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  i  

Zusammenfassung 

Mit Molekulardynamik-Simulationen können Einblicke in molekulare Systeme und deren 

atomistische Struktur, sowie strukturelle, dynamische und thermodynamische 

Eigenschaften von weicher Materie (z. B. Flüssigkeiten oder Polymere) gewonnen 

werden. Diese Arbeit befasst sich mit atomistischen Simulationen von Additiven mit dem 

Ziel, die Permeation von Polymeren im Hinblick auf Löslichkeit und Diffusion zu 

untersuchen. 

Die Thermodynamik des Lösungsprozesses einer unpolaren Substanz in 

niedermolekularen Flüssigkeiten, im Speziellen binären Mischungen von 

Dimethylsulfoxid (DMSO) in Wasser, wird untersucht. Dabei soll insbesondere der 

Einfluss der Wechselwirkungen zwischen Lösungsmittel und gelöster Substanz auf 

thermodynamischer Ebene betrachtet werden. Die Berechnung der Entropie zeigt, dass 

diese als treibende Kraft für den Lösungsprozess nicht in Frage kommt, da große 

kompensierende Terme auftreten. Die Beziehung zwischen diesen Gröβen und den 

Zustandgröβen des Lösungsmittel werden aus den Simulationsdaten zur DMSO-Wasser-

Mischung berechnet. Durch Vergleich mit experimentellen Daten werden die 

zugrundeliegenden Simulationsmodelle und mögliche Verbesserungen (force-field-

Parameter) diskutiert.  Für die Untersuchung der Permeation von Polymeren ist der 

Lösungsprozess von besonderer Bedeutung. Die üblichen Methoden zur Bestimmung des 

chemischen Potentials in niedermolekularen Flüssigkeiten sind jedoch für dichte 

Polymersysteme nicht anwendbar.  Aus diesem Grund wird ein neuerer Ansatz, 

"Störungstheoreticher Ansatz basierend auf einem einzelnen Referenzzustand mit 

weichen Potentialen", mit klassischen Ansätzen (thermodynamische Integration (TI) und 

durch Fast-Growth TI z.B. in Oktadekan und Bisphenol-A-Polykarbonat) verglichen.  

Abschliessend werden die Transportprozesse von Additiven in Polymersystemen 

untersucht und gezeigt, dass experimentelle Daten zur Diffusivität von Wassermolekülen 

in einem morphologisch mikrophaseseparierten Natriumsulfanat-Polyethylen-System 

(Na-PES) reproduziert werden können. 
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SUMMARY 

Molecular dynamics (MD) simulations provide an atomic level description of molecular 

systems and driving forces behind structural, dynamic and thermodynamic properties of 

condensed matter systems (liquids and polymers). This thesis deals with atomistic 

simulation of additives in order to understand polymer permeation which has two aspects; 

solvation and diffusion. 

Solvation thermodynamics of a nonpolar solute in low molecular liquids (binary mixtures 

of dimethyl sulfoxide (DMSO)/water) is investigated to observe how the preferential 

interactions between solute and solvent are reflected in thermodynamic terms; free 

energy, enthalpy, and entropy. The solute-solvent and solvent-solvent contributions of 

entropy are computed and total entropy is claimed not to be the driving force for 

solvation, since it involves a large compensating term. The relation between these terms 

and the solvent equation of state data in DMSO-water mixtures is examined 

quantitatively, and the optimization of computational models (force-field parameters) in 

relation with experimentally easily obtainable bulk properties of mixtures are discussed. 

Since permeation occurs through polymeric systems, solvation is particularly important 

in polymeric systems. The basic methodologies applied to obtain solvation chemical 

potentials in low molecular liquids are not applicable to dense polymer microstructures. 

Therefore, a new method, one-step perturbation (based on a soft-cavity reference state), is 

discussed via comparison of classical thermodynamic integration (TI) and Fast Growth 

TI in octadecane and bisphenol-A polycarbonate (BPA-PC). Finally, in a transport study 

of additives through polymeric systems, reproduction of experimental data on diffusivity 

of water molecules in a morphologically microphaseseparated sodium-Sulfonated 

Polyethylene (Na-PES) system was achieved. 
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CHAPTER 1 

 

Introduction 

  

 Computational chemistry, as the name implies, is a branch of chemistry which 

utilizes computers and numerical calculation methods to gain information on the 

chemical structures and properties of systems based on theoretical chemistry. Depending 

on the property of interest, the methods employed cover both static and dynamic 

situations. Static means that one can either perform quantum mechanical calculations or 

observe the microscopic orientation of the atoms as well as the effects related with their 

structure formation in complex systems via molecular dynamics (MD) simulations. 

Dynamics illustrates how particles behave under the impact of both internal and/or 

external forces. In this thesis, we will mainly focus on how to gain information from 

atomic scale MD simulations to explain systematically the properties of additive 

molecules within various systems, including aqueous solutions and polymers. In general, 

the system simulated can be a single molecule or a group of molecules. Accordingly, the 

computational effort increases rapidly with the size and complexity of the systems being 

studied. Also, variability of the interactions within a system counts in the complexity of 

the system. Furthermore, as the complication of the system varies, the methods applied or 
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the approaches used differ as well with respect to their accuracy or feasibility. In the next 

chapter, chapter 2, we will start with introducing the theory of basic methodologies used 

in this thesis, concentrating on molecular dynamics. 

 As the title of this thesis indicates, our interest focuses on atomistic scale 

computer simulations of polymer permeation. For a clear understanding of permeation, 

we drew attention to the thermodynamics and transport of additives in liquid and 

polymeric systems. Permeation involves both a dissolution and diffusion process: first a 

molecule dissolves in a medium and then diffuses across that medium. Both dissolution 

(solubility) and diffusion depend on the interactions that the molecule experiences with 

its surrounding. The medium can be a (synthetic) polymer membrane, or a lipid 

membrane, a thin film, etc. We tried to explain how these specific interactions are 

reflected in the quantities that are macroscopically observable, such as free energy, 

enthalpy and entropy changes.  

 In this thesis, we study the thermodynamics of dissolved molecules in fluid media 

with particular interest on how molecular rearrangements in the fluid medium affect the 

thermodynamic properties. This is achieved by studies starting from binary liquid 

solutions. The reason that we start up with binary solutions is that, in these kinds of low 

molecular weight systems any molecule can explore through the system freely within the 

time constraints of simulations making it possible to sample the configuration space 

easily. This enables us to use the basic thermodynamic approaches. In binary solutions, 

there is preferential interaction of one of the components of the cosolvent with the solute 

molecule. The question we want to answer is that whether these preferential interactions 

are reflected in the basic thermodynamic quantities like free energy, enthalpy and 
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entropy. Moreover, we would like to see whether we can relate the spatial rearrangements 

of the solvent molecules around certain species in the solution to some numerical 

thermodynamic results. To go beyond the phenomenological thermodynamics, we 

separated the basic quantities into solute-solvent and solvent-solvent contributions by the 

help of the statistical mechanics. Thus, splitting the entropy and enthalpy changes brings 

about exploring the solvation and reorganization of solvent molecules in a superior way.  

 In our initial study which we present in Chapter 3, we worked on solvation of 

methane in organic cosolvent/water mixtures to explore the preferential interactions. For 

that, a binary mixture of Dimethyl Sulfoxide (DMSO)/ water was taken as a solvent 

system at various proportions to relate the structural properties to thermodynamic 

quantities. While the solute is a simple non-polar molecule, the solvent system was 

chosen as a complex two component mixture in which two very polar compounds are 

mixed. Trends in the free energy change with respect to cosolvent amount in the aqueous 

mixture show whether the solvation is more preferential or not with the increasing 

cosolvent content. This may give a clue about the preferential interaction between the 

additive molecule and the cosolvent. However, when there is a term in enthalpy and 

entropy which totally cancels out in the free energy, then we come up with a pinpoint that 

basic thermodynamic quantities free energy, enthalpy and entropy does not necessarily 

give an exact explanation for the molecular driving forces of solvation. Actually, if the 

compensating term dominates, looking at the basic quantities can be even misleading. At 

that point, going beyond the basic thermodynamic quantities by splitting up enthalpy and 

entropy into its solute-solvent and solvent-solvent contributions is required. So in chapter 

3 we have characterized the relevance of these either basic or statistically derived 
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thermodynamic quantities to the internal mechanisms with atomic scale simulations of 

these kind of low molecular systems. Researches done on this kind of model systems can 

be used to gain insight into the thermodynamics of similar processes. Performing the 

simulations at an atomistic scale can provide an insight into molecular scale behaviors 

which cannot be easily observed by means of conventional experimental studies.  

 In chapter 4, we go further in detailed descriptions of thermodynamics within the 

binary solvent systems mentioned above and try to obtain the solvent reorganization 

contribution to the free energy terms from pure solvent data using equations of state. In 

principle, solvation occurs when an additive molecule fits into a proper cavity in the 

solvent. The availability of the proper cavity is determined by both the solute and the 

solvent characteristics. Yet, there is no exact theory that relates the bulk properties of 

solvent to the numerical thermodynamic solvation contributions of solute-solvent and 

solvent-solvent. We proposed that in the cases where the cavity formation occurs without 

a bias of any other interactions, these contributions should have been possible to derive 

from the volume fluctuations within the solvent matrix. Since in our case these 

fluctuations are directly related to creation and annihilation of the free volumes, 

approaches that relates pure solvent properties to thermodynamic quantity of solvent 

reorganization work quite well. However, the correlations we use are only applicable 

when there is weak solute-solvent interaction not biasing the additive insertion 

probability. The applicability of the approaches and methods we used were discussed 

later on in detail by Peter et.al. [1] They have given the cases in which the solvation is 

just a matter of creation of a proper-sized free volume enabling to obtain reorganization 

contributions from pure solvent data, and the deviations in the correlations affecting the 
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formulations. By that means, in similar cases to ours it is possible to evaluate 

reorganization terms and then relate these solute-solvent interaction terms via comparison 

of easily available experimental data on the bulk properties of solvents such as isothermal 

compressibility and isobaric expansion coefficient.  

 The improvement of the theories corresponding to observables enables us to 

assess the quality of the force fields. Improvement in the force fields, which includes the 

set of determining parameters in computational methods, affects the accuracy of 

simulations directing us to better outcomes. The computational results can be used both 

as complementary tools for the information obtained by chemical experiments and  even 

more in some cases where experimental methods are insufficient or unfeasible they can 

predict hitherto unobserved chemical phenomena. To be able to gain accurate outcomes 

from the computational methods, the parameters imbedded in the force fields should be 

consistent with the real life properties of the system of under study. This is why, in 

chapter 4, we discuss the “back-of-the-envelope” methods to obtain or check the 

interaction contributions from the bulk properties. 

 After the low molecular weight liquids we would like to perform a similar study 

on polymers to gain more insight on permeation mechanisms. However, the latter type of 

systems evolve more slowly in a computer simulation time which disables us from using 

the same methodologies applied to liquid systems. Therefore, we first need to come up 

with an optimized method to overcome the sampling problems in polymer systems. In 

chapter 3 and 4, we have discussed how to obtain basic thermodynamic quantities and 

what kind of information we gain from those in low molecular weight systems. Since, 

free energy is a key concept in modeling solubilities of additives and we would like to 
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compute this term also for high molecular weight systems. For this case polymers are of 

interest as a solvent matrix, since they are made of long chains with many repeating units. 

Wherever there are functional groups in the repeating units, polymers can also be 

considered as code in code solvents. When a solute is involved in a polymer matrix, the 

local interactions are the main driving forces for many processes within such systems. In 

many selective membrane or barrier materials understanding these forces extends the 

scopes for the design of new polymer permeation materials and for their applications. For 

instance the importance of the permeation through the barrier coatings on metal surfaces 

is crucial in many industrial purposes. In such coating polymer materials, the desired 

property would be that oxidizing agents like water and oxygen should not be dissolved 

and nor transported through the material. In all similar cases, the question especially for 

the synthetic chemists is that which interior functional groups within a polymer should be 

chosen to control the mechanism in a desired way. There is an experimental history of 

this question started in 50s that people started to observe permeation of polymers where 

they develop a new material and measure the permeation. From these kinds of 

observations there exist some empirical rules. However, the structure and property 

relations are not still well explained at an atomic scale perspective. 

 For low molecular weight liquids, for an atomic scale perspective we used readily 

available methods while explaining the local scale interactions via solubility of 

molecules. There we used Widom test particle insertion (TPI). Widom TPI method is one 

of the basic methods widely applied for the free energy calculations [2,3] With this 

method one can calculate the solubility by probing the cavities in which insertion of 

solute is possible with a probability determined by the local atomic scale interactions. 
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Even though with this method it is possible to sample the entire solvent matrix for the 

available free volumes and to come up with the locations where the solute prefers to be 

in, this method is only applicable for weakly interacting small gas molecules in liquid and 

amorphous polymers. For small gas molecules it is enough to probe a proper sized-cavity 

without any bias of specific interactions by means of volume fluctuations within liquid or 

amorphous polymer solvents. On the hand for bigger and very polar molecules sampling 

just through the natural volume fluctuations within the solvent will not be sufficient. 

When the free volume sizes are not comparable for the insertion of the solute and in cases 

where stronger specific interactions between solute and solvent occur, an advanced 

method is required. Therefore, we come up with a combinatory method named as “single 

step perturbation”. Given the basic theory of the methodologies in chapter 2, in chapter 5 

we will discuss the feasibility of the free energy calculations on a variety of systems by 

applying this combinatory method, which is the free energy perturbation (FEP) based on 

a soft-core reference state. In that chapter, we will discuss the feasibility of performing 

the single step perturbation based on a soft-core reference state by comparison with the 

fast-growth thermodynamic integration data. Single step perturbation method based on a 

reference state is a combinatory method of Widom test particle insertion and 

thermodynamic integration. According to the FEP method we introduce a reference state 

and perturb this reference particle to a real solute. The idea here is to embed a soft core 

cavity which is actually a soft Lennard Jones (LJ) potential particle, in a polymer matrix. 

This virtual particle can travel through the system pretty fast since it can cut through 

polymer chains. Although it is soft enough to penetrate through the chains like a ghost, 

the reference particle is not infinitely soft, it has some hardness. In figure 1.1, the ghost 
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like soft-core particle is depicted for a better visualization of the reference state. By this 

means, it is possible to create some space within the solvent matrix, so that you can insert 

any other particle inside this cavity. In other words one can perturb the system by 

replacing this soft core reference particle with a real solute particle which is harder. 

 

 

 

Figure 1.1: Snap-shot presenting a Soft-core Reference state (yellow transparent) in 

BPA_PC polymer matrix at 480 K used for the free energy calculation based on a 

combinatory method of Thermodynamic Integration (TI) and Free Energy Perturbation 

(FEP). 

 

 This method is used recently in free energy estimations for drug solubility in 

pharmaceutical industry [4] and to understand binding mechanisms of proteins to certain 
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structures such as RNAs in biochemistry where the accuracy is discussed. [5] 

Computational benefits to obtain converged free energy values, and choice of introducing 

a middle reference step in the thermodynamic cycle of solvation are explained 

systematically in chapter 5. This is accomplished by studying the method for the 

solvation process initially on a simple polymer melt of octadecane, and then on an 

artificially created viscous octadecane matrix close to its glass transition temperature (Tg) 

and thirdly on a real polymer matrix of Bisphenol-A-Polycarbonate (BPA-PC).   

 We close up with an application study on transport of additives in polymer 

systems again by molecular dynamic simulation means. There we introduce the 

convergence problems that one needs to overcome for meaningful dynamics in complex 

polymer systems. After discussing the solubility in the thesis we would like to focus on 

the other component of penetration through polymeric materials, which is the diffusion of 

additives. Molecular simulation using realistic models is not only a powerful tool for the 

elucidation of microscopic structure of polymers but also for the subsequent estimation of 

macroscopic physical properties. Interest on the diffusivity of polymers by computational 

means is the basic issue related to transport of additives. The studies on transport of 

additives within the solvents are not older than 10 years starting at the early 90s with the 

studies mainly on gas diffusion. [6,7] Currently, diffusion in complex polymeric 

microstructures (used in e.g. in polymer electrolyte fuel cells) is of interest. Transport of 

molecules through the polymeric materials that are especially used in membrane 

applications is a hot topic for researchers performing molecular dynamic simulations. 

[8,9] We have investigated a similar system of an ionomer, which is sulphonated 

polyethylene (SPE) swollen by water including sodium ions. Molecular interactions in 
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between hydrophilic and hydrophobic parts of the polymer matrix and ionic interactions 

play an important role in this kind of systems. How these interactions affect the structure 

and thermodynamics of these mixtures, is a central question. We will emphasize in 

chapter 6 how the simulation details have an impact on the convergence properties of a 

real polymer system via comparison with the diffusivity properties of water through an 

ionomer system. The important factors affecting the structural and dynamic equilibrium 

of the system considering the important constraint of finite time scales available to 

molecular dynamic simulations will be given. Throughout these studies after reaching an 

equilibration we have observed a microphase separation of the material. Accuracy of the 

transport behavior of water through the microphase separated channels will be discussed 

by comparison with the experimental data.  

 Molecular transport permeation, sorption and diffusion through membranes are 

still ongoing important properties studied also by experimental means, such as radiotracer 

experiments [10, 11] Design of new materials with similar properties is exciting for 

experimental chemists, for example in our institute recently poly(vinylphosphonic acid) 

is synthesized by free radical polymerization, where high-resolution NMR spectroscopy 

techniques are required to gain microstructure information [12] In this thesis we 

demonstrate that MD simulations of polymer models can reproduce both qualitatively 

and quantitatively important experimental results from related membrane processes. 

These models are therefore suited in principle to obtain a better insight in the atomistic 

dynamics. In addition, the knowledge about the underlying diffusion mechanism could be 

improved. In particular, molecular dynamics (MD) can simulate the time dependent 

behavior of molecular systems and provide the structure, dynamics and thermodynamics 
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of molecules in solution or polymeric systems. It is demonstrated that computer 

simulation has enough to offer to make it a useful tool when studying or designing new 

polymers. In the ionomer part we will also make use of a few quantum mechanical 

calculations to parameterize some of the non-bonded interaction parameters in the force 

fields. The sensitivity of the transport coefficients to the atomistic models (force fields) is 

another issue discussed here. 

 Finally, in chapter 7 we will give a general outlook depending on the studies we 

have performed. This part will include the summary of conclusions which will bring 

about beneficial knowledge on atomistic simulation of permeation process in both simple 

systems and in polymers. This will be achieved by systematic studies done in this thesis. 
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CHAPTER 2   

 

Methods 

 

2.1. Introduction 

 Looking at the modern molecular modeling methods today we see that roots of 

the developments in the methods lie at 50s. These methods, started with the 

investigations on an interior structure of atom and with the improvements both in 

processors and also in computational approaches today polymers containing thousands of 

atoms can be simulated. Many properties of materials are measurable with experimental 

methods such as X-Ray, NMR etc. However, besides the analytical knowledge, a 

systematic thought is required. For this reason, analogies of molecular systems are 

developed and studied by means of computational chemistry. By computational methods 

predictions of physical states and many related properties are available. 

 In general, the computational methods can be grouped into two main classes; 

quantum chemistry and statistical mechanics methods. Ab initio quantum mechanical 

(QM) method is the most detailed class including even the internal electronic properties 

in an atom. By means of QM, structural information can be acquired like molecular 

geometry, relative stabilities, vibrational spectra, dipole moments, reactivity, and atomic 

charges. In contrast to the vast of knowledge gained, this class of basic QM methods is 

applicable only to systems of a few numbers of atoms because of computational 
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expenses. For systems consisting of many atoms classical statistical mechanics methods 

of either Monte Carlo (MC) or molecular dynamics (MD) simulations are carried out. 

The latter methods are introduced to gain insight into properties and processes at the 

molecular scale. There exist also advanced multi-scale methodologies which combine 

quantum chemistry and dynamics with some approximation techniques permitting high 

level calculations with low cost on big systems like polymeric materials, proteins, 

etc.[13,14] Yet, in this thesis we will stay at the level of molecular dynamics simulations 

with atomistic details.  

 When starting any molecular modeling study, configurations of molecules with 

reasonable and reliable starting geometry are introduced in a simulation box. 

Configurations of atoms can be obtained from several sources; either from experimental 

sources such as X-ray methods where the X-rays are scattered by the electron cloud 

around an atom or from computational means like quantum optimizations. By quantum 

mechanical means, knowledge of the most stable conformation is gained from the global 

energy minimum structure. After having a reasonable starting configuration file 

representative of the system in a simulation box containing the x, y, z coordinates of the 

atoms or molecules, to perform the computer simulations another complementary input 

file including the parameters for structural information of each atom or particle type is 

required for simulations. Parameters so called force fields are constructed to describe 

bonded/nonbonded atomic interactions. In principle, QM can be employed to determine 

the interactions in small model species.  In our case we have obtained parameters from 

both initially studied empirical force fields or in a few cases also by the help of QM 

calculations.  
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 To start a simulation, according to the technique or optimization method to be 

applied a run-file should be fed stating the theory, approximations and variables. 

Variables are used in the MD for setting the simulation conditions like temperature and 

pressure as in the case of an experiment. Finally, in the dynamic simulations the atomic 

coordinates are varied under the effect of internal or/and external forces during the 

simulation time. Then, these Cartesian coordinates, subsequently the structure, can be 

analyzed by means of statistical mechanics and thermodynamics tools and can be easily 

displayed by molecular graphics for visualization. 

 Both MD and MC simulations generate information at the microscopic level, 

including atom positions but MD gives velocities as well. For the analysis, the conversion 

of this microscopic information to macroscopic observables such as pressure, energy, 

heat capacities, etc., requires statistical mechanics. Statistical mechanics methods are 

used to calculate average properties and then provide the link between these quantities 

and the atomistic description on a microscopic level. By that means, thermodynamic and 

structural bulk properties are related to the distribution and motion of the atoms and 

molecules of an N-body system.   

 In this thesis we are interested in the atomic-scale description of thermodynamics 

and transport of additives in simple liquid cosolvent systems, simple polymers and a 

complex system of a polymer membrane material, which is an ionomer. In all cases, the 

degree of resolution is such that an atom is the smallest elementary entity. The 

computational chemistry method needed in such a description relies on concepts of 

classical and statistical mechanics. Complex integrals are used in statistical mechanics to 
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study processes at an all-atom scale in condensed phases. They are computed to define 

relations between the fundamental molecular interactions and experimental observables.  

 Accordingly, this chapter is outlined as follows: First, an introductory knowledge 

on three computation methods; Quantum Mechanics, Monte Carlo, and Molecular 

Dynamics is given. The next section is focused on theoretical basis of molecular 

dynamics in detail, since molecular dynamics simulations were used for all my 

computational studies. Starting with a definition of MD, in that section the functional 

forms of force fields and typical force field parameterizations are also addressed. 

Algorithms used for integrations of equation of motions and how to control the external 

parameters (like pressure and temperature) and some computational methods for accuracy 

and ease are given there. After these, various basic principles of free energy calculations, 

such as Widom Test particle insertion, Thermodynamics integration, Fast-Growth 

Thermodynamic integration, which I used all through my doctorate study to analyze 

solvation effects, and energetic contributions and to discuss the feasibility of a new 

combinatory free energy calculation method will be presented. 

 

2.1.1. Quantum Mechanical Methods 

 Quantum mechanical methods must be discussed, at least briefly, because they are 

very valuable additional tools in computational chemistry. In principle, by quantum 

mechanical means, knowledge of the most stable conformation is gained from the global 

energy minimum structure. Besides the geometry optimizations QM can also be used to 

gain complementary data for MD simulations. In MD, properties like molecular geometry 

and relative conformational energies can be calculated with high accuracy for a broad 
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variety of structures by a well-parameterized general force-field. However, if the force 

field parameters for a certain structure are not available in such cases quantum chemical 

methods can be used to obtain the parameters required for MD. From quantum means we 

got some assistance at some points of our force field parameterization for a set of our 

dynamic simulations in our last study on ionomer systems in chapter 6. We used quantum 

methods to obtain some of the force field parameters for the structural information of the 

functional sulphonate group, which is connected to a polyethylene backbone in the 

ionomer system. The dihedral potentials of the sulphonate group obtained by quantum 

means are used for the dihedral constant parameterization in the force field of dynamic 

studies. In addition, the results obtained from quantum calculations are considered 

together with comparison to the charge distributions in similar polymer structures for 

initial setting of the charge parameters.  

 In our case to obtain the dihedral constant we scan the relative potential energies 

through different conformations by shifting the dihedral angle, and then fitting the 

corresponding potential energies to the ones obtained by single step MD for that 

configuration of atoms. By the term single step MD it is meant that only the initial energy 

minimization step is performed as in the quantum case. We performed QM calculations at 

Moller Pleset Perturbation level with 6-31G* basis set. I will give a brief explanation of 

this method by introducing the basic information on QM as in the following paragraphs. 

