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Abstract

The quark condensate is a fundamental free parameter of Chiral Perturbation Theory (χPT ),
since it determines the relative size of the mass and momentum terms in the power expansion.
In order to confirm or contradict the assumption of a large quark condensate, on which χPT
is based, experimental tests are needed. In particular, the S-wave ππ scattering lengths a0

0

and a2
0 can be predicted precisely within χPT as a function of this parameter and can be

measured very cleanly in the decay K± → π+π−e±
(—)
νe (Ke4).

About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were
analysed and 342,859 K± → π+π−e±

(—)
νe (Ke4) candidates were selected. The background

contamination in the sample could be reduced down to 0.3% and it could be estimated
directly from the data, by selecting events with the same signature as Ke4, but requiring for
the electron the opposite charge with respect to the kaon, the so-called “wrong sign” events.
This is a clean background sample, since the kaon decay with ∆S = −∆Q, that would be the
only source of signal, can only take place through two weak decays and is therefore strongly
suppressed.

The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were
computed under the assumption of a fixed kaon momentum of 60 GeV/c along the z axis,
so that the neutrino momentum could be obtained without ambiguity. The measurement
of the form factors and of the ππ scattering length a0

0 was performed in a single step by
comparing the five-dimensional distributions of data and MC in the kinematic variables.
The MC distributions were corrected in order to properly take into account the trigger and
selection efficiencies of the data and the background contamination, The following parameter
values were obtained from a binned maximum likelihood fit, where a2

0 was expressed as a
function of a0

0 according to the prediction of chiral perturbation theory:

f ′s/fs = 0.133± 0.013 (stat)± 0.026 (syst),
f ′′s /fs = −0.041± 0.013 (stat)± 0.020 (syst),
fe/fs = 0.221± 0.051 (stat)± 0.105 (syst),
f ′e/fs = −0.459± 0.170 (stat)± 0.316 (syst),
f̃p/fs = −0.112± 0.013 (stat)± 0.023 (syst),
gp/fs = 0.892± 0.012 (stat)± 0.025 (syst),
g′p/fs = 0.114± 0.015 (stat)± 0.022 (syst),
hp/fs = −0.380± 0.028 (stat)± 0.050 (syst),

a0
0 = 0.246± 0.009 (stat)± 0.012 (syst)± 0.002 (theor),

where the statistical uncertainty only includes the effect of the data statistics and the theo-
retical uncertainty is due to the width of the allowed band for a2

0.
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1. Introduction

The interactions between elementary particles are described by the standard model of particle
physics in terms of three forces: strong, electromagnetic and weak. Its theoretical predictions
have been confirmed by many experimental measurements. The knowledge on the behaviour
of the smallest constituents of matter can be further improved, by searching for new particles
at higher and higher energies or by collecting more and more statistics of known processes,
in order to measure all their properties.

The kaon, the lightest meson containing a strange quark, was first observed in 1947. In
1964 indirect CP violation was discovered in the mixing between K0 and K0. Since then,
also direct CP violation has been precisely measured, as well as the branching ratios and
form factors of many decay modes for both neutral and charged kaons. The experiment
NA48/2 at the CERN SPS took data in 2003 and 2004 with the aim of collecting the highest
existing statistics of charged kaon decays, in order to search for direct CP violation in this
system, where it was not yet observed and to perform the most precise measurements of other
parameters of the theory.

At high energies, strong interactions are described, within the standard model, by quantum
chromo-dynamics, which is expanded perturbatively in powers of the strong coupling. At low
energies (below 1 GeV), however, the quarks are confined inside mesons and baryons and the
strong coupling is too big to allow for a converging expansion. Kaon decays are therefore
described by an effective theory, called chiral perturbation theory, that considers the light
pseudo-scalar mesons, instead of the quarks, as elementary particles. Chiral perturbation
theory contains, as every effective theory, free parameters, whose values have to be determined
experimentally.

A fundamental parameter of the theory is the quark condensate, the vacuum expectation
value of q̄q, that determines the relative size of the mass and momentum terms in the power
expansion. If the assumption of a large quark condensate, on which χPT is based, would be
experimentally contradicted, the mass terms would have to appear earlier in the expansion
and the terms with an odd power of the momentum would not vanish. Experimentally, the
size of the quark condensate can be measured in the ππ scattering. The relation between
the scattering lengths and the quark condensate is known in chiral perturbation theory with
high precision, so that a discrepancy between the predicted and the measured values of the
scattering lengths would clearly show a wrong assumption for the size of the quark condensate.

In the decay K± → π+π−e±
(—)
νe (Ke4), the leptonic part of the matrix element is known

exactly, while the hadronic part can be described in terms of form factors, whose phases are
related to the S-wave ππ scattering lengths. Aim of the analysis presented in this thesis is the
measurement of the Ke4 form factors and the extraction of the S-wave ππ scattering lengths.
Since the hadronic part of the decay only contains two pions, it can be easily described by the
theory, which reduces the theoretical uncertainty of the measurement. On the other hand, the
branching ratio of the decay is of the order 10−5, so that a precise experimental measurement
requires high statistics and good background rejection.

1



1. Introduction

Chiral perturbation theory in general and in particular its predictions for the ππ scattering
and the Ke4 form factors are presented in Chapter 2, together with the results of previous
experiments.

In Chapter 3, the experimental apparatus is described, starting from the beam line, where
the kaons are generated, up to the read-out electronics of each sub-detector, where the signals
necessary to identify the decay products are collected. The first decision, whether an event is
interesting for the analysis or not, is taken by the trigger system, presented in Chapter 4. In
case of a positive trigger decision, the events are written to tape and the physical quantities
can be reconstructed offline (Chapter 5).

In order to verify the validity of the theoretical predicition, the expected distribution,
obtained from the Monte Carlo simulation, outlined in Chapter 6, is compared with the
data. The selection criteria used to identify the different decay channels and to reduce the
background contamination are explained in Chapter 7. The form factor parameters of the
Ke4 decay can be measured by fitting the simulated distribution to the one obtained in
the experiment, as described in detail in Chapter 8. The effects taken into account in the
systematic uncertainty and the method used to estimate them are listed in Chapter 9. Finally,
the results obtained in this analysis are discussed in Chapter 10.
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2. Theoretical predictions and previous results

2.1. The Standard Model of particle physics

The Standard Model (SM) of particle physics is a gauge theory that combines three of the four
known fundamental interactions acting on six fundamental particles and their antiparticles
(see Section 2.1.1).

In the 1960s the electromagnetic and the weak interactions were combined into a gauge
theory by Glashow, Weinberg and Salam [1, 2, 3], setting the basis for the development of the
standard model. In 1964 the quark model was proposed by Gell-Mann and Zweig [4, 5], while
the corresponding gauge theory, based on the colour symmetry, was developed by Fritzsch
and Gell-Mann [6] and completed by Gross, Wilczek and Politzer with the introduction of
the asymptotic freedom [7, 8, 9] in 1974.

The strong and electroweak interactions, that are responsible for the kaon production and
decay respectively, will be briefly presented in Sections 2.1.2 and 2.1.3. A detailed description
can be found in any textbook of particle physics, for example [10, 11, 12].

2.1.1. Particles, interactions and symmetries

According to the standard model the fundamental constituents of matter are twelve fermions
(spin-1

2 particles): six leptons and six quarks. The fermions are listed in Table 2.1 together
with the interactions they are subject to. The three generations differ only in the mass of
the particles, otherwise they are identical copies of the same structure.

Fermions strong el.-mag. weak
Leptons

νe νµ ντ – – ×
e-neutrino µ-neutrino τ -neutrino

e− µ− τ−
– × ×

electron muon tau
Quarks

u c t × × ×
up charm top
d s b × × ×

down strange beauty

Table 2.1.: The first three columns on the left represent the three generations of fermions.
Particles in the same row are identical to each other in all attributes apart from
the mass. The columns on the right show which interactions are allowed (“×”)
for the different fermions.
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2. Theoretical predictions and previous results

In nature four fundamental interactions are known: strong, electromagnetic, weak and
gravitational. The first three are described by the SM in terms of the exchange of a spin-1
gauge boson, while gravitation can not be easily inserted into this scheme and is anyway
negligible in high energy physics. Quarks are subject to all the interactions, while leptons
interact weakly and, if they are electrically charged, also electromagnetically. The gauge
bosons are listed in Table 2.2.

Interaction Gauge bosons (mass/(GeV/c2)) Gauge group C P T

strong 8 gluons g (0) SU(3)c × × ×

electromagnetic photon γ (0)
SU(2)L × U(1)Y

× × ×

weak W± (80), Z0 (91) – – –

Table 2.2.: Characteristics of the interactions in the SM and their behaviour with respect to
the symmetries C,P and T (× = conserved, – = violated). The mass values are
only indicative, they are known to a much better precision [13].

The SM is invariant under local gauge transformations of the group SU(3)c × SU(2)L ×
U(1)Y , where SU(3)c is the colour group of the strong interaction (see Section 2.1.2) and
SU(2)L × U(1)Y are the groups of the electroweak interactions of left and right-handed
particles, respectively (see Section 2.1.3).

Symmetries play an important role in physics, since they are related to conservation laws by
the Noether theorem (1917). For example the charge conservation follows from the SU(2)L×
U(1)Y symmetry and the energy conservation from the invariance under time shift. These
are examples of continuous transformations, but there are also important discreet ones, like
the Charge conjugation (C), that exchanges each particle with its antiparticle, the Parity
transformation (P), that mirrors the space coordinates, and the Time reversal (T). While C,
P and T are conserved in the strong and electromagnetic interactions, they are violated in
the weak interaction, both separately and in the combination CP. The conservation of the
CPT symmetry is predicted by the theory to be valid for all the interactions in the SM: the
CPT-theorem [14] attests that, under the assumption of Lorentz invariance, locality and that
the interactions are propagated by fields, CPT is an exact symmetry of every interaction.A
direct implication of the CPT-theorem is that particles and antiparticles have the same mass
and lifetime and opposite charge and magnetic moment. The CPT conservation was tested
experimentally to the level of 10−18.

2.1.2. The strong interaction

In order to explain the observation of the ∆++ baryon, consisting of three u quarks with a
total spin of 3

2 and therefore apparently violating the Pauli principle that two or more fermions
may not exist in the same quantum state, a further degree of freedom was introduced for the
quarks: the colour. There are three possible colour charges: red, green and blue. Each quark
has a colour charge and each antiquark an anticolour charge. The existence of this degree
of freedom was proven experimentally by the measurement of the ratio between the cross
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2.1. The Standard Model of particle physics

sections for the electron-positron annihilation into two quarks and into two leptons:

R =
σ (e+e− → qq̄)

σ (e+e− → µ−µ+)
= Nc ·

∑
q

e2q , (2.1)

where Nc is the number of colours, the sum is over the accessible quark flavours at the
considered centre of mass energy and eq is the electrical charge of quark q.

A quark can be represented as a three-dimensional vector in the colour space and the
local unitary gauge transformations in this space form the SU(3)c group. The description of
strong interactions based on the invariance under gauge transformations in SU(3)c is called
Quantum Chromo-Dynamics (QCD) and, since the group is non-Abelian (its elements do not
commute with each other), it is a so-called Yang-Mills theory [15].

The Lagrangian of a free quark is

L = ψ(iγµ∂µ −m)ψ, (2.2)

where m represents the mass of the quark and is a free parameter of the theory.
In general a unitary local gauge transformation can be written as

U(α(x)) = e−iαa(x)Ta , (2.3)

where the index a goes from 1 to 8 and Ta are the generators of SU(3)c, that have the
following commutation relation:

[Ta, Tb] = ifabcTc, (2.4)

where fabc are the structure functions of the group. A representation of Ta with unitary
3×3-matrices can be chosen and leads to the ta matrices (the Gell-Mann matrices divided by
two), that are hermitian and traceless.

To make the Lagrangian in Eq. 2.2 be invariant under the local transformation in Eq. 2.3,
the derivative has to be replaced by the covariant derivative:

Dµ = ∂µ − igst
aGa

µ(x), (2.5)

where gs is the coupling of the strong interaction and Gµ
a are the eight gluon fields. To add

to the Lagrangian a kinetic term for the gluons, the tensor Ga
µν can be built as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν . (2.6)

The Lagrangian has now the form

L = ψ(iγµDµ −m)ψ − 1
4
Ga

µνG
µν
a . (2.7)

The last term in Eq. 2.6, that would not be present in an Abelian theory, generates the three
and four-gluon vertices. The feature of gluons to have a colour charge and therefore interact
with each other leads to the particular form of the scale dependence for the strong coupling
“constant” αs:

αs(µ2) =
4π

β0 ln
(

µ2

Λ2

) , β0 = 11− 2
3
NF , (2.8)
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2. Theoretical predictions and previous results

µ is the energy at which αs is measured, Λ a typical QCD scale of the order of 1 GeV and
NF the number of quark flavours. Since for NF ≤ 6 β0 is positive, αs is decreasing with
energy. Therefore at high energies (corresponding to small distances) the quarks behave like
free particles. This characteristics is called asymptotic freedom. On the other hand at very
low energies αs increases significantly and forces quarks to only appear in nature as colour
singlets, bound in baryons and mesons. Too high values of αs are also the reason why the
perturbative QCD can not be applied to kaon physics. Instead, the theoretical calculations
are performed in the framework of Chiral Perturbation Theory (χPT), as described in Section
2.2.

The lightest pseudo-scalar mesons

The easiest ways to obtain colour singlets out of quarks and antiquarks are to combine three
quarks, three antiquarks or a quark and an antiquark. These combinations are called baryons,
antibaryons and mesons, respectively.

Mesons have always parity P = −1 because particles and antiparticles have opposite parity.
Considering only the states with zero orbital angular momentum, mesons can have a total
angular momentum J = 0 or J = 1 according to their spin. States with JP = 0− are called
pseudo-scalar mesons, while the ones with JP = 1− are called vector mesons.

Restricting to the two lightest flavours, four pseudo-scalar mesons can be created. A new
quantum number is defined in the SU(2)f (flavour) space: the isospin. The (u, d) doublet has
isospin I = 1

2 , with third component I3 = +1
2 for the u quark and I3 = −1

2 for the d quark.
The antiquarks have the opposite values of I3. In analogy to the spin, the combination of
two doublets creates a triplet with isospin 1 (π+, π0, π−) and a singlet with isospin 0 (η).

In the case of three flavours, u, d and s, SU(3)f generates

3⊗ 3̄ = 8⊕ 1 (2.9)

pseudo-scalar mesons, i.e. an octet and a singlet, that are classified using two quantum
numbers: the isospin for u, ū, d and d̄ and the strangeness defined as S = −1 for s and
S = +1 for s̄. In Figure 2.1 the octet and the singlet are represented in the S vs. I3 plane.

2.1.3. The electroweak interaction

The Lagrangian in Eq. 2.2 is valid for any fermion and was originally formulated to reproduce
the Dirac equation when applying the Euler-Lagrange equation to it. To make it invariant
under local gauge transformations in the Abelian U(1) group

U(α(x)) = eiα(x), (2.10)

the covariant derivative
Dµ = ∂µ + ieAµ (2.11)

has to be introduced, where e is the coupling of the electromagnetic interaction and corre-
sponds to the elementary electric charge. Aµ is the field of the gauge boson, the photon. The
tensor for the kinetic term of the photon has in this case the simple form

Fµν = ∂µAν − ∂νAµ, (2.12)
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I3

S

+1-1

+1

-1

K0(ds) K+(us)

π-(ud) π+(du)

K-(su) K0(sd)

π0(C1(dd-uu))

η8

(C2(dd+uu-2ss))

η0(C3(dd+uu+ss))

Figure 2.1.: The octet and the singlet (η0) of the pseudo-scalar mesons with three quark
flavours in the plane strangeness (S) versus third component of the isospin (I3).
C1, C2 and C3 are the Clebsch-Gordan coefficients for the three states with I3 = 0
and S = 0 and have the values C1 = 1√

2
, C2 = 1√

6
and C3 = 1√

3
.

without any second order term. The electromagnetic interaction is then described by the
Lagrangian of the Quantum Electro-Dynamic (QED)

L = ψ(iγµDµ −m)ψ − 1
4
FµνF

µν . (2.13)

The scale dependence of the coupling “constant” α is much smaller than in QCD and its
value increases with energy, so that a perturbation expansion is possible at all energies and
can be truncated at low orders, giving very precise predictions.

As was observed experimentally [16], the weak interaction only couples to left-handed,
i.e. with the spin opposite to the momentum, particles or right-handed antiparticles. Right-
handed particles and left-handed antiparticles do not interact weakly. The spinors of the
left-handed particles are isospin doublets, while the right-handed particles are represented
by singlets. Since the eigenvalues of the isospin operators are not equal to the charge of
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2. Theoretical predictions and previous results

the particles, a further quantum number has to be introduced, the so-called hypercharge Y ,
fulfilling the relation

Q = I3 +
Y

2
(2.14)

The Lagrangian is required to be invariant under local gauge transformations in SU(2)L ×
U(1)Y for left-handed particles and in U(1)Y for right-handed ones:

UL(α(x), β(x)) = eiαj(x)τj · eiβ(x)Y (2.15)
UR(β(x)) = eiβ(x)Y , (2.16)

τj are the generators of the SU(2)L group and are assumed to be the Pauli matrices, while
Y is a real number. The covariant derivatives are then

DLµ = ∂µ − i
g′

2
YLBµ − i

g

2
τjWjµ (2.17)

DRµ = ∂µ − i
g′

2
YRBµ, (2.18)

with the couplings g and g′ for SU(2)L and U(1)Y respectively and the gauge fields Wµ
1 , Wµ

2 ,
Wµ

3 , Bµ. The tensors for the kinetic term have the same form as in Eq. 2.13 for Bµ and as
in Eq. 2.6 with fabc replaced by εijk for Wµ

i .
Until now the gauge fields are massless in the theory, while W± and Z0 have been observed

experimentally as massive bosons. An explicit mass term of the form mAµA
µ violates the

gauge symmetry, but it is possible to introduce mass terms for the gauge bosons via the
Higgs mechanism [17, 18]. Adding a complex scalar isospin doublet with a potential that has
a minimum for a value of the field different from zero, the symmetry is still valid, since the
position of the minima is symmetric in SU(2)L. However the choice of a particular ground
state violates the symmetry. This mechanism is called Spontaneous Symmetry Breaking
(SSB) and generates mass terms for linear combinations of the gauge bosons:

(W±)µ =
1√
2
(Wµ

1 ∓ iWµ
2 ) , mW =

1
2
vg (2.19)

(Z0)µ =
−g′Bµ + gWµ

3√
g2 + g′2

, mZ =
1
2
v
√
g2 + g′2 (2.20)

Aµ =
gBµ + g′Wµ

3√
g2 + g′2

, mA = 0 (2.21)

where v is the vacuum expectation value of the scalar field. The combinations listed above
correspond to the observed particles W±, Z0 and γ. Usually (Z0)µ and Aµ are written as a
rotation of the Bµ and Wµ

3 fields by the Weinberg angle θW with

cos θW =
g√

g2 + g′2
(2.22)

sin θW =
g′√

g2 + g′2
(2.23)

mW = mZ · cos θW (2.24)

In the new terms a scalar field appears, the Higgs boson, that is the only particle of the SM
not yet observed.
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Quarks can interact both strongly and weakly, but the eigenstates of the strong interaction
do not correspond to the eigenstates of the weak interaction. The 3 × 3 matrix of the rotation
producing the correct linear combinations for the weak interaction is the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [19]. The nine complex terms Vqq′ can be expressed as a function of
four independent real parameters: three angles and a phase, that is responsible for the direct
CP violation.

Charged kaon decays

Kaons are produced by the strong interaction of non strange hadrons, for example in a proton-
proton collision, together with baryons or another kaon with opposite strangeness. But, since
kaons are the lightest strange particles, they can only decay via the weak interaction in
processes with |∆S| ≥ 1.

In the neutral kaon system the first evidence for “indirect” CP violation was observed
in 1964 [20] in the mixing of the K0 and K0 states. The mixing of two neutral mesons
occurs through common intermediate states and is therefore a second order weak process,
with ∆S = 2. The mass eigenstates are a linear combination of K0 and K0 and, since they
do not correspond exactly to the CP eigenstates, indirect CP violation can be observed. Its
size is measured by the asymmetry parameter ε and is of the order of 10−3.

For charged kaons no mixing can take place and CP can only be directly violated. Direct
CP violation was not observed in this system yet, but only in the neutral kaons, and is
expected to be of the order of 10−6 within the SM [21]. In other models the direct CP
violation in the charged kaon system is predicted to be as high as 10−4 [22]. For this analysis
such a difference between K+ and K− is negligible and it will therefore be assumed that CP
is conserved.

Charged kaons decay preferably into two leptons (µν) or two hadrons (π+π0) with branch-
ing ratios of 63% and 21%, respectively. The remaining 16% is shared between semileptonic
and hadronic three-body decays, with small contributions from decays into more than three
particles and radiative ones. The interesting channels for the analysis presented in this thesis
are listed in Table 2.3.

2.2. Chiral Perturbation Theory (χPT)

Chiral perturbation theory is the quantum field effective theory, that describes hadronic
interactions within the SM below the energy scale at which the chiral symmetry is broken
(E � Λχ ∼ 1 GeV).

Chirality is defined by the projection operators ΓR,L = 1
2 (1± γ5), that act on the Dirac

spinors and extract from them respectively the right (R) and left-handed (L) component. As
a function of the chiral states, the QCD Lagrangian has the form

q̄ (iγµDµ −m) q = q̄Liγ
µDµqL + q̄Riγ

µDµqR − q̄LmqR − q̄RmqL (2.25)

and, in the limit of massless quarks, it is invariant for global transformations of the chiral
group SU(3)L ⊗ SU(3)R.

Since at low energies the QCD can not be treated perturbatively, an effective theory has to
be used. The basic principle of effective theories is that, within a certain energy range, only

9
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Decay short name BR

K± → π±π0 K2π (21.1± 0.1)% background

K± → π0e±
(—)
νe Ke3 (4.87± 0.06)% calibration

K± → π+π−π± K3π (5.58± 0.03)% background

K± → π0π0π± Kππ0π0 (1.73± 0.04)% background

K± → π+π−π±γ K3πγ (1.0± 0.3)× 10−4 background

K± → π+π−e±
(—)
νe Ke4 (4.08± 0.09)× 10−5 signal

K± → π±π±e∓
(—)
νe K∆S=−∆Q

e4 < 1.2× 10−8 test of ∆S = ∆Q

Table 2.3.: The interesting decays for the Ke4 analysis and their experimentally measured
branching ratios [13].

some degrees of freedom are relevant and have to be described as fields, while the remaining
ones enter only in the coefficients of suitable local operators. In particular χPT considers as
fundamental particles the light pseudo-scalar mesons, that are the spectrum of the theory,
while their internal structure in terms of quarks is neglected.

Studying kaon decays, the appropriate energy scale is that of the kaon mass, which is
small enough to neglect terms involving heavy quarks, whose degrees of freedom are frozen.
Therefore only the light mesons composed of the u, d and s quarks are considered.

In the following χPT will be briefly presented in a formal way, but restricted to the in-
teresting aspects for the Ke4 decay. Complete descriptions of the theory can be found for
example in [23, 24, 25].

2.2.1. The chiral symmetry

Neglecting the quark masses and the terms depending on heavy quarks, Eq. 2.7 can be written
as

L(0)
QCD =

∑
q=u,d,s

q̄γµ
(
i∂µ + gst

aGa
µ

)
q − 1

4
Ga

µνG
aµν . (2.26)

Apart from the invariance under local SU(3)c transformations, the Lagrangian is also in-
variant under global transformations of the group SU(3)L × SU(3)R × U(1)V × U(1)A. The
U(1)V symmetry has the baryon number as a generator and is exactly conserved, while
the U(1)A symmetry is not conserved in the quantisation (U(1)A anomaly), so that only
G = SU(3)L × SU(3)R is considered as the chiral group.

To each generator of G corresponds a conserved Noether current

Jaµ
L,R = q̄L,Rγ

µtaqL,R (2.27)

with the charges

Qa
L,R =

∫
d3xJa0

L,R(x), (2.28)

10



2.2. Chiral Perturbation Theory (χPT)

that follow the usual commutation relations[
Qa

X , Q
b
Y

]
= iδXY fabcQ

c
X , (2.29)

with X and Y equal to R or L.
The chiral symmetry, that should be valid with good approximation for the light quarks,

is however not present in the hadron spectrum, since there are no degenerate multiplets
with opposite parity. Instead, the octet of pseudo-scalar mesons is composed by much lighter
particles than all the other hadrons. This experimental fact indicates that the chiral symmetry
is spontaneously broken and that a perturbative treatment of the masses of the pseudo-scalar
mesons is allowed without moving back to the typical hadron energy scale.

2.2.2. Spontaneous Chiral Symmetry Breaking (SCSB)

Considering the hadrons as ground states in the theory, of the original invariance under the
G group only the symmetry SU(3)V ≡ SU(3)L+R is conserved, so that, according to the
Goldstone theorem [26], an octet of massless pseudo-scalar bosons has to appear. Formally
[27], a symmetry is spontaneously broken if an operator O exists, for which

〈0 |[Q,O]| 0〉 6= 0, (2.30)

where Q is the Noether charge and the left term of the equation is called the order parameter
of the SCSB. This condition can be satisfied only if Q|0〉 6= 0 and, since Q commutes with the
Hamiltonian, the state Q|0〉 has the same energy as the vacuum. In a relativistic invariant
theory this can only happen if the spectrum of the physical states contains a massless particle,
the Goldstone boson ( |G〉), fulfilling the relation〈

0
∣∣∣J0
∣∣∣G〉 〈G |O| 0〉 6= 0. (2.31)

Therefore the quantum numbers of the Goldstone boson depend on the ones of J0 and O.
If there is a set of generators that leave the vacuum state unchanged, they form a sub-

algebra, since, if Qi and Qk annihilate vacuum, the same is valid for their commutator. As a
result two groups can be considered: the symmetry group G of the Hamiltonian and the group
H (sub-group of G), that is the symmetry group of the vacuum state. If nG is the number
of generators of G and nH < nG the number of generators of H, the remaining nG − nH

generators, that belong to the ratio G/H of the two groups, do not annihilate vacuum and
give origin to linearly independent minimum energy states. If they would not be linearly
independent, one of their combinations would annihilate vacuum and would then belong to
H.

In the chiral group the symmetry with respect to the eight axial generators Qa
A = Qa

R−Qa
L

is broken, so that there are eight pseudo-scalar Goldstone bosons, that can be identified with
the lightest meson octet. Their masses are generated by the mass matrix that explicitly
breaks the global symmetry of the QCD Lagrangian.

2.2.3. The quark condensate

The operators corresponding to the broken symmetry must be pseudo-scalar: the easiest form
is Oa = q̄γ5λ

aq, where λa = 2 · ta are the Gell-Mann matrices, whose order parameter is〈
0
∣∣∣[Qa

A, q̄γ5λ
bq
]∣∣∣ 0〉 = −1

2

〈
0
∣∣∣q̄ {λa, λb

}
q
∣∣∣ 0〉 = −2

3
δab 〈0 |q̄q| 0〉 . (2.32)

11



2. Theoretical predictions and previous results

The quark mean value of the vacuum (the so-called quark condensate)

〈0 |ūu| 0〉 =
〈
0
∣∣d̄d∣∣ 0〉 = 〈0 |s̄s| 0〉 6= 0 (2.33)

has the same value for the three light quarks in the limit of no mass because of the SU(3)V

symmetry and is the natural order parameter of the SCSB. The transition matrix elements of
the Noether currents between the vacuum and the Goldstone bosons, because of the Lorentz
invariance, must be of the form

〈0 |Jµ
i |φ

a (p)〉 = ifa
i p

µ, (2.34)

where the states |φa (p)〉 are orthogonal to each other and the decay constants fa
i are real,

diagonal and equal to zero for the currents of the H group.

2.2.4. The lowest order chiral Lagrangian

The low energy regime should allow for the expansion of the transition amplitudes in powers
of the momentum. However the exchange of massless particles produces singularities that do
not admit such an expansion. For example, each propagator contains a pole:〈

0
∣∣∣T {φa (x)φb (y)

}∣∣∣ 0〉 = −iδab∆0 (x− y) ∆0 (z) =
∫

d4p

(2π)4
e−ipz

−p2 − iε
. (2.35)

The analysis of the low energy structure of the χPT is based on the following hypotheses [28]:

— the Goldstone bosons generated by the spontaneous symmetry breaking are the only
massless particles in the spectrum of the physical states;

— at low energy the Green functions are dominated by the poles due to the exchange of
such particles;

— the vertices allow for the Taylor expansion in powers of the momentum.

The vertices correspond to the residuals of the poles from the exchange of a massless par-
ticle and the third hypothesis requires that these residuals can be expanded in a Taylor
series. Combined with the first one, this condition means that the amplitudes allow for the
Taylor expansion, since the poles are the only singularities. An immediate consequence of
the hypotheses is that, at low energy, the symmetry forbids strong interactions between the
Goldstone bosons [29]: the vertices may only be constructed from Lorentz invariants and are
therefore at least quadratic functions of the momentum. In this way the interactions at low
energy between the Goldstone bosons are weak, differently from the ones between quarks and
gluons, and this justifies the perturbative expansion within the effective theory.

The dynamical variables are contained in the SU(3) matrix

U(x) = e
i φ

F0 , (2.36)

with

φ (x) = λaφ
a(x) =


π0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K− √

2K̄0 − 2√
3
η8

 . (2.37)
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2.2. Chiral Perturbation Theory (χPT)

F0 ' 93 MeV is a free parameter related to the matrix element of the pion decay at tree level:

M = −GFVudF0ūνµp/ (1− γ5)vµ+ , (2.38)

where GF ' 1.17× 10−5 GeV−2 is the Fermi constant for the weak decay and Vud ' 0.22 the
CKM matrix element between the u and the d quark. F0 represents the decay constant of
the mesons at tree level, in the assumption of massless mesons.

The lowest order non trivial Lagrangian, invariant under the global chiral symmetry, reads

Leff =
F 2

0

4
Tr
(
∂µU∂

µU †
)

(2.39)

and can be expanded in powers of φ as

Leff =
1
2
∂µφ

a∂µφa + Lint, (2.40)

where no mass term appears for the eight pseudo-scalar mesons and Lint represents the
interaction Lagrangian generated by higher order terms.

To introduce the mass term, that explicitly violates the chiral symmetry, the constant
matrix

M =

 mu 0 0
0 md 0
0 0 ms

 (2.41)

is assumed to transform as the U matrix. The lowest order of the expansion in powers of M
is

LM =
F 2

0B0

2
Tr(MU † + UM †). (2.42)

The new parameter B0 is related to the chiral quark condensate:

〈ūu〉 = 〈0|ūu|0〉0 = −F 2
0B0, (2.43)

where the subscript 0 indicates the limit of massless quarks. Now the mesons also get a mass,
for example the pion mass is at the lowest order

M2
π = 2B0m, (2.44)

with m = mu = md. In χPT B0 is assumed to be big enough, so that the linear term in the
quark masses dominates the expansion. However, B0 can only be determined experimentally
and there are no theoretical arguments supporting the assumption of a big value. Therefore
the determination of B0 is an important test of the basic principles of χPT . In the following
Sections the relation between B0 and the Ke4 form factors, that are measured in this analysis,
will be shown in detail.

In order to compare the theoretical predictions with the experimental data, a better preci-
sion than the tree level is required. In higher orders also the interactions with external fields
are included. Considering a local chiral symmetry instead of a global one, the derivative has
to be replaced by a covariant derivative, acting on the U matrix as

DµU = ∂µU − irµU + iUlµ, (2.45)
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2. Theoretical predictions and previous results

where rµ and lµ are respectively left and right-handed external fields. The field strength
tensors of the external fields can also be built, but they do not contribute to the Lagrangian
because they are traceless. The scalar (s) and pseudo-scalar (p) external fields are added in
the combination

χ = 2B0(s+ ip). (2.46)

The mass matrix can be included as a scalar external field. The lowest order locally invariant
Lagrangian then reads

L2 =
F 2

0

4
Tr
[
DµU (DµU)†

]
+
F 2

0

4
Tr
(
χU † + Uχ†

)
. (2.47)

Further terms Ln can be added, with n even, containing d derivatives of the meson field
(corresponding to momentum powers) and m powers of the mass matrix with d + 2m = n.
For example for the next-to-leading order (O(p4)) three terms have to be considered:

— one-loop graphs generated by L2

— an explicit local action of order p4

— the contribution to account for the chiral anomaly.

2.3. The ππ scattering

Expanding the Lagrangian of Eq. 2.47 up to the order φ4 and considering the matrix U in
SU(2) instead of SU(3), the matrix element of the process

πi(p1)πk(p2) → πl(p3)πm(p4) (2.48)

can be calculated at tree level, giving the same result as in the notation [29]〈
πm(p4)πl(p3)out|πi(p1)πk(p2)in

〉
=

〈
πm(p4)πl(p3)in|πi(p1)πk(p2)in

〉
+ i(2π)4δ(4)(Pf − Pi)T ik;lm(s, t, u), (2.49)

where Pf = p4+p3 is the total momentum of the final state, Pi = p1+p2 the total momentum
of the initial state, s, t and u are the Mandelstam variables

s = (p1 + p2)2

t = (p1 − p3)2 (2.50)
u = (p1 − p4)2

and T ik;lm(s, t, u) is a Lorentz invariant function. Due to isospin symmetry, T ik;lm(s, t, u) can
be expressed in terms of a single amplitude A(s, t, u) = A(s, u, t)

T ik;lm(s, t, u) = δikδlmA(s, t, u) + δilδkmA(u, s, u) + δimδklA(u, t, s), (2.51)

with, at tree level,

A(s, t, u) =
s−M2

π

F 2
0

, (2.52)
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2.3. The ππ scattering

which is related to the size of the quark condensate by Eq. 2.43.
The combinations with definite isospin in the s-channel

T 0(s, t) = 3A(s, t, u) +A(t, u, s) +A(u, s, t)
T 1(s, t) = A(t, u, s)−A(u, s, t) (2.53)
T 2(s, t) = A(t, u, s) +A(u, s, t)

(2.54)

can be expanded into partial waves [30]

T I(s, t) = 32π
∞∑
l=0

(2l + 1)Pl(cos θ)tIl (s). (2.55)

Considering only the elastic region 4M2
π < s < 16M2

π and imposing unitarity, the partial
wave amplitudes tIl (s) can be expressed as functions of real phase shifts δI

l (s):

tIl (s) =
√

s

s− 4M2
π

· e
2iδI

l (s) − 1
2i

. (2.56)

Near the threshold the partial wave amplitudes can be expanded into polynomials in q:

Re tIl (s) = q2l
(
aI

l + q2bIl +O(q4)
)
, (2.57)

with q2 = s− 4M2
π . The parameters aI

l of this expansion are the ππ scattering lengths. The
relevant ones for the Ke4 analysis are a0

0 and a2
0, i.e. the S-wave terms with isospin 0 and 2,

respectively.

