Percy: You know, they do say that the Infanta's eyes are more beautiful than the famous Stone of Galveston.

Edmund: And what's that, exactly?
Percy: Well, it's a famous blue stone, and it comes (points dramatically) from Galveston.

Edmund: I see. And what about it?
Percy: Well, My Lord, the Infanta's eyes are bluer than it, for a start.
Edmund: I see. And have you ever seen this stone?
Percy: (nods) No, not as such, My Lord, but I know a couple of people who have, and they say it's very very blue indeed.

Edmund: And have these people seen the Infanta's eyes?
Percy: No, I shouldn't think so, My Lord.
Edmund: And neither have you, presumably.
Percy: No, My Lord.
Edmund: So, what you're telling me, Percy, is that something you have never seen, is, slightly, less blue than something else you have never seen.
"The Black Adder", episode 4

The study of a novel zinc finger gene cluster TZF and a genomic region flanking the Histone H 4 replacement gene H 4 r of Drosophila melanogaster

Dissertation
zur Erlangung des Grades
, D oktor
dernaturwissenschaft*
am Fachbereich Biologie
der Johannes Gutenberg-Universität
in Mainz

Vorverlegt von Wenli Gu
Geb. in Jiangsu, China
Mainz, 2001

Contents

Part I. The study of a zinc finger gene cluster in Drosophila melanogaster I-1 to I-24
Part II. Subcloning and sequencing of the cosmid 19G11 II-1 to II-16
Methods for Part I and II M-1 to M-10
Part III. Analysis of 19 G 11 sequence III-1 to III-26
Part IV. P-element mediated excision at the punt-H4r locus, 88C8-10 IV-1 to IV-10
References R-1 to R-7
AppendixI. The genomic structure of the genes $T z f$ and $T z f 2$
Appendix II. The complete sequence of the cosmid 19G11 AII-1 to AII-26
Acknowledgements
Curriculum vitae

Part I:

The study of a zinc finger gene cluster in Drosophila melanogaster

Introduction

Synaptonemal complexes (SCs) are structures found between paired homologous chromosomes in the meiotic prophase nuclei (Moses, 1968). They consist of two compact proteinaceous axes, the lateral elements, each one associating with one of the homologous chromosomes. The lateral elements are connected by thin transversal filaments. Between the two lateral elements another longitudinal structure is formed, the central element, which crosses the transversal filaments. The lateral elements and the central element make up the tripartite structure of the SCs. In most eukaryotes analysed so far, the condensation, pairing, recombination and segregation of chromosomes is accompanied by the assembly and disassembly of the SCs. Several rat SC proteins have been identified and the cDNA clones for some of them have been analysed (Heyting et al., 1985, 1987, 1988, 1989; Lammers et al. 1994, Smith and Benavente 1992). Drosophila is an exception because this structure is only formed during the meiotic prophase in females but not in males (Rasmussen 1973, 1974). At the same time, recombination does not take place in Drosophila males. On the other hand, there exist specialized structures in Drosophila primary spermatocytes, the lampbrush loops, which are formed by the actively transcribed fertility genes located on the Y chromosome.

Fig 1: Schema of a synaptonemal complex (SC) in pachytene phase.

It was observed that antibodies against rat SC proteins cross react with Y chromosome lampbrush loops present in Drosophila melanogaster (Hennig \& Heyting, unpublished data). An immunoscreening of Drosophila testis cDNA libraries with an antiserum against a rat SC protein (Lammers et al., 1994) was carried out to identify the structural component of this cross immunoreaction (Sun, 1994). A part of a novel gene was cloned which encodes a putative zinc finger protein. It was named $T z f$ gene. The $T z f$ gene is a single copy gene with particularly strong expression in embryos, testes and ovaries (Sun, 1994). It was the starting point of this work to complete the cDNA sequence of this gene and to find out its genomic organization.

Results

Genomic fragment containing Tzf gene

The 1.4 kb cDNA fragment of the $T z f$ gene, DmTZF (Sun, 1994), was used as a probe to screen a Lambda - DASH2 genomic DNA library. Two clones, with respectively a 5.0 kb and a 1.8 kb EcoRIEcoRI insert were identified (Xiao, Xu \& Hennig, unpublished data). The inserts were further subcloned, and the subclones were sequenced. The entire sequences of the EE5.0 and EE1.8 fragments were reconstructed from the subcloned sequences. The 1.0 kb fragment at the 5 'part of the cDNA fragment DmTZF was contained in the sequence of genomic fragment EE1.8. The 0.4 kb 3 ' fragment was still missing.

To look for the genomic segment containing the 3 'end of $T z f$ gene, a lawrist 4 cosmid library of D. melanogaster genomic DNA (kindly provided by Dr. Hoheisel, DKFZ) was screened with the cDNA fragment DmTZF. Three cosmid clones 89B4, 89B5 and 46A gave strong signals. 89B4 and 89B5 proved to be identical in their digestion patterns with several different enzymes. Only 89B4 was analysed in detail. The hybridisations of EcoRI and SalI digests of 89B4 DNA with the missing 0.4 kb cDNA fragment have shown that this fragment was contained in this genomic clone. It reacts with a 2.2 kb EcoRI fragment and a 9.0 kb SalI fragment. Both fragments were cloned into pBluescript and sequenced. A subclone of the 2.2 kb EcoRI fragment, called eb2, contained the 0.4 kb cDNA fragment of

Tzf. Another subclone from the 9.0 kb SalI fragment, ab1, overlapped with the fragment EE1.8, the fragment EE5.0 from the λ DASH-2 library and the 2.2 kb EE fragment from the lawrist 4 cosmid library. This allowed deducing the relative localization of the three fragments (see Fig 2). Their organization was confirmed by sequencing the PCR products obtained with primers CX1 and DM5.
cDNA fragment DmTZF
$1.0 \mathrm{~kb} \quad 0.4 \mathrm{~kb}$

Inserts of the genomic clones and their subclones

Fig 2: The organization of the subclones from the genomic fragments containing the $T z f$ and $T z f 2$ genes. The names of the restriction enzymes are abbreviated according to the abbreviation list in Appendix I.

Cloning of Tzf2 gene

Sequencing of EE1.8 and EE5.0 has proved that only EE1.8 contains the $T z f$ sequence. But EE5.0 also hybridised with the probe DmTZF which suggested a sequence similarity between EE5.0 and DmTZF. Analysis of the sequence of EE5.0 showed that parts of the sequence could also code for segments of a
zinc-finger protein. To see if these sequences are indeed expressed, RT-PCR experiments were performed with the primer pair GW1 and GW2, designed according to the EE5.0 sequence. Two different total RNA preparations were used as template. They were obtained from D.melanogaster ovaries and embryos.

Fig 3: RT-PCR product amplified with primer GW1 and GW2
Lane1: DNA marker λ-Hind III Lane2, 3: RT-PCR product with embryo and ovary RNA

A major signal could be seen as product of the RT-PCR reactions with both embryo and ovary RNA as template. The DNA was recovered from the gel and digested with BglII and XhoI, which were designed into the 5'ends of GW1 and GW2 as integrated restriction sites. The digested fragment was ligated into pBluescript, digested with BamHI (compatible end with BglII) and XhoI. Two different clones, CX1 and CX9, were obtained, of which CX1 contains the whole RT-PCR product, and CX9 only part of it because of the existence of an internal BgIII site in this fragment (see Fig 4). Different subclones were made from these two clones and the sequence of the whole fragment was obtained. The alignment of this sequence and the sequence of the genomic clone EE5.0 showed that the entire cDNA fragment GW1-GW2 is indeed contained in this segment of the genomic sequence. The alignment also showed the positions of the introns on the genomic sequence, which excluded the possibility that this product was an artefact caused by genomic DNA contamination in the RNA.

Fig 4: Subclones from the cDNA clone of $T_{z} f 2$

An in-frame stop codon was found at the 3^{\prime} end of this cDNA fragment. The 5 'end of the cDNA was obtained through RACE reaction (see below). The start codon could be verified through an in-frame stop codon 50 bp upstream of it. This gene was named $T z f 2$.

These experiments have revealed two similar genes, $T z f$ and $T z f 2$. They exist in opposite orientation. Their start codons are only separated by 729 bp .

RACE Reaction

To obtain the 5' ends of the two genes, $T z f$ and $T z f 2$, RACE experiments were carried out for both cDNAs.

The $T z f 2$ gene

$8 \mu \mathrm{~g}$ total RNA of Drosophila melanogaster embryo was reverse transcribed with primer CX4 to get a gene - specific cDNA pool for the $T z f 2$ gene. $1 / 20$ of the cDNA pool was tailed with poly-dC at the 3 ' end. The PCR reaction was then carried out with the primer CX1 and an adaptor. CX1 is an internal gene-specific primer downstream to the primer CX4, and the adapter anneals to the poly-dC end. The PCR product was too weak to be seen on an agarose gel.
The southern blot of an aliquot of the PCR product was therefore hybridised to the PCR product of primer CX1 and DM5, labelled through hot PCR. This probe recognizes the intergenic region between both $T z f$ genes. Another aliquot of the CX1-adapter PCR product was loaded on another agarose gel and the region corresponding to the signal in the hybridisation was cut out using the low-melting agarose gel method.

```
        12
```

Fig 5: Hybridisation result of the first PCR blot with the intergenic probe
 CX1-DM5. The blot was once more hybridised with labelled pBluescript, so that the marker could be seen on the blot. The second hybridization did not change the signal position in the probe lane.

Lane 1: DNA marker: HpaII digestion of pBluescript.
LaneII: CX1-adapter PCR product.
$1 / 20$ of the LM agarose gel mixture was directly used as template for a reamplification with the same primer pair. CX1 and adapter now gave a PCR product visible through EtBr staining. It was cloned into pBluescript after digestion with PstI and HindIII, the restriction sites integrated respectively in both primers. Fifty clones were picked and their inserts checked by hybridising with the labelled intergenic probe CX1-DM5. Four clones gave positive signals and were thus sequenced. Among them, C1, C4 and C7 start from the same G_{3327} (Fig 6). This makes it likely that this G is the transcriptional initiation site of the $T z f 2$ Gene.

Fig 6: Transcription initiation of $T z f 2$ gene. The nucleotides are numbered according to Appendix I.

The $T z f$ gene

The same strategy as for $T z f 2$ was also performed for the $T z f$ gene, with DM5 as the primer to establish a cDNA pool. Primer CX2 and the same adapter as for the $T z f$ gene were used to amplify from this pool. They failed to give reasonable product even after several reamplifications. The Marathon RACE Kit from CLONTECH was then tried to reveal the transcription start of the $T z f$ gene in a different way.

Poly A^{+}mRNA was obtained from total RNA made from D.melanogaster embryos with Oligotex ${ }^{\mathrm{TM}}$ Kit from Qiagen. First strand cDNA was obtained from $1 \mu \mathrm{~g}$ mNA, using the AMV Reverse Transcriptase and a modified oligo (dT) primer provided in the Marathon RACE kit with two degenerate nucleotides positioned at the 3'end. A second-strand Enzyme Cocktail containing RNase H, E.coli DNA polymerase I and E.coli DNA ligase was then added to the first strand mixture to yield a double-strand cDNA pool, which was subsequently made blunt ended with T4 DNA polymerase. The Marathon cDNA adapter was ligated to the blunt ends of the double-stranded cDNA molecules. The first PCR was performed with the $T z f$-specific primer DM5 and adapter-specific primer AP1. A nested PCR was performed using an aliquot of the first PCR product, with the primer CX2 down stream from DM5 and the primer AP2 downstream from AP1. The product was cloned into the PCR 2.1 vector (TA cloning kit, Invitrogen). Sequencing results have shown that eight clones contained the upstream sequence of $T z f$, five of which stopped at the same nucleotide G^{3864}, which was identified as the transcription start of $T z f$.

Fig 7: Transcription initiation of the $T z f$ gene. The nucleotides are numbered according to Appendix I.

The structure of the $T z f$ and $T z f 2$ genes

The cDNA sequences of $T z f$ and $T z f 2$ genes were compared with the genomic sequence, and the genomic organization of both genes could be deduced (see Fig 8).