Calculations of transition states or reaction paths as well as the determination of 

geometries influenced by polarization or irregular electron distribution in a molecule are 

the fields of quantum mechanical calculations. Their disadvantages relative to other 

methods are the computational costs and the limitation to rather small molecules. This is 
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why, the use of quantum mechanical methods are generally reserved for the treatment of 

special problems, such as in our case mentioned above. The objective in this section is to 

discuss the quantum mechanical methods very simply from a theoretical perspective and 

also to explain some practical hints for the application of semiempirical or ab initio 

programs. For more theoretical knowledge, the reader may refer to many books or 

reviews on this subject to gain more insight into the theoretical aspects of these methods 

[15-19] 

 In QM, microscopic systems are described by wave functions that completely 

characterize all physical properties of the system and there are quantum mechanical 

operators corresponding to each physical observable that, when applied to the wave 

function, allow one to predict the probability of finding the system to exhibit a particular 

value or range of values for that observable. There are several methods to obtain these 

values among those, for molecules Hartree-Fock (HF) is the central method for all ab 

initio quantum chemistry methods, which is an approximate method for the determination 

of the ground-state wavefunction and ground-state energy of a quantum many-body 

system in computational physics and chemistry. Solution of the equations yields the 

Hartree-Fock wavefunction and energy of the system, which are approximations of the 

exact ones. The Hartree-Fock method finds its typical application in the solution of the 

electronic Schrödinger equation of atoms, molecules and solids. The solutions to the 

resulting non-linear equations behave as if each particle is subjected to the mean field 

created by all other. The equations are almost universally solved by means of an iterative 

type algorithm.  
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What we used in our calculations on the sulphonate functional group was the second 

order Møller-Plesset perturbation theory (MP). MP theory is one of several quantum 

chemistry post-Hartree-Fock ab initio methods in the field of computational chemistry. It 

improves on the Hartree-Fock method by adding electron correlation effects by means of 

Rayleigh-Schrödinger perturbation theory (RS-PT). [20] The MP-theory is a special 

application of RS-PT. In RS-PT one considers an unperturbed Hamiltonian operator Ĥ0 to 

which a small perturbation V̂  is added: 

   VHH ˆˆˆ
0 λ+= ,        (2.1) 

where λ is a small parameter. In MP-theory the perturbation is the correlation potential. 

Second (MP2), third (MP3), and fourth (MP4) order Møller-Plesset calculations are 

standard levels used in calculating small systems and are implemented in many 

computational chemistry codes. Higher level MP calculations are generally not prefered 

because of their costs and in many cases increasing the level of pertubation does not 

improve the results much.[21,22]  

 Besides the approach employed, the quality of an ab initio calculation also 

depends on the basis set used for the calculation. [23,24] The decision which basis set 

should be used is related to the objective of the calculation and the molecules to be 

studied. It should be kept in mind that even a large basis set is not always a guarantee for 

agreement with experimental data.[25] 

 In recent ab initio calculations split-valence basis sets have become quite popular. 

In these the valence orbital shells are represented by an inner and outer basis function. In 

this way more flexibility in describing the residence of the electrons has been attained 

[26]. The split-valence basis sets represent a progress over the STO-3G basis set, and the 
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3-21G, 4-31G, and 6-31G basis sets are widely used in ab initio calculations. They differ 

only in the number of Gaussians used in expanding the inner shell and the first contracted 

valence function [25]. The next level of improvement is the introduction of polarization 

basis sets. To all non-hydrogen atoms d orbitals are added to allow p orbitals to shift 

away from the position of the nucleus leading to a deformation (polarization) of the 

resulting orbitals. This adjustment is particularly important for compounds containing 

small rings [26]. The polarization basis sets are indicated by a star, e.g. 6-31G*. This 

basis set uses six Gaussians for the core orbitals, a three/one split for the s and p valence 

orbitals, and a single set of d functions (indicated by the asterisk or (d)). 6-31G* or 6-

31G(d) basis set was also the one used for our quantum calculations for the sulphonate 

functional group connected to the polyethylene polymer backbone in the ionomer study 

which we present in chapter 6. A more detailed description of the basis sets is given in 

books and reviews on this subject [19,25]. 

 Unfortunately there is no rule for choosing an adequate basis set. The level of 

calculation depends on the desired accuracy and the molecular properties of interest. 

Actually, usually a geometry optimization of a simple molecule with moderate size can 

reasonably be performed using a 3-21G basis set. For other problems, however, this 

degree of sophistication may not be sufficient. If the geometry of the molecule is 

influenced by polarization effects, electron delocalization or hyperconjugative effects a 6-

31G* or higher basis set is necessary to include the d orbitals as already mentioned. 

 In order to find a suitable level of calculation it is necessary to calibrate the 

method against experiment or testing the basis sets empirically to yield acceptable results. 

In our case in chapter 6, we derived dihedral parameter by fitting the potentials obtained 
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by quantum means to the ones computed by force-field parameters involved in MD. 

Then, at the end compare the results of the molecular dynamics simulations obtained by 

the defined force-field parameters with the experimental data. 

 

2.1.2 Monte Carlo 

 Even though I did not make use of any Monte Carlo (MC) methods for any of the 

computational study presented in this thesis, they are commonly used in statistical 

mechanics. To show that integration methods other than MD are also available I will give 

a brief description of MC methods. For example, MC calculations employ non- dynamic 

stochastic steps that are based on random movements of the system. This can create more 

efficient sampling for certain systems. Especially, the Metropolis Monte Carlo technique 

has been used extensively in liquid simulations. [27,28] In MC, an arbitrary configuration 

is chosen at the start, and then it is changed at each step with probability exp (-∆U/kBT) 

defined in Boltzmann distribution. This method based on the detailed balance condition 

in the equilibrium state such as,  

 P1→2 exp(-U1/kBT) = P2→1 exp(-U2/kBT)     (2.2) 

 

where P1→2  is a probability to move from a state 1 to the another state 2. The state 1 and 

2 differ by the coordinate of one particle, which is taken at a MC step. The probability to 

accept the move from state 1 to state 2 is min(1,exp(-(U2- U1)/kBT))  by the Metropolis 

criteria. In a similar way, the reverse process probability P2→1 equals to the min (1,exp(-

(U1- U2)/kBT)). Thus the contributions are the same in both direct and reverse 

probabilities. With respect to the balance condition, the average number of moves from 
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state 1 to 2 is the same as the average number of inverse moves from state 2 to 1. When 

the steps that obey the detailed balance condition are taken in a system of equilibrium, 

there will be no change in the probability of any conformation and the system will stay in 

equilibrium. 

 Among the trial process of several million steps, configurations of the system 

explored are only the ones that are energetically accessible. Thus, in MC the microscopic 

states are generated by random steps. The step size is usually tuned so that nearly half of 

the trial steps are accepted. For instance, for very large steps, the change in energy is also 

correspondingly too large, thus this attempt will not be accepted. However, for too small 

steps, the step size will limit the sampling of configuration space. This will lead to slow 

convergence of computed properties. In addition, since there is no inherent time scale in 

MC, it is does not acquire suitable information for dynamic properties.  

 

2.1.3 Molecular Dynamics 

 Molecular dynamics (MD) is a form of computer simulation method, where atoms 

and molecules move according to the basic laws of classical physics for a period of time 

under internal and external interactions. Even for molecular systems consist of a vast 

number of particles it is possible to find the resultant positions and velocities under these 

physical effects by applying numerical methods. By employing various algorithms, it is 

possible to investigate the relationship between molecular structure, movement and 

function. Therefore, MD represents an interface between laboratory experiments and 

theory, and can be identified as in-silico experiment. In MD, based on statistical 

mechanics, statistical ensemble averages are equal to time averages of the system. This is 
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known as the ergodic hypothesis. MD has also been defined as imitating the behavior of 

particles allowing insight into molecular motion on an atomic scale by numerical solution 

of statistical mechanics and Newtonian mechanics. [29] Computationally more efficient 

MD simulations can be obtained with proper selection of algorithms and parameters with 

improved numerical integration methods available. In the following subsection we will 

give the basic theory of MD beginning with a classical definition in which we explain 

how MD is related to Newtonian law of motion. Then we will introduce the 

parameterization occurring in force fields that describes the potentials. Following that, 

algorithms for MD to compute the variations of spatial coordinates and velocities by time 

are given. After then, various computational ways of pressure and temperature coupling 

methods are explained. At the end tricks to overcome size effects and computational cost 

of electrostatic interaction calculations are discussed under the subtitles periodic 

boundary conditions and electrostatic interactions. Reaction field, Ewald summation and 

particle mesh Ewald are the methods applied for the latter. 

 

2.2. Theory of Molecular Dynamics 

2.2.1 Classical Definition 

 In a classical system of N point particles with masses mi , the Hamiltonian H 

depends on the positions set of N Cartesian coordinates {ri} and their momenta {pi}, of 

all point masses i=1,2,…,N , which results in a phase space with dimension 6N. The 

classical Hamiltonian H is defined as the sum of the kinetic energy K and potential 

energy U. 
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 The initial term on the right hand side of eq. 2.3, the kinetic energy contribution to 

the Hamiltonian relies on momenta {pi} including particle masses, mi and velocities, 

while the potential energy part depends on the coordinates {ri}. This separation in the 

Hamiltonian that defines kinetic energy as exclusively dependent on the momenta, and 

potential energy on the coordinates, enables the use of a simple set of equations of 

motion: 
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where the negative gradient of the potential energy function U({ri}) with respect to 

particle coordinate ri equals the fi is the force acting on particle i. Since molecular 

dynamics is the time dependent simulation of molecules described by Newton’s equation 

of motion (fi=miai), with a set of initial conditions, these equations can be numerically 

integrated in discrete time steps in the molecular dynamics simulation using so-called 

integrators to generate a dynamical trajectory of a system of interacting particles. 

Numerical integration methods of Newton’s equation of motion on a computer to yield 

particle velocities and positions as a function of time will be discussed in section 2.2.3. 

The method MD is deterministic in the sense that once the positions and velocities of 

each atom are known at time t=0, the state of the system can be predicted at any coming 

time step, but it is not exact. As kinetic energy is just the sum of kinetic energies for all 

particles, it is the most trivial part of the Hamiltonian. Potential energy is more 
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complicated constructed out of a combination of pairwise interactive terms, that are 

described in the molecular force field used, as described in the following section. 

 

2.2.2 Force fields 

 The energy and geometry of a molecule is evaluated by equations associated with 

the potential energy part of the Hamiltonian including all interactions between atoms that 

are covalently bonded (i.e. bond stretching, angle bending, torsional strain) as well as 

non-bonded interactions between atoms and molecules in molecular systems. Electrons 

are not considered explicitly. According to the Born-Oppenheimer approximation of the 

Schrödinger equation, nuclei are much heavier and move much more slowly than 

electrons, which attain their optimum distribution fast enough to adjust to any movement 

of the nuclei. We make the approximation that atoms, molecules and their mutual 

interactions can be described by analytical potential energy functions and their 

corresponding parameters, called the force field, model the chemistry. The force field 

must provide a good description of the forces acting within and between the molecules 

while keeping the calculations within the limits of current computational resources. As 

discussed in the first subsection of this chapter some of the force field parameters can be 

obtained from quantum mechanical methods while others are often parameterized to 

reproduce solid or liquid state properties of the system.  

The total potential, mimicked by force fields parametrizations, is composed of bonded 

(USTRETCH, UBEND, UTORSION) and non-bonded terms (UVDW, UELEC): 

 UTOTAL = USTRETCH + UBEND + UTORSION + UVDW + UELEC    (2.5) 

 



 
 

 25

Bond potentials are described by the force field parameters and treated by simple 

harmonic potentials: The bond potential characterizes the stretching of covalent bonds 

between two adjacent atoms (j and k) and is usually described by a harmonic potential. 

 20
STRETCHING )(

2
1U jkjkbond rrk −=       (2.6) 

In addition, the bond angle vibration between a triplet of atoms (klm) is also given by a 

harmonic angle potential. 

 20
BENDING )(

2
1U klmklmanglek θθ −=       (2.7) 

 The cosine of the bond angle can also be used in a harmonic potential instead of the 

angle θ itself in some force field parameterizations as follows; 

 [ ]2'
BENDING )cos()cos(

2
1)(U optanglek θθθ −=      (2.8) 

where θopt is the optimal angle value and kangle is the force constant. 

The torsional dihedral potential exists between four atoms h, i, j, and k can alternatively 

be defined by two types; proper or improper dihedral potentials: 
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where the angle Ф is the angle between particle h and ijk plane, and ψ is the angle type in 

improper dihedral case which is the angle between an outer atom and a plane of other 

tree. In figure 2.1 all these three bonded interactions are depicted except the improper 
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type dihedral. Improper type is generally used for the cases where there is an aromatic 

ring in the structure which is easy to visualize.  

 

 

Figure 2.1: Schematic view of interactions involved in force-fields parameterization. 

 

The nonbonded terms in the potential is comprised of electrostatic and dispersion 

interactions, which will be explained in the following sections. 

 

2.2.2.1 Electrostatics 

 While regarding charged or polar molecules, electrostatics between a particle i 

and another one j is given by the electrostatic interaction energy between the two charges 

qi and qj, which is usually described by the Coulomb interaction: 
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where ε0 represents the dielectric permittivity of vacuum and rij is the distance between 

the two charged particles. Also, in uncharged molecules allocation of partial charges on 

atoms representing the dipole and higher order electric moments used to reproduce the 

electrostatic potential on the molecular surface. 

 Most of the CPU time is taken by the computation of the forces resulted from 

electrostatic interactions in MD simulations. Use of rapid but approximate methods 

reduces the computational expense in systems with a large number of atoms. Accuracy is 

sacrificed for speed by long-range interactions and electronic polarizability [30]. 

Electrostatic interactions are long-range forces and truncation, i.e. the use of cut-offs, 

affects results significantly. [31] Moreover, long MD simulations of proteins without 

electrostatic cut-offs yield trajectories that looks like known crystallographic structures 

other than similar simulations with cut-offs.  

 In MD studies, several approaches have been introduced for the simulation of 

charged systems to reduce the computational time. [32-35] In some of these, the force of 

each charge is separated into short- and long-range parts, and use particular methods to 

deal with the latter. Among them, the inclusion in the calculation of electrostatic forces of 

a reaction field (RF) term based on the Poison–Boltzman approach has been used in some 

study of polar and ionic systems by Tironi et al. [36]. These special methodologies such 

as a reaction field and an Ewald summation providing appropriate tricks to treat the 

electrostatics in simulations will be therefore discussed in more detail in section 2.2.7 

where the computational algorithms are given.  
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2.2.2.2 Dispersion   

 Induced dipole interactions in a molecule are defined by the dispersion terms in a 

force field. They are characterized by Lennard-Jones potentials, together with repulsive 

interactions. A steep repulsion at short separations is caused by Pauli repulsion associated 

with the overlap of electron clouds belonging to non-bonded atoms or molecules. The 

Lennard-Jones interaction can either be expressed as a function of radius σ and 

interaction strength ε, or as Lennard-Jones (LJ) parameters C(6)  and C(12) . 
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 It is also possible to modify this LJ potential to obtain unrealistic but useful 

particle interactions as in the case of the study in chapter 5. There we used modified 

potentials to create a reference state for a combinatory free energy calculation method, 

explained extensively in that chapter. Furthermore, when calculating the interaction 

between different particle types, the interaction potential for this set of particles is 

needed. In most force fields, this interaction potential is determined by applying a mixing 

rule on the interaction parameters (interaction strength and optimal distance) of both 

particle types. The choice of the mixing rule depends on the force field used. For 

instance, we applied geometric average method for the octadecane made up of simple 

aliphatic carbons and Lorentz-Bertelot combination rules for the polycarbonate BPA-PC 

studies to be consistent with the force field. The formulas how to apply these mixing 

rules are given in the simulation details in chapter 5. 
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2.2.3 Molecular Dynamics Algorithms 

 In any computational means of an MD, an algorithm to integrate Newton’s 

equations of motion is the main point. An optimized algorithm means less time expense. 

Given a set of initial coordinates and (optionally) initial velocities of all particles 

involved, the interactions, forces, velocities, and updated coordinates in a system are 

computed from the interaction potentials by means of different integration schemes. In 

the following figure 2.2, a global flow scheme for MD is given, which is also employed 

in our simulations. The Gromacs software package used in this thesis [37-39] applies a 

variation of the Verlet algorithm, and the improved version of it i.e. leap frog algorithm. 

Forces are calculated from the functions describing the distance-derivative of the 

interaction potentials (designated as -∂V/∂r or -∂U/∂r ) and time step integration methods 

applied as explained in the following section. 

 Furthermore, the simplest form of molecular dynamics describes a system with a 

constant number of particles, volume and energy (NVE or microcanonical ensemble). 

However, this ensemble does not resemble standard experimental conditions, therefore 

alternative algorithms have to be used to sample in different ensembles. For molecular 

dynamics several methods are available to control temperature and pressure, as will be 

shown in the following sections. 
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Figure 2.2: The global MD algorithm 

 

  

2.2.3.1 Equation of Motion Integrations 

 The fundamental idea behind time step integration is to perform the dynamics 

incrementally making use of constant time-steps ∆t. Continuity and energy-conservation 

in a simulation can be preserved by infinitely small values of ∆t. On the other hand, for 
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computational efficiency a time step should be chosen as big as possible that can still 

retain energy-conservation with acceptable accuracy. Initially, the total force on each 

particle is derived from the interaction potentials with other particles at a certain 

configuration at time t as a vector sum. Then, the accelerations of the particles are 

extracted and later on combined with the positions and velocities at time t to compute the 

incoming positions and velocities at a next time step, t+∆t . To do that we used leap-frog 

algorithm [40] in our all MD simulations, which has been developed as an improvement 

to the simple Verlet algorithm [41]. The leap-frog algorithm is simply: 

 

v(t +
1
2
∆t) = v(t −

1
2
∆t) + ∆ta(t)       (2.13) 

r(t + ∆t) = r(t) + ∆tv(t +
1
2
∆t)        (2.14)       

           

The velocity at time (t+∆t/2) is obtained from the previous velocity listed at time (t-∆t/2) 

and the accelerations at time t. The positions at time (t+∆t) are then deduced from that 

obtained velocity knowing the position at time t. As it explicitly includes the velocity, the 

leap-frog is advantageous over the Verlet algorithm. Yet, it has still the defect that the 

positions and velocities are not written simultaneously, meaning that it is not possible to 

compute the kinetic energy contribution to the total energy for the same time step at the 

positions are known. 

The velocity Verlet method [42] has been developed as such; 

r(t + ∆t) = r(t) + ∆tv(t) +
1
2
∆t 2a(t)        (2.15)        
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v(t + ∆t) = v(t) +
1
2
∆t a(t) + a(t + ∆t)[ ]       (2.16) 

giving positions, velocities and accelerations at the same time, and consequently 

resolving the memory problems in both previous algorithms. 

 

2.2.3.2 Bond and Angle Constraints 

 At the atomistic level the exact quantum computation of the bond lengths 

throughout a simulation is not necessary. The SHAKE [43] and the LINCS [44] 

algorithms in Gromacs software are used to keep the bonds fixed. According to these 

algorithms all atoms are initially moved in an unconstrained way through the time step 

integration. Without constraints most bonds will be deviated from their ideal bond 

lengths. Afterwards, reintroducing the constraints in an iterative way by means of bond 

potentials, convergence to next coming atomic coordinates is achieved. While using 

united atom (generally in which hydrogen bonds are omitted) and rigid water models, to 

increase the computational speed vibrational constraints are avoided.  

 

2.2.4 Thermal Coupling 

 Molecular dynamic studies are done based on statistical thermodynamics rules, 

therefore while trying to imitate the dynamics similar to a real world under certain 

conditions one should obtain the correct corresponding ensemble for the property of 

interest. In most cases, temperature is a crucial conditional property, which one would 

like to control, in an experiment and in the same sense in a computational study. Where 

generation of canonical (NVT) or isotherm-isobar (NPT) ensembles are of interest in the 

computational  case, addition of new degrees of freedom is required to regulate 
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temperature. However, this should be done without bringing about any results totally 

unrelated with the property sought. Normally, Berendsen [45] or Nosé Hoover [46,47] 

thermostats are used to fix the temperature to a certain value through the MD simulations. 

For the studies discussed in chapter 3, 4 and 6, we also used those according to the 

feasibility of performance of the chosen method for the property of our interest. 

 

2.2.4.1 Stochastic Langevin Thermostat  

 Stochastic or velocity Langevin dynamics adds a friction and a noise term to 

Newton’s equations of motion.  
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where, ξi is a friction term with unit ps-1, and 
D
r i(t) is a noise process which depends on 

the absolute temperature and the friction constant. When 1/ξi is large compared to the 

time scales present in the system, one could see stochastic dynamics as molecular 

dynamics with stochastic temperature-coupling. The advantage compared to MD with 

Berendsen temperature-coupling is that in case of stochastic dynamics (SD) the generated 

ensemble is known. Therefore, we performed the simulations for the study in chapter 5 

with this method, since the ensemble averages were important not the dynamics in that 

study. On the other hand, when 1/ξi is small compared to the time scales present in the 

system, the dynamics will be completely different from MD, but the sampling is still 

correct. The Langevin thermostat MD method generates an exactly defined canonical, 

NVT, ensemble, but the random noise does disturb the actual dynamics.  
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There is also a modified version of the SD thermostat which is the dissipative particle 

dynamics (DPD) thermostat. DPD is claimed to be applicable as a useful thermostat for 

both equilibrium and non-equilibrium molecular dynamics simulations particularly for 

fluids since it has the advantage that it preserves hydrodynamics as the dissipative and 

random forces are added in a pairwise fashion, which enables the conservation of 

momentum [48]. 

 

2.2.4.2 Berendsen Thermostat 

 The Berendsen coupling scheme proceeds toward the desired temperature T0 by 

scaling the velocities for thermal drift at each step. It was introduced as an alternative to 

stochastic dynamics which fixes the coupling of temperature to an external heat-bath 

[45]. The Berendsen temperature coupling applies a variation as dT in temperature for 

each time step dt to reach the reference temperature T0. 

 

 )(1
)(

0
2

2

ii
i

i
i

i rf
dt
dr

tT
T

m
dt

rd
m +⎥

⎦

⎤
⎢
⎣

⎡
−= γ       (2.18) 

 

 TT
TT

T

−=
−

=⎟
⎠
⎞

⎜
⎝
⎛

0
0

bath

2
dt

dT(t) γ
τ

      (2.19) 

 

where τT is  the temperature coupling time constant and γ is a friction term with unit ps-1. 

A velocity scaling from v to ¢v is used to adjust the temperature in the equations of 

motion. The scaling factor ¢ is temperature dependent as below: 
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2.2.4.3 Nosé-Hoover thermostat 

 The Nosé-Hoover thermostat introduces an additional degree of freedom as the 

coupling parameter Q related to the fully dynamic heat bath parameter ξ as such:  

 
Q
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dt
dξ         (2.21) 

 

where T0 is the desired temperature  and T is temperature of the system at time t. The 

parameter ξ is involved in equation of motion:  
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Q parameter is defined to determine the strength of coupling. By that means, kinetic 

energy oscillations are produced by Nosé-Hoover thermostat between the system and the 

reservoir. Because of this fluctuating behavior, it takes longer to relax with Nosé-Hoover 

thermostat than with Berendsen weak coupling. However, an exact constant temperature 

ensemble can be sustained by Nose Hoover temperature coupling as superior to 

Berendsen thermostat.  

 

2.2.5 Pressure Coupling 

 To control the pressure in a MD simulation, the volume of the simulation box is 

considered as a dynamical variable. In the pressure coupling a “pressure bath” is used 
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instead of a “heat bath” in the temperature coupling.  Either the particle coordinates or 

velocities set to be varying in the case of Berendsen and Parinello Rahman pressure 

coupling respectively. Like in the case of temperature coupling, with Berendsen pressure 

coupling one can reach an equilibration much quicker; however there is the problem that 

the ensemble generated is not trustable. On the other hand, Parrinello-Rahman introduces 

longer fluctuations in volume to compute thermodynamic properties, therefore creates a 

well-defined ensemble. 

 

2.2.5.1 Berendsen 

 Berendsen pressure coupling rescales both coordinates of a particle r and box 

vectors b with a scaling matrix µ. [45] During pressure scaling box vectors are adjusted 

(b(t+∆t) = µb(t)) for the coming time step while coordinates are scaled by r(t+∆t) = 

µ×r(t+∆t) after the computation of coordinates. Px 
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Generally, time dependent pressure has the first-order kinetic relaxation of the pressure 

towards a reference pressure where P0 is the desired pressure and P is the instantaneous 

one at time t: 
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In the case of isotropic coupling, the scaling factor (µ) is used to perform the pressure 

coupling which can be described as follows: 
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where τP is a relaxation time,  κT denotes the isothermal compressibility of the system, 

defined as: 
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2.2.5.2 Parrinello-Rahman 

 Parrinello-Rahman pressure coupling has been developed similar to Nosé-Hoover 

temperature coupling in order to obtain a correct ensemble. [49,50] In this case, volume 

and shape of the simulation box responds with pressure tensor, introducing an additional 

degree of freedom to the equations of motion. This is achieved by introducing a mass 
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parameter W which is set as the total mass of the system in a simulation box. Mass 

parameter controls fluctuations on the sample to adjust the pressure to a desired value like 

a piston used in experiments. The inverse mass parameter matrix W-1 employed in 

Gromacs has the unit of inverse mass and is a function of isothermal compressibility κT 

and time constant τP. As it allows for anisotropic coupling it takes the form of a tensor 

and is defined as (W-1)ij =(4π2κTij)/(3τP
2L). L denotes the largest box matrix element. 