2.3.1. Predictions for the scattering lengths a0
0 and a2

0

At Leading Order (LO) the analytical expressions for the a0
0 and a2

0 read [29]

a0
0 =

7M2
π

32πF 2
π

, a2
0 = − M2

π

16πF 2
π

, (2.58)

with M2
π given by Eq. 2.44 and Fπ = F0. When considering higher orders, new terms are

added to the expressions for the scattering lengths, but alsoM2
π and Fπ have to be evaluated to

the same order. Since M2
π depends on B0, the size of the quark condensate can be determined

from the measurement of a0
0 and a2

0.
In the framework of χPT the values of a0

0 and a2
0 have been predicted up to the Next-

to-Next-to-Leading Order (NNLO), corresponding to O(p6)) with the following numerical
results:

a0
0 = 0.156 , a2

0 = −0.045 (LO) [29]
a0

0 = 0.200 , a2
0 = −0.043 (NLO) [31, 32] (2.59)

a0
0 = 0.217 , a2

0 = −0.041 (NNLO) [33]

An alternative approach, the Generalised Chiral Perturbation Theory (GχPT ), was pro-
posed in [34] in order to avoid the assumption of a strong quark condensation. The counting

15



2. Theoretical predictions and previous results

rule for the light quark mass terms, m = O(p2), is replaced by m = O(p) and B0 = O(p).
In this way the total Lagrangian is identical if all orders up to infinity are considered, but in
the expansion the mass terms appear at lower order. Furthermore odd terms do not vanish
and the predictions of the scattering lengths are given as functions of two free parameters α
and β related to the size of the quark condensate and to the ratio ms/m between the mass
of the strange quark and the mass of u and d. At tree level the expressions for the scattering
lengths are

a0
0 =

M2
π

96πF 2
π

(5α+ 16β) , a2
0 =

M2
π

48πF 2
π

(α− 4β) . (2.60)

The χPT results are reproduced for α = β = 1.
Since the publication by the BNL E865 collaboration [35] of the new experimental values

for a0
0 and a2

0, determined from the Ke4 form factors, which were confirmed and improved
by NA48/2 in the analysis of the cusp effect in K± → π±π0π0 [36], the scenario of a very
small, or even vanishing, SU(2) q̄q condensate can be excluded and the GχPT description is
equivalent to the χPT one. At the same time, the theoretical predictions reached a precision
of about 2% by the combined use of χPT and dispersion relations [37].

The dispersion relations for the partial wave amplitudes (called Roy equations) [38] read

tIl (s) = kI
l (s) +

2∑
I′=0

∞∑
l′=0

∫ ∞

4M2
π

ds′KII′
ll′ (s, s′)Im tI

′
l′ (s

′), (2.61)

with

kI
l (s) = aI

0δ
0
l +

s− 4M2
π

4M2
π

·
(
2a0

0 − 5a2
0

)
·
(

1
3
δI
0δ

0
l +

1
18
δI
1δ

1
l −

1
6
δI
2δ

0
l

)
. (2.62)

The kernels KII′
ll′ (s, s′) are explicitly known functions. These equations are valid on the

interval −4M2
π < s < 60M2

π . The integration is splitted into a low energy interval up to
an energy E0 ' 0.8 GeV (called matching point) and the remaining high energy interval.
A numerical solution for the low energy can be computed using as input the two S-wave
scattering lengths, the elasticity parameters below the matching point and the imaginary
parts above it [39].

The elasticity parameters are assumed to be equal to 1 up to the matching point, since
the only open inelastic channel is 2π → 4π, that is strongly suppressed at low energies.
The ππ phase shifts in the intermediate region, i.e. between 0.8 and 2 GeV, are mainly
determined from the reaction πN → ππN . The most precise measurement was performed by
the CERN-Munich collaboration on π−p → π−π+n [40]. The remaining contributions, that
are summarised into the so-called driving term, are evaluated using experimental information
on the resonances in partial waves with l ≥ 2 in the intermediate energy region and Regge
representations for the high energy ππ scattering amplitude.

Not only the contribution to the Roy equation above the matching point is used as input,
but also the values of the phase shifts at that point. The solution of the equations is then
a boundary value problem: at threshold the phases vanish and at the matching point they
are given by the input. The dependency of the interpolation on the value at the boundary
is therefore stronger than on the imaginary parts above it. The experimental values for δ00
and δ11 at the matching point are obtained from the high energy, high statistics πN → ππN
experiments.
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2.4. The Ke4 decay

The numerical solutions are determined by a function for δI
l (s), where the parametrisation

in [41] is used, allowing for an additional free parameter in the polynomial part:

tan δI
l =

√
1− 4M2

π

s
· q2l ·

{
AI

l +BI
l q

2 + CI
l q

4 +DI
l q

6
}(4M2

π − sI
l

s− sI
l

)
, (2.63)

with q =
√

s−4M2
π

4M2
π

and where the parameters A, B, C and D have been determined explicitely

for the combinations l = 0, I = 0, 2 and l = 1, I = 1 as a function of a0
0 and a2

0. The numerical
values can be found in Appendix D of [39].

The chiral representation and the one based on the dispersion relations have the same
structure and can be matched at a point where the χPT can make accurate predictions [42].
The following results are obtained for the scattering lengths:

a0
0 = 0.220 , a2

0 = −0.045 (NLO)
a0

0 = 0.220 , a2
0 = −0.044 (NNLO). (2.64)

At NNLO the uncertainties are estimated to be 0.005 and 0.001 for a0
0 and a2

0, respectively.
For a fixed value of a0

0 and of the other input parameters, the Roy equations admit a solu-
tion without cusp only for a single value of a2

0, so that a2
0 is not a free parameter anymore, but

can be expressed as a function of a0
0, given the remaining input parameters. This function

is called universal curve [43] and becomes a band (the universal band) when the experimen-
tal uncertainties on the input at intermediate and high energies are considered. From the
calculations in [39] the universal curve was determined to be

a2
0 = −0.0849 + 0.232 · a0

0 − 0.0865 · (a0
0)

2, (2.65)

while the upper and lower boundaries of the universal band are

a2
0 = −0.0774 + 0.240 · a0

0 − 0.0881 · (a0
0)

2

a2
0 = −0.0922 + 0.225 · a0

0 − 0.0847 · (a0
0)

2. (2.66)

Imposing the constraints from the chiral symmetry, the allowed band for a2
0 as a function of

a0
0 restricts to [42]

a2
0 = −0.0444 + 0.236 · (a0

0 − 0.22)− 0.61 · (a0
0 − 0.22)2 − 9.9 · (a0

0 − 0.22)3 ± 0.0008, (2.67)

which has a much smaller uncertainty than the universal band in Eq. 2.66. The universal
band and the region allowed by the chiral symmetry are shown in Figure 2.2.

2.4. The Ke4 decay

The ππ S-wave scattering near threshold can be studied very cleanly in the Kl4 decays, where
l indicates a muon or an electron, because the two pions are the only hadrons in the final
state. In the following the theoretical predictions for the K+ → π+π−e+νe decay, will be
presented, but the corresponding matrix elements and form factors for any other Kl4 decay
can be deduced via isospin relations and using the proper values of the masses.

The tree level Feynman diagram within the SM for the decay K+ → π+π−e+νe is shown in
Figure 2.3. In the framework of χPT the mesons are considered instead of the single quarks.
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Figure 2.2.: The universal band (between the black solid lines) with the universal curve at
its centre (black dashed line) [39] and the narrower band determined imposing
the constraints from the chiral symmetry (red curves) [42]. The filled circles
are the measurements performed by the E865 experiment in Ke4 decays [35]:
without constraints between a0

0 and a2
0 (blue), with the constraint of the universal

curve (black) and with the chiral symmetry contraint (red). The empty squares
represent the measurements of NA48/2 in K± → π0π0π± decays [36]: without
constraints (blue) and with the chiral symmetry contraint (red). For all the
experimental points the error bars include statistical, systematic and external
uncertainties.

u u

s u

d

d

W+ e+

νe

K+

π+

π-

Figure 2.3.: The tree level standard model Feynman diagram for the Ke4 decay.
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2.4. The Ke4 decay

2.4.1. The Cabibbo-Maksymowicz variables

The full kinematics of the decay can be described by five variables, first introduced by Cabibbo
and Maksymowicz [44], that are shown in Figure 2.4. Considering the three reference frames
ΣK (the K+ rest frame), Σππ (the π+π− centre of mass system) and Σeν (the e+ν centre of
mass system), the variables are defined as follows:

sπ the invariant mass squared of the dipion system,

se the invariant mass squared of the dilepton system,

θπ the angle between the π+ in Σππ and the dipion line of flight in ΣK ,

θe the angle between the e+ in Σeν and the dilepton line of flight in ΣK ,

φ the angle between the plane formed by the pions and the one formed by the leptons in ΣK .

θθ
φ

νπ

π+

−

K
+

e+
π

e

Figure 2.4.: The kinematic variables of the Ke4 decay.

The following combinations of four momenta and Lorentz invariants are also useful to
describe the matrix element and the form factors:

P = pπ+ + pπ− , Q = pπ+ − pπ−

L = pe+ + pν , N = pe+ − pν

PL =
1
2

(
M2

K − sπ − se

)
, X =

√
(PL)2 − sπse (2.68)

ze =
M2

e

se
, σπ =

√
1− 4

M2
π

sπ
.

2.4.2. Matrix element and decay rate

The matrix element can be written as a precisely known QED factor for the leptonic part
and a general V − A (vector minus axial-vector, due to the coupling of the weak interaction
only to left-handed particles) current for the hadronic part [45]:

T =
GF√

2
V ∗

usū(pν)γµ(1− γ5)v(pe)(V µ −Aµ), (2.69)
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with

Vµ = − H

M3
K

εµνρσL
νP ρQσ

Aµ = − i

MK
[PµF +QµG+ LµR] . (2.70)

F , G, R and H (the form factors) are real analytical functions of the variables sπ, se and θπ.
The partial decay rate as a function of the five kinematic variables defined above reads [44]

dΓ5 = G2
F |Vus|2

(1− ze)σπX

213π6M5
K

J5(sπ, se, θπ, θe, φ)dsπdsed(cos θπ)d(cos θπ)dφ, (2.71)

where the expression for J5 as a function of the form factors, the Lorentz invariants and the
four momenta is given in Eq. 2.68 of [45].

2.4.3. The Form Factors (FF)

For a measurement of the form factors a more suitable parametrisation was proposed in [46],
where the dependence on the kinematic variables is displayed explicitly:

J5 = 2(1− ze)
[
I1 + I2 cos 2θe + I3 sin2 θe cos 2φ+ I4 sin 2θe cosφ+ I5 sin θe cosφ

+I6 cos θe + I7 sin θe sinφ+ I8 sin 2θe sinφ+ I9 sin2 θe sin 2φ
]
, (2.72)

with

I1 =
1
4

{
(1 + ze)|F1|2 +

1
2
(3 + ze)(|F2|2 + |F3|2) sin2 θπ + 2ze|F4|2

}
I2 = −1

4
(1− ze)

{
|F1|2 −

1
2
(|F2|2 + |F3|2) sin2 θπ

}
I3 = −1

4
(1− ze)

{
|F2|2 − |F3|2

}
) sin2 θπ

I4 =
1
2
(1− ze)Re(F ∗1F2) sin θπ

I5 = −{Re(F ∗1F3) + zeRe(F ∗4F2)} sin θπ (2.73)

I6 = −
{
Re(F ∗2F3) sin2 θπ − zeRe(F ∗1F4)

}
I7 = −{Im(F ∗1F2) + zeIm(F ∗4F3)} sin θπ

I8 =
1
2
(1− ze)Im(F ∗1F3) sin θπ

I9 = −1
2
(1− ze)Im(F ∗2F3) sin2 θπ

and

F1 = XF + σπ(P · L) cos θπ ·G
F2 = σπ(sπse)1/2G

F3 = σπX(sπse)1/2 H

m2
K

(2.74)

F4 = −(PL)F − seR− σπX cos θπG.
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2.4. The Ke4 decay

The form factor R only appears in the combination se · R in F4, which enters the decay
rate always preceded by ze, i.e. R is multiplied by M2

e (' 0.25× 10−6 GeV2/c4) in the decay
rate. The electron channel has therefore no sensitivity to R, that can only be measured in
the Kµ4 decay.

Parametrisation

In order to perform a fit of the form factors on experimental data, F , G, R and H are
expanded into partial waves:

F =
∞∑
l=0

Pl(cos θπ)fl −
σπPL

X
cos θπG

G =
∞∑
l=1

P ′l (cos θπ)gl

R =
∞∑
l=0

Pl(cos θπ)rl +
σπsπ

X
cos θπG (2.75)

H =
∞∑
l=1

P ′l (cos θπ)hl,

where Pl are the Legendre polynomials and P ′l (cos θπ) = d
d(cos θπ)Pl. The partial wave am-

plitudes fl, gl, rl and hl depend in general on sπ and se, while the phases coincide with the
phase shifts δI

l with I = 0 for even values of l and I = 1 for odd values of l.
In [46] no assumption was made on the dependence of fl, gl, rl and hl on sπ and se, so that

in principle independent values of the partial wave amplitudes and of the phase shifts have to
be determined in each (sπ,se) bin. Later a simpler parametrisation was proposed [47], that
allows for a reduction of the number of parameters to 11 plus the number of bins in sπ for the
measurement of the phase shift difference. Considering different models and approximations,
it was observed that the dependence of F and G on se is linear and the slope is independent
of sπ, while the sπ dependence of the coefficient of cos θπ is well described by σπX. R is
neglected and for H a linear dependence on sπ should be a sufficient parametrisation:

F = (fs + f ′ssπ + f ′′s s
2
π + fese)eiδ

0
0(sπ) + f̃pσπX cos θπe

iδ1
1(sπ)

G = (gp + g′psπ + gese)eiδ
1
1(sπ) + gdσπX cos θπe

iδ0
2(sπ) (2.76)

H = (hp + h′psπ)eiδ
1
1(sπ),

where f̃p is a combination of fp and gp.
This parametrisation allows to use the statistics of the experiment more effectively than

the one in [46], but it has to be tested if it is actually sufficient to describe the data.

Theoretical prediction

At leading order the form factors in the chiral representation are [48]

F = G =
MK√
2Fπ

= 3.74
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R =
MK

2
√

2Fπ

(
Z

se −M2
K

+Q

)
(2.77)

H = 0,

where Z = sπ − 2σπX cos θπ is the pole part of R, related to the KK → ππ amplitude, and
Q = 1 its regular part.

At NLO four additional terms have to be considered [49, 50]: the tree graphs at order p4,
the unitarity corrections generated by the one loop graphs, some logarithms independent of
the kinematics and the chiral anomaly [51, 52, 53]. In general the FF at NLO can be written
as

I(sπ, u, t) = ILO
{

1 +
1
F 2

π

(UI + PI + CI)
}
, (2.78)

with I = F,G,Z,Q. The UI terms include the unitarity corrections, PI are the polynomials
obtained from the tree graphs and CI the logarithmic terms independent of the kinematics.
The complete expressions for the different contributions can be found in [54]. The terms PI

have in general the form

PI(sπ, t, u) =
9∑

j=1

pj,I(sπ, t, u)Lr
j , (2.79)

where the coefficients pj,I are different for the various FFs and some of them vanish. The
quantities Lr

j are the renormalised coupling constants, that parametrise the effective La-
grangian at order p4 [55]. They are scale dependent, but the loop contribution compensate
the dependence, so that the observable quantities are independent of the scale. The coupling
constants are free parameters of the theory and have to be determined experimentally. The
Ke4 decay is particularly sensitive to L1, L2 and L3.

The anomaly is the first non vanishing contribution to H in the chiral expansion:

H = −
√

2M3
K

8π2F 3
π

= −2.66. (2.80)

The contribution of higher order terms in the S-wave amplitude of the form factor F
has been estimated by use of a dispersive representation [56], determining the subtraction
constants from χPT [54]. This estimate also takes into account the non negligible contribution
from the final state interaction in the I = 0 S-wave amplitude.

2.4.4. The K− → π+π−e−νe decay

Since NA48/2 is the first experiment that can measure Ke4 decays both from K+ and K−,
it is important to correctly apply the theoretical predictions for the positive kaons to the
negative ones.

The matrix element for the K− → π+π−e−νe decay was explicitly computed in [57]:
without any assumption on CP and CPT invariance, the following transformations have to
be performed on the kinematic variables

sπ → sπ , se → se

θπ → θπ , θe → π − θe (2.81)
φ→ π + φ
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and the form factors can in general have different values for the K+ and the K− decay. Fur-
thermore the amplitudes for different values of the third component of the angular momentum
of the two pions do not have to be equal.

CPT invariance implies

Γ(K+ → π+π−e+νe) + Γ(K+ → π0π0e+νe) = Γ(K− → π+π−e−νe) + Γ(K− → π0π0e−νe),
(2.82)

while invariance under time reversal cancels the dependence on the third component of the
angular momentum.

Finally, in the assumption of CP invariance, the angle transformations become

θπ → θπ , θe → θe

φ→ −φ (2.83)

and the form factors are identical. This is equivalent to the use of the transformations in
Eq. 2.81 and a change of sign in the H form factor. In this way the validity of the assumption
can be tested.

2.4.5. The K∆S=−∆Q
e4 decay

The decay K± → π±π±e∓
(—)
νe violates the empirical rule ∆S = ∆Q, where S is the

strangeness and Q the total charge of the hadronic particles and is therefore expected to hap-
pen with a much smaller probability than the Ke4 decay. Considering the tree level standard
model Feynman diagram, shown in Figure 2.5, it can be seen that actually two weak vertices
are necessary and therefore the ratio of the branching ratios BR(K∆S=−∆Q

e4 )/BR(Ke4) is
expected to be of the order of G2

F ·M2 ≤ 10−10, where M is a mass scale, that can be at
most equal to the kaon mass.

u u

s u d

W+
d

u

W- e-

νe

K+

π+

π+

Figure 2.5.: The tree level standard model Feynman diagram for the K∆S=−∆Q
e4 decay.

2.5. Previous experimental results

2.5.1. ππ scattering lengths

The scattering length a0
0 was first measured by the Geneva-Saclay experiment in 1976 [58].

About 30,000 Ke4 events were collected and a0
0 was determined from a fit of the phase
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2. Theoretical predictions and previous results

difference δ00 − δ11 in five bins of Mππ, using the parametrisation proposed in [59]:

a0
0 = 0.28± 0.06. (2.84)

A more precise measurement was published in 2003 by the BNL E865 collaboration, based
on 388,000 Ke4 events [35]. The fit of the scattering lengths a0

0 and a2
0 was performed with

the parametrisation of Eq. 2.63 and three results were obtained, according to the constraint
applied between a0

0 and a2
0 (see Figure 2.2). Without any constraint, the two variables are

strongly correlated and the measurement is not very precise (blue filled circle in Figure 2.2):

a0
0 = 0.203± 0.033 (stat)± 0.004 (syst),
a2

0 = −0.055± 0.023 (stat)± 0.003 (syst). (2.85)

Imposing the universal curve as constraint and assigning to a0
0 a theoretical uncertainty given

by the shift when using as constraint the lower or the upper bound of the universal band, the
following values were obtained (black filled circle in Figure 2.2):

a0
0 = 0.228± 0.012 (stat)± 0.004 (syst)+0.012

−0.016 (theor),

a2
0 = −0.0365± 0.0023 (stat)± 0.0008 (syst)+0.0031

−0.0026 (theor)1. (2.86)

Applying the tight constraint given by the χPT , the theoretical uncertainty becomes negli-
gible (red filled circle in Figure 2.2):

a0
0 = 0.216± 0.013 (stat)± 0.004 (syst)± 0.002 (theor),
a2

0 = −0.0454± 0.0031 (stat)± 0.0010 (syst)± 0.0008 (theor). (2.87)

The latest measurement of the scattering lengths was performed by the NA48/2 collabora-
tion, based on 2.287 × 107 K± → π0π0π± decays [36]. In the M2

00 distribution, the squared
invariant mass of the two neutral pions, a cusp-like structure was observed at the threshold of
the π+π− production. Fitting the distribution in the range 0.074 < M2

00 < 0.097 (GeV/c2)2

with the rescattering model described in [60], the following results were obtained without any
constraint between the two parameters (blue empty square in Figure 2.2):

a0
0 − a2

0 = 0.268± 0.010 (stat)± 0.004 (syst)± 0.013 (theor),
a2

0 = −0.041± 0.022 (stat)± 0.014 (syst), (2.88)

and with the χPT constraint between a0
0 and a2

0 (red empty square in Figure 2.2):

a0
0 = 0.220± 0.006 (stat)± 0.004 (syst)± 0.011 (theor),
a2

0 = −0.0444± 0.0014 (stat)± 0.0009 (syst)± 0.0008 (theor). (2.89)

The Geneva-Saclay measurement was in disagreement with the tree-level theoretical pre-
diction available at that time, but the more recent results agree perfectly with the NNLO
χPT predicitions.

1The statistical and systematic uncertainties, that can be obtained from the propagation of the uncertainties
on a0

0, were clearly mis-typed in [35]. The correct values are reported.
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2.5. Previous experimental results

2.5.2. Ke4 form factors

The measurement performed by the Geneva-Saclay collaboration [58] was based on the Pais-
Treiman parametrisation [46] and yielded:

λ = 0.08± 0.02,
fp/fs = 0.009± 0.032,
g/fs = 0.855± 0.041, (2.90)
h/fs = −0.48± 0.12,

where λ corresponds to f ′s/fs, g to gp and h to hp in the parametrisation used in this analysis.
f̃p corresponds to fp · 4M2

π
σπX

The E865 collaboration performed both a fit in multiple bins of sπ, obtaining a result
compatible with the Geneva-Saclay experiment, and to the whole data set at once to improve
the statistical precision [35]. The fit to the whole data sample was based on the parametri-
sation of Eq. 2.76 where sπ was substituted by q2 = sπ

4M2
π
− 1 and se by se

4M2
π

in order to have
dimensionless parameters. The following values were obtained:

fs = 5.75± 0.02 (stat)± 0.08 (syst),
f ′s = 1.06± 0.10 (stat)± 0.40 (syst),
f ′′s = −0.59± 0.12 (stat)± 0.40 (syst),
gp = 4.66± 0.05 (stat)± 0.07 (syst), (2.91)
g′p = 0.67± 0.10 (stat)± 0.04 (syst),
hp = −2.95± 0.19 (stat)± 0.20 (syst).

The fit was performed under the assumption that the decay rate does not depend on se and
that the P -wave contribution to F is negligible, i.e. fixing to zero the parameters fe, ge and
f̃p. In order to test this approximation, they were added once at a time as free parameters
of the fit and found to be consistent with zero:

f̃p = −0.34± 0.10 (stat)± 0.27 (syst),
fe = −0.32± 0.10 (stat)± 0.24 (syst), (2.92)
ge = 0.04± 0.34 (stat)± 0.88 (syst).

2.5.3. Limits on ∆S = −∆Q

The most precise measurement of the relative amount of decays with ∆S = −∆Q with respect
to the ones with ∆S = ∆Q was performed by the CPLEAR experiment:

Re(x) = −0.0018± 0.0041 (stat)± 0.0045 (syst) [61]
Im(x) = 0.0012± 0.0019 (stat)± 0.0009 (syst) [62], (2.93)

with x = A
(
K0 → π−`+ν

)
/A
(
K0 → π−`+ν

)
.

In the charged kaon system only upper limits on the branching ratios of the ∆S = −∆Q
K`4 decays were determined:

BR(K+ → π+π+e−νe) < 3× 10−4 ·BR(K+ → π+π−e+νe) at 90% CL [63]
BR(K+ → π+π+µ−νµ) < 3× 10−6 at 95% CL [64]. (2.94)
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2. Theoretical predictions and previous results

The K∆S=−∆Q
e4 measurement, performed on a sample of about 11,000 Ke4 decays by the

Geneva-Saclay collaboration, is about one order of magnitude worse than the corresponding
limit on |x|2, but could be significantly improved with the higher statistics collected by the
NA48/2 experiment.
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The analysis presented in this thesis was performed using data collected in 2003 by the
NA48/2 experiment at the SPS accelerator at CERN.

The NA48 experiment is the 48th experiment of the North Area and was originally designed
to measure the direct CP violation in the neutral kaon system via the double ratio of the
KS and KL decays into two charged or neutral pions. For this purpose data were taken from
1997 to 2001 and the final result, with a precision of 2× 10−4 on the parameter Re(ε′/ε), was
published in 2002 [65].

A first extension [66] (NA48/1) was obtained for the year 2002 to study rare KS decays,
which led to the first observation of the decays KS → π0e+e− and KS → π0µ+µ− [67, 68],
and to perform measurements of hyperon decays and lifetimes.

NA48/2 is the second extension of NA48 and has the aim of a precision measurement of
charged kaon decay parameters [69]: the asymmetry of the slopes in the Dalitz plots between
K+ and K−, which gives the size of the direct CP violation in charged kaons, can be measured
with a precision of a few times 10−4 in the decays K± → π+π−π± and K± → π0π0π±; the ππ
scattering length a0

0 can be extracted from charged Ke4 decays with an uncertainty of 0.01
(this analysis); many predictions of the Chiral Perturbation Theory (χPT ) can be tested,
for example in the radiative decays; in the Ke3 decays the CKM matrix element Vus can
be extracted from the branching ratio and form factor measurements and the sensitivity to
deviations from the V-A theory is higher than in previous experiments.

The collaboration running this experiment consists of 11 institutions from 7 countries
(Cambridge, CERN, Dubna, Ferrara, Firenze, Mainz, Perugia, Pisa, Saclay, Torino, Vienna).
The complete data sample was collected in 2003 and 2004, but only part of it will be used in
the present analysis.

3.1. The Super Proton Synchrotron (SPS) accelerator at CERN

Protons for the accelerator complex at CERN are produced in a Duoplasmatron source,
injected into a linear accelerator (Linac2) and accelerated to an energy of 50 MeV. An 80 m
long beam transport carries the Linac2 beam to the first ring accelerator of the chain: the
PS Booster (PSB). In this four-deck synchrotron the protons reach an energy of 1.4 GeV
and the bunches from each ring can be recombined in various ways at the injection into the
Proton Synchrotron (PS). The PS was the first synchrotron built at CERN and started being
operative in 1959. It can accelerate protons up to an energy of about 25 GeV and is still used
as injector to the higher energy machines, as, for example, the Super Proton Synchrotron
(SPS). A schematic representation of the CERN accelerator complex is shown in Figure 3.1.
A detailed description of the CERN synchrotrons can be found in [70].

The SPS is operative since 1976 and is installed in an underground tunnel tangent to the
CERN site, with a radius of 2.2 km. It was foreseen for fixed target experiments in the West
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Figure 3.1.: Schematic representation of the CERN accelerator complex [71].

and in the North Experimental Areas and is still actively used today. The SPS was also used
as a proton-antiproton collider for the UA-1 and UA-2 experiments that observed for the first
time the W and Z bosons. It served as an injector for the Large Electron Positron collider
(LEP) and it will be the last injector of the Large Hadron Collider (LHC). In addition it
will provide a neutrino beam to Gran Sasso and protons to the North Area. The maximum
proton energy that can be reached at the SPS is 450 GeV.

3.2. The NA48/2 beam line

Since the NA48 and NA48/1 experiments had analysed neutral kaon decays, a new beam
line [72] connecting the NA48/2 target to the detector in the North Experimental Area had
to be designed and built to simultaneously produce and transport positively and negatively
charged kaons with a central momentum of 60 GeV/c. A schematic vertical section of the
beam line can be seen in Figure 3.2.

Different charged particles (mainly pions and kaons) are produced in a 2 mm diameter,
400 mm long beryllium target by a 400 GeV/c primary proton beam, impinging at zero
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Figure 3.2.: Schematic vertical section of the NA48/2 simultaneous K+ and K− beam line.
The blue and red lines show the centre of the K+ and K− beams respectively.
The green lines indicate the width of the beam outside the dipole magnets [73].

degrees angle, at a nominal intensity of 7× 1011 particles per pulse (burst), with a duty cycle
of 16.8 s and 4.8 s flat-top. The two beams of opposite charge are deflected vertically by a
front-end achromat, consisting of four dipole magnets, in order to select the momentum band
for the two charges, which has a width (root mean square) of ±3.8%. The first two dipole
magnets with opposite-sign field separate positively from negatively charged particles. The
central momentum and the momentum interval of each beam are then defined by the passage
through a pair of collimators (TAX), which also serve as dumps to absorb the remaining
primary protons and the neutral kaons. The last two deflection magnets return the two
beams onto a common axis. During the data taking the paths of the positively and negatively
charged beams were inverted regularly, in order to investigate possible systematic effects.

The opening angle of ±0.36 mrad in both planes is defined by a common water cooled,
copper collimator placed 24 m downstream of the target. After the collimator a system of
four alternating-gradient quadrupoles focuses particles of each sign at the beginning of the
detector to spots centred at the beam axis of about 5 mm width. Aim of the focusing is to
create spots that are as small and as similar as possible, so that acceptance differences due
to the different momentum distribution inside the spot are minimised. A second achromat
separates again the two beams vertically, allowing the momentum and charge measurement
of each kaon by the KAon BEam Spectrometer (see Section 3.3.1), and recombines them
afterwards. A protecting collimator with openings for the two charged beams serves to stop
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all neutral and many charged particles produced on the defining collimator.
In order to reduce the flux of muons originating from pion and kaon decays, a cleaning

collimator, consisting of magnetised-iron sweeping elements around the beam line, has been
installed before the final collimator. At the end of the final collimator the total beam flux
was estimated to be 3.8 × 107 positive and 2.6 × 107 negative particles per pulse, of which
2.2× 106 K+ and 1.3× 106 K−, thus allowing to reconstruct a few 104 K± decays per burst.
The muon background level was found to be compatible with the expected pion and kaon
decays downstream of the final collimator.

3.2.1. The vacuum tank

Figure 3.3.: The decay region in the vacuum tank. The solid lines refer to the shape and
dimension of the tank until 2002 [74]. For the NA48/2 experiment the tank was
extended by 24 m in order to increase the acceptance. The new position is shown
by the dashed lines.

The decay region is contained in a cylindrical evacuated steel tank with a pressure of less
than 10−4 mbar in order to have a negligible probability that the kaons interact with matter
instead of decaying in flight and to reduce the multiple scattering of the decay products.

Until 2002 the vacuum tank had a volume of 330 m3, with a diameter of 1.92 m in the first
39 m and of 2.4 m afterwards, so that the geometrical acceptance of the decay products is not
limited by the width of the tank. To achieve an increase in the acceptance of about 30% in
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NA48/2, the vacuum tank was extended upstream by 24 m (see Figure 3.3) to a total length
of 114 m, starting from the final collimator and ending at a kevlar window, which separates
the decay region from the helium tank where the spectrometer (see Section 3.3.2) is situated.

In order to avoid interactions of the undecayed beam particles, a 1.1 mm thick aluminium
beam pipe with a diameter of 152 mm starts at the kevlar window and goes through the
whole detector. The vacuum inside it and the small amount of material in the pipe itself
ensure a low scattering probability.

3.3. The NA48/2 detector

The NA48 detector was originally built to study the direct CP violation in the neutral kaon
system and was therefore optimised for the detection of two pion decays. New sub-detectors,
as well as modifications and upgrades of existing systems were necessary to obtain a better
reconstruction of charged kaon decays, mainly into three charged, or one charged and two
neutral, pions.

The original detector (see Figure 3.4) consisted of: a beam spectrometer (see Section
3.3.2) with four drift chambers, two before and two after a dipole magnet for the momentum
measurement of charged particles; a pair of scintillator planes (see Section 3.3.3) for the
precise time measurement of charged particles; a homogeneous electromagnetic calorimeter
filled with liquid krypton (see Section 3.3.4) to measure the energy and position of photons and
to identify electrons, separating them from pions; a hodoscope made of bunches of scintillating
fibres (see Section 3.3.5) to determine precisely the time of the photons; a hadronic sampling
calorimeter (see Section 3.3.6) consisting of alternated iron and scintillator planes for the
energy measurement of hadrons; a muon anti-counter (see Section 3.3.7) to distinguish muons
from pions; a system of seven scintillator rings (see Section 3.3.8) to veto photons escaping
the decay volume and the detector.

The main changes applied in 2003 were: the installation of Hall probes for the monitoring
of the magnetic field inside the spectrometer magnet; the addition of two new sub-detectors:
the KAon BEam Spectrometer (see Section 3.3.1) for the momentum measurement of each
kaon and a beam position monitor (see Section 3.3.9) to check the time stability of the
beam geometry; the full instrumentation of the third drift chamber in order to increase the
reconstruction efficiency and the reorganisation of the read-out electronics into a left-right
symmetric configuration.

