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Abstract  I 

Abstract 

Pore scale imaging and modeling is becoming a routine practice in the oil and gas industry, and has potential 

applications in environmental aspects of contaminant fate and transport, carbon storage, and enhanced natural 

attenuation. X-ray computed microtomography (CT) is frequently used as a non-destructive 3D imaging 

technique for the investigation of internal structure of geologic material. The first objective of this thesis was to 

implement the image processing techniques that mainly involve the removal of beam-hardening artefacts, and 

segmentation process. The second objective was to study the combined effect of pore characteristics, porosity 

and pore tortuosity on the fluid flow simulation and transport modeling using the lattice Boltzmann method.  

In a cylindrically-shaped geologic sample, the position of each phase was extracted with the 

observation that the presence of beam-hardening in the reconstructed CT image is a radial function from the 

periphery to the center of the sample and thus, automatically segmented the different phases. Moreover, the 

beam-hardening was also removed by simply applying surface fitting to the reconstructed image data 

regardless of any object shape. Since, the least square support vector machine is characterized by a great degree 

of modularity, and it is very convenient and applicable for a large-scale pattern recognition problem, and 

classification task. For these reasons, the least square support vector machine was implemented as a pixel-

based classification task. This algorithm proves to classify a complex multi-mineral geologic sample, but seems 

computationally costly in the case of a high dimensional training data set. 

The dynamics of immiscible air-water phases were investigated by a combination of pore morphology 

and lattice Boltzmann method for drainage and imbibition processes in a 3D soil image obtained by 

synchrotron-based CT. Though, the pore-morphology is a simple method which applies fitting spheres into an 

accessible pore space, but compatible to interpret a complex capillary pressure hysteresis as function of water 

saturation. A hysteresis was seen for both capillary pressure and hydraulic conductivity which was mainly 

caused by the inter-connected pore network, and the available pore size distribution. The hydraulic 

conductivity as a function of water saturation levels were compared to macroscopic calculations of empirical 

models and matched well, especially at higher water saturation. To predict the presence of pathogens in 

drinking water and waste water, the microorganisms e.g., Escherichia coli known as indicator organisms, was 

investigated in a soil aggregate with the effect of grain size, pore geometry, and pore water velocity. The 

asymmetrical and long tailed breakthrough curves, especially at higher water saturation, were caused by 

dispersive flow due to the interconnected pore geometry, and heterogeneity of the fluid velocity field. It was 

observed that the biocolloid residence is also a function of pressure gradients and colloidal size, and our 

simulation results supported the data that was reported in the literature. 

 

 

 

 

 

 



Zusammenfassung  II 

Zusammenfassung 

In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff 

Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für 

den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem 

natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein 

zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der 

internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die 

Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie 

beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte 

die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und 

Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. 

In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung 

durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom 

Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch 

segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen 

Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” 

(LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und 

Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte 

Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben 

korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale 

Trainingsdatensätze verwendet werden müssen. 

Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von 

Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen 

von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie 

eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe 

kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck 

und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen 

Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische 

Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung 

empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um 

die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in 

einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit 

dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, 

besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen 

Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die 

biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere 

Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein. 
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Introduction  1 

1 Introduction 
 

1.1 Relevance 
 

Pore scale modeling is the fundamental approach for modeling single or multiphase flow in porous 

media, which is of great importance to many scientific and engineering concerning of; groundwater 

and vadose zone flow and transport, contaminant remediation, oil recovery processes, and energy-

related activities such as geothermal energy production, and geologic sequestration of CO2. This 

approach provides a way for the parameterization of macro-scale constitutive parameters i.e., 

porosity, and permeability that in effect govern the overall performance of many flow and transport 

models. Pore scale modeling is a challenging task in a complex and tortuous nature of the pore 

structures that require techniques for obtaining the integral description of the pore geometries, and 

methods to analysis and quantify pore structure, and efficient and robust numerical methods of 

handling complex geometries. 

The advent of X-ray microtomography (CT) has made it possible to obtain three-dimensional 

(3D) images with a resolution of only a few microns which is sufficient to capture the internal 

structure of wood, composites, and pore space of reservoir rock cores and soil. This allows for 

characterization of pore space structure, and observation of pore scale processes. Polychromatic X-

ray sources are used universally in conventional laboratory-based CT technology to obtain adequate 

intensity of photons which consists of different energies.  In polychromatic radiation, the average 

energy of the X-ray beam increases as the beam propagates through a material since the lower energy 

of the X-ray are preferentially attenuated. This implies the grey levels of the projection data are not 

linear with the material thickness and consequently, the reconstructed CT image produces some 

visual distortions, such as pronounced edges, and artefacts. Beam-hardening (BH) is one such 

artefact, which produces false line integrals due the photon-energy dependence of the attenuation co-

efficient. The presence of BH artefact remains a problem in 3D image processing and hampers 

correct image analysis i.e., segmentation process. A variety of algorithms and schemes are developed 

for eliminating BH artefacts including pre-filtering or hardware filtering, dual-energy and post-

processing techniques. Recently, monochromatic synchrotron-based CT has been introduced as a 

powerful tool for an effective visualization of the morphological features of the pore-space geometry 

at a voxel resolution down to microns. Illuminating the sample with a monochromatic beam has the 

advantage of mitigating BH artefacts.  

Image segmentation is one of the crucial steps in image processing.  The segmentation of CT 

images is very important for the measurement of properties as well as detecting and recognizing 
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object (mineral composition, pore space). In the literature, a diversity of segmentation methods has 

been developed and the outcome result is significantly related to the image quality and with the 

sensitivity of the technique itself employed. The properties of the resulting segmented image can 

vary greatly with small changes in segmentation parameters.  

A pore characterization of geomaterials i.e., pore-size distribution, porosity, and pore geometry 

structure are some of the most important material properties for the investigation of the permeability 

of fluid flow in porous media. The permeability tensor (hydraulic conductivity) of fluid flow is not 

only dependent on the connectivity of pore spaces allowing the fluid that flows through it, but also 

the conditions imposed by the flow process. In recent years, the lattice Boltzmann (LB) equation for 

modeling of fluid flow and transport has received the most attention because of its simple 

formulation and applications in complex and multi scale flows. LB method follows simple and local 

update rules based on the motion and collision of particles on a cubic lattice (voxels) of a digital CT 

image to approximate Navier Stokes equation for the fluid flow simulation at the pore level. With 

increasing CT images spatial resolution, it has become feasible to visualize colloids and particles in 

porous media. A recent advancement in computer technology introducing high performance 

computing (HPC) and development of easy-to-use graphical user interface software, effective 3D 

visualization of generated results from those simulations plays an important role in understanding the 

complex dynamics of fluid flow data (velocity vector field) and transport processes (solute/colloid 

tracking) at a pore scale level. 

 

 

1.2 Motivation and objectives 
 

Driven by the technological and computational progress, high-resolution CT is a frequently used 

nondestructive 3D imaging and analysis technique for the investigation of internal structures of 

geomaterials i.e., rock cores, soil. The grayscale images that are produced from CT commences by 

performing image processing i.e., noise reduction, artefacts removal, and image segmentation. 

Segmentation is dependent on the choice of approach and introduces a major uncertainty in our 

interpretation of the results. The pore structure and the physical characteristics of a porous medium 

and the fluid-fluid interface and fluid distribution in the pore volume determine several macroscopic 

parameters of the flow and transport processes and is a subject of significant scientific and 

environmental interest, for example, groundwater contamination, mass transfer process such as 

retention of organic compounds and biocolloids, enhanced natural attenuation and bioremediation, 

water treatment systems, enhanced oil and gas recovery. 
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To achieve our grand goal, the systematic implementation of methods and simulation strategy 

that were employed, is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic illustration of our research work 

 

 

The two main objectives of this thesis are:   

 

(i) CT Image processing 

The reduction of noise is one of the first important tasks in image processing. Spatial filtering 

has been used effectively for noise reduction in tomography. Moreover, a polychromatic 

character of the CT is posed by the existence of beam-hardening artefacts that affect the 

quality or hamper the subsequent segmentation process. Therefore, the removal of beam-

hardening image artefact, and data image classification originated from laboratory-based CT 
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technology is the vital steps for image data analysis to estimate mineral composition, and 

pore/fractures geometry. 

 

(ii) Pore scale fluid flow and transport modeling  

The second part of this thesis is about pore scale fluid flow and transport modeling in a porous 

medium. The main objective of this work is to understand and interpret the effect of complex 

pore geometry on the predictive fluid flow and particle breakthrough curves under saturated 

and unsaturated flow conditions. Also, the 3D visualization of pore scale processes is an 

important tool to interpret the modeling results. 

 

 

1.3 Thesis Outline 
 

A more detailed description of the bulk part of the performed work has been reported in three Journal 

Papers enclosed in this thesis. The experimental set of CT technology (both laboratory-based and 

synchrotron-based), and data image acquisition and reconstruction can be found in Papers I & II, and 

therefore is not presented here. The description of geomaterial properties used for image 

segmentation, and pore scale simulation can be found in the introductory part of each chapter. 

 

Chapter 2 presents the summary of the implementation of two methods dealing with BH 

correction and segmentation in cylindrically shaped multi-mineral geologic samples i.e., rock cores. 

In Section 2.1, we introduced the first method that simultaneously correct beam-hardening and 

segment the image data by extracting useful information of BH and X-ray attenuation values for each 

phase. In Section 2.2, the second method introduces the segmentation as a classification task 

(labeling image) by utilizing least square support vector machine on the BH corrected image done by 

surface fitting algorithm.  

 

Chapter 3 introduces the summary of the research work leading up to simulating single phase 

flow and solute transport in a saturated and unsaturated porous media, here soil peds, using LB 

method. In Section 3.1, we present the results of water permeability tensor of different region-of-

interests (ROI’s) in a saturated soil aggregate. The variation in parameters of geometrical 

characterization and hydraulic conductivity values of three independent ROI’s are also discussed.  

The results of the capillary pressure hysteresis and water permeability tensor in unsaturated soil 

aggregate are presented in Section 3.2. In addition, the fluid-fluid interfacial area as a function of 
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water saturation is also discussed here. The results of biocolloid transport with different particle sizes 

under different pressure gradient in a variably soil aggregate is presented in Section 3.3. For the 

better interpretation of results, 3D visualization of flow simulations and particle tracking are also 

presented.  

 

Finally, the conclusions and future perspectives can be found in chapter 4 & 5, respectively. 
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2 Image processing 
 

After the reconstruction of grey scale CT images, digital image processing deals with the 

manipulation and analysis of images by using computer algorithm. The CT images contain a certain 

level of noise and artefacts that severely hamper the segmentation process. Spatial filtering is one of 

the choices that have been used effectively for noise reduction in tomography. We employed 3D 

median filter technique, a smoothing (low pass) filter. The window size masking (333) replaces a 

pixel by the median of all defined window size pixels in the neighborhood. After the filtering, we 

employed different techniques to deal with beam-hardening (BH) artefacts and image segmentation 

which are discussed below. 

 

 

2.1 Simultaneous segmentation and beam-hardening correction in 

computed micro-tomography of rock cores 
 

The image of multi-mineral evaporite rock core composed of anhydrite with halite-sealed factures at 

a spatial pixel resolution of 53 m was obtained by polychromatic CT. A variety of algorithms and 

schemes are developed for eliminating BH artefacts including pre-filtering or hardware filtering, 

dual-energy and post-processing techniques. We proposed a method that corrects BH artefact and 

segment multi-mineral of cylindrical shaped geologic samples, simultaneously. It does not require 

any prior knowledge of the X-ray spectrum and attenuation coefficients of the material. The method 

is based on the observation that the BH artefact in the reconstructed CT image is not only related to 

each material but is also a radial function, i.e. the distance of material from the center of cylinder. 

Using this observation, the method acquires the information of BH artefacts to distinguish different 

phases of a material. The procedure proceeds to attain information of one particular phase 

reconstructed attenuation values from the center to the periphery in order to construct artificial 

object. The arithmetic difference of zero ( error) between measured data and an image of artificial 

object data allows us to attain information of that phase present in the whole sample. The presence of 

another phase can be achieved only if the difference is smaller or bigger than the error. The repetition 

of this approach for all different phases yields the segmented image (Fig. 2c).  
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Fig. 2 (a) The original evaporite sample image and (b) the arithmetic difference between the original image 

and image for a calculated mono-mineral assemblage. A result value around zero means that the targeted 

mineral is present at that position. (c) Final segmented image for an evaporite sample, following a stepwise 

arithmetic-difference assignment approach shown in (b). 

 

 

 

2.2 Beam-hardening correction and pixel-based classification of 

microtomography images of rock cores using surface fitting and least 

square support vector machine 

 

 

The method is tested on the CT image of multi-mineral rock core sample which is composed of 

anhydrite, clay minerals and cracks/fractures as shown in Fig. 3a. The pixel spatial resolution of the 

image is 42 m. The consequence of the presence of BH artefact is that for the same solid phases the 

attenuation values varies across the whole sample. Also, the attenuation value at the periphery is 

higher than in the central regions of sample. Thus, data values of a line-profile across the 

reconstructed image shows a non-linear trend i.e., parabola (see red curve in Fig. 3c). Consequently, 

the grey scale values of one phase overlap with the remaining phase’s values regardless at any 

positions in a sample which extremely hampered the segmentation process. As a post-processing 

technique, the BH artefact is removed and corrected by fitting a 2D polynomial i.e., quadratic surface 

to the reconstructed CT data (2D slice). The implementation of fitting surface has been done in 

MATLAB

 
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Fig. 3 Image processing by applying filtering and BH correction where (a) original sample with noise and 

BH artefacts, (b) the data represent 3D median filtering result, (c) the BH correction where the red color curve 

represent the original data values of the horizontal cross-section in (b), the fitted curve is represented by  solid 

black curve, and blue color curve is the result of the difference between data values and fitted curves at each 

pixel values, (d) is the BH corrected image. 

 

 

The surface fitting (i.e., 2
nd

 order polynomial) has a mathematical expression of the form: 
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The Eq. 2 can be solved to yield the solution vector a by, 

 

M
T
M a=M

T 
f         (3) 

 

The solution of Eq. 3 for a determine the best fit of polynomial of Eq. 1 to a given set of data points 

(Fig. 3c). The final BH corrected image is the residual data which is the difference of surface 

elevation values and original values (Fig. 3d). 

 

 

Later, we performed pixel-by-pixel multi-classification (here 3- classification) by utilizing 

least square support vector machine (LS-SVM). To do this job, we implemented MATLAB LS-

SVMlab toolbox (www.esat.kuleuven.be/sista/lssvmlab/). Basically, the LS-SVM is derived from a 

non-linear support vector machines (NL-SVM) therefore some basic work on NL-SVM for 

classification problems is reviewed here. The NL-SVM method maps the input vector into the high 

dimensional feature space by some non-linear mapping called Kernel function. Therefore, NL-SVM 

is often named as “Kernel-based classifier”. The target is to construct the optimal separating 

hyperplane in the feature space as shown in Fig. 4. 

To solve pattern classification problems, let N
iii x 1},y{  is a set of N data points, where n

ix R

denote n-dimensional training inputs and Riy is the associated output class label such that

}1{iy . Using the non-linear vector function )(  which maps the original input space into a high-

dimensional i.e., i-dimensional feature space, the SVM is aiming to construct a classifier i.e., the 

optimal separating hyperplane of the form: 

 

,1yif,1)(T  ii bxw       (4) 
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,1yif,1)(T  ii bxw       (5) 

which is equivalent to 

,...,,1,1])([y T Nibxw ii         (6)   

where w is an i-dimensional vector (= [w1,w2, … wi]
T
) and b is a bias term. 

 

The LS-SVM method is aiming to construct a classifier of the form: 

,),(ysign)(
1 











 



N

i
iii bxxHxy       (7) 

where s'i are positive real constant, and ),( ixxH is the kernel function dealing linearly non-

separable data in a high-dimensional feature space. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 LS-SVM data classification: left diagram shows the complexity of data classification in two 

dimensions, whereas the right figure represents the classification in higher dimensions. 

 

 

Thus, the output of LS-SVM is a linear combination of the training data values projected onto a high 

dimensional space through the use of kernel functions. In this research only the Gaussian Radial 

Basis Function (RBF) kernel is implemented in LS-SVM classifier because of its high accuracy in 

data set classification, and is given by, 

 

,)/||||(exp),( 22  ii xxxxH       (8) 

where 

 is the bandwidth of the Gaussian RBF kernel. 

 )( 

Separarting hyperplane 



Image processing  11 

 

The generalization performance of the model was done by “Tuning” which estimates two extra 

parameters of LS-SVM model. One is the regularization parameter which determines the trade-off 

between the fitting error minimization and smoothness, and the other is the bandwidth of the 

Gaussian RBF kernel. Both with- and without BH corrected images (Fig. 3 b & d) were exposed to 

the LS-SVM classification. The image is grouped (classified) among three different classes of 

fracture (I), anhydride (II), and clay mineral (III). From these images, certain regions were manually 

chosen for training as shown in Fig 6a. This is done carefully to that the regions selection of the 

corresponding class do not contain overlapping boundaries with another class.  

 

 

The proposed methodology of employing LS-SVM is shown in Fig. 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The flow chart of our proposed method using LS-SVM 
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Fig. 6 Image pixel-based classification using LS-SVM. (a) Selection of pixels for training in original 3D 

median filtered image, (b) multi-classified of BH corrected image, (c) multi-classification of image without BH 

correction. Light dark color is fracture, grey color is anhydride, and white color shows clay minerals. 
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The number of data trained for all classes was 1755 pixels which is 0.1 % of the total pixels in the 

image. The remaining pixels were treated as a new data set (test data). The output classified image in 

which each distinguishes entity (or phase) was labelled by a single integer value (Fig. 6 b & c). All 

classification results could have an error rate and the classification results which can be evaluated by 

the performance measure i.e., Receiver Operating Characteristic (ROC). The ROC is a statistical 

measure of the performance of a binary classification test. It provides tools to select possibly optimal 

models in the analysis of decision making. ROC plots relationship between the true positive rate 

(sensitivity) and the false positive rate (specificity). The multi-component sample is grouped into two 

classes of anhydrite, and fractures and clay minerals to measure binary ROC for both with, and 

without BH artefact image (Fig. 6b). For the ROC parameters, the area under the curve (AUC), 

Sensitivity, Specificity, and Accuracy were calculated under certain threshold values. It is noted that 

ROC is implemented only on the training set data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Receiver‐Operating Characteristic curve analysis of LS-SVM classifier on the BH corrected image 

(left), and without BH corrected image (right). 