Parrinello-Rahman coupling relates the box matrix b to volume V, transposed box matrix 

bT and W-1 . 
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The scaling matrix M is dynamically involved in the equations of motion by the 

following relation;  
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as it is described by box matrix b as such: 
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It had been presented that for an efficient equilibration the frequencies of the molecular 

oscillators and the box volume should be similar so that a very quick energy transfer 

between them occurs. [51] 

 

2.2.6 Periodic Boundary Conditions 

 To be able to perform a simulation, a finite number of particles are constructed 

into a single simulation box. However, a small simulation box will be affected by 

boundary conditions. In order to prevent that and for a better representation of a realistic 

system which involves infinitely large number of particles, periodic replicas of the 

original box are considered at each side surrounding the central one. Under these periodic 

boundary conditions for each atom in the central periodic box, interaction potentials are 

computed with the close neighbor atoms which can be either in the same box or in the 

periodic images of box. In some condensed phase simulations, the effects of periodicity 

on the forces on the atoms can be significant. Then the simulation box size plays an 

important role. This kind of size effect will be given in chapter 6.  

 To improve the computational efficiency, usually, the number of calculations that 

need to be performed is reduced by only considering interactions within a spherical cut-

off radius instead of within the whole simulation box. The cut-off radius should be 

chosen that a particle in the primary box does not see its own image in surrounding box 

replicas. To decrease the computational costs atoms within this cut-off are kept in 

neighbor lists, which are named as Verlet list, and updated at certain time intervals. In 

addition, special tricks have to be applied to reduce the simulation expenses of long-range 

electrostatics as will be discussed in the coming sections. 
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2.2.7 Electrostatic Interactions 

 The pairwise long range interactions are the computationally most costly part of 

molecular simulations. The number of calculations for each atom scales with r3 where r is 

the spherical cut-off radius. The cutoff radius should be smaller than half box length. To 

minimize computational expenses short-range cut-offs would be requested. On the other 

side, too short cut-off radii result in not only unrealistically too high of forces in the 

system but also spoil the conservation of energy in the system. To resolve the 

computational cost problem reaction-field electrostatics, summation methods Ewald and 

improved versions of these are applied.  

 
2.2.7.1 Reaction-field 

 In the treatment of electrostatics with feasible tricks, the idea is to separate the 

calculations in short- and long-ranges so that beyond a cut-off radius the computing tricks 

introduced. By reaction-field method computation of Coulomb interactions can be 

modified for relatively homogeneous systems, by assuming a constant dielectric 

environment beyond a cut-off radius rc.[52,53]  

For charged cut off spheres this corresponds to neutralization with a homogeneous 

background charge. The interaction potential then becomes: 
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where εr is the relative permittivity with respect to vacuum which equals to unity in 

explicit solvent applications. In the above equation, the term C1 is used to ensure the 
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force becomes zero at the cut-off radius for the energy conservation within the system 

while C2 term is used to ensure that the potential of the system is zero at cutoff distance. 

Then the above equation becomes for a system of zero ionic strength: 
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where εrf  is the dielectric constant of the medium beyond the cutoff distance. However, 

the reaction field method is suitable only for homogenous systems where the assumption 

of constant dielectric environment does not fail. In other cases, Ewald summation method 

may be an alternative for more accuracy. 

 

2.2.7.2 Ewald summation 

 The total electrostatic energy in a system of N point charges can be given with the 

following relation when the system under investigation is periodic: 
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However, because of the slow convergence of this electrostatic interaction summation, 

there are two main contributions in this calculation; an interaction potential within a 

certain cutoff rc, that interaction converges to zero far from the cutoff distance, and a 

slowly varying function at all distances r. In Ewald summation, the idea is to convert one 

conditionally convergent sum into two absolutely convergent sums. This is achieved by 

surrounding each discrete charge with a Gaussian charge distribution of opposite sign and 

equal magnitude. In this way, the interactions are screened so that they are short-ranged 
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and then the sum of interactions is absolutely convergent. After that, a canceling charge 

distribution is added so that the overall potential is identical to the original one. 

Summation of this canceling distribution is performed in a reciprocal space so that it is 

absolutely convergent. This part is optimized to be represented by a Fourier 

transformation. Therefore, with the practical application of Fourier transform, the charge 

interactions can be treated by dividing the potential in three terms, a short range real 

space interaction E(r) , a long range interaction that will be calculated in reciprocal space 

E(k), and a self interaction correction term E(s) , which is constant. 

 

 )()()( skr
ELEC UUUU ++=        (2.32) 

A sum over the set of k-vectors can be used to describe the interactions in reciprocal 

space which extends infinitely over all periodic images. The treatment of electrostatics 

with Ewald summation, [54-56] initially developed for the calculation of charges in 

periodic systems, especially for systems with high periodicity such as crystals [57,58] and 

nowadays it is widely applied to systems with periodic boundary conditions, however in 

some cases Particle Mesh Ewald summation  methods can be more efficient as explained 

below. 

 

2.2.7.3 Particle Mesh Ewald summation 

In computer simulations, an alternative version of Ewald summation is proposed, Particle 

Mesh Ewald (PME) especially for large systems [57,59]. Here, the charge distribution of 

the particles in the system is discretized onto a grid, by that means the potential energy 

calculations separated into Ewald’s direct sum and reciprocal sums. Fast Fourier methods 
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can be used to equate the potential for this reciprocal sums, after which the resulting 

potential and force is assigned to each particle by interpolating the potential and force on 

the surrounding grid points. Consequently, PME reduces the computational cost of Ewald 

summation with Fourier transform from N2 orders to NlogN scale with Fast Fourier 

methods. Considering computational time expenses, PME is suggested to use for large 

systems, however for small systems Ewald avoiding the expenses in setting up grids and 

transforms is still better. 

 
2.3. Free Energy in Statistical Mechanics  

In the following three chapters we mainly focus on the solution thermodynamics of 

various additives in systems with different characteristics. During these studies we make 

use of free energy calculations of solvation and even the individual energetic and entropic 

contributions in this term to understand the interactions behind. The free energy of 

solvating a molecule in a liquid equals the reversible work associated with introducing 

the intermolecular interactions between the solute and the solvent. A negative free energy 

change indicates that the process proceeds spontaneously. 

The process should not be necessarily a solvation, it could be any process, such as the 

binding of a ligand to a protein or a conformational transition in a molecule in solution. 

To calculate free energy changes there exist several methods. In this section we will 

explain three basic ones: the test particle insertion (TPI), thermodynamic integration (TI) 

and fast-growth TI methodologies. In order to do that, to achieve macroscopic properties 

we will start with the basic microstates as the beginning of statistical mechanics.  

Quantum mechanically, a stationary system can be described by a set of eigenstates Ψi 

with energy Ei. Ψi and Ei are solutions of the Schrödinger equation; 
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 H Ψi = Ei Ψi          (2.33) 

where Hamiltonian H contains the kinetic and potential energy contributions of all 

particles in the system. At a constant temperature, the occurrence probability pi to 

observe the system in microstate Ψi  is given by the Boltzmann distribution: 
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where the denominator is the normalization constant named as partition function (Z)  

equalizing the sum of all probabilities to one. In classical mechanics, the position and 

momentum variables of a particle can vary continuously, so the set of microstates is 

actually uncountable. Therefore in classical statistical mechanics, it is inconvenient to 

express the partition function as a sum of discrete terms, as we have done. The partition 

function then takes the form of a continuous integral. For instance, the partition function 

Q of N classical particles in a system at constant temperature and volume (so called 

classical canonical ensemble) is:       

   [ ]∫∫ −= ),(exp
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1),,( 3
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NVTQ β    (2.35) 

     

where integration is performed over all particle momenta (pN) and positions (rN) and 

H(pN,rN) is the N-particle Hamiltonian. The h is Planck’s constant, the variable β equals 

to (kBT)-1, and the factor N! is used to account for the indistinguishability of the particles. 

The Hamiltonian can be described by summation of kinetic energy and potential energy 

terms: 
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where pi is the momentum vector of the ith particle, mi is the mass of each particle i. The 

UN(rN) is the total potential energy of the system at the specified configuration rN. Then, 

the integration over the momenta  

  

(2.37) 

  

 

 

gives Λ-3N is the momentum partition function where Λ is de Broglie wavelength. 

Furthermore, when the configurational partition function, ZN, is described as 

∫ −= ))(exp( N
N

N
N rUdrZ β , then the canonical partition function becomes: 
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The free energy F is given in terms of the partition function Q by 

 F= -kBT lnQ         (2.39) 

  

 

2.3.1 Widom test particle insertion 

In the test particle insertion (TPI) method, introduced by Widom, the free energy is 

computed by performing trial insertions in the fluid. The method is useful in case the 

solute test particle can be readily inserted in transient cavities in the fluid. [60,61] 

Straight forward application of the TPI method usually is useful only for calculating the 
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free energy of solvation of relatively small-sized molecules like noble gases or methane. 

Since it is difficult to observe volume fluctuations within the solvent that create a cavity 

of appropriate size, insufficient statistical sampling will give inaccurate results for larger 

solutes. 

This method is derived as follows by simply defining the free energy change as the 

difference between initial state without solute and final state with an additional particle 

inserted into the N particle solvent system at constant, temperature and volume: 

 ),,(),,1(
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Obviously, this equation defines the chemical potential µ. For simplicity we shall assume 

that all N particles are the same, so we restrict our selves to deriving the chemical 

potential of a pure fluid. The generalization to mixtures is straight forward but will not be 

given here to keep the notation simple.    

Then by insertion of the partition functions into the free energy terms given above, we 

obtain the free energy change with two contributions:            
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(ideal gas) and potential (excess) parts. Thus, in the above equation the first term on the 

right side represents the ideal part, kinetic energy, of a particle while the second term 

indicates the excess part which is free energy induced by insertion of an additional 

particle. Furthermore, the potential energy of a system with N+1 particles is described by 

the potential of the N-particle system together with the binding energy BS of an added 

one, where BS equals to the interaction energy of inserted particle (the solute) with all 

other molecules. Then energy induced by an additional particle insertion is described as 

UN+1=UN+BS. Therefore; 
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As a result, the excess free energy change µex by the insertion of an additional particle, 

 

                            (2.43)                               

 

in eq 2.43 〈····〉NVT denotes an N particle ensemble average obtained over pure solvent 

configurations at constant pressure V and temperature T. Later on in this thesis we shall 
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also use the notation ∆F (or at constant pressure, ∆G) for the same quantity.   Since the 

method relies on the statistical accuracy of sampling of solvent configurations that permit 

the insertion of molecules with low values of the binding energy, BS, application of TPI 

is more feasible for small-sized solutes. For larger sized solutes the thermodynamic 

integration (TI) method can be used to calculate free energy differences. TI is however a 

more computationally costly calculation methodology.  

 
2.3.2 Thermodynamic integration 

Another method for the calculation of free energy changes is thermodynamic integration 

(TI). In this method, a parameter λ (Є[0,1]) is used that couples the solute with the rest of 

the system. The free energy change, or coupling work, is obtained by integrating along λ. 

[62,63]  

Suppose potential energy U(λ) so the corresponding free energy will also depend on λ, 

F(λ) and then;  
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substituting into the above equation 
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then free energy change becomes 
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U(λ) is the total potential energy and the average is taken over a canonical ensemble with  

a coupled Hamiltonian H(λ).  

For example, in a linear λ dependency scheme potential energy will be; 
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where U scales with 1/r12 and 1/r6 for a hard core LJ particle resulting in singularities. 

Therefore, form of potential energy should be carefully chosen to avoid any singularity 

and for relatively smooth differential curves so that the integration is not affected. This is 

why we have used a soft-core potential function of GROMACS. [37-39] For higher 

accuracy, the number of λ steps or different initial starting points can be considered at 

strongly coupled systems. These issues are discussed more in details in chapter 5. 

 

2.3.3. Fast-Growth TI 

Fast-Growth TI is an approach based on the non-equilibrium work theorem introduced by 

Jarzynski. In chapter 5, we will discuss our results from single-step perturbation method 

by comparing with the data obtained by Jarzynski method in particular with the 

application to solvation free-energies of additives in polymeric systems. Jarzynski relates 

the work that is being performed on a system when going from state A to state B along a 
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coordinate λ with the free energy change, irrespective of the sampling.[64] He finds that 

the Boltzmann-averaged work of repeated sampling of the path from A to B is equal to 

the free energy difference between A and B 

 ABW
BAB TkF β−−=∆ expln        (2.48) 

when we consider a finite classical system in contact with a heat reservoir. A central 

concept in thermodynamics is that of the work performed on such a system, when some 

external parameters of the system area made to change with time. When the parameters 

are changed infinitely slowly along some path from an initial point A to a final point B in 

parameter space, then the total work W performed on the system is equal to the 

Helmholtz free energy difference ∆F between the initial and the final configurations. 

W=∆F≡FB-FA, where FA (FB) refers to the equilibrium free energy of the system, with the 

parameters held fixed at A (B). By contrast, when the parameters are switched along the 

same path at a finite rate, then average W will depend on the microscopic initial 

conditions of the system and reservoir, and will on average exceed ∆F: 

 〈W〉  ≥  ∆F.         (2.49) 

The difference 〈W〉 - ∆F is just the dissipated work, associated with the increase of 

entropy during an irreversible process which is stated in the second law of 

thermodynamics.   

Starting from the inequality given above, by contrast Jarzynski derived the equality  

 ABAB FW ∆−− = ββ expexp        (2.50) 
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where z denote a point in the phase space of the system and Hλ(z) denote the Hamiltonian 

for the system parameterized by the value of λ.  

In the two limiting cases at which switching of the external parameters is infinitely slow 

(ts→∞) and infinitely fast (ts→0), the equations for work W takes the form of basic TI 

and single step perturbation respectively: 
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Through the applications of this method, polymer microstructure can be considered as a 

potential landscape as in the following scheme: 

 

In this context, solvation free energy can be calculated in some cases by performing Fast 

growth TIs in order to calculate the work requirements to insert the solute in a solvent 

matrix from sampling the possible coordinates where interaction potentials determines 

the potential landscape. The application of all the given approaches, methods, and 

approximations require extensive analysis. In the following chapters we define our cases 

and discuss the methods that are applicable to these cases. 
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CHAPTER 3 

 

Preferential solvation of a non-polar 

solute in DMSO/water mixtures:   

Energy-entropy compensation 
 

 

3.1. Introduction 

 As we discussed in the previous chapter, there are various methodologies used for 

the free energy calculations based on the knowledge of statistical thermodynamics. It is 

important to investigate this quantity to understand the thermodynamics and interactions 

behind a process of interest. The free energy changes related with the addition of 

molecules in either liquid or polymer systems have great importance not only in 

chemistry but also in biology fields such as proteins.[65] Even though the free energy 

change being in most cases the desired quantity determining, e.g., association constants, 

partition coefficients and solubility, its temperature derivatives (the entropy and heat 

capacity changes) hold valuable information as well. Yet the latter have received much 

less attention because they are considerably more expensive to evaluate computationally. 

Owing to increasing computer power and efficiency of simulation packages this 

limitation no longer exists. In many applications in the chemical fields, solvation 
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processes in binary solvents are of special interest. Solutes consisting of functionally 

different groups interact preferentially with one of the binary solvent components at 

different concentrations. Because of their selective properties, in some cases they are 

used as a media for the chemical reactions to control the reaction rates or to preserve 

stability. Despite their extensive application areas, the atomistic scale mechanisms and 

their relation with physicochemical properties of the solute and the solvent system are in 

many cases still incompletely understood.  

 The first computational study on hydration enthalpies and entropies of molecular 

solutes was repoted by Gallicchio et al..[66] They applied a solvation shell approximation 

for the reorganization energy. In this approximation, (constant pressure) enthalpy and 

entropy changes are considered as local quantities [67] which may therefore be evaluated 

accounting for only the excess energy of a shell typically containing 20-30 water 

molecules. [66] They studied hydration enthalpies and entropies of a series of linear, 

branched and cyclic alkanes using the OPLS-AA force field with the TIP4P water model 

at 298 K. Paschek [68] studied the temperature dependence of hydration free energies of 

simple solutes (rare gas atoms, methane), and obtained from that the hydration enthalpies, 

entropies, and heat capacities. In particular, he reported the performance of various 

classical water models. Furthermore, for all investigated models and state points he 

calculated the excess chemical potential for nonpolar molecules (e.g. Xenon) employing 

the Widom particle insertion technique. In figure 3.1 below, the dynamical hydrogen 

bond fluctuation in the hydration shell is presented to give a figurative idea on what is 

happening around a non-polar spherical particle in pure water. This example of 
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hydrophobic hydration illustrates the merits of splitting up the solvation thermodynamics 

in solute-solvent and solvent-solvent contributions. 

  

 

 

Figure 3.1: Hydration shell of a nonpolar Xenon atom. Grey is Xenon, red is oxygen, 

and white is hydrogen. [69] The hydration thermodynamics is largely determined by the 

hydrogen bonding network (solvent-solvent interactions) of the water.  

 

 In a related study on hydration of benzene, Schravendijk et al. [70] reported 

hydration free energies, enthalpies, entropies and heat capacities where they quantified 

contributions of weak benzene-water hydrogen bonding and water-water interactions to 

thermodynamic quantities. In a recent work by Lee et al. these concepts were extended to 

binary solutions to explain the preferential solvation of methane in tertiary butyl alcohol 

(TBA)-water solvent mixtures.[71] They showed that dissolved (nonpolar) solutes expel 
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water from alcohol clusters in particular at low concentrations. Figure 3.2 illustrates the 

preferential solvation of methane below. In that study they performed the simulations 

with a force field, which they derived from the Kirkwood-buff integrals bringing about 

consistent results with the experimental data.[72] By the comparison with other force 

fields they also discuss the effects of parameterization.  

 

 

Figure 3.2: Methane solvation snapshot for the LV/SPC. Grey is methane, red is oxygen, 

and green is carbon and methyl group. Solvent configurations are shown around 6 Å of 

methane at the 0.1 TBA mole fraction. (Lee et al. [71]) 

 

 Moreover, Lee et al. also discussed the urea-water binary mixtures by means of 

potential mean forces (PMF), where they showed that hydrophobic interaction in an 

aqueous urea solution is one of the major driving forces in protein folding.[73] It is 

obvious that understanding the interactions behind the solvation processes is quite 

significant also in biochemistry. 

 In this chapter, we mainly focus on preferential solvation of methane in dimethyl 

sulfoxide (DMSO)/water mixtures (298 K, 1 atm). By a simple definition, solvation of 
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methane is the ability of the methane molecules to transfer from gas phase into solution 

phase which is DMSO/water binary mixture in our case. The free energy of solvation, 

∆GS, is presented as follows; 

]/exp[

)soln()gas(
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where Keq is the equilibrium constant which can be obtained by experimental means from 

the concentrations of methane (CH4) in gas phase and in solution phase, as 

ln
44

So
CH

gas
CH CandC  relatively. 

 The solvation process in dilute case can be considered as a local equilibrium 

reaction of transformation from pure solvent S(s) and solute in the gas phase X(g) to a 

phase where solute surrounded by solvent molecules X(s) and solvent molecules exist in 

the coordination shell of solute S(x). Then, the equilibrium can be written as: 

                                    X(g) + sX S(s)       X(s) + sX S(x) 

 

Then, the compensation of enthalpy and entropy in the reorganization of the solvent 

molecules in the environment can easily be obtained from such schemes by calculating 

the free energy change with respect to the number of molecules in the coordination shell 

at equilibrium conditions, as such: 
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In the above decomposition scheme, free energy is defined as a function of independent 

variables, number of solute and solvent particles in the local environment (respectively 

nx, ns) and pressure and temperature P, T and the number of solvent particles occurring in 

the solvation shell of the solute sx. Deriving the differentials at equilibrium where 

environmental process (env) means the reorganization of molecules in the solvation shell, 

the enthalpy and entropy compensation has been shown. [74] 

 We performed molecular simulations to analyze the thermodynamics of this 

process. The contributions of two sub-processes are studied: (i) introduction of solute-

solvent interactions (primary process) and (ii) solute-induced disruption of cohesive 

solvent-solvent interactions (response/secondary process). The energy and entropy 

changes of the secondary process always exactly cancel in the free energy (energy-

entropy compensation), hence only the primary process is important for understanding 

changes of the free energy. After discussing the physical significance of the solute-

solvent energy and solute-solvent entropy associated with the primary process, in the next 

chapter we will discuss how to obtain these quantities from experiments combining 

solvation thermodynamic- and solvent equation of state data.  

 Herein we evaluate the free energy, enthalpy and entropy change of solvating a 

single methane solute in DMSO/water mixtures of variable composition by performing 

test-particle insertions in thermally equilibrated solvent configurations obtained by 

molecular dynamics (MD) simulations. Our aims are twofold. First, we describe the 
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solvation entropy in terms of primary and secondary molecular solvation processes. The 

primary process is the solute coupling with the solvent. It contributes a solute-solvent 

excluded volume penalty to the solvation entropy as well as an additional entropy penalty 

related to how strongly attractive solute-solvent interactions bias the solvation shell 

composition. The secondary process quantifies solute-induced changes of cohesive 

solvent-solvent interactions. Loss of solvent-solvent cohesive interaction contributes 

favourably (positive) to the entropy change while strengthening cohesive interactions 

tends to reduce the entropy. In studying the primary and secondary processes separately 

we aim to understand better how much they each contribute to the overall magnitude of 

the constant pressure solvation entropy. A procedure to obtain the thermodynamic 

quantities of the primary and secondary processes from experimental sources will also be 

discussed. Our second aim is to illustrate that, based on our calculations for methane in 

DMSO/water, a positive change of the entropy relative to solvation in pure water not 

necessarily means that the entropy drives the process of enhanced methane solvation. We 

will argue that the solvation entropy and enthalpy share a common contribution – referred 

to above as the secondary process – that is exactly enthalpy-entropy compensating 

(cancelling) in the free energy. This exact enthalpy-entropy compensating process has 

been described in several earlier works [66,70,75-83] but its quantitative evaluation in 

numerical simulations remains challenging and only few numerical studies have been 

reported on this subject so far.[66,70,77,79-81] 

 This chapter is organized as follows: In section 3.2, we start with describing the 

statistical mechanics basis of the solvation entropy. Next (section 3.3) we describe the 
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technical aspects of our calculations. In section 3.4 we present and discuss results. The 

conclusions of this work are summarized in section 3.5. 

 

3.2. The Solvation Entropy 

 In earlier studies the statistical mechanics derivation of the solvation entropy has 

been reported.[76,78,80] Hence we will only briefly discuss the essential features here. 

The solvation entropy (energy) is ensemble dependent different than the free 

energy.[67,78] The constant-pressure entropy change ( )P
S∆  (as well as the energy 

( )P
E∆ ) will be of interest to us since it probes the local contributions to the solvation 

thermodynamics that derive strictly from the interactions between the solute and its 

surrounding solvation shell(s). The constant pressure solvation entropy can be written as; 

[66,70-81] 

 

 ( ) ( ) /uv vvP P
S S E T∆ = ∆ + ∆        (3.1), 

 

where uvS∆  is the solute(u)-solvent(v) entropy change and ( )vv P
E∆  the constant-pressure 

solvent(v)-solvent(v) energy change (solvent reorganization energy). The solute-solvent 

entropy quantifies excluded volume contributions to the constant-pressure solvation 

entropy. It is determined by the probability of observing density fluctuations in the 

solvent that produce molecular-sized, empty cavities permitting solute insertion. In 

mixtures of two solvents, additional excluded volume penalties contribute to uvS∆ ; 

[82,83] the solute (S) may favor (due to stronger Van der Waals or electrostatic 
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interactions) to be solvated by one of the solvent components, say A, but in achieving this 

it may have to compete with solvent component B that also preferably solvates A-type 

molecules. Therefore S attracts solvent moiety A but excluded volume restrictions 

interfere with it since moieties B have to permit S to contact A.  In the language of solute 

insertion this is pronounced as insertion in empty cavities is biased by attractive solute-

solvent interactions, resulting in a reduction of the entropy. Aliphatic hydrocarbons (S) 

dissolved in DMSO(A)/water(B) and urea(A)/water(B) mixtures are a few examples of 

such systems.[83] The solvent reorganization term ( )vv P
E∆  in eq (3.1) quantifies the 

change of the N-solvent-particle potential energy NU  induced by inserting the (N+1)th 

particle (solute). Hence, ( ) ( )1vv N NP N N
E U U

+
∆ ≡ −  where 

N
"  and 

1N+
"  denote 

isothermal-isobaric ensemble averages of the pure solvent and solvent+solute systems, 

respectively. We re-emphasize that ( )vv P
E∆  is a local energy change. It quantifies the 

loss (or gain) of cohesive solvent-solvent interactions in the solute’s solvation shell(s), 

relative to cohesive solvent-solvent interactions in the bulk solution far away from the 

solute. In response to solvating a solute probe, when cohesive solvent-solvent interactions 

in the solvation shell become weaker relative to those in the bulk, the resulting increase in 

configurational freedom of the system is accounted for with a positive entropy 

contribution ( ) /vv P
E T∆ . On the other case, when solvent molecules near the solute 

engage in a stronger cohesive binding, ( ) /vv P
E T∆  contributes negatively to the entropy.   

