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Abstract: DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds
to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of
thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in
the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid
membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content
is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active.
An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron
transfer is indicated. In conclusion, DnaK3 is a versatile chaperone required for biogenesis and/or
maintenance of thylakoid membrane-localized protein complexes involved in electron transfer
reactions. As mentioned above, Hsp70 proteins are involved in photoprotection and repair of PS II
in chloroplasts.

Keywords: chaperone; Hsp70; photosynthesis; thylakoid membrane biogenesis; photosystem
maintenance; Synechocystis sp. PCC6803

1. Introduction

In plants and cyanobacteria, the biogenesis and dynamics of thylakoid membranes (TMs) is
light-controlled [1,2]. In plants, proplastids develop into chloroplasts, involving the de novo formation
of an internal TM network [3], and a developed TM network dynamically reorganizes in the light [4].
When the cyanobacterium Synechocystis sp. PCC 6803 (from here on: Synechocystis) is grown in the dark
under light-activated heterotrophic growth (LAHG) conditions, where glucose is the only available
energy source, Synechocystis cells exhibit reduced or even just rudimentary TMs [5,6]. However,
after shifting dark-adapted cells into the light, the Synechocystis cells quickly rebuild a TM network
and recover photosynthetic activity [5,7]. While dark-adapted Synechocystis cells do not harbor active
photosystem II (PS II) complexes, complete photosynthetic activity is regained within 24 h after
transferring dark-adapted cells into the light, and reappearance of photosynthetic electron transfer
processes is coupled to the formation of internal TMs [7]. However, it is still enigmatic how the formation
of internal TMs is controlled, both in chloroplasts and cyanobacteria, although some proteins that might
be involved in this process have already been described previously [8]. These proteins include the inner
membrane-associated protein of 30 kDa (IM30, also known as Vipp1: The vesicle-inducing protein in
plastids 1), Hsp70 (Heat shock protein 70) chaperones, dynamin-like proteins, a prohibitin-like protein,
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as well as YidC, a membrane protein integrase [9-16]. Nevertheless, while some proteins are probably
more directly involved in TM formation, the structure and stability of TMs are also affected more
indirectly by pathways, which control the biogenesis of lipids and/or cofactors, and, e.g., mutants
defective in synthesis of chlorophyll or of the membrane lipid phosphatidylglycerol (PG) have severely
reduced TM systems [17-20].

Molecular chaperones of the Hsp70 family are involved in multiple cellular processes, such as
folding of newly synthesized proteins, protein disaggregation, prevention of protein misfolding,
protein transport, or the control of regulatory protein functions [21]. The thus far best characterized
Hsp70 chaperone is the DnaK protein of the bacterium Escherichia coli [22]. In cyanobacteria, at least two
DnaK proteins, DnaK2 and DnaK3, are highly conserved, and most cyanobacteria contain an additional
DnaK1 protein as well as further DnaK-like proteins [15,23,24]. While cyanobacterial genomes
typically encode several DnaK chaperones together with multiple DnaJ (Hsp40) proteins, which serve
as DnaK co-chaperones, the physiological function of this DnaK-DnaJ network in cyanobacteria is
essentially not understood. In recent years, the physiological roles of individual DnaK and DnaJ
proteins have been analyzed to some extent in the cyanobacteria Synechococcus sp. PCC 7942 and
Synechocystis [16,24-26]. In Synechocystis, three DnaK proteins are expressed together with at least
seven Dna] proteins [15,25]. The two dnaK genes dnaK2 and dnaK3 are essential in Synechocystis,
but not dnaK1 [15]. The DnaK2 protein has been classified as the canonical DnaK protein involved in
cellular stress responses, and DnaK2 most likely functions together with S110897, the only type I Dna]
protein expressed in Synechocystis [24,25]. In line with this, deletion of the s/l0897 gene resulted in a
heat-sensitive phenotype [25]. However, interactions with other DnaJ proteins cannot be excluded,
and in fact, the DnaK2 protein interacts and cooperates with the type II ] protein Dna]J2 in Synechococcus
sp. PCC 7942 [27].

In contrast to the remaining dnajJ genes, the dnaJ gene sll1933 (dnaJ3) could not be deleted in
Synechocystis, indicating that the encoded Dna]J3 protein is essential [25]. The dnaK3 and dna/3 genes
are organized in a conserved gene cluster in cyanobacteria, and a functional interaction of DnaK3
with Dna]3 is assumed [28] DnaK3- and DnaJ3-homologs are encoded in essentially all cyanobacterial
genomes, except in Gloeobacter violaceus PCC 4721, a cyanobacterium that lacks TMs [29,30]. Based on
this observation it has been suggested that the physiological function of both proteins might be linked
to TMs, and consequently, DnaK3 and DnaJ3 were suggested to be involved in the biogenesis and/or
maintenance of TMs [16,25,31]. The DnaK3s of both Synechococcus and Synechocystis co-purify with
membranes, and the unique DnaK3 C-terminus has been implicated to mediate tight membrane
binding of DnaK3 in Synechocystis [15,31]. However, what might be the function of DnaK3 at TMs?

