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Zusammenfassung

Das Spin-Statistik-Theorem besagt, dass das statistische Verhalten eines Systems von
identischen Teilchen durch deren Spin bestimmt ist: Teilchen mit ganzzahligem Spin
sind Bosonen (gehorchen also der Bose-Einstein-Statistik), Teilchen mit halbzahligem
Spin hingegen sind Fermionen (gehorchen also der Fermi-Dirac-Statistik). Seit dem
ursprünglichen Beweis von Fierz und Pauli wissen wir, dass der Zusammenhang zwi-
schen Spin und Statistik aus den allgemeinen Prinzipien der relativistischen Quanten-
feldtheorie folgt.

Man kann nun die Frage stellen, ob das Theorem auch dann noch gültig bleibt, wenn
man schwächere Annahmen macht als die allgemein üblichen (z.B. Lorentz-
Kovarianz). Es gibt die verschiedensten Ansätze, die sich mit der Suche nach solchen
schwächeren Annahmen beschäftigen. Neben dieser Suche wurden über viele Jahre
hinweg Versuche unternommen einen geometrischen Beweis für den Zusammenhang
zwischen Spin und Statistik zu finden. Solche Ansätze werden haupt-
sächlich, durch den tieferen Zusammenhang zwischen der Ununterscheidbarkeit von
identischen Teilchen und der Geometrie des Konfigurationsraumes, wie man ihn
beispielsweise an dem Gibbs’schen Paradoxon sehr deutlich sieht, motiviert. Ein Ver-
such der diesen tieferen Zusammenhang ausnutzt, um ein geometrisches Spin-
Statistik-Theorem zu beweisen, ist die Konstruktion von Berry und Robbins (BR). Diese
Konstruktion basiert auf einer Eindeutigkeitsbedingung der Wellenfunktion, die Aus-
gangspunkt erneuerten Interesses an diesem Thema war.

Die vorliegende Arbeit betrachtet das Problem identischer Teilchen in der Quanten-
mechanik von einem geometrisch-algebraischen Standpunkt. Man geht dabei von
einem Konfigurationsraum Q mit einer endlichen Fundamentalgruppe π1(Q) aus.
Diese hat eine Darstellung auf dem RaumC(Q̃), wobei Q̃ die universelle Überlagerung
von Q bezeichnet. Die Wirkung von π1(Q) auf Q̃ induziert nun eine Teilung von C(Q̃)
in disjunkte Moduln über C(Q), die als Räume von Schnitten bestimmter flacher Vek-
torbündel über Q interpretiert werden können. Auf diese Weise lässt sich die geo-
metrische Struktur des Konfigurationsraums Q in der Struktur des Funktionenraums
C(Q̃) kodieren. Durch diese Technik ist es nun möglich die verschiedensten Ergeb-
nisse, die das Problem der Ununterscheidbarkeit betreffen, auf klare, systematische
Weise zu reproduzieren. Ferner findet man mit dieser Methode eine globale For-
mulierung der BR- Konstruktion. Ein Ergebnis dieser globalen Betrachtungsweise ist,
dass die Eindeutigkeitsbedingung der BR-Konstruktion zu Inkonsistenzen führt. Ein
weiterführendes Proposal hat die Begründung der Fermi-Bose-Alternative innerhalb
unseres Zugangs zum Gegenstand.
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1 Introduction

1.1 Motivation

Being a consequence of the general principles of relativistic Quantum Field Theory, the
Spin-Statistics theorem has found rigorous proofs in the context of axiomatic, as well as
of algebraic Quantum Field Theory [Fie39, Pau40, LZ58, SW00, DHR71, DHR74, GL95].
In spite of many efforts, this has not been the case in non relativistic Quantum Mechan-
ics. A proof of the Spin-Statistics theorem, which does not rely as heavily on concepts
of relativistic Quantum Field Theory(QFT) as the established ones, is something desir-
able, for several reasons. There are many examples of phenomena taking place outside
the relativistic realm (one could think of Bose-Einstein Condensation, Superconductiv-
ity or the Fractional Quantum Hall Effect as relevant ones, not to mention the striking
consequences of Pauli’s Exclusion Principle as the prediction of “exchange” interac-
tions, or the explanation of the periodic table) which depend essentially on the Spin-
Statistics relation for its description.

Furthermore, a proof based on assumptions which are different from the standard ones
could also be of benefit for the understanding of QFT itself. For instance, a proof which
does not make use of the full Lorentz group could provide hints towards the under-
standing of Spin-Statistics in more general situations, such as theories where a back-
ground gravitational field is present∗, or theories on non-commutative space-times.

The idea that the observed correlation between Spin and Statistics may, perhaps, be
derived without making use of relativistic QFT is not a new one. Much work has been
devoted to the point of view that quantum indistinguishability, if correctly incorporated
into quantum theory, might lead to a better understanding of Spin-Statistics. Most
of the work in this direction is based on formulations where the quantum theory of a
system of indistinguishable particles is obtained from a quantization procedure, whose
starting point is a classical configuration space.

In one of the first works of this kind, Laidlaw and DeWitt found out[LD71] that when
applying the path integral formalism to a system consisting of a finite number of non-
relativistic, identical spinless particles in three spatial dimensions, the topology of
the corresponding configuration space imposes certain restrictions on the propagator.
From this, they were able to deduce that only particles obeying Fermi or Bose statistics

∗Although it is possible to generalize the proofs on Minkowski space to curved background space-
times[Ver01], here we are interested in alternative approaches, of geometric nature.
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1 Introduction

are allowed (this Fermi-Bose alternative is an input in the standard proofs of axiomatic
QFT).

Leinaas and Myrheim considered a similar situation in [LM77], in an analysis that
was motivated by the relevance of indistinguishability to Gibbs’ paradox. They repro-
duced the results of [LD71] by obtaining the Fermi-Bose alternative in three dimen-
sional space for spinless particles. But, in addition, they also found that in one and two
dimensions the statistics parameter could, in principle, take infinitely many values. In
that same work, they remarked that their results could provide a geometrical basis for
a derivation of the Spin-Statistics theorem.

A lot of work based on this kind of “configuration space approach” has been done since
then, in an effort to find a simpler proof of the Spin-Statistics theorem, in comparison
to the relativistic, analytic ones.

Usually, such attempts are based on the point of view that, in non relativistic Quantum
Mechanics, indistinguishability, together with the rotational properties of the wave
function describing a system of identical particles, are the physical concepts lying at
the core of the problem. There are several reasons that, from a theoretical perspective,
really seem to justify such a standpoint. First of all, spin is an intrinsic property of a
particle which is closely related to spatial rotations: For example, just because of the
definition of spin in terms of SU(2) representations, the wave function of a particle of
spin S changes its phase by a factor (−1)2S under a 2π rotation. The factor (−1)2S is
indeed a quantity that can be directly measured from the interference pattern (i.e. as
a relative phase) of a two-slit-type experiment with neutrons where one of the beams
is subject to a magnetic field [Ber67, WCOE75]. The change in the sign of the wave
function is then due to precession of the neutrons in the region where the magnetic
field is present and provides a clear experimental evidence of the rotational proper-
ties of the wave function (of a fermion, in this case). The fact that this phase is the
same as that defining the statistics of a system of identical particles of spin S, could be
considered as a hint pointing towards a simple physical explanation of Spin-Statistics.
This point of view is partially substantiated by the work of Finkelstein and Rubinstein
[FR68] on a kind of topological Spin-Statistics theorem. Here, exchange of two identical
objects is really correlated with the 2π rotation of one of them, only that the objects
under consideration are extended ones, known as kinks, or topological solitons. In the
Finkelstein-Rubinstein approach, one considers configurations of non-linear classical
fields. The fields are assumed to take values on a given, fixed manifold and to satisfy
some boundary conditions (e.g., fields must take a constant value at spatial infinity).
The space of all fields -the configuration space- can be given a suitable topology, thus
allowing a classification of fields according to the connected component they belong
to. A field differing from the constant one only in a bounded region of space is referred
to as a localized kink and it can carry a “charge”, according to the component it belongs
to. Such kinks are objects that, because of the existence of a notion of localization, may
be regarded as “extended-” (in contrast to “point-”) particles. In a few words, the main
result of Finkelstein-Rubinstein is that an exchange of two identical kinks is equivalent
(in the sense of homotopy) to a 2π rotation of one of them. It must be emphasized that
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1.1 Motivation

in their proof, the idea of pair creation/annihilation is introduced and used extensively
in order to establish the mentioned equivalence.

Although the work of Finkelstein-Rubinstein appeared almost a decade before those
of Leinaas-Myrheim or of Laidlaw-DeWitt, it has not been possible to obtain analo-
gous results for systems of point particles, at the quantum level. A proposal, inspired
in part by the results of Finkelstein-Rubinstein, has been put forward by Balachan-
dran et.al. in a series of papers [BDG+90, BDG+93] where configuration spaces for
point particles allowing for the possibility of pair creation and annihilation are consid-
ered. In this approach, spin is modelled (within these classical configuration spaces)
by means of “frames” which are attached to the particles. Due to the possibility of
pair creation/annihilation, the configuration space admits configurations of any num-
ber of particles and antiparticles, thus being highly non trivial from the mathematical
point of view. The topology given to the configuration space allows for coincidences
of particles and antiparticles, but in a restricted way. The restrictions for arbitrary co-
incidences are dictated by consistency conditions, and also by analogies with the topo-
logical approach of Finkelstein-Rubinstein for kinks. An independent approach, using
a similar kind of configuration space (with a different coincidence condition and a dif-
ferent topology) has been worked out by Tscheuschner [Tsc89]. A drawback common
to these approaches is that, although the idea of pair creation/annihilation is included
at the level of the classical configuration space, there is no clear interpretation of the
results in terms of Quantum Field Theory. The fact that these configuration spaces ad-
mit an arbitrary number of particles also makes an interpretation in terms of Quantum
Mechanics a difficult task. Also, since the configuration space is not a differentiable
manifold, it is not clear how questions about connections and parallel transport, which
are used to define, for example, the momentum operator or the statistics parameter (as
a holonomy), can be reformulated.

It has been suggested [Tsc89, BDG+93] that these configuration spaces may be obtained
from the Hilbert space of the quantum theory by exploiting the projective nature of the
space of pure states. Unfortunately, the argumentations -in this respect- remain at a
heuristic level.

In any case, once the topology of the configuration space upon which quantization is to
be carried out becomes non-trivial (as a consequence of quantum indistinguishability,
or otherwise) a careful consideration of the mathematical aspects of the theory becomes
necessary.

In order to understand this last point and to put it in perspective, let us recall that since
the advent of Gauge Theories to Particle and High Energy Physics in the fifties and the
“discovery” of the deep mathematical concepts underlying the Gauge Principle[WY75],
the mathematical theory of fiber bundles and connections has played an essential role
in the formulation and understanding of physical theories of the fundamental interac-
tions. Modern Differential Geometry and Topology have played a crucial role for the
understanding of fundamental issues as, for example, quantization of Gauge Theories,
anomalies and renormalization, topological effects as solitons, instantons, monopoles,

3



1 Introduction

non-trivial vacua and many others.

In most cases, the use of these mathematical structures is mainly restricted to the classi-
cal part of the theory. Just to give an example, in the quantization of Gauge Theories, a
thorough understanding of the geometry of constrained Hamiltonian systems is very
important for the quantization of the theory. In contrast to this, the presence of a kind
of “Gauge Principle” is inherent to Quantum Theory. Indeed, the original intention of
H. Weyl when using his “Eichprinzip” was to obtain a unification of General Relativity
and Electromagnetism by means of a re-scaling of the metric. The (conformal) expo-
nential factor responsible for the change in scale was real, and as is well known, it was
shown by Einstein that the proposal was not viable. Soon after that, it was recognized
by London that Weyl’s ideas really made sense, but not without substantial changes:
The exponential factor had to be actually chosen as complex, a phase factor, related
not to the classical theories but to the quantum mechanical wave function. The conse-
quences of this fact -the gauge freedom of the wave function- are widely known, with
many interesting applications. The geometric character of the quantum mechanical
phase can be clearly recognized in situations like, for example, the Aharanov-Bohm ef-
fect. Also widely known are geometric phases [Kat50, Ber84], whose geometric nature
was originally pointed out by Simon [Sim83]. It is in this context, that of the geometry
of quantum states in non-relativistic Quantum Mechanics, that the Spin-Statistics prob-
lem fits in. When the topology of the configuration space is complicated enough, new
possibilities for the realization of quantum states appear. Indeed, the whole scheme of
quantization by means of a “Correspondence Principle” works so nicely for the theory
of, say, one electron in three-dimensional Euclidean space, just because the topology
and geometry of the configuration space are, in a certain sense, trivial. Then, as a con-
sequence of the Stone von Neumann uniqueness theorem, it is unnecessary to look for
realizations of quantum states apart from the usual ones, namely in the Hilbert space
L2(R3). The fact that the standard canonical commutation relations can be represented
as operators in this space can be traced back to the existence of a transitive abelian
group of transformations [Ish84]. But as soon as one considers a more general type
of configuration space, even the application of the Correspondence Principle becomes
an issue by itself, because in this case, a suitable analog of the canonical commutation
relations must be found. Since the representation of the resulting operators might take
place in a space which is not a space of functions on the configuration space, one can
in this way see why other possibilities for the realization of quantum states become
possible and, in some cases, even necessary.

For the understanding of these situations, a thorough mathematical analysis becomes
necessary and indeed can, in many cases, give very concrete answers. For exam-
ple, in the case of Quantum Mechanics of spinless particles on a (possibly multiply-
connected) configuration space, which has been discussed extensively in the literature,
one has a general result, which can be stated as follows:
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1.1 Motivation

1.1.1 Theorem (cf.[LD71]). Let Q be the manifold that corresponds to the classical configu-
ration space of a spinless particle. Then, the inequivalent quantizations of this system are in
bijective correspondence with the one dimensional unitary representations of the fundamental
group of Q.

Let us make a few comments about this result.

• Since no spin is being considered, the wave function takes values on a one-
dimensional vector space. This vector space might vary with the coordinates
of the configuration space.

• We do not specify, for the moment being, the specific quantization approach
(canonical, path integral, etc.). Since the only input is a configuration space, we
can only face the kinematical part of the problem. Hence, inequivalent quanti-
zations here refers to the different choices for the Hilbert space representation
of the theory: There might be several ones, which fall in classes that could be
termed “superselection sectors” and that can be put in bijective correspondence
with topological invariants of the configuration space. A complete quantization
must also include a classical dynamical principle as input.

• The results of Laidlaw-DeWitt and Leinaas-Myrheim can be regarded as a partic-
ular case of 1.1.1: Define, for a system of N particles in d spatial dimensions,

Q̃ := R
d × · · · × R

d

︸ ︷︷ ︸
N−times

\△, (1.1.1)

where △ = {(x1, . . . , xn) | xi = xj , for at least some pair (i, j), i 6= j} denotes the
set of configurations where two or more particles coincide. Since configurations
differing only by a permutation of particles are considered the same, one has an
equivalence relation (x1, . . . , xn) ∼ (xσ(1), . . . , xσ(N)) (with σ ∈ SN any permuta-
tion of the indices {1, . . . , N}). The configuration spaces considered in references

[LD71] and [LM77] are obtained from Q̃ by taking the quotient with respect to
this equivalence relation:

Q := Q̃/SN . (1.1.2)

One can show that, for d ≥ 3, π1(Q) ∼= SN , so that there are only two possibilities,
corresponding to the two characters of SN . For d = 2 it is well known that π1(Q)
is isomorphic to Artin’s braid group BN [Art47]. This leads to new possibilities,
anyonic statistics [Wil82]. For systems obeying this kind of statistics, the statistics
parameter is not a sign, as in the Fermi or Bose cases, but a phase eiθ.

The application of theorem1.1.1 to the case of identical spinless particles is of particular
relevance, since the imposition of a symmetrization postulate becomes, in this case,
unnecessary: The two possible statistics, the fermionic and the bosonic one, arise as
a direct consequence of the non-trivial topology of the configuration space and thus
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1 Introduction

of indistinguishability. To prove the Spin-Statistics theorem in this particular case, it
would be necessary to show that only bosonic statistics is allowed. An attempt to prove
this, under some continuity assumptions for the wave function, has been carried out
by Peshkin [Pes03b].

The possibility of using a result analogous to theorem 1.1.1 for non vanishing spin
seems even more remote, mainly for two reasons. Firstly, whereas in the spinless case
the quantum theory is obtained from a quantization procedure, for non-vanishing spin
there is no classical theory to start with. One can adopt the point of view that the zero-
spin case, for which quantization poses no problem, provides the justification for the
use of vector bundles over the classical configuration space in order to define the wave
function and then introduce spin by considering bundles with fibers with a dimension
corresponding to the given value of the spin. But then, because the vector bundles
involved in these cases are of higher rank, the restrictions imposed by the topology of
the configuration space are not as strong as in the spin zero case. In fact, even a rigorous
derivation of the Fermi-Bose alternative for nonzero spin is still lacking (some remarks
and suggestions were already made in [LM77]). This is certainly a necessary step in
order to, eventually, prove a Spin-Statistics theorem in this context.

The case of general spin has recently been considered by Berry and Robbins, who in
[BR97] have provided an explicit construction, in which the quantum mechanics of two
identical particles is formulated along the lines described in [LM77]. Let us explain in
some detail the construction of [BR97] (henceforth referred to as the BR-construction),
in order to point out some features that have served as the starting point for the present
work and, at the same time, in order to motivate the approach that will be developed
in the following chapters.

The BR approach is motivated, in part, by the idea that there is an unsatisfactory fea-
ture in the usual treatment of indistinguishability in non relativistic QM, namely, that
the wave function of a system of identical fermions is not single-valued, in the sense
that under the exchange of two particles it changes its sign. Since, because of indistin-
guishability, this exchange has no physical meaning, there should be no change at all.
This amounts to the requirement that the wave function should be defined on a con-
figuration space where indistinguishability is already incorporated, i.e., the space Q of
eqn. (1.1.2). Although the idea of working with wave functions defined on this quo-
tient space is implicit in their work, Berry and Robbins’ construction is really carried

out on Q̃ (as defined in eq. (1.1.1)), a configuration space of distinguishable particles.
In this way, they avoid the use of mathematical concepts that would be necessary oth-
erwise.

The construction was originally proposed for the special case of two particles of spin S.
The basic idea consists in replacing the usual spin states |s,m1〉 ⊗ |s,m2〉, by position-
dependent ones: |s,m1〉 ⊗ |s,m2〉(r1, r2). This is the only way one can impose single-
valuedness (in the sense explained below, see equation (1.1.5)) and still retain Pauli’s
exclusion principle.

Adopting the notation “M” for the quantum numbers {m1, m2} (in that order) and
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1.1 Motivation

“M” for {m2, m1}, we can express the exchange of spin states simply as |M〉 → |M〉.
Since the exchange of particles does not affect the center of mass position vector, one
can reduce the dependence of the new spin vectors |M(r1, r2)〉 on the position vectors
to only the relative position one, r = r1 − r2. Thus, under exchange of both positions
and spins of the two particles, we have: |M〉(r) → |M(−r)〉.
The position-dependent spin basis is obtained by means of a unitary operator U = U(r)
that acts on a vector space which contains the usual (fixed) spin vectors. The dimension
of this space is equal to NS = 1

6
(4S + 1)(4S + 2)(4S + 3), for reasons that are specific to

the construction: It is based on Schwinger’s representation of spin, which uses raising
and lowering operators. Leaving aside for the moment the technical details of the
construction, let us concentrate on the basic properties of the spin basis resulting from
it:

1.1.2 Definition. (Transported Spin Basis).

(i) The map S2 −→ C
NS

r 7−→ |M(r)〉 := U(r)|M〉

is well defined and smooth for all M .

(ii) The following “exchange” rule holds:

|M(−r)〉 = (−1)2S|M(r)〉. (1.1.3)

(iii) The “parallel transport” condition 〈M ′(r(t))| d
dt
M(r(t))〉 = 0 is satisfied for all M

and M ′, and for every smooth curve t 7→ r(t).

The two-particle wave function is then written, in terms of the new spin basis, as fol-
lows:

|Ψ(r)〉 =
∑

M

ΨM(r)|M(r)〉. (1.1.4)

1.1.3 Single-valuedness of the wave function. Essential to the BR approach is the impo-
sition of single-valuedness on the wave function, through the following condition:

|Ψ(r)〉 !
= |Ψ(−r)〉. (1.1.5)

Let us point out some relevant features:

• The existence, for each S, of a basis satisfying the conditions stated in def.1.1.2
is not obvious at all. One advantage of its construction by means of Schwinger
oscillators is that it works for all values of S. But its generalization to more than
two particles poses technical difficulties, and leads to non-trivial mathematical
questions; among them, a conjecture of Atiyah which has received considerable
attention (see [AB02] and references therein).

7



1 Introduction

• In the original proposal of BR, the sign in eq. (1.1.3) was assumed to be of the form
(−1)K and the conjecture was made that any basis satisfying the three properties
stated in definition 1.1.2 would have to satisfy (−1)K = (−1)2S . The assertion of
this conjecture was later found not to be true. Counterexamples have been given
in [BR00].

• In any case, for 2 particles the BR construction, using Schwinger’s oscillators
model, gives the correct sign, and this for every value of S. It is therefore an
interesting matter to try to find the reason (in case there is one) for this.

• A direct consequence from eq. (1.1.5), when the spin vectors satisfy conditions
(i)-(iii) from definition 1.1.2, is the relation ΨM(−r) = (−1)2SΨM(r), between the
coefficient functions. This could, in principle, be interpreted as the usual form of
the Spin-Statistics relation †, but only if the conjecture about the sign in eq. (1.1.3)
had turned out to be true.

1.2 On the present work

Having discussed the basic ideas that serve as motivation for the present thesis, we
now turn to a brief description of the method and techniques that have been used in
our study of the Spin-Statistics problem.

In the last years, the BR proposal has given place to a renewed discussion of the Spin-
Statistics problem, perhaps due to the fact that, in contrast to other approaches, what
they present is a very concrete model which can be computed and also to the fact that
the construction gave the correct connection between Spin and Statistics. Nevertheless,
the existence of alternative constructions and the use of Schwinger’s oscillators in the
original one tend to obscure the real meaning of a “transported” spin basis. It would
therefore be interesting to find a method which, while keeping the concreteness, also
leads to a better understanding of the problem.

For instance, although the motivation for the imposition of single-valuedness as a way
to include indistinguishability in the formalism is clear, its implementation by means
of eq.(1.1.5) is not. Let us explain this in more detail.

In the BR construction, the wave function is implicitly considered as a section of a vec-
tor bundle, whose basis is supposed to be the physical configuration space Q. As is
well known, it is not possible in general to represent a section by means of a single
function: The eventual non triviality of the bundle where it is defined makes the use
of local trivializations necessary. A consequence of this is that, in order to recover a sec-
tion as a whole, one needs several functions, one for each trivializing neighborhood.
Thus, at every point on the basis manifold, the section will take (apparently) as many

†First one has to show that these functions satisfy the same differential equation as the usual ones, see
[BR97]
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1.2 On the present work

values as there are trivializing neighborhoods covering that point. It should be em-
phasized that this “multiple-valuedness” is only something apparent. A section is -in
the same way as a function- a map, which to each point on the basis manifold assigns
a unique value on a vector space. The difference with a section is that the vector space
might be different for every point. Now, as shown in this work, the equivalence be-
tween projective modules and vector bundles [Ser58, Swa62] can be used as a tool in
order to obtain an algebraic characterization of certain vector bundles related to the

configuration spaces Q and Q̃. More concretely, it will be shown that it is possible to
represent a section defined on a bundle over Q as a (possibly vector-valued) function

defined on Q̃. Since the resulting function is not anymore defined on the physically
correct configuration space, its value now depends on the ordering of the particles and
it is not necessarily invariant under exchange of them (it must, though, be equivari-
ant). Thus, the imposition of strict invariance under exchange of particles for a wave
function defined on Q̃ as a vector-valued function seems not to be the most adequate
form to incorporate indistinguishability into the theory. This point will be worked out
in detail in chapter 5, where a comparison with the Berry-Robbins approach will be
made.

In this work (some of which results can be found in [PPRS04]), we will therefore study
the Spin-Statistics problem by making use of (some notions of) the theory of projective
modules as an alternative, equivalent description of vector bundles. While from the
mathematical point of view the descriptions of vector bundles in the usual differential-
geometric language and in terms of projective modules are completely equivalent (as
asserted by the well known Serre-Swan theorem[Ser58, Swa62]) from the point of view
of our purposes, a description in terms of modules will be, at some points, much more
convenient. The proposal to study the Spin-Statistics problem using projective mod-
ules was made in [Pas01]. In the present thesis, it will be further developed, so as to be
in a position to study the case of an arbitrary number of particles. The consideration of
the symmetries of the problem will also play an important role in this work. In this re-
spect, an approach in the spirit of [HPRS87] will be followed, mainly by consideration
of the different group actions involved.

In order to illustrate how these concepts can be used to study the Spin-Statistics prob-
lem, let us consider the spin basis of the BR-construction, in the special case of S = 1/2.
There are, in this case, four physical, position dependent spin states, that are obtained
by application of an unitary operator U(r) to the fixed ones. The resulting spin states
can be written as a linear combination of ten vectors |e1〉, . . . , |e10〉. The first four coin-
cide with the fixed spin states,

|+,+〉 = |e1〉,
|−,−〉 = |e2〉,
|+,−〉 = |e3〉,
|−,+〉 = |e4〉.

9



1 Introduction

For the transported spin states, one finds:

|+,+(r)〉 := U(r)|+,+〉 = −e−iφ sin θ√
2
|e7〉 + cos θ|e1〉 + eiφ

sin θ√
2
|e9〉

|−,−(r)〉 := U(r)|−,−〉 = −e−iφ sin θ√
2
|e8〉 + cos θ|e2〉 + eiφ

sin θ√
2
|e10〉 (1.2.1)

|+,−(r)〉 := U(r)|+,−〉 = −e−iφ sin θ

2
|e5〉 + cos2 θ

2
|e3〉 − sin2 θ

2
|e4〉 + eiφ

sin θ

2
|e6〉

|−,+(r)〉 := U(r)|−,+〉 = −e−iφ sin θ

2
|e5〉 + cos2 θ

2
|e4〉 − sin2 θ

2
|e3〉 + eiφ

sin θ

2
|e6〉

Here, θ and φ are the polar angles of the relative position vector r. The fixed spin basis
is chosen so that, at the north pole (r0), the following holds: |m1, m2(r0)〉 = |m1, m2〉.
The spin basis vector |m1, m2(r)〉 at position r is obtained from the application of U(r)
to the vector |m1, m2〉, but an alternative point of view is that this same vector is ob-
tained by means of an operator that, at each point r, projects the space spanned by
all the |ei〉 onto the subspace generated by |m1, m2(r)〉. Such an operator can be easily
constructed using U(r): Starting at the point r one applies U(r)−1 to go to r = r0, there
one projects to |m1, m2〉 and finally returns back to r by applying U(r).

The meaning of the basis vectors eq. (1.2.1), obtained in BR with the help of the
Schwinger construction, apart from the fact that they satisfy the properties stated in
definition 1.1.2, is not so clear. But, as shown in chapter 4, one can transform to the
basis of total angular momentum and then define the four projection operators (corre-
sponding to the singlet and the triplet states) as described above. One then obtains the
following result: The singlet state does not depend on r and the projectors correspond-
ing to each triplet state are all equal and can be written, in matrix form, as follows:

p(r) =




1
2
sin2 θ − 1√

2
sin θ cos θe−iϕ −1

2
sin2 θe−2iϕ

− 1√
2
sin θ cos θeiϕ cos2 θ 1√

2
sin θ cos θe−iϕ

−1
2
sin2 θe2iϕ 1√

2
sin θ cos θeiϕ 1

2
sin2 θ


 . (1.2.2)

The advantages of expressing the spin basis in terms of eq. (1.2.2) will be evident later,
but for now let us only state the fact that, as a projective module over the ring of all
continuous, even functions on the two-sphere, this projector gives place to a module
which is isomorphic to the module of odd functions on the sphere, over the same ring.
It has been shown in [Pas01] that this isomorphism is a direct consequence of the SU(2)
symmetry of the two-sphere. This shows that this is an alternative way to recover the
BR-construction, but one which (i) clarifies the role played by the SU(2) symmetry of
the problem and (ii) uses this same symmetry to systematically construct a projective
module, that turns out to reproduce exactly the formulae for the transported spin basis
in the BR-construction.

Furthermore, such features of the spin basis as the parallel transport condition, can
be deduced in this context very easily: The equivalent assertion is that the expression

10



1.2 On the present work

pdpdp vanishes or, in other words, the bundle corresponding to the projector p is flat.
Additional to the SU(2) symmetry, there is also an exchange symmetry, as a conse-
quence of indistinguishability. In the case of two particles, this can be easily handled;
but for a finite, arbitrary number of particles, the situation changes. As will be shown
in this work, the approach using the language of projective modules allows for a very
clear treatment of the general case.