 The constant-pressure solvation enthalpy is given by the sum of the solute 

binding- and solvent reorganization energy, 
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     (3.2), 

 

where 
1uv N

E ψ
+

∆ ≡  denotes the average solute (N+1th particle)  binding energy (ψ ) 

with all N solvent molecules in a constant pressure-temperature system. uvE∆  is also 

referred to as the solute-solvent energy change. In eq (3.2) we neglected a pressure-

volume term *
SP V∆  (with SV ∗∆  denoting the solvation volume).[84] In condensed liquid 

phases the term *
SP V∆  usually is 2-3 orders of magnitude smaller than the solvation 

energy ( )P
E∆ and can safely be ignored.[84] Note that the solvation entropy (eq 3.1) and 

solvation enthalpy (eq 3.2) share ( )vv P
E∆  as a common term. The latter cancels in the 

free energy. We can thus write the solvation free energy as, 

 

 
( ) ( )P P

uv uv

G H T S

E T S

∆ = ∆ − ∆

= ∆ − ∆
       (3.3), 

 

 The cancellation of ( )vv P
E∆  (enthalpy-entropy compensation) should not come as 

a surprise if one realizes that G∆  is the reversible work of introducing the solute-solvent 

interactions. The corresponding thermodynamic integration/ thermodynamic 
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perturbation,[76,80] or particle insertion formulas [77] always depend explicitly on the 

solute(u)-solvent(v) potential energy functions while the potential energy of solvent-

solvent interactions enters implicitly through the ensemble averaging.[76,80] The 

quantity uvS∆  has been referred to as the solute-solvent entropy,[66,70,76,77,80-83] but 

different names have also been used in the literature. Sanchez et al. refer to it as the 

interaction entropy [69] while Ben-Amotz et al. refer to it as the fluctuation entropy.[78]  

 Free energy decomposition schemes may vary and alternative schemes have been 

used in the literature with corresponding energy-entropy compensating terms different 

from the compensating solvent-solvent energy defined here.[74,85,86] The usefulness of 

any of such schemes, including ours, depends on whether the non-compensating terms 

remaining in the free energy (the solute-solvent terms defined here) can be assigned a 

well-defined physical meaning. We will show this is indeed the case with the 

decomposition scheme mentioned above in this chapter. Moreover, as it was recently 

pointed out by Ben-Amotz et al., [78] the solute-solvent energy and solute-solvent 

entropy are experimentally accessible under conditions that the constant-volume solvent 

reorganization energy vanishes. In idealized Van der Waals fluids this is always true, 

[75,78] while for xenon in n-hexane and water at ambient conditions ( )vv V
E∆  proved to 

have a magnitude of at most kBT. [78] 

 The terminology “primary” and “secondary process” is already introduced above. 

The introduction of solute-solvent interactions we define as the primary process. The 

solute-solvent energy uvE∆  and solute-solvent entropy uvS∆  changes are the 

corresponding thermodynamic quantities. In response to the primary process, solvent-

solvent cohesive interactions between molecules vicinal to the introduced solute are 
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modified. This response process, characterized by the energy change ( )vv P
E∆ , we name 

as the secondary process. The secondary process is energy-entropy compensating and has 

therefore no impact on the free energy. It is however important to quantify the magnitude 

of the secondary process and its relative contribution to the solvation energy and entropy. 

In case it dominates the solvation energy and entropy, one runs into the danger of 

interchanging cause and effect. Attractive Van der Waals interactions could cause the 

free energy to decrease. But these attractive interactions could also induce a large positive 

change of the solvent-solvent energy ( )vv P
E∆  with the result (effect) that, both, the 

solvation energy- and entropy change in positive direction. Obviously, concluding that 

the change of free energy is entropic is untenable in this case. 

3.3. Computational Details 

3.3.1 DMSO, water and solute models.  

 We used a rigid, four-site DMSO model developed by Geerke et al.[87] In this 

model, the methyl groups are treated as united atoms. DMSO-DMSO and DMSO-water 

intermolecular interactions are modeled by a sum of Lennard-Jones (LJ) terms centered 

on the S, O, and CH3 interaction sites as well as Coulombic interactions between static 

partial electronic charges centered on the same sites. The SPC water model [88] was 

used, which, combined with the above DMSO model, leads to a satisfactory description 

of most excess thermodynamic properties of DMSO/water mixtures at ambient conditions 

(298 K, 1 atm).[87] Methane was modeled as a single-site united atom, the LJ parameters 

of which are reported in ref [82]. Geometric mean mixing rules were used to describe LJ 

interactions between chemically different atom types/groups. 
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3.3.2 Simulation details.  

 All simulations were performed using the GROMACS package.[39] DMSO/water 

mixtures were studied at DMSO mole fractions xDMSO=0.0, 0.05, 0.10, 0.19, 0.27, 0.35, 

0.48, 0.64, 0.81, and 1.00. Details on system sizes are given in Table 2 of ref [82]. 

Geometries of all molecules were kept rigid by applying constraints to the interatomic 

distances within the molecules, using the SHAKE algorithm [43] with a relative 

geometric tolerance of 10-4. A twin-range cutoff scheme with 0.8 and 1.4 nm cutoff radii 

was applied. The nonbonded interactions in the range between these radii were updated 

every fifth time step. The equations of motion were integrated using the leap-frog 

algorithm using a time step of 2 fs. A reaction field approximation was used to account 

for truncation of electrostatic forces beyond the long range cutoff (1.4 nm). The reaction 

field relative dielectric permittivities are reported in ref [82]. Constant pressure (1 atm) 

and temperature (298 K) simulations were performed using the Nose-Hoover thermostat 

[47,89] and Parrinello-Rahman barostat [46,50] with coupling times Tτ =  1.5 ps and Pτ =  

2.5 ps. 

3.3.3 Computation of thermodynamic data.  

 To obtain solvation free energies ( G∆ ) and solute-solvent energies ( uvE∆ )the 

Widom test-particle insertion method is applied [90] by performing at least 1×1010 

random insertions in 20-50 ns (NPT) simulation trajectories. The solute-solvent entropies 

( uvS∆ ) were obtained by applying eq (3.3). The constant pressure-temperature test-

particle-insertion equations for G∆  and uvE∆  are given in refs [81] and [82]. The 

constant pressure solvation entropy (298 K, 1 atm) was obtained from the finite 

difference expression 



 
 

 65

 

 ( ) ( ) ( )
2

G T T G T T
S T

T
∆ + ∆ −∆ −∆

∆ = −
∆

     (3.4), 

 

where we used 25KT∆ = . The free energies ( )G T T∆ + ∆  and ( )G T T∆ −∆  were 

calculated using test-particle insertions in (NPT) simulation trajectories of at least 50 ns 

in order to reduce the statistical error in T S∆  below 0.5 kJ/mol. The solvation enthalpy 

was calculated as H G T S∆ = ∆ + ∆  while the solvent reorganization energy was obtained 

by applying eq (3.2). Besides the finite difference approach (eq 3.4) to obtaining S∆  and 

H∆ , we calculated H∆  by applying a direct method. In the direct method the average 

configurational energies of a (solute+solvent) N+1 particle and (solvent) N-particle 

system are subtracted (accounting for an additional, but usually negligible, P V∆ term). In 

addition, a correction needs to be applied to account for the fact that in the direct method 

the (N+1)th particle has a kinetic energy whereas the solvation enthalpy is defined as the 

change of the system enthalpy by introducing the solute at an arbitrary but fixed position 

in the system. [84] The effect of the particle’s kinetic energy, absent in the solvation 

process but present in the direct method for computing H∆ , is a system volume 

increment equal to B Tk Tκ  (with Tκ  the isothermal compressibility of the solvent).[84] As 

an additonal result also the system’s enthalpy increases with a contribution 

( )( ) 2/B T B PT
k T U V P k Tκ α∂ ∂ + =  (where ( )/

T
U V∂ ∂  is the solvent internal pressure and 

Pα  is the solvent isobaric thermal expansion coefficient). Thus, 

∆H(direct_method)=∆H(solvation)+ 2
B Pk T α . The correction term 2

B Pk T α , which we 

discuss in the next chapter more in detail how to obtain these quantities, is non-negligible 
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and amounts to 0.6-0.7 kJ/mol for the systems studied in this work.  We ran additional 

100 ns NPT simulations including five (xDMSO≤0.10) or ten (xDMSO>0.10) methane 

molecules at several DMSO/water compositions. We included several methanes, rather 

than just one, in order to converge the difference between configurational energies within 

statistical errors of 1 kJ/mol. Below 10% DMSO, including of more than five methane 

molecules leads to changes in the methane solvation shell composition and deviations of 

the solvation shell energies with respect to solvating a single methane. In addition to 

providing an independent means for assessing the accuracy of the finite temperature 

difference method (eq 3.4), these explicit solute-solvent simulations allow evaluating the 

solute-solvent energy as well as the solvent reorganization energy including the separate 

contributions arising from changes of DMSO-DMSO, water-water, and DMSO-water 

interactions.  

3.4. Results and Discussion 

3.4.1 Solvation thermodynamics and preferential solute-solvent interactions.   

 Figure 3.3 shows the methane solvation free energy versus the solvent 

composition expressed on a mole fraction (xDMSO) scale. Experimentally obtained data 

[91,92] for the two pure solvents (xDMSO=0.0 and 1.0) are included. The free energy 

decreases monotonically with xDMSO from 8.6 kJ/mol in water to 4.2 kJ/mol in pure 

DMSO. The decrease of G∆  with xDMSO is indicative of preferential methane solvation 

by DMSO molecules at all DMSO/water compositions.[93] The difference in solvation 

free energy in water (xDMSO=0) and DMSO (xDMSO=1) corresponds to a six-fold increase 

in methane solubility. The experimental data are G∆ = 8.4 kJ/mol (water) [91] and 5.0 

kJ/mol (DMSO) [92] corresponding to a four-fold increase in methane solubility. 
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Inspection of methane-solvent radial distribution functions in figure 3.4 shows a 

preferential methane interaction with DMSO methyl groups. The methane’s first shell 

coordination numbers shown in Table 3.1 indicate that the number of water molecules 

rapidly decreases as xDMSO increases to 0.3. Based on the excess first shell- as well as 

excess coordination numbers up to 10 Å we conclude that methane, in the water-rich 

regions xDMSO≤0.35, preferentially attracts DMSO molecules.  

 

Figure 3.3. Methane solvation free energy in DMSO/water mixtures (298 K, 1 atm) 

computed using test-particle insertions (squares). Experimental values for methane 

solvation in pure water [91] and pure DMSO [92] are included (diamonds). 
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Figure 3.4. Methane-solvent radial distribution functions for xDMSO=0.05 (top panel) and 

xDMSO=0.10 (bottom panel). Shown are CH4-CH3 (methane-DMSO) and CH4-O 

(methane-water) correlations with full- and dashed line, respectively. 
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Table 3.1. Methane 1st shell coordination numbers (NRmax), excess 1st shell coordination 

numbers (NRmax[ex]) and excess coordination numbers up to 10 Å. Rmax is the upper 

distance defining the spatial extension of the first shell. (Excess) coordination numbers 

are based on the oxygen positions for water and the methyl group positions for DMSO. 

Excess coordination numbers are obtained by subtracting the statistically expected 

number of solvent species. 

 

  

H2O  

 

DMSO 

 

xDMSO 

 

NRmax  

 

NRmax[ex] 

 

Rmax(Å) 

 

N10Å[ex] 

 

NRmax  

 

NRmax[ex]

 

Rmax(Å) 

 

N10Å[ex] 

 

0.00 

 

19.3 

 

−1.6 

 

5.39 

 

−1.9 

 

− 

 

− 

 

− 

 

− 

0.05 14.9 −2.2 5.35 −3.6 2.2 0.4 5.35 0.9 

0.10 11.9 −2.4 5.35 −4.3 3.5 0.5 5.26 1.2 

0.19 8.4 −1.9 5.26 −3.7 5.1 0.4 5.25 0.9 

0.27 5.5 −1.6 5.36 −2.2 4.9 0.2 5.26 0.3 

0.35 5.4 −1.4 5.35 −1.8 7.1 0.1 5.30 0.1 

0.48 3.6 −1.0 5.35 −1.2 7.9 0.0 5.25 −0.1 

0.64 1.8 −0.6 5.15 −0.8 8.9 −0.2 5.30 −0.2 

0.81 0.8 −0.3 5.24 −0.4 9.3 −0.3 5.25 −0.3 

1.00 − − − − 9.6 −0.4 5.25 −0.4 
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Table 3.2. Methane solvation free energy G∆ , constant pressure solvation energy ( )P
E∆  

and entropy ( )P
T S∆  in DMSO/water mixtures at 298 K and 1 atm. Units are kJ/mol. 

 

 

xDMSO 

 

G∆  

 

( )P
E∆   

 

( )P
T S∆  

 

0.00 

 

8.6 

 

−2.6 

 

−11.2 

0.05 7.6 −0.5 −8.1 

0.10 7.0   0.9 −6.1 

0.19 6.3   2.1 −4.2 

0.27 5.9   3.2 −2.7 

0.35 5.7   2.9 −2.8 

0.48 5.3   2.5 −2.8 

0.64 4.8   2.3 −2.5 

0.81 4.4   1.8 −2.6 

1.00 4.2   1.0 −3.2 
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Figure 3.5. (a) Methane solvation entropy ( )P
T S∆  calculated from finite temperature 

differences (cf. eq 3.4). (b) Methane solvation enthalpy ( )P
H∆  obtained from 

( ) ( )P P
H G T S∆ = ∆ + ∆ . T=298 K, P=1 atm. 
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 In pure water (at 298 K), the methane hydration shell has a low enthalpy and 

entropy since first shell water molecules avoid wasting hydrogen bonds and form 

hydrogen bonded cage structures.[94] These low entropy (enthalpy) water structures are 

disrupted by DMSO molecules, therefore one expects that the methane solvation entropy 

(enthalpy) increases with increasing xDMSO. Figures 3.5a and 3.5b show the solvation 

entropy and enthalpy, respectively. The data are summarized in Table 3.2. In the water-

rich region (xDMSO<0.30), the methane solvation entropy rapidly increases as the DMSO 

mole fraction of solution increases, whereas it stays essentially unchanged at higher 

DMSO mole fractions (0.30≤xDMSO≤1.0). The enthalpy rapidly increases also for DMSO 

mole fractions smaller than 0.3, but then reaches a maximum value, and next decreases. 

Symons reported identical trends in an experimental study of hydrogen gas solubility in 

the DMSO-water system.[95] The maximum in the hydrogen solvation enthalpy found by 

Symons appears in the 25-35 mol% DMSO range.[95] Based on the data in Figs 3.3 and 

3.5 and the commonly used expression G H T S∆ = ∆ − ∆  we tentatively conclude that the 

downward trend of the solvation free energy with xDMSO (increase of methane solubility) 

is entropic in the water-rich region (<30 mol% DMSO) while it is enthalpic at higher 

DMSO content. Below, where we account for enthalpy-entropy compensation, we will 

show that this conclusion is unjustified and the molecular driving force of preferential 

methane-DMSO interaction never is the entropy change. 
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Figure 3.6. (a) Constant pressure solvent reorganization energy (squares) obtained from 

the data in figure 3.5(b) by subtracting the solute-solvent energy (eq 3.2). Solvent 

reorganization energies obtained by direct subtraction of the configurational energies of a 

(N+1)- and N-particle system 
1N NN N

U U
+

⎡ ⎤−⎣ ⎦  are also included (diamonds). (b) 

Solute-solvent interaction energies. 
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3.4.2 Solute-solvent and solvent-solvent energy changes.   

 In section 3.2 we classified the solute-solvent and solvent-solvent energy changes 

as energetic measures of the primary and secondary processes, respectively. The energy 

of the secondary process is exactly enthalpy-entropy compensating and does not impact 

the free energy. Figures 3.6a and 3.6b show the solvent-solvent energy change and 

solute-solvent binding energy, respectively. The solvent-solvent energy change is 

smallest in pure water, strongly increases with DMSO mole fraction (with approximately 

a factor 2) and settles at a constant value of approximately 22 kJ/mol around 30 mol% 

DMSO. In addition to the solvent-solvent energies obtained from the temperature 

dependence of the free energy (squares in fig 3.6a) we included in the same figure the 

solvent-solvent energies obtained by taking differences of the configurational energies 

(diamonds) sampled in the (N+1)-particle and N-particle systems (see section 3.3). The 

comparison is very satisfactory. The methane-solvent binding energy (Fig 3.6) decreases 

monotonically with DMSO ratio in the mixture. This trend is explained by methane-

DMSO dispersion interactions being stronger than methane-water dispersion interactions.  

Note that the methane binding energy and solvent reorganization energy are of 

comparable magnitude but have opposite sign. There are a number of additional 

comments we can now make regarding the methane solvation enthalpy in fig 3.5b. Below 

30% DMSO the methane solvation enthalpy increases with xDMSO and changes sign. In 

water the solvation process is exothermic due to comparably small solvent reorganization 

energy. Above 5 mol% DMSO the solvation process becomes endothermic, which it 

remains up to xDMSO=1. Below xDMSO=0.30 the reorganization energy overcompensates 
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the methane binding energy and the solvation enthalpy follows the trend of the solvent 

reorganization energy.  

Table 3.3. Methane constant pressure solvation energy ( )P
E∆ , solvent reorganization 

energy ( )vv P
E∆  and contributions of water-water, DMSO-DMSO and DMSO-water 

interactions to the solvent reorganization energy. ( )P
E∆  and ( )vv P

E∆  were obtained from 

the temperature dependence of the free energy (see text). The values denoted in 

parentheses were obtained by taking differences between configurational energies of 

solute-solvent and pure solvent systems and correcting those values with a term 2
B Pk T α   

(see text). The individual solvent-solvent contributions were obtained also by taking 

differences between configurational energies of solute-solvent and pure solvent 

systems. ( ) ( ) ( ) ( )2 2 2

2
vv B P H O H O DMSO DMSO DMSO H OP PP P

E k T E E Eα − − −∆ + = ∆ + ∆ + ∆ . T=298 K, 

P= 1 atm.  Units are kJ/mol.  

 

xDMSO 

 

( )P
E∆  

 

( )vv P
E∆  

 

( )2 2H O H O P
E −∆

 

( )DMSO DMSO P
E −∆  

 

( )2DMSO H O P
E −∆

 

0.00 

 

−2.6 

 

11.2 (10.8) 

 

11.5 

 

− 

 

− 

0.05 −0.5 14.4 (14.5) 8.1 −0.1 7.1 

0.10 0.9 16.9 (16.7) 6.0 2.1 9.3 

0.19 2.1 19.3 (19.4) 2.2 4.0 13.9 

0.27 3.2 21.3 (20.9) 1.6 7.5 12.5 

0.35 2.9 21.5 (21.7) 1.9 10.8 9.7 

0.48 2.5 21.9 (21.5) 2.0 15.1 5.1 

0.64 2.3 22.2 (21.7) −0.4 17.7 5.1 

0.81 1.8 22.2 (22.7) −0.2 20.7 2.2 

1.00 1.0 21.9 (22.2) − 22.9 − 
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The maximum in the methane solvation enthalpy in fig 3.5b happens because the solvent 

reorganization energy stays at a constant value after reaching xDMSO=0.30 while the 

methane binding energy continues to decrease with increasing xDMSO owing to favorable 

dispersion interactions with the large DMSO molecule.  

3.4.3 Contributions to the entropy.  

 The solvent reorganization energy in Fig 3.6a contributes to the solvation entropy 

( ) ( ) /uv vvP P
S S E T∆ =∆ + ∆  (eq 3.1). The solvation entropy in Fig 3.5a reaches a constant 

value exactly where also the reorganization energy becomes constant (xDMSO~0.30). The 

striking similarity between Figs 3.5a and 3.6a indicates that solvent reorganization 

provides a substantial, if not the most prominent, contribution to the overall solvation 

entropy. This observation has far-reaching implications: based on the shape of the 

entropy curve (Fig 3.5a) in section 3.4.1 we concluded that the observed larger methane 

solubility for larger xDMSO is entropy-driven. Here we however find that the increase of 

the methane solvation entropy at xDMSO<0.30 is caused by an energy-entropy 

compensating solvent reorganization process. Due to this compensation, the conclusion 

of section 3.4.1 is unjustified i.e. it is not true to say that the preferential methane 

solubility is entropy-driven. Before we analyze the solute-solvent contributions pertinent 

in the free energy uv uvG E T S∆ = ∆ − ∆  (eq 3.3), we look at contributions to the solvent 

reorganization energy ( )vv P
E∆  and the implications on ( )P

H∆  and ( )P
S∆ . Table 3.3 

shows the changes of the potential energy of DMSO-DMSO, water-water, and DMSO-

water interactions contributing to the constant pressure solvent reorganization energy. 

The sum of these contributions minus 2
B Pk T α  equals the overall solvent reorganization 

energy presented in Table 3.3 and Fig 3.6a. With increasing DMSO concentration of the 
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solution, the water-water reorganization energy steadily decreases while the DMSO-

DMSO reorganization energy steadily increases, as expected. The DMSO-water 

reorganization energy passes through a maximum, however not at xDMSO=0.5, but at 

xDMSO=0.19. The major contribution to the overall solvent reorganization energy at 

solution compositions xDMSO<0.30 stems from loss of DMSO-water cohesive 

interactions. For DMSO concentrations xDMSO<0.30, the excess number of DMSO 

molecules in the methane’s first shell is positive (table 3.1) indicating that methane 

attracts the DMSO molecules from the bulk into its solvation shell(s). In that process, 

DMSO molecules are forced to sacrifice strong cohesive (polar) interactions with water 

molecules which are then left behind in the bulk. Eventually it is this “release” of DMSO 

hydration water that contributes to the increase of the entropy observed in Fig 3.5a.  

 In a previous study by Van der Vegt and Van Gunsteren the methane solute-

solvent entropy has been extensively studied in solutions of NaCl/water, acetone/water 

and DMSO/water.[82] At sufficiently high concentrations of salt ions or cosolvents that 

strongly bind water molecules density fluctuations required to produce (empty) molecular 

sized cavities large enough to host a solute are suppressed. As a result the solute-solvent 

entropy becomes stronger negative the more salt or cosolvent is present in solution. In 

NaCl/water ion hydration waters are bound strongly to the ion so that most cavities can 

form only far outside the ion hydration shells. This causes less waters being available to 

hydrate the methane at higher salt content, lnB insk P  to decrease and the methane being 

“salted-out”. Also in DMSO/water the formation of transient cavities is suppressed due to 

strongly polar DMSO-water interactions.[82,87] Thus, lnB insk P  decreases with xDMSO as 

is shown in Fig 3.7b. 
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Figure 3.7. (a) Solute-solvent entropy change uvT S∆  (eq 3.1). (b) Contributions to the 

solute-solvent entropy change (eq 3.5) arising from the insertion probability that a 

methane particle in a pure DMSO/water solvent system has zero or negative binding 

energy (squares) and fluctuations of the binding energy that cause a biasing of cavity 

occupation (triangles). The data are presented relative to the values in pure water. For 

(SPC) water these are: lnB insk T P =−20.1 kJ/mol, 22/ 2β ψ ψ⎡ ⎤− − =⎣ ⎦  −2.0 kJ/mol. 
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For xDMSO<0.20, the second term in eq (3.5) causes an additional reduction of the entropy 

(Fig 3.7b). This term, proportional to the fluctuations of the solute-solvent interaction 

energy, measures the extent to which attractive solute-solvent interactions (indicated by 

subscript ‘a’) bias the solvent configuration space. [75] Since methane-DMSO dispersion 

interactions are stronger than methane-water dispersion interactions, fluctuations of the 

solute-solvent interaction energy are indeed expected because the solute will not only 

occupy cavities solvated mostly by DMSOs but also occasionally occupy hydrated 

cavities. The methane-DMSO attractive interaction however puts a stronger bias on 

occupying those transient cavities mostly solvated by DMSO molecules. This biasing 

process leads to a selected, non-random solvation shell structure and a lowering of 

entropy. 

 We have shown that methane preferentially interacts with DMSO molecules (cf. 

