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Abstract

Although the Standard Model of particle physics provides an extremely successful description
of the ordinary matter, one knows from astronomical observations that it accounts only for
around 5% of the total energy density of the Universe, whereas around 30% are contributed
by the dark matter.
Motivated by anomalies in cosmic ray observations and by attempts to solve questions of

the Standard Model like the (g− 2)µ discrepancy, proposed U(1) extensions of the Standard
Model gauge group SU(3) × SU(2) × U(1) have raised attention in recent years. In the
considered U(1) extensions a new, light messenger particle γ′, the hidden photon, couples to
the hidden sector as well as to the electromagnetic current of the Standard Model by kinetic
mixing. This allows for a search for this particle in laboratory experiments exploring the
electromagnetic interaction. Various experimental programs have been started to search for
the γ′ boson, such as in electron-scattering experiments, which are a versatile tool to explore
various physics phenomena. One approach is the dedicated search in �xed-target experiments
at modest energies as performed at MAMI or at JLAB. In these experiments the scattering
of an electron beam o� a hadronic target e(A,Z)→ e(A,Z)l+l− is investigated and a search
for a very narrow resonance in the invariant mass distribution of the l+l− pair is performed.
This requires an accurate understanding of the theoretical basis of the underlying processes.
For this purpose it is demonstrated in the �rst part of this work, in which way the hidden

photon can be motivated from existing puzzles encountered at the precision frontier of the
Standard Model. The main part of this thesis deals with the analysis of the theoretical frame-
work for electron scattering �xed-target experiments searching for hidden photons. As a �rst
step, the cross section for the bremsstrahlung emission of hidden photons in such experiments
is studied. Based on these results, the applicability of the Weizsäcker�Williams approxima-
tion to calculate the signal cross section of the process, which is widely used to design such
experimental setups, is investigated. In a next step, the reaction e(A,Z) → e(A,Z)l+l− is
analyzed as signal and background process in order to describe existing data obtained by the
A1 experiment at MAMI with the aim to give accurate predictions of exclusion limits for
the γ′ parameter space. Finally, the derived methods are used to �nd predictions for future
experiments, e.g., at MESA or at JLAB, allowing for a comprehensive study of the discovery
potential of the complementary experiments.
In the last part, a feasibility study for probing the hidden photon model by rare kaon

decays is performed. For this purpose, invisible as well as visible decays of the hidden
photon are considered within di�erent classes of models. This allows one to �nd bounds for
the parameter space from existing data and to estimate the reach of future experiments.
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Zusammenfassung

Auch wenn das Standardmodell der Elementarteilchenphysik eine äuÿerst erfolgreiche Be-
schreibung der gewöhnlichen Materie liefert, ist aus astronomischen Beobachtungen bekannt,
dass diese nur für 5% der Gesamtenergiedichte unseres Universums verantwortlich ist, wo-
hingegen der Anteil dunkler Materie bei 30% liegt.
Motiviert durch Anomalien in der Beobachtung kosmischer Strahlung und durch Ansät-

ze ungeklärte Fragen des Standardmodells wie die (g − 2)µ-Diskrepanz zu klären, sind in
letzter Zeit lange vorgeschlagene U(1)-Erweiterungen der SU(3)×SU(2)×U(1)-Eichgruppe
des Standardmodells in den Fokus gerückt. In diesen U(1)-Erweiterungen koppelt ein neu-
es, leichtes Austauschteilchen γ′, das Hidden Photon, sowohl an den elektromagnetischen
Strom des Standardmodells als auch an den Sektor der dunklen Materie, was die Suche
nach diesem Teilchen in Laborexperimenten, welche die elektromagnetische Wechselwirkung
erforschen, ermöglicht. Aus diesem Grund wurden verschiedene experimentelle Program-
me zur Suche nach γ′-Bosonen gestartet, wie z.B. Elektronen-Streu-Experimente, die als
vielseitiges Hilfsmittel zur Erforschung verschiedenster Phänomene dienen. Ein Ansatz ist
dabei die Suche an dedizierten Fixed-Target-Experimenten im Bereich niedriger Energi-
en, wie sie z.B. an MAMI oder am JLAB durchgeführt werden. Bei diesen Experimenten
wird die Streuung eines Elektronenstrahls an einem hadronischen Target, d.h. die Reaktion
e(A,Z)→ e(A,Z)l+l−, untersucht, wodurch eine Suche nach einer sehr schmalen Resonanz
in der Invarianten-Masse-Verteilung des l+l−-Paares ermöglicht wird. Notwendige Voraus-
setzung hierfür ist ein präzises Verständnis der theoretischen Basis des zugrundeliegenden
Prozesses, was eine umfassende Studie des Potenzials dieser komplementären Experimente
erlaubt.
Im ersten Teil dieser Arbeit wird zu diesem Zweck aufgezeigt, wie sich das Hidden Pho-

ton aus existierenden Fragestellungen, auf die man z.B. durch Präzisionsuntersuchungen des
Standardmodells tri�t, motivieren lässt. Der Hauptteil dieser Dissertation befasst sich daher
mit der Analyse des theoretischen Rahmens, der für solche Elektronen-Streu-Experimente
zur Suche nach Hidden Photons nötig ist. Als erster Schritt wird dazu der Bremsstrahlungs-
Wirkungsquerschnitt eines Hidden Photons an solchen Experimenten untersucht. Basie-
rend darauf wird die Anwendbarkeit der Weizsäcker-Williams-Näherung zur Berechnung des
Signal-Wirkungsquerschnitts, die für gewöhnlich zum Design solcher Experimente verwen-
det wird, überprüft. Ein nächster Schritt widmet sich der theoretischen Studie der Reaktion
e(A,Z) → e(A,Z)l+l−, welche sowohl als Signal- als auch Untergrundprozess dient, um
damit die vom A1-Experiment an MAMI genommenen Daten zu beschreiben und präzise
Vorhersagen für Ausschlussgrenzen des γ′-Parameterbereichs zu geben. Schlieÿlich werden
die abgeleiteten Methoden verwendet um Vorhersagen für zukünftige Experimente, wie sie
an MESA und am JLAB geplant sind, zu erhalten.
Im letzten Teil wird eine Machbarkeitsstudie zur Erforschung des Hidden Photon-Modells

unter Verwendung seltener Kaonzerfälle durchführt. Zu diesem Zweck werden sowohl un-
sichtbare als auch sichtbare Zerfälle des γ′ in verschiedenen Modellen betrachtet, wodurch
Grenzen für den Parameterbereich aus existierenden Daten abgeleitet und Abschätzungen
für die Reichweite der zukünftigen Experimente gefunden werden können.
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Man sieht nur mit dem Herzen
gut, das Wesentliche ist für die
Augen unsichtbar.

(Der kleine Prinz)





The dark (...) Force is a pathway
to many abilities some consider to
be unnatural.

(The Emperor, Star Wars)Preface

Motivation

One of the primary objectives of mankind has always been to understand the world one
lives in. Starting in the Stone Age, the discovery how to ignite a �re helped the humans to
survive. During the ages, (scienti�c) research has never lost its importance, although the
main objective has changed from ensuring the survival to gain wealth such as by transmuting
metal into gold or simply to gather a deeper knowledge of our world.
The particular objectives of research might have changed, nevertheless we are still driven

by the desire to understand the basic principles of nature. The publication of the famous
work �Philosophiae Naturalis Principia Mathematica� by Isaac Newton in 1687, in which the
law of gravitation was formulated for the �rst time, can be considered as the starting point
of modern science. In particular, physics evolved as an interplay between the subjects of
theoretical and experimental physics. This is an essential aspect to discover new phenomena
and obtain further insight into nature. Theories describe phenomena of physics which are
found by experiments and experiments test the predictions of theories.
Even today, it is precisely that interplay which leads to advances in the deeper under-

standing of our world. Recently, the last missing piece of the �Standard Model of particle
physics�, the Higgs boson, has been discovered at the Large Hadron Collider at CERN. This
particle was postulated by Peter Higgs, François Engler and Robert Brout nearly 50 years
ago and now completes the theory of the dynamics of the smallest particles. Even though
the Standard Model of particles physics provides an exceedingly successful description of the
dynamics at the smallest scales, several hints point to physics beyond the Standard Model.
On the other hand, the dynamics of the very large scales�for example, the evolution

of our universe and the galaxies within�can be successfully described by the �Standard
Model of cosmology�. Within this model based on the mathematical foundations found by
Albert Einstein the evolution of our universe from the Big Bang until today is described.
One important outcome is that only a small fraction of the energy of the universe, which is
around 5%, is contributed by ordinary matter. This is the only building block of our universe,
which can be described within the Standard Model of particle physics. As a consequence,
95% of the ingredients of our universe cannot be understood so far. However, observations
allow for a slight insight into this �eld. One can conclude that 27% of the energy result
from a kind of matter which has not been observed until today. Thus, one refers to it as
�Dark Matter�. The remaining 68% arise from an even more mysterious phenomenon known
as �Dark Energy�. Although most of the ingredients of our universe are still unknown, the
cosmological standard model is currently under deep investigation and can be probed to high
accuracy.
However, while the physics at the smallest and largest scales can be described successfully

within the respective standard model, there is no �Theory of Everything�, in which these
two models are combined. Thus, the entire physics of the universe is not formulated within
one theory, and as an example, dark matter cannot be linked to particle physics within an
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Preface

established framework.

While for physicists it is always satisfying to experience that their predictions could be
proven experimentally or their observed phenomena con�rm a well-known theory, it is much
more interesting, if a discrepancy between theory and experiments arises. This means that a
theory which was considered to be valid cannot be reconciled with experimental data, or vice
versa. Currently, there exist several of these unsolved puzzles; for example, the discrepancy
found in the theoretical and experimental determination of the anomalous magnetic moment
of the muon ((g−2 puzzle). Moreover, the unexpected large rates of positrons observed in the
data taken from the study of cosmic rays can neither be explained by astrophysical sources
nor by the direct annihilation of dark matter (positron excess puzzle). In consequence of
such puzzles, extensive studies from both theoretical and experimental sides are performed
to resolve the discrepancies.

In this work one particular extension of the Standard Model of particle physics is studied:
the hidden photon model. The hidden photon is a new messenger particle. It has simi-
lar properties as the ordinary photon mediating the well-known electromagnetic interaction.
The underlying framework attempts to solve the (g − 2) puzzle and to explain the positron
excess. This means that the hidden photon provides a link between the subjects of particle
physics and cosmology by allowing for an interaction between the sectors of ordinary matter
within the Standard Model of particle physics and the dark sector in which the dark matter
is contained. These studies are examples of how the interplay between theoretical and exper-
imental physics enhances our knowledge of nature. The motivation to have a closer view into
this �eld results from the discrepancy between predictions and observations. Experiments
are necessary to probe the theoretical hypothesis this work is based on. This automatically
requires that the expected results of these experiments can be predicted precisely.

Currently, a lot of activity is spent to explore this particular realization of physics be-
yond the Standard Model by experimental as well as theoretical groups. Theorists attempt
to obtain accurate predictions which can be probed in experiments to constrain the wide
parameter space of the hidden photon model. A large variety of experiments is underway
and older data taken for di�erent purposes are re-analyzed. Most of these dedicated experi-
ments are still in the phase of design, whereas a few of them, such as the A1 experiment at
Mainz or APEX at the Je�erson Lab already have successfully taken �rst data. In addition,
experiments as HPS at the Je�erson Lab plan to take data within the year.

Therefore, the principal purpose of this work is to provide an accurate theoretical frame-
work for hidden photon searches. The �ndings of this work allow one to describe data
from such existing experiments and to �nd predictions for the discovery potential of future
experiments.

Outline

This thesis is structured as follows:

The fundamental physics of this work is introduced in Chapter 1 and an overview of
the current status of hidden photon searches is given. Therefore, the Standard Model of
particle physics is introduced and its limitations are pointed out. It is discussed that one can
overcome some of the existing puzzles by physics beyond the Standard Model, in particular
within the hidden photon model.

Chapter 2 deals with the detailed analysis of the hidden photon production mechanism

xvi



e + (Z, A) → e + (Z, A) + γ′ at electron-scattering �xed-target experiments. Furthermore,
the QED background entering into the search without the detection of the decay products of
the hidden photon is studied. In addition, an analysis of the applicability of the Weizsäcker�
Williams approximation is presented. This approximation is widely used to calculate the
cross sections of such processes. Parts of the results of this chapter are published in Ref. [1].
In Chapter 3 the reaction e+(Z, A)→ e+(Z, A)+ l+l− is investigated in detail, based on

the results obtained in Chapter 2. This processes is studied from the perspective: On the one
hand as signal process, where in the intermediate state a hidden photon is emitted decaying
into a lepton pair. On the other hand, the study is performed from the point of view as
irreducible background with a virtual photon in the intermediate state. It is demonstrated,
how the integrated cross sections of the underlying processes can be calculated e�ciently.
These cross sections are used to obtain a better understanding of the kinematical properties.
This allows for a signi�cant reduction of the QED background. Furthermore, investigations
for the setups of existing and future experiments are performed and projections of their
discovery potential are given. The results of this chapter are published in parts in Refs. [1,2].
In Chapter 4 rare kaon decays are investigated as a probe for new physics. In particular,

the decays K+ → µ+ + νµ + γ′ and K+ → µ+ + νµ + l+l− are analyzed from the viewpoint
of invisible and visible hidden photon decays. A feasibility study is made to test a class of
models in future experiments, such as the hidden photon model as well as selected other
models containing new light gauge bosons, based on the results of 40 years old data. Parts
of the results of this chapter are published in Ref. [3].
Finally, the work is summarized and an outlook is given.
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Chapter 1

The Standard Model, its Limitations and the

Need for New Physics

The foundations for the analysis of hidden photon searches are introduced in this chapter.
To classify the topic of this work into the big picture of physics, in Sec. 1.1 an overview of the
Standard Models of cosmology and particle physics is given. In Sec. 1.1.1 the cosmological
concordance model is introduced as the corresponding standard model. The large-scale
evolution of the Universe and the contributions to its energy density can be explained within
this model.

A part of the energy of the Universe, namely the visible matter, is investigated in detail
in hadron and particle physics. The underlying theory of this subject is the Standard Model
of particle physics, which is reviewed in Secs. 1.1.2 and 1.1.3. For this purpose I start with a
short historical re�ection of the evolution of the subject of particle physics, from the discovery
of the proton to the Standard Model. It is emphasized that in many cases the resolution of
hitherto unexplained phenomena was accompanied by the postulation and discovery of new
particles. In the following, the theoretical basis of the Standard Model and in particular
of the gauge theory of the electroweak interaction is illustrated, which allows one to easily
understand the fundamentals of the hidden photon model.

In Sec. 1.2 the limitations of the Standard Model are discussed, �rst and foremost with
regard to so-called U(1) extensions. Besides the issues occurring at energies far above the
currently accessible scales in experiments, the Standard Model exhibits various puzzles which
result from high-precision physics at lower energies. Therefore, an overview of such current
puzzles is given, which could be explained by the existence of new, light, weakly coupled
gauge bosons.

Finally, in Sec. 1.3 the hidden photon model is introduced. For that purpose, the inter-
action Lagrangian at low energy is derived based on the discussion of Sec. 1.1.3. From this
interaction, basic properties of the hidden photon interaction with particles of the Standard
Model can be calculated, such as the decay width in Sec. 1.3.3. Furthermore, possibilities
to constrain the hidden photon model are reviewed and an update of the current status is
given in Sec. 1.3.4.

1.1 The Standard Models of cosmology and particle physics

1.1.1 The cosmological Standard Model

The evolution of the large-scale structure of our Universe is described within the so-called
cosmological concordance model. In this model only a few parameters, e.g., the total en-
ergy density, the matter density and the cosmological constant, are necessary to describe the

1



Chapter 1 The Standard Model and Beyond

Figure 1.1: Rotation curve of the galaxy NGC 6503. The dotted, dashed, and dashed-dotted
curves show the contributions from interstellar gas, the disk of the galaxy, and
the dark-matter halo, respectively, as a function of the distance from the galactic
center. Obviously, the contribution from the dark matter is needed to reconcile
the sum of the contributions (solid curve) with the data points. The �gure is
taken from Ref. [16].

evolution of the Universe starting from the big bang until today, assuming the validity of
general relativity [4, 5]. Mathematically it is based on the Einstein �eld equations obtained
from general relativity, and in particular on a special solution of those, the Friedmann equa-
tions. This solution implies that the Universe has a constant curvature and is isotropic which
was proven to very high accuracy by the investigation of the cosmic microwave background
(CMB) [4�13]. The CMB originates from the big bang and is observed today as an isotropic
radiation with a temperature of ∼ 2.7 K. After the recombination phase in which electrons
and protons combined to neutral atoms about 380,000 years after the big bang, the Universe
was not opaque anymore. The photons emitted at that time are detected today as CMB
radiation. Various astrophysical observations, such as the measurement of �uctuations in
the CMB, suggest that the Universe is �at. Correspondingly, the curvature is 1, which is
related to the total energy density Ωtot = 1.

The cosmological Standard Model is also referred to as ΛCDM model. This name results
from the fact that the parametrization of this model involves the cosmological constant
Λ and cold dark matter (CDM). Three important parameters of this model are the energy
density of ordinary visible�also named baryonic�matter, dark matter and dark energy. The
parameters were recently re�ned by the data taken by the PLANCK space craft. Already in
1933 the Swiss astronomer F. Zwicky noticed [14] that visible matter cannot be responsible
for the observed dynamics of the COMA galaxy cluster. He concluded that invisible matter
needs to be responsible for the e�ects he had found, which he named �dark matter� [14,15].
Further observations, such as the rotation curves of galaxies [17�21] shown in Fig. 1.1 and
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1.1 The Standard Models of cosmology and particle physics

the analysis of the large-scale behavior of galaxy clusters and super clusters, suggest the
existence of dark matter as well.
Nevertheless, the observed behavior of the large-scale structure of galaxies and galaxy

clusters cannot be caused by matter alone. To address this problem, a further ingredient
was postulated, namely the �dark energy.�
The parameters of the ΛCDM model were accurately determined in various space based

experiments such as COBE, WMAP and PLANCK. Deviations from the isotropic CMB were
determined to very high accuracy [6�13]. The anisotropies originating from e�ects when the
CMB photons were produced can be expanded in a series of spherical harmonics, which is
referred to as the CMB power spectrum. There are 10 free parameters within the ΛCDM
model which can be obtained by �tting to the data [4]. The result of the �t is presented in
the left panel of Fig. 1.2. It points out that most of the energy of our Universe is contributed
by the not-understood sources dark energy and dark matter. The right panel of Fig. 1.2
shows the con�dence level contours in the Ωm − ΩΛ plane, where Ωm and ΩΛ denote the
contributions to the total energy density from matter and dark energy. Besides the contours
from CMB and baryonic acoustic oscillations also data from supernovae (SNe) are included.
The recent values determined by PLANCK [12, 13] are around 68.3% and 31.7% for the

contributions from dark energy and matter, respectively. Furthermore, it was determined
that visible matter only accounts for an energy density of roughly 4.9%, whereas dark matter
contributes 26.8%. Assuming the validity of the ΛCDM model means that less than 5% of
the energy density of the Universe can be explained by visible matter. Furthermore, no
generally accepted theory of the dark energy exists.
Dark matter, as the name implies, needs to have the characteristics of matter and thus

of particles with a mass which have to interact at least gravitationally. In general, the
dark-matter candidate needs to be non-luminous, i.e., electrically neutral, and stable. Fur-
thermore, dark matter should not be sensitive to the strong interaction. There exist various
theories for possible dark-matter candidates. The most promising candidates originate from
attempts to solve open questions in the physics of baryonic matter, which is formulated
within the Standard Model of particle physics. The interaction via the exchange of the weak
gauge bosons is possible in this class of models. These dark-matter candidates are called
�weakly interacting massive particles.� They can be motivated, e.g., from supersymmetric
extensions of the Standard Model and are the best-investigated candidates for dark matter
at present. In the following, selected extensions of the Standard Model of particle physics in
relation with dark matter are considered in more detail.

1.1.2 From the discovery of the proton to the Standard Model of particle
physics

It is worthwhile to look back on the evolution of particle physics from the discovery of the
proton to the Standard Model. The discovery of the electron in cathode rays by Thomson
in 1897 can be considered as the birth of a new subject of physics�elementary particle
physics.1 Already around 2400 years ago Democritus believed that everything around us
is composed of small building blocks which he named �atoms.� While we know today that
Democritus' imagination of an �atom� is far from being reality, we still believe that all matter
can be decomposed into a few building blocks, which are the elementary particles. The idea

1In this section no claim is made on presenting the complete history of the Standard Model. Rather, selected
steps leading to a theory of the Standard Model are presented. This section is partly based on Ref. [22].
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Figure 1.2: Left Panel: Observed power spectrum of PLANCK. Note that the abscissa is
plotted logarithmically to l = 49. The upper panel shows the coe�cients of
the temperature power spectrum multipole expansion after subtraction of fore-
ground. The gray data points are the coe�cient for each multipole. For l ≥ 50
the blue points are the averaged results for ∆l ' 31 multipoles. The red solid
curve represents the best �t to the ΛCDM model parameters. The �gure is taken
from Ref. [13], where more details can be found. Right Panel: Con�dence level
contours for the contributions of dark energy and matter to the energy density
of the Universe in the Ωm − ΩΛ plane, where Ωm (ΩΛ) denotes the energy den-
sity originating from matter (dark energy). The con�dence levels from baryon
acoustic oscillations (BAO), super novae (SNe) and CMB are shown. The �gure
is adapted from Ref. [4].

of elementary particles had to be adjusted from time to time, when a more fundamental
particle was discovered. Up to this point discoveries were related to an increase of the
resolution achievable in structure investigations. Enhancing the resolution is directly related
to the reduction of the wavelength being equivalent to an increase in energy which can be used
to investigate the probe. Therefore, the structure of matter can be probed only to a certain
wavelength by optical light. To obtain a better resolution, particle accelerators are used
already for several decades. By bombarding a gold foil with α-particles, Ernest Rutherford
could show in 1909 that the positive charge of atoms is concentrated around a small area
in the center of an atom�the nucleus. In 1917 Rutherford discovered2 that atomic nuclei
are composed of hydrogen nuclei, which he knew as the simplest atomic nucleus. Hence,
he considered the hydrogen nucleus as fundamental building block of matter and named it
proton�inspired from the ancient Greek word meaning ��rst.�

2Already in 1815 William Proud postulated fundamental particle named �protyle.� He had observed that
the masses of investigated atomic nuclei were integer multiples of the mass of the hydrogen atom.
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1.1 The Standard Models of cosmology and particle physics

Now one assumed that the atomic nucleus is build up from protons and (nuclear) electrons
located in a dense region in the center of the atom. The Russian physicists Ambartsumian
and Ivanenko could show from principles of quantum mechanics that this is impossible.
However, the model of protons and electrons building up the nucleus was kept. Around 15
years after the discovery of the proton, the neutron was discovered by James Chadwick. The
neutron is an electrically neutral particle in contrast to the positively charged proton which
was needed to explain the masses and charges of the atomic nuclei. After this discovery, the
theory that the nucleus consists of protons and electrons was quickly dropped. However, a
theory was needed to explain that a bound object of protons and neutrons could be formed.
Yukawa and Stückelberg tried to solve this problem by the introduction of a new force, the
nuclear force or also called strong force.3 The postulation of a new particle mediating an
attractive interaction between protons and neutrons�the pion�leads to a new force which
binds nuclei together [23]. Yukawa named this new group of particles mesons.4 The particles
involved in the strong interactions are called hadrons. These consist the groups of baryons�
such as protons and neutrons�and mesons.

In 1930 Pauli postulated the existence of a new particle in order to explain the continuous
energy spectrum of the β-decay observed by Meitner and Hahn in 1911 [25]. The spectrum
has to be discrete for the assumed β-decay into two particles. Pauli concluded that a third,
invisible particle is involved in the reaction. Today, we know this particle as the electron-
neutrino. The �rst theory of the β-decay was proposed by Fermi [26] in 1934. He introduced
a new contact force, which we know today as the weak force.

Independently of the observations of new particles, a covariant quantum �eld theory of
electromagnetism was formulated by Feynman, Schwinger and Tomonaga in the late 1940's.
They were awarded with the Nobel Prize in Physics for their fundamental work in Quantum
Electrodynamics (QED) in 1965. QED is still used today for the theoretical description of
electromagnetic interactions of particles. It is presumed to be the best-understood theory in
particle physics and is tested to extremely high precision.

A signature of a particle with the properties postulated by Yukawa could be observed in
cosmic radiation and bubble chamber experiments in 1936. These signatures were interpreted
to originate from the pion. However, in 1947�with the real discovery of the pion�it turned
out that not the pion had been detected eleven years ago. Indeed, the unexplainable muon
had been discovered, which was then interpreted as a heavy electron. In the following years,
a plethora of new �fundamental� particles could be discovered. Hence, the necessity to �nd
a kind of a periodic table of elements arose. This periodic table of elementary particles was
found independently by Gell-Mann [27] and Ne'eman [28] in 1961, which Gell-Mann called
�the eightfold way.�

Two years later Gell-Mann [29] and Zweig [30] proposed the quark model. Within this
model the observed pattern of baryons could be understood qualitatively. They assumed
that the mesons and baryons were bound states of two and three constituents, respectively,
named �quarks� by Gell-Mann. These should appear in the three di�erent �avors up (u),
down (d) and strange (s). The quarks were not treated as real particles within this model,
since they could not be observed in experiments.5

3Note that the term strong force is nowadays used in a di�erent way: the nuclear force is considered as the
residual strong force.

4Stückelberg did not publish his work on the nuclear forces, since Pauli had the opinion that it was ridiculous
[24].

5�Quarks were treated like the veal used to prepare a pheasant in the royal French cuisine: the pheasant
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Chapter 1 The Standard Model and Beyond

An independent view on fundamental particles was given by Feynman within the parton
model. Similar to the atomic nucleus, the hadrons constitute of more fundamental particles,
the partons. In contrast to Gell-Mann, Feynman treated partons as real particles. It could
be proven in deep-inelastic scattering experiments, where a high-energetic electron beam is
scattered o� a proton target, that point-like partons can be found in the proton. Later, the
partons were identi�ed with the quarks. This result had been predicted by Bjorken.
A problem arose from the experimentally observed ∆++ baryon, which is made of three

up quarks. Since quarks were intended to be fermions, they are sensitive to the Pauli ex-
clusion principle, which states that no two identical fermions may be in the same state. A
solution to this problem was found by Han and Nambu [31], who introduced a new degree
of freedom named as color. Quarks could be charged under this new quantum number color
and interact via the exchange of the gauge bosons of this new force, the gluons. This was the
birth of the theory of the strong interaction, which we know as �Quantum Chromo Dynam-
ics (QCD).� QCD exhibits two important properties. The �rst is that the strong coupling
constant becomes weaker with increasing energy and even tends to zero [32, 33]. This phe-
nomenon is called �asymptotic freedom,� and was discovered by Gross, Politzer and Wilczek
in 1973. They were awarded with the Nobel Prize in Physics for this discovery in 2004. As
a consequence of the asymptotic freedom, one can treat the strongly interacting particles
within perturbation theory at large energy scales as the coupling is weak. However, at the
low energy scales the strong coupling constant is too large to allow for a good perturbative
expansion. The other�although unproven�property of QCD is that quarks and gluons
cannot exist as single particles. They need to be bound in color neutral states, the hadrons.
One refers to this property as �color con�nement.� This conjecture is driven by the fact that
up to now no single quarks could be observed in an experiment.
In the 1960s S. Glashow, A. Salam and S. Weinberg formulated the theory of electroweak

uni�cation (GSW theory) in which the massive force carriers of the weak interaction�the
W± and Z0 bosons�were predicted. They were awarded with the Nobel Prize of Physics
in 1979 for this work. An important contribution was the introduction of weak neutral
currents via Z0 bosons that are similar to the electromagnetic interaction. The particles
involved in the reaction do not change their charges but the coupling to electromagnetically
neutral states like neutrinos is possible. This type of interaction is contrary to the interactions
happening in the nucleon beta decay where a neutron decays into a proton by emitting aW+

boson. Neutral weak currents were �rst observed in an experiment at CERN in 1973, where
a neutrino beam was scattered o� nuclei. Bubble chamber pictures showed few electrons
that suddenly start to move, which was understood as exchange of a Z boson. The discovery
of neutral weak currents was the manifestation of the GSW theory as uni�ed description of
the electromagnetic and weak interactions.
Together with QCD the GSW theory forms the Standard Model of particle physics, which

will be explained in detail in the next section.

1.1.3 The Standard Model of particle physics

The fundamental interactions between matter particles are described in terms of a quantum
�eld theory (QFT) within the Standard Model of particle physics (SM). For the construction
of a QFT of the Standard Model, the gauge principle formulated by Weyl already in 1929

was baked between two slices of veal, which were then discarded (or left for the less royal members of the
court)� H. Leutwyler, found in Ref. [22]
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1.1 The Standard Models of cosmology and particle physics

[34] is of crucial importance. Gauge theories are based on the idea that all experimental
observables remain unchanged when so-called gauge transformations act on them. These
gauge transformations are associated with U(1) or SU(n) gauge groups, with n > 1. The
number NG of gauge �elds manifesting themselves in the gauge bosons is equal to the number
of generators of the gauge group NG = n2 − 1. Maybe the eventual goal of (particle)
physics is to �nd a QFT based on the gauge principle, which serves as a theory of all
fundamental interactions. Although there are four (known) fundamental interactions in
nature, i.e., gravitation, electromagnetism, the weak and strong interactions, only three of
them are described within the SM.

Electromagnetic Force: The well-known interaction between electrically charged particles
as well their interaction with electromagnetic �elds can be described within the Quan-
tum Electro Dynamics (QED), which is a U(1) gauge theory. It is the best understood
QFT. The messenger particle of the QED is the photon γ. All electrically charged
particles interact via the electromagnetic interaction.

Strong Force: The interaction between particles charged under the strong force is described
by the Quantum Chromo Dynamics (QCD). The name originates from the fact that
one refers to the charge of the strong interaction as �color� charge. Since QCD is a non-
abelian SU(3) gauge theory, the eight gluons as the messenger particles of the strong
force couple to the color charged quarks and among themselves. The self-interaction
of the gluons is a feature of non-abelian gauge theories.

(Electro-) Weak Force: Particles charged under the weak charge, which are all quarks, lep-
tons and the weak gauge bosonsW±, Z, interact via the exchange of heavy, weak gauge
bosons. The theory of the weak interaction is not a full QFT. However, the weak inter-
action is included in the SM by the so-called electroweak (GSW) theory, which uni�es
the electromagnetic and weak interaction to a SU(2)× U(1) gauge theory.

The formulation of a QFT including also gravitation is still an open question.
The SM is the theory of fundamental particle physics, in which the interactions of quarks,

leptons and gauge bosons are described. The basic building blocks of the SM are QCD and
GSW theory. Therefore, the SM is a relativistic gauge theory with the gauge group

SU(3)c × SU(2)L × U(1)Y , (1.1)

where the indices c, L, Y refer to the quantum numbers color, weak isospin and hypercharge,
respectively. SU(3)c is the gauge group of the strong interaction described by QCD.
In the following the construction of the electroweak Lagrangian will be considered in more

detail.6 Before deriving the Lagrangian of the GSW theory, the Lagrangian of QED will be
shortly discussed. The corresponding free Lagrangian of fermions and photons reads

LQED,free = Lf + Lγ
= ψ̄ (i/∂ −mf )ψ − 1

4
FµνF

µν , (1.2)

where ψ is the fermion �eld, Fµν = ∂µAν − ∂νAµ is the electromagnetic �eld strength tensor
and A denotes the photon �eld. Since QED is a U(1) gauge theory, its Lagrangian needs

6This section is based on Refs. [36,37]
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Figure 1.3: Sketch of the particles contained in the SM. The arrows indicate on which parti-
cles the forces associated with the gauge bosons act. The �gure is adapted from
Ref. [35].

to be invariant with respect to local U(1) gauge transformations. One can easily show
that the Lagrangian (1.2) is not gauge invariant under these transformations. To restore
gauge invariance, the principle of the minimal coupling is used, where an interaction term is
introduced. This additional term includes the coupling of a photon to charged fermions into
the Lagrangian, which yields

LQED = Lf + Lγ + Lint
= ψ̄ (i/∂ −mf )ψ − 1

4
FµνF

µν + e ψ̄γµψA
µ. (1.3)

The combination of the non-abelian gauge group SU(2)L of the weak isospin and the
abelian U(1)Y hypercharge gauge group forms the symmetry group of the electroweak in-
teraction. The free GSW Lagrangian contains the kinetic terms of the free Lagrangians
associated with the fermions underlaying the electroweak force and the gauge bosons asso-
ciated with the GSW gauge group SU(2)L × U(1)Y . However, the free Lagrangian is not
invariant under SU(2)L × U(1)Y gauge transformations. Analogously to the discussion for
QED, interaction terms are added by means of the principle of the minimal coupling.

The fermions participating in the electroweak interaction are quarks and leptons. These
fermions can be grouped into left-handed doublets and right-handed singlets. Moreover,
quarks as well as leptons can be arranged into three generations or families. As a �rst
step, the construction for the leptonic sector of the theory will be presented. The leptonic
particles are arranged in the doublet ψTL = (νeL, eL)T and the singlet ψR = (eR). Note that
for simplicity e refers to the massive member of each lepton family e, µ, τ , while the νe refers
to the associated neutrino. The Lagrangian associated with the free gauge bosons contains
the three W bosons of the weak isospin and the single hypercharge gauge boson B. The free
Lagrangian of the GSW theory can be written as

Lfree = LW + LB + Lf , (1.4)
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1.1 The Standard Models of cosmology and particle physics

where

LW = −1

4

3∑
a=0

W a
µνW

a, µν , LB = −1

4
BµνB

µν , Lf = ψ̄(i/∂ 13×3)ψ,

with the �eld strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + ig εabcW b
µW

c
ν , Bµν = ∂µBν − ∂νBµ.

ψ denotes the combination of the left-handed fermion doublet ψL and right-handed fermion
singlet ψR

ψ =

νeLeL
eR

 .

Only the free �elds are contained in the Lagrangian (1.4). Analogous to the free QED
Lagrangian (1.2), the free GSW Lagrangian (1.4) is not gauge invariant under SU(2)L gauge
transformations of ψL and U(1)Y gauge transformations of both ψL and ψR. To obtain
invariance under SU(2)L×U(1)Y gauge transformations, the ordinary derivative is replaced
by the covariant derivative:

i∂µ → iDµ = i∂µ − gW a
µT

a − g′BµY, (1.5)

with

T a =

(
τa/2

0

)
and Y =

(
YL 12×2

YR

)
,

where τa denotes the Pauli matrices. The massless Lagrangian of the leptonic sector of the
GSW theory then reads

L = LW + LB + Lf + Lint, (1.6)

with
Lint = −ψ̄

(
gW a

µT
a + g′BµY

)
γµψ.

The gauge �elds in the Lagrangian (1.6) W a, a = 1, 2, 3, and B are not the �elds of the
corresponding physical states W±, Z0, and γ. After some algebra and with the convention
YL = 1/2 one can identify

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
,

Zµ =
1√

g2 + g′2
(
gW 3

µ − g′Bµ
)

= cos θWW
3
µ − sin θWBµ,

Aµ =
1√

g2 + g′2
(
g′W 3

µ + g Bµ
)

= sin θWW
3
µ + cos θWBµ,

(1.7)

where θW denotes the weak mixing angle with cos θW = g/
√
g2+g′2. Now Aµ can be iden-

ti�ed with the photon �eld and one obtains YR = 1 and the electromagnetic coupling
e = g g′/

√
g2+g′2. The interaction term of Lagrangian (1.6) is found as

Lint = −e
(
Aµj

µ
em +

1

sin θW cos θW
Zµj

µ
NC +

1√
2 sin θW

(
W+
µ jµCC +W−µ (jµCC)†

))
, (1.8)
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with

jµem = −
(
ēL, ēR

)
γµ
(
eL
eR

)
,

jµNC =
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θW j
µ
em,

jµCC = ν̄eLγ
µeL,

denoting the electromagnetic, neutral weak and charged weak currents, respectively.

No mass terms were included in the Lagrangian (1.6) yet. A naïve introduction of mass
terms, as it is possible in the case of QED, would violate gauge invariance. Therefore, another
method is used to assign a mass to the particles which is the so-called Higgs mechanism.
A new complex, scalar isodoublet �eld φ�the Higgs �eld�is introduced. This leads to an
additional term to the Lagrangian (1.6)

LH = ∂µφ
†∂µφ−µ2φ†φ− λ(φ†φ)2︸ ︷︷ ︸

≡−V (φ)

, (1.9)

where λ > 0 and µ2 < 0 are constants of the potential, which is invariant under SU(2) gauge
transformations. The potential V (φ) is minimized for (φ†φ) = −µ2/2λ ≡ ρ2

0/2. Every state of

the form φ = U(x)

(
0

ρ0/
√

2

)
, where U(x) is an arbitrary SU(2) transformation, minimizes

the potential V (φ), but breaks SU(2) gauge invariance. ρ0 is the vacuum expectation value
of the Higgs �eld. The introduction of this new �eld provokes that the symmetry of the
ground state is less than that of the Lagrangian. Spontaneous symmetry breaking occurs.

An interaction term between fermions, gauge bosons and the Higgs sector is introduced in
a way that SU(2)L × U(1)Y invariance is preserved. The Higgs �eld is coupled to fermions
by a SU(2)L invariant Yukawa coupling

Lhff = −clψ̄Rφ†ψL − c∗l ψ̄LφψR. (1.10)

To obtain a coupling between the gauge bosons and the Higgs �eld, one introduces the
covariant derivative for the Higgs �eld

∂µφ→ Dµφ = ∂µφ+ igW a
µ

τa

2
φ+ ig′BµYHφ,

with YH = YL − YR = 1/2. The ground state of φ is not invariant under SU(2)L × U(1)Y
transformations. However, it is invariant under U(1) transformations of the form

ei(
τ3/2+YH)χ(x)

(
0

ρ0/
√

2

)
=

(
0

ρ0/
√

2

)
,

where Q = τ3/2 +YH is the electrical charge. By expanding the kinetic term (Dµφ)†(Dµφ) of
the Lagrangian, expressions appear which have the structure of mass terms. Their coe�cients
can be identi�ed with the masses of the gauge bosons

m2
W =

g2

4
ρ2

0, m2
Z =

(g2 + g′2)

4
ρ2

0.
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The W and Z boson masses are related by m2
W = m2

Z cos2 θW . Fermions acquire a mass in a
similar way from expanding Eq. (1.10), where one �nds me = cl(ρ0/

√
2). The photon as well

as the neutrinos remain massless.
Hence, by spontaneous symmetry breaking a mass term appears in the Lagrangian which

preserves gauge invariance but assigns a mass to the particles. The Higgs �eld manifests
itself by the so-called Higgs particle which is a massive spin-0 boson.
The integration of the quark sector can be performed analogously to the leptonic sector.

The left-handed quark �elds can be grouped into singlets in the same way. It turned out
that grouping the physical mass states of the light, left-handed quarks does not lead to an
appropriate description of nature. Instead, the down quark d and the strange quark s mix:(

uL
dL

)
→
(
uL
d′L

)
=

(
uL

cos θcdL + sin θcsL

)
,

where θc is the Cabibbo mixing angle. The mixing angle θc had been predicted previously by
Cabibbo from the analysis of leptonic decays of pions and kaons. The �eld d′ couples with the
same strength as leptons. d and s are the physical mass states of the down and strange quarks.
The aforementioned kaon decays and the neutron β-decay could be successfully described by
this mechanism. However, a term in the weak neutral current ūLγ

µuL − d̄′Lγµd′L appears,
which leads to a �avor changing between s and d quarks. These �avor changing neutral
currents could not be observed in experiments. An explanation to this issue is given by the
GIM-mechanism, in which a second generation of quarks is postulated:(

cL
s′L

)
=

(
cL

− sin θcdL + cos θcsL

)
,

where c is the mass state of the charm quark. The �avor changing neutral terms vanish by
including this second generation of quarks into the neutral weak quark current.
The procedure was generalized to a third family of quarks, the bottom quark b and the top

quark t, where now the states are mixed by the so-called CKM matrix. This concept explains
the observed violation of the charge-parity symmetry CP in neutral kaon systems [38].
To conclude, several predictions of the GSW theory could be explored successfully in

experiments, e.g.,

Weak neutral currents: Weak neutral currents were predicted from the construction of the
GSW Lagrangian. They were observed in 1973 [39].

Weak gauge bosons: The weak gauge bosons were postulated in this theory. They could
be observed in 1983. Furthermore, the relation of their masses by the weak mixing
angle is probed to high accuracy.

Additional quark �avors: When the GSW theory was formulated only the u, d and s quark
were known. From the GIM mechanism another quark �avor, the charm quark c,
was postulated to explain the absence of �avor changing, neutral currents [40]. The
discovery of its lowest bound state, the J/ψ meson, proved this prediction [41, 42].
Similarly, the top quark was postulated from the CKM mechanism [38] and could be
discovered in 1995 [43].

Third lepton family: The last postulated leptons, the τ lepton and its associated neutrino
ντ could be observed in 1975 [44] and 2000 [45], respectively.
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Three lepton and quark families: Up to now there are no hints for more than the three
lepton and quark families. In various experiments this prediction was investigated
without �nding any excess.

Higgs boson: The Higgs �eld introduces a new particle which is known as the Higgs boson.
The discovery of this boson at the Large Hadron Collider at CERN was announced
very recently [46,47].

One obtains the SM Lagrangian from the combination of the GSW Lagrangian and the
QCD Lagrangian, where the latter is given by

LQCD =
∑
f

q̄f (i /D −mf ) qf −
1

2
Trc (GµνGµν) . (1.11)

The sum runs over the quark �avors f = u, d, s, c, b, t. The quark spinor of �avor f is
denoted by qf , which is a triplet with respect to the SU(3)c color gauge symmetry. The
respective current-quark mass is denoted by mf and

Gµν = ∂µAν − ∂νAµ + igs [Aµ, Aν ]

is the gluon �eld strength tensor, where A is the gluon �eld. Furthermore,

Dµ = (∂µ + i gsAµ)

is the covariant derivative of QCD, which keeps gauge invariance under local SU(3)c trans-
formations U(x) = exp (−i θa(x)λa/2), where λa are the Gell-Mann matrices.
In this section the construction of the SM Lagrangian and the success of the SM in the

description of elementary particle physics were illustrated. Many known phenomena can be
explained within the SM and observables can be calculated to very high accuracy. The next
section will deal with limitations and current issues of the SM, as well as ideas to resolve
them.