We finish this section with a description of the content of the present thesis.

In Chapter 2 (Quantization on multiply-connected configuration spaces), a review of
some of the basic facts about Quantum Mechanics of spinless particles on multiply-
connected configuration spaces is made, based on the standard literature on the topic.
The main purpose of this chapter is to present the theoretical background which is the
starting point of the problem treated in this thesis. Although all of the results pre-
sented in this chapter are well known, they are of much relevance, since they provide
well-founded explanations for many of the assumptions that are made in the study
of the Spin-Statistics problem, specially the physical reasons why such mathematical
structures as vector bundles and connections must be used.

Chapter 3 (G-spaces and projective modules) is devoted to the deduction of some
mathematical results that will be needed in the following chapters. The case of a G-
free space M (with G a finite group) and G−bundles over it is considered. The known
equivalence of G−bundles over M and bundles over M/G is reformulated in a way
that allows a useful interpretation when the same problem is formulated in terms of
projective modules. It is shown that, given a vector bundle ξ over M/G, the module of
sections Γ(ξ) is isomorphic to the submodule of invariant sections of the pull-back of
ξ. An alternative version of this result in terms of only the underlying algebras C(M)
and C(M/G) is worked out in last part of the chapter, where a decomposition of C(M)
intoC(M/G)-submodules is obtained, that allows to represent sections of bundles over
M/G as functions on M .

Chapter 4 (The spin zero case) is devoted to the discussion of two examples (using the
sphere and the projective space), where the methods of chapter 3 are illustrated. These
examples are used in the last section of the chapter in order to discuss the case of two
spin zero particles.

In Chapter 5 (Applications to the Berry-Robbins approach to Spin-Statistics), the meth-
ods developed in the previous chapters are applied in an analysis of the Berry-Robbins
construction. This analysis leads to the conclusion that the single-valuedness condi-
tion, as stated in [BR97] is inconsistent.

Chapter 6 (Further developments) contains a proposal, based on the techniques devel-
oped in Chapter 3 and on the conclusions drawn from the analysis in Chapter 5, to
study the Spin-Statistics problem.

11



2 Quantization on multiply-connected
configuration spaces

Quantum indistinguishability forces us to consider configuration spaces that have non-
trivial topologies. If the states of the quantum theory are represented as functions on
these configuration spaces, the problem on quantization on multiply connected space
immediately arises. In the present chapter, of motivational character, we will review
one of the possible ways in which one can implement a quantization program in such
spaces. For us, the relevance of the method reviewed in the present chapter is that it
provides a firm conceptual basis that supports the assumptions we will make in the
following part of the work.

2.1 Motivation

Having its origin in the fact that in Quantum Mechanics physical (pure) states are rep-
resented not by vectors in Hilbert space but by rays on it, the gauge freedom of the quan-
tum mechanical wave function leads very naturally to questions of a topological na-
ture. Consider a wave function ψ : Q → C defined on some classical configuration
space Q. Since it is only to |ψ(q)|2 -the probability density- that a physical meaning
is attached, we are always free to modify the wave function by adding a global phase
factor, ψ(q) 7→ eiθψ(q), without changing the physical predictions. A more general kind
of transformation is indeed allowed: a local one, of the form ψ(q) 7→ eiϕ(q)ψ(q).

The question, as to what extent is it possible to make a globally well defined choice of
phase, i.e., of a function Q → C : q 7→ eiϕ(q), was already considered by Pauli [Pau39].
He noticed that this is possible whenever Q is simply connected.

Phase ambiguities do also show up in the path integral formulation of Quantum Me-
chanics [FH65], where they arise as a consequence of the gauge freedom of the La-
grangian. Consider a classical system defined on a configuration space Q and de-
scribed by a Lagrangian L(q, q̇; t). A gauge transformation of the Lagrangian, of the
form

L(q, q̇; t) 7→ L′(q, q̇; t) = L(q, q̇; t) +
d

dt
M(q, t)

preserves, at the classical level, the equations of motion. Its effect on the amplitude

K(q(b), t(b); q(a), t(a)) =

∫
D[q]e

i
~
S[q]

12



2.1 Motivation

is just a global phase change:

K(q(b), t(b); q(a), t(a)) 7→ K ′(q(b), t(b); q(a), t(a)) = e
i
~
φ(q(b),t(b);q(a),t(a))K(q(b), t(b); q(a), t(a))

From S[q] =
∫ t(b)
t(a) dt L(q, q̇; t) one readily checks that φ(q(b), t(b); q(a), t(a)) = M(q(b), t(b)) −

M(q(a), t(a)), that is, the phase depends only on the extremal points, which are held
fixed throughout. The situation changes drastically if Q happens to be non-simply
connected [LD71] for, in that case, the phase change in the integrand, exp(i/~S[q]), de-
pends on the homotopy class to which the given path q(t) belongs. This means that a
gauge transformation of the Lagrangian introduces relative phases between the differ-
ent contributions to the amplitude K(q(b), t(b); q(a), t(a)), making it ill-defined.

The following example illustrates this point very clearly. Consider the motion of a free
particle on a two dimensional plane with a “hole” on it:

Q = R
2 \ {0}; L(q, q̇; t) =

1

2
q̇2.

Consider now the function

F : Q → R
2

q = 7→ (F1(q), F2(q)) =
1

2

( −q2
q2
1 + q2

2

,
q1

q2
1 + q2

2

)
.

Since ∂1F2 = ∂2F1, it follows that

L(q, q̇; t) 7→ L′(q, q̇; t) = L(q, q̇; t) + F (q) · q̇

is a gauge transformation. Consider now the following family of paths, labelled by
n ∈ Z:

γn(t) = (cos(2nπt), sin(2nπt)) .

(The path γn is a representative of the class in the fundamental group of Q which is
labelled by n. Thus, paths corresponding to different values of n are not deformable
(by means of a homotopy) into each other). With q(a) = 0 = q(b), t(a) = 0 and t(b) = 1, we
obtain:

e
i
~
S′[γn] = e

i
~
nπe

i
~
S[γn].

We therefore see how paths belonging to different homotopy classes induce different
phase changes in the integrand of the path integral, under the same gauge transforma-
tion of the Lagrangian.

This new feature of the path integral for non-simply connected spaces was first pointed
out by Schulman[Sch68]. A more general treatment was later on presented by Laidlaw
and DeWitt[LD71], where they showed how the non-trivial topology of the configura-
tion space leads to different, inequivalent quantizations of the same classical system.

Very roughly, the idea of their proof is as follows. Since, as we have just seen, paths
belonging to different homotopy classes cannot be included in the path integral at the
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2 Quantization on multiply-connected configuration spaces

same time, only partial amplitudes Kα containing sums over paths belonging to the
same homotopy class (labeled by the element α of the fundamental group π1(Q)∗) can
be consistently defined. In order to include all paths one then adds the different am-
plitudes Kα, but there is no a priori reason why this sum might not be a weighted sum,
of the form

K =
∑

α∈π1(Q)

χ(α)Kα. (2.1.1)

The form of the weight factors χ(α) is determined from certain -rather technical- prop-
erties that the partial propagators can be shown to have and that we will not discuss
here (for details, see [LD71] and [Sch68]).

However, it is important to point out that physical considerations play an essential role
in the determination of the weight factors. For example, the consistency requirement

|K(c, tc; a, ta)| =

∣∣∣∣
∫
K(c, tc; b, tb)K(b, tb; a, ta)db

∣∣∣∣ ,

imposed on the total propagator, has a clear physical meaning and is used in the
derivation of the final result, which can be stated as follows:

2.1.1 Theorem (cf.[LD71]). The weight factors χ(α) in eq. (2.1.1) must form a one-
dimensional unitary representation of the fundamental group.

An immediate consequence of this result is that there are as a many possible quantiza-
tions of the classical system described by L on Q, as there are characters of π1(Q). Al-
though not clear at this point, these quantizations are inequivalent for different choices
of the character χ.

A particularly relevant application of this theorem is obtained for a system of identical
particles: Consider n identical particles moving in three dimensional Euclidean space.
If the configuration space is, as described in the first chapter, taken to be

Q = (R3 × · · · × R
3 \ ∆)/SN ,

where SN denotes the permutation group, then there are exactly two characters, cor-
responding to the completely symmetric/antisymmetric one dimensional representa-
tions, and hence to Bose/Fermi statistics.

In spite of its applicability being restricted to systems of spinless particles, this is indeed
a very strong result: It says that, if we take indistinguishability properly into account,
there is no need for a symmetrization postulate since, in three dimensions, the two
physically observed statistics, fermionic or bosonic, are the only allowed ones.

∗Here we are considering paths beginning at some point a and ending at some point b in Q. In order
to assign an element of π1(Q) to each such path, an arbitrary point x0 ∈ Q is chosen, as well as an
assignment of paths (“homotopy mesh”[LD71]) C(y) going from y to x0, for every y in Q. In this
way, a path γ going from a to b, can be assigned the map C(a)γC−1(b), which belongs to a given
element of π1(Q, x0)
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2.2 Canonical Quantization from Group Actions

At the beginning of this section, we started our discussion with questions related to the
problem of fixing the phase of the wave function globally. This is a question that can
be more clearly formulated using the notion of fiber bundle. Since the phase is (at least
locally) a U(1)-valued function, one can consider it as a section of a principal U(1)-
bundle. Equivalently, one can consider a line bundle associated to this U(1)-bundle,
and take the wave function to be a cross-section of this line bundle. In this context,
different quantizations arise, among other things, from the choice of the bundle where
the wave function is defined. The relation of a fiber bundle approach to the Feynman
functional one we have just discussed is not clear at all, but we shall see, in the next
sections, how the conclusion of theorem 2.1.1 might be obtained from a quantization
scheme that is based on the action of a so-called canonical group on the classical phase
space. Within this approach, the quantum theory is obtained from the representation
theory of the canonical group, and this in turn leads naturally to a fiber bundle formu-
lation.

The Feynman functional approach has the advantage of providing a very clear pic-
ture of why the topology of the configuration space of a classical system might be
seen reflected in the corresponding quantized theory: In the sum over “histories” pre-
scription, all paths between two given points give contributions to the probability am-
plitude, so that they provide information on the global structure of the configuration
space. On the other hand, the approach presented in the next sections deals with the
difficulties that arise when one attempts to apply a canonical quantization prescription
to a system with a configuration space that has a non-trivial topology (in the sense of
being, e.g., multiply connected). Then, the need to use fiber bundles and representa-
tion theory arises in a very natural way, providing a justification, from the point of
view of physics, of the setting on which the present work is based.

2.2 Canonical Quantization from Group Actions

2.2.1 Preliminary remarks

We have discussed the effects that the global structure of a classical configuration space
may have on the quantum theory obtained from a classical Lagrangian by means of
Feynman’s path integral formulation. As already pointed out, this approach is partic-
ularly useful in order to get a “feeling” of why -if at all- the topology of the configura-
tion space should play a role in the quantization of the system. For us, the interest in
these kind of “topological effects” lies in the fact that, as illustrated in the previous sec-
tion, for a system of N identical spinless particles, the Fermi-Bose alternative follows
directly as a restriction imposed by the topology of the configuration space. The topo-
logical non-triviality of this space, expressed by the fact that its fundamental group is
isomorphic to the permutation group of N elements, determines the allowed statistics
without the need to consider a symmetrization postulate.
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2 Quantization on multiply-connected configuration spaces

Whether the fact that the topology of this configuration space is not trivial might be
used to derive the Spin-Statistics relation, has been (and still is) a source of contro-
versy. Many authors are of the opinion that there is no way at all of relating spin
with statistics, unless one goes over to relativistic quantum field theory (see, for ex-
ample, [Wig00]). Perhaps this is true: Much effort has been put in the search for a
non-relativistic proof and, as time went by, it became clearer that there is some essen-
tial physical assumption that is still missing. This could be, for example, some kind of
condition that must be imposed in the non-relativistic theory, arising as a “shadow”
or “remanent” of properties inherent to the relativistic quantum theory. If such a con-
dition could be found and consistently incorporated into a configuration space (topo-
logical) approach in order to obtain a non relativistic version of the Spin-Statistics The-
orem, we could certainly learn more about the relativistic case. Another interesting
possibility is that topological spaces such as the one defined in eq.(1.1.2) or gener-
alizations thereof might appear in a natural way in a Quantum Field Theory. Ideas
along this line have been put forward by Tscheuschner [Tsc89] and Balachandran et.
al. [BDG+90, BDG+93]. A full mathematical understanding of the very interesting
(but to a great extent heuristic) ideas presented by these authors would justify by itself
further studies within a configuration space approach.

In spite of all this, we want to stick to the point of view that the configuration space
defined in eq.(1.1.2) does have something to do with the relation between spin and
statistics. The reasons that -to our opinion- justify our assuming this point of view, are
the following:

• Relevance of the structure of classical theories for the formulation and under-
standing of quantum ones:

Although nowadays there exist approaches to Quantum Theory which are not
based on a quantization of some underlying classical theory, both the historical
and conceptual relevance of the structure of the classical mechanics (of particles
and fields) for the formulation of Quantum Theory cannot be overseen. Funda-
mental structures and concepts, like the symplectic structure of phase space, the
Poisson bracket algebra or Noether’s theorem have played (and still play) a pri-
mordial role as guidelines in the search for a Quantum Theory in many branches
of physics. Additionally, there are many situations where all one has to start with
is a classical theory that is believed to be a limit of some, more fundamental,
quantum theory. Needless to say, two prominent examples of this situation are
the relations between Maxwell’s theory of electromagnetism and Quantum Elec-
trodynamics on one hand and between General Relativity and its sought-after
quantum version, on the other. In the same way, one expects some kind of re-
lation between the classical mechanics of a system of identical particles and its
quantum version.

• The notion of space in quantum mechanics: In most physical theories, space-
time plays a passive role, in the sense that it is the “stage” where all physical
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2.2 Canonical Quantization from Group Actions

phenomena take place. The space-time of every theory has a symmetry group.
The dynamical rules of a theory must be formulated in such a way that they
are compatible with the symmetry group, but space-time itself does not play a
dynamical role†. In this sense, one could say that space-time is “what remains
when one takes away all particles, fields, etc..”. From this point of view, in quan-
tum mechanics, when one considers one particle, space is what remains after
removing this particle: R3. But, when considering two particles, the structure of
the “space” that remains after taking away the particles should be expected to
be very different from the one corresponding to a single particle. This because
of indistinguishability. The configuration space of eq.(1.1.2) may be seen as the
mathematical expression of this idea.

• Gibbs’ paradox: This was one of the main motivations for Leinaas and Myr-
heim [LM77] in order to study the configuration space eq.(1.1.2). Gibbs’ paradox
shows that, even if we remain at a classical level ‡, when asking questions about the
microscopic properties of a system of identical particles, the configuration space
eq.(1.1.2) must be used, in order to avoid inconsistencies.

• Relevance of the Spin-Statistics relation in the non-relativistic context: As
pointed out in the introduction, the observed relation between Spin and Statistics
has many consequences and is crucial for the understanding of many physical
phenomena that take place in a quantum, but non-relativistic, domain. Non-
relativistic Quantum Mechanics is a theory that can be consistently formulated
without the need of concepts of relativity. On the other hand, the only (generally
accepted) proofs of the Spin-Statistics Theorem make use of Poincaré invariance
in an essential way. There remains the question of why must one make use in
non-relativistic Quantum Mechanics, a theory standing on its own, of a result
that has been proved somewhere else?

• Relation to relativistic QFT: Even if at the end it turns out that there is no way
of finding a non-relativistic proof of the Spin-Statistics Theorem, the techniques
developed in such a search could eventually be used to have a different look at
the problem such as an interpretation of the relativistic, analytical proofs in geo-
metric/topological terms. It is in part because of this possibility that the config-
uration approach to indistinguishability proposed in the present work, which is
of a geometric/topological nature, has been also formulated in a more algebraic
language, one that lies closer to the one of Quantum Field Theory.

Having stated the reasons why we are interested in studying the effects that a configu-
ration space as eq.(1.1.2) might have on the Quantum Theory, we now turn to the cen-
tral theme of this chapter: Quantization on a multiply-connected configuration space.
Assume we are given a classical configuration space Q with a non-trivial global struc-
ture (the specific example of interest for us is that of Q being multiply-connected).

†General Relativity being, of course, an exception.
‡With this we mean: Even if the Maxwell-Boltzmann distribution is being used, see [LM77].
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2 Quantization on multiply-connected configuration spaces

We then try to construct a quantum theory, having as starting point a classical the-
ory based on Q. When such an attempt is made, one encounters very soon problems
with the application of the usual “quantization rules” that work so well in the case of
Q = Rn. The aim of the brief account to quantization that we present in this chap-
ter is to provide well-founded arguments in favor of the idea that, when dealing with
a globally-structured configuration space Q, some of the usual assumptions that are
made in the case of Rn, have to be reconsidered, this leading to the need to consider
a more general setting for the quantum theory. This more general setting will be the
starting point for our considerations about the Spin-Statistics relation.

Among the assumptions we alluded to above, we have:

(1.) The Canonical Commutation Relations (CCR),

[
q̂i, p̂j

]
= i~δij ,

[
q̂i, q̂j

]
= 0 = [p̂i, p̂j] , (2.2.1)

hold.

(2.) A (Pure) state ψ is a function defined on Q and taking values on a complex vector
space:

ψ : Q → C
r.

The fact that the CCR cannot hold unrestricted for any configuration space is some-
thing plausible because, whereas in the case of Q = Rn the position and momentum
operators are the quantized versions of the global coordinates {q1, . . . , qn; p1, . . . , pn}
(defined for the phase space T ∗Rn), in a general configuration space the use of more
than one local coordinate chart might be necessary, and then the need to define global
position and momentum operators, or suitable analogs of them, arises. The kind of
permutation relations that these new operators obey will then clearly depend on the
global structure of Q. The “breakdown” of the usual CCR has consequences in the
way that pure states are realized. This is so because the space where these states “live”
is a representation space of an abstract algebra whose generators obey the CCR. The
position and momentum operators can then be seen as the operators representing the
generators of this algebra. But if the algebra admits different, inequivalent represen-
tations, it could well happen that the representation space takes a form different from
the usual one (a space of complex functions defined on Q). That this is not the case for
the familiar example of quantum theory on Rn is a direct consequence of the Stone-von
Neumann theorem.

In some cases, the representation space where the state vectors are defined takes the
form of a space of sections of some vector bundle over Q. For a given classical the-
ory, different, inequivalent quantizations may be possible, and this could be reflected
in the fact that the corresponding state functions will be sections defined on topologi-
cally inequivalent vector bundles over Q. It could also happen that two (inequivalent)
representations take place on the space of sections of the same bundle, but that there is
some parameter that singles out the representations as being inequivalent. One way
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2.2 Canonical Quantization from Group Actions

in which this may happen is in the choice of a certain flat connection that makes its
appearance in the process of quantization.

The remarks above will be illustrated in the remaining sections of this chapter, follow-
ing an approach to quantization where the relevance of group actions and its relation
to topological effects in quantum theory are emphasized. The basic reference we have
followed for this topic is the article by C.J. Isham, from the Les Houches session of
1983 [Ish84]. Other useful references are [Mor92, HMS89]. There are, of course, many
approaches to quantization, from quite different points of view. One of them is, for
example, geometric quantization [Sou69, Woo80]. More recent approaches include, for
example, deformation quantization [BFF+78, Fed94]. But, for our purposes, the very
readable account of Isham will suffice.

2.2.2 From CCR to group actions and back

A very nice way to see that the usual CCR cannot hold for every configuration space, is
provided by quantum theory based on the positive real line, R+. Assume that the usual
definition for the position and momentum operators can also be used in this case:

(x̂ψ)(x) = xψ(x) (2.2.2)

(p̂ψ)(x) = −i~ d

dx
ψ(x).

Let us assume that we can take as Hilbert space H = L2(R+, dx). Now, assume for a
moment that the operator defined by eq. (2.2.2) is self-adjoint (it is not). If this were
the case, then we could affirm that this operator is the infinitesimal generator of trans-
lations, i.e., with U(a) := e−iap̂ we would obtain a unitary operator in H whose action
on wave functions would be

(U(a)ψ)(x) = ψ(x− ~a). (2.2.3)

But clearly this cannot be possible, since we could always choose a in such a way
that the support of U(a)ψ ends up lying outside R+. Therefore, the usual definition
of position and momentum operators does not work for this space. If the basic CCR
cannot be imposed on this configuration space, what kind of operators could then be
defined on it, and in that case, what kind of commutation relations would they obey?
In order to answer this questions, it is necessary to answer first another one: What is
the “origin” of the usual CCR in the familiar case of quantum theory on R (or Rn)? This
question is to be interpreted in the following sense. As the above example suggests,
the fact that the CCR cannot hold in a given configuration space Q, has something
to do with the structure of Q. Note that the main difference between R and R+ is
that, whereas the former is a vector space, the latter is not. So, the question about the
“origin” of the CCR on R could be reformulated by asking: What are the properties of
R that allow the CCR to hold?
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2 Quantization on multiply-connected configuration spaces

One way to answer the question posed above is by considering the exponentiated
(Weyl) form of the CCR. Defining the unitary operators

U(a) := e−iap̂, V (b) := e−ibx̂, (2.2.4)

acting on L2(R, dx), we obtain the following relations:

U(a1)U(a2) = U(a1 + a2),

V (b1)V (b2) = V (b1 + b2), (2.2.5)

U(a)V (b) = ei~abV (b)U(a).

These relations follow readily from the action of U(a) and V (b) on wave functions:

(U(a)ψ)(x) = ψ(x− ~a), (2.2.6)

(V (b)ψ)(x) = e−ibxψ(x).

The commutation relations eq.(2.2.5) suggest that we are dealing with a representation
of some group. This is in fact true, and the underlying group is called the Heisenberg
Group. It can be defined not only for R but also for Rn. As a set, it is given by Rn×Rn×R,
with the group law

(a1, b1; r1) · (a2, b2; r2) := (a1 + a2, b1 + b2; r1 + r2 +
1

2
(b1 · a2 − b2 · a1)). (2.2.7)

From (a, 0; 0)−1 = (−a, 0; 0) and (0, b; 0)−1 = (0,−b; 0), one checks:

(a, 0; 0) · (0, b; 0) · (a, 0; 0)−1 · (0, b; 0)−1 =

= (a, 0; 0) · (0, b; 0) · (−a, 0; 0) · (0,−b; 0)

= (a, b;−1

2
ab) · (−a,−b;−1

2
ab)

= (0, 0;−ab).

Thus we see that, if we define a representation R of the Heisenberg group on the space
L2(R, dx) by

R((a, 0; 0)) := U(a),

R((0, b; 0)) := V (b), (2.2.8)

R((0, 0; r)) := ei~rid,

we can get the commutation relations eq. (2.2.5) from this representation of the Heisen-
berg group. In order to see how the Heisenberg group is related to the symplectic
structure of the phase space T ∗Rn, it is convenient to consider its action (through the
operators U and V ) on the position and momentum operators:

U(a)x̂U(a)−1 = x̂− ~a, (2.2.9)

V (b)p̂V (b)−1 = p̂+ ~b.
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2.2 Canonical Quantization from Group Actions

These relations suggest that we consider the following transformation:

(Rn × R
n) × T ∗

R
n → T ∗

R
n (2.2.10)

((a, b), (q, p)) 7→ (q − a, p + b).

If we see R
n×R

n as an additive group, then eq.(2.2.10) gives place to a group action on
T ∗Rn. Although not clear at this point, starting from this group action one can arrive
in a quite systematic way to the conclusion that the Heisenberg group provides the
solution to the quantization problem on Rn. For the moment, let us just mention that
the action eq.(2.2.10) is symplectic, transitive and effective.

Summing up, what we have done until now is to realize that there is a group acting on
the classical phase space, that this group is in a certain form related to the Heisenberg
group and that the CCR (in their Weyl form) can be obtained from a representation of
the Heisenberg group on L2(R, dx).

The link between the classical and the quantum theory on Rn can be directly estab-
lished at the infinitesimal level, by considering Dirac’s quantization conditions, which

include the replacement of classical observables f by operators f̂ in such a way that the
Poisson bracket of two observables is mapped to the commutator of the corresponding
operators. In terms of the Heisenberg group, this can be formulated in the following
way. The Lie algebra of the Heisenberg group, as a vector space, is given by Rn⊕Rn⊕R.
The Lie bracket is

[(a1, b1; r1), (a2, b2; r2)] = (0, 0; b1 · a2 − b2 · a1). (2.2.11)

This makes clear that the CCR are a representation of this Lie algebra. Consider now
the subalgebra of the Poisson bracket algebra of T ∗Rn given by the family of functions
{P (a, b; c) ∈ C∞(T ∗Rn,R) | a, b ∈ Rn, c ∈ R}, where

P (a, b; c) :=
∑

(aipi + biq
i) + c. (2.2.12)

This is a (2n+1)-dimensional subspace ofC∞(Rn,R) and also a Lie subalgebra, because
it is closed under the Poisson bracket:

{P (a1, b1; r1), P (a2, b2; r2))} = P (0, 0; b1 · a2 − b2 · a1). (2.2.13)

This last relation allows one to formulate the above mentioned Dirac’s quantization
condition by means of the map

P (a, b; c) 7→
∑

(aip̂i + biq̂
i) + i~c id. (2.2.14)

Note that from eqns. (2.2.11) and (2.2.13) it is clear that this map takes the Poisson
bracket {qi, pj} = δij to [q̂i, p̂j] = i~δij .

This seems to make the consideration of the symplectic action of the additive group
Rn × Rn on T ∗Rn unnecessary. But, as explained below, in a generic case, the existence
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2 Quantization on multiply-connected configuration spaces

of a group action on phase space, fulfilling certain conditions, will be the starting point
for the construction of the corresponding quantum theory.

With these remarks about the case of T ∗Rn in mind, let us very briefly present the
main ideas about the quantization scheme presented in [Ish84]. The starting point is a
classical phase space P , i.e., a symplectic manifold. In most examples this phase space
is the one associated to a configuration space Q: P = T ∗Q.

There are two main stages into which the scheme can be divided.

(1) Find a finite dimensional Lie Group (C) which is related (in a way to be specified)
to a group (G) of symplectic transformations of the phase space P and such that:

(i) Its Lie algebra L(C) is a subalgebra of the Poisson bracket algebra
(C∞(P,R), { , }).

(ii) L(C) is big enough to generate as many (classical) observables as possible.

(2) Study the unitary, irreducible representations of C. The self-adjoint generators
can be considered as the quantized versions of the corresponding classical ob-
servables.

As observed before, in the case of Q = Rn, the relation between the groups C (Heisen-
berg group) and G (the additive group Rn × Rn) is not clear a priori. This is due to the
existence of a certain obstruction (for details, see further below) that arises when one
attempts to assign a classical observable (i.e. a function in (C∞(P,R)) to each element
of L(G)) in such a way that the Lie bracket is preserved.

One of the reasons why the scheme consists in starting with a group that acts on P and
then in trying to associate its Lie algebra with functions on P is that if this association
can be constructed in the form of a Lie algebra isomorphism

P : L(G) →֒ C∞(P,R), (2.2.15)

one can define a quantization map by fixing a representation U of the group and as-
signing to each function lying in the image of P the self-adjoint generator obtained
from U by means of P−1.

Whereas the existence of a map P having the desired properties is not something ob-
vious, in the opposite direction, there is a natural way to implement such a procedure.
Indeed, given a (finite dimensional) Lie subalgebra l of C∞(P,R), consider the Hamil-
tonian vector field that a function f ∈ l generates: ξf . This vector field gives place to
a one-parameter subgroup, acting by symplectic transformations. If these vector fields
are complete, their one-parameter subgroups will generate a group G of symplectic
transformations and, if the mapping sending l into the set of Hamiltonian vector fields
is injective, we obtain a Lie algebra isomorphism l ∼= L(G).
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2.2 Canonical Quantization from Group Actions

Thus, the idea is, starting with a group G of symplectic transformations, to find a kind
of “inverse” to the map

 : C∞(P,R) → Ham VF(P) (2.2.16)

f 7→ −ξf

and then to pre-compose it with a map γ : L(G) → Ham VF(P). The map γ is naturally
induced by the G-action on P , but in order that its image be restricted to only the set
of Hamiltonian vector fields and that it be an isomorphism, some conditions must be
imposed.

The situation can be summarized by saying that one looks for a map P that makes the
following diagram commute:

0 R C∞(P,R)


HamVF(P) 0

L(G)

γ
P

The kernel of  consists of the set of constant functions on phase space, so the first
row represents a short exact sequence. There are two main problems in relation to this
diagram. The first one has to do with the conditions that should be imposed on the
action in order that the map γ produces globally Hamiltonian vector fields. The second
one comes from the requirement that the map P respects the Lie algebra structure. In
order to understand this in some detail, let us consider, point by point, some of the
more relevant features.

