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Abstract

Monte Carlo simulations are used to study the effect of confinement on a
crystal of point particles interacting with an inverse power law potential in
d = 2 dimensions. This system can describe colloidal particles at the air-
water interface, a model system for experimental study of two-dimensional
melting. It is shown that the state of the system (a strip of width D) depends
very sensitively on the precise boundary conditions at the two “walls” provid-
ing the confinement. If one uses a corrugated boundary commensurate with
the order of the bulk triangular crystalline structure, both orientational or-
der and positional order is enhanced, and such surface-induced order persists
near the boundaries also at temperatures where the system in the bulk is in
its fluid state. However, using smooth repulsive boundaries as walls provid-
ing the confinement, only the orientational order is enhanced, but positional
(quasi-) long range order is destroyed: The mean-square displacement of two
particles n lattice parameters apart in the y-direction along the walls then
crosses over from the logarithmic increase (characteristic for d = 2) to a
linear increase (characteristic for d = 1). The strip then exhibits a vanishing
shear modulus. These results are interpreted in terms of a phenomenological
harmonic theory. Also the effect of incommensurability of the strip width
D with the triangular lattice structure is discussed, and a comparison with

surface effects on phase transitions in simple Ising- and XY-models is made.
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Introduction

Over the last decades, colloidal suspensions have drawn much attention from
researchers. The reasons for that are many, in fact colloidal particles can be
used as readily available physical models for studying collective phenomena.
Colloidal dispersions can be prepared and characterized to large extents in a
controlled way, effective interactions can be changed by various means. The
large size of the particles (up to ~ 1 — 10um) allows innovative observation
techniques like for example video microscopy and digital image processing
which cannot be applied in the order-disorder phenomena of atomic systems
so a deep insight into the static and dynamical processes going on such
systems is possible. Also from the technological point of view in many fields
from material science to nanotechnology and biology, the investigation of
colloids is of great interest.

Particularly interesting is the possibility of creating confined colloidal
crystals in 2d or even in 1d to test fascinating concepts on the statistical me-
chanics of low-dimensional systems. Consider for example the crystallization
and melting in two dimensions: a classic problem since the KTHNY theory
of melting has been formulated in the mid 70’s of the last century.

In the present thesis we shall consider systems in between these dimen-
sionalities, i.e. colloids confined in one dimensional strip of width D.

We will investigate these confined colloidal systems through computer
simulations performed with the Monte Carlo method.

Generally speaking, when boundaries are introduced in a system, and in
particular, like in our case starting from scratch this kind of investigation, in
order to keep the problem fairly simple one wants to stay as near as possible
to the bulk situation. We followed this method, but it should be remarked
that, although in these conditions, dramatic changes in the behaviour of the

confined system with respect to the bulk one can often appear. In this sense



the investigation of a confined system is always very interesting.

In this thesis we will study the elastic behaviour of model confined 2d col-
loids and the degree and kind of order present in these systems and induced
by the walls.

The elastic constants are one of the key quantities in the characterization
of crystal systems. In 2d they play a crucial role in the mechanism of melting
so they were intensively studied in simulations for bulk systems, in particular
in the case of hard disks in a triangular crystal. We want to somehow
generalize those calculations to the confined geometry and try and evaluate
the elastic constants also in this case.

On the contrary, boundaries induced ordering in strips and half planes
have already been studied in the past for spin systems primarily in the con-
text of surface critical phenomena where both suppression or enhancement of
order near free boundaries have been observed, we want to try and describe
the order induced by a wall on our systems.

This thesis has the following structure:

in the first part we will investigate the elastic properties for our systems,
in chapter 1 useful concepts quantities and relations in elasticity theory will
be shortly reviewed, in chapter 2 we will describe our model of confined
colloidal crystals and discuss why this model is a suitable one for colloidal
systems (and it is also useful in other fields), we will give the details of
our simulations, discuss the methods used for the calculation of the elastic
constants and in chapter 3 we will present and discuss the result we found
for them.

In chapters 4 and 5 we will focus on the order present in the colloidal
strips, in chapter 4 we will particularly investigate how the types of bound-
aries we choose affect the thermal fluctuations from the equilibrium lattice
positions in the bulk, eventually we will show that in one case, in the direc-
tion parallel to the boundaries there is a strong reduction in the positional
long range order. Also some theoretical calculations on such fluctuations
for a harmonic crystal in the strip geometry will be presented. In chapter
5 we will present the problem of the order induced by a surface discussing
the behaviour of confined spin systems, in particular we will discuss in some
detail the case of spins with a XY symmetry where a surface is present, this
can be considered a sort of simpler reference model for our strips. After we

will discuss the positional and orientational order induced by the boundaries



on our systems.

Finally in appendix A we will present some interesting although incom-
plete results obtained varying the distance between the walls in the strip.
We looked at the behaviour of the strips when the distance between the
boundaries and the interpartivcle bulk distance are incommensurate i.e. not

an integer number of lattice rows can be allocated between the walls.



Chapter 1

Elasticity and thermodynamics

1.1 The strain and the stress tensor

The elasticity theory deals with macroscopic bodies and their deformations
from the point of view of the mechanics of continua, the description of these
deformations arises from the definition of two key mechanical quantities the
strain and the stress tensor n;; and o;; respectively.

Let’s consider macroscopic body in a reference “undeformed” configura-
tion and a generic point of it at position R. After a deformation which
here we suppose homogeneous the point will be in r. The Lagrangian strain

tensor 7;; is defined trough the relation between r and R:

r= \/(277,‘3‘ + (5ij)RiRj,

if the deformation is small and we consider r; = R; + u; then

8“@ 9 ou; ou; Ou;
r;~ R; +Z i 12~ R +22 RR ZaRjaRkRjR’“'

So we can write for the strain tensor (repeated indexes are implicitly summed)

o 1 Gul 3Uj Bul Gul (1 1)
i =93\0oRr; T 9R;) T OR; OR;" ‘

this tensor describes how lengths and configurations modify under the de-
formation.
The forces which arise are obtained considering the stress tensor o;;. If

we consider a surface X, the force on the surface in the deformed state can



be written as:
F; = / TiknEpd,
)

S0 onEddl is the 1 component of the force on the infinitesimal surface dX
with normal n. Those definition are the starting point of the elasticity i.e.

the description of the elastic behavior of a material [1].

1.2 Thermodynamic relations

After the short mechanical definitions of the previous section let’s consider
the problem of deformations in a material from the thermodynamical point
of view.

Let’s take a material at the equilibrium whose state is a function of let’s
say the temperature 7" and the macroscopic configuration x. Let’s consider
also elastic homogeneous deformations from a reference starting configura-
tion X the hypothesis about the elastic deformations ensures that state func-
tions are single-valued function of the variables we choose. We suppose that
the free energy is invariant with respect to an arbitrary rigid rotation of the
material, this means that this quantity depends only on the relative positions
of the material particles and these positions in x are function of the initial
positions in X and the strain tensor 7;;. Under these assumptions the free
energy per unit mass (It is convenient in elasticity theory to work with func-
tions per unit mass because the mass is conserved while the volume itself is
a function of the strain) f(x,7") can be written as a function of the reference
undeformed state, the strain tensor, and T. That is if the deformation is

small:

of . Pf
anij 1ij anij 8"7kl N5 Mkl ceee
(1.2)

It can be shown, starting from the first principle of the thermodynamics

f(X7 T) = f(Xa {nij}’T) ~ f(Xa {O}’T) +

[1, 2] that for the stress in the reference configuration at X holds,

of
(9%- ’

oi; = p(X) (1.3)

where p(X) is the density in the reference state and the derivative is taken

at 77;; = 0. If we consider the second derivative then we obtain a fourth rank



tensor:
0% f

A 14
Onij 0N (1.4)

Cijr = p(X)

where the Cjj; are called the elastic constants of the material.
The formula 1.3 can be generalized to get the stress in the strained con-

ﬁguration X:
0i(x) = p(X) g o —— (1.5)
iJ ik gl ankl’ .

where the derivatives are taken at x and the alphas are here the transforma-

tion coeflicients defined as
87“2‘

" OR;

(1.6)

(Xij

It is also interesting to write the equation of motion for the r’s in absence of

body force, it comes from Newton’s second law of motion

0oij
pl)fi = G (1.7
and the relation between the density in the reference and strained configu-
ration X
M =J= det[azj]. (1.8)
p(x)

Here J is the Jacobian of the transformation from X to x and the eqn. 1.8
is a continuity equation expressing the conservation of the mass.

Both the strain and the stress tensor are symmetric
Mij =i Oij = Ojis (1.9)
and also for the elastic constants we have
Cijkt = Criij = Cjirg = -+ - (1.10)

The symmetry in eqns. 1.9 and 1.10 is usually called the Voigt symmetry
and allows the so called Voigt notation, that means we can replace couples

of indexes with only one. In two dimensions we have:
rxr — 1, Yy — 2, Ty — 3.

We will use this notation throughout the text so we will write for example

Crzzx as C11 or Cpyzy as C33 and so on.



Among the possible changes of indexes in the elastic constants there
is one which lead to a non trivial symmetry: when the two inner or outer
indexes are exchanged so for example Cj;; = Cjyj; the symmetries are called
the Cauchy relations and they are not straightforward consequences of the
definitions usually for normal materials they experimentally don’t hold [3].

In two dimensions we have only one Cauchy relation

Cxxyy = nya:y7

or in the Voigt notation
Cr2 = Css, (1.11)

while in three dimensions we have for example 6. From the experimental
point view it is known that for many materials the Cauchy relations in general
don’t hold, while on the other hand theoretically it is possible to show that
it is sufficient to have a single species crystal with pairwise interactions and
the harmonic approximation, for the eqn. 1.11 to be verified [3]. This will
be the case also in this thesis (at least in the bulk case) since we will deal

here with a two-body potential and a triangular crystal.

1.3 Stress-strain relations and propagation of elas-

tic waves

We wish to derive the linear relation between the variation of the strain and
the variation of the stress from the reference configuration (Hooke’s law).
From eqgns. 1.2, 1.5 and 1.8 we can write

X 0 _
oij(x) = Maikajl—f = J  aipaji[o(X) 4+ Chimntmn + -+ 1. (1.12)
J Ok

Let’s consider infinitesimal displacement from the reference configuration,

we want to evaluate
0o

, 1.13
Okt | (o) 9

where here we consider in the definition eqn. 1.1 for 7;; only the linear part
in the displacements. In order to evaluate the derivative in the eqn. 1.13 we

need expressions for the derivative of the Jacobian and for %. For the first

10



we can use Jacobi’s identity

oJ
ooy

= (a Yo, (1.14)

while for the second we can use the formula [2]

a()éij 1

= — (bt 4 Oinbir) - 1.1

oy 2 (dirdjt + Ojkdi) (1.15)
Using the eqns. 1.14 and 1.15 in the derivative 1.13 and considering the

reference configuration 1 = 0 we have

80-.. 1
a—w = Bijr = 5 (001 + 0qdji + 010 + 010k — 2045681) + Cijts
Nkl n=0 2
(1.16)
and Hooke’s law in its more general form is
0ij(x) = 035(X) + Bijrimh- (1.17)

In similar way we can write the 1.7 as a wave equation, starting from the

eqn. 1.12 and using the identity of Euler Piola and Jacobi [2, 4]

0 aj

= 1.1
87“j J 07 ( 8)

and the definition 1.6 we have

ol X) or; X
oij _ pX)9rj 0 L . pX) 9 o 27 , (1.19)
87“]' J OR, 87“]' aﬁkl J ORy 877kl
now taking into account the second part of eqn. 1.12 we have
(90'2‘]' 827“k
=lo4(X)0ir + Ciinl]l =—=———, 1.2
ar, [01(X) i + Ciijri] ROR, (1.20)
so the equation of motion 1.7 becomes
0%ry,
X)F; = Siip) = 1.21
p( )T Jkl 8R33Rl ( )

with the coefficients S;;; which in the more general case have the form

Sijkt = 0j1(X)0ik + Cijni- (1.22)

11



The meaning of eqns. 1.16 and 1.22 is that if the stress in the reference
configuration is non zero, then the three thermoelastic coeflicients we defined
namely the elastic constants C, the elastic moduli B and the coefficients S
are all different. However there are some simplifications if we consider as we

will do for almost all the cases in this thesis, the case of an initial hydrostatic

pressure
Uij(X) = —P(Sij, (123)

the eqn. 1.16 simplifies in
Bijri = —P(010ik + 00k — 6450k1) + Cijni, (1.24)

and the eqn. 1.22 becomes
Sijkl = —Pdi6i + Cijr. (1.25)

If we consider an isotropic material, usually the the stress-strain relations

(in two dimensions) are written in the form [1]

1
o = Kb + 2p(ni — 577115ik), (1.26)

where K is called the bulk modulus and u the shear modulus. Comparing
with 1.24 we can write these elastic moduli as combination of the C' (in the

case of hydrostatic pressure)
1 1
KE=35Cnu+Cn), p=5Cn—-Cn)-P=Cs-P (1.27)

and the Cauchy relation 1.11 can be written

K
p=75 P (1.28)

We will use in this thesis also these moduli since the triangular lattice we
will consider can be regarded as an isotropic material. This is due to the
high symmetry of the lattice and in general it’s not true so for example if we
would consider the hexagonal symmetry but in 3 dimensions we would have

5 independent elastic constants.