 

The ROC parameters of AUC, Sensitivity, Specificity, and Accuracy for the beam-hardening 

corrected image were 0.998, 99.98%, 99.75% and 99.82%, and for the without beam-hardening 

corrected image were 0.963, 81.88%, 96.88%, and 88.71%. The performance measure results on the 

pixel-based grey-value training set data showed that the probabilistic error rate is higher in the beam-

hardening effected images, and consequently, misclassified the testing data (Fig. 6c & Fig. 7). It is 

observed that the variability of output classification results may vary with the total amount of training 

data set, and the selection of pixel positions for each phases in sample. Therefore, for the optimal 

classification result, it is always desirable to choose the sufficient training data set that includes pixel 

information for each phase at all positions in a sample. 
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3 Pore scale fluid flow and transport modeling 
 

The porous media, here soil peds used in this research was collected from the “Ap” horizon, from 

Scheyern near Munich (Germany), and classified as a Luvisol that had developed from weathered 

loess. The soil textural components are 40 wt. % sand, 45 wt. % silt and 15 wt. % clay, and dry bulk 

density of 1.50 0.04 g cm
−3

. A synchrotron nano-CT is used to extract 3D images (2048
3
 voxels) of 

soil aggregate at the spatial resolution of 0.74m. At the pore-scale, the pore-water velocity is 

influenced by the hydraulic gradient, the porosity, and the permeability distribution. It is also well-

known that the dynamics of fluid flow is directly linked to the pore space geometry and connectivity 

of the pores structure in a porous media. The transport of biogenic colloid , Escherichia coli (E. coli), 

as indicator organisms, is investigated in soil aggregate, and is of vital interest for the assessment of 

risk from pathogens in groundwater and waste water. 

 

 

Fig. 8 Graphical User Interface of GeoDict software for fluid flow simulation 
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The numerical simulations (fluid flow and transport) were performed using the commercial software 

program package GeoDict (http://www.geodict.com), which was developed by Fraunhofer ITWM 

and distributed by Math2Market GmbH, Kaiserslautern, Germany (Fig. 8). A high-performance 

computer (HPC) comprising four Interlagos processors (64 cores), and a total RAM capacity of 512 

GB was utilized. 

 

 

3.1 3D simulation of the permeability tensor in a soil aggregate on basis 

of nanotomographic imaging and LBE solver. 
 

Before CT technology, 3D pore characterization was done by reconstructing 3D porous media 

through statistical models. The recent technological evolution in CT, complex pore-networks in 3D 

down to nano-scale can be imaged. Due to the restricted High Performance Computing (HPC) 

capacity, it is always desirable to extract region-of-interest (ROI) as the representative of the whole 

sample. We selected three ROI’s (5005001000 voxels) in different locations of the soil aggregate 

to evaluate the geometrical variability and also that in flow simulation results. For the 

characterization of the pore structure, we estimated pore size distribution (PSD), porosity (open 

connected), and specific surface area which are some of the most important material properties for 

the investigation of water-pore velocity i.e., 3D flow velocity field. The estimation of spatial pore 

size correlations and pore connectivity enables us to determine the percolation pathways (dual 

porosity). After the geometrical quantification and imaging of 3D pore structure, the heterogeneous  

fluid velocity field (permeability tensor) in the pore space (fully water saturated) of soil aggregate is 

simulated by applying the lattice Boltzmann (LB) solver with the no-slip boundary condition. To 

achieve a unique LB solution, a fluid density of 998 kg m
−3

 and fluid viscosity of 1 g m
−1

s
−1 

are 

applied as input water flow parameters in the model domain. The model specifications and flow 

boundary conditions can be found in Paper I.  The fluid velocity vector field at the local pores is 

determined by the difference in pressure gradients (Fig. 8). Consequently, gross parameter 

(coefficient) of Darcy’s law such as the effective saturated hydraulic conductivity (Ks) is determined 

for all ROI’s. Later, the results were compared with the prediction of empirical model which is based 

on the standard soil textural information, and bulk density. The simulation result of Ks confirms that 

our soil aggregate sample has more connected macro- and mesopores network in the z-direction than 

x, & y- directions. Also, the differences in the results of three ROI’s selection indicate the impact of 

structural pattern on the soil characteristic property. 

 

http://www.geodict.com/
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Fig. 9 3D visualization of LB simulation of velocity vector field along z-direction at (a) shows the 

distribution magnitude in the pore geometry, and (b) the same magnitude distribution imaged with solid matrix. 

The blue to red colors depict the lower to higher fluid velocities at local pores. The moderate fluid velocity is 

210
−3

 ms
−1

 (green color).  

 

 

The much lower value of Ks predicted by one of our empirical model shows the lack of its capability 

of predicting Ks in a heterogeneous anisotropic porous medium. Moreover, the LB solver has proven 

numerically accurate and stable dealing the 3D image boundary conditions and the structure 

complexity of the porous medium.  

 

 

3.2 Pore morphology and lattice Boltzmann approach to modeling 

unsaturated soil capillary hysteresis and permeability tensor 
 

The soil properties that relate to the movement of fluid flow in the unsaturated zone are the pore-size 

distribution, soil-water retention, and hydraulic conductivity. The water retention relationships 

emerge as the result of the dynamics of the immiscible air-water phase interface.  A well-known 

macroscopic effect of this relation is the hysteresis observed during cycles of wetting and drainage. 

Also, it is determined that air-water interfacial area (Aawi) is a vital parameter for investigation of 

flow processes in porous media. Therefore, the primal focuses of this study is to incorporate a 

linkage between spatial pore network and the macroscopic constitutive relationships between the 
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capillary pressure, water saturation level, and interfacial area (Pc–Sw–Aawi) in a variably saturated 

porous soil medium. Secondly, we investigated the effects of the spatial distribution of air on water 

movement as a function of the water saturation i.e., a relationship between hydraulic conductivity (K) 

and water saturation (Sw) for both drainage and imbibition cycles.  

In this study, the same material properties (texture, density) of soil aggregate but of different 

pore structure was utilized  to perform pore-scale modeling. The 3D image dimensions were 500  

500  1000 voxels, with a spatial resolution of 0.74 m. The Pc–Sw–Aawi curves were obtained by the 

simulation of static two-phase (air-water) distribution for both drainage and imbibition process 

employing pore morphology based (PMB) approach. The PMB approach operates with several 

morphological processes by fitting structural element (spheres) into an accessible pore space 

assigned by a characteristic pore radius parameter. It is noted that PMB algorithm for drainage 

simulation begins with a maximum pore radius, and for imbibition simulation it starts from the 

minimum accessible pore radius. A hysteresis was observed between drainage and imbibition cycles 

in the Pc–Sw curves because of the pore-size distribution and the connected-pore geometry. 

Moreover, the Pc–Sw were also investigated with fluid trapping i.e., by the integration of residual 

water saturation in the drainage simulation and residual air saturation in the imbibition simulation.  

Afterwards, for each drainage and imbibition cycles, the 3D images of air-water distribution by PMB 

approach were used to investigate the fluid/fluid interfacial area. The Aawi–Sw curves suggested that 

the air-water interfacial area increased as the water saturation decreased and attained the maximum 

value at the moderate water saturation. Aawi was much higher for imbibition than for drainage, 

especially at moderate water saturation. To exemplify these results, 3D imaging of  fluid phase 

distribution during drainage at Sw = 0.55 and during imbibition at Sw = 0.53 are shown in Fig. 8. The 

difference of air distribution between two cyclic processes was caused by the connected-pore 

network and the available pore size distribution for each pore radius simulation step.  

After the investigation of Pc–Sw–Aawi curves and obtaining 3D images of fluid-fluid 

distribution for both drainage and imbibition cycles, we simulated the water permeability tensor 

(hydraulic conductivity (K)) as a function of water saturation levels. The aim of this part of work was 

to establish a relationship of K–Sw curve in order to determine the overall effect on the water 

movement constrained by the pore space occupied by air. A numerical LB model scheme was used 

which solved the incompressible Newtonian water flow through the pore space. The simulations 

were done along the axial x-, y-, & z-directions. The K values exponentially increased with the 

increased Sw for both drainage and imbibition cycles. This indicated a strong non-linear 

relationship mainly caused by the inter-connected pore-water network on the main pore structure.  
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Fig. 10 3D visualization of a water saturation (S
w
) sample, showing (a) the drainage process at S

w
 = 0.55, 

and (b) the imbibition process at S
w
 = 0.53. Air is shown in red and water in green, and areas occupied by the 

solid matrix are white.  

 

 

The K values along the x-, y-directions were a little higher for the drainage process than for the 

imbibition process which showed a minimal hysteresis. Surprisingly, no such effect was seen along 

z-direction. The highest average axial velocity in all of the simulations along the x-, y-, and z-

directions was 4.2·10
−7

 m s
−1

 at S
w
 = 1.0, which is an evidence of a creeping flow throughout the 

porous model domain. Later, the results were compared with the well-known empirical predictions 

models of Brooks and Corey–Burdine, and Van Genuchten–Mualem. Both the models showed a 

good prediction with the simulation results, especially at higher water saturation level. 

 

 

3.3 Biocolloid transport and retention in a variably saturated soil 

aggregate  
 

The transport mechanisms of biocolloid (Escherichia coli) was studied in a saturated and unsaturated 

soil aggregate. Basically, the mass transport of solute or colloid is generally controlled by advection , 

and hydrodynamic dispersion which is the net result of diffusion and mechanical mixing in pore 

geometries. Advection which is the motion of the particles along the trajectories of the fluid 

streamlines whose velocity is governed by the hydraulic pressure gradient, porosity, and permeability 

a) b) 
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mm 
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distribution. The mechanical dispersion refers to the spreading of a solute or colloid caused by 

differential fluid flow velocity field at the local pores. The difference in pressure gradients have 

minimal influence on the fluid flow streamlines in the complex pore network, but certainly affect the 

mass fluxes of  colloid transport. Moreover, It is well-known that the trapping of air bubbles as a 

function of pore(s) radius effect the overall movement of water flow (see Section 3.2). The pore 

space occupied by air can deviate the colloid movement which affects transport parameters. 

Therefore, the main focus of this work was to analyze the overall effect of different pressure 

gradients, and the spatial distribution of air on the transport of E.coli determined by breakthrough 

curve (BTC) and retention time. Also, the transport of different biocolloidal sizes was also studied.  

For pore scale fluid flow and transport modeling, the same material properties (texture, density) of 

soil aggregate was employed as discussed in Section 3.1 & 3.2. Due to the limited HPC capacity, 3D 

image of dimensions 500
3
 voxels were extracted from the original image of 2048

3
 voxels. A purely 

geometrical approach was adopted to intrude air (fitting spheres) into the pore volumes as the 

function of pore radius (image voxels). The geometrical approach considered both open and closed 

porosity. As a result, 3D image of two-phase (air-water) distribution was obtained. First, we 

established the water permeability (flow field distribution) at saturated and unsaturated water flow 

condition by imposing a pressure gradient of 1, 50, and 100 Pa. To do this job, lattice Boltzmann 

(LB) method was used to obtain flow parameter (permeability tensor) of porous media at varying 

flow conditions. A relationship between permeability tensor and water saturation, and the 3D 

visualization of flow simulation are depicted in Fig. 11. A non-linear relationship between water 

saturation and permeability tensor was observed (Fig. 11 d). For more details of water permeability 

in a variably saturated porous media, we refer to Section 3.2.After we established the velocity vector 

field at local pore scale, the E.coli was transported under saturated and unsaturated flow conditions. 

We utilized GeoDict software special module of “AddiDict” for transport modeling. The transport 

simulation time steps were set to 0.04, 0.09 and 5 seconds for the pressure gradient of 1, 50, and 100 

Pascal, respectively. For all model simulations, the total particles transported per batch were 100,000. 

It is noted that the particles were injected at the center half plane of inlet boundary to observe 

hydrodynamic dispersion (Fig. 15 & 16). 

The equation of mass transport of E.coli includes advective transport coupled with diffusivity is: 

CCD
t

C
s

2

s

2

s 



us       (9) 

where Cs is the local mass distribution of the E.coli, u is the the local velocity vector, and Ds is the 

diffusivity due to Brownian motion. 
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In our transport modeling, the Ds is calculated as, 

rρηπ3

TkC
D

s
 ,        (10) 

where, 

)eA(A.
r

λ
1C λ

r2
3

A

21



       (11) 

with k, the Boltzmann constant ( 1.38e
–23

 JK
–1

), T  is the temperature, is the kinematic viscosity, 

is the fluid density, r is the particle radius, is the mean free path, and C is the cunningham 

correction factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 3D imaging of a water saturation (S
w
) sample . (a-c) Water simulation at S

w
 = 1.0, 0.90, and 0.55. Air 

is shown in red and water in green/blue, and areas occupied by the solid matrix are white. (d) Showing a 

simulated permeability value as a function of water saturation. 
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In the literature, the recommended E.coli particle diameters of 0.50m and 1.2m with particle 

density of 1080 kg m
–3

 were chosen for both saturated and unsaturated porous media. The particle 

transport is determined by breakthrough and retention curves. For the unsaturated water conditions, 

we presented the results only under pressure gradient of 100 Pa. We observed that the E.coli 

transport at moderate water saturation (Sw=0.55) had earlier breakthrough (BTC) as compared to 

higher water saturation (Sw=0.90, and 1.0) (Fig. 11a). This reflects the water flow movement and 

streamlines paths i.e., tortuosity constrained by air distribution at local pores. At Sw=1.0, the BTC 

was more asymmetrical and broader caused by dispersive flow mainly due to interconnected pore 

geometry and heterogeneity of the fluid velocity vector field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Breakthrough curves at variably water saturation Sw imposing pressure gradient of 100 Pa. (a) 

Absolute particle distribution, (b) relative particle distribution. The solid lines, dot lines, and dash lines are at 

Sw=1.0, 0.90, and 0.55, respectively. 

 

 

At the end of the simulation time of 8 seconds, the 95% of the total number of particles were 

recovered for Sw=1.0. The total particle recovery has decreased with the decreasing water saturation. 

The less particle recovery and long tailing of BTC at lower saturation i.e., Sw=0.55 indicated the air 

spatial distribution increased the particle residence time possibly due to dead-end pores. We, also 

evaluated the combined effect of E.coli colloidal sizes and pressure gradients (pore water velocities) 

on the transport at full water saturated condition. The transport of E.coli of diameter 0.50m was 

compared to a diameter of 1.2m under pressure gradient of 1, 50, and 100 Pa. At high gradients, 

small size particle had broader BTC distribution as compared to relatively large particle size (Fig. 12) 
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indicating that the transport of particles were not only due to flow dispersion at local flow velocity 

field, but also dominated by diffusion due to Brownian motion. Consequently, the flow dispersivity 

may agitate the particles into the region especially at solid boundaries where the water velocities are 

relatively very small. The diffusion due to Brownian motion increases the probability of transferring 

into the streamlines dominated by advection. The thus,  the simulation results showed that the small 

particle size at high pressure gradients (50 Pa, 100 Pa) had less residence time but no big difference 

was observed at low pressure gradient (1 Pa). To understand and interpret the simulation results, the 

movements of two different biocolloidal sizes under full water saturation were tracked at pressure 

gradient of 100 Pa (see Fig. 13 & 14). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Breakthrough and retention curves at full water saturation (a) Absolute particle distribution, (b) 

relative particle distribution. The red, blue, and green curves show the pressure gradients of 1 Pa, 50 Pa, and 

100 Pa, respectively. The solid lines represent large colloid of diameter 1.2m and dash lines represent small 

colloid of diameter 0.5m. 
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3D visualization of E. coli particle tracking 

A) Particle diameter =1.2 m, Pressure gradient = 100 Pa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 3D visualization of biocolloid particle tracking and recovery at different simulation time steps. The 

particle diameter is 1.2 m. The total numbers of particle injected in the system were 100,000. 
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B) Particle diameter =0.50 m, Pressure gradient = 100 Pa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 3D visualization of biocolloid particle tracking and recovery at different simulation time steps. The 

particle diameter is 0.5 m. The total numbers of particle injected in the system were 100,000 
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4 Conclusions  
 

The main conclusions of the study are: 

 

 In cylindrically shaped samples there is a simple correlation of beam-hardening of each phase on 

its position with its distance from the center of a rock core cylinder. This concludes that beam-

hardening artefact is a radial function. Based on this relationship, each phase position in a sample 

can be extracted which allows a rigorous segmentation of the image. This method is more 

applicable to those samples in which one phase is particularly dominant, and uniformly 

distributed. In the case of heterogeneously distributed phases it is important to acquire several 

profiles of each phase to ensure that the values at all positions are extracted. However, the manual 

extraction of BH curves requires human judgment and experience.  

 

 Due to the nature of the BH artefact, the same solid phases have lower attenuation values at the 

center of the sample than at the periphery. Consequently, the data values across the reconstructed 

grey values of image show a non-linear (parabolic) trend. Therefore, 2D polynomial of 2
nd

 order 

i.e., quadratic surface is fitted to the image in order to approximate the data. This polynomial 

approximation approach is constructing a surface that will best fit to the cloud of data points 

subject to the coefficient (parameters). A surface fitting to a low and high density multi-

component geologic material may over, or underestimate the range of grey scale value of each 

individual phase, and subsequently will affect the segmentation outcomes. 

 

 As an advanced classification technique, the least square support vector machine (kernel based 

learning method) is utilized to segment the data, with- and without beam-hardening correction, as 

a pixel-based classification task. Without dimensionality reduction or need of prior knowledge, 

the radial basis function kernel yields a good classification results on the beam-hardening 

corrected image showing a high performance accuracy rate but fails to classify the image with 

beam-hardening artefacts. It is important to extract all the possible range of grey scale value of 

each individual phase available for the training data set. The selection of each phase positions in a 

sample is also crucial to avoid overlapping phase’s boundaries. Thus, the presence of noise and 

artefacts, data value selection, and the low amount of data of specific interest complicate the 

classification.  
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 The pore morphology based method is employed to simulate two immiscible fluids i.e., air and 

water displacements under drainage and imbibition processes in a complex soil pore volume 

structure. The method is also extended to incorporate residual water saturation and residual air 

saturation in drainage and imbibition cycles, respectively. The establishment of non-linear curves 

of capillary pressure as a function of water saturation shows the hysteresis which
 
has been 

ascribed to the irregularity of the pore space geometry, and pore size distribution. In a pore-

morphology based method the very complex P
c
 function is calculated from the direct 

quantification of saturation distribution alone using the Young–Laplace equation. It is well argued 

in the literature that the non-uniqueness in the relationship of capillary pressure and water 

saturation is also related to the absence of important variable fluid-fluid interfacial area. 