• The map γ:

Given a symplectic action of a Lie group on phase space, G×P → P , one can construct
a map γ : L(G) → VF(P) as follows. Given A ∈ L(G), consider the map sending
t ∈ R to etA ∈ G. Then, using the action, one can define a one-parameter subgroup of
symplectic transformations on P , given by

φAt (x) := e−tA · x (x ∈ P).

From this we obtain a vector field γA, defined through its action on functions:

γAx (f) :=
d

dt
f(φAt (x))|t=0. (2.2.17)

From this definition, it follows that the map γ : A 7→ γA is a Lie algebra homomor-
phism. It is clear that φA is the local flow of γA. But φAt , being a symplectic transforma-
tion, preserves the symplectic form (ω), i.e. φA∗t ω = ω. This, together with the relation
d
dt
φA∗t (ω) = φA∗t (LγAω), implies that the Lie derivative LγAω vanishes. This is a nec-

essary condition in order that γA be the Hamiltonian vector field of some function on
phase space. But it is not sufficient. To see this, notice that from LγA = ıγA◦d+d◦ıγA and
dω = 0, it follows that ıγAω is a closed one-form. But the requirement that γA = ξf for
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2 Quantization on multiply-connected configuration spaces

some function f is equivalent to the requirement that ıγAω = df . We thus arrive at the
conclusion that a sufficient condition in order that the image of the map γ lies entirely
in the set of Hamiltonian vector fields, Ham VF(P), is that every closed one-form on
P be also exact. In other words, we must require that the first cohomology group of P
vanishes. This imposes a restriction of a topological nature on the phase spaces P that
can be quantized using the present approach. Finally, let us mention that a sufficient
condition for the map γ to be injective is that the action be effective. (A less restrictive
condition can be imposed, allowing one to replace the group G by a covering of it, see
[Ish84]).

• The map P and the obstruction cocycle:

If the G-action is effective, and if the first cohomology group of the phase space van-
ishes, we obtain an isomorphism γ from L(G) into the set of Hamiltonian vector fields.
But in order to be able to assign an observable to each element of L(G), we need to find
a suitable map P : L(G) → C∞(P). As indicated in the diagram above, the idea is that
the diagram commutes, that is for A ∈ L(G) we want to have (PA ≡ P (A)):

γA = −ξPA. (2.2.18)

This is a natural requirement, since, as we have observed, the map  assigns a Hamil-
tonian vector field to every function on phase space, in a natural way. Up to the iso-
morphism γ, we are now looking for an assignment in the opposite direction, and it is
natural to expect that, if γ(A) = (f), then P (A) = f (at least up to a constant, since
ker  = R). The map P should also be a Lie algebra isomorphism. From the requirement
eq.(2.2.18) and the fact that γ is a Lie algebra homomorphism, we obtain:

ξP [A,B] = ξ{PA,PB}. (2.2.19)

But, since ker  = R, the only thing we can conclude is that

z(A,B) := {PA, PB} − P [A,B] (2.2.20)

is a constant. There is some freedom in the choice of the map P : If PA satisfies
eq.(2.2.18), then the map P ′, defined by

P ′A := PA + d(A), (2.2.21)

where d belongs to the dual of L(G), is also linear and satisfies eq.(2.2.18). The problem
is then reduced to find a suitable d ∈ L(G)∗ in such a way that the constants z(A,B) in
eq.(2.2.20) vanish for all A,B.

Eq.(2.2.20) defines a real-valued 2-cocycle, that is, a map z : L(G)×L(G) → R satisfying

z(A,B) = −z(B,A)

z(A, [B,C]) + z(B, [C,A]) + z(C, [A,B]) = 0.

If the cocycle z is of the form
z(A,B) = d([A,B]), (2.2.22)
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2.2 Canonical Quantization from Group Actions

for some d ∈ L(G)∗, it is called a 2-coboundary. In this case we obtain, for the map P ′

defined in eq.(2.2.21),

{P ′A, P ′B} − P ′[A,B] = {PA, PB} − P [A,B] − d([A,B])

= z(A,B) − d([A,B])

= 0.

Note that every 2-coboundary is also a 2-cocycle. Defining an equivalence relation on
the set of 2-cocycles by saying that two 2-cocycles are equivalent if they differ by a 2-
coboundary, we obtain what is called the second cohomology group of the Lie algebra
L(G) (with values in R). We thus see that the group G and its action on P define a class
in this cohomology group, and the map P with the desired properties can be defined
if and only if this class vanishes. If the cocycle can be made to vanish, we obtain a Lie
algebra isomorphism A 7→ PA. Choosing a representation of G, we can quantize by
assigning a self-adjoint generator to every observable PA ∈ C∞(P). But if the cocycle
cannot be made to vanish, an additional step is necessary. The idea is to replace L(G)
by a Lie algebra E , in such a way that the resulting cocycle vanishes. The new algebra
E will be what is known as a central extension (by R) of L(G). E is defined on L(G)⊕R,
with Lie bracket

[(A, r), (B, s)] = ([A,B], z(A,B)). (2.2.23)

Using the natural homomorphism

β : E → L(G)

(A, r) 7→ A,

we can replace the old map P : L(G) → C∞(P,R) by a new one P̃ : E → C∞(P,R),
defined by

P̃ (A,r) := PA + r. (2.2.24)

This new map provides a solution to our problem. Indeed, from eqns.(2.2.23) and
(2.2.24), it follows that

{P̃ (A,r), P̃ (B,s)} = P̃ [(A,r),(B,s)].

From this new Lie algebra we obtain a Lie group, C (the canonical group, in the termi-
nology of [Ish84]), whose unitary representations can be used to obtain a quantization
of the system.

• Transitivity of the G-action:

A transitive group action will guarantee that sufficiently many observables (functions
on phase space) can be quantized. There are other requirements that can be imposed
instead of transitivity, but this one is reasonable and works well in many known exam-
ples. A particular consequence of this condition is that the vector field γA will always
span the tangent of phase space at every point (see [Ish84], section 4.3.4).
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2 Quantization on multiply-connected configuration spaces

2.2.3 Representations of the canonical group

When the phase space P is the cotangent bundle of a configuration space Q, there
are two natural classes of transformations that one can consider. The first class is the
one induced by the diffeomorphism group of Q on T ∗Q: If φ ∈ DiffQ, then using the
pull-back of φ we obtain a transformation (l ∈ T ∗

qQ and v ∈ T ∗
qQ) defined by:

〈φ∗l, v〉q = 〈l, φ∗v〉φ(q). (2.2.25)

The map l 7→ φ∗l is, in particular, a symplectic transformation on T ∗Q. Thus, sub-
groups of DiffQ are possible candidates for the canonical group. The difficulty is that
this action is not transitive. For this reason, this class of transformations has to be
complemented by a second one. The second class of transformations is induced by
functions on Q, as follows. Given h ∈ C∞(Q,R) we can use its exterior differential to
generate “translations” along the fibers of T ∗Q, mapping l ∈ T ∗

qQ to l− (dh)q ∈ T ∗
qQ. It

turns out that this transformation is also a symplectic transformation. Notice that since
h acts only through its differential dh, it is really the quotient group C∞(Q,R)/R that
is being considered: Two functions differing by a constant produce the same transfor-
mation.

We thus have two different group actions on T ∗Q:

DiffQ× T ∗Q → T ∗Q
(φ, l) 7→ φ−1∗l

and

C∞(Q,R)/R × T ∗Q → T ∗Q
(α, l) 7→ l − (dα)q (l ∈ T ∗

qQ).

It is not difficult to see that the set of DiffQ-induced transformations plus the set of the
C∞(Q,R)-induced ones is transitive on T ∗Q. It is therefore natural to try to express
them as the action of a single group on T ∗Q, whose underlying set is C∞(Q,R)/R ×
DiffQ. The group law is determined by the requirement that it must be compatible with
the action. Denoting with τ the action, we have (for α ∈
C∞(Q,R)/R, φ ∈ DiffQ and l ∈ T ∗

qQ):

τ(α,φ)(l) := φ−1∗(l) − (dα)φ(q).

From the requirement τg2◦τg1
!
= τg2g1 we obtain:

τ(α2,φ2)◦τ(α1,φ2)(l) =

= τ(α2,φ2)(φ
−1∗
1 (l) − (dα1)φ1(q))

= φ−1∗
2 (φ−1∗

1 (l) − (dα)φ1(q)) − (dα2)φ2◦φ1(q)

= ((φ2◦φ1)
−1)∗(l) − d(φ−1∗

2 α1 − α2)φ2◦φ1(q)

= τ(φ2◦φ1,α1◦φ−1
2 +α2)(l).
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2.2 Canonical Quantization from Group Actions

Thus, the structure obtained is that of the semi-direct product C∞(Q)/R ⋉ DiffQ. This
group has several interesting properties. Among them, it fulfills all the requirements
needed to implement the quantization procedure (for details, the reader is referred to
[Ish84]). In particular, the map γ that it induces produces Hamiltonian vector fields.
For the class of examples where this group can be used, the quantization problem
reduces to finding a suitable finite dimensional subspace W of C∞(Q)/R and a finite
dimensional subgroup G of DiffQ and then to study the representations of the group
W ⋉G.

The fact that for the scheme we have been discussing the basic structure is that of a
group acting by symplectic transformations on phase space, provides the justification
for a re-examination of the basic assumption, stated in the last section, that pure states
are always expressible as functions. Indeed, since the quantum theory is obtained from
the unitary representations of the canonical group, there is no a priori reason to discard
one representation in favor of another one. Inequivalent representations might be as-
sociated with the same classical system, leading to different quantizations of it. Some
of these representations will lead to states that are expressible in the form of functions,
but there might be other representations for which the representation space is, for in-
stance, some space of cross-sections of a vector bundle over the configuration space.
These kind of representation arise naturally when one has a group G acting on a space
M . If, for example, ψ : M → C belong to some set of functions on M , the G-action
induces a transformation on the space of functions, mapping ψ to g · ψ, where

g · ψ(m) := ψ(g−1 ·m). (2.2.26)

Depending on the particular situation, the set of functions may be a space of (square)
integrable, or continuous functions on M , and one is interested in G-actions that pre-
serve this set, thus making it a representation space. But there is also the possibility
of considering a vector bundle η over M , and of defining a G-representation on some
space of sections of this bundle. The only difficulty is that eq.(2.2.26) cannot be applied
directly, because, ifψ is now a cross-section, the vectors ψ(m) and ψ(g−1·m) will belong,
in general, to different vector spaces (the fibers over m and g−1 · m, respectively). A
suitable generalization of eq.(2.2.26) can be obtained if it is possible to lift the G-action
on M to one on the total space of the bundle.

The search for lifts of the action leads naturally to the consideration of the covering
spaces of M , because of the existence of “lifting theorems” guarantee, under certain
assumptions, the existence of lifts (to the covering space) of functions from a given
space into M . Once a lift of the G-action on M to one of its covering spaces has been
found, it can be passed to the vector bundles associated with the covering space. The

universal covering space of M , M̃ , is an example of particular interest. In this case the

structure group of the (principal) bundle M̃ → M is the fundamental group π1(M).
Although we are neglecting a lot of technical points here, it should be at least plausible
that in this case, if the representations are obtained from G-lifts to vector bundles over

M and, in turn, these G-lifts are obtained from lifts to the π1(M)-principal bundle M̃ ,
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2 Quantization on multiply-connected configuration spaces

there will be some relation between the representations and the fundamental group
π1(M). This is exactly what happens when one considers the quantum mechanics of a
spinless particle in a multiply connected configuration space Q. First one has to find
the canonical group following the “steps” described previously. And then, to construct
the representations of this canonical group, one looks for the corresponding G-lifts on

the universal covering Q̃. As explained in detail in [Ish84], the final result is that the
inequivalent quantizations of this system are classified by the one dimensional, unitary
representations of π1(Q), exactly as stated in theorem 2.1.1.

28



3 G-spaces and Projective Modules

In this chapter we consider the free action of a finite group G on a manifold M and
the relation between vector bundles over the quotient space M/G and G-equivariant
vector bundles over M . This well-known relation is presented in such a way that a
new formulation, in algebraic terms, becomes possible. In particular, it is shown that
the algebra C(M) of complex valued, continuous functions on M admits a decomposi-
tion into finitely generated, projective modules over the algebra C(M/G). The relation
between these projective modules and the irreducible representations of the group G
is worked out in detail. The results obtained in this chapter provide the basis for the
discussion of the Spin-Statistics relation in the next ones.

3.1 Equivariant bundles

Since the configuration space for a system ofN indistinguishable particles is a quotient
space, obtained from the action of the permutation group of N elements on the space
R

3×· · ·×R
3 \∆, it is of relevance for us to consider topological spacesM that carry the

structure of a G-space. When studying objects defined on the orbit space M/G, it turns
out to be a good idea to consider them as arising from objects defined on the original
space M . For instance, if we are interested in bundles over M/G, it is convenient to
consider G-equivariant bundles over M . These are bundles that also carry a (special
type) of G-action. Under some assumptions, it is then possible to describe a bundle
over M/G as the quotient of an equivariant bundle over M .

The analog of a G-space at the level of vector bundles is a G-equivariant vector bundle,
or just G-bundle, defined below (some definitions and theorems used in this section
are collected in appendix A).

3.1.1 Definition. A vector bundle ξ = (E(ξ), π,M) over the G-space M is called a G-
bundle when the following conditions hold:

• The total space E(ξ) is itself a G-space (the corresponding action will be denoted
with τ ).

• The projection π is G-equivariant, i.e. π◦τg = ρg◦π for all g in G or, equivalently,
the diagram
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3 G-spaces and Projective Modules

E(ξ)

π

τg
E(ξ)

π

M
ρg

M.
commutes.

• The restriction τg
∣∣
π−1(m)

: π−1(m) −→ π−1(g · m) of the action to the fibers is a

vector space isomorphism.

3.1.2 Definition (G-Bundle morphism). A morphism between two G-bundles is a G-
equivariant bundle morphism. The notation ξ1 ∼=G ξ2 will be used whenever ξ1 and ξ2
are equivalent as G-bundles.

Let M and N be two topological spaces and φ : M → N a continuous map between
them. Let ξ be a vector bundle overN , with projection map π : E(ξ) → N . The pull-back
φ∗ξ of ξ under φ is a bundle, defined over M , with total space

E(φ∗ξ) := {(x, y) ∈ (M × E(ξ)) |φ(x) = π(y))}.

At first, the bundles ξ and φ∗ξ are only related by the fact that it is possible to lift φ to a

bundle morphism φ̂ : φ∗ξ → ξ. But if we have an action ρ : G×M →M of, say, a finite
group G, then an interesting relation between ξ and φ∗ξ emerges, that we proceed to
explain. Let q : M → M/G be the canonical projection. If we put above φ = q and
N = M/G, then the pull-back q∗ induces an action τξ of G on E(q∗ξ), given by

τξ(g, (m, y)) = g · (m, y) := (g ·m, y), g ∈ G, (m, y) ∈ E(q∗ξ) (3.1.1)

This action is also free and so we see that, because of §A.9 and §A.11, the quotient
E(q∗ξ)/G is also a manifold. As we will see, one finds that E(q∗ξ)/G is the total space
of a vector bundle (denoted q∗ξ/G) over M/G, which is isomorphic to ξ:

q∗ξ/G ∼= ξ.

On the other hand, let η be a G-bundle over M . The quotient E(η)/G is, again, the total
space of a bundle over M/G, whose pull-back is G-isomorphic to η:

q∗(η/G) ∼=G η.

For G finite, we have:

3.1.3 Theorem (cf.[Ati67]). If M is G-free, there is a bijective correspondence between G-
bundles over M and bundles over M/G by η → η/G.

Proof. Let M be a G-space with free action ρ and let η be a G-bundle over M with
projection map π and action τ . The action τ must also be free, because suppose we
have y ∈ E(η) and g ∈ G with g · y = y. Since π(g · y) = π(y) and η is a G-bundle, it
follows that π(g · y) = g · π(y), so that g = e.
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3.1 Equivariant bundles

It then follows, from theorem A.9, that E(η)/G has a differentiable structure. Let us
denote with q and q̄ the respective projections:

q : M →M/G , q̄ : E(η) → E(η)/G.

Choose now an open cover {Ũα,i}α∈I,i∈IG
for M , exactly as in theorem A.9 (here IG =

{1, 2, . . . , |G|}) and choose local trivialisations of the form

ψ̃α,i : π−1(Ũα,i) −→ Ũα,i × C
n (n = Rank(E) ).

These local trivialisations can serve, at the same time, as charts for E(η), provided Ũα,i
is identified with a neighborhood in Rm and {π−1(Ũα,i)}α,i chosen as cover for E(η).
Since π is equivariant, this cover has the same properties as {Ũα,i}α,i, namely (here we
use the shorthand notation τi( · ) := τ(gi, ·)):

π−1(Ũα,i)) = τi(π
−1(Ũα,1)) (∀i),

π−1(Ũα,i) ∩ π−1(Ũα,j) = ∅ (i 6= j),

q̄(π−1(Ũα,i)) = q̄(π−1(Ũα,j)) (∀i, j).

From theorem A.9 we then know that charts for E(η)/G can be defined by

ψ̃α,1◦q̄−1
α,1 : q̄(π−1(Ũα,1)) −→ Ũα,1 × C

n, (3.1.2)

where q̄α,i := q̄|π−1(Ũα,i)
. The bundle projection π̄ is defined in such a way that q̄ becomes

a bundle morphism:

π̄ : E(η)/G −→ M/G (3.1.3)

q̄(y) 7−→ q(π(y)).

π̄ is well defined, since π is equivariant (see below). From Uα := q(Ũα,i) and π̄◦q̄ = q◦π
we see that the following holds (for all i):

π̄−1(Uα) = q̄(π−1(Ũα,i)). (3.1.4)

Indeed, we have:

[y] ∈ q̄(π−1(Ũα,i)) ⇔ ∃g ∈ G s.t. y ∈ π−1(g · Ũα,1)
⇔ ∃g ∈ G s.t. π(y) ∈ g · Ũα,1
⇔ [π(y)] (= π̄([y])) ∈ Uα

⇔ [y] ∈ π̄−1(Uα).

It then follows, from (3.1.2) and (3.1.4), that ψα := (q × id)◦ψ̃α,1◦q̄−1
α,1 gives place to a

local trivialisation. That is, we get homeomorphisms:

ψα : π̄−1(Uα) −→ Uα × C
n. (3.1.5)
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3 G-spaces and Projective Modules

Let us check that π̄ is well defined. We have:

[y1] = [y2] ⇒ ∃g ∈ G so that y2 = g · y1

⇒ π(y2) = π(g · y1) = g · π(y1)

⇒ [π(y2)] = [π(y1)].

That π̄ preserves fibers follows directly from the definition, eq. (3.1.3):

π(y1) = π(y2) ⇒ π̄(q̄(y1)) = q(π(y1))

= q(π(y2))

= π̄(q̄(y2)).

Now, what the theorem asserts is that for a G-bundle η the following holds:

• η ≃G q
∗(η/G):

E(η)
q̄
E(η)/G

M q M/G,

whereas for a bundle ξ over M/G one has:

• q∗(ξ)/G ≃ ξ:

q∗(ξ) ξ

M q M/G.

These isomorphisms must be established. Transition functions for η/G are determined
by the condition

ψα◦ψ−1
β ([x], t) = ([x], gα,β([x])t). (3.1.6)

They can be related to the transition functions of η, g̃αi,βj
, as follows. Consider [x] ∈

Uα ∩ Uβ and choose a representative x ∈ [x]. Then x ∈ Ũαi
∩ Ũβj

for some i, j. In

particular, there are elements gi, gj ∈ G such that Ũαi
= giŨα1 and Ũβj

= gjŨβ1 . From

the definition of ψα in terms of ψ̃α1 it then follows that

gα,β([x]) = g−1
j g̃βj ,αi

(x) gi. (3.1.7)

Here, gi is a shorthand notation for the action of the group element gi on C
n induced

by τ through the local trivializations of the bundle. Eq. (3.1.7) is obtained in exactly
the same way as eq. (A.3), see also diagram (A.4). On the other hand, the transition
functions gpb

α,β for the pull-back bundle q∗(η/G) are, by definition,

gpb

α,β(x) = gα,β([x]). (3.1.8)

This shows the equivalence of η with q∗(η/G). Equations (3.1.7) and (3.1.8) give place
to a bundle isomorphism h : η → q∗(η/G), and it is easy to check that, with respect
to the G-action naturally defined on q∗(η/G) (see eq. (3.1.1)), h is G-equivariant. This
means that η and q∗(η/G) are also equivalent as equivariant bundles. The isomorphism
ξ ∼= q∗(ξ)/G is established in a similar way.
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3.2 Equivariant trivial bundles

3.2 Equivariant trivial bundles

It is possible, based on the equivalence of theorem 3.1.3, to describe bundles over M/G
by means of (corresponding, G-equivariant) ones over M . Of course it may happen
that a given bundle η over M admits several, non-equivalent, G-bundle structures. In
this case, the corresponding quotient bundles over M/G are inequivalent. This means:
If we want to regard η as a bundle over M/G, then we must take its G-bundle structure
into account. We are thus interested in a more compact formulation of this equivalence.
As we will see, a reformulation of theorem 3.1.3 in algebraic terms will serve this pur-
pose. A first step in this direction can already be given, using the proofs of theorems
A.9 and 3.1.3, if we introduce the following definition.

3.2.1 Definition. Let ξ = (E(ξ), π,M) be a vector bundle. Let {φα}α a partition of
unity for M (

∑
α |φα(x)|2 = 1 ) and {gα,β} a choice of transition functions for ξ, both

subordinated to a given open cover {Uα}α of M . The projector Pξ corresponding to ξ
will be defined as the C(M)-valued block matrix with entries

(Pξ(x))α,β = |φα(x)| gα,β(x) |φβ(x)|.

We will see in the next section that the bundle ξ can equivalently be described by the
projector Pξ. The transition functions for the quotient bundle η/G from theorem 3.1.3
are given by eq. (3.1.7).

It is of interest for us to see if it is possible to use the data of an equivariant bundle
(action, transition functions, etc..) in order to obtain the projector of the quotient bundle.
We say this is of interest for us, because the data of the equivariant bundle will contain,
apart from information about the group action, functions defined on M , whereas the
entries of the projectors will be functions on M/G.

A particular case one can consider is that of a trivial equivariant vector bundle. This
does not necessarily mean that the group action is also trivial. The map defining the
action on the total space of the bundle must satisfy certain relations; these can be inter-
preted as cocycle conditions and can, in principle, be used to establish the equivalence
classes of actions on that trivial bundle. Here we will consider the much simpler case
of an equivariant trivial bundle with the action on the total space of the bundle given
by a representation of the group. This seems to be enough for the analysis of indin-
stinguishability in Quantum Mechanics (see, however comments on chapter 6). In this
particular case, one can easily express the projector describing the quotient bundle in
terms of functions on M , as illustrated below.

Keeping the same notation as in §A.9 and §3.1.3, let {Uα}α∈I and {Ũα,i}α,i be cov-
ers of M/G and M , respectively (in particular we assume that Uα = q(Ũα,i) and that
eqns. (A.1) and (A.2) hold). Consider an irreducible, unitary representation R : G →
Gl(nR,C). Then the bundle η = (M × CnR, π1,M) is equivariant with respect to the
G-action

h · (x, t) := (h · x,R(h)t). (3.2.1)
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3 G-spaces and Projective Modules

Since η is trivial, all g̃βj ,αi
equal the identity ofG and, therefore, the transition functions

for η/G are given by (compare equation (3.1.7))

gα,β : Uα ∪ Uβ → Gl(nR,C) (3.2.2)

[x] 7→ gα,β([x]) = R(h−1
j )R(hi),

with i and j depending on some choice of x ∈ [x] (the product h−1
j hi is independent

of this choice). Choosing a partition of unity {φα}α for M/G (with Suppφα ⊂ Uα and∑
α∈I |φα([x])|2 = 1, for [x] in M/G) we define, for every α, the following map:

Ψα1(x) :=

{
φα([x]), if x ∈ Ũα1

0, otherwise.
(3.2.3)

This is in fact a smooth function M → R, because Suppφα ⊂ Uα and Ũα,1 ≃ Uα. Using
the action, we can generate |G| functions from Ψα,1. These functions give a partition
of unity for M , with respect to the open cover {Uαi

}α,i. To show this, let x be any
representative of [x] ∈ Uα. Then there is exactly one open set Ũα,k, that contains x
(the index k ∈ {1, . . . , |G|} obviously depends on x). It follows that there is only one
non-vanishing term in the sum

∑
h∈G |Ψα1(h

−1 · x)|2 and from this we conclude:

∑

h∈G
|Ψα,1(h

−1 · x)|2 = |Ψα,1(h
−1
k · x)|2 = |φα([x])|2 (x ∈ Ũα,k).

That means, ∑

α∈I

∑

h∈G
|Ψα1(h

−1 · x)|2 = 1, (∀x ∈M), (3.2.4)

as claimed. Now we can write down the projector P corresponding to η/G, in such a
way, that only functions on M are used:

Pαβ([x]) = φα([x])gαβ([x])φβ([x]) (from definition 3.2.1)

= φα([x])
(
R(h−1

i )R(hj)
)
φβ([x])

=
(
Ψα1(h

−1
i · x)R(h−1

i )
) (
R(hj)Ψβ1(h

−1
j · x)

)

=


∑

h̃∈G

Ψα1(h̃
−1 · x)R(h̃−1)



(
∑

h∈G
Ψβ1(h

−1 · x)R(h)

)
.

The entries of (the block (α, β) of the) projector can be expressed in terms of the matrix
components of the representation. One obtains:

(
Pαβ([x])

)
ij

=
∑

h̃∈G

∑

h∈G
Ψα1(h̃

−1 · x)Ψβ1(h
−1 · x)

(
R(h̃−1)R(h)

)
ij

=

nR∑

k=1

(∑

h̃∈G

R∗(h̃)kiΨα1(h̃
−1 · x)

)(∑

h∈G
R(h)kjΨβ1(h

−1 · x)
)
.
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3.3 Projective Modules

Introducing the functions (α ∈ I , i, j ∈ {1, . . . , nR})

Ψα
ij(x) :=

nR
|G|

∑

h∈G
R∗(h)ijΨα1(h

−1 · x), (3.2.5)

we obtain a more compact expression for the entries of the projector:

(
Pαβ([x])

)
ij

=
|G|2
n2
R

nR∑

k=1

Ψα
ki(x)Ψ

β∗
kj (x). (3.2.6)

The relevance of this formula, for us, is the following. The possibility of describing
vector bundles by means of projectors (as the one from definition 3.2.1) comes from
the Serre-Swan theorem, that establishes an equivalence between categories of vector
bundles on one hand and of finitely generated, projective modules on the other (this
equivalence will be discussed in some detail in the next section). The usefulness of eq.
(3.2.6) is that we have a vector bundle η/G over the quotient space M/G but, using the
Serre-Swan theorem, we know that this bundle can be equivalently described by the
corresponding projector. In our example, the bundle in question is the quotient bundle
of a trivial bundle η defined on M , which is G-equivariant. The G-action on the total
space is determined by a representation of G. Since -as can be seen in eq. (3.2.6)- the
components of this projector can be expressed completely in terms of functions defined
on M (and not on M/G), we are led to the idea that certain vector bundles over M/G
might be expressible in terms of functions defined on M . This is in fact true, and in
section 3.3 we will see how the G-action on M naturally induces a decomposition of
C(M) into projective C(M/G)-modules. The projectors describing these modules will
be shown to be precisely of the form we have just obtained in eq. (3.2.6).

3.3 Projective Modules

The purpose of this section is to obtain an alternative version of theorem 3.1.3 in terms
of the spaces of sections associated with the bundles involved. There are mainly two
motivations for doing this.

• As explained in the introduction, we are looking for a formulation of the quan-
tum mechanics of a system of identical particles in which the wave function is
considered to be a section of a suitable vector bundle defined on the configura-
tion space Q (eq.(1.1.2)). We remarked, at the end of chapter 2, that when the
configuration space is multiply-connected, as is Q, it is a good strategy to con-

sider its universal cover, Q̃. In the case of “spin zero” quantum mechanics, a

standard procedure is to consider, at first, subsidiary functions ψ̃ : Q̃ → C. It is
important to emphasize that such a function is not the physical wave function.
The latter (call it ψ) should have Q as its domain of definition and it might be that
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3 G-spaces and Projective Modules

it is really not a function but a section on some bundle over Q. Although ψ̃ is not
the physical wave function, some conditions can be imposed on it in order that

it represents the physical one. In that case, one says that ψ̃ is “projectable” to Q.
In order that such a function be “projectable”, it is required (for obvious physical
reasons) that, for x ∈ Q and for any x̃ in the fiber q−1(x) (q denotes the projection

q : Q̃ → Q) |ψ̃(x̃)|2 depends only on the point x, independently of x̃. Restricting

ψ̃ in this way, we force its domain of definition to be “almost” Q, for if x̃1 and x̃2

belong to the same fiber q−1(x), ψ̃(x̃1) and ψ̃(x̃2) may still differ by a phase. These
two points are related by an element σ of π1(Q)∗ (x̃2 = σ · x̃1) and one can show†,

that the phase can only depend on σ. The restriction on ψ̃ takes the form

ψ̃(σ · x̃) = χ(σ)ψ̃(x̃), (3.3.1)

where χ is, as in theorem 1.1.1, a one dimensional unitary representation of π1(Q).