12



1.4 Notes on surface elasticity

Also in elasticity theory concepts of thermodynamics at interfaces can be
used. A definition of interfacial excess quantity for the elastic energy is
possible and from that a surface stress and a surface strain.

The interfacial elastic energy change SWief can be written as

zp
i f Ac Ay /A B¢ By,/B
Syy/inter :/ 0ij(x)onij (z)dV — oi;on;; V" — oy50m; V7, (1.29)
zA
where 0;;(x) and 7;;(x) are the bulk stress and strain tensor profiles across
the interface (perpendicular to the x direction). If conditions like mechanical
equilibrium and absence of relative gliding between the two materials are
fulfilled and splitting the strain and the stress tensors in a parallel and a

perpendicular part with respect to the surface, the eqn. 1.29 has a simpler

form
5Winterf _ (5771“]‘527' + O'Z#(S@ij)SABa (130)
where
_ 1 i lAv,4 By, B
1 B 1Ay;A _ _1Bi,B

The relations 1.31 and 1.32 define s;; as the interfacial excess quantity (per
unit area) of the parallel components of the bulk stress tensor and e;; as
the interfacial excess quantity of the perpendicular components of the bulk
strain tensor. The two conditions used have the following meaning: the
non gliding condition tells that the infinitesimal change of the strain ten-
sor parallel to the interface must be the same in the whole material i.e.
6771“j(z) = 5772“jA = 5771“;13, while the mechanical equilibrium condition ensures
that the normal components of the stress tensor are homogeneous in the
whole material Jf;(z) = ai#A = ailjB so if one phase (for instance B) is the
vacuum, mechanical equilibrium means zero perpendicular stress.

The surface stress and strain tensor are important for describing elastic
effects on the thermodynamics of a solid/solid interface. If we consider two
solid phases separated by an interface and a reversible transformation in

which heat, stress and particle number can be changed, the interfacial excess

13



part in the (for example) internal energy can be written using the eqn. 1.30

and has the form
dUinterf = TdSinterf + (5771”sz] + O'iJj(Sel']')A + ‘uidNiinterf‘ (133)

The similar expression in the case of fluid/fluid interface would involve the

surface tension ~y
dUinterf = Td Sinterf dA d Ninterf 1.34
= +yaA + palV; . (1.34)

Actually in the most general case we can have a reversible transformation
in which at the same time there is deformation and creation of the surface,

that is instead of the eqn. 1.33 we should consider
dUinterf _ Tdsinterf + ,YdAcre + (5779]'31‘3‘ + Uijjéeij)A + NidN@'interf- (135)

This expression together with the fact that the excess internal energy Uinterf
is always a function only of the entropy, the interface area, and the num-
ber of particles can be used to derive thermodynamical relations involving
the surface quantities of eqn. 1.35 particularly the Shuttleworth equation
connecting the interface stress s;; to the interface energy v [5, 6].

It is also possible to define surface elastic constants and also to write an
Hook’s law for the surface stress. For a system with a free surface the energy
upon a deformation of a given part of the system of volume Vj and surface

of area Ay can be written as
1
E = Ey+ Aovo + Aosoijnij + §VOCz‘jkl77ij77kl +, (1.36)

where 9 and sq;; are the surface energy and surface stress of the undeformed

system. On the other hand for the bulk system we can write

1
Ebulk _ EO + §Cz‘bjlllcllk"7ij77kl I (137)

14



Expanding the excess energy E — EP"¥one has

AO,YO — |:E _ Ebulk]

amj am’j

OE  QEMK
Apsoj = [ ] ,
n=0

n=0"
62 E 62 Ebulk

ACEt = - } :
K MOt OMijOnkt g

>From these definitions it is also possible to calculate the dependence of the
surface energy and the surface stress with the deformation.

However although in this thesis we will deal (among other things) with
the elastic behaviour of a confined system i.e. surfaces will be present we will
not use the quantities which appear here. This section has to be intended
more as an overview on the problem of elasticity in presence of surfaces.

For a comprehensive description of this subject (in 3 dimensions) and the

rich phenomenology stemming from it see |7].
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Chapter 2

Model of a confined colloidal

crystal

2.1 Choice of a Model

As it is well-known, one can prepare systems of spherical colloidal particles
with various types of interactions: neutral particles coated with polymer
brushes that have a short range entropic repulsion due to the excluded vol-
ume interaction between polymers provide a model for approximate hard
spheres [11, 12, 13, 14]. Charged colloids (with counterions in the solu-
tion) interact with the Dejaguin-Landau-Vervey-Overbeek (DLVO) potential
[15, 16], a screened (Yukawa-type) Coulumb interaction.

However of particular interest, in our context are particles containing a
superparamagnetic core: if such particles are held at the water-air interface
of a water film underneath a glass plate and one applies a magnetic field
oriented perpendicular to the glass plate, one creates a 2d system of colloidal
particles interacting with a uniformly repulsive 7~ interaction [8, 9]. Using
laser fields based devices (optical tweezers) it is even possible to confine single
rows of particles and the ordering of the particles can be directly observed
in real space by video microscopy.

However experiments can infer the precise form of the interparticle po-
tential at best indirectly, if at all, so it is important, as a sort of guide line for
the experiments to perform computer simulations of suitable model systems.

So the interaction among colloidal particles may be conveniently param-

16



eterized by

V() = e(i)", (2.1)

,
where the exponent may vary from n = oo [11, 12, 13, 14] in the case of hard
sphere colloids to n = 3 for superparamagnetic dipolar colloids [8, 9, 10].
We have chosen a potential with n = 12 and with a cutoff at r. = 5o,
at a temperature kgT'/e = 1 (kp is the Boltzmann constant) and density
(choosing units such that o = 1) p = 1.05. This choice retains the advantage
of a smooth potential which is also sufficient short ranged for computational
convenience.

At the chosen density and temperature the bulk 2d system is deep in the
crystalline phase since for the chosen density melting occurs at T ~ 1.35
[17]. Note that the homogeneity of the potential, eqn. 2.1, implies that (in
d = 2 dimensions) excess thermodynamic properties (relative to the ideal
contribution) and the scaled pair distribution function g(r/o) depend on a
single parameter

x = po’(e/kpT)¥™, (2.2)

rather than p and T separately [43].
Next we discuss how to represent the confining walls. We have considered
two types of boundary potential which provides the confinement in a strip

with the walls oriented parallel to lattice axes of the triangular lattice:

1. The first choice is a so called “flat wall” and it is given by an integration

of the repulsive part of the Lennard-Jones potential:

o 10
o —eea (2 )" 29

|z — Zyall

for a particle at position r = (x,y), where the x—direction is chosen

perpendicular to the boundaries, while y runs along the boundaries.

2. Structured walls causing a periodic corrugation of the potential. They
are created by choosing two rows of particles (running in the y—direction)
fixed in the positions of this ideal triangular lattice. These fixed parti-
cles interact with the mobile particles with the same potential V'(r) of
eqn 2.1. Summing up these potentials due to the fixed particles defines

the corrugation potential Vgirye of such structured boundaries.

The position Ty of the two walls are a distance D apart with D in the

17
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wall. .

———— > r
X X

Figure 2.1: Sketch of the two kinds of wall considered: left the case 1 the “flat
wall”, right the case 2 the “structured wall”

form:

3
D= na\/?—, (2.4)
with n being an integer and a being the lattice spacing of the ideal triangular
lattice compatible with the chosen density (see fig. 5.1, pag. 67, where the

lattice spacing is denoted there with the symbol ag)

, (2.5)

so with p = 1.05 this means a =~ 1.049.

This choice was made in order to start considering the confined case in
a situation as near as possible to the bulk case.

Finally we mention that looking at the effect of confinement on colloidal
suspension can be of interest also for a wide variety of systems: e.g. electrons
at the surface of liquid helium that is confined in a quasi-one-dimensional
channel [18] provide an example for a confined Wigner crystal [44|; another
such system where particles under geometric confinement are “dusty plas-
mas” [19] (e.g. negatively charged SiO fine particles with 10 pum diameter
are suspended in weakly ionized rf Ar discharges [20]; magnetorheological
(MR) colloids under confinement [21, 22] are of great interest for various

microfluidic applications.

18



2.2 First simulations with flat walls: choosing the

parameter ey,

As we said we wanted to simulate a situation very near to the bulk case and
this was true not only for the wall distance but also for the value of €y,p in
eqn. 2.3. In order to do so we tried different values of ey,) (and also different
distances among the walls) to see which changes occur to the lattice due to
the potential 2.3 .

We performed Monte-Carlo simulations with the canonical Metropolis
algorithm, the simulations were done in a “stripe geometry” we considered
simulation boxes with angle among the z and y—direction of 60 degrees in-
stead of the usual 90 degrees, this was done to simulate better the triangular
geometry of the system. The dimensions of the boxes were (in unit of a)
30 x 30 and 20 x 60. The averages were done over runs of 10 MC cycles
after an equilibration of as many MC-cycles as in the production run

We considered in particular the angle o among the lattice planes (figure
2.2)

e
D =27,245

60.2 T T T T T
i — bulk i

60 -
59.8 — i
L ® ]

oL
59.6— ol
= - 4
9.4 — =
L a 4
X
9.2 |
1 1 \\\\Ill 1 \I\\I\l 1 \I\\I\l L I.\II\
0.0001 0.001 0.01 01 1
£

wall

Figure 2.2: Angle a between lattice planes. Inset: schematic picture. Main
plot: numerical values according to our simulations, the value of « for hard
walls is Qhard walls — 60.68.

In the figure 2.2 the distance is chosen in a way that at the density

19



p = 1.05, 30 layers can be allocated exactly as in the bulk. In the ideal
(bulk) case the distance first layer-left wall (x = 0) and the distance last

layer-right wall (x = D*) are the same,
V3

1
*
T1stlayer = 9 7(1 =D"— T30th1ayer-

We considered in figure 2.3 this distance of the different layers (parallel
to the wall direction) and the left wall, for different ey,n and also for two
different values of distances corresponding to considering 30 layers (up) and
20 layers (down) .

*
D =27,245
T T T T T
4 O €,4705 %
+ £,57005 o
I o £,70005 g 1
s, A g,,=0.0005 i
5 O Hardwalls o
E X Bulk %
2
: :
B
‘-5 12 [m} —
ol e IR
planes
*
D =18,163
T T T T T
o swm:g'g o|
T + £,,~005 1
;a o €,,=0.005 2
< | A £,=00005 o )
£ O Hadwalls ¢
£ x Bulk
o2 u] b
: ;
T
B o R
%
0 Dl:l | | . | |

Figure 2.3: Distance between the first five crystal layers (planes) parallel to
the wall direction and the left wall for different ey, the bulk and the hard
walls case
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We see that the situation passing from 30 to 20 layers doesn’t change
much while on the other hand, looking at the figures 2.2 and 2.3, we see how
much the value €y, is important in deforming the crystal. The value of €yan

which minimize the deformations in the lattice structure is
€wall = 0.0005.

This will be the value we will consider throughout this thesis for the
simulations with the flat walls.

We considered also the case of hard walls in which the interaction poten-

0 0<x< D*,
Viwall = (2.6)
00 elsewhere.

tial is

In this case actually the system is not a crystal anymore as we can see in
figure 2.4. However we performed some simulations imposing the crystal
to remain dislocation free, that is, we rejected all the moves which bring a
change in the nearest neighbours of any particle (cfr. following sections).
Any system with this constraint will never melt so we could find also the

lattice deformation values for the hard wall case.

Figure 2.4: Configuration with hard potential 2.6 the walls run along the
tilted sides
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2.3 Evaluation of the elastic constants

Calculations of elastic constants from simulations fall into two categories, i.e.
they are obtained either from thermal averages of fluctuations of the stress or
the strain, the so called “fluctuation” methods [23], or from the stress-strain
curve as computed from a series of simulations [24]. Fluctuation methods,
though requiring longer runs for accumulating statistically significant data,
are often preferred because the entire matrix of the elastic constants can
be evaluated in a single run, while in the second method for every elastic
constant an appropriate strain (or stress) has to be applied.

We applied two fluctuation methods in our simulations. In order to
evaluate the elastic constants we monitor both the stress and the strain
tensor during the simulations and evaluate their fluctuations, according to
the eqns.1.2 and 1.4, can we then calculate the elastic constants.

All the simulations were done in the NVT ensemble so number of parti-
cle, volume and temperature are constant throughout the simulation. Both

methods have advantages and disadvantages.

1. Sampling the stress tensor and its fluctuations keeping the volume
constant means small finite size effect, but on the other hand it requires
potentials which are everywhere differentiable. A generalization of this
method, that can be used with non analytic potentials as well, exists
but it is more difficult [25].

2. In the sampling of the strain tensor and its fluctuations the form of
the potential is not so important but since the volume (and hence the
total strain) are constant, a finite size analysis is required in order to
get meaningful thermodynamical quantities, moreover as final result of
this analysis we obtain the so called compliance matrix that then has

to be linked to the elastic constants.

2.4 Stress fluctuations

The idea here is to evaluate the stress tensor from the virial formula and then
to consider its fluctuations. For the bulk case the formulae for the canonical

ensemble were given for the first time in [24]. For the stress tensor it reads:
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RYRY  NkTS,
ZV (RYP) ) g )~ (2.7)

where the summation is over all distinct pairs of particles, R?ﬁ = (R*—R5);,

R = |R* — RP| and V'(r) = 4£.