Fig 8: The gene structure of $T z f$ and $T z f 2$. The long thin line stands for the genomic sequence. Thick bars stand for the exons. Blue bars for the 5^{\prime} UTR and black ones for coding regions. The red block in the $T z f$ gene stands for the exon that is possibly subject to alternative splicing (see below).

Tzf and $T_{z} f 2$ genes and the Drosophila genome project

After the characterizing of $T z f$ (Sun, 1994) and $T z f 2$, the complete Drosophila melanogaster genome was sequenced and published in the Flybase. The genomic and cDNA sequences of $T z f$ and $T z f 2$ was used to search the Flybase and to compare our data and the genome sequencing data. The genomic sequence of $T z f-T z f 2$ region (listed in Appendix I) was identical with the celera sequence $\mathrm{gb} /$ AE003728.1 (Drosophila genomic scaffold 142000013386035 Section 53/105). Two genes identified for this genomic clone, Gene CG4413 and Gene CG4936 correspond to our $T z f$ and $T z f 2$, respectively.

GC4936 is identical with $T z f 2$. Comparison of the $T z f$ cDNA sequence and the cDNA sequence of the gene CG4413 recorded in the Flybase showed that the CG4413 transcript lacked the complete 111bp exon (see Fig $8 \&$ Fig 9), which encodes the C-terminal end of the third zinc finger and the complete fourth finger.

GTCCCTACGTGTGCGACGTTTGCTCCAGAACGTTTACCTACTCGGACAACCTGAAGTTCCACAAGATGATTCACACGGGGGAG $4^{\text {th }}$ exon
AAGCCGCATGTgtaagcatcaacatattttactacttcattatcctgcaataatagctattctctttcagCTGTGATCTTTGT
GgCAAAGGATTTGTGAAGGCCTACAAATTGCGTTTGCATCGGGAAACGCATAATAGACGTATCACCTGGAGAAATGACGCAGA 1250

Fig 9: Genomic fragment containing part of the $3^{\text {rd }}, 5^{\text {th }}$ and the complete $4^{\text {th }}$ exon (italic letters) of $T z f$ gene. Lower case letters are from the introns. The first gt and last ag of the introns are underlined. $T z f$ cDNA contains all three exons, whilst in CG4413 transcript, the third exon and the fifth exon are directly ligated together, skipping the fourth exon.

The $T z f 3$ and $T z f 4$ genes: two additional genes of a gene family

Several hundred base pairs away from the $T z f$ and $T z f 2$ genes, two other zinc finger genes were found in the database, which also encode zinc finger proteins similar to the $T z f$ and $T z f 2$ proteins. The protein products of all four genes have the same modular structure, and they are located next to each other.

Names of $T z f$ Genes	Names in the Flybase
$T z f$	CG4413
$T z f 2$	CG4936
$T z f 3$	CG4854
$T z f 4$	CG4424

Alignment and Comparison of $T z f, T z f 2, T z f 3$ and $T z f 4$:

Fig 10: Genomic organization of the four $T z f$ genes. The thick bars represent the coding exons, the thin lines the introns. Only the exon sizes are presented, the introns are all shown in proportion to their length. The red boxes represent DNA segments coding for the zinc finger motifs. They are sometimes separated in two adjacent exons. The arrowheads show the direction of transcription, and the dashed lines connect the interrupted genomic sequence.

The $T z f 4$ and $T z f 3$ genes are localized in a head-to-head orientation, which corresponds to the orientation of $T z f$ and $T z f 2$. The arrangement of the five zinc fingers is conserved in all four genes.

	1				50
TZF2	MRDSAAHASP	AAAATSTQKW	IVCRVCLQQP	. KEPMAS I	FNDDSE.
TZF3	~~~~~~~~~~	$\sim \mathrm{MHTNVDSRD}$	LKCRICLVQP	. KDESLM	PTEP.
TZF4		$\sim \sim \sim \sim \sim \sim M A M M$	TLCRTCLQDG	. EAHMVSI	FQTADDRLPG
TZF		~MKTESNEKW	VVCRVCLNNP	SEGEELLHDI	FSETAS
	51				100
TZF2	. KDLTHMIRE	CGGVPIKQ.	. FDHYPDKIC	EKCFKVLKMA	FKFRETCQRS
TZF3	. DFPDKIKR	CTGVELSE	. SPDWPNRIC	TSCALLLRAA	LKLRSLCQQT
TZF4	GVSLCDKIES	LSGIQIRATA	KEEVLPTRIC	LRCKAFLTLA	HKFRQICQRS
TZF	. TRLDQMLHI	CAGIPVSL	. DDNFPDKMC	SKCVRCLRLC	YKFRLTCQRS
	101				150
TZF2	YGHLRQFVGP	VEVEQRPPEK	KGSETATKLE	PDVDPDEAEQ	EPEHDEEDED
TZF3	EKDLKEQK..		. . L	QEINIEIVHD	E. . . QETKKK
TZF4	NEFLREYVIK		. D. . AVE	QGVVKEVVQQ	TR..PSTPPP
TZF	HQHIMDML.	. DREASNANA	AGEGDLLSIA	EDLSVESVLK	S . . . WEDYA

TZF2 VDLDESHYAE ADDAAETQGG VFHDEIEDGI LVELEKDRIV HVKNEQVEED
TZF3 TESRD.....LS.... NEATGSD

TZF4 IETEQ.....EPPEDE
TZF SQLDGGMKVE GEE.. DQQHQ VITYVVEDGD TDDTN.MFDV HDPTQPVPNE
201 250
TZF2 GIIEEVYDVY ETYEGDLIPD QGYDHEMADQ ALSELSAEIE YLDQVEHDQL
TZF3 ..SELEYEYL DSYDVTLESS E.........DVA
TZF4 VLEEGVWSTE DPIEETPHGP A.........EKE
TZF IEEAETYAEY EEYELLTNEN S........P EIAQEKG..STGTDVA
251
300
TZF2 TESAHEDDAE VDLNSTEEEF VPSKSVRASI HARNATKRRV NPRRSATSTA
TZF3 CSADELVSIE PAISAPEESV YSLSPK.... PVT......
TZF4 RPTVLTVEML PAPYPPPAST PPP.......
TZF TEEPPEEEIA EDILDSDEDY DPT....... HAK....... .PEK......
301
350
TZF2 SVAVESSTSK TTDRGNPLKV RRGNSDSAGS KMSIKSEKDI SIGEVLARKH

TZF4AP
TZFCDRS..GRKPVAYH KNSPKVET..FK.KK
351 Finger1 400
TZF2 SGIKTKGGHK ILLGDKKEFK YICDVCGNMY PSQSRLTEHI KVHSGVKPHE
TZF3 SGQAAS.... FTCNICNNVY SERVKLTNHM KVHSAKKPHE
TZF4 AGAVKG....KL HVCAICGNGY PRKSTLDTHM RRHNDERPYE
TZF VGRKPR..N.KLST YICDVCGNIY PTQARLTEHM KFHSGVKPHE

	2		3	450
TZF2	C ICGHCFAQ AQQLARHMNT	HTGNRPYKCS	YCPAAFADLS	S TRNKHHIHT
TZF3	CEICHKRFRQ TPQLARHMNT	HTGNRPYKCD	YCDSRFADPS	S TRIKHQRIHT
TZF4	CEICHKSFHV NYQLKRHIRQ	HTGAKPYTCQ	YCQRNFADRT	T SLVKHERTHR
TZF	CEICGRGFVQ NQQLVRHMNT	HTGNRPYKCN TGEKPY	YCPAAFADRS	S TKTKHHRIHT
	451 Finger4			nger5 500
TZF2	NERPYECDVC HKTFTYTNTL	KFHKMIHTGE	KPHVCDVCGK	GFPQAYKLRN
TZF	NERPYKCEFC SRSFGYSNVL	RVHLKTHTGE	RPFSCQYCQK	SFSQLHHKNS
TZF4	NERPYACKTC GKKFTYASVL	KMHYKTHTGE	KPhicQLCNK	SFARIHNLVA
TZF	KERPYVCDVC SR	KFHKMIHTGE	DL	VV

$$
501538
$$

TZF2 HRVIHER... .RGQSARESV AGLVSYDTAN IVGLDM~~
TZF3 HEKSHKR... .TKEVK~~~~~~~~~~~~~~~~~~~~~~~
TZF4 HLQTQQHIND PRLTAYLSTF KVGITVANA~
TZF HRETHNRRIT WRNDAEESTK AEDVKGETPE FLNELPKE

Fig 11: Amino acid sequence alignment of the four $T Z F$ proteins. The zinc fingers are highlighted in red. The sections with similarity to zinc fingers at the N-terminal ends of the proteins are highlighted in blue. Intron positions are shown with arrowheads.

All four gene products have at the C-terminal end a cluster of five C2H2-type zinc fingers with the consensus sequence $\Phi-\mathrm{X}-\mathrm{C}-\mathrm{X}_{2,4,5}-\mathrm{C}-\mathrm{X}_{3}-\Phi-\mathrm{X}_{5}-\Phi-\mathrm{X}_{2}-\mathrm{H}-\mathrm{X}_{3,4}-\mathrm{H}$, where X represents any amino acid, Φ a hydrophobic residue. At the N -terminal end, some short sequences remind of zinc fingers but are
incomplete. This is typical for proteins including many copies of zinc finger domains, where incomplete or degenerate copies of finger domain are often found (Rosenfeld \& Margalit, 1993). The inter-finger regions between fingers 2-3, 3-4 and 4-5 agree approximately with the TGEKPY consensus sequence named H-C link (Schuh et al., 1986), whilst the inter-1-2-region seems to be more degenerated than other inter-finger regions. MOTIF and PROSITE function from the HUSAR DNA analysis package were used to analyse all four sequences for further details. No other motifs were found, except for a cytochrome C domain in TZF2, 3 and $4\left(\mathrm{C}_{401}-\mathrm{K}_{406}\right.$ of TZF3 and TZF4; $\mathrm{C}_{457}-\mathrm{K}_{462}$ of TZF2). But this is probably of no relevance, because they all have one zinc finger domain with a H residue after the second C, which happens to be part of a cytochrome C consensus sequence (Mathews, 1985). PSORT function from the same package showed that all four $T Z F$ products are likely to be nuclear proteins.

Discussion

The four Tzf genes are paralogues

As shown in Fig 10, $T z f$ and $T z f 2$ have the same gene organization, with the exon 2 containing the finger 1 and part of finger 2 , exon 3 containing part of finger 2 and 3 , exon 4 part of finger 3 and finger 4 , and exon 5 the finger 5. $T z f 3$ and $T z f 4$ also obey this rule, although with small deviations. $T z f 4$ has an additional small exon of 6 bp (named exon 0 to maintain the exon terminology of all $T z f$ genes) at the Nterminal of exon 1. In $T z f 3$, exon 4 and exon 5 are merged into one exon containing finger 4, finger 5 and part of finger 3. With these two exceptions, the all intron positions are completely conserved among the four genes. As shown in Fig 11 they are located in the following positions:
Intron between exon 1 and 2: between $\mathrm{P}(\mathrm{E}, \mathrm{Q}) 65$ and $\mathrm{I}(\mathrm{L}, \mathrm{V}) 66$,
Intron between exon 2 and 3: in E2 of the finger 2, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon, Intron between exon 3 and 4 : in $R(L, K) 14$ of finger 3, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon, Intron between exon 4 and 5: in $\mathrm{V}(\mathrm{S}, \mathrm{I}) 2$ of finger 5, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon.

Therefore, the four $T z f$ genes have an almost identical genomic organization. Also, their products share the same modular structure with five canonical zinc fingers at the C-terminal end and possible remnants of two fingers at the N-terminal end. Sun (Sun, 1994) divided the $T Z F$ protein into five domains according to their isoelectric values (pI values) and their homology with the corresponding segments of the Drosophila hydei homologue of $T z f$ ($\mathrm{Dh} T z f$) (Sun, 1994). This domain system was extended to all four $T Z F$ proteins. The following two tables show the pI value and size of the five domains, as well as their similarity and identity among the four $T Z F$ proteins.