In other words, ψ̃ is required to be π1(Q)-equivariant. It is in this sense that one
should understand the statement, often found in the literature, that on multiply-
connected spaces, “multiple-valued” functions are allowed. In this context, un-
der multi-valuedness of ψ one should understand equivariance (as expressed by

eq. (3.3.1)) of ψ̃. This somewhat confusing situation has, to our opinion, not been
discussed in a clear and systematic way, and it leads to further confusion when
spin degrees of freedom are taken into account (see discussion in section 5.3). The
reformulation of theorem 3.1.3 we give in this section (see theorem 3.3.5 below)
provides a suitable framework for handling the situation discussed above.

• The second reason is that this reformulation serves as a first step towards a for-
mulation of the problem in only algebraic terms. Using the language of algebras
and modules might prove to be useful in the search for a relation between the
(mainly geometric) configuration-space approaches to the Spin-Statistics relation,
and the Field theoretical ones, in which proofs of the Spin-Statistics theorem are
available. It would be very interesting to eventually find an interpretation of the
analytical proofs in geometrical terms. The relation of these proofs to, for exam-
ple, the work of Finkelstein-Rubinstein[FR68] on topological solitons, is some-
thing that has not been clarified. One of the difficulties is certainly the difference
of “languages” (the one algebraic/analytical, the other topological).

With the above remarks as motivation, let us recall two basic results that relate cat-
egories of topological spaces with categories of algebraic objects. For M a compact
Hausdorff topological space, the space C(M) is an algebra that, by the Gelfand-
Naimark theorem, carries all the information about the (topological) space M . By the
same theorem, this correspondence between topological spaces and complex algebras
is bijective. Schematically, we have:

∗Recall that π1(Q) acts on Q̃ by Deck transformations.
†See [Mor92] and references therein.

36



3.3 Projective Modules

(
Compact Hausdorff
topological spaces

) Gelfand-
Naimark

(
Unital, commutative

C∗-algebras

)
.

An analogous result for vector bundles is also available: if η is a vector bundle over
the compact space M , then it is well known that Γ(η) carries the structure of a finitely
generated and projective C(M)-module. The module multiplication

C(M) × Γ(η) −→ Γ(η)

(a, ψ) −→ a · ψ (3.3.2)

is defined by pointwise multiplication: (a · ψ)(m) := a(m)ψ(m) (the easier notation
aψ for the module product is usually used). The Serre-Swan theorem establishes the
following bijective correspondence:

(
Vector bundles

over M

) Serre-
Swan

(
Finitely generated,

projective C(M)-modules

)
.

These two theorems (Gelfand-Neumark and Serre-Swan) provide complete equiva-
lences between classes of topological objects on one side and of algebraic ones on the
other. Let us, for the sake of concreteness, state the Serre-Swan theorem.

3.3.1 Theorem (Serre-Swan (cf.[Ser58],[Swa62])). Let M be a compact, finite dimensional
manifold and let E be a C(M)-module. Then there exists a vector bundle η = (E(η), π,M)
whose C(M)-module of sections Γ(η) = {σ : M → E(η) | σ is continuous and π◦σ = id} is
isomorphic to E if and only if E is finitely generated and projective.

In order to obtain an algebraic formulation of theorem 3.1.3, all that must be done, in
view of theorem 3.3.1, is to replace all assertions about the relations between η and η/G
by assertions about the corresponding spaces of sections, Γ(η) and Γ(η/G). This task
can be easily performed once one realizes that the pull-back of a vector bundle, at the
algebraic level, can be obtained from the tensor product of appropriate algebras and
modules. The precise assertion is formulated in theorem 3.3.2, but before proving it we
will make some remarks from which the proof follows quite naturally.

Let
ρ : G×M → M (3.3.3)

be a G-action on the topological space M . It, in turn, induces an action G × C(M) →
C(M) : (g, a) 7→ g · a, where

(g · a)(m) := a(ρg−1(m)) = a(g−1 ·m). (3.3.4)

Analogously, for a G-bundle η with corresponding action τ : G × E(η) → E(η), an
action on the space of sections, Γ(η), will be induced, as follows: For ψ ∈ Γ(η) and
g ∈ G, g · ψ : M → E(η) is defined through

(g · ψ)(m) := τg(ψ(g−1 ·m)). (3.3.5)
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3 G-spaces and Projective Modules

The two actions (on C(M) and on Γ(η)) are related, through the module multiplication,
as follows:

g · (aψ) = (g · a)(g · ψ). (3.3.6)

Consider now a continuous map φ : M → N and a vector bundle ξ over N . We seek
a characterization of the C(M)-Module Γ(φ∗ξ) where, instead of φ∗ξ, only the C(N)-
Module Γ(η) is used. In other words, what we are looking for is a C(M)-module which
is isomorphic to Γ(φ∗ξ), but constructed from the data φ, C(N), C(M) and Γ(ξ) (no ex-
plicit mention of φ∗ξ). This means that somehow we have to compare Γ(ξ) with Γ(φ∗ξ).
But Γ(ξ) and Γ(φ∗ξ) are modules over different rings (C(N) and C(M), respectively),
so it is only possible to compare them either by considering Γ(φ∗ξ) as a C(N)-module,
or the other way around, that is, by regarding Γ(ξ) as a C(M)-module. Both alterna-
tives are possible, but only through the second one do we obtain the isomorphism we
are looking for.

To see this, notice that φ induces a ring homomorphism

φ∗ : C(N) −→ C(M)

f 7−→ φ∗f := f◦φ.
This homomorphism can be used to obtain a C(N)-module structure on Γ(φ∗ξ):

C(N) × Γ(φ∗ξ) −→ Γ(φ∗ξ) (3.3.7)

( f , s ) 7−→ f · s := (φ∗f)s.

For any given section σ ∈ Γ(ξ), we define a section

φ∗σ : M −→ E(φ∗ξ) (3.3.8)

x 7−→ (x, σ◦φ(x)).

This gives place to a homomorphism of C(N)-modules

F φ : Γ(ξ) −→ Γ(φ∗ξ) (3.3.9)

σ 7−→ F φ(σ) ≡ φ∗σ.

F φ is clearly a C(N)-linear map:

F φ(f · σ) = φ∗(f · σ)
(3.3.8)
= (f◦φ)φ∗σ

(3.3.7)
= f · φ∗σ = f · F φ(σ).

But it is also clear that F φ is not, in general, an isomorphism. Indeed, although we
may choose generators for Γ(φ∗ξ) of the form σ′

i = F φ(σi), we see from Im(F φ) =
{∑i(fi◦φ)σ′

i | fi ∈ C(N)} that F φ is not surjective in general, because the elements in
the image module are only linear combinations of the generators over the subspace
φ∗(C(N)) of C(M). In other words: The generators σ′

i may be multiplied only by el-
ements of C(N). We thus see that a change of ring, performed with the help of the
tensor product, is necessary. With the previous remark as motivation, we set

Φ : C(M) ⊗C(N) Γ(ξ) −→ Γ(φ∗ξ) (3.3.10)
∑

k

ak ⊗ σk 7−→
∑

k

akF
φ(σk).
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3.3.2 Theorem (cf. [GBVF01]). The map defined through (3.3.10) is an isomorphism
C(M) ⊗C(N) Γ(ξ) ∼= Γ(φ∗ξ) of C(M)-modules.

Proof. (i) Φ is a C(M)-module homomorphism:

Φ(a1 · (a2 ⊗ σ)) = Φ((a1a2) ⊗ σ) = a1a2F (σ) = a1Φ(a2 ⊗ σ).

(ii) If Γ(ξ) is generated by {σi}i=1,...,r, then Γ(φ∗ξ) is generated by {F (σi)}i=1,...,r:

The fiber ξy over y ∈ N is generated by the vectors {σi(y)}. From φ∗ξx = {x}× ξφ(x) it is
then clear that the vectors {(x, σi(φ(x)))}i generate the fiber φ∗ξx. The assertion follows
from this fact, together with (3.3.9).

(iii) Φ is surjective:

Given s ∈ Γ(φ∗ξ), there exist -because of (ii)- functions a1, . . . , ar ∈ C(M) such that
s =

∑
i aiF

φ(σi).This implies s = Φ(
∑

i ai ⊗ σi).

(iv) Φ is injective: Clear if Γ(ξ) is a free module, because in that case there exists a
basis. In the general case, there exists some η such that Γ(ξ ⊕ η) is a free module, so
that there is an isomorphism Φ′ : C(M) ⊗C(N) Γ(ξ ⊕ η) → Γ(φ∗(ξ ⊕ η)). The inclusions
i : C(M)⊗Γ(ξ) →֒ C(M)⊗Γ(ξ⊕ η) and j : Γ(φ∗ξ) →֒ Γ(φ∗ξ)⊕Γ(φ∗η) are injective and,
moreover, j◦Φ′ = Φ◦i: Φ must also be injective.

If -for the situation in (3.3.3)- we set N ≡ M/G and φ ≡ q : M → M/G in thm. 3.3.2,
then we can construct an injective C(M/G)-module homomorphism

ΦG : Γ(ξ) →֒ Γ(q∗ξ),

as follows. Recall that G acts on C(M) by (3.3.4). In the next section it will be shown
that this action induces a decomposition of C(M) into C(M/G)-submodules (see eq.
(3.4.27)). All that we need from this result is the fact that C(M) may be decomposed in
the form

C(M) = C(M)+ ⊕ E ,
where C(M)+ stands for the subalgebra {a ∈ C(M) | g · a = a ∀ g ∈ G} of G-invariant
functions and also that E has the structure of a projective C(M/G)-module. Noticing
that the algebras C(M)+ and C(M/G) are isomorphic, we obtain:

C(M) ⊗C(M/G) Γ(ξ) ∼= Γ(ξ) ⊕
(
E ⊗C(M/G) Γ(ξ)

)
. (3.3.11)

Denote with i : Γ(ξ) →֒ C(M) ⊗C(M/G) G(ξ) the corresponding inclusion. Making use
of thm. 3.3.2 we can put ΦG := Φ◦i and in that way obtain the desired result.

3.3.3 Remark. It is important to notice that, although ΦG(Γ(ξ)) and Γ(ξ) are isomor-
phic as C(M/G)-modules, ΦG(Γ(ξ)) is actually contained in Γ(q∗ξ). This means that,
although every section from Γ(ξ) can be “replaced” by one from ΦG(Γ(ξ)), sections
from ΦG(Γ(ξ)) may only be multiplied by functions in C(M)+, if we want to identify
ΦG(Γ(ξ)) and Γ(ξ) as modules.
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3.3.4 Remark. From Eqns. (3.3.10) and (3.3.11) we see that ΦG(σ) = F q(σ).

It is possible to give a better description of the image of ΦG. In fact, one finds that
ΦG(Γ(ξ)) equals the space of invariant sections of the pull-back bundle:

3.3.5 Theorem.

Γ(ξ) ∼= ΦG(Γ(ξ)) = ΓG(q∗ξ) := {s ∈ Γ(q∗ξ) | g · s = s ∀ g ∈ Γ}.

Proof. The first equality is clear, since ΦG is an injective homomorphism. Every section
from ΦG(Γ(ξ)) is of the form q∗σ, with σ ∈ Γ(ξ). From the definition of q∗σ (see Eq.
(3.3.8)) and from the form of the action τ induced induced on q∗ξ by q (see Eq.(3.1.1)) it
follows that a section of the form q∗σ is invariant:

(g · q∗σ) (x) = τg(g
−1 · x, σ◦q(g−1 · x))

(3.1.1)
= (x, σ◦q(g−1 · x))
= (x, σ◦q(x))
= q∗σ(x).

Conversely, every invariant section must be of the form q∗σ: Given s ∈ Γ(q∗ξ), there is
a continuous map y : M → E(ξ) with π◦y = q and s : x 7→ (x, y(x)). If s is invariant,
then y(g ·x) = y(x) holds for all g inG, so that one can define a section σ ∈ Γ(ξ) through
σ([x]) := y(x), for which s = q∗σ holds.

3.4 Decomposition of C(M)

Let G be a finite group. Denote with ϑi : G → Gl(U i) (i = 1, . . . , N) its irreducible
representations. A general representation ϑ : G → Gl(V ) can always be reduced, i.e.,
V can be written in the form

V = V 1 ⊕ · · · ⊕ V N , (3.4.1)

where every subspace V j is invariant under G and can be reduced further,

V j = V j
1 ⊕ · · · ⊕ V j

mj
, (3.4.2)

in such a way that dim(V j
r ) = nj := dim(U j) for all r = 1, . . . , mj (mj = multiplicity

of ϑj in V ). In particular, for a given j, all the representations ϑ|V j
r

are equivalent to ϑj .
The decomposition of V then takes the form

V ∼= m1U
1 ⊕ · · · ⊕mNU

N . (3.4.3)

Since all subspaces V i
r (for i fixed) are equivalent as representations, one is interested

in finding a basis for every V i
r with the property that the representing matrices are all

the same, for r = 1, . . . , mi. Obviously such basis do exist, so the question would rather
be: How can one find such basis systematically?.
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3.4 Decomposition of C(M)

3.4.1 Remark. The problem of determining such “symmetry respecting” basis is
closely related to the fact that, in contrast to eq. (3.4.1), the decomposition in eq. (3.4.2)
is not unique. As we will see, after a concrete choice for the representing matrices of
ϑj has been made, it is possible to define certain operators that allow one to find those
symmetry-respecting basis. Of course, a choice of basis for the different subspaces
amounts to writing down an explicit decomposition of V j. It is clear from this point of
view that the decomposition cannot be unique.

In the case of the regular representation, the construction of the operators mentioned in
the previous remark is particularly clear. Since the formulae obtained in this case can
be applied in general, we want to discuss this example in detail.

3.4.2 Definition. For G a finite group, let F(G) denote the vector space of complex
functions on G (it dimension equals the order of the group, |G|). The regular representa-
tion, ρG, is the representation on F(G) induced by the group multiplication

(
ρG(a)f

)
(b) := f(a−1b) (f ∈ F(G); a, b ∈ G).

3.4.3 Remark. It is a well-known fact that the regular representation contains all irre-
ducible representations of G, each one with a multiplicity equal to its dimension:

F(G) ∼=
N⊕

i=1

niU
i (3.4.4)

In particular, for the dimension of F(G), we have:

dim(F(G)) =
N∑

i=1

nidim(U i) =
N∑

i=1

(ni)
2. (3.4.5)

Although an additional decomposition of niU
i is not canonically given, it is possible

to, in a sense, “factor out” these subspaces, if one regards F(G) as a representation of
G×G. For this purpose we consider a G×G-action on G, defined by

(G×G) ×G → G

((g1, g2), h) 7→ g1hg
−1
2 . (3.4.6)

The representation induced by this action on F(G) will be denoted with r̂G.

Another G × G representation can be defined as follows. Let ϑ̃i (i = 1, . . . , N) be the

representation induced by ϑi on the dual space U i∗: (ϑ̃i(g)ϕ)(u) := ϕ(ϑi(g
−1)u) (u ∈

U i, ϕ ∈ U i∗, g ∈ G). It follows that ϑi ⊗ ϑ̃i is an irreducible G × G representation on
U i ⊗ U i∗. This representation can be realized inside F(G). This is a consequence of the
following fact:

3.4.4 Theorem. The map Si : U i ⊗ U i∗ → F(G), defined by

Si(u⊗ ϕ)(g) := ϕ(ϑi(g
−1)u), (3.4.7)

is G×G-equivariant.
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3 G-spaces and Projective Modules

Proof. For (a, b) ∈ G×G, u⊗ ϕ ∈ U i ⊗ U i∗ and g ∈ G, we have:

Si ((a, b) · u⊗ ϕ) (g) = Si

(
ϑi(a)u⊗ ϑ̃i(b)ϕ

)
(g)

=
(
ϑ̃i(b)ϕ

) (
ϑi(g

−1)ϑi(a)u
)

= ϕ
(
ϑi((a

−1gb)−1)u
)

= Si(u⊗ ϕ)((a, b)−1 · g)
=

(
r̂G(a, b)Si(u⊗ ϕ)

)
(g)

= ((a, b) · Si(u⊗ ϕ)) (g).

3.4.5 Theorem. The decomposition of F(G) into irreducible G×G-representations is

F(G) ∼=
N⊕

i=1

Ui ⊗ U∗
i . (3.4.8)

Proof. It follows from theorem 3.4.4, together with Schur’s lemma (since Si is injective),

that every representation ϑi ⊗ ϑ̃i (i=1,. . . ,N) is contained in F(G), that is, we have an

equivalence of representations: (U i⊗U i∗, ϑi⊗ ϑ̃i) ∼ (F(G)|Im(Si)
, r̂G|Im(Si)

). The direct

sum of all U i⊗U i∗ must appear as a sub-representation in F(G), since ϑi⊗ ϑ̃i ∼ ϑj ⊗ ϑ̃j
precisely when i = j. Therefore, equation (3.4.8) must hold -as an isomorphism of
G×G representations- since dim(⊕iU

i ⊗ U i∗) =
∑

i n
2
i = dim(F(G)).

From the previous theorem we learn that the two G × G-representations, (F(G), r̂G)

and (
⊕

i(U
i ⊗ U i∗),

⊕
i(ϑi ⊗ ϑ̃i)), are equivalent. The isomorphism is given explicitly

by the sum S :=
⊕

i Si of all Si from theorem 3.4.4, so that, if we choose a basis {e(i)
r }r

for U i, it is now possible to write every element of F(G) as a sum over every of its
components in the subspaces U i ⊗ U i∗.

Let {ẽ(i)
r }r be the dual basis of U i∗, induced by {e(i)

r }r. Denote with R(i)(g) the represent-
ing matrices of ϑi, with respect to {e(i)

r }r.

Every function f ∈ F(G) can be written in the form f =
∑

g∈G f(g)χg, where χg stands
for the characteristic function of g (χg(h) equals one if g = h, zero otherwise). We are
seeking now those coefficients λir,r′ for which the following holds:

χg = S

(
N∑

i=1

ni∑

r,r′=1

λir,r′e
(i)

r ⊗ ẽ(i)

r′

)
. (3.4.9)
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3.4 Decomposition of C(M)

Inserting (3.4.7) into (3.4.9), leads to:

χg(h)
!
= S

(
N∑

i=1

ni∑

r,r′=1

λir,r′e
(i)

r ⊗ ẽ(i)

r′

)
(h)

=

N∑

i=1

ni∑

r,r′=1

λir,r′Si(e
(i)

r ⊗ ẽ(i)

r′ )(h)

=

N∑

i=1

ni∑

r,r′=1

λir,r′ ẽ
(i)

r′ (ϑi(h
−1)e(i)

r )

=

N∑

i=1

ni∑

r,r′,r′′=1

λir,r′R
(i)

r′′,r(h
−1)ẽ(i)

r′ (e
(i)

r′′)

=

N∑

i=1

ni∑

r,r′=1

λir,r′R
(i)

r′,r(h
−1) ⇒

∑

h∈G
R(j)

k,l(h)χg(h) =
N∑

i=1

ni∑

r,r′=1

λir,r′
∑

h∈G
R(j)

k,l(h)R
(i)

r′,r(h
−1)

︸ ︷︷ ︸
=δi,jδk,rδl,r′

|G|
nj

⇒

λir,r′ =
ni
|G|R

(i)

r,r′(g) (3.4.10)

It then follows, for f in F(G):

f(g) =
∑

h∈G
f(h)χh (3.4.11)

=
∑

h∈G
f(h)S

(
N∑

i=1

ni
|G|

ni∑

r,r′=1

R(i)

r,r′(h)e
(i)

r ⊗ ẽ(i)

r′

)
(g)

=
∑

h∈G
f(h)

N∑

i=1

ni
|G|

ni∑

r,r′=1

R(i)

r,r′(h)R
(i)

r′,r(g
−1)

=

N∑

i=1

ni∑

r=1

ni
|G|

∑

h∈G
R(i)

r,r(h
−1)f(h−1g).

From this formula we learn that the operator

ni
|G|

ni∑

r=1

∑

g∈G
R(i)

r,r(g
−1)g · (− ) (3.4.12)

is the projection operator F(G) → U i⊗U i∗. Because of the (vector space) isomorphism
U i ⊗ U i∗ ≃ dim(U i)U i = niU

i, one is led to consider, in (3.4.12), only the single terms
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3 G-spaces and Projective Modules

in the sum over r:
ni
|G|

∑

g∈G
R(i)

r,r(g
−1)g · (− ). (3.4.13)

We will now see that these are still projection operators, which turn out to be very
useful for the algebraic description of G-bundles and of their quotients.

Before concluding this section, let us come back to remark 3.4.1, in order to further
explain the role played by the operators defined through the formula (3.4.13) in the
construction of a symmetry-preserving basis.

Consider, once again, a general representation, ϑ, of G. The representation space V is
to be decomposed, as in equations (3.4.1) and (3.4.2), into irreducible subspaces. For
a given j, let us assume that the representation ϑj appears in this decomposition and,
moreover, that a symmetry-preserving basis {bα,k}1≤α≤mj ;1≤k≤nj

for V j is known.

That means: For α fixed, {bα,k}1≤k≤nj
is a basis for V j

α and

ϑ(g)bα,l =
∑

k

d(j)

k,l(g)bα,k,

holds, i.e., the representing matrices in the space spanned by {bα,k}k are the same for
all α. Defining now, in accordance with our previous considerations, the operators

P (j)

k,l =
nj
|G|

∑

g∈G
d(j)

k,l(g
−1)ϑ(g), (3.4.14)

we obtain, from the orthogonality relations for the matrix components of irreducible
representations,

P (j)

k,l bα,k′ = δk,k′bα,k. (3.4.15)

The array (b1,k, b2,k . . . , bmj ,k) is transformed by P (j)

k,l into (b1,l, b2,l . . . , bmj ,l), component-

wise. All other vectors bα,k′ (k′ 6= k) in the basis of V j belong to the kernel of P (j)

k,l . In

this basis, P (j)

k,l is given by a matrix whose (l′, k′) component equals δl,l′δk,k′. From this,

one concludes that the rank of P (j)

k,l is mj .

Since ϑj appears in the decomposition of V , there exists w1 ∈ V with v1,1 := P (j)

1,1w1 6= 0.
Moreover, v1,1 must be a linear combination of the form

v1,1 = λ1b1,1 + λ2b2,1 + · · ·+ λmj
bmj ,1, (3.4.16)

because in every V j
α , P (j)

k,k projects on the kth basis vector. Applying P (j)

1,k (k = 2, . . . , nj)

to v1,1 we obtain further vectors v1,k := P (j)

1,kv1,1 that, because of (3.4.15), are given by
a linear combination of the vectors b1,k, . . . , bmj ,k, with the same coefficients λα as in
(3.4.16):

v1,k =

mj∑

α=1

λαbα,k. (3.4.17)
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3.4 Decomposition of C(M)

3.4.6 Theorem. The vectors v1,1, . . . , v1,nj
form a basis for ϑj . When written in terms of this

basis, the representing matrices are exactly the same as for {bα,k}k.

Proof.

ϑ(g)v1,k = ϑ(g)

(
mj∑

α=1

λαbα,k

)
(3.4.18)

=

nj∑

l=1

d(j)

l,k(g)

mj∑

α=1

λαbα,l (3.4.19)

=

nj∑

l=1

d(j)

l,k(g)v1,l. (3.4.20)

Since P (j)

1,1 has rank mj , we can still find other mj − 1 independent vectors wα (α =

2, . . . , mj) such that P (j)

1,1wα 6= 0. Defining now

vα,k := P (j)

1,kwα (k = 1, . . . , nj),

we obtain a symmetry-preserving basis for V j , since the assertion of proposition 3.4.6
remains valid for α = 2, . . . , nj :

ϑ(g)vα,k =

nj∑

l=1

d(j)

l,k(g)vα,l.

The meaning of the operators P (j)

k,l becomes clearer by arranging the basis vectors
{vα,k}α,k in a “matrix”, as follows:

Ṽ j
1 : v1,1 · · · v1,k

P
(j)
k,k

P
(j)
k,l

· · · v1,l · · · v1,nj

...
...

...
...

...

Ṽ j
α : vα,1 · · · vα,k · · · vα,l · · · vα,nj

...
...

...
...

...

Ṽ j
mj

: vmj ,1 · · · vmj ,k · · · vmj ,l · · · vmj ,nj
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3 G-spaces and Projective Modules

Here, the space Ṽ j
α = span{vα,k}k bears the irreducible representation ϑj . Its represent-

ing matrices are, in the basis {vα,k}k, the same as in the definition of P (j)

k,l , namely d(j)

k,l.
Regarding the matrix M whose entries are (the vectors) Mα,k = vα,k, we can then state
the following:

• The operator P (j)

k,k is the projection in the subspace of V j generated by the kth

column of M .

• The operator P (j)

k,l maps the kth column of M into the lth column, componentwise.

3.4.7 Remark. The non-uniqueness of the decomposition in eq. (3.4.2) is now obvious:
the basis {vα,k}α,k induces a decomposition

V j = Ṽ j
1 ⊕ · · · ⊕ Ṽ j

mj
,

that depends both on the choice of the matrices in the definition of P (j)

k,l , eq. (3.4.14), as
in the choice of the vectors w1, . . . , wmj

.

We have already mentioned that geometric objects as, for example, vector bundles,
may be described from an algebraic point of view. In particular, we saw in the last
section that in the case of a G-bundle η over a free G-space M it is possible to describe
the quotient bundle η/G by means of the module ΓG(η). We now want to show that
we can still go further and obtain a description of the quotient bundle as a subspace
of the algebra A := C(M). In fact, we have already come close to this objective, in
section 3.3: The entries of the projector in eq. (3.2.6) are elements of A. Furthermore,
by looking at eq. (3.2.5), we realize that the projection operators defined just above
in eq. (3.4.14) also here come into play. Indeed, one can proceed analogously to the
example of the regular representation, because an action ρ : G ×M → M gives place
to a representation of G on A (as given in eq. (3.3.4)). The trivial representation

A1 := {f ∈ A| g · f = f ∀g ∈ G}, (3.4.21)

is contained in A as a subalgebra. As we have already seen, there is an algebra isomor-
phism C(M/G) ≃ A1 (in section 3.3 the notation C(M)+ was used instead of A1). Let
us consider eq.(3.2.5). There we obtained, from a single function (Ψα1), nR × nR new
functions, with the help of the representation R. The definition of these functions is, to
a certain extent, singled out by the explicit form of the projector. This can be seen in
eq. (3.2.6). In their form they are similar to the operators defined in eq. (3.4.14) and for
this reason we will make the following ansatz:

Let R be an nR-dimensional, irreducible, unitary representation of G. For i, j ∈
{1, . . . , nR} set

ER
ij : A → A

f 7→ ER
ijf,
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3.4 Decomposition of C(M)

where

ER
ijf(x) :=

nR
|G|

∑

h∈G
Rij(h

−1)f(h−1 · x) (x ∈M). (3.4.22)

The behavior of these functions under the G-action is easy to establish. For example,
for f ∈ A = C(M) and h ∈ G, we have:

[
h · (ER

ijf)
]
(x) = (ER

ijf)(h−1 · x)
=

nR
|G|

∑

h̃∈G

Rij(h̃
−1)f((hh̃)−1 · x))

=
nR
|G|

∑

h′∈G
Rij(h

′−1h)f(h′−1 · x)

=

nR∑

k=1

Rkj(h)
nR
|G|

∑

h′∈G
Rik(h

′−1)f(h′−1 · x)

=

nR∑

k=1

Rkj(h)Eikf(x).

Summarizing,

h · (ER
ijf) =

nR∑

k=1

Rkj(h)E
R
ikf. (3.4.23)

If we keep i fixed, then the nR functions {ER
i,1f, . . . , E

R
i,nR

f} form (in case they do not
vanish everywhere) a basis for the representation R, exactly as in thm. 3.4.6. On the
other hand, letting first h act on f , we obtain

ER
ij (h · f) =

nR∑

k=1

Rik(h)(E
R
kjf). (3.4.24)

The maps ER
ij are, analogously to the P (j)

kl , orthogonal to each other: For R1 and R2 two
irreducible, unitary representations, one has

ER1
ik E

R2
mn = δR1,R2δkmE

R1
in . (3.4.25)

Let f be any function in A. It is to be expected, from eqns. (3.4.11) and (3.4.12), that f
may be written in the following form:

f =
∑

R

nR∑

i=1

ER
ii f, (3.4.26)

where the first sum is performed over all inequivalent, irreducible representations. Let
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us check that this is indeed the case:

∑

R

nR∑

i=1

ER
ii f(x) =

∑

R

nR∑

i=1

nR
|G|

∑

h∈G
R∗
ii(h)f(h−1 · x)

=
∑

R

∑

h∈G

nR
|G|

nR∑

i=1

R∗
ii(h)

︸ ︷︷ ︸
χ∗

R(h)

f(h−1 · x) (nR = χR(e))

=
∑

h∈G

1

|G|
∑

R

χR(e)χ∗
R(h)

︸ ︷︷ ︸
=|G|δe,h

f(h−1 · x)

= f(x).