Fig. 3.4, Table 3.1) causing methane solvation free energies to be lower in DMSO/water 

mixtures with larger DMSO concentration (Fig. 3.3). What is the molecular driving force 

for this preferential interaction? One can straightforwardly argue that the methane 

dispersion interaction with the larger (polarizable) DMSO molecule is stronger than with 

the smaller water molecule but it is non-trivial that this energetically stronger interaction 

should be the pertinent driving force. [83] In condensed phases, the entropy of the solvent 

usually plays a role which is equally important role as the energy. However it is often 

unclear how to link entropy changes to molecular-scale processes and to what extent 

energy and entropy changes of such processes are compensating in the free energy. In 

this chapter the energy and entropy of the primary process are emphasized and based on 
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that the molecular driving force has proven to be energetic (the entropy of the primary 

process opposes methane-DMSO interaction). Experimentally, however, one cannot 

distinguish between primary and secondary sub-processes and only the overall solvation 

energy and entropy are being measured. Based on the trends observed in the experimental 

solvation enthalpies and entropies one would easily conclude that the molecular driving 

force for preferential methane-DMSO interaction (in the water-rich regime) is the 

entropy. The example discussed in this work, therefore, shows the risk of proclaiming a 

process being energetic or entropic when not properly accounting for compensating 

terms.  

Figure 3.8: Methane solvation free energy in water mixtures with cosolvents DMSO, 

acetone, and TBA (298 K, 1 atm) 
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 In this chapter, preferential methane solvation in DMSO/water mixtures was 

discussed in terms of the solvation free energy, enthalpy and entropy. To understand 

preferential solvation in binary mixtures, the energy contributions were considered by 

splitting the contributions of solute-solvent and solvent-solvent interactions. A 

decomposition of free energy into its energetic and entropic components provides useful 

insights in atomic-scale solvation mechanisms. When we compare the solvation free 

energies of methane in different binary solvent systems of DMSO, acetone, and TBA 

with the data taken also from other studies of Lee and Van der Vegt mentioned in the 

introduction part, as shown in Figure 3.8, we observe that in all cases there is a 

preferential solvation with the increasing solvent content. The TBA-water binary mixture 

performs better than mixtures of water with the both cosolvents acetone and DMSO. In 

case of methane insertion in TBA/water mixtures, the solvent-solvent energy changes 

significantly whereas the solute-solvent energy remains constant as the TBA mole 

fraction is changed. There the solvent reorganization energy is a dominant contribution to 

the methane solvation as well. However, since the solvent reorganization process is 

enthalpy-entropy compensating in the free energy, entropy change by itself cannot 

explain the preferential interaction of methane. The enthalpy-entropy compensation 

becomes larger in the order urea, dimethyl sulfoxide and acetone. Moreover, it is helpful 

in understanding solvation thermodynamics of hydrophobic interactions in liquid 

mixtures. In particular, it is important to know the exact enthalpy-entropy compensation 

in the free energy.  
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3.5. Conclusions. 

 It is common practice to ask whether a preferential interaction in a liquid solution 

environment is driven by the enthalpy or entropy. This question, however, often is 

inappropriate because enthalpy and entropy changes may contain significant 

contributions that cancel out in the free energy (enthalpy-entropy compensation). In this 

chapter we investigated methane solvation in DMSO/water mixtures where preferential 

methane-DMSO interactions cause a reduction of the methane solvation free energy with 

the DMSO concentration. The solvation free energy is determined only by the solute-

solvent coupling interactions (primary interactions) whereas all changes of the enthalpy 

and entropy occurring in response to modifying cohesive solvent-solvent interactions 

(secondary interactions) are always enthalpy-entropy compensating. We have shown that 

loss of solvent-solvent cohesive interactions fully determines the methane solvation 

enthalpy and entropy: methane is preferentially solvated by DMSO molecules; however, 

DMSO molecules in the methane solvation shell release hydration waters thereby 

increasing the enthalpy and the entropy. As a result, a process that does not influence the 

free energy dominates the enthalpy and entropy differences. 
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CHAPTER 4 
 

Solvent Reorganization in Solute Transfer 

Thermodynamics Derived from Solvent 

Equation of State 
 

 

4.1. Introduction 

 In all chemical processes in the fluid phase the concept of solvation is of central 

importance. Intimately related to aspects of solvation, to understand the molecular 

driving forces and interactions behind the processes like permeability of membranes and 

stability of folded proteins an urgent requirement exists. Therefore, to understand the 

solvation phenomena from an atomistic point of view, we tried to give the relations 

between preferential interactions and basic thermodynamic quantities and statistically 

derived contributions in previous chapter, Chapter 3.  

 In chapter 3, we have shown that there is a solvent reorganization term 

compensating in the free energy, on the other hand dominating in the enthalpy and 

entropy quantities. There, we discussed the thermodynamics of methane solvation in 

dimethyl sulfoxide (DMSO)/water mixtures in terms of free energy, enthalpy and entropy 
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by performing molecular simulations. In order to do that, we investigate the two 

contributions from (1) solute-solvent interactions (primary contribution) and (2) solute-

induced modifications of solvent-solvent interactions (solvent reorganization) (secondary 

contribution). Moreover, we showed that the solvation entropy and enthalpy share a 

common contribution – referred to chapter 3 as the secondary process – that is exactly 

enthalpy-entropy compensating (canceling) in the free energy. We concluded that even 

though the secondary process fully cancels out without any contribution to the solvation 

free energy, it dominates the changes of the methane solvation entropy and enthalpy. For 

example, below 30 mole percent DMSO in the mixture, methane – due to more favorable 

dispersion interactions with DMSO molecules – preferentially attracts DMSO molecules 

which in response release water molecules into the bulk causing an increase of the 

entropy. Furthermore, this large energy-entropy compensating process easily causes a 

confusion of the cause for and the effect of preferred methane-DMSO interactions. 

Procedures that infer thermodynamic driving forces from analyses of the solvation 

entropies and enthalpies should therefore be used with caution. Here, methane-DMSO 

dispersion interactions are the cause, the entropy change is the effect. This exact 

enthalpy-entropy compensating process has been described in several earlier works 

[66,70,75-83] but its quantitative evaluation in numerical simulations remains 

challenging and only few numerical studies have been reported on this subject so 

far.[66,70,77,79-81] In chapter 3, we explained the physical significance of and 

quantitative ways to obtain  the solute-solvent energy and solute-solvent entropy 

associated with the primary process. From now on we will discuss how to potentially 

estimate these quantities from experiments combining solvation thermodynamic- and 
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solvent equation of state data. In this chapter we want to discuss an approach to obtain 

these individual terms from bulk properties of solvents so that it would be available to 

compare and improve the parameters involved in the simulations. The question is 

whether a recipe is available to improve or check the accuracy of the force field 

parameters from easily obtainable experimental data, such as the compressibility or 

expansion coefficient of the fluid. 

 Hummer, Pratt, and co-workers [66-68,70,75,76] have shown in their studies of 

hydrophobic effects how the temperature dependence of aqueous solubilities of nonpolar 

solutes can quantitatively be described using molecular theory, while at a more 

qualitative level it can be understood from the bulk solvent equation of state. Although 

descriptions of this as well as other hydrophobic effects [75] in terms of bulk solvent 

properties (i.e., the isothermal compressibility) are approximate, they have been very 

successful in providing semiquantitative explanations of isotope effects on hydrophobic 

hydration [75] and entropy convergence.[67] 

 Moreover, as it was recently pointed out by Ben-Amotz et al., [78] the solute-

solvent energy and solute-solvent entropy are experimentally accessible under conditions 

that the constant-volume solvent reorganization energy vanishes. In idealized Van der 

Waals fluids this is always true, [75,78] while for xenon in n-hexane and water at 

ambient conditions ( )vv V
E∆  proved to have a magnitude of at most kBT. [78] 

 Although the real molecular driving forces in a solvation process are the solute-

solvent energy and solute-solvent entropy as it is discussed in the previous chapter, these 

quantities are easily derived from computer simulations, but are sensitive to details of the 

empirical force field. Therefore, comparison with experimental estimates of the solute-
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solvent energy- and entropy is necessary. We will in particular be interested in the 

solvation enthalpy, which is not only determined by direct interactions of the solute with 

the solvent but also by changes in cohesive solvent-solvent interactions resulting from 

structural solvent rearrangements around the solute. We will show that we can estimate 

the solvent reorganization energy of methane solvation in DMSO within an accuracy of 

kBT based on information on the solvent thermodynamic equation of state ( Pα , Tκ , or 

( )/
T

U V∂ ∂ ) at the appropriate state point (P,T) allowing for experimental assessment of 

the solute-solvent energy and solute-solvent entropy. In addition to the solvent equation 

of state data, the latter procedure requires the solvation free energy, solvation enthalpy, 

and solvation volume from experimental sources. Not only are experimental estimates of 

solute-solvent binding interactions and solute-solvent entropies of interest per se (e.g. to 

better understand molecular driving forces of specific interactions), but also development 

of empirical force fields can benefit from it. 

 

4.2. Theoretical Background 

4.2.1. Solvent Reorganization term in Solvation Enthalpy and Entropy 

In the previous chapter, we explained how to compute from the simulations all various 

contributions appearing in the basic quantities of solvation thermodynamics. Depending 

on the assumption that the Hamiltonian of a solute/solvent system can be formally split 

into solute-solvent (denoted by the subscript uv) and solvent-solvent (vv) interactions 

(where the latter refers to the pure solvent-solvent interactions, evaluated as if no solute 

were present). On the basis of this splitting, the constant-pressure solvation enthalpy, 

∆HP, is given by the sum of the solute binding- and solvent reorganization energy; 
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( ) ( )

( )
1 1

P P

N NN N N

uv vv P

H E

U U

E E

ψ
+ +

∆ ∆

⎡ ⎤= + −⎣ ⎦
≡∆ + ∆

�

                                                       (4.1),   

where 
1uv N

E ψ
+

∆ ≡  denotes the average solute (N+1th particle)  binding energy (ψ ) 

with all N solvent molecules in a constant pressure-temperature system. uvE∆  is also 

referred to as the solute-solvent energy change.  

 For the constant-pressure entropy change ( )P
S∆ , which probes the local contributions to 

the solvation thermodynamics,  the splitting into solute-solvent and solvent-solvent terms 

results in two contributions: where uvS∆  is the solute(u)-solvent(v) entropy change and 

( )vv P
E∆  the constant-pressure solvent(v)-solvent(v) energy change (solvent 

reorganization energy): 

 

 ( ) ( ) /uv vvP P
S S E T∆ = ∆ + ∆        (4.2), 

 

As we emphasized before, the solvation enthalpy (eq 4.1) and solvation entropy (eq 4.2) 

share ( )vv P
E∆  as a common term cancelling out (exact enthalpy-entropy compensation) 

in the free energy: 

 ∆GS = (∆H)P - T(∆S)P  =  ∆EUV - T∆SUV                                           (4.3) 

Of course, this does not mean that solvent-solvent interactions play no role in ∆G; their 

contribution is indirect in that the ensemble averages (refer to eqns 3.1 and 3.2) have the 

total potential energy in the exponential weighting factor. Whereas the thermodynamic 

quantities on the left-hand sides of eqs 4.1 and 4.2 can be obtained experimentally, 
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evaluation of the corresponding statistical mechanics quantities all discussed in the 

chapter 3, however, on the right-hand sides of these equations requires, in addition, 

approximate theories and/or computer simulations. Due to the exact enthalpy-entropy 

compensation of the solvent reorganization enthalpy (∆Hvv)P in the free energy of 

solvation, only the solute-solvent energy and the fluctuation contribution to the entropy 

directly contribute to solvation phenomena. It should be noted however that the solvent 

reorganization enthalpy can be particularly large such that it overrides the solute-solvent 

energy and solute-solvent entropy in the experimentally accessible thermodynamic 

quantities (∆H)P and (∆S)P which may be misleading in the interpretation of these data. 

Although exactly compensating parts could not be quantified at that time, Roseman and 

Jencks more than three decades ago already stated that it is potentially misleading and 

even unjustified to reach "conclusions regarding the driving forces and mechanism for 

interactions... from observed enthalpies and entropies of interaction" due to "mutually 

compensating changes in enthalpy and entropy".[87] This is what we have achieved to 

prove recently by means of numerical results and discussed so far. For that reason, it is a 

requirement to obtain individual contributions from solute-solvent interactions so called 

primary process. By means of molecular simulations, nowadays this is not so difficult. 

However, all the computational methods depend on the force field parameterizations of 

which the accuracy should be checked. Experimentally it is not possible to obtain solute-

solvent interactions on a numerical basis. On the other hand, if one can achieve to obtain 

quantitatively solvent-solvent contribution, (∆Hvv)P, from experimental ways also as well 

as computational means, by moving back-steps it will also be possible to understand the 

solute-solvent interactions and improve the force-fields accordingly.  
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4.2.2. Solvent reorganization energies derived from pure solvent data.  

 The primary thermodynamic quantities (solute binding energy, solute-solvent 

entropy) characterize the atomic scale driving forces but cannot be obtained directly from 

experiments. By virtue of the relation ( ) ( ) ( ) */vv vv P T SP V
E E T Vα κ∆ = ∆ + ∆  Ben-Amotz et 

al. however showed that indirect experimental ways to obtain the solute-solvent binding 

energy and solute-solvent entropy exist in case the constant-volume solvent 

reorganization energy ( )vv V
E∆  vanishes.[78] In that case the constant pressure solvent 

reorganization energy ( )vv P
E∆  equals the volume expansion term *( / )P T ST Vα κ ∆  with 

Pα  the isobaric thermal expansion coefficient of the solvent, Tκ  the solvent isothermal 

compressibility and *
SV∆  the solvation volume of solute S. Ben-Amotz et al. could show 

that the constant-volume solvent reorganization energy for solvating xenon in water and 

n-hexane at 298.15 K approaches zero within an accuracy of ~ Bk T .[78] Hence, 

experimental data on ( )P
E∆ , Pα , Tκ  and *

SV∆  suffice to estimate the xenon binding 

energy (cf. eq 4.1) with room temperature water and with n-hexane within an accuracy of 

Bk T . Having obtained that information, additional experimental information on G∆  

allows one to obtain the solute-solvent entropy change by means of eq (4.3). The 

experimentally obtained binding energy and solute-solvent entropy obviously are of huge 

benefit in the validation of empirical force fields.  

Here we first provide a heuristic derivation of Ben-Amotz’s result (i.e. 

( ) *( / )vv P T SP
E T Vα κ∆ ∆� ) starting from the test-particle insertion equations for the 

enthalpy of solvent reorganization and the solvation volume. The derivation makes clear 
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under what conditions/assumptions the above result can be expected to hold. Equations 

(4.4) and (4.5) denote the (exact) test-particle insertion formulas for the solvent 

reorganization enthalpy and the solvation volume, respectively.[77,81,82] 

 

 ( ) ,N i i NPT
vv P

i NPT

H B
H

B
δ

∆ =         (4.4), 

 

 * i i NPT
S

i NPT

V B
V

B
δ

∆ =        (4.5). 

 

In eq (4.4) and (4.5), , ,N i N i N NPT
H H Hδ = −  denotes the instantaneous fluctuation of the 

N-particle solvent-solvent enthalpy ( , ,N i N i iH U PV= + ) corresponding to a given 

configuration i of solvent particle coordinates, i i NPT
V V Vδ = −  the corresponding 

instantaneous volume fluctuation. Instantaneous fluctuations allowing the creation of free 

volumes which are necessary for the insertion of solutes can be shown schematically as 

such: 
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 keBi
βψ−=  the solute insertion factor where the horizontal bar indicates an averaging 

over many random locations in solvent configuration i ( kψ denotes the solute-solvent 

binding energy at a randomly chosen kth location in solvent configuration i). The 

exponential factor ]exp[ kβψ−  vanishes whenever the randomly chosen location 

produces solute-solvent overlaps. Whenever the location is that of an empty cavity 

suitably large to host the solute, ]exp[ kβψ−  is non-vanishing and contributes to iB . To 

arrive at an expression with the solvent reorganization enthalpy being proportional to the 

volume change we combine eqs (4.4) and (4.5) to obtain, 

 
( ) ,

,

N i i NPT
vv SP

i i NPT

N i i NPT
S

i i NPT

H B
H V

V B

H B
V

V B

δ

δ

δ δ

δ δ

∗

∗

∆ = ∆

= ∆

     (4.6). 

 

So far the result is still exact. We now assume that (attractive) solute-solvent interactions 

do not affect the way solvent molecules reorganize vicinal to the inserted solute. This 

assumption obviously does not hold for polar solutes dissolved in water (or other polar 

solvents), where water molecules orient H-bonds towards the solute, but for nonpolar 

solutes interacting with the solvent through dispersion forces this assumption should be 

reasonable. The solute, then, merely occupies space and fluctuations of the insertion 

factor iBδ  correlate with the volume fluctuations iVδ ; i.e. i iB Vδ δ∼ . Using this 

assumption in eq (4.6) yields, 
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( ) ,

2

N i i NPT
vv SP

i NPT

P
S S

TT

H V
H V

V

T UV P V
V

δ δ

δ

α
κ

∗

∗ ∗

∆ ∆

⎡ ⎤∂⎛ ⎞= ∆ = + ∆⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

�
     (4.7), 

 

where we used the NPT-ensemble fluctuation formulas 2
B PNPT NPT

H V k T Vδ δ α=  and 

2
B T NPTNPT

V k T Vδ κ= . In eq (4.7), ( )/
T

U V∂ ∂  is the solvent internal pressure, which 

in terms of state variables P, V, and T reads ( ) ( )/ /
T V

U V T P T P∂ ∂ = ∂ ∂ −  (the 

thermodynamic equation of state). Finally we recall that in the liquid state the term 

SP V ∗∆  is usually small and therefore ( ) ( )vv vvP P
H E∆ ∆� . We note that in a somewhat 

different context the significance of the thermodynamic equation of state of water has 

been emphasized in understanding hydrophobic hydration and hydrophobic 

interactions.[96,97] 

 

4.3. Computation of thermodynamic data 

 For the analysis explained in this chapter mainly the trajectories obtained from the 

simulations performed in the previous study (chapter 3) were used. Besides these to 

obtain some other necessary quantities, such as isothermal compressibility further 

simulations performed with the same molecule models as mentioned in the last chapter. 

In the previous chapter, the determination of constant pressure solvent reorganization 

energy was done from the simulations by statistical thermodynamic formulations both by 

subtracting the solute-solvent energy from the total enthalpy and also by direct 

subtraction of the configurational energies of a (N+1)- and N-particle system 

1N NN N
U U

+
⎡ ⎤−⎣ ⎦ . In addition to having provided an independent means for assessing 
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the accuracy of the finite temperature difference method, these explicit solute-solvent 

simulations allowed to evaluate the solute-solvent energy as well as the solvent 

reorganization energy including the separate contributions arising from changes of 

DMSO-DMSO, water-water, and DMSO-water interactions. 

 For the determination of constant pressure (∆HVV)p from the bulk equation of 

state, the basic properties such as Tκ  the isothermal compressibility of the solvent, Pα  

the solvent isobaric thermal expansion coefficient and ( )/
T

U V∂ ∂  the solvent internal 

pressure are required. These are the bulk properties which can be obtained easily from the 

experiments as well as by computational means. We calculated Pα , Tκ  and ( )/
T

U V∂ ∂  

of all DMSO/water mixtures at 298 K and 1 atm.  To obtain Tκ  and ( )/
T

U V∂ ∂  two 

additional 1 ns NVT runs were performed in which the density was changed by ±2% 

relative to the state point of interest (298 K, 1 atm). The isothermal compressibility was 

obtained by monitoring the average pressures in the two runs; i.e. 

[ ] [ ]( )2 1 2 1ln / /T T
P Pκ ρ ρ −�  where 1ρ  and 2ρ  are the densities and 1P  and 2P  the 

pressures. From the same NVT runs the internal pressure was calculated as 

( ) ( ) ( )2 1 2 1/ /
T T

U V U U V V∂ ∂ − −⎡ ⎤⎣ ⎦�  where 1U  and 2U  are the average potential energies 

of nonbonded interactions and 1V  and 2V  the volumes. The isobaric thermal expansion 

coefficient was obtained by performing two additional 1 ns NPT simulations in which the 

temperature was changed ±10 K and the volume response was monitored; i.e. 

[ ] [ ]( )1 2 2 1ln / /P P
T Tα ρ ρ −� . 
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4.4. Results and Discussion 

 

 We tested the validity of eq (4.7) for our system at the various DMSO/water 

ratios. Table 4.1 presents Pα , Tκ  and ( )/
T

U V∂ ∂  for DMSO/water mixtures at 298 K 

and 1 atm as predicted by our classical force field.[87] We note that ( )/
T

U V∂ ∂  was 

evaluated directly from the nonbonded interactions (see section 3.3 in chapter 3), rather 

than obtaining it from the computed values of Pα  and Tκ , because the latter approach 

introduces larger errors. Experimental values [98] for ( )/
T

U V∂ ∂  are included in Table 

4.1 as well.  

 Comparison of the experimental and force-field-predicted internal pressures 

shows that the model performs quite well between 19% and 64% DMSO. In pure DMSO 

the model prediction is 10% too high, while in pure (SPC) water the model prediction is 

150% too high. The large discrepancy between SPC- and real water happens owing to a 

significantly too large thermal expansion coefficient of the SPC water model. 
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Table 4.1. Thermal expansion coefficient (αP), isothermal compressibility (κT) and 

internal pressure of DMSO/water mixtures at 298 K and 1 atm. Experimental data are 

denoted within parentheses: (a) ref [98] (b) ref [99] (c) ref [100] 

 
xDMSO 

 
10−4 αP  (K−1) 

 
10−6κT (bar−1) 

 
( )/

T
U V P⎡ ⎤∂ ∂ +⎣ ⎦  (kJ/cm3)  

0.00 7.6 (2.57) (b) 54.4 (45.2) (b) 0.41 (0.169)(a) 

0.05 8.7 52.6 0.47 

0.10 9.1 51.3 0.48 (0.397) (a) 

0.19 9.7 51.3 0.57 

0.20   (0.550) (a) 

0.27 9.8 49.4 0.60 

0.30   (0.604) (a) 

0.35 9.7 49.8 0.62 

0.40   (0.611) (a) 

0.48 9.7 48.6 0.60 

0.60   (0.565) (a) 

0.64 9.0 49.4 0.60 

0.80   (0.526) (a) 

0.81 8.9 49.0 0.56 

1.00 8.9 (9.3) (c) 48.5 (53.2) (c) 0.57 (0.510) (a) 

  

  

In Table 4.2 the methane partial molar volumes, solvation volumes and volume 

expansion terms ( )
4

*/ CHT
U V P V⎡ ⎤∂ ∂ + ∆⎣ ⎦  (eq 4.7) are listed. Comparison of the latter 

quantity with ( )vv P
E∆  in Table 3.3 (in the previous chapter) shows that both ways to 

obtain ( )vv P
E∆  agree within an accuracy of kBT on average.  
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Table 4.2. Methane partial molar volumes 
4CHV∆ , methane solvation volumes 

4 4

*
CH CH B TV V k Tκ∆ = ∆ −  and volume expansion contribution ( )

4

*/ CHT
U V P V⎡ ⎤∂ ∂ + ∆⎣ ⎦  to 

the constant pressure solvation energies in Table 3.3. The partial molar volumes were 

obtained from finite volume differences of solute-solvent- and pure solvent constant 

pressure simulations (see text).  

 
xDMSO 

 

4CHV∆  

(cm3/mol) 

 

4

*
CHV∆  

(cm3/mol) 

 
( )

4

*/ CHT
U V P V⎡ ⎤∂ ∂ + ∆⎣ ⎦  

(kJ/mol) 

 
0.00 

 
37.3 

 
35.9 

 
14.7 

0.05 37.7 36.4 17.1 

0.10 38.6 37.3 17.9 

0.19 39.6 38.4 21.9 

0.27 40.2 39.0 23.4 

0.35 40.7 39.5 24.5 

0.48 41.0 39.8 23.7 

0.64 41.4 40.2 24.1 

0.81 41.8 40.6 22.8 

1.00 41.9 40.7 23.2 

 

 

 

 Note that ( )vv P
E∆  predicted by eq (4.7) is however systematically larger than 

( )vv P
E∆  obtained directly from the simulations (refer to the Table 3.3 in the previous 

chapter). We were proposing that this overestimation (rather than an underestimation)  

could be because of that in writing eq (4.7) the correlation between attractive solute-

solvent interactions and solvent-solvent enthalpy fluctuations (present in eq 4.6) is lost so 

that comparatively large enthalpy- and volume fluctuations therefore contribute in eq 
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(4.7) with a too high weight because methane-solvent dispersion interactions bias the 

denser states in which the methane-solvent binding energy is more favorable and of 

which the instantaneous enthalpy- and volume fluctuations are smaller.  However, after 

the present study, by means of a more recent systematic study of Peter and Van der Vegt 

[1] we realized that the reason was not related with the solute-solvent but with the 

solvent-solvent interactions mainly.  