1.2 Limitations and extensions of the SM

1.2.1 Overview of hints for new physics

Recently a new, scalar boson was observed at the LHC [46,47], which is most likely the Higgs
boson�the last missing piece of the SM. The observation of the Higgs boson was predicted
from the spontaneous breaking of the electroweak symmetry. This is another important
success of the SM. Although a plethora of phenomena can be described within the SM, there
are strong hints for physics beyond our known model. As an example, the SM cannot contain
a particle which serves as a dark-matter candidate by de�nition. Thus, around 80% of matter
cannot be explained within the SM. Nevertheless, today the SM is the theory of elementary
particle physics up to a scale of O(1 TeV).
The limitation of the SM as fundamental theory can be pointed out by the famous �gauge

hierarchy problem.� So far, there is no explanation why the weak interaction, as the weakest
of the three forces in the SM, is still 30 orders of magnitude stronger than gravity. Another
hierarchy problem is stated by the di�erences of the particle masses varying over several
orders of magnitude [4].
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1.2 Limitations and extensions of the SM

As mentioned before, gravity is not included in the SM. Therefore, the SM cannot serve
as a theory of all known forces. The energy scale where (quantum) gravitational e�ects
become important is the Planck scale at MP ' 1.2 × 1019 GeV. Hence, there are 15 orders
of magnitude between the scale of the SM and the Planck scale of a �theory of everything�
unifying the forces of the SM and gravitation. This leaves a large space for possible new
physics.
In addition, the Higgs boson mass mH gains corrections ∆mH from the vacuum polariza-

tion. Fermions of the mass mf and coupling strength λf to the Higgs run in a loop, giving
rise to

∆m2
H = −|λf |

2

8π2
Nc,f Λ2

UV + . . . ,

where Nc,f is the number of colors of the fermion f . Moreover, ΛUV is the cut-o� scale
to regularize the loop integral. It can be interpreted as the minimal scale at which new
physics enters. Terms growing logarithmically with this scale are absorbed in the ellipsis.
The largest SM correction to mH results from the top quark contribution, where λf ' 1.
For new physics which enters at the Planck scale (ΛUV ' MP ), the vacuum-polarization
correction to the Higgs boson mass exceeds its bare mass by around 30 orders of magnitude.
There is no reason, why the correction to the bare mass is that much larger. The removal of
the quadratical divergence by renormalization leads to an unnatural �ne tuning of 1 part in
1030 known as ��ne-tuning� and �unnaturalness� problem. Since the scale ΛUV in�uences the
vacuum expectation value of the Higgs boson, which is related to the masses of the fermions
and gauge bosons in the SM, the SM is sensitive to this scale. A solution to the gauge
hierarchy �ne-tuning problem is given by a new symmetry turning fermions into bosons
and vice versa, which is known as �Supersymmetry (SUSY).� An additional scalar boson
introduced from broken SUSY provokes that the correction to the Higgs boson mass is only
logarithmically depending on the scale ΛUV. This strongly reduces the �ne-tuning from 1
part in 1030 to a O(1%) e�ect, as long as the mass of the scalar superpartner does not exceed
mH too much.
The validity of the SM is not challenged by the �ne-tuning problem, rather it points out

one more time that the SM can only account for physics up to the weak scale. Questions
like the origin of particle masses, in particular the mass of the Higgs boson or the number
of its free parameters cannot be answered within the SM. Another issue enters, when the
so-called �GUT scale� is reached, at which�predicted by renormalization group equations�
the individual gauge couplings of strong, weak, and electromagnetic forces should unify to
one coupling constant of a �Grand Uni�ed Theory (GUT).� As illustrated in Fig. 1.4, this
does not occur in the SM (left panel). For comparison the evolution of the three inverse
couplings with new physics entering at the O(1 TeV) scale by means of superpartners in the
Minimal Supersymmetric Standard Model (MSSM) is shown in the right panel. Including
the supersymmetric contribution gives rise to a uni�cation of the gauge couplings. This is
understood as a strong evidence for SUSY at the scale of 1 TeV [4, 48].
Furthermore, neither dark matter nor dark energy accounting for 95% of the energy den-

sity of the Universe are included in the SM. These and many more hints not treated here,
motivated to search for physics beyond the SM, which might lead to a more fundamental
theory of elementary particle physics.
As a further feature, SUSY can lead to a candidate for a dark-matter particle. This so-

called neutralino is consistent with the requirements discussed in Sec. 1.1.1. It is remarkable
that the neutralino as dark-matter candidate arises automatically from supersymmetric SM
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Figure 1.4: Evolution of the inverse gauge coupling constants. Left panel: SM coupling
constants. Right panel: Coupling constants with additional superpartners at
the O(1 TeV) scale in the minimal supersymmetric SM. The �gure is taken from
Ref. [4] and was �rst published in Ref. [48].

extensions with R-parity, which is introduced to avoid the proton decay. Since SUSY provides
a dark-matter candidate as a byproduct, one often refers to this as �WIMP miracle.�

Therefore, supersymmetric extensions of the SM seem to be very promising. If SUSY
exists at a mass scale at the TeV scale, its signals are visible in the data taken at the LHC.
Thus, constraints on the particular models of SUSY can be derived. As an example, all of
the phenomena addressed in this paragraph can be explained within the MSSM. In general,
the MSSM has more than 120 free parameters, which makes it very compelling to �nd
constraints on this model. Some versions of the MSSM require only few parameters, such as
the constrained MSSM (cMSSM) or the phenomenological MSSM (pMSSM). These models
became very popular as benchmark scenarios [4], because several of their free parameters are
constrained by measurements of SM processes.

From the up to now existing data taken at the LHC one is already able to draw conclusions.
The observation of the Higgs boson at a mass of 125 GeV sets stringent bounds on the models.
It is discussed in Ref. [49] that in particular models, such as the cMSSM, the Higgs mass
is predicted to be below the observed value. Hence, classes of models are excluded now.
Furthermore, the absence of a SUSY signal in the data states further constraints, e.g., on
the masses of the SUSY partners of the SM particles. For example, the mass of gluinos, which
are the scalar SUSY partners of the gluon, must be above 1 TeV [4,50]. Since the extraction
of bounds for the parameters strongly depends on model assumptions, SUSY below the scale
of 1 TeV cannot be considered as excluded. However, one expects that the future runs at
the LHC at a center-of-mass energy of 13 TeV or higher will allow one to probe whether or
not SUSY exists.

The limitations of the SM mentioned above arise at its high-energy frontier. In addition to
these high-energy issues, there are several puzzles existing at the intensity frontier of the SM,
where high-precision experiments challenge the theoretical predictions. In the next sections,
puzzles from high-precision tests of the SM are introduced and their implications on possible
new physics are pointed out.
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Figure 1.5: Feynman diagrams contributing to the anomalous magnetic moment of a lepton,
here in particular for the muon. The Schwinger term, the leading-order correction
from QED is represented by diagram (a). Further selected corrections from QED
(b), the weak interaction (c) and (hadronic) vacuum polarization (d) are also
shown.

1.2.2 The anomalous magnetic moment of the muon

One of the currently most discussed puzzles of the SM is the discrepancy in the theoretical
and experimental determination of the anomalous magnetic moment of the muon. Since
no signi�cant deviation for the electron anomalous magnetic moment has been found, this
section will concentrate on the anomalous magnetic moment of the muon.
The interaction of a massive particle of charge e, mass m and spin s with a magnetic �eld

B leads to a splitting of the levels in the energy spectrum

∆E = −
(
g
e

2m
~s
)

︸ ︷︷ ︸
=:~µ

· ~B,

where µ is known as the magnetic moment, which is proportional to the gyromagnetic factor
g. The gyromagnetic factor g can be calculated in relativistic quantum mechanics, and one
�nds for fermions in Dirac theory g = 2. The anomalous magnetic moment of a fermion
a = (g−2)/2 denotes the relative deviation from this value, which is caused by higher-order
corrections. In the �rst calculation of the Feynman diagram (a) of Fig. 1.5 in QED, Schwinger
found a deviation from 2. This so-called Schwinger term is the by far largest contribution to
the anomalous magnetic moment.
Measurements of the anomalous magnetic moment of the muon aµ are performed now for

more than 50 years [51]. The anomalous magnetic moment can be investigated in experiments
with extremely high accuracy. This serves as a test of the validity of the SM, since aµ can be
precisely predicted within SM calculations. The current average experimental value [52, 53]
is

aexp
µ = 116592089(63)× 10−11.

The anomalous magnetic moments of the electron and muon were calculated to high ac-
curacy in theory. It is convenient to split the SM corrections to the anomalous magnetic
moment as

aµ = aQEDµ + aweakµ + ahadronicµ .

Selected corrections to the anomalous magnetic moment are illustrated by the Feynman dia-
grams in Fig. 1.5 from QED (b), the weak interaction (c) and (hadronic) vacuum polarization
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Figure 1.6: Overview over existing SM predictions for the anomalous magnetic moment of
the muon aµ, where the current experimental result [53] was subtracted. The
experimental uncertainty is represented by the blue vertical band. The �gure is
adapted from Ref. [54].

(d). The part contributed by QED is very well known and has been recently calculated to
O(α5

em) for the electron [55] as well as for the muon [56]. The QED contribution to the
muon's anomalous magnetic moment aµ is given in Ref. [56]

aQEDµ = 116584718.846(37)× 10−11. (1.12)

The weak contribution calculated up to 2-loop order is found to be [57�60]

aweakµ = 154(2)× 10−11.

At present, the largest uncertainty enters from the precise lack of knowledge of the hadronic
correction, in particular from the estimates of the hadronic vacuum polarization (HVP)
as well as the hadronic light-by-light scattering term (HLbL). Both are currently under
investigation by various experimental as well as theoretical groups. The most recent values
for the hadronic contribution are given in Ref. [61]

aHVP,LO
µ = 6886.0(42.4)× 10−11,

aHVP,NLO
µ = −98.4(0.7)× 10−11,

aHLbL
µ = 116(39)× 10−11,
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in the leading order, where of course also higher-order corrections have to be accounted for.
Eventually, the prediction of the anomalous magnetic moment of the muon in the SM leads
to [61]

aSM
µ = 116591776.5(56.3)× 10−11,

giving rise to a discrepancy between the theoretical and experimental value [54,61] of

aexp
µ − ath

µ = 312.5(85.4)× 10−11.

This corresponds to a discrepancy of ' 3.7 standard deviations, which cannot be explained
so far. The comparison between the experimental value and some selected predictions is
shown in Fig. 1.6.
Several models were motivated to explain this anomaly. In addition, any extension of

the SM needs to be in agreement with the high-precision results of ae and aµ. Therefore,
the accurate determination of aµ will not only be used as a motivation for SM extensions.
Furthermore, it will serve as a test for the models and lead to bounds for the corresponding
parameters. A new experiment at the Fermilab and progress in the theoretical calculations,
in particular of the hadronic contribution, will clarify in the near future, if this discrepancy
results from physics beyond the SM or originates from underestimated SM corrections.

1.2.3 The strong CP problem and axions

The basic properties of QCD, like gauge invariance and Lorentz invariance, allow for an
additional term in the Lagrangian which is CP-violating

LQCD ⊃
g2
s

32π2
θ
(
GaµνG̃

µν, a
)
, (1.13)

where θ is the fundamental, experimentally constrained parameter associated with the strong
CP-violation. The existence of such a CP-violating term in the SM Lagrangian would lead
to a non-vanishing electric dipole moment of the neutron. It can be estimated to be of the
order

|dn| ∼ 10−16
∣∣θ̄∣∣ e cm,

where θ̄ ≡ θ + arg detM is the e�ective physical CP-violating parameter in the SM and M
is the quark mass matrix [62]. As discussed in Refs. [62,63], the existing upper experimental
bound on the electric dipole moment of the neutron is given in Refs. [4, 64] by

|dn| < 0.29× 10−25e cm,

which implies ∣∣θ̄∣∣ ' 10−10.

One expects
∣∣θ̄∣∣ ∼ O(1), since

∣∣θ̄∣∣ is a dimensionless parameter. This represents another
�ne-tuning problem in the SM, which is known as the strong CP problem.
The strong CP problem was �rst resolved by Peccei and Quinn, who introduced a new

U(1) symmetry [65]. It was realized that this solution leads to a new light, pseudoscalar
particle, the axion [66, 67]. The axion is the (pseudo-) Goldstone boson arising from the
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spontaneous symmetry breaking of the Peccei-Quinn U(1) symmetry. Due to this symmetry
a further term appears in the Lagrangian,

LQCD ⊃
g2
s

32π2

a

fa

(
GaµνG̃

µν, a
)
, (1.14)

where a and fa denote the axion �eld and the axion decay constant, respectively. Therefore,
the parameter θ is shifted to θ + (a/fa), which reestablishes CP conservation.
As discussed in the review articles [62, 63], the axion mass ma can be calculated from

current algebra relations as a function of its dimensionful decay constant fa [66, 67]

ma ' 0.6 meV × 1010 GeV

fa
.

Originally, one assumed that the decay constant of the axion is at the weak scale, fa ∼ 246 GeV.
This conjecture could soon be disproved with the discovery of the J/ψ meson. The �Kim�
Shifman�Vainshtein�Zakharov (KSVZ)� model proposed in Refs. [68,69] provides an invisible
axion and is consistent with experimental data. The KSVZ model is still today considered
as the most promising axion model [62,63].
Several independent constraints on these parameters exist, which are extensively discussed

in Refs. [62, 63]. The fact that axions could not be detected hitherto can be translated into
exclusion limits for the mass and coupling parameters according to

ma < 1 keV⇔ fa < 104 GeV.

It is obvious from Eq. (1.14) that axions interact with gluons. A similar term, in which
the gluon �eld strength tensor is replaced by the electromagnetic �eld strength tensor, gives
rise to a low-energy e�ective interaction Lagrangian

Laγγ = gaγγ a ~E · ~B, (1.15)

describing the Primako� interaction of the axion with photons. Nevertheless, the interaction
of the axion with the gluon as well as the photon is strongly suppressed [62]. The axion can
serve as a candidate for a dark-matter particle, although it interacts via the strong as well
as the electromagnetic interaction. As a dark-matter candidate, the mass of the axion must
be below a few meV. This implies a lifetime longer than that of the Universe.
These possibilities motivated various attempts to search for axions, such as beam-dump

experiments [71�73] searching for an anomalous lepton pair abundance behind the beam
dumps of high-energy experiments. Another strategy are the so-called Light-shining-through-
wall experiments. In these experiments intense laser light is radiated onto a shield behind
which a photon detector is placed. In an ideal case, the SM background is complete reduced
by the shield. Hence, the photons reaching the detector need to result from the creation and
annihilation of an axion as described by the Lagrangian in Eq. (1.15) [70]. Derived bounds
for the parameter space of axions can be found in Fig. 1.7.
The generalization of this concept leads to a family of hypothetical particles, the axion-

like particles (ALPs). They are widely studied in high-intensity experiments [62, 74]. In
the case of ALPs the condition that the decay constant�or correspondingly, the coupling
constant�is related with the mass is relaxed. The QCD axion within in the KSVZ model,
is a special case of an ALP. One can see that the axion and axion-like particles are further
examples, where a puzzle of the SM leads to an extension of the SM, which can be tested by
experiments at the precision frontier complementary to direct searches at larger energies.
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1.2 Limitations and extensions of the SM

Figure 1.7: Existing constraints for the parameter space of axion-like particles as a function
of the mass ma and the coupling to two photons gaγγ . The colored regions corre-
spond to existing bounds from astronomical observations (gray), from laboratory
experiments (dark-green), and from astrophysical and cosmological arguments
(blue). The light-green shaded regions illustrates the projected reach of future
experiments. Hints for axions and ALPs from astrophysics are indicated by the
red curves. The yellow region labeled as KSVZ axion refers to the QCD axion.
This is the region of parameters in which the strong CP problem can be solved.
The �gure is adapted from Ref. [70].

1.2.4 Hadrons in the Standard Model and the proton radius puzzle

The treatment of hadronic states is not really a limitation of the SM but a generic feature of
QCD. Due to the two features named above, asymptotic freedom and con�nement, quarks
and gluons cannot exist as free particles. Moreover, at low energies their bound states,
the hadrons, cannot be treated in terms of a perturbative expansion. The typical scale of
momentum transfer at which one assumes that hadrons can be treated perturbatively, is
∼ 3 GeV. The laws of perturbation theory can be applied above this scale to calculate the
Feynman amplitudes of the particular processes. Below this scale, which is the case for the
processes investigated in this thesis, the structure of the hadrons involved in the reactions
must be discussed in a model dependent way parameterizing the hadronic interaction part.

The interaction of photons with hadrons gives rise to the electromagnetic structure of
the hadron (see Fig. 1.8). This structure can in general be parametrized by form factors,
which would require a very complicated non-perturbative calculation within QCD. There-
fore, the present strategy is to determine them in experiments. For a spin-0 hadron the
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p p′

q = (p′ − p)

Figure 1.8: Feynman diagram of the QED vertex, describing the coupling of a photon to a
charged particle.

electromagnetic current jµ = (p+ p′)µ is modi�ed to

Jµ = F ((p′ − p)2) (p+ p′)µ, (1.16)

where F is is the form factor of the spin-0 hadron. In the description of elastic scattering
reactions, the parametrization of the electromagnetic structure of spin-0 hadrons involves
only the e�ects from the spatial charge distribution.
As an further example, the electromagnetic structure of a nucleon, as every spin-1/2 par-

ticle, can be parametrized by two scalar functions, which are the so-called electromagnetic
form factors. Compared to the current operator for the scattering o� a point-like particle
jµ = ūγµu, such as the electron, the electromagnetic current can be expressed as

Jµ = ū(p′)
(
F1(Q2)γµ +

i F2(Q2)

2MN
σµν q

ν

)
u(p), (1.17)

where q = p′ − p, Q2 = −q2 > 0, and F1 and F2 are the Dirac and Pauli form factors,
respectively. Moreover, the mass of the proton is MN = 938.3 MeV. The Dirac and Pauli
form factors can be rewritten in terms of the electric and magnetic Sachs form factors GE
and GM :

GE(Q2) = F1(Q2)− Q2

2M2
N

F2(Q2), (1.18)

GM (Q2) = F1(Q2) + F2(Q2), (1.19)

which are functions of the momentum transfer Q2. The Sachs form factors can be related
with the distribution of charge and magnetic moments in the so-called Breit frame. Over a
wide range of momentum transfer up to Q2 ' 30 GeV the form factors can be obtained from
experimental data. In the region Q2 . 1GeV2 they can be obtained by �tting the standard
dipole

GD(Q2) =
1

(1 + Q2/Λ2)
2 ,

with Λ = 0.843 GeV. The form factors GE and GM in this parametrization are given by

GE(Q2) = GD(Q2), GM (Q2) = µpGD(Q2),

where µp ∼= 2.793 is the magnetic moment of the proton. The electric charge radius of the

nucleon rE =
√
< r2

E > is obtained from the slope of the electric Sachs form factor at Q2 = 0
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Figure 1.9: Evolution of the values of the proton charge radius from 1962 until today. The
�gure is adapted from Ref. [75].

according to

< r2
E >= −6

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

.

This observable was recently determined in several independent ways, such as elastic electron-
proton scattering and spectroscopy of electronic and muonic hydrogen.
The electric charge radius is determined as rE = 0.879(8) fm and rE = 0.8768(69) fm from

elastic electron-proton scattering [76, 77] and electronic hydrogen [78], respectively. From
the analysis based on muonic hydrogen [79] rE = 0.84184(67) fm is found. Recently, the
result from muonic hydrogen has been re�ned to rE = 0.84087(39) fm [80] with a signi�cantly
smaller uncertainty. This corresponds to an uncertainty being one order of magnitude smaller
than for the other extractions. The values obtained from muonic hydrogen compared to the
ones from electron-proton scattering and electronic hydrogen di�er by ∼ 4%. Together with
the tiny uncertainty, a discrepancy of around 7 standard deviations is found. The di�erent
results are presented in Fig. 1.9. Besides the evolution of the values for the electric charge
radius of the proton, one can see that the extractions from electronic hydrogen and electron-
proton scattering agree within their error bars.
The discrepancy between the muonic and electronic determination of the charge radius

has raised a lot of activity on resolving the proton radius puzzle.7 In this context, several
contributions to the Lamb shift in muonic hydrogen were reinvestigated in more detail [81�
84]. However, up to now no explanation for the discrepancy could be found. This motivated a
number of models which resolve the discrepancy by physics beyond the SM. In some of these
models, similar to the hidden photon extension, an additional abelian force is assumed.
It was shown in Ref. [85] that the ordinary hidden photon extension cannot explain the
discrepancy. Motivated by the fact that the electron experiments are in good agreement

7See Ref. [75] for a review.
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Figure 1.10: Fraction of positrons in the cosmic ray �ux observed by the PAMELA experi-
ment. The expected background is indicated by the black solid curve, the red
�lled circles are the PAMELA data. The �gure is adapted from Ref. [92]. Note,
that the data taken by ATIC are not shown in this �gure.

while they deviate from the muonic determination, some recent works have conjectured a
violation of the lepton universality. Using this assumption, the proton radius puzzle can be
resolved by an additional light, abelian force carrier [86�90].

1.2.5 The positron excess in cosmic rays

Recent observations from cosmic ray data raised attention to consider models of dark matter
which di�er from the classical WIMP model mentioned in Secs. 1.1.1 and 1.2.1. In the
balloon-borne ATIC experiment [91] an excess of positrons and electrons in the cosmic ray
�ux above the background was detected at 300�800 GeV with a sharp cut-o� in the range
600�800 GeV. It could not be explained by ordinary astrophysical sources. This excess was
con�rmed by the PAMELA satellite experiment, in which the positron fraction in the cosmic
ray �ux was measured with a very high accuracy [92]. This was endorsed later by the FERMI
satellite [93]. The main result is presented in Fig. 1.10, where the expectation and results for
the positron fraction in the �ux from cosmic rays are shown. The background expectation
illustrated by the black solid curve decreases with growing energy. PAMELA observed a
sharp upturn of the positron fraction for energies larger than 10 GeV as indicated by the
red data points. A possible explanation of this excess is the annihilation of dark matter
into electrons and positrons [94�99]. The dark-matter approach could naturally explain the
cut-o� seen by ATIC due to its mass scale expected to be at the weak scale [99]. However,
the rates from the annihilation of classical WIMPs are predicted to be much below the
annihilation cross sections needed to reconcile the large excess seen by PAMELA [100].

A further anomalous production is observed by the INTEGRAL satellite [101�103]. The
data of INTEGRAL indicate that ∼ 3× 1042 positrons per second annihilate in the inner 5◦

of the galactic center, resulting in a very bright 511 keV line. This corresponds to an excess
which is far more than expected from sources as supernovae. Furthermore, the data show
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Figure 1.11: Left panel: Ladder diagram with multiple exchange of the new, light gauge
boson γ′ leading to a strong enhancement of the cross section. Right panel:
Feynman diagram describing the annihilation of dark-matter particles into SM
leptons by the new, light force carrier γ′ in the intermediate state.

that the positrons must be very low-energetic with an energy is near their rest mass. There
are several models of dark-matter annihilation existing to explain the INTEGRAL anomaly.
Two of them, the Light Dark Matter (LDM) [104, 105] model and the exciting dark matter
model (XDM) [106], shall be mentioned here.

Further anomalies in data of WMAP and EGRET [107] as well as the annual modulation
of the signal seen in the dark-matter search experiment DAMA/LIBRA [108] motivated nu-
merous attempts to resolve these puzzles. A new �theory of dark matter� was proposed in
Ref. [99]. A messenger particle between the dark sector and the visible sector was intro-
duced within this theory. While ordinary astrophysical sources were able to explain a single
anomaly, no source allowing one to reconcile all of the mentioned anomalies was known. A
prerequisite of such a theory of dark matter is that a large annihilation cross section are
obtained without violating further constraint from Big Bang nucleosynthesis. Moreover, the
weak-scale annihilation cross section must remain unchanged in agreement with the dark-
matter relic abundance. As a consequence, boost factors of more than O(100) are needed
compared to the required WIMP cross section. Furthermore, the data imply an enhancement
only for the cross section to leptons, but no excess is seen in the antiproton abundance. It is
argued that neither the high lepton rates can be reached nor the shape of the observed spec-
tra can be reconciled by DM annihilation via SM gauge boson exchange. The observations
of PAMELA further constrain the cross section to hadrons, which may not be enhanced.

The authors of Ref. [99] have proposed a theory, in which the dark sector is charged under
a new (U(1)D) gauge symmetry. If the new (U(1)D) gauge boson, denoted here by γ′,8 has a
mass at the O(1GeV ) scale, the annihilation cross section can be signi�cantly increased by
the so-called Sommerfeld enhancement [99,109]. As described in Ref. [99], the presence of a
light mediator can lead to a distortion of the wave function in the initial state. The plane-
wave approximation is not accurate for this process anymore. This is accounted for by boost
factors to the cross section, which in this case lead to an enhancement. An equivalent picture
for this mechanism is the resummation of ladder diagrams as presented in the left panel of
Fig. 1.11 leading to the distortion. Furthermore, as long as the associated gauge boson has a
mass below the proton production threshold . 2 GeV, the annihilation to proton-antiproton
pairs is kinematically suppressed. This accounts for the leptophilic character of the new

8The reason for the chosen name will become clear in Sec. 1.3.2
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gauge boson.

It was shown in Ref. [99] that by the exchange of the additional, light gauge boson DM
annihilation as described by the Feynman diagram in the right panel of Fig. 1.11 together
with Sommerfeld enhancement can be responsible for the observed anomalies. This model
was used with great success to reconcile the theoretical calculation with the data in several
subsequent works, e.g., Refs. [110,111,114,115]. Selected results of the mentioned works are
illustrated in Fig. 1.12. By a particular choice of the structure in the dark sector in Ref. [99],
which was not considered up to this point explicitly, other anomalies can be interpreted as
e�ects resulting from interactions of dark matter. As an example, the 511 keV line can be
explained within the XDM model.

Recently, the AMS-02 experiment at the International Space Station, announced �rst
results, which con�rm the observations of PAMELA [112]. These results are presented in
Fig. 1.13. The data from AMS-02 depicted by the red circles agree with the results of
PAMELA (blue squares) [92] and FERMI (green triangles) [93] with a much better accuracy
compared to the previous experiments. The expectation for background positrons is indicated
by the gray shaded band. In agreement with previous experiments, AMS-02 sees a strong rise
of the positron fraction exceeding the background expectation up to an energy of 300 GeV.
Currently the AMS-02 data slightly disfavor an explanation of the positron excess from
DM annihilation compared to pulsars as sources [98, 116�118]. Unfortunately, the AMS-02
data do not allow for a identi�cation of the source of the excess in this stage. For this
determination, precise data at even larger energy are needed, which will be available in the
near future.

1.3 U(1) SM extensions and properties of hidden photons

1.3.1 Motivation from dark matter

In this section the special case of U(1) extensions of the SM is considered. This is closely
related to the coupling of hidden-sector particles to SM particles, leading to an extension
of the SM which incorporates a DM candidate. There are several approaches to motivate
U(1) extensions. However, the SM gauge group (before spontaneous symmetry breaking) is
always extended to

SU(3)c × SU(2)L × U(1)Y︸ ︷︷ ︸
SM

×U ′(1). (1.20)

Besides the SM gauge symmetry this gauge group contains only one further U ′(1) hidden-
sector gauge symmetry. Additional gauge groups in a hidden sector, which of course are
possible, will not be treated here in detail.

One example of such an additional U(1) gauge symmetry giving rise to a SM extension
and leading to a DM candidate was already introduced in Sec. 1.2.3. Axions are a classical
example of an additional U(1) symmetry which is broken at a high energy scale giving
rise to a light, weakly coupled particle, which is not contained in the SM particle content.
As mentioned above, this concept can be generalized to axion-like particles by being less
restrictive with respect to the relation between coupling and mass parameters.

A further possibility provoking new, light particles, which are weakly coupled to the SM,
is the so-called �hidden photon� extension. Such an extension will be considered in this work.
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1.3 U(1) SM extensions and properties of hidden photons

Figure 1.12: Comparison of data from PAMELA and FERMI with predictions from the an-
nihilation of dark matter. Left panel: Gamma ray spectrum obtained from the
annihilation of DM particles with m = 3 TeV into 4 muons and a mediator mass
below 1 GeV, as published in Ref. [110] (red, solid curve). Right panel: Same as
left, but DM particles with m = 10 GeV a mediator mass of 1 GeV (published
in Ref. [111]).

Figure 1.13: Positron fraction observed by the AMS-02 experiment [112] (red circles). The
expected background is indicated by the gray band. The data of PAMELA
[92] and FERMI [93] are indicated by the blue squares and green triangles,
respectively. The �gure is taken from Ref. [113].
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Hidden photons are extra U(1) gauge bosons, which mediate an interaction between the SM
and a hidden sector. In the literature they are also referred to as �heavy,� �dark,� �para,� or
�secluded� photons, if they are coupled to the electromagnetic current of the SM. Allowing
for further parity-violating interactions, one commonly denotes such particles as U or Zd
bosons.

In top-down extensions of the SM where the SM is embedded in a more fundamental theory
appearing as an e�ective theory at low energies, U(1) extensions are a generic feature. As
an example, axions as well as axion-like particles are generic particles of SM extensions. The
decay constant fa can be generated at its natural scale [62]. In the same way as axions
and axion-like particles, hidden photons can be motivated from top-down approaches. In
Ref. [119] a summary of SM extensions, in which new U(1) gauge groups appear generically,
is given. It is argued that at high energy scales the interactions of the SM and of the physics
beyond, unify in one gauge group (GUT). For lower energies, our observations of nature imply
constraints, requiring that the uni�ed gauge group needs to be broken. U(1) extensions of
the SM can be generated from the prediction of additional groups from GUTs [119, 120] as
well as from SUSY [121�123]. As a further example, in supergravity string theory, U(1)'s
appear besides further non-Abelian gauge symmetries of the hidden sector [62].

The opposite way to motivate SM extensions is the so-called bottom-up approach, in
which the SM is extended manually to solve existing puzzles. One of the most popular
motivations for extensions from bottom-up approaches is dark matter. Recently, hidden
photon extensions became popular as a possible solution to the galactic positron excess
discussed in Sec. 1.2.5. As an example, a model was proposed in Refs. [124�126], in which
the dark matter does not interact directly with the SM particles. This is in contrast to
supersymmetric SM extensions mentioned in Sec. 1.2.1. The interaction between SM and
hidden-sector particles within this model is realized by a new U ′(1) gauge boson coupling
through the mechanism of kinetic mixing [127, 128]. This is a special case of the proposed
long-range interaction of Ref. [99] to enhance the DM annihilation cross section. In general,
the Lagrangian can be written as

L = LSM + LD + Lmediator,

where LSM is the SM Lagrangian, LD is the Lagrangian describing the dynamics in the
hidden sector. Moreover, Lmediator contains the interaction between the SM sector and the
hidden sector, corresponding to the dark-matter sector here. Within this model the dark
matter is secluded from the SM particles. It was shown in Ref. [124] that the correct DM relic
abundance can be obtained automatically. In addition, neither astrophysical nor laboratory
constraints are violated. Numerous more models exist, which incorporate U(1) extensions.
They manifest themselves by a new, light gauge boson, coupling weakly to the SM; see for
example Refs. [74,104,129�132].

However, the interaction between the SM and the hidden sector is strongly constrained.
Besides the fact that gauge symmetries and Lorentz invariance may not be violated, a variety
of theoretical and experimental constraints needs to be ful�lled [119]. Examples are anomaly
cancelation and constraints from searches for physics beyond the SM. One possibility to avoid
these strong restrictions, is the mechanism of kinetic mixing [127,128]. This will be discussed
in detail in the next section.
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e gD

ψ′

γ γ′

Figure 1.14: Feynman diagram of kinetic mixing. The SM photon γ does not interact directly
with the hidden photon γ′. Hidden photon and SM photon are linked by a
loop of heavy particles ψ′, to which γ and γ′ couple with strengths e and gD,
respectively.

1.3.2 The hidden photon model and kinetic mixing

In the previous section hidden photon extensions were motivated from dark-matter models.
However, the study of U(1) SM extensions was started independently from the idea of dark
matter. It was discussed already 30 years ago [127, 128] that a second U ′(1) gauge boson
with similar properties as those of the photon could interact with the SM photon.9 Such an
interaction is forbidden at tree-level. An allowed interaction is given within the framework
of kinetic mixing.10 The simplest case is illustrated in Fig. 1.14, where the photon γ does
not couple directly to the hidden photon. The two bosons are linked by a loop of heavy
particles ψ′, which are not contained in the SM. The ψ′ particles need to be charged under
both the SM U(1) gauge group and the additional U ′(1). The photon and the hidden photon
couple to them with strengths e and gD, respectively. Note that these particles, although
contained in the hidden sector, cannot be the dark-matter candidate, since they carry electric
charge. Therefore, they are sensitive to the electromagnetic interaction. The mass scale of
the ψ′ particles needs to be above the weak scale. Otherwise they would have been detected
in experiments as at the LHC. The mass scale of the ψ′ constrains the coupling strength
of the hidden photon to the SM photon. For later use, analogously to the electromagnetic
�ne-structure constant αem = e2/(4π), it is helpful to de�ne

α′ =
g2
D

4π
. (1.21)

At lower energies well below the weak scale, the heavy particle ψ′ can be integrated out.
For two fermions ψ′1 and ψ

′
2 with massesm1 andm2, respectively, andm1 > m2, the strength

of the kinetic mixing relative to the electric charge ε = gD/e can be obtained as [128]

ε = − e gD
12π2

qe qD ln

(
m2

1

m2
2

)
. (1.22)

ψ′1 and ψ′2 carry the charges (qe, qD) and (qe, −qD) under the gauge groups U(1)em and
U ′(1), respectively. Assuming that the charges are 1 and varying the ratio m1/m2 from 1.1
to 5, one �nds

ε ∼ 10−4 − 2.5× 10−3,

9Note that the SM photon is simply referred to as �photon.�
10The name kinetic mixing originates from the fact that a mixing between the kinetic terms of the photon

and hidden photon occurs in the e�ective Lagrangian.
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where gD = e was assumed. Smaller values of ε can be reached, when gD is lowered. It
is discussed in Refs. [133, 134] that kinetic mixing is also forbidden at the one-loop level if
the SM and hidden photon extension are embedded in a GUT. Due to GUT breaking at the
two-loop level one obtains ε ' 10−7 − 10−3. Although no clear minimal ε can be stated, in
Refs. [135�137] values in the range from 10−12 to 10−3 were predicted.
It is possible to embed the kinetic mixing into the Lagrangian by only mixing with the

photon �eld. However, the more general mixing with the hypercharge associated with the
abelian U(1)Y gauge group of the SM Lagrangian will be demonstrated here, of which the
�rst is only a special case. Let B̃µ denote the �eld charged under the U(1)Y gauge group
and B̃µν = ∂µB̃ν − ∂νB̃µ. Accordingly, the �eld of the hidden photon γ′ is denoted as Ã′µ

and F̃ ′µν = ∂µÃ′ν −∂νÃ′µ. For simplicity, only the relevant terms of the SM Lagrangian are
considered:

L ⊃ −1

4
B̃µνB̃

µν − 1

4
F̃ ′µνF̃

′µν +
εY
2
B̃µνF̃

′µν +
m̃2
γ′

2
Ã′µÃ

′µ + gY j
µ
BB̃

µ. (1.23)

This Lagrangian contains a non-diagonal mixing term proportional to the kinetic mixing
parameter ε = cos(θW )εY and the hypercharge gauge coupling gY . Thus, the tilde refers
to quantities in this non-diagonal basis which have to be rotated in order to transform the
�elds into those written in the basis of eigenstates with physical masses, as in Eq. (1.7).
Furthermore, jB denotes the SM hypercharge current which is related to the electromagnetic
current jem = jA and neutral weak current jZ by gY j

µ
B = e(cos θW j

µ
A − sin θW j

µ
Z).

In order to diagonalize the Lagrangian one rotates the B̃ and Ã′ �elds as follows:

Ã′µ =
1√

1− ε2
Y

A′µ, B̃µ = Bµ +
εY√

1− ε2
Y

A′µ. (1.24)

The corresponding �eld tensors are

F̃ ′µν =
1√

1− ε2
Y

F ′µν , B̃µν = Bµν +
εY√

1− ε2
Y

F ′µν , (1.25)

with Bµν = ∂µBν − ∂νBµ and F ′µν = ∂µA′ν − ∂νA′µ.
Inserting Eqs. (1.24) and (1.25) into Eq. (1.23) leads to

L ⊃ −1

4
BµνB

µν − 1

2

εY√
1− ε2

Y

BµνF
′µν − 1

4

ε2
Y

1− ε2
Y

F ′µνF
′µν − 1

4

1

1− ε2
Y

F ′µνF
′µν

+
1

2

εY√
1− ε2

Y

BµνF
′µν +

1

2

ε2
Y

1− ε2
Y

F ′µνF
′µν +

m̃2
γ′

2(1− ε2
Y )
A′µA

′µ

+ gY j
µ
BBµ +

gY εY√
1− ε2

Y

jµBA
′
µ

= −1

4
BµνB

µν − 1

4
F ′µνF

′µν +
m̃2
γ′

2(1− ε2
Y )
A′µA

′µ + gY j
µ
BBµ +

gY εY√
1− ε2

Y

jµBA
′
µ, (1.26)

where in the last step the non-diagonal terms have canceled and the kinetic terms of the
hidden photon �eld were combined.
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Decomposing the hypercharge current into the electromagnetic and weak neutral current
yields

L ⊃ −1

4
BµνB

µν − 1

4
F ′µνF

′µν +
m̃2
γ′

2(1− ε2
Y )
A′µA

′µ

+ gY j
µ
BBµ +

e cos(θW )εY√
1− ε2

Y

jµAA
′
µ −

e sin(θW )εY√
1− ε2

Y

jµZA
′
µ.

With the Taylor expansions around 0 of

εY√
1− ε2

Y

' εY +O(ε2
Y ),

1

1− ε2
Y

' 1 +O(ε2
Y ),

and by identifying mγ′ = m̃γ′/
√

1−ε2Y , ε = εY cos(θW ), one �nds

L ⊃ −1

4
BµνB

µν − 1

4
F ′µνF

′µν +
m2
γ′

2
A′µA

′µ + gY j
µ
BBµ + εe jµAA

′
µ − εe tan(θW )jµZA

′
µ. (1.27)

The last term of Eq. (1.27) is canceled by an equal term entering from the diagonalization
of the mass matrix, which is not demonstrated here.

The only parameters of this minimal model are the mass of the hidden photon mγ′ and
the coupling to SM particles parametrized by the kinetic mixing factor ε2 = α′/α, as one can
see from Eq. (1.27). The interaction of the γ′ with the electromagnetic current is described
by the term

Lγ′ff = εe jµAA
′
µ. (1.28)

Lγ′ff and the QED interaction term are nearly equal, with the only di�erences that the
hidden photon is massive and couples e�ectively with a strength reduced by the kinetic mixing
factor ε. Furthermore, one can conclude from the γ′ interaction Lagrangian (1.28) that the
γ′ interacts with any particle contained in the SM, which is sensitive to the electromagnetic
interaction. This fact became apparent from Fig. 1.14, where the γ′ is linked with the
photon, which couples to the SM particles. Hence, Eqs. (1.27) and (1.28) are only the
e�ective descriptions of this procedure at low energies. The Feynman rule derived from
Eq. (1.27) simply reads

i εe γµ, (1.29)

analogously to the QED interaction.

1.3.3 Decay width and decay length

Since the γ′ is not a stable particle, it has a �nite decay width Γγ′ , which enters the invariant
matrix element in the γ′ propagator. For the decay of a γ′ into a lepton pair of the species
l, the invariant matrix element as read o� from Fig. 1.15 is

M = ul(k1, s1) εe /ε(q′, λ) vl(k2, s2), (1.30)
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γ′(q′, λ)

l−(k1, s1)

l+(k2, s2)

Figure 1.15: Feynman diagram of the γ′ decay into a lepton pair.

with ml denoting the lepton mass. Taking its complex conjugate, squaring and averaging
over the γ′ polarizations λ and summing over the lepton spins s1 and s2 leads to

|M|2 =
(εe)2

3

(
−gµν +

q′µ q′ν

m2
γ′

)
Tr ((/k1 +ml) γµ (/k2 −ml) γν) .

Exploiting four-momentum conservation, the kinematical relations

q′2 = m2
γ′ , k

2
1 = k2

2 = m2
l ,

q′ · k1 = q′ · k2 =
m2
γ′

2
,

k1 · k2 =
1

2

(
m2
γ′ − 2m2

l

)
,

allow one to evaluate

|M|2 =
16π α ε2

3

(
m2
γ′ + 2m2

l

)
,

where in addition α = e2/(4π) has been used. From Eq. (A.4), the general formula for 1→ 2
particle decays, the decay width is derived as

Γγ′→l+l− =
αε2

3m2
γ′

√
m2
γ′ − 4m2

l (m2
γ′ + 2m2

l ). (1.31)

For the case of a γ′ decaying into electrons with mγ′ � me = 0.511MeV, Eq. (1.31)
simpli�es to

Γγ′→e+e− =
αε2

3

√
s =

αε2

3
mγ′ . (1.32)

Above the threshold for pion production, mγ′ ≥ 2 × mπ± , the hidden photon can also
decay into a pair of charged pions. Within scalar QED this decay width can be calculated
analogously to the decay into a lepton pair. The Feynman amplitude of the decay reads

M = εe Fπ(q′2) (k1 − k2)µεµ(q′),

where Fπ(q′2) = Fγ∗→π+π−(q′2) is the timelike electromagnetic charged pion form factor,
which accounts for the electromagnetic structure of the pion. A parametrization can be
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Figure 1.16: Total γ′ decay width for ε2 = 10−4, 10−8, 10−12 with decay channels into elec-
trons, muons and pions. The sharp kink at 212 MeV is due to crossing the
threshold for muon production.

found in Appendix A.2, which is valid in the mass range up to 1 GeV. One �nds for the
partial decay width into a pair of charged pions

Γγ′→π+π− =
αε2

∣∣Fπ(q′2)
∣∣2

12

(
m2
γ′ − 4m2

π±

)3/2

m2
γ′

. (1.33)

Assuming that in a certain mass range, which in the presented work is around O(few GeV),
no hidden-sector particles with m < mγ′/2 exist, γ′ decays into other hidden-sector particles
are kinematically forbidden. Instead, the γ′ has to decay into a visible state. The total width
can be expressed as a sum of partial decay rates into SM particles, giving rise to

Γγ′ =


Γγ′→e+e− + Γγ′→µ+µ− + Γγ′→π+π− , mγ′ ≤ 700 MeV

Γγ′→e+e− + Γγ′→µ+µ−(1 +R(mγ′)), mγ′ > 700 MeV
(1.34)

where Γγ′→e+e− , Γγ′→µ+µ− and Γγ′→π+π− are the partial γ
′ decay rates into electron-positron,

muon and charged pion pairs, respectively. Furthermore, R is the SM ratio σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) of hadron to muon production cross sections as given in the
lower panel of Fig. 46.6 of Ref. [4]. Figure 1.17 shows Γγ′ as a function of mγ′ for ε

2.
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Figure 1.17: Total γ′ decay width into the SM particles normalized to ε2 = 1. Γγ′ is
parametrized by the ratio of the cross sections for electron-positron annihi-
lation to hadrons and muons σ(e+e− → hadrons,

√
s)/σ(e+e− → µ+µ−,

√
s),

depending on the energy
√
s = mγ′ as published in Ref. [4], in the region

mγ′ > 700 MeV. Fluctuations are due to the uncertainty in the data for R.