 

 Fluid-fluid interfacial plays a vital role in many subsurface multiphase flow and transport 

processes. Therefore, air-water interfacial area as a function of water saturation from static 

distributions of fluids is quantified for both drainage and imbibition simulations. By visual 

inspection of both simulated images, the air-water phases were uniformly distributed in the 

imbibition process more so than in the drainage process, especially at moderate water saturation 

levels. The difference in the interfacial area were caused by the available pore size distribution 

and pore geometry, where connectivity is taken into account for each pore radius simulation step 

induced by a pore morphology based method. Because of the simple pore morphology approach 

of fitting spheres in a pore space to quantify the fluids distribution, the higher interfacial area of 

imbibition curves than drainage curves do not agree with  the experimental studies following the 

fundamental fluid physics of the receding and advancing phenomena (contact angle) and local 

capillarity surface tension. 

 

 A fully parallelized lattice Boltzmann solver is employed to simulate water permeability tensor 

(hydraulic conductivity) in both saturated and unsaturated complex soil structure.  The variation 

in the obtained saturated hydraulic conductivity values of three independent region-of-interests is 

rather in moderate range. We also observed that the presence of macrospore (preferential) flow 

overestimate the simulated results. In an unsaturated medium, the visualization of the simulation 

results showed that spatial distribution of air blobs hampered the movement of water at different 

water saturation levels. The non-linear curve of hydraulic conductivity which is increased with the 

increasing water saturation levels for both drainage and imbibition cycles are observed, but have 

the minimal hysteresis. This non-linearity is mainly caused by the dependency of the inter-
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connected pore-water structure (pore throat) on the main pore network.  We observed that at the 

same water saturation levels of drainage and imbibition process, the water flow velocity at the 

pore scale associated with the available pore size distribution has a minor influence on the macro-

scale constitutive parameter of hydraulic conductivity.  

 

 Breakthrough curves are extensively used to characterize the physicochemical processes involved 

in the transport of solutes in porous media, here soil aggregate. In the previous studies it is well-

determined that the trapping of air bubbles as a function of pore(s) radius effect the overall 

movement of water flow, and consequently affect the transport parameters. In an unsaturated 

porous media, the biocolloid (E.coli) transport at moderate water saturation had earlier 

breakthrough as compared to higher or full water saturation levels. Also, the particle residence 

time has increased with the decreased in water saturation. This reflects the particle transport 

driven by water flow along the streamlines paths (tortuosity) constrained by air distribution at 

local pores. The breakthrough curves were more asymmetrical and broad, caused by dispersive 

flow mainly due to interconnected pore geometry and heterogeneity. We observed that the particle 

residence time is also a function of pressure gradient; larger gradients (flow velocities at local 

pore scale) result in wider differences in residence time between particle of different sizes. 

Moreover, we observed that  the particle velocities were 2-3 times higher than the average water 

flow velocities. 
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5 Future perspectives 
 

For objects of non-cylindrical shape, the beam-hardening is no more a radial function and changes 

for each angle. Therefore, an efficient mathematical calculation is required to extract beam-hardening 

information regardless of sample shape and X-ray beam geometry i.e., cone beam. The Least square 

support vector machine is capable of dealing with complex nonlinear classification problems. The 

feature extraction which include both shape-related features (texture) and window-based features 

(statistical) is the important process of locating information of interest to detect for instance pore 

space in soil images. The performance of a classifier based on other kernel functions like linear, 

polynomial, multilayer perceptron, results will be compared with other techniques i.e., K-Nearest 

Neighbor classifier and artificial neural approaches.  

 

The phase distribution at the pore-scale is controlled by the capillary forces depending on pore size, 

pores connectivity, surface tension, and wettability.  The latter, is of great importance in defining the 

flow characteristics. Therefore, for the analysis macroscopic properties of capillary pressure and 

permeability tensor in drainage and imbibition processes, the future work requires to integrate local 

capillarity surface tension, and the advancing and receding contact angles phenomena. In this 

research, the LB simulations of single phase flow in an unsaturated medium, fluid-fluid and fluid-

solid interactions were treated as “no-slip” boundary conditions. In case of fluid-fluid density 

difference, the integration of the slip boundary condition is of major importance which may lead to 

significant errors, especially at lower water saturation levels.  

 

Biocolloid are affected by random particles interactions result in Brownian movements. The 

biocolloid can attach to fluid-solid interface and the fluid-fluid interface. The attachment is 

considered the main controlling factor to understand the mechanisms of the colloid retention. 

Therefore, it is important to integrate van der Waals force and the electrostatic effects of surface 

charge and particle charge in biocolloid transport modeling. 
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Abstract
Purpose The purpose of this hydropedological work is to
investigate the feasibility of a method to calculate permeabil-
ity of soil peds on the matrix pore scale resolution. This paper
focuses on imaging of the intra-aggregate microstructure and,
based on the three-dimensional (3D) images, quantification of
the pore network connectivity and permeability tensor.
Finally, lattice Boltzmann equation (LBE) simulations of
Navier–Stokes flow in the thus derived pore network allow to
compute the heterogeneous 3D flow velocity field.
Materials and methods Nanotomographic X-ray absorption
mode imaging of a single soil ped has been performed at
the TOMCAT beamline of the Swiss Light Source
synchrotron facility with 0.74 μm spatial resolution.
Segmentation of the 3D Nano-CT images into solid phase
and pore space allowed to study the statistical properties of
the connected pore network. The thus derived pore network
data were used as direct input for the software package
GeoDict integrated with a LBE algorithm to perform
saturated water flow modeling.
Results and discussion The soil ped features quantified from
the tomographic images were pore and grain size distributions
(PSD, GSD), porosity, percolation tensor in x, y, z-direction
and percolation pathways (macropores). The PSD frequency
has a peak in the range 3–8 μm (mesopores) contributing
50% of the total. In general, the matrix pore structure and,

hence, saturated flow field velocity of our sample is highly
anisotropic. LBE-simulated pore scale fluid flow is used to
ultimately determine gross parameters (coefficients) of
Darcy’s law such as the saturated hydraulic conductivity,
Ks. The thus simulated Ks=105±24 cm day−1 of a single soil
ped (mean of three ROIs and directions) is one order of
magnitude higher than the value of Ks=12±2 cm day−1

predicted by a classical pedotranfer function approach. This
Ks underestimation by PTF is typical for macropore flow.
Conclusions Integration of 3D image evaluationwith the LBE
approach as an essential step toward understanding the highly
heterogeneous intra-aggregate microstructure is now possible
on the submicron scale. Modeling the resulting anisotropic
fluid advection field is, however, just a first step for 3Dmodels
of biogeochemical reactions at soil interfaces on this pore scale.

Keywords Lattice Boltzmann . Pedotransfer functions .

Permeability tensor . Pore-scale modeling . Pore size
distributions . Synchrotron tomography

Abbreviations
FFT Fast Fourier transform
HPC High-performance computing
LBE Lattice Boltzmann equation
nano-CT X-ray computed nano-tomography
PSD Pore size distribution
PTF Pedotransfer functions

1 Introduction

Transport of soil water affects solute dissipation, defines
rates of microbiological processes in the rhizosphere and
water supply to plants, governs transpiration and ground-
water replenishment, and has many other important
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functions in the soil environment. The dynamics of fluid
flow and transport processes is associated directly to the
microstructure and pore space geometry of soils. Therefore,
quantitative geometric information of the microstructure,
such as pore size distribution (PSD), total porosity, pore
network connectivity, and interfacial properties, is impera-
tive to understand and model the complex fluid flow in soil.
Kutilek and Nielsen (2007) recommended a combination of
advanced hydrological and micropedological approaches
which could lead to a better understanding of the real pore
and water properties in soil. Water retention curves are
commonly calculated on the basis of pedotransfer functions
(PTFs), e.g., for soil composed of different aggregate size
fractions (Guber et al. 2004). Development of reliable fluid
flow models became possible only in the last decade by
introduction of computer-assisted, nondestructive imaging
techniques such as computer microtomography (μCT). In
the μCT technique, the three-dimensional (3D) spatial
distribution of X-ray absorption coefficient is measured,
which closely correlates with the local density distribution.
Due to recent advancements in high-performance computing
(HPC) technology, this μCT imaging technique has made a
major breakthrough in micropedology providing for a more
advance microstructure analysis by numerical simulation
(Peth 2010). Due to the complex heterogeneous and
anisotropic distribution of water in porous media like soils
at field capacity, the importance of 3D high-resolution
imaging and image processing cannot be underestimated
(Tippkötter et al. 2009; San José Martínez et al. 2010).

Synchrotron-based μCT has been introduced for an
effective visualization of the morphological features of the
pore-space network at a voxel resolution down to microns
(Carminati et al. 2007; Kaestner et al. 2008; Peth et al. 2008).
Recent developments in the experimental and analytical
techniques in synchrotron radiation μCT have greatly
facilitated quantitative description of the geometrical features
of even the non-matrix pore space (Peth 2010). Moreover,
pore-scale modeling provides a way for the better under-
standing and effective parameterization of macroscopic fluid
flow for a success with simulation tools. Using μCT
geometrical datasets, an increasing number of investigations
of (multi-phase) fluid flow at the (yet non-matrix) pore scale
level have been published in the last few years (Wildenschild
et al. 2005; Culligan et al. 2006; Fourie et al. 2007; Pfrang et
al. 2007; Porter and Wildenschild 2010; Silin et al. 2011).
Meanwhile, spatial resolution in synchrotron-based to-
mography has improved to submicron voxel resolution
(nano-CT). This capability opens up imaging of the full
complexity of even the matrix pore-scale geometry, but
demands also for more effective numerical methods that
are crucial for a reliable quantitative evaluation of the
capillary flow and transport processes. For modeling of
flow and transport from first principles on the matrix

pore-scale, the novel powerful lattice Boltzmann equa-
tion (LBE) simulation technique have received most
attention in recent years. The popularity of the LBE
method is due to its simple formulation and application
to flow problems (both single- and multi-phase flow) in
complex pore geometries, but is challenging in terms of
sample space which may demand for expensive parallel
processing HPC systems. Validity of this method has
been shown for different investigation purposes involving soil
and aquifer samples to quantify, e.g., non-aqueous phase
liquid (NAPL) dispersion (Knutson et al. 2001), 3D
isothermal flow (Inamuro et al. 1999), solute transport in
variably saturated porous media (Zhang et al. 2002), and
3D simulations of biofilm growth in porous media (Graf
von der Schulenburg et al. 2009).

The purpose of this work is to image and simulate the
heterogeneous fluid velocity field in the matrix pore space
of a (at first approximation water saturated) soil aggregate
by applying the LBE solver to its X-ray computed nano-CT
image as geometrical data input. Advanced 3D image
analysis to quantify the pore nanostructure is an essential
first processing step. We will show how this may lead to the
3D physical parameter space, such as the permeability
tensor in the matrix pore space of soil peds.

2 Materials and methods

2.1 Materials

The soil was sampled from the 28 cm deep Ap horizon
(sample “Ap18,” middle topsoil 10–18 cm) of a Luvisol at
experimental research farm Scheyern in July 2010 after
rainfall followed by drainage. This farm is located to the
north of Munich, Germany (48°30′N, 11°21′E). The soil is
characterized as a Luvisol according to the World Reference
Base for Soil Resources 2006 that developed from weathered
loess and is under agricultural use. The soil structure is friable
and consists of strong and approximately spherical fine and
medium (1–5 mm sized) granular peds. The fine earth
(mineral content <2 mm, only 1.5 wt.-% rock fragments) is
characterized as medium-textured loam (FAO class
“Medium”, UK soil type “SaSiLo,” USDA and ISSS soil
type “SiLo,” German soil type “Slu”), with 40 wt.-% sand, 45
wt.-% silt, and 15 wt.-% clay fraction. The soil color (Munsell
notation) is characterized as 10YR 4/4 (non-reducing), with a
soil dry bulk density ρt=1.50±0.04 gcm−3, a pHCaCl2=5.3, a
total Corg=13.6 mg g−1, and a total N=1.32 mg g−1 (C/N=
10.3). The soil sample was in a moderately moist state and
chilled by dropping into liquid nitrogen to avoid soil
structure disturbance by faunal activity and kept frozen
(−20°C) until analysis. The gravimetric water content of
medium-sized ped subsamples (n=5) was determined upon
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drying in an oven at 105°C overnight which gave a water
mass of 21±2 wt.-%.

2.2 Synchrotron-based nano-CT experiment

The synchrotron-based nano-CT was performed at the Tomo-
graphic Microscopy and Coherent Radiology Experiments
(TOMCAT) beamline of the Swiss Light Source (SLS) at the
Paul-Scherrer-Institute in Villigen, Switzerland. Tremendous
efforts have beenmade at this beamline in recent years to apply
X-ray absorption based tomography on low-contrast environ-
mental samples by “edge-enhanced” (Stampanoni et al. 2006)
and “phase-contrast” (Bronnikov 2002) techniques. These
new techniques enable the user community to fully apply this
unique beamline on samples full of organic matter and other
biogenic materials low in X-ray attenuation (McDonald et al.
2011). Details of the beamline setup have been published by
Marone et al. (2009) and will not be repeated here. Prior to
the measurements, all tools and instruments were fixed by
help of the beamline technical staff. A single soil ped of about
2 mm in diameter was trapped in the center of the conical
sample holder boring (Murshed et al. 2008). It was cooled at
freezing temperature (200 K) by cryojet equipment (Cyrojet-
XL, Oxford, UK) to keep the sample structure fixed during
rotating at projection angles between 0 and 180°. The angle
viewing step size was set at 0.12° degree intervals yielding in
a total of 1,501 projections, and the sample was imaged using
an X-ray beam at energy of 20 keV. After penetration of the
sample, the X-rays were converted into visible light by a Ce-
doped YAG scintillator screen (Crismatec, France). Projection
images were further magnified optically (20×) and digitized
by a high-resolution (2,048×2,048 pixels) ultra-fast read-out
CCD camera (PCO 2000, Germany) with exposure times of
140 ms. This set-up resulted in a field-of-view of 1.5×
1.5 mm2 and an original resolution of 0.37 μm. The latter
was binned 2× “on-chip” to improve the signal-to-noise ratio
yielding in an effective spatial resolution of 0.74 μm. An
important prerequisite for reliable data quality control is the

option of fast acquisition and reconstruction of data “on the
fly”, which enables adopting the desired resolution, number
of projections, sample exposure time at the beamline and the
total processed file size within the rather limited beam time
acquired for the experiments. The reconstruction of the
complete dataset of >1 TB was performed by a fast combined
wavelet-fast Fourier transform (FFT) decomposition and
gridding procedure on a 16-node Linux cluster within few
minutes after data collection. An ad hoc padding of the
sinograms prior to reconstruction significantly reduces typical
artifacts related to data incompleteness, making local tomog-
raphy a valuable acquisition mode when small volumes in
relatively large samples are of interest (Marone et al. 2010).
After raw data collection, the AMIRA/AVIZO software
package is applied to render immediately the result and
evaluate the image quality.

2.3 Image processing

After the 3D reconstruction of sample raw data (2,0483 voxels)
and data conversion to 16-bit images, further processing steps
include noise filtering, discontinuity detection, and thresh-
olding. Filtering is warranted because grey-scale images from
CT comprise a certain level of noise, the reduction of which
has an immense effect on the quality of the subsequent
segmentation. Edge-preserving filters are of particular help
for such smoothing of the raw data (Sheppard et al. 2004).
The median filter technique used is a nonlinear anisotropic
digital filter specified by different kernel window sizes and
dimensions (1D, 2D, and 3D; Gallagher and Wise 1981). The
median filter replaces a pixel by the median of all defined
window size pixels in the neighborhood. We applied the 3D
median filter technique with window size masking (3×3×3 in
3D) to smooth the volume voxel dataset. For any 3D imaging
and modeling on such high-resolution dataset with limited
computing resources, it is always desirable to select a region-
of-interest (ROI) spatial domain that can at best be
representative of the whole sample as shown in Fig. 1. Since

Fig. 1 Example of ROI #1
extraction, with a the original
image (2,0483 voxels) with
different ROIs location, and b
the ROI #1 image ultimately
selected (500×500×1,000
voxels). Note that one voxel has
an edge length of 0.74 μm
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variability of the ROIs is not a priori known, three different
ROIs of size 500×500×1,000 voxels each were extracted
from the original sample by the AMIRA software to evaluate
reproducibility of the approach.

Once image filtering and the extraction of a representa-
tive ROI is accomplished, the image segmentation process
is the next step that is required to select features of interest
in the X-ray radiographs. Segmentation involves in the
present case the conversion of each voxel grey scale value
into a binary image that classify between void and solid.
Baveye et al. (2010) presented recently a thorough study on
the bias introduced by the variability of different segmen-
tation approaches. In grey level thresholding, the most
commonly applied method is to choose a global (single)
threshold value for the entire image (Pal and Pal 1993).
This segmentation technique is well suited in case of a
bimodal distribution where the histogram of the grey level
range is separated by one local minimum. Unfortunately, in
our case, the minimum is just above the height of half-
maximum of both signal peaks for solid and void (Fig. 2)
which is due to a considerable number of voxels over-
lapping boundary edges. However, based on the local
minimum threshold value by visually defining the mini-
mum of the image intensity value for the entire 3D dataset
(see Fig. 2), the boundary voxels are equally partitioned
into full void or solid voxels. This is justified because of the
use of monochromatic synchrotron radiation, where the
absorption coefficient for each voxel remains the same
independent of the projection angle and hence propagation
pathway to that voxel through the sample (Rennert et al.
2011). This simple approach enabled us to convert the
whole raw grey-scale image into a reliable binary black-
and-white image representing voids and solids as shown in
Fig. 3b. In such segmented images, pore space is ultimately
represented by white pixels, and the solid matrix is
represented by black pixels. Clearly, in nano-CT soil
imaging without phase contrast enhancement (Bronnikov

2002), the contrast between the various solid phases is too
low and cannot be segregated. Moreover, the mineral and
organic phases are to a degree intertwined, which cannot be
resolved at the current tomographic resolution. However,
based on only the edge enhancement effect, binarizing
between solid and voids was quite feasible.