 In their study Peter et al. discussed whether this is a general result that for all 

systems the volume relaxation enthalpy provides an accurate estimate of the solvent 

reorganization enthalpy, i.e., (∆Hvv)P ≈ T(αP/κT)∆ VS, or whether it is limited to small, 

nonpolar solutes only. The purpose of their study is to examine the range of validity of 

the above estimate for the solvent reorganization enthalpy. For that reason they studied 

the solvation of a series of molecular solutes of increasing size in hexane and DMSO 

pure solvents under ambient conditions. They obtained the changes in solvent-solvent 

interactions directly from these simulations and compared them to the volume relaxation 

enthalpy. They discussed the deviations observed due to solute and solvent molecular 

properties. Furthermore, they investigated the linear dependence of (∆Hvv)P and ∆VS and 

we showed the Figure taken from this work for a better understanding of linear 

dependence in our system. 

 For the solvation of various solutes in pure solvents hexane and DMSO, they 

found a negative deviation of the slope from T(αP/ Tκ ) showing that (∆Evv)V is negative 

and linearly dependent on the solvation volume. The observation (∆Evv)V ~ ∆VS indicates 

that both the hexane and DMSO systems behave in a way in which the nature of the 
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solvent-solvent interactions cause the cavity. The negative slope deviation from the ideal 

behavior should therefore be explained in terms of only the pure solvent properties. If, 

alternatively, solute-solvent perturbative interactions would cause the negative deviation 

by somehow biasing solvent molecules to adopt (solute-specific) spatial and orientational 

arrangements in addition to those arrangements imposed by the solute's excluded volume 

radius, it would be unlikely to obtain the almost perfect linear dependence in ∆VS as 

depicted in Figure 4.1. If, however, only the above excluded volume restriction needs to 

be satisfied, changes of solvent-solvent interactions should somehow grow proportionally 

to the solute size which in turn is proportional to ∆VS.  

 It was surprising that we got so accurate results, even though there was a negative 

deviation from the ideal behavior for the pure DMSO case. It was also indicating that the 

assumptions we made for our system worked well. The reason was that in the limit, ∆VS 

→ 0 the solute diameter reduces to a size which is comparable to (or smaller than) the 

typical free volume in the solvent which is determined by the "packing" of solvent 

particles, so that the solvent does not need to reorganize to make space for a solute-sized 

cavity. Therefore, in the limit ∆VS →0, (∆Evv)V should smoothly approach zero, which 

was actually the assumption we have started with.  
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Figure 4.1: Solvent reorganization enthalpy (∆Hvv)P vs solvation volume of the solute 

(∆VS) for various solutes in DMSO (T = 298.15 K and P = 1 bar): (empty circles) all 

solutes; (solid line) y = 0.56x = T(αp/κT)x; (dashed line) linear fit through solutes 

represented by filled circles (y = 0.45x + 4.5); special solutes, (DMSO (NC)) DMSO with 

partial charges turned off; (M1 and M2 in small panel) neo-pentane with modified 

Lennard-Jones interactions.[1] 
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This is in agreement with the observation that for solutes smaller than methane (helium, 

neon, etc. in Figure 4.1), the relation between (∆Hvv)P and ∆VS follows the ideal behavior 

without any deviation.  

 The accuracy of eq (4.7) opens new avenues not only for obtaining solvent 

reorganization energies of nonpolar solvation from experimental sources, but also for 

obtaining (from the same sources) estimates of solute binding interactions with the 

solution as well as the solute-solvent entropies. Having available the experimental 

estimates of solute binding interactions should also be of benefit for parameterizing 

empirical force fields, which, in the case of solvated molecules or liquid mixtures, are 

often parameterized against thermodynamic properties such as solvation free energies, 

heats of mixing and solution densities. We take as an example methane hydration in 

water (298 K, 1 atm). The required experimental data are: Pα =2.57×10−4 K−1, [99] 

Tκ =45.2×10−6 bar−1 ( /P TTα κ = 0.169 kJ/cm3), [99] 
4CHV∆ = 37.3 cm3/mol,[101] 

( )P
H∆ =  −11.5 kJ/mol.[91] Hence we find 

4
( / )P T CHT Vα κ ∗∆ =  6.1 kJ/mol, and, through 

eq (4.2), uvE∆ = −17.6 kJ/mol. Our force-field-predicted value is uvE∆ = −13.5 kJ/mol. 

Using the experimental hydration free energy G∆ = 8.4 kJ/mol, [91] we find the 

experimental estimate of the solute-solvent entropy: uv uvT S E G∆ = ∆ −∆ =  −26.0 kJ/mol 

which compares to −22.1 kJ/mol from the simulation. Even though our experimental 

estimate of the water reorganization energy is an upper bound and the real value is likely 

to be smaller (by about kBT), from the experimental estimate of uvE∆  it seems that the 

methane-water dispersion interaction used in the simulation is slightly too weak. The 

methane solvation enthalpy in SPC water ( )P
H∆ =−2.6 kJ/mol is significantly too high, 
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however this discrepancy cannot be explained with a too weak methane-water dispersion 

energy. This deviation clearly is due to a too high internal pressure of SPC water causing 

a significant overestimation of the water-water reorganization energy. Paschek [68] who, 

based on the liquid density and structural features, concluded that the SPC model 

corresponds structurally to water at increased temperature, made similar observations. 

For a detailed study on water-model dependencies of nonpolar gas hydration enthalpies 

and entropies we refer to the work of Paschek.[68,102] 

4.5. Conclusions. 

 

 A procedure to obtain the thermodynamic quantities of the primary and secondary 

processes from experimental sources discussed so far suggested that these contributions 

can, under certain conditions, be estimated with additional experimental data on 

thermodynamic response functions of the pure solvent (coefficient of thermal expansion, 

isothermal compressibility) and the solute solvation volume. The statistical mechanical 

quantities defined in the previous section can all be obtained from experimentally 

accessible solvation data if the constant-volume solvent reorganization energy vanishes, 

as has been illustrated for the solvation of methane in DMSO/water binary solvents. 

 By means of this study of solvation thermodynamics, we have shown that 

quantitative estimates of solvent reorganization enthalpies of the methane solvation in 

DMSO/water binary mixtures can be obtained from bulk solvent properties. The enthalpy 

contribution of structural solvent reorganization, (∆Hvv)P, to the constant-pressure 

solvation enthalpy of methane could be predicted almost quantitatively (within an 

accuracy of kBT) provided that the solvent thermal expansion coefficient (αP), isothermal 
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compressibility (κT), and the solute solvation volumes (∆VS) are known. In cases where 

the constant-volume solvent reorganization energy, (∆Evv)V, vanishes, it is then possible 

to determine (∆Hvv)P, which is related to its constant-volume analog according to (∆Hvv)P 

= (∆Evv)V + T(αP/κT)∆ VS, only by the second-the volume relaxation-term. In the last two 

chapters, we calculated the constant-pressure solvent reorganization enthalpy, solvation 

volume, and thermodynamic response quantities of the solvent all directly from computer 

simulations. Studying methane dissolved in DMSO, water, and mixtures of DMSO with 

water under ambient conditions, we found that for all systems the volume relaxation 

enthalpy provides an accurate estimate of the solvent reorganization enthalpy, i.e., 

(∆Hvv)P ≈ T(αP/κT)∆ VS. However, application of the linear correlation approximations we 

mentioned above requires some caution. For example, for the cases such as a polar solute 

in a polar solvent (e.g., self-solvation of DMSO in DMSO, and-to weaker extent-CHCl3 

and ethanol in DMSO) where due to orientational polarization of the solvent molecules 

surrounding the solute, the solvent ensemble of the mixture differs from the pure solvent. 

In such cases where the solute-solvent potential induces a significant change in the 

solvent configurational entropy in which case first-order thermodynamic perturbation 

theory fails and the models described by Ben-Amotz [77] are not applicable.  

 As a conclusion, the real molecular driving force is not the entropy itself but the 

solute-solvent terms energy and entropy, furthermore these quantities are easily derived 

from computer simulations but are sensitive to details of the empirical force field. 

Therefore, comparison with experimental estimates of the solute-solvent energy- and 

entropy is required instead of free energy or entropy of whole system for development of 

force fields. We have shown that information on the solvent thermodynamic equation of 
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state ( Pα , Tκ , or ( )/
T

U V∂ ∂ ) at the appropriate state point (P,T) suffices to estimate 

solvent reorganization energies within an accuracy of kBT allowing for experimental 

assessment of the solute-solvent energy and solute-solvent entropy. In addition to the 

solvent equation of state data, the latter procedure requires the solvation free energy, 

solvation enthalpy, and solvation volume from experimental sources. Not only are 

experimental estimates of solute-solvent binding interactions and solute-solvent entropies 

of interest per se (e.g. to better understand molecular driving forces of specific 

interactions), but also this will be beneficial for construction or improvement of empirical 

force fields. 
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CHAPTER 5 
 

 

Modeling Solubilities of Additives in 

Polymer Microstructures: Single Step 

Perturbation Method based on a Soft 

Cavity Reference State 
 

 
 

5.1. Introduction  

We have introduced the basic methods used for free energy calculations to 

determine solubilities in the methodology chapter. Furthermore, in chapter 3 and 4 we 

applied these basic approaches to investigate the thermodynamics of preferential 

solvation of methane in low molecular weight liquid mixtures. In this chapter, we would 

like to present an advanced methodology to compute via molecular simulations the 

solubilities of additive molecules whose molecular sizes exceed the typical dimensions of 

free volume cavities pre-existing in amorphous polymers. We tried to depict this by a 
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case study on the computation of solubilities of additives based on a single simulation 

trajectory of a soft cavity embedded in bisphenol-A-polycarbonate microstructure.  

Several methods exist already for the calculation of chemical potentials of solute 

molecules in dense polymer microstructures using computer simulation methods [103]. In 

particular the test-particle-insertion method by Widom [60] has frequently been applied 

to gas molecules, [8,81,104-110] because these solutes typically are small (diameters 

smaller than ~ 4Å) and can readily be inserted in empty cavities pre-existing in all 

amorphous polymers. However, the case is different for larger solutes. These solutes, 

which at ambient temperatures usually are in a liquid or (unsaturated) vapor phase, 

represent a substantially larger perturbation and, unlike in the Widom particle insertion 

method, usually cannot be inserted “at once”. Widom insertion methods combined with 

excluded volume map sampling (EVMS) [111] and/or Configurational Bias Monte Carlo 

(CBMC) [112] sampling have been used to compute chemical potentials of larger solutes 

in polymer microstructures. [107,109,113-115] Even though CBMC has proven to work 

very well for flexible solutes (e.g. alkanes) in low-TG (rubbery) polymer matrices, both 

EVMS and CBMC insertion-based methods fail in case the reference ensemble (solute-

free polymer matrix) is rigid and does not sample the required cavity spaces needed for 

solute insertion during a finite length simulation.    

Alternatively, one can resort to methods in which the solute coupling with the polymer 

microstructure is introduced in small steps, thus allowing the solute to enforce its 

required cavity space and the chain environment to locally adjust to the solute. 

Thermodynamic coupling parameter integration [116] (TI) or free energy perturbation 

(FEP) [117] methods are common techniques that can be employed for this purpose. 
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Although these techniques are seemingly more suitable for larger solutes in rigid 

polymers, they lack the advantage of insertion-based methods where volume averaging 

over the entire microstructure is achieved by performing insertions at randomly chosen 

locations. This becomes particularly problematic in molecular dynamics (MD) 

simulations of (slow diffusing) polymeric systems where the solute particle, on time 

scales of nanoseconds, stays trapped inside a local cavity and explores only very small 

distance scales. Then, several independent TI calculations would have to be performed. 

This can be done using fast-growth TI [118] and employing Jarzynski’s equality [64] for 

the free energy change as has recently been discussed elsewhere. [119] Alternative to TI 

and FEP, a staged-particle-deletion scheme (that is based on the inverse-Widom scheme) 

has been developed [120,121] which can be combined with MD simulations.[122] The 

idea is to introduce an intermediate stage in the calculation where the solute particle to be 

removed is substituted by a hard particle. This method, however, faces similar problems 

as the TI and FEP method in slow diffusing systems.  

 The above discussion makes clear that alternative free energy calculation methods 

are needed that alleviate the above sampling problems. In one approach, [123] studied 

already some time ago, expanded ensemble molecular dynamics (EEMD) simulations 

were used in which the coupling of the test particle with the rest of the system is 

continuously changing thereby offering the advantage of sampling the complete 

simulation cell in relatively short (~ 500 picosecond) MD runs. Although this method 

turned out being superior in comparison to TI, it requires an umbrella potential that 

eliminates free energy barriers that may exist at various values of the coupling parameter. 
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In this chapter we propose and examine an alternative technique that combines the 

advantages of the thermodynamic integration and particle insertion methods. The new 

method capitalizes on a judicious choice of a soft-cavity reference state, [124] which is 

defined by the polymeric microstructure in which a soft-core particle has been 

introduced. By virtue of its optimized softness, the soft-core particle explores the 

simulated volume on time scales of nanoseconds while at the same time creating the 

space requirements for insertion of large and rigid solutes. The applicability of this 

method will be tested in liquid octadecane as well as in a bisphenol-A-polycarbonate 

(BPA-PC) microstructure. [119,125] 

 

5.2. Methods 

Before we introduce the general concept of the method used in this work, we briefly 

summarize some aspects of the TI and FEP methods used in this chapter.  

5.2.1 TI and FEP 

5.2.1.1. Thermodynamic Integration (TI). The TI expression for the free energy change 

of introducing nonbonded interactions between solute and matrix reads [116] 

 

1

0

( )TI scVF d
λ

λ λ
λ

∂
∆ =

∂∫          (5.1), 

 

where  

 

( )(1/ 6)6 6( , ) (1 ) p
scV r V rλ λ ασ λ⎡ ⎤= − +⎣ ⎦        (5.2), 
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is a soft-core pair potential and ( )V r  the normal, hard-core, pair potential, which usually 

includes Lennard-Jones (LJ) and, for polar solutes with partial atomic charges, 

Coulombic terms. In Eq. (5.2), σ  is the LJ size parameter of the atom pair, and 0λ =  

and 1λ = correspond to the fully coupled and uncoupled states, respectively. In our 

calculations, we used a λ-power p=1 and soft-core parameter α=0.7. Because the 

integration process involves the coupling of a single particle with the remainder of the 

system, Eq. (5.1) provides the solute excess chemical potential, i.e. TI
exF µ∆ = .  

The relation between exµ  and the solute solubility, S , is given by [81], 

0 0( / ) exp( / )exS T PT RTµ= −  with commonly reported units 3 3cm (STP)/cm bar . In this 

relation, T0, P0, R and T are the standard temperature (273.15 K), standard pressure (1 

atm.), gas constant and the absolute temperature, respectively.  

5.2.1.2 Free energy Perturbation (FEP). The free energy perturbation formula for the 

free energy difference between two systems A and B is given by [117] 

 

( )ln B AU UFEP
A B B A B A

F F F k T e β− −
→∆ = − = −        (5.3), 

 

where 1/ Bk Tβ = , with Bk  Boltzmann’s constant and T the absolute temperature, and U  

is the configurational energy with subscripts A and B referring to the two systems of 

interest. The angle brackets indicate an ensemble average performed on the A system 

which we call the reference (the B system is the target). In the calculation of an excess 

chemical potential by one-step FEP, the A system represents the polymer matrix 
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containing SN  solutes and the B system represents the polymer matrix containing 1SN +  

solutes. In this chapter we shall be concerned with the case 0SN = . 

5.2.2. FEP and TI using a soft-cavity reference state 

5.2.2.1. General concept. Fig. 5.1 shows a thermodynamic cycle summarizing the 

approach examined in this chapter. The horizontal arrow represents the process of 

introducing nonbonded interactions between the solute molecule and the polymeric 

microstructure. The solute excess chemical potential amounts to the free energy 

difference F∆  between the two states connected by this process.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Thermodynamic cycle for calculating the free energy change of solvation 

(∆F). 

 

TI or FEP can in principle be used to compute this quantity but in practice face severe 

sampling problems in slow diffusing systems with large-sized solutes. As was mentioned 

Reference State: 
Soft-core cavity in 

polymer matrix 

Solute in polymer 
matrix 

Dummy in 
polymer matrix 

Free Energy 
Perturbation 

 

REF solute
FEPF →∆  

Thermodynamic 
Integration 

 

REF DUMMY
TIF →∆  

 

 
F∆  

REF solute REF DUMMY 0FEP TIF F F→ →∆ −∆ + ∆ =
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before, TI suffers from poor sampling over the volume of the amorphous microstructure 

(diffusion problem); FEP suffers from insertion problems usually encountered in dense 

systems. Both methods can however be combined in a way that alleviates the sampling 

problems encountered in either of the two methods. The idea is to introduce a “soft” 

reference state [124] (Fig. 5.1) corresponding to a soft-core Lennard-Jones particle 

(defined by Eq.(5.2)) embedded in the matrix. Because diffusion barriers for the motions 

of the soft-core particle are small, the box volume and relevant cavity spaces can be 

sampled in a short MD run. The chemical potentials of the solute (Fig. 5.1, upper left 

corner) and non-interacting dummy (upper right corner) – relative to the soft-core 

reference – can readily be obtained by FEP and TI, respectively. In the FEP step (cf. 

Eq.(5.3)), the soft-core reference ensemble (“A”) is used and the perturbation energy 

B AU U U∆ = −  is defined as the potential energy BU  of the system with the real solute 

(located at the position of the soft particle) relative to the potential energy AU  of the soft-

cavity reference system. In the TI step, the soft-core particle is gradually changed into a 

dummy. Both, the FEP and the TI steps do not suffer from inadequately sampling the 

volume of the simulation cell. Because the free energy change of the closed cycle is zero, 

the excess chemical potential is obtained from the difference between FEP and TI free 

energies relative to the reference state.  

5.2.2.2 Choice of the reference state. The above concept introduces an optimization 

problem that I briefly discuss here and treat in greater detail lateron while discussing the 

detailed calculations. On the one hand the soft-core reference must to some extent retain 

the hard-core repulsive nature of the intermolecular potential of any real solute in order to 

keep the perturbation energy U∆  small. Only then, the configuration spaces of the final 
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and reference systems have sufficient overlap and the traditional insertion problem can be 

circumvented. The soft-core particle must on the other hand be significantly softer than 

real solutes in order to sample overall system volume and the cavity spaces in the 

microstructure efficiently.  

Table 5.1: Parameters for the Reference state Lennard-Jones particles (Eq. 5.2): The A 

and B references apply to octadecane, the C and D references apply to BPA-PC. 

( 0; , , )SCV r pλ α=  denotes the maximum of the soft particle – matrix atom potential at 

full particle overlap. For octadecane ( 0; , , )SCV r pλ α=  refers to CH2 units; for BPA-PC, 

the aromatic carbons are chosen (the values in parentheses denote the maximum soft 

particle interaction with carbonyl oxygens). C12A and C6A are the mixed parameters 

indicating full interaction as state A. 

Reference λ VSC(r=0;λ,α,p) 

(kJ/mol) 

εSC  

(kJ/mol)

σSC  

(nm)

C12A 

(kJ.nm12/mol) 

C6A 

(kJ.nm6/mol) 

α p

A1 0.65 2.6 

A2 0.55 5.4 

A3 0.50 7.6 

1.2532 0.8 3.42058*10-3 0.099066 

B1 0.65 2.6 

B2 0.55 5.4 

B3 0.50 7.6 

1.2532 0.6 6.08790*10-4 0.041793 

C1 0.80 0.7 (1.1) 

C2 0.60 3.2 (5.0) 

C3 0.55 4.5 (7.1) 

C4 0.45 9.2 (14.4) 

1.2532 0.8 
3.34093*10-3  

(2.89509*10-3)

0.090065 

(0.104589) 

D2 0.65 2.2 (3.5) 

D3 0.60 3.2 (5.0) 
1.2532 0.7 

1.12697*10-3 

(9.22466*10-4)

0.0523093 

(0.0590378) 

0.7

 

1
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 We model the soft reference ensemble by running a MD simulation of a softened 

LJ particle in the polymeric microstructure. The size and softness of this particle is 

determined through the choice of the parameters λ, α, σ , ε  and p in Eq. (5.2). The LJ 

size and energy parameters σ  and ε  depend on the atom pair considered and are defined 

as 1/ 2( )matrix
SC atomσ σ σ= ×  and 1/ 2( )matrix

SC atomε ε ε= ×  for the octadecane systems. Lorentz-

Berthelot combination rules ( ( ) / 2matrix
SC atomσ σ σ= +  and 1/ 2( )matrix

SC atomε ε ε= × ) have been 

used for BPA-PC to be consistent with the BPA-PC force-field.[126] Because α  (=0.7) 

and p (=1) are kept fixed, the softness is determined by the choice of λ (we refer to this 

choice as *λ ), which is made based on two criteria: (i) the soft-core pair potential with 

any of the matrix atoms at full overlap ( 0r = ) should be of the order of the thermal 

energy Bk T  and (ii) / /scF Uλ λ∂∆ ∂ = ∂ ∂  in the interval *,1λ λ⎡ ⎤∈ ⎣ ⎦must be a precisely 

sampled, ideally monotonic function of λ, because that permits using TI to calculate 

REF DUMMY
TIF →∆  (see Fig. 5.1) with high accuracy.  

Fig. 5.2 (top) shows a “TI-curve” ( /F λ∂∆ ∂  versus λ) corresponding to a LJ 

particle (corresponding to reference state A in Table 5.1) in liquid octadecane. Arrows 

are included at three values of λ and the corresponding soft-core potentials are shown in 

the fig5.2 (bottom). The maximum values of the potentials (at 0r = ) are Bk T , 2 Bk T , and 

3 Bk T  for potentials A1, A2 and A3, respectively. Although it is clear that  REF DUMMY
TIF →∆  

will be obtained most accurately with soft-core reference state A1, it is unclear if the 

corresponding, small barrier height is sufficient to successfully perform the FEP 

calculation. For this reason three choices are taken for the soft-core reference. 
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Figure 5.2: top) Region (shaded) depicted for the calculation of ∆FTI
REF→DUM for a 

reference soft core particle A1 from a full thermodynamic integration curve in liquid 

octadecane matrix with 1ns equilibrium and 1ns run time. References A2 and A3 

positions are also shown with arrows with respect to lambda points they correspond. 

bottom) Soft-core potential energy functions VSC(r;λ,α,p) of some chosen reference 

states with the liquid octadecane matrix carbons at 323K. 
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The parameters describing the soft core Lennard Jones reference states are 

summarized in Table 5.1. The “A” and “B” reference states are used for the liquid 

octadecane systems, the “C” and “D” reference states are used for BPA-PC. 

 

5.3. Simulation Details 

MD simulations of liquid octadecane were performed with a system containing 

200 molecules in a periodic cubic box. The temperature was set at 323 K (corresponding 

kBT = 2.7 kJ/mol). The GROMOS 45A3 united atom potential was applied. [127] After 

including the soft Lennard-Jones particles, all systems were equilibrated for 2 ns 

followed by 10 ns runs for sampling the soft-cavity reference ensembles. To calculate 

REF SOLUTE
FEPF →∆  (see Fig. 5.1), first a back insertion of the soft cavity into its original 

coordinates in the trajectory was done followed by particle insertion of the real solute. A 

total of 105 insertions of the propane, chloroform and DMSO molecules were performed 

in each snapshot of the trajectory stored every 1 ps. Solutes were inserted with random 

orientations, allowing their center of mass positions to fall within a radius of 0.05 nm 

from the center of the soft cavity. Slow growth TI was used to calculate the excess 

chemical potentials of the solutes in octadecane. At each λ point, 1 ns equilibration and 1 

ns sampling was performed. In total, 22 λ points were used equally divided between 0 

and 1. In addition to liquid octadecane, in which the free energy landscape of the solute is 

very smooth, we modeled a “polymeric” analogue (with a more rugged energy landscape) 

by increasing the torsion barrier by a factor of 3.5. With the increased torsion barrier, a 

(volumetric) glass transition temperature was observed of 300 ± 10 K. By simulating this 



 
 

 115

system at 323 K we model a highly viscous short chain “polymer melt”; we will refer to 

this system as “viscous octadecane”. 

In addition to liquid and viscous octadecane, a polymer matrix of BPA-PC was 

simulated. BPA-PC simulations were performed at 480 K (kBT = 4.0 kJ/mol). The 

pressure was 1 atm in all simulations. The BPA-PC simulation box [119,125] contained 

50 chains of five monomeric repeat units corresponding to a total number of 9550 atoms. 

Force field parameters of the BPA-PC all atom model were taken from Ref. [126]. For 

BPA-PC the simulations were performed with twin-range 0.9/1.4 nm reaction-field 

electrostatics. The bond lengths in the matrix as well as the internal geometries of the 

additives were kept by SHAKE algorithm.[43] For the Lennard-Jones interaction a twin-

range 0.9/1.4 nm and 1.0/1.4 were used for BPA-PC and octadecane, respectively. To 

obtain a canonical distribution when the additive is nearly decoupled from the polymer 

matrix, a local thermostat is required. We chose to use Langevin dynamics with a friction 

coefficient of 1 ps-1. A Berendsen barostat [45] was used for 1 atm with a coupling time 

of 5 ps. All simulations were performed by GROMACS software package [39] and for the 

insertion calculations a version of the package modified by Hess was used.  

