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vorgelegt von

STEPHAN SCHMITZ
GEBOREN IN AACHEN

MAINZ IM JANUAR 2014



1

Erster Gutachter:
Zweiter Gutachter:
Tag der Promotion:





Contents

Abstract 5

Zusammenfassung 7

Introduction 9

Notation 15

Chapter 1. The First Representation Theorem 17
1.1. Associated operators and represented forms 17
1.2. The general case 18
1.3. Counterexamples 22
1.4. Closedness of indefinite forms 23
1.5. The off-diagonal case 24
1.6. Computation of the kernel 27

Chapter 2. The Second Representation Theorem 31
2.1. The Second Representation Theorem 31
2.2. The domain stability condition 33

Chapter 3. Representation Theorems for H with unbounded inverse 41
3.1. The First Representation Theorem 41
3.2. The Second Representation Theorem 42

Chapter 4. Graph subspaces, Riccati equations and block diagonalisation 45
4.1. Invariant and reducing graph subspaces for operators 46
4.2. Operator Riccati equation and block diagonalisation 49
4.3. Operator Riccati equation and reducing graph subspaces 50
4.4. Sylvester equations, alternative and unitary diagonalisation 53

Chapter 5. The Stokes operator 57
5.1. Definition of the Stokes operator 57
5.2. The kernel of the Stokes operator 60

Chapter 6. Subspace perturbation and solutions to the form Riccati equation 65
6.1. Estimate of the subspace perturbation 65
6.2. Reducing subspaces for forms 71
6.3. Graph subspaces and solutions to form Riccati equations 74
6.4. Uniqueness of solutions 83

Chapter 7. Diagonalisation of representing operators 87
7.1. Preliminaries 87
7.2. Properties of the Laplacian 92
7.3. Numerical ranges of forms 94
7.4. The positive part of the Stokes operator 96
7.5. The negative part of the Stokes operator 97

3



4 CONTENTS

Chapter 8. The indefinite operator div h(·) grad in the Dirichlet case 101
8.1. Motivation 101
8.2. The general case 102
8.3. The operator QHQ∗ in dimension n = 1 108
8.4. The operator QHQ∗ in dimension n ≥ 2 110
8.5. Left-indefinite Sturm Liouville operators 120
8.6. The Second Representation Theorem 122

Chapter 9. The indefinite operator div h(·) grad in the Neumann case 125
9.1. The general case 125
9.2. The operator RHR∗ 128

Conclusion, open problems and future research 131

Bibliography 135

Danksagung 139



Abstract

This thesis is devoted to the Representation Theorems for symmetric indefinite (that
is non-semibounded) sesquilinear forms and their applications. In particular, we consider
the case where the operator associated with the form does not have a spectral gap around
zero.

Furthermore, the relation between reducing graph subspaces, solutions to opera-
tor Riccati equations, and block diagonalisation of diagonally dominant block operator
matrices is investigated.

By means of the Representation Theorems, a corresponding relation is established
for operators associated with indefinite forms and form Riccati equations. In this frame-
work, an explicit block diagonalisation and a spectral decomposition of the Stokes op-
erator as well as a representation for its kernel are obtained.

We apply the Representation Theorems to forms given by 〈gradu, h(·) grad v〉, where
the coefficient matrices h(·) are allowed to be sign-indefinite. As a result, indefinite
self-adjoint differential operators div h(·) grad with homogeneous Dirichlet or Neumann
boundary conditions are constructed. Examples of such kind are operators related to
the modelling of optical metamaterials and left-indefinite Sturm-Liouville operators.
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Zusammenfassung

Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das
heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere
betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um
Null besitzt.

Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen,
Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diago-
naldominante Block-Operator-Matrizen.

Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Opera-
toren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht.
In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung
für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht.

Wir wenden die Darstellungssätze auf durch 〈gradu, h(·) grad v〉 gegebene Formen
an, wobei Vorzeichen-indefinite Koeffizienten-Matrizen h(·) zugelassen sind. Als ein
Resultat werden selbstadjungierte indefinite Differentialoperatoren div h(·) grad mit ho-
mogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art
sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und
links-indefinite Sturm-Liouville Operatoren.
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Introduction

In this thesis, we investigate indefinite (that is non-semibounded) quadratic forms
and their representation by self-adjoint operators. We focus on forms related to operators
without spectral gap around zero.

In particular, we use these representations to investigate the Stokes operator together
with its block diagonalisation, as well as self-adjoint differential operators div h(·) grad
of second order with indefinite coefficient matrices h(·).

This thesis can be subdivided into five parts.
In the first Part, Chapters one to three, we prove new variants of the classical First

and Second Representation Theorem for indefinite symmetric sesquilinear forms where
the associated operator does not have a gap around zero. Furthermore, we determine
the kernel of the associated operators.

The second Part, Chapter four, is an intermezzo in the operator framework, where
we consider the relation between reducing graph subspaces, solutions to operator Riccati
equations, and diagonalisations for block operator matrices. We obtain a new diagonal-
isation for diagonally dominant block operator matrices with unbounded off-diagonal
entries.

In Part three, Chapters five to seven, we define the Stokes operator by a sesquilinear
form and determine its kernel. We generalise the diagonalisation of block operator
matrices of the preceding part to the diagonalisation of forms by means of solutions to
the form Riccati equation. Furthermore, we apply this diagonalisation to the Stokes
operator and obtain a decomposition of its spectrum.

In Part four, Chapters eight and nine, we apply the First Representation Theorem
to define self-adjoint differential operators of second order, namely div h(·) grad with
homogeneous Dirichlet or Neumann boundary values. We allow that the coefficient ma-
trices h(·) are sign-indefinite. We also include the one-dimensional case of left-indefinite
Sturm-Liouville operators and compute the spectrum for the special case where h is the
sign function.

In the final Part, we give a conclusion of the obtained results, revisit open problems
and give conjectures pointing to future research.

We now go into more detail on the different parts of this thesis.
In the first Part, we consider symmetric sesquilinear forms b in a Hilbert space H

and their representation by self-adjoint operators.
For any bounded sesquilinear form b, the Riesz Representation Theorem yields that

there is a unique bounded operator B such that

b[x, y] = 〈x,By〉(1)

for all x, y ∈ H. Conversely, any bounded self-adjoint operator B defines a unique
bounded sesquilinear form b by (1). In combination, this is the one-to-one correspon-
dence of bounded forms and bounded operators.

9



10 INTRODUCTION

The representation (1) remains valid for closed symmetric semibounded sesquilinear
forms, this classical result goes back to Friedrichs. More precisely, there exists a unique
self-adjoint operator B with domain Dom(B) ⊆ Dom[b] such that

b[x, y] = 〈x,By〉 for all x ∈ Dom[b], y ∈ Dom(B).(2)

Furthermore, any semibounded self-adjoint operator B defines a unique closed symmet-
ric semibounded sesquilinear form by

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉 for all x, y ∈ Dom[b] = Dom(|B|1/2)(3)

which satisfies (2) again. Thus, the correspondence between closed symmetric semi-
bounded forms and semibounded self-adjoint operators is one-to-one, see, e.g. [43,
Section VI.2].

The validity of the representations (2) and (3) is usually called the First and Second
Representation Theorem, respectively.

A classical example is the Dirichlet Laplacian −∆D defined by the sesquilinear form
b[f, g] := 〈grad f, grad g〉 for f, g ∈ H1

0 (Ω). Further classical examples in quantum

mechanics are the Laplacian with delta potential in dimension one, − d2

dx2
+ δ (see [55,

Example X.2.3]), and the Laplacian with radial symmetric potential −∆ − r−α for
α ∈ [3

2 , 2) in dimension three, see [55, Section X.2]. Note that the last two operators
cannot be considered as perturbations of the Laplacian in the sense of operators but can
be defined by (2) as a perturbation in the sense of quadratic forms.

Further motivation to investigate the representation of forms by operators can also
be derived from quantum mechanics. Namely, the physically measurable quantity is
the energy, which is not the quantum mechanical Hamiltonian itself, but its expecta-
tion given by a quadratic form. Therefore, the definition of this operator by means of
quadratic forms is physically the most natural one, c.f. the discussion in [62, Section
II.1].

For indefinite (that is, non-semibounded) sesquilinear forms, the situation is more
involved. In this case, the usual notion of closedness becomes meaningless. Moreover,
there are examples of self-adjoint operators B associated with the form b (in the sense

that equation (2) holds) such that Dom[b] 6= Dom(|B|1/2), see, e.g. [22] and [36,
Example 2.11]. This implies that the form b cannot be reconstructed from the operator
B. Also, it may happen that two (or even infinitely many) forms define the same
self-adjoint operator B but this operator defines only one of these forms by means
of (3), see, e.g. [36, Example 2.11 and Proposition 4.2]. An example for this non-
semibounded situation is the Dirac operator with Coulomb potential −iα·grad +mβ+ v

|x|
for v ∈ (1/2, 1), which cannot be defined as an operator perturbation, see [53].

The indefinite situation has been studied by several authors. We point out only a
few works on this topic.

• In [49] and [50], McIntosh introduced a new notion of closedness for arbitrary
forms and obtained a new First Representation Theorem. These works are
based on the consideration of different topologies on the underlying Hilbert
space.
• In the papers [23] by Fleige and [24] by Fleige, Hassi, and de Snoo, the Rep-

resentation Theorems are proved by Krein space methods. The idea of these
papers is to consider the indefinite form on the Hilbert space as a positive form
on a Krein space. In this sense, the indefiniteness of the form is translated into
the indefinite inner product of the Krein space.
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• In [36], Grubǐsić, Kostrykin, Makarov, and Veselić gave new proofs of the Rep-
resentation Theorems by Hilbert space methods for forms b of the type

b[x, y] := 〈A1/2x,HA1/2y〉, x, y ∈ Dom[b] = Dom(A1/2),(4)

where A and H are self-adjoint operators such that A is strictly positive and
H as well as its inverse are bounded.

In each of these approaches, it is essential that the associated operator B itself, or
the shifted operator B + λI associated with b + λI, will be boundedly invertible. For
instance, in [36], the operator B is constructed as the inverse of some bounded operator.
In [23] and [24], the corresponding spectral gap around zero allows to consider b + λI
as a strictly positive form in a Krein space and, hence, to define the operator B + λI
with a bounded inverse.

In contrast to these papers, we mainly investigate the setting, where the operator A
in the form b as in (4) is not strictly positive or even has a non-trivial kernel. In this
case, we cannot expect that zero is in the resolvent set of the associated operator B.
We do not shift by a multiple of the identity but by a bounded self-adjoint involution
J such that the form b + J fits into the framework of [36], where B + J has a spectral
gap around zero. The general idea of this approach is already contained in the papers
[53] by Nenciu and [65] by Veselić. Our approach here is to assume that there is a
self-adjoint involution JA commuting with A which is also compatible with H, that is,

(I + JA)H(I + JA) ≥ α(I + JA) and (I − JA)H(I − JA) ≤ −α(I − JA)

for a suitable constant α. In this case, b+ JA is in the framework of [36] and we obtain
a generalisation of the First Representation Theorem, see Theorem 1.2.3. It turns out
that this approach can also be used to consider symmetric off-diagonal perturbations of
diagonal forms, see Theorem 1.5.3. We show that if the domain stability condition

Dom(A1/2) = Dom(|B|1/2)(5)

holds, then the Second Representation Theorem can also be preserved from [36], see
Theorem 2.1.1. We even obtain that the equivalent criteria, in particular the equivalence
of the inclusions Dom(A1/2) ⊆ Dom(|B|1/2) and Dom(A1/2) ⊇ Dom(|B|1/2), as well as
the sufficient conditions for the domain stability condition can be carried over, see
Theorem 2.2.4 and Lemma 2.2.5. Furthermore, we give an explicit representation for
the kernel of the associated operator B, see Lemma 1.6.2.

Also, we briefly investigate the setting of forms b as in (4), where A is strictly
positive, H is bounded, but the inverse of H may be unbounded. In this situation,
the First Representation Theorem defines an essentially self-adjoint but not self-adjoint
operator (Example 1.3.2) unless additional conditions like Dom(H−1) ⊇ Dom(A1/2) are
imposed, see Theorem 3.1.1. For this case, we also provide a variant of the Second
Representation Theorem (Theorem 3.2.1) but give an example where Dom(|B|1/2) is a

proper subset of Dom(A1/2), see Example 3.2.3. This broken symmetry in the domain
stability condition (5) distinguishes these two settings from each other.

Part two is based on the joint work [48] with K. A. Makarov and A. Seelmann and
is independent of the first part.

In [3], Albeverio, Makarov, and Motovilov considered block operator matrices com-
posed of a diagonal part A and a symmetric bounded off-diagonal part V . They provided
the correspondence of reducing graph subspaces and solutions to the operator Riccati
equation. As a consequence, they obtained a block diagonalisation of the operator A+V
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by the diagonal operator A+ V Y . Namely

A+ V = (I + Y )(A+ V Y )(I + Y )−1,(6)

where the skew-symmetric operator Y is a strong solution of the operator Riccati equa-
tion

AY − Y A− Y V Y + V = 0.

Under mild regularity conditions on the unbounded perturbation V , we follow [3] in
the discussion of reducing subspaces and their relation to the operator Riccati equation.
However, we obtain the alternative diagonalisation

A+ V = (I − Y )−1(A− Y V )(I − Y )(7)

under mild regularity assumptions on the unbounded operator V , see Theorem 4.3.6. For
these V , it turns out that the diagonalisation (7) even implies the diagonalisation (6), see
Remark 4.4.2. Since the domain of A− Y V does not depend on Y , the diagonalisation
(7) is more suitable than (6) for unbounded perturbations V .

Part three is based on the joint work [38] with L. Grubǐsić, V. Kostrykin,
K. A. Makarov, and K. Veselić. We define the Stokes operator BS on Lipschitz domains
by application of the representation theory for indefinite forms from the first Part, see
Theorem 5.1.2.

Recall that the Stokes operator, which is related to the stationary linearised Stokes
on the domain Ω,

−ν∆u+ grad p = f, div u = 0, u|∂Ω = 0,

appears in the investigation of fluid dynamics and is thus of interest in mathematical
physics, see, e.g., [61]. The Stokes operator can be represented by the block operator
matrix (

−∆ − grad
div 0

)
.

For other approaches to define the Stokes operator, we refer to [61], [21], and [35].
Furthermore, we obtain that the kernel of the Stokes operator is trivial for Lipschitz
domains with infinite volume and is one-dimensional if the volume is finite, see Theorem
5.2.4.

We carry over the diagonalisation of diagonally dominant block operator matrices of
the preceding part to the diagonalisation of operators associated with indefinite forms.
This form technique allows to consider upper dominant block operator matrices including
the Stokes operator. The first step in this technique is to show that the positive spectral
part of the associated operator is a graph subspace. To obtain this, we prove that
the corresponding difference of the spectral projectors is bounded by

√
2/2 which is

an extension of the Tan 2Θ-Theorem of [37] by Grubǐsić, Kostrykin, Makarov, and
Veselić to the case without spectral gap around zero, see Theorem 6.1.1. Furthermore,
we extend this estimate in Theorem 6.1.6 to the case, where the kernel of the diagonal
part admits a splitting and obtain the solvability of the operator Riccati equation in
this case. This is in part a generalisation of [1, Theorem 6.3] by Adamjan, Langer, and
Tretter to diagonally dominant block operator matrices, where the off-diagonal part is
unbounded.

We observe that an orthogonal decomposition of the Hilbert space H reduces the
form b if and only if it reduces the representing operator B, see Lemma 6.2.4. By this
observation, we carry out the diagonalisation of the operator B by finding a reducing
subspace for its form b. Similarly to the operator case, we obtain that the graph subspace
of X, for which X∗X respectively XX∗ is sufficiently regular, reduces the form given by
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b[x, y] := a[x, JAy]+v[x, y] if and only if the operator X is a solution of the corresponding
form Riccati equation, see Theorem 6.3.1. To be more explicit, we say thatX is a solution
of the form Riccati equation if

a+[−X∗y−, x+]− a−[y−, Xx+] + v[−X∗y− ⊕ 0, 0⊕Xx+] + v[0⊕ y−, x+ ⊕ 0] = 0(8)

holds for all x+ ∈ Dom[a+], y− ∈ Dom[a−], where a = a+ ⊕ a− is the orthogonal
decomposition induced by the self-adjoint involution JA and v is off-diagonal. The
regularity condition on X∗X respectively XX∗ may be difficult to verify in applications
but can be granted by sufficient conditions on the form b, see Theorem 6.3.6. We verify
these sufficient conditions by application of interpolation theory to the results for the
operator case of the preceding part. Furthermore, we obtain that the contractive solution
X of the form Riccati equation related to the Stokes operator is unique, see Theorem
6.4.3. Using the form Riccati equation (8), we obtain an explicit diagonalisation of the
Stokes operator BS , see Theorem 7.1.6. As a consequence of the block diagonalisation,
the positive spectrum of the Stokes operator is bounded below by the smallest eigenvalue
of the Dirichlet Laplacian for sufficiently regular quasi-bounded domains, see Lemma
7.4.2. for these domains, the essential spectrum of the Stokes operator is the essential
spectrum of the Cosserat operator div ∆−1 grad, where −∆ is the vector valued Dirichlet
Laplacian. The Cosserat operator has been studied extensively which provides additional
information on the spectrum of the Stokes operator. For properties of the Cosserat
operator, we only point out the works [28] and [14] and the survey article [58] as well
as the references therein.

Part four is based mainly on the joint work [41] with A. Hussein, V. Kostrykin,
D. Krejčǐŕık, and K. A. Makarov. We define self-adjoint differential operators of second
order given by the form

b[u, v] := 〈gradu, h(·) grad v〉(9)

on a bounded domain Ω with an indefinite coefficient matrix h(·), where u, v ∈ H1
0 (Ω) for

Dirichlet boundary conditions and u, v ∈ H1(Ω) for Neumann boundary conditions. The
motivation for the consideration of forms of this type are recent results in Physics, more
concretely in the investigation of so called optical metamaterials. See [64], [59], and [60]
for information on these materials from the physics point of view. For a mathematical
point of view on this topic, we refer to [8], [9], and [32].

Our interest lies in the interpretation of the differential expression div h(·) grad as
a self-adjoint operator in the Hilbert space L2(Ω). As a special case in dimension
one, we get the self-adjointness of left-indefinite Sturm-Liouville operators. To define
the indefinite differential operator of second order with Dirichlet and with Neumann
boundary conditions in Theorem 8.2.2 and Theorem 9.1.6, respectively, we bring the
form (9) into the structure of (3) using the polar decomposition of the gradient operator.
In this sense, we represent the auxiliary form

b̃[x, y] := 〈(− grad div )1/2x, h(·)(− grad div )1/2y〉.(10)

by a self-adjoint operator. On the subspace complementary to Ker(div ), this fits into
the framework of [36] if we substitute the multiplication with h(·) by the application of
the operator Qh(·)Q∗, where Q∗ is the imbedding of Ran(grad) into L2(Ω)n.

It remains to show that Qh(·)Q∗ is boundedly invertible. In dimension one, we have
an explicit representation of the operator Q. As a consequence, we have a complete
understanding ofQh(·)Q∗ and derive the First Representation Theorem for left-indefinite
Sturm-Liouville operators in the Dirichlet and Neumann case, see Corollaries 8.5.1 and
9.2.1. In higher dimension, we do not have an explicit representation of Qh(·)Q∗ but
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provide examples in the Dirichlet case, where this operator is boundedly invertible, see
Corollary 8.4.9 and Proposition 8.4.12, respectively. Finally, we show that the form (9)
satisfies the Second Representation Theorem if the auxiliary form (10) does.

In the last part, we close this work by a conclusion on the results of the thesis and
give conjectures on some of the open problems. We also indicate fields which are of
interest for future investigations as well as ongoing research.



Notation

R+ = (0,∞)
H: Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖
Dom, Ran, Ker: Domain, range and kernel of operators
σ(·), ρ(·): Spectrum and resolvent set of operators
b[ · , · ], B: (indefinite) Form and associated operator
Ω: Domain in Rn

Br(x): Open ball of radius r around x
JA: Self-adjoint involution commuting with A, p. 18
PA = (I + JA)/2, P⊥A = (I − JA)/2: orthogonal projectors onto H+, H−, p. 18
A+ ⊕A−: Orthogonal decomposition of A with respect to H+ ⊕H−, p. 18
`2,p: Weighted Hilbert space of sequences, p. 21

b̃ = b + JA, B̃: Auxiliary form and associated operator , p. 26

H̃: Auxiliary operator, p. 26
L±: Subspace related to KerB, p. 27
sgn: Unitary version of the signum, p. 33
G(H0, X): Graph subspace, p. 46
Y, T : Block operators related to X,X∗, p. 46
EB(R+): Spectral projector related to the positive spectrum of B, p. 50
H1(Ω), H1

0 (Ω): Sobolev spaces, completion of C∞(Ω), C∞0 (Ω), p. 57
BS , bS : Stokes operator and its form, p. 58, p. 57
−∆,−∆ : Laplacian, p. 57
div , grad: Divergence and gradient operators, p. 57
E2(Ω): natural domain of div , p. 58
dist( · , · ): Distance between two sets or a point and a set, p. 62
E(λ): Spectral family of a self-adjoint operator, p. 67
X0: Operator given by Ran(EB(R+)) = G(H+, X0), p. 70
K+ ⊕K−: Orthogonal decomposition induced by the positive part of B, p. 71
a±: Decomposition of the form a, p. 73

B̂±: Operator unitarily equivalent to B±, p. 90
BD, BN : divH grad with Dirichlet/Neumann boundary values, p. 103, p. 127
L2
σ(Ω): Divergence free vector fields, p. 104

H(Ω): Orthogonal complement to RanD ⊕ L2
σ(Ω) in L2(Ω), p. 104

Γ: Common boundary between Ω+ and Ω−, p. 111
H1/2(·): Fractional order Sobolev space, p. 112

H
1/2
00 (·): Functions that can be extended by zero to functions in H1/2, p. 112

H
1/2
0 (·): Fractional order Sobolev space with zero boundary trace, p. 112

H 1/2(Γ): Fractional order Sobolev space, p. 112
γ±, τ±: Trace maps, p. 113
Λ±: Dirichlet-to-Neumann map, p. 113
H1

0,∂Ω∩∂Ω±
(Ω±): Functions with vanishing trace on ∂Ω ∩ ∂Ω±, p. 113
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CHAPTER 1

The First Representation Theorem

1.1. Associated operators and represented forms

Let H be a separable complex Hilbert space with inner product 〈 · , · 〉 that is linear
in the second argument.

If b is a symmetric sesquilinear form, we will, as usual, denote the corresponding
quadratic form by b[x] := b[x, x]. For brevity, we write just form for a symmetric
sesquilinear form. By a non-negative or indefinite form we will always understand that
the corresponding quadratic form is non-negative or indefinite, that is, bounded neither
from above nor from below.

The correspondence between symmetric sesquilinear forms and operators can be
expressed by the following two concepts.

Definition 1.1.1 (cf. [43, Section VI.2]). Let b be a symmetric sesquilinear form
on Dom[b] and let B be a self-adjoint operator on Dom(B).

(a) The operator B is said to be associated with the form b if

b[x, y] = 〈x,By〉 for all x ∈ Dom[b], y ∈ Dom(B) ⊆ Dom[b].

In this case, the form b is said to satisfy the First Representation Theorem.
(b) If B is associated with b, then the form b is said to be represented by the operator

B if

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉 for all x, y ∈ Dom[b] = Dom(|B|1/2).

In this case, the form b is said to satisfy the Second Representation Theorem.

In this sense, the form b gives rise to the associated operator B but the form can only
be recovered from the operator if the domain stability condition Dom[b] = Dom(|B|1/2) is

satisfied. Clearly, if Dom(|B|1/2) is too small, the form given by 〈|B|1/2x, sign(B)|B|1/2y〉
defines a restriction of b and an extension of b, if it is too large.

In the following, we generalise the Representation Theorems (and the corresponding
ideas of the proofs) in the version of [36, Theorems 2.3 and 2.10] by Grubǐsić, Kostrykin,
Makarov, and Veselić, for quadratic forms with a gap around zero, that is A ≥ cI > 0,
to the case of forms without gap, that is, where we allow minσ(A) ≥ 0. We collect
these statements for the gap case in the following Theorem. Note that the associated
operator has a spectral gap around zero in the gap case. For forms without gap, there
is in general no such spectral gap.

Theorem 1.1.2 (The Representation Theorems: Gap case).
Let A,H be self-adjoint operators. Suppose that A is strictly positive and that H is
bounded, boundedly invertible. Define the symmetric sesquilinear form b by

b[x, y] := 〈A1/2x,HA1/2y〉, x, y ∈ Dom[b] = Dom(A1/2).

Then the operator

B := A1/2HA1/2, Dom(B) = {x ∈ Dom(A1/2) | HA1/2x ∈ Dom(A1/2)}
17
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is the unique self-adjoint operator associated with the form b. Furthermore, Dom(B)

is a core for A1/2 and (αh−, αh+) ⊂ ρ(B), where A ≥ αI and (h−, h+) is a maximal
spectral gap of the operator H containing zero.

If additionally the domain stability condition Dom(|B|1/2) = Dom(A1/2) holds, then
the form b is represented by the operator B.

1.2. The general case

To start the investigation of the Representation Theorems without gap, we fix the
following assumptions.

Hypothesis 1.2.1. Let A be a non-negative self-adjoint operator and let H be a
bounded, boundedly invertible self-adjoint operator on the same Hilbert space H.

Furthermore, let JA be a non-trivial self-adjoint involution commuting with A in the
sense that

JAx ∈ Dom(A) and JAAx = AJAx for all x ∈ Dom(A).

Suppose that the orthogonal projectors PA := 1
2(I + JA) and P⊥A := 1

2(I − JA) satisfy

(1.1) PAHPA ≥ αPA and P⊥AHP
⊥ ≤ −αP⊥A for some α ∈ (0, 1],

that is, 〈PAx,HPAx〉 ≥ α‖PAx‖2 and 〈P⊥A x,HP⊥A x〉 ≤ −α‖P⊥A x‖2 for all x ∈ H.

Note that the condition (1.1) in the hypothesis above is not trivial, see Example
1.3.1 below.

Remark 1.2.2. The following observations can be made under Hypothesis 1.2.1.

(a) The involution JA induces an orthogonal decomposition

H = RanPA ⊕ RanP⊥A =: H+ ⊕H−
of the Hilbert space H. Since PA and P⊥A commute with A, the subspaces H+

and H− are reducing subspaces for the operator A, see Definition 4.1.3 below
or [66, Section 2.5] for this notion.

With respect to this decomposition we have the block representations

JA =

(
IH+ 0

0 −IH−

)
, A =

(
A+ 0
0 A−

)
with A+ := PAAPA, A− := P⊥AAP

⊥
A , where the operators A± are self-adjoint

on the Hilbert spaces H± with domains Dom(A) ∩H±, respectively.
In this sense, we always assume JA and A to be diagonal block operator

matrices of this structure.
(b) Hypothesis 1.2.1 consists of finding a triple (A,H, JA) of operators such that

condition (1.1) is satisfied. If we start with a given pair (A, JA), any bounded
self-adjoint operator H can be represented as a block operator with respect to
the decomposition induced by JA. Namely

H =

(
H+ R
R∗ H−

)
with H+ := PAHPA, H− := P⊥AHP

⊥
A , R := PAHP

⊥
A ,

where H± : H± → H± are bounded, self-adjoint and R : H− → H+ is bounded.
Thus, condition (1.1) can be rewritten as

(1.2) H+ ≥ αIH+ and H− ≤ −αIH− for some α ∈ (0, 1].

Note that any bounded self-adjoint operator H satisfying (1.2) is automatically
boundedly invertible, see [46, Remark 2.8].
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We now formulate the First Representation Theorem in the most general setting we
consider in this chapter.

Theorem 1.2.3 (The First Representation Theorem: General case).
Assume Hypothesis 1.2.1, and let b be the symmetric sesquilinear form given by

b[x, y] := 〈A1/2x,HA1/2y〉, Dom[b] = Dom(A1/2).

Then, there exists a unique self-adjoint operator B with Dom(B) ⊆ Dom[b] and

b[x, y] = 〈x,By〉 for all x ∈ Dom[b], y ∈ Dom(B).

Moreover, the operator B is given by

B = A1/2HA1/2

on the natural domain

Dom(B) = {x ∈ Dom(A1/2) | HA1/2x ∈ Dom(A1/2)}.
Furthermore, Dom(B) is a core for the operators (A+ I)1/2 and A1/2.

In the case where the operator A is strictly positive, the statement of Theorem 1.2.3
is already contained in [36, Theorem 2.3] and condition (1.1) is not needed.

The following observation allows to pull back the case of non-negative A to the case
of strictly positive A + I without changing the domain of the square roots of these
operators.

Remark 1.2.4. Let c ≥ 0 and let A ≥ −cI be self-adjoint. Then, the domain equality

Dom(|A|1/2) = Dom(A+ (c+ 1)I)1/2

holds since both operators

|A|1/2(A+ (c+ 1)I)−1/2 and (A+ (c+ 1)I)1/2(|A|1/2 + I)−1

are bounded by functional calculus.

We now turn to the proof of Theorem 1.2.3.

Proof of Theorem 1.2.3. Consider the perturbed form

b̃ := b̃ + JA on Dom[b̃] := Dom[b]

given by

b̃[x, y] = b[x, y] + 〈x, JAy〉.
Using the domain equality in Remark 1.2.4 and the commutativity of JA and PA with
functions of A, the perturbed form can be rewritten as

b̃[x, y] = 〈(A+ I)1/2x, H̃(A+ I)1/2y〉,
where

H̃ := (A1/2(A+ I)−1/2)HA1/2(A+ I)−1/2 + (A+ I)−1JA

=: H0 + (A+ I)−1JA.
(1.3)

In this case, the operator H̃ is self-adjoint and bounded since A1/2(A+I)−1/2 is bounded
and self-adjoint by functional calculus.

Let x ∈ H, then we verify

〈PAx,H0PAx〉 = 〈PAA1/2(A+ I)−1/2x,HPAA
1/2(A+ I)−1/2x〉.
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By hypothesis (1.1), we get the estimate

〈PAx,H0PAx〉 ≥ α〈PAA1/2(A+ I)−1/2x, PAA
1/2(A+ I)−1/2x〉.

Using the commutativity of PA with functions of A and the equality

(A1/2(A+ I)−1/2)2 = A(A+ I)−1 = I − (A+ I)−1,

we can rewrite this estimate as

〈PAx,H0PAx〉 ≥ α〈PAx, PAx〉 − α〈PAx, (A+ I)−1PAx〉.

With definition (1.3), the equality JAPA = PA, and α ≤ 1, it follows that

PAH̃PA ≥ αPA − αPA(A+ I)−1PA + PA(A+ I)−1JAPA ≥ αPA.
In a similar way, noting that JAP

⊥
A = −P⊥A , we obtain that P⊥A H̃P

⊥
A ≤ −αP⊥A . As

a consequence H̃ is boundedly invertible, see [46, Remark 2.8].

Since A+ I is strictly positive and H̃ bounded, boundedly invertible, we can apply
the First Representation Theorem [36, Theorem 2.3] to the form b̃. We obtain that the
operator

B̃ := (A+ I)1/2H̃(A+ I)1/2

on its natural domain

Dom(B̃) =
{
x ∈ Dom(A+ I)1/2

∣∣ H̃(A+ I)1/2x ∈ Dom(A+ I)1/2
}
⊆ Dom(A1/2)

is the unique self-adjoint operator with Dom(B̃) ⊆ Dom[b̃] associated with the form b̃,
that is,

b̃[x, y] = 〈x, B̃y〉 for all x ∈ Dom[b], y ∈ Dom(B̃).

Additionally, Dom(B̃) is a core for (A+ I)1/2.

Setting B := B̃ − JA on Dom(B) := Dom(B̃), we obtain that

b[x, y] = 〈x,By〉 for all x ∈ Dom[b], y ∈ Dom(B).

Furthermore, we have

Dom(B) =
{
x ∈ Dom(A1/2)

∣∣ A1/2(A+ I)−1/2HA1/2x ∈ Dom(A1/2)
}

=
{
x ∈ Dom(A1/2)

∣∣ (A+ I)−1/2HA1/2x ∈ Dom(A)
}

=
{
x ∈ Dom(A1/2)

∣∣ HA1/2x ∈ Dom(A1/2)
}

and, hence,

B = (A+ I)1/2H̃(A+ I)1/2 − JA = A1/2HA1/2.

The core property with respect to A1/2 is a direct consequence of the equivalence of the
corresponding graph norms, compare Remark 1.2.4. �

A closer look at the proof above shows that the operator B + JA is boundedly

invertible since it can be written as (A + I)1/2H̃(A + I)1/2. The operator B however
may have an unbounded inverse or may even have a kernel if A has, see Example 1.2.8
below.

In principle, the idea in the proof above, that is to push open a spectral gap by a
suitable bounded additive perturbation, is already present in the proof of [65, Theorem
2.4]. Namely, in the notation of that work, the sum of forms h+αQ is associated with the

operator product (a+ b|H|)1/2Cζ(a+ b|H|)1/2, where (a+ b|H|) is boundedly invertible
and Cζ is bounded, boundedly invertible.



1.2. THE GENERAL CASE 21

Note that the assumptions in Theorem 1.2.3 respectively [36, Theorem 2.3] grant
the closedness (see Section 1.4 for a suitable notion) of the corresponding form b + JA
respectively b itself, see the discussion in Section 1.4.

We now compare Theorem 1.2.3 for non-negative operators A respectively [36, The-
orem 2.3] for strictly positive A, which each give a variant of the First Representation
Theorem in different settings.

Remark 1.2.5. Theorem 1.2.3 is a supplement to [36, Theorem 2.3] in the sense
that new pairs of operators (A,H) can be treated, where A is allowed to be a non-negative
operator.

Theorem 1.2.3 is not an extension of [36, Theorem 2.3] since there are cases of
strictly positive operators A which are not covered by Theorem 1.2.3 but can be treated
by [36, Theorem 2.3]. A suitable 2× 2 matrix example for this is given by

A :=

(
2 0
0 1/2

)
, H :=

(
0 1
1 0

)
.

In this case, every self-adjoint involution JA commuting with A is diagonal too. So up

to the choice of a sign, we would have JA =

(
1 0
0 −1

)
. Since PAHPA = 0 in this case,

the condition (1.1) in Hypothesis 1.2.1 cannot be satisfied for the pair (A,H).

To consider further examples, we introduce the following notation.

Definition 1.2.6. Let `2,p be the space of complex sequences (ak)k∈N, such that∑
k∈N

kp|ak|2 <∞.

We abbreviate `2 := `2,0 for the corresponding Hilbert space.

To show that Theorem 1.2.3 indeed is a supplement to [36, Theorem 2.3], consider
the following example.

Example 1.2.7. With the notation in Definition 1.2.6, consider the Hilbert space

H = (`2 ⊕ `2)⊕ (`2 ⊕ `2) =: H+ ⊕H−
and define the operators acting by multiplication as

A :=
⊕
k∈N


k 0
0 k−1

0 0
0 0

0 0
0 0

k−1 0
0 k

 , H :=
⊕
k∈N


1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

 ,

where Dom(A) := (`2,2⊕ `)⊕ (`2⊕ `2,2) and A does not have a bounded inverse. In this

case, we can choose JA := H = H̃ to satisfy Hypothesis 1.2.1 but this case cannot be
treated directly by [36, Theorem 2.3].

We now show that B may have an unbounded inverse.

Example 1.2.8. In the same notation as above, the consideration of the bounded
operators on `2 ⊕ `2,

A :=
⊕
k∈N

(
1 0
0 k−1

)
, JA = H :=

⊕
k∈N

(
1 0
0 −1

)
shows that indeed B+JA is boundedly invertible and B has an unbounded inverse. Here,
we have

B + JA =
⊕
k∈N

(
2 0
0 −(1 + k−1)

)
, B =

⊕
k∈N

(
1 0
0 −k−1

)
.
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1.3. Counterexamples

We now illustrate the importance of Hypothesis 1.2.1 for the First Representation
Theorem. The following example shows that hypothesis (1.1) ensures the self-adjointness

of the symmetric operator B = A1/2HA1/2 associated with the form b if minσ(A) = 0.

Example 1.3.1. Using the notation in the Definition 1.2.6 above, we define the
self-adjoint operators A and H by

A :=
⊕
k∈N

(
k + 1 0

0 (k + 1)−1

)
, H :=

⊕
k∈N

(
0 1
1 0

)
with Dom(H) := `2 ⊕ `2 and Dom(A) := `2,2 ⊕ `2 ⊂ H. Here, the operators A and H
are self-adjoint, minσ(A) = 0 and H = H−1 is bounded.

Hypothesis (1.1) is not satisfied since there is no suitable involution JA commuting
with A. Indeed, assume that such a JA exists, then, since A has a simple spectrum, JA
is a function of A, see [17, Proposition VIII.3.6]. By the diagonal block structure of
A, the operators JA and PA also must be block diagonal. Since each block of A itself
is diagonal, the corresponding blocks of PA are also diagonal. Considering the block for
k = 1, Remark 1.2.5 shows that it is not possible to find such a projector PA since not
even its first block can be constructed.

To see that A1/2HA1/2 is not self-adjoint, let Ak and Hk denote the k-th block of A
and H, respectively. Then, we have

A
1/2
k HkA

1/2
k = Hk.

In this sense, the symmetric operator A1/2HA1/2 is associated with the form b but is
not closed on the natural domain

{x ∈ Dom(A1/2) | HA1/2x ∈ Dom(A1/2)} ⊆ `2,1 ⊕ `2 ⊂ `2 ⊕ `2 = Dom(H).

The closure of this operator is self-adjoint, so that the operator is only essentially self-
adjoint.

The phenomenon appearing in the example above can be explained in the following
way. The operator A has arbitrarily large and arbitrarily small spectral parts. The
operator H maps the large spectral parts to the small ones and vice versa in such way,
that the product A1/2HA1/2 remains bounded on its natural domain. The product is
not closed then.

If A is strictly positive as in [36], the large spectral parts have no counterpart to be

mapped to. Therefore, the closedness of the product A1/2HA1/2 on the natural domain
is preserved.

This distinguishes the case of strictly positive A, where B is automatically self-
adjoint, from the case of non-negative A, where additional conditions have to be imposed.
Note that the explicit example above is a special case of a general example considered
in [29, Remark 2.7]. There, the general example is used to show that the operator

A1/2HA1/2 can be bounded, even if A1/2 is unbounded and the spectrum of H contains
only the two points {−1, 1}. This general example is originally due to G. Teschl.

The following example shows that if we weaken the assumptions of [36, Theorem
2.3] in another way, that is, if A is strictly positive but H−1 is unbounded, the associated
operator may also be only essentially self-adjoint.

Example 1.3.2. With the notation of Definition 1.2.6 consider

A :=
⊕
k∈N

(
1 0
0 k + 1

)
, H :=

⊕
k∈N

(
1 0
0 −(k + 1)−1

)
,
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where Dom(A) := `2,0 ⊕ `2,2 ⊂ `2 ⊕ `2 =: H. Then

A
1/2
k HkA

1/2
k =

(
1 0
0 1

)
and A1/2HA1/2 is not closed on the natural domain

{x ∈ Dom(A1/2) | HA1/2x ∈ Dom(A1/2)} ⊆ `2 ⊕ `2,1 ⊂ `2 ⊕ `2 = H.
As in the example before the operator is only essentially self-adjoint.

In this example, the operator H scales the large spectral parts in such a way, that the
product remains bounded on the natural domain. In this case, the associated operator
is not closed on its natural domain.

If however Dom(H−1) ⊇ Dom(A1/2), then the operator A1/2HA1/2 is self-adjoint,
see Theorem 3.1.1. Further investigation of the situation, where H−1 is unbounded is
contained in [41]. We will revisit this situation briefly in Chapter 3.

1.4. Closedness of indefinite forms

The First Representation Theorem gives a self-adjoint operator associated with the
form b. It is well known that closed semibounded symmetric forms always are associated
with self-adjoint operators. For forms that are indefinite, the usual notion of closedness
makes no sense anymore. Extending the usual notion of closedness to indefinite forms,
McIntosh showed that this association is also true for indefinite forms, see [49, Theorem
4.2]. We will give a definition of this notion below, see Definition 1.4.1.

In this sense, the forms corresponding to the counterexamples Example 1.3.1 and
1.3.2 cannot be closed since the associated operators are only essentially self-adjoint.

Under Hypothesis 1.2.1, the form b+JA is closed (see Lemma 1.4.2 below) and thus
associated with a self-adjoint operator B + JA. We conclude that the form b itself is
associated with the self-adjoint operator B.

It is an open problem whether the form b itself is closed under Hypothesis 1.2.1 or
not. Also, we do not know whether the self-adjointness of the associated operator B can
be obtained directly, that is, without considering the auxiliary form b + JA, or not.

Definition 1.4.1 (cf. [50]). Let H1,H2 be dense subspaces of a Hilbert space H and
let s be a sesquilinear form with s[x, y] defined for x ∈ H1, y ∈ H2. Assume that the
subspaces H1,H2 can be endowed with a Hilbert space structure. Furthermore, suppose
that the form s is bounded in the sense of

|s[x, y]| ≤ c‖x‖H1 · ‖y‖H2 for some c <∞ and all x ∈ H1, y ∈ H2.

Then, by the Riesz Representation Theorem, there exists a bounded linear operator
S : H1 → H2 with s[x, y] = 〈Sx, y〉H2. If the operator S is an isomorphism, the form s
is called regular. If the Hilbert spaces H1 and H2 are continuously imbedded in H and
s is regular, then the form s is called 0-closed. If the form s + λ is 0-closed for some
λ ∈ C, then s is called closed.

For our purposes, the explicit notion of closedness is not essential, it suffices to have
the following statements that are due to McIntosh.

Lemma 1.4.2. (a) Let s be a non-negative symmetric form with Dom[s] ⊆ H,
then s is closed (in the notion of Definition 1.4.1) if and only if Dom[s] is
complete with respect to the inner product

(x, y)Dom[s] := 〈x, y〉H + s[x, y],

that is, if and only if it is closed in the usual sense of [43], see [49, Theorem
4.1].
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(b) Let T1, T2 be closed operators on a Hilbert space H with 0 ∈ ρ(T1) ∩ ρ(T2) and
let t be the form given by

t[x, y] := 〈T1x, T2y〉, x ∈ Dom(T1), y ∈ Dom(T2).