For the next step, volume rendering is the method
used for visualizing 3D volume data from the two-
dimensional (2D) slices. The entire image volume, or a
portion of which defined as ROIs, can be used to create
a volume rendering. This data output method is based
on several visualization techniques as has been exten-
sively discussed by Calboun et al. (1999). In the
volume-rendering process, several rendering parameters
including window width and level, color map, opacity,
brightness, percentage classification, and image displayFig. 2 Sample grey-scale values histogram for the entire 3D dataset

Fig. 3 Segmentation process and volume rendering, with a the
original image 2D slice (xz plane), b the resulting segmented 2D
image, c the 3D volume rendering of all 2D images where light voxels
represent the solid matrix distribution in the ROI #1 (500×500×1,000
voxels), and d an inversed 3D image where the light pixels represent
now the pore network as an ultimate result of segmentation. Soil
sample height is 0.74 mm (=1,000 voxels)
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are optimized. Figure 3c, d shows the volumetric render-
ing results for the soil aggregate sample.

3 Results and discussions

3.1 Estimation of 3D pore-scale geometry

With the 3D images accomplished, the crucial step is to
determine pore network physical properties of the soil ROI
sample. To perform this job, we applied the GeoDict
software package on the 16-bit segmented 3D image, which
allows us to directly map the pore structure and provide us
for a more detailed analysis of the microstructure. The
GeoDict software package computes, in general, predic-
tions of physical material properties on basis of real (i.e.,
tomographic) microstructures (Pfrang et al. 2007; http://
www.geodict.com/). The bin size chosen corresponds to the
effective image resolution (0.74 μm) which means all
voxels along all three x, y, z-directions of the chosen ROI
(2.5×108 in total) are brought into account for the
calculation. The PoroDict module of GeoDict was used to
determine various geometrical gross parameters from the
CT data such as pore diameter frequency distribution, open
porosity (connected), specific surface area, and percolation
paths. Geometrical PSDs were determined by fitting
spheres into the pore volumes. While the purely geometri-
cal approach considers both open and closed porosity,
mercury intrusion porosimetry (MIP) is simulated by the
virtual intrusion of a non-wetting liquid (mercury) into the
open porosity only. The mercury is forced into the porous
media while applying pressure that is related to the
diameter of the pores accessible to the non-wetting liquid.
Bartoli et al. (1999) explain how this can be determined in
relation with the liquid surface tension and contact angle.
They compared MIP with other methods of soil structural
characterization and ascertained that mercury intrusion is
mainly controlled by the connectivity of the pore space
distribution (i.e., the pores only contribute to the pore
volume fraction if connected to the non-wetting phase
reservoir). Figure 4 depicts the trend lines of cumulative
and volume fraction percentages for the ROI #1 as an
example for both MIP and geometrical approaches. Clearly,
any pores <0.74 μm are not accounted for, because the
simulation is set to iterate by voxel size (0.74 μm). For both
the geometrical and MIP approaches, the output results are
slightly different but yet yield the same maximum diameter
(ϕ) at the 100% cumulative amounts to 85 μm, while the
pore volume fraction distribution, has a peak in the range of
2–8 μm in diameter. This indicates that 50% of cumulative
pore size, the median pore diameter D50, is less than 8 μm
(mesopores size range), i.e., 10% of the maximum diameter
only. The volume fraction frequency sharply drops to less

than 3% at pore diameters larger than 8 μm, albeit 50% of
the pores have diameters ranging from 8 to 85 μm.
Likewise, to recognize the micro- and macropore contribu-
tion to the total pore volume, the median pore diameters of
D10 and D90 are computed by geometrical simulation
approach, which represent 10% and 90% of the pores
diameter cumulative, respectively, and establishes the PSDs
ranging from finer to coarser. Table 1 summarizes the
porous media properties for the soil aggregate. The 3D
images of the volume PSD (D10, D50, and D90 of ROI #1)
determined by MIP simulation are shown in Fig. 5a–d.
Similarly, the inverted image data structure gives a solid
particle grain size distribution (GSD) of L10, L50, and L90
in the whole ROI volume (see Table 1). Estimation of the
specific surface area, however, is not based on simply
adding up the voxel surfaces but on a Poisson line process,
i.e, the count of surface crossings along rays in all
directions (Pfrang et al. 2007). This algorithm is convergent
and consistent for isotropic media (i.e., no preferred surface
orientation), but is slightly biased in case of highly
anisotropic media like pure clay.

All pores in the whole network are well interconnected,
because for both total and open porosity, the PoroDict code
yields in nearly the same value. The average porosityΦ=0.40±
0.01 cm3 cm−3 is typical for a soil characterized as loam.
Percolation path modeling is used to determine connectivity
in the pore microstructure. Figure 6 depicts a bundle of ten
such percolating capillary pathways along z-direction con-
necting open pores with diameter sizes ranging from 4 to
9 μm in the ROI #1. This feature is a clear indication of an
anisotropic soil aggregate media and can be extended to
understand the fluid flow movement in our soil sample as
detailed in the next section. From the geometrical character-
ization including the inner specific surface (see Table 1), it
appears that our ped sample is highly porous, heterogeneous,

Fig. 4 PSD of sample ROI #1 on a log10 scale: the pore volume and
cumulative fraction (%) are plotted for both MIP and geometrical
simulation represented by different trend lines
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and anisotropic as expected of a natural soil aggregate. From
these geometrical data, some gross parameters may be
calculated characterizing the state of the soil water in the
peds. This is of interest since the water regime cannot be
defined by suction tests with single soil peds.

3.2 Evaluation of matrix fluid flow in soil aggregates
at the pore scale

In the next step, permeability is to be simulated by
numerically solving incompressible creeping Newtonian
flow through the 3D pore space obtained by nano-CT. In
the present work, this simulation is based on solving the
discrete Boltzmann equation instead of the standard
continuum flow equations. Lattice Boltzmann models
(LBM) can be used on a number of different lattices
shapes, both cubic and triangular. Standard LBMs involves
an explicit time iteration scheme with a constant time step,
uniform grid, and local data dependencies, and are ideal for
parallel computing (Succi 2001). The most straightforward
method for numerical grid generation is a regular cubic
lattice based on the tomographic image itself. The unit cell
of the LBM grid thus equals the cubic voxel of the digital
nano-CT image. In the present work, the “D3Q15”
implementation of LBM with the multiple relaxation time
(MRT) approximation of the Boltzmann equation is used,
which represents a 15 vector of velocity space around the
center points of the cubic unit cells. Humières et al. (2002)
demonstrated the benefits of using such a MRT–LB
approach and its numerical stability over the classical
lattice Bhatnagar–Gross–Krook (BGK) equation. A simple
and straightforward “no-slip” velocity boundary condition
on the fluid–solid interface is applied which obeys a multi-

Fig. 5 3D imaging of soil sample ROI #1 porosimetry, with a pore size
of D10 (without solid matrix which is not clearly discernible when
integrated with the void network), b same with solid matrix represen-
tation. Blue color represents mercury distribution in pores, while red
color depicts pores size; c and d represent the same images for D50 and
D90 PSD, respectively. Soil sample height is 0.74 mm (=1,000 voxels)

Fig. 6 3D image of main
percolation pathway traces
(macropores) along z-direction
of ROI #1. Soil sample height is
0.74 mm (=1,000 voxels)

Table 1 Estimation of 3D geometrical parameters of the soil aggregate sample (mean ± SD for 3 ROIs)

ROI # Pore size distribution (PSD), μm Total porosity, cm3 cm−3 Grain size distribution (GSD), μm Specific surface area (S), m2 g−1

D10 D50 D90 L10 L50 L90

1 3.0 7.3 30.0 0.390 4.4 10.7 59.1 0.11

2 3.0 8.6 32.8 0.406 4.4 9.0 17.5 0.11

3 3.0 6.5 33.6 0.408 4.1 9.2 31.8 0.12

Mean±SD 3.0±0.0 7.6±0.9 32.2±1.5 0.401±0.008 4.3±0.1 9.7±0.8 44±17 0.11±0.01
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reflection bounce-back rule (Ginzburg and d’Humiéres
2003). The quality and accuracy of this widely used
approach has been discussed previously in the related
literature (e.g., Pan et al. 2006). For the flow simulations,
the fully parallelized single-phase LBE solver in GeoDict
was used, which was developed for both single- and multi-
phase flow (Ginzburg and Steiner 2003, Thoemmes et al.
2009). The simulations were run on a 16-core, 64-bit SUN
workstation with 64 GB of RAM. With this HPC
workstation, it took less than 2 h to compute four
unknowns for our model space, which are the three velocity
components and the pressure gradient in the space spanned
by all 2.5×108 individual nano-voxels of 0.74 μm3 size.
Clearly, the boundary of the flow domain (i.e., the pore
space) is in this case known only to the accuracy of the
tomographic image. Numerical accuracy and maximum
number of iterations for our model are set to 0.0005 and
10,000, respectively. To regulate a flow regime, a constant
pressure drop of 35 Pa is imposed between inlet and outlet
boundaries of the model system. To achieve a unique LBE
solution, a fluid density of ρ=998 kg m−3 and viscous
friction with a fluid viscosity of μ=1 gm−1 s−1 are applied
as input flow parameters in the model space assumed as
fully saturated (i.e., all pores filled with water). Note that
for all simulated results, the boundary conditions are dealt
as periodic in all computational dimensions, i.e., all six grid
faces. This implies, with a periodic boundary condition for
each streamwise directions, that the outgoing particle
populations at one end of the lattice become incoming
populations at the other end with no constraint on
macroscopic velocity or density. As depicted in Fig. 7, the
flow is driven by a linear pressure gradient which

results in the mean flow direction of the pressure field
from bottom to top along z-direction. A pressure
gradient at local porosity determines ultimately the fluid
velocity vector field. In principle, it is feasible to make
animations of the fluid velocity field developing upon
injection of a tracer. For this paper, Figure 8 shows a
velocity field blueprint along z-direction resulting from a
steady-state velocity vector field. The latter condition is
reached when a pressure gradient at local porosity remains
unchanged, at which the numerical simulation is con-
verged and the model iteration run terminates to proceed
further on.

Figure 9 presents the velocity field stream fluxes along
z-direction. The variation of different colors with an arrow
point indicates the flow velocity magnitude in the 3D
porous soil aggregate media. The color code depicts that the
majority of the velocity field is in range from very low
(blue color, ≈0 m/s) to moderate (green color, ≈2×10−3 m/
s) magnitude. This is to be expected as the soil is a
heterogeneous anisotropic medium. In an anisotropic
medium, a hydrodynamic parameter matrix calculated in a
3D Cartesian coordinate system (i.e., permeability tensor of
3×3) is needed, which can be calculated from the velocity
vector field and pressure difference. Permeability is the
measure of understanding the ability of porous media to
conduct flow which is in effect the coefficient in Darcy’s
law for porous media. The flow permeability coefficient, k,
is generally a tensor-valued measure of the ability of a
porous medium to transmit fluids. It is defined for
relatively slow, steady-state, isothermal, Newtonian fluid
flow through porous media by Darcy’s law. The
permeability tensor is therefore determined at the scale

Fig. 7 3D imaging of the pressure field exerted from bottom to top
along z-direction of ROI #1, where part a represents the distribution in
the pore geometry, and b the same image pattern along with solid
matrix. The red to blue colors represent the maximum (35 Pa) to
minimum (≈0 Pa) pressure gradient. Soil sample height is 0.74 mm
(=1,000 voxels)

Fig. 8 Velocity vector field in 3D along z-direction of ROI #1, where
part a shows the distribution magnitude in the pore geometry, and b
the same magnitude distribution imaged with solid matrix. The blue to
red colors depict the lower to higher local fluid velocities with
moderate velocity of 2×10−3 m/s (green color). Soil sample height is
0.74 mm (=1,000 voxels)
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of 1 Darcy (=10−12 m2). Table 2 shows the resultant
output parameters of the LBE fluid flow model for the soil
aggregate ROI #1. As a main result of the model, the
permeability tensor normal to z-direction is much higher
(nearly 60%) than both the other permeability tensors
normal to x, y-directions. This result confirms that our
sample has a highly connected macro- and mesopores
network in the z-direction. Estimations of mean flow
velocity and permeability are an important prerequisite to
understand the movement of water in the soil aggregate
system that has great impact on the overall solute transport
and biogeochemical activities along the soil interface
network. Once the physical permeability tensor, k, is
established, it can be recalculated into the effective
saturated hydraulic conductivity, Ks=kρgμ

−1 (cm day−1),
for the respective physical boundary conditions. In Table 3,
the respective Ks values for all three ROIs and directions
are listed. Nonetheless, the variation of geometrical
parameters and hydraulic conductivity values thus
obtained for the three independent subsample ROI
volumes is rather moderate (see Tables 1 and 3).

The volume-averaged permeability can now be
compared with predictions based on empirical formula

such as the well-known Kozeny–Carmen equation, k ¼
Φ3=2S2 which relates the permeability, k, with the
porosity, Φ, and the specific surface, S, of the porous
medium. The common physical interpretation of this
equation is that 1/S is in principle an intrinsic length scale
associated with a typical pore size, and the power-law
portion is accounting for the tortuosity and connectedness
of the pore space. The average saturated hydraulic
conductivity thus predicted for our ped samples is Ks=
90 cm day−1, which agrees with our LBM-simulated
volume-averaged Ks=105±24 cm day−1 (mean of all ROIs
and directions, see Table 3). However, this agreement
happened merely by chance because of the scaling effect.
The main factor contributing to the variation in permeability
for a given porosity is the specific surface. The rescaling of a
porous medium by a factor of n will preserve its porosity but
drastically change the permeability by a factor of n2 (i.e., the
specific surface decreases by a factor of n). This scaling
effect is the reason why in literature many modifications
exist of the original Kozeny–Carmen relation in case adapted
by additional factors to the individual sample scale, in
particular, in the high (sand) and low (clay) porosity regimes.
Other empirical predictions more common in soil science are

Table 2 Evaluation of LBE
simulation run results for
ROI #1

Simulation
direction

Running time on
16-node HPC, h

Mean flow
velocity (v), m s−1

Permeability tensor (k), m2

x 1.08 8.38×10−5 8.86×10−13 5.08×10−14 1.69×10−13

y 1.71 8.12×10−5 4.76×10−14 8.59×10−13 −5.31×10−13

z 1.95 6.92×10−5 1.62×10−13 −5.04×10−13 1.46×10−12

Fig. 9 3D image of the velocity
magnitude with directional
streamlines. Both images dis-
play the possible velocity vector
magnitude with 3D arrow direc-
tions. The blue to red colors
depict the lower to higher local
fluid velocities with moderate
velocity of 2×10−3 m/s (green
color). Soil sample height is
0.74 mm (=1,000 voxels)
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statistical regression equations involving the GSD instead of
the specific surface and bulk density instead of the porosity,
the so-called “PTFs.” Therefore, PTFs use only standard soil
textural information and bulk density and are a common
simple empirical way to estimate hydraulic parameters
(Pachepsky and Van Genuchten 2011). Clearly, the PTF
input parameters do not describe the structure of pore space
per se like the Kozeny–Carmen relation and therefore do not
represent hydropedological relationships between structure
and hydrologic functions on the pore scale. Tietje and
Hennings (1996) recommend for German soils of textural
class Slu using the Campbell equation (Campbell 1985):

Ks ¼ 339ð1:3=rbÞ1:3bexpð�6:9fc � 3:7fsÞ ð1Þ

where the predictor variables are the dry bulk density, ρb
(1.5 gcm−3), the clay fraction, fc (0.15), the silt fraction, fs
(0.45), and b=GMPS−0.5+0.2GSD, with the geometric mean
of the particle size GMPS (mm) and the geometric standard
deviation of the particle size distribution GSD. The latter two
parameters can be precisely calculated from the tomographic
data (see Table 3). However, the thus predicted moderate
saturated hydraulic conductivity Ks=12±2 cm day−1 deviates
by one order of magnitude from our LBM-simulated
volume-averaged Ks value. Results of PTF applications are
always uncertain, and the accuracy of PTFs outside of its
development dataset is generally to be tested. It is well
known that PTFs are underestimating the saturated hydraulic
conductivity compared to field-measured values due to
preferential flow effects (Fox et al. 2005). This possible
explanation appears to be justified even on the spatial
domain of a single loamy soil aggregate with macropore
flow paths as shown in Fig. 6. The presence of macropores

can cause an error in the estimation of the saturated
conductivities even with most sophisticated PTFs based on
the Mualem–van Genuchten equation, such as used by the
software CalcPTF based on a multi-model PTF ensemble
prediction technique (Guber and Pachepsky 2010).

4 Conclusions and perspectives

The implementation of a three-dimensional real void geometry
image of a soil aggregate using synchrotron-based nano-CT
provides us with the essential input to calculate, at the pore
nano-scale, both geometrical network parameters and fluid
flow properties. In our study, we presented a pore-level
modeling of incompressible fluid flow on the basis of the
LBE for soil media, i.e., heterogeneous velocity field vector
while applying straightforward simple boundary conditions.
The results indicate that the porous media within the image
domain is highly heterogeneous and anisotropic. For the fluid
flow simulation, the LBE model combines with three virtual
elements: (i) the reliable description of the pore space, (ii)
solutions of incompressible Navier–Stokes equations, and (iii)
utilization of boundary conditions to acquire fluid properties.
We found GeoDict software to run quite smooth and stable on
a parallelized high-performance cluster computing environ-
ment. Thus, the established model can be used as a tool to
study flow and solute transport under different hydraulic
conditions in soil. With respect to the reproducibility of our
fluid flow simulation approach, the most important single
source of uncertainty in the numerical results is the rather poor
statistics obtained due to the low number and small ROI size.
This work has shown, however, that even at this limited
subsample size, the percolation tensor calculation yields in
reproducible results. The overall statistical precision of the
values of permeability computed for three subsamples is
moderate for the flow conditions applied and not essentially
larger than the typical uncertainty of corresponding results
from whole soil column experiments. Large enough samples
are warranted in order to obtain statisticallymeaningful results.
In practice, however, the restricted HPC capacity necessitates
compromising between high resolution and large sample size.
Fast advancements in computer capability and performance
are a reliable prerequisite for the upscaling of this method
(≥2,0483 voxels) even at the submicron spatial resolution of
(currently) 0.37 μm. Nonetheless, technical constrains mainly
due to computing capacity currently limits the sample size for
pore structure imaging to a factor of 10,000 times the
resolution (1012 voxels) and for fluid flow modeling to a
factor of 1,000 times the resolution (109 voxels). Although
this variation does not necessarily correspond to the large-
scale variation of the entire soil Ap horizon but merely the
variation within the yet rather small ROIs scanned, this
surprisingly good precision arising from discretization and

Table 3 Evaluation of reproducibility and comparability for saturated
hydraulic conductivity predictions

Simulation
direction

LBE model
(Ks), cm day−1

GMPS, mm GSD (−) PTF predicted
(Ks), cm day−1

ROI #1 0.050 2.58 14.1

x 75

y 73

z 123

ROI #2 0.017 2.44 10.4

x 71

y 109

z 135

ROI #3 0.036 2.54 13.1

x 72

y 126

z 105
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image quality should provide an important prerequisite for a
reliable upscaling. Saturated condition was chosen as a first
approximation for fluid flow modeling, but unsaturated
conditions may be represented by a multi-phase model with
water and air as two separate void-filling phases. With this
high resolution, the next step is to extend the simulations to
water retention curves of unsaturated soil samples and
compare with those predicted by PTFs. Moreover, accurate
values of the macroscopic parameter (e.g., permeability,
capillary pressure), which depend on the pore structure and
pore-level physical processes, can be taken into account,
while modeling at the continuum (lab) scale where a concept
of representative elementary volume (REV) is essential.
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We propose a post-reconstruction correction procedure for the beam-hardening artifact that neither
requires knowledge of the X-ray spectrum nor of the attenuation coefficients in multi-mineral geologic
samples. The beam-hardening artifact in polychromatic X-ray computer tomography (CT) hampers
segmentation of the phase assemblage in geologic samples. We show that in cylindrically shaped
samples like rock cores, the X-ray attenuation value for a single phase depends mainly on the distance
from the center of the cylinder. This relationship could be easily extracted from the CT data for every
phase and used to infer the presence of these phases at all positions in the sample. Our new approach
enables simple segmentation of the phases for further analysis. Additionally, we propose a simple
mathematical exercise for parallel beam geometry to show how recent experimentally observed
deviations from Beer's law could be incorporated to model the beam-hardening artifact and simulta-
neously be used for its removal.