For the elastic constants we have

R“ﬁ R R
) "(ReP) o)
Cijni VkT ZV (R ZV (R Raﬁ ) —
R“ﬁRaﬂ ROB pos
_ 1( paf / aﬁ A Y
(| S| | S v )
(ap)
af paf ozﬁ ozﬁ aB paf paB paf
1 R R} R} R, RWBRYP R
- V/l Raﬁ V Raﬁ 1 J k l
INKT 60,
T LU (2.8)

For a confined system, we have to consider the contribution of the walls
as well, we computed it in the following way:

In the case of structured walls we used the formulae 2.7 and 2.8 counting
in them the contribution from the pairwise interactions between the moving
particles and the particle forming the walls.

In the case of the flat walls given by the wall potential 2.3, we followed
the suggestion in [26] where in a different but similar context (the evaluation
of the local stress tensor in a confined system) each wall was treated as an
additional particle of infinite mass which due to symmetry reasons, gives

contributions only in the direction normal to the walls. So we considered for
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this system the formulae

RPRY  NETS;
o af) ij
oy = Z VIR —253) = =

1
+ V<Z VaalZh — Zietewall] * (Th — Tlestwall)) 0iz 0z

- Z wall Zrightwall — Zn] - (Trightwanl — Tn))0iz0jz, (2.9

for the stress tensor while for the elastic constants we used

RaﬁRaﬁ RaﬁRa,B
Cijki = Vk:T Z V'(R*P)———— + wco)- Z V(R k1 1 weo) —
RaﬁRaﬁ Ra,@ aﬁ
- ZV’ ROP) T 4 ol - ZV (RP) Ro‘ﬁ +wcol) p +
af paf paf aB paf pab
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2NKT6;;0; 0iz0i20kz01
+ = HIE ]Vk l (ZVVIJ[%h—wlw] (xh — 21w)7) —
h=1
N
a #<Z Vi [Trw — 2] - (2w — xh)2> -
h=1
N
- (O Vilen — o] - (on — 2w) -
h=1
N
— <Z va;[xrw —p) - (Trw — mh)>)’ (2.10)
h=1

where the term “wco” indicates the wall contribution to the virial in eqn. 2.9

that is,
1 N
/
Tweo” = = Z Vwall ['Th - -Tleftwall] . (-Th - -Tleftwall)(sim(ij

4 h=1

N

1
- v Z Viall[Zrightwall — Zh) * (Trightwall — Th)0iz0je. (2.11)
h=1
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2.5 Strain fluctuations

We use here the method proposed by Sengupta et al. in [27]. One can apply
it only in simulations of crystals, that is, when it is possible to have an un-
derlying reference lattice and it is based on the sampling of an instantaneous
microscopic strain “field” that is defined in every lattice point via the eqn.1.1,
here the set {u} represents the displacements from the lattice equilibrium
positions given by the set {R}. The derivatives are evaluated numerically
through finite differences and for the sake of simplicity, only the linear part
in eqn. 1.1 is taken into account.

In order for this method to work as it is without modifications it is
necessary not only to have a lattice but also that this lattice stays defect free
in the simulations, that is all the Monte Carlo moves introducing dislocations
are rejected so during the simulations the nearest neighbours of every particle
cannot be changed. In this sense it is not even necessary to perform a Voronoi
construction after every move to determine the new nearest neighbours of
the moved particle, but it is sufficient to control that the nearest neighbours
of the particle, listed at the beginning of the simulation, stayed unchanged,

an example of such rejected moves are given in the figure below

Figure 2.5: The blue particle is moved and after that the red one has now 7
nearest neighbours and not the canonical 6. One can show that this is equiv-
alent to a dislocation-antidislocation pair separated by one lattice constant.

In addition the number of moves p which are rejected because of this
constraint are stored in order to check how relevant this constraint is, but
we expect that if the system is far enough from the melting point the fraction
of moves rejected in this way will be anyway very low. On the other hand
going nearer and nearer to the transition point this number should more and

more increase, one can use this to estimate the dislocation pair formation
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probability and from that discuss the two dimensional melting scenario [28].

2.5.1 How the method works: the block analysis

The block analysis method has been used for example to calculate the com-
pressibility of the Ising lattice gas [30] and the two dimensional Lennard-
Jones fluid [31, 32]. Here we describe a version of this method which allows
us to explicitly and systematically incorporate the finite size effects arising
from a non zero correlation length as well as special constraints due to the
nature of the ensemble used.

Let’s consider a two-dimensional system described by a scalar order pa-
rameter ¢(r). We are interested in the properties of this system in the
disordered phase. It is therefore sufficient to use the following quadratic free
energy functional, F[{¢}],

F= kBT/ <%r¢2 + %c{vw(r)}2> dr. (2.12)

This method consists in measuring, during the simulation, v and its

fluctuations averaged within some sub boxes of size L, < L that is,

— 1 [k

Y= L_b Y (r)dr, (2.13)
9 B 1 Lb Lb , ,
= / / (W) (")) drdr. (2.14)

We can determine the form of the eqn. 2.14 starting from the Ornstein-

Zernick expression for the correlation function in the Fourier space [34]

3G (@) = {Watia) = G g (215)
where &y is the correlation length, x5, is the susceptibility in the infinite
system for the variable ¢, xg7, = (%) = limg—.o BGyy(q)-

Note that eqs. 2.12 and 2.15 are appropriate for the long wavelength
limit only and assume that correlations in this limit are isotropic. This
assumption restricts the validity of the approach that is outlined below and

should be kept in mind.
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In the homogeneous case the eqn. 2.14 becomes

@ =g o = 2 [ Gumar= Lk, @10
I Cn) TRt

where Gy (r) is the two-dimensional Fourier transformation of the 2.15. We

have )
Gyy(r) = é—gxiowY(T/éww% (2.17)
where .
- - 1 /oo p /27r ezzcos@ . (2 18)
=G )y F ) Era® |

One expects that when the simulation box is sufficiently large the block sus-
ceptibility recovers its infinite value be;’b — Xffw as Ly, — L. However the
behaviour of the block susceptibility is strongly dependent on the ensemble
in which the simulation is carried out [33]. For example, using the lattice
gas language [34], in a grand canonical ensemble where the chemical compo-
sition 1 of the lattice gas is allowed to fluctuate while the chemical potential
difference is being kept constant, the block susceptibility approaches x5, for
large L,. However this is no longer true in a canonical ensemble since the
average of ¢ in the entire system is constrained to vanish. This means that
when L, — L, Xifpvanishes also. So in such a case the behaviour of be;’b
is more complicated but, although in the “wrong” ensemble, is still possible,
performing the block analysis, to have informations on Xffw.

It can be shown [27] that the analysis done before can be repeated but

one has to replace G(r) with
G'(r)=G(r) — Ap, (2.19)

with
1 L

As for the G(r) the integral 2.18 cannot be evaluated explicitly but it can be
written in term of a Bessel function (cfr eqns. 3.915.2 and 6.532.4 in [35])

Glr) = 26X Kol /6), (221)

where from now on we omit the subscripts in G, ¥, & for simplicity. We have
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therefore )
- )] (2.22)

with the function ®(a)being defined as

D(a) = %ag /01 /01 Ky <0z\/m2 + y2> dzdy. (2.23)

It can be easily verified that for large a, ®(«) goes to 1 within a range O(1).
Using the expressions above, we can write for the block susceptibility

Ly

= X [0aL/g) — aB(L/9)], @=L,

- (2.24)

Note that the eqn. 2.24 gives y* — 0 as L, — L as we expected. In general

0.4 T T T T T
I — L/&=50 |
— UE=10
031~ — L/E=5 7
— UE=1
e I ]
>
T ro02k N
><
0.1f _
0 i 1 I 1 I 1 I 1
0 0.2 0.4 0.6 08 1
L /L

Figure 2.6: x -x taken from the eqn. 2.24 plotted versus x = %, for different
values of %

In the figure 2.6 we plotted x™* - x against x for various values of L /.
We can see that as L/§ — oo then ®(a) — 1, so the eqn. 2.24 goes over the
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simple asymptotic form
sz =X (z—2?). (2.25)

We can then extract x*° from the slope of the linear region in the eqn. 2.25.
Of course when L ~ £ this procedure is not so well defined and finding the
linear region is not so straightforward. Nevertheless by fitting the full data

to the form in eqn. 2.24 we can still evaluate x°°.

2.5.2 Strain fluctuations and elastic constants

We apply now the method of the previous subsection to our problem. In this
case 1 represents suitable linear combinations of components of the strain
tensor 7;;(R). The susceptibilities x then will give the compliance matrix.
From that we can then evaluate the elastic constants. Let’s point out first
that we can use the analysis exposed before. In fact all the simulations are
made in the canonical ensemble, that is, the volume and the shape of the
box as well are constant. The overall strain of the whole simulation box is
fixed (= 0 clearly). This means that the strain fluctuations go to zero when
Ly, — L so we expect a behaviour like the one in fig.2.6 !

Consider a triangular lattice far away from any phase transitions under
an hydrostatic pressure P. The elastic free energy can be written, given the

symmetries in the bulk case, in the quadratic form

K w+ P
F= / [3773 = (n? +4n2,) — Py | dr, (2.26)

where 74 and 7_ are linear combinations of the diagonal components of the

strain tensor

Nt = Naga + Nyy, N— = Nzz — Nyy-

In eqn. 2.26 K is the bulk modulus and p the shear modulus (see sec. 1.3
and eqns. 1.27).

lactually since we are considering here a lattice and not a field when L, = L there
could be in the susceptibility a small offset O(a/L)?, where a is the lattice parameter i.e.
xt=C-(a/L)* #0.
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The susceptibilities to consider in this case are:

Siv = p4n44), (2.27)
S—— = (n--n—), (2.28)
Sz = ANayNay)- (2.29)

We expect now for the three of them the form of eqn.2.24, so that equation
can be used to obtain the system size independent quantities SJ5. Once
these compliances are obtained the bulk and the shear modulus are given by
the formulae [27]

1

K = 25, (2.30)
1

Bp = 25 BP, (2.31)
1

Following the same scheme if we consider now the triangular lattice in the
confined case the elastic part of the free energy will have a lower symmetry.

We considered instead of eqn. 2.26 a more general expression

) Cii Ci2 O m
F = /dI’ 5 ( m n2 N3 > 012 CQQ 0 2 _Ptnl _Pl772
0 0 4033 3

(2.33)
where here we used again the Voigt notation, in the bulk case of course we
have C11 = Cy and C19 = Cs3, and the eqn. 2.33 is equivalent to eqn 2.26
(see also eqns. 1.27 for the relation between the C' and the moduli K and p).
Again looking at the fluctuations of the different parts of the strain tensor
we can calculate the compliance matrix S and from that the elastic constants
matrix C

BC = %S*l. (2.34)
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Chapter 3

Numerical results for the

elastic constants

3.1 Details about the block analysis and the evalu-

ation of the strain field

In this chapter we want to expose the results we found for the elastic con-
stants. However we first start with some details about how the block analysis
was performed and how we evaluate the derivatives needed for 7;;(R) accord-
ing to the 1.1.

We considered different wall distances and so different system sizes. Typ-
ical runs were performed for system containing between 20 x 20 and 80 x 80
particles performing 10 Monte-Carlo steps per particle for every run. We
used standard Monte-Carlo methods where single particles are selected at
random to attempt a small random displacement in a square of linear dimen-
sion k = 0.206 centered at the old position of the particle. In the direction
parallel to the walls, periodic boundary conditions are used.

The block analysis is performed every 10 Monte-Carlo steps and it is
done choosing L; in the form

Ly= —1, n=1,2---,100.
100
The sub box of size L is placed randomly 100 times in the simulation box.
Every time the average values of the components of the strain tensor in the

sub box are computed, and after that the needed correlations, according
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to the eqn.. 2.26 or the eqn. 2.33, times the number of points in the sub
box (according to eqn.2.16). Then the average values over the 100 tries are
considered and these will be the sampled block averages. To make an explicit
example, let’s take 144 in the bulk case: every time we consider a sub box

with a given L;/L, we evaluate

1 (Lo)
= —— i 3.1
++ 'I’L(Lb) ZZ; N+ ( )

where the sum is over the n(L;) lattice sites inside the sub box. We then
consider the square of eqn. 3.1 times n(Ly). After averaging over 100 tries,

we take this average, according to the he eqn. 2.16 as the sampled value for

T Ly =X (3-2)

The strain field is evaluated as follows: we consider for every lattice point

the instantaneous displacement from the average position
ur(t) = R(t) — R, (3.3)

where the average lattice {R} is updated every 105 Monte-Carlo steps. In
order to get the strains we need the derivatives to the 2 components of ugr
with respect to « and y. The derivatives are calculated using the 6 nearest
neighbours of every lattice site. We consider all the triplets made by the
central lattice point plus two consecutive nearest neighbours ( for example
the points {0, 1,2} see figure below)

o Of

Figure 3.1: Lattice site and its nearest neighbours in a triangular crystal
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Starting from these 3 point than we consider the 3 column vectors

0 1 2
U; Uy Uy
1 2

X0 1, X ) X )
Yo y! Y?

where u* are the i-th component of the displacement from the equilibrium
position for the « particle while (X;Y?) are the coordinates of its reference
lattice point. Then we calculate the plane passing for the 3 points in the

ui, T,y space which will have the linear form

u; = ax + by +c, (3.4)
and we take a = %z;i and b = %l;i. We repeat these calculations for all

the 6 triplets possible and then take the average as the final result for the
derivatives which are used in the linear part of eqn. 1.1 for 7.