The function of a cyanobacterial DnaK3 has recently been linked to the PS II reaction center
protein D1 [16], the main target of stress-induced damage in the photosynthetic electron transport
chain, which is constantly degraded and replaced by newly synthesized proteins in a PS II repair
cycle [32,33]. Furthermore, a Hsp70 chaperone is involved in the biogenesis, protection and/or repair
of PS II complexes in chloroplasts [34,35]. Based on these observations we hypothesized that the
physiological functions of DnaK proteins might have diverged in cyanobacteria, and DnaK3 potentially
is specifically involved in biosynthesis/maintenance of TM complexes involved in photosynthesis.

In the present study, we have analyzed the role of the Hsp70 protein DnaK3 in TM maintenance
in the cyanobacterium Synechocystis sp. PCC 6803. Expression of DnaK3 is light-regulated. Reduction
of the cellular DnaK3 content resulted in decreased PS and phycobilisome (PBS) contents, a lowered
PS I-to-PS Il ratio, a generally reduced photosynthetic activity as well as disturbed PS II activity at
elevated light conditions. The observation that the PS II activity is affected after photoinhibition in a
mutant strain, where the cellular DnaK3 content is reduced, and the comparison of the mutant strain
with Synechocystis wt suggests a specific function of DnaK3 in PS II protection and/or repair. However,
based on the here presented data its activity must be wider. Thus, our findings support the assumption
that DnaK3 is involved in biogenesis and/or maintenance of TM-localized electron transfer complexes
in cyanobacteria.
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2. Materials and Methods

2.1. Growth Conditions

A glucose-tolerant Synechocystis sp. PCC 6803 wild type (wt) and the merodiploid dnaK3 (sl11932)
knock-down (KD) strain [15] were cultivated photomixotrophically at 30 °C in liquid BG11 medium [36]
supplemented with 5 mM glucose. Kanamycin (80 pg/mL) was added in case of the dnaK3KD strain.
The cultures were aerated with air enriched with 2% CO, and grown under fluorescent white light at
a light intensity of 20 (LL, low light) or 120 (HL, high light) pmol/m? s, respectively. To determine
growth rates, the strains were initially adjusted to an ODysq of 0.05 in BG11 medium, containing 5 mM
glucose, and growth was followed by monitoring OD759. For LAHG cultures, Synechocystis cells were
grown in a dark cabinet for at least two weeks, during which the cultures were diluted at least five
times in fresh medium, as described previously (Barthel et al., 2013).

2.2. SDS-PAGE and Immunoblot Analysis

Synechocystis cells were harvested in the exponential growth phase at an ODy59 below 2.0.
Cell pellets were resuspended in buffer (50 mM HEPES, pH 7.0, 25 mM CaCl,, 5 mM MgCl,, 10% (v/v)
glycerol) and a proteinase inhibitor mix (Sigma Aldrich) was added at a 1:1000 dilution. Cells were
broken with glass beads (0.25-0.5 mm diameter) in a beadbeater. Unbroken cells and glass beads
were removed by centrifugation at 1600 g and the respective protein concentrations were determined
by three independent Bradford assays. After addition of SDS sample buffer and heating at 65 °C
for 15 min, cell extracts were loaded on an 8% polyacrylamide gel and proteins were separated
by SDS gel electrophoresis. Subsequently, proteins were transferred to a polyvinylidene difluoride
membrane, using a wet electroblotting system from Bio-Rad. The rabbit primary antibodies were
used at 1:2000 (anti-L23 directed against the large ribosomal subunit protein L23 encoded by s/l1801,
Gramsch laboratories, Schwabhausen, Germany), 1:1000 (anti-DnaK1, anti-DnaK2 and anti-DnaK3 [15],
anti-PsaA/PsaB [37]) or 1:100 (anti-PsbA [38]) dilutions, respectively, whereas the goat anti-rabbit
secondary antibody (Sigma Aldrich) was diluted 1:10,000. PsbA/D1-HRP antibodies were obtained
from Agrisera and used in 1:15,000 dilution. To visualize the protein bands, membranes were incubated
with the enhanced chemiluminescence kit from Pierce. Each immunoblot analysis has been repeated at
least three times.

2.3. Complete Deletion of DnaK3 in Synechocystis Cells Grown under LAHG Conditions

To test whether DnaK3 is dispensable in the dark, the dnaK3KD strain [15] was cultivated
in liquid BG11 medium under LAHG conditions and diluted if necessary. During each dilution
step, the concentration of kanamycin was enhanced in the growth medium from 80 to 275 pg mL~!.
To check whether the strain was completely segregated, genomic DNA was isolated and analyzed
by PCR using the primers NtdnaK3check (5'-gtttttagaagcggagaaagtgg-3") and CtdnaK3check
(57-cctttgggettggaaaccattgg-37).