Due to the small coupling strength, one expects only a signal when the γ′ is produced on
the mass shell. From Eq. (1.34) and Fig. 1.16 one directly recognizes that a hidden photon
in an intermediate state will manifest itself by are very narrow peak.
The decay length of the γ′ is obtained from

lγ′ = γ
1

Γγ′
,

where γ = Eγ′/mγ′ denotes the Lorentz factor. A calculation of the γ′ decay length as a
function of mγ′ and ε

2 can be seen from Fig. 1.18 for energies Eγ′ = 100 MeV (upper panel)
and Eγ′ = 1 GeV (lower panel). The decay length varies in the parameter region of interest
from very short distances of around 10−6 µm for large masses and couplings to several meters
in the case of small mγ′ and ε2. This behavior gives rise to several possibilities to search
for γ′ bosons in the particular regions of the parameter space. In the regions where the
decay length is macroscopic, corresponding to the decay vertex shifted by several mm, a
search for a displaced vertex can be performed. Such experiments are planned with the HPS
experiment and at MAMI. Furthermore, the �ight length sets constraints on possible limits
from experiments, e.g., beam-dump searches, since the γ′ must not evade the detector in
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Figure 1.18: Decay length of the γ′ for Eγ′ = 100 MeV and Eγ′ = 1 GeV.
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order to be able to detect its decay products.

1.3.4 Existing constraints on the hidden photon parameter space

A collection of all currently published limits for the hidden photon parameter space can be
found in Fig. 1.19 indicated by the shaded regions. Furthermore, in Table 1.2 the labels of
Fig. 1.19 are explained and, in addition, a short description of each bound is given. Note
that the limits of Table 1.2 and Fig. 1.19 are only valid for purely visible decays, i.e., the
branching ratio to visible SM particles is 1. If a decay into an invisible state is allowed,
the bounds requiring the detection of SM particles are signi�cantly worse. Such a decay is
possible, if a Light Dark Matter particle χ with mγ′ > 2mχ exists, which couples to the
hidden photon. As an example, for a branching ratio to visible SM states of only 0.1, all
constraints in Table 1.2 and Fig. 1.19 except the ones from (g − 2) would be weakened by
this factor.
The light-red shaded band corresponds to the region, where the existing discrepancy in

the experimental and theoretical determination of the anomalous magnetic moment of the
muon can be explained by the γ′ contribution to (g − 2)µ. The limits represented by the
colored regions in Fig. 1.19 arise from various experimental and theoretical arguments:

gray: calculation of the anomalous magnetic moment of the electron and muon [126,138,139]

blue: electron beam-dump experiments [140�145]

violet: (e+e−) collider experiments [140,146]

red: meson decays [147�151]

green: �xed-target experiments [152,153]

Each of these approaches is more appropriate than the others in particular regions of the
phase space. In the following the di�erent approaches are explained in more detail.
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l l′
γ′

Figure 1.20: Feynman diagram of the one-loop γ′ contribution to the anomalous magnetic
moment of a lepton l.

1.3.4.1 Anomalous moment of the electron and muon

The anomalous magnetic moment of the electron and muon, al = (g−2)l/2, which belong to
the quantities known to highest accuracy, can be employed to �nd limits for the γ′ parameter
space. The anomalous moment of the electron ae has been measured [154] as

ae = 1.1596521883(28)× 10−3,

and that of the muon [53] as

aµ = 1.16592089(63)× 10−3.

Compared to the SM predictions of these quantities one �nds a very small deviation in the
case of ae,

ae(exp)− ae(th, SM) = (−106± 82)× 10−13,

but a deviation of about 3.7σ for the muon as already mentioned in Sec. 1.2.2:

aµ(exp)− aµ(th, SM) = (312± 85)× 10−11.

While the knowledge of the anomalous magnetic moment ae of the electron is limited by
the current precision of the experimental result and the uncertainty on the �ne structure
constant α, the uncertainty for aµ mainly results from the unknown hadronic contribution.
For the theoretical prediction of al, e�ects of physics beyond the Standard Model has not
been included in the calculation. Therefore, a possible γ′ contribution to al must be in
agreement with these very accurate studies.

The high accuracy of ae is due to several reasons. The theoretical prediction of ae is
dominated by the QED contribution, which recently has been evaluated to 5th order in
α [55, 56]. In addition, the direct measurement [154] with an uncertainty of the order 10−9

and an improved determination of the �ne structure constant α [155] from a measurement of
the Rubidium mass, minimize its uncertainty. This sets a strong bound on the γ′ parameter
space for small masses. In the case of the muon the situation is di�erent. The deviation of
3.4σ and the uncertainty are much larger which lowers a possible bound. Furthermore, the
γ′ can be invoked to explain this discrepancy. Therefore, in Fig. 1.19 besides the bound from
aµ, also the 2σ region is emphasized, where the (g−2)µ discrepancy can be explained by the
γ′ contribution. This region is denoted as �(g− 2)µ welcome band� in the literature. Due to
the accuracy of the determination of anomalous magnetic moments one can �nd a stringent
bound for the coupling strength of a γ′ contribution to al.
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e−

(Z, A) (Z, A)

e−

l+
l−

γ′

γ∗

Figure 1.21: Typical Feynman diagram of an investigated process in �xed-target experiments.
An electron beam is scattered o� a target of atomic number Z and mass number
A. A γ′ is radiated o� by Bremsstrahlung and decays into a lepton pair.

The one-loop γ′ contribution aγ
′

l to the anomalous magnetic moment al of the electron or
the muon can be found as

aγ
′

l =
(g − 2)γ

′

l

2
=
α′

π

∫ 1

0
dz

z(1− z)2m2
l

(1− z)2m2
l + zm2

γ′
, (1.35)

where ml denotes the corresponding lepton mass.
Solving the integral for a particular mass mγ′ allows for �nding a bound for the γ′ param-

eter space. To state a conservative bound, where the γ′ is ruled out very likely, the 3σ limit
is chosen:

aγ
′
e ≤ (−106 + 3× 82)× 10−13 = 140× 10−13,

aγ
′
µ ≤ (312 + 3× 85)× 10−13 = 567× 10−11.

In addition, for the (g− 2)µ welcome band, Eq. (1.35) is solved for the 2σ region around the
central value of the discrepancy:

142× 10−11 ≤ aγ′µ ≤ 482× 10−11.

The advantage of invoking the lepton (g − 2) as possible limit is the existence of accurate
data as well as highly accurate calculations of the SM background, the al(th, SM). Therefore,
this bound for the γ′ parameter space is a side product from attempts to reconcile the
measurements and prediction of (g − 2)l.

1.3.4.2 Fixed-target experiments

In Ref. [140, 172] it has been shown that �xed-target experiment can serve as an ideal tool
to search for light, hidden particles. The method of such �xed-target experiments is the
following: A beam, typically an electron-beam, is scattered o� a target at a �xed location.
For allowed (e�ective) interactions of the γ′ with the electromagnetic current, the γ′ is
radiated o� by Bremsstrahlung and decays into a lepton pair in the mass range of interest.
The search for a γ′ signature is performed by an invariant-mass scan and a displaced-vertex

search. For coupling strengths ε2 . 10−8 the γ′ in the mass range below mγ′ ∼ 500 MeV will
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e+

e−

Lsh Ldec

e−(E0)

shield

target

γ ′

detector

Figure 1.22: Sketch of a typical beam-dump experiment: The electron beam is dumped onto
the target, from which as depicted here, a γ′ is produced. The γ′ passes through
the shield and decays outside. The decay products are labeled as e±. The length
of the target plus shield and the length of the decay volume are denoted as Lsh

and Ldec, respectively.

decay inside the detector or target. The invariant mass of the lepton pair can be reconstructed
through detection of the corresponding lepton and antilepton. The very narrow decay width
of the γ′ (see Fig. 1.16) is far below the typical mass resolution of such an experiment. Hence,
a γ′ signal will appear as a sharp peak in one single mass bin over the smooth background
from QED. This type of limits is treated extensively in chapters 2 and 3.

1.3.4.3 Beam-dump experiments

Beam-dump experiments are a special type of �xed-target experiments. Figure 1.22 shows
a sketch of such experiments. A beam dump is a basic component of most accelerators.
Commonly, a large block of a material with good shielding properties, like lead, is used to
absorb the beam. This shielding can be used to search for particles which are not or only very
weakly electromagnetically interacting and penetrating through the shield. The installation
of a detector behind the shield allows one to search for SM particles which are not expected
to appear in that region since they should have been absorbed by the shield. An excess of
SM particles must result from particles beyond the SM, which are decaying after passing
through the beam dump.

A γ′ with appropriate mass and coupling strength (see Fig. 1.17) will not be absorbed by
the shield. If furthermore, mγ′ and ε

2 allow for a decay length larger than the length of the
shield but smaller than the distance from the target to the detectors, a lepton pair must be
detected as its decay products. An exclusion limit for the γ′ parameter space can be derived
if no excess is seen. Beam-dump limits for the γ′ parameter space have �rst been found in
Ref. [140] by analyzing the E141 [71] and E137 [72] experiments at SLAC and the E774 [73]
experiment at the Fermilab, in which a search for axions was performed. In addition, in
Ref. [144] these experiments have been re-analyzed and new limits from experiments at
KEK [156] and at Orsay [160] have been found. Furthermore, the procedure to derive limits
from beam-dump experiments is described in detail in Ref. [144]. For the analysis of these
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f

f̄

l+

l−
l+

l−f̄

f

γ ′

γ

γ ′

Figure 1.23: Typical Feynman diagrams of processes which can be investigated in collider
experiments. Left panel: Direct γ′ production at the center of mass energy of
the collider decaying into a lepton pair. Right panel: Radiative return method.
Besides the hidden photon production with the subsequent decay into a lepton
pair, a photon is radiated in the initial state, which allows one to probe a wider
mγ′ range.

data the cross section for the process

e(A,Z)→ e(A,Z)γ′, γ′ → e+e−

has to be calculated to estimate the number of lepton-pair events seen by the detectors.
The approximate total number of events from a γ′ decay is given by Eq. (13) of Ref. [144].
The cross section of the process e(A,Z) → e(A,Z)γ′ is commonly calculated within the
Weizsäcker�Williams approximation. The applicability of this approximation is investigated
in Sec. 2.3.
The shape of the exclusion limits has an upper bound due to the condition that the γ′

must not decay inside the shield. Thus, ε must be small enough that the decay length lγ′ is
larger than the length of target plus shield Lsh. The lower limit results from the fact that
the γ′ decay must happen before the detector is reached and that enough decays take place
within this volume.

1.3.4.4 Collider searches

Current limits for the γ′ parameter space from collider searches were obtained mostly at
e+e− machines.
Only e+e− machines and low-energy hadron colliders are considered as colliders to search

for hidden photons in the mass region of several MeV to GeV. These colliders work at a �xed
center of mass energy, which is commonly equal to the mass of a meson resonance in the
lower GeV range as in the case of so-called �avor factories like DAφNE at Frascati or at the
Stanford Linear Accelerator Center (SLAC). The LEP collider at CERN was working on the
Z boson mass mZ ' 91 GeV, which is far away from the considered scale of γ′ masses.
High energy hadron colliders like the LHC can reach much higher energies. Therefore, they

are ideally suited for the search for particles with masses more than 10 − 100 GeV, but are
strongly limited in their precision. Experiments as KLOE at DAφNE and BABAR at SLAC
have already acquired huge datasets, which can be re-analyzed with respect to the search
for a small resonance caused by a hidden photon. The feasibility studies for hidden photon
searches in low-energy collider experiments were done in Refs. [134,173]. Typical processes,
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PS

γ

γ′
l−

l+
γ′

l−

l+

V

PS

Figure 1.24: Feynman diagrams of typical meson decays which are used to search for hidden
photon signatures. Right panel: Radiative pion decay into a photon and a
hidden photon subsequently decaying into a lepton pair. Right panel: Decay of
a vector meson V into a pseudo scalar meson PS and a hidden photon which
decays into a lepton pair.

which can be investigated to search for hidden photon signals are shown in Fig. 1.23. The
Feynman diagram in the left panel indicates the direct s-channel exchange of a hidden photon
splitting to a lepton pair. Although one receives the highest rates for this process, the use
of the s-channel process to search for signals is not feasible. The lepton pair will have an
invariant mass equal to the center of mass energy of the collider�usually the mass of a SM
resonance. Thus, only one value of mγ′ can be probed, where a possible hidden photon signal
will be covered by the SM resonance.

Therefore, the radiative return method, depicted in the right panel of Fig. 1.23, is used in
collider experiments. In addition to the hidden photon, an ordinary photon is radiated from
the initial state. On account of this, the invariant mass of the lepton pair and correspondingly
the probed hidden photon mass is reduced, which allows one to study a wide range of mγ′ .
A background contribution enters from the �nal-state radiation of the photon, where the
hidden photon carries the invariant mass of all three �nal state particles comparable to the
process in the right panel of Fig. 1.23. This background can be strongly reduced by detecting
muon-antimuon pairs in the �nal state, from which the �nal state radiation due to the larger
mass is suppressed.

This method is ideally suited to cover a wide mγ′ range at kinetic mixing factors down
to ε2 ∼ 10−7. Currently, the existing data from BABAR, KLOE and BES-III are under
investigation.

1.3.4.5 Meson decays

Meson decays have already been studied for a long time to understand the (electromagnetic)
structure of mesons. As a consequence, large data sets of meson decays are existing from
various experiments. These experiments were performed at colliders like the mentioned
KLOE experiment at DAφNE or the BABAR experiment at SLAC or at �xed-target facilities
like the WASA experiment. For the analysis with respect to hidden photon signals one does
not have to take care of the production mechanism of the meson. The achievable statistics of
course strongly depends on the meson production mechanism. Nevertheless, the investigated
processes are always very similar, independently of the meson production. Feynman diagrams
of typical processes are shown in Fig. 1.24. The largest rates are expected from pion-decay
experiments. One possibility is to search for a deviation from the SM pion decay. In the
SM, the neutral pion π0 decays dominantly into two photons. The decay into one real and
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a virtual photon from which an electron-positron pair is produced still gives a large signal.
This SM decay will lead to a smooth e+e− invariant-mass spectrum on which one can search
for a peak by hidden photon production. This process is presented in the left panel of
Fig. 1.24. It was used in the SINDRUM and WASA experiments. Another process, which
was investigated for instance at KLOE, is the decay of a vector meson into a pseudo-scalar
meson and a lepton pair as shown in the right panel of Fig. 1.24. In this case one also
searches for a deviation from the SM process due to the hidden photon.
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Chapter 2

Production of Hidden Photons from Fixed

Target Experiments

The production of a hidden photon γ′ may arise as a background process to the elastic
electron-hadron scattering e(Z,A)→ e(Z,A). The hadronic state (Z,A) is characterized by
the atomic number Z corresponding to the number of protons bound in the nucleus and the
mass number A denoting the total number of constituents. In elastic scattering processes
with two particles in the �nal state only one kinematical variable is not �xed. Therefore, it
is su�cient to detect only one of the two �nal state particles to measure the elastic cross
section . By detecting both of them, it can be discriminated if an additional particle such as
a γ or γ′ was produced. The kinematics is not �xed by one variable anymore for a �nal state
involving three or more particles . Hence, the elastic scattering process can be kinematically
separated from the γ′ production process.

In this chapter the process of hidden photon bremsstrahlung will be studied under two
aspects. First of all, the cross section for the production of a hidden photon γ′ induced by
lepton-hadron scattering is analyzed in general. For this purpose, it is studied for which
particular type of kinematical conditions the cross section is largest. Furthermore, scenarios
in which the decay products of the hidden photon are not detected or the decay of the hidden
photon occurs invisibly are discussed. As a consequence, experiments have to be designed
in a way that the peak resulting from the elastic scattering is circumvented in the chosen
kinematics. The most important irreducible background arising in the SM results from the
production of a real photon: e(Z,A) → e(Z,A)γ. In the literature this is often referred to
as Bethe�Heitler process.

Therefore, in this section the cross sections of both, the γ′ production e(Z,A)→ e(Z,A)γ′

as well as the Bethe�Heitler process as SM background, will be analyzed. In the following
the hadronic state (Z,A) is for simplicity referred to as p, although the analysis is valid for a
proton as well as a nucleus. The cross section for the production o� heavy nuclei is studied
in Sec. 2.1.4. The treatment of nuclear e�ects such as quasi-elastic scattering are discussed
in this section.

The main focus of this chapter is on the understanding of the qualitative behavior of
the signal cross section for the process e(Z,A) → e(Z,A)γ′. The calculation of signal and
background for hidden photon searches with invisible hidden photon states requires a careful
investigation of the e�ects of the applied approximations. In particular, radiative corrections
to the signal and background cross sections need to be accounted for.
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e−(k) e−(k′)

p(p) p(p′)

V (q′)

e−(k) e−(k′)

p(p) p(p′)

V (q′)

Figure 2.1: Feynman diagrams for the production of a vector boson V from electron �xed-
target scattering. The diagrams describe the signal process for V = γ′ and the
background from the Bethe�Heitler process for V = γ.

2.1 Calculation of the cross section

Since the expressions for the production cross section of a hidden photon γ′ and those for the
Bethe�Heitler background process are almost equal, the calculation of the cross section is
performed in general for a massive vector boson with mass mV . Due to the gauge invariance
required within the kinetic mixing model, which will be shown explicitly for the invariant
amplitude in the following, it is possible to take the limit mV = 0 in order to obtain the
Bethe�Heitler expressions. Therefore, the process

e(k, λ) + p(p s)→ e(k′ λ′) + p(p′, s′) + V (q′, r′), (2.1)

with V = γ′ as hidden photon signal process and V = γ as Bethe�Heitler background will
be analyzed. The four-momenta of the incoming (outgoing) electron and hadron are named
k (k′) and p (p′), respectively, and q′ is the four-momentum of the vector boson V . The
helicities of the incoming (outgoing) electron and hadron are λ (λ′) and s (s′) and r′ denotes
the polarization of the V .

2.1.1 Amplitude for the process e(Z,A)→ e(Z,A)γ/γ′

The invariant amplitude of the process derived from the Feynman diagrams shown in Fig. 2.1
is

MV =
i e2 gV

(p′ − p)2 ε
∗α(q′, r′) JµN Iµα, (2.2)

where gV = εe in the case of γ′ production and gV = e for the Bethe�Heitler process and
ε∗α is the polarization vector of the γ′ or γ. The leptonic interaction tensor Iµα reads

Iµα = ue(k
′, s′k)

(
γµ

/k − q/′ +m

(k − q′)2 −m2
γα + γα

/k′ + q/′ +m

(k′ + q′)2 −m2
γµ

)
ue(k, sk). (2.3)

In the case of a proton target the hadronic current JµN is given by

JµN = uN (p′, s′p) Γµ uN (p, sp),
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2.1 Calculation of the cross section

where for Γµ the common parametrization of

Γµ ≡ Γµ(Q2
t ) = F1(Q2

t ) γµ + F2(Q2
t ) i σµνq

ν
t /2M,

with the Dirac (F1) and Pauli (F2) form factors and Q2
t = −(p− p′)2 > 0.

To obtain cross sections as large as possible besides protons also heavy nuclei are used as
target material in the present and upcoming experiments. For such nuclei the cross section
is enhanced by a factor Z2 compared to the scattering o� protons. Hence, nuclei with large
enhancement factors are chosen. For �xed-target experiments commonly tantalum (Ta) with
Z = 73, A = 181, and M ' 168 GeV are utilized. In addition, during the later discussion
in Sec. 3.5.3 also xenon (Xe) with Z = 54, A = 132, and M ' 123 GeV is considered as
possible target.1

For a heavy nucleus the hadronic current can be approximately written as

JµN = Z · Fel(Qt) · (p+ p′)µ, (2.4)

where Fel(Qt) = 3
(QtR)2 ·

(
sinQtR
QtR

− cosQtR
)
is the nuclear charge form factor with R =

1.21 fm · A 1
3 . The parametrization of Eq. (2.4) accounts only for coherent scattering o�

the nucleus. As discussed later in Secs. 2.1.3 and 2.1.4, further e�ects such as inelastic
contributions have an impact on the normalization of the cross section at the level of 5%�10%
depending on the kinematics. Since the shape of the cross section is not altered signi�cantly,
this approximation can be used to investigate the kinematic dependencies of the signal and
background processes.

The squared matrix element after summing and averaging of �nal and initial spin states,
respectively,

|MV |2 =
∑
sk′ ,sp′

∑
sk,sp

MVM∗V ,

where
∑

indicates the spin averaged sum, can be calculated more conveniently by extracting
the polarization vector of the vector boson V out of the matrix element and performing the
sum over the spin states separately. One �nds

MV =MV α ε
∗α(q′, r′).

From the completeness relations for massive spin 1 bosons with q′2 = m2
V one has

∑
r′,r′′

ε∗α(q′, r′)εβ(q′, r′′) = −gαβ +
q′β q′α

q′2
.

In the case of a real photon as in the Bethe�Heitler process the second term does not
contribute in the chosen Lorentz gauge. Since the considered process is gauge invariant, the
second term must also vanish for the γ′ production process. To test the amplitude for gauge
invariance one contracts the interaction tensor with the momentum of the �nal state vector

1Therefore, in this thesis the term �heavy nucleus� refers to nuclei such as tantalum and xenon.
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particle q′:

q′αIµα = ue(k
′, s′k)

(
γµ

/k − q/′ +m

(k − q′)2 −m2
q/′ + q/′

/k′ + q/′ +m

(k′ + q′)2 −m2
γµ

)
ue(k, sk)

= ue(k
′, s′k)

(
γµ

2q′ · k − q/′/k − q/′q/′ +mq/′

(k − q′)2 −m2
+

2q′ · k′ − /k′q/′ + q/′q/′ + q/′m

(k′ + q′)2 −m2
γµ

)
ue(k, sk)

= ue(k
′, s′k)

(
γµ

2q′ · k − q/′m− q′2 +mq/′

(k − q′)2 −m2
+

2q′ · k′ −mq/′ +−q′2 + q/′m

(k′ + q′)2 −m2
γµ

)
ue(k, sk)

= ue(k
′, s′k)

(
γµ

2q′ · k − q′2
q′2 − 2q′ · k +

2q′ · k′ + q′2

q′2 + 2q′ · k′γµ
)
ue(k, sk)

= ue(k
′, s′k) (γµ(−1) + (1)γµ)ue(k, sk)

= 0. (2.5)

Accordingly, |MV |2 simply reads

|MV |2 = −
∑
sk′ ,sp′

∑
sk,sp

Mα
VM∗V α.

2.1.2 Calculation of the di�erential cross section for (quasi-)elastic
scattering

In this section the cross section is derived using the assumption that the hadronic reaction
happens elastically, where the initial and �nal state particles are the same. As usual, one
starts from the general expression of a cross section for three particles in the �nal state:

dσ =
1

4
√

(p · k)2 −m2M2

d3~k ′

(2π)32Ek′

d3~p ′

(2π)32Ep′

d3~q ′

(2π)32Eq′

× (2π)4 δ(4)
(
k + p− k′ − p′ − q′

)
|M|2.

(2.6)

It is convenient to evaluate this expression within the �recursive phase space� approach.2 In
this approach the phase space is factorized into subprocesses which can be evaluated in the
corresponding rest frames. This requires a Lorentz transformation into one common frame
if the Feynman amplitude cannot be factorized in the same way.

For this purpose, the γ∗(q) + p(p) → p(p′) + V (q′) subprocess, q = (k − k′), is evaluated
in the γ∗p-rest frame, labeled by ∗. One has in this frame:

(~q + ~p)∗ =
(
~k − ~k ′ + ~p

)∗
= ~0.

For calculations where all quantities are de�ned in the same reference frame, frame labels
are omitted for purposes of clarity. The remaining e−(k) → γ∗(q) + e−(k′) subprocess is

2In textbooks such as Ref. [174] this method is also called �factorization of phase space.� Since another
phase space parametrization applied (Sec. 3.3.2) also makes use of a factorization of the phase space,
instead the name �recursive phase space� approach is used. This name originates from the fact that the
phase space of multiparticle �nal states is generated recursively by this approach.
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2.1 Calculation of the cross section

evaluated in the lab frame (L) where the target is at rest. In this choice of frames, the
general cross section reads as

dσ =
1

4
√

(p · k)2 −m2M2

(
d3~k ′

(2π)32Ek′

)L

×
(

d3~p ′

(2π)32Ep′

d3~q ′

(2π)32EV
(2π)4 δ(4)

(
k + p− k′ − p′ − q′

))∗
|M|2,

(2.7)

where Eq′ ≡ EV has been used. One has the freedom to choose which integration can be
eliminated by the Dirac δ function. Here the d3|~q ′| integration is evaluated in this manner.
In the γ∗p-rest frame one �nds

q′2 =
(
q + p− p′

)2
⇔ m2

V = (q + p)2 +M2 − 2 (q + p) · p′

⇔ m2
V = s∗ +M2 − 2

(
E∗q + E∗p

)
E∗p′ + 2 (~q ∗ + ~p ∗) (~p ′)∗

⇔ m2
V = s∗ +M2 −

√
s∗E∗p′

and thus

E∗p′ =
s∗ +M2 −m2

V

2
√
s∗

, (2.8)

with ~q ∗ + ~p ∗ = ~0 and

s∗ = (q + p)2 =
((
q0
)∗

+ E∗p
)2
. (2.9)

The momentum |~p | ′∗ results to

|~p | ′∗ =
√
E∗p′ −M2 =

λ1/2
(
s∗,M2,m2

V

)
2
√
s∗

, (2.10)

where λ denotes the kinematical triangle function de�ned in Eq. (A.1). In the γ∗p-rest
frame the three-momenta of the scattered hadron and the outgoing vector boson are equal
in magnitude, |~p | ′∗ = |~q | ′∗, and opposite in direction, yielding

E∗V =
s∗ −M2 +m2

V

2
√
s∗

.

Thus, in the γ∗p-rest frame one has

d3~p ′

(2π)3 2Ep′

d3~q ′

(2π)3 2EV
(2π)4 δ(4)

(
k + p− k′ − p′ − q′

)
=

d3~p ′

(2π)2 4Ep′EV
δ
(
q0 + EP − Ep′ − EV

)
=

|~p ′| dEp′ dΩp′

(2π)2 4
(
EV + Ep′

) δ(Ep′ − s∗ +M2 −m2
V

2
√
s∗

)
,
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Chapter 2 Hidden Photon Production at Fixed Target Experiments

where in the last step a factor from transforming the δ function has entered according to

∣∣∣∣∣∂
(
q0 + Ep − Ep′ − EV

)
∂Ep′

∣∣∣∣∣
−1

=

∣∣∣∣∣∣∣
∂
(√

s∗ − Ep′ −
√
|~q ′|2 +m2

V

)
∂Ep′

∣∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣
∂
(√

s∗ − Ep′ −
√
E2
p′ −M2 +m2

V

)
∂Ep′

∣∣∣∣∣∣
−1

=

∣∣∣∣−1− Ep′

EV

∣∣∣∣−1

=
EV

EV + Ep′
.

Inserting into Eq. (2.7) yields

dσ =
1

4
√

(p · k)2 −m2M2

(
d3~k ′

(2π)32Ek′

)L |~p ′|∗ dΩ∗p′

(2π)2 4E∗V
|M|2

=
1

32|~k |M
1

(2π)5

(|~k ′|L)2 d|~k ′|L dΩL
k′

Ek′

|~p ′|∗ dΩ∗p′

E∗V + E∗p′
|M|2,

and thus

dσ

dELk′ dΩL
k′ dΩ∗p′

=
|~k ′|L

32|~k |M
1

(2π)5

|~p ′|∗
E∗V + E∗p′

|M|2

=
|~k ′|L

64|~k |M
1

(2π)5

λ1/2
(
s∗,M2,m2

V

)
s∗

|M|2, (2.11)

where s∗ is given in Eq. (2.9). To evaluate |M|2 the four-vectors need to transformed into
one common.

In addition to the approach discussed above, the cross section also has been expressed in
terms of lab frame variables. This kind of evaluation is helpful with particular regard to
the design of possible experiments. For this reason the cross section is calculated in terms
of 3 variables parameterizing the created vector particle, Eq′ , θq′ , φq′ , and two angles for
the scattered electron, θk′ , φk′ . Using Eq. (2.6) and integrating over the �nal state hadron
three-momentum, leads to

dσ =
1

8|~k |M Ep′

1

(2π)5

d3~k ′

2Ek′

d3~q ′

2Eq′
δ
(
E0 +M − Ek′ − Eq′ − Ep′

)
|M|2, (2.12)

where Eq′ = EV and E0 is the beam energy. By means of four-momentum conservation one
can express the energy of the scattered electron in terms of the remaining 5 quantities as

p′2 =
(
p+ k − k′ − q′

)2
=
(
p+ k − q′

)2
+ k′2 − 2

(
p+ k − q′

)
· k′

⇔ 0 =
((
p+ k − q′

)2
+ k′2 − p′2

)
−
(
2
(
E0 +M − q′0

)
k′0
)

+
(

2
(
~k − ~q ′

)
· k̂′|~k ′|

)
,
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2.1 Calculation of the cross section

with q′0 = EV , k
′0 = Ek′ and the unit direction vector of the scattered electron k̂′ =

(
~k ′/|~k ′|

)
.

For convenience one assigns

A =
(
p+ k − q′

)2
+ k′2 − p′2,

B = 2
(
E0 +M − q′0

)
,

C = 2
(
~k − ~q ′

)
· k̂′,

(2.13)

where the mass shell conditions k′2 = m2 and p′2 = M2 are applied in the numerical
calculation. Therefore, one �nds

0 = A−B
√
|~k ′|2 + k′2 + C |~k ′|

⇒ B2
(
|~k ′|2 + k′2

)
= A2 + C2 |~k ′|2 + 2AC |~k ′|

⇔ 0 = |~k ′|2 +
2AC

C2 −B2
|~k ′|+ A2 −B2m2

C2 −B2
.

This quadratic equation is solved by

|~k ′|± = − AC

C2 −B2
±
√
A2B2 +B2C2m2 −B4m2

(C2 −B2)2 . (2.14)

The physical solution of Eq. (2.14) is |~k ′|+, as one �nds by evaluating Eq. (2.14) for a
vanishing electron mass m2 = 0 or by comparing the integrated cross section in the lab
frame with that one in the recursive coordinates given in Eq. (2.11). For the integration over
the modulus of the three-momentum of the scattered electron |~k ′|, a transformation of the
remaining component of the Dirac δ function has to be performed, which yields

∂

∂|~k ′|
(
E0 +M − Ek′ − Eq′ − Ep′

)
=

∂

∂|~k ′|

(
E0 +M −

√
|~k ′|2 − k′2 − q′0 −

√
(~k − ~k ′ − ~q ′)2 − p′2

)

=

∣∣∣∣∣∣ |
~k ′|
k′0
−
|~k ′| −

(
~k − ~q ′

)
· k̂′

p′0

∣∣∣∣∣∣ , (2.15)

where the notation k′0 = Ek′ =

√
|~k ′|2 − k′2 and p′0 = Ep′ =

√
(~k − ~k ′ − ~q ′)2 − p′2 is used.

Applying this to Eq. (2.12), one �nds

dσ

d|~q ′| dΩq′ dΩk′
=

1

32|~k |M
1

(2π)5

|~k ′|2 |~q ′|2
Ek′ Eq′ Ep′

∣∣∣∣∣∣ |
~k ′|
Ek′
−
|~k ′| −

(
~k − ~q ′

)
· k̂′

Ep′

∣∣∣∣∣∣
−1

× δ
(
|~k ′| − |~k ′|+

)
|M|2,

(2.16)

and thus

dσ

dEq′ dΩq′ dΩk′
=

1

32|~k |M
1

(2π)5

|~k ′|2 |~q ′|
Ek′ Ep′

∣∣∣∣∣∣ |
~k ′|
Ek′
−
|~k ′| −

(
~k − ~q ′

)
· k̂′

Ep′

∣∣∣∣∣∣
−1

|M|2, (2.17)
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Chapter 2 Hidden Photon Production at Fixed Target Experiments

where this equation has to be evaluated with |~k ′| = |~k ′|+.
Although Eq. (2.17) has been derived with a certain choice of coordinates, no assumptions

on the particular geometry were made. This allows one to easily �nd a lab frame cross section
depending on another set of coordinates. As an example, by replacing the four-vectors

q′ → k′, k′ → p′,

Eq. (2.17) can be rewritten depending on 3 quantities associated with the scattered electron
and on 2 angles of the �nal hadron state:

dσ

dEk′ dΩk′ dΩp′
=

1

32|~k |M
1

(2π)5

|~p ′|2 |~k ′|
Ep′ Eq′

∣∣∣∣∣∣ |~p
′|

Ep′
−
|~q ′| −

(
~k − ~k ′

)
· q̂′

Eq′

∣∣∣∣∣∣
−1

|M|2,

with |~p ′| = |~p ′|+ and the quantities A, B, C given in Eq. (2.13) changed accordingly. This
cross section is commonly used for the study of virtual Compton scattering o� the nucleon
[175]. These studies were also applied as a cross-check for the calculations.

2.1.3 Discussion and phenomenology of the cross section

For the processes as considered here, it is still possible to determine an analytical expression
for the cross section. Nevertheless, there is no practical advantage to �nd an analytical
expression, since the phase space integration needs to be performed numerically. However,
for understanding the structure of the amplitude and thus, where the cross section is large,
it is worthwhile to have a look at selected terms in more detail.

An example is given in Fig. 2.2, where the calculations of the Bethe�Heitler cross section
(solid curve) and of the γ′ production cross section are shown for mγ′ = 20 MeV and ε2 = 1
(dashed curve). The cross sections were evaluated for a kinematical setting with a beam
energy of EL0 = 855 MeV, a scattered electron with energy ELk′ = 748 MeV, and a scattering
angle θLk′ = 15.1◦ with respect to the incident virtual photon direction as a function of the
γ∗p-rest frame polar angle θ∗p′ in the left panel, where φLk′ = φ∗p′ = 0. The cross section is
varying as a smooth function over several orders of magnitude. It is dominated by two sharp
peaks around θ∗p′ = 60◦ and 90◦ in case of the Bethe�Heitler cross section, whereas no peaks
appear in case of the γ′ production cross section. The same cross section as a function of
the angle θLq′ is shown in the right panel. Note that the position of the peaks of course is
depending on the particular choice of kinematics.

The cross section displays a peak in general for any propagator in the intermediate state
of which the denominator tends to zero. It is obvious from Fig. 2.1 that there are three
propagators which can produce a sharp peak: the intermediate electron propagators in the
initial and �nal state and the virtual photon exchange between the lepton and hadron line.
Independently of the signal and background process, the cross section will be large, if the
momentum transfer carried by the virtual photon exchange between the lepton and hadron
line is small, (

p′ − p
)2

=
(
q − q′

)2 ' 0.

Hence, in order to enhance the production cross section, it is reasonable to choose the
kinematical setting in such a way that the momentum transfer to the hadronic state is small.
Unfortunately this automatically implicates that the background process is also enhanced.
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Figure 2.2: Left panel: Di�erential cross section of the Bethe�Heitler process (solid curve)
and of γ′ production with mγ′ = 20 MeV and ε2 = 1 (dashed curve). The
plot shows the di�erential cross section of Eq. (2.11) for a beam energy EL0 =
855 MeV, a scattered electron with energy ELk′ = 748 MeV, and a scattering angle
θLk′ = 15.1◦ with respect to the incident virtual photon direction as a function
of the γ∗p-rest frame polar angle θ∗p′ , where φ

L
k′ = φ∗p′ = 0. One notices the two

sharp peaks around θ∗p′ = 60◦ and 90◦ appearing in the case of the Bethe�Heitler
cross section which are not present for γ′ production. Right panel: Same as
in the left panel as a function of the polar angle of the V with respect to the
beam-direction.

The arguments are di�erent for the intermediate electron propagators. These are propor-
tional to

1

m2
V − 2q′ · k and

1

m2
V + 2q′ · k′ ,

for the initial and �nal states, respectively. In the case of a �nal state photon, one has 1/(−2q′·k)

and 1/(2q′·k′), in which the denominator can be approximately zero. If the bremsstrahlung
photon is radiated into the direction of the electron and electrons are treated as massless
particles, the pole of the propagator can be hit, i.e.

1

−2|~q ′||~k |+ 2|~q ′||~k | cos θeγ
and

1

2|~q ′||~k ′| − 2|~q ′||~k ′| cos θe′γ
.

Since one of the angles θeγ and θe′γ is zero both terms cancel each other. This explains the
typical peak structure of the Bethe�Heitler cross section which can be seen from the solid
curve in Fig. 2.2. The angles above are de�ned as angles between the momenta ~k and ~q ′,
and ~k ′ and ~q ′, respectively. The peaks in the left panel of Fig. 2.2 appear at the angles θ∗p′
leading to k̂ · q̂′ = 1 and k̂′ · q̂′ = 1 in the γ∗p-rest frame. In the right panel the cross section
is displayed as a function of the polar angle of the V with respect to the beam axis. Now
the Bethe�Heitler peaks are perfectly centered at 0◦ and 15.2◦ for emission of a photon into
the direction of the incident and scattered electron.
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Figure 2.3: Calculation of the Bethe�Heitler cross section as in the left panel of Fig. 2.2 with
vanishing (solid curve) and �nite (dashed curve) electron mass. To emphasize
the in�uence of a vanishing and �nite electron mass, only a very small region
around one of the Bethe�Heitler peaks is considered.

Apparently, a �nite vector boson mass avoids that the denominator can get close to zero
presented by the dashed curve in Fig. 2.2. Note that the electron mass of course is �nite,
which causes that the above equation must be rewritten as

1

−2|~q ′|Ek + 2|~q ′||~k | cos θeγ
and

1

2|~q ′|Ek′ − 2|~q ′||~k ′| cos θe′γ
,

where in the �rst term now the energy instead of the modulus of the three-momentum enters.
Due to Ep =

√
|~p |2 +m2 > |~p | this denominator cannot be zero in any case since the �nite

electron mass provokes that the pole is unaccessible.

Although a vanishing electron mass simpli�es the calculations and is a good approximation
for high-energy kinematics, the electron will be treated as a particle with a �nite mass in this
work. In particular, the �nite electron mass has to be taken into account for the calculation
of the integrated cross section. Otherwise the amplitude has a singularity leading to a
logarithmical divergence ∼ ln

(
s/m2

)
with s = (k + p− p′)2 in the integrated cross section.

In Fig. 2.3 the in�uence of the electron mass on the shape of the 5-fold di�erential cross
section for the same choice of kinematics as in Fig. 2.2 is demonstrated. The solid (dashed)
curve in Fig. 2.3 shows the cross section in the region of one of the Bethe�Heitler peaks as
a function of the polar angle θ∗p′ in the γ∗p-rest frame with vanishing (�nite) electron mass.

Note that, if the electron is treated as massless this calculation without further modi�ca-
tions leads to a wrong result, since the peaks correspond to the emission of the photon into
the direction of the electron. The vector interaction, manifested by the Dirac matrix γµ in
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2.1 Calculation of the cross section

the electromagnetic current, in general is helicity conserving. Thus, a left-handed state can-
not be turned into a right-handed and vice versa. Since the photon is a spin-1 vector particle
with helicity ±1, a helicity �ip is necessary in order to ful�ll helicity conservation, which
has to be preserved in the case of QED. This cannot be realized with a massless electron.
Therefore, this in�nite peak is forbidden by helicity conservation and in the peaking region
the approximation of massless electrons is not valid. In nature of course, the electron has
a �nite mass, which allows for a small breaking of helicity conservation. This is accurately
described by the dashed curve in Fig. 2.3, which drops close to zero for the radiation of the
photon into the direction of the electron.

If the decay products are not detected in the investigation of hidden photon production,
the kinematics must be chosen in such a way that these so-called �Bethe�Heitler peaks�
do not contribute too strongly. In an experiment where the decay products of the γ′ are
detected, one exploits that the cross section is largest for the emission of the hidden photon
into the directions of the initial and �nal state electron.

Of course, there is also a contribution to the cross section from the Feynman diagrams,
where the V couples to the hadronic state. This is known as (true) virtual Compton scat-
tering (VCS) o� a hadron. As far as the hadronic state is a nucleus, its contribution is
neglected. The emission of a (hidden photon) from the nucleus is suppressed by the large
mass and the kinematical features discussed above.

As mentioned, the cross section for bremsstrahlung o� the lepton line is largest, if the
momentum transfer Q2

t = −(p′ − p)2 tends to zero. Moreover, the signal cross section
is peaked for forward emission of the hidden photon where most of the beam energy is
transferred to the γ′ (see Sec. 2.2.2). The VCS contribution is suppressed by several orders
of magnitudes compared to the radiation o� the lepton in this kinematical region.

It is possible to �nd a simple parametrization of the form factors of the nuclear electromag-
netic current, which can describe existing data within an accuracy of around 5% [176, 177]
(see the next section). Also inelastic nuclear e�ects are included in this parametrization.

It was shown that the VCS contribution cannot be neglected for a nucleon target. The
VCS amplitude can be decomposed into so-called Born and non-Born parts at low energies.
The Born term is the part of the VCS amplitude, in which the interaction is parametrized
by a single proton in the intermediate state. The structure dependent e�ects are absorbed
in the non-Born part. Below the pion threshold the non-Born amplitude is of the order
of O(q′) [178]. Hence, the contribution due to the non-Born contribution tends to zero
for q′0 → 0. Such e�ects can be parametrized in terms of generalized polarizabilities of
the nucleon which were determined experimentally [179]. The Bethe�Heitler contribution is
suppressed in in the kinematics of these experiments. It was found that the non-Born terms
contribute up to 10% to the cross section. In the kinematical settings of this work the region
is preferred where the Bethe�Heitler cross section is large. Thus, the non-Born contribution
is less important and will not contribute more than 5% which is a very conservative estimate.

