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Abstract

My thesis is associated with the field of D6-brane model building in type IIA string theory,

where the fractional D6-brane stacks are wrapped on special Lagrangian cycles in back-

grounds of factorisable toroidal orientifolds T 6/(Z2 × Z2M × ΩR) with 2M = 2,6,6′ and

with discrete torsion. I develop an explicit formalism for complex structure deformations

of the Z2 orbifold singularities and observe how the volumes of the special Lagrangian

cycles change under deformations. I show that, depending on the concrete model, this

procedure can be used to stabilise several or all twisted complex structure moduli, or that,

alternatively, the sizes of gauge couplings can be varied.

As a starting point, I introduce the orientifold T 6/(Z2 ×Z2 ×ΩR) on square torus lattices,

now expressed as hypersurface in a complex weighted projective space. I demonstrate

the process of concrete deformations and discuss how explicit volumes of fractional cycles,

bulk cycles, and exceptional cycles can be computed. These can be used to determine

physical quantities like gauge couplings. My investigations also show if the cycles keep

their special Lagrangian property under deformations. After that, I present the orientifold

T 6/(Z2 × Z′
6 × ΩR) with underlying hexagonal tori, which is very interesting for model

building with intersecting D6-brane stacks. For the concrete construction, I start again

with T 6/(Z2×Z2×ΩR) and mod out an additional Z3 symmetry by hand, which implies that

the deformation parameters are organised in Z3 and ΩR invariant orbits. In this setup, new

technical difficulties arise. In addition, I show first results for the phenomenologically very

appealing orientifold T 6/(Z2 ×Z6 ×ΩR) on one rectangular and two hexagonal tori, whose

underlying structure is much more complicated than in the previous examples. Hence, so

far only local descriptions were found.

In concrete models, there exist stacks of N coincident D6-branes, wrapped on fractional

cycles, which carry gauge groups SO(2N), USp(2N), and/or U(N). I show that, depend-

ing on the model, the impact of the deformations can be divided into three different cases.

Firstly, the brane stack does not couple to a certain deformation, which gives rise to a flat

direction in the moduli space. Secondly, the branes couple only to the orientifold-even part

of the deformed exceptional cycle, but not to the orientifold-odd part, in which case one

can adjust the corresponding gauge couplings by changing the volume of the exceptional

cycle. Thirdly, if the brane stack couples to the orientifold-odd part, one finds that the

respective complex structure modulus is stabilised, which is a desirable property to find a

unique vacuum. For D6-branes with SO(2N) or USp(2N) gauge group, by construction

all orientifold-odd contributions are zero and no moduli are stabilised. On the other hand,

in a Pati-Salam model with three particle generations and only U(N) gauge groups all

three cases can be observed, and actually ten out of 15 complex structure moduli can be

stabilised at the orbifold point.
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1 Introduction

The Standard Model of particle physics, which describes the fundamental particles of

nature and their gauge interactions, includes three of the four fundamental forces of nature,

i.e. the electromagnetic, the weak, and the strong force, and agrees with experiment up

to very high precision [1, 2]. On the other side, the Standard Model has of the order of

twenty free parameters, which have to be adjusted by hand, and gravity is not included.

Hence, one is searching for a fundamental theory of quantum gravity, which is not only

able to provide a unified framework, but also a deeper understanding of the underlying

principles of nature. This search is furthermore motivated by the historical fact that the

unification of theories always provided a more profound understanding. Among the most

famous examples for that are the unification of the electric and magnetic force at the end

of the 18th and beginning of the 19th century, with a major contribution by Maxwell in

1861 [3], or the unification that gave rise to the electroweak force in the late 1960s, for

which Glashow [4], Salam [5], and Weinberg [6] received the Nobel Prize in Physics in 1979.

The best candidates so far for a theory of quantum gravity are the so-called superstring

theories (see e.g. the more recent text books [7–10] for a comprehensive introduction), which

are conjectured to be certain perturbative limits of an underlying even more fundamental

(unique) theory, called M-theory [11]. The different superstring theories are connected

by (partly conjectured and partly proven) dualities, and they incorporate supersymmetry

as an underlying principle. They are only consistent in ten space-time dimensions, while

M-theory and the associated supergravity theory (i.e. a supersymmetric version of general

relativity that is also considered as the low-energy approximation to M-theory) live in

eleven space-time dimensions.

Hence, all these theories have to be effective theories in the four-dimensional Minkowski

space-time, and this can be achieved by “curling up” the six (or seven) extra dimensions

into a compact space of tiny size. The mechanism that is used for the compactification is

actually much older and was already developed by Kaluza and Klein in the 1920s [12, 13].

Inside the ten (or eleven) dimensions live closed and open strings with different properties,

depending on the superstring theory that is considered. Their size, which is called the string

length ls (and which is at least of the order of the the Planck length lP , see equation (1.1)

below), is in fact the only dimensionful parameter in string theory. The oscillation modes

of the strings give rise to the particle spectrum that can be observed in the four large

space-time dimensions. These two characteristics imply that not only the free parameters

of the Standard Model can in principle be fixed by geometrical properties, but also that

gravity is naturally included, namely by the oscillation mode of a closed string.
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The very first beginnings of string theory go back to the late 1960s and early 1970s, with e.g.

the articles of Veneziano [14], Virasoro [15], Shapiro [16], Neveu and Schwarz [17, 18], and

Ramond [19], where string theory was still believed to be a theory of strong interactions.

Nevertheless, the mathematical formalism that was developed those days is the basis for all

modern (super-)string theories, though they are now used in a somewhat different context.

At the end of the seventies, after the articles of Scherk and Schwarz [20], and of Yonega [21]

had appeared, it was realised that the low-energy behaviour of string amplitudes is in

fact related to higher-dimensional gauge theories and gravity. This also implies that the

characteristic length scale of strings should be at the order of (or slightly above) the Planck

length lP , defined as

lP =
√

h̵G

c3
≈ 1.616 × 10−35m . (1.1)

This quantity is composed of fundamental physical constants that should appear in a theory

of quantum gravity, namely the reduced Planck constant h̵, the gravitational constant G,

and the speed of light in vacuum c. Starting from this point, string theory became a

promising candidate for the unification of quantum field theory and gravity.

In 1985, Green and Schwarz found a mechanism to cancel certain gauge and gravitational

anomalies [22], which makes it possible to construct realistic string models that incorporate

chiral matter. This discovery cleared the way to develop the framework of the three

superstring theories called E8×E8 heterotic, SO(32) heterotic, and type I (cf. [23] and the

two text book volumes [24] and [25]), and many physicists started working in this field. In

addition, the two superstring theories called type IIA and type IIB were already known,

but the time was not yet ripe for model building in these theories.

The compactification of the six extra dimensions of these superstring theories was math-

ematically realised in form of Calabi-Yau manifolds [23], which I will introduce in detail

in section 2.1. In particular, the two heterotic string theories were strongly developed

these years, see for example [26], [27], and [28]. They are made of only closed oriented

strings supporting the gauge groups E8 ×E8 or SO(32), respectively. On the other hand,

the type I string theory follows a different construction, which means that it incorporates

non-oriented closed and open strings (i.e. the two orientations are identified), where the

open strings come with a gauge group SO(32). At the end of the 80s, also first models on

strings on orbifolds appeared [29–35], see section 2.4 for more details about orbifolds.

Roughly ten years later, one can again set an important milestone in the development of

string theory. At this point, people understood that, in fact, the five different superstring

theories are related by so-called dualities [11], parts of which are closely related to the

concept of mirror symmetry [36]. As already mentioned, this gave rise to the conjecture that
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all five superstring theories are only different parts of a larger eleven-dimensional theory

with the name M-theory [37]. In addition, it was discovered that the type IIA and type IIB

string theories also involve higher-dimensional dynamical objects called Dp-branes [38–41].

These Dp-branes play a major role in both type IIA and type IIB string theories (and

are also present in type I string theories), and will be introduced in section 3.2.2. They

are defined as lower-dimensional subspaces in ten-dimensional space-time on which open

strings end, and are therefore dynamical objects themselves. The observation that Dp-

branes which intersect at generic angles can give rise to chiral fermions [42], residing at

the intersection point, turned the type II string theories into an interesting playground for

model building.

In addition, one introduces the non-dynamical Op-planes, which are called orientifold

planes, and which have the effect that half of the particle spectrum is divided out. Models

including both Dp-branes and Op-planes are called orientifold models. While one finds

already first attempts of this kind starting in 1995 [43], it took several years to develop

the full formalism of intersecting D-brane models [44–46], see also the models on specific

orbifold backgrounds further down. Since then, people have constructed loads of orientifold

models with intersecting D-branes, for which e.g. the article [47] provides a pedagogical

introduction. Additionally, the more recent text books mentioned at the beginning of

this chapter, the review article [48] or the review article [41] concentrating on the CFT

framework can be consulted for more details.

For string theory, supersymmetry is always a desirable property because it ensures the

stability of the models. Indeed, the first chiral supersymmetric model was published in

2001, for which a setup of T 6/(Z2 ×Z2) type IIA orientifolds with D-branes intersecting at

angles was used, cf. [49] and also [50] for a short overview. For my own work, I will use

a similar setup, and therefore the concrete specifications of the T 6/(Z2 ×Z2) orbifold and

the additional orientifold action ΩR will be discussed in section 3.1. Nevertheless, also

non-supersymmetric models exist, which are very appealing at first sight since one can

easily find spectra with amazing similarity to the standard model [51], but a closer look

reveals their severe stability problems, see e.g. [52].

In [53], the authors demonstrated that in type II string theories the Calabi-Yau manifolds

and the orbifolds, which are singular limits thereof, agree in terms of their topological

properties. Thus, in the following years, many people constructed models in a similar

manner as [49] on different kinds of so-called toroidal orbifolds (i.e. orbifolds where the

basic objects are tori). For instance, model building on the T 6/Z4 orientifold [54] and on

T 6/Z(′)

6 [55–62] was studied, but also T 6/(ZN ×ZM) [63], T 6/(Z4×Z2) [64], and orientifolds

with the group Z12-II [65] were under consideration. Recently, also the T 6/(Z2 × Z(′)

6 )
orientifolds were analysed in the context of semi-realistic model building [66–70], and more
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details (like model building rules and consistency conditions, or the spectrum) of the models

on T 6/(Z2×Z2×ΩR) [71] and on T 6/(Z2×Z2M×ΩR) with discrete torsion [66] were derived.

The concept of discrete torsion was first pointed out already in the late 80s [72, 35], and

will reappear in section 3.1. In fact, to my best knowledge there exists only one article

by Palti [73], where a setup similar to the one that is used in my thesis is presented,

i.e. a global model with intersecting D6-branes wrapped on so-called special Lagrangian

(sLag) submanifolds, cf. section 3.1.3, with embeddings into weighted projective spaces,

see sections 2.2.3 and 2.2.4. An introduction to the mathematical formalism of special

Lagrangian geometry can be found e.g. in [74], or in the shortened version [75].

In fact, in string theory there exist millions of consistent string vacua, which is known

as the string theory landscape [76–79]. These are parametrised by flat directions of the

dilaton and of geometric moduli, see section 3.2, which can be used to tune the parameters

for the strengths of gauge and gravitational interactions, but on the other hand, these fields

must obtain fixed values to find a unique vacuum. Hence, it is crucial to find mechanisms

for (partial) moduli stabilisation. Over the years, many ways were considered, such as

closed string background fluxes in type II orientifolds, which have the problem of back-

reactions on the geometry (i.e. the compactified space is not Calabi-Yau or some singular

limit thereof anymore), see the review article [80], and [81–83] for type IIA and type IIB

orientifolds on T 6.

A different ansatz for moduli stabilisation are the so-called blow-ups or resolutions of

orbifold singularities, which are very well-known in the literature, see for instance [36, 84–

86], and also [87, 88], which are among the first articles with the subject of resolution

of orbifold singularities in string theory. Applications of blow-ups in type IIB orientifold

models can be found e.g. in the articles [89–91]. Furthermore, blow-ups in T 6/(Z2 × Z2)
orientifolds without discrete torsion are described in [92], which are closely related to

the T 6/(Z2 × Z2) orientifolds with discrete torsion, which I will use later for my concrete

constructions. More recently, also blow-ups in heterotic orbifolds were considered, and

complete resolutions of the singularities for all factorisable orbifolds could be realised [93–

97]. An extensive analysis of the possible resolutions of toroidal orbifold models in heterotic

string theory can be found in [98]. The formalism for blow-ups in heterotic orbifolds used

in these papers has the same basic ideas as the ones that I will use here, but the concrete

realisation looks quite different, in particular the mechanism to smoothen a singularity is

not the same. Also with blow-ups the so-called Kähler moduli are stabilised, while in my

thesis I will make use of complex structure moduli, cf. section 2.6.

The method for moduli stabilisation in type IIA string theory that I will apply is based on

the auxiliary fields called D, which appear in supersymmetric theories in the vector mul-

tiplets [99]. These fields contribute to the scalar potential, which determines the ground
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state of the theory, and can give rise to Fayet-Iliopoulos terms, which correspond to vacuum

expectation values (vevs) of the massless moduli fields. From this follows that supersym-

metry is broken unless the vev is zero, and hence the moduli are stabilised, see for instance

the review articles [48, 53], or the text books presented at the beginning of this chapter.

In fact, the idea to break supersymmetry via non-vanishing Fayet-Iliopoulos terms is not

new, and there exist even text books only on this subject [100, 101]. For heterotic or type I

string theory models, see e.g. [102, 103], and there also exist articles about complex struc-

ture deformations in heterotic orbifolds using F-terms [104–107]. However, the mechanisms

used in these models are completely different from the one I will use here.

More concretely, the starting point here is the method that was sketched in [108], but

which (to my best knowledge) was neither analysed further nor applied to concrete setups.

Therefore, me and my collaborators, my supervisor Jun.-Prof. Dr. Gabriele Honecker and

Dr. Michael Blaszczyk, were the first ones to study moduli stabilisation via complex struc-

ture deformations on sLag cycles of type IIA orientifolds models, in particular on the

T 6/(Z2 × Z2 × ΩR) orientifold with discrete torsion [109], published in 2014, and on the

technically more complicated orientifold T 6/(Z2 × Z′
6 × ΩR) with discrete torsion [110].

Additionally, based on my poster presentation, we contributed to the proceedings of “The

String Theory Universe, 21st European String Workshop and 3rd COST MP1210 Meeting”

in 2015 [111].

Though my thesis is based on the joint work of me and my collaborators [109–111], the

content that I present here is oriented on my own contribution, for which I will give much

more details on the concrete calculations compared to our publications. On the other

hand, parts of our joint work in which I was not much involved, will be kept rather short

and I will refer at the corresponding places to our respective article. In the conclusions

(chapter 6), where I also summarise the findings of my work, I will point out in detail my

personal contributions to our research that appeared in the publications [109–111]. I also

revised and reordered our findings to create a consistent framework, which will make it

easier to apply our results to different setups in the future. Additionally, I developed in my

thesis some new tools to visualise the process of the deformations, which provide a better

understanding of its structure. I will also present my first new results for deformations

on the T 6/(Z2 × Z6 × ΩR) orientifold with discrete torsion, which are supposed to lead

to a further publication [112]. This orientifold setup exhibits some unexpected technical

difficulties, which prevented us so far from finding a global description. However, I could

already study the local behaviour of the singularities under complex structure deformations

and compute the volumes of some concrete D6-branes in this setup.

The structure of my thesis is as follows: In chapter 2, I review known facts of the mathem-

atical literature that are important for the understanding of the following discussion. Here
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I introduce complex manifolds and especially Calabi-Yau manifolds in detail, which are

the underlying geometric objects for string theory compactifications. I discuss some relev-

ant examples thereof and explain the mathematical language of hypersurfaces in weighted

projective spaces in general and the application to two-tori T 2 in particular, which will be

expanded to descriptions of certain toroidal orbifolds in chapter 4. This hypersurface lan-

guage is necessary when deformations of one or several orbifold singularities are involved,

and it provides the possibility to perform concrete calculations of certain physical quantit-

ies. Thereafter, I touch on orbifolds in general and postpone a more detailed explanation

to section 3.1.1, where my specific orbifold setup is presented. Finally, the concepts of

homology and cohomology are discussed, which give rise to the notions of Kähler and

complex structure moduli together with the idea of metric deformations.

Chapter 3 gives an overview over the setup in string theory, where I collect the relevant

definitions and explanations from different articles and books dealing with string theory.

In the first part, I speak about the pure geometry which I impose on the internal six-

dimensional space of type IIA string theory. I introduce the (factorisable) toroidal orbifolds

T 6/(Z2 × Z2M) with 2M = 2,6,6′ and explain the geometrical effect when the additional

symmetry ΩR is introduced, which turns the just mentioned orbifolds into orientifolds.

On these orientifolds, one can consider certain lower-dimensional closed subspaces, called

cycles, which should at this point already be familiar to the reader from section 2.5 about

homology. These cycles, especially the so-called special Lagrangian (sLag) cycles, are the

geometrical objects on which the aforementioned Dp-branes are wrapped and which play

a major role throughout my thesis.

In chapters 4 and 5 I present my own work. Chapter 4 treats Lagrangian cycles and their

deformations, where at first I discuss which characteristics the (s)Lag cycles introduced

before have when described in terms of the aforementioned hypersurface language. As a

warm-up, I consider in the following section local deformations on the non-compact orbi-

folds C2/Z2 and C3/(Z2×Z2), and I explain which special Lagrangian (sLag) cycles appear.

After that, I come to toy models on T 4/Z2 orbifolds, where the hypersurface language is

applied to orbifolds and where the characteristics of deformations of orbifolds become ap-

parent. These toy models reappear later as certain special cases when deformations on T 6

orbifolds are discussed. The following section treats deformations of T 6/(Z2 × Z2), where

the underlying torus is chosen to have the simplest possible shape (i.e. a “square torus

lattice”). This leads over to the technically more complicated T 6/(Z2 × Z′
6) orbifold with

hexagonal two-tori, for which I will also introduce some new visualisation tools that give

a better understanding of the structure of certain deformations. Finally, I give some first

new results on the T 6/(Z2 ×Z6) orbifold which features the combination of two hexagonal

and one rectangular (or square) torus.
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Concrete global models are studied in chapter 5. Here I start again with the toy models on

T 4/Z2. Then I go over to SO(2N) and USp(2N) models as well as to a U(N) model, which

is a Pati-Salam model, on the T 6/(Z2 × Z′
6) orbifold. I will show that in these concrete

configurations, the moduli stabilisation mechanism works as expected and that indeed a

large number of moduli can be stabilised. Moreover, there can exist flat directions which

can be used to adjust the values of gauge couplings by slightly changing the volumes of

the fractional cycles wrapped by D6-branes. I conclude with a summary and an outlook

in chapter 6. In appendix A, I present some rather technical computations of certain

correction terms, which are necessary in order to obtain global models under deformations,

and where a concrete description might be helpful when different models are studied in the

future. Appendix B gives some hints on how I implemented my findings in Mathematica,

which might also be quite useful in order to reproduce my results and for possible future

work.
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2 Mathematical Preliminaries

In this chapter, I recapitulate known mathematical facts that are needed as a basis for

the following string theory constructions in the present work. In section 2.1, I intro-

duce Calabi-Yau manifolds, which are usually the underlying mathematical objects for the

six-dimensional internal space of string theory due to their special characteristics. The

subsequent section 2.2 deals with concrete examples of manifolds that will all prove to

be useful for the later discussions, and especially various descriptions of the torus will be

considered in more detail in section 2.3. The next section 2.4 deals with the mathem-

atical objects called orbifolds, which will reappear in section 3.1 in much more detail as

concrete string theory backgrounds for the six-dimensional internal space. In section 2.5,

the concepts of homology and cohomology are presented, which make it possible to define

certain topological invariants on a manifold. In addition, one can build equivalence classes

of closed subspaces of a manifold, the so-called cycles, that are used in order to build con-

crete models in type II string theories, and which reappear in this context in section 3.1.3.

In the last part of this chapter, the ideas of the moduli space and metric deformations

are introduced (section 2.6), which play a major role in my own analysis of string theory

backgrounds.

Good references in a rather compact shape, written by string theorists, are for example

the articles [113] and [114]. For more details, one can consult e.g. [25], [115], [116], [84],

or [36], as well as [85].

2.1 Calabi-Yau manifolds

For the following considerations, I assume that the reader is familiar with basic knowledge

of real differentiable manifolds and complex analysis. The combination of both will give

rise to complex manifolds, which can be further restricted to the so-called Calabi-Yau

manifolds [117, 118]. These will be the subject of my discussion since they proved to be

especially suitable as internal space for string theory models, see e.g. [23, 25], due to their

properties of being compact, complex, Kähler and with SU(n) holonomy.

2.1.1 Complex manifolds

A complex manifold M of n complex dimensions is a differentiable manifold with coordinate

charts (Uα, φα), where the Uα are open subsets covering M and where the coordinate maps

φα ∶ Uα → φα(Uα) ⊂ Cn are defined in such a way that the transition functions ψβα = φβ ○φ−1
α
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from φα(Uα ∩ Uβ) ⊂ Cn to another coordinate system φβ(Uα ∩ Uβ) ⊂ Cn are holomorphic

maps for all α,β.

The definition of a complex manifold implies that it resembles locally Cn, and in case that

the manifold can be covered by a finite number of open subsets Uα it is also compact.

The holomorphic transition functions ensure that all analytic considerations are the same

independent of what coordinate system is used. Furthermore, the combination of local

complex coordinates together with the holomorphic transition functions ψβα from one

coordinate system to another gives rise to a so-called complex structure on the manifold M ,

which is not necessarily unique. To be more precise, the complex structures of two complex

manifolds M and N can be identified if there exists a biholomorphic map f ∶M → N and

f−1 ∶ N →M .

In fact, every complex manifold can be expressed as a real manifold with 2n real dimen-

sions, but not the other way round. Therefore, it is always possible to write the complex

coordinates in terms of real ones, i.e. zαµ ≡ xαµ+ ixαn+µ (with 1 ≤ µ ≤ n) for the chart (Uα, φα).

2.1.2 Tangent and cotangent spaces

Since each complex manifold is also a 2n-dimensional real manifold, let me first recall the

notion of the ordinary tangent space TpM at a point p ∈ M , for which a basis is usually

constructed via partial derivatives of the real coordinates,

TpM ∶ { ∂

∂x1
∣
p

, . . . ,
∂

∂x2n
∣
p

} . (2.1)

The tangent space can be interpreted as the space which is the closest flat approximation

at p of the manifold M and is the vector space of all tangent vectors v = ∑k vk ∂
∂xk

∣
p

with

vk real numbers.

One can easily expand this definition to complexified tangent spaces TpMC on complex

manifolds. Rearranging the basis vectors of TpM in terms of so-called holomorphic and

antiholomorphic coordinates such that

∂

∂zµ
≡ ( ∂

∂xµ
+ i ∂

∂xn+µ
) , ∂

∂z̄µ̄
≡ ( ∂

∂xµ
− i ∂

∂xn+µ
) (1 ≤ µ ≤ n) , (2.2)

the basis of the complexified tangent space at point p reads

TpM
C ∶ { ∂

∂z1
∣
p

, . . . ,
∂

∂zn
∣
p

,
∂

∂z1 ∣
p

, . . . ,
∂

∂zn
∣
p

} . (2.3)
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This also implies that a vector v has now complex components vk. For later constructions

of Calabi-Yau manifolds it will be useful to split the definition of the complexified tangent

space into the holomorphic and antiholomorphic directions by writing

TpM
C = TpM (1,0) ⊕ TpM (0,1) , (2.4)

where the holomorphic tangent space TpM (1,0) is spanned by the first n basis vectors of

equation (2.3) and the antiholomorphic tangent space TpM (0,1) by the second set of n

basis vectors. Since this decomposition holds true for all points p ∈M , one can define the

complexified tangent bundle as

TMC = TM (1,0) ⊕ TM (0,1) , (2.5)

with holomorphic and antiholomorphic tangent bundles TM (1,0) and TM (0,1), respectively.

From the notion of real differentiable manifolds, the reader should furthermore be familiar

with the idea of dual tangent spaces at points p ∈M , usually given by the basis

T ∗
pM ∶ {dx1∣

p
, . . . , dx2n∣

p
} . (2.6)

The one-forms dxk are linear maps dxk ∶ TpM → R (with 1 ≤ k ≤ 2n) which satisfy

dxkp( ∂
∂xl

∣
p
) = δkl . The construction of a complexified cotangent space T ∗

pM
C works com-

pletely analogous as for the complexified tangent space TpMC, i.e. one can form the differ-

entials

dzµ = dxµ + idxn+µ , dz̄µ̄ = dxµ − idxn+µ (1 ≤ µ ≤ n) (2.7)

and write the complexified basis of T ∗
pM

C as

T ∗
pM

C ∶ {dz1∣
p
, . . . , dzn∣p , dz̄1∣

p
, . . . , dz̄n∣p} . (2.8)

In the same manner as for the complexified tangent spaces, one finds also for T ∗
pM

C the

decomposition into holomorphic and antiholomorphic parts,

T ∗
pM

C = T ∗
pM

(1,0) ⊕ T ∗
pM

(0,1) , (2.9)

with the assignment of the basis vectors similar to TpMC. This structure is given for all

points p of the complex manifold, and therefore

T ∗MC = T ∗M (1,0) ⊕ T ∗M (0,1) (2.10)

is the complexified cotangent bundle of M .
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2.1.3 Tensors and differential forms

A tensor of type (k, l) on a real differentiable manifold can be easily constructed as the

product of the basis tangent vectors ∂
∂xa and of the cotangent vectors dxb, see equa-

tions (2.1) and (2.6), respectively, such that

T ≡ T a1,...,ak
b1,...,bl

dxb1 ⊗ . . .⊗ dxbl ⊗ ∂

∂xa1
⊗ . . .⊗ ∂

∂xak
. (2.11)

With the notions of complexified tangent and cotangent spaces, one can easily generalise

to complex-valued tensors.

Based on the definition in equation (2.11), on complex manifolds M one can define totally

antisymmetric forms in two different ways. Firstly, the complexified q-forms are smooth

sections of the space ΛqT ∗MC, i.e. the wedge product of q complexified cotangent bundles,

see equation (2.10). In particular, a q-form can be expressed as

ω = ωk1...kqdx
k1 ∧ dxk2 ∧ . . . ∧ dxkq , (2.12)

and is an element of the vector space Γ(ΛqT ∗MC). Secondly, the wedge product of com-

plexified cotangent bundles can be decomposed into a tensor product of holomorphic and

antiholomorphic cotangent bundles,

ΛqT ∗MC =
q

⊕
r=0

Λr T ∗M (1,0) ⊗Λq−r T ∗M (0,1) ≡
q

⊕
r=0

Λr,q−rM , (2.13)

with the definition Λr,sM ∶= Λr T ∗M (1,0) ⊗ Λs T ∗M (0,1). Taking a section of Λr,sM , one

obtains an (r, s)-form

ωr,s = ωµ1...µr ν̄1...ν̄sdz
µ1 ∧ . . . ∧ dzµr ∧ dz̄ν̄1 ∧ . . . ∧ dz̄ν̄s , (2.14)

with r holomorphic and s = q − r antiholomorphic indices. The (r, s)-forms are elements of

the vector space Γ(Λr,sM). With that notion, one can express a q-form as

ω = ∑
r

ωr,q−r . (2.15)

For a complex manifold M one can decompose the usual exterior differential as d = ∂ + ∂̄
with ∂ ∶ Γ(Λr,sM) → Γ(Λr+1,sM) and ∂̄ ∶ Γ(Λr,sM) → Γ(Λr,s+1M) such that

dωr,s = ∂ωµ1...µr ν̄1...ν̄s

∂zµ0
dzµ0 ∧ dzµ1 ∧ . . . ∧ dzµr ∧ dz̄ν̄1 ∧ . . . ∧ dz̄ν̄s

+ ∂ωµ1...µr ν̄1...ν̄s

∂z̄ν̄0
dzµ1 ∧ . . . ∧ dzµr ∧ dzν̄0 ∧ dz̄ν̄1 ∧ . . . ∧ dz̄ν̄s .

(2.16)

In case that dω = 0, one says that ω is a closed form. If in addition one can write ω = dβ

with β being a (q−1)-form, one calls ω an exact form. These two properties will be crucial

for the definition of cohomology groups, cf. section 2.5.
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2.1.4 Kähler manifolds

On a complex manifold M , the metric can be naturally extended to the bilinear map

g ∶ TpMC × TpMC → C , (2.17)

for which I can define components by e.g. gµν = g ( ∂
∂zµ ,

∂
∂zν

) or gµν̄ = g ( ∂
∂zµ ,

∂
∂z̄ν̄

). Thus, I

find gµν = gνµ, gµν̄ = gν̄µ similar to the ordinary real metric defined on TpM , and gµν = gµ̄ν̄ ,
gµν̄ = gµ̄ν . One can show that on each complex manifold there exists a so-called Hermitian

metric

g = gµν̄dzµ ⊗ dz̄ν̄ + gµ̄νdz̄µ̄ ⊗ dzν (2.18)

on TpM (1,0) ⊗ TpM (0,1) → C, which possesses the additional restriction gµν = gµ̄ν̄ = 0, for

details see e.g. [115, 85].

Based on the Hermitian metric, one can build a closed two-form of degree (r, s) = (1,1),
namely the Kähler form, defined by

JKähler
1,1 = igµν̄ dzµ ∧ dz̄ν̄ with dJKähler

1,1 = 0 , (2.19)

which has only real values. If such a Kähler form exists, one says that the manifold is

Kähler. In that case, the Levi-Civita connection and the Christoffel symbols, known from

general relativity, become very simple due to the restriction dJKähler
1,1 = 0. This implies that

also the Riemann curvature tensor and the Ricci tensor are highly restricted.

2.1.5 Holonomy

For a real differentiable m-dimensional manifold (M,g) with Levi-Civita connection, the

parallel transport of a vector v ∈ TpM along a closed curve C with starting and ending

point p results generally in a differently orientated vector v′ (cf. for instance [115] for the

definitions of a Levi-Civita connection and parallel transport of vectors, which I assume

as basic knowledge in the context of real manifolds). In case M is orientable, which holds

true for all complex manifolds of m ≡ 2n real dimensions, the transformation v′ = ACv

is realised by an SO(m) matrix AC. In a next step, one finds that the matrices for all

closed curves C that run through a single point p form a subgroup of SO(m). Combining

now these subgroups of all points p ∈M , one obtains the so-called holonomy group of the

manifold M .

For example, if the manifold is flat, tangent vectors do not change upon parallel transport

and thus the holonomy group is the identity. For a Kähler manifold with dimRM =m = 2n,
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the holonomy group is U(n) because the restrictions on the connection imply that parallel

transport does not mix holomorphic and antiholomorphic components of the vectors v ∈
TpMC = TpM (1,0)⊕TpM (0,1). The even smaller subgroup SU(n) is obtained for the Calabi-

Yau manifolds, which are defined in the next section 2.1.6. For the Calabi-Yau manifolds

that appear in string theory, one uses SU(3) holonomy groups in order to obtain m =
2n = 6 dimensions of the compact internal space. The advantage of this holonomy group

becomes clear in the following argument, which shows that manifolds of SU(3) holonomy

admit exactly two covariantly constant spinor fields in type II string theories [8] (and only

one spinor for type I and the heterotic string theories). This corresponds to unbroken

N = 2 supersymmetry in the four-dimensional Minkowski space-time for type II string

compactifications. Let me remark that this N = 2 supersymmetry will be broken to N = 1

by an additional symmetry that will later be imposed on the six-dimensional internal space.

This symmetry is known as orientifold projection and will be explained in section 3.1.2 in

terms of its geometric properties, but also the implications on the particle spectrum will

be discussed in section 3.2.

To start with, in the ten-dimensional flat Minkowski space-time one finds 32 conserved su-

percharges, which correspond to two Majorana-Weyl spinors with 16 real components that

transform as spinors of the group SO(1,9). Note that these spinors have opposite chirality

in type IIA string theory and the same chirality in type IIB string theory. Separating

now into a four-dimensional Minkowski space-time R1,3 and six compactified dimensions

with the structure of a compact complex manifold M6, the spinors can be split into the

components SO(1,3)×SO(6), where SO(1,3) is the four-dimensional Lorentz group. The

six-dimensional spinors transform as 4 or 4̄ under the group SO(6) ≃ SU(4) (with the bar

denoting opposite chirality), which rotates all supercharges under parallel transport. This

implies that no supercharge is globally well-defined, and the four-dimensional supersym-

metry is completely broken.

Hence, one takes the subgroup SU(3) ⊂ SU(4), which has the representations 3+1 or 3̄+1,

where only the 1’s contribute to the four-dimensional spectrum. For example in [84], there

exists a table with all possible decompositions of the group SO(6), where one finds that

manifolds of SU(3) holonomy group are indeed the only ones with the desired property of

a four-dimensional covariantly constant spinor. To summarise, the decomposition reads

SO(1,9) → SO(1,3) × SO(6) → SO(1,3) × SU(3)
16 (2,4) + (2′, 4̄) (2,3) + (2′, 3̄) + (2,1) + (2′,1)

, (2.20)

where the parts (2,1) and (2′,1) are the two covariantly constant spinors with 2 and

2′ referring to the left- and right-handedness under the four-dimensional Lorentz group

SO(1,3).
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2.1.6 Calabi-Yau manifolds

A Calabi-Yau manifold M (with dimCM = n) is a compact Kähler manifold with additional

properties that can be stated in many different ways. These different statements are

related in interesting ways, and depending on the concrete situation, the one or the other

expression proved to be especially useful. Four equivalent definitions, which are of interest

in the context of my work, are the following ones:

1. The first Chern class vanishes.

2. The metric is Ricci-flat, i.e. the Ricci tensor vanishes.

3. M has a Levi-Civita connection with SU(n) holonomy.

4. There exists a nowhere vanishing holomorphic (n,0)-form Ωn that is globally defined.

The first definition involves the so-called first Chern class, which is a topological invariant

that is very easy to compute. Therefore, this property is mostly used to prove if a mani-

fold is Calabi-Yau. For my discussion, the knowledge of Chern classes is not needed and

therefore I will not introduce them here, but the interested reader will easily find their

definition in the literature, e.g. in [115]. Historically, in 1957 Calabi conjectured that for

vanishing first Chern class, there exists a metric of a compact Kähler manifold which is

Ricci-flat, and this was proved by Yau in 1978. The SU(n) holonomy stated in the third

item is crucial for the construction of physical models because it ensures the existence of

one covariantly constant spinor (and its CPT conjugate), cf. table 0.1 in [84]. Finally, the

last definition provides a useful tool in order to do integration on a Calabi-Yau manifold.

Due to its properties, Ωn can be taken as a volume element, of which I will make extensive

use in chapter 4.

Because of their interesting characteristics, Calabi-Yau manifolds have been studied in

much detail in the past. Especially in string theory, see e.g. [84, 36], they are important

elements on which concrete theories can be built. On the other hand, for most Calabi-Yau

manifolds it was not possible thus far to find the explicit expression of a Ricci-flat metric.

Therefore, it makes sense to consider certain orbifolds, see sections 2.4 and 3.1, which are

singular limits of the Calabi-Yau manifolds in question, and where it is easy to perform

concrete calculations.
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2.2 Relevant examples of complex manifolds

In the subsequent chapters, concrete complex manifolds of different appearance will turn

up. Therefore, it will be useful for the reader to already familiarise him/herself with the

following sample. The first examples are the Riemann surfaces that are introduced here in

order to provide an easier understanding of the other examples. In addition, the basic ob-

jects of string theory, namely closed and open strings, can be perceived as two-dimensional

worldsheets if not only the length of the string, but also the time component is considered

(cf. section 3.2). These worldsheets are mathematically Riemann surfaces and are basic

ingredients for the calculation of e.g. string scattering amplitudes (a subject which is not

discussed further in the present work, consult for example the text books [9], [24], [25], [39],

and [40] for more information). Also the fact that Riemann surfaces allow for a so-called

conformally flat metric is important in string theory, which I will also not discuss further

here (see for instance [115]).

The second example is the complex two-dimensional torus T 2, which is used as the basic

object for a large number of string compactifications, as already mentioned in chapter 1, in

particular for the so-called factorisable toroidal orbifolds (cf. section 2.4 about orbifolds in

general). In section 3.1.1, I will introduce the concrete examples (T 2×T 2×T 2)/(Z2×Z2M)
with 2M = 2,6,6′. In addition, different descriptions of the torus that I will make use of

later will be discussed in section 2.3.

In section 2.2.3, complex projective spaces CPn will be discussed, whose knowledge is

needed to understand in a next step the concept of compact submanifolds of these spaces

CPn, i.e. hypersurfaces, see section 2.2.4. Some very specific choices of the six-dimensional

internal space used in string theory, which is generally assumed to be a Calabi-Yau man-

ifold, can be expressed as such hypersurfaces. The big advantage of such a description is

the fact that not only the topology can be studied in detail and that concrete geometric

quantities can be computed, but also the possibility to easily deform these hypersurfaces

and to analyse their behaviour under such changes, cf. also section 2.6. This will be done

in chapter 4 in great detail.