Then the form t is 0-closed, see [49, Example (b)].
(c) The form s is 0-closed if and only if zero belongs to the resolvent set of the

associated operator, see [49, Theorem 3.2].
(d) Let t be as in (b) and let s be a form defined on the same (or larger) domain

with

|s[x, y]| ≤ c ‖T1x‖ · ‖T2y‖ for all x ∈ Dom(T1), y ∈ Dom(T2)

and some constant c < 1. Then the form sum t+s is 0-closed, see [49, Theorem
8.1].

1.5. The off-diagonal case

In this section, we consider the setting of an indefinite diagonal form with an off-
diagonal additive perturbation. Under suitable assumptions, this setting can also be
treated by the technique of Theorem 1.2.3.

Let a be a non-negative, closed sesquilinear form. By the First Representation
Theorem for non-negative forms [43, Theorem VI.2.1], the form a is associated with
a non-negative self-adjoint operator A. By the corresponding Second Representation
Theorem [43, Theorem VI.2.23], the form a is even represented by A.

In this setting, we impose the following assumptions.

Hypothesis 1.5.1. Let JA be a self-adjoint involution commuting with A and let

H = H+ ⊕H−, H± := Ran(I ± JA)

be the decomposition induced by JA. Suppose that v is a symmetric sesquilinear form on

Dom[v] ⊇ Dom[a] = Dom(A1/2),

and assume that v is (a + I)-bounded, which means that there exists a finite constant β
with

(1.4) |v[x]| ≤ β‖(A+ I)1/2x‖2 = β(a + I)[x], x ∈ Dom(A1/2).

Suppose furthermore, that v is off-diagonal with respect to the decomposition induced by
JA, that is,

(1.5) v[JAx, y] = −v[x, JAy] for all x, y ∈ Dom[a].

The forms v satisfying (1.4) and (1.5) can be described explicitly in terms of the

operator (A+ I)1/2.

Remark 1.5.2. Let v satisfy Hypothesis 1.5.1. Then v can explicitly be rewritten on
Dom[a] as

(1.6) v[x, y] = 〈R̃(A+ I)1/2x, (A+ I)1/2y〉, x, y ∈ Dom[a] = Dom(A1/2),

where R̃ is a bounded self-adjoint operator with ‖R̃‖ ≤ β. The existence of the bounded

operator R̃ follows from [43, Lemma VI.3.1]. Since the form v is assumed to be sym-
metric and off-diagonal with respect to the decomposition induced by JA, we have that
the operator

R̃ = R̃∗ =

(
0 R
R∗ 0

)
, with R := PAR̃P

⊥
A

has to be self-adjoint and off-diagonal.
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We are now ready to formulate the First Representation Theorem in this setting
(cf. [36, Theorem 2.5]). This setting is a special case of the general case, where Hypoth-
esis 1.2.1 is satisfied.

Theorem 1.5.3 (The First Representation Theorem: Off-diagonal case).
Assume Hypothesis 1.5.1 and let b be the symmetric sesquilinear form given by

b[x, y] := a[x, JAy] + v[x, y], x, y ∈ Dom[b] = Dom[a].

Then, there exists a unique self-adjoint operator B on Dom(B) ⊆ Dom[b] with

b[x, y] = 〈x,By〉 for all x ∈ Dom[a], y ∈ Dom(B).

Furthermore Dom(B) is a form core for a, that is, Dom(B) is dense in Dom[a]

with respect to the norm
√

(a + I)[ · ].

Proof. Consider the perturbed form b̃ on Dom[b̃] := Dom[b] given by

(1.7) b̃[x, y] := b[x, y] + 〈x, JAy〉 = (a + I)[x, JAy] + v[x, y].

Let h be the bounded form given by

h[x, y] := b̃[(A+ I)−1/2x, (A+ I)−1/2y].

Then, by Remark 1.5.2, the form h corresponds to the bounded operator

(1.8) H̃ := JA + R̃ =

(
IH+ R
R∗ −IH−

)
,

where R : H− → H+. By [46, Remark 2.8] the operator H̃ is boundedly invertible.
We compute that

b̃[x, y] = h[(A+ I)1/2x, (A+ I)1/2y] = 〈(A+ I)1/2x, H̃(A+ I)1/2y〉, x, y ∈ Dom[b̃].

By the Representation Theorem in the gap case, [36, Theorem 2.3], the form b̃ is

associated with a self-adjoint operator B̃ that satisfies Dom(B̃) ⊂ Dom[b] and

b̃[x, y] = 〈x, B̃y〉 for all x ∈ Dom[a], y ∈ Dom(B̃).

The self-adjoint operator associated with the form b is then B := B̃ − JA. The core
property is a direct consequence of the corresponding core property in Theorem 1.2.3. �

Remark 1.5.4. The First Representation Theorem 1.5.3 we give here is a special
case of [53, Theorem 2.1]. To see this, consider U := JA as the unitary part of the polar
decomposition of the self-adjoint operator JAA. We then set

hA1 [x, y] := 〈|JAA|1/2x, JA|JAA|1/2y〉+ 1〈x, JAy〉 = 〈|A|1/2x, JA|A|1/2y〉+ 〈x, JAy〉

in equation (2.5) of [53]. The off-diagonal form v we investigate is, by [53, Definition
2.1], then a form perturbation of JAA. Indeed, the first two conditions in [53, Definition
2.1] can be seen directly, namely

Dom[v] ⊇ Dom(A1/2) = Dom(|JAA|1/2)

and

|v[x, y]| ≤ β‖(A+ I)1/2x‖ · ‖(A+ I)1/2y‖.
It remains to note that the operator H̃ = JA+R̃ is boundedly invertible by the assumption

that v is off-diagonal. Since we can translate JA ≡ T, R̃ ≡ V1 into the notation of [53],
the sum T +V1 has a bounded inverse and thus also the last condition in [53] is satisfied.
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Remark 1.5.5. In the general and the off-diagonal case, we have that the operator

H̃ as well as the operator B̃ = B + JA, which is associated with b̃ = b + JA, in the
corresponding proofs, are boundedly invertible, see [46, Remark 2.8] and [36, Theorem
2.3].

More concretely, we even have the estimate (−c, c) ⊂ ρ(B+JA), where c := ‖H̃−1‖−1

is a lower estimate on the spectral gap of H̃. In the general case, we have c ≤ α ≤ 1
and c ≤ 1 in the off-diagonal case.

Additionally, H̃ is bounded and B̃ can be represented as

B̃ = (A+ I)1/2H̃(A+ I)1/2.

In contrast to the general case, Theorem 1.5.3 is an extension to the corresponding
Theorem [36, Theorem 2.5] (cf. Remark 1.2.5 for the general case). This is contained
in the following remark.

Remark 1.5.6. Theorem 1.5.3 is a generalisation of [36, Theorem 2.5].
Indeed, for strictly positive a ≥ c > 0, the two sided estimate

a[x] ≤ (a + I)[x] = a[x] + c−1c ‖x‖2 ≤ a[x] + c−1a[x] = (1 + c−1)a[x]

implies the equivalence between a-boundedness and (a+I)-boundedness in this case. This
yields that forms satisfying the requirements of Theorem 1.5.3 also satisfy those of [36,
Theorem 2.5].

We now compare the two versions of the First Representation Theorem to each
other.

Remark 1.5.7. (a) The off-diagonal case in Theorem 1.5.3 is a special case of
Theorem 1.2.3, where the Hypothesis (1.1) is automatically satisfied. In this
case, the involution JA creating the spectral gap is already given by the diagonal
structure of the form a. Indeed, in this situation, equations (1.7) and (1.8) imply
that the perturbed form b + JA and thus also b satisfy the First Representation
Theorem 1.5.3. In the general case however, finding a suitable perturbation JA
may be difficult or not possible at all as Example 1.3.1 illustrates.

(b) The difference between the results of Theorems 1.2.3 and 1.5.3 lies in the rep-
resentation of the operator B associated to the form b. In the general case, we
have the product formula

B = A1/2HA1/2

involving only the operators A and H defining the form b. As a consequence,
an explicit representation

KerB = {x ∈ Dom(A1/2) | HA1/2x ∈ KerA1/2}
can be directly deduced.

In the off-diagonal case, if the form v is only (a+I)-bounded but not bounded
with respect to the form a, a corresponding operator H seems to be artificial.

The best representation we have is

B = (A+ I)1/2H̃(A+ I)1/2 − JA.
Indeed, the operator B cannot be written as a product with respect to A1/2

and a bounded operator H like in the first case, since in this case the operator
H would formally be given by the block operator matrix(

IH+ A
− 1

2
+ (A+ + IH+)

1
2R(A− + IH−)

1
2A
− 1

2
−

A
− 1

2
− (A− + IH−)

1
2R∗(A+ + IH+)

1
2A
− 1

2
+ −IH−

)
.
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If minσ(A±) = 0, the off-diagonal entries of this matrix are either unbounded
or may not exist at all if A± has a non-trivial kernel. So if such an operator H
exists, it would in general be unbounded. In this case, an explicit representation
of the kernel is more difficult to obtain. This will be carried out in Lemma 1.6.2
below.

For a strictly positive form a, respectively operator A, however, the off-
diagonal part v is even a-bounded by Remark 1.5.6. Thus B = A1/2HA1/2 is
still valid by direct application of [36, Theorem 2.5 and Lemma 2.2] with the
operator

H =

(
IH+ R
R∗ −IH−

)
.

In this case, the kernel can be represented as in the general case.

Before we turn to the study of the kernel of B, we give a sufficient condition for its
triviality by means of perturbation theory.

Lemma 1.5.8. Let b be the form as in Theorem 1.2.3 or Theorem 1.5.3, respectively

and let B be the associated operator. Suppose that the operator H̃ such that

B + JA = (A+ I)1/2H̃(A+ I)1/2

satisfies
∥∥H̃−1

∥∥ < 1, then zero belongs to the resolvent set of B.

Proof. The proof is a combination of the statements in Lemma 1.4.2. The form
b + JA is 0-closed by the representation

(b + JA)[x, y] = 〈(A+ I)1/2x, H̃(A+ I)1/2y〉, x, y ∈ Dom(A1/2).

If
∥∥H̃−1

∥∥ < 1, we estimate for x, y ∈ Dom(A1/2)

|〈x,−JAy〉| ≤ ‖x‖ · ‖y‖ ≤
∥∥H̃−1

∥∥ · ∥∥(A+ I)1/2x
∥∥ · ∥∥H̃(A+ I)1/2y

∥∥.
Thus b = (b + JA)− JA is 0-closed and B is boundedly invertible by Lemma 1.4.2. �

1.6. Computation of the kernel

For strictly positive forms a, the operator B associated with

b[x, y] = a[x, JAy] + v[x, y]

in [36, Theorem 2.5] is boundedly invertible. If the form a respectively the operator
A is only non-negative, the operator B may have a kernel. In the following, we give a
representation for the kernel in the off-diagonal case of Theorem 1.5.3. We will apply
this representation to the Stokes operator, see Theorem 5.2.4 below.

Recall that by part (a) of Remark 1.2.2, the operator A decomposes as A = A+⊕A−
with self-adjoint A±.

Definition 1.6.1. Under Hypothesis 1.5.1, we define the following subspaces

(1.9) L± :=
{
x± ∈ Dom(A

1/2
± ) | v[x+ ⊕ 0, 0⊕ x−] = 0 for all x∓ ∈ Dom(A

1/2
∓ )

}
.

Note that L+ ⊕ {0} and {0} ⊕ L− are not necessarily subsets of Dom(B) or closed.
This fact has to be taken into account for the computation of the kernel of B.

We are now ready to give a representation for the kernel of B with respect to
the kernels of the components A±. This is a generalisation of [46, Theorem 2.2] by
Kostrykin, Makarov, and Motovilov in the case of bounded operators respectively forms.
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Lemma 1.6.2. Let B be the operator associated with the form b in Theorem 1.5.3.
Then we have that

KerB = (KerA+ ∩ L+)⊕ (KerA− ∩ L−) .

Proof. Suppose first that x = x+ ⊕ x− ∈ KerB ⊆ Dom(A1/2) with respect to
H = H+ ⊕H−. By the First Representation Theorem 1.5.3, it follows that

0 = 〈y,Bx〉 = b[y, x] = a[y, JAx] + v[y, x] for all y ∈ Dom(A1/2).

Writing y = y+⊕y− with y± ∈ Dom(A
1/2
± ), the Second Representation Theorem for the

non-negative form a (see [43, Theorem VI.2.23]) yields that

〈A1/2
+ y+, A

1/2
+ x+〉H+ − 〈A

1/2
− y−, A

1/2
− x−〉H− + v[y+ ⊕ 0, 0⊕ x−] + v[0⊕ y−, x+ ⊕ 0] = 0.

Choosing y− = 0, respectively y+ = 0, we arrive at

(1.10) 〈A1/2
+ y+, A

1/2
+ x+〉H+ + v[y+ ⊕ 0, 0⊕ x−] = 0

and

(1.11) −〈A1/2
− y−, A

1/2
− x−〉H− + v[0⊕ y−, x+ ⊕ 0] = 0,

respectively. In particular, if y+ = x+ and y− = x−, we have that

(1.12)
∥∥A1/2

+ x+

∥∥2

H+
+ v[x+ ⊕ 0, 0⊕ x−] = 0

and

(1.13) −
∥∥A1/2
− x−

∥∥2

H− + v[x+ ⊕ 0, 0⊕ x−] = 0,

Suppose that x+ /∈ KerA+ = KerA
1/2
+ . Then, from (1.12) we get that

v[x+ ⊕ 0, 0⊕ x−] < 0

and from (1.13) follows that

v[x+ ⊕ 0, 0⊕ x−] = v[x+ ⊕ 0, 0⊕ x−] ≥ 0,

which yields a contradiction. Thus, x+ ∈ KerA+.
Using equation (1.10) again, we obtain that

v[y+ ⊕ 0, 0⊕ x−] = 0 for all y+ ∈ Dom(A
1/2
+ )

and, hence, x− ∈ L−. Similarly, one proves that x− ∈ KerA− and x+ ∈ L+. This
proves the inclusion

KerB ⊆ (KerA+ ∩ L+)⊕ (KerA− ∩ L−) .

We now turn to the converse inclusion. By the (a+I)-boundedness of v in Hypothesis
1.5.1, the auxiliary form

r[x+, y−] := v[(A+ + IH+)−1/2x+ ⊕ 0, 0⊕ (A− + IH−)−1/2y−], x+ ∈ H+, y− ∈ H−
is bounded. Hence, there exists a bounded operator R : H− → H+ such that

r[x+, y−] = 〈x+, Ry−〉H+ .

Noticing Dom(A
1/2
± ) = Ran

(
(A± + IH±)−1/2

)
, we get that

(1.14) L+ = {(A+ + IH+)−1/2x |x ∈ KerR∗} = (A+ + IH+)−1/2 KerR∗,

In the same way we obtain that

(1.15) L− = (A− + IH−)−1/2 KerR.
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Let x+ ∈ KerA+ ∩ L+ and x− ∈ KerA− ∩ L−. Then, by (1.14) and (1.15), there exist
u+ ∈ KerR∗ and u− ∈ KerR such that

x+ = (A+ + IH+)−1/2u+ and x− = (A+ + IH+)−1/2u−.

Obviously, from x+ ∈ KerA+ ⊂ Dom(A+), it follows that u+ ∈ Dom(A
1/2
+ ).

Similarly, we have u− ∈ Dom(A
1/2
− ).

We claim that u+ ∈ KerA+ and u− ∈ KerA−. Indeed, we have that

x+ = (A+ + IH+)x+ = (A+ + IH+)1/2u+,

which implies that u+ = (A+ + IH+)−1/2x+ and, thus, u+ ∈ Dom(A
3/2
+ ). Hence, we

arrive at the conclusion that

A+u+ = (A+ + IH+)−1/2A+x+ = 0,

which proves that u+ ∈ KerA+. In the same way we also have u− ∈ KerA−. By
Remark 1.5.5 and equation (1.8) we get the following representation for the operator B
(cf. Remark 1.5.7):

(1.16) B = (A+ I)1/2Ĥ(A+ I)1/2

with the operator

(1.17) Ĥ :=

(
IH+ − (A+ + IH+)−1 R

R∗ −IH− + (A− + IH−)−1

)
,

which follows from
B = (A+ I)1/2H̃(A+ I)1/2 − JA

with

H̃ =

(
IH+ R
R∗ −IH−

)
.

Identifying x = x+ ⊕ x− with the vector

(
x+

x−

)
, we compute

Ĥ(A+ I)1/2

(
x+

x−

)
=

(
(A+ + IH+)1/2x+ − (A+ + IH−)−1/2x+ +R(A− + IH−)1/2x−
R∗(A+ + IH+)1/2x+ − (A− + IH−)1/2x− + (A− + IH−)−1/2x−

)
=

(
u+ − (A+ + IH+)−1u+ +Ru−
R∗u+ − u− + (A− + IH−)−1u−

)
=

(
A+(A+ + IH+)−1u+

−A−(A− + IH−)−1u−

)
=

(
(A+ + IH+)−1A+u+

−(A− + IH−)−1A−u−

)
= 0.

From the representation (1.17), it follows that x ∈ KerB which completes the proof. �





CHAPTER 2

The Second Representation Theorem

In this chapter, we consider the Second Representation Theorem simultaneously
in the situations, where either Hypothesis 1.2.1 or 1.5.1 is satisfied. These situations
can be treated simultaneously since the operator B associated with the form b can be
represented in the same way, see Remark 1.5.5. Namely

B = (A+ I)1/2H̃(A+ I)1/2 − JA,

and the operator B + JA is boundedly invertible in both cases.

2.1. The Second Representation Theorem

As a convention, we set sign(0) := 0.

Theorem 2.1.1 (The Second Representation Theorem). Let b be given as in Theo-
rem 1.2.3 or Theorem 1.5.3, and let B be the associated operator. Furthermore, suppose
that

(2.1) Dom(|B|1/2) = Dom(A1/2).

Then, the operator B represents the form b, that is,

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉 for all x, y ∈ Dom[b] = Dom(|B|1/2)

holds.

Note that this theorem gives the one-to-one correspondence between the form b
and the operator B. However, it is not clear whether Hypothesis 1.2.1 already implies
condition (2.1). For strictly positive A, an example where (2.1) is not satisfied is given
by [36, Example 2.11]. In this example, condition (1.1) is not satisfied, so that this
example cannot be considered as a counterexample here.

Before we turn to the proof, we need some preparations starting with the well known
Heinz Inequality (see [39]) in the formulation of [61, Lemma 3.2.3].

Lemma 2.1.2 (The Heinz Inequality). Let H1,H2 be two Hilbert spaces with norms
‖ · ‖1 and ‖ · ‖2, respectively. Let S : H1 → H2 be a bounded linear operator from H1 to
H2. Assume that T1, T2 are strictly positive, self-adjoint operators with Dom(T1) ⊆ H1

and Dom(T2) ⊆ H2. Suppose that S maps Dom(T1) into Dom(T2) and that there is a
constant c such that

||T2Sx||2 ≤ c · ||T1x||1 for all x ∈ Dom(T1).

Then S maps Dom(T ν1 ) into Dom(T ν2 ) for all 0 ≤ ν ≤ 1.

Corollary 2.1.3. Let T1, T2 be two strictly positive, self-adjoint operators in the
Hilbert space H. If the domain equality Dom(T1) = Dom(T2) holds, then also the domain
equality for the roots holds, that is,

Dom(T ν1 ) = Dom(T ν2 ) for all ν ∈ [0, 1].

31
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Proof. By the domain equality, the operators T1T
−1
2 and T2T

−1
1 are both closed,

defined on H, and thus bounded by the Closed Graph Theorem.
For x ∈ Dom(T1) = Dom(T2), we get the estimates

‖T1x‖ ≤
∥∥T1T

−1
2

∥∥ · ‖T2x‖ and ‖T2x‖ ≤
∥∥T2T

−1
1

∥∥ · ‖T1x‖ .
By Lemma 2.1.2 for S = I, the equality Dom(T ν1 ) = Dom(T ν2 ) holds for all ν ∈ [0, 1]. �

As a direct application, we get that the perturbation JA does not change the domain
of the square roots.

Lemma 2.1.4. Let B and JA be the operators in either version of the First Repre-
sentation Theorem 1.2.3 or 1.5.3. Then the domain equality

Dom(|B|1/2) = Dom(|B + JA|1/2)

holds.

Proof. By Remark 1.5.5, we have that B+JA is boundedly invertible. The operator
|B|+ I is boundedly invertible by functional calculus. Clearly, one has

Dom(|B + JA|) = Dom(B + JA) = Dom(B) = Dom(|B|) = Dom(|B|+ I).

By Corollary 2.1.3 and Remark 1.2.4, we obtain the domain equality

Dom(|B + JA|1/2) = Dom((|B|+ I)1/2) = Dom(|B|1/2). �

We are now ready to give a proof of the Second Representation Theorem.

Proof of Theorem 2.1.1. Clearly, we have Dom(A1/2) = Dom((A + I)1/2) by

functional calculus and Dom(|B|1/2) = Dom(|B + JA|1/2) by Lemma 2.1.4. Recall that
B + JA is boundedly invertible by Remark 1.5.5.

Taking into account (2.1), the First Representation Theorem 1.2.3, respectively 1.5.3,
yields that

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉 for all x ∈ Dom(|B|1/2), y ∈ Dom(B).

We fix x ∈ Dom(|B|1/2) and define the functionals l1 and l2 on Dom(A1/2) by

l1(y) := b[x, y] = 〈A1/2x,HA1/2y〉, l2(y) := 〈|B|1/2x, sign(B)|B|1/2y〉.

These two functionals agree on Dom(B) ⊆ Dom(A1/2) and we show that they agree on

the whole of Dom(A1/2).
To do this, we prove that the shifted functionals

l̃1(y) := l1(y) + 〈x, JAy〉, l̃2(y) := l2(y) + 〈x, JAy〉

agree on Dom((A+ I)1/2) = Dom(|B + JA|1/2), then the desired equality holds.
By Remark 1.5.5, we get the representation

l̃1(y) = 〈(A+ I)1/2x, H̃(A+ I)1/2y〉.

with the bounded, boundedly invertible operator H̃.
Analogously, since B + JA has a bounded inverse, we get

l̃2(y) = 〈|B + JA|1/2x,G|B + JA|1/2y〉
with the bounded, boundedly invertible operator

G := sign(B + JA).

By the boundedness of H̃, we have that l̃1 is continuous on the Hilbert space(
Dom((A+ I)1/2), 〈(A+ 1)1/2 · , (A+ 1)1/2 · 〉

)
=: HA+I .
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In the same way, we have that l̃2 is continuous on the Hilbert space(
Dom(|B + JA|1/2), 〈|B + JA|1/2 · , |B + JA|1/2 · 〉

)
=: HB+JA .

The domain equality Dom((A + I)1/2) = Dom(|B + JA|1/2) yields that the operator

(A + I)1/2 is |B + JA|1/2-bounded and vice versa. Since both operators A + I and
|B + JA| are strictly positive, the operators

(A+ I)1/2|B + JA|−1/2 and |B + JA|1/2(A+ I)−1/2

are positive and bounded, so that the corresponding norms

‖x‖A+I :=
∥∥∥(A+ I)1/2x

∥∥∥ and ‖x‖B+JA :=
∥∥∥|B + JA|1/2x

∥∥∥
are equivalent on the Hilbert space HA+I .

Since Dom(B) = Dom(B + JA) = Dom(|B + JA|) is a core for |B + JA|1/2 (see [43,
Theorem V.3.35]), it follows that Dom(B) is dense in HA+I .

The two functionals l̃1 and l̃2 are both closed since H̃ and G are boundedly invertible.
By the uniqueness of the closure, we have l̃1 = l̃2 on HA+I and the claim follows. �

2.2. The domain stability condition

The domain stability condition

Dom(|B|1/2) = Dom(A1/2)

in the hypothesis of Theorem 2.1.1 is in general hard to verify directly. We are thus
interested in equivalent characterisations (Theorem 2.2.4 below) and in sufficient criteria
(Lemma 2.2.5 below) for this condition. These characterisations and criteria are natural
extensions to the ones in [36], where A is strictly positive. An additional characterisation
in terms of reducing subspaces for the form b is contained in Remark 6.2.3 below.

In order to start the investigation of the stability condition, we need the following
tools. The first one is the Second Resolvent Identity (see, e.g., [56, Section 2.2]).

Remark 2.2.1 (The Second Resolvent Identity). Let T1, T2 be closed linear operators
on the same domain Dom(T1) = Dom(T2). Assume that the resolvent sets ρ(T1) and
ρ(T2) intersect. Denote the resolvents of Ti by Rλ(Ti) := (λI − Ti)−1. Then, for any
λ ∈ ρ(T1) ∩ ρ(T2), the difference of the resolvents satisfies

(2.2) Rλ(T1)−Rλ(T2) = Rλ(T1)(T1 − T2)Rλ(T2) = Rλ(T2)(T1 − T2)Rλ(T1).

Another tool we use is the following.

Lemma 2.2.2 ([36, Lemma 3.1]). ,
Let (H, 〈 · , · 〉) and (H′, 〈 · , · 〉′) be Hilbert spaces. Assume that H′ is continuously

imbedded in H.
If S : H → H is a bounded map leaving the set H′ invariant, then the operator S′

induced by S on H′ is bounded in the topology of H′.

In the following investigations, we want to consider the sign of the operator B as a
unitary operator. Since B may have a kernel, we need to choose the sign of zero to be
either +1 or −1. All the following statements are independent of this concrete choice,
so we leave this choice open. However, in Lemma 2.2.5 below, it is convenient to have
this freedom of choice. We define the unitary version of the sign by

(2.3) sgn(x) :=


−1, x < 0,

s, x = 0,

+1, x > 0,

s ∈ {−1, 1}.
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Note that, by functional calculus, sign(B)f(B) = sgn(B)f(B) for any function f with
f(0) = 0. Furthermore, since the interval (−1, 1) is not contained in the range of the
function f defined by f(x) := x+sgn(x), the operator B+sgn(B) is boundedly invertible
by functional calculus.

We now need the following observations.

Lemma 2.2.3. Let the assumptions of the First Representation Theorem 1.2.3 or
1.5.3 be satisfied. Then, the operators

(2.4) (A+ I)1/2(B + sgn(B))−1(A+ I)1/2 defined on Dom(A1/2)

and

(2.5) (A+I)−1/2(B+sgn(B))(A+I)−1/2 defined on the dense set (A+I)1/2 Dom(B)

can be extended, by closure, to bounded operators on H. Since they are inverse to each
other, they are boundedly invertible.

Proof. The first operator is obviously densely defined. For the second operator,
note that Dom(B) = Dom(B + JA). With help of Remark 1.5.5, it follows that

(A+ I)1/2 Dom(B) = H̃−1 Dom(A1/2),

so that this operator also is densely defined. Since B + JA = (A+ I)1/2H̃(A+ I)1/2 is
boundedly invertible, we have that

L̂ := (A+ I)1/2(B + JA)−1(A+ I)1/2

is bounded on Dom(A1/2).
Since both operators B + sgn(B) and B + JA are closed, boundedly invertible and

defined on Dom(B), we have that 0 ∈ ρ(B + sgn(B)) ∩ ρ(B + JA). We now apply the
Second Resolvent Identity (2.2) in both variants. Setting for brevity J := sgn(B) and
S := J − JA, we obtain that

(B + sgn(B))−1 = (B + JA)−1 + (B + JA)−1S(B + J)−1

= (B + JA)−1 + (B + JA)−1S
(
(B + JA)−1 + (B + J)−1S(B + JA)−1

)
.

Thus, we get that

(A+ I)1/2(B + sgn(B))−1(A+ I)1/2

= L̂+ L̂(A+ I)−1/2S(A+ I)−1/2L̂+ L̂(A+ I)−1/2S(B + J)−1S(A+ I)−1/2L̂

is bounded. By the identity B + JA = (A+ I)1/2H̃(A+ I)1/2, the operator

M̂ := (A+ I)−1/2(B + JA)(A+ I)−1/2

is a bounded operator on its natural domain (A+ I)1/2 Dom(B). Thus

(A+ I)−1/2(B + sgn(B))(A+ I)−1/2 = M̂ + (A+ I)−1/2(J − JA)(A+ I)−1/2

is bounded. �

If we consider the same operators as in (2.4) and (2.5), only with the absolute
value |B + sgn(B)| instead of B + sgn(B), this extension to bounded operators on H is

equivalent to the domain stability condition Dom(|B|1/2) = Dom(A1/2), see the theorem
below.

Theorem 2.2.4 (cf. [36, Theorem 3.2] ). Let B be the operator associated with the
form b in either Theorem 1.2.3 or 1.5.3. Then the following statements are equivalent.
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(i) Dom(|B|1/2) = Dom(A1/2),

(ii) Dom(|B|1/2) ⊇ Dom(A1/2),

(ii’) Dom(|B|1/2) ⊆ Dom(A1/2),

(iii) L := (A+ I)−1/2|B+ sgn(B)|(A+ I)−1/2 is a bounded symmetric operator on

Dom(L) := (A+ I)1/2 Dom(B),

(iii’) M := (A + I)1/2|B + sgn(B)|−1(A + I)1/2 is a bounded symmetric operator
on

Dom(M) := Dom(A1/2),

(iv) K := (A+ I)1/2 sgn(B)(A+ I)−1/2 is a bounded involution on H,

(v) sgn(B) Dom(A1/2) ⊆ Dom(A1/2).

Proof. For brevity, we set J := sgn(B). The implications (i) ⇒ (ii) and (i) ⇒ (ii’)
are obvious.

(ii) ⇒ (iii): Since Dom(A1/2) ⊆ Dom(|B|1/2) = Dom(|B+ J |1/2), we have that the

operator |B + J |1/2(A+ I)−1/2 is closed on H and is thus bounded. Define the positive
form

l[x, y] := 〈x, Ly〉 on Dom[l] := Dom(L) = (A+ I)1/2 Dom(B).

This form can be represented as a bounded form

l[x, y] = 〈|B + J |1/2(A+ I)−1/2x, |B + J |1/2(A+ I)−1/2y〉.

Thus, the associated operator L is bounded. Note that Dom(L) = Dom[l] is dense in H
by Lemma 2.2.3, so that the closure of L is a bounded operator on H.

(ii’)⇒ (iii’): Similarly to the implication before, we have that the operator product

(A+ I)1/2|B + J |−1/2 is bounded and the densely defined positive form

m[x, y] := 〈x,My〉 on Dom[m] := Dom(M) = Dom(A)1/2

can be represented as a bounded form

m[x, y] = 〈(A+ I)1/2|B + J |−1/2x, (A+ I)1/2|B + J |−1/2y〉.

Thus, the closure of M is a bounded operator on H.
(iii) ⇒ (iv): The operator K is closed on its natural domain

Dom(K) = {x ∈ H | sgn(B)(A+ I)−1/2x ∈ Dom((A+ I)1/2)}.

Furthermore, since Dom(B) ⊆ Dom(A1/2) and sgn(B) leaves Dom(B) invariant, we
have that

Dom(L) = (A+ I)1/2 Dom(B) ⊆ Dom(K).

Let x ∈ Dom(X), then, taking into account sgn(B + J) = sgn(B), it follows that

Kx = (A+ I)1/2 sgn(B)(A+ I)−1/2x = (A+ I)1/2 sgn(B + J)(A+ I)−1/2x

= (A+ I)1/2(B + J)−1|B + J |(A+ I)−1/2x =
(
(A+ I)1/2(B + J)−1(A+ I)1/2

)
Lx.

By hypothesis and Lemma 2.2.3, respectively, both operators in the product can be
extended to bounded operators on H. Thus K|Dom(L) can be boundedly extended to H.
By the closedness of K, it follows that K is bounded with Dom(K) = H. The operator
K is an involution since K2 = I.

(iii’) ⇒ (iv): As in the implication before, (A+ I)1/2 Dom(B) ⊆ Dom(K) is dense.
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Let x ∈ (A+ I)1/2 Dom(B), then, in the same way,

Kx = (A+ I)1/2 sgn(B + J)(A+ I)−1/2x = (A+ I)1/2|B + J |−1(B + J)(A+ I)−1/2x

=
(
(A+ I)1/2|B + J |−1(A+ I)1/2

)
·
(
(A+ I)−1/2(B + J)(A+ I)−1/2

)
x

= M
(
(A+ I)−1/2(B + J)(A+ I)−1/2

)
x,

where both operators in the product can be boundedly extended to H by Lemma 2.2.3.
As before, K is a bounded involution on Dom(K) = H.

(iv)⇒ (v): Since Dom(K) = H by assumption, sgn(B) leaves Dom(A1/2) invariant.

(v) ⇒ (i): We first consider the case of strictly positive H̃.
Then, the positive-definite form

b̃[x, y] = 〈(A+ I)1/2x, H̃(A+ I)1/2y〉, x, y ∈ Dom[b̃] = Dom(A1/2)

can be represented as

b̃[x, y] = 〈H̃1/2(A+ I)1/2x, H̃1/2(A+ I)1/2y〉,

so that b̃ is closed by the closedness of the operator H̃1/2(A+ I)1/2.
The First Representation Theorem for non-negative forms (see, e.g., [43, Theorem

VI.2.6]) implies the existence of a non-negative operator B̃ associated with the form b̃.

By construction, we have B̃ = B + JA.
The Second Representation Theorem for positive-semidefinite sesquilinear forms [43,

Theorem VI.2.23] yields the equality Dom[b̃] = Dom(B̃1/2).
Using Lemma 2.1.4, the claim follows by observing

Dom[b̃] = Dom[b] and Dom(B̃1/2) = Dom(B1/2).

We now consider the case, where H̃ is not necessarily positive. Define the Hilbert space

HA+I :=
(

Dom(A1/2), 〈(A+ I)1/2 · , (A+ I)1/2 · 〉
)
.

Let JA+I be the operator induced by sgn(B) on HA+I . The space HA+I is continuously
imbedded in H and, by part (v), the operator sgn(B) leaves HA+I invariant (as a set).

Then, by Lemma 2.2.2, the operator JA+I is continuous on HA+I . Since J2 = I, we
even have that JA+I is a bounded involution, not necessarily unitary.

It follows that K = (A+I)1/2J(A+I)−1/2 is a bounded involution on H. Observing

sgn(B + J) = sgn(B) and Dom(B) ⊆ Dom(A1/2), we have that

|B + J | = (B + J) sgn(B + J) = (B + J)J

= (A+ I)1/2(A+ I)−1/2(B + J)(A+ I)−1/2(A+ I)1/2J(A+ I)−1/2(A+ I)1/2

= (A+ I)1/2M̃K(A+ I)1/2,

with the abbreviation M̃ := (A+ I)−1/2(B + J)(A+ I)−1/2 for the operator in Lemma

2.2.3. Since |B + J | is non-negative, M̃K also has to be non-negative. Both M̃ and K
are Hilbert space isomorphisms.

Hence, the self-adjoint operator M̃K has a bounded inverse and is thus strictly
positive. Considering the positive form

b̂[x, y] = 〈(A+ I)1/2x, (M̃K)(A+ I)1/2y〉, x, y ∈ Dom(A1/2)

associated with the operator |B + J |, we get from the first case and functional calculus
that

Dom(A1/2) = Dom(|B + J |1/2) = Dom(|B|1/2)

holds. This completes the proof. �
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We now give sufficient, but in general not necessary, criteria for the domain stability
condition. These criteria were introduced in [36, Lemma 3.6] for the case of strictly
positive A. The following lemma shows that they can be extended to the case, where A
is only non-negative.

Lemma 2.2.5 (cf. [36, Lemma 3.6]). Let the assumptions of Theorem 1.2.3 be sat-
isfied, and let B be the operator associated with the form b. If one of the following
conditions

(a) the operator H maps Dom(A1/2) onto itself;
(b) the operator H is strictly positive or strictly negative;
(c) the operator B is semibounded

holds, then the domain stability condition

(2.6) Dom(|B|1/2) = Dom(A1/2)

is satisfied.

Proof. (a) Since H is bijective as a map on Dom(A1/2) by assumption, the

natural domain of the operator B = A1/2HA1/2 coincides with Dom(A). Thus,
the domains of the positive, boundedly invertible operators A + I and |B| + I
coincide. The domain stability condition (2.6) now follows from Corollary 2.1.3
and Remark 1.2.4.

(b) If the operator H is strictly positive, then B is non-negative, but may still
have a kernel. Choosing sgn(0) = 1, we have sgn(B) = I. In this case the
condition (v) in Theorem 2.2.4 is trivially satisfied. If H is strictly negative,
choose sgn(0) = −1 so that in this case sgn(B) = −I and condition (v) is again
satisfied.

(c) Without loss of generality, assume B to be bounded from below. By Remark
1.5.5, the operator B + JA is boundedly invertible. Since B is bounded from
below and JA is bounded, the operator B + JA + cI is strictly positive for all
sufficiently large constants c > 0. For such constants, we have the representation

(2.7) B + JA + cI = (A+ I)1/2
(
H̃ + c(A+ I)−1

)
(A+ I)1/2

on Dom(B) ⊆ Dom(A1/2), where H̃ is bounded and boundedly invertible. Since
the left-hand side of (2.7) is a non-negative operator, we have that

H̃ + c(A+ I)−1 ≥ 0

holds. We show that this operator is even strictly positive. To see this, it

suffices to verify that H̃ + c(A+ I)−1 is boundedly invertible. Note that

H̃ + c(A+ I)−1 = cH̃
(
c−1I + H̃−1(A+ I)−1

)
,

so that this operator is invertible if

−c−1 /∈ σ(H̃−1(A+ I)−1).

Recall that for bounded self-adjoint operators T1, T2 the well known spectral
identity

σ(T1T2) \ {0} = σ(T2T1) \ {0}
holds, see, e.g., [56, Exercise 2.4.11]. Thus, the operator has a bounded inverse
if

−c−1 ∈ ρ((A+ I)−1/2H̃−1(A+ I)−1/2) = ρ((B + JA)−1).

Since B+JA is, by assumption, bounded from below and boundedly invertible,
the negative spectrum of B + JA is contained in a bounded interval away from
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zero, so that −c−1 does not belong to the spectrum if c is sufficiently large. For

these constants c, the operator H̃ + c(A + I)−1 is then strictly positive. From
part (b) and (2.7), we deduce that

Dom((B + JA + cI)1/2) = Dom((A+ I)1/2).

By Lemma 2.1.4 and Remark 1.2.4, the equality of the domains of A1/2 and
|B|1/2 holds. �

In Theorem 1.5.3 we investigated off-diagonal form perturbations v of indefinite
forms a[ · JA · ]. In the following, we consider the special case of forms

v = 〈|V |1/2 · , sign(V )|V |1/2 · 〉, Dom[v] = Dom(|V |1/2)

represented by a self-adjoint operator V and give a sufficient condition for the domain
stability condition (2.1) in terms of the operator V . First, we fix the following standard
notation.

Definition 2.2.6. The following statements can be derived e.g. from [56,
Definitions 8.1, 10.7, and Proposition 10.4].

(a) Let T1, T2 be closed operators with Dom(T2) ⊇ Dom(T1) and

‖T2x‖ ≤ a ‖T1x‖+ b ‖x‖ , x ∈ Dom(T1)

for some constants a, b ≥ 0. Denote by a0 the infimum of such a. Then T2

is called relatively T1-bounded and a0 is the relative bound of T2 with respect
to T1. T2 is called infinitesimally small or infinitesimal with respect to T1 if
a0 = 0.

(b) Let t1, t2 be symmetric forms on H with Dom[t1] ⊆ Dom[t2]. Suppose that t1 is
semibounded from below and that

|t2[x, x]| ≤ a|t1[x]|+ b ‖x‖2 , x ∈ Dom[t1]

for some constants a, b ≥ 0. Denote by a0 the infimum of all those a. Then t2
is called relatively t1-bounded and a0 is the relative bound of t2 with respect to
t1.

(c) Let T1, T2 be self-adjoint operators, where T1 is semibounded from below, and
let j ∈ {1, 2} and

tj [x, y] := 〈|Tj |1/2x, sign(Tj)|Tj |1/2y〉, Dom[tj ] = Dom(|Tj |1/2),

be the related forms. Then the operator T2 is called relatively T1-form bounded
if the form t2 is relatively t1-bounded. The T1-form bound of T2 is defined as
the t1-bound of t2.

Lemma 2.2.7. Let A be the self-adjoint operator associated with the non-negative
form a by the First Representation Theorem [43, Theorem VI.2.6]. Suppose, that JA is
a self-adjoint involution commuting with A and H = H+⊕H− is the orthogonal decom-
position induced by JA. Furthermore, let V be an off-diagonal, self-adjoint operator that
has relative bound a0 < 1 with respect to A. Let v be represented by V , that is,

(2.8) v[x, y] = 〈|V |1/2x, sign(V )|V |1/2y〉, x, y ∈ Dom[v] = Dom(|V |)1/2.

Then the operator sum JAA + V coincides with the operator B associated with the
form sum b = a[ · , JA · ] + v defined by Theorem 1.5.3. Furthermore, the domain

stability condition Dom(A1/2) = Dom(|B|1/2) holds.
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Proof. First, note that the non-negative form a satisfies the Second Representation
Theorem [43, Theorem VI.2.23], so that

a[x, y] = 〈A1/2x,A1/2y〉, x, y ∈ Dom[a] = Dom(A1/2).

The form-domain of the operator V is Dom(|V |1/2), see, e.g., [56, Definition 10.3]. It
follows from [55, Theorem X.18], that the operator V is also relatively A-form bounded
with the relative bound 0 ≤ a0 < 1. In this sense, we have that the form-domain of the
operator V satisfies

Dom(|V |1/2) = Dom[v] ⊇ Dom[a] = Dom(A1/2)

and
|v[x]| ≤ aa[x] + b ‖x‖2 ≤ (a+ b)(a + I)[x], x ∈ Dom(A1/2)

for suitable constants a0 ≤ a < 1 and b. In this case, the forms a and v satisfy Hypothesis
1.5.1 and Theorem 1.5.3 is applicable. Thus, there is an operator B associated with the
form a[ · , JA · ]+v. It remains to note that the form v is off-diagonal since the operator
V is off-diagonal by assumption.

Since V has A-bound a0 < 1 and JA is unitary, we also have the same bound with
respect to JAA. The Kato-Rellich Theorem, see, e.g., [55, Theorem X.12] allows to
define the self-adjoint operator

JAA+ V on Dom(JAA+ V ) = Dom(A) ⊆ Dom(A1/2) = Dom[b].

In order to prove that JAA+ V equals B, we show that JAA+ V is associated with
b and the claim then follows from the uniqueness in Theorem 1.5.3. To see this, let

x ∈ Dom[b] = Dom[a] = Dom(A1/2), y ∈ Dom(JAA+ V ) = Dom(A) ⊆ Dom(A1/2),

then

〈x, (JAA+ V )y〉 = 〈x,AJAy〉+ 〈|V |1/2x, sign(V )|V |1/2y〉 = a[x, JAy] + v[x, y] = b[x, y].