We conclude this section mentioning that, although in a modified version
for the evaluation of the susceptibilities, this method was used not only in
simulations but also in experiments where, with video microscopy techniques,
one can monitor the fluctuations of the particles from their average positions

and from that compute the elastic constants [10].

3.2 Block analysis: results for the bulk

We report here our results regarding the block analysis method which was
considered in the previous chapter

We considered first the easiest case: the bulk, that is, soft disks with the
interaction potential 2.1 with periodic boundary conditions in all directions.
Here we want to find the block susceptibilities according the scheme of eqn.
2.24 and fig. 2.6

Some results are shown in figs 3.2 and 3.3. The behaviours we found
are the one we expect from the theory of the previous chapter and are in

agreement with [27] as well.
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Figure 3.2: Compliances curves in the bulk case: system size 900 particles

3.3 Block analysis: results for the confined systems

We report here the results we found for the confined systems, that is, soft
disks with interaction potential 2.1 plus the two types of walls we considered
according to the secs. 2.1 and 2.2.

As already pointed out in subsec. 2.5.2, due to the lower symmetry of
the problem instead of the 3 compliances S;,, S__, and S33 we considered
S11, S22, S12 and S33. For the first 3 of them, in fig. 3.4, the results we
found are the one we indeed expected

However for S33 we found an unexpected behaviour for the case of the
flat walls, while in the case of the structured walls this does not happen, the
curves are plotted in figs. 3.5 and 3.6 respectively. The curve in fig. 3.5
shows that for that case the block analysis scheme as we derived in subsec.
2.5.1 cannot be applied here, in particular we cannot here assume that the
fluctuation of 7., in the whole box is equal to 0 or very small. A reliable
analysis for this case was not possible and this made it impossible for us to
extract the Cs3 from this curve with the method of subsec. 2.5.2. The reason
for the shear fluctuations to be so large , in the case of the flat walls, will

be explained in the following chapters. Here we just say that it is clearly a
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Figure 3.3: Ss3 in the bulk case for different system sizes, as the system size
increases we go toward the limit 2.25. Look also at fig.2.6.

wall induced effect which shows that the system is loosing some "order" in

the direction y parallel to the walls

3.4 Numerical values of the elastic constants: the
two different methods and different wall dis-

tances

Here we give finally the values of the elastic constants for the systems we
simulated. In the two tables 3.1 and 3.2 the results obtained with the two
different methods, in the case of distance between the walls D = 30\/7g a (sec.
2.1) are written. We found with the two methods, within the errors, the
same results.

In the figs. 3.7 we consider the elastic constants for different distances of
the walls. In both cases we see that the values of these constants don’t change
much with the distance. This is due to the fact that elastic deformations are
long range, and so are the effects induced by the walls.

In order to have different behaviours with D one should vary it to much

larger values, well beyond the possibilities of our computing power.
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Figure 3.4: S11, Soo, S1o for the system with flat wall, in the structured case
the curves look similar

Another aspect of those results to point out is the value found for Csg
in the case of flat walls, tab. 3.1 last row and fig. 3.7 (a). These values
are quite different from the bulk ones, the Cauchy relation does not hold

anymore. Approximately we have
2033(TL) = ng(bulk),

and since Cs3(n) ~ P, where P is the pressure, this means that the shear
modulus associated to Cs33 vanishes, see eqns. 1.16 and 1.24. In this kind of
conditions it becomes very easy to shear the system. This is consistent also
with the curve in fig. 3.5, where we point out again that the overall shear
fluctuations in the whole box become exceptionally large although periodic

boundary conditions in one direction are present.
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Figure 3.6: Ss3: structured walls and bulk
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‘ Elastic Constants ‘ Stress Fluct. Formula ‘ Strain Fluct. Formula ‘ Bulk ‘

Cit 123 121 127.5
Cas 127 121 127.5
C1a 41 45 43
Cs3 15 - 43

Table 3.1: Numerical value for the elastic constants in units of k5T /o2 in the
case of flat walls. Here we considered a 30 x 30 system, i.e. we considered
30 layers in the z direction, perpendicular to the confining walls and 30
layers in the y direction, in which periodic boundary conditions are applied,
ewall = 0.0005. Relative errors of the results are about 3%

‘ Elastic Constants ‘ Stress Fluct. Formula ‘ Strain Fluct. Formula ‘ Bulk ‘

1 122 122 127.5
Coo 125 122 127.5
C1z 1 44 43
Cs3 40 44 43

Table 3.2: Numerical values for the elastic constants in units of kg7 /o2 in
the case of the flat walls, again we considered here a 30 x 30 system. Relative

errors of the results are again about 3%
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Chapter 4

Fluctuations and

dimensionality

4.1 Introduction

In this chapter, we turn our attention mainly on the fluctuations from the
equilibrium lattice positions for the confined systems we are considering.

Our aim is to link to the findings of the previous chapter to the be-
haviour of such fluctuations. Clearly due to the low dimensionality and the
geometrical constraints of the problem (a 2d system confined in one direc-
tion) we expect these fluctuations to play an important role, and to help us
in clarifying what is the effect of the confinement on such crystals.

In order to have a more quantitative analysis we discuss also, in the
frame of the harmonic theory, the fluctuations of the particles from their
lattice points with periodic boundary conditions.

However in order to have a situation more resembling the one of a con-
fined system ( for which we didn’t try any analytical calculation) we consider
the x direction independently from the y direction, that is, we vary the ex-
tension D over which we consider the periodic boundary conditions in =z,
while L, the extension in the y direction is kept constant. We expect to see
a crossover between a 1d type behaviour, typical of D < L to a 2d type
behaviour as D ~ L.

We will then discuss when the crossover takes place and compare the an-
alytical results with the simulations both with periodic boundary conditions

and in the confined case of interest.
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4.2 The structure factor in two and in one dimen-

sion

In describing the positional order in a system an important quantity is the

static structure factor

S(a) = 1 Dolexplia - (R —Ry)), (@)
w

where {R;} are the positions of the particles.
If we consider as {R;} a set of points of a lattice we have, in the ther-
modynamic limit

S(q) o< é(q - G), (4.2)

where G is a vector in the reciprocal lattice. Of course in a crystal, the
fluctuations from the equilibrium position have to be taken into account.

Let’s consider an harmonic crystal we can write for the structure factor
[36]:

Sta) = v > exp [ia- (R~ RY) exp |~ (fa- (-~ w))| - (43)
i

where R? is the lattice equilibrium position and u; is the displacement of
the I-th particle.
Considering again a reciprocal lattice vector for q, and taking into ac-

count the homogeneity of the system eqn. 4.3 becomes
St@) = Y exp |4 (la- (w —w)P) (14)
l 2 0 [ . -

We will discuss in detail in sec. 4.4 how to evaluate rigorously the expo-

nent in eqn. 4.4. Here we just say that for small ¢, the main contribution is

dk 1 dk
- [ = 4.
/%2( CQ/kz, (4.5)

where w(k) are the phonon frequencies which in the low wave vector limit

given by a term like

are linear, w(k) = ck, with ¢ being the sound velocity. The term in eqn. 4.5
gives a contribution which will depend on the dimension of the crystal we

are considering. In two and in one dimension this contribution will diverge
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respectively logarithmically and linearly with /. That is

(la-(wg—w)?) ~ logl  2d, (4.6)
(la-(ug—w)? ~ 1 1d. (4.7)

These divergencies and their effects especially in the two dimensional case
have been extensively studied and discussed in many papers [37, 38, 39, 40,
41]. Due to them in d = 2 and d = 1 it is possible to have a crystal only at
T=0.

Let’s consider now more in detail the one-dimensional case, again in the

harmonic case i.e we take an Hamiltonian of an harmonic chain [41]

1 i o (Y1r1 — Y1 — a)2
H:—Z L 4+ me , (4.8)

m a?

where point particles of mass m have positions y; and conjugate momenta ;.

In the classical ground state one has y, = yg+na, n=12,--- , N — o0,

a being the lattice spacing of the one-dimensional periodic lattice. The

parameter ¢ plays the role of a sound velocity when one determines the

eigenfrequency of H. From eqn. 4.8 it is straightforward to calculate the

correlation function of the main square displacements u,, = y, — na as
a’kpT B

((un, — up)®) =n " nd?. (4.9)

Here § characterizes the local displacements. The eqn. 4.9 is clearly the
same as eqn. 4.7 only written in more precise way and its interpretation is
that the relative displacements u; —u;_1 at each index [ of the 1d lattice add

up in a random walk-like fashion.
Using eqn. 4.9 the structure factor in eqn. 4.3 can be written in the form

sinh <q2262 )
S(q) = 5 . (4.10)
{cosh <q2 ) — cos (qa)}

Since cos (qa) = 1 for the Bragg peaks positions qa = 27v, v =0,+1,£2,---
one recognizes that for small  the structure factor has a series of rather sharp
peaks at the Bragg positions, which smoothly develop toward a series of delta

functions d(q — ¢q,) as § — 0 (which means T' = 0, cfr. eqn. 4.9). For T
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small but nonzero, on the other hand, the structure factor resembles a series

of Lorentzian peaks

252
S(g~q,) =~ 9,0 =
454 /4 —a)? a2
[qy /A+(a—q) a
4 1
, (4.11)
q2(52 |:1 + (q _ qy)2 I/_4§2:|
v=1,23,---, &=amc*/(2n’kpT). (4.12)

The length ¢ describing the width of the first pseudo-Bragg peak can be
interpreted as the correlation length of the positional order in the 1d chain.
From eqn. 4.9 we see that this corresponds to a distance na along the chain
%, which

hence is an analogue to the “Lindemann criterion” of melting familiar from

for which the mean square displacements has grown to a value

crystals in d = 3 [34]. Note that Piacente et al. [44] suggested to generalize
the “Lindemann criterion” to estimate the melting temperature of a crystal

to low-dimensional system by requiring for the “Lindemann parameter” L,

(w1 — uo)*)
L, = B E——— 0.1. (4.13)
Such a notion would imply that even a crystal in d = 1 has a nonzero melting
temperature 7;,, > 0.
As is well known, eqns. 4.10 and 4.11 do provide a realistic description

of materials such as the mercury chain compound Hgs_sAsFeg [41, 42].

4.3 The structure factor measured in the confined

systems

While a general discussion on the “orders” present in the systems and how
these orders are changed by the presence and the nature of the walls will be
carried out in the next chapter, in this chapter we are interested specifically
only in the positional long range order (LRO) along the wall direction and
see how it is affected by the confinement. So we consider and measure in
the simulations, for our confined systems, for every layer a 1d-like structure
factor per layer with ¢ is directed along y . We take a definition like the one
eqn. 4.1 but with the particles considered only in a single layer parallel to
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the wall and with only the y coordinates, so for the generic n'* layer this

means
1

S(q) - Nlayer

(exp [ig (y1 — yr)])- (4.14)
1’ enthlayer
In the fig. 4.1 the results are shown for the case of the flat walls (plot a)
and for the one of the structured walls (plot b). We clearly see a dramatic
difference in the behaviour of S(q) for the two cases. For the structureless
repulsive wall, we have a typical fluid-like structure factor, but with heights
of the first two peaks which are much larger than for typical fluids (remember
that in three dimensional fluids at the melting temperature the first peak of
S(q) reaches a height of about 3 [43]. In fact this structure factor is almost in
a quantitative agreement with a fit to the S(q) for the 1d harmonic chain of
eqn 4.10 adjusting a single parameter in the fit namely 6 = 0.07. Remember
however , that here we deal here with a system with 30 rows confined between
two boundaries, rather than a true 1d system.

For the structured walls, the structure factor exhibits the sharp Bragg
peaks expected for a crystal.!

The reduction of the order in the case of flat walls, is also seen directly
when one superimpose the positions from 1000 configurations of the particles
(fig. 4.2 plot a). Again we want to stress here that, despite the shape of S(q),
in the case of flat walls, the system is not like fluid. In a fluid, one would see,
in a snapshot of a single configuration, lots of dislocations and superimposing
a large number of such snapshots a uniform density distribution results which
is not the case here. We will show in the next chapter that locally here a
crystalline structure is still present and that this lack of order concerns the
positional LRO in the y direction only, however: the orientational LRO
due to the strong confinement in layers parallel to the walls is rather well
developed, and even better for the planar walls rather than the structured
walls, the order in the z direction, orthogonal to the walls, is also enhanced
by the confinement. The analogy to 1d harmonic chains in the case of flat
walls suggests that for 7' = 0 the range of positional LRO gets gradually
very large, but true LRO only occurs for T = 0. (Note that also Ising

'Note that for ordering commensurate with the corrugation potential the statement of
N. D. Mermin in [39], that crystal in d = 2 have only orientational LRO and no positional
LRO does not apply here. This situation is reminiscent of the behaviour of thin films
adsorbed on substrates where true LRO commensurate with the substrate corrugation
potential can occur [45]
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model strips of finite width have a transition only at 7' = 0 for any finite
value of D, but there the correlation length below the critical temperature
T. of the 2d model is much larger, of order D exp (constant x D)). Thus
the system may be viewed as a kind of two-dimensional smectic phase, a
phase with orientational long range order but positional long range order
in one direction only. It would be wrong to interpret the destabilization
of crystalline two-dimensional long range order by flat structureless walls
as surface-induced melting. If surface-induced melting occurred, we would
find lots of dislocations near the boundaries, which is not the case here

In fact, we have used the algorithm of [28] to check the formation of
dislocation pairs from a local coordination. Apart from the rows adjacent to
the walls, the coordination number of each particle in a triangular structure
is 6, while dislocations show up via a 5-fold or 7-fold coordination, and at the
walls the coordination number of each particle in a triangular structure is
4, dislocations showing up via 3-fold or 5-fold coordination. We have found
that at 7' = 1 the average density of dislocations is 107°, and this explains
why no dislocation pair is seen in typical snapshot pictures such as fig 4.2a.