This shows that we have found the following decomposition of A:

A =
⊕

R,i

AR,i , (3.4.27)

with AR,i := ER
ii (A).

The trivial representation A1 appears exactly once in the decomposition. As stated
above, it is an algebra isomorphic to C(M/G). It is clear that the spaces AR,i are A1-
modules, since h · f = f for h ∈ G and f ∈ A1, so it follows that fg ∈ AR,i ∀f ∈
A1, g ∈ AR,i. What is not yet so clear is whether these modules are finitely generated
and projective.

3.4.8 Theorem. The A1-module AR,i := ER
ii (A) is, for any unitary, irreducible representation

R and i ∈ {1, . . . , nR}, finitely generated.

Proof. For f ∈ AR,i we have ER
ii f = f ; that means:

nR
|G|

∑

h∈G
R∗
ii(h)f(h−1 · x) = f(x) ∀x ∈M.

Let now {φα}α∈I be, as in section 3.2, a partition of unity for M/G, subordinated to the
cover {Uα}α∈I . Because of the isomorphism C(M/G) ∼= A1, we may regard φα as an
element from A1. In particular, the notations φα(x) (φ ∈ A1) and φα([x]) (φ ∈ C(M/G))
will be used interchangeably, according to convenience. It is clear, from eqns. (3.2.5)
and (3.4.22), that

Ψα
ij = ER

ijΨα1 (3.4.28)

holds, with Ψα1 as defined in the example of section 3.2. One also sees that (with the
same conventions as in section 3.2)

Supp(fφα) ⊆ q−1(Uα) =

nR⋃

j=1

Ũαj
. (3.4.29)
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Furthermore, fφα can be “split” in N ≡ |G| different functions fαi
, in such a way that

φαf =

N∑

j=1

fαj
, mit Supp(fαj

) ⊂ Ũαj
∀j (3.4.30)

holds. Namely, defining

fαj
(x) :=

{
(φαf)

∣∣
Ũαj

(x), in case x ∈ Ũαj

0, otherwise,
(3.4.31)

we see that (3.4.30) is satisfied, since for α fixed all Ũαj
are disjoint. The maps fαj

are well-defined, continuous functions, because Supp(φαf) ⊆ Ũαj
. By defining the

(invariant) functions

f sαj
:=
∑

h∈G
h · fαj

, (3.4.32)

the following identity is then obtained:

∑

hj∈G
f sαj

(x)Ψα1(h
−1
j · x) = φα([x])

2f(x). (3.4.33)

It is enough, in order to check (3.4.33), to consider x ∈ Ũαk
, since both sides of the

equation have support in q−1(Uα) = ∪Nj=1Ũαj
. One then obtains:

∑

hj∈G
f sαj

(x)Ψα1(h
−1
j · x) = f sαk

(x)Ψα1(h
−1
k · x)

= f sαk
(x)φα([x])

=
∑

hj∈G
fαk

(h−1
j · x)φα([x])

= fαk
(x)φα([x])

= φα([x])
2f(x).

Summing over α,

∑

α

∑

hj∈G
f sαj

(x)Ψα1(h
−1
j · x) =

∑

α

φα([x])
2f(x) = f(x).

That means

f =
∑

α∈I

∑

hj∈G
f sαj

(hj · Ψα1),
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so that

f(x) = ER
ii f(x) =

[
ER
ii

(∑

α∈I

∑

hj∈G
f sαj

(hj · Ψα1)
)]

(x)

=
[∑

α∈I

∑

hj∈G
ER
ii

(
f sαj

(hj · Ψα1)
)]

(x)

=
∑

α∈I

∑

hj∈G
f sαj

(x)
[
ER
ii (hj · Ψα1)

]
(x)

=
∑

α∈I

∑

hj∈G
f sαj

(x)

nR∑

k=1

Rik(hj)
[
ER
ikΨα1︸ ︷︷ ︸
=Ψα

ik

]
(x)

=
∑

α∈I

nR∑

k=1

(∑

hj∈G
f sαj

(x)Rik(hj)

︸ ︷︷ ︸
∈A1

)
Ψα
ik(x).

We have, therefore:

f ∈ AR,i ⇒ f =
∑

α∈I

nR∑

k=1

( ∑

hj∈G
f sαj

Rik(hj)

)
Ψα
ik. (3.4.34)

The assertion follows, since ER
iiΨ

α
ik = Ψα

ik, so that {Ψα
ik}α∈Ik∈{1,...,nR} constitutes a set of

generators of AR,i over A1.

In section 3.2 we have seen how to associate a projector P R to every representation
R. The explicit form of this projector is given by eq. (3.2.6). On the other hand, the
decomposition -eq. (3.4.27)- of A shows how every irreducible, unitary representation
R gives place to nR A1-modules AR,1, . . . ,AR,nR

that turn out to be finitely generated.
A natural question is whether these modules are also projective and, in that case, what
is their relation to the above mentioned projectors P R. The answer is given by the
following proposition.

3.4.9 Proposition. There is, for every unitary, irreducible representationR an integerNR such
that PR(ANR

1 ) ∼= AR,i for every i ∈ 1, . . . , nR.

Proof. Let us identify the sets of generators of both modules by sending the column of

PR that is labeled by the indexes (β, k) to the generator Ψβ∗
ik of AR,i. The assertion now

follows from the following identity:

∑

α∈I

nR∑

l=1

Ψα∗
k′,lΨ

α
k,l =

n2
R

|G|2 δk′,k. (3.4.35)

In fact, from (3.2.6):

∑

α∈I

nR∑

k=1

(
PR
αβ([x])

)
kj

Ψα∗
ik (x) =

∑

α∈I

nR∑

k=1

|G|2
n2
R

nR∑

k′=1

Ψα
k′k(x)Ψ

β∗
k′j(x)Ψ

α∗
ik (x). (3.4.36)
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3.4 Decomposition of C(M)

From the identity above, it follows that the right hand side of the last expression equals

Ψβ∗
ij (x).
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4 The spin zero case

As already pointed out in the introduction, it was for spin zero particles that the
Fermi-Bose alternative was deduced from considerations from the topology of the con-
figuration space. Although this special case has been extensively studied (see, for
example,[LD71, LM77, HMS89]), it is still controversial, in connection to the Spin-
Statistics relation[Pes03b, Pes03a, AM03]. In fact, although any attempt to relate the
spin of a system of identical particles with the statistics they obey should take, in prin-
ciple, all values of the spin into account, there are some hints pointing to the idea that
if it were possible to show that spin zero particles must be bosons, then the proof of the
non-zero spin case could follow from it∗. In the present chapter, however, we will use
this example mainly in order to illustrate our approach, showing how well-known re-
sults can be recast in a very clear and compact form, using the techniques developed in
the previous chapter. After recalling the standard construction of line bundles over the
sphere, we consider their description by means of projective modules. The relevance
of this example (bundles over the sphere), for us, is twofold. Firstly, the sphere is
the covering space of the configuration space of a system of two identical particles (the
projective space). It is of interest for us, therefore, to have a description of (equivariant)
line bundles over the sphere, in particular in terms of projectors. In addition to this,
the rotational symmetry of the sphere can be used to study the correct definition of
angular momentum operators (when the configuration space is the sphere). This ideas
will be used later as the starting point for the definition of spin operators, when spin is
taken into account. In the last part of the chapter, the projective space, as configuration
space for two spin-zero particles, is considered.

4.1 S
2 as Configuration Space

4.1.1 Line Bundles over S
2

Complex line bundles over the sphere S2 can be described in a very compact manner
by means of projective modules. Recall that the 2-sphere can be identified with the
complex projective space CP 1. Using homogeneous coordinates [z0 : z1], CP 1 can be
described locally by means of two charts. Setting

U0 := {[z0 : z1] | z0 6= 0} and U1 := {[z0 : z1] | z1 6= 0},
∗Some ideas in this direction are presented in chapter 6.
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4.1 S
2 as Configuration Space

define local charts as follows:

z : U0 −→ C

[z0 : z1] 7−→ z1/z0

and

ζ : U1 −→ C

[z0 : z1] 7−→ z0/z1.

With this we obtain the following transition function: ζ◦z−1(w) = 1/w. On the sphere,
consider the stereographic projections

ψN : S2 \ {N} −→ C

(x1, x2, x3) 7−→ x1+ix2

1−x3

and

ψS : S2 \ {S} −→ C

(x1, x2, x3) 7−→ x1+ix2

1+x3
.

Identifying S2 \ {N} with U0 and S2 \ {S} with U1 by means of the maps (x1, x2, x3) 7→
[1 − x3 : x1 + ix2] and (x1, x2, x3) 7→ [x1 − ix2 : 1 + x3], respectively, we obtain a
diffeomorphism S2 ≈ CP 1. In terms of spherical coordinates, this identification takes
the form

z ≡ eiφ sin θ

1 − cos θ
, ζ ≡ e−iφ sin θ

1 + cos θ
. (4.1.1)

Now we construct a line bundles on the sphere, the Hopf bundle, as follows. Identi-
fying S2 with CP 1 as explained above, consider the trivial bundle over CP 1 with total
space CP 1 × C2. Since in CP 1 all scalar multiples of a point (z0, z1) in C2 belong to
the same equivalence class [z0 : z1], there is an obvious projection, in which the second
component of a point ([z0 : z1], (λ0, λ1)) ∈ CP 1 × C2 is mapped into the complex line
generated by any representative (z0, z1) ∈ C2. Explicitly, we obtain a line bundle L, as
a sub-bundle of the trivial bundle CP 1 × C

2 → CP 1, where the total space of L is the
image of the projection map

π : CP 1 × C
2 −→ CP 1 × C

2

([z0 : z1], (λ0, λ1)) 7−→
(

[z0 : z1],
λ0z̄0 + λ1z̄1
z0z̄0 + z1z̄1

(z0, z1)

)
. (4.1.2)

There is also an inclusion map ı : L → CP 1 × C2. The projection and the inclusion
maps induce maps π∗ and ı∗ between the corresponding spaces of sections, so they can
be composed with the trivial connection ∇(0) = (d, d) on CP 1 × C2 → CP 1, in order to
obtain a connection on L (the Grassmann connection) by setting ∇ := (id⊗π∗)◦∇(0)◦ı∗.
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4 The spin zero case

In terms of the local parametrisation C → CP 1 : w 7→ [1 : w], and of the local section
σ(z) = ([1 : z], (1, z)), the connection takes the following form:

∇(σ) = σ ⊗
(

w̄dw

1 + ww̄

)
. (4.1.3)

The curvature of this connection, written in terms of local coordinates on the sphere, is
given by [MT97]:

F∇ =
i

2
sin θdθ ∧ dφ. (4.1.4)

We can use the map π to construct the projector that describes the line bundle L. Let
us write x for [zo : z1], the second component of the map π is a map projecting (λ0, λ1)
onto the complex line generated by (z0, z1). At each point x we can then compute the
matrix p(x) corresponding to this projection. From the definition of π we have:

(
p11(x) p12(x)
p21(x) p22(x)

)(
λ0

λ1

)
=
λ0z̄0 + λ1z̄1
z0z̄0 + z1z̄1

(
z0
z1

)
. (4.1.5)

From this we obtain the following matrix components for p(x):

p11(x) =
z0z̄0

z0z̄0 + z1z̄1
, p12(x) =

z0z̄1
z0z̄0 + z1z̄1

,

p21(x) =
z1z̄0

z0z̄0 + z1z̄1
, p22(x) =

z1z̄1
z0z̄0 + z1z̄1

.

Let us express p(x) in terms of local coordinates on the sphere. On U0 we have

z(x) =
z1
z0

≡ eiφ sin θ

1 − cos θ
,

so that

p11(x) =
z0z̄0

z0z̄0 + z1z̄1

=
1

1 + sin2 θ
(1−cos θ)2

=
1 + cos θ

2
,

p12(x) =
z0z̄1

z0z̄0 + z1z̄1

=
z0
z1

1

1 + |z0/z1|2

=
1 − cos θ

eiφ sin θ

(
1 +

(1 − cos θ)2

sin2 θ

)−1

=
e−iφ

2
sin θ,
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4.1 S
2 as Configuration Space

and so on, leading to

p =
1

2

(
1 + cos θ sin θe−iφ

sin θeiφ 1 − cos θ

)
. (4.1.6)

Notice that this is a globally well-defined, matrix-valued function on the sphere. We
obtain the same result if we work on the chart U1. There, we have

ζ(x) =
z0
z1

≡ e−iφ sin θ

1 + cos θ
.

The matrix components obtained are the same. For example,

p12(x) =
z0z̄1

z0z̄0 + z1z̄1

=
z0
z1

1

1 + |z0/z1|2

=
eiφ sin θ

1 + cos θ

(
1 +

sin2 θ

(1 + cos θ)2

)−1

=
e−iφ

2
sin θ.

In terms of the projector p, the connection takes the form pd[GBVF01]. As an explicit
calculation shows, the curvature form tr(pdpdp) coincides with F∇. It is a well-known
fact that equivalence classes of line bundles over the sphere are in one to one corre-
spondence with the integers. The integer labelling a specific line bundle ξ over the
sphere may be obtained by choosing any connection on ξ and integrating its curvature
two-form over the sphere. Up to a factor of 2πi, this integral is the first Chern number
of the bundle. A projector describing a line bundle on the sphere with Chern number
equal to n is given by

pn =
1

2

(
1 + cosnθ sin nθe−iφ

sin nθeiφ 1 − cosnθ

)
. (4.1.7)

The reader is suggested to look at references [GBVF01], [Pas01] and [Lan01] for further
considerations on this example.

4.1.1 Remark. It is interesting to consider the example of the sphere as configuration
space in connection to Dirac’s magnetic monopole. It is well known that the presence
of a magnetic monopole forces the configuration space of an electron to be (effectively)
S2. Dirac’s quantization condition states that the electric and magnetic charges are
related through eg/~c = n/2, with n integer. In this case, the electron’s wave function
is a section of a line bundle on the sphere, with Chern number n. This fact has many
consequences, one of them being that a correct definition of angular momentum operators
requires a careful consideration of the bundle structure. In fact, although the electron’s
spin is being neglected, it turns out that the physically admissible angular momentum
operator can produce a change in sign in the electron’s wave function (when n is odd)
or no change at all (when n is even) under a 2π rotation. The reader is advised to look
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4 The spin zero case

at [BL81], p.203, for a physically-motivated discussion of this effect. The relation of
these angular momentum operators to the lifting of the SU(2) action on the sphere to
the line bundles is made explicit in [GBVF01].

4.1.2 Angular Momentum coupled to a Magnetic Field

Let us now consider an example related to geometric phases. It has been discussed by
Berry and Robbins in [RB94] and is relevant for us insofar as it seems to have provided
the motivation for the idea that eventually led these authors to the construction of the
spin basis proposed in [BR97]. We will see how the bundles underlying this example
can also be described in terms of projectors as the one displayed in eq. (4.1.7).

Consider a quantum mechanical system described by the Hamiltonian

H = ~B · ~J (4.1.8)

describing the coupling of a magnetic field ~B with an angular momentum ~J (electron

or nuclear spin, for instance). For a given value of ~B, the eigenvectors of H can be
expressed in terms of |j,m〉 (the eigenvectors of Jz and J2), as follows:

|j, n( ~B)〉 := D( ~B)|j,m〉, (4.1.9)

where D is determined by the polar angles, ϕ and θ, of ~B:

D( ~B) := e−iJzϕe−iJyθ. (4.1.10)

Suppose that the magnitude of the magnetic field is kept fixed, but different possible
orientations are allowed. In this case, the Hamiltonian above can be seen as depending
on the parameters (ϕ, θ), the parameter space being the sphere. For such a system time
evolution leads to what is known as geometric phase: If the parameters appearing

in the Hamiltonian change† in time describing a loop on parameter space: t 7→ ~B(t)

( ~B(0) = ~B(1)), the original state |j,m( ~B(0))〉 gains a phase (additional to the usual,
dynamical one) which is given by the following expression:

exp

(
−i
∫ 1

0

〈j,m( ~B(t))| d
dt
|j,m( ~B(t))〉

)
(4.1.11)

As pointed out in [Sim83], this phase may be understood as the holonomy of a con-
nection on a vector bundle which is naturally determined by the parameter-dependent
Hamiltonian. The Chern number corresponding to this bundle can be shown to be
equal to 2m.

A description of the bundle, in terms of projectors, can be obtained as follows. For j
fixed, the vectors |j,m〉 (−|j| ≤ m ≤ |j|) form a basis for the representation space V j .

†This change is usually assumed to be adiabatic, but more general situations are also allowed.
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On V j, consider the projection P
(0)
m onto the subspace generated by |j,m〉. Using this,

we can define a family of projections, parametrised by ~B, namely the projections on

the subspace generated by |j,m( ~B)〉:
Pm := D( ~B)P (0)

m D( ~B)†. (4.1.12)

This projector describes a bundle over the sphere (assuming | ~B| = 1), with total space

{( ~B,~v) ∈ S2 × V j : Pm( ~B)~v = ~v}. In other words, we are considering a bundle over
the parameter space ofH , where the fibers are generated by the (parameter-dependent)
eigenvectors of H . The curvature of the connection Pmd, integrated over S2, gives us
the Chern number associated to Pm:

c1(Pm) =
1

2πi

∫

S2

tr(PmdPmdPm).

The integral can be evaluated as follows. From the definitions of D and Pm, we have:

dPm = i[Pm, Jz]dϕ+ [Pm, DJyD
†]dθ.

Using D†JzD = cos θJz − sin θJx and taking the cyclicity of the trace into account,
one then obtains c1(Pm) = 2m. In the case of the sphere, equivalence classes of line
bundles can be labelled by their Chern number, i.e. two line bundles over the sphere
are isomorphic if and only if their Chern numbers coincide. Hence we see, from the
previous computation, that Pn/2 ∼= pn.

The case m = 0 is particularly interesting. The curvature of the connection it gives
place to vanishes, implying that there is no geometrical phase arising from closed
loops in the parameter space (sphere). However, it turns out that under a cycle go-
ing from some point on the sphere to its antipode, the eigenstates change only in a
sign, which can also be interpreted as a geometrical phase (for a general value of m,

the states |j,m(− ~B)〉 and |j,−m( ~B)〉 coincide, up to a phase factor. This implies that

|j,m = 0( ~B)〉 and |j,m = 0(− ~B)〉 differ by a phase, and it can be shown that the

value of this phase, (−1)j , is independent of the path‡ joining the points ~B and − ~B,
see [RB94]. When m = 0 one can, therefore, identify antipodal points on the parameter
space, giving place to an effective parameter space, obtained under the identification
~B ∼ − ~B. This, and the fact that the phase depends on the value j of the angular mo-
mentum, provides a motivation to think that the structures appearing in this example
could be related to the Spin-Statistics problem (see the remarks at the end of [RB94]).

4.2 RP
2 as Configuration Space

4.2.1 Line bundles over RP
2

As an application of the methods discussed in section 3.4 above we will work out the
case of the projective space, because this is the relevant space to be considered when

‡This path, when projected to RP 2, must belong to the non-trivial element of the fundamental group.
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4 The spin zero case

discussing the problem of two indistinguishable particles. Of particular importance
is the consideration of line bundles on it, together with the connections and SU(2)-
bundle structures naturally associated to them.

We begin by considering the situation of section 3.4, in the specific case where M̃ = S2,
G = Z2 and M = RP 2. Here we have A = C(S2). There are only two irreducible
representations of Z2: the trivial one, denoted by R+ and the “sign” representation

σ 7→ (−1)σ, denoted byR−. Equation (3.4.27) in this case thus reads, with A+ = ER+

1 (A)

and A− := ER−

1 (A):
A = C(S2) = A+ ⊕A−. (4.2.1)

A+ denotes the subalgebra of symmetric functions on the sphere, and A− the A+-module
of antisymmetric ones. With S2 = {x = (x1, x2, x3) | x2

1 + x2
2 + x3 = 1} and RP 2 =

S2/{x ∼ −x}, we have

q : S2 → RP 2

x 7→ [x] = {x,−x}

Since A+ is isomorphic to C(RP 2), which in turn may be identified with the module of
sections of the trivial line bundle (L+) over RP 2, proposition 3.4.9 applied to R+ gives
no new information. Applied to R− instead, it allows us to identify A− as the module
of sections of a line bundle (L−) over RP 2. Let us use the shorter notation p− for the
corresponding projector. Its matrix components can be obtained as follows. Consider
the situation of section 3.2 for the case M = S2, G = Z2 and η = (S2 × C, π1, S

2). As
representation we choose R−. Using the same conventions as in the example, consider
the following open cover of S2/Z2 (α = 1, 2, 3):

Uα = {[x] ≡ [(x1, x2, x3)] ∈ S2/Z2 | xα 6= 0}.

It comes from the projection of a cover of S2 given by open sets (α = 1, 2, 3; i = 1, 2)

Ũαi
= {(x1, x2, x3) ∈ S2 | (−1)ixα < 0}

and hence, according to equation (3.2.2), the transition functions for the bundle η/Z2

are
gα,β([x]) = sgn(xα)sgn(xβ). (4.2.2)

Note that the right hand side is independent of the choice of representative (x1, x2, x3) ∈
[x]. According to definition 3.2.1, we need a partition of unity, subordinated to the
cover {Uα}α. Choosing φα([x]) = |xα|, we obtain the matrix components of p−:

(p−)αβ : RP 2 → C (4.2.3)

[x] 7→ xαxβ.

Note that even though each matrix component of p− is defined in terms of a represen-
tative x ∈ [x], it is an even function on S2 and therefore equivalent to a function on
RP 2.
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Remark. We have thus obtained an isomorphism of A+-modules under which the an-
tisymmetric functions x1, x2, x3 ∈ A− can be regarded as a set of generators for Γ(L−).
Explicitly, we can make the following identification:

xi ≡




xix1

xix2

xix3


 .

Thus, under this identification, any section of L− can be expressed as a linear combi-
nation of the form a1x1 + a2x2 + a3x3, with ai ∈ A+. The (module) multiplication of
the function ai (regarded as element of C(RP 2)) and xi (regarded as a section of L−) is
implemented in the isomorphic image of Γ(L−) inside A by the usual multiplication of
functions on S2.

Some of the properties of p− are:

• The line bundle L− represented by the projector p− is not trivial. This can be seen
as follows: the isomorphisms Γ(L−) ≃ p−(A3

+) ≃ A− allow us to represent every
section as an antisymmetric function on the sphere. One can then use the fact
that every such function vanishes at some point to show that we cannot find a
nowhere vanishing section of L−.

• The connection naturally associated to this bundle is defined as ∇ = p− d. A
direct calculation shows that it has vanishing curvature, i.e., it is a flat connection.
Its action on an arbitrary section can be found, using the Leibniz rule, once we
know its action on the set {xi}i of generators. By direct computation we find:

p−d




xix1

xix2

xix3


 =




x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3






d(xix1)
d(xix2)
d(xix3)




=
∑

j




xjx1

xjx2

xjx3


 d(xixj),

leading to the following formula for ∇:

∇xi =
3∑

j=1

xj ⊗ d(xixj). (4.2.4)

Here the product xixj is to be understood as an element of C(RP 2), whereas
xi ∈ A− is to be interpreted as an element in p−(A3

+), or a section on L−. Note that
the exterior differential d makes reference to RP 2.

The formula above can also be obtained, taking advantage of the last remark, if

59



4 The spin zero case

we work exclusively on the sphere. Indeed, from x2
1 + x2

2 + x2
3 = 1, we have:

dx1 =
x1

2
· 0 + dx1

=
x1

2
d(x2

1 + x2
2 + x2

3) + dx1

= x1(x1dx1 + x2dx2 + x3dx3) + dx1

= (x2
1 + 1)dx1 + x1x2dx2 + x1x3dx3

= (2x2
1 + x2

2 + x2
3)dx1 + x1x2dx2 + x1x3dx3

= (2x2
1dx1) + (x2

2dx1 + x1x2dx2) + (x2
3dx1 + x1x3dx3)

= x1d(x1x1) + x2d(x1x2) + x3d(x1x3)

and similarly for x2 and x3, thus providing an alternative derivation of (4.2.4).

• Making use of (4.2.4), the holonomy group of ∇ can be computed. It depends
only on the fundamental group of RP 2 (because ∇ is flat) and it turns out to be
isomorphic to Z2.

• Using standard results of topology, it can be shown that the only line bundles on
RP 2 are in fact L+ and L−. Moreover, a bundle ξ of rank k can always be written
as the sum of a line bundle and the trivial bundle of rank k − 1.

• The bundle L− is SU(2) equivariant, in the sense of definition 3.1.1.

• The SU(2) action on L− and parallel transport on it, by means of ∇ “coincide” in
a certain sense, specified below (see eq. (4.2.25)).

The last two points deserve special attention. We have obtained the projector p− using
the method outlined in section 3.4. This construction is well adapted to deal with the
quotient map q : S2 → RP 2 and with the calculation of the holonomy of ∇, but there is
an independent way of arriving at a projector describing the same bundle as p− which
takes the SU(2) equivariance explicitly into account. This construction of the projector,
based on its SU(2) symmetry, was proposed in [Pas01] and will be presented in the
next section. From that construction it is easy to see how to define an SU(2) action
on the corresponding bundle. We will then see how this SU(2) action and parallel
transport are closely related. But before that, it is convenient to close this section giving
yet another description of the non-trivial line bundle L− over the projective space, in
terms of local trivialisations (this will be used when we compare parallel transport
with the SU(2) action, in the next section).

We will denote points on the sphere by x = (x1, x2, x3). Under the quotient map q,
x goes to an equivalence class [x] = {x,−x}, representing a point in RP 2. Using ho-
mogeneous coordinates, [x] can equivalently be described as the line generated by x,
regarded as a vector in R

3:

[x] = {λx|λ ∈ R}.
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An open cover of the projective plane is given by

Ui = {[x] | xi 6= 0}, (i = 1, 2, 3).

The corresponding local charts {(Ui, hi)}i are given by

h1 : U1 −→ R
2

[x] 7−→
(
x2

x1
,
x3

x1

)
(4.2.5)

and analogously for h2 and h3. The bundle L− can be constructed as a sub-bundle of
the trivial bundle RP 2 × C3. The explicit construction goes as follows. First, the total
space E(L−) of the bundle is defined, as a set, in the following way:

E(L−) := {([x] , λ|φ(x)〉) ∈ RP 2 × C
3 | λ ∈ C, x ∈ [x] }, (4.2.6)

where
|φ(x)〉 = (x1, x2, x3). (4.2.7)

Note that there is some ambiguity in the description of the elements of E(L−), namely,
the choice of λ is not unique, since we are using a representative x of [x] in the argument
of |φ(−)〉 which of course is a well defined function only over the sphere , not over the
projective plane. But in view of the relation |φ(−x)〉 = −|φ(x)〉 (that is also satisfied by
|ψ〉), we may describe an element y ∈ E(L−) in (exactly) two ways:

y = ([x] , λ|φ(x)〉) = ([x] , (−λ)|φ(−x)〉).

Notice that the same situation is faced in the construction of tautological bundles over
projective spaces (see for example [MS74]) .

E(L−) is given the relative topology with respect to the product space RP 2 × C3. The
projection map is obviously defined as

π([x] , λ|φ(x)〉) := [x] .

Local trivialisations can then be defined through (i = 1, 2, 3):

ϕi : π−1(Ui) −→ Ui × C

([x] , λ|φ(x)〉) 7−→ ([x] , sgn(xi)λ). (4.2.8)

The map ϕi is well defined because, by definition, [x] ∈ Ui if and only if xi 6= 0, hence
sgn(xi) is defined throughout Ui. Also note that the term sgn(xi)λ is not ambiguous.
This follows from the remark on λ above: If y belongs to the fiber over [x] then, as-
suming that we have chosen x ∈ [x] = {x,−x}, there exists a unique λ ∈ C such that
y = ([x] , λ|φ(x)〉). Had we made the other possible choice, namely −x, it would be
rather y = ([x] , (−λ)|φ(−x)〉). In any case we get

ϕi(y) = ([x] , sgn(xi)λ) = ([x] , sgn(−xi)(−λ)).
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4 The spin zero case

The map ϕi is surjective: Given ([x] , w) ∈ Ui × C, we may put λ ≡ λ(x) = sgn(xi)w.
Then,

ϕi([x] , λ|φ(x)〉) = ([x] , sgn(xi)λ)

= ([x] , w). (4.2.9)

(Again, the choice of λ depends on a choice of representative x, but the product sgn(xi)λ
does not). Injectivity can also be easily checked. It follows from the relation |φ(−x)〉 =
−|φ(x)〉.
Having defined local trivialisations, we proceed to examine the corresponding transi-
tion functions. The result is

ϕi ◦ ϕ−1
j ([x] , w) = ([x] , sgn(xixj)w),

that is, the transition functions describing the bundle are

gij : Ui ∩ Uj −→ C
∗

[x] 7−→ sgn(xixj). (4.2.10)

Recalling the Serre-Swan equivalence, and using the partition of unity given by the
functions fi([x]) := (xi)

2 (i = 1, 2, 3), we may construct the projector corresponding to
this bundle. Recall that in general the entries of a projector constructed out of a bundle
are pij =

√
fifj gij. Using the result above, we find:

pij([x]) = xixj .

