Molekulardynamik–Untersuchungen zur atomistischen Struktur & Dynamik von binären Mischgläsern (Na₂O)(x · SiO₂) und (Al₂O₃)(2 · SiO₂)

DISSERTATION

ZUR ERLANGUNG DES GRADES "Doktor der Naturwissenschaften" am Fachbereich Physik der Johannes Gutenberg–Universität Mainz

vorgelegt von

Anke Winkler

geboren in Idar-Oberstein

Mainz, im Mai 2002

Datum der mündlichen Prüfung: 9. Juli 2002

Anke Winkler

Molekulardynamik–Untersuchungen zur atomistischen Struktur & Dynamik von binären Mischgläsern (Na₂O)(x · SiO₂) und (Al₂O₃)(2 · SiO₂)

In dieser Arbeit werden mit Hilfe von Molekulardynamik–Computersimulationen die Struktur und Dynamik silikatischer Gläser und Schmelzen untersucht. Betrachtet werden die Systeme $,NSx^{*} = (Na_2O)(x \cdot SiO_2)$ mit x = 2, 3, 5 und $,AS2^{*} = (Al_2O_3)(2 \cdot SiO_2)$.

Zur Beschreibung der mikroskopischen Wechselwirkungen zwischen den Teilchen wurde ein Potenzialmodell entwickelt, das auf einem effektiven Paarpotenzial aus der Literatur aufbaut. Ausgehend von Gleichgewichtskonfigurationen bei Temperaturen im Bereich von 6100 K \geq $T \geq 2100$ K werden Teilchentrajektorien über mehrere Nanosekunden analysiert. Zusätzliche Abkühlläufe ermöglichen die Untersuchung der Glasstruktur der Systeme bei 100 K (NSx) bzw. 300 K (AS2).

Der Netzwerkmodifikator Na_2O bricht das tetraedrische SiO_4 -Netzwerk von reinem SiO_2 auf, was zum verstärkten Auftreten lokaler Fehlordnungen führt. Es entsteht eine zusätzliche Struktur auf einer intermediären Längenskala, die bei allen Systemen NSx etwa dem Abstand übernächster Na- bzw. Si-Nachbarn eines Na-Atoms entspricht.

Die Dynamik aller Komponenten der Systeme NSx ist um zwei bis drei Größenordnungen schneller als in reinem SiO_2 . Sie beschleunigt sich mit zunehmender Na-Konzentration. Die Bewegung der Si- und O-Atome ist bei tiefen Temperaturen auf der Zeitskala der Na-Diffusion eingefroren. Letztere zeigt Arrhenius-Verhalten, wobei die Aktivierungsenergien wie im Experiment mit wachsender Na-Konzentration abnehmen. Die vibratorische Dynamik zeichnet sich durch eine starke Beeinflussung intratetraedrischer Schwingungsmoden aus: Das Auftreten weicher Moden führt zu einem Verschwinden der Doppelpeakstruktur im Spektrum oberhalb von 30 THz. Na-Moden dominieren die Zustandsdichten bei tiefen und mittleren Frequenzen.

Im Gegensatz zu Na₂O kann Al₂O₃ in die tetraedrische Netzwerkstruktur eingebunden werden. Während Aluminium in reinem Al₂O₃ sechsfach koordiniert auftritt, zeichnet sich AS2 durch eine verknüpfte Polyederstruktur aus, die überwiegend aus AlO₄– und SiO₄–Tetraedern besteht. Allerdings bevorzugen die AlO₄–Tetraeder lokal eine andere Ordnung als die SiO₄– Tetraeder, um den nötigen lokalen Ladungsausgleich für die Al³⁺–Ionen zu gewährleisten. Das System zeigt einen hohen Anteil an $3(Si, Al)O_4$ –Bausteinen. Sauerstoff ist hierbei dreifach koordiniert, mit mindestens einem Al–Atom als nächstem Nachbarn. Diese "3–Cluster" äußern sich im Auftreten zweier typischer Al–Al–Bindungslängen. Auf intermediären Längenskalen führt die bevorzugte Anordnung von Al–Atomen nahe anderer Al–Atome zur Ausbildung eines Al–reichen perkolierenden Netzwerks, das die SiO₄–Tetraederstruktur durchdringt.

Die Al–O– und die Si–O–Bindung in AS2 haben eine nahezu gleiche Länge, prägen aber die vibratorische Dynamik des Systems in unterschiedlicher Weise. Die AlO₄–Bausteine zeigen wesentlich weichere intratetraedrische Schwingungsmoden als die SiO₄–Bausteine. Auch die diffusive Dynamik aller Komponenten wird durch den Zusatz von Al₂O₃ im Vergleich zu SiO₂ um fast zwei Größenordnungen erhöht. Die Al–Diffusion ist hierbei deutlich schneller als die Si–Diffusion.

Kein Material überwindet so sehr die Materie wie das Glas. Von allen Stoffen, die wir haben, wirkt es am elementarsten. Es spiegelt den Himmel und die Sonne, es ist wie lichtes Wasser, und es hat einen Reichtum der Möglichkeiten an Farbe, Form, Charakter, der wirklich nicht zu erschöpfen ist, und der keinen Menschen gleichgültig lassen kann.

Paul Scheerbarth

Inhaltsverzeichnis

Einleitung

1	Sim	ulations	smethode	9
	1.1	Molek	ulardynamik(MD)–Simulation	12
	1.2	Anfan	gs– und Randbedingungen	13
	1.3	Der Ve	elocity–Verlet–Algorithmus	14
	1.4	Das B	KS–Potenzial	16
	1.5	Ewald	-Summation	19
	1.6	Mikro	skopisches Modell	24
	1.7	Details	s zur Simulation	30
		1.7.1	Simulationsprozess	30
		1.7.2	Parallelisierung	32
2	Nati	riumsili	kat	35
	2.1	Unters	suchte Systeme	37
	2.2	Bisher	ige Simulationen	38
	2.3	Strukt	ur und diffusive Dynamik	39
		2.3.1	Partielle Paarkorrelationsfunktionen I	39
		2.3.2	Temperaturabhängigkeit der Koordinationszahlen	46
		2.3.3	Partielle statische Strukturfaktoren	50
		2.3.4	Ringlängenverteilung	55
		2.3.5	Dynamische Eigenschaften	61
		2.3.6	Selbstdiffusionskonstanten	65
	2.4	Strukt	ur bei tiefen Temperaturen	67
		2.4.1	Partielle Paarkorrelationsfunktionen II	68
		2.4.2	Koordinationszahlverteilungen	71
	2.5	Hochf	requenzdynamik	75
		2.5.1	Die Zustandsdichte in harmonischer Approximation	76
		2.5.2	Atomart–spezifische Anteile	79
		2.5.3	Aufspaltung hinsichtlich Koordinierung	81
		2.5.4	Experimentelle Zustandsdichten	86
		255		07

1

3	Alur	niniumsilikat	89		
	3.1	Experimente zu amorphen Aluminiumsilikatsystemen	92		
	3.2	Simulationsdetails	94		
	3.3	Strukturelle Eigenschaften			
		3.3.1 Partielle Paarkorrelationsfunktionen	96		
		3.3.2 Koordinationszahlverteilungen	102		
		3.3.3 Ringlängenverteilung	112		
		3.3.4 Statische Strukturfaktoren	114		
	3.4	Dynamische Eigenschaften	122		
		3.4.1 Intermediäre Streufunktionen	122		
		3.4.2 Mittlere Verschiebungsquadrate	126		
		3.4.3 Selbstdiffusionskonstanten	127		
		3.4.4 Hochfrequenzdynamik	129		
Zu	isamn nhan	nenfassung & Ausblick 1 g 1	131 139		
A	Natr	ium– & Aluminiumwechselwirkungen	139		
B	Prog	ramme	143		
	B.1	mdAS2kmax6np32_1a.f	144		
	B.2	histo_sina5.f	175		
	B.3	SiNaKette4.f90	179		
Ał	obildu	ngsverzeichnis	183		
Ta	beller	werzeichnis	189		
Li	teratu	rverzeichnis	191		

Einleitung

Quarzsand (SiO₂), Soda (Na₂CO₃), Kalk (CaCO₃) — im Wesentlichen durch Zusammenschmelzen und Abkühlen dieser drei Komponenten entsteht der wohl bekannteste Vertreter *silikatischer Mischgläser*, Fensterglas.

Im wissenschaftlichen Sinn versteht man unter *Gläsern* allgemein Feststoffe, die sich in einem amorphen, nichtkristallinen Zustand befinden. Die Struktur dieser Systeme ähnelt der einer Flüssigkeit, d.h. es liegt keine Fernordnung vor.

Kühlt man eine Flüssigkeit ab, so kann diese entweder bei der Schmelztemperatur T_m kristallisieren oder sie "unterkühlt" unterhalb T_m und geht schließlich in einen ungeordneten *Glaszustand* über. Es handelt sich um einen metastabilen Zustand; das System kommt auf der Zeitskala des Experiments nicht ins Gleichgewicht. *Glasbildner* lassen sich beim Abkühlen durch eine drastische Verlangsamung der Dynamik charakterisieren; die Struktur ändert sich nur graduell und ist von der einer Flüssigkeit nicht zu unterscheiden.

Der Flüssig–Glas–Ubergang zeigt im Experiment typische statische Eigenschaften, die zu unterschiedlichen Definitionen der Glasübergangstemperatur führten (vgl. [1, 2]). Im VT-Diagramm (siehe Abb. 1) lässt sich der Glasübergang lediglich durch eine allmähliche Änderung der Steigung charakterisieren. Sowohl die Wärmekapazität $c_p(T)$ als auch die Ableitung $(\partial V/\partial T)_p$ des Volumens bei konstantem Druck zeigen eine mehr oder weniger ausgeprägte Unstetigkeit bei der kalometrischen Glasübergangstemperatur T_q . Allerdings hängt T_q von der Kühlrate ab und ist daher nicht wohldefiniert. Die Viskositäten steigen in der Nähe des Flüssig-Glas-Übergangs um mehrere Dekaden. Um einen Richtwert zu haben, definiert man häufig experimentell die Glasübergangstemperatur als diejenige Temperatur, bei der die Viskosität den Wert 10^{13} Poise erreicht. Die Viskosität erlaubt insbesondere auch die Klassifizierung von Glasbildnern in "starke" und "schwache" nach Angell [3]. Entscheidend hierbei ist, ob die Viskositäten oberhalb T_q Arrheniusverhalten, $\eta(T) = \eta_0 \exp(B/T), B > 0$, zeigen, wie etwa SiO₂, oder durch ein Vogel–Fulcher–Gesetz, $\eta(T) = \eta_0 \exp(B/k_B(T - G_0))$ (T_0) , B > 0, beschrieben werden können [4, 5]. Als ideale Glasübergangstemperatur lässt sich hier die Vogel-Fulcher-Temperatur T_0 interpretieren. Eine andere Definition ist die Kauzmann-Temperatur, bei der die Überschussentropie der unterkühlten Flüssigkeit gegenüber dem Kristall null wird [6].

Abbildung 1: Schematische Darstellung der Volumenänderung einer Flüssigkeit mit sinkender Temperatur. Am Schmelzpunkt T_m findet ein Phasenübergang erster Ordnung statt, bei dem die Schmelze in den Kristall übergeht. Im Übergangsbereich unterkühlte Flüssigkeit – Glas ist die Definition einer "Glasübergangstemperatur" problematisch. Da der Übergang in den Glaszustand quasi kontinuierlich erfolgt, ist die Übergangstemperatur T_g nicht wohl definiert. T_q hängt von der Vorgeschichte des Materials (Kühlrate) ab (aus [7]).

Die beschriebenen Eigenschaften des Flüssig–Glas–Übergangs legen die Interpretation des Phänomens als statischen Phasenübergang erster oder zweiter Ordnung nahe. Es existieren hierzu hauptsächlich qualitative Modelle wie die *Freie Volumen Theorie* [8] und die *Entropietheorie* [9]. Einen anderen Zugang bietet die 1984 von Bengtzelius, Götze und Sjölander sowie Leutheusser vorgeschlagene *Modenkopplungstheorie* [10, 11]. Der Übergang Flüssig–Glas wird hier als dynamischer Phasenübergang interpretiert. Die Theorie liefert nahe des Glasübergangs eine Reihe von Voraussagen, die sich experimentell oder durch Simulationen testen lassen und vielfach, vor allem qualitativ, bestätigt werden konnten.

Geologisch wie technologisch relevant ist vor allem die Gruppe der *Silikatgläser*, also Schmelzprodukte aus Quarzsand. In der Natur finden sie sich z.B. als Obsidian (wasserarmes, kieselsäurereiches Vulkanglas) oder Tektite (kosmische Gläser). Die Silikatschmelzen und –gläser, die in der Technologie Verwendung finden, sind wie ihre natürlichen Vertreter üblicherweise Multikomponentensysteme. Dem Prototyp Quarz– oder Kieselglas (reines SiO₂) werden je nach Anwendungsgebiet saure und basische Oxide zugesetzt, die gewünschte Systemeigenschaften verbessern (vgl. z.B. [12]). Tabelle 2 enthält eine Übersicht über die Zusammensetzung verschiedener Glassorten. Die größte Gruppe bilden Sodakalkgläser. Die gebräuchlichste Glassorte enthält ca. 75% SiO₂, 15% Na₂O und 10% CaO. Na₂O dient der Schmelzpunkterniedrigung und senkt die Viskosität, CaO reduziert die Löslichkeit in Wasser. Weitere Zusätze wie

Glassorte	SiO	Al_2O_3	CaO	Na ₂ O	B_2O_3	MgO	PbO	andere
Quarzglas	99							
Vycorglas	96				4			
Pyrexglas	81	2		4	12			
Flaschenglas	74	1	5	15		4		
Fensterglas	72	1	10	14		2		
Tafelglas	73	1	13	13				
Glühlampenglas	74	1	5	16		4		
Glasfasern	54	14	16		10	4		
Thermometerglas	73	6		10	10			
Bleiglas	67			6			17	10% K ₂ O
optisches Flintglas	50			1			19	13% BaO, 8% K ₂ O, ZnO
optisches Kronglas	70			8	10			2% BaO, 8% K ₂ O
E-Glasfasern	55	15	20		10			
S-Glasfasern	65	25				10		

Abbildung 2: Zusammensetzung technischer Gläser in Gewichts% (aus [12]).

Al₂O₃ und MgO machen die Gläser temperturbeständig und widerstandsfähig gegen thermischen Schock. Die meisten Zusammensetzungen sind Erfahrungswerte. Gute Glaseigenschaften werden bei einer Vielzahl von Aufbaueinheiten in der Schmelze erreicht, die sowohl Ordnungs– wie Kristallisationsprozesse verhindern. Die Fragestellung, warum gewisse Stoffe und Zusammensetzungen günstige Glasbildner sind, ist also von entscheidender praktischer Relevanz.

Hypothesen und Modelle zur Struktur von Gläsern und Schmelzen und den Bedingungen der Glasbildung existieren seit den 20er und 30er Jahren des letzten Jahrhunderts. Ein sehr erfolgreiches Konzept zur Unterscheidung von glasbildenden und nicht-glasbildenden Materialien wurde 1932/33 von Zachariasen/Warren [13, 14, 15] entwickelt. Die entscheidende Idee der *Netzwerkhypothese von Zachariasen* ist die Annahme, dass dieselben kristallchemischen Prinzipien, die für die Stabilität von Oxiden und Kristallstrukturen verantwortlich sind, auch auf Oxid– und Silikatgläser angewendet werden können (vgl. [1, 16, 17, 18]).

Glasbildende Materialien haben nach Zachariasen im amorphen Zustand nur eine geringfügig höhere innere Energie als im kristallinen Zustand. Die innere Energie eines Festkörpers ist mit dessen Struktur verknüpft. Geht man von ähnlichen interatomaren Wechselwirkungen in der amorphen und kristallinen Phase aus, so sollte demnach auch die atomare Struktur beider Phasen ähnlich sein, im Glas also dieselben Bindungsverhältnisse und Struktureinheiten wie im Kristall vorliegen. Speziell in Oxidgläsern treten wie im Kristall Sauerstoff–Polyeder auf; in SiO₂–Glas sind das SiO₄–Tetraeder. Ihre Orientierung ist aber im Glas variabel, so dass sich eine nicht–periodische Struktur

Abbildung 3: Ebenen Darstellung von kristalliner und glasartiger Struktur von reinem SiO_2 . Im Glas gibt es keine langreichweitige Ordnung mehr (aus [12]).

ausbildet. Allein durch Variation von Bindungs– und Diederwinkel (siehe [1]) entsteht ein unendliches unregelmäßiges Netzwerk mit minimaler innerer Energie (*Continuous Random Network* — *CRN*). In SiO₂–Glas sind also wie im Kristall SiO₄–Tetraeder über Ecksauerstoffe, sog. *Brückensauerstoffe*, miteinander verbunden. Abbildung 3 stellt schematisch in zwei Dimensionen die ungeordnete Netzwerkstruktur von Kieselglas der geordneten SiO₂–Kristallstruktur gegenüber. Da Kristallausbildung eine energieaufwendige topologische Umordnung bedeutet, ist der amorphe Zustand nach dem CRN–Modell metastabil.

Für die Bildung von Oxidgläsern stellte Zachariasen vier Bedingungen auf:

- 1. Die Kationen-Koordinationszahl ist klein.
- 2. Ein Sauerstoffion bindet an nicht mehr als zwei Kationen.
- 3. Sauerstoffpolyeder teilen nur gemeinsame Ecken, nicht Kanten oder Flächen.
- 4. Drei Ecken jedes Sauerstoffpolyeders werden mit anderen Polyedern geteilt.

Oxide vom Typ RO_2 , R_2O_3 , und R_2O_5 erfüllen diese Bedingungen; in der Tat treten z.B. SiO_2 , GeO_2 , B_2O_3 , V_2O_3 und P_2O_5 in glasiger Form auf.

Von diesen Kationen, die netzwerkbildende Polyeder aufbauen, den sog. *Netzwerkbildnern*, unterscheidet Zachariasen *Netzwerkwandler* ("network modifier"), die das perfekt verbundene unregelmäßige Netzwerk aufbrechen. Hierzu zählen Y_2O_3 , MgO, CaO, PbO₂ und Na₂O, Eine Zwischenform bilden *Netzwerk–Einbindungen*, die das Netzwerk verstärken oder verändern können, aber selbst kein Glas bilden (z.B. TiO₂, ZnO, PbO, BeO und Al₂O₃).

Abbildung 4: Illustration von Strukturmodellen zum Einfluss von Na_2O auf das Silikatnetzwerk. Als Netzwerkwandler bricht Na_2O das unendliche unregelmäßige SiO_2 -Netzwerk auf (links). Nach Zachariasen [14, 15] sind die Natriumionen statistisch verteilt. Die modifizierte Netzwerkhypothese nach Greaves [19, 20] geht von "Perkolationskanälen" aus (rechts) (aus [12, 18]).

Für komplexe Oxidgläser mit zusätzlichen (nicht–)glasbildenden Oxiden hat Zachariasen obige Bedingungen modifiziert. Ein bestimmter Anteil an glasbildenden Kationen oder solchen, die deren Rolle übernehmen können, ist in Oxidverbindungen für die Glasbildung notwendig. In Alkalisilikaten ist so die Ausbildung von Glas nur bis zu einem bestimmten Alkalioxidanteil möglich. Beim Aufbrechen des geschlossenen Silikatnetzwerks durch die relativ großen Alkalikationen entstehen Si⁴⁺–Ionen, denen nur einfach gebundene O^{2–}–Ionen benachbart sind, sog. *Trennstellensauerstoffe ("dangling bonds")*. Die Alkalikationen plazieren sich in die Hohlräume des Netzwerks; ihre Anordnung ist nach Zachariasen statistisch (siehe Abb. 4).

Die Ausbildung eines unendlichen geschlossenen Netzwerks nach Zachariasen lässt den enormen Anstieg der Viskosität bei der Glasbildung verstehen. Bei aufgebrochener Netzwerkstruktur führt die verstärkte Beweglichkeit der Bindungseinheiten und Netzwerkmodifikatoren u.a. zu einer Abnahme der Viskosität. Anwendbar ist das CRN–Modell allerdings nur auf Oxidgläser. Es wurde im Laufe der Zeit erweitert und verfeinert, und es wurden auch ähnliche neue Modelle entwickelt. Beispiele sind das "modified random network model" nach Greaves *et al.* (1981, 1985) [19, 20] (s.u.) und das "densely packed domain model" nach Gaskell *et al.* (1991) [21].

Strukturmodelle und Bildungsregeln sind i.a. nicht universell anwendbar. Um die Struktur komplexer Silikatgläser zu verstehen, ist es hilfreich, sich zunächst auf Systeme mit wenigen Komponenten zu beschränken. Die einfachsten silikatischen Mischgläser sind *binäre Systeme* aus SiO₂ und einem weiteren Oxid. Gläser des Systems Na_2O-SiO_2 sind wichtige Modelle für Natronsilikatgläser. Wichtigster Einfluss von Na_2O auf die Silikatstruktur ist das Aufbrechen des Netzwerks (s.o.). Hierdurch lassen sich viele Eigenschaften der Natrongläser erklären, wie die Abnahme der Viskosität oder die erhöhte Leitfähigkeit im Vergleich zu SiO₂. Die in den Hohlräumen des Netzwerks sitzenden Natriumionen sind im Vergleich zur Si– O-Struktur recht beweglich und können durch diese hindurchdiffundieren.

Gegenstand aktueller Forschung ist daher vor allem die Frage nach der Verteilung der Natriumionen. Eine Modifikation des Zachariasen–Warren CRN–Modells wurde von Greaves *et al.* (1981) [19] und Greaves (1985) [20] für Na_2O –SiO₂–Gläser vorgeschlagen ("modified random network model"). Hiernach sind die Natriumionen nicht statistisch verteilt; es gibt Netzwerkregionen aus Netzwerkbildnern und Inter–Netzwerkregionen aus Netzwerkwandlern. Abbildung 4 zeigt eine zweidimensionale Darstellung. "Perkolationskanäle" ermöglichen die Diffusion der Natriumionen. Neueste Computersimulationen von Jund *et al.* zu Natriumtetrasilikat [22] und Horbach *et al.* zu Natriumdisilikat [23] zeigen eine durch aktivierte Hüpfprozesse gesteuerte Natriumbewegung in Taschen und Kanälen.

Technisch finden Natriumsilikatgläser hauptsächlich Anwendung als sog. "Wassergläser" (Lösungen von Na_2O-SiO_2 -Schmelzen in Wasser, die als Bindemittel etwa für Porzellan dienen). Abbildung 5 zeigt einen Teil des Phasendiagramms des Systems Na_2O-SiO_2 (vgl. [7, 24]).

Die Liquidustemperatur variiert stark mit der Zusammensetzung. Unterhalb werden meist Gemische aus flüssiger und kristalliner Phase ausgebildet.

Innerhalb des Gebiets der Glasbildung fallen Natriummetasilikat $Na_2O \cdot SiO_2$ und Natriumdisilikat $(Na_2O)(2 \cdot SiO_2)$. Kommerzielle Gläser liegen meist im Gebiet zwischen Disilikat und dem niedrigsten Eutektischen Punkt, an dem die Liquiduskurve ihr Minimum erreicht. Die hohe Schmelztemperaturen, die zur Herstellung von Silikatgläsern notwendig sind, ließen sich theoretisch durch einen sehr hohen Na_2O -Anteil enorm erniedrigen. Da die entstehenden Gläser aber stark durch die Luftfeuchtigkeit hydrolisieren, sind Zusätze wie CaO und Al_2O_3 für deren Beständigkeit notwendig (was wiederum die Schmelztemperatur erhöht).

Durch den Zusatz von Al_2O_3 werden in Aluminosilikatgläsern (Alkalioxid– Al_2O_3 – SiO₂–Systeme) Trennstellen geschlossen und so die Glasstruktur verfestigt. Al_2O_3 ist zwar ein Oxid vom Typ R_2O_3 (s.o.), bildet aber allein kein Glas (vgl. [17]). (Zum Abschirmen des Al^{3+} –Ions werden sechs O^{2-} –Ionen gebraucht; eine gegenseitige Verknüpfung der Polyeder über Ecken ist nicht mehr möglich.) Beim schnellen Abschrecken von Al_2O_3 –SiO₂–Systemen kann man aber Gläser mit bis zu 65 Mol% Al_2O_3 erhalten [27, 28]. Reine Aluminiumoxidsilikate Al_2O_3 –SiO₂ haben große Bedeutung als hochfeuerfeste keramische Werkstoffe (Silikastein für Stahlwerke, Schamottstein). Ein wichtiges Problem in der Erforschung ihrer Struktur bildet die Koordination des Aluminiumatoms und damit die gleichzeitige Rolle von Aluminiumoxid als Netzwerkbildner wie auch Netzwerkwandler. Ein Al^{3+} –Ion kann durchaus an die Stelle eines

Abbildung 5: Phasendiagramme der Systeme Na₂O–SiO₂ [25, 26] (Angaben in Gew.%, aus [24]) und Al₂O₃–SiO₂ [27]. Bei Aluminiumsilikat ist schematisch die Region metastabiler Entmischung eingezeichnet. Mit einer Zusammensetzung von 33 Mol% (45 Gew.%) liegt das in dieser Arbeit betrachtete Aluminiumdisilikat in diesem Bereich. Die untersuchten Systeme $(Na_2O)(2 \cdot SiO_2), (Na_2O)(3 \cdot SiO_2)$ und $(Na_2O)(5 \cdot SiO_2)$ enthalten SiO₂ mit einem Anteil von 66 Gew.%, 74 Gew.% bzw. 82 Gew.%.

 \rm{Si}^{4+} -Ions treten und so das \rm{SiO}_4 -Tetraedernetzwerk verstärken. Die Ionen haben allerdings verschiedene Wertigkeit. In Aluminosilikatgläsern kann Wertigkeitsausgleich durch Alkaliionen erreicht werden. In reinem Aluminiumsilikat wird zur Gewährleistung des Ladungsausgleichs die zusätzliche Existenz fünffach koordinierter Aluminiumatome oder, alternativ, die Ausbildung spezieller Tetraederanordnungen diskutiert. Letztere Hypothese geht auf eine Verallgemeinerung des klassischen Netzwerkmodells von Zachariasen durch Lacy (1963) [29] zurück. Wir werden hierauf noch in Kap. 3.3.2 zurückkommen. Die Koordinationszahl des Aluminiumatoms ist entscheidend für eine Vielzahl interessanter Eigenschaften der \rm{Al}_2O_3 -SiO₂-Systeme, wie etwa das Auftreten einer metastabilen Entmischungsregion im Phasendiagramm, das Abbildung 5 zeigt [7, 24]. Die einzige stabile Komponente des Systems ist Mullit $(3 \cdot \rm{Al}_2O_3)(2 \cdot \rm{SiO}_2)$. Die natürlich vorkommenden Mineralien der Zusammensetzung $\rm{Al}_2O_3 \cdot \rm{SiO}_2$, Sillimanit, Andalusit und Kyanit, gehen bei hoher Temperatur und Normaldruck in Mullit und \rm{SiO}_2 über.

Gute Modelle für Silikatgläser und Schmelzen zu erhalten ist aus heutiger Sicht das Zusammenspiel vieler verschiedener Techniken. Einen modernen Zugang zur Struktur bieten Computersimulationen (vgl. [1]). Speziell *Molekulardynamik–Simulationen* erlauben zusätzlich auch die Systemdynamik zu untersuchen. Bei Vorgabe eines geeigneten Modellpotenzials werden die klassischen Newtonschen Bewegungsgleichungen für ein Vielteilchensystem gelöst. Auf diese Weise kann der zeitliche Verlauf der Relaxationsdynamik beim Abkühlprozess von der Flüssigkeit bis zum Glas als Funktion der Temperatur beobachtet werden, wobei zu jeder Zeit die volle Information über das System (Teilchenpositionen, Impulse) gegeben ist. Zudem können im Gegensatz zum Experiment auch Systeme bei sehr hohen Temperaturen und Drücken simuliert werden. Heutige Modellpotenziale sind sehr ausgereift, so dass weitreichende Aussagen hinsichtlich Struktur und Dynamik möglich sind.

Ziel dieser Arbeit ist es, mit Hilfe von Molekulardynamik–Computersimulationen die Struktur und Dynamik von binären silikatischen Mischgläsern und Schmelzen der Systeme Na_2O –SiO₂ und Al₂O₃–SiO₂ zu untersuchen.

Bei Natriumsilikat können wir auf Simulationen von Jürgen Horbach [30, 31, 32] aufbauen. Wir betrachten hier vor allem die Abhängigkeit der Systemstruktur und –dynamik von verschiedenen Na₂O–Konzentrationen.

Im Falle von Aluminiumsilikat wird ein System untersucht, das von seiner Zusammensetzung in den Bereich metastabiler Entmischung des Phasendiagramms fällt. Die Arbeit liefert insbesondere einen Beitrag zum Verständnis der Aluminiumkoordinationszahl in Aluminiumsilikatgläsern.

Die Arbeit gliedert sich in drei Kapitel:

Der für das weitere Verständnis notwendige theoretische Rahmen wird in Kapitel 1 gelegt. Wir stellen zunächst die Methode der Molekulardynamik–Simulation vor. Wesentlich ist hierbei die Wahl eines geeigneten Modellpotenzials. Grundlage dieser Arbeit bildet eine Modifikation des BKS–Potenzial nach Kramer *et al.* [33].

In Kapitel 2 werden die erzielten Ergebnisse zu den Natriumsilikatschmelzen diskutiert. Die Struktur haben wir anhand typischer Größen wie Paarkorrelationsfunktionen und Koordinationszahlverteilungen charakterisiert. Interessante Eigenschaften der Dynamik zeigen sich im diffusiven Bereich wie auch bei der Hochfrequenzdynamik bei tiefer Temperatur.

Kapitel 3 ist dem System $(Al_2O_3)(2 \cdot SiO_2)$ gewidmet. Ein Überblick zu Experimenten erlaubt die Einordnung unserer Ergebnisse in den aktuellen Stand der Forschung. Es folgen die Ergebnisse zur Struktur unseres Systems, wobei wir mögliche Phasenseparationstendenzen diskutieren. Neben diffusiver und Hochfrequenzdynamik testen wir auch Voraussagen der Modenkopplungstheorie.

Als Abschluss werden die erzielten Ergebnisse kurz zusammengefasst und ein Ausblick zu möglichen Untersuchungen gegeben, die sich an diese Arbeit anschließen könnten.

Kapitel 1

Simulationsmethode

In dieser Arbeit sollen die strukturellen und dynamischen Eigenschaften von silikatischen Schmelzen mit den Zusammensetzungen (Na_2O) $(x \cdot SiO_2)$ -, x = 2, 3, 5, und $(Al_2O_3)(2 \cdot SiO_2)$ untersucht werden. Die Struktur des Basismaterials dieser Systeme, amorphes SiO₂, ist seit langem bekannt: Spektroskopie– und Streuexperimente [34, 35] zeigen ein dreidimensionales, nahezu ideales Netzwerk aus SiO₄–Tetraedern, die über die Sauerstoffatome an den Ecken miteinander verknüpft sind. (Man nennt diese Sauerstoffatome daher auch Brückensauerstoffe.)

Aus geologischer wie technologischer Sicht (vgl. Einleitung) ist es von großem Interesse, Systeme zu untersuchen, die neben SiO_2 weitere Bausteine wie z.B. Alkali– oder Erdalkalimetalle enthalten. Alkalikationen wie Natrium können sich stöchiometrisch nicht in die Tetraederanordnung einfügen; sie führen zum wesentlich erhöhten Auftreten von nicht Brücken bildende Sauerstoffen. Da sie sich nicht an der Netzwerkbildung beteiligen, sondern vielmehr diese aufbrechen oder verändern, nennt man die Alkalikationen *Netzwerkwandler* im Gegensatz zum *Netzwerkbildner* Silizium.

Führt man Al_2O_3 in reine SiO_2 –Gläser ein, so kann das Al^{3+} –Ion durchaus mit Nichtbrückensauerstoffen AlO_4 –Tetraeder aufbauen, also die Rolle eines Netzwerkbildners übernehmen. Strittig ist, wie Ladungsausgleich erreicht wird: Experimentell werden auch höher koordinierte Aluminiumatome beobachtet, wobei deren genaue Zuordnung heftig diskutiert wird [36, 37, 38, 39, 40]. Aluminium wird dann zum Netzwerkwandler.

Der Einfluss von Natrium bzw. Aluminium auf das SiO_4 -Tetraedernetzwerk und die Untersuchung der strukturellen Unterschiede von Natrium– bzw. Aluminiumsilikaten im Vergleich zu amorphem SiO_2 stellt eine besondere Herausforderung dar. Insbesondere lässt das Aufbrechen bzw. Ändern der SiO_4 -Tetraederstruktur starke Abweichungen zur Dynamik reiner SiO_2 -Systeme erwarten.

Geeignet, um solche Fragestellungen auf mikroskopischem Niveau zu untersuchen, sind Molekulardynamik(MD)–Computersimulationen: In Form einer klassischen numerischen Rechnung ist es möglich, die Teilchentrajektorien zu bestimmen und so direkten Zugang zur Mikroskopik zu erlangen: Alle Informationen über die Positionen und Geschwindigkeiten der Teilchen sind zu jedem Zeitschritt des Simulationslaufs zugänglich. Die MD–Simulation kann so eine vollständige dreidimensionale Rekonstruktion der atomaren Struktur liefern. Vor allem aber können beliebige Observablen (z.B. statische wie auch dynamische Korrelationsfunktionen) berechnet werden. Es ist so möglich, thermodynamische Zustände von Systemen zu untersuchen, die in Experimenten nur schwer zugänglich sind (etwa bei sehr hohen Temperaturen oder auch negativen Drücken). Größen können bestimmt werden, die sich nur schwer aus dem Experiment in angemessener Genauigkeit berechnen lassen. Die Simulation erlaubt somit auch weit strengere Tests theoretischer Konzepte.

Entscheidend für eine möglichst realistische Simulation ist hierbei die Wahl eines geeigneten mikroskopischen Modells: In der Praxis wird häufig von einer Potenzialform ausgegangen, die zunächst noch freie interatomare Parameter enthält. Im Rahmen quantenmechanischer Rechnungen lassen sich diese durch Anpassung an Energiehyperflächen bestimmen.

Im Falle des von van Beest *et al.* für SiO₂ entwickelten Potenzials [33] wurden z.B. die angesetzten Parameter speziell für den α -Quarz optimiert. Ausgangspunkt bildete der Grundbaustein des Kristalls, ein SiO₄-Tetraeder, der zur Gewährleistung der Ladungsneutralität mit vier Wasserstoffatomen abgesättigt war. Mittels Hartree-Fock-Rechnungen wurden an diesem H₄SiO₄-Baustein durch systematische Variation der O-Si-O-Winkel und der Si-O-Abstände Energiehyperflächen bestimmt. An diese konnten die Potenzialparameter angefittet werden. Problematisch bei diesem Vorgehen ist, dass es sich um ein hochdimensionales, nichteindeutiges Fitproblem handelt, bei dem ein einzelner Cluster zur Reproduktion des gesamten Systems herangezogen wird. Als optimale Parameter wurden daher schließlich diejenigen bestimmt, mit denen die beste Übereinstimmung von berechneten elastischen Konstanten des α -Quarz mit experimentell gemessenen erzielt werden konnte (vgl. hierzu [33]).

Die hier untersuchten Systeme unterscheiden sich (abgesehen von verschiedenen Systemgrößen) hauptsächlich durch die atomaren Wechselwirkungen bzgl. Natrium oder Aluminium. Ansonsten verlaufen die Simulationen hinsichtlich des generellen Ablaufs und des verwendeten Algorithmus analog.

Im ersten Teil dieses Kapitels soll daher zunächst das allgemeine Prinzip der Molekulardynamik–Methode erläutert werden. Die Newtonschen Bewegungsgleichungen werden hierbei numerisch gelöst, wozu geeignete Anfangs- und Randbedingungen, sowie ein effizienter und stabiler Integrationsalgorithmus notwendig sind. Ausgangspunkt für das mikroskopische Modell, also die verwendeten Modellpotenziale, ist das oben erwähnte, nach van Beest, Kramer und van Santen benannte "BKS–Potenzial" [41]. Die hier vorgestellte Form, wie sie Kramer 1991 [33] für Aluminiumsilikate veröffentlicht hat, ist für die in dieser Arbeit betrachteten Systemzusammensetzungen nicht unmittelbar geeignet. Für Natrium bzw. Aluminium wurden daher zusätzliche Potenzialterme eingeführt.

Bei allen Systemen sind langreichweitige Coulombterme bei der Potenzial– und Kraftberechnung aufzusummieren. Problematisch ist, dass diese Summen (bei Verwendung periodischer Randbedingungen) nur bedingt konvergent sind. Eine elegante Lösung bietet hier die "Methode der Ewaldsummen" [42].

Da bei den Natriumsilikaten sehr große Systeme auf der Zeitskala von Nanosekunden betrachtet werden, war es notwendig, den Programmcode zu parallelisieren. Als Abschluss dieses Kapitels soll auf das hierzu verwendete Verfahren sowie weitere Simulationsdetails eingegangen werden.

1.1 Molekulardynamik(MD)–Simulation

Die verwendete Simulationsmethode — die *klassische Molekulardynamik(MD)–Computersimulation* — erlaubt es, die mikroskopischen Eigenschaften von Vielteilchensystemen zu berechnen.

Den Ausgangspunkt bilden die Newtonschen Bewegungsgleichungen für ein Modellsystem aus N Atomen,

$$m_i \ddot{\vec{r}}_i = -\nabla_i V(\{\vec{r}_j\}) \equiv \vec{F}_i , \qquad (1.1)$$

wobei $\{\vec{r}_i\}, i = 1, ..., N$, die Menge der kartesischen Koordinaten der Atome darstellt, m_i ist die Masse von Atom $i, V(\{\vec{r}_i\})$ die Potenzialfunktion und \vec{F}_i die Kraft auf Atom i.

Die Gleichungen (1.1) bilden ein System von N gekoppelten partiellen Differenzialgleichungen, dessen Lösung die Phasenraumtrajektorien der Teilchen sind. Aus ihnen lassen sich gemäß der statistischen Mechanik durch Zeitmittelung die charakteristischen statischen und dynamischen Größen des Systems bestimmen. Das Gleichungssystem (1.1) wird in der Praxis numerisch für diskrete Zeitschritte δt gelöst, wozu ein günstiger Integrationsalgorithmus und geeignete Anfangs- und Randbedingungen notwendig sind (s.u.).

Das prinzipielle Vorgehen bei einer MD–Simulation ist vergleichbar mit der Durchführung eines Experiments:

Zu einem Anfangszeitpunkt (t = 0) werden die Systemparameter (z.B. Temperatur, Teilchenzahl, Volumen, Zeitschritt) festgelegt und das System initialisiert (Anfangspositionen und –geschwindigkeiten). (Das zu untersuchende System wird präpariert.) Anschließend werden die Kräfte auf alle Teilchen berechnet und die Bewegungsgleichungen integriert. Dies wird solange wiederholt, bis ein gewünschter späterer Zeitpunkt erreicht ist, in der Regel, bis die zu messenden Systemgrößen nicht mehr von der Zeit abhängen. (Das System wird äquilibriert.)

Schließlich werden die Zeitmittel der zu messenden Größen bestimmt (eigentliche Messung).

Sofern Quanteneffekte vernachlässigbar sind und das mikroskopische Potenzialmodell geeignet gewählt ist, kann die MD ein reales Experiment simulieren.

Die Relevanz von Quanteneffekten kann anhand der de Broglie–Wellenlänge der Atome $\Lambda = (h^2/(2\pi m k_{\rm B}T))^{-1/2}$ ($k_{\rm B}$: Boltzmannkonstante, h: Plancksches Wirkungsquantum, T: Temperatur, m: Atommasse) abgeschätzt werden. Sie ist bei den hier untersuchten Systemen wesentlich kleiner als der typisch kleinste Atomabstand von 1.6 Å (Länge einer Si-O-Bindung):

Für T = 1000 K, was deutlich unterhalb der experimentellen Glastemperatur von SiO₂, 1450 K, liegt, erhält man z.B. die Wellenlängen $\Lambda_{Si} = 0.104$ Å, $\Lambda_O = 0.138$ Å, $\Lambda_{Na} = 0.115$ Å und $\Lambda_{Al} = 0.106$ Å. Quanteneffekte sollten also zumindest bei hohen Temperaturen keine wesentliche Rolle spielen. Bei tiefen Temperaturen, insbesondere unterhalb der Debye–Temperatur, hängt es von der betrachteten Größe ab, inwie-

weit Quanteneffekte von Bedeutung sind. So kann mit einer klassischen Simulation die Struktur von SiO_2 bei tiefer Temperatur gut reproduziert werden, nicht aber die spezifische Wärme. Man erhält aber durchaus realistische Ergebnisse für diese Größe, wenn man bei der Berechnung den Besetzungszahloperator berücksichtigt [43].

1.2 Anfangs– und Randbedingungen

Anfangsbedingungen einer MD–Simulation sind, wie bereits oben erwähnt, die Teilchenpositionen und –geschwindigkeiten zu einem Anfangszeitpunkt t = 0. Wir haben unsere Simulationen in der Flüssigkeit bei hohen Temperaturen begonnen, wo die typischen Relaxationszeiten in der Größenordnung von 1 ps lagen. Als Startkonfigurationen haben wir Zufallskonfigurationen verwendet. Bei tiefen Temperaturen dienten Konfigurationen der nächsthöheren Temperatur als Ausgangspunkt zur Äquilibrierung. Die Länge eines Äquilibrierungslaufes muss hierbei stets größer als die typische Relaxationszeit des Systems sein.

Allgemein sind Computersimulationen im Gegensatz zum Experiment ($N_A \sim O(10^{23})$ Teilchen) auf relativ kleine Systeme (hier $O(\sim 10^3)$) beschränkt. Will man das Bulk– Verhalten eines Systems untersuchen, so sollten Oberflächeneffekte aber durch zu kleine Systemgrößen vermieden werden. Geeignet hierfür sind sog. *periodische Randbedingungen*. Die eigentliche Simulationsbox wird hierbei in alle Raumrichtungen durch ihr Bild periodisch fortgesetzt. Verschwindet ein Teilchen aus der Simulationsbox, so tritt es an der gegenüberliegenden Seite wieder ein. Periodizität bezieht sich also auf die Wechselwirkungen wie auch auf die Teilchenbewegungen. Abbildung 1.1 erläutert das Prinzip in zwei Dimensionen.

Sofern ein kurzreichweitiges Potenzial vorliegt, kann ein geeigneter Cutoff–Radius kleiner als die halbe Boxlänge definiert werden; gemäß der *Minimum-Image-Konvention* wechselwirkt ein Teilchen der Urbildbox dann genau einmal mit jedem anderen, entweder mit dem Teilchen in der Urbildbox selbst oder mit dessen nächstgelegenem Bild.

Um Artefakte der Periodizität zu vermeiden, sollte das System dennoch groß genug gewählt sein. In dieser Arbeit wurden rund 8000 Teilchen im Falle der Natriumsilikate bzw. 1408 Teilchen beim Aluminiumsilikat simuliert. Die Wahl dieser vergleichsweise großen Systeme hat sich als sinnvoll erwiesen, um Finite–Size–Effekte in der Dynamik möglichst klein zu halten (vgl. hierzu die Untersuchungen von Horbach *et al.* [30]).

Alle Simulationen wurden bei konstanter Dichte (d.h. bei konstantem Volumen V) durchgeführt; sie ist in einer Simulation einfacher konstant zu halten als der Druck p. Im Experiment wird im Gegensatz dazu meist der Druck konstant gehalten ((NpT)– Ensemble, isotherm–isobar). Da aber in vorangehenden Simulationen von reinem SiO₂ und Natriumdisilikat [30] gezeigt werden konnte, dass die dynamischen Eigenschaften

Abbildung 1.1: Illustration periodischer Randbedingungen (der Anschaulichkeit halber hier in zwei Dimensionen): (i) Atom A wechselwirkt mit dem ihm nächstgelegenen periodischen Bild von Atom B, B' (*Minimum Image Convention*), aber nicht mit Atom B selbst, das sich außerhalb des Cutoff–Wechselwirkungsradius befindet. (ii) Sobald sich Atom B aus der Urbild–Box (grau) bewegt, tritt sein periodisches Bild an der gegenüberliegenden Seite wieder ein (aus [44]).

nicht stark druckabhängig sind (zumindest was Größenordnungen von 1 GPa betrifft), sollten Experiment und Simulation hier dennoch gut vergleichbar sein.

1.3 Der Velocity–Verlet–Algorithmus

Zur Lösung der Newtonschen Bewegungsgleichungen könnte prinzipiell jeder numerische Standardalgorithmus zur Integration von Differenzialgleichungen verwendet werden. Eine "gute" MD–Simulation stellt aber gewisse Anforderungen an das verwendete Integrationsschema:

- Die Schnelligkeit des Algorithmus ist wichtig, aber nicht das wesentliche Kriterium, da die Kraftberechnung in der Regel viel zeitaufwendiger ist.
- Der Algorithmus sollte einen möglichst großen Zeitschritt δt ermöglichen, um die Anzahl der Kraftberechnungen zu minimieren.
- Die Energie sollte auch bei langen Simulationensläufen erhalten bleiben und keine Drift zeigen.

Da die Newtonschen Bewegungsgleichungen zeitumkehrinvariant sind, sollte dies natürlich auch der verwendete Algorithmus sein. In Einklang mit der Hamiltonschen Mechanik sollte hierbei auch die Erhaltung des Phasenraumvolumens garantiert sein. Bei MD–Simulationen von atomaren Systemen haben sich in dieser Hinsicht Verlet– Integratoren bewährt.

In dieser Arbeit erfolgt die Integration der Newtonschen Bewegungsgleichungen speziell mit dem sog. *Velocity–Verlet–Algorithmus*. Er lässt sich einfach aus der Taylor– Entwicklung der einzelnen Teilchenpositionen herleiten:

Die Entwicklung der Position des *i*-ten Teilchens zur Zeit $t + \delta t$ bzw. zur Zeit $t = (t + \delta t) - \delta t$ liefert:

$$\vec{r}_i(t+\delta t) = \vec{r}_i(t) + \dot{\vec{r}}_i(t)\delta t + \frac{1}{2}\ddot{\vec{r}}_i(t)\delta t^2 + \mathcal{O}(\delta t^3)$$
(1.2)

$$\vec{r}_i(t) = \vec{r}_i(t+\delta t) - \dot{\vec{r}}_i(t+\delta t)\delta t + \frac{1}{2}\ddot{\vec{r}}_i(t+\delta t)\delta t^2 + \mathcal{O}(\delta t^3) .$$
(1.3)

Mit den Geschwindigkeiten $\vec{v}_i = \dot{\vec{r}}_i$ und den Kräften $\vec{F}_i(t) = m_i \ddot{\vec{r}}_i$ auf Teilchen *i* ergeben sich aus (1.2) gerade die Gleichungen des Velocity–Verlet–Algorithmus für die zeitliche Entwicklung der Orte und durch Addition von (1.2) und (1.3) diejenigen für die Geschwindigkeiten:

$$\vec{r}_{i}(t+\delta t) = \vec{r}_{i}(t) + \vec{v}_{i}(t)\delta t + \vec{F}_{i}(t)\frac{\delta t^{2}}{2m_{i}}$$

$$\vec{v}_{i}(t+\delta t) = \vec{v}_{i}(t) + \frac{\delta t}{2m_{i}}\left[\vec{F}_{i}(t) + \vec{F}_{i}(t+\delta t)\right] .$$
(1.4)

Der Algorithmus berechnet demnach die Positionen und Geschwindigkeiten der Teilchen mit einem Diskretisierungsfehler von der Ordnung δt^4 . Während beim Standard-Verlet-Algorithmus die Positionen zur Zeit t und $t - \delta t$ verwendet werden, um die neuen Positionen $\vec{r_i}(t + \delta t)$ zu berechnen, benutzt der Velocity-Verlet-Algorithmus hierfür Positionen und Geschwindigkeiten zur gleichen Zeit t. (Wobei sich die Geschwindigkeiten erst nach Berechnung der Kräfte aus den Positionen ergeben.) Die beiden Algorithmen sind äquivalent (siehe hierzu z.B. [45]).

Der Velocity–Verlet–Algorithmus ist numerisch recht stabil und hat sehr gute Energieerhaltungseigenschaften; er erfüllt alle oben gestellten Anforderungen:

Da die Koordinaten zu vergangenem und zukünftigem Zeitpunkt symmetrisch eingehen, ist der Algorithmus zeitumkehrinvariant. Anhand der Jakobideterminanten zur Transformation der alten in die neuen Phasenraumkoordinaten lässt sich die Erhaltung des Phasenraumvolumens nachweisen; elegant folgt dies aus dem Verfahren von Tuckerman *et al.* [46], mit dem zeitumkehrinvariante und gebietserhaltende Algorithmen aus der Liouville–Formulierung der klassischen Mechanik abgeleitet werden können. (Eine ausführliche Darstellung findet sich in [45] und [46].)

1.4 Das BKS–Potenzial

Wie realistisch mit einer MD–Simulation ein atomares System simuliert wird, hängt entscheidend vom verwendeten mikroskopischen Modell ab: Die Güte der Simulation wird davon bestimmt, inwieweit das gewählte Modellpotenzial in der Lage ist, die Wechselwirkungen zwischen den Atomen realistisch wiederzugeben.

Quantenmechanische Zugänge, wie etwa die Car-Parrinello-Methode [47], sind für die hier betrachteten Systemgrößen und Zielsetzungen allerdings ungeeignet: Die Kraftberechnungen sind dort sehr aufwendig, so dass es derzeit numerisch nur möglich ist, Systeme bestehend aus etwa 100 Teilchen auf einer ps-Skala zu simulieren. Um Finite–Size–Effekte in der Dynamik möglichst klein zu halten, war es aber, wie bereits erwähnt, hier notwendig, von größeren Teilchenzahlen auszugehen (Größenordnung 10³, vgl. auch [48]). Um annähernd experimentelle Bedingungen zu realisieren, sollte man außerdem die Dynamik auf der Zeitskala von einigen Nanosekunden untersuchen. Ausgangspunkt sowohl für die Natriumsilikat-, als auch die Aluminiumsilikat-Systeme bildet ein empirisches Potenzial, das sich bereits in früheren MD-Simulationen von reinem SiO₂ und silikatischen Mischgläsern bewährt hat (vgl. [49, 31, 50, 32, 51, 52, 53, 54, 55, 56, 57, 58, 59]) — das sog. "BKS–Potenzial"¹, das Kramer 1991 für Zeolithe erweitert hat [33]. Es wird hierbei angenommen, dass sich Drei- und Mehrkörperwechselwirkungen effektiv über geeignet konstruierte Paarwechselwirkungen berücksichtigen lassen. (Bei einkomponentigen Systemen, wie z.B. bei reinem Silizium, wäre dies natürlich nicht möglich. Bei mehrkomponentigen Systemen, wie sie Gegenstand dieser Arbeit sind, können hingegen Mehrkörperwechselwirkungen durch verschiedene Paarwechselwirkungen zwischen verschiedenen Teilchensorten effektiv berücksichtigt werden.) Die Gesamtpotenzialfunktion V ist demnach eine Summe reiner Paarpotenziale Φ : N7 1

$$V(\{\vec{r}_i\}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \Phi_{ij}(r_{ij}) \quad ; \quad r_{ij} := |\vec{r}_i - \vec{r}_j|, \qquad (1.5)$$

mit der Gesamtteilchenzahl N und den Teilchenpositionen $\vec{r_i}$, i = 1, ..., N. Φ_{ij} setzt sich aus einem langreichweitigen Coulombterm und einem kurzreichweitigen Buckingham–Anteil zusammen:

$$\Phi_{\alpha\beta}(r) = \frac{q_{\alpha}q_{\beta}e^2}{r} + A_{\alpha\beta}e^{-B_{\alpha\beta}r} - \frac{C_{\alpha\beta}}{r^6}.$$
(1.6)

Hierbei ist r der Abstand zwischen einem Atom der Sorte α und einem Atom der Sorte β , wobei $\alpha, \beta \in {\text{Si, Na, Al, O}}$. Der Coulombterm berücksichtigt die Wechselwirkung der Ionen mittels effektiver Partialladungen: e bezeichnet die Elementarladung, $q_{\text{O}} = -1.2$ und $q_{\text{Si}} = -2q_{\text{O}}$. Für Natrium wird die reale Ionenladung angenommen, also $q_{\text{Na}} = 1.0$; für Aluminium ist $q_{\text{Al}} = 1.9$. Der Wert entspricht dem zweiten Parametersatz in Ref. [33].

¹nach van Beest, Kramer und van Santen [41]

Der aus einem abfallenden Exponentialterm und einem van der Waals–Term bestehende Buckingham–Anteil trägt dem kovalenten Charakter der Si–O–, Na–O–, Al–O– und O–O–Bindung Rechnung. Die Parameter $\{A_{\alpha\beta}, B_{\alpha\beta}, C_{\alpha\beta} \mid \alpha, \beta = 1, ..., N\}$ sowie die effektiven Ladungen für Silizium, Sauerstoff und Aluminium folgen aus quantenmechanischen *ab initio*–Rechnungen. Die genaue Vorgehensweise zur Bestimmung der Parameter wird für reines SiO₂ in [41] beschrieben; die Parameter wurden an einem kristallinem SiO₂–Polymorph, dem α –Quarz, mittels Hartree–Fock–Rechnungen optimiert.

In dieser Arbeit wurden die in [33] angegebenen Parameter übernommen, und zwar der erste dort angegebene Parametersatz für die Natriumsilikat–Systeme und der zweite für Aluminiumsilikat; sie sind in Tabelle 1.1 zusammengefasst.

α – β	$A_{\alpha\beta}\left[\mathrm{eV}\right]$	$B_{\alpha\beta} [\text{\AA}^{-1}]$	$C_{lphaeta} \left[\mathrm{eV \AA}^6 ight]$
Si-O	18003.7572	4.87318	133.5381
Na-O	3542.2072	4.13455	0
Al-O	8566.5434	4.66222	73.0913
0-0	1388.773	2.76	175.00

Tabelle 1.1: Parameter des Buckingham-Potenzials nach Kramer et al. [33].

Es ist zu beachten, dass die bei den untersuchten Systemen vorkommenden Si-Si-, Si-Na-, Na-Na-, Si-Al-, und Al-Al-Wechselwirkungen als reine Coulomb-Wechselwirkungen angenommen werden, so dass die entsprechenden Parameter des Buckingham-Potenzials null sind.

Da nur Paarwechselwirkungen eingehen, hat das BKS–Potenzial den Vorteil, dass sich der numerische Aufwand im Vergleich zur zusätzlichen Betrachtung von Drei– und/oder Mehrkörperpotenzialen in Grenzen hält. Insbesondere die Anpassung der Parameter an den α –Quarz lässt eine gute Wiedergabe der Energieminima für die tetraedrische SiO₂–Netzwerkstruktur erwarten: Simulationen amorpher reiner SiO₂– Systeme [49, 43, 60, 59] zeigen in der Tat, dass das Potenzial in der Lage ist, sehr realistische Ergebnisse hinsichtlich Struktur und Dynamik zu liefern. Dies bestätigen auch neueste Vergleiche von klassischen und *ab initio*–Simulationen silikatischer Gläser (siehe z.B. [61, 62, 63]). Vergleichende Simulationen mit dem BKS–Potenzial und der Car–Parrinello–Methode zeigen, dass auch SiO₂–Oberflächen qualitativ gut durch das BKS–Potenzial beschrieben werden.

Abbildung 1.2: Potenziale nach Kramer *et al.* [33] für die Si–Si–, Si–O–, und O–O– Wechselwirkungen als Funktion des Atomabstandes r. Eingezeichnet sind auch die modifizierten Wechselwirkungspotenziale, die in dieser Arbeit verwendet wurden; sie gewährleisten insbesondere die Ladungsneutralität für die hier untersuchten Systeme.

In der hier angegebenen Form (1.6) hat das BKS–Potenzial allerdings auch einige für die betrachteten Silikatsysteme unbefriedigende Eigenschaften:

- Mit den von Kramer *et al.* vorgeschlagenen Ladungen q_{Na} = 1.0 für Natrium und q_{Al} = 1.9 für Aluminium ist sowohl für die hier betrachteten Zusammensetzungen der Natriumsilikat– und Aluminiumsilikat–Systeme Ladungsneutralität nicht erfüllt. Aus diesem Grund wurde zu den Potenzialen Φ ein zusätzlicher Potenzialterm Φ_{Na} bzw. Φ_{Al} hinzuaddiert, der die Einhaltung der Ladungsneutralität gewährleistet.
- Abbildung 1.2 zeigt die Potenziale nach Kramer *et al.* für die Si–Si–, Si–O– und O–O–Wechselwirkungen als Funktion des Atomabstandes *r*. Man sieht, dass das Si–O–Potenzial für Abstände *r* < 1.1Å attraktiv wird, da hier der van der Waals–Term stark dominiert. Dieselbe Eigenschaft zeigt auch das Potenzial der Al–O–Wechselwirkung. Dieses unphysikalische Verhalten wurde beseitigt, indem die Potenzialfunktionen in diesem Bereich durch abstoßende Polynomterme ersetzt wurden (siehe Abb. 1.2.).

Die so erhaltenen Potenzialverläufe, einschließlich der Korrektur zur Gewährleistung der Ladungsneutralität sind in Abb. 1.2 den ursprünglichen Kurven für die Silizium-

und Sauerstoff–Wechselwirkungen gegenübergestellt. Auf das Problem der Ladungsneutralität bei Wechselwirkungen mit Natrium und Aluminium, die eingeführten Modifikationen und die exakte mathematische Beschreibung der letztendlich in den Simulationen verwendeten Potenziale wird ausführlich in Kapitel 1.6 eingegangen. Zuvor ist es allerdings notwendig, den Coulombanteil der Gesamtpotenzialfunktion genauer zu diskutieren: Die Behandlung dieses langreichweitigen Terms im Rahmen einer Simulation mit periodischen Randbedingungen stellt ein nicht triviales Problem dar.

1.5 Ewald–Summation

Trotz seiner einfachen Form ist der Coulombbeitrag zur Potenzialenergie (siehe Gl. (1.5) + (1.6)) aufgrund seiner langreichweitigen Natur in einer Simulation nicht einfach zu behandeln. Setzt man periodische Randbedingungen und eine kubische Simulationsbox mit Kantenlänge L voraus, so wechselwirkt jedes Teilchen einer gegebenen Konfiguration $\{\vec{r}_i\}_{i=1,...,N}$ mit allen anderen Teilchen innerhalb dieser Urbildbox als auch mit sämtlichen periodischen Bildern der Teilchen mit den Positionen $\{\vec{r}_i + \vec{n}L \mid \vec{n} \in \mathbb{Z}^3, \ \vec{n} \neq 0\}_{i=1,...,N}$. Der Coulombanteil der Potenzialfunktion nimmt daher folgende Form an (Gaußsche Einheiten):

$$V_{\rm C}(\{\vec{r}_i\}) = \frac{1}{2} \sum_{\vec{n} \in \mathbf{Z}^3} \sum_{\substack{i,j=1\\ i \neq j \text{ für } \vec{n} = 0}}^N \frac{q_i q_j e^2}{|\vec{r}_{ij} + \vec{n}L|}.$$
 (1.7)

Die numerische Berechnung von Ausdruck (1.7) ist als klassisches Madelung–Problem bekannt: Die Gittersumme des Coulombpotenzials konvergiert nur langsam und ist vor allem nur bedingt konvergent, d.h. das Ergebnis hängt von der Summationsreihenfolge ab.