Taking in mind these results and reconsidering again the elastic constants
of fig 3.7, we can say that the fact that confinement by planar structureless
walls turns a colloidal 2d crystal into a kind of smectic phase [46] (or strongly
modulated fluid, respectively) also shows up when one examines these “bulk”
properties of the strip (the elastic constants). While for structured walls
one reaches the behavior of the bulk rapidly, this clearly does not happen,
for planar walls, in the case of Cs3(n). Again we point out here that the
question how for the elastic constants the thermodynamic limit is approached
is intriguing. The planar boundary provides an elastic distortion of long
range [7] to the crystal, and our results imply that in d = 2 this distortion
disturbs the positional LRO.
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Figure 4.1: 1d static structure factor S(q) plotted versus qa/27 (a being the
distance between the lattice axes in the y—direction parallel to the bound-
aries), for planar walls (a) and for structured walls (b). In case (a) a fit to
S(q) for a harmonic chain according to the eqn. 4.10 also included (straight
line) while the disks are the simulations data. All data are for system of 900
particles, that is 30 x 30 lattices. the wave vector q is oriented along the
y—direction.
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Figure 4.2: Particle configurations corresponding to the structure factors in
fig. 4.1. Again plot (a) shows the case of flat walls and plot (b) the case of
structured walls. 8 layers adjacent to the wall on the left are shown: 1000
configurations out of a run lasting 10° Monte Carlo steps are superimposed.
note the prominent anisotropy of the density peaks in the case (a)
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4.4 Displacement correlation function: the case of

the harmonic lattice in the bulk

In order to help understanding the lack of positional LRO in the case of flat
structureless walls, we now evaluate analytically the displacement correlation

function

B(y) = ([uy(y) — uy(0)]), (4.15)

where u, is the displacement away from a reference lattice in the direction
parallel to the walls and the angular brackets signify ensemble averaging.
We start from the continuum approximation for a two dimensional elastic

solid that has a triangular structure [34]

L[S [ oy (- P @R (0

Here the integration is extended over the first Brillouin zone, Aand p are
the well-known Lame coefficients, and P is the hydrostatic pressure (see
for example eqn. 1.25). The Fourier transform u(Q), of the displacement
vector u(l) has been decomposed into longitudinal (L) and transverse (T)

components. So

u(l \/_ Z Jexp [iQ - 1ry],

and

w(@ = Q-u(@. (@ =u(Q) - Qu@. Q=5

We wish to calculate from the elastic Hamiltonian 4.16 the displacement

correlation function, in the more general case we have
B(r) = ([u(r) — =5 Z u(Q)[*) [1 —cos (Q-1)]. (4.17)

Note that B(r) also controls the static structure factor S(q) (eqn.4.3).
Using the equipartition theorem one readily shows from eqn. 4.16 that
[34]

ksT  QuQp | kT <5aﬁ_QaQB)
A+2u—P @  pu-P Q? ’

(Ua(Q)us(-Q)) = (4.18)
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where a and [ denote Cartesian components. Here we shall focus on the B(y)
in eqn. 4.15 that is the displacements correlation function of y-components

and consider also a distance r along the y-direction, to find

B(y) = ([uy(nao) — uy(0)]*) = %Z > (uy(Quy (—Q)) [1 — cos(Qynap)]
o (4.19)

where the values @), and @), over which the sums are extended are determined
by the geometry of the considered crystal, and the boundary conditions
chosen. We here consider a lattice of size D in the z-direction and size L in
the y-direction, and choose periodic boundary conditions. It is convenient to
measure the lengths in the y-direction in units of the lattice spacing a, = 1
(fig. 5.1) and in the z-direction in units of d = agv/3/2, the distance between

the rows. Then

2 4 2

QI/T[' = —1,—1+5,—1+5,,1—5, (420)
2 4 4

Qy/ﬂ - _17_1+z’_1+z’71_za (421)

i.e. the Brillouin zone is appropriately discretized (there are L/ag discrete
values @)y, etc.), bur the center of the Brillouin zone (the point Q, = @, = 0)
has to be omitted from the summation, since it would yield in eqn. 4.19 a
uniform displacement of the whole lattice.

In the next section we will discuss a quantitative comparison of eqn. 4.19
to simulation results. It is preferable to evaluate eqns. 4.19-4.21 numerically.
Here we rather discuss an approximate evaluation of eqn. 4.19 which explains
the behaviour of the displacements correlation qualitatively.

Considering the limit where both 1 < n < D and 1 < n < L we can
approximate the summations by integrals, to obtain (N = LD)

(uy(n) — uy(0)]?) ~ 2 / = / 4Qy 1 = cos (@ym)

27 2r Q2+ Q3
2
Q2 kpT
Q2+ QiN+2u—P
Q> kBT}
+ 4.22
Qi +Qyu—P (422

One can show that for the considered limit the integral has, as expected,
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a logarithmic variation in n, similar to the simpler integral?, where g is a

constant,

7 - 2kBT/ de/ dQy 1 — cos (Qyn)

Q%+ Q5
kT [T dQ, kT
= 2 | 0. [1—exp(Q.n)] = o Inn. (4.23)

This logarithmic divergence of the correlation function of the displacements
is responsible for the fact that in two-dimensional crystals the delta function
singularities of S(q) at the Bragg spots are replaced by power law singular-
ities, as it “s well known [40, 47].

On the other hand, a different result is obtained if we consider a very
elongated system, D < n < L. Then it is still appropriate to transform
(1/L) ZQy( ..)into [dQ,/2m(...) but keep the sum over @, discrete. This

yields to an expression of the type

([uy(n) — uy(0)]*) ~ QkBT . Z/ 1Qy1 _oni(ggn). (4.24)

It is easy to see that the dominating term in eqn. 4.24 comes from a single

term in the sum, namely the term with @, = 0,

2kgT 1 (™ dQ, 1 —
(fa(n) = wy @)y ~ =2=5 | 267?:/ coggf%n)_

Transforming the integration from Q, to z = Qyn and using [35] [* dz(1—

cos z)/z? = 7, a linear increase of the displacements correlation results,
2kpT
[y (n) — 1y (0)]%) ~ 7L %, D<n<L. (4.25)
g

Comparison of eqn. 4.9 and 4.25 shows that in this limit a crossover to quasi
uni-dimensional behaviour has occurred. Equating eqns. 4.23 and 4.25 we

can estimate the location of the crossover

Neross ~ D 1N Neross ~ D In D. (4.26)

Here the formula 3.7237 of [35] is used [~ (2” + 02)71 {l—cosla(b—x)]}dz =
m [1 — exp(ac) cos(ab)/c].
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Defining again the positional correlation length ¢ from the condition of the
mean square displacement correlation reaches a finite fraction of the square

of the lattice spacing, we find a result analogous to eqn. 4.12

g .
27TktBT '

=D (4.27)

thus ¢ diverges in both the limits D — oo and T' — 0. For the eqn. 4.27 there
is an analogous result for the two-dimensional XY model, we will discuss
these and other analogies in the next chapter.

In the bulk case (D — o0) there still is no positional long range order,
of course, since logarithmic variation (eqns 4.6 and 4.25) of the mean square
displacement correlation has taken over. It is well known that this fact imply
also implies that the peak heights of the structure factors in the reciprocal
lattice points are not proportional to IV, but scale with a sublinear power of
N

S(G) o Ni—eonstksT/g (4.28)

where the constant in the exponent in eqn. 4.28 can be calculated analyti-
cally from the harmonic theory [40, 47, 48]. The consequence of eqn. 4.28
is that at the thermodynamic limit, there is no positional order, while, at
low T orientational order is present [39]. We shall return on that in the next

chapter.

4.5 Results from the simulations and comparison
with the theory

We have evaluated the displacement correlation function ([uy(n) — uy(o)]2>,
using both the theory of the previous section (eqns. 4.18 and 4.19), with the
elastic constants of the bulk crystal as an input and the sum in eqn. 4.19
numerically computed, and directly from the simulations (figs. 4.3 - 4.5).
Fig. 4.3 shows that for large enough L the linear relation in eqn. 4.25 is in
fact reproduced, in the limit D < n < L. However, when n becomes of the
order n &~ 2D or smaller, deviations set in (due to the crossover towards the
logarithmic behaviour, eqn. 4.23), while for n ~ L/4 deviations set in due
to the symmetry of the periodic boundary conditions that limit the linear
increase implied by eqn. 4.25. In order to test for the initial logarithmic
increase of B(y) = ([uy(n) — uy(o)]2> with y, the data for D = 20, L = 500
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of fig. 4.3 are replotted on linear-log scales in fig. 4.4, and data from a
direct Monte Carlo simulation of this system are included. One can see
that the harmonic theory and the Monte Carlo results are in quantitative
agreement, with no adjustable parameters. A similar agreement has also
been found in studies of the low temperature phase of the XY model [50, 51]
which can be considered a simpler reference system for our problem. From
this work [50, 51] it is also clear that this agreement breaks down near the
Kosterliz-Thouless transition [52] (due to vortex pair formation the spin wave
stiffness of the XY model gets renormalized), and similarly we expect that
the agreement seen in fig. 4.4 gets worse when the melting transition is
approached: we expect that the elastic constants get renormalized due to
dislocation-pair formation [47, 48, 53, 55, 56, 57|. Although it would be
very interesting to study our model at temperatures closer to the melting
transition, we have not attempted to do this due to the enormous difficulties
of obtaining well equilibrated simulation data. Already at T'= 1 for y > 50
fig. 4.4 displays huge statistical errors, in spite of a run that lasted for
many weeks at a Pentium 4 processor. Therefore it is likely that there is no
systematic discrepancy between the harmonic theory and the Monte Carlo
results even for y = L/2 = 250. Anyway one can see that for y > 40 the
increase of B(y) with y is stronger than the initial logarithmic behaviour.
However from fig. 4.3 it is clear that the linear behaviour according to eqn.
4.25 cannot really be seen, because the effects due to the periodic boundary
conditions start rather early.

Fig.4.5 compares now results for the harmonic theory (eqns.4.18 - 4.19)
with Monte Carlo results for the case D = 20, L = 100, including also data
for a system with planar walls, for the layers closest to the walls. In this
case there seems to be some systematic discrepancy between the Monte Carlo
data and the harmonic theory, but the general trend is similar. We have seen
before that the periodic boundary conditions start to be felt at n ~ L/4
already, no trace of B(y) increasing with y stronger than logarithmic is seen
in this case. An interesting feature however, is the faster increase of the
displacements correlation function of particles adjacent to a wall, for a system
of the same linear dimensions (D = 20, L = 100) but with two planar walls
along the y-axis rather than periodic boundary conditions. Unfortunately
the mild curvature of the data in fig 4.5 (due to the periodic boundary

conditions in the y-direction which are strongly felt for y > 25) prevents
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us from making precise statements about the relation between the slope in
the relations B(y) « Iny for a two dimensional crystal surface adjacent to a
flat wall, and in the bulk respectively. This comparison is of interest since
similar calculations can be done in the XY model (they will be discussed in
chap. 5 ). From those calculations one would expect that the slope of the
relation B(y) o« Iny for a row adjacent to the wall is twice as larger as the
slope in the bulk.

Figs. 4.3 - 4.5 emphasize the aspect that a crystal in two dimensions
is a critical system, as far as positional long range order is concerned. The
instability of this order, evidenced by the growth of the displacement corre-
lation function with distance, is enhanced by flat walls boundary conditions,
similar to an XY model with free surfaces. This enhancement of fluctuations
at the free surface (or flat wall, respectively) is felt over very large distances
in the z-direction, where also an anomalous enhancement of the fluctuations
exists. Presumably, these long range effects of free surfaces are responsible
for the difference between Cs3(n) for thin strips of n layers bounded by flat
walls, and the corresponding systems with periodic boundary conditions in

all directions.
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Figure 4.3: Displacement correlation function B(y) = ([uy,(n) — uy(0)]%)

plotted vs. y, calculated according to eqns. 4.18 - 4.21 for L x D systems
with D = 20 and L = 500, 1000, 4000, as indicated in the figure. Periodic
boundary conditions are used in both x and y directions. As input param-
eters, the Lame coefficients A = 42, 4 = 41 and the hydrostatic pressure
P = 17.4 (all these parameters are quoted in units of kgT'/0?) are taken, as
obtained from the Monte Carlo simulation of the model, 2.1 at T' =1 in the
bulk. Note that B(y) exhibits the symmetry B(y) = B(L — y) due to the
periodic boundary conditions
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Figure 4.4: Comparison of B(y) according to the harmonic theory (squares)
with corresponding Monte Carlo data (full dots with error bars) for a system
with linear dimensions D = 20, L = 500, and periodic boundary conditions.
Note the linear scale of the ordinate, while the abscissa is logarithmic.
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Figure 4.5: Comparison of B(y) according to the harmonic theory (squares)
with corresponding Monte Carlo data (open circles), for a system with lin-
ear dimensions D = 20, L = 100, and periodic boundary conditions. The
diamonds show corresponding Monte Carlo data for a system with planar
walls, using only displacements of particles in the rows adjacent to the walls.
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Chapter 5

Confinement induced order

5.1 Order in a two-dimensional system

In the previous chapter we pointed out and studied the one-dimensional
features of our systems when they appeared. However, due to the pres-
ence of a second dimension (although confined), our systems have also two-
dimensional aspects. This kind of systems can be considered, so to say, in
between those two dimensionalities. So now we turn our attention on the
two-dimensional features of these systems.