A coordinate system, which will be used in the rest of this thesis, is defined with the z
axis along the beam (z = 0 is 18 m downstream of the collimator, where the KS target was
positioned till 2002), the x axis pointing to the right and the y axis upwards. x = 0 and
y = 0 are at the centre of the beam axis.

The common timing signal to all the sub-detectors is given by a 40 MHz clock [76], whose
signal is transported through a special high-quality cable together with the information of
the start and end of burst. By sending the signal through the same chain back to the clock,
the propagation speed can be monitored with an accuracy of 60 ps.

3.3.1. The KAon BEam Spectrometer (KABES)

The KABES detector [77] consists of six Time Projection Chambers (TPCs), using a MICRO
MEsh GAseous Structure (MICROMEGAS) [78]. As shown in Figure 3.5, in each chamber
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Figure 3.4.: Cross section of the NA48 detector [75].

an electric field is produced between grounded anode strips and a cathode. When a charged
particle goes through the detector, the gas contained in the chamber (a mixture of 79% Ne,
11% C2H6 and 10% CF4) is ionised and the electrons that are produced travel opposite to the
applied electric field and deposit their charge on a certain strip. Each chamber contains 48
strips, 4 cm long, positioned parallel to the beam, with a 0.835 mm pitch. The y coordinate
is given by the signal of the strips, while the x coordinate can be extracted, knowing the drift
velocity, from the time difference of the signals in the two chambers with opposite drift field.

Micro-strip gas chambers are used for the detection of high fluxes of particles and pro-
vide a good spatial resolution. Their gain, limited to bout 104 because of the positive ion
accumulation on the insulator, can be improved by adding a thin micro-mesh close to the
microstrip plane. The small gap, in this case of 50 µm, is kept by precise insulating spacers.
This two-stage parallel plate avalanche chamber is called MICROMEGAS. The particular
configuration of a micro-mesh separating the conversion space of 6 cm from the amplification
gap of only 50 µm, allows a very high electric field in the amplification region and a much
lower one in the drift region. The ratio between the two electric fields of about 60 ensures
the fast collection of the ion cloud on the micro-mesh while only a fraction of it, inversely
proportional to the field ratio escapes to the conversion region.

In the specific case of KABES, the meshes had a size of 4× 4 cm2 and were produced from
a 50 µm thick copper-plated Kapton foil in which the 5 µm thick copper layer was etched
to produce 25 µm diameter holes every 60 µm. The Kapton was used as spacer to keep the
thickness of the gap between the strips and the copper layer uniform.

To improve the field uniformity, cages with equipotential lines engraved on thin Mylar
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Figure 3.5.: Working principle of a KABES double station [79].

windows were used instead of capacitor plates. Such cages provide a constant gradient of
0.83 kV/cm, which corresponds to a uniform drift velocity of 8 cm/µs.

The whole spectrometer consists of three double stations, each measuring the x and y
position and the time of the particles. The first two stations, KABES-1 (up) and KABES-2
(down) are located at the centre of the second achromat, where the beams are split and run
parallel to each other (see Figure 3.2), so that the presence of a signal in one station identifies
the charge of the particle. The last station, KABES-3, is installed 8 m further downstream
and is common for the two beams. The momentum of the beam particles can be extracted
from the slope in the y coordinate of the track obtained between one of the first stations and
the third one, but this measurement relies on the knowledge of the beam focusing.

The front-end electronics connecting each strip to the read-out system consists of a pre-
amplifier, an amplifier, a shaper and a discriminator and delivers for each channel the times
of the leading and of the trailing edge. The difference of these two times is the so-called Time
over Threshold (ToT), which provides a fast and reliable estimate of the amplitude of the
signals in each strip. The sum of the strip coordinates, weighted with the signal amplitude
gives the position of the measured particle.

The read-out has to cope with a total of 288 channels (48 strips × 6 chambers) and an
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expected hit rate up to 40 Mhits/s with a maximum of 8 Mhits/s per strip, corresponding to
a total data rate of 960 MB/s per chamber. The High Performance Time to Digital Converter
(HPTDC) chip [80] was chosen for its programmable resolution better than 1 ns and its very
short dead-time. For each chamber a Read-Out Card (ROC) with 6 HPTDCs can extract
and buffer the data requested by a fast Level 1 trigger (L1, see Section 4.1) and, in case of
a positive decision of the Level 2 trigger (L2, see Section 4.2), read them out and send them
via a 200 m long S-link optical cable to a standard desktop PC. At the end of each burst, the
KABES data can be transmitted via Ethernet to the event-building PCs (see Section 4.3.1)
and combined with the information of the other sub-detectors for the same event.

By choosing the voltages in order to minimise the signal overlap on a strip and to maximise
the detection efficiency a mean cluster size of 1.5 strips per track and a ToT of about 35 ns
were obtained, while the momentum resolution was about 1% after alignment and calibration
and the time resolution better than 0.6 ns. The mistagging probability, i.e. the probability
of associating the wrong KABES track to an event, mainly due to signal overlap, is about
4% without using information from other sub-detectors as constraint.

Since inKe4 decays the neutrino cannot be detected, the usage of KABES in the reconstruc-
tion would improve the background rejection and the resolution of the kinematic variables
used for the fit of the form factors. However the simulation of this detector is not yet describ-
ing the data precisely enough to be introduced in a form factor measurement. Fortunately
the momentum bite of the beam is small enough to allow a good reconstruction also assuming
that every kaon has exactly a momentum of 60 GeV/c and flies along the beam axis.

3.3.2. The magnetic spectrometer

The magnetic spectrometer (see Figure 3.6) consists of four Drift CHambers (DCH1-4) [81],
two upstream and two downstream of a dipole magnet with an aperture of 2.45 × 2.4 m2

and a vertical magnetic field of up to 0.37 T at its centre. Outside of the centre the magnetic
field falls down very rapidly and reaches 0.02 T at the closest drift chamber.

A charged particle travelling through a chamber ionises the gas contained in it and the
electrons that are freed in such a process drift, accelerated by an electric field, with a known
velocity, towards a sense wire. The position of the particle can be measured with a better
resolution than the distance between the sense wires by exploiting the information given by
the drift time.

The drift chambers were designed to reach a detection efficiency as close as possible to 100%
and a spatial resolution for the hits of about 100 µm, with a fine granularity of the wires
corresponding to drift distances of a few millimetres, necessary to stand the high particle flux
(more than 1 MHz). Furthermore, a minimal amount of material should be used in order to
avoid energy loss for electromagnetic interacting particles. In addition the position of each
chamber has to be known to better than 10−4 to keep the uncertainty on the momentum
scale to the same level.

To meet these requirements the geometry shown in Figure 3.7 was chosen. 256 gold-plated
tungsten sense wires with a diameter of 22 µm and a spacing of 10 mm from each other form
a plane. On each side of it, at a distance of 3 mm, gold-plated titanium-copper wires with a
diameter of 120 µm and the same spacing as the sense wires generate the electric field. Each
so-called view contains two planes of sense wires in order to resolve left-right ambiguities.
The views are separated from each other by 22 µm thick mylar foils coated with graphite,
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Magnet 
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Figure 3.6.: Schematic view of the magnetic spectrometer with four drift chambers and a
dipole magnet [82].

which also serve to shape the electric field.
A drift chamber contains four views with different orientations orthogonal to the beam

axis: X along the x axis, Y along the y axis, U at −45◦ with respect to the x axis and V at
+45◦ with respect to the x axis. The chambers have an octagonal shape and a transverse
width of 2.9 m, with a 160 mm diameter central hole for the beam pipe. Each chamber
measures the position of the particles and the time of the signal. The redundancy in the
position measurement given by the four views is used to compensate the inefficiencies of the
single views.

The whole spectrometer has a length of about 24 m and is contained in a tank filled with
helium at atmospheric pressure, so that the multiple scattering can be reduced, but 50 µm
thick mylar foils coated with graphite are enough to separate the chamber from the outside
volume. The helium tank is delimited upstream by a 900 µm thick spherical window with
a radius of 1.3 m consisting of three layers of epoxy coated kevlar (0.003 radiation lengths
(X0)) and downstream by a 4 mm (0.045 X0) thick aluminium window.

From the hit positions in the two chambers before the magnet, the trajectory of the particles
without deflection is computed and the position of the decay vertex can be extracted. The
two chambers after the magnet give information on the deflection angle due to the magnetic
field, which allows to measure the momentum. Actually one chamber after the magnet would
be sufficient for this purpose, but also in this case the redundancy improves the detection
and reconstruction efficiency.

The signals of the sense wires are amplified and discriminated by the front-end electronics
that sends the standardised signals to the TDCs for the drift time measurement, given by the
difference between the passage of the charged particle, corresponding to the L1 trigger time
and the arrival of the ionisation cloud at the sense wire. The present read-out system was
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Figure 3.7.: Geometry of one DCH view. The crosses (P) represent the potential wires and
the filled circles (S) the sense wires [81].

installed in 2002 and was explicitely developed to cope with the higher rates of the NA48/1
and NA48/2 experiments with respect to NA48. Each plane of wires is read out by a pair of
TDC and Readout Buffer (TDC&RB) cards, each equipped with 16 TDC chips, mounted on
four mezzanine cards, characterised by an intrinsic time resolution of 120 ps and multi-hit
capabilities, so that a rate of 500 kHz per channel can be sustained by the read-out system.
The TDC&RB cards record the arrival time of a signals from the DCH and store them in
40 MHz pipelined ring memories. On request of the L1 trigger data are extracted from the
memory and sent to a processor farm (MassBox, see Section 4.2.2) for the charged L2 trigger.
If the Trigger Supervisor (TS, see Section 4.2.3) decides that the event has to be kept, the
corresponding data are extracted a second time from the memory and sent to the PC-Farm
(see Section 4.3.1) for the event building. A complete description of the new DCH read-out
can be found in [83].

During the data taking in 2003 the drift chambers were filled with a mixture of 49.7%
argon, 49.7% ethane and 0.6% water and were operated at -2250 V on the potential wires
and -1405 V on the mylar foils, while the sense wires were grounded. Under these conditions
the maximum drift path of 5 mm corresponds to a drift time of about 100 ns, with a gain in
the gas of 6× 104. For a single plane the mean efficiency was about 98% and the resolution
in x and y 150 µm. With a momentum kick of about 120 MeV/c given by the dipole magnet,
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3.3. The NA48/2 detector

this spatial resolution leads to a momentum resolution [36]

σ(p)
p

= 1.02%⊕ 0.044%× p[GeV/c], (3.1)

where the first term is due to the Coulomb scattering and the second one to the effect of the
spatial resolution.

The reconstruction of the Ke4 decays depends completely on the momentum measurement
of the three charged particles, since the neutrino cannot be detected. Therefore the magnetic
spectrometer has to be efficient and precise. Furthermore, a good resolution in the momentum
measurements helps to reject background from events without missing transverse momentum
and to identify electrons by comparing the energy deposited in the electromagnetic calorimeter
with the momentum measured by the spectrometer. For the form factor measurement it is
also important that the inefficiencies can be precisely located and implemented into the
simulation, to avoid an unexpected dependency of the acceptance on the hit position.

3.3.3. The Charged HODoscope (CHOD)

The hodoscope for charged particles [84] is a system of scintillator counters mainly used to
provide time information to the L1 trigger. To fulfil this task a high granularity, a good
detection efficiency and a time resolution better than 300 ps are needed.

The chosen material was the NE110 plastic scintillator, which is fast and has a high light
output. 64 vertical and 64 horizontal counters are arranged into two parallel octagonal planes
(see Figure 3.8), divided into four quadrants, spaced by 75 cm and designed to contain a circle
of 121 cm radius. The distance between the planes and to the electromagnetic calorimeter
(80 cm) were chosen to reduce the effect of the back-scattering from the calorimeter to the
hodoscope. The counters are 2 cm thick, so that the total material in the beam is about 0.1
X0, 6.5 or 9.9 cm wide, according to their distance from the beam axis, and between 60 and
121 cm long. At the centre of the detector is a hole of 12.8 cm radius for the beam pipe.
The dead space between the counters was reduced by polishing of the surfaces, while for each
counter the side at the centre of the detector was coated with black paint in order to avoid
light transmission.

The scintillation light produced at the passage of a charged particle is collected at the
external side of a counter from a plexiglass fish-tail shaped light guide connected to a photo-
multiplier. Each counter and light guide was wrapped into a 25 µm thick aluminised mylar
sheet and each plane was wrapped into a black cover to avoid fake signals from external light.

The read-out system consists of an analogue and a digital part, both hosted in a Pipeline
Memory Board (PMB). The photomultiplier pulses are sent both directly and through a
discriminator to the analogue board, where the analogue signal is shaped, digitised, sampled
every 25 ns and read out by a 10 bit Fast Analogue to Digital Converter (FADC) card
to measure the pulse height, while the discriminated signal goes to a Fast Time to Digital
Converter for the precise time measurement. The digital board, based on the PMChip [86],
was designed to be dead-time free, since it can store data inside a digital pipeline waiting for
the trigger decision and extract the data requested by the trigger without stopping the data
recording. The discriminated signal is also sent to the fast logic electronics, that produces
topological and multiplicity triggers used by the L1.
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horizontal plane

vertical plane (right side) photomultipliers

2.42 m

2.
42

m

Figure 3.8.: Schematic view of the two planes of the charged hodoscope [85].

In 2003 the trigger inefficiencies due to the hodoscope were below 10−4 and the time
resolution after the offline reconstruction was about 250 ps.

In the analysis of the Ke4 decays the hodoscope information is not directly used, but it is
necessary for the triggering of charged decays and it also gives the reference time for the drift
time measurement and for the track time of the chambers.

3.3.4. The Liquid Krypton electromagnetic calorimeter (LKr)

In order to reconstruct the decays of neutral kaons into two neutral pions, the NA48 experi-
ment needed an electromagnetic calorimeter with good energy, position and time resolution,
precise charge calibration, long-term stability and a fast read-out.

To meet these requirements, a quasi homogeneous liquid krypton calorimeter with a tower
structure geometry was built [87]. A photon or an electron entering the active volume pro-
duces an electromagnetic shower via repeated pair production and bremsstrahlung processes
until the energy of the single particles is below the critical energy. The critical energy is
defined as the energy at which the radiation loss equals the collision loss. The low energy
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3.3. The NA48/2 detector

Property Symbol Unit Value
Atomic number Z 36
Mass number A 84
Density at 120 K ρ g/cm3 2.41
Radiation length X0 cm 4.7
Molière radius RM cm 4.7
Mean energy for electron-ion pair creation W eV 20.5
Nuclear interaction length λI cm 60
Boiling temperature at 1 bar Tb K 119.8
Fusion temperature Tm K 116
Drift velocity of electrons at 1 (5) KV/cm ve

d mm/µs 2.7 (3.7)
Critical energy Ec MeV 21.51
Radioactivity Bq/cm3 500
Dielectric constant ε 1.72

Table 3.1.: Properties of liquid krypton [88].

charged particles in the shower can then ionise the krypton atoms producing a certain num-
bers of electron-ion pairs, which is proportional to the deposited energy. The calorimeter
works as an ionisation chamber: all the electrons produced and accelerated towards the an-
ode are collected before they can recombine, but the electrons do not get enough energy to
produce secondary ionisation.

The homogeneity ensures a good energy resolution, the granularity improves the spatial
resolution and allows to separate showers close to each other, the precise construction and
calibration give a small constant term of the energy resolution and the tower structure with
a fast read-out reduces the occupancy, so that it is possible to cope with high rates.

Liquid krypton was chosen [88] to ensure long-term stability and a low recombination
probability, since, after purification, the mean lifetime of the electrons in the medium is about
100 µs, while the drift time of the electrons to the next anode is about 3 µs. Radioactivity is
negligible with respect to electronic noise and has therefore no effect on the resolution, but,
due to the low boiling temperature of krypton at 120 K, the whole detector has to be kept
inside a cryostat where only temperature variations of ±0.3 K are allowed, since the drift
velocity of the electrons depends strongly on the temperature (∆vd/vd ∼ −0.87%×∆T/T ).
The material of the cryostat corresponds to 0.65 X0 and is therefore the biggest contribution
to energy loss before the calorimeter. The properties of liquid krypton are listed in Table 3.1.

The LKr is octagonal, containing a circle of 128 cm radius, 127 cm thick, corresponding to
about 27 X0, and has a hole at the centre of 9 cm radius for the beam pipe. The total active
volume of about 7 m3 liquid krypton is divided into 13248 cells (towers) by 18 mm wide,
40 µm thick copper-beryllium ribbons at a distance of 1 cm from each other (see Figure 3.9).
The ribbons are used as electrodes to collect the ionisation signal. A cell consists of a central
anode and two cathodes, one at each side, so that each cathode is in common between two
cells. The high voltage applied to the electrodes during the data taking and the test beams
was 3 kV. The separation between two cell layers is 2 mm.

The electrodes are zig-zag shaped (see Figure 3.10) with an angle of 48 mrad between
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Figure 3.9.: Section of a quadrant of the LKr calorimeter [89].

two segments, in order to avoid that the centre of the electromagnetic shower produced
by a particle can remain along the electrode for the whole calorimeter. In this case the
measurement would be strongly affected by non-uniformities, since the detector response
depends in general on the shower position with respect to the electrode.

The cells do not have a constant section through the whole calorimeter, but a projective
geometry, pointing towards the centre of the decay region (about 114 m upstream of the
calorimeter), so that the section increases linearly in the beam direction with a total varia-
tion of 1.1%. For a ionisation chamber, the projective geometry does not spoil the energy
measurement, while it avoids the dependency of the measured position from the depth of the
shower, which is different between electrons and photons.

The geometry of the ribbons is obtained by inserting five 5 mm thick spacers every 21 cm,
where the electrodes can be fixed in order to avoid any electrostatic instability due to long
free metallic pieces and to guarantee the correct positioning of the whole structure, which
results in a better position resolution of the calorimeter.

The read-out system is based on the technique of the initial induced current measurement,
that consists in the integration of the obtained signal, which lasts as long as the drift time
of the electrons inside the calorimeter, only over a short time interval. The initial current is
proportional to the number of deposited electrons and therefore to the energy of the shower,
while the total induced charge fluctuates as a function of the spatial distribution of the
ionisation. This method has furthermore the advantage of a fast response, but the shaping
time has to be optimised to keep a good signal to noise ratio and the uniformity over the
whole calorimeter is only possible with a very precise construction, allowing a tolerance on
the drift gap of less than 100 µm.

The anode signal is sent through a blocking high voltage capacitor of 3 nF to the front-
end electronics, consisting of a preamplifier and a calibration system, mounted directly on
the back of the calorimeter, inside the cryostat. The low temperature has the advantage of
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Figure 3.10.: Detailed view of a cell with the zig-zag shaped ribbons and the spacer-plates
[89].

reducing the noise in the transistors and to improve the time stability.
The calibration system is used to check the stability and the uniformity of the response

over the entire active volume, performing an inter-calibration of the channels in order to
compensate possible changes in the electronic gains and allowing to identify channels that
are not working properly. Each pre-amplifier is connected to a pulser that can inject eight
different known charge signals into it. In this way the stability of the response was kept
within 0.1% during the whole data taking period.

The signals are then transported through low-noise transceivers outside the cryostat to the
digitiser electronics called Calorimeter Pipeline Digitiser (CPD) located about 10 m away
from the calorimeter and consisting of a shaper, ADC, interface circuits and memory [90].
The transceiver signal is filtered by the shaper to an almost Gaussian peak with a Full Width
at Half Maximum (FWHM) of 72 ns and a 3% undershoot which lasts as long as the drift
time of the electrons in the calorimeter cell. In the ADCs the waveform is digitised at a rate
of 40 MHz and stored temporarily in a memory.

Since at the time of the design only low-cost 10-bit ADCs able to sustain a sampling rate of
40 MHz were available, a dynamic range expansion with an energy dependent switching was
implemented, maintaining the resolution of the ADC. The whole energy range from 3.5 MeV
to 50 GeV is divided into four subranges, each corresponding to a different gain. The gain
switching logic consists of three discriminators.

Each CPD module covers an 8 × 8 square matrix of calorimeter cells and contains 32
daughter cards with shaper, ADC and pipeline, a decoding card, a memory address controller
and a trigger sum card, that receives a separate copy of the signal and builds 2× 8 analogue
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sums in both x and y projections. The whole read-out consists of 216 CPD modules.
The memory of each module is divided into a circular and a linear buffer. The digitised

samples are first stored in the circular buffer and upon arrival of a L2 trigger a time window
of ten samples around the trigger timestamp is selected and copied into the linear buffer, from
which the data are transferred via one optical link per CPD module to the Data Concentrator
(DC) [91] where the zero suppression is performed.

At a trigger rate of 10 kHz with 10 samples per channel, the CPDs produce about 4 GByte/s
of data, but most of the channels contain only pedestals, since no energy has been deposited
there. To reduce the amount of data without losing energy resolution, a special algorithm
is used to mark the cells with an energy peak and in a second phase the channels up to a
given radius from the centre. All other channels are set to zero, such reducing the amount
of data by a factor 20-30. The samples of the cells surviving the zero suppression are sent to
the event building PCs.

Since the LKr, due to the bottleneck of the data transfer to and from the DC, was the only
sub-detector not able to stand a trigger rate of about 60,000 events per burst, the read-out
speed was increased by introducing in 2002 a Super-Event (SE) read-out sequence [92]. This
allowed for a significant increase of the sensitivity of the NA48/1 and NA48/2 experiments.
The basic idea of the Super-Event read-out is to collect two consecutive triggers in the linear
buffer of the CPDs and send them together to the DC, so that they are treated as a single
event in the rest of the chain. The sustained trigger rate was almost doubled in this way.

The performances of the calorimeter have been tested during specific tests with an electron
beam [87] and checked during the normal data taking. Clusters are defined as the sum of the
signals contained in a box of cells around a peak in time and space. The cluster energy is
then the sum of the energies in each cell and its position is the centre of gravity of the cluster,
computed as the weighted sum of the coordinates of each cell with the energy deposited in it.

The position resolution measured with a 3 × 3 box can be parametrised as [87]

σx =

(
4.2√
E[GeV]

⊕ 0.6

)
mm (3.2)

σy =

(
4.3√
E[GeV]

⊕ 0.6

)
mm, (3.3)

where the first term is given by the statistical fluctuation of the particles in the shower and
the second one is due to the size of the cells. For a typical energy of 20 GeV, the spatial
resolution is 1.1 mm in each coordinate.

The energy resolution for an 11 × 11 box is [36]

σ(E)
E

=
0.032√
E[GeV]

⊕ 0.09
E[GeV]

⊕ 0.0042, (3.4)

with the usual parametrisation containing a statistical term, whose main contribution is the
lateral leakage of the shower outside the box, a noise term due to the electronics and a
constant term accounting for non-linearity and inter-calibration effects. A 20 GeV particle
has for example an energy resolution of about 200 MeV.

These features, together with a time resolution of a few hundred picoseconds, are ex-
tremely important for the selection of the Ke4 events and the separation between signal and
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3.3. The NA48/2 detector

background. The electron identification and the pion rejection are completely based on in-
formations from the LKr, like the shower energy compared to the momentum of the particle
measured in the spectrometer, the shower width or the association in space and time between
track and cluster.

3.3.5. The Neutral HODoscope (NHOD)

In order to have an independent and more precise time measurement of the electromagnetic
clusters in the calorimeter, 256 bundles of scintillating fibres, each contained in a 7 mm
diameter, 2 m long epoxy-fibreglass tube, are fixed to the second spacer plate of the LKr
electrodes (see Figure 3.11), so that they form a layer perpendicular to the beam axis at a
depth of 9.5 X0, corresponding to the maximum of the electromagnetic shower produced on
average by a 25 GeV energy photon [93]. The bundles are immersed in the liquid krypton
volume, together with the 32 photomultipliers (8 per quadrant) used to read out the signals.
The read-out chain is based on the PMB system as the charged hodoscope (see Section 3.3.3).
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Figure 3.11.: Schematic view of the scintillating fibre bundles composing the neutral ho-
doscope [94].

The NHOD can achieve a time resolution better than 300 ps and the resolution of the LKr
can be improved by combining the two measurements. The signals of the neutral hodoscope
are also used for a minimum bias trigger with which the efficiency of the more complex neutral
triggers or of the fast charged trigger can be measured. The efficiency reached for clusters
with at least 25 GeV energy is 95%, for energies above 35 GeV the inefficiency is about 1%.
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3.3.6. The HAdron Calorimeter (HAC)

Downstream of the LKr a conventional iron-scintillator sandwich HAdron Calorimeter (HAC)
[95] is used to measure the energy of hadrons produced in the decays, like charged pions,
protons and neutrons. The HAC consists of two modules (a front and a back one) with 88
channels each and has a total depth of 1.2 m, that corresponds to 6.7 nuclear interaction
lengths (λ0). Each module contains 24 iron plates 25 mm thick with an area of 2.7 × 2.7
m2 alternated with scintillator planes consisting of 44 strips, 4.5 cm thick, about 12 cm wide
and 112 cm long (see Figure 3.12). In iron the incoming particle produces a shower, while
in the scintillator planes the charged particles of the shower that were not absorbed in iron
produce scintillation light proportional to the deposited energy. The scintillator strips are
alternately aligned in the horizontal and vertical direction and the light produced in the strips
with the same alignment and position is transported via a single plexiglass light-guide to a
photomultiplier.

1 m

Photomultipliers

Scintillators

Light guides

Figure 3.12.: Schematic representation of the hadron calorimeter [82].

The read-out system is based on the same CPD modules used for the LKr (see Section
3.3.4), one for each group of 44 channels. In order to be able to use the CPDs without
modifications, the photomultiplier signals have to be shaped to a form similar to the LKr
ones.

The energy resolution was measured during a test beam in 1995 to be

σ(E)
E

=
69%√
E[GeV]

for hadronic showers and (3.5)
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σ(E)
E

=
23%√
E[GeV]

for electromagnetic showers (3.6)

Since the leakage of the electromagnetic and hadronic showers starting in the LKr is, at
least partially, deposited in the HAC, the sum of the energies measured in the two calorimeters
gives the total energy of the event, which can be used for trigger decisions.

In this analysis, the information of the HAC could in principle help to separate electrons
from pions, but, due to the poor space resolution and to the width of the hadronic shower
produced by the pions it is impossible to assign unambiguously a cluster in the HAC to the
corresponding cluster in the LKr. For this reason only in the selection of non-hadronic decays
the HAC total energy can be used to veto hadronic background, but no positive identification
of hadrons can be performed.

3.3.7. The MUon Veto (MUV)

Both pions and muons produce a charged track in the magnetic spectrometer and deposit
only a small amount of their energy in the electromagnetic calorimeter. In order to distin-
guish them, a MUon Veto detector (MUV) [96], consisting of three planes of NE110 plastic
scintillators, each preceded by a 0.8 m thick iron wall, was installed downstream of the HAC.
Only muons, since they do not interact strongly, survive the passage through the big amount
of matter and produce a signal in the scintillators. The probability of a signal from a pion
(punch through) is of the order of a few times 10−3.

Planes 1 and 2, the only ones used for the particle identification and the trigger, have an
area of 2.7 × 2.7 m2 and consist of 2.7 m long, 0.25 m wide, 1 cm thick scintillator strips
oriented respectively horizontally and vertically. The central strip is divided to leave a 22 ×
22 cm2 hole for the beam pipe. The strips are read-out at both ends by photomultipliers,
connected to them via semi-adiabatic light guides. Plane 3, used purely for monitoring
purposes, contains six strips, each 2.7 m long, 0.45 m wide and 0.6 cm thick.

The signals from the photomultipliers are discriminated and sent to logic units that form
coincidences between the hits in the first two planes, defining muon hits in the 120 regions
with an area of 25 × 25 cm2 at the intersection of a horizontal and a vertical strip.

The information provided by the MUV is mainly used in the L1 trigger to reject for example
the K → πµν background and in the analysis for the π/µ separation (this is also the case in
the Ke4 selection). For these purposes a high hit efficiency is necessary, which was measured
to be more than 99% for muons with at least 10 GeV energy.

3.3.8. The photon anti-counters (AKL)

In the NA48 experiment the decays K0
L → 3π0 had to be rejected to reconstruct the less

probable decays K0
L → 2π0. In order to properly identify events in which 4 photons were

inside the detector acceptance and 2 outside it, seven rings of iron and scintillator were
installed around the detector (as shown in Figure 3.3) to cover the angular region starting at
about 10 mrad from the beam axis. The system of seven photon anti-counters is called, due
to its original function, Anti-KL (AKL) [97].

Each ring contains two pockets (see Figure 3.13) consisting of a 35 mm thick iron layer,
in which the photons convert into an electron-positron pair, followed by scintillator counters,
connected each to photomultipliers at both ends. The read-out system is based on the PMB
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modules also used for the hodoscopes (see Section 3.3.3). The efficiency was measured during
test runs to be 97% with a time resolution of 2 ns.

Pockets 1-4

z (beam)z (beam)

Pockets 5-7

x

y

x

y

Figure 3.13.: Schematic view of an anti-counter pocket for the rings 1-4 (left) and 5-7 (right)
[85].

In NA48/1 and NA48/2 the AKL was used as veto signal in the trigger, to reduce the
rate, and in the selection of rare decays, to reject events with photons outside the detector
acceptance. In this analysis the AKL is not explicitely used in the selection to reject back-
ground events with high transversal momentum, because the requirement of having no hit in
the AKL is already present at trigger level (see Section 4.1).

3.3.9. The beam position monitor

Since small changes in the beam position can strongly affect the measurement of the asym-
metry in the decay modes K± → 3π, for NA48/2 a new beam monitor [72] was built, tested
and installed, in order to measure not only the beam intensity, but also the position of its
centre.

The monitor is installed at the end of the experimental hall, downstream of the MUV and
covers a total area of about 50 × 50 mm2 to fully contain the beams that have a width of
about 6 mm. It consists of two 8 × 8 matrices of scintillators, each 9 mm thick, separated by
aluminium foils to minimise the optical cross-talk. The centre of each matrix is aligned with
one of the two beams, whose centres are about 100 mm apart. The light produced in each
matrix of scintillators by the passage of a beam particle is collected by a 8 × 8 pixel multi-
anode photomultiplier, connected to the scintillators via a filter mask used to inter-calibrate
the channels by changing their transparency. With this method a uniformity better than 10%
was reached.
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3.3. The NA48/2 detector

The number of hits in each pixel was recorded in fast scalers, which were read out ten times
per burst. The resolution obtained was better than 0.1 mm, so that the displacement of the
beams, due to the movement of the primary protons on the target during the burst, could be
precisely measured.

The movement of the beam centre at the end of the hall of about 2 mm within one burst is
not expected to affect the measurement of the Ke4 form factors significantly. Therefore the
information of the beam monitor is not used in this analysis.
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4. Trigger and data acquisition

The aim of the trigger system is to select fast and efficiently the wanted events and to
reduce the data rate by rejecting as many as possible of the uninteresting ones. Without any
selection the data rate to be recorded (of the order of 1 MHz) would be too high for all the
sub-detectors. The NA48/2 trigger system reduces this rate in three stages. The first stage,
called Level 1 (L1), is described in Section 4.1. It combines information from AKL, CHOD,
NHOD, DCHs, MUV, LKr and HAC to give a fast response, so that potentially interesting
signals in the sub-detectors are kept in memory for a longer time. The Level 2 (L2, see
Section 4.2) consists of a neutral and a charged part whose output is combined by a Trigger
Supervisor (TS), that decides to record or reject the event. A scheme of the first two stages
of the NA48/2 trigger system is shown in Figure 4.1.

The data of the triggered events are collected from all the sub-detectors, combined and
written to disk by a farm of event building PCs (PC-Farm, see Section 4.3.1). The data in
raw format are then sent by the Central Data Recording (CDR, see Section 4.3.2) to the
Level 3 trigger (L3, see Section 4.4), a software filter that combines the information of all
the sub-detectors to flag and select the different decays. The events selected by the L3 are
recorded to disk in a compact format, more suitable for the analysis (see Section 5.1).

4.1. The Level 1 trigger (L1)

The first trigger level has to reduce the rate of events by about one order of magnitude down
to about 100 kHz. This is obtained by a fast identification of potentially interesting decays.
The L1 consists of a pre-trigger (L1C) and a trigger supervisor (L1TS). The pre-trigger
is composed of programmable Computer Automated Measurement And Control (CAMAC)
modules, that can synchronise and combine with simple logical operations the signals from
the sub-detectors and produce a result within a few microseconds.

The following signals were available as input to the L1C in 2003:

QOR : At least one signal in the horizontal or in the vertical plane of the CHOD.

Q1: At least one sub-coincidence between the horizontal and the vertical plane of the CHOD.

A sub-coincidence is defined as the association in space and time of signals in a group
of horizontal and vertical scintillator counters. Each quadrant of the CHOD is divided
into a group of 7 counters near the beam pipe and another group of the remaining 9
counters. In this way 16 regions (4 per quadrant) are defined, in which a sub-coincidence
can be found.

Q2: At least two sub-coincidences between the horizontal and the vertical plane of the CHOD.

AKL: At least one signal in at least one of the pockets 2–7 of the AKL.
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Figure 4.1.: Simplified scheme of the Level 1 and Level 2 trigger stages at NA48/2 [94].

1µ: At least one coincidence in time between the signals in the horizontal and in the vertical
planes (planes 1 and 2) of the MUV.

T 0
N : At least one left-right or top-bottom coincidence of signals in the NHOD, i.e. at least

two different quadrants of the NHOD must have at the same time at least one signal
each.