Für die praktische Berechnung ist zudem die Einführung eines sphärischen Cutoffs, wie wir ihn beim kurzreichweitigen Buckingham–Potenzial verwenden werden, ungeeignet. Das System innerhalb der Cutoff–Kugel ist praktisch nie neutral (siehe z.B. [64, 65]). Dieses Problem wird in der Methode von Wolf *et al.* [66] gelöst. Ladungsneutralität wird dort unabhängig vom Abschneideradius des 1/r–Potenzial erreicht. Es wird argumentiert, dass jede Nettoladung in der lokalen, sphärischen Umgebung der Ionen aus dem Aufbrechen der Moleküle nahe der Oberfläche der Cutoff–Kugel resultiert. Die Nettoladung wird als auf der Oberfläche sitzend angenommen und kann als solche durch einen einfachen Ausdruck neutralisiert werden.

Obwohl einige wenige Tests der "Wolf–Methode" vorliegen (siehe z.B. [67]), ist nicht klar, welchen Fehler man bei dieser Methode macht. Wir verwenden daher hier die *Methode der Ewaldsummen*, die 1921 von Ewald [42] vorgeschlagen wurde. Sie gilt heute als Standardverfahren, um das Problem der bedingten Konvergenz im Falle periodischer Systeme (oder wie hier bei Annahme periodischer Randbedingungen) zu lösen:

Die nur langsam und bedingt konvergente Summe in 1/r wird hierbei in zwei schnell konvergierende Reihen zerlegt. Man erhält zum einen eine Summe eines kurzreichweitigen Potenzials im Ortsraum, die problemlos abgeschnitten werden kann, zum anderen eine Summe über reziproke Gittervektoren.

Die entscheidende Idee der Ewaldmethode ist, eine Menge von Punktladungen als eine Menge abgeschirmter Ladungen abzüglich einer stetigen periodisch variierenden Hintergrundladungsverteilung anzusehen.

Gemäß (1.7) lässt sich die Ladungsdichte mathematisch als eine Summe von δ -Funktionen auffassen, wobei jeder Punktladungsbeitrag zur Potenzialfunktion mit 1/r abfällt. Addiert man aber zu jeder Punktladung eine gaußisch verteilte Ladungswolke mit entgegengesetztem Vorzeichen hinzu, so lässt sich der entsprechende Potenzialbeitrag direkt berechnen, da das Potenzial dann zu einer schnell abfallenden Funktion in rwird. Allerdings muss nun das Potenzial bzgl. der künstlich eingeführten Abschirmladungen auch wieder korrigiert werden. Mathematisch entspricht dieser Überlegung die Ersetzung

$$\frac{1}{r} = \frac{1}{r} - \frac{2}{\sqrt{\pi}} \int_0^\alpha d\rho \exp(-r^2 \rho^2) + \frac{2}{\sqrt{\pi}} \int_0^\alpha d\rho \exp(-r^2 \rho^2)$$
(1.8)

$$= \frac{\operatorname{erfc}(\alpha r)}{r} + \frac{2}{\sqrt{\pi}} \int_0^\alpha \mathrm{d}\rho \exp(-r^2 \rho^2), \qquad (1.9)$$

für ein Punktteilchen mit Ladung 1. erfc bezeichnet die komplementäre Fehlerfunktion, erfc $(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty d\rho \ e^{-\rho^2}$. Der Parameter α ist frei wählbar. Mit $r := |\vec{r}_{ij} + \vec{n}L|$ folgt für den Coulombbeitrag zur Gesamtenergie:

$$V_{\rm C} = S_1 + S_2 \, \min_{N}$$
 (1.10)

$$S_{1} := \frac{1}{2} \sum_{\vec{n} \in \mathbf{Z}^{3}} \sum_{\substack{i,j=1\\ i \neq j \text{ for } \vec{n} = 0}}^{N} \frac{q_{i}q_{j}e^{2}}{|\vec{r}_{ij} + \vec{n}L|} \operatorname{erfc}(\alpha |\vec{r}_{ij} + \vec{n}L|)$$
(1.11)

$$S_2 := \frac{1}{2} \sum_{\vec{n} \in \mathbf{Z}^3} \sum_{\substack{i,j=1\\ i \neq j \text{ für } \vec{n} = 0}}^N \frac{2q_i q_j e^2}{\sqrt{\pi}} \int_0^\alpha \mathrm{d}\rho \, \exp(-|\vec{r}_{ij} + \vec{n}L|^2 \rho^2). \quad (1.12)$$

Die Summe S_1 ist bereits schnell konvergent.

Addiert man zu S_2 die Terme zu i = j für $\vec{n} = 0$ hinzu, so stellt die zugehörige kompensierende Ladungsverteilung eine stetig variierende periodische Funktion dar, die sich über eine schnell konvergierende Fourierreihe berechnen lässt. Da die Gittersumme einer Funktion F gemäß der Poissonschen Summationsformel (Θ -Transformation) gleich der Gittersumme über derem Fouriertransformierte \hat{F} ist, $\sum_{\vec{n} \in \mathbf{Z}^3} F(\vec{n}) =$

 $\sum_{\vec{m}\in\mathbb{Z}^3} \hat{F}(\vec{m})$, ergibt sich somit für S_2 :

$$S_{2} = \frac{1}{2} \sum_{i,j=1}^{N} \frac{2q_{i}q_{j}e^{2}}{\sqrt{\pi}} \int_{0}^{\alpha} d\rho \sum_{\vec{m} \in \mathbf{Z}^{3} \setminus \vec{m} \equiv 0} \int d\vec{n} \exp(-|\vec{r}_{ij} + \vec{n}L|^{2} \rho^{2}) \exp(-2\pi i \, \vec{n} \cdot \vec{m}) - S_{2}^{s} .$$
(1.13)

Lösung beider Integrale führt schließlich auf [68]:

$$S_{2} = \frac{1}{2\pi L} \sum_{\vec{m} \in \mathbf{Z}^{3} \setminus \vec{m} \equiv 0} \frac{\exp\left(-\left(\frac{\pi m}{\alpha L}\right)^{2}\right)}{m^{2}} \sum_{i,j=1}^{N} q_{i}q_{j}e^{2} \exp\left(i\frac{2\pi}{L}\vec{r}_{ij} \cdot \vec{m}\right) - S_{2}^{s} \quad (1.14)$$

Der Selbstanteil S_2^s beinhaltet die Terme zu i = j für $\vec{n} = 0$, die zu S_2 hinzuaddiert wurden, um die Poissonsche Summationsformel anwenden zu können.

Der Ausschluss des Summanden für $\vec{m} \equiv 0$ wird oft stillschweigend angenommen, ist aber keineswegs trivial. Er ist direkte Folge der nur bedingten Konvergenz der Ewald-Summe: Das Potenzial eines unendlichen periodischen Systems geladener Teilchen hängt von der Form der Randbedingungen im Unendlichen ab, d.h. vom Medium, in welchses das System eingebettet ist. Im Falle einer endlichen Dielektrizitätskonstanten dieses umgebenden Mediums kommt es zur Ausbildung einer Oberflächenladung an den Grenzen des simulierten Systems, also im "Unendlichen", die zu einem depolarisierenden Feld und damit einem zusätzlichen Potenzialterm führt. Nur wenn, wie hier angenommen wird, sich das simulierte periodische System in einem Medium mit unendlicher Dielektrizitätskonstanten, also in einem Leiter ("leitende Randbedingungen"), befindet, verschwindet dieses Feld und der Term für $\vec{m} \equiv 0$ in Gl. (1.13) kann vernachlässigt werden (vgl. [45]).

Der Selbstanteil S_2^s lässt sich über den Limes $\epsilon_i := r_{ij} \longrightarrow 0$ berechnen:

$$S_{2}^{s} = \frac{1}{2} \sum_{i=1}^{N} \frac{2q_{i}^{2}e^{2}}{\sqrt{\pi}} \lim_{\epsilon_{i} \to 0} \int_{0}^{\alpha} d\rho \, \exp(-\epsilon_{i}^{2}\rho^{2})$$
(1.15)

$$= \frac{1}{2} \sum_{i=1}^{N} q_i^2 e^2 \lim_{\epsilon_i \to 0} \frac{1 - \operatorname{erfc}(\alpha \epsilon_i)}{\epsilon_i}$$
(1.16)

$$\simeq \quad \frac{\alpha}{\sqrt{\pi}} \sum_{i=1}^{N} q_i^2 e^2 \,, \tag{1.17}$$

da $\operatorname{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}}x + \mathcal{O}(x^3)$. Für die numerische Berechnung ist es notwendig, die Reihen S_1 und S_2 abzuschneiden. Die komplementäre Fehlerfunktion wird hierbei über die Beziehung

$$\operatorname{erfc}(x) = tp(x) \exp(-x^2) + \epsilon(x) , \quad |\epsilon(x)| \le 1.5 \cdot 10^{-7}$$
 (1.18)

bestimmt. tp(x) ist ein Polynom fünften Grades in x; die Koeffizienten finden sich in [69].

Die Summe S_1 konvergiert umso schneller, je größer der Parameter α gewählt wird. α legt daher den Cutoffradius r_c^{ew} fest, bei dem S_1 abgeschnitten werden kann. Gemäß der Minimum-Image-Konvention (vgl. Kap. 1.2) soll hier r_c^{ew} kleiner als die halbe Boxlänge sein; ein Teilchen der Urbildbox wechselwirkt also genau einmal mit jedem anderen, entweder mit dem Teilchen in der Urbildbox selbst oder mit dessen nächstgelegenem Bild.

Während im Ortsraum umso weniger aufsummiert werden muss, je größer α ist, müssen in S_2 mehr Gittervektoren \vec{m} mit $|\vec{m}| \leq m_c$ berücksichtigt werden, um eine entsprechende Genauigkeit zu erreichen. Ziel ist es daher, die Parameter α und m_c so zu optimieren, dass bei bestmöglicher Genauigkeit bei der Berechnung der Ewaldsumme der Rechenaufwand noch möglichst klein bleibt. Zu vorgegebenen α und m_c ergibt sich schließlich für die numerische Berechnung des Coulombpotenzials:

$$V_{\rm C} = \sum_{i} \sum_{\substack{j>i\\r_{ij} < r_{\rm C}^{\rm ew}}} \frac{q_i q_j e^2}{r_{ij}} \operatorname{erfc}(\alpha r_{ij}) - \frac{\alpha}{\sqrt{\pi}} \sum_{j=1}^{N} q_j^2 e^2 + \frac{1}{2\pi L} \sum_{\substack{\vec{m} \in \mathbf{Z}^3\\0 < m \le m_c}} \frac{\exp\left(-\left(\frac{\pi m}{\alpha L}\right)^2\right)}{m^2} \left(\sum_{j=1}^{N} q_j e \exp\left(i\frac{2\pi}{L}\vec{r_j}\cdot\vec{m}\right)\right)^2 .$$
(1.19)

Der Gradient des Potenzials liefert schließlich die Coulombkraft $\vec{F}_{c\,i}$ auf das Teilchen i:

$$\vec{F}_{C\,i} = -\frac{\partial V_C}{\partial \vec{r}_i}$$

$$= \sum_{\substack{j=1\\0 < r_{ij} < r_c^{ew}}}^N q_i q_j e^2 \left\{ \frac{2\alpha}{\sqrt{\pi}} \exp\left(-(\alpha r_{ij})^2\right) + \frac{\operatorname{erfc}(\alpha r_{ij})}{r_{ij}} \right\} \frac{\vec{r}_{ij}}{r_{ij}^2}$$

$$- \frac{1}{\pi L} \sum_{\substack{\vec{m} \in \mathbf{Z}^3\\0 < m \le m_c}} q_i e \, \vec{m} \frac{\exp\left(-\left(\frac{\pi m}{\alpha L}\right)^2\right)}{m^2} \times$$

$$\times \operatorname{Im}\left(\exp\left(-i\frac{2\pi}{L} \, \vec{r}_i \cdot \vec{m}\right) \sum_j q_j e \exp\left(i\frac{2\pi}{L} \, \vec{r}_j \cdot \vec{m}\right) \right).$$
(1.20)

Da $\operatorname{erfc}(z)/z \xrightarrow[z \to \infty]{} \exp(-z^2)/z^2$ gilt, folgt aus (1.19), dass sich der Fehler, den man beim Abschneiden der Ortsraumsummen macht, wie $\exp(-s^2)/s^2$ mit $s = \alpha r_c^{ew}$ verhält. Im reziproken Raum ist der entsprechende Cutoff–Fehler durch $\exp(-\hat{s}^2)/\hat{s}^2$ mit $\hat{s} = \pi m_c/\alpha L$ gegeben. Man erhält also die Forderungen

$$r_{ij} < r_c^{ew} = s/\alpha \text{ und } m < m_c = \hat{s}\alpha L/\pi$$
 (1.21)

Bewährt hat sich auch hinsichtlich des Rechenaufwands die Wahl $s = \hat{s} \approx 3$ (entsprechend einem Cutoff–Fehler von ~ $1.4 \cdot 10^{-5}$), mit der sich dann zu gegebenem α die entsprechenden Werte für r_c^{ew} und m_c bestimmen lassen. Nimmt man zur Vereinfachung eine homogene Verteilung der Teilchen an, dann skaliert die Rechenzeit zur Bestimmung des Realteils der Ewaldsummen von Kraft und Potenzial mit N^2 ; die Zeit zur Berechnung der Imaginärteile ist proportional zu N. Die Rechenzeit kann durch geeignete Wahl von α so minimiert werden, dass die Berechnung von (1.19) und (1.20) effektiv mit $N^{3/2}$ skaliert [45].

Alternativ kann man das Potenzial $V_{\rm C}$ als Funktion von α für verschiedene Werte m_c auftragen: Der Verlauf von $V_{\rm C}(\alpha)$ zeigt dann ein Plateau, das den Potenzialwert für $m_c \longrightarrow \infty$ gut approximiert. Mit wachsendem α erfolgt ein Abfall vom Plateauwert, und zwar umso schneller, je kleiner m_c ist. Je größer also α gewählt wird, d.h. je weniger gemäß Gl. (1.9) im Ortsraum aufsummiert werden muss, umso größer ist m_c zu wählen, also umso mehr Terme müssen in der Summe im reziproken Raum mitgenommen werden, um den Plateauwert zu rekonstruieren. Man wird dann die Parameter α und m_c so wählen, dass bei minimaler Rechenzeit der Potenzialwert zu $m_c \longrightarrow \infty$ noch möglichst gut approximiert wird.

Zur weiteren Optimierung des Algorithmus lässt sich bei der Berechnung von Potenzial und Kraft die Summe über die reziproken Gittervektoren \vec{m} auf die Hälfte reduzieren:

$$\sum_{\vec{m}\in\mathbf{Z}^3} = c \cdot \sum_{m_x=0}^{m_{\max}} \sum_{\substack{m_y=-m_{\max}\\m\leq m_c=\sqrt{m_{\max}^2+2}}}^{m_{\max}} \sum_{m_z=-m_{\max}}^{m_{\max}} \quad \text{für } c = \begin{cases} 1 & m_x=0\\ 2 & \text{sonst} \end{cases} .$$
(1.22)

Die Bedingung $m \leq m_c = \sqrt{m_{\max}^2 + 2}$ garantiert, dass nicht nur Gittervektoren innerhalb einer Cutoff-Kugel berücksichtigt werden, sondern zusätzlich auch diejenigen Vektoren die auf den "Raumdiagonalen" in \mathbb{Z}^3 liegen.

Ferner wird der konfigurationsunabhängige Teil der reziproken Gittersumme in Potenzial und Kraft $\left[\exp\left(-\left(\frac{\pi m}{\alpha L}\right)^2\right)\right]m^{-2}$ zu Beginn jedes Simulationslaufs tabelliert.

1.6 Mikroskopisches Modell

Wie bereits in Kapitel 1.4 erwähnt, weist das Potenzial von Kramer *et al.* einige Unzulänglichkeiten auf, die es nicht ermöglichen, die dort vorgestellte Form direkt als mikroskopisches Modell für die hier betrachteten Natrium– bzw. Aluminiumsilikat– Zusammensetzungen zu verwenden. Im Folgenden soll daher schrittweise auf die notwendigen Modifikationen eingegangen werden, um die für die Simulationen verwendete Potenzialform systematisch zu entwickeln.

Ausgangspunkt bildet die Gesamtpotenzialfunktion, die sich nach Kap. 1.4 aus einem Coulombanteil $V_{\rm C}$ und dem Buckingham–Potenzial $V_{\rm short}$ zusammensetzt:

$$V(\{\vec{r}_i\}) = V_{\rm C}(\{\vec{r}_i\}) + V_{\rm short}(\{\vec{r}_i\}) \quad , \quad r_{ij} = |\vec{r}_i - \vec{r}_j| \,, \tag{1.23}$$

mit den Teilchenpositionen $\vec{r_i}, i = 1, \ldots, N$.

1. Für die numerische Rechnung wurden die Buckingham–Anteile bei $r_c := 5.5$ Å abgeschnitten und nach Null verschoben, um Stetigkeit zu gewährleisten. Diese Modifikation wurde bereits bei Vollmayr *et al.* [60, 59] durchgeführt und hat sich auch bei späteren Simulationen [30, 70] bewährt. Nach (1.5)+(1.6) ist

$$V_{\rm short}(\{\vec{r}_i\}) = \sum_{i=1}^{N} \sum_{j>i}^{N} \Phi_{\rm short}(r_{ij}) , \qquad (1.24)$$

so dass dann für die hiervon betroffenen Wechselwirkungen mit Sauerstoff gilt:

$$\Phi_{\text{short}}^{\text{X-O}}(r_{ij}) := \begin{cases} \Phi_{\text{short}}^{\text{X-O}}(r_{ij}) - \Phi_{\text{short}}^{\text{X-O}}(r_c) &, r \leq r_c \\ 0 &, \text{ sonst} \end{cases}$$
(1.25)

wobei $X \in {Si, Al, O}$.

2. Mit dem bereits in Kapitel 1.5 eingeführten Ewald–Cutoff r_c^{ew} und obigem Cutoff r_c stellt die Gesamtpotenzialfunktion V eine zwar stetige, aber nur stückweise stetig differenzierbare Funktion dar. Konkret äußert sich dies in Sprungstellen der Kräfte, d.h. den ersten Ableitungen des Potenzials. Um auch die Kräfte in diesen Bereichen stetig zu machen, haben wir zusätzliche Glättungsfaktoren im Potenzial eingefügt, die zwar dessen mathematische Eigenschaften verbessern, nicht aber zu einer Änderung der strukturellen und dynamischen Eigenschaften der simulierten Systeme führen.

Nach Kap. 1.5 setzt sich der Coulombanteil der Potenzialfunktion aus einem Orts- und einem k-Raumanteil, sowie einem Selbstanteil zusammen:

$$V_{\rm C}(\{\vec{r}_i\}) = V_{\rm C}^r(\{\vec{r}_i\}) + V_{\rm C}^k(\{\vec{r}_i\}) + V_{\rm self} .$$
(1.26)

Im Gegensatz zum Ortsraumanteil in (1.19) geht jetzt $V_{\rm C}^r$ über in

$$V_{\rm C}^{r}(\{\vec{r}_i\}) = \sum_{i}^{N} \sum_{\substack{j>i\\r_{ij} < r_c^{\rm ew}}}^{N} \frac{q_i q_j e^2}{r_{ij}} \operatorname{erfc}(\alpha r_{ij}) \cdot \exp\left(-\frac{d_{\rm ew}}{(r_{ij} - r_c^{\rm ew})^2}\right).$$
(1.27)

Entsprechend ist der Buckingham–Anteil nach Kap. 1.4 Gl. (1.5)+(1.6) nun gegeben durch

$$V_{\rm short}(\{\vec{r}_i\}) = \sum_{i}^{N} \sum_{j>i}^{N} \Phi_{\rm BKS}(r_{ij}) \cdot \exp\left(-\frac{d}{(r_{ij} - r_c)^2}\right).$$
 (1.28)

Die neu eingeführten Exponentialterme in Gl. (1.27) und (1.28) gewährleisten, dass die Potenzialfunktion in r_c^{ew} bzw. r_c jeweils beliebig oft stetig differenzierbar ist, so dass nun speziell auch die Kräfte in diesen Stellen stetig sind. Mit dund d_{ew} erhält man zusätzliche freie Parameter, die zusammen mit entsprechenden Parametern zur Na– und Al–Ladung so optimiert werden können, dass sich beispielsweise der experimentelle Druck einstellen lässt (s.u.).

Insbesondere die Unstetigkeitsstelle des Potenzials in $r_c^{\rm ew}$ erwies sich als sehr empfindlich beim Test des verwendeten (NVE)–Algorithmus auf Erhaltung der Gesamtenergie $E = E_{\rm kin} + E_{\rm pot}$. Per Konstruktion ist der verwendete Velocity– Verlet–Algorithmus von der Ordnung $(\delta t)^2$. Variiert man also die Schrittweite, so sollte bei einer Verdopplung von δt die Amplitude $\delta E = E - \langle E(t) \rangle$ proportional mit $(\delta t)^2$ anwachsen.

So lässt sich überprüfen, ob der Algorithmus richtig programmiert wurde. Abbildung 1.3 zeigt einen solchen Energietest für das betrachtete Aluminium–System bei der Temperatur T = 2200 K. Man sieht, dass die gestellte Forderung sehr gut erfüllt wird. Systematische Variation der Parameter d und d_{ew} führte auf $d = d_{ew} = 0.05$ Å² als günstigen Wert.

3. In Kapitel 1.4 wurde bereits darauf hingewiesen, dass das dort angegebene Potenzial mit den von Kramer *et al.* vorgeschlagenen Ladungen q_{Na} = 1.0 und q_{Al} = 1.9 für Aluminium die unphysikalische Eigenschaft hat, für die hier untersuchten Systemzusammensetzungen Ladungsneutralität nicht zu gewährleisten. Die Potenzialfunktion Φ wurde daher durch einen kurzreichweitigen Term Φ_{Na} bzw. Φ_{Al} ergänzt. Im Falle von Natrium wird hierzu, wie bereits in Ref. [30], eine "ortsabhängige" Na–Ladung² eingeführt. q_{Na} = 1.0 wird dabei ersetzt durch:

$$q_{\rm Na}(r) = \begin{cases} \tilde{q}_{\rm Na} \left(1 + \ln \left[C_{\rm Na}(r_2 - r)^2 + 1 \right] \right) &, \quad r < r_2 \\ \tilde{q}_{\rm Na} &, \quad r \ge r_2 \end{cases}$$
(1.29)

²Der Ausdruck "ortsabhängige Na–Ladung" sollte nicht zu wörtlich genommen werden. Entscheidend ist hier die Einführung eines zusätzlichen kurzreichweitigen Potenzialterms Φ_{Na} , mit dem $q_{\text{Na}} = 0.6$ gewählt werden kann, und zwar so, dass für $r < r_2$ das Potenzial mit dem Originalpotenzial ungefähr übereinstimmt.

Abbildung 1.3: Zeitlicher Verlauf der Energie für das System $(Al_2O_3)(2 \cdot SiO_2)$ bei 2200 K und verschiedenen Schrittweiten δt .

Mit $\tilde{q}_{\mathrm{Na}} = 0.6$ ist dann für $r \ge r_2$ bei den betrachten Natriumsilikat–Zusammensetzungen (siehe Kap. 2) per Konstruktion Ladungsneutralität gewährleistet; q(r) ist zudem stetig für $r = r_2$. Die Konstanten C_{Na} und r_2 werden so angepasst, dass für Abstände $r < r_2$ die ursprüngliche Potenzialform nach Kramer *et al.* möglichst gut wiedergegeben wird und für große Abstände die neue Potenzialfunktion gegen den Wert der alten Potenzialfunktion mit der Ladung $\tilde{q}_{\mathrm{Na}} = 0.6$ strebt. Hierzu wurde C_{Na} aus der Bedingung

$$q_{\rm Na}(r=r_1) \stackrel{!}{=} 1.0 \tag{1.30}$$

für $1.7\text{\AA} = r_1 < r_{\min} = 1.87\text{\AA}$ bestimmt, also einem Wert unterhalb des lokalen Minimums der Potenzialfunktion. Man erhält:

$$C_{\rm Na} = \frac{1}{(r_2 - r_1)^2} \left(\exp\left[1/\tilde{q}_{\rm Na} - 1\right] - 1 \right) \ . \tag{1.31}$$

 C_{Na} ist somit über (1.31) eindeutig festgelegt.

Systematische Variation von r_2 zwischen 4.5 Å und 9 Å lieferte eine wachsende Dichte mit steigendem r_2 . Für den Wert $r_2 = 4.9$ Å konnte damit die Dichte auf den experimentellen Wert eingestellt und zugleich eine gute Übereinstimmung mit dem totalen Strukturfaktor aus einer Neutronenstreumessung erreicht werden (vgl. hierzu [30, 32]). Mit (1.31) ergibt sich dann $C_{\text{Na}} = 0.0926$ Å⁻². Die Einführung dieser "ortsabhängigen Na–Ladung" ist auch anschaulich durchaus sinnvoll: Für kleine Abstände zu einem Natriumatom wird von den umgebenden Teilchen dessen volle Ladung gesehen, für größere Abstände wird diese durch die umgebenden Sauerstoffatome abgeschirmt.

Für den Spezialfall, dass der Index j nur Natriumatome, der Index i nur Silizium– oder Sauerstoffatome durchläuft (im Folgenden durch einen Strich am Summenzeichen angedeutet), nimmt dann beispielsweise das Coulombpotenzial in (1.23) folgende Form an:

$$V_{\rm C}(r_{ij}) = \sum_{\substack{i,j \\ i \leq j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} + \sum_{\substack{i,j \\ i \leq j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} \cdot \ln\left[C_{\rm Na}(r_2 - r_1)^2 + 1\right] \quad (1.32)$$

$$= V_{\rm C}^r(r_{ij}) + \sum_{\substack{i,j \\ i < j}}' \Phi_{\rm Na}(r_{ij}) .$$
 (1.33)

Die Überlegungen für Aluminium sind analog: Es wird wieder eine "ortsabhängige" Al–Ladung angenommen, wobei sich eine etwas modifizierte Konstruktion als günstig erwiesen hat, und zwar hinsichtlich der Reproduktion des ursprünglichen Kramer–Potenzials für die Al–O–Wechselwirkung bei kleinen Atomabständen und gleichzeitiger Erfüllung der Ladungsneutralität. Mit einem zu (1.29) analogen Ansatz für die Aluminiumladung war es nicht möglich, die Potenzialform nach Kramer *et al.* gut zu reproduzieren. An Stelle des quadratischen Terms im Logarithmus wurde daher ein Lorentz–Term eingeführt, mit dem vor allem das lokale Minimum des ursprünglichen Potenzials sehr gut wiedergegeben werden konnte (siehe Abb. 1.5).

$$q_{\rm Al}(r) = \begin{cases} \tilde{q}_{\rm Al} \left(1 + \ln \left[C_{\rm Al} \frac{(r_4 - r)^2}{1 + (r_4 - r)^2} + 1 \right] \right) \cdot \exp \left(-\frac{d_{\rm Al}}{(r - r_4)^2} \right) &, \quad r < r_4 \\ \tilde{q}_{\rm Al} &, \quad r \ge r_4 \\ (1.34) \end{cases}$$

Hierbei ist $\tilde{q}_{Al} = 1.8$ und C_{Al} folgt aus der Forderung

$$q_{\rm Al}(r=r_w) \stackrel{!}{=} 1.9 ,$$

mit dem Wendepunkt $r_w = 1.25 {\rm \AA}$ des Al-O–Potenzials nach Kramer. Es ist also:

$$C_{\rm Al} = \frac{1 + (r_4 - r)^2}{(r_4 - r)^2} \cdot \left(\exp\left[\frac{1}{18} \exp\left(\frac{d_{\rm Al}}{(r - r_4)^2}\right)\right] - 1 \right) .$$
(1.35)

Der ln-Term samt Lorentz-Term gewährleistet wieder per Konstruktion die Ladungsneutralität, d.h. für große Abstände wird der Wert des Kramer-Potenzials für $\tilde{q}_{A1} = 1.8$ erreicht. Der Exponentialterm garantiert hier außerdem, dass auch die Kräfte beim Wert r_4 differenzierbar sind.

Abbildung 1.4: Gegenüberstellung der Potenziale nach Kramer *et al.* [33] und der in dieser Arbeit verwendeten Potenziale für die Na–Si–, Na–Na–, und Na–O–Wechselwirkungen als Funktion des Atomabstandes r. Die modifizierten Wechselwirkungspotenziale gewährleisten insbesondere die Ladungsneutralität für die hier untersuchten Systeme. Für große r–Werte werden die Kramer–Potenziale zur Natriumladung $\tilde{q}_{Na} = 0.6$ angestrebt.

Man erhält zusätzlich einen freien Parameter d_{Al} , der die simulierte Struktur nur schwach ändert, sich aber als sehr günstig erwiesen hat: Durch systematische Variation von d_{Al} bei verschiedenen Werten für r_4 war es möglich, den Druck auf den experimentellen Wert einzustellen. Dabei wurden verschiedene d_{Al} -Werte je nach Aluminium-Wechselwirkung unterschieden. Bei 300K erhält man ungefähr Normaldruck (siehe Kap. 3.2) für $r_4 = 6$ Å und

$$d_{\rm Al} = \begin{cases} 2 & , \text{ Al-O-WW} \\ 1.47 & , \text{ Al-Al-, Al-Si-WW} \end{cases}$$
(1.36)

also $C_{Al} = 0.0653609 \text{ Å}^{-2}$ (Al–O–WW) bzw. $C_{Al} = 0.0637977 \text{ Å}^{-2}$ (Al–Al–, Al–Si–WW). Die Abbildung 1.4 und 1.5 zeigen die neuen Potenziale (durchgezogene Linien) für die Natrium– bzw. Aluminium–Wechselwirkungen. Zum Vergleich sind die ursprünglichen Kramer–Potenziale, sowie die Kramer–Potenziale für die Ladungsneutralität gewährleistenden Ladungen \tilde{q}_{Na} und \tilde{q}_{Al} eingezeichnet. Man erkennt deutlich bei Na–O und Al–O wie die ursprüngliche Potenzialform für kleine r–Werte reproduziert und die Kramer–Potenziale mit \tilde{q}_{Na} bzw. \tilde{q}_{Al} für große Atomabstände angestrebt werden.

4. Als zusätzliche Modifikation zu den Potenzialen von Kramer *et al.* ist in Abbildung 1.5 das quadratische Polynom abgebildet, das für kleine Atomabstände

Abbildung 1.5: Gegenüberstellung der Potenziale nach Kramer et al. [33] und der in dieser Arbeit verwendeten Potenziale für die Al–Si–, Al–Al–, und Al–O–Wechselwirkungen als Funktion des Atomabstandes r. Die modifizierten Wechselwirkungspotenziale gewährleisten insbesondere die Ladungsneutralität für die hier untersuchten Systeme. Für große r–Werte werden die Kramer–Potenziale zur Aluminiumladung $\tilde{q}_{Al} = 1.8$ angestrebt.

als Al–O–Potenzial angenommen wird: Es wurde wie im Falle von Si–O (siehe Abb. Kap. 1.4, Abb. 1.2) eingeführt, um das unphysikalische anziehende Verhalten dieser Potenziale zu vermeiden. Die Polynome sind stetig an das jeweilige Maximum der nach oben modifizierten Potenziale angefügt. Sie haben die folgende Form:

$$\Phi_{\rm X-O}(r) = a_{\rm X} + b_{\rm X}(r - c_{\rm X})^2 \quad \text{für } r \le r_{\rm cut} .$$
(1.37)

Für $X \in {\text{Si, Al, O}}$ sind in Tabelle 1.2 die Parameter a_X , b_X und c_X aufgelistet. Von Bedeutung sind die Potenziale Φ_{X-O} bei allen hier untersuchten hohen Temperaturen bis 2300 K.

Х-О	$a_{\rm X} [{\rm eV}]$	$b_{ m X}[{ m eV/\AA}^2]$	$c_{\rm X}$ [Å]	$r_{\rm cut}$ [Å]
Si–O	-27.316	12.5	1.1936	1.1941
Al–O	-19.9508	15.5	1.16576	1.1658
0-0	20.868	13.5	1.439	1.4385

Tabelle 1.2: Parameter f

 Generation

 stoff bei kleinen Atomabst

Aus den hier vorgestellten Potenzialen lassen sich durch Gradientenbildung die Kräfte berechnen; sie werden für die Na- bzw. Al-Wechselwirkungen in Anhang A zusammengefasst.

1.7 Details zur Simulation

1.7.1 Simulationsprozess

Mit dem in Kapitel 1.6 vorgestellten mikroskopischen Modell können Natrium–Aluminium–Silikatsysteme $(Na_2O)_x(Al_2O)_y(SiO_2)_{1-x-y}$ simuliert werden, und natürlich auch die in dieser Arbeit untersuchten Systeme $(Na_2O)(x \cdot SiO_2)$, $x \in \{2, 3, 5\}$ und Aluminiumdisilikat $(Al_2O_3)(2 \cdot SiO_2)$.³

Der eigentliche Simulationsprozess zur Erzeugung von auswertbaren Teilchenkonfigurationen besteht, wie bereits in Kap. 1.1 und 1.2 angedeutet, aus den drei Schritten Initialisierung, Äquilibrierung und Produktion:

Bei der Initialisierung werden die notwendigen Systemgrößen festgelegt. Untersucht wurden Systeme aus ca. 8000 Teilchen im Fall der Natriumsilikate und 1408 Teilchen im Fall von Aluminiumdisilikat. Auf die im einzelnen untersuchten Temperaturen, die genaue Teilchenzahl und Cutoff–Parameter nach Kap. 1.5 und 1.6 wird in den folgenden zwei Kapiteln explizit eingegangen. Die Simulationen erfolgten bei konstantem Volumen, wobei die Dichten in der Nähe des jeweiligen experimentellen Wertes eingestellt wurden (vgl. Kap. 1.5 und 1.6). Der Zeitschritt betrug für alle simulierten Systeme $\delta t = 1.6$ fs.

Zur Äquilibrierung bei konstanter Temperatur T wurden die untersuchten Systeme periodisch an ein stochastisches Wärmebad angekoppelt. Konkret wurden hierzu alle 50 Zeitschritte die Teilchengeschwindigkeiten neu aus einer Maxwell–Boltzmann– Verteilung zur Temperatur T gezogen. Die Äquilibrierungsdauer ist abhängig vom untersuchten System und der Simulationstemperatur. Sie sollte größer als die typische Relaxationszeit τ des Systems sein. Ein Kriterium hierfür ist z.B. der Verlauf der inkohärenten intermediären Streufunktionen: Sie sollten für Wellenvektoren, die charakteristisch für die strukturelle Relaxation sind, auf der Zeitskala von τ auf null abgefallen sein. In Kap. 2 und 3 wird gezeigt, dass dies für die im Rahmen dieser Arbeit neu simulierten Systeme tatsächlich der Fall ist.

Auf die Äquilibrierungsläufe folgten Produktionsläufe bei konstanter Energie, also im mikrokanonischen Ensemble. Hierbei wurden periodisch die Teilchenpositionen auf einer logarithmischen Zeitskala abgespeichert. Die Zeitintervalle der Simulationsläufe

 $^{^{3}}$ In dieser Arbeit wurden speziell die Systeme $(Na_{2}O)(5 \cdot SiO_{2})$ und Aluminiumdisilikat vollständig neu simuliert. Bei den anderen Systemen konnte größtenteils auf Konfigurationen aus [49, 43] zurückgegriffen werden.
wurden hierzu in jeweils vier gleich große Intervalle unterteilt, wobei deren linke Intervallgrenzen jeweils als Startpunkt einer zeitlich logarithmischen Abspeicherung von Konfigurationen diente (je Intervall ca. 200). So war es möglich, bei der späteren Berechnung der Korrelationsfunktionen über mehrere Anfangskonfigurationen zu mitteln. Zur Verbesserung der Statistik wurden ebenfalls bei den Natriumsilikaten und dem reinen SiO₂–System zu jeder Temperatur zwei unabhängige Läufe durchgeführt. Beim Aluminiumdisilikat waren es fünf aufgrund der kleineren Systemgröße. Auf diese Weise wurden für die Natriumsilikate Simulationsläufe für den Temperaturbereich 4000 K - 2100 K durchgeführt; bei 2100 K waren dies Produktionsläufe über 3 – 4 ns Realzeit. Für Aluminiumdisilikat konnte der Temperaturbereich 6100 K - 2300 K simuliert werden; bei 2300 K wurde hierbei bereits auf einer Skala von 6 – 7 ns Realzeit simuliert (vgl. auch Kap. 2 und 3).

Zusätzlich zu den Produktionsläufen wurden bei allen Systemen Abkühlläufe auf 0 K durchgeführt. Auf die genau hier untersuchten Temperaturen und Kühlraten wird in Kapitel 2 und 3 genauer eingegangen.

Während der Äquilibrierungs– und Produktionsläufe haben wir periodisch die Temperatur, die potentielle Energie, die Gesamtenergie und den Druck des gerade simulierten Systems abgespeichert und so seinen thermodynamischen Zustand kontrolliert. Die verwendeten Simulationseinheiten sind in Tabelle 1.3 aufgelistet.

Größe	Simulationseinheit		
Länge	Å		
Energie	eV		
Masse	$u = 1.67242 \cdot 10^{-27} \text{ kg}$		
Temperatur	$eV/k_B = 1.160378 \cdot 10^4 \text{ K}$		
Zeit	$Å\sqrt{u/eV} = 1.0217 \cdot 10^{-14} s$		
Druck	$eV/Å^3 = 160.219 GPa$		

 Tabelle 1.3: Verwendete Simulationseinheiten.

Die Atommassen von Silizium, Natrium, Aluminium und Sauerstoff findet man z.B. in [71]: $m_{Si} = 28.086 u$, $m_{Na} = 22.99 u$, $m_{Al} = 28.981539 u$, $m_{O} = 15.9994 u$.

Die in den Produktions- bzw. Abkühlläufen abgespeicherten Konfigurationen bilden die Grundlage für die Analyse der statischen und dynamischen Eigenschaften der simulierten Systeme. Die aus ihnen gemäß der statistischen Mechanik berechneten Größen und erzielten Ergebnisse werden in Kap. 2 für die Natriumsilikate und in Kap. 3 für $(Al_2O_3)(2 \cdot SiO_2)$ vorgestellt.

1.7.2 Parallelisierung

Da bei den Natriumsilikat–Sytemen wie auch schon beim reinen System (vgl. [30]) sehr große Teilchenzahlen auf einer Nanosekundenskala simuliert wurden, war es notwendig, den Programmcode zu parallelisieren. Es konnte hier bereits auf einer von Jürgen Horbach parallelisierten Programmversion für Natriumsilikate aufgebaut werden, die für Natrium–Aluminium–Silikate $(Na_2O)_x(Al_2O)_y(SiO_2)_{1-x-y}$ erweitert wurde. Auch für das untersuchte Aluminiumdisilikat-System mit 1408 Teilchen war es zweckmäßig, einen Parallelrechner zu verwenden. Alle Simulationen wurden auf den Parallelrechnern Cray T3E/900 der Rechenzentren Stuttgart und Jülich durchgeführt. Der Programmcode (vgl. Anhang B) ist mittels MPI (Message Passing Interface) parallelisiert. Neben anderen Message-Passing-Systemen, wie z.B. PVM, NX oder CMMD stellt MPI heute ein auf Hochleistungsparallelrechnern weit verbreitetes Hilfsmittel zur einfachen Erzeugung gut portierbarer C- und Fortran-Programme dar. MPI besteht aus einer Ansammlung von Bibliotheksroutinen, mit deren Hilfe Parallelprozesse generiert werden und deren Kommunikation untereinander gesteuert werden kann. Die Prozessoren werden hierzu ganzzahlig von Null beginnend durchnummeriert und sind somit über einfache Abfragen im Programm ansprechbar. Jeder Prozessor erhält eine identische Kopie des Programms. Einem Prozessor, per Konvention derjenige mit der Zahl Null, kommt eine Sonderrolle zu, er ist der "Master", der zusätzlich für Ein- und Ausgabe zuständig ist.

Der hier verwendete Programmcode wurde so parallelisiert, dass die Teilchen auf die einzelnen Prozessoren aufgeteilt werden; jeder Prozessor ist dabei für eine gleich große Anzahl von Teilchen und die Berechnung von deren Wechselwirkungen zuständig. Zum Datenaustausch unter den Prozessoren verwenden wir vor allem Funktionen zur kollektiven Kommunikation, die also einen gleichzeitigen Datentransfer aller Prozessoren untereinander ermöglichen. Die Prozessorzahl ist im Programm frei wählbar. Einzelheiten zur hier durchgeführten Parallelisierung finden sich in [30]. Eine gute Einführung in die Parallelisierung unter MPI mit einer Übersicht über die zur Verfügung stehenden Bibliotheksroutinen bietet [72].

Parallelisierung ist kein Mittel um die Laufzeit eines Programms durch Verwendung immer größerer Prozessorzahlen beliebig zu verkleinern: Die Kommunikation der einzelnen Prozessoren untereinander verbraucht zusätzliche CPU–Zeit. In Abbildung 1.6 ist in Abhängigkeit der Prozessorzahl n der Faktor aufgetragen, um den ein Simulationslauf fester Schrittzahl schneller ist, wenn n statt einem Prozessor verwendet werden ("Speed Up"). Die eingezeichnete Winkelhalbierende entspräche dem Fall, dass für die Kommunikation keine zusätzliche CPU–Zeit notwendig wäre. Die eingezeichneten Wertepaare für das System (Na₂O)($5 \cdot SiO_2$) mit 8064 Teilchen und für Aluminiumdisilikat mit 1408 Teilchen zeigen, dass der Anteil der zusätzlich zur Kommunikation verbrauchten CPU–Zeit umso größer wird, je höher die Prozessorzahl und je kleiner die Teilchenzahl ist. Der Aufwand an Kommunikation wird schließlich so

Abbildung 1.6: Beschleunigungsfaktor ("Speed Up"), um den ein Simulationslauf fester Schrittzahl schneller ist, wenn *n* statt einem Prozessor verwendet werden. Die Wertepaare entsprechen den Systemen $(Na_2O)(5 \cdot SiO_2) \equiv NS5$ und $(Al_2O_3)(2 \cdot SiO_2) \equiv AS2$. Die eingezeichnete Winkelhalbierende entspräche dem Fall, dass für die Kommunikation keine zusätzliche CPU–Zeit notwendig wäre.

groß, dass es sich nicht mehr lohnt, noch größere Prozessorzahlen zu verwenden. Aus Abbildung 1.6 ergibt sich, dass es gerade noch effektiv ist, mit 32 Prozessoren im Fall des Systems mit 1408 Teilchen bzw. mit 64 Prozessoren im Fall von 8064 Teilchen zu rechnen. Mit 64 Prozessoren erhält man dann bei $(Na_2O)(5 \cdot SiO_2)$ einen Speed Up von 46.4, d.h. man verliert hier bereits 27.5% der theoretisch möglichen Beschleunigung, wenn kein Verlust durch Kommunikation eintreten würde. Für die Natriumsysteme wurden bei langen Simulationsläufen überwiegend 64, beim Aluminium–System 32 Prozessoren verwendet.

Kapitel 2

Natriumsilikat

In den letzten Jahren wurden zahlreiche MD–Computersimulationen durchgeführt, um die Struktur und Dynamik von Natriumsilikatschmelzen (und Gläsern) zu untersuchen. Ergebnisse früherer Simulationen zu Systemen wie Natriumdisilikat, $Na_2Si_2O_5$, (vgl. [73]) wurden als Anzeichen einer auftretenden Mikrophasenseparation interpretiert, d.h. es sollte zur Ausbildung von Clustern aus einigen Natriumatomen zwischen verbundenen SiO_4 –Tetraedern kommen. Im Experiment beobachtet man solche Phasenseparationen hingegen nur bei sehr tiefen Temperaturen und Natriumsilikatsystemen mit geringerer Natriumkonzentration.

Neuere MD–Simulationen von Horbach *et al.* [31, 32], die das in Kapitel 1 vorgestellte modifizierte BKS–Potenzial verwenden, liefern (auch bei Natriumdisilikat) keine Hinweise für eine Mikrophasenseparation. Das verwendete Modell ist in der Lage, eine realistische mikroskopische Beschreibung von Natriumdi– und Natriumtrisilikat (Na₂Si₃O₇) zu liefern. Strukturelle und dynamische Eigenschaften stimmen gut mit experimentellen Ergebnissen überein (s.u.). Dies lässt hoffen, dass dieses Potenzial auch bei geringerer Natriumkonzentration eine vernünftige Beschreibung des simulierten Systems liefern kann.

In diesem Kapitel betrachten wir insbesondere Natriumpentasilikat, $Na_2Si_5O_{11}$, das hier neben $Na_2Si_2O_5$ und $Na_2Si_3O_7$ das untersuchte System mit dem geringsten Natriumanteil (mit 11% gerade die Hälfte der Natriumkonzentration von Natriumdisilikat) darstellt. Abbildung 2.1 zeigt einen Ausschnitt der Simulationsbox von $Na_2Si_5O_{11}$ bei der Temperatur 2700 K.

Wir wollen versuchen, die Struktur und Dynamik von Natriumsilikatschmelzen anhand dieser drei Systeme systematisch in Abhängigkeit von der Natriumkonzentration zu untersuchen. Die statischen und dynamischen Eigenschaften der Natriumsilikate stellen wir dem reinen System, SiO₂, gegenüber, das in Ref. [49], bereits detailliert diskutiert wurde. Vor allem der Einfluss unterschiedlicher Mengen des "Netzwerkmo-

Abbildung 2.1: Ausschnitt der Simulationsbox von Natriumpentasilikat, $Na_2Si_5O_{11}$, bei der Temperatur 2700 K. Die abgebildete Kantenlänge beträgt 16.19 Å also ein Drittel der Kantenlänge der eigentlichen Simulationsbox. Gelb: Silizium, blau: Natrium, rot: Sauerstoff.

difikators" Natrium auf das tetraedrische SiO_4 -Netzwerk ist hier interessant. Bereits in Abbildung 2.1 erkennt man, dass die Alkalikationen die typische SiO_2 -Struktur aufbrechen und verändern. Es kommt zum verstärkten Auftreten lokaler Fehlordnungen. Dies lässt erwarten, dass die Systemdynamik stark beeinflusst wird, was sich insbesondere im Diffusions- und Schwingungsverhalten der einzelnen Komponenten niederschlagen sollte. Unser Augenmerk liegt hier besonders auf tiefen Temperaturen, da hier eine weitaus ausgeprägtere Struktur der Systeme zu erwarten ist.

Wir werden zunächst in Kapitel 2.1 einen Überblick über die untersuchten Systeme, die Systemgrößen und die simulierten Temperaturen geben. Anschließend fassen wir die von Horbach *et al.* für Natriumdi– und Natriumtrisilikat erzielten Egebnisse kurz zusammen. Die statischen Eigenschaften der Natriumsilikatsysteme sollen anhand der partiellen Paarkorrelationsfunktionen, der Strukturfaktoren, der Verteilung der Koordinationszahlen und der Ringlängenverteilungen untersucht werden. Wir gehen hier separat auf Tieftemperaturcharakteristika ein. Bzgl. der Dynamik untersuchen wir vor allem das diffusive Verhalten wie auch den Verlauf der Hochfrequenzspektren in Abhängigkeit von der Natriumkonzentration.

2.1 Untersuchte Systeme

Mit dem in Kapitel 1.6 vorgestellten Modell wurden, wie in Kapitel 1.7.1 beschrieben, MD–Simulationen für die Systeme $(Na_2O)(x \cdot SiO_2)$ (mit $x \in \{2, 3, 5\}$) durchgeführt. Im Folgenden kürzen wir $(Na_2O)(x \cdot SiO_2)$ mit "NSx" ab, verwenden also für die Systeme Natriumdisilikat, Natriumtrisilikat und Natriumpentasilikat die symbolischen Schreibweisen NS2, NS3 und NS5. Zum Vergleich dienten SiO₂–Konfigurationen aus [30, 49].

Es wurden verhältnismäßig große Systeme aus je ca. 8000 Teilchen simuliert, da sich in [48, 74] ergeben hat, dass die Dynamik starke Finite–Size–Effekte aufweist. (Kleinere Systemgrößen führten z.B. auf kleinere Diffusionskonstanten. Bei 3760 K ergaben sich Abweichnungen der Größenordnung 30%.) Tabelle 2.1 listet die genauen Teilchenzahlen und den Natriumanteil der Systeme auf.

System	Teilchen	Mol% Na	Tempearturbereich	Abkühläufe	$\gamma [\text{K/s}]$
NS2	8064	22	[1900 K;4000 K]	1900 K $\longrightarrow 0$ K	$1.16 \cdot 10^{12}$
NS3	8016	17	[2100 K;4000 K]	$2100 \text{ K} \longrightarrow 0 \text{ K}$	$1.16\cdot10^{12}$
NS5	8064	11	[2700 K;4000 K]	$2700 \text{ K} \longrightarrow 0 \text{ K}$	$1.16\cdot 10^{12}$
SiO_2	8164	0	[2750 K;6100 K]	$2900 \text{ K} \longrightarrow 0 \text{ K}$	$1.8\cdot10^{12}$

Tabelle 2.1: Untersuchte Systeme und Temperaturen.

Die Simulationen erfolgten bei allen Systemen bei konstantem Volumen, wobei die Länge der kubischen Simulationsbox (ca. 48 Å)jeweils so gewählt wurde, dass die Dichte konstant bei 2.37 g/cm³ lag, also nahe den experimentellen Dichte von NS2 (2.49 g/cm³), NS3 (2.43 g/cm³), NS5 (2.36 g/cm³) bzw. SiO₂ (2.2 g/cm³) [75].

Äquilibrierte Hochtemperaturkonfigurationen lagen zu NS2, NS3 und SiO₂ bereits aus [30] und [49, 31] vor. Für NS5 wurden sie im Rahmen dieser Arbeit neu erzeugt.

Abbildung 2.2 zeigt, wie beim System NS5 im untersuchten Hochtemperaturbereich die totale und potentielle Energie, E_{tot} bzw. E_{pot} , sowie der Druck p von der inversen Temperatur T^{-1} abhängen. $E_{pot}(T^{-1})$ und $E_{tot}(T^{-1})$ zeigen keinen anomalen Verlauf, wie z.B. eine Unstetigkeit, die auf einen Glasübergang hinweisen würde. Das System ist im betrachteten Temperaturbereich im Gleichgewicht, was auch durch das Verhalten der mittleren Verschiebungsquadrate bestätigt wird (vgl. Kap. 2.3.5). Der Druck fällt im betrachteten Temperaturbereich mit sinkender Temperatur. Sein Verlauf zeigt kein auffälliges Verhalten, wie etwa einen Anstieg von p mit T^{-1} , wie es bei SiO₂ der Fall ist (vgl. [30, 49]).

Zusätzlich wurden auch für alle Systeme Abkühlläufe durchgeführt, um auch Tieftemperatureigenschaften der Systeme und speziell deren Hochfrequenzdynamik zu untersuchen. Es wurde hierbei linear abgekühlt; die Kühlraten lagen alle in der Größenord-

Abbildung 2.2: Simulation des Systems NS5: Verlauf von (a) totaler und potentieller Energie pro Teilchen, E_{tot} bzw. E_{pot} , sowie (b) des Drucks als Funktion der inversen Temperatur.

nung 10^{12} K/s. Neben dem jeweils abgedeckten Hochtemperaturbereich ist in Tabelle 2.1 das Temperaturintervall der Abkühlläufe samt jeweiliger Kühlrate aufgeführt.

2.2 Bisherige Simulationen

Die von Horbach *et al.* [31, 32] durchgeführten Simulationen zu NS3 und NS2 haben gezeigt, dass das in dieser Arbeit verwendete Modell in der Lage ist, Natriumsilikatschmelzen realistisch zu beschreiben:

- Der Verlauf des totalen statischen Strukturfaktors von NS2 stimmt gut mit dem in einer Neutronenstreumessung bestimmten überein (vgl. [31]).
- Die Amplitude des sog. "First-Sharp-Diffraction-Peaks" in den (partiellen) Strukturfaktoren lässt auf eine geringer ausgeprägte SiO₄- Netzwerkstruktur in den Natriumsilikaten schließen.
- Insbesondere zeigt sich beim statischen Strukturfaktor ein "Prepeak", der der Längenskala übernächster Na-Na- und Si-Na-Nachbarn entspricht. Erst kürzlich konnten Neutronenstreuexperimente von Meyer *et al.* [76] diese Beobachtung bestätigen: Im elastischen Strukturfaktor wurde eine ausgeprägte Schulter beim entsprechenden Wellenvektor gemessen.
- Für Temperaturen unterhalb 2500 K erweist sich die Dynamik der Natriumatome um zwei Größenordnungen schneller als die der Silizium– und Sauerstoffatome.

Auf alle Punkte wird in den folgenden Kapiteln noch näher eingegangen. Zunächst wollen wir untersuchen, wie strukturelle Größen, also Paarkorrelationsfunktionen, Koordinationszahlen, lokale Fehlordnungen ("dangling bonds", fehlkoordinierte Atome) von der Natriumkonzentration abhängen und welche Rolle hierbei auch die Temperatur spielt.

2.3 Hohe Temperaturen: Struktur und diffusive Dynamik

Die Struktur von Silikatsystemen lässt sich auf unterschiedlichen Längenskalen charakterisieren:

Typisch für reine Silikatgläser ist die Ausbildung eines SiO_4 -Tetraedernetzwerks bei dem die Geometrie der Tetraeder im gesamten System im Wesentlichen konstant ist. Die Anordnung der zu einem Siliziumatom koordinierten Sauerstoffatome repräsentiert hier die *kurzreichweitige Ordnung* des Systems. Über Brückensauerstoffe sind die Tetraeder untereinander verbunden. Die Lage dieser SiO_4 -Bausteine im Raum prägt die *intermediäre Ordnung*. Die *langreichweitige Ordnung* beschreibt größere Längenskalen, etwa eine dem System auferlegte Superstruktur oder bei Kristallen deren Periodizität.

Dieser Einteilung folgend, wollen wir hier untersuchen, wie unterschiedliche Natriumkonzentrationen speziell die Struktur von Hochtemperatur–SiO₂–Schmelzen auf verschiedenen Längenskalen beeinflussen bzw. verändern. Zur Charakterisierung der lokalen Struktur stellen wir die Paarkorrelationsfunktionen und Koordinationszahlverteilungen der Systeme NSx, x = 2, 3, 5, gegenüber. Längerreichweitige strukturelle Merkmale werden anhand der Strukturfaktoren diskutiert. Mit Hilfe der Ringlängenverteilung können wir schließlich auch die Struktur auf mittleren Längenskalen beschreiben.

Am System NS5 diskutieren wir exemplarisch, wie sich strukturelle Merkmale in Abhängigkeit von der Temperatur verhalten. Die Temperaturabhängigkeit der Koordinationszahlen zeigt hier besonders deutlich, wie sich durch die zugesetzten Alkalikationen Defekte ausbreiten, also eine strukturelle Umordnung ermöglicht wird. In diesem Zusammenhang untersuchen wir auch genauer die diffusive Dynamik der einzelnen Systemkomponenten.

2.3.1 Partielle Paarkorrelationsfunktionen I

Wir wollen zunächst die *lokale Struktur* der Natriumsilikatsysteme im Vergleich zu SiO_2 untersuchen. Geeignete Größen, um zu messen, wie sich die Atome umeinander

anordnen, sind die *partiellen Paarkorrelationsfunktionen* $g_{\alpha\beta}(r)$, die wie folgt definiert sind:

$$g_{\alpha\beta}(r) = \mathcal{N}_{\alpha\beta} \left\langle \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} \frac{1}{4\pi r^2} \,\delta\left(r - |\vec{r_i} - \vec{r_j}|\right) \right\rangle \quad \alpha, \beta \in \{\text{Si}, \text{Na}, O\}$$
(2.1)

mit den Normierungskonstanten

$$\mathcal{N}_{\alpha\beta} = \begin{cases} \frac{N}{\rho N_{\alpha}(N_{\alpha}-1)} & \alpha = \beta \\ \frac{N}{\rho N_{\alpha}N_{\beta}} & \alpha \neq \beta \end{cases}$$
(2.2)

Hierbei bezeichnet ρ die Teilchenzahldichte des Systems und N_{α} die Anzahl der Teilchen der Sorte α . Durch die Normierung (2.2) streben die Funktionen $g_{\alpha\beta}(r)$ für $r \to \infty$ gegen eins. Anschaulich ist $4\pi r^2 g_{\alpha\beta}(r)$ ein Maß für die Wahrscheinlichkeit, ein Teilchen der Sorte β im Abstand r von einem Teilchen der Sorte α zu finden. Bevor wir untersuchen, wie sich die lokale Struktur der Systeme durch die Zugabe verschiedener Natriummengen im Vergleich zur SiO₂–Schmelze ändert, diskutieren wir exemplarisch den Verlauf der partiellen Paarkorrelationsfunktionen des Systems NS5. Es soll hier insbesondere die Temperaturabhängigkeit der $g_{\alpha\beta}(r)$ betrachtet werden.

Die Abbildungen 2.3 und 2.4 zeigen (für die Korrelationen von Silizium und Sauerstoff bzw. für solche mit Natrium) den Verlauf der partiellen Paarkorrelationsfunktionen von NS5 bei den verschiedenen hier untersuchten Temperaturen. Berechnet wurden die $g_{\alpha\beta}(r)$ gemäß Definition (2.1), wobei bei zwei unabhängigen Simulationsläufen pro Temperatur jeweils zur Mittelung ca. 100 Konfigurationen auf einer linearen Zeitskala der Menge aller abgespeicherten Konfigurationen entnommen wurden. Wie man sieht, ist die Lage der Peaks nahezu temperaturunabhängig. Mit der Temperatur T verändern sich allerdings die Breite und die Amplitude der Peaks: Je kleiner T ist, desto schmäler und höher sind diese. Das heißt, dass mit sinkender Temperatur die Struktur des Systems immer ausgeprägter wird. Vor allem bei der Korrelationsfunction $g_{SiSi}(r)$ zeigt sich deutlich, dass mit abnehmender Temperatur auch gleichzeitig das erste Minimum der Korrelationsfunktion sinkt und sich dessen Lage zu kleineren r-Werten verschiebt. Letzteres ist wesentlich für die spätere Bestimmung der Koordinationszahlen: Über das erste Minimum der Paarkorrelationsfunktionen lassen sich nächste Nachbarn definieren; dies ermöglicht es, Aussagen über den lokalen Bindungscharakter zu treffen. Die eindeutigste Zuordnung erlaubt die Korrelationsfunktion $g_{SiO}(r)$: Selbst bei der höchsten untersuchten Temperatur 4000 K ist das erste Minimum nahezu auf null abgefallen. Über den gesamten Temperaturbereich können daher relativ klar nächste Sauerstoffnachbarn eines Siliziumatoms und somit Si-O-Bindungen identifiziert werden. Die Si-O-Bindung zeigt hier also einen ausgeprägt kovalenten Charakter. Ganz anders die Na-O-Bindung: Die rechte Flanke des ersten Peaks von $g_{\text{NaO}}(r)$ fällt für alle Temperaturen nicht auf null ab. Eine eindeutige Definition nächster Nachbarn ist daher hier nicht möglich.

Abbildung 2.3: Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von NS5, (a) Si–Si, (b) Si–O und (c) O–O–Korrelationen.

Abbildung 2.4: Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von NS5, (a) Na–Na, (b) Na–O und (c) Si–Na–Korrelationen.

Bei $g_{SiNa}(r)$ erfolgt der Abfall der rechten Flanke des ersten Peaks nur sehr langsam. Wie wir in Kap. 2.4.1 sehen werden, ist hier auch die Zuordnung des ersten Minimums keineswegs eindeutig: Bei weit tieferen Temperaturen kommt es bei $g_{SiNa}(r)$ zur Ausbildung eines weiteren Peaks bei ca. 4.5 Å. Insgesamt lassen aber alle Korrelationen mit Natrium auf eine weniger stark ausgeprägte Struktur schließen als die Korrelationen von Silizium und Sauerstoff unterreinander.