& 2013 Published by Elsevier Ltd.
1. Introduction

X-ray computed tomography (CT) is a well-established diag-
nostic tool in life sciences. A quarter century ago, a medical CT
scanner was for the first time adopted for work with geological
samples (Vinegar and Wellington, 1987). Computer tomography
has since matured gradually and has reached micrometer resolu-
tion (μCT) suitable for the imaging of bulk phase distribution and
microstructure, and even temporal resolution for in-situ multi-
phase fluid transport studies (Berg et al., 2013). Recent hard- and
software developments in the areas of high-resolution detector
technology and user-friendly image reconstruction tools have
given a tremendous boost to the use of desktop-based mCT
instruments and techniques to address geologic problems.
However, the reconstructed three-dimensional (3D) image quality
is affected by several artifacts (Ketcham and Carlson, 2001;
Krimmel et al., 2005). For heavy matrices such as geologic samples,
the so-called beam-hardening artifact (BHA) derived from the
X-ray spectrum is the most severe (Ketcham and Carlson, 2001).
Although mCT provides 3D images of objects composed of multi-
phase assemblages, and it is possible to distinguish these phases
with the naked eye, BHA hampers automatic image processing to
separate these phases. This is a common problem in computer
science today, where tasks that are very simple for the human
lsevier Ltd.

ax: þ49 6131 392 3070.
vić).
brain (like the recognition of a simple object in an image) are still
problematic for computers (Hawkins and Blakeslee, 2004). The use
of mCT data in a quantitative manner, e.g. to infer the modal
abundances of the minerals present or automatic estimation of
their 3D shape parameters, is thus more severely hampered by
artifacts than classical destructive microscopic techniques.

The main consequence of the BHA is that in mCT imaging, there
is a range of attenuation values (hypo- or hyper-density effects like
cupping and streak artifacts) rather than a single value for each
single solid phase. The same solid phases seem to have generally
higher attenuation values at the periphery than in the central
regions of rock cores (Fig. 1b). This makes it quite difficult to
quantitatively separate the different minerals, or to identify com-
plex mineral relationships such as exsolution and zonation effects
within a sample. The BHA effect originates in the use of polychro-
matic X-ray sources. All mCT reconstruction procedures are based
on the assumption that attenuation coefficients with monochro-
matic X-rays do not change during passage through the bulk
material in accordance with Beer's law. This is true only for
synchrotron-based X-ray sources, but not for polychromatic
X-ray beams common for desktop instruments. Since the low-
energy part of the spectra is absorbed more during its passage
through the sample, there is a continuous change in energy
spectra, and consequently a non-linear change of attenuation on
the X-ray propagation through the sample. The low-energy part of
the spectrum is gradually removed and the X-ray beam becomes
“harder” as a function of travel distance, which is why the artifact
is called beam-hardening. In the resulting image, a single solid
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Fig. 1. (a) Horizontal cross section through an evaporite rock core. Solid lines represent profiles plotted on following figures: (b) profile AB (in a) shows a typical example of
the beam-hardening artifact (BHA): instead of a single attenuation coefficient for a particular phase (dashed line), attenuation coefficients systematically decrease from the
periphery to the center of the cylindrical rock core, (c) reconstructed attenuation coefficients at identical distance from the center (along circle C, 250 pixels away from the
center, taken at every 0.361) of the rock core. In this example, a single attenuation coefficient (within error) allows a simple segmentation of the phases and (d) profile OD
shows the fortuitous example where the whole beam-hardening curve for the brighter material was extracted from a single profile. The darker phase in this slice does not
occur in the central region, so values on profile OE are not giving the whole BHA curve and for central positions it is necessary to obtain the values from other slices.
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phase is then represented by a range of reconstructed attenuation
coefficients (or CT numbers) and consequently, the reconstructed
image of a homogeneous mono-phasic sample seems to have
changing densities depending on the voxel location.

A number of correction approaches have been proposed to
resolve the BHA problem, but so far no general solution has been
found. These methods are pre-filtering, linearization, post-
reconstruction and dual energy methods. They are described in
the following chapter. All of these methods, however, fail to
remove the BHA in complex geological samples, since their
application is limited to specific cases. For example, the pre-
filtering method works well with light materials but complications
arise when dealing with dense materials; the linearization method
works very well but only for objects built only of one material;
post-reconstruction methods work well only if segmentation of
the materials is possible despite BHA; the dual energy method
works well for medical purposes since it deals with materials of
fairly known composition (e.g., brain tissue, water, fat, bone) but
fails in the case when unknown materials are studied.

In this paper, we present an intriguing observation that the
BHA in the reconstructed image is not only specific to each
material but it also a radial function, i.e. it depends for each
material only on the distance from the center of cylinder.
This observation leads to a straightforward and simple method
which uses the BHA to distinguish different materials and in this
process can be applied to produce an image without beam-
hardening. Additionally, some observations made by Van de
Casteele et al. (2002, 2004) provide a possibility to describe the
beam-hardening process in much simpler mathematical terms and
explain our observations.
2. Overview of existing beam-hardening correction methods
and their limitations

2.1. Pre-filtering

Hardware pre-filtering is the simplest and most widely used
technique for reducing BHA by placing a filter, usually made of
aluminum, copper, brass or other metal foils, between the X-ray
source and the object, (Jennings, 1988). In this way, the low energy
X-rays are already removed before the beam reaches the sample
and the spectrum of the X-ray beam becomes pseudo-
monochromatic. This is based on the fact that for the higher
energy part of the spectrum the absorption coefficient is lower
and, as a consequence, higher energies are harder to remove from
the spectrum. This pseudo-monochromatization approach may
reduce the extent of the artifact, but in most cases cannot
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completely remove it. Although the samples built of the light
materials require a smaller filter thickness than heavier materials,
it is necessary to do separate study with multiple measurements
of a single sample of unknown composition with the different
filters, or different filter thickness of particular filter, to conclude
what is the necessary thickness of the specific filter to remove the
lower part of the spectra. Without that it can turn out that the
filter thickness was not sufficient enough and that the BHA is still
present. Furthermore, using filters reduces the intensity of the
measured signal for all present phases and increases the noise.
As a consequence, it reduces the contrast resulting in a final image
of lower quality (Van Geet et al., 2000, 2001; Ketcham and Carlson,
2001; Van de Casteele et al., 2004).

2.2. Dual energy method

The dual energy approach is primarily based on a fact that the
absorption coefficient depends not only on the energy but also on
the chemical composition (effective atomic number) and density
of the phase as a consequence of both photoelectric absorption
and Compton scattering. Based on measurements at a single X-ray
tube voltage, it is not possible to differentiate materials on basis of
their density and chemistry. However, with measurement at two
different tube voltages (different source spectra), this dual infor-
mation can be derived (Alvarez and Macovski, 1976; Macovski
et al., 1976; Lehmann et al., 1981; Remeysen and Swennen, 2006;
Ivakhnenko, 2010). In this way the materials which are of similar
attenuation coefficient but different chemistry or density could be
differentiated. However, use of this approach also for beam hard-
ening correction requires accurate a-priori knowledge about
chemical composition and density of the materials present in
sample (Macovski et al., 1976). This can be achieved in routine
medical examination but not with unknown materials (Van Geet
et al., 2000, 2001).

2.3. Linearization

The linearization method is simple and straightforward for
specimen build only of a single material. The nonlinear relation-
ship between attenuation and the distance X-rays travel though a
sample could be acquired through reference measurement and can
be fitted with polynomials. Using this polynomial approach the
beam hardening can be corrected, i.e. every value on the poly-
nomial is corrected towards the linear trend line which is expected
in the monochromatic beam case (Brooks and Dichiro, 1976;
Herman, 1979; Hammersberg and Mångård, 1998; Kachelriess
et al., 2006).

The reference measurements are usually done on a step wedge
shaped object. This step wedge shaped object has to be composed
of the same material as the specimen, this could be in many
occasions difficult to achieve. Furthermore, the reference measure-
ment has to be performed under the same conditions (voltage,
current, material, etc.) like for the specimen itself. Alternatively,
the deviation from the Beers law determined out of the recon-
structed CT image itself, since the specimens are build only out of
one material.

Whatever the mechanism of learning about the deviation from
Beers law is, through reconstructed image or through reference
measurements, this information itself is not enough for the BHA
correction of multi-material specimens. Namely, for correction of
the deviation from Beers law in projections, it is required to know
not only the deviation from Beers law of every material present
but also the X-ray travel path (distance) through each material in
each projection. Since the linearization method is limited to single
material objects, it has no applicability in removing BHA in multi-
component materials, which dominate geological samples.
2.4. Post-reconstruction methods

There are also a couple of post-reconstruction algorithms that
basically change the raw sinogram data from a polychromatic-
nonlinear towards a monochromatic-linear relationship between
attenuation and distance of X-rays passing through an object at
different distances to the phase of interest (Van de Casteele et al.,
2002, 2004; Krumm et al., 2008). For this method it is necessary to
know how attenuation at the given measurement condition is
changing with thickness for each single phase. This relationship
can be acquired either through measurements of wedge-shaped
material standards (Van de Casteele et al., 2002, 2004) or by
inferring it from projection data using beam tracing algorithms
(Krumm et al., 2008). This is basically the same as linearization
method but in following step based on first reconstruction, the
segmentation of the phases is performed so that the travel paths
or distances traveled by X-ray could be inferred for each projec-
tion. In some earlier papers (e.g. Ruegsegger et al., 1978) segmen-
tation was not necessary since the spatial distribution of the
phases in a samples was known. But only with this information,
the projection data in the sinogram could be finally linearized and
the attenuation values can be corrected towards a monochromatic
linear trend line. This yields a new BHA-corrected sinogram, which
is then reconstructed for a final BHA-free image. The limitation of
these methods is that they are able to remove BHA in multi-
material samples only if the materials can be segmented in the
first reconstruction image, which for most geologic samples is not
possible. BHA in most geological samples hinders segmentation of
the phases and precludes quantitative use of mCT. Post-
reconstruction correction methods (Van de Casteele et al., 2002,
2004; Krumm et al., 2008) were limited to samples for which the
material absorption coefficients deviate so much that BHA does
not preclude segmentation. Segmentation thus presents the major
difficulty for accurate removal of the BHA problem.
3. Mathematical analysis of the BHA problem

The reconstruction procedure assumes a linear relationship
between the attenuation and the absorption of the object accord-
ing to Beer's law. However, in the polychromatic case each energy
fraction is attenuated with a different attenuation coefficient for
the same material, and attenuation generally increases for
decreasing photon energy. The attenuation coefficient is changing
non-linearly with distance, which causes the non-linear deviation
from Beer's law even for homogeneous material. Van de Casteele
et al. (2002, 2004) examined a number of phantom samples and
found that the signal spectra can be described by a bimodal energy
distribution, i.e. can be decomposed linearly into two basic
functions, of which one is characteristic for low propagation
distances and a second one for large distances. The relationship
between attenuation and absorption coefficient with distance is
then also bimodal, such that at small distances it is equal to Beer's
law, while at large distances it is following Beer's law but shifted
by some constant depending on material and measurement
conditions (acceleration voltage of X-ray tube, etc.). This observa-
tion was subsequently used to suggest a correction method of the
sinogram data for the beam hardening before reconstruction
(Van de Casteele et al., 2002, 2004). The method works well for
mono-phasic materials and could be used also to correct for the
BHA in objects built of multi-component samples, but in the latter
case it is necessary to segment the reconstruction image first.
However, for the majority of geologic samples this is not possible
due to beam hardening. Although the method could not favorably
be applied in these cases, these observations provide a funda-
mental understanding of the beam-hardening process and could
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be used to develop another approach for the solution of this
problem. Moreover, these observations enable us to quantify the
bias in the sinogram and to calculate and predict how this bias will
propagate during the reconstruction calculations and result in the
beam-hardening artifact on the final reconstruction image.

In fact, the non-linear relationship between the attenuation
and absorption coefficients with distance can be represented by
two linear relationships to predict how this will affect calculation
during reconstruction. First, the attenuation for small distances is
equal to Beer's law, −ln(I/I0)¼μ1d, while for large distances it
becomes −ln(I/I0)¼Kþμ2d. This is a simplified version of the
equation (7) by Van de Casteele et al. (2004), where K denotes
the intercept of the term μ2d. Since for small distances there is no
deviation from Beer's law, this region should produce a region
with μ1 during reconstruction but for large distances the constant
K represents the bias from Beer's law. We will show below how
this simple translation may lead to the beam-hardening artifact
during reconstruction. In the case of a mono-phasic cylindrical
object without the use of hardware filters, two regions may be
separated depending on distances in sinograms, one region with
relatively small distances where there is no beam hardening
artifact, and another region with relatively large distances where
the attenuation values are increased by the K constant. Conse-
quently, after reconstruction there must be a small region at the
periphery of the cylinder without beam hardening. However, this
is not observed. Apparently, the critical distance where Beer's law
is still valid is very small, and in cases with large samples and
relatively small resolution the distances by which X-rays pass
through the sample are always greater than this critical distance.
For a rock-core cylinder of 15 mm diameter and a spatial resolu-
tion of 50 mm per pixel in a slice projection, the smallest distance
X-rays pass through a sample is 0.5 mm (calculated using simple
trigonometry) which is larger than the maximum critical distance
where Beer's law applies (Van de Casteele et al., 2002, 2004).
Under such conditions there is only one biased region in the whole
sinogram. In this simplest case, every attenuation value in the
sinogram is enhanced by the constant K, and the sinogram can be
represented as a function f(ξ,Φ). The parameters ξ and Φ are
coordinates in Radon space, where Φ is the projection angle, and ξ
represents a position on the projection line. The constant K is
represented by a rectangular function Π(R/2ξ) for every projection
angle Φ (The rectangle function is usually designated by Greek
Fig. 2. (a) Simulated BHA for a parallel beam geometry of a cylindrical sample consist
distance from center and (b) simulated BHA for a rectangular sample in a parallel beam
sample), which depends not only on the distance but also on the angle in radial coordi
letter Π since its graph has the similar shape). For the case of a
parallel beam geometry, the distribution of absorption coefficients
in a slice projection m(x,y), including the bias introduced in the
poly-chromatic case, involves solving the inverse radon of sino-
gram f(ξ,Φ) according to the central slice theorem. This corre-
sponds to a one-dimensional Fourier transformation of the
sinogram for each angle Φ, then changing the coordinate system
in Fourier space and at the end taking a two dimensional inverse
Fourier transformation. The one-dimensional Fourier transforma-
tion of a rectangular function Π(R/2ξ) is a scaled sinc-function

Pðρ,ΦÞ ¼
Z ∞

−∞
e−2πiðρξÞK∏

R
2ξ

� �
dξ ¼ 2KR

sinð2πRρÞ
2πRρ

¼ KR
sinð2πRρÞ

πRρ
ð1Þ

upon changing the orthogonal into a polar coordinate system with
vectors Vx¼ρcos(φ) and Vy¼ρsin(φ), we get

FðVx,VyÞ ¼ FðρÞ ¼ KR
sinð2πRρÞ

πRρ
ð2Þ

and upon taking the inverse Fourier transformation in polar
coordinates

f ðrÞ ¼ 2π
Z ∞

0
FðVx,VyÞJ0ð2πrρÞρdρ ð3Þ

where J0 is a Bessel function of zero order and first kind

f ðrÞ ¼ 2π
Z ∞

0
KR

sinð2πRρÞ
πRρ

J0ð2πrρÞρdρ ð4Þ

The equation becomes ultimately an integral of a Bessel
function which can be solved (Abramowitz and Stegun, 1964)

f ðrÞ ¼ 2K

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2−r2Þ

q ¼ K

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2−r2Þ

q ð5Þ

A solution for K¼1 is shown for a simulated mono-phasic
cylindrical phantom sample in Fig. 2a. For objects of non-
cylindrical shape, the solution will be a non-radial function. For
the case of the rectangular object and K¼1, the final result is
depicted in Fig. 2b. The result is yet different from that observed
for common laboratory measurements, because the actual beam
geometry in desktop machines is not parallel. With a similar
calculation for cone beam geometry, however, it is possible to
predict the BHA for any shape, but that is out of scope of this paper.
ing only of one phase. Beam hardening is a radial function that depends only on
geometry. Note that beam hardening is not a radial function (as for the cylindrical
nates.
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However, once the basic relationship inherent in the BHA is
principally understood from a mathematical point of view, a simple
correction approach may already be suggested.
4. Samples and experimental conditions