Thus, we have B = JAA+V on Dom(B) = Dom(A). Since |B|+I and A+I are strictly
positive and have the same domain, the desired domain equality for the roots holds by
Corollary 2.1.3 and Remark 1.2.4. �





CHAPTER 3

Representation Theorems for H with unbounded inverse

In this chapter, we briefly investigate the First and Second Representation Theorem
in the setting of Theorem 1.2.3 under different assumptions. Here, we consider A to have
a bounded inverse and H to have a (possibly) unbounded inverse. In Example 1.3.2,
we already saw that additional conditions will be needed for the First Representation
Theorem to hold with a self-adjoint associated operator.

3.1. The First Representation Theorem

The following First Representation Theorem was obtained in the joint work [41]
with A. Hussein, V. Kostrykin, D. Krejčǐŕık, and K. A. Makarov. For completeness
sake, we restate the statement and the corresponding proof.

Theorem 3.1.1 ([41]). Let A and H be self-adjoint operators, where inf σ(A) > 0
and H is bounded with a trivial kernel and

Dom(H−1) ⊇ Dom(A1/2).

Then the sesquilinear form

b[x, y] := 〈A1/2x,HA1/2y〉, x, y ∈ Dom(A1/2)

admits the representation

b[x, y] = 〈x,By〉, x ∈ Dom(A1/2), y ∈ Dom(B) ⊆ Dom(A1/2)

for a unique self-adjoint operator B. The operator B is explicitly given by A1/2HA1/2

on its natural domain and has a bounded inverse.

Proof. Since Dom(H−1A−1/2) = H by assumption and H−1A−1/2 is closed as the

product of the closed operator H−1 and the bounded operator A−1/2, it follows that
H−1A−1/2 is a bounded operator by the Closed Graph Theorem. As a consequence, the
operator S := A−1/2H−1A−1/2 is bounded and self-adjoint with a trivial kernel. Thus
its inverse is self-adjoint and it suffices to show the identity S−1 = A1/2HA1/2 = B.

To see this, observe that

Dom(S−1) = RanS = A−1/2 Ran(H−1A−1/2).

Hence, if x ∈ Dom(S−1), then x ∈ Dom(A1/2) and A1/2x ∈ Ran(H−1A−1/2). In this

case HA1/2x ∈ Ran(A−1/2) = Dom(A1/2), so that Dom(S−1/2) ⊆ Dom(B).

For the converse inclusion, let x ∈ Dom(B). Then we have that x ∈ Dom(A1/2) and

HA1/2x ∈ Dom(A1/2). As a consequence, it follows that x = A1/2y for some y ∈ H with

Hy ∈ Dom(A1/2). Consequently y = H−1A−1/2z ∈ H−1 Ran(A−1/2) for some z ∈ H,

which in turn implies x = A−1/2H−1A−1z ∈ RanS = Dom(S−1). �

Some further variants of the First Representation Theorem in the situation where
H is not boundedly invertible can be found in [41].

41
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3.2. The Second Representation Theorem

We now investigate the corresponding Second Representation Theorem for this set-
ting.

Theorem 3.2.1. Assume that the hypotheses of the First Representation Theorem
3.1.1 are satisfied. Suppose that additionally the domain stability condition

Dom(|B|1/2) = Dom(A1/2)

is satisfied. Then the form b also satisfies

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉, x, y ∈ Dom(A1/2) = Dom(|B|1/2).

Proof. Fix x ∈ Dom(A1/2), then by the First Representation Theorem 3.1.1, the

functionals l1 and l2, defined on their natural domains Dom(A1/2), Dom(|B|1/2), respec-
tively, given by

l1(y) := 〈A1/2x,HA1/2y〉, l2(y) := 〈|B|1/2x, sign(B)|B|1/2y〉

agree on Dom(B) ⊆ Dom(|B|1/2) = Dom(A1/2). We show that this equality extends to

Dom(A1/2). Note that A1/2|B|−1/2 and |B|1/2A−1/2 are bounded by the domain stability
condition and the strict positivity of A and |B|. Let

δ :=
1

2

∥∥A1/2|B|−1/2
∥∥−2

.

Consider now the two shifted functionals on Dom(A1/2) given by

l̃1(y) := l1(y) + 〈A1/2x, δ sign(H)A1/2y〉 = 〈A1/2x, (H + δ sign(H))A1/2y〉

and

l̃2(y) := l2(y) + 〈A1/2x, δ sign(H)A1/2y〉

= 〈|B|1/2x,
(

sign(B) + δ(A1/2|B|−1/2)∗ sign(H)A1/2|B|−1/2
)
|B|1/2y〉.

Note that by functional calculus H+δ sign(H) is bounded and boundedly invertible.
Furthermore, the operator

G := sign(B) + δ(A1/2|B|−1/2)∗ sign(H)A1/2|B|−1/2

is bounded and boundedly invertible since (−3
4 ,

3
4) ⊂ ρ(sign(B)) and∥∥∥δ(A1/2|B|−1/2)∗ sign(H)A1/2|B|−1/2

∥∥∥ ≤ 1

2
.

Consequently, the functionals l̃2 and l̃2 coincide on the set Dom(B), which is dense

in Dom(|B|1/2), and are closed on Dom(A1/2). By the uniqueness of the closure, the

equality of l̃1 and l̃2 extends to Dom(|B|1/2) in the same way as in the proof of Theorem

2.1.1. In this case, also l1 = l2 holds on Dom(|B|1/2) completing the proof. �

Remark 3.2.2. We do not have an appropriate example showing that the require-
ments of Theorem 3.2.1 can simultaneously be satisfied in full extend, namely

Dom(|B|1/2) = Dom(A1/2) and H ⊃ Dom(H−1) ⊇ Dom(A1/2),

so that the inverse of H is unbounded. By the lack of an appropriate example, Theorem
3.2.1 is only of theoretical value in its full extend so far. If instead Dom(H−1) = H,
then H is bounded, boundedly invertible and the Second Representation Theorem for the
form b is already contained in [36, Theorem 2.10]. In this case, we obtain a new variant
of its proof.
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If H has a bounded inverse, the inclusions between Dom(A1/2) and Dom(|B|1/2) are
equivalent (see Theorem 2.2.4). In the situation that H has an unbounded inverse, this
equivalence does not hold anymore. A simple example for this is the following.

Example 3.2.3. With the notation as in Definition 1.2.6, introduce

A :=
⊕
k∈N

(
1 0
0 k

)
, H :=

⊕
k∈N

(
1 0

0 k−1/2

)
= A−1/2,

where
Dom(A) = `2 ⊕ `2,2, Dom(H−1) = `2 ⊕ `2,2 = Dom(A1/2).

The form defined by

b[x, y] := 〈A1/2x,HA1/2y〉, Dom[b] = Dom(A1/2)

satisfies the First Representation Theorem 3.1.1 with B = A1/2HA1/2 = A1/2. Since B
is unbounded, we only have the strict inclusion

(3.1) Dom(|B|1/2) ⊃ Dom(B) = Dom[b] = Dom(A1/2).

Recall that this behaviour is not possible if H−1 is bounded, see Theorem 2.2.4.
In this case, direct computation shows that we have that

b[x, y] = 〈|B|1/2x, sign(B)|B|1/2y〉, x, y ∈ Dom[b] ⊂ Dom(|B|1/2).

However, we can define the form b̃ with

b̃[x, y] := 〈|B|1/2x, sign(B)|B|1/2y〉, x, y ∈ Dom(|B|1/2)

on a larger domain and we can not only reconstruct the form b but even the extension
b̃ from the associated operator B.





CHAPTER 4

Graph subspaces, Riccati equations and block
diagonalisation

This chapter is based on the joint work [48] with A. Seelmann and K. A. Makarov.
Here, we investigate the block diagonalisation of unbounded symmetric, diagonally

dominant block operator matrices on H = H0 ⊕H1,(
A0 W ∗

W A1

)
=

(
A0 0
0 A1

)
+

(
0 W ∗

W 0

)
=: A+ V.

The considerations of this chapter will be taken over to operators associated with indef-
inite forms instead of block operator matrices in Chapters 6 and 7 below. Nevertheless,
the considerations presented in the current chapter are of interest on their own.

The block diagonalisation of operator matrices, where the off-diagonal part V is ad-
ditionally assumed to be bounded, has already been investigated by Albeverio, Makarov,
and Motovilov in [3]. There, it turned out that the decomposition

H = G(H0, X)⊕ G(H0, X)⊥

given by the graph of the operator X reduces the operator A+V if and only if the block
operator matrix

Y =

(
0 −X∗
X 0

)
is a strong solution of the operator Riccati equation

AY − Y A− Y V Y + V = 0.

As a consequence, the explicit block diagonalisation of A+ V ,

(4.1) (I + Y )−1(A+ V )(I + Y ) = A+ V Y =

(
A0 +W ∗X 0

0 A1 −WX∗

)
,

has been obtained in a natural way by the invariance of the graph subspaces. Due to
the boundedness of V , the natural domain of A+ V Y is just Dom(A).

However, the corresponding proof in [3] has a gap in reasoning. Namely, in [3,
Lemma 5.3 and Theorem 5.5] it has been taken for granted that I + Y maps Dom(A)
onto itself. Discussions with K. A. Makarov confirmed that this indeed requires a detailed
proof. This proof has been provided by A. Seelmann for bounded V and will be part of
his Ph.D. thesis [57].

The present author adapted the technique used by A. Seelmann to show the cor-
respondence between reducing graph subspaces and solutions to the operator Riccati
equation in the case of unbounded perturbations V under certain regularity conditions
on the perturbation.

However, the natural diagonalisation (4.1) is difficult to show if V is unbounded
since in this case the domain of A + V Y depends explicitly on the operator Y and, a
priori, does not have to coincide with Dom(A). The author noted that this difficulty
can be circumvented by considering the alternative block diagonalisation

(4.2) (I − Y )(A+ V )(I − Y )−1 = A− Y V
45
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of A+V with Dom(A−Y V ) = Dom(A). In contrast to (4.1), the operator A−Y V has
a domain which is independent of Y even if the perturbation is unbounded.

Sufficient conditions for the correspondence between reducing graph subspaces and
solutions to the operator Riccati equation and, hence, for the diagonalisation (4.2) can
be given in terms of relative bounds on V with respect to A which can easily be verified.

These results on bounded and unbounded perturbations were published in the joint
work [48].

A further result of the collaboration [48] is that the diagonalisation (4.2) already
implies the diagonalisation (4.1), so that (4.2) is stronger in this sense. In Chapter 6 the
diagonalisation (4.2) will be used for the correspondence of reducing graph subspaces
for the form b and solutions to the form Riccati equation.

The content of this chapter does not depend on the preceding chapters.

4.1. Invariant and reducing graph subspaces for operators

Before we can turn to the diagonalisation, we have to fix the following notation and
assumptions.

Hypothesis 4.1.1. Let H = H0 ⊕H1 be an orthogonal decomposition of the Hilbert
space H. Denote by A the self-adjoint block diagonal operator

A :=

(
A0 0
0 A1

)
, Dom(A) = Dom(A0)⊕Dom(A1)

and by V the symmetric off-diagonal block operator

V :=

(
0 W ∗

W 0

)
, Dom(V ) = Dom(W )⊕Dom(W ∗),

where W : H0 ⊇ Dom(W )→ H1 and W ∗ : H1 ⊇ Dom(W ∗)→ H0. Furthermore, assume
that

Dom(V ) ⊇ Dom(A),

so that the operator sum A+ V is defined on Dom(A+ V ) = Dom(A).

Note that we changed the roles of W and W ∗ in comparison to [48] for sake of
notational accordance with Chapters 5 to 7.

In the following, we introduce the notions of graph subspaces, invariant subspaces,
and reducing subspaces of the Hilbert space H.

Definition 4.1.2. Let H = H0 ⊕H1 be an orthogonal splitting of the Hilbert space
H and let X : H0 → H1 be a bounded operator. Then the subspace

G(H0, X) := {x⊕Xx | x ∈ H0}
is called the graph subspace of H with respect to X and H0, or shorter, the graph of
X. In a similar way, we denote the graph of −X∗ by

G(H1,−X∗) := {−X∗x⊕ x | x ∈ H1}.

It is well known that

G(H0, X)⊕ G(H1,−X∗) = H
gives another orthogonal decomposition of the Hilbert space H = H0 ⊕H1.

We introduce the bounded block operators Y and T by

(4.3) Y :=

(
0 −X∗
X 0

)
, T := I + Y =

(
IH0 −X∗
X IH1

)
.
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Then we have the alternative representations

G(H0, X) = Ran
(
T |H0

)
and G(H1,−X∗) = Ran

(
T |H1

)
.

Definition 4.1.3 ([56], Section 1.4). Let S be a linear operator on the Hilbert space
H. Then a closed subspace G ⊆ H is called invariant for the operator S if

Ran
(
S|Dom(S)∩G

)
⊆ G.

If G and its orthogonal complement G⊥ are invariant for the operator S and the domain
of the operator S splits as

(4.4) Dom(S) = (Dom(S) ∩ G)⊕ (Dom(S) ∩ G⊥),

then the subspace G is called reducing for the operator S.

Note that G is reducing for S if and only if G⊥ is reducing for S.
Note also that even for self-adjoint operators S the splitting condition (4.4) of the

domain is not automatically satisfied if both G and G⊥ are invariant, see [56, Example
1.8].

An equivalent characterisation for reducing subspaces in terms of projectors is given
in Remark 6.2.1 below. However, in this chapter, this alternative characterisation is not
used.

The analysis of the mapping properties of the operators Y , T and T ∗ is crucial in
the considerations below. We introduce the following notation for this analysis.

Definition 4.1.4. Let X : H0 → H1 be a bounded operator and Y as in (4.3). Define
the subspace D ⊆ H by

D := {x ∈ Dom(A) | Y x ∈ Dom(A)} = D0 ⊕D1,

where

D0 := {f ∈ Dom(A0) | Xf ∈ Dom(A1)}, D1 := {g ∈ Dom(A1) | X∗g ∈ Dom(A0)}.
By definition, the set D is the maximal linear subset of Dom(A) that Y maps into

Dom(A).
We restate the following result of [48].

Lemma 4.1.5 ([48, Lemma 2.5 and Lemma 2.6]). Assume Hypothesis 4.1.1.
Let C ⊆ Dom(A) be a linear subset and let T, Y be the operators as in (4.3). Then:

(a) If one of the operators T, T ∗ and Y maps C into Dom(A), then so do the others.
(b) The operators T and T ∗ are both boundedly invertible and T−1 maps Dom(A)

into Dom(A) if and only if (T ∗)−1 does. In this case, the set D can alternatively
be written as

(4.5) D = Ran
(
T−1

∣∣
Dom(A)

)
= Ran

(
(T ∗)−1

∣∣
Dom(A)

)
.

In view of the lemma above, D is the maximal linear subset of Dom(A) that is
mapped into Dom(A) by the operator T and D is also maximal in this sense for the
operator T ∗.

We now give a characterisation for invariant graph subspaces.

Lemma 4.1.6 ([48, Lemma 2.3]). Assume Hypothesis 4.1.1. Then the following
statements are equivalent.

(i) The graph subspaces G(H0, X) and G(H1,−X∗) are both invariant for the
operator sum A+ V ;

(ii) The operator Y satisfies

(4.6) AY x− Y Ax− Y V Y x+ V x = 0 for x ∈ D;
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(iii) The operator T ∗ satisfies

(4.7) T ∗(A+ V )x = (A− Y V )T ∗x for x ∈ D.

Proof. Noting that

Dom(A) ∩ G(H0, X) = {f ⊕Xf | f ∈ D0}
and that

(A+ V )(f ⊕Xf) = (A0f +W ∗Xf)⊕ (Wf +A1Xf),

we see directly that G(H0, X) is invariant for A+ V if and only if

(W +A1X)f = X(A0 +W ∗X)f for f ∈ D0,

that is

(4.8) A1Xf −XA0f −XW ∗Xf +Wf = 0 for f ∈ D0.

In the same way, we see that G(H1,−X∗) is invariant if and only if

(4.9) A0X
∗g −X∗A1g +X∗WX∗g −W ∗g = 0 for g ∈ D1.

The equivalence of (i) and (ii) then follows by combining (4.8) and (4.9) to the single
equation (4.6). Taking into account the identity T ∗ = I − Y , equation (4.7) is just a
reformulation of (4.6). This completes the proof. �

Note that condition (ii) states that Y is a strong solution of the Riccati equation
AY − Y A − Y V Y + V = 0 restricted to D. This equation is also considered in [47,
Corollary 3.2] by Langer and Tretter under the condition that the spectra of A0 and
A1 are subordinated, that is (A0x, x) ≥ 0 for x ∈ Dom(A0) and (A1x, x) ≤ 0 for
x ∈ Dom(A1) and that the kernel of A+ V is trivial.

We are now ready to present the first results on the relation between invariant and
reducing subspaces.

Lemma 4.1.7 ([48, Lemma 2.7]). Assume Hypothesis 4.1.1. Then the following
statements are equivalent.

(i) The graph subspace G(H0, X) is reducing for A+ V ;
(ii) The graph subspaces G(H0, X) and G(H1,−X∗) are both invariant for A + V

and the operator T−1 (respectively (T ∗)−1) maps Dom(A) into itself;
(iii) The operator inclusion

(4.10) T ∗(A+ V ) ⊇ (A− Y V )T ∗

holds.

Proof. Note that we have the following intersections of the domain with the graph
subspaces:

Dom(A+ V ) ∩ G(H0, X) = {f ⊕Xf | f ∈ D0} = Ran(T |D0
),

Dom(A+ V ) ∩ G(H1,−X∗) = {−X∗g ⊕ g | f ∈ D1} = Ran(T |D1
).

This yields that(
Dom(A+ V ) ∩ G(H0, X)

)
⊕
(

Dom(A+ V ) ∩ G(H1,−X∗)
)

= Ran (T |D) .

Therefore, G := G(H0, X) is reducing for A+V if and only if both G and G⊥ are invariant
and

(4.11) Dom(A) = Dom(A+ V ) = Ran (T |D) .

With Lemma 4.1.5, it follows that (4.11) holds if and only if T−1, respectively (T ∗)−1,
maps Dom(A) into itself. This gives the equivalence of (i) and (ii).
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Suppose that (i) holds. Then by the invariance of the graph and Lemma 4.1.6, we
have that

T ∗(A+ V )x = (A− Y V )T ∗x for x ∈ D.
Together with (4.11) and the alternative representation (4.5) of D in terms of T ∗ in
Lemma 4.1.5, we also have that

(4.12) Dom(A) = Ran (T ∗|D) .

With Dom(A− Y V ) = Dom(A) and (4.12) it follows that

Dom
(
(A− Y V )T ∗

)
= D ⊆ Dom(A+ V ) = Dom

(
T ∗(A+ V )

)
.

Hence, (iii) is shown.
Conversely, assume that (iii) holds. The right-hand side of (4.10) has natural domain

D, so that
T ∗(A+ V )x = (A− Y V )T ∗x for x ∈ D.

By Lemma 4.1.6 both graph subspaces G(H0, X) and G(H1,−X∗) are invariant for A+V .
Moreover, we have that

Ran
(

(T ∗)−1
∣∣
Dom(A)

)
= Dom((A− Y V )T ∗) ⊆ Dom(T ∗(A+ V )) = Dom(A).

Thus (ii) holds and the proof is completed. �

4.2. Operator Riccati equation and block diagonalisation

We now investigate the inclusion T ∗(A+V ) ⊆ (A−Y V )T ∗ which is converse to the
one in (4.10). This inclusion is related to the operator Riccati equation.

Lemma 4.2.1 ([48, Lemma 2.9]). Assume Hypothesis 4.1.1. Then the inclusion

T ∗(A+ V ) ⊆ (A− Y V )T ∗

holds if and only if Y is a strong solution of the operator Riccati equation

(4.13) AY − Y A− Y V Y + V = 0,

that is Ran
(
Y |Dom(A)

)
⊆ Dom(A) and

AY x− Y Ax− Y V Y x+ V x = 0 for x ∈ Dom(A).

In this case the domain equality Dom(A) = D holds.

Proof. Note that by Lemma 4.1.5 the operator Y maps Dom(A) into itself if and
only if T ∗ does. In this case, by the maximality of D ⊆ Dom(A) as a set being mapped
by Y into Dom(A), the equality Dom(A) = D follows. The equivalence of the statements
then follows from the observation that

Dom(A) = Dom(A+ V ) = Dom(A− Y V ). �

A direct combination of Lemma 4.1.7 and Lemma 4.2.1 gives the following result.

Theorem 4.2.2 ([48, Theorem 2.10]). Assume Hypothesis 4.1.1. Then, the operator
sum A+ V admits the block diagonalisation

(4.14) T ∗(A+ V )(T ∗)−1 = A− Y V =

(
A0 +X∗W 0

0 A1 −XW ∗
)

if and only if

(i) the graph subspace G(H0, X) is reducing for A+ V ,
and

(ii) the operator Y is a strong solution of the operator Riccati equation

AY − Y A− Y V Y + V = 0.
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4.3. Operator Riccati equation and reducing graph subspaces

We now address the question when the conditions (i) and (ii) in Theorem 4.2.2 are
equivalent. In this case, one inclusion between the operators T ∗(A+V ) and (A−Y V )T ∗

implies even the equality. Furthermore, the reducing subspace G = G(H0, X) is then
associated with the strong solution X of the operator Riccati equation.

In the special case that the graph subspace G := G(H0, X) is also a spectral subspace
of A+ V , that is,

G = Ran(EA+V (M))

for some Borel set M ⊂ R, it is clear that G is reducing for A + V . In this case, if
the equivalence of (i) and (ii) in Theorem 4.2.2 takes place, we have that the operator
A+V can be block diagonalised with respect to the spectral decomposition into M and
R \M . This diagonalisation can then be given explicitly in terms of the solution X of
the Riccati equation.

The main tool to investigate under which assumptions the equivalence of (i) and (ii)
in Theorem 4.2.2 holds is the following simple observation.

Lemma 4.3.1 ([56, Lemma 1.3]). Let T1 and T2 be two linear operators such that
T2 ⊆ T1. If T1 is injective and T2 surjective, then T1 = T2.

Proof. For sake of completeness, we reproduce the proof here.
Let x ∈ Dom(T1). Since T2 is surjective by hypothesis, there is y ∈ Dom(T2) such

that T1x = T2y. By the inclusion T2 ⊆ T1, we obtain that T1x = T1y, which, by the
injectivity of T1, implies that x = y ∈ Dom(T2). This yields that Dom(T1) ⊆ Dom(T2)
and thus T1 = T2. �

For our purposes, we give the following variant of Lemma 4.3.1.

Corollary 4.3.2 ([48, Corollary 3.2 and Remark 3.3]). Let T1 and T2 be linear
operators on Hilbert spaces H1, and H2, respectively, and let S : H1 → H2 be an iso-
morphism. Suppose that

ST1 ⊆ T2S.

If there exists some constant λ ∈ C such that T1−λ is surjective and T2−λ is injective,
then

(4.15) ST1 = T2S

holds as an operator equality. In this case, the operators T1 − λ and T2 − λ are both
bijective.

In particular, the equality (4.15) holds if T1 and T2 are closed operators with inter-
secting resolvent sets, that is, ρ(T1) ∩ ρ(T2) 6= ∅.

As a consequence, we get the following conditions for the implications between (i)
and (ii) in Theorem 4.2.2. These conditions are of an a posteriori type since they involve
the operator Y .

Theorem 4.3.3 ([48, Theorem 3.4]). Assume Hypothesis 4.1.1.

(a) Let G(H0, X) be a reducing graph subspace for A + V . Then Y is a strong
solution of the operator Riccati equation for A+ V ,

AY − Y A− Y V Y + V = 0

if there is some constant λ ∈ C such that

(4.16) A+ V − λ is injective and A− Y V − λ is surjective.
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(b) Let Y be a strong solution of the operator Riccati equation (4.13). Then the
graph subspace G(H0, X) is reducing for A+ V if there is some constant λ ∈ C
such that

(4.17) A+ V − λ is surjective and A− Y V − λ is injective.

Proof. (a) By Lemma 4.1.7, the property of G(H0, X) to be reducing for A+V
can be written as

(A− Y V )T ∗ ⊆ T ∗(A+ V ).

In this case, we also have the reformulation

(T ∗)−1(A− Y V ) ⊆ (A+ V )(T ∗)−1.

Considering the isomorphism S := (T ∗)−1, it follows from Corollary 4.3.2 that
even equality in the inclusion above holds. Thus, we have that

(T ∗)−1(A− Y V ) = (A+ V )(T ∗)−1

giving the block diagonalisation and the claim follows by Theorem 4.2.2.
(b) By Lemma 4.2.1 the operator Y is a strong solution of the Riccati equation if

and only if
T ∗(A+ V ) ⊆ (A− Y V )T ∗.

With Corollary 4.3.2 for S := T ∗, the operator equality

T ∗(A+ V ) = (A− Y V )T ∗

holds. Again, this gives the block diagonalisation as in Theorem 4.2.2 and the
claim follows. �

In view of Corollary 4.3.2, we get in both conditions (4.16) and (4.17) that the op-
erators A + V − λ and A − Y V − λ are even bijective. However, in order to apply the
theorem, it suffices to check the injectivity, respectively surjectivity, for the correspond-
ing operators.

Recall that we imposed the condition Dom(V ) ⊇ Dom(A) as a general assumption
for this chapter. However, this assumption was not essential in the considerations above.

Remark 4.3.4 (cf. [48, Remark 3.7]). The condition

Dom(V ) ⊇ Dom(A)

in Hypothesis 4.1.1 can be dropped in the considerations above. Namely, the statements
remain valid if Dom(A) is substituted everywhere by Dom(A)∩Dom(V ). In this case, Y
is said to be a strong solution of the operator Riccati equation AY −Y A−Y V Y +V = 0
if

Ran
(
Y |Dom(A)∩Dom(V )

)
⊆ Dom(A) ∩Dom(V )

and

AY x− Y Ax− Y V Y x+ V x = 0 for x ∈ Dom(A) ∩Dom(V ).

In turn, the set D has to be redefined as

D := {x ∈ Dom(A) ∩Dom(V ) | Y x ∈ Dom(A) ∩Dom(V )}.

Note that in general the intersection Dom(A)∩Dom(V ) can be trivial. If this is the
case, it is clear that investigation of A+ V makes no sense. It makes sense to consider
this operator sum if it is at least densely defined. We revisit the case, where Dom(A) is
in general not a subspace of Dom(V ) in Lemma 6.3.8 below. There, the density of the
intersection Dom(A) ∩Dom(V ) can be granted.
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In Theorem 4.3.3, the conditions imposed on A+ V do not involve Y , so that these
conditions are of a priori type. The conditions imposed on A − Y V however are of a
posteriori type since they explicitly depend on the operator Y .

It is thus natural to seek for stronger a priori conditions that imply the a posteriori
conditions in (4.16) and (4.17), respectively. Classical perturbation results in [43] can
be applied to grant these conditions.

Lemma 4.3.5 (cf. [48, Lemma 4.3]). Assume Hypothesis 4.1.1. If the operators V
and Y V are both A-bounded with A-bound less than one, then A + V is self-adjoint,
A− Y V is closed and the intersection of the resolvent sets is not empty, that is,

ρ(A+ V ) ∩ ρ(A− Y V ) 6= ∅.

In particular, this is the case if V is infinitesimal with respect to A.

Proof. Since the perturbation V is symmetric and A is self-adjoint, it follows from
[43, Theorem V.4.3] that the operator A+ V also is self-adjoint on Dom(A). To prove
the claim, it therefore suffices to show that A−Y V is closed and that there is a constant
k ≥ 0 such that

iλ ∈ ρ(A− Y V ) for λ ∈ R , |λ| > k.

In order to prove this, choose a ≥ 0 and 0 ≤ b < 1 such that

‖Y V x‖ ≤ a ‖x‖+ b ‖Ax‖ for x ∈ Dom(A).

For λ 6= 0, it follows from [43, Theorem V.3.16] that

(4.18)
∥∥(A− iλ)−1

∥∥ ≤ |λ|−1 and
∥∥A(A− iλ)−1

∥∥ < 1.

Define
k :=

a

1− b
≥ 0,

and let λ ∈ R with |λ| > k. Then, the estimates in (4.18) imply that

(4.19) a
∥∥(A− iλ)−1

∥∥+ b
∥∥A(A− iλ)−1

∥∥ < a

|λ|
+ b < 1.

Hence, by [43, Theorem IV.3.17], the operator A− Y V is closed, and iλ belongs to its
resolvent set. �

We now combine Lemma 4.3.5 and the Theorems 4.3.3 and 4.2.2 to obtain the
following block diagonalisation for certain diagonally dominant block operator matrices.

Theorem 4.3.6. Assume Hypothesis 4.1.1. Suppose furthermore that V is infinites-
imal with respect to A and that X : H0 → H1 is bounded. Then the graph space G(H0, X)
is reducing for the operator A+ V if and only if

Y =

(
0 −X∗
X 0

)
is a strong solution of the operator Riccati equation

(4.20) AY − Y A− Y V Y + V = 0,

that is
Ran

(
Y |Dom(A)

)
⊆ Dom(A)

and
AY x− Y Ax− Y V Y x+ V x = 0 for x ∈ Dom(A).

In this case, the operators T = I + Y and T ∗ = I + Y are bounded, boundedly invertible
on H and bijective on Dom(A). Furthermore, the equality

(4.21) T ∗(A+ V ) = (A− Y V )T ∗
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holds.

In Theorem 6.1.9 below, we will obtain a criterion for the spectral subspace
EA+V (R+) to be a graph subspace with respect to the first component in the decompo-
sition H = H+⊕H−. In view of Theorem 4.3.6, this yields the solvability of the Riccati
equation since the spectral graph subspace clearly is reducing.

4.4. Sylvester equations, alternative and unitary diagonalisation

The results we obtained in this chapter so far relate A+V to the operator A−Y V .
However, it is also possible to relate A+V to the operator A+V Y instead. Recall that
for bounded perturbations V , the latter has been investigated already in [3, Lemma
5.3, Theorem 5.5], see also [57]. It is natural to try to extend these results on the
block diagonalisation of A + V with respect to A + V Y as well as their relation to
solutions to the Riccati equation to unbounded perturbations V . If the perturbation V
is unbounded, the operator A+ V Y is more difficult to investigate than A− Y V since
its domain depends on Y . For the operator A+ V Y it is in general not clear that there
exists a point λ ∈ ρ(A + V Y ) ∩ ρ(A + V ) or that this operator is even closed on its
natural domain Dom(A) ∩ Dom(V Y ). Without further assumptions we cannot apply
the crucial Lemma 4.3.1 on A+ V Y instead of A− Y V .

We reproduce those results related to A + V Y in [57], respectively [48], that still
hold for unbounded perturbations V .

Furthermore, we give a comparison to the results presented here and combine the
results to a unitary block diagonalisation.

Theorem 4.4.1 ([48, Theorem 2.13], cf. [3, Lemma 5.3, Theorem 5.5]).
Assume Hypothesis 4.1.1. Then the operator A+ V admits the diagonalisation

(4.22) T−1(A+ V )T = A+ V Y =

(
A0 +W ∗X 0

0 A1 −WX∗

)
if and only if

(i) the graph subspace G(H0, X) is reducing for A+ V , and

(ii) the operator Y satisfies Ran
(
Y |Dom(A+V Y )

)
⊆ Dom(A) and

Ax− Y Ax− Y V Y x+ V x = 0 for x ∈ Dom(A+ V Y ).

Note that a diagonalisation similar to (4.22) also appears in [47]. For the case
considered there ([47, Corollary 3.2]), it is required that the spectra of A0 and A1 are
subordinated in the sense that A0 is non-negative and A1 is non-positive and that the
kernel of A + V is trivial. Furthermore, it is supposed that the graph G(H, X) is a
spectral subspace which is automatically reducing. The considerations we present here
do not require additional information of this type.

We now compare the diagonalisation that can be obtained from (4.21) to the one
given by (4.22).

Remark 4.4.2 (cf. [48, Theorem 2.10]). Since Dom(A+V Y ) is a subset of Dom(A),
it is clear that the conditions in (ii) of Theorem 4.2.2 are stronger than the corresponding
conditions in Theorem 4.4.1. In this sense, also the related diagonalisation is stronger.
Namely, if the diagonalisation

(4.23) T ∗(A+ V )(T ∗)−1 = A− Y V
holds, then so does

(4.24) T−1(A+ V )T = A+ V Y.
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Remark 4.4.3 (cf. [48, Remark 2.11]).
The two block diagonalisations (4.23) and (4.24) can be combined to

T ∗T (A+ V Y )(T ∗T )−1 = A− V Y.
In particular, the operators A + V, A + V Y and A − Y V are similar to one another.
Note that

T ∗T =

(
IH0 +X∗X 0

0 IH1 +XX∗

)
= TT ∗

is normal and block diagonal. With the polar decomposition (see, e.g., [43, Section
VI.2.7]) of T = U |T | as well as T ∗ = |T |U∗ = |T ∗|U, where U is a unitary transforma-
tion, we get that A+V is unitary equivalent to a block diagonal matrix (cf. [3, Theorem
5.5(iii)]). Namely,

U∗(A+ V )U = |T |(A+ V Y )|T |−1 = |T |−1(A− Y V )|T | =
(
B0 0
0 B1

)
,

where

B0 := (IH0 +X∗X)1/2(A0 +W ∗X)(IH0 +X∗X)−1/2

and

B1 := (IH1 +XX∗)1/2(A1 −WX∗)(IH1 +XX∗)−1/2

on their natural domains

Dom(B0) = Ran

(
(IH0 +X∗X)1/2

∣∣∣
Dom(A0)

)
,

Dom(B1) = Ran

(
(IH1 +XX∗)1/2

∣∣∣
Dom(A1)

)
.

In this sense, both bock diagonalisations (4.23) and (4.24) lead to the same unitary block
diagonalisation.

In Chapter 7 below, we give a unitary diagonalisation of the Stokes operator BS
introduced in Chapter 5 by a form sum.

If both diagonalisations hold, then A+V Y and A−Y V are similar to each other. We
give a simple explanation for the appearance of both operators in our considerations.
Recall that the Riccati equation is essential for the investigation of reducing graph
subspaces. We have two possibilities to simplify the Riccati equation to a Sylvester
equation. Namely, we have

0 = (A− Y V )Y − Y A+ V = AY − Y A− Y V Y + V = AY − Y (A+ V Y ) + V = 0.

In the left-hand equation, Y is a solution of a Sylvester equation with the coefficients
A− Y V and A. In the right-hand equation, Y is a strong solution of the corresponding
equation with the coefficients A and A + V Y . These two equations clearly carry the
same information but only in the left-hand equation we can determine the domain of
the coefficients without solving the equation. This freedom of bracketing explains why
there are two diagonalisations of A+ V , the usual related to A+ V Y and the new one
related to A− Y V .

As it turns out the operators A + V Y and A − Y V are not only similar to A + V
but also to A − V . This symmetry yields a sign-symmetry of the spectrum of A + V
with respect to the perturbation V .

Remark 4.4.4 (cf. [48, Remark 2.12]). Introducing the symmetry

J = J∗ =

(
IH0 0
0 −IH1

)
,
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it is easy to see that we have the unitary transformation

J(A+ V )J = A+ JV J = A− V.
Also, a short computation shows that G(H0, X) is a reducing graph subspace for A+ V
if and only if G(H0,−X) is reducing for A − V . In a similar way, we have that Y
is a strong solution of the corresponding operator Riccati equation (4.13) for A + V if
and only if JY J = −Y is a strong solution of the Riccati equation for A − V . As a
consequence, the spectra of A+V and A−V agree and the operators can be diagonalised
at the same time. For sums of forms, a similar observation can be made, see Lemma
6.3.9.

For a more detailed study of the relation between A+V and A+Y V for unbounded
V , see [48]. An extensive study of the case of bounded perturbations V is contained in
the Ph. D. thesis [57] of A. Seelmann.





CHAPTER 5

The Stokes operator

5.1. Definition of the Stokes operator

This chapter is based on the joint work [38] with L. Grubǐsić, V. Kostrykin,
K. A. Makarov, and K. Veselić.

We apply the results of Chapter 1 to define the Stokes operator BS by the First
Representation Theorem and compute its kernel. The Stokes operator is of interest in
fluid dynamics and is a simple example for the approach of Chapter 1 since its form is
bounded from below.

Recall that the Stokes operator is related to the stationary linearised Stokes system

−ν∆u+ grad p = f, div u = 0, u|∂Ω = 0,

where ν > 0 is the viscosity, see, e.g., [61].
Let Ω be a domain in Rn, n ≥ 2 with Lipschitz boundary. We allow Ω to be bounded

or unbounded. We introduce the following Hilbert spaces

H+ = L2(Ω)n := L2(Ω)⊗ Cn, H− := L2(Ω) and H := H+ ⊕H−.

We consider the Sobolev space H1
0 (Ω)n ⊂ L2(Ω)n of vector-valued functions on Ω given

by the closure of C∞0 (Ω)n with respect to the Sobolev norm

‖u‖2H1(Ω)n :=

∫
Ω
〈u(x), u(x)〉Cndx+

n∑
i=1

∫
Ω
〈Diu(x), Diu(x)〉Cndx,

where Diu denotes the partial derivative of u with respect to the i-th component of the
vector x.

Definition 5.1.1 ([38]). For arbitrary ϕ,ψ ∈ H1
0 (Ω)n ⊕ L2(Ω) define the form bS

by

(5.1) bS [ϕ,ψ] :=
n∑
j=1

∫
Ω
〈Dju(x), Djv(x)〉dx+

∫
Ω

(
q(x) div u(x) + p(x) div v(x)

)
dx,

where ϕ = u⊕ p and ψ = v ⊕ q.

This form is associated with the differential expression appearing on the left-hand
side of the Stokes system

(5.2)

(
−∆ − grad
div 0

)(
u
p

)
=

(
f
0

)
,

where f is an external forcing and−∆ is the componentwise application of the Laplacian

−∆. In this sense, we have ∆(u1, . . . , un) = (∆u1, . . . ,∆un) and ∆ =
∑n

i=1
∂2

∂x2i
.

We consider the form bS in (5.1) as a perturbation of the closed non-negative
sesquilinear form a on H1

0 (Ω)n ⊕ L2(Ω) given by

a[ϕ,ψ] := a+[u, v]− a−[p, q] with a− := 0

57
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and

a+[u, v] :=
n∑
j=1

∫
Ω
〈Dju(x), Djv(x)〉Cndx.

The domain of the self-adjoint operator A+ = −∆ associated with the form a+ is
precisely (H1

0 (Ω) ∩ {u ∈ L2(Ω) | ∆u ∈ L2(Ω)})n. This follows from the consideration of
the components u1, . . . , un of u ∈ L2(Ω)n and application of [43, Example VI.2.13], to
the operators

S := grad, Dom(S) = H1
0 (Ω)

and

S∗ = −div , Dom(S∗) = E2(Ω) := {u ∈ L2(Ω)n | div u ∈ L2(Ω)}.

In the special case that Ω is bounded and either convex or with Hölder C1,1-boundary,
we have the explicit representation

Dom(A+) = (H1
0 (Ω) ∩H2(Ω))n

by [34, Theorems 2.2.2.3 and 3.2.1.2].
We now define the Stokes operator BS associated with the form bS .

Theorem 5.1.2 (The Stokes Operator [38]). The form bS given by (5.1) admits the
representation

(5.3) bS [ϕ,ψ] = 〈ϕ,BSψ〉, ϕ ∈ H1
0 (Ω)n ⊕ L2(Ω), ψ ∈ Dom(BS) ⊂ H1

0 (Ω)n ⊕ L2(Ω)

for a unique self-adjoint operator BS. This operator will be called the Stokes operator.

Proof. We introduce the diagonal part of bS in the following way.

a[ϕ,ψ] :=
n∑
j=1

∫
Ω
〈Dju(x), Djv(x)〉Cndx,

then the non-negative form a is represented by the block operator matrix

(
−∆ 0

0 0

)
with

respect to the decomposition given by the involution JA with JA(u ⊕ p) = u ⊕ (−p).
The remaining off-diagonal part v of bS is given by

v[ϕ,ψ] :=

∫
Ω
q(x) div u(x)dx+

∫
Ω
p(x) div v(x)dx.

Using Theorem 1.5.3, it remains to show the (a + I)-boundedness of the off-diagonal
part v to define the Stokes operator BS .

Let ϕ := u⊕ p, then it suffices to estimate

2

∣∣∣∣∫
Ω
pdiv udx

∣∣∣∣ ≤ 2‖p‖L2(Ω)‖div u‖L2(Ω)

≤ ‖div u‖2L2(Ω) + ‖p‖2L2(Ω)

≤ a+[u] + ‖p‖2L2(Ω)

≤ (a + I)[u⊕ p], p ∈ L2(Ω), u ∈ H1
0 (Ω)n.

(5.4)
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The estimate ‖div u‖2L2(Ω) ≤ a+[u] holds since for u = (u1, . . . , un) ∈ C∞0 (Ω)n we have

the identity

a+[u]− ‖div u‖2 =

n∑
i,j=1

∫
Ω

∣∣∣∣∂ui∂xj

∣∣∣∣2 dx− ∫
Ω

∣∣∣∣∣
n∑
i=1

∂ui
∂xi

∣∣∣∣∣
2

dx

=

n∑
i,j=1

∫
Ω

∣∣∣∣∂ui∂xj

∣∣∣∣2 dx− n∑
i,j=1

∫
Ω

∂ui
∂xi

∂uj
∂xj

dx.

We thus obtain that

a+[u]− ‖div u‖2 =

n∑
i,j=1,i 6=j

∫
Ω

(∣∣∣∣∂ui∂xj

∣∣∣∣2 − ∂ui
∂xi

∂uj
∂xj

)
dx

=

n∑
i,j=1
i<j

∫
Ω

(∣∣∣∣∂ui∂xj

∣∣∣∣2 +

∣∣∣∣∂uj∂xi

∣∣∣∣2 − 2Re
∂ui
∂xi

∂uj
∂xj

)
dx

=
n∑

i,j=1
i<j

∫
Ω

∣∣∣∣∂ui∂xj
− ∂uj
∂xi

∣∣∣∣2 dx+ 2Re
n∑

i,j=1
i<j

∫
Ω

(
∂ui
∂xj

∂uj
∂xi
− ∂ui
∂xi

∂uj
∂xj

)
dx.