When we want to describe ordering in d = 2 we must consider both
positional order and bond orientational order [39, 45, 47, 48, 55, 53, 56, 57].
The average positional long range order can be studied most conveniently

considering the order parameter components, see fig. 5.1

N
1 )
Vg, = N ;exp[zGo-Rl] , (5.1)
1 N
Ve, = ;exp[ic;l.Rl] , (5.2)

where r; is the position of the [’th particle and Gg and G are two vectors
of the reciprocal lattice. From the simulation, the full distribution function
P[¥g,, ¥Yq,]| is accessible. Note that the static structure factor in eqn. 4.1
has peaks at the reciprocal lattice spots, and the maximum values of S(q) at

these peaks positions are simply related to the second moment of the order
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parameter distribution, e.g.
S(Go) = N(¥g,),  S(G1) = N(¥E,). (5-3)

The local orientational order parameter Wq(k) is defined as [34, 39, 47,
55, 53, 56, 57], see fig. 5.1

%(k):é > exp(bigyn), (5.4)

jénn. of k

where the 6 in the argument of the exponential function expresses the fact
that in the ideal triangular structure the angles ¢;;’s of a considered par-
ticle can differ only by multiples of 27/6. The average orientational order

parameter Vg and its correlation function gs(R) then become

To= 006 o(R) = (TR, (55)
=1

where R = Ry — Ry/. Note that gs(R — o0) = ﬁé if orientational long
range order exists.

Clearly the possibility of defining such an order parameter like the ori-
entational one as in eqns. 5.5 comes from the two-dimensional topology.
However this orientational order plays a crucial role in describing the melt-
ing in 2d.

According to the theory proposed by Halperin, Nelson and Young [47, 48,
53, 56, 57] melting in two dimensions can occur via two continuous transitions
(at densities p; and ps) with corresponding pressures p; and ps > p;, rather
than via a single first order transition at pressure p;(where a fluid of density
p; and a solid of density p/, will coexist): see fig. 5.2. Both in the fluid phase
and in the hexatic phase, ¥g = 0, but the behaviours of gg(R) are different:
in the fluid one finds an exponential decay, while there is a power-law decay

in the hexatic phase :

g6(R —00) o exp(=r/§),  p<p, (5.6)
gs(R —00) o< r77 P < p < ps, (5.7)

and the correlation length £ of the bond orientational order diverges as p;

is approached, as does the bond orientational susceptibility x = [ dRgs(R)
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[47, 48, 52, 53, 55, 56, 57]:
In¢ o Iny o (p — p) 2. (5.8)

Conversely if one has a first order transition, both & and y stay finite at p/,
and a nonzero order parameter Vg has already started to increase at p) while
according to the Kosterliz, Thouless, Halperin, Nelson and Young (KTHNY)
scenario, Vg is nonzero for p > p, only.

The mechanism of these continuous phase transitions is the unbinding of
topological defects. just as in the two-dimensional XY ferromagnet or planar
rotor model where vortex-antivortex unbinding occurs [47, 48, 52, 53, 55|,
the transition from the solid to the hexatic phase is driven by the unbind-
ing of dislocations pairs with oppositely oriented Burgers vectors. While a
free dislocation would have an infinitely long extra half-row of atoms, such
a dislocation pair at finite distance involves a finite number of atoms, so
this excitation has a finite energy and can occur in the crystal in thermal
equilibrium. The hexatic phase melts via disclination pair unbinding.

We conclude this section pointing out that evidence from numerical sim-
ulations and experiments for the existence of the hexatic phase is scarce.

In particular from the simulational point of view studying the KTHNY
scenario, already in the bulk case, requires a lot of efforts. The reason is that
in order to have statistically significant data, one requires configurations
where a series of well equilibrated dislocation pairs are present, but such
dislocations pairs spans on many lattice sites and involve many particles
while on the other hand we want to go near the transition point and so big
finite size corrections together with critical slowing down are expected.

In the sec. 2.5 we mentioned that a way of partly overcoming these prob-
lems is to artificially prevent the crystal from melting also near the transition
points. From the count of the rejected moves leading to a dislocation pair,
one can estimate the probability of having such a dislocation. Such a proba-
bility together with the elastic constants of the defect-free solid can be then
used as an input in the renormalization group flow equations of the KTHNY
theory (see [28, 29] for the case of hard disks) . In this way all the quantities
of interest can be evaluated also near the critical region. However with this
technique it was not possible to reach conclusive results ruling out the pos-

sibility of a weak first order phase transition preceding the KHTNY melting
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scenario.

5.2 Ordering and surfaces

The effect of external walls (and/or free surfaces respectively) on phase be-
haviours has been studied for a long time [58, 59, 60, 61, 62, 63, 45, 49, 50, 51].
We here want to recall briefly the simplest case, a system undergoing a
second-order phase transition in the bulk from a disordered state to an or-
dered state with one-component order parameter (e.g. an Ising ferromagnet,
fig. 5.3). One must distinguish between boundary conditions at the wall
providing a linear coupling to the order parameter (“surface magnetic field”
H; in the case of a ferromagnet) and a quadratic coupling (as it occurs in
ferromagnets where missing neighbors imply that the spins in the surface
plane experience less exchange interactions to neighboring spins than the
spins in the bulk). In both cases the range over which the order near the
surface is either enhanced or reduced is of the order of the correlation length
&, of order parameter fluctuations in the bulk. At the critical temperature
T, of the second order transition where &, has diverged to infinity, the expo-
nential decay towards the bulk has been replaced by a power-law behavior
(fig. 5.3b). Note that in fig. 5.3 we have only considered the case that the
field H; at the surface acts in the same direction as the order parameter Wy
in the bulk (fig. 5.3c). The case that the field at the surface acts in the direc-
tion opposite to the order parameter in the bulk is also of great interest, it
may lead to the formation of (ideally macroscopically thick) “wetting layers”
[59, 60, 61, 62, 63, 45], but this phenomenon is not under consideration here.

Fig. 5.3 is not the whole story, of course, since at a phase transition it is
also of interest to consider the correlation function G(rq,rs) = (¥ (r1)¥(r2))
of the local order parameter ¥(r) = U(s, z), s being the set of d — 1 dimen-
sional coordinates parallel to the surface. Since translational invariance is
only broken in the z-direction normal to the wall, we can choose s; = 0,
so = s, to redefine the correlation function as G(ry,r2) = ¢(s, 21, 22). While
it turns out [58, 59, 60| that the decay of g for T' > T, is always given by an
exponential decay, g o< exp(—|r; —ro|/&) and for T — T, the decay length
&, does not depend on the direction of r; — r9, the power law at 1. does
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depend on the direction,

—(d—2+n)) 7

g(s,21,29) x s 21, 29 finite, s — oo (5.9)

d—24mn,)

g(s,21,20) o |z — 29| , 8,21, finite, 29 — oco.  (5.10)

The exponents 7 and 7, differ also from the exponent encountered in the
bulk, G(ry,ry) o [r] — ro| =42+
All the above results apply only for a semi-infinite geometry, and it is
also of interest to ask what happens when one considers instead a thin film of
a large but finite thickness D. Then the correlation length can grow towards
infinity only in the d—1 directions parallel to the confining walls. As a result,
a crossover from d dimensional critical behavior to d — 1 dimensional critical
behavior sets in at a temperature near 7, when &, has grown to about the
distance D between the walls. At a (shifted) transition temperature T.(D),
a second order transition with d — 1-dimensional critical behaviour occurs,
if d > 2. In the case d = 2, however, T.(D) = 0, since d — 1 = 1 then
coincides with the lower critical dimension. The correlation length (7))
grows as £(T) o« (T' — Te(o0)) ¥(with v = 1 [64]) until £(T") becomes of
the order of D, and then a crossover sets in to a behaviour [65] {(T")
D expl(c/kgT)D], o being the interfacial tension between coexisting phases
in d = 2. Note that for the XY model, however, d = 2 is the lower critical
dimension [52, 54, 48, 66, 67|, and then &(T") grows as £(T") o exp|const (T —
T.(00))~1/2] until £(T") becomes of the order of D, and then a crossover sets
in to [68]
§(T) = 20(T)D /T = D/[r(T)), (5.11)

I'(T) being the helicity modulus of the d = 2 bulk XY model, and 7(T)
describes the decay of the spin-spin correlation function of the XY-model in
d = 2 at all temperatures in the low-temperature phase (recall that ¥, = 0
in this model).

As a result, subtle crossovers occur in the correlation functions in thin
films near the critical point 7, of the bulk system (and below it). In an
Ising system, eqn. 5.9 is expected to hold near T, only for s < {(T) « D
, while for s > &(T) an exponential decay proportional to exp[—s/&(T)]
occurs. For T < T,, we have g ~ ¥? for s < &(T), while for s > £(T)
the same exponential decay occurs (but now &(7") can be extremely large,

due to the exponential dependence of £(T") on D, as noted above). In the
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XY model, however, we expect a power law decay of g with s for s < D for
all temperatures below T, and for s > D an exponential decay exp[—p/&(T)]
with £(T) being given by eqn. 5.11 takes over.

We have emphasized again here the behaviour of the d = 2 XY model. As
already shown in the previous section there are close analogies between the
ordering in that model and the behaviour of positional order in d = 2 crystals.
The analysis of the XY model will continue in the following section as well.

This will help us in having a qualitative understanding of our systems.

5.3 The case of the partially confined XY model as

simpler theoretical background

When we consider a confined system the behavior near the wall will again
depend very much on the nature of the boundary condition provided by the
wall.

With respect to positional order in the x-direction normal to the walls,
both types of boundary conditions at the walls, the flat structureless walls
and the structured ones, act like an ordering field does in the case of magnetic
systems (fig. 5.3). Consequently, we expect that the density distribution p(z)
will be non-uniform near x = 2w, = 0 also in the fluid phase, and show
a periodic modulation with a period close to agv/3/2 which decays over a
distance of order £(7"), the positional correlation length. Also with respect
to the orientational order Wg, both types of walls clearly act like ordering
fields, and so one expects that Wg(z) o exp[—z/&6(T)] also in the fluid phase
of a semiinfinite system. In a thin film confined between two parallel walls a
finite distance apart, due to the combined effect of both walls some nonzero
average order parameter Wg(7T) in the thin film hence will be present at
all temperatures, also in the fluid phase. In the solid phase, of course, the
situation will rather resemble fig. 5.3c, i.e. Wg(x) — Wg(T) x exp[—z/&(T)],
for x near the wall with zyw,; = 0.

However, as we have seen in sec. 4.3 the situation is quite different with
respect to the positional order in the y-direction parallel to the wall. The
boundary condition provided by the structured wall also can be considered
as a kind of field conjugate to the positional order, due to the commensu-
rate corrugation of this potential in the y-direction. So for x near zy,n also

nonzero order parameters ¥g,(z), Vg, (z) will be induced due to the re-
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sponse of the system to these local ordering fields, and this crystalline local
order will decay towards zero proportional to exp[—z/£(T')], in a semi-infinite
system in its fluid phase. In its crystalline phase, however, true crystalline
long range order with nonzero order parameters Vg,, ¥g, does not exist,
as noted in sec. 4.2, and we rather expect a power law decay of the surface-
induced crystalline order, similar to the case of fig. 5.3b. The situation is
rather analogous to the two-dimensional XY model for temperatures below
the Kosterlitz-Thouless transition [52, 54, 66, 67, 69, 70| in a local surface
magnetic field H; [49, 50, 51]. In fact, at low temperatures the Hamiltonian
of the XY model can be reduced to a harmonic form (J is the exchange
constant) and (for H; = 0)

1
Hyy = _chos(el —0)) ~ 57 Z(el —0;)% (5.12)
(L.4) (L.g.)

where an unimportant constant was omitted. The spin-spin correlation func-
tion in this spin-wave regime can then be written (cfr. the analogy with the

displacement correlation function)

(So - Si) = (cos(B — 0)) = exp[—%((@o —0.2)]. (5.13)

Thus one finds in the bulk that [52, 54, 48, 66, 67]

(B — 00)2) ~ ’;i—i (7 /ag), (5.14)

and hence the spin-spin correlation function exhibits the well known power

law decay

- T
(cos(By — 6y)) ~ (Z—O) kpT/(2mJ) (5.15)

Surface effects on the decay of correlations of a two-dimensional Gaussian
model have been analyzed by Cardy [71]. In the framework of a continuum

approximation, the harmonic Hamiltonian eqn. 5.12 becomes
1
Hxy = —J/ [VO(r)]? dady, r = (z,y) (5.16)
2 >0

where a free surface at + = 0 is assumed for an otherwise semi infinite

system. Due to the free surface, translational invariance of the correlation

i6(r)

function (e??(r1)e=#(r2)} of the order parameter e is broken, but due to
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the Gaussian character of the Hamiltonian, eqn. 5.16, we still have

ety = oxp {1000 - 00e)?) =

= exp |:G(I‘1,I‘2) - %G(rl,rl) - %G(rg,rg)] ,(5.17)

where G(rj,ry) = (6(r1)0(r2)). In the continuum, a free surface with no

surface fields can be described by a Von Neumann boundary condition

BG(rl, 1‘2)

o =0, (5.18)

x1=0

and this condition can be automatically realized by writing
G(r1,ro) = Goo(ry — 12) + Goo(r1 — 1),

where Goo(r) = Goo(r1,r2 = 11 + 1) for the fully translationally invariant
infinite plane, and r} is the mirror image of ro with the surface being the
symmetry axis(the line x = 0) . Since G (r) is (apart from constants) the

correlation given in eqn. 5.14, one finds [71]

r; —rf|[ry — 15|

i0(r1) ,—i0(r2)
e e x , 5.19
< A I (519)
with T

B

If both sites ry, ro are in the bulk, far away from the surface, we have
Ir1] — o0, |ra| — oo, and then |r; — r}| = |ry — ry| ~ |r; — rh|, for any large
but finite |r; — ry|. Then eqn. 5.19 reduces to eqn. 5.15, as it should be.