We have thus recovered the expression eq. (4.2.3) for the projector, which had been
obtained in the context of the more general construction outlined in chapter 3.

4.2.1 Remark. Let us remark that, although we have used |φ〉 for the definition of the
total space of the bundle L−, it is not a section on it (indeed, the map x 7→ (x, |φ(x)〉) de-
fines a non vanishing section on the pull-back of L−, a bundle over the sphere). The role
of |φ(x)〉 is to generate a complex line on C

3 which gives the fiber over [x]. Of course
this makes sense only if the complex lines (in C3) generated by |φ(−x)〉 and |φ(x)〉 co-
incide. But this is ensured by the relation |φ(−x)〉 = −|φ(x)〉. This apparent ambiguity
is, to our opinion, a source of confusion in the Berry-Robbins construction. If, instead,
we choose to give a global description of the bundle by means of the corresponding
projector, the problem does not even appear. This is so because the projection onto the
fiber over [x] is a concept which is independent of a choice of representative or, in other
words, because the components of the projector |φ(x)〉〈φ(x)| are even functions.

Now we consider local frames and parallel transport. Let us define

ei : RP 2 −→ E(L−)

[x] 7−→ ([x] , xi|φ(x)〉). (4.2.11)
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These global sections vanish at some points, so they can only give place to local frames,
given by their restrictions to the respective neighborhoods Ui. Since the connection we
consider on L− is flat, the result of parallel transport can only depend on the homo-
topy type of the chosen path. For our purposes, it will be enough to consider parallel
transport along the following path§:

γ : (−π/2, π/2) −→ U3 ⊂ RP 2

t 7−→ [ ( sin(t), 0, cos(t) ) ] (4.2.12)

On U3, any section can be written in terms of e3. The action of the connection ∇
(eq.(4.2.4)) on it is

∇e3 = e1 ⊗ dα1 + e2 ⊗ dα2 + e3 ⊗ dα3,

where αi([x]) = xix3. From (α1(γ(t))
′ = cos2 t − sin2 t, (α2(γ(t))

′ = 0 and (α3(γ(t))
′ =

−2 cos t sin t (note that in these expressions there is no dependence on the choice of
representatives) we obtain, using the fact that cos t 6= 0 on the interval considered:

∇γ̇(t)e3(t) = (cos2 t− sin2 t) e1(t) − (2 cos t sin t) e2(t)

= − tan t e3(t). (4.2.13)

To find a parallel section along γ, we must solve the equation

dω

dt
e3(t) + ω(t)∇γ̇(t)e3(t) = 0.

The solution is given by ω(t) = (cos t)−1, so that

s : (−π/2, π/2) −→ E(L−)

t 7−→ (γ(t), (sin t, 0, cos t)) (4.2.14)

is a parallel section along γ.

4.2.2 SU(2) equivariance

The sphere, being a homogeneous space for SU(2) (S2 ∼= SU(2)/U(1)) carries a natural
SU(2)-action

SU(2) × S2 −→ S2.

The induced action on the space of functions makes A := C(S2) a representation space,
which contains all odd-integer dimensional irreducible SU(2) representations -a well
known fact- of which the spherical harmonics form suitable bases. If V j denotes the
2j + 1 dimensional representation, we have

A ≃
⊕

j∈N0

V j .

§The reason for this choice of path is that it can be obtained from the action of SU(2) on RP 2.
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4 The spin zero case

(Apart from the SU(2) action, there is also the Z2 one given by the parity operator, with
respect to which A can be decomposed, as before, into symmetric and antisymmetric
parts: A = A+ ⊕A−).

Let us now form the tensor product of A with V 1:

A3 ≃ A⊗ V 1.

The SU(2) action induced through (3.3.4) on A is given, at the Lie algebra level, by
the angular momentum operators Li (i=1,2,3), which act as derivations, that is, for
ψ, ϕ ∈ A, the relation Li(ψϕ) = Li(ψ)ϕ + ψLi(ϕ) holds. We can use the representation
of the Lie algebra on V 1, given by (3 × 3) matrices τi, to form a product representation
on A⊗ V 1:

Ji := Li ⊗ 13 + idA ⊗ τi. (4.2.15)

The product A⊗V 1 can be decomposed into irreducibles with respect to this represen-
tation.

A⊗ V 1 ≃
(
⊕

j∈N0

V j

)
⊗ V 1

≃ V 1 ⊕ (V 0 ⊕ V 1 ⊕ V 2) ⊕ (V 1 ⊕ V 2 ⊕ V 3) ⊕ · · · (4.2.16)

Note that the trivial representation V 0 appears only once. Thus, there is a unique scalar
element, up to normalization, with respect to this representation. From

|J,M〉 =
∑

m1,m2

(j1 m1, j2m2|J M)|j1, m1〉 ⊗ |j2, m2〉

and

(j mj −m|0 0) =
(−1)j−m√

2j + 1
,

we obtain, for the scalar element, the following expression:
√

4π/3 (Y1,1 ⊗ |1,−1〉 − Y1,0 ⊗ |0, 0〉 + Y1,−1 ⊗ |1, 1〉) .
Identifying A3 with A⊗ V 1, this is the same as

|ψ〉 :=

√
4π

3




Y1,−1

−Y1,0

Y1,1


 =




e−iϕ√
2

sin θ

− cos θ

−eiϕ
√

2
sin θ


 . (4.2.17)

One checks readily that |ψ〉 is indeed a scalar element, that is that Ji|ψ〉 = 0 holds.
In terms of the group representation, this means that D(1)(g)|ψ(g−1x)〉 = |ψ(x)〉 or,
equivalently, that

D(1)(g)|ψ(x)〉 = |ψ(gx)〉. (4.2.18)

This property of |ψ〉 will be used below in order to construct an SU(2) bundle structure
on the line bundle it gives place to. As an A-valued vector, |ψ〉 has remarkable prop-
erties. One of them is that it provides the construction we are looking for, namely, we
have the following result.
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4.2.2 Proposition (cf.[Pas01]). Define a projector on A3 by p := |ψ〉〈ψ|. Then, the following
isomorphism of A+ modules holds:

p(A3
+) ≃ A−. (4.2.19)

Proof. First of all, let us note that the spherical harmonics {Y1,1, Y1,0, Y1,−1} are a set of
generators of A− over A+. Written in matrix form, the projector is given by

p =




1
3
−
√

4π
45
Y2,0 −

√
4π
15
Y2,−1 −

√
8π
15
Y2,−2√

4π
15
Y2,1

1
3

+
√

16π
45
Y2,0

√
4π
15
Y2,−1

−
√

8π
15
Y2,2 −

√
4π
15
Y2,1

1
3
−
√

4π
45
Y2,0


 . (4.2.20)

Denote with σ+, σ0 and σ− the three columns of p in (4.2.20). They are a set of generators
of the module p(A3

+), since every element s on it is of the form

s = aσ+ + bσ0 + cσ−,

with a, b and c in A+. Therefore, we define the map ̺ : p (A3
+) → A− as the A+-linear

extension of

̺ (σ±) := Y1,± (4.2.21)

̺ (σ0) := Y1,0.

The generators {σi}i are not independent over A+, there are relations among them, of
the form

∑
j(δij − pji)σj = 0. They can be read off from (4.2.20):

(
2

3
+

√
4π

45
Y2,0

)
σ+ −

√
4π

15
Y2,1 σ0 +

√
8π

15
Y2,2 σ− = 0,

√
4π

15
Y2,−1 σ+ +

(
2

3
−
√

16π

45
Y2,0

)
σ0 +

√
4π

15
Y2,1 σ− = 0,

√
8π

15
Y2,−2 σ+ −

√
4π

15
Y2,−1 σ0 +

(
2

3
−
√

4π

45
Y2,0

)
σ− = 0.

A direct calculation shows that these relations are also satisfied by the generators of
A−. This completes the proof and establishes an equivalence of modules between p
and p−.

We have seen several ways in which L− and its module of sections can be described.
Using the method described in chapter 3, we have obtained Γ(L−) ∼= p−(A3

+), with
p− = |φ〉〈φ| and φ given by eq. (4.2.7). From 4.2.2 it follows that Γ(L−) ∼= p(A3

+), with
p=|ψ〉〈ψ| and ψ given by eq. (4.2.17). We have, therefore,

p−(A3
+) ∼= A− ∼= p(A3

+). (4.2.22)
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4 The spin zero case

The description of the total space of L− using eq. (4.2.6) has been used in order to find a
parallel section along the section γ. From that calculation one sees that if γ is extended
to a closed loop, the holonomy corresponding to that loop is −1. We will now consider
the SU(2) equivariance of L− and we will compare it with parallel transport. For that
purpose, let us consider an alternative description of the total space of L−, obtained by
using |ψ〉 in eq. (4.2.6) instead of |φ〉. This implies that the open cover and transition
functions will be different, but, because of eq. (4.2.22), they give place to isomorphic
bundles. The advantage of this particular construction of the bundle lies in the fact that
|ψ〉 is invariant under SU(2). Equation (4.2.18), which we write again below, expresses
this fact in a convenient way:

D(1)(g)|ψ(x)〉 = |ψ(gx)〉. (4.2.23)

Since |ψ(x)〉 ( = −|ψ(−x)〉 ) spans the fiber over [x], we see that the action of an element
g ∈ SU(2) on y = ([x] , λψ(x)) ∈ π−1([x]) can be correctly defined by setting

τg(y) := ([gx] , λD(1)(g)|ψ(x))〉 (4.2.24)

= ([gx] , λ|ψ(gx)〉).
In fact, from the last expression we see explicitly that y is mapped into the correct fiber:
τg(y) ∈ π−1(g · [x]). From this and the fact that we are using a representation of SU(2)
for its definition, the map τ fulfills the conditions stated in definition (3.1.1), giving
place to an SU(2)-bundle structure on L−.

In order to compare parallel transport with the SU(2) action just defined, we use
(4.2.24) to find the explicit form of the action on L−, when described in terms of |φ〉.
First let us note that, for all x, we have |ψ(x)〉 = U |φ(x)〉, where U is a unitary matrix
(with constant entries). Hence, we may replace ψ by φ in (4.2.24), provided we also

replace D(1)(g) by U †D(1)(g)U . For g ∈ SU(2) written in matrix form as g =

(
u v
−v̄ ū

)

we have, for the 3-dimensional representation,

D(1)(g) =




u2
√

2uv v2

−
√

2uv̄ (|u|2 − |v|2)
√

2ūv

v̄2 −
√

2ūv̄ ū2


 .

This leads to

U † D(1)(g)U =




1
2
(u2 − v2 − v̄2 + ū2) − i

2
(u2 + v2 − v̄2 − ū2) −(uv + ūv̄)

i
2
(u2 + v̄2 − v2 − ū2) 1

2
(u2 + v2 + v̄2 + ū2) −i(uv − ūv̄)

1
2
(uv̄ + ūv) − i

2
(uv̄ − ūv) (|u|2 − |v|2)



.

The path γ(t) = [(sin t, 0, cos t)] may be obtained from the SU(2) action on RP 2. In fact,
with x0 = (0, 0, 1) and

gt =

(
cos t

2
− sin t

2

sin t
2

cos t
2

)
,
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one gets γ(t) = gt · [x0]. Now, since ([x0] , (0, 0, 1)) lies in the fiber over [x0], we may
consider its image under the action of gt:

τgt ([x0] , (0, 0, 1)) =
(
gt · [x0] , U

† D(1)(gt)U (0, 0, 1)t
)

= (γ(t), (sin t, 0, cos t))
(4.2.14)

= s(t). (4.2.25)

4.2.3 Two Identical Particles of Spin Zero

As remarked in the introduction, the classical configuration space of a system of N

identical particles moving in R3 is defined the quotient space, QN = Q̃N/SN , obtained
from the natural action of the permutation group SN on the space

Q̃N = {(r1, . . . , rN) ∈ R
3N | ri 6= rj for all pairs(i, j)}.

This is a multiply-connected space and so, according to the general considerations pre-
sented in chapter 2, and following [LM77], we consider wave functions to be given by
square integrable sections of some vector bundle on QN .

Let us now use the results of the previous sections in order to draw some conclusions
about the special case N = 2, for spin zero. Here, after performing a transformation to
center of mass and relative coordinates, one sees that Q2 is of the same homotopy type
as a two-sphere S2, this latter representing the space of normalized relative coordinates
of the two particles. Under exchange, the relative coordinate r goes to −r, so that
after quotienting out by the action of S2

∼= Z2, we obtain the projective space RP 2.

For our purposes it is therefore enough to consider Q̃2 = S2 and Q2 = RP 2 for the
configuration space.

Define now A := C(S2). We have seen how the Z2-action on S2 induces one on A,
leading to a decomposition into subspaces of even and odd functions: A = A+ ⊕ A−.
The sub-algebra A+ is isomorphic to C(RP 2).

As we mentioned before, there are -up to equivalence- only two complex line bundles
on RP 2. One of them is the trivial one, L+, and the other is L−. The corresponding
modules of sections Γ(L±) are isomorphic, respectively, to A±. We have seen that the
connection naturally associated to p(A3

+) is flat and that its holonomy group is Z2. This
corresponds to the fact that a pair of particles whose wave function is an element of
p(A3

+) ∼= Γ(L−) obey Fermi statistics. From this observations it follows that, for spin
zero particles, the only possible statistics are the fermionic and the bosonic one and
we see how the Fermi-Bose alternative for spinless particles is obtained as a direct
consequence of the topology of the configuration space, a well known result. Note that
this result is obtained from an intrinsic treatment of indistinguishability, where no use
of a symmetrization postulate is made.
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4 The spin zero case

When higher values of the spin are considered, the Fermi-Bose alternative has no direct
relation to the topology of the configuration space. In chapter 6 we propose to use
the SU(2)-equivariance of bundles on the configuration space in order to deduce the
Fermi-Bose alternative.

Although it will not be done here, let us mention that the recent discussion of the spin
zero case presented in [Pes03b] can be clarified enormously using our approach. In
particular, our approach allows us to show in detail why the proof presented there
fails.
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5 Applications to the Berry-Robbins
approach to Spin-Statistics

We have remarked in the previous chapters that one of the motivations in the search
for a geometric proof of the Spin-Statistics theorem is the fact that, for identical spin-
less particles, the Fermi-Bose alternative follows as a consequences of the non-trivial
topology of the configuration space. The possibility of a geometric origin of the Spin-
Statistics relation was already proposed by Leinaas and Myrheim [LM77] and has been
a subject of interest for many years. But there is a big obstacle in the way to eventu-
ally achieving such a goal: The results in the motivational case (i.e. the example of
quantum mechanics of identical spinless particles) are obtained within a framework in
which quantization ideas play a key role. It is more than questionable that a method
based on a quantization scheme may also be applied when electron spin (which has
no classical analog∗) is considered. A reasonable way out of this difficulty is to adopt
a compromise position, by adding “by hand” the structures needed to describe spin
to the ones that have already been obtained for the zero spin case by a well founded
quantization algorithm. Such a strategy necessarily involves a certain amount of trial
and error and it is for this reason that the implementation of different constructions
and a comparison between them is welcome, since this might provide some insight
into the problem.

Among these constructions are the one proposed by Berry and Robbins [BR97], as
well as further developments of it [BR00, HR04]. The original construction attempts
to tackle the issue of indistinguishability, making use of a certain single-valuedness
requirement on the wave function, in the hope that a derivation of the Spin-Statistics
theorem will be achieved. It has the virtue of being concrete and of reproducing the
correct relation between Spin and Statistics for all values of the spin but, this one not
being the only construction satisfying their assumptions (see [BR00]), the derived Spin-
Statistics relation gets lost. Anyway, the Berry-Robbins approach leaves, in our opin-
ion, many open questions, and the formalism used does not very easily allow to isolate
technical aspects from physical ones. It is therefore of interest to have a new look at
these constructions from a different point of view. This is what is done in this chapter,
where the tools developed in chapter 3 are used to reproduce and, most importantly,
to interpret the Berry-Robbins construction. Our method will allow us to show that the
single-valuedness condition of Berry and Robbins is not consistent.

∗See, however, [BH50].
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5 Applications to the Berry-Robbins approach to Spin-Statistics

5.1 Review of the construction

We begin with a review of the construction presented in [BR97], which is restricted to
the two particle case. Recall that for two identical particles moving in three spatial di-

mensions the configuration space, Q, is obtained from Q̃ = {(r1, r2) ∈ R3×R3 | r1 6= r2}
by identifying exchanged configurations: (r, r′) ∼ (r′, r). The resulting space, Q =

Q̃/ ∼, is homotopy equivalent to the projective plane RP 2. This is easily seen by per-

forming, in Q̃, the change of coordinates (r1, r2) 7→ (R, r), where R is the center of

mass position vector, and r the relative position vector. From this we see that Q̃ splits
as the product R

3 × R+ × S2. Under exchange, all points of the first two factors (that
are contractible) remain unchanged, whereas points in the sphere are mapped to their
antipodes. Identification of antipodes in the sphere gives place to a projective plane,

so we might as well set Q̃ = S2 and Q = RP 2.

The spin degrees of freedom are introduced in the formalism in the following way. In a
preliminary step, consider the usual description by means of states of the form |s,m1〉⊗
|s,m2〉. Following [BR97], let us introduce the notation |M〉 for these states, where
the index “M” refers to the ordered pair of quantum numbers {m1, m2} (the quantum
number s will be implicitly understood from now on). For the pair {m2, m1}, which
elements were permuted, the index “M” will be used†. Now, the spin basis {|M〉}M
will be replaced by a “transported” one, that depends on the positions: {|M(r)〉}M , r ∈
Q̃.

In order to obtain the transported basis from the fixed one, a position-dependent uni-
tary operator U(r) is introduced. The idea is to construct U(r) in such a way that a con-
tinuous exchange of the particles’ positions is accompanied by a (continuous, as well)
exchange of spin labels. This will require the embedding of the fixed basis {|M〉}M in
a larger vector space, that will be denoted with V . Schwinger’s representation of spin
in terms of creation and annihilation operators proves to be particularly useful for the
construction of an operator U(r) with the required properties. Let us explain why.

In the Schwinger representation, the spin operators (for one particle states) are con-
structed with the help of operators a(†), b(†) satisfying the commutation relations

[a, a†] = 1 [b, b†] = 1.

One then defines the spin operators as follows:

S1 :=
1

2
(a†b+ b†a)

S2 :=
i

2
(b†a− a†b) (5.1.1)

S3 :=
1

2
(a†a− b†b).

†In other words: if |M〉 ≡ |s, m1〉 ⊗ |s, m2〉, then |M〉 ≡ |s, m2〉 ⊗ |s, m1〉.
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The commutation relations [Si, Sj ] = iǫijkSk hold, so these operators provide a repre-
sentation of su(2). Common eigenvectors of S

2 and S3 are given by

|s,ms〉 :=
(a†)s+ms(b†)s−ms

√
(s+ms)!(s−ms)!

|0〉. (5.1.2)

If we denote with na(nb) the exponent of a†(b†) in equation (5.1.2), then we can write
the quantum numbers s and ms in the following form:

s =
1

2
(na + nb) ms =

1

2
(na − nb). (5.1.3)

From this expression, one sees that a change in the sign of the quantum number ms,
due to a rotation by an angle of π in which ê3 goes to −ê3, can also be effected by
exchanging a† with b†. Now, since in order to describe the spin states of two particles
more operators are needed (say a1, b1, a2, b2, plus the corresponding creation operators),
one might ask: What meaning do the different possible exchanges of operators have,
in terms of rotations? For, whereas the relation between the exchange ai ↔ bi and the

change in sign of m(i)
s under a π rotation is clear from the expression S(i)

3 = 1/2(a†iai −
b†ibi) for the third component of the spin operator of particle i, exchanges of the form

a
(†)
1 ↔ a

(†)
2 or b

(†)
1 ↔ b

(†)
2 should be related, respectively, to operators of the form Ea,3 =

1/2(a†1a1 − a†2a2) or Eb,3 = 1/2(b†1b1 − b†2b2) and so on, which do not have an immediate
interpretation in terms of rotations. The complete set of operators related to this type
of exchange (1 ↔ 2) is, according to equation (5.1.1),

Ea,1 :=
1

2
(a†1a2 + a†2a1), Eb,1 :=

1

2
(b†1b2 + b†2b1),

Ea,2 :=
i

2
(a†2a1 − a†1a2), Eb,2 :=

i

2
(b†2b1 − b†1b2), (5.1.4)

Ea,3 :=
1

2
(a†1a1 − a†2a2), Eb,3 :=

1

2
(b†1b1 − b†2b2).

One checks readily that they satisfy the same commutation relations as the spin op-
erators ([Ea(b),i, Ea(b),j ] = iǫijkEa(b),k) and hence provide yet another representation of
su(2). Since the a-operators commute with the b-ones, this is still true for E := Ea + Eb

(where Ea(b) := (Ea(b),1, Ea(b),2, Ea(b),3)). Exponentiating it, we obtain a representation
ρE : SU(2) → Gl(V ), where V is the space generated by the basis

|n1a, n2a, n1b, n2b〉 =
(a†1)

n1a(a†2)
n2a(b†1)

n1b(b†2)
n2b

√
(n1a)!(n2a)!(n1b)!(n2b)!

|0〉. (5.1.5)

SU(2) can be parametrized by elements of the form gψ(n) = exp( i
2
ψn · σ), where

−π < ψ ≤ π, n is a unit vector and σ = (σ1, σ2, σ3) (Pauli matrices). Using this parame-
trization of SU , we can use the representation ρE to get a map

U : S2 → Gl(V ) (5.1.6)

r → U(r) := ρE(gθ(−n(r))), (5.1.7)
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5 Applications to the Berry-Robbins approach to Spin-Statistics

where n(r) = e3 × r. In terms of the generators Ei, we have:

U(r) = e−iθn(r)·E, (5.1.8)

Doing this, the meaning of the exchanges of the form (1 ↔ 2) becomes clear since, as
we will now see, the map U provides a means to realize simultaneously the exchange
of the particles’ positions and spins, in a continuous way.

We can now define the following position-dependent vectors

|n1a, n2a, n1b, n2b(r)〉 := U(r)|n1a, n2a, n1b, n2b〉, (5.1.9)

for which the following relation can be established:

|n1a, n2a, n1b, n2b(r)〉 = (−1)(n2a+n2b)eiφ(n1a+n1b−n2a−n2b)|n2a, n1a, n2b, n1b(r)〉. (5.1.10)

(φ denotes the azimuthal angle of r). According to eqs. (5.1.2) and (5.1.3), the 2-particle
state with quantum numbers M = {m1, m2} is obtained through the replacements

n1a = s +m1, n2a = s+m2,

n1b = s−m1, n2b = s−m2

in equation (5.1.5). In this case, equation (5.1.10) takes, with |M(r)〉 := U(r)|M〉, the
following form:

|M(r)〉 = (−1)2s|M(−r)〉. (5.1.11)

This is a relation of great relevance to the Berry-Robbins construction. Let us now
check equation (5.1.10).

Setting Ua(b)(r) = e−iθn(r)·Ea(b) , it follows from [a
(†)
λ , b

(†)
λ′ ] = 0 that [Ua(r), Ub(r)] = 0 and

hence that U(r) = Ua(r)Ub(r). With the help of the Baker-Hausdorff identity the fol-
lowing relations are obtained:

Ua(r)a
†
1U

†
a(r) = cos

θ

2
a†1 + eiφ sin

θ

2
a†2,

Ua(r)a
†
2U

†
a(r) = cos

θ

2
a†2 − e−iφ sin

θ

2
a†1,
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5.1 Review of the construction

and analogously for b†λ. From this one then obtains:

U(r)(a†1)
n1a(a†2)

n2a(b†1)
n1b(b†2)

n2b |0〉 =

= U(r)(a†1)
n1aU †(r) · · ·U(r)(b†2)

n2bU †(r)|0〉 =

= Ua(r)(a
†
1)
n1a(a†2)

n2aU †
a(r)Ub(r)(b

†
1)
n1b(b†2)

n2bU †
b (r)|0〉 =

=
(
cos

θ

2
a†1 + eiφ sin

θ

2
a†2

)n1a
(
−e−iφ sin

θ

2
a†1 + cos

θ

2
a†2

)n2a

×

×
(
cos

θ

2
b†1 + eiφ sin

θ

2
b†2

)n1b
(
−e−iφ sin

θ

2
b†1 + cos

θ

2
b†2

)n2b

=

= σ
(
e−iφ cos

θ

2
a†1 + sin

θ

2
a†2

)n1a
(
sin

θ

2
a†1 − eiφ cos

θ

2
a†2

)n2a

×

×
(
e−iφ cos

θ

2
b†1 + sin

θ

2
b†2

)n1b
(
sin

θ

2
b†1 − eiφ cos

θ

2
b†2

)n2b

=

= σ
(
−e−i(φ+π) sin

(θ + π

2

)
a†1 + cos

(θ + π

2

)
a†2

)n1a
(
cos
(θ + π

2

)
a†1 + ei(φ+π) sin

(θ + π

2

)
a†2

)n2a

×

×
(
−e−i(φ+π) sin

(θ + π

2

)
b†1 + cos

(θ + π

2

)
b†2

)n1b
(
cos
(θ + π

2

)
b†1 + ei(φ+π) sin

(θ + π

2

)
b†2

)n2b

=

= σU(−r)(a†1)n2a(a†2)
n1a(b†1)

n2b(b†2)
n1b |0〉,

where σ = (−1)(n2a+n2b)eiφ(n1a+n1b−n2a−n2b).

The transported spin basis defined through equation (5.1.11) has certain properties,
that we already mentioned in the introduction and that were originally conjectured to
fully characterize it (as pointed out in [BR00], this is not the case). We list them here
once again.

5.1.1 Definition (Transported Spin Basis).

(i) The map S2 −→ C
NS

r 7−→ |M(r)〉 := U(r)|M〉

is well defined and smooth for all M .

(ii) The following “exchange” rule holds:

|M(−r)〉 = (−1)2S|M(r)〉. (5.1.12)

(iii) The “parallel transport” condition 〈M ′(r(t))| d
dt
M(r(t))〉 = 0 is satisfied for all M

and M ′, and for every smooth curve t 7→ r(t).
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5 Applications to the Berry-Robbins approach to Spin-Statistics

Having constructed the transported spin basis, the next step is the definition of the
wave function in terms of it:

|Ψ(r)〉 =
∑

M

ΨM(r)|M(r)〉. (5.1.13)

Since the usual spin states have been replaced by the transported ones, and the wave
function now expressed in terms of them, it is also necessary to modify the momentum
and spin operators. This can be done with the help of the operator U(r) and it can be
shown that, after the new operators are introduced, the coefficient functions ΨM(r)
satisfy the same differential equation as in the usual case (i.e. Schrödinger’s equation).

The single-valuedness requirement, imposed on the wave function by the condition

|Ψ(r)〉 !
= |Ψ(−r)〉 (5.1.14)

is essential to the Berry-Robbins approach. As a consequence of indistinguishability,
the physical configuration space is, as explained before, not S2 but RP 2. But both
the transported spin vectors |M(r)〉 as well as the wave function equation (5.1.13) are
defined as maps whose domain of definition is S2. As far as we can see, the moti-
vation of Berry-Robbins for the imposition of the condition equation (5.1.14) on the
wave function was precisely to “force” its domain of definition to be RP 2, the phys-
ically correct configuration space. Although from the physical point of view such an
assumption is fully justified (in view of indistinguishability), its implementation by
means of equation (5.1.14) leaves several questions open. A detailed discussion of this
single-valuedness condition, from the point of view of our approach will be presented
in section 5.3.

Assuming the properties stated in 5.1.1, a direct consequence of the single-valuedness
condition equation(5.1.14) is the relation ΨM(−r) = (−1)2SΨM(r) for the coefficient
functions, which is equivalent to the (physically correct) relation between spin and
statistics. The validity of the last assertion is due to the fat that, as shown in [BR97],
these coefficient functions satisfy the same differential equation as the usual ones (of
course, in order to regard this result as a derivation of the Spin-Statistics theorem, it
would be necessary to justify the introduction of a transported spin basis satisfying
precisely the properties stated above).