The nucleon Born amplitude reads

MV, vcs =
−i e2 gV
q2

ε∗α(q′, r′) lµHµα, (2.18)
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with the hadronic tensor

Hµα = up(p
′, s′p)

(
Γµ(qt + q′)

/p− q/′ +M

(p− q′)2 −M2
Γα(−q′)

+ Γα(−q′) /p′ + q/′ +M

(p′ + q′)2 −M2
Γµ(qt + q′)

)
up(p, sp),

and the leptonic current

lµ = ue(k
′, s′k) γ

µ ue(k, sk).

The emission of a photon is suppressed by the nucleon mass appearing in the propagators
of Hµα,

1

−2|~q ′|Ep + 2|~q ′||~p | cos θpγ
and

1

2|~q ′|Ep′ − 2|~q ′||~p ′| cos θp′γ
,

as discussed before for the �nite electron mass. Since the mass of the nucleon ofM = mN '
940 MeV is much larger than the electron mass m = 0.511 MeV, the VCS amplitude does
not show the peaked structures as the Bethe�Heitler amplitude does.

For a heavy nucleus the propagator structure is very similar, though its mass is much
larger than in the case of a nucleon. In addition, the choice of kinematics provokes that the
VCS term is suppressed by several orders of magnitude. Hence, the VCS contribution will
be neglected for a heavy nucleus in the hadronic current.

Since the VCS contribution has only a very slight e�ect on the shape of the cross section,
this term will be neglected for the following discussion of the kinematical dependencies.
However, the normalization of the cross section is typically altered in the range of around
10%. In order to calculate the signal and background cross sections for experiments with
invisible hidden photon states, the VCS contribution needs to be accounted for. In addition,
to obtain a realistic description of the process at higher energies also the non-Born amplitude
parameterizing the nucleon structure-dependent e�ects has to be included. Therefore, the
Born term of the VCS contribution is included in the actual calculations of the signal and
background cross sections for the scattering o� protons at low energies in Chapter 3.

2.1.4 Cross section for (semi-) inclusive scattering

Up to now the cross section of the process e(Z,A)→ e(Z,A)γ/γ′ has been calculated using
the assumption that the scattering o� the hadronic state is coherent. In this approximation
the hadron does not break up. The break-up of the hadronic state can be included by
considering the cross section of the (semi-) inclusive scattering process. The hadronic state
breaks up after being struck by the virtual photon,

e(Z,A)→ eXγ/γ′,

where X denotes any possible �nal state. The coherent scattering o� the hadron will be
referred to in the following as elastic contribution.

For the evaluation of the (semi-) inclusive cross section in the lab frame again Eq. (2.6)

is used as starting point. The spin averaged matrix element |M|2 can be decomposed for a
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process as described by the Feynman diagrams of Fig. 2.1 in the 1γ-approximation as

|M|2 =
∑
s′e, s

′
p

∑
se, sp

∑
λ, λ′

MM∗ =
∑
s′e, s

′
p

∑
se, sp

∑
λ, λ′

LµνW
µν (2.19)

where again se (s
′
e) and se (s

′
p) denote the helicity of the initial (�nal) electron and hadron,

λ refers to the (hidden) photon polarization state and
∑

indicates the spin averaged sum.
The squared amplitudeMM∗ in Eq. (2.19) is split into a purely leptonic part Lµν and the
hadronic tensor Wµν . The leptonic part Lµν of the reaction is exactly known from QED.
The corresponding leptonic current Lµ = Iµα ε∗α is found by contracting the leptonic tensor
Iµα of Eq. (2.3) with the (hidden) photon polarization vector ε(q′, λ). The hadronic tensor
Wµν needs to be evaluated in the most general way. This task has been done more than 40
years ago for the �rst time [180,181].
The lab frame cross section can be rewritten as

dσ =
1

4
√

(p · k)2 −m2M2

d3~k ′

(2π)32Ek′

d3~q ′

(2π)32EV

× d3~p ′

(2π)32Ep′
(2π)4 δ(4)

(
k + p− k′ − p′ − q′

)
|M|2

=
ε2e6

4|~k |M
1

Q4
t

d3~k ′

(2π)32Ek′

d3~q ′

(2π)32EV

∑
se, s′e

LνL
∗
ν

×
∫

d3~p ′

(2π)32Ep′
(2π)4 δ(4)

(
qt + p− p′

) ∑
sp

∑
X

〈p|Jµ|X〉〈X|J∗ν |p〉︸ ︷︷ ︸
4πM2/p′0Wµν

, (2.20)

where qt = k − k′ − q′ is the four-momentum transfer onto the hadron and Q2
t = −q2

t . J
µ

is the hadronic electromagnetic current operator and X is any possible �nal state. Since
only the interaction with the electromagnetic current is considered here, both, the leptonic
and hadronic tensors, are entirely symmetric. As shown in several works [180,181], the most
general structure of the hadronic tensor is

Wµν = A(Q2
t , qt · p)gµν +B(Q2

t , qt · p)qµt qνt + C(Q2
t , qt · p)pµpν

+D(Q2
t , qt · p)(pµqνt + qµt p

ν) + E(Q2
t , qt · p)(pµqνt − qµt pν),

where A, B, C, D, E are scalar functions and already several constraints were applied. Due
to the translation invariance imposed by the δ function, the sum over initial and �nal states,
and Lorentz invariance, Wµν must be a rank 2 tensor and may only depend on two scalar
kinematical variables, where Q2

t and qt ·p due to p2 = M2 are the only non-trivial ones. Note
that only symmetric structures are taken into account. For a possible electroweak interaction,
also an antisymmetric part will contribute. Gauge invariance qtµW

µν = qtνW
µν = 0 leads

to

Wµν = W1(Q2
t , qt · p)

(
−gµν +

qµt q
ν
t

Q2
t

)
+

1

M2
W2(Q2

t , qt · p)
(
pµ − qt · p

Q2
t

qµt

)(
pν − qt · p

Q2
t

qνt

)
, (2.21)
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where W1 and W2 are the hadronic structure functions. As in the considered process the
leptonic current Lµ is also gauge invariant. Thus, qµt Lµ = 0, Wµν can be reduced to

Wµν = −W1(Q2
t , qt · p) gµν +

1

M2
W2(Q2

t , qt · p) pµpν . (2.22)

Inserting the results of Eqs. (2.21) and (2.22), the di�erential cross section of Eq. (2.20) can
be rewritten in terms of the leptonic and hadronic tensors

dσ

dE′kdΩk′dEV dΩq′
=

ε2e6

8|~k |Q4
t

|~k ′| |~q ′|
(2π)5

M

p′0
∑
se, s′e

LνL
∗
νW

µν . (2.23)

The cross section for elastic scattering can be obtained easily from Eq. (2.23) by using the
parametrization with the form factors of elastic scattering and restricting the �nal state to
the same hadron as in the initial state. As an example, for the scattering o� a proton target,
the structure functions are given by

W1(Q2
t ) =

G2
E(Q2

t ) + τ G2
M (Q2

t )

1 + τ
δ(Ep + q0

t − E′p),

W2(Q2
t ) = τ G2

M (Q2
t ) δ(Ep + q0

t − E′p),

where GE and GM are the electric and magnetic Sachs form factors, respectively, and
τ = Q2

t/4m2
N . The structure functions for the elastic process only depend on the squared

momentum transfer Q2
t and the dependence on qt · p has been dropped due to the additional

condition p′2 = M2. Rewriting the δ function as condition on the energy of the scattered elec-
tron and multiplying Eq. (2.23) by the Jacobian of the δ function of Eq. (2.15) and inserting
the result of Eq. (2.14), leads to the cross section which was already found in Eq. (2.17).
For a nuclear target the form factors parameterizing the structure function W1 and W2

were discussed in e.g. Refs. [177, 181]. The inelastic contribution for a proton can be cal-
culated in theory quite straightforwardly, e.g., within the parton model for large Q2

t (see
for example Refs. [182, 183]). For a nuclear target the situation is quite di�erent. Since
a nucleus is a composite object of many nucleons with a variety of possible energy levels
and resonances a general parametrization in terms of electromagnetic structure functions is
impossible. Nevertheless, one can estimate the inelastic contribution by exploiting the dom-
inance of quasi-elastic scattering o� a nucleon bound in the nucleus, which is sketched in
Fig. 2.4. In quasi-elastic scattering the nucleus does not break up and the condition p′2 = M2

is ful�lled. As shown in Fig. 2.4, the scattering reaction takes places as scattering o� a single
proton in the nucleus. Quasi-elastic scattering dominates the inelastic reaction for the range
of small momentum transfer Q2

t . As discussed in Sec. 2.1.3, Q2
t → 0 corresponds to the

region where the cross sections are as large as possible.
A possible parametrization of these structure functions is given in Ref. [177] for a spin-0

nucleus as

W el
1 (Q2

t ) = W inel
1 (Q2

t ) = 0,

W el
2 (Q2

t ) =

(
a2Q2

t

1 + a2Q2
t

)2(
1

1 + Q2
t/d

)2

Z2,

W inel
2 (Q2

t ) =

(
a′2Q2

t

1 + a′2Q2
t

)2
(

1 + Q2
t/(4m2

p)(µ2
p − 1)

(1 + Q2
t/Λ2)

4

)2

Z,

(2.24)
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(Z, A) (Z, A)

(Z − 1, A− 1)

p p

Figure 2.4: Sketch of quasi-elastic scattering: A single proton of the nucleus with atomic
number Z and mass number A participates in the scattering reaction, while the
remaining (Z − 1) protons and (A − Z) neutrons of the nucleus are spectators.
In quasi-elastic scattering the nucleus does not break up in the �nal state.

where a = 111Z−1/3/m, a′ = 773Z−2/3/m, d = 0.164 GeV2A−2/3, µp = 2.793, and Λ =
0.843 GeV.
As discussed in Refs. [140, 177], the structure function W1 does not contribute for small

momentum transfer Q2
t . The �rst term of W2 is the elastic atomic form factor which was

�rst given in Ref. [176]. The e�ect of electron screening is parametrized by this expression.
The elastic nuclear form factor is presented by the second which accounts for the �nite
size of the spatial charge of the nucleus [177]. Of course, the dipole parametrization in
Eq. (2.24) can be replaced by the more accurate parametrization of Helm [184] applied in
Eq. (2.4). Analogously, the �rst term of the inelastic structure function W inel

2 is the inelastic
atomic form factor [177]. The second part accounts for the contribution from quasi-elastic
scattering o� a single proton bound in the nucleus [140]. It is argued in Ref. [177]�based on
experimental data [185]�that the quasi-elastic contribution dominates and hardly no other
e�ects are visible. As a consequence, experimental data can be described within an accuracy
of around 5% [140,176,177]. Note that the cross section obtained using the parametrization
of Eq. (2.4) has to be evaluated in the kinematical setting of elastic scattering, since it is
assumed that the hadronic �nal state has an invariant mass M2.
The di�erent dependencies of the form factors on Z are deduced in Ref. [177]. The inelastic

form factor has to converge to Z in the limit of Q2
t → ∞, whereas the elastic form factor

converges to Z2 . It follows that the inelastic contribution is suppressed by a factor Z
compared to the elastic contribution. For large Z, e.g., for tantalum one has Z = 73, the
inelastic contribution to the cross section is expected to be around 5%. However, for light
nuclear targets the contribution from quasi-elastic scattering may lead to signi�cant e�ects.
A numerical comparison for tantalum is presented in the next section.

2.2 Results for the integrated cross section

2.2.1 Numerical evaluation of the cross section

Only the di�erential cross sections were determined so far, for which analytical expressions
can be found. For the qualitative as well as quantitative study of the phenomenology of the
process e(Z,A)→ e(Z,A)γ/γ′ one has to evaluate the cross section within the kinematically
allowed range. This corresponds to an integration of the di�erential cross section over the
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full phase space, or later on, to an integration with adequately chosen integration limits. For
that purpose, the numerical treatment of the cross section will be shortly introduced in this
section.
The quantity of interest is the cross section of the process e(Z,A)→ e(Z,A)γ/γ′ expressed

as a function of 1 or 2 kinematical variables. Thus, one has to solve the integral over the
di�erential cross section, i.e. for the di�erential cross sections in Eqs. (2.11) and (2.17) in
terms of the recursive coordinates∫

dELk′

∫
dΩL

k′

∫
dΩ∗p′

dσ

dELk′ dΩL
k′ dΩ∗p′

,

and expressed by lab frame variables∫
dEq′

∫
dΩq′

∫
dΩk′

dσ

dEq′ dΩq′ dΩk′
.

Due to Lorentz invariance, the quantity obtained after integration does not depend on the
particular choice of the reference frame anymore. It can be related to the count rate observed
in an experiment. The result has to yield the same value whichever of the cross sections is
evaluated in the corresponding physical limits. Therefore, the di�erential cross section which
allows one to solve the particular problem as conveniently as possible was used. Moreover,
a second calculation within the other parametrization was performed as a cross-check. In
addition, the calculation of di�erential cross sections was checked with the numerical results
of Ref. [175]. For clarity, in this section the numerical evaluation of the integrated cross
section is discussed using the di�erential cross section of Eq. (2.11) only.
For the numerical calculation, the amplitude

|M|2 = −
∑
sk′ ,sp′

∑
sk,sp

MαM∗α

with Mα given in Eq. (2.2), has to be calculated for any desired con�guration of external
momenta. This means that for any space-time point, the necessary matrix multiplications of
Eq. (2.2) have to be performed. Such products of Dirac matrices and in particular of their
contractions with four-momenta are a large computational e�ort. To reduce the computation
time optimizations and simpli�cations were applied as described in Appendix C. In addition,
one of the �nal state spin sums can be omitted by means of parity conservation.
The numerical integration was performed in two ways based on Monte Carlo methods:

• use of the VEGAS integration routine [186] and its adaption to graphics processing
units (GPUs) [187]

• an event-by-event analysis by use of Sobol random numbers and collection of the results
in histograms

These two approaches of course must lead to equal results. Nevertheless, each has its own
advantages and disadvantages. By the approach using the VEGAS routine one can calculate
only one cross-section distribution at the same time, e.g. the cross section as a function of the
energy of the scattered electron ELe′ in the lab frame. An advantage of the VEGAS algorithm
is the use of methods of error reducing, such as importance sampling. The integration mesh
is dynamically adapted with emphasis on the regions where the uncertainty of the result is
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large. Furthermore, the time needed for the calculation of the total cross section and the
cross section in an arbitrarily small bin are nearly equal. The second method allows one to
investigate several observables at the same time. The cross section is calculated from the
external momenta and constraints. Afterwards, the results are collected by a binning routine.
As an example, the cross section can be calculated as a function of all 5 integration variables
at the same time. Correspondingly, one can obtain at least 5 di�erent distributions. In
addition, it is possible to �nd distributions depending on other variables, such as the energy
of the scattered proton. A disadvantage of this method is that one always has to calculate the
cross section for a large number of random numbers, which is very time-consuming. Hence,
this method is not appropriate for the fast calculation of the total cross section.

For the study of the phenomenology of the cross section the large number of available
observables is of great help. However, no internal variance reduction mechanism is applied
during the calculation leading to larger number of sample points which have to be evaluated.
To compensate this quasi-random Sobol numbers were chosen. These are deterministic in
the sense that the integration volume is covered much more evenly than in the case of
pseudo-random numbers.

2.2.2 Numerical results for the γ′ production cross section

In order to design a dedicated experiment for the γ′ search as e�ciently as possible, one needs
to understand the signal cross section as well as the one of the irreducible background. One
has to decide between the searches with visible and invisible decays. Visible decays mean
that the γ′ decays before or within the detector into SM particles, such as lepton-antilepton
pairs, which can be detected. This is the strategy of all experiments shown in Fig. 1.19. In
the case of invisible decays, the γ′ decays into particles which cannot be detected, like the
decay into a possible light dark matter candidate, or the decay length of the γ′ is larger than
the decay volume of the detector.

While in the case of visible decays in which the decay products of the γ′ are detected, e.g.
e(Z,A)→ e(Z,A)γ′∗ → e(Z,A)l+l−, only the corresponding QED process with an ordinary
photon in the intermediate state contributes to the irreducible background, a variety of
background contributions for invisible decays have to be taken into account, depending on
which particles can be detected. The SM background has to be subtracted completely and
must be precisely understood. Therefore, a detector is needed which is able to detect as many
particles as possible at the same time to reconstruct the events accurately. Furthermore,
radiative corrections have to be performed to a high level of accuracy. This makes a study
of invisible decays in such experiments challenging, although not impossible.

For a visible, the cross section for the process e(Z,A)→ e(Z,A)l+l− after integrating over
the lepton-pair coordinates can be related to the cross section for e(Z,A)→ e(Z,A)γ′. This
is discussed in detail in Appendix B.3. Hence, the results of this section can be used, to
understand the dependencies of the γ′ production cross section.

Fig. 2.5 shows the γ′ production cross section induced from scattering of an electron
beam o� a �xed proton target for a beam energy E0 = 1 GeV. The γ′ cross section is
evaluated as a function of the γ′ lab energy Eq′ and lab frame polar angle θq′ in 2 MeV and
2◦ bins, respectively, for γ′ masses mγ′ = 200, 400, 600 MeV. Furthermore, the calculations
were performed for ε2 = 1. From Eq. (2.2) one directly notices that the cross section is
proportional to ε2 and can be easily scaled by this quantity. For completeness, the Bethe�
Heitler cross section for the production of a real photon is shown on the upper left panel.
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The Bethe�Heitler process is the dominant contribution to the background for an invisible γ′

decay besides elastic electron-proton scattering, which can be kinematically separated. The
numerical integration of the di�erential cross section was performed for the full, kinematically
allowed phase space.
The Bethe�Heitler cross section dominates, as discussed in Sec. 2.1.3, due to the peaked

structures from the electron propagators. It is several orders of magnitude larger than the γ′

production cross section, which is suppressed by the �nite γ′ mass. Note that this is only a
crucial issue in the case of invisible decays, where the emitted photon is not detected. For a
visible γ′ decay, where the l+l− pair is detected, a �nite mass equal to the invariant mass of
the lepton pair is assigned to the virtual photon, leading to a suppression of the background
cross section by this factor.
While the Bethe�Heitler cross section is strongly peaked for the emission of a photon in

the forward direction and for photons of lower energy, the γ′ production cross section shows
a di�erent shape. First, due to the �nite γ′ mass, a smaller region of energy is covered.
Furthermore, the cross section is increasing with growing Eq′ and decreasing θq′ . It has its
maximum for Eq′ ' E0 and θq′ ' 0◦.
The cross section shape as a function of the γ′ energy as well as the polar angle of the

scattered electron shows a strong dependence on the γ′ mass. The γ′ is emitted to wider
angles if mγ′ is small compared to the beam energy. Furthermore, if mγ′ is not much smaller
than the beam energy, the cross section is not large for Eγ′ = E0. Instead, the γ′ cross
section with mγ′ = 600 MeV is approximately zero for Eγ′ & 950 MeV.
It becomes clear from Fig. 2.6 that the cross section peaks for forward scattering of the

electron if mγ′ is small compared to the beam energy (upper left panel). The cross section
shows a tail similar to the radiative tail known from the Bethe�Heitler cross section. On the
upper right panel of Fig. 2.6 it is illustrated that for mγ′ = 600 MeV, which is comparable
with the beam energy E0 = 1 GeV, the cross section is largest around ELe′ = 100 MeV. One
also clearly sees that ELe′ . 200 MeV is preferred. In addition, the electron is scattered to
wider angles, if the mγ′ is comparable with the beam energy (lower panels), which explains
the limits of the θq′ shape.
This is an important feature which has to be taken care of, when experiments are designed.

At MAMI, a beam with an energy around 1 GeV is available, while at JLAB beam energies
of 6 − 12 GeV are provided. The observed shapes can be understood from the discussion
of the phenomenology of the cross section in Sec. 2.1.3. For Eq′ � mγ′ the e�ect of the
�nite mass in the kinematics is suppressed, since then Eq′ ' |~q ′|. Therefore, the kinematical
behavior equals that of the Bethe�Heitler cross section, which can be seen from the evolution
of the di�erent shapes of the distributions in Fig. 2.5 from mV = 0 MeV to mV = 600 MeV.
Nevertheless, still the Bethe�Heitler peaks are absent, as the propagators responsible for
these peaks are now 1/m2

γ′ .
The distinct shapes of the cross section presented in Fig. 2.7 underline the discussed

features. In Fig. 2.7, similar to Figs. 2.5 and 2.6, the integrated production cross sections
∆σ for E0 = 5 GeV and a γ′ with mγ′ = 200 MeV (mγ′ = 600 MeV) are shown on the left
(right) panel as a function of Eq′ and θq′ (upper panels), E

L
e′ within 10 MeV bins (central),

and θLe′ within 1◦ bins (lower) in the lab frame. Again, the calculations were performed with
ε2 = 1. For the larger beam energy, which corresponds to that available at JLAB, the shapes
of the γ′ distributions are getting more similar to those of the Bethe�Heitler cross section.
In addition, Fig. 2.8 illustrates the ratio of the cross sections with elastic plus quasi elastic

hadron interaction and the purely elastic contribution. The distributions where calculated
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Figure 2.5: Integrated production cross section ∆σ with a beam energy E0 = 1 GeV for
a SM photon (upper left panel) and for the γ′ with mγ′ = 200, 400, 600 MeV,
respectively, as a function of the γ′ energy Eq′ and polar angle θq′ in the Lab
frame with ε2 = 1. For clarity, cross sections smaller than 10−8 pb are not shown.
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Figure 2.6: γ′ production cross section as a function of the energy of the scattered electron
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Figure 2.7: Same as in Figs. 2.5 and 2.6, but for a beam energy E0 = 5 GeV.

63



Chapter 2 Hidden Photon Production at Fixed Target Experiments

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

∆
σ

q
u

e
l /

 ∆
σ

e
l

x

Figure 2.8: Ratio of the inclusive elastic and elastic plus quasi-elastic cross sections o� a
tantalum target for a typical beam energy E0 = 1 GeV, mγ′ = 200 MeV and
cos θγ′ ≤ 0.5 as a function of the momentum transfer x = Eγ′/E0.

for scattering o� a tantalum target with a typical beam energy E0 = 1 GeV and cos θγ′ ≤ 0.5
as a function of the momentum transfer to the hidden photon x = Eγ′/E0.

The in�uence of the considered inelastic e�ects is below 5% in the region of interest for γ′

production with x & 0.9. This justi�es to focus on coherent scattering o� the nucleus only.
The in�uence of the quasi-elastic contribution to the cross section was checked numerically for
various beam energies of interest. In particular, the shape of the cross sections is not altered.
Thus, inelastic e�ects do not a�ect the qualitative discussion of the signal kinematics. It was
always found that the quasi-elastic e�ects are only a small correction below 5% which is in
agreement with the �ndings of Ref. [140].

2.3 Comparison with Weizsäcker�Williams approximation

In Ref. [140] Bjorken et al. discuss the approximation of the γ′ production cross section by the
so-called Weizsäcker�Williams (WW) approximation. Several proposals for new experiments
[188�190] as well as analyses of existing data [140, 144] make use of this approximation.
Therefore, the applicability of the WW approximation and in particular its limitations are
discussed in this section.

2.3.1 The cross section of hidden photon bremsstrahlung in the
Weizsäcker�Williams approximation

Already in 1924 Fermi demonstrated [191] that a rapidly moving electron and a pulse of
radiation show an analogous behavior in their in�uences on an atom. Weizsäcker [192]
and Williams [193] independently derived a relation between an incident particle and a
corresponding beam of photons, which is in the literature referred to as pseudo-photon
beam. The approximation of the e�ect of such a current by a pseudo-photon beam is known
as WW approximation. Furthermore, an approximate treatment of the leptonic part of the
reaction and the inclusion of e�ects from inelastic contributions or thick targets were derived
in Ref. [194], which is known as generalized or improved WW approximation.

64



2.3 Comparison with Weizsäcker�Williams approximation

e−(k) e−(k′)

V (q′)

γ∗(∆)
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V (q′)

γ∗(∆)

Figure 2.9: Feynman diagrams of Fig. 2.1 in the picture of the WW approximation.

As discussed in Refs. [177, 194, 195], the cross section for lepton-pair production from the
interaction of a photon with an atomic nucleus and, correspondingly, bremsstrahlung o� a
lepton beam as crossed process can be written within the 1γ-exchange approximation as

dσ ∝ LµνWµν ,

with Lµν and Wµν denoting the leptonic and hadronic tensors of the interaction, respec-
tively. While the leptonic tensor is exactly known from QED, the hadronic tensor has to
be parametrized by two structure functions W1(t) and W2(t). They are functions depend-
ing on the squared momentum transfer t = Q2

t carried by the virtual photon connected to
the nucleus. It is shown in Ref. [194] that only the transverse part of the hadronic tensor
Wµν ∝ gµν contributes. This allows one to rewrite the cross section as a function of a scalar,
generalized form factor parameterizing the e�ective photon �ux

χ =

∫ tmax

tmin

dt
t− tmin

t2
G (W1(t), W2(t)) . (2.25)

The form factor G depends on the atomic structure parametrized by W1(t) and W2(t).
The cross section for axion bremsstrahlung has been derived within the framework of the
generalized WW approximation in Ref. [195], which is closely related to the emission of a
vector boson [140]. It is discussed that the cross section for

eZ → eaX,

where Z and a denote the atomic target and the axion, respectively, and X is an arbitrary
�nal state, can be related to the cross section of the interaction of a pseudo-photon beam
with the leptonic part of the reaction given by

eγ → ea.

Bjorken et al. [140] adopt this method to estimate the cross section for γ′ bremsstrahlung
emission induced from the interaction of an electron beam with an atomic target. The
authors �nd an approximate expression for the cross section of the process eZ → eγ′X (see
Feynman diagrams of Fig. 2.1) within the framework of the generalized WW approximation:

dσ(eZ → eγ′X)WW ∝ dσ(eγ → eγ′)× α

π
χ, (2.26)
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where dσ(eγ → eγ′) is the cross section of the process depicted by the Feynman diagrams
of Fig. 2.9. The factor α/π χ, accounts for the e�ective pseudo-photon �ux for an atomic
nucleus of atomic number Z and particle number A with

χ = χ
(
E0, mγ′ , Z, A

)
=

∫ tmax

tmin

dt
t− tmin

t2
G2(t),

where t = Q2
t = −(p′ − p)2 is the negative of the squared momentum transfer, tmin =

(m2
γ′/2E0)2, and tmax = m2

γ′ . The form factor G2(t) is parametrized by

G2(t) = W el
2 (t) +W inel

2 (t)

with W el
2 (t) and W inel

2 (t) as given in Eq. (2.24) corresponding to Ref. [140].
In addition to Ref. [140], the application of the WW approximation of the γ′ production

cross section was investigated by Andreas et al. in Ref. [144] in order to extract limits for the
γ′ parameter space from past beam-dump experiments. In these publications the di�erential
cross section for γ′ production is given as

dσ

dx d cos θγ′
= 8α3ε2E2

0xχ

√
1−

m2
γ′

E2
0

(
1− x+ x2/2

U2
+

(1− x)2m2
γ′

U4
−

(1− x)xm2
γ′

U3

)
.

(2.27)

x = Eγ′/E0 is the fraction of the energies carried by the γ′ and the incident electron and θγ′ is
the polar emission angle of the γ′ in the lab frame with respect to the z-axis corresponding
to the beam axis. The function

U = U
(
x, E0, mγ′ , θγ′

)
= E2

0xθ
2
γ′ +m2

γ′
1− x
x

+m2x (2.28)

parametrizes the virtuality of the electron in the intermediate state in the Feynman diagrams
of Figs. 2.1 and 2.9. This approximate expression for the cross section is valid for large beam
energies compared to the mass of the γ′:

m� mγ′ � E0, (2.29)

and small γ′ emission angles

xθ2
γ′ � 1. (2.30)

Moreover, terms of the order m2 in the numerator and the t-dependence of the leptonic
part of the cross section dσ(eγ → eγ′) were dropped. Neglecting terms of the order m2 leads
to a very small error of less than 0.1%. However, the drop of the dependence on t = Q2

t

leads to a signi�cant overestimate of the cross section for x ∼= 1. E�ects due to the �nite
momentum transfer Q2

t become important for x ∼= 1. Q2
t serves as a cut-o� besides the �nite

mass of the electron. Hence, the cross section within the WW approximation contains a
divergence corresponding to the exchange of photons with zero energy which is not present
for the calculation within the leading order of QED.
As a further approximation, only leading terms in m2

γ′/(x2E2
0) were kept. The corresponding

error is below 0.1% in the range of interest with x ≥ 0.8, provided that the condition (2.29)
is ful�lled. In addition, the approximation cos θγ′ ' 1 − θ2

γ′/2 + O(θ4
γ′) is applied. The
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2.3 Comparison with Weizsäcker�Williams approximation

error entering from this approximation is below 0.5% since the cross section is evaluated for
θγ′ < 0.5 rad.
After the integration of Eq. (2.27) over a small range of the angle θγ′ < 0.5 rad, in Ref. [144]

dσ

dx
= 4α3ε2χ

√
1−

m2
γ′

E2
0

1− x+ x2/3

m2
γ′

(1−x)/x +m2x
(2.31)

was found.3

2.3.2 Comparison of numerical results

In this section the approximate results for the cross section of Eqs. (2.27) and (2.31) within
the framework of the WW approximation are compared to the exact calculation of the cross
section derived in Sec. 2.1. Although a comparison on the level of the di�erential cross
sections is possible, the acceptance integrated cross sections are considered, since these are
the quantities which will be observed in experiments. This allows for taking all of the possible
phase space into account. Thus, one avoids in�uences from kinematical cuts on the result.
Furthermore, the integrated cross section can be directly related to experimental data.
For this purpose, the di�erential cross sections of Eqs. (2.27) and (2.31) are integrated

according to

∆σ1(x0, δx) =

∫ x0+δx

x0

dx
dσ

dx
,

∆σ2(x0, δx) =

∫ x0+δx

x0

dx

∫ 0.5 rad

0 rad
dθγ′ sin θγ′

dσ

dx dθγ′
,

(2.32)

where the integration over x is performed over an arbitrary small bin with bin width δx. The
presented results were calculated with δx = 0.002. The integrated cross section can simply
be related to the di�erential cross section dσ/dx by

∆σ(x0, δx) =
dσ

dx
(xo)× δx,

for most of the x-range (except for x > 0.99). It was checked numerically, that the results
qualitatively do not depend on the particular choice of δx. Another choice of δx only cor-
responds to a resummation of the bins with the initial value of δx. The calculations where
performed assuming tantalum as nuclear target, which was used in the experiments per-
formed so far [152, 153], i.e., Z = 73, A = 181, M ∼= 168 GeV. Furthermore, θγ′ ≤ 0.5 rad
was chosen in agreement with Refs. [140, 144]. This corresponds to the γ′ forward emission
kinematics in which the WW approximation is expected to be valid.
For simplicity, the atomic form factors of Ref. [140] entering in the parametrization in

Eq. (2.24) were neglected. The corresponding contribution to the cross section is below 1%
and the shape is not altered. In order to compare the results obtained within the WW
approximation and the ones of this work, Eq. (2.23) with the parametrization of Eq. (2.24)
has been considered. Moreover, the calculation of the cross section by Eq. (2.17) was used

3There has been a controversy between Ref. [140] and Ref. [144] about additional factor of 2 in Eq. (2.31)
in Ref. [140]. The calculations of this work independently proof Ref. [144] and show that the factor of 2
was placed mistakenly.
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Figure 2.10: Comparison of the cross sections ∆σ1 and ∆σ2 of Eq. (2.32) obtained within
the WW approximation for E0 = 5 GeV and mγ′ = 200 MeV.

as cross check. In the approximation, in which the nucleus is considered as a scalar particle
and the inelastic contribution consists only of the quasi-elastic term, both cross sections lead
to the same expressions. Within this approach the square of the single elastic form factor
entering Eq. (2.17) is replaced by a linear combination of the elastic and quasi-elastic form
factors given in Ref. [140] by

Z2 F 2(t)→
(

1

1 + t
d

)2

Z2

︸ ︷︷ ︸
Gel

+

1 + t
(4M2

N )
(µ2
p − 1)(

1 + t2

Λ2

)4


2

Z

︸ ︷︷ ︸
Ginel

.

These form factors were already introduced in Eq. (2.24). As a consequence, for the parametriza-
tion of the pseudo-photon �ux χ one applies

χ =

∫ tmax

tmin

dt
t− tmin

t2
(Gel(t) +Ginel(t)) .

Both cross sections of Eq. (2.32) were calculated in order to compare them with the exact
calculation. In the graphical illustration of the obtained results only ∆σ2 is shown. The
results using ∆σ1 and ∆σ2 agree within a few percent over a wide range of x, which is
presented in Fig. 2.10. Only in the very low x region near the γ′ production threshold, the
results di�er signi�cantly. This region is not of interest for the following studies. Hence, this
discrepancy can be ignored.
The comparison of the calculation in the leading order of perturbation theory and the

result within the WW approximation is in the following done for a light hidden photon with
mγ′ = 5 MeV and for mγ′ = 200 MeV. This is in the typical range of probed masses at
MAMI and JLAB [152,153,189]. The calculations for mγ′ = 5 MeV were performed for two
di�erent beam energies which were chosen as E0 = 100 MeV and E0 = 1 GeV. The results
are presented in Fig. 2.11. The solid curve depicts the �ndings for the exact calculation
while the result within the WW approximation is given by the dashed curve. It turns out
from the curves in the left panel of Fig. 2.11 that for mγ′ = 5 MeV and E0 = 100 MeV both
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Figure 2.11: Comparison of exact calculation (solid curve) and WW approximation (dashed)
for mγ′ = 5 MeV. The left (right) panel shows the calculation for a beam energy
of E0 = 100 MeV (1 GeV). For simplicity ε2 = 1 is used.

calculations di�er signi�cantly. While within the WW approximation the cross section is
strongly increasing for x ' 1, the cross section calculated in the leading order of perturbation
theory in this work sharply drops. Furthermore, the normalizations of the cross sections
di�er by a factor of around 2. However, for E0 = 1 GeV both calculations agree within a few
percent except for the region around x→ 1, which is shown in the right panel of Fig. 2.11.

Figure 2.12 shows this comparison for mγ′ = 200 MeV. Both methods are again in agree-
ment for a beam energy which is much larger than mγ′ . For experiments performed at
JLAB, beam energies larger than 2 GeV are possible, whereas at MAMI the beam energy
is below 1.6 GeV. Therefore, the settings with E0 = 1 GeV and E0 = 2 GeV correspond to
experiments which can be performed at MAMI, whereas E0 = 2 GeV to E0 = 10 GeV refer
to possible experiments at JLAB.

For beam energies of E0 ≥ 5 GeV or larger the calculation of this work as well as the
WW approximation lead to cross sections which agree for x close to 1. However, for a lower
beam energy, such as E0 = 1 GeV and E0 = 2 GeV, which are presented in the upper panel
of Fig. 2.12, the shape of the cross section as well as its normalization di�er signi�cantly.
Again, while the cross section within the WW approximation is peaking for x ' 1, the exact
calculation shows a sharp fall-o�.

Motivated by the overestimate of the cross section within the WW approximation also
for large beam energies, the origin of the deviation was investigated in this work. For
that purpose the formulas given in Ref. [140] were re-evaluated. It was found that the
assumption that the minimal momentum transfer does not depend on x and the emission
angle θγ′ [140,144,188], leads to the observed overestimate of the cross section.

Therefore, Eq. (A6) of Ref. [140] was used as lower limit of the t-integration given by

tmin = tmin

(
x, cos θγ′

)
=

(
U

2E0(1− x)

)2

.

The dependence on x and θγ′ causes that the t-integral cannot be evaluated independently
from the remaining integration over x- and cos θγ′ . Performing this more complicated nu-
merical integration, one is able to �nd an agreement within a few percent between the WW
approximation and the calculation of this work, which is presented in Fig. 2.13. Obviously,
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Figure 2.12: Comparison of exact calculation (solid curve) and WW approximation (dashed)
for mγ′ = 200 MeV. The calculation was performed for beam energies from
E0 = 1 GeV (upper left panel) to E0 = 10 GeV (lower right panel). As before,
for simplicity ε2 = 1 is used.

for E0 = 10 GeV both calculations are in very good agreement over the full considered x-
range, which can be seen from the right panel. However, for E0 = 1 GeV one still sees a large
deviation for x → 1. This e�ect can be explained by the neglect of the �nite momentum
transfer to the hadronic state within the WW approximation.

In Fig. 2.14 the ratio of the cross sections calculated with the method of this work and
within the WW approximation is plotted as a function of the beam energy at �xed x =
Eγ′/E0 = 0.9. Figure 2.14 illustrates that the deviation between the two calculations which
arises from neglecting the x- and cos θγ′ dependence of the t-integration in case of the WW
calculation. It converges to an overestimate of the cross section by the WWmethod of around
30% in the region, where one expects both calculations to be in good agreement. Taking
into account that the lower limit of the t-integral depends on x- and θγ′ , both calculations
perfectly agree for large beam energies.

This result is of high importance. In optimzing the kind of experiments proposed in
Ref. [140] one exploits the fact that nearly all of the beam energy is transferred to the
γprime. It was discussed in Sec. 2.2.2 that the calculations of this work also show the rise of
the cross section for an increasing momentum transfer onto the γ′. However, it was shown
in this work that the cross section rapidly drops for beam energies which are not su�ciently
larger than the hidden photon mass mγ′ . Therefore, one cannot use the WW approximation
for the design of γ′-search experiments in general. Nevertheless, the WW approximation can
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Figure 2.13: Comparison of the calculation in the leading order of perturbation theory (solid
curve) and WW approximation, where the dependence of the t-integration on x-
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(Rf) (V l) (P ) (Sf)

Figure 2.15: Selected diagrams contributing to the radiative corrections for elastic lepton
hadron scattering.

be applied in the kinematical range of most experiments at JLAB.

The exclusion limits obtained in beam-dump experiments [140,144] depend on the γ′ pro-
duction cross section to estimate the number of events. The calculations presented in this
section show that the estimate of the γ′ production cross section within the WW approxima-
tion as done in Refs. [140, 144] is feasible for this purpose. These beam-dump experiments
�rstly analyzed with respect to γ′ exclusion limits in Ref. [140] were operated at large beam
energies with E0 ≥ 9 GeV, for which the WW approximation is valid over a wide mass range
of the γ′. However, the incident beams of the KEK [156] and Orsay [160] experiments, which
were additionally analyzed in Ref. [144], have a much lower beam energy of only E0 = 2.5 GeV
and E0 = 1.6 GeV. As discussed above, the validity of the WW approximation in this energy
range must be considered carefully. The probed range of the hidden photon mass mγ′ is well
below 10 MeV in these experiments. Therefore, the WW approximation can be applied to
estimate the γ′ production cross section. It can be seen from the right panel of Fig. 2.11
that both calculations are in good agreement over a wide range of x. Furthermore, the γ′

cross section is slightly underestimated by the WW approximation. This can be interpreted
as treating the limit as a more conservative one.

2.4 Radiative corrections

Up to this stage all cross sections were calculated in the leading order of perturbation theory.
However, these cross sections cannot be measured directly in experiments. The experimen-
tally accessible cross sections always contain radiative corrections from higher orders of the
perturbative expansion. One can relate the leading-order cross section dσ0 with the observed
one dσexp by

dσexp = dσ0 × (1 + δ1), (2.33)

where the leading-order radiative corrections are contained in δ1.

2.4.1 Radiative corrections to elastic electron-proton scattering

In this section the leptonic leading-order corrections to elastic electron-proton (ep) scattering
are discussed, whereas the corrections from the proton side are not discussed. In Fig. 2.15
selected Feynman diagrams contributing to the radiative corrections for elastic ep-scattering
are shown. In general, these corrections can be grouped into real corrections where a (soft)
photon is emitted (diagram Rf) and virtual corrections. The virtual corrections account
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for the exchange of virtual particles such as virtual photons in the vertex (Vl) and lepton
self-energy (Sf) diagrams or virtual lepton-antilepton pairs in the vacuum-polarization (V)
diagram. The corrections on the proton side such as emission of a soft photon from the
proton are suppressed by the large proton mass compared to the corrections on the electron
lines. The proton side corrections are typically at the level of below 10% compared to the
electron-side corrections in the kinematics of interest for this work. Thus, they will not be
discussed in the following.

The correction illustrated by the Feynman diagram (Rf) in Fig. 2.15 accounts for the emis-
sion of very low-energetic soft photons which avoid detection. The corresponding amplitude
can be factorized into the amplitude at tree-level and a factor from the soft photon emission.
The cross section can be written as

dσR = dσ0 × (−e2)

∫
d3~l

(2π)32l0

(
k′µ
k′ · l −

kµ
k · l

)(
k′µ

k′ · l −
kµ

k · l

)
, (2.34)

where as before the initial- and �nal-state electrons carry the momenta k and k′, respectively,
and the four-momentum of the soft photon is l. By performing the l-integration one �nds that
Eq. (2.34) contains a logarithmic divergence in the soft-photon limit where l0 tends towards
zero. The infrared (IR) divergent integral can be made �nite by assigning a �nite, unphysical
mass µ to the soft photon. One �nds for the divergent part in the limit Q2 = (k−k′)2 � m2

dσR ' dσ0 ×
α

π
ln

(
Q2

µ2

)
ln

(
Q2

m2

)
+O(α2), (2.35)

where m is the electron mass. Nature does not depend on the mass scale µ in the logarithm.

The electron-vertex correction (Vl) for on-shell leptons can be parametrized by

ū(k′)Γµu(k) = ū(k′)
{(

1 + F (Q2)
)
γµ +G(Q2)iσµν

qν
2m

}
u(k), (2.36)

where analogously to the ppγ-vertex the form factors F and G are scalar functions of Q2. One
obtains analytic expressions for the form factors by solving the corresponding loop integral
and regularizing the ultraviolet (UV) divergence for l → ∞. At Q2 = 0 the form factor
G yields the leading-order correction to the anomalous magnetic moment of a lepton. The
cross section accounting for the leading-order vertex correction in the limit Q2 � m2 can be
written as

dσvertex = dσ0 × (1 + F (Q2)).

However, the form factor F still contains an IR divergence. The divergent part can be written
as

F (Q2 � m2) ' −α
π

ln

(
Q2

m2

)
ln

(
Q2

µ2

)
+O(α2).

The measured cross section dσexp always contains both the virtual and real corrections,

dσexp = dσR + dσvirtual.