5.4. Results and Discussion 

The single-step perturbation method described in section 5.2 has been applied to 

liquid octadecane, viscous octadecane and bisphenol-A-polycarbonate. In all systems, the 

excess chemical potentials of propane, chloroform and dimethyl sulfoxide have been 

calculated. Because a single TI run for each of the above solutes provides the excess 

chemical potential with sufficiently high accuracy in liquid octadecane, this system was 
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chosen as a benchmark for optimizing the parameters characterizing the soft reference 

state. 

 

Figure 5.3: Radial distribution functions g(r) of various solutes (chloroform, DMSO, and 

propane) and some soft-core cavities (A2 and B2) with respect to the distance r(nm) to 

backbone carbons of liquid octadecane matrix. 

 

Octadecane Fig. 5.3 shows the solute-solvent radial distribution functions (RDFs) 

together with soft cavity-solvent radial distribution functions in octadecane. The soft-

cavity size parameter σ fixes the location of the first maximum of the soft cavity-solvent 



 
 

 117

RDF, while the potential maximum ( 0)scV r =  determines the value of the RDF at r=0. 

While with reference A2 (see Table 5.1) the location of the first maximum is at slightly 

larger distance than the three solutes, with reference B2 the location of the first maximum 

is at slightly smaller distance. The overall match between the locations of the first 

maxima of the solutes and soft-particles is however reasonably good, based on which we 

decided to use σ=0.6 nm and σ=0.8 nm for the soft-core reference potentials in 

octadecane (see table 5.1).  

 

Figure 5.4: Log-log scale Mean Square Displacement curves of various species a real 

solute chloroform (CL) and a reference core (A1) in liquid and viscous octadecane 

matrices. 
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Table 5.2: Free energy changes in octadecane by FEP and TI with long runs of 10 ns and 

1ns at each λ, respectively for two methods. Errors (obtained by block averaging) are 

given in parentheses. 

 Free Energy Changes in kJ/mol 
REF SOLUTE
FEPF →∆  REF DUMMY

TIF →∆  FEPF∆  
TIF∆  (slow growth) Polymer Reference 

Chloroform 
A1 −16.0 (0.3) −3.2 (0.3) −12.8 
A2 −25.1 (0.2) −11.2 (0.9) −13.8 
A3 −27.2 (0.3) −13.2 (1.1) −14.0 
B1 −14.3 (0.5) −1.7 (0.2) −12.6 
B2 −20.6 (0.4) −6.4 (0.6) −14.2 

Li
qu

id
  

B3 −22.7 (0.4) −7.8 (0.7) −14.9 

−14.5 

 

A1 −15.9 (0.4) −3.1 (0.3) −12.7 
A2 −26.0 (0.3) −11.3 (1.9) −14.7 

O
ct

ad
ec

an
e 

V
is

co
us

  

A3 −27.0 (0.5) −13.1 (2.3) −13.9 

−14.4 

  DMSO 
A1 −18.9 (0.4) −3.2 (0.3) −15.6 
A2 −27.4 (0.2) −11.2 (0.9) −16.1 
A3 −29.8 (0.3) −13.2 (1.1) −16.6 
B1 −17.3 (0.5) −1.7 (0.2) −15.6 
B2 −23.2 (0.5) −6.4 (0.6) −16.8 

Li
qu

id
  

B3 −25.2 (0.4) −7.8 (0.7) −17.4 

−16.9 

A1 −18.3 (0.6) −3.1 (0.3) −15.2 
A2 −28.2 (0.3) −11.3 (1.9) −16.9 

O
ct

ad
ec

an
e 

V
is

co
us

 

A3 −29.3 (0.4) −13.1 (2.3) −16.2 

−17.2 

  Propane 
A1 −8.2 (0.4) −3.2 (0.3) −4.9 
A2 −16.8 (0.2) −11.2 (0.9) −5.6 
A3 −19.2 (0.3) −13.2 (1.1) −6.0 
B1 −6.3 (0.4) −1.7 (0.2) −4.6 
B2 −12.4 (0.4) −6.4 (0.6) −6.0 

Li
qu

id
  

B3 −14.8 (0.5) −7.8 (0.7) −6.9 

-6.01 

A1 −7.8 (0.5) −3.1 (0.3) −4.7 
A2 −17.4 (0.2) −11.3 (1.9) −6.1 

O
ct

ad
ec

an
e 

V
is

co
us

  

A3 −18.9 (0.4) −13.1 (2.3) −5.8 

-5.5 
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To measure the extent by which the solutes and soft reference particles explore 

the volume of the simulation box, we examine their diffusion. Fig. 5.4 shows the mean 

square displacements of chloroform and the soft reference particle A1 in liquid and 

viscous octadecane. On the presented time scale (1 ns), chloroform in viscous octadecane 

does not move beyond 0.5 nm. This distance corresponds to the location of the first peak 

in Fig. 5.4 and indicates that chloroform does not escape its cage formed by first neighbor 

carbon atoms. Calculation of the chloroform excess chemical potential in this system 

(using sampling times on the order of nanoseconds) by TI provides the free energy in the 

local cage rather than a volume-averaged result. The soft-particle (A1) in viscous 

octadecane performs diffusional motion on this time scale with a mean-square 

displacement only slightly smaller than in liquid octadecane. 

The free energies of propane, chloroform and dimethyl sulfoxide in liquid and 

viscous octadecane obtained by single-step FEP with the various soft reference states are 

summarized in Table 5.2. Free energies obtained by TI are included in the last column. 

The soft cavity FEP data presented for the three solutes are based on a single 10 ns MD 

run of the soft reference state. The free energies obtained by TI in the last column of table 

5.2 however required 44 ns of simulation time for each of the three solutes. Also when 

taking into account equilibration times and the calculation of the remaining TI 

contribution REF DUMMY
TIF →∆  (see Fig. 5.1), the soft cavity FEP method saves considerable 

computer time in comparison to performing normal TI. The comparison between the soft 

reference FEP free energies ( REF solute REF DUMMY
FEP FEP TIF F F→ →∆ = ∆ −∆ ) and TI free energies 

( TIF∆ ) is very good irrespective of the soft cavity reference state. To investigate the 

accuracy of the FEP step ( REF solute
FEPF →∆ ) we present in Fig. 5.5a the probability density 
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distribution REF DMSO( )Uρ →∆  obtained from the simulation of liquid octadecane. The 

energies REF DMSOU →∆  have been Boltzmann weighted over all DMSO insertion attempts 

per simulation snapshot of the soft reference trajectory before accumulating the 

histogram. In Fig. 5.5b the quantity [ ]REF DMSO REF DMSO( ) expU Uρ β→ →∆ − ∆  is presented. 

This quantity must be sampled well over the maximum down to low energies in order to 

obtain an accurate estimate of the free energy REF DMSO
FEPF →∆ .[128] Comparison of Figs. 

5.5a and 5.5b illustrates the importance of sampling the low energy tail of 

REF DMSO( )Uρ →∆ .  

 

Figure 5.5: a) Probability distribution function ρ(∆U) and b) its exponentially weighted 

plot ρ(∆U)*exp(-β∆U) of DMSO perturbation of a reference in liquid octadecane matrix. 

a) b)
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Despite solutes being trapped in local cages in the viscous octadecane matrix, the 

free energies TIF∆  are not significantly different from those in the liquid (Table 5.2). 

This most probably reflects the chemical homogeneity of the matrix in which the solute-

solvent interaction is governed completely by Van der Waals interactions with CH2 and 

CH3 groups. 

Bisphenol-A-polycarbonate. The same methodology has been applied to a melt of 50 

BPA-PC 5-mers at T=480 K. The chemical structure of BPA-PC includes polar units 

(carbonate) as well as nonpolar units (isopropylidene) and therefore the solute 

interactions with the polymer backbone include Van der Waals as well as electrostatic 

contributions potentially resulting in much greater differences in the free energies of 

propane (nonpolar), chloroform (slightly polar), and DMSO (highly polar). In contrast to 

the octadecane system, slow growth TI calculations of solute free energies in BPA-PC 

produced unreliable data. For example, we performed two TI calculations (23 λ-points, 1 

ns sampling per λ-point) decoupling chloroform from the BPA-PC matrix starting off 

with the chloroform molecule at two different initial locations in the matrix. The resulting 

free energies were 11.9 and 5.5 kJ/mol. Similar differences were obtained with DMSO 

and propane. To resolve this problem we performed a large number of fast-growth TIs 

[118] and used averaging of exponential of the resulting work distributions to obtain 

accurate solute free energies in BPA-PC. We discuss this fast growth TI approach in 

greater detail elsewhere. [119] The statistical errors on the free energies obtained from 

fast growth TI are 0.6 (propane), 1.0 (DMSO) and 1.2 kJ/mol (chloroform). The fast 

growth TI free energies ( TIF∆ ) are summarized in Table 5.3 together with the free 
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energies obtained by free energy perturbation ( FEPF∆ ) based on the various soft cavity 

reference states. 

Table 5.3: Free energy changes computed for BPA-PC by FEP and TI, with long runs of 

10ns and 1ns at each λ, respectively for these two methods. Data for various reference 

states are given for comparison and the criteria for a good choice of  a reference state is 

discussed in the chapter. Errors (obtained by block averaging) are given in parentheses. 

 

 Free Energy Changes in kJ/mol 

REF SOLUTE
FEPF →∆  REF DUMMY

TIF →∆ FEPF∆  
TIF∆ (fast growth) Polymer Reference 

Chloroform 

C2 −19.3  (0.7) −11.3 (2.1) −8.0
C3 −23.0  (0.3) −16.2 (2.9) −6.8
C4 −32.8  (1.9) −16.9 (4.1) −15.9
D2 −13.7 (1.6) −3.2 (0.6) −10.5
D3 −17.2  (0.8) −8.1 (1.1) −9.1

−8.8 

 DMSO 

C2 −26.1 (0.5) −11.3 (2.1) −14.8
C3 −30.4 (0.4) −16.2 (2.9) −14.2
C4 −39.1 (0.9) −16.9 (4.1) −22.2
D2 −20.1 (2.2) −3.2 (0.6) −16.9
D3 −24.4 (0.5) −8.1 (1.1) −16.3

−18.2 

 Propane 

C2 −11.0 (0.7) −11.3 (2.1) 0.3 
C3 −14.9 (0.3) −16.2 (2.9) 1.3 
C4 −23.9 (1.9) −16.9 (4.1) −7
D2 −5.2 (1.6) −3.2 (0.6) −2

B
PA

-P
C

 

D3 −9.1 (0.8) −8.1 (1.1) −1

−0.6 
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Figure 5.6: top) Thermodynamic Integration curves for the C and D references in 

BPA_PC with 1ns equilibrium and 1ns run time. 

bottom)Soft-core potential energy functions VSC(r;λ,α,p) of the references C2 and D3 

with the various atom types of the BPA-PC backbone at 480 K. 
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Figure 5.7: Log-log scale Mean Square Displacement curves of various species; a real 

solute Chloroform(CL1) and references C2, C3, C4, D2,and D3, in BPA-PC. 

 

Fig. 5.6 (upper panel) shows /F λ∂∆ ∂  versus λ for LJ particles C and D (see 

Table 5.1) in the BPA-PC microstructure. The choices of the λ-values used to define the 

soft reference states are indicated with the arrows; the corresponding soft-particle 

potentials for C2 and D3, where only σ differs as a parameter in the potential, are shown 

in the lower panel. Since BPA-PC contains various atom types, the potentials between 

soft-cores and these atom types are plotted separately. Fig. 5.7 shows the MSDs of C2, 

C3, C4, D2, D3 and chloroform in the BPA-PC matrix.  In 1 ns simulation time, it is seen  
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Figure 5.8: left) Probability distribution function ρ(∆U) and right) its exponentially 

weighted plot ρ(∆U)*exp(-β∆U) of propane perturbation of a) a good reference C2 and b) 

a bad reference C4 in BPA-PC matrix. 
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that C2, D2, and D3 move diffusively and explore most of the simulation volume (the 

box size is 4.87 nm). C3 and C4 only move over distances up to 0.5-0.7 nm indicating 

that these reference states are too hard causing the soft particle to stay close to its initial 

position in the matrix (the BPA-PC monomer size defined through the carbonate-

carbonate distance along the backbone equals 1.1 nm). On the other hand, chloroform 

does not move at all on this time scale. This clearly illustrates that the free energy 

changes obtained by means of (slow growth) TI using nanosecond simulation times 

cannot provide reliable results as volume-averaged sampling over the various low energy 

cavities in the matrix is lacking.  

Fig. 5.8 shows the energy distributions REF PROPANE( )Uρ →∆  and the reweighted 

distributions [ ]REF PROPANE REF PROPANE( ) expU Uρ β→ →∆ − ∆  obtained with the C2 (upper 

panel) and C4 (lower panel) reference ensembles. The reweighted distribution based on 

the C2 reference is sampled with reasonable accuracy unlike the corresponding 

distribution obtained by sampling the C4 reference state.  A similar difference between 

C2 and C4 emerges with the chloroform and DMSO solutes (not shown). In Fig. 5.9 the 

running average value of FEPF∆  is shown for chloroform, DMSO and propane. The lines 

represent the different soft cavity reference states. Based on the 10 ns reference 

trajectories convergence is achieved with the C2, C3 and D3 reference states. D2 and, in 

particular, C4 are not converged, which explain negative deviation of FEPF∆  with respect 

to TIF∆  for D2 and C4 in Table 5.3. 
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Figure 5.9: Time Running average curves of the Free Energy changes of solvation, 

∆FFEP, for the solutes a)Chloroform, b) DMSO and c) propane obtained from the 

perturbation using various reference states (C2, C3, C4, D2,and D3) in BPA_PC. 
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5.5. Conclusions 

By the help of methodologies explained in the previous chapters, solubility of 

small gaseous penetrants in polymer microstructures is accessible via molecular 

simulations. On the other hand, solubilities of large-sized penetrants cannot easily be 

calculated owing to the complexity of the typical free energy surfaces in dense polymer 

microstructures. Solubilities of large and internally rigid solute molecules are particularly 

difficult to obtain since these molecules can neither be inserted at once (by Widom test-

particle-insertion) nor be inserted step-wise (in the latter case configurational biasing MC 

methods [112,113,115] offer advantages with flexible solutes). Because the free energy 

barriers separating the low energy minima (“cavities”) are typically much larger than kBT, 

fully coupled, large molecules are moreover prevented from sampling all possible 

minima during finite time molecular dynamics simulation, which causes slow growth 

thermodynamic (coupling parameter) integration (TI) methods to be computationally 

inefficient. In this chapter, slow growth TI is used to introduce a Lennard-Jones particle, 

which is coupled to the matrix up to a value of the coupling parameter where the particle 

is still sufficiently “soft” to explore all cavity spaces of the matrix. Based on this system, 

a long “soft cavity reference-state” trajectory has been generated from which the excess 

chemical potentials of several solutes have been calculated using a thermodynamic 

perturbation analysis. This single step perturbation method [124] offers a useful route to 

calculating solubilities of “bulky” additive molecules inside polymeric microstructures, 

achieving efficient averaging over the microstructure volume on nanosecond time scales.  

In this chapter the method has been applied to liquid octadecane and a bisphenol-

A-polycarbonate (BPA-PC) microstructure. The solute excess chemical potentials (free 
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energies) of propane, chloroform and dimethyl sulfoxide have been calculated and (for 

BPA-PC) compared with results obtained by an alternative – equally well applicable – 

fast growth thermodynamic integration method.[119] The comparison illustrates good 

agreement for soft cavity references in which the soft-core – matrix atom (repulsive) 

interaction does not appreciably exceed a value of kBT. Because a single simulation of an 

appropriate reference state potentially provides information for many different solutes, 

the method is particularly useful for calculating solubility ratios of large-sized penetrant 

pairs whose relative sizes are comparable.  
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CHAPTER 6 

 
A Structural and Dynamics Study of an 

Ionomer  
 

6.1. Introduction 

 As we have mentioned in the introduction chapter there are two main ingredients 

to permeation of small molecules in polymer microstructures: solubility and diffusivity. 

After investigating aspects of molecular solubility in the previous three chapters, here we 

present the calculation of water tracer diffusion coefficients in a water-swollen ionomer 

via atomistic MD.  

 Ionic polymers are composed of linear or branched chains with certain fraction of 

charged monomers distributed either randomly or regularly in the form of ionic blocks. 

The ionic polymers with high ion fractions present in dilute solution of a polar solvent 

such as water are referred to as polyelectrolytes, whereas the ones with low ion fractions 

(<20%) are called ionomers. In these kinds of systems oppositely charged counterions 

ensure overall charge neutrality. In an ionomer case, when the energetic cost related with 

counter ion release is high, these ions are closely coupled to the polymer backbones. 

When the solvent is water a microphase separation may occur by means of hydrophilic 

and hydrophobic distribution of the polymer backbone and the ionic charges by means of 
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electrostatic interactions between the ions and the counterions. This phase separation 

occurs such that the chains are bridged by ionic species resulting in a transient polymer 

network formation. According to the distance between ionic groups and amount of 

solvent, since the nonfunctional part of polymer backbone is apolar, ionomers are capable 

of absorbing substantial amounts of water in hydrophilic channels. As the hydrophilic 

and hydrophobic chain parts are well separated, water-swollen ionomers exhibit an 

interesting micro morphology characterized by hydrophilic domains and channels 

containing mostly the water embedded in a nonpolar matrix. Structural details in these 

kind of systems affect the diffusion dynamics of the solvent molecules (which is water in 

our case) and the ions with a strong dependence on the defree of solvent swelling.  

 Understanding the spatial arrangement of the components in these systems and 

the resulting transport behaviour within ionomers is important in various application 

fields including; proton exchange membranes, biomedical materials, coatings.[129] For 

studies on the structure formation and related dynamic properties MD simulations offer 

microscopic insights. In the past, several studies were done to investigate local structures 

and solvent dynamics in solvent-swollen simple polymers such as polyvinyl alcohol or 

polystyrene without any ionogenic groups. [130-132] There were also MD studies of 

polymer/water systems where ions are involved. [113-138] However, in those studies 

there are either just one long polymer or multiple polymers of short chain lengths. Urata 

et al. mentioned the significance of chain length in a simulation of Nafion, which is a 

similar system consisting hydrophobic and hydrophilic regions.[137] Thus, to model the 

morphology of a water-swollen ionomer one requires many long chains. In addition, 

periodic boundary conditions may bring about some artifacts in the results. As mentioned 
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in some previous studies, the morphology of the microphase may be distorted by periodic 

boundary conditions. [139] For that reason, for the simulation of the diffusion of water in 

ionomeric materials size effects should be carefully considered. Moreover, in the case of 

solvent-swollen polymer systems when the polymer concentration is high, different states 

of solvent molecules were mentioned before [140]. Therefore, for the calculation of 

diffusivity coefficients in the less water swollen matrices, extra care should be given. The 

simulations done before had sampling times in the order of 10 to 103 ps. This means that 

either the systems investigated were not too complex or only very fast dynamical 

processes could be studied with sufficient accuracy. Simulation of these kinds of systems 

is computationally demanding because of their size and their slow dynamics. Sometimes 

several computational approaches are used to handle these big systems. For example, 

generic bead-spring models were used to study structure formation during a microphase 

separation in ionic copolymers. [139] Also in some cases for computational simplicity, 

motion of bead-rod chain representing a linear ionomer molecule was calculated just in 

two dimensions [141]  

 As mentioned above, there are some nontrivial aspects for the investigation of the 

dynamics in such systems at the atomistic scale. In this chapter we will discuss these 

issues, such as the construction of the initial configuration including force field 

parameterization, effects resulted from the simulation box size, and structural 

equilibration.  

 In this study, we performed molecular dynamics simulations of water-swollen 

sulphonated polyethylene (SPE) system neutralized by sodium ions at the atomistic scale 

as it is depicted in the following scheme:  
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Recently, the most widely used and tested polymer electrolyte membranes are the 

perfluorinated sulfonated polymers.[142] Among these the mostly simulated one is 

Nafion, but we have chosen SPE. The reason that we have chosen the SPE system is that 

it is possible to discuss the simulation constraints with a system similar to, but simpler 

than Nafion. Also there are some experimental data on SPE related to the transport 

properties that we aim to reproduce.[143,144] We focused on sodium-neutralized SPE 

with sulphonation degree of 20% with varying degrees of water swelling as was in the 

case of the experimental study. [143,144]    

 The aim of this chapter is to investigate based on an all-atom force field 

description of a water-swollen sodium-SPE microstructure whether we are capable of  (i) 

achieving full equilibration of hydrophilic/hydrophobic microphase-segregated structure, 

and consequently (ii) achieving quantitative prediction of water tracer diffusion 

coefficients and their temperature dependence. The various measures that are evaluated in 

this study are depicted by configuration snapshots, pair correlation functions, mean 

square displacements, Arrhenius plots and van Hove correlation functions as well as the 

xy-projection of water motion through the system. 

 

3SO−

x=12 

+  Na+ +    H2O 
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6.2. System and Initial Structure preparation  

 To construct an initial model for a SPE chain, statistically independent PE chain 

conformations representative for melt polyethylene were used. The 3SO−  groups were 

introduced in these polyethylene conformations according to the above scheme that puts a 

3SO−  group on each 10th carbon. Obviously this creates rather arbitrary initial 

configurations and it remains to be validated if the final system including water 

molecules and counter ions could be equilibrated with MD. During initial structure 

preparation, energy minimization in MD were done based on the knowledge of the intra- 

and intermolecular interactions between the atoms provided by the Gromos 45a3 force 

field parameters [145]. United atom models were used for CH, CH2, and CH3 groups. The 

water model used in this study was simple point charge (SPC) model.[88] For the 

insertion of water molecules into the system some of the initially prepared SPE chains 

were taken out randomly and water molecules were inserted to the possible empty spaces 

created. After energy minimization, an appropriate number of water molecules were 

replaced with sodium ions depending on the water ratio desired and the system size. Then 

they were energy minimized again.  

  For the force field parameterization of the 3SO−  group, quantum chemical (QC) 

geometry optimization of the connection unit, i.e. isopropyl sulphonate, was done. QC 

calculations were performed at Hartree Fock level with 6-31G(d) basis sets by using the 

Gaussian Software package.[146] Electronic energies at certain geometries were obtained 

at the MP2 level and point charges were obtained from electron surface potential (ESP) 

fit using the Merz Kollman method. [147] The minimum energy configuration is shown 

in Figure 6.1. 
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Figure 6.1. The minimum energy configuration of C3H7 3SO−  obtained by QC (MP2) 

energy minimization. Point charges obtained from ESP fit by using Merz Kolmann (MK) 

method are included. Partial charges on CH3 and CH united atoms are the added 

contributions of the carbon and hydrogen atoms obtained from the MK method. θ is the 

dihedral angle (or the rotation angle of the upper oxygen atom)  and the conformation at 

θ=0 is the one in this figure whose potential energy surface has been determined as 

minimum . Colors indicate atoms: gray, carbonyls; yellow, sulphur; red, oxygens. 

 

Parameterization of the partial charges on the atomic site positions of the 3SO−  group was 

done via comparison of the QC derived charges with the charges of the same group in 

similar polymers simulated before.[136] Thus, in our simulations two different charge 

parameter sets were used for the 3SO−  group. In addition, two different parameter sets 
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were used for the sodium ions, Na+. Combination of the parameters for 3SO−  and Na+, 

three parameter sets were used as given in table 6.1. 

 
Table 6.1. Three different types of parameter sets used for the MD simulation of the 

systems. 

            Type  
 
Parameter 

Type I 
QC derived 3SO−  

Type II 
modified 3SO−   

Type III 
KB Na+ 

qS /e  1.1  1.1  1.1 

qO /e -0.7 -0.64 -0.7 

qCH /e  0 -0.18  0 

Na+ parameters Gromosa Gromosa KB Na+ b 

a  Berendsen, Straatsma, J. Chem. Phys. (1988), 89, 5876 
b S.Weerasinghe, P.E.Smith, J. Chem. Phys. (2003), 119 (21), 11342-11349 
 

 Type I parameter set include the quantum chemically (QC) derived charges for 

the sulphonic group connection unit and the Gromos [148] force field parameters for the 

sodium cation. In type I parameters, only sulphur and oxygen atoms of the connection 

unit was taken as having partial charges whereas there was no charge on carbon atoms of 

the connection unit. The type II parameter set consists of modified charges for the 

connection part CH 3SO−  and again the same Gromos force field parameters for sodium 

ion. In the type II, for a better representation, also the CH carbon atom of the connection 

unit was considered to carry a charge since ESP depends on the geometry of the molecule 

considered and the ESP for C3H7 3SO−  does not necessarily represent that of SPE. 