	Domain I $(\mathrm{pI} /$ size $)$	Domain II $(\mathrm{pI} /$ size $)$	Domain III $(\mathrm{pI} /$ size $)$	Domain IV $(\mathrm{pI} /$ size $)$	Domain V $(\mathrm{pI} /$ size $)$
$T Z F$	$7.22 / 85$	$3.38 / 147$	$11.26 / 41$	$9.47 / 133$	$4.51 / 33$
$T Z F 2$	$8.22 / 93$	$3.74 / 178$	$11.59 / 90$	$8.63 / 133$	$4.62 / 27$
$T Z F 3$	$6.95 / 78$	$3.97 / 85$	$3.33 / 16$	$10.16 / 133$	$11.07 / 7$
$T Z F 4$	$7.95 / 85$	$3.99 / 87$	$10.80 / 12$	$10.26 / 135$	$9.55 / 22$

	Domain I(identity similarity)		Domain II		Domain III		Domain IV		Domain V	
TZF vs TZF2	59.756	42.683	37.931	20.000	37.500	25.000	81.203	79.699	44.444	22.222
TZF2 vs TZF3	46.154	32.051	37.037	25.926	25.000	25.000	62.406	57.143	42.857	14.286
TZF3 vs TZF4	38.158	27.623	29.268	21.951	14.286	14.286	56.391	48.120	28.571	14.286
TZF vs TZF4	51.316	35.526	50.000	33.333	25.000	25.000	57.143	48.872	83.333	33.333
TZF vs TZF3	38.462	29.487	35.484	22.581	33.333	26.667	62.406	55.639	57.143	28.571
TZF2 vs TZF4	46.753	35.065	36.047	27.907	33.333	25.000	52.632	47.368	26.316	21.053

Domain IV, which contains the five zinc fingers, is shared with the highest similarity among the $T Z F$ proteins. Domain I with the N-terminal finger remnants also has a considerable inter-TZFs similarity. For both domains, the proteins $T Z F$ and $T Z F 2$ are most similar among the four $T Z F$ s. Domain II is the largest domain for $T Z F$ and $T Z F 2$, but it is much smaller for the other two proteins. In spite of the length heterogeneity, domain II of all four proteins is very acidic with the pI value between 3.38 and 3.99 . The highest amino acid sequence similarity is between $T Z F$ and $T Z F 4$. The a.a. sequences of domain III and domain V are considerably diverged, as is their lengths.

Unlike most gene clusters generated through unequal crossover, the $T z f$ genes do not have a tandem orientation. Small chromosomal inversions could account for their opposite orientations. The simplest scenario with the least number of chromosomal rearrangements would be as following:
$T z f$ and $T z f 2$ were generated from the ancestral zinc finger gene. A small chromosomal inversion of one of both copies caused their opposite orientations. Subsequently $T z f$ and $T z f 2$ were again duplicated by an unequal crossover, creating $T z f 3$ and $T z f 4$. Alternatively, $T z f$ and $T z f 2$ could be duplication of $T z f 3$ and Tzf4.

The pattern of silent (synonymous) nucleotide changes within the zinc finger coding region provides a measure of evolutionary distances between the paralogues (Li\&Graur, 1991). The amino acids conserved among all four $T Z F$ proteins were sorted out and their codons were compared in the following tables:

	Fingerl						Fingerlink 1-2		
	C_{373}	C_{376}	$\mathrm{~N}_{378}$	Y_{380}	$\mathrm{~L}_{386}$	H_{389}	H_{393}	P_{398}	E_{400}
TZF	tgc	tgc	aat	tat	ctc	cac	cat	cca	gag
TZF2	tgc	tgc	aac	tat	ctt	cac	cac	ccg	gag
TZF3	tgc	tgc	aat	tac	ttg	cac	cac	cca	gaa
TZF4	tgc	tgt	aat	tat	ctg	cac	cat	cct	gag

	Finger2									Fingerlink2-3			
	C_{401}	E_{402}	I_{403}	C_{404}	Q413	L_{414}	R_{416}	H_{417}	H_{421}	T_{422}	G_{423}	P_{426}	Y_{427}
TZF	tge	gag	atc	$\operatorname{tg} \mathrm{c}$	cag	ctg	cgg	cac	cac	acg	ggg	cca	tac
TZF2	tgc	gag	atc	tgt	cag	ctg	cgc	cac	cac	acc	gga	ccg	tac
TZF3	tgc	gaa	atc	tgt	cag	ttg	agg	cac	cac	acc	ggt	ccc	tac
TZF4	tgc	gag	att	$\operatorname{tg} \mathrm{c}$	cag	ctg	cgc	cac	cac	acg	gga	cca	tat

	Finger3										Fingerlink3-4			
	C_{429}	Y_{431}	C_{432}	F_{436}	A_{437}	D_{438}	K_{444}	H_{445}	R_{447}	H_{449}	E_{452}	R_{453}	P_{454}	Y_{455}
TZF	tgc	tac	tgt	ttc	gcc	gat	aaa	cat	aga	cac	gag	cgt	ccc	tac
TZF2	tgc	tat	$\operatorname{tg} \mathrm{c}$	ttc	gcc	gac	aag	cac	aga	cac	gag	cga	ccc	tac
TZF3	tgt	tat	tgc	ttc	gcc	gat	aag	cat	agg	cac	gaa	cga	ccg	tac
TZF4	tgc	tat	tgc	ttc	gcg	gat	aag	cat	aga	cat	gag	cgt	cct	tat

	Finger4							fingerlink4-5		
	C_{457}	C_{460}	F_{464}	Y_{466}	L_{470}	H_{473}	H_{477}	T_{478}	G_{479}	E_{480}
TZF	tg	tgc	ttt	tac	ctg	cac	cac	acg	ggg	gag
TZF2	tgc	tgc	ttc	tac	ttg	cac	cat	acg	gga	gag
TZF3	$\operatorname{tg} \mathrm{c}$	tgc	ttt	tac	ctc	cat	cat	acc	ggt	gaa
TZF4	tgc	tgc	ttc	tat	ctt	cac	cac	acg	ggc	gaa

	Finger5				
	C_{485}	C_{488}	$\mathrm{~K}_{490}$	$\mathrm{~F}_{492}$	H_{501}
$T Z F$	tgt	tgt	aaa	ttt	cat
$T Z F 2$	tgc	tgc	aag	ttc	cac
$T Z F 3$	tgc	tgc	aag	ttc	cac
$T Z F 4$	tgc	tgc	aaa	ttc	cac

For each two different genes, the number of nucleotide substitutions was counted and listed in the following table:

	TZF/TZF2	TZF3/TZF4	TZF/TZF3	TZF2/TZF4	TZF/TZF4	TZF2/TZF3
Synonymous substitutions	24	28	31	24	23	24

Between TZF/TZF4 are the least synonymous substitutions, between TZF2/TZF3 the second least. This result is not contradictory to the crossover-inversion-crossover hypothesis, although a definite proof of the hypothesis still demands further data.

Possible functions of the TZF proteins

Current estimates suggest that genes encoding C2H2 type zinc fingers account for $0,7 \%-2 \%$ of eukaryotic genomes (Hoovers et al., 1992; Shannon et al., 1998; Clarke\&Berg, 1998; Böhm, unpublished data). Present evidence suggests that most of these genes encode sequence specific nucleic acid binding proteins. Although some of these proteins are known to participate in pattern formation, cellular proliferation and tumorigenesis (Wieschaus et al., 1984; Boulay et al., 1987; Schuh et al., 1986; Call et al., 1990; Supp et al., 1996), the biological function of the vast majority of zinc finger proteins is still unknown.

DNA-binding?

Most of C 2 H 2 type zinc finger proteins are DNA-binding transcription factors. They fold in the presence of zinc to form a $\beta \beta \alpha$ domain. Each finger binds a single zinc ion that is sandwiched between the two-stranded antiparallel β-sheet and the α-helix. The zinc ion is tetrahedrally coordinated between two cysteines at one end of the β-sheet and the two histidines in the C-terminal portion of the α-helix (Michael et al., 1992; Shi \& Berg, 1995). X-ray studies of zinc finger-DNA complexes (Pavletich \& Pabo, 1991) showed that the α-helical portion of each finger fits in the major groove of DNA, and that the binding of successive fingers causes the protein to wrap around the DNA. The majority of base contacts occurs among three base pair segments along one DNA strand with four amino acids at the position -1, 2, 3, and 6 (see Fig 12).

(a)

(b)
-11234
Finger 1 PYACPVESCDRRFSRSDELTRHIRIHTGQK
Finger 2 PFQCRI--- CMRNFSRSDHLTTHIRTHTGEK
Finger 3 PFACDI---CGRKFARSDERKRHTKIHLRQK

$$
+\quad!+\varphi \varphi \varphi+\varphi!\quad!
$$

(c)

Fig 12 (a)The $\beta \beta \alpha$ domain of zinc finger protein Zif268. (b) Structure of the three fingers of Zif 268 bound to DNA. Base contacts made from position $-1,2,3$, and 6 of each helix are indicated schematically to the right of the structure. Arrows indicate contact mediated by hydrogen bonds; open circles indicate hydrophobic interactions (Eltrod-Erickson et al., 1998) (c) The sequence of the three fingers is shown with the H and Cs participating in the zinc coordination in bold. The positions of amino acids are numbered according to convention. Filled squares below the sequence indicate the positions of the conserved hydrophobic residues. Filled circles and stars indicate residue positions that are involved in phosphate and base contacts (respectively) in most of the fingers.

Different zinc fingers could bind to different DNA segments. Because of the binding pattern of the zinc finger proteins to the DNA molecules, the specificity of the DNA recognition of zinc finger is mostly only dependent on the four amino acids at the position -1, 2, 3, and 6 (Pavletich \& Pabo, 1991; ElrodErickson et al., 1998). As the data from zinc finger selection continues to grow, especially from the experiments to "design" zinc fingers to recognize certain DNA sequences, it becomes possible to predict the zinc finger specificity according to its amino acid sequence (for review see Wolfe et al., 2000; Choo \& Isalan, 2000).

Fig 13: Pattern of side-chain base interactions that provide an approximate "recognition" code of zinc fingers that have a canonical binding mode. This chart describes contacts between residues at key positions in the α-helix ($-1,2,3$ and 6) and bases at the corresponding positions in the canonical subsite (see Fig 12b). Boldface type highlights amino acids that occur most frequently in phage display "designing" selections when a particular base specificity is desired, and an asterisk indicates contacts that have been observed in structural studies. Question marks indicate that the specificity of the respective amino $\mathrm{acid} / \mathrm{base}$ contact is uncertain. Positions for which base specificity is largely undefined are left blank. Adapted from Wolfe et al., 2000.

These rules were used to predict the DNA-binding specificity of the four $T Z F$ proteins, giving following result for each of them:

$T Z F$ proteins	Predicted binding-sequence
$T Z F 1$	xxTGxATCCxAxxGx
$T Z F 2$	xxxGxATCCxCxxGA
$T Z F 3$	xGxGxATCCxxxxGA
$T Z F 4$	xCGGxxTTCxxxxAG

According to this prediction, the four $T Z F$ s could bind to very similar sequences, especially as the middle parts of their recognition sequences are almost identical (GxATCC). They could either compete with each other for the same DNA fragment, or they could bind to a larger DNA sequence consisting of
of several binding motifs in tandem. Or, an alternative possibility is that they have no function in DNA binding but that they bind to RNA or participate in protein interactions with their zinc finger domains.

RNA-binding?

Zinc fingers are potentially nucleic acid-binding proteins, which could be DNA-, RNA-, or DNA- and RNA-binding (for review see Leon \& Roth, 2000). It was proposed that the conserved H-C link sequence is only present in DNA-binding proteins, but not in RNA-binding ones (Darby \& Joho, 1992). This might be taken as an indication that the $T z f$ genes code for DNA-binding proteins. This prediction is, however, uncertain. The protein XFG5-1, for example, is a specific RNA-binding protein in in vitro experiments, but contains the conserved H-C link (Köster et al., 1991). The Wilm's tumor suppressor, WT1, is another good example, which was initially characterised as a DNA-binding protein. Now it is more likely to function in gene regulation at the RNA-level as well (Larsson et al., 1995; Bruening et al., 1996; Bordeesy \& Pelletier, 1998). A number of C2H2 zinc fingers have been identified that bind RNA, but, aside from TFIIIA and p43, the biological significance of these interactions requires further study (Friesen \& Darby, 1997; 1998;).