2.4. Cell Number and Chlorophyll Concentration Determination

Cell numbers were counted with a light microscope using a Thoma counting chamber. Chlorophyll
concentrations were determined photometrically after methanol extraction [39].

2.5. Electron Microscopy

To study the cell morphology of the different Synechocystis strains, cell pellets obtained from a
10 mL cell suspension were washed and resuspended in buffer (50 mM KH,POy, pH 7). Ultrastructural
investigations were performed as described previously [37]. The number of thylakoid layers per cell
was determined, evaluating more than 200 individual cells of wt and the DnaK3 depleted Synechocystis
strain, respectively.
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2.6. Absorbance and Low Temperature (77K) Fluorescence Spectra

Absorbance spectra of whole cells were recorded using a Perkin-Elmer Lambda 25
spectrophotometer equipped with an integrating sphere. Cell suspensions were adjusted to a constant
value of 300,000 cells mL~!. Ratios of cyanobacterial chromophores were determined using the
absorption ratio at 625/680 (phycocyanin/chlorophyll) or at 490/440 (carotenoids/chlorophyll).

Low-temperature (77 K) fluorescence emission spectra were recorded using an Aminco Bowman
Series 2 spectrofluorimeter. Cultures were adjusted to a chlorophyll concentration of 3 pg-mL~! in
BG11 medium and frozen in liquid nitrogen. Chlorophylls were excited at 435 nm and phycobilisomes
(PBs) at 580 nm. Fluorescence emission was recorded from 630 to 760 nm.

2.7. Oxygen Evolution

Oxygen production of the cell suspensions was determined in the presence of 500 uM
phenyl-p-benzoquinone (PPBQ) using a fiber-optic oxygen meter (PreSens) under actinic light (600 pmol
photons m~2-:s71). Prior to the measurement, the cultures were adjusted to a chlorophyll concentration
of 3 ug'mL~! in BG11 medium. For experiments in presence of a protein synthesis inhibitor, 100 pg-mL™"!
lincomycin was added prior to illumination (1500 pmol photons m=2-s71).

2.8. Chlorophyll Fluorescence Induction Curves

Cultures were adjusted to a chlorophyll concentration of 3 pgmL™! in BG11 medium,
and subsequently fluorescence induction curves were recorded at room temperature, using a
Dual-PAM-100 measuring system equipped with Dual-E and DUAL-DR modules (Heinz Walz
GmbH). During the initial dark phase, background fluorescence was probed by weak measuring light
(0.024 umol photons m=2-s7!) and after 40 s fluorescence was induced by switching on red actinic light
(95 umol photons m:s7!). Saturating pulses (600 ms, 10.000 umol photons m™2:s™') were applied
once during the dark phase and at 30 s intervals during the light phase, to obtain minimal (Fy) and
maximal (F, and Fp,-) fluorescence values [40,41]. The coefficient of photochemical quenching of the
PS II Chl fluorescence (qP) was calculated using the software routine for light induction measurements
(qP = (Fm-Fm")/(Fm-Fo’)) after 250 s illumination with red actinic light.

2.9. P7pp Re-Reduction Kinetics

Re-reduction kinetics were recorded using a Dual-PAM-100 measuring system. Py was first
reduced by 10 sec far-red and then oxidized by a 20 ms saturation light pulse (10.000 pmol photons
m~2.s71). 15 individual re-reduction curves were recorded, averaged, and fitted with single exponential
functions to determine decay halftimes (t;»). Prior to the measurement, the different cultures were
adjusted to a chlorophyll concentration of 3 ug'-mL~! in BG11 medium.

3. Results

3.1. DnaK3 Synthesis is Light-Induced and Essential in the Dark

The Synechocystis dnaK2 and dnaK3 genes are essential in the light [15], and the DnaK1-3 proteins
were detected by Western blot analyses in Synechocystis cells grown under constant illumination [15].
However, when Synechocystis cells were grown in the dark under LAHG conditions, the DnaK2 protein,
but not DnaK1 and DnaK3, were detectable (Figure 1, 0 h). Yet, when dark-adapted cells were shifted
into the light, the DnaK2 level did not substantially alter, whereas the DnaK1 level quickly increased
until two hours after shifting the cells into the light. DnaK3 was detectable already after one hour,
and its cellular content increased steadily. Thus, the synthesis of DnaK1 and DnaK3 clearly is triggered
by light in Synechocystis.
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Figure 1. Light-dependent accumulation of DnaK1, 2, and 3. Dark-adapted Synechocystis cultures were
shifted into the light (0-24 h). Cell extracts (20 ug protein) were analyzed at different time points via
immunodetection, using anti-DnaK1, 2, or 3 antibodies as well as antibodies directed against PS I
(PsaA/B) and PS II (PsbA) core subunits or the ribosomal protein L23 (loading control).