Of the different combinations built by the L1C, the relevant ones for the analysis presented
here are Q2 · AKL (“·” indicates the logical operation and, a line over a signal the logical
operation not), Q1 down-scaled by a factor 100 (Q1/100) and T 0

N . The first two are used
as input to the MassBoX (MBX, see Section 4.2.2) and as control trigger to measure the
efficiency of the L2 trigger, while the T 0

N is sent directly to the TS and serves as independent
trigger to estimate the efficiency of the L1C.

The signals produced as output of the L1C are sent, if necessary after being down-scaled,
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4.2. The Level 2 trigger (L2)

to the L1TS, where they can be further combined with the information from the calorimeters
(see Section 4.2.1).

The L1TS is a fully pipelined system working at a frequency of 40 MHz. It can combine
up to 28 signals into a 3-bit trigger code, that is sent to the MBX and to the TS. The input
signals are synchronised and shaped to fit one cycle of the clock (timeslice). Each timeslice is
uniquely identified by the number of clock cycles from the beginning of the burst (timestamp).
One of the input signals, used for all the three trigger conditions, is sent to a Fine Time (FT)
module, where its precise time within the clock cycle is coded into two bits that are used by
the MBX at a later stage.

In order to increase the efficiency of the coincidences and reduce the effect of jitter, some of
the input signals can be widened to three timeslices before being combined with the others.
The widening is made by replicating the signal, inside the pipeline, in the preceding and in
the following timeslice. The decisional part of the L1TS consists of a three level Look-Up
Table (LUT).

The combinations corresponding to the three output bits of the L1TS in 2003 are show in
Table 4.1. The signal sent to the FT was Q1 +Q2, which is present in all the three bits.

bit description

0 (npeaksloose+Q1/10·LKRmbias+Q1 ·Q2 · 1µ ·AKL/100·KMU3-PRE)·(Q1 +Q2)

1 (Q1 ·Q2 · 1µ ·AKL/100 +Q1 ·Q2 · 1µ ·AKL/100·KMU2-PRE+Q1/100)·(Q1 +Q2)

2 (Q2 ·AKL+Q1/100+random)·(Q1 +Q2)

Table 4.1.: The L1TS trigger codes used during the data taking in 2003 as input to the MBX.
“·” indicates the logical operation and, “+” the logical operation or, the line above
the signal the logical operation not and “/” the down-scaling. The hierarchy of
the operations is not, down-scaling, and, or. The meaning of the single signals can
be found in Sections 4.1 and 4.2.1. “random” is a control trigger used to study
accidental background.

To trigger events with three tracks, the MBX used events with bit 0 or bit 2 set to one (see
MBX algorithm in Figure 4.3).

4.2. The Level 2 trigger (L2)

The L2 consists of two independent systems for “neutral” (L2N) and “charged” (L2C) decays
and of a Trigger Supervisor (TS), that combines the information of the two parts and produces
a trigger-word as output. The rate is reduced again after this stage by one order of magnitude
to about 10 kHz. The NeUtral Trigger (NUT) can only use information from the LKr and the
HAC, while the MassBoX (MBX) performs a fast reconstruction of the tracks in the magnetic
spectrometer.

The output of the two systems can be combined, but no information on single clusters and
tracks is available simultaneously. Due to this limitation, it is not possible, for example, to
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4. Trigger and data acquisition

distinguish between electrons and pions, according to the fraction of energy deposited in the
LKr, at trigger level. Therefore the Ke4 events were triggered together with all the decays
into three charged particles by the MBX.

4.2.1. The NeUtral Trigger (NUT)

The NUT [98] is implemented in a 40 MHz dead-time free pipeline with a total latency of
128 clock cycles, corresponding to 3.2 µs. As shown in Figure 4.2, the NUT receives the
information on the energy in each super-cell (2 × 8 or 8 × 2 LKr cells in the x and y view
respectively) from the analogue sum module of the CPDs (see Section 3.3.4). The trigger
consists of three sub-systems: the Filter Module (FM), the Peak Sum System (PSS) and the
Look-Up Table (LUT).
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Figure 4.2.: Schematic representation of the neutral trigger and its connection to the LKr
read-out system [94].

The Filter Module digitises the signals of the super-cells and filters them, to suppress the
ones below a certain threshold. Then the signals of up to 16 super-cells in a row or in a
column are summed to build 64 horizontal and 64 vertical projections. The output of the
FM is sent both to a SPY system read out by PMBs, that allows to constantly monitor the
NUT, and to the Peak Sum System.

The Peak Sum System [99] computes, separately in the horizontal and vertical views, the
total energy (m0) and its first (m1) and second (m2) spatial moments and counts the number
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of peaks in each projection (npx and npy). A peak is defined as a local maximum in time and
space with an energy above a certain threshold.

The Look-Up Table [100] system combines the values computed for the two views to obtain
the physical quantities necessary for the trigger decision. The total deposited energy in the
LKr,

ELKr =
m0x +m0y

2
, (4.1)

is computed from three timeslices around the maximum in time with a parabolic interpolation.
At this stage also the total energy deposited in the HAC (EHAC) and the sum of the energy
in the two calorimeters (ETOT = ELKr + EHAC) are computed. This information can be
obtained fast enough, to be available already for the L1 trigger decision. Therefore it is sent
to the L1TS, in order to be combined with the output of the L1C.

COG =

√
m2

1x +m2
1y

ELKr
(4.2)

is the centre of gravity of the event, assuming all the energy is deposited in the LKr.

zvtx = zLKr −

√
ELKr(m2x +m2y)− (m2

1x +m2
1y)

MK
(4.3)

is the z coordinate of the decay vertex position in the small angle approximation. zLKr is
the z position of the calorimeter and MK the nominal kaon mass.

The following bits were available as output of the NUT in 2003:

COG: COG ≤ 30 cm

LKRmbias: ELKr ≥ 10 GeV

npeaksloose: npx > 2 + npy > 2

Etot: ETOT ≥ 30 GeV

KMU3-PRE: ELKr ≥ 15 GeV

KMU2-PRE: ELKr ≤ 10 GeV · EHAC ≤ 10 GeV

KE2-PRE: ELKr ≥ 15 GeV · EHAC ≤ 10 GeV ·m2 = m2
1

NPRE: zvtx ≤ 9500 cm · ELKr ≥ 15 GeV · COG ≤ 30 cm

vertex: zvtx ≤ 9500 cm

with the usual convention for the logical operations. The bits containing only the number of
peaks and the total deposited energy (“LKRmbias”, “npeaksloose”, “Etot”, “KMU3-PRE”
and “KMU2-PRE”) are sent both to the L1TS and to the TS.
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4.2.2. The MassBoX (MBX)

If at least one of the output bits of the L1TS is set, then the three L1 trigger bits, the
timestamp and the fine time are sent to the DCH read-out. The information on the time
of the hits in DCH 1, 2 and 4 for the event with the requested timestamp is read out, the
coordinates of the hits are obtained from a look-up table and sent, together with the data
from the L1TS, to the MBX via an Event Dispatcher (ED).

The MBX [101] is an asynchronous queued system, consisting of 8 Event Workers (EWs),
that receives the 12 coordinate packets (3 DCHs × 4 views) and builds out of them space
points (coordinates of a point in a chamber), tracks, decay vertices and invariant masses.
Events fulfilling different requirements are flagged accordingly and the result, consisting of
the tagging bits and the timestamp, is sent to the TS. The part of the algorithm used in 2003
to trigger three tracks events is shown in Figure 4.3.

The MBX must process each event within a maximum latency of 100 µs, otherwise the
event is flagged “not in time” and discarded. The actual latency depends on the complexity
of the event and on the waiting time to enter the queue. In order to reduce the queueing
time, an Xoff mechanism prevents the L1TS to send further requests when the system is
already too busy. This is done by setting the L1ON signal temporarily to zero. The Xoff

mechanism reduces the inefficiency by increasing the dead-time, which is preferable, since
statistical biases due to dead-time can be better controlled.

4.2.3. The Trigger Supervisor (TS)

The TS [102] is a fully pipelined 40 MHz digital system, which correlates trigger information
coming from the local sources (L2C, NUT and L1TS) to produce the final trigger-word. As
shown in Figure 4.4, it consists of four stages.

The input stage contains four identical sub-detector cards, one for each trigger source
(L1TS, L2C, NUT and miscellaneous signals). Each card can receive up to 24 bits of data,
that do not need any further time adjustment, since the signals were already aligned in time
among themselves at the source. The trigger information belonging to one event is uniquely
identified by a 30-bit timestamp indicating the number of clock cycles from the beginning
of the burst. The data are continuously stored into dual-ported Random Access Memories
(RAMs). Simultaneously other data can be read out sequentially via the second port after a
fixed delay of 100 µs (which corresponds to the maximum latency of the L2C).

In order to avoid inefficiency produced by time jitter between the different trigger systems,
whenever a coincidence between different conditions is required, the signal used as time
reference is left unchanged, while all the others are widened to the preceding and to the
following timeslice. Furthermore, for monitoring purposes, all the trigger data read by the
TS are also sent to an external acquisition system, called Pattern Units (PUs).

In the second stage of the TS the trigger-word is formed by a flexible routing and combining
network implemented in Field-Programmable Gate Arrays (FPGAs) and RAMs. This system
allows for an easy change of the trigger configuration via software. In three steps the 96 input
bits are combined and reduced to the final 16-bit trigger-word. Each bit of the trigger-word
can be individually down-scaled by a factor up to 65535, so that small unbiased samples of
events with looser requirements can be kept to test the efficiency of the main (non-down-
scaled) triggers. The 16 bits of the trigger-word are used to generate a validation bit, called
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Figure 4.3.: The part of the MBX algorithm used during the data taking in 2003 for the three
tracks events. Mππ is the invariant mass computed from two tracks of each real
vertex, assuming the pion mass for each track. Mfake is computed for each “fake”
vertex and is defined as M2

fake = M2
K +M2

π−(PK−Pπ)2, where PK is assumed to
be 60 GeV/c along the z axis and Pπ is the momentum of the real track. Nsp > 1
requires at least two DCHs with at least two real space points each.
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Figure 4.4.: Block diagram of the Trigger Supervisor [102].

strobe, according to which the event is kept or rejected. Since any combination of the 16 bits
can be used to generate the strobe, it is possible to temporarily disable individual triggers.

The third stage of the TS consists of the Trigger Queue Buffer (TQB), where the trigger
word and a 30-bit timestamp are written whenever the strobe signal is present. The purpose
of the TQB is to buffer fast sequences of triggers, allowing for a fixed minimum time between
the broadcast of two consecutive triggers. This circuit is called “derandomizer”.

Before extracting the trigger-word of an event from the queue, the TQB checks that no
Xoff condition is present. The Xoff condition can be issued by the Read-Out Controller
(ROC) of any sub-detector in order to stop the transmission of triggers whenever the amount
of data in its output buffer exceeds a predefined upper limit.

At the transmission stage a 64-bit packet of data, consisting of the event number (a se-
quential, burst-based number), the trigger-word and the timestamp is sent simultaneously to
the ROCs of 10 sub-detectors over fast dedicated serial links.

For the present analysis the bits of the trigger-word listed in Table 4.2 are used as main or
control triggers.

bit name description D
0 MB-2VTX 2VTX bit from MBX 1
1 MB-1VTX 1VTX bit from MBX 1
3 C-PRE Q2 ·AKL+Q1/100 100
4 MB-1TRK-P 1TRK-P bit from MBX 1
9 N-MBIAS T 0

N 200

Table 4.2.: The bits of the trigger-word used for the Ke4 analysis as main (0, 1 and 4) or
control (3 and 9) triggers. D indicates the down-scaling factor applied by the TS.
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4.3. The Data AcQuisition (DAQ)

The DAQ of the NA48/2 experiment consists of two parts: the PC-Farm situated at the
experimental area, that combines the information from each sub-detector into complete events
and writes them to disk, and the Central Data Recording (CDR) system that sends the data
to the L3 and manages the offline processing of the burst files. The data are sent from one
system to the other via 7 km long optical Gbit connections. A schematic view of the two
subsystems is shown in Figure 4.5.

In order to easily distinguish data taken under different beam, detector or trigger conditions,
a progressive run number is assigned to each data taking period, typically a few hours long
and containing about one thousand bursts. Every time something was changed in the set-up
or after eight hours of stable data taking a new run was started.

4.3.1. The PC-Farm

The PC-Farm for the online processing of the events [103] consists of 24 PCs, that can be
divided into three groups: the sub-detector PCs, the Event Building (EB) PCs and the control
PC. All PCs are connected via 100 Mbit Ethernet cards to a switch that is in turn connected
with the CERN computing centre via Gbit Ethernet.

Each time the TS sends a trigger to the sub-detectors, their read-out systems extract the
corresponding data and transfer them to the sub-detector PC. Each sub-detector has one PC,
apart from the LKr that, due to its high data rate, needs eight PCs. The data of all the events
in a burst are kept in memory till the end of the burst. As soon as all the sub-detector PCs
have collected all the events of one burst, the data are sent through the network to the Event
Building PCs. In order to increase the transfer rate for the data of the LKr, its sub-detector
PCs are connected to the switch with two Ethernet cards each, that can be used in parallel.

The bursts are split into subsamples, called burstlets. Each burstlet is sent to one of the
used EB PCs. In 2003, 9 dual Pentium-III PCs were available for this purpose. An EB
PC “builds” each event by collecting from the sub-detector PCs the corresponding data and
writes the burstlet in raw format to its local disk after sorting the events according to their
number. This process runs during the inter-spill, i.e. between two beam extractions. The
burstlets are normally copied within a few minutes to the disk servers situated in the CERN
computing centre, but in case of network problems the local disks can be used as buffer with
a total capacity of 540 GB, corresponding to about four hours of normal data taking. The
number of EB PCs actually used to build the events can be adjusted according to the data
rate and was normally set to 8 in 2003. This mechanism has the advantage of allowing for a
normal data taking also in case of failure in one of the EB PCs.

Since the introduction of the Super-Event in the LKr read-out, one more process has to
run at the event building stage, namely the Ghost Cluster (GC) suppression. In the Data
Concentrator the Super-Event is seen as a single event and only cells that are empty in both
events are zero suppressed. When the Super-Event is split into two single events in the EB
PC, there are groups of cells that are read out even though they are empty, because they
are the image of clusters existing in the partner event. These empty cells form the Ghost
Clusters. The GC suppression algorithm [92] loops over all read out cells, looking for a seed
cell with an energy above a certain threshold. If a seed cell is found, an outward expansion
with a predefined box radius is performed around it and all cells within the box radius are
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marked to be read out. The cells that are not marked by the expansion are instead discarded
from the raw data.

The control PC is responsible for the supervision and the monitoring of the DAQ. The
control program running on it starts all the necessary processes in the sub-detector and EB
PCs and checks that they are working properly. Furthermore the accessibility of each PC over
the network is monitored regularly. In case a PC is not reachable anymore, it is automatically
rebooted without requiring any human intervention.

4.3.2. The Central Data Recording (CDR)

The CDR system is a software consisting of a few daemon programs responsible for the
combination of the burstlet files into a list for each burst, the update of the burst database,
the submission of the jobs running the L3 trigger program to the queue, the collection of the
results of these jobs and the copy of the data to tape.

During the data taking of 2003, for the first time, the CERN infrastructure was adopted to
run the L3 program and for the copy of the files to tape. The jobs were sent to “lxbatch”, a
farm of about 1500 dual-processor machines running the Load Sharing Facility (LSF) queueing
system, while for the data storage the “Cern Advanced STORage manager” (CASTOR) [104]
was used.

For each burst written in raw format by the PC-Farm an entry has to be added to the
database with information on the path of the file, its size and the time at which the data was
taken. The bursts are then processed by the L3 trigger program, which produces different
output streams of data (see Section 4.4). Every time a L3 job succeeds, the CDR adds an
entry to the database for each new data file produced and copies the files to CASTOR.

In total about 80 TB of data were written to tape in 2003, with a loss due to the CDR of
less than 1%.

4.4. The Level 3 trigger (L3)

The L3 is a software trigger [105], that fulfils two tasks: it flags events that are suitable for
physics analysis or for monitoring purposes and it converts the raw data into the COmPACT
format (see Section 5.1). To keep the program as flexible as possible, most of the parameters
defining its behaviour are contained in a configuration file, a text file that can be edited at
any time during the data taking.

As a first step, the program checks which actions have to be performed on each event. An
action is defined in the configuration file as a list of operations to be executed on events,
whose trigger-word contains a certain combination of bits. Possible operations are down-
scaling (for each action a different factor can be chosen), sending the event to one or more
selection filter and/or writing it directly to a stream. Each action attaches to the event new
flags if operations have to be executed, for which no flag was set yet.

A filter is a selection function that is called if the corresponding flag is set. In the configura-
tion file at most 16 filters can be defined. For each filter a different down-scaling factor can be
set, a certain fraction of the events that have been sent to it can be kept independently of the
response of the filter (the so-called “auto-pass” events used to measure the filter efficiency)
and a list of streams can be defined to which the selected events have to be written.
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4.4. The Level 3 trigger (L3)

Before passing the event to the filters, the decoding and reconstruction routines (see Section
5.1.1) are called, so that all the physical quantities are available for the selection. This is the
main difference with respect to the hardware trigger stages: a proper particle identification
can be performed only at the L3, where it is possible for example to associate a track in the
spectrometer to a cluster in the LKr or to a hit in the MUV and define criteria to distinguish
electrons, pions and muons. Most of the parameters used for the selection in the filters are
also defined as constant values in the configuration file, so that they can be easily modified.

Each filter corresponds to one bit in the L3 trigger-word and is set to zero or one according
to the response of the selection function. Since there are in general more than 16 interesting
physics channels, two words are necessary for their identification. The filters corresponding
to the L3 trigger-word bits are called “main” filters and form the first word, while the “sub-
filters” are flagged by the second word, which has 32 bits. These bits are set inside the
selection functions and their definition cannot be easily changed through the configuration
file. Another 16-bit word is used for the auto-pass events with the same order and definition
of the bits as for the main filters.

The L3 can write as output a maximum of 8 streams. For each stream a down-scaling
factor and a format can be defined in the configuration file. The flags indicating to which
stream each event has to be written are attached to the event by the program according to
the actions and the selection response. If no stream flags are set, the event is rejected.

In 2003 the L3 was run in the so-called “flagging mode”, i.e. no events were rejected,
everything was written out in the COmPACT format for the offline analysis. Furthermore a
“flat” configuration was used, in which events triggered by any L2 trigger bit were sent to all
the filters. Of the main filters three were used for calibration and monitoring purposes, while
the remaining 13 selected a total of 28 physics channels.
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Figure 4.5.: Schematic view of the data acquisition system consisting of the PC-Farm (on
the top) and the CDR (on the bottom) [89].
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The raw data written to disk by the PC-Farm (see Section 4.3.1) are just a long list of numbers:
the pointers to the different parts of the event and the values read by the electronics of each
sub-detector. In order to build physical objects out of them, the L3 program (see Section
4.4) calls for each sub-detector a decoding and a reconstruction routine. This procedure is
described in Section 5.1.

To analyse the data, that are now written in COmPACT format, a reader program is used,
that can also apply corrections or filter the sample. The basic features of this program are
presented in Section 5.2.

5.1. The physical objects

In this Section the way from the raw data to the format read by a program called “C Optimised
Program for Accessing Countless Terabytes” (COmPACT) [106] is described (see Section
5.1.1). Particular attention is given to the objects used to select and reconstruct the Ke4

decays: the tracks in the magnetic spectrometer (see Section 5.1.2), the clusters in the LKr
calorimeter (see Section 5.1.3) and the hits in the MUV (see Section 5.1.4).

5.1.1. Decoding, reconstruction and COmPACT output

The first step to obtain physical quantities from the raw data is to assign each value to the
variable it represents. This is done in the decoding routines, that read the event in raw format
as input and fill one of the so called “pre-processed” ZEBRA [107] bank as output. Such
banks contain typically the information on the single signals, for example the pulse height
and the time of each hit.

Starting from the pre-processed banks, the reconstruction routines combine the signals
into more complex objects, like the tracks in the DCHs and the clusters in the LKr. This
information is saved in the “reconstructed” ZEBRA banks.

In order to save disk space, the data are written in COmPACT format, where they are
organised in C structures, instead of ZEBRA banks. Furthermore only quantities that can-
not be derived from other ones are written and some information present in the banks for
debugging purposes is removed.

5.1.2. Track reconstruction

The pre-processed bank of the DCH signals contains for each hit the plane number, the wire
number and the drift time.

The alignment of the DCH planes was checked during special runs with a muon beam and
no magnetic field in the spectrometer. Forcing the muon tracks to form straight lines in
the spectrometer, two arrays of corrections were determined: a shift and a rotation for each
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plane. The alignment correction is applied in the calculation of the hit position starting from
the plane number and the wire number. Furthermore a precise alignment is performed for
each single wire with a similar set of constants.

The hits in each view are first combined into clusters, defined as (mostly two, in some rare
cases three) contiguous hits in the two planes of a view. Then all the possible combinations
of a cluster in DCH1 and a cluster in the corresponding view in DCH2 are built. These
associations are called segments. Some loose geometrical cuts are applied to the segments, in
order to discard the ones that cannot be part of a physical track originating from the kaon
beam. A front track is built from the association of at least two segments in different views.
Further geometrical requirements are applied and only the physical front tracks are kept. If
the front track consists of only two segments, a cluster in a third view is required in each
chamber.

To build complete tracks, space points are formed in DCH4 combining compatible clusters
in three or four views. The front tracks and the space points are then associated with the only
constraint of an almost straight line in the y coordinate, since the deflection due to the dipole
magnet of the spectrometer is only in the x direction. The uncertainty in the prediction of
the impact point of the track in DCH4 due to multiple scattering is taken into account in the
association.

The information on the drift time of the hits is introduced only now: the track time is
calculated and a compatibility variable is defined between 0 and 1. In these calculation a
correction is applied to take into account the signal propagation along the wire. A track can
be rejected if the compatibility is less than 0.75, if the hit drift times are too far from each
other, or if the coordinates of the hits in a cluster are not compatible anymore after correcting
the position for the drift time.

The track time is improved looking at the difference of the coordinates in the two planes
of a view and a quality variable is defined as the number of hits belonging to doublets and
triplets divided by the total number of hits belonging to the track.

The physical parameters of the track (position, slope in x and y and momentum) are
computed using a Kalman filter [108] for each space point. The Kalman filter is the optimal
recursive estimator of the state vector of a linear dynamic system. The evolution of the state
vector is described by a linear transformation plus a random smearing and the measured
values are linear functions of the state vector with an uncertainty. In the specific case of
the track parameter calculation the evolution of the state vector is the transport equation
from a space point to the next one. The uncertainty on the track parameters and the whole
covariance matrix are written into the reconstructed track bank together with the fitted
values.

Once the tracks are built, the clusters in DCH3 compatible within the uncertainty with the
position extrapolation are attached to the track and its physical parameters are recalculated.
In case two space points in DCH4 belonging to two different tracks have at least two clusters
in common, only the track with the best χ2 is kept, while the other one is rejected as ghost
track.

A detailed description of the reconstruction routines can be found in [109].
At this stage the vertex reconstruction can already be performed, but, in order to save

disk space, all the track parameters and their uncertainties are saved into the COmPACT
structures, so that it is possible to reconstruct the vertices at runtime (see Section 5.2.2).
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5.1.3. LKr cluster reconstruction

Starting from the pre-processed LKr bank, that contains the pulse information for each cell
which has been read out, the reconstruction routine attempts to find clusters in the whole
time window. This procedure allows to build both the signal clusters and the accidental ones
for background studies. Accidental clusters are mostly due to particles produced in a decay
before or after the triggered one.

First of all a list of the cluster seed candidates is created. In a loop over all the cells in the
bank it is checked if they were working properly (if not they are marked as dead cells), then
the average value of the first three samples in time is subtracted if it is more than 20 MeV
away from zero. In the first three samples no energy is expected from clusters in time with
the event and this method is used to correct the energy of showers sitting on the undershoot
of a previous pulse. In the same loop the cells that have enough energy are marked as cluster
seed candidates.

If a seed candidate is a local maximum and its energy is above a threshold defined by the
average energy of the eight surrounding cells, a cluster is defined around the seed. In this
search only the time slice of the seed, the preceding and the following ones are considered.
The cluster position is estimated as the barycentre of the energy deposition in 3 × 3 cells. If
a dead cell is among these nine, a 5 × 5 box is used to measure the cluster position.

To compute the energy of a cluster, all the cells in a 19 × 19 box around the seed are
considered. If a cell belongs only to one cluster, its energy is added to the cluster energy after
reconstructing the pulse with the digital filter method. If a cell belongs to more than one
cluster at the same time, its energy is shared among them, according to weights determined
from Monte Carlo simulation. The weight is a function of the cluster energy in the 3 × 3 box,
of the distance between the cluster and the cell and of the expected energy profile. In the case
of a cell contributing to clusters at different times, the digital filter is used to superimpose
the pulses and perform a time sharing. The energy that would have been deposited in a dead
cell is estimated from the energy profile.

The width of the cluster is computed as the RMS in the x and y directions of the energy
distribution in a 5 × 5 box.

The following corrections are applied to the first estimates of the energy, position, time
and width of the clusters:

Position: The first estimate gives the position at the front of the calorimeter in the assump-
tion that the neutral particle producing the shower comes from the point where the
LKr cells are projecting.

The x coordinate is corrected for the motion of the centre of gravity of the shower
with the energy and for the zig-zag shape of the electrodes. The function used for the
correction has 12 parameters that are derived from electron data.

In the y coordinate no particular shape of the electrodes has to be taken into account.
Therefore the position has only to be corrected for the non linearities in the response of
the LKr with respect to the distance between the centre of the shower and the electrode.
The correction is independent of the energy, but depends on the impact point in x within
the cell.

Shower width: The estimators are corrected for the dependence on the impact point in the
cell, with different parameters for the two directions.
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Energy: The energy depends on the impact point within the cell in the y direction due to
electric field variations between electrodes and in the x directions due to the reduced
charge collection efficiency near the anode.

The energy of clusters with a radial position between 14 and 20 cm is corrected for the
loss in the beam hole. The correction is derived from Monte Carlo and parametrised as
a third degree polynomial in the radial position. A similar correction is also applied to
clusters near the outer edges of the LKr.

The absolute energy scale is also adjusted to a level better than 10−3.

Time: The time of the pulses is corrected for the difference in the time offset of the single
cells.

The reconstruction program and its performances are described in more detail in [110, 111].

5.1.4. MUV hits

For the MUV hits no reconstruction is applied at this stage: the hit information is copied to
the COmPACT structure and the association with the tracks is performed when reading the
event.

5.2. The COmPACT reader program

The files in COmPACT format are read by the analysis program that can apply further
corrections to the stored variables (see Section 5.2.1). It also computes quantities that are
not stored, since they can be derived from other ones, like the vertices (see Section 5.2.2) or
the muon tracks (see Section 5.2.3). To reduce the size of the data sample to be analysed, the
COmPACT reader program can write a filtered output file according to a selection written
by the user and further compress the events into the so called “SuperCOmPACT” format
(see Section 5.2.4).

5.2.1. Corrections

At COmPACT level further corrections can be applied when reading the events, so that they
do not need to be reprocessed from the raw data every time a parameter value is updated. To
improve the flexibility of the system, most of the information used by the correction routines
is saved in a database, that can be updated independently of the program. In the following
the relevant corrections for the Ke4 selection are described.

Bad bursts

The data quality of the whole sample was checked and bursts or runs where one or more
detectors were not working properly were added to the database. In the same way also bursts
containing less than 3000 selected decays into three charged pions (a normal burst contains
about 20000) were flagged as bad bursts for physics analyses. The database contains lists of
bad bursts and bad runs for each detector and for physics, so that the bursts can be rejected
if the detectors that are necessary for the selection are not reliable. Skipping entire bursts or
runs has the advantage of saving the time necessary to unpack the event structures.
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Track momentum

Computing the invariant mass of the kaon from decays into three charged pions, two effects
can be observed: a difference between the masses of K+ and K− events and a shift of both
values with respect to the nominal kaon mass. Both effects are very sensitive to small changes
in the detector and beam setup, so that they must be corrected on a burst by burst basis.

The first difference is due to the misalignment of DCH4 with respect to DCH1 and DCH2.
An empirical momentum correction can be applied [112]:

pcorr = p · (1 + α · q · p), (5.1)

where pcorr is the corrected momentum of the track, p its measured momentum, q its charge
and α is obtained for each burst as

α = −sign(B) · 〈mK+〉 − 〈mK−〉
1.7476

. (5.2)

B is the magnetic field in the spectrometer magnet, 〈mK+〉 and 〈mK−〉 the mean values over
one burst of the measured K+ and K− masses, respectively. The values of α for the 2003
run are at most a few times 10−4.

The residual shift with respect to the nominal kaon mass can be corrected with a second
parameter [112]:

pcorr = p · (1 + β · p), (5.3)

with
β =

mnom
K − 〈mK〉
0.2 ·mnom

K

. (5.4)

mnom
K is the nominal kaon mass, while 〈mK〉 is the measured one after applying the α cor-

rection. β is of the order of 10−3.
The values of α and β for each burst are saved in the database and can be used to apply

the correction at runtime.

Cluster position and energy

The cluster position can be corrected for displacements (shift and rotation) with respect to
the DCH position using a clean electron sample from K → πeν decays.

The cluster energy can be corrected for the following effects:

— The energy dependence on the radial distance from the beam axis for clusters with a
radial distance below 22 cm.

— The energy loss due to the threshold in the Data Concentrator.

— The non linearity in the calorimeter response for clusters with an energy below 15 GeV.

— The energy sharing between clusters. This is only a fine tuning of the correction already
applied in the reconstruction.

— The mis-match between the energy deposited in the LKr and the momentum measured
in the spectrometer for electrons. This can be compensated by an overall energy scale
correction of the order of 10−3 and a fine tuning as a function of energy.
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— The energy baseline. The pedestals were already subtracted cell by cell in the recon-
struction, but some fine tuning can be performed adjusting the cluster energy. The
correction is of the order of a few MeV.

For the pedestal correction one value every ten bursts is saved in the database, while the
other ones only need a few parameters that are hard-coded in the program.

5.2.2. Vertex reconstruction

Starting from the coordinates and the slopes in DCH1 of two, three or four tracks, the vertex
reconstruction routine computes the best vertex coordinates and the slopes of the tracks and
of the mother particle at the vertex [113].

In the initialisation phase the vertex coordinates are estimated from the calculation of the
closest distance of approach between two tracks. If more than two tracks form the vertex, the
pair with the biggest slope difference is used. For this computation the tracks are extrapolated
as straight lines with the slopes measured in DCH1 from the chamber to the vertex. The
slopes at the vertex are initialised to the measured values at DCH1.

The algorithm used for the parameter optimisation is based on a Kalman filter, as the
one for the track parameter computation (see Section 5.1.2). This calculation is equivalent
to a χ2 method when all measurement uncertainties are taken into account, as well as the
smearing due to the multiple scattering in the Kevlar window and in the helium before DCH1.
The transport equation from the state vector in DCH1 to the one at the vertex includes the
deflection due to the magnetic field inside the vacuum tank (called “blue field” because of
the colour of the tank).

5.2.3. Muon reconstruction

A muon is reconstructed every time at least two hits in the MUV can be associated in space
and time to a track in the magnetic spectrometer.

Each track is extrapolated from DCH4 to the MUV, the corresponding channels in which
a hit is expected are flagged and the reconstruction routine looks for hits in them. If at least
two hits within 10 ns of the track time are found in two different planes, the muon structure
is filled.

5.2.4. SuperCOmPACT production and filtering

In order to reduce the data size by about a factor five, the events are converted into the
SuperCOmPACT format, which is the standard format used for analyses. The reduction is
obtained by removing all the variables that are necessary to test the data quality, but not
to perform physics analysis and by saving all the variables as integers after scaling the real
numbers with appropriate factors. In the conversion to integers some accuracy is lost, but
for most of the variables this loss is negligible.

Since the SuperCOmPACT data are first produced when the correction parameters are
known, the corrections that have to be used for all the analyses are already applied. Of the
corrections listed in Section 5.2.1, the ones for the cluster position and energy were applied
at this stage.
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While converting the COmPACT files into SuperCOmPACT, a filter can be applied. The
filter consists of a user selection routine that can use all the information available in the
structures, since all the reconstructions and corrections performed at runtime are called before
it. It is also possible to filter the events without format conversion.
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6. Monte Carlo simulation

In order to compare any theoretical prediction with the data, it is necessary to perform a
simulation of all the physical processes taking place from the beam production to the signal
read-out in the detector. Since many complex effects have to be taken into account, it is not
possible to describe analytically the expected distributions. Instead, the Monte Carlo (MC)
method is used: single events are generated, according to weights given by the expected
probability distributions, like the differential decay rates or the efficiencies and resolutions of
the sub-detectors.

The MC events have the same format as the data, but the “true values”, i.e. the four-vectors
of the generated particles, their type and their production and decay positions, are known
as well (see Section 6.4). This allows to apply the same event selection to data and MC, to
measure the detector acceptance (i.e. the ratio between the number of selected events and
the number of generated events) and the detector resolution for any variable and to predict
the distributions of signal and background events after the selection, to be compared with
the data.

The simulation program available for the NA48/2 experiment is called Charged kaons
Monte Carlo (CMC) and is based on the GEometry ANd Tracking (GEANT) package of the
CERN libraries [114]. It is a precise, but quite CPU-consuming simulation, that is necessary
for precision measurements based on the comparison between data and MC.

6.1. Kaon beam

The kaon beam is simulated using a package called “Trace Unlimited Rays Through Lumped
Elements” (TURTLE) [115]. The parameters are tuned on a run by run basis, separately for
K+ and K−, in order to reproduce the momentum distribution of the beam.

Due to the method used to measure the Ke4 form factors, a precise simulation of the beam
momentum is necessary, since the neutrino momentum is measured as the difference between
the kaon and the visible particles and the computation of the kinematic variable requires a
boost of the four-momenta of the decay particles into the kaon rest frame. Therefore the MC
sample is generated with a population of events per run reproducing the one of the data.