Protein binding?

Recently, zinc fingers were shown to be able to perform not only DNA-binding function, but also to participate in protein-protein interactions. Among the C2H2 fingers, zinc finger proteins Ikaros and Aiolos were identified to have both DNA-binding fingers and protein-protein interaction fingers responsible for homo- or heterodimerization (Sun et al., 1996; Georgoporos et al., 1997; Morgan et al 1997). Considering the clustered localization of the $T z f$ genes which provides a structural basis for a coregulation of their expression, some fingers of the $T Z F$ proteins could very well also function in forming homopolymers from one $T Z F$ subunit, or heteropolymers from two or more different TZFs. Different combinations of different $T Z F$ s with the varying DNA sequence they recognize could bind different target DNA sequences. They could also control the interaction of the $T Z F$ proteins with other proteins.

The four $T z f$ genes are tightly clustered

Zinc finger protein clusters in mammals

A considerable body of evidence has emerged to suggest that a large fraction of human zinc finger genes (ZNF genes) are arranged in clusters (with two or more genes located in the same interval) scattered throughout many chromosomes, including 3,7,8,10,11,12,16,17,19,20,21,22, and X. (Aubry et al., 1992; Hoovers et al., 1992; Huebner et al., 1991; Rousseau-Merck et al., 1993; Lichter et al., 1992; Saleh et al., 1992; Tommerup \&Vissing, 1995). Especially the ZNF91 and ZNF45 gene families, located at q13.2 and p12-p13.1 of human chromosome 19 (H19), were intensively studied and provided informations on evolutionary aspects of zinc finger genes (Constantihou-Deltas et al., 1992; Shannon et al., 1996; Bellefroid et al., 1993). In both cases, the zinc finger genes are arranged in "head-to-tail" tandem arrays with relatively even spacing between neighbouring genes. This observation was consistent with the idea that familial gene clusters have arisen primarily through multiple, in situ tandem duplication events of single progenitor loci (Ohno, 1970). Members of a tandem gene family are more similar in sequence to one another than they are to ZNF genes located elsewhere in the chromosome. Less is known about the their genomic organization of other ZNF gene clusters, but there is evidence that they are also mostly arranged as "head-to-tail" tandem arrays (Shannon et al., 1998; Calabro et al., 1995; Aubry et al., 1992; Derry et al., 1995).
Comparative studies of region H19 in human and the homologous mouse chromosome region have provided evidence that many, and perhaps all, of the clustered ZNF families located in H19 are represented by similar clusters located in syntenic regions of mouse chromosomes 7, 8, 9, 10, and 17 (Shannon et al., 1998). The mouse genes are highly similar to their human counterparts in overall structure and patterns of expression. But the human genes possess more repeats than their murine orthologs. The extent of conservation of individual repeat units varies among the zinc fingers encoded by orthologous genes, with amino acid identities of individual zinc finger repeats ranging from 68% 96\% (Shannon et al., 1998).

Zinc finger protein clusters in Drosophila: Tzfl-4 as the tightest ZF gene cluster

The distribution of zinc finger protein coding genes was well studied for yeast S. cerevisiae (Böhm et al., 1997) and C. elegans (Clarke \& Berg, 1998). Neither organism reveals clusters in genome. In yeast, the majority of zinc finger proteins contain exactly two finger domains; only 10% have more than two. In contrast, C.elegans has more zinc finger proteins with three or more fingers than those with only two. Comparing the data from S.cerevisiae, C.elegans, mouse and human, a clear evolutionary trend
enhancing the complexity in the zinc finger protein domain structure can be seen. First, the number of fingers in a protein increases. Subsequently, the number of genes was increased by duplication. This appears to reflect an increasing demand in regulatory proteins for more complex organisms.

In Drosophila, zinc finger gene clusters have 2-5 members (S. Böhm, personal communication). One example of well-studied clusters is the one including odd-skipped (odd), sob and bowel (bowl) (Hart et al., 1996). Odd and sob are located at 24 A , in the same orientation, with 24 kb of DNA between them. Bowl is located further away, at 24C2-5. Sob and bowl have five C2H2 type zinc fingers and odd has four. The fingers of odd and the N-terminal four fingers of sob and bowl share an extremely high identity ($97,3 \%$ between sob and bowl, $86,6 \%$ between sob and odd and $87,5 \%$ between bowl and odd). Beyond the zinc fingers, no homology was indicated. The expression of sob and odd are strikingly similar, while bowl is expressed in a different pattern. It was suggested that all three genes have a common ancestor, and arose by at least two independent duplication events (Hart et al., 1996).

Two other zinc finger genes spalt (sal) and spalt-related (salr) at region $32 \mathrm{~F} / 33 \mathrm{~A}$ are located head to head, in opposite orientations, approximately 65 kb from each other (Reuter et al., 1996; Celis et al., 1996). They have at least partially redundant functions, share high sequence homology and a late expression pattern. salr does not have the early expression pattern of sal. Another gene, spalt adjacent (sala), was identified in a tail-to-tail orientation with sal. Although not sharing any amino acid sequence homology with sal and salr, it shares the early expression pattern of sal. It was suggested that an ancestral sal/salr gene underwent complete duplication followed by a chromosomal rearrangement, which separated the salr gene from its early cis-regulatory elements. These elements came into the vicinity of sal and were appropriated by the unrelated sala gene, resulting in the observed similarities between early sal and sala expression patterns (Reuter et al., 1996).

Up to now, the $T z f$ cluster is the most compact Drosophila zinc finger gene cluster with the distance between the adjacent members of not more than 1 kb . They appear to have the same ancestor, considering their high homology in finger region and the completely conserved intron positions. Because they are not orientated in tandem, it is unlikely that all four genes were direct products of multiple duplications of a single gene. $T z f$ is mainly expressed in testis, ovary and embryo; while $T z f 2$ is homogenously expressed everywhere (Xu \& Hennig, unpublished data). From the different expression pattern, it seems unlikely that they share all their cis-regulating elements.

A splicing variant of $T z f$?

The difference between the $T z f$ and the CG4413 transcripts can be explained in different ways:

1. A mistake in the sequencing CG4413 or cloning of a falsely spliced RNA molecule.
2. The CG4413 transcript corresponds to the real splicing pattern and the $T z f$ transcript represents an incompletely spliced molecule. The $T z f$ cDNA was cloned from a testis cDNA library, whilst the CG4413 transcript was obtained from RNA of whole flies. The two forms could be both ubiquitously expressed, or the $T z f$ transcript discovered by us is testis-specific. In this case, it would be of interest to see whether the other $T z f$ tanscripts are also subject to alternative splicing.
```
    1 ~ M K T E S N E K W V V C R V C L N N P S E G E E L L H D I F S E T A S T R L D Q M L H I C A G I P V ~ 5 0 0
    ||||||||||||||||||||||||||||||||||||||||||||||||||
    1 ~ M K T E S N E K W V V C R V C L N N P S E G E E L L H D I F S E T A S T R L D Q M L H I C A G I P V ~ 5 0 ~
    5 1 \text { SLDDNFPDKMCSKCVRCLRLCYKFRLTCQRSHQHIMDMLDREASNANAAG } 1 0 0
    ||||||||||||||||||||||||||||||||||||||||||||||||||
5 1 ~ S L D D N F P D K M C S K C V R C L R L C Y K F R L T C Q R S H Q H I M D M L D R E A S N A N A A G ~ 1 0 0 ~
101 EGDLLSIAEDLSVESVLKSWEDYASQLDGGMKVEGEEDQQHQVITYVVED 150
    ||||||||||||||||||||||||||||||||||||||||||||||||||
101 EGDLLSIAEDLSVESVLKSWEDYASQLDGGMKVEGEEDQQHQVITYVVED 150
151 GDTDDTNMFDVHDPTQPVPNEIEEAETYAEYEEYELLTNENSPEIAQEKG 200
    ||||||||||||||||||||||||||||||||||||||||||||||||||
151 GDTDDTNMFDVHDPTQPVPNEIEEAETYAEYEEYELLTNENSPEIAQEKG 200
201 STGTDVATEEPPEEEIAEDILDSDEDYDPTHAKPEKCDRSGRKPVAYHKN }25
    ||||||||||||||||||||||||||||||||||||||||||||||||||
201 STGTDVATEEPPEEEIAEDILDSDEDYDPTHAKPEKCDRSGRKPVAYHKN 250
251 SPKVETFKKKVGRKPRNKLSTYICDVCGNIYPTQARLTEHMKFHSGVKPH 300
    ||||||||||||||||||||||||||||||||||||||||||||||||||
251 SPKVETFKKKVGRKPRNKLSTYICDVCGNIYPTQARLTEHMKFHSGVKPH 300
3 0 1 ~ E C E I C G R G F V Q N Q Q L V R H M N T H T G N R P Y K C N Y C P A A F A D R S T K T K H H S ~ . ~ . ~ 3 4 8 ~
    |||||||||||||||||||||||||||||||||||||||||||||||
301 ECEICGRGFVQNQQLVRHMNTHTGNRPYKCNYCPAAFADRSTKTKHHRIH 350
```



```
                                    |||||||||||||||
3 5 1 ~ T K E R P Y V C D V C S R T F T Y S D N L K F H K M I H T G E K P H V C D L C G K G F V K A Y K L R ~ 4 0 0 ~
364 LHRETHNRRITWRNDAEESTKAEDVKGETPEFLNELPKE 402
    |||||||||||||||||||||||||||||||||||||||
401 LHRETHNRRITWRNDAEESTKAEDVKGETPEFLNELPKE 439
```

Fig 14: Comparison of the putative protein products of $T z f \mathrm{cDNA}$ (the lower line) and CG4413 cDNA (the upper line). The comparison was made using the function GAP of the HUSAR DNA analyse package. The zinc fingers are highlighted in red.

Alternative splicing in zinc finger genes was recently reported for human ZNF41 (Rosati et al., 1999) and mouse KRC (Mak et al., 1998) genes. ZNF41 gene encodes at the C-terminal zinc fingers and at Nterminal a KRAB/FPB domain. Exon skipping at the N-terminus leads to selective usage of two different KRAB/FBP modules, encoding peptides differing in C-terminus and expressed in different tissues. Zinc fingers themselves were in ZNF41 genes constantly expressed. In contrast, the product of KRC gene contains at both N-terminal and C-terminal DNA-binding domains, of which the zinc fingers are essential components. Multiple differentially spliced transcripts were identified in brain and thymus, skipping different zinc finger domains.

Do TZF proteins correspond to SCP proteins of the rat?

The cDNA clones encoding the $T Z F$ protein were obtained by the immunoscreening of the testis cDNA expression libraries with an antiserum against the rat SC protein, SCP3 (Lammers et al., 1994). SCP3 has been located on the lateral elements of the rat SC from zygotene- up to late diplotene-phase. The amino acid sequence deduced from SCP3 does not contain any known nucleic acid binding motif.

It was demonstrated that the N-terminal part of $T Z F$ protein (DmP3 peptide, Sun, 1994) does react with the antiserum against SCP3. DmP3 contains the first 80 amino acids and is highly divergent compared to the other $T Z F$ proteins. The amino acid sequence of this peptide does not have any detectable similarity with SCP3, which, however, could not completely exclude the possibility that $T Z F$ is the Drosophila "homologue" of SCP3 in the sense that it takes over the same responsibility as SCP3 in rat. However, it is more likely that the immuncrossreaction was just a coincidence caused by the local structural similarity between rat SCP3 and the Drosophila TZF.

Summary

A zinc finger gene $T z f 1$ was cloned by screening a λ-DASH2 cDNA expression library with an anti-Rat SC antibody. A λ-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of Tzfl to determine the genomic organization of Tzfl. Another putative zinc finger gene $T z f 2$ was found about 700 bp upstream of $T z f 1$.

RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of $T z f$ and $T z f 2$ were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of $T z f$ transcripts. Another two zinc finger genes $T z f 3$ and $T z f 4$ were discovered in silico. They are located 300 bp away from $T z f$ and $T z f 2$, and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C 2 H 2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.

