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Abstract

A complete understanding of the glass transition is still a challenging problem. Some researchers
attribute it to the (hypothetical) occurrence of a static phase transition, others emphasize the dy-
namical transition of mode coupling-theory from an ergodic to a non ergodic state. A class of
disordered spin models has been found which unifies both scenarios. One of these models is the
p-state infinite range Potts glass with p > 4, which exhibits in the thermodynamic limit both
a dynamical phase transition at a temperature TD, and a static one at T0 < TD. In this model
every spins interacts with all the others, irrespective of distance. Interactions are taken from a
Gaussian distribution. In order to understand better its behavior for finite number N of spins
and the approach to the thermodynamic limit, we have performed extensive Monte Carlo sim-
ulations of the p = 10 Potts glass up to N = 2560. The time-dependent spin-autocorrelation
function C(t) shows strong finite size effects and it does not show a plateau even for tempera-
tures around the dynamical critical temperature TD. We show that the N -and T−dependence of
the relaxation time for T ≥ TD can be understood by means of a dynamical finite size scaling
Ansatz. The behavior in the spin glass phase down to a temperature T = 0.7 (≈ 60% of the
transition temperature) is studied. Well equilibrated configurations are obtained with the parallel
tempering method, which is also useful for properly establishing static properties, such as the
order parameter distribution function P (q). Evidence is given for the compatibility with a one
step replica symmetry breaking scenario. The study of the cumulants of the order parameter does
not permit a reliable estimation of the static transition temperature. The autocorrelation function
at low T exhibits a two-step decay, and a scaling behavior typical of supercooled liquids, the
time-temperature superposition principle, is observed. In this region the dynamics is governed
by Arrhenius relaxations, with barriers growing like N 1/2. We analyzed the single spin dynamics
down to temperatures much lower than the dynamical transition temperature. We found strong
dynamical heterogeneities, which explain the non-exponential character of the spin autocorre-
lation function. The spins seem to relax according to dynamical clusters. The model in three
dimensions tends to acquire ferromagnetic order for equal concentration of ferro- and antifer-
romagnetic bonds. The ordering has different characteristics from the pure ferromagnet. The
spin glass susceptibility behaves like χSG ∝ 1/T in the region where a spin glass is predicted
to exist in mean-field. Also the analysis of the cumulants is consistent with the absence of spin
glass ordering at finite temperature. The dynamics shows multi-scale relaxations if a bimodal
distribution of bonds is used. We propose to understand it with a model based on the local spin
configuration. This is consistent with the absence of plateaus if Gaussian interactions are used.
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Chapter 1

Introduction

A complete understanding of the glass transition of a fluid and what structural features really dis-
tinguish the solid glass from the liquid from which it was formed, are still challenging problems.
If a liquid can be cooled below its melting temperature Tm without the occurrence of crystalliza-
tion, it becomes metastable with respect to the crystalline phase. A substance that remains liquid
below its melting temperature is called supercooled (a recent comprehensive review can be found
in (Debenedetti, 1996)). Good glass formers can be kept supercooled and their properties can
be studied over a large temperature range. Upon further cooling, in a rather narrow temperature
range, the viscosity η(T ) and other measures of the structural relaxation increase typically by
several orders of magnitude. The relaxation time then exceeds the timescale of the experiment.
The fluid falls out of (metastable) equilibrium and the structure gets arrested in an amorphous
solid state. This phenomenon goes under the name of glass transition (Jäckle, 1986). A glass
transition temperature Tg can be defined when the viscosity reaches a certain value, before the
supercooled fluid vitrifies (see the schematic representation in Fig. 1.1). The phenomenology in
glass forming materials is general.

However it is yet not clear how to interpret these observations within a general theoretical
framework. One theory (Gibbs and DiMarzio, 1958) postulates the existence of a genuine static
phase transition at a temperature T0, located extrapolating to zero the excess of entropy in the
supercooled region with respect to the one of the corresponding crystalline state (the latter is
essentially due to vibrational excitations). This theory has been formulated for polymer melts, but
has been taken as general for the phenomenology of glasses. The entropy difference ∆S has been
named configurational entropy. The theory has been further developed (Adam and Gibbs, 1965)
to link static and dynamical properties through the concept of cooperatively rearranging regions.
These are a group of molecules that can rearrange into a different configuration independently
of the environment and as a result of an energy fluctuation. The relaxation time τ is related to
the timescale associated to the rearrangement of these regions. The theory of Adam and Gibbs
connects τ to the configurational entropy, leading to the result τ ∝ exp (C/T∆S). A functional
form ∆S ∝ (1−T0/T ), valid from calorimetric measurements in many simple liquids, produces
then τ ∝ exp [A/(T − T0)]. This formula has the same structure of the empirical Vogel-Fulcher
law, which is a popular description of the slowing down near Tg. There is up to now no direct
evidence for the occurrence of this static phase transition, and experimentally the configurational
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INTRODUCTION

entropy cannot be followed completely to zero because vitrification occurs.
Probably the most successful approach is mode coupling theory (MCT) (Götze, 1989). This

microscopic description for the dynamics of density fluctuations in supercooled fluids in its ide-
alized form leads to a sharp transition from an ergodic to a non-ergodic behavior at a critical
temperature Tc > Tg, as it seems the case for realistic models. It is found that the predicted
power law divergence of η ∝ (T/Tc − 1)−γ is not completely in agreement with experiment
since usually η(T ) remains finite even a bit below Tc. Therefore it is argued that this divergence
occurs only when the atoms are strictly arrested in cages formed by their neighbors, but gets
rounded off when hopping “processes” (i.e., thermally activated crossings of barriers in configu-
ration space) are included. But MCT does not make any predictions about a further transition at
T < Tc. These two theoretical scenarios are sketched in Fig. 1.1.

The Potts glass is a possible prototype model for the structural glass transition. A class of dis-
ordered spin models has been found which exhibit both the scenarios mentioned above, and has
a lot in common with the structural glass phenomenology (Kirkpatrick and Thirumalai, 1995).
One of these models is the p-state infinite range Potts glass with p > 4 (Kirkpatrick and Wolynes,
1987; Kirkpatrick and Thirumalai, 1988), which presents both, a dynamical phase transition, and
a static one at a lower temperature. In this model every spin interacts with all the others, irre-
spective of distance. Interactions are taken from a Gaussian distribution. The spins are discrete
variables that can take one out of p values and an energy is gained if two interacting spins are in
the same state. It is well established that one has both a dynamical transition where the relax-
ation time of the spin autocorrelation function diverges at a temperature TD and a static transition
at a lower temperature T0 where a glass order parameter appears discontinuously, and both the
internal energy and the entropy as functions of the temperature present a kink. The equations
of motion for the autocorrelation function C(t) have the same structure of those describing the
structural arrest in the mode-coupling theory.

The Potts model can also be considered as a coarse-grained model for orientational glasses
(Binder and Reger, 1992). Experimentally these systems are created by random dilution of
molecular crystals (which otherwise are characterized by a low temperature long range orien-
tational order of the quadrupole moments). The dilution has the effect that at low temperatures
the quadrupole moments of the molecules freeze in random orientations (Höchli et al., 1990).
Long range quadrupolar order, in fact, gets severely disturbed by dilution of the material with
atomic species that have no quadrupole moment (e.g. KCN diluted with KBr, or N2 diluted with
Ar, or ortho (o)-H2 diluted with para (p)-H2). Another possibility to create orientational glasses
is by considering mixed crystals with different types of orientational order (e.g. KCN mixed
with NaCN). If the crystal anisotropy singles out p discrete preferred orientations (e.g. the 4
diagonal directions in a cubic crystal), a Potts glass model with p states may give a qualitatively
correct description of the system. This is further corroborated by the similarities, at least at the
mean-field level, between models for the Potts glass and for orientational glasses (Goldbart and
Sherrington, 1985). And, last but not least, the Potts glass model of course completes our knowl-
edge about the different types of phase transitions and ordered phases that spin glasses can have
(Binder and Young, 1986; Fischer and Hertz, 1991; Stein, 1992; Young, 1998), which provides
an additional motivation for the large activity in this field.

In this work, we use Monte Carlo simulations to study the ten state Potts glass model. We
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Figure 1.1: On the right, schematic plot of the viscosity η(T ) of a fluid vs inverse temperature 1/T .
Characteristic temperatures are indicated: melting temperature Tm, critical temperature Tc of
mode coupling theory (MCT), glass transition temperature Tg-defined via η(T = Tg) = 1013

Poise - and Vogel-Fulcher temperature T0, respectively. Upper left inset shows ∆S/Sm, with
∆S the entropy difference between fluid and crystal, and [Sm = ∆S(Tm)], as a function of T :
often these data are compatible with a linear extrapolation according to which ∆S vanishes at
T0. Dot-dashed lines represent a possible extrapolation. Lower left inset shows the schematic
behavior of the Fourier transform of the density correlation φq(t) for wave-vector q according
to the idealized MCT. For T > Tc this correlator decays to zero as function of time t, in
two steps (β-relaxation, α-relaxation). For T < Tc only the first steps remains, the system is
frozen at a plateau value f (“non-ergodicity parameter”).
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are motivated by several aims. It is not clear, in fact, to what extent the interesting and nontrivial
mean-field behavior which is known exactly in the thermodynamic limit, N → ∞, can be seen
for finite N . In thermodynamic limit the breaking of ergodicity in this model is induced by the
divergence of free energy barriers between the various states. This divergence will be always
avoided using finite systems, all the transitions will be rounded off, and the dynamical transition
temperature will play the role of a crossover temperature between different physical behaviors.
From this point of view, finite-size Potts glasses might be viewed as better a description of what
happens in realistic structural glasses (Crisanti and Ritort, 2000). In addition, we want to eluci-
date the dynamical behavior of the model in greater detail than has been done so far. Simulations
give access to a lot of quantities difficult to investigate analytically, such for instance the single
spin autocorrelation function. This can help to clarify the reasons for non-Debye relaxation in
glassy systems, in analogy to similar studies in glasses (Ediger, 2000). An open question is also
the survival of all the characteristics of the mean-field solution in three dimensions. Previous
studies on a p = 3 Potts glass seem to state the absence of a finite temperature transition to a
glass phase (Scheucher and Reger, 1993).

Chapter 2 is devoted to the presentation of the known rich features of Potts glasses. We
concentrate on the physical picture emerged from the solution of the infinite range model in
thermodynamic limit, and we give a short description of the methods used to investigate such
systems analytically. In chapter 3 we give an overview of standard Monte Carlo methods, dis-
cuss their application to the problem under investigation, and present also an optimized Monte
Carlo algorithm, known as parallel tempering (Hukushima and Nemoto, 1996), that permits to
improve the performances with respect to traditional implementations, and let us explore the
otherwise unaccessible low temperature region of the fully connected Potts glass. Our original
results on the fully connected version of the model are presented in chapter 4. We characterize
both its static and dynamical properties, concentrating on the region of the two transitions and
on the low temperature regime. We analyze the strong role played by finite-size effects, compare
our findings with the mean-field solution, and discuss to what extent all the interesting temper-
atures can be obtained by finite-size scaling techniques. The single spin dynamics at high and
low temperature, and the presence of dynamical heterogeneities are investigated and discussed.
Chapter 5 presents the results regarding the investigation of the three dimensional version of the
model, again regarding static and dynamical properties. Attention is paid also to the role of the
ferromagnetic bond concentration and its effect on the phase diagram of the system.
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Chapter 2

The known mean field scenario

2.1 The Potts model and the phase diagram of the Potts glass

In a p-state Potts model with N sites each spin σi (i ∈ {1, · · · , N}) is a variable that can be
in one of p discrete states, σi ∈ {1, 2, . . . , p}. A coupling constant Jij is assigned to every
couple of interacting spins σi and σj , and the model is defined in such a way that an energy
proportional to −Jij is gained (or lost, depending on the sign of Jij) if the two spins are in the
same state. Therefore ferromagnetic bonds (with positive Jij) are energetically favored. The
general Hamiltonian can therefore be written as

H = −1

2

∑

i,j

Jij(pδσiσj
− 1). (2.1)

The sum runs on every couple of interacting spins. For instance, in a three dimensional lattice
with simple cubic geometry, every spin interacts with its six nearest neighbors. In the limit of
very high temperatures every Potts state is randomly distributed among the spins (the interactions
play no role) with probability equal to 1/p, so that the thermal average 〈δi,j〉T=∞ is equal to 1/p,
and therefore 〈H〉T=∞ = 0 irrespective on the choice of the Jij’s.

A better representation of this Hamiltonian is obtained by making use of the simplex repre-
sentation of the Potts spins (Zia and Wallace, 1975), in which the p possible states of σi corre-
spond to vectors in a (p − 1) dimensional space, each of them pointing towards a corner of a
p-simplex, with the constraint:

~el · ~em = (pδlm − 1) with l, m = 1, . . . , p. (2.2)

These vectors eν
l with ν ∈ (1, · · · , p − 1) can be constructed explicitely using the following

relation (Kirkpatrick and Wolynes, 1987)

eν
l =































0 ν < l
[

p(p−l)
p+1−l

]1/2

ν = l

-
[

p
(p−l)(p+1−l)

]1/2

ν > l.

(2.3)
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The mapping is then

σi ∈ {1, · · · , p} 7−→ ~Si ∈ {~e1, · · · , ~ep}. (2.4)

Using the simplex representation the Hamiltonian (2.1) can be rewritten as

H = −1

2

∑

〈i,j〉

Jij
~Si · ~Sj. (2.5)

This is formally analogous to a vector model, only the components of the vectors are not con-
tinuous but belong to the set (2.3). The Potts model, both in its ferromagnetic (Jij = 1) and
antiferromagnetic (Jij = −1) version, is a “workhorse” in the study of critical phenomena, and
shows a very rich behavior in mean-field and as a function of the dimensionality. A comprehen-
sive review can be found in (Wu, 1982). The Potts model is also widely studied as a general
model for coarsening (i.e. domain-growth) dynamics (Grest et al., 1988).
As it is customary in spin glasses, the exchange interactions Jij are quenched random variables
taken from a Gaussian distribution P (Jij)

P (Jij) =
1√

2π∆J
exp

[

−(Jij − J0)
2

2(∆J)2

]

. (2.6)

Since it is an infinite range model, a proper scaling of these variables is needed in order to have
a finite thermodynamic limit of the energy, so the first two moments are given by

J0 = [Jij]av =

∫

JijP (Jij)dJij =
J̃0

N − 1
(2.7)

(∆J)2 =
[

J2
ij

]

av
− [Jij]

2
av =

˜(∆J)2

N − 1
. (2.8)

These two formulae define the quantities J0 and ∆J , important to fix the temperature scale and
the range of occurrence of the various phases.

The problem is now, given the Hamiltonian and the ensemble of the interaction, to calculate
the main thermodynamical quantities, like the free energy, and other physical observables. The
solution of this problem already at the level of the Ising spin glass model (that is p = 2) has
proven extremely difficult, but also shed light, at least at the mean field level, on a very rich
structure of the phase space. We will quote only the main results, outlining the general idea of
the various steps for the solutions. Detailed calculations and discussions of the range of validity
of the methods can be found in the papers we refer to.

The problem of dealing with disordered systems is that, in addition to the usual canonical
(thermal) average, which we denote with 〈· · · 〉, one has to perform also an average over the
disorder (that is over the distribution P (Jij)), which we denote with [· · · ]av . For every realization
Jij of the disorder there is a partition function

ZJ =
∑

~S

exp
[

−βHJ(~S)
]

(2.9)

6



2.1 THE POTTS MODEL AND THE PHASE DIAGRAM OF THE POTTS GLASS

and a free energy per spin

fJ = −kBT

N
ln ZJ (2.10)

with β = (kBT )−1. Usually in standard statistical mechanics, in order to obtain the main ther-
modynamical quantities, it is sufficient to calculate fJ , since the Jij’s form a set of known in-
teractions. When investigating disordered systems, Jij is taken from a given distribution, so the
correct physics is given by a further average

f = [fJ ]av =

∫

dJijP (Jij)fJ = −kBT

N

∫

dJijP (Jij) ln
∑

~S

exp [−βHJ(S)] . (2.11)

The difficulty with eq. (2.11) is that first one has to perform the sum over the variables ~S, inside
the logarithm, and only afterwards the averaging over P (Jij). The first approach to the problem
is to use the replica trick. It is based on the following result

yx ≈ 1 + x ln y for x ≈ 0

lim
x→0

yx − 1

x
= ln y. (2.12)

One can then try to use an analytical continuation procedure for the partition function of n non
interacting realizations (replicas) of the system under investigation. This partition function is
given simply by Zn

J , and it is well defined for every integer n ≥ 1:

Zn
J =

n
∏

α=1

∑

{~Sα}

exp
[

−βHJ({~Sα})
]

. (2.13)

The analytical continuation consists in taking n real and performing the following limit

[ln ZJ ]av = lim
n→0

[Zn
J ]av − 1

n
. (2.14)

This permits to perform calculations based on eq. (2.11) in a more direct way, since a disordered
problem is converted into a non-disordered one, to the price of multi-spin interactions that in
some cases can be handled. To show how the method works we use as example the Ising version,
since it simplifies the use of indices. The vectors ~Si are then substitute by the variables Si that
can take values ±1. We do not perform all the steps of the calculation, but only sketch what
happens. A pedagogic derivation can be found in (Fischer and Hertz, 1991). At first one has to
calculate [Zn

J ]av. Starting from the definition and performing the Gaussian average one has

[Zn
J ]av =

∫

dJijP (Jij)Z
n
J = · · · =

∑

S

exp

[

1

N

∑

ij

(

1

4
(β∆̃J)2

∑

α,β

Sα
i Sα

j Sβ
i Sβ

j + βJ̃0

∑

α

Sα
i Sα

j

)]

. (2.15)
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THE KNOWN MEAN FIELD SCENARIO

We see then explicitly that the disorder is now integrated out, but there is the presence of 4− spin
interactions

∑

α,β Sα
i Sα

j Sβ
i Sβ

j . However, using special properties of the spin variable and of the
Gaussian functions we can rewrite eqn. (2.15) like

[Zn
J ]av = exp

[

nN
1

4
(β∆̃J)2

]
∫ +∞

−∞

∏

(αβ)

β∆̃JN1/2

√
2π

dyαβ
∏

α

(

βJ0N

2π

)1/2

dxα exp(−NG)

(2.16)

with

G =
1

2
(β∆̃J)2

∑

(αβ)

(yαβ)2 +
1

2
βJ0

∑

α

(xα)2−

ln
∑

Sα

exp





1

2
(β∆̃J)2

∑

(αβ)

yαβSαSβ + β
∑

Sα

J0x
αSα



 . (2.17)

With (αβ) we intend the summation over (α 6= β). The sum
∑

Sα extends over all states of
a single replicated spin Sα, and everything is reduced to a Gaussian-averaged single site prob-
lem. The integral in eq. (2.16) can be done by means of the steepest descents method which,
schematically, consists in the following

∫

dy exp[−NG(y)] ≈
∫

dy exp[−NG(y0) −
1

2
NG′′(y0)(y − y0)

2 + · · · ] (2.18)

where G′(y0) = 0 defines the saddle point y0. It is also essential that G′′(y0) > 0 otherwise the
integral diverges and the procedure is no longer correct.

This approach implicitly assumes a permutation symmetry of the index α eq. (2.13), meaning
that this equation is unchanged if two replica indices are permuted. One is able to calculate by
means of statistical mechanics [Zn

J ] only for every integer n and to give it a physical interpreta-
tion. This permutation symmetry (that is the equivalence of the physics given by each replica)
may be broken when n → 0, as it turns out to be the case for infinite range spin glass models.
The replica solution turns out valid only for temperatures above the spin-glass transition. The
tentative (and up to now widely accepted) solution of this problem gave rise to a new method
in theoretical physics, the so-called replica-symmetry-breaking, carrying also a physical picture
(Mézard et al., 1984). As we said, we will quote only the relevant results; general references
and discussions about the problem can be found in (Edwards and Anderson, 1975; Sherrington
and Kirkpatrick, 1975; Binder and Young, 1986; Mézard et al., 1987; Fischer and Hertz, 1991;
Stein, 1992; Parisi, 1992; Young, 1998). The spin glass phase is characterized by the absence
of magnetic ordering, but spins are frozen in random orientations. For the Potts model the usual
magnetic ordering is measured by the magnetization

~mi = 〈~Si〉

~M =
1

N

N
∑

i

~mi. (2.19)

8
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The Potts model is symmetric under global rotations of the spins, that is the Hamiltonian (2.5) is
invariant if we rotate all the spins ~Si by the same angle. There are p possible rotations, so every
microstate is p times degenerate. In a Potts ferromagnet in the thermodynamic limit N → ∞ this
symmetry is broken, that is the system chooses only one of the possible rotations, so the average
in eq. (2.19) has to be intended not as a conventional Gibbs average over all configurations, but
only over part of the configuration space, not allowing symmetry operations. This is a standard
problem in statistical mechanics (Binder and Young, 1986; Fischer and Hertz, 1991). The same
effect of a restricted average can be obtained imposing to the system for every finite N an external
field ~h (to select one of the possible rotations) and then letting h → 0 only after taking the
thermodynamic limit.
In a spin glass M = 0, but 〈~Si〉 6= 0, so the proper spin-glass order parameter is (Binder and
Reger, 1992)

qµν =
1

N

∑

i

[〈Sµ
i 〉〈Sν

i 〉]av . (2.20)

Assuming isotropy in the spin orientations we can write it in the special form

qµν = qδµν (2.21)

where q is a scalar quantity and δµν is the Kronecker delta. We can also introduce a spin-glass
susceptibility, related to the second moment of the order parameter (Chen and Lubensky, 1977;
Fisch and Harris, 1977; Binder and Young, 1986; Kirkpatrick and Wolynes, 1987)

χSG = N−1

N
∑

ij

[

(〈

~Si · ~Sj

〉

−
〈

~Si

〉

·
〈

~Sj

〉)2
]

av

. (2.22)

The replica-symmetric solution (Erzan and Lage, 1983; Elderfield and Sherrington, 1983a) gives
the following high-temperature (i.e. valid when q = 0) results, in units of kB = 1:

free energy per spin βf =
β2(1 − p)

4
− ln(p) (2.23)

energy per spin e =
β(1 − p)

2
(2.24)

entropy per spin s =
β2(1 − p)

4
+ ln(p) (2.25)

spin glass susceptibility χSG =
p − 1

1 − ∆̃J
2

T 2

. (2.26)

The replica approach predicts the occurrence of a paramagnet-to-spin glass transition. For p < 6
this transition is continuous (second-order) and occurs at a temperature Ts = ∆̃J . For p > 6
the transition is discontinuous (first-order). It has also been shown that in the Potts glass for

9



THE KNOWN MEAN FIELD SCENARIO

p > 2 there is a strong tendency towards ferromagnetism. The temperature Tf below which
conventional ferromagnetism appears is (Elderfield and Sherrington, 1983b)

1

Tf

(

J̃0 +
(p − 2)(∆̃J)2

2Tf

)

= 1. (2.27)

It is then important to set the parameters J0 and ∆J to proper values, so as to enter the spin-glass
phase at a temperature higher than Tf .

It is already clear from eq. (2.25) that the replica symmetric solution cannot be correct for
every temperature, since it predicts a negative entropy for T <

√

(p − 1)/(4 ln(p)). The entropy
must be positive, since it is the logarithm of the number of microstates. It is then necessary to
allow a breaking of this symmetry and explore the consequences. The detailed treatment can be
found in (Gross et al., 1985; Cwilich and Kirkpatrick, 1989; Cwilich, 1990). The solution for
p = 2, the Ising case, has been widely investigated and reviewed (Mézard et al., 1984; Binder
and Young, 1986; Mézard et al., 1987; Fischer and Hertz, 1991; Young, 1998). We will review
what happens for p ≥ 3.

The spin-glass phase is characterized by a novel behavior with respect to standard critical
phenomena. Below the transition temperature, the phase space splits into an infinite number
of pure states. A popular way to describe this is by means of the so-called many-valley pic-
ture. To every spin i we associate its magnetization mi, and consider the total free energy
F (m1, m2, · · · , mN). F describes a hypersurface in the N + 1-dimensional space. The physi-
cally relevant states correspond to the minima of this function, that is solutions of ∂F/∂mi = 0
with the eigenvalues of the matrix ∂2F/∂mi∂mj all positive. In infinite range spin glasses below
the phase transition temperature one has many of this minima, and they are not related by simple
symmetry operations like global rotations. In the limit N → ∞ the barriers between these min-
ima diverge, and the phase space can be partitioned into mutually inaccessible valleys. Each of
them correspond to a thermodynamically stable state, like the magnetized state of a ferromagnet
(with the only difference that, as we already remarkered, all the stable states of a ferromagnet are
related by rotations, and they can be all mapped onto a single one). The picture suggested is like
a mixture of equilibrium-also called pure- Gibbs states (Mézard et al., 1987). This phenomenon
of coexistence of many stable states not related by symmetry properties goes under the name of
broken ergodicity (Palmer, 1982; Palmer, 1983). Due to the coexistence of states, the role of
order the parameter is played by the distribution function of the overlap between them. Given
two states, labeled with index a and b, the overlap between them is defined as

qµν
ab =

1

N

∑

i

〈Sµ
ia〉〈Sν

ib〉 = qabδµν . (2.28)

Since the indices a and b run over a large number of states, many values of qab will be found, and
for each realization of disorder we can define a distribution function (Fischer and Hertz, 1991)

PJ(q) = 〈δ(q − qab)〉 =
∑

ab

PaPbδ(q − qab) (2.29)
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2.1 THE POTTS MODEL AND THE PHASE DIAGRAM OF THE POTTS GLASS

where Pa is the probability to sample the state a

Pa =
exp(−βFa)
∑

s exp(−βFs)
. (2.30)

The general distribution function is the average over the disorder, that is

P (q) = [PJ(q)]av . (2.31)

The replica-symmetry-breaking approach makes predictions for this function, that is not acces-
sible in experiments but can be obtained in a numerical simulation. To introduce a simple ref-
erence, in an Ising ferromagnet below the phase transition temperature one has two possible
states, with magnetization ±M , related by a global spin-flip symmetry. The possible value of
the overlap then, getting rid of the symmetries, is only M 2. The same is true also for Potts ferro-
magnets. The distribution function of the overlap has a single delta-peak, and this explains also
the analogy of q with the standard concept of order parameter. In the Potts glass for every p ≥ 3
and below the spin-glass transition the distribution function of q, which we indicate with P (q),
assumes a double-delta structure, with a first peak centered at q = 0 and another one, tempera-
ture dependent, at q0 = q0(T ). Also in the replica-symmetry-broken approach a phase transition
from a paramagnet to a spin-glass transition is found at a temperature which we denote by T0.
The distribution function P (q) goes for every p ≥ 3 from a single-delta function (Gross et al.,
1985; Kirkpatrick and Wolynes, 1987; Cwilich and Kirkpatrick, 1989) centered around q = 0
for T > T0 to a double-delta function

P (q) = δ(q) T > T0, N → ∞
P (q) = [1 − w(T )]δ(q) + w(T )δ(q − q0(T )) T ≤ T0, N → ∞. (2.32)

This implies that below T0 the phase space splits into an infinite number of pure Potts-glass states
that do not overlap (Gross et al., 1985). The value q0 is the glass order parameter inside each
pure state. For p = 3, 4 q0 is continuous throughout the transition, which takes place at T0 = ∆̃J ,
and w(T . T0) = (4 − p)/2 + O(1 − T/T0). For p > 4 it is no longer possible to calculate
analytically the interesting quantities systematically as a function of p. An expansion in the limit
ε = p − 4 → 0 (Cwilich and Kirkpatrick, 1989) gives

T0 ' ∆̃J +
(p − 4)2

3(p2 − 18p + 42)
(2.33)

q0(T0) '
2(p − 4)

(p2 − 18p + 42)
(2.34)

w(T . T0) ∝ (1 − T/T0) (2.35)

To have a quantitative estimation of these quantities a numerical solution of the replica-symmetry-
breaking equation is needed (De Santis et al., 1995). For p = 10, the value we adopted for our
simulations, we have T0 = 1.131 and q0(T0) = 0.432. This value p = 10 has a rather large
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discontinuity in the order parameter, which would be easier to detect in a simulation. This dis-
continuity grows as p is increased, but one also has to keep in mind that it will be always more
difficult to equlibrate the system as the p increases, since we have to sample more states. The
weight w(T0) is always proportional to 1−T/T0. We show the complete temperature dependence
in Fig. 2.1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T

0.0
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1.0

q 0,w
(q

0)

N=∞

q0

w(q0)

T0

Figure 2.1: Temperature dependence of q0 and w(T ) for p = 10, as obtained from the one-step replica-
symmetry-breaking solution (De Santis et al., 1995).

Despite the fact that the order parameter jumps discontinuously at T0 for p > 4, this is not an
ordinary first order phase transition. Only second derivatives of the free energy with respect to
temperature and static external fields are discontinuous at T0, and in particular there is no latent
heat of transition, appearing when there is a discontinuity in the energy (Gross et al., 1985). This
is a novel behavior in the realm of critical phenomena, and up to now has only been found for
certain classes of infinite-range spin-glass models (for a review concerning these models, see
(Kirkpatrick and Thirumalai, 1995)).

Also this replica-broken solution becomes unstable at low temperatures for every p ≥ 3, giv-
ing negative values of the entropy for finite temperatures, and a spin-glass to spin-glass transition
takes place (Gross et al., 1985; Gardner, 1985). It is very difficult to study this second transition
analytically, since it involves coupling between the glass order parameter and the spontaneous
magnetization. It seems that the new phase is mixed (M 6= 0, q 6= 0) and goes under the name of
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“canted random ferromagnet” (Elderfield and Sherrington, 1983b). Every pure Potts state splits
into an infinite number of partially correlated states (Gross et al., 1985). A lower bound for the
occurrence of this transition has been established at a temperature

T2 = (p/2 − 1)/(1 − J̃0). (2.36)

2.2 The dynamics

Spin Hamiltonians like (2.1) do not have an intrinsic dynamics. We need then to couple the
system to a thermal reservoir, in order to allow for spin flips and relaxations. Two approaches are
mostly used to do that, one more suitable for analytical work and based on a continuum picture,
the other based on a master equation and more used in numerical (Monte Carlo) studies 1. We
will discuss this second technique in the chapter devoted to numerical methods, since it is the
basis of our investigation about the dynamics of the finite size system. Here we concentrate more
to give a review of the results obtained analytically (Kirkpatrick and Wolynes, 1987; Kirkpatrick
and Thirumalai, 1988). The quantity studied is the spin autocorrelation function

C(t) =
1

N(p − 1)

N
∑

i=1

[

〈~Si(t
′) · ~Si(t

′ + t)〉
]

av
. (2.37)

Every element of the Potts vectors must obey a Langevin equation, describing a relaxation pro-
cess (Fischer and Hertz, 1991), so soft spins versions of (2.3) are used. Every Sν

i can assume
values between −∞ and +∞, and the Hamiltonian (2.5) is consequently modified (Kirkpatrick
and Thirumalai, 1988). The Langevin equation is given by

Γ−1
0 ∂tS

ν
i (t) = −δ(βH)

δSν
i (t)

+ ξν
i (t). (2.38)

Γ0 is a coefficient setting the microscopic time-scale, and ξν
i (t) a Gaussian random noise with

zero mean and variance

〈ξν
i (t)ξµ

i (t′)〉 =
2

Γ0
δijδνµδ(t − t′). (2.39)

This equation can be solved in the limit N → ∞. The results for p = 3, 4 are typical for
the dynamics close to a static second order phase transition, in analogy to what happens in the
infinite-range Ising spin glass (Binder and Young, 1986). The relaxation time τ diverges like
τ ∝ (T −T0)

−∆, the temperature T0 is the static transition temperature. For p > 4 a temperature
TD > T0 appears at which the system loses ergodicity, that is

lim
t→∞

lim
N→∞

C(t) = qEA 6= 0. (2.40)

1For general reviews see (Hohenberg and Halperin, 1977; Cardy, 1996); for applications to the spin glass prob-
lem, see (Fischer and Hertz, 1991).
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This fact is rather surprising, since it is believed that the long time limit of C(t) gives the (static)
order parameter (Edwards and Anderson, 1975), which is, as we have seen from the static ap-
proach, zero for every T > T0. The relaxation time diverges again as a power law, but now as
(T −TD)−∆, with TD > T0. TD goes under the name of dynamical transition temperature. What
is also interesting is that the equations describing the behavior of C(t) for p > 4 are formally
analogous to those introduced to describe the phenomenon of structural arrest taking place close
to the glass transition in the so-called mode coupling theory (Götze, 1989; Götze, 1999). This
led to the speculations that certain classes of spin glass models, like the Potts glass with p > 4,
are spin models to describe the statistical physics of the glass transition (Kirkpatrick et al., 1989).