The simulated momentum can be chosen by the user, but, due to the narrow momentum
spread of the beam, the range between 50 and 70 GeV/c (as in the MC samples used in this
analysis) already contains the whole spectrum (see Figure 6.1).

6.2. Kaon decay

The z range in which the decays can take place is also a parameter set by the user and should
include a few meters more than the accepted region in the event selection. In the MC samples
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Figure 6.1.: The kaon spectrum in CMC for K+ (red) and K− (blue) for the complete sample
of generated K± → π±π0

D. The relative fraction of K+ and K− as well as the
number of events per run have been computed from selected events in the data.

analysed here, decays with a z coordinate between -22 m and 80 m were simulated, while, for
reference, the end of the final collimator is at z = −18 m and DCH1 at z = 97 m.

The probability for a kaon with energy EK to decay at a certain position zd is

P (zd) =
1
γcτ

· e−
zd
γcτ , (6.1)

where γ = EK/MK , with MK = 0.493677 GeV/c2 [13], is the boost factor of the kaon, c the
speed of light and τ the mean lifetime of the kaon.

CMC can generate only one decay channel at a time, i.e. one kaon decay mode and, in case
a π0 is produced, one specific decay mode for it. Due to the very short lifetime of the π0

(τ ' 10−16 s), its decay vertex would be only a few micrometers away from the kaon decay
vertex. Since this distance is orders of magnitude smaller than the resolution of the vertex
reconstruction, it is assumed that the two decay vertices coincide. Producing one decay mode
at a time, the weighting of the number of events according to the branching fractions has
to be taken into account when comparing data with MC or combining events from different
channels.

The four-momenta of the decay products are first generated in the kaon rest frame according
to the phase space distribution using the routine genbod of the CERN libraries [116], then
weighted with the proper matrix element and finally boosted to the laboratory frame.
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6.2. Kaon decay

6.2.1. The Ke4 generator

For the matrix element Eqs. 2.71–2.74 are used, with the parametrisation

F = (fs + f ′sq
2 + f ′′s q

4 + fe
se

4M2
π

)eiδ
0
0(sπ) + f̃pσπX cos θπe

iδ1
1(sπ)

G = (gp + g′pq
2 + ge

se

4M2
π

)eiδ
1
1(sπ) (6.2)

H = (hp + h′pq
2)eiδ

1
1(sπ),

which is equivalent, apart from the advantage of having dimensionless parameters, to Eq. 2.76,

with q =
√

sπ−4M2
π

4M2
π

. The value of Mπ, the mass of the charged pion, was set to 0.13957018

GeV/c2 [13]. The D-wave term is omitted, since it is expected to be negligible.
The phase shifts are obtained from Eq. 2.63 with the coefficient values given in [39] and

the constraint of Eq. 2.67 between a0
0 and a2

0. R is assumed to be zero and the values of the
parameters f , g, h and a0

0 are taken from previous experimental results [35]. The complete
matrix element implemented in CMC can be found in Appendix A.

6.2.2. Other generators

Samples of simulated events were produced also for the main background channels: K3π,
including also K± → π+π−π±γ, K2π with the π0 undergoing a Dalitz decay (into e+e−γ)
and Kππ0π0 with one of the π0s decaying Dalitz.

For the K3π the matrix element [13]

M(u, v) = 1 + g · u+ h · u2 + k · v2 (6.3)

was used, with

u = 2MK · MK/3− Eπ3

M2
π

v = 2MK · Eπ1 − Eπ2

M2
π

, (6.4)

where the energies are measured in the kaon rest frame, π3 indicates the pion with opposite
charge with respect to the kaon (odd pion), while π1 and π2 are the even pions. The chosen
parameter values were g = −0.2154, h = 0.012 and k = −0.0101, that correspond to the
measured values for K+ decays [13]. The same parameters are used for K+ and K− decays.

The Kππ0π0 decay was generated with the same form of the matrix element but different
parameter values (in this case π1 and π2 are the two neutral pions and π3 is the charged one).
The parameter values were chosen to be g = 0.638 [13], h = 0.0825 and k = 0.
K2π is a two-body decay and requires therefore only the random generation of the angle

between the directions of the kaon and that of one decay product, uniformly distributed in
space. All the other quantities are fixed and no matrix element has to be taken into account.

The Dalitz decay of the π0 (π0
D) is generated in two steps: π0 → γγ∗ and γ∗ → e+e−. The

mass (m) of the virtual photon (γ∗) is generated with a flat distribution within the kinematic
limits [2Me,Mπ0 ] and then weighted with the function [117]

f(m) =
1
m

(
1− m2

M2
π0

)3(
1 + 2

M2
e

m2

)√
1− 4

M2
e

m2

(
1 + 0.032

m2

M2
π0

)2

, (6.5)
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with Mπ0 = 0.1349764 GeV/c2 and Me = 0.000511 GeV/c2 [13]. The γ∗ → e+e− decay is
weighted according to the distribution [117]

f(y,m) = 0.3

(
1 + y2 + 4

M2
e

m2

)
, y =

Ee1 − Ee2

pγ∗
, (6.6)

where the energies and momenta are measured in the rest frame of the π0.

6.2.3. Radiative corrections

For the simulation of bremsstrahlung photons emitted by charged particles, the latest ver-
sion of the PHOTOS package [118] was used. Instead of performing systematic calculations
order by order in the perturbation theory, the “exponentiation method” is used, a rigorous
scheme of reshuffling the dominant terms between different orders in the expansion. Fur-
thermore, in the leading-log approximation, it is possible to write the matrix element of a
decay with bremsstrahlung emission as a product of terms without QED corrections times the
bremsstrahlung factor. In the same way, also the differential formula for the Lorentz invariant
phase space of a decay with bremsstrahlung photons can be factorised. The bremsstrahlung
factor depends only on the four-momenta of the particles taking part in the decay and not
on the actual process.

The leading-log approximation takes into account both real and virtual corrections. The
terms due to QED interference were added only in the latest version of PHOTOS and are
very important for the semileptonic kaon decays. The interference term is described by a
universal weight, valid for any decay channel, depending only on the charges and momenta
of the decay products and on the energy of the emitted photon. A universal implementation
is now possible because the interference is calculated from the four-momenta and not from
internal angular variables, as was the case earlier.

After generating an event without any correction, PHOTOS reads in the four-momenta,
masses and type of the particles and produces, with a certain probability, one or more ad-
ditional photons, correcting the four-momenta of the emitting particles, so that energy and
momentum conservation are assured. CMC reads back the modified event and proceeds with
the boost into the lab system.

The radiative corrections were included in all the MC samples generated for the Ke4 anal-
ysis. For the K3π and Ke4 samples PHOTOS was used in the “exponentiated” mode, i.e. the
number of generated photons follows a Poissonian distribution, and with the infrared cut-off
parameter (the minimal photon energy as a fraction of the mass of the decaying particle)
set to 10−7. The universal interference weight was enabled with a maximum value of 2n−1,
where n is the number of charged particles in the final state. The decay γ∗ → e+e− was
corrected for the emission of at most one bremsstrahlung photon with the cut-off parameter
set to 10−5. The radiative corrections are expected to play no important role in the K2π and
Kππ0π0 decays and have not been implemented in the simulation.
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6.2.4. Coulomb correction

In order to take into account the electric attraction or repulsion between the charged particles
in the final state, a weighting factor

Pij =
2πn

e2πn − 1
, n =

αeiej
βij

(6.7)

is multiplied to the probability distribution for each pair of charged pions in the final state.
In Eq. 6.7, α is the QED coupling constant, ei and ej the charges of the two interacting
particles in units of the electron charge and βij their relative velocity in units of c. Pij is,
in the quantum mechanical description of the Coulomb scattering of an incident beam with
velocity c · βij , the particle density at the target, divided by the effective area seen by the
impinging particles [119].
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Figure 6.2.: Size of the Coulomb correction as a function of the dipion invariant mass squared
for a pair of same (red) and opposite (blue) sign pions.

Since Pij is close to 1 for small values of n, corresponding to high relative velocities and
high invariant masses (see Figure 6.2), only pion pairs produced at threshold (with an in-
variant mass close to twice the pion mass) are significantly affected by this corrections, while
the interaction between a pion and an electron or between two electrons can be neglected.
Therefore three factors are considered in the generation of the K3π decay, one in Ke4 and
none in the Dalitz decay of the π0.

6.3. Tracking in the detector

Each decay product is followed through the whole detector: at each plane its position and
energy loss are computed. A particle can interact with the material producing a signal and/or
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secondary particles that are added to the list and will also be tracked. Many effects that can
distort the measurement are taken into account, for example:

— multiple scattering in the helium between the drift chambers

— photon conversion into an electron-positron pair, mainly at the Kevlar window

— bremsstrahlung in the drift chambers

— δ-rays crossing the detector

— dead cells in the LKr

— misalignment of the chambers (see Section 5.2.1).

All the signal information available in raw format is simulated, except for the time. Since
no accidentals are simulated, the time coincidence between different signals and different sub-
detectors does not need to be tested: all signals are produced by the simulated event and
must therefore be assumed to be in-time.

In order to estimate the efficiency of the background rejection, the two most important
features are the simulation of the electromagnetic showers in the LKr and the decay in flight
of charged pions. They will be described in detail in the following Sections.

6.3.1. Electromagnetic showers

The complete simulation of an electromagnetic shower in the calorimeter with GEANT is
very CPU-time consuming. In order to speed up the generation of millions of events, samples
of electromagnetic showers for different particles and energies have been generated and saved
into “shower libraries”. CMC can read back a shower chosen randomly for the necessary
particle and energy bin and use the saved pattern of energy deposit in the LKr cells. The
disadvantage of this method is the limited statistical precision, so that effects of the order of
10−6 in the LKr energy and position measurements can not be simulated precisely, even with
a large sample of events.

The cluster width, on the other hand, is not simulated precisely by GEANT itself: the mean
shower widths for electrons and photons agree within a few percent between data and MC,
but can not easily be corrected in the reconstruction. Therefore any selection cut involving
this variable has to be adjusted to give the same efficiency in data and MC.

A much bigger discrepancy between data and MC affects the shower simulation of mesons
and baryons: the cluster width, the probability of shower fluctuations (small secondary clus-
ters up to about 40 cm away from the projection of the track to the LKr) and the fraction
of energy deposited in the electromagnetic calorimeter differ in some cases by a factor of 10.
The background rejection based on these variables has therefore to be studied on a clean data
sample.

6.3.2. Pion decay in flight

Charged pions have a mean lifetime τ ' 2.6 × 10−8 s [13], that, at an average energy of
20 GeV, corresponds to a mean decay length of about 1100 m. In the decay and detector
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volume, together about 140 m long, the probability of a pion decay is therefore a few percent
and can not be neglected in the simulation.

The decay π → µν has a branching ratio of 99.9877% [13] and is the only channel to be
included in the simulation by default. Furthermore, only decays before the LKr produce a
mis-measurement of the “pion” momentum, while the ones in or after the LKr only give a
signal in the MUV, but the momentum measured in the spectrometer is correct. Simulating
only decays before the LKr has the advantage to allow for the use of the shower libraries,
instead of tracking the particles in the LKr and afterwards. The disadvantage is a small
(a few 10−3) disagreement in the hit rate in the MUV. For the same reason also the punch
through of the pions in the MUV is not simulated.

In order to study the K3π background to Ke4 decays, a private correction [120] was applied
and a separate sample with the pions decaying only into eν was generated. The number of
events simulated with this special setting is proportional to the ratio 1.23× 10−4 [13] of the
branching ratios for the two decays channels of the pion.

6.4. Reconstruction and corrections

In general the same decoding, reconstruction and corrections are applied to data and MC,
with a few exceptions that will be briefly described in this Section.

The information on the generated particles is written by CMC into a ZEBRA bank, that
contains the type of each particle, its four-momentum in the laboratory frame, its mass,
the coordinates of its production and decay vertex and a link to the bank of the mother
particle. Furthermore the coordinates, slopes and energy deposit at each tracking plane are
available, as well as the number of hits in each detector. Only one structure per particle is
instead available in COmPACT and SuperCOmPACT format, containing the particle type,
four-momentum, production and decay vertex.

In order to improve the agreement between data and MC, a correction is applied only to
simulated events, reproducing the non-Gaussian tails in the energy resolution of the LKr due
to hadronic showers induced by a photon. The total probability and the parametrisation of
the energy loss as a function of the photon energy has been extracted from Ke3 data [106].
On the other hand the energy sharing and energy baseline corrections described in Section
5.2.1 are not applied. The track momentum correction was not yet implemented for MC, but
should in principle be applied, since the distortions have been included into the simulation.

6.4.1. The generated four-momenta in SuperCOmPACT

The four-momenta of the generated particles are saved in a SuperCOmPACT structure, but
only after the boost into the laboratory frame. Therefore the true values can be used to
compute the kinematic variables of the event, but they have a limited numerical precision
due to the conversion to integer values (see Section 5.2.4) and to the boost of the decay
products back to the rest frame of the kaon. The precision of this procedure has been studied
on a sample of simulated Ke4 decays where the true values of the kinematic variables were
saved as well as the boosted four-momenta. Significant discrepancies have been found only
for events with se below 100 (MeV/c2)2 [121].

75



6. Monte Carlo simulation

76



7. Event selection and reconstruction

7.1. Data and MC samples

The data sample collected in 2003 and 2004 was divided into so-called “Super-Samples” (SS),
i.e. samples of consecutive runs containing all the four possible configurations of magnetic
fields in the spectrometer and in the achromat. For the present analysis, the data of SS 1, 2
and 3 have been used, corresponding to about one month of data taking in 2003. This sample
was chosen as a clean and well understood set of data and was expected to contain about as
much statistics as the data used for the analysis published by the BNL collaboration [35].

The following MC samples were generated as described in Chapter 6 and analysed for
background and acceptance estimates:

— 325 million K3π events, where pions were only allowed to decay into µν. The number
of selected events corresponds to about 1/10 of the data statistics

— 4 million K3π events with pions allowed only to decay into eν, corresponding to about
ten times the data statistics

— 160 million K2πD events. After the selection this sample contains about as much statis-
tics as the data

— 26 million Kππ0π0
D
, roughly the same as the data statistics

— 82 million Ke4 events, i.e. more than 40 times the data statistics.

7.2. Selection criteria

As far as possible, the selection criteria were optimised using signal and background MC,
in order to obtain a high acceptance and a low background contamination. Timing and
particle identification cuts were tested on clean data samples, since the MC contains no
timing information and shows significant discrepancies from the data in the electromagnetic
showers.

The two control channels K3π and K2πD are used to test the agreement between data and
MC in the variables that are critical for the measurement of the form factors. Therefore it
is particularly important to keep the selection of the signal and control events as similar as
possible. For example, the vertex selection is identical for the channels listed above, since
they all have a three track vertex.

7.2.1. Pre-selection

In order to reduce the sample of events to be analysed, some simple requests are applied at
the very beginning of the selection:
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— the trigger word must contain bit 0 or bit 1 or bit 4 (MBX trigger)

— the bad bursts for DCH, LKr, MBX, MUV and physics are rejected

— the event must contain at least three reconstructed tracks

— at least one combination of three tracks must build a vertex, i.e. they are generated by
the same decay

— for Ke4 decays only: in the LKr at least one cluster must have been reconstructed (for
the electron)

— for K2πD decays only: in the LKr at least three clusters must have been reconstructed
(one electron, one positron and one photon in the Dalitz decay of the π0).

7.2.2. Vertex selection

Before looking for a good vertex, the ghost tracks are flagged, so that they can be ignored
in the rest of the selection. For this purpose, all pairs of tracks are considered and, if the
distance between them at DCH1 is less than 1 cm, the track with the worst quality is flagged
as ghost track. Vertices containing one or more ghost tracks are rejected.

Each of the three tracks building the vertex must have:

— quality (see Section 5.1.2 for the definition) greater than 0.8

— momentum between 2 and 50 GeV/c

— distance to all other non-ghost tracks greater than 2 cm at DCH1

— radial distance from the centre of the beam pipe greater than 12 cm at DCH1

— radial distance of the extrapolated position at the LKr from the centre of the beam
pipe between 15 and 113 cm

— no hit in MUV associated to the track within 4 ns if the time measurement of the
hodoscope is available, within 8 ns otherwise.

The momentum range is wide enough to contain pions and electrons produced in the decay
of a kaon with a momentum of about 60 GeV/c. Below 2 GeV/c the momentum measurement
is not precise enough. The momenta are not corrected with the α and β parameters (see
Section 5.2.1) neither in data, nor in MC, since the parameter values to be used for the MC
were not yet available. Tracks closer than 2 cm at DCH1 are normally produced by photon
conversions in the Kevlar window and must be rejected. The radial cuts at DCH1 and in the
extrapolation to the LKr assure that the track is well contained in the detector and that no
associated cluster was missed.

Events with a pion decaying in flight into a muon and a neutrino are a dangerous back-
ground source for Ke4 decays, since they have a high transverse momentum. Therefore tracks
must not have a hit in the MUV associated to it in space and time. Due to this cut, about
5% of the Ke4 statistics is rejected. For consistency, the same cut is applied also to the other
channels. The acceptance loss is proportional to the number of pions produced in the decay.

Further selection criteria are applied to the vertex, in order to assure that the three tracks
actually come from the same kaon decay and to define the decay region in z:
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Figure 7.1.: z position of the decay vertex for data (black points), Ke4 MC (magenta open
histogram) and background estimated from the wrong sign events (green filled
histogram) in linear scale (left). The MC distribution is normalised to the dif-
ference between data and background. Ratio between the data and the sum of
MC and background (right). The complete Ke4 selection, except the cut on the
z coordinate of the decay vertex, is applied. The signal region is indicated by the
arrows.

— the sum of the track charges must be +1 or −1

— the three tracks building the vertex must be within 2 ns of their average time, if the
hodoscope time is available for all the tracks. Otherwise, the DCH times are compared
and the accepted time window is ± 6 ns around the average time. The “vertex time”
is defined as the average time of the three tracks

— any non-ghost track in the event, not belonging to the considered vertex, must be
outside of the time windows around the vertex time defined above

— the z coordinate of the decay vertex must be between −18 and 70 m

— the radial position of the decay vertex must be less than 5 cm away from the beam axis

— the χ2 of the vertex fit (see Section 5.2.2) must be less than 20

— any AKL hit must be outside of a time window of ±3 ns around the vertex time

— out of the three considered tracks, three two-track vertices can be built. The minimum
distance between any pair of them must be less than 2.5 m.

The choice of the accepted decay region is based on the necessity to have good agreement
between data and MC (see Figure 7.1). The agreement is not perfect at the collimator due
to the simulation itself and to the background from particles deflected at the edge of the
collimator.

In order to avoid differences in the event topology between data and MC, the cut against
AKL hits in time with the event, present in the trigger, has been repeated offline. This cut
is useful to reduce the background from events with high transverse momentum.
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For events with a big distance between the two-track vertices, the trigger efficiency drops
very fast. On the other hand, the agreement between data and MC in this distribution is not
good enough to allow for a correction of the MC. Therefore these events, corresponding to
about 6% of the statistics, are rejected (see Section 8.3.1).

If more than one vertex in the event fulfils all the selection criteria, the one with the lowest
χ2 is kept.

7.2.3. Particle identification

For the pion and electron ID, a loose and a tight selection are defined: the tight selection is
used to reduce the background level, while the loose one produces an unbiased sample useful
to compute the efficiency of the tight selection, for example for comparisons between data and
MC. The particle identification efficiencies are measured on clean samples of events, selected
with simple criteria based on the kinematic constraints (see Sections 7.3.2 and 7.3.3). In the
description of the tight selection, only the additional criteria to the loose one are listed.

The main difference between pions and electrons is the fraction of energy deposited in the
LKr, that is expected to be about 1 (in units of c) for electrons and less for pions. In order
to estimate this fraction, it has first of all to be checked if a cluster in the calorimeter is
associated to the track. This is the case if a cluster is within 5 cm of the projected position
of the track to the LKr. Then the variable E/p is defined as the ratio between the energy
of the cluster associated to the track and the track momentum. The E/p distributions for
pions and electrons in the data are shown in Figure 7.2.

Only the tracks building the selected vertex can be identified as pions or electrons.

Loose pion ID

Tracks with a momentum greater than 5 GeV/c are assumed to be pions.
This assumption is justified in case of kinematically very clean samples, as is the case for

K3π events.

Tight pion ID

A track is identified as a pion if one of the following conditions is fulfilled:

— no cluster is associated to the track

— a cluster is associated to the track, but the time difference between cluster and track
is greater than 7 ns if the hodoscope time is available for the track, greater than 10 ns
otherwise

— a cluster is associated to the track, its time is within the time windows defined above
and E/p is less than 0.8 c. In order to assure that the low E/p is not due to mis-
measurements in the LKr, it is also required that the cluster has a distance of at least
2 cm from the closest dead cell and that its radial position is between 15 and 113 cm
from the centre of the beam pipe.
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Figure 7.2.: E/p distribution for pions from K3π data with complete kinematic selection and
loose pion ID (green filled histogram) and for electrons from K2πD data with
complete kinematic selection, tight pion ID, loose ID for the considered electron
and tight ID for the other one (magenta open histogram). The first bin contains
about 1.6 million pions without any associated cluster. The two distributions
were normalised to the same area.

Loose electron ID

In the case of negligible background levels from pion mis-identification, as in K2πD decays,
an electron is identified whenever a track has an associated cluster with at least 80% of the
expected energy. The detailed requirements are:

— a cluster associated to the track

— time of the cluster within the same time windows around the track time as for the tight
pion ID

— distance of the cluster to the closest dead cell greater than 2 cm

— radial position of the cluster between 15 and 113 cm from the centre of the beam pipe

— E/p greater than 0.8 c.

Tight electron ID

In addition to the requirements of the loose selection, in the tight one, the following selection
criteria are applied:

— E/p greater than 0.9 c and less than 1.1 c
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— distance of the candidate cluster to the extrapolated position in the LKr of any other
cluster in the event greater than 10 cm

— distance of the candidate cluster to any non-ghost track in the event (except the asso-
ciated one) greater than 20 cm

— cluster energy greater than 3 GeV.

A too high E/p is mainly due to the wrong association between track and cluster or to
a momentum mis-measurement, therefore also an upper cut is applied. Clusters closer than
10 cm to each other cannot be distinguished well enough. Because of shower fluctuations, a
pion track can produce clusters also far away from its impact point in the LKr, therefore the
distance to the pion track must be big enough to reduce the probability of overlapping. The
energy resolution below 3 GeV drops fast and the measurement is subject to large non-linear
effects, therefore no clusters below 3 GeV are accepted.

Linear Discriminant Analysis (LDA)

Since about 1% of the pions would survive the tight electron identification described above,
a Linear Discriminant Analysis [122] is added to the selection criteria for Ke4 events. The
linear discriminant analysis is a step-wise method that allows to identify the variables with
the highest discriminating power and to build an optimised linear combination out of them.

The LDA used for the electron identification in this analysis is based on three variables:
E/p, the radial cluster width (RMSr =

√
RMS2

x + RMS2
y) and the normalised radial distance

between track and cluster (dn = d · √p, where d is the distance between the cluster and
the track position extrapolated to the LKr and p the track momentum). Assigning different
weights to these variables, the quantity y can be defined as

y = 39.49729− 82.20312 · E/p+ 32.76240 · RMSr + 1.597024 · dn, (7.1)

where E/p is measured in units of c, RMSr in units of the LKr cell width (2 cm) and dn in
cm·

√
GeV/c. The LDA is a function f(y) that can be applied to any track with an associated

cluster and returns as output a number close to 1 for electrons (see Figure 7.3):

f(y) = 1.000964− 0.9863838 · 1
1 + e−y

(7.2)

For the selection of Ke4 events, the LDA output for the electron candidate is required to
be greater than 0.9, which causes a loss in the acceptance of about 2%.

7.2.4. Differences in the MC selection

In general, the same selection is applied to data and MC events, with the exception of

— trigger mask: a trigger simulation is available, but was not used in the analysis presented
here. Instead, the trigger efficiency is determined from data and applied to the MC as
a correction.

— timing cuts: accidentals are not included in the simulation

— LDA: instead of applying it as a selection criterion, the events are reweighted with its
efficiency as a function of the electron momentum (see Figure 7.3).
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Figure 7.3.: LDA output (upper plots) in logarithmic scale for π+ (left) and π− (right) from
K3π data with complete kinematic selection and tight electron ID (green filled
histogram) and for e+ (left) and e− (right) from K2πD data with complete kine-
matic selection, tight pion ID and tight electron ID (magenta open histogram).
The signal region is indicated by the arrow.
Efficiency of the selection criterion LDA output > 0.9 (lower plots) for π+ (left)
and π− (right) from K3π data with complete kinematic selection and tight elec-
tron ID (green filled circles) and for e+ (left) and e− (right) from K2πD data with
complete kinematic selection, tight pion ID and tight electron ID (magenta open
circles).

7.3. Event reconstruction and background rejection

Further selection criteria, mainly based on kinematic constraints, are applied to each decay
channel in order to obtain a clean signal. They will be presented in the following Sections.
A summary of the selected events, acceptance and background contamination at each stage
can be found in Tables 7.1–7.2. While K3π and K2πD events are assumed to be background
free, for Ke4 decays, the background is estimated using the so-called “wrong sign” events, as
described in Section 7.4.1.

7.3.1. Ke4 events

An event with a good vertex and total charge q can be selected as a Ke4, if it fulfils the
following criteria:
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— one track with charge q is identified as an electron with tight ID and LDA

— one track with charge q and one with charge −q are identified as pions with tight ID

— no LKr clusters with an energy greater than 3 GeV and a distance to any track of the
vertex greater than 20 cm are inside a time window of ±7 ns around the vertex time, if
the hodoscope time is available for all tracks, of ±10 ns otherwise.

The cut against extra clusters in the LKr is used to reduce the background from K2πD and
Kππ0π0

D
decays (see Sections 7.4.5 and 7.4.6), which consist of the same number of charged

particles as Ke4, but contain also photons. Clusters with very low energy or close to a track
are not considered as photon candidates, since they could be originated by shower fluctuations
produced by the pions.

The four-momenta of the decay products are then computed, using for the pion and the
electron momenta the slopes of the tracks at the vertex (output parameters of the Kalman
filter, see Section 5.2.2) and imposing the nominal masses to determine the energy. The
neutrino momentum is obtained as the difference between the momentum of the kaon and
that of the “visible” (detected) particles (π+, π− and e±), where the kaon is assumed to fly
along the z-axis and to have a momentum of 60 GeV/c. The neutrino energy is computed
assuming its mass to be zero. Finally, the following requirements are applied to reduce the
background contamination:

— the missing mass of the system recoiling against the pi±, calculated under the assump-
tion that the K± flies along the z-axis with a momentum of 60 GeV/c, must be greater
than 0.18 GeV/c2

— in the plane m3π (invariant mass of the ππe system, with the energy of the electron
computed assuming the pion mass) vs. pT (transverse momentum of the three visible
particles), the events within an ellipse centred at (0,MK) with semi-axes 25 MeV/c and
10 MeV/c2 are rejected

— the invariant mass of the ππeν system (mKe4) must be within 20 MeV/c2 of the nominal
kaon mass.

The missing mass cut rejects the few remaining K2πD background events (see Section 7.4.5
and Figure 7.4) with a negligible loss in the Ke4 acceptance, while the ellipse cut reduces the
background from K3π decays with pion mis-identification (see Section 7.4.4) with a loss of
about 1% of the Ke4 statistics (see Figure 7.5). The kaon mass cut is used to reject further
K3π background. The poor resolution in the invariant mass, due to the undetected neutrino,
together with the necessity of applying a tight cut to reduce the background contamination
(see Figure 7.6), produces a statistics loss of about 17%, mainly for events with a kaon
momentum far from 60 GeV/c.

In the analysed data sample, 342,859 Ke4 candidates were selected, including the back-
ground contamination that will be estimated below. The acceptance of the complete selection
is estimated from MC to be about 18%, taking into account the LDA efficiency, but without
corrections for those selection criteria where small discrepancies are expected between data
and MC.
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Figure 7.4.: Missing mass of the system recoiling against the pi± for data (black points),
Ke4 MC (magenta open histogram) and background estimated from the wrong
sign events (green filled histogram) in linear (left) and logarithmic (right) scale.
For the wrong sign events the closest value to the nominal π0 mass was chosen.
The complete Ke4 selection, except the missing mass cut, is applied. The signal
region is indicated by the solid line. Wrong sign events on the right side of the
dashed line are scaled by a factor of two. The MC distribution is normalised to
the difference between data and background.
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Figure 7.5.: m3π vs. pT plane for Ke4 MC (left) normalised to the number of signal events
in the data and background estimated from the wrong sign events (right). The
complete Ke4 selection, except the cut in this plane, is applied. The signal region
is outside the ellipse.

7.3.2. K3π events

Since the K3π decay channel has a negligible background, the requirement of a good vertex
and the fulfilling of kinematic constraints is sufficient to obtain a clean sample:

— the three tracks building the vertex must be identified as pions with loose ID

— the transverse momentum (pT ) of the three pions must be less than 25 MeV/c

— the total momentum (pK) of the three pions must be between 50 and 70 GeV/c
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Figure 7.6.: Invariant mass of the ππeν system for data (black points), Ke4 MC (magenta
open histogram) and background estimated from the wrong sign events (green
filled histogram) in linear (left) and logarithmic (right) scale. The complete Ke4

selection, except the mKe4 cut, is applied. The signal region is indicated by the
lines. The MC distribution is normalised to the difference between data and
background.
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Figure 7.7.: Kaon momentum (left) and invariant mass (right) for data (black points) and
K3π MC (open magenta histogram). The complete selection, apart from the cut
in the shown variable, is applied. The signal region is indicated by the lines. The
MC distribution is normalised to the data.

— the invariant mass (m3π) of the three pion system must be within 10 MeV/c2 of the
nominal kaon mass.

The sample of K3π data obtained from the selection described above consists of about 827
million events and is used as a control channel to measure the trigger efficiency and as a huge
sample of clean and unbiased pions, to measure the ID efficiencies. The kaon momentum and
invariant mass distributions for data and MC are shown in Figure 7.7

7.3.3. K2πD events

Due to the additional constraint of the π0 mass, the K2πD events can also be selected very
cleanly, without applying strong requirements on the particle identification. The following
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selection criteria are applied to the events where a vertex with charge q was selected:

— one track with charge q must be identified as a pion with tight ID

— one track with charge q and one with charge −q must be identified as electron and
positron with loose ID

— one LKr cluster must be selected as a photon, i.e. it must have

– energy greater than 3 GeV

– distance from the closest dead cell greater than 2 cm

– distance to any other cluster in the LKr greater than 10 cm

– distance to the position of any non-ghost track extrapolated to the LKr greater
than 20 cm

– radial distance from the beam axis between 15 and 113 cm

– absolute value of the time difference to the vertex time less than 7 ns, if the
vertex time was computed from the hodoscope times of the tracks, less than 10 ns
otherwise

— invariant mass of the eeγ system (mπ0) within 10 MeV/c2 of the nominal π0 mass

— pT of the πeeγ system less than 25 MeV/c

— total momentum (pK) of the four particles between 50 and 70 GeV/c

— invariant mass (mK) of the reconstructed decay products within 20 MeV/c2 of the
nominal kaon mass.

About 7 million events were selected in the analysed data sample, applying the criteria
listed above. For the efficiency measurement of the tight electron ID and of the LDA, only
the electron with charge q is left unbiased and selected with the loose ID, while the sample
is further cleaned by applying the tight ID to the track with charge −q.

7.4. Background estimate

The background contamination of the selected Ke4 events is expected to be dominated by
K3π events and to amount to less than 10−2 of the statistics, due to the high rejection power
of the LDA and of the kinematic cuts.

Two methods allow for a precise estimate of the residual background: the selection of
“wrong sign” events (π±π±e∓

(—)
νe ) in the data and the sum of the expected contributions of

different channels from the MC simulation. The difference between the estimates of the two
methods indicates the size of the systematic uncertainty on the background expectation.
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7.4.1. “Wrong sign” events

Since the branching ratio of the K∆S=−∆Q
e4 decay is expected to be about 10−10 times the

one of the Ke4 decay, no events with the signature π±π±e∓
(—)
νe (called “wrong sign” events,

because the electron has the “wrong” charge with respect to the kaon) are expected to be
correctly reconstructed kaon decays. On the other hand, positive and negative pions have
roughly the same probability to be mis-identified as a positron or an electron, respectively.
The same argument is also valid for electrons and positron mis-identified as pions. Therefore,
the number of π±π±e∓

(—)
νe events in the data corresponds to the background contamination

of the Ke4 events times the relative mis-identification probability. As a first approximation,
the wrong sign events produced by K2πD and Kππ0π0

D
decays do not need any rescaling, while

the ones from K3π have to be multiplied by a factor of two. In order to distinguish between
the two background classes, the missing mass is computed with each of the pions and the one
closer to the nominal π0 mass is considered. If this value is greater than 0.27 GeV/c2, the
wrong sign event is rescaled with a factor of two.

The selection of the wrong sign events is identical to the Ke4 selection, apart from the
application of the tight electron ID and of the LDA to the track with opposite charge with
respect to the vertex. The two tracks with the same charge have to fulfil the tight pion ID.

With this method, a total background contamination (B) of 1, 153 ± 46 (stat) events was
estimated, corresponding to about 0.3% of the signal.