The divergent part in the limit Q2 � m2 reads dσexp = dσvertex + dσR. Since detectors can
only detect a photon with a minimal energy El,min one has to evaluate dσR at this minimal
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value. This calculation yields

dσexp = dσ0 ×
{

1− α

π
ln

(
Q2

m2

)
ln

(
Q2

µ2

)
+
α

π
ln

(
E2
l,min

µ2

)
ln

(
Q2

m2

)
+O(α2)

}

= dσ0 ×
{

1− α

π
ln

(
Q2

m2

)
ln

(
Q2

E2
l,min

)
+O(α2)

}
. (2.37)

Obviously, this expression does not depend on the unphysical quantity µ anymore and the
IR divergence is canceled.
The Feynman diagram (P) of Fig. 2.15 indicates that the virtual-photon propagator is

a�ected by this contribution. The actual calculation of this term will not be demonstrated
here. Qualitatively, the vacuum polarization correction can be understood as screening of the
electric charge by virtual e+e− pairs. After the regularization of the arising UV divergence
and renormalization, the e�ect of the vacuum polarization can be written as a modi�cation
of the electromagnetic coupling constant.
The calculation of the lepton self-energy (diagram Sf) will not be studied here in detail.

One can show that this correction does not contribute for on-shell leptons after renormaliza-
tion. Hence, these diagrams do not lead to a correction for the elastic scattering process.
In this work the leading-order radiative corrections calculated in Ref. [175] are used. The

contribution originating from vacuum polarization (P) is found as

δvac =
α

π

[(
v2 − 8

3
+ v

3− v2

2
ln

(
v + 1

v − 1

))]
, (2.38)

where v2 = 1 + 4m2
l/Q2, and in the limit Q2 →∞

δvac ∼=
α

π

[
−5

3
+ ln

(
Q2

m2

)]
. (2.39)

The vertex correction (see diagram (Vl)) in the ultrarelativistic limit Q2 � m2 →∞ reads

δvertex ∼=
α

π

[
3

2
ln

(
Q2

m2

)
− 2− 1

2
ln2

(
Q2

m2

)
+
π

6

]
. (2.40)

The soft photon correction in the limit Q2 � m2 is found as

δR ∼=
α

π

[
ln

(
(∆Es)

2

E0Ee′

)(
ln

(
Q2

m2

)
− 1

)

− 1

2
ln2

(
E0

Ee′

)
+

1

2
ln2

(
Q2

m2

)
− π2

3
+ Sp

(
cos2 θe

2

)]
,

(2.41)

where ∆Es = E0/E′ele × ∆E′, ∆E′ =
(
E′ele − Ee′

)
and E′ele is the energy of an electron

scattered elastically by an angle θe in the lab frame. In addition, Sp(x) denotes the Spence
function.
The actual value of ∆Es has to be determined from the experiment, in particular from

the detector properties. The cut-o� energy ∆E′ =
(
E′ele − Ee′

)
is the maximum di�erence

between the energies of an elastically scattered electron and of the measured �nal state
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Figure 2.16: Selected diagrams contributing to the radiative corrections for the process ep→
epγ. To distinguish the two real photon the photon of the reaction ep→ epV is
labeled by q′. The label �f� refers to the fact that the photon with momentum
q′ is emitted from the �nal state.

electron. An energy di�erence larger than ∆E′ leads to a change of the cross section dσ0.
Hence, corrections with an energy di�erence larger than ∆E′ are absorbed in the radiative
tail. On the one hand, ∆E′ must be larger than the resolution of the detector to ensure that
no detectable events are excluded. On the other hand, the cut-o� energy must be below
the pion threshold where the procedure breaks down. A consistency check for the chosen
value of ∆E′ can be performed by plotting the ratio of the experimental cross section dσexp

and (1 + δ1) as a function of ∆E′. For a valid choice of ∆E′ the ratio shows a plateau
behavior. A convenient and mostly appropriate choice resulting from these arguments is
∆E′ = 0.01E0 [175,196]. This value was used for the calculation of the radiative corrections.

However, the quantity ln
(

(∆Es)2

E0 Ee′

)
in Eq. (2.41) reveals, that δR tends towards −∞ for

∆Es → 0. For such small values of the cut-o� energy ∆E′ the interpretation of δR as
emission of a single, very low-energetic photon is not correct anymore. It is discussed in
Refs. [183,197] that indeed numerous low-energetic photons are radiated. Hence, one has to
perform the calculation with the full set of diagrams describing the emission of an arbitrary
number of soft photons. It was shown in Ref. [197] that the anomaly cancelation discussed
above occurs in each order. By iteration one �nds [197]

1 + δ +
δ2

2
+ . . . = eδ.

Setting δ = δ1 leads to the behavior eδ1 → 0 for ∆Es → 0. Of course, one does not obtain
the radiative corrections to all orders by this procedure. Instead, one �nds an estimate for
the uncertainty of the radiative corrections. In Ref. [175] the uncertainty for the second
order δ2 = δ2

1/2 is found to be around 2% for the investigated kinematics.

2.4.2 Radiative corrections to the Bethe�Heitler process

Also for the reaction e(Z, A)→ e(Z, A)V radiative corrections need to be applied to obtain
realistic cross sections which can be related with experimental count rates. For the purpose
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of studying the dependencies of the signal process e(Z, A) → e(Z, A)γ′ qualitatively it is
not necessary to apply these corrections. The reason is that the cross section is not altered
signi�cantly. Although the normalizations of the leading-order and corrected cross sections
will typically di�er within the range of around 10%�20%, the shape of the cross section is
not altered. Hence, in this case the corrections can be neglected.

The radiative corrections cannot be neglected of course for the case that a signal from
the invisible hidden photon production is searched. In this case it is crucial to calculate the
signal and background cross section as accurately as possible.

The corrections to the reaction e(Z, A)→ e(Z, A)V can be divided into virtual and soft-
photon contributions as done for the elastic ep-scattering. The Feynman diagrams (R1f) and
(R2f) of Fig. 2.16 represent two selected amplitudes contributing to the soft-photon correc-
tions. The remaining diagrams are examples for contributions to the virtual corrections. As
in the previous section only the lepton side corrections are discussed.

The virtual radiative corrections consist of the contributions from the vertex corrections
(diagrams (V1f)�(V3f)), vacuum polarization (Pf), and the lepton self-energy ((S1f), (S2f)).
To distinguish the two real photons, the photon of the reaction ep → epγ is labeled by q′.
The label �f� refers to the fact that the photon with momentum q′ is emitted from the �nal
state in the shown diagrams. The actual calculation of the corrections is very similar to
the elastic ep-scattering process since the building blocks of the one-loop amplitudes are the
same. The calculation is presented in detail in Ref. [175].

The analytical calculation of the vertex correction is very involved and will not be discussed
here in detail. Therefore, in Ref. [175] the UV-divergent parts are evaluated analytically,
whereas the �nite parts are determined only numerically. However, the resulting correction
is logarithmically divergent in the infrared limit l→ 0.

As discussed for ep-scattering, the diagram (S2f) of Fig. 2.16 where the loop is on the
�nal electron line does not contribute. The corresponding contribution is absorbed by renor-
malization. Hence, only diagrams with a loop on an internal line as (S1f) lead to a �nite
correction. Note that also these contributions are logarithmically infrared divergent.

The correction for the vacuum polarization is found to be of the same structure as for
elastic ep-scattering. For the correction originating from lepton side diagrams as (Pf) one
has to replace the momentum transfer Q2 in Eq. (2.39) by Q2

t = −(p′ − p)2.

The calculation of the real soft-photon corrections is done in a similar way as in the previous
section. The diagrams (R1f) and (R2f) of Fig. 2.16 show examples of such contributions.
These two diagrams di�er in the way that in one of them (R1f) the soft photon is emitted
from an external electron line whereas it is emitted from an internal line in the other one
(R2f). Since the amplitudes of the types (R1f) and (R2f) are proportional to 1/l and are
�nite in the soft photon limit l → 0 only diagrams where the soft photon is coupled to the
external electron line lead to a logarithmic divergence. As in the case of elastic scattering
these infrared divergent term and the ones originating from the virtual corrections cancel
each other [175].

The �nite part of the real radiative corrections is given by Eq. (2.41) where the lab frame
quantities (E0, Ee′ , θe) have to be replaced by quantities of a corresponding center-of-mass
frame. If the �nal state electron and the photon are detected in an experiment, this frame is
chosen as the one where ~p+~q−~q ′ = ~0. In an experiment searching for invisible hidden photon
decays one would detect the electron and the hadron. Thus, the frame with ~p + ~q − ~p ′ = ~0
needs to be chosen.
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2.5 Summary and conclusions of the section

In this section the process of bremsstrahlung emission of a hidden photon induced by lepton-
hadron scattering was discussed. This analysis was performed under the aspects to study
the signal process in general, and in particular from the point of view, to search for invisible
hidden photons. For this purpose, the dynamics of the process was studied qualitatively at
the level of the amplitudes, as derived from the Feynman diagrams of the process. The phase
space was investigated in order to isolate regions in which the signal cross section is largest,
and in addition, the QED background from the Bethe�Heitler process is small. Furthermore,
a study of invisible hidden photon signals, e.g., from displaced decays or decays to particles,
which cannot be detected, requires an accurate understanding of the background processes.
To �nd quantitative results, the cross section integrated over the allowed phase space was

calculated. For this analysis, the di�erential cross section of the process was computed in
di�erent ways, which leads to results in excellent agreement for the integrated cross sections.
It was found that the signal cross section is dominated by the region of phase space where
nearly all of the beam energy is carried by the hidden photon and its emission occurs into
the forward or beam direction.
Based on these calculations, the applicability of the Weizsäcker�Williams approximation to

evaluate cross sections relevant for low-energy �xed-target experiments searching for hidden
photons was investigated. It was found that for beam energies above 5 GeV the shape of
the cross section is well reproduced within the WW approximation, whereas for lower beam
energies, it di�ers signi�cantly. While from the WW approximation a steep rise of the cross
section for x→ 1 is predicted, it is found in the cross section calculations of this work that
the cross section sharply drops. This result has a great impact for the actual con�guration
of experiments, since current experiments are designed such that the cross section for the
emission of a hidden photon is largest, which is in the region x→ 1. However, the formulas
for the WW approximation found in Ref. [140] overestimate the cross section calculated in
the leading order of QED by 30% or more, also for large beam energies. This is not an
issue of the WW approximation itself but results from a too simplistic treatment of the
hadronic current. By a more sophisticated treatment, taking the angular dependence of the
momentum transfer carried by the virtual photon into account, the calculation in the leading
order of QED and within the WW approximation agree within a few percent also for x→ 1,
as long as the beam energy is su�ciently large.
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Chapter 3

Theoretical Framework for Hidden Photon

Searches at Electron Scattering Fixed-Target

Experiments

3.1 Introduction to this chapter

The phenomenology of the production of a hidden photon γ′ via Bremsstrahlung induced by
electron scattering o� a �xed target with the subsequent γ′ decay into a lepton pair,

e+ (Z,A)→ e+ (Z,A) + l+l−,

is discussed in this chapter. The γ′ emission in �xed-target experiments was studied in the
previous chapter. These �ndings are applied to investigate the process extended by the decay
of the hidden photon into a lepton pair. This process is extensively studied in experiments
which makes a qualitative as well as quantitative understanding of the cross section to high
accuracy crucial.

For this purpose, the cross section is derived from the contributing Feynman diagrams in
Secs. 3.2 and 3.3. In Sec. 3.3.3, the cross section is decomposed into contributions, which
can be identi�ed with groups of Feynman diagrams allowing one to discriminate between the
kinematical behavior of the signal and the background. In order to verify the simulation of
the considered process, in Sec. 3.4 the integrated cross section is calculated and compared
to data taken at MAMI. This allows for the calculation of the discovery potential of selected
experiments, where setups for MAMI (Sec. 3.5.2), MESA (Sec. 3.5.3), DarkLight (Sec. 3.5.4),
and HPS (Sec. 3.5.5) are investigated. Finally, the �ndings of this chapter are compared to
the existing limits presented in Sec. 1.3.4.

In this chapter the following notation is used: The four-momenta of the initial and recoiled
electrons in the Feynman diagrams of Fig. 3.1 are denoted by k = (E0, ~k) and k′ = (E′e, ~k

′);
the four-momenta of the initial and �nal target state by p = (Ep, ~p) and p′ = (E′p, ~p

′),

and the lepton pair four-momenta by l− = (E−, ~l−) and l+ = (E+, ~l+), for the lepton and
antilepton, respectively. The initial and �nal electron spins are sk and s′k; the spins of the
initial and �nal proton are sp and s

′
p, and the spins of the created lepton and antilepton are

s− and s+. Furthermore, the conventions of Bjorken and Drell [198] are followed.

3.2 Amplitude of the process

One obtains the direct amplitude of the process in which the leptons are initially treated
as distinguishable particles from the Feynman diagrams of Fig. 3.1. In order to distinguish
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e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)
e+(l+)

V (q′) e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)
e+(l+)

V (q′)

timelike (hidden) photon emission from the lepton beam (TL)

e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)

e+(l+)
V (q)

e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)

e+(l+)
V (q)

spacelike (hidden) photon exchange (SL)

e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)

e+(l+)
V (q′)

e−(k) e−(k′)

Z(p) Z(p′)

e−(l−)

e+(l+)V (q′)

timelike (hidden) photon emission from the hadronic state (VVCS)

Figure 3.1: Direct (D) tree level Feynman diagrams contributing to the amplitude of the
process e(Z, A)→ e(Z, A)l+l−. Upper panel: exchange of the timelike boson V
and a spacelike γ (TL). Central panel: the spacelike boson V and a spacelike γ
(SL). Lower panel: doubly virtual Compton scattering (VVCS)
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e−(k) e−(l−)

p(p) p(p′)

e−(k′)
e+(l+)

V (q′) e−(k) e−(l−)

Z(p) Z(p′)

e−(k′)
e+(l+)

V (q′)

timelike (hidden) photon emission from the lepton beam (TL)

e−(k) e−(l−)

Z(p) Z(p′)

e−(k′)

e+(l+)
V (q)

e−(k) e−(l−)

Z(p) Z(p′)

e−(k′)

e+(l+)
V (q)

spacelike (hidden) photon exchange (SL)

e−(k) e−(l−)

Z(p) Z(p′)

e−(k′)

e+(l+)
V (q′)

e−(k) e−(l−)

Z(p) Z(p′)

e−(k′)

e+(l+)V (q′)

timelike (hidden) photon emission from the hadronic state (VVCS)

Figure 3.2: Exchanged (X) tree level Feynman diagrams contributing to the amplitude of the
process e(Z, A) → e(Z, A)l+l−. Same as in Fig. 3.1, but the �nal-state beam
lepton e−(k′) and the negatively charged pair lepton (e−(l−)) are exchanged.
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between the contributions from the individually gauge invariant sets of diagrams, they are
denoted by the character of the exchanged vector boson V . As in Chapter 2, V either denotes
the hidden photon or the photon. For this reason the amplitudes from the set of diagrams
in the upper panel of Fig. 3.1 where the V is timelike are referred to as �TL� and for the
center as �SL� due to the spacelike V . In the lower panel, a timelike V is radiated o� the
hadronic state, which is known as doubly virtual Compton scattering. The corresponding
amplitude is labeled by �VVCS.� The study will be restricted to the Born diagrams of the
VVCS contribution drawn in the lower panel of Fig. 3.1.

The signal cross section is described by the Feynman diagrams of Fig. 3.1 in which the
boson V is timelike. For the production from a heavy nucleus, the radiation o� the target
is suppressed by its large mass and the typical choice of kinematics where most of the beam
energy is transferred to the lepton pair. Therefore, the VVCS contribution is suppressed
by several orders of magnitude and only the TL diagrams contribute. The emission of a
spacelike hidden photon can be safely neglected since the γ′ propagator in the central panel
of Fig. 3.1 can be written as

−gαβ
q2 −m2

γ′
.

Due to the spacelike momentum transfer q2 < 0 for scattering processes, the denominator
always implies a suppression of this contribution. The propagator in the case of a timelike
γ′ leads to a peak in the signal and a cancelation of a factor ε2 occurs. It was checked
numerically that the contribution from the interference of the SL amplitude with the other
amplitudes does not alter the cross section by more than 0.1% - 1%, which is less than the
experimental and numerical uncertainty.

It was already discussed in Sec. 2.1.3 that the VVCS contribution is not suppressed that
strongly for a proton target compared to a heavy-nucleus target. Therefore, in the case
of a proton target also the VVCS diagrams are included into the amplitude of the signal
cross section. In this thesis, experiments with a proton target are considered only for beam
energies up to 100 MeV. Hence, the VVCS contribution is restricted to the nucleon Born
amplitude below the pion threshold, as discussed in Sec. 2.1.3. This approximation is valid at
the level of better than 5%. However, for beam energies above 140 MeV a larger uncertainty
is expected.

Hence, the isolated γ′ production process is obtained

MTL
γ′ =

i e4 ε2

(p′ − p)2

−gαβ + q′αq′β/m2
γ′

q′2 −m2
γ′ + imγ′ Γγ′

JµN Iµα j
pair
β , (3.1)

and

MVVCS
γ′ =

−i e4 ε2

q2

−gαβ + q′αq′β/m2
γ′

q′2 −m2
γ′ + imγ′ Γγ′

jµbeamHµα j
pair
β , (3.2)

where Γγ′ denotes the total γ
′ decay width given in Eq. (1.34). The leptonic and hadronic
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tensors are given by

Iµα = ue(k
′, s′k)

(
γµ

/k − q/′ +m

(k − q′)2 −m2
γα

+ γα
/k′ + q/′ +m

(k′ + q′)2 −m2
γµ

)
ue(k, sk),

(3.3)

and

Hµα = up(p
′, s′p)

(
Γµ(qt + q′)

/p− q/′ +M

(p− q′)2 −M2
Γα(−q′)

+ Γα(−q′) /p′ + q/′ +M

(p′ + q′)2 −M2
Γµ(qt + q′)

)
up(p, sp),

(3.4)

with m (M) denoting the mass of the electron (hadron). The leptonic currents read

jpairβ = ul(l−, s−) γβ vl(l+, s+),

jbeamβ = ue(k
′, s′k) γβ ue(k, sk).

In the case of a proton target the hadronic current JµN is parametrized by

JµN = uN (p′, s′p) Γµ uN (p, sp),

with Γµ(Q2
t ) ≡ F1(Q2

t ) γµ + F2(Q2
t ) i σµνq

ν
t /2M using the Dirac (F1) and Pauli (F2) form

factors and Q2
t = −(p′ − p)2 > 0. Furthermore, the form factors F1 and F2 are parametrized

by a linear combination of the electric and magnetic Sachs form factors given in Eq. (1.19).
A standard dipole �t is used in the spacelike as well as timelike regions for low momentum
transfer

∣∣Q2
t

∣∣ . 1 GeV2, which is the region of interest in this work. For a heavy nucleus the
hadronic current can be written as

JµN = Z · Fel(Qt) · (p+ p′)µ,

where

Fel(Qt) = 3/(QtR)3 · (sin (QtR)−QtR cos (QtR)) ,

is the nuclear charge form factor with R = 1.21 fm ·A 1
3 [184]. This parametrization accounts

only for the coherent scattering of the nucleus. Of course, the parametrization of Ref. [140]
can be applied. Since the form factor enters the cross section only quadratically one can
simply replace

F 2
el →W el

2 +W inel
2 ,

where the structure functions W el
2 and W inel

2 are given in Eq. (2.24). For the experimental
setups at MAMI (Sec. 3.4.3) the resulting uncertainty due to the di�erent parametrizations
and the inelastic contributions was found to be less than 5%.

The amplitude of the QED background is given by the coherent sum over all diagrams
shown in Fig. 3.1 with a corresponding virtual photon V = γ∗ in the intermediate state,
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where each amplitude reads

MTL
γ∗ =

i e4

(p′ − p)2

−gαβ
q′2

JµN Iµα j
pair
β , (3.5)

MSL
γ∗ =

i e4

(p′ − p)2

−gαβ
q2

JµN Ĩµα jbeamβ , (3.6)

MVCS
γ∗ =

−i e4

q2

−gαβ
q′2

jµbeamHµα j
pair
β , (3.7)

with the leptonic tensor

Ĩµα = ul(l−, s−)

(
γµ

q/− l/+ +ml

(q − l+)2 −m2
l

γα + γα
l/− − q/+ml

(l− − q)2 −m2
l

γµ

)
vl(l+, s+),

where ml denotes the mass of the leptons from the pair.
In the case of identical species of the beam lepton and of the lepton pair, besides the direct

contribution denoted by D one also has to account for the exchange term (X). The total
amplitude must be antisymmetric under the interchange of these two �nal-state leptons.
Thus, the structure of the exchange term is obtained by interchanging the two negatively
charged leptons. The Feynman diagrams of the exchange term X are shown in Fig. 3.2.
The full amplitude of the process is found as

Mγ′+γ∗ =
(
MTL

D, γ′ +MTL
D, γ∗ +MSL

D, γ∗
)
−
(
MTL

X, γ′ +MTL
X, γ∗ +MSL

X, γ∗
)
, (3.8)

for a heavy nucleus target and

Mγ′+γ∗ =
(
MTL

D, γ′ +MTL
D, γ∗ +MSL

D, γ∗ +MVCS
D, γ∗

)
−
(
MTL

X, γ′ +MTL
X, γ∗ +MSL

X, γ∗ +MVCS
X, γ∗

)
,

(3.9)

for a proton target.
For the further discussion, it is convenient to assign

Mγ∗ = MD, γ∗ +MX, γ∗ ,

Mγ′ = MD, γ′ +MX, γ′ ,

where each of these amplitudes contains all of the SL, TL, and VVCS amplitudes which
contribute depending on the kind of target state.

3.3 Cross sections in terms of recursive phase space and
detector coordinates

As in the case of the hidden photon production process e(Z, A) → e(Z, A)γ′ discussed in
Chapter 2, the cross section of the process e(Z,A) → e(Z,A)l+l− will be calculated within
two di�erent approaches. As a �rst step, the cross section is calculated in the �recursive phase
space� approach in which the phase spaced is factorized into three subprocesses. Further-
more, as a second step the cross section is expressed in terms of detector coordinates, which
parametrize the geometric acceptance of the detectors used in the investigated experimental
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setups. Since the �rst method is commonly applied to calculate cross sections, it will mostly
serve as a cross check of the results obtained in the second approach. Expressing the cross
section in terms of detector coordinates allows one to perform a highly e�cient numerical
study of the process. Only the part of the phase space covered by the experimental accep-
tance needs to be considered. This clear discrimination between geometrically allowed and
forbidden parts of phase space is not always possible within the �rst approach.
The calculation of the di�erential cross section for the process e(Z,A) → e(Z,A)l+l− is

very similar to the calculation of the hidden photon bremsstrahlung cross section presented
in Sec. 2.1.2. Starting point is the general cross section of a 2→ 4 particle reaction:

dσ =
1

4
√

(p · k)2 −m2M2

d3~k ′

(2π)32Ek′

d3~p ′

(2π)32Ep′

d3~l+
(2π)32E+

d3~l−
(2π)32E−

× (2π)4 δ(4)
(
k + p− k′ − p′ − l+ − l−

)
|M|2.

(3.10)

3.3.1 Cross section expressed within the recursive phase space approach

The phase space of the basic process e(Z,A) → e(Z,A)l+l− is decomposed into individual
subprocesses within the recursive phase space approach. As a �rst step, the creation of
the lepton pair from a vector boson V with momentum q′, which is either the photon γ∗

or the hidden photon γ′, is separated. This reaction is evaluated in the V -rest frame (∗∗).
Furthermore, as in Sec. 2.1.2, the leptonic part related to the lepton beam is separated from
the hadronic reaction γ∗p → p′V . The latter one is evaluated in the γ∗p-rest frame, where
one has as before

(~q + ~p)∗ =
(
~k − ~k ′ + ~p

)∗
= ~0.

Hence, the cross section reads

dσ =
1

4
√

(p · k)2 −m2M2

(
d3~k ′

(2π)32Ek′

)L(
d3~p ′

(2π)32Ep′

)∗

×
(

d3 ~l+
(2π)32E+

d3~l−
(2π)32E−

(2π)4 δ(4)
(
k + p− k′ − p′ − l+ − l−

))∗∗
|M|2.

(3.11)

In the V -rest frame the three-momenta satisfy the relation

(~q ′)∗∗ = (~l+ +~l−) = ~0,

with q′ = l+ + l− = k + p − k′ − p′, and |~l |+ = |~l |− and E+ = E−. Since the invariant
mass of the lepton pair q′2 = m2

ll is commonly reconstructed in experiments, this quantity
is ideally suited as a frame independent variable of the process. In this frame one has
q′0 = E+ + E− = mll. Thus, the energy of the leptons can be written as

E∗∗± =
mll

2
,

and

|~l± |∗∗ =
λ1/2

(
m2
ll, m

2
l , m

2
l

)
2mll

=

√
m2
ll − 4m2

l

2
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is the modulus of the three-momenta of the leptons from the pair. Plugging these expressions
into the term in the parentheses evaluated in the V -rest frame in Eq. (3.11) yields(

. . .

)∗∗
=

(
|~l+ |2
4E2

+

E+

|~l+ |
dE+ dΩ+δ (mll − 2E+)

)∗∗

=

(
1

4

|~l+ |
E+

dE+ dΩ+
1

2
δ

(
E+ −

1

2
mll

))∗∗

=
1

8

√
m2
ll − 4m2

l

mll
dΩ∗∗+ .

Equation (3.11) can be rewritten as

dσ =
1

4|~k |LM
1

(2π)8

(
d3~k ′

2Ek′

)L(
d3~p ′

2Ep′

)∗
1

8

√
m2
ll − 4m2

l

mll
dΩ∗∗+ |M|2. (3.12)

As before in Sec. 2.1.2, the hadronic subprocess can be conveniently calculated in the rest
frame of the combined target and initial virtual photon state with momentum q = k−k′. In
this frame one has (~q + ~p)∗ = (~q ′ + ~p ′)∗ = ~0. The center-of-mass energy of the subprocess is
expressed by the corresponding Mandelstam variable

s = (q + p)2.

The invariant mass of the lepton pair results to

m2
ll = q′2 =

(
q + p− p′

)2
= (q + p)2 +M2 − 2 (q + p) · p′

= s+M2 − 2
(
q0 + p0

)∗︸ ︷︷ ︸
=
√
s

(p′0)∗ + 2 (~q + ~p)∗︸ ︷︷ ︸
=~0

(~p ′)∗

= s+M2 − 2
√
sE∗p′ ,

Thus, the energy of the scattered hadron reads

E∗p′ =
s+M2 −m2

ll

2
√
s

.

The corresponding modulus of the three-momentum is

|~p ′|∗ =
λ1/2

(
s, M2, m2

ll

)
2
√
s

.

It is convenient, to integrate over quantities associated with the emitted (hidden) photon
instead of those of the �nal-state hadron. Therefore, the integration measure has to be
transformed according to

dmll

d|~p ′| =
d

d|~p ′|

√
s+M2 − 2

√
s
√

(|~p ′|∗)2 +M2

=
−2
√
s

2mll

|~p ′|∗
E∗p′

⇒ d|~p ′|∗ = −mll√
s

E∗p′

|~p ′|∗dmll,
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and

dΩ∗p′ = dΦ∗ d cos θ∗p′ = −dΦ∗ d cos (θ∗p′ − π) = −dΦ∗ d cos θ∗q′ = −dΩ∗q′ .

Due to dΩ∗
p′/dmll = 0 and d|~p ′|∗/dΩ∗

q′ = 0 one �nds(
d3~p ′

2Ep′

)∗
=

( |~p ′|2 d|~p ′| dΩp′

2Ep′

)∗
=

1

2
|~p ′|∗ |~p

′|∗
E∗p′

mll√
s

E∗p′

|~p ′|∗ dmll dΩ∗q′

=
1

2
|~p ′|∗mll√

s
dmll dΩ∗q′ .

Inserting this into Eq. (3.12), one �nally obtains

dσ

dELe′ dΩL
e′ dmll dΩ∗q′dΩ∗∗+

=
|~k ′|L

128|~k |LM
1

(2π)8

|~p ′|∗
√
m2
ll − 4m2

l√
s

|M|2. (3.13)

To evaluate the matrix element M, all four-vectors need to be obtained in the lab frame.
Therefore, q′ and p′ are evaluated in the (q + p)-rest frame (∗) and are transformed along
(q + p)L into the Lab frame. Furthermore, the four-vectors l± �rst are determined in the
q′-rest frame (∗∗) and subsequently are boosted and rotated along q′L into the lab frame.

3.3.2 Cross section expressed by detector coordinates

As discussed, it can be helpful to evaluate the cross section in terms of the quantities which
are directly measured in the experiments.
It was described in Sec. 1.3.4.2 that in the considered type of experiments a search for a

resonance from an intermediate particle above the smooth QED background is performed.
For this purpose, the cross section of the process e(Z,A)→ e(Z,A)l+l− is evaluated in terms
of lab frame variables of the detected particles. If no other particles are detected, which is
usually the case, the quantities associated with these unobserved particles must be integrated
out. Hence, it is straightforward to calculate the cross section depending on the invariant
mass m2

ll = q′2 = (l+ + l−)2 and on the other measured quantities corresponding to the four-
momenta of the leptons of the pair. Furthermore, it is convenient to parametrize the three-
momentum vectors of the detected particles in terms of detector coordinates. This allows one
to restrict the integration limits to the geometrical acceptances of the used detectors. The
parametrization in detector coordinates is derived in Appendix B.2. Since the four-momenta
of the lepton pair are over-constrained by the momentum vectors and the invariant mass,
the three-momentum norm of the created electron |~l− | will be expressed by q′2 and ~l+.
A parametrization of the 8-fold di�erential cross section containing most of the directly

measured quantities is

d8σ

dΩe′ d|~l+ | dΩ+ dΩ−dq′2
. (3.14)

If not explicitly mentioned, all quantities are chosen to be in the lab frame. In this partic-
ular kinematical setting the scattered hadron is not detected. Consequently, the associated
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three-momentum will be integrated out by means of the Dirac δ function. Moreover, the
scattered electron is not detected in most experiments. Thus, energy conservation is used to
eliminate the three-momentum modulus of the scattered electron and the cross section needs
be integrated over its solid angle. However, if the scattered electron is detected as well, the
integration has to be performed over the corresponding experimental acceptances.
By inserting an identity into Eq. (3.11)

1 =

∫
d4q′ δ(4)

(
q′ − l+ − l−

)
,

the cross section in terms of the favored quantities can be easily found. This corresponds
to a factorization of the phase space into a γ′ production and a decay part. Since no
approximations or assumptions need to be applied here, this factorization is valid in general.
Following Eq. (3.10), one �nds

dσ =
1

4
√

(k · p)2 −m2M2

d3~k ′

(2π)3 2E′e

d3~p ′

(2π)3 2E′p

d3~q ′

(2π)3 2Eq′
(2π)4 δ(4)

(
k + p− k′ − p′ − q′

)
× 2Eq′ dEq′

2π︸ ︷︷ ︸
dq′ 2/(2π)

d3 ~l−
(2π)3 2E−

d3 ~l+
(2π)3 2E+

(2π)4 δ(4)
(
q′ − l+ − l−

)
|M|2

The beam axis corresponding to the momentum of the incident electron is chosen to be

parallel to the z-axis and the target is at rest
(
~p = ~0

)
. Since the detectors are commonly

centered in the same plane as the incident beam, no further conditions for the kinematical
quantities will be used in the following. Note that the derivation of the cross section and the
formula itself does not depend on the particular choice of quantities in the lab frame, but
only on scalar products of three-momenta. The δ functions constrain the three-momenta

~q = ~l− + ~l+ and ~p ′ = ~k − ~k ′ − ~q ′,

which leads to

dσ =
1

128 |~k |M
1

(2π)8

1

Ep′Ek′Eq′E+E−
d3~k ′ δ

(
E0 +M − Ee′ − Ep′ − Eq′

)
× d3 ~l+ d

3 ~l− dq′ 2 δ
(
Eq′ − E+ − E−

)
|M|2

=
1

128 |~k |M
1

(2π)8

|~k ′|2|~l+ |2|~l− |2
Ep′Ek′Eq′E+E−

d|~k ′| dΩe′ δ
(
E0 +M − Ee′ − Ep′ − Eq′

)︸ ︷︷ ︸
=:δ1

× d|~l+ | dΩ+ d|~l− | dΩ− dq′ 2 δ
(
Eq′ − E+ − E−

)︸ ︷︷ ︸
=:δ2

|M|2. (3.15)

The remaining two delta functions can be used to compute the zero-components of the four-
momenta k′ and l− and thus to perform the integration over their three-momentum moduli.
Therefore, expressions for |~k ′| and |~l− | in terms of the remaining quantities have to be found.
To express |~l− | in terms of the non-constrained variables, the equation

q′2 = (l+ + l−)2
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has to be solved, giving rise to

q′2 = 2m2
l + 2E+E− − 2|~l− |~l+ · l̂−

⇒ 0 = −q′2 + 2m2
l + 2E+E− − 2|~l− |~l+ · l̂−

⇔ 0 =

(
−q
′2

2
+m2

l

)
︸ ︷︷ ︸

=:A

+E+E− − |~l− |. ~l+ · l̂−︸ ︷︷ ︸
=:B

. (3.16)

This equation can be rewritten as a quadratic equation for |~l− |, which can be solved easily.
After adding (B|~l− | − A) on both sides of Eq. (3.16), squaring the result and using E2

− =

|~l− |2 +m2
l one �nds the two solutions

B2|~l− |2 +A2 − 2AB|~l− | = E2
+|~l− |2 + E2

+m
2
l

⇔ 0 = |~l− |2 −
2AB

B2 − E2
+

|~l− |+
A2 − E2

+m
2
l

B2 − E2
+

⇒ |~l− |1,2 =
AB

B2 − E2
+

±
√

(AE+)2 + (E+mlB)2 − (E2
+ml)2

(B2 − E2
+)2

. (3.17)

As in Sec. 2.1.2, the physical solution can be determined by considering the particles as
massless. In this case the calculation simpli�es to

q′2 = l2+ + l2−︸ ︷︷ ︸
=0

+2|~l− ||~l+ |(1− l̂+ · l̂−)

⇔ |~l− | =
q′2

2|~l+ |(1− l̂+ · l̂−)
. (3.18)

Comparing Eqs. (3.17) and (3.18) (numerically), one �nds that the solution corresponding
to the physical one is

|~l− | =
AB

B2 − E2
+

+

√
(AE+)2 + (E+mlB)2 − (E2

+ml)2

(B2 − E2
+)2

, (3.19)

with A = − q′2

2 +m2 and B = ~l+ · l̂−.
The calculation of |~k ′| is performed in a similar way. Since it is not necessary that the

four-vectors l+ and l− appear explicitly in the following, the sum q′2 = (l+ + l−)2 is used,
where |~l− | is symbolic for the result of Eq. (3.19). Starting again from four-momentum
conservation one �nds

p′2 = M2 = (p+ k − k′ − q′)2

⇔M2 = (p+ k − q′)2 + k′2︸︷︷︸
m2

−2(p+ k − q′) · k′

⇔ 0 = (p+ k − q′)2 +m2 −M2︸ ︷︷ ︸
=:D

− 2(E0 +M − Eq′)︸ ︷︷ ︸
=:F

Ee′ + 2(~k − ~q ′) · k̂′︸ ︷︷ ︸
=:G

|~k ′|
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An analogous calculation as for |~l− | leads to

|~k ′| = − DG

G2 − F 2
+

√
(mFG)2 + (DF )2 − (mF 2)2

(G2 − F 2)2
. (3.20)

To �nd an appropriate form of the argument in the δ function, one has to apply the trans-
formation

δ(f(xo)) =

∣∣∣∣∣ 1
∂f
∂x (x0)

∣∣∣∣∣ · δ(x0).

Hence, one obtains

∂δ1

∂|~k ′|
=

∂

∂|~k ′|
(
E0 +M − Ee′ − Ep′ − Eq′

)
=

∂

∂|~k ′|

(
−
√
|~k ′|2 +m2 −

√(
~k − ~q ′

)2
+ |~k ′|2 − 2|~k ′| k̂′ ·

(
~k − ~q ′

)
+M2

)

= −|
~k ′|
Ek′
−
|~k ′| − k̂′ ·

(
~k − ~q ′

)
Ep′

(3.21)

and

∂δ2

∂|~l− |
=

∂

∂|~l− |
(
Eq′ − E+ − E−

)
=

∂

∂|~l− |

(√
|~l+ |2 + |~l− |2 + 2|~l− |~l+ · l̂− + q′2 − E+ −

√
|~l− |2 +m2

l

)
= −|

~l− |
E−

+
|~l− |+ ~l+ · l̂−

Eq′
. (3.22)

Inserting the quantities of Eqs. (3.19) to (3.22) into Eq. (3.15) leads to the 8-fold di�erential
cross section

dσ

d|~l+ | dΩ+ dΩ− dΩe′ dq′ 2
=

1

128 |~k |M
1

(2π)8

|~k ′|2|~l+ |2|~l− |2
Ep′Ek′Eq′E+E−

(∣∣∣∣∣ ∂δ1

∂|~k ′|

∣∣∣∣∣
∣∣∣∣∣ ∂δ2

∂|~l− |

∣∣∣∣∣
)−1

|M|2,

(3.23)

where this equation is understood to be evaluated with |~l− | and |~k ′| given in Eqs. (3.19)
and (3.20), respectively.
Of course, one has to ensure that in the numerical calculation only physically allowed

solutions are found. For this purpose, several checks are applied. As implied by the Dirac
δ function, four-momentum conservation must be ful�lled. Furthermore, the components
of the external four-momenta need to be real valued numbers. Hence, it is checked during
the calculation that the arguments of the square roots in Eqs. (3.17) and (3.19) are positive
numbers. In addition, it is tested that the energies of the four-vectors are larger than the
corresponding rest masses.
Equation (3.23) is applied to calculate integrated cross sections within the acceptances of

detectors. The integrations over the angular acceptances are performed within a small range
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of few mrad. Moreover, the momentum acceptance corresponds to a relatively small range.
As an example, for the A1 experiment at MAMI, momentum moduli deviating up to 10%
from the central value are allowed and the angular acceptance is up to 21 msr. In addition,
the central values are chosen in such a way that the kinematical setting is physically allowed.
Hence, it is not necessary to calculate the lower and upper bounds of each integration variable
as a function of the other ones.

3.3.3 Decomposition of the cross section

The dynamics of the cross section which can be observed experimentally is described by the
Feynman amplitudes given in Eq. (3.8) for a nuclear target and in Eq. (3.9) for a proton
target. Although only the cross section containing all interference terms can be observed,
it is useful to decompose it into isolated contributions originating from the amplitudes in
Eqs. (3.1), (3.2) and (3.5) to (3.7). Therefore, as a �rst step, the di�erential cross section in
general can be rewritten as

dσγ∗+γ′ = dσγ∗ + dσγ′ + dσγ∗γ′ , (3.24)

where

dσγ∗ ∝ |Mγ∗ |2 and dσγ′ ∝
∣∣Mγ′

∣∣2
denote the QED background cross section and the cross section for pair production from
hidden photon emission, respectively. The quantity

dσγ∗γ′ ∝
∣∣Mγ∗+γ′

∣∣2 − |Mγ∗ |2 −
∣∣Mγ′

∣∣2
is the interference term between those two contributions.
As discussed in Sec. 3.2, the contribution of a spacelike hidden photon to the signal

cross section is negligible. Because of the very narrow width entering in the propagators
of Eqs. (3.1) and (3.2), the dependence of the signal cross section on the invariant mass of
the lepton pair can be approximated by a Dirac δ function. A detailed discussion is given
in Appendices B.1 and B.3. It was found numerically for ε2 ≤ 10−4 that the approximation
agrees within the numerical precision of around 0.5% for a wide range of con�gurations. As
a consequence, the contribution of the exchange term (X) to the cross section is vanishingly
small and can be neglected as well. Thus, one can rewrite the signal cross section as

dσγ′ = dσSL+TL+VVCS
D+X, γγ

′ = dσTL+VVCS
D, γ′ ∝

∣∣∣MTL
D, γ′ +MVVCS

D, γ′

∣∣∣2, (3.25)

for a proton target and

dσγ′ = dσSL+TL
D+X, γ′ = dσTL

D, γ′ ∝
∣∣∣MTL

D, γ′

∣∣∣2. (3.26)

for a heavy nuclear target.
In addition, the interference term dσγ∗γ′ between virtual photon and hidden photon emis-

sion in case of a bump search can be neglected. The very narrow decay width of the hidden
photon causes that this contribution is vanishingly small compared to dσγ′ . It was checked
that dσγ∗γ′ is well below the numerical accuracy.

91



Chapter 3 Theoretical Framework for Fixed-Target Searches

For convenience, one de�nes the following quantities to understand the kinematical de-
pendence of the QED background in more detail:

dσTL
D/X, γ∗ ∝

∣∣∣MTL
D/X, γ∗

∣∣∣2, (3.27a)

dσSL
D/X, γ∗ ∝

∣∣∣MSL
D/X, γ∗

∣∣∣2, (3.27b)

dσVVCS
D/X, γ∗ ∝

∣∣∣MVVCS
D/X, γ∗

∣∣∣2. (3.27c)

Furthermore,

dσD/X, γ∗ ∝
∣∣∣MSL+TL

D/X, γ∗

∣∣∣2,
and

dσD/X, γ∗ ∝
∣∣∣MSL+TL+VVCS

D/X, γ∗

∣∣∣2,
denote the isolated direct and exchange contributions to the background cross sections for
a nuclear target and a proton target, respectively. By means of these quantities, the back-
ground cross section can be split as

dσγ∗ = dσD, γ∗ + dσX, γ∗ + dσDX, γ∗ , (3.28)

where dσDX, γ∗ is the interference term between the direct and exchanged contributions
dσD, γ∗ and dσX, γ∗ . In addition, dσD, γ∗ and dσX, γ∗ can be further decomposed as

dσD/X, γ∗ = dσTL
D/X, γ∗ + dσSL

D/X, γ∗ + dσTLSL
D/X, γ∗ , (3.29)

where dσTLSL
D/X, γ∗ corresponds to the interference contribution. Although none of these iso-

lated contribution can be accessed directly in experiments, it is crucial to understand their
individual kinematical behavior in order to improve the signal to background ratio.