2.2.1 Riemann surfaces

Riemann surfaces are defined as being complex one-dimensional manifolds. All two-forms

on Riemann surfaces are closed because the space has only two real dimensions, and there-

fore these manifolds are also Kähler. Furthermore, Riemann surfaces look locally like the

complex plane, but globally they can be very different from C. This different appearance
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is owing to the construction of Riemann surfaces by performing branch cuts of the complex

plane and then gluing the resulting sheets together again (consult e.g. [85] for the exact

mathematical definitions).

As examples of Riemann surfaces, one can consider the complex plane or the Riemann

sphere C∪{∞}, which is compact. Furthermore, compact Riemann surfaces are equivalent

to complex projective algebraic curves, which are generally defined as the zero locus of a

polynomial f(z0, . . . , zn) = 0 living in the complex projective space CPn, cf. section 2.2.3,

where a concrete example is the torus, see section 2.3 for more details. Another example

that I will use further down are the elliptic curves over the complex numbers, which are in

fact homeomorphic to the complex torus.

2.2.2 Tori

The two-torus, usually denoted by T 2, is homeomorphic to the complex manifold C/Λ,

which endows the T 2 naturally with a complex structure. A lattice Λ on the complex

plane C is given by

Λ = {mζ1 + nζ2∣m,n ∈ Z} , (2.21)

with lattice vectors ζ1, ζ2 ∈ C such that Im ζ2
ζ1
> 0, i.e. considering only the complex upper

half plane by a suitable sign choice of ζ2. One can then define the complex structure

parameter as τ ∶= ζ2
ζ1

, which encodes the concrete shape of the torus. Due to the periodicity

of the lattice, one can choose a fundamental parallelogram, which is usually given by the

set {s ζ1 + t ζ2∣0¸ ≤ s, t ≤ 1}, and to obtain a torus, opposite sides of this fundamental

domain are identified. One should note that the torus is a flat space and has therefore

trivial holonomy.

Between different complex structure parameters τ there exists an interesting relation. Two

sets of basic lattice vectors (ζ1, ζ2) and (ζ̃1, ζ̃2) give rise to the same complex structure τ

if the sets are related by the transformation

⎛
⎜
⎝
ζ̃1

ζ̃2

⎞
⎟
⎠
=
⎛
⎜
⎝
a b

c d

⎞
⎟
⎠

⎛
⎜
⎝
ζ1

ζ2

⎞
⎟
⎠

with
⎛
⎜
⎝
a b

c d

⎞
⎟
⎠
∈ PSL(2,Z) . (2.22)

The modular group PSL(2,Z) ≡ SL(2,Z)/Z2 has the effect that two matrices A and −A,

which are both elements of SL(2,Z), are identified, where the special linear group is defined

in the following way,

SL(2,Z) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝
a b

c d

⎞
⎟
⎠

RRRRRRRRRRRRR
a, b, c, d ∈ Z, ad − bc = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (2.23)
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Note that it is not always the group PSL(2,Z) which is referred to as the modular group,

but some authors take instead the larger group of SL(2,Z). In addition, the complex

structure parameters τ and τ ′ of two coinciding lattices are related by the modular trans-

formation

τ ↦ τ ′ = aτ + b
cτ + d with ad − bc = 1 (a, b, c, d ∈ Z) , (2.24)

and one can show that the group of modular transformations is generated by τ ↦ τ +1 and

τ ↦ −1/τ , see for instance [115].

2.2.3 Complex projective spaces

The complex projective spaces CPn, which have n dimensions, are compact Kähler mani-

folds and are defined as

CPn ≡ (Cn+1 − {0})/ ∼ . (2.25)

Their main advantage is that they are very easy to handle. Concretely, the space CPn
describes lines running through the origin of the complex space Cn+1, where a line is

parametrised by homogeneous coordinates [z0, z1, . . . , zn] ∈ (Cn+1 − {0}), and with the

equivalence relation

(z0, . . . , zn) ∼ λ(z0, . . . , zn) (2.26)

divided out (for λ ∈ C, λ ≠ 0). The notion of homogeneous coordinates means basically

that one can use λ to scale one of the n + 1 coordinates to one. Thus, reducing to only

n coordinates means going over to so-called inhomogeneous coordinates χji . In detail, one

chooses a chart Uj ⊂ (Cn+1 − {0}) where zj ≠ 0 and defines χji ≡ zi/zj with i ≠ j. The

holomorphic maps ψjk ∶ Cn → Cn on the underlying open subset Uj ∩ Uk translate the

coordinate system χji to χki by a multiplication of (χjk)−1.

As a concrete example one can consider CP1, which is the Riemann sphere C∪{∞} that can

also be identified with the ordinary two-sphere S2. Taking the homogeneous coordinates

[z0, z1] ∈ CP1, one finds either z1 ≠ 0 and can choose z1 = 1, or the other way round.

Therefore, one has a complex plane due to z0 ∈ C and an additional point z1 = 1 (or with

reversed coordiantes), as required for the definition of the Riemann sphere.

This formalism can be easily generalised to weighted projective spaces, where the equi-

valence relation has a different weight for each coordinate. Later on, I will use the

18



weighted complex projective space CP2
112 extensively, where I will always use the nota-

tion (z0, z1, z2) ≡ (x, v, y) for the homogeneous coordinates. CP2
112 is then defined by the

equivalence relation

(x, v, y) ∼ (λx,λv, λ2y) . (2.27)

In most cases, I will choose a chart where v ≠ 0 and set v ≡ 1. It is important to note

that contrary to CPn, weighted projective spaces may have singular points since there can

appear non-trivial fixed points under the coordinate identification.

2.2.4 Hypersurfaces of complex projective spaces

In the subsequent chapters, I will use as basic mathematical objects compact submanifolds

of complex (weighted) projective spaces. For my discussion it is crucial that these spaces

are compact because otherwise they wouldn’t be suitable backgrounds for the internal

dimensions of string theory. The simpler examples of submanifolds of just complex spaces

Cn are not useful here since a compact, connected and analytic submanifold of the complex

space is just a single point, see [114, 116].

There exists an important theorem of Chow, cf. for example [113, 85], or the original

article [119], which says that each submanifold of CPn can be written as the zero locus of

a finite number of homogeneous polynomial equations, expressed in terms of homogeneous

coordinates [z0, . . . , zn] ∈ CPn. Homogeneity of degree d of a polynomial f means that

f(λz0, . . . , λzn) = λdf(z0, . . . , zn) , (2.28)

and in the following discussions I will only need one such polynomial f , giving rise to a

(n − 1)-dimensional hypersurface of degree d of CPn

{f(z0, . . . , zn) = 0} ⊂ CPn . (2.29)

In the general case of k such polynomials (fi)i=1,...,k, one would find an (n−k)-dimensional

submanifold of the complex projective space. Contrary to CPn, the hypersurfaces do not

possess a unique complex structure.

One can easily generalise equation (2.29) to using a product of weighted projective spaces,

where only the equivalence relation has to be modified. Hypersurfaces of complex (weighted)

projective spaces are algebraic objects, and as such they can be used for concrete math-

ematical calculations. In chapter 4, I will explicitly translate certain toroidal orbifolds into

the hypersurface language of weighted projective spaces, and I will perform explicit calcu-

lations on them: such a description is especially useful in the context of deformations. The
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singular points of the hypersurface are the solutions to f = df = 0 (except for the values

zj = 0 for all j, which do not belong to CPn). Hence, all partial derivatives of f must

vanish at the singular points, which will be applied to the concrete examples in chapter 4.

2.3 Descriptions of the torus

As already mentioned, I will use concrete toroidal orbifolds in the following chapters, which

are products of two-tori with an additional orbifold action. In this section, I provide the

information about the concrete map from the ordinary torus description to the hypersurface

expression, as introduced in the previous section, for which the Weiserstrass elliptic function

is used.

2.3.1 Weierstrass elliptic function

The Weierstrass elliptic function is a special form of an elliptic function, for which a nice

introduction can be found e.g. in [120] or [121]. The Weierstrass functions will prove to be

a useful tool for translating between different descriptions of the torus, see section 2.3.2.

To start with, let me recall the notion of meromorphic functions f , which are defined on an

open set of a complex manifold M , and where f is the quotient f = g/h of two holomorphic

functions g and h. Furthermore, f is called double periodic, i.e. periodic in two directions,

on a period lattice Λ = {mζ1 + nζ2∣m,n ∈ Z} (cf. equation (2.21)) if

f(z + ζ1) = f(z) = f(z + ζ2) ∀z ∈ C . (2.30)

When τ ∶= ζ2
ζ1

is chosen such that Im τ > 0, f is said to be an elliptic function. One can

show that f has at least two simple poles (or one pole degenerated by degree two) in the

fundamental domain.

As a very simple form of an elliptic function, one can define the Weierstrass elliptic function

℘(z) = 1

z2
+∑
ζ≠0

( 1

(z − ζ)2
− 1

ζ2
) , (2.31)

with periods ζ ≡ mζ1 + nζ2 (m,n ∈ Z). One can see that ℘(z) is invariant under the shifts

z ↦ z +mζ1 +nζ2 and that the poles lie at the coordinates z = ζ. In addition, ℘(z) has the

important properties

℘(z) = ℘(−z) , ℘′(z) = −℘′(−z) , (2.32)
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which directly implies that the fixed points of ℘(z), defined on the lattice, reside at the

coordinates z = 0, ζ12 ,
ζ2
2 ,

ζ3
2 with ζ3 ≡ ζ1 + ζ2. These fixed points will play an important role

for the discussion of concrete models. The elliptic function ℘′(z) has three zeros, which

are obtained when z = ζ1
2 ,

ζ2
2 ,

ζ3
2 is inserted.

The Weierstrass ℘-function has furthermore the property that it fulfils the differential

equation

℘′(z)2 = 4℘(z)3 − g2 ℘(z) − g3 , (2.33)

which has the form of an elliptic curve. This means that the relation is expressed as a

curve y2 = 4z3 − az − b, which has the property of being non-singular. Equation (2.33) will

become quite important for later constructions of concrete models. The invariants g2 and

g3 are defined as

g2 = 60∑
ζ≠0

ζ−4 , g3 = 140∑
ζ≠0

ζ−6 , (2.34)

and can be combined into the following meromorphic function,

j(τ) ∶= g3
2

g3
2 − 27g2

3

. (2.35)

This function has the name Klein invariant j(τ) and provides a one-to-one map to the

complex structure τ . The dependency on the complex structure parameter is given by the

relation τ ∶= ζ2
ζ1

, and j(τ) ∈ R because the parameters g2, g3 are real numbers by a rotation

of the lattice.

One of the most interesting and quite useful characteristics of the Weierstrass ℘-function

is the fact that there exists the following addition theorem, which reads

℘(z1 + z2) =
1

4
{℘

′(z1) − ℘′(z2)
℘(z1) − ℘(z2)

}
2

− ℘(z1) − ℘(z2) . (2.36)

By this relation, the Weierstrass function at the coordinate z1 is shifted to another co-

ordinate z1 + z2. I will make use of this relation in section 4.1.

2.3.2 The torus as hypersurface in a complex projective space

So far, I presented in section 2.2.2 the definition of the two-torus that is probably the

most well-known expression. An equivalent description as an elliptic curve in CP2
112 can

be obtained with the help of the Weierstrass ℘-function as introduced in section 2.3.1.
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For my later calculations, this second description will turn out to be more useful than the

definition in section 2.2.2. The differential equation (2.33) together with the identifications

℘(z) = x/v and ℘′(z) = y/v2 directly leads to the elliptic curve.

The torus expressed as an elliptic curve E is given by the zero locus of a polynomial of

degree four,

E = {f ∶= −y2 + F (x, v) = 0} , (2.37)

with the definition

F (x, v) ∶= 4vx3 − g2v
3x − g3v

4 . (2.38)

In subsequent calculations the factorised form of F (x, v) will become important, which is

F (x, v) = 4v(x − ε2v)(x − ε3v)(x − ε4v) (2.39)

with the roots of x/v (v ≠ 0) being at the positions εα (α = 2,3,4) with ∑α εα = 0 and at

ε1 ∶= ∞. The parameters g2 and g3 in definition (2.38) can be reproduced by the relations

g2 = 4∑α<β εαεβ and g3 = 4ε2ε3ε4.

Using the identifications, the globally defined holomorphic one-form Ω1 on the torus can

also be written in terms of the homogeneous coordinates,

Ω1 ∶= dz =
d℘
℘′ =

v ⋅ dx − x ⋅ dv
y

v≡1Ð→ dx

y
, (2.40)

where in the last step I introduced the chart v ≡ 1 that I will often use for the calculations

in the following chapters.

2.4 Orbifolds

An orbifold is defined as a manifold M divided by a discrete group Γ, i.e. M/Γ. There

exist in general invariant points under Γ, and at the position of these fixed points one

finds conical curvature singularities, which means that the curvature is a δ-function. As

a simple example, take the orbifold C2/Z2, see section 4.2.1 for more details, where the

discrete orbifold group Z2 generates a conifold singularity at the origin of C2. It is crucial

that the orbifold group Γ does not act freely. For example, I explained in section 2.2.2 that

the two-torus T 2, which is not an orbifold, can be described as the quotient C/Λ. Since the

action of Λ is free, there exist no fixed points, and T 2 is a flat space without singularities.
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To set up concrete models in string theory, a good starting point is to consider those

orbifolds which are singular limits of Calabi-Yau manifolds because, as mentioned in sec-

tion 2.1.6, one can explicitly write down their metric. In addition, orbifolds are mathemat-

ically very well understood objects, which are easy to use for computations. More details

on the concrete orbifold setup in string theory that I will use for my analysis are given in

section 3.1.1. Concrete calculations on the non-compact orbifolds C2/Z2 and C3/(Z2×Z2),
as well as on the compact toroidal orbifolds T 4/Z2, T 4/Z6, T 6/(Z2 ×Z2), T 6/(Z2 ×Z′

6) and

T 6/(Z2 ×Z6) will be presented in chapter 4.

There exist different ways to “get rid” of the orbifold singularities in order to obtain a

smooth Calabi-Yau manifold, which depend on the fact if a certain conifold singularity is

degenerated in the Kähler or complex structure. In the context of conformal field theories,

there exists a very interesting symmetry principle between these two kinds of singularities,

known as mirror symmetry [36]. For the Kähler type, one usually applies the very well-

known mechanism of a blow-up, which was analysed in the context of string theory in

much detail, see e.g. [84, 36] and the literature presented in the introductory chapter.

However, I will study singularities of the second kind, making use of the method known as

complex structure deformations, cf. section 2.6. To my best knowledge, very few examples

of such deformations that are relevant to string theory have been studied up to now and

my collaborators and me were the first ones to analyse concrete models in type IIA string

theory [109–111]. In chapter 4, I will present explicit complex structure deformations on

orbifolds which are promising backgrounds for semi-realistic models.

In order to perform concrete deformations, I need the mathematical concepts known as

homology and cohomology, introduced in the next section. These lead, amongst other

things, to the notion of the moduli space, which is closely related to the deformations, see

section 2.6.

2.5 Homology and cohomology

Homology and cohomology groups encode topological information of a manifold, independ-

ent of the chosen coordinates, and are therefore of major importance for the classification

of manifolds in terms of their topologies. In order to group geometrical objects into equi-

valence classes, one needs the notion of (co)homology. This makes it possible to distinguish

only between interesting classes of elements, where an arbitrary element can be chosen as

representative. In the notion of homology, the topological objects called cycles are defined,

which are the basic objects of my later constructions.
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On a smooth connected manifold M , one can define a complex q-chain as sum over smooth

oriented submanifolds Nk of dimension q,

aq ≡ ∑
k

ckNk , (2.41)

where ck ∈ C (analogously, one can write down real or integer q-chains). The oriented

boundary of a manifold M is denoted by ∂ and maps a q-chain to a (q − 1)-chain. ∂ has

the property that the boundary ∂M of a manifold does not have a boundary,

∂∂M = 0 . (2.42)

Within this notation, one says that a q-chain without a boundary, ∂aq = 0, is a cycle.

Furthermore, one calls cq with the property cq = ∂dq+1 a q-boundary, and it is directly clear

that for the q-boundaries the property ∂cq = 0 is trivially fulfilled, i.e. cq is a cycle. Hence,

it makes sense to consider only such cycles which cannot be written as a boundary, and to

define the q-th homology group

Hq(M,R) ≡ {aq ∣∂aq = 0}
{cq ∣cq = ∂dq+1}

. (2.43)

Differently said, the group Hq(M,R), which is also a vector space, is the group of non-

trivial cycles, and its dimension is given by the Betti number bq. The elements of the q-th

homology group are the equivalence classes [aq] of the cycles aq, for which the representative

can be chosen arbitrarily.

The basic ideas of homology apply in a similar fashion to cohomology. As already men-

tioned in section 2.1.3, there exist closed q-forms with dω = 0, called cocycles, which may

have the additional property of being exact, i.e. they can be expressed as coboundaries

ω = dβ. Since the exact forms provide only trivial solutions to dω = 0 due to the prop-

erty d2 = 0 on all q-forms, it makes sense to define a group of closed q-forms, where the

exact forms are divided out. This idea is realised in the q-th de Rham cohomology group

Hq
dR(M) ≡Hq(M), which is the quotient space

Hq(M,R) ≡ {ω∣dω = 0}
{α∣α = dβ} (2.44)

with real q-forms ω and α. Analogously, one can define Hq
dR(M,C) with complexified q-

forms. The elements [ω] ∈Hq
dR(M) are called equivalence classes with ω being an arbitrary

representative of [ω].

De Rham proved that Hq(M,R) and Hq(M,R) (and Hq(M,Z), Hq(M,Z)) are dual to

each other, cf. for instance [8] for a compact presentation or [115] for more details, in the
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sense that one can always choose a basis {(aq)i} of q-cycles and a basis {(Aq)j} of q-forms

with i, j = 1, . . . ,bq such that

∫
[(aq)i]

[(Aq)j] = δij . (2.45)

To show this one has to use Stokes’ theorem ∫aq dBq−1 = ∫∂aq Bq−1 from which follows that it

is sufficient to integrate over an arbitrary representative of the homology and cohomology

classes. From De Rham duality, it is clear that the above introduced cycles and boundaries

are the dual objects to the cocycles and coboundaries, respectively.

There exists a second relation between the homology and cohomology groups known as

Poincaré duality. The integral ∫M Bq∧Am−q over a real m-dimensional manifold M is a map

Hq(M,R)×Hm−q(M,R) → R, and therefore Hq(M,R) and Hm−q(M,R) are considered as

being dual, thus also the Betti numbers bq = bm−q. Using this property together with de

Rham duality, one can identify Hm−q(M,R) with Hq(M,R), which means that each non-

trivial q-cycle aq corresponds to a non-trivial (m − q)-cocycle δ(aq). With this relation, it

is possible to rewrite integrals as ∫aq Bq = ∫M Bq ∧ δ(aq), i.e. one can extend the integration

over a subspace to the integral over the whole manifold M . This makes it possible to define

the topological intersection number between two homology classes,

[aq] ○ [bm−q] ≡ ∫
M
δ(aq) ∧ δ(bm−q) , (2.46)

which is a crucial ingredient for model building in string theory.

For a complex manifold M , one can use the decomposition d = ∂ + ∂̄ of the exterior

derivative into operators acting only on the holomorphic or antiholomorphic components

of a q-form, respectively, see equation 2.16. Thus, one can also define the (r, s)-th Dolbeault

cohomology group,

Hr,s

∂̄
(M,C) ≡ {ωr,s∣∂̄ωr,s = 0}

{αr,s∣αr,s = ∂̄βr,s−1}
, (2.47)

which can similarly be expressed with ∂. For a Kähler manifold, one finds between the two

definitions of equations (2.44) and (2.47) the relation

Hq
dR(M,C) = ⊕

q=r+s
Hr,s

∂̄
(M,C) , (2.48)

i.e. the de Rham cohomology groups can be decomposed into Dolbeault cohomology groups.

To denote the dimensions of the cohomology groups, one uses, as for the homology groups,

the Betti numbers, which are for the de Rham cohomology groupsHq
dR(M,R) andHq

dR(M,C)
defined as

bq ≡ dimRH
q
dR(M,R) = dimCH

q
dR(M,C) . (2.49)
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To encode the (complex) dimensions of the Dolbeault cohomology groups Hr,s

∂̄
(M,C), one

introduces further quantities, namely the Hodge numbers

hr,s ≡ dimCH
r,s

∂̄
(M,C) , (2.50)

which play an important role in string theory and in my present work. The Hodge numbers

have the properties

hr,s = hn−r,n−s , hr,s = hs,r , (2.51)

where the second relation is only true on a Kähler manifold. If equation (2.48) is fulfilled,

it is clear that for the Betti numbers one can write

bq = ⊕
q=r+s

hr,s , (2.52)

and therefore the Betti numbers can be split into a sum over Hodge numbers.

For Calabi-Yau manifolds of complex dimension n = 1,2,3, the Hodge numbers are given in

table 1, and the Hodge numbers of some concrete orbifolds that I will use in the subsequent

chapters are summarised in table 2. The Hodge numbers play an important role in string

theory, not only because they describe the topology of the internal six-dimensional space,

but also because they reappear in the particle spectrum, where they count the numbers

of certain fields (see section 3.2), and as parameters of the so-called moduli space, which

will be introduced in the next section 2.6. These close relations of the Hodge numbers to

physical quantities underline how much the geometry of the internal space influences the

physics of the four-dimensional effective theory.

2.6 Moduli space and metric deformations

For Calabi-Yau manifolds M , the number of independent Hodge numbers is severely re-

duced, cf. also section 2.5, and I find the collections as shown in the Hodge diamonds of

table 1. For n = 1,2, there exists only one possible Calabi-Yau manifold, which is the

two-torus T 2 and the K3 surface, respectively. In case that the complex dimension is lar-

ger, one finds families of Calabi-Yau manifolds with different Hodge numbers. Choosing a

certain Calabi-Yau manifold, one can take a look at its so-called moduli space, which has

h1,1 real and h2,1 complex dimensions. Changing one of the h1,1 parameters with name

Kähler moduli implies that the metric is deformed with respect to the Kähler structure,

which is roughly speaking a change in the size of the manifold. On the other hand, a

variation in one of the h2,1 complex structure moduli corresponds to a deformation of the
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Hodge diamonds for Calabi-Yau manifolds of complex dimension n

h0,0 1

n = 1 h1,0 h0,1 = 1 1

h1,1 1

h0,0 1

h1,0 h0,1 0 0

n = 2 h2,0 h1,1 h0,2 = 1 20 1

h2,1 h1,2 0 0

h2,2 1

h0,0 1

h1,0 h0,1 0 0

h2,0 h1,1 h0,1 0 h1,1 0

n = 3 h3,0 h2,1 h1,2 h0,3 = 1 h2,1 h2,1 1

h3,1 h2,2 h1,3 0 h1,1 0

h3,2 h2,3 0 0

h3,3 1

Table 1: The table shows the so-called Hodge diamonds for the Calabi-Yau manifolds of complex

dimension n = 1,2,3. The Hodge diamonds form a collection of all possible Hodge numbers,

cf. section 2.5 for the definition and explanation of their properties, and therefore contain the

information about the topological properties of the manifolds.

complex structure of the Calabi-Yau manifold, which can be interpreted as altering its

shape. Table 1 reveals that all Calabi-Yau manifolds with n = 1,2,3 have at least one

Kähler modulus h1,1, but only for n = 3 there exist in addition complex structure moduli

h2,1. In chapter 4 I will perform concrete deformations of these complex structure moduli,

but I will also use K3 manifolds as toy models, and one should keep in mind that here it

is actually the hyper-Kähler structure which is deformed. Hyper-Kähler means here that

the K3 manifold has a symplectic structure due to the property SU(2) ≃ USp(2) of the

holonomy group.

Since complex structure deformations (cf. for instance [113, 7, 84, 108]) are crucial for my

work, I will give here some more detail. At first, take the possible perturbations of the

metric g,

δg = δgµν̄dzµ ∧ dz̄ν̄ + δgµνdzµ ∧ dzν + c.c. , (2.53)
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where for a Hermitian metric (see equation (2.18)) only the first type of transformation

preserves the index structure. This is an infinitesimal deformation of the Kähler structure,

i.e. the Kähler class [JKähler
1,1 ] is transformed into a new element [JKähler

1,1 ] ∈H1,1

∂̄
(M). If the

second type of perturbation is applied, the metric is not Hermitian anymore, but one can

always redefine the coordinates by a non-holomorphic transformation in order to obtain

again a metric in Hermitian form. Since the coordinate change is not holomorphic, one goes

over to a different complex structure. Such complex structure deformations are associated

to elements Ωµνρ gργ̄ δgγ̄λ̄ dzµ ∧ dzν ∧ dzλ̄ of H2,1

∂̄
(M) with Ωµνρ being the components of

the holomorphic three-form, see section 2.1.6.

For the computations in chapter 4, I use concrete complex structure deformations as first

introduced in [108] by Vafa and Witten. To be somewhat more precise, take the simple

example

x2
1 + x2

2 + x2
3 + x2

4 = 0 (2.54)

of a conifold singularity in a Calabi-Yau manifold of three dimensions, as presented in [108].

This singularity is removed by setting equation (2.54) equal to the complex structure

deformation parameter ε,

x2
1 + x2

2 + x2
3 + x2

4 = ε . (2.55)

In addition, Vafa and Witten briefly sketched how local and global complex structure de-

formations of the T 6/(Z2×Z2) orbifold (with discrete torsion, see section 3.1.1) in principle

would look like. Together with my collaborators, I took [108] as a starting point to develop

for the first time an explicit method for performing such complex structure deformations.

We studied several examples, also generalisations to the orbifold T 6/(Z2 × Z′
6), and ad-

ditionally we analysed the effects of the deformations on the volumes and calibrations of

three-cycles, as well as applications to concrete models, cf. [109–111].

More details and physical applications will be presented in chapter 4, as well as the new

example of the T 6/(Z2 × Z6) orbifold. As a short hint to the physical interest of concrete

deformations, let me remark that for instance the (squares of the) gauge couplings are

(anti-)proportional to the volumes of three-cycles, and therefore, by continuous changes in

the volumes, one can adjust the gauge couplings.
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3 The Setup in String Theory

In the first part, I treat only the purely geometric properties of the concrete setup that I

will use in my thesis for the internal six-dimensional space of type IIA string theory. The

concrete structure of this background space and of certain subspaces thereof is crucial for

my work, and this is why I will present the characteristics here at full length. After that,

I summarise the physical quantities that appear in these backgrounds in type IIA string

theory, i.e. bosonic and fermionic fields, generated by certain oscillation modes of closed

and open strings. I will mostly restrict the discussion to the different kinds of massless

bosonic fields since these have important implications for the deformations, and especially

because these incorporate the aforementioned Kähler and complex structure moduli. In

addition, the higher-dimensional physical Dp-branes and Op-planes will be introduced, as

mentioned in the introductory chapter 1, which play a major role in string model building.

3.1 Geometry of the background and construction of subspaces

The mathematical objects that I use for the construction of the six-dimensional internal

background space are factorisable toroidal orbifolds, i.e. special cases of the orbifolds that

were presented in section 2.4. As discussed in the introductory chapter, orbifolds are a

fruitful field for model building in string theory, and have many interesting properties. In

section 3.1.2, I will describe an additional restriction that can be imposed on the back-

ground space, which leads to an orientifold. Note that I will explain here only the geometric

target space part of this restriction, while the second contribution from the worldsheet will

be discussed in section 3.2. Finally, I present in section 3.1.3 specific subspaces called

cycles, which should already be familiar to the reader from section 2.5 about homology

and cohomology. These cycles are the basic objects of my analysis in chapter 4, and

therefore I give a lot of information on them.

3.1.1 The background space: factorisable toroidal orbifolds

As six-dimensional compact space I take a six-torus T 6, which I divide by a discrete group

Γ, expressed as T 6/Γ. The resulting object is called toroidal orbifold, cf. section 2.4 for

orbifolds and section 2.3 for mathematical descriptions of a torus. For the concrete form

T 6/(Z2 ×Z2M), the orbifold has the generators θ, ω

θpωq ∶ zi z→ e2πi(pvi+qwi)zi (i = 1,2,3) (3.1)
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that act diagonally on the torus coordinates zi with specifications

v⃗ = 1

2
(1,−1,0) for Z2 ,

w⃗ = 1
2(0,1,−1) for Z2M ≡ Z2 ,

w⃗ = 1
6(0,1,−1) for Z2M ≡ Z6 ,

w⃗ = 1
6(−2,1,1) for Z2M ≡ Z′

6 .

(3.2)

Each choice of p ∈ {0,1} and q ∈ {0, . . . ,2M − 1} gives rise to a so-called twisted sector.

Furthermore, one has to take into account that the generator of Z2M can act with sign

η ∶= ±1 on the other generator Z2, or the other way round. Orbifolds with sign choice η = +1

are called without discrete torsion, while those with opposite sign η = −1 are referred to

as with discrete torsion. The structure of such toroidal orbifolds with generators as in

equation (3.2), together with the implications on the particle spectrum, was studied in

much detail in [66], and D6-brane model building on the T 6/(Z2×Z2) orbifold with discrete

torsion traces back to [71].

It is possible to treat the toroidal orbifolds presented above on non-factorisable tori, but

since the more specialised setup of factorisable six-tori T 6 ≡ T 2
(1)

× T 2
(2)

× T 2
(3)

, i.e. the

product of three two-tori, is much easier to handle and has interesting properties, models

on factorisable tori have been up to now more popular among string phenomenologists. The

generators of equation (3.2) impose then the following conditions on the lattice vectors of

T 6. For the T 6/(Z2×Z2) orbifold I find an SU(2)6 root lattice, where the lattice vectors are

unrestricted in the sense that they can be chosen arbitrarily. In case of T 6/(Z2×Z6), there

is again no restriction on the first two-torus, while the second and third have a hexagonal

shape due to the Z3 action thus corresponding to a SU(2)2 × SU(3)2 root lattice. The

orbifold T 6/(Z2 ×Z′
6) provides three hexagonal lattices, and therefore it is clear that each

has the properties of an SU(3)3 root lattice.

For the orbifolds with discrete torsion (η = −1), which I am mostly interested in, at the

positions of the orbifold fixed lines there appear curvature singularities of complex codi-

mension two due to the orbifold action. These can be referred to as singular lines when

speaking in terms of complex coordinates, or likewise as singular planes if the picture of

real dimensions is used. The complex codimension two singularities can intersect, and for

the orbifolds considered here, at all their intersection points one finds complex codimension

three singularities.

The concrete structure of the orbifolds given in equations (3.1) and (3.2) is encoded in

the Hodge numbers, cf. section 2.5, which are summarised in table 2. Each orbifold has

three untwisted Kähler moduli, h1,1
unt = 3, for the untwisted or bulk part. These refer to the

size of each two-torus T 2
(i)

and can be chosen arbitrarily. On the contrary, the untwisted

complex structure moduli h2,1
unt, describing the shape of a two-torus T 2

(i)
, differ for the above
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Hodge numbers of T 6
/(Z2 ×Z2M) orbifolds

T 6/(Z2 ×Z2) with η = +1, root lattice: SU(2)6

Bulk Z(1)
2 Z(2)

2 Z(3)
2 hl,munt + hl,mtw,Z2

h1,1

h2,1

3

3

16

0

16

0

16

0

3 + 48

3 + 0

T 6/(Z2 ×Z2) with η = −1, root lattice: SU(2)6

Bulk Z(1)
2 Z(2)

2 Z(3)
2 hl,munt + hl,mtw,Z2

h1,1

h2,1

3

3

0

16

0

16

0

16

3 + 0

3 + 48

T 6/(Z2 ×Z6) with η = −1, root lattice: SU(2)2 × SU(3)2

Bulk Z(1)
2 Z(2)

2 Z(3)
2 Z3 Z6 ∶ ω, θω, θω2 hl,munt + hl,mtw,Z2

+ hl,mtw,Z3+Z6

h1,1

h2,1

3

1

0

6

0

4

0

4

8

2

0

2

4

0

4

0

3 + 0 + 16

1 + 14 + 4

T 6/(Z2 ×Z′
6) with η = −1, root lattice: SU(3)3

Bulk Z(1)
2 Z(2)

2 Z(3)
2 Z3 Z′

6 ∶ ω, θω, θω2 hl,munt + hl,mtw,Z2
+ hl,mtw,Z3+Z6

h1,1

h2,1

3

0

0

5

0

5

0

5

9

0

1

0

1

0

1

0

3 + 0 + 12

0 + 15 + 0

Table 2: This table is based on [66] and displays the Hodge numbers for the T 6/(Z2 × Z2M)
orbifolds, which are separated into the number of Kähler moduli h1,1 and the number of complex

structure moduli h2,1. A further distinction between the untwisted (also called bulk) und twisted

sectors is made, i.e. h2,1 = h2,1
unt + h

2,1
tw,Z2

+ h2,1
tw,Z3+Z6

, and similarly for h1,1. The complex structure

moduli h2,1 in bold face are relevant for later discussions and the concrete generators for the

twisted sectors can be found in equations (3.3) and (3.4).

orbifolds. While for Z2 × Z2 the three tori can have an arbitrary shape, i.e. h2,1
unt = 3, in

case of Z2 × Z6 or Z2 × Z′
6 two or all three tori, respectively, are due to the additional Z3

symmetry restricted to have hexagonal shape, which means that these complex structure

moduli have now a fixed value.

The twisted moduli appear at the positions of the orbifold fixed points, where curvature
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singularities of codimension two emerge. At these singular points, one can glue in algebraic

objects of zero volume that are called exceptional divisors. If their volume is changed and

differs from zero, e.g. due to a deformation, the corresponding singularity vanishes and

is replaced by a smooth patch. In case that the fixed line supports a twisted complex

structure modulus h2,1
tw , cf. table 2, the singularity can, roughly speaking, be deformed in

its shape. If a twisted Kähler modulus h1,1
tw is apparent, the exceptional divisor at the

singular point can change its size by a so-called blow-up. In section 3.1.3, I will explain the

concept of exceptional cycles on T 6/(Z2 × Z2M) orbifolds, which are basically exceptional

divisors. In this context it will become clear that I am mainly interested in the twisted

complex structure moduli h2,1
tw since these correspond to exceptional three-cycles, while the

twisted Kähler moduli h1,1
tw imply the existence of exceptional two-cycles.

To understand better which twisted moduli exist for the orbifolds given above, I will look

in more detail at the twisted sectors, see equations (3.1) and (3.2). For a combination of

the Z2 generators I obtain the Z(i)
2 twisted sectors, where the label (i) refers to the torus

that stays invariant under the action of equation (3.1),

Z2 ×Z2 ∶ Z(1)
2 ↔ ω , Z(2)

2 ↔ θω , Z(3)
2 ↔ θ . (3.3)

Each Z(i)
2 twisted sector gives rise to 4 × 4 fixed points (αβ) ∈ T 4

(i)
≡ T 2

(j)
× T 2

(k)
with labels

α,β ∈ {1,2,3,4} and (ijk) a permutation of (123), see also figure 1. Table 2 reveals that

both orbifolds T 6/(Z2 × Z2) have the maximal number of 3 × 4 × 4 = 48 twisted moduli at

these fixed points, but the choice of discrete torsion η = ±1 determines if one finds only

twisted Kähler moduli h1,1
tw,Z2

(η = +1) or twisted complex structure moduli h2,1
tw,Z2

(η = −1).

For the orbifolds T 6/(Z2×Z(′)

6 ) with η = −1 the number h2,1
tw,Z2

is reduced due to fixed point

identifications under the additional Z3 symmetry, see the discussion below.

The generators of the orbifold group Z2×Z(′)

6 give rise to more sectors due to the additional

Z3 symmetry on the tori that have hexagonal shape,

Z2 ×Z(′)

6 ∶ Z(1)
2 ↔ ω3 , Z(2)

2 ↔ θω3 , Z(3)
2 ↔ θ ,

Z3 ↔ ω2 ,

Z(′)

6 ↔ ω, θω, θω2 ,

(3.4)

and the 4 × 4 fixed points per Z(i)
2 twisted sector are no longer independent owing to the

Z3 symmetry. Furthermore, there arise twisted moduli for the Z3 and Z(′)

6 twisted sectors,

which are different for the two orbifolds. Since the effect of Z3 is here basically to restrict

the Z2 × Z2 fixed points and their moduli, I will later express the Z2 × Z(′)

6 orbifolds as

(T 6/(Z2 ×Z2)) /Z3, where I take T 6/(Z2 ×Z2) and divide out the symmetry Z3 by hand.
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Orbifold group Z2 ×Z′6: Here the Z3 action has the same effect on all two-tori T 2
(i)

, due

to which all Z2 ×Z2 fixed points are identified in orbits as

T 2
(i) ∶ 1

Z3z→ 1 , 3
Z3z→ 2

Z3z→ 4
Z3z→ 3 (i = 1,2,3) . (3.5)

This implies that the number of complex structure moduli h2,1
tw,Z2

shown in table 2 is reduced.

More concretely, one can observe the following fixed point orbits:

Z2 ×Z′
6 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(21)
(31)
(41)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(12)
(13)
(14)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(22)
(33)
(44)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(23)
(34)
(42)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(24)
(32)
(43)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11) . (3.6)

Except for (11), all fixed points are grouped into triplets such that one finds in total six

orbits per sector, i.e. 3 × 6, where all but the invariant fixed point (11) have a twisted

complex structure modulus assigned (cf. table 2), i.e. h2,1
tw,Z2

= 5 + 5 + 5. The complex

structure moduli of these fixed points will play an important role in the next chapters and

will be used for deformations of the respective orbifold singularities.