Suppose that supp(ui) ⊆ Br(0) for some r > 0 and all i ∈ {1, . . . , n}. Extending
each ui by zero to ũi ∈ C∞0 (Rn), integration by parts yields∫

Ω

(
∂ui
∂xj

∂uj
∂xi
− ∂ui
∂xi

∂uj
∂xj

)
dx =

∫
B2r(0)

(
∂ũi
∂xj

∂ũj
∂xi
− ∂ũi
∂xi

∂ũj
∂xj

)
dx = 0.

By density of C∞0 (Ω) in H1
0 (Ω), the claim follows. �

Note that there are also alternative approaches to define the Stokes operator BS .

Remark 5.1.3. (a) An approach to define the Stokes operator is to consider the
Helmholtz projector P and to define the operator product −νP∆ on the Sobolev
space of divergence free vectorfields, see, e.g., the book of Sohr, in particular
[61, Section III.2].

(b) The Stokes operator can also be defined as the block operator matrix(
−∆ − grad
div 0

)
.

Its properties can be investigated directly by studying the Schur complement as
in [21] by Faierman, Fries, Mennicken, and Möller.

(c) An approach based on pseudo-differential operators is contained in [35] by Grubb
and Greymonat.

(d) Another form based approach to define the Stokes operator is closely related to
the one we presented and uses the KLMN Theorem. Using the Young Inequality,
we obtain that the form v is infinitesimal with respect to the non-negative form
a. Namely, for arbitrary ε > 0 we have

(5.5) 2

∣∣∣∣∫
Ω
pdiv udx

∣∣∣∣ ≤ εa[u⊕ p] +
1

ε
‖u⊕ p‖2 .

Thus, by the KLMN Theorem (see, e.g., [55, Theorem X.17]), there is a unique
self-adjoint operator B associated with the form bS such that

Dom(B) ⊆ H1
0 (Ω)n ⊕ L2(Ω)
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allowing the representation

bS [ϕ,ψ] = 〈ϕ,Bψ〉, ϕ ∈ Dom[bS ], ψ ∈ Dom(B).

By the uniqueness in Theorem 5.1.2, this operator agrees with BS.

An important difference between the form bS and the operator BS is the following.

Remark 5.1.4. The block operator matrix on the left-hand side of (5.2) is upper
dominant, see [63, Definition 2.2.1] for a definition of this notion. This follows from [63,

Corollary 2.1.20], noting that Dom(div ) ⊃ Dom((−∆)1/2) and that the zero operator is
automatically infinitesimal with respect to the gradient operator.

However, the form bS in (5.1) is diagonally dominant, that is, the domain of bS is
just the domain of the diagonal part a.

This difference in the dominance can occur since we have the freedom to push the
gradient operator to the other side in the scalar product of the weak formulation of the
corresponding form. In this sense, we have −div on the left-hand side instead of grad
on the right-hand side of the scalar product defining the form bS, so that the divergence
operator appears twice in (5.1).

The Stokes operator and its form satisfy the Second Representation Theorem as
well.

Remark 5.1.5. The form bS of the Stokes operator satisfies also the Second Repre-
sentation Theorem. To see this, note that by Remark 5.1.3 and by the KLMN Theorem
[55, Theorem X.17], the operator BS is semibounded from below. Thus, there is a con-
stant c such that the form bS+cI is non-negative and satisfies the Second Representation
Theorem [43, Theorem VI.2.23]. From this, using Remark 1.2.4, we get that

Dom(A1/2) = Dom[a] = Dom[bS ] = Dom[bS+cI] = Dom((BS+cI)1/2) = Dom(|BS |1/2),

which yields that the Second Representation Theorem holds.

5.2. The kernel of the Stokes operator

We will now compute the kernel of the Stokes operator. We first show that the kernel
of the Laplacian with homogeneous Dirichlet boundary values is trivial. Although this
statement seems to be known, we found no reference for this statement in the case of
unbounded domains.

For bounded domains, [30, Corollary 8.2] shows that the corresponding weak solution
vanishes identically. This Corollary is based on the chain rule for H1(Ω) functions on
bounded domains Ω.

We show that the argumentation in [30, Corollary 8.2] extends to arbitrary domains.
An important step in the proof of this claim is the following chain rule.

Lemma 5.2.1 ([19, Satz 5.19 and Satz 5.20]).
Let f ∈ C1(R) with bounded derivative, |f ′| ≤ c for some constant c, and f(0) = 0.

Furthermore, let Ω be a domain, then for u ∈ H1(Ω), the composition f ◦ u satisfies

f ◦ u ∈ H1(Ω), D(f ◦ u) = (f ′ ◦ u) ·Du,

where D is the gradient operator on H1(Ω). Additionally, u+ := max{u, 0} satisfies

u+ ∈ H1(Ω) and Du+(x) = Du(x) · χ{u>0}(x) almost everywhere,

where χ{u>0} is defined almost everywhere and given by χ{u>0}(x) = 1 if u(x) > 0 and
χ{u>0}(x) = 0 if u(x) ≤ 0.
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We modify this result to hold for the class H1
0 (Ω), so that the zero boundary values

are preserved.

Lemma 5.2.2. Let Ω ⊆ Rn be a domain and let u ∈ H1
0 (Ω) be arbitrary. Then the

positive part u+ of u satisfies

u+ ∈ H1
0 (Ω).

Proof. By Lemma 5.2.1, we have u+ ∈ H1(Ω) and need only to verify that u+ can
be approximated by C∞0 (Ω) functions. This approximation with respect to the Sobolev
norm of H1(Ω) will be carried out in three steps.

Step 1 : u+ is approximated by (
√
u2 + ε2 − ε)χ{u>0} for ε → 0. To see this, we

compute

∥∥∥u+ − (
√
u2 + ε2 − ε)χ{u>0}

∥∥∥2

H1(Ω)

=

∫
Ω

∣∣u+ − (
√
u2 + ε2 − ε)χ{u>0}

∣∣2dx+

∫
{u>0}

∣∣Du− u√
u2 + ε2

Du
∣∣2dx.(5.6)

We have (
√
u2 + ε2 − ε)χ{u>0} ≤ u+ ∈ L2(Ω) and the pointwise convergence almost

everywhere

(
√
u2 + ε2 − ε)χ{u>0} → u+, ε→ 0.

Analogously, we get the estimate∣∣∣∣u · χ{u>0}√
u2 + ε2

Du

∣∣∣∣ ≤ |Du|χ{u>0} ∈ L2(Ω)

and the convergence pointwise almost everywhere

u · χ{u>0}√
u2 + ε2

Du→ Du · χ{u>0}, ε→ 0.

For both summands in (5.6), the convergence to zero now follows from the Dominated
Convergence Theorem.

Step 2 : Let ε > 0 be fixed and let (um)m∈N ⊂ C∞0 (Ω) be an approximating sequence
for u in the H1(Ω) norm for m→∞, then (up to taking a subsequence), we have that

(
√
u2 + ε2 − ε)χ{u>0} is approximated by

(
√
u2
m + ε2 − ε)χ{um>0} =: uε,m ∈ C1

0 (Ω).

For a proof of this convergence consider the map fε ∈ C1(R) given by

fε(s) := (
√
s2 + ε2 − ε)χ{s>0}(s).

Using the chain rule in Lemma 5.2.1 above, we get

(5.7) ‖fε(u)− fε(um)‖2H1(Ω) =

∫
Ω
|fε(um)−fε(u)|2dx+

∫
Ω
|f ′ε(u)Du−f ′ε(um)Dum|2dx.

By the estimates |fε(um)− fε(u)| ≤ sups∈R |f ′ε(s)| · |u− um| and sups∈R |f ′ε(s)| ≤ 1, we
get the convergence to zero of the first summand in (5.7) since we have∫

Ω
|fε(um)− fε(u)|2dx ≤

∫
Ω
|um − u|2dx→ 0,m→∞.

The second summand in (5.7) can be estimated by a sum of three integrals, namely
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∫
Ω
|f ′ε(u)Du− f ′ε(um)Dum|2dx

≤
∫

Ω
(|Du−Dum|+ |Du| · |f ′ε(um)− f ′ε(u)|)2dx

≤
∫

Ω
|Dum −Du|2dx+

∫
Ω
|Du|2|f ′ε(um)− f ′ε(u)|2dx

+ 2

∫
Ω
|Du| · |Dum −Du| · |f ′ε(um)− f ′ε(u)|dx

The first integral on the right-hand side converges by definition of the H1(Ω) norm.
Since um → u, m → ∞ in L2(Ω), there is a subsequence, which we name again by
(um), such that um → u pointwise almost everywhere. The continuity of the derivative
f ′ε implies f ′ε(um) → f ′ε(u), m → ∞ pointwise almost everywhere. The Dominated
Convergence Theorem implies the convergence of the second Integral. For the remaining
third integral, use |f ′ε(s)| ≤ 1 and estimate

2

∫
Ω
|Du| · |Dum −Du| · |f ′ε(um)− f ′ε(u)|dx ≤ 4

∫
Ω
|Du| · |Dum −Du|dx.

We then use the Cauchy-Schwarz Inequality to obtain the convergence to zero of (5.7).
Step 3 : Let ε,m be fixed. Denote by jδ the standard mollifier with support contained

in the ball Bδ(0) (see e.g. [19, Section 4.3]), where δ < dist(supp(uε,m), ∂Ω). Then uε,m
is approximated by the convolution jδ ∗ uε,m, δ → 0. This approximation follows from
[19, Lemma 4.22], noting that uε,m ∈ C1

0 (Ω), and that the derivatives satisfy

∂

∂xi
(jδ ∗ uε,m) = jδ ∗

∂

∂xi
uε,m, i ∈ {1, . . . n}.

Combining the three steps, we have a sequence
(
jδ ∗ uε,m

)
in C∞0 (Ω) converging to u+

completing the proof. �

A simplified version of the proof of the weak maximum principle in [30, Theorem
8.1] now shows the triviality of the kernel of the Dirichlet Laplacian −∆ in arbitrary
domains. For bounded domains, this is a direct consequence of the weak maximum
principle, see, e.g. [30, Corollary 8.2].

Theorem 5.2.3. Let Ω be a domain and let u ∈ H1
0 (Ω) with ∆u = 0 in the weak

sense, that is,
(5.8)

L(u, v) :=

∫
Ω
〈Du,Dv〉dx = 0 for all v ∈ H1

0 (Ω), with v ≥ 0 almost everywhere.

Then u equals zero almost everywhere.

Proof. Without loss of generality, assume u to be real-valued. Let ∆u ≥ 0 in the
weak sense, that is,

L(u, v) ≤ 0 for all v ∈ H1
0 (Ω) with v ≥ 0.

By Lemma 5.2.2 we can choose

v := u+ ∈ H1
0 (Ω) with Dv = Du · χ{u>0}.

Thus, we have ∫
Ω
〈Du,Dv〉dx ≤ 0.
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This yields the equality ∫
{u>0}

|Du|2dx = 0.

So either the Lebesgue measure of the set {u > 0} is zero or Du = 0 almost everywhere
on {u > 0}. In the first case, we immediately have u ≤ 0 almost everywhere. If Du = 0
almost everywhere on {u > 0}, we have by definition Dv ≡ 0 and thus v is constant and
equal to zero, so that also in this case u ≤ 0 almost everywhere.

Analogously, we get u ≥ 0 almost everywhere if we assume ∆u ≤ 0. In combination
we obtain u = 0 almost everywhere. �

We now give an explicit representation for the kernel of the Stokes operator.

Theorem 5.2.4 ([38]). Let Ω be a domain with Lipschitz boundary. Then the kernel
of the Stokes operator BS is trivial for domains with infinite volume and consists of
constant functions 0⊕ c for domains with finite volume.

Proof. By Theorem 5.2.3 (respectively [30, Corollary 8.2] for bounded domains),
the kernel of the Laplacian −∆ in H1

0 (Ω) is trivial for any domain Ω with Lipschitz
boundary. Thus the kernel of −∆ = A+ is trivial too.

Let W denote the closure of div defined on C∞0 (Ω)n with respect to the graph norm√
‖ · ‖2 + ‖div · ‖2. Obviously, H1

0 (Ω)n is a dense subset of Dom(W ). It is straightfor-
ward to verify that the domain of the adjoint operator W ∗ = − grad is H1(Ω). We then
get the representation

(5.9) bS [ϕ,ψ] = 〈A1/2
+ u,A

1/2
+ v〉L2(Ω)n + 〈Wu, q〉L2(Ω) + 〈p,Wv〉L2(Ω),

for ϕ = u⊕ p and ψ = v ⊕ q ∈ H1
0 (Ω)n ⊕ L2(Ω).

The kernel KerW ∗ has dimension one and is spanned by constant functions on
Ω. For domains with infinite volume, the only integrable constant is zero, so the set
L− given in Definition 1.6.1 is the subspace of constant functions or only the function
vanishing identically.

The claim follows now from the representation in Lemma 1.6.2,

KerBS = (KerA+ ∩ L+)⊕ (KerA− ∩ L−) . �

Remark 5.2.5. For strictly positive forms a, the kernel of B given by Theorem
1.5.3 is always trivial. The Stokes operator BS on bounded domains shows that indeed
the kernel may be non-trivial if the operator A associated with the diagonal part a of b
is only non-negative.





CHAPTER 6

Subspace perturbation and solutions to the form Riccati
equation

This chapter is in part based on the joint work [38] with L. Grubǐsić, V. Kostrykin,
K. A. Makarov, and K. Veselić.

We consider graph subspaces which reduce an indefinite diagonal form perturbed by
an off-diagonal form, namely

b[x, y] =: a[x, JAy] + v[x, y], x, y ∈ Dom[a]

as in Theorem 1.5.3. This is a preparation for an explicit block diagonalisation of the
associated operator B. The considerations here are closely related to the preceding
Chapter 4, where we investigated graph subspaces that reduce the operator sum of the
diagonal operator JAA and the off-diagonal perturbation V .

6.1. Estimate of the subspace perturbation

Let B be the operator associated with the form b. To begin this chapter, we inves-
tigate when Ran(EB(R+)), the positive spectral subspace of the operator B, is a graph
space with respect to H+, the positive spectral subspace of JAA. Recall that JAA is
self-adjoint and diagonal with respect to the decomposition H = H+ ⊕H− induced by
the involution JA.

The first step for us is to review the situation where a ≥ cI > 0 is strictly posi-
tive. The following Tan 2Θ Theorem on the subspace perturbation problem, which we
reproduce in the notation we used so far, has been obtained in this case.

Theorem 6.1.1 (The Tan 2Θ Theorem, cf. [37, Theorem 3.1]).
Assume Hypothesis 1.5.1 and let

a ≥ cI > 0.

For µ ∈ (−c, c) set

vµ := sup
0 6=x∈Dom[a]

|v[x]|
(a− µJA)[x]

<∞

and

v := inf
µ∈(−c,c)

vµ.

Then the operator B associated with the form b := a[ · , JA · ]+v satisfies (−c, c) ⊆ ρ(B).
In this case, the difference of the spectral projectors of JAA and B on R+ satisfies the
estimate

(6.1) ‖EJAA(R+)− EB(R+)‖ ≤ sin

(
1

2
arctan v

)
<

√
2

2
< 1.

An immediate consequence of (6.1) is that by [45, Corollary 3.4], the subspace
Ran(EB(R+)) is a graph subspace with respect to H+. Namely, there is a bounded
operator X0 : H+ → H− with Ran(EB(R+)) = G(H+, X0) = {x ⊕X0x | x ∈ H+}, see
Definition 4.1.2.

65
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The question that arises here is whether the spectral subspace Ran(EB(R+)) is still
a graph subspace with respect to H+ in the case where a is only non-negative. Recall
that in this case it is possible that the operator B has no spectral gap around zero or
has even a non-trivial kernel. In general, the following example shows that the bound√

2/2 can be attained if a is only non-negative.

Example 6.1.2. Let H := `2⊕ `2 be the Hilbert space as in Definition 1.2.6. Define
the bounded operators

A :=
⊕
k∈N

(
1
k 0
0 0

)
, JA :=

⊕
k∈N

(
1 0
0 −1

)
, V :=

⊕
k∈N

(
0 1
1 0

)
.

The corresponding bounded forms clearly satisfy Hypothesis 1.5.1 and the associated
operator B coincides with the operator sum JAA + V . For brevity, we set ε := 1

k and
obtain that

B =
⊕
k∈N

(
ε 1
1 0

)
=:
⊕
k∈N

Bk.

The characteristic polynomial of Bk is given by

χBk
(λ) = λ2 − ελ− 1.

The eigenspace related to the positive eigenvalue of Bk is generated by

(
ε
2 +

√
ε2+4
2

1

)
,

thus we have the dyadic product

EBk
(R+) =

1
1
2ε

2 + ε
2

√
ε2 + 4

·
(
ε2

2 + 1 + ε
2

√
ε2 + 4 ε

2 + 1
2

√
ε2 + 4

ε
2 + 1

2

√
ε2 + 4 1

)
and EB(R+) =

⊕
k∈N EBk

(R+). With

EJAA(R+) =
⊕
k∈N

(
1 0
0 0

)
,

we get

EJAA(R+)− EB(R+)

=
⊕
k∈N

1

2ε2 + 4 + ε
√
ε2 + 4

·
(

2 −ε−
√
ε2 + 4

−ε−
√
ε2 + 4 −2

)
=:
⊕
k∈N

Sk.

The eigenvalues of the 2× 2 matrix Sk are

±
√

2

2
·
√

1− ε√
ε2 + 4

−→ ±
√

2

2
as k →∞

and thus the bound
√

2
2 on the difference of the spectral projectors can be attained.

We now show sufficient conditions under which the projector difference has norm
less or equal than

√
2/2. The main idea there is to create a spectral gap by adding the

perturbation 1
nJA and to verify that the estimate remains valid in the limit n → ∞,

when the spectral gap of B + 1
nJA around zero closes. In the following, we present the

necessary tools for these considerations.

Lemma 6.1.3 ([43, Corollary VIII.1.6 and Theorem VIII.1.15]).
Let Sn and S be self-adjoint operators in a Hilbert space H for all n ∈ N. Furthermore,
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let D ⊆
⋂
n∈NDom(Sn) be a core for the operator S such that Snu→ Su for all u ∈ D

and n→∞. Furthermore, let

Sn =

∫
λdEn(λ), S =

∫
λdE(λ)

be the spectral representations, where En and E respectively, are the corresponding spec-
tral families. Then, for fixed λ, the strong limit satisfies

s-lim
n→∞

En(λ) = E(λ)

provided that the limit from below E(λ−) coincides with E(λ), that is ES({λ}) = 0.

Note that E(λ−) = E(λ) whenever λ is not an eigenvalue of the corresponding
operator, see [43, Section X.1.1].

Lemma 6.1.4. Let (Sn)n∈N be a sequence of bounded self-adjoint operators converging
weakly to a bounded self-adjoint operator S,

(6.2) w-lim
n→∞

Sn = S.

Suppose additionally that lim supn→∞ ‖Sn‖ ≤ ‖S‖. Then limn→∞ ‖Sn‖ = ‖S‖.

Proof. Note that (6.2) implies that ||S|| ≤ lim inf ||Sn||, see [43, Equation (3.2)
in Chapter III.]. Together with the estimate on the lim sup, this directly yields the
claim. �

In the following, we give a sufficient criterion for Ran(EB(R+)) to be a graph sub-
space with respect to H+.

The corresponding estimate is a generalisation of the Tan 2Θ Theorem 6.1.1 to the
case of non-negative forms a.

Theorem 6.1.5. Assume Hypothesis 1.5.1 and let B be the operator given by the
First Representation Theorem 1.5.3 in the off-diagonal case. Furthermore, suppose that
the operator A associated with the form a satisfies

(6.3) A|H+
> 0, A|H− ≥ 0.

Additionally, suppose that the kernel of B is trivial, which in view of Lemma 1.6.2 and
A+ > 0 can be rewritten as

KerA− ∩ L− = {0}.
Then the difference of the spectral projectors satisfies the estimate

(6.4) ‖EJAA(R+)− EB(R+)‖ ≤
√

2

2
< 1.

Proof. By hypothesis (1.4) we have the estimate

|v[x]| ≤ β(a + I) ≤ (nβ)

(
a +

1

n
I

)
[x] for n ∈ N.

Thus, the form v is (a + 1
nI)-bounded for each n ∈ N.

Following the proof of Theorem 1.5.3, we have that the form bn given by

bn[x, y] := b[x, y] +
1

n
〈x, JAy〉

defines a self-adjoint operator Bn with
(
− 1
n ,

1
n

)
in the resolvent set and the operator B

can be rewritten as

B = Bn −
1

n
JA.
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In this case Dom(B) is a core for each Bn and B and Bnϕ → Bϕ, n → ∞ for all
ϕ ∈ Dom(B). Since zero is not an eigenvalue of B by assumption, the limit from below
of the spectral family of B satisfies EB(0−) = EB(0) (see e.g. [43, Section X.1.1]). By
Lemma 6.1.3 and the relation between spectral family and spectral projector, it follows
that

s-lim
n→∞

EBn(−∞, 0] = s-lim
n→∞

EBn(0) = EB(0) = EB(−∞, 0].

The complementary projectors then satisfy

s-lim
n→∞

EBn(R+) = EB(R+).

The projectors then also converge in the weak sense. For brevity, define

JAAn := JA

(
A+

1

n
I

)
.

Then, by (6.3), we have the following representation with respect to the decomposition
H = H+ ⊕H−:

EJAAn(R+) = EJAA(R+) =

(
IH+ 0

0 0

)
for all n ∈ N.

Consider now the bounded auxiliary operators

Sn := EJAAn(R+)− EBn(R+), S := EJAA(R+)− EB(R+).

Set

vn := sup
0 6=x∈Dom[a]

|v[x]|
(a + 1

nI)[x]
≤ nβ <∞.

We then have that either

‖S‖ ≤ lim sup
n→∞

‖Sn‖ or lim sup
n→∞

‖Sn‖ ≤ ‖S‖

has to hold. In the first case, we apply Theorem 6.1.1 with c = 1
n and µ = 0 and have

that

‖S‖ ≤ lim sup
n→∞

‖Sn‖ ≤ lim sup
n→∞

sin

(
1

2
arctan(vn)

)
≤
√

2

2
.

In the second case, we have with Theorems 6.1.4 and 6.1.1 that

‖S‖ = lim sup
n→∞

‖Sn‖ ≤
√

2

2

Thus, ‖S‖ ≤
√

2
2 holds in both cases. This completes the proof. �

Note that due to Remark 1.5.6, the theorem above is indeed a generalisation of
the Tan 2Θ Theorem. Clearly, the estimate we give here is not optimal for strictly
positive forms a but suffices to obtain that the spectral subspace is a graph subspace
for non-negative a.

Furthermore, note that the condition (6.3) is reasonable if we want to consider the
positive spectral part of B as a graph space with respect to H+. Namely, in this case,
we have Ran(EJAA(R+)) = H+ and we compare the two spectral subspaces of JAA and
of B for the open interval R+.

With slight modifications, we can extend the result above to allow a splitting of the
kernel of JAA.
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Theorem 6.1.6. Assume Hypothesis 1.5.1 and let B be the operator given by the
First Representation Theorem 1.5.3 in the off-diagonal case. Furthermore, suppose that
the operator A = A+ − A− on H+ ⊕ H− satisfies A+ ≥ 0 and A− ≥ 0. Additionally,
suppose that the kernel of B is trivial, that is, by Lemma 1.6.2,

(KerA+ ∩ L+)⊕ (KerA− ∩ L−) = {0}.
Then, the estimate

‖PA − EB(R+)‖ ≤
√

2

2
< 1

holds, where PA is the projector onto H+ and EB(R+) = EB(R+) is the spectral pro-
jector of B for the interval [0,∞).

Proof. In the same way as before, consider the bounded auxiliary operators

Sn := PA − EBn(R+), S := PA − EB(R+).

Note that PA is in general not a spectral projector for JAA since the kernel splits as
Ker(JAA) =: N+ ⊕N− ⊆ H+ ⊕H−. However, we have that

PA = EJAAn(R+) for all n ∈ N.
Thus, it is a spectral projector for the perturbed operator. The claim now follows as
before by Theorems 6.1.1 and 6.1.4. �

It is only sufficient but not necessary that B has a trivial kernel for the estimate
(6.4) to hold.

Example 6.1.7. Let H = (`2⊕ `2)⊕ (`2⊕ `2). Define the following operators acting
by multiplication with 2× 2 block matrices

A =
⊕
k∈N


k−1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

 , JA =
⊕
k∈N


1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

 , V =
⊕
k∈N


0 0
0 0

0 1
0 0

0 0
1 0

0 0
0 0

 .

In a similar way as in Example 6.1.2, the difference EJAA(R+) − EB(R+) is again a
matrix with 2× 2 blocks with eigenvalue zero of multiplicity 2 and non-zero eigenvalues

of modulus less than
√

2
2 converging to ±

√
2

2 but the kernel of B is not trivial.

If the projector difference is small enough then the spectral subspace is indeed a
graph subspace.

Remark 6.1.8. Assume the hypothesis of Corollary 6.1.5. Then, setting for brevity

P := EJAA(R+), Q := EB(R+),

we have that

‖P −Q‖ ≤
√

2

2
< 1.

By this estimate, we get from [45, Corollary 3.4] that RanQ is a graph subspace asso-
ciated with the subspace RanP = H+. This means that there exists a bounded operator
X0 : H+ → H− with Ran(EB(R+)) = G(H+, X0) and

‖X0‖ =
‖P −Q‖√

1− ‖P −Q‖2
≤ 1.

Example 6.1.2 shows that the bound 1 on the norm of X0 can be attained when the
spectral gap around zero closes.
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As a convention, we will always write X0 for the operator related to

(6.5) Ran(EB(R+)) =: G(H+, X0) = {x⊕X0x | x ∈ H+}.
The following Theorem combines Theorems 4.3.6 and 6.1.6 to obtain the solvability

of the Riccati equation for diagonally dominant block operator matrices. This result is
in part a generalisation of [1, Theorem 6.3] by Adamyan, Langer, and Tretter.

Theorem 6.1.9. Let H = H+ ⊕H− be the orthogonal decomposition induced by the
self-adjoint involution JA and let

JAA+ V :=

(
A+ W ∗

W −A−

)
be a block operator matrix, where A and V are self-adjoint, A ≥ 0 and V has JAA-bound
less than one. Furthermore, let

v[x, y] := 〈|V |1/2x, sign(V )|V |1/2y〉, x, y ∈ Dom(|V |1/2)

be the form represented by V . Additionally, suppose that

(KerA+ ∩ L+)⊕ (KerA− ∩ L−) = {0}
in the notation of Lemma 1.6.2.

Then the operator Riccati equation for JAA+ V is solvable in the strong sense, that
is,

AY x− Y Ax− Y V Y x+ V x = 0 for x ∈ Dom(A)

for some bounded operator Y .
One solution of the Riccati equation is a skew-symmetric contraction and satisfies

Y0 =

(
0 −X∗0
X∗0 0

)
,

where Ran(EJAA+V (R+)) = G(H+, X0).

Proof. Since JA is an isometry, the operator V is also relatively bounded with
respect to A with the same bound, see, e.g., [56, Lemma 7.1]. By [55, Theorem X.18]
and Definition 2.2.6, the form v is relatively bounded with respect to the form a with
the same bound. Thus, we have that

|v[x]| ≤ β(a + I)[x]

for some constant β. By Theorem 6.1.6, we have that

Ran(EB(R+)) = G(H+, X0)

for the contraction X0 : H+ → H− and the operator B associated with the form

b := a[ · , JA · ] + v.

By the Kato-Rellich Theorem (see, e.g., [55, Theorem X.12]), the operator sum JAA+V

is self-adjoint on Dom(A) ⊆ Dom(A1/2). This operator sum, which is the block operator
matrix, has to coincide with B by the uniqueness in the First Representation Theorem
1.5.3 and Dom[b] = Dom(A1/2) of the corresponding form.

Since Ran(EB(R+)) is a reducing graph subspace for the block operator matrix B,
Theorem 4.3.6 implies that Y0 is a strong solution of the Riccati equation. �

Note that we do not claim that contractive solutions of the operator Riccati equation
in the theorem above are unique. In this sense, we do not obtain a complete extension
of [1, Theorem 6.3] since we cannot grant the uniqueness of that theorem. Clearly,
if A− is bounded, then, by the JAA boundedness of the symmetric operator V , this
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operator is also bounded. In this case, the theorem above uses the same assumptions as
[1, Theorem 6.3] and the uniqueness can be provided by [1, Theorem 6.3] directly.

We return to the problem of uniqueness of solutions in Section 6.4 again. There,
it will be clear why the case of non-semibounded JAA is more complicated in view of
uniqueness.

6.2. Reducing subspaces for forms

By the preceding section, we have a criterion for Ran(EB(R+)) to be a graph sub-
space. We now turn to the investigation of reducing subspaces. For brevity, we set

K+ := Ran(EB(R+)), K− := Ran(EB(R+))⊥,

then we get an additional decomposition K+ ⊕K− of the Hilbert space H = H+ ⊕H−.
In order to generalise the concept of reducing subspaces (see Definition 4.1.3) from

operators to forms, we give an alternative characterisation of reducing subspaces.

Remark 6.2.1 (cf. [66, Satz 2.60]). Let H = H0 ⊕H1 be an orthogonal decomposi-
tion of the Hilbert space H. Denote the orthogonal projector onto H0 by P . Then the
decomposition reduces a symmetric operator S if and only if

PS ⊆ SP,
that is,

(1) Pu ∈ Dom(S) for all u ∈ Dom(S) and
(2) PSu = SPu for all u ∈ Dom(S).

We do not know a suitable generalisation of the weaker notion of invariant subspaces
(see Chapter 4) from operators to forms. For the notion of reducing subspace, the natural
generalisation to forms is the following.

Definition 6.2.2 ([38]). Let H = H0 ⊕ H1 be an orthogonal decomposition of the
Hilbert space H and let P be the orthogonal projector onto H0. The decomposition
is called reducing for the symmetric densely defined sesquilinear form s with domain
Dom[s] ⊆ H if and only if

(1) Pu ∈ Dom[s] for all u ∈ Dom[s] and
(2) s[Pu, v] = s[u, Pv] for all u, v ∈ Dom[s].

For sake of simplicity, we will use ”reducing subspace” and ”reducing decomposition”
synonymously since the orthogonal complement of a reducing subspace is reducing as
well.

We give a condition in terms of reducing subspaces that is equivalent to the domain
stability condition Dom(A1/2) = Dom(|B|1/2). This extends the conditions presented in
Theorem 2.2.4.

Remark 6.2.3. Let b satisfy the First Representation Theorem 1.2.3 or 1.5.3 and
let B be the associated operator. Then the domain stability condition

Dom(A1/2) = Dom(|B|1/2)

holds if and only if the decomposition induced by the unitary operator sgn(B) (where
sgn(0) can be chosen as +1 or −1) reduces the form b.

To see this, recall that Dom[b] = Dom(A1/2) and that the domain stability condition

Dom(A1/2) = Dom(|B|1/2) is equivalent to condition (v) in Theorem 2.2.4, that is,

sgn(B) Dom(A1/2) ⊆ Dom(A1/2). Set P := 1
2(sgn(B) + I). The claim now follows

directly, noticing that sgn(B) maps Dom[b] = Dom(A1/2) into itself if and only if P
does, and that P as well as sgn(B) commutes with functions of B. Furthermore, if
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the stability condition holds, the Second Representation Theorem 2.1.1 can be applied to
rewrite b as

b[x, y] = 〈|B|1/2x, sgn(B)|B|1/2y〉 = 〈|B|1/2x, sign(B)|B|1/2y〉, x, y ∈ Dom[b],

where sign is the usual sign with sign(0) = 0.

In the following, we investigate the relation between reducing subspaces for forms
and reducing subspaces for the representing operator.

Lemma 6.2.4. Let b be a sesquilinear form satisfying the hypothesis of the Second
Representation Theorem 2.1.1 and let B be the representing operator.

Then any decomposition H = H0 ⊕ H1 reduces the form b if and only if it reduces
the operator B.

The proof of this statement is based on an observation made by Albeverio and
Motovilov. Namely, weak solutions of Sylvester equations are even strong solutions.

Lemma 6.2.5 (cf. [4, Lemma 4.2]). Let T1, T2 be closed, densely defined linear oper-
ators on Hilbert spaces H1 and H2, respectively. Suppose that S is a linear map from
Dom(T1) to H2.

Furthermore, let the bounded operator Z be a weak solution of the Sylvester equation

ZT1 − T2Z = S,

that is,

〈ZT1f, g〉 − 〈Zf, T ∗2 g〉 = 〈Sf, g〉 for all f ∈ Dom(T1), g ∈ Dom(T ∗2 ).

Then Z is even a strong solution of the Sylvester equation ZT1 − T2Z = S, that is, the
inclusion

Ran(Z|Dom(T1)) ⊆ Dom(T2)

and also
ZT1f − T2Zf = Sf for all f ∈ Dom(T1)

hold.

Proof. The proof of this lemma is the same as for [4, Lemma 4.2] in the case of
bounded S. In order to verify that S can be allowed to be unbounded, we reproduce
this proof here. Let Z be a weak solution of the Riccati equation. Fix f ∈ Dom(T1) and
introduce the linear functional lf on Dom(lf ) = Dom(T ∗2 ) by

lf (g) := 〈T ∗2 g, Zf〉.
Since Z is a weak solution, we can rewrite

lf (g) = 〈g, ZT1f〉 − 〈g, Sf〉,
where we only use that S can be defined on Dom(T1). We obtain that the functional lf
is bounded with

|lf (g)| ≤ |〈g, ZT1f − Sf〉| ≤ cf‖g‖, g ∈ Dom(T ∗2 ),

where cf = ‖ZT1f − Sf‖. Furthermore, the functional lf is densely defined since its
domain Dom(lf ) = Dom(T ∗2 ) is dense in the Hilbert spaceH as the domain of the adjoint
of a closed, densely defined operator.

As a consequence, we obtain that Zf ∈ Dom
(
(T ∗2 )∗

)
= Dom(T2), which implies

Ran(Z|Dom(T1)) ⊆ Dom(T2). In this case

〈g, ZT1f − T2Zf − Sf〉 = 0 for all g ∈ H2,

so that ZT1f − T2Zf − Sf = 0 for all f ∈ Dom(T1). �
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We are now ready to give a proof of Lemma 6.2.4.

Proof of Lemma 6.2.4. Denote by P the orthogonal projector onto H0. Recall,
that by assumption

Dom[b] = Dom(A1/2) = Dom(|B|1/2).

For the first implication, let H0 ⊕ H1 reduce the form b. Then, by the Second
Representation Theorem 2.1.1, we have that the inclusion

P Dom(|B|1/2) ⊆ Dom(|B|1/2)

holds and that

〈|B|1/2Px, sign(B)|B|1/2y〉 = 〈|B|1/2x, sign(B)|B|1/2Py〉 for all x, y ∈ Dom(|B|1/2)

hold. Restricting this last equality to Dom(B) gives that

〈Px,By〉 = 〈Bx,Py〉 = 〈PBx, y〉 for all x, y ∈ Dom(B).

Since B is self-adjoint, the bounded operator P is a weak solution of the Sylvester
equation

ZB −BZ = 0.

By Lemma 6.2.5, the operator P also is a strong solution of this equation, that is,

Ran(P |Dom(B)) ⊆ Dom(B) and PBx = BPx for all x ∈ Dom(B).

Thus, the decomposition H = H0 ⊕H1 reduces the operator B by Remark 6.2.1.
For the converse implication, let H0⊕H1 reduce the operator B. By [66, Satz 8.23],

the decomposition also reduces both operators |B|1/2 and sign(B). Together with

Dom[b] = Dom(A1/2) = Dom(|B|1/2)

this yields P Dom[b] ⊆ Dom[b] and P commutes with sign(B) and |B|1/2. Thus

b[Pu, v] = 〈|B|1/2Pu, sign(B)|B|1/2v〉 = 〈|B|1/2u, sign(B)|B|1/2Pv〉 = b[u, Pv]

and H0 ⊕H1 reduces the form b. �

The following observation is an immediate consequence of Lemma 6.2.4.

Remark 6.2.6. (a) (cf. [56, Exercise 10.8.2] for the case A± > 0)
Since the operator JA commutes with A, by Hypothesis 1.5.1, also I ± JA

commute with A and thus H = H+ ⊕H− reduces A by Remark 6.2.1.
We then have the splitting A = A+ +A−, where A± is the restriction of A

to H±. This yields JAA = A+ −A−.
Since the form a is non-negative, the Second Representation Theorem [43,

Theorem VI.2.23] and Dom[a] = Dom(A1/2) hold. By Lemma 6.2.4 also the
form a is reduced by this decomposition.

Thus, a is decomposed as a sum of two non-negative forms

a[x+ ⊕ x−, y+ ⊕ y−] = a+[x+, y+] + a−[x−, y−],

where a± = a|H± , Dom[a±] = Dom[a] ∩H± and

x = x+ ⊕ x−, y = y+ ⊕ y− ∈ Dom[a+]⊕Dom[a−] = Dom[a].

From this, we get the decomposition

a[x+ ⊕ x−, JA(y+ ⊕ y−)] = a+[x+, y+]− a−[x−, y−].
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The restricted forms a± are each non-negative and thus satisfy the Second Rep-
resentation Theorem [43, Theorem VI.2.23], so that the alternative representa-
tion

a[x+ ⊕ x−, JA(y+ ⊕ y−)] = 〈A1/2
+ x+, A

1/2
+ y+〉 − 〈A1/2

− x−, A
1/2
− y−〉,

with respect to H = H+ ⊕H− and Dom[a±] = Dom(A
1/2
± ) holds.

(b) The orthogonal decomposition

H = K+ ⊕K− = Ran(EB(R+))⊕ Ran(EB(R+))⊥

clearly reduces the operator B by functional calculus. If in addition B is as-
sociated with the form b by the First Representation Theorem 1.2.3 or 1.5.3
and the domain stability condition Dom(|B|1/2) = Dom(A1/2) holds, then this
decomposition also reduces the form b by Lemma 6.2.4.

If the form b additionally satisfies the assumptions of Corollary 6.1.5, then
K+ = Ran(EB(R+)) = G(H+, X0) is a graph subspace with respect to a con-
traction X0 with ||X0|| ≤ 1, see Remark 6.1.8.

In this case, the kernel of B is trivial and we have two natural decomposi-
tions of H.

Namely, we have H = H+ ⊕ H− induced by the isometry JA and we also
have the decomposition H = K+ ⊕ K−, where K− = G(H−,−X∗0 ). The latter
decomposition is induced by the isometry J = sgn(B) = sign(B) and reduces
the operator B.

Simple calculation gives an alternative characterisation of reducing subspaces for
forms.

Lemma 6.2.7 ([38]). Any orthogonal decomposition H = H0 ⊕ H1 reduces a sym-
metric densely defined sesquilinear form s with domain Dom[s] ⊆ H if and only if

Pu ∈ Dom[s] for all u ∈ Dom[s] and s[P⊥u, Pv] = 0 for all u, v ∈ Dom[s],

where P is the orthogonal projector onto H0 and P⊥ is the orthogonal projector onto
H1.

Proof. Let H = H0 ⊕H1 reduce s. Then, we have that

s[P⊥u, Pv] = s[u, Pv]− s[Pu, Pv] = s[u, Pv]− s[u, P 2v] = 0.

Conversely, assume that Pu ∈ Dom[s] and s[P⊥u, Pv] = 0 holds for u, v ∈ Dom[s].
Since s is symmetric, it follows s[Pv, P⊥u] = 0. By the identity

s[P⊥v, Pu] = s[v, Pu]− s[Pv, u] + s[Pv, P⊥u],

we get that s[v, Pu] = s[Pv, u]. �

6.3. Graph subspaces and solutions to form Riccati equations

Recall that in Chapter 4 we related reducing graph subspaces for the operator sum
B = JAA+ V to solutions to the operator Riccati equation.

In this section, we consider reducing graph subspaces for the form given by

b[x, y] := a[x, JAy] + v[x, y]

and relate these to solutions to the form Riccati equation. The following theorem for
forms corresponds to Theorem 4.3.3 for operators.
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Theorem 6.3.1 ([38]). Assume the hypothesis of the First Representation Theorem
1.5.3 in the off-diagonal case. Furthermore, let

(6.6) H0 ⊕H1 := G(H+, X)⊕ G(H−,−X∗) = H
be a decomposition of H for a bounded operator X. Assume additionally that at least
one of the equalities

(6.7) Ran

(
(IH+ +X∗X)−1

∣∣
Dom(A

1/2
+ )

)
= Dom(A

1/2
+ )

or

(6.8) Ran

(
(IH− +XX∗)−1

∣∣
Dom(A

1/2
− )

)
= Dom(A

1/2
− )

holds.
Then the decomposition H = H0 ⊕H1 reduces the form b if and only if X satisfies

the following conditions

(i) Ran

(
X∗
∣∣
Dom(A

1/2
− )

)
⊆ Dom(A

1/2
+ ),

(ii) Ran

(
X
∣∣
Dom(A

1/2
+ )

)
⊆ Dom(A

1/2
− ),

(iii) X is a solution of the form Riccati equation corresponding to b, that is

(6.9) a+[−X∗y−, x+]− a−[y−, Xx+] + v[−X∗y− ⊕ 0, 0⊕Xx+] + v[0⊕ y−, x+ ⊕ 0] = 0

holds for all x+ ∈ Dom(A
1/2
+ ) = Dom[a+], y− ∈ Dom(A

1/2
− ) = Dom[a−].

Proof. By the definition of the form b and Lemma 6.2.6, it follows that

Dom[b] = Dom[a] = Dom(A1/2) = Dom(A
1/2
+ )⊕Dom(A

1/2
− ).

It is straightforward to verify that P , the orthogonal projector onto G(H+, X), is given
by the block operator matrix (see e.g. [45, Remark 3.6])

(6.10) P =

(
(IH+ +X∗X)−1 (IH+ +X∗X)−1X∗

X(IH+ +X∗X)−1 X(IH+ +X∗X)−1X∗

)
written with respect to the original orthogonal decomposition H = H+ ⊕ H− induced
by the involution JA.

Remark that the operator (IH+ + X∗X) : H+ → H+ is bijective. In a similar way,

one gets that P⊥, the orthogonal projector onto G(H−,−X∗), is given by

(6.11) P⊥ =

(
X∗(IH− +XX∗)−1X −X∗(IH− +XX∗)−1

−(IH− +XX∗)−1X (IH− +XX∗)−1

)
and (IH− +XX∗) : H− → H− is bijective.