3.4 Discussion of the integrated cross sections and comparison
with experimental data

3.4.1 Calculation of acceptance integrated cross sections

To describe experimental data and to obtain realistic predictions one has to integrate the
di�erential cross sections within the particular experimental acceptances. Hence, the di�er-
ential cross sections of Eqs. (3.13) and (3.23) have to be integrated over the part of phase
space which can be investigated in the particular experimental settings. The resulting inte-
gral can only be solved numerically. As an example, in the lab frame one has to evaluate the
integral of Eq. (3.23) which yields

∆σ =

∫ | ~l+ |0+∆| ~l+ |

| ~l+ |0−∆| ~l+ |
d|~l+ |

∫
4π
dΩe′

∫
∆Ω+

dΩ+

∫
∆Ω−

dΩ−

∫ mγ′+δm/2

mγ′−δm/2
dmll

J(δφ−, δθ−) J(δφ+, δθ+)
d8σ

d|~l+ | dΩ+ dΩ− dΩe′ dq′ 2

∣∣∣∣∣
| ~l− |0+∆| ~l− |

| ~l− |0−∆| ~l− |
.

(3.30)
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The acceptance integrated cross section ∆σ determined in Eq. (3.30) corresponds to an ex-
periment in which only the lepton pair is detected. The detector coordinates discussed in
Appendix B.2 are used for the momenta of the lepton pair l± in Eq. (3.30). This allows
one to calculate the integral only over the phase space region which is covered by the de-
tectors, e.g., in an experiment at MAMI. The integration region associated with the solid
angle ∆Ω± corresponds to the angular acceptance of the detector in these coordinates. The
momentum integration is restricted to the range resulting from the detector acceptance
|~l± |0 − ∆|~l± | ≤ |~l± | ≤ |~l± |0 + ∆|~l± |, where |~l± |0 is the central momentum of the setup.
The δ function was used to eliminate the dependence of the cross section on the energy E−
during the derivation of Eq. (3.23). The cross section has to be computed on condition that
the modulus of the momentum of the created negatively charged lepton is within the range
allowed experimentally. Since the scattered lepton from the beam in the direct Feynman
diagrams is not detected, one has to integrate over the full solid angle for this particle. In
addition, an integration over the invariant mass of the lepton pairmll has to be performed. In
Eq. (3.30) this is done in the range mγ′− δm/2 ≤ mll ≤ mγ′+ δm/2, where mγ′ corresponds
to the central value of this mass bin.

Numerous peaked structures originate from the propagators in the amplitudes derived in
Sec. 3.2. To deal with these and the complicated phase space with four particles in the �nal
state, the integration was performed on graphics processing units (GPUs). For this purpose
the NVIDIA CUDA framework [199] and the implementation of the VEGAS algorithm [186]
on GPUs published in Ref. [187] were used. The common way to integrate over the phase
space of an reaction involving n particles in the �nal state is by means the recursive approach
leading to Eq. (3.13). For the numerical calculations on GPUs the integral of Eq. (3.23) is
used. This is due to the particular structure which programs should have for best performance
when run on GPUs.

GPUs are designed to perform a large number of common operations in parallel at the
same. To reduce the idle time it is crucial that as many parts of the integration region
as possible are allowed. In the approach by means of Eq. (3.13) this is not the case, even
after optimizing the variables. The integral in the parametrization of Eq. (3.23), on the
contrary, automatically contains nearly only the region of the phase space accepted by the
experimental cuts. Since the method using Eq. (3.13) is well understood, this approach
was used as a cross check for the method solving the integral in Eq. (3.30). The methods
to prepare programming code for the execution on GPUs are discussed in more details in
Appendix C.

3.4.2 Discussion of the acceptance integrated cross section

In this section the dependence of the acceptance integrated cross section on the actual kine-
matics is discussed in more detail for the signal and the background process. An under-
standing of these dependencies is crucial to perform experiments in the setup, which is best
suited to search for signatures of hidden photons. A similar analysis was done in Ref. [140],
where the Weizsäcker�Williams approximation and further simpli�cations were applied for
the cross section. In the present discussion, no further approximations than those for the
hadronic state are applied (see Sec. 3.2). As discussed, the dominating contribution results
from coherent scattering o� the nucleus. The inelastic contribution leads to slightly di�erent
cross sections. However, the shape of the cross section is not altered. While these e�ects do
not play a role in this section, they cannot be neglected in the next section where the simu-
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Figure 3.3: Integrated cross section as a function of the energy carried by the detected leptons
for a beam energy of E0 = 855 MeV in the mass range 200 MeV ≤ mll ≤ 300 MeV
and hidden photon emission along the beam axis, i.e. for a polar angle of the
hidden photon of θγ′ ≤ 0.5 rad, in (0.4275 MeV× 0.4275 MeV) bins. Left (right)
panel: Timelike (spacelike), direct contribution ∆σTL

D, γ∗ (∆σSL
D, γ∗) to the QED

background cross section.

lation is compared to data taken at MAMI. It was found by comparison that the uncertainty
due to di�erent parametrizations of the form factors and from inelastic e�ects is below 5%
for the studied setup at MAMI.

Furthermore, the analysis of the kinematical dependencies is extended to the exchange
contribution originating from the indistinguishability of the �nal-state leptons of equal charge
and species compared to the studies in the literature.

The cross section for the creation of a hidden photon from the reaction e(A, Z) →
e(A, Z)γ′ was discussed in Secs. 2.1.3 and 2.2.2. It was found that the signal cross sec-
tion is largest, when the hidden photon is emitted along the beam axis and nearly all of the
beam energy is transferred to it, corresponding to θLq′ ' 0◦ and x = Eq′/E0 ' 1. Obviously,
this has to be taken into account for the arrangement of kinematical settings.

A possible γ′ signal results from the exchange of a timelike hidden photon as described by
Eqs. (3.1) and (3.2). Equation (3.34) indicates that the signal is proportional the background
contribution ∆σTL

γ∗, D. Hence, this background cannot be reduced. The photon and o�-shell
hidden photons are timelike particles in this contribution . This provokes that the Bethe-
Heitler peaks are not present and a suppression by the virtuality occurs. Therefore, the
discussion of the kinematical dependence of ∆σTL

γ∗, D can be directly translated into the kine-
matics of ∆σγ′ . However, because of the di�erent structure of the amplitudes in Eqs. (3.5)
and (3.6), the ∆σSL

γ∗, D background contribution can be reduced by an appropriate choice of
the kinematics.

The integrated cross section ∆σTL
D, γ∗ (∆σ

SL
D, γ∗) is shown as a function of the energies of

the detected leptons in the left (right) panel of Fig. 3.3. The calculation was performed
for a beam energy of E0 = 855 MeV and an invariant mass of the lepton pair in the range
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200 MeV ≤ mll ≤ 300 MeV. In addition, the hidden photon shall be emitted along the
beam axis with θγ′ ≤ 0.5 rad. The timelike contribution ∆σTL

D, γ∗ is largest when the detected
leptons carry most of the beam energy (x ' 1). This was expected from the discussion in
Secs. 2.1.3 and 2.2.2. Therefore, in the following the condition x = 1⇔ E− = E0 − E+ will
be used. Furthermore, no strong dependence on the distribution of the energy onto the two
leptons can be found.

The situation is completely di�erent for the spacelike contribution to the background
cross section. As can be seen from the right panel of Fig. 3.3, this contribution is largest,
if x ' 1 and nearly all energy is carried by only one of the detected leptons. This can be
easily understood. In this case one of the lepton propagators in Eq. (3.6) peaks and the
SL contribution dominates the cross section. Experimental setups are chosen in such a way
that the energy is shared symmetrically between the leptons to reduce the SL contribution
[152,153]. However, the spacelike contribution ∆σSL

D, γ∗ strongly dominates over ∆σTL
D, γ∗ also

in the optimized kinematics. Thus, one always has to deal with a large irreducible QED
background.

Neglecting the lepton mass, the polar angle of the hidden photon with respect to the beam
axis can be calculated from the three-momenta of the detected leptons:

θγ′ = cos−1

(
|~l+ | cos θ+ + |~l− | cos θ−

|~l+ |+ |~l− |

)

' cos−1

(
1

2

(
E+

E0
cos θ+ + (1− E+

E0
) cos θ−

))
.

Furthermore, if E− ' E+ is chosen, one directly sees that the emission angle of the hidden
photon simpli�es to

θγ′ = cos−1

(
cos θ+ + cos θ−

2

)
.

For a symmetrical setup one �nds

θγ′ = θ±.

As a consequence, the expected signal cross section is largest for the setup in which the
detectors are placed as close as possible to the beam axis.

If the beam lepton and the leptons of the pair are of the same species, one has to account for
the exchange term (X) given by the Feynman diagrams in Fig. 3.2. This contribution results
from the fact that the two negatively charged leptons cannot be distinguished. Unfortunately,
a clear separation between the signal process and the background is not possible for this
contribution. The corresponding amplitudes contain the same structures the signal cross
section, which can be easily seen from the Feynman diagrams in Fig. 3.2. Because of the
exchange of the �nal-state lepton momenta, the amplitude describing the signal MTL

D, γ′ as

well as the background contributionsMTL
D, γ∗ andMSL

X, γ∗ include a structure

/k − /l− − /l+ +m

(k − l− − l+)2 −m2
,

contributing to the irreducible background. This gives rise to a large contribution from
MSL

X, γ∗ in the case of forward γ′ production, since the denominator of the propagator is close
to zero. As mentioned in Sec. 3.3.3, the signal cross section is not enhanced. In Fig. 3.4
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Figure 3.4: Same as in Fig. 3.3 for the TL and SL exchange term X.

Spec. A (e−) Spec. B (e+)

|~l− | (MeV) φ0 |~l+ | (MeV) φ0

setup 1 346.3 22.8◦ 507.9 15.2◦

setup 2 338.0 22.8◦ 469.9 15.2◦

Table 3.1: Kinematical settings of the MAMI test run in 2010. The beam energy was E0 =
855 MeV, and the settings are roughly centered around Ee+ + Ee− = E0 and
mγ′ = 250 MeV. The values are taken from Ref. [152]

the integrated cross sections ∆σTL
X, γ∗ and ∆σSL

X, γ∗ are shown for the same setting as used
for Fig. 3.3. These quantities are large for both the symmetric as well as the asymmetric
production of the lepton pair. This illustrates that these contributions cannot be separated
by an appropriate choice of the kinematical setting from the signal as in the case of ∆σSL

D, γ∗ .
Accordingly, it is impossible to reduce the background from the exchange term.

3.4.3 Comparison of the theory calculation with experimental data from
MAMI

Spec. momentum horizontal angle vertical angle dΩ

A ±10% ±75 mrad ±70 mrad 21 msr
B ±7.5% ±20 mrad ±70 mrad 5.6 msr

Table 3.2: Acceptances of the spectrometers A and B at MAMI [200].

A �rst test run to investigate the feasibility of a dedicated γ′ search �xed-target experiment
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Figure 3.5: Comparison of theory calculations and experimental data for a me+e− bin width
of 0.125 MeV. Black points: Data taken in a particular run of the MAMI 2010
experiment [152] in setup 1. Red solid curve: Theory calculation of the back-
ground cross section. Red dotted curve: Theory calculation of the background
cross section without radiative corrections. Blue dashed-dotted curve: Theory
calculation of the direct SL + TL cross section. Green dashed curve: Theory
calculation of the direct TL cross section.

was performed at MAMI by the A1 Collaboration in 2010. No evidence for the existence of
the γ′ could be found in this experiment. Hence, an exclusion limit for the γ′ parameter space
was evaluated [152]. The heavy nucleus tantalum with Z = 73, A = 181, and M ∼= 168 GeV
served as a target for this experiment. The spectrometers A and B [200] were used to detect
the lepton pair in the settings of Table 3.1. Therefore, the integral of Eq. (3.30) was evaluated
within the limits given in Table 3.2 to calculate the acceptance integrated cross section ∆σ.

To cross-check the simulation, experimental data were provided by the A1 Collaboration.
In addition, the corresponding event generator for this experiment applied by A1 is based on
the results of this work. Since the simulations were performed by two independent programs,
this serves as a further cross check.

In order to reproduce the data more accurately, one has to account for radiative corrections.
The calculation of the full radiative corrections to the process e(A, Z) → e(A, Z)l+l− is
beyond the scope of this work. Hence, the radiative corrections of the corresponding elastic
scattering process were applied to obtain a crude estimate of the expected e�ects. The
following discussion will focus on the kinematics of the MAMI 2010 test run.

The leading-order radiative corrections for the elastic electron-proton (ep) scattering were
discussed in Sec. 2.4.1. To summarize, the corrections can be grouped into the virtual
corrections including self-energy diagrams and vacuum polarization, vertex corrections, and
the correction from soft-photon emission (see Fig. 2.15). The resulting �nite corrections
found in Ref. [175] were given in Eqs. (2.39) to (2.41). Hence, the di�erential cross sections
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assuming distinguishable electrons in the �nal state. Solid curve: SL + TL cross
section. Dashed curve: TL. Dashed-dotted curve: SL
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(see Eqs. (3.13) and (3.23)) are multiplied by

(1 + δ1) = 1 + δvac + δvertex + δR.

As discussed in Sec. 2.4.1, δR depends on the actual choice of the cut-o� energy ∆E′. An
appropriate choice for this experimental setup is ∆E′ = 0.01 × E0. The cross check with
the experimental data is passed for this value. Furthermore, the energy resolution of the
detectors is better than this value and it is well below the pion threshold [175, 196]. Of
course, the normalization of the cross section depends on the particular choice of ∆E′. It
is important to mention that the value of ∆E′ was chosen in advance motivated from the
existing calculations for VCS experiments [175] and elastic scattering [196]. In particular,
no �t to the data was performed to adjust ∆E′.
As can be seen from Table 3.1, in the chosen kinematics nearly all of the beam energy is

transferred onto the e+e− pair. Because of the particular choice of kinematics, the moduli of
the logarithms in entering in Eqs. (2.39) to (2.41) are large. Therefore, a large contribution
results from the soft-photon emission where the logarithms enter quadratically.

As discussed in Sec. 2.4.2, the corresponding corrections to the process ep→ epγ contain
the same basic building blocks. The same building blocks occur in the process e(A, Z) →
e(A, Z)l+l− at the lepton side. Due to the choice of a symmetrical setup, the l+l− pair
can be considered as a neutral object which does not radiate in a �rst crude approximation.
Hence, one expects that the largest soft photon corrections arise from the emission o� the
beam. Moreover, the emission of soft photons from the nucleus was neglected. The recoil
onto the nucleus is small compared to the mass (Q2

t/M2 < 10−6). Thus, the target will stay
at rest and does not radiate.

For ep-scattering, such radiative corrections typically lead to a reduction of the cross
section in the range of 10%�20% for ∆E′ = 0.01 × E0 in the investigated kinematics [175,
201]. However, for a more accurate description of the data one has to calculate the full
radiative corrections. The approximate treatment discussed above needs to be understood
as a semiclassical estimate. As an example, quantum e�ects such as the antisymmetrization
of the amplitude are not accounted for in this approach.

A sample of the data taken in this experiment compared to the results of this work can
be seen in Fig. 3.5. The data were provided by the A1 Collaboration. Setup 1 as given in
Ref. [152] was chosen, since for this setup a luminosity measurement was performed, �nding
an integrated luminosity of L = 41.4 fb−1 for the selected sample of events. A background
contribution of around 5% was already subtracted from the data points in this sample. The
systematic uncertainty in the luminosity from the knowledge of the thickness of the target
foil is below 5% [152].

As seen in Fig. 3.5, the calculation (solid curve) of the radiative background given by
∆σTL+SL

D+X, γ∗ and the experimental data (points) are in good agreement. Because of the estimate
of the radiative corrections and the nuclear current the discrepancy between theory and data
was expected. The in�uence of the radiative corrections is displayed by the red solid and
dotted curves in Fig. 3.5 which have been calculated with and without radiative corrections,
respectively. One notices from Fig. 3.5 that the applied radiative corrections lower the result
of the theory calculation by an amount of around 10%. As mentioned before, this value is
strongly depending on the actual choice of the energy cut o� ∆Es.

One can see from Fig. 3.5 that the approximate treatment of the radiative corrections
already provides a good approximation, as theory and data already are in good agreement.
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Figure 3.8: Simulation of a signal from a hidden photon with mγ′ = 230 MeV and ε2 = 10−4

in the kinematics of the MAMI 2010 test run.

The data and the simulation agree within 15% or less for the largest part of the invariant
mass range (220 MeV ≤ me+e− ≤ 300 MeV) with δm = 0.5 MeV.

The dashed (dashed-dotted) curve shows the direct TL (SL + TL) cross section ∆TL
D, γ∗

(∆TL+SL
D, γ∗ ). One clearly sees the expected large contribution to the cross section originating

from the antisymmetrization due to the indistinguishability of the scattered beam electron
and the pair electron. The kinematical setting was optimized to reduce the SL background
[152] relying on the expressions given in App. C of Ref. [140]. These expressions were derived
within the framework of the WW approximation, and do not account for the exchange term
contribution. Hence, the setup of the test run was not the best one for probing a region of
parameter space as large as possible.

The angular distribution with respect to the polar angle of the scattered electron is pre-
sented in Fig. 3.6. For the 2010 A1 experiment the crossed TL amplitude is responsible for
a second peak in the background cross section compared to the direct amplitude (dashed
curve), which only peaks at very forward scattering followed by a rapidly dropping tail. The
exchange SL term enhances the tail of the angular distribution signi�cantly. Fig. 3.7 reveals
that in the chosen kinematical setting the exchange term contribution is about twice as large
as the direct SL part, which initially should be minimized.

3.5 Exclusion limits from �xed-target experiments: Results
and predictions

3.5.1 Calculation of exclusion limits

Figure 3.8 illustrates the signature expected from a hidden photon with mγ′ = 230 MeV
and ε2 = 10−4 in the kinematics of the MAMI 2010 test run. Due to the very narrow decay
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width of the hidden photon the caused excess is restricted to one mass bin. Furthermore, the
background can be described by a smooth, slowly varying function. Note that the parameters
used for this simulation are already excluded, as can be seen from Fig. 1.19.

If no such signature is found in the invariant mass distribution of the lepton pair, one can
calculate an exclusion limit for the parameter space. In this thesis two di�erent ways are
applied to �nd an upper bound on the kinetic mixing factor ε2 as a function of mγ′ :

• Approximation of ∆σγ′ by an analytical integration over a small mass window, which
was �rst demonstrated in Eq. (19) of Ref. [140]. One exploits that, due to the narrow
decay width of the hidden photon, the Breit-Wigner resonance curve can be approxi-
mated by a Dirac δ function.

• Evaluation of ∆σγ′ for a �xed value of ε2 and re-weighting the signal cross section,
which utilizes that the hidden photon peak is described by a Breit-Wigner resonance.

Of course, both approaches must lead to the same result. In the following, the expressions
for the upper limits for ε2 are derived.

In a �rst step one decomposes the cross section which can be accessed experimentally
analogously to Eq. (3.24),

∆σγ∗+γ′ = ∆σγ∗ + ∆σγ′ + ∆σγ∗γ′ , (3.31)

into a contribution from the QED background ∆σγ∗ , the isolated signal cross section ∆σγ′

and the interference term ∆σγ∗γ′ . As discussed in Sec. 3.3.3, the interference contribution
can be safely neglected. Dividing Eq. (3.31) by the background cross section ∆σγ∗ gives

∆σγ∗+γ′

∆σγ∗
=

∆σγ∗

∆σγ∗
+

∆σγ′

∆σγ∗

⇔ ∆σγ′

∆σγ∗
=

∆σγ∗+γ′

∆σγ∗
− 1. (3.32)

The term S := ∆σγ∗+γ′/∆σγ∗ − 1 describes the magnitude of an excess above the QED back-
ground which corresponds to the sensitivity of an experiment. This quantity must be de-
termined from the experimental data. In order to obtain predictions, the sensitivity can be
estimated by the background cross section, the luminosity L, and the number of standard
deviations Nσ which �xes whether or not a �uctuation is considered as a signal. The aimed
sensitivity can be expressed as the number of expected signal events over the number of
background events. The minimal number of signal events which allows one to observe a
peak over the smooth background corresponds to one standard deviation of the background
distribution. This quantity is commonly estimated by the square root of background events
in a mass bin [152,188,202]. Hence, one �nds for the aimed sensitivity:

S =
Nσ ×∆σγ∗ × L√

∆σγ∗ × L
=

Nσ√
∆σγ∗ × L

. (3.33)

Up to this point, the discussion for both approaches to calculate exclusion limits is equal.
In the following, an expression for an upper limit of ε2 using the concept of Ref. [140] is
derived. In this approach, the signal cross section is estimated by the timelike contribution
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Figure 3.9: Dependence of the inverse e�ective degrees of freedom 1/Neff for e+e− pairs (red
curve), µ+µ− pairs (green), and hadrons (blue) on the hidden photon mass. The
signal cross section ∆σγ′ depends linearly on this quantity after integration over
the variables of the lepton pair and the invariant mass mll. The irregular shape
for large masses originates from the uncertainty in R.

to the direct term of the background cross section ∆σTL
D, γ∗ , which is given by Eq. (19) of

Ref. [140]:

dσγ′

dσTL
D, γ∗

' 3π

2Neff

ε2

α

mγ′

δm
. (3.34)

δm is the mass resolution of an experiment and Neff accounts for additional degrees of
freedom in the decay of the hidden photon into SM particles.

For this treatment it is required that the background cross section does not vary too
strongly in the considered invariant-mass range. The remaining variables are treated as
constants. Thus, the considered approximation is valid for su�cient small intervals of the
invariant mass of the lepton pair mll. The range of these intervals corresponds to the mass
resolution of an experiment. Typically, this is at the level of 1 MeV to 5 MeV. Furthermore,
one demands that the total decay width of the hidden photon is much smaller than its mass,
Γγ′ � mγ′ . This condition is automatically ful�lled in the considered minimal model, as the
discussion of the decay width in Sec. 1.3.3 and in particular Fig. 1.17 shows. As one can
see from Fig. 1.19, a lower limit for the hidden photon mass in the non-excluded regions of
parameter space is mγ′ . 5 MeV. For this value only ε2 . 10−5 is still allowed. Since the
decay width is growing only linearly with the hidden photon mγ′ and ε

2 & 10−4 is excluded
in the full considered parameter space, the condition Γγ′ � mγ′ is always matched in the
mass range of interest. Conveniently, Neff can be parametrized by
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Neff =


Γγ′/Γγ′→e+e− for e+e− pairs,

Γγ′/Γγ′→µ+µ− for µ+µ− pairs,

Γγ′/Γγ′→had. for hadrons,

where Γγ′→l+l− and Γγ′ are given in Eqs. (1.31) and (1.34) and the decay width to hadrons
is parametrized by

Γγ′→had. = Γγ′→µ+µ− ×R(mγ′).

Figure 3.9 illustrates the dependence of 1/Neff on the hidden photon mass mγ′ . The e�ective
degrees of freedom for the decay channel into electron-positron pairs are illustrated by the
red curve. The green and blue curves depict 1/Neff for decays of the hidden photon into µ+µ−

pairs and hadrons, respectively.
In the following, the discussion will focus on hidden photon decays into e+e− pairs. All

studied experimental setups will investigate electrons and positrons in the �nal state. In
addition, the HPS experiment will also search for µ+µ− pairs.
The derivation of relation (3.34) is presented in Appendix B.1 in detail. Using Eq. (3.34),

one can rewrite Eq. (3.32) as

S =
∆σγ′

∆σγ∗
=

∆σγ′

∆σTL
D, γ∗

∆σTL
D, γ∗

∆σγ∗
=

3π

2Neff

ε2

α

mγ′

δm

∆σTL
D, γ∗

∆σγ∗
,

and thus

ε2 = S
∆σγ∗

∆σTL
D, γ∗

2Neffα

3π

δm

mγ′
. (3.35)

This expression is only valid, if the conditions mγ′ � me and δm � mγ′ apply. If these
conditions are not ful�lled, Eq. (3.35) can be improved to

ε2 = S
∆σγ∗

∆σTL
D, γ∗

2Neffα

3π

δm (m2
γ′ + 2m2

e)
√
m2
γ′ − 4m2

e(
m2
γ′ − δm2/4

)2 . (3.36)

Instead of Eq. (B.8) to approximate the signal cross section Eq. (B.7) was used, where the
aforementioned conditions are not required. However, it is still required that the background
cross section remains constant in the considered invariant-mass interval.
In the second approach only the requirement Γγ′ � mγ′ is needed. Although the squared

amplitude of the signal cross section scales with ε4 at the �rst view, after the integration over
the invariant mass of the lepton pair within a range δm and the phase space of the lepton pair
variables, a factor of ε2 is canceled. Therefore, the signal cross section indeed scales with ε2.
This can be understood from the discussion in Appendix B.3 and can be shown analytically.
One exploits that the narrow width of the γ′ allows for an approximation of the hidden photon
propagator appearing in Eqs. (3.1) and (3.2) as a Dirac δ function in the squared amplitude.
After integrating over the variables associated with the lepton pair and its invariant mass
mll one �nds that the cross sections of the processes e+ (A, Z)→ e+ (A, Z) + (γ′ → l+l−)
and e+ (A, Z)→ e+ (A, Z) + γ′ are related by

∆σγ′(e(A, Z)→ e(A, Z)γ′) = Neff ×∆σγ′(e(A, Z)→ e(A, Z)l+l−).
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This is the �nding of Eq. (B.18). Both cross sections need to show the same linear depen-
dence on ε2, as can be seen from, e.g., Eq. (2.3). Moreover, one utilizes that the resonance
caused by the exchange of a hidden photon is described by a Breit-Wigner distribution.
Hence, the integral over this resonance curve is independent of the width of the resonance
which is depending on ε2. To perform the numerical integration in case of the cross section
∆σγ′(e(A, Z)→ e(A, Z)l+l−) one has to choose a value of ε2. This �xed value used for the
calculation is in the following denoted by ε̃ 2. Dividing the cross section calculated with ε̃ 2

by this value corresponds to the quantity from which the ε2-dependence is removed. One
can write

∆σγ′(ε
2) =

∆σγ′(ε̃
2)

ε̃ 2
× ε2.

By substituting this into Eq. (3.32), one obtains

ε2 = S
ε̃ 2 ×∆σγ∗

∆σγ′(ε̃ 2)
. (3.37)

In this approach, the dependence on Neff is entering in terms of the total decay width Γγ′

into the cross section ∆σγ′ . A parameter ε̃ 2 = 10−4 was used for the calculation of exclusion
limits for �xed-target experiments. With this parameter one ensures that the decay width
is also of a realistic magnitude. An issue, which may enter, is that the caused peak is too
narrow and is ignored in the numerical integration. One has to verify, of course, that the
result of this calculation is accurate. Such a check can be performed by the linear scaling
of the signal cross section with ε2, which was already discussed above. With the chosen
value of ε̃ 2 = 10−4 no problems with the accuracy of the numerical integration of the narrow
structure over mll were found.
Within this work it was proven numerically that both methods, using Eqs. (3.35) and (3.37),

lead to the same results. To determine or predict exclusion limits both methods have their
respective merits. On the one hand, the approach proposed in Ref. [140] (Eq. (3.35)) allows
for reading o� the dependencies on parameters such as the mass resolution δm or the hidden
photon mass mγ′ directly. On the other hand, the method using Eq. (3.37) does not rely
on any more assumptions than Γγ′ � mγ′ which is ful�lled in the kinematical region of
interest. From Eq. (3.35) one can see that predictions for limits with a sensitivity estimated
in Eq. (3.33) can be written as

ε2 =
Nσ√

∆σγ∗ × L
∆σγ∗

∆σTL
D, γ∗

2Neffα

3π

δm

mγ′

=

√
∆σγ∗

L

Nσ

∆σTL
D, γ∗

2Neffα

3π

δm

mγ′
.

Thus, reducing the background cross section or improving the luminosity will only lead to
an �square-root� enhancement of the exclusion limit.

3.5.2 Exclusion limits for experiments at MAMI

3.5.2.1 Exclusion limit for the MAMI 2010 test run

The necessary cross sections to �nd an exclusion limit for the test run of the hidden photon
search experiment at MAMI in 2010 [152] were already discussed in Sec. 3.4.3. Plots of these
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cross sections are shown in Fig. 3.5. The calculations were performed for setup 1 of the
MAMI 2010 test run. The corresponding kinematical quantities are given in Table 3.1.

To calculate an exclusion limit for ε2 in this section Eq. (3.35) is applied. Hence, the
background cross section ∆σTL+SL

D+X, γ∗ and the direct TL cross section ∆σTL
D, γ∗ are needed in

order to �nd a bound on ε2. The ratio of these two quantities entering in Eq. (3.35) is
presented in Fig. 3.10. In this �gure, the red solid curve is the ratio of the background cross
section ∆σTL+SL

D+X, γ∗ to the direct TL cross section ∆σTLγ . Moreover, the blue dashed curve is

the ratio of the direct background cross section ∆σTL+SL
D, γ∗ , where the �nal-state electrons were

treated distinguishable, to the direct TL cross section ∆σTLγ . As mentioned in Sec. 3.4.3,
this setting was optimized to reduce the direct SL contribution. This can be seen from the
relatively small value of the ratio ∆σTL+SL

D, γ∗ /∆σTLγ . Taking the exchange term into account, the
ratio of the background cross section increases by a factor of 2 to 3 which leads to a weaker
exclusion limit.

Because the contribution of the exchange term was not yet included in the background
calculation used to determine the exclusion limit of the MAMI 2010 test run, the actual limit
is lower by this factor. The limit found within this work using the cross section ∆σTL+SL

D+X, γ∗

for the irreducible QED background is indicated by the blue curve in Fig. 3.11. The limit
represented by the green curve corresponds to the one where the exchange term ∆σTL+SL

X, γ∗

was neglected.

3.5.2.2 Predictions for exclusion limits for the investigated settings at MAMI
2012/2013

The A1 Collaboration started a γ′ search run at MAMI in 2012 which was continued by a
second beam time in 2013. In these experiments the kinematics given in Tables 3.3 and 3.4
were probed. No narrow peak in the invariant-mass spectrum as a hidden photon signal could
be found. The obtained invariant-mass distributions are displayed in Figs. 3.12 and 3.13.
The following distributions arising from the di�erent cross sections are compared: back-
ground (red solid curve), SL + TL exchange term (blue dotted), SL exchange term (yellow
double-dashed), SL + TL direct term (green dashed), and TL direct term (magenta dashed-
dotted). It turns out that the SL exchange process is the largest contribution to the radiative
background. Figures 3.12 and 3.13 illustrate the dependence of the separated background
contributions on the invariant mass me+e− . The SL exchange term dominates the cross
section at low invariant masses. Although the SL direct and the TL exchange terms be-
come more important for increasing me+e− , the SL exchange term still remains the largest
contribution. The ratio between the TL direct term and the SL exchange term has a sim-
ilar behavior, retaining nearly the same maximum value in each of the considered settings.
Furthermore, Figs. 3.12 and 3.13 show the importance of the interference terms in order to
describe the data correctly.

In Fig. 3.14 a combined plot of the results for the ratio ∆σγ/∆σ
TL
γ for each setting given

in Tables 3.3 and 3.4 is presented. As discussed, this ratio as a function of the invariant mass
me+e− is crucial to obtain the exclusion limits for the γ′ parameter space following Eq. (3.35).
Due to the particular choice of kinematics in these experiments, the ratio ∆σγ/∆σ

TL
γ has

a value between 10 − 15 and 10 − 30 in the mass ranges of the setups probed in the runs
in 2012 and 2013, respectively. In Fig. 3.15 the predictions for the exclusion limits on ε2

for the set of kinematics probed in the 2012 (2013) beam time are indicated by the green
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E0 [MeV] |~l |+ [MeV] |~l |− [MeV]

kin057 180 78.7 98
kin072 240 103.6 132.0
kin077 255 110.1 140.4
kin091 300 129.5 164.5
kin109 360 155.4 197.6
kin138 435 190.7 247.7
kin150 495 213.7 271.6
kin177 585 250.0 317.3
kin218 720 309.2 392.7

Table 3.3: Kinematics of the MAMI 2012 γ′ search. Electron scattering angle: φ− = 20.01◦

(spectrometer A). Positron scattering angle: φ+ = −15.63◦ (spectrometer B). The
number in the label of the kinematics refers to the invariant mass around which
a setting is centered.

E0 [MeV] |~l |+ [MeV] |~l |− [MeV]

kin054 180 97.1 73.9
kin076 255 137.5 104.7
kin103 345 186.0 141.7
kin135 450 242.6 184.8
kin170 570 307.3 234.1
kin206 690 372.1 283.4
kin256 855 461.0 351.2

Table 3.4: Kinematics of the MAMI 2013 beam time. Electron scattering angle: φ− = 20.01◦

(spectrometer A). Positron scattering angle: φ+ = −15.11◦ (spectrometer B).
Note that for the setup �kin256� the spectrometers A and B were exchanged.
Hence, one has to exchange the momenta, angles, and acceptances from Table 3.2.
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Figure 3.14: Left (right) panel: Combined plot of the result for the ratios ∆σγ/∆σ
TL
γ of

each setting investigated in the MAMI 2012 (2013) beam time, starting with
the lowest beam energy on the left.

(blue) curves. An integrated luminosity of around 10 fb−1 for each setting of the 2012 run
was estimated. In addition, a value of 25 fb−1 for the 2013 settings corresponding to 3 days
of beam time per setting was assumed.

3.5.3 Predictions for the experimental reach of a hidden photon
experiment at MESA

In this section a feasibility study to search for hidden photons at the future �Mainz Energy-
recovering Superconducting Accelerator (MESA)� is performed. The construction of MESA
at the University of Mainz was approved in 2013. It is planned to provide the �rst beam for
experiments in 2017. MESA is designed as a small, multi-turn accelerator providing a high
intensity electron beam up to beam energies of around 160 MeV. Thus, MESA should be
ideally suited to probe the γ′ parameter space in the low mass region [203,204].

In this thesis it was investigated whether or not it is possible to carry out such hidden
photon search experiments by using two small spectrometers similar to the experiments at
MAMI discussed in Secs. 3.4.3 and 3.5.2. A realistic assumption is that each of these spec-
trometers has a horizontal and vertical angular acceptance of ±50mrad, and a momentum
acceptance of ±5%. Since the beam energy is low compared to experiments at MAMI, such
detectors for MESA will be signi�cantly smaller. This allows one to reach smaller scattering
angles. Therefore, one has access to the region of phase space where the cross section for
hidden photon production is largest (see. Secs. 2.2.2 and 3.4.2).

It was assumed that such a future experiment at MESA will be performed by making use
of a gas target to minimize the multiple scattering in the target material. This will improve
the mass resolution compared to solid target. The same methods and program code as for the
MAMI experiments discussed in Sec. 3.4 were used for the calculation of the cross sections.

In order to obtain as large cross sections as possible, xenon is considered as target mate-
rial. For comparison, the calculations were also performed for a proton target in one setup.
Furthermore, the integration over the invariant mass me+e− is performed for a 0.125 MeV
interval, which is the aimed mass resolution in this experiment. To obtain the projected
reach of the experiment a beam time of about 3 months and a luminosity of 1034 cm−2s−1

were assumed, which is a conservative choice.
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individual bands will lead to an improved result.
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Figure 3.16: Invariant mass distributions from the feasibility study for the MESA experiment.
Solid curve: SL+TL (direct + exchange term), dashed curve: direct TL, dashed-
dotted curve: direct SL+TL.
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The results for the invariant-mass distributions for beam energies E0 of 20, 40, 80, 120,
and 160 MeV are shown on Fig. 3.16. The kinematics was chosen in such a way that the
central scattering angle φ of the e− (e+) is +10◦ (−10◦). The central momentum is |~l |± =
0.98× E0/2. Furthermore, one setting for E0 = 120 MeV and φ∓ = ±20◦ was calculated in
order to cover the full so-called (g − 2)µ welcome band together with the settings probed in
the MAMI beam times in 2012 and 2013, of which the projected reach is shown in Fig. 3.15.

Since the low mass region mγ′ . 10 MeV in the (g − 2)µ discrepancy is already excluded
by the electron anomalous magnetic moment (g − 2)e, the settings for beam energies of 20
and 40 MeV were not included in the exclusion limit calculation. Therefore, one does not
have to deal with the di�culties in the low mass regime.

For comparison, the acceptance integrated cross sections depending on me+e− for a proton
target with a beam energy of E0 = 80 MeV are shown in Fig. 3.17. The same curves as
in Fig. 3.16 are plotted in the left panel. In the right panel of Fig. 3.17 it is demonstrated
that the VVCS contribution originating from those Feynman diagrams of Fig. 3.1, in which
the hidden photon is radiated o� the proton line, is suppressed by more than 6 orders of
magnitude in the chosen kinematical setting. Thus, this contribution can be neglected. As
indicated by the shape of the curves for ∆σSL+TL

γ∗,D+X and ∆σTLγ∗,D in Figs. 3.16 and 3.17, the
ratio of these two quantities is equal. Hence, the kind of target does not a�ect the ratio of
the cross sections entering in the calculation of exclusion limits using Eq. (3.35).

The left panel of Fig. 3.18 shows the calculated ratio ∆σγ/∆σ
TL
γ which reaches a value

around 8�10 for the proposed settings. The expected exclusion limit on ε2 as obtained from
Eq. (3.35) corresponding to the invariant-mass spectra of Fig. 3.16 is presented in the right
panel of Fig. 3.18. A mass resolution of 0.125 MeV was assumed. The blue (red) curve in the
right panel of Fig. 3.18 represents the settings with central angle of 10◦ (20◦). At very low
masses below 10 MeV Eq. (3.35) does not serve as a good approximation for the exclusion
limit anymore, since Eq. (19) of Ref. [140] overestimates the γ′ signal cross section by up to
50%. In summary, one �nds that such experiments at MESA will be able to probe the low
mass region of the parameter space down to ε2 = 10−7.
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for the MESA experiment. The settings correspond with the following beam
energies and scattering angles (from left to right): E0 = 80, 120, 160 MeV with
φ∓ = ±10◦, E0 = 120 MeV with φ∓ = ±20◦. Right Panel: Projected reach of
the experiment in the investigated setups.

3.5.4 Predictions for the reach of DarkLight experiment

The DarkLight experiment at JLAB plans to investigate the low mass γ′ parameter region.
The experiment is planned at the JLAB Free Electron Laser, which allows for a beam energy
of E0 = 100 MeV with a very high intensity. As target a hydrogen gas target will be used.
The goal is to acquire an integrated luminosity of 1 ab−1.

In the previous Sec. 3.5.3 a possible experiment using two high-resolution spectrometers
detecting the lepton pair in the forward direction at the new MESA facility at Mainz was
investigated. The DarkLight detector, covering nearly the full solid angle, is intended to
detect all particles involved in the reaction. Due to the similar energy range, both exper-
imental setups are complementary. The discussion of this section can also be understood
as the investigation of a possible experiment using a 4π-detector at MESA. Since the beam
energy E0 = 100 MeV is below the pion threshold, the di�erential cross sections of the sig-
nal and background process are described by Eqs. (3.25) and (3.28) without any further
modi�cations.

The applied kinematical limits accounting for the detector geometry are written in Ta-
ble 3.5. The simulations were performed with two slightly di�erent settings: Setting I corre-
sponds to the one discussed in the proposal of the DarkLight experiment [190]. In setting II
the range of the polar angles of the �nal-state proton and leptons is slightly extended. This
allows for the acceptance of leptons emitted more closely to the beam axis.

The cross sections to predict the reach of the experiment were calculated in the kinematical
settings of Table 3.5. The results of the simulation of the QED background and the signal
are shown in the left and right panel of Fig. 3.19, respectively. The distributions depending
on the lepton pair invariant mass me+e− using a bin width δm = 1 MeV are presented. As
discussed in Sec. 3.2, one has to account for the VVCS contribution for the production o� a
proton. In the following study this was done for both the background and the signal cross
sections. It was shown in the literature that the Born terms dominate the VVCS contribution
up to the pion threshold. Hence, for E0 = 100 MeV one can neglect the non-Born terms for
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Quantity Setting I Setting II

|~l | = |~k ′|, |~l− |, |~l+ | |~l | ≥ 5 MeV |~l | ≥ 5 MeV

θl = θk′ , θl− , θl+ 25◦ ≤ θl ≤ 155◦ 20◦ ≤ θl ≤ 160◦

φl = φk′ , φl− , φl+ 0◦ ≤ φl ≤ 360◦ 0◦ ≤ φl ≤ 360◦

|~p ′| |~p ′| ≥ 2 MeV |~p ′| ≥ 2 MeV

θp′ 5◦ ≤ θp′ ≤ 175◦ 4◦ ≤ θp′ ≤ 176◦

φp′ 0◦ ≤ φp′ ≤ 360◦ 0◦ ≤ φp′ ≤ 360◦

Table 3.5: Choice of kinematical limits used within the calculations for DarkLight.
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Figure 3.19: Invariant mass distributions of the background (left) and signal normalized by
ε2 (right) cross section for DarkLight kinematics. The solid (dashed) curve
represents the calculation in setting I (II) with values given in Table 3.5.

which one expects an e�ect less than 5%.

Obviously, the cross section calculated in setting II is slightly larger than the one in setting
I, as expected due to the larger allowed phase space. In order to illustrate the signal cross
section over the full experimental mass range, the corresponding curves in the right panel
were calculated for a hidden photon mass equal to the central value of each invariant-mass
bin. The expected signal in the experiment, of course, is not a smooth distribution as shown
in the right panel of Fig. 3.19. Instead, a signal in only one mass bin corresponding to the
hidden photon mass is expected.

Figure 3.20 shows the ratio of the signal cross section with γ′ production from the lepton
and proton (∆σγ′(TL + V V CS)) and only from the lepton (∆σγ′(TL)) for E0 = 100 MeV
(left panel) and E0 = 300 MeV (right panel). It turns out that the VVCS contribution leads
to an enhancement of the signal cross section for the full considered mass range, which is
mostly in the range from 10% to 20%. For a larger hidden photon massmγ′ , the enhancement
of the cross section grows and leads to a twice larger value. Compared to studies of virtual
Compton scattering o� the proton [175], where the process ep → epγ is investigated, this
e�ect appears unnaturally large. It can be understood from the fact that the cross section
is suppressed by the mass of the radiated particle and the fermion mass in the propagator.
In the process ep→ epγ the cross section for bremsstrahlung radiation of a photon from the
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Figure 3.20: Ratio of the signal cross sections for γ′ production from the lepton, ∆σγ′(TL),
and additionally taking the VVCS contribution into account, ∆σγ′(TL +
V V CS), calculated in setting I. Left panel: Beam energy E0 = 100 MeV as
planned for the DarkLight experiment. Right panel: E0 = 300 MeV.

electron is strongly peaked, if the photon is emitted into the direction of the electron. The
radiation from the proton, on the contrary, is relatively suppressed by the comparatively
large mass of the proton. On the other hand, the VVCS contribution is relatively enhanced
for the ep → epe+e− process compared with the emission o� the electron due to the �nite
virtuality of the photon or hidden photon. As a consequence, in particular for a large hidden
photon mass, the VVCS contribution appears larger compared to the other contributions.
Furthermore, it is shown in the right panel of Fig. 3.20 that the sharp upturn in the cross
section ratio is caused by the particular choice of kinematics. To illustrate this, the cross
section ratio for the same allowed angular acceptance but with a beam energy E0 = 300 MeV
was calculated. The upturn in the ratio starts for a much larger invariant mass of the lepton
pair than in the case E0 = 100 MeV.