A connection can be made between statics and dynamics, that apparently predicts two differ-
ent results, using an approach to the Hamiltonian (2.5) which is alternative to the replica method.
Thouless, Anderson and Palmer introduced a set of nonlinear coupled equations for the single-
spin magnetizations ~mi (Thouless et al., 1977). Every set of these equation refers to a fixed set of
bonds Jij, so the thermal average has to be performed at the end. Again for simplicity, in order to
understand the idea behind it, we discuss the case of Ising spins, where magnetizations are scalar
quantities mi. The equations for the Potts case can be found in (Kirkpatrick and Wolynes, 1987).
A free energy functional F{mi} can be written down using mean-field arguments (Fischer and
Hertz, 1991). Every spin i experiences the presence of a field

∑

j Jijmj due to all the others
magnetizations mj . In addition to it, which is the base of mean field theory in non-disordered
model, one has also to take into account the presence of a reaction term, that is the local magneti-
zation mi at site i induces a mean field Jijmi at site j, which induces a magnetization2 Jijχjjmj

at site j, and hence a mean-field J 2
ijχjjmi at site i. It turns out then that the ordering of spin Si

is induced by the internal fields of all the spins Sj in the absence of Si, so this reaction term has
to be subtracted from the full mean-field

∑

j Jijmi in computing mi (Fischer and Hertz, 1991).
In usual mean-field theories Jij ∼ N−1 and the reaction term can be neglected, but in spin
glasses Jij ∼ N−1/2 and this fluctuation contribution is needed for consistency (Kirkpatrick and
Wolynes, 1987). The so-called TAP equations are then derived by variation of the free energy
functional, ∂F/∂mi = 0. Their solution is consistent with the replica approach, in the sense that
the same spin-glass phase transition is predicted at T0, but they reveal more about the structure
of the phase space. The replica formalism gives for every T > T0 a paramagnetic solution that
minimizes the free energy of the system. The TAP approach, surprisingly, shows that in the
range T0 < T < TD the same replica free energy can be obtained considering an ensemble of
exponentially large (in N ) solutions, with a higher free energy (Kirkpatrick and Wolynes, 1987).
We denote the total number of solutions ms to the TAP equations with K∗. When many solutions
appear, their weighted total free energy is given by

F̄ =
∑

s

F (ms)Ps (2.41)

Ps =
e−βF (ms)

∑

s e−βF (ms)
. (2.42)

2χij = ∂mi/∂h̃j is the local magnetic susceptibility, and describes the answer of mi to a small change of the
(effective) field h̃j
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F (ms) is the free energy inside each solution, Ps is the canonical probability to be in that state.
However, since there is a (exponential) number of solutions K∗, we have to take into account
the contribution to the free-energy coming from their total number, which defines the so-called
complexity I:

I = kb ln K∗ (2.43)

so that the true free energy of the system is given by

F = F̄ − TI. (2.44)

F is then the same calculated within the replica formalism for T0 < T < TD.

χ−1

SG
~

SG

τ −1
D

−1

(T−T  )
∆

~ (T−T  )

T T T T
S 0 D

T∼>ΤD

log(t)

C(t)
q

T

~ TD
<T

T>>TD

τ

χ−1

s

0

q
EA

Figure 2.2: Qualitative sketch of the mean-field predictions for the p-state Potts glass model with p > 4.
The spin glass order parameter, q0, is nonzero only for T < T0 and jumps to zero discontinu-
ously at T = T0. The spin glass susceptibility χSG follows a Curie-Weiss-type relation with
an apparent divergence at Ts < T0. The relaxation time τ diverges already at the dynamical
transition temperature TD. This divergence is due to the occurrence of a long lived plateau of
height qEA in the time-dependent spin autocorrelation function C(t).

The proposed connection (Kirkpatrick et al., 1989) with the dynamical transition obtained
solving the dynamical problem (2.38) (Kirkpatrick and Thirumalai, 1988) is based on the ap-
pearance of these metastable solutions. They are metastable because in the range T0 < T < TD

each of them has a higher free energy than the paramagnet. However, in the course of its time
evolution the system can visit a local free energy minimum, and , in the mean-field limit N → ∞,
become trapped since activated processes that would permit the relaxation cannot take place be-
cause barriers diverge (Kirkpatrick and Thirumalai, 1988), that is in mean-field limit metastable
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states can have infinite lifetime. So these K∗ spin-glass-like states lead to a dynamical freezing
of the system, but no static phase transition still takes place because the free energy remains
the same as the one of the paramagnetic state. A physical picture to describe what happens is
(Kirkpatrick and Wolynes, 1987): “two temperatures - TD and T0 - appear in the theory. The
first one is associated with the appearance of well-defined free-energy minima, the latter with
their ultimate thermodynamic stability”. The fact that the correlation function C(t) does not
decay any longer to zero (its expected value in the paramagnetic state) but gets stuck to qEA is
related to the infinite-range character of the forces and to the limit N → ∞, since free-energy
barriers diverge. In finite dimensions or for every N finite, it is expected that TD plays the role of
a crossover temperature, above which C(t) starts to show a long-lived plateau structure and the
relaxation time τ changes from a power-law behavior (T − TD)−∆ for T ≥ TD to an Arrhenius
behavior exp(c/T ) for T < TD.

A summary of the rich behavior of p > 4 Potts glasses is shown in Fig. 2.2 . We give the
connections between statics (represented by the order parameter q0 and the associated suscep-
tibility χSG) and dynamics, represented by a qualitative picture of C(t). Note also the role of
Ts, the temperature at which the extrapolation of the high-temperature susceptibility diverges.
In a standard first order transition (with latent heat) Ts would play the role of the spinodal tem-
perature, the lowest temperature at which paramagnetic metastable states can still appear in the
region of the ordered phase. However, due to the particular nature of the spin-glass transition, the
paramagnetic state is completely unstable for every T < T0, so that Ts does not have a physical
meaning (Gross et al., 1985).
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Chapter 3

Monte Carlo Methods

3.1 Methods to sample the configuration space

Statistical mechanics teaches us how to derive equilibrium properties of a system knowing its
microscopic states. A key quantity is the partition function

Z =
N
∑

s=1

e−βH(Xs). (3.1)

The sum 1 is over all N microscopic states accessible to a system (N = pN in the case of a p-state
Potts model with N spins), and β = (kBT )−1. With X we indicate a microscopic configuration,
X = {~S1, · · · , ~SN}. The free energy is then given by

F = −kBT ln Z (3.2)

and the important thermodynamic quantities follow by differentiating the free energy. The equi-
librium mean value of any observable O is given by

〈O〉 =

∑N
s=1 O(Xs)e

−βH(Xs)

Z
. (3.3)

The goal, from a theoretical point of view, is then to compute sums like (3.1) and (3.3). This is,
in most cases, not possible analytically. Computers can help in computing exactly the partition
function, but the sizes accessible are rather small. In the case of infinite range spin glasses, the
Ising system was investigated up to N = 20 (Young and Kirkpatrick, 1982), and the Potts model
with p = 3 and p = 6 up to N = 15 (Peters et al., 1996). To investigate bigger sizes, one has
to resort on approximate methods, making certain Ansätze on the structure of the phase space
(introducing theories), or finding certain ways, again numerically, to restrict the sums over a
smaller and accessible number of representative states. The scope of this chapter is to illustrate

1If the system has continuous degrees of freedom, the sum is replaced by an integral, but conceptually the
treatment remains the same.
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how to realize this latter purpose by using suitable methods to sample the phase space. They
go under the name of Monte Carlo methods, since they contain stochastic elements. They were
implemented just after the second world war, when the first computers became available, and
have gained continued popularity in the scientific community. These methods are now standard,
and the range of problems they can treat is rather large, regarding both lattice and off-lattice
systems. Two recent references are (Newman and Barkema, 1999; Landau and Binder, 2000).
As we saw, when the number of spins N starts to grow, it is no longer possible to treat numerically
all the states exhaustively. We can consider a subset of M different states out of the N total.
Every state Xs, s ∈ {1, . . . ,M} is chosen according to a certain probability p(Xs). Then (3.3)
is approximated by

OM =

∑M
s=1 O(Xs)p(Xs)

−1e−βH(Xs)

∑M
s=1 p(Xs)−1e−βH(Xs)

. (3.4)

The factor p(Xs)
−1 is present since (3.3) is an unweighted sum, while the M states are chosen

according to p(Xs), so one needs to correct. Clearly limM→∞OM = 〈O〉. This is true in the
limit when all states are sampled. We need then a good recipe to sample the states, in order to
make (3.4) a good estimate. A constant p(Xs) is a poor choice. Every state is sampled with the
same probability, and in a reasonable computer time we are able to access only a small part of
them. The problem is dramatic at low temperature, when only a small fraction of states dominate
the sum, and the probability to pick them at random is very small. The way to solve this problem
is to choose

p(Xs) = e−βH(Xs) (3.5)

and goes under the name of importance sampling. With this choice (3.4) becomes a simple
arithmetic average over the M states

OM =
1

M
M
∑

s=1

O(Xs) (3.6)

In this way we sample more often the states that the real system would visit at a selected temper-
ature.

The problem is then reduced to find a suitable way to pick up states according to the proper
Boltzmann weight. This is done by realizing a Markov process. A detailed treatment of this
problem can be found in the above mentioned books and in the reference they give also to the
mathematical literature. A concise but very informative treatment is given in (Wang, 1999), and
we will follow it here. We just give an idea how to arrive to the solution. We want to generate
states according to the Boltzmann probability. We do it following a chain process. Given a first
state X0, we generate X1, and so on. This is done according to a transition probability, encoded in
the matrix W (X1, X0). This matrix has two properties, W (X1, X0) ≥ 0 and

∑

s W (Xs, X0) =
1. We indicate with p0(X) the probability of the initial configurations. Then the probability of
sampling X after n steps is given by

pn(X) =
∑

s

W n(X, Xs)p0(Xs) (3.7)
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The power W n = W · W · . . . · W means a repeated action of the matrix W , n times. It can be
shown that a unique distribution

p(X) = lim
n→∞

pn(X) = lim
n→∞

W n(X, Xs) (3.8)

exists and is independent of the initial distribution, provided that W k(X, Xs) > 0 for every X
and Xs and for all k for sufficiently large k. This condition means:

1. starting from any initial state Xs, it is possible to reach any other state X with nonzero
probability in an arbitrary but finite number k of steps (this is known as ergodicity);

2. starting from Xs, the probability that the system comes back to Xs in k steps is nonzero
for all k greater than a threshold value.

All is needed now is to be sure that the limit p(X) is the Boltzmann distribution. It is then
sufficient to impose the detailed balance condition:

W (Xs, X)p(X) = W (X, Xs)p(Xs) for all X and Xs

⇒ W (Xs, X)

W (X, Xs)
= e−β[H(Xs)−H(X)]. (3.9)

There is some freedom on the choice of W . The first to be proposed, and most commonly used
is given by the so-called Metropolis criterion (Metropolis et al., 1953)

W (Xs, X) =

{

τ−1
0 e−β[H(Xs)−H(X)] if H(Xs) − H(X) > 0

τ−1
0 otherwise.

(3.10)

The factor τ0 is arbitrary, and for our purposes it can be set to unity. In the dynamical inter-
pretation of the Monte Carlo method, it plays the role of a microscopic time. The Metropolis
algorithm is our choice for the simulation of the infinite range Potts glass. The algorithm is the
following:

1. choose a starting configuration;

2. choose randomly and uniformly a site i ∈ {1, . . . , N};

3. choose randomly and uniformly a new state l ∈ {1, . . . , p} for i;

4. calculate the energy difference ∆E between the proposed configuration and the old one;

5. if the energy difference is non positive, accept l as new state; Otherwise generate a random
number 0 < r < 1 and accept the state only if r < exp(−β∆E). If the new state in not
accepted, the new configuration will be identical to the old one.

6. repeat from point 2.
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The heat-bath method provides another algorithm that satisfies detailed balance. The acceptance
criterion is no longer based on the energy difference between old and proposed state, but on the
relative energy weight of all the possible states of the spin we want to update. So, once we choose
a spin i at random, we have p different values of the energy of the system, depending on the state
of spin i. We then select the new state for the chosen spin according to the probability pl

pl =
e−βEl

∑p
m=1 e−βEm

(3.11)

where El is the energy of the system if σi = l. This algorithm is more efficient than the Metropo-
lis one in finding energetically desirable states, especially when p is large and at low tempera-
tures. As a drawback it implies the calculation of p exponential functions at every Monte Carlo
step, an operation that is computationally expensive. Our choice was to use this algorithm in the
short range case, because we adopted for the most part of the simulations a bimodal distribution
of bonds instead of a Gaussian one. In this way the values of the exponentials can be tabulated
in advance, saving the computations. Details are given in the chapter devoted to the short range
version of the model.

3.2 Dynamical interpretation

Although Monte Carlo methods have been introduced to study the static properties of a system,
through the calculation of statistical averages like in eq. (3.3), they are essentially dynamical in
nature. This is because the chain process creating new configurations can be considered as the
evolution of the system in time. If we label as t the number of steps per spin performed after
the chain program starts, the distribution probability for the states obeys the following master
equation

d

dt
p(X, t) = −

∑

Xs

W (Xs, X)p(X, t) +
∑

Xs

W (X, Xs)p(Xs, t). (3.12)

In analogy to the Langevin equation given in eq. (2.38), it also describes the relaxation dynam-
ics of a system in contact with a thermal bath (Landau and Binder, 2000). Of course, given
the fact that a single spin flip Monte Carlo simulation realizes eq. (3.12), we can measure also
time-dependent quantities like correlation function. Time units can be normalized such that, on
average, Nτ−1

0 single particle transitions are performed in unit time. One Monte Carlo sweep
(MCS), measure unit for t, corresponds then to N Monte Carlo steps for the system. Gibbs av-
erages over states can also be seen as averages over the stochastic time trajectory. In order to
measure equilibrium properties, a certain number of states M0 has to be omitted from the av-
erage. They are the first states to be sample, and they do not represent yet typical equilibrium
configurations, since the system has still to be thermalized. In other terms, before starting to
measure we have to wait a time t0 before the system thermalizes.
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3.3 Equilibration

Spin glasses are characterized by a very slow dynamics, and this effect becomes stronger de-
creasing the temperature. Simulations also reflect this property, and if the system is not properly
thermalized, it will show “aging” effects, that is quantities that in equilibrium should be con-
stant, like the energy per spin, show weak time dependence, and correlation functions do not
show time-translation invariance, but their shape depend on the time at which the measurement
start (a review of this effects specialized to spin glasses and simulation can be found in (Rieger,
1994)). To avoid these effects, a careful thermalization procedure is needed. In a Monte Carlo
simulation we investigate finite systems, which by definition are always ergodic. So equilibrium
will be achieved if, after a perturbation (i.e. a change of temperature), we let the system evolve
for a time t0 longer than the longest relaxation time. Different observables (e.g. the energy or the
spin autocorrelation function) in fact tend to relax to their equilibrium value after different times.
To every configuration, at a given time, we can associate an energy: e is therefore an example
of a one-time quantity. To measure the spin autocorrelation function,as we have seen from the
definition in section 2.37, we need for every point of this function two different configurations
corresponding to two different times, therefore C(t) is a two-time quantity. We found in our sim-
ulations that two-times quantities have longer relaxation times, and are usually more affected by
out-of-equilibrium effects. They are good indicators to test thermalization. We give now some
definitions for the observables. The energy per spin is given by

e =
[〈H〉]av

N
. (3.13)

With [· · · ]av we indicate the average over different realizations of disorder. When we refer to
quantities for a single sample, it is of course omitted from the definition. The order parameter
has to be considered as a distribution, P (q) (we explained the fact in chapter 2). In order to
calculate this distribution, one needs the value of the overlap between independent states visited
at a certain temperature. It is customary in Monte Carlo simulations, to improve the statistic
and to assure a better de-correlation, to use states belonging to two different replicas (Young,
1983). This means that the same realization of bonds is simulated according to two independent
sequences of random numbers, which we label with α and β. Given then two states {~Sα} and
{~Sβ} we calculate their overlap as

q =

√

√

√

√

1

p − 1

p−1
∑

µ,ν=1

(qµν)2 qµν =
1

N

N
∑

i=1

Sµ
iαSν

iβ. (3.14)

This quantity is invariant under complete rotations of the spins in the configurations, since it
involves scalar products inside each replica. In fact, with a bit of algebra, it can be shown that

q =

√

√

√

√

1

N2(p − 1)

N
∑

i,j=1

(

~Siα · ~Sjα

) (

~Siβ · ~Sjβ

)

. (3.15)
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The results of the overlaps between different states are then collected in a histogram. This is
done for every realization of disorder, so we get a PJ(q). The total distribution is simply given
by the disorder average of them, P (q) = [PJ(q)]av. The moments are then obtained according to
the definitions

q(n) =

∫

qnP (q)dq. (3.16)

The spin autocorrelation function is calculated according to

C(t) =
1

N(p − 1)

N
∑

i=1

[

〈~Si(t
′) · ~Si(t

′ + t)〉
]

av
. (3.17)

The symbol t′ refers to a time origin, and in this case the average 〈· · · 〉 is more easily understood
as an average over different t′ (usually 4 at high temperature and 10 at low temperature in our
simulations, equally spaced). Another useful correlation function is the rotational invariant one

CRI(t) =

[ 〈q̃(t)〉
〈q̃(0)〉

]

av

(3.18)

q̃(t) =

[

1

p − 1

p−1
∑

µ,ν=1

(q̃µν(t))2

]1/2

and q̃µν(t) =
1

N

N
∑

i=1

(~Si)
µ(t′ + t)(~Si)

ν(t′). (3.19)

It is particularly interesting because, in equilibrium, its long time limit must give exactly the first
moment of the order parameter distribution. This is true for every realization of the disorder.
It follows directly from the definition. It is important for the order parameter distribution to
calculate overlap between decorrelated thermalized configurations, as is indeed the case in equi-
librium when t → ∞. We call two configurations decorrelated when the time separating them is
of the order of the time it takes the correlation function to decay, say, to 1/e. This value is some-
what arbitrary, and one has to be sure actually that long time processes have already occurred.
When making a simulation, it is wise to start at high temperature. Relaxation times are short,
and usually one has also an idea of the values to be expected (we can, e.g., compare with the
replica solution in the infinite range case.). To have an idea of the time-scales involved, starting
from completely random configurations we let the system evolve and monitor one-time quan-
tities, typically the energy. We simulate two replicas of the bond configurations which evolve
independently (for a Monte Carlo simulation this means that the initial configurations and the
random numbers used in the Metropolis criterion are independent). After our initial guess of t0,
which is usually much longer (2 orders of magnitude) than the time needed to e to thermalize,
we start to measure for every replica two time quantities, such as C(t) and CRI(t), and look at
their long-time behavior. We expect from this second run that C(t0) = 0 and CRI(t0) = q(1), the
first moment of the order parameter distribution. q(1) is also calculated by making the average of
the overlap between configurations of the two replicas. This last test is particularly good, since
we compare quantities obtained in different ways. If they do not agree, a full equilibrium is not
yet achieved, and we have to thermalize the system for a longer t0. We used always this criterion
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Figure 3.1: Correlation functions for a single sample. The results refer to the infinite range model with
640 spins at T = TD = 1.142. We have let the system thermalized for a time t0 = 105 MCS
and then started to record the functions. We show also the comparison of the long-time
limit of CRI(t) with the first moment of the order parameter distribution for the sample,
obtained from the overlap of two replicas configurations. The agreement is indicative of
reached thermalization.

(Bhatt and Young, 1988) self-consistently for every sample and at every temperature, checking
the properties of the correlation functions at the end of the equilibrium run after a thermalization
run of the same length as the observation time. If convergence and de-correlation are not found,
we thermalize the system for longer times and repeat the procedure. As an example we show
CRI(t) for a single sample of 640 spins at T = TD = 1.142 in Fig. 3.1. The system has been
equilibrated for a time t0 = 105MCS. We see that the long time limit falls directly onto the line
representing the value of q(1) obtained from the overlap of two replicas of the system. Also shown
is the spin autocorrelation function C(t). Its relaxation is slower. In checking for equilibrium,
we always waited also for a complete de-correlation of C(t). When lowering the temperature we
pay attention to use as starting configurations, for the thermalization run, equilibrium configura-
tions obtained at a higher temperature. This makes thermalization easier to achieve with respect
to the use of random initial configurations (corresponding to T → ∞).
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3.4 The parallel tempering method

The conventional Metropolis and Heat-Bath schemes suffer the problem that they slow down
upon decreasing the temperature. This means that the equilibration time grows, for a fixed system
size, as a power law (in a system where a phase transition is expected). For the infinite-ranged
Potts model we found that τ ∝ (T −TD)−2. Moreover, close to the phase transition temperature,
2 the relaxation times grow as a function of the system size as N 1.5. Below the region where
we expect a dynamical transition in the thermodynamic limit, relaxation times start to grow
exponentially as a function of the inverse temperature and of the square root of the system size.
This makes it impossible to equilibrate a system of 320 spins below T = 0.9 in a reasonable
computer time. It takes, at that temperature and system size, about 12 hours on a Pentium II
processor (400 MHz) to equilibrate a single sample (this number must then be multiplied by 4 in
order to study the dynamics and the statics in equilibrium).

New numerical methods have recently been developed that permit to improve the efficiency
of Monte Carlo simulations in spin glasses and disordered systems with slow dynamics. Al-
though the problem of getting rid of slowing down in disordered system has not yet been solved,
progresses have been made in developing optimized methods. For a recent review see (Marinari,
1996). We decided to implement the one that up to now proved to be quite effective, the parallel
tempering method (Hukushima and Nemoto, 1996).

At low temperature, in spin glasses and other disordered systems, a lot of local energy min-
ima appear in the phase space, separated by barriers, as we have seen in section 2.1. In order to
properly thermalize the system, all these regions have to be visited. But the characteristic time
needed by the system to escape from a local minimum increases very rapidly upon lowering the
temperature. We need therefore to “help” the system escaping local minima, avoiding in this way
long relaxations. One possible way is to make use of an extended canonical ensemble. A collec-
tion of replicas of the sample is considered. To each of them we attribute a different temperature,
in such a way to span a range including high and low temperature values. We let then evolve the
replicas canonically and independently for a few Monte Carlo steps, and then try to exchange
the temperature between replicas (with small temperature difference) according to an energetic
Boltzmann criterion. We hope in this way to let the system explore more easily the phase space,
by introducing additional possibilities of warming and cooling through the exchanges, so that
escaping from minima is facilitated. Alternatively, one can look at this process as an exchange of
configurations, that is configurations instead of temperatures, of a pair of replicas are exchanged.
The two representations are equivalent.

This is just a naive interpretation of the method, whose formalism (Hukushima and Nemoto,
1996) is rather general and clarify the two interpretations. The extended ensemble is made of
M different replicas of the sample we want to simulate, which is described by a Hamiltonian
H(X). With X we denote, for simplicity, all the microscopic spin variables, X = {~S1, · · · , ~SN}.
N is the total number of spin. To the m-th replica Xm, m ∈ {1, . . . , M} we associate an
inverse temperature βm = (kBTm)−1. The state of the extended system is specified by the set

2This specific results will be discussed in more detail in the chapter devoted to the simulation of the infinite
ranged model. We anticipate them here to give an idea of the difficulty we encountered facing these relaxation
times.
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X = {X1, · · · , XM}. With β = {β1, · · · , βM} we indicate the set of temperatures, and for
simplicity we assume βm > βm+1. The partition function is given by

Z(β) =

M
∏

m=1

e−βmH(Xm) =

M
∏

m=1

Z(βm) (3.20)

where Z(β) refers to the original system. Once the set β is specified, the probability distribution
of X is

P(X, β) =
M
∏

m=1

P (Xm, βm) (3.21)

P (X, β) =
e−βH(X)

Z(β)
.

The detailed balance is satisfied for the normal Monte Carlo spin-flip moves between attempts
to exchange configurations between replicas. To prove it also for the global exchanges, we
can introduce a transition matrix W (X, β|X ′, β ′), which defines the probability of exchanging
temperatures between two replicas, with configurations X and X ′ and temperatures β and β ′.
Then, the detailed balance condition requires

P(. . . ; X, β; . . . ; X ′, β ′; . . .)W (X, β|X ′, β ′) =

P(. . . ; X ′, β ′; . . . ; X, β; . . .)W (X ′, β ′|X, β).
(3.22)

Combining eqs. (3.21) and (3.22) one obtains the condition

W (X, β|X ′, β ′)

W (X ′, β ′|X, β)
= e−∆ with ∆ = (β ′ − β) [H(X) − H(X ′)] . (3.23)

In this way, adopting the usual Metropolis criterion, the transition probability for the exchange is

W (X, β|X ′, β ′) =

{

1 for∆ ≤ 0

e−∆ for∆ > 0.
(3.24)

The canonical thermal average for an observable O, at the inverse temperature β is given by

〈O〉β =
1

tMAX

tMAX
∑

t=1

M
∑

m=1

O (Xm(t)) δβ,βm(t) (3.25)

where we introduce, for the m-th replica, time dependent configuration Xm(t) and temperature
βm(t); tMAX is the total number of Monte Carlo sweeps.
As we already said, we can look at the algorithm as an exchange of configurations instead of
temperatures. The same derivation applies, and for every m ∈ {1, . . . , M} the thermal averages
are then computed as

〈O〉βm
=

1

tMAX

tMAX
∑

t=1

O (Xm(t)) . (3.26)
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Figure 3.2: Representation of the exchange scheme for the parallel tempering method. A system of 6
replicas is considered here, and the picture shows the alternating scheme used to attempt to
exchange temperatures between different systems.

We describe now the actual Monte Carlo procedure we adopt to realize the described algorithm.
Two types of steps are performed:

1. every replica is updated with standard Metropolis algorithms for a number of tlocal sweeps;
an exchange of temperature is attempted between the replicas having inverse temperatures
βi and βi+1, with i = 2n − 1, n ∈ {1, 2, . . . , M/2}. We use always adjacent values in
order to maximize the acceptance rate of the move;

2. the replicas are then again updated locally for tlocal sweeps; an exchange of temperature is
attempted between the replicas having inverse temperatures βi and βi+1, with i = 2n, n ∈
{1, 2, . . . , M/2 − 1}.

The scheme of this exchange process is illustrated in Fig. 3.2. For simplicity, we show an
example with six replicas. The horizontal axis gives the Monte Carlo time, and in the vertical
axis the various temperatures are indicated. Here they are equally spaced, but in principle they
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Figure 3.3: Random walk of a replica of the system in the temperature space. The extended ensemble
consists of 16 different replicas and the temperature range is [0.7, 1.964]. The size of the
system is 320 spins.

need not to. Every tlocal moves, temperature exchanges between the various replicas are proposed
as in the algorithm described above, alternating the pairs involved 3.
During the Monte Carlo run, every replica will visit the various temperatures, making in this way
a random walk in temperature space. In order to obtain a proper thermalization, every replica has
to spend on average the same amount of time in every temperature, avoiding to be trapped only
at low temperatures. Looking at a random walk, this means that each replica has to travel up and
down visiting each temperature level.
Up to now we did not comment about the choice of the temperature set. Much freedom is given,
the important thing is to select them in order to have significant probability of actually performing
the exchange, improving in this way the efficiency of the algorithm. The exchange probability
is given by energy difference multiplied the inverse temperature difference. In the canonical
ensemble, the total energy distribution of a system at a temperature T can be well approximated

3This is only one of the possible realization of the temperature exchange. Other possibilities could be to try to
involve all the pairs after the local update, or to select randomly a pair every local update.

27



MONTE CARLO METHODS

by a Gaussian distribution

PT (E) =
1√

2πσ(T )
exp

[

−(E(T ) − 〈E(T )〉)2

2σ(T )

]

. (3.27)

Both 〈E(T )〉 and σ(T ) are functions of the temperature. In order to have a good probability
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Figure 3.4: Energy distribution for s system of 320 spins. This is the result of a parallel tempering run
with 16 replicas. Here we show the results for 8 temperatures in the range [0.7, 1.193]. In
the inset we show the acceptance rate during the same run. It is practically constant in the
whole temperature range. The 16 temperatures used in the N = 320 simulations are obtained
making use of formula (3.28).

of exchange, the Gaussian distributions of the energy at the two temperatures have to overlap
considerably, otherwise the Metropolis factor will be small. Therefore the first condition for
an efficient algorithm is to take a set of temperatures with good overlapping of the energy dis-
tributions between neighboring values. This can be verified also a posteriori, calculating the
acceptance rate at every temperature. The temperatures can be equally spaced. The problem
with this choice is that, for low temperatures, the acceptance rate will be small, since σi, and
consequently the overlap between temperatures, tends to decrease with the temperature. One
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should then try to make it uniform. Suppose we have a good knowledge of the temperature de-
pendence of 〈ET 〉 and σT . We could then reconstruct the distribution (3.27). We could then,
given two temperatures Ti and Ti+1, guess in advance the acceptance rate A(Ti, Ti+1) through
the formula

A(Ti, Ti+1) =

∫ ∫

dxdyg(x, y)PTi
(x)PTi+1

(y)

g(x, y) = min {1, exp [−(y − x)(βi − βi+1]} . (3.28)

In this way, we could set up a numerical procedure, starting from the lower temperature and
the acceptance rate we would like to have, calculating step by step the successive temperature
through a numerical integration of (3.28). All we need to know then is the temperature depen-
dence of the average energy and its variance. To do so in a wide range of temperatures, we
can just use a preliminary parallel tempering run with equally spaced temperatures. In this way
we will obtain a plot for both E(T ) and σ(T ). We can then use a polynomial fit to interpo-
late between them, and use the results for the calculations of A. In spin glasses simulations
the advantage is that one can use for every realization of disorder the parameters calculated for
one sample, since for quantities related to the energy the sample-to-sample fluctuations are not
strong. We show the results of such a method in the inset of Fig. 3.4. The acceptance rate is
presented for the same system of 320 spins, with a set of temperatures optimized according to
(3.28). This is the measured accepted rate, that is number of exchanges divided the total number
of attempts. The same procedure has been used successfully in parallel tempering simulations of
supercooled liquids (Stühn, 2000).

We discuss now how to actually check the thermalization of the system.
As we said, a rapid first check is to control the random walk performed by each replica in

the temperature space. If the system is not thermalized, the replica can get stuck in one of the
temperature levels. An example of well-behaved random walk is given in Fig. 3.3. Every replica
has to visit each temperature in the set with a similar frequency, on the order of the inverse
number of total Monte Carlo steps divided by the total number of temperatures. It is then also
important to check that no observable is drifting in time, after a sufficient equilibration time. This
is analogous to what we already explained referring to standard spin flip algorithms, see section
3.3. Again, we concentrate on the energy per particle, easy to check during a run, and the order
parameter q. Looking at the results on a logarithmic time scale helps better in locating drifts.

The use of fluctuation dissipation relation also helps in checking thermalization. We employ
the following formula, relating the specific heat c to the fluctuations of the energy

d〈e〉
dT

= c =
N (〈e2〉 − 〈e〉2)

(kBT )2
. (3.29)

The right hand side of this equation can be calculated for every temperature, the left hand side
requires to do the derivative numerically once we have the value of e at every temperature. The
results for the parallel tempering algorithm are shown in Fig. 3.5a. If non equilibrium effects are
present, the fluctuation dissipation theorem would be violated and the two curves would show
significant drifts (Yamamoto and Kob, 2000).
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Figure 3.5: (a) Specific heat as a function of temperature calculated in two different ways, as derivative of
the energy per spin and as a function of the energy fluctuation. The compatibility of the two
results is an indication that thermalization is achieved. (b) Reweighting of the energy distri-
bution. The chosen temperature is T = 0.855. Four other curves are shown, the distributions
reweighted produced with data at different temperatures, as indicated.

In the same spirit, one can also check the possibility of reweighting, that is to obtain informa-
tion about static quantities at a temperature T making use of those obtained for a T ∗, provided
that the overlap of the energy distribution between them is appreciable. For a general discussion
of the method and its applications see (Newman and Barkema, 1999; Landau and Binder, 2000).
We concentrate here on the possibility of obtaining PT (E) from the knowledge of PT ∗(E). The
relation between them is

PT (E) =
PT ∗(E) exp(βE)

∫

dE ′PT ∗(E ′) exp(βE ′)
. (3.30)

We can obtain them for all the temperatures from the simulation, and then try to reweight each
of them to other temperatures, in order to compare. This is also a good test for equilibrium.
In case of non proper thermalization, the system does not explore fully and properly all the
energy spectrum at a certain temperature, and reweighting does not work properly. An example
concerning the properties of low-temperature results is given in Fig. 3.5b.
Note that we can define a time autocorrelation function also for the parallel tempering dynamics,
which is not realistic because the system visits different temperatures, but can help to check the
de-correlation of the configurations. It is defined as

CPT (t, β) =
1

NM(p − 1)

M
∑

m=1

N
∑

i=1

〈
(

pδσi(t′),σi(t+t′) − 1
)

〉(m)
β . (3.31)

The superscript (m) refers to the fact that each thermal average has to be computed separately be-
tween configurations belonging the same replica, and the subscript refers to the fact that {σi(t

′)}
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Figure 3.6: Spin autocorrelation functions for the standard spin flip Metropolis algorithm (MC) and par-
allel tempering method (PT), for a single sample of 320 spins, at two different temperatures
T = 0.7 and T = 0.9.

and {σi(t + t′)} must be at the same temperature β. As usual, before starting to measure this
correlation function, we always let the system equilibrate for the same amount of Monte Carlo
sweeps that constitutes our observation time. De-correlation is achieved when this autocorrela-
tion function goes to zero. We can then also compare the efficiency of the parallel tempering
algorithm with respect to the standard Metropolis. In Fig. 3.6 we show the spin autocorrelation
functions of the two methods at two different temperatures. The curves regarding the Metropolis
case have been produced with runs having as starting point thermalized configurations produced
with parallel tempering. From the different curves we recognize that at the higher temperature
the PT method leads to a relaxation which is more than one decade faster than the one of the
standard Monte Carlo procedure. This factor has increased to more than 100 at the lower tem-
perature and we see that at this temperature the equilibration of the system with the standard
Monte Carlo method becomes hardly feasible. We have also checked that this type of speedup
is typical in that it does not depend on the realization of the disorder, i.e. the bonds Jij in the
Hamiltonian.