Since DnaK1 is not essential for the viability of Synechocystis cells [15], we focused our subsequent
analyses on DnaK3.

As DnaK3 is essential in the light [15], the observation of a light-induced DnaK3 synthesis indicated
that DnaK3 might be dispensable in the dark. Therefore, we next attempted to completely delete the
Synechocystis dnaK3 gene in cells grown in the dark under LAHG conditions. Yet, even after more than
half a year of cultivation under LAHG conditions and increasing the kanamycin concentration in the
growth medium up to 275 ug-mL~!, a fragment corresponding in size to the wild type (wt) dnak3
gene was always detected via PCR in the dnaK3 knock-down (KD) strain in addition to the dnaK3 gene
disrupted by the kanamyecin resistance (aphA) cassette (Figure 2A,B). As Synechocystis contains multiple
identical genome copies, this result indicates that some, but not all, of the genomic dnaK3 copies were
deleted in the mutant strain. Thus, DnaK3 likely is essential not only in the light but also in the dark
under LAHG conditions.

Yet, we recently showed that expression of dnaf3 [25], which is organized in a gene cluster together
with dnaK3, is essential in Synechocystis, and thus deletion of dnaK3 might have affected the expression
of dnaj3. To assess this potential polar effect, we also quantified the amount of the Dna]3 protein in the
dnaK3KD strain (Figure 2A). Since the DnaJ3 level was not decreased compared to the wt, we concluded
that insertion of the aphA cassette into the dnaK3 gene locus did not dramatically affect the expression
of dnaJ3. Nevertheless, a polar effect on expression of dnaj3 cannot be completely excluded.

To quantify the relative cellular DnaK3 content in the dnaK3KD strain, total cellular extracts of the
wt and the KD strain were analyzed via Western blots (Figure 2C). The intensity of each band was
quantified using the Image ] software and divided by the quantity of cellular extract loaded. Based on
this analysis, the DnaK3 content was decreased by about 60% + 10% in the dnaK3KD strain compared
to the wt.
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Figure 2. Deletion of dnaK3 in the dark and the DnaK3 content in the Synechocystis dnaK3KD strain.
(A) In the Synechocystis dnaK3KD strain [15], the dnaK3 gene was disrupted by insertion of a kanamycin
resistance cassette (aphA gene). (B) The dnaK3 gene locus of wt and dnaK3KD cells grown in the
dark was analyzed via PCR using genomic DNA as a template, and the PCR products were loaded
on a 1.5% agarose gel together with a molecular size marker (M). Fragments of about 500 bp and
1500 bp represent the wt and the dnaK3 gene interrupted by a kanamycin resistance cassette (aphA),
respectively. (C) The relative DnaK3 content in the dnaK3KD strain was determined by immunoblot
analysis. Cell extracts prepared from the wt and dnaK3KD strains, respectively, were loaded on a
SDS-polyacrylamide gel in descending protein concentrations (15 ug to 5 pg) followed by a Western
blot analysis using «-DnaK3, x-DnaJ3 and «-L23 (loading control) antibodies.

3.2. Reducing the DnaK3 Content Affects Cell Growth under Heat Stress Conditions

Next, we tested whether reducing the DnaK3 content affects growth of the mutant strain under
low (LL) or high light (HL) growth conditions, respectively (Figure 3A). The dnaK3KD and the wt cells
had comparable doubling times of 11.2 h + 0.1 (wt) and 11.1 h + 0.2 (dnaK3KD), and of 8.1 h + 0.5 (wt)
and 9.4 + 1.2 (dnaK3KD) under LL and HL growth conditions, respectively. Thus, reducing the cellular
DnaK3 content does not severely affect the growth of Synechocystis cells, at least not under standard
laboratory growth conditions. Subsequently, growth of the dnaK3KD strain was tested under various
stress conditions (involving low pH, low temperature, oxidative and osmotic stress; data not shown),
but solely increasing the temperature to 42 °C resulted in an obvious growth defect of the mutant
strain, with doubling times of 26.4 + 3.5 h (dnaK3KD) and 17.9 + 0.4 h (wt) (Figure 3B). This observation
classifies DnaK3 as a traditional Hsp70 involved in heat-stress responses.

10

§ .t -;j'(.)O"'
[m] -0
o gt
S -
- ,{ZfA AR ba

A
0.1+

0 30 60 90 120 150 180 0 20 40 60 80 100 120 140
time [h] time [h]
Figure 3. Growth of Synechocystis wt and the dnaK3KD mutant strain at different growth conditions.
Synechocystis wt (black) and dnaK3KD mutant (gray) cells were grown at (A) moderate temperature
(30 °C) or (B) elevated temperature (42 °C) under low light (circle) or high light (triangle) conditions.