7.4.2. Accidental background

The main contribution to the accidental background is expected to come from the combination
of two pions from a K3π decay and an electron from a Ke3 decay, taking place at the same
time. The following cases have to be considered:

a)
K+ → π+π+ (π−)
K− →

(
π0
)
e− (ν)

}
π+π+e− wrong sign (+)

b)
K+ → π+π− (π+)
K+ →

(
π0
)
e+ (ν)

}
π+π−e+ K+

e4

c)
K− → π+π− (π−)
K+ →

(
π0
)
e+ (ν)

}
π+π−e+ K+

e4

d)
K− → π−π− (π+)
K+ →

(
π0
)
e+ (ν)

}
π−π−e+ wrong sign (−) (7.3)

e)
K− → π−π+ (π−)
K− →

(
π0
)
e− (ν)

}
π−π+e− K−

e4

f)
K+ → π−π+ (π+)
K− →

(
π0
)
e− (ν)

}
π−π+e− K−

e4

In the second column the pairs of original decays are indicated, the undetected particles are
in parentheses. The detected particles are listed in the third column and the kind of event
that can be reconstructed out of them in the fourth one.

Assuming the same geometrical acceptance for K+ and K− decays, the same probability
for the loss of each pion (i.e. the probability to detect both even pions is half of the probability
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Figure 7.8.: Time difference between track and vertex for data (black points) and non-scaled
wrong sign events (green filled histogram) measured with the CHOD (left) or
the DCH (right). The complete Ke4 selection is applied with a wider allowed
window for the time difference between track and vertex. The signal regions are
indicated by the arrows.

to detect one even and one odd pion from the same K3π decay) and the intensity of the K+

beam to be exactly 1.8 times higher than the one of the K− beam, the following relations
can be extracted:

Pb = 2 · 1.8 · Pa,

Pc = 2 · Pa,

Pd = Pa (7.4)
Pe = 2 · 0.56 · Pd = 2 · 0.56 · Pa

Pf = 2 · Pd = 2 · Pa.

It follows that the probability to accidentally reconstruct aKe4 event is about 4.4 times higher
than the one to reconstruct a wrong sign event, considering K+ and K− events together.

The size of the accidental background can be estimated by relaxing the cut on the time
difference between track and vertex and comparing the sidebands of the time difference dis-
tribution with the signal region (see Figure 7.8). The number of events in the sidebands is
supposed to consist of resolution tails, proportional to the number of events in the signal
region, and of accidental background:{

NW
SB = B + r ·NW

NSB = 4.4 ·B + r ·N , (7.5)

where NSB is the number of Ke4 candidates in the sidebands, N the number of Ke4 candi-
dates in the signal region, B the expected background contribution and r the proportionality
constant between resolution tails and number of events in the signal region. The superscript
W indicates wrong sign events.

Reading the values of the various Ns from the distributions shown in Figure 7.8 and deter-
mining r and B for each of the two time distributions separately, the expected contribution
from the accidental background consists of 27+5

−4 (stat) Ke4 events, while r is of the order of
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Figure 7.9.: Missing mass (left) and mKe4 (right) distributions for the expected background
contamination from K3π events with a pion decaying to eν. The estimate has
been performed using MC events with complete Ke4 selection, except the cut on
the displayed variable. The LDA efficiency computed from the data has been
applied. The distribution are normalised to K3π decays, according to the π → eν
branching ratio. The solid lines indicate the signal region, while the dashed line
separates the regions where different scaling factors are applied to the wrong sign
events.

10−3. Since not all the events in the tails of the time distribution are actually background
events, it is not possible to obtain an expected distribution, for example in mKe4 . If the
assumption on its origin is correct, the accidental background is supposed to have values of
the missing mass above the 2π threshold and to be flatly distributed in mKe4 .

7.4.3. K3π with π → eν

The decay K3π with a pion decaying in flight into eν can not be easily distinguished from
Ke4, since in both cases the invariant mass corresponds to the nominal kaon mass (see Figure
7.9) and the presence of a neutrino assures a high transverse momentum. On the other hand,
the branching ratio of the π → eν decay is (1.230 ± 0.004) × 10−4 [13] and the probability
that a pion decays in flight before the end of the magnetic spectrometer is of the order of a
few percent, so that the background contamination from this channel is expected to be at
most a few times 10−3 of the signal.

Applying the completeKe4 selection to MC events, including the LDA efficiency determined
from the data, the expectation value of the background contamination was estimated to be
544± 7 (stat)± 2 (syst) events, with a scaling factor with respect to the wrong sign events of
the same MC sample compatible with two. All the selected events have values of the missing
mass above 0.27 GeV/c2, i.e. they are in the region where the background is assumed to
consist mainly of K3π events. The systematic uncertainty on the estimate is dominated by
the uncertainty on the branching ratio measurement used for the scaling.

7.4.4. K3π with pion mis-identification

The background from K3π decays, where one even pion is mis-identified as an electron, is the
most dangerous one, since the K3π branching ratio is more than 1000 times higher than the
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Figure 7.10.: Missing mass (left) and mKe4 (right) distributions for the expected background
contamination from K3π events with a pion mis-identified as electron. The esti-
mate has been performed using MC events with complete Ke4 selection, except
the cut on the displayed variable (filled histogram) and without the elliptical
cut in the m3π vs. pT plane (open histogram). Corrections and particle identifi-
cation efficiencies computed from the data have been applied. The distributions
are normalised to the kaon flux. The solid lines indicate the signal region, while
the dashed line separates the regions where different scaling factors are applied
to the wrong sign events.

one of the Ke4 decay and about 1% of the pions are identified as electrons by the tight electron
ID. Without any further reduction the signal to background ratio would be worse than one
to ten. A significant reduction of the background contamination is obtained with the LDA
cut, that rejects about 89% of the K3π events (the rejection power of a cut is estimated after
applying all the other selection criteria). The most important rejection criteria are otherwise
the elliptical cut in the m3π vs. pT plane (95%) and the mKe4 cut (96%), as shown in Figure
7.10.

K3π MC events were selected as Ke4 decays, requiring only the loose ID for the electron.
The mis-identification probabilities for pions to be selected by the loose electron ID, tight
electron ID and LDA, respectively, were measured in a high statistics sample of selected K3π

data with loose pion ID, as a function of the pion momentum. For the loose electron ID, the
mis-identification probability was also determined in selected K3π MC events. A correction
for the loose electron ID was computed from the ratio of the probabilities for data and MC
and applied to the MC events selected as Ke4, together with the efficiencies for tight ID and
LDA from the data. Furthermore, an overall correction for the different probability in data
and MC for a K3π event to be outside of the ellipse in the m3π vs. pT plane was applied.

The background contribution from K3π decays with a mis-identified pion was estimated
to be of 501 ± 19 (stat) ± 1 (syst) events. This is a factor of 2.33 ± 0.15 (stat) ± 0.01 (syst)
more than the wrong sign events selected in the same MC sample. The discrepancy from the
expected factor of two is due to the different rejection power of the LDA cut for π+ and π−

(see Figure 7.3). Most of the events have a missing mass greater than 0.27 GeV/c2, with the
exception of a small resolution tail.
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Figure 7.11.: Missing mass (left) and mKe4 (right) distributions for the expected background
contamination from K2πD events with an electron mis-identified as a pion. The
estimate has been performed using MC events with complete Ke4 selection,
except the cut on the displayed variable. Corrections and efficiencies computed
from the data have been applied. The distributions are normalised to the kaon
flux. The solid lines indicate the signal region, while the dashed line separates
the regions where different scaling factors are applied to the wrong sign events.

7.4.5. K2πD

A K2πD event can be selected as a Ke4 candidate, if an electron is mis-identified as a pion
with the tight ID. The K2πD branching ratio is about 60 times higher than the Ke4 branching
ratio, while the mis-identification probability of an electron into a pion, selected with the tight
ID, is of the order of 0.1%. Therefore the background contribution from this channel would
be of a few percent, if no rejection criteria were applied. A very powerful cut against this
background contribution is the missing mass criterion: for a K2π decay, mK−π is supposed
to have a value close to the nominal π0 mass, while almost no Ke4 signal is expected in this
region. The missing mass cut rejects about 94% of the K2πD background. Furthermore, the
assignment of the pion mass to an electron, while in most of the cases a low energetic photon
is lost, lead to a value of mKe4 higher than the nominal kaon mass. Therefore the mKe4 cut
rejects 96% of the K2πD background contamination (see Figure 7.11). The AKL and extra
cluster cuts have a rejection power of 17% and 64%, respectively.

After the completeKe4 selection, applying the LDA efficiency and the electron mis-identification
probability computed from K2πD data as a function of the momentum and normalising to the
K3π events, only 0.8± 0.4 (stat) events are expected to remain in the data, with a negligible
systematic uncertainty. The scaling factor between wrong sign events and Ke4 candidates is
compatible with one.

7.4.6. Kππ0π0
D

The branching ratio of the decay Kππ0π0 is about a factor ten smaller than the two-pion decay,
while the probability that one of the two π0s decays Dalitz is two times higher. Therefore, the
background contamination from this channel is expected to be below the percent level, even
without further reduction. On the other hand, the cut on the missing mass has no rejection
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Figure 7.12.: Missing mass (left) and mKe4 (right) distributions for the expected background
contamination from Kππ0π0

D
events with an electron mis-identified as a pion.

The estimate has been performed using MC events with complete Ke4 selection,
except the cut on the displayed variable. Corrections and efficiencies computed
from the data have been applied. The distributions are normalised to the kaon
flux. The solid lines indicate the signal region, while the dashed line separates
the regions where different scaling factors are applied to the wrong sign events.

power, since the expected value is at least twice the π0 mass. The mKe4 cut rejects only 81%
of the events, since it is more probable to exactly compensate the higher mass given to the
electron with the energy loss of the three undetected photons (see Figure 7.12). The most
powerful rejection criteria against this background contamination are the AKL and extra
cluster cuts, with a rejection power of 76% and 97% respectively.

The background contamination after the Ke4 selection is expected to consist of 4.2 ±
0.8 (stat) ± 0.2 (syst) events. The same corrections and efficiencies computed from the data
and the normalisation to the K3π events have been applied, as for the K2πD background.
The scaling factor between wrong sign events and Ke4 candidates is compatible with one.

7.4.7. Total background estimate with systematic uncertainty

The total expected background from MC simulation and accidental superposition of two
events is of 1, 077± 21 (stat)± 2 (syst) events, i.e. 76± 51 events less than the estimate from
the scaled wrong sign data. The main contributions come from theK3π decays, about half of it
is due to the decay π → eν and the other half to the mis-identification of a pion. Comparing
the distributions of the wrong sign events and of the background contamination with the
corresponding expectation from the MC simulation (see Figure 7.13), a small discrepancy
can be observed, probably due to the underestimation of the K3π background with pion mis-
identification. With an acceptance for the Ke4 selection applied to K3π MC events of about
2×10−7, it is not surprising that the MC simulation, even corrected for the expected different
efficiencies in the particle identification, does not describe perfectly the shape of the data.
For the K3π events with a pion decaying into eν, the discrepancy between data and MC could
be due to the different resolution of the vertex reconstruction (the electron track should not
match the vertex built by the two pions and the χ2 of the vertex is expected to be high), but
this effect is expected to be smaller than in the case of pion mis-identification.
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Figure 7.13.: Upper plots: missing mass (left) and mKe4 (right) for wrong sign events in data
and in the 4 MC channels expected to contribute to the background.
Lower plots: mKe4 in logarithmic (left) and linear (right) scale for the expected
background from scaled wrong sign events and Ke4 candidates in MC.
The accidental background is not included.

For the fit of the form factors, the wrong sign events assure a better description of the back-
ground shape as a function of the kinematic variables, since they have the correct resolution.
This could be biased in the MC, due to the many corrections that have to be applied. The
wrong sign events were scaled with a factor of two and the MC estimate indicated that the
correct scaling factor would be 2.13± 0.15 (stat)± 0.01 (syst). The difference of 0.13 between
the scaling factors is considered as a systematic uncertainty on the background estimate,
even if they are compatible with each other within their uncertainty. Therefore the total
background is estimated to be of 1, 153± 46 (stat)± 100 (syst) events, where the differences
between the two estimates in the total number of events and in the scaling factors have been
taken as the systematic uncertainty. All background distributions will be obtained from the
scaled wrong sign events.

7.5. Summary of selected events, acceptance and background
contamination

The numbers of signal events at different stages of the selection are shown in Table 7.1 for
data and in Table 7.2 for MC. The indicated selection criteria are applied consecutively and
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the actual cut values may be different for different channels, in particular in the particle ID,
as explained in Section 7.2. pK indicates the requirements in the transversal momentum and
in the total momentum for K3π and K2πD, while the ellipse cut is applied in Ke4. In the
data, the electron ID in Ke4 includes the LDA cut, while in the MC only the tight electron
ID is applied. No efficiencies or corrections are applied to the MC, so that it is possible to
compute a raw acceptance from Table 7.2, but it does not correspond to the correct value to
be used for the branching ratio measurement. In Table 7.1, the number of selected wrong sign
events (without scaling) is also reported. Since preselection and vertex selection are identical
for the two samples, wrong sign events can be distinguished from Ke4 candidates only after
applying the particle ID.

Selection criteria Ke4 data K3π data K2πD data wrong sign

Preselection 1,831,064,965 1,868,827,103 973,932,088 1,831,064,965

Vertex selection 837,839,517 847,838,455 472,141,464 837,839,517

Particle ID 1,646,702 840,021,593 7,474,496 616,173

Extra clusters 1,615,633 — — 597,489

Missing mass 1,609,695 — — 592,723

pK or ellipse cut 424,254 830,257,285 6,942,473 4,963

Invariant mass(es) 342,859 827,349,934 6,753,756 655

Table 7.1.: Selected signal events in different data channels and wrong sign events at different
stages of the selection. No number is given (“—”) if a criterion is not applied to
a certain decay.
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7. Event selection and reconstruction

Selection criteria Ke4 MC K3π MC K2πD MC

Generated 79,268,452 280,226,389 141,211,540

Preselection 44,198,354 197,195,678 56,435,356

Vertex selection 21,311,919 89,662,445 11,651,759

Particle ID 18,264,173 89,631,938 8,937,659

Extra clusters 17,936,319 — —

Missing mass 17,899,897 — —

pK or ellipse cut 17,712,930 89,498,433 8,607,193

Invariant mass(es) 14,635,604 89,318,467 8,405,964

Table 7.2.: Selected signal events in different MC channels at different stages of the selection.
No number is given (“—”) if a criterion is not applied to a certain decay. As
generated events, only the ones inside the decay volume are considered.
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8. Fit method

After computing the necessary kinematic variables (see Section 8.1), the fit of the form factors
is performed by comparing the five-dimensional distributions of data and MC in the Cabibbo-
Maksymowicz variables. In order to avoid fake dependencies due to discrepancies between
data and MC, corrections are applied to the MC distribution (see Sections 8.3). A binned
maximum likelihood fit is then performed in two iterations (see Sections 8.4–8.6).

8.1. Computation of the Cabibbo-Maksymowicz variables

The main issue in the computation of the kinematic variables is the loss of precision (see also
Section 6.4.1) due to the Lorentz boost back into the rest frame of a 60 GeV energy kaon. The
resolution problem is worsened by the assumption that all kaons have a momentum of exactly
60 GeV/c and fly along the z axis. For the computation of the ππ and eν invariant masses,
the momenta do not need to be boosted back, but the same resolution problem appears in
the extraction of small differences out of big numbers. Since the kaons are flying almost in
the z direction, instead of computing the mass squared as a difference between the energy
and the total momentum (both dominated by the z component of the momentum), a Taylor

expansion is used. The ratios p2
x

p2
z
, p2

y

p2
z

and M2
π

p2
z

are in general very small (at most of the order
of 10−5), so that an expansion up to the linear terms around zero is sufficient. The invariant
mass squared of the two pion system is therefore computed as [123]

sπ ' 2M2
π − 2p1xp2x − 2p1yp2y +

p2z

p1z

(
p2
1x + p2

1y +M2
π

)
+
p1z

p2z

(
p2
2x + p2

2y +M2
π

)
, (8.1)

where p1 and p2 are the momenta of the two pions. The z components of the momentum
appear only as factors and not anymore in a subtraction. Furthermore, the ratio of the z
components is of order one and all the terms are of the same order of magnitude.

The same formula is used also for the eν invariant mass, but instead of considering it as
a sum of electron and neutrino, it is computed as the difference between the kaon and the
dipion system. Otherwise the problem of obtaining a small difference from big numbers would
appear in the computation of the neutrino momentum.

se ' M2
K + sπ + 2pKxp2πx + 2pKyp2πy

− p2πz

pKz

(
p2

Kx + p2
Ky +M2

K

)
− pKz

p2πz

(
p2
2πx + p2

2πy + sπ

)
, (8.2)

where pK is the kaon momentum, set to (0,0,60 GeV/c), and p2π the momentum of the dipion
system.

The angles θπ and θe are reconstructed by boosting the four-vectors first into the kaon rest
frame and then into the required dipion or dilepton system. θπ is the angle between the pion
with the same charge as the kaon in the dipion rest frame and the ππ system in the kaon
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8. Fit method

rest frame, θe the angle between the electron or positron in the dilepton rest frame and the
eν system in the kaon rest frame.

In order to reconstruct the angle φ, the vectors ~v, ~c and ~d are introduced [45]: ~v is the
direction of flight of the dipion system in the kaon rest frame; ~c is a unit vector along the
projection of the pion with the same charge as the kaon in the dipion rest frame and is
perpendicular to ~v; ~d is a unit vector along the projection of the electron or positron in the
dilepton rest frame and is perpendicular to ~v. φ is then obtained from the following relations:

cosφ = ~c · ~d, sinφ = (~c× ~v) · ~d. (8.3)

For the generated values, exactly the same method is used, starting from the momenta of
the particles in the laboratory frame saved in the SuperCOmPACT variables and computing
the energies with the nominal masses. This is more precise than using the stored values also
for the energies.

8.2. Preliminary checks

The checks presented in this Section were performed on a Ke4 MC sample generated with
the form factor parametrisation reported in Appendix A and the following values of the
parameters [35]:

fs = 5.75 , f ′s = 1.06
f ′′s = −0.59 , fe = 0

f̃p = 0 , gp = 4.66
g′p = 0.67 , ge = 0 (8.4)

hp = −2.95 , h′p = 0

a0
0 = 0.216.

The number of selected events in MC is about 42 times the data statistics.

8.2.1. Acceptance

The acceptance as a function of each kinematic variable (integrating over the others) is shown
in Figure 8.1. It is mostly a smooth function, slowly decreasing to zero at high values of sπ

and se. The requirement of a minimum distance between the tracks in DCH1 determines the
steep slope at the sπ threshold. Since the sensitivity to a0

0 increases with sπ, it is important
that the acceptance does not vanish too fast. The measurement of a0

0 is obtained from
the asymmetry in the φ distribution, so that any fake asymmetry due to the geometrical
acceptance would bias this measurement. As can be seen in the lowest plot of Figure 8.1,
the acceptance is almost flat in φ and symmetric around π, so that no fake asymmetry is
expected to be introduced.

8.2.2. Resolution

The five-dimensional space of the Cabibbo-Maksymowicz variables is divided into equal
spaced bins, whose number depends on the resolution in each variable. The difference be-
tween the reconstructed and the generated values of the kinematic variables is computed for
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Figure 8.1.: Selection acceptance as a function of the Cabibbo-Maksymowicz variables ex-
tracted from Ke4 MC.

each MC event and the resolution is defined as the RMS of these distributions (see Figure
8.2).

In order to reduce the effect of possible discrepancies in the resolution between data and
MC, without losing sensitivity, a bin width equal to about three times the resolution was
chosen, when possible. This leads in se, cos θπ and cos θe to 8, 10 and 8 bins, respectively.
In sπ this criterion would lead to more than 40 bins and in φ to 5. In order to have a total
number of bins below 200,000, sπ was subdivided into 15 bins (having a width of about ten
times the resolution). On the other hand, to precisely measure an asymmetry in φ, more
than 5 bins are needed. It was decided to have 14 bins, as wide as the resolution in φ.

In conclusion, the fit was performed dividing the five-dimensional space into 15× 8× 10×
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Figure 8.2.: Difference between the generated and the reconstructed values of the kinematic
variables obtained from Ke4 MC.

8 × 14 = 134, 400 bins, of which only about 50,000 are populated, because of the kinematic
constraints and of the acceptance.

The data and MC plus background distributions in the Cabibbo-Maksymowicz variables
before the fit are shown in Figure 8.3.

8.3. Corrections applied to the MC

Since the trigger simulation was not included in the MC and the efficiencies of the E/p
and LDA cuts are not well reproduced, some efficiencies and corrections computed from
independent data samples are applied to the MC. The choice of applying all corrections to
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Figure 8.3.: Data (black points), MC (magenta open histogram) and background (green filled
histogram) projected distributions in each of the kinematic variables before the
fit. The MC was generated with the form factor parameters listed in Eq. 8.4 and
is normalised to the expected number of signal events.

the MC and not to the data assures that the statistical uncertainty on the fitted parameters
originates only from the data statistics, while all other uncertainties have to be evaluated
separately and included into the systematic uncertainty.

8.3.1. Trigger efficiency

Since the Ke4 data statistics collected by the control triggers is not sufficient to compute the
trigger efficiency as a function of the sensitive variables, other decay channels with higher
statistics have to be used. In order to reduce the overall inefficiency and therefore also the
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Figure 8.4.: L1 trigger efficiency as a function of the minimum distance between the radial
positions of the tracks in the selected vertex extrapolated to the LKr and the
centre of the beam pipe. The efficiency was determined from K3π data events
triggered by N-MBIAS and selected with kinematic cuts and loose pion ID.

possible discrepancy between different channels, special selection criteria were applied, like
the cut in the distance between the two-track vertices or in the radial position of the tracks at
DCH1. Furthermore, for each trigger component, a quantity is considered, that is supposed
to be sensitive to the efficiency of that component and not correlated to the others.

The efficiency of the L1 trigger C-PRE (see Section 4.1) was measured from K3π data
events triggered by the N-MBIAS trigger and selected with kinematic cuts and loose pion ID.
The N-MBIAS trigger is expected to be completely uncorrelated to the C-PRE trigger, since
the first requires signals in the neutral hodoscope, that correspond to electromagnetic showers
in the calorimeter, while the latter requires signals in the charged hodoscope, produced by
charged particles. The total efficiency of the C-PRE trigger was found to be (99.236±0.008)%,
where most of the inefficiency (about 0.6%) is due to the random veto of the AKL bit. This
inefficiency is not considered to be dangerous for the measurement of the form factors, since it
is only expected to produce a reduction of the total statistics, without any strong dependence
on the kinematics of the event. The inefficiency of the CHOD (and therefore of the Q1 and
Q2 bits) depends instead on the radial position of the track and is higher for tracks close to
the beam pipe. The L1 trigger efficiency was measured as a function of the minimum radial
distance between the positions of the track extrapolations and the centre of the beam pipe
at the LKr, called min(rLKr) (see Figure 8.4). The position at the LKr can be used instead
of the one at the CHOD, since the two detectors are very close to each other in z and no
deflection takes place in between.

The L2 trigger condition consists of the three massbox bits 2VTX, 1VTX and 1TRK-P
(see Section 4.2.2). Due to the structure of the MBX algorithm (see Figure 4.3), all events go
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Figure 8.5.: L2 trigger efficiency as a function of the minimum distance between the z po-
sitions of the two-track vertices. The efficiency was determined from K3π data
events triggered by C-PRE and selected with kinematic cuts and loose pion ID.
The cut in min(∆z2) was relaxed. The standard value of the cut is indicated
by the arrow. The contribution of the three trigger components are shown in
different colours.

through the 2VTX selection, where they are either flagged, or passed to the 1VTX selection.
Again, the flagged events are not further analysed and only the ones that do not fulfil any of
the previous conditions undergo the 1TRK-P selection. In this way, no events can have more
than one flag and the next bit is used to compensate the inefficiencies of the previous one.

Two variables are expected to be sensitive to the trigger selection: the minimum distance
between the two-track vertices that can be built out of the tracks in the selected vertex
(called “min(∆z2)”) and sπ. The first variable is particularly sensitive to the 2VTX trigger
efficiency and the second one to the 1VTX bit, so that they are not correlated with each
other. Because of the MBX algorithm, in both cases the total L2 efficiency (with the three
bits) is considered, so that the compensation mechanism can take place and the efficiency
dependence on the variable is reduced.

The trigger efficiency as a function of min(∆z2) was measured from K3π data events
triggered by the C-PRE trigger and selected with kinematic cuts and loose pion ID (see
Figure 8.5). The total L2 trigger efficiency for the K3π events is (99.126 ± 0.003 (stat))%:
almost 92% of the events is triggered by the 2VTX trigger, about 6.5% by 1VTX and less
than 1% by 1TRK-P.

The dependence of the trigger efficiency on sπ can not be tested with the same data sample,
since K3π events can not have values of sπ greater than (MK −Mπ)2 ' 0.125 (GeV/c2)2,
while the range covered by Ke4 events reaches the kaon mass squared. Therefore, a sample
of K2πD events was used (see Figure 8.6). The events were triggered by the C-PRE trigger
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Figure 8.6.: L2 trigger efficiency as a function of sπ. The efficiency was determined from
K2πD data events triggered by C-PRE and selected with kinematic cuts and
loose electron ID. The contribution of the three trigger components are shown in
different colours.

and selected with kinematic cuts and loose particle ID. sπ was computed assigning the pion
mass both to the pion and to the lepton with the opposite charge. In this way, even values of
sπ higher than the kaon mass squared could be obtained, but they have a very low efficiency
and they are not interesting for the application to Ke4 decays. Therefore the requirement sπ

less than 0.225 (GeV/c2)2 was applied, leading to a total L2 trigger efficiency for this K2πD

sample of (98.15±0.06 (stat))%. The total efficiency and relative size of the three components
are similar, but not identical, to the ones of the K3π sample: 90% of the events are flagged
by 2VTX, 6% by 1VTX and 2% from 1TRK-P.
Ke4 events have a total L2 efficiency, measured directly from selected Ke4 data triggered

by C-PRE, of (99.3±0.1 (stat))%, consisting of 91.5% 2VTX, 6.7% 1VTX and 1.1% 1TRK-P.
Both total efficiency and composition are closer to the K3π events than to the K2πD decays,
as expected from the topology of the events.

8.3.2. Electron identification

The LDA efficiency is determined from K2πD data events (see Figure 7.3) and applied to the
Ke4 MC. Furthermore, two corrections are applied, in order to take into account the possible
discrepancies between data and MC in the efficiency of the tight electron ID and the effect
of the different topology of K2πD and Ke4 events of the LDA efficiency.

The first correction was determined from K2πD data and MC selected with kinematic cuts
(see Section 7.3.3), tight pion ID and loose electron ID for the two tracks with the same charge
as the kaon and tight electron ID for the remaining one. The efficiency of the tight electron
ID with respect to the loose one as a function of the electron momentum was measured
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Figure 8.7.: Correction to be applied to MC events to account for the discrepancy with the
data in the efficiency of the tight electron ID. The correction was determined from
K2πD as the ratio of the efficiencies in data and MC for e+ (left) and e− (right).
The events were selected with kinematical cuts, tight pion ID, loose electron ID
for the considered electron and tight electron ID for the other one.

separately for electrons and positrons (see Figure 8.7). The correction is the ratio between
the efficiencies in data and in MC. Since the tight electron ID consists mainly of the E/p
cut (see Section 7.2.3), this correction accounts for the discrepancy in the energy deposit of
the electromagnetic showers in the LKr and in the energy resolution between data and MC.
As expected, the only sizeable effect appears at low electron and positron momenta, below 5
Gev/c.

The second correction was determined from Ke4 and K2πD MC events selected with tight
particle ID, but without LDA. The ratio of the LDA efficiencies as a function of the electron
momentum in the two samples was used as correction (see Figure 8.8). Even if the efficiency
of the LDA obtained from the MC does not agree with the one determined from the data, the
ratio of the two efficiencies is expected to differ from one only because of topological effects
and to reflect therefore the ratio that would be obtained in the data. This correction differs
from one at most at low momenta, by about 1%.

8.3.3. Pion identification

In analogy to the electron selection, a correction is applied to also take into account the dif-
ferent efficiencies of the tight pion selection in data and MC. The efficiencies were determined
as a function of the pion momentum, separately for π+ and π−, from K3π events selected with
kinematic cuts and loose pion ID. The ratio of the data efficiency over the MC one was used
as correction (see Figure 8.9). As for the tight electron ID, the main discrepancy between
data and MC is due also in the tight pion ID to the different efficiencies of the E/p cut.

The shape of the ratio between the two efficiencies, oscillating at high momenta is due to
the use of the shower libraries in the MC simulation. As can be seen in Figure B.1, the data
efficiency has a smooth shape, as expected, while the oscillating values appear only in the
MC efficiency.
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Figure 8.8.: Correction to be applied to MC events to account for the different LDA efficiency
between K2πD and Ke4 events. The correction was determined from K2πD and
Ke4 MC as the ratio of the LDA efficiencies for e+ (left) and e− (right). The
events were selected with kinematical cuts and tight particle ID.
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Figure 8.9.: Correction to be applied to MC to account for the discrepancy with the data
in the efficiency of the tight pion ID. The correction was determined from K3π

events as the ratio of the efficiencies in data and MC for π+ (left) and π− (right).
The events were selected with kinematical cuts and loose pion ID.

8.3.4. Total weight

For each event a total weight wtot = weff × wcorr is computed as the product of all the
efficiencies and corrections mentioned above:

weff (min(rLKr),min(∆z2), sπ, pe, q) = εL1(min(rLKr))× εL2(min(∆z2))
×εL2(sπ)× εLDA(pe, q) (8.5)

wcorr(pe, pπ, q) = cE/p(pe, q)× cLDA(pe, q)× cE/p(pπ, q),

where the values of the efficiencies εL1(min(rLKr)), εL2(min(∆z2)), εL2(sπ), εLDA(pe, q) and
of the corrections cE/p(pe, q), cLDA(pe, q), cE/p(pπ, q) are taken from Figures 8.4, 8.5, 8.6, 7.3
(lower plots), 8.7, 8.8 and 8.9, respectively.

The distributions of selected Ke4 MC events in the variables min(rLKr), min(∆z2), pe and
pπ are shown in Figure B.2. In two cases (min(rLKr) and pπ) the samples used to compute
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the efficiency or the correction did not cover the whole range necessary for the Ke4 events.
For events with min(rLKr) above 69 cm, εL1 was set to 1, with the same uncertainty as the
last available bin. The same procedure was applied, for cE/p, to the events with pπ greater
than 40 GeV.

The L2 efficiency εL2 appears twice in weff : while the dependence on the two variables is
not correlated, so that the multiplication of the two efficiencies is justified, the total efficiency
is at the end counted twice. This does not affect the measurement of the form factors as it
is performed in this analysis, but would have to be corrected for if at the same time also the
branching ratio (or the value of fs) would be extracted from the fit.

The effect of the corrections applied to the MC distributions is shown in Figure 8.10.

8.4. Fit strategy

In order to compare the distributions in the kinematic variables and extract the values of the
parameters, six five-dimensional histograms with 134,400 bins each are filled, separately for
K+ and K−, with:

— Ke4 MC events selected without LDA requirement and without any correction

— Ke4 data events with complete selection

— background estimated from scaled wrong sign events.

Since most of the statistics is concentrated in a small region of the five-dimensional space,
while many bins are almost empty, all the bins containing less than 20 MC events are marked
as “empty” and ignored in the fit procedure. Since in the MC the statistics is more than
40 times higher than in the data, only bins with an expected content below 0.5 data events
are neglected by this requirement. The introduction of the threshold is aimed to reduce
the dependence of the fit result from statistical fluctuations of the MC distribution. The
corrections described in the previous Sections and the LDA efficiency are then applied to the
MC events in non-empty bins and the content of the background histogram is added to that
of the MC.

The distributions of data and MC plus background are compared and the agreement be-
tween them is measured by the extended likelihood function in the case of binned data [124]:

L(θ) =
N∏

i=1

[νi(θ)]
ni

ni!
e−[νi(θ)], (8.6)

where ni and νi are the observed and expected number of events in bin i, respectively, N is the
number of considered bins and θ the vector of the parameters to be optimised in the fit. The
values of νi depend on θ, while the ni’s are fixed, since they are experimentally measured. The
result of the fit is given by the vector of parameters that maximises the likelihood function. In
order to simplify the calculation, without modifying the result, instead of L(θ), its logarithm
is maximised, while the terms not depending on the parameters, i.e. containing only ni and
not νi, are neglected:

logL(θ) =
N∑

i=1

−νi + ni log νi + const. (8.7)
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Figure 8.10.: Effect of the LDA efficiency (magenta circles) and of all the corrections (black
triangles), including the LDA efficiency on the Ke4 MC distributions in the
kinematic variables, expressed as the ratios between the reweighted and the
uncorrected distributions.

The extended likelihood function is based on the assumption of Poisson distributed values of
ni around νi, which is correct also for bins containing very few or even zero data events as is
the case in the present fit. A χ2 fit, assuming a Gaussian distribution of the bin contents, is
instead suitable for histograms with a high number of entries per bin.

The maximisation of logL, or actually the minimisation of − logL, is done numerically
using the MIGRAD routine of the MINUIT package [125], based on a variable metric method.
The first derivatives Gi are computed at the starting values Xi of the parameters and the
covariance matrix Vij is first assumed to be the unit matrix. The first estimation of the
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8.5. Raw result of the first iteration

minimum is made by taking a “Newton step” to the values X ′
i = Xi −

∑
j Vij ·Gj , that

correspond to the minimum of the function under the assumption that it is quadratic and
that Vij is the correct covariance matrix. X ′

i is then taken as the vector of starting values
for the parameters, the gradient at the new point is calculated, the covariance matrix is
updated and a further Newton step is taken. This procedure is repeated until the convergence
criteria are satisfied. The convergence is given by the Estimated Distance to Minimum,
EDM = GT × V ×G, and is required to be less than 10−4 in order to stop the minimisation
process.