As last remark, we discuss the dependence of the algorithm on the time tlocal, that is the num-
ber of standard Monte Carlo sweeps occurring between successive attempts to exchange temper-
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Figure 3.7: Spin autocorrelation functions for the parallel tempering method, for different values of t local.

atures between replicas. We found that for the system sizes investigated (N = 160, 320, 640),
tlocal = 10 was a good choice. Other values, smaller or larger, lead to a slower de-correlation,
although this effect is really strong for tlocal ≥ 100. A possible explanation is that the individual
replicas need to relax a bit at the new temperature after the exchange, so that then the successive
exchange process can be successful. A too short tlocal cannot permit that, while if it is too long
the system spend lot of time inside each temperature and the exchange process is not effective.
An example is shown in Fig. 3.7. This quantity tlocal is also a lot dependent on the way the
algorithm is actually set up, so that a preliminary observation is always needed.

3.5 The random number generator

The essential point in every Monte Carlo simulation is the generation of a sequence of uniformly
distributed random numbers, which are used in the part of the algorithm concerned with the
acceptance of moves. Random numbers are also used in choosing which spin in the lattice we
should try to flip, and in our particular case which Potts state we try to assign, if we use the
Metropolis criterion. Using spin glass models, we face also the need of producing different
realizations of disorder, that is for every different sample the interactions are taken according to
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a particular distribution.

Numbers in itself are not random, is the sequence that has to be such. However, these
sequences are produced by deterministic algorithms, and so, correctly speaking, are pseudo-
random sequences. These algorithms produce sequences of numbers uniformly distributed in
a chosen interval, and a good-quality generator must not produce correlation between numbers
over a long period, since extensive simulations require very long uncorrelated sequences. Just to
refer to our case, we made runs as long as 108 MCS with 1000 spin in the short range case, and
this imply the use of 1011 random numbers per single run.

The method commonly used to generate a sequence is to apply a certain function to the
element number n of the sequence in order to produce the next one, that is in+1 = f(in). The
first number of the sequence is called seed, and even though one uses the same function f one
can generate different sequences by changing seed. This is essential, otherwise one would need
a different algorithm for every run. Operations are performed between integers, and eventually
all the numbers are normalized to the biggest producible number (we are considering here, as
general example, the generation of numbers in the interval (0,1)). The most widely used functions
are part of a class called linear congruential generators:

in = (ain−1 + c) mod m. (3.32)

In this case, a,c, and m are “magic” numbers, in the sense that choosing them appropriately will
produce sequences of good quality. With good quality one usually means ergodicity, i.e. all
the numbers must occur, and “randomness”, i.e. as little correlation as possible. This statement
is unavoidable since these numbers are created by means of an algorithm. A discussion along
these lines can be found in (Newman and Barkema, 1999) and references therein. However a
drawback is that linear congruential generators produce sequences that have a period of at most
2 · 109, using 31-bit integers, so it is very likely that if we use to produce longer sequences, we
would introduce correlations that would affect the results. One must also keep in mind that the
period we mention is the theoretical maximum, so it can also happen to have sequences with
even shorter periods.

Various strategies have been found to overcome the problem, see (Newman and Barkema,
1999; Landau and Binder, 2000). We adopted a recently developed generator (Blöte et al., 1995).
We give just a short description of it. Details as well as references to the mathematical literature
upon which the generator is based can be found in the article cited and references therein. Using
the idea of shift-register generator, one generates bit strings ai with standard methods. A new
series a

′

i is produced out of them, by performing shifting operation on the previous one, a
′

i =
ai−9218 ⊕ ai−9689, where ⊕ represents the bitwise modulo-2 addition of two integers. Again
there is the presence of magic numbers. In the same way, another sequence is produced, b

′

i =
bi−97⊕bi−127. At the end, these two sequences are used to produce the final sequence, r

′

i = a
′

i⊕b
′

i.
This random number generator has been tested successfully on the three dimensional regular
Ising model giving excellent results (Blöte et al., 1995).
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3.6 Details of the simulations

We give now some technical details of the simulations we have done. In the next tables, 3.1, 3.2,
3.3, we show for the various models and algorithms used the longest runs we have made. The
first two regard the single spin flip Monte Carlo, both in the infinite range and in the short range
case. We indicate the lowest temperature we could investigate and the corresponding length of
the run. This latter number must be multiplied by two, since it is the time it takes to the system
to equilibrate. After that, we let it evolve for the same time, performing the measurements. We
indicate also the total number of different realization of disorder investigated. As we said in
fact, in spin glass simulations one has to perform also average on disorder, in addition to the
usual thermal average. The third table is devoted to the parallel tempering algorithm, used only
in the infinite range case. Here we indicate also the total number of replicas used for every
run (remember that the parallel tempering algorithms simulate more replicas simultaneously).
Other runs, e.g. the dynamics at very low temperatures produced starting from equilibrated PT
configurations, or the Gaussian interactions in the three dimensional case, are described in the
related chapters.

Table 3.1: Infinite range system with the single spin flip Metropolis algorithm (Gaussian interactions).
We show, for every system size, the minimum temperature investigated, the time it takes to
equilibrate, and the number of different realizations of disorder.

Size N Tmin lenght of the run (MCS) number of samples

160 0.9 107 500
320 0.9 107 100
640 1.0 5 · 106 100
1280 1.142 6 · 105 100
2560 1.2 105 20

Table 3.2: Short range system with the single spin flip Heat Bath algorithm. We show, for every system
size, the minimum temperature investigated, the time it takes to equilibrate, and the number of
different realizations of disorder.

Size N Tmin lenght of the run (MCS) number of samples

216 1.5 108 100
1000 1.5 108 100
4096 1.6 107 50
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3.6 DETAILS OF THE SIMULATIONS

Table 3.3: Infinite range system with the parallel tempering algorithm. We show, for every system size,
the minimum temperature investigated, the time it takes to equilibrate, the number of different
realizations of disorder, and the number of replicas used.

Size Tmin lenght of the run (MCS) number of samples replicas

160 0.7 106 400 16
320 0.7 106 200 16
640 1.0 5 · 105 100 16
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Chapter 4

The infinite range Potts glass

4.1 Static properties

In this chapter we investigate the fully connected Potts glass with p = 10. The Hamiltonian is
given by

H = −1

2

∑

i,j

Jij(pδσiσj
− 1). (4.1)

The sum is on every couple of different spins. All the spins are therefore connected though the
coupling Jij. They are taken from a Gaussian distribution

P (Jij) =
1√

2π∆J
exp

[

−(Jij − J0)
2

2(∆J)2

]

. (4.2)

Since it is an infinite range model, as we explained in chapter 2 a proper scaling of these variables
is needed to ensure a finite thermodynamic limit. So the first two moments are given by

J0 =
3 − p

N − 1
(4.3)

(∆J)2 =
1

N − 1
. (4.4)

Using these parameters eliminates the problem of the tendency to ferromagnetism above the spin
glass transition temperature. Also the second transition temperature is not close to the spin glass
transition temperature, since with this choice of parameters it occurs at T2 = 1/2. In this way we
pay attention not to mix different behaviors so as to concentrate only on the paramagnet-to-spin
glass transition. We recall that, in these units, the expected dynamical transition temperature in
the thermodynamic limit is at TD = 1.142 and the static transition temperature at T0 = 1.131
(De Santis et al., 1995). We always use units in which kB = 1.
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THE INFINITE RANGE POTTS GLASS

4.1.1 Energy and entropy

We present the results of our simulation of the 10−state Potts glass with infinite range interac-
tions, starting from the discussion of the internal energy of the system. Fig. 4.1a shows a plot of
the energy per spin versus inverse temperature, over the whole range of temperatures investigated
(0.7 ≤ T ≤ 2). As we said, in the choice of the parameters of our Hamiltonian (eq. 4.1) we paid
attention to stay away from every possible ordering of ferromagnetic type, so the temperatures
TF and T2, discussed in chapter 2 and calculated above for this model, are outside of this range
(in fact βF ≡ 1/TF ≈ 1.88, β2 ≡ 1/T2 = 2.0). We choose to plot the energy as a function of β
because a linear dependence is predicted in the thermodynamic limit above the static transition
temperature (replica symmetric theory) (Elderfield and Sherrington, 1983a). Also the theoret-
ical prediction for N → ∞ obtained within the one-step replica symmetry breaking solution
(De Santis et al., 1995), is included in the plot. This figure reveals unexpectedly large finite size
effects over a broad temperature regime: only for β . 0.6 the energy coincides with the asymp-
totic result, starting from N = 640. For β & 0.6 clear deviations from the asymptotic solution
are visible, which are larger for smaller N . Our numerical data for finite N reveal only a smooth
crossover from the disordered (paramagnetic) high temperature phase to the low temperature
spin glass-like phase: no indication of the kink at β0, predicted by the one-step replica symmetry
breaking theory and signaling the occurrence of the phase transition is yet visible; furthermore,
as expected, there is no effect of the presence of the dynamical transition on static quantities like
the energy. It is interesting to discuss further the size dependence of the convergence of the en-
ergy to the thermodynamic limit. The calculation of finite size corrections to the thermodynamic
behavior for various quantities in the Ising spin glass has been carried out analytically (Parisi
et al., 1993a; Parisi et al., 1993b); it was found that, at the critical temperature Tc

ec = e∞c + e
′

cN
−2/3 + e

′′

c N
−1 + · · · (4.5)

(analogous formulae can be obtained also for the order parameter and its moments, as we will
discuss in section 4.1.2). Although this result is based on an infinite level of replica-symmetry-
breaking, the exponents can be understood phenomenologically for analogous second-order tran-
sitions, in particular in the p = 3 Potts glass (at the heart of the reasoning in fact is the Landau
expansion of the free energy close to the critical temperature) (Dillmann et al., 1998). However
such a phenomenological understanding cannot be directly applied to the p = 10 case, being
the phase transitions of different nature, and an extension of eq. (4.5) to the case of first order
transition without latent heat is still lacking at the moment. A finite size scaling analysis of our
data is presented in Fig. 4.1b, where we plot e(N, T )− e(∞, T ) for three different temperatures
and various system sizes. We see that well above (as expected) but also below the region of the
phase transition the data are compatible with a N−1 leading correction; however in the vicinity
of T0 a different exponent, compatible with −2/3 comes into play (see inset of Fig. 4.1b). It
seems then that also in the p = 10 case the leading order correction of eq. (4.5) is valid; we will
see an analogous behavior also for the moments of the order parameter 1.

1Note that we plot here data for TD instead of T0 since we have simulated more system sizes at this temperature.
Actually such a different “critical” exponent should be correct only at T0 exactly, and even at TD only a crossover
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Figure 4.1: (a) Energy e per spin as a function of the inverse temperature β = 1/T for different system
sizes (curves with symbols). The bold solid curve shows the one step replica symmetry break-
ing solution (De Santis et al., 1995), the broken curve - which coincides with the former for
T ≥ T0 - is the replica symmetric solution, eq. (2.24). The thin vertical lines indicated the in-
verse temperatures βD (left) and β0 (right) of the dynamical transition and the static transition,
respectively. (b) Analysis of the size dependence of the energy difference eN (T ) − e∞(T ),
using the one-step replica symmetric solution (De Santis et al., 1995) to calculate e∞(T ).
The inset shows the data at T = TD = 1.142 plotted versus N−2/3 instead of N−1.

The energy is related to the first derivative of the free-energy: given the fact that the spin
glass transition in this model is expected to have no latent heat of transition (although the order
parameter jumps discontinuously at the static transition), it does not show any singularity or
discontinuity (Stanley, 1971). A discontinuity is instead expected in the specific heat (Gross
et al., 1985), which we plot together with the solution obtained in the framework of 1S-RSB, for
different system sizes in Fig. 4.2. We recall that a direct calculation of the specific heat from the
simulation for every temperature can be obtained (without having to calculate derivatives of the
energy) by using

c =
[〈H2〉 − 〈H〉2]av

NT 2
. (4.6)

Again the convergence to the thermodynamic limit is clear, especially for temperatures above
the static transition one; close to T0 the height of the maximum is particularly affected by the
rounding off of the transition, and below not much can be said, only the qualitative behavior
seems to be the same also for finite N . A standard way to locate phase transition of standard
type is to locate the maximum of the specific heat (due to the tendency to a divergence in the
thermodynamic limit, or to the developing of a discontinuity). We can also analyze the maximum

towards the high temperature N−1 behavior should be present for N very large. However, since the two temperatures
are so close to each other this does not matter for the system sizes investigated here.

39



THE INFINITE RANGE POTTS GLASS

for the different curves, trying in this way to extrapolate the position of the expected discontinuity
in the thermodynamic limit, which is alway rounded off for finite systems. This procedure has
been employed in previous studies of similar models with small system sizes but a high statistics
regarding the realizations of disorder (Peters et al., 1996; Dillmann et al., 1998), finding a leading
size correction to both the position and the height of the maximum scaling like N−1/2. We show
the results of such extrapolation, done interpolating the points and locating the region of the
maximum, in the insets of Fig. 4.2. Since we do not have many points, we just took the N−1/2

dependence to see the compatibility with our data: although affected by relatively large error
bars, they are compatible, and also a value compatible with T0 = 1.131 can be obtained. The
extrapolation of the data gives 1.13± 0.02, since the points themselves are affected considerably
by uncertainties. In order to make a careful study, one should perform a high statistics (in this
case reweighting procedures can be useful) study close to the region of the maximum; however,
it does not seem that this is a practical procedure, since one should go to rather large value of
N and very close to T0, a purpose that is at present simply not feasible for N & 2000. Besides,
one should also note that this pronounced discontinuity is typical only of mean-field models;
experimental systems and also lattice models in finite dimensions show usually a very broad and
flat region of maximum around the phase transition temperature (Fischer and Hertz, 1991).
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Figure 4.2: Specific heat as a function of the temperature for system sizes N = 160, 320, 640; the solid
line shows the solution in the thermodynamic limit (De Santis et al., 1995). In the inset the
size dependence of the position of the maximum of the three curves, plotted as a function of
N−1/2; see text for more details. The data for N = 1280, 2560 are not reported here since
they are rather noisy and do not display a maximum in the temperature region investigated.

We can now discuss the temperature dependence of the entropy e(T ), shown in Fig. 4.3. The
entropy cannot be directly estimated during a canonical Monte Carlo simulation: methods based
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Figure 4.3: Entropy s per spin, normalized by its high temperature value log(10) plotted vs. inverse
temperature for different system sizes (curves with symbols). The bold dashed and the bold
solid curves are the replica symmetric solution and the one-step replica symmetry breaking
solution, respectively. Vertical arrows indicate the static inverse transition temperature β0 and
the inverse of the “Kauzmann temperature” βK , where the entropy of the replica symmetric
solution vanishes.

on importance sampling permit to generate various configurations Xν of the system under inves-
tigation with a probability aν proportional to

pν = Z−1 exp [−H(Xν)/(kBT )] , (4.7)

Z being the partition function. The proportionality constant relating aν and pν is not known, and
not needed to evaluate quantities that can be expressed as thermal averages of suitable operators
(as we explained in the section devoted to numerical methods). However the partition function
Z, the free energy per spin f = −(kBT lnZ)/N and the entropy s = (e − f)/T cannot be ob-
tained in this way. One can access these quantities by making use of thermodynamic integration,
starting from a reference temperature TR (that can be also TR = ∞) at which the behavior of the
system is known. References to this method applied to the analysis of Monte Carlo data can be
found in (Landau and Binder, 2000). One has then

βf(T ) = −s(TR)

kB
+

∫ β

βR

e(β)dβ (4.8)

s(T )

kB

=
s(TR)

kB

+ βe(T ) −
∫ β

βR

e(β)dβ (4.9)
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We have used TR = 2, a temperature at which our data are no longer sensitive to finite size
effects and the replica symmetric solution is fulfilled, so that we can use as reference s(TR) the
mean-field value −9/16 + ln(10), given in eq. (2.25). We just recall that we are using units in
which kB = 1. The integral over e was done by using a spline interpolation of our data, with 180
points for N = 160, 320, 640 and 100 points for N = 1280, 2560. From eq. (2.25) we note that
the entropy at the static transition is

s(T0) = ln 10 − 9

4

(

Ts

T0

)2

≈ 0.54424, i.e.
s(T0)

s(∞)
≈ 0.23636. (4.10)

Thus we see that while at the static transition temperature T0 the entropy has decreased to less
than a quarter of its high temperature value it is clearly nonzero (and nonnegative, of course);
in analogy to the energy, finite size effects do no permit to see the kink at T0 present in the
thermodynamic limit.

The entropy is a crucial quantity in the study of supercooled liquids (Debenedetti, 1996); it is,
in the supercooled region, bigger that in the underlying crystal phase, but decreases faster towards
zero; due to the fact that eventually supercooled liquids fall out of equilibrium (vitrification), it is
not possible to measure their entropy up to low temperatures, but an extrapolation can be done.
If one then accept the validity of this extrapolation (that would correspond to an infinitely slow
cooling of the system) , a crossing of the entropy of the crystal and of the supercooled liquid is
found 2. Continuing to extrapolate would lead to a situation that seems paradoxical, since there
would be an entropy of the amorphous state lower than that of the crystal at the same tempera-
ture (this is known as “Kauzmann paradox” (Kauzmann, 1948)). The temperature at which the
extrapolated supercooled entropy equals the one of the crystal is called “Kauzmann temperature
TK”. A possible solution to this is to view this plausible entropy crisis as a manifestation of a
genuine phase transition to a glass phase at TK . A theoretical calculation has been carried out for
a lattice model for polymers (Gibbs and DiMarzio, 1958). Gibbs and DiMarzio assumed that in
the supercooled regime the entropy of the polymer can be decomposed into vibrational (due to
phonons) and configurational; since a lattice model was used, lacking by definition a vibrational
contribution to thermodynamics, the total entropy was identified with the configurational one;
under some specific assumptions, they calculated the partition function for the model, and found
that the entropy vanishes at a nonzero temperature TK . A simulation study of the glass transition
in the framework of the bond fluctuation model found a decrease of s from its high temperature
value to about 1/4 of this value, when T is lowered, but then the curve s(T ) vs. T bends over
and a well-defined Tk does not exist - (also the high temperature results does not coincide with
the analytical predictions of (Gibbs and DiMarzio, 1958), indicating probably an error in the
calculation of the partition function in their approach)- (Wolfgardt et al., 1996).

If one proceeds in the same way with the current (lattice) model to obtain a Kauzmann tem-
perature TK where the entropy of the (meta)stable high temperature phase vanishes, one gets
from eq. (4.10)

TK

Ts
=

3

2
(ln 10)−1/2 ≈ 0.9885 (4.11)

2Note that in the case of o-terphenil, a good glass former, the cooling rate necessary to reach this crossing point
would require a waiting time on the order of 105 times the age of the universe, see the discussion in (Jäckle, 1986)
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which is even below the “true” stability limit Ts = 1 of the disordered phase, where the (extrapo-
lated) static glass susceptibility is divergent 3. Also a strictly linear extrapolation of s(T ) from Ts

or T0 down to a temperature where this extrapolation would vanish does not give a meaningful
result.

These results show that the idea to locate the static glass transition temperature by an extrap-
olation of the (configurational) entropy function s(T ) in the disordered high temperature phase
to s(T = TK) = 0 can be misleading, even for a mean-field model that does indeed exhibit both
a dynamical transition (at TD) and a static transition (at T0). While TK is always lower than T0,
it does not coincide with the stability limit of the metastable high temperature phase, and thus
lacks any physical significance.

The proper quantity to deal with in the case of spin glasses is the “complexity”, which signals
the splitting of the phase space into disjunct valleys, and is a more suitable quantity to locate
the spin-glass transition rather than the configurational entropy, that can be ill-defined in the
case of lattice models. The definition of complexity is strongly connected to the concept of
broken ergodicity (Palmer, 1982; Monasson, 1995). It can be shown that in the mean-field
limit spin glasses with an discontinuous order parameter at the phase transition presents a very
large (exponentially) number of metastable states in the range T0 < T < TD; the logarithm
of this number is called complexity; it starts to be extensive, coming from high temperature,
at TD, and vanishes as T0 is approached. The vanishing is due to the fact that the number of
relevant states is no longer exponential in N , but algebraic, i.e. N a (Kirkpatrick and Wolynes,
1987). The complexity can be calculated from the solutions so-called TAP equations, introduced
for the Ising case by Thouless, Anderson and Palmer (Thouless et al., 1977), for the mean-
field local magnetizations (Kirkpatrick and Wolynes, 1987). We have discussed this approach in
chapter 2, section 2.2. This cannot be done analytically for the present model with p = 10, so a
numerical solution is needed. Since they are N coupled non-linear equations with an exponential
(in N ) number of solutions, the task is rather difficult. Recently also another approach has
been presented to extract it from simulations, based on the decomposition of the phase space
in inherent structures, that is the local minima of the energy in the configuration space (Crisanti
et al., 2001). Due again to the large number of minima, and also to the fact that a rather exhaustive
search has to be done, the method is restricted to rather small sizes. However in our case, since
T0 and TD so close to each other, and due to the presence of large finite size effects close to the
transition region, a quantitative estimation of the complexity would be rather difficult.

4.1.2 The order parameter distribution and its cumulants

For defining a spin glass order parameter, we follow the standard method used in simulations of
Potts glasses (Scheucher and Reger, 1993; Dillmann et al., 1998; Hukushima and Kawamura,
2000) to consider two replicas α and β of the system, i.e. two systems that have identical bond
configurations, and to make for each of them an independent Monte Carlo simulation. We have
discussed the calculation of the order parameter in chapter 3 devoted to the numerical methods,

3Note that the proximity of TK and Ts happens accidentally for p = 10. E.g. for p = 5 the general result

(Elderfield and Sherrington, 1983a; De Santis et al., 1995) TK/Ts =
[

1

4
(p − 1)/ ln p

]1/2
implies TK/Ts ≈ 0.7882.
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section 3.3. We just recall here the definition of overlap:

q =

√

√

√

√

1

p − 1

p−1
∑

µ,ν=1

(qµν)2 qµν =
1

N

N
∑

i=1

Sµ
iαSν

iβ. (4.12)

In the investigation of spin glass systems a great role is played by the order parameter distribu-
tion P (q), that is the distribution of the overlaps between different equilibrium configurations
at a certain temperature. Below the spin glass transition the mean field theory predicts for this
function a nontrivial behavior, and for the model under investigation a double-delta function is
expected, with two peaks at q = 0 and q = q0(T ).

Numerically P (q) is calculated by making a histogram of the values of q resulting from the
analysis of the overlaps between configurations thermalized at the temperature of interest. The
n-th moment of the order parameter is then given by

q(n) = [〈qn〉]av =

∫

qnP (q)dq. (4.13)

The second moment is related to the reduced spin glass susceptibility through

χ̃SG =
N

p − 1
[〈q2〉]av. (4.14)

The difference with the ordinary spin glass susceptibility defined in eq. (2.22) is just the factor
(p − 1)−1 used to normalized it to 1 for T → ∞. χ̃SG diverges in the limit of infinite sys-
tem in presence of a spin-glass phase. Sometimes in the literature is also known as “overlap
susceptibility” (Marinari et al., 1998b) .

We start now to discuss our results, starting from the order parameter distribution. Fig. 4.4 is
the order parameter distribution for many different temperatures for N = 320: we see indeed the
appearance of a second peak, at low temperatures, at a value q0 6= 0, distinct from the first one at
small but finite q and present also at high temperatures T > T0.
The position of the first peak at q 6= 0 is however a finite size effect. We must keep in mind that,
by definition, q is a sum of all positive element (the matrix element of the overlap tensor) and is
never equal to zero, so finite size effects are quite pronounced even in the paramagnetic phase
(this is typical when using rotational invariant order parameters (Landau and Binder, 2000)).
Increasing the system size will bring thus the position of first peak always closer to q = 0. This
statement is proven in Fig. 4.6b, a finite size scaling analysis of the first moment of P (q). We see
that for temperatures well above T0 the first moment vanishes like N−1/2. However, close to T0

this type of extrapolation would give a finite value of the moment, inconsistent with the solution
in the thermodynamic limit, according to which all the moments goes to zero for T ≥ T0 (Gross
et al., 1985). If instead an extrapolation with N−1/3 is done, see inset, one finds again as expected
that the moment vanishes. Note that, according to this results, for the second moment of P (q)
we have at T = T0 again a scaling of the type N−2/3, consistent with the values we found for the
energy, see Fig. 4.1b: the same notes and remarks we made are still valid in this case.
The size dependence of P (q) at low temperatures (T = 0.7 ≈ 0.6T0) is plotted in Fig. 4.5.
The vertical dotted line represents the value of the second peak expected in the thermodynamic
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Figure 4.4: Order parameter distribution P (q) versus q for N = 320 and various temperatures down to
T = 0.7 ≈ 0.6T0

limit qEA(T = 0.7) ≈ 0.82 (De Santis et al., 1995). The agreement is rather good, and shows
that this peak is less affected by finite size effect as the first one. The shape of P (q) at low
temperature then is consistent with the one step-replica symmetry breaking scenario, different
from the continuous one realized in the Ising mean-field spin glass, whose Monte Carlo evidence
appeared in (Young, 1983). The complete temperature dependence of the first moment q (1) is
in Fig. 4.6a: it starts to grow quickly in the low temperature region, where the size effects are
weaker; the inset shows a scaling plot of q(1) versus temperature, and again gives a rather good
idea of the separation between the paramagnetic region, where the curves collapse, and the spin
glass phase, where q(1) acquires a finite weight.

The discussion of the second moment q(2) comes together with the one of the spin glass suscep-
tibility χ̃SG, since they are connected through eq. (4.14).

Fig. 4.7 shows the reduced spin glass susceptibility as a function of the squared inverse tem-
perature. This representation is adapted to the theoretical temperature dependence of this quan-
tity, see eq. (2.26), which predicts at T−2-law at high temperatures. As expected already from
the behavior of the internal energy, even far above Ts and T0 the convergence to the thermody-
namic limit is rather slow. Unfortunately the analysis of the finite size behavior of χ̃SG is not
straightforward, as we will show in the following. For T < T0 and N → ∞ eqs. (4.14), (2.32)
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Figure 4.5: Order parameter distribution P (q) versus q for T = 0.7 and the three system sizes N =
160, 240 and 320. The asymptotic value of the order parameter qEA ≈ 0.82 (De Santis et al.,
1995) is included by a vertical line.

and (2.35) imply

χ̃−1
SG =

p − 1

Nq2
0

1

(1 − T/T0)
, (4.15)

since for T < T0 our definition for χ̃SG, eq. (4.14), simply picks up a contribution due to the
nonzero spin glass order parameter q0. As a result, χ̃−1

SG for N → ∞ should follow the straight
dashed line in Fig. 4.7 that represents the replica-symmetric solution for all T −2 < T−2

0 , while for
T−2 > T−2

0 , χ̃−1
SG simply converges towards the abscissa: this discontinuity is sharp in the ther-

modynamic limit, since the following expected two limits are different (Kirkpatrick and Wolynes,
1987):

χ̃−1
SG(T → T+

0 ) = 1 − (1/T0)
2 χ̃−1

SG(T → T−
0 ) = 0. (4.16)

This singular behavior of χ̃−1
SG is explained further in the inset, where we have added to χ̃−1

SG the
term (Ts/T )2. This sum is thus supposed to give unity for T > T0 and (Ts/T )2 for T < T0 in the
thermodynamic limit, as can be seen from eq. (2.26). For very large but finite N , χ̃−1

SG for T < T0

exhibits a Curie-Weiss type divergence at T0, coming from low temperature, but the amplitude
of this effect is only of order 1/N , as results from eq. (4.15). In order to analyze the finite size
rounding of this singularity one should need a better understanding of the finite size rounding
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Figure 4.6: (a) Temperature dependence of the first moment of the order parameter distribution for dif-
ferent system sizes, as shown in the legend. In the inset we show the scaling with N −1/2,
which is satisfied at high temperatures. (b) Value of the first moment

∫

qP (q) dq of the order
parameter distribution vs. N−1/2. The inset shows that close to the transition temperature
T0 ≈ TD this moment scales like N−1/3.

of the delta-peaks predicted for N → ∞ into peak of finite height and nonzero width 4. As we
already showed in Fig. 4.4, our simulation results for P (q) do indeed give evidence that a second
peak at q0 6= 0 develops, distinct from the peak at small q that exists also in the high temperature
phase. However, the statistical accuracy of P (q) is not very high due to the well known fact that
in the ordered phase this quantity is not self-averaging (Binder and Young, 1986; Mézard et al.,
1987; Fischer and Hertz, 1991), and the number of realizations of the random couplings that we
were able to study is insufficient to overcome this problem. Hence we are currently not able to
do a proper analysis of the finite size effects of P (q), see Fig. 4.5, and thus cannot make a finite
size analysis of χ̃SG.

The results so far for the statics are definitely all in qualitative agreement with the mean-field
scenario. We find also quantitative agreement with the value of the Edwards-Anderson order
parameter at low temperature, and it seems therefore clear that the phase transition and the low
temperature phase are compatible with what is expected in the thermodynamic limit. Now it
would be good also to see if we are able to get a quantitative estimation of the spin glass transition
temperature without relying explicitly on the knowledge of the mean-field solutions. As already
discussed, this is usually a matter of the analysis of the cumulants.

A further interesting quantity related to the distribution P (q) is the reduced fourth-order

4A phenomenological attempt to describe the finite size behavior for the glass transition of Potts models has
been made in (Dillmann et al., 1998), but this approach is not followed up here, since it is not compatible with a
vanishing of the height of the second peak like 1 − T/T0 in the thermodynamic limit, see eq. (2.35).
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Figure 4.7: Inverse of the reduced spin glass susceptibility χ̃SG versus the square of inverse temperature
for different system sizes (curves with symbols). The solid line shows the result of the replica-
symmetric theory, eq 2.26). Inset: Plot of χ̃−1

SG + (Ts/T )2 to illustrate the non-monotonic
convergence towards eq. (2.26). See text for more details.

cumulant (Binder and Young, 1986; Binder and Reger, 1992; Hukushima and Kawamura, 2000)

g4(N, T ) =
(p − 1)2

2

(

1 +
2

(p − 1)2
− [〈q4〉]av

[〈q2〉]2av

)

(4.17)

This ratio of moments was found to be valuable in the context of finite size scaling analysis of
phase transitions (Binder, 1981; Privman, 1990), both of first (Vollmayr et al., 1993) and second
(Binder, 1992) order, also for spin glass systems (Binder and Young, 1986; Kawashima and
Young, 1996). In ordinary second order phase transitions g4(N, T ) goes to zero in the disordered
phase and assumes a non-zero value in the ordered phase, approaching the value 1 at T = 0 if
the ground state of the system is non-degenerate. This result based on a the idea of a Gaussian
shape of the order parameter distribution, which is smeared out from finite size effects. However,
what makes g4 so valuable is that, at leading order in finite size corrections, it takes a universal
value at the critical temperature T = Tc. This is particularly suitable for a simulation. Usually
one plots g4(N, T ) as a function of the temperature for different system sizes, and the crossing
point of all the curves locates the phase transition temperature.
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For first order phase transitions the situation is different: g4 goes always to zero in the high
temperature phase, but shows a minimum at a certain temperature Tmin, with Tmin − Tc ∝ N−1

and a value of the cumulant g4(Tmin) scaling like g4(N, Tmin) ∝ N−1 and negative. All cumu-
lants g4(N, T ) approximately intersect at a common crossing point, scaling like Tcross ∝ N−2,
with a universal value g4(N, Tcross) = 1−n/(2q), where n is the order parameter dimensionality
and q the degeneracy of the ordered state. This phenomenology has been tested and verified for
Potts ferromagnets (Vollmayr et al., 1993). As far as numerical studies of spin glasses, a great
effort was devoted to the search of a phase transition in the three dimensional Edward-Anderson
model (that is an Ising system with random interactions (Edwards and Anderson, 1975)). There
is now agreement that a second order phase transition takes place; the g4 cumulant behaves as
in ordinary critical phenomena, and is usually taken as the best evidence for the existence of a
spin glass phase transition (see (Marinari et al., 1998b; Ballesteros et al., 2000) for the most up
to date results).
Another quantity has been proposed (Marinari et al., 1998a) especially for spin glasses, which is
a measure for the onset of lack of self-averaging 5, and goes under the name of Guerra parameter

G(N, T ) =
[〈q2〉2]av − [〈q2〉]2av

[〈q4〉]av − [〈q2〉]2av

. (4.18)
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Figure 4.8: (a) Fourth order cumulant g4 plotted versus temperature, for three values of N , N = 160, 320
and 640. The vertical straight line highlights the predicted static transition temperature T0.
(b) Same as (a) but for the Guerra parameter. The horizontal dashed line is the theoretical
expectation for T < T0.

5Self-averaging means that a quantity is independent on the microscopic realization of the quenched disorder. In
spin glasses the order parameter lack this property in the low temperature phase. We will come back to this point
discussing the dynamics close to the dynamical transition, see section 4.2.1.
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Again, the idea behind it comes from the fact that it has been shown (Guerra, 1996) that
sample to sample fluctuations of the cumulants of the order parameter distribution PJ(q) are
Gaussian distributed in the thermodynamic limit. In mean field spin glass transitions G(N, T )
goes to zero like N−1 at high temperature (T > Tc) but converges to a finite value 1/3 for
T < Tc. Therefore it is expected that a crossing of the various G(N, T ) for different lattice sizes
locates the spin glass transition, whether of first or second order.