Cells were adjusted to ODy759 = 0.05 in BG11 medium containing 5 mM glucose and cell growth was
followed over time by measuring the ODysp.
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3.3. The dnaK3KD Strain Has a Reduced Pigment Content

Photosynthesis is one of the most temperature-sensitive processes in phototrophic organisms
and the photosynthetic activity is further impaired when heat-stress is combined with HL [42,43].
Thus, it was well possible that reducing the DnaK3 content affects photosynthetic processes in
Synechocystis.

As expression of dnaK3 is light-controlled (Figure 1), we subsequently analyzed the pigment
content of the wt and dnaK3KD strains after cultivation under LL and HL conditions, respectively.
Adaptation of Synechocystis cells to HL conditions is typically accompanied by a reduction in the
cellular amount of the two PSs, a decreased PS I-to-PS Il ratio and a reduced chlorophyll (Chl) content
per cell [44,45].

An overall reduction of the pigment content was observed under HL growth conditions when
equal amounts of cells were analyzed (Figure 4A). The Chl content was reduced to about half (Figure 4B)
and the relative content of plastocyanine (PC) (Figure 4C) and carotenoids (Car) (Figure 4D) were both
increased. It has to be noted that while the contents of Chl, PC and Car were decreased under HL
growth conditions (Figure 4A), the PC/Chl as well as the Car/Chl ratios were increased in the wt strain,
due to the more severely decreased Chl content (Figure 4A,B). Even though light scattering could have
contributed to some extent to the determined (absolute) absorbance values used in these analyses,
these data clearly show the ability of the wt to reduce the overall pigment content and to adapt it to
HL conditions.
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Figure 4. Pigment content and pigment ratios. (A) Absorbance spectra of Synechocystis wt (black)
and dnaK3KD (gray) cells (300,000 cells) grown under LL (solid line) or HL (dashed line) conditions.
(B) The chlorophyll content per ODy5y was determined as described in “Material and Methods”.
(C) The ratio of PC to Chl was determined as the ratio of the absorptions at 625 and 680 nm.
(D) The ratio of Car to Chl was determined as the ratio of the absorption at 490 and 440 nm. Error bars
represent standard deviation from three independent experiments.

Similarly, the dnaK3KD strain adapted to changing light conditions and reduced its pigment
content as expected when grown under HL conditions. However, the dnaK3KD strain exhibited a
severely reduced pigment content already when grown under LL conditions, and the Chl content as
well as the pigment ratios were very similar to the ones observed when the wt was grown under HL
conditions (Figure 4).
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Besides the obvious differences in pigmentation, the TM structure was mostly unaffected, and we
only observed a slightly reduced number of TM pairs in the mutant strain when the ultrastructure of
Synechocystis grown under LL growth conditions was analyzed via electron microscopy (Figure 5).
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Figure 5. Reducing the cellular DnaK3 content results in fewer thylakoid layers. (A) Representative
electron micrographs of Synechocystis wt and dnaK3KD mutant cells cultivated under LL (low light)
conditions. (B) Cells of the dnaK3KD mutant strain (gray) had four thylakoid layers on average, whereas
wit cells (black) showed four to five layers and a higher appearance of six and seven layers of TM pairs.
Per strain, at least 200 individual cells were counted.

3.4. Reducing the DnaK3 Content Results in an Altered PS I-to-PS 1I Ratio

Next, the relative amounts of PS II and PS I in the DnaK3 reduced strain were determined via
77 K fluorescence spectroscopy (Figure 6A). Upon chlorophyll excitation at 435 nm, characteristic
fluorescence emission maxima were detected at 721 nm (PS I), at 684 nm (CP43, PS II) and 693 nm
(CP47, PS 1I).

Synechocystis wt cells grown under HL conditions showed a decreased PS I-to-PS Il ratio compared
to LL-adapted cells (Figure 6A), which is a well-documented long-term adaptation to HL [44,46,47].
In contrast, dnaK3KD cells had a considerably decreased PS I-to-PS Il ratio already under LL growth
conditions. This finding is also supported by a Western blot analysis. When an identical quantity of
protein was loaded, the Western blot shows that PS core subunits PsaA/B (PS I) and PsbA (PS II) are
less abundant in the dnak3KD strain (Figure 6C). When the cell extracts were normalized based on
the Chl concentration (Figure 6D), no difference in the band intensity was observed in case of PsaA/B,
since in Synechocystis about 85% of the Chl is bound to PS I (assuming a PS I/PS II ratio of 2.5 [48],
96 chlorophylls per PS1[49], and 35 chl per PS II [50]). However, the PsbA band was more pronounced
in the mutant strain when compared to the wt, which further supports the decreased PS I-to-PS II ratio
in this strain. The decreased PS I-to-PS Il ratio decreases even further when cells were shifted into HL
(Figure 6A).

