralston. Differential
capacitance of the double layer at the electrode/ionic liquids interface. Phys.
Chem. Chem. Phys., 12(39):12499–12512, 2010.

[96] V. Lockett, R. Sedev, J. Ralston, M. Horne, and T. Rodopoulos. Differential ca-
pacitance of the electrical double layer in imidazolium-based ionic liquids: Influ-
ence of potential, cation size, and temperature. J. Phys. Chem. C, 112(19):7486–
7495, 2008.

[97] J. Lyklema. Fundamentals of Interface and Colloid Science: Solid-Liquid Inter-
faces. Academic Press, 1995.
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