From the point of view of the order parameter, the phase transition in this model is first-order
like. The g4(N, T ) cumulants are presented in Fig. 4.8a. The presence of a minimum can only
be inferred because all the curves have to go to a positive value for T = 0, although it cannot yet
be seen explicitly. Moreover, the lines for different N seem to cross around T = 1.3, which is
still far from the real transition temperature. A more careful look however, see the inset, gives
good reason to believe that the crossing of the curves is rather spurious, since the temperature
at which the line cross is shifting towards lower values as N is increased. From this point of
view, it seems that correction to scaling are still big, if a crossing point is to be expected at all.
The behavior of g4 is nevertheless reminiscent of a first order phase transition. In this particular
case, one has to keep in mind that the second peak in P (q) appears discontinuously (that is
q0(T ) is a discontinuous function of the temperature) but with a weight proportional to 1−T/T0,
see eq. (2.35). If we take the expression for the g4 cumulant given in eq. 4.17 and insert the
expression for P (q) expected in the thermodynamic limit, we see clearly that the cumulant has
to go to minus infinity as T0 is approached

g4(N → ∞, T ≈ T0) ≈
1

1 − T
T0

. (4.19)

This feature seems also to be consistent with the data. However a naive look at the crossing can
lead to an overestimation of the spin glass transition. We would like to state that it also cannot
completely be ruled out that the crossing we see is analogous to the crossing expected in normal
first order phase transitions, since in that case the crossing happens at T values lower than T0, as
we already said in the discussion at the beginning of this subsection.
Problems are also present for the Guerra parameter, Fig. 4.8b. A crossing of the temperature
is present, but again the temperature we read off is T = 1.24, bigger than the true one. The
Guerra cumulant has been used up to now only in few investigations (see (Marinari et al., 1998a;
Hukushima and Kawamura, 2000; Picco et al., 2001)) and usually a bigger value with respect
to the real one is found, although it has also been found that correction to scaling are important
(Ballesteros et al., 2000). Anyway in the present range of system sizes these intersection points
of the cumulants cannot be taken as accurate estimates of T0. This already is obvious from the
data alone, because the two quoted temperatures are not in mutual agreement. It is also highly
probable that in reality neither the three curves for g4(N, T ) nor those for G(N, T ) intersect
at a unique temperature: given the relatively large error bars of the data, they only can define
temperature intervals ∆Tg4, ∆TG, in which the three intersection points fall. As N → ∞,
presumably all temperatures of these intersections converge (slowly!) towards T0. Since T0 falls
distinctly outside the above intervals, this method of searching for intersection points, which is
so successful for locating phase transitions in pure systems is not reliable here.
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Recently also another class of cumulants has been introduced (Picco et al., 2001). They make
use of the so-called “connected” order parameter, that is q − 〈q〉. We denote the correspondent
cumulants with g4c(N, T ) and Gc(N, T ). They are extensions of the former definitions:

g4c(N, T ) =
(p − 1)2

2

(

1 +
2

(p − 1)2
− [〈(q − 〈q〉)4〉]av

[〈(q − 〈q〉)2〉]2av

)

(4.20)

Gc(N, T ) =
[〈(q − 〈q〉)2〉2]av − [〈(q − 〈q〉)2〉]2av

[〈(q − 〈q〉)4〉]av − [〈(q − 〈q〉)2〉]2av

. (4.21)

The use of these cumulants linked to the order parameter fluctuations (since they are defined
through q − 〈q〉) has been found to give good results in locating the phase transition in a p-
spin model, exhibing the same replica-symmetry-breaking pattern as the Potts glass (Picco et al.,
2001). There are however drawbacks, since in order to obtain good data about fluctuations one
needs a very good statistics, difficult to obtain for medium-large system sizes. We show our data
in Figs. 4.9. Also the use of this cumulants does not seem to bring advantages in the location
of the phase transition in our case. The g4c is expected to go towards −∞ at the static transition
temperature, but we see again the presence of a probably spurious crossing point, since it is not
present in the data for the p-spin model. The connected Guerra parameter also shows in analogy
with the normal one a crossing point that does not correspond to T0.
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Figure 4.9: (a) Guerra cumulant Gc(N,T ) for the connected order parameter, see eq. (4.21). Three
system sizes are shown: N = 160, 320 and 640. The vertical straight line highlights the
predicted static transition temperature T0. (b) Same as (a) but for the g4c(N,T ) parameter.

4.2 Dynamical properties

Before presenting and discussing our results concerning the dynamics of the system, we give a
short reminder of the scenario expected in the thermodynamic limit (Kirkpatrick and Wolynes,
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1987; Kirkpatrick and Thirumalai, 1988), as discussed in the introductory chapter. The theoret-
ical results of Kirkpatrick et al. show that the Potts glass with p > 4 states has a “dynamical
transition” at a temperature TD > T0, where non-ergodicity sets in. For T ≤ TD, the spin auto-
correlation function C(t) does not decay to zero anymore, but gets stuck for t → ∞ at a nonzero
value qEA(T ), with (De Santis et al., 1995)

TD = 1.142, qEA(T = TD) = 0.328. (4.22)

The details of this transition from ergodic (for T > TD where C(t → ∞) = 0) to non-ergodic
behavior (for T < TD), as well as the time dependence of C(t) for temperatures around TD

are in fact described by equations formally analogous to those proposed for the structural glass
transition by the so called “idealized mode-coupling theory” (Götze, 1989). The qualitative
behavior of various quantities expected for N → ∞ is sketched in Fig. 2.2. Note that for T > TD

and T < T0 we have q0 = qEA. In the temperature range T0 < T < TD we have, however q0 = 0
and qEA > 0.

In the following we will discuss the general phenomenology of the dynamics of a fully con-
nected 10−state Potts glass with a finite number N of spins, where no sharp dynamical transition
is expected but rather a changing in the relaxation properties; we will then introduce a method
to rationalize our results, comparing to the mean field limit with the dynamic finite size scaling.
The approach to broken ergodicity will also be quantified, and some insights on the dynamics in
the low temperature phase, where little is known, are presented. To conclude, we will discuss the
behavior of single spin relaxations, found to be extremely heterogeneous.

4.2.1 Dynamics in the high temperature phase

In Fig. 4.10a we show the time dependence for the spin auto-correlation function C(t) for N =
1280 and all temperatures investigated. We remind that, using the simplex representation (Wu,
1982), the spin autocorrelation function C(t) is defined as

C(t) =
1

N(p − 1)

∑

i

[〈

~Si(t
′) · ~Si(t

′ + t)
〉]

av
. (4.23)

Here and in the following we will measure time in units of Monte Carlo Steps (MCS), i.e. the
average number of updates per spin. One of the features predicted in the thermodynamic limit is
the appearance of a plateau in C(t) approaching the dynamical transition temperature. It is also
common in supercooled liquids to observe such behavior ((Kob, 1999)). Surprisingly we see that
even for this rather large system size there is not yet any clear evidence for the development of a
plateau for temperatures around TD. Note that in the thermodynamic limit this function should,
at T = TD, decay to qEA, i.e. to the horizontal line, loosing therefore ergodicity. In contrast
to this our system with a finite size is always ergodic, since the free energy barriers separating
the various “valleys” in phase space remain finite at all nonzero temperature. Of course every
finite system is in principle ergodic (only hard core interactions can inhibit the system from
reaching certain configurations of the phase space, and this can give broken ergodicity with finite
size systems). However, for instance in structural glasses it is found that even a few hundred
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Figure 4.10: (a) Time dependence of the correlation function C(t), eq. (4.23), for N = 1280 and various
temperatures. Also included are the data for the predicted values of the static, T0, and
dynamic, TD, transition temperature for N → ∞. The horizontal straight line shows the
theoretical prediction (De Santis et al., 1995) for the Edwards-Anderson order parameter at
TD, qEA = lim

t→∞
C(t). (b) Same as (a) but for the rotationally invariant correlation function

CRI(t) defined in eq. (4.24).

particles are sufficient to show a pronounced (effective) ergodic to non-ergodic transition. Thus
it is rather astonishing that for the present model the finite size effects are so strong that even for
N = 1280 and at T = TD the existence of a plateau can hardly be seen. We have also considered
a rotationally invariant order parameter time correlation function CRI(t) which is defined as

CRI(t) =

[ 〈q̃(t)〉
〈q̃(0)〉

]

av

(4.24)

with

q̃(t) =

[

1

p − 1

p−1
∑

µ,ν=1

(q̃µν(t))2

]1/2

and q̃µν(t) =
1

N

N
∑

i=1

(~Si)
µ(t)(~Si)

ν(0). (4.25)

Note that q̃µν is not the same quantity as qµν defined in eq. (4.12), since for defining the latter
one needs two replicas α and β evolving independently in the phase space. However, for t → ∞
the thermodynamic averages of the two quantities are the same. This means that in this limit also
q̃ and q, from eq. (4.12), are the same. Furthermore we mention that the expectation value 〈q̃(0)〉
occurring in eq. (4.24) is equal to 1, as long as there is no ferromagnetic ordering of the system
and the system remain isotropic. Also the time dependence of CRI(t), eq. (4.24), shows strong
finite size effects, as can be seen from Fig. 4.10b. We see that, contrary to naive expectation, the
long time limit of CRI(t) is different from zero, dependent on temperature and below we will
discuss the origin of this effect and its dependence on system size in more detail. We see that
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Figure 4.11: Time dependence of the correlation function C(t) for T = 1.8 and for T = TD = 1.142 for
several values of N . The solid line is the theoretical value of the Edwards-Anderson order
parameter qEA(TD) for N → ∞ (De Santis et al., 1995). The dashed line shows the value
we use to define the relaxation time τ .

also this correlation function does not show a plateau on intermediate time scale, before the total
relaxation, even if T is close to TD and hence we conclude that also CRI(t) converges only very
slowly to its behavior in the thermodynamic limit.

In order to discuss the system size dependence of the correlation functions in more detail we
show in Figs. 4.11 and 4.12 C(t) and CRI(t) for different systems sizes and two temperatures.

We see from Fig. 4.11 that, at high temperatures, C(t) shows basically no system size depen-
dence, since all the curves collapse on each other. For low T , however, the relaxation becomes
quickly slower with increasing system size and also the shape of the curves changes notice-
ably. But even at the largest system sizes accessible at this temperature we are not able to see
a clear two step relaxation as one would expect for a sufficiently large but finite system. A
somehow different behavior is observed in the case of CRI(t), Fig. 4.12a. Here, even at high
temperatures the correlation function depends on the system size. This is in agreement with
the arguments given in the context of eqs. (4.24) and (4.25) that CRI(t → ∞) should scale
like 1/

√
N , since it behaves like the first moment of the order parameter distribution. That

54



4.2 DYNAMICAL PROPERTIES

10
0

10
1

10
2

10
3

10
4

10
5

10
6

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

C
R

I(t
)  160 

 320 
 640 
1280 
2560 

0 0.02 0.04 0.06 0.08

N
−1/2

0

0.1

0.2

0.3

C
R

I(∞
)

T=TD=1.142

T=1.8

T=1.8

(b)

10
0

10
1

10
2

10
3

10
4

10
5

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

φ(
t)

160 spins
320
640
1280
2560

T=TD=1.142

Figure 4.12: (a) Time dependence of the correlation function CRI(t) for T = 1.8 and for T = TD =
1.142 for several values of N . The inset shows the scaling of the long-time limit of this
function as a function of N−1/2. (b) Time dependence of the reduced normalized function
φ(t) for T = 1.8 and for T = TD = 1.142 for several values of N .

one actually finds this size dependence is shown in the inset of Fig.4.12a. Instead of study-
ing the function CRI(t) one could of course try to consider the reduced normalized function
φ(t) = [CRI(t) − CRI(t → ∞)]/[CRI(0) − CRI(t → ∞)]. However, also this type of cor-
relation function has its problems since on one hand the final asymptote CRI(t → ∞) is only
known to within a certain statistical error, and on the other hand it shows finite size effects at
high temperatures at short times, i.e. where CRI(t) is independent of N , see Fig. 4.12b. In view
of these problems with CRI(t) we will in the following focus on C(t) only. However, this is not
a serious restriction, since in the thermodynamic limit these two functions should show at low
temperatures the same time dependence anyway. That this is indeed the case for the simulations
can be inferred from Fig. 4.13 where we show a parametric plot of CRI(t) versus C(t) exactly at
TD. We see that with increasing system size the curves do approach the diagonal, as expected.

We now address the temperature and N dependence of the relaxation time τ of the system.
The definition of relaxation time is natural in a correlation function that decay exponentially,
since then τ is the time it takes to decay to the value 1/e (this is the definition entering the
formula of the normal exponential decay, C(t) = exp(−t/τ)). This argument can be extended
if the correlation function is a stretched exponential C(t) = exp(−(t/τ)β). As we have seen
however it is not clear which function to use for the system under study, so one possibility to
define τ is

C(t = τ) = 0.2. (4.26)

This choice is indicated in Fig. 4.11 by the long-dashed line. Although the value 0.2 is somewhat
arbitrary, it is a reasonable choice: the only important thing is that it is significantly less than the
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Figure 4.13: Parametric plot of CRI(t) vs. C(t) at T = TD for different values of N . The square
indicates the plateau value obtained for N → ∞. The bold straight line describes the
relation CRI(t) = C(t), believed to hold for N → ∞.

height of the plateau 6 in the thermodynamic limit, qEA(T = TD), cf. eq. (4.22). There is also
no evidence for the development of further structures, like a plateau, in the dynamics below this
reference value.
Another possibility would be to define

τav =

∫ ∞

0

C(t)dt. (4.27)

This is common in studies of the dynamics of critical systems and also of spin glasses (Ogielski,
1985; Binder and Young, 1986; Reuhl et al., 1998), and τav goes under the name of average
relaxation time; we find however that this quantity, especially when the dynamics starts really to
slow down, is much more affected by statistical errors (being important in τav the contribution
coming from the long-time part of C(t)). However we can see also from Fig. 4.14 that for
intermediate temperature the two definitions are practically equivalent, and start to deviate at

6If we would define a time τ ′ as C(t = τ ′) = 0.5, on the other hand, τ ′ would be finite also below TD, and even
below T0, until qEA(T ) has increased up to qEA = 0.5, due to the temperature dependence of the order parameter.
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Figure 4.14: Comparison of the relaxation times τ and τav defined according to formula (4.26) and (4.27)
respectively, for a system of 1280 spins.

high temperatures where relaxation times are very fast and on the order of few Monte Carlo
sweeps.

Since for N → ∞ the dynamics of the model should be described by (idealized) mode-
coupling theory (Kirkpatrick and Thirumalai, 1988), we expect that τ(T ) shows a power law
divergence at TD (Götze, 1989),

τ ∝ (T/TD − 1)−∆, N → ∞ , (4.28)

where ∆ is an exponent which is non-universal (i.e. model dependent), but typically not very
different from ∆ ≈ 2. In order to test the validity of eq. (4.28), one can plot τ−1/∆ vs. T for a
reasonable trial value of ∆: if eq. (4.28) holds, a straight line should be seen over a reasonable
range of temperatures, and the value of TD can be obtained by extrapolating the data towards
τ−1/∆ = 0. Fig. 4.15 shows that for ∆ = 2 indeed a series of straight lines are obtained, for
1.1 ≤ T ≤ 1.4, while outside of this temperature range the curves bend, because the singular-
ity is avoided due to the ergodicity in the finite size system, and another relaxation mechanism
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comes into play (see below in the part devoted to the dynamics in the low temperature phase)7.
In all cases it is difficult to use the estimates for TD for finite N to extrapolate to the value of TD

in the thermodynamic limit since the N -dependence is rather weak and the error bars of TD(N)
are, due to the mentioned extrapolation, quite substantial. For the case of ∆ = 2.0 a depen-
dence of the form TD(N) − TD(∞) ∝ 1/N seems, however, to be compatible with the data,
as can be seen in the inset of Fig. 4.15. A more quantitative method to investigate exponents
and dynamical temperature will be presented in the next subsection. From the analysis of the
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The bold straight lines are fits on a proper subset of point. The resulting extrapolated values
for TD(N) are quoted in the figure. The inset show the various TD(N) as a function of
1000/N , together with the thermodynamic limit signalled by the arrow.

dynamical equations it is possible also to extract information about the shape of the correlation
functions, and properties they have to obey. Approaching the dynamical transition temperature
from above, the correlators should be approximated well with the Kohlrausch-Williams-Watts
function, exp(−(t/τ)β), a functional form that has been found to work very well in many glassy
systems (Jäckle, 1986; Binder et al., 1999; Götze, 1999; Kob, 1999): this function describes the

7We have to remark that similar plots work also with exponents 1.9 ≤ ∆ ≤ 2.5. The particular choice of ∆ = 2
is taken here because it turns out to be the best one also using a dynamic finite size scaling Ansatz, see section 4.2.2.
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decay of the correlators to zero in the long time limit (α-relaxation), the long-time region under
the plateau structure . We find, however, that even close to TD and in the largest system used,
this functional form does not give a good fit to the data. The second prediction of the theory con-
cerning the α-relaxation is the so-called time-temperature superposition principle. This principle
implies that the correlator C(t) can be written as

C(t, T ) = C̃(t/τ(T )), (4.29)

where C̃(x) is a temperature independent scaling function.
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Figure 4.16: Plot of C(t) vs. t/τ (where τ is defined via C(t = τ) = 0.2, cf. eq. (4.26)), for N = 1280.
Temperatures from right to left:T = 1.8, 1.6, 1.5, 1.4, 1.360, 1.280, 1.240, 1.2, 1.142, and
1.131. The inset shows a magnification of the part of the curves for t/τ > 1.

The validity of eq. (4.29) can be checked if one plots C(t, T ) versus x = t/τ(T ). If the superpo-
sition principle is valid the curves for the different temperatures should fall onto a master curve
for large x. For very small values of x, i.e. in the early β-regime, no master curve is expected,
since eq. (4.29) is supposed to hold only in the α-regime. Fig. 4.16 shows this kind of scaling
plot and we see that even for a rather large system, N = 1280, there is no indication for such a
time-temperature position principle. Of course, it is possible that this failure to verify eq. (4.29)
is simply due to finite-size effects. Thus, it would be desirable to check eq. (4.29) for much larger
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Figure 4.17: (a) Correlation functions for 50 different realization of disorder. System with 1280 spins,
temperature T = 1.5 and T = 1.142 = TD. (b) Plot for the scaled quantity Rτ · N as a
function of temperature. The inset shows Rτ as a function of the system size at T = 1.142 =
TD.

systems. However, in view of the strong size dependence on the relaxation time τ near and below
TD, see Fig. 4.23 below, this is impossible for us with the present computer resources.
To conclude the presentation of the results for the dynamics at high temperature, we will concen-
trate on the self-averaging properties of C(t). In ordinary statistical mechanics it is known that
thermal fluctuations of important quantities such as the energy decreases with the system size as
N−1/2; since with disordered systems we have also to deal with the average over the disorder, one
could also argue, using phenomenological arguments (Brout, 1959), that the sample-to-sample
fluctuations go to zero in the limit of a large systems. A quantity with this property is called self
averaging (Binder and Young, 1986; Fischer and Hertz, 1991). Although the argument of Brout
assumed in principle short-range interactions, it is known (Mézard et al., 1987) that also with
infinite range interactions the free energy, the energy, the magnetization are self averaging.

However other quantities, such as the spin glass order parameter, lack this property: respon-
sible for that is the existence of many degenerate states which contribute to the Gibbs average
(Mézard et al., 1984). A general criterion (Wiseman and Domany, 1998), especially suited for
numerical studies, is the following: a measurement of a certain quantity X (for instance the en-
ergy per spin, the magnetization, the susceptibility, or the relaxation times, as we will consider in
the following) yields a different value for the thermal average Xi of every sample i: this average
value will be distributed according to the size N of the system, and we will have a probabil-
ity distribution PN(X). We can characterize this distribution by means of its average [X] and
relative variance RX(N)

RX(N) =
[X2] − [X]2

[X]2
. (4.30)
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Here [·] stands again for the average over the disorder, i.e. PN . According to the behavior as a
function of N � 1, three regimes can be identified:

RX ∝ 1/N strongly self-averaging (4.31)

RX ∝ 1/Nα, α < 1 weakly self-averaging

RX = const non self-averaging.

Knowing these properties will help to decide whether or not it is necessary to average the results
of a simulation over many independent realizations of the disorder even in the case that the size
of the system is very large. We concentrate here on the dynamics of the system. It has been
found that C(t) is self-averaging for Ising random systems (Parisi et al., 1999). For the model
we are studying the situation is a priori not clear, since the autocorrelation function is strongly
linked to the order parameter qEA (which is exactly the long-time limit of C(t)). qEA is known
to be discontinuous at TD, and it can be that sample to sample fluctuations will results in strong
fluctuations in the way C(t) decay to qEA and subsequently to zero for finite systems. It is thus
useful to analyze such behavior in detail.

In Fig. 4.17a we show the spin autocorrelation function for the system size N = 1280 for a
selection of 50 representative samples, at two different temperatures. From the figure it becomes
clear that, at high temperatures (T = 1.5 ≈ 1.3TD), the sample to sample fluctuations are quite
small and that therefore the system is probably self-averaging. For a temperature close to TD this
is, however, not the case since sample to sample fluctuations are now of the same order as the
typical relaxation time.

To study this effect in a more quantitative way we use the relaxation time τ as the observable
X discussed above. Using thus eq. (4.30) to define the quantity Rτ we can investigate the N
dependence of Rτ . In Fig. 4.17b we show the temperature dependence of RτN for all system
sizes investigated. We see that for high temperatures we do indeed find that this quantity goes to
a constant of order one, independent of the system size and slightly dependent on the temperature.
Hence we conclude that Rτ is proportional to 1/N and that the system is strong self-averaging.
At low temperatures this is, however, no longer the case since there we see that the product
increases with increasing system size and becomes, for the largest systems, as large O(103).
Thus this is evidence that the system is no longer self-averaging. To investigate this point closer,
we plot in the inset Rτ at TD as a function of N . (Note that at this temperature we do not have
data for the largest system size since the relaxation time becomes too large). From this graph we
see that the value of Rτ is basically constant within the noise of the data, or shows even a slight
trend to increase. Thus this is evidence that at this temperature the system is not self-averaging.
We also mention that we expect that for sufficiently large N self-averaging will be recovered for
all T > TD, although our data are not conclusive on this issue for T ≤ 1.3, due to the strong
finite size effects. A simple physical interpretation of these results is that, close to TD and with
increasing system size, the effects of the mean field singularity become stronger and stronger,
but they will not be homogeneous for every sample, as starts to be clear from Fig. 4.17.
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4.2.2 A dynamic finite size scaling Ansatz

We have seen that, approaching the dynamical transition from above, the relaxation time of the
spin autocorrelation function diverges as a function of the temperature like a power law (eq.
(4.28)).

Let us now open a brief parenthesis to note that the divergence of relaxation times is a well
known phenomenon characterizing second order phase transitions (where there is a single crit-
ical temperature Tc) and goes under the name of critical slowing down. This is observed in all
dimensions, and the divergence of the relaxation times is closely related to the occurrence of a
divergence in the susceptibility (Ma, 1976).Furthermore it is known that, at T = Tc (Hohenberg
and Halperin, 1977; Binder, 1992; Cardy, 1996), the relaxation time τ and the correlation length
ξ are related through

τ ∝ ξz. (4.32)

z goes under the name of dynamical critical exponent. In finite systems with linear dimension
L this critical divergence exhibits a finite size rounding, controlled by the rule that the rounding
sets in when L is comparable to ξ (Binder, 1992). A dynamic finite-size scaling law holds
(Goldschmidt, 1987; Wansleben and Landau, 1991)

τ = Lzf
{

(T/Tc − 1)L1/ν
}

(4.33)

f(x) ∝ x−zν x → ∞

where ν is the exponent giving the divergence of the correlation length ξ ∝ (T − Tc)
−ν . Note

that for T & Tc eq. (4.33) gives τ ∝ (T − Tc)
−zν (to be compared with eq. (4.28)) and that for

finite systems eq. (4.32) takes the form

τ ∝ Lz. (4.34)

We can now try to understand if a similar phenomenology occurs also in the Potts glass, although
we have to keep in mind the differences with respect to ordinary critical phenomena, that is

• there is no divergent susceptibility at the dynamical transition TD, at which relaxation times
diverge in the thermodynamic limit;

• even the static phase transition at T0 < TD is not an ordinary critical point, but shows
characteristics of both first and second order phase transitions (discontinuous order param-
eter, finite susceptibility coming from the paramagnetic phase, absence of latent heat of
transition).

The first thing to check is the dependence of τ with respect to the system size at the dynamical
transition temperature TD, which we know in advance for this system (De Santis et al., 1995).
The result is shown in the inset of Fig. 4.18. The behavior is compatible with a power law

τ ∝ N z∗ (4.35)
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inset is a log-log plot of τ(T = TD) vs N .

in analogy to the expression given in (4.34). The infinite range Potts glass has no intrinsic linear
dimension, so the important quantity is the number of spins N and z∗ plays the role of an effective
exponent (in general z∗ = zd where d is the dimension of the system. We will come back to this
point later, when we will discuss what happens in the Sherrington -Kirkpatrick model). We see
from the inset of Fig. 4.18 that for the p = 10 Potts glass z∗ ≈ 1.5. In order to provide a more
systematic way of extrapolating the relaxation times to the thermodynamic limit, we assume that
a dynamical finite size scaling hypothesis holds and make the Ansatz:

τ = N z∗ τ̃
{

N(T/TD − 1)∆/z∗
}

for N → ∞ and (T/TD − 1) → 0 (4.36)

The scaling function τ̃ (ζ) must obey τ̃(ζ → ∞) ∝ ζ−z∗ to recover the proper thermodynamic
limit; this finite size scaling form is inspired from eq. (4.33) and recovers as a limit the two
results in eqs. (4.28) and (4.35). As can be seen from our data in Fig. 4.18 the Ansatz is well
satisfied in the vicinity of the dynamical transition by the Potts glass. Our choice of ∆/z∗ ≈ 1.3
implies ∆ ≈ 2, consistent with the bound found when discussing Fig. 4.15. We see also that for
large arguments the master curve does indeed show the expected power-law with an exponent
−z∗ (dashed line). This gives good evidence for the validity of a dynamic finite size scaling law
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close to the dynamical transition temperature TD (however, since in this model T0 is very close
to TD, we cannot rule out a possible influence also of that transition on this result).

We stress again that eq. (4.36) has a well-based theoretical foundation for critical phenomena.
For a spin glass transition, this is the case of the second order transition in the Sherrington-
Kirkpatrick model (the infinite range Ising spin glass), where the temperatures T0, TD, and Ts

coincide at a unique critical temperature Tc. The dynamical exponent can be linked to static ones
also for mean field models, but one has to be careful, since standard finite size scaling (and so
also eq. (4.33)) are valid only for dimensions d ≤ d∗ (Privman, 1990), with d∗ the upper critical
dimension (that is, in the language of critical phenomena, the dimension above which the value
of the exponents predicted from the mean field theory is correct). The connection is therefore
done exactly at d∗ (Binder and Young, 1986) (the exponents valid there are considered correct in
the mean field limit). In the Ising spin glass we have d∗ = 6 (Binder and Young, 1986; Bhatt and
Young, 1992), and the mean field result for the critical relaxation in spin glasses with short range
interaction is τ ∝ Lz with z = 4 (Zippelius, 1984). Since then at the upper critical dimension
ν = νMF = 1/2 it turns out that ∆ = zνMF = 2 and that z∗ = z/d∗ = 2/3; this results have
also been found compatible with numerical simulations (Bhatt and Young, 1992). However, the
value z∗ ≈ 1.5 found for the present model is clearly rather unusual and large, and we are not
aware of any analytical estimates for this exponent.

4.2.3 Approach to broken ergodicity and dynamics in the low temperature
phase

A further interesting question concerns the asymptotic decay of the correlation function C(t)
towards qEA as t → ∞ at T = TD. In the context of the structural glass transition the time
regime during which the correlation functions are close to the plateau is called the “β-relaxation”
whereas the decay below the plateau is called the “α-relaxation” (Götze, 1989).

In the following we will discuss the shape of the correlation function C(t) at TD in the
time regime where it approaches the plateau. Detailed studies regarding the structure of mode-
coupling equations (Götze, 1989) (which have the same structure of those obeyed by C(t) in this
model (Kirkpatrick and Wolynes, 1987)) have shown that in the thermodynamic limit C(t)−qEA

decays like a power law

C(t) − qEA ∝ t−a at T = TD. (4.37)

A naive way to check for the presence of such a power law is to make a log-log plot of C(t)−qEA

versus time. Fig. 4.19 shows such a plot for two relatively large systems (curves with open
symbols) and we see immediately that there is no straight line, i.e. no power law dependence.
However, one must recall that C(t) shows a significant dependence on N and that the prediction
of eq. (4.37) seems to hold only for systems much larger than the ones studied here.

We know from the numerical solution of the replica-equations (De Santis et al., 1995) that
qEA(TD) = 0.328. One thus can try to extrapolate the values of correlation functions for different
N at a given time. We have a priori no guide how to do it, since no theoretical argument exists.
We used then, in the range 160 ≤ N ≤ 1280 and 10 ≤ t ≤ 300 two different extrapolation
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given in eqs. (4.38), (4.39) and shown in Fig. 4.20. The bold solid line is a fit with a power
law.

methods, both giving good fits:

C(t, N) − qEA ∼ 1/N (4.38)

C(t, N) − qEA ∼ exp(−k · N). (4.39)

The quality of the two extrapolations is shown in Fig. 4.20. The first choice gives good results
for N ≥ 480; the second gives a better agreement with the data in all the time range and for
all system sizes investigated, taking the constant k = 1/400. In Fig. 4.19 we have included the
results of these two extrapolations also and we see that they do not give the same result. Since it is
not clear which type of extrapolation is the correct one, it is difficult to tell what the shape of C(t)
in the thermodynamic limit really is. It is very interesting to note, however, that the extrapolation
with the 1/N dependence gives a curve C(t, N = ∞) which is very well compatible with a
power law of the form given by eq. (4.37). Thus this gives some evidence that the extrapolation
with 1/N is the correct one. The value for the exponent a we read off is 0.33 ± 0.04.
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best fits using linear regression.

It is also interesting to note that the theory predicts a correspondence between the value of a and
the exponent ∆ from eq. (4.28) (Götze, 1989). For a given value of a one can use (Götze, 1989;
Kob, 1997)

∆ =
1

2a
+

1

2b
(4.40)

with the parameter b linked to a via

Γ2(1 + b)

Γ(1 + 2b)
=

Γ2(1 − a)

Γ(1 − 2a)
. (4.41)

Here Γ(x) is the usual Γ-function Γ(x) =
∫∞

0
e−ttx−1dt . If one uses the value ∆ = 2.0 and

the above relations one finds a = 0.36, in very good agreement with the value determined from
Fig. 4.19.

We now turn our attention to the low temperature regime T < TD. At this temperature the
free energy barriers in phase space do not diverge, since our system is finite, but tend to grow
with the system size, since they have to approach the thermodynamic limit characterized by
broken ergodicity. We can calculate and follow the decay of correlation functions only for N =
160 and 320 because of the large relaxation times involved for larger systems. For N = 640,
even using the parallel tempering algorithm to produce thermalized starting configurations for
the dynamics, we can reach only T = 1. C(t) at that temperature goes to zero after 3 · 106 MCS,
which only for a single sample require 15 hours of calculation.

The shape of C(t) changes again with respect to the situation for T ≥ TD; in particular, now
the presence of a plateau is clear, playing thus the role of the Edward-Anderson order parameter,

66



4.2 DYNAMICAL PROPERTIES

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

C
(t

)

T=0.700
T=0.765
T=0.850
T=0.900
T=0.950
T=1.000

160 spins

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

C
(t

)

T=1.000
T=0.950
T=0.900
T=0.855
T=0.780
T=0.700

320 spins
(b)

Figure 4.21: Time dependence of the correlation function C(t) for various temperatures T < TD; every
curve is an average over 100 different realizations of disorder. System sizes 160 and 320
spins respectively.

and connected also with the appearance of a second peak in the distribution function of the order
parameter. The results are shown in Fig. 4.21 To produce this data we have used as initial
configurations those thermalized with the parallel tempering method, and we let them evolve
according to the usual Metropolis dynamics (single spin flip). We would also like to comment on
the scaling property of C(t) at low temperatures. We have already seen in the part devoted to the
high temperature dynamics that the time-temperature superposition principle (TTSP) does not
hold above TD (at least for the accessible system sizes). Also the typical feature of the plateau
was not present. It is interesting now to see if TTSP is valid, since a plateau is clearly visible,
Fig. 4.22. In particular for N = 160 we have been able to follow the complete decay of C(t) to
temperatures as low as T = 0.7 and in Fig. 4.22a we show the correlators as a function of the
rescaled time t/τ . If the curves for a wide range of temperatures (0.7 ≤ T ≤ 1.2) are considered
one finds that an evidence for TTSP to hold is not that clear, since spreading is still present.
However, if one uses only the curves for the lowest temperatures, see inset, one finds that they
all collapse onto a nice master curve. Thus we conclude that at sufficiently low temperatures the
time-temperature superposition principle does indeed hold. We mention also that the shape of
this master curve is not an exponential, but that a stretched exponential with an exponent around
0.43 gives a satisfactory fit, as can be seen from the inset of Fig. 4.22a. Surprisingly such scaling
holds also keeping fixed T and considering different N , as Fig. 4.22b shows, although we cannot
make any statement regarding the long time limit of the C(t) for 320 spins (since we were able
to follow the dynamics only up to C(t) = 0.4).