Der Vergleich der Korrelationsfunktionen $g_{\rm SiO}(r)$ und $g_{\rm NaO}(r)$ zeigt auch, dass der Abstand eines Natriumatoms zu einem benachbarten Sauerstoffatom größer ist als zwischen einem Siliziumatom und einem benachbarten Sauerstoffatom. Ebenso sind die Abstände nächster und vor allem übernächster Na–Na–Nachbarn größer als zwischen Si–Si–Nachbarn. Dies zeigt, dass in NS5 (wie auch in den anderen Natriumsilikatsystemen, vgl. [32]) im Vergleich zu SiO₂ größere Längenskalen ausgezeichnet sind als die zweier verknüpfter SiO₄–Tetraeder. Diese Längenskalen schlagen sich in Peaks der partiellen Strukturfaktoren bei q–Werten kleiner als 1.7 Å⁻¹ nieder (s.u.).

In Abbildung 2.5 und 2.6 sind nun entsprechend obiger Ausführungen die partiellen Paarkorrelationsfunktionen für alle hier untersuchten Natriumsilikatsysteme NSx, x = 2, 3, 5, denjenigen von SiO₂ bei der Temperatur T = 2750 K bzw. T = 2700 K (NS5) gegenübergestellt.

Wie man sieht, sind die Peakpositionen der Si–Si–, Si–O– und O–O–Korrelation im Wesentlichen in Übereinstimmung mit den Peakpositionen des reinen SiO₂. Eine Ausnahme bildet der zweite Peak bei $g_{SiSi}(r)$. Bei SiO₂ liegt er bei 5.0 Å während er beim System mit dem höchsten Natriumanteil, NS2, bereits bei 5.4 Å liegt. Es lässt sich hieraus schließen, dass durch die Anwesenheit der Natriumatome in den Systemen NSx übernächste Siliziumnachbarn im Mittel einen größeren Abstand voneinander haben als es im reinen System der Fall ist. Dieser Abstand nimmt mit wachsender Natriumkonzentration im System zu. Bei $g_{OO}(r)$ beobachtet man einen Abfall des zweiten Maximums je mehr Natriumatome im System vorhanden sind. Die Ausprägung der charakteristischen O–O–Struktur des SiO₂ nimmt also mit wachsender Natriumkonzentration ab, was mit einer zunehmenden Modifikation des Netzwerks zusammenhängt.

Bei den Korrelationen mit Natrium fällt vor allem auf, dass sich insbesondere bei $g_{\text{NaNa}}(r)$ und $g_{\text{SiNa}}(r)$ die Positionen des ersten und zweiten Maximums zu kleineren r-Werten verschieben je mehr Natrium im System vorhanden ist. Dies entspricht der anschaulichen Vorstellung, dass bei höherer Natriumkonzentration und gleichzeitig konstanten Simulationsvolumen die Natriumatome dichter gepackt sein müssen. Die Peakpositionen von $g_{\text{NaO}}(r)$ sind hingegen eher unabhängig vom Natriumanteil im System. Dies lässt vermuten, dass die Anordnung der Natriumatome um vergleichsweise starre Positionen der Sauerstoff- (und Silizium-)Atome erfolgt. Der erste Peak von $g_{\text{NaO}}(r)$ ist bei NS2 am höchsten. Mit wachsender Natriumkonzentration scheint sich also allmählich eine neue Struktur auszubilden.

Abbildung 2.5: Partielle Paarkorrelationsfunktionen für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei den Temperaturen T = 2750 K bzw. T = 2700 K (NS5). (a) Si–Si, (b) Si–O und (c) O–O–Korrelationen.

Abbildung 2.6: Partielle Paarkorrelationsfunktionen für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei den Temperaturen T = 2750 K bzw. T = 2700 K (NS5). (a) Na–Na, (b) Na–O und (c) Si–Na–Korrelationen.

2.3.2 Temperaturabhängigkeit der Koordinationszahlen

Aus den partiellen Paarkorrelationsfunktionen in Kap. 2.3.1 lässt sich wie schon erwähnt einfach die Temperaturabhängigkeit der partiellen Koordinationszahlen bestimmen. Wir vergleichen hier exemplarisch das System NS5 mit reinem SiO₂ bei relativ hohen Temperaturen. Später werden wir dann bei weit tieferen Temperaturen (100 K bzw. 300 K) die verschiedenen Systeme vergleichen und untersuchen, wie sich die Koordinationszahlverteilungen in Abhängigkeit von der Natriumkonzentration ändern (vgl. Kap. 2.4.2).

Zu jeder der in Kap. 2.3.1 gezeigten partiellen Paarkorrelationsfunktionen lässt sich der Ort r_{\min} des Minimums zwischen dem ersten und zweiten Peak definieren. Dies ermöglicht es, jedem Teilchen einen nächsten Nachbarn zuzuordnen: Zwei Teilchen vom Typ α bzw. β befinden sich in nächster Nachbarschaft, wenn sie in einem Abstand voneinander entfernt sind, der kleiner als der Wert r_{\min} der entsprechenden Paarkorrelationsfunktion $g_{\alpha\beta}(r)$ ist. Die im Folgenden verwendeten Werte für r_{\min} sind in Tabelle 2.2 aufgelistet.

$T[\mathbf{K}]$	Si–Si	Si–Na	Si–O	Na–Na	Na-O	0–0
4000	3.68Å	5.12Å	2.37Å	5.06Å	3.10Å	3.54Å
3400	3.66Å	5.16\AA	2.29\AA	5.07Å	3.06\AA	3.32Å
3000	3.65Å	5.17Å	2.29Å	5.12Å	3.01Å	3.26Å
2700	3.64Å	5.18\AA	2.28\AA	5.13\AA	2.97\AA	3.22Å

Tabelle 2.2: Positionen des ersten Minimums der Paarkorrelationsfunktionen von NS5.

Zu fester Temperatur kann man nun von einem Teilchen der Sorte α die nächsten Nachbarn der Sorte β zählen und dann die relativen Häufigkeiten $P_{\alpha\beta}(z)$ bestimmen, mit der ein Atom vom Typ α genau z Nachbarn vom Typ β hat. Die Abbildungen 2.7 und 2.8 zeigen jeweils für die relevanten Werte z, wie sich diese relativen Häufigkeiten $P_{\alpha\beta}$ in Abhängigkeit von der Temperatur verhalten.

Aus Abb. 2.7 (a)+(b) ergibt sich, dass in SiO_2 selbst bei der höchsten Temperatur 4700 K schon eine sehr ausgeprägte Netzwerkstruktur vorliegt: Mehr als 85% der Silizium– und Sauerstoffatome sind vierfach bzw. zweifach koordiniert, entsprechend der lokalen Struktur eines idealen (eckenteilenden) SiO_4 -Tetraedernetzwerks. Bei der tiefsten Temperatur 2750 K liegt ein nahezu ideales ungeordnetes Tetraedernetzwerk vor; obige Anteile liegen hier bei über 99%. Der Anteil an Defekten im System, hier also drei– bzw. fünffach koordinierte Siliziumatome und drei– bzw. einfach koordinierte Sauerstoffatome, liegt entsprechend bei unter einem Prozent. Wie sich später zeigen wird, ermöglichen aber genau diese Defekte (insbesondere "dangling bonds") eine Diffusion in der Schmelze.

Abbildung 2.7: Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten für die Systeme SiO₂ (dünne Linien) und NS5 (dicke Linien): (a) $P_{\text{Si-O}}$, (b) $P_{\text{O-Si}}$, (c) $P_{\text{O-O}}$ und (d) $P_{\text{Si-Si}}$. Die gestrichelten Kurven sind Arrhenius–Fits der Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten.

Im Fall von NS5 liegt bei der höchsten hier untersuchten Tenmperatur, 4000 K, der Anteil an vierfach Sauerstoff-koordinierten Siliziumatomen bei etwas mehr als 85%, also unter dem entsprechenden Wert von SiO₂. Mit sinkender Temperatur wächst dieser Anteil stetig bis auf immerhin 98% bei der tiefsten Temperatur 2700 K, bleibt damit aber unter dem SiO₂-Wert. Dass durch die Anwesenheit der Natriumatome das SiO₄-Tetraedernetzwerk aufgebrochen wird, verdeutlicht sich am Beitrag der zweifach Silizium-koordinierten Sauerstoffatome: Sie bilden zwar immer noch den größten Anteil in Abbildung 2.7 (b), dieser liegt aber weit unter den SiO₂-Werten (74% bei 4000 K, 81% bei 2700 K).

Kennzeichnend für die teilweise zerstörte SiO₄–Netzwerkstruktur ist das verstärkte Auftreten von Defekten im System: Hauptsächlich (18–19%) sind es einfach Silizium– koordinierte Sauerstoffatome, "dangling bonds", die mit sinkender Temperatur kaum abnehmen, also anteilsmäßig ein relativ temperaturunabhängiges Verhalten zeigen. Aber auch dreifach bzw. fünffach koordinierte Siliziumatome und dreifach koordinierte Sauerstoffatome liegen über den entsprechenden SiO_2 -Werten.

Bei beiden Systemen zeigen letztere Koordinationen eine ähnliche Abhängigkeit von der Temperatur: Das Auftreten dieser Defekte lässt sich für SiO_2 (unterhalb 3700 K) und für NS5 (unterhalb 3400 K) sehr gut durch ein Arrhenius–Gesetz

$$P_{\alpha\beta} = \pi_{\alpha\beta} \exp(-E_{\alpha\beta}/T) \tag{2.3}$$

beschreiben. Tabelle 2.3 listet die gefundenen Vorfaktoren $\pi_{\alpha\beta}$ und Aktivierungsenergien $E_{\alpha\beta}$ auf (Werte für SiO₂ aus [49]).

	NS5		SiO_2	
	$\pi_{\alpha\beta}$	$E_{\alpha\beta}$ [K]	$\pi_{\alpha\beta}$	$E_{\alpha\beta}$ [K]
Si–O, $z = 5$	2.25	13018	4.4	17130
Si–O, $z = 3$	10.99	21832	58.6	31100
O-Si, $z = 3$	1.15	12467	3.2	17730
O–Si, $z = 1$			8.9	24760

Tabelle 2.3: Vorfaktoren $\pi_{\alpha\beta}$ und Aktivierungsenergien $E_{\alpha\beta}$ der Arrhenius–Fits der Temperaturabhängigkeit der angegebenen Koordinationszahlen.

In [59, 60] konnte (für SiO₂) gezeigt werden, dass $P_{\rm SiO}$ und $P_{\rm OSi}$ bei Temperaturen unterhalb der Glasübergangstemperatur T_g durch die entsprechenden Verteilungen bei T_g gegeben sind, sich also nicht mehr ändern. Die relative Häufigkeiten, mit der speziell die Defekte (Si–O, z = 5) und (O–Si, z = 3) unterhalb T_g auftreten, schätzen wir daher durch Extrapolation der Arrheniuskurven bei T_g ab. Mit den Werten aus Tabelle 2.3 ergibt sich für SiO₂ mit $T_g = 1450$ K ein Auftreten von fünffach koordinierten Siliziumatomen mit der Wahrscheinlichkeit $3.2 \cdot 10^{-5}$ %, von dreifach koordinierten Sauerstoffatomen mit $1.5 \cdot 10^{-5}$ % und für NS5 mit $T_g = 773$ K (vgl. [75]) ein Auftreten von fünffach koordinierten Siliziumatomen mit der Wahrscheinlichkeit $1.1 \cdot 10^{-7}$ %

Vor allem Abbildung 2.7(c) zeigt, dass in SiO₂ die tetraedrische Netzwerkstruktur stark ungeordnet ist, lokal also eine zufällig verteilte SiO₄–Netzwerkgeometrie vorliegt. Selbst bei der tiefsten Temperatur zeigt P_{OO} noch eine breite Verteilung mit Maximum bei der Tetraederanordnung z = 6.

Dieses Verhalten findet sich auch bei der tiefsten Temperatur 2700 K von NS5, wobei hier wieder alle Werte unterhalb des entsprechenden Werts von SiO₂ liegen. Es ist zu erwarten, dass selbst bei Extrapolation zu tiefen Temperaturen die Verteilung P_{OO} von NS5 noch eine breite Streuung aufweist. Betrachtet man die Temperaturabhängigkeit der Verteilung P_{OO} , so lässt diese auf eine starke Umordnung im Netzwerk schließen: Die Koordinationszahlkurve zu z = 6 kreuzt diejenigen zu z = 7; 8; 9. Während bei der höchsten Temperatur z = 7 und z = 8 dominieren, sind es bei 2700 K z = 6 und z = 7.

Abbildung 2.8: Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten des Systems NS5: (a) $P_{\text{Na-Na}}$, (b) $P_{\text{Na-Si}}$, (c) $P_{\text{Na-O}}$ (d) $P_{\text{O-Na}}$ und (e) $P_{\text{Si-Na}}$.

Das starke Aufbrechen der tetraedrischen Netzwerkstruktur durch Natrium zeigt auch der Systemvergleich zur Temperaturabhängigkeit von P_{SiSi} : Während bei der tiefsten Temperatur 2750 K in SiO₂ rund 90% aller Siliziumatome vierfach Siliziumkoordiniert sind (Tetraederanordnung), sind es in NS5 nur 60%. Auffällig ist auch, dass in NS5 der Anteil der Defekte z = 3 mit sinkender Temperatur nicht ab, sondern leicht zunimmt und im Gegensatz zu SiO₂ auch gegenüber z = 5 dominiert.

Die Koordinationszahlwahrscheinlichkeiten der Korrelationen mit Natrium (siehe Abb. 2.8) sind, abgesehen von P_{NaO} und P_{ONa} , relativ temperaturunabhängig. Der Verlauf von P_{NaNa} und P_{NaSi} zeigt, dass jedes Natriumatom vier nächste Natriumnachbarn und 11–12 nächste Siliziumnachbarn hat. Im Mittel befinden sich also 15–16 Natriumbzw. Siliziumatome in nächster Nachbarschaft zu einem Natriumatom. Dies ist auch bei NS3 und NS2 der Fall (vgl. [31, 32]). Mit zunehmender Natriumkonzentration wächst dort allerdings die Anzahl der Natriumnachbarn, während die Anzahl der Siliziumnachbarn entsprechend fällt (a.a.O.: NS3, T=2100 K, 5–6 Na–Nachbarn, 9–10 Si–Nachbarn; NS2, T=2100 K, 7–8 Na–Nachbarn, 8–9 Si–Nachbarn). Da auch in NS5 die mittleren Na–Na– und Na–Si–Abstände ungefähr gleich sind (vgl. Abb. 2.4), kann man wie in Natriumdisilikat (vgl. [31]) das Auftreten einer zusätzlichen intermediären Längenskala erwarten (siehe Kap. 2.3.3).

Der Verlauf der Koordinationzahlwahrscheinlichkeit P_{NaO} lässt auf eine strukturelle Umordnung mit sinkender Temperatur schließen. Der Anteil der ersten Sauerstoffnachbarn eines Natriumatoms steigt von z = 4 bei hohen Temperaturen auf z = 5bei 2700 K. Im Experiment treten hier bevorzugt höhere Koordinationen (z = 5, z = 6) auf. Wir werden P_{NaO} auch noch bei weit tieferer Temperatur untersuchen (siehe Kap. 2.4.2).

2.3.3 Partielle statische Strukturfaktoren

Bisher haben wir die lokale Umgebung der Atome untersucht. Besonders geeignet, um Aussagen über die Struktur auf größeren Längenskalen zu treffen, sind die partiellen statischen Strukturfaktoren $S_{\alpha\beta}(q)$. Sie sind im Wesentlichen die Fouriertransformierten der jeweiligen Paarkorrelationsfunktion $g_{\alpha\beta}(r)$:

$$S_{\alpha\beta}(q) := \frac{f_{\alpha\beta}}{N} \left\langle \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{N_{\beta}} e^{i\vec{q}\cdot\vec{r}_{ij}} \right\rangle \quad \alpha, \beta \in \{\text{Si}, \text{Na}, \text{O}\},$$
(2.4)

wobei $N = \sum_{\alpha} N_{\alpha}$ die Gesamteilchenzahl bezeichnet. q ist der Betrag des Wellenvektors \vec{q} und $f_{\alpha\beta}$ gleich 0.5 für $\alpha \neq \beta$ bzw. 1.0 für $\alpha = \beta$. Aus den partiellen Strukturfaktoren lassen sich spezifischere Informationen gewinnen, als sie Experimenten zugänglich sind, da hier meistens nur eine mit Streulängen gewichtete Summe der $S_{\alpha\beta}(q)$ gemessen werden kann.

Abbildung 2.9: Temperaturabhängigkeit der partiellen statischen Strukturfaktoren von NS5: Gegenüberstellung der Si–Si–, Si–O–, O–O–, Na–Na–, Na–O– und Si–Na–Korrelationen. Die vertikalen Linien markieren die q–Werte q = 0.95 Å⁻¹, q = 1.7 Å⁻¹ und q = 2.15 Å⁻¹ (vgl. Text).

In der Neutronenstreuung misst man z.B. den "Neutronenstreu"-Strukturfaktor

$$S_n(q) = \frac{1}{\sum_{\alpha} N_{\alpha} b_{\alpha}^2} N \cdot \sum_{\alpha\beta} b_{\alpha} b_{\beta} S_{\alpha\beta}(q) , \qquad (2.5)$$

wobei b_{α} die experimentellen Neutronenstreulängen bezeichnet. (In Ausnahmefällen, wie etwa bei ZnCl₂, können auch die partiellen Strukturfaktoren gemessen werden [77].)

Abbildung 2.9 zeigt die berechneten Größen $S_{\alpha\beta}(q)$ wieder für das System NS5 bei den verschiedenen untersuchten Temperaturen. Wir diskutieren hier zunächst die Wellenvektorabhängigkeit der $S_{\alpha\beta}(q)$ bevor wir wieder die verschiedenen Systeme gegenüberstellen (zu NS3 und NS2 vgl. [32] bzw. [30]).

Der Peak mit der größten Amplitude liegt bei den Si–Si–, Si–O– und O–O–Korrelationen bei 2.8 Å⁻¹. Dies entspricht einer Länge von $2\pi/2.8$ Å⁻¹ = 2.24 Å, was ungefähr der Periode in den Oszillationen der zugehörigen Paarkorrelationsfunktionen darstellt. Anders ausgedrückt spiegelt der Peak von $S_{\rm SiO}(q)$ bei 2.8 Å⁻¹ die Längenskala der Distanz nächster Si–O–Nachbarn wider. Bei den Korrelationen mit Natrium entsprechen dieser Längenskala die Peaks bei $q \approx 2.1$ Å⁻¹ für die Si–Na– und Na–Na–Korrelation bzw. bei $q \approx 1.9$ Å⁻¹ für die Na–O–Korrelation. Die relativ zu 2.8 Å⁻¹ kleineren q– Werte zeigen, dass nächste Silizium– bzw. Natriumnachbarn vergleichsweise größere Abstände von einem Natriumatom haben als nächste Siliziumnachbarn von einem Siliziumatom. Dies reflektiert auch der Strukturfaktor $S_{\rm NaO}(q)$.

Längerreichweitige strukturelle Merkmale zeigen sich in den Strukturfaktoren $S_{\alpha\beta}(q)$ bei Wellenvektoren, deren Betrag kleiner ist als die Position des Peaks benachbarter Teilchen α und β .

An erster Stelle ist hier der Peak bei q = 1.7 Å⁻¹ zu nennen, der nur in den Si–Si–, Si–O– und O–O–Korrelationen auftritt. Dieser sog. "First–Sharp–Diffraction–Peak" (FSDP) hat seinen Ursprung in der tetraedrischen SiO₄–Netzwerkstruktur. Hierzu lässt sich eine Längenskala von $2\pi/1.7$ Å⁻¹ ≈ 3.7 Å abschätzen, die ungefähr die Ausdehnung zweier verbundener SiO₄–Tetraeder beschreibt. Anders als beim reinen System ist der FSDP bei 4000 K nur als Schulter zu erkennen und selbst bei 2700 K weit geringer ausgeprägt als bei SiO₂ (s.u.). Durch Anwesenheit der Natriumatome wird also das Tetraedernetzwerk teilweise aufgebrochen.

Entsprechend seiner Interpretation tritt dieser Peak wie schon erwähnt bei den Korrelationen mit Natrium nicht auf. Die aufgebrochene SiO₄–Netzwerkstruktur lässt aber erwarten, dass eine andere Längenskala ausgezeichnet wird entsprechend der Lage der Natriumatome im System. Tatsächlich zeigt sich besonders bei den Korrelationen mit Natrium ein deutlicher Peak bei dem noch kleineren q–Wert 0.95 Å⁻¹: Die zugehörige Längenskala $2\pi/0.95$ Å⁻¹ ≈ 6.6 Å ist ungefähr der doppelte mittlere Abstand nächster Na–Na– bzw. Na–Si–Nachbarn, entspricht also der Längenskala übernächster Silizium– bzw. Natriumnachbarn eines Natriumatoms.

Abbildung 2.10: Partielle statische Strukturfaktoren für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei der Temperatur T = 3000 K: a) Si–Si–, b) Si–O– und c) O–O–Korrelationen.

Abbildung 2.11: Partielle statische Strukturfaktoren für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei der Temperatur T = 3000 K: a) Si–Na–, b) Na–Na– und c) Na–O–Korrelationen.

Alle diskutierten Peaks zeigen keine sehr starke Temperaturabhängigkeit. Es fällt aber auf, dass wie bei den partiellen Paarkorrelationsfunktionen in Kap. 2.3.1 die Breite der Peaks mit sinkender Temperatur abnimmt bzw. deren Höhe zunimmt. Die Struktur wird also mit sinkender Temperatur ausgeprägter. Aus diesem Grund stellen wir in Abbildung 2.10 und 2.11 die partiellen Strukturfaktoren für alle Systeme bei der tiefen Temperatur 3000 K gegenüber. Da die Strukturfaktoren $S_{\alpha\beta}(q)$ gemäß Gl. (2.4) entsprechend der jeweiligen Teilchenkonzentration normiert sind, kann ein Vergleich hier nur qualitativ erfolgen.

Der Systemvergleich bei den Strukturfaktoren $S_{SiSi}(q)$, $S_{SiO}(q)$ und $S_{OO}(q)$ zeigt besonders deutlich, wie mit zunehmender Natriumkonzentration die tetraedrische Netzwerkstruktur abnimmt und sich eine zusätzliche Struktur auf größeren Längenskalen ausbildet:

Beim reinen System SiO₂ gibt es keinen Peak bei 0.95 Å⁻¹, dafür zeigt sich aber (vor allem bei $S_{SiSi}(q)$) ein deutlicher "First–Sharp–Diffraction–Peak" bei 1.7 Å⁻¹. Bei allen Natriumsystemen dominiert hingegen der Peak bei 0.95 Å⁻¹ gegenüber dem FSDP. Seine Amplitude ist umso ausgeprägter je mehr Natrium im System vorhanden ist; gleichzeitig nimmt die Amplitude des FSDP ab. Letzterer lässt sich bei NS2 im Wesentlichen nur noch im Strukturfaktor $S_{OO}(q)$ ausmachen, und auch nur als schwache Schulter.

2.3.4 Ringlängenverteilung

Eine weitere Größe, um speziell die Struktur von netzwerkbildenden Systemen zu untersuchen, ist die *Ringlängenverteilung*. Bei den hier betrachteten Silikatsystemen ist sie vor allem dazu geeignet, Aussagen über die Struktur auf einer Längenskala mehrerer verbundener SiO_4 -Tetraeder zu treffen (mittlere Längenskalen).

Abbildung 2.12 zeigt einen Ausschnitt aus einem SiO_4 -Netzwerk. Greift man beispielhaft das durch einen zusätzlichen Kreis markierte Si-Atom mit seinen beiden O-Nachbarn heraus, so sind mehrere geschlossene Wege aus -Si-O- Elementen möglich, um von dem einen O-Nachbarn dieses Si-Atoms zu seinem anderen O-Nachbarn zu gelangen. Die kürzeste geschlossene Verbindung solcher -Si-O- Elemente soll hier als Ring bezeichnet werden (vgl. [78]). Die Ringlänge n ist die Anzahl der -Si-O-Elemente innerhalb eines Rings. Im vorliegenden Beispiel liegt also ein 6er-Ring vor (dick markiert); die Ringlänge n = 6 entspricht hier genau der Anzahl der Si-Atome dieses Rings.

Zu einer gegebenen Teilchenkonfiguration lässt sich die Anzahl der Ringe einer bestimmten Länge *n* recht leicht zählen und eine Verteilung der relativen Häufigkeiten P(n) bestimmen. Zu beachten ist hierbei, dass bei $N_{\rm Si}$ Silizium–Atomen mit Koordinationszahlen $z_{\rm Si}$ in einem System $(N_{\rm Si} \cdot \langle z_{\rm Si} \rangle \cdot \langle z_{\rm Si} - 1 \rangle)/2$ Ringe gezählt, also jeder Ring *n*-mal gezählt wird.

Abbildung 2.12: Definition der Ringlänge n: Die kürzeste Verbindung aufeinanderfolgender –Si–O– Elemente, die einen O–Nachbarn eines Si–Atoms mit einem anderen O–Nachbarn desselben Si–Atoms verbindet, bildet einen Ring. Die Anzahl der –Si–O– Elemente innerhalb dieses Rings wird als dessen Ringlänge n bezeichnet.

Abbildung 2.13 zeigt die Verteilung der Ringlängen P(n), die sich bei einer Temperatur von 3000 K für die verschiedenen Systeme unterschiedlicher Natriumkonzentrationen ergeben. Zum Vergleich ist wieder die Kurve für das reine SiO₂ eingezeichnet. Zur Verbesserung der Statistik wurde hier bei jedem System über 40 Konfigurationen gemittelt, die jeweils auf einer linearen Zeitskala der Menge der abgespeicherten Konfigurationen entnommen wurde.

Die Verteilung des reinen SiO_2 -Systems zeigt ein deutliches Maximum bei n = 6: Mit Hilfe von Ramanstreuexperimenten (vgl. Galeener *et al.* [79, 80, 81]) ist es möglich, auf der Grundlage phänomenologischer Modelle einzelne Ringe nachzuweisen; eine Verteilung der Ringlängen ist bei amorphen Systemen bisher experimentell allerdings noch nicht bestimmt worden. Bekannt ist aber die Ringlängenverteilung in Kristallen. Während das in der Natur häufigste Polymorh von kristallinem SiO₂, der Quarz, im Verhältnis 4:2 aus 6er- und 8er- Ringen besteht, weist die metastabile Hochtemperaturform Cristobalit nur 6er- Ringe auf (vgl. [82]). Das hier betrachtete amorphe SiO₂-System ist also strukturell Cristobalit-ähnlich. Das ist plausibel, wenn man das Phasendiagramm in Abbildung 2.14 betrachtet: Bei hinreichend langsamem Abkühlen aus der Hochtemperaturphase und kleinen Drücken ist Cristobalit die erste Kristallform nahe der Flüssigkeit.

Abbildung 2.13: Verteilung der Ringlängen P(n) für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei der Temperatur T = 3000 K.

Interessant ist nun das Verhalten des Systems bei wachsender Zugabe von Natrium (NS5 bis NS2): Abbildung 2.13 zeigt, dass die Ringlängenverteilung umso breiter wird, je mehr Natrium im System enthalten ist. (Bei NS2 werden sogar einige 15er– Ringe gezählt.) Gleichzeitig sinkt das Maximum der SiO₂–Verteilung zu Gunsten kurzer Ringe; vor allem aber ergibt sich ein deutlicher Beitrag bei n = 1. Einser–Ringe gibt es nicht; vielmehr handelt es sich hierbei um "dangling bonds", also freistehende Sauerstoffbindungen, die keinem Ring zugeordnet werden können.

Der Verlauf von P(n) bei NSx lässt sich zusammen mit den bisher diskutierten strukturellen Eigenschaften dieser Systeme gut verstehen: Je höher der Natrium–Anteil im System ist, umso geringer ist die tetraedrische SiO₄–Netzwerkstruktur ausgeprägt (vgl. Kap. 2.3.3). Gleichzeitig zeigen die Ringlängenverteilungen einen wachsenden Anteil an "dangling bonds": Je mehr Natrium also im System enthalten ist, umso mehr wird das SiO₄–Netzwerk durch die Natriumatome aufgebrochen; entsprechend größere geschlossene –Si–O– Wege sind daher notwendig, um von einem Sauerstoff–Nachbarn eines Si–Atoms zum anderen zu gelangen. Dies erklärt den wachsenden Anteil großer Ringe.

Auffällig ist aber auch die Form der Verteilung bei mittleren Ringlängen. Neben einem Maximum bei n = 5 entwickelt sich mit wachsendem Natrium–Anteil ein Plateau bei n = 8, 9. Dies lässt die Ausbildung einer neuen Struktur, hin zu einem Doppelpeak aus 5er– und 8er–Ringen vermuten.

Abbildung 2.14: Phasendiagramm von SiO₂, aus [83].

Um dies genauer zu untersuchen, ist hier zunächst ein Vergleich bei verschiedenen Temperaturen interessant. Wie wir bereits in Kapitel 2.3.1 gesehen haben, kommen strukturelle Eigenschaften umso besser zum Vorschein, je tiefer die Temperatur ist. Dies ist auch hier der Fall: Abbildung 2.15 zeigt die Ringlängenverteilungen für die Systeme NSx und SiO₂, jetzt bei den Temperaturen T = 4000 K und T = 2750K. Der Vergleich hohe Temperatur vs. tiefe Temperatur zeigt, dass für alle Systeme die Verteilungen bei tiefer Temperatur schmaler sind, kurze Ringe (2er–, 3er–Ringe) energetisch ungünstiger werden (der Beitrag der 2er–Ringe sinkt fast auf null) und die Ausprägung des oben beschriebenen Plateaus deutlicher wird.

Mit sinkender Temperatur wird auch die Beweglichkeit der einzelnen Atome abnehmen. Man kann daher den Verlauf der Ringlängenverteilungen noch genauer untersuchen, wenn man die einzelnen Systeme nicht bei konstanter Temperatur sondern bei konstanter Beweglichkeit einer ihrer Komponenten vergleicht. Betrachtet wurde hier speziell die Beweglichkeit der langsamsten Komponente in allen Systemen, des Siliziums. In Kapitel 2.3.6 wird im Rahmen der dynamischen Eigenschaften der untersuchten Systeme ausführlich auf das Diffusionsverhalten der einzelnen Komponenten eingegangen. Zur Verdeutlichung soll hier nur kurz auf Abbildung 2.19 vorgegriffen werden. Als Arrhenius-Plot ist dort die Diffusionskonstante D_{α} der einzelnen Komponenten $\alpha \in {Si, Na, O}$ für die untersuchten Systeme logarithmisch als Funktion der inversen Temperatur aufgetragen. Dem Vergleich verschiedener Temperaturen in Abb. 2.15 entsprechen senkrechte Temperaturschnitte in Abb. 2.19. Man erhält also zu fester Temperatur verschiedene Werte D_{Si} für die einzelnen Systeme. Zu konstantem D_{Si} -Wert kann man hingegen den Schnitt der entsprechenden Waagrechten mit den Kurven $D_{Si}(1/T)$ und somit die Temperaturwerte zu festem D_{Si} bestimmen.

Abbildung 2.15: Verteilung der Ringlängen P(n) für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei den Temperaturen T = 2750 K und T = 4000 K.

Abbildung 2.16: Verteilung der Ringlängen P(n) für die Systeme NSx, x = 2, 3, und SiO₂ bei den Silizium–Diffusionskonstanten $D_{\rm Si} = 1.3 \cdot 10^{-5}$ cm²/s bzw. $6.1 \cdot 10^{-8}$ cm²/s.

Insgesamt wurden hier die konstanten Werte $D_{\rm Si} \in \{6.1 \cdot 10^{-8} \text{cm}^2/\text{s}, 3.1 \cdot 10^{-7} \text{cm}^2/\text{s}, 1.9 \cdot 10^{-6} \text{cm}^2/\text{s}, 1.3 \cdot 10^{-5} \text{cm}^2/\text{s}\}$ untersucht. Abbildung 2.16 liefert einen Vergleich der Ringlängenverteilungen für diejenigen Temperaturen, bei denen $D_{\rm Si}$ den Wert $1.3 \cdot 10^{-5} \text{cm}^2/\text{s}$ bzw. den kleinsten Wert $6.1 \cdot 10^{-8} \text{cm}^2/\text{s}$ annimmt.

Wie beim Vergleich konstanter Temperaturen zeigt sich, dass die Verteilungen mit sinkendem D_{Si} schmaler werden und kürzere Ringe energetisch günstiger sind (da mit D_{Si} auch die Temperatur sinkt). Deutlicher sieht man hier aber die "Struktur", die sich zusehends herausbildet: Für alle Systeme ist bei $D_{Si} = 6.1 \cdot 10^{-8} \text{ cm}^2/\text{s}$ der Anteil $P(n = 2) \approx 0$; bei NS2 sieht man deutlich einen Doppelpeak für n = 5 und n = 8. Ähnlich dem Quarz (6er– und 8er–Ringe) werden hier also zwei Ringlängen favorisiert. Insbesondere das Auftreten von 8er–Ringen lässt sich wie bei Quarz als ein lokal energetisch relativ günstiges Strukturelement auffassen.

2.3.5 Dynamische Eigenschaften

Wie wir in Kapitel 2.3.2 gesehen haben, führt das Aufbrechen der SiO_4 -Netzwerkstruktur durch Natrium bei NS5 zum vermehrten Auftreten von Defekten, insbesondere von einfach koordinierten Sauerstoffatomen ("dangling bonds") (vgl. Abb. 2.7). Dies lässt erwarten, dass mit zunehmender Natriumkonzentration in der SiO₂-Schmelze eine starke Diffusion aller Systemkomponenten ermöglicht wird.

Eine der einfachsten Größen, um die Dynamik von Flüssigkeiten auf mikroskopischem Niveau zu untersuchen ist das mittlere Verschiebungsquadrat (MSD) eines markierten Teilchens vom Typ α (hier $\alpha \in {Si, Na, O}$):

$$\left\langle r_{\alpha}^{2}(t) \right\rangle = \frac{1}{N_{\alpha}} \sum_{l=1}^{N_{\alpha}} \left\langle |\vec{r}_{l}(t) - \vec{r}_{l}(0)|^{2} \right\rangle .$$
 (2.6)

In Abbildung 2.17 sind für ausgewählte Temperaturen die für NS5 ermittelten Verschiebungsquadrate von Silizium, Sauerstoff und Natrium doppeltlogarithmisch gegen die Zeit aufgetragen. Zum Vergleich sind in Abbildung 2.18 die Verschiebungsquadrate des reinen Systems SiO₂ und des Systems mit dem größten Natriumgehalt, NS2, (aus [30]) bei der Temperatur T = 2750 K den MSD von NS5 bei T = 2700 K gegenübergestellt. Wir diskutieren die prinzipiellen Eigenschaften der mittleren Verschiebungsquadrate am hier neu untersuchten System NS5:

Zu fester Temperatur zeigen alle Teilchensorten einen qualitativ ähnlichen Verlauf: Bei der höchsten Temperatur, T = 4000 K, dominieren zwei Zeitregime den Kurvenverlauf.

• Mikroskopisches Regime: Für kleine Zeiten (d.h. hier im Bereich von ca. $2 \cdot 10^{-3}$ ps bis $2 \cdot 10^{-2}$ ps) spüren die Teilchen keine Wechselwirkung mit ihren Nachbarn. Sie bewegen sich ballistisch, $\vec{r_l}(t) \approx \vec{r_l}(0) + \vec{v} \cdot t$, mit der thermischen Geschwindigkeit $v = \sqrt{(3k_BT)/m}$, so dass das MSD proportional zu t^2 ist.

• Diffusiver Bereich:

Auf langen Zeitskalen t erfolgt die Bewegung der Teilchen diffusiv und daher ist $\langle r_{\alpha}^{2}(t) \rangle = 6D_{\alpha}t$, mit der Diffusionskonstante D_{α} .

Je tiefer die Temperatur sinkt, umso mehr beobachtet man zwischen diesen beiden Zeitregimen die Ausbildung eines Plateaus.

• β -Relaxationsregime:

Über eine Zeitspanne mehrerer Dekaden (siehe vor allem Silizium und Sauerstoff bei SiO₂) ändert sich das MSD nicht signifikant mit der Zeit; bei 2700 K scheint die Bewegung in diesem Bereich nahezu eingefroren. Mikroskopisch lässt sich dieses Verhalten durch den sog. "Käfigeffekt" [84] erklären. Für die Zeitlänge des Plateaus ist das markierte Teilchen im Käfig seiner Nachbarn gefangen. Mit abnehmender Temperatur vergrößert sich das Plateau und damit die Zeitskala bis es dem Teilchen gelingt, aus seinem Käfig auszubrechen und zu entkommen. In der Literatur wird die Dynamik der Teilchen auf dieser Zeitskala meist unter dem Begriff " β -Relaxationsregime" behandelt. Die Modenkopplungstheorie (MCT) [84, 85] macht in der Nähe des Glasübergangs detaillierte Aussagen zum universellen Relaxationsverhalten innerhalb dieses Regimes.

Aus Abbildung 2.17 ergibt sich, dass das MSD zu gegebener Zeit aufgrund des Käfigeffekts mit abnehmender Temperatur sinkt. Am Ende der Simulationsläufe haben sich aber bei NS5 im Falle aller Temperaturen die Siliziumatome im Mittel um $\sqrt{22}$ Å ≈ 4.7 Å von ihrem Ausgangspunkt entfernt, die Sauerstoffatome um $\sqrt{40}$ Å ≈ 6.3 Å und die Natriumatome um $\sqrt{440}$ Å ≈ 21 Å. Alle Atome einer Teilchensorte haben sich damit um mehr als den Abstand zum nächsten Nachbarn der jeweiligen Teilchensorte bewegt, so dass das diffusive Regime erreicht sein sollte, wie es auch das lineare Zeitverhalten der mittleren Verschiebungsquadrate bestätigt.

Bemerkenswert ist, dass sich die Natriumatome bei gegebener Temperatur auf der Zeitskala der Simulationsläufe wesentlich weiter als die Silizium- bzw. Sauerstoffatome bewegen (bei 2700 K bereits $\sqrt{450}$ Å ≈ 21.1 Å was viermal der Länge des Weges entspricht, den die langsamste Komponente im System, Silizium, zurücklegt). Wir werden im folgenden Kapitel sehen, dass die Dynamik der Natriumatome mit abnehmender Temperatur immer stärker von derjenigen der Sauerstoff- und Siliziumatome entkoppelt.

Abbildung 2.17: Mittlere Verschiebungsquadrate von Natriumpentasilikat, NS5, bei den Temperaturen T = 2700 K, T = 3000 K, T = 3400 K und T = 4000 K.

Abbildung 2.18: Gegenüberstellung der mittleren Verschiebungsquadrate der Systeme NSx, x = 2, 3, 5, und SiO₂ bei der Temperatur T = 2750 K bzw. T = 2700 K (NS5).

Vergleicht man die Systeme unterschiedlicher Natriumkonzentration untereinander, so zeigt sich bei gegebener Temperatur, dass die Dynamik der einzelnen Systemkomponenten (Si, Na, O) wie erwartet umso schneller ist, je höher die Natriumkonzentration im System ist, d.h. je höher der Anteil an Defekten, insbesondere "dangling bonds" im System ist. In Kap. 2.4.2 werden wir noch genauer auf die Abhängigkeit der Defekte von der Natriumkonzentration im System eingehen.

Das mittlere Verschiebungsquadrat von NS5 für Silizium zeigt vor allem bei der tiefsten Temperatur beim Übergang vom ballistischen zum β -Relaxationsregime zwei Merkmale, die bei einfachen Flüssigkeiten [86] nicht auftauchen. Bei ca. 0.03 ps ist eine schmale Schulter, bei ca. 0.2 ps eine Erhebung zu sehen, die man weit ausgeprägter sowohl bei der Silizium- als auch der Sauerstoffkomponente von SiO₂ wiederfindet. Vermutlich resultiert die Schulter aus der komplexen lokalen Bewegung der Atome im offenen tetraedrischen Netzwerk (wie etwa Dehnung der Tetraeder), während der Peak in Verbindung mit dem sog. Bosonenpeak steht (vgl. hierzu [87, 88]). In Kap. 2.5.5 wird hierauf noch näher eingangen.

2.3.6 Selbstdiffusionskonstanten

Aus den mittleren Verschiebungsquadraten von Silizium, Natrium und Sauerstoff lassen sich die Selbstdiffusionskonstanten D_{α} für ein markiertes Teilchen vom Typ $\alpha \in {Si, Na, O}$ mittels der Einsteinrelation bestimmen:

$$D_{\alpha} = \lim_{t \to \infty} \frac{\langle r_{\alpha}^2(t) \rangle}{6t} \,. \tag{2.7}$$

Konkret wurden die D_{α} durch numerische Ableitung von $\langle r_{\alpha}^2(t) \rangle / 6$ nach der Zeit bestimmt. Abgelesen wurden für alle Temperaturen jeweils die Konstanten, die für große Zeiten t im Mittel angestrebt werden. Abbildung 2.19 zeigt die so ermittelten Werte in Form eines "Arrheniusplots": Für die vier untersuchten Systeme ist die Diffusionskonstante D_{α} der einzelnen Teilchensorten α logarithmisch gegen die inverse Temperatur T^{-1} aufgetragen.

Beim reinen System lassen sich D_{Si} und D_O für kleine Temperaturen $T \leq 3400$ K durch Arrheniusgesetze anfitten (vgl. [49]):

$$D_{\alpha} \propto \exp(-E_A/k_B T)$$
. (2.8)

Die eingetragenen Aktivierungsenergien E_A stimmen gut mit den experimentellen Werten überein (vgl. Brébec *et al.* [89], Mikkelsen [90]). Die zugrundeliegende Vorstellung ist, dass ein Teilchen, das in einem lokalen Minimum der eingefrorenen Potenziallandschaft des Systems sitzt, durch Aktivierung mit der Energie E_A eine Potenzialbarriere überwinden und in ein benachbartes Minimum hüpfen kann. Bei höheren Temperaturen lässt sich das Bild der eingefrorenen Potenziallandschaft nicht mehr anwenden. Wie auch experimentell bei Viskositätsdaten von starken Glasbildnern [91, 92]

Abbildung 2.19: Arrheniusplot der Diffusionskonstanten von Silizium, Sauerstoff und Natrium: Vergleich der Systeme NSx, x = 2, 3, 5, und SiO₂. Die gestrichelten Kurven sind Arrhenius–Fits.

beobachtet wurde, findet ein "Crossover" in einen Bereich statt, in dem sich D_{Si} und D_O gut durch Potenzgesetze, wie sie die Modenkopplungstheorie vorschlägt, beschreiben lassen (siehe hierzu Abb. 3.24 aus Kap. 3.4.3).

Vergleicht man die Diffusionskonstanten der Natriumsilikate mit denjenigen von SiO₂, so fällt unmittelbar auf, dass generell die Dynamik aller Komponenten in NSx viel schneller ist als im reinen System, sogar bei sehr hohen Temperaturen. Greift man etwa beispielhaft die Temperatur T = 2750 K $(10^4/T \approx 3.64 \text{ K}^{-1})$ heraus, so liegen D_{Si} und D_{O} von NSx um ca. zwei Größenordnungen über den Werten von SiO₂, D_{Na} sogar um ca. drei Größenordnungen. Die Diskrepanz wird umso deutlicher, je geringer die Temperatur und je höher die Natriumkonzentration im System ist. Mit sinkender Temperatur entkoppelt zudem D_{Na} immer mehr von D_{Si} und D_{O} . Bemerkenswert ist, dass hierbei D_{Na} für alle Systeme NSx, 2, 3, 5, über den gesamten Temperaturbereich ein Arrheniusverhalten zeigt. Im Sinne obiger Interpretation kann man hieraus schließen (vgl. [32]), dass zumindest bei tiefen Temperaturen die Bewegung der Silizium– und Sauerstoffatome auf der Zeitskala der Natriumdiffusion eingefroren ist und die Natriumatome ein aktiviertes Hüpfen durch eine eingefrorene Matrix aus Silizium umd Sauerstoffatomen vollführen. Interessant ist, dass dies selbst noch
für das System mit dem niedrigsten Natriumgehalt, NS5, gilt. Die in Abbildung 2.19 eingetragenen Aktivierungsenergien E_A der Natriumdiffusion liegen bei allen Systemen NSx in der Größenordnung von 1 eV. Die Werte von E_A nehmen mit steigender Natriumkonzentration ab; sie stimmen qualitativ und in ihren tendenziellen Verhalten mit den experimentell mittels elektrischer Leitfähigkeitsmessung bestimmten Aktivierungsenergien (Greaves, Ngai [93]) überein. Quantitativ überschätzen die Werte unserer Aktivierungsenergien diejenigen von Greaves *et al.* (Größenordnung 0.7 eV) um ca. 43%.

2.4 Struktur bei tiefen Temperaturen

In Kapitel 2.3 haben wir bereits die Struktur der Natriumsilikatsysteme NSx, x = 2, 3, 5, im Vergleich zu SiO₂ untersucht, und zwar bei relativ hohen Temperaturen (T = 2700 K - 4000 K), so dass sich die Systeme in der flüssigen Phase im Gleichgewicht befanden. Die Relaxationszeiten lagen bei der tiefsten Temperatur im ns-Bereich. Adäquate Größen zur Beschreibung der Struktur waren die partiellen Paarkorrelationsfunktionen $g_{\alpha\beta}(r)$ und die Koordinationszahlverteilungen P(z) (kleine Längenskalen), die Verteilungen der Ringgrößen P(n) (mittlere Längenskalen) sowie die partiellen Strukturfaktoren $S_{\alpha\beta}(q)$ (auch langreichweitige Ordnung).

Wie wir bei allen Systemen gesehen haben, "prägt" sich deren charakteristische Struktur umso besser heraus, je kleiner die betrachtete Temperatur ist. Es ist daher zu erwarten, dass spezifische strukturelle Merkmale der Natriumsilikate bei weit tieferen Temperaturen noch wesentlich deutlicher zum Vorschein kommen.

In diesem Kapitel sollen daher die Systeme NSx und SiO₂ bei sehr tiefen Temperaturen gegenübergestellt werden. Analysiert wurden Konfigurationen aus Abkühlläufen mit den in Kapitel 2.1 angegebenen Kühlraten. Wir vergleichen hier die Temperaturen T = 100K bei NSx, x = 2, 3, 5, und T = 300K bei SiO₂.

Alle Systeme befinden sich hierbei im Glaszustand, so dass die Relaxationsdynamik bereits eingefroren ist. Interessant im Vergleich zu hohen Temperaturen ist daher hier die "lokale Struktur", d.h. die Anordnung der Atome auf kleinen Längenskalen; sie sollte wesentlich ausgeprägter sein. Es ist somit naheliegend, im Folgenden zwei Größen zu diskutieren, die besonders gut geeignet sind, die Nahordnung der hier untersuchten Systeme zu beschreiben — die partiellen Paarkorrelationsfunktionen und die Verteilung der Koordinationszahlen.

Abbildung 2.20: Gegenüberstellung der partiellen Paarkorrelationsfunktion $g_{SiSi}(r)$ für die Systeme NSx, x = 2, 3, 5, und SiO₂ bei 100 K bzw. 300 K.

2.4.1 Partielle Paarkorrelationsfunktionen II

Um zu untersuchen, wie sich die lokale Struktur bei tiefen Temperaturen in Abhängigkeit der Natrium–Konzentration ändert, wurden die partiellen Paarkorrelationsfunktionen $g_{\alpha\beta}(r)$ gemäß Definition 2.1 für NSx bei 100 K und für SiO₂ bei 300 K berechnet. Zu beachten ist, dass alle verwendeten Konfigurationen abgekühlte Hochtemperaturkonfigurationen, also nicht äquilibrierte Konfigurationen sind.

Wie bei den hohen Temperaturen in Kapitel 2.3 sind die ersten Peakpositionen für die Si–Si–, Si–O– und O–O–Korrelationen im Wesentlichen identisch mit denen des reinen SiO₂. Eine Ausnahme bildet der zweite Peak der partiellen Si–Si–Paarkorrelationsfunktion: Die Verschiebung zu größeren Abständen wird wie erwartet bei tiefen Temperaturen besonders deutlich. Abbildung 2.20 stellt $g_{SiSi}(r)$ für die Systeme unterschiedlicher Natrium–Konzentration dem reinen System gegenüber: Man sieht deutlich, wie sich die Position des zweiten Peaks von 4.98 Å bei SiO₂ bis zu ca. 5.6 Å bei NS2 verschiebt, der mittlere Abstand der übernächsten Siliziumatome mit wachsender Anzahl an Natriumatomen im System also zunimmt.

Abbildung 2.21: Oben: Partielle Paarkorrelationsfunktion $g_{SiNa}(r)$ von Natriumtrisilikat NS3 bei 100 K bzw. 2100 K. Zu den durch Pfeile markierten Peaks tragen (Si,Na)–Paare bei, die über einen Sequenz Si–O–Si–O–Na korreliert sind. Unten: Ausschnitt einer NS3–Konfiguration bei 100 K. Das Siliziumatom des oberen SiO₄–Tetraeders (a) ist über eine Sequenz –O–Si–O– (b) mit einen Natriumatom (c) verbunden, das von diesem einen Abstand von 4.5 Å hat (Länge des eingezeichneten Pfeils). Die über ein Sauerstoffatom miteinander verbundenen Atome (b) und (c) liefern einen Beitrag zum ersten Peak von $g_{SiNa}(r)$ bei 3.5 Å.

Ein sehr prägnantes Merkmal im Vergleich zur entsprechenden Hochtemperaturkorrelationsfunktion zeigt $g_{SiNa}(r)$. In Abbildung 2.21 ist beispielhaft die partielle Si-Na-Korreltionsfunktion für das System NS3 bei 100 K derjenigen bei 2100 K gegenübergestellt. Der Verlauf der Korrelationsfunktion bei hoher Temperatur wurde bereits in Kap. 2.3 diskutiert. Im Vergleich zu $g_{SiSi}(r)$ (Abbildung 2.20) haben vor allem übernächste Silizium–Natrium–Nachbarn größere Abstände als übernächste Silizium– Silizium–Nachbarn. (Der zweite Peak liegt hier bei ca. 6 Å im Gegensatz zu 5.3 Å in Abbildung 2.20.) Die Position des zweiten Peaks bleibt aber mit tiefer werdender Temperatur unverändert.

Ganz anders der erste Peak von $g_{SiNa}(r)$: Bei hoher Temperatur (2100 K) ist er nicht genau lokalisiert; er fällt über eine Flanke zum ersten Minimum der Korrelationsfunktion ab. Mit tiefer werdender Temperatur bildet sich allmählich eine Schulter und schließlich bei 100 K der in Abbildung 2.21 gezeigte zweite Peak bei 4.5 Å heraus. Um dieses interessante Phänomen zu verstehen, wurden einige der Konfigurationen, über die zur Berechnung der Paarkorrelationsfunktion bei 100 K gemittelt wurde, mit Hilfe des Programms "Xmol" visualisiert. Abbildung 2.21 zeigt einen Ausschnitt einer solchen Darstellung.

Es fiel auf, dass diejenigen Siliziumatome, die über einen Abstand 4.5 Å mit einem Natriumatom korreliert sind, die also einen Beitrag bei 4.5 Å zur partiellen Paarkorrelationsfunktion liefern, meist im Netzwerk über eine Sequenz Si–O–Si–O–Na oder Si– O–Na–O–Na mit dem entsprechenden Natriumatom verbunden waren. In Abbildung 2.21 ist ein solches Beispiel zu sehen: Das Siliziumatom des oberen SiO₄–Tetraeders ist über eine Sequenz –O–Si–O– mit einem Natriumatom verbunden, das von diesem einen Abstand von 4.5 Å hat (Länge des eingezeichneten Pfeils.).

Diese Beobachtungen lassen sich quantitativ über eine Verteilung der Silizium-Natrium-Abstände erfassen. Hierzu wurden zunächst mit Hilfe von Nachbarlisten für jede der Konfiguration, über die bei Berechnung der Korrelationsfunktionen gemittelt wird, alle Bindungssequenzen Si-O-Si-O-Na bzw. Si-O-Na-O-Na ermittelt. (Programm "SiNaKette4.f90", siehe Anhang B). Anschließend wurden Silizium-Natrium-Korrelationen berechnet, wobei eine Paar (Si,Na) als korreliert gilt, wenn die Atome über eine der obigen Sequenzen verbunden sind. Für korrelierte (Si,Na)-Paare wurde der Abstand bestimmt und eine Verteilung der relativen Häufigkeiten der Atomabstände aufgenommen (Programm ,,histo_sina5.f", Anhang B). Gemittelt wurde wieder jeweils über 100 Konfigurationen. Abbildung 2.22 fasst die erzielten Resultate zusammen, wobei im einem Fall nicht zwischen den Sequenzen Si-O-Si-O-Na und Si-O-Na-O-Na unterschieden wurde und im andern Fall nur die Bindungssequenz Si-O-Si-O-Na betrachtet wurde. Wie man sieht, liefert letztere den eigentlich entscheidenden Beitrag, da sich beide Verteilungen kaum unterscheiden. Die Häufigkeitsverteilung bestätigt die Beobachtung bei den visualisierten Konfigurationen: Bei 4.5 Å zeigt sich ein deutliches Maximum. Interessanterweise hat die Verteilung aber auch ein zweites Maximum bei 5.8 Å. (Si,Na)-Paare, die über einen Sequenz Si-O-Si-O-Na korreliert sind, liefern also auch einen Beitrag zum Peak bei ~ 6 Å in Abbildung 2.21.

Abbildung 2.22: Verteilung der relativen Häufigkeiten der Atomabstände von (Si,Na)–Paaren, die über Bindungssequenzen Si–O–Si–O–Na bzw. Si–O–Na–O–Na korreliert sind.

2.4.2 Koordinationszahlverteilungen

Aus den partiellen Paarkorrelationsfunktionen von NSx bei 100 K und SiO₂ bei 300 K lassen sich in Analogie zu Kapitel 2.3 die Koordinationszahlverteilungen bestimmen. Während aber dort die Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten von NS5 denjenigen von SiO₂ gegenübergestellt wurden, soll hier der Verlauf der Verteilungen in Abhängigkeit der Natrium–Konzentration untersucht werden. Die Koordinationszahlen sind wieder wie in Kapitel 2.3 über das erste Minimum der entsprechenden Paarkorrelationsfunktion definiert.

Abbildung 2.23 zeigt für die hier untersuchten Systeme die Verteilungen der relativen Häufigkeiten P(z) für die O–Si– bzw. O–O–Koordination bei 100 K bzw. 300 K. Bereits der Verlauf der Temperaturabhängigkeit von $P_{O-Si}(z = 2)$ in Abbildung 2.7 ließ erwarten, dass für tiefe Temperaturen bei SiO₂ defektkoordinierte Sauerstoffatome kaum noch vorkommen. In der Tat sind jetzt auch bei 300 K ca. 100% aller Sauerstoffatome zweifach mit Siliziumatomen koordiniert; sie verbinden also als Brückensauerstoffe je zwei SiO₄–Tetraeder. Ebenso findet man bei 300 K mit fast hundertprozentiger Wahrscheinlichkeit nur vierfach Sauerstoff–koordinierte Siliziumatome. Es liegt also hier im Glas eine nahezu ideale tetraedrische Netzwerkstruktur vor.

Abbildung 2.23: Verteilung der Koordinationszahlen P(z) für die O–Si– bzw. O–O–Koordination bei 100 K bzw. 300 K.

Anders bei den Natriumsilikaten: Wie man sieht, nimmt mit steigender Natrium-Konzentration das Maximum der Verteilung $P_{O-Si}(z)$ zu Gunsten eines wachsenden Anteils an einfach Silizium-koordinierten Sauerstoffatomen ab. Dies können "dangling bonds" sein wie auch Sauerstoffatome, die als weiteren Nachbarn ein Natriumatom haben. Je mehr Natrium im System vorhanden ist, umso geringer ist also die tetraedrische Netzwerkstruktur ausgeprägt.

Die Natriumionen können hierbei nicht vollständig die Rolle der Siliziumatome übernehmen. Wäre dies der Fall, so müssten die O–O–Koordinationszahlverteilungen der Natriumsilikate und des reinen Systemes im Wesentlichen übereinstimmen. Abbildung 2.23 zeigt, dass dem nicht so ist. Während beim SiO₂ der Großteil (ca. 86%) der Sauerstoffatome Brückensauerstoffe und demnach sechsfach Sauerstoff–koordiniert sind, findet man bei NSx mit wachsender Natrium–Konzentration zusehends auch dreifach koordinierte Sauerstoffatome; der Beitrag z = 6 sinkt entsprechend.

Vergleicht man Abbildung 2.23 mit Abbildung 2.7 aus Kapitel 2.3.2, so ist bemerkenswert, dass der Anteil z = 7 bei SiO₂ sehr stark abgefallen ist (12%), bei 2700 K lag er noch bei ca. 35%.

Interessante Eigenschaften zeigen auch die Koordinationszahlverteilungen für Koordinationen mit Natrium bei tiefen Temperaturen. In Abbildung 2.24 sind beispielhaft die Verteilungen für die Na-O- und die Si-Na-Koordination bei unterschiedlichen Natrium-Konzentrationen zusammengefasst.

In Einklang mit dem tendenziellen Verlauf von $P_{\text{Na-O}}(z = 3)$ und $P_{\text{Na-O}}(z = 4)$ mit abnehmender Temperatur zeigen die Verteilungen der Na–O–Koordination bei 100 K für alle Natriumsilikate ein Maximum bei z=3 und z=4, wobei beide Koordinationen ungefähr gleich häufig vorkommen. "z = 4" entspricht einer Tetraederanordnung, bei der also Natrium eine Rolle wie Silizium übernimmt. Der Anteil von z = 3 in gleicher Größenordnung zeigt aber, dass insgesamt eine völlig andere Struktur als in SiO₂ vorliegt. Anzumerken ist, dass im Experiment (vgl. [94]) keine vierfach koordinierten Natriumatome gefunden werden; vielmehr werden hauptsächlich fünffach bzw. sechsfach Sauerstoff–koordinierte Natriumatome beobachtet. Dies deutet auf eine Schwäche des von uns verwendeten mikroskopischen Modells hin.

Hervorzuheben ist auch der Verlauf der Verteilungen der Si-Na-Koordination in Abhängigkeit vom Natriumanteil im System (siehe Abb. 2.24): Bei allen Systemen NSx, x = 2, 3, 5, ist die Kurvenform relativ konstant. Mit wachsender Natrium-Konzentration beobachtet man aber eine monotone Verschiebung der Verteilungskurven hin zu großen z-Werten. Eine geringere Anzahl von Natriumatomen hat zur Folge, dass auch weniger Natrium-Nachbarn einem Siliziumatom zuzuordnen sind (was entsprechend kleinere z-Werte zur Folge hat). Es lässt sich hieraus schließen, dass es bei den betrachteten Tieftemperaturkonfigurationen nicht zu einem Clustern der Natriumatome bzw. zu einer Mikrophasensegregation kommt. Dies bedeutet aber nicht, dass auf größeren Zeitskalen und bei höheren Temperaturen nicht auch bevorzugte Natrium-Diffusionswege im System vorkommen können. Eine solche "Kanal-Diffusion" wurde erst kürzlich von Jund *et al.* [22] bei Natriumsilikaten beobachtet.

Abbildung 2.24: Verteilung der Koordinationszahlen P(z) für die Na–O– bzw. Si–Na–Koordination bei 100 K.