Using Eq. (3.37) and the calculated cross sections shown in Fig. 3.19 one obtains predictions
for the reach of the DarkLight experiment. Following Ref. [202], it is assumed that a perfect
detector e�ciency, a mass resolution δm = 1 MeV, and a luminosity L = 1 ab−1 can be
reached. The results of these calculations are presented in Fig. 3.21. Besides the prediction
of the exclusion limit using the TL + VVCS signal cross section ∆σγ′(TL+V V CS) illustrated
by the solid (dashed) curve for setting I (II), for comparison the exclusion limit derived from
∆σγ′(TL) calculated in setting I (dashed-dotted curve) is shown. While the cross section is
signi�cantly altered by the VVCS process, the e�ect on the exclusion limit is minimal. The
small e�ect can be explained by the smallness of the cross section itself where the VVCS
e�ect becomes large. Furthermore, one can see that the exclusion limit is also only slightly
a�ected by the choice of the two kinematical settings.

This calculation leads to a similar projected reach as the one given in Ref. [202]. The
reach found in Ref. [202] is weaker by a constant factor of roughly 3. This is due to the
di�erent choice of Nσ in Eq. (3.37). While in Ref. [202] Nσ = 5 was applied, in this work
Nσ = 2 was used for reasons of comparability with the results obtained in Secs. 3.5.2, 3.5.2.2
and 3.5.3. The two results agree when they are normalized with the same value of Nσ. Due
to the larger cross section of setting II, the projected exclusion limit can be improved by
around 10 to 30 % in the considered mass range. Moreover, the enhancement of the signal
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Figure 3.21: Projected reach of the DarkLight experiment assuming that a luminosity L =
1 ab−1, a mass resolution δm = 1 MeV and a perfect detector e�ciency can be
reached. The area above the curves can be excluded. The predictions obtained
in settings I (solid and dashed dotted curve) and II (dashed) are shown. In
setting I the exclusion limit was calculated using the TL + VVCS (solid) and
the TL (dashed-dotted) signal cross section. In setting II only the limit using
the TL + VVCS signal cross section is presented.

cross section by accounting for the VVCS contribution only leads to a small e�ect for the
projected bound.

3.5.5 Predictions for the reach of HPS-type experiments

In this section experiments of the same type as the future �Heavy Photon Search (HPS)�
experiment at JLAB [189] are studied. Since the more complicated actual setup of the HPS
experiment is not treated in total, these setups are referred to as �HPS-type.� Like in the
A1 and APEX experiments, HPS is designed to detect the created lepton and antilepton.
This is not done by two large spectrometers in contrast to A1 and APEX. Instead a rather
small detector array aligned directly at the beam is used. This allows for the investigation
of very small scattering angles for which the hidden photon signal is largest. The resulting
cuts for the horizontal scattering angles are |Θ| ≤ 50 mrad. The vertical out-of-plane angle
is restricted to −60 mrad ≤ α ≤ −15 mrad and +15 mrad ≤ α ≤ +60 mrad, respectively.
These numbers are given in the proposal of the HPS experiment [189]. Furthermore, it is
required that the sum of the energies of the detected leptons exceeds 80% of the beam energy,
(E+ + E−)/E0 > 0.8, and that energy of each detected lepton is larger than 500 MeV. It is
further demanded that the two leptons may not be in the same half of the detector. Hence,
the associated vertical scattering angles need to have opposite signs. A sketch of the setting
is presented in Fig. 3.22.

Since the energy range allowed for E+ +E− is comparably large, the cross section was cal-
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y

−xztarget

|Θ| ≤ 50mrad

15mrad ≤ α ≤ 60mrad

×

Figure 3.22: Sketch of the setup of HPS-type experiments.

culated with the form factors given in Eq. (2.24). This parametrization accounts for inelastic
e�ects. These e�ects cannot be neglected the kinematical range of HPS-type experiments.

Following the proposal of the HPS collaboration [189], the cross sections are calculated
for beam energies E0 = 1.1 GeV, 2.2 GeV, and 6.6 GeV. The results of the simulation for
HPS-type experiments can be found in Fig. 3.23. In this �gure the background cross section
∆σTL+SL,D+X

γ (∆σTL+SL,D
γ ) is drawn by the solid (dashed) curve. For comparison with other

simulations the contribution to lepton-pair production from a timelike virtual photon ∆σTL,D
γ

(dotted curve) is also shown, which is related to the signal cross section. The largest part of
the irreducible QED background originates from the contribution due to the indistinguisha-
bility of the �nal-state electrons, as one can easily see by comparing the curves for the cross
sections ∆σTL+SL,D+X

γ and ∆σTL+SL,D
γ . Furthermore, the TL contribution compared to the

SL one in the cross section with distinguishable �nal-state electrons decreases for increasing
beam energy.

The signal cross sections are shown in Fig. 3.24. In order to illustrate the signal cross
section over the full experimental mass range, the curves were calculated for a hidden photon
mass equal to the central value of each invariant-mass bin, as in Sec. 3.5.4. The expected
signal in the experiment of course is not a smooth distribution. Instead, a signal in only
one mass bin corresponding to the hidden photon mass is expected. Furthermore, the signal
cross sections were divided by ε2, which corresponds to setting ε2 = 1. The experimental
signature of a γ′ would be a peak at a certain mass with the height given in Fig. 3.24 over
the smooth QED background presented in Fig. 3.23.

As in the previous section, Eq. (3.37) and the obtained cross sections are used to �nd a
prediction for the reach of a hypothetical experiment in the HPS-type kinematics. For these
calculations a constant mass resolution δm = 1 MeV is assumed, This value is better than
the anticipated resolution given in the HPS proposal, which depends on the beam energy and
the invariant mass of the lepton pair. Following the HPS proposal, integrated luminosities
of of L = 5 pb−1, L = 40 pb−1, and L = 200 pb−1 for the settings with E0 = 1.1 GeV,
E0 = 2.2 GeV, and E0 = 6.6 GeV, respectively, are plugged in to estimate the reach of such
an experiment. The results are presented in Fig. 3.25, were the solid curve (dashed, dashed-
dotted) shows the limit for a beam energy E0 = 1.1 GeV (2.2 GeV; 6.6 GeV). Note that the
individual bands only are shown and there is not a prediction for the summed bins given,
which should increase the sensitivity signi�cantly.
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Figure 3.23: Invariant mass distributions of the background cross sections in HPS-type kine-
matics for selected beam energies. The TL+SL, D+X (TL+SL, D; TL, D) cross
section is represented by the solid (dashed; dotted) curve.

3.6 Summary and conclusions of the section

In this section the cross sections which are crucial to describe the existing and planned
�xed-target γ′ search experiments were studied. A comparison of these calculations with
a sample of data taken at MAMI was performed. After applying the leading-order QED
radiative corrections for the corresponding elastic electron-hadron scattering process it was
found that the data can be described well by the simulation. However, the crude estimate of
the radiative corrections can only serve as a �rst step. To obtain a better agreement between
theory and data, the full radiative corrections need to be calculated.

In addition, a calculation of the isolated spacelike and timelike virtual photon exchange
cross sections, each for the direct and exchange term, was performed. This allows one to
study the dependence of the background cross section on these contributions. Furthermore,
it was found that it is necessary to take the exchange term contributing to the irreducible
background into account in order to reproduce the data. A re�ned exclusion limit was
calculated from the data taken in the 2010 test run of the A1 experiment.
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Figure 3.24: Signal cross section normalized by ε2 in HPS-type kinematics.

10
-8

10
-7

10
-6

10
-5

10
-4

 10  100

ε
2

me
+
e

- [MeV]

E0 = 1.1 GeV

E0 = 2.2 GeV

E0 = 6.6 GeV

Figure 3.25: Projected exclusion limits for the investigated HPS-type kinematics. Integrated
luminosities of L = 5 pb−1, L = 40 pb−1, and L = 200 pb−1 were used for
the settings with E0 = 1.1 GeV (solid curve), E0 = 2.2 GeV (dashed), and
E0 = 6.6 GeV (dashed-dotted), respectively, to estimate the reach.

120



3.6 Summary and conclusions of the section

M
ix
in
g
P
ar
am

et
er
ε2

mγ′ [MeV]

Projections of this work
MAMI 2012
MAMI 2013

MESA
HPS type

DarkLight

10−8

10−7

10−6

10−5

10−4

10 100

E141

E774

KLOE

MAMI

APEX

Figure 3.26: Summary of existing exclusion limits for visible γ′ decays. Existing limits as
published in Refs. [138�140, 144, 147�150, 152, 153] are shown, represented by
the shaded regions. The band denoted by |(g − 2)µ| < 2σ is the (g − 2)µ
welcome band, where the existing discrepancy between the experimental and
theoretical value of the anomalous magnetic moment of the muon is most likely
explained by the γ′ contribution to (g − 2)µ. Note that only the region of
parameter space is shown, where the investigated experiments have sensitivity.
More details about existing limits can be found in Sec. 1.3.4, in particular in
Table 1.2 and Fig. 1.19. The reach of the investigated experiments is illustrated
by the curves as indicated above.
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By means of the cross sections found in this analysis, predictions for the expected exclusion
limits can be found. Figure 3.26 shows a summary of exclusion limits and projections.
These future bounds for the hidden photon parameter space are valid for γ′ decays with
purely visible decay products. In this plot only the region of parameter space which is
currently accessible in �xed-target experiments is shown. Existing limits are represented by
the shaded regions [138�140,144,147�150,152,153]. The (g − 2)µ welcome band denoted by
|(g − 2)µ| < 2σ corresponds to the region of parameter space in which the current discrepancy
between the theoretical and experimental determination of the anomalous moment of the
muon can be explained by the contribution of the hidden photon. More details can be found
in Sec. 1.3.4, in particular, in Table 1.2 and Fig. 1.19. The results for the setups investigated
at MAMI in 2012 and 2013 are illustrated by the green and blue curves, respectively. The
red curve indicates the results obtained for the possible experimental setup at MESA. The
prediction for DarkLight is shown by the cyan curve. The projected bounds obtained for an
HPS-type experiment are illustrated by the magenta curves. The predictions of other works
are not shown [188, 189, 202, 205] for a better visualization. Furthermore, during �nalizing
this work, new limits from the HADES experiment [151] excluding regions of parameter space
in the mass range from 20 to 60 MeV down to ε2 = 2.3× 10−6 and from the ν-calorimeter I
experiment [145] were released, which are not yet included in Fig. 3.26.
The experimental setups investigated in this work will be conclusive whether or not a

hidden photon decaying into a purely visible �nal state is at the origin of the discrepancy
between the experimental and theoretical determination of the anomalous magnetic moment
of the muon. Furthermore, each of the investigated experiments will certainly improve the
existing current exclusion limit by at least one order of magnitude if no signal of a γ′ can be
found.
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Chapter 4

Rare Kaon Decays as Probe for Additional

Light Gauge Bosons

4.1 Introduction

In this section the possibility to study rare kaon decays with regard to signatures of physics
beyond the SM is discussed. Starting in the 1970s, when the nature of the electro-weak
interaction was not yet fully clari�ed, meson decays, and in particular kaon decays, served
as a versatile probe to �nd constraints on the weak force. Although these experiments
were designed for signals of the weak interaction, their outcome can still be used today to
probe models of physics beyond the SM. In this section invisible decays (Sec. 4.2) of the
hidden photon as well as reactions in which its decay products can be detected (Sec. 4.3),
are investigated. In the case of invisible decays, two di�erent models are used:

Model I: Kinetic mixing of the hidden photon and the SM photon.

Model II: Models in which the new U(1) vector boson couples to the charged lepton �eld
leading to a parity-violating force.

The �rst model was already discussed in detail in Sec. 1.3. The results of Sec. 4.2 apply for
the case that the decay happens outside the detector. This corresponds to a �ight length of
the hidden photon which is larger than the decay volume of the detector, or a hidden photon
decaying dominantly into particles which cannot be detected as Light Dark Matter (LDM).
In the discussion of the kinetic mixing model in Sec. 1.3 no assumptions about the sector of
dark matter itself were made. Therefore, in the case of decays to LDM, it is assumed that
these particles are contained in the dark sector. Besides, no further assumptions are made.
Model II is motivated e.g. by the Proton Radius Puzzle introduced in Sec. 1.2.4. To resolve

this puzzle and to reconcile the theoretical and experimental determination of the anomalous
magnetic moment of the muon, in Ref. [88] a model was proposed, in which a new U(1) gauge
boson V couples to the muon with coupling strength gR. In this model, gauge anomalies
emerge, which can be canceled by the introduction of scalar degrees of freedom at the cost
that renormalizability is lost. It was found in Ref. [88] that the validity of this model breaks
down above the cut-o�

ΛUV ∼ 700 GeV
( mV

10 MeV

)(gR
e

)−2
,

which is consistent with a ultraviolet cut-o� above the TeV scale for mV ∼ 10 − 100 MeV
and gR ∼ 0.01− 0.1. This model was investigated and modi�ed in several works [89,90,206].
In Refs. [89, 90] constraints on these parameters were derived from the rare kaon decay

K+ → µ+ + νµ + V. (4.1)
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K+ W+

u

s̄

K+(k)

µ+(l)

νµ(q)

W+(k)

Figure 4.1: Left panel: Feynman diagram for the transition from K+ to W+. Right panel:
Feynman diagram of the decay K+ → µ+νµ.

This decay, where the V is invisible, can be constrained by use of experimental data obtained
in a pioneering experiment by Pang et al. [207] more than 30 years ago, in which the decay
K+ → µ+ + neutrals was studied. Only the charged muon was detected. Further charged
particles or photons in the �nal state were excluded. Hence, this experiment has sensitivity
to the considered process with an invisibly decaying V . The data of Ref. [207] were used to
test models with invisible gauge boson decays as introduced above.

In addition, possibilities are investigated to constrain the parameter space of the hidden
photon model of Sec. 1.3 by measurements of the reaction

K+ → µ+ + νµ + (γ′ → l+l−). (4.2)

In particular, the production of an electron-positron pair is of large interest. This decay
allows one to probe a wider range of parameter space compared to the decay into a muon
pair. Furthermore, all particles in the �nal state are distinguishable, which simpli�es the
QED background.

The total decay rate can be obtained easily by the analytical integration over the variables
of the lepton pair as demonstrated in Appendix B.3. Therefore, the decay rate can be used
for the signal process which was evaluated for invisible decays, as long as the mass of the
hidden photon is below the muon production threshold, giving rise to

Γγ′(K
+ → µ+νµγ

′) = Neff × Γγ′(K
+ → µ+νµe

+e−), (4.3)

where Neff = 2 for mγ′ < 2 ×mµ. Since predictions for future experiments will be given,
which requires an understanding of the irreducible QED background, also the SM process
K+ → µ+νµe

+e− is treated in detail. Furthermore, the same numerical methods as in
Chapter 3 are applied to �nd accurate predictions.

Note that for simplicity, in the following the new gauge boson is always referred to as
hidden photon and the coupling is ε2 = α′/α. In model II this has to be understood as purely
vectorial coupling of the gauge boson V exclusively to the muon with strength gR.

4.2 Constraints for invisible decays of the hidden photon

4.2.1 Calculation of decay rates

The largest external momentum scale of the considered processes, the kaon mass MK , is
far below the weak gauge boson masses mW and mZ . This allows one to approximate the
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W - and Z-propagators as gµν/M2
W and gµν/M2

Z , respectively. Therefore, one does not have to
deal with the transition of the positively charged kaon to a u quark and a s̄ quark. This is
illustrated in the left panel of Fig. 4.1. Instead, the hadronic weak K+ decay current is used
to describe this interaction, parametrized by

〈0|v̄sγµ(1− γ5)uu|K+(k)〉 = fkkµ,

where fK is the kaon decay constant.
It is assumed that the K+ decays at rest. Thus, the calculations for the process

K+(k)→ µ+(l) + νµ(q) + γ′(q′)

will be performed in the K+-rest frame where the kaon four-vector is given as k = (MK , ~0).
The four-momenta are denoted by l = (Eµ, 0, 0, |~l |) for the muon, q = Eν(1, sin θν , 0, cos θν)
for the neutrino, and q′ = (k − l − q) for the γ′. In addition, Tµ = Eµ − mµ denotes the
kinetic energy of the muon.
Before the process K+ → µ+νµγ

′ is investigated, it is helpful to calculate the rate of the
2-body decay

K+(k)→ µ+(l) + νµ(q),

which can be used to normalize the expressions to dimensionless quantities. For the decay
into a two-particle �nal state, the decay width is given by Eq. (A.4). The invariant Feynman
amplitude obtained from the diagram in the right panel of Fig. 4.1 is

M =
g2 sin θc

8
[ū(q) γα (1− γ5) v(l)]

−gαβ + kαkβ

M2
W

k2 −M2
W

jβK ,

where GF is the Fermi constant and θc the Cabibbo mixing angle. With |kα| � MW and

jβK = fK k
β one �nds

M =
GF fk sin θc√

2
[ū(q) /k (1− γ5) v(l)] .

The spin-averaged, squared matrix element is obtained as

|M|2 =
G2
F f

2
k sin2 θc
2

8m2
µ(MK − Eµ)(Eµ + |~l |)

= 2G2
F f

2
k sin2 θcm

2
µ (M2

K −m2
µ)

with Eµ = (M2
K+m2

µ)/(2MK) ' 258 MeV.
Together with Eq. (A.4) the resulting total decay width is

Γ(K+ → µ+νµ) =
(GF fK sin θc)

2

8πM3
K

m2
µ (M2

K −m2
µ)2. (4.4)

In order to compare the numerical results with the data of Ref. [207], the di�erential decay
rates have to be folded with the detector e�ciency function D(Eµ). The detector e�ciency
function D(Eµ) is given only graphically in Ref. [207]. Hence, the corresponding coordinates
were extracted and an interpolation was performed. Figure 4.2 shows D as a function of the
kinetic energy Tµ as obtained from Ref. [207]. The di�erential decay rate reads after folding
with D(Eµ):

Γexp(K+ → µ+νµV ) =

∫
dΓ

dEµ
(K+ → µ+νµV )D(Eµ)dEµ. (4.5)
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Figure 4.2: The detector e�ciency function D depending on the kinetic energy Tµ of the
muon as extracted from Ref. [207].
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γ ′(q′)

µ+(l)

νµ(q)

(b)

K+(k)
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Figure 4.3: Feynman diagrams of the decay K+ → µ+νµγ
′.

4.2.2 Decay width of the signal process

The Feynman amplitudes of the considered type of processes are represented by the diagrams
of Fig. 4.3. While in model I the amplitude is given by the sum over all diagrams, in model II
it is assumed that the γ′ couples only to the muon. Therefore, just diagram (a) contributes
in model II and the amplitude simply reads

Mγ′,a =
GF fK εe sin θc√
2
(
(k − q)2 −m2

µ

) ε∗α(q′)

×
[
ū(q)(1 + γ5)

(
−(k − q)2 +mµ/k

)
γαv(l)

]
.

(4.6)

In model I, on the contrary, one has [208]

Mγ′ =
GF εe sin θc√

2
ε∗ρ(q

′) (fK mµ L
ρ −Hρνjν) , (4.7)
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with

Lρ = ū(q)(1 + γ5)

{
2kρ − q′ρ

2k · q′ − q′2 −
2lρ + q/′γρ

2l · q′ + q′2

}
v(l), (4.8)

jν = ū(q)γν(1− γ5)v(l), (4.9)

Hρν = −i V1ε
ρναβq′αkβ −A1(q′ ·W −W ρq′ν)

−A2(q′2gρν − q′ρq′ν)−A4(q′ ·Wq′ρ − q′2W ρ)W ν ,
(4.10)

with W = k − q′, ε0123 = 1, and

A4 =
2fk

M2
K −W 2

FKem(q′2)− 1

q′2
+A3.

FKem(q′2) denotes the electromagnetic form factor of the kaon.
The term proportional to fK is known as inner Bremsstrahlung contribution (IB) and does

not contain any structure dependent e�ects. The contribution proportional to Hρν contains
the structure dependent terms, which are parametrized by the form factors V1, A1, A2, and
A4.
The term proportional to the form factor A4 is neglected in this analysis, since A4 is a

linear combination of the electromagnetic form factor of the K+ and the form factor A3,
which was set equal zero in this analysis following Ref. [208]. It was found numerically that
the in�uence of the contribution from the electromagnetic form factor is below 0.5% within
the range of the considered energies in this analysis and can be neglected. The remaining
form factors are parametrized in agreement with Ref. [209] by

√
2MKA1(q′2, W 2) ≡ −FA

(1− q′2/mρ) (1− W 2/mK1
)
,

√
2MKA2(q′2, W 2) ≡ −R

(1− q′2/mρ) (1− W 2/mK1
)
,

√
2MKV1(q′2, W 2) ≡ −FV

(1− q′2/mρ) (1− W 2/mK∗)
,

(4.11)

with FA = 0.031, R = 0.235, FV = 0.124, mρ = 770 MeV, mK1 = 1270 MeV, and mK∗ =
892 MeV.
One obtains the di�erential decay width by evaluating the general 1→ 3 decay formula

dΓ =
1

2MK

d3~l

(2π)3 2Eµ

d3~q

(2π)3 2Eν

d3~q ′

(2π)3 2Eγ′
(2π)4 δ(4)

(
k − l − q − q′

)
|M|2

in the K+-rest frame, which is equal to the lab frame for an experiment as in Ref. [207].
Using momentum conservation, the integration over the γ′ phase space can be eliminated.
Furthermore, there is no angular dependence on Ωµ and φν . Thus, also these integrals can
be solved trivially. Applying this leads to

dΓ =
1

2MK

1

(2π)5

d3~l

2Eµ

d3~q

2Eν

1

2Eγ′
δ
(
mγ′ − Eµ − Eν − Eγ′

)
|M|2

=
1

2MK

1

(2π)5

4π |~l |2 d|~l |
2Eµ

2π |~q |2 d|~q |d cos θν
2Eν 2Eγ′

δ
(
mγ′ − Eµ − Eν − Eγ′

)
|M|2, (4.12)
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where Eγ′ is �xed by the momenta of the remaining particles. In order to compare to
the experimental data of Ref. [207] it is valuable�although not necessary�to calculate the
di�erential decay width dΓ/(dEµ dEν). Correspondingly, the energy conserving component
of the δ function is used to eliminate the cos θν integration. Exploiting four-momentum
conservation leads to

q′2 = m2
γ′ = (k − l − q)2

⇔ 0 = M2
K + (l + q)2 − 2k · (l + q)−m2

γ′

= M2
K +m2

µ −m2
γ′ + 2l · q − 2MK(Eµ + Eν)

= M2
K +m2

µ −m2
γ′ − 2MK(Eµ + Eν) + 2EµEν − 2|~l |Eν cos θν ,

and thus

cos θν =
M2
K +m2

µ −m2
γ′ + 2EµEν − 2MK(Eµ + Eν)

2Eν |~l |
.

To transform the δ function into an appropriate form, the derivative of its argument with
respect to cos θν has to be calculated, which yields

∂(EK − Eµ − Eν − Eγ′)
∂ cos θν

=
|~l | |~q |
Eγ′

.

Inserting these results into Eq. (4.12), the di�erential decay width for K+ → µ+νµγ
′ in the

K+-rest frame simply reads

dΓ(K+ → µ+νµγ
′)

dEµdEν
=

1

64π3MK

∣∣Mγ′
∣∣2. (4.13)

The total decay width is obtained by integrating Eq. (4.13) over Eµ and Eν within the
kinematically allowed limits. The necessary integration must be performed numerically. For
that purpose the kinematically allowed regions for Eµ and Eν have to be found. Obviously
the minimal energy carried by the muon is Eµ = mµ when the muon is at rest. The muon
carries its maximum energy when the νµ is produced at rest, i.e.,

m2
γ′ = (k − l − q)2

= M2
K +m2

µ − 2MK Eµ + 2 (EµEν − Eν |~l | cos θν)︸ ︷︷ ︸
= 0, since Eν = 0

⇔ Eµ =
M2
K +m2

µ −m2
γ′

2MK
.

The neutrino energy range can be computed by varying the scattering angle θν using −1 ≤
cos θν ≤ +1, if the energy of the muon is �xed. One �nds

±1 =
M2
K +m2

µ −m2
γ′ + 2EµEν − 2MK(Eµ + Eν)

2Eν |~l |

⇔ Eν =
M2
K +m2

µ −m2
γ′ − 2MKEµ

2
(
MK − Eµ ± |~l |

) .
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Thus, the total decay rate for K+ → µ+νµγ
′ is given by

Γ(K+ → µ+νµγ
′) =

∫
dEµdEν

dΓ(K+ → µ+νµγ
′)

dEµdEν
(4.14)

within the kinematical limits

mµ ≤ Eµ ≤
M2
K +m2

µ −m2
γ′

2MK

for the muon energy, and

Emin/max
ν =

M2
K +m2

µ −m2
γ′ − 2MKEµ

2
(
MK − Eµ ± |~l |

) .

for the energy of the neutrino.

The underlying experiment of Ref. [207] was performed at a time, when the nature of the
weak interaction was still unknown. Neither the weak neutral current nor the weak gauge
bosons W± and Z were discovered. Signatures like a neutrino-neutrino interaction or even a
4-neutrino vertex were searched in order to constrain the weak interaction. For this purpose,
the experiment was planned in such a way that the background processes could not a�ect
the data. In the case of the background from the 2-body decay K+ → µ+νµ, the energy of
the muon is �xed at Eµ ' 258 MeV. This corresponds to the kinetic energy Tµ ' 152 MeV.
As Fig. 4.2 shows, only muons in the range of the kinetic energy 60 MeV . Tµ . 110 MeV
were accepted. Hence, the background from this process can be separated kinematically.

The largest background within the SM arises from radiative corrections to the 2-body decay
K → µνµ. In particular, the soft photon contribution, which accounts for not-detectable,
low-energetic photons, is large for a kinetic energy of the muon near the 2-body limit. Due to
the applied experimental cuts discussed above, this region lies well outside the experimental
acceptance. Therefore, this background does not need to be considered.

4.2.3 Numerical results

A limit for the γ′ parameter space can be calculated from the existing data published by
Pang et al in Ref. [207]. An upper limit was found for the ratio Γ(K+ → µ+X)/Γ(K+ →
µ+νµ) < 2 · 10−6 in this experiment. The state X may contain only undetectable, neutral
particles except photons. In the following, the decay rate with applied experimental cuts
normalized to the 2-body decay K+ → µ+νµ will be used:

R̃(mγ′) :=

∫
dΓ
dEµ

(K+ → µ+νµγ
′)D(Eµ)dEµ

Γ(K+ → µ+νµ)
. (4.15)

Since the kinetic mixing factor ε is a global factor of the amplitudes in Eqs. (4.6) and (4.7),
one can rewrite R̃ (mγ′) = ε2 R (mγ′). Thus, an upper bound for allowed values of ε2 is
found as:

ε2 <
2 · 10−6

R(mγ′)
. (4.16)
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Figure 4.4: Ratio of dΓ
dTµ

(K+ → µ+νµγ
′) and Γ(K+ → µ+νµ) for various γ′ masses for perfect

detector e�ciency (left panels) and for �nite detector e�ciency of Ref. [207] (right
panels) at ε2 = 1. Upper panels: kinetic mixing model (model I); lower panels:
model II, where the γ′ only couples to the µ+.

In Fig. 4.4 the di�erential decay rate for the signal process relative to the decay K+ → µ+νµ
is shown calculated within models I and II for the full phase space (left panels) and with
applied corrections due to the given detector acceptance (right panels), according to the
experimental set-up of Ref. [207]. One notices that within the kinetic mixing model (upper
panels of Fig. 4.4) the IB contribution completely dominates the result for the considered γ′

mass parameters. This is illustrated by the comparison between the IB curves and the curves
including the form factor dependence which was evaluated according to Refs. [208,209]. Since
in model II the gauge invariance is not required, the decay rate is enhanced by a factor of
1/m2

γ′ compared to model I.

4.2.4 Exclusion limit

Figure 4.5 shows the existing exclusion limits for the parameter space of the hidden photon
decaying into invisible decay products in comparison with the results of the analysis above.
Limits, which require the decay of the hidden photon into SM particles would appear strongly
weakened in this plot and thus are not shown. Note that the limit from K → π0X [126],
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Figure 4.5: Exclusion limits for invisible decays of the hidden photon: The grey shaded
regions are excluded from the anomalous magnetic moment of the electron and
muon, and the analysis of the decay K → π0X [126]. Note that in comparison to
Fig. 1.19 the limits which require visible decay products are not applicable and
thus are not shown. Dashed-dotted curve: bound calculated in the kinetic mixing
model (model I) for an accuracy of the ratio Γ(K+ → µ+νµγ

′)/Γ(K+ → µ+νµ)
of 10−9. Dashed curve: result for the 1973 data [207] within model II, where the
γ′ only couples to the µ+. Dotted curve: bound calculated in model II for an
assumed improvement of the experimental accuracy by two orders of magnitude
(2 · 10−8).

where X denotes any invisible state, does not apply in model II. In this case the γ′ is coupled
to the charged lepton only. Therefore, in model II only the bound from (g − 2) is relevant.

A possible bound for the kinetic mixing model is represented by the dashed-dotted curve
for an assumed experimental accuracy of the ratio Γ(K+ → µ+νµγ

′)/Γ(K+ → µ+νµ) of 10−9.
The �ight length of the hidden photon is not macroscopic for these parameters. Hence, this
bound does not apply for visible decays. Instead, it is only valid, if the hidden photon decay
occurs invisibly, such as for the decay into Light Dark Matter. For these processes it is
required that a dark-matter particle χ with 2mχ < mγ′ exists.

Based on the old (g−2)e exclusion limit, the 1973 data [207] allow one to slightly improve
the bound for the purely vectorial coupling at low masses and large ε (dashed curve) within
model II. Due to the re�nement of the theoretical determination of (g− 2)e the bound from
rare kaon data is already covered by the new (g − 2)e limit. If in a model of the type II,
the γ′ does not couple to the electron, the bound from (g − 2)e cannot be applied. Thus,
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Figure 4.6: Feynman diagrams of the process K+ → µ+νµl
+l−.

the limit obtained in this work is currently the best in this range. Furthermore, an estimate
is given in Fig. 4.5 in which way the exclusion limits change due to an improvement in
the experimental accuracy of the ratio Γ(K+ → µ+νµγ

′)/Γ(K+ → µ+νµ) by two orders of
magnitude (dotted curve). Obviously, an improvement of the experimental quantities on the
right side of Eq. (4.16) will allow for the exclusion of a large region of the parameter space
up to masses of about 80 MeV since the bound on ε2 is depending linearly on the RHS of
Eq. (4.16). Larger angular and momentum acceptances and a larger rate of stopped K+

compared to [207] for example will improve this quantity signi�cantly. Such an improved
extraction might be achieved by new facilities, as the NA62 experiment at CERN [210] or
rare kaon decay experiments at JPARC [211].

4.3 Constraints for hidden photons decaying into lepton pairs
from rare kaon experiments

In this section decays of the type

P± → l± + νl + l′+l′−,

where P± = π±, K± is a pseudo-scalar meson and l and l′ denote charged leptons, are
studied with respect to their usage as a probe for hidden photons. Due to the larger mass
of the kaon compared to the pion, a much wider range of the hidden photon mass can be
probed. Therefore, the following analysis will concentrate on the decay of aK+. By replacing
the parameters associated with the kaon by those of the pion, one can easily obtain the
expressions for a decaying pion.

In the signal process, the lepton pair is created by the exchange of a hidden photon, whereas
the conversion of a virtual photon into leptons is the SM background. For this purpose, in
particular the decay K+ → µ+νµe

+e− is investigated. The corresponding decay width can
be easily calculated by integrating over the lepton pair variables similarly as demonstrated
in Appendix B.3.2. In a future experiment at least the lepton pair will be detected and its
invariant mass will be reconstructed. Hence, the integration over the lepton pair variables
will be performed explicitly. This procedure allows one to include experimental cuts easily
and to obtain realistic predictions. Such an experiment could be performed at facilities as
JPARC [211].
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4.3.1 Calculation of decay rates

The amplitude of the process K+(k) → µ+(l) + νµ(q) + l+(l+) + l−(l−) derived from the
Feynman diagrams of Fig. 4.6 reads

M =
GF e sin θc√

2
ε∗ρ(q

′) (fK ml L
ρ −Hρνjν) , (4.17)

where l2 = m2
l and

ε∗ρ(q
′) =

e

q′2
[ū(l−)γρv(l+)] (4.18)

for the QED background and

ε∗ρ(q
′) =

ε2e

q′2 −m2
γ′ + imγ′Γγ′

[ū(l−)γρv(l+)] (4.19)

for the hidden photon signal. Furthermore, the quantities Lρ, jν , and Hρν are given in
Eqs. (4.8) to (4.10), respectively. As in Sec. 4.2, the term of the amplitude in Eq. (4.17),
which is proportional to the kaon decay constant fk is referred to as IB contribution, which
is independent of structure dependent e�ects. The SM process with the largest branching
fraction is the decay K+ → µ+νµe

+e−. It was discussed in the literature [208] that the IB
contribution dominates the decay rate over a wide range of invariant masses. As can be
seen from Eq. (4.17), the IB term is proportional to the mass of the lepton l. Therefore,
the decays K+ → e+νee

+e− and K+ → e+νeµ
+µ− are helicity suppressed due to the much

smaller mass of the electron. As consequence, the following discussion will concentrate on
the decay K+ → µ+νµe

+e−.
The di�erential decay rate can be expressed conveniently analogously to Sec. 3.3.1. In

general, the 8-fold di�erential decay rate reads

dΓ =
1

2MK

d3~l

(2π)32El

d3~q

(2π)32Eν

d3 ~l+
(2π)32E+

d3 ~l−
(2π)32E−

(2π)4 δ(4) (k − l − q − l+ − l−) |M|2.

Following the discussion of Sec. 3.3.1, one �nds for the di�erential decay rate

dΓ

dELl dΩL
l dmll dΩ∗q′dΩ∗∗+

=
|~l |L

64MK

1

(2π)8

|~q |∗
√
m2
ll − 4m2

l√
s∗

|M|2, (4.20)

with q′ = l+ + l−. In addition, ∗ and ∗∗ denote the (q+ q′)- and q′-rest frames, respectively,
and the lab frame, where the kaon is at rest, is labeled by L.
To �nd predictions for the discovery potential of future experiments, one is interested

in the decay rate within a certain mass range, which corresponds to the anticipated mass
resolution. Hence, Eq. (4.20) has to be integrated over the allowed phase space within the
mass range δm = mll,max −mll,min:

∆Γ ≡
∫ mll,min

mll,max

dmll
dΓ

dmll
. (4.21)

The SM background decay rate is in the following denoted by ∆Γγ∗ , where ε
∗
ρ entering in

Eq. (4.17) can be found in Eq. (4.18). ∆Γγ′ is the decay rate of the signal process with ε∗ρ
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Figure 4.7: The red solid (blue dashed) curve shows the result for δm = 1 MeV (δm =
5 MeV). Left panel: Calculation of the SM branching fraction from the IB con-
tribution. Right panel: Calculation of the expected branching fraction for the
signal process. Note that this curve is drawn for a continuous hidden photon
mass mγ′ = mll to illustrate the dependence of BRγ′ on mll and δm. In a
future experiment, one expects only a signal within one certain mass bin with
mll,max ≤ mγ′ ≤ mll,min.

given as in Eq. (4.19). Since the structure of the signal process is equal to the one in Fig. B.2,
one can rewrite the ∆Γγ′ as

∆Γγ′(ε
2) =

∆Γγ′(ε̃
2)

ε̃2
× ε2,

following the discussion of Sec. 3.5.1. It is convenient to express the results in terms of
branching fractions normalized to Γ(K+ → µ+νµ) = 0.6355 × Γtot obtained in Eq. (4.4) to
deal with dimensionless quantities. This gives rise to

BRγ∗/γ′ ≡
∆Γγ∗/γ′

Γ(K+ → µ+νµ)
× 0.6355. (4.22)

4.3.2 Numerical results

Since the IB contribution dominates over the structure dependent e�ects, the investigation
of the signal and background process will be restricted to the IB term in the following. It was
found in Refs. [208, 209] that the structure dependent terms contribute less than 3% to the
decay rate for mll . 150 MeV, which is the mass range of interest in this section. However,
to obtain more accurate predictions for mll & 150 MeV, these contributions need to be taken
into account.
As a �rst step, the �ndings of this work are compared with the results of the SM background

calculation of Ref. [208], which are found to be in excellent agreement. Furthermore, the
authors of Ref. [206] obtain the same values for the SM background.
The branching fraction of the background (signal) process is shown in the left (right) panel

of Fig. 4.7. The red solid and blue dashed curves illustrate the results for δm = 1 MeV and
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Figure 4.8: Branching fraction BRγ∗ as a function of the energy of the µ+ per 1 MeV.

δm = 5 MeV, respectively. As expected from the structure of the amplitude of the signal
process, BRγ′ is only slightly a�ected by δm. The region where the hidden photon is on
the mass shell dominates the decay rate. BRγ∗ , on the contrary, scales roughly linearly
with δm. Figure 4.8 exhibits that the branching ratio strongly increases with the energy
of the muon, with a sharp drop at the muon energy of the two-body decay K+ → µ+νµ.
In Sec. 4.2 the kinetic energy of the muon was restricted to the range from 60 MeV to
100 MeV, corresponding to the range 165 MeV . Eµ . 205 MeV. This constraint would
dramatically reduce the decay rate for the signal as well as the background process. The
upper left panel of Fig. 4.4 shows that this constraint would a�ect in particular the region
of low invariant mass mll, where such decay experiments are most competitive. Therefore,
this constraint will not be applied. This will not raise a problem, since in future experiments
usually all decay products except neutrinos are planned to be detected. Hence, there is
no need for this constraint. This allows for a clear separation between the signal and the
reducible background. Predictions for the discovery potential of such an experiment can be
obtained by means of the branching fractions of the signal and background processes. One
can calculate the minimal coupling ε2 analogously to Sec. 3.5.1 as

ε2 = S
ε̃2 × BRγ∗

BRγ′(ε̃2)
. (4.23)

The sensitivity is estimated by following Eq. (3.33) as

S =
Nσ√

BRγ∗ ×NK+

,

with the total number of kaon event NK+ . Figure 4.9 shows the results for the projected
bounds. As before, the grey shaded regions in Fig. 4.9 correspond to existing exclusion limits,
where details can be found in Sec. 1.3.4. The green and red curves illustrate the projected
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Figure 4.9: Projection of the reach of an experiment searching for an excess from hidden
photons in the decay K+ → µ+νµe
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4.4 Summary and conclusions of the section

bounds for a mass resolution δm = 1 MeV and total numbers of kaon events NK+ = 1011

and NK+ = 1012, respectively. The �ndings for δm = 5 MeV and NK+ = 1011 correspond
to the blue curve. It turns out that such an experiment can be used to constrain the low
mass region, where presently �xed-target experiments are not sensitive. The �ndings of
Sec. 4.2 indicate that the bound in the region mγ′ & 150 MeV will be improved by the
structure dependent contribution, which enhances the decay rate strongly. This predicted
behavior [208] was proven experimentally in Ref. [209].

4.4 Summary and conclusions of the section

In this chapter rare kaon decays were investigated as a possibility to observe signals from
hidden photons, which either decay invisibly or visibly. For this purpose, the processes
K+ → µ+νµγ

′ and K+ → µ+νµ(γ∗/γ′ → l+l−) for the invisible and visible hidden photon
decay, respectively, were analyzed. In the �rst case, besides the hidden photon model, other
types of models, in which the γ′ couples to the positively charged muon only, were studied.
In the latter case, a feasibility study for future experiments searching for a bump in the
invariant-mass distribution of the lepton pair caused by an intermediate hidden photon,
was performed. One can �nd exclusion limits for the parameter space of the corresponding
models from the decay rates.
In particular in the case of invisible hidden photon decays, more precise data are necessary.

Improving the accuracy compared to that of the forty year old pioneering work of Ref. [207]
by two or more orders of magnitude would allow the exclusion of a signi�cantly larger part
of the up to now allowed parameter space, which is also containing a considerable part of the
(g− 2)µ welcome band. It was found that future experiments, such as the NA62 experiment
at CERN or the TREK experiment at JPARC, will be ideally suited to probe the low mass
region of the parameter space in case of a visibly decaying hidden photon.
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Summary and conclusions

In this work opportunities were studied to search for new, light gauge bosons, weakly coupled
to the SM, in laboratory experiments at modest energies. In particular, the hidden photon
model was investigated. This model is a U(1) extension of the gauge group of the SM
manifesting itself by a light gauge boson γ′ with a mass mγ′ ∼ O(MeV) and a coupling
strength ε2 = α′/α ∼ O(10−14)−O(10−2) compared to the electromagnetic coupling.
Recently, an intense experimental as well as theoretical program has been started to ex-

plore this SM extension. This is motivated by the fact that the hidden photon can be invoked
to explain existing discrepancies between theoretical predictions and the corresponding ob-
servations in experiments. Such examples are the positron excess in cosmic ray data or the
discrepancy between the theoretical and experimental value for the anomalous magnetic mo-
ment of the muon. To constrain the parameter space of this model, a large e�ort is currently
ongoing, which requires the interplay between theoretical and experimental physics. The ac-
curate predictions within this model are probed by using existing data sets or by performing
new experiments. Some of these, such as the A1 experiment at Mainz, already have taken
data. The search for hidden photons in these experiments requires a precise knowledge of
the signal as well as background processes.
For this purpose the emission of a hidden photon induced by the scattering of a lepton beam

o� a hadronic target, i.e. the reaction e(Z,A) → e(Z,A)γ′, was investigated. This process
was studied from two points of view: The study of the signal process in general as well as
the search for invisible hidden photon signatures. The latter requires the precise knowledge
of the SM background resulting from the Bethe-Heitler process e(Z,A) → e(Z,A)γ. It was
found that the signal cross section is dominated by the region of phase space, where nearly
the entire beam energy is transferred to the hidden photon and its emission occurs into the
beam direction, where the background is comparably low.
As a next step the applicability of the Weizsäcker-Williams (WW) approximation, which is

widely used in the existing literature, was studied. It could be shown that for beam energies
above 5 GeV the shape of the cross section is well reproduced within the WW approximation,
whereas it di�ers signi�cantly for lower beam energies. This result has a large impact for
the actual con�guration of experiments. Current experiments are optimized in such a way
that the cross section for the emission of a hidden photon is as large as possible. This
occurs in the region when the ratio of the γ′ energy to the beam energy reaches 1. The two
methods show considerably large deviations in this region for beam energies not much larger
than the hidden photon mass. Furthermore, the commonly used expressions within the WW
approximation overestimate the cross sections of the process e(Z,A) → e(Z,A)γ′ found by
the analysis of this work. As a consequence, it was pointed out, in which manner the WW
expressions need to be modi�ed to reconcile the approximated results with the ones of this
thesis. This �nding is of high importance, since the studied approximated formulae for the
cross sections are widely used for the study of the reach of future experiments as well as to
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calculate the signal strength. Thus, the approximated cross sections are directly related to
exclusion limits.