So far, these are, in our view, the most relevant aspects of the Berry-Robbins construc-
tion. We have already pointed out that a particular feature of the Berry-Robbins ap-
proach is its concreteness, since the use of Schwinger’s representation of spin allows
to make explicit computations. But, in spite of this, it posses several problems. The
role of Schwinger’s representation is not clear. It is known that there are alternative
constructions which are not based on it and that give the wrong Spin-Statistics connec-
tion [BR00]. Also, its relation to other approaches of a more geometric nature cannot
be seen clearly, although the authors do affirm that a geometric structure -in the spirit
of that presented in chapter 2- underlies the construction. In their words,
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“What we are doing is setting up quantum mechanics on a ‘two-spin bundle’, whose six-
dimensional base is the configuration space r1, r2 with exchanged configurations identified and
coincidences r1 = r2 excluded (...). The fibres are the two-spin Hilbert spaces spanned by the
transported basis |M(r)〉. The full Hilbert space consists of global sections of the bundle, i.e.
singlevalued wave functions” [BR97].

In the next sections we will be concerned with a clear formulation of the Berry-Robbins
construction in such geometric terms, thus giving a precise meaning to the assertion
quoted above. The methods developed in chapter 3 are particularly well suited for
this purpose. The re-formulation of the construction in terms of projective modules
presented in the next section will lead us to the conclusion, presented in section 5.3,
that the single-valuedness condition of Berry-Robbins is inconsistent.

5.2 The transported spin basis and projectors

Specializing the construction to the spin 1/2 case, we note that the operators U(r) leave
a 10-dimensional space (which contains the 4 fixed spin states) invariant. A basis for
this space is given by

|e1〉 := a†1a
†
2|0〉 = |+,+〉, |e6〉 := a†2b

†
2|0〉,

|e2〉 := b†1b
†
2|0〉 = |−,−〉, |e7〉 :=

(a†1)
2

√
2
|0〉,

|e3〉 := a†1b
†
2|0〉 = |+,−〉, |e8〉 :=

(b†1)
2

√
2
|0〉, (5.2.1)

|e4〉 := a†2b
†
1|0〉 = |−,+〉, |e9〉 :=

(a†2)
2

√
2
|0〉,

|e5〉 := a†1b
†
1|0〉, |e10〉 :=

(b†2)
2

√
2
|0〉.

Applying U(r) to the first four basis vectors, and with the help of equation (5.1.12), we
obtain the explicit expressions for the transported spin vectors, as linear combinations
of all ten vectors |e1〉, . . . , |e10〉:

|+,+(r)〉 := U(r)|+,+〉 = −e−iφ sin θ√
2
|e7〉 + cos θ|e1〉 + eiφ

sin θ√
2
|e9〉

|−,−(r)〉 := U(r)|−,−〉 = −e−iφ sin θ√
2
|e8〉 + cos θ|e2〉 + eiφ

sin θ√
2
|e10〉 (5.2.2)

|+,−(r)〉 := U(r)|+,−〉 = −e−iφ sin θ

2
|e5〉 + cos2 θ

2
|e3〉 − sin2 θ

2
|e4〉 + eiφ

sin θ

2
|e6〉

|−,+(r)〉 := U(r)|−,+〉 = −e−iφ sin θ

2
|e5〉 + cos2 θ

2
|e4〉 − sin2 θ

2
|e3〉 + eiφ

sin θ

2
|e6〉
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5 Applications to the Berry-Robbins approach to Spin-Statistics

The transported spin vectors are maps

S2 −→ V

r 7−→ |M(r)〉

(V = span{|e1〉, . . . , |e10〉}). Because of the relation |M(−r)〉 = −|M(r)〉, it is not pos-
sible to regard them as maps RP 2 → V (because of equation (5.1.14), this is indeed
possible for the whole wave function |Ψ(r)〉). But this situation changes if we make a
change to a basis of total angular momentum. First, we define the following auxiliary
vectors:

|1,−1〉(−1) := |e8〉 |1,−1〉(0) := |e2〉 |1,−1〉(1) := |e10〉
|1, 0〉(−1) := |e5〉 |1, 0〉(0) := 1√

2
(|e3〉 + |e4〉) |1, 0〉(1) := |e6〉

|1, 1〉(−1) := |e7〉 |1, 1〉(0) := |e1〉 |1, 1〉(1) := |e9〉
|0, 0〉 := 1√

2
(|e3〉 − |e4〉) .

Applying U(r) to them, we obtain:

U(r)|1, m〉(−1) = cos2 θ

2
|1, m〉(−1) + eiφ

sin θ√
2
|1, m〉(0) + e2iφ sin2 θ

2
|1, m〉(1)

U(r)|1, m〉(0) = −e−iφ sin θ√
2
|1, m〉(−1) + cos θ|1, m〉(0) + eiφ

sin θ√
2
|1, m〉(1) (5.2.3)

U(r)|1, m〉(1) = e−2iφ sin2 θ

2
|1, m〉(−1) − e−iφ

sin θ√
2
|1, m〉(0) + cos2 θ

2
|1, m〉(1)

U(r)|0, 0〉 = |0, 0〉.

For the physical spin vectors (with |1, 0(r)〉 := (1/
√

2)(|+,−(r)〉 + |−,+(r)〉), etc..) one
then gets

|1, 1(r)〉 = −e−iφ sin θ√
2
|1, 1〉(−1) + cos θ|1, 1〉(0) + eiφ

sin θ√
2
|1, 1〉(1)

|1, 0(r)〉 = −e−iφ sin θ√
2
|1, 0〉(−1) + cos θ|1, 0〉(0) + eiφ

sin θ√
2
|1, 0〉(1) (5.2.4)

|1,−1(r)〉 = −e−iφ sin θ√
2
|1,−1〉(−1) + cos θ|1,−1〉(0) + eiφ

sin θ√
2
|1,−1〉(1)

|0, 0(r)〉 = |0, 0〉.

Note that the vectors |j,m(r)〉 (for (j,m) = (1,±1), (1, 0) and (0, 0)) are all non van-
ishing for all r. Thus, we see that r 7→ |j,m(r)〉 is a section in a bundle with total
space S2 × Vm, where Vm is the space spanned by {|1, m〉(−1), |1, m〉(0), |1, m〉(1)}, when
j = 1 and the space spanned by |0, 0〉, when j = 0. All four line bundles are trivial,
since the corresponding sections are non vanishing. The difference lies in the symme-
try/antisymmetry of the sections with respect to r, when they are regarded as vector
valued functions on the sphere. This symmetry/antisymmetry could be regarded as
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5.2 The transported spin basis and projectors

an equivariance property with respect to some Z2 action on each line bundle, but this
is something we do not have at our disposal, so we will consider these line bundles
as bundles over the sphere. One can then construct the corresponding projectors. The
interesting thing about constructing these projectors is that the three corresponding to
j = 1 turn out to have matrix components which are even functions. One can then in-
terpret these projectors as defining projective modules overC(RP 2) and, as we will see,
the form of these projectors is exactly the same as the one displayed in equation(4.2.20).
Since the first three basis vectors in equation (5.2.4) have the same form, let us consider
any of them, written in the form

|χ(r)〉 = −e−iφ sin θ√
2
|e1〉 + cos θ|e2〉 + eiφ

sin θ√
2
|e3〉. (5.2.5)

The (r-dependent) operator P (r) that projects onto the vector space spanned by |χ(r)〉
is defined by P (r)|ei〉 := 〈χ(r)|ei〉|χ(r)〉. Explicitly, we have:

P (r)|e1〉 =
sin2 θ

2
|e1〉 −

sin θ cos θ√
2

eiϕ|e2〉 −
sin2 θ

2
e2iϕ|e3〉

P (r)|e2〉 = −sin θ cos θ√
2

e−iϕ|e1〉 + cos2 θ|e2〉 +
sin θ cos θ√

2
eiϕ|e3〉 (5.2.6)

P (r)|e3〉 = −sin2 θ

2
e−2iϕ|e1〉 +

sin θ cos θ√
2

e−iϕ|e2〉 +
sin2 θ

2
|e3〉

In the basis {|ei〉}i, P (r) has a matrix form, with components Mij(r) defined by
P (r)|ei〉 =

∑
jMji(r)|ej〉, so that

M(r) =




1
2
sin2 θ − 1√

2
sin θ cos θe−iϕ −1

2
sin2 θe−2iϕ

− 1√
2
sin θ cos θeiϕ cos2 θ 1√

2
sin θ cos θe−iϕ

−1
2
sin2 θe2iϕ 1√

2
sin θ cos θeiϕ 1

2
sin2 θ


 . (5.2.7)

We have thus obtained, from the transported spin basis, exactly the same expression
for the projector that was considered in proposition 4.2.2. Here we are considering it as
defining a projective module over the algebra C(S2), but given that its components are
even functions, we could in principle consider it as giving place to a projective module
over C(RP 2). This point of view will be considered in more detail in the next section.

Let us now use the obtained expression for the projector to show that each spin basis
vector is a section of a line bundle (determined by the projector P (r)) that is parallel
with respect to the connection Pd. Writing |χ(r)〉 =

∑
i χi(r)|ei〉 and ~χ = (χ1, χ2, χ3) =
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(−e−iϕ sin θ/
√

2, cos θ, eiϕ sin θ/
√

2), we have:

Pd|χ(r)〉 = P
∑

i

dχi(r)|ei〉

=
∑

i

dχi(r)P |ej〉

=
∑

i,j

dχi(r)Mji(r)|ej〉

=
∑

j

(M(r) · d~χ(r))j︸ ︷︷ ︸
=0

|ej〉

= 0. (5.2.8)

This also shows that the parallel transport condition (third condition in definition 5.1.1)
holds if and only if |χ〉 is parallel transported with respect to the connection ∇ = Pd,
because |χ〉 is nowhere vanishing, so that M(r) · d~χ(r) = 0 exactly when 〈χ(r)|dχ(r)〉 =
0.

In this section we have shown how, for the spin 1/2 case, the transported spin basis
gives place to a projector which contains, as direct summands, one copy of the triv-
ial rank one projector and three copies of the projector from proposition 4.2.2, i.e., a
projective module isomorphic to A−. Although it will not be done here, let us remark
that, in the case of general spin, the transported spin basis constructed with the help
of Schwinger’s oscillators also gives place to a projective module. In the same way as
in the case s = 1/2, after passing to the total angular momentum basis and decom-
posing the spin states according to the Clebsch-Gordan decomposition, one obtains a
projective module that contains different copies of A+ and A−. Hence, concerning the
geometric properties of the transported spin basis, it is enough to consider the case
s = 1/2.

5.3 Single-valuedness of the wave function

As we have already pointed out, the requirement of single-valuedness imposed on the
wave function in the form of equation (5.1.14) is an essential ingredient of the Berry-
Robbins construction. In this subsection we will discuss that requirement, using the
tools developed so far. We shall arrive at the conclusion that the single-valuedness
condition of Berry and Robbins leads to a contradiction.

There are two instances -not altogether independent- where the concept of a “multiple-
valued function” comes into play in the present context. Notice that this concept is
actually related to the transformation properties of the function under a certain sym-
metry group. Before describing them, let us remark that physicists do not necessarily
use the term “multiple-valued” in the same way mathematicians do. So, for example,
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5.3 Single-valuedness of the wave function

in the theory of one complex variable, the function z 7→ √
z is said to be multiple-

valued, because there are two possible solutions (for w) to the equation w2 = z. In
contrast to this, consider the wave function of a spin 1/2 particle. As a “mathematical”
function, it is a single-valued one. But it has the property that, under a 2π rotation,
it is not left unchanged: its value after the rotation is (−1) times its original value;
hence the usage of the term “double-valued” in the physics literature. The physical
need to impose single-valuedness was examined already in the early days of Quan-
tum Mechanics. In particular, Pauli studied the problem and showed that considering
multiple-valued functions (in the “mathematical”sense described above) leads to prob-
lems with the self-adjointness of related operators (see [Pau33, Pau39]). For a further
analysis of the status of single-valuedness in physics (and in particular in view of ef-
fects like the Aharanov-Bohm), the reader is referred to [Mer62] and references therein.

Thus, we will also adopt the point of view that, as a “mathematical function” defined
on configuration space, the wave function should be single-valued. Now, in the par-

ticular case of N identical particles, depending on which of the spaces (Q̃ = R3N \∆ or
Q = (R3N\∆)/SN ) is considered as the physical one, one will impose single-valuedness
to the wave function, whose domain of definition will be the physical configuration
space. As argued in [LM77], due to Gibbs’ paradox, in our case the physical configu-

ration space should be chosen as Q, and not as Q̃. In the configuration space approach
to Spin-Statistics, this is perhaps one of the few points on which most authors agree.

Once we have chosen Q as configuration space, we are faced with the fact that, due
to the non-trivial global structure of Q, different possibilities for the definition of the
wave function arise: It will be, in general, a cross-section of some vector bundle over
Q. As already pointed out‡, a section of a vector bundle is sometimes regarded as a
multiple-valued function, because of the different functions that are needed in order to
describe it in terms of local trivialisations. But let us, once again, remark that a section
of a vector bundle is a single-valued map, even if the bundle is not trivial. This is the
first instance we alluded to above.

The advantages of working on Q̃ -the universal cover of Q- are well known and have
been used extensively (see e.g. [HMS89, Mor92]). In particular, every wave function ψ,

being a section of some bundle over Q, can be brought to the form of a map ψ̃ : Q̃ → C
k.

Although this map is a single-valued one, it is of common usage, in the physics liter-
ature, to call it a “multiple-valued function”. From the discussion at the beginning

of section 3.3, we know that ψ̃ should rather be referred to as an equivariant func-

tion. Once we know the value of ψ̃ at some point q̃ ∈ Q̃, we can use the equivariance
property to find its value at all points σ · q̃, for σ ∈ SN . But the different points σ · q̃
do represent one and the same physical configuration; hence the tendency to call ψ̃ a
“multiple-valued function”. This is the second instance we alluded to above.

It is our impression that, instead of talking about single-valuedness, one should con-
sider the notion of well-definiteness. In fact, the point with many of the standard exam-

‡See the remark on the fourth paragraph of section 1.2
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5 Applications to the Berry-Robbins approach to Spin-Statistics

ples where single-valuedness comes into play, having so far-reaching consequences as,
for example, the quantization of angular momentum, is not really single-valuedness
but well-definiteness. Considering the example of angular momentum, what is being

“forced” when a condition of the form ψ(ϕ)
!
= ψ(ϕ+2π) is imposed, is that ψ, as a map

ψ : S1 → C, be well defined. The imposition of this condition is necessary because S1 is
being described using only one local chart. In a global formulation, this problem would
not even arise. Saying that ψ belongs to C(S1) automatically implies well-definiteness
and, for that matter, also single-valuedness. The origin of the quantization of angular
momentum is thus not so much due to the fact that ψ be single-valued, but to the fact
that S1 is a compact manifold, from which it follows that the spectrum of Lz is discrete.

Before embarking on a discussion of the single-valuedness condition of Berry-Robbins,
let us summarize the situation as follows:

We are given a configuration space Q with π1(Q) 6= 0. Physical wave functions will
be, in general, of the form ψ ∈ Γ(Q, ξ), for ξ some vector bundle over Q. Because of
theorem 3.3.5 we know that, as a module over C(Q), ΓG(q∗ξ) is isomorphic to Γ(ξ),
where q : Q̃ → Q and G = π1(Q). Thus, ψ ∈ Γ(Q, ξ) is isomorphically represented by

ψ̃ ∈ ΓG(Q̃, q∗ξ). If, as in the case of our interest, the bundle ξ is flat, q∗ξ will be a trivial

bundle and we might as well consider ψ̃ to be a usual function, taking values in some
Ck.

With these preliminary remarks in mind, we proceed now to interpret the Berry-
Robbins single-valuedness condition, within our formalism. Consider a wave func-
tion for two spin s particles written in terms of a transported spin basis {|M(r)〉},

|Ψ(r)〉 =
∑

M

ΨM(r)|M(r)〉. (5.3.1)

The transported spin vectors will be assumed to satisfy the exchange rule |M̄(−r)〉 =
(−1)K |M(r)〉. The choice of K will be left open for the moment. Notice, however,
that it is possible to construct a spin basis satisfying the three requirements originally
imposed by Berry-Robbins on the spin basis, irrespectively of the value ofK. Changing
to the total angular momentum ({|j,m〉}) basis, we can re-write the exchange condition
as follows:

|j,m(−r)〉 = (−1)2S−j+K |j,m(r)〉. (5.3.2)

The vectors |M(r)〉 are all non-vanishing, by assumption. It follows that all the vectors
|j,m(r)〉 are non-vanishing, so that they give place to a trivial vector bundle ηBR

K over
the sphere, with total space

E(ηBR

K ) = {(r,
∑

j,m

λj,m|j,m(r)〉 ) | r ∈ S2, λj,m ∈ C}. (5.3.3)

Let us remark that, for any choice of the spin basis (including the choice of K), the
bundles ηBR

K are all isomorphic to the trivial bundle S2 × C2(2s+1) → C2(2s+1). But, given
we are interested, in particular, in the transformation properties of the spin basis under
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exchange, we keep track of the sign (−1)K by means of a sub-index in ηBR
K . Hence, ηBR

K

denotes the explicit realization of the bundle with total space given by eq. (5.3.3),
and not the equivalence class of this bundle. Similarly, from now on we will also
label the spin basis elements and functions constructed from them with a sub-index
K: |M(r)〉K , |j,m(r)〉K and |Ψ(r)〉K .

|Ψ〉K is a map r 7→ |Ψ(r)〉K from S2 to some vector space, but it gives place to a section
ΨK ∈ Γ(S2, ηBR

K ), defined by ΨK(r) := (r, |Ψ(r)〉K). In any case, |Ψ(r)〉K is supposed
to represent the physical wave function, and this one should have RP 2 as domain of
definition. This is the reason for the imposition of the single-valuedness condition.

In order to make the arguments presented below as clear as possible, let us highlight
the following three features of the Berry-Robbins approach:

(A) Exchange rule: |M̄(−r)〉K = (−1)K |M(r)〉K .

(B) Single-valuedness: |Ψ(−r)〉K !
= |Ψ(r)〉K .

(C) Berry and Robbins statement, quoted at the end
of section 5.1, that |Ψ(r)〉K represents a section of
a bundle over RP 2.

According to our previous discussion, the physical wave function ψ is a section of
some vector bundle ξ over RP 2: ψ ∈ Γ(RP 2, ξ). In order to make contact with the
Berry-Robbins approach, we will make use of the results of chapter 3. Recall that the
projection q : S2 → RP 2 induces a natural Z2-action τξ on the pull-back bundle q∗ξ and
that, according to theorem 3.3.5, the space of invariant sections (with respect to τξ) of
q∗ξ is isomorphic, as a C(RP 2)-module, to the space of sections of ξ:

ΦZ2 : Γ(RP 2, ξ)
∼=−→ Γτξ(S2, q∗ξ).

This means, in particular, that we can represent the wave function ψ as a section ΦZ2(ψ)
of the bundle q∗ξ. But q∗ξ is a trivial bundle and has the same rank as ηBR

K , so that we
also have isomorphisms q∗ξ ∼= ηBR

K , for any choice of K. Now recall that, in order to
regard a section in ηBR

K as a section in ξ, we must require it to be Z2-invariant. The
action in ηBR

K (which is not present within the Berry-Robbins approach) must therefore
be defined in such a way that the isomorphism q∗ξ ∼= ηBR

K still holds as an isomorphism
of Z2 bundles. In this way, we can realize ψ as a map of the form (5.3.1), if we require
the section r 7→ (r, |Ψ(r)〉K) to be invariant with respect to the Z2-action of ηBR

K .

The Z2-actions on ηBR
K that are compatible with the Fermi-Bose alternative are of the

form (σ ∈ Z2):

τ BR

K̃
(σ)(r, |j,m(r)〉K) = (σ · r, (sgnσ)2s−j+K̃|j,m(σ · r)〉K), (5.3.4)
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5 Applications to the Berry-Robbins approach to Spin-Statistics

for K̃ even or odd. Notice that the transformation property (A) does not enter into the
definition of the action. In particular, K̃ and K can be chosen independently.

If we now fix the bundle ξ (assuming that it is a bundle compatible with the Fermi-
Bose alternative), we can use the isomorphism ΦZ2 and the requirement that q∗ξ and
ηBR
K be isomorphic Z2-bundles, in order to determine the value of K̃. This value of K̃

depends only on ξ. In particular, it is the same for the two different choices of K (even
and odd). If we want ΨK(r) = (r, |Ψ(r)〉K) to be an invariant section, then we must
have σ · ΨK ≡ ΨK . But

ΨK(r) = (r,
∑

j,m

Ψ
(K)
j,m (r)|j,m(r)〉K),

whereas

σ · ΨK(r) = τ BR

K̃
(σ)(ΨK(σ−1 · r))

= τ BR

K̃
(σ)(σ−1 · r,

∑

j,m

Ψ
(K)
j,m (σ−1 · r)|j,m(σ−1 · r)〉K)

= (r,
∑

j,m

Ψ
(K)
j,m (σ−1 · r)(sgnσ)2s−j+K̃ |j,m(r)〉K),

implying

Ψ
(K)
j,m (−r) = (−1)2s−j+K̃Ψ

(K)
j,m (r). (5.3.5)

This result is independent of the value of K and is a consequence of assuming (C).

Now, let us consider the two possible choices of K:

• K = K̃ :

|Ψ(−r)〉K̃ =
∑

j,m

Ψ
(K̃)
j,m (−r)|j,m(−r)〉K̃

(A),withK≡K̃
=

∑

j,m

Ψ
(K̃)
j,m (−r)

(
(−1)2s−j+K̃ |j,m(r)〉K̃

)

(5.3.5)
=

∑

j,m

(
(−1)2s−j+K̃Ψ

(K̃)
j,m (r)

)(
(−1)2s−j+K̃ |j,m(r)〉K̃

)

= |Ψ(r)〉K̃ .

• K = K̃ + 1 :

|Ψ(−r)〉K̃+1 =
∑

j,m

Ψ
(K̃+1)
j,m (−r)|j,m(−r)〉K̃+1

(A),withK≡K̃+1
=

∑

j,m

Ψ
(K̃+1)
j,m (−r)

(
(−1)2s−j+K̃+1|j,m(r)〉K̃+1

)

(5.3.5)
=

∑

j,m

(
(−1)2s−j+K̃Ψ

(K̃+1)
j,m (r)

)(
(−1)2s−j+K̃+1|j,m(r)〉K̃+1

)

= −|Ψ(r)〉K̃+1.
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Therefore, we see that:

• The specification of a transported spin basis with the exchange property (A), to-
gether with the single-valuedness condition (B) can be interpreted in terms of the
specification of a Z2-bundle structure on ηBR

K and, at the same time, of the require-
ment that the corresponding section Ψ be Z2-invariant (as it should be, according
to (C)), provided that we choose K = K̃.

• The choice K = K̃ + 1 leads to a contradiction with the assumption of single-
valuedness (C).

The need for a position-dependent spin in the Berry-Robbins approach stems from the
fact that they try to obtain ψ, the physical wave function, by means of (B): The role of
the spin basis is to ensure that the fibers of ηBR

K at opposite points on the sphere coincide,
given that the bundle has been constructed as a subbundle of a trivial bundle. It then
makes sense to compare the values of |Ψ〉K at different points, as is tacitly assumed by
(B).

Let us note that,from the point of view of our approach, there is no need for a position-
dependent spin basis. This is so because ψ is a section of ξ and, given that q∗ξ is a trivial
bundle, we can use the isomorphism ΦZ2 to represent ψ as a function on S2.

But our analysis does not only show that the introduction of a position-dependent spin
basis is unnecessary, it also shows that the single-valuedness condition (B) is wrong:
We start with ψ ∈ Γ(RP 2, ξ), using the isomorphism ΦZ2 we obtain an isomorphic
image of ψ inside Γτξ(S2, q∗ξ). Then, we require the bundle ηBR

K to be Z2-equivalent to
(q∗ξ, τξ). This requirement fixes the value of K̃. Finally, choosing K = K̃ gives us a
section r 7→ (r, |Ψ(r)〉K̃) which is an isomorphic image of ψ and for which |Ψ(−r)〉K̃ =
|Ψ(r)〉K̃ holds. But choosing K = K̃ + 1 gives us a section r 7→ (r, |Ψ(r)〉K̃+1) which is
also an isomorphic image of ψ, but for which, instead, |Ψ(−r)〉K̃+1 = −|Ψ(r)〉K̃+1 holds.

The subtlety of the argument lies in the fact that we are working with projective mod-

ules P̃ , P over two different rings: C(S2) and C(RP 2), respectively. We have seen that

P̃ carries also the structure of a C(RP 2)-module. This permits the construction of a

C(RP 2)-module homomorphism ΦZ2 : P → P̃ (thm. 3.3.5) that maps P isomorphically

onto a submodule of P̃ (here considered as C(RP 2)-module). The important point is,

then, to recognize the correct condition characterizing those elements of P̃ that lie in
ΦZ2(P ). As we have seen, this condition is expressed in the form

σ · Ψ = Ψ (σ ∈ Z2), (5.3.6)

a form that (to our opinion), while retaining the original motivation behind the single-
valuedness condition, is free from ambiguities and mathematically correct. Physically,
because of indistinguishability, the wave function is defined on RP 2. Working on S2

thus demands the introduction of some criterion that allows one to retain the correct
physical interpretation. Although this might be the purpose of the single-valuedness
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5 Applications to the Berry-Robbins approach to Spin-Statistics

condition of Berry-Robbins, we have seen in detail why the condition itself is not ten-
able. Instead we propose the imposition of invariance on the wave function (when de-
fined on S2) as stated in equation (5.3.6) as a more clear and concise way to incorporate
indistinguishability into the (usual) formalism of Quantum Mechanics.

Let us remark that, in [HR04] a generalization of the BR construction to N particles has
been given. Being based on the same assumptions (in particular the single-valuedness
condition), it has the same problems as the one for two particles. The extension of
our reasoning to that -more general- case is nevertheless straightforward, since our
approach is model-independent.
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6 Further developments

In this work, almost all of our attention has been directed towards a reformulation of
the Berry-Robbins (BR) proposal in geometric/algebraic terms. This effort, per se, does
not seem to provide an advance regarding the Spin-Statistics theorem. But it must be
said that the BR proposal has generated, in last few years a growing interest in the
issue of Spin-Statistics in (non-relativistic) Quantum Mechanics. It is for this reason
that we have emphasized so much the problems of their approach. We have seen that
the problems with the BR proposal are of a conceptual nature. This means that now we
have to turn our attention to other directions. Two points that, to our opinion, deserve
to be investigated further are the correct incorporation of spin degrees of freedom into
the configuration space approach and a convincent proof of the Fermi-Bose alternative,
of a geometric nature. As we will see below, it seems that these two questions are
closely related.

It is natural, for reasons of simplicity, to attack these and other questions first at the
level of a two particle system, the hope being always that, once the two particle case has
been understood, the general, many-particle case can be understood without essential
modifications. But if one is also interested in the relation of the geometric/topological
character of quantum indistinguishability to the (relativistic QFT) Spin-Statistics con-
nection, then a formalism able to handle any number of particles will be welcome. In
this work we have performed all explicit computations in the two particle case, but the
motivation for the approach presented in chapter 3 has been, precisely, to develop a
formalism that (1) allows to understand and clarify alternative approaches and (2) can,
potentially, be applied to the case of an arbitrary number of particles. Also, inspired
by the philosophy of Non-commutative Geometry, one could think of improving the
approach in such a way that, while retaining all the geometric properties inherent to
quantum indistinguishability, is also formulated in a language, of more algebraic na-
ture, that could help to build a bridge to QFT. Although certain attempts more or less
related to this idea have been made (see, e.g. [Tsc89]), there are, at the moment, no
concrete results.

In this last chapter we will, therefore, consider in some detail some of the points on
which we think it is possible to make some advance in the near future.
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6 Further developments

6.1 SU(2) and Spin

When quantum mechanics is studied in a more general setting, such as the one we
have been discussing in the previous chapters where the wave function is considered
to be a section in a vector bundle, a reconsideration of many physical concepts becomes
necessary. A particularly important one is angular momentum and, closely related to
it, the definition of spin.

Let us start by considering the simplest possible example: A spin 1/2 particle in 3
dimensions. In this case, one considers the state space

H = L2(R3) ⊗ V (1/2).

The spin state space V (1/2) has a basis {|+〉, |−〉} with respect to which the wave func-
tion can be written:

ψ = ψ+ ⊗ |+〉 + ψ− ⊗ |−〉.
The spin operators S±, S3 are, by definition, operators representing su(2), acting on
V (1/2) by

S∓|±〉 = |∓〉
S±|±〉 = 0

S3|±〉 = ±1

2
|∓〉.

Together with the angular momentum operators Li, they give place to infinitesimal
generators of rotations, acting on H:

Ji = Li ⊗ IdV (1/2) + IdL2(R3) ⊗ Si. (6.1.1)

The infinitesimal generators Li and Si give, by exponentiation, the respective repre-
sentations of the whole group SU(2) on L2(R3) and V (1/2). Explicitly, one has, for
g ∈ SU(2):

(g · ψ±)(x) = ψ±(g−1x)

g · |±〉 = D1/2(g)|±〉.