Therefore, reference [136] which performed similar QM calculations on 3SO−  connected 
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to a longer aliphatic chain was used for type II parameters. The type III parameter set has 

Kirkwood-Buff (KB) sodium parameters [149] while keeping the QC derived charges for 

the sulphonate group.  

 

 

Figure 6.2. The dihedral constant determination for the 3SO−  group by fitting QC (MP2) 

derived potential energies and the minimized energy with MD parameters (where MD0 is 

computed without dihedral parameters). Graphs show the energy variation scanning 

through the dihedral angle step by step.  
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The dihedral force constant at the connection unit was determined by fitting QC 

calculated potentials (MP2) to the potentials obtained by energy minimizations ( /
0MD ) 

force field parameters:  

 MP2= /
0MD = yMD +0                and            y = A(1-cos Ө) 

where 0MD  is minimized energy by MD simulation parameters without the dihedral 

parameter and /
0MD  is with the dihedral parameter included. ‘y’ is the dihedral potential 

and the dihedral force field parameter A was calculated as A=7.2 kJ/mol. In order to 

obtain this constant, MP2 ab-initio calculations were performed with 6-31G(d) basis sets 

by scanning step by step for the dihedral angle Ө. Then, dihedral force constant was fitted 

by matching the total classical potential energies for this degree of freedom as shown in 

figure 6.2.  

 Throughout the simulations, the sulphonation degree was kept fixed at 20%, 

which means 20% of the repeat units [-(CH2-CH2)n-] carry a charged group. This 

corresponds to a high ionic capacity of 4.41 meq/g PE mentioned in the experimental 

study [143, 144] referred in the section 6.1. The initially constructed system consists of 

10 SPE chains. Each of the chains were 120 C long corresponding to a polymerization 

degree n=60. The sulphonic groups ( 3SO− ) were connected to either each 9th or 10th C 

atom of a 10C unit in a random fashion. Then, for the systems consisting 80 or 270 

chains of SPE, in each direction 2 or 3 times replicated simulation boxes were used 

respectively. Therefore, in our studies there exist systems with three different sizes at 

ratio 7.0 and various middle-sized simulation boxes with different water ratios. The 

systems investigated are tabulated in table 6.2. 
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Table 6.2. The properties of the systems simulated and the simulation temperatures. 

H2O/ SO3
−  

Ratio 

Temperature (K) Parameter 

 Type 

Box size 

 (nm) 

Number of 

 atoms 

298 I 7.22 

298 II 7.23 

315 II 7.25 

330 I 7.25 

2.5 

330 II 7.27 

Total=21600 

OW=2400 

Na=S=960 

 

298 I 7.64 

298 II 7.67 

315 II 7.70 

330 I 7.69 

5.1 

330 II 7.72 

Total=29088 

OW=4896 

Na=S=960 

 

7 

(small) 

298 I 3.97 Total=4245 

OW=815 

Na=S=120 

298 I 7.93 

298 II 7.96 

298 III 7.95 

315 II 8.00 

330 I 8.00 

330 II 8.02 

7 

(smallx8) 

330 III 8.01 

Total=34680 

OW=6760 

Na=S=960 

 

 

7 

(smallx27) 

298 II 11.95 Total=117045 

OW=22815 

Na=S=3240 

298 II 8.38 

315 II 8.42 

10 

330 II 8.45 

Total=43200 

OW=9600 

Na=S=960 
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In this study, we prepared initial configurations of ionomer systems by including number 

of sulphonated polyethylene (SPE) chains, water and counter ions. Initially, for the 

determination of proper simulation box size, three different systems with 10, 80 and 270 

SPE chains were prepared at water to sulphonic group ( 3SO− ) ratio 7. To investigate the 

swelling behaviour, also simulation boxes with different water amounts were prepared. 

The number of water molecules in each simulation box was determined depending on the 

water to sulphonic group ratio of interest. Thus, they contained 2.5, 5.1, 7 and 10 water 

molecules per 3SO−  group of the SPE chains. Therefore, from now on the amount of 

swollen water will be expressed as the ratio of water molecules per 3SO−  group.  

 

6.3. Computational Details: 

 The simulations were performed with the molecular dynamics simulation 

software package GROMACS 3.3. [39,40] After the energy minimizations, 20 ns 

equilibrations were done. Then, molecular dynamics runs of 100 ns were performed using 

the isobaric and isothermal (NPT) ensemble and then used for the analysis. Temperature 

and isotropic pressure (1 atm) were regulated according to Berendsen’s method [45] with 

coupling times of 0.2 and 1 ps, respectively. The simulations were done for each system 

at three different temperatures, 298, 315 and 330 K. The time step was 4 fs. For the non-

bonded interactions Lennard-Jones potentials a twin-range cut-off 0.9/1.4 nm and for the 

long range electrostatics Particle Mesh Ewald (PME) method a real-space cut-off 0.9 nm 

were used. [57,59]  
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6.4. Results and Discussion 

 In this work our aim was to examine the structural and dynamical properties of 

hydrated SPE. For a systematic modelling scheme, we will consider the system size, 

structural equilibration by time, swelling behaviour and calculation of diffusion 

coefficients together with a comparison to experimental values.  

6.4.1. System Size: 

 For the determination of the diffusivity behaviour, possible size effects that might 

have resulted from the periodic boundary conditions during the simulations should be 

overcome. To observe the size effects on diffusivity, we simulated three different system 

sizes with the same water ratio 7 and the same chemical properties. The first, smallest 

system had 10 chains of 120-carbon long and the second one was created by replicating 

the smallest system once in x, y, and z direction so that it was 8 times bigger. The third, 

i.e. the biggest system, was 27 times of the smallest system. As a result, there were 3 

systems with 10, 80 and 270 SPE chains. In figure 6.3, mean square displacement (MSD) 

of water molecules versus time plots were shown for these systems with three different 

sizes. It can be seen that the size effect disappeared with the second middle sized system, 

in other words with the system having 80 chains convergence in MSDs with respect to 

size was observed.  
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Figure 6.3. Mean square displacement (in 100 ns) versus time plots for three different 

sized boxes; small box, 8 times, and 27 times the dimension of the small box with 

H2O/ 3SO−  ratio 7. On log-log scale slope ~ 1. 

 

6.4.2. Structural Equilibration: 

 The spatial distribution was studied by plotting the pair correlation curves as a 

function of the separation distance r. Radial distribution function g(r) of carbon to carbon 

is plotted in Figure 6.4 at different time intervals for middle sized system of ratio 7 with 

parameter type II. In the g(r) plots, up to three bonds the carbon-carbon correlations were 

excluded. The peak positions P1, P2 and P3 refer to the high C density regions 

corresponding to polymer strands. Between P2 and P3 there exists hydrophilic water 

domains. Since the water domains develop in time the minimum in the C-C RDF between 

P2 and P3 becomes gradually deeper. When the characteristic peaks P1, P2 and P3 were 
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investigated, heights of these remain constant after a certain simulation time. As a result, 

it can be seen from the graphs that convergence was obtained at around 20ns. 

 

Figure 6.4. Carbon to carbon radial distribution functions at distance r at different time 

periods in middle-sized ratio 7 type II system at 298K. P1, P2 and P3 are indicated to 

represent the peaks. 

 

In addition to the g(r)s, were an equilibrated snapshot of a hydrated SPE system is shown 

in Fig. 6.5. Here, this view is a snapshot of typical time and size converged system with 

water to 3SO−  ratio of 7 where 80 chains are involved.  

 

P1 

P2 
P3 
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Figure 6.5. Structural view of equilibrated SPE from a snapshot of time and size 

converged system. Gray CH2 or CH3 groups of backbone; yellow, sulphur; red, oxygen 

atom of 3SO− groups; green, oxygen atom of waters; white, hydrogen atoms of waters; 

blue, sodium ions. Linear box dimension is ~8nm and H2O/ 3SO−  ratio is 7. 
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This typical snapshot, depicted in Figure 6.5, for the water ratio 7 confirms the 

hypothesis that the hydrated SPE is segregated into hydrophobic and hydrophilic regions. 

The polymer backbone made up of carbon atoms constitutes the hydrophobic regions, 

and the hydrophilic regions are constituted by water molecules and the sodium ions. 

From the figure it is obviously seen that the sulphonate groups tend to be located at the 

interface between the water clusters and the hydrophobic regions. The sodium ions, 

indicated in blue in figure 6.5, are embedded in the water channels formed consequently 

from hydrophilic-hydrophobic phase segregation with hydrated and neutralized SPE 

system. 

 

6.4.3. Swelling Behaviour: 

Furthermore, both from figure 6.5 and the g(r) plot of carbon to carbon, the characteristic 

length scale was obtained as around 2 nm and the polyethylene backbones come together 

forming an approximately 1 nm thick structures. Moreover, as can be seen in figure 6.5, 

which is mentioned before, some of the carbon backbone chains also as in the case of 

many biosystems in which again the hydrophobicity or hydrophilicity drives the phase 

separation. In Figure 6.6, radial distribution functions were plotted for various water 

per 3SO−  ratio systems. In this plot while the first peaks P1 and P2 remain approximately 

at the same position, the distance between P2 and P3 increases with the rising water ratio 

and P3 shifts to larger scales. It can be seen that with the change in the water amount, 

characteristic length scale also shifts, indicating the water swelling. 
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Figure 6.6. Carbon to carbon radial distribution functions at distance r for various water 

per 3SO−  ratios. 

 

6.4.4. Diffusion coefficients: 

In atomistic modelling the diffusion coefficient D can be determined by taking the slope 

of the mean square displacement (MSD) versus time curve and dividing by 6: 

 2))0()((
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However, for this calculation it is essential that the Einstein diffusion regime is reached. 

It means that MSDs should be linearly dependent on time. If the surroundings inhibit the 

free movement of the particle, for instance if it is confined a while to a small space 

  P1 

P2 
P3 
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limited by the polymer chain, the diffusion is called anomalous diffusion. In this case 

[ ] n
ii tRtR ∝− 2)0()(  where n <1, and mean square displacement MSD versus time 

curve is not linear.                                                                                               

 

 
 

Figure 6.7. Mean Square displacement curve for ratio 2.5 at 298K with parameter type II 

and the linear fitting curves at different simulation times. 

 

During the calculation of diffusion coefficients, the MSD for the oxygen in the water 

molecule was plotted as a function of time. MSD curve as a solid line and linear fitting 

curves belonging to the water ratio 2.5 system were plotted in Figure 6.7. By 

investigation of the linearity of the MSD curve for the lowest water-ratio system, the 
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correlation coefficient was calculated as 0.9998 for the part in between 40 ns and 70 ns. 

However, when only linear fitting between 0 to 10 ns plotted, there is 62 % variation in 

the diffusion coefficient (slope <1 on log-log scale). With a linear fit between 0 to 20 ns, 

this reduces to 36%. As it is shown in figure 6.7, also linear fit was done for all data, 0 to 

100 ns, including the non-linear initial part. The difference in linearity causes the 

diffusion coefficient to have 6 % error in this case. In figure 6.8, the motions of a 

randomly chosen water molecule are shown to see whether the diffusion of the water 

molecules is limited by the polymer matrix. As it is shown in figure 6.8 part (a) it was 

observed that during the simulation time a water molecule can walk all through the box 

within the high water ratio 7.0 system whereas a water molecule may come across some 

obstacle effects within the lowest water ratio 2.5 system as it is shown in figure 6.8 part 

(b). As a result, for the low water ratios 20 ns is not enough to reach the Einstein type of 

diffusion. The diffusion coefficient should be calculated from the linear part of the MSD 

versus time curve without considering the initial non-linear portion.   
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Figure 6.8. 100ns-Trajectory of motion of a water molecule on x-y plane part (a) in the 

ratio 7.0 system, part (b) in the ratio 2.5 system at 298K. 
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Figure 6.9. Van Hove functions for particles in group OW in different water ratio 

systems with parameter type II within different time periods.  

  

To study the region where anomalous diffusion regime appearing in the self diffusion of 

water molecules in Na-SPE system, van Hove self-correlation functions GS(r,t) were 

used. The van Hove functions exhibit a shoulder or a double peak form in the anomalous 

regimes. GS(r,t) gives the probability density that a water molecule moves a distance r 

over a given time interval t: 
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Gs(r,t) functions were plotted in Figure 6.9 for each different water ratio system 

simulations at 298K with type II parameter set. From these plots, it can be seen that for 

the lowest ratio, 2.5, system with lowest temperature 298K, even in time scales of 10 ns 

there are two peaks indicating that there are still some tightly bound water molecules in 

this system whereas in the higher water ratio systems there is only one peak within the 

same distance r range even for shorter time intervals. Therefore, we can conclude looking 

at both the snapshots, and the xy-projections of a water molecule within the matrix (fig 

6.8), that when water ratio is high the hydrophilic channels are connected. This enables 

the water molecules to diffuse within the polymer matrix. However, at low water ratios 

(ratio 2.5) water molecules are mostly trapped in unconnected hydrophilic regions. 

 To investigate the motion of water molecules through the polymer matrix, the 

diffusivity of the water molecules in the polymer systems with different water content 

were studied at the three different temperatures. All the diffusion coefficients at each 

different ratio and temperature, and obtained with different parameters are tabulated in 

Table 6.3. The diffusion coefficients calculated were shown in Figure 6.10 in the form of 

an Arrhenius plot. Activation energies obtained from the slope of this curve are tabulated 

in Table 6.4.  In Figure 6.10, the diffusion coefficients obtained from our simulations by 

applying different force field parameters were compared with the previously published 

experimental diffusion coefficients obtained by pulsed-gradient spin-echo NMR (PGSE-

NMR).[150] Thus, in such a complex ionomer system, it can be seen that it was achieved 

in this study to reach the real behaviour of diffusion coefficients in the same order of 

magnitude as the experimental.  
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Table 6.3. The diffusion coefficient data used for the Arhenius plots 

H2O/ SO3
−  

ratio 

Temperature (K) Parameter 

 Type 

DOW*105 (cm2/s) 

298 I 0.0050(±0.0005) 

298 II 0.0064(±0.0004) 

315 II 0.0146(±0.0002) 

330 I 0.0210(±0.0007) 

2.5 

330 II 0.0274(±0.0001) 

298 I 0.0396(±0.001) 

298 II 0.0745(±0.002) 

315 II 0.1521(±0.0) 

330 I 0.1767(±0.006) 

5.1 

330 II 0.2526(±0.0007) 

7 298 I 0.1291(±0.0001) 

 298 II 0.2227(±0.004) 

 298 III 0.2506(±0.005) 

 315 II 0.3689(±0.002) 

 330 I 0.3767(±0.02) 

 330 II 0.5574(±0.01) 

 330 III 0.6862(±0.02) 

7 298 II 0.2190(±0.002) 

10 298 II 0.5334(±0.002) 

 315 II 0.8184(±0.01) 

 330 II 1.1193(±0.02) 
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Figure 6.10. Arhenius plots showing the diffusion coefficients of water molecules 

obtained both experimentally and from the simulations done with different parameter sets 

and for different water ratios. 

 

 
 

Table 6.4. Activation energies obtained by considering the simulation runs with the type 

II, modified SO3
− parameters. 

 

H2O/ SO3
− ratio  EA calculated (kJ/mol) EA experimental (kJ/mol) 

 2.5 37.19 36.1 ± 1.1 
5.1 35.17 25.8 ± 0.3 
7 23.43 22.4 ± 0.2 (extrapolated) 
10 18.97 no data  
Bulk water  ~17 
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6.4. Conclusions 

 In this study, water-swollen ionomer SPE systems with 4 different ratios of water 

per sulphonic group were simulated atomistically at three different temperatures with 

three different parameter sets. First of all, for the initial structure preparation we have 

done a few force field parameterizations. Then, the efforts put on to obtain a structurally 

equilibrated system with time convergence and without any size effects. Lateron results 

were analysed in details to observe the structure formation and swelling behaviour of the 

SPE ionomer. Finally, the studies were done on the diffusion of water through the 

ionomer and the restriction conditions were discussed.  

 For the proper choice of box size to reach a convergence, three different systems 

were generated with ratio 7 at 298K, including a small box, a 8 times bigger and a 27 

times bigger of the small one. From the slope of MSD versus time curves, it is seen that 

the size convergence was reached with the middle-size whereas the first box was too 

small having different slope from the other two bigger systems. As a result, it is 

concluded that at least a system box with 80 chains of 120C long having totally 34680 

atoms was large enough for the system of interest to obtain data comparable to 

experimental ones. 

 While performing structural analysis, the variation in the micro structures, such as 

swelling of the water channels and characteristic length scales increases with the increase 

in the water amount is easily observable by looking at the radial distribution functions 

and simulation snapshots. Furthermore, information on the local structural behaviours 

could be obtained. With the decreasing water to 3SO−  group ratio, inhomogeneities 



 
 

 155

increase resulting in two different groups of waters. As concluded from the Van Hove 

plots, there are some restricted water molecules even in 10 ns time scales since there are 

relatively less-connected water channels when the water amount is low. Together with 

the MSDs, it is observed that for high water ratios at least 20 ns equilibration time is 

required to obtain accurate diffusion coefficients in the normal regime whereas for low 

water ratios as 2.5 even longer equilibration times were required of up to 60ns. By 

looking at the linear fitting curves at different time scales in the MSD curves, it is 

observed that, especially in the low water contents, there might be errors in diffusion 

coefficients up to 60 % when only 10 ns simulation results were used.  Requirement to 

reach the Einstein behaviour becomes important in these cases.  

 When the diffusivity of water through the water channels formed within the 

polymer was investigated, it is seen that the diffusivity of water shows a strong 

dependence on the water content and also on temperature. The diffusion coefficients are 

in the same order of magnitude as the experimental ones and also the activation energies 

fit quite well. For the universal behaviour the activation energy has to be close to that in 

the bulk solvent, (ca 17 kJ/mol). A significant increase of the activation energy is 

normally an indication that the polymer matrix becomes closely involved in the diffusion 

process.  

 For this kind of MD simulations, it must be remembered that the accuracy of the 

force field and other approximations embodied can affect the diffusion of water or any 

other particle in the system. In this study, even when different force field parameters were 

used, the diffusion coefficients remain predictive by being in the same order of 

magnitude with a similar slope which gives information about the activation energies.  
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 From the overall study, the importance of size and time convergence requirements 

for this kind of water-swollen ionomer systems is seen obviously. As all our simulations 

have a length of 100 ns, we can conclude that they have converged at least for the 

properties we have analyzed in details so that predictive results for the system come out.

 Consequently, in this chapter by an extensive study on hydrated SPE system, a 

comprehensive analysis of the global morphology and the local structure has been 

performed and the consequences of these configurations on diffusion of water molecules 

were discussed. Besides that the challenges in atomistic MD of this kind of systems were 

explained. 
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CHAPTER 7 
 
Conclusion and Outlook 
 
 
 In this thesis we studied solvation and transport of various small molecules in 

both liquid mixtures and polymeric systems to understand polymer permeation process 

via atomistic computer simulations. To achieve that we have started with a study on 

solvation thermodynamics of a non-polar solute in a binary solution by splitting the 

solvation free energy term into its individual components. Furthermore, we discussed the 

relations between these energy contributions and the solvent equation of state data in 

solute transfer thermodynamics in low molecular weight systems. Since free energy and 

its components are the key aspects of solvation phenomena, we provided a comparative 

study on recently developed advanced methodologies to obtain free energy differences in 

polymeric solvents as well. Finally, taking into account that the diffusion is the second 

aspect in polymer permeation, we performed detailed analysis on the transport behavior 

of water molecules through ionic polymer systems. In this study, verification of 

computational techniques was achieved by reproducing the experimental diffusivity data 

of water molecules. 

 The first part of this thesis deals with a study on the methane solvation in terms of 

the free energy, enthalpy and entropy with two contributions of solute-solvent interaction 

and solvent reorganization interaction in various dimethyl sulfoxide (DMSO) and water 

concentrations (chapter 3). We presented that the entropy change of methane transfer 
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from water to aqueous solutions of DMSO is positive while DMSO molecules 

preferentially solvate the non polar solute. During this process DMSO molecules release 

some of their hydration waters to the bulk resulting in the increase in entropy. However, 

we claimed that the entropy change should not be used just by itself to describe the 

preferential interaction of methane with DMSO molecules since the solvent 

reorganization process is enthalpy-entropy compensating in the free energy.  

 In this thesis, we have investigated the entropy of small molecules in a solvent 

media.  To have a complete view on the solvation thermodynamics, free energy terms and 

its components up to macromolecules in different solvents both in liquids and polymeric 

melts can be investigated further. Then the available methods we used for entropy 

calculations are not applicable anymore. Throughout our studies, we made use of the fact 

that for the free energy differences between two different states extensive sampling of the 

relevant parts where two states differ is sufficient instead of evaluating the complete 

partition function. However, to compute either absolute entropies or entropy differences 

from MD simulations it is necessary to simulate the system as a whole. Based on 

principles of statistical thermodynamics, finite-difference approximation is applicable for 

computation of the entropy of methane solvation in the binary mixture assuming a 

constant difference in the heat capacity, cV (or cP for NPT) over the temperature range 

sought. On the other hand, for the entropy calculations of macromolecules, e.g. in a case 

where folded and unfolded conformations of a peptide involved, considering only internal 

(conformational) non-diffusive degrees of freedom is not sufficient to understand the 

underlying forces that drive peptide or protein folding. In such cases, inclusion of solvent 

degrees of freedom is necessary. For similar studies where the solvation shell is 
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inaccessible to straight forward application of established entropy estimation methods, a 

recent method introduced by Grubmuller et al [151] can be an alternative way for 

computation. By exploiting the permutation symmetry of the solvent, it may be possible 

even to investigate the individual contributions from the rotational and intramolecular 

degrees of freedom in close future. Performing similar studies on the solvation 

thermodynamics for a variety of molecules in various solvent media will improve the 

knowledge on the underlying interactions. 

 A further detailed study in this thesis (in chapter 4) was performed on solvent 

reorganization contributions to solvation entropies and enthalpies of methane in mixtures 

of DMSO and water. Although the solvation entropies and enthalpies, more than the free 

energies, depend sensitively on proper description of solvent-solvent, solvent-cosolvent, 

cosolvent-cosolvent interactions a direct validation of the force-field parameterization 

was not possible due to lack of corresponding experimental data. Interestingly, however 

we have showed that the solvent reorganization enthalpy can be directly obtained from 

solvent equation of state data (i.e. the solvent internal pressure) via the relation  
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In this relation, αp is the isobaric thermal expansion coefficient of the solvent, κT is the 

solvent isothermal compressibility, *
SV∆ is the solvation volume of solute S and 
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the solvent internal pressure. 

 Taking into account that the solvent internal pressure term is directly related to 

thermal expansion coefficient and isothermal compressibility constant which totally 

depends on the parameterization of the solvent, performing a systematic study similar to 
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Hess et al performed on the hydration thermodynamic properties of amino acid anologues 

for a systematic comparison of biomolecular force fields and water models [152] could 

be a good practice to check the performance of the water model descriptions in solvation 

studies of DMSO-water binary mixtures.  

 In the following part of the thesis (chapter 5), after showing how to obtain free 

energy differences and its individual components in binary mixtures and discussing the 

knowledge accessible from these terms, we switch to free energy computation 

methodologies for polymeric materials. We presented the resultant data from classical TI 

or Fast growth TIs by comparing to the ones we obtained from one step perturbation 

method. We illustrated within a BPA-PC system that the latter method works quite well 

for the computation of solvation free energy of molecules with sizes which exceed 

existing free volume available within the polymer matrix. Introduction of various 

methods such as the one we used or the another recent method, e.g. Jarzynski’s Fast 

Growth TI, is obviously quite important for the theoretical studies since by these means 

there is a decrease in the computational effort and thus an increase in the efficiency.  

 Finally, after the discussions and comments via the solvation studies performed in 

this thesis, we close up with an investigation on diffusion part of the polymer permeation 

process in chapter 6. In this part, starting with an artificially constructed simulation 

system of SPE chains together with ions and water involved, we observed the microphase 

separation and the dependence of the dynamics of water molecules on the amount of 

water in the hydrophilic channels, on the temperature and also on the force-field 

parameters employed. Considering all the convergence problems, we achieved to 

reproduce the experimental diffusivity data in such an ionomeric polymer system. To go 
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further in this last study, the simulation system can be constructed in various other ways 

to see whether the results comparable to the experimental data is sensitive to the initial 

construction of the system or when the system is behind the percolation limit atomistic 

details are less affective anymore. Besides that to go deeper than the atomistic scale, for 

example in order to understand the mechanisms in proton conductivity, performing some 

other multiscale studies from atomistic to electronic (i.e. QM) level research can 

enlighten the behavior of water or the other components in such systems at a more 

magnified scheme since proton is a quantum particle. 

 To sum up, atomistic molecular dynamics on polymer permeation can be taken as 

a useful tool to understand the interactions within the polymeric materials. With the 

application of the methodologies discussed in this thesis on various other cases and 

comparison of the results with the experimental outcomes development in computational 

means will open a new era.  
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