2.5 Hochfrequenzdynamik

Das Aufbrechen des tetraedrischen SiO_4 -Netzwerks durch Natrium lässt erwarten, dass auch das Schwingungsspektrum der hier untersuchten Natriumsilikate starke Änderungen im Vergleich zu SiO_2 aufweist. Ziel dieses Kapitels ist es daher, die vibratorische Dynamik unserer Systeme bei tiefen Temperaturen anhand frequenzabhängiger Größen zu untersuchen.

Bei Kristallen lassen sich viele Tieftemperatureigenschaften wie z.B. die spezifische Wärme bestimmen, wenn man die Zustandsdichte $g(\nu)$ kennt. Sofern die Temperatur hinreichend klein ist, kann $g(\nu)$ in harmonischer Approximation berechnet werden. Dies gilt auch für amorphe Systeme. Zu beachten ist hier allerdings, dass mit wachsender Temperatur nicht nur anharmonische Effekte (wie beim Kristall) eine Rolle spielen, sondern dass auch die Relaxationsdynamik des Systems relevant wird, und zwar selbst unterhalb der Glasübergangstemperatur T_g . Die harmonische Approximation wird dann ungültig und man erhält nur noch eine *effektive* Zustandsdichte.

Im Folgenden sollen die in harmonischer Approximation berechneten Zustandsdichten $g(\nu)$ der Systeme NSx (x = 2, 3, 5) und SiO₂ gegenübergestellt werden. In [87] wurde bereits die Zustandsdichte des Systems SiO₂ mit 8016 Atomen für verschiedene Temperaturen T vorgestellt. $g(\nu)$ ist hiernach für $T \leq 300$ K im Wesentlichen temperaturunabhängig, d.h. die harmonische Approximation ist gültig. Bei höheren Temperaturen ergeben sich Abweichungen aufgrund anharmonischer Effekte der lokalen Potenziallandschaft, in der sich die Ionen bewegen. Aus diesem Grund wurde die Zustandsdichte für NSx bei 100 K bestimmt, beim reinen System wird die Temperatur 300 K betrachtet. Ausgangspunkt bildeten jeweils zwei unabhängige Abkühlläufe mit den in Kapitel 2.2 beschriebenen Kühlraten. Der Frequenzbereich, den wir auflösen können, liegt zwischen 0.5 THz und 40 THz, was den wesentlichen Teil der Schwingungsmoden unserer Systeme wie auch vom reinen SiO₂ erfasst.

In diesem Kapitel wird nicht nur die Zustandsdichte von NSx vorgestellt; es sollen auch vor allem folgende Fragen eingehend untersucht werden:

Wie ändert sich das Schwingungsspektrum, wenn man die Natrium–Konzentration ändert?

Das Spektrum des reinen SiO_2 weist eine sehr charakteristische Struktur aus inter– und intratetraedrischen Schwingungsmoden auf, die wir auch hier diskutieren werden. Eine Netzwerkmodifikation durch den Netzwerkwandler Natrium lässt eine starke Störung dieser Moden erwarten.

Was passiert beim Aufbrechen der SiO_2 -Netzwerks durch Natriumionen mit den bekannten intratetraedrischen Schwingungsmoden?

Ändert sich das Spektrum auch bei tiefen Frequenzen, nahe des Bosonenpeaks (einer Anregung deren genaue Natur bisher noch unbekannt ist, siehe z.B. [74])?

Schließlich lassen sich, wie oben erwähnt, aus $g(\nu)$ verschiedene thermodynamische

Größen berechnen:

Wie verhält sich insbesondere die spezifische Wärme bei konstantem Druck, C_V , in Abhängigkeit von der Natrium–Konzentration?

2.5.1 Die Zustandsdichte in harmonischer Approximation

Die vibratorische Zustandsdichte ist wie folgt definiert (siehe z.B. [68]):

$$g(\nu) := \frac{1}{3N} \sum_{i=1}^{3N} \delta(\nu - \nu_i) , \qquad (2.9)$$

wobei N die Teilchenzahl bezeichnet und ν_i , i = 1, ..., 3N, die Eigenfrequenzen der *dynamischen Matrix* **D** sind. **D** ergibt sich aus den zweiten Ableitungen der Potenzialfunktion V nach den Ortskomponenten:

$$\mathbf{D}_{j\alpha,k\beta} = \frac{1}{m_j m_k} \frac{\partial^2 V(\{\vec{r}_i\})}{\partial r_{j,\alpha} \partial r_{k,\beta}} \,. \tag{2.10}$$

 $i, j, k \in \{1, \ldots N\}$ sind Teilchenindizes, α, β bezeichnen die kartesischen Komponenten x, y, z. $\{\vec{r_i}\}$ fasst die Teilchenpositionen in einem Minimum von V zusammen. Um die Zustandsdichte in der Simulation zu erhalten, kann man nach der "steepest descent"–Methode den Ort des nächsten metastabilen Minimums der Potenzialfunktion bestimmen und dann $g(\nu)$ aus den Eigenwerten der Hesse–Matrix in diesem lokalen Minimum berechnen. Dieser Zugang wurde z.B. in [59] gewählt, wo die Kühlratenabhängigkeit von $g(\nu)$ bei einem SiO₂–System mit 1002 Atomen untersucht wurde. Für die hier betrachtetn Systeme aus rund 8000 Teilchen ist diese Methode allerdings numerisch sehr aufwendig: Mit N = 8016 erhält man eine Matrix mit $(3N) \times (3N + 1)/2 \sim 2.9 \cdot 10^8$ unabhängigen Einträgen, wofür mehrere GB Speicherplatz und auch eine hohe Rechenzeit notwendig wären.

Einfacher ist es, $g(\nu)$ nach [68] mittels der massegewichteten Fouriertransformierten der Geschwindigkeitsautokorrelationsfunktion zu bestimmen:

$$g(\nu) = \frac{1}{Nk_BT} \sum_{j=1}^{N} m_j \int_{-\infty}^{+\infty} dt \, e^{i2\pi\nu t} \, \langle \vec{v}_j(t) \cdot \vec{v}_j(0) \rangle \quad .$$
 (2.11)

Man erhält dann eine effektive Zustandsdichte, die aber bei ausreichend tiefer Temperatur, wenn also die harmonische Approximation gilt, mit der tatsächlichen übereinstimmt. Bei den hier betrachteten Temperaturen von 100 K bzw. 300 K sollte, wie bereits erwähnt, die harmonische Näherung anwendbar sein.

Die Fouriertransformierte in (2.11) lässt sich numerisch leicht berechen, wenn man das *Wiener–Khinchin–Theorem* [95] verwendet. Hiernach sind die Fouriertransformierten

der partiellen Geschwindigkeitsautokorrelationsfunktionen gleich dem Betragsquadrat der Fouriertransformierten der Geschwindigkeitskomponenten:

$$\operatorname{FT}\left[\langle v_i^{\alpha}(t)v_i^{\alpha}(0)\rangle\right] = \left|\operatorname{FT}\left[v_i^{\alpha}(t)\right]\right|^2 \equiv \left|\hat{v}_i^{\alpha}(\nu)\right|^2 , \qquad (2.12)$$

mit i = 1, ..., N, $\alpha \in \{x, y, z\}$ und der allgemeinen Definition der Fouriertransformierten einer Funktion f(t),

$$\hat{f}(\nu) \equiv \operatorname{FT}\left[\langle f(t) \rangle\right] := \int_{-\infty}^{+\infty} f(t) \, e^{-i2\pi\nu t} dt \,. \tag{2.13}$$

Für die Systeme NSx, x = 2, 3, 5, wurden bei 100 K jeweils zwei unabhängige Simulationsläufe à 16384 Zeitschritten ($\hat{=}26.8$ ps Realzeit) durchgeführt, wobei alle acht Zeitschritte (~ 0.013 ps) die Geschwindigkeiten { $\vec{v}_i(t)|i = 1, ... N$ } abgespeichert wurden. Die diskreten Fouriertransformierten dieser Zeitreihen wurde mit Hilfe der Routinen "sctrm" und "four1" der "Numerical Recipes" [95] über schnelle Fouriertransformation (FFT) berechnet. Es konnte somit der Frequenzbereich

$$1/26.8 \text{ ps} = 0.04 \text{ THz} \le \nu \le 38.2 \text{ THz} = 1/(2 \cdot 0.013 \text{ ps})$$
 (2.14)

untersucht werden. Beim SiO₂ wurden in [87] die Zeitreihen $\{\vec{v}_i(t)|i = 1, ..., N\}$ in Simulationen aufgenommen, die sich über 8192 Zeitschritte (13.4 ps) erstreckten; abgespeichert wurden die Geschwindigkeiten ebenfalls alle acht Zeitschritte. Die kleinste auflösbare Frequenz lag hier demnach bei 0.075 THz, die höchste ebenfalls bei 38.2 THz.

Abbildung 2.25 zeigt die nach Gl. (2.11) berechneten Zustandsdichten $g(\nu)$ für die Systeme NSx, x = 2, 3, 5, bei 100 K im Vergleich zur Zustandsdichte von SiO₂ bei 300 K (aus [87]) jeweils als Funktion der Frequenz ν in THz. Zum Verständnis ist es sinnvoll, zunächst die SiO₂–Zustandsdichte näher zu betrachten bevor die Natrium– Systeme diskutiert werden.

Nach Abbildung 2.25 weist die Zustandsdichte des reinen Systems zwei Hauptmerkmale auf, einen Doppelpeak bei hohen Frequenzen und einen relativ flachen Berg bei mittleren und tiefen Frequenzen. Diese Struktur wurde bereits in [55, 96, 59] diskutiert. Die beiden Hochfrequenzpeaks wurden auch mit Hilfe von Neutronenstreuexperimenten gemessen [97] und liegen dort bei 32.1 THz bzw. 35.7 THz. Die Simulation gibt die Position dieser Peaks also sehr gut wieder. Es konnte gezeigt werden [79, 98], dass beide Moden durch intratetraedrische Streckschwingungen zustande kommen. Die vier Sauerstoffatome eines SiO₄–Tetraeders bewegen sich bei der höheren Frequenz ("breathing mode") gleichphasig relativ zum zentralen Si–Atom, bei der niedrigeren Frequenz schwingen jeweils zwei O–Atome gegenphasig. Der eher strukturlose Berg bei mittleren Frequenzen wird hingegen durch intertetraedrische Bewegungen verursacht. Anzumerken ist auch der scharfe Abfall der Zustandsdichte von SiO₂ bei kleinen Frequenzen. Er ist ein Finite–Size–Effekt: Akustische Moden mit Frequenzen $\nu < c/L$ (c:

Abbildung 2.25: Zustandsdichte $g(\nu)$ für die Systeme NSx, x = 2, 3, 5, bei 100 K im Vergleich zur Zustandsdichte von SiO₂ bei 300 K aus [87].

Schallgeschwindigkeit, *L*: Länge der Simulationsbox) passen nicht in die Simulationsbox hinein. Dieser Tieffrequenzanteil des Spektrums ist aber nicht unwesentlich. Vor allem im Zusammenhang mit dem Bosonenpeak spielt er eine entscheidende Rolle. Wir werden in Abschnitt 2.5.4 hierauf näher eingehen.

Im Vergleich zum reinen SiO₂ zeigen die Zustandsdichten der Natriumsilikate nach Abb. 2.25 keine deutliche Doppelpeakstruktur bei hohen Frequenzen. Die Spektren werden dominiert von einer hohen Flanke um $\nu \approx 4$ THz, die auf ein kleines Plateau bei mittleren Frequenzen abfällt. Im Gegensatz zum SiO₂ zeigt sich nur ein schwaches Minimum bei ca. 28 THz. An die Stelle des Doppelpeaks ist eine Schulter getreten, die allenfalls noch beim System mit dem geringsten Natrium–Anteil, NS5, eine Doppelpeakstruktur erahnen lässt. Je höher die Natrium–Konzentration, umso mehr ebnen sich die beiden Hügel zu einem Plateau; gleichzeitig wächst die dominante Flanke bei kleinen Frequenzen.

Die Lage der Schulter mit ihren zwei Hügeln bei hohen Frequenzen ist im Vergleich zum Doppelpeak beim SiO_2 leicht nach links zu kleineren Frequenzen verschoben. Bei einer Interpretation sollte man hier allerdings vorsichtig sein: Die Systeme NSx, x = 2, 3, 5, und SiO_2 werden bei nicht derselben Temperatur gegenübergestellt. Auch die Abkühlraten zur Gewinnung der Ausgangskonfigurationen stimmen nach Kap. 2.5.2 nicht genau überein. Dies trifft insbesondere auf das System NS5 zu. In Ref. [87] konnte für das reine Silikatsystem mit 8016 Atomen gezeigt werden, dass mit kleiner werdender Temperatur der typische Doppelpeak des Frequenzspektrums leicht nach rechts, zu höheren Frequenzen wandert; gleichzeitig wächst die Amplitude, das Minimum wird tiefer und dessen Position verschiebt sich nach rechts. Ebenso zeigen die Untersuchungen von Vollmayr *et al.* [60], dass die Spektren Kühlraten– abhängig sind: Je kleiner die Kühlrate umso mehr wandert die Position beider Peaks nach rechts und umso tiefer wird das Minimum.

Um die Struktur der Natriumsilikat–Spektren besser zu verstehen, soll im Folgenden der Einfluss der einzelnen atomaren Komponenten genauer beleuchtet werden.

2.5.2 Atomart–spezifische Anteile

Zur Erklärung der Struktur der Natriumsilikat–Spektren bietet die Simulation einen Zugang, der im Experiment so nicht möglich ist. Die Zustandsdichte $g(\nu)$ kann nach den Beiträgen der einzelnen Atomsorten aufgespalten werden. D.h. im Folgenden betrachten wir die *partiellen Zustandsdichten*

$$g_{\alpha}(\nu) = \frac{1}{Nk_BT} \sum_{j \in \alpha} m_j \int_{-\infty}^{+\infty} dt \, e^{i2\pi\nu t} \, \langle \vec{v}_j(t) \cdot \vec{v}_j(0) \rangle \ , \ \alpha \in \{\text{Si}, \text{Na}, \text{O}\} \ , \quad (2.15)$$

für Si-, Na- und O-Atome, deren Summe gerade die (vibratorische) Zustandsdichte gemäß Gl. (2.11) ergibt.

In Abbildung 2.26 sind diese Atomart–spezifischen Anteile an den Zustandsdichten $g(\nu)$ nach Abbildung 2.25 für das System SiO₂ und beispielhaft für das Natriumsilikat– System mit der höchsten Natrium–Konzentration, NS2, gegenübergestellt. Alle hier gezeigten partiellen Zustandsdichten $g_{\alpha}(\nu)$, $\alpha \in {Si, Na, O}$, sind so normiert, dass sie addiert die Zustandsdichten $g(\nu)$ aus Abb. 2.25 ergeben.

Bei SiO₂ sieht man deutlich, dass zum Doppelpeak im Bereich von 28 THz bis ca. 40 THz sowohl die partielle Silizium– als auch die partielle Sauerstoff–Zustandsdichte beitragen. Das NS2–System zeigt hingegen in diesem Frequenzbereich lediglich eine leichte Doppelhügelstruktur bei der partiellen Sauerstoff–Zustandsdichte. Der Anteil der charakteristischen intratetraedrischen Schwingungsmoden des SiO₂ am Gesamtspektrum nimmt also aufgrund der Netzwerkmodifikation durch Natrium ab. Die Verteilung der intratetraedrischem Moden wird hierbei breiter, insbesondere verschieben sich diese zu kleineren Frequenzen, d.h. werden "weicher". Stattdessen dominiert das Alkalimetall das Spektrum durch starke niederfrequente Oszillationen: Wie man aus Abbildung 2.26 deutlich erkennt, wird die extreme Flanke im Bereich bis zu 15 THz in Abb. 2.25 im Wesentlichen durch den Natrium–Beitrag an der Zustandsdichte verursacht. Ab ca. 20 THz findet man keine Natrium–Schwingungsmoden mehr. Im tiefen und mittleren Frequenzbereich ähneln die Verläufe der partiellen Silizium– und Sauerstoff–Zustandsdichten denjenigen von SiO₂.

Abbildung 2.26: Gegenüberstellung der Atomart–spezifischen Anteile an den Zustandsdichten $g(\nu)$ nach Gl. (2.15) für die Systeme SiO₂ (300 K) und Natriumdisilikat NS2 (100 K).

Abbildung 2.27: Gegenüberstellung der auf eins normierten partiellen Silizium– und Sauerstoff–Zustandsdichten $g_{Si}(\nu)$ bzw. $g_O(\nu)$ von SiO₂ und NS2 bei 100 K bzw. 300 K.

Dies zeigt sich auch deutlich in Abbildung 2.27, wo noch einmal gesondert die partiellen Si– bzw. O–Zustandsdichten beider Systeme, hier jeweils auf eins normiert, gegenübergestellt werden.

Wie wir in Kapitel 2.3 und 2.4 gesehen haben, führt das Aufbrechen des SiO_4 -Tetraedernetzwerks durch die Natriumionen zu einem nicht unwesentlichen Anteil an einfach Si-koordinierten O-Atomen. Im reinen System findet man hingegen mit fast hundertprozentiger Wahrscheinlichkeit nur zweifach Si-koordinierte Sauerstoffatome (Brückensauerstoffe zweier SiO_4 -Tetraeder). Diese Beobachtung legt nahe, zur genaueren Analyse der Zustandsdichten aus Kap. 2.5.1 diese nicht nur nach den Beiträgen der einzelnen Atomsorten, sondern zusätzlich noch nach deren Koordinationen feiner aufzuspalten.

2.5.3 Aufspaltung hinsichtlich Koordinierung

In Analogie zu Gl. (2.15) lassen sich die *partiellen Koordinationszustandsdichten* definieren:

$$g_{\alpha-n}(\nu) = \frac{1}{Nk_BT} \sum_{j \in \alpha-n} m_j \int_{-\infty}^{+\infty} dt \, e^{i2\pi\nu t} \, \langle \vec{v}_j(t)\vec{v}_j(0) \rangle \,\,, \tag{2.16}$$

mit $\alpha -n \in {\text{Si}-n, \text{O}-n | n \in \mathbb{Z}_0}$. Die Zahl *n* gibt jeweils an, wievielfach ein Atom einer Sorte (Si bzw. O) bzgl. der anderen koordiniert ist ¹. Die nach Gl. (2.16) berechneten und auf eins normierten partiellen Koordinationszustandsdichten $g_{\alpha-n}(\nu)$ sind in Abbildung 2.28 wieder für SiO₂ und NS2 aufgetragen. Eingezeichnet sind auch die Gesamtzustandsdichten $g(\nu)$ aus Abb. 2.25, die sich als die Summen der $g_{\alpha-n}(\nu)$, $\alpha-n \in {\text{Si}-n, \text{O}-n | n \in \mathbb{Z}_0}$ und $g_{\text{Na}}(\nu)$ (bei NS2) ergeben.

Da beim reinen System nahezu alle Si–Atome vierfach O–koordiniert (Tetraeder) bzw. fast alle O–Atome zweifach Si–koordiniert sind (Brückensauerstoffe), wurden beim SiO₂ auch nur Anteile "Si–4" und "O–2" in Abbildung 2.28 aufgenommen. Beiträge anders koordinierter Silizium– bzw. Sauerstoffatome sind so klein, dass sie auf der hier gewählten THz⁻¹–Skala nicht mehr aufgelöst werden können. Hier bringt also die zusätzliche Aufspaltung hinsichtlich Koordinierung wie zu erwarten keine weitere Einsicht in die Struktur der SiO₂–Zustandsdichte. Anders beim System NS2: Abgesehen von den Beiträgen der nicht vierfach O–koordinierten Si–Atome, die verschwindend klein und daher hier wieder nicht aufgelöst werden können, spielen beim Sauerstoff neben "O–2" und "O–3" noch zwei Beiträge eine Rolle, "O–x" und "O–1": "O–x" fast alle Sauerstoffatome zusammen, die nicht einfach, zweifach oder dreifach Si–koordiniert sind, also z.B. nur Natrium–Nachbarn haben.

"O–1" bezeichnet hier Sauerstoffatome, die nur einen Silizium–Nachbarn haben. D.h. es handelt sich um die bereits in Kap. 2.3.1 beobachteten "dangling bonds", die mit zunehmender Natrium–Konzentration immer häufiger vorkommen. Wie man sieht, sind sie neben "Si–4" und "O–2" für die Auffüllung des Minimums der Gesamtzustandsdichte bei 28 THz verantwortlich. Der Zusatz von Natrium führt also vermutlich zum Auftreten strukturell beteiligter Sauerstoffatome mit "weicheren" Schwingungsmoden.

Der Vergleich der partiellen Koordinationszustandsdichten für die hier untersuchten Systeme zeigt eine interessante Entwicklung: In Abbildung 2.29 sind $g_{Si-4}(\nu)$ und $g_{O-2}(\nu)$ für SiO₂ bei 300 K und die Systeme NSx, x = 2, 3, 5, bei 100 K gegenübergestellt. Bis zu Frequenzen von ca. 25 THz ist der Verlauf der "Si-4"-Anteile aller Systeme wie auch die Struktur der "O-2"-Anteile aller Systeme jeweils qualitativ sehr ähnlich. Im Bereich des Doppelpeaks des SiO₂-Systems zeigt sich wie bereits schon in Abbildung 2.28, dass hier bei den Natriumsilikat-Systeme hauptsächlich "O-2" zu einem (Doppel-)Peak beiträgt, und zwar umso mehr je geringer die Natrium-Konzentration ist.

¹Eine Aufspaltung hinsichtlich der Koordination der Natriumatome haben wir hier nicht vorgenommen, da Natrium wie in Abschnitt 2.5.2 gesehen im Wesentlichen nur den niederfrequenten Teil des Spektrums bestimmt.

Abbildung 2.28: Gegenüberstellung der partiellen Koordinationszustandsdichten für SiO₂ (100 K) und NS2 (300 K) (Definition siehe Text).

Abbildung 2.29: Vergleich der partiellen Koordinationszustandsdichten "Si–4" und "O–2" für die Systeme SiO₂ und NS2 bei 300 K bzw. 100 K.

Abbildung 2.30: Addierte "Si–4"– und "O–2"–Anteile der Systeme NSx, x = 2, 3, 5, (300 K) im Vergleich zu SiO₂ (100 K).

Diese Beobachtungen lassen vermuten, dass die "Si–4"– und "O–2"–Anteile zusammen wieder eine ähnliche "Zustandsdichte" liefern wie SiO₂. Abbildung 2.30 zeigt diese addierten Anteile der Systeme NSx, x = 2, 3, 5, und SiO₂. Es ergibt sich also eine effektive Zustandsdichte, die tatsächlich in ihrem Verlauf der Zustandsdichte von SiO₂ ähnlich ist. (Im Falle von SiO₂ stimmt sie mit dieser im Wesentlichen überein.) Im Bereich des Bergs aus intertetraedrischen Schwingungsmoden ist die Abweichung zum reinen System sehr gering. Beeinflusst durch das zusätzliche Alkalimetall im System werden vielmehr die intratetraedrischen Oszillationen: Der Doppelpeak ist im Vergleich zum SiO₂ "verschmiert", mit wachsender Natrium–Konzentration nimmt die Amplitude ab, das Mimimum bei ca. 28 THz ist nicht mehr so stark ausgeprägt wie beim reinen System, Peak und Minimum verschieben sich zu kleineren Frequenzen, d.h. die entsprechenden Moden werden "weicher".

Zusammenfassend zeigen alle hier vorgestellten Analysen, dass der Netzwerkmodifikator Natrium eine starke Änderung der vibratorischen Dynamik im Vergleich zum SiO₂ verursacht.

Durch das Aufbrechen des SiO_4 -Tetraedernetzwerks und die entstehenden "dangling bonds" werden vor allem die bekannten intratetraederischen Schwingungsmoden beeinflusst, und zwar umso mehr je höher die Natrium-Konzentration ist. Bei tieferen Frequenzen dominiert ein hoher Natrium-Beitrag die Zustandsdichten.

Abbildung 2.31: Vergleich der aus der Simulation bestimmten Zustandsdichten $g(\nu)$ mit Neutronenstreudaten von A. Meyer [99]. Die experimentellen Daten wurden mit einem willkürlichen Faktor multipliziert.

2.5.4 Experimentelle Zustandsdichten

Bevor wir im nächsten Abschnitt weitere Größen aus den $g(\nu)$ berechnen, stellen wir die aus der Simulation bestimmten Zustandsdichten experimentellen Daten gegenüber. Abbildung 2.31 zeigt die von A. Meyer [99] mittels Neutronenstreuung gemessenen Zustandsdichten der Systeme NS2, NS3 und NS4 im Vergleich zu den von uns berechneten Zustandsdichten der Systeme NSx, x = 2, 3, 5. Die Zustandsdichten der Simulation wurden gemäß

$$g_n(\nu) = \frac{1}{\sum_{\alpha} N_{\alpha} b_{\alpha}^2} N \cdot \sum_{\alpha} b_{\alpha}^2 g_{\alpha}(\nu) , \qquad (2.17)$$

mit Neutronenstreulängen b_{α} , $\alpha \in \{\text{Si, Na, O}\}$ gewichtet. Nach der Literatur [100] ist $b_{\text{Si}} = 0.4149 \cdot 10^{-12}$ cm, $b_{\text{Na}} = 0.363 \cdot 10^{-12}$ cm, $b_{\text{O}} = 0.5803 \cdot 10^{-12}$ cm. $N = \sum_{\alpha} N_{\alpha} = N_{\text{Si}} + N_{\text{Na}} + N_{\text{O}}$ bezeichnet die Teilchenzahl. Der Messung ist nur der Bereich bis ca. 20 THz zugänglich. Zum Vergleich wurden die experimentellen Daten mit einem willkürlichen Faktor multipliziert.

Wie man sieht, liefern Experiment und Theorie das gleiche qualitative Verhalten: Die dominante niederfrequente Flanke des Spektrums wächst mit steigender Natrium–

Abbildung 2.32: $g(\nu)/\nu^2$ für die Systeme NS2 und NS3 bei 100 K sowie für SiO₂ bei 300 K. 1.4 THz kennzeichnet die Lage des Bosonenpeaks für SiO₂.

Konzentration im System. Im Bereich von 10–15 THz schneiden sich jeweils die Kurven, so dass dann die Zustandsdichten der Systeme mit dem kleinsten Natrium–Anteil überwiegen. Allerdings steht dem Experiment bei größerer Frequenzen nur ein eingeschränkter Wellenvektorbereich zur Mittelung zur Verfügung, so dass hier ein genauerer Vergleich mit der Simulation nicht mehr sinnvoll ist.

2.5.5 Debye–Theorie und spezifische Wärme

Wie bereits zu Beginn dieses Kapitels erwähnt, lassen sich aus der Zustandsdichte in harmonischer Approximation recht einfach Tieftemperatureigenschaften wie z.B. die spezifische Wärme bei konstantem Volumen $C_V = (\partial E/\partial T)_V$ berechnen. C_V ist in harmonischer Näherung über die Beziehung

$$C_V = \frac{h^2}{k_B T} \int \frac{\nu^2 \exp(h\nu/k_B T)}{(\exp(h\nu/k_B T) - 1)^2} g(\nu) d\nu$$
(2.18)

mit der Zustandsdichte $g(\nu)$ verknüpft [68]. Bei tiefer Temperatur wird die Temperaturabhängigkeit der spezifischen Wärme vor allem vom niederfrequenten Anteil des Spektrums bestimmt:

Gemäß der Debye–Theorie tragen zur spezifischen Wärme von Festkörpern bei tiefen Temperaturen hauptsächlich langreichweitige Schallmoden bei. Die *Debye–Zustandsdichte* der entsprechenden Phononen ist hiernach

$$g_D(\nu) = 3 \frac{\nu^2}{\nu_D^3} ,$$
 (2.19)

Abbildung 2.33: Spezifischen Wärmen C_V für die Systeme SiO₂, NS3 und NS2. Eingezeichnet sind auch die spezifischen Wärmen von SiO₂ bei konstantem Druck, C_p , die in verschiedenen Experimenten gemessen wurden [101, 102, 103].

mit der Debye-Frequenz

$$\nu_D = \left(\frac{3}{4\pi} \frac{N}{V}\right)^{1/3} \left(2\frac{1}{c_t^3} + \frac{1}{c_l^3}\right)^{-1/3} .$$
(2.20)

 $(c_t \text{ und } c_l \text{ bezeichnen die transversale bzw. longitudinale Schallgeschwindigkeit; N ist die Anzahl der Teilchen im Volumen V.) Trägt man also <math>g(\nu)/\nu^2$ gegen die Frequenz auf, so sollte sich bei tiefen Temperaturen ein konstanter Wert ergeben.

Abbildung 2.32 zeigt $g(\nu)/\nu^2$ für die Systeme NS2 und NS3 bei 100 K sowie für SiO₂ bei 300 K. Wie man sieht, zeigen alle Systeme einen großen Peak bei 1.4 THz (SiO₂) bzw. 0.9 THz (NS2, NS3), also einen starken Überschuss zum Debye–Wert, den sog. *Bosonen–Peak*. Daraus lässt sich für alle hier betrachteten Systeme schließen, dass bei kleinen Frequenzen und tiefen Temperaturen nicht nur Schallmoden allein zur Zustandsdichte beitragen können.

In Abbildung 2.33 sind die gemäß Gl. (2.18) mit den Zustandsdichten aus Kap. 2.5.2 berechneten spezifischen Wärmen C_V für die Systeme SiO₂, NS3 und NS2 zusammengefasst. Die Abbildung zeigt auch die spezifischen Wärmen von SiO₂ bei konstantem Druck, C_p , die in verschiedenen Experimenten [101, 102, 103] gemessen wurden. Alle aus den Simulationen bestimmten Kurven stimmen qualitativ überein und liegen quantitativ nahe den experimentellen Werten für SiO₂.

Kapitel 3

Aluminiumsilikat

In Kapitel 2 haben wir am Beispiel des Alkalimetalls Natrium gesehen, dass ein Netzwerkwandler zu einer sehr starken Beeinflussung der Struktur und Dynamik von reinem SiO₂ führt. Das ungeordnete fast ideale SiO₄–Tetraedernetzwerk wird aufgebrochen; die resultierenden "dangling bonds" beeinflussen die Systemeigenschaften. Reine Natronsilikatgläsern sind, wie eingangs erwähnt, für industrielle Zwecke eher ungeeignet. Weitere Zusätze wie Al₂O₃ verbessern gewünschte Eigenschaften, z.B. Hochtemperaturtauglichkeit, indem sie u.a. zu einer Stabilisierung des Netzwerks führen. Einen Prototyp für Aluminosilikatgläser (die neben Al und Si noch Alkalien oder Erdalkalien enthalten) stellen reine Al₂O₃–SiO₂–Gläser dar. Aus materialwissenschaftlicher wie geologischer Sicht ist es von fundamentaler Bedeutung, die Struktur und Dynamik dieser Systeme zu verstehen.

Ein zentrales Problem stellt hierbei seit langem die Koordination der Aluminiumatome dar. NMR–Messungen an reinen Aluminiumsilikaten bei Normaldruck lassen auf vierfach, fünffach und sechsfach koordinierte Aluminiumatome schließen (siehe z.B. [36]). In Aluminosilikaten hängt die Koordinationszahl vom Alkalianteil ab. Bei geringer Alkalikonzentration findet man hauptsächlich vierfach koordinierte Aluminiumatome. Aluminium spielt hier die Rolle eines Netzwerkbildners wie Silizium. Mit wachsendem Alkalianteil zeigt die Koordination ein größeres Spektrum; es treten verstärkt höher koordinierte Aluminiumatome auf. Aluminium übernimmt die Rolle eines Netzwerkwandlers [28, 37, 104].

Von der Koordination des Aluminiums hängen eine Vielzahl interessanter Eigenschaften der Aluminiumsilikatsysteme ab. Verschiedene Studien lassen z.B. im Phasendiagramm von Al_2O_3 -Si O_2 auf eine metastabile Entmischungsregion schließen (siehe Einleitung, Abb. 5). Zwischen einer Si-reichen Glasphase, die hauptsächlich vierfach koordinierte Aluminiumatome enthält, und einer Al-reichen Phase, in der Aluminium in unterschiedlicher Koordination vorkommt, werden Phänomene wie Mi-

Abbildung 3.1: Elektronenmikroskopaufnahme einer abgeschreckten Al_2O_3 -SiO₂-Schmelze (15 Mol% Al_2O_3 - 85 Mol% SiO₂). Die Aufnahme zeigt Tropfen aus Aluminiumsilikatglas mit hohem Aluminiumanteil (negatives Relief) und kristallisierte Tropfen (erhaben) (aus [16] nach MacDowell und Beall, 1969 [27]).

krophasenseparation diskutiert. Beispielsweise wird Flüssig–Flüssig–Phasenseparation mit anschließender lokaler Auskristallisation von Mullit $3Al_2O_3 \cdot 2SiO_2$ beobachtet (siehe Abb. 3.1).

Die genaue Form der Entmischungskurve im Phasendiagramm wird in der Literatur viel diskutiert. Als erste berichteten MacDowell und Beall [27] 1969 von einer metastabilen Entmischung im System. An Al_2O_3 -SiO₂-Schmelzen bei 1100°C fanden sie Flüssig-Flüssig-Phasenseparation bei einer Zusammensetzung von 7–55 Mol% Al_2O_3 . Hierauf folgten eine Vielzahl weiterer Studien. Heute wird weitgehend eine Entmischung im Phasendiagramm der Al_2O_3 -SiO₂-Systeme angenommen, die bei 1400°C zwischen 10–50 Mol% (ca. 30–70 Gew.%) Al_2O_3 liegt und einen Scheitel bei 1600°C mit einer kritischen Zusammensetzung von 20 Mol% Al_2O_3 erreicht (vgl. Takei *et al.* 2000 [105]).

Um einen tieferen Einblick in die Struktur und Dynamik dieser interessanten Al_2O_3 -SiO₂-Systeme zu erhalten, untersuchen wir in diesem Kapitel Aluminiumdisilikat, das mit einem Anteil von 33 Mol% (ca. 45 Gew.%) Al_2O_3 in den erwähnten Entmischungsbereich fällt. Wir stellen die charakteristischen Eigenschaften unseres Systems dem reinen SiO₂ aus [30, 49] wie auch reinem Al_2O_3 gegenüber. Abbildung 3.2 zeigt einen Schnappschuss unserer Simulationsbox bei 3250 K. Vergleicht man mit Abb. 2.1, so erkennt man deutlich, dass sich die grauen Aluminiumatome anders als die Natriumatome bei NS5 selbst bei dieser hohen Temperatur stark vernetzt (meist vierfach koordiniert) in die Si-O-Tetraederstruktur einfügen.

Um unsere strukturellen Ergebnisse besser einordnen zu können, geben wir zunächst

Abbildung 3.2: Simulationsbox von Aluminiumdisilikat, $(Al_2O_3)(2 \cdot SiO_2)$, bei der Temperatur 3250 K. Die Kantenlänge beträgt 26.347 Å. Gelb: Silizium, grau: Aluminium, rot: Sauerstoff.

einen Überblick zu Experimenten, die sich vornehmlich mit der Aluminium–Koordination beschäftigt haben (Kap. 3.1). Anschließend fassen wir die typischen Parameter unseres Systems und Details zur Simulation, z.B. die untersuchten Temperaturen, zusammen (Kap. 3.2). Die lokale Struktur haben wir wieder mit Hilfe der partiellen Paarkorrelationsfunktionen und der Koordinationszahlverteilungen charakterisiert. Die Ringlängenverteilungen liefern hier nicht nur Einblick in die intermediäre Ordnung sondern ermöglichen insbesondere auch ein besseres Verständnis der lokalen Struktur (Kap. 3.3). In Hinblick auf mögliche Entmischungstendenzen im System sind vor allem die statischen Strukturfaktoren interessant (Kap. 3.3.4). Einen Zugang zur Dynamik von Aluminiumdisilikat bieten intermediäre Streufunktionen, mittlere Verschiebungsquadrate und Diffusionskonstanten. Wie bei den Natriumsilikaten wird abschließend ausführlich die Hochfrequenzdynamik des Systems diskutiert (Kap. 3.4).

3.1 Experimente zu amorphen Al₂O₃–SiO₂–Systemen

Wie eingangs erwähnt, wird die Koordination der Aluminiumatome in nichtkristallinen Al_2O_3 -SiO_2-Systemen seit vielen Jahren in der Literatur heftig diskutiert. Wir wollen hier einen kurzen Überblick zu Experimenten geben, die sich hauptsächlich mit diesem Problem befassen. Die Auflistung erhebt keinen Anspruch auf Vollständigkeit, zeigt aber deutlich, wie im Laufe der Zeit die wissenschaftliche Meinung schwankt. Unsere Simulation kann hier sicherlich einen klärenden Beitrag liefern.

1963 verallgemeinerte Lacy [29] das klassische Netzwerkmodell für Silikatgläser von Zachariasen [15] auf Alkali–Aluminium–Silikate (Feldspat) mit molarem Überschuss von Aluminium– über Alkalioxid. Nach Lacy treten sog. 3–Cluster auf, strukturelle Einheiten aus drei (Si, Al)O₄–Tetraedern, die über ein O–Atom verbunden sind und zur Gewährleistung der Ladungsneutralität notwendig sind. Wir werden auf diese Bausteine später noch genauer eingehen.

Morikawa *et al.* [28] untersuchten 1982 die Struktur von Aluminium–Silikatgläsern mittels Weitwinkelröntgenstreuexperimenten (LAXS). Basierend auf radialen Verteilungsfunktionen wurde vorgeschlagen, dass die kurzreichweitige Ordnung von Glas mit Mullit–Zusammensetzung $(3Al_2O_3 \cdot 2SiO_2)$ der von kristallinem Mullit ähnlich ist. Je nach Glaszusammensetzung wurden mittlere Al–Koordinationszahlen zwischen 4.3 und 4.8 gefunden.

Im gleichen Jahr führten McMillan und Piriou [106] Ramanspektroskopiestudien an Al₂O₃–SiO₂–Gläsern mit 25–60 Mol% Al₂O₃ durch. Sie schlugen ein Strukturmodell für Silizium–Aluminium–Gläser vor, das konsistent mit der in diesen Systemen beobachteten metastabilen Entmischung ist (siehe Einleitung). Bei niedrigem Al–Gehalt liegt demnach ein modifiziertes Silikat–Netzwerk vor, bei dem Aluminium vermutlich tetraedrisch koordiniert ist. Mit wachsendem Aluminium–Anteil entsteht nach McMillan und Piriou eine Struktur mit hoch verdichteten Aluminiumtetraedern und Aluminiumpolyedern, die aus verdrehten Tetraedereinheiten entstanden sind. Ihre Koordinationszahl soll graduell zu höheren Werten übergehen. Solche modifizierten Silikate mit nicht klar definierten, strukturell aufgebrochenen Regionen könnten eine Tendenz zur Clusterbildung zeigen.

1987 untersuchten Risbud *et al.* [36] erstmals die strukturelle kurzreichweitige Ordnung von Aluminiumsilikatgläsern (15–50 Gew.%) mit ²⁷Al "magic angle spinning" (MAS) NMR–Spektoskopie. Sie fanden NMR–Signale bei ≈ 0 ppm, was oktaedrisch koordiniertem Aluminium (Al^[6]) entspricht, bei ≈ 60 ppm, entsprechend tetraedrisch koordiniertem Aluminium (Al^[4]), sowie ein drittes Signal bei ≈ 30 ppm. Aufgrund seiner Lage zwischen Al^[6] und Al^[4] und da ein ähnlicher chemischer Shift des ²⁷Al MAS Signals wie etwa bei Andalusit vorlag, wurde es fünffach koordiniertem Aluminium (Al^[5]) zugeordnet. Eine Zuordnung zu Al^[4]–3–Clustern würde einen großen Shift des entspechenden Peaks von kristallinem Mullit bedeuten, was als unwahrscheinlich angesehen wurde. Alle untersuchten Glaszusammensetzungen waren phasense pariert (in Form perkolierender Strukturen in einer amorphen Matrix bei kleiner $Al_2O_3-Konzentration oder als abseparierte ca. 50 nm große Tropfen bei hoher$ $<math display="inline">Al_2O_3-Konzentration)$.

Viele weitere ²⁷Al MAS NMR–Studien folgten auf die Pionierarbeit von Risbud *et al.* Von Sato *et al.* [37] wurden entsprechende Untersuchungen 1991 an der von McMillan *et al.* gewählten Serie von Gläsern durchgeführt. Betrachtet wurden Schmelzen bei zwei verschiedenen Abkühlraten $(10^5-10^6 \text{ °Cs}^{-1} \text{ und } 10^2-10^3 \text{ °Cs}^{-1})$. Die ²⁷Al–Spektren der schnell abgekühlten Gläser ließen auf vierfach, fünffach und sechsfach koordiniertes Aluminium schließen; zusätzlich liegen vermutlich hoch verdrehte AlO_n–Polyeder vor, die nicht detektiert wurden. Die Zuordnung der Peaks erfolgte wie bei Risbud *et al.*. Eine Evidenz für auftretendes kristallines Al₂O₃ wurde hier nicht gefunden. Bei den langsam abgekühlten Gläsern konnten alle Al–Atome detektiert werden; es zeigten sich nur Signale zu Al^[4] und Al^[6]. Anzeichen für fünffach koordinierte Struktur des Glases je nach Abkühlrate vermuteten Sato *et al.* unterschiedliche lokale Struktur des Glases je nach Abkühlrate vermuteten Sato *et al.* unterschiedliche strukturelle Relaxationsraten des Aluminiums in verschiedenen Koordinationen oder eine unterschiedliche thermodynamische Stabilität von Al^[4], Al^[5] und Al^[6].

1992 führten Poe *et al.* [38] *in situ*–Studien an Al_2O_3 –SiO₂–Systemen bei Temperaturen über 2000 °C mittels Hochtemperatur ²⁷Al NMR–Spektroskopie und Molekulardynamik–Simulationen durch. Die MD–Simulationen zeigten einen Anstieg der mittleren Sauerstoff–Koordinationszahl des Aluminiums mit zunehmendem Al_2O_3 –Anteil. In Al–reichen Flüssigkeiten wurde ein signifikanter Anteil an AlO₅ gefunden, der, wie auch AlO₆, mit wachsendem SiO₂–Gehalt abnimmt, während AlO₄ zunimmt. Dies entspricht den Ergebnissen der oben aufgeführten NMR–Messungen. Es wird vermutet, dass O^{2–}–Austausch zum Aufbrechen und Bilden von Al–O–Bindungen zwischen benachbarten AlO_n–Polyedern führt, wobei AlO₅ als Zwischenstufe beim Austauschprozess zwischen AlO₄– und AlO₆–Gruppen fungiert.

Analysen von ²⁷Al NMR–Linienformen, radialen Verteilungsfunktionen sowie Ergebnisse aus EXAFS–Studien führten Meinhold *et al.* [39] 1993 dazu, den 30 ppm–Peak anders als in vorangegangenen Studien vierfach koordiniertem Aluminium Al^[4] mit verlängerten Al–O–Bindungen zuzuordnen.

Ein neuer Zugang zur kurzreichweitigen Ordnung von Aluminium in nichtkristallinen Aluminiumsilikatgläsern mit Zusammensetzungen nahe des Mullits wurde 1996 von Schmücker und Schneider [40] vorgestellt. Grundlage bildeten ²⁷Al MAS NMR– Messungen, Paarkorrelationsfunktionen aus Röntgenstreumessungen sowie Betrachtungen zum Kristallisationsverhalten der Systeme. Die kurzreichweitige Ordnung der Gläser ist hiernach ähnlich der von kristallinem Mullit. Es treten sowohl (Si, Al)O₄– Tetraeder als auch AlO₆–Oktaeder in ähnlichem Verhältnis wie in Mullit auf. Das Signal bei 30 ppm fällt zwar mit dem isotropen chemischen Shift von Al^[5] in anderen Systemen zusammen, zeigt aber keine charakteristische Quadrupol–Peakstruktur und magnetische Feldabhängigkeit, wie sie mit Al^[5] in kristallinen Komponenten verbunden ist. Zusammen mit dem beobachteten Kristallisationsverhalten der Systeme führte dies zur Favorisierung des 3–Cluster–Modells und zur Zuordnung des 30 ppm–Signals zu Al^[4].

1997 führten Schmücker *et al.* [107] ²⁷ Al und ²⁹Si MAS NMR–Studien an SiO₂–Al₂O₃ –Gläsern (10–60 Mol% Al₂O₃) und SiO₂–Al₂O₃–Na₂O–Gläsern (10 Mol% Al₂O₃, 2.5–10 Mol% Na₂O) durch. Der 30 ppm NMR–Peak wird verdrehten 3–Cluster–bildenden AlO₄–Tetraedern zugeordnet, nicht fünffach koordiniertem Aluminium. Sauerstoff–defizitäre tetraedrische 3–Cluster dienen der Gewährleistung der Ladungsneutralität in Aluminiumsilikatglas, solange diese nicht durch netzwerkmodifizierende Alkaliionen erreicht wird. In SiO₂–Al₂O₃–Na₂O–Gläsern fällt der entsprechende Peak auf null ab, wenn der Na₂O–Gehalt zunimmt; die Tendenz zur 3–Cluster–Bildung nimmt ab.

Zwei Jahre später untersuchten Schmücker *et al.* [108] schnell abgekühlte Aluminiumsilikatgläser mit 35–60 Mol% Al₂O₃ mittels ²⁷Al NMR–Spektroskopie und Weitwinkelröntgenstreuung (LAXS). Es wurden zwei Polyedermodelle angenommen. Der 30 ppm Al NMR Resonanzpeak wurde einmal fünffach koordiniertem Aluminium, einmal verdrehten Tetraedereinheiten zugesprochen. Der Vergleich der mittleren Koordinationszahlen mit denjenigen aus Paarkorrelationsfunktionen zu Röntgenstreudaten unterstützt nach Schmücker *et al.* das Modell der verdrehten Tetraeder (vgl. McMillan und Piriou [106]).

3.2 Simulationsdetails

Das hier hinsichtlich Struktur und Dynamik untersuchte Aluminiumsilikat-System hat, wie eingangs erwähnt, die Zusammensetzung $(Al_2O_3)(2 \cdot SiO_2)$, die im Folgenden symbolisch mit "AS2" abgekürzt werden soll. Bei einem Anteil von 33 Mol% (ca. 50 Gew.%) Al₂O₃ befindet sich das betrachtete System damit für tiefe Temperaturen im Bereich metastabiler Entmischung des Phasendiagramms nach Abb. 5 (Einleitung). Mit dem in Kap. 1.6 vorgestellten mikroskopischen Modell wurden, wie in Kap. 1.7.1 beschrieben, Molekulardynamik-Simulationen im NVT-Ensemble durchgeführt. Anders als bei den Natriumsilikaten wurde eine kleinere Systemgröße gewählt, um die Rechenzeit in Grenzen zu halten: Das System besteht aus 1408 Teilchen, also je 256 Silizium- und Aluminiumatomen sowie 898 Sauerstoffatomen. Bei einer Boxlänge von 26.347 Å wurde mit Hilfe der in Kap. 1.6 vorgestellten zusätzlichen Potenzialparameter die Dichte auf den experimentellen Wert bei 300 K, $\rho = 2.60$ g/cm³, eingestellt (vgl. [75]). Die strukturellen und dynamischen Eigenschaften des Systems wurden bei den Temperaturen 6100 K, 4700 K, 4000 K, 3580 K, 3250 K, 3000 K, 2750 K, 2600 K, 2480 K, 2380 K und 2300 K untersucht. Hierzu wurden aufgrund der im Vergleich zu den Systemen NSx wesentlich geringeren Teilchenzahl bei jeder Temperatur nicht zwei, sondern fünf unabhängige Simulationsläufe durchgeführt, um die Statistik zu

Abbildung 3.3: Simulation des Systems AS2: Verlauf von (a) totaler und potentieller Energie pro Teilchen, E_{tot} bzw. E_{pot} , sowie (b) des Drucks als Funktion der inversen Temperatur.

verbessern. Zusätzlich zu den Simulationen im Hochtemperaturbereich haben wir das System von 2300 K auf 0 K mit einer Rate von $\gamma = 1.42 \cdot 10^{12}$ K/s linear abgekühlt und alle 10 K Konfigurationen abgespeichert. Hinsichtlich Struktur und Dynamik wurde hier speziell das System bei 300 K betrachtet.

Testläufe, bei denen das System mit einer hohen Kühlrate von 4000 K auf 300 K abgekühlt wurde, ließen erwarten, dass mit der eingestellten Dichte und den gewählten Potenzialparametern bei 300 K ungefähr Normaldruck im System erreicht werden kann. Nach dem Abkühlen von 2300 K auf 300 K stellte sich allerdings ein höherer Druck von 1.36 GPa ein. Abbildung 3.3 zeigt für den untersuchten Hochtemperaturbereich den Verlauf des Drucks p sowie der totalen und potentiellen Energie E_{tot} bzw. E_{pot} als Funktion der inversen Temperatur T^{-1} . Weder E_{pot} noch E_{tot} zeigen ein anormales Verhalten, wie etwa einen Knick bei einer Glasübergangstemperatur T_g^{sim} der Simulation. Die Simulationsläufe sollten demnach länger als die systemtypische Relaxationszeit sein und das System befindet sich für alle aufgeführten hohen Temperaturen im Gleichgewicht. Dies lässt sich allerdings noch besser anhand des Abfalls der intermediären Streufunktionen bestätigen (siehe Kap. 3.4.1).

Der Druck fällt mit sinkender Temperatur ab und erreicht einen nahezu konstanten Wert von etwa 2.7 GPa für $T^{-1} \gtrsim 3.5 \cdot 10^{-4} \text{ K}^{-1}$ (d.h. $T \lesssim 2900 \text{ K}$). Das Inset in Abb. 3.3 b) zeigt den Druckverlauf unseres Abkühlruns, den wir an die Simulation bei 2300 K angeschlossen haben. Der Druck fällt hier für $T^{-1} \gtrsim 6 \cdot 10^{-4} \text{ K}^{-1}$ wieder ab, um dann bei 300 K den erwähnten Wert von 1.36 GPa zu erreichen. In Ref. [109] wurde für SiO₂ gezeigt, dass die Temperaturabhängigkeit der Dichte und damit auch des Drucks stark kühlratenabhängig ist. Im Bereich von $T^{-1} \approx 5 \cdot 10^{-4} \text{ K}^{-1}$ könnte sich demnach bei kleinen Abkühlraten auch bei AS2 nicht nur ein Plateau sondern auch ein Minimum ausbilden. Bei einer Simulation mit konstantem Druck würde dem ein Dichtemaximum entsprechen, wie man es in SiO₂ findet (vgl. [30, 49]).

3.3 Strukturelle Eigenschaften

Wir wollen in diesem Abschnitt untersuchen, wie die Struktur einer SiO_2 -Schmelze durch Zugabe von Al_2O_3 verändert wird. Bereits der Schnappschuss in Abb. 3.2 lässt erkennen, dass es bei dem hier betrachteten System Aluminiumdisilikat nicht zu einem Aufbrechen der tetraedrischen Netzwerkstruktur wie bei den Natriumsilikaten in Kap. 2 kommt. Aluminium fungiert vielmehr als Netzwerkbildner.

In Hinblick auf die kontroverse Diskussion bzgl. der Aluminiumkoordinationszahl in amorphen Aluminiumsilikaten (vgl. Kap. 3.1) soll die lokale Ordnung unseres Systems untersucht werden. Wir vergleichen mit Experimenten, Simulationen sowie Daten zu reinem Al_2O_3 und betrachten insbesondere die Temperaturabhängigkeit.

AS2 fällt mit einer Zusammensetzung von 33 Mol% genau in den Bereich des Phasendiagramms nach Abb. 5 (Einleitung), in dem metastabile Entmischung zu erwarten ist. Es ist in diesem Zusammenhang besonders interessant, die intermediäre und langreichweitige Ordnung zu betrachten. Hier wird sich zeigen, ob sich mit unserem mikroskopischen Modell ebenfalls Tendenzen einer (Mikro–)Phasenseparation entwickeln.

3.3.1 Partielle Paarkorrelationsfunktionen

Einen ersten Einblick in die lokale Struktur des Systems AS2 liefern die partiellen Paarkorrelationsfunktionen, die wieder gemäß Definition (2.1) in Kap. 2.3.1 (jetzt mit "Al" an Stelle von "Na") berechnet wurden. (Bei fünf unabhängigen Simulationsläufen wurde hier bei jedem Lauf über alle abgespeicherten Konfigurationen gemittelt (ca. 600).)

Die Abbildungen 3.4 und 3.5 zeigen $g_{\alpha\beta}(r)$, $\alpha, \beta \in \{Si, Al, O\}$, für alle hohen Temperaturen sowie T = 300 K. Wie bei den Natriumsilikaten wird bei allen Korrelationen die Struktur umso ausgeprägter je tiefer die Temperatur ist. Die Korrelationsfunktionen bei T = 300 K zeigen entsprechend die schärfsten Peaks und damit die prägnanteste Struktur. Bei den Korrelationen "Si–Si", "O–O", "Al–Al" und "Si–Al" zeigt sich zudem eine deutliche Verschiebung des ersten Minimums hin zu kleineren r–Werten mit sinkender Temperatur. Dieses Verhalten ist wichtig bei der späteren Bestimmung der Koordinationszahlen, die gemäß Kapitel 2.3.2 über die Positionen des ersten Minimums der entsprechenden Paarkorrelationsfunktionen definiert sind.

Der nahezu vollständige Abfall des ersten Minimums von $g_{SiO}(r)$ auf null spiegelt den stark kovalenten Charakter der Si–O–Bindung wider. Bei $g_{AIO}(r)$ strebt das Minimum ebenfalls zu sehr kleinen Werten; die Bindung von Aluminium an Sauerstoff ist aber weniger stark als im Falle von Si–O.

Ein sehr auffälliges Merkmal zeigt die Paarkorrelationsfunktion $g_{AlAl}(r)$: Mit abnehmender Temperatur beobachtet man vor dem ersten Peak die Ausbildung einer Schulter, die schließlich bei 300 K zu einer klaren Aufspaltung des ersten Peaks führt.

Abbildung 3.4: Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von AS2, (a) Si–Si–, (b) Si–O– und (c) O–O–Korrelationen.

Abbildung 3.5: Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von AS2, (a) Al–Al–, (b) Al–O– und (c) Si–Al–Korrelationen.

$\alpha - \beta$	r_1 [Å]	$\alpha - \beta$	r_1 [Å]	
Si–Si	3.122 ± 0.1	Al–Al	3.16 ± 0.16	(2.59 ± 0.12)
Si–O	1.60 ± 0.05	Al–O	1.66 ± 0.12	
0–0	2.66 ± 0.2	Si–Al	3.14 ± 0.15	

Tabelle 3.1: Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelationsfunktionen $g_{\alpha\beta}(r)$ von AS2 bei 300 K. Bei Al–Al ist in Klammern die Position des Vorpeaks angegeben.

Da die partiellen Paarkorrelationsfunktionen anschaulich ein Maß für die Wahrscheinlichkeit sind, ein anderes Teilchen in bestimmtem Abstand von einem markierten zu finden, zeigt also das System die Tendenz mit sinkender Temperatur zusehends Aluminiumatome in kleineren Abständen anzuordnen. Bei der Paarkorrelationsfunktion $g_{SiAl}(r)$ bildet sich bei tiefer Temperatur ebenfalls ein kleine Schulter, und zwar beim selben r-Wert (ca. 2.6 Å) wie bei $g_{AlAl}(r)$. Wir werden in den folgenden Kapiteln noch ausführlicher auf dieses interessante Phänomen eingehen. Vor allem die Größen zur Charakterisierung der intermediären und langreichweitigen Ordnung im System liefern in diesem Zusammenhang weitere strukturelle Einblicke.

Bevor wir ausführlich auf die aus den Paarkorrelationsfunktionen bestimmten Koordinationszahlverteilungen eingehen, vergleichen wir zunächst die $g_{\alpha\beta}(r)$ mit anderen Simulationsergebnissen wie auch Experimenten.

Tabelle 3.1 listet die abgelesenen Positionen r_1 der ersten Peakmaxima der $g_{\alpha\beta}(r)$ bei 300 K auf. Zusätzlich sind die vollen Peakbreiten auf halber Peakhöhe ("FWHM") angegeben.

Aus den Werten r_1 der Si–O– und Al–O–Korrelation ergibt sich als mittlerer Abstand nächster Sauerstoffnachbarn eines Silizium– bzw. Aluminiumatoms ein Wert von 1.63 Å. Morikawa *et al.* [28] finden in Röntgenstreumessungen einen mittleren Abstand (Si, Al)–O von 1.75 Å bei Aluminiumsilikatsystemen mit 28 Mol% Al₂O₃ bzw. von 1.77 Å bei 37 Mol% Aluminiumoxid. Ihre Werte entsprechen dem mittleren Al–O–Abstand, wie er in reinem Al₂O₃ beobachtet wird.

$\alpha - \beta$	r_1 [Å], Sim.	r_1 [Å], Exp.
Al–Al	3.12 ± 0.25	
Al–O	1.76 ± 0.1	~ 1.8
0–0	2.75 ± 0.2	

Tabelle 3.2: Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelationsfunktionen $g_{\alpha\beta}(r)$ von Al₂O₃ aus einer Simulation bei 700 K (Gutiérrez *et al.* [110]) und diversen Experimenten (Oka *et al.* [111], El Mashri *et al.* [112], Lamparter *et al.* [113]).

Abbildung 3.6: Vergleich der partiellen Paarkorrelationsfunktionen von AS2 und SiO₂: Si–Si–, Si–O– und O–O–Korrelationen bei 6100 K und 3250 K.

In Tabelle 3.2 sind die aus den ersten Peakpositionen bestimmten ersten Nachbardistanzen aufgeführt, wie sie Gutiérrez und Johansson [110] bei einer MD–Simulation von reinem Al₂O₃ fanden (NVE–Ensemble, 1800 Teilchen, $\rho = 3.175$ g/cm³, T =700 K). Zusätzlich ist der Al–O–Abstand angegeben, wie er in diversen Experimenten bei Al₂O₃–Gläsern gefunden wurde (Oka *et al.* [111], El Mashri *et al.* [112], Lamparter *et al.* [113]). Im Gegensatz zu Morikawa *et al.* [28] finden wir also in unseren Simulationen einen Al–O–Abstand der eher dem Si–O–Abstand als dem Al–O–Abstand in reinem Al₂O₃ ähnelt. Dies kann auf eine mögliche Schwäche unseres mikroskopischen Modells hindeuten.

Stellt man die nächsten Nachbardistanzen von AS2 den Simulationsergebnissen von Horbach *et al.* [30, 49] für das reine SiO_2 -System bzw. entsprechenden Werten aus Experimenten (siehe Tabelle 3.3) gegenüber, so fällt vor allem der Unterschied in der O-O-Distanz auf. Dies zeigt sich auch in Abbildung 3.6: Für zwei ausgewählte Temperaturen sind dort die partiellen Paarkorrelationsfunktionen der Si-Si-, Si-O- und O-O-Korrelation den entsprechenden Kurven von SiO₂ (Horbach et al.) gegenübergestellt. Dick gezeichnet sind die Funktionen von AS2 aus Abbildung 3.4. Wie man sieht, weichen die partiellen Korrelationsfunktionen von AS2 und SiO₂ erst bei der tiefen Temperatur merklich voneinander ab; deutliche Unterschiede zeigen sich bei "Si–Si" und vor allem "O–O": Bei letzterer Korrelation verschieben sich die Positionen des ersten Peaks und des ersten Minimums der AS2-Paarkorrelationsfunktion zu höheren r-Werten. Im Aluminiumsilikat kommen also offensichtlich den Sauerstoffatomen andere Bindungsfunktionen zu als in SiO₂. Der nächste Nachbarabstand O–O unseres AS2-Systems liegt hierbei zwischen den entsprechenden Abständen des reinen SiO₂–Systems (Horbach *et al.*) und des reinen Al₂O₃–Systems (Gutiérrez *et al.*), wobei man hier natürlich bedenken muss, dass diesen Resultaten einfache Modelle zugrunde liegen. Weitere Informationen aus Experimenten wären hier wünschenswert.