Introduction

Synaptonemal complexes (SCs) are structures found between paired homologous chromosomes in the meiotic prophase nuclei (Moses, 1968). They consist of two compact proteinaceous axes, the lateral elements, each one associating with one of the homologous chromosomes. The lateral elements are connected by thin transversal filaments. Between the two lateral elements another longitudinal structure is formed, the central element, which crosses the transversal filaments. The lateral elements and the central element make up the tripartite structure of the SCs. In most eukaryotes analysed so far, the condensation, pairing, recombination and segregation of chromosomes is accompanied by the assembly and disassembly of the SCs. Several rat SC proteins have been identified and the cDNA clones for some of them have been analysed (Heyting et al., 1985, 1987, 1988, 1989; Lammers et al. 1994, Smith and Benavente 1992). Drosophila is an exception because this structure is only formed during the meiotic prophase in females but not in males (Rasmussen 1973, 1974). At the same time, recombination does not take place in Drosophila males. On the other hand, there exist specialized structures in Drosophila primary spermatocytes, the lampbrush loops, which are formed by the actively transcribed fertility genes located on the Y chromosome.

Fig 1: Schema of a synaptonemal complex (SC) in pachytene phase.

It was observed that antibodies against rat SC proteins cross react with Y chromosome lampbrush loops present in Drosophila melanogaster (Hennig \& Heyting, unpublished data). An immunoscreening of Drosophila testis cDNA libraries with an antiserum against a rat SC protein (Lammers et al., 1994) was carried out to identify the structural component of this cross immunoreaction (Sun, 1994). A part of a novel gene was cloned which encodes a putative zinc finger protein. It was named $T z f$ gene. The $T z f$ gene is a single copy gene with particularly strong expression in embryos, testes and ovaries (Sun, 1994). It was the starting point of this work to complete the cDNA sequence of this gene and to find out its genomic organization.

Results

Genomic fragment containing Tzf gene

The 1.4 kb cDNA fragment of the $T z f$ gene, DmTZF (Sun, 1994), was used as a probe to screen a Lambda - DASH2 genomic DNA library. Two clones, with respectively a 5.0 kb and a 1.8 kb EcoRIEcoRI insert were identified (Xiao, Xu \& Hennig, unpublished data). The inserts were further subcloned, and the subclones were sequenced. The entire sequences of the EE5.0 and EE1.8 fragments were reconstructed from the subcloned sequences. The 1.0 kb fragment at the 5 'part of the cDNA fragment DmTZF was contained in the sequence of genomic fragment EE1.8. The 0.4 kb 3 ' fragment was still missing.

To look for the genomic segment containing the 3 'end of $T z f$ gene, a lawrist 4 cosmid library of D. melanogaster genomic DNA (kindly provided by Dr. Hoheisel, DKFZ) was screened with the cDNA fragment DmTZF. Three cosmid clones 89B4, 89B5 and 46A gave strong signals. 89B4 and 89B5 proved to be identical in their digestion patterns with several different enzymes. Only 89B4 was analysed in detail. The hybridisations of EcoRI and SalI digests of 89B4 DNA with the missing 0.4 kb cDNA fragment have shown that this fragment was contained in this genomic clone. It reacts with a 2.2 kb EcoRI fragment and a 9.0 kb SalI fragment. Both fragments were cloned into pBluescript and sequenced. A subclone of the 2.2 kb EcoRI fragment, called eb2, contained the 0.4 kb cDNA fragment of

Tzf. Another subclone from the 9.0 kb SalI fragment, ab1, overlapped with the fragment EE1.8, the fragment EE5.0 from the λ DASH-2 library and the 2.2 kb EE fragment from the lawrist 4 cosmid library. This allowed deducing the relative localization of the three fragments (see Fig 2). Their organization was confirmed by sequencing the PCR products obtained with primers CX1 and DM5.
cDNA fragment DmTZF
$1.0 \mathrm{~kb} \quad 0.4 \mathrm{~kb}$

Inserts of the genomic clones and their subclones

Fig 2: The organization of the subclones from the genomic fragments containing the $T z f$ and $T z f 2$ genes. The names of the restriction enzymes are abbreviated according to the abbreviation list in Appendix I.

Cloning of Tzf2 gene

Sequencing of EE1.8 and EE5.0 has proved that only EE1.8 contains the $T z f$ sequence. But EE5.0 also hybridised with the probe DmTZF which suggested a sequence similarity between EE5.0 and DmTZF. Analysis of the sequence of EE5.0 showed that parts of the sequence could also code for segments of a
zinc-finger protein. To see if these sequences are indeed expressed, RT-PCR experiments were performed with the primer pair GW1 and GW2, designed according to the EE5.0 sequence. Two different total RNA preparations were used as template. They were obtained from D.melanogaster ovaries and embryos.

Fig 3: RT-PCR product amplified with primer GW1 and GW2
Lane1: DNA marker λ-Hind III Lane2, 3: RT-PCR product with embryo and ovary RNA

A major signal could be seen as product of the RT-PCR reactions with both embryo and ovary RNA as template. The DNA was recovered from the gel and digested with BglII and XhoI, which were designed into the 5'ends of GW1 and GW2 as integrated restriction sites. The digested fragment was ligated into pBluescript, digested with BamHI (compatible end with BglII) and XhoI. Two different clones, CX1 and CX9, were obtained, of which CX1 contains the whole RT-PCR product, and CX9 only part of it because of the existence of an internal BgIII site in this fragment (see Fig 4). Different subclones were made from these two clones and the sequence of the whole fragment was obtained. The alignment of this sequence and the sequence of the genomic clone EE5.0 showed that the entire cDNA fragment GW1-GW2 is indeed contained in this segment of the genomic sequence. The alignment also showed the positions of the introns on the genomic sequence, which excluded the possibility that this product was an artefact caused by genomic DNA contamination in the RNA.

Fig 4: Subclones from the cDNA clone of $T_{z} f 2$

An in-frame stop codon was found at the 3^{\prime} end of this cDNA fragment. The 5 'end of the cDNA was obtained through RACE reaction (see below). The start codon could be verified through an in-frame stop codon 50 bp upstream of it. This gene was named $T z f 2$.

These experiments have revealed two similar genes, $T z f$ and $T z f 2$. They exist in opposite orientation. Their start codons are only separated by 729 bp .

RACE Reaction

To obtain the 5' ends of the two genes, $T z f$ and $T z f 2$, RACE experiments were carried out for both cDNAs.

The $T z f 2$ gene

$8 \mu \mathrm{~g}$ total RNA of Drosophila melanogaster embryo was reverse transcribed with primer CX4 to get a gene - specific cDNA pool for the $T z f 2$ gene. $1 / 20$ of the cDNA pool was tailed with poly-dC at the 3 ' end. The PCR reaction was then carried out with the primer CX1 and an adaptor. CX1 is an internal gene-specific primer downstream to the primer CX4, and the adapter anneals to the poly-dC end. The PCR product was too weak to be seen on an agarose gel.
The southern blot of an aliquot of the PCR product was therefore hybridised to the PCR product of primer CX1 and DM5, labelled through hot PCR. This probe recognizes the intergenic region between both $T z f$ genes. Another aliquot of the CX1-adapter PCR product was loaded on another agarose gel and the region corresponding to the signal in the hybridisation was cut out using the low-melting agarose gel method.

```
        12
```

Fig 5: Hybridisation result of the first PCR blot with the intergenic probe
 CX1-DM5. The blot was once more hybridised with labelled pBluescript, so that the marker could be seen on the blot. The second hybridization did not change the signal position in the probe lane.

Lane 1: DNA marker: HpaII digestion of pBluescript.
LaneII: CX1-adapter PCR product.
$1 / 20$ of the LM agarose gel mixture was directly used as template for a reamplification with the same primer pair. CX1 and adapter now gave a PCR product visible through EtBr staining. It was cloned into pBluescript after digestion with PstI and HindIII, the restriction sites integrated respectively in both primers. Fifty clones were picked and their inserts checked by hybridising with the labelled intergenic probe CX1-DM5. Four clones gave positive signals and were thus sequenced. Among them, C1, C4 and C7 start from the same G_{3327} (Fig 6). This makes it likely that this G is the transcriptional initiation site of the $T z f 2$ Gene.

Fig 6: Transcription initiation of $T z f 2$ gene. The nucleotides are numbered according to Appendix I.

The $T z f$ gene

The same strategy as for $T z f 2$ was also performed for the $T z f$ gene, with DM5 as the primer to establish a cDNA pool. Primer CX2 and the same adapter as for the $T z f$ gene were used to amplify from this pool. They failed to give reasonable product even after several reamplifications. The Marathon RACE Kit from CLONTECH was then tried to reveal the transcription start of the $T z f$ gene in a different way.

Poly A^{+}mRNA was obtained from total RNA made from D.melanogaster embryos with Oligotex ${ }^{\mathrm{TM}}$ Kit from Qiagen. First strand cDNA was obtained from $1 \mu \mathrm{~g}$ mNA, using the AMV Reverse Transcriptase and a modified oligo (dT) primer provided in the Marathon RACE kit with two degenerate nucleotides positioned at the 3'end. A second-strand Enzyme Cocktail containing RNase H, E.coli DNA polymerase I and E.coli DNA ligase was then added to the first strand mixture to yield a double-strand cDNA pool, which was subsequently made blunt ended with T4 DNA polymerase. The Marathon cDNA adapter was ligated to the blunt ends of the double-stranded cDNA molecules. The first PCR was performed with the $T z f$-specific primer DM5 and adapter-specific primer AP1. A nested PCR was performed using an aliquot of the first PCR product, with the primer CX2 down stream from DM5 and the primer AP2 downstream from AP1. The product was cloned into the PCR 2.1 vector (TA cloning kit, Invitrogen). Sequencing results have shown that eight clones contained the upstream sequence of $T z f$, five of which stopped at the same nucleotide G^{3864}, which was identified as the transcription start of $T z f$.

Fig 7: Transcription initiation of the $T z f$ gene. The nucleotides are numbered according to Appendix I.

The structure of the $T z f$ and $T z f 2$ genes

The cDNA sequences of $T z f$ and $T z f 2$ genes were compared with the genomic sequence, and the genomic organization of both genes could be deduced (see Fig 8).

Fig 8: The gene structure of $T z f$ and $T z f 2$. The long thin line stands for the genomic sequence. Thick bars stand for the exons. Blue bars for the 5^{\prime} UTR and black ones for coding regions. The red block in the $T z f$ gene stands for the exon that is possibly subject to alternative splicing (see below).

Tzf and $T_{z} f 2$ genes and the Drosophila genome project

After the characterizing of $T z f$ (Sun, 1994) and $T z f 2$, the complete Drosophila melanogaster genome was sequenced and published in the Flybase. The genomic and cDNA sequences of $T z f$ and $T z f 2$ was used to search the Flybase and to compare our data and the genome sequencing data. The genomic sequence of $T z f-T z f 2$ region (listed in Appendix I) was identical with the celera sequence $\mathrm{gb} /$ AE003728.1 (Drosophila genomic scaffold 142000013386035 Section 53/105). Two genes identified for this genomic clone, Gene CG4413 and Gene CG4936 correspond to our $T z f$ and $T z f 2$, respectively.

GC4936 is identical with $T z f 2$. Comparison of the $T z f$ cDNA sequence and the cDNA sequence of the gene CG4413 recorded in the Flybase showed that the CG4413 transcript lacked the complete 111bp exon (see Fig $8 \&$ Fig 9), which encodes the C-terminal end of the third zinc finger and the complete fourth finger.

GTCCCTACGTGTGCGACGTTTGCTCCAGAACGTTTACCTACTCGGACAACCTGAAGTTCCACAAGATGATTCACACGGGGGAG $4^{\text {th }}$ exon
AAGCCGCATGTgtaagcatcaacatattttactacttcattatcctgcaataatagctattctctttcagCTGTGATCTTTGT
GgCAAAGGATTTGTGAAGGCCTACAAATTGCGTTTGCATCGGGAAACGCATAATAGACGTATCACCTGGAGAAATGACGCAGA 1250

Fig 9: Genomic fragment containing part of the $3^{\text {rd }}, 5^{\text {th }}$ and the complete $4^{\text {th }}$ exon (italic letters) of $T z f$ gene. Lower case letters are from the introns. The first gt and last ag of the introns are underlined. $T z f$ cDNA contains all three exons, whilst in CG4413 transcript, the third exon and the fifth exon are directly ligated together, skipping the fourth exon.