However, at LL as well as at HL conditions, an increased relative fluorescence emission was
observed at 684 nm (Aex = 435nm) in the mutant strain (Figure 6A). This fluorescence emission
maximum originates from PS II as well as from the PBSs terminal emitter LCM [51], and thus indicates
an increased relative phycobiliprotein content, as already observed in the absorbance measurements
(Figure 4A,C). Yet, the increased PBSs fluorescence emission at 684 nm is solely observed when PBSs
are uncoupled and do not transfer the harvested light energy to the PSs [51,52]. Thus, to next assess
energy transfer from PBSs to PS II, phycobiliproteins were excited at 580 nm and energy transfer to PS
II was followed. When PBSs are coupled to PS 11, light energy harvested by the PBS is transferred to
PS 11, resulting in quenching of the PBS fluorescence [53,54]. As can be seen in Figure 6B, upon PBS
excitation an increased fluorescence emission at 684 nm (PBSs plus PS II) was observed but not at
693 nm (PS II) (Figure 6B). Thus, the dnaK3KD strain indeed contains an increased amount of uncoupled
PBSs compared to the wt.
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The decreased fluorescence emission at 721 nm results from the decreased PS I content (Figure 6A)
and most likely not from light-dependent energy distribution via state transitions, which is supposed
to be physiologically important solely under LL growth conditions [55,56].
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Figure 6. Reduction of the cellular DnaK3 content results in a decreased PS content and a lowered
PS I-to-PS Il ratio. (A) 77 K fluorescence emission spectra of wt (black) and dnaK3KD (gray) cultures
grown under LL (solid line) and HL (high light) (dashed line) conditions. The spectra were normalized
at 695 nm. Agy = 435 nm (B) 77 K fluorescence emission spectra of wt (black) and dnaK3KD (gray)
cultures cultivated under LL (solid line) and HL (dashed line) conditions. The spectra were normalized
at 665 nm. Agx = 580 nm. (C,D) Immunoblot analysis of the content of PS I and PS II core subunits (PS I:
PsaA/B; PSII: PsbA) in wt and dnaK3KD cells grown under LL conditions. Samples were normalized to
(C) protein (25 ug) or (D) chlorophyll (0.6 pg). L23 is the loading control.

Taken together, the fluorescence spectra and the Western blot analyses reveal that the mutant
has a generally decreased PS content, with a decreased PS I-to-PS Il ratio and an increased amount
of uncoupled phycobiliproteins. However, the mutant strain still adjusts the PS I-to-PS 1I ratio to
changing light conditions, as observed for the wt strain.

3.5. The Photosynthetic Activity is Impaired in the DnaK3 Depleted Strain

Next, the photosynthetic activity of the mutant strain with a reduced DnaK3 content was studied
in greater detail. By measuring oxygen evolution rates in presence of PPBQ, the activity of PSII can
be specifically determined (Figure 7A,B). When adapted to HL growth conditions, the O, evolution
rate per cell (ODys) was reduced in the wt strain compared to LL growth conditions (Figure 7A),
in line with the observation that the light-harvesting capacity is generally reduced in cyanobacterial
cells under HL conditions [57]. In contrast to wt cells, the dnaK3KD strain showed a dramatically
decreased O, evolution rate already under LL conditions, when compared to the wt, and the activity
decreased even further under HL conditions (Figure 7A). However, when the O, evolution rates were
normalized to the Chl content, the O; evolution rate remained essentially stable in the wt, regardless
of the light conditions (Figure 7B). In contrast, the O, evolution rate was only marginally lower for
the mutant strain under LL growth conditions than for the wt, but dramatically decreased under HL
growth conditions. Thus, in contrast to the wt, the decreased O, evolution in the mutant strain is not
only a consequence of the decreased cellular Chl content (Figure 4B), since the O, evolution rate was
also drastically decreased when the measurements were normalized to the Chl content (Figure 7B).
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Figure 7. Oxygen evolution rates and relative PS II content of wt and dnaK3KD Synechocystis cells.
(A,B) wt and dnaK3KD cells were grown under LL and HL conditions, respectively, and oxygen
evolution rates were determined per ODy5g (A) or Chl (B). (C,D) wt (square) and dnaK3KD (circle) cells
were exposed to extreme high light (eHL) conditions (1500 pmol photons m~2.571) either in absence (C)
or presence (D) of lincomycin (100 ug~mL_1) and thereafter cultured under LL conditions for recovery.
Oxygen evolution was measured using 500 pM phenyl-p-benzoquinone (PPBQ) as an electron acceptor
at PSII. The recovery rate is given by the slope of a linear regression under LL conditions. Noteworthy,
no other antibiotics were present in these experiments. Inlet in (C): Immunoblot analysis of the D1
content in the dnaK3KD strain after photoinhibition (time 0). Cell extracts with identical Chl contents
(0.4 ng) were analyzed. (Error bars represent standard deviation from three independent experiments).