α – β	r_1 [Å], Sim.	r_1 [Å], Exp.
Si–Si	3.14	3.12
Si–O	1.605	1.62
0–0	2.605	2.65

Tabelle 3.3: Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelationsfunktionen $g_{\alpha\beta}(r)$ von SiO₂ aus der Simulation bei 300 K (Horbach *et al.* [30, 49]) und Röntgenstreumessungen (Mozzi *et al.* [114]).

3.3.2 Koordinationszahlverteilungen

Wie in Kapitel 2.3.2 lassen sich über die ersten Minima der vorgestellten Paarkorrelationsfunktionen von AS2 einfach die Verteilungen der Koordinationszahlen bestimmen. Tabelle 3.4 stellt die zu den untersuchten Temperaturen verwendeten Positionen der ersten Minima zusammen. Sofern nicht nach nächsten Silizium– bzw. Aluminiumnachbarn unterschieden wurde (s.u.), haben wir das Mittel der jeweiligen Minimumspositionen verwendet.

Die Koordinationszahlverteilungen $P_{\alpha-\beta}(z)$, $\alpha, \beta \in {Si, Al, O}$, wurden zu allen in Kap. 3.2 angegebenen Temperaturen bestimmt. Der Übersichtlichkeit halber greifen wir zunächst einige Temperaturen heraus und vergleichen unser Mischsystem mit den beiden reinen Systemen SiO₂ und Al₂O₃.

Abbildung 3.7 zeigt die Koordinationszahlverteilungen von AS2 bzgl. der Si–O– und Al–O–Korrelation, wobei jeweils auch $P_{\rm Si-O}(z)$ für SiO₂ aus [30, 49] eingezeichnet ist. Im reinen Silikat liegen bei allen Temperaturen im Wesentlichen nur vierfach Sauerstoff-koordinierte Siliziumatome vor (Tetraederanordnung, bei 2750 K bereits nahezu 100%). Diese bilden bei AS2 ebenfalls den Hauptanteil, zudem findet sich aber bei höherer Temperatur auch ein merklicher Prozentsatz (~ 15%) an fünffach koordinierten Siliziumatomen, wie auch wenige dreifach koordinierte (einige %). Erst bei 300 K sinken diese Anteile nahezu auf null.

$T[\mathbf{K}]$	Si–Si	Si–Al	Si–O	Al–Al	Al–O	О-О
6100	3.79 Å	3.90 Å	2.50 Å	4.10 Å	2.59 Å	3.79 Å
4700	$3.71\mathrm{\AA}$	3.82 Å	2.37 Å	4.02 Å	2.57 Å	$3.71~{ m \AA}$
4000	3.70 Å	$3.81~{ m \AA}$	2.33 Å	$3.89~{ m \AA}$	2.54 Å	3.66 Å
3580	3.63 Å	$3.79~{ m \AA}$	2.27 Å	3.89 Å	2.52 Å	3.63 Å
3250	3.62 Å	$3.74~{ m \AA}$	2.27 Å	$3.89~{ m \AA}$	2.48 Å	3.60 Å
3000	3.60 Å	$3.72~{ m \AA}$	2.26 Å	3.84 Å	2.42 Å	$3.50~{ m \AA}$
2750	3.59 Å	$3.70~{ m \AA}$	2.25 Å	3.82 Å	2.42 Å	3.48 Å
2600	3.58 Å	3.69 Å	2.24 Å	3.80 Å	2.41 Å	$3.47~{ m \AA}$
2480	3.57 Å	3.68 Å	2.23 Å	3.80 Å	2.40 Å	3.46 Å
2380	3.56 Å	3.67 Å	2.20 Å	$3.79~{ m \AA}$	2.40 Å	$3.45~{ m \AA}$
2300	3.55 Å	3.66 Å	2.19 Å	3.78 Å	2.39 Å	3.44 Å
300	3.40 Å	3.60 Å	2.20 Å	3.60 Å	2.40 Å	$3.30~{ m \AA}$

Tabelle 3.4: Positionen des ersten Minimums der Paarkorrelationsfunktionen von AS2.

Abbildung 3.7: Verteilungen der Koordinationszahlen P(z) für die Si–O– bzw. Al–O– Korrelation bei den angegebenen Temperaturen. Vergleich mit den Si–O–Verteilungen von SiO₂ zu den entsprechenden Temperaturen (offene Kreise).

Die Aluminiumatome liegen ebenfalls hauptsächlich in einer Vierfach-Koordination vor, bilden also AlO_4 -Tetraeder. Ein Drittel aller Aluminiumatome ist allerdings vor allem bei hoher Temperatur dreifach oder fünffach koordiniert. Da "z = 3" und "z = 5" ungefähr gleichhäufig vorkommen, finden wir eine mittlere Koordinationszahl für die (Si, Al)-O-Korrelation von z = 4.1 bzw. $z \simeq 4$ bei niedriger Temperatur.

Schmücker *et al.* [108] berechnen ebenfalls aus der Paarkorrelationsfunktion eine mittlere Koordinationszahl von 4.1 bei einer Glaszusammensetzung von 35 Mol%. Aus Röntgenstreumessungen erhalten Morikawa *et al.* [28] eine entsprechende mittlere Koordinationszahl von z = 4.5 (28.2 Mol% Al₂O₃) bzw. z = 4.6 (37.1 Mol% Al₂O₃). Dies entspricht den MD–Simulationsergebnissen von Poe *et al.* bei 2700 K [38], die wir in Abbildung 3.8 für zwei Zusammensetzungen unseren Ergebnissen bei 2480 K gegenüberstellen.

In der Abbildung ist auch die Koordinationszahlverteilung $P_{Al-O}(z)$ eingetragen, die Gutiérrez *et al.* [110] aus ihrer MD–Simulation von reinem amorphem Al₂O₃ bei 700 K erhalten. Wie man sieht, liegt die Koordinationszahlverteilung $P_{Al-O}(z)$ unseres Mischsystems "zwischen" den entsprechenden Verteilungen $P_{Si-O}(z)$ und $P_{Al-O}(z)$ der reinen Systeme, wobei sich die Aluminiumatome in AS2 hinsichtlich der Sauerstoff-koordination wie in Al₂O₃ verhalten.

In Abbildung 3.9 sind wieder für obige ausgewählten Temperaturen die Koordinationszahlverteilungen für Korrelationen von Sauerstoff mit Silizium und Aluminium dargestellt. Im oberen Bild wird nicht nach nächsten Silizium– bzw. Aluminiumnachbarn unterschieden; die untere Darstellung zeigt die Verteilungen getrennt nach Si und Al. Zum Vergleich sind jeweils die Koordinationszahlverteilungen des reinen Silikatsystems in die Abbildung mit aufgenommen.

Bei SiO₂ sind erwartungsgemäß nahezu alle Sauerstoffatome zweifach mit Silizium koordiniert, also Brückensauerstoffe zweier SiO₄-Tetraeder. Im Falle von AS2 fällt zunächst auf, dass im Gegensatz zu den Natriumsilikat–Systemen NSx, x = 2, 3, 5, 5keine "dangling bonds" (z = 1 oder z = 0) auftreten. Ca. zwei Drittel aller Sauerstoffatome sind zweifach mit Silizium oder Aluminium koordiniert, was in Hinblick auf Abb. 3.7 bedeutet, dass sie die Rolle von Brückensauerstoffen zwischen SiO4und AlO₄-Bausteinen übernehmen. Diese verknüpften (Si, Al)O₄-Tetraeder prägen die Struktur unseres Systems. Zwar treten nahezu keine Defekte wie "dangling bonds" auf, es liegt aber auch kein homogenes Tetraedernetzwerk wie im reinen Silikat vor: Wie das obere Bild von Abb. 3.9 zeigt, ist das restliche Drittel aller Sauerstoffatome dreifach Silizium– oder Aluminium–koordiniert. Nach der Verteilung $P_{O-Si}(z)$ von AS2 (Abb. 3.7(b)) kommen fast keine Sauerstoffatome vor, die dreifach Siliziumkoordiniert sind. Vielmehr ist immer Aluminium als nächster Nachbar beteiligt. Es handelt sich hierbei also um Sauerstoffatome, die zwei Silizium- und ein Aluminiumatom, zwei Aluminium- und ein Siliziumatom oder drei Aluminiumatome als nächste Nachbarn haben, wobei letzterer Fall gemäß der Verteilung $P_{O-Al}(z)$ eher selten (10%) vorkommt.

Abbildung 3.8: a) Vergleich der Al–O–Koordinationszahlverteilung von AS2 mit den MD– Simulationsergebnissen von Poe *et al.* [38]. b) Al–O–Koordinationszahlverteilung von AS2 im Vergleich zur Si–O–Koordinationszahlverteilung von SiO₂ (Horbach *et al.* [30, 49]) und der Al–O–Koordinationszahlverteilung von Al₂O₃ (Gutiérrez *et al.* [110]).

Abbildung 3.9: a) Verteilungen der Koordinationszahlen P(z) für die O–(Si, Al)–Korrelation bei diversen Temperaturen. b) Koordinationszahlverteilungen für die O–Si– und O–Al–Korrelation bei denselben Temperaturen. Zum Vergleich ist jeweils die O–Si–Verteilung von SiO₂ bei 2750 K dargestellt.

Dieser Anteil an dreifach koordinierten Sauerstoffatomen im System ist, wie aus Abb. 3.9 hervorgeht, relativ temperaturunabhängig.

Eine solche "3–Cluster"–Anordnung in Al₂O₃–SiO₂–Systemen wird in Experimenten gefunden wie auch theoretisch vorausgesagt (vgl. Kap. 3.1): Tossel und Cohen [115] haben u.a. mittels Dichtefunktionaltheorie elektrische Feldgradienten zu 3–Cluster– artigen Sauerstoffatomen berechnet und ihre Ergebnisse mit NMR–Messungen verglichen. Ihrer Definition nach sind 3–Cluster–O–Atome solche, die nur mit vierfach koordinierten Atomen Bindungen eingehen. Solche Anordnungen finden sich in kristallinen Mulliten, $(3 \cdot Al_2O_3)(2 \cdot SiO_2)$, wie auch in CaAl₂Si₂O₈–Gläsern. In den Al₂SiO₅– Polymorphen Andalusit, Sillimanit und Kyanit liegen hingegen nur näherungsweise 3–Cluster vor. In der Literatur wird der Begriff des "3–Clusters" daher meist allgemeiner als $3(Si, Al)O_4$ –Anordnung gefasst (vgl. Kap. 3.1).

Die Existenz von 3–Cluster–O–Atomen hat entscheidende Auswirkungen auf die intermediäre und langreichweitige Ordnung im System. Ein einfaches Bild wird von MacDowell *et al.* [27] beschrieben. Die Autoren beziehen sich hierbei auf ein Modell von Lacy [29].

Abbildung 3.10: Zweidimensionales Strukturmodell, das die möglichen Auswirkungen von Aluminium auf das Si–O–Netzwerk von reinem Silikatglas verdeutlicht (aus MacDowell und Beall, 1969 [27]).

Abbildung 3.11: Verteilungen der Koordinationszahlen P(z) für die O–O–Korrelation bei verschiedenen Temperaturen. a) Vergleich mit den O–O–Verteilungen von SiO₂. b) Vergleich mit der O–O–Koordinationszahlverteilung von Al₂O₃ nach (Gutiérrez *et al.* [110]).

Abbildung 3.12: Verteilungen der Koordinationszahlen P(z) nächster Silizium– und Aluminium–Nachbarn eines Silizium oder Aluminiumatoms bei verschiedenen Temperaturen. Vergleich mit den Si–Si–Verteilungen von SiO₂. Im oberen Fall wird bei AS2 nicht nach Silizium– und Aluminiumatomen unterschieden.

Eine relativ kleine Menge von Aluminium kann bereits das eckenteilende Tetraedernetzwerk reiner Silikate stören. Wenn ein dreiwertiges Aluminiumatom ein vierfach koordiniertes Siliziumatom ersetzen soll, dann muss ein Sauerstoffatom drei Tetraederbausteine verbinden, um Ladungsneutralität zu gewährleisten. 3–Cluster–O– Atome führen aber zu einer Verdichtung des Netzwerks in ihrer Umgebung, wie dies in Abb. 3.10 illustriert ist. Nach MacDowell *et al.* stellt eine solche Verdichtung bei Normaldruck einen hochenergetischen Zustand dar, der Phasentrennung begünstigen kann. Wir werden auf dieses Phänomen noch genauer eingehen, wenn die Struktur von AS2 auf mittleren und großen Längenskalen betrachtet wird (vgl. Kap. 3.3.3 u. 3.3.4).

Abbildung 3.11 zeigt die Koordinationszahlverteilungen $P_{O-O}(z)$ von AS2 bei verschiedenen Temperaturen im Vergleich zu SiO₂ und Al₂O₃. Im reinen Silikat dominiert hier eindeutig die Tetraederanordnung (z = 6); die betreffenden Sauerstoffatome sind also wieder Brückensauerstoffe. Bei den Systemen NSx, x = 2, 3, 5, tauchen zusätzlich dreifach Sauerstoff-koordinierte Sauerstoffatome auf (vgl. Abb. 2.23). Im System AS2 ist das Maximum der Verteilungen zu weit höheren z-Werten verschoben, bei hohen Temperaturen zu z = 10 und bei 300 K zu z = 8. Grund hierfür ist die höhere Ladung der Aluminumatome im Vergleich zu Silizium. Die Erfüllung einer lokalen Ladungsneutralität zwingt die Sauerstoffatome in andere Bindungsverhältnisse. Vergleicht man mit der Verteilung $P_{O-O}(z)$ von Al₂O₃ (aus Gutiérrez *et al.* [110]), so ähnelt diese eher den Hochtemperaturverteilungen des AS2. Mit sinkender Temperatur stellt sich eine strukturelle Ordnung im System ein, die wieder eine Verteilung zwischen der des reinen Silikats und des reinen Aluminiumoxids zur Folge hat. Einen interessanten Temperatureffekt zeigt auch die Verteilung nächster Silizium- und Aluminium–Nachbarn eines Silizium– oder Aluminiumatoms. In Abb. 3.12 stellen wir die Verteilungen des AS2 wieder SiO₂ gegenüber, wobei im einen Fall nicht nach Silizium- und Aluminiumatomen unterschieden wird und im anderen Fall die Verteilungen getrennt nach Silizium bzw. Aluminium gezeigt werden. Während bei SiO₂ hauptsächlich das Maximum bei z = 4 mit abnehmender Temperatur deutlich wächst, bleibt die Verteilung $P_{(Si,Al)-(Si,Al)}(z)$ breit gestreut, wobei sich aber das Maximum von z = 6 nach z = 5 (bei 300 K) verschiebt. Grund hierfür ist, wie aus dem unteren Teil von Abb. 3.12 hervorgeht, hauptsächlich das Anwachsen der Beiträge z = 2nach z = 3 bei $P_{\text{Si-Si}}(z)$. Die Verteilung $P_{\text{Al-Al}}(z)$ ist hingegen relativ temperaturunabhängig.

Das beobachtete Verhalten wird noch deutlicher, wenn man die relativen Häufigkeiten $P_{(Si,Al)-(Si,Al)}(z)$ zu festen z-Werten als Funktion der Temperatur aufträgt. Abb. 3.13 (a) zeigt diese Temperaturabhängigkeit der Koordinationszahlen für die Systeme SiO₂ und AS2, wobei jetzt der gesamte untersuchte Hochtemperaturbereich erfasst ist. Man sieht deutlich, wie bei SiO₂ der Hauptanteil z = 4 dominiert und mit sinkender Temperatur stark zunimmt. Bei AS2 ist die Verteilung hingegen breiter und wie eben gesehen zu höheren z-Werten verschoben. Unterhalb 3100 K verschiebt sich das Maximum von z = 6 nach z = 5.

Abbildung 3.13: Temperaturabhängigkeit der Koordinationszahlverteilungen von AS2. (a) Vergleich der (Si, Al)–(Si, Al)-Koordinationen mit den Si–Si–Koordinationen von SiO₂. (b) Si–O– und Al–O–Koordinationen von AS2 im Vergleich mit den Si–O–Koordinationen von SiO₂.

Abbildung 3.13 (b) zeigt abschließend nochmals die Koordinationszahlverteilungen für die Si–O– und Al–O–Korrelationen im Vergleich zu $P_{\text{Si-O}}$ von SiO₂, jetzt aber in Abhängigkeit aller untersuchten hohen Temperaturen. Bei SiO₂ dominiert die Tetraederanordnung; für kleine Temperaturen strebt der Anteil z = 4 gegen eins. Die Verteilungen $P_{\text{Si-O}}$ und $P_{\text{Al-O}}$ von AS2 haben ebenfalls ein klares Maximum bei z = 4. Hier spielen aber auch z = 3 und z = 5 eine nicht unwesentliche Rolle. Bei $P_{\text{Al-O}}$ liefern letztere Koordinationen über den gesamten Temperaturbereich einen ungefähr gleich großen Beitrag. Im Gegensatz zu SiO₂ tendiert der Anteil z = 4 für $T \rightarrow 0$ nicht gegen eins, wie auch z = 3 und z = 5 wahrscheinlich nicht auf null abfallen. Es liegt also zusammenfassend keine homogene Tetraederstruktur wie in SiO₂ vor.

3.3.3 Ringlängenverteilung

In Kap. 2.3.4 hat sich gezeigt, dass die Ringlängenverteilung gut dazu geeignet ist, die Struktur netzwerkbildender Systeme auf mittleren Längenskalen zu untersuchen. Bei dem hier betrachteten Aluminiumdisilikat liefert die Ringstatistik aber auch einen entscheidenden Beitrag zum Verständnis der *lokalen* Struktur des Systems. Der Begriff des Rings soll dazu allgemeiner gefasst werden als in Kap. 2.3.4, wo nur Ringe aus –Si–O– Elementen betrachtet wurden.

Ganz analog zur dortigen Definition (vgl. Abb. 2.12) lassen sich auch Ringe als die kürzeste Verbindung aufeinanderfolgender -Al-O- Elemente oder "allgemeine" Ringe aus -(Si, Al)-O- Elementen definieren, wobei im letzten Fall nicht nach Silizium– und Aluminiumatomen unterschieden wird. Die Ringlänge n ist dann die Anzahl entsprechender Bausteine einer solchen Bindungssequenz.

Abbildung 3.14 zeigt die relativen Häufigkeiten, mit denen feste Ringlängen n in Ringen aus -Si-O-, -Al-O- oder -(Si, Al)-O- Elementen im System AS2 vorkommen. Das obere Bild zeigt die Ringlängenverteilung bei 300 K, unten sind zwei Hochtemperaturverteilungen gegenübergestellt. Im Vergleich zum reinen Silikat (siehe Abb. 2.13), wo hauptsächlich 6er–Ringe auftreten, sind es in AS2 überwiegend 5er–Ringe, wenn man nicht nach Silizium bzw. Aluminium in den Ringen unterscheidet. Auffällig an der -(Si, Al)-O- Ringverteilung ist aber besonders, dass im Vergleich zu SiO₂ kleine Ringe, nämlich 2er– und 3er–Ringe einen nicht unwesentlichen Beitrag liefern ($\sim 7\%$). Wie sich aus den Verteilungen von Ringen aus -Si-O- bzw. -Al-O- Elementen ergibt, sind neben Sauerstoff fast hauptsächlich Aluminiumatome an diesen kleinen Ringen beteiligt. Mit sinkender Temperatur nimmt ihr Beitrag bei Ringen aus -Al-O- Elementen zu, während er bei Ringen aus -Si-O- Elementen abnimmt. Für das AS2–Netzwerk heißt das, dass es kleine Regionen im System geben muss, in denen der nächste Nachbarabstand der Aluminiumatome kleiner als im Systemmittel ist.

Abbildung 3.14: Relativen Häufigkeiten, mit denen feste Ringlängen n in Ringen aus -(Si, Al)-O-, -Al-O- oder -Si-O- Elementen im System AS2 vorkommen. a) Verteilungen bei der Temperatur 300 K. b) Verteilungen bei den Temperaturen 2300 K und 4000 K.

Dies liefert eine Erklärung für die Aufspaltung des ersten Peaks der Al–Al–Paarkorrelationsfunktion (vgl. Abb. 3.5). Zunächst nur als Schulter erkennbar, wächst der Vorpeak mit sinkender Temperatur, dies geht einher mit einer Zunahme von 2er– und 3er–Ringen aus –Al–O– Elementen im System.

Diese Beobachtungen lassen vermuten, dass unser System die Tendenz hat, mit sinkender Temperatur Aluminium–angereicherte Regionen auszubilden, in denen die Aluminiumatome offensichtlich eine andere lokale Ordnung als die Siliziumatome bevorzugen. Ob es sich hierbei bereits um erste Anzeichen einer Mikrophasenseparation handelt, wie es auch das Al_2O_3 –SiO₂–Phasendiagramm (vgl. Einleitung, Abb. 5) erwarten lässt, ist an dieser Stelle noch fraglich. Weitere interessante Schlüsse erlaubt die Untersuchung der Struktur auf großen Längenskalen, wie sie im folgenden Kapitel diskutiert werden soll.

Anders als in den Natriumsilikatsystemen weist der hohe Anteil an "1er–Ringen" bei den –Si–O– und –Al–O– Ringverteilungen nicht auf die Existenz von "dangling bonds" hin. Die entsprechenden Beiträge treten vielmehr auf, weil sich ein Ring aus –Si–O– oder –Al–O– Elementen nicht mehr schließen lässt, wenn ein Silizium– oder Aluminiumatom über ein Sauerstoffatom mit einem Aluminium– bzw. Siliziumatom verbunden ist. In den verallgemeinerten Ringlängenverteilungen aus –(Si, Al)–O– Elementen treten daher "1er–Ringe" nur mit sehr kleiner Wahrscheinlichkeit auf.

3.3.4 Statische Strukturfaktoren

Nach der Diskussion der kurzreichweitigen und intermediären Ordnung von AS2 soll nun die Struktur auf noch größeren Längenskalen anhand der statischen Strukturfaktoren untersucht werden. Wir beginnen mit der Betrachtung der "partiellen" Strukturfaktoren $S_{\alpha\beta}(q)$, die gemäß Gl. (2.4) definiert sind, wobei jetzt $\alpha, \beta \in {\text{Si, Al, O}}$. In den Abbildungen 3.15 bis 3.17 sind die Größen $S_{\alpha\beta}(q)$ zu den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K wie auch für 300 K aufgetragen.

Es fällt zunächst auf, dass das System AS2 wie auch SiO_2 (vgl. Kap. 2.3.3) eine sehr ausgeprägte Struktur aufweist, die mit sinkender Temperatur immer prägnanter wird. Je tiefer die betrachtete Temperatur ist, umso schmäler und höher sind die charakteristischen Peaks.

Die größte Amplitude zeigt bei den Si–Si–, Si–O– und O–O–Korrelationen wie bei SiO₂ der Peak bei 2.8 Å⁻¹, der die nächste Nachbardistanz Si–O widerspiegelt (ca. $2\pi/(2.8 \text{ Å}^{-1}) = 2.24 \text{ Å}$). Bei den Korrelationen mit Aluminium liegt der entsprechende Peak bei dem etwas kleineren q–Wert 2.7 Å⁻¹, was in Einklang mit dem entsprechenden leicht größeren nächsten Nachbarabstand Al–O ist (vgl. Kap. 3.3.1).

Abbildung 3.15: Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: a) Si–Si– und b) Si–O–Korrelationen. Die vertikalen Linien markieren die q–Werte q = 0.5 Å⁻¹, q = 1.7 Å⁻¹ und q = 1.8 Å⁻¹ (vgl. Text).

Abbildung 3.16: Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: a) Al–Al– und b) Al–O–Korrelationen. Die vertikalen Linien markieren die q–Werte q = 0.5 Å⁻¹ und q = 1.6 Å⁻¹ (vgl. Text).

Abbildung 3.17: Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: Si–Al– und O–O–Korrelationen. Die vertikalen Linien markieren die q–Werte q = 0.5 Å⁻¹ und q = 1.7 Å⁻¹ (vgl. Text).

Bei kleineren q-Werten zeigen alle Strukturfaktoren charakteristische Merkmale, die Aussagen über die Struktur auf größeren Längenskalen erlauben. Bei den Si-Si-, Si-O- und O-O-Korrelationen findet man wie bei SiO₂ den First-Sharp-Diffraction-Peak (FSDP), der bei $q \simeq 1.7$ Å⁻¹ liegt. Im Falle von $S_{SiSi}(q)$ ist er zu $q \simeq 1.8$ Å⁻¹ verschoben. Dies ist auch bei SiO₂ der Fall (siehe Abb. 2.10).

In Kapitel 3.3.2 ließ sich aus den Koordinationszahlverteilungen entnehmen, dass das AS2–System einen hohen Anteil verknüpfter SiO₄– und AlO₄–Tetraeder aufweist. Dies lässt erwarten, dass auch die Strukturfaktoren zu Korrelationen mit Aluminium einen entsprechenden Peak zeigen, der die Ausdehnung zweier verbundener Tetraeder–Bausteine widerspiegelt. In der Tat findet man auch bei $S_{AlAl}(q)$ und $S_{AlO}(q)$ einen "FSDP" bei $q \simeq 1.6$ Å⁻¹. In Einklang mit dem nächsten Nachbarabstand Al–O entspricht also einem AlO₄–AlO₄–Baustein eine größere Längenskala als zwei verbundenen SiO₄–Tetraedern. Die Amplitude dieses Peaks ist bei Korrelationen mit Aluminium kleiner als bei der entsprechenden Korrelation mit Silizium. Da beide Atomsorten mit gleicher Konzentration in AS2 vorkommen, verdeutlicht dies wieder, dass ein nicht unwesentlicher Anteil der Aluminiumatome nicht tetraedrisch gebunden ist.

Geht man zu noch kleineren q-Werten, so zeigen die partiellen Strukturfaktoren von AS2 ein interessantes Merkmal, das bei SiO₂ nicht auftritt: Außer bei $S_{OO}(q)$ zeigt sich bei $q \simeq 0.5$ Å⁻¹ ein deutlicher Peak.

Wie bereits in Kap. 3.3.3 angedeutet wurde, tendiert unser System dazu, Aluminium– angereicherte Regionen auszubilden. Bei einem Anteil von 33 Mol% (ca. 50 Gew.%) Al₂O₃ ist tatsächlich nach dem Phasendiagramm in Abb. 5 (Einleitung) zu erwarten, dass bei Abkühlung im System lokale Entmischung eintritt. In diesem Zusammenhang lassen sich die erwähnten Peaks in den Strukturfaktoren wie folgt interpretieren: Regionen, in denen im Vergleich zum Gesamtsystem mehr Aluminiumatome vorhanden sind, bilden aus Sicht der Siliziumatome Leerräume. Die Ausdehnung dieser "Voids" führt im System eine neue Längenskala ein. Das Umgekehrte gilt auch für die Aluminiumatome, denen Voids aus Siliziumatomen gegenüberstehen. Das System zeigt somit eine zusätzliche prägnante Struktur auf größeren Längenskalen (d.h. kleinen q– Werten). Im Strukturfaktor äußert sich dies durch einen im Vergleich zu SiO₂ zusätzlich auftretenden Peak bei allen $S_{\alpha\beta}(q)$ außer $S_{OO}(q)$.

Die Sauerstoffatome sind sowohl an Silizium als auch an Aluminium gebunden und sind daher gleichmäßig über das Gesamtssystem verteilt. Aus ihrer Sicht gibt es keine Voids und der Peak bei 0.5 Å^{-1} tritt bei der O–O–Korrelation nicht auf. Man kann an dieser Stelle bei AS2 lediglich von einem "Precursor" einer Phasenseparation sprechen: Je mehr sich im System einzelne Phasen separierten, umso mehr müsste $S_{\alpha\beta}(q)$ für $q \to 0$ die Tendenz zeigen zu divergieren. Anschaulich gesprochen, werden dann die Voids immer größer bis sie schließlich makroskopisch sind, d.h. immer größere Längenskalen werden wichtig.

Die dem q-Wert 0.5 Å⁻¹ entsprechende Längenskala von $2\pi/q \approx 13$ Å ist bereits halb so groß wie die hier gewählte Kantenlänge der Simulationsbox. Um mögliche

Abbildung 3.18: Simulationsbox von Aluminiumdisilikat, $(Al_2O_3)(2 \cdot SiO_2)$, bei der Temperatur 300 K. Um Aluminium– und Silizium–reiche Gebiete hervorzuheben, sind die Radien beider Atomsorten vergrößert wiedergegeben. Ein perkolierendes Netzwerk aus Aluminium-polyedern durchdringt die SiO₄–Tetraederstruktur. Gelb: Silizium, grau: Aluminium, rot: Sauerstoff.

Entmischungsdendenzen in Al₂O₃–SiO₂–Systemen zu untersuchen, ist es notwendig, weitaus größere Systeme zu betrachten. Das frühe Stadium einer Phasenseparation zeigt sich typischerweise bei atomaren Systemen durch einen Peak im Strukturfaktor bei $q \approx 0.1$ Å⁻¹, was einer Längenskala von $2\pi/q \approx 63$ Å entspricht. Aufgrund der relativ großen Zeitskalen bei Phasenseparationen ist es allerdings nicht mehr möglich, Molekulardynamik–Simulationen zur Untersuchung solcher Phänomene zu verwenden. Eine geeignete Methoden hierfür ist z.B. die Monte–Carlo–Simulation im semi– großkanonischen Ensemble [116].

Zu beobachten ist bei unserem System die Ausbildung eines perkolierenden Netzwerks mit sinkender Temperatur. Am deutlichsten zeigt sich dies bei 300 K. In Abb. 3.18 ist ein Schnappschuss der Simulationsbox bei dieser Temperatur dargestellt. Um Aluminium– und Silizium–reiche Gebiete hervorzuheben, wurden die Radien beider Atomsorten bewusst vergrößert. Man sieht, dass sich im Vergleich zu Abb. 3.2 Regionen gebil-

Abbildung 3.19: Aus der Simulation errechneter totaler statischer "Neutronenstreu"– Strukturfaktor. Die partiellen Strukturfaktoren wurden hierzu gemäß Gl. (3.1) mit Neutronenstreulängen aus der Literatur gewichtet.

det haben, die nur aus Aluminium– und Sauerstoffatomen bestehen. Ein Aluminium– reiches Polyedernetzwerk "durchdringt" hierbei die SiO₄–Tetraederstruktur.

Experimentell lässt sich in atomaren Systemen das frühe Stadium einer Phasenseparation, das sich im Strukturfaktor als Peak bei q-Werten von ca. 0.1 Å⁻¹ (s.o.) äußert, mit Hilfe von Kleinwinkel–Röntgen– und Neutronenstreustudien nachweisen (siehe [117] und darin zitierte Referenzen). In Neutronenstreumessungen dürfte allerdings im totalen statischen Strukturfaktor ein Peak bei 0.5 Å⁻¹ nur schwer oder gar nicht zu beobachten sein. Abbildung 3.19 zeigt den totalen statischen "Neutronenstreu"–Strukturfaktor $S_n(q)$ bei der Temperatur 300 K, den wir wie folgt aus den vorgestellten partiellen Strukturfaktoren $S_{\alpha\beta}(q)$ berechnet haben:

$$S_n(q) = \frac{1}{\sum_{\alpha} N_{\alpha} b_{\alpha}^2} N \cdot \sum_{\alpha\beta} b_{\alpha} b_{\beta} S_{\alpha\beta}(q) , \qquad (3.1)$$

mit $\alpha, \beta \in \{\text{Si, Al, O}\}$ und der Teilchenzahl $N = \sum_{\alpha} N_{\alpha} = N_{\text{Si}} + N_{\text{Al}} + N_{\text{O}}$. Die experimentellen Neutronenstreulängen sind der Literatur [100] entnommen:

$$\begin{split} b_{\rm Si} &= 0.4149 \cdot 10^{-12} \ {\rm cm} \ , \\ b_{\rm Al} &= 0.3449 \cdot 10^{-12} \ {\rm cm} \ , \\ b_{\rm O} &= 0.5803 \cdot 10^{-12} \ {\rm cm} \ . \end{split}$$

Wie man sieht, ist bei $q = 0.5 \text{ Å}^{-1}$ nur eine sehr schwache Schulter zu erkennen. Grund hierfür ist vor allem der betragsmäßig sehr dominante Anteil des partiellen Strukturfaktors $S_{OO}(q)$ in Gl. (3.1), der gemäß Abb. 3.15 keinen Peak bei 0.5 Å^{-1} zeigt.

Abbildung 3.20: Aus der Simulation errechneter "reduzierter Röntgenstreu"–Strukturfaktor $q(S_X(q) - 1)$ im Vergleich mit der von Morikawa *et al.* [28] gemessenen Größe. Die partiellen Strukturfaktoren der Simulation wurden hierzu gemäß Gl. (3.2) mit den entsprechenden Formfaktoren gewichtet.

Um zu überprüfen, wie gut unser mikroskopisches Modell in der Lage ist, die Struktur von realem Aluminiumsilikat widerzugeben, vergleichen wir abschließend noch den totalen statischen "reduzierter Röntgenstreu"–Strukturfaktor $q(S_X(q) - 1)$ bei T = 300 K mit dem experimentellen Messergebnis von Morikawa *et al.* [28]. Zur Berechnung von $S_X(q)$, haben wir die partiellen Strukturfaktoren $S_{\alpha\beta}(q)$ mit Röntgenstreulängen gewichtet:

$$S_X(q) = \frac{1}{\sum_{\alpha} N_{\alpha} f_{\alpha}^2(s)} N \cdot \sum_{\alpha\beta} f_{\alpha}(s) f_{\beta}(s) S_{\alpha\beta}(q) , \qquad (3.2)$$

wobei wieder $\alpha, \beta \in \{\text{Si, Al, O}\}$ und $N = \sum_{\alpha} N_{\alpha}$ wie oben die Teilchenzahl bezeichnet. Zu beachten ist, dass die Formfaktoren $f_{\alpha}(s)$ über die Streulänge $s = q/4\pi$ von den Wellenvektoren abhängen. Messwerte zu den Formfaktoren vieler Elemente finden sich in [118]. Wir haben hier die Polynomentwicklung

$$f(s) = a_1 \exp(-b_1 s^2) + a_2 \exp(-b_2 s^2) + a_3 \exp(-b_3 s^2) + a_4 \exp(-b_4 s^2) + c \quad (3.3)$$

verwendet. Mit den ebenfalls in [118] aufgeführten Koeffizienten $\{a_1, a_2, a_3, b_1, b_2, b_3, c\}$ liefert sie einen sehr guten Fit der gemessenen Werte. Wie Abbildung 3.20 zeigt, wird die experimentelle Kurve recht gut durch den reduzierten Strukturfaktor $q(S_X(q) - 1)$ reproduziert. Vor allem für kleine q-Werte bis ca. 2.3 Å⁻¹ ist die Übereinstimmung mit dem Experiment sogar sehr gut [119].

3.4 Dynamische Eigenschaften

Wie wir in Kapitel 3.3 gesehen haben, zeichnet sich die Struktur von AS2 durch ein relativ geschlossenes Netzwerk aus. Da wenig lokale Fehlordnungen vorliegen, ist nicht zu erwarten, dass eine schnelle Systemkomponente den Diffusionsprozess dominiert (wie dies bei den Systemen NSx, x = 2, 3, 5, der Fall war). Zwar lässt die sich allmählich mit sinkender Temperatur ausprägende Struktur eines perkolierenden Al-O-Netzwerks eine beschleunigte Dynamik der Aluminiumatome vermuten, insgesamt sollte aber der Diffusionsmechanismus dem reinen SiO₂ wesentlich ähnlicher sein als den Natriumsilikaten.

Auch die Hochfrequenzdynamik wird nicht durch "dangling bonds" beeinflusst werden. Wir wollen untersuchen, ob die Aluminiumtetraeder ähnliche Schwingungsmoden aufweisen wie die SiO_4 -Bausteine, bzw. wie durch sie die SiO_2 -Zustandsdichte modifiziert wird.

3.4.1 Intermediäre Streufunktionen

Anders als in Kap. 2.3 soll die Diskussion der Dynamik unseres Aluminiumsilkat– Systems nicht mit der Vorstellung der mittleren Verschiebungsquadrate (MSD) beginnen. Wir stellen hier eine Größe voran, die einen guten Einblick in die systemtypischen Relaxationszeiten ermöglicht.

Das MSD ist das zweite Moment des Selbstanteils $G_s(r, t)$ einer Dichte–Dichte–Korrelationsfunktion, der sog. Van–Hove–Korrelationsfunktion:

$$\langle r_{\alpha}^{2}(t)\rangle = \int d^{3}r \, r^{2}G_{s}^{\alpha}(r,t) \,, \quad \alpha \in \{\text{Si, Al, O}\} \,.$$
 (3.4)

 $G_s^{\alpha}(r,t)$ ist definiert durch:

$$G_{s}^{\alpha}(r,t) := \frac{1}{N_{\alpha}} \left\langle \sum_{i=1}^{N_{\alpha}} \delta\left(r - |\vec{r}_{i}(t) - \vec{r}_{i}(0)|\right) \right\rangle, \qquad (3.5)$$

wobei N_{α} die Anzahl der Teilchen der Sorte α bezeichnet. Die Fouriertransformierte von $G_s^{\alpha}(r,t)$ wird *inkohärente intermediäre Streufunktion* genannt. Sie ist in Neutronenstreumessungen im Prinzip zugänglich.

$$F_s^{\alpha}(q,t) := \int G_s^{\alpha}(r,t) e^{-i\vec{q}\cdot\vec{r}} d\vec{r}$$

$$= \frac{1}{N_{\alpha}} \left\langle \exp\left(-i\vec{q}\cdot\left[\vec{r}_i(t) - \vec{r}_i(0)\right]\right) \right\rangle .$$
(3.6)

Abbildung 3.21 zeigt für alle untersuchten hohen Temperaturen den zeitlichen Verlauf der gemäß Gl. (3.6) berechneten Größen für Silizium, Aluminium und Sauerstoff.

Abbildung 3.21: Temperaturabhängigkeit der inkohärenten intermediären Streufunktionen von AS2 bei $q = 1.7 \text{ Å}^{-1}$.

Abbildung 3.22: Inkohärente intermediäre Streufunktionen bei $q = 1.7 \text{ Å}^{-1}$, aufgetragen über der skalierten Zeit t/τ_{α} für (a) Silizium, (b) Aluminium und (c) Sauerstoff.

Als Wert des Wellenvektors wurde hierbei $q = 1.7 \text{ Å}^{-1}$ gewählt, was in etwa dem Ort des FSDP im statischen Strukturfaktor entspricht (vgl. Abb. 3.15 u. 3.16). Wie man sieht, fallen alle Korrelatoren deutlich auf null ab. Dies ist ein gutes Indiz dafür, dass unsere Simulationsläufe lange genug waren, um (zumindest lokales) Gleichgewicht im System zu erreichen. Die Streufunktionen zeigen ein generelles Relaxationsverhalten, das dem in Kap. 2.3.5 diskutierten typischen Verhalten der mittleren Verschiebungsquadrate entspricht: Für hohe Temperaturen fallen die Funktionen $F_s^{\alpha}(q,t)$ relativ schnell auf null ab. Hin zu tiefen Temperaturen bildet sich immer mehr ein Plateau aus, dessen Länge umso größer ist, je tiefer die Temperatur ist. Die Korrelatoren zeigen somit einen zweistufigen Relaxationsprozess, wie er bereits in Kap. 2.3.5 bei den MSD diskutiert wurde. Der Plateaubereich spiegelt das β -Relaxationsregime wider, dessen Ursache der Käfigeffekt ist. Bei der tiefsten Temperatur T = 2300 K erstreckt sich die Länge des Plateaus bereits bei allen Atomsorten über ca. zweieinhalb Größenordnungen in der Zeit. Der anschließende Abfall der Korrelatoren auf null wird α -Relaxations regime genannt. Wir werden auf diesen Bereich weiter unten noch näher eingehen, wenn wir einige Vorhersagen der Modenkopplungstheorie testen.

Für Temperaturen unterhalb 2600 K zeigen alle Streufunktionen bei ca. 0.2 ps einen leichten Unterschwinger. Er steht in Zusammenhang mit dem bereits in Kap. 2.5.5 erwähnten Bosonenpeak, ist hier allerdings weit weniger stark ausgeprägt als im reinen SiO₂. Der Zeitbereich t < 1 ps wird in Kap. 3.4.4 genauer betrachtet, wenn wir das Hochfrequenzverhalten von AS2 bei tiefen Temperaturen untersuchen.

Vergleicht man die Streufunktionen von Silizium, Aluminium und Sauerstoff untereinander, so wird deutlich, dass bei allen Temperaturen die Zeiten, während denen die Kurven auf null abfallen, für Silizium größer sind als für Aluminium und Sauerstoff. Das zeitliche Relaxationsverhalten der Aluminium– und Sauerstoff–Streufunktionen ist hingegen sehr ähnlich.

Bei allen Systemkomponenten ist der Verlauf der Streufunktionen für große Zeiten, also im α -Relaxationsregime, bei allen Temperaturen recht ähnlich. Mit wachsender Temperatur sind die Kurven lediglich zu höheren Zeitskalen hin verschoben. Nach der idealisierten Modenkopplungstheorie (MCT) [84, 85] sollte für alle Zeitkorrelationsfunktionen $\Phi(q, t)$, die an die Dichte koppeln (also auch für $F_s^{\alpha}(q, t)$), im späten β -Regime und im α -Relaxationsregime ein Zeit-Temperatur-Superpositions-Prinzip (ZTSP) gelten:

$$\Phi(q,t) = \hat{\Phi}\left(q, \frac{t}{\tau_{\alpha}(T)}\right) .$$
(3.7)

Die Form der Korrelatoren $\Phi(q, t)$ ändert sich hiernach nicht mit der Temperatur T. $\Phi(q, t)$ ist in diesem Zeitbeich mit abnehmender Temperatur nur mit der typischen α Relaxationszeit $\tau_{\alpha}(T)$ zu größeren Zeiten hin verschoben. Trägt man also die Korrelatoren $\Phi(q, t)$ über der skalierten Zeit $\tau_{\alpha}(T)$ auf, so sollten nach der MCT alle Kurven
zu verschiedenen Temperaturen auf eine Masterkurve $\hat{\Phi}$ fallen.

Um das ZTSP für unsere Streufunktionen $F_s^{\alpha}(q,t)$ zu testen, haben wir als α -Rela-

xationszeit diejenige Zeit gewählt, bei der $F_s^{\alpha}(q,t)$ auf 1/e abgefallen ist. Abbildung 3.22 zeigt die über der skalierten Zeit t/τ_{α} aufgetragenen Korrelatoren $F_s^{\alpha}(q,t)$ für alle hier betrachteten Temperaturen wieder getrennt nach Silizium, Aluminium und Sauerstoff. Man erkennt deutlich, dass bei allen Systemkomponenten für $t/\tau_{\alpha} < 0.4$, also bis zu Zeiten im β -Relaxationsregime, das ZTSP nicht erfüllt ist. Grund hierfür ist wahrscheinlich wie bei reinem Silikat (vgl. [30, 49]) das Auftreten des Bosonenpeaks (vgl. Kap. 2.5.5) in unserem System (s.o.). Die Kopplung dieser Anregung an die Relaxationsdynamik im β -Regime führt mit sinkender Temperatur zu einer leichten Anhebung des Plateaus.

Sieht man bei den Streufunktionen des Siliziums von der höchsten Temperatur ab, bzw. bei den Aluminium- und Sauerstoff-Streufunktionen von T = 6100 K und T = 4700 K, so ist für Zeiten $t/\tau_{\alpha} \ge 0.4$ das ZTSP erfüllt (vgl. Abb. 3.22). Die Annäherung an eine Masterkurve ist am deutlichsten bei Sauerstoff und auch Silizium gegeben. Bei Aluminium "fächern" die Kurven für sehr große Zeiten stärker auf. Abweichungen von der Masterkurve zeigen hier neben den beiden höchsten Temperaturen auch T = 2300 K und T = 2380 K.

3.4.2 Mittlere Verschiebungsquadrate

In Abbildung 3.23 sind die mittleren Verschiebungsquadrate von AS2 für Silizium, Aluminium und Sauerstoff doppeltlogarithmisch gegen die Zeit aufgetragen. Sie wurden wie in Kap. 2.3.5 gemäß Def. (2.6) berechnet, wobei jetzt $\alpha \in {Si, Al, O}$. Alle Kurven zeigen einen typischen Verlauf, wie er bereits in Kap. 2.3.5 beschrieben wurde. Mit sinkender Temperatur bildet sich bei allen Systemkomponenten ein Plateau aus, das bei der tiefsten Temperatur eine Zeitspanne von ca. zwei Dekaden umfasst.

Wie sich bereits bei den intermediären Streufunktionen gezeigt hat, ist die Dynamik der Aluminium– und Sauerstoffatome schneller als die der Siliziumatome. In der Zeitspanne unserer Simulationsläufe legen Aluminium– wie auch Sauerstoffatome (bei tiefen Temperaturen) ungefähr die gleiche Strecke zurück ($\sim \sqrt{100} \text{ Å}^2 = 10 \text{ Å}$), die Siliziumatome kommen nicht ganz so weit (ca. ($\sqrt{30} \text{ Å}^2$).

Hinsichtlich ihres dynamischen Verhaltens zeichnen sich also die gleichen Systemkomponenten aus, wie bei der beobachteten Temperaturabhängigkeit der Koordinationszahlen: Es sind vor allem die Aluminium– und Sauerstoffkoordinationen, die sich mit sinkender Temperatur ändern, während die Siliziumkoordination relativ stabil bleibt. Beide Atomsorten scheinen also in AS2 eine wesentlich "aktivere" Rolle zu übernehmen als Silizium.

Im mikroskopischen Regime ist der zeitliche Verlauf der Verschiebungsquadrate von Silizium und Aluminium noch sehr ähnlich. Mit wachsender Zeit separiert sich die Aluminiumkomponente aber von der Siliziumkomponente, so dass alle Atomsorten im intermediären Regime einen unterschiedlichen Kurvenverlauf zeigen. D.h. anschaulich, dass je nach Atomsorte ein anderer Käfig vorliegt, in dem sich ein Teilchen auf

Abbildung 3.23: Mittlere Verschiebungsquadrate von AS2 bei den Temperaturen 6100 K, 4000 K, 3250 K, 2750 K, 2480 K und 2300 K.

der Zeitskala des Plateaus gefangen sieht. Zu Beginn des β -Regimes zeigt vor allem das mittlere Verschiebungsquadrat von Silizium bei 2300 K einen deutlichen Überschwinger bei ~ 0.2 ps. Er ist das Analogon zum entsprechenden Unterschwinger der intermediären Streufunktion bei gleicher Temperatur und ist in Zusammenhang mit dem bei tiefen Temperaturen auftretenden Bosonenpeak zu sehen. Auf die Schulter bei 0.03 ps wurde bereits in Kap. 3.23 hingewiesen. Wie bereits in Kap. 3.4.1 erwähnt, werden wir diesen Zeitbereich im Rahmen der Hochfrequenzdynamik unseres Systems noch genauer untersuchen.

Im diffusiven Bereich, also für große Zeiten, wenn $\langle r_{\alpha}^2(t) \rangle \propto t$, sind die MSD von Aluminum und Sauerstoff bei hoher Temperatur sehr ähnlich; erst bei tiefen Temperaturen separieren beide Kurven allmählich. Dies lässt erwarten, dass Aluminium wie Sauerstoff bei allen Temperaturen im Langzeitlimes eine ähnlich schnelle Diffusion zeigen.

3.4.3 Selbstdiffusionskonstanten

Wie in Kap. 2.3.6 haben wir mit Hilfe der Einsteinrelation (vgl. Gl. (2.7)) aus den mittleren Verschiebungsquadraten die Selbstdiffusionskonstanten für AS2 bestimmt. Der "Arrheniusplot" in Abb. 3.24 zeigt die ermittelten Werte D_{α} , $\alpha \in {\text{Si, Al, O}}$, logarithmisch gegen die inverse Temperatur aufgetragen. Zum Vergleich sind auch die

Abbildung 3.24: Arrheniusplot der Diffusionskonstanten von Silizium, Aluminium und Sauerstoff: Vergleich der Systeme AS2 und SiO₂.

Diffusionskonstanten $D_{\rm Si}$ und $D_{\rm O}$ des reinen Systems aus [30, 49] eingezeichnet. Bei SiO₂ findet man bei $T \approx 3400$ K einen "Crossover" von einem Bereich, in dem das Temperaturverhalten von $D_{\rm Si}$ und $D_{\rm O}$ gut durch ein Potenzgesetz nach der Modenkopplungstheorie beschrieben werden kann, hin zu einem Bereich bei kleiner Temperatur, in dem sich beide Diffusionskonstanten durch Arrheniusgesetze anfitten lassen (vgl. auch Kap. 2.3.6). Wie man sieht, lässt der untersuchte Temperaturbereich von AS2 kein solches Verhalten erkennen. Die Dynamik aller Systemkomponenten ist hier aber wesentlich schneller als in SiO₂. Bei 2750 K liegen die Silizium– und Sauerstoff– Diffusionskonstanten von AS2 um fast zwei Größenordnungen über denen von SiO₂. Die beiden schnellsten Komponenten im System, Aluminium und Sauerstoff, zeigen wie es sich bereits aus den MSD ergeben hat, eine ähnliche diffusive Dynamik; bei hohen Temperaturen separiert sich $D_{\rm Al}$ zunächst etwas von $D_{\rm O}$.

3.4.4 Hochfrequenzdynamik

Die Struktur von AS2 lässt sich als ein relativ geschlossenes Netzwerk charakterisieren, das von AlO₄– und SiO₄–Tetraedern dominiert wird. Im Gegensatz zu den Natriumsilikaten NSx liegen praktisch keine "dangling bonds" vor. Dies lässt erwarten, dass das Schwingungspektrum des hier untersuchten Aluminiumsilikats dem reinen SiO₂ wesentlich ähnlicher ist, als es bei den Systemen NSx der Fall war. Abweichungen sind aufgrund anderer Bindungsverhältnisse und Atomabstände zu erwarten (vgl. Kap. 3.3.1).

Wie in Kap. 2.5.1 haben wir die Zustandsdichte von AS2 in harmonischer Approximation über die Beziehung (2.11) bestimmt. Hierzu wurden bei 300 K fünf unabhängige Simulationsläufe à 16384 Zeitschritten (26.8 ps) durchgeführt und alle acht Zeitschritte die Geschwindigkeiten $\{\vec{v}_i(t)|i = 1, ..., N\}$ abgespeichert. Das untersuchte Frequenzintervall deckt sich somit mit dem Bereich, der bei den Natriumsilikaten untersucht wurde. Wir wollen hier ähnliche Fragestellungen diskutieren wie in Kap. 2.5:

Welchen Einfluss hat Aluminium auf das Schwingungsspektrum von SiO₂?

Was passiert mit den bekannten inter- und intratetraedrischen Schwingungsmoden? Zeigen sich analoge Moden, die durch die AlO₄-Tetraeder verursacht werden? Was passiert bei tiefen Frequenzen nahe des Bosonenpeaks?

Abbildung 3.25 zeigt die nach Gl. (2.11) berechneten Zustandsdichten $g(\nu)$ von AS2 im Vergleich zur SiO₂–Zustandsdichte jeweils bei 300 K.

Wie beim reinen System finden wir auch beim Aluminiumsilikat einen breiten strukturlosen Berg bis ca. 20 THz. Dieser fällt über eine Schulter in ein Minimum ab, das anders als bei SiO₂ nicht sehr tief ist. An Stelle des typischen Doppelpeaks zeigt sich ein breiter Peak, dessen Maximum ungefähr beim ersten Peak von SiO₂ liegt (32 THz). Um die beschriebene Struktur der AS2–Zustandsdichte besser zu verstehen, haben wir wie in Kap. 2.5.2 $g(\nu)$ nach den Beiträgen der einzelnen Atomsorten aufgespalten. Die gemäß Gleichung (2.15) für $\alpha \in {Si, Al, O}$ berechneten partiellen Zustandsdichten $g_{\alpha}(\nu)$ sind ebenfalls in Abb. 3.25 eingezeichnet. Ihre Summe ergibt gerade die jeweilige (totale) Zustandsdichte $g(\nu)$.

Es fällt zunächst auf, dass Aluminium im Wesentlichen nur bis ca. 25 THz zur Gesamtzustandsdichte beiträgt. Der breite Peak um 32 THz wird wie der Doppelpeak bei SiO₂ nur durch die Silizium– und Sauerstoffkomponenten aufgebaut. Für die "Auffüllung" des Minimums (28 THz) ist hauptsächlich der Beitrag der partiellen Sauerstoff–Zustandsdichte verantwortlich. Um 22 THz findet man bei der Gesamtzustandsdichte von SiO₂ einen kleinen Peak, der durch $g_{Si}(\nu)$ verursacht wird. Bei der partiellen Silizium– Zustandsdichte von AS2 fehlt dieser Peak; die Gesamtzustandsdichte zeigt einen entsprechenden Abfall.

Zusammenfassend erhalten wir also bei AS2 ein wesentlich "weicheres" Schwingungsspektrum als bei SiO_2 .

Abbildung 3.25: a) Zustandsdichte $g(\nu)$ von Aluminiumdisilikat AS2 bei 300 K. b) $g(\nu)$ für das System SiO₂ bei derselben Temperatur. Mitaufgeführt sind jeweils die Atomart-spezifischen Anteile an $g(\nu)$ (partielle Zustandsdichten $g_{\alpha}(\nu)$).

Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde die Struktur und Dynamik von binären silikatischen Schmelzen und Gläsern untersucht, die neben SiO₂ ein weiteres Oxid, nämlich Na₂O oder Al₂O₃, enthalten. Hierzu wurden klassische Molekulardynamik–Computersimulationen der Natriumsilikat–Systeme "NSx" \equiv (Na₂O)(x · SiO₂), mit x = 2, 3, 5, sowie von Aluminiumdisilikat "AS2" \equiv (Al₂O₃)(2 · SiO₂) durchgeführt.

Die Grundlage des verwendeten Potenzialmodells bildete eine Erweiterung des sog. "BKS–Potenzials" [41], das Kramer *et al.* 1991 für Zeolithe vorgeschlagen haben [33]. Mit der von Kramer *et al.* gewählten Ionenladung für Natrium, $q_{Na} = 1.0$, und der effektiven Partialladung für Aluminium, $q_{Al} = 1.9$, ist für keines unserer Systeme Ladungsneutralität erfüllt. Um diese zu gewährleisten, wurden die Ladungen $q_{Na} = 0.6$ und $q_{Al} = 1.8$ eingeführt und die Potenziale für die Natrium– und Aluminiumwechselwirkungen durch zusätzliche kurzreichweitige Potenzialterme so modifiziert, dass die ursprünglichen Potenzialformen nach Kramer *et al.* im Bereich der Minima der Na– O– und Al–O–Potenziale gut reproduziert werden. Frühere Untersuchungen zu NS2 und NS3 [30, 31] sowie unsere Simulationen von AS2 zeigen, dass das verwendete Potenzialmodell in der Lage ist, die Struktur und Dynamik von amorphen Natrium– und Aluminiumsilikaten realistisch widerzugeben.

Simuliert wurden Natriumsilikat–Systeme aus rund 8000 Teilchen bei einer Dichte von $\rho = 2.37$ g/cm³. Im Fall von AS2 wurde ein System mit 1408 Teilchen und einer Dichte von $\rho = 2.6$ g/cm³ untersucht. Der simulierte Temperaturbereich lag bei den Systemen NSx im Bereich 4000 K $\geq T \geq 2100$ K, bei AS2 im Intervall 6100 K $\geq T \geq 2300$ K. Ausgehend von äquilibrierten Konfigurationen wurden z.B. bei NS5 die Teilchentrajektorien über 3–4 ns (T = 2100 K) aufgenommen, bei AS2 über 6–7 ns (T = 2300 K). Zusätzlich haben wir Abkühlläufe mit Kühlraten in der Größenordnung von 10^{12} K/s durchgeführt, um die Glasstruktur der Systeme bei 100 K (NSx) bzw. 300 K (AS2) zu untersuchen.

Das in der Dissertation von J. Horbach [30] entwickelte Simulationsprogramm für drei Systemkomponenten (Si, Na, O) wurde auf eine weitere Komponente (Al) erweitert. Um die relativ großen Systeme auf einer ns–Skala simulieren zu können, wurde der Programmcode parallelisiert, wobei MPI–Bibliotheksroutinen verwendet wurden. Langreichweitige Coulombanteile in Potenzial und Kraft wurden mit Hilfe der Methode der Ewald-Summen berechnet.

Durch den Netzwerkmodifikator Na_2O wird das tetraedrische SiO_4 -Netzwerk von reinem SiO_2 aufgebrochen. Es kommt zum verstärkten Auftreten lokaler Defekte im System. Aufbauend auf früheren Simulationsergebnissen zu NS2 und NS3 [30, 31] wurde in dieser Arbeit systematisch untersucht, welche Auswirkungen unterschiedliche Natriumkonzentrationen auf Struktur und Dynamik haben. Anhand von Natriumpentasilikat (NS5) wurde exemplarisch diskutiert, wie sich durch die Zugabe von Natrium die statischen Eigenschaften des Systems im Vergleich zu einer SiO_2 -Schmelze ändern.

Wir haben die *Struktur* der Natriumsilikatschmelzen auf unterschiedlichen Längenskalen untersucht:

Die partiellen Paarkorrelationsfunktionen erlauben die folgenden Schlüsse hinsichtlich der lokalen Ordnung unserer Systeme:

Durch die Anwesenheit der Natriumatome kommt es bereits bei dem System mit dem niedrigsten Natriumgehalt (NS5, 11 Mol% Na) zur Ausbildung einer stark aufgebrochenen SiO₄-Tetraederstruktur. (Bei 2700 K sind nur noch rund 80% aller Sauerstoffatome zweifach mit Silizium koordiniert; bei SiO_2 sind es nahezu 100%.) Diese wird geprägt durch einen hohen, nur schwach temperaturabhängigen Anteil (18-19%) an "dangling bonds" in Form einfach koordinierter Sauerstoffatome: In ihrer Nähe ordnen sich die Natriumionen an. Bei hohen Temperaturen weist das System auch eine Vielzahl weiterer Defekte auf. Allerdings finden im System mit sinkender Temperatur starke Umordnungsprozesse statt, wobei der Anteil der Defekte im System (außer "dangling bonds") stark abnimmt. Dies zeigt beispielsweise der Temperaturverlauf des prozentualen Auftretens von Defekten wie drei- oder fünffach mit Sauerstoff koordinierter Siliziumatome. Für nicht zu große Temperaturen lässt sich das Auftreten dieser Defekte durch Arrheniusgesetze beschreiben. Bei NS5 finden wir durch Extrapolation der Arrheniuskurven nach der experimentellen Glasübergangstemperatur, $T_q = 773$ K, ein Auftreten von drei- bzw. fünffach koordinierten Siliziumatomen jeweils mit der Wahrscheinlichkeit $1.1 \cdot 10^{-7}$ %.

Die O–O–Koordinationszahlverteilungen zeigen eine breite Streuung um die Tetraederanordung (z = 6). Die mit sinkender Temperatur stark variierenden Anteile der unterschiedlichen Koordinationen deuten ebenfalls auf die starke Umordnung im System hin.