The custom-built mCT scanner used at our laboratory (ProCon
CT-Alpha, Germany) is equipped with a microfocus X-ray tube
(Feinfocus, Germany) featuring a diamond coated anode target
with a focal spot size of a few μm. X-ray data acquisition is
performed with a 2048�2048 pixels (“2k”) flat panel CCD
detector of size 105 mm�105 mm (Hamamatsu, Japan). Four
cylindrical test objects were measured, two single-phase samples
and two real multi-mineral rock core samples. The latter are
granite and an evaporite rock composed of anhydrite with
halite-sealed fractures. The first mono-phasic reference cylinder
was made out of pure aluminum with a diameter of 30 mm;
a second one of same dimensions was made out of plastic. Both
objects were scanned by the same source voltage of 120 kV and at
the same distance to the detector panel for an ultimate resolution
of 57.1 μm per pixel. The rotation step was set at 0.451 with 0.5 s
exposure time, which corresponds to 800 projections for a full
3601 data acquisition. First, for an evaluation of the influence of
different filters, these samples were measured once without filters
and again with 1.0 mm aluminum, 0.5 mm copper, and 0.15 mm
silver foil filters. The evaporite rock cylinder of 30 mm in diameter
was measured at a source voltage of 130 kV with a 0.15 mm silver
filter at a resolution of 53 μm per pixel. A granite cylinder of
18 mm in diameter was measured at a 100 kV source voltage
without a filter at a 20.4 μm per pixel resolution. Exposure time
was 1 s, with the same rotation step as for the previous samples,
which yields 800 projections. Precise centro-symmetrical align-
ment of the cylinders along the vertical axis is an important
prerequisite for success with the BHA correction procedure.
Fig. 3. (a) Vertical cross section of an aluminum cylinder sample. The profile is show
(b) values at the identical distance from the cylinder center are constant along the vert
The reconstruction of the 3D dataset was performed by the classical
backprojection-type algorithm according to Feldkamp et al. (1984).
5. Segmentation procedure based on observations of
beam-hardening artifact

Depending on the shape of the object, isolines of reconstructed
attenuation values follow different complex paths. For the special
case of axial-symmetrical mounted vertical cylindrical samples,
however, there is a simplification in that the isolines approach the
shape of circles. On circular sections normal to the axial z-axis in
the cylinders, the points at the same distance from center
representing the same composition yield the same reconstructed
attenuation value (Fig. 1c). In other words, within each slice of the
cylinder perpendicular to z-axis, points of same composition on
any circular trajectory have the same reconstructed attenuation
values within experimental error. The beam-hardening artifact is a
radial function, and consequently the reconstructed attenuation
value depends on the distance from the center of the cylinder
(beam-hardening curve). In addition, values along the z-axis do
not change, excluding the small areas at the top and bottom of the
cores (smallest and largest z-coordinates, Fig. 3). These areas
reside outside the Tam-Danielsson window (Danielsson et al.,
1997; Tam et al., 1998), and their reconstruction is therefore
problematic. Unfortunately, they cannot be segmented and have
to be cut away from the image. The change of attenuation values in
the slice plane perpendicular to the z-axis follows an exponential
or parabolic beam-hardening curve from the center to periphery,
with a bump at the periphery close to the edge (Fig. 4). The exact
location and shape of the bump depends on the material used and
could become narrow with large magnitude, or wider with lower
magnitude. In the case of metal foil filtering, the bump may
disappear for some materials.

For our approach it is necessary to extract from the recon-
structed data how attenuation values change from the center to
n in (b) and the white curved lines are marking the Tam–Danielson window and
ical axis, except for very low and very high Z (outside of Tam–Danielson window).
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the periphery for each material, i.e., the first step is extraction of
BHA curves. Unfortunately, extraction of beam-hardening curves
cannot be done automatically. Rather, it is necessary to extract the
data of each material from the center to the periphery manually. In
the simplest case, it is sufficient to search for a profile where only
one material appears to yield a BHA curve (profile OD on Fig. 1a).
However, this case occurs rarely in geologic materials. The
approach may be applicable to samples in which one phase is
particularly abundant and uniformly distributed. For less abundant
and/or heterogeneously distributed phases, it is necessary to
acquire several profiles from a single slice, or different slices,
to ensure that the values at all positions are extracted.

A single beam-hardening curve may still suffice, but because of
a relatively weak signal-to-noise ratio, precision could be
increased significantly by bundling a larger number of such beam-
hardening curves and calculating their mean (Figs. 4c and 5).
This manual procedure could thereby become tedious and demand-
ing, especially in cases of relatively small grain size domains. In
principle, a number of algorithms may be used for an automatic
recognition of such lines and curves in images (Hansen and Toft,
1996; Stanford and Raftery, 2000).

Alternatively, we noticed from the mathematical derivation of
the BHA problem discussed above, that the radial profiles could be
well approximated with a single curve. We found empirically that

an exponential curve of the type μ¼ μ0e−k
ffiffiffiffiffiffiffiffiffi
R2−r2

p
(Fig. 4a, b)

approximates the data very well, where m0 and k are constants, R
is the diameter of cylinder, and r is the actual distance of the phase
pixel from the center of the cylinder. The recent excellent software
Fig. 4. BHA curves for (a) an aluminum cylinder and (b) plastic cylinder with different

μ¼ μ0e−k
ffiffiffiffiffiffiffiffiffiffi
R2−r2

p
approximated the BHA curves, (c) considering the large measurement err

(solid lines) of a large number of profiles. Dashed lines represent average value7250 and
that the darkest phases (quartz, K-feldspar and Na-rich plagioclase) have an overlap wi
solution for automatically finding mathematical dependences
from data could also be used to obtain improved approximations
(Schmidt and Lipson, 2009).

In a subsequent step, constants can be found by a simple least
square fitting procedure. The implementation of this approach first
requires information about the distribution of reconstructed
attenuation values of a certain phase from the center to the
periphery, as discussed above (either by taking a mean of a
number of profiles or by approximations). Based on that informa-
tion, an image of an artificial object consisting exclusively of that
phase is constructed. This artificial object has the same attenua-
tion values of the phase concerned in the real rock sample, but
differs significantly from other phases. Then, the simple arithmetic
difference between the measured data and the artificial object
data provides information about the presence of the phase at all
positions in the studied sample. It is around zero (7 error) if the
phase is present and smaller or bigger than the error at positions
of the object where another phase is present (Fig. 6a). Reiteration
of this correction procedure for all different solid phases yields the
segmented image.

In summary, the procedure consists of six steps: (i) from the
acquired data, the extraction of the beam-hardening curve for one
phase, (ii) construction of an artificial object built only of that
phase, (iii) calculation of the arithmetic difference between the
artificial object and the reconstructed image, (iv) confirmation that
the phase is present at positions where the result is around zero
(7standard deviation), or (v) confirmation that a different phase
is present at that position if this difference is larger than the
filters applied. The applied filters do not remove BHA. The function (dashed lines)

ors due to noise, precision of the BHA curve is improved by taking the average value
(d) plot of the data used for the extraction of BHA curves for a granite sample. Note
thin the error with calcic plagioclase (gray).



Fig. 5. (a) Horizontal cross section through an evaporite rock core, (b) image created by stacking 1000 profiles from the center to the periphery at an interval of 0.361. In this
way it is easier to extract BHA curves with Cartesian coordinates for each phase. Black boxes are areas fromwhich the data are extracted and shown in (d), (c) plot of all data
from a single slice as function of distance and (d) superimposed by two additional phases (darker) extracted from areas shown in (b). Note that the phase with lower values is
not present in the central region, requiring that this part of the BHA curve for this phase must be extracted from another slice.

Fig. 6. (a) The original evaporite sample image and (b) the arithmetic difference between the original image and image for a calculated mono-mineral assemblage. A result
value around zero means that the targeted mineral is present at that position. (c) Final segmented image for an evaporite sample, following a stepwise arithmetic-difference
assignment approach shown in (b).
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standard deviation, and ultimately (vi) repetition of this procedure
until the distribution of all phases is accounted for. Occasionally, it
is not necessary to repeat the procedure for each phase but it
suffices to have values for one phase. A differential image between
the original dataset and that of this phase could then be applied to
segment the image. In the areas where this phase is present, the
attenuation values should become around zero but other materials
have non-zero and mineral specific values, which could then be
used to segment all phases (Fig. 6b). The final result of this
correction procedure for the evaporite rock sample is shown in
Fig. 6c.

In a multi-component case where several phases have similar
attenuation coefficients, phase separation is not possible and
eventually these phases have to be treated as a single phase.



Fig. 7. Horizontal cross section through a granitic rock core: (a) original reconstructed image, (b) image of absolute difference between original image and darkest phase
object. Notice that the grain boundaries of the minerals that are not separable are more clearly visible and (c) segmented image of the granitic sample.
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For example, in a granite sample, the silicates quartz and feldspar
(albitic plagioclase and orthoclase) have quite similar attenuation
coefficients (lowest values in Fig. 4d), while plagioclases with
higher anorthite content have slightly higher values, but still have
large overlap with lowest phases within error (Fig. 4d) and
therefore cannot be separated from quartz and other feldspars.
However, even if it is impossible to separate these phases using
our segmentation method, the resulting image (original image
minus values of darkest phase) is of better quality and more clearly
shows the grain boundaries of these phases (Fig. 7b). The final
segmented image for granite is depicted in Fig. 7c.
6. Conclusions

In cylindrically shaped samples there is a simple dependence of
beam-hardening of each phase on its position in a sample
(here distance from center of a rock core cylinder). This relationship
can be extracted from the first reconstructed image and is used to
infer its positions in each slice, allowing a rigorous segmentation of
the image. In non-cylindrical samples, beam-hardening is not a
radial function and changes along each angle. While image segmen-
tation is possible, this approach may be too complicated and
impractical for non-cylindrical samples. Here it is also shown how
the model of Van de Casteele et al. (2002, 2004) can be used to
calculate BHA in parallel beam geometry. Our main suggestion for
further research is that such calculations should be extended for
cone beam geometry of desktop mCT machines to enable segmenta-
tion and BHA removal regardless of sample shape.
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Abstract 

Water retention relationships between capillary pressure, fluid/fluid interfacial area, and hydraulic conductivity were studied as 

functions of water saturation in a soil aggregate using numerical methods. The soil pore structure was investigated using 

synchrotron-based tomography, at 0.74 m spatial resolution, and a pore-morphology approach was then used, fitting spheres 

into the pore space image according to the pore radii. The air and water phase distributions were quantified at the pore scale 

during simulated drainage and imbibition cycles, and the capillary pressure was calculated using the Young–Laplace equation. 

The air–water interfacial area reached a maximum at moderate water saturation in both drainage and imbibition cycles, the 

imbibition maximum being higher. The lattice Boltzmann simulation approach showed that uniformly distributed air blobs 

hampered the movement of water at different water saturation levels. The simulated hydraulic conductivity in the x-, y-, and z-

directions reached 13.4 cm d
−1

 for both cycles, at an average flow of 4.2·10
−7

 m s
−1

, suggesting creeping flow at the pore scale 

when the pressure drop was 1 Pa in each direction. The hydraulic conductivity during drainage and imbibition showed relatively 

small hysteretic effects, caused by the range of pore sizes present affecting the flow simulation. The simulated hydraulic 

conductivity was compared with the hydraulic conductivities predicted by the Brooks and Corey–Burdine, and Van Genuchten–

Mualem, models. Both empirical models proved capable of predicting the relative hydraulic conductivity for the porous medium 

at higher wetting degree, but the Van Genuchten–Mualem model overestimated the hydraulic conductivity at lower water 

saturation.  

 

Abbreviations: BC, Brooks–Corey model approach; 

BCB, Brooks and Corey–Burdine model approach; 

GSD, grain size distribution; LB, Lattice Boltzmann 

model approach; NWP, non-wetting phase; PMB, pore 

morphology based; PSD, pore size distribution; ROI, 

region of interest; SE, structuring element; VG, Van 

Genuchten model approach; VGM, Van Genuchten–

Mualem model approach; wFFT, wavelet fast Fourier 

transform; WP, wetting phase; CT, X-ray computed 

microtomography;  

Parameters (Latin letters): Aawi (mm
−1

), specific 

interfacial area; b (-), empirical constant; g (9.8 m s
−2

), 

acceleration caused by gravity; K (m
2
),

 permeability; K
 r 

(-), relative permeability; K 

(cm d
−1

), hydraulic conductivity; K
r 

(-), relative 

hydraulic conductivity; K
s 
(cm d

−1
), saturated hydraulic 

conductivity; K
xx, K

yy, K
zz 

(cm d
−1

), hydraulic 

conductivity along axial direction; m, n (-), empirical 

shape-defining parameters; Pb (kPa), air entry pressure; 

Pc (kPa), capillary pressure; Pw (kPa), wetting phase 

pressure; Pnw (kPa), non-wetting phase pressure; r(m), 

pore radius; Sw (-), wetting phase (water) saturation; Swr 

(-), residual water saturation; Snw (-), non-wetting 

(air) saturation; Snwr (-), residual air saturation; Se 

(-), effective water saturation; t (s), time 

Parameters (Greek letters): (kPa−1)empirical 

shape-defining parameter; (-), pore size distribution 

index; t (g cm−3), bulk density (soil); (g m−1 s−1), 
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dynamic viscosity; (m2 s−1), kinematic viscosity; 

(kg m−3), density (water);  (N m−1), surface tension; 

(°), contact angle. 



INTRODUCTION 

In partially saturated porous media such as soil, 

complex water retention relationships emerge as the 

result of the dynamics of the immiscible air-water 

phase interface. A well-known macroscopic effect of 

this relation is the hysteresis observed during cycles of 

wetting and drainage. The geometric distribution of 

air-filled pores dynamically alters thereby the 

connectivity of the pore space, ultimately causing the 

effective pore volume available for fluid flow to 

decrease. Clearly, water retention mechanisms in 

partially saturated soil has important implications in 

pedohydrology, soil mechanics, nutrient and 

contaminant flow. Interest in using pore-scale 

modeling to achieve the reliable parameterization of 

macro-scale constitutive relationships between 

capillary pressure (P
c
), water saturation (S

w
), and 

relative permeability (K
 r

) has therefore increased, in 

particular if the complex pore geometries and topology 

of the porous media are taken into account (Schaap et 

al., 2007; Chang et al., 2009; Rezanezhad et al., 2009; 

Blunt et al., 2013; Wildenschild and Sheppard, 2013). 

The success of a fluid flow model generally depends 

on the appropriate quantification of these relationships. 

The P
c
–S

w
 relationship is used to quantify the degree of 

saturation (i.e., the water content, by volume) as a 

function of the capillary pressure in porous domains. 

The K
r
–S

w
 relationship is used to specify the relative 

permeability of a porous medium to a particular fluid 

phase (water in this case) at different saturation levels. 

Capillary pressure is the result of a two-phase flow in a 

porous medium, and is defined as the difference 

between the average non-wetting and wetting phase 

pressures (P
nw
−P

w
) for a given value of S

w
 (Bear and 

Verruijt, 1987; Helmig, 1997). This simple classical 

concept, however, is only valid under equilibrium 

conditions (i.e., when ∂Sw/∂t = 0). This implies that all 

the factors that influence the distribution of two 

immiscible fluids in a porous medium at equilibrium 

(e.g., surface tension, particle and pore volume 

fractions, contact angles, the heterogeneities of the 

medium, anisotropy) are to be considered. In fact, the 

P
c
–S

w
 relationship is not unique, and depends not only 

on the volume fraction of each phase, but also on the 

change in the degree of saturation over time, i.e., the 

two-phase flow dynamics are related to variations in 

saturation (Joekar-Nisar and Hassanizadeh, 2011). The 

non-uniqueness of the P
c
–S

w
 and K

r
–S

w
 relationships 

in the drainage and imbibition processes is strongly 

affected by micro-heterogeneities at the pore scale 

rather than the inhomogeneous macroscopic flow field 

(Ataie-Ashtiani et al., 2002; Das et al., 2004).  

The specific air–water interfacial area (A
awi

) 

per unit volume of the porous structure is commonly 

considered to be a crucial parameter for understanding 

and interpreting flow processes in porous media 

(Hassanizadeh and Gray, 1993; Held and Celia, 2001; 

Joekar-Niasar et al., 2008, 2010b). This interfacial area 

plays a significant role in a number of processes, such 

as colloid transport (Wan and Wilson, 1994; Choi and 

Corapcioglu, 1997; Sirivithayapakorn and Keller, 

2003; Crist et al., 2004; Shi et al., 2010), mass transfer 

in capillary microreactors (Ghaini et al., 2010), and 

microbial biocolloid retention (Steenhuis et al., 2006; 

Torkzaban et al., 2006). Advances in imaging 

technology, e.g., by using synchrotron-based X-ray 

computed microtomography (CT), have made 

possible a high-resolution three-dimensional (3D) 

quantification of A
awi

 (Brusseau et al., 2006; Costanza-

Robinson et al., 2008). The quantification of the 

specific surface area, as a function of water saturation, 

can now be used to investigate the effects of the 

distributions of two immiscible phases on flow 

processes at the pore scale. Moreover, high resolution 

images at a submicron spatial resolution allow matrix 
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pore-scale geometries to be quantified, allowing 

root/soil interactions to be examined (Anderson and 

Hopmans, 2013), and even Haines jumps to be 

visualized using high-speed tomography (Berg et al., 

2013). It is also possible to characterize the distribution 

of fluid–fluid interfacial areas and measure solid–

liquid interactions that lead to transport processes 

(Pierret et al., 2002; Gregory et al., 2003; Prodanović 

et al., 2007; Peth, 2010; Elyeznasni et al., 2012; 

Wildenschild and Sheppard, 2013).  

The lattice Boltzmann method allows to 

directly involving physical-based pore-scale hydro-

mechanical properties in complex geometries. When an 

LB model is used, a permeability tensor (which is an 

important transport property in inhomogeneous porous 

materials) can be predicted at the pore-scale, under 

different soil physical conditions (Nabovati and Sousa, 

2007; Schaap et al., 2007; Boek, 2010; Koku et al., 

2011; Gao et al., 2012, Galindo-Torres et al., 2013). A 

recent pore-scale study applying the LB approach has 

shown that the hysteresis of water retention during 

cycles of wetting and drainage arises from the 

dynamics of the solid-liquid contact angles as a 

function of the change of the local water volumes (Gan 

et al., 2013). However, this study was still performed 

on artificial granular media, as many such studies 

before. As a major benefit, use of a LB approach 

allows the straightforward incorporation of real soil 

pore geometry determined directly from CT 

measurements (Christensen, 2006; Schaap et al., 2007; 

Sukop et al., 2008). This study is focused on using a 

synchrotron-based 3D image of a soil aggregate as a 

direct input microstructure for simulating and 

understanding the functional relationships during 

drainage and imbibition cycles, using a pore 

morphology based (PMB) modeling approach (Hilpert 

and Miller, 2001; Ahrenholz et al., 2008; Chan and 

Govindaraju, 2011). In our micro-scale approach, the 

PMB approach was extended to incorporate a linkage 

between the soil structure pore geometry and the 

macroscopic constitutive relationships between the 

capillary pressure, water saturation level, and 

interfacial area (P
c
–S

w
–A

awi
) in a variably saturated 

porous soil medium, and the model was used to 

investigate subsequent hysteretic effects. In the second 

part of the study the effects of the geometric 

distribution of air on water movement was investigated 

(i.e., changes in hydraulic conductivity (K) as a 

function of the water saturation level). The simulated 

results were compared with P
c
(S

w
) and K(S

w
) 

predictions using common empirical water retention 

models (e.g., Valiantzas, 2011). To the best of our 

knowledge, this is the first attempt to simulate P
c
(S

w
) 

and K(S
w
) using a combination of both PMB and LB 

models on the basis of a 3D CT image of a real soil 

structure at a submicron voxel resolution.  