In the Z3 twisted sector with generator ω2, there arise 3 × 3 × 3 fixed points, which are

labelled (αβγ) ∈ T 2
(1)

× T 2
(2)

× T 2
(3)

with Z3 fixed points α,β, γ ∈ {1, 2̃, 3̃}. Here, it is the

Z2 × Z2 symmetry of the orbifold that groups the fixed points into orbits since 2̃
Z2↔ 3̃ are

identified, while fixed point 1 stays invariant. These orbits support only twisted Kähler

moduli and will therefore not be discussed in more detail. Also for the Z6 fixed points I

find in table 2 just contributions for h1,1
tw,Z6

, hence I will not carry out a further investigation

on these.

Orbifold group Z2 ×Z6: This orbifold has a similar construction as Z2 × Z′
6, but it is

less symmetric due to the fact that it does not consist of three hexagonal tori, but of one

rectangular (or tilted) and two hexagonal ones. In addition, the Z3 action has different

effects on the two hexagonal tori, namely the two different fixed point orbits look like

Z2 ×Z6 ∶ T 2
(2)

∶ 1
Z3z→ 1 , 3

Z3z→ 2
Z3z→ 4

Z3z→ 3 ,

T 2
(3)

∶ 1
Z3z→ 1 , 3

Z3z→ 4
Z3z→ 2

Z3z→ 3 ,
(3.7)

and one easily sees that the transformation on T 2
(3)

is “backwards” compared to the one on

T 2
(2)

. Thus, one obtains the following fixed point orbits in the different sectors Z(i)
2 , where
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in the first sector Z(1)
2 the invariant torus is the rectangular one:

Z2 ×Z6 ∶

Sector 1 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(21)
(31)
(41)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(12)
(13)
(14)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(33)
(42)
(24)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(22)
(34)
(43)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(44)
(23)
(32)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11) ,

Sector 2 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(21)
(31)
(41)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(22)
(32)
(42)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(23)
(33)
(43)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(24)
(34)
(44)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11) , (12) , (13) , (14) ,

(3.8)

For sector two, the labels for fixed point (αβ) are assigned such that α ∈ T 2
(3)

, β ∈ T 2
(1)

, and

sector 3 is the same as sector 2 with interchanged fixed point labels, i.e. (αβ) ↔ (βα). For

each orbit in sector 1, there exists a twisted complex structure modulus, but for sector 2

(and 3, respectively) only the orbits (2ρ), (3ρ), (4ρ) (ρ = 1,2,3,4) support twisted complex

structure moduli and can be deformed. Hence, I find h2,1
tw,Z2

= 6 + 4 + 4, as displayed in

table 2.

It will turn out in the following chapter that it is often sufficient to study deformations in

the simpler T 4/Z2 orbifold, where only one generator

θp ∶ zi z→ e2πi⋅pvizi with v⃗ = 1

2
(1,−1) (3.9)

remains. The results can then be easily generalized to either T 6/(Z2 × Z2) with discrete

torsion or to the orbifolds T 6/(Z2 ×Z(′)

6 ) (also with η = −1).

3.1.2 Introducing yet another symmetry: orientifolds

If one divides the previously introduced orbifolds furthermore by the action of ΩR, one

obtains so-called orientifolds. The worldsheet parity Ω, which is not to be confused with the

holomorphic volume form Ωn, will be introduced later for physical reasons in the context of

(a priori oriented) string worldsheets. On the other hand, the antiholomorphic involution

R is an additional symmetry of the underlying target space, i.e. of type II string theory

on the orbifold. The antiholomorphic involution obeys the conditions

R(JKähler
1,1 ) = −JKähler

1,1 , R(Ωn) = e2iϕaΩn , (3.10)
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on the Kähler form JKähler
1,1 and on the holomorphic n-form Ωn for complex n-dimensional

manifolds. In the following discussions, the phase ϕa is mostly ϕa = 0 and thus the action

of R is simply complex conjugation, R ∶ zi ↦ zi, on the underlying torus.

It is clear that the torus lattice has to stay invariant when I divide the orbifold by the action

of R, which means that R has to be a lattice automorphism. This severely restricts the

possible shapes of the lattice and there remain only two different choices, namely untilted

(a-type) or tilted (b-type) lattices. The two classes can be distinguished by the Klein

invariant j(τ) that was introduced in equation (2.35). j(τ) ≥ 1 denotes untilted a-type

lattices with a rectangular shape and j(τ) ≤ 1 refers to tilted or b-type lattices with a

fundamental domain in form of a parallelogram.

The value j(τ) = 1 is special because it describes both untilted and tilted lattices and has

the form of a square, which exhibits an additional Z4 symmetry. The two pictures are only

by eπi/4 rotated versions of each other, see figure 1. Also j(τ) = 0 gives rise to an additional

symmetry, which is Z3. This implies that the lattice has a hexagonal shape. In the next

section, I will see that the square torus is for models of a-type lattices the preferred choice

because it simplifies the following calculations a lot. In addition, I will make extensive use

of the hexagonal lattice, which proved to be quite useful in semi-realistic model building

due to its Z3 symmetry.

3.1.3 Subspaces with special properties: cycles

To see how many independent three-cycles one can construct on a certain orbifold, one has

to compute the Betti number b3, which reads for T 6/(Z2 ×Z2M) orbifolds

b3(T 6/(Z2 ×Z2M)) = (2 + 2h2,1
unt) + 2h2,1

tw . (3.11)

The number of bulk cycles is given by the first part 2+2h2,1
unt, and the counting of untwisted

and twisted complex structure moduli h2,1
unt and h2,1

tw can be found in table 2. As results for

the Betti numbers I find

Z2 ×Z2, η = +1 ∶ b3 = 8bulk ,

Z2 ×Z2, η = −1 ∶ b3 = 8bulk + 96tw,Z2 ,

Z2 ×Z6, η = −1 ∶ b3 = 4bulk + 28tw,Z2 + 8tw,Z3+Z6 ,

Z2 ×Z′
6, η = −1 ∶ b3 = 2bulk + 30tw,Z2 .

(3.12)

For the orbifold group Z2 × Z2 without discrete torsion (η = +1), there are no twisted

complex structure moduli, and therefore no exceptional three-cycles on this orbifold, as

already mentioned in section 3.1.1.
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For the T 6/(Z2 × Z2M) orbifolds with discrete torsion I will now define different kinds

of p-cycles on the six-torus or its orbifold, which are p-dimensional closed submanifolds

without a boundary. For the definitions I closely follow [66]. To improve the readability, I

will label all kinds of three-cycles with capital letters, while two- or one-cycles are named

with lower-case letters, where it is always clear from the context which kind of cycle is

used.

An arbitrary torus three-cycle is simply described by the tensor product of the basis one-

cycles π2i−1 and π2i on the torus T 2
(i)

, cf. figure 1, weighted with the wrapping numbers

ni,mi ∈ Z,

Πtorus ∶=
3

⊗
i=1

(niπ2i−1 +miπ2i) . (3.13)

One can also define basis three-cycles on the six-torus by

ΠIJK ∶= πI ⊗ πJ ⊗ πK , (3.14)

where I ∈ {2i− 1,2i}, J ∈ {2j − 1,2j}, K ∈ {2k − 1,2k}. Taking into account that the cycles

do not live on the torus, but on an orbifold thereof, one has to apply the specific orbifold

generators θpωq (cf. equations (3.1) and (3.2)) on the torus cycles and take the sum over

all orbifold images. The resulting objects are called bulk cycles and have the form

Πbulk ∶=
1

∑
p=0

2M−1

∑
q=0

θpωq Πtorus . (3.15)

For all bulk cycles, this definition can be simplified by the observation that these cycles

are mapped onto themselves under the Z2 ×Z2 action and therefore

Πbulk ∶= 4
M−1

∑
q=0

ωq Πtorus , (3.16)

where the labelling with index O6 will become clear in the next section when physical

objects are introduced. To these three-cycles I assign the parameters σi ∈ {0,1} which

determine if the basis one-cycle π2i−1 or π2i runs through the origin, described by σi = 0,

or is displaced by a half lattice vector and has thus parameter σi = 1.

On the positions of the Z2 ×Z2 orbifold fixed points (αβ) ∈ T 2
(i)
×T 2

(j)
≡ T 4

(k)
with the labels

α,β ∈ {1,2,3,4}, see figure 1, and (ijk) = (123 cyclic), which arise due to the orbifold action

Z(k)
2 , there exist so-called exceptional two-cycles e

(k)
αβ . These come from the resolution of the

complex codimension two orbifold singularities and obtain a non-vanishing volume upon

deformations away from the orbifold point. More details on that will be given in the next
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Figure 1: Square torus with underlying untilted (a-type) or tilted (b-type) lattice where both

descriptions are related by a rotation of the coordinate zi ↔ e±iπ/4zi (figure taken from [110]).

The Z2 fixed point with label 1 is always located at the origin of the fundamental domain. The

other fixed points 2,3,4 are assigned counter-clockwise in the left figure, and the same labels are

given to the rotated image on the right hand side. The basis one-cycle π1 in T 2
(1) is throughout

my thesis chosen to lie along the real axis (this setup is also known as A-type lattice, cf. e.g. [66]),

and analogously for the other two-tori, where the basis one-cycles are called π3, π4, and π5, π6,

respectively. It is clear that I use for other untilted (left) or tilted (right) lattices the same

labelling, especially for the hexagonal lattice.

chapter. When the Z2 part of the second orbifold group, i.e. Z(i)
2 or Z(j)

2 , acts on these

exceptional cycles, they receive a sign factor η = ±1

e
(k)
αβ

Z(i)2z→ η e
(k)
αβ , (3.17)

where η is the discrete torsion between the two orbifold actions, as explained around table 2.

Since I will always work with orbifolds of η = −1, the exceptional cycles obtain a negative

sign. Also the torus one-cycles are affected by the second Z2 orbifold group and change as

well their sign,

π2k−1

Z(i)2z→ −π2k−1 , π2k

Z(i)2z→ −π2k . (3.18)

Hence, the combination of an exceptional two-cycle e
(k)
αβ with a torus one-cycle π2k−1 or

π2k makes it possible to construct an exceptional three-cycle that is invariant under the

orbifold,

E
(k)
αβ ∶= 2

M−1

∑
q=0

ωq (e(k)αβ ⊗ π2k−1) , Ẽ
(k)
αβ ∶= 2

M−1

∑
q=0

ωq (e(k)αβ ⊗ π2k) . (3.19)
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The reason for the factor two is that the group Z(i)
2 produces a second image of the basis

one-cycle π2k−1 or π2k. One should note that all exceptional cycles have vanishing volume

unless they are subject to a deformation away from the singular orbifold point.

As explained around equation (3.16), torus cycles that run through the orbifold fixed

points get mapped onto themselves under the orbifold action, and one finds that a bulk

cycle consists of four images of the same torus cycle. A more general cycle is thus obtained

by taking only one such image into account, i.e. one uses a fraction of one quarter, but in

order to close such a bulk cycle one needs to add a suitable choice of exceptional cycles.

These considerations lead for orbifolds Z2 × Z2M with 2M = 2,6,6′ and discrete torsion

η = −1 to the following definition of a fractional cycle,

Πfrac ∶= 1

4
(Πbulk +

3

∑
k=1

ΠZ(k)2 ) , (3.20)

where Πbulk is given by equation (3.16) and the combination of exceptional three-cycles

ΠZ(k)2 works as follows. These cycles are defined on two different fixed points with the

labels α0, α1 ∈ {1,2,3,4} that live on T 2
(i)

and similarly for the torus T 2
(j)

with fixed points

β0, β1. The exceptional three-cycles E
(k)
αβ , Ẽ

(k)
αβ on these fixed points are weighted with the

exceptional wrapping numbers (x̂(k)
αβ , ŷ

(k)
αβ ),

ΠZ(k)2 ∶= ∑
α=α0,α1

∑
β=β0,β1

(x̂(k)
αβE

(k)
αβ + ŷ(k)αβ Ẽ

(k)
αβ ) , (3.21)

where x̂
(k)
αβ and ŷ

(k)
αβ are composed of the torus wrapping numbers (nk,mk) with additional

sign factors, i.e. for Z2 ×Z2

x̂
(k)
α0β0

= ±nk , ŷ
(k)
α0β0

= ±mk ,

x̂
(k)
α1β0

= ±(−1)τ ink , ŷ
(k)
α1β0

= ±(−1)τ imk ,

x̂
(k)
α0β1

= ±(−1)τ jnk , ŷ
(k)
α0β1

= ±(−1)τ jmk ,

x̂
(k)
α1β1

= ±(−1)τ i+τ jnk , ŷ
(k)
α1β1

= ±(−1)τ i+τ jmk .

(3.22)

The signs arise from the Z(k)
2 eigenvalue (−1)τ(k)0 = ±1 (i.e. τ

(k)
0 ∈ {0,1}), which describes

roughly speaking the orientation with which the reference fixed point (α0β0) is encircled,

and from the choice of discrete Wilson lines τ k ∈ {0,1}, which fix the orientation of all other

fixed points with respect to the reference point. Together with the discrete displacements

σk ∈ {0,1} as introduced under equation (3.16), these parameters will play an important

role in the discussion of concrete models. It is clear that bulk and exceptional contributions

of a fractional cycle have to be defined on the same set of fixed points.
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In the simpler picture of a T 4/Z2 orbifold, the above formulas have to be slightly modified.

An obvious change is that the sums and products run only from one to two and there exists

just one generator θ for the orbifold group Z2. In addition, the exceptional cycle consist

only of the exceptional two-cycle, whereas the tensor product with the torus one-cycle

does not appear. In all formulas, the factors of four and 1/4 are replaced by two and 1/2
because there exist only two orbifold images. To make a clear distinction between two-

and one-cycles, the two-cycles have here names with capital letters, for example the cycles

Π, and the one-cycles are again written in lower-case.

When I introduce orientifolds as in section 3.1.2, I also have to consider the effect of the

antiholomorphic involution R on the cycles, with transformation properties given in equa-

tion (3.10). For model building I will consider cycles Πa that are called special Lagrangian

(sLag), as defined in [47]. These have the following properties in terms of the Kähler form

JKähler
1,1 and the holomorphic n-form Ωn,

JKähler
1,1 ∣

Πa
= 0 , (3.23)

Im (eiϕaΩn) ∣Πa = 0 , Re (eiϕaΩn) ∣Πa > 0 , (3.24)

with calibration phase ϕa and where the cycles are restricted to the subspaces Πa. All pre-

viously constructed cycles automatically satisfy equation (3.23), which is called Lagrangian

condition. Equation (3.24) puts further constraints on these cycles in terms of wrapping

numbers and complex structure moduli and is named special Lagrangian condition. It also

determines the calibration of a sLag cycle in terms of the phase ϕa, where the cycle is said

to have calibration Re (Ωn) if ϕa = 0 and is called calibrated with respect to Im (Ωn) in

the case ϕa = π/2.

One can show that in order to obtain N = 1 supersymmetric models, dynamical physical

objects called D6-branes, which are wrapped on the sLag cycles Πa, must be calibrated

with the same phase ϕa as non-dynamical physical objects called O6-planes. More details

on D6-branes and O6-planes will be given in the following section 3.2. Choosing ϕa = 0,

the sLag conditions of equation (3.24) simplify to

Im (Ωn) ∣Πa = 0 , Re (Ωn) ∣Πa > 0 . (3.25)

This can also be expressed in terms of the three angles between a D6a-brane and the

respective real axis in the three tori T 2
(1)

× T 2
(2)

× T 2
(3)

, which have to satisfy

φ1
a + φ2

a + φ3
a = 0 mod 2π ∀a . (3.26)

From the characteristics given in equation (3.24), one can deduce the volume of the sLag

cycle Πa with real calibration, which reads

Vol(Πa) = ∣∫
Πa

Re (eiϕaΩn)∣ . (3.27)
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For a sLag cycles with imaginary calibration, one would have to replace the real with the

imaginary part of the term eiϕaΩn. In chapter 4, equation (3.27) will play a crucial role,

and I will derive the volumes of many different configurations.

It will turn out in the next section that the fixed sets of the antiholomorphic involution R,

which are always sLag cycles, are very important for model building. By a proper definition

of the torus coordinates zi (i = 1,2,3) I can always choose the antiholomorphic involution

to act as complex conjugation R ∶ zi ↦ zi. This implies R(Ωn) = Ωn and therefore the phase

in equations (3.24) and (3.27) is fixed as ϕa = 0, cf. equation (3.10). Cycles of this type are

special in the sense that they can be wrapped by orientifold-planes, which only consist of

a bulk part, but also by cycles which are either pointwise invariant under R or when taken

as a whole, see chapter 5 for concrete examples. On the other hand, sLag cycles Πa that

are not invariant under R have a so-called orientifold image Πa′ = R(Πa). This also has to

be taken into account for the description in homogeneous coordinates x, v, y in chapter 4

and will lead to certain restrictions on the cycles and their deformations.

3.2 String phenomenology of type IIA orientifolds

The basic idea of string theory is that, when going to a much higher spacial resolution (i.e.

to much higher energies), the elementary particles appear not as point-like anymore, but

as closed and/or open oscillating strings. This implies that quantum field theory is only

an effective field theory of an underlying more fundamental theory. Strings have the size

ls = 1/Ms with string scale Ms, where ls is in most models considered to be tiny with Ms

close to the Planck scale (∼ 1019 GeV), but there exist also constructions of much lower

energies, even at the TeV scale.

The oscillation modes of closed and open strings have different characteristics, and each

mode corresponds to a specific particle. The more oscillators of the string are excited, the

heavier the corresponding particle, which implies that there exist in fact infinitely many

particles, known as tower of particles. However, at scales much below the string scale Ms,

only the massless modes are visible, and these are the states that string phenomenologists

are usually interested in. I will explain in the following sections their concrete construction.

One will also see that one of the many nice features of string theory is that gravity is very

naturally included, because all kinds of string theories include in the closed string massless

sector a field with the properties of the graviton. Hence, it is not hard to reduce string

theory to general relativity theory.

One of the most important characteristics of string theory is that it has to be supersym-

metric in order to provide a stable vacuum, i.e. tachyonic fields have to be absent. There
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exist in fact five related classes of supersymmetric string theories, called superstring the-

ories, which all require ten space-time dimensions for being consistent, cf. e.g. [7]. I will

consider here the branch called type IIA string theory, which has a very similar geomet-

rical structure as the type IIB string theory. This means that both incorporate dynamical

physical objects of higher dimensions called D-branes, which I will explain in section 3.2.2.

The use of D-branes makes it possible to construct concrete models of particle physics in

an easy way, the intersecting brane models. More concretely, the geometry works such

that gauge symmetries are obtained by stacks of several identical D-branes, while charged

chiral fermions appear at the intersections of different stacks of D-branes.

As references I used the following recently published introductory textbooks about string

theory, namely the textbooks [9], [8], and [7], as well as the review article [48], unless

differently stated.

3.2.1 Massless closed string particle spectrum

In the following, I will derive the massless field content of closed strings in type IIA/ΩR
orientifolds. Especially the bosonic fields have important relations to the geometry of

orientifold models, and therefore their understanding gives not only a motivation for the

study of specific string backgrounds, but gives also a reference on how my work is related

to (semi-)realistic particle physics models.

Supersymmetric closed strings: A one-dimensional string has a spatial extension that

is parametrised by a parameter σ. Furthermore, the combination (τ, σ) with τ being the

time coordinate gives rise to a two-dimensional string worldsheet, which is mathematic-

ally a Riemann surface, cf. section 2.2.1 with a metric gab(τ, σ), where a, b = 0,1. These

worldsheets are now embedded into the flat ten-dimensional Minkowski space-time by the

functions XM(τ, σ), M = 0, . . . ,9, and therefore it is clear that the concrete structures im-

posed on the worldsheet determine the physics in the ten-dimensional space-time. To get

rid of unphysical degrees of freedom, one uses often the so-called light-cone gauge, which is

not manifestly Lorentz-invariant, on the fields X0(τ, σ), X1(τ, σ), which leaves eight free

massless scalar fields X i(τ, σ) with i = 2, . . . ,9.

The fields X i(τ, σ) can be considered as bosonic fields living on the worldsheet and, if

supersymmetry is assumed, there exists for each free bosonic field X i(τ, σ) a free fermionic

partner ψi(τ, σ). The collection of fields ψi(τ, σ) is a spinor on the worldsheet, but behaves

as a vector under the Lorentz group of the ten-dimensional space-time. Let me emphasize

here that supersymmetry on the worldsheet and supersymmetry in the ten-dimensional
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space-time are two different aspects of the theory that are not necessarily related (but

which is the case for all five superstring theories). To make a clear distinction, the amount

of supersymmetry on the worldsheet is usually denoted by N , while for space-time super-

symmetry one uses generally the letter N .

Both X i(τ, σ) and ψi(τ, σ) can be expressed in terms of decoupled left- and right-moving

sectors, X i
L(τ + σ), ψiL(τ + σ), X i

R(τ − σ), ψiR(τ − σ), and for closed strings of length l one

requires periodic boundary conditions for each sector,

X i
L/R(τ ± (σ + l)) = X i

L/R(τ ± σ)
NS: ψiL/R(τ ± (σ + l)) = −ψiL/R(τ ± σ) ,
R: ψiL/R(τ ± (σ + l)) = ψiL/R(τ ± σ) .

(3.28)

For the fermionic fields, there exist two possible boundary conditions because the ψi
L/R

are

worldsheet spinors and observables in ψi
L/R

appear only quadratically, hence one groups

the left- or right-moving fields either into the Neveu-Schwarz (NS) or the Ramond (R)

sector.

In a next step one writes X i(τ, σ) and ψi(τ, σ) in terms of oscillator expansions with

commutation or anticommutation relations for the bosonic or fermionic oscillator modes,

respectively. The oscillator modes can be separated into creation and annihilation oper-

ators which act on the vacuum, similarly to the quantum harmonic oscillator. As usual,

annihilation operators are defined to annihilate the vacuum, while physical states can be

constructed by application of a certain number of creation operators. The masses of the

resulting particles are determined by the number and type of the creation operators needed

to produce the state.

The construction of physical massless states in the ten-dimensional Minkowski space-time,

which are representations of the little group SO(8), leads then to an 8V vector representa-

tion for the NS sector and a 16-component spinor under SO(8) for the R sector, which can

be reduced to two chiral representations 8C , 8S of opposite chirality. Furthermore, at this

stage there exist tachyons, which are projected out when physical states are constructed.

The infinite tower of massive states, which arises from the application of oscillators on the

vacuum, can be neglected if one assumes that the energy scale under consideration is much

below the string scale Ms = 1/ls, where ls is the length of a string. Typically, one chooses

ls at the order of (or slightly bigger than) the Planck length lP ≈ 10−35m. Note that the

string length ls, which has a dimension, is considered as a length scale, and may thus not be

confused with the dimensionless parameter l of equation (3.28), which is usually l = π,2π
(for open or closed strings, respectively).
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Physical states in flat ten-dimensional space-time: To obtain physical states, one

has to combine one left- and one right-moving sector, where each can be either of NS- or of

R-type, cf. equation (3.28). This gives rise to four sectors: NS-NS, R-R, R-NS and NS-R.

On the gluing of these sectors one has to impose further conditions, which are the level

matching M2
L = M2

R (being automatically fulfilled for massless states) and the so-called

GSO projection that has the nice effect of projecting out the tachyons. In the massless R

sector, one possibility for the GSO projection is to project out 8S in the left and 8C in the

right sector, which is called type IIA string theory. On the other hand, 8S can be removed

in both sectors, which is known as type IIB string theory. Finally, one can write down the

massless closed string spectrum for type IIA string theory, as presented in table 3. The

type IIB spectrum is here of no further importance, but can be found in all introductory

textbooks listed at the beginning of this chapter.

10d N = 2 massless spectrum of the closed string (type IIA)

Sector ∣ ⟩L × ∣ ⟩R SO(8) 10d field

NS-NS 8V ⊗ 8V 1 + 28V + 35V φ, (B2)MN ,GMN

R-R 8C ⊗ 8S 8V + 56V (C1)M , (C3)MNP

R-NS 8C ⊗ 8V 8S + 56S λ(+), ψ
(+)

M

NS-R 8V ⊗ 8S 8C + 56C λ̃(−), ψ̃
(−)

M

Table 3: The table summarises the massless field content in ten-dimensional Minkowski space-

time, obtained from the closed string of type IIA string theory. The first two rows show the

bosonic fields, namely the graviton GMN , the NS-NS two-form (B2)MN , the dilaton φ, the R-R

one-form (C1)M and the R-R three-form (C3)MNP . Furthermore, row three and four contain

the space-time fermions, which are the gravitinos ψ
(+)

M , ψ̃
(−)

M , and the dilatinos λ(+), λ̃(−). One

can arrange all depicted ten-dimenional fields into one supermultiplet, called gravity multiplet

for obvious reasons, and speaks of N = 2 space-time supersymmetry due to the appearance of

two gravitini.

It is possible to interpret the symmetric traceless tensor field GMN of table 3 as graviton,

or equivalently as space-time metric of a curved background. As will become clear in

the next paragraphs, this field is crucial for my discussion in the following chapters. The

three q-forms can be considered as q-form gauge potentials, under which strings or higher-

dimensional objects (i.e. the D6-branes and O6-planes as introduced in section 3.2.2) are

charged. Especially the R-R q-forms C1 and C3 are of major importance for the con-

struction of concrete particle physics models because in the sense of generalised gauge

potentials, they give rise to a very important consistency requirement on the D6-branes

and O6-planes, called R-R tadpole cancellation condition.
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The vacuum expectation value (vev) of the dilaton encodes the information about the string

coupling constant gs = eφ. This is an important quantity in perturbative string theory,

where one can describe scattering amplitudes by integrating over different topologies of

worldsheets (cf. section 2.2.1), leading to well-known Feynman diagrams when going to

the low-energy regime. Since scattering amplitudes are not directly related to my work,

I will not go into more detail, but the interested reader will find a lot of information on

this subject for instance in the text books [9, 24, 25, 39, 40]. The fermions do not play a

significant role here, hence they are mostly omitted in the subsequent considerations.

Compactification of the six-dimensional internal space: In the next step, I sub-

divide the ten-dimensional space-time into four-dimensional Minkoski space-time R1,3 and

an internal compactified space M6 of “curled up” dimensions, generally assumed to be

of tiny size, where the compactified space is mathematically a Calabi-Yau manifold, cf.

section 2.1. This separation is done in order to obtain the four-dimensional field content

and directly translates to the ten-dimensional massless spectrum of the closed string. An

important new feature due to the compactification is the fact that one obtains Kähler and

complex structure moduli from the ten-dimensional graviton GMN , which are scalar fields

that give rise to the moduli space as presented in section 2.6.

4d N = 2 bosonic massless spectrum of the closed string (type IIA)

Gravity mult. h1,1 vector mult.’s h2,1 hypermult.’s Hypermult.

GMN → Gµν Gmn̄ Gmn

(B2)MN → (B2)mn̄ (B2)µν
φ → φ

(C1)M → (C1)µ
(C3)MNK → (C3)µmn̄ (C3)mnk̄ (C3)mnk

Table 4: The first column shows the bosonic fields of the ten-dimensional type IIA string theory

as derived in table 3 with indices M,N,K = 0, . . . ,9. The fields are called graviton G, NS-NS two-

form B2, dilaton φ, R-R one-form C1, and R-R three-form C3. In the other four columns one finds

the decomposition of these fields into the four-dimensional N = 2 supermultiplets with complex

fields depicted in bold face. An index M is decomposed into the components µ = 0,1,2,3 of

four-dimensional Minkowski space-time R1,3, and into holomorphic and antiholomorphic indices

m,m̄ = 1,2,3 of the internal six-dimensional space, which is mathematically a Calabi-Yau manifold

M6.

The field content for type IIA string theory with four-dimensional N = 2 supersymmetry

can be grouped into supermultiplets, where each multiplet contains four bosonic and four
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fermionic degrees of freedom. I will not go into much details for the fermions, as already

mentioned in the last paragraph (for more details consult e.g. [66] or [9]). The derivation

of the four-dimensional bosonic fields from the ten-dimensional ones as well as their com-

bination into supermultiplets is presented in table 4. The number of zero, one or two greek

indices determines if one finds in four-dimensional Minkowski space-time a scalar, a vector,

or a two-tensor, respectively. On the other hand, the latin indices belong to the internal

six-dimensional manifold, as explained below. To summarise, the supermultiplets read as

follows, with complex fields depicted in bold face to facilitate the counting of degrees of

freedom, and with the helicities given in brackets, where ± implies that also the reversed

helicities are added:

� Gravity multiplet (Gµν , ψµ, ψ̃µ, (C1)µ) with (2, 3
2 ,

3
2 ,1)±:

This multiplet contains one graviton, two gravitinos of opposite chirality, and one

graviphoton (i.e. a gauge boson).

� h1,1 vector multiplets ((C3)µmn̄,2 × fermion,Gmn̄,Bmn̄) with (1, 1
2 ,

1
2 ,0)±:

In each vector multiplet, there exist one gauge boson, two gauginos, which are Ma-

jorana fermions, and one complex scalar, which is composed of two real scalars. The

field Gmn̄ is a Kähler modulus and Bmn̄ is its axionic partner.

� h2,1 hypermultiplets (fermion,Gmn, (C3)mnk̄, fermion) with (1
2 ,0,0,−1

2) + h.c.:

Each one of these multiplets contains two complex scalars and two Weyl fermions of

the same chirality. The field Gmn can be interpreted as complex structure modulus

with (C3)mnk̄ being its axionic partner.

� Universal hypermultiplet (fermion,Bµν , φ, (C3)mnk, fermion) with (1
2 ,0,0,−1

2) + h.c.:

Since the field Bµν is dual to a scalar field, one finds two real (pseudo)scalars, which

can be combined into a complex scalar, and a second complex scalar. In addition,

there are two spin 1/2 fields.

For the bosonic q-form fields and the spinors, one can show that both the ten-dimensional

d’Alembertian and the Dirac operator factorise as ◻10d = ◻4d+∆M6 and /D10d = /D4d+ /DM6
,

respectively [8]. In the internal Calabi-Yau manifold, the zero-modes of the Laplacian

operator ∆M6ω = 0, named harmonic forms, correspond to the massless q-form fields. Due

to the Hodge decomposition theorem for a Calabi-Yau manifold [115], a harmonic form is

unique in its equivalence class. Hence, the number of harmonic forms is determined by

the Betti number bq, as given in equation (2.52), which encodes the dimensions of the

cohomology classes Hq(M6,C).
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The Betti numbers of a Calabi-Yau manifold with dimR = 6 can be looked up in table 1,

and for convenience, I rewrite here the relevant ones,

b2(M6) = h1,1 , b3(M6) = h3,0 + h2,1 + h1,2 + h0,3 = 2h2,1 + 2 . (3.29)

Therefore, I construct a basis of (1,1)-forms {ωP}P=1,...,h1,1 and a basis of three-forms

{αQ, βQ}Q=0,1,...,h2,1 , with the property

∫
M6

αQ ∧ βR = δRQ . (3.30)

Note that α0 and β0 are (3,0)- and (0,3)-forms, respectively, while all other forms αK , βK

are (2,1)- and (1,2)-forms, respectively (K = 1, . . . , h2,1). I now relabel the fields of table 4

to obtain a more convenient notation for the next step, where I also use the fact that

via the holomorphic three-form Ω3 of the Calabi-Yau manifold, I can express the complex

structure of the manifold as a (2,1)-form, which can be expanded in a basis of (2,1)-forms

{αK}K=1,...,h2,1 . In addition, greek indices are omitted. Therefore, the bosonic parts of the

above multiplets read

� Gravity multiplet (Gµν ,C1) ,

� h1,1 vector multiplets (AP1 , vP , bP ) ,

� h2,1 hypermultiplets (zK ,CK , C̃K) ,

� Universal hypermultiplet (a,φ,C0, C̃0) ,

where one should note that the Kähler moduli vP are real scalars, while the complex

structure moduli zK are complex scalars. The concrete decompositions of the fields as

q-forms (now understood with respect to the internal manifold, i.e. all q indices belong to

the Calabi-Yau manifold) are given by

JKähler
1,1 ≡

h1,1

∑
P=1

vPωP ,

Ω̃2,1 ≡
h2,1

∑
K=0

zKαK ,

B2 ≡ b2(x) +
h1,1

∑
P=1

bPωP ,

C3 ≡
h1,1

∑
P=1

AP1 (x) ∧ ωP +
h2,1

∑
Q=0

CQ(x)αQ −
h2,1

∑
Q=0

C̃Q(x)βQ ,

(3.31)

where the first two rows (that stem from the parts Gmn̄ and Gmn of the metric) are the

important parts for my own work.
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Orientifolding the internal space: The last step is the subdivision of type IIA string

theory by the orientifold action ΩR, which reduces the amount of supersymmetry from

four-dimensional N = 2 to four-dimensional N = 1. The worldsheet parity Ω exchanges the

left- and right-moving sectors of the string, and therefore the division by Ω gives rise to

unoriented strings. This implies that only states invariant under Ω survive. The action

of the antiholomorphic involution R was already explained in more detail in section 3.1.2

since it is purely geometrical. It satisfies R(JKähler
1,1 ) = −JKähler

1,1 and R(Ω3) = Ω3 on the

Kähler form JKähler
1,1 and on the holomorphic volume form Ω3, cf. equation (3.10). The

effect of R on the cohomology groups is Hr,s(M6,C) ↔ Hs,r(M6,C), and therefore one

can split H1,1(M6,C) into subspaces H1,1
+ (M6,C) and H1,1

− (M6,C) with eigenvalues ±1

and dimensions h1,1
± .

Depending on how harmonic forms react to the orientifold action, one can define a basis

of odd or even (1,1)-forms ωa and ωα, respectively, with a = 1, . . . , h1,1
− , α = 1, . . . , h1,1

+ , and

their dual (2,2)-forms ω̃a and ω̃α by

∫ ωa ∧ ω̃b = δba , ∫ ωα ∧ ω̃β = δβα . (3.32)

One can show that in type IIA string theory the basis of three-forms can be chosen such

that the basis vectors αK are even under the action of R, while the βK are odd. By finding

suitable linear combinations, one can see that the number of complex structure moduli

is reduced by half, leaving h2,1 real scalars. By explicitly applying the action of ΩR, the

q-forms of equation (3.31) reduce to

JKähler
1,1 =

h1,1
−

∑
a=1

vaωa ,

Ω̃2,1 =
h2,1

∑
K=1

zKαK ,

B2 =
h1,1
−

∑
a=1

baωa ,

C3 =
h1,1
+

∑
α=1

Aα1 (x) ∧ ωα +
h2,1

∑
Q=0

CQ(x)αQ ,

(3.33)

and the remaining fields can be grouped into new supermultiplets, as presented in table 5.

To summarise, closed strings propagate in all directions of the ten-dimensional space-time

and contribute to the four-dimensional effective field theory of the T 6/(Z2 × Z2M × ΩR)
orientifolds with 2M = 2,6,6′ and η = −1 (see table 2) the following bosonic fields (omitting

the fermionic superpartners in the enumeration): There are from the untwisted closed string
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4d N = 1 bosonic massless spectrum of the closed string (type IIA/ΩR)

Gravity mult. h1,1
+ vector mult. h1,1

− chiral mult. h2,1 chiral mult. Chiral mult.

Gµν Aα1 va zK φ

ba CK C0

Table 5: In type IIA /ΩR orientifolds, the space-time supersymmetry is reduced to N = 1, and

one finds the depicted bosonic components of supermultiplets with the fermionic parts omitted.

In the gravity multiplet one finds the four-dimensional graviton, in each vector multiplet one

four-dimensional U(1) gauge boson, and in the universal chiral multiplet the dilaton together

with its axionic partner. The other chiral multiplets are here the important parts because they

contain the Kähler moduli vP and the complex structure moduli zK (and their respective axionic

and superpartners).

sector one graviton Gµν , one dilaton φ, which determines the string coupling constant gs,

and zero U(1) gauge bosons Aα1 (cf. appendix D of [66], where the Hodge numbers h1,1
+

and h1,1
− for the T 6/(Z2 × Z2M × ΩR) orientifolds without and with discrete torsion are

summarised). Furthermore, one finds three real Kähler moduli va encoding the size of the

three two-tori (T 2)3 = T 6, and three, one, or zero (untwisted) complex structure moduli zK

for the orbifolds with 2M = 2,6,6′, respectively, which are (on the orientifold) real scalar

fields that correspond to the undetermined shape of some of the two-tori. Note that each

field φ, va, and zK has an axionic partner which complexifies the field, and which is a

pseudoscalar.

Though h1,1
+ = 0 implies that no dynamical fields Aα1 exist, a peculiarity on orbifolds is the

fact that a remainder of the U(1) gauge bosons Aα1 can appear as a constant background

in terms of discrete Wilson lines Wα = exp(i∮γα A
α
1 ), where γα are non-contractible closed

loops around the orbifold fixed points. These discrete Wilson lines appear as factors (−1)τk

with τ k ∈ {0,1} in the fractional cycles, cf. equation (3.22) and the discussion around

equation (3.34). Roughly speaking, the discrete Wilson lines determine the direction with

which orbifold singularities are surrounded by the exceptional cycle, and from the four

Wilson lines on a fractional three-cycle, only two are independent.