If site 1 is close to the surface, r1 = (ag, y), we have |r; —r}| = 2a0, while

|ro — ry| = 2z if the site ro = (z,y) is deep in the bulk. Then

) ) 4 n/2
<619(1'1)6719(1'2)> ~ |: Z(ix] x x*377/2 = = 3777 (521)

The result n, = 3n/2 = 3kpT/(4nJ) does not seem to be discussed in the
literature [51, 71], while the case that both r; and rs are near the surface has

been again analyzed. Then r; = (ag,y1) and ro = (ag,y1+y), and eqn. 5.19
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implies [71]

2
o) —iota)y o, [48]"7 oy _ 9
(e 2 )~ " xy = mn = 2. (5.22)
Since the low temperature phase of the XY model can be interpreted as a

line of critical points, we expect a scaling relation [58, 59] to hold,

n =211 —1n, (5.23)

and this relation is indeed satisfied by eqns. 5.21 and 5.22. Based on numeri-
cal data, Berche [51] concluded that the relation 7 = 2n holds also outside of
the spin wave regime, at all temperatures up to the Kosterlitz-Thouless (KT)
transition temperature, where n = 1/4 [70] and hence 7 = 1/2. Eqn. 5.21
then implies n; = 3/8 at the KT transition.

If now a surface magnetic field is applied, a response of a spin at a site r
deep in the bulk is created. This response decays towards zero according to
[58, 59]

(IS(x)]) = (| exp[if(r)]|) x 22 ford = 2, (5.24)

i.e. the same exponent 1 that controls also the decay of correlations in
the bulk controls also the order parameter profile. The correlation function
between spins which are both at the surface exhibit then a finite range,
however. From the scaling approach to surface critical phenomena [58, 59]

one can predict

<SO : Sr> - <SO> : <Sr> 8 exp(—y/§||), (525)

with
5” x H;(1+77/2*77L) — H;(I*n) (526)

where in the last step eqn. 5.21 was used. At the KT transition, the exponent
describing the divergence of {| as H; — 0 becomes 1 —n = 3/4.
Redirecting attention to the harmonic solid, studied in the previous chap-
ter, we emphasize that the case of the planar wall does not involve any "sur-
face field”, as far as positional order in the y-direction parallel to the wall is
concerned. Since the comparison between eqns. 4.23, 5.14 shows that the
quantity kgT/(2mg) plays the same role as the exponent 7 in the XY model,
we conclude that the positional correlations between displacements between
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two particles in the surface increase as

([uy(n) — Uy(O)]2> x ) lnn, (5.27)

while the mean square correlation between a particle near the wall and an-

other particle deep in the bulk should behave as
([uy(n) —uy(0)]%) oc ni Inn. (5.28)

We suggest that the scaling relation, eqn. 5.23, between the exponents 7, 7
and 77, can be carried over to the present case as well.

Finally we have to mention also that according to the KTHNY theory
of melting one should also consider in addition to the fluid phase and to the
crystalline phase also the hexatic phase.

However although it would be very interesting to study how wall ef-
fects show up in the KTHNY scenario of melting, this problem shall not be
addressed here, since, as we discussed in sec. 5.1, it still would require a

prohibitively large computational effort.

5.4 Order in two-dimensional confined crystals: nu-

merical results

We present here the results coming out from our numerical simulations re-
garding the order induced by the confinement in our systems (see secs. 2.1
and 2.2) : we looked both at the orientational order and at the positional
order (layering) in the z-direction.

Before doing a quantitative analysis we present in fig. 5.4, just in the
spirit of fig. 4.2, a series of about 1000 superimposed snapshot pictures of
the instantaneous positions of the particles. These plots give a good qual-
itative insight into the effect of the confining walls on the order of the two
dimensional solid. In this case we are at 7" = 1.6 i.e. far above the melt-
ing transition of the bulk solid (at the chosen density, Tmeiting = 1.35). We
can see the density modulation (layering) induced by the walls and the ten-
dency towards the fluid phase as x moves to the values of the center of the
box, such a phase, being homogeneous, yields a uniform grey pattern in the

bulk. However near the walls we recognize the non uniform density distri-
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bution, the density is enhanced in layers parallel to the walls and depleted
in between. The effect of the different types of confinement, is visible in
the first rows near the wall: while for the case of the flat walls the patterns
are strongly elongated and so homogeneous in the y-direction, this does not
happening in the case of the structured walls where we see close to the wall,
local ordering also in the y-direction. So as already pointed out in the pre-
vious chapter we can see already from the snapshot pictures that the walls
affect the positional order in in the y-direction in different manner, while the
mean-square displacement of the particles away from the lattice positions of
the ideal crystal structure is uniformly smaller for the particles close to a
structured wall, there is a pronounced anisotropy of fluctuations close to a
planar wall.

We have studied the layering phenomena in the strips by recording the
average density profiles in x-direction (figs. 5.5, 5.6 and 5.7 ). Since p(z)
exhibits the symmetry p(x) = p(D — x), only the left half of the strip is
shown. For low temperatures, such as 7' = 1, we see that the layering ef-
fect [enhancement of p(x) around the ideal positions of the lattice rows] is
visible over a few layers only (five layers in the case of T' = 1), and then
the bulk behavior is reached. Approaching the melting transition from the
opposite side, however, we see a somewhat larger range over which layering
can be observed. While for 7" = 1.8 (and higher) for 10 < z < 20 the den-
sity is uniform in the thin strips and agrees with the density in the bulk,
irrespective of the boundary conditions at the wall, already for 7' = 1.6 a
weak density modulation is still left even in the center of the strip. Thus
the increasing range of the layering effect as one approaches the melting
temperature Timelting from above reflects the existence of an increasing cor-
relation length £ of positional order. As is well known, £ remains finite at
Tmelting if the transition is first order, while £ should diverge to infinity at
the transition from the hexatic phase to the crystal, if the KTHNY scenario
of two-dimensional melting applies [52, 54, 48, 55, 53, 47, 56, 57]. In prin-
ciple, one could try to use the layering phenomenon due to walls to extract
information on £. In practice, this is rather difficult in the transition region
since the finite strip width D causes important finite size effects. This is
demonstrated in fig. 5.7(top), where data for 7' = 1.4 are shown: Using data
only for n, = 30 well-defined ordering in a layered structure is enforced over
the entire strip, while the bulk at 7" = 1.4 clearly has melted, and the bulk
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density distribution already is uniform. A comparison with corresponding
data for n, = 60 (fig. 5.7, bottom) shows, however, that now the strip is
disordered in its center, and also the amount of layering near the walls is
systematically smaller than was found for n, = 30. As a consequence, a reli-
able estimation of £ for T near Telting Would require a systematic variation
of the strip width D = n,av/3/2 over a wide range, in order to be able to
extrapolate the results towards D — oo. As already pointed out, the huge
computer resources required to do this have prevented us from carrying out
such a systematic study of two-dimensional melting via surface effects. A
naive fit of the density differences p(zmax) — p at the maxima positions Tmax
in the range 3 < 27 to a function like

f(x) < exp(=x /&) + exp[(D — z)/¢], (5.29)

yields the data shown in fig 5.8. In principle, we expect that & should not
depend on the type of boundary condition at the wall: only the prefactor
of the above function should. This expectation is borne out for 7' = 2 and
T = 1.8, within the statistical errors. while for 7" < 1.6 the results for the
case of structured walls are slightly but systematically larger. Presumably
this effect is due to a nonlinear response of the density distribution p(z) to
the perturbing “field” created by the walls, which is expected for x close to
both walls.

This problem can be avoided by restricting the fit to the inner region of
the strip, where the density oscillations around the average density are small
enough (figs. 5.5, 5.6 and 5.7) so that such nonlinear effects are negligible,
but then the problem is that due to the statistical noise of the data the
statistical errors of & become much larger.

We now turn to the behaviour of the local orientational order parameter
(|Wg(x)])?, fig. 5.9. As expected on theoretical grounds (see the discussion
of sec. 5.2), we see that both boundary conditions enhance the orientational
order near the walls in a similar manner. While for T' < Tipelting @ clearly
developed flat plateau is observed for 10 < z < 20, for T' > Tineiting the
residual order parameter near the center of the film is not constant over
an extended region of x. Thus, the fact that (|¥g(z)[?) is still nonzero
everywhere in the thin strip even at temperatures far above Tielting again

is clearly a finite-size effect! Consequently, plotting (|Vg(x = D/2)|?) vs. T
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(fig. 5.10 top) the melting transition does not show a clear vanishing of this
mean square order parameter, but near T' = Tielting there is a mild inflection
point in the curves, and for T' > Tielging one finds the “finite size tails” well
known from simulation studies of other phase transitions, too [72, 73].

Again one can associate a correlation length ¢ (which should be twice
the correlation length &g defined in sec. 5.2, since we deal with the or-
der parameter square), fitting the data again to a function of the type
A{exp(—z /&) + exp[(D — z)/€]}, where A is an amplitude factor depend-
ing on the type of boundary condition. Fig. 5.11 shows that this correlation
length also is very small at high temperatures, and increases slightly faster
than the positional correlation length does (fig. 5.8).

The last thing we want to show here is an analysis of the orientational
correlation function gg(r) {eqn. 5.5}. However, while this correlation func-
tion is translationally invariant in the bulk, in a system with walls such a
translational invariance holds in y direction only. We here hence restrict
attention to the behavior of the decay of this correlation in y-direction for

different distances x of both sites from the wall,

g6(z,y) = (Ye(z,0)¥e(z,9)). (5.30)

Figs. 5.12 and 5.13 give a global view of this function for three temperatures.
One can clearly see that near the walls there is very little y-dependence at
all temperatures, due to the high degree of orientational order enforced at
the walls. In the center of the strip, there is again little variation at low
temperatures 7' = 1, where the system everywhere is well ordered, and
at high temperatures 7' = 1.8, where the system in the center is almost
disordered. In contrast, close to the transition (e.g. for 7' = 1.4) a slow
variation of g(x,y) with both x and y is observed. Due to the residual order
which occurs in g(z,y) for large distances, apart from the limiting case of
very large D and correspondingly large enough = in the middle of the strip,
we have not succeeded in a convincing quantitatively reliable analysis of the
functional variation of g(z,y). This problem hence must be left to future

work.
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Figure 5.1: Geometry of the triangular lattice: the y-axis is oriented along
a nearest neighbour direction, the z-axis perpendicular to it. The lattice
spacing is denoted as ag, and hence neighbouring rows of particles along
the z-axis are at distance agv/3/2. The angle between a bond connecting
particles k£ and j and a reference direction (the y-direction in the figure) is
denoted as ¢;;. The basic vectors of the reciprocal lattice are denoted as
Gy and G;. The displacement u(l) of the I’ th particle from its ideal lattice
position is decomposed in Cartesian coordinates u,(l) and wuy(l).
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Figure 5.2: Qualitative isotherms where the pressure p is plotted versus
density p, for the case of a first order transition (upper part) and according
to the KTHNY theory (lower part) [29]. Note that in the case of soft disks
one can equivalently consider the variation of the pressure with temperature
rather than density
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Figure 5.3: Schematic variation of the local order parameter ¥(z) as a func-
tion of the distance z from a wall (or free surface respectively) that is located
at z = 0. the second order phase transition from the disordered phase (where
Uy, > 0) occurs at 7T, in the bulk. In cases (a)-(c) it is assumed that at the
wall at z = 0 a local surface field H(z) = H16(z) conjugate to the order
parameter W(z) acts. As a result, there exists not only a local order param-
eter Wy right at the surface, but surface-induced order occurs in a region of
a width of order &, the order-parameter correlation length in the bulk, both
for T" > T, and for T" < T,. This surface induced order decays to zero for
T > T, and to ¥y, for T' < T,.. Right at T' = T, the order decays also to zero,
but much more slowly namely according to a power law, with an exponent
that has been denoted as 7o, = 7/2 here. In case (d) it is assumed that
the surface is “neutral”, no sign of the order parameter is preferred, and so
the surface couples only to the order parameter square: the most frequent
case then is that the ordering tendency at the surface is reduced (e.g. by
the “missing neighbor effect”). Then ¥; < ¥, for T' < T, and ¥(z) relaxes
towards U;, from below. The range over which ¥, and ¥(z)appreciably differ
is again of the order of Wy,
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Figure 5.4: Configurations of the particles in the first 9 rows adjacent to
the left wall at 7" = 1.6, for the structured wall (top) and the planar wall
(bottom). 1000 configurations of a run lasting 105 Monte Carlo steps (MCS)
per particle are superimposed, fixing the center of mass of the mobile parti-
cles in each configuration in the same position. The linear dimensions were
L, = 30 and n, = 30, with periodic boundary conditions in the y-direction.
We have supposed to write the wall potential as