To test whether reducing the DnaK3 content somehow impairs PS II repair, we next determined
O, evolution rates under extreme HL conditions (1500 pmol photons m~2.s71)in presence or absence of
lincomycin, a protein synthesis inhibitor that has already been successfully used to block the PS Il repair
cycle in Synechocystis [58,59]. In absence of lincomycin, the wt strain did not show any changes in the
PS II activity under constant extreme HL illumination, i.e., the wt cells harbor an effective PS II repair
cycle (Figure 7C). However, in presence of lincomycin, the PS II activity constantly decreased when
cells were illuminated with extreme HL (Figure 7D). The decreasing PS II activity, i.e., an impaired
PS 1II protection and/or repair, can be observed for both the wt and the dnaK3KD strain in presence
of lincomycin (Figure 7D). However, in absence of lincomycin, the PS II activity was already lower
in the dnaK3KD than in the wt strain after 10 min of illumination and constantly decreased further
to about 50% after 1 h of illumination, whereas the wt activity remained about constant (Figure 7C).
Thus, PS II repair clearly is severely impaired in dnaK3KD cells, albeit the amount of expressed D1
protein did not alter (inlet in Figure 7C). Thus, PS II protection and/or repair is affected especially
under light-stress conditions.

The photochemical efficiency of PS II can be specifically assessed using pulse amplitude modulated
(PAM) fluorescence measurements. Therefore, dark/light induction curves were recorded (Figure 8A).
A minimal fluorescence (Fy) is visible due to the measuring light, which, however, is not strong enough
to stimulate photosynthetic electron transfer. Subsequently, a pulse of intense white light is given
to reduce all PS II reaction centers, resulting in maximal fluorescence (Fr). The parameter Fy/Fn,
(Fy = Fim — F,) is used to describe the maximal photochemical efficiency (Figure 8B) [60].
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Figure 8. PS II activity and Py re-reduction kinetics. (A) Light/dark induction curves were recorded
by measuring the pulse amplitude modulated (PAM) fluorescence of wt (black) and dnaK3KD cells
(gray) grown under LL or HL conditions, respectively. After 40 s of measuring light, the actinic red
light was switched on to determine minimal fluorescence values (F, Fy). Pulses of saturating light
were applied once during the dark phase and in 30 s intervals during the light phase, to obtain maximal
(Fm and Fp, ) fluorescence values. (B) Maximal PS II photosynthetic activity of the wt (black) and the
dnaK3KD strain (gray). (C) The coefficient of photochemical quenching of PS II Chl fluorescence (qP) in
wt (black) and dnaK3KD cells (gray). (B, C) Error bars represent standard deviation from at least four
independent experiments. (D) P7go* re-reduction kinetics of wt (black) and dnaK3KD (gray) cells grown
under LL conditions. A saturation pulse of 10,000 pmol photons was given for 20 ms to completely
oxidize Pqg. The following fluorescence decrease illustrates re-reduction of Pyg* in the dark. At least
ten traces were averaged and normalized. 1 represents completely oxidized and 0 completely reduced
P7g0. (E) Re-reduction halftimes were determined via fitting the decay curves of the wt (black) and
the dnaK3KD mutant strain (gray) with single exponential functions. Error bars represent standard
deviation from at least three independent experiments.

After switching on actinic light, an increased background fluorescence was detected, and PS II
centers became photosynthetically active (Figure 8A). Saturating light pulses resulted in a lowered Fp,”
compared to the maximal fluorescence F;,, measured in the dark, due to non-photochemical quenching
processes [61]. An apparent increase of the absolute Fy background fluorescence was measured for
wt cells grown under HL conditions compared to LL and for the dnaK3KD cells (grown under either
condition), indicating a more reduced plastoquinone (PQ) pool (Figure 8A). However, determining Fy
and Fy” is somewhat problematic in cyanobacteria, as the PBS fluorescence can in part also contribute
to the determined Fj fluorescence value [62], and thus discussion of solely Fy values is difficult. Hence,
we also present the normalized coefficient of photochemical quenching of PS II Chl fluorescence (qP),
which is not significantly biased by PBSs fluorescence [63]. qP is defined as 1 in the dark-adapted state
and may decrease to 0 when all PS II centers are closed. In line with Figure 7B, in the wt strain slightly
less PS II centers are open under HL conditions compared to LL. In the mutant strain, qP is similar to
the wt under LL conditions, yet the value was dramatically decreased when dnaK3KD cells were grown
under HL conditions, indicating an increased amount of closed PS II centers. Thus, the dnaK3KD
strain can hardly cope with high light treatment. This observation is in excellent agreement with the
determined O, evolution rates (Figure 7), showing an impaired PS II protection and/or repair cycle.
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Pypo™ re-reduction measurements allow determining the time needed to re-reduce the oxidized PS
I reaction center Pygy*, which is not only affected by the PS I activity but also by the redox state of
the electron transport chain (Figure 8D,E). The Pyyp* absorbance signal increased when a saturating
light pulse, which completely oxidized Py, was given and subsequently decreased due to Pgo*
reduction by PC (Figure 8D). The halftime of the re-reduction kinetic was determined by fitting the
changes in the absorbance signal with a single exponential function (Figure 8E). A faster re-reduction
rate was observed for wt cells when cells were grown under HL compared to LL conditions, which
likely originates from the reduced PS I content and the decreased PS I-to-PS Il ratio (Figures 6 and 8).
In contrast, the dnaK3KD mutant strain had reduced re-reduction halftimes under both tested light
conditions, and the halftimes were identical, regardless of the light condition (Figure 8E). The reduced
re-reduction halftimes can be explained by a more reduced PQ-pool and thus nicely support the
conclusions drawn from the results shown in Figures 6 and 8. Together, these results demonstrate that
the activity of PS II, but not of PS I, is impaired in the dnaK3KD mutant strain.