3.2.2 Massless open string particle spectrum

When considering open strings, one finds that these have to end on higher-dimensional

dynamical objects, the Dp-branes with one time and p space dimensions, and for reasons

of consistency these come with the non-dynamical Op-planes, as I will explain below.
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Hence, a Dp-brane is defined by the fact that open strings can end on it. At first, I will

introduce the massless field content of the open string in flat ten-dimensional space-time,

before I come to the special properties of compactified orientifold models in type IIA string

theory, especially to the T 6/(Z2 ×Z2M ×ΩR) orientifolds introduced in section 3.1, where

I will wrap D6-branes and O6-planes around three-cycles.

Supersymmetric open strings and Dp-branes: For the supersymmetric open string,

the first steps are similar to the ones presented for the closed string because both have the

same local structure. This means that also an open string is considered as a worldsheet

with bosonic and fermionic fields X i(τ, σ) and ψi(τ, σ) propagating on it, where the fields

can be split into left- and right-moving sectors. The fermions can be further separated into

either NS- or R-type, cf. equation (3.28). Nevertheless, one should note that while a closed

string has length l = 2π, for an open string this is l = π. Performing an expansion into

oscillator modes, one can construct physical states by applying creation operators on the

vacuum and then suitably gluing left- and right-moving sectors at the string end points,

while taking the GSO projection for open strings into account. Again, only the resulting

massless fields are of interest at low energies, and one finds one U(1) gauge boson together

with a spin 1/2 fermion, which combine into a vector supermultiplet if both end points

are located on the same Dp-brane. As for the closed strings, the fermionic fields will be

omitted in the subsequent discussion.

To be somewhat more precise, in the above derivation one has to take into account that

closed and open strings satisfy different boundary conditions. While a closed string has

to obey a periodicity condition, an open string has two end points at σ = 0, l, which are

restricted by either Dirichlet (D) or Neumann (N) boundary conditions. The Dirichlet

condition at an end point a means that the respective coordinate has a constant value and

a cannot move in this direction. Therefore, open strings are confined to lower-dimensional

subspaces of ten-dimensional space-time (the Dirichlet directions), which will prove to be

dynamical objects themselves, the so-called Dp-branes (more details on them will be given

in the next paragraph). On the other hand, the p space and one time dimensions of a

Dp-brane form the p+1 Neumann directions, along which the end point a can move freely.

With respect to a given Dp-brane, one can therefore split the fields X i(τ, σ) into parallel

and transverse directions with

NN: ∂σX
j ∣σ=0,l = 0 with j = 2, . . . , p ,

DD: Xk∣σ=0,l = 0 with k = p + 1, . . . ,9 ,
(3.34)

respectively. Note that the fields are given in light-cone gauge (cf. section 3.2.1), and

therefore the fields with indices j = 0,1 do not contribute. The translational symmetry
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of the vacuum is broken by the presence of a Dp-brane, and therefore the scalars Xk

are Goldstone bosons, which parametrise the position of the Dp-brane by their vacuum

expectation values (vevs). Interestingly, the GSO projection has the effect that in type

IIA string theory only Dp-branes with even p are allowed, while type IIB string theory

contains only odd numbers p. To summarise, the bosonic open field content for a single

Dp-brane consists of a U(1) gauge boson Aµ, propagating in the (p+1)-dimensional volume

of the Dp-brane, and (in the absence of non-trivial compactifications) 9 − p real scalars.

Note that it is also possible that open strings end on two different Dp-branes, which will

be discussed further down. In this case, the boundary conditions N and D can be mixed.

Model building on type IIA orientifolds: From now on, I will assume that the ten-

dimensional space-time splits into R1,3 ×M6, i.e. four-dimensional Minkowski space-time

times a six-dimensional (compact) Calabi-Yau manifold, which is assumed to have tiny size,

as discussed for the closed string in the previous section. In such a setup, one uses Dp-

branes which completely fill R1,3 (where therefore only NN boundary conditions appear)

and which have p−3 dimensions in the internal spaceM6, wrapping (p−3)-cycles, in order

to construct four-dimensional effective field theories. I consider here T 6/(Z2 × Z2M ×ΩR)
orientifolds of type IIA string theory (with 2M = 2,6,6′, cf. section 3.1.1), which are

singular limits of some Calabi-Yau manifold M6. In concrete models, I will only use

D6-branes wrapping three-cycles.

General Dp-branes are not only related to the dynamics of open strings, but also couple to

the massless closed string fields of table 3. In particular, the effective action includes the

Dirac-Born-Infeld (DBI) and the Chern-Simons (CS) terms,

Seff = SDBI[φ, g,B] + SCS[Cq] . (3.35)

SDBI describes the couplings to the closed string NS-NS fields, i.e. the dilaton, the metric,

and the two-form. In particular, the coupling to the metric assigns a positive tension to

a Dp-brane, and also to the open strings [9], which therefore both tend to minimise their

spatial extension. The term SCS contains the couplings to the closed string R-R forms Cq
and thus determines the R-R charge that is assigned to the Dp-brane. This charge can be

obtained in a similar way as in electrodynamics by integrating the part of the volume of the

Dp-brane which is contained in the internal space over the q-form field Cq, which can be

interpreted as generalised gauge potential. For a D6a-brane wrapped on a sLag three-cycle

Πa, one obtains in this way the generalised electric coupling Sel = Q6 ∫Πa C3. Since D6-

branes have a positive tension and therefore a positive contribution to the vacuum energy,

one chooses also the electric charge Q6 to be positive by convention.
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On a compactified internal space, the cancellation of the positive R-R charges of all D6-

branes is necessary in order to satisfy Gauss’ law (since the fluxes cannot “escape” the

space), and also the overall tension has to vanish to preserve supersymmetry. This can

be achieved by introducing O6-planes, which are the fixed sets under the antiholomorphic

involution R, cf. the discussion in section 3.1.3. These O6-planes are objects of negative

R-R charge, and also have negative tension. In fact, the requirement of cancelling all

R-R charges gives rise to the most important consistency condition for the construction

of concrete intersecting D-brane models, which is the so-called R-R tadpole cancellation

condition. The term R-R tadpole is used in analogy to quantum field theory and stands

for uncancelled R-R charges. For type IIA/ΩR orientifolds, which I use as setup in my

thesis, the R-R tadpole cancellation condition reads

∑
a

Na ([Πa] + [Πa′]) − 4 [ΠO6] = 0 , (3.36)

and will indeed be applied in chapter 5, where I present concrete models. The square

brackets stand for the homology classes of the three-cycles which are wrapped by the

D6a-branes, by their images D6a′ under the antiholomorphic involution R, and by the O6-

planes, for which one can show that their charges contribute with a factor of four [48]. The

number Na stands for the number of identical D6a that can be piled up on a cycle Πa.

To be more precise, one finds four O6-planes on the T 6/(Z2 × Z2 × ΩR) orientifolds that

are simply the fixed sets under

ΩR , ΩRZ(1)
2 , ΩRZ(2)

2 , ΩRZ(3)
2 , (3.37)

with the antiholomorphic involution R as defined in equation (3.10) and with the Z2 ×Z2

generators as given in equation (3.3). As already discussed in the last section for the

closed string, the worldsheet parity operator Ω reverses the orientation of the string, which

implies for the open string that the two end points are exchanged. Since the orientifolds

with 2M = 6,6′ have an additional rotational symmetry corresponding to the action of Z3,

there one has to consider also the Z3 orbits of the four O6-planes.

As mentioned above, usually the orientifold planes are assumed to have negative R-R

charge and also negative tension (with contrary assignment ηΩRg = +1, and where the

index g = 1I,Z(1)
2 ,Z(2)

2 ,Z(3)
2 denotes the respective ΩR(Z(i)

2 ) invariance). On the other

hand, the choice of discrete torsion η = −1 and the requirement of worldsheet consistency

imply that I have to choose one of the four O6-plane orbits to be exotic ([71, 66]), i.e.

having positive R-R charge and tension with assignment ηΩRg = −1. This can be written

as

(ηΩR, ηΩRZ(1)2
, η

ΩRZ(2)2
, η

ΩRZ(3)2
) = (−1,1,1,1) (3.38)
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with the underline denoting all possible permutations. To construct the underlying cycle

of the O6-plane one has to take into account that the O6-plane is a non-dynamical object.

Hence, cycles that are identical under the orbifold action are counted only once [66], and

the cycles can be expressed as

ΠO6 ∶=
1

4
Πbulk , (3.39)

with Πbulk defined in equation (3.16).

The massless open string spectrum: For model building purposes, the D6-branes

usually come in stacks of N coincident branes and are wrapped on three-cycles. For an

open string attached to such a stack, the degeneracy for one of the end points is N .

This is the dimension of the fundamental irreducible representation of the gauge group

U(N) = SU(N)×U(1) and is denoted by N+1, where the index for the (here positive) U(1)
charge will be mostly omitted. One can show that a string coming out of a D6-brane is

related by a CPT transformation (i.e. Charge, Parity, and Time reversal) to the part of the

string which goes into the brane, and therefore the conjugate, so-called anti-fundamental,

representation N−1 is applied. Furthermore, assuming that the open string interactions

happen at its end points, one can directly allocate the gauge quantum numbers to the end

points. Hence, an open string with both end points attached to the same D6-brane stack

is described by the tensor product N ×N, i.e. the adjoint of U(N).

For an orbifold with Z2 × Z2 group, the underlying cycle structure for a stack of N D6-

branes is somewhat more complicated, as discussed in section 3.1.3. One can show that a

D6-brane stack wrapped on a fractional cycle Πfrac, as defined in equation (3.20), has gauge

group U(N). In the case of discrete torsion (i.e. η = −1), which I consider in my thesis,

a bulk cycle consists of four fractional cycles (cf. equation (3.20)) and therefore has the

gauge group U(N)4, cf. [71]. However, the four gauge groups U(N)4 can be identified into

only one U(N) gauge group, also referred to as U(N)diag, in the following way. If the four

fractional cycles have Z(i)
2 eigenvalues (+++), (+−−), (−−+), and (−+−), the sum of the first

two fractional cycles gives 1
2 (Πbulk +ΠZ(1)2 ), and two U(N)’s are identified by switching on

a vev of the scalar field in the bifundamental representation, which appears in the spectrum

for this specific pair of fractional cycles. One can proceed similarly for the fractional cycles

with Z(i)
2 eigenvalues (−−+), and (−+−), where ΠZ(1)2 appears now with a negative sign, and

where again two U(N)’s are identified. Summing these two remaining fractional cycles,

the exceptional part ΠZ(1)2 cancels and only the bulk part Πbulk without a prefactor and a

single U(N) gauge group remain. The wrapped D6-brane cannot be shifted in the internal

space because the exceptional cycles are stuck at the orbifold singularities, and if there are

no real scalar fields transforming in the adjoint representation, the underlying fractional

52



three-cycles are so-called rigid cycles [71, 66]. Note that for Z2 ×Z2 orbifolds, all fractional

cycles are automatically rigid. However, this is not always true when an additional Z3

group is apparent because in this case there exist self-interactions of the cycles.

All stacks Na and Nb of D6-branes and their orientifold images D6a′ , D6b′ can intersect in

arbitrary combinations. This gives rise to charged chiral fermions, where the number of

copies depends on the number of intersections in the six-dimensional compact space. This

geometrical fact makes it possible to obtain several generations of particles. The topological

intersection number Iab = [Πa] ○ [Πb] between two three-cycles Πa and Πb, wrapped by

two stacks Na and Nb of D6-branes, as generally defined in equation (2.46), is hence

a very important ingredient for model building. The different representations that one

obtains for open strings stretching between intersecting D6-brane stacks are summarised

in table 6. Since I will not be concerned with the concrete open string particle spectrum

in my later work, I will not give more details here, but the interested reader can consult

for example [66, 71, 48].

4d N = 1 massless chiral open string spectrum of CY3/ΩR

Sector Representation Multiplicity

ab (Na,Nb) Πa ○Πb

ab′ (Na,Nb) Πa ○Πb′

aa′ Antia
1
2 (Πa ○Πa′ +Πa ○ΠO6)

Syma
1
2 (Πa ○Πa′ −Πa ○ΠO6)

Table 6: Massless chiral spectrum of open strings on a complex three-dimensional Calabi-Yau

orientifold CY3/ΩR. The open strings stretch between different kinds of D6-brane stacks ofNa, Nb

coincident D6-branes with representations of the gauge groups U(Na), U(Nb). The multiplicity

refers to the topological intersection number between the D6-brane stacks and determines the

number of copies and chirality of the respective particles.

In case that a stack of Na D6a-branes is invariant under ΩR, the gauge group U(Na) is

enhanced to either SO(2Na) or to USp(2Na). The important point is here that these gauge

groups do not contain a U(1) factor, hence they do not contribute to moduli stabilisation

via Fayet-Iliopoulos terms, which I will explain in the next section. Furthermore, one can

write down the physical gauge coupling, which also depends on the respective gauge group,

4π

g2
Ga

= 1

2kacags

Vol(Πa) +Vol(Πa′)
l3s

, ka =
⎧⎪⎪⎨⎪⎪⎩

1 Ga = U(Na)
2 Ga = USp(2Na) or SO(2Na)

, (3.40)

where gs = eφ is the string coupling constant, which is determined by the dilaton φ, and ls
is the string length. The factor ca is set to ca = 1 for a pure bulk cycle and has the value
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ca = 4 when a fractional three-cycle in the presence of some underlying Z2 × Z2 symmetry

is used. Also the volumes of the three-cycles Πa which are wrapped by the D6a-branes

and their orientifold images Πa′ contribute, which I will compute explicitly in section 4 for

some concrete configurations. At the orbifold point, for all models that were analysed so

far, one finds Vol(Πa) = Vol(Πa′), but I will show that when I deform the three-cycle Πa,

this equality of the volumes will be violated. The reason for that violation is given in the

next section 3.2.3.

3.2.3 Twisted closed strings and moduli stabilisation

For model building on toroidal orientifolds, here on T 6/(Z2×Z2M ×ΩR) with 2M = 2,6,6′,

there exists an additional mechanism which gives rise to massless fields. In the four-

dimensional Minkowski space-time R1,3 only NN boundary conditions appear, as before,

but in the six-dimensional internal space, it can happen that the orbifold action maps the

open string end point σ = l onto the other end point σ = 0. This simply means that the

open string becomes a twisted closed string which forms a loop around one of the orbifold

fixed points,

Zm(τ, σ + l) = θpωq Zm(τ, σ) , (3.41)

where Zm(τ, σ) =X2m+2(τ, σ)+ iX2m+3(τ, σ) (m = 1,2,3) are the now complexified bosonic

fields of the internal space. The orbifold generators θ and ω were already defined in

equation (3.1). As mentioned before, an open string has tension and thus tends to minimise

its volume, which has the effect that all twisted closed strings are shrunk to zero size and

reside at the orbifold singularities.

Since the twisted strings are effectively closed strings, they contribute to the closed string

spectrum for type IIA orientifolds of table 5. For the orientifolds T 6/(Z2×Z2M ×ΩR) with

2M = 2,6,6′, the Hodge numbers are summarised in table 2, from which it is clear that

only for the orbifolds with discrete torsion (η = −1) twisted Hodge numbers of type h2,1
tw

are present. Hence, for η = −1 one finds at the orbifold singularities h2,1
tw twisted complex

structure moduli. Naively, for massless fields the vacuum expectation values (vevs) can be

varied continuously while the scalar potential, which provides the information about the

ground state of the theory, still stays at its minimum. Hence, all these directions are said

to be flat and one finds a continuous space of vacua, called moduli space (see section 2.6),

which is not a desirable fact because in the real world the vacuum should be an isolated

point. Hence, one has to stabilise these moduli in order the eliminate the flat directions.

As discussed in the previous section, if open strings end on the same stack of Na D6a-

branes, this gives rise to a vector multiplet with gauge group U(Na) = SU(Na) × U(1)a.
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When considering these supermultiplets (where I always omit the fermionic content) I did

not mention that in fact, a vector multiplet contains off-shell an additional auxiliary field

D, which is a real scalar field. When these fields are integrated out, they give contributions

(called D-terms) to the scalar potential. The crucial part for my later analysis is the fact

that all auxiliary fields Da that appear in the scalar potential must be zero for unbroken

supersymmetry in the vacuum. On the other hand, a D-term can be shifted by the Fayet-

Iliopoulos parameter Da → Da + ξ. This has the effect that the D-term scalar potential is

modified as

VD = 1

2
∑
a

∣Da∣2 = ∑
a

1

2g2
a

∣∑
k

qka ∣Φk∣2 + ξa∣
2

≥ 0 , (3.42)

and supersymmetry is spontaneously broken if the auxiliary field Da obtains a vev, i.e.

⟨0∣Da ∣0⟩ ≠ 0, which implies VD > 0. The parameters qka are U(1)a charges, and the Φk

are all scalar fields of the theory. Considering the T 6/(Z2 × Z2M × ΩR) orientifolds with

2M = 2,6,6′ and with discrete torsion, for a D6a-brane that is wrapped on a fractional

cycle, the usual open string gives rise to the U(1)a charge, to which the D6a-brane couples.

Furthermore, at the orbifold fixed points appear the h2,1
tw twisted complex structure moduli

zKtw, which can obtain a vev resulting in the Fayet-Iliopoulos parameter ξa.

When D6-branes and O6-planes are wrapping sLag cycles and the R-R tadpole cancellation

condition is satisfied, the configuration is supersymmetric and the scalar potential is zero.

Therefore, in the concrete orientifold setups that I use, one can also write the scalar

potential as

V ∝ (∑
a

Na[Vol(D6a) +Vol(D6a′)] −Vol(O6))
⎧⎪⎪⎨⎪⎪⎩

= 0 if all D6a are sLag

> 0 else
. (3.43)

with Vol(D6a(′)) = ∫Π
a(′)

Re (Ω3) and Vol(O6) = ∫ΠO6
Re (Ω3). In addition, one can calcu-

late [48] that here the Fayet-Iliopoulos parameter is given by the relation

ξa ∝
∫Πa Im (Ω3)
∫Πa Re (Ω3)

, (3.44)

which coincides with the sLag property, see equation (3.24). Therefore, it is quite easy to

determine if supersymmetry is broken, and a mechanism to do this is to change the volume

of one or several exceptional cycles via a complex structure deformation, cf. section 2.6. In

the next chapter 4, I will explicitly perform such complex structure deformations and test

how the volumes of the exceptional cycles change, and in particular if the sLag condition

is preserved or not. In chapter 5, this method will be applied to concrete models, where it

will turn out that indeed, several or (nearly) all twisted complex structure moduli can be

stabilised by Fayet-Iliopoulos terms.
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Before I start with concrete deformations, let me point at the differences between orbifolds

and the deformed versions thereof. At the orbifold point, only (fractions of) bulk cycles

appear, which have the same volume for three-cycles Πa and their orbifold images Πa′ . If

a deformation is switched on, also exceptional cycles contribute with positive or negative

sign, and therefore it is possible to find Vol(Πa) ≠ Vol(Πa′). The big advantage of an

orbifold is the fact that one can apply the powerful tools of conformal field theory (CFT),

see e.g. [122–126] for an introduction, or the more specific article [127] about CFT on

orbifolds. This makes it possible to compute not only the massless particle spectrum,

but the whole tower of modes. In addition, CFT techniques can be used to calculate for

example string scattering amplitudes or gauge thresholds. In fact, one can in principle

also apply CFT to the deformed orbifolds, where the physical quantities now obtain non-

vanishing expectation values. Since the gauge thresholds are directly related to the one-

loop corrections to gauge couplings at the orbifold point, which depend on the volumes

of the cycles, it will be interesting to analyse in the future how these quantities feel the

deformation.
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4 Lagrangian Cycles and Deformations

In this chapter I will describe the orbifolds and orientifolds that were introduced in sec-

tions 3.1.1 and 3.1.2 as hypersurfaces in a projective space, see section 2.3.2 for the math-

ematical basics, and translate also the cycles that were constructed in section 3.1.3 into

this language. I start with one-dimensional cycles on the elliptic curve which have the

Lagrangian property, cf. equation (3.23), and combine them to two- or three-dimensional

cycles on T 4 or T 6, respectively. For these cycles I will analyse the effects of deforma-

tions of the orbifold singularities and study the changes in their volumes. In fact, the

general idea of using hypersurfaces to perform blow-ups (deformations) in this description

is widely known in the mathematical literature, see e.g. [36]. However, the sketch of Vafa

and Witten [108] on how to apply this idea to orientifolds in the context of string theory

was completely new and has, besides by me and my collaborators [109, 110], to my best

knowledge not been worked out for the models that I consider here.

4.1 Lagrangian one-cycles on the torus in hypersurface language

In a first step I study how the torus lattice behaves under the map from the complex

coordinate z to the homogeneous coordinates x, v, y ∈ C on the elliptic curve. As discussed

in section 2.3, this map is provided by the Weierstrass function ℘(z), cf. figures 2 and 3,

with the identifications ℘(z) = x/v and ℘′(z) = y/v2.

In section 3.1.2 I pointed out that there remain two possible choices of orientation for

the torus lattice when the antiholomorphic involution R is taken into account. The fixed

points in such a torus lattice were labelled α = 1,2,3,4 and via ℘(z) = x
v I assign to each

fixed point a complex value x
v = εα, where always ε1 = ∞ and which have to satisfy the

condition ε2 + ε3 + ε4 = 0, see section 2.3 for details. For the different types of lattices I find

the following restrictions on the εα:

(a) j(τ) ≥ 1: For these untilted or a-type lattices the parameters εα are real numbers,

which I order as ε4 < ε3 < ε2.

(b) j(τ) ≤ 1: The tilted or b-type lattices have two complex and one real parameter εα,

which I label ε2 = ε4 =∶ ε ≡ εR + iεI and ε3 = −2εR.

The case j(τ) = 1 is special because it can describe both types of lattices, and also j(τ) = 0

has additional features. For these particular configurations the complex structure is fixed

and thus only one of the parameters εα can be chosen freely:
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1

2

3
44

2

3
1

Figure 2: Real and imaginary part of the Weierstrass function ℘(z) on the square torus lattice

of a-type, where the (s)Lag line aIII (depicted in blue) is specified in table 7a. Moreover, the

Z2 fixed points that one would find on a T 2/Z2 orbifold are indicated. This figure gives the

translation z ↔ (x, v, y) for the identifications ℘(z) = x/v and ℘′(z) = y/v2. The lines with

Re (℘(z)) = 0 are the diagonal lines (left image), while one finds for Im (℘(z)) = 0 the horizontal

and vertical lines through the origin and the ones shifted by half lattice vectors (right image), i.e.

the cycles aX with X = I, II, III, IV of table 7a take only real values.

� j(τ) = 1: This choice represents a square torus and can be seen either as a- or b-type,

depending on the description. Here one finds ε3 = 0, −ε4 = ε2, and I will always work

with ε4 = −1, ε3 = 0, ε2 = 1. For a pictorial view see figure 2.

� j(τ) = 0: In this case one obtains a hexagonal lattice as depicted in figure 3 and the

parameters εα obey the Z3 symmetry, thus I will choose ε3 = ξ0, ε2 = ξ1, ε4 = ξ2 with

ξ ≡ e2πi/3.

Similar to the (s)Lag cycles defined in equation (3.23), which come into play with the

antiholomorphic involution R of the orientifold, I want to find (s)Lag lines on the elliptic

curve in coordinates x, v, y. Unfortunately, the translation turns out to be complicated for

general cases and therefore I consider only the small number of (s)Lag lines that can be

described by an antilinear, meaning antiholomorphic and linear, map σ (not to be confused

with the discrete displacements σk ∈ {0,1} of section 3.1.3) as

σ ∶
⎛
⎜
⎝
x

v

⎞
⎟
⎠
z→ A

⎛
⎜
⎝
x

v

⎞
⎟
⎠
, y z→ ±eiβy . (4.1)
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Figure 3: Real and imaginary part of the Weierstrass function ℘(z) imposed on the hexagonal

lattice with the border of the fundamental domain indicated by bold black lines, where the Z2

fixed points and the (s)Lag line bII (bold red vertical lines) are illustrated. One can see in the

right figure the lines of Im (℘(z)) = 0 that are the horizontal and vertical white lines (the ones

through the origin and the vertical line shifted by the half lattice vector ζ1), which coincide with

the (s)Lag lines bI and bII (bold, red), respectively. The lines with property Re (℘(z)) = 0 are

not straight lines on the torus (left figure).

The matrix A is an element of GL2(C) and may contain an additional complex phase. The

meaning of the two signs for the coordinate y is that each cycle consists actually of two

components, which will be explained in more detail further down. For the phase one finds

normally β = 0, except for square and hexagonal lattices where different values appear

due to the enhanced rotational symmetry. When I impose on σ the following further

restrictions, I can turn it into an antiholomorphic involution which I call σR,

AA = 1I ,

σR(F (x, v)) = e−2iβF (x, v) .
(4.2)

On the elliptic curve, the action of σR plays a similar role to R on the orientifold lattice.

The (s)Lag lines that can be realised in this way are listed in table 7 for the untilted lattice

and in table 8 for the tilted one. The cycles aX and bX (X = I, II, III, IV) are fractional

cycles, as defined in equation (3.20) on the torus, and cannot be moved away from their

position. Nevertheless, when the bulk part is considered separately, it can be shifted away

from the fixed points and be expressed by another bulk cycle of the same homology class,

see section 2.5. The cycles cX (X = I, II) do not run through the fixed points and are thus

pure bulk cycles, cf. equation (3.15) for the description on the torus. They can be always

moved in their position as long as they stay in the same homology class.

The labelling of all cycles aX, bX, cX is chosen in such a way that the number X directly
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(s)Lag lines on the a-type lattice

Label View on T 2 Map ℘(z) ≡ x
v

aI ε2 ≤ (x
v
) ≤ +∞

aII −∞ ≤ (x
v
) ≤ ε4

aIII ε4 ≤ (x
v
) ≤ ε3

aIV ε3 ≤ (x
v
) ≤ ε2

(a) (s)Lag lines crossing two Z2 fixed points.

(s)Lag lines on the a-type lattice

Label View on T 2 Map ℘(z) ≡ x
v

cI ∣x
v − ε4∣

2 = 2ε24 + ε2ε3

cII ∣x
v − ε2∣

2 = 2ε22 + ε4ε3
(b) (s)Lag lines which do not intersect any of the Z2

fixed points.

Table 7: Linearly realised Lag lines on the untilted elliptic curve as defined in equations (4.1)

and (4.2). The column in the middle indicates the position on the torus lattice T 2, cf. figure 2 for

the square lattice. On the right hand side I list the equations that are obtained by the Weierstrass

map ℘(z) ≡ x
v , and the resulting lines are depicted in figures 4(a) and 5(a) for the chart v ≡ 1.

shows the calibration, see the discussion under equation (3.24), which means that the

cycle is sLag with calibration

⎧⎪⎪⎨⎪⎪⎩

Re (Ω1) if X = odd

Im (Ω1) if X = even
(for aX, bX, cX) . (4.3)

More concretely, ‘real calibration’ simply means that the holomorphic one-form defined as

Ω1 ∶= dz = d℘
℘′ =

v ⋅ dx − x ⋅ dv
y

v≡1= dx

y
(4.4)

has real values, while for calibration Im (Ω1) it has purely imaginary values. For the

cycles aX and bX the labels indicate furthermore the discrete displacements σ ∈ {0,1}, cf.

section 3.1.3,

σ =
⎧⎪⎪⎨⎪⎪⎩

0 if X = I, II

1 if X = III, IV
(for aX, bX) , (4.5)

where σ = 0 denotes undisplaced and σ = 1 displaced from the origin.

For a square torus, figures 5(a) and 6 depict not only the universally existent cycles for

any rectangular torus, but also the additional (s)Lag lines and the enhanced symmetry.

Figure 6 shows that the square torus can be described either in the a- or b-type picture,

which differ only by a rotation of x
v ↦ e−iβ xv with β = ±π/2. According to equation (4.1),

this leaves the two components y ↦ ±iy. On the a-type lattice, one finds not only the
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(s)Lag lines of b-type lattice

Label View in T 2 Map ℘(z) ≡ x
v

bI ε3 ≤ (x
v
) ≤ +∞

bII −∞ ≤ (x
v
) ≤ ε3

bIII
∣x
v − ε3∣

2 = 2ε23 + ε2ε4
Re (xv ) ≥ εR

bIV
∣x
v − ε3∣

2 = 2ε23 + ε2ε4
Re (xv ) ≤ εR

Table 8: The linearly realised Lag lines on the tilted elliptic curve are labelled bX referring to

the b-type lattice, and no cycles cX arise. The table is structured in the same way as table 7,

and the Weierstrass function on the hexagonal lattice can be found in figure 3. The pictorial

view for the equations in column three is given in figures 4(b) and 5(b) for the chart v ≡ 1, where

figures 4(b) is tilted in general, while figure 5(b) is the special hexagonal case.

(s)Lag lines of the square and hexagonal lattice

Square a-type Square b-type Hexagonal

Cycles

aX

cX

bX∗

aX∗

cX∗

bX

bX0 ≡ bX

bX+

bX−

x
v ↦ e−iβ xv bX∗ ∶ β = +π2 aX∗,cX∗ ∶ β = −π2 bX± ∶ β = ±2π

3

Table 9: All linearly realised (s)Lag lines for square and hexagonal tori, which are a combination

of the (s)Lag lines given in tables 7 and 8. For all cycles with an upper index, I have to multiply

the coordinates x
v of the original cycles with an additional phase as indicated in the last row.

(s)Lag cycles aX and cX, but also the additional lines bX∗, which are constructed as in

the b-type lattice, but with an additional phase. In the b-type description the approach is

similar, but now the cycles aX∗ and cX∗ appear, which come with a phase. The details of

the cycles and their replacements are summarised in table 9. There can be found also the

(s)Lag lines bX0, bX+, bX− for the hexagonal torus, where the lines bX0 are the cycles

bX of table 8, and bX+, bX− are by ξ±1 x
v rotated versions thereof, see also figure 5(b) for

the illustration.
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e2 
e4 e3 

Im x 

Re x

aIV aIaIIIaII

(a) For the untilted torus the cycles aX lie on the real

x-axis, starting and ending at the fixed points εα. The

line cI is a circle around ε4 and ε3, centred in ε4 (re-

place 4 ↔ 2 for the description of cII). Furthermore,

cI and cII intersect twice at Re (x) = ε3.

e2

e4

e3 = 2 eR- eR

i eI

-i eI

bIII

bIV

bII bI

Im x

Re x

(b) Tilted torus, where the (s)Lag lines bX are

apparent. Only bI and bII lie on the real axis,

while bIII and bIV form an arch of a circle

around ε3 with end points ε2 and ε4.

Figure 4: (s)Lag lines of tables 7 and 8, projected onto the complex x-plane and for the chart

v ≡ 1.

As mentioned below equation (4.1), each cycle consists actually of two components with

different sign +y or −y, which are projected onto the same curve in figures 4 to 6 and are

therefore indistinguishable in this representation. It is important to distinguish between

fractional and pure bulk cycles because their components exhibit a remarkable difference.

Looking at the Weierstrass function on the torus lattice (figures 2 and 3), one can see that

a fractional cycle runs from one fixed point to another one, and then back to the first fixed

point, where all fixed points have the property y = 0. On the first segment of the path

one finds ±y, and opposite sign ∓y on the second part. Therefore, in coordinates x, y (and

chart v ≡ 1) the described curve is closed and has the topology of an S1.

On the other hand, pure bulk cycles do not run through the fixed points with y = 0, which

implies that they consist of two disconnected components +y and −y. Following the path of

a bulk cycle on the Weierstrass function (figures 2 and 3), e.g. for the cycle cI of table 7b,

one finds that already the upper part of cI forms the left circle depicted in diagram 4(a),

which has negative sign for y. For the lower component one obtains in figure 4(a) the same

circle, but here with property +y.

Considering pure bulk cycles, it is useful to think in terms of homology. This will become

important in later sections, where in some cases it will be too hard to integrate over the
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e2 = eRe4 = -eR e3 = 0

bIII

bIV

bII

bI

Im x

Re xaIV aIaIIIaII

(a) One finds on the square a-type lattice all three

types of cycles, namely aX, bX, cX, cf. figures 4(a)

and 4(b), respectively, where the left and right circle

correspond to the lines cI and cII, respectively. The

lines that are inherited from the b-type lattice of fig-

ure 4(b) are by −π/4 rotated.

e3 = 1

e4

e2

bI-

Re x

Im x

bII0
bIII0

bI0

bIV0

bIV+ bII-bI+

bIII-

bIV-

bII+

bIII+

(b) On the hexagonal lattice, one easily sees

the enhanced symmetry, which is Z3, com-

pared to figure 4(b). Therefore the fixed

points are at ε3 = ξ0, ε2 = ξ1 and ε4 = ξ−1
(with ξ ≡ e2πi/3), and besides bX0 ≡ bX the

additional (s)Lag lines bX+, bX− appear.

Figure 5: All (s)Lag lines on the square a-type lattice (left figure) and on the hexagonal lattice

(right figure), depicted in the complex x-plane (in the chart v ≡ 1).

desired fractional cycles directly. Therefore, I will, loosely speaking, move the bulk part

away from the deformed fixed points and integrate over another bulk cycle of the same

homology class, combined with an integration purely over the exceptional contributions.

Since bulk cycles in the same homology class should ideally have identical volume, one

has to analyse beforehand what a suitable choice for the bulk cycle is in order to keep

unwanted effects of the deformation small upon integration.

Shifts by half lattice vectors The symmetry of the torus lattice with respect to shifts

by the half lattice vectors ζ1, ζ2, ζ3 will become quite important in the chapter about

concrete deformations. If an exceptional cycle at a certain fixed point of the orbifold is

deformed and develops a non-vanishing volume, it is described by a relation in the homo-

geneous coordinates. Depending on the position on the torus lattice, the description of the

exceptional cycle may be relatively easy (i.e. real-valued equations) or quite complicated.

By shifting a fixed point in a proper way to another one it will be possible to find explicit

expressions for most of the deformed exceptional cycles in the following sections.

I begin with recalling the addition theorem for the Weierstrass ℘-function on the torus
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(a) Representation on the a-type lattice.

e2 = i eI

e4 = -i eI

e3 = 0

bIII bIV

bII bI

Im x

Re x

aIV

aI

aIII

aII

(b) Description on the b-type lattice.

Figure 6: The (s)Lag lines of square tori can be described in the picture of either an untilted or

a tilted torus, which are identical if the complex coordinates x (chart v ≡ 1) are rotated by ±π/2.

For reasons of readability, the cycles cX are omitted (cf. figure 4(a)).

lattice given in section 2.3.1,

℘(z1 + z2) =
1

4
{℘

′(z1) − ℘′(z2)
℘(z1) − ℘(z2)

}
2

− ℘(z1) − ℘(z2) , (4.6)

which sums the coordinates z1 and z2 up. Inserting zi ∈ {0, ζ1, ζ2, ζ3}, I can shift the

fixed point at position z1 to the fixed point at z1 + z2, cf. figure 7. With the known

identifications ℘(z) ≡ x
v , ℘′(z) ≡ y

v2 , equation (4.6) translates to the shift transformations

λα on the coordinates x, v, y,

λα ∶
⎛
⎜
⎝
x

v

⎞
⎟
⎠
z→ λα ⋅

⎛
⎜
⎝
x

v

⎞
⎟
⎠
≡ 1√

2ε2α + εβεγ

⎛
⎜
⎝
εα ε2α + εβεγ
1 −εα

⎞
⎟
⎠

⎛
⎜
⎝
x

v

⎞
⎟
⎠
, y z→ y . (4.7)

If one inserts the fixed point x = εαv, it is shifted to the fixed point at the origin with

v = 0, or vice versa, and fixed point x = εβv is moved to x = εγv, where α ≠ β ≠ γ. These

transformations have the following properties,

λαλα = 1I , λαλβλγ =
⎧⎪⎪⎨⎪⎪⎩

+i1I if (αβγ) = (234 cyclic)
−i1I if (αβγ) = (234 anti-cyclic)

, (4.8)

and under complex conjugation I find

λα = λα (untilted) or λ4 = λ2, λ3 = λ3 (tilted) , (4.9)

64



where it is important to distinguish between an untilted or tilted torus lattice.

Restricted to a square torus with ε2 = 1, ε3 = 0 and ε4 = −1, I obtain the following trans-

formations,

λ2 =
1√
2

⎛
⎜
⎝

1 1

1 −1

⎞
⎟
⎠
, λ3 = −i

⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠
, λ4 =

1√
2

⎛
⎜
⎝
−1 1

1 1

⎞
⎟
⎠
, (4.10)

and for a hexagonal lattice the shifts are

λ2 =
ξ2

√
3

⎛
⎜
⎝
ξ 2ξ2

1 −ξ

⎞
⎟
⎠
, λ3 =

1√
3

⎛
⎜
⎝

1 2

1 −1

⎞
⎟
⎠
, λ4 =

ξ√
3

⎛
⎜
⎝
ξ2 2ξ

1 −ξ2

⎞
⎟
⎠
, (4.11)

where the fixed points have the values ε2 = ξ, ε3 = 1 and ε4 = ξ2 with ξ ≡ e2πi/3.