One could argue that at low temperature the largest barrier dominates the dynamics and hence
the relaxation depends on temperature only via a temperature dependent pre-factor (this is typical
when the system relaxes to equilibrium “jumping” between different valleys in the configuration
space, in the so-called activated processes). This temperature dependence would have to be
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Figure 4.22: (a) Plot of C(t) vs. t/τ for N = 160. The temperatures are T = 0.7, 0.765, 0.85, 0.9,
0.95, 1.0, 1.142, and 1.17 (left to right); the inset shows the same quantity only for the three
lowest temperatures, together with the result of a KWW fit (f exp(−(t/τ)b)) with f ≈ 0.81
and exponent b ≈ 0.43. Note that f is also in good agreement with the qEA expected
at that temperature, 0.82 (see Fig. 4.5). (b) Scaling plot of the autocorrelation function at
T = 0.7 for N = 160, 240, 320. The scaling time τ ∗ is modified with respect to the standard
definition of τ such that C(τ ∗) = 0.5, since following the complete decay for N = 320 was
computationally too expensive.

Arrhenius-like (that is τ ∝ exp(c/T )) and in order to check this we show in Fig. 4.23 the T -
dependence of τ for the different system sizes. One can easily identify three different regions:
as we have already seen in Fig. 4.11 at high temperatures finite size effects are negligible and
relaxation times do not depend on the system size. Approaching TD finite size effects start to be
important and the system begin to feel the presence of the dynamical transition, and an approach
to a divergence at T = TD starts to appear: the relaxation times can be scaled through the
dynamic finite size scaling Ansatz (given above in eq. (4.36)). For T < TD the smaller system
sizes (160 and 320 spins) show indeed an Arrhenius behavior, with a size dependent activation
energy (that is with different slopes in the Arrhenius plot). Also for N = 640 this behavior seems
to hold, although the possible temperature range we can investigate does not extend to very low
temperatures (T = 1 at best). We can obtain information on the size dependence of the barriers
by looking at how relaxation times scale as a function of N . To do so, we fixed a temperature
and consider the relaxation times as a function of N . We did this for two different temperatures,
T = 1 (data up to N = 640) and T = 0.7 (data up to N = 240). In order to obtain useful
information, we included also points coming from the simulation of smaller system sizes (40, 80
and 480 spins). The results are shown in Fig. 4.24, where we plot the logarithm of τ(T, N) vs.
N1/2.

The reason for this N 1/2 choice is that (i) it is very well compatible with our data and (ii) the Ising
spin glass seems to have the same dependence (Mackenzie and Young, 1983). However, more
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recent studies, supported also by analytical predictions (Billoire and Marinari, 2001), revised the
value for the Ising case to 1/3. We would like to note that for the present model the only analyti-
cal prediction concerns the barrier between the coexisting paramagnetic and spin glass phases at
the static transition temperature T0, which scales like N 1/2 (Gross et al., 1985). Whether this is
true also for barriers between coexisting spin-glass states at lower temperatures is not yet clear,
but our data seems to support a positive answer.

The difference between our results and those in the Ising case could also be due to a different
structure of the replica-symmetry-breaking pattern in the two models, since p = 2 has a contin-
uous replica-symmetry-breaking (Gross et al., 1985; Kirkpatrick and Wolynes, 1987; De Santis
et al., 1995). In addition, for this model the exponent seems not to be related to spin reversal sym-
metry, since such a dependence is present also for the relaxation times of the correlation function
of the rotational-invariant order parameter CRI(t). The results for the latter at T = 1 are shown
in the inset of Fig. 4.24a. We have estimated as τRI the time it takes CRI(t) to reach the long-time
constant value. The exponent 1/2 is stable also if we consider points for the bigger system sizes
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Figure 4.24: System size dependence of the logarithm of the relaxation time τ of C(t); the two different
sets correspond to T = 1.0 (up to N = 640) and T = 0.7 (up to N = 240). The inset
shows the logarithm of the relaxation times for CRI(t) at T = 1 again as a function of
N1/2. (b) Logarithm of τ for C(t) as in (a), but now with the two points obtained from the
extrapolations of Fig. 4.23, see text for details. The inset shows the activation energies of
the Arrhenius laws, always from Fig. 4.23, as a function of the size in a semilog plot.

(320 and 640) extrapolated according to the Arrhenius plot Fig. 4.23, (and marked with an arrow
in Fig. 4.24b), although such an extrapolation has to be taken with care, since it involves times
of the order of 106 larger than what is possible to investigate in a reasonable amount of computer
time. We note also that, if we determine the N -dependence of the activation energies D(N)
in the temperature regime where τ(T, N) shows an Arrhenius law (τ(T, N) ∝ exp(D(N)/T ),
from Fig. 4.23), we find that this energy increases only very slowly, i.e. like log(N), as shown
in the inset of Fig. 4.24b. These points are also compatible with power law of N with a small
exponent (≈ 0.1 = 1/p). But also this extrapolation of the D(N) is problematic, in view of the
few points we have for N = 640 and N = 1280. (Note that the reason for the two different
N -dependencies is related to the fact that the prefactor of the Arrhenius law depends on N also.)

4.2.4 Single-spin relaxation and dynamical heterogeneities

In all the previous sections we have investigated the relaxation dynamics of the whole system and
found that the time correlation functions show a non-exponential behavior. The purpose of this
last part of the chapter is then to focus on the dynamics of the individual spins in order to obtain
a better understanding for the occurrence of this non-exponentiality, present also in supercooled
liquids.
In the latter case two very different microscopic scenarios have been proposed to explain this
situation: in the first one, so-called “homogeneous”, the particles relaxes practically identically
following a non exponential statistical process. In a second scenario the non-exponential re-

70



4.2 DYNAMICAL PROPERTIES

10
0

10
1

10
2

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

C
i(t

)

T=1.8
160 spins

(a)

10
0

10
1

10
2

10
3

10
4

t [MCS]

0.0

0.2

0.4

0.6

0.8

1.0

C
i(t

)

160 spins

T=TD=1.142

(b)

Figure 4.25: Time dependence of the single spin autocorrelation function Ci(t) for N = 160 at T = 1.8
(a) and T = TD = 1.142 (b). Each of the curves corresponds to a different spin.

laxation in supercooled liquids is due to the superposition of different processes (with respect,
for instance, to the α-relaxation times). According to this point of view, disordered systems at
the microscopic level are characterized by “dynamical heterogeneities” (Sillescu, 1999; Ediger,
2000): each particle has a slightly different neighborhood affecting the dynamics of the parti-
cle. Note that these differences are present only on the time scale τ of the α-relaxation, since
afterward the particle has changed its neighborhood and hence its characteristic dynamics. If the
dynamics is averaged over a time much larger than τ , all the particles behave the same. However
this is a scenario for supercooled liquids; for spin glasses the situation is different. The reason is
that in supercooled liquids the disorder is self-induced during the dynamical and thermal history
of the system. In spin glasses the disorder, given by the interactions Jij, is quenched, that is in
real systems the relaxation times of the couplings Jij are much larger than the typical relaxation
time of the spins, so that the Jij can be considered, in a sense, frozen, quenched. That is way they
are fixed in these models. The nature of the dynamics of the individual spins is thus an intrinsic
property of each spin, depending on the way in which it is connected to the other ones by a set of
different coupling constants. For a spin glass with short range interactions it is then expected that
each individual spin has a different relaxation dynamics, and this is indeed what has been found
in simulations of Ising spin glasses in two and three dimensions (Poole et al., 1997; Glotzer et al.,
1998; Ricci-Tersenghi and Zecchina, 2000): dynamical heterogeneities, strongly dependent on
the position of the spin in a lattice model. For spins systems with long range interactions the
presence of such dynamical heterogeneities is however, a priori, not that clear: on one hand,
since each spin interacts with many different ones, one might argue that on average the different
spins show the same relaxation dynamics; on the other hand it is known (Binder and Young,
1986) that, also in systems with infinite range interactions, static quantities (such for instance
energy per spin, local magnetizations) are not homogeneous. Numerical simulations offer in this
respect a very useful tool.
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Figure 4.26: Time dependence of the single spin autocorrelation function Ci(t) for N = 320 at T = 1.8
(a) and T = TD = 1.142 (b). Each of the curves corresponds to a different spin.

In order to characterize the various individual dynamics we have calculated the autocorrela-
tion functions Ci(t) for every spin i:

Ci(t) =
1

p − 1
〈~Si(t

′) · ~Si(t
′ + t)〉. (4.42)

Due to the single spin nature of the correlation function Ci(t) it is necessary to make this average
over a sufficiently long time in order to obtain a reasonable statistics. What happens is that for
single spins a flip produces discrete jumps in the relaxation curve, and to have a good estimate
we need to average over a large observation time. This is not necessary for the usual C(t), since
these effects are already averaged out over all spins. We found that an average over at least 1000
α-relaxation times is needed, and therefore the following results have been obtained only for
relatively small system sizes and 10 different samples for every temperature investigated. The
procedure we adopted is the following: we performed a simulation run 100 times longer than
what takes to the normal correlation function C(t) to decorrelate, and repeated this run 10 times
starting from different thermalized configurations. We paid attention to use, as starting point,
configurations separated in normal dynamics by at least one τ (α-correlation time), so that they
can be considered decorrelated. This has been done for every different realization of disorder.

In Figs. 4.25 4.26 4.27 we show the time dependence of Ci(t) for all the spins i = 1, . . . , N
for three different system sizes N = 160, 320 and 640 respectively. The temperatures are 1.8
and TD, i.e. the dynamical critical temperature at which the average relaxation dynamics, as
measured by C(t), is already strongly non-exponential for all system sizes investigated. From
the figure we see that the relaxation dynamics for the different spins depends strongly on these
spins in that, e.g., they relax to zero on time scales that span more than an order of magnitude.
At a time where the correlation functions have reached 0.5 of their initial value, the width of the
range is even higher and increases rapidly with increasing system size. Furthermore we see from
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the figures that the curves for the individual spins seem to occur in clusters, i.e. that they do not
fill the interval between the slowest and the fastest relaxation in a homogeneous way, since the
various Ci(t), especially for medium and long times, occur in stripes. Below we will discuss the
reason for this clustering in more detail.
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Figure 4.27: Time dependence of the single spin autocorrelation function Ci(t) for N = 640 at T = 1.8
(a) and T = TD = 1.142 (b). Each of the curves corresponds to a different spin.

In Fig. 4.28 we show the single spin autocorrelation function at a lower temperature for 160 and
320 spins. Comparing these curves with the ones in Figs. 4.25 and 4.26 we see that a decrease
of T has made the distribution of the relaxation dynamics even wider. Also the presence of the
clustering of the curves is now much more pronounced. From Fig. 4.28 one also recognizes that
the shape of the individual curves is not uniform at all since the ones which decay slowly tend to
be, in the α-regime, much steeper than the ones that decay more rapidly at early times. A more
careful analysis shows that these slow spins show more or less a purely exponential relaxation
whereas, as can already be seen from the figure, the fast ones show a strong deviation from a
simple exponential and are better described by stretched exponentials. Thus we conclude that
in this model the non-Debye behavior of C(t) found at low T , see Fig. 4.22, is not due to a
superposition of Debye laws with different relaxation times, but the sum of various different
processes, some of which are Debye-like, some of which are not.

In order to understand the microscopic reason for the presence of these dynamical hetero-
geneities a bit better we have investigated to what extend the relaxation dynamics of an individ-
ual spin correlates with other quantities. For this it is necessary to characterize this dynamics in
some way. As discussed above, the shape of the curves is not at all uniform, which makes such
a characterization rather difficult. Therefore we decided to neglect all the variations of the shape
completely and to characterize each curve just by the time it takes to a spin to decay to a given
value. Therefore we defined two different relaxation times, τ

(0.4)
i and τ

(0.7)
i , via
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Figure 4.28: Time dependence of the single spin autocorrelation function Ci(t) at T = 0.9 for N = 160
(a) and N = 320 (b). Each of the curves corresponds to a different spin.

Ci(t = τ
(0.4)
i ) = 0.4 and Ci(t = τ

(0.7)
i ) = 0.7. (4.43)

In Fig. 4.29 we show a scatter plot between 〈ei〉, the average energy of spin i, and the relax-
ation time, for both definitions of τi. We see that there is indeed a significant correlation between
the energy and the relaxation time in that spins with high energy relax faster than the ones with
low energy. This result is very reasonable since a spin that has a low energy will be reluctant to
change its value and therefore to go (with high probability) to a state with a higher energy. From
the figure we also recognize that the correlation is present for both definitions of τi, from which
we conclude that the details of this definition are not crucial. In order to investigate this point a
bit closer we show in Fig. 4.30 a scatter plot of the relaxation time τ

(0.7)
i versus τ

(0.4)
i for the two

temperatures. We see that although the correlation is not perfect, it is still very significant and
therefore we conclude that the salient features of the correlation between the relaxation time and
the mean energy shown in Fig. 4.29 will be observed even if a more careful characterization of
the relaxation dynamics is made.

Of further interest is the question how the relaxation time of a given spin at a given tempera-
ture is related to the relaxation time of the same spin at a different temperature. This dependence
is related to the question of “chaos in temperature” (Ritort, 1994), i.e. how the properties of a
system change if temperature is changed. The term chaos in spin glasses addresses the possi-
bility that a perturbation to the system can “reshuffle” the different weights of the equilibrium
configurations. Besides changes in the magnetizations or in the coupling constants Jij , also the
variation of the temperature can be considered a perturbation. For mean field type systems sub-
ject to changes in temperature it is expected that these dependencies are rather weak (Kondor,
1989; Ritort, 1994). In agreement with this expectation we find that indeed the relaxation times
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Figure 4.29: Scatter plot of τi, the mean relaxation time of spin i as defined in eq. (4.43), versus the
mean energy 〈ei〉. The open and closed symbols correspond to T = 1.142 and T = 0.9,
respectively. The points are for a typical sample of 320 spins.

τi for T = 0.9 are strongly correlated with those at T = 1.142, see Fig. 4.30b, irrespective of the
definition of τi; this means that qualitative dynamical features for the single spins do not change,
i. e. that spins that relax slowly (quickly) at a certain temperature maintain this characteris-
tic also when T is changed, even for rather large differences in temperature, where relaxation
mechanisms are different (compare with Fig. 4.23). We see also that this property seems not
to be strongly affected by finite size effects, see Fig. 4.30. Static quantities like the energy per
spin 〈ei〉 are even much stronger correlated, Fig. 4.31, between two different temperatures, than
relaxation times, giving again further support to a weak influence of chaotic effects, at least due
to temperature variations. Of course one has also to consider that the energy per spin is a much
better defined quantity than the single relaxation times, and the fact that they behave consistently
confirms the general picture.

Before we end we come back to the observation discussed above that some of the single
spin autocorrelation functions occur in clusters (see Fig. 4.28). One potential reason that the
relaxation dynamics of two spins is similar is that they are coupled together strongly, i.e. that their
interaction constant Jij is large; in this way their tendency to flip would also be correlated, so we
expect rather similar dynamics. In order to test this idea we identified for each realization of the
disorder those spins that formed at T = 0.9 the clusters relaxing very slowly (this identification
was done visually by means of plots like the one shown in Fig. 4.28b). Say that each of these
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Figure 4.30: a) Plot of τ
(0.7)
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relaxation times are correlated. Each point correspond to a different spin. b) Plot of the
relaxation times τ
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i and τ
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i at T = 1.142 versus these relaxation times at T = 0.9.

Each point correspond to a different spin.

clusters involved k curves. We then determined the k(k − 1)/2 interaction constants between
these k spins. The values of these constants are shown in Fig. 4.32 for ten different realizations
of the disorder (filled circles). Also included in the figure is the Gaussian distribution of the
coupling constants. From this figure we see that most of the points corresponding to the couplings
Jij are to the right of the mean of the distribution (vertical dashed line). Hence we conclude that
the spins that form the slow cluster of relaxation curves are coupled together stronger than two
arbitrary spins (since the Potts Hamiltonian favors bonding between spins linked by positive
Jij) and therefore form a “dynamical entity”. We note, however, that the fact that two spins
are strongly coupled does not necessarily make them slow: we have in fact evidence of strongly
coupled spins whose relaxation time is fast, and also of strongly coupled spins with very different
relaxation times. From this we can therefore conclude that such a strong coupling is only a
necessary but not a sufficient condition for a slow dynamics. Another observation to make is that
the size of the slowest clusters does not typically exceeds 6 spins, and that the longest relaxation
time is typically due to a simple-exponential relaxation. It might be that such clusters are linked
to a recently proposed scenario for the glass transition based on metastability and nucleation
(Crisanti and Ritort, 2001). The authors suggest that the “droplets” that nucleate are slowly
relaxing structures composed by few particles/spins, giving rise to the typical slowing down and
to Arrhenius behavior at low temperatures.

It is difficult to find a proper indicator linking static (the Jij) and dynamical properties in this
infinite range models, lacking by definition any geometry. Usually in finite dimensions clusters
of spins can be visualized directly as spatial arrangements, so that it is clear the role of the local
interactions in determining the dynamics, like in the case of two and three dimensional Ising
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Figure 4.31: Plot of the energy per spin 〈ei〉 energy at T = 0.7 vs. the same quantity at T = 0.9 for a
system of 320 spin and a single realization of disorder. Every point correspond to a different
spin.

systems (Poole et al., 1997; Glotzer et al., 1998; Ricci-Tersenghi and Zecchina, 2000). On the
other hand it is also very interesting to note that such strongly heterogeneous behavior can be seen
in “non real space” models. A tentative interpolation between the two cases has been recently
done (Barrat and Zecchina, 1999) using systems with finite (i.e. O(1)) but random connectivity
(random graphs).

Recently another observable has been introduced to study the onset of non-exponentiality and
the loss of ergodicity in mean-field spin-glass models with a dynamical transition, and used to
interpret the behavior of supercooled liquids (Franz and Parisi, 2000). The idea is that, as a static
phase transition is associated with the divergence of a static susceptibility related to the fluctua-
tion of the order parameter, the same can be extended to dynamical phase transitions introducing
a dynamical susceptibility. This dynamical susceptibility is thus related to the fluctuations of the
Edwards-Anderson order parameter. Therefore the following function is introduced:

χ(t) = N
[

〈c(t)2〉 − 〈c(t)〉2
]

av
c(t) =

1

N

N
∑

i

~Si(t
′) · ~Si(t

′ + t)

p − 1
(4.44)
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Figure 4.32: Values of the bonds between spins with very slow relaxation in 10 different disorder real-
izations for 320 spins at a temperature T = 0.9 (filled circles). For clarity the points have
been displaced vertically by various amounts. The continuous curve shows the Gaussian
distribution from which the Jij are extracted and the vertical dashed line shows its mean.

where C(t) = [〈c(t)〉]av is the usual correlation function defined in eq. 4.23. Fluctuations of
the standard C(t) for every realization of disorder are due to the fact that the spins relaxes in
different ways, heterogeneously.

A connection with the heterogeneous aspect of the dynamics, which we investigated up to
now only through the difference among the various Ci(t)-eq. (4.42)-can be seen rewriting eq.
(4.44). If we call, for simplicity of notation,

qi(t) =
~Si(t

′) · ~Si(t
′ + t)

p − 1
, (4.45)

we have that

χ(t) =
1

N2





〈(

∑

i

qi(t) −
∑

i

〈qi(t)〉
)〉2



 (4.46)
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Figure 4.33: The non-linear dynamical susceptibility χ(t) defined in eq. (4.44) for the system size 2560
spins, as a function of time for various temperatures.

Note that 〈qi(t)〉 = Ci(t). Different from our investigation now is then the role of the fluctuation
around this functions, and the final average over the disorder. However there are elements to in-
terpret χ(t) as an indicator for the appearance of dynamical heterogeneities in the system (Franz
and Parisi, 2000).
χ(t) has been studied analytically and numerically (Franz and Parisi, 2000) in the p-spin spheri-
cal model for spin glasses, whose physics is analogous to the one of the Potts glass with p > 4,
and thus to the model we are studying. Both a dynamical and a static phase transition are present,
and this model is particularly used for analytical investigations (Crisanti and Sommers, 1992;
Crisanti et al., 1993). It has been found that χ(t) presents a maximum at a time t∗, which be-
comes larger and larger as the dynamical transition is approached from above. Also the height
of this maximum χ∗ = χ(t∗) grows with the temperature. Actually a power law divergence is
found for both of them

t∗ ∝ (T − TD)−γ χ∗ ∝ (T − TD)−α. (4.47)

For the p-spin spherical model with p = 3, χ(t) has been calculated throughout numerical
integration of the equations of motion, and a subsequent fit gave the values α = 1.1 and γ = 0.52
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Figure 4.34: (a) The dynamic susceptibility rescaled. The plot shows χ(t)/χ∗ versus t/t∗ (see text for
the definition of the quantities). In the main plot the curves are for 2560 spins and T =
1.20, 1.24, 1.28. The inset shows the same rescaling but at fixed temperature T = TD =
1.142 and three system sizes N = 320, 640, 1280. (b) Log-log plot of the temperature
dependence of the maximum of χ(t) for 2560 spins: the dotted line is a fit with exponent
−1.0 ± 0.2. In the inset the same for the position of the maximum. The dotted line is a fit
with an exponent −2.3 ± 0.3.

(Franz and Parisi, 2000).
We can calculate χ(t) directly from our simulation data, and this offers a useful complement
to the investigation of the dynamical heterogeneities, since we can investigate what happens
for large systems (1280 and 2560 spins) approaching TD from above. For these system sizes,
close to the dynamical transition, a detailed study of the single spin correlation function is not
feasible, since it involves, as we have seen, an effort of at least 2 orders of magnitude more than
that required to follow the total relaxation of the system. χ(t) as a function of time for various
temperatures and N = 2560 is presented in Fig. 4.33. Qualitatively the results resemble those
already found for the p-spin spherical model. A maximum is present. It is very broad for high
temperatures (1.8 ≤ T ≤ 1.5) but sharpening as TD is approached. Also clear is the progressive
growing of the height of the maximum. We also notice that the curves can be superimposed
onto each other to give a master curve when we plot χ(t)/χ∗ versus t/t∗, see Fig. 4.34a. We
are not aware of an analytical prediction of this result, but it might be that it can result from the
structure of the equation of motion describing the system. This scaling works close to TD, since
it is there that a maximum is well defined. The same kind of scaling works also using different
system sizes and fixed temperature, as the inset of Fig. 4.34a shows, for T = TD = 1.142 and
N = 320, 640, 1280.
The temperature dependences of the position t∗ of the maximum and of its height are compatible
with power law divergencies like in eq. (4.47), see Fig. 4.34b, where they are plotted for the
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Figure 4.35: (a) Height of the maximum χ∗ of χ(t) as a function of the temperature for different system
sizes. In the inset log-log plot of the position of the maximum t∗ of χ(t) as a function of
temperature for different system sizes. (b) System size dependence at T = TD = 1.142 of
the position of the maximum of χ(t) in a log-log plot. The dashed line is a fit to a power law
with exponent 1.63 ± 0.15. In the inset the same for the height of the maximum. A linear
dependence on N is given by the dotted line.

largest system size N = 2560. In our case γ = 2.3 ± 0.3, compatible with the divergence of the
relaxation time τ , and α = 1.0 ± 0.2. The values of these exponents are calculated by means of
a power-law fit, also included in the figure.
The system size dependence of t∗ and χ∗ are shown in Figs. 4.35. Both increase monotonically
with the system size, as appears from the figures. It is interesting to note that the position of
the maximum, at T = TD, diverges as a power law with the system size t∗ ∝ N c, with c =
1.63 ± 0.15 compatible with the value found for z∗ ≈ 1.5 that determines the divergence of the
relaxation time τ at the dynamical critical temperature. This contributes further to the idea that
these two timescales τ and t∗ are related to the same physical phenomenon of the breaking of
the ergodicity. We find also that at TD the height of the maximum diverges linearly with N .
Everything is then compatible with the appearance of divergencies in χ(t), at the temperature TD

were the static spin glass susceptibility is still finite.
It is clear that the observations presented in this section are only modest first steps addressing the
dynamics of the individual spins in the low temperature phase. It certainly would be interesting
and useful to understand better how the distribution of the relaxation times of the spins depends
on the system size and on temperature in order to obtain a better comprehension how the mean
relaxation dynamics of the system is related to the one of the single spins. However, due to
the high computational demand for this kind of investigations such studies have to be left to the
future.
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Chapter 5

The Potts glass in three dimensions

5.1 Statics

In the infinite-range case, the computation time per Monte Carlo sweep is of the order N 2,
since the system is fully connected, and the choice of the distribution of the interactions was
not influent (in the Ising case, for instance, it can also be shown that the leading terms in finite
size scaling coincide (Parisi et al., 1993a)). In the short range case the computation time is
proportional to N . We make use of the Heat-Bath method, which works better with a bimodal
distribution of bonds, as we explained in chapter 3, devoted to the numerical methods. We just
remind that, in the single-spin-flip process, to every possible state l ∈ {1, . . . , p} a probability

pl =
e−βEl

∑p
m=1 e−βEm

(5.1)

is assigned, where El is the total energy of the system if the spin to flip is in the state l (Newman
and Barkema, 1999). The calculation of the exponentials is usually computationally expensive,
and can be avoided in the case of a ±J distribution, since all the possible values can be tabulated
in advance. Note that the calculation of pl involves only a sum over the nearest neighbors, since
the Hamiltonian can be decomposed into the terms involving the chosen spin and those which
don’t. This latter part is the same for all possible value of l and so cancels in the expression (5.1).
Given the advantages of this algorithm in the short range model, in this case the choice of P (Jij)
starts to be important. We recall that the Hamiltonian is given by

H = −1

2

∑

i,j

Jij(pδσiσj
− 1). (5.2)

where the sum is over nearest neighbors (6 for every spin in three dimensions). We always use
in this chapter p = 10, and we work in units of kB = 1. The form of the bimodal distribution is

P (Jij) = xδ(Jij − J) + (1 − x)δ(Jij + J). (5.3)

We use the following notation for the moments

J0 = [Jij]av

(∆J)2 = [J2
ij]av − [Jij]

2
av. (5.4)
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The relation with x and J defined in eq. (5.3) is given by

x =
1

2

(

1 +
J0

J

)

J =
√

J2
0 + (∆J)2. (5.5)

In mean-field theory the second moment controls the transition temperature (Cwilich and Kirk-
patrick, 1989), which in these units is given by Tc =

√
z∆J , where z is the coordination number

(z = 2d for short range models in spatial dimension d). We use here the generic notation Tc,
since a priori we do not know how much of the mean-field picture will survive in finite dimen-
sion. This Tc is best identified with what we labeled as Ts in chapter 2. It is the true transition
temperature for p = 2, 3, 4 and the “spinodal-like” temperature for p > 4 (the temperature at
which the extrapolated high temperature susceptibility would diverge).

Note that, in case of distributions centered around zero (that is, J0 = 0), the value of J and
of the second moment ∆J coincide, that is why J is usually taken to normalize the temperature
scale. For a generic J0 6= 0 this is no longer true. In all the study of the Potts model in finite
dimensions we always used ∆J = 1 and varied J0, and fixed the other units according to eq.
(5.5). As we have seen when discussing the infinite-range model, ferromagnetic ordering is ex-
pected to be predominant if J0 = 0 and p > 4, and one needs to add antiferromagnetic couplings
to avoid it, and enter the glass phase at a temperature higher than the one at which ferromag-
netic order would set in (this part has been discussed in chapter 2; for a reference see (Elderfield
and Sherrington, 1983a)). We checked that it is indeed the case also for the three dimensional
model, taking x = 0.5 and J0 = 0. The equal concentration of bonds has the same first two
moments of a Gaussian centered around zero. We just remind that the nature of ferromagnetic
order in regular (Jij = 1) Potts model is characterized by first order phase transitions, that have
large jumps in the order parameter (the magnetization) the bigger the number of states p. In the
mean-field limit the regular ferromagnetic Potts model undergoes a first-order phase transition
for every p > 2. In two dimensions, it is known that the transition is second order for p = 2, 3, 4
and first order for p > 4. In general, the mean-field behavior prevails in all dimensions bigger
than one for p > 4 (as well as for d > 4 dimensions for all values of p). These features are
reviewed in (Wu, 1982). So, always in the regular case, for p = 10 one has a rather strong first
order phase transition. This case has been largely studied in two dimensions, where indeed a
strong first order phase transition is present, with a jump of the magnetization at the transition
from zero to 0.857 (Baxter, 1982). In three dimensions one expects an even stronger transition,
because the tendency towards mean-field behavior is increased.

Coming back to the disordered case with equal concentration of ferro- and antiferromagnetic
bonds, we see from Fig. 5.1a indeed that one has a fast growing ferromagnetic susceptibility
χFM = N [〈m2〉]av , indicative of the tendency to ferromagnetic ordering, and there are no signs
of discontinuity in the temperature regime we look at. Note that in the Ising case this tendency
to ferromagnetism is absent for such values of the concentration. It is not the purpose of this
work to investigate further the nature of this ferromagnetic-like transition. In mean-field theory
it is first-order (Elderfield and Sherrington, 1983b). In general the effect of disorder on first
order transition in finite dimensions is not clear, it can make the transition weaker or even turn
it into a second order one. Analytical results are present only for two dimensional systems. In
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Figure 5.1: (a)Ferromagnetic susceptibility χFM = N [〈m2〉]av in the Potts disordered model (from now
on is always d = 3) with a symmetric bimodal distribution of bonds (J0 = 0) (see text for
details). We show results for three different system sizes, L = 6, 8, 10. (b) Same quantity, but
for a value J0 = −1, where we expect a spin glass phase from the mean-field approximation.

two dimensions in presence of disorder all (eventually present) discontinuities in the thermody-
namical quantities are eliminated, so only second order transitions can take place (Aizenmann
and Wehr, 1989). For a recent numerical investigation in the Potts case (in two dimensions), see
(Olson and Young, 1999). From the data we have at the moment then we cannot make strong
statements about the nature of the transition and the problem remains open. It might be that at
lower temperatures one finds also competition between ferromagnetic and spin glass phase.

The large part of our investigation has been devoted to the case J0 = −1 and ∆J = 1. In this
way we are far enough from the effect of ferromagnetic ordering, but we have still a reasonable
concentration of ferromagnetic bonds. From the mean-field guide this would correspond to a
region with spin glass ordering occurring. The concentration of ferromagnetic bonds is given,
from (5.5), by x = (1− 1/

√
2)/2 ≈ 0.15 with a strength J =

√
2. In this case the ferromagnetic

quantities remain small through the temperature range investigated,see the susceptibility in Fig.
5.1b.

The energy per spin does not present particular features, and tend to slowly approach a con-
stant value below T = 2.0. The average is done on 100 different realizations of disorder. What
is remarkable, after the experience with the infinite range case, is the practical absence of finite
size effects for the sizes investigated, L = 6, 10, 16. The energy decreases almost linearly in
temperature and approaches a value ≈ −8.8 at low temperatures. This value of the low tempera-
ture energy is not far from the one we would obtain considering a ground state in which only the
energetically favored ferromagnetic bonds are satisfied. In fact, in such a case we would have

e = 3[−pJx + xJ − (1 − x)J ] = −3J [(p − 2)x + 1] ≈ −9.3 , (5.6)
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Figure 5.2: (a) Energy per spin in the case of asymmetric bond distribution, J0 = −1. L = 6 is not
included since it also superimposes on the two curves, as in the case of the specific heat. (b)
Specific heat for the Potts glass. The inset shows the logarithm of c plotted versus inverse
temperature, so indicate at low temperatures a dependence of the kind c ∝ exp(−∆/T ), with
∆ ≈ 10. See text for details.

about 5% different from the value we read from Fig. 5.2. Also the specific heat, calculated
through the fluctuation of the energy, c = N [〈e2〉 − 〈e〉2]av/T

2 does not show the presence of
finite size effects. It is characterized by a rather broad region at about T = 4.5, and then decays
to zero for T → ∞ (the non-interacting case) and for T → 0. Note that the presence of a
broad maximum is common in spin glasses (also in the experimental realizations (Fischer and
Hertz, 1991)) and is not indicative of a phase transition. For instance, it is present in the two
dimensional Ising case (Morgenstern and Binder, 1980), where there is no spin glass transition
at finite temperature. At low temperatures in our case the specific heat seems to decay to zero
exponentially like exp(−∆/T ), with ∆ ≈ 10. This is typical if there is a gap of order ∆
between the energy of the ground state and of the first excitations (Morgenstern and Binder,
1980). A maybe too naive interpretation in terms of two-level system obeying classical statistical
mechanics give also this exponential behavior, and a maximum located in the region of ∆/2.