Note that P maps Dom[b] into itself if and only if the complementary projector P⊥

does.
The ”only if” part : Assume first that

(6.12) Ran

(
(IH+ +X∗X)−1

∣∣
Dom(A

1/2
+ )

)
⊇ Dom(A

1/2
+ )

is valid.
Let X : H+ → H− be a bounded operator and assume that the orthogonal decom-

position
H = G(H+, X)⊕ G(H−,−X∗)
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reduces the sesquilinear form b. By the first condition in Definition 6.2.2, we get that

(6.13) (IH+ +X∗X)−1x+ + (IH+ +X∗X)−1X∗y− ∈ Dom(A
1/2
+ ),

(6.14) X(IH+ +X∗X)−1x+ +X(IH+ +X∗X)−1X∗y− ∈ Dom(A
1/2
− )

holds for all x+ ∈ Dom(A
1/2
+ ), y− ∈ Dom(A

1/2
− ).

Considering y− = 0 in (6.13), we obtain that

(IH+ +X∗X)−1 Dom(A
1/2
+ ) ⊆ Dom(A1/2).

Together with assumption (6.12), it follows that (IH+ +X∗X)−1 is a bijective map from

Dom(A
1/2
+ ) into itself. Using this bijectivity, the consideration of x+ = 0 in (6.13) and

y− = 0 in (6.14) yields that (i) and (ii) are satisfied.
To see that X is a solution of the form Riccati equation, note that we have

P⊥(−X∗y− ⊕ y−) = −X∗y− ⊕ y− and P (x+ ⊕Xx+) = x+ ⊕Xx+

for all x+ ∈ H+, y− ∈ H−. With Lemma 6.2.7, we have in particular that

b[−X∗y− ⊕ y−, x+ ⊕Xx+] = 0 for all x+ ∈ Dom(A
1/2
+ ), y− ∈ Dom(A

1/2
− ).

By the decomposition of
b[x, y] = a[x, JAy] + v[x, y]

with respect to the involution JA, where a is a non-negative diagonal form and v is an
off-diagonal form and Remark 6.2.6, the claim (iii) follows.

In the case of Ran
(
(IH−+XX∗)−1

∣∣
Dom(A

1/2
− )

)
⊇ Dom(A

1/2
− ), the projector P⊥ maps

Dom[b] into itself. Thus (IH− +XX∗)−1 is bijective on Dom(A
1/2
− ).

The conditions (i)-(iii) now follow in a similar way.
The ”if” part: Assume first that

(6.15) Ran

(
(IH+ +X∗X)−1

∣∣
Dom(A

1/2
+ )

)
⊆ Dom(A

1/2
+ )

holds. Assume further that equation (6.9) has a bounded solution X satisfying (i) and
(ii). The Riccati equation (6.9) can be rewritten as

b[−X∗y− ⊕ y−, x+ ⊕Xx+] = 0 for all x+ ∈ Dom(A
1/2
+ ), y− ∈ Dom(A

1/2
− ).

By the assumptions (i), (ii) and equation (6.15), the projector P maps Dom[b] into itself.
Since P⊥ = IH − P+, the projector P⊥ also maps Dom[b] into itself. As a conse-

quence (IH− +XX∗)−1 maps Dom(A
1/2
− ) into itself.

Let y = y+⊕y− ∈ Dom[b] = Dom(A
1/2
+ )⊕Dom(A

1/2
− ). Then, by (6.15), there exists

ỹ+ ∈ Dom(A
1/2
+ ) with

Py =

(
(IH+ +X∗X)−1(y+ +X∗y−)
X(IH+ +X∗X)−1(y+ +X∗y−)

)
=

(
ỹ+

Xỹ+

)
.

In the same way, for x = x− ⊕ x− ∈ Dom[b] there exists x̃− ∈ Dom(A
1/2
− ) such that

P⊥x = −X∗x̃− ⊕ x̃−. This implies

b[P⊥x, Py] = 0 for all x, y ∈ Dom[b].

Thus, by Lemma 6.2.7, the orthogonal decomposition

H = K+ ⊕K− with K+ = G(H+, X), K− = G(H−,−X∗)
reduces the form b.
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If Ran

(
(IH− +XX∗)−1

∣∣
Dom(A

1/2
− )

)
⊆ Dom(A

1/2
− ) holds, then also P⊥ and P map

Dom[b] into itself. �

Remark that in the same way as in Chapter 4, an operator X is a solution of the
form Riccati equation if X and its adjoint X∗ map accordingly (that is (i) and (ii) of
Theorem 6.3.1 are satisfied) and (6.9) holds.

At the first glance, the conditions (6.7) and (6.8) in the theorem above seem to be
unexpected since the corresponding operators neither appear in the reducing decom-
position nor in the form Riccati equation of that theorem. However, these conditions
appear in a natural way by the representation of the projectors P and P⊥.

Additionally, we make the following observations on (6.7) and (6.8) in Theorem
6.3.1.

Remark 6.3.2. Note that in each implication of the equivalence in Theorem 6.3.1,
only one of the two inclusions ⊆ and ⊇ in the assumptions (6.7) and (6.8), respectively,
is used. The other inclusion is automatically satisfied in this implication.

Namely, if the decomposition reduces b, then the projector P leaves Dom[a] = Dom[b]

invariant. The operator (IH+ +X∗X)−1 thus has to map Dom(A1/2) into itself.
Conversely, if X is a solution of the form Riccati equation (6.9), such that (i) and

(ii) of Theorem 6.3.1 are satisfied, then (IH+ +X∗X) maps Dom(A1/2) into itself. Since
the operator (IH+ +X∗X) is bijective on H+, it follows that

Ran

(
(IH+ +X∗X)−1

∣∣
Dom(A

1/2
+ )

)
⊇ Dom(A

1/2
+ ).

Lemma 6.3.3. Assume the hypotheses of Corollary 6.1.5 and let b satisfy the Second
Representation Theorem. Furthermore, let

H = Ran(EB(R+))⊕ Ran(EB(R+))⊥

be an orthogonal decomposition of the Hilbert space H.
Then the conditions (6.7) and (6.8) are equivalent.

Proof. By Remark 6.2.6, the decomposition reduces the operator B and the form
b as well. Furthermore, by Remark 6.1.8, the spectral subspaces are graph subspaces,

Ran(EB(R+)) = G(H+, X0), Ran(EB(−∞, 0]) = G(H−,−X∗0 )

for the bounded operator X0. Assume that condition (6.7),

Ran

(
(IH+ +X∗0X0)−1

∣∣
Dom(A

1/2
+ )

)
= Dom(A

1/2
+ )

is valid. Thus, by Theorem 6.3.1, X0 satisfies the form Riccati equation (6.9) and

X0 : Dom(A
1/2
+ )→ Dom(A

1/2
− ), X∗0 : Dom(A

1/2
− )→ Dom(A

1/2
+ )

holds. Thus the bijective map (IH− + X0X
∗
0 ) : H− → H− maps Dom(A

1/2
− ) into itself.

Since the projector P⊥ given by (6.11) maps Dom[b] = Dom(A
1/2
+ ) ⊕ Dom(A

1/2
− ) into

itself, it follows that (IH− + X0X
∗
0 )−1 also maps Dom(A

1/2
− ) into itself and the claim

(6.8) now follows from the bijectivity of (IH− +X0X
∗
0 )−1 on H−.

Conversely, if (6.8) holds, the implication follows in a similar way. �

In applications, it may be difficult to check the conditions (6.7) or (6.8) since explicit
knowledge on the operator X and its adjoint X∗ is needed. We are thus interested in
sufficient assumptions on the form b, such that these conditions are satisfied. Note that
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the problem to find sufficient conditions in the form framework is similar to the problem
in the operator framework in Chapter 4, see in particular Theorem 4.3.3.

The whole situation is simpler if one of the forms a+ or a− or their corresponding
operators are bounded.

Lemma 6.3.4. Assume Hypothesis 1.5.1.

(a) If a+ respectively a− is bounded, then the assumption (6.7) respectively (6.8) in
Theorem 6.3.1 is satisfied.

(b) If additionally β < 1 in Hypothesis 1.5.1 and a− is bounded, then the form b is
bounded from below. If instead a+ is bounded, then b is bounded from above.

Proof. It suffices to consider the case of bounded a−.

(a) The statement is obvious noting that the associated operator A− satisfies

Dom(A
1/2
− ) = H−

if a− is bounded.
(b) Let x = x+ ⊕ x− ∈ Dom[a] = Dom[a+]⊕Dom[a−], then we have that

a[x, JAx] = a[x, x]− 2a−[x−].

We now rewrite b as the difference

b[x] =
(
(a + I)[x] + v[x]

)
−
(
2a−[x−] + ||x||2

)
,

where the second form is bounded by assumption. The first form is non-negative
since (1.4) with β < 1 allows to write

(a + I)[x] + v[x] ≥ (a + I)[x]− |v[x]| ≥ (1− β)(a + I)[x] ≥ 0.

As a consequence, b is bounded from below. �

An example where A− = 0 and thus (6.8) holds, is the form bS represented by the
Stokes operator BS introduced in Theorem 5.1.2.

If both A+ and A− are unbounded, we show that for A-infinitesimal operators V and
forms v defined by (2.8), the additional assumptions (6.7) respectively (6.8) in Theorem
6.3.1 are satisfied.

The principal idea for this is to use the results on reducing subspaces for operator
sums in Chapter 4. The main tools in this process are interpolation by the Heinz
Inequality (Lemma 2.1.2) and the coincidence of weak and strong solutions to operator
Sylvester equations (Lemma 6.2.5).

Under the assumptions of Theorem 4.3.6 of the preceding Chapter 4, we get the
following interpolation result.

Lemma 6.3.5. Let A ≥ 0 be a self-adjoint operator and let JA be a self-adjoint
involution commuting with A. Assume furthermore that V is symmetric, infinitesimal
with respect to A and off-diagonal with respect to JA. Suppose that the graph space of
the bounded operator X is a spectral subspace for the operator B = JAA+ V , that is

G := G(H+, X) = Ran(EB(M))

for some Borel set M ⊂ R. Denote

Y :=

(
0 −X∗
X 0

)
and assume that the domain stability condition

Dom(A1/2) = Dom(|B|1/2)

is satisfied. Then T ∗ := I − Y and its inverse are bijective on Dom(A1/2).



6.3. GRAPH SUBSPACES AND SOLUTIONS TO FORM RICCATI EQUATIONS 79

Proof. Clearly, the spectral subspace G is reducing for B and T ∗ is bijective on
Dom(A) by Theorem 4.3.6. By the relative boundedness of V , the product V (A+ I)−1

is bounded. Since T ∗ is bijective on Dom(A) by hypothesis, we can rewrite (4.21) as

(6.16) (A+ V )(T ∗)−1 = (T ∗)−1(A− Y V ).

For brevity, denote

T := (T ∗)−1.

Let x ∈ Dom(A) = Dom(B), then, since the operators JA and sgn(B) are unitary, we
can use (6.16) to obtain

‖(|B|+ I)T x‖ ≤ ‖sgn(B)BT x‖+ ‖T x‖
≤ ‖BT x‖+

∥∥T (A+ I)−1
∥∥ · ‖(A+ I)x‖

≤ ‖T (JAA− Y V )x‖+ ‖T ‖ · ‖(A+ I)x‖
≤ ‖T ‖ ·

∥∥(A− JAY V )(A+ I)−1(A+ I)x
∥∥+ ‖T ‖ · ‖(A+ I)x‖ .

With A = A+ I − I, we can estimate further

‖(|B|+ I)T x‖
≤ ‖T ‖

(
2 + ‖(I + JAY V )(A+ I)−1‖

)
· ‖(A+ I)x‖

≤ ‖T ‖
(
3 + ‖Y ‖ ·

∥∥V (A+ I)−1
∥∥ ) · ‖(A+ I)x‖

=: c ‖(A+ I)x‖ .
From the Heinz Inequality (Lemma 2.1.2), it follows that

(T ∗)−1 : Dom((A+ I)1/2)→ Dom((|B|+ I)1/2).

By Remark 1.2.4, (T ∗)−1 maps Dom(A1/2) into itself.

Similar arguments below show that also T ∗ maps Dom(A1/2) into itself. To see this,
note that V is A-bounded with bound less than 1. It follows from [63, Lemma 2.1.6]
that V is also B-bounded with bound less than 1. In this case, V (|B|+I)−1 is bounded.
Remark that

S := (|B|+ I)T ∗(|B|+ I)−1

is defined onH since T ∗ maps Dom(B) into itself. Furthermore, S is closed since (|B|+I)
is closed and T ∗(|B|+ I)−1 is bounded. Consequently, S is bounded.

Let x ∈ Dom(A), then with help of equation (4.21), we have the estimate

‖(A+ I)T ∗x‖ = ‖(JAA+ JA)T ∗x‖
= ‖(JAA− Y V + JA + Y V )T ∗x‖
≤ ‖T ∗Bx‖+ ‖(JA + Y V )T ∗x‖
≤
∥∥T ∗ sgn(B)|B|(|B|+ I)−1(|B|+ I)x

∥∥+ ‖(JA + Y V )T ∗x‖ .

Noting that
∥∥|B|(|B|+ I)−1

∥∥ ≤ 1, we can estimate further

‖(A+ I)T ∗x‖ ≤ ‖T ∗‖ ·
∥∥|B|(|B|+ I)−1

∥∥ · ‖(|B|+ I)x‖+ ‖(JA + Y V )T ∗x‖
≤ ‖T ∗‖ · ‖(|B|+ I)x‖+

∥∥(JA + Y V )T ∗(|B|+ I)−1(|B|+ I)x
∥∥

≤
(
2 ‖T ∗‖+

∥∥Y V T ∗(|B|+ I)−1
∥∥) ‖(|B|+ I)x‖

≤
(
2 ‖T ∗‖+ ‖Y ‖ ·

∥∥V (|B|+ I)−1
∥∥ · ‖S‖) ‖(|B|+ I)x‖

=: c ‖(|B|+ I)x‖ .
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From the Heinz Inequality, Lemma 2.1.2, it follows

T ∗ : Dom((|B|+ I)1/2)→ Dom((A+ I)1/2).

By Remark 1.2.4, T ∗ maps Dom(A1/2) into itself completing the proof. �

The following theorem shows that the assumptions (6.7) respectively (6.8) in The-
orem 6.3.1 are satisfied under strong conditions on the off-diagonal perturbation v.
Namely, we require B to coincide with the operator sum JAA+ V on Dom(A).

To show that a solution to the form Riccati equation gives a reducing graph space
in the theorem below, the domain inclusion Dom(V ) ⊇ Dom(A1/2) is used. For the
converse implication, it suffices to have that V is infinitesimal with respect to A. By
[63, Proposition 2.1.19], the domain inclusion Dom(V ) ⊇ Dom(A1/2) already implies
that V is infinitesimal with respect to A and is thus the stronger condition.

Theorem 6.3.6. Let a be a non-negative form and v be the form associated with the
self-adjoint operator V by Lemma 2.2.7. Furthermore, suppose that V is infinitesimal
with respect to A. Let

b := a[ · , JA · ] + v

and let X : H+ → H− be a bounded operator. Suppose that

G(H+, X)⊕ G(H−,−X∗) = H
is a decomposition of H. Then the following statements hold.

(a) If G(H+, X) = Ran(EB(M)) is a spectral subspace of the associated operator B
for some Borel set M , then X is a solution of the form Riccati equation, that
is, the conditions (i)-(iii) in Theorem 6.3.1 are satisfied.

(b) If X satisfies (i)-(iii) in Theorem 6.3.1 and additionally

Dom(V ) ⊇ Dom(A1/2)

holds, then the decomposition

H = G(H+, X)⊕ G(H−,−X∗)
reduces the form b.

Proof. By Lemma 2.2.7, the operator B associated with the form b satisfies the
domain stability condition

Dom(|B|1/2) = Dom(A1/2).

To show part (a), note that the spectral decompositionH = G(H+, X)⊕G(H−,−X∗)
reduces the form b as well as the operator B, see Lemma 6.2.4. From Theorem 4.3.6
and Lemma 6.3.5, it follows that

T ∗ = I − Y =

(
IH+ X∗

−X IH−

)
is bijective on Dom(A1/2) = Dom(A

1/2
+ ) ⊕ Dom(A

1/2
− ) thus the conditions (i) and (ii)

are satisfied. By Lemma 6.2.7, we have in particular

b[−X∗y− ⊕ y−, x+ ⊕Xx+] = 0 for all x+ ∈ Dom(A
1/2
+ ), y− ∈ Dom(A

1/2
− )

since

P⊥(−X∗y− ⊕ y−) = −X∗y− ⊕ y− and P (x+ ⊕Xx+) = x+ ⊕Xx+

remain fixed under the corresponding projectors for any x+ ∈ H+, y− ∈ H−.
By the decomposition of

b[x, y] = a[x, JAy] + v[x, y]
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with respect to JA, where a is a non-negative diagonal form and v is off-diagonal, the
claim (iii) follows from Remark 6.2.6 part (b).

For part (b) of the theorem, let X satisfy the conditions (i)-(iii) and suppose that

Dom(V ) ⊇ Dom(A1/2). Then V is automatically infinitesimal with respect to A (see
[63, Corollary 2.1.20]) and

v[x, y] = 〈x, V y〉
holds for x, y ∈ Dom(A1/2). Since Y maps Dom(A1/2) into Dom(A1/2), the operator

Y V Y − V can be defined on Dom(A1/2).
By part (b) of Remark 6.2.6, condition (iii) can be rewritten as

〈A
1
2
+X

∗y−, A
1
2
+x+〉+ 〈A

1
2
−y−, A

1
2
−Xx+〉+ v[X∗y− ⊕ 0, 0⊕Xx+]− v[x+ ⊕ 0, 0⊕ y−] = 0.

For simplicity, we write this equation in a short way as

(6.17) 〈A
1
2
+X

∗y−, A
1
2
+x+〉+ 〈A

1
2
−y−, A

1
2
−Xx+〉+ v[X∗y−, Xx+]− v[x+, y−] = 0.

We now restrict (6.17) to x+ ∈ Dom(A+), y− ∈ Dom(A−) and get that

〈y−, XA+x+〉+ 〈A−y−, Xx+〉+ 〈y−, XW ∗Xx+〉 − 〈y−,Wx+〉 = 0.

Considering the complex conjugate of (6.17), it follows in the same way that

〈A+x+, X
∗y−〉+ 〈x+, X

∗A−y−〉+ 〈x+, X
∗WX∗y−〉 − 〈x+,W

∗y−〉 = 0.

Combining these two equations, we obtain that

〈JAAy, Y x〉 − 〈y, Y JAAx〉 − 〈y, Y V Y x〉+ 〈y, V x〉 = 0, x, y ∈ Dom(A)

This equation can be rewritten as

〈JAAy, Y x〉 − 〈y, Y JAAx〉 = 〈y, (Y V Y − V )y〉
Thus, Y is a weak solution of the Sylvester equation

JAAZ − ZJAA = Y V Y − V,

for the unknown Z and, by Lemma 6.2.5, also a strong solution of this equation. In this
case, Y is a strong solution of the Riccati equation

JAAZ − ZJAA− ZV Z + V = 0.

By Theorem 4.3.6, the decomposition reduces the operator B and by Lemma 6.2.4 also
the form b. �

If the operator V has a large domain, we can rewrite the form Riccati equation in a
special way.

Remark 6.3.7. If V satisfies Dom(V ) ⊇ Dom(A1/2), then V is infinitesimal with
respect to A (see [63, Corollary 2.1.20]) and the Riccati equation (6.17) can be rewritten
as

(6.18) −〈A1/2
+ X∗y−, A

1/2
+ x+〉−〈A1/2

− y−, A
1/2
− Xx+〉−〈X∗y−,WXx+〉+ 〈Wy−, x+〉 = 0

for all x+ ∈ Dom(A
1/2
+ ), y− ∈ Dom(A

1/2
− ) where V =

(
0 W ∗

W 0

)
.
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In the following lemma we will give a compromise between Theorem 6.3.1, where
additional assumptions on the mapping properties of the solution X of the form Riccati
equation have to be made and Theorem 6.3.6, where B = JAA + V has to be defined
as an operator sum on Dom(A). Below we require conditions on the form b and on the
operator JAA− Y V − λ for some λ on the imaginary axis instead of (6.7) or (6.8). For
applications, it may be easier to verify these conditions. In the following lemma, we
have a special case, where Dom(V ) ⊇ Dom(A) is in general not satisfied but JAA + V
is densely defined, compare Remark 4.3.4.

Lemma 6.3.8. Let the form b be defined by the First Representation Theorem 1.5.3
in the off-diagonal case. Additionally, suppose that b satisfies the Second Representation
Theorem 2.1.1. Let

V := (A+ I)1/2R̃(A+ I)1/2

in the notation of Remark 1.5.2. Assume that there exists a point 0 6= λ ∈ iR such that
JAA− Y V − λ has full range and a bounded inverse. Then the form b is reduced by the

decomposition H = G(H+, X) ⊕ G(H−,−X∗) if and only if Y :=

(
0 −X∗
X 0

)
satisfies

the Riccati equation

JAAY − Y JAA− Y V Y + V = 0 strongly on Dom(A) ∩Dom(V ),

that is

(6.19) JAAY x−Y JAAx−Y V Y x+V x = 0 for all x ∈ Dom(B) = Dom(A)∩Dom(V ).

Proof. By Lemma 6.2.4, the form b is reduced by the decomposition if and only if
the associated operator B is reduced. Note that the self-adjoint operator B defined in

Theorem 1.5.3 coincides with (A+ I)1/2H̃(A+ I)1/2− JA on the corresponding natural
domain. A short computation shows that this domain is in fact Dom(A)∩Dom(V ) and
thus B is given by the operator sum JAA+V . By the self-adjointness of B, the operator
B − λ has full range and a bounded inverse for any non-trivial λ ∈ iR and the domain
Dom(B) = Dom(A) ∩Dom(V ) is dense in H. By the assumption on JAA+ V − λ and
JAA − Y V − λ, these operators have full range and bounded inverses. The claim then
follows from Theorem 4.3.6 and Remark 4.3.4. �

It remains to note that as in the operator case, there is a sign-symmetry in the
off-diagonal perturbation v and the graph spaces G(H+, X), compare Remark 4.4.4.

Lemma 6.3.9. Assume Hypothesis 1.5.1 and let

b[x, y] := a[x, JAy] + v[x, y] and b̃[x, y] := a[x, JAy]− v[x, y]

be two forms. Then the following statements hold.

(a) The graph space G(H+, X) is reducing for the form b if and only if G(H+,−X)

is reducing for the form b̃.
(b) The operator X is a solution of the form Riccati equation (6.9) for b if and only

if −X is a solution of the corresponding equation for b̃.

Proof. For part (a), note that the orthogonal projector P onto G(H+, X) is given
by

P =

(
(IH+ +X∗X)−1 (IH+ +X∗X)−1X∗

X(IH+ +X∗X)−1 X(IH+ +X∗X)−1X∗

)
.

Thus, the orthogonal projector Q onto G(H+,−X) is given by

Q =

(
(IH+ +X∗X)−1 −(IH+ +X∗X)−1X∗

−X(IH+ +X∗X)−1 X(IH+ +X∗X)−1X∗

)
.
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This yields Q = P − 2

(
0 −(IH+ +X∗X)−1X∗

−X(IH+ +X∗X)−1 0

)
.

By the sign-symmetry of the statement, it suffices to show one of the implications.
Let G(H+, X) be reducing for the form b, then

P Dom[b] ⊆ Dom[b] = Dom(A
1/2
+ )⊕Dom(A

1/2
− ) = Dom[b̃].

Thus, we also have QDom[b̃] ⊆ Dom[b̃]. It remains to show that Q can commute from

one side to the other in the form b̃.
Let x+, y+ ∈ Dom[a+] = Dom(A

1/2
+ ), x−, y− ∈ Dom[a−] = Dom(A

1/2
− ). Then

b̃[Q(x+ ⊕ 0), y+ ⊕ y−]

= b̃[(IH+ +X∗X)−1x+ ⊕−X(IH+ +X∗X)−1x−, y+ ⊕ y−]

= a+[(IH+ +X∗X)−1x+, y+]− a−[X(IH+ +X∗X)−1x+,−y−]

+ v[0⊕X(IH+ +X∗X)−1x+, y+ ⊕ 0] + v[(IH+ +X∗X)−1x+ ⊕ 0, 0⊕−y−]

= b[(IH+ +X∗X)−1x+ ⊕X(IH+ +X∗X)−1x+, y+ ⊕ y−]

= b[P (x+ ⊕ 0), y+ ⊕−y−] = b[x+ ⊕ 0, P (y+ ⊕−y−)]

= a+[x+ ⊕ 0, (IH+ +X∗X)−1(y+ −X∗y−)]

− v[x+ ⊕ 0, 0⊕X(IH+ +X∗X)−1(−Xy+ +X∗y−)]

= b̃[x+ ⊕ 0, Q(y+ ⊕ y−)].

In a similar way, we have that b̃[Q(0⊕ x−), y+ ⊕ y−] = b̃[0⊕ x−, Q(y+ ⊕ y−)] and thus

b̃[x,Qy] = b̃[Qx, y] for all x, y ∈ Dom[b̃].
The claim of part (b) follows immediately by substituting X and −X in the form

Riccati equation (6.9). �

The statement of Lemma 6.3.9 is a generalisation of Remark 4.4.4. In this sense,
the forms a[ · , JA · ] ± v can be diagonalised at the same time as in the case of the
operator sums JAA±V . As a consequence, the spectra of the operators associated with
the forms a[ · , JA · ]± v coincide.

6.4. Uniqueness of solutions

We now investigate the uniqueness of solutions to the form Riccati equation in special
semibounded cases. We need the following lemma as preparation.

Lemma 6.4.1 ([45, Lemma 6.1]). Let H be a separable Hilbert space with decom-
position into the orthogonal sum of two subspaces H = H0 ⊕ H1. Furthermore, let
X,Z : H0 → H1 with ‖X‖ , ‖Z‖ ≤ 1 be two contractions such that the orthogonal projec-
tors in H onto their graphs G(H0, X) and G(H0, Z) commute. Then

Z
∣∣
L

= −X
∣∣
L
, Z

∣∣
L⊥

= X
∣∣
L⊥
,

where

L := Ker(IH0 + Z∗X), L⊥ := H0 	 L.

Moreover, L is a subspace of Ker(IH0 −X∗X) ∩Ker(IH0 − Z∗Z).

Lemma 6.4.2. Let b be a form satisfying the assumption of Corollary 6.1.5.
Additionally, suppose that a = a+ ⊕ a−, where a+ or a− is a bounded form.

Then the operator X0 given by G(H+, X0) = Ran(EB(R+)) satisfies 1 /∈ σp(|X0|)
and is a contraction, that is ‖X0‖ ≤ 1 and one is not an eigenvalue of |X0|.
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Proof. The fact that X0 is a contraction follows directly from Remark 6.1.8. For
the eigenvalue consideration, we modify the idea of the proof of [46, Theorem 2.4]. Let
X0 = U |X0| be the polar decomposition forX0, where U : H+ → H− is a partial isometry

with initial subspace (KerX0)⊥ and final subspace RanX0 and |X0| = (X∗0X0)1/2 is the
absolute value of X0.

Let f be an eigenvector of |X0| corresponding to the eigenvalue one, that is,

|X0|f = f, 0 6= f ∈ H+.

By Ran(EB(R+)) = G(H+, X0) we can consider

(6.20) F := f ⊕X0f = f ⊕ Uf ∈ Ran(EB(R+))

and

(6.21) G := (−X∗0Uf)⊕ Uf = −f ⊕ Uf ∈ Ran(EB(−∞, 0]).

We now show F ∈ Dom(A
1/2
+ ) and G ∈ Dom(A

1/2
− ).

Consider first the case that a+, respectively A+, is bounded. In this case, we have
that

f ∈ Dom(A
1/2
+ ) and Uf = X0f ∈ Dom(A

1/2
− )

by condition (ii) in Theorem 6.3.1.
In a similar way, if a− is bounded, we have that

Uf ∈ Dom(A
1/2
− ) and f = X∗0Uf ∈ Dom(A

1/2
+ )

by condition (i) in Theorem 6.3.1. Since F,G are in Dom[b] and in different parts of the
decomposition H = Ran(EB(R+))⊕ Ran(EB(R+))⊥, we have that

b[F,G] = 0.

Using the symmetry of the off-diagonal part v, we conclude that

b[F,G] = −a+[f, f ]− a−[Uf,Uf ].

These two equations on b[F,G] however give a contradiction to the positivity assumption
of the operator A+ associated with the form a+. �

We now show that the form Riccati equation (6.9) for the Stokes operator BS has a
unique contractive solution.

Theorem 6.4.3. The form Riccati equation for the Stokes Operator BS can be writ-
ten as

(6.22)
n∑
j=1

∫
Ω
〈−Dj(X

∗q)(x), Dju(x)〉 −
∫

Ω
(Xu)(x)div (X∗q)(x)dx+

∫
Ω
q(x)div u(x)dx

and has a unique contractive solution.

Proof. Equation (6.22) is just a reformulation of (6.9) for the form bS of the Stokes
operator in Definition 5.1.1.

By Remark 5.1.5, the form bS satisfies the Second Representation Theorem 2.1.1.
Thus, the form bS is reduced by the subspace Ran(EB(R+)), see Remark 6.2.6.

In the case, that the domain Ω has infinite volume, the kernel of the Stokes operator
BS is trivial by Theorem 5.2.4 and by Remark 6.1.8, the subspace

Ran(EB(R+)) = G(H+, X0)

is a graph space for a contraction X0. By Lemma 6.4.2, we have that 1 /∈ σp(|X0|).
If Ω has a finite volume, the smallest Dirichlet-eigenvalue δ0 of the operator −∆ on

H2(Ω) ∩H1
0 (Ω) is strictly positive. Let µ ∈ (0, δ0), then a+ − µI is strictly positive and

a−−µIH− = −µIH− is strictly negative. A computation similar to (5.4) shows that the
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off-diagonal part v is (a+ + µIH+)-bounded in the sense of (1.4). It follows from [37,
Theorem 2.4(ii)] that (−µ, δ0 − µ) belongs to the resolvent set of BS − µI. In this case,
[37, Theorem 3.1] implies that

‖EA−µI(R+)− EBS−µI(R+)‖ <
√

2

2
.

By the assumption on µ, we have that

EA−µI(R+) = EA(R+) and EBS−µI(R+) = EBS
(R+).

Together with [45, Corollary 3.4] this implies that Ran(EB(R+)) is related even to a
strict contraction X0 with ‖X0‖ < 1.

So, in any case 1 /∈ σp(|X0|). It remains now to show the uniqueness of the con-
tractive solution. Let X be a contractive solution of (6.22) that satisfies (i) and (ii) of
Theorem 6.3.1, then by Theorem 6.3.6, the graph subspace G(H, X) also is reducing for
both b and B.

Since the graph G(H+, X0) of X0 is a spectral subspace of BS , the orthogonal pro-
jectors onto the graphs of X0 and X commute. To see this, let P be the projector onto
G(H+, X0) and let Q be the projector onto G(H+, X). Then Q reduces any measurable
function of BS including the characteristic function P = EBS

(R+) (see [66, Satz 8.23]),
thus G(H+, X) reduces the operator P . Since P is bounded, it follows that PQ = QP
by Remark 6.2.1.

By Lemma 6.4.1, we have Ker(IH+ +X∗X0) = {0} since it is a subspace of

Ker(IH+ −X∗0X0) = {0}.
The uniqueness of the solution now follows from Lemma 6.4.1. �

It remains an open problem whether the uniqueness of contractive solutions to the
form Riccati equation can be preserved in a more general, non-semibounded setting.
The main problem is to extend Lemma 6.4.2 to non-semibounded situations. To obtain
the uniqueness, we only have to show that 1 /∈ σp(|X0|). However, we can only exclude

corresponding eigenfunctions in Dom(A
1/2
+ ). Since |X0| is a bounded operator it is

possible that corresponding eigenfunctions are not in this domain.
Recall that a similar problem in the investigation of the uniqueness of contractive

solutions to the operator Riccati equation appears already in Theorem 6.1.9. As in the
form case, we would have to exclude that one is an eigenvalue to obtain the uniqueness,
but only eigenvalues in a corresponding domain can be excluded.





CHAPTER 7

Diagonalisation of representing operators

This chapter is based on the joint work [38] with L. Grubǐsić, V. Kostrykin,
K. A. Makarov, and K. Veselić.

The aim is to give an explicit block diagonalisation for operators defined by the
First Representation Theorem in the off-diagonal case. We will use the correspondence
of reducing graph subspaces and solutions to the form Riccati equation obtained in the
preceding chapter. The assumptions we impose for this technique are all satisfied for
the Stokes operator BS , respectively the form bS .

7.1. Preliminaries

We collect the assumptions of this chapter in the following hypothesis.

Hypothesis 7.1.1. Assume that H+ ⊕H− is an orthogonal decomposition of H.
Furthermore, let

b[x+ ⊕ x−, y+ ⊕ y−] := 〈A1/2
+ x+, A

1/2
+ y+〉 − 〈A1/2

− x−, A
1/2
− y−〉+ 〈Wx+, y−〉+ 〈x−,Wy+〉

=: a+[x+, y+]− a−[x−, y−] + v[x+ ⊕ x−, y+ ⊕ y−],

where Dom[b] = Dom(A
1/2
+ )⊕Dom(A

1/2
− ), A± ≥ 0 is self-adjoint and

Dom(W ) ⊇ Dom(A
1/2
+ ).

Suppose that b satisfies the First and Second Representation Theorem with the associated
self-adjoint operator B. Additionally, let Ran(EB(R+)) = G(H+, X0) be a graph space
for some contraction X0 and assume that this operator is a solution of the form Riccati
equation (6.9).

Indeed, all the hypotheses above are satisfied for the form bS of the Stokes operator,
see Theorem 5.1.2 and Remarks 5.1.5 as well as 6.4.3.

We now give some preparatory observations for the block diagonalisation.

Lemma 7.1.2 ([38]). Assume Hypothesis 7.1.1 and let X0 be the contraction given
by G(H+, X0) = Ran(EB(R+)).

(a) Let Ran

(
(IH+ +X∗0X0)±1|

Dom(A
1/2
+ )

)
= Dom(A

1/2
+ ), then

Ran

(
(IH+ +X∗0X0)s|

Dom(A
1/2
+ )

)
= Dom(A

1/2
+ ) for all s ∈ [−1, 1].

(b) If Ran

(
(IH− +X0X

∗
0 )±1|

Dom(A
1/2
− )

)
= Dom(A

1/2
− ), then

Ran

(
(IH− +X0X

∗
0 )s|

Dom(A
1/2
− )

)
= Dom(A

1/2
− ) for all s ∈ [−1, 1].

87
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Proof. It suffices to consider part (a), the proof of part (b) is analogous.
If A+ is bounded, the statement is trivially satisfied since the operator (I +X∗0X0)

and its inverse are bounded. Also, the statement is obvious in the case of s ∈ {0,±1}.
By assumption, the operators (A+ + I)1/2(I +X∗0X0)±1(A+ + I)−1/2 are closed and

defined on H+. By the Closed Graph Theorem, they are also bounded. Furthermore,
the operator (A+ + I)1/2X∗0X0(A+ + I)−1/2 is bounded and similar to the non-negative
operator X∗0X0.

Assume now that s ∈ (0, 1), then the bounded operator (I + X∗0X0)s admits the
integral representation

(I +X∗0X0)sx =
sin(sπ)

π

∫ ∞
0

ws−1(I +X∗0X0)
(
(1 + w)I +X∗0X0

)−1
xdw

for all x ∈ H+ (see, e.g., [56, Proposition 5.16]).

In order to get the inclusion Ran

(
(I +X∗X)s|

Dom(A
1/2
+ )

)
⊆ Dom(A

1/2
+ ) for s > 0,

it suffices to show that the Hilbert space valued function f : [0,∞)→ H+ with

f(w) := ws−1(A+ + I)1/2(I +X∗0X0)
(
(1 + w)I +X∗0X0

)−1
(A+ + I)−1/2x

is integrable on R+ for any x ∈ H+. One can easily verify the identity

(A+ + I)1/2
(
(1 + w)I +X∗0X0

)−1
(A+ + I)−1/2

=
(
(1 + w)I + (A+ + I)1/2X∗0X0(A+ + I)−1/2

)−1

= (1 + w)−1
(
I + (1 + w)−1(A+ + I)1/2X∗0X0(A+ + I)−1/2

)−1
for all w ≥ 0.

Note that the operator (A+ + I)1/2
(
(1 + w)I +X∗0X0

)−1
(A+ + I)−1/2 is similar to

the bounded operator
(
(1 + w)I +X∗0X0

)−1
and thus bounded for all w ≥ 0.

Furthermore, for all sufficiently large w > 0 we have that∥∥(I + (1 + w)−1(A+ + I)1/2X∗0X0(A+ + I)−1/2
)−1∥∥ ≤ c

for some constant c. As a consequence, the estimate∥∥∥(A+ + I)1/2((1 + w)I +X∗0X0)−1(A+ + I)−1/2
∥∥∥ ≤ c

w

holds for some constant c and sufficiently large w. We now decompose f as a product

f(w) = ws−1(A+ + I)1/2
(
(1 + w)I +X∗0X0

)−1
(A+ + I)−1/2

· (A+ + I)1/2(I +X∗0X0)−1(A+ + I)−1/2x

=: ws−1(A+ + I)1/2
(
(1 + w)I +X∗0X0

)−1
(A+ + I)−1/2z,

where

z := (A+ + I)1/2(I +X∗0X0)−1(A+ + I)−1/2x ∈ H+,

so that the function f is bounded and decays sufficiently fast to grant the integrability.
The inclusion

Ran

(
(I +X∗0X0)s|

Dom(A
1/2
+ )

)
⊆ Dom(A

1/2
+ ) for s ∈ (−1, 0)
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follows from the case of positive 1 + s and the decomposition as a product of bounded
operators

(A+ + I)1/2(I +X∗0X0)s(A+ + I)−1/2

= (A+ + I)1/2(I +X∗0X0)−1(A+ + I)−1/2

· (A+ + I)1/2(I +X∗0X0)1+s(A+ + I)−1/2.

Since now both (I + X0X
∗
0 )±s map Dom(A

1/2
+ ) into itself for s ∈ (−1, 1), the desired

mapping property follows. �

Recall that the conditions in part (a) and (b) of Lemma 7.1.2 are satisfied under
Hypothesis 7.1.1, see Remark 6.3.2 and Lemma 6.3.3. We now define the rotation that
maps (H+,H−) to (Ran(EB(R+)),Ran(EB(R+))⊥).

Definition 7.1.3 ([38]). Let U : H → H = H+⊕H− be the linear map given by the
block operator matrix representation

U =

(
(I +X∗0X0)−1/2 −X∗0 (I +X0X

∗
0 )−1/2

X0(I +X∗0X0)−1/2 (I +X0X
∗
0 )−1/2

)
,

where X0 is the operator given by Ran(EB(R+)) = G(H+, X0).

Simple calculation shows that U is unitary. By the bijectivity of (I +X∗0X0)−1/2 on

H+ and (I +X0X
∗
0 )−1/2 on H−, respectively, we have

Ran(U |H+) = G(H+, X0) = Ran(EB(R+)) =: K+,

Ran(U |H−) = G(H−,−X∗0 ) = Ran(EB(R+))⊥ =: K−.

By Lemma 7.1.2 and conditions (i) and (ii) in Theorem 6.3.1, we also have that

Ran
(
U |

Dom(A
1/2
+ )⊕Dom(A

1/2
− )

)
⊆ Dom(A

1/2
+ )⊕Dom(A

1/2
− ).

Decomposing U into two parts, we obtain two unitary operators U+, U− with

U+ : H+ → K+, U+x+ := (I +X∗0X0)−1/2x+ ⊕X0(I +X∗0X0)−1/2x+

and

U− : H− → K−, U+x− := −X∗0 (I +X0X
∗
0 )−1/2x− ⊕ (I +X0X

∗
0 )−1/2x−.

These operators map the positive respectively negative spectral subspace of A+ − A−
to the corresponding subspace for B.

Let B = B+ − B− be the decomposition into positive and negative part of B with
B+ > 0 andB− ≥ 0. Then, by the domain stability condition Dom(A1/2) = Dom(|B|1/2)
and Ran(EB(R+)) = G(H+, X0), we have that

Ran
(
U+|Dom(A

1/2
+ )

)
⊆ Dom(B

1/2
+ ) and Ran

(
U−|Dom(A

1/2
− )

)
⊆ Dom(B

1/2
− ).

We are now ready to give a diagonalisation of the form b satisfying Hypothesis 7.1.1.

Lemma 7.1.4 ([38]). Let b satisfy the Hypothesis 7.1.1. Then the sesquilinear forms
given by

b̂+[x+, y+] := a+[(I +X0X
∗
0 )1/2x+, (I +X∗0X0)−1/2y+]

+ v[(I +X∗0X0)1/2x+ ⊕ 0, 0⊕X0(I +X∗0X0)−1/2y+],

b̂−[x−, y−] := a−[(I +X0X
∗
0 )−1/2x−, (I +X0X

∗
0 )1/2y−]

+ v[X∗0 (I +X∗0X0)−1/2x− ⊕ 0, 0⊕ (I +X0X
∗
0 )1/2y−],

(7.1)
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where x±, y± ∈ Dom[a±], are closed and non-negative. Furthermore, these forms can be
diagonalised with respect to the decomposition B = B+ −B− as

(7.2) b̂+[x+, y+] = 〈B1/2
+ U+x+, B

1/2
+ U+y+〉K+ ,

(7.3) b̂−[x−, y−] = 〈B1/2
− U−x−, B

1/2
− U−y−〉K− .

Proof. Note that U maps Dom[b] into itself. Let b̂+ be the symmetric sesquilinear

form on Dom[b̂+] = Dom[a+] given by

b̂+[x+, y+] := b[U(x+ ⊕ 0), U(y+ ⊕ 0)],

then, by the Second Representation Theorem for non-negative forms [43, Theorem
VI.2.23] and the mapping properties of U and U+, the form

b̂+[x+, y+] = 〈B1/2
+ U+x+, B

1/2
+ U+y+〉H+

is closed and non-negative. On the other hand, we can compute U(x+ ⊕ 0) explicitly
and get that

b̂+[x+, x+] = b[(I +X∗0X
∗
0 )−1/2x+ ⊕X0(I +X∗X)−1/2x+].

Using the form Riccati equation (6.9), we can rewrite b̂+ as

b̂+[x+] = a+[(I +X∗0X0)−1/2x+]− a−[X0(I +X∗0X0)−1/2x+]

+ v[(I +X∗0X0)−1/2x+ ⊕ 0, 0⊕X0(I +X∗0X0)−1/2x+]

+ v[0⊕X0(I +X∗0X0)−1/2x+, (I +X∗0X0)−1/2x+ ⊕ 0].