1

24

3
1

  4 =  2

24

3

4

2

2

3

4 

  


  3 =  3 

Figure 7: The figures show exemplarily on a tilted torus lattice how the shift transformations λα
act on the four Z2 fixed points. The left image illustrates that the shift λα moves fixed point 1

to fixed point α, which works analogously for an untilted torus. In the right figure one can see

the effect of complex conjugation on the transformations, which is λ4 = λ2, λ3 = λ3. In contrast,

for untilted tori always λα = λα holds.

For later calculations, it is important to find out how the transformation λα acts on the

polynomial F (x, v), defined in equation (2.39). I observe that the polynomial has degree

four, which means that I find in each term a contribution

xa ⋅ v4−a = (x
v
)
a

⋅ v4 ⇒ F (x, v) = F (x
v
,1) ⋅ v4 . (4.12)

To perform a shift λα(F (x, v)), I write with a slight abuse of notation λα (x
v
). This means

that I use from equation (4.7) the projection onto the first component, which is x, and

divide it by the projection on the second component v, hence

λα (x
v
) = εαx + (ε2α + εβεγ)v

x − εαv
, (4.13)
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where the indices (αβγ) are a permutation of (234). The shift of the function F (x, v) can

then be expressed as

λα(F (x, v)) = F (λα (x
v
)) ⋅ (λα(v))4 = F (λα (x

v
)) ⋅ (x − εαv)4

(2ε2α + εβεγ)2
, (4.14)

which can be restricted to the chart v ≡ 1 very easily. This will be quite important in the

following chapters since I will work most of the time in this chart.

For a torus lattice of square shape, equation (4.13) reads

λ2 (
x

v
) = x + v

x − v , λ3 (
x

v
) = −v

x
, λ4 (

x

v
) = −x + v

x + v , (4.15)

and for a hexagonal one, I find

λα (x
v
) = ξ

−αx + 2ξαv

x − ξ−αv , α = 2,3,4 . (4.16)

To summarise, I will use the following specific shift transformations of equation (4.14) in

the subsequent chapters, which are

λ2 (F (x
v
) ⋅ v4) = F (x + v

x − v) ⋅
(x − v)4

4
,

λ3 (F (x
v
) ⋅ v4) = F (−v

x
) ⋅ x4 ,

λ4 (F (x
v
) ⋅ v4) = F (−x + v

x + v ) ⋅ (x + v)
4

4

(4.17)

for the square torus and

λ2 (F (x
v
) ⋅ v4) = F (ξx + 2ξ2v

x − ξv ) ⋅ (x − ξv)
4

9ξ
,

λ3 (F (x
v
) ⋅ v4) = F (x + 2v

x − v ) ⋅ (x − v)
4

9
,

λ4 (F (x
v
) ⋅ v4) = F (ξ

2x + 2ξv

x − ξ2v
) ⋅ (x − ξ

2v)4

9ξ2
,

(4.18)

for the hexagonal torus lattice. Later, I will also insert modified polynomials δFα(xv )
instead of F (xv ) into these transformation functions. Since for all phenomenologically

interesting cases I can consider horizontal branes, it is sufficient to consider only square

tori instead of rectangular ones, for which the shifts could be easily generalised.
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4.2 Lagrangians on local deformations: C2
/Z2 and C3

/(Z2 ×Z2)

As a first step to understand how deformations as sketched in [108] work, I will explain

the procedure in the simpler setup of local deformations, which was also shortly discussed

by the authors of this article. As examples, I consider here the deformation of a C2/Z2

singularity and then the case of C3/(Z2 × Z2), where it is important to note that these

spaces are not compact. One should also keep in mind that in string theory one only

finds deformation moduli that are associated to codimension two singularities. These

completely restrict the parameters of codimension three singularities that can show up

as conifold singularities. These characteristics will govern the following discussion about

deformations.

4.2.1 Deformation of a C2
/Z2 singularity

Take z1, z2 as coordinates of the complex space C2 and let Z2 act as (z1, z2) ↦ (−z1,−z2),
where the Z2 generator reads v⃗ = 1

2(1,−1). A basis of invariant polynomials is then given

by the equations y ∶= z1z2 and xi ∶= z2
i with i = 1,2. Their composition into one relation

provides the hypersurface description of the quotient space C2/Z2, i.e.

C2/Z2 = {f ≡ −y2 + x1x2 = 0} ⊂ C3 . (4.19)

The solutions of f = df = 0 reveal the singularities of the hypersurface, and a short look at

the total derivative

df = −2y dy + x2 dx1 + x1 dx2 (4.20)

makes clear that df = 0 is only fulfilled if y = 0 and x1 = x2 = 0, which implies that there

is one singularity at the origin (z1, z2) = (0,0). To deform the singularity, I add a complex

deformation parameter ε to the hypersurface equation,

Def(C2/Z2) = {f ≡ −y2 + x1x2 − ε = 0} ⊂ C3 . (4.21)

For ε ≠ 0, I obtain in this way a smooth space since f = df = 0 has no longer a solution.

Note that deformation terms linear in y and x do not contribute because they disappear

if one redefines the coordinates in a suitable way.

The framework of a local patch makes it possible to rotate the coordinates such that I

can always choose a real deformation parameter, which implies that there are two possible

scenarios for either positive or negative ε. Only the following restrictions give rise to the

hypersurface equation of a sphere,

ε > 0 ∶ e+ = {y ∈ iR, x1 = x2} ⇒ Im (y)2 + ∣x1∣2 = ε , (4.22)
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Exceptional sLag cycles of C2
/Z2

Cycle Position ε Conditions on f Calibration ΩR transf.

e+ (0,0) + y2 ≤ 0, x1 = x2 Re (Ω2) even

e− (0,0) − y2 ≥ 0, x1 = −x2 Im (Ω2) odd

Table 10: Specifications of the exceptional sLag cycles of C2/Z2 which appear due to a deformation

of the singularity at the origin. The last column states if the respective cycle is even or odd under

the orientifold involution ΩR.

ε < 0 ∶ e− = {y ∈ R, x1 = −x2} ⇒ Re (y)2 + ∣x1∣2 = −ε , (4.23)

while all other solutions that satisfy the condition σR(f) = f of the antiholomorphic in-

volution describe hyperboloids or cones, which are not compact surfaces and therefore

uninteresting for the following analysis of compact manifolds. For y = 0, the spheres e±

shrink to zero size, and one recovers the singular orbifold limit. A short computation,

where I insert the condition x1 = ±x2 into the Kähler form, shows that e± are Lag cycles

because the Kähler form vanishes on them,

JKähler
1,1 ∣

e±
= 0 . (4.24)

I define the holomorphic two-form with a reasonable similarity to the holomorphic one-form

of the elliptic curve, equation (2.40), as

Ω2 =
dx1 ∧ dx2

4y(x1, x2, ε)
ε→0ÐÐ→ dz1 ∧ dz2 , (4.25)

where I insert for y equation (4.21) solved for y(x1, x2, ε). Thus, Ω2 can only be traced

back to the usual definition at the right side if no deformation is switched on, i.e. ε = 0. An

explicit computation shows that Im (Ω2)∣e+ = 0, i.e. e+ is sLag with calibration Re (Ω2),
while Re (Ω2)∣e− = 0 and thus e− is calibrated with respect to Im (Ω2). The specifications

of the cycles e± are summarised in table 10.

Integrating Re (Ω2) over the exceptional cycle e+,

Vol(e+) = ∫
e±

Re (Ω2) , (4.26)

reveals that the volume of e+ is 2π
√
ε, as depicted in figure 8. Similarly, one can insert

the relation x1 = −x2 into the hypersurface equation (4.21) and study the exceptional cycle

e−. As expected, in this case the plots in figure 8 have reversed sign for the deformation

parameter and hence, on finds the same images, but in the reversed ε-direction.
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(a) The surface of the singular locus,

i.e. equation (4.21) with y2 = 0,

shows that only for a positive deform-

ation parameter ε > 0 an exceptional

contribution of non-vanishing volume

arises.

0.2 0.4 0.6 0.8 1.0
ε

2

4

6

8

10

12

∫Re[Ω2]

(b) The volume of the exceptional cycle e+ shows a

square-root like behaviour, which will be the char-

acteristic shape to determine in later scenarios if a

deformed cycle has an exceptional contribution.

Figure 8: On the exceptional cycle e+, i.e. if the condition x1 = x2 with x1 = a+ ib is inserted into

the hypersurface equation (4.21), one can study explicitly the behaviour under deformations.

4.2.2 Deformation of a C3
/(Z2 ×Z2) singularity

The hypersurface equation for C3/(Z2×Z2), which has the Z2×Z2 generators v⃗ = 1
2(1,−1,0)

and w⃗ = 1
2(0,1,−1), can be constructed with a similar course of action as for C2/Z2. The

coordinates z1, z2, z3 of C3 obey the relations xi = z2
i with i = 1,2,3 and y = z1z2z3, which

are, as above, a basis of Z2 ×Z2 invariant polynomials. Their combination leads to

C3/(Z2 ×Z2) = {f ≡ −y2 + x1x2x3 = 0} ⊂ C4 (4.27)

with

df = −2y dy + x2x3 dx1 + x1x3 dx2 + x1x2 dx3 , (4.28)

and one easily sees that the three lines {y = 0, xi = xj = 0 ∣i ≠ j} form the singular locus

thus satisfying f = df = 0, cf. figure 9(a). The deformed hypersurface can be obtained by

including lower order terms with parameters ε1, ε2, ε3,

Def(C3/(Z2 ×Z2)) = {f ≡ −y2 + x1x2x3 − ε1x1 − ε2x2 − ε3x3 + 2
√
ε1ε2ε3 = 0} ⊂ C4 , (4.29)

where, similar to the deformation of C2/Z2, no deformation terms linear in y or xixj
appear due to a proper choice of coordinates. Following the reasoning in [108], I chose

69



the constant term as 2
√
ε1ε2ε3 because in string theory one finds only three deformation

parameters, and all deformations leave a conifold singularity of codimension three. The

conifold of equation (4.29) resides at the coordinates xi =
√
ε1ε2ε3/εi. The total derivative

of equation (4.29) is

df = −2y dy + (x2x3 − ε1)dx1 + (x1x3 − ε2)dx2 + (x1x2 − ε3)dx3 , (4.30)

and there exist several possibilities to deform the singular loci.

(a) Undeformed hypersurface with εi = 0,

where three singular lines that run through

the origin are apparent.

(b) Deformation with ε1 = ε2 = 0, ε3 = 0.5.

The singular line {y = 0, x1 = x2 = 0}
vanishes, and the other two singular lines

merge to form a hyperbola, described by

x1x2 = ε3 at x3 = 0.

Figure 9: Solutions of y2(x1, x2, x3) = 0 of the space C3/(Z2 × Z2), which form singular lines,

projected on the real values of the coordinates x1, x2, x3.

For only one deformation, e.g. ε1 = ε2 = 0, ε3 ≠ 0, the hypersurface equation (4.29) becomes

very simple and factorises with respect to x3,

f ≡ −y2 + (x1x2 − ε3)x3 = 0 . (4.31)

The relation df = 0 is solved in two different ways both demanding y = 0. If x3 = 0, there

remains only one line with a form of a hyperbola, x1x2 = ε3, cf. also equation (4.31). This

solution is presented in figure 9(b), where the singular line {y = 0, x1 = x2 = 0} of figure 9(a)

disappears and only the depicted hyperbolic line remains. On the other hand, for x3 ≠ 0

the condition x1x2 − ε3 = 0 has to be satisfied, and I find at the origin a deformed C2/Z2

singularity as in the previous section.
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The case of a generic deformation, where several or all deformation parameters εi are

deformed, is more difficult and was presented in the publication [109] of me and my col-

laborators. Since a further discussion is here of no importance, I refer the reader to our

article.

4.3 Deformations of T 4
/Z2 orbifolds

The main difference between the analysis of the local deformations and the discussion

of T 4/Z2 orbifolds is that for the latter there exist bulk cycles, exceptional cycles, and

fractional cycles. In the following sections I will search for suitable descriptions of them

and analyse how these cycles are influenced by deformations of the singularities at the

orbifold fixed points. I consider the T 4/Z2 orbifold on underlying untilted tori, which I

will restrict to the square torus because this remarkably simplifies the calculations and is

absolutely sufficient for my discussion.

4.3.1 Hypersurface description of the T 4
/Z2 orbifold on square tori

For the hypersurface description of a T 4/Z2 orbifold, I use two elliptic curves with the Z2

action on the homogeneous coordinates given by (xi, vi, yi) ↦ (xi, vi,−yi), where i = 1,2.

The invariant polynomials y2
i = F(i)(xi, vi) describe the tori T 2

(1)
and T 2

(2)
, while the third

monomial y ∶= y1y2 is a definition that I will additionally insert into the following equation

in order to obtain an orbifold,

T 4/Z2 = {f ≡ −y2 + F(1)(x1, v1) ⋅ F(2)(x2, v2) = 0} . (4.32)

By the same procedure as in the local examples, I find 4 × 4 = 16 isolated singularities

on the T 4/Z2 orbifold, which are at the positions of the fixed points α ∈ T 2
(1)

, β ∈ T 2
(2)

(α,β = 1,2,3,4), cf. figure 2, and which I label (αβ) in the following discussion. To deform

these fixed points I choose the following basis of polynomials of degree four:

F(i)(xi, vi) = 4vi (xi − ε2vi) (xi − ε3vi) (xi − ε4vi) ,
δF 1

(i)(xi, vi) = −4 (xi − ε2vi) (xi − ε3vi)2 (xi − ε4vi) ,
δF 2

(i)(xi, vi) = −4vi (xi − ε3vi) (xi − ε4vi)2
,

δF 3
(i)(xi, vi) = 4v2

i (xi − ε2vi) (xi − ε4vi) ,
δF 4

(i)(xi, vi) = 4vi (xi − ε2vi)2 (xi − ε3vi) .

(4.33)

The first equation is the same as the one that already appeared in the definition of the

elliptic curve, equation (2.39), while the others are chosen in such a way that the term
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with the singularity α, having the fixed point value εα, is replaced by the term of a dif-

ferent singularity. Therefore, the polynomials δFα
(i)

(xi, vi) can be used to deform a certain

singularity α, and in combination with 16 deformation parameters εαβ one can construct

the hypersurface equation of the deformed orbifold as

Def(T 4/Z2) =
⎧⎪⎪⎨⎪⎪⎩
f ≡ −y2 + F(1) ⋅ F(2) −

4

∑
α,β=1

εαβ δF
α
(1) ⋅ δF

β
(2)

= 0

⎫⎪⎪⎬⎪⎪⎭
. (4.34)

The polynomials of equation (4.33) simplify to

F(i)(xi, vi) = 4xivi (x2
i − v2

i ) ,
δF 1

(i)(xi, vi) = −4x2
i (x2

i − vi) ,
δF 2

(i)(xi, vi) = −4xivi (xi + vi)2
,

δF 3
(i)(xi, vi) = 4v2

i (x2
i − v2

i ) ,
δF 4

(i)(xi, vi) = 4xivi (xi − vi)2
,

(4.35)

when I restrict the underlying torus lattice to square shape with fixed points ε4 = −1, ε3 = 0,

ε2 = +1.

It is important to note that for a square torus, the four deformation polynomials obey the

shift symmetry of half lattice vectors such that shifting a fixed point α with equation (4.7)

to fixed point β is reflected in the transformations of equation (4.17), which map the

polynomials δFα
(i)

(xi, vi) of equation (4.35) in the following way onto each other,

λ2 ∶
δF 1

(i)
↔ δF 2

(i)

δF 3
(i)
↔ δF 4

(i)

, λ3 ∶
δF 1

(i)
↔ δF 3

(i)

δF 2
(i)
↔ δF 4

(i)

, λ4 ∶
δF 1

(i)
↔ δF 4

(i)

δF 2
(i)
↔ δF 3

(i)

, (4.36)

and the undeformed polynomials F(i)(xi, vi) stay invariant. Therefore, a shift transform-

ation on the square torus lattice is basically a relabelling of the fixed points in a suitable

way.

The Holomorphic two-form on the orbifold is for the homogeneous coordinates defined as

Ω2 =
(v1 ⋅ dx1 − x1 ⋅ dv1) ∧ (v2 ⋅ dx2 − x2 ⋅ dv2)

y
vi≡1= dx1 ∧ dx2

y
, (4.37)

where y ∶= y1 ⋅ y2 was inserted to account for the orbifold action. For the complex values

xi ≡ ∣xi∣eiφi on the Lag cycles only combinations of the phases with ei(φ1+φ2) = ±1, called

real calibrations, are allowed to obtain supersymmetric cycles, cf. section 3.1.3. Contrary,

phases that result in ei(φ1+φ2) = ±i are called calibrations with respect to Im (Ω2).
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4.3.2 Bulk cycles: structure and integrals

When dealing with bulk cycles one has to keep in mind that I use as ansatz only factorised

two-tori T 4 ≡ T 2
(1)

× T 2
(2)

, where the factorisation also translates to the two-cycles. Hence,

these can be decomposed into the product N1 ⊗ N2. According to tables 7 and 8, for

a-type lattices there exist simple descriptions of the Lag lines Ni = aXi, running through

the fixed points, and for the lines with label Ni = cXi, which do not intersect the fixed

points of the orbifold. For the tilted b-type tori I find the cycles named Ni = bXi, which

also cross the fixed points. Remember that the additional cycles for square and hexagonal

tori are listed in table 9.

As on the elliptic curve, one can directly read off the calibration of the cycles from their

labelling, and a

cycle is sLag with calibration

⎧⎪⎪⎨⎪⎪⎩

Re (Ω2) if X1 +X2 = even

Im (Ω2) if X1 +X2 = odd
. (4.38)

In this relation, Xi (i = 1,2) does not refer to the cycle itself, but denotes the number

of the label, i.e. Xi ∈ {1,2,3,4} for the cycles aXi and bXi, and Xi ∈ {1,2} if a cycle of

type cXi is considered. To understand the topology of the combined two-cycles, one has

to distinguish again between fractional and pure bulk cycles, as worked out in section 4.1

for the one-cycles. I will address here only the topology of the bulk cycles on the untilted

lattice and discuss bulk cycles on tilted tori in the context of the orbifold T 6/(Z2 × Z′
6)

(on hexagonal tori) in section 4.5. One should note that on the orbifold one has defined

y ∶= y1y2, and thus the combination of the yi forms again two components ±y with y = 0

at the fixed points, cf. also the discussion in section 4.1, which causes specific topologies

of the combined two-cycles.

Fractional cycles of type aX1 ⊗ aX2 give rise to a T 2/Z2 orbifold that has the shape of a

pillow, which is isomorphic to a sphere S2 with punctures. In detail, the borders of the

square base area have values y = 0, inside of which the area curves up- and downwards with

+y or −y, respectively. On the contrary, cycles of type aX1 ⊗ cX2 or cX1 ⊗ cX2 exhibit

the topology of a T 2. This is simply because there is no identification of fixed points at

y = 0, which leaves in all cases the combination of two separate circles (with signs merged

according to y ∶= y1y2).

There exist two different ways to perform the integration over a bulk cycle. Either one

defines the cycle on the torus lattice and translates it via the Weierstrass function to the

homogeneous coordinates, or one constructs the path of integration directly in the xi-plane

(when working in the chart vi ≡ 1). Both methods can be useful, so I will explain them
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(a) The parameters are (n,m) = (1,0), c = 0, and

from outside to inside d = 0.2, d = 0.3, d = 0.5,

d = 0.8, where d = 0.5 equals cycle cI.
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(b) The solid black curve has winding numbers

(n,m) = (4,1) and shifts c = 0, d = 0, while the

dashed red curve has properties (n,m) = (5,1),
c = 0, d = 0.3.

Figure 10: Bulk cycles in hypersurface language in the complex x-plane and chart v ≡ 1, obtained

with a parametric plot as indicated in equation (B.3) in appendix B. While horizontal (or vertical)

bulk cycles have relatively simple shapes in the x-plane (left diagram), bulk cycles with higher

winding numbers look quite complicated (right figure). The parameters n,m, c, d of the curves

are given in equation (4.40).

in more detail. The integration over a bulk two-cycle on C2, where the coordinates are

(x1, x2), looks like

∫
1

0
dt1∫

1

0
dt2

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR
Re

⎛
⎝

∂x1

∂t1
⋅ ∂x2

∂t2√
y2(x1(t1), x2(t2), ε)

⎞
⎠

RRRRRRRRRRR
+ i Im

⎛
⎝

∂x1

∂t1
⋅ ∂x2

∂t2√
y2(x1(t1), x2(t2), ε)

⎞
⎠

⎤⎥⎥⎥⎥⎦
(4.39)

with parameter ti for each bulk one-cycle and deformation parameter ε that stands for

ε ∶= εαβ ≠ 0 if only one singularity is deformed. Note that due to equation (3.27), one has

to take the absolute value for the real part of the integrand, while, for a sLag cycle, the

imaginary part should be zero (up to very small numerical fluctuations) and taking the

absolute value is therefore of no importance.

The first way to introduce the paths of integration is to choose a curve zi(ti) with parameter

ti ∈ R on the torus, e.g. a cycle cX, and to map it via

xi(ti) = ℘(2ti(ni ζ1 +mi ζ2) + ci ζ1 + di ζ2) (4.40)
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to the complex xi-plane. (ni,mi) are the integer wrapping numbers on the torus, ζ1 and

ζ2 are basis half-lattice vectors, and the parameters ci, di ∈ [0,1) encode continuous shifts.

The second approach is to directly parametrise a curve on the complex planes xi, for

example an ellipse around the fixed points ε4 = −1 and ε3 = 0 centred at xi = (3
4 − ai),

xi(ti) = (3/4 − ai) + ai cos(ti) + i bi sin(ti) , (4.41)

where the parameters have ranges ti ∈ [0,2π) and ai, bi ∈ R+. Based on the study of several

examples I assume that the choice of the zero-crossing between ε3 = 0 and ε2 = +1, here

at xi = 3
4 , is of minor importance as long as it is not too close to one of these fixed points

(especially if they are deformed). Furthermore, for different values of ai, bi the integrals

show very small differences as long as ai, bi are large (e.g. O = 100,1000).

As an example I will deform the fixed point (33) at x1 = x2 = 0 and observe the effect of

the deformation on some bulk cycles that are constructed by the above methods. For the

(33) deformation, the hypersurface equation (4.34) reads

y2 = F(1)(x1, v1) ⋅ F(2)(x2, v2) − ε33 ⋅ δF 3
(1)(x1, v1) ⋅ δF 3

(2)(x2, v2)
= v1v2 (x2

1 − v2
1) (x2

2 − v2
2) (x1x2 − ε33 v1v2)

vi≡1= (x2
1 − 1) (x2

2 − 1) (x1x2 − ε33) ,
(4.42)

and I find that the ellipses seem to be much less affected upon deformations ε33 ∈ (−1,1)
than the curves defined via the Weierstrass map, e.g. the curves presented in figure 10(a).

The reason why the second method seems to be more “robust” is probably the fact that

the path of integration is here relatively simple and hence unwanted effects of deformations

can be better avoided.

4.3.3 Exceptional cycles: description and integrals

On the basis of the local deformations, it makes sense to describe an exceptional cycle in

a similar way as in equations (4.22) and (4.23). The fixed set of equation (4.42) under the

involution σR ∶ x1 ↔ x2 , v1 ↔ v2 , y ↦ ±y is given by

⎛
⎜
⎝

Im (y)√
(x2

1 − 1) ⋅ (x1
2 − 1)

⎞
⎟
⎠

2

+ ∣x1∣2 = ε (4.43)

for the choice y ↦ −y, which means calibration Re (Ω2) for the sLag exceptional cycle. To

describe an S2, the requirement ∣x1∣ < 1 has to be fulfilled, which implies 0 < ε < 1. For a
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deformation in opposite direction, −1 < ε < 0, on has to use x1 = −x2 to find the equation

of a two-sphere and the appropriate branch is y ↦ +y with calibration Im (Ω2).

To obtain the volume of the exceptional cycle, I introduce the condition x1 = ±x2 into

equation (4.42), or a similar equation for the deformation of another singularity. Differently

written, I insert x1 = a + ib, x2 = ±(a − ib) to get

y2
±(a, b) = ±(a4 + 2a2(b2 − 1) + (b2 + 1)2)(a2 + b2 ∓ ε33) . (4.44)

It is instructive to look at the plots of y2
+(a, b) in figure 11 that make clear which singularities

are included in the equation x1 = ±x2 and what happens if a deformation ε33 is switched

on.

(a) Undeformed: y2+(a, b) ≥ 0,

and for y2+ = 0 one finds the sin-

gularities (44), (33), and (22) at

(a, b) = (−1,0), (0,0), (1,0), re-

spectively.

(b) ε33 < 0: The singularity (33)

vanishes, i.e. y2+(0,0) ≠ 0, but

no exceptional cycle arises. The

singularities (44) and (22) re-

main unchanged.

(c) ε33 > 0: An exceptional

cycle with calibration Re (Ω2)
grows out of the singularity

(33), for which y2+ < 0. (44) and

(22) are still singular points at

y2+(±1,0) = 0.

Figure 11: Three-dimensional plots of the function y2
+(a, b) of equation (4.44), which shows all

exceptional cycles that are described by x1 = +x2 = a+ ib, and where the singular points at y2
+ = 0

are visible.

Figure 11(a) implies that the description x1 = ±x2 holds for all singularities (αα), where

(11) lies at infinity and is thus not apparent in this picture. Figures 11(b) and 11(c)

illustrate that for a certain sign choice of x1 = ±x2, the sign of the deformation parameter is

already determined in order to let an exceptional cycle grow out of the deformed singularity.

This is also confirmed by the plot in figure 12(a), where obviously only for deformations

in positive direction an exceptional cycle of non-vanishing volume develops. Looking at

equation (4.44), it is clear that for x1 = −x2 one finds figures 11 and 12(a) with reversed

sign of the vertical axis, and ε33 has to be deformed in negative direction in order to find

an exceptional cycle.

In table 11 all specifications of the exceptional cycles are summarised. The calibration

can be easily computed if one inserts the condition x1 = a + ib, x2 = ±(a − ib) into the

76



(a) The plot of y2+(a, b, ε33) = 0 shows that

only deformations with ε33 > 0 give rise to

an exceptional cycle of calibration Re (Ω2),
i.e. e+33, and that no other exceptional cycle

appears.

0.2 0.4 0.6 0.8 1.0
ε33

0.2

0.4

0.6

0.8

1.0

1.2

∫Re(Ω2)

(b) Direct integration of e+33, as done in

equation (4.47), where e+33 obtains a non-

zero volume upon deformation with ε33 > 0.

The volume is normalised with respect to the

volume of a bulk cycle in the undeformed case.

Figure 12: Properties of the exceptional cycle e+33 upon deformation by the parameter ε33.

holomorphic two-form,

Ω2 =
dx1 ∧ dx2

y
= . . . = ∓i ⋅ 2 da ∧ db√

y2
=
⎧⎪⎪⎨⎪⎪⎩

∓Re (Ω2) if y2 < 0

± Im (Ω2) if y2 > 0
. (4.45)

With these considerations, it is easy to compute the volume of the exceptional cycle e+33

(and similarly for any other exceptional cycle e±αβ). According to figure 12(a) it is sufficient

to integrate over the intervals a, b ∈ (−1,1), and including the Heaviside step function

H[n] =
⎧⎪⎪⎨⎪⎪⎩

0 if n < 0

1 if n ≥ 0
(4.46)

in a suitable form into the integration ensures that only the exceptional contributions with

y2
+(a, b) < 0 are included. Hence, the complete integral over the exceptional cycle e+33 has

the form

∫
e+33

Ω2 = −2i

1

∫
−1

da

1

∫
−1

db
H[−y2

+(a, b)]√
y2
+(a, b)

, (4.47)

where the imaginary factor is cancelled by the purely imaginary denominator with the

restriction y2
+(a, b) < 0. The result is depicted in figure 12(b), but the graph is normalised

in terms of the volume of any bulk cycle at zero deformation, as I will do it for all following

graphs of the integrations. The reason is that here I am only interested in the behaviour

of the cycles, but not in their concrete values. Remark also that an integration over e−33

gives the same graph, but mirrored on the y-axis, i.e. the values of ε33 are negative.
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Exceptional sLag cycles of T 4
/Z2

Cycle Condition Position εαβ Conditions on f Calibration ΩR transf.

e+αβ α + β = even (εα, εβ) + y2 < 0, x1 = x2 Re (Ω2) even

e−αβ α + β = odd (εα, εβ) − y2 > 0, x1 = −x2 Im (Ω2) odd

Table 11: Properties of all exceptional sLag cycles of T 4/Z2, which develop a non-vanishing volume

upon deformation of εαβ. The cycles can be separated into two classes, where the condition is

already encoded in the fixed point labels α,β ∈ {1,2,3,4}, cf. the second column. The classes e±αβ
allow for either positive or negative deformations, εαβ ∈ [0,1] or εαβ ∈ [−1,0], respectively.

4.3.4 Fractional cycles: integrals

The integration of the holomorphic two-form Ω2 over the deformed Lag cycles, depending on

the deformation parameter ε, gives information about the exceptional part of a fractional

cycle and shows the homology class. To start with, I will show how to compute the

integrals over undeformed fractional two-cycles for untilted tori, and then I will go over

to the deformed cycles. Since the integration over cycles on tilted tori has some technical

issues, I will discuss these later.

The fractional cycles with the labels Ni ∈ {aI,aII,aIII,aIV,bI,bII} (i = 1,2) satisfy

the condition Im (xv ) = 0, which allows to display products N1 ⊗ N2 of them in the real

plane with coordinates (x1, x2) (chart v ≡ 1). For the untilted torus with cycles aXi,

the singularities of the hypersurface equation are then the vertical and horizontal lines

x1, x2 = εα with fixed point values ε1 = ∞, ε4 < ε3 < ε2 ∈ R, and these form the boundaries of

the Lag cycles aX1⊗aX2. Figure 13(a) illustrates this for the square torus, where ε4 = −1,

ε3 = 0, ε2 = 1.

The diagram of equation (4.42) in figure 13(b) illustrates the deformation. As for the

local deformations, there is a remarkable difference between deformations in positive and

negative direction of ε33. Diagram 13(b) depicts the case of ε33 > 0, where the deformation

causes the cycles aIII⊗ aIII and aIV ⊗ aIV to shrink until they vanish at ε33 = 1, while

the formerly separated cycles aIII ⊗ aIV and aIV ⊗ aIII merge. The exceptional cycle

e+33 of real calibration, which has zero volume in the undeformed scenario (ε33 = 0), starts

growing out of the former singularity at (x1, x2) = (0,0). For a deformation ε33 < 0 the

cycles aIII⊗ aIII and aIV ⊗ aIV switch the roles with aIII⊗ aIV and aIV ⊗ aIII.

From these observations I already reason that the Z2 eigenvalue is (−1)τZ2 = −1 in front

of e+33 because the volume of the sLag cycles aIII ⊗ aIII and aIV ⊗ aIV decreases with

growing ε33. Therefore, the exceptional cycle must have the same calibration as these sLag
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-2 -1 0 1 2

-2

-1

0

1

2

Re(x1)

Re(x2)

aIII × aI aI × aI

aII × aIV aIV × aIV

aIII × aIII aI × aIII

aII × aII aIV × aII

(a) All singularities, represented by the intersec-

tions of the horizontal and vertical lines, are un-

deformed and thus εαβ = 0 for all (αβ).

-2 -1 0 1 2

-2

-1

0

1

2

Re(x1)

Re(x2)

aIII × aI aI × aI

aII × aIV
aIV × aIV

aIII × aIII
aI × aIII

aII × aII aIV × aII

(b) The singularity at x1 = x2 = 0 is deformed

with ε33 = 0.1, i.e. the former intersection point

is replaced by the curve ε33 = x1x2. The excep-

tional cycle e+33, which grows out of the former

singularity, is illustrated by the dashed line.

Figure 13: The above diagrams illustrate the cycles aX1 ⊗ aX2 on a square torus in the real

(x1, x2)-plane, where areas with the property y2(x1, x2) > 0 (cf. equation (4.42)) are highlighted

in blue. The fixed points with values ε4 = −1, ε3 = 0, ε2 = 1 (and ε1 = ∞) are indicated by the

vertical and horizontal lines. Their intersection points are the zeros of the hypersurface equation,

which become the deformable singularities of the holomorphic two-form. The cycles aX1 ⊗ aX2

are represented by the areas between these lines, which have actually the shape of a pillow as

explained in section 4.3.2, and where the colouring indicates real calibration.

cycles with bulk parts Π13 and −Π24 in the standard T 4/Z2 language, respectively. This

implies that it has a different calibration from the merged Lag cycle, so the unification of

aIII ⊗ aIV and aIV ⊗ aIII was also necessary in order to cancel the exceptional part of

the cycle Π14 +Π23.

The deformation of the singularity (33) can be easily translated to the deformation of any

other singularity. It is also possible to deform all singularities at the same time with the

same deformation parameter ε, where all sLag cycles of calibration Im (Ω2) merge and

the sLag cycles of calibration Re (Ω2) decrease with growing deformation parameter, see

figure 14. This case was discussed in more detail in our article [109].

When switching on deformations, I insert equation (4.34) for y2(x1, x2). Deforming for

instance fixed point (33), I use equation (4.42). This implies that some other fixed points

change their position depending on ε33 as well, which one can already suppose when looking
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-2 -1 0 1 2

-2

-1

0

1

2

Re(x1)

Re(x2)

aIII × aI aI × aI

aII × aIV aIV × aIV

aIII × aIII aI × aIII

aII × aII aIV × aII

Figure 14: All singularities deformed with either +ε or −ε in such a way that the sLag cycles

with real calibration (shaded areas) do not merge with other cycles. On the other hand, all sLag

cycles with imaginary calibration merge to one big cycle (white regions).

carefully at the diagram in figure 13(b), e.g. examine the fixed point at (x1, x2) = (1,0).
Therefore, one has to take care of the integration boundaries when leaving the orbifold

point. Since explicitly adjusting the boundaries by some function can be difficult for more

involved integrations, I use again the Heaviside step function as defined in equation (4.46).

Integrals over one-cycles aX are especially simply because they run only over real values

x (in chart v ≡ 1), cf. table 7, starting at the initial fixed point value εki and ending at the

final fixed point value εkf . In the chart vi ≡ 1, the integrals can be constructed as

∫
aX

Ω1 = 2

εkf

∫
εki

dx1√
y2(x1)

≈ iX−1 ⋅ 5.24 . . . , (4.48)

where I set all results to positive values since volumes are always positive, but here the

volumes may have a different calibration, i.e. an imaginary factor. The holomorphic one-

form is defined in equation (2.40), and I also take a factor of two since the integral runs

only over half a cycle. At the orbifold point, the formula for y2(x1) is simply the equation

of the elliptic curve, i.e. y2(x1) = x3
1 − x1. The evaluation of this integral for an arbitrary

cycle aX gives always the same result and changes only in the calibration, which can be

real or imaginary depending on the label X = 1,2,3,4. For example, on a square torus

lattice with ε1 = ±∞, ε2 = 1, ε3 = 0, ε4 = −1, the integral over the cycle aI has the simple

form

∫
aI

Ω1 = 2

∞

∫
1

dx1√
x3 − x

≈ 5.24 . . . (4.49)
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with real calibration.

If the orbifold is undeformed, the integral over a two-cycle is then simply the product of

integrals over one-cycles (where again I set the result to a positive value),

∫
aX1⊗aX2

Ω2 = 2

εjf

∫
εji

εkf

∫
εki

dx1dx2√
y2(x1, x2)

≈ iX−1 ⋅ 13.75 . . . , (4.50)

and y2(x1, x2) = (x3
1 − x1)(x3

2 − x2), namely the combination of two elliptic curves, cf.

equation (4.32). Since all integrals over the cycles aX1 ⊗ aX2 have an equal value, I will

normalise the subsequent plots to one for ε ≡ 0.

0.2 0.4 0.6 0.8 1.0
ε33

0.2

0.4

0.6

0.8

1.0

1.2

∫Re(Ω2),∫ Im(Ω2)
Re (Ω2)

Im (Ω2)

Re (Ω2)

Figure 15: Normalised integrals over Re (Ω2) or Im (Ω2) depending on the deformation parameter

ε33. The red dashed curve shows the integral over the cycles aIII⊗ aIII or aIV⊗ aIV, running

through the deformed singularity, and the blue dotted curve is the result for all other cycles with

real calibration. All integrals over cycles calibrated with Im (Ω2) (i.e. white regions in figure 13)

show the behaviour of the black solid curve.

When deformations are taken into account, it can be hard to find the correct bounds of

integration. I solve this difficulty by integrating over a larger area where the extra parts

need to have opposite calibration, i.e. areas of different colour in figure 13, and which are

modded out upon integration by the Heaviside step function as defined in equation (4.46).

For instance, the integral over the cycle aI⊗ aIII looks like

∫
aI⊗aIII

Re (Ω2) = 2

∞

∫
1

dx1

1

∫
−1

dx2
H[(x2

1 − 1)(x2
2 − 1)(x1x2 − ε33)]√

(x2
1 − 1)(x2

2 − 1)(x1x2 − ε33)
, (4.51)

where I integrate x2 from -1 to 1 thus including the cycle aI⊗ aIV of calibration Im (Ω2)
into the evaluation, cf. figure 13. This extra cycle does not contribute to the integral due

to H[y2(x1, x2)], which includes only regions of real calibration (grey areas in figure 13).