 

MATERIALS AND METHODS 

Materials 

The soil sample was collected from the 

“Ap18” horizon, 18 cm deep, from an experimental 

research farm at Scheyern, near Munich (Germany) in 

July 2010. According to the World Reference Base for 

Soil Resources 2006 and the Food and Agriculture 

Organization (FAO), the soil was classified as a 

Luvisol that had developed from weathered loess. The 

properties of this type of soil, including good nutrient 

levels and drainage, make it suitable for a wide range 

of agricultural purposes. The soil was crumbly, with 

spherical fine and medium (1–5 mm) granular peds, 

and it was classified as a medium-textured loam (FAO 

class “Medium”, UK soil type “SaSiLo”, US 

Department of Agriculture and International Soil 

Science Society soil type “SiLo”, German soil type 

“Slu”). The physicochemical parameters of the soil 

were determined in a previous study, and were: dry 

bulk density 
t
 = 1.50 0.04 g cm

−3
; textural 

components 40 wt. % sand, 45 wt. % silt, and 15 wt. % 

clay; pH
CaCl2

 = 5.3; total C
org

 = 13.6 mg g
−1

; total N = 
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1.32 mg g
−1

 (C/N = 10.3) (Khan et al., 2012). The soil 

was chilled immediately after collection by placing it 

in liquid nitrogen, to avoid microfaunal activity 

disturbing the soil structure, and it was kept frozen (at 

−20 °C) until it was analyzed. 

 

Synchrotron-based X-ray computed tomography 

and image processing 

The imaging of the soil ped sample was 

carried out at the Swiss Light Source Tomographic 

Microscopy and Coherent Radiology Experiment 

(TOMCAT) beamline facility at the Paul Scherrer 

Institute in Villigen, Switzerland. A low X-ray 

absorption by different phases may lead to difficulties 

in obtaining good contrast, and this can have a direct 

impact on the quantitative analysis of the 3D 

microstructure and the subsequent segmentation. 

TOMCAT scientists have made remarkable 

improvements in the technique to overcome this 

problem, including applying “edge enhanced” 

(Stampanoni et al., 2006) and “phase contrast” 

(Bronnikov, 2002) techniques. The complete beam-line 

specifications were published previously (Marone et 

al., 2009), together with the experimental setup for 

measuring soil ped samples (Khan et al., 2012). These 

details are not repeated here, but the essential 

experimental details are shown in Table 1. 

The original pixel spatial resolution of 0.37 

m was binned at twice that size, to improve the 

signal-to-noise ratio, resulting in a final spatial 

resolution of 0.74 m in the reconstructed images. The 

fast reconstruction of the complete data set was 

performed by applying a combined wavelet fast 

Fourier transform (wFFT) decomposition algorithm. 

The wFFT approach deals with typical artifacts related 

to data incompleteness during the padding of the 

sinograms “on-the-fly”, before reconstruction (Marone 

et al., 2010). After the raw sample data (2.048 × 2.048 

× 2.048 voxels) had been reconstructed in 3D and the 

dataset had been converted into 16-bit images, the 

images were processed further by filtering out noise to 

smooth the data. Limited computing resources were 

available for the 3D imaging and modeling of such a 

high-resolution dataset, so it was necessary to select a 

region-of-interest (ROI) spatial domain, as shown in 

Fig. S1 in the supplementary information. The ROI 

dimensions were 500  500  1000 voxels, with a 

spatial resolution of 0.74 m. Filtering techniques were 

used in the image processing and pattern recognition 

processes, to improve the subsequent segmentation (as 

described in the supporting information).  

 

 

Pore-morphology based approach 

Porous media have complex microstructures, 

and the capillary pressure (P
c
) at an equilibrium state is 

determined by the mean curvature radius of the 

interface between the WP and the NWP. The 

relationship between P
c
 and the curvature of the 

wetting/non-wetting phase (WP–NWP) interface is 

governed by the Young–Laplace equation, 















 cos

11
c

21 rr
P ,   (1)

 

 

Energy 
View angle / 

step size 

Pixel size 

 

Mean 

exposure time 

Field of view 

 

Imaging 

objective 

No. of 

projections 

(keV) (°) (m) (sec) (mm × mm)   

20 0.12 0.37 0.14 1.5 × 1.5 20× 1501 

 

Table 1 Experimental parameters used for the X-ray computed microtomography (CT) 
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where  is the surface tension between the WP and the 

NWP,  is the contact angle between the WP and the 

solid matrix, and r
1
 and r

2
 are the curvature radii along 

the x- and y-directions of the air–water interface, 

respectively. Drainage (de-wetting) and imbibition (re-

wetting) were simulated in a 3D image using a pore 

morphology based (PMB) approach. The mathematical 

description used for simulating drainage in the PMB 

approach was based on a method suggested by Hilpert 

and Miller (2001), while the imbibition simulation was 

based on the method developed by Ahrenholz et al. 

(2008). The PMB method first decomposes the 3D 

image into pore voxels, and each is assigned a 

characteristic pore radius parameter. The 

morphological operation, which involves fitting the 

accessible pore volume opening with spheres of 

different sizes, as structuring elements (SEs), is then 

performed. We assumed that the interfaces between 

WP and NWP in the porous media could be 

approximated by spherical cap surfaces. The curvature 

radii for all the WP–NWP interfaces defined in eq. 1 

are, therefore, equal to the unique SE radii. In this 

method, the ratio of the pore space occupied by fitted 

spheres to the total pore volume is determined and used 

to define the degree of WP–NWP saturation within the 

porous medium. The effective hydraulic properties of 

the porous medium, such as the capillary pressure–

saturation relationship, can, therefore, be established 

by simplifying eq. 1 to 

0,
cos2

c 



r

P ,   (2) 

where r is the capillary (pore) radius. The PMB 

simulation was performed using the commercial 

software program package GeoDict 

(http://www.geodict.com), which was developed by 

Fraunhofer ITWM and distributed by Math2Market 

GmbH (Kaiserslautern, Germany). 

 

Drainage simulation 

The drainage algorithm starts with a 

completely water-filled pore space, the initial condition 

being P
c
 = 0. The simulation begins with a maximum 

pore radius r
max, and the procedure is repeated with 

stepwise decreases in the pore radius. In a 3D image of 

a square porous body, three planar faces (in each of the 

x-, y-, and z-directions) are connected to the air-phase 

reservoir, while the opposite three faces are connected 

to the water-phase reservoir. Here, we present the 

simulation of two different drainage process scenarios, 

A and B. In drainage simulation A, the model 

simulates and reproduces capillary pressure results in 

relation to WP and NWP saturation until the entire 

pore space is filled with air. This implies that the 

residual level of water saturation is not integrated into 

the system. In drainage simulation B, water voxels that 

are isolated (disconnected) from the main WP reservoir 

are labeled as residual water saturation (S
wr

) of the 

porous medium.  

 

Imbibition simulation 

The imbibition algorithm starts with full water 

saturation (S
w
) in the soil ROI. The simulation begins 

with a minimum pore radius, which is increased 

stepwise until pre-defined criteria are met. Two 

different imbibition process scenarios A and B are 

compared. In imbibition simulation A, the simulation 

ends when the last cluster of air is drained, while in 

imbibition simulation B, the entrapment of air, rather 

than water, is integrated and air voxels that are 

disconnected from the neighboring air reservoir are 

treated as residual air saturation (S
nwr

) of the medium. 

Both simulations were set up to follow only the 

connected WP, which implies that the growing WP as 

a function of the pore volume (i.e., the pore radii) is 

associated with the neighboring or surrounding water 

voxels. The average contact angle and interfacial 

surface tension at 25 °C, for all of the cyclic processes, 

were fixed at 30° and 0.072 N m
−1

, respectively. Our 

http://www.geodict.com/
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algorithm does not, therefore, consider hysteresis 

caused by differences in the advancing and receding 

contact angles. 

 

Lattice Boltzmann flow simulation 

A numerical LB model scheme was used to 

solve the incompressible Newtonian water flow 

through the pore space in the water flow simulation. 

An elementary method for discretizing a numerical 

grid was used, taking a regular cubic lattice based on 

the tomographic image and considering cubic voxels 

from the digital CT image. The LB method was used 

to solve the Boltzmann equation for an ensemble-

averaged particle distribution on a discrete and finite 

lattice connected by fixed paths. D3Q15 velocity–

space discretization was used in each of the 

simulations to achieve 15 possible particle movement 

directions, including the center point “null vector”, in 

all cubic unit cells. Pioneering work, testing the 

multiple-relaxation-time lattice Boltzmann (MRT–LB) 

equation in 3D, was performed by d`Humières et al. 

(2002), who found a solution for the numerical defects 

and instability associated with the well known single-

relaxation-time of Bhatnagar-Gross-Krook model. A 

fully parallelized LB solver, integrated in the GeoDict 

module, was applied using an MRT–LB model, which 

solved numerical errors using “magic numbers”, 

associated with symmetric and anti-symmetric 

collision moments (d`Humières et al., 2009). A high-

performance computer (HPC), with four Interlagos 

processors, each comprising 12 CPU cores and 512 GB 

of RAM, was used for all of the LB flow simulations. 

The number of iterations and the numerical accuracy 

were set to 10000 and 0.0001, respectively. The 

macroscopic boundary conditions were that there was 

no flow at solid boundaries, a “no slip” velocity, and 

that the pressures at the inlet and outlet of the flow 

domain were fixed. A pressure drop of 1 Pa was 

applied along each axial x-, y-, and z-direction between 

the inlet and outlet of the porous medium. A unique 

numerical solution was found at a temperature of 20 °C 

with a fluid density  of 998 kg m
−3

 and a dynamic 

viscosity  of 1 g m
−1

 s
−1

. Periodic boundary 

conditions were imposed at the outlet boundary of the 

flow domain. The interconnected channel pattern at the 

outlet boundary is not likely to be the same as the inlet 

boundary topography, which may lead to flow 

distortions at the edges or boundaries. The boundaries 

were treated as symmetrical faces, “reflecting” the 

characteristics in order to ensure continuity of flow  

 

RESULTS AND DISCUSSION 

Geometric phase characterization 

The most important part of our procedure is to 

extract unique characteristic properties from the 3D 

image microstructure, such as the pore size distribution 

(PSD), grain size distribution (GSD), porosity 

(including both open and closed pores), and specific 

surface area (SSA), and the PoroDict module of the 

GeoDict software package was used to achieve this 

using the 16-bit segmented 3D image. This software 

can generally predict physical properties from direct 

tomographic microstructural input.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Pore size distribution and grain size distribution in the 

sample, on a log
10

 scale. The cumulative fraction (%) for each 

distribution is represented as a symbol and the volume fraction (%) is 

represented as a solid or dashed line 
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Pore size distribution 

(radius-m) 

Total porosity 

 

cm
3
 cm

−3
 

Grain size distribution 

(radius-m) 

Specific surface area 

m
2 g

−1
 

P10 P50 P90 

0.35 0.04  

G10 G50 G90  

0.143 ± 0.003 

 

1.250

.06 

2.27 

0.14 

3.97 

0.08 

2.03 

 

4.46 

 

11.92

 

 

Table 2 3D geometrical estimation of the sample region-of-interest 

 

 

 

 

Fig. 2. Simulation results for the water retention curve, i.e., for the relationship between the capillary pressure and water saturation (P
c
–S

w
). (a) 

The drainage and imbibition processes in scenario A. (b) The drainage and imbibition processes in scenario B. The symbols represent the data 

points.  

 

 

 

The PSD is a quantitative measure of the range of pore 

sizes in a given porous medium, and in our model this 

was determined by fitting the SEs (spheres) into the 

pore volume and by gradually increasing the size of the 

spheres, with an output step size (bin size) of radius 

0.37 m. A similar method was used to measure the 

GSD, by inverting the image structures. The 

cumulative and volume fraction pore and grain size 

results are shown in Fig. 1. 

The P10, P50, and P90 values (the pore radii 

at 10%, 50%, and 90% of the cumulative pore results, 

respectively) were determined to allow the nature of 

the geometric PSD distribution to be interpreted in 

terms of the micro- and macro-pore contributions to 

the total pore volume. Similarly, the G10, G50, and 

G90 (the grain radii at 10%, 50%, and 90% of the 

cumulative grain results, respectively) were used to 

establish the GSD, ranging from finer to coarser grains. 

The porosity was estimated as a fraction of the bulk 

soil volume. The porosity of connected pore spaces 

was determined from the total number of voxels 

belonging to a cluster with neighboring voxels 

identified as pore spaces. The pore volume of the 

largest cluster was defined as the highest volume in a 
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soil sample that air–water interfaces could potentially 

occupy. The results from the PoroDict simulation runs 

are shown in Table 2. 

 

Capillary pressure and water saturation  

Water retention P
c
–S

w
 curves were acquired 

from drainage and imbibition process simulation runs. 

The simulation of each process was achieved in a 3D 

image simultaneously in all three, x-, y-,and z-, 

directions, i.e., all three faces were connected to the air 

reservoir, while the three opposite faces were 

permeable to the water. The simulation output result 

for each pore radius increment, in relation to the image 

voxels, was set to 0.148 m (0.2 voxels). For both 

drainage scenarios A and B, the first major entry of air 

was found after the accessible open pore radius of 7.8 

m had been intruded, giving a P
c
 value of 16 kPa (S

w
 

 0.99). The S
w
 value dropped quickly, from 0.95 to 

0.21 units, resulting in a P
c
 value of between 38 and 77 

kPa, as shown in Fig. 2a,b. This gave an open pore 

radius of 1.6–3.5 m, meaning that this pore space 

contributed 60% of the total pore volume, as shown in 

Fig. 1, and would be occupied by air or water if 

drained. In drainage scenario B, the disconnected water 

voxels were trapped in small pores connected to the 

main pore body, as shown in Fig. 3a (a 2D xy-slice). 

Stepwise decreases in pore radius led to the gradual 

increase of S
wr

 and the gradual decrease of S
w
, as seen 

in Fig. 4a (which shows the ratio of the S
wr

 to the total 

S
w
 present in the pore volume). The S

wr
 prevailed in the 

porous medium at lower S
w values. No more water 

drained at S
w
 = 0.15, suggesting that only S

wr
 remained 

in the porous medium (represented by a solid line in 

Fig. 2b), and the simulation run was terminated. In 

drainage scenario A, the simulation run continued until 

a single drop of water was replaced by air, and only S
nw

 

remained in the porous medium (represented by a solid 

line in Fig. 2a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A 2D (as an xy slice) image of the simulation output for the drainage B and imbibition B processes at different water saturation levels (S
w
). 

Air is shown in red, water in green, solids in off-white, and the residual (trapped) fluid saturation in the pore network in orange. The orange areas 

in parts a and b are the residual water saturation (S
wr

), and the orange areas in parts c and d are the residual air saturation (S
nwr

). The edge length is 

500 voxels (= 0.37 mm). 
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Fig. 4. The fluid–fluid saturation volume fractions at different water saturation (S
w
) values. (a)The relationship between the residual and total 

water saturation (S
wr
–S

w
) in the drainage B cycle. (b)The relationships between the residual air saturation and water saturation (S

nwr
–S

w) and 

between the air saturation and water saturation (S
nw
–S

w
) in the imbibition B cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The predicted capillary pressure (P
c
) versus the effective water saturation (S

e
) for (a) drainage, and (b) imbibition. The solid lines are the 

Van Genuchten (VG) model curve fits and the dashed lines are the Brooks–Corey (BC)model curve fits. 

 

 

The input structure was set for the imbibition 

A and B scenario simulations so that the pores were 

completely filled with air, as the initial boundary 

condition. Therefore, the S
wr

 distribution at an initial 

water saturation of S
w
 = 0.15 was not considered in the 

porous medium. The simulation began with the 

smallest pores connected to the water reservoir, 

resulting in the highest P
c
 value in relation to the 

smallest starting pore radius (0.148 m). A hysteresis 

was observed between drainage and imbibition in the 

P
c
–S

w
 curves in scenarios A and B, because of the 

pore-size distribution and the connected-pore geometry 

(Fig. 2 a and b). In the P
c
–S

w
 curve, imbibition 

scenario B eventually joined imbibition scenario A at a 
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lower saturation (S
w
  0.27), and started diverging 

when S
nwr

 was dominated by S
nw

. This is shown in Fig. 

4b, which shows the S
nwr

 and S
nw

 contributions to each 

S
w
 value. The distribution patterns for both S

nwr
 and S

nw
 

are shown in Fig. 3d (a 2D xy-slice), to validate the 

imbibition scenario B curve at S
w
 = 0.55, and the S

nwr
 

can be seen at relatively high pore radii. Analyzing the 

3D image showed that the S
w
 reached a maximum 

slightly above 0.6 units. 

A range of empirical and semi-empirical methods has 

been developed for predicting P
c
 in variably saturated 

porous media as a function of effective water 

saturation (S
e
). The widely applied empirical water 

retention models of Brooks and Corey (1964) 

(hereafter BC) and Van Genuchten (1980) (VG) define 

the relationship between P
c
 and S

e
, the relationship 

using the BC approach being 


















c

b
e P

P
S ,    (3) 

where P
c
 ≥ P

b
. The relationship using the VG approach 

is 

m
nPS








  )(1 ce
,   (4) 

where S
e
 is the normalized saturation of the wetting 

phase, also called the effective water saturation (S
w
 − 

S
wr

)/(1 − S
wr

), with a dimensionless value of 0  S
e
 ≤ 1, 

S
w
 is the volumetric water content (cm

3
 cm

−3
), S

wr
 is 

the residual water content (cm
3
 cm

−3
),  is the pore-

size distribution index, P
b
 is the air entry pressure 

(which is roughly equal to the lowest capillary pressure 

at which the non-wetting fluid forms a continuous 

phase in the porous medium), P
c is the capillary 

pressure, and  (kPa
−1

), n, and m (m = 1 − 1/n) are 

empirical shape-defining parameters. These parameters 

are used later to predict the relative hydraulic 

conductivity. 