Mit wachsender Natrium-Konzentration wird das Netzwerk zusehends modifiziert: Wie die Paarkorrelationsfunktionen zeigen, nimmt die Ausprägung der charakteristischen O-O-Struktur des SiO₂ ab, je mehr Natriumatome im System vorhanden sind. Neben Brückensauerstoffen finden wir einen wachsenden Anteil an dreifach O-koordinierten Sauerstoffatomen. Der Abstand übernächster Siliziumnachbarn nimmt zu, während der Na-Na-Abstand abnimmt. Es bildet sich bei allen Systemen NSx eine Struktur, bei der jedem Natriumatom 15 bis 16 Silizium- oder Natriumatome benachbart sind, und zwar relativ unabhängig von der Temperatur. Hierbei kommt es nicht zu einem Clustern der Natriumatome: Mit wachsendem Natriumgehalt verschiebt sich das Maximum der Si-Na-Koordinationszahlverteilung von z = 5 bis z = 9, wobei alle Verteilungen eine ähnliche breite Streuung um den jeweiligen Maximalwert zeigen. In allen Systemen finden wir zu gleichen Anteilen hauptsächlich Natriumatome, die drei oder vier Sauerstoffnachbarn haben.

❑ Durch die anwesenden Natriumatome kommt es in den Systemen NSx im Vergleich zu SiO₂ zur Ausbildung neuer charakteristischer Längenskalen (s.u.). Deutlichstes Anzeichen für das Entstehen solcher Strukturelemente ist die Aufspaltung des ersten Peaks der Korrelationsfunktion g_{SiNa} bei tiefen Temperaturen. Hier tragen gerade diejenigen Siliziumatome bei, die im Netzwerk über eine Bindungssequenz Si–O–Si–O–Na mit dem entsprechenden Natriumatom verbunden sind.

Die *Struktur auf mittleren Längenskalen* lässt sich mit Hilfe der Si–O–*Ringlängenverteilungen* charakterisieren:

- □ Das Aufbrechen des SiO₄-Netzwerks durch die Natriumionen hat zur Folge, dass mit wachsender Natrium-Konzentration immer längere -Si-O- Wege notwendig sind, um Ringe zu schließen. Die Ringlängenverteilungen der Systeme NSx sind daher im Vergleich zu SiO₂ umso breiter, je höher der Na-Anteil im System ist.
- □ Die oben erwähnte Ausbildung typischer Strukturelemente mit sinkender Temperatur zeigt sich auch hier besonders deutlich: Neben einem dominanten Anteil an "dangling bonds" prägt sich mit sinkender Temperatur eine Struktur heraus, bei der 5er– und 8er–Ringe favorisiert werden. Wie beim Quarz, der im Verhältnis 4:2 aus 6er– und 8er–Ringen besteht, handelt es sich hierbei offensichtlich um energetisch besonders günstige Ringkonfigurationen.

Weitere Aussagen zur *Struktur auf intermediären Längenskalen* erlauben die *partiellen statischen Strukturfaktoren*:

□ Das Aufbrechen des SiO₄–Netzwerks und die Begünstigung neuer Bindungsstrukturen führt dazu, dass es in den Natriumsilikaten zur Auszeichnung zusätzlicher Längenskalen kommt, entsprechend der Anordnung der Natriumionen im System. Wir finden mit wachsendem Natriumgehalt ein Abnehmen des "First– Sharp–Diffraction–Peaks" (FSDP) bei q = 1.7 Å⁻¹. Gleichzeitig kommt es bei allen betrachteten Natrium–Konzentrationen zur Ausbildung eines zusätzlichen Peaks bei $q = 0.95 \text{ Å}^{-1}$. Seine Amplitude wächst mit steigendem Natriumgehalt. Die durch den FSDP reflektierte Abnahme der tetraedrischen Netzwerkstruktur geht also einher mit der Ausprägung einer zusätzlichen Struktur auf größeren Längenskalen. Sie lässt sich durch eine typische Länge von $2\pi/0.95 \text{ Å}^{-1} \approx 6.6 \text{ Å}$ charakterisieren, was einem Abstand übernächster Silizium– bzw. Natriumnachbarn eines Natriumatoms entspricht, und ist typisch für alle untersuchten Natriumsilikat–Systeme.

Die *Dynamik* der Systeme NSx *bei hohen Temperaturen* haben wir anhand der *mittleren Verschiebungsquadrate (MSD)* und der *Selbstdiffusionskonstanten* diskutiert:

- □ Die mit zunehmender Natrium-Konzentration in der Schmelze verstärkt auftretenden Defekte führen zu einer starken Umordnung im System. Dies hat zur Folge, dass die Dynamik aller Komponenten der Systeme NSx wesentlich schneller als in SiO₂ ist und mit wachsender Natrium-Konzentration zunimmt. Wir finden Diffusionskonstanten, die im Falle von Silizium und Sauerstoff beispielsweise bei 2750 K bei allen Systemen NSx um zwei Größenordnungen über den Werten des reinen SiO₂ liegen. Bei der schnellsten Komponente Natrium sind es bereits drei. Mit sinkender Temperatur und wachsender Natrium-Konzentration weichen die Diffusionskonstanten der Natriumsilikat-Systeme immer mehr von denjenigen des reinen SiO₂ ab.
- □ Die Positionen der Silizium– und Sauerstoffatome sind im Vergleich zu den Natriumpositionen relativ starr. Wir finden eine Natriumdiffusion, die mit sinkender Temperatur immer mehr von der Silizium– und Sauerstoffdiffusion entkoppelt. Auf der Zeitskala der Natriumdiffusion kann die Bewegung der Silizium– und Sauerstoffatome als eingefroren angesehen werden. Die Natriumatome vollführen hierbei ein aktiviertes Hüpfen durch die erstarrte Si–O–Landschaft: Über den gesamten Temperaturbereich kann D_{Na}(T) bei allen Systemen durch ein Arrheniusgesetz gefittet werden. Analog zu experimentellen Leitfähigkeits– und Diffusionsmessungen nehmen hierbei die Aktivierungsenergien mit steigender Natrium–Konzentration ab.

Zur Charakterisierung der *vibratorischen Dynamik* unserer Systeme haben wir die *Zu-standsdichten* in harmonischer Approximation bestimmt:

Aufgrund der Abnahme der tetraedrischen Netzwerkstruktur mit steigender Natrium–Konzentration im System, kommt es vor allem zu einer starken Beeinflussung der für SiO₂ charakteristischen intratetraedrischen Schwingungsmoden: Das Auftreten weicher Moden führt zu einem Verschwinden der Doppelpeakstruktur im Spektrum oberhalb von 30 THz. Die Aufspaltung der Zustandsdichten nach Atomart-spezifischen "partiellen Zustandsdichten" ergab, dass Natriumschwingungsmoden die Zustandsdichten bei tiefen und mittleren Frequenzen dominieren. Oberhalb von 20 THz tragen sie nicht mehr zur Zustandsdichte bei.

In reinem Al_2O_3 wird lokaler Ladungsausgleich für die Al^{3+} -Ionen über die Bildung von AlO₆-Bausteinen gewährleistet. In Silikatsystemen kann Al₂O₃ anders als Na₂O als Netzwerkbildner fungieren, indem AlO₄-Tetraeder aufgebaut und in die SiO₄-Tetraederstruktur eingebunden werden. Um lokal Ladungsausgleich zu erreichen, ist es allerdings notwendig, dass sich die AlO₄-Tetraeder im System anders anordnen als die SiO₄-Tetraeder in reinem SiO₂. Daneben hat man im Experiment auch höher koordinierte Aluminiumatome beobachtet: Es wird die Existenz von fünffach koordinierten Aluminiumatomen und alternativ die Ausbildung von "3-Clustern" 3(Al, Si)O₄ diskutiert. Unsere Simulationen zu Aluminiumdisilikat liefern einen wichtigen Beitrag zur Klärung der Frage, wie der notwendige lokale Ladungsausgleich für die Al³⁺–Ionen erreicht wird. Von der lokalen Ordnung der Aluminiumatome hängen insbesondere auch wichtige Phänomene wie Mikrophasenseparation ab. Durch die Anordnung der SiO₄-Tetraeder im System kann es zur Ausbildung von Regionen kommen, die stark mit Aluminium angereichert sind. Unter Umständen bilden sich Vorstufen einer Phasenseparation. Das hier untersuchte System AS2 fällt mit einer Zusammensetzung von 33 Mol% in den Bereich des Phasendiagramms von Al₂O₃-SiO₂, in dem Entmischung beobachtet wird.

Einblick in die *lokale Ordnung* von AS2 ermöglichen wieder die *partiellen Paarkorrelationsfunktionen* und die *Koordinationszahlverteilungen*:

Die Einbindung von Aluminium in AS2 führt zur Ausbildung einer verknüpften Polyederstruktur, die überwiegend aus AlO_4 - und SiO_4 -Tetraedern besteht. Bei Temperaturen oberhalb 4000 K finden sich neben vierfach koordinierten Siliziumatomen auch fünffach koordinierte. Hier sind zwei Drittel aller Aluminiumatome vierfach koordiniert, das restliche Drittel etwa zu gleichen Anteilen drei- und fünffach. Auch für Temperaturen unterhalb 2300 K tendieren die letzten beiden Anteile nicht gegen null. Defekte wie "dangling bonds" treten im Gegensatz zu den Systemen NSx so gut wie keine auf, so dass auch zwei Drittel aller Sauerstoffatome als Brückensauerstoffe zwischen verknüpften AlO₄und SiO₄-Tetraedern fungieren. Die übrigen Sauerstoffatome bilden einen relativ temperaturunabhängigen Anteil an "3-Cluster-O"-Atomen, denen in der Regel immer mindestens ein Aluminiumatom benachbart ist. Sie gewährleisten wahrscheinlich den lokalen Ladungsausgleich der AlO₄-Tetraeder. Die Sauerstoffatome haben also eine ganz andere Funktion als im SiO₄-Netzwerk des reinen SiO_2 oder bei der Ausbildung von AlO_6 -Strukturen in reinem Al_2O_3 . Der nächste Nachbarabstand Al-O in AS2 liegt zwischen den entsprechenden Abständen in SiO_2 und Al_2O_3 .

□ Bei dem hauptsächlich aus verknüpften SiO₄- und AlO₄-Tetraedern bestehenden Netzwerk, bildet sich mit abnehmender Temperatur eine Ordnung heraus, bei der die Aluminiumatome nicht gleichmäßig über die Si-O-Struktur verteilt sind. Es kommt so bei der Al-Al-Paarkorrelationsfunktion mit sinkender Temperatur zur Aufspaltung des ersten Peaks. Das zusätzlich auftretende Maximum bei kleineren Atomabständen hängt mit dem verstärkten Auftreten kleiner Ringe aus -Al-O- Elementen zusammen (s.u.).

Einen entscheidenden Beitrag zum Verständnis dieser sich allmählich ausbildenden lokalen Struktur liefert die *Ringstatistik*:

□ Mit sinkender Temperatur findet sich neben einem Hauptanteil an 5er-Ringen aus -(Si, Al)-O- Elementen ein wachsender Anteil an kleinen Ringen (2er-, 3er-Ringe), die vornehmlich nur aus -Al-O- Elementen bestehen. Es wird also eine lokale Ordnung favorisiert, bei welcher der nächste Nachbarabstand der Aluminiumatome kleiner als im Systemmittel ist. Dies erklärt die Aufspaltung des ersten Peaks von g_{AlAl}(r).

Weitergehende Schlussfolgerungen hinsichtlich dieser Al-angereicherten Regionen erlaubt die Untersuchung der *intermediären Ordnung* anhand der *partiellen Strukturfaktoren*:

□ Das System AS2 zeigt ein vornehmlich tetraedrisch verknüpftes geschlossenes Netzwerk mit einer zusätzlichen prägnanten Struktur auf größeren Längenskalen. Hierbei sind die Aluminiumatome nicht gleichmäßig über das Netzwerk verteilt: Neben dem First–Sharp–Diffraction–Peak ($q = 1.7 \text{ Å}^{-1}$) und seinem Analogon bei Korrelationen mit Aluminium ($q = 1.6 \text{ Å}^{-1}$), die eine tetraedrische Struktur widerspiegeln, zeigen alle partiellen Strukturfaktoren außer $S_{OO}(q)$ einen deutlichen Peak bei $q = 0.5 \text{ Å}^{-1}$. Das verstärkte Auftreten von Aluminiumatomen führt in gewissen Netzwerkregionen aus Sicht der Siliziumatome zu "Voids" im System. (Das umgekehrte gilt auch für Aluminium.) Die hierdurch dem System zusätzlich aufgeprägten größeren Längenskalen (d.h. kleinen q–Werte) äußern sich bei allen Strukturfaktoren außer $S_{OO}(q)$ durch einen zusätzlich auftretenden Peak. Die Sauerstoffatome sind gleichmäßig über das System verteilt, wobei auch ihre lokale Anordnung um Aluminium und Silizium sehr ähnlich ist. Der Strukturfaktor $S_{OO}(q)$ wird daher durch keine zusätzliche Längenskala geprägt, weist also keinen zusätzlichen Peak auf.

Die intermediäre Längenskala, die in den partiellen Strukturfaktoren zu einem Peak bei $q = 0.5 \text{ Å}^{-1}$ führt, kann man zusammenfassend folgendermaßen charakterisieren: In Form eines perkolierenden Netzwerks durchdringt eine verknüpfte Al-reiche Polyederstruktur das SiO₄-Netzwerk. Hierbei sind Al-O-Strukturen lokal anders angeordnet als Si-O-Strukturen. Dies zeigen auch die Schnappschüsse von Konfigurationen bei tiefer Temperatur. Hinsichtlich der *Dynamik* von AS2 wurden im Hochtemperaturbereich *intermediäre Streufunktionen, mittlere Verschiebungsquadrate* und *Selbstdiffusionskonstanten* untersucht:

- Die Dynamik aller Systemkomponenten in AS2 ist wesentlich schneller als in SiO₂. Bei 2750 K weichen die Diffusionskonstanten beider Systeme bereits um zwei Größenordnungen voneinander ab.
- ❑ Anders als bei SiO₂ zeigen die Selbstdiffusionskonstanten von AS2 im untersuchten Temperaturbereich keinen "Crossover" von einem Bereich, in dem ein Potenzgesetz nach der Modenkopplungstheorie (MCT) gilt, hin zu einem Bereich, der sich durch Arrheniusgesetze beschreiben lässt. Es ist aber durchaus möglich, dass bei tieferen Temperaturen ein solcher Übergang stattfindet. Die Diffusionskonstanten von Aluminium sind um etwa einen Faktor drei größer als die Diffusionskonstanten von Silizium. Es zeigt sich also auch in der Dynamik, dass Aluminium anders in das Netzwerk eingebaut wird als Silizium. Interessant ist, dass Aluminium und Sauerstoff ein sehr ähnliches Diffusionsverhalten aufweisen.
- Für die Streufunktionen wurde das nach der MCT vorausgesagte Zeit-Temperatur-Superpositionsprinzip (ZTSP) getestet. Es ist für Zeiten jenseits des β-Relaxationsregimes, also im α-Regime vor allem bei Silizium und Sauerstoff gut erfüllt. Bei Aluminium ergeben sich anders als bei Silizium und Sauerstoff leichte Abweichungen von der Masterkurve für tiefe Temperaturen.

Bei tiefen Temperaturen haben wir wie bei NSx die Hochfrequenzdynamik untersucht:

❑ Auf den ersten Blick ähnelt das Schwingungsspektrum von AS2 dem des reinen SiO₂. Allerdings zeigt eine Aufspaltung der Zustandsdichte nach Atomart-spezifischen "partiellen Zustandsdichten", dass die AlO₄-Bausteine wesentlich weichere intratetraedrische Schwingungsmoden aufweisen als die SiO₄-Bausteine. Aluminium liefert oberhalb 30 THz keinen Beitrag. Im Bereich des für SiO₂ typischen Doppelpeaks kommt es aber durch die Anwesenheit der Aluminiumatome zu einem "Aufweichen" der hier relevanten Si-O-Schwingungsmoden.

Insgesamt haben unsere Untersuchungen der Systeme NSx und AS2 gezeigt, dass der Netzwerkwandler Na₂O wie auch die Netzwerkeinbindung von Al₂O₃ nicht nur die typische SiO₄–Tetraederstruktur auf lokalen Längenskalen modifiziert, sondern vor allem auch zur Ausbildung zusätzlicher intermediärer Längenskalen führt. In beiden Fällen führt das zugesetzte Oxid zu einer erheblichen Beschleunigung der diffusiven Dynamik. Sowohl bei den Systemen NSx als auch bei AS2 wird das Hochfrequenzspektrum für Frequenzen $\nu > 30$ THz, also im Bereich des typischen Doppelpeaks der SiO_2 -Zustandsdichte stark modifiziert, und das obwohl Natrium als auch Aluminium nur bis ca. 20 THz bzw. 30 THz einen direkten Beitrag zur Zustandsdichte liefern.

"Das Glas ist ein Stoff mit einer theoretisch unbegrenzten Vielfalt an Zusammensetzungsmöglichkeiten." [17] Allein diese Aussage verdeutlicht die große Zahl an möglichen Untersuchungen, die sich an diese Arbeit anschließen lassen. Wir können daher hier nur eine begrenzte Auswahl auflisten:

- □ Die bei Aluminiumdisilikat zusätzlich auftretenden charakteristischen intermediären Längenskalen sind bereits halb so groß wie die gewählte Kantenlänge Lder Simulationsbox ($L \approx 26$ Å), so dass es sicherlich sinnvoll ist, auch hier Systeme mit $L \approx 48$ Å und etwa 8000 Teilchen zu untersuchen.
- □ Die Wahl größerer Systeme ist auch notwendig, um mögliche Entmischungstendenzen von Al₂O₃-SiO₂-Systemen zu untersuchen. Eine Mikrophasenseparation zeigt sich im Strukturfaktor von atomaren Systemen typischerweise durch einen Peak bei einem Wellenvektor von q ≈ 0.1 Å⁻¹, was bereits einer Längenskala von 2π/q ≈ 63 Å entspricht. Da auch die Zeitskalen bei Entmischungsphänomenen sehr groß sind, ist die Verwendung von Molekulardynamik-Simulationen für solche Untersuchungen nicht mehr möglich. Hier bieten sich semigroßkanonische Monte-Carlo-Simulationsmethoden an [116].
- □ Ein nächster Schritt ist die Untersuchung der Struktur und Dynamik von ternären Gläsern und Schmelzen der Zusammensetzung (Na₂O)_x(Al₂O₃)_y(SiO₂)_{1-x-y}. Man kommt so den realen Aluminosilikatgläsern einen großen Schritt näher: In diesen Systemen wird der beim Einbau von Al³⁺–Ionen in eine [AlO₄]–Koordination notwendige Wertigkeitsausgleich durch Alkaliionen wie Na⁺ erreicht. Durch den Ersatz von SiO₂ durch Al₂O₃ werden Trennstellen im durch Na₂O aufgebrochenen Netzwerk geschlossen und die Glasstruktur verfestigt. Anders ausgedrückt nimmt die Konzentration von "dangling bonds" in Aluminosilikatgläsern mit wachsender Al₂O₃–Konzentration gegenüber reinen Natriumsilikatsystemen ab, bis sich schließlich Sättigung einstellt.
- Phasenseparation in Alkalisilikatgläsern macht technisch die Herstellung von reinem Glas unmöglich. Hier unterdrückt eine Kombination von binären Systemen das Ausmaß der Phasenseparation. Ein Beispiel hierfür sind Soda-Kalk-Gläser. In diesem Zusammenhang ist es sicherlich interessant, Entmischungstendenzen bei verschiedenen ternären Glaszusammensetzungen zu untersuchen. Allgemein zeigen Silikatgläser, die unterschiedliche Alkalimetalle enthalten, viele interessante Eigenschaften, wie z.B. den bekannten Mischalkali–Effekt. Er ist bereits Gegenstand aktueller Untersuchungen, für die das in dieser Arbeit verwendete Simulationsprogramm auf eine weitere Alkalikomponente erweitert wurde [120].
Anhang A

Coulombanteile der Natrium– und Aluminiumwechselwirkungen

In diesem Anhang stellen wir die einzelnen Terme zusammen, wie sie im Simulationsprogramm (siehe Anhang B) bei der Berechnung der Coulombwechselwirkungen mit Natrium– bzw. Aluminiumatomen verwendet wurden.

Allgemein lautet der Coulombanteil der Potenzialfunktion

$$V_{\rm C}(r_{ij}) = \sum_{\substack{i,j \\ i < j}} \frac{q_i q_j e^2}{r_{ij}} .$$
 (A.1)

wobei $q_i \in \{q_{Si}, q_{Na}, q_{Al}, q_O\}$. Die Silizium- und Sauerstoffladungen sind konstant; für Natrium gilt gemäß Gl. 1.29

$$q_{\rm Na}(r) = \begin{cases} \tilde{q}_{\rm Na} \left(1 + \ln \left[C_{\rm Na} (r_2 - r)^2 + 1 \right] \right) &, \quad r < r_2 \\ \tilde{q}_{\rm Na} &, \quad r \ge r_2 \end{cases}$$
(A.2)

und für Aluminium (Gl. 1.34)

$$q_{\rm Al}(r) = \begin{cases} \tilde{q}_{\rm Al} \left(1 + \ln \left[C_{\rm Al} \frac{(r_4 - r)^2}{1 + (r_4 - r)^2} + 1 \right] \right) \cdot \exp \left(-\frac{d_{\rm Al}}{(r - r_4)^2} \right) &, \quad r < r_4 \\ \tilde{q}_{\rm Al} &, \quad r \ge r_4 \;. \end{cases}$$
(A.3)

Im Weiteren nehmen wir an, dass die Indizes *i* und *j* jeweils nur Atome einer festen Sorte durchlaufen (was der Strich bei den Summationszeichen andeuten soll, s.u.). Wir unterscheiden die für die Simulation von Na_2O-SiO_2- und $Al_2O_3-SiO_2-$ Systemen relevanten Fälle. Bei den Wechselwirkungen mit Natrium tragen dann die folgenden Anteile zum Coulombpotenzial und den daraus abgeleiteten Kräften bei: 1. Fall — $i \in {Si}$ oder $i \in {O}$ und $j \in {Na}$:

$$V_{\mathrm{C},1}(r_{ij}) = \sum_{\substack{i,j\\i< j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} + \sum_{\substack{i,j\\i< j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} \cdot \ln\left[C_{\mathrm{Na}}(r_2 - r)^2 + 1\right] .$$
(A.4)

$$-\frac{\partial}{\partial r} V_{C,1}(r)|_i \frac{\vec{r}}{r} = -\frac{\partial}{\partial r} \sum_j' \frac{q_i \tilde{q}_j e^2}{r} \frac{\vec{r}}{r}$$
$$+ \sum_j' \frac{q_i \tilde{q}_j e^2}{r^2} \cdot \ln\left[C_{\mathrm{Na}}(r_2 - r)^2 + 1\right] \frac{\vec{r}}{r} \qquad (A.5)$$
$$+ \sum_j' \frac{q_i \tilde{q}_j e^2}{r} \cdot \frac{2C_{\mathrm{Na}}(r_2 - r)}{C_{\mathrm{Na}}(r_2 - r)^2 + 1} \frac{\vec{r}}{r} .$$

2. Fall — $i, j \in \{Na\}$:

$$V_{C,2}(r_{ij}) = \sum_{\substack{i,j\\i(A.6)$$

$$-\frac{\partial}{\partial r}V_{C,2}(r)|_{i}\frac{\vec{r}}{r} = -\frac{\partial}{\partial r}\sum_{j}'\frac{\tilde{q}_{i}\tilde{q}_{j}e^{2}}{r}\frac{\vec{r}}{r}$$

$$+\sum_{j}'\frac{\tilde{q}_{i}\tilde{q}_{j}e^{2}}{r^{2}}\cdot 2\ln\left[C_{\mathrm{Na}}(r_{2}-r)^{2}+1\right]\frac{\vec{r}}{r}$$

$$+\sum_{j}'\frac{\tilde{q}_{i}\tilde{q}_{j}e^{2}}{r^{2}}\cdot\left(\ln\left[C_{\mathrm{Na}}(r_{2}-r)^{2}+1\right]\right)^{2}\frac{\vec{r}}{r}$$

$$+\sum_{j}'\frac{\tilde{q}_{i}\tilde{q}_{j}e^{2}}{r}\cdot\frac{4C_{\mathrm{Na}}(r_{2}-r)}{C_{\mathrm{Na}}(r_{2}-r)^{2}+1}\left[1+\ln\left[C_{\mathrm{Na}}(r_{2}-r)^{2}+1\right]\right]\frac{\vec{r}}{r}.$$
(A.7)

Durch die zusätzlich eingeführten Exponentialterme müssen bei den Wechselwirkungen mit Aluminium noch weitere Beiträge berücksichtigt werden. Wir machen wieder eine Fallunterscheidung:

1. Fall — $i \in {Si}$ oder $i \in {O}$ und $j \in {Al}$:

$$V_{C,3}(r_{ij}) = \sum_{\substack{i,j \ i < j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} + \sum_{\substack{i,j \ i < j}}' \frac{q_i \tilde{q}_j e^2}{r_{ij}} \cdot \ln\left[C_{Al} \frac{(r_4 - r)^2}{1 + (r_4 - r)^2} + 1\right] \cdot \exp\left(-\frac{d_{Al}}{(r - r_4)^2}\right) .$$
(A.8)

$$\begin{aligned} -\frac{\partial}{\partial r} V_{C,3}(r)|_{i} \frac{\vec{r}}{r} &= -\frac{\partial}{\partial r} \sum_{j}' \frac{q_{i}\tilde{q}_{j}e^{2}}{r} \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{q_{i}\tilde{q}_{j}e^{2}}{r^{2}} \cdot \ln \left[C_{\mathrm{Al}} \frac{(r_{4}-r)^{2}}{1+(r_{4}-r)^{2}} + 1 \right] \exp \left(-\frac{d_{\mathrm{Al}}}{(r-r_{4})^{2}} \right) \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{q_{i}\tilde{q}_{j}e^{2}}{r} \cdot \frac{2C_{\mathrm{Al}}(r_{4}-r)}{\left[C_{\mathrm{Al}}(r_{4}-r)^{2} + (1+(r_{4}-r)^{2})\right] (1+(r_{4}-r)^{2})} \\ &\quad \cdot \exp \left(-\frac{d_{\mathrm{Al}}}{(r-r_{4})^{2}} \right) \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{q_{i}\tilde{q}_{j}e^{2}}{r} \cdot \ln \left[C_{\mathrm{Al}} \frac{(r_{4}-r)^{2}}{1+(r_{4}-r)^{2}} + 1 \right] \frac{2d}{(r-r_{4})^{3}} \exp \left(-\frac{d_{\mathrm{Al}}}{(r-r_{4})^{2}} \right) \frac{\vec{r}}{r} . \end{aligned}$$
(A.9)

2. Fall — $i, j \in \{Al\}$:

$$\begin{aligned} V_{\mathrm{C},4}(r_{ij}) &= \sum_{\substack{i,j \ i < j}}' \frac{\tilde{q}_i \tilde{q}_j e^2}{r_{ij}} \\ &+ \sum_{\substack{i,j \ i < j}}' \frac{\tilde{q}_i \tilde{q}_j e^2}{r_{ij}} \cdot 2 \ln \left[C_{\mathrm{Al}} \frac{(r_4 - r)^2}{1 + (r_4 - r)^2} + 1 \right] \cdot \exp \left(-\frac{d_{\mathrm{Al}}}{(r - r_4)^2} \right) \\ &+ \sum_{\substack{i,j \ i < j}}' \frac{\tilde{q}_i \tilde{q}_j e^2}{r_{ij}} \cdot \left(\ln \left[C_{\mathrm{Al}} \frac{(r_4 - r)^2}{1 + (r_4 - r)^2} + 1 \right] \exp \left(-\frac{d_{\mathrm{Al}}}{(r - r_4)^2} \right) \right)^2 \,. \end{aligned}$$
(A.10)

$$\begin{aligned} &-\frac{\partial}{\partial r} V_{C,4}(r)|_{i} \frac{\vec{r}}{r} = -\frac{\partial}{\partial r} \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r^{2}} \cdot 2 \ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r^{2}} \cdot \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot \frac{4C_{Al}(r_{4} - r)}{\left[C_{Al}(r_{4} - r)^{2} + (1 + (r_{4} - r)^{2})\right] (1 + (r_{4} - r)^{2})} \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \frac{2d}{(r - r_{4})^{3}} \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \frac{\vec{r}}{r} \\ &+ \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \left(\exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{2d}{(r - r_{4})^{3}} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{2d}{(r - r_{4})^{3}} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{2d}{(r - r_{4})^{3}} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} \cdot 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{2d}{(r - r_{4})^{3}} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{i} \tilde{q}_{j} e^{2}}{r} + 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{2d}{(r - r_{4})^{3}} \frac{\vec{r}}{r} \\ &- \sum_{j}' \frac{\tilde{q}_{j} \tilde{q}_{j} e^{2}}{r} + 2 \left(\ln \left[C_{Al} \frac{(r_{4} - r)^{2}}{1 + (r_{4} - r)^{2}} + 1 \right] \exp \left(-\frac{d_{Al}}{(r - r_{4})^{2}} \right) \right)^{2} \frac{(r_{4} - r_{4})^{2}}$$

Anhang B

Programme

Auf den folgenden Seiten finden sich die Programmcodes des MD–Simulationsprogramms sowie zweier Auswerteprogramme.

Das abgedruckte MD–Programm "*mdAS2kmax6np32_1a.f*" ist eine 32–Prozessoren– Version für das System AS2 mit 1408 Teilchen. Zur Simulation der Systeme NSx sind die Eingabe– wie auch einige Programmparameter zu ändern.

Die beiden Auswerteprogramme wurden zur Strukturanalyse von NS5 bei tiefen Temperaturen verwendet (vgl. Kap. 2.4.1).

Das Programm "*SiNaKette4.f90*" bestimmt mit Hilfe von Nachbarlisten Si–O–Si–O– Na– bzw. Si–O–Na–O–Na–Sequenzen und speichert dann zu jedem Si–Atom dasjenige Na–Atom ab, das über eine solche Sequenz zu erreichen ist.

Zu (Si,Na)-Paaren, die das Programm "SiNaKette4.f90" als "korreliert" auszeichnet, bestimmt das Programm *"histo_sina5.f*" den Atomabstand und erstellt schließlich eine relative Häufigkeitsverteilung der vorkommenden Abstände.

Beide Programme erlauben das oben beschriebene Vorgehen für beliebig viele Positionsfiles, so dass über mehrer Konfigurationen gemittelt werden kann.

B.1 mdAS2kmax6np32_1a.f

MD-Simulation of Al_2(Si_20_7): 26/04/01 x4 changed corrected version 04/01, no polynom-fit in subroutine force number of particles N = 256 si + 0 Na + 256 al + 896 0 parameters B according to Kramer et al. 1991 & fit of potalo automatic restart after given time automatic restart after given time half the skin-width parfile (061): file with the start parameters logfile (071): (this must be a new file) endconf (072): final configuration and cash dumps (this must be a new file) startconf (062): file with the input configuration real pos(partdim),vel(partdim),acc(partdimloc)
real posloc(partdimloc),velloc(partdimloc)
real runposloc(partdimloc),neighposloc(partdimloc) ! !!!
real fpartl(partdimloc) integer cortim(corldim)
integer kx_field(maxk),ky_field(maxk) parameter(maxk=534,nchpart=partdim/3)
parameter(partdimloc=132,nchpartloc=partdimloc/3) logfile
 lodginguration
 endconfiguration
 mod/or velocities parameter(partdim=4224,corldim=300,cor2dim=20) - Al-charge: al-o and al-al, al-si differ 05/10/01 pol-fit corrected integer*2 neighwald(800,nchpartloc) integer partdim,corldim,cor2dim integer maxk,nchpart,pindex integer partdimloc,nchpartloc - r-part of Coloumb-potential ! Declaration of variables: fileoffiles (fof) include 'mpif.h' fof-format (060): implicit none fileout1: fileout2: filein1: filein2: : NI OUT :

real r1.r2.r3.r4.constq_na.constq_al.constq_alo.decayal.decayalo !Al
real potcontal1r3.potcontalr3.potcontalor3
real wskinwd2.rsq.dx.dy.dz ! !!! real pi,twopidlbox,twoadrpi,alpha2,malpha,twopi,al2d2 real e2n.eps0.temp.tctp24.nomecten.scefac real pressext.mpiston.opressext.ompiston.deltat real inmpiston.ond2,hstp31,inlbox.erkon.intwop24 real inmpiston.ond2,hstp31,inlbox.erkon.intwop24 real inmpiston.ond2,hstp31,inlbox.erkon.intwop24 real lox.hstep.lboxd3,hstp31,inlbox.erkon.intwop24 real rocad.roodh.rocod.rood 1A1 real rocad.roodh.rocod.rood 1A1 real rocad.roodh.rocod.rood 1A1 real potshaa.potshbd.potshdd 1A1 real potshaa.potshbd.potshdd 1A1 real rocadag.roodbs.rocods.roobs.rocosg.rootseg.roocseg real rocads.roodb.rocod.roods1A1 real rocadag.roodb.rocods.roods.root.decay real rocadag.roodb.rocods.roods.alb. real potshaa.potshbd.potshdd 1A1 real potshaa.potshbd.potshdd 1A1 real rocadag.roodbsg.rocodsg.1A1 real rocadag.rocodbsg.rocodsg.1A1 real rocadag.rocodb.rocod.orcods.alb. real ohstep.orskinw.orcow.onomtoten real ohstep.orskinw.orcow.onomtoten real ano.asis1.asi0.bsis1.bb0.bsi0.displa real ano.asis1.bo.rocod.orcod.orcodc.orcobc.orcocc real ano.asis1.bo.bsi1.b0.bsi0.csi0 real ano.asis1.roos.ors.ob.rocos.orcob.orcocc real ano.asis1.bb0.bsi0.csi0.displa real ano.balo.csl0.bsis1.b0.bsi0.csi0.csi0 real ano.balo.csl0.lA1 real ano.balo.csl0.lA1 real ano.balo.csl0.lA1 character*132 filein1,filein2,fileout1,fileout2,string1
character*132 fileout3,fileoffiles
character*132 dump_file_1,dump_file_2
character*132 vel_file_1,vel_file_2 | !!! integer i,j,k,olddat,napart,nbpart,ncpart,npart,npart3 alpha, beta,vs, chisi, cho, chia, chal !Al mbeta, twobdpi, erkonbeta, sgrcewald, rcewald, decayew aoo, asisi, asio, bsisi, boo, bsio, csisi, coo, csio double precision begintime, endtime, endtime1, testtime double precision begintime2, endtime2 integer ondpart !Al integer oncorrelmax, oncorrel, otbathstep, ocoolstep integer oolseed, ontotstep, onprintstep, ondumpstep integer otneighli, onsystdump, starttime integer runar, ragmax, kagmax integer p, naverstep integer nvelstep ! !!! integer ntotstep, ndumpstep, time, tneighli, cooltim integer oolddat, onapart, onbpart, oncpart, ocooltim integer otseed, twop24, 124, 124, arry integer iseed, iseed, seed (24), uni, randn (3) integer nsystdump, nprintstep, thathstep, coolstep integer norrelmax, ncorrel, ncorrelnew, restart integer myid,ierr,numprocs,master
integer nlocal,nstart,nend real kvec(maxk)
real ch(nchpartloc),m(nchpartloc) equivalence (fileout1, intfile) integer intfile(17) integer newloc, new | !!! integer ndpart !Al

<pre>open(061,file=filein1,status='old') read(061,*) oldat read(061,*) napart read(061,*) ncpart read(061,*) ncpart read(061,*) ncpart read(061,*) tcoab read(061,*) tcoab read(061,*) rcoab read(061,*) rcoab read(061,*) rcoab read(061,*) rcoab read(061,*) rcoab read(061,*) rcoab</pre>	<pre>read(061,*) rcocc i read(061,*) rcocd i read(061,*) rcocd i read(061,*) rcocd i read(061,*) rcocd i read(061,*) rescut read(061,*) temp read(061,*) temp read(061,*) mpiston read(061,*) mpiston read(061,*) ocolrate read(061,*) notcoten read(061,*) notcoten</pre>	<pre>read(061,*) maxuescep read(061,*) morrelmax read(061,*) morrelmax read(061,*) morrelmax read(061,*) restant read(061,*) restant read(061,*) beta read(061,*) beta read(061,*) decayen read(061,*) decayen read(061,*) decayen read(061,*) decayen read(061,*) muelle_1 ! !!! read(061,*) muelle_1 ! !!! read(061,*) muelstep read(061,*) muelstep read(061,*) muelstep</pre>	<pre>number of the status of the run ? ','s)') number of the run ? ','s)') number of the status of the run ? ','s)') if (restar = 0, then if (restar = 0, then if (restar = 0, then open(011, *) 'source file: tear_mpi_zary_64_newmod.f' write(011, *) ladat.' number of si particles' write(011, *) nbpart.' number of Al particles' write(011, *) nbpart.' number of Al particles' write(011, *) nbpart.' number of a particles' write(011, *) nb</pre>
<pre>common/sim1/vol.lbox,lboxd2,npart common/sim2/rapart.ncpart.ncpart.ncpart.id common/sim3/nstep.ekin.epst common/sim3/nstep.ekin.epst common/sim3/nstep.ekin.epst common/sim3/rocoasg.rccodsg.rcoodsg.id k common/sim5/potshas.potshab.potshac, common/sim8/velloc common/sim8/velloc common/sim11/virtial.corry,i24,iseed,twop24 common/sim11/virtial.corry,i24,iseed,twop24 common/sim11/virtial.corry.id4.jb4.seed,twop24 common/sim11/virtial.corry.id4.jb4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop24 common/sim11/virtial.corry.id4.seed,twop34 common/sim41/virtial.corry.id4.seed,twop34 common/sim41/virtial.corry.id4.see</pre>	<pre>common/charge/chai.cho.chna.chal.ch !Al common/reumld.alpha.kvec.vs common/reuml/tmax.gemax common/reum/trunax.gemax common/reum/trunax.isqmax common/reum/inbeta.kvodpi.alpha.al2d2,oned3,erkon common/reum/inbeta.kvodpi.erkonheta.agrcewald,rcewald,decayew common/reum/inmax.isqmax common/reum/inmax.isqmax common/seum/inmax.isqmax common/potpar2/asia!.asio.aoo.bsisi.bsio.boo, common/potpar2/asia!.asio.aoo.bsisi.bsio.boo, common/potpar2/asia!.asio.aoo.bsisi.bsio.boo, common/potpar2/asia!.asio.aoo.bsisi.bsio.boo, common/potpar2/asia!.asio.aoo.basisi.bsio.boo, common/potpar2/asia!.asio.aoo.basisi.bsio.boo, common/skinuald common/varmpi2/niodi.nstart.nend common/varmpi2/niodi.nstart.nend common/potmod/r1.r2.r3.r4.constq.nal.constq.al.o. k common/potmod/r1.r2.r3.r4.constq.nal.constq.al.o. k</pre>	<pre>I Get in contact with MPI: call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, mumprocs, ierr) call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr) dalter is process 0: master is process 0: master=0 if(myid == master) then if(myid == mast</pre>	<pre>I Read in the start parameter file with the master process: if(myid == master) then write(6,fmt='(''Read file of filenames '',\$)')</pre>

I Al 'NaMa cut off too large' !
'NaMl cut off too large' !
'Alll cut off too large' !
'Sio cut off too large' !
'NaO cut off too large' !
'Alo cut off too large' !
'O cut off too large' !
'O cut off too large' ! IAI IAI _. _. call MPI_BCAST(tbathstep, 1, MPI_INTEGER, master, call MPI_BCAST(coolstep, 1, MPI_INTEGER, master, MPI_COMM_MORLD, ierr) call MPI_BCAST(coolrate, 1, MPI_REAL, master, MPI_BCAST(ndpart, 1, MPI_INTEGER, master, call MPI_BCAST(rskinw, 1, MPI_REAL, master, call MPI_BCAST(rskinw, 1, MPI_REAL, master, mPI_COMM_WORLD, ierr) call MPI_BCAST(tenp, 1, MPI_REAL, master, wPI_COMM_WORLD, ierr) call MPI_BCAST(cooltim, 1, MPI_INTEGER, master, call MPI_BARRIER(MPI_COMM_WORLD, ierr)
call MPI_BCART(oldar, 1, NPL_INTEGER, master,
call MPI_COMM_MORLD, ierr)
call MPI_BCAST(napart, 1, NPI_INTEGER, master,
call MPI_BCAST(napart, 1, NPL_INTEGER, master) call MPL_BCAST (Mpart, 1, MPL_NTEGER, master, & MPL_DOMM_MORLD, ierr) & MPL_BCAST(ncpart, 1, MPL_INTEGER, master, call MPL_BCAST(ncpart, 1, MPL_INTEGER, master, MPL_COMM_MORLD_ierr) call MPI_BCAST(pressext, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr) MPI_BCAST(mpiston, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr) call MPI_BCAST(rcocc, 1, MPI_REAL, master, call MPI_BCAST(rcocc, 1, MPI_REAL, master, call MPI_BCAST(rcoad, 1, MPI_REAL, master, wPI_CONM_MORLD, ierr) call MPI_BCAST(rcobd, 1, MPI_REAL, master, mMI_CONM_MORLD, ierr) call MPI_BCAST(lbox, 1, MPI_REAL, master, & call MPI_BCAST(rbox, 1, MPI_REAL, master, call MPI_BCAST(rcoad, 1, MPI_REAL, master, & MPI_COMM_NORLD_ierr) MPI_COMM_WORLD, ierr) (rcoac, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr) master, I, MPI_REAL, master, I, MPI_REAL, master, master, call MPI_BCAST(rcodd, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr) ! Send the data read from file 061 by process 0 ! (master) to all the other processes: call MPI_BCAST(rcow, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr) (rcobb, 1, MPI_REAL, ma MPI_COMM_WORLD, ierr) (rcocd, 1, MPI_REAL, ma MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr) MPI_COMM_WORLD, ierr) MPI COMM WORLD, ierr) ierr) ierr) print*, print*, print*, print*, print*, MPI_COMM_WORLD, MPI_COMM_WORLD, if (rcobb > 0.5*lbox) F
if (rcobc > 0.5*lbox) F
if (rcocc > 0.5*lbox) F
if (rcocc > 0.5*lbox) F
if (rcocd > 0.5*lbox) F
if (rcobd > 0.5*lbox) F
if (rcobd > 0.5*lbox) F
if (rcodd > 0.5*lbox) F
i call MPI_BCAST(rcoac, call MPI_BCAST(rcobb, call MPI_BCAST(rcobc, call MPI_BCAST(rcocd, call MPI_BCAST(rcoab, endif ! master call 1 call 1 لات ري چې لان لان

write(071,*) oiseed, oiseed' write(071,*) hetep,' classed' write(071,*) hetep,' stepsize' write(071,*) nptitstep,' total number of steps for the run' write(071,*) nprintstep,' total number of steps for the run' write(071,*) npumpstep,' nr. steps btw. 2 cal. of', write(071,*) newrstep,' naverstep' write(071,*) morrelmax, mr.pts.large corr.fct.(=K) write(071,*) morrelmax, mr.pts.marge corr.fct.(=F) write(071,*) theighli, mr.steps before update neighli write(071,*) nsystdump,' stps for tot syst.crash dump' write(071,*) beta, beta of Bwald sum, write(071,*) that, hand of Bwald sum, write(071,*) that,' than of Bwald sum,' write(071,*) that,' that of Bwald sum,' write(071,*) that,' that of Ewald sum,' write(071,*) that,' that of Ewald sum,' write(071,*) that,' that of Ewald sum,' write(071,*) decay' of Ewald sum,' write(071,*) decay', decay of exp-factor: short-range' write(071,*) decay', decay of exp-factor: short-range' write(071,*) decay', decay of exp-factor: al-charge' ext press' mass of piston (0.002 * mass)' , mns -- -- -nbr steps betw 2 reassignments of v' Al decay of exp-factor: al-o' nbr steps betw 2 reassignments of T' olrate,' coolrate' too large' too large' too large' if(restart == 0) then open(072,file=fileout2,status='new',form='formatted' close(072) endit cutoff radius for SiNa' ! cutoff radius for SiAl' ! cutoff radius for NaAl' ! cutoff radius for NaAl' ! Al cutoff radius for AlAl' ! cutoff radius for NaO' ! cutoff radius for AlO' ! cutoff radius for AOO' ! cutoff for Eadial do ' ! cutoff for Ewald i cut off cut off cut off ncorrelmax,' nr rtr ncorrelmax,' nr rtr temperature cooltime if(rcoaa > 0.5*lbox) print*, 'SiSi if(rcoab > 0.5*lbox) print*, 'SiNa if(rcoac > 0.5*lbox) print*, 'SiAl ---write(071,*) dump_file_1
write(071,*) vel_file_1 !!
write(071,*) nvelstep ! !!! write(071,*) temp, tem write(071,*) cooltim, tem write(071,*) presext, write(071,*) mpiston,' write(071,*) tbathstep, write(071,*) decayalo,' write(071,*) coolrate,'
write(071,*) nomtoten, rskinw,' coolstep, rcoab, rcoac, rcobb, rcobc, rcoad, rcoad, rcoad, rcoad, rcow,' endif ! restart ~ * (* write(071,*) write(071, აა ها сð

-- -- --

<pre>density=npart*invol lboxd2=lbox/2.d0 inlbox=1.d0/lbox</pre>	<pre>rsgmax=rmax*rmax+2 ksgmax=rmax*hmax+2 npart=napart+nbpart+ncpart+ndpart !Al npart3=3*npart</pre>	al2d=rcow*rcow sqreewald=al2d2*lbox*lbox rcewald=rcow*lbox	rcoaasgrrcoaa*rcoaa rcoabsg-rcoab*rcoab rcobbsg-rcobb*rcobb !	rcoacsg=rcoac*rcoac rcobcsg=rcobc*rcobc	rcoadag=rcoad*rcoad rcoadag=rcoad*rcoad rcobdag=rcoba*rcobd	rcoddsq=rcodd*rcodd rcoddsq=rcodd*rcodd al2skin=al2d2*rskinw**2	hisdd3=histep**2/3.d0 histed2=histep*2/3.d0 histepd2=histep/2.d0	<pre>inmpiston=1.d0/mpiston oned3=1.d0/3.d0 betexd2-betr/s0/a</pre>	onscretchersternessen oneneps=1.d0-coolrate deltat=coolrate*coolstep*hstep	asisi=0.0d0 acre=1388 773d0	asio=18003.7572d0 bsisi=0.0d0	boo=2.76000d0 bsio=4.87318d0	csisi=0.000 coo=175.0000d0	cslot=143.584100 anaa=3542.207200 bnao=4.13455d0	aalo=8566.3334d0! bale=4.66222d0 ! Al Satz B calo=73.0913d0 !	<pre>nlocal=npart/numprocs nstart=mvid*nlocal+1</pre>	nend=nstart+nlocal-1	do i=1,nlocal nindex-itmuid#nlocal	<pre>if(pindex-improve t) then if(pindex <= napart) then </pre>	cn(1)=2.400 m(i)=28.086d0	<pre>if(pindex <= napart+nbpart) then</pre>	m(i)=22.99d0 else	if (pindex <= napart+nbpart+ncpart) then ch(i)=1.8d0 iA1	
& MPI_COMM_WORLD, ierr) call MPI_BCAST(nomtoten, 1, MPI_REAL, master, & MPI_COMM_MORLD, ierr) call MPI RCACT(Jead 1 MPI_TNTPCTP macter	<pre>&WPI_COMM_WORLD, ier), call MPI_BCAST(hatep, 1, NPI_REAL, master, & call MPI_BCAST(thetetep, 1, NPI_REAL, master, & call MPI_BCAST(thetetep, 1, MPI_REAL, master,</pre>	call MPI_BCAST(nprinterp, 1, MPLINTEGER, master, call MPI_BCAST(nprinterp, 1, MPLINTEGER, master, & MPI_COMM_NORID, ierr) call MPI_BCAST(ndumpstep, 1, MPI_INTEGER, master,	& MPI_COMM_MORLD, ierr) call MPI_BCAST(naverstep, l, MPI_INTEGER, master, &	call MPI_BCAST(ncorrelmax, 1, MPI_INTEGER, master, & MPI_COMM_WORLD, ierr) & Ant PATAMATACASS	call MFL_BCAST(HOE), 1, MFL_INLEEK, MASUEL, & Call MFL_BCAST(Eneight, 1, MFL_INTEGER, master, call MFL_BCAST(theight), 1, MFL_INTEGER, master,	<pre>x MPI_BCAST(MarketWorkL), MPI_INTEGRR, master, call MPI_BCAST(MarketGumb, 1, MPI_INTEGRR, master, &</pre>	call MFL_DCAST(restart, A; MFLINIADOK, MGSUEL, C & call MPL_BCAST(beta, 1, MPL_REAL, master,	<pre>call MPI_BCAST(int_interv) _ retr) call MPI_BCAST(int_int_intEGER, master) & MPI_COM_MORID_ierr) &</pre>	call MPI_BCAST(decay, 1, MPI_RALD, accest, matter, call MPI_BCAST(decay, 1, MPI_REAL, matter,	& MPI_COMM_MORLD, ierr) call MPI_BCAST(decayew, 1, MPI_REAL, master, &	call MPI_BCAST(eccyal, 1, MPI_REAL, master, & MPI_COMM NOT COMM	call MPI_BCAST(decayalo, 1, MPI_REAL, master, &	call MPI_BCASY(inttile, 132, MPI_CHARACTER, master, & MPI_COMM_MORID, ierr) 	call MFL_BCASY(TWE15EEP, 1, MFL_INTEGER, Master, & MPL_CONN_MORLD, ierr) ! !!!	Setup of constants:	! for the rng	twop24=16777216 intran24=1 40.44F1 ant (#1000-04)	if treatart is 0) then if 22-00 then	124=12 124=10 124=10	carry=u endif	tdtp24=2.0/float(twop24+1)	! for the simulation	<pre>vol=lbox*lbox invol=1.d0/vol</pre>	

potshaa=0.d0 ! SiSi interaction has only Coulomb part potshab=0.d0 ! SiNa interaction has only Coulomb part potshab=0.d0 ! NaNa interaction has only Coulomb part potshac=0.d0 ! SiAl interaction has only Coulomb part ! potshac=0.d0 ! SiAl interaction has only Coulomb part ! potshab=ano*exp(-baio*rcoad)-csio*rcoad**(-6) ! potshab=ano*exp(-halo*rcoad)-csio*rcoad**(-6) ! potshab=ano*exp(-baio*rcoad)-coo*rcoad**(-6) ! ! Compute the times when the correlation functions are evaluated potcontalor3=exp(decayalo*potcontal1r3)
potcontalor3=exp(decayalo*potcontal1r3*potcontal1r3)
constg_alo=(exp(potcontalor3*1.d0/18.d0)-1.d0)
constg_alo=(exp(potcontalor3)**2)/(r4-r3)**2) constet_artor(1.d0/18.d0)-1.d0)/(r4-r3)**2 constet_al=(exp(1.d0/18.d0)/(r4-r3)**2 potcontal1r3=1.d0/(r3-r4) potcontalr3=exp(decay1*potcontal1r3*potcontal1r3) potcontalr3=exp(decay1**t)c0/18.d0)-1.d0) *(1.d0+(r4-r3)**2)/(r4-r3)**2 ! Compute the times of the small correlation function constq_na=(exp(2.d0/3.d0)-1.d0)/(r2-r1)**2 r3=1.25043d0 wskinwd2=(rcow*lbox*(rskinw-1.d0)/2.d0)**2
write(6,*) 'wskinwd2 = ', wskinwd2 m(i)=26.981539d0
else
ch(i)=-1.2d0
m(i)=15.9994d0
endif cpredict of the set of the s alpha2=alpha*alpha malpba-(-1.40)*alpha2 mbeta=(-1.40)*beta*beta erkonbeta=0.3275911d0*alpha erkonbeta=0.3275911d0*beta pi=2.d0*asin(1.d0)
twopi=2.d0*pi
twopidlbox=twopi/lbox
eps0=8.8542d0 r4=6.0d0 ! Al q(r) constg_al=0.d0 chsi=2.4d0 chna=0.6d0 chal=1.8d0 !Al cho=-1.2d0 ! for the neighlist
! !!! p=ncorrel p=p-1 endif r1=1.7d0 r2=4.9d0 r4=6.0d0 endif enddo

-. =:

```
Generate the 24 seeds needed by the rng using a bad generator but
which is good enough for this purpose. See f. james Comp. phys.
comm. 60,232,(1990). s(n+1)=mod(23*s(n),10**8+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         To make sure that different system sizes imply different initial configurations, the seeds depend on npart.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              iseedn=iseed
do j=1.22 ! to prevent overflow we add 'by hand'
iseedn=iseedn+iseed
if(iseedn > 10000001) iseedn=iseedn-10000001
enddo
do k=1,p
cortim(k)=nint(dfloat(ndumpstep)**(k/dfloat(p+1)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if(ncorrelnew+ncorrelmax+1 > corldim+cor2dim) then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      if (myid == master) then
    print*, 'error5' noorrel, noorrelnew,
    ncorrelmax.corrldim.cor2dim
    write(071,*) 'error5', noorrel.noorrelnew,

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                do i=24,1,-1
iseed=abs(iseed-npart*182+iseed/npart)
iseed=mod(iseed,10000001)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               call MPI_BARRIER( MPI_COMM_WORLD, ierr )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              call MPI_BARRIER( MPI_COMM_WORLD, ierr )
                                                                                                                                                                                                                                                                                                                                                                                                                   if(myid == master) then
write(011,*) 'ncorrelnew=',ncorrelnew
do k=1,ncorrelnew
write(071,*) cortin(k)
                                                                                                                                                               do while (j <= p)
if(cortim(j) /= cortim(k)) then
k=k+1</pre>
                                                                                                                                                                                                                                cortim(k)=cortim(j)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     if(restart == 0) then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Random number generator:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                iseed=olseed
                                                                                                                                                                                                                                                                        j=j+1
endif
'do
                                                                              cortim(1)=0
k=2
                                                                                                                                                                                                                                                                                                                                                                            ncorrelnew=k
                                                                                                                                                                                                                                                     j=j+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      enddo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       stop
endif
                                                                                                                                                                                                                                                                                                                                    enddo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         endif
                                                                                                                              j=2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      сð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ъ
```


If this is a new run (olddat=0) generate a start configuration (positions and velocities; in case of an "old" run a start configuration in asci format (restart=0) or in binary format with the start parameters (restart=1) has to be read in. ! Run the rng for a while to get rid of the initial values if(olddat == 0) then ! this is a new run pos(3*i-2)=randn(1)*lbox*intwop24
pos(3*i-1)=randn(2)*lbox*intwop24
pos(3*i)=randn(3)*lbox*intwop24
enddo interference ! Generate a random initial configuration iseed=iseedn
seed(i)=abs(mod(iseed,twop24))
enddo if(uni < 0) then uni=seed(124)-seed(j24)-carry if(uni < 0) then uni=uni+twop24 carry=1 if(i24 == 0) i24=24 j24=j24-1 if(j24 == 0) j24=24 randn(j)=uni pindex=i+3*myid*nlocal
posloc(i)=pos(pindex)
enddo carry=0
carry=0
endif
seed(i24)=uni
i24=i24
i24=i24
i24=j24=1
j24=j24=1
if(j24 == 0) j24=24
endo seed(i24)=uni endif ! restart=0 carry=0 endif do i=1,3*nlocal carry=1 else Startconfiguration: i24=i24-1 do i=1,npart do j=1,10000 do j=1,3 else

readio(062,*) onomtoten if(onomtoten /= nomtoten) then print*,'onomtoten /= nomtoten',onomtoten,nomtoten stop endif read(062,*) otbathstep read(062,*) occolstep read(062,*) occolstep if(occolstep if(occolste /= colste) then if(occolste /= colste) then print*, occolste /= colstet if(opressext) = pressext) then
print*,'opressext /= pressext',opressext,pressext endif_ read(062,*) temp if(occoltim /= cooltim) then print*,'occoltim /= cooltim',occoltim,cooltim stop endif read(062,*) ompiston if(ompiston /= mpiston) then print*,'ompiston /= mpiston,'ompiston read(062,*) orskinw if(orskinw /= rskinw) then print*,'orskinw /= rskinw',orskinw,rskinw endif read(062,*) orcodd read(062,*) orcodd if orcodd /= rcodd', orcodd,rcodd read(062,*) oolseed read(062,*) ohstep if(ohstep /= hstep) then print*, ohstep /= hstep', ohstep,hstep stop endif endiff read(062,*) ondumpstep if(ondumpstep /= ndumpstep', print*''ondumpstep /= ndumpstep', ondumpstep,ndumpstep print*,'onprintstep /= nprintstep', onprintstep,nprintstep IAl!!!!!!!!!!! read(062,*) orcow if(orcow /= rcow) then if(orcow /= rcow',orcow,rcow endif read(062.*) ontotstep read(062.*) onprintstep if(onprintstep /= nprintstep) then read(062,*) opressext stop endif stop stop stop stop stop stop endif endif endif endif ч ъ

read(062,*) onapart if(onapart /= napart) then print*,'onapart /= napart',onapart,napart cend(062,*) onbpart if(onbpart /= nbpart) then print*,'onbpart /= nbpart',onbpart,nbpart endif_ endif_ read(062,*) ondpart read(062,*) ondpart fondpart /= ndpart',ondpart,ndpart print*,'ondpart /= ndpart',ondpart if(oncpart /= ncpart) then
 print*,'oncpart /= ncpart',oncpart,ncpart read(062,*) orcobd
if(orcobd /= rcobd) then
print*,'orcobd /= rcobd',orcobd,rcobd if(orcoaa /= rcoaa) then print*,'orcoaa /= rcoaa',orcoaa,rcoaa read(062,*) orcoab if(orcoab /= rcoab) then print*,'orcoab /= rcoab',orcoab,rcoab if(orcoac /= rcoac) then
print*,'orcoac /= rcoac',orcoac,rcoac read(062,*) orcobb
if(orcobb /= rcobb) then
print*,'orcobb /= rcobb',orcobb,rcobb read(062,*) orcobc if(orcobc /= rcobc) then print*,'orcobc /= rcobc',orcobc,rcobc read(062,*) orcocc if(orcocc /= rcocc) then print*,'orcocc /= rcocc',orcocc,rcocc read(162,*) orcoad if(orcoad /= rcoad) then print*,'orcoad /= rcoad',orcoad,rcoad if(orcocd /= rcocd) then
 print*,'orcocd /= rcocd',orcocd,rcocd
 stop endif read(062,*) oncpart read(062,*) orcoaa read(062,*) orcoac read(062,*) orcocd stop endif endif endif endif endif endif endif endif endif endif