In this way I obtain the plots depicted in figure 15. One can easily see the square-root like

behaviour of the red dashed curve, which shows that the corresponding fractional cycles
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with bulk part of either aIII ⊗ aIII or aIV ⊗ aIV incorporate the exceptional cycle e+33,

cf. also figure 13(b), which has the same calibration as the bulk cycles. Due to this curve,

one can conclude that the deformation is only valid up to ε = 1, where the volume of these

fractional cycles vanishes, and that the exceptional cycle comes with a negative sign. All

other fractional cycle have only a bulk part and therefore one observes only some slight

changes in the volume that are linear (for small deformations). One should note that

the volume for the merged cycle aIII ⊗ aIV + aIV ⊗ aIII is actually by a factor of two

larger because two cycles contribute to the volume, see also figure 13(b), but due to the

normalisation this cannot be seen in figure 15. Summing up the two merged fractional

cycles, one finds that the exceptional contributions exactly cancel and that only a bulk

part remains.

Remark that I will not discuss the cycles of type bX on the tilted square lattice in more

detail because the whole discussion can be easily generalised to them. Hence, I directly

move on to deformations of T 6
/(Z2 ×Z2) on square tori in the next section, before I

introduce cycles of type bX in the context of the T 6
/(Z2 ×Z′6) orbifold in section 4.5,

where for these cycles new issues arise.

4.4 Deformations of T 6
/(Z2 ×Z2) on square tori

Many properties of the T 6/(Z2 × Z2) orbifold on square tori can be deduced from the

discussion of T 4/Z2 in section 4.3. Especially the deformation of only one singularity

directly translates to T 6/(Z2 × Z2), where only an additional one-cycle has to be added.

Nevertheless, in this orbifold exist further possibilities to deform singularities which include

in particular simultaneous deformations in several Z(i)
2 -twisted sectors.

4.4.1 Hypersurface description of the T 6
/(Z2 ×Z2) orbifold

The undeformed hypersurface equation for T 6/(Z2×Z2) is a straightforward generalisation

of the T 4/Z2 orbifold with three instead of two elliptic curves,

T 6/(Z2 ×Z2) = {f ≡ −y2 + F(1)(x1, v1) ⋅ F(2)(x2, v2) ⋅ F(3)(x3, v3) = 0} , (4.52)

and the invariant polynomial y is now defined as y ∶= y1y2y3. A closer look on this equa-

tion reveals that there are 48 codimension two singularities and 64 codimension three

singularities. The former are fixed lines of Z2 × Z2, where Fi = Fj = 0 and with unres-

tricted coordinates (xk, vk) in the remaining torus ((ijk) are here cyclic permutations of

(1,2,3)). Comparing to equation (4.33) shows that Fi = 0 is fulfilled in four points and
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taking into account the possible permutation of the tori gives rise to a factor of three.

Therefore, the counting is 3 × 4 × 4 = 48. The codimension three singularities arise if one

sets Fi = Fj = Fk = 0, and they lie thus at the intersection points of the codimension two

singularities.

However, the description of the deformation is more involved for the T 6/(Z2 ×Z2) orbifold

and needs further explanation. The hypersurface equation is given by

Def(T 6/(Z2 ×Z2)) = {f ≡ − y2 + F(1)(x1, v1)F(2)(x2, v2)F(3)(x3, v3)

− ∑
(i,j,k)=(1,2,3)

cyclic

4

∑
α,β=1

ε
(i)
αβF(i)(xi, vi)δFα

(j)(xj, vj)δF
β
(k)

(xk, vk)

+
4

∑
α,β,γ=1

εαβγδF
α
(1)(x1, v1)δF β

(2)
(x2, v2)δF γ

(3)
(x3, v3) = 0} ,

(4.53)

where the different components have the following meaning. The expression in the first

line is the same as equation (4.52), which is the undeformed orbifold. The next 3 × 4 × 4

terms are the most important ones because they control the deformations and give rise to

exceptional three-cycles with non-vanishing volume, similar to deformations of the T 4/Z2

orbifold. The structure is here such that one deformation parameter ε
(i)
αβ deforms exactly

one singularity (αβ) of codimension two, which is a fixed line when tensored with a one-

cycle in the invariant torus. Here, (αβ) is a fixed point in the four-torus T 4
(i)

≡ T 2
(j)
×T 2

(k)
and

the index (i) stands for the torus that stays invariant under the Z(i)
2 action. The deformed

singularity is described by the deformation terms δFα
(j)
δF β

(k)
and by the term F(i), because

in the invariant torus T 2
(i)

one has to add a one-cycle. In the last row of equation (4.53) one

finds deformations of codimension three singularities, where the parameters εαβγ depend

on the deformation parameters ε
(i)
αβ, i.e. εαβγ cannot be chosen freely. This coincides with

the fact that string theory does not allow for such free parameters. To be somewhat

more precise, the εαβγ encode 64 conifold singularities which reside at the places where the

singular lines of the Z2 ×Z2 codimension two singularities intersect (or used to intersect if

they are deformed), see [108] for more information on that.

The coefficients of the terms F(i)F(j)δF
α
(k)

, which are not part of equation (4.53), describe

the three untwisted complex structure moduli with PGL(2,C) transformations being ab-

sorbed in the coordinates (xk, vk). To perform concrete integrations , I need again the

holomorphic three-form

Ω3 =
dx1 ∧ dx2 ∧ dx3

y(xi)
, (4.54)

which is here defined in a similar way as in the previous sections. Let me remark that the

construction in this section is a good starting point for the hypersurface description of a
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T 6/(Z2×Z2M) orbifold. Such a description can be obtained by first building the T 6/(Z2×Z2)
orbifold, and in a second step by modding out the additional ZM symmetry by hand, i.e. by

restricting the concrete form of F(i)(xi, vi) and of the deformation polynomials δF α
(i)

(xi, vi)
in a suitable way.

4.4.2 Cycles: structure and integrals

Fractional three-cycles N1 ⊗ N2 ⊗ N3 are described by the coordinates (x1, x2, x3) with

only real values if the cycles of type aXi are considered. Hence, they can be visualised

as volumes in a three-dimensional diagram, where the boundaries of the cycles are the

solutions to equation (4.53) with y2 = 0. If no deformation is switched on, the boundaries

are simply 3× 4 planes at the coordinate values xi = ∞,−1,0,1 (i = 1,2,3), i.e. one obtains

a three-dimensional generalisation of figure 13(a). The calibration is here such that a

cycle is sLag with calibration

⎧⎪⎪⎨⎪⎪⎩

Re (Ω3) if X1 +X2 +X3 = odd

Im (Ω3) if X1 +X2 +X3 = even
, (4.55)

where again the expressions Xi ∈ {1,2,3,4} only refer to the number of the label and not

to the cycle itself.

For the deformation in only one sector i the description is still very simple. One takes

a deformed two-cycle on T 4
(i)

/Z2, completely analogously to the discussion in section 4.3,

tensored with a one-cycle on the undeformed torus T 2
(i)

, and includes the orbifold image

of the second Z2 factor on this three-cycle. This factorisation holds also true for the

holomorphic three-form Ω3 = Ω2 ∧ Ω1 and for the integrals, which can be computed as in

section 4.3 for the part of Ω2 multiplied with a constant factor for the integration over Ω1,

which is suppressed if one introduces a normalisation to one.

A more general deformation is difficult to compute because contrary to T 4
(i)

/Z2, the para-

meters εαβγ have to be taken into account, which are restricted by the deformation para-

meters ε
(i)
αβ. Nevertheless, in [109] my collaborators and me pointed out two special cases

for which we found a description, but which I will not reproduce here.

4.5 Deformations of T 6
/(Z2 ×Z′

6
) on hexagonal tori

The T 6/(Z2 × Z′
6) orbifold on three hexagonal tori was worked out by me and my collab-

orators in the article [110]. Since in this setup special cases of tilted tori are used, one has

to work with the (s)Lag cycles of type bX with bX = I,II,III,IV (and with the additional
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cycles that appear on hexagonal torus lattices). As one will see in section, this gives rise

to some technical issues.

4.5.1 Hypersurface description of the T 6
/(Z2 ×Z′6) orbifold

The orbifold action for T 6/(Z2 ×Z′
6) is defined as

θpωq ∶ zi z→ e2πi(pvi+qwi)zi , v⃗ = 1

2
(1,−1,0) , w⃗ = 1

6
(−2,1,1) , (4.56)

with i = 1,2,3. This implies that the lattice vectors of T 6 form the root lattice of SU(3)3,

for which all two-tori have a hexagonal shape, and the three complex structure parameters

are τi = eπi/3 for the two-tori T 2
(i)

. The Z3 twisted sector ω2 acts by the shift vector 1
3(1,1,1),

which translates in homogeneous coordinates to ω2 ∶ (x1, x2, x3) ↦ ξ(x1, x2, x3).

The action of ω2 has the following effect on the deformation polynomials in equation (4.33),

while the original polynomials Fi remain unchanged,

δF 1
(i)

ω2

z→ ξδF 1
(i) , δF 2

(i)

ω2

z→ δF 3
(i)

ω2

z→ δF 4
(i)

ω2

z→ δF 2
(i) , i = 1,2,3 , (4.57)

and therefore they have to be slightly modified,

F(i)(xi, vi) = 4 (vix3
i − v4

i ) = 4vi (xi − vi) (xi − ξvi) (xi − ξ2vi) ,
δF 1

(i)(xi, vi) = 4 (x4
i − xiv3

i ) ,
δF 2

(i)(xi, vi) = 4v2
i (vi − xi) (vi − ξxi) ,

δF 3
(i)(xi, vi) = 4v2

i (vi − ξxi) (vi − ξ2xi) ,
δF 4

(i)(xi, vi) = 4v2
i (vi − ξ2xi) (vi − xi) .

(4.58)

Here I defined ξ ≡ e2πi/3 in order to represent the fixed points by ε3 = ξ0, ε2 = ξ1, ε4 = ξ2

and ε1 = ∞. These restrictions directly affect the deformation parameters ε
(i)
αβ in the

hypersurface equation of the deformed orbifold,

Def(T 6/(Z2 ×Z′
6)) = {f ≡ −y2 + F(1)(x1, v1)F(2)(x2, v2)F(3)(x3, v3)

− ∑
(i,j,k)=(1,2,3)

cyclic

4

∑
α,β=1

ε
(i)
αβF(i)(xi, vi)δF α

(j)(xj, vj)δF
β
(k)

(xk, vk) = 0} (4.59)
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such that the ε
(i)
αβ are identified as ε

(i)
ρ with

ε
(i)
1 ∶= ε(i)31 = ξε(i)21 = ξ2ε

(i)
41 ,

ε
(i)
2 ∶= ε(i)13 = ξε(i)12 = ξ2ε

(i)
14 ,

ε
(i)
3 ∶= ε(i)22 = ε(i)33 = ε(i)44 ,

ε
(i)
4 ∶= ε(i)23 = ε(i)34 = ε(i)42 ,

ε
(i)
5 ∶= ε(i)24 = ε(i)32 = ε(i)43 .

(4.60)

The parameter ε
(i)
11 must be zero in accordance with the fact that the fixed point at the

origin has no complex structure modulus and can therefore not be deformed.

Furthermore, the deformation parameters are subject to conditions under the orientifold

action σR ∶ (y, xi, vi) ↦ (y, xi, vi), which has the effect

δF 1
(i) ↦ δF 1

(i)
, δF 2

(i) ↦ δF 4
(i)
, δF 3

(i) ↦ δF 3
(i)
, δF 4

(i) ↦ δF 2
(i)
, (4.61)

i.e. δF 2
(i)

and δF 4
(i)

are exchanged. Inserting the deformation polynomials into equa-

tion (4.59) gives the result

0 = f ≡ − y2 + F(1)F(2)F(3) − ∑
(i,j,k)=(1,2,3)

cyclic

F(i)⋅

⋅ [ε(i)1 (δF 3
(j) + ξ2δF 2

(j) + ξδF 4
(j))δF 1

(k)

+ ε(i)2 δF 1
(j)(δF 3

(k) + ξ2δF 2
(k) + ξδF 4

(k))
+ ε(i)3 (δF 2

(j)δF
2
(k) + δF 3

(j)δF
3
(k) + δF 4

(j)δF
4
(k))

+ ε(i)4 (δF 2
(j)δF

3
(k) + δF 3

(j)δF
4
(k) + δF 4

(j)δF
2
(k))

+ε(i)5 (δF 2
(j)δF

4
(k) + δF 3

(j)δF
2
(k) + δF 4

(j)δF
3
(k))] ,

(4.62)

where one directly sees that under the orientifold the terms with ε
(i)
4 and ε

(i)
5 are exchanged,

i.e. ε
(i)
4 = ε5

(i) ∈ C, while the other indices are preserved and thus ε
(i)
1 , ε

(i)
2 , ε

(i)
3 ∈ R. For

later calculations, it is convenient to define the complex parameters as

ε
(i)

4/5
= 1

2
(ε(i)4+5 ± iε

(i)
4−5) (4.63)

in order to have only real deformation paramters ε
(i)
4+5, ε

(i)
4−5. These facts are summarised

in table 12, where also the associated exceptional wrapping numbers are stated.

Since all three sectors behave analogously under deformations, I will only describe the first

sector (i) = (1) in the subsequent discussion, thus setting ε
(2)
ρ = ε(3)ρ = 0 and omitting the
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Restrictions on the deformation parameters of T 6
/(Z2 ×Z′6)

ρ Parameter identifications for ε
(i)
ρ Parameter range Exceptional wrapping numbers

1 ξε
(i)
21 = ε(i)31 = ξ2ε

(i)
41 R x̂

(i)
1 , ŷ

(i)
1

2 ξε
(i)
12 = ε(i)13 = ξ2ε

(i)
14 R x̂

(i)
2 , ŷ

(i)
2

3 ε
(i)
22 = ε(i)33 = ε(i)44 R x̂

(i)
3 , ŷ

(i)
3

4, 5̄ ε
(i)
23 = ε(i)34 = ε(i)42 = ε̄(i)24 = ε̄(i)32 = ε̄(i)43 C x̂

(i)
4 , ŷ

(i)
4 , x̂

(i)
5 , ŷ

(i)
5

Table 12: Z3 and ΩR restrictions on the deformation parameters together with the wrapping

numbers for the associated exceptional three-cycles.

upper index ε
(1)
ρ ≡ ερ. The equation of the deformed orbifold T 6/(Z2 ×Z′

6) then reads

0 = f ≡ −y2 + (v1x
3
1 − v4

1) ⋅ { (v2x
3
2 − v4

2) (v3x
3
3 − v4

3)

−ε1 x
2
2v

2
2 (x4

3 − x3v
3
3)

−ε2 (x4
2 − x2v

3
2)x2

3v
2
3

−ε3 (v4
2v

4
3 + v2

2x
2
2v

3
3x3 + v3

2x2v
2
3x

2
3)

−ε4+5 (2v4
2v

4
3 − v2

2x
2
2v

3
3x3 − v3

2x2v
2
3x

2
3)

−ε4−5 (v2
2x

2
2v

3
3x3 − v3

2x2v
2
3x

2
3)} .

(4.64)

One can easily analyse the position of the singularities by solving f = df = 0. From

∂f/∂y = 0 follows y = 0, and considering only the second and third torus with chart vi ≡ 1,

the singularities are the solutions of the system

f = 0 ∧ ∂f

∂x2

= 0 ∧ ∂f

∂x3

= 0 , (4.65)

where the equations can be divided by the term containing x1. The singularities of the

undeformed hypersurface f can be found as expected at the coordinates xi = ∞,1, e±2πi/3

(i = 2,3). In the chart xi ≡ 1, the course of action is completely analogous with xi ↔ vi
in the above equation, and the singularities have coordinates vi = 0,1, e∓2πi/3. It is clear

that this is much more convenient to search for the positions of the singularities and to see

which ones are deformed.

4.5.2 Bulk cycles: structure and integrals

The integration for the displaced fractional cycle bIII0 can be separated into the integrals

over the bulk and exceptional part. For the integral ∫Πbulk
bIII0

Ω1, I can choose as well any
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other path of integration which is in the same homology class, for example the cycles C1 or

C2 of figure 16, but one should note that these cycles are not sLag anymore. The cycle C1

is shifted such that it doesn’t run through any fixed point, while C2 passes through the Z3

fixed points ε1 = ∞, ε2̃, ε3̃ = 0 (1, 2̃, 3̃, respectively) of figure 16, which should not influence

the integral due to their lack of deformation moduli, see table 2. The intuitive expectation

is that this path C2 is least affected by the deformation of Z2 fixed points simply because

it has the most separation from these.

Im x

Re x

bIII0

e4

e2

e3 

C2C1

1 3

4
bIII0

C1C1

C2

2
3~

2~
e2, e3~ ~

Figure 16: Different choices of the path of integration for the bulk part of the cycle bIII0 of the

hexagonal torus, depicted in the complex plane of the homogeneous coordinate x (in the chart

v = 1), left picture, and in the fundamental domain of the torus with coordinate z ∈ C, right

picture. The cycles Πbulk
bIII0 , C1 and C2 are in the same homology class and give thus the same

result when integrated over Ω3. Nevertheless, the choice of C2, which consists of straight lines

with phase e±iπ/3, is especially useful due to technical reasons.

In order to integrate over C2, I parametrise the curve by

C2 ∶ ui ↦ xi(ui) = ∣ui∣ + i
√

3ui with ui ∈ R , (4.66)

which has the derivative

∂xi
∂ui

=
⎧⎪⎪⎨⎪⎪⎩

1 + i
√

3 if ui ≥ 0

1 − i
√

3 if ui < 0
, (4.67)

and therefore the Jacobi determinant reads for an integration over dxidxj

J(ui, uj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2 + 2i
√

3 if ui, uj > 0

−2 − 2i
√

3 if ui, uj < 0

4 if ui ≥ 0, uj ≤ 0

. (4.68)
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This determines the integation, where y2 = (vkx3
k−v4

k)⋅ ỹ2(xi, vi, xj, vj) in its factorised form

with definition

ỹ2 ∶= (v2x
3
2 − v4

2) (v3x
3
3 − v4

3)
− ε1 x

2
2v

2
2 (x4

3 − x3v
3
3) − ε2 (x4

2 − x2v
3
2)x2

3v
2
3

− ε3 (v4
2v

4
3 + v2

2x
2
2v

3
3x3 + v3

2x2v
2
3x

2
3) − ε4+5 (2v4

2v
4
3 − v2

2x
2
2v

3
3x3 − v3

2x2v
2
3x

2
3)

− ε4−5 (v2
2x

2
2v

3
3x3 − v3

2x2v
2
3x

2
3)

(4.69)

has to be included,

∫
bX

∫
C2

∫
C2

Ω1 ∧Ω2 =
xkf

∫
xki

dxk
(x3

k − 1) ⋅
∞

∫
−∞

∞

∫
−∞

J (ui, uj)duiduj
ỹ(xi(ui), xj(uj))

. (4.70)

The first term gives a non-vanishing constant and does not play a role when I introduce a

normalisation.

4.5.3 Exceptional cycles: description and correction terms

In the following, I will explain how to find descriptions of the exceptional three-cycles of

the T 6/(Z2 ×Z′
6) orbifold, where table 12 shows which deformation parameters correspond

to the orbit of a certain exceptional cycle e
(i)
ρ of sector Z(i)

2 . I will use only one sector Z(1)
2 ,

cf. the hypersurface equation (4.64), while the other sectors work completely analogously.

Switching on one parameter ερ after the other and solving the equations (4.65), I find that

some orbits of singularities are invariant, others change their position in dependence of

ερ, and some singularities are undesirably also deformed, i.e. they do not appear anymore

as solutions of (4.65). This last aspect is new compared to the deformations on square

tori and requires an additional adjustment by hand. This means that in order to switch

on deformations in a controlled way, I will calculate correction terms which cancel this

unwanted effect.

Exceptional cycles e
(1)
4 and e

(1)
5 : The first exceptional cycles to be studied are e

(1)
4

and e
(1)
5 , which are treated together because they are complex conjugates of each other.

Once their description is understood, it is easy to go over to the other exceptional cycles.

The combination of e
(1)
4 and e

(1)
5 makes it possible to separate the deformation into the

orientifold-even and -odd parts by using the two deformation parameters ε
(1)
4+5 and ε

(1)
4−5

defined in equation (4.63) by ε
(1)

4/5
∶= 1

2(ε
(1)
4+5 ± iε

(1)
4−5). For convenience, I give equation (4.69)

with parameters ε1 = ε2 = ε4−5 = 0 and in the chart vi ≡ 1,

ỹ2 =(x3
2 − 1) (x3

3 − 1) − ε3 (1 + x2x
2
3 + x2

2x3) − ε4+5 (2 − x2x
2
3 − x2

2x3) , (4.71)
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for which the symmetry x2 ↔ x3 is obeyed (because ỹ = ỹ is fulfilled).

(a) If no correction term is included, i.e. ε3 = 0,

the singularities (24), (42) obtain as expected an

exceptional contribution for ε4+5 > 0, but also (33)

is deformed for ε4+5 ≠ 0.

(b) With correction ε3(ε4+5), the singularity (33)

is not deformed when ε4+5 is switched on and has

therefore no exceptional contribution.

Figure 17: The plots show the surface of the relation ỹ2(a, b, ε3(ε4+5), ε4+5) = 0, where the function

is given by equation (4.71) with x2 = a + ib = x3 inserted. The figures illustrate the effect of the

correction term ε3(ε4+5), cf. equation (4.71). At ε4+5 = 0 on the vertical axis, one finds the

undeformed singularities (33), (24), (42) at (a, b) = (1,0), (−1
2 ,

√
3

2 ), (−1
2 ,−

√
3

2 ), respectively.

As a starting point, I analyse the equation x2 = x3 = a + ib that was already used in the

previous sections in order to describe the exceptional cycles. Inserting for x2 the positions

of the fixed points ε1 = ∞, ε2 = ξ, ε3 = 1, ε4 = ξ2 with ξ ≡ e2πi/3, I find that x2 = x3 describes

(11), (33), (42), (24). The fixed point (11) does not have a deformation parameter and

can thus not develop an exceptional cycle. On the other hand, the fixed point (33) belongs

to the orbit of the exceptional cycle e
(1)
3 , while (42) is part of e

(1)
4 and (24) of e

(1)
5 , cf.

table 12. Figure 17(a) illustrates all exceptional contributions in form of a surface, and one

can see that for ε4+5 ≠ 0 not only the singularities (42), (24) are deformed, but also (33).

In addition, the plots show that (42) and (24) develop only for ε4+5 > 0 an exceptional

cycle of non-vanishing volume, which means that this exceptional cycle is sLag (with real

calibration) for ε4+5 > 0.

In order to keep (33) singular, I deform it with a suitable correction term ε3(ε4+5). This
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(a) The intersection point of two lines in the

coordinates x2, x3 indicates the existence of a

singularity. Upon deformation of ε4+5, the sin-

gularity (33) is not deformed, but changes its

position.

(b) The exceptional cycle (42), shifted to the

coordinates (a, b) = (1,0), grows under the de-

formation ε4+5 < 0, but since no correction

term is included, also (33) that was moved to

(a, b) = (− 1
2
,−
√
3
2

) obtains a volume for ε4+5 ≠ 0.

Figure 18: Plots of the relation ỹ2(x2, x3, ε3(ε4+5), ε4+5) = 0, as defined in equation (4.71). In the

left figure, which shows the projection onto the real x2, x3-plane, the correction term ε3(ε4+5) of

equation (4.72) was inserted. To obtain the plot on the right hand side where ε3 = 0, I first applied

the shift λ2 on x2 and λ4 on x3 in order to map the singularities (42) ↔ (33) and (24) ↔ (11).
After that I inserted x2 = a + ib = x3 to go to the exceptional cycle.

function, whose explicit calculation is shown in appendix A.1, reads

ε3(ε4+5) = −
3

2
+ ε4+5 +

1

2

√
9 − 12ε4+5

= −1

3
ε2

4+5 −
2

9
ε3

4+5 +O(ε4
4+5)

(4.72)

with restriction ε4+5 ≤ 3
4 for the analytic expression. The plot in figure 17(b) confirms that

the insertion of the correction ε3(ε4+5) into equation (4.71) causes the exceptional cycle at

fixed point (33) to vanish. Furthermore, figure 18(a) reveals that though the singularity

at (33) stays singular for arbitrary deformations of ε4+5, i.e. there is always an intersection

point of two lines, it changes its position in the coordinates x2, x3.

In order to describe the exceptional cycles e
(1)
4 and e

(1)
5 concretely, I use the shift λ2 on

x2 and λ4 on x3, see equation (4.18). This interchanges (42) ↔ (33) and (24) ↔ (11),
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or differently said, moving singularity (x2, x3) = (e−2πi/3, e+2πi/3) to (x2, x3) = (1,1), as

demonstrated in section 4.1. This ensures that the exceptional cycle is described by a

real-valued expression when I introduce λ2(x2) = λ4(x3) into the shifted equation (4.71).

Due to the property λ2 = λ4, the symmetry x2 ↔ x3 of equation (4.71) remains unbroken.

(a) Deformation at ε4+5 = 0.6. The depic-

ted plane approaches the exceptional cycle

for growing ε4+5 until they combine, and

the extensions of the cycle seems to not

exceed the values a ∈ (0,2), b ∈ (−1,1).

0.2 0.4 0.6 0.8 1.0
ε4+5

0.05

0.10

0.15

0.20

0.25

∫Re(Ω2)

(b) Integration over e
(1)
4 , where ε4+5 > 0. The volume

is zero when no deformation is switched on and shows

in the first part the characteristic square-root like be-

haviour. After the limit ε4+5 ≤ 3
4
, the curve breaks off.

Figure 19: The plot on the left hand side shows the function ỹ2(a, b, ε3(ε4+5), ε4+5) ≤ 0 with

applied shift, as argued under equation (4.72), and exceptional cycle x2 = x3 inserted, where

ε4+5 = 0.6 is chosen. On the right hand side the result of the integration as in equation (4.73) is

given.

To compute the volume of the exceptional cycles, I integrate the holomorphic two-form in

a similar manner as for the T 4/Z2 manifold on a square torus lattice, cf. equation (4.47)

in section 4.3.3, and obtain in this way the following new integral for e+4 :

∫
e+4

Ω2 = 2i

2

∫
0

da

1

∫
−1

db
H[−y2(a, b, ε4+5)]√

y2(a, b, ε4+5)
, (4.73)

with the Heaviside step function as defined in equation (4.46).

Figure 19(a) clarifies that I use the correct integration boundaries upon deformation of

ε4+5. In addition, one can see that for larger values of ε4+5 it becomes difficult to choose

a suitable lower boundary due to the approaching plane, depicted in figure 19(a), which

recombines with the cycle. This also explains why the graph in figure 19(b), which depicts

the result of the integration, seems to have numerical artefacts starting at about ε4+5 = 0.4.

92



Exceptional cycle e
(1)
3 : In a second step, I will present the properties of the exceptional

cycle e
(1)
3 , where now ε3 is the deformation parameter of interest. As already explained

under equation (4.71), the singularity (33) is again given by the relation x2 = x3. Hence,

one finds a similar picture as in figure 17, where (42), (24) obtain an unwanted exceptional

contribution for ε3 ≠ 0, while (33) grows as expected for ε3 > 0. Unfortunately, one cannot

write down an analytic expression for the correction term ε4+5(ε3), but only the series

expansion

ε4+5(ε3) = −
1

9
ε2

3 −
1

81
ε3

3 +O(ε5
3) , (4.74)

as derived in appendix A.2.

For ỹ2(x2, x3, ε3, ε4+5(ε3)) = 0, cf. equation (4.71), it is not possible to illustrate the effect

of the correction term ε4+5(ε3) on the singularities (42) and (24) in the real x2, x3-plane,

similar to figure 18(a), because these have complex values. On the contrary, I can perform

a shift as for the exceptional cycles e
(1)
4 and e

(1)
5 , which gives rise to a picture as in

figure 18(b), but with switched roles for the exceptional contributions. Nonetheless, the

deformation of e
(1)
3 can be executed without any shift transformation.

The integration of the exceptional cycle e
(1)
3 works completely analogous to the cycle e

(1)
4

with the only difference that no shift transformation is necessary and that the parameter ε3

has no restriction, which is due to the fact that I use a series expansion. Concretely, I use

equation (4.73) with the same integration boundaries, as can be checked in figure 20(a),

and obtain the result that is depicted in figure 20(b).

(a) For ε3 = 1, the boundaries of the exceptional

cycle lie in the intervals a ∈ (0,2), b ∈ (−1,1).

0.2 0.4 0.6 0.8 1.0
ε3

0.05

0.10

0.15

0.20

0.25

∫ Re(Ω2)

(b) The volume of e
(1)
3 vanishes at ε3 = 0 and grows

for ε3 > 0 with the shape of
√
ε3.

Figure 20: The left image depicts the function ỹ2(a, b, ε3, ε4+5(ε3)) ≤ 0 with exceptional cycle

x2 = a + ib = x3 inserted and with maximal deformation ε3 = 1. The graph on the right hand side

shows the volume of the exceptional cycle e
(1)
3 , where the integration is given in equation (4.73).
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Exceptional cycles e
(1)
1 and e

(1)
2 : The exceptional cycles e

(1)
1 and e

(1)
2 show exactly

the same behaviour upon deformation because only the order and labelling of the tori T 2
(2)

and T 2
(3)

is interchanged. Hence, I have to analyse only the single deformation of e
(1)
1 and

can omit the explicit discussion of e
(1)
2 . It turns out that for these exceptional cycles no

explicit description as for the other exceptional cycles just discussed exists. The reason is

that I would have to apply a shift x2 = λ3(x3), but this equation is not the fixed set of an

antiholomorphic involution and therefore cannot be used here. However, when computing

the volumes of fractional cycles in the next section, I will show that there exists an indirect

way to not only describe the fractional cycle, but also to access the exceptional cycle.

One can also look at the case where both exceptional cycles are equally deformed with

ε ∶= ε1 = ε2, cf. [110], where one finds the symmetry x2 ↔ x3. By switching on ε ≠ 0, the

singularities of the other orbits e
(1)
3 , e

(1)
4+5, and e

(1)
4−5 are as well deformed. Hence, also in

this case the calculation of correction terms ε3(ε) and ε4+5(ε) is necessary, which works

similarly as for the exceptional cycles e
(1)
3 , e

(1)
4 and e

(1)
5 , cf. appendix A. However, I do

not consider it necessary to reproduce this result here once more and instead refer the

interested reader to our article [110], where he/she will find the concrete equations for the

correction terms ε3(ε) and ε4+5(ε).

4.5.4 Fractional cycles: description and integrals

For this orbifold we had to develop several ways to perform deformations of all kinds of

fractional cycles. Roughly speaking, these different methods are:

1. Deform the fractional cycle directly,

2. Compute the bulk and exceptional contributions separately,

3. Access exceptional cycles indirectly by a suitable subtraction of bulk and fractional

cycles.

I will discuss the fractional cycles in the same ordering as the exceptional cycles in the

previous section, for which the concrete integrals are obtained in the following way. For

simplicity, the invariant torus is factored out, and I use as bulk cycle a horizontal cycle.

For the integrals over the fractional cycles

Πfrac = 1

2
(Πbulk ± e

(i)
4+5) , Πfrac = 1

2
(Πbulk ± e

(i)
3 ) , (4.75)
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0.1 0.2 0.3 0.4 0.5 0.6
ε4+5

0.8

0.9

1.0

1.1

1.2

1.3

∫Re(Ω3)

(a) Normalised volumes of the fractional cycles
1
2
(Πbulk ± e

(i)
4+5) with positive (upper blue curve)

or negative (lower red curve) exceptional part.

The reason for the abnormal behaviour of the

graph for large values of ε4+5 is clear when ex-

amining figure 19.

0.2 0.4 0.6 0.8 1.0
ε3

0.9

1.0

1.1

1.2

1.3
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(b) Normalised volumes the fractional

cycles 1
2
(Πbulk ± e

(i)
3 ), in dependence of

the deformation parameter ε3, with posit-

ive (upper blue curve) or negative (lower

red curve) exceptional part.

Figure 21: Normalised volumes of horizontal fractional sLag cycles with exceptional contributions

e
(i)
4+5 (left figure) or e

(i)
3 (right figure), cf. equation (4.75), which are the same for all three sectors

i = 1,2,3. The volumes are obtained by the integrals as sketched in equation (4.76).

I integrate the bulk and exceptional part separately, see sections 4.5.2 and 4.5.3, respect-

ively, which means that I apply the second method for the deformation. In a schematic

way, this integration looks like

Vol (Πfrac(ε4+5)) = (Vol (Πbulk(ε4+5)) ±Vol (e(i)
4+5(ε4+5))) /Vol (Πbulk(0)) , (4.76)

and analogously for e
(i)
3 . For the bulk part, I use the curve C2 of figure 16 and integrate as in

equation (4.70) with deformation parameter ε3 or ε4+5, respectively. Since I normalise the

integral over the fractional cycle by the value of the bulk integral with zero deformation, I

can omit the first part of the integral in equation (4.70) that gives only rise to a constant

factor. The integration over the exceptional cycle works as explained in the previous

section 4.5.3, and the concrete integration of equation (4.73) is applied. This gives rise to

the plots in figure 21, which shows the integrals over the respective fractional cycles.

The fractional sLag cycle with exceptional part e
(i)
1 (and analogously e

(i)
2 ) has to be accessed

by the third, indirect way of performing a deformation. This is due to the fact that this

exceptional cycle cannot be accessed directly, as argued in the previous section. Therefore,

I use a construction that incorporates the fractional cycle

Πfrac
0 = 1

2
(Πbulk

13 ± e(i)13 ± e
(i)
31 ± e

(i)
33 ) , (4.77)

which can be easily computed by the first method for deformations since in the hypersurface

description appear only real values of xj, xk. The basis two-cycle Πbulk
13 consists of the two
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(a) Normalised volumes of the fractional cycles
1
2
(Πbulk ± e

(i)
1 ) with positive (upper blue curve)

or negative (lower red curve) exceptional part.
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(b) Volume of the exceptional cycle e
(i)
1 ,

which has the normal square-root shape.

Figure 22: Volumes of the fractional cycles which incorporate the exceptional cycle e
(i)
1 (left),

and of the exceptional cycle e
(i)
1 itself (right). The volumes had to be computed by an indirect

method, see equations (4.78) and (4.79), respectively.

horizontal basis one-cycles π1 and π2 on the torus, which can again be replaced by the curve

C2. The exceptional two-cycles e
(i)
αβ, which are contained in the orbits e

(i)
ρ , sit at the fixed

points (αβ) (α,β = 1,2,3,4), where the upper index for the Z2 twisted sector is omitted.

Note that e
(i)
13 does not appear because the singularity (11) does not have a deformation

modulus. Hence, the volume of the fractional cycle can be obtained as

Vol (Πfrac(ε1)) = [Vol (Πbulk(ε1)) ± (2Vol (Πfrac
0 (ε1)) −Vol (Πbulk

13 (ε1)))] /Vol (Πbulk(0)) ,
(4.78)

and is depicted in figure 22(a). In this way, I can also compute the volume of the exceptional

cycle e
(i)
1 by the relation

Vol (e(i)
1 (ε1)) = [2Vol (Πfrac

0 (ε1)) −Vol (Πbulk
13 (ε1))] /Vol (Πbulk(0)) . (4.79)

The result can be found in figure 22, which shows no peculiarities.

4.6 Deformations of T 6
/(Z2 ×Z6) on one rectangular and two

hexagonal tori

The definition of the orbifold action is the following,

θkωl ∶ zi z→ e2πi(kvi+lwi)zi , v⃗ = 1

2
(1,−1,0) , w⃗ = 1

6
(0,1,−1) , (4.80)
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and the shift vector for the Z3 twisted sector ω2 reads 1
3(0,1,−1). Therefore, only the

second and third torus are required to have hexagonal shape, while the complex structure

parameter τ1 is unrestricted. The Z3 action translates to ω2 ∶ (x1, x2, x3) ↦ (x1, ξx2, ξ2x3),
and this has the following effect on the deformation polynomials,

δFα
(1) ↦ δF α

(1) , (α = 1,2,3,4)
δF 1

(2) ↦ ξδF 1
(2) , δF 2

(2) ↦ δF 3
(2) ↦ δF 4

(2) ↦ δF 2
(2) ,

δF 1
(3) ↦ ξ2δF 1

(3) , δF 4
(3) ↦ δF 3

(3) ↦ δF 2
(3) ↦ δF 4

(3) .

(4.81)

The orientifold leads to the mappings

δF α
(1) ↦ δF α

(1)
, (α = 1,2,3,4)

δF 1
(k) ↦ δF 1

(k)
, δF 2

(k) ↦ δF 4
(k)
, δF 3

(k) ↦ δF 3
(k)
, δF 4

(k) ↦ δF 2
(k)
, (k = 2,3)

(4.82)

and therefore one finds the deformation parameters for the T 6/(Z2 × Z6 ×ΩR) orientifold

as given in table 13.