(7.4)

By Lemma 7.1.2 and condition (ii) in Theorem 6.3.1, we can insert the two elements

(I+X∗0X0)−1/2x0 ∈ Dom[a+] and X0(I+X∗0X0)−1/2x+ ∈ Dom[a−] into the form Riccati
equation (6.9) to obtain that

0 =− a+[X∗0X0(I +X∗0X0)−1/2x+, (I +X∗0X0)−1/2x+]

− a−[X0(I +X∗0X0)−1/2x+, X0(I +X∗0X0)−1/2x+]

+ v[X∗0X0(I +X∗0X0)−1/2x+ ⊕ 0, 0⊕X0(I +X∗0X0)−1/2x+]

+ v[0⊕X0(I +X∗0X0)−1/2x+, (I +X∗0X0)−1/2x+ ⊕ 0].

(7.5)

Combining equations (7.4) and (7.5), we get for all x+ ∈ Dom[a+] that

b̂+[x+, x+] = a+[(I +X0X
∗
0 )1/2x+, (I +X∗0X0)−1/2x+]

+ v[(I +X∗0X0)1/2x+ ⊕ 0, 0⊕X0(I +X∗0X0)−1/2x+].

The claim now follows by polarisation. The form b̂− can be considered in the same
way. �

Note that for the block diagonalisation of the form b we only needed that the off-
diagonal part v is defined on Dom[a] and did not use the representation by an operator
W . However, for the diagonalisation of the operator B, we have to relay on this condi-
tion.

By the First Representation Theorem for non-negative forms [43, Theorem VI.2.1],

the forms b̂+ respectively b̂− are associated with self-adjoint operators B̂+ respectively

B̂−. These operators contain all information on the positive and negative parts of B,
B+ and B−, respectively.
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Lemma 7.1.5. The operators B± and B̂± are unitary equivalent.

Proof. Note that U± : H± → K± is unitary. By equations (7.2) and (7.3), the
claim follows from [43, Example VI.2.13] since

B̂± = (B
1/2
± U±)∗B

1/2
± U± = U∗±B±U±. �

We now carry over the diagonalisation of the forms b̂± in Lemma 7.1.4 to the diag-
onalisation of the associated operators.

Lemma 7.1.6. Assume Hypothesis 7.1.1. Then the positive part B̂+ can be rewritten
as

(7.6) B̂+ = (I +X∗0X0)1/2(A+ +X∗0W )(I +X∗0X0)−1/2.

Furthermore, the negative part B̂− satisfies the inclusion

(7.7) B̂− ⊆ (I +X0X
∗
0 )−1/2

(
A− + (WX∗0 )∗

)
(I +X0X

∗
0 )1/2.

If additionally A− and B− are bounded, then the inclusion above is an equality.

Proof. We consider first the positive part. By the Second Representation Theo-
rem for the non-negative form a+ ([43, Theorem VI.2.23]) and the definition of v and

Dom(W ) ⊇ Dom(A
1/2
+ ), we can rewrite the form b̂+ as

b̂+[x+, y+] = 〈A1/2
+ (I +X∗0X0)1/2x+, A

1/2
+ (I +X∗0X0)−1/2y+〉

+ 〈W (I +X∗0X0)1/2x+, X0(I +X∗0X0)−1/2y+〉, x+, y+ ∈ Dom(A
1/2
+ ).

We restrict this equation to x+ in the dense set

Dom(A+(I +X∗0X0)1/2) ⊆ Dom(A
1/2
+ )

and obtain that

b̂+[x+, y+] =
〈
(I +X∗0X0)−1/2(A+ +X∗0W )(I +X∗0X0)1/2x+, y+

〉
for all x+ ∈ Dom(A+(I + X∗0X0)1/2), y+ ∈ Dom(A

1/2
+ ). From [43, Corollary VI.2.4], it

follows that
(I +X∗0X0)−1/2(A+ +X∗0W )(I +X∗0X0)1/2 ⊆ B̂+.

To show that even equality holds, note that the operators B̂+ and A+ are self-adjoint and
non-negative. Following the lines of the proof of Lemma 4.3.5, the perturbation results
[43, Theorems V.3.16 and VI.3.17] yield that A++X∗0W is closed and iλ ∈ ρ(A++X∗0W )
for all real λ with sufficiently large absolute value. Thus,

(I +X∗0X0)−1/2(A+ +X∗0W )(I +X∗0X0)1/2 and B̂+

have a common point on the imaginary axis in their resolvent sets. The claim now
follows from Corollary 4.3.2.

In the same way, restricting b̂−[x−, y−] to x− ∈ Dom(A−(I +X0X
∗
0 )−1/2), we have

that
b̂−[x−, y−] = 〈(I +X0X

∗
0 )1/2(A− +WX∗0 )(I +X0X

∗
0 )−1/2x−, y−〉.

In the same way as before, it follows that

(7.8) B̂− ⊇ (I +X0X
∗
0 )1/2(A− +WX∗0 )(I +X0X

∗
0 )−1/2.

Remark that in general we cannot grant, by means of perturbation theory, that B̂ and
(A−+WX∗0 ) have a common point in their resolvent sets, see also the discussion at the
beginning of Section 4.4.

The inclusion (7.7) follows then by taking the adjoint on both sides of (7.8).
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If we additionally suppose that A− and B− are bounded, then by taking the adjoint,

the bounded operator B̂− defined on H is extended by

B̂− ⊆ (I +X0X
∗
0 )−1/2

(
A− + (WX∗0 )∗

)
(I +X0X

∗
0 )1/2,

so that equality must hold. �

Recall that if a− is bounded, the boundedness of B− can be granted by Lemma 6.3.4
if β < 1.

Under stronger assumptions, we can reproduce the diagonalisation of Chapter 4 by
means of forms.

Remark 7.1.7. If, additionally to Hypothesis 7.1.1, we impose that

Dom(W ∗) ⊇ Dom(A−)1/2,

then we alternatively get

B̂− = (I +X0X
∗
0 )1/2(A− +X∗0W

∗)(I +X0X
∗
0 )−1/2,

using the same arguments as in the case of B̂+.
In this case, the operator B given by the form b[x, y] := a[JAx, y] + v[x, y] can also

be represented as the operator B = JAA+ V , where

JAA =

(
A+ 0
0 −A−

)
, V =

(
0 W ∗

W 0

)
.

To see this, note that Dom(V ) ⊇ Dom(JAA), so that V is infinitesimal with respect to
JAA (see [63, Corollary 2.1.20]) and the operator is defined by the Kato-Rellich Theorem
[55, Theorem X.12]. For operators of this type, the diagonalisation is already contained
in Theorem 4.3.6.

We now apply the diagonalisation in Lemma 7.1.6 to the Stokes operator BS . This
allows a closer inspection of the positive and negative part of its spectrum. It turns
out that these parts are related to the Dirichlet Laplacian and the Cosserat operator,
respectively, see Sections 7.4 and 7.5 below. We start with the investigation of the
Laplacian.

7.2. Properties of the Laplacian

Recall that in Theorem 5.2.3, we established that the kernel of the Laplacian −∆
with homogeneous Dirichlet boundary values is trivial for arbitrary Lipschitz domains.

To obtain further spectral information, we use the following classification of un-
bounded domains which is due to Glazman, see [31, Section IV.49], see also [26, Section
4.2].

Let Ω ⊆ Rn be a domain, then Ω is called quasi-conical if it contains a sphere of
arbitrarily large radius. If Ω is not quasi-conical but contains infinitely many pairwise
disjoint spheres of the same radius, then Ω is called quasi-cylindrical. Finally, if Ω is
none of the above, then Ω is called quasi-bounded. The most prominent representants of
these types of domains are half-spaces, cylinders, and bounded domains, respectively.

Recall that a domain is quasi-bounded if and only if, for any radius r > 0, only a
finite number of pairwise disjoint spheres of radius r are contained. In this sense, an
unbounded domain Ω is quasi-bounded if and only if it is narrow at infinity in the sense
of [2, 6.9],

lim
x∈Ω, |x|→∞

dist(x, ∂Ω) = 0.

We now collect facts on the Dirichlet Laplacian for domains in the classification
above.
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Remark 7.2.1. (a) For quasi-conical domains the spectrum of −∆ is continu-
ous and consists of the whole half-line [0,∞). This is a direct consequence of
the non-negativity of −∆ and the inclusion [0,∞) ⊆ σc(−∆) for the continuous
spectrum in [31, Theorem IV.8].

(b) For quasi-bounded, sufficiently regular domains, the operator −∆ has a compact
resolvent and thus the spectrum is purely discrete. Sufficient regularity condi-
tions can be given in terms of the capacity of the domain and are optimal in the
sense of compact imbeddings of H1

0 (Ω) into L2(Ω), see [2, Theorem 6.19].
To be more precise on the regularity, let K ⊂ Rn be a cube of length k. Then,
for u ∈ C∞(K) we define

IK(u) := k2
∑
|α|=1

∫
K
|Dαu(x)|2dx.

Denote by C∞(K,E) the set of all non-trivial smooth functions vanishing in
a neighbourhood of E, then the capacity Q(K,E) of a closed subset E in K is
denoted by

Q(K,E) := inf

{
IK(u)

‖u‖2
L2(K)

∣∣∣∣u ∈ C∞(K,E)

}
.

The imbedding of H1
0 (Ω) into L2(Ω) is compact if and only if for every ε > 0

there exists k < 1 and r ≥ 0 such that

Q(K,K \ Ω) ≥ k2/ε

for every cube K of length k with K ∩ (Ω \ Br(0)) 6= ∅, that is, K intersects
with the parts in Ω outside of the ball of radius r around zero.

Note that 〈−∆ϕ,ψ〉 = 〈gradϕ, gradψ〉 for all ϕ,ψ ∈ C∞0 (Ω) and that the
imbedding of H1

0 (Ω) into L2(Ω) is compact. The compactness of the operator
(−∆)−1 and the discreteness of its spectrum follow now by the same argumen-
tation as in [11, Theorem 5].

Remark that for bounded domains satisfying the cone condition, the com-
pactness of the imbedding follows directly from the Rellich-Kondrachov Theorem,
see, e.g., [2, Theorem 6.3].

(c) For quasi-cylindrical domains, localisation of the spectrum and its type is more
complicated. We will only illustrate the behaviour in three special cases.

The first case are limit-cylindrical domains in R3 as in [31, Theorem IV.16].
Let Ω0 be a bounded domain in the two-dimensional plane {x3 = 0} ⊂ R3.

Suppose that the boundary of Ω0 is described by the radius

r = r(ϕ), ϕ ∈ [0, 2π)

in polar coordinates. Let δ0 denote the smallest Dirichlet eigenvalue of the two
dimensional Laplacian −∆ on Ω0. Furthermore, let Ω ⊂ R3 be given by the
surface

r = r(ϕ)(1 + f(x3)),

where f(x3) > −1 with limx3→∞ f(x3) = 0. Then the continuous spectrum of
the Dirichlet Laplacian consists of the interval [δ0,∞).

If lim supx3→∞ x
2
3f(x3) < 1

8δ0
, then there are only finitely many eigenvalues

below the continuous spectrum.
If instead lim supx3→∞ x

2
3f(x3) > 1

8δ0
, then there exist infinitely many eigen-

values below the continuous spectrum that accumulate only at δ0.
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The second case are tubular neighbourhoods around infinite, sufficiently
smooth curves in Rn that are asymptotically straight, see [10] and the dis-
cussion in [26, Section 4.2]. In this case, the essential spectrum is the interval
[δ0,∞), where δ0 is the smallest Dirichlet eigenvalue of the (n− 1)-dimensional
cross-section. However, if the domain is not a tube itself, there are eigenvalues
below the essential spectrum. We do not know whether the number of these
eigenvalues is finite or convergence to δ0 holds as in the first case.

The third case are half-cylinders in Rn that are bounded in m directions,
that is,

Ω =
{
x = (x1, . . . , xn) | |xi| < ρ, i ∈ {1, . . . ,m}, xi ∈ (0,∞), i ∈ {m+ 1, . . . , n}

}
,

then the essential spectrum of −∆ is [π2mρ−2,∞), see [20, Theorem X.6.6].
Note that the Laplacian is invariant under translations and rotations, so that the

statements remain valid for domains that can be transformed into the structures above,
see the discussion at the end of [20, Section X.6.1].

By a sufficiently regular domain, we always mean regularity for the boundary in the
suitable case of the remark above.

The most important property for us is that only in sufficiently regular quasi-bounded
domains, we can grant the compactness of the resolvent of the Dirichlet Laplacian.

7.3. Numerical ranges of forms

In this section, we investigate the numerical range and the quadratic numerical range
for forms. This allows to give an estimate on the lower bound of the positive spectrum of
the Stokes operator. The quadratic numerical range for forms is a natural generalisation
of the corresponding range for operators. For a discussion of the numerical range and
the quadratic numerical range of block operators see the book [63] by Tretter.

The numerical range of an operator B is denoted as

W (B) := {〈x,Bx〉 | x ∈ Dom(B), ‖x‖ = 1}.

Definition 7.3.1 ([38]). Let b be a form as in Theorem 1.5.3, then we denote the
numerical range of b by

W [b] := {b[x] | x ∈ Dom[b], ‖x‖ = 1}.
The quadratic numerical range of b is given by the union of spectra of 2× 2 matrices,

W 2[b] :=
⋃

x+⊕x−∈Dom[a+]⊕Dom[a−],
‖x+‖=‖x−‖=1

σ

(
a+[x+] v[x+ ⊕ 0, 0⊕ x−]

v[x+ ⊕ 0, 0⊕ x−] −a−[x−]

)
.

The following properties are natural generalisations of the corresponding statements
for operators and are shown in a similar way, see, e.g., [63] for the operator case.

Lemma 7.3.2 ([38]). Let b be a form as in The First Representation Theorem 1.5.3
in the off-diagonal case and let B be the self-adjoint associated operator. Furthermore,
let W (B) be the numerical range of the operator B. Then

(a) σ(B) ⊆W 2[b];

(b) W (B) ⊆ W [b] ⊆ W (B) ⊆ (inf σ(B), supσ(B)). The same inclusions hold for
the non-negative form a = a+ ⊕ a− and its associated operator A;

(c) W 2[b] ⊆W [b];

(d) inf σ(B) = inf W 2[b], supσ(B) = supW 2[b];
(e) W [a±] ⊆W 2[b] if dimH± > 1;
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(f) if a± ≥ α±I for some α± ≥ 0, then

σ(B) ⊆ (−∞,−α−] ∪ [α+,∞).

Proof. (a) First, let λ ∈ R be an eigenvalue of B with corresponding eigen-

function u ∈ Dom(B). Since Dom(B) ⊆ Dom(A1/2) = Dom(A
1/2
+ )⊕Dom(A

1/2
− ),

we have the unique decomposition u = u+ ⊕ u− with u± ∈ Dom(A
1/2
± ). We

set û± := ‖u±‖−1u± if u± 6= 0 and choose û± in Dom(A
1/2
± ) arbitrary with

‖û±‖ = 1 if u± = 0. From the eigenvalue equation, we obtain that

〈û+ ⊕ 0, Bu〉 = λ〈û+, u+〉, 〈0⊕ û−, Bu〉 = λ〈û−, u−〉.
By the First Representation Theorem, we can rewrite these equations in a 2×2
matrix form(

a+[û+] v[û+ ⊕ 0, 0⊕ û−]

v[û+ ⊕ 0, 0⊕ û−] −a−[û−]

)(
‖u+‖
‖u−‖

)
= λ

(
‖u+‖
‖u−‖

)
.

As a consequence λ ∈W 2[b].
If λ ∈ σ(B) is not an eigenvalue, the Weyl criterion [54, Theorem VII.12]

implies that there exists a sequence (u(n))n∈N ⊂ Dom(B) with ‖u(n)‖ = 1 and

(B − λ)u(n) → 0, n→∞.
In the same way as before, we write u(n) = u

(n)
+ ⊕ u(n)

− ∈ Dom(A1/2) and

introduce û
(n)
± for the normalised components. Then, we have that

〈(B − λ)u(n), û
(n)
+ ⊕ 0〉 =: v

(n)
+ , 〈(B − λ)u(n), 0⊕ û(n)

− 〉 =: v
(n)
− ,

both converge to zero. By the First Representation Theorem 1.5.3, these equa-
tions can be rewritten as

(7.9)

(
(a+ − λ)[û

(n)
+ ] v[û

(n)
+ ⊕ 0, 0⊕ û(n)

+ ]

v[û
(n)
+ ⊕ 0, 0⊕ û(n)

− ] −(a− + λ)[û
(n)
− ]

)(
‖u(n)

+ ‖
‖u(n)
− ‖

)
=

(
v

(n)
+

v
(n)
−

)
.

Let Bn−λ denote the matrix in (7.9), then, by the definition of the Euclid norm
on R2, we obtain the estimate

1 =

√
‖u(n)

+ ‖2 + ‖u(n)
− ‖2

≤ ‖(Bn − λ)−1‖ ·
√

(v
(n)
+ )2 + (v

(n)
− )2 =

√
(v

(n)
+ )2 + (v

(n)
− )2

dist(λ, σ(Bn))
.

This yields that

dist(λ, σ(Bn)) ≤
√

(v
(n)
+ )2 + (v

(n)
− )2 → 0, n→∞

and consequently λ ∈W 2[b].
(b) The first inclusion W (B) ⊆W [b] follows directly from the First Representation

Theorem 1.5.3 noting that Dom(B) ⊆ Dom[b].

For the second inclusion, W [b] ⊆ W (B), recall that Dom(B) is a core for

the operator (A+ I)1/2. By Remark 1.5.5, we have that

b[x, x] = 〈(A+ I)1/2x, H̃(A+ I)1/2x〉 − 〈x, JAx〉

holds for x ∈ Dom((A + I)1/2). With B = (A + I)1/2H̃(A + I)1/2 − JA, the
claim follows from the core property.

The last inclusion, W (B) ⊆ (inf σ(B), supσ(B)), follows directly from the
well known convexity of the numerical range and [67, Aufgabe VII.5.24(c)].
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In the same way, the inclusions for the non-negative a respectively A follow
since Dom(A) is a core for (A+ I)1/2.

(c) Let λ ∈ W 2[b], then, there exist x± ∈ Dom(A1/2) with ‖x±‖ = 1 and a point
c = (c1, c2) ∈ R2 with ‖c‖ = 1 such that(

a+[x+] v[x+ ⊕ 0, 0⊕ x−]

v[x+ ⊕ 0, 0⊕ x−] −a−[x−]

)(
c1

c2

)
= λ

(
c1

c2

)
.

Taking the scalar product with c yields

b[c1x+ ⊕ c2x−] = λ,

where ‖c1x+ ⊕ c2x−‖ = 1 and the claim follows.

(d) Note that by parts (b) and (c), we have W 2[b] ⊆ (inf σ(B), supσ(B)). The

claim now follows from part (a) since inf σ(B), supσ(B) ∈W 2[b].
(e) Assume that dimH− > 1, then for each x+ ∈ Dom[a+], ‖x+‖ = 1, there is an

element x− ∈ Dom[a−], ‖x−‖ = 1 with v[x+ ⊕ 0, 0⊕ x−] = 0. To see this, note
that by Remark 1.5.2

v[x+ ⊕ 0, 0⊕ x−] = 〈R∗(A+ + I)1/2x+, (A− + I)1/2x−〉.
Let f ∈ H+, then, by dimH− > 1, there exists an element g ∈ H− such that
〈R∗f, g〉H− = 0.

By the bijectivity of (A+ I)1/2 : Dom((A+ I)1/2)→ H, a suitable x− with
v[x+ ⊕ 0, 0⊕ x−] = 0 then exists. In this case, we have that

a+[x+] ∈ σ
(
a+[x+] 0

0 a−[x−]

)
⊆W 2[b].

(f) The claim follows directly, noting that the spectrum of the 2× 2 matrix(
a+ v
v −a−

)
, 0 ≤ a± <∞, v bounded

is located outside of the interval (−a−, a+). As a consequence W 2[b] is outside
of (−α−, α+) and the claim follows.

�

7.4. The positive part of the Stokes operator

Combining the results of the lemma above with the results of Section 7.2, we obtain
that the positive part of the Stokes operator BS defined by the form (5.9) is bounded
from below by the smallest spectral value of the Dirichlet Laplacian. This bound is
given by the smallest Dirichlet eigenvalue of the Laplacian if Ω is a (sufficiently regular)
quasi-bounded or a limit-cylindrical domain. In these cases, the positive part of BS is
strictly positive. It turns out that for (sufficiently regular) quasi-bounded domains the
positive part of BS has a compact resolvent, and thus the positive spectrum is discrete,
see the following two statements.

Lemma 7.4.1. Assume Hypothesis 7.1.1 and let B̂+ be the operator associated with

the form b̂+ in Lemma 7.1.4. Furthermore, suppose that a+ is strictly positive.

Then the operator B̂
1/2
+ A

−1/2
+ and its inverse are bounded. If a− is strictly positive

then B̂
1/2
− A

−1/2
− and its inverse are bounded.

Proof. Let A+ respectively a+ be strictly positive, then the mapping properties of
X0, namely

Ran

(
X0|Dom(A

1/2
+ )

)
⊆ Dom(A

1/2
+ ),
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and those of (I+X∗0X0)±1/2 in Lemma 7.1.2 grant that the non-negative quadratic form

b̂[A
−1/2
+ x+] = a+[(I +X∗0X0)1/2A

−1/2
+ x+, (I +X∗0X0)−1/2A

−1/2
+ x+]

+ v[(I +X∗0X0)1/2A
−1/2
+ x+ ⊕ 0, 0⊕X0(I +X∗0X0)−1/2A

−1/2
+ x+]

is bounded. By the Second Representation Theorem [43, Theorem VI.2.23] for the

form b̂+, we have that b̂[A
−1/2
+ x+] = 〈B̂1/2

+ A
−1/2
+ x+, B̂

1/2
+ A

−1/2
+ x+〉 is bounded for all

x+ ∈ H+. Thus B̂
1/2
+ A

−1/2
+ is bounded.

For the inverse, note that B̂+ = U∗+B+U+ is strictly positive since B+ is strictly

positive, see Lemma 7.3.2. Note that also Dom(B̂
1/2
+ ) = Dom[b̂+] = Dom(A

1/2
+ ) by the

Second Representation Theorem. Then A
1/2
+ B̂

−1/2
+ is closed and by

Ran(B̂
−1/2
+ ) = Dom(B̂

1/2
+ ) = Dom(A

1/2
+ )

also defined on the whole of H+. Consequently A
1/2
+ B̂

−1/2
+ is bounded. �

Using the observation above, we get further spectral information on the Stokes op-
erator BS in quasi-bounded domains.

Lemma 7.4.2. For sufficiently regular quasi-bounded domains Ω, the positive part of
BS has a compact resolvent so that the positive spectrum is discrete.

Proof. The discreteness follows directly from the compactness of the resolvent.
Note that the vector valued Dirichlet Laplacian A+ = −∆ and its square root have a

compact resolvent. Thus, the positive part of BS is equivalent to the operator B̂+ which
satisfies

B̂−1
+ = A−1

+ −A
−1/2
+

(
I +A

1/2
+ B̂

−1/2
+ · B̂−1/2

+ A
1/2
+

)
A
−1/2
+ .

This operator is compact by Lemma 7.4.1. Indeed, the two operators

B̂
−1/2
+ A

1/2
+ = (A

1/2
+ B̂

−1/2
+ )∗ and A

1/2
+ B̂

−1/2
+

are bounded and the compactness follows. �

7.5. The negative part of the Stokes operator

We now turn to the investigation of the negative spectral part of the Stokes operator
BS . We obtain that for sufficiently regular quasi-bounded domains Ω, the essential
spectrum of the operator BS coincides with the essential spectrum of the Cosserat
operator div (−∆)−1 grad defined on L2(Ω). This generalises the result of [21, Theorem
3.11] by Faierman, Fries, Mennicken, and Möller for bounded C2-domains in R3, see
also [35] and [51] for this result for C∞-domains.

Theorem 7.5.1. Let Ω be a sufficiently regular quasi-bounded domain, then the
essential spectra of BS and div (−∆)−1 grad coincide.

Before we can turn to the proof of this statement, we need some preparation.
Recall that for sufficiently regular domains, the resolvent of the Dirichlet Laplacian

is compact. It turns out that in this case also the solution X0 of the form Riccati
equation with Ran(EBS

(R+)) is compact.

Lemma 7.5.2. Let Ω be a sufficiently regular quasi-bounded domain, then X0 is
compact.
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Proof. Using (6.17), we can rewrite the form Riccati equation for the Stokes op-
erator as

(7.10)
〈
(A

1/2
+ +A

−1/2
+ X∗0W )X∗q,A

1/2
+ v

〉
L2(Ω)n

=
〈
A
−1/2
+ W ∗q, A

1/2
+ v

〉
L2(Ω)n

for all q ∈ L2(Ω) and v ∈ H1
0 (Ω)n, where the closure A

−1/2
+ W ∗ is a bounded operator.

Note that A+ = −∆ as well as A
1/2
+ are surjective as maps from H1

0 (Ω) to L2(Ω)n,
so that (7.10) turns into the operator identity

(7.11) (A
1/2
+ +A

−1/2
+ X∗0W )X∗0 = A

−1/2
+ W ∗.

Recall that the operator B̂+ associated with the form b̂+ in (7.1) is strictly positive by
part (f) of Lemma 7.3.2 and (7.6) yields that

A+ +X∗0W = (I +X0X
∗
0 )1/2B̂+(I +X0X

∗
0 )−1/2.

In this case A+ +X∗0W = A
1/2
+ (I +A

−1/2
+ X∗0WA

−1/2
+ )A

1/2
+ is boundedly invertible.

We claim that also

I +A
−1/2
+ X∗0WA

−1/2
+ =: I +K

is boundedly invertible.

To see this, note that A
−1/2
+ is compact and that WA

−1/2
+ is bounded. In this

case K is compact and thus the spectrum of I +A
−1/2
+ X∗0WA

−1/2
+ can accumulate only

at the point 1. This operator is then boundedly invertible if and only if its kernel is

trivial. Assume that the kernel is not trivial, then the surjectivity of A
1/2
+ implies that

A+ + X∗0W has a non trivial kernel which is not possible since this operator is related

to the strictly positive operator B̂+. To obtain the claim that X∗0 (and thus also X0) is
compact, we rewrite (7.11) as

�(7.12) X∗0 = A
−1/2
+ (I +A

−1/2
+ X∗0WA

−1/2
+ )−1A

−1/2
+ W ∗.

We also use the following operator identity which brings the Cosserat operator into
play.

Lemma 7.5.3. Let X0 be a solution of the form Riccati equation (6.9), then the
identity for bounded operators

(I +X0X
∗
0 )WX∗0 −WA

−1/2
+ (WA

−1/2
+ )∗ = −(WX∗0 )∗X0A

−1
+ X∗0 (WX∗0 )

holds.

Proof. We set x+ = X∗0y− into the form Riccati equation (6.9) to obtain that the
equation

(7.13)
〈A1/2

+ X∗0y−, A
1/2
+ X∗0y−〉L2(Ω)n + 〈WX∗0y−, (I +X0X

∗
0 )y−〉L2(Ω)

= 〈y−,WX∗0y−〉L2(Ω) + 〈WX∗0y−, y−〉L2(Ω)

holds for all y− ∈ L2(Ω). Since all the operator products above are bounded by the

mapping property RanX∗0 ⊆ Dom(A
1/2
+ ) ⊆ Dom(W ) of X∗0 in condition (ii) of Theorem

6.3.1, equation (7.13) can be turned into the identity for bounded quadratic forms

〈(I +X0X
∗
0 )WX∗0y−, y−〉 =

〈(
− (A

1/2
+ X∗0 )∗(A

1/2
+ X∗0 ) +WX∗0 + (WX∗0 )∗

)
y−, y−

〉
.

By polarisation, this gives the identity for bounded self-adjoint operators

(7.14) (I +X0X
∗
0 )WX∗0 = −(A

1/2
+ X∗0 )∗(A

1/2
+ X∗0 ) +WX∗0 + (WX∗0 )∗.
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Note that WA
−1/2
+ is a bounded operator, so that

K := A
−1/2
+ X∗0WA

−1/2
+

is a bounded operator. Using the representation (7.12) of X∗0 , we derive the following
representations

WX∗0 = (WA
1/2
+ )(I +K)−1A

−1/2
− W ∗,

(A
1/2
+ X∗0 )∗(A

1/2
+ X∗0 ) = (W ∗A

−1/2
+ )(I +K∗)−1(I +K)−1A

−1/2
− W ∗.

We now introduce the bounded operator

Z := (I +K)−1 + (I +K∗)−1 − (I +K∗)−1(I +K)−1.

Together with (7.14), this yields

(I +X0X
∗
0 )WX∗0 = WA

−1/2
+ Z(WA

−1/2
+ )∗

It is a straightforward computation to verify the identity

(I +K∗)(Z − I)(I +K) = −KK∗.

Combining the last two equations, we obtain the claimed identity

(I +XX∗)WX∗0 −WA
−1/2
+ (WA

−1/2
+ )∗

= WA
−1/2
+ (Z + I)(WA

−1/2
+ )∗

= −(WA
1/2
+ )(I +K)−1KK∗(I +K)−1(WA

−1/2
+ )∗

= −(WA
1/2
+ )(I +K∗)−1(WA

−1/2
+ )∗X0A

−1/2
+ A

−1/2
+ X∗0 (WA

−1/2
+ )(I +K)−1(WA

−1/2
+ )∗

= −(WX∗0 )∗X0A
−1
+ X∗0 (WX∗0 ).

�

Note that the self-adjoint operator WA
−1/2
+ (WA

−1/2
+ )∗ is equal to the Cosserat op-

erator WA−1
+ W ∗ since it is a bounded closed extension of the densely defined operator

WA−1
+ W ∗.
We now turn to the proof of Theorem 7.5.1

Proof of Theorem 7.5.1. From Lemma 7.1.5 and Lemma 7.1.6, it follows that
the negative part of BS is similar to the operator

B̂− = (I +X0X
∗
0 )−1/2(WX∗0 )∗(I +X0X

∗
0 )1/2.

By Lemma 7.5.3, we have that the difference (I+X0X
∗
0 )WX∗0 −WA−1

+ W ∗ is a compact
operator which we denote by L. We then obtain the representation

B̂− − (I +X0X
∗
0 )−1/2WA−1

+ W ∗(I +X0X
∗
0 )−1/2 = (I +X0X

∗
0 )−1/2L∗(I +X0X

∗
0 )−1/2,

where the right-hand side is also compact. We now show that the difference

(I +X∗0 )−1/2WA−1
+ W ∗(I +X∗0 )−1/2 −WA−1

+ W ∗

is a compact operator. To see this, recall that X0 is compact by Lemma 7.5.2, so that
the operator (I +X0X

∗
0 )−1/2 − I is also compact. In this case, we have that

(I +X∗0 )−1/2WA−1
+ W ∗(I +X∗0 )−1/2 −WA−1

+ W ∗

=
(
(I +X0X

∗
0 )−1/2 + I

)
WA−1

+ W ∗(I +X0X
∗
0 )−1/2 +WA−1

+ W ∗
(
(I +X0X

∗
0 )−1/2 + I

)
.
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Thus B̂− −WA−1
+ W ∗ is compact and the claim follows from the unitary equivalence of

B̂− and the negative part of BS . �

We call the operator WA−1
+ W ∗ the Cosserat operator since it is directly related to

the Cosserat eigenvalue problem of finding λ ∈ R such that

∆v = grad p in the domain Ω, v|∂Ω = 0, p = λdiv v,

that is,
p = λdiv ∆−1 grad p.

Note that for λ 6= 0 this eigenvalue problem can be rewritten as

1

λ
∆v = grad div v.

In [28] Gaultier and Lezaun showed that for bounded domains the spectrum of the

operator WA−1
+ W ∗ on L2(Ω)/R is contained in the interval [c, 1], where c is the optimal

constant in the coercivity estimate ||u||2L2(Ω) ≤ c|| gradu||H−1(Ω)n . This constant is

known for several domains like discs in R2 (c = 1/2 and the spectrum consists only of
1/2 and 1) or spheres in R3 (c = 1/3 and the eigenvalues are 1 and m

2m+1 for m ∈ N,

only the point 1/2 belongs to the continuous spectrum), see [28].
These results have been generalised by Crouzeix in [14] to bounded domains with

at least C3-boundary. Namely, in this case, the essential spectrum consists only of 1/2
and 1, see [14, Corollary 4]. For exterior domains, the same result has been obtained in
[68, Theorem 1.1] by Weyers.

For domains with corners the situation is more complicated. The best result we
know of is the following. Namely, for Ω ⊂ R2 piecewise smooth with opening angles ωj ,
we have

σess

(
WA−1

+ W ∗
)

=
⋃

corners j

[
1

2
− | sinωj |

2ωj
,
1

2
+
| sinωj |

2ωj

]
∪ {1}.

This result is contained in [13, Theorem 3.3] by Costabel, Crouzeix, Dauge, and Lafranche,
see also the slide talks [12] and [16] by Costabel and Dauge, respectively.



CHAPTER 8

The indefinite operator div h(·) grad in the Dirichlet case

This chapter is based on the joint work [41] with A. Hussein, V. Kostrykin,
D. Krejčǐŕık, and K. A. Makarov.

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary for n ≥ 2 or a bounded
open interval if n = 1. Here, we investigate forms of the type

(8.1) bD[u, v] := 〈gradu,H grad v〉, u, v ∈ H1
0 (Ω),

where H acts by multiplication with a sign-indefinite, bounded n×n matrix h(x) which
is Hermitian for almost all x in Ω and has a bounded inverse. It is natural to relate
these forms to sign-indefinite differential expressions of the type

(8.2) (BDu)(x) = −div h(x) gradu(x).

In dimension n = 1 these expressions are related to left indefinite Sturm-Liouville oper-
ators and in dimension n = 2 or n = 3, these expressions appear in the investigation of
so called metamaterials, see Section 8.1 below.

The aim of this chapter is to define BD as a self-adjoint operator associated with
the form bD above.

8.1. Motivation

In the sixties, Veselago studied hypothetical materials in [64], where the electric per-
mittivity ε and the magnetic permeability µ may change sign, so called metamaterials.
In principle, these materials have a sign-indefinite refraction index leading to strange
effects like refraction to the other side one would usually expect and an inverse Doppler
effect. These materials do not exist in nature, so that these considerations remained
a toy model for some time. However this model has recently come to interest by the
experimental construction of these materials by electro-magnetic fields. In this sense,
electro-magnetic fields can simulate the same behaviour in a region as a metamaterial
in that region would have, see the survey article [59] and the article [60], both by Smith
et al., and the references therein. By a combination of materials and metamaterials one
hopes to create a ’cloaking effect’ hiding objects from detection.

For the mathematical modelling of metamaterials and their cloaking properties,
see e.g. the papers [8] by Bonnet-Ben Dhia, Ciarlet, and Zwölf, [9] by Bouchitté and
Schweizer, or [32] by Greenleaf, Kurylev, Lassas, and Uhlmann.

The particular motivation for this chapter is the abstract setting of the paper [9].
This setting can, in a simplified version, be understood as the consideration of differential
operators of the type

(Bεu)(x) := −div hε(x) gradu(x)

with Dirichlet boundary conditions, where

hε(x) =

{
(−1 + iε)I x ∈ Ω−

+I x ∈ Ω+

101
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on a domain Ω that is split into Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. In this setting the
limiting operator B0 := limε→0Bε is investigated. In this case, the operator Bε can be
constructed by classical form methods. Namely, the form given by

〈gradu, hε(x) grad v〉
has numerical range

{〈gradu, hε(·) gradu〉L2(Ω)n | u ∈ H1
0 (Ω), ‖u‖H1(Ω) = 1}

contained in a sector of the complex plane, where the opening angle approaches π/2 as
ε→ 0. Up to a rotation into the right halfplane, the form is then sectorial in the usual
sense of [43, Section VI.1.2] and thus associated with an operator, see [43, Theorem
VI.2.1].

Our aim is to define the limiting operator directly by means of indefinite forms.
Indeed, Theorem 8.2.6 shows that B−1

D = limε→0B
−1
ε , so that the limiting process gives

the operator we construct.
From the physical point of view, the additive perturbation iε in h corresponds to

a small absorption in the metamaterial. However, one is interested in non-absorbing
materials and their physical properties. Thus, it is reasonable to eliminate the limiting
process and to define the self-adjoint operator div h(·) grad with h(x) = ±1 for x ∈ Ω±
directly.

8.2. The general case

We begin this section introducing the following notation. Let L2(Ω)n denote the
Hilbert space of square integrable vector valued functions on Ω. By D, we denote the
gradient operator with Dirichlet boundary conditions, that is

Du = gradu, u ∈ H1
0 (Ω).

We now collect several properties of D.

Lemma 8.2.1 ([41]). The gradient operator D is closed, densely defined with trivial
kernel. The range of D, denoted by L, is a closed subspace of L2(Ω)n. The explicit
representation

L = RanD = {v ∈ L2(Ω)n | v = gradϕ, ϕ ∈ H1
0 (Ω)} ⊂ L2

0(Ω)n

holds, where

(8.3) L2
0(Ω)n :=

{
v ∈ L2(Ω)n

∣∣∣∣ ∫
Ω
v(x)dx = 0.

}
is the subset of functions in L2(Ω)n with vanishing mean value in each component.

Proof. For the closedness of RanD, consider a sequence (vj)j∈N ⊂ RanD with
vj → u ∈ L2(Ω)n, j →∞.

By definition, we have vj = gradϕj for some ϕj ∈ H1
0 (Ω) and, thus,

‖gradϕj − gradϕk‖L2(Ω)n → 0, j, k →∞.

The Poincaré Inequality yields that

‖ϕj − ϕk‖2H1(Ω) = ‖ϕj − ϕk‖L2(Ω) + ‖gradϕj − gradϕk‖2L2(Ω)n

≤ (c2 + 1) ‖gradϕj − gradϕk‖2L2(Ω)n → 0, j, k →∞,

where c is the Poincaré constant of Ω. Thus, (ϕj)j∈N is a Cauchy sequence in the
complete space H1(Ω). Since H1

0 (Ω) is a closed subset of H1(Ω), we have

ϕj → ϕ ∈ H1
0 (Ω), j →∞.
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Consequently, the sequence (vj)j∈N converges to v := gradϕ ∈ RanD ⊆ L2(Ω)n showing
the closedness of RanD.

The inclusion RanD ⊆ L2
0(Ω)n follows from the Gauß-Green Formula, see [52,

Theorem 3.1.1]. Let e ∈ Rn be a fixed vector and ϕ ∈ H1
0 (Ω), then∫

Ω
〈gradϕ(x), e〉dx =

∫
∂Ω
ϕ(x)〈ν(x), e〉dσ(x) = 0,

where ν(x) denotes the exterior unit normal at the boundary point x ∈ ∂Ω and σ is
the surface measure on ∂Ω. Thus RanD is orthogonal to all constant vectorfields in
L2(Ω)n and the claim follows. The triviality of KerD follows directly from the Poincaré
Inequality. �

Remark that in dimension n = 1, where Ω = (a, b) is an open interval, we have the
equality RanD = L2

0(Ω). To see this, note that for arbitrary f ∈ L2
0(Ω), the function g

given by

(8.4) g(x) =:

∫ x

a
f(s)ds

is in H1
0 (Ω) and satisfies Dg = f almost everywhere.

In dimension n ≥ 2 we have that RanD may be smaller than L2
0(Ω)n.

Since the subspace L = RanD is closed by the lemma above, this subspace itself
can be considered as a Hilbert space imbedded in L2(Ω)n.

We imbedd RanD into L2(Ω)n in the following way. Let Q : L2(Ω)n → L denote
the partial isometry given by

Qv :=

{
v, v ∈ RanD,

0, v⊥RanD.

The adjoint Q∗ of Q is just the imbedding of L into L2(Ω) and I − Q∗Q is the Leray
projector onto the divergence free vectorfields of L2(Ω)n. See [25, Section II.3] for
further investigation of the Helmholtz-Leray decomposition and the Leray projector.
Remark that we do not consider Q as a projector since we treat L2(Ω)n and RanD as
different Hilbert spaces.

It is well known, that the adjoint D∗ of the gradient operator D is the divergence
operator, namely

D∗v = −div v, v ∈ E2(Ω) := {v ∈ L2(Ω)n | div v ∈ L2(Ω)}.
Note that E2(Ω) is the closure of H1(Ω)n, the space of vector valued Sobolev functions,

with respect to the graph norm (‖ · ‖2 + ‖div · ‖2)1/2. In dimension n = 1, we even have
E2(Ω) = H1(Ω).

We are now ready to state the main Theorem of this chapter.

Theorem 8.2.2 ([41]). Let Ω ⊂ Rn be a bounded Lipschitz domain for n ≥ 2 or a
bounded open interval for n = 1. Furthermore, let h ∈ L∞(Ω,C)n×n be such that

(i) h(x) is Hermitian for almost all x ∈ Ω,
(ii) the operator QHQ∗ : L → L is boundedly invertible, where H is the operator on

L2(Ω)n acting by multiplication with h(x).

Then

(a) there exists a unique self-adjoint operator BDwith Dom(BD) ⊆ H1
0 (Ω) such that

the First Representation Theorem

〈u,BDv〉L2(Ω) = bD[u, v] = 〈gradu,H grad v〉L2(Ω), u ∈ H1
0 (Ω), v ∈ Dom(BD)

holds;
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(b) the operator BD is explicitly given by BD = D∗HD on the natural domain

Dom(BD) = {u ∈ H1
0 (Ω) | HDu ∈ E2(Ω)}.

The domain Dom(BD) is a core for the gradient operator D with Dirichlet
boundary conditions;

(c) the operator BD is semibounded if and only if QHQ∗ is sign-definite;
(d) the operator BD has a spectral gap around zero. Namely, if δ0 > 0 denotes the

smallest eigenvalue of the Dirichlet Laplacian −∆D on L2(Ω) and

(8.5) α :=
∥∥(QHQ∗)−1

∥∥−1

denotes the width of the spectral gap of QHQ∗ around zero, then

(−αδ0, αδ0) ⊆ ρ(BD).

In particular, BD is boundedly invertible with
∥∥B−1

D

∥∥ ≤ 1
αδ0

;

(e) the inverse B−1
D is compact and the spectrum of BD is purely discrete.

Note that we introduce the subscript D in BD to put emphasis on the Dirichlet
boundary condition and to distinguish from the Neumann case that will be treated in
the following chapter.

Before we start the proof of Theorem 8.2.2, further investigation of the operators
D,D∗ and their polar decomposition is needed.