The uncertainties on the fitted parameters are given by the difference between the values at
the minimum and the ones for which − logL = − logLmax +0.5, where Lmax is the maximum
of the likelihood function. The function − logL is assumed to be a parabola around the
minimum.

Each time − logL is computed, the MC histograms are filled, assigning to each event
a weight given by the ratio of the differential decay rates computed with the considered
parameter values and with the values used in the MC generation. This procedure is very
CPU-time consuming, because the decay rate has to be computed about 14 million times
for each determination of the likelihood function and in a standard fit − logL needs to be
estimated about 400 times. K+ and K− events are fitted simultaneously, imposing the form
factor parameters to have the same value, but keeping separated histograms.

8.5. Raw result of the first iteration

The first iteration of the fit was performed using a MC sample generated with the parameter
values in Eq. 8.4. Since the Ke4 branching ratio was not measured in the analysis presented
here, fs could not be determined and was therefore included in the normalisation N , that
was considered as a free parameter.

As a first try, only 6 further parameters were varied: f ′s/fs, f ′′s /fs, gp/fs, g′p/fs, hp/fs and
a0

0. The other parameters of the polynomial part were set to zero, while a2
0 was fixed by the

constraint of Eq. 2.67 as a function of a0
0. All the varied parameters were different from zero

with a sensitivity of more than three times the statistical error (σstat). The parameters fe/fs,
f̃p/fs, ge/fs and h′p/fs were then varied one at a time, in order to check the sensitivity of the
measurement to each of them. The first two parameters were significantly different from zero,
so that they were added to the vector of free parameters, while the last two were compatible
with zero.

Since Eq. 6.2 is just a Taylor expansion of a partial wave expansion, further terms can be
added, both as higher order polynomials or in the D-wave. The following polynomial terms
were tried out:

f ′′′s
fs
q6eiδ

0
0(sπ),

f ′e
fs

s2
e

16M4
π
eiδ

0
0(sπ),

fes

fs
q2 se

4M2
π
eiδ

0
0(sπ), (8.8)

f̃ ′p
fs
q2σπX cos θπe

iδ1
1(sπ),

g′′p
fs
eiδ

1
1(sπ).
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8. Fit method

Parameter 1st iter. σstat 2nd iter. σstat

f ′′′s /fs 0.057 ±0.035 0.065 ±0.035

fes/fs −0.043 ±0.115 0.006 ±0.116

f̃ ′p/fs −0.027 ±0.051 −0.033 ±0.052

g′′p/fs 0.069 ±0.042 0.059 ±0.042

ge/fs 0.063 ±0.078 0.063 ±0.079

gd/fs −0.008 ±0.020 −0.004 ±0.020

h′p/fs −0.022 ±0.127 −0.017 ±0.127

Table 8.1.: Fitted values of the parameters added one by one to the standard set of param-
eters in the first (second column) and second (fourth column) iteration of the fit,
performed with MC samples generated with the parameter values in Eqs. 8.4 and
8.11, repectively. The statistical uncertainties in the third and fifth column, take
into account only the data statistics and the correlations.

Only the parameter f ′e/fs was found to be different from zero with a sensitivity of at least
3σstat, while all the others were compatible with zero. The D-wave term in the G form factor

gd

fs
σπX cos θπe

iδ0
2(sπ), (8.9)

with [126]

tan δ02 =

√(
1− 4M2

π

sπ

)5

·
(
0.0018 + 0.0031q2 + 0.0008q4

)
·
(

4M2
π − 83.5067M2

π

sπ − 83.5067M2
π

)
(8.10)

was also varied and found to be compatible with zero within one σstat. The fitted values of
all the tested parameters compatible with zero are listed in Table 8.1.

Varying all the parameters for which the fit was found to be sensitive and fixing all the
others to zero, the values and the statistical uncertainties listed in Table 8.2 were obtained.
The χ2 was computed at the minimum of − logL and found to be 64977 for 63494 degrees
of freedom. The number of degrees of freedom (ndf) is given by the number of bins above
threshold minus the number of free parameters. The parameter values have to be corrected
for the bias possibly introduced by the log-likelihood maximisation, that can be obtained by
fitting a MC sample as “pseudo-data” and comparing the fit result with the true values used
for the generation (see Section 9.1). In Figure 8.11 the ratios between the data and MC plus
background distributions as a function of the Cabibbo-Maksymowicz variables are displayed
before and after the fit.
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8.6. Raw result of the second iteration

Parameter 1st iter. 2nd iter. σstat σ+
MINOS σ−MINOS

N 0.850 0.870 ±0.006 +0.0065 −0.0064

f ′s/fs 0.135 0.145 ±0.013 +0.0134 −0.0133

f ′′s /fs −0.046 −0.054 ±0.013 +0.0133 −0.0133

fe/fs 0.252 0.259 ±0.051 +0.0514 −0.0511

f ′e/fs −0.615 −0.629 ±0.170 +0.1703 −0.1709

f̃p/fs −0.112 −0.103 ±0.013 +0.0134 −0.0133

gp/fs 0.897 0.889 ±0.012 +0.0124 −0.0124

g′p/fs 0.110 0.117 ±0.015 +0.0153 −0.0153

hp/fs −0.398 −0.397 ±0.028 +0.0284 −0.0285

a0
0 0.244 0.246 ±0.009 +0.0088 −0.0091

Table 8.2.: Raw results of the first (second column) and second (third column) iteration of the
fit, performed with MC samples generated with the parameter values in Eqs. 8.4
and 8.11, respectively. The statistical uncertainties in the fourth column, equal
for both iterations, take into account only the data statistics and the correlations
between the parameters. In the fifth and sixth column the uncertainties estimated
by the MINOS routine in the second iteration of the fit are listed.

8.6. Raw result of the second iteration

A new MC sample, of the same size as the previous one, was generated including the new
term and using parameter values close to the result of the first iteration:

fs = 5.75 , f ′s = 0.78
f ′′s = −0.26 , fe = 1.45
f̃p = −0.64 , gp = 5.16
g′p = 0.63 , ge = 0 (8.11)

hp = −2.29 , h′p = 0

a0
0 = 0.244 , f ′e = −3.54.

The fit was then repeated with the same free parameters as in the first iteration, leading
to the result shown in Table 8.2, with the correlation matrix in Table 8.3 and a χ2/ndf of
65444/64006. The different number of degrees of freedom with respect to the first iteration
is due to the different acceptance and therefore the different number of bins above threshold.

The correlation matrix shows the expected behaviour: the parameters belonging to the
same polynomial expansion are strongly correlated, like for example f ′s/fs with f ′′s /fs and
fe/fs with f ′e/fs, while between different partial waves and different polynomials, the correla-
tions are almost negligible. hp/fs and a0

0 are mostly uncorrelated from the other parameters.
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Figure 8.11.: Ratios of the data over MC plus background projected distributions in the
Cabibbo-Maksymowicz variables before (empty squares and dashed lines) and
after (filled circles and solid line) the first iteration of the fit of the form factors.
The MC distributions before the fit is normalised to the area of data minus
background, while the fitted value of N is used for the distributions after the
fit.

Aim of this second iteration was to properly take into account the correlations between
the selection acceptance and the form factors and to check the stability of the result using
different MC samples. The two results can only be compared after correcting for the bias
estimated from the MC tests, that is in general different for different samples. Since the same
data statistics was used in this second iteration and the correlations between the parameters
did not change significantly, the statistical uncertainties also remained the same. When
comparing the two results, the 100% correlation between the statistical uncertainty has to
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8.6. Raw result of the second iteration

N f ′
s/fs f ′′

s /fs fe/fs f ′
e/fs f̃p/fs gp/fs g′

p/fs hp/fs a0
0

N 1

f ′
s/fs −0.629 1

f ′′
s /fs +0.422 −0.932 1

fe/fs −0.633 −0.043 +0.149 1

f ′
e/fs +0.481 +0.111 −0.175 −0.947 1

f̃p/fs −0.141 +0.133 −0.077 +0.069 +0.033 1

gp/fs −0.103 −0.065 +0.113 +0.136 −0.210 −0.742 1

g′
p/fs −0.090 +0.233 −0.307 −0.045 +0.114 +0.392 −0.809 1

hp/fs +0.064 −0.041 +0.032 −0.035 +0.019 −0.109 +0.084 −0.047 1

a0
0 −0.021 +0.030 −0.053 +0.004 +0.017 +0.260 −0.202 +0.203 −0.031 1

Table 8.3.: Correlation matrix between the fit parameters obtained in the second iteration.
The matrix is symmetric, identical values are written only once.

be taken into account. The non-sensitivity to the parameters fixed to zero was checked again
and confirmed (see Table 8.1).

The change in the ratios of the data over MC plus background distributions is negligible
with respect to the scale used in Figure 8.11. The ∆ log (Lmax) curve around its minimum as a
function of a0

0 is shown in Figure 8.12. This curve was obtained by fixing a0
0 to the considered

value and performing the fit of the remaining 9 parameters. All the one-dimensional and
some two-dimensional ∆ logL curves can be found in Appendix B. To obtain each of these
curves the remaining 9 parameters were fixed to the result values and no further fit was
performed. In this case, the uncertainty that can be read from the distributions does not
take into account the correlations with the other parameters.

The statistical uncertainties estimated from the MIGRAD routine (see column 4 of Table
8.2) assume that the function − log (Lmax) is a parabola around its minimum and predicts
its shape from the covariance matrix. In order to check that this assumption is correct,
the MINOS routine of the MINUIT package [125] was used. Starting from the MIGRAD
prediction, the actual value of − log (Lmax) is computed and new, possibly asymmetric, values
of the statistical uncertainties are estimated. The obtained values for the positive and negative
uncertainties (σ+

MINOS and σ−MINOS) are listed in the last two columns of Table 8.2. The
deviation from the expected parabolic shape of the − log (Lmax) curve is of 4% for a0

0, that
enters the differential decay rate through a non-linear function, and at most 0.5% for the
parameters of the polynomial function. Since σstat and σMINOS agree up to the quoted
digits, the uncertainties are considered to be symmetric.
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Figure 8.12.: ∆ log (Lmax) distribution as a function of a0
0 around the minimum. The points

are fitted with a parabola (dashed line). The statistical uncertainty, taking into
account the correlations with the other parameters, corresponds to a variation
of − log (Lmax) by 0.5.
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9. Corrections and systematic uncertainties

The uncertainty on the fit parameters in Table 8.2 takes into account only the data statistics,
while all the other sources of uncertainty due to the experimental method are included in
the systematic uncertainty (σsyst). Aim of the systematic studies is to estimate the stability
of the measurement under small changes in the experimental conditions. On this purpose,
all the effects were considered, to which the measurement is expected to be sensitive. In
particular, the fit method itself and the agreement between data and MC simulation could
be important sources of systematic uncertainty. The total uncertainty represents then the
expected spread of the results when repeating the measurement many times under similar
conditions.

The theoretical uncertainty due to the constraint between a0
0 and a2

0 is quoted separately
(see Section 9.5).

9.1. MC tests

A maximum likelihood fit has, in general, a bias [127], i.e. the fit result does not correspond
perfectly to the true values of the parameters. In order to estimate the size of this bias,
the fit is repeated many times under the same conditions, using, instead of the data sample,
independent MC samples (pseudo-data), each containing as much statistics as the data, all
generated with the same values (similar to the ones obtained from the data fit) of the form
factor parameters. The bias is given for each parameter by the difference between the weighted
average of the fit results and the value used for the generation. The uncertainty on the
determination of the bias corresponds to the uncertainty on the mean values (RMS/

√
N) and

decreases with the number N of performed fits.
In order to estimate the bias on the first iteration of the fit, 42 independent MC samples,

generated with the parameter values given in Eq. 8.11 were used, while for the determination
of the bias on the second iteration, the same amount of MC was generated with the following
parameters:

fs = 5.75 , f ′s = 0.84
f ′′s = −0.31 , fe = 1.49
f̃p = −0.59 , gp = 5.11
g′p = 0.67 , ge = 0 (9.1)

hp = −2.28 , h′p = 0

a0
0 = 0.246 , f ′e = −3.62,

that correspond to the raw result of the second iteration. As an example, the 42 obtained
values for a0

0 in the MC test of the second iteration are shown in Figure 9.1.
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Figure 9.1.: Results obtained for a0
0 in the MC tests of the second iteration. The 42 obtained

results with their statistical uncertainty (left) are fitted with a constant, that
corresponds to the weighted average. The frequency of occurrence (right) is
compatible with the expected Gaussian distribution.

9.1.1. Corrected result

The bias was subtracted from the raw fit result and the uncertainty on the bias is considered
as a systematic uncertainty. The bias for both iterations as well as the corrected results are
reported in Table 9.1. Furthermore, it was observed that the RMS of the result distribution for
each parameter, indicating, in the limit of an infinite number of performed fits, the expected
statistical uncertainty, is compatible with the uncertainty given by MIGRAD.

9.2. Systematics of the fit method

Three effects have been considered as possible sources of systematics due to the fit method:
the dependence of the result on the parameter values used for the MC generation, on the
value of the threshold and on the number of bins in each variable. The fluctuation of the
result due to the statistical uncertainty on the MC was also taken into account. The single
contributions and the total systematic uncertainty for each parameter due to the fit method
(computed as the sum in quadrature of the single contributions) are listed in Table 9.2.

9.2.1. Convergence

While the MC sample used for the first iteration was generated with parameters that turned
out to be significantly different from the result of the data fit, in the second iteration the
result changed only slightly and therefore no further iteration was performed. An estimate
of the expected convergence of further iterations is given by the difference of the two results,
after the bias subtraction, i.e. the difference between the values in the fifth and in the third
column of Table 9.1.

9.2.2. Threshold

In a maximum likelihood fit, all bins containing at least one MC event are normally considered.
Due to the limited MC statistics, however, a higher threshold was used, in order to reduce
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9.2. Systematics of the fit method

Parameter Bias 1st iter. Corr. 1st iter. Bias 2nd iter. Corr. 2st iter.

f ′s/fs −0.005± 0.002 0.140± 0.013 +0.013± 0.002 0.133± 0.013

f ′′s /fs +0.003± 0.002 −0.049± 0.013 −0.013± 0.002 −0.041± 0.013

fe/fs +0.046± 0.008 0.207± 0.051 +0.038± 0.008 0.221± 0.051

f ′e/fs −0.206± 0.026 −0.409± 0.170 −0.171± 0.026 −0.459± 0.170

f̃p/fs +0.005± 0.002 −0.116± 0.013 +0.009± 0.002 −0.112± 0.013

gp/fs +0.003± 0.002 0.894± 0.012 −0.003± 0.002 0.892± 0.012

g′p/fs −0.009± 0.002 0.118± 0.015 +0.003± 0.002 0.114± 0.015

hp/fs −0.004± 0.004 −0.393± 0.028 −0.017± 0.004 −0.380± 0.028

a0
0 0± 0.001 0.244± 0.009 +0.001± 0.001 0.246± 0.009

Table 9.1.: Bias of the first (second column) and second (fourth column) iteration of the fit,
determined from MC samples generated with the parameter values in Eqs. 8.11
and 9.1, respectively. The uncertainties on the bias are given by RMS/

√
N , with

N = 42. In the third and fifth column, the corrected results, after the bias
subtraction, are reported.

the effect of statistical fluctuations, which is expected to play an important role in the tails
of the sπ and se distributions. The choice of the threshold is arbitrary and the stability of
the result for different values has to be tested. On the other hand, even taking into account
all non-empty bins, an effect similar to the variation of the threshold would be produced by
using a higher or a lower MC statistics, so that the uncertainty would remain unchanged.

The threshold chosen for the standard result is 20 MC events before reweighting, in order
to assure that the uncertainty on the bin content has a Gaussian behaviour. This value was
changed to 0, 10, 30 and 40 for the fit of the data. For each threshold value, MC tests
were performed and the result was corrected for the obtained bias. As an estimate of the
systematic uncertainty due to the threshold, the maximum difference to the standard value
for each parameter was used. In case of a difference within the uncorrelated statistical un-
certainty (difference in quadrature of the statistical uncertainties), no systematic uncertainty
was assigned.

9.2.3. Number of bins

If the resolution of the kinematic variables is not well reproduced by the MC, the result
is expected to depend on the choice of the binning. This effect is due to the migration of
the events from the bin in which they would be contained according to the values of the
variables at generation level and the bin in which they are actually contained according to
the reconstructed values of the variables. The migration probability depends also on the
chosen bin size with respect to the resolution. The number of bins was varied separately
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9. Corrections and systematic uncertainties

Parameter Convergence Threshold Bins MC stat. Total σstat

f ′s/fs ±0.007 — ±0.002 ±0.002 ±0.008 ±0.013

f ′′s /fs ±0.008 — ±0.002 ±0.002 ±0.008 ±0.013

fe/fs ±0.014 ±0.024 ±0.018 ±0.009 ±0.034 ±0.051

f ′e/fs ±0.050 — ±0.054 ±0.033 ±0.081 ±0.170

f̃p/fs ±0.004 ±0.009 ±0.004 ±0.003 ±0.011 ±0.013

gp/fs ±0.002 ±0.008 ±0.008 ±0.003 ±0.012 ±0.012

g′p/fs ±0.004 — ±0.006 ±0.004 ±0.008 ±0.015

hp/fs ±0.013 ±0.019 ±0.019 ±0.005 ±0.030 ±0.028

a0
0 ±0.002 ±0.006 ±0.001 ±0.002 ±0.007 ±0.009

Table 9.2.: Contribution of the fit method to the systematic uncertainty. The convergence of
the iterations (second column), the effect of threshold (third column) and binning
(fourth column) variations, the MC statistics (fifth column) and the statistical
uncertainty on the bias determination (Table 9.1) are included in the total uncer-
tainty.

in each dimension, by +2, +1, −1 and −2. Since in the MC a variation of the binning is
expected to produce a negligible effect, no MC tests were performed and the RMS of the 20
fits was used as an estimate of the systematic uncertainty.

9.2.4. MC statistics

If no threshold would be used, the systematic uncertainty due to the limited MC statistics
would be expected to be equal to the statistical uncertainty of the data fit divided by

√
N ,

where N ' 42 is the ratio between the number of MC events over the number of data events
used for the fit. In order to properly take into account the effect of statistical fluctuations
in the MC when using a threshold, the fit was repeated 100 times, varying randomly and
independently the content of each bin in the two five-dimensional MC histograms, according
to gaussian distributions with the mean values corresponding to the standard bin contents and
the widths given by the statistical uncertainties on the bin contents. The RMS’s of the result
distributions for each parameters were taken as an estimate of the systematic uncertainty. In
general the obtained uncertainties are slightly higher than the expected ones when performing
the fit without any threshold.

118



9.3. Systematics from the uncertainty on efficiencies and corrections

9.3. Systematics from the uncertainty on efficiencies and
corrections

9.3.1. Statistical uncertainty

The efficiencies and corrections applied to the Ke4 MC (see Section 8.3) were obtained from
data and MC samples containing a higher statistics than the samples used for the fit. There-
fore the effect of their statistical uncertainties on the fit result is expected to be small. In
order to properly take into account possible shape variations due to uncorrelated variations
in each bin, the systematic uncertainty was estimated with the same method used for the
MC statistics. The uncertainty on the efficiencies was computed assuming a binomial dis-
tribution, for values below one and as a confidence interval if the efficiency was equal one.
For the corrections, the binomial uncertainty on each efficiency was propagated to the ratio,
assuming them to be uncorrelated. The value of the efficiency or of the correction was then
varied randomly in each bin according to a Gaussian distribution around the standard value,
with a width given by the statistical uncertainties. For the efficiencies only values less or
equal one were accepted.

In order to reduce the necessary CPU-time, the variation of the three trigger efficiencies
was performed simultaneously. The LDA efficiency was varied together with the corrections
for the electron ID, while a separate set of fits was performed for the pion ID correction.
The resulting uncertainties are listed in Table 9.3. The main contribution to the effect of the
trigger efficiency variation is due to the sπ dependence of the L2 efficiency, which can only be
measured from K2πD events, i.e. with a sample about 140 times smaller than the K3π sample
used to measure the dependence of the L2 efficiency on min(∆z2) and about 18 times smaller
than the one used to determine the L1 efficiency. For the electron ID the effect was found to
be negligible (less than 0.001) for all parameters and is therefore not included in Table 9.3

9.3.2. Systematic uncertainty

In order to estimate the systematic uncertainty on the trigger efficiencies, the assumption
that the same shape can be obtained even measuring them with different decay channels
was tested. The dependence on min(rLKr) of the L1 trigger efficiency was measured using
K2πD data events triggered by N-MBIAS, the ratio with the efficiency determined from K3π

events was computed and fitted with a second degree polynomial (see Figure 9.2). The
obtained function was implemented as a distortion of the MC distribution, additional to the
standard corrections, into the fit procedure. The difference between the modified result and
the standard one was used as an estimate of the systematic uncertainty, which was found to
be below 0.001 for all parameters. The systematic uncertainty on the min(∆z2) dependence
of the L2 trigger efficiency was estimated in the same way, but starting from events triggered
by C-PRE (see Figure 9.3). The obtained values are listed in the third column of Table 9.3.
The sπ dependence of the L2 trigger efficiency could only be tested with Ke4 events triggered
by C-PRE, but, since their statistics is very limited, the ratio of the two efficiencies was found
to be compatible with a constant value (see Figure 9.4) and therefore not considered as a
contribution to the systematic uncertainty.
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9. Corrections and systematic uncertainties

Parameter Trigger (stat) Trigger (syst) Pion ID Total σstat

f ′s/fs ±0.010 ±0.007 ±0.001 ±0.012 ±0.013

f ′′s /fs ±0.008 ±0.007 ±0.002 ±0.011 ±0.013

fe/fs ±0.002 ±0.007 ±0.002 ±0.008 ±0.051

f ′e/fs ±0.009 ±0.001 ±0.005 ±0.010 ±0.170

f̃p/fs — ±0.001 ±0.001 ±0.001 ±0.013

gp/fs ±0.002 ±0.001 — ±0.002 ±0.012

g′p/fs ±0.002 ±0.001 ±0.001 ±0.002 ±0.015

hp/fs ±0.001 ±0.019 — ±0.019 ±0.028

a0
0 — — ±0.001 ±0.001 ±0.009

Table 9.3.: Effect of the statistical and systematic uncertainty on the trigger efficiency (sec-
ond and third column) and of the statistical uncertainty on the pion ID correction
(fourth column). The total contribution to the systematic uncertainty is computed
as the sum in quadrature of the single components (fifth column).
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Figure 9.2.: L1 trigger efficiency as a function of min(rLKr), measured with selected K2πD

data events, triggered by N-MBIAS (left, filled squares), compared with the
standard efficiency from K3π events (left, open squares). The ratio of the two
efficiencies (right), fitted with a second degree polynomial, is used to estimate
the systematic uncertainty.

9.4. Systematics of the MC simulation and event selection

Since the fit of the form factors is based on the comparison between data and MC, it is impor-
tant to check that acceptance and resolution are well simulated and how far the discrepancies
fake a variation of the form factors.
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9.4. Systematics of the MC simulation and event selection
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data events, triggered by C-PRE (left, filled squares), compared with the stan-
dard efficiency from K3π events (left, open squares). The ratio of the two effi-
ciencies (right), fitted with a second degree polynomial, is used to estimate the
systematic uncertainty.
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compatible with a constant value.

9.4.1. Acceptance

In order to test how well the MC describes the acceptance, the selection criteria, for which
a discrepancy between data and MC is expected and no correction is applied, were varied
around the standard cut value.

The lower (up-stream) and upper (down-stream) cuts defining the zvtx region, that were
chosen to be at -18 m and 70 m, respectively (see Figure 7.1) were varied separately by
−4 m, −2 m, +2 m and +4 m. Varying the lower cut shows the effect of the scattering at
the collimator, that, due to the high geometrical acceptance of Ke4 events at low zvtx, could
be significant. The upper cut rejects a much smaller fraction of events and its variation is
therefore expected to have a negligible effect on the fit result.

The selection criterion, that is expected to be most sensitive to the simulation of the
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9. Corrections and systematic uncertainties

detector geometry and detection efficiency, is the requirement of a radial distance between
the track position at DCH1 and the centre of the beam pipe above 12 cm. Since no tracks
are detected below 10 cm and no effect is expected above 14 cm, the cut value was varied by
−2 cm, −1 cm, +1 cm and +2 cm.

A further known problem in the MC is the simulation of showers and shower fluctuations
of pions. Apart from the E/p cut, for which a correction is applied, an effect could be seen in
the cut on the distance between the track position extrapolated to the LKr and the cluster.
This requirement is used in the tight electron ID (see Section 7.2.3) and in the extra cluster
rejection (see Section 7.3), in both cases with a standard cut value of 20 cm. For each of the
two selection criteria, the cut value was varied by −10 cm, −5 cm, +5 cm and +10 cm. A
discrepancy between data and MC for the pion shower is expected to have different effects
on the fit result for the two considered selection criteria: the requirement of a minimum
distance between the electron cluster and the pion tracks acts on the angular distributions,
while the accidental rejection of good Ke4 events due to the mis-identification of pion shower
fluctuation as photons is only expected to depend on the pion momentum.

As an estimate of the systematic uncertainty from each cut variation, the biggest discrep-
ancy from the standard value, greater than the uncorrelated statistical uncertainty, was taken.
The obtained values are listed in Table 9.4. In case of no discrepancy (difference within the
uncorrelated statistical uncertainty) or of a difference less than 0.001, the contribution to the
systematic uncertainty is considered to be negligible. Each single contribution is assumed to
be not correlated with the other ones, since they are due to different effects. Therefore the to-
tal systematic uncertainty assigned for the MC acceptance is given by the sum in quadrature
of the considered contributions.

9.4.2. Momentum resolution, kaon spectrum and background expectation

Any discrepancy between data and MC in the momentum resolution or in the kaon spectrum,
as well as a not perfect description of the background expectation, would appear in the mKe4

reconstruction. Due to the choice of a tight standard cut in this variable, in order to reduce
the background contamination, and to the many possible sources of systematic uncertainty,
the variation of the accepted range in mKe4 is a very powerful test of the agreement between
data and MC in the event reconstruction. The standard accepted mass window of 40 MeV/c2,
centred at the nominal kaon mass was varied to a width of 20, 30, 50 and 60 MeV/c2 and the
systematic uncertainty was estimated as the biggest discrepancy from the standard result for
each parameter (see Table 9.5).

As a cross-check, a comparison was performed between data and MC for the electron and
pion spectra. Electrons with the same charge as the kaon selected with loose ID were taken
from K2πD events selected with kinematic cuts and tight ID for the other electron. The pion
spectra for data and MC were obtained from K3π decays selected with kinematic cuts and
loose pion ID for all the tracks in the vertex. The ratios between data and MC spectra were
applied as a distortion to the Ke4 MC spectra, separately for the electron and the pions. The
differences between the standard result and the ones obtained with the modified MC spectra
are shown in the third and fourth column of Table 9.5. As expected, they are small compared
to the mKe4 cut variation, that should already include the effect of any discrepancy between
data and MC in the momentum spectra of the decay products. Therefore only the result of
the mKe4 cut variation is used as an estimate of the systematic uncertainty.
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9.4. Systematics of the MC simulation and event selection

Parameter zvtx low zvtx up rDCH1 deπ dγtr Total σstat

f ′s/fs — ±0.002 ±0.003 ±0.002 — ±0.004 ±0.013

f ′′s /fs ±0.002 ±0.002 ±0.003 ±0.001 — ±0.004 ±0.013

fe/fs — ±0.003 ±0.005 ±0.014 ±0.014 ±0.020 ±0.051

f ′e/fs — ±0.017 — — ±0.032 ±0.036 ±0.170

f̃p/fs ±0.006 ±0.002 ±0.004 — ±0.002 ±0.008 ±0.013

gp/fs ±0.004 ±0.002 ±0.004 ±0.003 ±0.001 ±0.007 ±0.012

g′p/fs ±0.004 ±0.003 ±0.002 ±0.004 ±0.002 ±0.007 ±0.015

hp/fs — ±0.002 ±0.008 ±0.004 ±0.003 ±0.010 ±0.028

a0
0 ±0.002 ±0.001 ±0.002 ±0.002 — ±0.004 ±0.009

Table 9.4.: Systematic uncertainty on the acceptance, estimated as the sum in quadrature
of the contributions determined from the variation of the lower and upper zvtx

limits (second and third column), of the minimum radial distance between the
track position at DCH1 and the centre of the beam pipe (rDCH1, fourth column)
and of the distance between any track and the electron (deπ) and gamma (dγtr)
cluster candidates, respectively (fifth and sixth column).

The background contamination, estimated from scaled wrong sign events (see Section 7.4.1),
was varied by σtot = σstat⊕ σsyst, corresponding to a relative uncertainty of about 10%. Due
to the low background contamination with respect to the high number of bins, only a total
scaling factor could be applied and the shape in the five-dimensional histogram could not be
modified as would have been the case in a bin-by-bin variation. The difference to the standard
result was for most of the parameters less than 0.001 (see Table 9.5). Also in this case the
uncertainty due to the background estimate is considered to be included in the estimate from
the mKe4 cut variation.

9.4.3. K2πD reconstructed as Ke4

To test the agreement between data and MC in the kinematic variables, Ke4 events can not
be used directly, since their form factors have to be measured. Instead, K2πD events selected
with kinematic cuts, including the complete photon selection and pion reconstruction, as well
as tight particle ID for both electrons and the pions were used to compute the Cabibbo-
Maksymowicz variables in the same way as for Ke4 events (see Section 8.1). The information
on the photon energy and momentum was not taken from any signal in the detector, but
computed as the missing momentum to the kaon and under the assumption of zero mass. The
invariant mass of the kaon was computed and a window of 40 MeV/c2 around the nominal
kaon mass was accepted. Furthermore, sπ resulted to be the invariant mass squared of a pion
and an electron and covered therefore a wider range than in Ke4 (see Figure 9.5). Due to
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9. Corrections and systematic uncertainties

Parameter mKe4 (e spectrum) (π spectrum) (Background) σstat

f ′s/fs ±0.005 ±0.002 — — ±0.013

f ′′s /fs ±0.005 ±0.002 ±0.001 — ±0.013

fe/fs ±0.034 ±0.001 ±0.001 ±0.001 ±0.051

f ′e/fs ±0.126 ±0.001 ±0.001 ±0.002 ±0.170

f̃p/fs ±0.005 ±0.001 — — ±0.013

gp/fs ±0.006 — — — ±0.012

g′p/fs ±0.006 ±0.001 ±0.001 — ±0.015

hp/fs ±0.003 ±0.001 ±0.001 ±0.001 ±0.028

a0
0 ±0.006 — — — ±0.009

Table 9.5.: Estimate of the systematic uncertainty on the event reconstruction from the
variation of the mKe4 cut (second column). As cross-checks, the effect of the
electron (third column) and pion (fourth column) spectra and of the background
estimate (fifth column) were tested, but they are assumed to be already included
in the mKe4 cut variation and were therefore not added to it.

the kinematic of the decay, completely different from Ke4, to the geometrical acceptance of
the detector and to the kinematic cuts already applied, the distributions are not as smooth
as for Ke4.

When building the ratio between data and MC, after correcting the latter for the trigger
and particle ID efficiencies, any discrepancy must be due to a difference in the resolution of
the variables themselves or in the simulation of the kaon spectrum, since the matrix element of
the π0

D decay is well known (see Section 6.2.2). Considering the ratios shown in Figure 9.6, it
is evident that the biggest discrepancy is due to the resolution. Modifying the MC resolution
independently in each single variable by an overall factor, without changing its dependence on
the value of the variable itself, a slight improvement could be obtained. The best agreement
(minimum χ2 when fitting with a constant) was obtained for a relative correction to the
resolution of −0.1% for sπ, −0.4% for se, −0.2% for cos θπ, −1.0% for cos θe and +1.1% for
φ. These variations of the resolution were also applied, one by one, to the MC in the fit of
the Ke4 form factors, in order to check its sensitivity. As expected, the discrepancy from the
standard result was smaller than the one due to the variation of the binning, that already
takes into account the effect of the resolution, including its dependence on the value of the
variable, in Ke4.

The corrected data over MC ratios of the K2πD distributions were fitted with a constant
and only cos θπ was found to be compatible with it. For the other variables the fit was
repeated with a second degree polynomial (see Figure 9.6). The four obtained curves were
used as distorisions of the Ke4 MC in the fit of the form factors and the discrepancy from the
standard result in each parameter is considered as a systematic uncertainty (see Table 9.6,
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9.4. Systematics of the MC simulation and event selection
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Figure 9.5.: Distributions of K2πD data (black points) and MC (magenta open histograms)
events in the Cabibbo-Maksymowicz variables. The events are selected with
kinematic cuts and tight particle ID for electrons and pion. The MC is normalised
to the area of the data distribution. The background contribution is assumed to
be negligible.

discrepancies smaller than 0.001 are neglected). Since most of the acceptance and resolution
effects should already have been taken into account in the cut variations and because of the
different selection of the K2πD events, that could also induce a discrepancy not present in
Ke4, adding this uncertainty as an independent one is quite conservative. On the other hand,
some uncertainties were found to be bigger than estimated in the previous studies and it
is not easy to prove which effects are specific of the K2πD selection and which are already
included in the other tests. Furthermore, this is the only possibility to check the agreement
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9. Corrections and systematic uncertainties
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Figure 9.6.: Data/MC ratios of the distributions shown in Figure 9.5 with (black crosses) and
without (red crosses) the resolution correction. The black crosses are fitted with
a constant in cos θπ and with a second degree polynomial in the other variables.

between data and MC directly in the Cabibbo-Maksymowicz variables.

9.4.4. Fit of subsamples

The stability of the fit was tested with respect to the kaon charge (K±), the direction of the
magnetic field in the dipole magnet of the spectrometer (B±) and in the achromat (A±) and
the three super-samples (SS1, SS2, SS3, see Section 7.1). For each of the four tests, the data
and MC samples were subdivided into two or three subsamples and fitted separately.