4. Discussion

Three different DnaK proteins are expressed in the cyanobacterium Synechocystis sp. PCC 6803.
While two of the cyanobacterial DnaK proteins, DnaK2 and DnaK3, are essential, solely DnaK2
can be classified as a canonical Hsp70 protein, expression of which can largely alter under various
stress conditions [24,64,65]. In contrast, the DnaK3 chaperone of Synechocystis has been suggested
to be specifically involved in biogenesis and/or maintenance of TMs [16,25]. However, thus far this
assumption was essentially exclusively based on the observations that (i) DnaK3 is attached to TMs
and (ii) DnaK3 is encoded in all cyanobacterial genomes, except in Gloeobacter violaceus, the only
cyanobacterium that does not contain an internal TM system [15,29].

Albeit the cellular DnaK3 content clearly is light-regulated (Figure 1), a basal DnaK3 level
appears to be required for survival of Synechocystis cells not only in the light but also under
LAHG conditions (Figure 2), where cells still have rudimentary TMs. Based on the CyanoExpress
database the dnaK3 transcript level does not appear to adjust to changing light conditions in
Synechocystis [66] or in Synechococcus sp. PCC 7942 [16]. Thus, (light-dependent) DnaK3 synthesis
likely is post-transcriptionally regulated, as common in cyanobacteria [67,68].

A general decrease in the PS and PBS content per cell as well as a selective down-regulation of
PS I is crucially involved in the adaptation of Synechocystis cells to HL conditions [46,67]. All these
(expected) adjustments were observed when the Synechocystis wt strain was shifted from LL to HL
growth conditions (Figures 6 and 7). Also, in case of the mutant strain, typical HL-adaptation processes
were observed, although the light-induced changes were far less pronounced, since the mutant strain
already exhibited characteristics of an HL-stressed strain under LL growth conditions. While in the
dnaK3KD strain the relative PS I content was reduced and the PS I-to-PS Il ratio per cell was lower than
in the wt (Figure 6), PS I appears to function normally when DnaK3 was depleted, because re-reduction
of PS I was even faster in the mutant strain (Figure 8E), most likely due to the more reduced PQ-pool,
which also results in a significant amount of the PBSs being detached from PS II (Figure 6B).

Yet, the activity of PS Il was clearly reduced in the mutant strain (Figures 7 and 8). A significant
amount of PS II was inactive, potentially due to increased photodamage and/or impaired repair
(Figures 7 and 8). Thus, DnaK3 likely is involved in PS II biogenesis and/or repair. In line with
this assumption, expression of the Synechocystis dnak3 gene was found being enhanced under UV-B
stress [68]. Furthermore, the PS II core subunit D1 was proposed to be a substrate for DnaK3, which
potentially guides the nascent polypeptide at the ribosome to the TM, where translation is completed [16].
The D1 protein is known to be especially susceptible to photodamage, and photodamaged D1 is rapidly
degraded and replaced by newly synthesized protein to maintain a certain level of active PS II centers
in cyanobacteria [33]. Thus, the here presented results clearly indicate that biogenesis and/or repair of
PS I1 is impaired when the cellular DnaK3 content is reduced.
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However, the observation that DnaK3 appears to be vital also in the dark (Figure 2), where
PS 1I is inactive [7] and the finding that D1 is not essential for survival of Synechocystis under
photoheterotrophic conditions [69] indicates that DnaK3 likely has additional physiological functions
beyond PS II protection and/or repair. In cyanobacteria, TMs also contain the complexes of the
respiratory e”-transfer chain [70], and the indications of an over-reduced PQ pool (Figures 6 and 8)
suggests that other proteins and protein complexes are also affected when the DnaK3 content is reduced.
A broader implication of DnaK3 in TM biogenesis and maintenance, involving biogenesis and/or repair
of multiple TM complexes would be a convincing explanation.
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