Restrictions on the deformation parameters of T 6
/(Z2 ×Z6 ×ΩR)

ρ Parameter identifications for ε
(i)
ρ Parameter range Exceptional wrapping numbers

0 ε
(1)
11 R x̂

(1)
0 , ŷ

(1)
0

1 ε
(1)
31 = ξ2ε

(1)
41 = ξε(1)21 R x̂

(1)
1 , ŷ

(1)
1

2 ε
(1)
13 = ξε(1)14 = ξ2ε

(1)
12 R x̂

(1)
2 , ŷ

(1)
2

3 ε
(1)
33 = ε(1)42 = ε(1)24 R x̂

(1)
3 , ŷ

(1)
3

4,5 ε
(1)
34 = ε(1)43 = ε(1)22 = ε̄(1)32 = ε̄(1)44 = ε̄(1)23 C x̂

(1)
4 , ŷ

(1)
4 , x̂

(1)
5 , ŷ

(1)
5

1,2,3,4 ε
(2)
2ρ = ε(2)3ρ = ε(2)4ρ R x̂

(2)
ρ , ŷ

(2)
ρ

1,2,3,4 ε
(3)
ρ2 = ε(3)ρ3 = ε(3)ρ4 R x̂

(3)
ρ , ŷ

(3)
ρ

Table 13: Z3 and ΩR restrictions on deformation parameters and wrapping numbers for the

associated exceptional three-cycles.

In addition, I can write down the hypersurface equation in the homogeneous coordinates,

where due to the different torus lattices (i.e. rectangular and hexagonal), sector one re-

sembles the previously considerd orbifold T 6/(Z2×Z′
6), and the sectors two and three have
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a new structure:

0 = f ≡ −y2 + [v1(x1 − v1ε2)(x1 − v1ε3)(x1 − v1ε4)] ⋅ {v2(x3
2 − v3

2) ⋅ v3(x3
3 − v3

3)

− ε(1)0 ⋅ x2(x3
2 − v3

2) ⋅ x3(x3
3 − v3

3)
− ε(1)1 ⋅ 3x2

2v
2
2 ⋅ x3(x3

3 − v3
3)

− ε(1)2 ⋅ 3x2(x3
2 − v3

2) ⋅ x3v
3
3

− ε(1)3 ⋅ 3 v2
2v

2
3(x2

2x
2
3 + x2v2 ⋅ x3v3 + v2

2v
2
3)

− ε(1)4+5 ⋅ 3 v2
2v

2
3(−x2

2x
2
3 − x2v2 ⋅ x3v3 + 2v2

2v
2
3)

− ε(1)4−5 ⋅ 3
√

3x2v
2
2 ⋅ x3v

2
3(−x2x3 + v2v3)}

−
3

∑
j≠k=2

[ − ε(j)1 ⋅ (x1 − v1ε2)(x1 − v1ε3)2(x1 − v1ε4)
+ ε(j)2 ⋅ v1(x1 − v1ε3)(x1 − v1ε4)2

+ ε(j)3 ⋅ v2
1(x1 − v1ε2)(x1 − v1ε4)

− ε(j)4 ⋅ v1(x1 − v1ε2)2(x1 − v1ε3)] ⋅ 3 vj(x3
j − v3

j ) ⋅ v4
k .

(4.83)

By analysing concrete deformations, I will see that the asymmetry in the three sectors due

to the different torus lattices has severe effects on the deformations, as I will explain in the

following for sector one in section 4.6.1 and sectors two and three in section 4.6.2. Note

that sectors two and only depend on the coordinate v4
3 and v4

2, respectively.

4.6.1 Sector one (Z(1)
2
)

At first sight, the exceptional cycles of sector one seem to be quite similar to the previ-

ously analysed orbifold T 6/(Z2 × Z′
6), cf. tables 12 and 13, and section 4.5.3. However,

only the exceptional cycle e
(1)
1 can be treated completely analogously, while all other ex-

ceptional cycles show surprisingly many characteristics that are different from the Z2 ×Z′
6

orbifold. One of the unexpected findings is that the formerly used procedure to calculate

the correction terms cannot be applied here. Therefore, so far one can only investigate

local deformations and see for example how the individual exceptional cycles behave un-

der a deformation, which I discuss now. For the bulk part of the fractional cycle under

consideration, I used a horizontal bulk cycle that I shifted close to the (s)Lag cycle bIII

in order to be not to close to the singularity at the origin, which can be deformed in the

T 6/(Z2 ×Z′
6) orbifold.

Exceptional cycles e
(1)
3 , e

(1)
4 and e

(1)
5 : A first important observation in sector one is

the fact that by simply rotating both lattices of the tori T 2
(2)

and T 2
(3)

by e2πi/6, I can
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(a) Surface of the relation

y2(a, b, ε(1)3 ) = 0, which shows

that all three singularities of the

orbit e
(1)
3 are described by x2 =

x̄3.

(b) Plot of the function y2(a, b)
with ε

(1)
3 = 0.3. One can see

that three separate exceptional

cycles appear.

(c) For ε
(1)
3 = 0.4, the function

y2(a, b) shows that the excep-

tional cycles of the orbit e
(1)
3

have merged.

Figure 23: Surfaces of y2(a, b, ε(1)3 ) = 0 (left) and y2(a, b) with a fixed value for ε
(1)
3 (middle, right)

of the hypersurface equation (4.83), with the exceptional cycle 3 of sector one being switched on.

interchange the fixed point orbits of the exceptional cycles e
(1)
3 , e

(1)
4 and e

(1)
5 , cf. table 13.

Hence, I will only discuss the case of e
(1)
3 . As for the respective exceptional cycles on the

Z2 × Z′
6 orbifold, I have to compute correction terms to deform only one orbit at a time

and to analyse global models. Unfortunately, I have not found these correction terms yet

because the method that is explained in appendix A for the Z2 × Z′
6 orbifold has to be

modified for this new orbifold in a highly non-trivial way. Nevertheless, I will have a look

at the local structure of the deformations.

0.2 0.4 0.6 0.8 1.0
ε3

0.5

1.0

1.5

∫Re(Ω2)

(a) Normalised volume of the exceptional cycle e
(1)
3 .

0.2 0.4 0.6 0.8 1.0
ε3

0.0

0.5

1.5

2.0

2.5

∫Re(Ω3)

(b) Normalised volume of the fractional cycles
1
2
(Πbulk ± e

(1)
3 ).

Figure 24: Exceptional and fractional cycles of sector one including e
(1)
3 . As expected from the

considerations in figure 23, the deformation runs only in a controlled way for ε
(1)
3 ≲ 0.3.
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(a) Normalised volume of the exceptional

cycle e
(1)
2 .
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(b) Normalised volumes of the fractional

cycles 1
2
(Πbulk ± e

(1)
2 ).

Figure 25: Exceptional and fractional cycles of sector one including e
(1)
2 . This deformation does

not have any peculiarities besides the fact that they have to be accessed indirectly.

The main difference of e
(1)
3 to the respective exceptional cycle of the Z2 ×Z′

6 orbifold is the

fact that the relation x2 = x̄3 describes here all three fixed points that belong to the orbit of

e
(1)
3 (and additionally the fixed point (11), which is the only fixed point associated to the

exceptional cycle e
(1)
0 ). This fact can be observed in figure 23(b), where the exceptional

cycle x2 = x̄3 = a+ib is inserted into equation (4.83), with deformation ε
(1)
3 of the first sector

switched on. Moreover, one finds that only for ε
(1)
3 > 0 an exceptional cycle of non-zero

volume appears,and the plots in figures 23(b) and 23(c) reveal that only up to deformation

parameters of about 0.3 the deformation behaves in a controlled way. This observation can

also be made for the volumes of the exceptional and fractional cycles, see figure 24, which

show for small values of ε
(1)
3 a behaviour as anticipated. More concretely, the integrals

were computed by a separate integration of the exceptional and of the bulk part, similarly

to the discussion for Z2 ×Z′
6.

Exceptional cycle e
(1)
2 : This cycle has some similarities to the orbit e

(1)
1 , but the de-

formation parameters of table 13 have here different phases. Otherwise, the description

works similarly as for the exceptional cycle e
(1)
2 in the Z2 × Z′

6 orbifold, as discussed in

section 4.5.3, which means that I have to access these cycles indirectly.

Exceptional cycle e
(1)
1 : This exceptional cycle behaves completely in the same manner

as the exceptional cycle e
(1)
1 on the T 6/(Z2 ×Z′

6) orbifold, see the respective paragraph in

section 4.5.3. Therefore, I will not further discuss it.

100



(a) Surface of the relation y2(a, b, ε(1)3 ) =
0, which shows that the singularity (11) is

the only one in the exceptional cycle e
(1)
0 ,

which is described by x2 = x̄3.

(b) Plot of the function y2(a, b) for ε
(1)
0 = 1. Note the

huge values on the vertical axis.

Figure 26: Surfaces of y2(a, b, ε(1)0 ) = 0 (left) and y2(a, b) with ε
(1)
0 = 1 (right) of the hypersurface

equation (4.83), with the exceptional cycle e
(1)
0 of sector one being switched on.

Exceptional cycle e
(1)
0 : This exceptional cycle is especially simple because it involves

only the fixed point labelled (11). Due to the fact that the cycle is at the origin of both tori,

no fixed point orbit appears. As already mentioned, I can simply describe the exceptional

cycle by x2 = x̄3.

The integrals of the fractional and exceptional cycle are plotted in figure 27. Note that

I could not use here the curve C2 as for the Z2 × Z′
6 orbifold because on Z2 × Z6, C2 runs

through the origin with fixed point (11), which is also deformed by the relation x2 = x̄3.

Hence, I used a different bulk cycle, where I chose a horizontal cycle close to the cycle bIII

on the torus, and translated this curve via the Weierstrass function to the hypersurface

description. For the exceptional cycle I could use an integration as for the exceptional cycle

e
(1)
3 in the orbifold Z2×Z′

6, and no correction terms arise. The large integration boundaries

can be read off from figure 26(b).

4.6.2 Sectors two and three (Z(2)
2

and Z(3)
2

)

Since sector two and three show exactly the same properties, I consider here only sector

three. For convenience I give the hypersurface equation for the third sector, where I restrict
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(a) Normalised volume of the exceptional

cycle e
(1)
0 .
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(b) Normalised volumes of the fractional

cycles 1
2
(Πbulk ± e

(1)
0 ).

Figure 27: Volumes of the exceptional and fractional cycles of sector one that incorporate e
(1)
0 .

The shape of the curves is as expected.

-1 0 1

0

1

2

Re(x1)

Re(x2)

aIII × bI aI × bI

aII × bII aIV × bII

(a) Deformation parameter ε
(3)
2 = 0.03. For

small deformations, the deformed curves

show approximately a hyperbolic shape, sim-

ilarly to e.g. the T 4/Z2 orbifold.

-1 0 1

0

1

2

Re(x1)

Re(x2)

aIII × bI

aI × bI

aII × bII

aIV ×

× bII

(b) Deformation parameter ε
(3)
2 = 0.5. One

can see that for larger deformation para-

meters, not only the neighbouring cycles of

the deformed singularity, but also the cycle

aIII⊗bI and the non-sLag cycle aIII⊗bII

are strongly affected by the deformation.

Figure 28: Visualisation diagram of regions ỹ2(x1, x2) > 0 as defined in equation (4.84) for sector

three of the Z2 ×Z6 orbifold, where the sLag cycles with ỹ2(x1, x2) > 0 are highlighted in blue.

the first two-torus T 2
(1)

to have square shape, i.e. ε
(1)
2 = 1, ε

(1)
3 = 0, ε

(1)
4 = −1, and with the

chart vi ≡ 1. In addition, I factor out the terms with coordinates x3, where in this sector
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no orbifold fixed points appear. Therefore, I obtain

ỹ2(x1, x2) = x1(x2
1 − 1)(x3

2 − 1)
+ 3 (ε(3)1 x2

1(x2
1 − 1) − ε(3)2 x1(x1 + 1)2 − ε(3)3 (x2

1 − 1) + ε(3)4 x1(x1 − 1)2) ,
(4.84)

and in line two no dependence on the coordinate x2 is apparent, cf. equation (4.83).

(a) This surface, which satisfies y2(a, b, ε(3)2 ) = 0,

reveals that for deformation parameters ε
(3)
2 > 0,

there grows indeed an exceptional cycle out of

the singularity at (a, b) = (1,0). However, one

directly sees that something goes wrong when

leaving the local description because the left

part is unexpected und should not be there.

(b) The plot of the function y2(a, b) for ε
(3)
2 = 1

confirms that here arises an unexpected issue,

i.e. the little area at the left side which is there

for an arbitrary choice of ε
(3)
2 ∈ [0,1].

Figure 29: Surfaces of y2(a, b, ε(3)2 ) = 0 (left) and y2(a, b) with ε
(3)
2 = 1 (right) of the hypersurface

equation (4.84), with the exceptional cycle e
(3)
2 of sector three being switched on.

As I stated in equation (4.36), on a square torus a shift of the fixed points is simply a

suitable relabelling of all four fixed points. In addition, for all exceptional cycles the fixed

point orbit on the second torus is the same, and therefore it is sufficient to consider only

the exceptional cycle of fixed point (23) and its orbit that I call e
(3)
2 , which is described

by the relation x1 = x̄2. A plot in a similar manner as in figure 13 of the regions with

ỹ2(x1, x2) > 0 as defined in equation (4.84), with x1 and x2 assumed to be real, is given

in figure 28. There one can observe that for deformations of larger parameters ε, not

only the cycles which pass through the deformed singularity feel the deformation, but also

other cycles are strongly affected, see figure 28(b). Moreover, the surface plots in figure 29
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make clear that, as already mentioned several times before, sectors two and three of the

T 6/(Z2 × Z′
6) orbifold seem to have a different structure compared to the examples that

were worked out before. Hence, it is clear that these sectors need a careful analysis in the

future and probably different methods have to be developed in order to get over the just

discovered difficulties.
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0.6

0.8
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∫Re(Ω3)

(a) Deformation ε
(3)
2 > 0. The two upper curves

correspond to the sLag cycles aIII⊗ bI (black,

dashed) and aII⊗ bII (green, bold), which do not

have an exceptional contribution and hence dis-

play a linear behaviour for small ε2. On the other

hand, the two lower curves that belong to the frac-

tional cycles aI⊗ bI (blue, bold) and aIV ⊗ bII

(red, dashed) include, as expected, the exceptional

cycle e
(3)
2 , and therefore the curves show a square-

root like behaviour for small ε2.

-1.0 -0.8 -0.6 -0.4 -0.2
ε2

0.9

1.1
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∫Re(Ω3)

(b) Deformation ε
(3)
2 < 0. All curves show a linear

behaviour for small deformations, where the curves

correspond top down to the sLag cycles aII⊗ bII

(black, dashed curve), aI⊗ bI + aIV ⊗ bII (blue,

bold curve), and aIII⊗ bI (red, dashed curve).

The blue bold curve shows the integral over a

merged cycles, which is made up of two formerly

separated cycles. One also finds that the two upper

curves are strongly influenced by the deformation

for larger values of ε2.

Figure 30: Integrals of all sLag cycles with real calibration (i.e. the shaded areas in figure 28) for

deformations by the parameter ε
(3)
2 .

The integrals over the fractional cycles depicted in figure 28 with a deformation of ε
(3)
2 ,

where in the second torus only the undisplaced horizontal and vertical cycles bI and bII

are considered, can be computed in a similar manner as in section 4.3.4 for the orbifold

T 4/Z2, see equation (4.51). This is due to the fact these fractional cycles only have real

values in the homogeneous coordinates x1, x2 (in the chart vi ≡ 1). Therefore, the integral

over one of these fractional sLag cycles reads

∫
Πfrac

Re (Ω2) = 2

ε
(1)
kf

∫
ε
(1)
ki

dx1

∞

∫
−∞

dx2
H[ỹ2(x1, x2, ε) > 0]√

ỹ2(x1, x2, ε)
, (4.85)

where the one-cycle in the first torus starts at the initial fixed point with value ε
(1)
ki

and

ends at the final fixed point with value ε
(1)
kf

. The results can be found in figure 30(a) for
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deformations with positive parameter ε
(3)
2 , and deformations in negative direction are given

in figure 30(b). I also checked that upon deformation all cycles stay sLag by computing

the imaginary part of the cycles, which is indeed zero for all values ε
(3)
2 ≠ 0.

I did not study yet explicitly the integrals with the shifted cycles bIII and bIV in the

second torus, which I will leave for future work. I expect that one can shift these cycles

onto the cycles bI and bII, respectively, and then integrate over these shifted cycles. Since

for deformations on the orbifold T 6/(Z2 × Z6) there appeared already some unexpected

technical difficulties, one has to analyse the deformations of these shifted cycles in more

detail to obtain a concrete description.
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5 Concrete Models

As done for the deformations, I start with model building on the T 4/(Z2×ΩR) orientifold,

which I mostly present in order to explain the techniques of model building, before I come

to the more complicated models on T 6/(Z2 × Z2 × ΩR) and on T 6/(Z2 × Z′
6 × ΩR). Note

that the models on these latter orientifolds, which incorporate D6-branes and O6-planes

and where I stabilise complex structure moduli via deformations, belong to type IIA string

theory. On the other hand, the models on the T 4/(Z2 ×ΩR) orientifold are associated to

type IIB string theory and are constructed with D7-branes and O7-planes, where actually

Kähler moduli are stabilised using blow-ups.

Let me remind the reader that the volumes of the fractional cycles on which D-branes are

wrapped are closely related to the physical gauge couplings by the relation

1

g2
Ga

∝ Vol(Πa) +Vol(Πa′) with Ga = U(Na), USp(2Na), SO(2Na) , (5.1)

cf. equation (3.40). To this aim, it is interesting to study deformations in concrete models

and to observe how the gauge couplings behave. In addition, I will study for which brane

configurations complex structure moduli are stabilised by obtaining a vev, as discussed in

section 3.2.3.

5.1 sLags on the deformed T 4
/(Z2 ×ΩR) on square tori

The definitions of the different cycles from section 3.1.3 are here slightly modified in order

to be compatible with the models on the T 4/(Z2 ×ΩR) orientifold, as already mentioned.

Thus, the fractional two-cycles read

Πfrac ∶= 1

2
(Πbulk +ΠZ2) , (5.2)

and the bulk cycle has the simple form

Πbulk ∶= 2
2

⊗
i=1

(niπ2i−1 +miπ2i) . (5.3)

The discrete displacements σi ∈ {0,1} per two-torus T 2
(i)

(i = 1,2) together with the integer

torus wrapping numbers (ni,mi) determine the four fixed points through which the bulk

cycle runs, and which therefore also appear in the exceptional two-cycle

ΠZ2 ∶= (−1)τZ2 ⋅ (eα0β0 + (−1)τ1

eα1β0 + (−1)τ2

eα0β1 + (−1)τ1+τ2

eα1β1
) . (5.4)
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This definition is slightly different from the one of an exceptional three-cycle ΠZ(k)2 of

equation (3.21), which includes both exceptional two-cycles eαβ as well as torus one-cycles.

ΠZ2 contains two of the fixed points α ∈ {1,2,3,4} of the two-torus T 2
(1)

, with α0 being the

reference point and α1 the second fixed point, and similarly for the fixed points labelled β

of T 2
(2)

. At these fixed points (αβ) ∈ T 4 ≡ T 2
(1)

× T 2
(2)

, the exceptional two-cycles eαβ arise,

where the exceptional cycle eα0β0 at the reference point is only weighted with the global Z2

eigenvalue (−1)τZ2 = ±1 (i.e. τZ2 ∈ {0,1}). All other fixed points have additional sign factors

from discrete Wilson lines τ i ∈ {0,1}. Note that all these parameters have discrete values

because the underlying space is an orbifold, and that the values are concretely specified

for the following models. In analogy to equation (3.14), I will also often use the notation

Πbulk
IJ = 2 Πtorus

IJ = 2πI ⊗ πJ (5.5)

for the basis two-cycles on the four-torus T 2
(1)
×T 2

(2)
, with I ∈ {1,2} and J ∈ {3,4}, and with

positions on the untilted or tilted lattice as depicted in figure 1.

5.1.1 Models on untilted tori

My first example of a concrete (global) model, see also our publication [109], is known in

the literature as the generalised T-dual of the Gimon-Polchinski model as presented 1996

in terms of D-branes [128], but which was actually developed by Bianchi and Sagnotti some

years earlier [129]. This model was then taken up by Blumenhagen, Braun, Körs and Lüst

in 2002 and reformulated in the language of two-cycles [53], which I will also use here. The

concrete specifications of this model are summarised in table 14. Since the generalised T-

dual of the Gimon-Polchinski model is supersymmetric for any choice of complex structure

that describes the untilted two-tori T 2
(i)

(i = 1,2), I can simply choose both tori to be of

square shape.

The O7-plane ΩR together with the second O7-plane ΩRZ2 is wrapped on the two-cycle

ΠO7 = 2 Πbulk
13 − 2 Πbulk

24 , (5.6)

where the reason for the factors of two is the following. Firstly, one has to take into

account that the fixed point sets only wrap torus cycles Πtorus, but not bulk cycles Πbulk,

and secondly, that there are two parallel planes per torus T 2
(i)

, which gives a total of
1
2 × 2 × 2 = 2. Due to table 14, the fractional cycles and their orientifold images have the

following form,

Πfrac
a = 1

2
(Πbulk

13 +ΠZ2
a ) , Πfrac

a′ = 1
2
(Πbulk

13 −ΠZ2
a ) ,

Πfrac
b = 1

2
(−Πbulk

24 +ΠZ2

b ) , Πfrac
b′ = 1

2
(−Πbulk

24 −ΠZ2

b ) ,
(5.7)
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Model 1 (Gimon-Polchinski): T 4
/(Z2 ×ΩR) on untilted tori

x ni,mi (σ⃗) Z2 (τ⃗) ∣∣O7 N Gauge group

a (1,0; 1,0) (σ1
a, σ

2
a) (−1)τZ2

a (τ 1
a , τ

2
a ) ΩR 16 U(16)

b (0,1; 0,−1) (σ1
b , σ

2
b) (−1)τ

Z2
b (τ 1

b , τ
2
b ) ΩRZ2 16 U(16)

Table 14: Concrete specifications of the generalised T-dual of the Gimon-Polchinski model on

the T 4/(Z2 × ΩR) orientifold on two untilted tori T 2
(i) (i = 1,2), where two stacks of D7-branes

are wrapped on fractional cycles as defined in equation (5.2). The D7a-branes are parallel to

the orientifold plane O7 denoted by ΩR, and the D7b-branes are parallel to the second O7-plane,

which is called ΩRZ2. The displacements σix ∈ {0,1}, the Z2 eigenvalues (−1)τ
Z2
x with τZ2

x ∈ {0,1},

and the discrete Wilson lines τ ix ∈ {0,1} can be chosen arbitrarily (x = a, b). The gauge group is

U(16)a ×U(16)b.

and with all discrete displacements set to σix = 0, the exceptional contributions read

ΠZ2
a = (−1)τ

Z2
a [e11 + (−1)τ1

ae21 + (−1)τ2
ae12 + (−1)τ1

a+τ
2
ae22] ,

ΠZ2

b = (−1)τ
Z2
b [e11 + (−1)τ1

b e41 + (−1)τ2
b e14 + (−1)τ1

b +τ
2
b e44] .

(5.8)

This means that they are simply horizontal (for stack a) and vertical (for stack b) cycles

running through the origin and therefore sitting on top of one of the O7-planes ΩR or

ΩRZ2, respectively. Equation (5.7) shows that the fractional cycles are not invariant

under the antiholomorphic involution R, and therefore a gauge group enhancement from

U(Na,b) to one of the groups USp(2Na,b) or SO(2Na,b) is not possible.

Moreover, one can check that the R-R tadpole cancellation condition, which is a necessary

condition to obtain a global model, is satisfied,

∑
x=a,b

Nx(Πfrac
x +Πfrac

x′ ) − 8 ΠO7 = 0 , (5.9)

where the sum over the fractional cycles and their orientifold images cancels the exceptional

contributions and only the bulk part remains,

Πfrac
a +Πfrac

a′ = Πbulk
13 , Πfrac

b +Πfrac
b′ = −Πbulk

24 . (5.10)

Thus, the gauge couplings, as given in equation (5.1), obey the relations

1

g2
U(16)a

∝ Πbulk
13 ,

1

g2
U(16)b

∝ −Πbulk
24 , (5.11)

and should therefore not be influenced by deformations of the exceptional cycles. This

furthermore implies that one can parallelly shift parts of the D7-branes away from the
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fixed points such that they are not invariant under R and Z2 anymore and hence, the

gauge group is broken to USp(16)a×USp(16)b. A different possibility is to split each stack

of 16 D7-branes into two stacks of eight D7-branes and moves these apart, which results

in the gauge group Π2
i=1USp(8)ai ×Π2

j=1USp(8)bj of the Bianchi-Sagnotti model [129].

5.1.2 Models on tilted tori

As a global model for tilted tori, I use four stacks of D7-branes which are either parallel to

the orientifold-plane ΩR or to ΩRZ2, cf. table 15 for details. In this model, supersymmetry

is preserved upon any choice of complex structure which leads to tilted tori. Again I choose

a square torus lattice, as presented in figure 1, for concrete calculations. This model was

considered by me and my collaborators in [109], but since I use here a different choice of

basis one-cycles, I had to redefine the specifications of table 15 compared to our article.

Also note that here the discussion for the deformations of T 4
/Z2 orbifolds on tori with

square a-type lattices applies, cf. section 4.3, because the cycles that are considered here

can all be described by the additional cycles on square tori that are inherited from the

(s)Lag lines on square b-type lattices, see section 4.1 and table 9.

Model 2: T 4
/(Z2 ×ΩR) on tilted tori

x ni,mi (σ⃗) Z2 (τ⃗) ∣∣O7 N Gauge group

a1

a2

(1,0; 1,0) (1,0)
+
−

(1,0) ΩR 2 USp(4)

b1

b2

(−1,2; 1,−2) (0,1)
+
−

(0,1) ΩRZ2 2 USp(4)

Table 15: D7-brane specifications of a global model for the T 4/(Z2 × ΩR) orientifold on tilted

tori with four stacks of N = 2 D7-branes and with gauge group USp(4)4.

Concretely, the four fractional cycles and their identical R-images have the form

Πfrac
a1

= 1

2
(Πbulk

a +ΠZ2
a ) = Πfrac

a′1
,

Πfrac
a2

= 1

2
(Πbulk

a −ΠZ2
a ) = Πfrac

a′2
,

(5.12)

Πfrac
b1

= 1

2
(Πbulk

b +ΠZ2

b ) = Πfrac
b′1

,

Πfrac
b2

= 1

2
(Πbulk

b −ΠZ2

b ) = Πfrac
b′2

,
(5.13)
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and with the fixed points as given in figure 3, the bulk and exceptional parts read

Πbulk
a = Πbulk

13 , ΠZ2
a = [e41 − e21 + e43 − e23] , (5.14)

Πbulk
b = −Πbulk

13 + 2Πbulk
14 + 2Πbulk

23 − 4Πbulk
24 , ΠZ2

b = [e14 + e34 − e12 − e32] . (5.15)

The displacements (σ⃗x) and the discrete Wilson lines (τ⃗x) obey for all stacks x the con-

dition σ1
xτ

1
x ≠ σ2

xτ
2
x . Together with the fact that all bulk cycles are parallel to O7-branes,

this relation yields that all D7-branes are orientifold invariant and thus the gauge group

enhances to USp(4)a1 ×USp(4)a2 ×USp(4)b1 ×USp(4)b2 .

At the singular orbifold point, the cycles of all stacks x have the same volume as their

orientifold image x′, but as soon as deformations are switched on they can be different.

This behaviour is expected to translate as well to the tree-level gauge couplings due to the

close relation to the volumes of cycles.

5.2 sLags on the deformed T 6
/(Z2 ×Z2 ×ΩR) on square tori

Model 3: T 6
/(Z2 ×Z2 ×ΩR) on untilted tori

x ni,mi ∣∣O7 (σ⃗) Z(i)
2 (τ⃗) N Gauge group

a (1,0; 0,−1; 0,1) ΩRZ(1)
2 (0⃗) (+ + +) (τ 1

a , τ
2
a , τ

3
a ) 4

USp(2Na) if η
ΩRZ(1)2

= −1

U(Na) else

Table 16: D7-brane specifications of a local toy model for the T 6/(Z2 × Z2 ×ΩR) orientifold on

untilted tori with either USp(2Na) or U(Na) gauge group, depending on the choice of the exotic

O6-plane.

The definitions of the three-cycle, wrapped by D6-branes and O6-planes, that I use in this

and in the following section are as introduced in section 3.1.3. For the O6-plane charges I

form the combination

η(i) ≡ ηΩR ⋅ ηΩRZ(i)2
, (5.16)

with i = 1,2,3. For the example on untilted tori as specified in table 16, I use only one

stack of four D6-branes a, which is parallel to the orientifold plane ΩRZ(1)
2 . Considering

the orientifold images of the exceptional three-cycles as specified in our article [109],

ΩR(E(i)
αβ) = η(i) (−E(i)

α′β′) , ΩR(Ẽ(i)
αβ) = η(i) Ẽ

(i)
α′β′ , (5.17)
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the fractional cycle and its orientifold image have the form

Πfrac
a = 1

4
(−Πbulk

146 +ΠZ(1)2 −ΠZ(2)2 +ΠZ(3)2 ) , (5.18)

Πfrac
a′ = 1

4
(−Πbulk

146 − η(1)ΠZ(1)2 + η(2)ΠZ(2)2 + η(3)ΠZ(3)2 ) , (5.19)

where m2 = −1 had to be taken into account for the correct signs in front of ΠZ(2)2 , and the

exceptional contributions (for (σ⃗a) = (0⃗)) are given by

ΠZ(1)2 = (E(1)
11 + (−1)τ2

aE
(1)
41 + (−1)τ3

aE
(1)
14 + (−1)τ2

a+τ
3
aE

(1)
44 ) ,

ΠZ(2)2 = (Ẽ(2)
11 + (−1)τ1

a Ẽ
(2)
21 + (−1)τ3

a Ẽ
(2)
14 + (−1)τ1

a+τ
3
a Ẽ

(2)
24 ) ,

ΠZ(3)2 = (Ẽ(3)
11 + (−1)τ1

a Ẽ
(3)
21 + (−1)τ2

a Ẽ
(3)
14 + (−1)τ1

a+τ
2
a Ẽ

(3)
24 ) .

(5.20)

Taking the sum of the fractional cycle with its orientifold image,

Πfrac
a +Πfrac

a′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (−Πbulk

146 +ΠZ(1)2 ) if ηΩR = −1

2 Πfrac
a if η

ΩRZ(1)2
= −1

1
2 (−Πbulk

146 −ΠZ(3)2 ) if η
ΩRZ(2)2

= −1

1
2 (−Πbulk

146 +ΠZ(2)2 ) if η
ΩRZ(3)2

= −1

, (5.21)

one can see that for the choice η
ΩRZ(1)2

= −1 of the exotic O6-plane Πfrac
a = Πfrac

a′ is obtained,

while all other possibilities result in Πfrac
a ≠ Πfrac

a′ .

5.3 sLags on the deformed T 6
/(Z2 ×Z′

6
×ΩR) on hexagonal tori

The models that I present in this section were already discussed by me and my collaborators

in [110]. For these models, I will always use the lattice of AAA orientation and set ΩR as

the exotic orientifold plane such that (ηΩR, ηΩRZ(1)2
, η

ΩRZ(2)2
, η

ΩRZ(3)2
) = (−1,1,1,1). Using

the definition of equation (5.16), I obtain for the given choice of exotic O-plane η(i) = −1

for i = 1,2,3. The bulk and twisted R-R tadpole cancellation conditions, which have

to be satisfied for the following global models, were first derived in [66] and summarised

in [110], as well as the supersymmetry conditions on the T 6/(Z2×Z′
6×ΩR) orientifold. One

obtains from these conditions the following orientifold-even bulk and exceptional wrapping

numbers for a stack of Na D6-branes,

[2Xa + Ya] , 2 x̂
(i)
ρ,a + ŷ(i)ρ,a for ρ = 1,2,3 , ŷ

(i)
4,a − ŷ

(i)
5,a , 2(x̂(i)

4,a + x̂
(i)
5,a) + (ŷ(i)4,a + ŷ

(i)
5,a) ,

(5.22)
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and similarly the orientifold-odd bulk and exceptional wrapping numbers

Ya , ŷ
(i)
ρ,a for ρ = 1,2,3 , ŷ

(i)
4,a + ŷ

(i)
5,a , 2(x̂(i)

4,a − x̂
(i)
5,a) + (ŷ(i)4,a − ŷ

(i)
5,a) . (5.23)

The quantities Xa and Ya are the Z3 invariant bulk wrapping numbers as defined in [66, 67],

which are combinations of the bulk wrapping numbers ni, mi, given by

Xa ≡ n1
an

2
an

3
a −m1

am
2
am

3
a − ∑

(ijk)=(123) cyclic

niam
j
am

k
a , (5.24)

Ya ≡ ∑
(ijk)=(123) cyclic

(nianjamk
a + niamj

am
k
a) . (5.25)

As explained in section 3.1.3, the exceptional wrapping numbers appear as integer factors in

the exceptional contributions of the fractional three-cycles, see equations (3.20) and (3.21),

which I rewrite here for convenience,

Πfrac ∶= 1

4

⎛
⎝

Πbulk +
3

∑
k=1

∑
α=α0,α1

∑
β=β0,β1

(x̂(k)
αβE

(k)
αβ + ŷ(k)αβ Ẽ

(k)
αβ )

⎞
⎠
, (5.26)

with the exceptional three-cycles E
(k)
αβ and Ẽ

(k)
αβ defined in equation (3.19), which reads

E
(k)
αβ ∶= 2

M−1

∑
q=0

ωq (e(k)αβ ⊗ π2k−1) , Ẽ
(k)
αβ ∶= 2

M−1

∑
q=0

ωq (e(k)αβ ⊗ π2k) . (5.27)

I anticipate that the orientifold-odd exceptional wrapping numbers will play an important

role in the context of deformations, since they are supposedly in direct correspondence with

the number of stabilised twisted complex structure moduli. The reason for that is the fact

that for stacks of Na D6-branes which are not invariant under the orientifold involution

ΩR, and which therefore have non-vanishing orientifold-odd exceptional wrapping numbers

(see equation (5.23)), I find the gauge group U(Na). Since U(1) ⊂ U(Na), I expect that for

these stack the twisted complex structure moduli can be stabilised, see section 3.2.3. On

the other hand, if the orientifold-odd exceptional wrapping numbers vanish, the respective

D6-brane stack is invariant under the orientifold involution ΩR, and the gauge groups

enhance to either SO(2Na) or to USp(2Na). In this case, my expectation is that the

moduli are not stabilised, but can varied continuously in flat directions of the moduli

space.

113



5.3.1 Models with USp(8)4 and SO(8)4 gauge groups

To construct models with SO(2N) or USp(2N) gauge groups, one has to use stacks of

D6-branes that are either parallel or perpendicular with respect to the O6-planes, and

therefore invariant under ΩR. The bulk R-R tadpole cancellation conditions then imply

as simplest setup four stacks a1,...,4 of D6-branes, where each stack consists of Na = 4 D6-

branes, and one can show that the models of table 18 also satisfy the twisted R-R tadpole

conditions.

Model 4: D6-brane configurations with USp(8)4 or SO(8)4 gauge group

ni,mi X Y (σ⃗) Z(i)
2 (τ⃗) N Gauge group

Model 4a

a1...4 (1,0;1,0;1,0) 1 0 (0,0,0)

(+ + +)
(+ − −)
(− + −)
(− − +)

(τ 1, τ 2, τ 3) 4 USp(8)

Model 4b

ã1...4 (1,0;1,0;1,0) 1 0 (1,1,1)

(+ + +)
(+ − −)
(− + −)
(− − +)

(1,1,1) 4 SO(8)

Model 4c

â1...4 (1,0;1,0;1,0) 1 0 (1,1,0)

(+ + +)
(+ − −)
(− + −)
(− − +)

(0,0, τ) 4 USp(8)

Table 17: D6-brane configurations of three models on the orientifold T 6/(Z2 × Z′6 ×ΩR), which

give rise to either USp(8)4 or SO(8)4 gauge groups. Each model consists of N = 4 ΩR-invariant

D6-brane stacks, where the stacks only differ in their Z(i)
2 eigenvalues. The parameters ni, mi

are the torus wrapping numbers, and X, y are the Z3 invariant bulk wrapping numbers given in

equation (5.24). One can see that the three models only differ in their discrete displacements (σ⃗)
and in the discrete Wilson lines (τ⃗), which determine the gauge groups on a certain stack.
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Exceptional wrapping numbers of Model 4a

x̂
(1)
1 x̂

(1)
2 x̂

(1)
3 x̂

(1)
4 x̂

(1)
5 ŷ

(1)
1,...,5

a1 (−1)τ2 (−1)τ3 (−1)τ2+τ3
0 0 0

a2 (−1)τ2 (−1)τ3 (−1)τ2+τ3
0 0 0

a3 (−1)τ2+1 (−1)τ3+1 (−1)τ2+τ3+1 0 0 0

a4 (−1)τ2+1 (−1)τ3+1 (−1)τ2+τ3+1 0 0 0

x̂
(2)
1 x̂

(2)
2 x̂

(2)
3 x̂

(2)
4 x̂

(2)
5 ŷ

(2)
1,...,5

a1 (−1)τ3 (−1)τ1 (−1)τ3+τ1
0 0 0

a2 (−1)τ3+1 (−1)τ1+1 (−1)τ3+τ1+1 0 0 0

a3 (−1)τ3 (−1)τ1 (−1)τ3+τ1
0 0 0

a4 (−1)τ3+1 (−1)τ1+1 (−1)τ3+τ1+1 0 0 0

x̂
(3)
1 x̂

(3)
2 x̂

(3)
3 x̂

(3)
4 x̂

(3)
5 ŷ

(3)
1,...,5

a1 (−1)τ1 (−1)τ2 (−1)τ1+τ2
0 0 0

a2 (−1)τ1+1 (−1)τ2+1 (−1)τ1+τ2+1 0 0 0

a3 (−1)τ1+1 (−1)τ2+1 (−1)τ1+τ2+1 0 0 0

a4 (−1)τ1 (−1)τ2 (−1)τ1+τ2
0 0 0

Table 18: For the exceptional wrapping numbers of Model 4a, only the numbers x̂
(i)
1 , x̂

(i)
2 , and x̂

(i)
3

(in all sectors i = 1,2,3) have non-zero entries, which are according to equation (5.22) orientifold-

even exceptional wrapping numbers. Hence, only deformations ε
(i)
1 , ε

(i)
2 , and ε

(i)
3 can be switched

on, cf. table 12.