The $T z f 3$ and $T z f 4$ genes: two additional genes of a gene family

Several hundred base pairs away from the $T z f$ and $T z f 2$ genes, two other zinc finger genes were found in the database, which also encode zinc finger proteins similar to the $T z f$ and $T z f 2$ proteins. The protein products of all four genes have the same modular structure, and they are located next to each other.

Names of $T z f$ Genes	Names in the Flybase
$T z f$	CG4413
$T z f 2$	CG4936
$T z f 3$	CG4854
$T z f 4$	CG4424

Alignment and Comparison of $T z f, T z f 2, T z f 3$ and $T z f 4$:

Fig 10: Genomic organization of the four $T z f$ genes. The thick bars represent the coding exons, the thin lines the introns. Only the exon sizes are presented, the introns are all shown in proportion to their length. The red boxes represent DNA segments coding for the zinc finger motifs. They are sometimes separated in two adjacent exons. The arrowheads show the direction of transcription, and the dashed lines connect the interrupted genomic sequence.

The $T z f 4$ and $T z f 3$ genes are localized in a head-to-head orientation, which corresponds to the orientation of $T z f$ and $T z f 2$. The arrangement of the five zinc fingers is conserved in all four genes.

	1				50
TZF2	MRDSAAHASP	AAAATSTQKW	IVCRVCLQQP	. KEPMAS I	FNDDSE.
TZF3	~~~~~~~~~~	$\sim \mathrm{MHTNVDSRD}$	LKCRICLVQP	. KDESLM	PTEP.
TZF4		$\sim \sim \sim \sim \sim \sim M A M M$	TLCRTCLQDG	. EAHMVSI	FQTADDRLPG
TZF		~MKTESNEKW	VVCRVCLNNP	SEGEELLHDI	FSETAS
	51				100
TZF2	. KDLTHMIRE	CGGVPIKQ.	. FDHYPDKIC	EKCFKVLKMA	FKFRETCQRS
TZF3	. DFPDKIKR	CTGVELSE	. SPDWPNRIC	TSCALLLRAA	LKLRSLCQQT
TZF4	GVSLCDKIES	LSGIQIRATA	KEEVLPTRIC	LRCKAFLTLA	HKFRQICQRS
TZF	. TRLDQMLHI	CAGIPVSL	. DDNFPDKMC	SKCVRCLRLC	YKFRLTCQRS
	101				150
TZF2	YGHLRQFVGP	VEVEQRPPEK	KGSETATKLE	PDVDPDEAEQ	EPEHDEEDED
TZF3	EKDLKEQK..		. . L	QEINIEIVHD	E. . . QETKKK
TZF4	NEFLREYVIK		. D. . AVE	QGVVKEVVQQ	TR..PSTPPP
TZF	HQHIMDML.	. DREASNANA	AGEGDLLSIA	EDLSVESVLK	S . . . WEDYA

TZF2 VDLDESHYAE ADDAAETQGG VFHDEIEDGI LVELEKDRIV HVKNEQVEED
TZF3 TESRD.....LS.... NEATGSD

TZF4 IETEQ.....EPPEDE
TZF SQLDGGMKVE GEE.. DQQHQ VITYVVEDGD TDDTN.MFDV HDPTQPVPNE
201 250
TZF2 GIIEEVYDVY ETYEGDLIPD QGYDHEMADQ ALSELSAEIE YLDQVEHDQL
TZF3 ..SELEYEYL DSYDVTLESS E.........DVA
TZF4 VLEEGVWSTE DPIEETPHGP A.........EKE
TZF IEEAETYAEY EEYELLTNEN S........P EIAQEKG..STGTDVA
251
300
TZF2 TESAHEDDAE VDLNSTEEEF VPSKSVRASI HARNATKRRV NPRRSATSTA
TZF3 CSADELVSIE PAISAPEESV YSLSPK.... PVT......
TZF4 RPTVLTVEML PAPYPPPAST PPP.......
TZF TEEPPEEEIA EDILDSDEDY DPT....... HAK....... .PEK......
301
350
TZF2 SVAVESSTSK TTDRGNPLKV RRGNSDSAGS KMSIKSEKDI SIGEVLARKH

TZF4AP
TZFCDRS..GRKPVAYH KNSPKVET..FK.KK
351 Finger1 400
TZF2 SGIKTKGGHK ILLGDKKEFK YICDVCGNMY PSQSRLTEHI KVHSGVKPHE
TZF3 SGQAAS.... FTCNICNNVY SERVKLTNHM KVHSAKKPHE
TZF4 AGAVKG....KL HVCAICGNGY PRKSTLDTHM RRHNDERPYE
TZF VGRKPR..N.KLST YICDVCGNIY PTQARLTEHM KFHSGVKPHE

	2		3	450
TZF2	C ICGHCFAQ AQQLARHMNT	HTGNRPYKCS	YCPAAFADLS	S TRNKHHIHT
TZF3	CEICHKRFRQ TPQLARHMNT	HTGNRPYKCD	YCDSRFADPS	S TRIKHQRIHT
TZF4	CEICHKSFHV NYQLKRHIRQ	HTGAKPYTCQ	YCQRNFADRT	T SLVKHERTHR
TZF	CEICGRGFVQ NQQLVRHMNT	HTGNRPYKCN TGEKPY	YCPAAFADRS	S TKTKHHRIHT
	451 Finger4			nger5 500
TZF2	NERPYECDVC HKTFTYTNTL	KFHKMIHTGE	KPHVCDVCGK	GFPQAYKLRN
TZF	NERPYKCEFC SRSFGYSNVL	RVHLKTHTGE	RPFSCQYCQK	SFSQLHHKNS
TZF4	NERPYACKTC GKKFTYASVL	KMHYKTHTGE	KPhicQLCNK	SFARIHNLVA
TZF	KERPYVCDVC SR	KFHKMIHTGE	DL	VV

$$
501538
$$

TZF2 HRVIHER... .RGQSARESV AGLVSYDTAN IVGLDM~~
TZF3 HEKSHKR... .TKEVK~~~~~~~~~~~~~~~~~~~~~~~
TZF4 HLQTQQHIND PRLTAYLSTF KVGITVANA~
TZF HRETHNRRIT WRNDAEESTK AEDVKGETPE FLNELPKE

Fig 11: Amino acid sequence alignment of the four $T Z F$ proteins. The zinc fingers are highlighted in red. The sections with similarity to zinc fingers at the N-terminal ends of the proteins are highlighted in blue. Intron positions are shown with arrowheads.

All four gene products have at the C-terminal end a cluster of five C2H2-type zinc fingers with the consensus sequence $\Phi-\mathrm{X}-\mathrm{C}-\mathrm{X}_{2,4,5}-\mathrm{C}-\mathrm{X}_{3}-\Phi-\mathrm{X}_{5}-\Phi-\mathrm{X}_{2}-\mathrm{H}-\mathrm{X}_{3,4}-\mathrm{H}$, where X represents any amino acid, Φ a hydrophobic residue. At the N -terminal end, some short sequences remind of zinc fingers but are
incomplete. This is typical for proteins including many copies of zinc finger domains, where incomplete or degenerate copies of finger domain are often found (Rosenfeld \& Margalit, 1993). The inter-finger regions between fingers 2-3, 3-4 and 4-5 agree approximately with the TGEKPY consensus sequence named H-C link (Schuh et al., 1986), whilst the inter-1-2-region seems to be more degenerated than other inter-finger regions. MOTIF and PROSITE function from the HUSAR DNA analysis package were used to analyse all four sequences for further details. No other motifs were found, except for a cytochrome C domain in TZF2, 3 and $4\left(\mathrm{C}_{401}-\mathrm{K}_{406}\right.$ of TZF3 and TZF4; $\mathrm{C}_{457}-\mathrm{K}_{462}$ of TZF2). But this is probably of no relevance, because they all have one zinc finger domain with a H residue after the second C, which happens to be part of a cytochrome C consensus sequence (Mathews, 1985). PSORT function from the same package showed that all four $T Z F$ products are likely to be nuclear proteins.

Discussion

The four Tzf genes are paralogues

As shown in Fig 10, $T z f$ and $T z f 2$ have the same gene organization, with the exon 2 containing the finger 1 and part of finger 2 , exon 3 containing part of finger 2 and 3 , exon 4 part of finger 3 and finger 4 , and exon 5 the finger 5. $T z f 3$ and $T z f 4$ also obey this rule, although with small deviations. $T z f 4$ has an additional small exon of 6 bp (named exon 0 to maintain the exon terminology of all $T z f$ genes) at the Nterminal of exon 1. In $T z f 3$, exon 4 and exon 5 are merged into one exon containing finger 4, finger 5 and part of finger 3. With these two exceptions, the all intron positions are completely conserved among the four genes. As shown in Fig 11 they are located in the following positions:
Intron between exon 1 and 2: between $\mathrm{P}(\mathrm{E}, \mathrm{Q}) 65$ and $\mathrm{I}(\mathrm{L}, \mathrm{V}) 66$,
Intron between exon 2 and 3: in E2 of the finger 2, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon, Intron between exon 3 and 4 : in $R(L, K) 14$ of finger 3, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon, Intron between exon 4 and 5: in $\mathrm{V}(\mathrm{S}, \mathrm{I}) 2$ of finger 5, between the $2^{\text {nd }}$ and the $3^{\text {rd }}$ position of the codon.

Therefore, the four $T z f$ genes have an almost identical genomic organization. Also, their products share the same modular structure with five canonical zinc fingers at the C-terminal end and possible remnants of two fingers at the N-terminal end. Sun (Sun, 1994) divided the $T Z F$ protein into five domains according to their isoelectric values (pI values) and their homology with the corresponding segments of the Drosophila hydei homologue of $T z f$ ($\mathrm{Dh} T z f$) (Sun, 1994). This domain system was extended to all four $T Z F$ proteins. The following two tables show the pI value and size of the five domains, as well as their similarity and identity among the four $T Z F$ proteins.

	Domain I $(\mathrm{pI} /$ size $)$	Domain II $(\mathrm{pI} /$ size $)$	Domain III $(\mathrm{pI} /$ size $)$	Domain IV $(\mathrm{pI} /$ size $)$	Domain V $(\mathrm{pI} /$ size $)$
$T Z F$	$7.22 / 85$	$3.38 / 147$	$11.26 / 41$	$9.47 / 133$	$4.51 / 33$
$T Z F 2$	$8.22 / 93$	$3.74 / 178$	$11.59 / 90$	$8.63 / 133$	$4.62 / 27$
$T Z F 3$	$6.95 / 78$	$3.97 / 85$	$3.33 / 16$	$10.16 / 133$	$11.07 / 7$
$T Z F 4$	$7.95 / 85$	$3.99 / 87$	$10.80 / 12$	$10.26 / 135$	$9.55 / 22$

	Domain I(identity similarity)		Domain II		Domain III		Domain IV		Domain V	
TZF vs TZF2	59.756	42.683	37.931	20.000	37.500	25.000	81.203	79.699	44.444	22.222
TZF2 vs TZF3	46.154	32.051	37.037	25.926	25.000	25.000	62.406	57.143	42.857	14.286
TZF3 vs TZF4	38.158	27.623	29.268	21.951	14.286	14.286	56.391	48.120	28.571	14.286
TZF vs TZF4	51.316	35.526	50.000	33.333	25.000	25.000	57.143	48.872	83.333	33.333
TZF vs TZF3	38.462	29.487	35.484	22.581	33.333	26.667	62.406	55.639	57.143	28.571
TZF2 vs TZF4	46.753	35.065	36.047	27.907	33.333	25.000	52.632	47.368	26.316	21.053

Domain IV, which contains the five zinc fingers, is shared with the highest similarity among the $T Z F$ proteins. Domain I with the N-terminal finger remnants also has a considerable inter-TZFs similarity. For both domains, the proteins $T Z F$ and $T Z F 2$ are most similar among the four $T Z F$ s. Domain II is the largest domain for $T Z F$ and $T Z F 2$, but it is much smaller for the other two proteins. In spite of the length heterogeneity, domain II of all four proteins is very acidic with the pI value between 3.38 and 3.99 . The highest amino acid sequence similarity is between $T Z F$ and $T Z F 4$. The a.a. sequences of domain III and domain V are considerably diverged, as is their lengths.