In order to understand better the behavior of the model, we need to have a look at the mo-
ments of the order parameter, calculated as usual with the help of two independent replicas, see
the definition we give in eq. (3.14). Very important is then the behavior of the spin-glass sus-
ceptibility χSG = N(p − 1)−1[〈q2〉]av, and of the cumulants of the order parameter. We gave
an extensive introduction to the importance of these quantities in section 4.1.2, discussing the
results of the fully connected model. χSG is shown in Fig. 5.3a. In analogy with the previous
quantities, it does not show finite size effects at all. We recall that χSG is defined in such a way as
to diverge (in the limit N → ∞) when a spin-glass phase is entered. Therefore this absence of N
dependence, and the fact that this function remains of order 1, does not speak in favor of a finite
temperature phase transition, in the regime we are able to access. We remark also that the lowest
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Figure 5.3: (a) Spin glass susceptibility as a function of the temperature. In the inset we show a log-log
plot of the same quantity. (b) Scaled first moment of the order parameter as a function of the
temperature. The insets shows the first moment, decreasing as a function of the system size.

temperature we simulated, T = 1.4, is already rather small, since the dynamics, discussed in the
next section, gives relaxation times on the order of 108 MCS, representing a practical limit to the
investigation of lower temperatures. The fact that the susceptibility shows no finite size effects
is indicative that the second moment of the order parameter scale like N−1, the value expected
at high temperatures where there is no spin glass order. This result comes from the first term in a
high temperature expansion, see the discussion in (Peters et al., 1996). In the inset of the picture
we show also a double log plot of the susceptibility. It is compatible with a power-law, and the
exponent is −1, that is χSG ∝ T−1. This behavior indicates that, according to the classical the-
ory of critical phenomena, the system is below the lower critical dimension dl. The lower critical
dimension represents the spatial dimension above which one starts to have a phase transition at
finite temperature. The expected scaling behavior for the susceptibility is in fact the following

χSG ∝











T−γ for d < dl

exp(C/T σ) for d = dl

|T − Tc|−γ for d > dl

(5.7)

(see, e.g., (Binder and Reger, 1992)). We however remark the fact that the susceptibility remains
rather small, and increases of about a factor 3 only, so also this power law has to be considered
with care.
The scenario is further confirmed by the analysis of the first moment of the order parameter. As
we can see from Fig. 5.3b, there is a strong decrease of this quantity as a function of the system
size. A scaling plot of N 1/2q(1) versus T show the behavior better, and is clear evidence of the
absence of spin-glass order in the temperature regime we investigate. We can then conclude
that the first moment of the spin glass order parameter goes to zero in the thermodynamic limit.
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Figure 5.4: (a) g4(N,T ) cumulant as a function of temperature for various system sizes. (b) Guerra
parameter again for different system sizes. No indication for a spin glass transition can be
inferred. We plot no data for L = 6 since they are rather noisy and would require a large
statistics, but they do confirm the tendency of the behavior.

The order parameter distribution does consequently not show any development of structures, but
remains localized around the mean value, and does not broadens or show peaks in addition to the
one moving towards zero with the system size. This scenario seems then to exclude spin glass
ordering at finite temperature in the p = 10 Potts glass in three dimension. As last confirmation
of it, we show the cumulants used in the study of spin glasses, namely the fourth order cumulant
g4(T, N) and the Guerra parameter, defined in eqs. (4.17) and (4.18). We just remind that they
are expected to show features like crossing of the various curves for different system sizes or
development of a minimum in case or phase transitions. In particular the Guerra parameter
signals the appearing of lack of self-averaging (we discussed the behavior in the chapter devoted
to the infinite range model; for a detailed account, see section 4.1.2). Common characteristics in
this three dimensional model are the absence of crossing points and the clear tendency to reach
the value zero as the system size is increased. This is in agreement with the renormalization-
group calculations of (Benyoussef and Loulidi, 1996). They found that, in finite dimension and
with respect to spin glass ordering, for every number of Potts states p > 3 the lower critical
dimension equal to 4 (that is there is no finite temperature spin glass transition also in smaller
dimension).

5.2 Dynamics

In the study of the dynamics we concentrate on the spin autocorrelation function C(t).
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Figure 5.5: Spin autocorrelation function for the Potts glass, L = 10, for various temperature. Starting to
the left, T = 2.4, 2.2, 2.0, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3. The inset shows C(t) for both L=10 and
L=16 at T = 1.6. They cannot be distinguished.

It is defined as in the infinite range case

C(t) =
1

N(p − 1)

∑

i

[〈

~Si(t
′) · ~Si(t

′ + t)
〉]

av
. (5.8)

The results for L = 10 are shown in Fig. 5.5. Before commenting them in detail, we note again,
as in the statics, the absence of finite size effects, in the range we were able to investigate. We
can see it in the inset of Fig 5.5, the correlation functions at T = 1.6 for both L = 10 and L = 16
(that is 1000 and 4096 spins respectively): the curves superimpose. We therefore will describe
the system with L = 10, because it permits to reach lower temperatures, and we think we do not
lose generality in the description of the physics.

The dynamics at high temperatures, when the relaxation times for a complete decorrelation
are of the order of 105 MCS, shows two different relaxation processes, one very fast, on the or-
der of 10 MCS, which is not much temperature dependent, and another one, responsible for the
progressive slowing of the dynamics as the temperature is lowered. This separation of timescales
gives rise to a well defined plateau, with a height of about 0.6, whose lifetime increases lower-
ing the temperature. For temperatures T ≤ 2 another relaxation (or timescale) comes into play,
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Figure 5.6: Relaxation times as a function of the inverse temperature in an Arrhenius plot. The dotted
lines are result of fit, and the value of the barriers obtained is also shown

giving rise to a second plateau, at a height of about 0.12, and independent of the temperature.
We have then three different timescales, two of which vary strongly as a function of the temper-
ature. It is not easy and unique to define relaxation times in these cases. The reason is that it is
not possible to obtain time-temperature superposition between the different correlators. Time-
temperature superposition means the possibility of getting a master curve from all correlators
plotting them as a function of the rescaled variable t/τ . This is in fact always true for curves like
exponential exp(−t/τ) or stretched exponentials exp(−(t/τ)b). We consider three values of the
correlator, 0.4 below the first plateau, and 0.08 and 0.05 below the second one, as shown in Fig.
5.5.

From Fig. 5.7 it appears that the time-temperature superposition is satisfied partially for these
definitions. It holds in the region of the relaxation time, and fails as soon as another relaxation
comes into play, see Fig. 5.7. We define then as relaxation times τ (1,2,3) the time it takes the
autocorrelation function to reach the above values, respectively. The results are shown in Fig. 5.6,
in an Arrhenius plot, τ versus 1/T in a semilog plot. There is no doubt that all the three curves
give straight lines, indicative then of temperature dependences of the kind τ ∝ exp(B/T ). There
are two different slopes. The curves for τ (2) and τ (3) in fact are parallel, giving evidence that they
describe the same relaxation processes and there is therefore no other timescale involved, which
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Figure 5.7: (a) Time-temperature superposition principle (TTSP) at work with a definition of τ (1) such
that C(τ (1)) = 0.4. (b) TTSP for a definition of τ (2) such that C(τ (2)) = 0.08. This second
case is analogous to τ (3) such that C(τ (3)) = 0.05.

is not visible solely from the inspection of the correlation functions. The slopes of the curves,
that is the B in the Arrhenius formula defined above, are B1 ≈ 14.6±0.1 and B2,3 ≈ 28.2±0.2.
There is practically a factor two between them, and, if we consider that in this simulation we
have J =

√
2, they are very close to B(1) ≈ pJ and B(2,3) ≈ 2pJ , corresponding respectively to

the energies of one and two (ferromagnetic) bonds. To understand this behavior, we investigate
also the single spin dynamics, as we have done in the infinite range case. Details are like in the
infinite range case, section 4.2.4, we collect statistics for a time of about 103 times the longest
relaxation of C(t). Although this kind of study is done within a single sample, we performed the
same analysis on two further realization of disorder and saw that there is no difference between
the results. We did it mainly for three temperatures, T = 1.6, 2.0, 2.4. Lower temperatures
do not permit to get a sufficiently good statistics, but we will see that the picture emerging is
nevertheless rather clear. Result are shown in Figs 5.8. A large part of the curves relaxes very
fast. They correspond to about 40% of the total number of spins. The remaining curves instead
have longer relaxation times, that do not vary continuously but present a gap with respect to the
very fast spins. This gives rise then to the first plateau. Its height is also explained, since with
this microscopic results is given by 1 − 0.4 = 0.6. It is the percentage of curves relaxing with
times larger than 5 MCS. This result comes from summing all the Ci(t). The remaining spins can
be classified into three parts. Looking at the temperature 1.6, one group relaxes at intermediate
times (that is about t ≈ 104 MCS in the picture referring to temperature T = 1.6). Their have all
very similar shape, that turns out to be a simple exponential. Another group is also very similar to
this one, although formed by a smaller number of spins. They relax with times centered around
t ≈ 107 and are again simple exponential functions. The remaining 3 − 4% cannot be included
in these two groups, and have rather heterogeneous relaxations. Since we are dealing mostly
with exponential functions, we define a relaxation time per spin as the time it takes the single
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Figure 5.8: Single spin relaxation functions for L = 10 at three different temperatures, T = 2.4, 2.0, 1.6

correlation functions to decay to 1/e. Then, for every spin, we make the following Arrhenius
Ansatz

τi = ai exp(bi/T ), i ∈ {1, . . . , N}. (5.9)

In this way we can have a look at barriers for every spin. Since, for every spin, we have two
unknowns, we need also two different relaxation times to calculate them. We use two set of
couples, namely [τi(T = 2.4); τi(T = 2.0)] and [τi(T = 2.0); τi(T = 1.6)]. Given two
temperatures T1 and T2, bi is given through the formula

bi(1/T1 − 1/T2) = log(τ(T1)) − log(τ(T2)) (5.10)

and then it is easy to obtain the ai’s, substituting inside relation (5.9).
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Figure 5.9: Normalized distribution of the barriers bi. Two curves are shown, corresponding to data
obtained with the couples of temperatures (1.6,2.0) and (2.0,2.4). In the inset we show the
normalized distribution of the coefficients ai obtained substituting the value of the barriers
for temperatures 1.6 and 2.0. See text for details.

We show the plot of the distribution of ai and bi in Fig. 5.9. We can note that there is also
no significant difference between the choice of the temperatures, they give the same result. In
particular, the barriers bi assume values that are peaked around zero, pJ , and 2pJ , thus explaining
the origin of the slopes of the total relaxation times τ (1,2,3). The sum of these exponential curves,
with well separated timescales when T is of the same order of magnitude as J (remember that
we set kB = 1) produces then the structure we have observed for the total C(t).

The presence of such well defined elementary processes indicates that it might be possible
to obtain a simple explanation for these features. The one we propose is based on combinatorial
and energetic considerations. First of all, since the system has only a small amount (about 15%)
of ferromagnetic bonds with respect to antiferromagnetic one, there will be spins interacting with
their nearest neighbors solely through antiferromagnetic interactions. These spins can relax very
fast, since they have 6 neighbors and p = 10 states at disposal, so they can satisfy easily all
the bonds (which encourage the interacting spins to be in different states) and flip easily. The
probability of having spins with such neighbors configuration is given by (1−x)6 (or to the power
of 2d in dimension d). For our choice of x = (1 − 1/

√
2)/2 ≈ 0.15 we have that the probability
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of having such spins is about 0.39, which accounts then for the previously estimated 40% of fast
relaxing spins. In general, to extend the idea, the probability of having k ferromagnetic bonds
out of n is given by

P (k, n) =
n!

k!(n − k)!
xk (1 − x)n−k. (5.11)

So, a first approach is to say that a spin with k ferromagnetic bonds would relax with a barrier
given by kpJ . Just to compare with numbers, we have P (1, 6) ≈ 0.40, P (2, 6) ≈ 0.17, P (3, 6) =
4 · 10−2 and so on, with P (k ≥ 4, 6) ≤ 5 · 10−3. This approach has two problems. It produces
a second plateau at a height 0.21 (resulting from the sum of probabilities with k ≥ 2) and gives
still a rather high probability to have also a third plateau at a height of about 0.046, which we
do not observe. It is then necessary to refine the idea. Spins with a single ferromagnetic bond
need to overcome a barrier of pJ . The spins with two ferromagnetic bonds need not necessarily
overcome a barrier of 2pJ . In fact, if at least one of the two others neighbor spins has only one
ferromagnetic bond, then it will relax with a barrier pJ , and can permit in this way to the spin
with two ferromagnetic bonds to relax overcoming a barrier of pJ . The probability of such shells
of spins is given by P (2, 6), that is the probability for the spin to have only 2 ferromagnetic bonds
with its neighbors, times the probability that one of these two spins have no further ferromagnetic
bond with its remaining 5 neighbors, given by P (0, 5). We have then P (2, 6) · P (0, 5) ≈ 0.077,
so that the total percentage of spins relaxing with barriers bigger than pJ is lowered to 0.13,
very close to the value we find for the second plateau, which is around 0.12. Extending the
reasoning also to spins relaxing with 3pJ barriers, we find that the height of a third plateau
would be around 0.006. This value is small but not zero. We do not observe a third plateau, nor
do we have evidence of spins relaxing with barrier bigger than 2pJ . The picture we suggested
is valid when all the bonds are satisfied. As we have seen this is not perfectly correct, since
the low temperature value of the energy is about 5% bigger. It might then be that the disorder
creates some spin configurations in which not all the bonds are satisfied and spins which share
these bonds tend to have a high flipping rate, relaxing faster, in addition to the processes we have
described, and we do not observe more plateaus. We cannot also completely exclude that the
absence of further plateaus is a finite-size effect. Since probabilities into play are, as we have
seen, on the order of 0.6%, it might be that a number of spin of order 1000 is not yet sufficient to
observe them.
The processes we described up to now are local, and depend strongly on the choice of the prob-
ability distribution of the interaction, a bimodal one, where the only possibility are ±J with
different weights. Different distributions can then give rise to a different dynamical behavior.
This is indeed the case for a Gaussian distribution of bonds

P (Jij) =
1√

2π(∆J)
exp

[

−(Jij − J0)
2

2(∆J)2

]

(5.12)

with J0 and ∆J defined as in eq. (5.4) and with the same value J0 = −1, ∆J = 1 as in
the simulations with the bimodal distribution. Here the ferromagnetic bonds have a continuous
spectrum of values, therefore we do not expect a separation of timescales as in the previous case.

94



5.2 DYNAMICS

10
0

10
1

10
2

10
3

10
4

10
5

t [MCS]

0.0

0.2

0.4

0.6

C
(t

) T=2.0
T=2.2
T=2.4
T=2.6
T=2.8

P(Jij) Gaussian

L=10

(a)

0.35 0.40 0.45 0.50
1/T

10
1

10
2

10
3

τ 
[M

C
S]

C(τ)=0.02
C(τ)=0.05
C(τ)=0.1

slope=20.1

16.4

12.8

(b)

Figure 5.10: (a) Autocorrelation functions in the case of Gaussian distribution of the Jij . (b) Arrhenius
plot of the relaxation times in the Gaussian case. The values of the barriers are also shown.

This is indeed what happens, as we can see from Fig. 5.10a. The plateau structure disappears,
there is a rather fast relaxation at the beginning and then the curves slow down as the temperature
is lowered. Again it is not that clear how to define a relaxation time, since also with this choice
of interactions there are problems with the time-temperature superposition principle and we took
three reference points for the correlation function, namely 0.1, 0.05 and 0.002. Their behavior
with respect to temperature is again Arrhenius-like, as Fig. 5.10b shows. But the slope of the
curves tend to vary smoothly as a function of the point with respect to which the relaxation time
is measured. A smaller value of the latter correspond to an increasing value of the slope. This is
however a further indication of the fact that local processes determine the physics of the system,
since now the strength of the bonds varies continuously, and so do the barriers that the various
spin have to overcome in order to complete a relaxation process. The three dimensional ten state
Potts glass does not show a spin-glass phase transition at finite temperature, as instead the infinite
range version of the model does, nor seems to indicate the features of a dynamical transition at
finite temperature, with relaxation times diverging like (T − TD)−∆.
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Chapter 6

Conclusions

In this thesis we have presented the first detailed Monte Carlo investigation of the ten state Potts
glass model, both in the infinite range (that is fully connected) version as well as in three dimen-
sions. This spin model is very interesting since it is known that, in the thermodynamic limit, it
exhibits both a dynamical transition at TD where the system loses ergodicity, and a static tran-
sition at T0 < TD where a spin glass order parameter appears discontinuously. This behavior
includes all qualitative features present in the phenomenological theories for the structural glass
transition in supercooled liquids. In particular, the equations of motion for the spin autocorrela-
tion function have the same structure as those describing structural arrest in the idealized mode
coupling theory, and the static phase transition has been related to the hypothetical presence of a
phase transition to a thermodynamic stable structural glass state.

Several aims motivated our work. We want to verify if these predictions can be observed by
means of Monte Carlo simulations, and to understand how the various transitions are modified
(essentially rounded off) by the finite size of the system, that always prevents the system from
losing ergodicity. Important is also to see how much simulations can contribute to determine the
properties of the model, and to investigate if the transitions survive also in a three dimensional
version of the system. Answers to these questions are not only of interest for a better understand-
ing of the statistical mechanics of the present model system, they may also be useful to help with
the interpretation of simulations of models for the structural glass transition.

We summarize at this point the main results of our work. The main part of the investigation
has been devoted to the fully connected version of the model.

• Already at the level of the energy per spin, the system shows strong finite size effects in the
proximity of the phase transitions region. At high temperature the behavior is understood
and the difference between the energy of the finite system and the one in the thermody-
namic limit goes like N−1, while close to the static phase transition the data seem better
described by a N−2/3 scaling. This result is similar to what happens in second-order phase
transitions in mean field spin glass models (like in the Ising case), although in the Potts
model with a number of states p > 4 the transition is first order without latent heat.

• A simple extrapolation of the total entropy from the high temperature phase to zero, in the
spirit of Gibbs and DiMarzio does not locate the static phase transition properly. The right
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quantity going to zero at the transition is the complexity, that is the logarithm of basins
in the free energy landscape. This quantity starts to be extensive, coming from the high
temperature phase, at the dynamical transition temperature, and vanishes approaching the
static transition temperature. How to calculate it from a simulation in spin systems is still
an open problem. Moreover, the vicinity of TD and T0 in the system we studied and the
presence of strong finite size effects and consequent rounding of the transitions are further
sources of difficulty.

• The spin glass susceptibility measures the tendency to spin glass ordering, and diverges
when the spin glass phase is entered. For this model an extrapolation of the high tem-
perature result would locate a divergence at a temperature Ts < T0. This is analogous
to a “spinodal” temperature of a standard first order phase transition, but in our case it
has no physical meaning, since due to the instability of the paramagnetic (replica sym-
metric) phase into the spin glass one for every temperature T < T0, one cannot follow
the disordered branch of the free energy up to T = Ts (in the thermodynamic limit). So,
coming from the high temperature phase, the spin glass susceptibility remains finite at the
dynamical transition temperature and also upon approaching the static transition.

• The analysis of the order parameter distribution at low temperatures seems to support the
scenario predicted by the one step replica symmetry breaking solution, with the presence
of two peaks. Their position is also in quantitative agreement with the theory. The study in
this low temperature regime has been possible thank to the use of the parallel tempering,
an optimized Monte Carlo implementation particularly effective in the study of glassy
systems. Also the scaling behavior of the k-th moments of this distribution goes like
N−k/2 at high temperatures and like N−k/3 close to the transitions region.

• In order to quantitatively locate the static phase transition we use the method of the or-
der parameter cumulants, usually very effective with standard first and second order phase
transitions. Here, however, apparent crossing points are present but do not locate the phase
transition at the same temperature as predicted by the theory and moreover, using two dif-
ferent cumulants, the results do not agree between them. So strong corrections to scaling
are probably present, and it might be that the crossing points are spurious. Finite size cor-
rections to the main thermodynamic quantities are still unknown in the mean-field (replica
symmetry breaking) approach to this problem. Their knowledge would be valuable in the
interpretation of these results.

• The dynamics at high temperatures T ≥ TD shows unexpected strong finite size effects.
Two relaxation behaviors are hardly seen even for the largest system size investigated.
There is also, in this temperature regime, no indication of the development of a plateau in
the spin autocorrelation function, contrary to the expectation from the mean-field theory.
There is furthermore no evidence that the time-temperature superposition principle, that
describes the scaling of the autocorrelation functions when plotted as a function of t/τ ,
with τ the relaxation time, holds.
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• The dynamics progressively slows down upon approaching TD, and there is the develop-
ment of an apparent singularity of the kind (T − TD)−∆, (∆ ≈ 2) which is avoided then
at lower temperatures because finite size systems are always ergodic, and Arrhenius re-
laxation appears. The relaxation time at TD diverges as a function of the system size like
N1.5, an exponent much larger than the 2/3 found for the infinite range Ising spin glass. We
are able to describe the apparent singularity and the latter power law with a phenomeno-
logical dynamic finite size scaling Ansatz, which holds close to the dynamical transition
temperature.

• The dynamics at TD shows non-self-averaging effects, which means that it depends still on
the microscopic realization of the bond configurations also in the thermodynamic limit.

• At low temperatures T < T0 a plateau at intermediate times appears in the spin autocor-
relation function, and it is related to the second peak in the order parameter distribution
(Edwards-Anderson order parameter - qEA). In this regime, the time-temperature superpo-
sition principle is satisfied, and the master curve can be fitted very well at long times with
a stretched exponential. The barriers in the Arrhenius relaxation seem to diverge with the
size like N1/2.

• We analyzed the single spin dynamics up to temperatures much lower than the dynam-
ical transition one. We found strong dynamical heterogeneities, which explain the non-
exponentiality of the spin autocorrelation function. We found also strong correlations be-
tween static and dynamical properties (such as for instance the energy per spin and the
single spin relaxation times). We found also that at low temperatures the spins seem to re-
lax according to dynamical clusters, probably because of the strong bonds between them.

• We investigated also the recently proposed dynamic susceptibility, a four point correla-
tion function measuring also the degree of heterogeneity in the system. We found that it
exhibits a maximum as a function of time, and confirm the presence of power law diver-
gences as a function of the distance from the dynamical transition temperature for both the
position and the height of the maximum. The exponents seem not to be universal, since
they are different from those found for a p-spin spherical model. We investigated also the
size dependence of the interesting quantities, and this analysis seems to connect the times
at which a maximum occurs to the relaxation times of the standard spin autocorrelation
function.

The simulations of the three dimensional version of the model are particularly interesting to
see if this complex scenario, found for the mean field theory and qualitatively confirmed also in
the finite size fully connected version, survives. We used mainly a bimodal distribution of bonds,
of strength ±pJ = ±10J .

• The model tends to acquire ferromagnetic order if we use an equal concentration of ferro-
and antiferromagnetic bonds. This is reminiscent of what has been found also in the mean-
field version. This ferromagnetic transition is however not as strong as expected in the
pure ferromagnetic version of the model, which exhibits a first order transition. The nature
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of this “disordered” Potts ferromagnet is an open problem, we did not investigate further
whether a second order transition occurs or a weak first order one. To avoid this sponta-
neous magnetization, we have to add more antiferromagnetic bonds.

• Finite size effects are practically absent in the size and temperature region investigated,
quite contrary to the fully connected case. Coming from the high temperature phase, the
energy decreases smoothly and almost linearly in temperature to reach an almost constant
value at low temperature. The specific heat shows a broad peak at intermediate tempera-
tures, which is probably indicative of developing of short range order in the model, and it
is difficult to connect it to a phase transition.

• The spin glass susceptibility does not show any tendency to diverge at a finite temperature.
Also for this quantity finite size effects are negligible, and the behavior is the one expected
in the absence of transition at finite T . Its behavior is compatible with a power law behavior
χSG ∝ T−1, indicative of a system below the lower critical dimension. The spin glass order
parameter scales very well like N−1/2, so we argue that it vanishes in the thermodynamic
limit in the temperature region accessible to our simulations.

• The analysis of the order parameter cumulants does not show any behavior indicating any
spin glass phase transition, not even qualitatively (remember that the method failed in
locating exactly the transition temperature in the infinite range case, but was qualitatively
compatible with the presence of a transition). The cumulants tend to go to zero when the
system size increases.

• As far as dynamics is concerned, there is a clear presence of two timescales, also for
high temperature (i.e. relaxation times less than 104 MCS), while there are three distinct
timescales when the temperature is decreased further. These timescales are well separated,
and produce two distinct plateaus in the spin autocorrelation function. The relaxation
times associated to the two longest timescale have an Arrhenius behavior, with barriers of
the order of 10J and 20J .

• The analysis of the single spin dynamics, given mostly by simple exponential functions,
confirm the presence of three kinds of barrier, 0, 10J, 20J . We related it to the number of
ferromagnetic bonds of each spin with its nearest neighbors, and this permits to understand
also quantitatively the height of the two plateaus.

• The use of a Gaussian distribution of bonds instead of a bimodal eliminates the strong sep-
aration of timescales, giving further evidence to the role of the local bonds in determining
the behavior of the model.

This system, in its fully connected version, is a prototype model for the study of the glass
transition. Its extension to short-range forces in three dimensions does not show a finite tempera-
ture phase transition. To mimic what happens in real orientational glasses it might be interesting
to include power law interactions among the spins, since in real materials long-range effective
interactions (mediated by phonons) play an important role. Such “crossover” studies are however
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at present rather difficult, due to the long relaxation times and the lack of algorithms permitting
exhaustive studies. Also the study of this model in magnetic field can be very interesting in
elucidating the competition between ferromagnetic and (spin) glass ordering.
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Appendix A

Programs

In this appendix we give three codes, representative of those used in this work.

• The first is the one used to simulate the infinite range model with a Gaussian distribution
of bonds, by means of the single spin-flip Metropolis algorithm.

• The second code implements the parallel tempering algorithm, again for the infinite range
model with Gaussian bonds. It makes use of specific MPI (Message Passing Interface) to
implement global parallel features.

• The third code simulates a short range Potts glass with bimodal interactions. The algorithm
implemented is the Heat-Bath.

We give also an example of a input file for the first code. This input file is rather general and also
the other codes use similar ones.
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Single spin flip Metropolis simulation of the infinite range
c Potts glass
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c-----this program is intended to simulate random bond potts model
c-----with infinite range interactions among the spins, that is in
c-----the mean field approximation

c-----Improved version: the status of the random number generator is
c-----saved. And the data saved in a buffer before being written.

PROGRAM potts

IMPLICIT NONE
INTEGER*4 ns,ntotstep,nmax,pstates,ncorrel
INTEGER*4 ncorrelnew,ndiv,ncorr,npartial
PARAMETER (ns=320,nmax=ns*3,pstates=10,ncorrel=150,ndiv=4)
PARAMETER (npartial=ncorrel)
REAL*8 bond(ns,ns),jij,totbond
INTEGER*4 state_all(ns),irn(nmax),cortim(ncorrel*ndiv)
INTEGER*4 partial(ns,npartial)
INTEGER*4 temp_s,kran,state,iseed
REAL*8 energy(ns),entot,temp_en,delta,ener,en1
REAL*8 gain,loose
REAL*8 boltz,temper
REAL*8 comp,ensim,conv,count,convb
INTEGER*4 t,i,j,jj,ks,jran,p,k,ncrit
INTEGER*4 qlines,rlines,setequil,matseed,runseed,waste
CHARACTER*50 filout,filin,outfile,final,logfile,outlog,status
CHARACTER*50 meanofp,varofp
INTEGER*4 nstart,tstop,nstop,setrand,nspin,logbump
REAL*8 convran,hhh
INTEGER*4 time_v(npartial),pcount
REAL*8 simen_v(npartial)

c-----info variables
INTEGER*4 infoncorrel,infondiv
REAL*8 quenchtemp

c-----for the gaussian distribution
REAL*8 j0,dj,gau(ns)

c-----in common with the random number generator
INTEGER len1,len2,ifd1,ifd2,ipnt1,ipnt2,ipnf1,ipnf2
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
INTEGER*2 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

COMMON /bonds/gau

c-----THE PROGRAM STARTS

c nspin=50 !spin written in a single line
nstop=0
convran=2.**(-32)*(1.d0-1.d-15)
j0=(3.-pstates)/(ns-1.)
dj=1./sqrt(ns-1.)
conv=1.*pstates

DO i=1,ns
DO j=1,ns
bond(j,i)=0.

ENDDO
ENDDO
DO i=1,ns
gau(i)=0.

ENDDO

DO i=1,npartial
time_v(i)=0
simen_v(i)=0.
DO j=1,ns
partial(j,i)=0

ENDDO
ENDDO

c-----reading from the input file and construction of the bond matrix
print*,’I need the input file’
READ(5,FMT=’(a)’) filin
OPEN(061,file=filin)
READ(061,*) matseed
READ(061,*) runseed
READ(061,*) nstart
READ(061,*) ntotstep
READ(061,*) temper
READ(061,*) infoncorrel
READ(061,*) infondiv
READ(061,*) nspin
READ(061,*) quenchtemp
READ(061,FMT=’(a)’) meanofp
READ(061,FMT=’(a)’) varofp
READ(061,*) setequil
READ(061,*) setrand
READ(061,FMT=’(a)’) logfile
READ(061,FMT=’(a)’) filout
READ(061,FMT=’(a)’) status
READ(061,FMT=’(a)’) final

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
c-----initialization of the bond matrix: double delta distribution
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c-----some useful constants
qlines=int(ns/nspin)
rlines=mod(ns,nspin)

CALL firstran(matseed)
DO k=1,1000
CALL ransi(nmax)
DO i=1,3*ns
waste=irn(i)

ENDDO
ENDDO

DO j=1,ns-1
CALL gauss(j0,dj)
DO i=j+1,ns

jij=gau(i)
IF (i.eq.j) jij=0.
bond(j,i)=jij
bond(i,j)=jij

ENDDO
ENDDO

totbond=0.
DO j=1,ns
DO i=1,ns
totbond=totbond+bond(i,j)

ENDDO
ENDDO
totbond=totbond/2.

c˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

IF (setequil.eq.0) THEN
READ(061,FMT=’(a)’) outlog
READ(061,FMT=’(a)’) outfile

ENDIF
IF (setequil.ne.0.or.setrand.eq.1.or.quenchtemp.lt.100.) THEN
IF (qlines.ne.0) THEN
READ(061,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF

READ(061,139) (state_all(i), i=qlines*nspin+1,ns)
ENDIF
IF (setrand.eq.1) THEN
READ(061,*) ipnt1,ipnf1,ipnt2,ipnf2
DO i=1,9689
READ(061,*) ir1(i)

ENDDO
DO i=1,127
READ(061,*) ir2(i)

ENDDO
ENDIF

CLOSE(061)

c-----opening the output files
IF (setequil.eq.1) THEN
OPEN(072,file=filout,access=’append’)
IF (setrand.eq.0) THEN
WRITE(072,109) ns,’number of spins’
WRITE(072,109) pstates,’number of states’
WRITE(072,109) matseed,’matrix seed’
WRITE(072,109) runseed,’run seed’
WRITE(072,109) nstart,’time to start with’
WRITE(072,109) ntotstep,’number of timesteps’
WRITE(072,119) temper,’temperature’
WRITE(072,109) ncorrel,’points for the log scale’
WRITE(072,109) ndiv,’number of bumps’
WRITE(072,109) nspin,’spins per line’
WRITE(072,119) quenchtemp,’temperature of the quench’
WRITE(072,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(072,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(072,109) setequil,’equilibrium flag’
WRITE(072,109) setrand,’rng flag’
WRITE(072,FMT=’(a)’) logfile
WRITE(072,FMT=’(a)’) filout
WRITE(072,FMT=’(a)’) final
ENDIF

ENDIF

OPEN(071,file=logfile,access=’append’)
WRITE(071,109) ns,’number of spins’
WRITE(071,109) pstates,’number of states’
WRITE(071,109) matseed,’matrix seed’
WRITE(071,109) runseed,’run seed’
WRITE(071,109) nstart,’time to start with’
WRITE(071,109) ntotstep,’number of timesteps’
WRITE(071,119) temper,’temperature’
WRITE(071,109) ncorrel,’points for the log scale’
WRITE(071,109) ndiv,’number of bumps’
WRITE(071,109) nspin,’spins per line’
WRITE(071,119) quenchtemp,’temperature of the quench’
WRITE(071,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(071,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(071,109) setequil,’equilibrium flag’
WRITE(071,109) setrand,’rng flag’
WRITE(071,FMT=’(a)’) logfile
WRITE(071,FMT=’(a)’) filout
WRITE(071,FMT=’(a)’) final

c-----warming for the random number generator
IF (setrand.ne.1) THEN
CALL firstran(runseed)
DO k=1,1000
CALL ransi(nmax)
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DO i=1,3*ns
waste=irn(i)

ENDDO
ENDDO
ENDIF

c-----needed only for the equilibration run, NOT for the equilibrium
c run!