MPI_BCAST(orcobd, 1, MPI_REAL, master, MPI_BCAST(orcood, 1, MPI_REAL, master, MPI_BCAST(orcood, 1, MPI_REAL, master, MPI_BCAST(orcood, 1, MPI_REAL, waster, MPI_BCAST(orcodd, 1, MPI_REAL, waster,	<pre>IIIIIIIIIII MALLUMM_MUKLD, IEFF) MPL_BCAST(orcow, 1, MPL_REAL, master, MPL_COMM_MORLD, ieer) MML PCAST(orcow_MORLD, ieer) MML PCAST(orcow_inw) H MPL PENA.</pre>	MPI_BCAST(temp, 1, MPI_COMM_NORLD, ierr) MPI_BCAST(temp, 1, MPI_RAL, master,	MPI_BCAST(cooltim,, i=1.1) MPI_BCAST(cooltim, 1, MPI_INTEGER, master, MPI_COMM_WORLD, i=rr)	MPI_BCAST(opressext, 1, MPI_REAL, master, mPI_COMM_MORLD, ierr) MPI_BCAST(ompiston, 1, MPI_REAL, master,	MPI_COMM_WORLD, ierr) MPI_BCAST(otbatstep, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(ocoolstep, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	MFI_BCAST(OCOOLTATE, I, MFI_KEAL, master, MPI BCAST(OnOM_WORLD, ierr) MPI BCAST(OnOMtoten, 1, MPI REAL, master,	<pre>MPI_COMM_WORLD, ierr) MPI_BCAST(colsed, 1, MPI_INTEGER, master,</pre>	MPI_BCAST(obstep, 1, MPI_REAL), master, MPI_BCAST(obstep, 1, MPI_REAL), master,	MPI_BCAST(ontotstep, 1, MPI_INTEGER, master, MPI_COMM WORLD, ierr)	MPI_BCAST(onprintstep,1, MPI_INTEGER, master, MPI_COMM WORLD, ierr)	<pre>MPI_BCAST(ondumpstep, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)</pre>	MPI_BCAST(oncorrelmax, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(oncorrel, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(otneighli, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	<pre>MPI_BCAST(onsystdump, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)</pre>	<pre>MPI_BCAST(starttime, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)</pre>	<pre>MPI_BCAST(ncorrelnew, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)</pre>	<pre>MPI_BCAST(lbox, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr)</pre>	MPI_BCAST(volvel, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(vol, 1, MPI_REAL, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(pos, 3*npart, MPI_REAL, master, MPI_COMM_WORLD. ierr)	MPI_BCAST(uni, 1, MPI_INTEGER, master, MPI_COMM_WORLD1_ierr)	MPI_BCAST(carry, 1, MPI_INTEGER, master, MPI_COMM_WORLD_ierr)	MPI_BCAST(124, 1, MPI_INTEGER, master, MPI_COMM_WORLD, ierr)	MPI_BCAST(j24, 1, MPI_INTEGER, master,
call call call	call	call	call	call call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call	call
ى لاي لاي	Alli!!!	<i>ч</i> а и	8 48	ъ	د لا	لات ا	لا	പ്പ് പ	ی ک	5 v2	لات ا	لان	لات	لات	ъ	ъ	ъ	ъ	ъ	لا	ۍ ا	ۍ	4	4	s a	I

ext press' mass of piston (0.002 * mass)' nbr steps betw 2 reassignm of v' nbr steps betw 2 reassignm of T' coolrate' cutoff for ewald' factor for skin of ewald sum' "mr.steps btw.2 prints of run state' ndumpstep,' nr.steps btw. 2 cal. of', corr.fcts. (=ndumpstep)' naverstep,' naverstep' ncorrelmax,' nr.pts. large corr.fct. (=K)' press=insttemp^density+virial*invol write(071,fmt='(g12.6,10g23.15)') startine+hstepi,insttemp,ekin+epot,epot,press, pos(3),pos(6),vol,volvel.**2+pressext*vol)/npart, ekin+epot+(0.5*mpiston*volvel**2+pressext*vol)/npart, new or old run (0/1)' number of Si particles' number of Si particles' number of Al particles' number of Al particles' size of box' suboff radius for SiNa' cutoff radius for AlA' cutoff radius for AlO' total number of steps for the run' step size' open(061,file=filein1,status='unknown') open(061,file=filein1,status='old') iseed' call prepk call heilst(pos,runposloc,neighposloc) call force(time,posloc,pos,acc) call analysel(time,posloc,pos,velloc) if(restart == 0) starttime=0 write(061,*) nprintstep, write(061,*) ndumpstep,' write(061,*); write(061,*) olddar, write(061,*) napart, write(061,*) napart, write(061,*) napart, write(061,*) napart, write(061,*) rcoab, write(061,*) rcoad, write(061,*) hstep,'
write(061,*) ntotstep, write(061,*) olseed,' insttemp=ekin*2.d0/3.d0if(myid == master) then if(restart == 0) then density=npart*invol call flush(071) write(061,*)
write(061,*) rewind 061 restart=1 temp ຮ່ຮ່ວຍ لا لات ! Start of MD-Algorithm * MPI_COMM_MORLD, ierr)
call MPI_BCAST(seed, 24, MPI_INTEGRR, master,
 mei_COMM_worLD, ierr)
call MPI_SCATTER(vel, 3*nlocal, MPI_REAL,
 vellocal, MPI_REAL,
 master, MPI_COMM_WORLD, ierr)
call MPI_SCATTER(runpos, 3*nlocal, MPI_REAL,
 master, MPI_COMM_WORLD, ierr)
call MPI_BCAST(decay, 1, MPI_REAL, imster, call MPL_BCAST(decay, 1, NPL_REAL, master, MPL_CONM_WORLD, ierr) call MPL_BCAST(decayew, 1, NPL_REAL, master, MPL_CONM_MORLD, ierr) call MPL_BCAST(decayal, 1, NPL_REAL, master, NPL_CONM_MORLD, ierr) call MPL_BCAST(decayalo, 1, NPL_REAL, master, MPL_CONM_WORLD, ierr) call MPL_BCAST(decayalo, 1, NPL_REAL, master, call MPI_BARRIER(MPI_COMM_WORLD, ierr) do i=1,3*npart
if(pos(i) < 0.or.pos(i) > lbox) then
print*.^errol',i,pos(i)
write(071,*) `error1 ',i,pos(i) ! Test whether all particles are in the box write(071,fmt='(a)') filein2
call flush(071)
endif if(restart == 0) then
if(olddat == 0) filein2=' '
fileout3=fileout1 do i=1,3*nlocal
 pindex=i+3*myid*nlocal
 posloc(i)=pos(pindex)
 enddo First MD-step if(myid == master) then endif ! restart endif ! olddat endif ! master

close(060)

ß

сð

دى دى ه ß κυ κυ stop endif enddo

_

<pre>c.fct. (=P)' apdate neighli' crash dump' cun (0/1=n/y)'</pre>	endif ! master begintime2 = MPL_WTIME()
<pre>c: short-range' cor: ewald' cor: al-charge'</pre>	call MPL_BARRIER(MPL_COWM_WORLD, ierr)
stor: al-o'	Time-loop
	<pre>do time=starttime+1,ntotstep </pre>
	I update the scaled positions
	<pre>do i=1,3*nlocal lispla=hstep*velloc(i)+hsqd2*acc(i) posloc(i)=posloc(i)+displa runposloc(i)=runposloc(i)+displa fpartl(i)=acc(i) enddo</pre>
	! update volume dependent variables
formatted')	<pre>do i=1,3*n1ocal if(posloc(i) < 0) then posloc(i)=posloc(i)+lbox alse if(posloc(i) > lbox) then posloc(i) > posloc(i)-lbox endif endif endif</pre>
(7+(call MPL_ALLGATHER(posioc, 3*nlocal, MPL_REAL, & & MPL_COMM_MORLD, ierr)
(, MƏ	call force(time,posloc,pos,acc)
	! update position velocities
	<pre>do i=1,3*nlocal velloc(i)=velloc(i)+hstepd2*(fpart1(i)+acc(i)) enddo</pre>
	I now md step is done. analyse some or influence the system if needed.
cormatted')	Update of neighbor list if necessary, i.e. if any particle moved
	<pre>! LUTCHEF CHAIN HALL UNE SALIN-WLUCH: ! write(6,*) 'Abfrage: wskinwd2 = ', wskinwd2</pre>

write(061,*) ncorrel,' nr.pts. small corr.fct write(061,*) nsystdumg' stps for tot syst.cras write(061,*) nsystdumg' stps for tot syst.cras write(061,*) neta,' is this a restart run (write(061,*) rmax,' kmax' write(061,*) kmax,' kmax' write(061,*) decay,' decay of exp-factor: sh write(061,*) decayal,' decay of exp-factor: write(061,*) decayal,' decay of exp-factor: write(061,*) nvelstep,' nvelstep' !!!! close(061) endif ! restart open(079, file=vel_file_2, status='new', form='fc write(079,*) starttime do j=1,3*npart,3 write(079,*) vel(j),vel(j+1),vel(j+2) enddo close(079) open(076,file='temporary_file_bks',status='ne write(076,fine='(120a)') '/usr/local/gnu/bin/gzip ',dump_file_2 close(076) call system("mt etemporary_file_bks") call system("mt temporary_file_bks") call MPL_BARRIER(MPL_COMM_WORLD, ierr) call MPL_GATHER(runposloc, 3*nlocal, MPL_REAL, runpos, 3*nlocal, MPL_REAL, master, MPL_COMM_WORLD, ierr) open(075,file=dump_file_2,status='new',form='
write(075,*) starttime
do j=1,3*npart.3
write(075,*) runpos(j),runpos(j+1),runpos(j
enddo call MPI_GATHER(velloc, 3*nlocal, MPI_REAL, k & vel, 3*nlocal, MPI_REAL, & master, MPI_COMM_MORLD, ierr dump_file_2=dump_file_1
call addnumtostring(dump_file_2,starttime) vel_file_2=vel_file_1
call addnumtostring(vel_file_2,starttime) ! write the dump file at t=starttime ! write the vel file at t=starttime if(myid == master) then ! now we compress this file endif ! master close(075) κ ය ය ----

-: -:

_

_

```
ekin+epot+
(0.5*mpiston*volvel**2+pressext*vol)/npart,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             call MPI_BARRIER( MPI_COMM_WORLD, ierr )
call MPI_GATHER( velloc, 3*nlocal, MPI_REAL,
vel, 3*nlocal, MPI_REAL,
master, MPI_COMM_MORLD, ierr )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             call MPI_GATHER( runposloc, 3*nlocal, MPI_REAL,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  runpos, 3*nlocal, MPI_REAL,
master, MPI_COMM_WORLD, ierr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       if(myid == master) then
    open(072,file=fileout2,status='unknown',
    form='formatted') ! !!
                                                                                  call analysel(time,poshoc,pos,velloc)
if(wid = master) then
instrempekin*2.40/3.40
press=insttemp*density+virial*invol
write(071,fmt='(912.6,10923.15)')
write(071,fmt='(912.6,10923.15)')
press.pos(3),pos(6),volvolvel,
                                                                                                                                                                                                                                                                                          call fluch(071)
endif ! master
endif ! master
call MPL_BARKIER( MPL_COMM_WORLD, ierr
endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                   ! Make a dump of the system in case of a crash?
                       if(mod(time,nprintstep) == 0 .and.
fileoutl /= ' ') then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if(mod(time,nsystdump) == 0 .and.
fileout2 /= ' ') then
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     write(072,*) rcow
write(072,*) rcow
write(072,*) temp
write(072,*) cooltim
write(072,*) preseact
write(072,*) thathatep
write(072,*) thathatep
write(072,*) coolatep
write(072,*) coolatep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   w write (072, *) olddat
write (072, *) olddat
write (072, *) mapart
write (072, *) mapart
write (072, *) mapart
write (072, *) mapart
write (072, *) rcoaa
write (072, *) rcoad
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      print*, time*hstep
                                              ړې
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         لات
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    აკ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ъ
                                                                                                                                                                                                       ຮ່ອນຮ່ອນຮ່ອ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ຮະຮ
                                         do while (i <= nlocal .and. newloc < 1)
dx=runposloc(3*1-1)-neighposloc(3*1-2)
dy=runposloc(3*1-1)-neighposloc(3*1)
dz=runposloc(3*1)-neighposloc(3*1)
dz=runposloc(3*1)-neighposloc(3*1)
dz=runposloc(3*1)-neighposloc(3*1)
f( i == 10) write(6, *) 'i = 10 : rsq = ', rsq
if (myid == master) then
    write(6, *) 'us = ', i
    write(6, *) 'wskinwd2
    write(6, *) 'scall subroutine neighli at time
    all neilist(pos,runposloc(neighposloc)
    mosloc
    all neilist(pos,runposloc)
    mosloc)
</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ', time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if(time <= cooltim .and. mod(time,tbathstep) == 0) then
call maxbol(temp,m)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            if(time <= cooltim .and. mod(time,coolstep) == 0) then
temp=temp=temp=deltat
if(temp < 0) then
temp=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if (new > 0) then
call neilist(pos,runposloc,neighposloc)
if (myid == master) then
write(6,*) 'call subroutine neighli at time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    call MPI_BARRIER( MPI_COMM_WORLD, ierr )
call MPI_ALLAREDUCE( newloc, new, 1, MPI_INTEGER,
MPI_SUM, MPI_COMM_WORLD, ierr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           if(time+tbathstep > cooltim) then
i Last time of cooling. Adjust the total energy?
if(nomtoten > -100) then
call analysel(time,posloc,pos,velloc)
scafac=sgrt((nomtoten-epot)/ekin)
do i=1.3*nlocal
velloc(i)=velloc(i)*scafac
enddo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ! Print the status of the system?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ! Thermalize the velocities?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ! Adjust the temperature ?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 coolstep=10000
tbathstep=10
i=1
new=0
newloc=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                      i = i + 1
                                                                                                                                                                                                                                                                                                                                                                                                                              endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Puddo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             endif
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             endif
```

κ

-- --_.

write(072,*) pos(3*1-2),pos(3*1-1),pos(3*1), vel(3*1-2),vel(3*1-1),vel(3*1), runpos(3*1-2),runpos(3*1) call MPL_GATHER(velloc, 3*nlocal, MPL_REAL, vel, 3*nlocal, MPL_REAL, master, MPL_COMM_MORLD, ierr) call MPI_GATHER(runposloc, 3*nlocal, MPI_REAL, runpos, 3*nlocal, MPI_REAL, master, MPI_COMM_MORLD, ierr) vel_file_2=vel_file_1
call addnumtostring(vel_file_2,time)
open(079,file=vel_file_2,status='new'. close(072) endif ! master call MPL_BARRIER(MPL_COMM_WORLD, ierr) endif ! end of crash dump if(mod(time,nvelstep) == 0) then write(072,*) uni,carry,i24,j24
do i=1,24 ! Make a dump file of the configuration? write(072,*) lbox,volvel,vol write(072,*) nvelstep ! !!! write(072,*) nomtoten write(072,*) lased write(072,*) hstep write(072,*) ntotstep write(072,*) ndumpstep write(072,*) ndumpstep write(072,*) ncorrelmax write(072,*) tneighli write(072,*) filleil2 write(072,*) filleil2 write(072,*) filleil2 write(072,*) filleil2 write(072,*) time write(072,*) ncorrelnew write(072,*) decay write(072,*) decay write(072,*) seed(i) write(072,*) decayalo write(072,*) decayal if(myid == master) then ! Positions and velocities ! Random number variables do i=1, npart ! !!! ! the velocities enddo enddo es es ى ھ دى دى

if(myid == master) then endtime2 = MPT WTING() write(6, wt on process 0 = ',endtime2-begintime2 if(fileout2 /= ' ') then open(072,file=fileout2,status='unknown',form='formatted') write(072,*) lbox,volvel do i=1.1part call MPI_BARRIER(MPI_COMM_MORLD, ierr)
call MPI_GATHER(velloc, 3*nlocal, MPI_REAL,
vel, 3*nlocal, MPI_REAL,
master, MPI_COMM_MORLD, ierr) endtime=MPL_WTINE()
write(6,*) 'wall clock time of process 0 = ',
endtime-begintime call MPI_GATHER(velloc, 3*nlocal, MPI_REAL, & vel, 3*nlocal, MPI_REAL, write(072,fmt='(6g25.15)')
write(073,fmt='(6g25.15)')
pos(3*i-2),pos(3*i-1),pos(3*i),
vel(3*i-2),vel(3*i-1),vel(3*i) $\overline{}$ call MPI_BARRIER(MPI_COMM_WORLD, ierr ! Crash dump for time slices of the run 9006 if(myid == master) close(071) print*,'good exit'
write(071,*) 'good exit'
close(071) call MPI_FINALIZE(ierr) ! File with the final state enddo ! time loop stop 'final stop' close(072) endif endif ! master ! Write the results enddo 8 8 ຮ່ຮ لان -

 and MPL_GATTERS(runneds): Partonal, MPL_GAMAL, ierr)

 and MPL_GATTERS(runneds): Partonal, MPL_MAL, is runneds): Partonal, Fartonal, Fartonal, Partonal, P

<pre>real fxi,fyi,fzi real dryb,fxi,fzi real ulpha,vs,twp,twpfl,twpfl,twp2,twp3 real ubpa,vs,twp,thp1,t,tp2 iAl real ubrsi.cho.chna,chal,tp,t,tp2 iAl real mbeta,twobdpi,erkonbeta,sgreewald,rcewald,decayew,tfcoul real anao,baso,aalo,balo,calo iAl real anao,baso,aalo,balo,calo iAl real disid,dhalcha,chnasq,chosq,chosq,chosto real factor1,r1,r2,r28q.constq_nal,r2mrij.c_r2mrij real log_twpf2pl real log_twpf2pl iAl integer myid,ierr,numprocs,master integer myid,ierr,numprocs,master integer myid,ierr,numprocs,master integer myid,ierr,numprocs,master</pre>	<pre>common/siml/vol,lbox,lboxd2,mpart common/siml/vol,lbox.lboxd2,mpart common/siml/hapart.incpart.idpart !Al common/siml/hapart.incpart.idpart !Al common/siml/hapart.incpart.idpart !Al common/siml/frobasd.rccodsg.rccodsg.rccacsg. & rccodsg.rccodsg.rccodsg.rccodsg. & rccodsd.rccod.rccod.rccod.rccod.idpart common/siml/potshad.potshad.potshad. % common/neigw/neighwald common/neigw/neighwald.potshad.potshad. % common/neigw/neighwald.potshad.potshad.ial common/neigw/neighwald.potshad.potshad. % common/reprat/alpha.tvcc.vs common/potpar/ell. common/potpar/sisi.asio.aoo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.asio.abo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.asio.cho.chna.chal.cho.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpar/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl common/potpart/sisi.esio.coo.bsisi.bsio.balo.calo.iAl</pre>	<pre>common/varmpil/mrid.ierr,numprocs,maater common/varmpil/mrid.ierr,numprocs,maater common/varmpil/niocal.nstart.nend common/varmpil/niocal.nstart.nend common/varmpil/niocal.nstart.nend common/varmpil/niocal.nstart.nend common/varmpil/niocal.nstart.nend & decayal.decayal.decayal.iAl. chaisq=choit.chna chaistch=choit.chna chaistch=chna chaatch=chna chaatch=chna chaatch=chna tana</pre>	<pre>chsichal=chsi*chal chaisg=chai*chal chaisg=chai*chai chaisg=chai*chai chaisg=chai*chai chaisg=chai*chai risg=ri*ri iAl risg=ri*ri risg=ri*ri iAl i first zero all accelerations do j=1,3*npart fehorr1(j)=0.d0 enddo</pre>
<pre>! Positions and velocities write(072,*) lbox,volvel,vol do i=1,npar write(072,*) pos(3*i-2),pos(3*i-1),pos(3*i), & wrupos(3*i-2),vel((3*i-1),vel(3*i), & runpos(3*i-2),runpos(3*i-1),runpos(3*i) enddo ! Random number variables write(072,*) uni,carry,i24,j24 do i=1.24 write(072,*) seed(i) enddo close(072)</pre>	call MPL_FINALIZE(ierr) end ! PROGRAM SUBROUTINES: subroutine force(time, posloc, pos, acc) implicit none introlode 'mplf.h' introlode 'mplf.h'	<pre>integer partdimioc.nchpartloc.nofcgus parameter(partdim-4234.nchpartloc.nofcgus parameter(partdim-4234.nchpartloc.nofcgus parameter(maxke514.occ132.nchpartloc) parameter(maxke514.occ132.nchpartloc) integer recycounts(000.nchpartloc) integer recycounts(000.nchpartloc) real pos(partdimioc) real fshortl(partdimioc) real fshort(partdimioc) real fshort(partdimioc) real fshort(partdimioc) real fshort(partdimioc) real fshort(partdimioc)</pre>	<pre>integer i,j.hidih.neighno.varsel integer napart.hipart.nepart.npart integer napart.hipart.nepart.npart integer napart.hip. real vol.inbox.jbox.jbox.j real regitferce.oort.acodd.decay real regitferce.oort.en.rij real repethad.potshab.potshib.potshac.potshbc.potshbc real % potshad.potshab.potshb.potshb.potshac. real % potcont.potcontle.potshd real % potcontewl.potcontle.potshd real % potcontewl.potcontle.decay real % potcontewl.potcontle.decontew real % potcontewl.potcontle.decontew real % potcontewl.potcontle.decontew real % potcontewl.potcontle.decontew real recoasd;rcobdsg.rcootsg.rcobcsg.rcootsg.rcootsg real rcoadsg.rcobdsg.rcootsg.rcootsg.rcootsg real rcoadsg.rcobdsg.rcootsg.rcootsg.rcootsg real rcoadsg.rcobdsg.rcootsg.rcootsg.rcootsg real rcoadsg.rcobdsg.rcootsg.rcootsg.rcootsg. real rcoadsg.rcobdsg.rcootsg.rcootsg.rcootsg.rcootsg</pre>

if(rsq < sqrcewald) then ! the Si-Si interact. !=0 ! Calculate the forces depending on the kind of interaction: tp2=exp(mbeca*rsq)
tmp=1.d0/rij
t=1.d0/rij
t=1.d0/(1.d0+erkonbeta*rij)
t=1.d0/(1.42549259540+t*(-0.28449673640
tp=t*(1.421413741d0+t*(-1.45315202740) else if(j <= napart+nbpart) then if(j <= napart+nbpart) then else if(j <= napart+nbpart+ncpart) then if(j <= napart+nbpart+ncpart) then else ise if(i <= napart+nbpart+ncpart) then
i Al-Si, Al-Na, Al-Al or Al-O
if(j <= napart) then
if(j <= napart) then
varsel=3 i Al-Si</pre> else if(j <= napart+nbpart) then varsel=5 ! Na-Na if(j <= napart+nbpart) then
varsel=7 !O-Na</pre> , : Na-Al varsel=7 : Na-O endif endif varsel=9 ! Al-O endif io-si rij=sqrt(rsq) select case (varsel) endif endif ! Si-Si interaction: endif endif else else endif case(1) endif κ ! Select the kind of interaction (Si-Si, Si-Na, Si-Al, Si-O, ! Na-Na, Na-Al, Na-O, Al-Al, Al-O, or O-O interaction): else if(j <= napart+nbpart+nopart) then varsel=3 ! Si-Al else ! now compute the forces on the particles else if(dz < -lboxd2) dz=dz+lbox endif if(i <= napart+nbpart) then if(i <= napart) an=0 if(j <= napart) then varsel=2 i Na-Si if(dy > lboxd2) then dy=dy-lbox else if(dy < -lboxd2) dy=dy+lbox endif ! Si-Si else if(dx < -lboxd2) dx=dx+lbox endif varsel=4 ! Si-O do neighno=2,high
j=neighwald(neighno,pindex)
dx=xxx=pos(3*j-1)
dy=yY-pos(3*j)
dz=zz=pos(3*j) high=1+neighwald(1,pindex) if(i <= napart) then
i Si-Si, Si-Na, Si-Al or Si-O
 if(j <= napart) then
 varsel=1</pre> rsg=dx*dx+dy*dy+dz*dz if(dx > lboxd2) then dx=dx-lbox if(dz > lboxd2) then
dz=dz-lbox do i=nstart,nend
 pindex=i-wyid*nlocal
 xx=pos(3*i-2)
 yy=pos(3*i-1)
 zz=pos(3*i)
 fyi=0.00
 fyi=0.00 endif en. endif endif e else fzi=0.d0else

	if(rsq < sqreewald) then ! the Si-Al interact. !=0	rij=sqrt(rsq) tp2=spt(beta*rsq) 	<pre>Lup=1.00/14 J = relation = r</pre>	& +t+1.06140542940))))	: potcontewl=1, do/(rij-rewaid) potcontewl=typ(-decayew*potcontew1*potcontew1)	dpotcontew=2.d0*decayew*potcontew1*potcontew1 & *potcontew1	tforce=chsichal*(twobdpi+tp*tmp-tp*dpotcontew) ************************************		<pre>tmpfl=tmp*tmp*eIrtsq < r4sq) then tmpfl=tmp*tmp*eIrtshell</pre>	rturij=c≠=rij c_rt4mrij=constg_al*r4mrij vAmriianania 1 alriAmriia	r4mr15sgpl=1.d0+r4mr17.r4mr15 tmpf2=1.d0+c_r4mrij*r4mrij/r4mrijsgpl	potcontall=1.d0/(rij-r4)	<pre>potcontal=exp(-decayal*potcontall*potcontall) dpotcontal=2.40*decayal*potcontall*potcontal1 &</pre>	tforce=tforce	<pre>& +tupfit.sp(tupf2)*ptcontal & +2.dpt=20(tupf2)*ptcontal*c_r4mrij/ & ('rsq*r4mrijsqp1)* & ('rsq*r4mrijsrqp1)* & -2.7*chsichal*loc(tupf2)*dpccontal*occontal/ &</pre>	k rsg	fxi=fxitorce	<pre>tshort1(3*j-2)=tshort1(3*j-2)-dx*tforce fyi=fyi+dy*tforce</pre>	<pre>fshort1(3*j-1)=fshort1(3*j-1)-dy*tforce fzi=fzi+dz*tforce</pre>	fshort1($3*j$)=fshort1($3*j$)-dz*tforce	endif ! the Si-Al interaction !=0		! Si-O interaction:	case(4)	if(rsg < sgrcewald) then ! the interact. $I=0$	rij=sgrt(rsg)	puccunta=1.uv/(11_J-rcuau) potcont=argi(-decary*potcont1*potcont1) Annt-nn+1? AndAarav*notront1*notron+1*notron+1*notron+	upotcoutt=4.40°accay~potcoutt1~potcoutt1~potcoutt4 tp2=exp(mbeta*rsq)
: +t*1.061405429d0))))	<pre>rcewald=sqrt(sqrcewald) poccontew1=1,40/(rij=rcewald) pocrontewal1,40/(rij=rcewald)</pre>	<pre>poccaster = 2.4 % sector = poccaster = poccaster</pre>	tforce=chsisg*(twobdpi+tp*tmp-tp*dpotcontew) *tmp*tmp*tp2*potcontew*e2n	<pre>fxi=fxi+dx*tforce fsipret(3*j-2)=fshort1(3*j-2)-dx*tforce fsipret(3**t=0)=fsipret(3*j-2)-dx*tforce</pre>	tyt=tytetee fshort1(3*j-1)=fshort1(3*j-1)-dy*tforce fzi=fzi+dz*tforce	<pre>fshort1(3*j)=fshort1(3*j)-dz*tforce</pre>	endif ! the Si-Si interaction !=0	a interaction:	case(2)	if(rsg < sgreewald) then ! the Si-Na interact. $i=0$	rij=sgrt(rsg) tn2=evr(mhatatren)	twp=1.d0/rij	<pre>t=1.d0/(1.d0+er%cnbeta*rij) tp=t*(0.25482559200+t*(-0.284496736d0 tp=t*(1.421413741d0+t*(-1.453152027d0 t+t*(1.421413741d0+t*(-1.453152027d0 t+t*(1.421413741d0))))))</pre>	×	<pre>recented=sgrt(sgreewald) potcontewl=1.d0/(ric)=reewald) potcontew=exp(-decayew*potcontewl*potcontewl) dpotcontew=2.d0*decayew*potcontewl*potcontewl * * * * * * octcontewl* * * * * * octcontewl*</pre>	tforce=chsichna*(twobdpi+tp*tmp-tp*dpotcontew)	* * * * * * * * * * * * * * * * * * *	if(rsq < r2sq) then il=twp*twp*e2n*chsichna	r2mrij=r2-rij c r2mrij=consto na*r2mrij	tmpf2=c_r2mrij*r2mrij+1.do	trorce=trorce+tupi1*log(tupi2) +2.d0*e2n*chsichna*c_r2mrij/	k (rsq*tmpi2) endif		LXI-LXI.40X.CLDICE fshortl(3*j-2)=fshortl(3*j-2)-dX*tforce fshortsfshord	ry-rry+ wy crorec fshort1 (3*j-1)=fshort1(3*j-1)-dy*tforce fsi-ia*ta*teshort1(3*j-1)	rzi=rzi+dz".uutce fshort1(3*j)=fshort1(3*j)-dz*tforce	endif ! the Si-Na interaction $l=0$	Al interaction:
								! Si-										tmp										1 Si

! Si-Al interac

لا κ ප ප ප ຮ່ຮ ъ чЯ if(rij <= (1.19412561675025d0)) then ! for test
tfcoul=chsicho*(twobdpi+tp*tmp)
*tmp*tmp*tmp*tp2*e2n</pre> if(rsq < sqrcewald) then ! the Na-Na interact. !=0 rcewald=sqrt(sqrcewald)
pccontew1a.id()(rij=rcewald)
pccontew=sxp(-decayew*poctcontew1*potcontew1)
dpotcontew=2.d0*decayew*potcontew1*potcontew1 print*, "force: 51-0 polfit, time=', time*hscep, 'rij=', rij tforce=(-25.d0*(rij-1.19412561675025d0) tforce=(-28.d0*e2n/rsq)*tup ! the Si-O interaction !=0 tmp=1.d0/rij t=1.d0/(1.d0+erskonbeta*rij) tp=t*(0.254959204t*(-0.284496736d0 tp=t*(1.421413741d0+t*(-1.453152027d0 +t*1.061405429d0)))) type://typestrag/ tupe1.a0/tij tupe1.a0/tij tupe1.a0/tij tupe1.40+tistonbeta*rij) tp=t*(0.254892553030+t*(-0.2849673640 tp=t*(1.42141374140+t*(-1.45315202740 +t*(1.05140542960)))) fshort1(3*)-2=550 fshort1(3*)-2=550 fy1=fy1+dy*tforce fy1=fy1+dy*tforce fs1=fs1+da*tforce fs1=fs1+da*tforce fs1=fs1+da*tforce fshort1(3*j)=fshort1(3*j)-da*tforce if(rij <= (1.19412561675025d0)) then tfcoul=chsicho*(twobdpi+tp*tmp)
 *tmp*tmp*tp2*e2n ! for test rcewald=sqrt(sqrcewald) *potcontew1 fxi=fxi+dx*tforce + tfcoul rij=sqrt(rsq) endif endif endif ! Na-Na interaction: endif case(5) κ ຮ່ຮ κ З ß لان 3 3 ຮ່ຮ່ອນ ຮ່ຮ

if(rsq < sqrcewald) then ! the Al-Al interact. !=0 tforce=chnachal*(twobdpi+tp*tmp-tp*dpotcontew) rcewald=sgrt(sgrcewald)
potcontew=sgr()/rij=rcewald)
potcontew=sgr(-decsgrew*potcontew1)
dpotcontew=2.d0*decayew*potcontew1*potcontew1 potcontewl=1.d0/(rij-rcewald)
potcontew=zxp(-dezayew*potcontewl*potcontewl)
dpotcontew=2.d0*decayew*potcontewl*potcontewl
potcontewl tforce=chnasq(twobdpi+tp*tmp-tp*dpotcontew)Evglembeta*rsq) tup=1.40/r1j.40+erkonbeta*rij) tp=1.40/r1,40+erkonbeta*rij) tp=t*(0.254829592d0+t*(-0.284496736d0 +t*(1.244829592d0+t*(-0.284496736d0 +t*1.061405429d0)))) c_r2mtij=constq_na*r2mrij tungf2=c_r2mrij*r2mrij+1.d0 log_tmpf2pl=log(tmpf2)+1.d0 tforce=tforce=tmpf1, +4.d0*chasq*2pl*log_tmpf2pl *c_r2mrij/(rsq*tmpf2) fxi=fxi+dx*tforce fshortl(3*j-2)=fshortl(3*j-2)-dx*tforce fshortl(3*j-2)=fshortl(3*j-1)-dy*tforce fshortl(3*j-1)=fshortl(3*j-1)-dy*tforce fzi=fzi+dz*tforce fshort1(3*j)=fshort1(3*j)-dz*tforce *tmp*tmp*tp2*potcontew*e2n *tmp*tmp*tp2*potcontew*e2n endif ! the Na-Na interaction !=0 $\label{eq:twpfl=twp+twp+twp+e2n+chnachal} \timestyle twp+twp+e2n+chnachal \timestyle twp+e2n+chnachal \timestyle twp+exp} \label{eq:twp}$ c_r2mrij=constq_na*r2mrij c_r4mrij=constq_na*r4mrij tup£2=c_r2mrij*r4mrij+1.d0 log_tup£3=c_r4mrij*r4mrij+1.d0 log_tup£2pl=log(tup£2)+1.d0 log_tup52pl=log(tup£2)+1.d0 *potcontew1 if(rsq < r2sq) then
tmpf1=tmp*tmp*e2n*chnasq</pre> if (rij < r2) then if (rij < r4) then r2mrij=r2-rij r4mrij=r4-rij rij=sqrt(rsq) endif ! Na-Al interaction: case(6)

-- -- -- --

--

! Na-O interaction:

potcont1=1.d0/(rij-rcocd)
potcont=exp(-decary*potcont1*potcont1*potcont=cap(-decary*potcont1*potcont1*potcont1*potcont2.d0 if(rrij <= (1.165764159643574600)) then ! for test
tfcoul=chalcho*(twobdpi+tp*tmp)
 *tmp*tmp*tmp2*e2n</pre> ((rsq*r4mrijsgpl) *(c_r4mrij*r4mrij+r4mrijsgpl)) -2.d0*chalsq*e2n*log(tmpf2)*dpotcontal if(rsg < sgrcewald) then ! the Al-O interact. !=0 rcewald=sgrt(sgrcewald)
potcontew1a1.d0(rj)-rcewald)
potcontew=sgr(-decayew*potcontew1*potcontew1)
dpotcontew=2.d0*decayew*potcontew1*potcontew1 tfcoul=chalcho*(twobdpi+tp*tmp-tp*dpotcontew)
 *tmp*tmp*tp2*potcontew*e2n +4.d0*chalsq*e2n*potcontal*c_r4mrij/ tmp=1.d0/rij t=1.d0/(1.d0+erkonbeta*rij) tp=t*(0.254829522d0+t*(-0.284496736d0 tp=t*(1.21413741d0+t*(-1.453152027d0 +t*1.061405429d0))) *4.d0*chalsq*e2n*log(tmpf2)
*potcontal*potcontal*c_r4mrij/ fxi=fxi+dx*tforce fxi=fxi+dx*tforce fyi=fyi+dy*tforce fshort1(3*j-1=fshort1(3*j-1)-dy*tforce fshort1(3*j-1)=fshort1(3*j-1)-dy*tforce if(rij <= (1.165764159643574640)) then
tfcoul=chalcho*(twobdpi+tp*tmp)
*tmp*tmp*tp2*e2n</pre> c_r4mrij=constg_alo*r4mrij r4mrijsgpl=l.d0+r4mrij*r4mrij tmpf2=l.d0+c_r4mrij*r4mrij/r4mrijsgpl fshort1(3*j)=fshort1(3*j)-dz*tforceendif ! the Al-Al interaction !=0 oort4=1.d0/(rsq*rsq*rsq*rsq)
tmpf1=tmp*tmp*e2n*chalcho *potcontal/rsg potcontew1 *potcontal tp2=exp(mbeta*rsq) fzi=fzi+dz*tforce rij=sqrt(rsq) tforce=tfcoul r4mri j=r4-ri j !! Al-0 interaction: !!! endif endif case(9) κ сð **** 80 80 κ لان

+ture.station (tmpf2)*potcontal
+tmerision(tmpf2)*potcontal*c_r4mrij/
+2.d0*chalcho*e2n*potcontal*c_r4mrij/
((rsq*r4mrijsp1)*
(c_r4mrijsp1)*
-e2n*chalcho*log(tmpf2)*dpotcontal*potcontal potcontal=exp(-decayalo*potcontal1*potcontal1)
dpotcontal= 2.d0*decayalo*potcontal1*potcontal1 if (rsq < rcocdsq) then tforce=tforce+(balo*axp(-balo*rij)*tmp -6.d0*calo*oort4)*potcont -(aalo*exp(-balo*rij) -calo*rsq**(-3)-potshcd) +tmpfl*log(tmpf2)*potcontal +2.d0*chalcho*e2n*potcontal*c_r4mrij/ if(rsg < sgrcewald) then ! the 0-0 interact. !=0 +(balo*aalo*exp(-balo*rij)*tmp -6.d0*calo*oort4)*potcont fxi=fxi+dx*tforce fxi=fxi+dx*tforce fyi=fyi+dy*tforce fsiort1(3*j-1)=fsiort1(3*j-1)-dx*tforce fsiort1(4*j-1)=fsiort1(3*j-1)-dy*tforce fsiort1(3*j)=fsiort1(3*j)-dz*tforce fsiort1(3*j)=fsiort1(3*j)-dz*tforce rij=sqrt(rsq)
potcontl=1.d0/(rij-rcodd)
potcont=exp(-decay*potcontl*) -(aalo*exp(-balo*rij) -calo*rsq**(-3)-potshcd) endif ! the Al-O interaction !=0 if(rsq < r4sq) then
potcontall=1.d0/(rij-r4)</pre> ((rsg*r4mrijsqp1)* if (rsq < rcocdsq) then tforce=tforce (rij*tmpf2))*tmp *dpotcont*tmp *dpotcont*tmp *potcontal1 tforce=tforce /rsg 'rsq + tfcoul endif endif else endif else endif else case(10) 0-0 interaction: പ്പു പ്പും പ്പും പ്പും сð ຮ່ຮ່ວຍ ***** ****

_.

integer i,j,mapart,mpart,mcpart,mcpart,mpart !Al
integer varsel,hich.meigmo,pindex
real No1,lbox,inbox,lboxd2
real vo1,lbox,inbox,lboxd2
real vo1,lbox,inbox,lboxd2
real xryy,raz,rsq.ehr.rij,ok.dy,dc
real xryy,raz,rsq.ehr.rij,ok.dy,dc
real potcont,potcontl,potcontal
real potcont,potcontal,potcontal
real potcont,potcontal,potcontal
real potcont,potcontal,potcontal
real potcont,potcontal,potcontal
real potcont,potcontal,potcontal
real and,potshab,potshb,potshc,potshc,potshc
real alo,balo.calo.lAl
real alo,balo.calo.lAl
real alo,balo.calo.lAl
real virmod,virmod,virmod_slal,constq_al.constq_alo,decayalo
real alo,tup1,tup2,remrij,r_fMrijsqpl
real vimp0,tup1,tup2,remrij,r_fMrijsqpl parameter(maxk=534) integer*2 neighwald(800,nchpartloc) integer*2 neighwald(800,nchpartloc) integer*2 neighward(s00,nchpartloc) real kvec(maxk),m(nchpartloc),ch(nchpartloc) real kvec(maxk),m(nchpartloc),ch(nchpartloc) call MPI_REDUCE_SCATTER(fshort1, fshort, recvcounts, MPI_REAL, MPI_SUM, MPI_COMM_WORLD, ierr) integer partdim, nchpart, maxk integer partdimloc, nchpartloc parameter(partdim=4224, nchpart=partdim/3) parameter(partdimloc=132, nchpart=partdimloc/3) common/siml/vol,lbox,lboxd2,npart common/sim2/napart,nbpart,ncpart iAl subroutine analyse1(time, posloc, pos, velloc) acc(3*i-2)=tmp*tmp3 tmp=cf(1*i-1)+tmp2+fshort(3*i-1) acc(3*i-1)=tmp*tmp3 tmp=ckf(3*i)*tmp2+fshort(3*i) acc(3*i)=tmp*tmp3 ecc(3*i)=tmp*tmp3 do i=1,nloca1
tmp3=1.d0/m(i)
tmp=ckf(3*i-2)*tmp2+fshort(3*i-2) integer myid, ierr, numprocs, master call FKWALD(posloc, kvec, ckf) integer nlocal, nstart, nend tmp2=e2n*inlbox**2 implicit none include 'mpif.h' integer time return end لا dpotcont=2.d0*decay*potcont1*potcont1*potcont1*potcont if(rij <= (1.4384767189716847d0)) then ! for test tfcoul=chosef(twobbpi+tp*tmp) print*, 'forces'(-0-0 polfit, time=', time*hsep, 'rij=' rij tforce=(-27,d0'(rij-1.4384767189716847d0) tforce=(-27,d0'rsq)*tmg rcewald=sgrt(sgrcewald)
potcontewl=1.d0((rij-rcewald)
potcontew=exp(-decayew*potcontewl*potcontewl)
dpotcontew=2.d0*decayew*potcontewl*potcontewl $\label{eq:transform} \label{eq:transform} tf coul=chosq*(twobdpi+tp*tmp-tp*dpotcontew) \\ *tmp*tmp*tp2*potcontew*e2n \\ \end{tabular}$ if(rij <= (1.4384767189716847d0)) then tfcoul=chosq*(twobdpi+tp*tmp) *tmp*tmp*tp2*e2n fshort1(3*j-2)=fshort1(3*j-2)-dx*tforce fyi=fyi+dy*tforce fshort1(3*j-1)=fshort1(3*j-1)-dy*tforce fshort1(3*j)=fshort1(3*j)-dz*tforce endif ! the 0-0 interaction !=0 ! for test fshort1(3*i-2)=fshort1(3*i-2)+fxi
fshort1(3*i-1)=fshort1(3*i-1)+fyi
fshort1(3*i)=fshort1(3*i)+fzi enddo ! loop over neighbors fxi=fxi+dx*tforce fzi=fzi+dz*tforce + tfcoul do i=1,numprocs
 recvcounts(i)=3*nlocal
 enddo end select ! varsel tforce=tfcou enddo ! over particles endif endif endif

сð

-- -- -- --

ß ى ھ ຮ່ຮ່ວຍ

80 80

З сð

common.propar2/asisi.asio.aco.bsisi.bsio.boo. common/propar2/asisi.asio.aco.bsisi.bsio.boo. common/proparge/chei.cbb.chu.ano.ano.halo.balo.calo !Al common/varmpil/myidd.ierr.numprocs.master common/varmpil/myidd.ierr.numprocs.master common/varmpil/neigh/maid common/potmod/r1,r2,r3,r4,constg_na,constg_al,constg_alo, ecayal,decayal,decayalo !Al do i=1,niocal do i=1,niocal ekinloc=ekinloc+m(i)*(velloc(3*i-2)*velloc(3*i-2) & +velloc(3*i-1)*velloc(3*i)) & +velloc(3*i) common/sim3/hstep.ekin.epot common/sim4/rcoaasq.rcoabsq.rcobbsq.rcoacsq, rcobsg.rcoadsq.rcoadsq.lal & rcoadsg.rcoaddaq.lal & rcoad.rcobd.rcoad.dcay common/sim5/potshaa.potshab.potshac, IAI potshbc, potshcc, potshad, potshbd, potshcd, potshdd common/siml1/virial common/ewald/alpha,kvec,vs common/box/inlbox common/potpar/e2n,m ! compute kinetic energy ekinloc=0.d0 enddo ح ړي ß

ekinloc=ekinloc/2.d0/npart

! now compute the potential energy

virshort=0.d0 chsisg=chsi*chsi chosg=cho*cho chsicho=chsi*cho chalcho=chal*cho do i=nstart,nend epotloc=0.d0

zz=pos(3*i) high=1+neighwald(1,pindex) pindex=i-myid*nlocal
xx=pos(3*i-2)
yy=pos(3*i-1)

do neighno=2,high j=neighnad(neighno,pindex) dx=xxrpos(3*j-2) dy=yryrpos(3*j-1) dy=yryrpos(3*j) df(dx < -lboxd2) dx=dx+lbox if(dx < lboxd2) dx=dx+lbox if(dx < lboxd2) dx=dx+lbox if(dx < lboxd2) dx=dx+lbox if(dz < lboxd2) dx=dx+lbox if(dz < lboxd2) dx=dx+lbox if(dz < lboxd2) dx=dx+lbox if(dz < lboxd2) dx=dx+lbox</pre>

.u-Al varsel=10 1 0-0 endif endif

! Select the kind of interaction (Si-Si, Si-Na, Si-Al, Si-O, ! Na-Na, Na-Al, Na-O, Al-Al, Al-O, or O-O interaction): sec (j <= napart+nbpart+ncpart) then varsel=8 !Al-Al else if(j <= napart+nbpart) then varsel=7 10-Na else if(j <= napart+nbpart+ncpart) then varsel=9 10-Al else if(j <= napart+nbpart+ncpart) then
varsel=3 ! Si-Al</pre> if(i <= napart+nbpart+ncpart) then
i Al-Si, Al-Na ,Al-Al or Al-O
if(j <= napart) then
varsel=3 i Al-Si</pre> if(j <= napart+nbpart) then varsel=6 i Al-Na else if(j <= napart+nbpart) then
varsel=5 ! Na-Na</pre> if(j <= napart+nbpart) then varsel=2 ! Si-Na , si-Al varsel=4 ! Si-O endif endif if(i <= napart+nbpart) then
i Na-Si, Na-Na Na-Al or Na-O
if(j <= napart) then
varsel=2 i Na-Si
else
else</pre> varsel=7 ! Na-0 varsel=9 ! Al-O endif ! Si-Si if(i <= napart) then
i Si-Si-Na ,Si-Al or Si-O
if(j <= napart) then
varsel=1
else</pre> endif enu endif ` endif endif else else else else else else

endif endif endif endif

select case (varsel)

! Calculate the energy depending on the kind of interaction:

I Si-Si interaction

case(1)

if(rsq < rcoaasg) then ! the interact; != 0
epotloc=epotloc+0.d0-potshaa ! Si-Si only Coulomb
endif</pre>

! Si-Na interaction

case(2)

if(rsq < rcoabsq) then ! the interact. != 0
epotloc=epotloc+0.d0-potshab ! Si-Na only Coulomb
endif</pre>

! Si-Al interaction

case(3)

! Si-O interaction

case(4)

rij=sqrt(rsq) potcontl=1.d0/(rij=rcoad) potcontl=2.d0/(rij=rcoad) potcontl=xp(-decay*potcontl*potcontl*potcont dpotcont=2.d0*decay*potcontl*potcontl*potcont if(rij <= (1.1941256167503560)) then ! for test tint*. 'analyse: S1-0 polfit, time', time*hstep, 'rij=', rij potl=rij-1.1941256167502560 potl=cehsiohor*23Nrij epotloc=epotloc+(-27.33117215225673400+ potl=asio*exp(-bsio*rij) potl=csio*rsq**(-3) epotloc=gpotloc+(potl-pot2-potshad)*potcont !Al virshort=virshort+ 12.5d0*pot1**2)-pot2 -25.d0*pot1*rij -pot2 if(rsq < rcoadsq) then !Al virshort=virshort else ! for test

ъ

ß ຮ່

rij=sqrt(rsq) rij=sqrt(rsq) potcont=1.d0/(rij-rocd) potcont=zp(-decay*potcont1*potcont1*potcont1 dpotcont=2.d0*decay*potcont1*potcont1*potcont if(rij <= (1.16576415943574660)) then ! for test print, 'analyse: Al-0 polfit, time', time*hstep, 'rij=', rij potcontal=2.d0'decayalo*potcontal1*potcontal1 dpotcontal=2.d0'decayalo*potcontal1*potcontal1 rij=sqrt(rsq) potcont=1.d0/(rij-rcobd) potcont=2.d0/(rij-rcobd) potcont=zp(-decay*potcont1*potcont1*potcont1 dpotcont=2.d0*decay*potcont1*potcont1*potcont pot1=anac*exp(-hac*rij) pot1=anac*exp(-hac*rij) pot1=erepotloc+(pot1-pot1*rij)*potcont 'irshort=virshort+(hac*potcont*rij if(rsq < rcobbsq) then ! the interact. != 0 epotloc=epotloc+0.40-potshbb ! Na-Na only Coulomb endif if(rsq < rcobosg) then ! the interact. != 0
 epotloc=epotloc+0.d0-potshbc ! Na-Al only Coulomb
endif</pre> if(rsg < rcobdsg) then !Al if(rsq < rcocdsq) then endif ! for test endif | Al-O interaction | | | case(9) endif ! Al-Al interaction case(8) ! Na-Na interaction case(5) ! Na-Al interaction case(6) case(7) ! Na-O interaction сð

potl=rij-1.1657641596435746d0
tmp0=chalcho*e2n/rij
r4mrij=r4-rij
c_r4mrij=constq_alo*r4mrij

(bsio*pot1*rij-6.d0*pot2)*potcont -(pot1-pot2-potshad)*dpotcont*rij

ຮ່

*potcontal1

ч

сð

! Routine to generate a maxwell-boltzmann distribution ! for the velocities	<pre>subroutine maxbol(temp,m) implicit none include 'mpif.h' integer partdim,partdimloc,nchpart,nchpartloc parameter (partdim-4234,nchpart=partdim(3) parameter (partdimloc); m(nchpartloc=partdimloc/3) real velloc(partdimloc), m(nchpartloc</pre>	<pre>integer npart integer twop24, carry, i24, j24, seed(24), i, uni real temp, tdtp24, v1,v2,r s, ma, mb, tmp, tm real scaftac, ekin, ekintoc real cmxxloc, cmvyloc, cmvzloc real cmxxloc, cmvyloc, cmvzloc real vol, lbox, lboxd2, inlbox integer myld, ierr, numprocs, master</pre>	<pre>common/siml/vol.tboxd2,npart common/siml/vol.tboxd2,npart common/siml/tdtp24,carry,i24,j24,seed,twop24 common/srmpi1/invid.isrtart.numpcs,master common/varmpi2/nlocal.nstart.nend</pre>	<pre>do i=1,3*nlocal,2 10 uni=seed(j24)-carry if(uni < 0) then uni=uni+twop24 else else</pre>	carry=0 endif seed(i24)=uni i34=i34-1 if(i24 == 0) i24=24 j24=j24-1 = 0) i24=24	it(j24 == 0) j24=24 v1=tdcp24*(uni+1)-1.0	<pre>unt=secd(lat) secd(lat)-carry if(uni < 0) then unti=uni+twop24 carry=1 els carry=0 endif carry=0 endif</pre>	<pre>seed(124)=uni if(i24 == 0) i24=24 j24=j24=1 0) i24=24 if(j24 == 0) j24=24 v2=tdtp24*(uni+1)-1.0</pre>	<pre>s=v1*v1+v2*v2 if(s >= 1.0) goto 10 r=sgrt(-2.0*log(s)/s)</pre>
<pre>do i=nstart.nend pindex=i=myid*nlocal counturi xx=pos(3*i-1) xy=pos(3*i-1) zz=no(2*i)</pre>	<pre>if(i <= npart/2) then if(i <= npart/2) then listend=npart/2 listend=npart/2-1 endif</pre>	<pre>do k=1.listend j=moditk=1.npart)+1 dx=xx-pos(3*j-1) dy=yy-pos(3*j-1) dx=zz-pos(3*j) dx=zx+lbox if(dx < lboxd2) then dx=dx+lbox else if(dx > lboxd2) dx=dx-lbox</pre>	<pre>if(dy < -lboxd2) then dy=dy+lbox else if(dy > lboxd2) dy=dy-lbox endif endif</pre>	<pre>if(dz < -lboxd2) then dz=dz+lbox else if(dz > lboxd2) dz=dz-lbox endif rsq=dx*dx+dy*dy*dz*dz</pre>	<pre>if(req < alsksq) then ifound neighb. for ewald countw-countw-1 neighwald(countw,pindex)=j endif</pre>	enddo ! k=1,1istend neighwald(1,pindex)=countw-1	<pre>if(myid == master) then if(countw > 800) then print*/errorwald3', countw write(071,*) 'errorwald3 ',countw endif</pre>	<pre>enddo ! i=nstart.nend</pre>	return end

velloc(i)=v1*r velloc(i+1)=v2*r

enddo

! Scale velocities with respective mass factor

tmp=1.d0/sqrt(m(i)) velloc(3*i-2)=tmp*velloc(3*i-2) velloc(3*i-1)=tmp*velloc(3*i-1) velloc(3*i)=tmp*velloc(3*i) enddo do i=1,nlocal

total momentum = 0_.

cmvxloc=cmvxloc+velloc(3*i-2)*tm cmvyloc=cmvyloc+velloc(3*i-1)*tm cmvzloc=cmvzloc+velloc(3*i)*tm cmvxloc=0.d0
cmvyloc=0.d0
cmvzloc=0.d0
do i=1,nlocal tm=m(i) enddo

call MPI_BARRIER(MPI_COMM_WORLD, ierr)
call MPI_ALLREDUCE(cmv/soc, cmv/x, 1, MPI_REAL,
call MPI_ALLREDUCE(cmv/yloc, cmv/y, 1, MPI_REAL,
call MPI_ALLREDUCE(cmv/yloc, cmv/y, 1, MPI_REAL,
call MPI_ALLREDUCE(cmv/sloc, cmv/z, 1, MPI_REAL,
call MPI_ALLNDUCE(cmv/sloc, cmv/z, 1, MPI_REAL,
call MPI_AL, do i=1.nlocal tm=1.d0/m(i) velloc(3*i-2)-cmvx*tm velloc(3*i-2)-evelloc(3*i-1)-cmvy*tm velloc(3*i)-reelloc(3*i)-cmv2*tm cmvx=cmvx/npart cmvy=cmvy/npart cmvz=cmvz/npart لان لات

enddo

call MPI_BARRIER(MPI_COMM_MORLD, ierr)
call MPI_ALLREDUCE(ekinloc, ekin, 1, MPI_REAL,
k
k Scale velocities to get the right temperature

ß

integer i,k,npart integer Kmax,ksqmax,ksq,kx,ky,kz,totk,kcount real vol,lbox,lboxd2,chsi,cho,chna,chal,pi,twopi,twopidlbox !Al real apha,yw,yw_loc,b,rKx,rKy,kz,rKsq Routine to set up the wave-vectors for the Ewald sum. see Allen & Tildesley: f22.for k for box of unit length & selfterm vs included , because also once at the beginning calc. in : ch,alpha out: kvec,vs integer maxk.partdim.nchpart.partdimloc.nchpartloc parameter(maxk=534,partdim=4224,nchpart=partdim/3) parameter(partdimloc=132,nchpartloc=partdimloc/3) parameter xx_field(maxk),kz_field(maxk) real kvec(maxk),ch(nchpartloc) loop over k-vectors, note that k_x is pos. (sym.) common/rsum3/pi,twopi/twopidlbox common/varmpil/myid,ierr,numprocs,master common/varmpi2/nlocal,nstart,nend common/ksumī/kmax,ksgmax common/ksum4/kx_field,ky_field,kz_field common/siml/vol.lbox,lboxd2,npart common/ewald/alpha,kvec,vs common/charge/chsi,cho,chna,chal,ch !Al integer myid,ierr,numprocs,master integer nlocal,nstart,nend scafac=sqrt(3.d0*temp*npart/ekin) do ky=-kmax,kmax trky=tuopi*dfiloat(ky) do kz=-kmax,kmax rkz=twopi*dfloat(kz) ksq=kx*kx+ky*ky+kz*kz inlbox=1.d0/lbox do i=1,3*nlocal velloc(i)=velloc(i)*scafac b=1.d0/4.d0/alpha/alpha do kx=0,kmax rkx=twopi*dfloat(kx) subroutine prepk
implicit none
include 'mpif.h' kcount=0 return end totk=0 enddo _. -----

<pre>real potcontal, potcontal, dpotcontal, decayal real potcontalo, dpotcontalo, decayalo integer myid, ierr, numprocs, master integer myid, ierr, numprocs, master integer moral, nut, nubart, ncpart common siml/vol, lbox, lboxd2, npart common/sim2/napart, nbart, ncpart iAl common/sim2/napart, nbart, ncpart iAl common/sim4/mbeta, twobdpi, erkonbeta, sqrcewald, rcewald, decayew common/nsigh/mela, twopdpi, erkonbeta, sqrcewald, rcewald, decayew common/nsigh/mela, twopdpi, erkonbeta, sqrcewald, rcewald, decayew common/nsigh/mela, twopdpi, erkonbeta, sqrcewald, rcewald, decayew</pre>	<pre>common/varmpi2/nlocal,nstart.ned common/pormod/r1,r2,r3,r4,constq_na,constq_al,constq_alo, & vr=0.d0 virmod=0.d0</pre>	<pre>do i=nstart,nend pindex=i-myid*nlocal rxi=pos(3*i-2) ryi=pos(3*i-1) rzi=pos(3*i) high=l+neighwald(1,pindex)</pre>	<pre>do neighno=2,high j=neighwald(neighno,pindex) rxij=rxi-pos(3 * - 1) ryij=rxi-pos(3 * -1) rzij=rzi-pos(3 * -1) if(rxij < -lboxd2) then rxij=rzi+lbox</pre>	<pre>else if(rxij > lboxd2) rxij=rxij-lbox endif if(ryij < -lboxd2) then ryij=ryij+lbox else if(ryij > lboxd2) ryij=ryij-lbox endif if(ryi > lboxd2) rhen</pre>	<pre>if(rzij < looxat) tnen rrij=rzij+lbox else if(rzij > lboxd2) rzij=rzij-lbox endif rijsq=rxij*rxij*ryij*rzij*rzij if(rijsg < sqrcewald) then</pre>	<pre>rij=sqrt(rijsq) invrij=1.do/rij.do+erkonbeta*rij) t=1.d0/(1.d0+erkonbeta*rij) tp=t*(0.2582592a0+t*(-0.284496736d0 & +t*(1.421413741d0+t*(-1.453152027d0 & +t*1.061405429d0))))</pre>	<pre>i rcewald=sgrt(sgrcewald) potcontewi=1, d//(rij-rcewald) potcontew=exp(-decayew*potcontew1*potcontew1) dpotcontew=2, d/*decayew*potcontew1*potcontew1 & *potcontew1</pre>
<pre>kcount=kcount+1 if((ksg < ksgmax) .and. (ksg /= 0)) then totk=totk+1 if(totk > maxk) stop 'kvec is too small' if(stotk > maxk) stop 'kvec is too small' if(stotk > maxk) ropt * kxy(-b*tksg)/rksg kx_field(totk)=kx ky_field(totk)=kx ky_field(totk)=kx endis endis endis endis endis endis endis endis i kx </pre>	<pre>if(myid == master) then write(*,' ('' EWALD sum SETUP COMPLETE '') ') write(*,' ('' NUMBER OF WAVEVECTORS IS '', I5) ') totk endif call MPL_BARRIER(MPL_COMM_WORLD, ierr)</pre>	<pre>! Calculate self term of k-sum. vs_loc=0.d0 do i=1,nlocal</pre>	<pre>vs_loc=vs_loc=ton(1)*cn(1) enddo call MPI_ALLREDUCE(vs_loc, vs, 1, MPI_REAL, & & vs=alpha*vs/sgrt(pi)</pre>	return end ! Real space part of potential energy by ewald method	<pre>! 1n: Ch.pos out: Virmod.vr subroutine rwald(pos,virmod.vr) implicit none integer partdim,nchpart,partdimloc,nchpartloc parameter(partdim=424,nchpartlocartdin(3) parameter(partdim=424,nchpartloces) integer*2 neighwald(800,nchpartloces) integer*2 neighwald(800,nchpartloc)</pre>	<pre>real ros(partcolm, cn(cnpartcol, 11, 12, constq_na real ros(partcolm, cn(cnpartcol, 11, 12, constq_na integer i/j,rmax,rsqmax,napart,nupart,ncpart,ndpart lAl integer pindex,high,neighno,npart,varsel real vol.lbox,lboxd2,invrij,vijtmp,vijtmp2,vij,vr real vijtmp3 lAl real rzmrij,c_rzmrij,logargpl real rzmrij, corancij,logargpl</pre>	real chi.chi.chi.chi.chi.chi.chi.chi.chi.chi.