Since the MC was generated according to the population per run of the data and in each
simulated run the directions of B and A were taken into account as well as the kaon spectrum,
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9.4. Systematics of the MC simulation and event selection

Parameter sπ se cos θe φ Total σstat

f ′s/fs ±0.010 ±0.001 ±0.001 — ±0.010 ±0.013

f ′′s /fs ±0.009 — ±0.001 — ±0.009 ±0.013

fe/fs ±0.001 ±0.015 ±0.002 — ±0.015 ±0.051

f ′e/fs ±0.003 ±0.089 ±0.002 ±0.002 ±0.089 ±0.170

f̃p/fs — ±0.009 ±0.004 ±0.002 ±0.010 ±0.013

gp/fs ±0.002 ±0.011 ±0.003 ±0.001 ±0.012 ±0.012

g′p/fs — ±0.007 ±0.001 ±0.001 ±0.007 ±0.015

hp/fs ±0.001 — ±0.016 ±0.005 ±0.017 ±0.028

a0
0 — ±0.001 — ±0.003 ±0.003 ±0.009

Table 9.6.: Estimate of the systematic uncertainty on the agreement between data and MC
from the ratio of the K2πD distributions in the kinematic variables. No discrep-
ancy was found for cos θπ. The contribution of each variable is assumed to be
independent from the others and the total uncertainty is computed as the sum in
quadrature of the single contributions.

no disagreement is expected between the subsamples with different B and A or between the
different super-samples, if the tuning of the simulation is correct. For K+ and K−, the
only difference between the form factors is due to CP violation (see Section 2.4.4), which is
expected to be a much smaller effect than it could be resolved with the present statistics.
Therefore also for this test no discrepancy is expected between the two subsamples. The
obtained fit results for each parameter are shown in Figures 9.7 and 9.8.

While the mean values of each parameter between K+ and K− correspond to the standard
result, this is in general not the case for the other tests. This is due to the fact that, using
a smaller MC sample and the same absolute threshold value, the number of bins actually
considered in the fit is reduced. The expected effect is the same as for a variation of the
threshold and it was found to be compatible with it. Since forK+ andK− separate histograms
are used, this test is not affected.

In order to determine the level of agreement between the subsamples in each test, the χ2

with respect to the weighted average of each parameter was computed, taking into account
the correlations [128]:

χ2 =
Nmeas∑
m=1

Npar∑
i,j=1

(xm
i − x̄i)V −1

ij (m)(xm
j − x̄j), (9.2)

where Nmeas is the number of performed fits in the test (2 or 3), Npar the total number of
free parameters (10), xm

i the obtained result for parameter i in the mth fit, x̄i the weighted
average for the ith parameter over the fits and V (m) the error matrix obtained in fit m. The
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Figure 9.7.: Fit result of the subsamples indicated on the x-axis for the parameters of the F
form factor. The solid lines represent the values of the standard result.

obtained values of χ2/ndf are: 10.2/10 for K±, 22.5/10 for B±, 8.8/10 for A± and 37.9/20
for the super-samples. If the bad agreement between B+ and B− is of systematic nature, a
different behaviour of the data/MC ratio in the kinematic variables is expected to be seen.
A double ratio of the data/MC ratios (B+/B−) for Ke4 and K2πD events was built and
the obtained distributions in the five kinematic variables were found to be compatible with
a constant value. A similar check was performed between the super-samples, building for
each one the double ratio with respect to the remaining two and again all distribution were
found to be compatible with a constant. Therefore, with the present statistics it can not be
concluded that the observed disagreements are of systematic nature and no uncertainty will
be added to the result.
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9.4. Systematics of the MC simulation and event selection
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Figure 9.8.: Fit result of the subsamples indicated on the x-axis for the parameters of the
G and H form factors and for a0

0. The solid lines represent the values of the
standard result.

9.4.5. Alternative electron identification and computation of the kinematic
variables

Instead of the LDA (see Section 7.2.3), a neural network (NN) was used to identify electrons
and reject pions. The neural network is a function that can be called for each electron
candidate consisting of a track with an associated cluster in the LKr. It uses 10 quantities
as input (E/p, distance between cluster and track extrapolated to the LKr, shower width,
momentum, shower width in x and y, slopes of the track after the magnet and the x and y
components of the distance between track and cluster), has three hidden layers and produces
as output a number between 0 (for pions) and 1 (for electrons) [129]. The NN has, with
respect to the LDA, a better rejection power, but it uses more variables and it is not clear if
the assumption that the efficiency only depends on the momentum of the electron is still valid
and how far it biases the distributions of the kinematic variables. Since the background level
can already be kept under control using the LDA, this was chosen as the standard selection
criterion, while the NN is only used as a systematic check with a cut value of 0.8.

Following the same procedure as for the LDA, but without distinguishing between the
charges of the tracks, the NN efficiency was measured as a function of the electron momentum
from K2πD data events selected with kinematic cuts and tight particle ID for the pion and
both electrons and a correction was obtained as the ratio between the efficiencies of Ke4

and K2πD MC events (see Section 8.3). The obtained efficiency and correction are shown in
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Figure 9.9.: Efficiency (left) of the neural network as a function of the electron momentum,
obtained from K2πD data events selected with kinematic cuts and tight particle
ID for the pion and both electrons and correction (right) to the efficiency given
by the ratio of the efficiencies for Ke4 and K2πD MC events.

Figure 9.9.
Applying the NN instead of the LDA to the data, 356,309 Ke4 candidates were selected,

with an estimated background contamination of 962 events (0.27%). The difference between
the fit result of this sample and the standard one is considered as an estimate of the systematic
uncertainty on the electron ID and is reported in Table 9.7.

As an alternative way of computing the kinematic variables, after applying the complete
standard selection, including the cut on mKe4 , instead of fixing the kaon momentum to
60 GeV/c along the z axis, the kaon mass and the kaon direction along the z axis were
fixed and the kaon momentum was obtained as the one solution of the resulting quadratic
equation closest to 60 GeV/c. Events with a discriminant of the quadratic equation below
−20 (GeV/c)2 were rejected (∼ 5% loss of statistics), while negative discriminants between
−20 (GeV/c)2 and 0 were set to 0 in order to be able to solve the equation. The main
difference in the obtained values of the kinematic variables is expected to be seen in se, but
some difference could appear also in the angles, since they require a boost into the kaon rest
frame and the kaon has in general a different momentum than in the standard reconstruction.
The discrepancy to the standard fit result (i.e. any difference greater than the uncorrelated
statistic uncertainty) gives an estimate of the systematic uncertainty on the compuation of
the kinematic variables and is shown in Table 9.7.

9.4.6. Radiative and Coulomb corrections

In order to estimate the uncertainty on the radiative corrections, a fraction of the difference
between the result obtained with a MC sample without radiative corrections and the standard
one is taken. The ratio between the uncertainty on the PHOTOS implementation of the
radiative corrections and their total effect can be measured inKL → π±e∓ν decays comparing
PHOTOS to the KLOR package [130], which was explicitly tuned for this decay. The ratio
was found to be 1/9 [131]. Since no other implementation of the radiative corrections exists
for Ke4 decays, 42 samples of MC generated with the parameter values given in Eq. 9.1 and
without radiative corrections were fitted as pseudo-data with the standard MC and 1/9 of the
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9.5. Theoretical uncertainty and different constraints on a0
0

Parameter NN Other reconstruction Total σstat

f ′s/fs ±0.010 ±0.004 ±0.011 ±0.013

f ′′s /fs — — — ±0.013

fe/fs ±0.019 ±0.087 ±0.089 ±0.051

f ′e/fs ±0.040 ±0.258 ±0.261 ±0.170

f̃p/fs — ±0.014 ±0.014 ±0.013

gp/fs — ±0.014 ±0.014 ±0.012

g′p/fs ±0.008 ±0.015 ±0.017 ±0.015

hp/fs ±0.020 ±0.011 ±0.023 ±0.028

a0
0 ±0.006 ±0.001 ±0.006 ±0.009

Table 9.7.: Constribution to the systematic uncertainty from the electron ID (second column)
and the computation of the kinematic variables (third column). As an alternative
electron identification, a neural network (NN) was applied instead of the standard
LDA. The kinematic variables were computed assuming a kaon with the nomi-
nal mass flying along the z axis, whose momentum (“other reconstruction”) was
determined as the solution of the resulting quadratic equation closest to 60 GeV/c.

difference to the result obtained in the MC tests (using MC with the same parameter values
and with radiative corrections as pseudo-data) was taken as an estimate of the systematic
uncertainty (see Table 9.8). Contributions to the systematic uncertainties below 0.001 are,
as usual, neglected.

Since for the Coulomb correction no other approximations are made, than the assumption
that the interaction between pion and electron can be neglected, each event of the standard
MC sample was reweighted with the product of the two terms describing the repulsive π±e±

and the actractive π∓e± interaction (see Eq. 6.7). The difference of the fit with the reweighted
MC with respect to the standard one gives an estimate of the systematic uncertainty and the
contributions greater or equal 0.001 are shown in Table 9.8.

9.5. Theoretical uncertainty and different constraints on a0
0

The general formulation of the matrix element (see Section 2.4.2) is not affected by any
theoretical uncertainty and its expansion into partial waves and into polynomials in sπ and
se is truncated according to the statistical sensitivity of the experiment and not according
to any theoretical model. The constraint between a2

0 and a0
0 (see Eq. 2.67), instead, has an

uncertainty that has to be taken into account in the fit result.
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9. Corrections and systematic uncertainties

Parameter Radiative Coulomb Total σstat

f ′s/fs ±0.015 — ±0.015 ±0.013

f ′′s /fs ±0.010 ±0.001 ±0.010 ±0.013

fe/fs ±0.014 ±0.002 ±0.014 ±0.051

f ′e/fs ±0.014 ±0.005 ±0.015 ±0.170

f̃p/fs ±0.005 ±0.002 ±0.005 ±0.013

gp/fs ±0.006 — ±0.006 ±0.012

g′p/fs ±0.001 ±0.003 ±0.003 ±0.015

hp/fs ±0.007 ±0.018 ±0.019 ±0.028

a0
0 — ±0.001 ±0.001 ±0.009

Table 9.8.: Contributions to the systematic uncertainty from the uncertainty on the radiative
correction implementation (second column), estimated as 1/9 of the difference be-
tween the fit performed with a MC without radiative corrections and the standard
one, and from the neglected Coulomb interaction between pions and electron.

9.5.1. Uncertainty on the constraint between a2
0 and a0

0

The uncertainty on a0
0 due to the width of the allowed band in Eq. 2.67 is obtained by repeating

the fit with the constraint varied by its uncertainty. As expected, only the obtained value of
a0

0 changed and the theoretical uncertainty was estimated to be ±0.002, i.e. the difference to
the standard result (see Figure 9.10).

9.5.2. Universal band and free a2
0

As a cross check, the fit was repeated using as a constraint the universal curve given in
Eq. 2.65. The theoretical uncertainty on a0

0 is then much bigger and the obtained result

a0
0 = 0.258± 0.009 (stat)± 0.018 (theor), (9.3)

is compatible with the standard one, as expected, since the tighter constraint is included in
the universal band.

Furthermore, the fit was performed leaving both a0
0 and a2

0 as free parameters. As could
be already seen in the results obtained with different constraints, the correlation between the
two scattering length is very strong (0.958) and the sensitivity to both of them poor:

a0
0 = 0.281± 0.025 (stat) , a2

0 = −0.015± 0.016 (stat). (9.4)

The standard result is 1.5 σ away from the one obtained without applying any constraint. As
uncorrelated uncertainty, the difference in quadrature between the statistical uncertainties
on the two results is considered, while the theoretical uncertainty on the standard result can
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Figure 9.10.: Fit results for a0
0 with the constraint of Eq. 2.67 (red point with error bar), with

the constraint of the universal curve in Eq. 2.65 (black point with error bar)
and without any constraint (blue ellipse). The error bars include for a0

0 only
the statistical uncertainty and for a2

0 they are fixed to the width of the allowed
band. The blue ellipse is the 1 σstat contour, taking into account the correlation
between the two scattering lengths. The points without error bars indicate
the results obtained using as constraint the borders of the allowed bands. The
difference in a0

0 between the values obtained at the borders and the one at the
centre is considered as the theoretical uncertainty on a0

0.

be neglected. Actually, the solutions to the Roy equations used for the fit are only valid
inside the universal band and a fit result outside it should not be considered at all. However,
the obtained result was so close to the border of the band, that it can be at least taken as
an indication of a tendency toward higher values of a2

0 than the ones allowed by the tighter
constraint, but, with the present statistics, still compatible with it.

9.5.3. δ0
0 − δ1

1 as a function of sπ

Since a0
0 is not strongly correlated to the other parameters and it depends on the shape of

the δ = δ00 − δ11 distribution as a function of sπ, the fit can also be performed in two steps,
considering the value of δ in each bin of sπ as a free parameter. In this way the agreement
between the experimental δ distribution and any theoretical model can be tested without
having to repeat the complete fit procedure.

The obtained δ distribution from the fit of the data performed in two steps is shown in
Figure 9.11. The bias on the obtained values was determined from MC tests and subtracted
from the raw result. After the correction, the distribution was fitted with the same formula
implemented in the standard fit and the same value for a0

0 was obtained, with a χ2 of 9.7/11.
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Figure 9.11.: δ = δ00 − δ11 distribution as a function of sπ, obtained by fitting the δ value
for each bin as a free parameter. The determination of a0

0 was performed as a
second step, fitting the distribution with the red line.

9.6. Summary of the systematic and theoretical uncertainties

All the contributions to the systematic uncertainty can now be summarised and added in
quadrature in order to obtain the total uncertainty. In Table 9.9 all the contributions from
Tables 9.2–9.8 are listed, together with the total systematic uncertainty and the statistical
one. The largest contribution for each parameter is marked in red.

The main source of systematic uncertainty is the discrepancy in the results obtained with
different assumptions on the kaon momentum for the calculation of the kinematic variables
(column 4 in Table 9.9). As expected, this contribution is particularly important for the
parameters depending on se: fe/fs and f ′e/fs, but it turns out to have a sizeable effect
also on the parameters depending on cos θπ: f̃p/fs, gp/fs and g′p/fs. For hp/fs and a0

0 the
biggest contribution comes from the fit method, while the systematic uncertainty of f ′s/fs is
dominated by the uncertainty on the radiative and Coulomb corrections and the one of f ′′s /fs

by the uncertainty on the trigger efficiency and in particular its dependence on sπ.
In general, there is not only one strongly dominating contribution: the four listed in Table

9.9 as well as the variation of the mKe4 cut and the comparison between data and MC in
K2πD are the most important effects and, for most of the parameters, at least two or three
of them are of the same size.

The theoretical uncertainty is given by the width of the allowed band for a2
0 as a function

of a0
0. It affects therefore only a0

0 and is estimated to be ±0.002.
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10. Result and discussion

The final fit result with all the uncertainties is presented in Section 10.1. Since the parameter
N only measures the relative normalisation of the data with respect to the MC, no systematic
uncertainty was determined for it and it will not be included in the result. The obtained
result will then be compared (see Section 10.2) to the published ones, listed in Section 2.5
and to the theoretical predictions (see Section 10.3). Finally, a brief outlook on the possible
improvements of the sensitivity is given in Section 10.4.

10.1. Fit result

The fitted values of the form factor parameters are:

f ′s/fs = 0.133± 0.013 (stat)± 0.026 (syst),
f ′′s /fs = −0.041± 0.013 (stat)± 0.020 (syst),
fe/fs = 0.221± 0.051 (stat)± 0.105 (syst),
f ′e/fs = −0.459± 0.170 (stat)± 0.316 (syst),
f̃p/fs = −0.112± 0.013 (stat)± 0.023 (syst), (10.1)
gp/fs = 0.892± 0.012 (stat)± 0.025 (syst),
g′p/fs = 0.114± 0.015 (stat)± 0.022 (syst),
hp/fs = −0.380± 0.028 (stat)± 0.050 (syst),

a0
0 = 0.246± 0.009 (stat)± 0.012 (syst)± 0.002 (theor),

using the parametrisation given in Eq. 6.2 and the constraint between a0
0 and a2

0 in Eq. 2.67.
The value of a2

0 can then be computed:

a2
0 = −0.0389± 0.0017 (stat)± 0.0022 (syst)± 0.0008 (theor). (10.2)

It can be noticed that for all parameters the uncertainty is dominated by the systematics.
This is mainly due to the discrepancies still present between data and MC, since the fit of
the form factors relies completely on the simulation.

10.2. Comparison with previous results

In [35] both the form factors and the branching ratio of the Ke4 decay were measured, so that
the absolute values of the parameters could be obtained and not only the ones relative to fs as
is the case for the analysis presented in this thesis. Dividing the parameters in Eqs. 2.91–2.92
by fs and assuming all uncertainties to be uncorrelated, the following values are obtained:

f ′s/fs = 0.184± 0.017 (stat)± 0.069 (syst),
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10. Result and discussion

f ′′s /fs = −0.103± 0.021 (stat)± 0.070 (syst),
gp/fs = 0.810± 0.009 (stat)± 0.017 (syst),
g′p/fs = 0.117± 0.017 (stat)± 0.007 (syst), (10.3)
hp/fs = −0.513± 0.033 (stat)± 0.036 (syst),
f̃p/fs = −0.059± 0.017 (stat)± 0.047 (syst),
fe/fs = −0.056± 0.018 (stat)± 0.042 (syst),

where the first five parameters were fitted at the same time, while the last two were added,
as a sensitivity test, one at a time and are not included in the standard result.

The parameter values with the total uncertainty measured in this analysis and by BNL
E865 are listed in Table 10.1. A comparison between the two results can not be easily done,
since the fits were performed with a different number of free parameters. In particular, gp/fs

is strongly correlated with f̃p/fs, that is fitted as free parameter in the analysis presented here,
while it is fixed to zero in the fit performed by the BNL E865 collaboration. Considering
the sign of the correlation factor, the value of gp/fs that would be obtained fixing f̃p/fs

to zero is expected to be smaller than the standard one and therefore closer to the one
measured by the BNL experiment. Similarly for fe/fs, that is correlated to f ′e/fs, the value
would decrease when fixing the higher order parameter to zero. Due to the poor sensitivity
and high systematic uncertainty, no discrepancy is expected, since both measurements are
compatible with zero within 2 times the total uncertainty. For f ′s/fs, f ′′s /fs, g′p/fs, hp/fs and
f̃p/fs, instead, compatible results are expected, since the correlations with the additional
parameters are small (see Table 8.3). The measured values agree for hp/fs within 1.8 times
the total uncertainty, while for the other parameters the difference is smaller than the total
uncertainty.

In this analysis the parameters f ′s/fs and f ′′s /fs could be measured with a smaller uncer-
tainty, both statistical and systematic. Even if the two samples of data are of the same total
size, NA48/2 can accept more events with high sπ, so that the statistical uncertainty on
the parameters depending on this variable is smaller. The sensitivity on fe/fs and, for this
analysis, on f ′e/fs is in both experiments limited by the systematic uncertainty. The larger
statistical uncertainty on fe/fs in the result presented in this thesis is only due to the corre-
lation with the quadratic term in se. Analogously, gp/fs has a higher statistical uncertainty
due to the correlation with f̃p/fs, while g′p/fs is again a parameter depending on sπ and can
therefore be measured more precisely, from the statistical point of view. hp/fs, which is the
only parameter sensitive to the effect of CP violation, is measured with a poor sensitivity,
both from the statistical and systematic point of view.

The only result that can be easily compared with the one from the Geneva-Saclay experi-
ment is the value of hp/fs, that is compatible within the total systematic uncertainty. Further
comparisons are not possible due to the different choices in the parametrisation.

The comparison of the results obtained for the scattering lengths a0
0 and a2

0 in this analysis,
in the Ke4 measurement of the BNL E865 experiment and in the K± → π±π0π0 cusp analysis
of the NA48/2 experiment are shown in Table 10.2

The results obtained for a0
0 in this analysis are compatible with the ones in [35] (with both

constraints) and in [36] within 1.5 and 1.3 times the uncorrelated uncertainty, respectively.
The weighted average of the three measurements of a0

0 is 0.227±0.006, with a χ2/ndf of 3/2.
The statistical uncertainty is smaller in this analysis with respect to the other Ke4 measure-
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Parameter This result BNL result

f ′s/fs 0.133± 0.029 0.184± 0.071

f ′′s /fs −0.041± 0.024 −0.103± 0.073

fe/fs 0.221± 0.117 (−0.056± 0.046)

f ′e/fs −0.459± 0.359 —

f̃p/fs −0.112± 0.026 (−0.059± 0.050)

gp/fs 0.892± 0.028 0.810± 0.019

g′p/fs 0.114± 0.027 0.117± 0.018

hp/fs −0.380± 0.057 −0.513± 0.049

Table 10.1.: Comparison between the result obtained in this analysis (second column) and the
one published in [35] (third column) for the form factor measurement, without
the scattering lengths. For each parameter, the total uncertainty is computed as
the sum in quadrature of statistical and systematic uncertainty. The values in
parentheses are for the parameters that were not included in the standard fit of
the BNL measurement.

Parameter This result BNL result NA48/2 cusp

a0
0 0.246± 0.015± 0.002 0.216± 0.014± 0.002 0.220± 0.007± 0.011

a2
0 −0.039± 0.003± 0.001 −0.045± 0.003± 0.001 −0.044± 0.002± 0.001

Table 10.2.: Comparison between the result obtained in this analysis (second column) and
the ones published in [35] (third column) and in [36] (fourth column) for the
scattering lengths. The first uncertainty is computed as the sum in quadrature
of statistical and systematic uncertainty. The theoretical uncertainty is quoted
separately and is considered to be completely correlated between the two Ke4

analyses, while no correlation is assumed with the theoretical uncertainty on a0
0

in the cusp analysis.

ment, even if the total size of the analysed samples is very similar, due to the larger population
of the sample at high values of sπ, where the sensitivity to the scattering lengths increases.
Therefore, roughly the same total uncertainty can be achieved. In spite of a statistics 80
times higher, the measurement performed in the K± → π±π0π0 cusp analysis is, statistically,
only 1.5 times more sensitive to a0

0 then the one presented in this thesis. Unfortunately, the
theoretical uncertainty is also much bigger than for Ke4.

The value of a0
0 obtained by the Geneva-Saclay collaboration was based on a different

theoretical model, that does not include any dependence on a2
0 and was therefore not listed
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Figure 10.1.: Values of a0
0 measured by the Geneva-Saclay experiment, by BNL E865, by

NA48/2 in the cusp analysis and in the analysis presented here. The blue point
shows the weighted average of the three recent measurements and the red one
the prediction of χPT .

in Table 10.2. Due to the available statistics, the uncertainty is much bigger and the result
is consistent with all the ones obtained in this analysis.

10.3. Comparison with the theoretical predictions

Only the measured values of the ππ scattering lengths can be easily compared with the
theoretical prediction, while the form factors depend, within χPT , on the coupling constants
Lr

j (see Section 2.4.3), so that no explicit prediction is available.
The result obtained in this analysis for a0

0 with the constraint in Eq. 2.67 is compatible
within 1.6 times the total uncertainty with the predicted value 0.220 ± 0.005. A very small
quark condensate, requiring a different power counting for the mass terms, is therefore ex-
cluded. An improvement in the statistical and systematic uncertainty would show if the
tendency of this measurement towards higher values of a0

0, and therefore a smaller size of the
quark condensate, becomes significant.

10.4. Outlook

Both the statistical and the systematic uncertainty can be reduced, by analysing all the avail-
able statistics and improving the fit method and the MC simulation. Since the uncertainty
is dominated by the total systematics, but not by a single effect bigger than all the others,
many tests need to be performed in order to significantly reduce the systematic uncertainty.
For the fit method, for example, the effects of the threshold and of the correlations between
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10.4. Outlook

the parameters should be studied in more detail in order to optimise the binning and the
parametrisation. In the MC most of the problems seem to arise from the simulation of the
momentum resolution and of the beam spectrum, producing big variations of the result for
different choices of the mKe4 cut and of the assumptions in the computation of the kinematic
variables. An independent analysis of the same data is being performed in parallel within
the NA48/2 collaboration, based on the assumption of a fixed kaon mass and variable kaon
momentum. The comparison between the two analyses can help in the understanding of the
MC simulation. Furthermore, the KABES data can be used to improve the resolution of the
kinematic variables.

Once the systematic uncertainty is better under control, the use of a bigger sample of data
can reduce both the statistical uncertainty and the contribution to systematic uncertainty
due to the trigger efficiency. Furthermore, the comparison between data and MC with K2πD

events would become more precise.
The aim declared in the proposal of NA48/2 [69], to measure a0

0 with an uncertainty of 0.01
is not yet achieved. However, with three times more statistics, the systematic uncertainty
would only need to be improved by a factor 1.5, which should be feasible.
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11. Summary

The NA48/2 experiment has collected in 2003 and 2004 a large data sample of charged kaon
decays. About one third of the available data were analysed and 342,859 K± → π+π−e±

(—)
νe

(Ke4) candidates were selected. In this analysis, the background contamination in the sample
could be reduced down to 0.3%, to be compared to about 1% in the Geneva Saclay experiment
and about 5% in the BNL E865 experiment. The background estimate could be performed
directly from the data, by selecting events with the same signature as Ke4, but requiring for
the electron the opposite charge with respect to the kaon, the so-called “wrong sign” events.
This is a clean background sample, since the kaon decay with ∆S = −∆Q, that would be the
only source of signal, can only take place through two weak decays and is therefore strongly
suppressed. The background was also estimated from MC events and the two estimates agree
within 10%.

The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were
computed under the assumption of a fixed kaon momentum of 60 GeV/c along the z axis,
so that the neutrino momentum could be obtained without ambiguity. The measurement
of the form factors and of the ππ scattering length a0

0 was performed in a single step by
comparing the five-dimensional distributions of data and MC in the kinematic variables.
The MC distributions were corrected in order to properly take into account the trigger and
selection efficiencies of the data and the background contamination, The following parameter
values were obtained from a binned maximum likelihood fit, where a2

0 was expressed as a
function of a0

0 according to the prediction of chiral perturbation theory:

f ′s/fs = 0.133± 0.013 (stat)± 0.026 (syst),
f ′′s /fs = −0.041± 0.013 (stat)± 0.020 (syst),
fe/fs = 0.221± 0.051 (stat)± 0.105 (syst),
f ′e/fs = −0.459± 0.170 (stat)± 0.316 (syst),
f̃p/fs = −0.112± 0.013 (stat)± 0.023 (syst),
gp/fs = 0.892± 0.012 (stat)± 0.025 (syst),
g′p/fs = 0.114± 0.015 (stat)± 0.022 (syst),
hp/fs = −0.380± 0.028 (stat)± 0.050 (syst),

a0
0 = 0.246± 0.009 (stat)± 0.012 (syst)± 0.002 (theor),

where the statistical uncertainty only includes the effect of the data statistics and the theo-
retical uncertainty is due to the width of the allowed band for a2

0.
The systematic uncertainty was estimated as the sum in quadrature of the contributions,

assumed to be uncorrelated, from the fit method, the corrections to the MC and the agreement
between data and MC in acceptance and resolution. The resulting uncertainty is due to a
few significant contributions of the same size, and no single effect could be identified as the
dominating one. The assumptions made in the computation of the kinematic variables were
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found to have a big effect on most of the parameters, hinting to some imperfection in the
simulation of the momentum resolution and of the kaon spectrum.

Even if the measurement is still dominated by systematics for all the parameters, f ′s/fs,
f ′′s /fs and f̃p/fs have a better precision than the latest published result, fe/fs was obtained
with a higher significance and f ′e/fs could be measured for the first time. a0

0 has almost
the same uncertainty as the most precise published measurement in Ke4, due to the larger
acceptance at high sπ, where the statistical sensitivity increases.

No disagreement was found with respect to previous measurements and theoretical pre-
dictions, so that the hypothesis, on which χPT is based, of a large quark condensate can
be confirmed. However, the value obtained in the analysis presented in this thesis is slightly
higher and further away from the theoretical prediction than the ones measured with a similar
precision. If the statistical and systematic uncertainties can be reduced to the level of 0.01,
as was the aim declared in the proposal of NA48/2, a possible discrepancy to the theoretical
prediction might be observed with a significance of 2–3 times the total uncertainty.

A reduction of the systematic uncertainty on a0
0 by a factor 1.5 should be feasible, but

is surely challenging, due to the required precision in the MC simulation and stability in
the fit method. Any improvement in the MC simulation would most probably reduce the
uncertainty on all the parameters, so that the systematic uncertainty can be comparable to
the statistical one.
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A. The Ke4 matrix element

The following formulae were implemented in CMC and in the fit program to describe the Ke4

matrix element (see Eqs. 2.63, 2.67, 2.71–2.74 and 6.2) [39, 42, 46, 47]:

J5 = 2(1− ze)
[
I1 + I2 cos 2θe + I3 sin2 θe cos 2φ+ I4 sin 2θe cosφ+ I5 sin θe cosφ

+ I6 cos θe + I7 sin θe sinφ+ I8 sin 2θe sinφ+ I9 sin2 θe sin 2φ
]
,

with

I1 =
1
4

{
(1 + ze)|F1|2 +

1
2
(3 + ze)(|F2|2 + |F3|2) sin2 θπ + 2ze|F4|2

}
I2 = −1

4
(1− ze)

{
|F1|2 −

1
2
(|F2|2 + |F3|2) sin2 θπ

}
I3 = −1

4
(1− ze)

{
|F2|2 − |F3|2

}
) sin2 θπ

I4 =
1
2
(1− ze)Re(F ∗1F2) sin θπ

I5 = −{Re(F ∗1F3) + zeRe(F ∗4F2)} sin θπ

I6 = −
{
Re(F ∗2F3) sin2 θπ − zeRe(F ∗1F4)

}
I7 = −{Im(F ∗1F2) + zeIm(F ∗4F3)} sin θπ

I8 =
1
2
(1− ze)Im(F ∗1F3) sin θπ

I9 = −1
2
(1− ze)Im(F ∗2F3) sin2 θπ,

where the Lorentz invariant quantities are defined in Eq. 2.68 as a function of the Cabibbo-
Maksymowicz variables. The form factors are combined into four quantities

F1 = XF + σπ(P · L) cos θπ ·G
F2 = σπ(sπse)1/2G

F3 = σπX(sπse)1/2 H

m2
K

F4 = −(PL)F − seR− σπX cos θπG

and expanded into partial waves

F = (fs + f ′sq
2 + f ′′s q

4 + fe
se

4M2
π

)eiδ
0
0(sπ) + f̃pσπX cos θπe

iδ1
1(sπ)

G = (gp + g′pq
2 + ge

se

4M2
π

)eiδ
1
1(sπ)

H = (hp + h′pq
2)eiδ

1
1(sπ),
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with q =
√

sπ−4M2
π

4M2
π

.

The phase shifts are given by the numerical solutions of the Roy equation

tan δ00 =

√
1− 4M2

π

sπ
·
{
A0

0 +B0
0q

2 + C0
0q

4 +D0
0q

6
}(4M2

π − s00
sπ − s00

)
,

tan δ11 =

√
1− 4M2

π

sπ
· q2 ·

{
A1

1 +B1
1q

2 + C1
1q

4 +D1
1q

6
}(4M2

π − s11
sπ − s11

)
, (A.1)

with
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∆a0
0 = a0

0 − 0.220
∆a2

0 = 0.236∆a0
0 − 0.61(∆a0

0)
2 − 9.9(∆a0

0)
3 (A.3)

a2
0 = ∆a2

0 − 0.0444
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B. Additional Figures and Tables to Chapter 8

B.1. Efficiency of tight pion ID in data and MC
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Figure B.1.: Efficiency of tight pion-ID in data (upper plots) and MC (lower plots) for π+

(left) and π− (right) as a function of the track momentum. In the data the
efficiency is, as expected a smooth function of the momentum, while in the MC
the fluctuations reflect the limited number of simulated showers in the used
library.
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B. Additional Figures and Tables to Chapter 8

B.2. Ke4 MC distributions
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Figure B.2.: Ke4 MC distributions after the complete event selection in the variables used to
apply the efficiencies and corrections described in Section 8.3: min(rLKr (upper
row left), min(∆z2) (upper row right), pe+ (middle row left), pe− (middle row
right), pπ+ (lower row left), pπ− (lower row right).
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B.3. Log-likelihood curves

B.3. Log-likelihood curves
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Figure B.3.: ∆ logL distribution as a function of the parameters in the F form factor around
the minimum. The points were fitted with a parabola. The statistical uncer-
tainty, without taking into account the correlations with the other parameters,
corresponds to a variation of logL of 0.5. The 11 central points closer to each
other cover a range of twice the uncertainty without considering the correlations,
while the complete range corresponds to twice the uncertainty with correlations.
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Figure B.4.: ∆ logL distribution as a function of the parameters in the G and H form
factors and of a0

0 around the minimum. The points were fitted with a parabola.
The statistical uncertainty, without taking into account the correlations with the
other parameters, corresponds to a variation of logL of 0.5. The 11 central points
closer to each other cover a range of twice the uncertainty without considering
the correlations, while the complete range corresponds to twice the uncertainty
with correlations.
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Figure B.5.: ∆ logL distribution around the minimum, as a function of four pairs of parame-
ters strongly correalted with each other. The correlation coefficients are: -0.932
between f ′s

fs
and f ′′s

fs
, -0.947 between fe

fs
and f ′e

fs
, -0.742 between f̃p

fs
and gp

fs
and

-0.809 between gp

fs
and f ′p

fs
, respectively. The remaining parameters are fixed to

the values obtained in the global fit. The displayed ranges correspond to four
times the statistical uncertainty of each parameter including all correlations. The
ellipse that could be drawn at ∆ logL = 0.5 would only include the correlation
between the two considered parameters.
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