IF (setequil.eq.0.and.setrand.ne.1.and.quenchtemp.gt.100.) THEN
DO i=1,ns
state_all(i)=0

ENDDO
CALL ransi(nmax)
DO i=1,ns
state_all(i)=(irn(i)*convran+.5)*pstates

ENDDO
ENDIF

c---- compute the times at which the correlation functions are evaluated
c

p=ncorrel
p=p-1
DO k=1,p
cortim(k)=nint(dfloat(ntotstep)**(k/dfloat(p+1)))

ENDDO
cortim(1)=0
k=2
j=2

20 IF( j .gt. p) goto 30
IF( cortim(j) .ne. cortim(k) ) THEN

k=k+1
cortim(k)=cortim(j)
j=j+1

else
j=j+1

ENDIF
goto 20

30 IF( ncorrel .eq. 0 ) THEN
ncorrelnew=0

else
cortim(k+1)=ntotstep
ncorrelnew=k+1

ENDIF

ncorr=ncorrelnew
DO j=1,ndiv-1
DO k=1,ncorrelnew
IF (cortim(k)+j*ntotstep/ndiv.gt.ntotstep) goto 50
ncorr=ncorr+1
cortim(ncorr)=cortim(k)+j*ntotstep/ndiv
ENDDO

50 continue

ENDDO

DO k=1,ncorr
WRITE(071,*) cortim(k)

ENDDO

c-----calculation of the total energy and of the energy arrays
entot=0.
DO i=1,ns
state=state_all(i)
ener=0.
DO j=1,ns
gain=0.
IF (state.eq.state_all(j)) ener=ener+bond(i,j)

ENDDO
energy(i)=-ener
entot=entot+energy(i)

ENDDO
en1=entot

c-----writing down the step number 0!
t=nstart
ensim=(conv*entot/2.+totbond)/ns
IF (nstart.eq.0) THEN
WRITE(071,*) t,ensim,state_all(1),state_all(2)
IF (setequil.eq.1) THEN
WRITE(072,*)t,ensim
IF (qlines.ne.0) THEN
WRITE(072,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(072,139) (state_all(i), i=qlines*nspin+1,ns)

ENDIF
ENDIF

c-----THE CORE OF THE PROGRAM
c-----Monte Carlo Calculation

count=0
ensim=0.
pcount=0
ncrit=0
tstop=ntotstep/4
logbump=ntotstep/200
convb=(1.*pstates)/temper

DO t=nstart+1,ntotstep
c-----single monte carlo sweep: ns spin updated

CALL ransi(nmax)
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DO ks=1,3*ns,3
c-----single ranDOm spin flip

temp_s=0
jran=(irn(ks)*convran+.5)*ns+1
kran=(irn(ks+1)*convran+.5)*pstates+1
comp=(irn(ks+2)*convran+.5)
temp_s=mod(kran,pstates)

c-----comparison and importance sampling
26 temp_en=0.

DO j=1,ns
gain=0.
IF (temp_s.eq.state_all(j)) temp_en=temp_en-bond(j,jran)

ENDDO

delta=temp_en-energy(jran)

IF (delta.le.0.) THEN
goto 23

else IF (delta.gt.0.) THEN
boltz=exp(-delta*convb)
IF (boltz.gt.comp) goto 23
IF (boltz.le.comp) goto 24

ENDIF

23 continue

energy(jran)=temp_en
entot=energy(jran)
DO i=1,jran-1
IF (state_all(jran).eq.state_all(i))

& energy(i)=energy(i)+bond(i,jran)
IF (temp_s.eq.state_all(i))

& energy(i)=energy(i)-bond(i,jran)
entot=entot+energy(i)

ENDDO
DO i=jran+1,ns
IF (state_all(jran).eq.state_all(i))

& energy(i)=energy(i)+bond(i,jran)
IF (temp_s.eq.state_all(i))

& energy(i)=energy(i)-bond(i,jran)
entot=entot+energy(i)

ENDDO
state_all(jran)=temp_s

24 continue
ensim=(conv*entot/2.+totbond)/ns

ENDDO

ensim=(conv*entot/2.+totbond)/ns

IF (mod(t,logbump).eq.0) THEN
WRITE(071,*) t,ensim,state_all(1),state_all(2)
CALL FLUSH(071)

ENDIF

c------writing down something
IF (setequil.eq.1) THEN
DO j=1,ncorr
IF (t.eq.cortim(j)) THEN
pcount=pcount+1
time_v(pcount)=t
simen_v(pcount)=ensim
DO k=1,ns
partial(k,pcount)=state_all(k)

ENDDO
ENDIF

ENDDO

IF (pcount.ge.(npartial-ndiv).and.pcount.le.npartial) ncrit=1

IF (ncrit.eq.1.or.t.eq.ntotstep.or.
& mod(t,tstop).eq.0) THEN

DO jj=1,pcount
WRITE(072,*) time_v(jj), simen_v(jj)
IF (qlines.ne.0) THEN
WRITE(072,139) ((partial(i,jj),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(072,139) (partial(i,jj), i=qlines*nspin+1,ns)
CALL flush(072)
ENDDO
DO i=1,npartial
time_v(i)=0
simen_v(i)=0.
DO j=1,ns
partial(j,i)=0

ENDDO
ENDDO
pcount=0
ncrit=0

ENDIF
ENDIF

c-----status of the random number generator
IF (mod(t,tstop).eq.0) THEN
nstop=nstop+1
OPEN(073,file=status)
WRITE(073,109) matseed,’matrix seed’
WRITE(073,109) runseed,’run seed’
WRITE(073,109) nstop*tstop,’time to start with’
WRITE(073,109) ntotstep,’number of timesteps’
WRITE(073,119) temper,’temperature’
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WRITE(073,109) ncorrel,’points for the log scale’
WRITE(073,109) ndiv,’number of bumps’
WRITE(073,109) nspin,’spins per line’
WRITE(073,119) quenchtemp,’temperature of the quench’
WRITE(073,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(073,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(073,109) setequil,’equilibrium flag’
WRITE(073,109) 1,’rng flag’
WRITE(073,FMT=’(a)’) logfile
WRITE(073,FMT=’(a)’) filout
WRITE(073,FMT=’(a)’) status
WRITE(073,FMT=’(a)’) final
IF (setequil.eq.0) THEN
WRITE(073,FMT=’(a)’) outlog
WRITE(073,FMT=’(a)’) outfile

ENDIF
IF (qlines.ne.0) THEN
WRITE(073,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(073,139) (state_all(i), i=qlines*nspin+1,ns)
WRITE(073,*) ipnt1,ipnf1,ipnt2,ipnf2
DO i=1,9689
WRITE(073,*) ir1(i)

ENDDO
DO i=1,127
WRITE(073,*) ir2(i)

ENDDO
CALL flush(073)

CLOSE(073)
ENDIF

ENDDO
c----end of the Monte Carlo calculation
c----END OF THE CORE PART

c
c-----IF this is an equilibration run, there is the need to supply a new
c (restart) file. in order to start the simulation at equilibrium

IF (setequil.eq.0) THEN
OPEN(074,file=final)
WRITE(074,109) matseed, ’matrix seed’
WRITE(074,109) runseed+3000, ’run seed’
WRITE(074,109) 0,’time to start with’
WRITE(074,109) ntotstep, ’number of timesteps’
WRITE(074,119) temper, ’temperature’
WRITE(074,109) ncorrel,’points for the log scale’
WRITE(074,109) ndiv,’number of bumps’
WRITE(074,109) nspin,’spins per line’
WRITE(074,119) quenchtemp,’temperature of the quench’
WRITE(074,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(074,129) ’variance: dj=1./sqrt(ns-1.)’

WRITE(074,109) setequil+1, ’equilibrium flag’
WRITE(074,109) 0,’rng flag’
WRITE(074,129) outlog
WRITE(074,129) outfile
WRITE(074,129) status
WRITE(074,*) ’no need for a final file’

IF (qlines.ne.0) THEN
WRITE(074,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(074,139) (state_all(i), i=qlines*nspin+1,ns)
CALL flush(074)

CLOSE(074)
ENDIF

IF (setequil.eq.1) THEN
CLOSE(072)

ENDIF

109 FORMAT(I8,1x,A30)
119 FORMAT(f10.6,1x,A30)
129 FORMAT(A40)
139 FORMAT(100I1)

END

SUBROUTINE gauss(j0,dj)
c-----Gaussian distributed random number generator

IMPLICIT NONE
INTEGER*4 ns,nmax,k,i,ngauss
REAL*8 x1,v1,v2,y1,y2,fx1,aux,j0,dj,convran
PARAMETER (ns=320,nmax=3*ns)
INTEGER*4 irn(nmax)
REAL*8 gau(ns)
INTEGER len1,len2,ifd1,ifd2,ipnt1,ipnt2,ipnf1,ipnf2
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
INTEGER*2 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2
COMMON /bonds/gau

convran=2.**(-32)*(1.d0-1.d-15)

ngauss=1

DO i=1,ns
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gau(i)=0.
ENDDO

41 CALL ransi(nmax)
DO i=1,nmax,2
v1=irn(i)*convran*2.
v2=irn(i+1)*convran*2.
x1=v1**2+v2**2
IF (x1.gt.1..or.x1.eq.0.) THEN
goto 40

ENDIF
IF (ngauss.gt.ns) goto 42
fx1=1./x1
aux=sqrt(-2.*fx1*log(x1))
y1=aux*v2
y2=aux*v1
gau(ngauss)=y1
gau(ngauss+1)=y2
ngauss=ngauss+2

40 continue
ENDDO

IF (ngauss.lt.ns) goto 41

42 continue

DO i=1,ns
gau(i)=gau(i)*dj+j0

c print*, gau(i)
c read*,hhh

ENDDO
return

END

SUBROUTINE firstran(iseed)
c-----setup for the random number generator
c sequential version
c shift register random generator with very long period

implicit REAL*8 (a-h,o-z)

save
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
INTEGER*2 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax

PARAMETER (ns=320,nmax=3*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

k=3**18+2*iseed
k1=1313131*iseed
k1=k1-(k1/mod2)*mod2
DO i=1,len1

k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir1(i)=k+k1*8193

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len2

k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir2(i)=k+k1*4099

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len1

inxt1(i)=i+1
ENDDO
inxt1(len1)=1
ipnt1=1
ipnf1=ifd1+1
DO i=1,len2

inxt2(i)=i+1
ENDDO
inxt2(len2)=1
ipnt2=1
ipnf2=ifd2+1
return
END

SUBROUTINE ransi(n)
c-----random number generator
c sequential version
c shift register random generator with very long period

implicit REAL*8 (a-h,o-z)
save
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
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INTEGER*2 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax,n
PARAMETER (ns=320,nmax=3*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

c calculate n random numbers
DO i=1,n

l=ieor(ir1(ipnt1),ir1(ipnf1))
k=ieor(ir2(ipnt2),ir2(ipnf2))

c write(6,*) i,ipnt1,ipnt2,l,k,ieor(k,l)
irn(i)=ieor(k,l)
ir1(ipnt1)=l
ipnt1=inxt1(ipnt1)
ipnf1=inxt1(ipnf1)
ir2(ipnt2)=k
ipnt2=inxt2(ipnt2)
ipnf2=inxt2(ipnf2)

ENDDO
return

END
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PROGRAMS

This is an example of an input file for the previous code (single flip Metropolis simulation of
the infinite range Potts glass). Withouth comment are the names of the files used by the program.

56747 seed for the interactions
7206 seed for the run
0 starting time
1000 number of timesteps
1.8 temperature
150 points for the time scale
10 number of time origins
50 spins per line
999. temperature of the quench
(3-p)/(N-1)
1/N-1
0 equilibrium/production run variable
0 restart variable
run0001.log
run0001.dat
status_rng_0001
restart0001
eq_run0001.log
eq_run0001.dat
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Parallel tempering simulation of the infinite range Potts Glass
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c This program is intended to simulate random bond potts model
c with infinite range interactions among the spins, that is in
c the mean field approximation
c
c parallel tempering algorithm
c
c structure of the random walk file: step, temperature of the i-proc
c this program uses LINEAR time scales
c the program can be restarted thanks to the status_rng_* files
c
c important variables/parameters:
c - locstep= number of steps in each local updating;
c - npoints: how many configurations to write down
c - setstop: how many times to save the status of the program:
c REMEMBER: npoints/setstop MUST be an integer number

c - temptoproc(:): array that, given a temperature, tells which
c processor has that temperature;
c - proctotemp(:): array that, given a processor, tells its
c temperature;
c both this variables are meaningful only for the master PE

c the logfile is intended to be teperature-ordered (that is the
c eq_run0001.log is the logfile corresponding to temperature 01);
c it is updated at every stop, that is at every writing of the
c status files, and has a list of the energy as a function of time.
c There is also a end-file, that signals when the program ends:
c this is useful when we want to restart the program, making a
c chain of submissions in the queuing system

PROGRAM potts

IMPLICIT NONE
INCLUDE ’mpif.h’
INTEGER*4 ns,ntotstep,nmax,pstates
INTEGER*4 ndiv,ncorr
PARAMETER (ns=640,nmax=ns*3,pstates=10)
REAL*8 bond(ns,ns),jij,totbond
INTEGER*4 state_all(ns),irn(nmax)
INTEGER*4 temp_s,kran,state,iseed
REAL*8 energy(ns),entot,temp_en,delta,ener,en1
REAL*8 gain,loose

REAL*8 boltz,temper
REAL*8 comp,ensim,conv,count,convb
INTEGER*4 i,j,jj,ks,jran,p,k,t,init
INTEGER*4 qlines,rlines,setequil,matseed,runseed,waste
CHARACTER*50 filout,filin,outfile,final,logfile,outlog
CHARACTER*50 status_rng
INTEGER*4 nstart,tstop,nstop,setrand,nspin
REAL*8 convran

c-----info variables
REAL*8 quenchtemp
CHARACTER*50 meanofp,varofp

c-----PARALLEL VARIABLES
INTEGER myid, numprocs,ierr,kmax,involved
INTEGER dest,source,kappa,kappacrit
INTEGER*4 locstart,locend,locstep,maxtemp
INTEGER*4 shift,couple,ncouples,seedcouple
PARAMETER (maxtemp=64)
INTEGER setstop, npoints
INTEGER rest1,rest2,cfr1,cfr2,hundr,myfile,dec
INTEGER adam,eve,othertemp,indexch
INTEGER istatus(MPI_STATUS_SIZE),success
INTEGER temptoproc(0:maxtemp-1),inttemper,me
INTEGER proctotemp(0:maxtemp-1)
REAL*8 encfr(0:maxtemp-1),rdelta,rboltz,rtemper(0:maxtemp-1)
REAL*8 hhh,rcomp,t_adam,t_eve
CHARACTER*50 alltemper,filpara
CHARACTER*50 out(0:maxtemp-1),rest(0:maxtemp-1)
CHARACTER*50 logf(0:maxtemp-1),stat(0:maxtemp-1)
INTEGER idum,l,countbump,punit,nbump
INTEGER*4 foridum
REAL*8 RAN1,auxcomp,garb
REAL*8 time_0,time_1,ptime_0,ptime_1,comm_time
INTEGER, ALLOCATABLE :: bumpconf(:,:),wconf(:,:)
REAL, ALLOCATABLE :: bumpener(:),wener(:)
INTEGER, ALLOCATABLE :: bumptemp(:),wtemp(:)
INTEGER smatrix,svector,stag,dtag,nrand
INTEGER, ALLOCATABLE :: randomw(:,:)
REAL*8, ALLOCATABLE :: enewalk(:,:)

c-----for the gaussian distribution
REAL*8 j0,dj,gau(ns)

c-----in common with the random number generator
INTEGER*4 len1,len2,ifd1,ifd2,ipnt1,ipnt2,ipnf1,ipnf2
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*4 inxt1(len1)
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INTEGER*4 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2
COMMON /bonds/gau

c
c-----THE PROGRAM STARTS
c

c
c-----initializing the parallel part
c

CALL MPI_INIT(ierr)
CALL MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )
CALL MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

comm_time=0.
time_0=0.
time_1=0.
ptime_0=0.
ptime_1=0.

ncouples=numprocs-1
myfile=myid+1
cfr1=100
cfr2=10
hundr=INT(myfile/100)
rest1=MOD(myfile,cfr1)
dec=INT(rest1/10)
rest2=MOD(myfile,cfr2)

filin=’input_0’//char(48+hundr)//char(48+dec)//char(48+rest2)
c filin=’restart0’//char(48+hundr)//char(48+dec)//char(48+rest2)
c filin=’status_rng_0’//char(48+hundr)//char(48+dec)//char(48+rest2)

alltemper=’temper.dat’

CALL MPI_BARRIER(MPI_COMM_WORLD,IERR)

DO i=0,numprocs-1
myfile=i+1
cfr1=100
cfr2=10
hundr=INT(myfile/100)
rest1=MOD(myfile,cfr1)
dec=INT(rest1/10)

rest2=MOD(myfile,cfr2)
out(i)=’eq_run0’//char(48+hundr)//char(48+dec)//

& char(48+rest2)//’.dat’
rest(i)=’restart0’//char(48+hundr)//char(48+dec)//

& char(48+rest2)
logf(i)=’eq_run0’//char(48+hundr)//char(48+dec)//

& char(48+rest2)//’.log’
stat(i)=’status_rng_0’//char(48+hundr)//char(48+dec)//

& char(48+rest2)
c print*, rest(i),stat(i)

ENDDO

DO i=0,maxtemp-1
rtemper(i)=0.
encfr(i)=0.
temptoproc(i)=0
proctotemp(i)=0

ENDDO

OPEN(062,file=alltemper)
DO i=0,numprocs-1
READ(062,*) rtemper(i)

ENDDO
CLOSE(062)

DO i=0,numprocs-1
temptoproc(i)=i
proctotemp(i)=i

ENDDO

indexch=0

c-----some constants
nspin=50 !spin written in a single line
quenchtemp=999. !pt always start from T=infin.
qlines=int(ns/nspin)
rlines=mod(ns,nspin)
nstop=0
convran=2.**(-32)*(1.d0-1.d-15)
j0=(3.-pstates)/(ns-1.)
dj=1./sqrt(ns-1.)
conv=1.*pstates

DO i=1,ns
DO j=1,ns
bond(j,i)=0.

ENDDO
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ENDDO
DO i=1,ns
gau(i)=0.

ENDDO

c
c-----READING from the INPUT file and construction of the bond matrix
c
c print*,’I need the input file’
c READ(5,FMT=’(a)’) filin

OPEN(061,file=filin)
READ(061,*) matseed
READ(061,*) runseed
READ(061,*) nstart
READ(061,*) ntotstep
READ(061,*) inttemper
READ(061,*) locstep
READ(061,*) npoints
READ(061,*) nspin
READ(061,*) setstop
READ(061,FMT=’(a)’) meanofp
READ(061,FMT=’(a)’) varofp
READ(061,*) setequil
READ(061,*) setrand
READ(061,FMT=’(a)’) logfile
READ(061,FMT=’(a)’) filout
READ(061,FMT=’(a)’) status_rng
READ(061,FMT=’(a)’) final

c
c-----initialization of the bond matrix: gaussian distribution
c

CALL firstran(matseed)
DO k=1,1000
CALL ransi(nmax)
DO i=1,3*ns
waste=irn(i)

ENDDO
ENDDO

DO j=1,ns-1
CALL gauss(j0,dj)
DO i=j+1,ns

jij=gau(i)
IF (i.eq.j) jij=0.
bond(j,i)=jij
bond(i,j)=jij

ENDDO
ENDDO

totbond=0.
DO j=1,ns
DO i=1,ns
totbond=totbond+bond(i,j)

ENDDO
ENDDO
totbond=totbond/2.

c
IF (setequil.eq.0) THEN
READ(061,FMT=’(a)’) outlog
READ(061,FMT=’(a)’) outfile

ENDIF
IF (setequil.ne.0.or.setrand.eq.1.or.quenchtemp.lt.100.) THEN
IF (qlines.ne.0) THEN
READ(061,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF

READ(061,139) (state_all(i), i=qlines*nspin+1,ns)
ENDIF

c-----the inclusion of the variable shift is very important, and was not
c present in the serial version of the code: takes memory of the
c status of the parallel calculation

shift=0
IF (setrand.eq.1) THEN
READ(061,*) shift
READ(061,*) ipnt1,ipnf1,ipnt2,ipnf2
DO i=1,9689
READ(061,*) ir1(i)

ENDDO
DO i=1,127
READ(061,*) ir2(i)

ENDDO
ENDIF
CLOSE(061)

c-----another instruction different from the serial version: also the
c positions of all the temperatures have to be saved

IF (myid.eq.0.and.setrand.eq.1) THEN
OPEN(065,file=’status_rng_glob’)
READ(065,149) (temptoproc(i), i=0,numprocs-1)
READ(065,149) (proctotemp(i), i=0,numprocs-1)

CLOSE(065)
ENDIF

c
c----the random walk
c

IF (setequil.eq.0) filpara=’para_run.dat’
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IF (setequil.eq.1) filpara=’para_equ.dat’

c
c-----opening the output files
c

IF (setequil.eq.1) THEN
OPEN(072,file=filout,position=’append’)
IF (setrand.eq.0) THEN
WRITE(072,109) ns,’number of spins’
WRITE(072,109) pstates,’number of states’
WRITE(072,109) matseed,’matrix seed’
WRITE(072,109) runseed,’run seed’
WRITE(072,109) nstart,’time to start with’
WRITE(072,109) ntotstep,’number of timesteps’
WRITE(072,119) rtemper(inttemper),’temperature’
WRITE(072,109) locstep,’how often the PT occurs’
WRITE(072,109) npoints,’number of bumps’
WRITE(072,109) nspin,’spins per line’
WRITE(072,109) setstop,’how many times the status’
WRITE(072,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(072,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(072,109) setequil,’equilibrium flag’
WRITE(072,109) setrand,’rng flag’
WRITE(072,FMT=’(a)’) logfile
WRITE(072,FMT=’(a)’) filout
WRITE(072,FMT=’(a)’) final

ENDIF
CLOSE(072)

ENDIF

IF (myid.eq.0) THEN
IF (setrand.eq.0) THEN
OPEN(071,file=logfile,position=’append’)
WRITE(071,109) ns,’number of spins’
WRITE(071,109) pstates,’number of states’
WRITE(071,109) matseed,’matrix seed’
WRITE(071,109) runseed,’run seed’
WRITE(071,109) nstart,’time to start with’
WRITE(071,109) ntotstep,’number of timesteps’
WRITE(071,119) rtemper(inttemper),’temperature’
WRITE(071,109) locstep,’how often the PT exchange occurs’
WRITE(071,109) npoints,’number of bumps’
WRITE(071,109) nspin,’spins per line’
WRITE(071,109) setstop,’how many times the status’
WRITE(071,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(071,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(071,109) setequil,’equilibrium flag’
WRITE(071,109) setrand,’rng flag’

WRITE(071,FMT=’(a)’) logfile
WRITE(071,FMT=’(a)’) filout
WRITE(071,FMT=’(a)’) final
CLOSE(071)

ENDIF
ENDIF

c
c-----first temperature
c

temper=rtemper(inttemper)
c
c-----dynamical memory allocation
c

kappacrit=ntotstep/(npoints*locstep)
nbump=npoints/setstop
tstop=ntotstep/setstop
nrand=ntotstep/locstep/setstop

IF (nstop.eq.0) THEN
ALLOCATE(bumpconf(ns,0:nbump))
ALLOCATE(bumptemp(0:nbump),bumpener(0:nbump))
ALLOCATE(randomw(0:numprocs-1,0:nbump))
ALLOCATE(enewalk(0:numprocs-1,1:nbump))
IF (myid.eq.0) THEN
DO i=0,numprocs-1
randomw(i,indexch)=proctotemp(i)

ENDDO
ENDIF
bumpconf=0.
bumptemp=0
bumpener=0.

ENDIF

c
c-----warming for the random number generator
c

IF (setrand.ne.1) THEN
CALL firstran(runseed)
DO k=1,1000
CALL ransi(nmax)
DO i=1,3*ns
waste=irn(i)

ENDDO
ENDDO
ENDIF

c
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c-----needed only for the equilibration run, NOT for the equilibrium
c run; and only when quenching from infinity
c

IF (setequil.eq.0.and.setrand.ne.1.and.quenchtemp.lt.100.) THEN
DO i=1,ns
state_all(i)=0

ENDDO
CALL ransi(nmax)
DO i=1,ns
state_all(i)=(irn(i)*convran+.5)*pstates

ENDDO
ENDIF

c
c-----calculation of the total energy and of the energy arrays
c

entot=0.
DO i=1,ns
state=state_all(i)
ener=0.
DO j=1,ns
gain=0.
IF (state.eq.state_all(j)) ener=ener+bond(i,j)

ENDDO
energy(i)=-ener
entot=entot+energy(i)

ENDDO
en1=entot

c
c-----writing down the step number 0!
c

t=nstart
countbump=0
ensim=(conv*entot/2.+totbond)/ns

IF (nstart.eq.0) THEN
c OPEN(071,file=logfile,position=’append’)
c WRITE(071,159) t,ensim
c WRITE(071,*) t,ensim,state_all(1),state_all(2)

IF (setequil.eq.1) THEN
DO i=1,ns
bumpconf(i,countbump)=state_all(i)

ENDDO
bumpener(countbump)=ensim
bumptemp(countbump)=inttemper
countbump=countbump+1

ENDIF
c CLOSE(071)

ENDIF

c
c-----time evaluation
c

time_0=MPI_Wtime()

c
c-----THE CORE OF THE PROGRAM
c-----Monte Carlo Calculation
c

count=0
ensim=0.
convb=(1.*pstates)/temper
locstart=nstart
kappa=0
indexch=1
countbump=1

100 locend=locstart+locstep

DO t=locstart+1,locend
c if (myid.eq.0) print*,t
c-----single monte carlo sweep: ns spin updated

CALL ransi(nmax)
DO ks=1,3*ns,3

c-----single random spin flip
temp_s=0
jran=(irn(ks)*convran+.5)*ns+1
kran=(irn(ks+1)*convran+.5)*pstates+1
comp=(irn(ks+2)*convran+.5)
temp_s=mod(kran,pstates)

c-----comparison and importance sampling
temp_en=0.
DO j=1,ns
gain=0.
IF (temp_s.eq.state_all(j)) temp_en=temp_en-bond(j,jran)

ENDDO

delta=temp_en-energy(jran)

IF (delta.le.0.) THEN
goto 60

else IF (delta.gt.0.) THEN
boltz=exp(-delta*convb)
IF (boltz.gt.comp) goto 60
IF (boltz.le.comp) goto 70

ENDIF
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60 continue

energy(jran)=temp_en
entot=energy(jran)
DO i=1,jran-1
IF (state_all(jran).eq.state_all(i))

& energy(i)=energy(i)+bond(i,jran)
IF (temp_s.eq.state_all(i))

& energy(i)=energy(i)-bond(i,jran)
entot=entot+energy(i)

ENDDO
DO i=jran+1,ns
IF (state_all(jran).eq.state_all(i))

& energy(i)=energy(i)+bond(i,jran)
IF (temp_s.eq.state_all(i))

& energy(i)=energy(i)-bond(i,jran)
entot=entot+energy(i)

ENDDO
state_all(jran)=temp_s

70 continue
ensim=(conv*entot/2.+totbond)/ns

ENDDO

ENDDO
c----end of the Monte Carlo calculation

c
c----beginning of the parallel tempering part
c

encfr(myid)=ensim*ns

CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

CALL MPI_GATHER(encfr(myid),1,MPI_REAL8,encfr,1,
& MPI_REAL8,0,MPI_COMM_WORLD,ierr)

kappa=kappa+1
IF (myid.eq.0) THEN
IF (shift.eq.0.and.numprocs.gt.2) THEN
shift=1

ELSE
shift=0

ENDIF

CALL ransi(nmax)

DO couple=0,ncouples-1,2
involved=couple+1*shift

IF (involved.eq.numprocs-1) GOTO 210
adam=temptoproc(involved)
eve=temptoproc(involved+1)

rcomp=(irn(couple+1)*convran+.5)
t_adam=rtemper(proctotemp(adam))
t_eve=rtemper(proctotemp(eve))
rdelta=(encfr(adam)-encfr(eve))*(1./t_eve

& -1./t_adam)
success=0

IF (rdelta.le.0.) THEN
success=1
GOTO 80

ELSE IF (rdelta.gt.0.) THEN
rboltz=exp(-rdelta)
IF (rboltz.gt.rcomp) THEN
success=1
goto 80
ELSE IF (rboltz.le.rcomp) THEN
goto 90
ENDIF

ENDIF

80 CONTINUE

temptoproc(involved)=eve
temptoproc(involved+1)=adam
proctotemp(adam)=involved+1
proctotemp(eve)=involved

90 CONTINUE
ENDDO ! the one on adam and eve

210 CONTINUE

ENDIF ! the one on the master processor

CALL MPI_SCATTER(proctotemp,1,MPI_INTEGER,inttemper,
& 1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

temper=rtemper(inttemper)
convb=(1.*pstates)/temper
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CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

c-----and now writing down the results
IF (mod(kappa,kappacrit).eq.0) THEN
IF (setequil.eq.1) THEN
DO i=1,ns
bumpconf(i,countbump)=state_all(i)

ENDDO
bumpener(countbump)=ensim
bumptemp(countbump)=inttemper
countbump=countbump+1

ENDIF
IF (myid.eq.0) THEN
DO i=0,numprocs-1

randomw(i,indexch)=proctotemp(i)
enewalk(i,indexch)=encfr(temptoproc(i))

ENDDO
indexch=indexch+1

ENDIF
ENDIF

locstart=locend

c
c-----status of the random number generator and output
c

IF (mod(locend,tstop).eq.0) THEN
nstop=nstop+1
status_rng=stat(myid)
OPEN(073,file=status_rng)
WRITE(073,109) matseed,’matrix seed’
WRITE(073,109) runseed,’run seed’
WRITE(073,109) nstart+nstop*tstop,’time to start with’
WRITE(073,109) ntotstep,’number of timesteps’
WRITE(073,109) inttemper,’temperature’
WRITE(073,109) locstep,’how often the PT occurs’
WRITE(073,109) npoints,’number of bumps’
WRITE(073,109) nspin,’spins per line’
WRITE(073,109) setstop,’how many times the status’
WRITE(073,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(073,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(073,109) setequil,’equilibrium flag’
WRITE(073,109) 1,’rng flag’
WRITE(073,FMT=’(a)’) logfile
WRITE(073,FMT=’(a)’) filout
WRITE(073,FMT=’(a)’) status_rng

WRITE(073,FMT=’(a)’) final
IF (setequil.eq.0) THEN
WRITE(073,FMT=’(a)’) outlog
WRITE(073,FMT=’(a)’) outfile

ENDIF
IF (qlines.ne.0) THEN
WRITE(073,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(073,139) (state_all(i), i=qlines*nspin+1,ns)
WRITE(073,109) shift,’shift for the PT’
WRITE(073,*) ipnt1,ipnf1,ipnt2,ipnf2
DO i=1,9689
WRITE(073,*) ir1(i)

ENDDO
DO i=1,127
WRITE(073,*) ir2(i)

ENDDO
CALL flush(073)
CLOSE(073)
IF (myid.eq.0) THEN
OPEN(076,file=’status_rng_glob’)
WRITE(076,149) (temptoproc(i), i=0,numprocs-1)
WRITE(076,149) (proctotemp(i), i=0,numprocs-1)
CLOSE(076)

ENDIF
c
c-----the output
c

IF (setequil.eq.1) THEN
ALLOCATE(wconf(ns,0:nbump),wener(0:nbump),wtemp(0:nbump))
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

IF (myid.eq.0) THEN
DO i=0,numprocs-1
punit=111+i
OPEN(punit,file=out(i),position=’append’)
ENDDO
wconf=bumpconf
wener=bumpener
wtemp=bumptemp
init=0
IF (setrand.eq.1.or.nstop.gt.1) init=1
DO j=init,nbump
punit=111+wtemp(j)
WRITE(punit,159) j*(locstep*kappacrit)+nstart+(nstop-1)*tstop,

& wener(j),myid
IF (qlines.ne.0) THEN
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WRITE(punit,139) ((wconf(l,j),l=(k-1)*nspin+1,k*nspin),
& k=1,qlines)

ENDIF
WRITE(punit,139) (wconf(l,j), l=qlines*nspin+1,ns)
CALL flush(punit)

ENDDO
ENDIF
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)
i=1

222 CONTINUE

source=i
dest=0
stag=1
dtag=1
smatrix=ns*(nbump+1)
svector=nbump+1
IF (myid.eq.source) THEN
CALL MPI_SEND(bumpconf,smatrix,MPI_INTEGER,dest,1,

& MPI_COMM_WORLD,ierr)
CALL MPI_SEND(bumptemp,svector,MPI_INTEGER,dest,2,

& MPI_COMM_WORLD,ierr)
CALL MPI_SEND(bumpener,svector,MPI_REAL,dest,3,

& MPI_COMM_WORLD,ierr)
ENDIF
IF (myid.eq.dest) THEN
CALL MPI_RECV(wconf,smatrix,MPI_INTEGER,source,1,

& MPI_COMM_WORLD,istatus,ierr)
CALL MPI_RECV(wtemp,svector,MPI_INTEGER,source,2,

& MPI_COMM_WORLD,istatus,ierr)
CALL MPI_RECV(wener,svector,MPI_REAL,source,3,

& MPI_COMM_WORLD,istatus,ierr)
ENDIF

IF (myid.eq.0) THEN
DO j=init,nbump
punit=111+wtemp(j)
WRITE(punit,159) j*(locstep*kappacrit)+nstart+(nstop-1)*tstop,

& wener(j),i
IF (qlines.ne.0) THEN
WRITE(punit,139) ((wconf(l,j),l=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(punit,139) (wconf(l,j), l=qlines*nspin+1,ns)
CALL flush(punit)

ENDDO
ENDIF
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

i=i+1
IF (i.gt.numprocs-1) GOTO 444
GOTO 222

444 CONTINUE

IF (myid.eq.0) THEN
DO i=0,numprocs-1
punit=111+i
CLOSE(punit)
ENDDO

ENDIF

DEALLOCATE(wconf,wener,wtemp)

ENDIF ! the one on setequil.
c
c--------writing random walk and logfile with the energies
c

IF (myid.eq.0) THEN
init=0
IF (setrand.eq.1.or.nstop.gt.1) init=1
OPEN(075,FILE=filpara,POSITION=’append’)
OPEN(071,FILE=logfile,POSITION=’append’)
DO j=init,nbump
WRITE(075,149) j*(locstep*kappacrit)+nstart+(nstop-1)*tstop,

& (randomw(i,j), i=0,numprocs-1)
ENDDO
DO j=1,nbump
WRITE(071,179) j*(locstep*kappacrit)+nstart+(nstop-1)*tstop,

& (enewalk(i,j)/ns, i=0,15) ! we write only
! up to the

! 15th temperature
ENDDO
CLOSE(075)
CLOSE(071)

ENDIF
countbump=1

c-----here is the part to un-comment in order to stop the program------
c IF ((nstart+nstop*tstop).eq.ntotstep) GOTO 278
c stop !*****************************************************
c----------------------------------------------------------------------
278 CONTINUE

c
c-----there is the need of a new dynamical allocation
c
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IF (nstop.ne.0) THEN
DEALLOCATE(bumpconf,bumptemp,bumpener,randomw,enewalk)
ALLOCATE(bumpconf(ns,0:nbump))
ALLOCATE(bumptemp(0:nbump),bumpener(0:nbump))
ALLOCATE(randomw(0:numprocs-1,0:nbump))
ALLOCATE(enewalk(0:numprocs-1,1:nbump))
IF (myid.eq.0) THEN
indexch=1

ENDIF
bumpconf=0.
bumptemp=0
bumpener=0.