Since I demand that for fractional cycles not only the bulk part, but also the exceptional

cycles have to be invariant under the orientifold action, I obtain the additional restrictions

(η(1), η(2), η(3)) = (−1,−1,−1) != (−(−1)σ2τ2+σ3τ3

, −(−1)σ1τ1+σ3τ3

, −(−1)σ1τ1+σ2τ2) , (5.28)

which imply for all i the same value of σi ⋅ τ i. An analysis of the beta-function coefficients

as done in [130, 67] reveals that

σi ⋅ τ i =
⎧⎪⎪⎨⎪⎪⎩

1 SO-type gauge groups

0 USp-type gauge groups
. (5.29)
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Exceptional wrapping numbers of Model 4b

x̂
(1)
1 x̂

(1)
2 x̂

(1)
3 x̂

(1)
4 x̂

(1)
5 ŷ

(1)
1 ŷ

(1)
2 ŷ

(1)
3 ŷ

(1)
4 ŷ

(1)
5

ã1 0 0 −1 −1 0 0 0 0 1 −1

ã2 0 0 −1 −1 0 0 0 0 1 −1

ã3 0 0 1 1 0 0 0 0 −1 1

ã4 0 0 1 1 0 0 0 0 −1 1

x̂
(2)
1 x̂

(2)
2 x̂

(2)
3 x̂

(2)
4 x̂

(2)
5 ŷ

(2)
1 ŷ

(2)
2 ŷ

(2)
3 ŷ

(2)
4 ŷ

(2)
5

ã1 0 0 −1 −1 0 0 0 0 1 −1

ã2 0 0 1 1 0 0 0 0 −1 1

ã3 0 0 −1 −1 0 0 0 0 1 −1

ã4 0 0 1 1 0 0 0 0 −1 1

x̂
(3)
1 x̂

(3)
2 x̂

(3)
3 x̂

(3)
4 x̂

(3)
5 ŷ

(3)
1 ŷ

(3)
2 ŷ

(3)
3 ŷ

(3)
4 ŷ

(3)
5

ã1 0 0 −1 −1 0 0 0 0 1 −1

ã2 0 0 1 1 0 0 0 0 −1 1

ã3 0 0 1 1 0 0 0 0 −1 1

ã4 0 0 −1 −1 0 0 0 0 1 −1

Table 19: In Model 4b, one can easily check that all orientifold-odd exceptional wrapping numbers

given in equation (5.23) vanish. Firstly, the numbers ŷ
(i)
1 , ŷ

(i)
2 , and ŷ

(i)
3 are in all sectors i =

1,2,3 zero, secondly, the combination ŷ
(i)
4 + ŷ(i)5 always vanishes, and thirdly, one finds that

2(x̂(i)4 − x̂(i)5 )+(ŷ(i)4 − ŷ(i)5 ) = 0 for all three sectors. The non-vanishing orientifold-even exceptional

wrapping numbers, cf. equation (5.22), are 2x̂
(i)
3 , ŷ

(i)
4 − ŷ(i)5 , and 2(x̂(i)4 + x̂(i)5 ).

Furthermore, the chosen setup of D6-branes together with the R-R tadpole cancellation

conditions is only consistent if all 16 D6-branes have the same Wilson lines τ⃗ and displace-

ments σ⃗. The specifications for three concrete models with these properties are displayed

in table 17. The parameters τ⃗ , Z(i)
2 , and σ⃗ are incorporated in the exceptional wrapping

numbers in non-trivial ways, where the concrete equations can be found in [66]. The ex-

ceptional wrapping numbers of these models are listed in tables 18 to 20, and one can

check that all orientifold-odd combinations summarised in equation (5.23) vanish due to

the orientifold invariance imposed on all D6-branes. Thus, only flat directions should be
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Exceptional wrapping numbers of Model 4c

x̂
(1)
1 x̂

(1)
2 x̂

(1)
3 x̂

(1)
4 x̂

(1)
5 ŷ

(1)
1 ŷ

(1)
2 ŷ

(1)
3 ŷ

(1)
4 ŷ

(1)
5

â1 −1 0 0 0 (−1)τ+1 0 0 0 (−1)τ+1 (−1)τ

â2 −1 0 0 0 (−1)τ+1 0 0 0 (−1)τ+1 (−1)τ

â3 1 0 0 0 (−1)τ 0 0 0 (−1)τ (−1)τ+1

â4 1 0 0 0 (−1)τ 0 0 0 (−1)τ (−1)τ+1

x̂
(2)
1 x̂

(2)
2 x̂

(2)
3 x̂

(2)
4 x̂

(2)
5 ŷ

(2)
1 ŷ

(2)
2 ŷ

(2)
3 ŷ

(2)
4 ŷ

(2)
5

â1 0 −1 0 (−1)τ (−1)τ 0 0 0 0 0

â2 0 1 0 (−1)τ+1 (−1)τ+1 0 0 0 0 0

â3 0 −1 0 (−1)τ (−1)τ 0 0 0 0 0

â4 0 1 0 (−1)τ+1 (−1)τ+1 0 0 0 0 0

x̂
(3)
1 x̂

(3)
2 x̂

(3)
3 x̂

(3)
4 x̂

(3)
5 ŷ

(3)
1 ŷ

(3)
2 ŷ

(3)
3 ŷ

(3)
4 ŷ

(3)
5

â1 0 0 −1 −1 0 0 0 0 1 −1

â2 0 0 1 1 0 0 0 0 −1 1

â3 0 0 1 1 0 0 0 0 −1 1

â4 0 0 −1 −1 0 0 0 0 1 −1

Table 20: In Model 4c, all orientifold-odd exceptional wrapping numbers vanish, cf. equa-

tion (5.23), which can be easily checked. According to equation (5.22), for the orientifold-even

exceptional wrapping numbers, which have to be considered separately for the three sectors, one

finds 2x̂
(1)
1 , 2x̂

(2)
2 , and 2x̂

(3)
3 , as well as ŷ

(1)
4 − ŷ(1)5 , ŷ

(3)
4 − ŷ(3)5 , and 2(x̂(i)4 + x̂(i)5 ) (for i = 1,2,3).

observed for all 5 + 5 + 5 deformations, i.e. I expect that no moduli are stabilised at the

orbifold point.

Model 4a: In the first model, all fractional cycles that are wrapped by D6-branes (cf.

equation (5.26)) are purely horizontal and run through the origin. Therefore, the bulk

cycles are the sLag cycles aI⊗ aI⊗ aI, and also all exceptional three-cycles E
(i)
13 , E

(i)
31 , and

E
(i)
33 , see equation (5.27), are already sLag by themselves, cf. also table 18. Hence, all

fractional cycles in this model stay sLag under deformations. The deformations with the

parameters ε1, ε2, ε3, give rise to volumes as in figures 21(b) and 22(a), where the factors
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from the respective wrapping numbers have to be taken into account.

Model 4b: Here, the fractional cycles are also horizontal, but all displaced. Therefore

the bulk part is the sLag cycle aIII⊗ aIII⊗ aIII, and the exceptional three-cycles are

E
(i)
24 , E

(i)
42 , E

(i)
22 , and E

(i)
44 . Due to the choice of discrete displacements, one can compute

that also in this model all exceptional cycles are sLag when the Z3 orbifold images are

taken into account, see table 19. Thus, the deformation parameters ε
(i)
3 and ε

(i)
4+5 can be

switched on, and the volumes of these fractional cycles behave as displayed in figures 21(a)

and 21(b).

Model 4c: In this model, the two horizontal one-cycles in the first two tori are displaced,

while the horizontal one-cycle in the third torus is not. This implies that the exceptional

contributions depend on the Z(i)
2 sector under consideration, but as for Model 4b, the

relative signs are arranged such that under the orbifold image of Z3 only sLag cycles remain.

The exceptional wrapping numbers for this model are listed in table 20, and one finds that

in all sectors deformations ε
(i)
4+5, can be applied, while the other allowed deformations

depend on the sector, namely ε
(1)
1 , ε

(2)
2 , and ε

(3)
3 . The volumes of the fractional cycles

(with the corresponding wrapping numbers assigned) change under the deformations as

depicted in figures 21(a), 21(b), and 22(a).

5.3.2 A Pati-Salam model with gauge groups U(N)

The model that I discuss in this section was developed in [67] and consists of five D6-brane

stacks, which are all not orientifold-invariant, contrary to the SO- and USp-type models of

the last section. Therefore, one obtains U(N) gauge groups on all brane stacks, for which

one finds non-trivial D-terms for those fractional D6-branes which run over a deformed

singularity. In [67] it was shown that this model is globally consistent and provides three

generations of particles. The five factors U(1) ⊂ U(N) acquire masses due to the so-called

Stückelberg mechanism, see e.g. [9] for more information on that. The details of this model

with gauge group U(4) ×U(2)4 are summarised in table 21.

The exceptional wrapping numbers of this model can be found in table 22, where one can

read off the following properties,

(x̂(1)
2 , ŷ

(1)
2 ) = (x̂(2)

2 , ŷ
(2)
2 ) = (x̂(3)

2 , ŷ
(3)
2 ) = (x̂(3)

1 , ŷ
(3)
1 ) = (0,0) , (5.30)

(x̂(3)
3 , ŷ

(3)
3 ) = (±1,0) . (5.31)
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Model 5: D6-brane configuration of a global Pati-Salam model

ni,mi X Y Z(i)
2 (τ⃗) (σ⃗) N Gauge group

a (0,1;1,0;1,-1) 1 0 (+ + +) (0,0,1) (1,1,1) 4 U(4)
b (0,1;1,0;1,-1) 1 0 (− − +) (0,1,1) (1,1,1) 2 U(2)L
c (0,1;1,0;1,-1) 1 0 (− + −) (1,0,1) (1,1,1) 2 U(2)R
d (-1,2;2,-1;1,-1) 3 0 (− − +) (0,0,1) (1,1,1) 2 U(2)d
e (1,0;1,0;1,0) 1 0 (+ − −) (1,1,1) (1,1,0) 2 U(2)e

Table 21: D6-brane configuration of a globally defined Pati-Salam model on the orientifold

T 6/(Z2 × Z ′
6 × ΩR) with five stacks of D6-branes that are all not invariant under the orientifold

involution ΩR. The gauge group is SU(4)a×SU(2)b×SU(2)c×SU(2)d×SU(2)e×U(1)5
massive.

For these 1 + 1 + 3 exceptional cycles in the three Z(i)
2 sectors (i = 1,2,3) I expect flat

directions and therefore no stabilisation of the respective moduli. In particular, while

there is no coupling of the D6-brane stack to the cycles of equation (5.30), I expect for the

exceptional cycle in equation (5.31), I can adjust the gauge coupling in a smooth way by

changing the volume of the cycle. This makes the deformation ε
(3)
3 particularly interesting

for model building because, due to the exceptional wrapping numbers x̂
(3)
3,a displayed in

table 22, one finds that upon deformation the volume of the U(4) branes is reduced, while

the volume of the U(2)L/R branes is enhanced.

Contrary to these cycles, I expect for the other 4+4+2 directions supersymmetry breaking

upon deformation and therefore stabilised moduli at the orbifold point.

The considerations of this section 5.3 can be straightforwardly applied to models on

T 6/(Z2 × Z6 ×ΩR) orientifolds. Indeed, me and my collaborators already worked out the

exceptional wrapping numbers for several models [112], which were taken from [69, 70].

Naively, we expect for these models that, as for the just presented Pati-Salam model,

the twisted complex structure moduli should be stabilised for non-vanishing orientifold-

odd wrapping numbers. On the other hand, in case that an exceptional cycle has non-zero

orientifold-even, but vanishing orientifold-odd wrapping numbers, we expect that the gauge

coupling can be varied with changes in the volume of the exceptional cycle. If both the

orientifold-even and -odd exceptional wrapping numbers are zero, the brane stack does not

couple to the corresponding deformation, and one should find a flat direction in the moduli

space. These expectations have to be checked in future investigations.
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Exceptional wrapping numbers of Model 5

x̂
(1)
1 x̂

(1)
2 x̂

(1)
3 x̂

(1)
4 x̂

(1)
5 ŷ

(1)
1 ŷ

(1)
2 ŷ

(1)
3 ŷ

(1)
4 ŷ

(1)
5

a 0 0 1 1 -2 0 0 0 -1 1

b 0 0 -1 1 0 0 0 0 -1 1

c 0 0 -1 -1 2 0 0 0 1 -1

d 0 0 1 -3 2 0 0 -2 3 -1

e -1 0 0 0 1 2 0 0 -1 -1

x̂
(2)
1 x̂

(2)
2 x̂

(2)
3 x̂

(2)
4 x̂

(2)
5 ŷ

(2)
1 ŷ

(2)
2 ŷ

(2)
3 ŷ

(2)
4 ŷ

(2)
5

a 0 0 1 -1 0 0 0 0 -1 1

b 0 0 -1 1 0 0 0 0 1 -1

c 0 0 -1 1 0 0 0 0 -1 1

d 0 0 -1 1 0 0 0 2 1 -3

e 1 0 0 0 -1 -2 0 0 1 1

x̂
(3)
1 x̂

(3)
2 x̂

(3)
3 x̂

(3)
4 x̂

(3)
5 ŷ

(3)
1 ŷ

(3)
2 ŷ

(3)
3 ŷ

(3)
4 ŷ

(3)
5

a 0 0 -1 1 0 0 0 0 -1 -1

b 0 0 1 1 -2 0 0 0 -1 1

c 0 0 1 1 2 0 0 0 -1 -1

d 0 0 -1 -1 0 0 0 0 1 1

e 0 0 1 -1 0 0 0 0 1 -1

Table 22: For the exceptional wrapping numbers of Model 5, I find that ŷ
(i)
2 (with i = 1,2,3), ŷ

(3)
1 ,

and ŷ
(3)
3 , as well as the numbers x̂

(i)
2 and x̂

(3)
1 are zero for all stacks. Further implications of the

exceptional wrapping numbers like their contributions to the orientifold-even and -odd wrapping

numbers of equations (5.22) and (5.23) are discussed in the main text.
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6 Conclusions and Outlook

In this thesis, I presented explicit complex structure deformations of fractional special

Lagrangian cycles on which D6-branes are wrapped, where the Z2 singularities of different

type IIA/ΩR orientifolds were deformed. As explicit examples, I studied the orientifolds

T 6/(Z2 × Z2M × ΩR) of 2M = 2,6,6′ with discrete torsion. I also discussed the local

deformations C2/Z2 and C3/(Z2 ×Z2) and the toy model of T 4/(Z2 ×ΩR), which actually

belongs to type IIB string theory and which incorporated fractional D7-branes. While

the orientifolds with 2M = 2,6′, the local models, and the toy model T 4/(Z2 × ΩR) were

studied together with my collaborators Jun.-Prof. Dr. Gabriele Honecker and Dr. Michael

Blaszczyk, see [109–111], the discussion of the orientifold with 2M = 6 is completely new.

In the examples that I presented here in my thesis, I gave often much more details than

appeared in the publications with my collaborators, which makes the description partly

rather technical. The aim is here to give the reader the possibility to easily reproduce my

results, and maybe to further develop them or to apply them to different orbifold setups

in the future. Therefore, I also give a short summary in appendix B on which functions I

used in Mathematica.

Based on the idea of Vafa and Witten [108], we developed for the first time an explicit

formalism for the complex structure deformations of the Z2 orbifold fixed points. For

this purpose, we used the language of hypersurfaces in weighted complex projective spaces

that already appeared in the context of heterotic string theories, see the discussion and

references in the introductory chapter. As I showed in my thesis in explicit calculations,

in this language one cannot only directly switch on certain deformations, but one can also

study their impact on physical quantities like the gauge couplings and supersymmetry

breaking. In addition, I could concretely analyse which complex structure moduli were

stabilised by certain deformations, where the mechanism of Fayet-Iliopoulos terms in the

context of D-terms was used.

As a starting point, we studied the concrete expressions of Lagrangian one-cycles on the

two-torus in this description [109, 110], where my main contribution was a detailed analysis

of the properties and symmetries of all possible sLag cycles. In addition, we translated the

shift symmetry on the two-torus, which makes it possible to exchange singularities (and

also fractional cycles) with different singularities (cycles), to the hypersurface language.

The shifts proved later to be a useful tool in cases where explicit descriptions were hard

to find, and where for example a shift of the respective object onto the real axis could

lead to a tractable formulation. In my thesis, I presented these findings in great detail in

section 4.1.
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Next, I treated the local deformations C2/Z2 and C3/(Z2×Z2) in section 4.2. This was done

in order to familiarise the reader with the procedure of concrete deformations and to show

how the exceptional cycles on the orbifolds can be described locally, where the discussion

is similar to the one in [109]. I also presented a plot of the volume of the exceptional cycle

of C2/Z2 as a function of the deformation parameter, where the volume was obtained by

integrating the holomorphic two-form over the exceptional cycle. Since the singularities

of the orbifolds that I deformed in the following sections are locally of the form C2/Z2,

the square-root shape of this integral reappeared many times and was the characteristic

property to see if a certain fractional cycle has an exceptional contribution. I showed the

relation between deformations in positive and negative direction and the calibration of the

exceptional cycles.

After that, I turned to the toy model of the T 4/Z2 orbifold that I studied together with

my collaborators in [109]. In section 4.3, I presented our hypersurface formalism for the

orbifold setup T 4/Z2 (which can easily be generalised to orbifolds T 4/Z2M). As in [109], I

restricted in this section the description to square torus lattices, which simplifies the hyper-

surface equation considerably, and which is sufficient for most applications. As an extra, I

studied pure bulk cycles in more detail, where I introduced two different constructions and

commented on how much the different cycles are affected by deformations. In a next step

I analysed the exceptional cycles, where I found new pictorial representations of a deform-

ation that give a good intuitive understanding of which exceptional cycles are deformed

and how they behave. I also showed the direct integration of a deformed exceptional cycle,

which, for small values of the deformation parameter, indeed has the same shape as the

local deformation on C2/Z2. Finally, I presented the concrete integrals over all fractional

sLag cycles on the square torus, which can be nicely visualised in a two-dimensional dia-

gram. The integrals were obtained by directly integrating over the fractional cycle, and the

plots revealed by either linear or square-root-like behaviour if an exceptional contribution

was present and with which sign it appeared. These plots together with a detailed analysis

of the concrete deformations were my main contributions to the publication [109].

In section 4.4, I treated the T 6/(Z2 × Z2 × ΩR) orientifold on square torus lattices that

also appeared in our publication [109]. In this section, I discussed the modifications in the

hypersurface equation compared to the toy model T 4/Z2 and discussed the meaning of each

term. After that, I commented on the cycle structure, which implies that if only one of the

three sectors is deformed, the deformations can be easily deduced from the T 4/Z2 orbifold.

More general deformations turned out to be difficult to compute for several reasons, but

some specific deformations could be constructed [109]. I did not reproduce these results in

my thesis, but instead I refer the interested reader to our article.

The treatment of the phenomenologically appealing T 6/(Z2×Z′
6×ΩR) orientifold on tilted
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torus lattices, which all have necessarily hexagonal shape, is similar to our publication [110],

and is discussed in my thesis in section 4.5. To find the hypersurface formalism of this

orientifold, we used the description of Z2 × Z2 and imposed an additional Z3 symmetry

on the hypersurface equation, which leads to a hexagonal torus lattice. Furthermore,

certain fixed points and deformation parameters are identified and can be grouped into

orbits, as I found together with my collaborators. Similarly to the toy model of T 4/(Z2 ×
ΩR), I started with the description of different bulk cycles. After an analysis of many

different bulk cycles and their behaviour under deformations, performed by me and Dr.

Michael Blaszczyk, one especially suitable candidate could be found, as already presented

in [110]. For the subsequent analysis of the exceptional cycles in my thesis, I extended

the results that I obtained together with my collaborators in [110] by many computational

details. In addition, I studied in this section the behaviour of the exceptional cycles by

using my new pictorial tool, which indeed improved the understanding of the structure

of the deformations considerably. With these pictures it was evident why at some places

correction terms had to be included into the hypersurface equation in order to keep the

undeformed singularities singular, and it could be checked qualitatively if the computed

correction terms had the desired properties. The correction terms were first derived by Dr.

Michael Blaszczyk, but I cross-checked the results and gave the step-by-step calculations

in appendix A. Due to some technical issues, it was not possible to calculate all integrals

over fractional cycles directly. Therefore, me and my collaborators approached these cycles

by either integrating over bulk and exceptional parts separately and then combining the

results, or by accessing the exceptional cycle indirectly by subtracting suitable cycles from

each other.

Finally, in section 4.6 I showed my first new results for the phenomenologically very at-

tractive orientifold T 6/(Z2 × Z6 × ΩR), where unexpected technical issues arose. I could

write down the hypersurface equation and identify the fixed point orbits and restrictions

on the deformation parameters, where a closer look revealed that only one deformation in

the first sector had the same structure as on the Z2 × Z′
6 orbifold. All other deformations

had to be analysed anew in detail. In particular, in sector one I was able to observe the

local behaviour of all exceptional cycles, but I could not find the correction terms that

would be necessary to perform global deformations. In the sectors two and three, which

behave completely analogously to each other, and which are a mixture of one rectangular

and one hexagonal torus, I could directly integrate all sLag cycles. I found that due to

the different structure of the two tori, also the deformations behave less symmetrically and

e.g. also some cycles that are distant from the deformed singularity are highly affected by

the deformation (in contrast to the T 6/(Z2 × Z2) and T 6/(Z2 × Z′
6) models which exhibit

symmetries between all three Z2 sectors).

Since the focus of my thesis was mainly to develop a language for concrete deformations
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and to study concrete deformations in different orbifold setups, I did not construct new

models in chapter 5, but I took them from our publications [109] and [110]. The main

purpose of the concrete models that I presented in this section was to check if our method

of complex structure deformations behaves as expected and to give a physical motivation.

More concretely, on the one hand I studied models of either SO(2N) and USp(2N) gauge

groups, for which, as expected, all fractional cycles stayed sLag under deformations. Thus,

no moduli were stabilised, but they could be varied smoothly, and therefore also the gauge

coupling constants changed. On the other hand, in the models with U(N) gauge groups, it

was indeed possible to stabilise several or all complex structure moduli for those fractional

cycles which lost their sLag property under deformations, i.e. which developed an imaginary

contribution to the integral.

In the future, one could apply this method to more concrete models, especially to phe-

nomenologically appealing ones with Standard Model or GUT spectrum. For example, the

orbifold T 6/(Z2 ×Z6), which was not studied before in the context of deformations, would

be an interesting candidate. Unfortunately, this orbifold will need further investigation

due to unexpected technical difficulties. Hence, the idea is, after some more research, to

publish my new findings together with my collaborators Jun.-Prof. Dr. Gabriele Honecker

and Dr. Wieland Staessens in another article, where my collaborators will contribute the

gauge threshold corrections for this orbifold [112], and we will compare the sizes of the

different effects on the gauge couplings.

A further application is to study dual models in the heterotic E8×E8 string theory. Due to

the conjectured M-theory duality, as mentioned in the introductory chapter 1, one should

find such dual models after deformation and blow-up to a completely smooth type IIA

string theory background, where I assume that the models under consideration are super-

symmetric. As a first ansatz one could study D6-brane models which only contain SO(2N)
and USp(2N) gauge groups, where the expectation is that under the deformation all codi-

mension three singularities vanish and therefore a smooth background remains. A useful

tool for such a systematic analysis could be the data base http://orbifolder.hepforge.org/,

in which (by the duality relation) the same orbifolds with the same gauge groups as in

type IIA string theory should be searched for. In a next step, one could also compare the

particle spectra in type IIA and in the heterotic E8×E8 string theory for generic ΠiSU(Ni)
groups, or study which parameters in the E8 ×E8 string theory are involved in the process

of the deformation.
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A Calculation of the correction terms on T 6
/(Z2 ×Z′

6
)

A.1 Calculation of the correction term ε3(ε4+5)

The starting point for the calculation of the correction terms is the condition f = df = 0

for the existence of singularities in the hypersurface f . From ∂f/∂y I obtain the constraint

y = 0, and together with f = 0 I find f ≡ ỹ2 = 0, where ỹ2 is given in equation (4.69) for

the hypersurface. I take a configuration with ε1 = ε2 = ε4−5 = 0 and choose vi ≡ 1 such that

equation (4.69) reads

ỹ2(x2, x3, ε3, ε4+5) = (x3
2 − 1) (x3

3 − 1) − ε3 (1 + x2
2x3 + x2x

2
3) − ε4+5 (2 − x2

2x3 − x2x
2
3) , (A.1)

which preserves the symmetry x2 ↔ x3. As a first step, I insert the exceptional cycle

x2 = x3 = a + ib into that, which leads to a purely real expression for ỹ2(a, b, ε3, ε4+5) = 0

that can be rewritten as a function ε3(a, b, ε4+5). By finding expressions for the coordinates

a, b that depend on ε3, ε4+5, I will obtain the correction term ε3(ε4+5).

(a) Surface of the function ε3(a, b) for parameter

ε4+5 = 0. For the fixed points (33),(42),(24)

at (a, b) = (1,0), (− 1
2
,−
√
3
2

), (− 1
2
,+
√
3
2

), respect-

ively, which are local minima of the depicted

surface, on finds ε3(a, b) = 0.

-1.0 -0.5 0.5
ε4+5

-0.4

-0.3

-0.2

-0.1

ε3

(b) Correction term to the deformation para-

meter ε3 as a function of ε4+5.

Figure 31: Illustrations to the correction term ε3(ε4+5).

The plots of the function ε3(a, b, ε4+5) with respect to a, b and with different fixed values for

ε4+5 make it possible to observe how the size of the parameter ε3 changes at the singularity

(33) with position (a, b) = (1,0), as exemplarily done in figure 31(a) for ε4+5 = 0. Actually,

ε3 should not change at all at the singularities and stay zero when ε4+5 is varied, but the

plots reveal that this is not the case. Having had a look at several plots for ε3(1, b), I
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suggest that there is no change in this direction, while for ε3(a,0) the minimum has a

negative value and is slightly shifted in its position, i.e. a = a(ε3, ε4+5).

Since the condition f = df = 0 directly translates to the new coordinates a, b, I confirm this

assumption by solving ∂ε3(a,b,ε4+5)

∂b = 0 for b, which provides indeed a solution b = 0. With

the restriction b = 0 it is now possible to solve ∂ỹ2(a,0,ε3,ε4+5)

∂a = 0, which yields the result

a = (1 + ε3 − ε4+5)1/3. Finally, one can solve ỹ2(a(ε3, ε4+5),0, ε3, ε4+5) = 0 to arrive at the

correction term

ε3(ε4+5) = −
3

2
+ ε4+5 +

1

2

√
9 − 12ε4+5

= −1

3
ε2

4+5 −
2

9
ε3

4+5 +O(ε4
4+5)

(A.2)

that is also presented in the plot of figure 31(b). One should note that the analytic

expression is only valid up to ε4+5 ≤ 3
4 because otherwise the expression has imaginary

values.

A.2 Calculation of the correction term ε4+5(ε3)

The calculation of the correction term ε4+5(ε3) is somewhat more involved. The same

approach as in the previous section turned out to be difficult because the fixed points (42),

(24) change their position in both variables a and b when the deformation ε3 is switched

on. Therefore, I will first shift fixed point (42), which shall stay singular, to the position

of (33), and (24) to (11), as explained in section 4.1. I use again equation (A.1) and apply

the shift transformation λ2 on the coordinate x2 and λ4 on x3 as defined in equation (4.18).

After that I insert the equation for the exceptional cycle, x2 = x3 = a+ib as above. Together

with the condition ỹ2(a, b, ε3, ε4+5) = 0 for the singularities I can write ε4+5(a, b, ε3), which

is illustrated in figure 32(a).

The following steps are similar to the one of section A.1. Using figure 32(a) with different

values ε3 ≠ 0, I find that the coordinate a does not feel the deformation, while b depends

on ε3. Solving ∂ε4+5(1,b,ε3)
∂b = 0 for b, I get

b6ε3 + b5(−9 − 3ε3) + ε3 + b4(9 + 6ε3) + b3(−27 − 7ε3) + b2(9 + 6ε3) + b(−9 − 3ε3) = 0 , (A.3)

which means that b is given by a root expression and cannot simply be resolved as a function

of ε3. Thus, for this correction I cannot find an analytic expression, but nevertheless I can

write down the series expansion

ε4+5 = −
1

9
ε2

3 −
1

81
ε3

3 +O(ε5
3) , (A.4)

which is presented in the plot in figure 32(b).
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(a) After the shift λ2(x2) = λ4(x3) I find the sin-

gularities (33) and (42) of the function ε4+5(a, b) at

(a, b) = (− 1
2
,−
√
3
2

) and (1,0), respectively. For the

parameter ε3 = 0, I find the value ε4+5(a, b) = 0 at

these points.

-1.0 -0.5 0.5 1.0
ε3

0.02

0.04

0.06

0.08

0.10

0.12

ε4+5

(b) Correction term of the deformation para-

meter ε4+5 as a function of ε3.

Figure 32: Illustrations of the correction term ε4+5(ε3).

B Implementation in Wolfram Mathematica

In this appendix, I will explain how I concretely implemented the results of my thesis in

Wolfram Mathematica. In case that the reader tries to perform some explicit calculations

by him/herself or to reproduce my figures, it will be of some help to have these details

already at hand. More details on the built-in functions that I describe in the following can

be found in the Wolfram Documentation directly in the Mathematica “Help” menu or at

http://reference.wolfram.com/language/.

Figures 2 and 3 in section 4.1, which depict the real and imaginary part of the Weierstrass

℘-function (see equation (2.31)) imposed on torus lattices of different shape, incorporate

several built-in Mathematica functions. Firstly, I used

ContourPlot3D[f == g,{x,xmin, xmax},{y, ymin, ymax},{z, zmin, zmax}] , (B.1)

where for x and y I inserted the range of the lattice vectors (in particular, for y only

the value of the imaginary part of the second lattice vector), and with appropriate values

for z on the vertical axis (usually of the order of ten). Secondly, I utilised the built-in

Mathematica function

WeierstrassP[z,{g2, g3}] , (B.2)
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where g2, g3 are the Weierstrass invariants, defined in equation (2.34), which were set to

{4,0} for the square and to {0,4} for the hexagonal torus lattice. The complex coordinate

z simply specifies the position on the torus lattice, as in ℘(z). For f == g (where the symbol

”==” stands for equality in Mathematica) I inserted Re[WeierstrassP[z,{g2, g3}]]−z == 0 (or

analogously the imaginary part). Also the similar function WeierstrassPPrime[z,{g2, g3}]

exists that computes the derivative ℘′(z) (as well as functions for the invariants and half

lattice vectors). Thirdly, the option MeshFunctions of ContourPlot3D[. . .] together with

the option “Mesh → {{0}}” gave me the possibility to depict certain Lagrangian one-cycles

on the surface of the Weierstrass function ℘(z).

In figure 10 of section 4.3.2, I depicted arbitrary torus one-cycles in the hypersurface

language, which were parametrised by x(t) as defined in equation (4.40). This can be eas-

ily implemented in Mathematica by making use of ParametricPlot[{fx, fy},{t, tmin, tmax}],

which in my case schematically reads

ParametricPlot[{Re (WeierstrassP[x(t),{g2, g3}],
{ Im (WeierstrassP[x(t),{g2, g3}]},{t,0,1}] .

(B.3)

It is clear that in this way also the (s)Lag lines in figures 4, 5, and 6 can be depicted.

Beginning from section 4.3, I inserted the relations x1 = a+ ib, x2 = ±(a− ib) into a certain

hypersurface equation, which means into the function y2(x1, x2) of e.g. equation (4.34)

or (4.53) (which also depend on all deformation parameters εi), in order to describe a

purely exceptional cycle. For this replacement I employed the built-in Mathematica func-

tion ReplaceAll[rules], which was also utilised for the shift transformations. In this context

also Simplify[expr], FullSimplify[expr], and ComplexExpand[expr] were helpful from time

to time to find a suitable form of the expression under consideration, either for further

calculations or to better understand the structure of the expression. For the purely ex-

ceptional cycles, I showed figures of “surfaces” of the relation y2(a, b, ε) = 0, which were

created with Mathematica’s built-in function

ContourPlot3D[f == g,{a, amin, amax},{b, bmin, bmax},{ε, εmin, εmax}] , (B.4)

where obviously y2(a, b, ε) = 0 was inserted for f == g, and where the coordinates were

relabelled and restricted in an appropriate way (in particular, ε ∈ [−1,1]). Similarly, I

implemented the functions y2(a, b) with a fixed value of ε by making use of

Plot3D[f,{a, amin, amax},{b, bmin, bmax}] (B.5)

to plot the function y2(a, b) as a two-dimensional surface, depending on the coordinates a

and b of a certain range. Helpful options were PlotRange (to specify the depicted values on
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the vertical axis), Ticks (to show only the important parameter values), and “ClippingStyle

→ None”, which yielded a better overview.

For the concrete integrations in chapter 4, which gave me the volumes of fractional, bulk,

or exceptional cycles, I used Mathematica’s numerical integration

NIntegrate[f,{x1, x1,min, x1,max},{x2, x2,min, x2,max}] (B.6)

with the option “WorkingPrecision → 10”. For the variables x1, x2, I used the respective

homogeneous coordinates in the hypersurface equations, see e.g. equation (4.34) or (4.53),

whose concrete values specified which (two-)cycle was integrated over (and analogously for

three-cycles). The concrete functions f for the integration can be found at the respective

places in chapter 4. To study the behaviour of the volumes in dependence of a deformation

parameter ε, I simply utilised

Plot[NIntegrate[f,{. . .},{. . .}],{ε, εmin, εmax}] . (B.7)

Unfortunately, some of these computations were quite time consuming, i.e. up to several

hours or even days. Hence, for convenience I often used the built-in function

DiscretePlot[expr,{ε, εmin, εmax,dε}] , (B.8)

where only specific points in steps dε were depicted (for instance dε = 0.2). This plot

was in most cases sufficient to see if the graph has the expected shape, and in the next

step, to plot the complete curve using the expression in equation (B.7). A further built-in

Mathematica function that is incorporated in my integrations is

Boole[expr ] =
⎧⎪⎪⎨⎪⎪⎩

1 if expr is true

0 if expr is false
, (B.9)

which gives me a realisation of the Heaviside step function that was defined in equa-

tion (4.46).

The two-dimensional diagrams in the real x1,x2-plane, which show schematically the frac-

tional cycles that appear in a certain orientifold, can be found in figures 13, 14 and 28.

For arbitrary fixed values of one or several deformation parameters εi, these diagrams were

built with Mathematica’s function

RegionPlot[pred,{x1, x1,min, x1,max},{x2, x2,min, x2,max}] , (B.10)

where for the prediction the condition y2(x1, x2) > 0 (with the assumption x1, x2 ∈ R) was

inserted, which holds true for sLag cycles with real calibration. This made it possible to
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directly distinguish between sLag cycles of real or imaginary calibration. Similarly, one

could apply ContourPlot[. . .], where the relation y2(x1, x2) = 0 had to be inserted, and

where only the lines which border the cycles were apparent. Let me remark that the labels

of the cycles could be nicely inserted into this diagram by making use of

Epilog→ {Inset[Graphics[Text[Style[“ < label > ”,Large,Bold]]],{x1, x2}]} , (B.11)

and by combining this with the actual plot by employing Show[g1, g2, . . .].

As a fast method to check explicitly for a certain model which singularities were deformed

and which ones stayed singular if one or several deformation parameters εi were switched

on, I calculated

Solve[{y2(v1, v2, ε1, ε2, . . .) == 0,

D[y2(v1, v2, ε1, ε2, . . .), v1] == 0,

D[y2(v1, v2, ε1, ε2, . . .), v2] == 0},{v1, v2}] ,
(B.12)

corresponding to equation (4.65) in the chart xi ≡ 1. Below equation (4.65), I also explained

why the coordinates vi were here more favourable. The results directly showed which

singularities were not deformed (i.e. still apparent) and if they also changed their position

depending on the deformation parameters. In case that more singularities vanished than

expected, one needed to calculate correction terms to keep them singular, as for example

done in appendix A.
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