Consequently, the total wave function transforms under SU(2) as ψ → ψ′ = g · ψ, with
g · ψ defined by:

(g · ψ)(x) := D(1/2)(g)(ψ(g−1x)). (6.1.2)

Looking back at equation (3.3.5), we see that by regarding the wave function as a sec-
tion of the trivial bundle R3 × V 1/2 → R3, the transformation of the wave function
under rotations is the one induced from the following SU(2)-action on the bundle:

τ : SU(2) × (R3 × V 1/2) −→ (R3 × V 1/2) (6.1.3)

(g, (x, v)) 7−→ (g · x, D(1/2)(g)v)
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6.1 SU(2) and Spin

We thus see that, even if the bundle were not trivial, there would be no problem in
defining what the transformation of the wave function under a finite rotation is: Every-
thing we need is that the bundle on which the wave function is defined also carries the
structure of a SU(2) bundle. Spin operators can then in principle be defined by consid-
ering the one-parameter subgroups of transformations induced by su(2) through the
action τ . But here care most be taken, when defining spin operators in terms of these
infinitesimal generators, because they include as well the generators of “orbital” angu-
lar momentum. Whether these two (orbital and spin) angular momentum operators
can be consistently separated, when defined by means of the action τ , is something
that is not clear a priori. The reason for this is that, if the vector bundle where the wave
function is defined is not trivial, the existence and the properties of an SU(2) action τ
depend directly on the “twists” of the bundle, therefore, it is to be expected that the
infinitesimal generators deduced from the action τ also carry information about the
global properties of the bundle, making a more careful analysis necessary. An interest-
ing example illustrating this feature, is that of a (spinless) electron in the presence of a
magnetic monopole field, an example that we mentioned briefly in remark 4.1.1.

Leinaas and Myrheim [LM77] proposed to define local spin operators, Si(x), varying
continuously with x and acting linearly on each fiber of the bundle ξ where the wave
function is defined. Each fiber ξx is then required to carry a representation of su(2),
given by the local operators Si(x). In the Berry-Robbins approach, spin operators do
also depend on the position, though they are not defined on the configuration space,
but on its universal covering. As with the spin basis, the spin operators are defined
making use of the map U (see eq. (5.1.8)):

Si(r) := U(r)SiU
†(r). (6.1.4)

In the same way as in the proposal of Leinaas and Myrheim, the spin operators are
defined in such a way that they act linearly -as the physically correct representation-
on each fiber. These operators give rise, through exponentiation, to an SU(2) bundle
structure.

In chapter 4 we considered the SU(2) equivariance of line bundles over the projective
space. In that case, we saw how the SU(2) action was induced by the action on the
(trivial) vector bundle on the sphere (from which we obtain the bundles over the pro-
jective space). This seems to be the case, also in the case of a finite number of particles
(see remark 6.2.1).

The bundles relevant in the N-particle case will also be flat. It is therefore to be ex-
pected that the SU(2) actions defined on them (as suggested in remark 6.2.1) are re-
lated to parallel transport, in the same way as we checked in the two particle case (see
eq. (4.2.25)).

One could use this property in order to define spin operators, in the following way.
Denote parallel transport from q to q′ by PT(q, q′), where q, q′ ∈ Q. Consider the one-
parameter subgroup of homomorphisms t 7→ gt corresponding to the infinitesimal
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generator σi of SU(2). Given a vector y in the fiber over q, define the Spin Operator Si
as follows:

Si(q) := lim
t→0

i

t

(
PT(gt · q, q)(τgty) − y

)
. (6.1.5)

Note the q-dependence of Si.

It is not difficult to see that, in the two particle case, the operators Si(r) defined through
equation (6.1.4) can be obtained in this way. For this, let us consider the (Berry-Robbins)
transported spin basis {|j,m(r)〉}j,m for a given value s of the spin. The representation
Ds ⊗ Ds, acting on the fixed spin basis, decomposes in irreducible ones Dj acting on
each of the subspaces labeled by j (j = 0, . . . , 2s). The transported spin basis gives
place to a bundle ηs over the sphere (whose fibers are generated by the transported
spin vectors at each point). We can use the operator U(r) and the representations Dj to
give this bundle the structure of an SU(2) bundle. Since ηs is a subbundle of a trivial
bundle, we can define an SU(2) action on the total space as follows (g ∈ SU(2)):

τg : E(ηs) −→ E(ηs) (6.1.6)(
r,
∑

j,m

λj,m|j,m(r)〉
)

7−→
(
g · r,

∑

j,m

λj,mU(g · r)Dj(g)U(r)†|j,m(r)〉
)

Using this SU(2) action and the definition of spin operators given above, one recovers
the operators defined in equation (6.1.4).

Let us recall from the discussion of chapter 5 that the only reason that seems to make
necessary the introduction of a transported spin basis is the single-valuedness condi-
tion imposed on the wave function. We have shown that this condition is not consis-
tent with the point of view according to which the wave function is a section on the
physically correct configuration space. Furthermore, the bundle ηs can be trivialized,
because all the spin basis vectors are non-vanishing. If we dispense from adopting
the single-valuedness condition, then the construction of the spin basis becomes irrele-
vant: In that case, all that we do is to map the spin vector space V s⊗V s at each point r,
to a vector space isomorphic to it, constructed with the help of the operator U(r). The
“twists” introduced by this mapping force the introduction of a transported spin basis,
as well as a redefinition of all operators, including the spin operators. But, the bun-
dle being trivial, there is no topological obstruction of any kind to the existence of all
these structures. This does not mean that the construction of these structures is a trivial
task (as the generalization of the Berry-Robbins construction to more than two parti-
cles shows), but in any case, one should be aware that in this way, with most certainty,
no new information or restriction that could help in the search for a Spin-Statistics
theorem will be found. In fact, whereas some authors affirm that the introduction of
structures as, for example, a transported spin basis, results in a theory “quite different
from standard physics” [AM03], we can easily see, using our approach, that the spin
operators of BR are equivalent to the usual ones∗.

∗All one has to do is to apply the isomorphism HomC(M)(Γ(ξ1), Γ(ξ2)) ∼= Γ(Hom(ξ1, ξ2)), valid for ξ1

and ξ2 bundles over M (cf. [GBVF01])
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As far as we can see, it remains possible to define spin operators in this way, for the
cases where the (correct) Spin-Statistics relation is violated. It would be interesting,
however, to compare a global construction of the spin operators using our approach
to other works (in particular [Kuc04]) on the Spin-Statistics relation, where angular
momentum comes into play.

6.2 Exchange

In the standard formulation of quantum mechanics, the state space of a system of N
identical particles is built from the 1-particle Hilbert space H(1) as a subspace of the
(N-fold) product space H(1) ⊗ · · · ⊗ H(1). This space is the natural one to consider in
the non-interacting case, where the Hamiltonian of the system consists of a sum of
independent terms, one for each particle. Exchange/permutation operators acting on
this state space can be considered as dynamical variables which, due to the fact that
the Hamilton operator is symmetrical with respect to all particles’ labels (because of
indistinguishability), are, actually, constants of the motion. Exchange symmetry is a
different kind of symmetry, in comparison with other symmetries like translational
or rotational, in the sense that the degeneracy it gives rise to cannot be lifted by any
physical means (as e.g. the application of an external field) but by the imposition of an
additional postulate on the theory. After imposing the symmetrization postulate, the
Spin-Statistics theorem further restricts the states: Bosonic for integer spin particles
and Fermionic for half-integer spin ones. One feature of this way of constructing the
physical states is that one starts with the state space of the one particle problem H(1).
The many-particle state space is then constructed in a two-step fashion, first “putting
together” all particles (i.e. forming the tensor product space) and the “taking away”
the labeling implicit in the tensor product space by projecting into the physical state
space.

By contrast, the configuration space approach attempts to construct in a “single step”
multi-particle wave functions, without the need for permutation operators. Indistin-
guishability is included intrinsically into the definition of the classical configuration
space and therefore no labelings are used. If the two formulations are to be consid-
ered as equivalent, then it is natural to think that the latter results form the former by
some sort of quotient operation. In fact, the projection from arbitrary product states
to only symmetric or antisymmetric ones can be considered as a realization, at the
Hilbert space label, of the quotient operation sending an equivariant SN -bundle to its
quotient bundle, as stated in theorem 3.1.3. The relevance of this idea is that, even if
it is a physical reason that leads us to consider configuration spaces where permuted
configurations have been identified,

1. It is the tensor product space the one that is used in every practical computa-
tion, i.e., it is in terms of this space that all predictions of many-particle quantum
mechanics are performed.
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2. There are situations where it is not necessary to consider indistinguishability, as
when the particles involved are far apart.

3. However different this modified approach to quantum mechanics might look
from a conceptual point of view, a well defined mathematical relationship be-
tween both formulations must be also given. In the end, it is quantum mechan-
ics, in the way it is usually is formulated, the one that has been used to make
successful predictions of physical phenomena.

Therefore, we want to propose some assumptions that will help in establishing the link
between the usual formulation and the proposed one.

As a starting point, consider once again the configuration space in the case of two iden-
tical particles, RP 2. It has been obtained from the quotient map q : S2 → RP 2 because
this is the natural way to eliminate the redundancy in labeling in the formalism. If
the particles do also posses spin degrees of freedom, it is of course necessary to con-
sider exchange of both positions and spins. Again, exchanged configurations should
be identified. This can be done by noting that the simultaneous exchange of positions
and spins is a transformation that can be regarded as a Z2-action on the trivial bundle

Es := S2 × (V s ⊗ V s).

By proposition 3.1.3, we know that this action induces a quotient map

q̂ : Es −→ Es/Z2

whose image is a bundle over RP 2. In this way, we use a Z2-action on Es to construct
the bundle on which the wave function will be defined. The requirement that this
action should be directly related to exchange of spins and positions seems to us to be a
natural and physically well-motivated one. On the other hand, suppose we are given

a bundle ξ
π−→ RP 2 (where the physical wave function is supposed to be defined).

The action (3.1.1) induced on q∗ξ is not a priori related to exchange and could in fact be
incompatible with it. This gives us the motivation to impose the following condition.

Assumption I Suppose ξs is the vector bundle on which the physical wave function is defined.
Then, the Z2-action induced by q on Es through Es ∼= q∗ξs must coincide with the operation
realizing the exchange of both positions and spins.

In other words, since q∗ξs is isomorphic to Es as a vector bundle, we have two Z2-
structures on the same bundle, one of which is intrinsically related to exchange. What
we require is that both actions coincide, that is, that the two bundles be equivalent
also as Z2-bundles. As a next step, we have to find, in principle, all Z2-actions that are
compatible with exchange. An action τ : Z2 × Es → Es has the general form

τσ(r, v) = (σ · r, Tr(σ)v), (r ∈ S2, v ∈ V s ⊗ V s),

where Tr(σ) is a linear map. Using the symbols e and t for the elements of Z2 with
t2 = e, we must have Tr(e) = Id and T−r(t)Tr(t) = Id. Note that the map Tr(σ) de-
pends on r and thus is not in general a representation of Z2. But since there are only
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two equivalence classes of line bundles over RP 2, we know that there can be only two
classes of Z2-equivariant line bundles over S2. Notice, however, that when the number
of particles increases, the problem becomes much more complex. For the general case,
we are going to leave open the question of how many such actions exist. It would be
interesting if one could show that all SN -equivariant bundles over the respective con-

figuration spaces Q̃N (eq.(1.1.1)) were equivalent to bundles with an SN -action given
by maps

τσ(q, v) = (σ · q, Tq(σ)v), (q ∈ Q̃N , v ∈ V s ⊗ · · · ⊗ V s, σ ∈ SN),

with Tq(σ) independent of q. Returning now to the two particle example, note that τ
realizes the exchange of positions automatically. In order that it also realizes the ex-
change of spin vectors, according to our assumption, we must require that T (t) acts as
follows on basis elements:

T (t)(|m1〉 ⊗ |m2〉) = eiα(m1,m2)|m2〉 ⊗ |m1〉,

where
eiα(m1,m2) = e−iα(m2,m1) (6.2.1)

must be satisfied.

We are used to regard the effect of exchange on spins as the particular case where
eiα(m1,m2) = 1 for all m1 and m2, but there is nothing forbidding us to consider the
general case. At this point we cannot say more about the coefficients eiα(m1,m2). But the
situation will change, after considering how rotations are to be implemented on ξs.

6.2.1 Remark. Recall that it is in part because of proposition 3.3.5 that we work on Es.
The wave function will be defined, ultimately, on ξs = Es/Z2, once we find the correct
Z2 action τ . In the same way, the effect of rotations on the wave function must be
implemented on ξs, as explained in the last section, not onEs. But since we have not yet
found τ , we cannot say what bundle ξs is and consequently what SU(2) actions it has.
On the other hand, on Es we have the standard SU(2) representation. If it commutes
with τ , we obtain an induced action on ξs and the corresponding spin operators will act
irreducibly on the fibers. The question is therefore whether any SU(2)-action on ξs is
of that form (comes from one on Es). The answer to this question is positive, because
suppose we have an action τ SU(2) on ξs. We then get an induced action on q∗ξs given
(g ∈ SU(2), (m, y) ∈ q∗ξs) by

g · (m, y) = (g ·m, τ SU(2)

g (y)).

By Assumption I, the Z2-action τ on Es is equivalent to the Z2-action induced on q∗ξs

by q, see eq. (3.1.1). But the two actions on q∗ξs, Z2 and SU(2), commute, because
(g ∈ SU(2), σ ∈ Z2):

σ · (g · (m, y)) = (σ · (g ·m), τ SU(2)

g (y))

= (g · (σ ·m), τ SU(2)

g (y))

= g · (σ · (m, y)). (6.2.2)
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This means that τ also commutes with the SU(2) action on Es induced by τ SU(2). But
this last action is (we expect) induced by a representation of SU(2). Since the spin op-
erators induced by τ SU(2) act locally on the fibers as representations isomorphic to the
usual ones on V s⊗V s, we have arrived at the conclusion that τ must commute with the
usual SU(2) representation on Es (i.e. on V s ⊗ V s). Therefore, we make the following

Assumption II The Z2 action τ on Es must commute with SU(2).

6.2.2 Proposition. Assumption II implies that all terms eiα(m1,m2) are equal to a factor (−1)K .

Proof. Let |j,m〉 denote the vectors in the basis of total angular momentum. The re-
quirement that the actions commute implies that the corresponding representations com-
mute: [

T (σ),D(j)(g)
]
|j,m〉 = 0 (σ ∈ Z2, g ∈ SU(2)).

This is equivalent to requiring

[T (t), Ji] |j,m〉 = 0, i = 1, 2, 3

for the infinitesimal generators. From (6.2.1), it follows that eiα(s,s) = (−1)K for some
integer K. Using |2s, 2s〉 = |s〉 ⊗ |s〉 we obtain, from [T (t), J−] |2s, 2s〉 = 0:

T (t)|2s, 2s− 1〉 =
1√
4s
T (t)J−|2s, 2s〉

=
1√
4s
J−T (t)|2s, 2s〉

= (−1)K |2s, 2s− 1〉.

Applying T (t) to all vectors |2s, µ〉, we obtain, in the same way as above,

T (t)|2s, µ〉 = (−1)K |2s, µ〉, −2s ≤ µ ≤ 2s.

From this we obtain:

(−1)K |2s, µ〉 = T (t)
∑

m1,m2

(sm1, sm2|2s µ)|m1〉 ⊗ |m2〉

=
∑

m1,m2

(sm1, sm2|2s µ)eiα(m1,m2)|m2〉 ⊗ |m1〉

=
∑

m1,m2

(sm1, sm2|2s µ)eiα(m1,m2)|m1〉 ⊗ |m2〉.

Putting µ = m1 + m2 in the last equation, we obtain, using the linear independence
of the basis, eiα(m2,m1) = (−1)K . Note that in order to use linear independence it is
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6.2 Exchange

necessary that the respective Clebsch-Gordan coefficient be non vanishing. But this is
true. In fact one has:

(sm1, sm2|2sm1 +m2) =

=
(−1)2m1+2m2Γ(2s)

√
sΓ(2s+ 1 −m1 −m2)Γ(2s+ 1 +m1 +m2)√

Γ(4s)Γ(s+ 1 −m1)Γ(s+ 1 +m1)Γ(s+ 1 −m2)Γ(s+ 1 +m2)
.

The conclusion, up to this point, is that there are two possible bundles on which the
wave function can be constructed. They correspond to Fermi and Bose statistics. Let
us spell this out in detail. If we write the wave function representing the state of the
two particle system in the usual form

|Ψ〉 : S2 −→ V s ⊗ V s

r 7−→
∑

m,m′

Ψm,m′(r)|m〉 ⊗ |m′〉, (6.2.3)

then we can, using proposition 3.3.5, interpret it as the section of a bundle on RP 2, if
we require the section

Ψ : S2 −→ S2 × V s ⊗ V s (6.2.4)

r 7−→ (r, |Ψ(r)〉)

to be invariant with respect to the Z2 action. Now, if instead of {|m1〉 ⊗ |m2〉} we use
the basis {j,m} of total angular momentum, we see that the map T (t) takes the form

|j,m〉 7−→ (−1)2S−j+K|j,m〉.

This means that under the quotient map q̂, the subspace corresponding to fixed values
of j and m goes into a line bundle isomorphic to L− ( if 2s − j + K is odd ) or L+ ( if
2s− j +K is even). Writing |Ψ〉 in the total spin basis {|j,m〉}, we have:

|Ψ(r)〉 =
∑

j,m

Ψj,m(r)|j,m〉. (6.2.5)

For |Ψ〉 to represent the wave function we must require that the section Ψ : r 7→
(r, |Ψ(r)〉) be invariant (proposition 3.3.5). We have:

(t · Ψ)(r)
!
= Ψ(r) ⇐⇒

τt(Ψ(t−1 · r)) !
= Ψ(r). (6.2.6)

But from

τt(Ψ(t−1 · r)) = τt(Ψ(−r))
= τt(−r, |Ψ(−r)〉)
= (r, (−1)(2S−j+K)|Ψ(−r)〉)
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6 Further developments

then we obtain, for the coefficient functions:

(−1)(2S−j+K)Ψj,m(−r) = Ψj,m(r). (6.2.7)

Transforming back to the {|m1〉 ⊗ |m2〉} basis, we get:

Ψm2,m1(−r) = (−1)2S+KΨm1,m2(r), (6.2.8)

that is, the Fermi-Bose alternative. Let us finish this section with some remarks con-
cerning this derivation.

• As remarked above, for the case N > 2 case, the SN actions that we have consid-
ered are not the most general one can conceive. It would be interesting to find
out how many possibilities there are, in order to be able to extend our arguments
to that general case.

• The derivation of the Fermi-Bose alternative we have proposed is consistent with
the point of view we have adopted of working in a configuration space of in-
distinguishable particles. The equivariance of the bundles over the covering of
the configuration space play the double role of defining how to obtain the vector
bundle where the physical wave function is defined and at the same time real-
izes exchange. Our first proposed assumption says that the action that realizes
exchange must be precisely the one with respect to which the quotient is taken
on the bundle.

• As presented here, this derivation is specific to the two particle case, which is a
restriction. But on the other hand, it works for any value of the spin.
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A G-Spaces

In this appendix we collect some standard facts about G-spaces. They are used in
chapter 3.

A.1 Definition. A topological group is a group G which at the same time is a topological
space, such that the map

G×G → G

(g, h) 7→ gh−1

is continuous.

A.2 Definition (G-space). Let G be a topological group and M a topological space.
A map ρ : G × M → M is called a (left-) group action when, for every m ∈ M ,
ρ(gh,m) = ρ(g, ρ(h,m)) (∀g, h ∈ G) and ρ(e,m) = m. If the map ρ is continuous, M is
said to be a left G-space. A right G-space is defined similarly.

A.3 Remark. It is usual to denote an action ρ in the following way: g ·m := ρ(g,m). For
g ∈ G fixed, one considers the “partial map” ρg, defined through

ρg : M → M

m 7→ g ·m ≡ ρ(g,m).

A.4 Definition (G-Orbit). Let M be a left G-space. Given m ∈M , the set

G ·m = {g ·m | g ∈ G} ⊂M

is called the orbit of m and will be denoted Om.

A.5 Definition (Free action). A group action is called free when Gx ≡ {e} for all x in M ,
i.e. when for all x ∈ M , g · x = x⇒ g = e holds.

A.6 Remark. Equivalently, one can say: A group action is free if and only if for every g
in G \ {e}, the fixed-point set {x ∈M |g · x = x} is the empty set.

Let G be a discrete group and M a topological space. If additionally G acts on M , one
may ask under what conditions does the quotient space M/G retain certain topolog-
ical properties that M might posses. If, for instance, M/G is a Hausdorff space, then
every point p ∈ M/G is a closed set. Since the canonical projection q : M → M/G is
continuous (by definition of the quotient topology), the set q−1(p) must also be closed
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or, in other words, if p = q(x), then the orbit Ox must be a closed set. It is clear that not
every group action satisfies this condition.

An interesting case is the one where M is a (differentiable) manifold. Under the as-
sumption of a free and properly discontinuous action, it is possible to show that M/G
inherits the structure of a (differentiable) manifold. Since this well-known result
[Boo02, BG88] will be needed several times in this work, a proof of it will be given
below. First we begin by explaining the term “properly-discontinuous”.

A.7 Definition (Properly discontinuous action). A properly discontinuous action of a dis-
crete group G on a topological (resp. differentiable) manifold is a continuous (resp.
differentiable) action such that:

(i) ∀x, y ∈M :
y 6∈ Ox ⇒ ∃ U, V neighborhoods such that x ∈ U , y ∈ V and (G · U) ∩ V = ∅.

(ii) There is, for every x ∈ M , a neighborhood U such that the set {h ∈ G | h ·U ∩U =
∅} is finite.

A.8 Remark. The second condition may be replaced by the following, equivalent one∗

(ii)’ For every x ∈ M , the isotropy group Gx := {g ∈ G | g · x = x} is finite and there
is a neighborhood U of x such that (g · U) ∩ U = ∅ for g 6∈ Gx and g · U = U for
g ∈ Gx.

A.9 Theorem. Let M be a topological (resp. differentiable) manifold and G a discrete group
acting freely and properly-discontinuously on M . Then M/G inherits from M the structure of
a topological (resp. differentiable) manifold.

Proof. Set n = dim(M). Give M/G the quotient topology, that is, the weakest topology
such that the canonical projection

q : M → M/G

x 7→ [x]

is continuous (or equivalently: W is open in M/G ⇔ q−1(W ) is open in M). We first
verify that M/G is a topological manifold. The following properties must be checked:

• M/G is Hausdorff.

• Every point in M/G has a neighborhood homeomorphic to R
n.

• M/G admits a countable basis for its topology.

∗See [Boo02]
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The fact that M/G is Hausdorff is a direct consequence from (i) in definition A.7 †. If
W ⊂ M is open, then so is g · W (g ∈ G). This follows from the continuity of the
action ρ : G × M → M since, for fixed g ∈ G, the partial map ρg : M → M is also
continuous and g · W = ρ−1

g−1(W ). It follows that the union
⋃
g∈G g · W is also open.

From q−1(q(W )) =
⋃
g∈G g ·W and the definition of quotient topology it follows that

q(W ) is open, i.e., q is an open map.

On the other hand, we know that M has a countable basis {Ui}i∈I (I a countable index
set). Using the fact that q is open, it is easy to show that {q(Ui)}i∈I is a countable basis
for the topology of M/G. Indeed, let V ⊂M/G be an open set. Then we have:

q is continuous ⇒ q−1(V ) open in M ⇒

∃J ⊂ I with q−1(V ) =
⋃

j∈J
Uj ⇒ V = q

(
⋃

j∈J
Uj

)
=
⋃

j∈J
q(Uj).

The assertion follows since, for every j, q(Uj) is an open set (q is an open map).

For every x in M we have Gx = {e}, because the action is free. From (ii)’ it follows
that for every x there is a neighborhood Ũx ∋ x with (g · Ũx) ∩ Ũx = ∅ for all g in
G \ {e}. Putting U[x] := q(Ũx), one obtains a bijective map q|Ũx

: Ũx → U[x]. This map is
moreover a homeomorphism, since q is open and continuous. We can assume, without
loss of generality, that Ũx belongs to a chart {Ũx, ϕ̃}. Then

ϕ := ϕ̃◦(q|Ũx
)−1 : U[x] → ϕ̃(Ũx) ⊂ R

n

is also a homeomorphism. This means (since q is surjective) that M/G is a topological
manifold.

When M is, in addition, a differentiable manifold, it is possible to construct an atlas
for M/G in the following way. Let us denote the elements of G with gi, i ∈ IG, where
IG ⊂ N is an index set such that |IG| = |G|, 1 ∈ IG. Choose the indexing in such a way
that g1 = e holds and set ρi( · ) := ρ(gi, · ).
Now, it is convenient to choose charts {(Ũα,i , ϕ̃α,i)}α∈I,i∈IG

for M with the following
properties:

• For α fixed, Ũα,i = ρi(Ũα,1) (i ∈ IG).

• ρi(Ũα,1) ∩ Ũα,1 = ∅ (i ∈ IG \ {1}).

For such charts we then have, for all α:

Ũα,i ∩ Ũα,j = ∅ (i 6= j), (A.1)

q(Ũα,i) = q(Ũα,j) (∀i, j).
†They are, in fact, equivalent assertions, see [Boo02].
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For this reason we may set Uα := q(Ũα,i), with i ∈ IG arbitrarily chosen. It follows that

q−1(Uα) =
⋃

i∈IG

Ũα,i =
⋃

i∈IG

ρi(Ũα,1) (A.2)

is a union of pairwise disjoint neighborhoods. With qα,i := q|Ũα,i
, we can now define

charts {(Uα, ϕα)}α∈I (as before) by means of

ϕ := ϕ̃α,1◦q−1
α,1 : Uα −→ ϕ̃α,1(Ũα,1) ⊂ R

n.

Let α, β ∈ I be such that Uα ∩ Uβ 6= ∅. Let [x] ∈ Uα ∩ Uβ and choose a representative
x ∈ Uα,1. Then there is a unique i ∈ IG with x ∈ Uβ,i, from which

ϕβ◦ϕ−1
α = ϕ̃β,1◦ρ−1

i ◦ϕ̃−1
α,1

follows. Since the three maps on the right hand side of this equation are diffeomor-
phisms, the transition function ϕβ◦ϕ−1

α is also a diffeomorphism.

A.10 Remark. Of course, from Uα∩Uβ 6= ∅ it does not follow, in general, that Ũα,i∩Ũβ,j 6=
∅ for arbitrary i and j. But, if one chooses a certain i, a unique j = j(i) is singled out, in
such a way that Ũα,i∩Ũβ,j 6= ∅ holds. Putting ρ̃i := ϕ̃α,i◦ρi◦ϕ̃−1

α,1, we obtain the following
expression for the transition functions:

ϕβ◦ϕ−1
α = (ϕ̃β,1◦q−1

β,1)◦(ϕ̃α,1◦q−1
α,1)

−1 = ϕ̃β,1◦(q−1
β,1◦qα,1)◦ϕ̃−1

α,1 =

= ϕ̃β,1◦(ρ−1
j ◦ρi)◦ϕ̃−1

α,1 = (ϕ̃β,1◦ρ−1
j )◦(ρi◦ϕ̃−1

α,1) = (A.3)

= (ρ̃−1
j ◦ϕ̃β,j)◦(ϕ̃−1

α,i◦ρ̃i) =

= ρ̃−1
j ◦(ϕ̃β,j◦ϕ̃−1

α,i)◦ρ̃i.

The diagram below might help to keep track of the different maps involved in the con-
struction:

Rn Ũα,i
ϕ̃α,i

Ũα,i ∩ Ũβ,j Ũβ,j
ϕ̃β,j

Rn

Rn

ρ̃i

Ũα,1
ϕ̃α,1

ρi

qα,1

ρ−1
j ◦ρi=

=q−1
β,1◦qα,1

Ũβ,1

ρj

ϕ̃β,1

qβ,1

Rn

ρ̃j

Uα

ϕα

Uα ∩ Uβ Uβ

ϕβ

(A.4)

A.11 Remark. When G is finite, it is enough to require that ρ be a free action in order to
apply theorem A.9. In this case, the second condition in §A.7 is trivially satisfied. The
first one is also satisfied. To see this, let us first write G = {g1, . . . , gN} (N = |G|). The
orbit of x ∈M is the given by Ox = {gi ·x}i. Let y be inM but with y /∈ Ox. Then y 6= gi ·
x ∀i ∈ {1, . . . , N}. Since M is Hausdorff, we know that there are open neighborhoods

Ui ∋ gi · x and Vi ∋ y, for which Ui ∩ Vi = ∅ holds. Defining U :=
⋂N
i=1(g

−1
i · Ui) and

V :=
⋂N
i=1 Vi, we thus get: U and V are open and (gi ·U)∩V ⊆ Ui∩Vi = ∅, i ∈ {1, . . . , N}.

From this it follows that (G · U) ∩ V = ∅, i.e. (i) from §A.7 holds.
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