ENDIF

ENDIF ! the one on tstop

IF (locend.lt.ntotstep) GOTO 100 ! back to the beginning of
! local MC

110 CONTINUE

time_1=MPI_Wtime()
IF (myid.eq.0) THEN
print*,’total time’,time_1-time_0

ENDIF

CALL MPI_FINALIZE(ierr)

c
c-----end of the parallel part
c
c----END OF THE CORE PART
c

c
c-----IF this is an equilibration run, there is the need to supply a new
c (restart) file. in order to start the simulation at equilibrium

final=rest(inttemper)
IF (setequil.eq.0) THEN
OPEN(074,file=final)
WRITE(074,109) matseed, ’matrix seed’
WRITE(074,109) runseed+300, ’run seed’
WRITE(074,109) 0,’time to start with’
WRITE(074,109) ntotstep, ’number of timesteps’
WRITE(074,109) inttemper, ’temperature’
WRITE(074,109) locstep,’how often the PT occurs’
WRITE(074,109) npoints,’number of bumps’

WRITE(074,109) nspin,’spins per line’
WRITE(074,109) setstop,’how many times the status’
WRITE(074,129) ’ mean: j0=(3.-pstates)/(ns-1.)’
WRITE(074,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(074,109) setequil+1, ’equilibrium flag’
WRITE(074,109) 0,’rng flag’
WRITE(074,129) logf(inttemper)
WRITE(074,129) out(inttemper)
WRITE(074,129) stat(inttemper)
WRITE(074,*) ’no need for a final file’

IF (qlines.ne.0) THEN
WRITE(074,139) ((state_all(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
WRITE(074,139) (state_all(i), i=qlines*nspin+1,ns)
CALL flush(074)
CLOSE(074)

ENDIF

c
c-----now an info-file, just to know if the program ended
c

IF (setequil.eq.1) THEN
IF (myid.eq.0) THEN
OPEN(077,file=’end_file’)
WRITE(077,*) ’this is only an info-file’
CLOSE(077)

ENDIF
ENDIF

109 FORMAT(I8,1x,A30)
119 FORMAT(f20.6,1x,A30)
129 FORMAT(A30)
139 FORMAT(100I1)
149 FORMAT(1x,I7,30(1x,I3))
179 FORMAT(1x,I7,20(1x,f7.4))
159 FORMAT(I8,1x,f20.6,1x,I3)

END

SUBROUTINE gauss(j0,dj)
c-----Gaussian distributed random number generator
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IMPLICIT NONE
INTEGER*4 ns,nmax,k,i,ngauss
REAL*8 x1,v1,v2,y1,y2,fx1,aux,j0,dj,convran
PARAMETER (ns=640,nmax=3*ns)
INTEGER*4 irn(nmax)
REAL*8 gau(ns)
INTEGER*4 len1,len2,ifd1,ifd2,ipnt1,ipnt2,ipnf1,ipnf2
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*4 inxt1(len1)
INTEGER*4 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2
COMMON /bonds/gau

convran=2.**(-32)*(1.d0-1.d-15)
ngauss=1

DO i=1,ns
gau(i)=0.

ENDDO

41 CALL ransi(nmax)
DO i=1,nmax,2
v1=irn(i)*convran*2.
v2=irn(i+1)*convran*2.
x1=v1**2+v2**2
IF (x1.gt.1..or.x1.eq.0.) THEN
goto 40

ENDIF
IF (ngauss.gt.ns) goto 42
fx1=1./x1
aux=sqrt(-2.*fx1*log(x1))
y1=aux*v2
y2=aux*v1
gau(ngauss)=y1
gau(ngauss+1)=y2
ngauss=ngauss+2

40 continue
ENDDO

IF (ngauss.lt.ns) goto 41
42 continue

DO i=1,ns

gau(i)=gau(i)*dj+j0
ENDDO
return
END

c
c random number generator for the spin flip
c shift register random generator with very long period
c ref:

SUBROUTINE firstran(iseed)
c-----setup for the random number generator
c sequential version
c implicit REAL*8 (a-h,o-z)

IMPLICIT NONE
save
INTEGER*4 mult,mod2,mul2,len1,ifd1,len2,ifd2
INTEGER*4 k,k1,iseed,i,ipnt1,ipnt2,ipnf1,ipnf2
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*4 inxt1(len1)
INTEGER*4 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax
PARAMETER (ns=640,nmax=3*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

k=3**18+2*iseed
k1=1313131*iseed
k1=k1-(k1/mod2)*mod2
DO i=1,len1

k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir1(i)=k+k1*8193

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len2
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k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir2(i)=k+k1*4099

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len1

inxt1(i)=i+1
ENDDO
inxt1(len1)=1
ipnt1=1
ipnf1=ifd1+1
DO i=1,len2

inxt2(i)=i+1
ENDDO
inxt2(len2)=1
ipnt2=1
ipnf2=ifd2+1
return
END

SUBROUTINE ransi(n)
c-----random number generator
c sequential version
c shift register random generator with very long period
c implicit REAL*8 (a-h,o-z)

IMPLICIT NONE
save
INTEGER*4 mult,mod2,mul2,len1,ifd1,len2,ifd2
INTEGER*4 k,k1,iseed,i,ipnt1,ipnt2,ipnf1,ipnf2,l
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*4 inxt1(len1)
INTEGER*4 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax,n
PARAMETER (ns=640,nmax=3*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

COMMON /nran/irn

COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

c calculate n random numbers
DO i=1,n

l=ieor(ir1(ipnt1),ir1(ipnf1))
k=ieor(ir2(ipnt2),ir2(ipnf2))

c write(6,*) i,ipnt1,ipnt2,l,k,ieor(k,l)
irn(i)=ieor(k,l)
ir1(ipnt1)=l
ipnt1=inxt1(ipnt1)
ipnf1=inxt1(ipnf1)
ir2(ipnt2)=k
ipnt2=inxt2(ipnt2)
ipnf2=inxt2(ipnf2)

ENDDO
return
END
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Heat Bath simulation of the short range Potts glass
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PROGRAM potts3D
c --------------
c Monte Carlo code for short range Potts models
c A bimodal distribution of bonds is used

IMPLICIT NONE
INTEGER*4 boxlenght,ns,dim ! lattice’s dimensions
INTEGER*4 nnnumber,pstates,nmax
INTEGER*4 ndiv,ncorrel,npartial,p
INTEGER*4 ncorrelnew,ncorr,ncrit
INTEGER*4 logbump,tstop,pbump,pstop
PARAMETER (pstop=1) ! how many times the status
PARAMETER (pbump=100) ! how many log-points
PARAMETER (dim=3,nnnumber=2*dim) ! NB: ntotstep must be a
PARAMETER (boxlenght=16) ! multiple of both tstop
PARAMETER (ns=boxlenght**3) ! and logbump
PARAMETER (pstates=10,nmax=2*ns)
PARAMETER (ndiv=4,ncorrel=150)
PARAMETER (npartial=ncorrel)
INTEGER*4 neigh(nnnumber,ns) ! neighbors
INTEGER*4 coupling(nnnumber,ns) ! interactions
INTEGER*4 stateall(ns) ! configuration
INTEGER*4 engtot,totbond
INTEGER*4 i,j,jran,ks,k,waste,jj
INTEGER*4 sold,snew ! new and old spin
INTEGER*4 delta,shift ! integer for J=+/-1
INTEGER*4 nstart,ntotstep,t
INTEGER*4 irn(nmax),runseed,matseed ! random numbers
INTEGER*4 infoncorrel
INTEGER*4 infondiv,nspin,setequil
INTEGER*4 setrand,qlines,rlines
INTEGER*4 cortim(ncorrel*ndiv)
INTEGER*4 partial(ns,npartial)
INTEGER*4 time_v(npartial),pcount
INTEGER*4 check(2*dim),ehb(pstates)
REAL*8 probhb(pstates),normprob,cumul,touse(nmax)

REAL*8 temper,boltzfct(4*dim+1)
REAL*8 btemper,rescal,j0,dj
REAL*8 conv,ensim,comp,convran,hhh

c PARAMETER (conv=1.) ! NB: this is the prefactor
REAL*8 quenchtemp ! --- in the Hamiltonian

REAL*8 simen_v(npartial)

CHARACTER*50 filout,filin
CHARACTER*50 meanofp,varofp
CHARACTER*50 logfile,status,final
CHARACTER*50 outlog,outfile

INTEGER len1,len2,ifd1,ifd2 ! this part is in
INTEGER ipnt1,ipnt2,ipnf1,ipnf2 ! common with the
PARAMETER (len1=9689,ifd1=471) ! random number
PARAMETER (len2=127,ifd2=30) ! generator
INTEGER*2 inxt1(len1) !
INTEGER*2 inxt2(len2) !
INTEGER*4 ir1(len1) !
INTEGER*4 ir2(len2) !

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

c READING THE INPUT FILE
c ----------------------

print*,’I need the input file’
READ(5,FMT=’(a)’) filin

OPEN(061,file=filin)

READ(061,*) matseed
READ(061,*) runseed
READ(061,*) nstart
READ(061,*) ntotstep
READ(061,*) temper
READ(061,*) infoncorrel
READ(061,*) infondiv
READ(061,*) nspin
READ(061,*) quenchtemp
READ(061,FMT=’(a)’) meanofp
READ(061,FMT=’(a)’) varofp
READ(061,*) setequil
READ(061,*) setrand
READ(061,FMT=’(a)’) logfile
READ(061,FMT=’(a)’) filout
READ(061,FMT=’(a)’) status
READ(061,FMT=’(a)’) final

qlines=int(ns/nspin)
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rlines=mod(ns,nspin)

IF (setequil.eq.0) THEN
READ(061,FMT=’(a)’) outlog
READ(061,FMT=’(a)’) outfile

ENDIF

IF (setequil.ne.0.or.setrand.eq.1.or.quenchtemp.lt.100.) THEN
IF (qlines.ne.0) THEN
READ(061,139) ((stateall(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
IF (rlines.NE.0) THEN
READ(061,139) (stateall(i), i=qlines*nspin+1,ns)

ENDIF
ENDIF

c At this point we have to initialize the lattice and the interactions
c we do it now because, in case of restart, there can be problems with
c the two sequences of pseudo-random numbers, namely matseed (for the
c interactions) and runseed (for the dynamics)
c Lattice and interactions:
c j0 and dj are those for a gaussian distribution; they are converted
c for the +-J thanks to the variable "rescal" that fixes J, that is
c the coupling constant, and to "concentr" (in the coupl3D routine)
c that set the concentration x of positive bonds; the +- distribution
c is given by P(J_ij)=x*d(J_ij-J)+(1-x)*d(J_ij+J)
c cfr Dillmann et al, J. Stat. Phys. 92, 57 (1998)

j0=-1.
dj=1.

CALL lat3d(neigh)
CALL coupl3d(neigh,coupling,matseed,j0,dj)

c now, if we have to read from a "status" file, we need to know all the
c information about the random number generator of the dynamics

IF (setrand.eq.1) THEN
READ(061,*) ipnt1,ipnf1,ipnt2,ipnf2
DO i=1,9689
READ(061,*) ir1(i)

ENDDO
DO i=1,127
READ(061,*) ir2(i)

ENDDO
ENDIF

CLOSE(061)

c OPENING THE OUTPUT FILES
c ------------------------

OPEN(071,file=logfile,access=’append’)

IF (setequil.eq.1) THEN
OPEN(072,file=filout,access=’append’)

ENDIF

IF (setequil.eq.1.and.setrand.eq.0) THEN
WRITE(072,109) ns,’number of spins’
WRITE(072,109) pstates,’number of states’
WRITE(072,109) matseed,’matrix seed’
WRITE(072,109) runseed,’run seed’
WRITE(072,109) nstart,’time to start with’
WRITE(072,109) ntotstep,’number of timesteps’
WRITE(072,119) temper,’temperature’
WRITE(072,109) ncorrel,’points for the log scale’
WRITE(072,109) ndiv,’number of bumps’
WRITE(072,109) nspin,’spins per line’
WRITE(072,119) quenchtemp,’temperature of the quench’
WRITE(072,129) ’mean: j0=-1’
WRITE(072,129) ’variance: dj=1’
WRITE(072,109) setequil,’equilibrium flag’
WRITE(072,109) setrand,’rng flag’
WRITE(072,FMT=’(a)’) logfile
WRITE(072,FMT=’(a)’) filout
WRITE(072,FMT=’(a)’) final

ENDIF

WRITE(071,109) ns,’number of spins’
WRITE(071,109) pstates,’number of states’
WRITE(071,109) matseed,’matrix seed’
WRITE(071,109) runseed,’run seed’
WRITE(071,109) nstart,’time to start with’
WRITE(071,109) ntotstep,’number of timesteps’
WRITE(071,119) temper,’temperature’
WRITE(071,109) ncorrel,’points for the log scale’
WRITE(071,109) ndiv,’number of bumps’
WRITE(071,109) nspin,’spins per line’
WRITE(071,119) quenchtemp,’temperature of the quench’
WRITE(071,129) ’ mean: j0=-1.’
WRITE(071,129) ’variance: dj=1’
WRITE(071,109) setequil,’equilibrium flag’
WRITE(071,109) setrand,’rng flag’
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WRITE(071,FMT=’(a)’) logfile
WRITE(071,FMT=’(a)’) filout
WRITE(071,FMT=’(a)’) final

C TIME-SCALE
c ----------

c compute the times at which the correlation functions are evaluated

p=ncorrel
p=p-1
DO k=1,p
cortim(k)=nint(dfloat(ntotstep)**(k/dfloat(p+1)))

ENDDO
cortim(1)=0
k=2
j=2

20 IF( j .gt. p) goto 30
IF( cortim(j) .ne. cortim(k) ) THEN

k=k+1
cortim(k)=cortim(j)
j=j+1

else
j=j+1

ENDIF
goto 20

30 IF( ncorrel .eq. 0 ) THEN
ncorrelnew=0

ELSE
cortim(k+1)=ntotstep
ncorrelnew=k+1

ENDIF

ncorr=ncorrelnew
DO j=1,ndiv-1
DO k=1,ncorrelnew
IF (cortim(k)+j*ntotstep/ndiv.gt.ntotstep) goto 50
ncorr=ncorr+1
cortim(ncorr)=cortim(k)+j*ntotstep/ndiv
ENDDO

50 continue
ENDDO

DO k=1,ncorr
WRITE(071,*) cortim(k)

ENDDO

c INITIALIZATION
c --------------

c definition of: lattice; interactions; energy; temperature;
c
c N.B. : concerning the energy, engtot is ONLY the contribution due to
c --- the interactions among spins: then every other rescaling has
c to be PROPERLY taken into account, both in the ENERGY and in
c the TEMPERATURE.

c Some parameters

convran=2.**(-32)*(1.d0-1.d-15)
tstop=ntotstep/pstop
logbump=ntotstep/pbump
rescal=SQRT(j0**2+dj**2)
conv=1.*pstates*rescal
btemper=temper/conv ! the rescaled temperature for

! the boltzmann weight

CALL boltzw(btemper,boltzfct)

c Warming for the random number generator

IF (setrand.ne.1) THEN
CALL firstran(runseed)
DO k=1,1000
CALL ransi(nmax)
DO i=1,2*ns

waste=irn(i)
ENDDO

ENDDO
ENDIF

c Initialization of the buffers for the output

DO i=1,npartial
time_v(i)=0
simen_v(i)=0.
DO j=1,ns
partial(j,i)=0

ENDDO
ENDDO
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c Initialization of the lattice
c Needed only for the equilibration run, NOT for the equilibrium
c run!

IF (setequil.EQ.0.and.setrand.NE.1.and.quenchtemp.GT.100.) THEN
DO i=1,ns

stateall(i)=0
ENDDO
CALL ransi(nmax)
DO i=1,ns

stateall(i)=(irn(i)*convran+.5)*pstates
ENDDO

ENDIF

c energy of the first configuration

CALL totaleng(stateall,neigh,coupling,engtot,totbond)
print*,totbond

c STEP NUMBER ZERO
c ----------------

c writing down the step number 0!

t=nstart
c ensim=conv*(engtot)/ns ! <---------------------definition of

ensim=(conv*(engtot)+rescal*totbond)/ns
! the hamiltonian

IF (nstart.eq.0) THEN
WRITE(071,*) t,ensim,stateall(1),stateall(2)
IF (setequil.eq.1) THEN

WRITE(072,*) t,ensim
IF (qlines.ne.0) THEN
WRITE(072,139) ((stateall(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
IF (rlines.NE.0) THEN
WRITE(072,139) (stateall(i), i=qlines*nspin+1,ns)

ENDIF
ENDIF

ENDIF

c The CORE of the program: HEAT ALGORITHM
c ---------------------------------------------

ensim=0.

DO t=nstart+1,ntotstep ! single monte carlo sweep:
! ns spin updated

CALL ransi(nmax)
DO i=1,2*ns,2
touse(i)=irn(i)*convran+0.5
touse(i+1)=(irn(i+1)*convran+.5)*ns+1

ENDDO

DO ks=1,2*ns,2 ! single random spin flip
comp=touse(ks)
jran=touse(ks+1)
sold=stateall(jran)
DO j=1,pstates

ehb(j)=7
ENDDO
DO i=1,6

snew=stateall(neigh(i,jran))
ehb(snew+1)=ehb(snew+1)-coupling(i,jran)

ENDDO
normprob=0.
DO i=1,pstates

probhb(i)=boltzfct(ehb(i))
normprob=normprob+probhb(i)

ENDDO
normprob=1./normprob
cumul=0.
DO i=1,pstates

cumul=cumul+probhb(i)*normprob
IF (comp.LE.cumul) THEN

stateall(jran)=i-1
GOTO 8888

ENDIF
ENDDO

8888 CONTINUE
engtot=engtot-ehb(sold+1)+ehb(stateall(jran)+1)

ENDDO

c pay attention to the definition of the hamiltonian; in
c particular the role of the multiplicative constants

ensim=(conv*(engtot)+rescal*totbond)/ns

c writing down something:

c a): the configurations buffered

IF (mod(t,logbump).EQ.0) THEN
WRITE(071,*) t,ensim,stateall(1),stateall(2)
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CALL FLUSH(071)
ENDIF

IF (setequil.EQ.1) THEN
DO j=1,ncorr
IF (t.EQ.cortim(j)) THEN

pcount=pcount+1
time_v(pcount)=t
simen_v(pcount)=ensim
DO k=1,ns

partial(k,pcount)=stateall(k)
ENDDO

ENDIF
ENDDO
IF (pcount.GE.(npartial-ndiv).AND.pcount.LE.npartial) THEN
ncrit=1

ENDIF
IF (ncrit.EQ.1.OR.t.EQ.ntotstep.OR.MOD(t,tstop).EQ.0) THEN
DO jj=1,pcount

WRITE(072,*) time_v(jj),simen_v(jj)
IF (qlines.ne.0) THEN

WRITE(072,139) ((partial(i,jj),
& i=(k-1)*nspin+1,k*nspin), k=1,qlines)

ENDIF
IF (rlines.NE.0) THEN

WRITE(072,139) (partial(i,jj), i=qlines*nspin+1,ns)
ENDIF
CALL flush(072)

ENDDO
DO i=1,npartial

time_v(i)=0
simen_v(i)=0.
DO j=1,ns

partial(j,i)=0
ENDDO

ENDDO
pcount=0
ncrit=0

ENDIF
ENDIF

ENDDO ! end of the MC sweep

c
c RESTART FILE
c ------------
c if this is an equilibration run, there is the need to supply a new
c (restart) file, in order to start the simulation at equilibrium

IF (setequil.eq.0) THEN
OPEN(074,file=final)
WRITE(074,109) matseed, ’matrix seed’
WRITE(074,109) runseed+3000, ’run seed’
WRITE(074,109) 0,’time to start with’
WRITE(074,109) ntotstep, ’number of timesteps’
WRITE(074,119) temper, ’temperature’
WRITE(074,109) ncorrel,’points for the log scale’
WRITE(074,109) ndiv,’number of bumps’
WRITE(074,109) nspin,’spins per line’
WRITE(074,119) quenchtemp,’temperature of the quench’
WRITE(074,129) ’ mean: j0=-1’
WRITE(074,129) ’variance: dj=1./sqrt(ns-1.)’
WRITE(074,109) setequil+1, ’equilibrium flag’
WRITE(074,109) 0,’rng flag’
WRITE(074,129) outlog
WRITE(074,129) outfile
WRITE(074,129) status
WRITE(074,*) ’no need for a final file’

IF (qlines.ne.0) THEN
WRITE(074,139) ((stateall(i),i=(k-1)*nspin+1,k*nspin),

& k=1,qlines)
ENDIF
IF (rlines.NE.0) THEN

WRITE(074,139) (stateall(i), i=qlines*nspin+1,ns)
ENDIF
CALL flush(074)

CLOSE(074)
ENDIF

IF (setequil.eq.1) THEN
CLOSE(072)

ENDIF
CLOSE(071)

c The various formats
c -------------------

109 FORMAT(I8,1x,A30)
119 FORMAT(f10.6,1x,A30)
129 FORMAT(A40)
139 FORMAT(100I1)

END
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c Creation of a 3D simple cubic lattice with periodic boundaries
SUBROUTINE lat3d(neigh)

c -----------------------
c Description: the subroutine defines the topology of the lattice;
c the current implementation gives a 3D simple cubic
c lattice with periodic boundary conditions.
c Output: a two-dimensional array; the column number corresponds to
c the lattice point, and the various elements of each column
c (that is the various lines) define the neighbours of that
c point.
c
c History:
c Version Date Comment
c ------- ---- -------
c 1.0 25-10-00 Original code C.B.
c
c Declarations

IMPLICIT NONE
INTEGER*4 boxlenght,ns,dim ! lattice’s dimensions
PARAMETER (dim=3)
PARAMETER (boxlenght=16)
PARAMETER (ns=boxlenght**3)
INTEGER*4 neigh(2*dim,ns) ! neighbours’ list
INTEGER*4 nx,ny,nz,px,py,pz
INTEGER*4 spinposit,i,j

c variables initialization
DO i=1,ns

DO j=1,2*dim
neigh(j,i)=0

ENDDO
ENDDO

c construction of the lattice: list of nearest neighbours

DO nz=1,boxlenght
pz=nz-1
DO ny=1,boxlenght

py=ny-1
DO nx=1,boxlenght
px=nx
spinposit=px+py*boxlenght+pz*boxlenght**2
IF (nx.ne.1) THEN

neigh(1,spinposit)
& =px-1+py*boxlenght+pz*boxlenght**2

ELSE
neigh(1,spinposit)

& =boxlenght+py*boxlenght+pz*boxlenght**2
ENDIF
IF (nx.ne.boxlenght) THEN

neigh(2,spinposit)
& =px+1+py*boxlenght+pz*boxlenght**2

ELSE
neigh(2,spinposit)

& =1+py*boxlenght+pz*boxlenght**2
ENDIF
IF (ny.ne.1) THEN

neigh(3,spinposit)
& =px+(py-1)*boxlenght+pz*boxlenght**2

ELSE
neigh(3,spinposit)

& =px+(boxlenght-1)*boxlenght+pz*boxlenght**2
ENDIF
IF (ny.ne.boxlenght) THEN

neigh(4,spinposit)
& =px+(py+1)*boxlenght+pz*boxlenght**2

ELSE
neigh(4,spinposit)

& =px+0*boxlenght+pz*boxlenght**2
ENDIF
IF (nz.ne.1) THEN

neigh(5,spinposit)
& =px+py*boxlenght+(pz-1)*boxlenght**2

ELSE
neigh(5,spinposit)

& =px+py*boxlenght+(boxlenght-1)*boxlenght**2
ENDIF
IF (nz.ne.boxlenght) THEN

neigh(6,spinposit)
& =px+py*boxlenght+(pz+1)*boxlenght**2

ELSE
neigh(6,spinposit)

& =px+py*boxlenght+0*boxlenght**2
ENDIF

ENDDO
ENDDO

ENDDO

RETURN
END

c Definition of the interactions among nearest neighbors
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SUBROUTINE coupl3d(neigh,coupling,matseed,j0,dj)
c ------------------------------------------
c Description: the subroutine defines the interactions among nearest
c neighbors; this interactions are symmetric.
c for the present model, the interactions are taken from
c a bimodal distributions
c
c Input : a two dimensional array containing the list of nearest
c neighbours;
c Output: the array containing information about the interactions.
c
c History:
c Version Date Comment
c ------- ---- -------
c 0.1 02-10-00 starting code C.B.
c
c Declarations

IMPLICIT NONE
INTEGER*4 boxlenght,ns,dim,nmax ! lattice’s dimensions
PARAMETER (dim=3)
PARAMETER (boxlenght=16)
PARAMETER (ns=boxlenght**3)
PARAMETER (nmax=2*ns)
INTEGER*4 neigh(2*dim,ns) ! neighbors
INTEGER*4 coupling(2*dim,ns) ! interactions
INTEGER*4 i,j,k,symm,check
INTEGER*4 count,jint
REAL*8 jrea,concentr,waste,convran
REAL*8 j0,dj,rescal

INTEGER*4 irn(nmax),matseed ! random numbers

INTEGER len1,len2,ifd1,ifd2 ! this part is in
INTEGER ipnt1,ipnt2,ipnf1,ipnf2 ! common with the
PARAMETER (len1=9689,ifd1=471) ! random number
PARAMETER (len2=127,ifd2=30) ! generator
INTEGER*2 inxt1(len1) !
INTEGER*2 inxt2(len2) !
INTEGER*4 ir1(len1) !
INTEGER*4 ir2(len2) !

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

c concentration now equal 1/2

rescal=SQRT(j0**2+dj**2)
concentr=(1.+j0/rescal)*0.5

c a first dumb initialization, to have a better control later

DO i=1,ns
DO j=1,2*dim
coupling(j,i)=1111

ENDDO
ENDDO

c random number generator: warming up

convran=2.**(-32)*(1.d0-1.d-15)
CALL firstran(matseed)
DO k=1,1000
CALL ransi(nmax)
CALL ransi(nmax/2)
DO i=1,2*ns
waste=irn(i)

ENDDO
ENDDO

c now the interactions; a check of self-consistency is included;
c here we have p=3, so +1 and -1 have the same probability

DO i=1,ns
CALL ransi(2*dim)
count=0
DO j=1,2*dim
count=count+1
jrea=irn(count)*convran+0.5
IF (jrea.LT.concentr) THEN

jint=1
ELSE

jint=-1
ENDIF
IF (coupling(j,i).EQ.1111) THEN

coupling(j,i)=jint
symm=neigh(j,i)
DO k=1,2*dim

IF (coupling(k,symm).EQ.1111) THEN
IF (neigh(k,symm).EQ.i) THEN

coupling(k,symm)=coupling(j,i)
check=1

ENDIF
ELSE
check=1

ENDIF
ENDDO
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IF (check.EQ.0) THEN
print*,’a problem with the n.n. list: the program stops’
STOP

ENDIF
ENDIF

ENDDO
ENDDO

RETURN
END

c Definition of the botzmann factors for acceptance rates
SUBROUTINE boltzw(temper,boltzfct)

c ----------------------------------
c Description: the subroutine defines the boltzmann factors that
c depend on energy difference and temperature; this
c routine works ONLY for plus/minus J interactions;
c it needs as input the temperature (or a rescaled
c temperature, depending on the definition of the
c Hamiltonian and on the value of J; by default J=1,
c so every other value must be included in a rescaled
c temperature; it is valid ONLY for Potts models,
c in which we have delta-like interactions.
c
c Input : the (rescaled) temperature temper
c Output: the array boltzfct containing the boltzmann weight for the
c various energy difference; to the i-th element corresponds
c the energy difference (i-2*dim-1) (with dim=3).
c
c History:
c Version Date Comment
c ------- ---- -------
c 1.0 04-10-00 working code C.B.
c
c Declarations

IMPLICIT NONE
INTEGER*4 dim
PARAMETER (dim=3)
INTEGER*4 i
REAL*8 boltzfct(4*dim+1)
REAL*8 temper,invtemp,fact

IF (temper.eq.0.) THEN
print*,’the temperature is zero; the program stops’
STOP

ENDIF

DO i=1,4*dim+1
boltzfct(i)=0.

ENDDO

invtemp=1./temper
DO i=1,4*dim+1

fact=(i-2*dim-1)*invtemp
boltzfct(i)=exp(-fact)

ENDDO

RETURN
END

c Calculation of the total energy of a given configuration
SUBROUTINE totaleng(stateall,neigh,coupling,engtot,totbond)

c -----------------------------------------------------------
c Description: the subroutine calculates the total energy of the
c spin configuration.
c engtot=-\sum_{<i,j>} (J_{ij}\delta_{\s_i,s_j})
c totbond=\sum_{<i,j>} (J_{ij})
c
c Input : stateall (=configuration), neigh (=n.n. list), coupling
c (=interactions), the sum of
c Output: engtot (=the total energy)
c
c History:
c Version Date Comment
c ------- ---- -------
c 1.0 04-10-00 working code C.B.
c
c Declarations

IMPLICIT NONE

INTEGER*4 boxlenght,ns,dim ! lattice’s dimensions
INTEGER*4 nnnumber
PARAMETER (dim=3,nnnumber=2*dim)
PARAMETER (boxlenght=16)
PARAMETER (ns=boxlenght**3)
INTEGER*4 neigh(nnnumber,ns) ! neighbors
INTEGER*4 coupling(nnnumber,ns) ! interactions
INTEGER*4 stateall(ns) ! configuration
INTEGER*4 engtot,i,j,totbond

totbond=0
engtot=0
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DO i=1,ns
DO j=1,nnnumber

IF (stateall(i).eq.stateall(neigh(j,i))) THEN
engtot=engtot-coupling(j,i)

ENDIF
totbond=totbond+coupling(j,i)

ENDDO
ENDDO

c Since I considered all the spin, I must divide by two

engtot=engtot/2
totbond=totbond/2

RETURN
END

c Random number generator: initialization
SUBROUTINE firstran(iseed)

c --------------------------
c setup for the random number generator
c sequential version
c shift register random generator with very long period

implicit REAL*8 (a-h,o-z)

save
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
INTEGER*2 inxt2(len2)
INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax
PARAMETER (ns=4096,nmax=2*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

c INTEGER*4 iseed

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

k=3**18+2*iseed
k1=1313131*iseed
k1=k1-(k1/mod2)*mod2
DO i=1,len1

k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir1(i)=k+k1*8193

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len2

k=k*mult
k1=k1*mul2
k1=k1-(k1/mod2)*mod2
ir2(i)=k+k1*4099

c write(6,*)i,k,k1,ir1(i)
ENDDO
DO i=1,len1

inxt1(i)=i+1
ENDDO
inxt1(len1)=1
ipnt1=1
ipnf1=ifd1+1
DO i=1,len2

inxt2(i)=i+1
ENDDO
inxt2(len2)=1
ipnt2=1
ipnf2=ifd2+1
return
END

c Random number generator: production
SUBROUTINE ransi(n)

c -------------------
c random number generator
c sequential version
c shift register random generator with very long period

implicit REAL*8 (a-h,o-z)
save
PARAMETER (mult=32781)
PARAMETER (mod2=2796203,mul2=125)

c PARAMETER (two=2d0,tm32=two**(-32))
PARAMETER (len1=9689,ifd1=471)
PARAMETER (len2=127,ifd2=30)
INTEGER*2 inxt1(len1)
INTEGER*2 inxt2(len2)
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INTEGER*4 ir1(len1)
INTEGER*4 ir2(len2)
INTEGER*4 ns,nmax,n
PARAMETER (ns=4096,nmax=2*ns)
INTEGER*4 irn(nmax)

c PARAMETER (mxnx=500,mxny=500)
c PARAMETER (mxsp=mxnx*mxny)
c PARAMETER (mxrn=16*mxsp+1024)

COMMON /nran/irn
COMMON /rantool/ipnt1,ipnf1,ipnt2,ipnf2,inxt1,inxt2,ir1,ir2

c calculate n random numbers
DO i=1,n

l=ieor(ir1(ipnt1),ir1(ipnf1))
k=ieor(ir2(ipnt2),ir2(ipnf2))

c write(6,*) i,ipnt1,ipnt2,l,k,ieor(k,l)
irn(i)=ieor(k,l)
ir1(ipnt1)=l
ipnt1=inxt1(ipnt1)
ipnf1=inxt1(ipnf1)
ir2(ipnt2)=k
ipnt2=inxt2(ipnt2)
ipnf2=inxt2(ipnf2)

ENDDO
return

END
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