The curves fitted using eqs. 3 and 4 were only applied 

to the simulated drainage and imbibition process 

results for the no-trapping scenario A cases. These 

cases imply that there was no residual water saturation, 

i.e., S
wr

 = 0. The two empirical formulae, eqs. 3 and 4, 

were then rearranged to predict the capillary pressure 

P
c
 at different effective saturations. The fitting 

parameters, , , and n, for these equations are shown 

in Table 3. The correlation coefficients of 

determination (R
2
) and the root mean squared errors 

(RMSEs) were calculated to test the accuracies of the 

models. The RMSE is the square root of the mean of 

the squared difference between the simulated and 

calculated values, and is most useful when large errors 

are particularly undesirable (Poulsen et al., 2002). The 

P
b value for the BC model was set to 36 and 26 kPa for 

the simulated drainage and imbibition curves, 

respectively. The predicted data points for the P
c
–S

e
 

relationship are shown in Fig. 5. The VG model 

matched the simulated values well, with R
2
 > 0.99 and 

RMSE = 2.11 kPa for drainage, and R
2
 = 0.90 and 

RMSE = 5.68 kPa for imbibition. Similarly, the BC 

model predicted the P
c
 values well over the whole S

e
 

range, with R
2
 = 0.73 and RMSE = 17.6 kPa for 

drainage, and R
2
 = 0.60 and RMSE = 24.3 kPa for 

imbibition. 

 

 

Process cycle 
Eq. 3 Eq. 4 

  (kPa
−1

) n 

Drainage  2.3 0.016 6.1 

Imbibition  2.2 0.022 5.9 

 

Table 3 The empirical constants used for fitting the P
c
–S

e
 curves 

using the Brooks and Corey and Van Genuchten approaches 

 

 

 



11 
 

Specific interfacial area and water saturation  

The specific area of the air–water interface 

(A
awi

) was simulated only for the drainage and 

imbibition processes without fluid trapping, i.e., 

scenario A, using the GeoDict software package. The 

PoroDict module uses two different methods for each 

input microstructure. One of the methods is based on 

the statistical algorithm using the concept of the 

intersection of an object with straight line “segments”, 

corresponding to different directions in space (Ohser 

and Mücklich, 2000), the estimator counting the 

surface crossings along the rays, i.e., the total length of  

the segments corresponding with the direction. 

However, this method is most consistent for isotropic 

media (i.e., with no preferred surface orientation). The 

other method uses a simple approach, counting and 

adding up the 3D image voxels, the results of which, 

for the A
awi
–S

w
 relationship, are shown in Fig. 6 (the 

data points (square boxes, ) were calculated using 

statistical methods, and the other points denoted by 

crosses () were estimated by counting voxels). The 

highest A
awi

 values obtained using each method were in 

the ranges 0.20 < S
w
 < 0.25 and 75 < P

c
 < 85 kPa for 

drainage, and 0.45 < S
w
 < 0.60 and 50 < P

c
 < 60 kPa 

for imbibition. A
awi

 decreased as S
w
 decreased further. 

These observations agree well with the experimental 

data published by Culligan et al. (2004), showing that 

the simulation results were reliable for quantifying 

A
awi

. A
awi

 was underestimated using the statistical 

method (Ohser and Mücklich, 2000) in both 

simulations, indicating that the method is biased when 

highly anisotropic media are studied, as was the case 

for our soil, which contained a significant proportion of 

clay particles. A
awi

 was much higher for imbibition than 

for drainage, especially at moderate water saturation 

levels. These observations agree well with pore-

network modeling results using a high-porosity 2D 

micromodel (Joekar-Niasar et al., 2009) and LB 

simulations in a porous glass bead medium (Porter et 

al., 2009). The fluid phase distribution during drainage 

at S
w
 = 0.55 and during imbibition at S

w
 = 0.53 are 

shown in Fig. 7, to illustrate these results. The NWP 

was more uniformly distributed in the imbibition 

scenario (Fig. 7b) than in the drainage scenario (Fig. 

7a). The different fluid–fluid distribution patterns at 

the same S
w
 in the two cycles were caused by the pore 

geometry and the PSD available for each pore radius 

simulation step. A review of the published 

experimental studies of the A
awi
–S

w
 relationship 

suggested that, in general, imbibition curves are lower 

than drainage curves, but only a few studies have 

addressed this characteristic. This discrepancy is 

caused by the simple assumptions used in the 

simulation runs, such as the use of an average contact 

angle. These assumptions do not fully agree with the 

fundamental fluid physics of the receding and 

advancing phenomena and local capillarity surface 

tension in the experimental system during fluid 

displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The interfacial area (A
awi

) as a function of water saturation 

(S
w
). The symbols  and  represent data points from statistical and 

direct counting methods, respectively. 
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Fig. 7. 3D visualization of a water saturation (S
w
) sample, showing (a) the drainage process at S

w
 = 0.55, and (b) the imbibition process at S

w
 = 

0.53. Air is shown in red and water in green, and areas occupied by the solid matrix are white. The soil sample height is 0.74 mm (= 1000 

voxels). 

 

 

Water permeability tensor 

The simulated permeability–water saturation 

relationship describes the ability of water to flow 

through the porous material. This relationship was 

established to determine the overall effect of the NWP 

distribution resulting from the drainage and imbibition 

simulation processes on water movement and, 

consequently, the influence of this relationship on the 

relative permeability, which is a dimensionless 

measure of the effective permeability of that phase 

(Jerauld and Salter, 2009). Only simulated drainage 

and imbibition scenarios without trapping were 

considered. The water flow was simulated assuming 

that the movement of one phase did not change the 

configurations of the other related phases in the porous 

medium, i.e., each fluid phase would find its own 

pathway. In other words, the effect of any momentum 

transfer across the fluid–fluid interface was ignored 

and, therefore, the air and solid phases were both 

considered to be immobile. Before the water flow 

simulations were performed using the LB approach, 

the 3D microstructure image was reprocessed by 

converting the bulk phases into their binary 

representations, i.e., the pore volumes occupied by the 

water phase, and the remaining solid and air phases.  

In the LB model approach, the numerical 

simulation converged once the flow reached steady 

state. The average flow velocity was calculated as the 

sum of the velocity components in each voxel over the 

entire ROI pore volume. As an example, the pressure 

gradient and local velocity distribution in the presence 

of air are shown for the drainage process at S
w
 = 0.80 

in Fig. 8a,b. Different pressure gradients, indicated 

using different colors in Fig. 8a, determine the flow 

velocity at the local pore scale. The velocity vector 

field was strongly constrained by the pore space 

occupied by air (Fig. 8b). Forced fluid flow in a 

complex 3D structure advances not only along the 

axial directions, but also in directions not parallel to 

the pressure gradient. A permeability tensor of nine 
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Fig. 8. 3D image of the drainage process at a water saturation of S
w
 = 0.80. (a) The pressure field in the z-direction, from a high value (orange) at 

the top to a low value (green) at the bottom. (b) The velocity vector in the z-direction, with a moderate velocity of 5·× 10
−8

 m s
−1

 shown in blue. 

Air is shown in red. The soil sample height is 0.74 mm (= 1000 voxels). 

 

 

  

components (3  3) was, therefore, calculated, at a 

scale of 1 Darcy (10
−12

 m
2
), using Darcy’s basic 

incompressible fluid flow law, which gives the 

pressure drop per unit length of sample as a linear 

function of the mobile phase superficial velocity. 

Subsequently, the permeability (Ҡ) values along the 

principal flow directions were recalculated to give the 

hydraulic conductivity values, K = Kg
−1

 (cm d
−1

), 

where g is the acceleration caused by gravity (9.8 m 

s
−2

), and is the kinematic viscosity (m
2
 s
−1

). A non-

linear relationship was seen, the conductivity values 

exponentially increasing with increasing S
e
, as shown 

in Fig. 9. The results along the axial x- and y-

directions, i.e., the K
xx

 and K
yy

 conductivity values, 

were slightly higher for the drainage process than for 

the imbibition process. Unexpectedly, no such effect 

was seen on the hysteresis of K
zz

. The highest average 

axial velocity in all of the simulations along the x-, y-, 

and z-directions was 4.2·10
−7

 m s
−1

 at S
w
 = 1.0, which 

reflects a creeping flow throughout the model domain. 

The average pore velocity fluctuated by almost three 

orders of magnitude between low and high water 

saturation levels, but the pressure gradient remained 

constant. Using the LB approach on a 3D structure 

with S
w
 < 0.20 gave a flow problem caused by 

inadequate numbers of connected pores between the 

model ROI input and output boundaries under the 

periodic boundary conditions. 

The results of the flow simulation were 

compared with predictions made using the well known 

empirical Brooks and Corey–Burdine (BCB) (Burdine, 

1953; Brooks and Corey, 1964) and Van Genuchten–

Mualem (VGM) (Van Genuchten, 1980; Mualem, 

2010) models. The empirical model values shown in 

Table 3 were used to predict the relative hydraulic 

conductivity K
r
 using eq. 5 for the BCB model, 

 /)32(
e

s

e
r

)(
S

K

SK
K ,   (5) 
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and eq. 6 for the VGM model, 

2
/1

ee
s

e
r )1(1

)(






  mmb SS
K

SK
K , (6) 

where K(S
e
) and K

s 
are the unsaturated and saturated 

hydraulic conductivities, respectively, b is a 

dimensionless empirical constant (usually taken to be 

0.5 (Mualem, 2010)), m is equal to 1 − 1/n, and S
e
 is 

the effective water saturation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Hydraulic conductivity along the x-, y-, and z-directions (K
xx

, 

K
yy

, and K
zz

) versus water saturation (S
w
). The solid lines represent 

the drainage process (with data points marked ) and the dashed 

lines show the imbibition scenarios A (with data points marked ). 

The K
r
 values over the whole range of S

e
 of 

0.20–1.0, were predicted using the BCB model, giving 

R
2
 = 0.99 and RMSE = 0.02 for drainage, and R

2
  

0.99 and RMSE = 0.04 for imbibition. However, the 

VGM model slightly overestimated the K
r 

values for 

both cyclic processes, especially when S
e
 was lower 

than moderate (S
e
 < 0.60), as is shown in Fig. 10. Even 

so, the VGM model results for both drainage and 

imbibition were not much worse than the BCB model 

results, giving R
2
 > 0.99 and RMSE = 0.03 for 

drainage, and R
2  0.99 and RMSE = 0.05 for 

imbibition. The VGM model performed well for highly 

saturated media (S
e
 > 0.80). Statistical analysis showed 

that the prediction accuracy was slightly better for the 

BCB model than for the VGM model, especially at 

lower water saturation. 

 

CONCLUSIONS 

Wetting phase (WP) and non-wetting phase 

(NWP) displacement cycles were modeled using a 

CT image of a real porous soil with minimum 

microstructure property biases, using a pore-

morphology based (PMB) method. The aim was to link 

the classical constitutive relationship between the 

capillary pressure P
c and the water saturation S

w
 caused 

by the drainage and imbibition processes. Drainage 

was simulated in two scenarios, A and B, as the 

relative intrusion of the NWP into the largest available 

connected pore (voxel) spaces, i.e., the main pore 

network was connected to the air reservoir. In drainage 

scenario B, the simulated 3D image depicted the 

entrapment of WP as residual water saturation (S
wr

) in 

small connected pores or pore throats (Fig. 3a), leading 

to the ratio of S
wr

 to the total S
w
 being dominant only 

after the wetting phase (S
w
) reached 0.41 (Fig. 4a). The 

imbibition A and B scenario simulations were started 

with the intrusion of the WP connected to the WP 

reservoir. Careful examination of the simulated 3D 

images of imbibition scenario B, starting from small 

0
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Fig. 10. The relationship between the relative hydraulic conductivity and the effective water saturation (K
r
–S

e
). The simulated data points are 

shown as symbols. The Brooks and Corey–Burdine model curves are shown as dashed lines and the Van Genuchten–Mualem model curves are 

shown as solid lines. 

 

 

 

pores and moving to the large connected pores showed 

that the WP was initiated in small connected open pores, 

i.e., the SE fitting started at the smallest available pore 

radius in the porous medium. The main large pores 

occupied by the NWP are, therefore, surrounded by the 

WP, as shown in Fig. 3d. As a result, the presence of the 

total S
nwr

 and S
w
 (Fig. 4b) showed that S

nwr
 was 0.39 at 

the end of the simulation (represented by the dashed line 

in Fig. 2b). Non-linear P
c
–S

w
 curves were established, 

caused by the connectedness and the pore-size 

distribution in the porous medium (Fig. 2 a and b). 

The A
awi
–S

w
 curves suggested that the air–water 

interfacial area increased as the water saturation 

decreased. This assumption was only true at higher and 

moderate saturation, S
w
 = 0.40–1.00. A hysteresis was 

established because of the effect of capillarity linked to 

the available PSD and interpore connectivity. 3D images 

at S
w
 = 0.53 showed the more uniform distribution of 

WP–NWP in the imbibition process than in the drainage 

process (Fig. 7 a and b), so A
awi

 was higher for the 

imbibition process than for the drainage process (Fig. 6). 

The hydraulic conductivity of the WP was determined in 

the variably water-saturated porous medium, and the 

simulation results showed that it had a strong non-linear 

relationship with S
w
, mainly caused by the dependency 

of the inter-connected pore-water structure on the main 

pore network. The simulation results for the hydraulic 

conductivity along the axial x- and y-directions (K
xx

 and 

K
yy

, respectively) were higher for the drainage process 

than for the imbibition process in the range 0.20 < S
w
 < 

0.80, but the hysteresis was minimal. This suggests that 

the pore-size distribution occupied by water had only a 

minor influence on the hydraulic conductivity. 

Surprisingly, no such difference was observed in the K
zz

 

(i.e., in the z-direction). The relative hydraulic 

conductivity results, as a function of the effective water 

saturation level, were compared with the results of well-

known empirical prediction models (BCB and VGM). 

The predicted values from both models agreed well with 

the simulation results, especially at S
e
 ≥ 0.80.  

Integrating CT soil images using PMB and LB 

modeling proved successful, enabling the P
c
–S

w
, A

awi
–S

w
,
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 and K–S
w
 relationships to be determined for the drainage 

and imbibition processes. The PMB approach was 

limited by its ability to determine the P
c
–S

w
 curves of 

WP–NWP under equilibrium conditions by using a fixed 

contact angle (wettability) in all of the simulations. Thus, 

the meniscus curvature differences in capillaries induced 

by interfacial tension and surface roughness were also 

not considered. Further research is required to develop a 

more precise description of these complex phenomena. 
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Pore morphology and lattice Boltzmann approach to modeling 

unsaturated soil capillary hysteresis and permeability tensor 

Supporting Information 

This Supporting Information gives some more detailed methodological explanation on the CT image post-

processing steps including region-of-interest selection, filtering, and segregation. 

 

1. Region-of-interest selection 

Recent developments in synchrotron-based X-rays 

computed tomography (CT) enable us for an effective 

visualization of complex pore-geometry up to submicron 

voxel resolution (= 0.74 m). Further processing or 

investigation on the reconstructed 3D raw data of 2.048
3
 

voxels demands high computing (HPC) resources. 

Therefore, it is necessary to select a region-of-interest 

(ROI) best representing the whole domain as shown in 

Fig. S1. The ROI dimensions are thus reduced to 

500x500x1000 voxels in which lattice Boltzmann 

calculations can well be performed using a server size 

HPC facility (64 cores, 1 TB RAM). 

 

 

 

Fig. S1. Selection of best ROI with in original 

sample of dimensions 2.048
3
 voxels. The ROI 

height is 0.74 mm (= 1000 voxels), and width is 

0.37 mm (= 500 voxels). 
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2. Filtering and segregation method 

Nonlinear filtering (NF) methods have attained much 

attention in the image post-processing due to their 

ability to preserve the edges while smoothing the noise. 

A range of de-noising methods have been developed by 

implementing iterative NF methods such as anisotropic 

diffusion (Perona and Malik, 1990), or by utilizing non-

iterative NF methods with an edge-preserving 

capability such as bilateral filtering (Tomasi and 

Manduchi, 1998), mean shift filter (Domínguez et al., 

2003), and 3D median filtering (Jiang and Crookes, 

2006). We used the latter approach with help of the 

common AMIRA/AVIZO software package run on 

each sub-volume mask (3x3x3) to reduce uncorrelated 

noise, which is a typical result of CT imagery. The 

replacement of voxels by median of neighboring voxels 

causes smoothing of raw data. After filtering, the image 

is segmented by assigning a material-specific value to 

each voxel in the grey-scale image, and binarized by 

separating features of interest between void and solid 

phases only. We are well aware of the fact, that the 

application of various thresholding and locally adaptive 

segmentation techniques on CT gray scale images 

yield vastly differing results with respect to micro-scale 

pore characterization and fluid dynamics simulation 

(Lee and Chung, 1990; Tabb and Ahuja, 1997; Oh and 

Lindquist, 1999; Kanungo et al., 2002; Iassonov et al., 

2009; Ojeda-Magaña et al., 2009; Baveye et al., 2010; 

Wang et al., 2011). Although the grey-scale range 

(GSR) histogram of the entire dataset is not very 

decisive (Fig. S2), it is still easily segregable into the 

two phases of interest (voids and solid matrix) based on 

the edge enhancement effect as a typical feature for 

parallel beam synchrotron CT.  

 

 

Fig. S2. Sample grey-scale values histogram 

 for the entire 3D ROI dataset 

 

  

 

  

 

 

 

 

 

Fig. S3. Segmentation process with (a) 

original image 2D slice (xy slice), and (b) 

resulting segmented 2D image where white 

pixels represent the pore network of the  

soil aggregate (edge length 500 voxels = 

0.37 mm). 
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Based on that effect, a threshold value is chosen 

carefully, and a GSR was set for each phase with 

reference to a global threshold value. This is justified 

because of the use of monochromatic synchrotron 

radiation, where the absorption coefficient for each 

voxel remains the same independent of the projection 

angle. The ambits of each phase with the chosen GSR 

ranges are controlled slice-by-slice by employing the 

AVIZO visualization software. This simple approach 

enabled us to convert ultimately the whole raw grey-

scale into a reliable binary black-and-white image 

representing solids and voids as shown in Fig. S3. 
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