+vijtup*log(vijtup2)*potcontal +vijtup*log(vijtup2)*potcontal +2.d0*chal*chsiptorcontal*potcontal (f4mtijsp1*(c_r4mtij*r4mtij*gp1)) -chal*chsi*log(vijtup2)*dpotcontal*potcontal virij=chsi*chna*tp*exp(mbeta*rijsq)*potcontew*invrij vij=virij if(tij < z) then vijtup=chna*chsi*invrij cr2mtij=constg_na*r2mrij vijtup2=c_r2mrij*r2mrij+1.d0 vijtup2=c_r2mrij*r2mrij+1.d0 virij=chsi*chal*tp*exp(mbeta*rijsq)*potcontew*invrij vij=virij if(rij < r4) then if(rij < r4) then r4mrij=r4-rij vij=chsi*chsi*tp*exp(mbeta*rijsq)*potcontew*invrij
virij=vij I Calculate the energie depending on the kind of interaction: r4mrijsepl=1.d0+r4mrij*r4mrij c.r4mrij=constq_al*r4mrij c.r4mrij=constq_al*r4mrij/r4mrijsqpl vij=vij+vijtmp*log(vijtmp2)*potcontal virij=virij virij=virij+vijtmp*log(vijtmp2)
+2.40*chna*chsi*c_r2mrij/vijtmp2 else
if(j <= napart+nbpart) then
varsel=7 10-Na</pre> , 10-Al varsel=10 ! 0-0 endif endif vij=vij+vijtmp*log(vijtmp2) select case (varsel) case(1) endif case(3) endif case(2) !! Si-Na interaction !! Si-Al interaction ! Si-Si interaction endif endif endif ß ຮ່ຮ່ອນຮ່ອ

! Select the kind of interaction (Si-Si, Si-Na, Si-Al, Si-O, ! Na-Na, Na-Al, Na-O, Al-Al, Al-O, or O-O interaction): potcontalo=exp(-decayalo*potcontal1*potcontal1)
dpotcontalo=2.d0*decayalo*potcontal1*potcontal1 potcontal1=1.d0/(rij-r4)
potcontal=exp(-decayal*potcontal1*potcontal1
dpotcontal=2.d0*decayal*potcontal1*potcontal1 if(j <= napart+nbpart+ncpart) then
 varsel=8 !Al-Al
else</pre> if(j <= napart+nbpart+ncpart) then varsel=6 ! Na-Al if(j <= napart+nbpart+ncpart) then varsel=3 ! Si-Al else if(i <= napart+hbpart+hcpart) then
i Al-Si, Al-Na Al-Al or Al-O
if(j <= napart) then
if(j <= napart) then
varsel=3 i Al-Si</pre> if(j <= napart+nbpart) then varsel=6 i Al-Na else if(j <= napart+nbpart) then varsel=5 ! Na-Na if(j <= napart+nbpart) then varsel=2 ! Si-Na if(i <= napart+nbpart) then i Na-Si, Na-Na Na-O if(j <= napart) then varsel=2 i Na-Si varsel=9 ! Al-O endif ! Si-Si varsel=7 ! Na-0 varsel=4 ! Si-O if(i <= napart) then
i Si-Si, Si-Na Si-Ao
if(j <= napart) then
i varsel=1</pre> *potcontal1 *potcontall else endif endif endif endif else en endif endif endif endif else else else else else else else ъ ŝ

endif	11 Na-O interaction	case(7)	<pre>virij=cho*chna*tp*exp(mbeta*rijsq)*potcontew*invrij vij=virij ifrij < r2) then vijfur=chna*cho*invrij r2mrij=r2-rij</pre>	<pre>c_r2mril=constq_na*r2mri] vijtmp=c_r2mrij+r2mrij+1.d0 vijtmp2=c_r2mrij+r2mrij+1.d0 % virtj=virij+vijtmp*log(vijtmp2) % endif 1! Al-Al interaction</pre>	<pre>case(8) virij=chal*chal*tp*exp(mbeta*rijsg)*potcontew*invrij vij=virj if(rij < r4) then</pre>	V J Grup-ohl * Chal*lnvrj r4mrijsr4-rij r4mrijsr1=1.d0-rkmrij*r4mrij	<pre>vijtup3=1.00+c_refar:j*fam:j/r4mrijsqpl logargpl=log(vijtup3)+1.d0 vij=vij</pre>	<pre>k +v1jtmp2.dov/syltump3/*potcontal k +v1jtmp7.dov/syltump3/*potcontal k virij=vv1jtmp7.gov/syltmp3/*potcontal k +v1jtmp*log(vijtmp3)*potcontal k +v1jtmp*log(vijtmp3)*potcontal k +v1jtmp*log(vijtmp3)</pre>	<pre>* +4.00*cutati processed ** +4.00*cutal*c_r4mrij/</pre>	<pre>&</pre>	!! Al-O interaction case(9)	virj=cho*chal*tp*exp(mbeta*rijsq)*potcontew*invrij vij=virij if(rij < ry) then vifem=chal*cho*invrij	<pre>r4mrij=r4-rij r4mrij=r4-rij c4mrij=constg_alc*r4mrij c_r4mrij=constg_alc*r4mrij/r4mrijsqp1 vijtwp3-1.00+c_r4mrij*r4mrij/r4mrijsqp1 vij=vij+vijtmp*log(vijtmp3)*potcontalo</pre>
! Si-O interaction	case(4)	vij=chsi*cho*tp*exp(mbeta*rijsq)*potcontew*invrij	viij-vij !! Na-Na interaction case(5)	<pre>virij=chna*chna*tp*exp(mbeta*rijsq)*potcontew*invrij vij=virij < r2) tm if(rij < r2) then vij=rz=cina*chna*invrij r2mrij=r2-rij c_r2mrij=constep_na*r2mrij vijemp=c_r2mrij+r2mrij+1.d0 logargpl=log(vijtmp2)+1.d0</pre>	v1]=v1J-v1Jtump+v1Jtump=v1gargp1*logargp1 virij=virij-vijtump+vijtump+vijtumptlogargp1*logargp1 & vijtum2 & vijtum2	<pre>!! Na-Al interaction</pre>	virij=chna*chal*tp*exp(mbeta*rijsg)*potcontew*invrij vij=virij	<pre>vijtmp=chna*chal*invrij r2mrij=r2-rij r4mrij=r2+rij c_r2mrij=constg_na*r2mrij c_r4mrij=constg_na*r4mrij r4mrij=constg_na*r4mrij</pre>	<pre>vijums=canu_j;ranu_i;ranu_i;ranu vijums=cranu_j;ranu;i;ranu logarcgpi=log(vijtmp2);1.d0 logarcgpi=log(vijtmp3);1.d0</pre>	<pre>it (ri) < r4) then</pre>	& +2.4Juba*chal*logargpl*c_r4mrij/ & vijtup3 else vijtup3	<pre>vijvvijtum*log(vijtup2) virjjvrijtup*log(vijtup2) & endif elaif</pre>	<pre>if (rij < r4) then vij=vij+vijtup10g(vijtup3) virj=virj+vijtup*log(vijtup3) virij=virij+vijtup*clg(vijtup3) & endif endif</pre>

! sum over all vectors do i=1, nlocal fact=2.d0 vcoulk=0.d0 enddo enddo else enddo enddo сð ъ сð 3 2 -- -virij=virij +vijtmp*log(vijtmp3)*potcontalo +vijtmp*lochal*cho*potcontalo*c_r4mrij/ (r4mrijsgp1*(c_r4mrij*r4mrijsgp1)) -chal*cho*log(vijtmp3)*dpotcontalo*potcontalo integer i, j, pindex, kcount, kmax, ksqmax, kx, ky, kz real chsi, cho, chna, chal, vcoulk, pi, twopi, twopidlbox, fact !Al vij=cho*cho*tp*exp(mbeta*rijsq)*potcontew*invrij intecest partdin.nchpart.partdimloc.nchpartloc integer mark/max.para parameter(partdim-4234.nchpart=partdim/3) parameter(partdim-62-132.nchpartloc=partdimloc/3) parameter(maxte,554.kmax.para=6) integer kx_field(maxk),ky_field(maxk),kz_field(maxk) real posloc(partdinloc).of(nchpartloc),kvec(maxk) complex eikx(1:nchpartloc,0;Hmax_para) complex eikx(1:nchpartloc,0;Hmax_para) complex eikx(1:nchpartloc,-kmax_para;Hmax_para) complex eikx(1:nchpartloc,-kmax_para;Hmax_para) complex eikx(1:nchpartloc).sum(maxk),sum_all(maxk) ! K-Space part of potential energy by ewald method ! see Allen & T.: but * no self term here (only at beginning) ! in: ch,pos,kvec out: vcoulk common/rsum3/pi,twopi,twopidlbox common/rsum4/rx_field,hy_field,kz_field common/varmpil/myid,ierr,numprocs,master common/varmpi2/nlocal.nstart,nend common/charge/chsi,cho,chna,chal,ch !Al common/ksum1/kmax,ksgmax subroutine kwald(posloc,vcoulk,kvec) integer myid, ierr, numprocs, master integer nlocal, nstart, nend end select ! varsel vr=vr+vij virmod=virmod+virij virij=vij enddo ! neighno enddo ! i implicit none include 'mpif.h' case(10) endif 1 0-0 interaction endif return end ຮະຮະຮະຮ

enddo return end	<pre>! K-Space part of the coulombic force by ewald method ! in : ch.pos,kvec out: ckf</pre>	<pre>subroutine fkwald(posloc,kvec,ckf) implicit none include "mpif.h" integer partdim.nchpart.partdimloc.nchpartloc parameter(partdim.nchpart.partdiml3) parameter(partdimloc=132.nchpart=partdiml3) parameter(partdimloc=132.nchpartloc=partdimloc/3) parameter(maxk=34.kmax.paras=6) integer kx_field(maxk).ky_field(maxk).kz_field(maxk) real posloc(partdimloc).ckf(partdimloc) real intchpartloc).kwe(maxk) complex eikx(1:nchpartloc).fmmx.para complex eikx(1:nchpartloc).fmmx.para complex eikx(1:nchpartloc).fmmx.para complex eikx(1:nchpartloc).fmmx.para complex eikx(1:nchpartloc).fmmx.para</pre>	integer i,j,pindex integer kmax,ksqmax,kv,ky,kz,totk,kcount real chsi,cho,chna,chal,tfi,kxd,kyd,kzd,kveck,factor real pi,twopi,twopidlbox complex tsum2,twp,eikri,tforce	integer myid, ierr, numprocs, master integer nlocal, nstart, nend	<pre>common/rsum3/pi,twopi,twopidlbox common/rsum1/kmax,ksqmax common/ksum1/kmax,ksqmax common/ksum4/kx_field,ky_field,kz_field common/varmpi1/myid,ierr,numprocs,master common/varmpi2/nlocal,nstart,nend</pre>	! construct exp(ikr) for all ions and k-vectors ! calculate kx, ky, kz = 0 , -1 and 1 explicitly	<pre>do i=1,nlocal eikx(i,0)=(1.d0,0.d0) eikx(i,0)=(1.d0,0.d0) eikx(i,0)=(1.d0,0.d0) eikx(i,1)=cuplx(cos(twopidlbox*posloc(3*i-2)), eiky(i,1)=cuplx(cos(twopidlbox*posloc(3*i-1))) eiky(i,1)=cuplx(cos(twopidlbox*posloc(3*i-1))) & eikx(i,1)=cuplx(cos(twopidlbox*posloc(3*i))) eiky(i,1)=cuplx(cos(twopidlbox*posloc(3*i))) eiky(i,1)=conjg(eiky(i,1)) eiky(i,-1)=conjg(eikx(i,1)) enddo</pre>
------------------------	--	--	--	--	--	--	--

tforce=factor*tveck*tsum_all(kcount) distributions ifirstenorg(sikr(:,kr)*elky(i,hy)*elkz(i,kz)) tfirstenorg(sikr(:,sr)=beck(i,sr)=beck(i,sr)) tfirstenorg(sikr(:,sr)=beck(i,sr)=beck(
cc cc Program to compute a histogram depending on the radius: here SiNa cc Note: therefore gr no longer means the paircorrelation function cc integer4 inpart.hpart.npart.npfiles integer4 napart.hpart.npart.npfiles integer4 napart.hpart.npart.npfiles integer4 napart.hpart.npr.hmillen integer4 pr_aalchidim,gr_ablchidim,gr_bblchidim) integer4 gr_aa_m(bidim),gr_ablchidim,gr_bblchidim) real*8 gr_aa_m(bidim),gr_ab_m(bindim),gr_bblchidim) real*8 gr_aa_m(bindim),gr_ab_m(bindim), real*8 trime.nrofiles.invrnofiles real*8 cutself.radius.delta real*8 cutself.radius.delta real*8 four_pi_d, 3,density.volelem real*8 four_pi_d, 3,density.volelem write(6,fmt='(''name of the file with the parameters? '',\$)') integer*4 partdim,partdim2,bindim,dim
parameter (partdime9016,partdim2=004,bindim=400,dim=10)
real*8 post(partdim),posy(partdim),posz(partdim)
integer*4 N(partdim,dim) character*132 filein0, filein1, filein, fileout compute some constants and set some parameters open(071,file=fileout,status='new')
filein_len=strlen((filein1)
write(071,*) napart,' napart'
write(071,*) hbart,' nbpart'
write(071,*) lbox_x', lbox_x'
write(071,*) lbox_z,' lbox_z'
write(071,*) lbox_z', lbox_z'
write(071,*) lbox_z', lbox_z'
write(071,*) lbox_z' read(5,fmt='(a)') filein0 open(06),file=filein0,status='old') read(061,*) mapart read(061,*) nopart read(061,*) nopart read(061,*) nopart : napart, nbpart, npart common/param5/cutself, nbin1, nbin2 read(061,fmt='(a)') filein
read(061,fmt='(a)') fileout
$$\label{eq:linear_local_relation} \begin{split} & lboxd2_x=lbox_x/2 \, . \\ & lboxd2_y=lbox_y/2 \, . \\ & lboxd2_z=lbox_z/2 \, . \\ & npart=napart+nbpart \end{split}$$
read(061,*) lbox_Y
read(061,*) lbox_z implicit none close(061) 80 80 υυυ -- ---- -- -- -- -- -- --

nbin1=200 ! number of bins for short distances nbin2=200 ! the same for long distances (nbin1+nbin2<=bindim!) outself=2.5d0 ! distance where the bins are small nofiles=0 posx(i)_mod(posx(i),lbox_x) if(posx(i).10.) posx(i)=posx(i)+lbox_x posy(i)=mod(posy(i),lbox_y) if(posy(i).14.0.) posy(i)=posy(i)+lbox_y post(i)=mod(posz(i).lbox_z) if(posz(i).14.0.) posz(i)=posz(i)+lbox_z enddo call read_data(filein1,posx,posy,posz,N) else
delta=(lboxd2_x-cutself)/nbin2
radius=cutself+(i-nbin1-0.5)*delta open(063,file=filein,status='old')
10 read(063,fmt='(a)',end=9993) filein1
print*,filein1
nofiles=nofiles+1
print*,nofiles gr_aa_m(i)=gr_aa_m(i)+gr_aa(i) gr_ab_m(i)=gr_ab_m(i)+gr_ab(i) gr_bb_m(i)=gr_bb_m(i)+gr_bb(i) volelem=((radius+delta/2.)**3 four_pi_d_3=4.*2.*asin(1.)/3. rnofiles=nofiles invrnofiles=1/rnofiles do i=1.nbin1+nbin2
if(i.le.nbin1) then
 delta=cutself/nbin1
 radius=(i-1+0.5)*delta call gr(posx,posy,posz,N, & gr_aa,gr_ab,gr_bb) do i=1,nbin1+nbin2
gr_aa_m(i)=0.0d0
gr_ab_m(i)=0.0d0
gr_bb_m(i)=0.0d0 do i=1, nbin1+nbin2 c write the results c do i=1,npart 9993 close(063) goto 10 endif enddo enddo

cc cc cc this subroutine adds the number 'number' to the string 'string' cc to cc cc this subroutine computes the pair correlation function $\mathbf{g}(\mathbf{r})$ cc tor the different correlations cc for the different correlations implicit none integer*4 partdim,bindim,partdim2,dim parameter (partdim=8016,partdim2=2004,bindim=400,dim=10) do i=1,napart
 read(064,*) duml, N(i,1), (N(i,j),j=2,N(i,1)+1)
 do j=2,N(i,1)
 read(064,*) N(i,j) nodig=int(log10(1.0*snum+0.1))+1
do i=nodig,1,-1(1)
num=snum(10*(*(-1))
string(strlen+1:strlen+1)=char(48+num)
string=snum=num*10**(i-1)
enddo
enddo print*,'ok'
open(064,file='NumKettel/'//'n'//filein2,
status='old',form='formatted') implicit none integer*4 i,strlen,number,nodig,num,snum character*(*) string subroutine addnumtostring(string,number) snum=number
do i=len(string),1,-1
if(string(i:i).ne.' ') goto 10 subroutine gr(posx,posy,posz,N, & gr_aa,gr_ab,gr_bb) enddo print*,'ok2' close(064) close(062) 10 strlen=i return end return end enddo enddo لات

implicit none integer*4 partdim.partdim2.dim parameter (partdim=8016,partdim2=2004,dim=10) parameter (partdim.posy(partdim),posz(partdim) integer*4 N(partdim2.dim) integer*4 N(partdim2.dim) integer*4 intdim.strlen.strleng reel*8 realdum.x.y.z real*8 lbox.z.,box.z/lbox.z real*8 lbox.z.,box.d2.z real*8 lbox.z.;box.d2.z real*8 lbox.z.;box.d2.z real*8 lbox.z.;box.d2.z real*8 lbox.z.;box.d2.z real*8 lbox.z.;box.d2.z write(071,fmt='(7g15.7)') radius, gr_aa_m(i) ffacaa*invrnofiles, gr_ab_m(i)*facab*invrnofiles gr_bb_m(i)*facab*invrnofiles gr_ab_m(i)*facab*invrnofiles gr_ab_m(i)*facab*invrnofiles -(radius-delta/2.)**3)*four_pi_d_3 facaa=2./napart/inapart-1/volelem* lbox_x*lbox_y*lbox_s facab=1./napart/nbpart/volelem* facbb=2./nbpart/(nbpart-1/volelem* facbb=2./nbpart/(nbpart-1/volelem* subroutine read_data(filein1,posx,posy,posz,N) cc this subroutine reads the data from the files cc common/paraml/lbox_x,lbox_y,lbox_z, lboxd2_x,lboxd2_y,lboxd2_z, napart,nbpart,npart,npart do i=1,npart
 read(062,*) posx(i),posy(i),posz(i) lbox_x*lbox_y*lbox_z c c now we read the data c do i=1,napart
 do j=1,dim
 N(i,j)=0
 enddo filein2=filein1 close(071) enddo enddo end لان لا κυ ය ය сð ړې لان ß сð -- -- -- -- ---- -- -----

ß

ຮ່ຮ

_.

υυ

υ

endif

endif

endif else

```
norme1_060/count
gr_ab(i)=i1_1,nhin1+nhin2
gr_ab(i)=val(i)*norm
enddo
c now the bb correlation
c now the bb correlation
d = i=napart+1,npart
d = i=napa
```

SiNaKette4.f90 **B.**3

program SiNachain

implicit none

integer(kind=4):: napart,nbpart,ncpart,npart
integer(kind=4):: lileno,i,'),partdim, dim, num
parameter(napart=2004,nbpart=15,ncpart=4676)
parameter(npart=napart+nbpart+1cpart)
parameter(partdim=3*npart, dim=10)
integer time

! set some constants

fileno=0

open(060,file='input_Kette',status='old')
read(060,*) lbox
read(060,fmt='(a)') filein
tread(060,fmt='(a)') fileout
close(060)

lboxd2=lbox/2.d0

open(061,file=filein,status='old') do

read(061,fmt='(a)',end=800) filein1
fileno=fileno+1

do i=1,npart
 N(i)=0
enddo

do i=1,napart
 do j=1,dim
 N1(i,j)=0
 enddo enddo

if (dist .le. coac) then if (dist .gt. coac-delta) .and. (dist .lt. coac+delta)) then countneigh=countneigh+1 nearneigh(i,countneigh+1) = j endif open(062,file='cf100p_cl/'//filein1,status='old',form='formatted')
read(062,*) time First calculate list of nearest neighbours else if(dx .lt. -lboxd2) then dx=dx+lbox if (dz .1t. -1boxd2) then dz=dz+1box endif if(dy .lt. -lboxd2) then dist=sqrt(dx**2+dy**2+dz**2) do i=1,napart countraigh=0 countraigh=0 do j=napart+npart+1,npart di=z(i)-y(j) dr=z(i)-z(j) dr=z(i)-z(j) if(dx .gt. lboxd2) then
 dx=dx-lbox ! search for Si neighbours of O ! search for O neighbours of Si nearneigh(i,1) = countneigh do i=1,npart
 read(062,*) x(i),y(i),z(i) dy=dy+lbox endif endif endif endif endif else else close(062) enddo enddo enddo

do i=1+napart+nbpart,npart

if(dist .le. cobc) then if ((dist .gt. cobc-deltad2)) .and. (dist .lt. cobc+deltad2)) then countreligh=countreligh+1 nearneigh2(i,countreligh+1) = j endif if(dx .gt. lboxd2) then dx=dx-lbox else if(dx .lt. -lboxd2) then dx=dx+lbox endif endif if(dy .1t. -lboxd2) then dy=dy+lbox endif endif if(dz .gt. lboxd2) then dz=dz-lbox else if(dz .lt. -lboxd2) then dz=dz+lbox endif endif if(dz .lt. -lboxd2) then dz=dz+lbox dist=sqrt(dx**2+dy**2+dz**2) $dist=sqrt(dx^{**}2+dy^{**}2+dz^{**}2)$ do i=1+napart+nbpart.npart countneigh=0 do j=napart+1.npart+nbpart dc=r(i)-r(j) dr=r(i)-r(j) dr=r(i)-z(j) if(dz.gt.lboxd2) then dz=dz-lbox else ! search for Na neighbours of O nearneigh2(i,1) = countneigh
enddo dz~ endif endif endif enddo if(dist .le. coac) then if (dist .gt. coac-delta) .and. (dist .lt. coac+delta)) then countneigh=countneigh+1 nearneigh(i,countneigh+1) = j endif else if(dx .1t. -lboxd2) then dx=dx+lbox else if (dx .lt. -lboxd2) then if (dx .lt. elboxd2) then dx=dx+lbox endif endif if(dz .lt. -lboxd2) then dz=dz+lbox dist=sqrt($dx^{**}2+dy^{**}2+dz^{**}2$) if(dz .gt. lboxd2) then
 dz=dz-lbox if(dy .gt. lboxd2) then dy=dy-lbox else if(dx .gt. lboxd2) then
 dx=dx-lbox do i=napart+1,napart+nbpart countrois10=0 do j=napart+nbpart+1,npart d=rst(i)-x(j) d=r(i)-y(j) d=r(i)-r(j) if(dx .gt. lboxd2) then dx=dx-lbox ! search for 0 neighbours of Na nearneigh(i,1) = countneigh
enddo countneigh=0
do j=1.napart
dx=x(i)-x(j)
dy=y(i)-y(j)
dz=z(i)-z(j) dz⊾ endif endif endif endif else enddo

i deallocate(N1) 300 enddo ioln	200 enddo !sin	100 enddo !o0n	enddo !s0	: close(071)	Now search for Si-O-Na-O-Na chains		<pre>copen(0/2,111e= Numkette2/ // H //111eH11, Status= HeW ,Lorm= Lormatted / do s0=1,napart do o0n=1,nearneigh(s0,1) on=naarneigh(s0,1)</pre>	<pre>if(nearneigh(00,1).eq.1) then endif do na0n=1.nearneidh2(o0.1)</pre>	ad mouth internet gh2 (o0, 1+na0n) naO=nearneigh2 (o0, 1+na0n)	<pre>do oln=1,nearneigh2(na0,1)</pre>	endır allocate(N2(napart,1:nearneigh2(o1,1)+1)) NY/coll-nearneichy/coll-1)	do naln=1, nearneigh2(o1,1) nal=nearneigh2(o1,1,naln)	<pre>if (N1(s0,1).ne.0) then do i=1,N1(s0,1) if (nal.ne.N1(s0,i+1)) then num=N1(s0,1)+1 N1(s0,num+1)=nal endif endif endif num=N1(s0,1)+1 N1(s0,1)+1 N1(s0,2)=nal endif N1(s0,1)=num num num</pre>	<pre>N2(s0,naln+1)=nal N(s0)=N(s0)+1 N(nal)=N(s0)+1 enddo inal)=N(nal)+1 enddo inal) do naln=1,nearneigh2(o1,1) write(072,fmt='(lx,I5)') N2(s0,naln+1) enddo deallocate(N2)</pre>
nearneigh2(i,countneigh+1) = j endif	enddo nearneigh2(i,1) = countneigh	enddo		Now search for Si-O-Si-O-Na chains	<pre>i open(071,file='NumKette1/'//n'//filein1,status='new',form='formatted')</pre>	do s0=1,napart	<pre>do o0n=1,nearneigh(s0,1)</pre>	<pre>do sln=1,nearneigh(00,1) sl=nearneigh(00,1+sin) if(al.eq.s0) then actr 200</pre>	endif	<pre>do oln=1,nearneigh(s1,1) ol=nearneigh(s1,1+oln) if(ol.eq.o0) then goto 300 endif</pre>	allocate(N1(napart,1:nearneigh2(o1,1)+1)) N1(s0,1)=nearneigh2(o1,1)	<pre>do naln=1,nearneigh2(o1,1) nal=nearneigh2(o1,1+naln)</pre>	<pre>if (N1(s0,1).ne.0) then do i=1,N1(s0,1) if (nal.ne.1) N1(s0,i+1)) then numeN(s0,1)+1 N1(s0,num+1)=nal endif endif endif num=N1(s0,1)+1 N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal N1(s0,2)=nal</pre>	<pre>N1(s0.naln+1)=na1 N1(s0)=N1(s0)+1 N1(na1)=N1(na1)+1 enddo !naln do naln=1,nearneigh2(o1,1) write(071,*)N1(s0,1),(N1(s0,naln+1),naln=1,nearneigh2(o1,1)) enddo</pre>

		-		new', form='formatted')	(([';		'new',form='formatted')						
enddo !oln enddo !naOn) enddo !oOn enddo !sO	close(072) !	! now write the results	open(071,file='NumKettel/'//'n'//fileinl,status=')	<pre>do i=1,napart do j=1,N1(i,1) write(071,*) i, N1(i,1), (N1(i,j+1),j=1,N1(enddo enddo</pre>	close(071)	open(072,file='NumKette2/'//'n'//filein1,status=	<pre>do i=1,mpart do j=1,N2(i,1) write(072,fmt='(lx,I5)') N2(i,1),N2(i,j+1) enddo enddo</pre>	close(072)	1 do) close(061)	l program SiNachain		
500	400									end 800	end		

Abbildungsverzeichnis

1	Schematische Darstellung der Volumenänderung einer Flüssigkeit mit sinkender Temperatur	2
2	Zusammensetzung technischer Gläser.	3
3	Zweidimensionale Darstellung von kristalliner und glasartiger Struktur von reinem SiO_2 .	4
4	Illustration von Strukturmodellen zum Einfluss von Na_2O auf das Si- likatnetzwerk.	5
5	Phasendiagramme der Systeme $\rm Na_2O{-}SiO_2$ und $\rm Al_2O_3{-}SiO_2$	7
1.1	Illustration periodischer Randbedingungen	14
1.2	Gegenüberstellung der Potenziale nach Kramer <i>et al.</i> [33] und der in dieser Arbeit verwendeten Potenziale für die Si–Si–, Si–O–, und O–O–Wechselwirkungen	18
1.3	Zeitlicher Verlauf der Energie für das System $(Al_2O_3)(2 \cdot SiO_2)$ bei 2200 K und verschiedenen Schrittweiten δt .	26
1.4	Gegenüberstellung der Potenziale nach Kramer et al. [33] und der in dieser Arbeit verwendeten Potenziale für die Na-Si-, Na-Na-, und Na-O-Wechselwirkungen	28
1.5	Gegenüberstellung der Potenziale nach Kramer <i>et al.</i> [33] und der in dieser Arbeit verwendeten Potenziale für die Al–Si–, Al–Al–, und Al– O–Wechselwirkungen	29
1.6	Beschleunigungsfaktor ("Speed Up") um den ein Simulationslauf fe- ster Schrittzahl schneller ist, wenn <i>n</i> statt einem Prozessor verwendet werden.	33

2.1	Ausschnitt der Simulationsbox von Natriumpentasilikat, $Na_2Si_5O_{11}$, bei der Temperatur 2700 K	36
2.2	Simulation des Systems NS5: Verlauf von totaler und potentieller Ener- gie pro Teilchen sowie des Drucks als Funktion der inversen Temperatur.	38
2.3	Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von NS5 für die Si–Si, Si–O und O–O–Korrelationen.	41
2.4	Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von NS5 für die Na–Na, Na–O und Si–Na–Korrelationen	42
2.5	Partielle Paarkorrelationsfunktionen für die Systeme NSx, $x = 2, 3, 5$, und SiO ₂ bei den Temperaturen $T = 2750$ K bzw. $T = 2700$ K (NS5). Si–Si, Si–O und O–O–Korrelationen.	44
2.6	Partielle Paarkorrelationsfunktionen für die Systeme NSx, $x = 2, 3, 5$, und SiO ₂ bei den Temperaturen $T = 2750$ K bzw. $T = 2700$ K (NS5). Na–Na, Na–O und Si–Na–Korrelationen.	45
2.7	Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten für die Systeme SiO ₂ und NS5: P_{Si-O} , P_{O-Si} , P_{O-O} und P_{Si-Si} .	47
2.8	Temperaturabhängigkeit der Koordinationszahlwahrscheinlichkeiten des Systems NS5: $P_{\text{Na-Na}}$, $P_{\text{Na-Si}}$, $P_{\text{Na-O}}$ $P_{\text{O-Na}}$ und $P_{\text{Si-Na}}$.	49
2.9	Temperaturabhängigkeit der partiellen statischen Strukturfaktoren von NS5: Gegenüberstellung der Si–Si–, Si–O–, O–O–, Na–Na– –, Na–O– und Si–Na–Korrelationen.	51
2.10	Partielle statische Strukturfaktoren für die Systeme NSx, $x = 2, 3, 5$, und SiO ₂ bei der Temperatur $T = 3000$ K: Si–Si–, Si–O– und O–O– Korrelationen.	53
2.11	Partielle statische Strukturfaktoren für die Systeme NSx , $x = 2, 3, 5$, und SiO_2 bei der Temperatur $T = 3000$ K: Si-Na-, Na-Na- und Na- O-Korrelationen.	54
2.12	Definition der Ringlänge n	56
2.13	Verteilung der Ringlängen $P(n)$ für die Systeme NSx, x = 2, 3, 5, und SiO ₂ bei der Temperatur $T = 3000$ K	57
2.14	Phasendiagramm von SiO_2	58
2.15	Verteilung der Ringlängen $P(n)$ für die Systeme NSx, x = 2, 3, 5, und SiO ₂ bei den Temperaturen $T = 2750$ K und $T = 4000$ K	59

2.16	Verteilung der Ringlängen $P(n)$ für die Systeme NSx, und SiO ₂ bei den Silizium–Diffusionskonstanten $D_{Si} = 1.3 \cdot 10^{-5} \text{ cm}^2/\text{s}$ bzw. $6.1 \cdot 10^{-8} \text{ cm}^2/\text{s}$.	60
2.17	Mittlere Verschiebungsquadrate von Natriumpentasilikat, NS5, bei den Temperaturen $T=2700$ K, $T=3000$ K , $T=3400$ K und $T=4000$ K.	63
2.18	Gegenüberstellung der mittleren Verschiebungsquadrate der Systeme NSx, $x = 2, 3, 5$, und SiO ₂ bei der Temperatur $T = 2750$ K bzw. $T = 2700$ K (NS5)	64
2.19	Arrheniusplot der Diffusionskonstanten von Silizium, Sauerstoff und Natrium: Vergleich der Systeme NSx, $x = 2, 3, 5$, und SiO ₂ .	66
2.20	Gegenüberstellung der partiellen Paarkorrelationsfunktion $g_{SiSi}(r)$ für die Systeme NSx, x = 2, 3, 5, und SiO ₂ bei 100 K bzw. 300 K	68
2.21	Partielle Paarkorrelationsfunktion $g_{SiNa}(r)$ von Natriumtrisilikat NS3 bei 100 K bzw. 2100 K. Ausschnitt einer NS3–Konfiguration bei 100 K.	69
2.22	Verteilung der relativen Häufigkeiten der Atomabstände von (Si,Na)– Paaren, die über Bindungssequenzen Si–O–Si–O–Na cd MDbzw. Si– O–Na–O–Na korreliert sind.	71
2.23	Verteilung der Koordinationszahlen $P(z)$ für die O-Si- bzw. O-O- Koordination bei 100 K bzw. 300 K.	72
2.24	Verteilung der Koordinationszahlen $P(z)$ für die Na–O– bzw. Si–Na– Koordination bei 100 K.	74
2.25	Zustandsdichte $g(\nu)$ für die Systeme NSx, x = 2, 3, 5, bei 100 K im Vergleich zur Zustandsdichte von SiO ₂ bei 300 K	78
2.26	Gegenüberstellung der Atomart-spezifischen Anteile an den Zustands- dichten $g(\nu)$ für die Systeme SiO ₂ (300 K) und Natriumdisilikat NS2 (100 K)	80
2.27	Gegenüberstellung der partiellen Silizium– und Sauerstoff–Zustands- dichten von SiO_2 und $NS2$ bei 100 K bzw. 300 K	81
2.28	Gegenüberstellung der partiellen Koordinationszustandsdichten für SiO ₂ (100 K) und NS2 (300 K).	83
2.29	Vergleich der partiellen Koordinationszustandsdichten "Si–4" und "O– 2" für die Systeme SiO ₂ und NS2 bei 300 K bzw. 100 K	84
2.30	Addierte "Si–4"– und "O–2"–Anteile der Systeme NSx, $x = 2, 3, 5$, (100 K) im Vergleich zur Zustandsdichte von SiO ₂ (300 K)	85

2.31	Vergleich der aus der Simulation bestimmten Zustandsdichten $g(\nu)$ mit Neutronenstreudaten von A. Meyer.	86
2.32	$g(\nu)/\nu^2$ für die Systeme NS2 und NS3 bei 100 K sowie für SiO ₂ bei 300 K	87
2.33	Spezifischen Wärmen für die Systeme SiO_2 , $NS3$ und $NS2$	88
3.1	Elektronenmikroskopaufnahme einer abgeschreckten Al_2O_3 -Si O_2 -Schn ze (15 Mol% Al_2O_3 - 85 Mol% Si O_2) (nach MacDowell und Beall, 1969.)	nel- 90
3.2	Simulationsbox von Aluminiumdisilikat, $(Al_2O_3)(2 \cdot SiO_2)$, bei der Temperatur 3250 K	91
3.3	Simulation des Systems AS2: Verlauf von totaler und potentieller Ener- gie pro Teilchen sowie des Drucks als Funktion der inversen Temperatur	. 95
3.4	Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von AS2 für die Si–Si–, Si–O– und O–O–Korrelationen	97
3.5	Temperaturabhängigkeit der partiellen Paarkorrelationsfunktionen von AS2 für die Al–Al–, Al–O– und Si–Al–Korrelationen.	98
3.6	Vergleich der partiellen Paarkorrelationsfunktionen von $AS2$ und SiO_2 : Si-Si-, Si-O- und O-O-Korrelationen bei 6100 K und 3250 K	100
3.7	Verteilungen der Koordinationszahlen $P(z)$ für die Si–O– bzw. Al– O–Korrelation bei diversen Temperaturen. Vergleich mit den Si–O– Verteilungen von SiO ₂ .	103
3.8	Vergleich der Al–O–Koordinationszahlverteilung von AS2 mit den MD– Simulationsergebnissen von Poe <i>et al.</i> sowie der Si–O–Koordinations- zahlverteilung von SiO ₂ (Horbach <i>et al.</i>) und der Al–O–Koordinations- zahlverteilung von Al ₂ O ₃ (Gutiérrez <i>et al.</i>).	105
3.9	Verteilungen der Koordinationszahlen $P(z)$ für die O–(Si, Al)–, O– Si– und O–Al–Korrelation bei diversen Temperaturen. Vergleich mit den O–Si–Verteilungen von SiO ₂ .	106
3.10	Zweidimensionales Strukturmodell, das die möglichen Auswirkungen von Aluminium auf das Si–O–Netzwerk von reinem Silikatglas ver- deutlicht (aus MacDowell und Beall, 1969.)	107
3.11	Verteilungen der Koordinationszahlen $P(z)$ für die O–O–Korrelation bei verschiedenen Temperaturen. Vergleich mit den O–O–Verteilun- gen von SiO ₂ und Al ₂ O ₃ nach (Gutiérrez <i>et al.</i>).	108

3.12	Verteilungen der Koordinationszahlen $P(z)$ nächster Silizium– und Aluminium–Nachbarn eines Silizium oder Aluminiumatoms bei ver- schiedenen Temperaturen. Vergleich mit den Si–Si–Verteilungen von SiO ₂ .	109
3.13	Temperaturabhängigkeit der Koordinationszahlverteilungen von AS2. Vergleich der $(Si, Al)-(Si, Al)$ -Koordinationen mit den Si-Si-Koordinationen von SiO ₂ . Si-O- und Al-O-Koordinationen von AS2 im Vergleich mit den Si-O-Ko-ordinationen von SiO ₂ .	111
3.14	Relativen Häufigkeiten, mit denen feste Ringlängen n in Ringen aus $-(Si, Al)-O-$, $-Al-O-$ oder $-Si-O-$ Elementen bei den Temperaturen 300 K, 2300 K und 4000 K im System AS2 vorkommen.	113
3.15	Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: Si–Si– und Si–O–Korrelationen.	115
3.16	Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: Al-Al- und Al-O-Korrelationen.	116
3.17	Partielle statische Strukturfaktoren von AS2, bei den Temperaturen 4700 K, 4000 K, 3250 K, 2750 K und 2300 K, sowie 300 K: Si-Al- und O-O-Korrelationen.	117
3.18	Simulationsbox von Aluminiumdisilikat, $(Al_2O_3)(2 \cdot SiO_2)$, bei der Temperatur 300 K.	119
3.19	Aus der Simulation errechneter totaler statischer "Neutronenstreu"– Strukturfaktor.	120
3.20	Aus der Simulation errechneter "reduzierter Röntgenstreu"–Struktur- faktor im Vergleich mit der experimentell bestimmten Größe	121
3.21	Temperaturabhängigkeit der inkohärenten intermediären Streufunktio- nen von AS2 bei $q = 1.7 \text{ Å}^{-1}$.	123
3.22	Inkohärente intermediäre Streufunktionen bei $q = 1.7$ Å ⁻¹ , aufgetra- gen über der skalierten Zeit t/τ_{α} für (a) Silizium, (b) Aluminium und (c) Sauerstoff.	124
3.23	Mittlere Verschiebungsquadrate von AS2 bei den Temperaturen 6100 K, 4000 K, 3250 K, 2750 K, 2480 K und 2300 K.	127
3.24	Arrheniusplot der Diffusionskonstanten von Silizium, Aluminium und Sauerstoff: Vergleich der Systeme $AS2$ und SiO_2	128

3.25 Gegenüberstellung der Zustandsdichten $g(\nu)$ für die Systeme SiO₂ und Aluminiumdisilikat AS2 bei 300 K. Mitaufgeführt sind die Atomartspezifischen Anteile an $g(\nu)$ (partielle Zustandsdichten $g_{\alpha}(\nu)$). 130

Tabellenverzeichnis

1.1	Parameter des Buckingham–Potenzials nach Kramer et al., 1991	17
1.2	Parameter für die Polynomdarstellung der Wechselwirkungspotenziale mit Sauerstoff bei kleinen Atomabständen.	29
1.3	Verwendete Simulationseinheiten.	31
2.1	Untersuchte Systeme und Temperaturen	37
2.2	Positionen des ersten Minimums der Paarkorrelationsfunktionen von NS5	46
2.3	Vorfaktoren $\pi_{\alpha\beta}$ und Aktivierungsenergien $E_{\alpha\beta}$ der Arrhenius–Fits der Temperaturabhängigkeit der angegebenen Koordinationszahlen	48
3.1	Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelations- funktionen $g_{\alpha\beta}(r)$ von AS2 bei 300 K	99
3.2	Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelations- funktionen $g_{\alpha\beta}(r)$ von Al ₂ O ₃ aus einer Simulation bei 700 K (Gu- tiérrez <i>et al.</i>) und diversen Experimenten (Oka <i>et al.</i> , El Mashri <i>et al.</i> , Lamparter <i>et al.</i>).	99
3.3	Positionen r_1 der ersten Peak–Maxima der partiellen Paarkorrelations- funktionen $g_{\alpha\beta}(r)$ von SiO ₂ aus der Simulation bei 300 K (Horbach <i>et al.</i>) und Röntgenstreumessungen (Mozzi <i>et al.</i>).	101
3.4	Positionen des ersten Minimums der Paarkorrelationsfunktionen von AS2	102

Literaturverzeichnis

- [1] S. R. Elliot, *Physics of Amorphous Materials*, Longman Group Limited, Essex, 1989.
- [2] R. Schilling, "Mode coupling approach to the glass transition," in *Disorder Effects on Relaxational Processes*, R. Richert and A. Blumen, eds., Springer, 1994.
- [3] C. A. Angell Science 193, p. 1121, 1976.
- [4] H. Vogel Physik. Z. 22, p. 645, 1921.
- [5] G. S. Fulcher J. Am. Ceram. Soc. 77, p. 3701, 1925.
- [6] W. Kauzmann Chem. Rev. 43, p. 219, 1948.
- [7] J. Hlaváč, *The Technology of Glass and Ceramics An Introduction*, no. 4 in Glass Science and Technology, Elsevier Scienctific Publishing Company, Amsterdam, 1983.
- [8] D. Turnbull and M. H. Cohen J. Chem. Phys. 29, p. 1049, 1958.
- [9] J. H. Gibbs and E. A. DiMarzio J. Chem. Phys. 28, p. 373, 1958.
- [10] U. Bengtzelius, W. Götze, and A. Sjölander J. Phys. C: Solid State Phys. 17, p. 5915, 1984.
- [11] E. Leutheusser Phys. Rev. A 29, p. 2765, 1984.
- [12] D. R. Askeland, *Materialwissenschaften*, Spektrum Lehrbuch, Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford, 1996.
- [13] B. E. Warren, "X-ray diffraction of vitreous silica," Z. Krist. 86, pp. 349–358, 1933.
- [14] W. H. Zachariasen, "The atomic arrangement in glasses," J. Am. Chem. Soc. 54, p. 3841, 1932.

- [15] W. H. Zachariasen Glastechn. Ber. 11, p. 120, 1933.
- [16] W. Vogel, Glass Chemistry, Springer Verlag, Berlin, Heidelberg, 2 ed., 1994.
- [17] H. Scholze, Glas, Springer Verlag, Berlin, Heidelberg, 2 ed., 1977.
- [18] G. E. Brown, F. Farges, and G. Calas, "X-ray scattering and X-ray spectroscopy studies of silicate melts," in *Structure, Dynamics and Properties of Silicate Melts*, J. F. Stebbins, P. F. McMillan, and D. B. Dingwell, eds., *Revies in Mineralogy* 32, pp. 317–410, Mineralogical Society of America, Washington, 1995.
- [19] G. N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, and S. J. Gurman, "Local structure of silicate glasses," *Nature* 293, pp. 611–616, 1981.
- [20] G. N. Greaves, "EXAFS and the structure of glass," J. Non-Crystal Solids 71, pp. 203–217, 1985.
- [21] P. H. Gaskell, "Models for the structure of amorphous solids.," *Glass Sci. Tech.* 5, pp. 175–278, 1991.
- [22] P. Jund, W. Kob, and R. Jullien, "Channel diffusion of sodium in a silicate glass," *Phys. Rev. B* 64, p. 134303, 2001.
- [23] J. Horbach, W. Kob, and K. Binder, "The dynamics of sodium in sodium disilicate: Channel relaxation and sodium diffusion," *Phys. Rev. Lett.* 88, p. 125502, 2002.
- [24] H. Rawson, *Properties and Applications of Glass*, no. 3 in Glass Science and Technology, Elsevier Scienctific Publishing Company, Amsterdam, 1980.
- [25] F. C. Kracek J. Phys. Chem. 34, p. 1588, 1930.
- [26] F. C. Kracek J. Am. Chem. Soc. 61, p. 2869, 1939.
- [27] J. F. MacDowell and G. H. Beall, "Immiscibility and crystallization in Al₂O₃-SiO₂ glasses," J. Am. Ceramic Soc. 52, pp. 17–25, 1969.
- [28] H. Morikawa, S.-I. Miwa, M. Miyake, F. Marumo, and T. Sata, "Structural analysis of SiO₂-Al₂O₃ glasses," J. Am. Ceramic Soc. 65(2), pp. 78–81, 1982.
- [29] E. D. Lacy, "Aluminium in glasses and in melts," *Phys. Chem. Glasses* 4(6), pp. 234–238, 1963.
- [30] J. Horbach, *Molekulardynamiksimulationen zum Glasübergang von Silikatschmelzen.* PhD thesis, Johannes Gutenberg–Universität, Mainz, 1998.
- [31] J. Horbach and W. Kob, "The structure and dynamics of sodium disilicate," *Phil. Mag. B* **79**, p. 1981, 1999.

- [32] J. Horbach, W. Kob, and K. Binder, "Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation," *Chem. Geol.* **174**, pp. 87–101, 2001.
- [33] G. J. Kramer, A. J. M. de Man, and R. A. van Santen J. Am. Chem. Soc. 113, p. 6435, 1991.
- [34] A. C. Wright, "Neutron and X-ray amorphography," in *Experimental Techniques in Glass Sciences*, C. Simmons, ed., pp. 205–314, Amer. Ceram. Soc., Westerville, OH., 1993.
- [35] A. C. Wright, A. G. Clare, B. Bachra, R. N. Sinclare, A. C. Hannon, and B.Vessal, "Neutron diffraction studies of silicate glasses," *Trans. Am. Crystallo-gr.* 27, pp. 239–254, 1991.
- [36] S. H. Risbud, R. J. Kirkpatrick, A. P. Taglialavore, and B. Montez, "Solid-state NMR evidence of 4-, 5-, and 6-fold aluminium sites in roller-quenched SiO₂-Al₂O₃ glasses," J. Am. Ceram. Soc. 70(1), pp. C-10-C-12, 1987.
- [37] R. K. Sato, P. F. McMillan, P. Dennison, and R. Dupree, "High–resolution ²⁷Al and ²⁹Si MAS NMR investigation of SiO₂–Al₂O₃ glasses," *J. Phys. Chem.* 95, pp. 4483–4489, 1991.
- [38] B. T. Poe, P. F. McMillan, B. Coté, D. Massiot, and J.-P. Coututes, "SiO₂-Al₂O₃ liquids: In-situ study by high-temperature ²⁷Al NMR spectroskopy and molecular dynamics simulation," J. Phys. Chem. 96, pp. 8220–8224, 1992.
- [39] R. H. Meinhold, R. C. T. Slade, and T. W. Dawies *Appl. Magn. Reson.* **4**, p. 141, 1993.
- [40] M. Schmücker and H. Schneider, "A new approach on the coordination of Al in non-crystalline gels and glasses of the system Al₂O₃-SiO₂," *Ber. Bunsenges. Phys. Chem.* **100**(9), pp. 1550–1553, 1996.
- [41] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen Phys. Rev. Lett. 64, p. 1955, 1990.
- [42] P. P. Ewald Annalen der Physik 64, p. 253, 1921.
- [43] J. Horbach, W. Kob, and K. Binder, "Specific heat of amorphous silica within the harmonic approximation," *J. Phys. Chem. B* **103**, pp. 4104–4108, 1999.
- [44] F. Müller-Plathe, "Molecular simulation a primer," To be published in: S. Wilson and G.H.F. Dierksen (Eds.), Problem Solving in Computational Molecular Science: Molecules in Different Environments, NATO ASI Series B Physics, Kluwer Academic Publishers, Dordrecht.

- [45] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
- [46] M. Tuckerman, B. J. Berne, and G. J. Martyna J. Chem. Phys. 97, p. 1990, 1992.
- [47] R. Car and M. Parrinello Phys. Rev. Lett. 55, p. 2471, 1985.
- [48] J. Horbach, W. Kob, K. Binder, and C. A. Angell, "Finite size effects in simulations of glass dynamics," *Phys. Rev. E* 54, pp. R5897–R5900, 1996.
- [49] J. Horbach and W. Kob, "Static and dynamic properties of a viscous silica melt," *Phys. Rev. B* 60, pp. 3169–3181, 1999.
- [50] J. Horbach and W. Kob, "Relaxation dynamics of a viscous silica melt: The intermediate scattering functions," *Phys. Rev. E* 64, p. 041503, 2001.
- [51] P. Jund and R. Jullien, "Computer investigation of the energy landscape of amorphous silica," *Phys. Rev. Lett.* 83, pp. 2210–2213, 1999.
- [52] P. Jund and R. Jullien, "Molecular-dynamics calculation of the thermal conductivity of vitreous silica," *Phys. Rev. B* 59, pp. 13707–13711, 1999.
- [53] P. Jund and R. Jullien, "Numerical study of the structural and thermal properties of vitreous silica," *Mol. Simulat.* **24**, pp. 25–49, 2000.
- [54] M. Rarivomanantsoa, P. Jund, and R. Jullien, "Classical molecular dynamics simulations of amorphous silica surfaces," J. Phys.-Conden. Mat. 13(31), pp. 6707–6718, 2001.
- [55] S. N. Taraskin and S. R. Elliott, "Nature of vibrational excitations in vitreous silica," *Phys. Rev. B* 56, pp. 8605–8622, 1997.
- [56] S. N. Taraskin and S. R. Elliott, "Anharmonicity and localization of atomic vibrations in vitreous silica," *Phys. Rev. B* 59, pp. 8572–8585, 1999.
- [57] S. N. Taraskin and S. R. Elliott, "Ioffe-regel crossover for plane-wave vibrational excitations in vitreous silica," *Phys. Rev. B* 61, pp. 12031–12037, 2000.
- [58] S. N. Taraskin and S. R. Elliott, "Propagation of plane-wave vibrational excitations in disordered systems," *Phys. Rev. B* 61, pp. 12017–12030, 2000.
- [59] K. Vollmayr, W. Kob, and K. Binder, "Cooling rate effects in amorphous silica: A computer simulation study," *Phys. Rev. B* 54, p. 15808, 1996.
- [60] K. Vollmayr, *Abkühlratenabhängigkeiten von strukturellen Gläsern: Eine Computersimulation*. PhD thesis, Johannes Gutenberg–Universität, Mainz, 1995.

- [61] M. Benoit, S. Ispas, P. Jund, and R. Jullien, "Model of silica glass from combined classical and ab initio molecular-dynamics simulations," *Eur. Phys. J. B* 13, pp. 631–636, 2000.
- [62] M. Benoit, S. Ispas, and M. E. Tuckerman, "Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO-Al₂O₃-SiO₂ and SiO₂," *Phys. Rev. B* 64, p. 224205, 2001.
- [63] S. Ispas, M. Benoit, and P. Jund, "Structural and electronic properties of the sodium tetrasilicate glass Na₂Si₄O₉ from classical and ab initio molecular dynamics simulations," *Phys. Rev. B* 64, p. 214206, 2001.
- [64] S. G. Brush, H. L. Sahlin, and E. Teller J. Chem. Phys. 45, p. 2102, 1966.
- [65] J. P. Hansen, I. R. McDonald, and P. Vieillefosse Phys. Rev. A 20, p. 2590, 1979.
- [66] D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, "Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r - 1 summation," J. Chem. Phys. 110, p. 8254, 1999.
- [67] P. Demontis, S. Spanu, and G. B. Suffritti, "Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminisilicates and water," *J. Chem. Phys.* **114**(18), p. 7980, 2001.
- [68] M. T. Dove, *Introduction to Lattice Dynamics*, Cambridge University Press, Cambridge, 1993.
- [69] M. Abramovitz and I. A. Stegun, *Handbook of Mathematical Functions*, Dover Publications, New York, 1972. S. 297–299.
- [70] J. Horbach, W. Kob, and K. Binder, "Molecular dynamics computer simulation of the dynamics of supercooled silica," *Phil. Mag. B* **77**, p. 297, 1998.
- [71] F. W. Küster and A. Thiel, *Rechentafeln für die chemische Analytik*, Walter de Gruyter, Berlin, 1985.
- [72] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message–Passing Interface, The MIT Press, Massachusetts Institute of Technology, Cambridge, Massachusetts, 4. ed. ed., 1997.
- [73] B. Vessal, A. Amini, D. Fincham, and C. R. A. Catlow *Philos. Mag. B* 60, p. 753, 1989.
- [74] J. Horbach, W. Kob, and K. Binder, "High frequency sound and the boson peak in amorphous silica," *Eur. Phys. J. B* **19**, pp. 531–543, 2001.

- [75] O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data, Part A: Silica Glass and Binary Silicate Glasses, Elsevier, Amsterdam, 1983.
- [76] A. Meyer, H. Schober, and D. B. Dingwell, "Structural changes and diffusive consequences in sodium disilicate melts," to be published.
- [77] J. Neuefeind, "On the partial structure factors of molten zinc chloride," *Phys. Chem. Phys.* **3**, pp. 3987–3993, 2001.
- [78] A. C. Wright and J. A. E. Desa Phys. Chem. Glasses 19, p. 140, 1978.
- [79] F. Galeener Phys. Rev. B 19, p. 4292, 1979.
- [80] F. Galeener Solid State Commu. 44, p. 1037, 1982.
- [81] F. Galeener and A. C. Wright Solid State Commu. 57, p. 677, 1986.
- [82] P. J. Heaney, "Structure and chemistry of the low-pressure silica polymorphs," in *Silica: Physical Behavior, Geochemistry and Materials Applications*, P. J. Heaney, C. T. Prewitt, and G. V. Gibbs, eds., *Reviews in Mineralogy* 29, pp. 1– 32, Mineralogical Society of America, Washington, D.C., 1994.
- [83] Klein and Hurlbut, *Manual of Mineralogy*, John Wiley & Sons, 1993.
- [84] W. Götze, "Liquids, freezing and the glass transition," Les Houches. Session LI, North–Holland, (Amsterdam), 1991.
- [85] W. Götze and L. Sjögren Rep. Prog. Phys. 55, p. 241, 1992.
- [86] W. Kob, M. Nauroth, and H. C. Andersen, "Dynamics of a supercooled Lennard-Jones system: Qualitative and quantitative tests of mode-coupling theory," *Prog. Theor. Phys. Supp.* 126, pp. 35–42, 1997.
- [87] J. Horbach, W. Kob, and K. Binder, "The dynamics of supercooled silica: Acoustic modes and boson peak," *J. Non–Crystal. Solids* **320**, pp. 235–237, 1998.
- [88] J. Horbach, W. Kob, and K. Binder, "The boson peak in amorphous silica: Results from molecular dynamics computer simulations," in *Proceedings of "Neutrons and Numerical Methods*", M. Johnson, ed., *AIP conference Proceedings* 479, p. 136, AIP, (Woodbury), 1999.
- [89] G. Brébec, R. Seguin, C. Sella, J. Bevenot, and J. C. Martin *Metallurgica* 28, p. 327, 1980.
- [90] J. C. Mikkelsen Appl. Phys. Lett. 45, p. 1187, 1984.

- [91] K.-U. Hess, D. B. Dingwell, and E. Rössler Chem. Geol. 128, p. 155, 1996.
- [92] E. Rössler, K.-U. Hess, and V. N. Novikov J. Non-Cryst. Solids 223, p. 207, 1998.
- [93] G. N. Greaves and K. L. Ngai, "Reconciling ionic-transport properties with atomic structure in oxide glasses," *Phys. Rev. B* 52, pp. 6358–6380, 1995.
- [94] G. E. Brown, F. Farges, and G. Calas, "X-ray scattering and X-ray spectroscopy studies of silicate melts," *Rev. Miner.* **32**, pp. 317–410, 1995.
- [95] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, Cambridge University Press, Cambridge, 1992.
- [96] R. G. D. Valle and E. Venuti Chem. Phys. 179, p. 411, 1994.
- [97] D. L. Price and J. M. Carpenter J. Non-Cryst. Solids 92, p. 153, 1987.
- [98] A. Pasquarello and R. Car Phys. Rev. Lett. 80, p. 5145, 1998.
- [99] Die Neutronenstreudaten zur Zustandsdichte wurden freundlicherweise von A. Meyer, Physikdepartment der TU München, zur Verfügung gestellt.
- [100] V. F. Sears, "Neutron news," J. Mater. Res. 3, pp. 29–37, 1992.
- [101] R. B. Sosman, *The Properties of Silica*, Chemical Catalog Company, New York, 1927.
- [102] R. C. Zeller and R. O. Pohl *Phys. Rev. B* 4, p. 2029, 1971.
- [103] P. Richet, Y. Bottinga, L. Denielou, J. P. Petitet, and C. Tegui Geochim. Cosmochim. Acta 46, p. 2639, 1982.
- [104] P. McMillan, B. Pirou, and A. Navrotsky *Geochem. Cosmochim. Acta* 46, pp. 2021–2037, 1982.
- [105] T. Takei, Y. Kameshima, A. Yasumori, and K. Okada, "Calculation of metastable immiscibility region in the Al₂O₃–SiO₂ system using molecular dynamics simulation," *J. Mater. Res.* 15, pp. 186–193, 2000.
- [106] P. McMillan and B. Pirou, "The structures and vibrational spectra of crystals and glasses in the silica–alumina system," J. of Non–Cryst. Solids 53, pp. 279–298, 1982.
- [107] M. Schmücker, K. J. D. MacKenzie, H. Schneider, and R. Meinhold, "NMR studies on rapidly solified SiO₂-Al₂O₃ and SiO₂-Al₂O₃-Na₂O-glasses," J. Non-Crys. Solids 217, pp. 99–105, 1997.

- [108] M. Schmücker, H. Schneider, K. J. D. MacKenzie, and M. Okuno, "Comperative ²⁷Al NMR and LAXS studies on rapidly quenched aluminosilicate glasses," *J. Eur. Ceramic Soc.* 19, pp. 99–103, 1999.
- [109] K. Vollmayr, W. Kob, and K. Binder Phys. Rev. B 54, p. 15808, 1996.
- [110] G. Gutiérrez and B. Johansson, "Molecular dynamic study of structural properties of amorphous Al₂O₃," *Phys. Rev. B* **65**, p. 104202, 2002.
- [111] Y. Oka, T. Takahashi, K. Okada, and S. Iwai J. Non-Cryst. Solids 30, p. 349, 1979.
- [112] S. M. El-Mashri, R. G. Jones, and A. J. Forty Philos. Mag. A 48, p. 665, 1983.
- [113] P. Lamparter and R. Kniep *Physica B* **234–236**, p. 405, 1997.
- [114] R. L. Mozzi and B. E. Warren J. Appl. Cryst. 2, p. 164, 1969.
- [115] J. A. Tossel and R. E. Cohen, "Calculation of the electric field gradients at 'tricluster'–like O atoms in the polymorhs of Al₂SiO₅ and aluminosilicate molecules: models for tricluster O atoms in glasses," J. Non–Cryst. Solids 286, pp. 187–199, 2001.
- [116] D. P. Landau and K. Binder, eds., *A Guide to Monte Carlo Simulations in Statistical Physics*, Cambridge University Press, Cambridge, 2000.
- [117] K. Binder and P. Fratzl, "Spinodal decomposition," in *Phase Transformations in Materials*, G. Kostorz, ed., pp. 409–480, Wiley-VCH, Berlin, 2001.
- [118] I. U. of Crystallography, ed., *International Tables for X-ray Crystallography*, vol. 4, ch. 2.2, pp. 71–99. Kynoch Press, 1974.
- [119] Wir haben zum Vergleich unsere Kurve mit einem Faktor Drei multipliziert, da in Ref. [28] offensichtlich der reduzierte Strukturfaktor $q(S_X(q) - 1)$ ebenfalls mit einem nicht näher erläuterten Wert malgenommen wurde. Berechnet man nämlich aus der experimentellen Kurve den Strukturfaktor $S_X(q)$, so ergeben sich negative Amplituden.
- [120] H. Knoth, *Molekulardynamiksimulationen zur Untersuchung des Mischalkali– Effekts in Silikatischen Gläsern.* PhD thesis, Johannes Gutenberg–Universität, Mainz, in preparation.