Recall that, by the Lipschitz boundary of Ω, there exists a normal trace operator
γν : E2(Ω)→ H−1/2(∂Ω) assigning the normal component at the boundary to any func-
tion in E2(Ω), see [61, Lemma II.1.2.2]. The kernel of D∗ splits into the orthogonal sum
of the two closed subspaces

L2
σ(Ω) := {v ∈ L2(Ω)n | div v = 0, γνv = 0},
H(Ω) := {v ∈ L2(Ω)n | v = gradϕ, ϕ ∈ H1(Ω), ∆ϕ = 0},

(8.6)

so that we have the orthogonal decomposition

L2(Ω)n = RanD ⊕ L2
σ(Ω)⊕H(Ω),

see [17, Proposition IX.1.1].
The range of D∗ is the whole of L2(Ω). In the case of dimension n = 1, this can be

obtained directly by integration as in (8.4). For the higher dimensional case n ≥ 2, split
L2(Ω) = L2

0(Ω)⊕ C, where C is the subspace of constant functions and

L2
0(Ω) := L2

0(Ω)1 =

{
u ∈ L2(Ω)

∣∣∣∣ ∫
Ω
u(x)dx = 0

}
as in (8.3). Let f = f1 ⊕ f2 ∈ L2

0(Ω) ⊕ C = L2(Ω), then by [61, Lemma II.2.1.1], we
have f1 = divϕ1 for some ϕ1 ∈ H1

0 (Ω). Since the equation divϕ2 = f2 ∈ C is solvable
with some ϕ2 in H1(Ω), we have f = divϕ with ϕ = ϕ1 +ϕ2 ∈ H1(Ω) ⊂ E2(Ω) and the
claim follows.

Since both operators D and D∗ are closed, they admit the polar decompositions, see
[43, Section VI.2.7],

(8.7) D = U |D| = |D∗|U, D∗ = U∗|D∗| = |D|U∗,
where U : L2(Ω)→ L2(Ω)n is a partial isometry with initial subspace

(KerD)⊥ = {0}⊥ = L2(Ω)

and final subspace RanD = RanD = L ⊆ L2
0(Ω)n.

An immediate consequence of the polar decomposition is the following.

Lemma 8.2.3 ([41]). The partial isometry U maps Dom(D) onto Dom(D∗)∩RanD.
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Proof. The operator D can be considered as a surjective map between the Banach
spaces (

H1
0 (Ω), ‖ · ‖H1(Ω)

)
and

(
RanD, ‖ · ‖L2(Ω)

)
.

By the Bounded Inverse Theorem, there exists a bounded inverse of D as a map

D−1 : RanD → H1
0 (Ω) ⊂ L2(Ω).

Let v ∈ Dom(D∗) ∩ RanD be arbitrary and set u := D−1|D∗|v. By construction, we
have u ∈ Dom(D) and the polar decomposition (8.7) yields that

|D∗|Uu = Du = |D∗|v.

As a consequence, v − Uu ∈ Ker |D∗| = KerD∗. By assumption, we have that both v
and Uu belong to RanD. By the closedness of RanD, we have that

v − Uu ∈ RanD = (KerD∗)⊥.

This implies v − Uu = 0, so that v = Uu and the proof is completed. �

The investigation of the operators D,D∗ and U above allows to examine the opera-
tors DD∗ and D∗D more closely.

We define the Dirichlet-Laplace operator −∆D = D∗D and the grad-div operator
DD∗ on their natural domains

Dom(−∆D) = Dom(D∗D) = {ϕ ∈ H1
0 (Ω) | gradϕ ∈ E2(Ω)}

= {ϕ ∈ H1
0 (Ω) | ∆ϕ ∈ L2(Ω)}

and

Dom(DD∗) = {v ∈ E2(Ω) | div v ∈ H1
0 (Ω)}.

The operator −∆D has a trivial kernel since RanD⊥KerD∗ and KerD = {0}, whereas
the kernel of DD∗ is non-trivial, namely with the notation of (8.6), we have that

Ker(DD∗) = KerD∗ = L2
σ(Ω)⊕H(Ω).

From the polar decomposition (8.7), we obtain that

(8.8) DD∗ = UD∗DU∗ = U(−∆D)U∗,

so that the spectra σ(DD∗) \ {0} = σ(−∆D) agree up to the point zero. We even have
that the spectral multiplicities agree outside zero. Namely for all λ > 0

dim(Ker(DD∗ − λ)) = dim(Ker(D∗D − λ)).

Lemma 8.2.4. The decomposition L2(Ω)n = RanD ⊕ KerD∗ reduces the grad-div
operator DD∗.

Proof. Let P : L2(Ω)n → L2(Ω)n denote the orthogonal projector onto RanD,
so that I − P is the orthogonal projector onto KerD∗. It is well known that in this
situation P = UU∗ holds, see, e.g., [20, Section IV.3]. Let v ∈ Dom(DD∗), then we have
that Pv = v − (I − P )v ∈ Dom(DD∗) since KerD∗ is a proper subset of Dom(DD∗).
Furthermore, using the polar decomposition again, it follows that

PDD∗v = UU∗D|D|U∗v = UU∗DD∗UU∗v = DD∗Pv.

The claim now follows from Remark 6.2.1, respectively [66, Satz 2.60]. �

Since RanD is a reducing subspace for DD∗ by the lemma above, we can split of
the kernel of DD∗, Ker(DD∗) = KerD∗, without loosing any information on the action
of DD∗. This splitting will be crucial for the proof of Theorem 8.2.2.
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Definition 8.2.5 ([41]). Let

A := DD∗|Ran(D)

denote the restriction of DD∗ into the reducing subspace

RanD = (KerD∗)⊥ = (Ker(DD∗))⊥.

The operator A clearly is a self-adjoint. Since ϕ ∈ H1
0 (Ω) together with ∆ϕ ∈ H1

0 (Ω)
already implies that gradϕ ∈ E2(Ω), the domain of A can be written as

Dom(A) = RanD ∩Dom(DD∗)

= {v ∈ L2(Ω)n | v = gradϕ, ϕ ∈ H1
0 (Ω), ∆ϕ ∈ H1

0 (Ω)}.

Since RanD∗ = L2(Ω), we have that RanA = Ran(DD∗) = RanD. Furthermore, from
(8.8), we have that A and −∆D are unitary equivalent. As a consequence, A has a
compact inverse with

∥∥A−1
∥∥ ≤ 1

δ0
, where δ0 is the smallest eigenvalue of the Dirichlet

Laplacian −∆D.
We now turn to the proof of Theorem 8.2.2.

Proof of Theorem 8.2.2. We consider first the auxiliary sesquilinear form

(8.9) b[u, v] := 〈A1/2u,QHQ∗A1/2v〉L, u, v ∈ Dom(A1/2) ⊆ L,

where L = RanD is a Hilbert space and A = DD∗|Ran(D) is a self-adjoint operator with

(8.10) A1/2 = |D∗||RanD , Dom(A1/2) = Dom(|D∗|) ∩ L = Dom(D∗) ∩ L.

Since A is strictly positive and QHQ∗ is bounded, boundedly invertible by assumption,
we can apply the First Representation Theorem in the gap case [36, Theorem 2.3].
Thus, there exists a unique self-adjoint, boundedly invertible operator B in the Hilbert
space L with

(8.11) Dom(B) = {v ∈ Dom(A1/2) | QHQ∗A1/2v ∈ Dom(A1/2)} ⊆ Dom(A1/2)

which is associated with the form b, that is,

〈u,Bv〉L = b[u, v], u ∈ Dom(A1/2), v ∈ Dom(B).

We have 0 < δ0 = minσ(A) for the smallest Dirichlet eigenvalue δ0 and by assumption
(−α, α) ⊂ ρ(QHQ∗), so that (−αδ0, αδ0) ⊂ ρ(B).

Let B̂ denote the trivial extension of B to the whole of L2(Ω)n, that is,

B̂v =

{
Bv, v ∈ Dom(B)

0, v ∈ L⊥ = L2
σ(Ω)⊕H(Ω)

with

Dom(B̂) = {u⊕ v | u ∈ Dom(B), v ∈ L2
σ(Ω)⊕H(Ω)}

⊆ (Dom(D∗) ∩ RanD)⊕ L2
σ(Ω)⊕H(Ω).

(8.12)

Set

BD := U∗B̂U

on the natural domain

(8.13) Dom(BD) = {u ∈ L2(Ω) | Uu ∈ Dom(B̂)}.

By Lemma 8.2.3, the partial isometry U : L2(Ω)→ L2(Ω)n maps H1
0 (Ω) = Dom(D)

onto Dom(D∗) ∩ RanD, so that U does not map into the kernel of B̂.
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As a consequence Dom(BD) ⊆ H1
0 (Ω) and BD is a self-adjoint operator with

(−αδ0, αδ0) ⊂ ρ(BD). With the equations (8.13), (8.12) and (8.11) as well as the
identities D = |D∗|U and Dom(D∗) = E2(Ω), we obtain that

Dom(BD) = {u ∈ H1
0 (Ω) | HDu ∈ E2(Ω)}.

Furthermore, since A−1 is compact, also B−1 = A−1/2(QHQ∗)−1A−1/2 and B−1
D are

compact. By [36, Theorem 2.3], Dom(B) is a core for A1/2, so that by trivial extension

Dom(B̂) is a core for (DD∗)1/2. It follows that Dom(BD) = U∗Dom(B̂) is a core for

(DD∗)1/2U = |D∗|U = D.

Finally, for u ∈ H1
0 (Ω) and v ∈ Dom(BD), straightforward computation shows that

〈u,BDv〉L2(Ω) = 〈Uu, B̂Uv〉L2(Ω)n = 〈QUu,BQUv〉L
= b[QUu,QUv] = 〈A1/2QUu,QHQ∗A1/2QUv〉L
= 〈Q∗A1/2QUu,HQ∗A1/2QUv〉L2(Ω)n .

With Q∗HQ = |D∗|, we get the representation

〈u,BDv〉L2(Ω) = 〈|D∗|Uu,H|D∗|Uv〉L2(Ω)n

= 〈Du,HDv〉L2(Ω)n .

This completes the proof of Theorem 8.2.2. �

The operator BD constructed above is indeed the limit of the operators Bε of Section
8.1 as we intended. We only restate this result explicitly in the following lemma.

Lemma 8.2.6 ([40, Corollary 5.8, Remark 5.9]). Let Ω ⊂ Rn be a bounded Lipschitz
domain and let Ω = Ω1 ∪ Ω2, Ω1 ∩Ω2 = ∅ be a non-trivial splitting of Ω. Furthermore,
let

hε(x) :=

{
(−1 + iε)I x ∈ Ω−

+I x ∈ Ω+
, h(x) :=

{
−I x ∈ Ω−

+I x ∈ Ω+
.

Denote by bε the sesquilinear form given by

bε[u, v] := 〈gradu, hε(x) grad v〉, u, v ∈ H1
0 (Ω)

and let Bε be the associated operator. Let H be the operator acting by multiplication
with h(x) and suppose that QHQ∗ is boundedly invertible. Then we have the operator
convergence

B−1
ε → B−1

D , ε→ 0.

A closer look at the proof of Theorem 8.2.2 leads to the following remark.

Remark 8.2.7. Investigations of the indefinite form given by

〈Du,HDv〉L2(Ω)n , u, v ∈ H1
0 (Ω)

can be simplified by the polar decomposition to investigations of the more accessible
indefinite form

b̃[ũ, ṽ] := 〈|D∗|ũ,H|D∗|ṽ〉L2(Ω)n ,

see the proof of Theorem 8.2.2.
The operator |D∗| ≥ 0 is self-adjoint and H is bounded and boundedly invertible by

assumption. Thus, the form b̃ can be viewed in the context of Chapter 1. However,
in general, the spectrum of A1/2 := |D∗| cannot be separated from zero and it is not
clear that a non-trivial involution J|D∗|2 commuting with |D∗|2 exists such that (1.1) is
satisfied.
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In this sense, it is not clear if Hypothesis 1.2.1 can be satisfied in this setting of
indefinite differential operators of second order.

For this reason, we used another approach here. Namely, since the spectrum of
|D∗| has zero as an isolated eigenvalue, splitting off the reducing subspace Ker |D∗| gives
a reduced sesquilinear form in the framework of [36] in the gap case. The mapping
properties of U (see Lemma 8.2.3) grant that no information is lost during this splitting.

8.3. The operator QHQ∗ in dimension n = 1

Recall that it is essential for Theorem 8.2.2 to have that the inverse of QHQ∗ is
bounded on the Hilbert space L. This property is investigated here.

The difficulty in the analysis of QHQ∗ lies in the non-localness of this operator.
Namely, H acts by pointwise multiplication with h(x) and is thus a local operator.
However, the operator Q does not act pointwise, see the one dimensional case below.

In dimension n = 1, we can give a complete description of the spectral proper-
ties of QHQ∗. In higher dimensions, we give sufficient criteria for the boundedness of
(QHQ∗)−1 in special cases.

Theorem 8.3.1 ([41]). Let n = 1, h ∈ L∞(Ω). Then

(a) the point spectrum σp(QHQ
∗) of QHQ∗ is given by the disjoint union

σp(QHQ
∗) = {λ ∈ R | |h−1({λ})| > 0}∪̇{λ ∈ R | (h(·)− λ)−1 ∈ L2

0(Ω)},

where | · | denotes the Lebesgue measure on R. Moreover, all eigenvalues in the
set
{
λ ∈ R | |h−1({λ})| > 0

}
are of infinite multiplicity and the eigenvalues in{

λ ∈ R | (h(·)− λ)−1 ∈ L2
0(Ω)

}
are simple;

(b) the essential spectrum σess(QHQ
∗) agrees with the essential spectrum of H.

This spectrum is the essential range of the function h : Ω→ R,

σess(QHQ
∗) = {λ ∈ R | |h−1(Bε(λ))| > 0 for all ε > 0},

where Bε(λ) is the open ball of radius ε around λ.
(c) λ is in the resolvent set of QHQ∗ if

∫
Ω

dx
h(x)−λ 6= 0 and |h(x)− λ| > δ for some

δ > 0 and almost all x ∈ Ω.

Proof. (a) Since L = RanD = L2
0(Ω), the partial isometry Q is explicitly

given by

Qf = f − 1

|Ω|

∫
Ω
f(x)dx, f ∈ L2(Ω).

The adjoint Q∗ is the imbedding RanD → L2(Ω).
Let λ ∈ R be an eigenvalue of QHQ∗ and let f ∈ L = L2

0(Ω) be a corre-
sponding eigenfunction. Then

h(x)f(x)− 1

|Ω|

∫
Ω
h(x)f(x)dx = λf(x) for almost all x ∈ Ω.

Since f has mean value zero by assumption, we can rewrite this equation as

(h(x)− λ)f(x) =
1

|Ω|

∫
Ω

(h(x)− λ)f(x)dx.

Thus, (h − λ)f has to be constant almost everywhere, so that we have the
following two cases.
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If |h−1({λ})| = 0, the eigenfunction f has to coincide with c
h−λ 6= 0 for

some constant c. This function then has to belong to the space L2
0(Ω). Thus,

the eigenspace is of dimension one.
Otherwise, if instead |h−1({λ})| > 0, we have that the function h(x) − λ

vanishes for all x ∈ h−1({λ}). Therefore f is an eigenfunction if it vanishes on
Ω \ h−1({λ}) and satisfies∫

h−1({λ})
f(x)dx = 0.

This yields that the eigenvalue λ is of infinite multiplicity.
(b) Let P be the orthogonal projector onto the one dimensional space of constant

functions in L2(Ω). Then P = I −Q∗Q and we have the representation

Q∗QHQ∗Q = H − PH −HP + PHP,

so that Q∗QHQ∗Q is a finite rank perturbation of the multiplication operator
H and σess(H) = σess(Q

∗QHQ∗Q). It remains to note that Q∗QHQ∗Q and
QHQ∗ are unitary equivalent.

(c) Let λ ∈ R be such that |h(x)− λ| > δ almost everywhere and∫
Ω

(h(x)− λ)−1dx 6= 0.

To show that λ belongs to the resolvent set of QHQ∗, let g ∈ L2
0(Ω) and consider

the equation

(QHQ∗ − λ)f = g, f ∈ L2
0(Ω).

As in part (a), this equation can be written as

(h(x)− λ)f(x)− g(x) =
1

|Ω|

∫
Ω

(
(h(x)− λ)f(x)− g(x)

)
dx,

so that (h(x) − λ)f(x) − g(x) is constant almost everywhere. By assumption
(h−λ)−1 is essentially bounded on Ω. As a consequence, the function f is given
by

f(x) :=
g(x)

h(x)− λ
+

c

h(x)− λ
for some constant c is square integrable. Since

∫
Ω

dx
h(x)−λ 6= 0, we can choose c

in such way that
∫

Ω f(x)dx = 0. Hence (QHQ∗ − λ) : L → L is surjective and
consequently we have λ ∈ ρ(QHQ∗). �

We now give a sharp estimate on the width of the spectral gap of the operator QHQ∗

around zero. Let h± denote the positive respectively negative part of h with

h±(x) := ±h(x) + |h(x)|
2

≥ 0.

Corollary 8.3.2 ([41]). Let n = 1 and Ω be a bounded interval. Furthermore, let
h, h−1 ∈ L∞(Ω). Then the operator QHQ∗ is invertible if and only if

∫
Ω h(x)−1dx 6= 0.

The inverse is bounded if and only if
∫

Ω h(x)−1dx 6= 0 and zero is not in the essential
range of h. In this case, α, the width of the spectral gap of QHQ∗ as in (8.5), satisfies
the lower bound α ≥ r, where

r := min

(
{ess inf h+, ess inf h−} ∪

{
λ ∈ R

∣∣∣∣ ∫
Ω

1

h(x)− λ
dx = 0

})
.

In this case, we have (−r, r) ⊂ ρ(QHQ∗).
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Proof. Note that for any λ ∈ (−ess inf h−, ess inf h+), the function x 7→ 1
h(x)−λ

belongs to L2(Ω). If
∫

Ω
1

h(x)−λdx 6= 0, then λ ∈ ρ(QHQ∗) by Theorem 8.3.1 part (c).

If there is a number λ0 ∈ (−ess inf h−, ess inf h+) such that
∫

Ω
1

h(x)−λ0dx = 0, then

λ0 is an eigenvalue by Theorem 8.3.1 part (a). By the assumption on h,
∫

Ω h(x)−1dx 6= 0,

we have that λ0 is not zero. Since the map λ 7→
∫

Ω
1

h(x)−λdx is strictly increasing on the

interval (−ess inf h−, ess inf h+), there exists at most one such λ0. �

The following examples show the sharpness of the estimate for the width of the
spectral gap of QHQ∗ around zero in Corollary 8.3.2.

Remark 8.3.3 ([41]). (a) Let Ω := (−1, 2) and let h(x) := sign(x) on Ω, then
the operator QHQ∗ has the infinitely degenerate eigenvalues −1, 1 and the
simple eigenvalue −1/3. To see this, note that∫

(−1,2)

1

sign(x) + 1
3

dx = 0.

In this case (−1, 1) \ {−1/3} is contained in the resolvent set and r = 1/3.
(b) Let Ω := (−4, 1) and let h be given by

h(x) := −1, x < 0, h(x) := 1 + x1/4, x ≥ 0,

then (h(x)− λ)−1 ∈ L2(Ω) for all λ ∈ (−1, 1]. Furthermore, the equation∫
Ω

(h(x)− λ)−1dx = 0

has no solution λ in the interval (−1, 1]. Hence, the only eigenvalue −1 of
QHQ∗ is of infinite multiplicity and r = 1.

In dimension n = 1, we have an explicit representation of the operator Q, namely

Qf = f − 1

|Ω|

∫
Ω
f(x)dx, f ∈ L2(Ω)n.

In dimension n ≥ 2, we do not know a comparable representation of the operator Q.
This makes the higher dimensional case more difficult to investigate.

8.4. The operator QHQ∗ in dimension n ≥ 2

In this section we give examples of higher dimension where QHQ∗ is boundedly
invertible.

Before we can turn to the first example, we need to collect some well known general
facts on Sobolev spaces, traces and boundary value problems.

Lemma 8.4.1. Let Σ ⊂ Rn, n ≥ 2, be a bounded domain with Lipschitz boundary.

(a) There is a bounded trace map γ : H1(Σ) → H1/2(∂Σ). The trace map has a
bounded right inverse.

(b) The inhomogeneous boundary value problem for f ∈ H−1(Σ)

−∆u = f, u|∂Σ = 0

has a unique solution u ∈ H1
0 (Σ). This solution satisfies the estimate

||u||H1(Σ) ≤ c||f ||H−1(Σ)

for some constant c independent of f .
(c) The divergence operator

div : L2(Σ)n → H−1(Σ)

is a bounded map.
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(d) The homogeneous boundary value problem for g ∈ H1/2(∂Σ)

(8.14) −∆u = 0, u|∂Σ = g

has a unique solution u ∈ H1
0 (Ω). This solution satisfies the estimate

||u||H1(Σ) ≤ c||g||H1/2(∂Σ)

for some constant c independent of g.

Proof. (a) This statement is shown in [27, Theorema 1.I]. A more modern
formulation of this statement is contained in [34, Theorem 1.5.1.3]

(b) This result is a combination of [42, Theorems 1.3 (a) and 1.1 (a)] in the case
of dimension n = 2 and n ≥ 3, respectively.

(c) For arbitrary f ∈ L2(Ω±)n and ϕ ∈ C∞0 (Ω±), we have in the distributional
sense

(div f)(ϕ) = −f(gradϕ) = −
∫

Ω±

〈f, gradϕ〉dx,

so that the Cauchy-Schwarz Inequality yields

|(div f)(ϕ)| ≤ ‖f‖L2(Ω±)n · ‖ϕ‖H1(Ω±) ,

which implies the desired continuity.
(d) For sake of completeness we reproduce the proof of this classical statement. Let

g ∈ H1/2(∂Σ) be arbitrary. By part (a), we can define

G := γ−1g ∈ H1(Σ) with ||G||H1(Σ) ≤ c||g||H1/2(∂Σ).

We now claim that ∆G ∈ H−1(Σ). To see this, note that the gradient
grad: H1(Σ) → L2(Σ)n is bounded and that by part (c) also the divergence
div : L2(Σ)n → H−1(Σ) is bounded. Consequently also ∆ = div grad is a
bounded map and the claim follows.

Consider now the boundary value problem

−∆v = ∆G, v|∂Σ = 0.

By part (b) this boundary value problem has a unique solution v that satisfies
||v||H1(Σ) ≤ c||∆G||H−1(Σ) together with the continuity of the trace, we have

||v||H1(Σ) ≤ c||g||H1/2(Σ).

As a consequence u := v + G solves the boundary value problem (8.14) and
satisfies the estimate ||u||H1(Σ) ≤ c||g||H1/2(Σ).

�

We now turn to the examples. For the first example, assume that Ω± ⊂ Ω ⊂ Rn,
Ω− ∩ Ω+ = ∅, Ω+ ∪ Ω− = Ω, are open bounded sets with Lipschitz boundaries such
that

Γ := ∂Ω+ ∩ ∂Ω− ∩ Ω,

the interior common boundary, respectively the interface between Ω+ and Ω−, consists
of a finite number of disjoint components Γi, i = 1, . . . , N . Furthermore, let

(8.15) h(x) =

{
h+I ifx ∈ Ω+,

−h−I ifx ∈ Ω−,
a± > 0.

Without loss of generality we additionally assume that ∂Ω∩∂Ω+, has a strictly positive
surface measure on ∂Ω. In this case each component Γi of Γ is a Lipschitz manifold
without boundary, either closed (if it is a boundary of a subdomain of Ω) or open (if
∂(∂Ω+ ∩ ∂Ω−) ⊆ ∂Ω).
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Ω+

Γ2

Ω+

Γ1

Ω−

Fig. 1. Domains with interior common boundary Γ

As preparation we collect the following facts on Sobolev spaces of fractional order
in this setting.

Let Σ be an arbitrary bounded Lipschitz domain in Rn, then we define the Sobolev

space H
1/2
00 (Σ) ≡ W̃ 1/2

2 (Σ) as the subspace of the fractional order Sobolev space H1/2(Σ)
such that the trivial continuation

ũ(x) :=

{
u(x), x ∈ Ω,

0, x ∈ Rn \ Ω

of each u ∈ H1/2
00 (Σ) lies in H1/2(Rn) (see, e.g., [34, Definition 1.3.2.5]). This subspace

is in general strictly smaller than H1/2(Σ).

Furthermore, we have that H1/2(Σ) = H
1/2
0 (Σ), the space of H1/2(Σ) functions with

vanishing trace, agrees with the closure of C∞0 (Σ) with respect to the H1/2-norm, see
[34, Theorem 1.4.2.4] and the discussion thereafter. By [34, Corollary 1.4.4.10] we have
the explicit representation

H
1/2
00 (Σ) =

{
u ∈ H1/2(Σ)

∣∣∣ u√
dist(·, ∂Σ)

∈ L2(Σ)

}
.

It is a Hilbert space with the norm

‖u‖2
H

1/2
00 (Σ)

:= ‖u‖2
H1/2(Σ)

+

∫
Σ

|u(x)|2

dist( · , ∂Σ)
dx.

The set C∞0 (Σ) is dense in H
1/2
00 (Σ) with respect to this norm, this is a direct combination

of [34, Definition 1.3.2.5, Lemma 1.3.2.6 and Theorem 1.4.2.2].

Note that the dual H
1/2
00 (Σ)′ is strictly bigger than H−1/2(Σ), more explicitly

H
1/2
00 (Σ)′ = {u1 + u2 |u1 ∈ H−1/2(Σ),

√
dist( · , ∂Σ)u2 ∈ L2(Σ)}.

We define the Hilbert space

H 1/2(Γ) :=
{
g : Γ→ C | g|Γi ∈ H1/2(Γi) if Γi is a closed manifold and

g|Γi ∈ H
1/2
00 (Γi) if Γi is an open manifold

}
with the norm

‖g‖2
H 1/2(Γ)

:=
∑

Γi closed

‖gi‖2H1/2(Γi)
+
∑

Γi open

‖gi‖2
H

1/2
00 (Γi)

.

The properties of the fractional order Sobolev spaces mentioned above immediately
imply the following results.
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Lemma 8.4.2 ([38]). The functions k± given by

(8.16) k±(x) =

{
0, x ∈ ∂Ω± \ Γ,

g(x), x ∈ Γ

are in H1/2(∂Ω±), respectively, if and only if g ∈H 1/2(Γ).

Denote by H1
0,∂Ω∩∂Ω±

(Ω±) the Sobolev subspace of H1(Ω±) consisting of functions

with vanishing boundary traces on the outer boundary ∂Ω ∩ ∂Ω±, respectively. Note
that ∂Ω ∩ ∂Ω± = ∂Ω± \ Γ.

Let γ± : H1(Ω±)→ H1/2(Γ) be the operator assigning each u± ∈ H1(Ω±) to its trace
on the interior common boundary Γ = ∂Ω+∩∂Ω−∩Ω. Observe that for any u ∈ H1

0 (Ω),
γ+u+ = γ−u− holds almost everywhere on Γ, where u± denotes the restriction of u onto
Ω±, u± = u|Ω± . Indeed, considering the operator

γ̃u := γ+u+ − γ−u−, γ̃ : H1
0 (Ω)→ H1/2(Γ),

we have γ̃u = 0 for all u ∈ C∞0 (Ω). The claim now follows from a standard density
argument.

Lemma 8.4.3. (i) The mappings γ± are continuous and surjective considered as maps

γ± : H1
0,∂Ω∩∂Ω±(Ω±)→H 1/2(Γ).

In particular, they have continuous right inverses γ−1
± .

(ii) The mappings

τ± : H1
0 (Ω)→H 1/2(Γ), τ±u := γ±

(
u
∣∣
Ω±

)
,

are continuous and surjective. In particular, for any g ∈ H 1/2(Γ) there exists an
u ∈ H1

0 (Ω) such that u|Ω± are harmonic and τ±u = g.

Proof. Claim (i) follows immediately from Lemma 8.4.2 since the usual boundary
trace operators on Ω± have a continuous right inverse, see Lemma 8.4.1, part (a).

To prove claim (ii) for arbitrary g ∈ H 1/2(Γ), we consider the boundary value
problems

∆u± = 0 in Ω±
with the boundary data

u±|∂Ω∩∂Ω±
= 0 and u±|Γ = g.

By Lemma 8.4.2 the boundary data on ∂Ω± are in H1/2(∂Ω±). Thus, the boundary
value problems have unique weak solutions u± ∈ H1

0,∂Ω∩∂Ω±
(Ω±). Now we consider the

function u on the whole of Ω given by

u(x) :=

{
u+(x), if x ∈ Ω+,

u−(x), if x ∈ Ω−.

Since γ+u+ = γ−u− = g by construction, it is straightforward to verify that u ∈ H1
0 (Ω)

with τ±u = g. This proves the surjectivity of the operators τ±. �

For every u ∈H 1/2(Γ) we define the Dirichlet-to-Neumann maps

Λ± : H 1/2(Γ)→H 1/2(Γ)

in the following way. Let g ∈ H 1/2(Γ) be given, then we denote by u± ∈ H1(Ω±) the
unique weak solutions to the Dirichlet boundary value problems

(8.17) ∆u± = 0 in Ω±
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with

(8.18) u±|∂Ω∩∂Ω±
= 0 and u±|Γ = g.

On the Hilbert space H 1/2(Γ) we consider the quadratic forms given by

q±[g] :=

∫
Ω±

| gradu±(x)|2dx.

From the continuity of the right inverse of the boundary trace operators γ± (Lemma
8.4.3) and the estimate ‖v±‖H1(Ω±) ≤ C‖∆γ−1

± g‖H−1(Ω±) on the norm of the weak
solution to the inhomogeneous boundary value problem

∆v± = −∆γ−1
± g, v± ∈ H1

0 (Ω±),

see Lemma 8.4.1 part (d), it follows that

‖u±‖H1(Ω±) ≤ C‖g‖H1/2(Γ) ≤ C‖g‖H 1/2(Γ),

which in turn implies that the forms q± are bounded. Hence, they uniquely define
self-adjoint bounded non-negative operators Λ± such that

q±[g] = 〈g,Λ±g〉H 1/2(Γ) for any g ∈H 1/2(Γ),

where 〈 · , · 〉H 1/2(Γ) denotes the inner product in H 1/2(Γ).

Due to the assumption |∂Ω ∩ ∂Ω+| > 0, the form q+ is coercive. Indeed, by a
version of the Poincaré Inequality ‖u+‖2 ≤ c1‖ gradu+‖2 in [69, Section 4.5] and by the
continuity of the boundary trace operator γ+,

‖g‖2
H 1/2(Γ)

≤ c2‖u+‖2H1(Ω+)

in Lemma 8.4.3, we have the estimate

‖g‖2
H 1/2(Γ)

≤ c2‖u+‖2H1(Ω+) = c2‖u+‖2L2(Ω+) + c2‖ gradu+‖2L2(Ω+)

≤ c2(c1 + 1)‖ gradu+‖2L2(Ω+) = c2(c1 + 1)q+[g].

Hence, the operator itself Λ+ is boundedly invertible.
For further analysis of the operator, we introduce the canonical isometric isomor-

phism between H 1/2(Γ) and its dual H 1/2(Γ)
′
.

Definition 8.4.4. Let J : H 1/2(Γ)→H 1/2(Γ)
′

be the canonical isometric isomor-
phism, that is, the linear mapping with the property that

〈f, g〉H 1/2(Γ) = (Jg) (f)

holds for all f, g ∈H 1/2(Γ). In particular,

〈g,Λ±g〉H 1/2(Γ) = (JΛ±g) (g).

Based on this isometry and the quadratic forms q±, we can interpret Λ± as a
Dirichlet-to-Neumann map.

Remark 8.4.5. Since the solutions u± ∈ H1(Ω) of (8.17),(8.18) above are harmonic
in Ω±, we have that gradu± ∈ E2(Ω±), the natural domain of div . In the sense of
distributions, the Gauß-Green formula (in the version of [61, Lemma II.1.2.3]) yields

(JΛ±g) (g) =

∫
Ω±

| gradu±(x)|2dx = (∂νu±) (k±),
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where ∂νu± ∈ H−1/2(∂Ω±) is the derivative of u± in the direction of the unit normal ν
pointing out of Ω± and k± are defined by (8.16). Since k± are supported on the interior
common boundary Γ, we have

(JΛ±g) (g) = (∂νu±|Γ) (k±)

for any g ∈ H 1/2(Γ). The restriction ∂νu±|Γ is in H 1/2(Γ)′ by [34, Proposition
1.4.2.3]. Thus, the operator JΛ± indeed maps the Dirichlet data g to the Neumann
values ∂νu± on Γ.

We generalise the remark above on the quadratic forms q± to the corresponding
sesquilinear forms.

Remark 8.4.6. For any f, g ∈H 1/2(Γ) we use polarisation to obtain that

〈f,Λ±g〉H 1/2(Γ) =

∫
Ω±

〈gradu±(x), gradw±(x)〉Cndx,

where u± are the unique weak solutions of the boundary value problems (8.17), (8.18)
and w± those of ∆w± = 0 in Ω± with the boundary conditions

w±|∂Ω∩∂Ω±
= 0 and w±|Γ = f.

From Remark 8.4.5 it follows that

(JΛ±g) (f) = (∂νu±|Γ) (f)

for any f ∈H 1/2(Γ).

Lemma 8.4.7. Let u± ∈ H1(Ω±) be the unique weak solution of the boundary value
problem (8.17), (8.18). Then

(8.19)

∫
Ω±

〈grad v(x), gradu±(x)〉Cndx = 〈τ±v,Λ±g〉H 1/2(Γ)

holds for all v ∈ H1
0 (Ω).

Proof. Since gradu± ∈ E2(Ω±), by the Gauß-Green formula (in the version of [61,
Lemma II.1.2.3]) and Remark 8.4.6, we obtain∫

Ω±

〈grad v(x), gradu±(x)〉Cndx = (∂νu±)
(
v|∂Ω±

)
= (∂νu±|Γ) (τ±v)

= (JΛ±g)(τ±v) = 〈τ±v,Λ±g〉H 1/2(Γ),

where v|∂Ω± denote the boundary traces of v|Ω± on the whole boundary ∂Ω±.
�

We now introduce the operator Λ−1
+ Λ− : H 1/2(Γ)→H 1/2(Γ). Recall that Λ+ has

a bounded inverse by the assumption |∂Ω ∩ ∂Ω+| > 0. Since

Λ−1
+ Λ− = Λ

−1/2
+

(
Λ
−1/2
+ Λ−Λ

−1/2
+

)
Λ

1/2
+ ,

the operator Λ−1
+ Λ− is similar to a self-adjoint non-negative operator. Hence, the spec-

trum of the operator Λ−1
+ Λ− is real and non-negative.

Note that the spectral analysis of the operator Λ−1
+ Λ− defined by Dirichlet-to-

Neumann maps can be regarded as a weak form of the following problem: Find the
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values of the parameter µ for which the system

∆u± = 0 in Ω±,

u− = u+ on ∂Ω− ∩ ∂Ω+,

µ∂νu− + ∂νu+ = 0,

u±|∂Ω∩∂Ω±
= 0

has non-trivial solutions u±, see [33] for this interpretation.
We now obtain a characterisation of the spectrum of QHQ∗ in terms of the operator

Λ−1
+ Λ−.

Theorem 8.4.8 ([38]). The spectrum of the operator QHQ∗ equals

{h+} ∪ {−h−} ∪
{
h+ − µh−

1 + µ

∣∣∣µ ∈ σ(Λ−1
+ Λ−), µ 6= 0

}
.

Furthermore, the points ±h± are eigenvalues of infinite multiplicity, the eigenvalues λ

of the operator QHQ∗ and µ = h+−λ
h−+λ of the operator Λ−1

+ Λ− have the same multiplicity.

In particular, the operator QHQ∗ is boundedly invertible if and only if h+/h− is in the
resolvent set of the operator Λ−1

+ Λ−. In this case, we have

(8.20)
∥∥(QHQ∗)−1

∥∥ = max
µ∈σ(Λ−1

+ Λ−)

1 + µ

|h+ − µh−|
.

Proof. Observe that QHQ∗ − λ = Q(H − λ)Q∗, for all λ ∈ R.
The equation Q(H − λ)Q∗ gradϕ = 0 holds for some ϕ ∈ H1

0 (Ω) if and only if

〈gradψ, (H − λ) gradϕ〉L2(Ω) = 0

for all ψ ∈ H1
0 (Ω). Equivalently, we have that

(8.21) (h+ − λ)

∫
Ω+

gradψ(x) gradϕ(x)dx− (h− + λ)

∫
Ω−

gradψ(x) gradϕ(x)dx = 0

for any ψ ∈ H1
0 (Ω).

Considering λ = h+, we have that∫
Ω−

gradψ(x) gradϕ(x)dx = 0

for any ψ ∈ H1
0 (Ω). This implies that ϕ = 0 almost everywhere in Ω−, so that we

have ϕ|Ω+ ∈ H1
0 (Ω+). Hence, h+ is an eigenvalue of the operator QHQ∗ of infinite

multiplicity. Similarly, we conclude that −h− is an eigenvalue of the operator QHQ∗ of
infinite multiplicity.

Assume now that λ 6= ±h± is in the spectrum of the operator QMAQ
∗.

Then, according to the Weyl criterion [54, Theorem VII.12], there is a sequence
(ϕj)j∈N in H1

0 (Ω) such that ‖ gradϕj‖L2(Ω)n = 1 and

(8.22) lim
j→∞

‖Q(H − λ)Q∗ gradϕj‖L2(Ω) = 0.

By the Poincaré Inequality, the limit (8.22) is equivalent to the convergence

〈gradψ, (H − λ) gradϕj〉L2(Ω)

= (h+ − λ)

∫
Ω+

gradψ(x) gradϕj(x)dx− (h− + λ)

∫
Ω−

gradψ(x) gradϕj(x)dx

−−−→
j→∞

0 uniformly in ψ ∈ H1
0 (Ω).

(8.23)
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We define
grad ρj := Q(H − λ)Q∗ gradϕj with ρj ∈ H1

0 (Ω).

Introducing gj := τ±ϕj , we obtain from (8.23) that for any ψ ∈ H1
0 (Ω±)

(h± ∓ λ)〈gradψ, gradϕj〉L2(Ω)n = 〈gradψ, grad ρj〉L2(Ω)n .

Thus, the functions ϕ±j := ϕj |Ω± ∈ H
1
0,∂Ω±\Γ(Ω±) are the unique weak solutions of the

boundary value problem

(8.24) ∆ϕ±j =
∆ρ±j
h±∓λ

∈ H−1(Ω±) in Ω±,

where ρ±j = ρj |Ω± , with

(8.25) ϕ±j

∣∣∣
∂Ω±\Γ

= 0 and ϕ±j

∣∣∣
Γ

= gj .

Let ϕ̃±j ∈ H1
0,∂Ω±\Γ(Ω±) be the unique weak solutions of the boundary value problem

∆ϕ̃±j = 0 in Ω±,

with the boundary values

ϕ̃±j

∣∣∣
∂Ω±\Γ

= 0 and ϕ̃±j

∣∣∣
Γ

= gj .

Then, the difference ϕj − ϕ̃j ∈ H1
0 (Ω±) is the unique weak solution of the boundary

value problem

∆(ϕ±j − ϕ̃
±
j ) =

∆ρ±j
a± ∓ λ

in Ω±

with the homogeneous Dirichlet boundary conditions on ∂Ω±. Hence, this difference
satisfies the estimate

‖ gradϕ±j − grad ϕ̃±j ‖L2(Ω±) ≤ ‖ϕ±j − ϕ̃
±
j ‖H1(Ω±) ≤ c‖∆ρ±j ‖H−1(Ω±)

≤ c‖ grad ρ±j ‖L2(Ω±) → 0, j →∞,
(8.26)

where the last inequality follows from the continuity of the divergence operator

div : L2(Ω±)n → H−1(Ω±),

in Lemma 8.4.1.
Combining this continuity with (8.23), we arrive at the conclusion that

(h+ − λ)

∫
Ω+

gradψ(x) grad ϕ̃j(x)dx− (h− + λ)

∫
Ω−

gradψ(x) grad ϕ̃j(x)dx −−−→
j→∞

0

uniformly in ψ ∈ H1
0 (Ω). Since ϕ̃j is harmonic in both Ω+ and Ω−, by Lemma 8.4.7 we

obtain that

(8.27) (h+ − λ)〈τ+ψ,Λ+gj〉H 1/2(Γ) − (h− + λ)〈τ−ψ,Λ−gj〉H 1/2(Γ) −−−→j→∞
0

uniformly in ψ ∈ H1
0 (Ω±). By the surjectivity in Lemma 8.4.3, we have that

(8.28) (h+ − λ)〈f,Λ+gj〉H 1/2(Γ) − (h− + λ)〈f,Λ−gj〉H 1/2(Γ) −−−→j→∞
0

uniformly in f ∈H 1/2(Γ). Therefore,

(8.29) ‖(h+ − λ)Λ+gj − (h− + λ)Λ−gj‖H 1/2(Γ) → 0, j →∞.

By the continuity in Lemma 8.4.3, we have that ‖gj‖H 1/2(Γ) ≤ c‖ϕj‖H1(Ω).

We now claim that

‖gj‖H 1/2(Γ) ≥ c
′‖ϕj‖H1(Ω) ≥ c′‖ gradϕj‖L2(Ω)n = c′
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for some constant c′ > 0 independent of j. Indeed, assume that there is a subsequence
(gjk)k∈N converging to zero. Then ϕ±jk , defined as solutions of the boundary value

problems (8.24), (8.25) satisfy the estimates

‖ϕ±jk‖H1(Ω) ≤ c
(
‖∆ρ±jk‖H−1(Ω) + ‖gjk‖H 1/2(Γ)

)
.

By (8.26), the right-hand side converges to zero, which contradicts the assumption
‖ gradϕjk‖L2(Ω) = 1 with

ϕjk(x) :=

{
ϕ+
jk

(x), x ∈ Ω+,

ϕ−jk(x), x ∈ Ω−.

The Weyl criterion applied to (8.29) then implies that µ = h+−λ
h−+λ is in the spectrum of

the operator Λ−1
+ Λ−.