Unlike most gene clusters generated through unequal crossover, the $T z f$ genes do not have a tandem orientation. Small chromosomal inversions could account for their opposite orientations. The simplest scenario with the least number of chromosomal rearrangements would be as following:
$T z f$ and $T z f 2$ were generated from the ancestral zinc finger gene. A small chromosomal inversion of one of both copies caused their opposite orientations. Subsequently $T z f$ and $T z f 2$ were again duplicated by an unequal crossover, creating $T z f 3$ and $T z f 4$. Alternatively, $T z f$ and $T z f 2$ could be duplication of $T z f 3$ and Tzf4.

The pattern of silent (synonymous) nucleotide changes within the zinc finger coding region provides a measure of evolutionary distances between the paralogues (Li\&Graur, 1991). The amino acids conserved among all four $T Z F$ proteins were sorted out and their codons were compared in the following tables:

	Fingerl						Fingerlink 1-2		
	C_{373}	C_{376}	$\mathrm{~N}_{378}$	Y_{380}	$\mathrm{~L}_{386}$	H_{389}	H_{393}	P_{398}	E_{400}
TZF	tgc	tgc	aat	tat	ctc	cac	cat	cca	gag
TZF2	tgc	tgc	aac	tat	ctt	cac	cac	ccg	gag
TZF3	tgc	tgc	aat	tac	ttg	cac	cac	cca	gaa
TZF4	tgc	tgt	aat	tat	ctg	cac	cat	cct	gag

	Finger2									Fingerlink2-3			
	C_{401}	E_{402}	I_{403}	C_{404}	Q413	L_{414}	R_{416}	H_{417}	H_{421}	T_{422}	G_{423}	P_{426}	Y_{427}
TZF	tge	gag	atc	$\operatorname{tg} \mathrm{c}$	cag	ctg	cgg	cac	cac	acg	ggg	cca	tac
TZF2	tgc	gag	atc	tgt	cag	ctg	cgc	cac	cac	acc	gga	ccg	tac
TZF3	tgc	gaa	atc	tgt	cag	ttg	agg	cac	cac	acc	ggt	ccc	tac
TZF4	tgc	gag	att	$\operatorname{tg} \mathrm{c}$	cag	ctg	cgc	cac	cac	acg	gga	cca	tat

	Finger3										Fingerlink3-4			
	C_{429}	Y_{431}	C_{432}	F_{436}	A_{437}	D_{438}	K_{444}	H_{445}	R_{447}	H_{449}	E_{452}	R_{453}	P_{454}	Y_{455}
TZF	tgc	tac	tgt	ttc	gcc	gat	aaa	cat	aga	cac	gag	cgt	ccc	tac
TZF2	tgc	tat	$\operatorname{tg} \mathrm{c}$	ttc	gcc	gac	aag	cac	aga	cac	gag	cga	ccc	tac
TZF3	tgt	tat	tgc	ttc	gcc	gat	aag	cat	agg	cac	gaa	cga	ccg	tac
TZF4	tgc	tat	tgc	ttc	gcg	gat	aag	cat	aga	cat	gag	cgt	cct	tat

	Finger4							fingerlink4-5		
	C_{457}	C_{460}	F_{464}	Y_{466}	L_{470}	H_{473}	H_{477}	T_{478}	G_{479}	E_{480}
TZF	tg	tgc	ttt	tac	ctg	cac	cac	acg	ggg	gag
TZF2	tgc	tgc	ttc	tac	ttg	cac	cat	acg	gga	gag
TZF3	$\operatorname{tg} \mathrm{c}$	tgc	ttt	tac	ctc	cat	cat	acc	ggt	gaa
TZF4	tgc	tgc	ttc	tat	ctt	cac	cac	acg	ggc	gaa

	Finger5				
	C_{485}	C_{488}	$\mathrm{~K}_{490}$	$\mathrm{~F}_{492}$	H_{501}
$T Z F$	tgt	tgt	aaa	ttt	cat
$T Z F 2$	tgc	tgc	aag	ttc	cac
$T Z F 3$	tgc	tgc	aag	ttc	cac
$T Z F 4$	tgc	tgc	aaa	ttc	cac

For each two different genes, the number of nucleotide substitutions was counted and listed in the following table:

	TZF/TZF2	TZF3/TZF4	TZF/TZF3	TZF2/TZF4	TZF/TZF4	TZF2/TZF3
Synonymous substitutions	24	28	31	24	23	24

Between TZF/TZF4 are the least synonymous substitutions, between TZF2/TZF3 the second least. This result is not contradictory to the crossover-inversion-crossover hypothesis, although a definite proof of the hypothesis still demands further data.

Possible functions of the TZF proteins

Current estimates suggest that genes encoding C2H2 type zinc fingers account for $0,7 \%-2 \%$ of eukaryotic genomes (Hoovers et al., 1992; Shannon et al., 1998; Clarke\&Berg, 1998; Böhm, unpublished data). Present evidence suggests that most of these genes encode sequence specific nucleic acid binding proteins. Although some of these proteins are known to participate in pattern formation, cellular proliferation and tumorigenesis (Wieschaus et al., 1984; Boulay et al., 1987; Schuh et al., 1986; Call et al., 1990; Supp et al., 1996), the biological function of the vast majority of zinc finger proteins is still unknown.

DNA-binding?

Most of C 2 H 2 type zinc finger proteins are DNA-binding transcription factors. They fold in the presence of zinc to form a $\beta \beta \alpha$ domain. Each finger binds a single zinc ion that is sandwiched between the two-stranded antiparallel β-sheet and the α-helix. The zinc ion is tetrahedrally coordinated between two cysteines at one end of the β-sheet and the two histidines in the C-terminal portion of the α-helix (Michael et al., 1992; Shi \& Berg, 1995). X-ray studies of zinc finger-DNA complexes (Pavletich \& Pabo, 1991) showed that the α-helical portion of each finger fits in the major groove of DNA, and that the binding of successive fingers causes the protein to wrap around the DNA. The majority of base contacts occurs among three base pair segments along one DNA strand with four amino acids at the position -1, 2, 3, and 6 (see Fig 12).

(a)

(b)
-11234
Finger 1 PYACPVESCDRRFSRSDELTRHIRIHTGQK
Finger 2 PFQCRI--- CMRNFSRSDHLTTHIRTHTGEK
Finger 3 PFACDI---CGRKFARSDERKRHTKIHLRQK

$$
+\quad!+\varphi \varphi \varphi+\varphi!\quad!
$$

(c)

Fig 12 (a)The $\beta \beta \alpha$ domain of zinc finger protein Zif268. (b) Structure of the three fingers of Zif 268 bound to DNA. Base contacts made from position $-1,2,3$, and 6 of each helix are indicated schematically to the right of the structure. Arrows indicate contact mediated by hydrogen bonds; open circles indicate hydrophobic interactions (Eltrod-Erickson et al., 1998) (c) The sequence of the three fingers is shown with the H and Cs participating in the zinc coordination in bold. The positions of amino acids are numbered according to convention. Filled squares below the sequence indicate the positions of the conserved hydrophobic residues. Filled circles and stars indicate residue positions that are involved in phosphate and base contacts (respectively) in most of the fingers.

Different zinc fingers could bind to different DNA segments. Because of the binding pattern of the zinc finger proteins to the DNA molecules, the specificity of the DNA recognition of zinc finger is mostly only dependent on the four amino acids at the position -1, 2, 3, and 6 (Pavletich \& Pabo, 1991; ElrodErickson et al., 1998). As the data from zinc finger selection continues to grow, especially from the experiments to "design" zinc fingers to recognize certain DNA sequences, it becomes possible to predict the zinc finger specificity according to its amino acid sequence (for review see Wolfe et al., 2000; Choo \& Isalan, 2000).

Fig 13: Pattern of side-chain base interactions that provide an approximate "recognition" code of zinc fingers that have a canonical binding mode. This chart describes contacts between residues at key positions in the α-helix ($-1,2,3$ and 6) and bases at the corresponding positions in the canonical subsite (see Fig 12b). Boldface type highlights amino acids that occur most frequently in phage display "designing" selections when a particular base specificity is desired, and an asterisk indicates contacts that have been observed in structural studies. Question marks indicate that the specificity of the respective amino $\mathrm{acid} / \mathrm{base}$ contact is uncertain. Positions for which base specificity is largely undefined are left blank. Adapted from Wolfe et al., 2000.

These rules were used to predict the DNA-binding specificity of the four $T Z F$ proteins, giving following result for each of them:

$T Z F$ proteins	Predicted binding-sequence
$T Z F 1$	xxTGxATCCxAxxGx
$T Z F 2$	xxxGxATCCxCxxGA
$T Z F 3$	xGxGxATCCxxxxGA
$T Z F 4$	xCGGxxTTCxxxxAG

According to this prediction, the four $T Z F$ s could bind to very similar sequences, especially as the middle parts of their recognition sequences are almost identical (GxATCC). They could either compete with each other for the same DNA fragment, or they could bind to a larger DNA sequence consisting of
of several binding motifs in tandem. Or, an alternative possibility is that they have no function in DNA binding but that they bind to RNA or participate in protein interactions with their zinc finger domains.

RNA-binding?

Zinc fingers are potentially nucleic acid-binding proteins, which could be DNA-, RNA-, or DNA- and RNA-binding (for review see Leon \& Roth, 2000). It was proposed that the conserved H-C link sequence is only present in DNA-binding proteins, but not in RNA-binding ones (Darby \& Joho, 1992). This might be taken as an indication that the $T z f$ genes code for DNA-binding proteins. This prediction is, however, uncertain. The protein XFG5-1, for example, is a specific RNA-binding protein in in vitro experiments, but contains the conserved H-C link (Köster et al., 1991). The Wilm's tumor suppressor, WT1, is another good example, which was initially characterised as a DNA-binding protein. Now it is more likely to function in gene regulation at the RNA-level as well (Larsson et al., 1995; Bruening et al., 1996; Bordeesy \& Pelletier, 1998). A number of C2H2 zinc fingers have been identified that bind RNA, but, aside from TFIIIA and p43, the biological significance of these interactions requires further study (Friesen \& Darby, 1997; 1998;).

Protein binding?

Recently, zinc fingers were shown to be able to perform not only DNA-binding function, but also to participate in protein-protein interactions. Among the C2H2 fingers, zinc finger proteins Ikaros and Aiolos were identified to have both DNA-binding fingers and protein-protein interaction fingers responsible for homo- or heterodimerization (Sun et al., 1996; Georgoporos et al., 1997; Morgan et al 1997). Considering the clustered localization of the $T z f$ genes which provides a structural basis for a coregulation of their expression, some fingers of the $T Z F$ proteins could very well also function in forming homopolymers from one $T Z F$ subunit, or heteropolymers from two or more different TZFs. Different combinations of different $T Z F$ s with the varying DNA sequence they recognize could bind different target DNA sequences. They could also control the interaction of the $T Z F$ proteins with other proteins.