Vwall = )\Vplanar =+ (1 - )\)V%ructured' (531)

So A = 0 means structured walls while A\ = 1 means planar walls
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Figure 5.5: Density distribution p(z) plotted vs = for n, = 30 and tempera-
tures: 7' = 1.0 (top) and T = 1.2 (bottom). The black vertical line, marks

the center of the strip.
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Figure 5.6: Density distribution p(z) plotted vs = for n, = 30 and tempera-
tures: T'= 1.6 (top) and 7' = 1.8 (bottom).
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Figure 5.7: Top: same as figs. 5.5 and 5.6 but for 7" = 1.4. Bottom: density
distribution p(x) vs x for T' = 1.4 and planar walls in the case of n, = 30
(red line) and n, = 60 (black line), respectively.
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Figure 5.8: Correlation length ¢ for the decay of the positional order near the
walls plotted vs. temperature, for a system with n, = 60, n, = 60 and for
the two types of boundary conditions at the walls. Circles refer to the planar

wall and squares to the structured wall boundary condition, respectively (see
fig. 5.4).
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Figure 5.9: Plot of the local orientational order parameter square (|Wg(x)|?)
versus x, for n, = n, = 30 and two temperatures, 7' = 1.2 (top) and 1.6
(bottom). Circles refer to the planar wall and squares to the structured wall
boundary condition, respectively. The green lines are fit according to the
eqn. 5.29
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Figure 5.10: Mean square order parameter in the center of the strip (top, T is
the melting temperature of the bulk) and near the walls (bottom) plotted vs.
temperature. Circles refer to the planar wall and squares to the structured
wall boundary condition, respectively. All data refer to n, = n, = 30.
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Figure 5.11: Correlation length extracted from the decay of the local orien-
tational order parameter square with distance (fig.5.9) plotted vs. temper-
ature. Circles refer to the planar wall and squares to the structured wall
boundary condition, respectively. All data refer to n, = n, = 30.
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Figure 5.12: Correlation function gg(z,y) for n, = n, = 30 and T = 1 (top) or
1.8 (bottom), respectively. In the projection the numerical values of this function
according to a colour scale are indicated. Here the z-axis runs from 0 to 30 while

the y-axis runs from 0 to 15. 81
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Figure 5.13: Correlation function g¢(z,y), as in fig. 5.12. Here T = 1.4,
ng = n, = 60, the z-axis runs from 0 to 60 and the y-axis runs from 0 to 30.
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Conclusions

We can now summarize the main findings coming out from this work.

In this thesis we dealt with two-dimensional model colloidal crystals in
a confined geometry. We used an idealized description both for the colloid
colloid interactions and for the walls. This allowed us to overcome numerical
problems in the simulations and, to reach within a reasonable CPU time, re-
sults and conclusions we believe they can be qualitative valid for real systems
as well.

The first part of the work was devoted to the study of the elastic be-
haviour for a model colloidal crystal in confined geometry,

After the first introductory chapter with some remindings about elastic-
ity theory, in chapter 2 we introduced two kinds of confinement: the flat
walls and the structured walls. The wall potential in the flat walls case can
be viewed as the 1/r'2 potential integrated along the y direction and the
x direction (# < Zlefy wanl and & > Tright wan) While the structured wall po-
tential, as mentioned in chapter 2 can resemble a situation in which in a
colloidal crystal a wall is formed “freezing” a one or two rows of particles to
their equilibrium position with, for example, laser optical tweezers.

Clearly the wall potentials brought distortions in the triangular bulk
lattice. This was true in particular for the case of the flat walls, sometimes,
like in the case of the hard flat walls, for the same chosen width of the strip,
the crystal melted.

We studied these distortions and chose parameters like the width of the
strip and the coupling constant in the wall potential ey, to get in the strip
an equilibrium lattice as near as possible to the usual triangular lattice.

In the second part of chapter 2 we presented the methods used for the
computation of the elastic constants. We considered both the fluctuation of

the stress tensor and the local strain tensor: then we proposed some easy

83



generalization for the formulae, originally derived in the bulk case. This was
done by taking into account the contribution to the interactions due to the
wall potentials and by considering, for the crystal in a strip geometry, in the
elastic free energy a less symmetric but more adequate expression than the
bulk one.

In chapter 3 we used the methods of the previous chapter to compute the
elastic constants. For our systems the results given by the two methods agree
within the numerical error. Only exception was the value of C33 in the case
of the flat walls, here it was not possible to have an estimate of this value
with the strain fluctuation method. This failure was caused from the high
shear fluctuations present in the whole simulation strip in those conditions.
One of the key hypothesis for the method to work, namely almost zero or
very small strain fluctuations in the whole strip, was clearly not fulfilled
and the expected shape for the compliance curve coming out from the block
analysis, was not recovered.

While for almost all the confined elastic constants with both types of
walls we did not find large differences with the bulk case, the behaviour of
Cjs3 in the case of the flat walls was dramatically different from the bulk, and
hence the most interesting one. For every strip width we tried C335 drops to
about half the value of the bulk case. We can say that when flat walls are
present the crystal in between can be easily sheared along the direction of
the wall.

In chapter 4 we investigated further the behaviour of our confined crystals
focusing on the mean square displacements.

We saw that while in the structured case we have a normal crystal both
in the unconfined y direction and the confined z direction, in the case of
flat walls, due to the confinement, there is a loss of long range positional
order along the wall direction. We characterized the behaviour of the crystal
in the flat wall case, considering one-dimensional harmonic formulae and
applying them to the system: in particular the structure factor S(gq) per row
along the y direction was considered. The good agreement found with the
fitting to the 1d harmonic expression shows that indeed as long as we look at
the displacements from lattice equilibrium positions along the wall direction,
the behaviour of the crystal confined between flat walls, is one-dimensional
rather than two-dimensional. Also plots of the instantaneous configurations

in the flat wall case, show clearly, in contrast with the structured walls case,
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lack of positional order in the wall direction: the system presents series of
smectic strips parallel to the walls rather than a crystal like picture.

In the second part of chapter 4 we focused more quantitatively on the
crossover between one-dimensional behaviour and two-dimensional behaviour
for the displacements correlation function in a strip geometry D x L. We con-
sidered for simplicity a triangular lattice in the “bulk” case, that is, periodic
boundary conditions in both directions (rather than two walls as boundaries
in the z-direction plus periodic boundary conditions in the y-direction) and
a geometry where D, the extension of the lattice in  was lower or equal
than L, the extension of the lattice in y. We could prove that when D =~ L
the displacements correlation function B(y) = ([uy(y) — uy(0)]?) has a two-
dimensional behaviour proportional to Iny while when we consider D < L
then the behaviour of B(y) is proportional to y i.e. one-dimensional. Know-
ing, from previous simulations of the bulk system, the Lame coefficients for
our system we could verify in a numerical way the analytic formulae ob-
tained, also in the case of very big strips. Moreover we could show that the
presence of flat walls enhanced significantly B(y) with respect to the bulk
case as expected from the behaviour of S(q).

In chapter 5 we focused on the order inside the strip induced by the
confinement. Here we observed with both types of walls pretty similar be-
haviours.

We considered first the positional order in the z direction, that is, the
strong modulation in the density induced by the walls perpendicular to them,
and estimated the correlation length associated with it.

Then we focused on the orientational order described by the order pa-
rameter Wg(x). Also in this case, at a sufficiently high temperature and
sufficiently large strips we found high orientational order at the walls which
decreases, with a typical correlation length, when we moved to the center of
the strips. In this case however high finite size corrections are present: also
at high temperature and for wide strips at the center of the strip the ori-
entational order parameter was significantly non zero as it should be in the
fluid phase. This was caused by the still too small system sizes considered
and also by the strong layering induced by the walls.

Finally we want to sketch some further research lines coming out from
this work:

as already mentioned in chapter 4 it would be very interesting to under-
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stand, in the case of flat walls for large enough strip width D, how the bulk
behaviour, for example in the case of Cs3(D) or of B(y), is reached. the
problem is that we expect D to be very large, and so, far beyond the values
accessible with normal computational power.

Another interesting problem would be the study of the KTHNY-scenario
of melting in presence of walls. Again here CPU time issues make this
problem very difficult as we saw in chapter 5.

An easier problem (from the computational point of view) would be the
study of the strips in an “incommensurate” situation, that is relaxing the
condition 2.4 to a more realistic expression

V3

D= TG(TH_ A),

where A can be any number (clearly not too large). We started to study
partially our confined systems with the condition written above and some
preliminary data and results are shown in the appendix A.

One could consider to extend the study of the effects of the walls to
three dimensional colloidal crystals or to two dimensional colloidal binary
crystals as well; for these systems at the moment results for the bulk case
are available 74, 75].
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Appendix A

Varying the distance between

the walls

We want to present here some results obtained in geometrical configurations
where the distance between the walls does not exactly match the distance of
the lattice sites in the bulk.

Throughout the whole thesis the condition in eqn. 2.5 held with in most
of the simulations n equal to 30 or 60 and a =~ 1.049. Now, as anticipated
in the conclusions, we consider the case

V3

D= Ta(n + A), (A1)

where A in principle can be any number. To be clearer, in the simulations
we will present we just change the distance in the x direction according to
eqn. A.1 with n = 30, while we keep constant the length of the simulation
box in the y direction, so the dimensions of the box are

L,=D= ?a(?)o + A), L,=30-a, (A.2)

and the temperature considered is 7' = 1.

The case A positive is the least interesting one, here the situation looks
very similar to the commensurate case at high 7', i.e. increasing A the system
will show layers near the walls and will start to melt at the center of the strip
like in figs. 5.4 and 5.6.

Clearly when we consider negative value for A the situation changes.
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The crystal, has now less space to relax in the x direction, will be somehow
frustrated and so internal stresses together with deformations of the bulk
lattice will be present at the equilibrium, this is shown in fig. A.1 where we
considered the probability distribution of the order parameter ¥g, defined
in eqn. 5.2, in the case of structured walls, we see that the larger is |A| the
more the lattice is different from the bulk triangular lattice; the vector Gg
(fig. 5.1) is not a reciprocal vector of the deformed lattice anymore.

Maybe more interesting is to consider the distribution of the order pa-
rameter Uq,. The reciprocal lattice G; is directed along z, orthogonal to
the walls and it gives a measure of the number of layers in the strip. In
fig. A.2 the distribution of Vg, for different values of A is plotted. Here
we can see that increasing |A| this order parameter has a value very close
to 1 for A = —1, Vg, then decreases to an intermediate value for A = 1.5
and to almost 0 for A = —2; when |A| is sufficiently large the system re-
arranges its structure changing the number of layers from the initial 30 to
29. Deformations and changes of the number of layers in the strip can be
shown looking at the superimposed configurations as well. In fig. A.3 is
plotted the intermediate case A = —1.5: we can clearly see two regions in
the strip where misfits appear. In fig. A.4 the case A = —2 is considered
and one can see by counting, that the number of layers at the equilibrium
decreased. In fig. A.5, following Chaudhuri and Sengupta [76], we plotted
the stress o = 0,y — 04, versus |A| which can be considered proportional to
a geometrical strain e measured respect to the ideal bulk triangular lattice:
e = (a — ay)/a = |A|/n. After the initial increase, we see that the system
starts its internal rearrangement inside the strip as |A| reaches 1.5.

Looking now briefly at the case of the flat walls, we find here the same
behaviour of the structured case, namely increasing A, deformations start
appearing and eventually we have a change in the number of layers, but in
contrast with the structured case we never observe intermediate states like
the case A = —1.5. So for example looking at P(¥q,) we can observe a two
peaked curve like the one in fig. A.6, that is the system during the Monte
Carlo simulation can suddenly have its structural change. The mechanism of
the transition is similar to the system with structured wall as it is shown in
fig. A.7 where the configurations during the jump of ¥, are shown but this
jump is very fast, (hundreds of Monte Carlo cycles, see fig. A.6). Clearly

the free energy landscapes for the strip in the two cases are different. Like
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for the results of C33 this is a signature of the different elastic behaviour
induced on the strip by the two types of confinement.

Finally we conclude mentioning that analogous structural changes were
observed by Chaudhuri and Sengupta in two-dimensional hard disk channels
confined by hard walls [76]
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Figure A.1: Probability distribution for the order parameter W¢, (see eqn.
5.1 and fig. 5.1) in the case of structured wall and for different values of A.

Y, distribution, A=0

Figure A.2: Probability distribution of the order parameter Vg, (see eqn.
5.2 and fig. 5.1) in the case of structured walls for different values of A.
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order parameter Vg, Bottom: evolution of Vg, during the Monte Carlo
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