Conversely, assume that µ is in the spectrum of the operator Λ−1
+ Λ−. Again by the

Weyl criterion there is a sequence gj ∈H 1/2(Γ) with ‖gj‖H 1/2(Γ) = 1, such that (8.28)

holds uniformly in h ∈H 1/2(Γ). By Lemma 8.4.3 we obtain that (8.27) holds uniformly
in ψ ∈ H1

0 (Ω). Let now ϕj ∈ H1
0 (Ω) be the sequence constructed from gj as in the proof

of Lemma 8.4.3 (ii), that is,

ϕj(x) =

{
ϕ+
j (x), x ∈ Ω+,

ϕ−j (x), x ∈ Ω−,

where ϕ±j are the unique weak solutions of the boundary value problems ∆ϕ±j = 0 in

Ω± with boundary values ϕ±j

∣∣∣
∂Ω∩∂Ω±

= 0 and ϕ±j

∣∣∣
Γ

= gj .

Hence, (8.23) holds uniformly in ψ ∈ H1
0 (Ω), which implies (8.22).

Thus, λ with µ = (h+ − λ)/(h− + λ) is in the spectrum of the operator QHQ∗.
From the considerations above, it follows that λ ∈ R is an eigenvalue of QHQ∗ of

multiplicity 1 ≤ m ≤ ∞ if and only if µ = (h+ − λ)/(h− + λ) is an eigenvalue of the
operator Λ−1

+ Λ− of the same multiplicity.
Observe that

‖ (QHQ∗)−1 ‖ =
1

|λ0|
,

where λ0 is the point of the spectrum of QHQ∗ with the smallest absolute value,

|λ0| = min
λ∈σ(QMAQ∗)

|λ|.

Since λ ∈ σ(QHQ∗) if and only if it has the representation λ = h+−µh−
1+µ for some

µ ∈ σ(Λ−1
+ Λ−), we arrive at the representation (8.20). �

We can apply the Theorem above to the special case of a symmetric splitting.

Corollary 8.4.9 ([38]). Let Ω ⊂ Rn be a Lipschitz domain symmetric with respect
to the hyperplane x1 = 0, that is,

x = (x1, x2, . . . , xn) ∈ Ω if and only if (−x1, x2, . . . , xn) ∈ Ω.

Assume furthermore that

Ω+ = {x ∈ Ω | x1 > 0} and Ω− = {x ∈ Ω | x1 < 0}.
Then the operator QHQ∗ is boundedly invertible if and only if h− 6= h+. The norm of
its inverse is 2/|h+ − h−|.

In the case h− = h+ zero is an eigenvalue of QHQ∗ of infinite multiplicity.
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Proof. Due to the symmetry we have Λ+ = Λ−, so that Λ−1
+ Λ− = I. Therefore,

the resolvent set of Λ−1
+ Λ− is C\{1}. As a consequence, the spectrum of QHQ∗ consists

of three eigenvalues h+, (h+ − h−)/2, −h−, each of infinite multiplicity. �

Note that the corollary above is a generalisation of [7, Remark 3.2] by Bonnet-Ben
Dhia, Chesnel, and Ciarlet to dimensions n ≥ 2. The following observation connects
this work with [7].

Lemma 8.4.10 (cf. [41]). Let Ω ⊂ Rn be a bounded domain and let h, h−1 ∈ L∞(Ω).
Then the operator QHQ∗ is boundedly invertible if and only if the self-adjoint oper-

ator S : H1
0 (Ω)→ H1

0 (Ω) defined by the sesquilinear form

(8.30) s[ϕ,ψ] := 〈gradϕ, h( · ) gradψ〉L2(Ω), ϕ, ψ ∈ H1
0 (Ω)

is boundedly invertible.

Proof. We endow the Hilbert space H1
0 (Ω) with the inner product

〈ϕ,ψ〉H1
0 (Ω) := 〈gradϕ, gradψ〉L2(Ω),

which, by the Poincaré Inequality, is equivalent to the standard inner product in H1(Ω).
The sesquilinear form s is bounded. Hence, by the First Representation Theorem there
exists a bounded operator S : H1

0 (Ω) → H1
0 (Ω) associated with this form. Recall that

the operator grad : H1
0 (Ω) → L2(Ω) is an isometrical isomorphism of Hilbert spaces.

Since

〈ϕ, Fψ〉H1
0 (Ω) = 〈gradϕ, grad(Fψ)〉L2(Ω)

for any bounded operator F onH1
0 (Ω), we obtain S = grad−1QHQ∗ grad by comparison.

The claimed equivalence now follows directly since grad is an isomorphism. �

Since the Dirichlet Laplacian −∆D is an isomorphism between H1
0 (Ω) and H−1(Ω),

the dual of H1
0 (Ω), we immediately arrive at the following conclusion.

Corollary 8.4.11 ([41]). The operator QHQ∗ is boundedly invertible if and only
if the operator

divQHQ∗ grad : H1
0 (Ω)→ H−1(Ω)

is an isomorphism.

In [7] the notion of T -coercivity was introduced. In this sense, a form b is T -coercive
if the form given by b[x, Ty] is coercive. Using the concept of T -coercivity, a number of
domains and coefficient functions h have been presented in [7], for which the operator

divQHQ∗ grad: H1
0 (Ω)→ H−1(Ω)

is an isomorphism and thusQHQ∗ is boundedly invertible. We present only the following
statement of that paper to give an additional example, where QHQ∗ is boundedly
invertible.

Proposition 8.4.12 ([7, Theorem 3.3]). Let Ω ⊂ R2 be a disc of radius R > 0 and
let θ0 ∈ (0, 2π). Set

Ω+ := {(r cos θ, r sin θ) | 0 < r < R, 0 < θ < θ0},
Ω− := {(r cos θ, r sin θ) | 0 < r < R, θ0 < θ < 2π}.

Furthermore, let

h(x) :=

{
h+(x)I2, x ∈ Ω+,

−h−(x)I2, x ∈ Ω−,
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with h±(x) ≥ c > 0, i = 1, 2 almost everywhere. Then QHQ∗ is boundedly invertible
whenever

max

{
ess infx∈Ω+ h+(x)

ess supx∈Ω− h−(x)
,

ess infx∈Ω− h−(x)

ess supx∈Ω+
h+(x)

}
> max

{
2π − θ0

θ0
,

θ0

2π − θ0

}
.

8.5. Left-indefinite Sturm Liouville operators

Let n = 1 and Ω ⊂ R be a bounded open interval, then we can combine Theorem
8.2.2 and Corollary 8.3.2 to get the following statements on the (in general) indefinite
Sturm-Liouville operator BD.

Corollary 8.5.1 ([41]). Let h ∈ L∞(Ω) be a real valued function with

h−1 ∈ L2(Ω),

∫
Ω
h(x)−1dx 6= 0

and let H be the operator on L2(Ω) acting by multiplication with the function h. Then

(a) there exists a unique self-adjoint operator BD with Dom(BD) ⊆ H1
0 (Ω) such

that

〈u,BDv〉L2(Ω)2 = 〈u′, Hu′〉L2(Ω), u ∈ H1
0 (Ω), v ∈ Dom(BD),

where the domain of BD is given by Dom(BD) = {u ∈ H1
0 (Ω) | hu′ ∈ H1(Ω)}

and

(BDu)(x) =
d

dx

(
h(x)

d

dx
u(x)

)
= (hu′)′(x);

(b) the operator BD is semibounded if and only if h is sign-definite almost every-
where;

(c) the inverse B−1
D is compact and the spectrum of BD is purely discrete.

We have a closer look at the special case of h(x) := sign(x), which is exemplary for
the setting of left-indefinite Sturm-Liouville operators.

Lemma 8.5.2. Let Ω := (−a, b) be a bounded interval, where a 6= b are positive
constants and let h(x) := sign(x). Then the natural domain of BD is

M := {f ∈ C0(Ω)|f ′ ∈ L2(Ω), sign( · )f ′ ∈ C(Ω),
(

sign( · )f ′
)′ ∈ L2(Ω)},

where C0(Ω) is the set of functions which are continuous up to the boundary with Dirich-
let boundary values, and f ′ denotes the weak derivative of the function f .

Proof. By the assumption a 6= b, we have
∫

Ω
1

h(x)dx 6= 0, so that Corollary 8.5.1

can be applied. Here, sign( · )f ′ is continuous if and only if f ′ is continuous on (−a, 0)
and on (0, b) and the jump-condition on the derivative in zero, f ′(0−) = −f ′(0+), is
satisfied. Let f ∈ Dom(BD), then

f ∈ Dom(D) = H1
0 (Ω) and h( · )f ′ ∈ Dom(D∗) = H1(Ω).

By the Sobolev Imbedding Theorem, [2, Theorem 6.3], we get

f ∈ C0(Ω), f ′ ∈ L2(Ω) and sign( · )f ′ ∈ C(Ω), (sign( · )f ′)′ ∈ L2(Ω),

thus f ∈M . Conversely, let f ∈M , then

f ∈ C0(Ω), f ′ ∈ L2(Ω) and h( · )f ′ ∈ C(Ω), (h( · )f ′)′ ∈ L2(Ω),

thus f ∈ H1
0 (Ω), h( · )f ′ ∈ H1(Ω) and, consequently, f ∈ Dom(BD). �

We now construct the eigenvalues and eigenfunctions for the left-indefinite Sturm-
Liouville operator for h = sign.
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Lemma 8.5.3. Let Ω := (−a, b) and h(x) := sign(x), then positive eigenvalues λ
of the left-indefinite Sturm-Liouville operator D∗h( · )D are solutions of the implicit
equation

cosh(
√
λb) sin(

√
λa)− cos(

√
λa) sinh(

√
λb) = 0.

and satisfy the asymptotics λ
(+)
j ∼ π2(j+1/4)2

a2
for j → ∞. The negative eigenvalues

satisfy

cos(
√
|λ|b) sinh(

√
|λ|a)− cosh(

√
|λ|a) sin(

√
|λ|b) = 0

and the asymptotics λ
(−)
j ∼ −π2(j+1/4)2

d2
for j →∞.

Proof. To compute the eigenfunctions and eigenvalues, we make the ansatz

f := f1χ(−a,0) + f2χ[0,b).

If λ > 0, we choose

f1(x) = c1 cos(
√
λx) + c2 sin(

√
λx), f2(x) = c1 cosh(

√
λx)− c2 sinh(

√
λx)

for constants c1, c2. Then f automatically satisfies the continuity and the jump condition
of its derivative in 0. In order that f is non-trivial and satisfies the boundary conditions

at a and b, the determinant of

(
cos(
√
λa) − sin(

√
λa)

cosh(
√
λb) − sinh(

√
λb)

)
has to be zero. Thus λ has

to be a solution of the equation

cosh(
√
λb) sin(

√
λa)− cos(

√
λa) sinh(

√
λb) = 0.

If cos(
√
λa) is not zero, this yields tan(

√
λa) = tanh(

√
λb). By the asymptotics

lim
λ→∞

tanh(
√
λb) = 1,

it follows that

λ
(+)
j ∼ π2(j + 1/4)2

a2
for j →∞.

Negative eigenvalues λ can be computed in the same way making the ansatz

f1(x) = c1 cosh(
√
|λ|x) + c2 sinh(

√
|λ|x), f2(x) = c1 cos(

√
|λ|x)− c2 sin(

√
|λ|x)

for constants c1, c2, where λ is a solution of the equation

cos(
√
|λ|b) sinh(

√
|λ|a)− cosh(

√
|λ|a) sin(

√
|λ|b) = 0.

In this case, we obtain that

λ
(−)
j ∼ −π

2(j + 1/4)2

b2
for j →∞. �

In this case, the lemma above shows that for h = sign, the modulus of the positive
respectively negative eigenvalues of the indefinite operator d

dxh(x) d
dx on (−a, b) satisfies

the well known Weyl asymptotics of the eigenvalues for the Dirichlet Laplacian ∆D on
the domain (−a, 0) respectively (0, b), see the survey article [5].

Note that in dimension n = 1 the Weyl asymptotics for the left-indefinite Sturm-
Liouville problem is already contained e.g. in [6]. However, there seems to be no direct
generalisation of the technique used there to higher dimensional cases.

Based on the construction here, this asymptotic can be carried over to other functions
h and to certain special cases in higher dimensions. These results are contained in the
Ph. D. thesis of A. Hussein [40] and also appear in the joint work [41].



122 8. THE INDEFINITE OPERATOR div h(·) grad IN THE DIRICHLET CASE

8.6. The Second Representation Theorem

In this section, we briefly investigate the Second Representation Theorem for the
sesquilinear form

bD[u, v] = 〈Du,HDv〉L2(Ω)n , Dom[b] = H1
0 (Ω).

This form satisfies the Second Representation Theorem if the auxiliary form

b[u, v] := 〈A1/2u,QHQ∗A1/2v〉RanD, Dom[b] = Dom(A1/2) = Dom(D∗) ∩ RanD

as in (8.9) does.

Theorem 8.6.1. Assume that the domain stability condition

Dom[b] = Dom(|B|1/2) = Dom(D∗) ∩ Ran(D)

holds, then also

Dom[bD] = Dom(D) = H1
0 (Ω) = Dom(|BD|1/2)

is satisfied. In this case, we have

(8.31) bD[u, v] = 〈Du,HDv〉L2(Ω)n = 〈|BD|1/2u, sign(BD)|BD|1/2v〉L2(Ω)

for u, v ∈ Dom(|BD|1/2).

Proof. Note that since UU∗ : L2(Ω)n → L2(Ω)n is the orthogonal projector onto
RanD (see [20, Section IV.3]), we have QUU∗Q∗ = IL, where IL is the identity on
RanD. Furthermore, the operator identities

|BD|1/2 = U∗Q∗|B|1/2QU

and

sign(BD) = U∗Q∗ sign(B)QU

hold. To see these identities, recall that we have the representation

BD = U∗Q∗BQU

and Dom(B) ⊆ Dom(D∗) ∩ RanD ⊂ RanD as well as RanB ⊆ RanD by the con-
struction of BD in the proof of Theorem 8.2.2. Furthermore, Dom(BD) ⊆ Dom(D)
and QU |Dom(D) is isometric. In this case the spectral families of B and BD satisfy the

identity

U∗QEB(λ)QU = EBD
(λ)

from which the identities for the sign and the square root follow by functional calculus.
It can now be seen from

|BD|1/2 = U∗Q∗|B|1/2QU,

where

Dom(|B|1/2) = Dom(A1/2) = Dom(D∗) ∩ RanD = U Dom(D),

that Dom(|BD|1/2) = Dom(D).
Based on these operator identities, (8.31) follows by direct computation
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〈|BD|1/2u, sign(BD)|BD|1/2v〉L2(Ω)

= 〈U∗Q∗|B|1/2QUu,U∗Q∗ sign(B)QUU∗Q∗|B|1/2QUv〉L2(Ω)

= 〈QUU∗Q∗|B|1/2QUu, sign(B)QUU∗Q∗|B|1/2QUv〉RanD

= 〈|B|1/2QUu, sign(B)|B|1/2PUv〉RanD

= b[QUp,QUq] = 〈A1/2QUu,QHQ∗A1/2QUv〉RanD

= 〈|D∗|Uu,H|D∗|Uu〉L2(Ω)n

= 〈Du,HDv〉L2(Ω)n

�

The difficulty in the application of Theorem 8.6.1 lies in showing the domain stability
condition for the auxiliary form b.

In applications, the sufficient criteria introduced in Lemma 2.2.5 will in general not
be satisfied, as e.g. in the one dimensional case of Ω := (−1, 2) and h(x) := sign(x). In
this case, the operator B is non-semibounded, QHQ∗ is not sign-definite, and QHQ∗

does not map Dom(D∗) ∩ Ran(D) into itself.
It is not clear whether one (and thus all) of the equivalent conditions in Theorem

2.2.4 can be satisfied in the setting of div h( · ) grad considered here.





CHAPTER 9

The indefinite operator div h(·) grad in the Neumann case

9.1. The general case

In this chapter, we modify considerations of Chapter 8 (respectively [41]) from the
case of Dirichlet boundary values to Neumann boundary values.

The following well known definitions and results can be taken from the proof of [61,
Lemma II.2.4.1] for n ≥ 2 and, modified accordingly, also hold in the case of n = 1.

Definition 9.1.1. Let Ω ⊂ Rn be a bounded Lipschitz domain or a bounded interval
for n = 1 and let L2

0(Ω) be the space of L2(Ω) functions f with mean value zero, that is,∫
Ω fdx = 0.

Let DN denote the closed operator DN = grad on the domain

Dom(DN ) = {u ∈ L2
0(Ω) | gradu ∈ L2(Ω)n} ⊂ H1(Ω)n.

Then the adjoint D∗N of DN is given by −div on

(9.1) Dom(D∗N ) = {v ∈ L2(Ω)n | div v ∈ L2(Ω), ν.v|∂Ω = 0},
where ν.v is the scalar product of the outer normal ν and v in Rn. In dimension n = 1,
ν.v|∂Ω = 0 can be substituted by v|∂Ω = 0. The domain of D∗N is dense in

E2(Ω) := {v ∈ L2(Ω)n | div v ∈ L2(Ω)}
since C∞0 (Ω) is contained. The kernel of D∗N is denoted as

KerD∗N = L2
σ(Ω) := {v ∈ L2(Ω)n | div v = 0, ν.v|∂Ω = 0},

the kernel of DN is trivial. In a similar way to Lemma 8.2.1, the range of DN is closed
in L2(Ω)n by the Poincaré Inequality.

From [17, Proposition IX.1.1], we get the orthogonal decomposition

L2(Ω)n = RanDN ⊕ L2
σ(Ω).

We have the polar decomposition

(9.2) DN = U |DN | = |D∗N |, D∗N = U∗|D∗N | = |DN |U∗,

where U is the partial isometry with initial space L2
0(Ω) = (KerDN )⊥ and final space

RanDN ⊂ L2(Ω)n.
We define the grad–div operator and the Neumann Laplacian on their natural do-

mains as follows.

Definition 9.1.2. Let DND
∗
N be the operator with DNDNv = − grad div v with

Ker(DND
∗
N ) = Ker(D∗N )

on

Dom(DND
∗
N ) = {v ∈ Dom(D∗N ) | D∗Nv ∈ Dom(DN )}

= {v ∈ L2(Ω)n | div v ∈ L2(Ω), ν.v|∂Ω = 0, div v ∈ Dom(DN )}
= {v ∈ L2(Ω)n | ν.v|∂Ω = 0, div v ∈ L2

0(Ω), grad div v ∈ L2(Ω)n}.
125
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The adjoint of this operator is the Neumann Laplacian −∆N with

−∆Nu = D∗NDNu

and

Dom(−∆N ) = Dom(D∗NDN ) = {u ∈ Dom(DN ) | gradu ∈ Dom(D∗N )}
= {u ∈ L2

0(Ω) | gradu ∈ L2(Ω)n, div gradu ∈ L2(Ω), ν. gradu|∂Ω = 0}
= {u ∈ L2

0(Ω) | gradu ∈ L2(Ω)n, ∆u ∈ L2(Ω), ν. gradu|∂Ω = 0}

Remark 9.1.3. The same argumentation as in the preceding chapter shows that

(a) the partial isometry U maps Dom(DN ) onto Dom(D∗N ) ∩ RanDN ;
(b) the decomposition L2(Ω)n = RanDN ⊕Ker(D∗N ) reduces the grad–div operator

DND
∗
N ;

(c) the spectra σ(DND
∗
N ) \ {0} and σ(−∆N ) agree, and for all λ > 0, the spaces

Ker(DND
∗
N − λ) and Ker(D∗NDN − λ) have the same dimension.

In the same way as in the preceding chapter, we consider the reduction of DND
∗
N

on its reducing subspace.

Lemma 9.1.4. The operator

A := DND
∗
N |(KerD∗N )⊥

is self-adjoint and unitary equivalent to −∆N . If Ω has a smooth boundary, A has a
compact resolvent.

Proof. Since (KerD∗N )⊥ = RanDN is a reducing subspace for DND
∗
N , the operator

A is self-adjoint. The domain is given by

Dom(A) = Ran(DN ) ∩Dom(DND
∗
N )

= {v ∈ L2(Ω)n | v = gradu, u ∈ L2
0(Ω), ν. gradu|∂Ω = 0, ∆u ∈ L2

0(Ω) ∩H1(Ω)n}.

We have that the ranges of A and DN agree since RanD∗N = L2
0(Ω). This identity

follows since the equation div v = f has a solution v ∈ H1
0 (Ω)n ⊂ Dom(D∗N ) for any

f ∈ L2
0(Ω), see [61, Lemma II.2.1.1].

By the polar decomposition, we see that A is unitary equivalent to −∆N . Thus,∥∥A−1
∥∥ ≤ µ−1

0 , where µ0 is the smallest Neumann eigenvalue. If Ω has a smooth bound-
ary, −∆N has a compact resolvent by [18, Theorem 7.2.2] and thus also A has a compact
resolvent. �

We introduce the following analogon to the operator Q.

Definition 9.1.5. Let R : L2(Ω)n → RanDN be the map given by

Ru =

{
u, u ∈ RanDN

0, u ∈ RanD⊥N

By the closedness of the subspace RanDN , we can consider this space again as a Hilbert
space which we denote by M.

In a similar way to the Dirichlet case of Theorem 8.2.2, we obtain the following
result in the Neumann case.

Theorem 9.1.6. Let Ω ⊂ Rn, be a bounded Lipschitz domain for n ≥ 2 or a bounded
open interval for n = 1. Let h ∈ L∞(Ω;C)n×n and let H be the operator that acts by
multiplication with h( · ) such that

(a) h(x) is Hermitian for almost all x ∈ Ω,
(b) the operator RHR∗ : RanDN → RanDN is boundedly invertible.
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Then

(i) there exists a unique self-adjoint operator BN with Dom(BN ) ⊂ (H1(Ω)∩L2
0(Ω))

such that

〈v,BNu〉L2(Ω) = 〈grad v,H gradu〉L2(Ω)n

holds for all v ∈ (H1(Ω) ∩ L2
0(Ω)) and all u ∈ Dom(BN ), where the domain is

given by

Dom(BN ) = {u ∈ (H1(Ω) ∩ L2
0(Ω)) |HDNu ∈ Dom(D∗N )}

with Dom(D∗N ) as in (9.1). For any u ∈ Dom(BN ) and almost all x ∈ Ω, one
has

(BNu)(x) = div h(x) gradu(x),

the domain Dom(BN ) is a core for the gradient operator DN ;
(ii) the operator BN is semibounded if and only if RHR∗ is sign-definite;
(iii) the open interval (−αµ0, αµ0) with

(9.3) α := ‖(RHR∗)−1‖−1

and µ0 > 0 the smallest eigenvalue of the Neumann Laplacian −∆N in L2
0(Ω),

belongs to the resolvent set of BN . In particular, BN is boundedly invertible
with ‖B−1

N ‖ ≤
1
αµ0

;

(iv) the inverse B−1
N is compact if Ω has a smooth boundary. In particular, the

spectrum of BN is purely discrete.

Proof. Consider the sesquilinear form given by

b[u, v] = 〈A1/2u,RHR∗A1/2v〉RanDN
, u, v ∈ Dom(A1/2) ⊆ RanDN ,

where

Dom(A1/2) = Dom(|D∗N |) ∩ RanDN = Dom(D∗N ) ∩ RanDN = U(Dom(DN ))

for the partial isometry U in the polar decomposition (9.2).
By the First Representation Theorem in the gap case, [36, Theorem 2.3], there exists

a unique self-adjoint, boundedly invertible operator B in the Hilbert spaceM, such that

b[u, v] = 〈u,Bv〉, u ∈ Dom(A1/2), v ∈ Dom(B) ⊂ Dom(A1/2).

We now extend B to an operator on L2
0(Ω)n by

B̂u =

{
Bu, u ∈ Dom(B)

0, u ∈ (RanDN )⊥ = KerD∗N

with Dom(B̂) = Dom(B)⊕Ker(D∗N ). We define the operator

BN := U∗B̂U

on the natural domain

Dom(BN ) = {u ∈ L2
0(Ω) | Uu ∈ Dom(B̂)} ⊂ Dom(DN )⊕{u ∈ L2

0(Ω) | Uu ∈ Ker(D∗N )}.

Since KerDN = {0} and DN = |D∗N |U , it follows, that U does not map to Ker(D∗N ).

Furthermore, we have U Dom(BN ) = Dom(B̂) so that BN is a self-adjoint operator and
the open interval (−αµ0, αµ0) is in its resolvent set. Combining the results above on

the domains Dom(B),Dom(B̂) and Dom(BN ), we obtain that

Dom(BN ) = {u ∈ H1(Ω) ∩ L2
0(Ω) |HDNu ∈ Dom(D∗N )}.
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If the domain Ω has a smooth boundary, the operator A−1 is compact. In this case also
the inverse

B−1
N = A−1/2(RHR∗)−1A−1/2

is compact. As a consequence, the spectrum of BN is discrete.

By the First Representation Theorem, Dom(B̂) is a core for (DND
∗
N )1/2. Hence,

Dom(BN ) = U∗Dom(B̂)

is a core for
(DND

∗
N )1/2U = |D∗N |U = DN .

For any u ∈ Dom(BN ) and v ∈ H1(Ω) ∩ L2
0(Ω) we have that

〈u,BNv〉L2(Ω) = 〈Uu, B̂Uv〉L2(Ω)n = 〈RUu,BRUv〉M
= b[RUu,RUv] = 〈A1/2RUu,RHR∗A1/2RUv〉M
= 〈R∗A1/2RUu,R∗A1/2RUv〉L2(Ω)n .

Since R∗A1/2R = |D∗N |, we have

〈u,BNv〉L2(Ω) = 〈|D∗N |Uu,H|D∗N |Uv〉L2(Ω)n

= 〈DNu,HDNv〉L2(Ω)n .

�

We now extend the operator D∗NHDN from the space L2
0(Ω) of mean value zero to

the whole L2(Ω).

Remark 9.1.7. The self-adjoint operator (BN ,Dom(BN )) on L2
0(Ω) can be extended

by zero to a self-adjoint operator on L2(Ω) with kernel consisting of constant functions.
Since dim

(
L2(Ω)/L2

0(Ω)
)

= 1, we can set L2(Ω) = L2
0(Ω)⊕C, where C is the set of

constant functions on Ω. Consider now

B̂N :=

(
BN 0
0 0

)
, Dom(B̂N ) = Dom(BN )⊕ C.

This block operator matrix defines a self-adjoint operator by [63, Corollary 2.29].

The natural domain of B̂N is

Dom(B̂N ) = {u ∈ H1(Ω) | divH gradu ∈ L2(Ω), ν.(H gradu)|∂Ω = 0}.

In the statements we obtained so far, the Dirichlet case and the Neumann case are
very close. The only difference is that one has to consider H1(Ω) ∩ L2

0(Ω) instead of
H1

0 (Ω) as the domain of the gradient and additional regularity of the boundary is needed
for the compactness of the resolvent in the Neumann case.

However the difference lies in the properties of the operators QHQ∗ and RHR∗.
We first investigate the Neumann case in dimension n = 1.

9.2. The operator RHR∗

In dimension n = 1, we have RanD = L2
0(Ω) and RanDN = L2(Ω), so that Q is a

non-trivial map and R is a trivial map.
To see the identity RanDN = L2(Ω), let Ω = (a, b), f ∈ L2(Ω) be a bounded

interval, then one easily verifies that g defined by

g(x) :=

∫ x

a
f(y)dy − 1

|Ω|

∫
Ω

∫ z

a
f(y)dy dz

is in H1(Ω) ∩ L2
0(Ω) and satisfies g′ = f almost everywhere.

An immediate consequence of R being trivial is the following.
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Corollary 9.2.1. Let n = 1,Ω = (a, b) be a bounded interval. Then the operator

BN := divH grad

with natural domain

{u ∈ H1(Ω) ∩ L2
0(Ω) | (hu′)′ ∈ L2(Ω), u′(a) = u′(b) = 0}

is boundedly invertible if h, h−1 ∈ L∞(Ω). Furthermore, BN has a spectral gap in the
interval (−µ0α, µ0α), where µ0 is the smallest eigenvalue of the Neumann Laplacian
−∆N and

α−1 := ess sup
x∈Ω

|h−1(x)|.

We now compare QHQ∗ and RHR∗.

Remark 9.2.2. In dimension n = 1, we have that QHQ∗ has a bounded inverse if
h, h−1 ∈ L∞(Ω) and

∫
Ω h(x)−1dx 6= 0. For the boundedness of (RHR)−1, the last con-

dition is not needed. In this case, boundedness of (QHQ∗)−1 is the stronger condition.
Note that Ω = (−1, 1), h(x) = sign(x), with

σ(RHR) = {±1} and σ(QHQ∗) = {0,±1}
shows that this condition is indeed stronger.

It is an open problem whether the condition on QHQ∗ is still the stronger one in
arbitrary dimensions. On this problem, we note that

(RanDN )⊥ = L2
σ(Ω) and (RanD)⊥ = L2

σ(Ω)⊕H(Ω)

(see [17, Proposition IX.1.1]), so that the space of functions that have to be mapped
to zero by Q is larger than the corresponding space for R. A natural modification of
Corollary 8.4.9 and Proposition 8.4.12 to the Neumann case is not known to us.

Like in the Dirichlet case, we compute the eigenfunctions and eigenvalues for the
interval Ω := (−c, d) and h(x) := sign(x) in the Neumann case.

Lemma 9.2.3. The positive eigenvalues λ of D∗NHDN are solutions of the implicit
equation

cosh(
√
λd) sin(

√
λc) + cos(

√
λc) sinh(

√
λd) = 0.

and satisfy λ
(+)
j ∼ π2(j−1/4)2

c2
for j →∞. The negative eigenvalues satisfy

cos(
√
|λ|d) sinh(

√
|λ|c) + cosh(

√
|λ|c) sin(

√
|λ|d) = 0

and the asymptotics λ
(−)
j ∼ −π2(j−1/4)2

d2
for j →∞.

Proof. The proof is similar to the one of Lemma 8.5.3, the same ansatz functions
satisfying the conditions in 0 are used. It remains to verify the Neumann condition in
the endpoints −c and d for those functions to get a condition on λ. For positive λ the

determinant of

(
sin(
√
λc) cos(

√
λc)

sinh(
√
λd) − cosh(

√
λd)

)
. Thus λ has to be a solution of the equation

cosh(
√
λd) sin(

√
λc) + cos(

√
λc) sinh(

√
λd) = 0.

In the same way as in Lemma 8.5.3, this yields the asymptotics

λ
(+)
j ∼ π2(j − 1/4)2

c2
for j →∞.

A short computation shows that the mean-value condition
∫

Ω f(x)dx = 0 follows from
the Neumann condition in −c and d.

The statement for negative eigenvalues follows in the same way. �
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As in the preceding chapter, direct computation shows that a Second Representation
Theorem holds in the Neumann case provided that the domain stability condition is
satisfied.

Lemma 9.2.4 (cf. Theorem 8.6.1). Let the domain stability condition

Dom(|B|1/2) = Dom(A1/2)

be satisfied, where Dom(A1/2) = Dom(D∗N ) ∩ Ran(DN ) = U Dom(DN ). Then we have

that Dom(DN ) = Dom(|BN |1/2) and we obtain the representation

〈DNu,HDNv〉L2(Ω)n = 〈|BN |1/2u, sign(BN )|BN |1/2v〉, u, v ∈ Dom(DN ).

However, as in the Dirichlet case, it is an open problem to verify the domain stability
condition Dom(|B|1/2) = Dom(A1/2) for the corresponding auxiliary form.



Conclusion, open problems and future research

We close this work with an informal survey on the results and the open problems.
We speculate on the corresponding conjectures and point out future research.

In this thesis, we provided strategies for the problem of finding a self-adjoint operator
associated with an indefinite form as well as strategies for the problem of the block
diagonalisation of an operator with respect to a graph subspace.

The strategy to consider indefinite forms b and to find the associated operator is as
follows. First check whether the form fits into the off-diagonal setting b = a[·, JA·] + v,
where a is strictly positive or non-negative, and verify the corresponding regularity
conditions.

If the form b is not in the off-diagonal setting, put it into the framework of

b̃[x, y] = 〈B1x,B2y〉,

where 0 ∈ ρ(B1) ∩ ρ(B2) and b̃ = b + J for some bounded operator J . In this sense,

create a spectral gap for the associated operator B̃ by a bounded perturbation J . The
case, where J is a multiple of the identity, so that the whole form is shifted in the
complex plane, is the approach by McIntosh.

Alternatively, push open the spectral gap around zero by adding a more general
bounded perturbation J . If there is a guess on the associated operator B, for instance
if

b[x, y] =
〈
A1/2x,HA1/2y

〉
,(∗)

where B = A1/2HA1/2 is expected, look for an operator J close to the sign of this
operator.

If the form b can be written as (∗), where A has a kernel, but otherwise is separated
form zero, split off the kernel (as for the divH grad operator) and reconsider the reduced
form. This splitting comes at the price that one has to deal with some operator QHQ∗

on a reducing subspace instead of the simpler operator H.
For these cases, we obtain an operator B associated with b. To check that the

operator also represents the form, verify the sufficient criteria for the domain stability
condition Dom(|B|1/2) = Dom(A1/2) or the equivalent conditions.

For the block diagonalisation of block operator matrices with respect to some graph
spaces, the strategy is as follows.

First, classify the operator into diagonal dominant, upper (or lower) dominant, and
off-diagonal dominant.

For the diagonal dominant case, stay in the operator framework and check that
the reducing subspace corresponding to the diagonalisation is a graph subspace. To do
this, verify that the corresponding projector difference satisfies ||P −Q|| ≤

√
2/2. Now

consider the diagonalisation with respect to A− Y V and the operator Riccati equation
as in Chapter 4.

131
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For the upper dominant case, for instance the Stokes operator, apply form meth-
ods. Namely, rewrite the corresponding form in a diagonal dominant way, verify the
conditions for the generalisation of the Tan 2Θ Theorem (Theorem 6.1.5) and diago-
nalise this form by means of the form Riccati equation. Use then the fact that reducing
subspaces for operators and reducing subspaces for forms coincide to obtain an explicit
block diagonalisation of the operator.

The diagonalisation of off-diagonal dominant matrices was not considered here. A
corresponding strategy can be derived from [15], where Cuenin gave an explicit block
diagonalisation of the Dirac operator with Coulomb potential which is exemplary for
this case.

We now point to the open problems, conjectures and the ongoing research.
Chapter 1: By Hypothesis 1.2.1, we could grant that the form b + JA is closed

(even 0-closed) in the sense of McIntosh and that the operator B associated with b
is self-adjoint. We conjecture that in this case also the form b is closed. Numerical
computations for infinite block matrices with 2× 2 blocks as in Example 1.2.8 confirm
this conjecture. However, thinking of a proof by perturbation theory, we meet the
following problem:

If the operator A has a kernel, the form b with b[x, y] := 〈A1/2x,HA1/2y〉 clearly is
degenerate since b[x, y] = 0 for all x does not imply y = 0. Thus, the form b cannot
be 0-closed (see [49]) and the perturbation result in part (d) of Lemma 1.4.2 cannot be
applied since this result directly implies the 0-closedness of b = (b + JA)− JA.

We do not know any suitable variant of the perturbation result granting only the
closedness.

Chapter 2: If A is strictly positive, there is an example, where only the First but
not the Second Representation Theorem is valid. Namely

A :=
⊕
k∈N

(
1 0
0 k2

)
, H :=

⊕
k∈N

(
0 1
1 0

)
,

see [36, Example 2.11]. Note that in this example, the operator H is purely off-diagonal.
We do not have an appropriate example of this type for the case of only non-negative
A since purely off-diagonal H are excluded by Hypothesis (1.1). It is possible that the
condition (1.1) is strong enough to even grant the Second Representation Theorem.

Chapter 3: If A is bad, that is only non-negative, most of the statements in [36],
including the Second Representation Theorem, can be preserved if there is a suitable
perturbation JA creating a spectral gap.

If instead H is bad in the sense of H−1 being unbounded, numerical examples of
infinite block matrices with 2× 2 blocks as in Example 3.2.3 suggest that

Dom(A1/2) ⊂ Dom(|B|1/2)

always holds in this situation. In this case, the form one can reconstruct is even an
extension of the original form. In this sense, the case of bad H seems to be of a different
character as the case of bad A. The case of badH and its applications will be investigated
further in [41].

Chapter 4: The statements of this chapter are formulated for symmetric diagonally
dominant operator matrices but in fact also off-diagonally dominant matrices can be
considered. An important example in this class that one would like to diagonalise is the
Dirac operator with Coulomb potential on R3,

HΦ =

(
I + Φ 0

0 −I + Φ

)
+

(
0 −iσ · grad

−iσ · grad 0

)
=: A+ V,
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where σ is the vector containing the Pauli matrices and Φ is a potential of Coulomb
type.

A diagonalisation for this operator by means of forms has been investigated recently
by Cuenin in [15] for Coulomb potentials Φ(x) := Zα

|x| , where α ≈ 1/137 is the fine

structure constant and Z ≤ 124.
For Z ≤ 87, this operator can be defined in the operator sense, see [43, Section

VI.5.4]. However, to obtain a diagonalisation of this operator by the technique of Chap-
ter 4, the major issues are how to grant that the spectral subspaces are graph subspaces
and that the operator inclusion (4.10),

T ∗(A+ V ) ⊇ (A− Y V )T ∗,

can be turned into an identity. If the diagonal part A is dominant, the identity can be
established by perturbation theory. However, if the off-diagonal part V is dominant, as
for the Dirac operator, we do not know any corresponding result.

Another field for future investigation could be the block diagonalisation of random
block operators appearing e.g. in the physical modelling of mesoscopic disordered sys-
tems like dirty superconductors as considered in [44].

Chapter 6: Here, we meet the following problems.
For the correspondence between reducing graph subspaces and solutions to the form

Riccati equation we required the conditions (6.7) respectively (6.8) in Theorem 6.3.1.
By stronger assumptions, we could grant these conditions in Theorem 6.3.6. However,
these assumptions are related to the operator B and not to the form b. It would be
more natural, dealing with form Riccati equations, to expect a condition in terms of
forms. In Chapter 4, we had a similar problem in the operator setting and could solve
it by the operator extension result in Corollary 4.3.2. A similar form extension result,
which is unknown to us, could be used to grant the conditions in Theorem 6.3.1 in a
similar way.

In Section 6.4, we established that the form Riccati equation (6.22) for the Stokes
operator BS has a unique contractive solution. We expect that the uniqueness still holds
in the general situation of Theorem 6.3.1. Considering the form Riccati equation for
b+ 1

nJA, the proof of Corollary 6.1.5 implies that this equation has a strictly contractive
solution Xn for each n ∈ N. Since 1 /∈ σp(Xn), these solutions are the unique contractive
solutions, compare Theorem 6.4.3. In this case, the perturbed equation is uniquely
solvable in the set of contractive operators, but we cannot exclude bifurcation of solutions
when n approaches infinity and thus the gap around zero closes.

Chapter 7: In Chapter 4, we obtained a block diagonalisation of diagonally domi-
nant, indefinite block operator matrices defined as a sum of operators. In this chapter,
we obtain a block diagonalisation for upper-dominant, semibounded operators defined
by sesquilinear forms. The extension to non-semibounded operators that are not in the
framework of Chapter 4 remains an open problem.

Chapter 8: In dimension n = 1, we have an explicit representation of the operator
QHQ∗ and can thus grant the boundedness of its inverse. In higher dimensions, we do
not have a suitable representation and are thus limited in our considerations to a few
special cases.

An open problem is the construction of the operator div h(x) grad on unbounded do-
mains, even in the well understood case of n = 1. The issue here is that for unbounded
domains the spectrum of the Dirichlet Laplacian −∆D can (in general) not be separated
from zero even though the kernel is trivial. In this case, the First Representation The-
orem in [36] cannot be applied. Also, it is not clear how to verify the Hypothesis 1.2.1
for the First Representation Theorem 1.2.3 for unbounded domains.
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Chapter 9: In dimension n = 1, the Neumann case is simpler than the Dirichlet
case, since the spectrum of RHR∗ in this case is just the essential range of the function
h. In higher dimension however the Neumann case seems to be more complicated than
the Dirichlet case. The major issue here is to obtain a result corresponding to Theorem
8.4.8. We could not obtain a suitable substitute for the Dirichlet-to-Neumann maps Λ±
for the common boundary ∂Ω+ ∩ ∂Ω−. The problem in this case is to solve the Laplace
equation with mixed boundary values on Lipschitz domains and to obtain a suitable
estimate on the solution.

”Imagination is more important than knowledge.
Knowledge is limited.

Imagination encircles the world.”

Albert Einstein
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[10] B. Chenaud, P. Duclos, P. Freitas, D. Krejčǐŕık, Geometrically induced discrete spectrum in curved
tubes, Differential Geom. Appl. 23 (2005), 95–105.

[11] C. Clark, An embedding theorem for function spaces, Pacific J. of Math. 19 (1965), 243–251.
[12] M. Costabel, The Cosserat eigenvalue problem, slides of a talk available at

http://perso.univ-rennes1.fr/martin.costabel/publis/Co Mafelap2013 print.pdf.
[13] M. Costabel, M. Crouzeix, M. Dauge, Y. Lafranche, The inf-sup constant for the divergence on

corner domains, arXiv:1402.3659v2 [math.NA].
[14] M. Crouzeix, On an operator related to the convergence of Uzawa’s algorithm for the Stokes equation,

Computational Science for the 21 st century, M-O. Bristeau and al. eds, Wiley & sons (1997), 242–
249.

[15] J. C. Cuenin, Block-diagonalization of operators with gaps with applications to Dirac operators,
Rev. Math. Phys. 24 (2012), 1250021, 31 pp.

[16] M. Dauge, On the Cosserat spectrum in polygons and polyhedra, slides of a talk available at
http://perso.univ-rennes1.fr/monique.dauge/publis/CoDaCosserat00SL.pdf.

[17] R. Daultray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology
Vol. 3: Spectral Theory and Applications, Springer, Berlin, 1990.

[18] E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge,
1995.

[19] M. Dobrowolski, Angewandte Funktionalanalysis, Springer, Berlin, 2006.
[20] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford,

1987.
[21] M. Faierman, R. J. Fries, R. Mennicken, M. Möller, On the essential spectrum of the linearized

Navier-Stokes operator, Integral Equations and Operator Theory 38 (2000), 9–27.
[22] A. Fleige, Spectral Theory of Indefinite Krein-Feller Differential Operators (Mathematical Research

98), Akademie, Berlin, 1996
[23] A. Fleige, Non-semibounded sesquilinear forms and left-indefinite Sturm-Liouville problems, Integral

Equations and Operator Theory 33 (1999), 20–33.
[24] A. Fleige, S. Hassi, H. de Snoo, A Krein space approach to representation Theorems and generalized

Friedrich extensions, Acta Sci. Math. (Szeged) 66 (2000), 633–650.
[25] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge

University Press, Cambridge, 2001.

135



136 BIBLIOGRAPHY
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