A large part of the thesis deals with a study of the reaction e(Z,A)→ e(Z,A)l+l− which
is investigated in �xed-target experiments. In these experiments the lepton pair is detected,
which allows one to search for a signal from hidden photons in the invariant-mass distribution
of the lepton pair. This requires of course an understanding of the corresponding QED
background process. The precise knowledge of the SM background cross section allows one
to �nd realistic predictions for the reach of future experiments and exclusion limits for the
parameter space of hidden photons, in case no signal is seen. Therefore, the calculation
of the integrated cross section within the actual limits of the particular experiments was
discussed. The data taken in the experiment performed by the A1 Collaboration at MAMI
in 2010 were compared with corresponding cross section calculation. It was found that the
theoretical and experimental values are in very good agreement. Moreover, the signal and
background cross sections were studied accounting for the e�ects from the antisymmetrized
diagrams. In addition, the existing limit from the MAMI 2011 experiment was re�ned.

These results are the basis of the �rst comprehensive study of existing and future �xed-
target experiments searching for hidden photons. The actual chosen kinematic settings for
the beam time at MAMI in 2013, which were optimized to be able to probe the largest
region of parameter space possible, rely on the calculations of this work. In addition, for the
future MESA facility, which is under construction at the University of Mainz, a �rst detailed
feasibility study was performed. Besides the experiments at Mainz, �xed-target experiments
are planned at JLAB, which are APEX, HPS, and DarkLight. For two of these experiments,
HPS and DarkLight, detailed simulations were performed. It was found that the existing
predictions and the results of this analysis are in good agreement.

It was shown that these experiments will improve on the knowledge on the parameter space
of hidden photons signi�cantly. In particular, each of the considered experimental programs
will extend the knowledge of the parameter region by at least one order of magnitude.
Furthermore, the investigated experimental setups will be conclusive whether or not a hidden
photon decaying into a purely visible �nal state is at the origin of the discrepancy between
the experimental and theoretical determination of the anomalous magnetic moment of the
muon.

In order to obtain cross sections with a numerical precision better than 1%, these calcu-
lations were performed on GPUs, which are ideally suited to perform the necessary Monte
Carlo integrations. As a byproduct it was found that GPUs and an existing implementation
of the widely used VEGAS integration algorithm on GPUs allow one to enhance the speed
of the numerical evaluations by orders of magnitude at comparably low cost.

Moreover, rare kaon decays were investigated as a possibility to probe the hidden photon
model. For this purpose, reactions which contain invisible as well as visible decays of the
hidden photon were studied. In the �rst case, also additional models were studied. Based on
the same methods as in the previous chapter, bounds for the parameter space and predictions
for future experiments were obtained.

Outlook

Several dedicated experiments searching for hidden photons are currently underway. The
data taken by A1 will be published in the near future. In addition, �rst data have been
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taken at APEX, and HPS will start data taking in 2014. Moreover, it is planned that
�rst data will be taken at MESA from 2017 onwards. Further experimental programs are
currently proposed, such as a new beam-dump experiment at CERN. These programs will
bene�t from the results of the analysis of the Weizsäcker-Williams approximation performed
in this thesis. In addition, the TREK experiment at J-PARC will investigate rare kaon
decays starting in the near future. One of the rare kaon processes studied here can be used
for this search.
In addition, the methods of this thesis allow one to easily obtain predictions for any future

�xed-target experiment, in which the process e + (Z,A) → e + (Z,A) + (γ′/γ∗ → l+l−)
is investigated. To do so, one needs to calculate the cross sections within the expected
acceptances of these experiments requiring only minor adjustments. As an example, this
was already performed within the feasibility study for a future experiment at MESA.
Moreover, one can obtain predictions for the beam spin asymmetry

A =
∆σ(se = +)−∆σ(se = −)

∆σ(se = +) + ∆σ(se = −)
,

where se denotes the spin of the lepton in the initial state, which is a further observable
which can be probed for a signal resulting from hidden photons. The advantage of this
observable results from the fact that A is vanishingly small for the QED background itself.
For this process, a non-vanishing asymmetry can be caused only by the imaginary part of
the hidden photon amplitude. As an example, �rst calculations show that one expects an
asymmetry A ∼= 10−4 for mγ′ = 50 MeV and ε2 = 10−6 depending on the kinematics and
resolution. Furthermore, the asymmetry A can be used to investigate a possible signal in
one of the data sets in more detail. In addition, A allows one to probe models of Light
Dark Matter, in which the decay of the hidden photon into invisible particles which are not
included in the SM is possible. While a bump in the invariant-mass distribution of the SM
decay products will be strongly reduced, the asymmetry will be even larger. However, the
experimental determination of such a small asymmetry is very challenging and requires a
signi�cant e�ort. Hence, this method does not seem to be applicable to probe a wide range
of parameters, but can be used to probe a particular set of parameters mγ′ and ε to very
high accuracy. Of course, further studies are needed to obtain precise predictions.
In addition, other models of new physics can be probed by applying the calculations of

this thesis. For example, the process ep → epµ+µ− can be investigated to shed light on
the proton radius puzzle. By means of this reaction one can measure the proton radius
from µp-scattering without the requirement of a muon beam, e.g. at MAMI. A �rst study
for MAMI indicates that the expected cross sections are far too small to obtain signi�cant
results. However, this process allows one to constrain models in which an additional boson
couples to the muon, which violates lepton universality or parity. The methods of this work
allow one to easily �nd predictions for possible experiments. However, the exact treatment
of radiative corrections is crucial to improve the cross section calculations. Also further
interactions such as Z0 boson exchange need to be included into the amplitude.
Another possibility to utilize the �ndings of this work, is the determination of the spacelike

electromagnetic form factors of the antiproton, which are currently not well known. For this
purpose, the scattering of an antiproton beam o� a nuclear target (A, Z), from which an
electron-positron pair is created, i.e. the process p̄(A, Z) → p(A, Z)e+e−, can be investi-
gated. The necessary theoretical study can be easily performed by applying the methods of
this work.
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Appendix A

Notation and Conventions

A.1 Kinematical quantities

A.1.1 Kinematical triangle function

The kinematical triangle function λ is de�ned as

λ(x, y, z) ≡ (x− y − z)2 − 4yz

=
(
s−

(√
y +
√
z
)2)(

s−
(√
y −√z

)2)
.

(A.1)

The name originates from the fact that the area of a triangle with sides of the length
√
x,√

y, and
√
z is de�ned as A4 = 1/4

√
−λ(x, y, z). Prevalently encountered special cases are:

λ(x, y, y) = x (x− 4y) ,

λ(x, y, 0) = (x− y)2 .

A.1.2 Decay rate for 2-body kinematics

In general, for the decay of an unstable particle of mass m and momentum p into a n-body
�nal state, the decay rate reads

Γ =
1

τ
=

1

2m

1

(2π)3n−4
· In(m2), (A.2)

where

In(m2) =

∫ n∏
i=1

d3pi
2Ei

δ(4)

(
p−

∑
i

pi

)
|〈p1, . . . , pn|M|p〉|2 . (A.3)

The phase space integral is treated in detail in Ref. [174]. Since the invariant matrix element

|Mfi|
2
for a 2-body decay only depends on the Mandelstam variable s = m2, the integral in

In(m2) is independent of |Mfi(s)|
2
. For such a process one �nds

Γ =
λ

1
2 (s, m2

1, m
2
2)

16π s
3
2

|Mfi(s)|
2
. (A.4)
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A.2 Parametrization of the timelike electromagnetic form
factor of the pion

The pion form factor Fπ can be parametrized within the model of Gounaris and Sakurai [212].
They �nd

Fπ, ρ(q
′2) =

m2
ρ + dmρ Γρ

f(q′2)
, (A.5)

where

f(q′2) =
(
m2
ρ − q′2

)
+ Γρ ×

(
m2
ρ

k3
GS(m2

ρ)

)(
k2
GS(q′2)×

(
hGS(q′2)− hGS(m2

ρ)
)

+ k2
GS(m2

ρ)h
′(m2

ρ)
(
m2
ρ − q′2

))
− imρ Γρ

(
kGS(q′2)

kGS(m2
ρ)

)3
(

mρ√
q′2

)

with

kGS(s) =

√
s

4
−mπ± ,

and

hGS(s) =
2

π

kGS(s)√
s
× log

√
s+ 2kGS(s)

2mπ±
,

h′GS(s) = ∂hGS(s)/∂s,

d =
3

π

mπ±

k2
GS(m2

ρ)
× log

mρ + 2kGS(m2
ρ)

2mπ±
+

mρ

2πkGS(m2
ρ)
− m2

π±mρ

πk3
GS(m2

ρ)
.

Furthermore, mρ = 776.3 MeV is the mass of the neutral ρ meson and Γρ = 150.5 MeV is
the total decay width. Since the contribution of ω meson to the pion form factor interferes
with the ρ meson contribution, it is helpful to include this e�ect to the pion form factor. In
addition, the contribution of the ρ′ meson is included in the parametrization as well. For this
purpose, the mass and width of the ρ meson are replaced by the corresponding quantities of
the ω and ρ′ meson in the above expressions, i.e.

mω = 783 MeV, Γω = 8.4 MeV,

mρ′ = 1370 MeV, Γρ′ = 350 MeV.

The pion form factor can be written as linear combination of the three contributions [213�216]

Fπ(q′2) =
Fπ, ρ(q

′2)

1 + 1.95× 10−3

(
1 + 1.95× 10−3Fπ, ω(q′2)

)
− 0.083× Fπ, ρ′(q′2)

1− 0.083
. (A.6)
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A.3 List of frequently used acronyms

Acronym Meaning Explanation

APEX A prime experiment Fixed-target experiment searching for the γ′ at JLAB

D direct term corresponds to the Feynman diagrams of Fig. 3.1 on
page 80

GPU graphics processing unit see Appendix C

HPS Heavy Photon Search Fixed-target experiment searching for the γ′ at JLAB

IB inner bremsstrahlung structure independent part of the amplitude of the an-
alyzed kaon decays, e.g. Eq. (4.7) on page 126

λCDM Standard Model of Cosmol-
ogy

see Sec. 1.1.1

MAMI Mainz Microtron see Secs. 3.4.3 and 3.5.2

MESA Mainz Energy-recovering
Superconducting Accelera-
tor

see Sec. 3.5.3

JLAB Je�erson Lab Thomas Je�erson National Accelerator Facility at New-
port News, USA

SL spacelike spacelike V , e.g. in the Feynman diagrams in the central
panel of Fig. 3.1 on page 80

SM Standard Model of particle
physics

see Sec. 1.1.3

TL timelike timelike V , e.g. in the Feynman diagrams in the upper
panel of Fig. 3.1 on page 80

VVCS doubly virtual Compton
scattering

see the Feynman diagrams in the lower panel of Fig. 3.1
on page 80

WW Weizsäcker�Williams ap-
proximation

see Sec. 2.3

X exchange term corresponds to the Feynman diagrams of Fig. 3.2 on
page 81
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Auxiliary calculations

B.1 Approximation of the γ′ to direct timelike γ ratio
dσγ′
dσγ∗

In this Section, the derivation of Eq. (19) of Ref. [140] is presented, which allows one to
easily relate the cross section of γ′ production in the reaction

e+ (Z, A)→ e+ (Z, A) + (γ′ → l+l−)

to the direct TL background cross section of the process

e+ (Z, A)→ e+ (Z, A) + (γ∗ → l+l−)

de�ned in Eq. (3.27a). The cross sections of these two processes are nearly identical and only
di�er in the propagator of the intermediate vector boson. Within the small mass window,
where the pure γ′ production cross section is not negligible, which is the region where the
denominator of the γ′ propagator is approximating zero, it is su�cient to compute the
integrals over the invariant mass of the lepton pair. All other quantities entering in the cross
section can be considered as constants within this small region. These constants will cancel
each other when the ratio of the two cross sections is taken. Furthermore, one can exploit
that due to the very narrow width, the squared propagator in the signal cross sections in
Eqs. (3.25) and (3.26) can be rewritten by using the de�nition of the Dirac δ distribution
δε(x) = 1

π
ε

x2+ε2
for su�cient small ε, which leads to

lim
mγ′Γγ′→0

(
1

(q′2 −m2
γ′)

2 +m2
γ′Γ

2
γ′

)
→ π

mγ′Γγ′
δ(mγ′Γγ′ )

(q′2 −m2
γ′). (B.1)

Since the total decay width of the hidden photon Γγ′ given in Eq. (1.34) is by several orders
of magnitude smaller than the γ′ mass in the non-excluded regions of the parameter space,
the approximate treatment by use of the Dirac δ function is possible.
Starting with the integral of the squared γ′ propagator with q′2 = (l+ + l−)2 leads to∫

dq′2
∣∣∣∣∣ ε2

q′2 −m2
γ′ + imγ′Γγ′

∣∣∣∣∣
2

=

∫
d(q′2 −mγ′)

2

∣∣∣∣∣ ε2

(q′2 −m2
γ′) + imγ′Γγ′

∣∣∣∣∣
2

=

∫
d(q′2 −m2

γ′)
ε4

(q′2 −m2
γ′)

2 +m2
γ′Γ

2
γ′

=

∫
d(q′2 −m2

γ′)
ε4π

mγ′Γγ′
δ(q′2 −m2

γ′)

=
ε4 π

mγ′Γγ′
(B.2)
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The authors of Ref. [140] parametrize this width by the partial decay width into an electron-
positron pair Γγ′→e+e− derived in Eq. (1.31) and the factorNeff , which accounts for additional
degrees of freedom within the decay of the hidden photon into SM particles. The e�ective
degrees of freedom can be parametrized by

Neff =
Γγ′

Γγ′→e+e−
= 1 +

Γγ′→µ+µ−

Γγ′→e+e−
(1 +R(mγ′)),

where as in Sec. 1.3.3 R is the SM ratio σ(e+e− → hadrons)/σ(e+e− → µ+µ−) of the hadron
to muon production cross sections. Therefore, the total γ′ width reads

Γγ′ = Γγ′→e+e− ×Neff

=
αε2

3m2
γ′

√
m2
γ′ − 4m2

l (m2
γ′ + 2m2

l )×Neff =
ε2α

3
mγ′ ×Neff ,

where in the last step Eq. (1.32) was used.

Inserting these expressions for Γγ′ into Eq. (B.2), one �nds

∫
dq′2

∣∣∣∣∣ ε2

q′2 −m2
γ′ + imγ′Γγ′

∣∣∣∣∣
2

=
3π

Neff

ε2

α

mγ′

(m2
γ′ + 2m2

e)
√
m2
γ′ − 4m2

e

(B.3)

' 3π

Neff

ε2

α

1

m2
γ′
, (B.4)

where the last step is only possible for mγ′ � me.

The result for the corresponding Bethe-Heitler process is obtained by integrating the vir-
tual photon propagator within the limits of one mass bin, which is taken in this calculation
as the interval [

mγ′ −
δm

2
,mγ′ +

δm

2

]
,

where δm is the mass resolution of the experiment, which is typically much less than mγ′ .
One �nds ∫ (mγ′+

δm
2

)2

(mγ′− δm2 )2

dq′2
1

q′4
=

1

(mγ′ − δm
2 )2
− 1

(mγ′ +
δm
2 )2

=
2 δmmγ′

(m2
γ′ − δm2

4 )2
(B.5)

' 2 δm

m3
γ′
, (B.6)

where for the last step δm� mγ′ is required.

From the ratio of Eqs. (B.3) and (B.5) one obtains

dσγ′

dσTL
D, γ∗

=
3π

Neff

ε2

α

(
m2
γ′ − δm2/4

)2

δm (m2
γ′ + 2m2

e)
√
m2
γ′ − 4m2

e

. (B.7)
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Taking the ratio of Eqs. (B.4) and (B.6) �nally leads to the approximate expression

dσγ′

dσTL
D, γ∗

' 3π

2Neff

ε2

α

mγ′

δm
, (B.8)

which is valid for ml � mγ′ and δm� mγ′ .

B.2 Detector coordinates

z Detector

φ0x

Detector window

δθ

δφ

y

x

Figure B.1: De�nition of angles in detector coordinates: The detector is centered at the
scattering angle φ0 measured with respect to the z-axis. The size of the detector
window is parametrized by the horizontal and vertical angles, the scattering
angle δφ and the out-of-plane angle δθ, each measured from the center of the
detector. Note that the detector is assumed to be centered in the same plane as
the beam, i.e. for the central out-of-plane angle one has θ0 = 0◦.

To parametrize the angular acceptances of detectors in terms of two angles, which describe
the opening window of the detector, the so-called Cartesian detector coordinates are used. A
sketch of a detector and the de�nition of the angles describing its acceptances can be found
in Fig. B.1. In these coordinates the detector is centered at the scattering angle φ0 measured
with respect to the z-axis. Furthermore, it is assumed that the detector is centered in the
same plane as the beam, i.e. for the central out-of-plane angle one has θ0 = 0◦. The size
of the detector window is parametrized by the horizontal and vertical angles, where δφ is
the deviation from the horizontal scattering angle and δθ is the deviation from the vertical
out-of-plane angle, each measured from the center of the detector.

The lab frame three-momenta in terms of coordinates directly related to the detector
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geometry can be parametrized as

~l± =
|~l± |√

1 + tan2 δθ + tan2 δφ

 tan δφ cosφ0 + sinφ0

tan δθ
cosφ0 − tan δφ sinφ0

 . (B.9)

For φ0 = 0◦ it becomes clear that the angles δφ and δθ are directly related to the Cartesian
coordinates x and y, respectively. Integrating over the angles δφ and δθ within the limits of
the experimental acceptances leads to the cross section ∆σ.
To account for this geometry, the cross section has to be multiplied by a Jacobian, which

relates the momentum components of a momentum ~p in Cartesian coordinates px, py and pz
to the detector coordinates, i.e.

dpx dpy dpz = J(δφ, δθ) |~p |2 d|~p | dδφ dδθ,

where

J(δφ, δθ) =

∣∣∣∣∣ 1

cos2 δφ cos2 δθ (1 + tan2 δθ + tan2 δφ)
3/2

∣∣∣∣∣ . (B.10)

B.3 Factorization of lepton pair production

B.3.1 Factorization of matrix element and phase space

p

p′

q′

l+

l−

Figure B.2: Sketch of lepton pair production by exchange of a virtual vector boson.

In this Section expressions for the analytical integration over the variables of a lepton
pair, which is created from the annihilation of a timelike vector boson, are derived. This
allows one to relate the cross section or decay width for lepton pair production from hidden
photon bremsstrahlung and the emission of a hidden photon easily. The underlying process
is sketched in Fig. B.2. Let dσ denote either the di�erential decay width or the di�erential
cross section, if the initial state consists of one particle with momentum p or two particles
with momenta p1 and p2, p = p1 + p2, respectively. The label s refers to any spin of the
initial state particles, i.e. s is the spin of the decaying particle in case of the calculation of a
decay width and s = (s1, s2) for the cross section calculation, where s1 and s2 are the spins
of the two initial state particles. The �nal state consists of N particles, where the lepton and
antilepton of the created pair carry the momenta l− and l+, respectively, and q

′ = l+ + l− is
the momentum of the intermediate vector state. The sum of the momenta of the remaining

152



B.3 Factorization of lepton pair production

N − 2 particles is p′ =
∑N−2

i1
p′i = p− q′. Analogous to the initial state, s′ = (s′1, . . . , s

′
N−2)

refers to the (N − 2)-tuple of spins of the unspeci�ed �nal state particles. For the discussion
of this Section there is no need to specify their properties in more detail.
For any process as shown in Fig. B.2 with I particles in the initial state and N �nal state

particles, the Feynman amplitude can in general be decomposed as

MI→N =Mµ
0Dµν l

ν ,

where

Dµν = (−εe)
−gµν +

q′µq
′
ν

q′2

q′2 −m2
γ′ + imγ′Γγ′

for an intermediate hidden photon and

Dµν = (−e)−gµν
q′2

for a virtual ordinary photon, and lν = [ū(l−, s−)γνv(l+, s+)] is the electromagnetic current
of the lepton pair. Due to gauge invariance of the electromagnetic current one has q′ν l

ν = 0.
The spin averaged, squared matrix element can be written as

|M|2I→N =
∑
s

∑
s′

Mµ
0M∗ν0 DµαD

∗
νβ︸ ︷︷ ︸

=:|M0,αβ|2

∑
s+, s−

lαl∗β. (B.11)

The Lorentz invariant phase space for a process with I and N particles in the initial and
�nal state, respectively, reads

dLipsI→N =
1

f(I)
ΠN
i=1

d3~pi
′

(2π)32p′0i
(2π)4δ(4)

(
p−

N∑
i=1

p′i

)
,

where f(I = 1) = 2p2 and f(I = 2) = 4
√

(p1 · p2)2 − p2
1p

2
2. The phase space of the considered

type of processes can always be factorized as

dLipsI→N =
1

f(I)
ΠN−2
i=1

d3~pi
′

(2π)32p′0i

d3 ~l+
(2π)32E+

d3 ~l−
(2π)32E−

(2π)4δ(4)
(
q′ − l+ − l−

)
,

where q′ = p− p′ was used. Therefore, one �nds

dσI→N = dLipsI→N |M|2I→N

=
1

f(I)
ΠN−2
i=1

d3~pi
′

(2π)32p′0i
|M0,αβ|2

× d3 ~l+
(2π)32E+

d3 ~l−
(2π)32E−

(2π)4δ(4)
(
q′ − l+ − l−

) ∑
s+, s−

lαl∗β

=
1

f(I)
ΠN−2
i=1

d3~pi
′

(2π)32p′0i
|M0,αβ|2 ×

1

(2π)2
× d3 ~l+

2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

) ∑
s+, s−

lαl∗β.

(B.12)
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B.3.2 Analytical integration over the variables of the lepton pair

As the next step, the integration over the variables of the lepton pair particles will be
performed analytically. One �nds

Lαβ =

∫
d3 ~l+
2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

) ∑
s+, s−

lαl∗β

=

∫
d3 ~l+
2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

)
Tr
(

(l/− +ml)γ
α(l/+ −ml)γ

β
)

=

∫
d3 ~l+
2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

)
4
(
lα+l

β
− + lα−l

β
+ − gαβ(l− · l+ +m2

l )
)
,

where m2
l = l2+ = l2− is the mass of the lepton pair particles. Since Lαβ may not depend on

the four-momenta l+ and l− or any of their components after the integration and the Lorentz
structure needs to be conserved, the result must be of the form

Lαβ = agαβ + b
q′αq′β

q′2
.

The evaluation of the integral is performed in the rest frame of the lepton pair, i.e.

~l+ = −~l− ⇒ E+ = E−.

In this frame one has ~q ′ = ~0 and thus, q′2 = (q′0)2, which leads to E+ = q′2/2 and |~l+ | =√
q′2−4m2

l/2. For the four-vector scalar products one has l+ · l− = 1/2(q′2− 2m2
l ), and q

′ · l− =

q′ · l+ = q′2/2. In the following the invariant mass of the lepton pair is denoted by mll =
√
q′2.

Contracting Lαβ = agαβ + b(q′αq′β)/q′2 with the metric tensor gαβ leads to

4a+ b =

∫
d3 ~l+
2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

)
4
(
2 l+ · l− − 4 l+ · l− − 4m2

l

)
=

∫
d3 ~l+
2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

)
(−4)

(
m2
ll + 2m2

l

)
=

∫
d3 ~l+

4E+E−
δ
(
q′0 − E+ − E−

)
(−4)

(
m2
ll + 2m2

l

)
=

∫ |~l+ |dE+dΩ+

4E−

1

2
δ

(
E+ −

q′0

2

)
(−4)

(
m2
ll + 2m2

l

)
=

∫
dΩ+

(
− |

~ll |
2E+

)(
m2
ll + 2m2

l

)
= −1

2

√
m2
ll − 4m2

l

mll

(
m2
ll + 2m2

l

)
Ω+.

The contraction of Lαβ = agαβ + b(q′αq′β)/q′2 with (q′αq′β) yields

(a+ b)q′2 = 0,
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since Lαβ is gauge invariant. Hence, one has

a = −b,

and

a = −1

6

√
m2
ll − 4m2

l

mll

(
m2
ll + 2m2

l

)
Ω+.

Thus, the integral over the variables of the lepton pair gives

Lαβ =
Ω

cml+l−
+

6

√
m2
ll − 4m2

l

mll

(
m2
ll + 2m2

l

)(
−gαβ +

q′αq′β

m2
ll

)
, (B.13)

and for Ω
cml+l−
+ = 4π

Lαβ =
2π

3

√
m2
ll − 4m2

l

mll

(
m2
ll + 2m2

l

)(
−gαβ +

q′αq′β

m2
ll

)
.

B.3.3 Relation between the cross sections of the processes
I → (N − 2) + (γ′∗ → l+l−) and I → (N − 2) + γ′

To obtain a relation between the cross sections for the processes of lepton pair production by
the exchange of an intermediate hidden photon I → (N − 2) + (γ′∗ → l+l−) and real hidden
photon emission I → (N − 2) + γ′, it is helpful to insert a unity into the cross section for

lepton pair production dσγ
′→l+l−
I→N written in Eq. (B.12) in terms of

1 =

∫
dq′4δ(4)(q′ − (p− p′)) =

∫
dq′2

2π

d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′),

which allows one to rewrite Eq. (B.12) as

dσγ
′→l+l−
I→N =

1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′)dq

′2

2π
|M0,αβ|2

× 1

(2π)2
× d3 ~l+

2E+

d3 ~l−
2E−

δ(4)
(
q′ − l+ − l−

) ∑
s+, s−

lαl∗β.

After applying the analytical integration over the lepton pair variables one �nds

dσγ
′→l+l−
I→N =

1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′)dq

′2

2π
|M0,αβ|2

× 1

6π

√
m2
ll − 4m2

l

mll

(
m2
ll + 2m2

l

)(
−gαβ +

q′αq′β

m2
ll

)
. (B.14)

Because in the hidden photon model gauge invariance needs to be ful�lled, the terms ∝ q′αq′β
vanish after contracting with |M0,αβ|2. Rewriting the propagators in the squared amplitude
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of Eq. (B.11) as

gαβDµαD
∗
νβ = (εe)2gµαg

α
ν

1

q′2 −mγ′ + imγ′Γγ′

1

q′2 −mγ′ − imγ′Γγ′

= (εe)2gµν
1(

q′2 −m2
γ′

)2
−m2

γ′Γ
2
γ′

,

allows one to use Eq. (B.1) to perform the q′2-integration easily by approximating this
structure by a Dirac δ-distribution. Within this work it was proven numerically that this
approximation is valid to high accuracy for the allowed parameter space. Therefore, one
�nds from Eq. (B.14)

dσγ
′→l+l−
I→N =

1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′) ε2e2

2mγ′Γγ′

× 1

6π

√
m2
γ′ − 4m2

l

mγ′

(
m2
γ′ + 2m2

l

)∑
s

∑
s′

Mµ
0M∗ν0 (−gµν), (B.15)

where Eq. (B.4) was used and after performing the integration over the invariant mass of
the lepton pair one has q′2 = m2

γ′ . Identifying terms in Eq. (B.15) with the decay width of
a hidden photon into a lepton antilepton pair given in Eq. (1.31) leads to

dσγ
′→l+l−
I→N =

1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′)Γγ′→l+l−

Γγ′
|Mµν

0 |
2
(−gµν).

(B.16)

The cross section for the process of hidden photon emission can be obtained analogously to
the derivation for the lepton pair production process. One �nds

dσγ
′

I→N−1 =
1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′)

×
∑
s

∑
s′

∑
λ, λ′

Mµ
0ε
∗
µ(~q ′, λ)M∗ν0 εν(~q ′, λ′),

where εµ(~q ′, λ) denotes the polarization vector of a hidden photon with momentum q′ and
polarization λ. The sum over polarization states can be replaced using∑

λ, λ′

ε∗µ(~q ′, λ)εν(~q ′, λ′) = −gµν +
q′µq
′
ν

m2
γ′
.

Due to gauge invariance only the term proportional to the metric tensor contributes and the
cross section can be rewritten as

dσγ
′

I→N−1 =
1

f(I)
ΠN−2
i=1

(
d3~pi

′

(2π)32p′0i

)
d3~q ′

(2π)32q′0
(2π)4δ(4)(p− p′ − q′)|Mµν

0 |
2
(−gµν). (B.17)

By comparison of Eqs. (B.16) and (B.17) one easily sees

dσγ
′→l+l−
I→N = dσγ

′

I→N−1 ×
Γγ′→l+l−

Γγ′
, (B.18)

after the integration over the variables of the lepton pair has been performed.
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Appendix C

Calculations on the GPU

In this Section a description is given, how programming code which is written to be operated
on the ordinary CPU can be ported to the execution on graphics processing units. For
this purpose, a short introduction to the NVIDIA CUDA programming framework is given.
Furthermore, the most relevant steps are outlined, which were necessary for the porting to
graphics processing units.

C.1 The CUDA programming model

Graphics processing units (GPUs) were developed for the fast creation of output for computer
displays. While in the 1980s, when the use of personal computers started, GPUs were only
utilized to link the text based graphical output of operating systems to the display, nowadays
the demand on GPUs is much larger. Due to the high demand placed on the appearance
of computer graphics, the rendering of three dimensional moving images is every day work
of GPUs. The calculations necessary for that require a high level of parallelization and
GPUs ful�ll much more tasks than only linking to the display. Therefore, one nowadays also
speaks of �General Purpose Graphics Processing Units (GPGPU).�1 This fact can be used
for calculations of elementary particle physics.

It was shown in Ref. [187] that GPUs are ideally suited for the calculation of Monte Carlo
integrals. It is discussed that for the calculation of integrated cross sections or samples of

events, the most time consuming step is the calculation of the spin-summed amplitude |M|2.
Therefore, the calculation of |M|2 was performed in parallel in Ref. [187], which is exactly
the need of parallelization for this work. It is further pointed out that the performance on
the GPU is getting worse, the more diagrams are contained in the amplitude and the more
complicated the amplitude is.

In order to perform these calculations on the GPU, one has to understand the di�erences
between GPUs and the well-known central processing units (CPUs). Since CPUs are designed
to perform any kind of operation, programming on them is straightforward. For GPUs
the situation is di�erent: One has to understand that these devices are developed for the
execution of particular operations as fast as possible. This is achieved by the aforementioned
large number of parallel computing units, which in contrast to CPUs are specialized for these
operations. Therefore, code for GPUs must be optimized to account for this structure. In
Table C.1 selected properties of the NVIDIA �Tesla M 2070� GPU are shown, which was
employed for the calculations of this work. These properties are utilized to point out the
di�erences between CPUs and GPUs, which in the following are referred to as host and
device, respectively.

1In the following the terms GPGPU and GPU are used equivalently.
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Property Number

Number of streaming multiprocessors 14
Number of cores per multiprocessors 32
Number of cores 448
GPU Clock Speed 1.15 GHz
Memory Clock rate 1.57 GHz
Total amount of global memory 6 GB
Total amount of constant memory 64 kB
Total amount of shared memory per thread block 48 kB
Total amount of registers per thread block 32768
Maximum number of threads per block 1024

Table C.1: Parameters of the �Tesla M 2070.�

A program on the CPU is run within one threads or several threads, if the code is suited
for parallel execution. Each of the threads is executed on a single CPU core independently.
The memory is assigned automatically, whereas one has to take care that the program is
thread safe. Thread safe means that variables are only modi�ed by the thread they belong
to.

A CUDA program in general is executed in �blocks� of threads, which are independently
run on the multiprocessors. The number of blocks is shared between the multiprocessors.
Table C.1 reveals that the used device o�ers 14 of the multiprocessors, where each of them
consists of 32 cores. The threads contained in the block are grouped by the multiprocessors
into so-called �warps,� where 32 threads are contained in a warp. The execution of each warp
is scheduled independently of the other warps. However, maybe the most important feature
one has to take care of, is that each warp executes one common operation at the same time.
This means that the best performance can only be reached, if all 32 threads perform the
same operations. If the execution diverges, e.g. due to a particular condition the execution
of some threads di�er, the distinct paths are executed one after the other.

From Table C.1 one can see that di�erent kinds of memory are existing on GPUs. Of
course, also on CPUs di�erent kinds of memory are available, which will not be discussed
here in detail. In general, a variable is stored within a register. If the number of registers is

not su�cient to store all variables, which is usually the case for the calculation of |M|2, the
so-called local memory is used to store variables, which is much slower.

Furthermore, the device cannot access the host memory directly and vice versa. Hence,
the data necessary for the operations on the device have to be copied from the host too
the device and back. While for rendering movies or textures the process of copying is a
bottleneck, in this work, where only a small amount of data needs to be copied, one does not
have to take it into account. However, one needs to understand the usage of the di�erent
kinds of memory to obtain the best performance.

For the numerical calculations in this work, libraries and parts of the code developed by
the authors of Refs. [175, 217] were used. Based on this code, which was also applied to
check the results for consistency, the programs for the calculations were written. Since the
original code was developed for the usage on CPUs, large parts of it had to be rewritten for
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Memory Speed Lifetime Writing Reading

register fastest Thread D D
local slow Thread D D
shared fast Block D D
constant fast Program H D

Table C.2: Di�erent kinds of memory on CUDA enabled GPUs: Access from the host (GPU
device) is denoted by H (D).

the execution on GPUs.

In Appendix C.2 it is described, in which way the employed code had to be modi�ed to
be executed on GPUs. Selected optimizations, in which properties of physics are applied in
order to obtain a more e�cient code for the program, are discussed in Appendix C.3

C.2 Porting from CPU to GPU

Although it is possible to port a code written for the execution on CPUs to GPUs, it is
worthwhile spending some time to understand the di�erent types of memories on GPUs and
their properties. Therefore, a short introduction on this topic is given.

In Table C.2 the most important properties of the di�erent types of memory on GPUs are
summarized. Registers are the fastest type of memory. They can be accessed by the thread
on the device, by which they were created. Unfortunately, for the Tesla M 2070 GPU, with
properties shown in Table C.1, only 63 registers per thread are available, consequently for
the calculation of cross sections one must make use of the slower memory in any way.

Since the shared memory resides on the chip itself as well as the Registers, this type of
memory should be preferred as next choice. The shared memory can be accessed by all
threads in a block. As a consequence, variables stored in it will be modi�ed, as long as
they are not de�ned in a thread safe way. In this work, the shared memory was used to
store variables, which are not modi�ed during the program execution, such as initial state
quantities. Hence, it does not require that the de�nition of variables in the code developed
for the CPU needs to be changed. As a consequence this means that all other variables
de�ned on the device must be stored in the slower local memory, since the device cannot
write data into the fast constant memory.

To enhance the speed of the Local memory access, it is employed that on GPUs as the one
applied in this work the shared memory can be reduced to allow for improved caching of the
local memory. The constant memory is used to store initial values as physical constants or
input variables which are not changed as the hidden photon mass.

The only way to reduce the amount of local memory needed is reducing the number of
necessary operations for calculating the cross section. Selected optimizations are presented
in Appendix C.3.

Another complication entering is the fact that with the GPU devices available for this
work, not more than around 32 000 registers may be used in total (see Table C.1). This
limits the length of a program strictly, which makes it crucial to perform as few operations
as possible. While on CPUs programs can be easily written to choose from di�erent ways of
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operation, e.g. the choice of di�erent contributions to the amplitude, this is not preferable
for GPUs. Therefore, only the necessary parts of the original code have been calculated on
the GPU. As a consequence, instead of obtaining one program in which the path of execution
is chosen during the execution, several, highly specialized programs were created. The time
required to build these executables is vanishingly small compared to the time which can be
saved by performing the numerical integration.
To account for the fact that only one common operation is performed by a warp at the same

time, one has to calculate the cross section which o�ers the best coverage of the integration
volume. One needs to �nd the cross section parametrization, in which only small regions of
the phase space have to be excluded due to unphysical solutions or experimental cuts. The
cross section was calculated in terms of the recursive variables as in Sec. 3.3.1 or in terms
of detector coordinates which is presented in Sec. 3.3.2. The �rst method is well suited
for the calculation of total cross sections, where the integration is performed over the full
phase space. The latter one is necessary to obtain a high performance for the case that the
acceptance integrated cross section is calculated within the particular kinematical limits of
experiments as done in Secs. 3.4 and 3.5.
In this study, the e�ciency of the calculation of the acceptance integrated cross section

was compared for these two methods. It was found that the calculation of the cross section in
detector coordinates leads to a much larger performance on the GPU. Since the parametriza-
tion in terms of the coordinates is directly related to the detector geometry only those regions
of the phase space are taken into account for the numerical integration, which are within the
acceptance of the experiment. On the contrary, for the other method the integration regime
needs to be restricted manually to the experimentally allowed region, which is much less
accurate. Therefore, although only physically allowed events are generated, most of these
have to be rejected, since they are not allowed by the experiment. Thus, in most cases dif-
ferent execution paths have to be followed and the e�ciency on the GPU drops. Of course,
a fraction of the generated events which is allowed by the detector geometry corresponds to
unphysical con�gurations, but these are much less than the rejected events which are not
allowed by the geometry. It turned out that for the experiments at MAMI, around 90 % of
the events generated by the second method are within the regions allowed by the physical
as well as the geometry constraints and only around 25 % for the �rst one.

C.3 Optimizations by physical relations

In this Section selected examples of optimization steps resulting from rewriting the ex-
pressions into a more appropriate form for the fast numerical evaluation are introduced.
Moreover, optimizations are presented, which make use of physical relations to simplify the
expressions, such as the Dirac equation. To make sure that no mistakes enter during the opti-
mization process, the results of the improved code and of the primary version were compared
after each step.
In the original libraries, the Feynman slash operator

/p =

3∑
µ=0

γµpµ (C.1)

is calculated by performing the multiplications and summation in Eq. (C.1) with every call
of the function /p. By this method the de�nition of /p does not depend on the actual choice of
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the representation of the Dirac matrices. As a consequence, this operator does not need to be
modi�ed, if the Dirac matrix representation is changed. This generality comes together with
the cost of more than 60 necessary operations each time /p is called. The only representation
of Dirac matrices used is the one as de�ned in Ref. [198]. The result of Eq. (C.1) can be
obtained analytically. One �nds

/p =


p0 0 −p3 −p1 + ip2

0 p0 −p1 − ip2 p3

p3 p1 − ip2 −p0 0
p1 + ip2 −p3 0 −p0

 . (C.2)

Obviously, signi�cantly less operations are needed. In particular the number of multiplica-
tions of complex numbers is strongly reduced. Furthermore, the operator (/p q/) was de�ned in
an analogous way, which allows one to slightly reduce the number of performed operations.
Another reduction of operations is illustrated by use of the following example. The

straightforward calculation of an amplitude as in Eq. (3.5) is to compute

MTL
γ∗ ∝

3∑
µ=0

(
3∑

α=0

[
JµN Iµα jαpair

])
(C.3)

in the order as emphasized by the parentheses. In the original version of the code this was
done by evaluating the quantity in the squared brackets within two nested for loops for the
summations over µ and α. Since in general the tensor Iµα is a product of Dirac matrices the
e�ort for this calculation is large, for example in case of Eq. (3.5) it is a structure containing
products of 3 of them. Therefore, in this work the currents JµN and jαpair are treated as four-
vectors, which can be contracted with the γ-matrices contained in Iµα. For this example one
�nds

MTL
γ∗ ∝ ue(k′, s′k)

(
(γ · JN )

/k − q/′ +m

(k − q′)2 −m2
(γ · jpair)

+ (γ · jpair) /k′ + q/′ +m

(k′ + q′)2 −m2
(γ · JN )

)
ue(k, sk).

(C.4)

The great simpli�cation that the most complicated structure Iµα has to be calculated only
once because the sums over µ and α can be dropped, comes at the expense of a worse
readability of the code.
By means of the anti-commutation relations for Dirac matrices [183] and the Dirac equa-

tion, one can rewrite Eq. (C.4):

ue(k
′, s′k)

(
(γ · JN )

2k · jpair − (γ · jpair)/k − q/′(γ · jpair) +m(γ · jpair)
(k − q′)2 −m2

+
2k′ · jpair − /k′(γ · jpair) + (γ · jpair)q/′ + (γ · jpair)m

(k′ + q′)2 −m2
(γ · JN )

)
ue(k, sk)

= ue(k
′, s′k)

(
(γ · JN )

(
2k · jpair

(k − q′)2 −m2
+

2k′ · jpair
(k′ + q′)2 −m2

)

− (γ · JN )q/′(γ · jpair)
(k − q′)2 −m2

+
(γ · jpair)q/′(γ · JN )

(k′ + q′)2 −m2

)
ue(k, sk).

(C.5)
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Although at �rst glance this expression looks more complicated, in fact it is easier to compute
numerically than Eq. (C.4) and less registers are needed.
For protons one has to take their electromagnetic structure parametrized by the two form

factors F1 and F2 into account, which means that for the electromagnetic proton current one
has

uN (p′, s′p)ΓµuN (p, sp) = uN (p′, s′p)
(
F1(Q2) γµ + F2(Q2) i σµν

qν

2M

)
uN (p, sp),

where q = (p′− p), Q2 = −q2 > 0, and σµν = i/2 (γµγν − γνγµ). In this representation, each
call of the proton vertex requires the evaluation of a product of Dirac matrices. One can get
rid of the tensor σµν by using the Gordon identity

uN (p′, s′p)γ
µuN (p, sp) = uN (p′, s′p)

(
(p+ p′)µ

2M
+
iσµνqν

2M

)
uN (p, sp).

Hence, one �nds

Γµ(Q2) = GM (Q2)γµ −
(p+ p′)µ

2M
F2(Q2),

where GM = F1 +F2 is the magnetic Sachs form factor de�ned in Eq. (1.19). Note that this
transformation is only possible, if both fermion lines of the vertex correspond to particles
on the mass shell. On this account, one cannot simplify the Compton tensor Hµα appearing
e.g. in Eqs. (3.2) and (3.7) in this way.
In addition, since the electromagnetic interaction is parity conserving, one of the spin-

summations needed to calculate |M|2 can be omitted. This was used, as far as no polarization
observables are taken into account.
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