The four $T z f$ genes are tightly clustered

Zinc finger protein clusters in mammals

A considerable body of evidence has emerged to suggest that a large fraction of human zinc finger genes (ZNF genes) are arranged in clusters (with two or more genes located in the same interval) scattered throughout many chromosomes, including 3,7,8,10,11,12,16,17,19,20,21,22, and X. (Aubry et al., 1992; Hoovers et al., 1992; Huebner et al., 1991; Rousseau-Merck et al., 1993; Lichter et al., 1992; Saleh et al., 1992; Tommerup \&Vissing, 1995). Especially the ZNF91 and ZNF45 gene families, located at q13.2 and p12-p13.1 of human chromosome 19 (H19), were intensively studied and provided informations on evolutionary aspects of zinc finger genes (Constantihou-Deltas et al., 1992; Shannon et al., 1996; Bellefroid et al., 1993). In both cases, the zinc finger genes are arranged in "head-to-tail" tandem arrays with relatively even spacing between neighbouring genes. This observation was consistent with the idea that familial gene clusters have arisen primarily through multiple, in situ tandem duplication events of single progenitor loci (Ohno, 1970). Members of a tandem gene family are more similar in sequence to one another than they are to ZNF genes located elsewhere in the chromosome. Less is known about the their genomic organization of other ZNF gene clusters, but there is evidence that they are also mostly arranged as "head-to-tail" tandem arrays (Shannon et al., 1998; Calabro et al., 1995; Aubry et al., 1992; Derry et al., 1995).
Comparative studies of region H19 in human and the homologous mouse chromosome region have provided evidence that many, and perhaps all, of the clustered ZNF families located in H19 are represented by similar clusters located in syntenic regions of mouse chromosomes 7, 8, 9, 10, and 17 (Shannon et al., 1998). The mouse genes are highly similar to their human counterparts in overall structure and patterns of expression. But the human genes possess more repeats than their murine orthologs. The extent of conservation of individual repeat units varies among the zinc fingers encoded by orthologous genes, with amino acid identities of individual zinc finger repeats ranging from 68% 96\% (Shannon et al., 1998).

Zinc finger protein clusters in Drosophila: Tzfl-4 as the tightest ZF gene cluster

The distribution of zinc finger protein coding genes was well studied for yeast S. cerevisiae (Böhm et al., 1997) and C. elegans (Clarke \& Berg, 1998). Neither organism reveals clusters in genome. In yeast, the majority of zinc finger proteins contain exactly two finger domains; only 10% have more than two. In contrast, C.elegans has more zinc finger proteins with three or more fingers than those with only two. Comparing the data from S.cerevisiae, C.elegans, mouse and human, a clear evolutionary trend
enhancing the complexity in the zinc finger protein domain structure can be seen. First, the number of fingers in a protein increases. Subsequently, the number of genes was increased by duplication. This appears to reflect an increasing demand in regulatory proteins for more complex organisms.

In Drosophila, zinc finger gene clusters have 2-5 members (S. Böhm, personal communication). One example of well-studied clusters is the one including odd-skipped (odd), sob and bowel (bowl) (Hart et al., 1996). Odd and sob are located at 24 A , in the same orientation, with 24 kb of DNA between them. Bowl is located further away, at 24C2-5. Sob and bowl have five C2H2 type zinc fingers and odd has four. The fingers of odd and the N-terminal four fingers of sob and bowl share an extremely high identity ($97,3 \%$ between sob and bowl, $86,6 \%$ between sob and odd and $87,5 \%$ between bowl and odd). Beyond the zinc fingers, no homology was indicated. The expression of sob and odd are strikingly similar, while bowl is expressed in a different pattern. It was suggested that all three genes have a common ancestor, and arose by at least two independent duplication events (Hart et al., 1996).

Two other zinc finger genes spalt (sal) and spalt-related (salr) at region $32 \mathrm{~F} / 33 \mathrm{~A}$ are located head to head, in opposite orientations, approximately 65 kb from each other (Reuter et al., 1996; Celis et al., 1996). They have at least partially redundant functions, share high sequence homology and a late expression pattern. salr does not have the early expression pattern of sal. Another gene, spalt adjacent (sala), was identified in a tail-to-tail orientation with sal. Although not sharing any amino acid sequence homology with sal and salr, it shares the early expression pattern of sal. It was suggested that an ancestral sal/salr gene underwent complete duplication followed by a chromosomal rearrangement, which separated the salr gene from its early cis-regulatory elements. These elements came into the vicinity of sal and were appropriated by the unrelated sala gene, resulting in the observed similarities between early sal and sala expression patterns (Reuter et al., 1996).

Up to now, the $T z f$ cluster is the most compact Drosophila zinc finger gene cluster with the distance between the adjacent members of not more than 1 kb . They appear to have the same ancestor, considering their high homology in finger region and the completely conserved intron positions. Because they are not orientated in tandem, it is unlikely that all four genes were direct products of multiple duplications of a single gene. $T z f$ is mainly expressed in testis, ovary and embryo; while $T z f 2$ is homogenously expressed everywhere (Xu \& Hennig, unpublished data). From the different expression pattern, it seems unlikely that they share all their cis-regulating elements.

A splicing variant of $T z f$?

The difference between the $T z f$ and the CG4413 transcripts can be explained in different ways:

1. A mistake in the sequencing CG4413 or cloning of a falsely spliced RNA molecule.
2. The CG4413 transcript corresponds to the real splicing pattern and the $T z f$ transcript represents an incompletely spliced molecule. The $T z f$ cDNA was cloned from a testis cDNA library, whilst the CG4413 transcript was obtained from RNA of whole flies. The two forms could be both ubiquitously expressed, or the $T z f$ transcript discovered by us is testis-specific. In this case, it would be of interest to see whether the other $T z f$ tanscripts are also subject to alternative splicing.
```
    1 ~ M K T E S N E K W V V C R V C L N N P S E G E E L L H D I F S E T A S T R L D Q M L H I C A G I P V ~ 5 0 0
    ||||||||||||||||||||||||||||||||||||||||||||||||||
    1 ~ M K T E S N E K W V V C R V C L N N P S E G E E L L H D I F S E T A S T R L D Q M L H I C A G I P V ~ 5 0 ~
    5 1 \text { SLDDNFPDKMCSKCVRCLRLCYKFRLTCQRSHQHIMDMLDREASNANAAG } 1 0 0
    ||||||||||||||||||||||||||||||||||||||||||||||||||
5 1 ~ S L D D N F P D K M C S K C V R C L R L C Y K F R L T C Q R S H Q H I M D M L D R E A S N A N A A G ~ 1 0 0 ~
101 EGDLLSIAEDLSVESVLKSWEDYASQLDGGMKVEGEEDQQHQVITYVVED 150
    ||||||||||||||||||||||||||||||||||||||||||||||||||
101 EGDLLSIAEDLSVESVLKSWEDYASQLDGGMKVEGEEDQQHQVITYVVED 150
151 GDTDDTNMFDVHDPTQPVPNEIEEAETYAEYEEYELLTNENSPEIAQEKG 200
    ||||||||||||||||||||||||||||||||||||||||||||||||||
151 GDTDDTNMFDVHDPTQPVPNEIEEAETYAEYEEYELLTNENSPEIAQEKG 200
201 STGTDVATEEPPEEEIAEDILDSDEDYDPTHAKPEKCDRSGRKPVAYHKN }25
    ||||||||||||||||||||||||||||||||||||||||||||||||||
201 STGTDVATEEPPEEEIAEDILDSDEDYDPTHAKPEKCDRSGRKPVAYHKN 250
251 SPKVETFKKKVGRKPRNKLSTYICDVCGNIYPTQARLTEHMKFHSGVKPH 300
    ||||||||||||||||||||||||||||||||||||||||||||||||||
251 SPKVETFKKKVGRKPRNKLSTYICDVCGNIYPTQARLTEHMKFHSGVKPH 300
3 0 1 ~ E C E I C G R G F V Q N Q Q L V R H M N T H T G N R P Y K C N Y C P A A F A D R S T K T K H H S ~ . ~ . ~ 3 4 8 ~
    |||||||||||||||||||||||||||||||||||||||||||||||
301 ECEICGRGFVQNQQLVRHMNTHTGNRPYKCNYCPAAFADRSTKTKHHRIH 350
```



```
                                    |||||||||||||||
3 5 1 ~ T K E R P Y V C D V C S R T F T Y S D N L K F H K M I H T G E K P H V C D L C G K G F V K A Y K L R ~ 4 0 0 ~
364 LHRETHNRRITWRNDAEESTKAEDVKGETPEFLNELPKE 402
    |||||||||||||||||||||||||||||||||||||||
401 LHRETHNRRITWRNDAEESTKAEDVKGETPEFLNELPKE 439
```

Fig 14: Comparison of the putative protein products of $T z f \mathrm{cDNA}$ (the lower line) and CG4413 cDNA (the upper line). The comparison was made using the function GAP of the HUSAR DNA analyse package. The zinc fingers are highlighted in red.

Alternative splicing in zinc finger genes was recently reported for human ZNF41 (Rosati et al., 1999) and mouse KRC (Mak et al., 1998) genes. ZNF41 gene encodes at the C-terminal zinc fingers and at Nterminal a KRAB/FPB domain. Exon skipping at the N-terminus leads to selective usage of two different KRAB/FBP modules, encoding peptides differing in C-terminus and expressed in different tissues. Zinc fingers themselves were in ZNF41 genes constantly expressed. In contrast, the product of KRC gene contains at both N-terminal and C-terminal DNA-binding domains, of which the zinc fingers are essential components. Multiple differentially spliced transcripts were identified in brain and thymus, skipping different zinc finger domains.

Do TZF proteins correspond to SCP proteins of the rat?

The cDNA clones encoding the $T Z F$ protein were obtained by the immunoscreening of the testis cDNA expression libraries with an antiserum against the rat SC protein, SCP3 (Lammers et al., 1994). SCP3 has been located on the lateral elements of the rat SC from zygotene- up to late diplotene-phase. The amino acid sequence deduced from SCP3 does not contain any known nucleic acid binding motif.

It was demonstrated that the N-terminal part of $T Z F$ protein (DmP3 peptide, Sun, 1994) does react with the antiserum against SCP3. DmP3 contains the first 80 amino acids and is highly divergent compared to the other $T Z F$ proteins. The amino acid sequence of this peptide does not have any detectable similarity with SCP3, which, however, could not completely exclude the possibility that $T Z F$ is the Drosophila "homologue" of SCP3 in the sense that it takes over the same responsibility as SCP3 in rat. However, it is more likely that the immuncrossreaction was just a coincidence caused by the local structural similarity between rat SCP3 and the Drosophila TZF.

Summary

A zinc finger gene $T z f 1$ was cloned by screening a λ-DASH2 cDNA expression library with an anti-Rat SC antibody. A λ-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of Tzfl to determine the genomic organization of Tzfl. Another putative zinc finger gene $T z f 2$ was found about 700 bp upstream of $T z f 1$.

RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of $T z f$ and $T z f 2$ were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of $T z f$ transcripts. Another two zinc finger genes $T z f 3$ and $T z f 4$ were discovered in silico. They are located 300 bp away from $T z f$ and $T z f 2$, and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C 2 H 2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.

Part II:

Subcloning and sequencing of the cosmid 19G11

Introduction

Histones are highly conserved small basic proteins that constitute the elementary units of chromatin in the nuclei of all eukaryotic cells, the nucleosomes. In higher eukaryotes histones are encoded by multigene families, containing members of two types: replication dependent, or cell-cycle regulated histone genes and replication independent, or replacement histone genes (Schümperli, 1986).

Cell-cycle regulated histones are expressed only in S-phase cells. Whilst the replacement histones genes are also expressed in non-S-phase cells, albeit at a low level. The distinction between the two types of histone genes is also based on their structure, genomic organization, mode of regulation and the type of mRNA (Osley, 1991; Schümperli, 1988).

The cell-cycle regulated histone genes are present in multiple copies, contain no introns and their transcripts are not polyadenylated (Wells, 1986; Wells \&McBride, 1989). In contrast, the replacement histone genes display no strict regulation in relation to the cell-cycle. They are single copy genes and resemble the rest of the protein-coding genes by the presence of introns and polyA tails in their mRNAs (Brush et al, 1985; Schümperli, 1986).

The Drosophila histone H4 replacement gene H4r was cloned in our Lab in 1996 (Akhmanova et al, 1996). It displays all properties of a histone replacement gene: It contains two introns, generates polyadenylated mRNA, represents the predominant H4 transcript in non-dividing tissues and is present in the genome as a single copy. The encoded polypeptide is, however, identical to the Drosophila cell-cycle regulated histone H 4 .

H 4 r is localized in the region 88 C of chromosome 3, in very near neighbourhood of the punt gene (Ruberte et al. 1995). To study the regulation pattern of H 4 r gene and thus to gain an insight into the significance of all histone replacement genes, it is necessary to clone the flanking region of H 4 r gene. H4r cDNA was hybridised as a probe to a lawrist 4 cosmid library of D. melanogaster genomic DNA (Hoheisel et al, 1991). One positive clone, 19G11, was obtained and it was verified that it contains H4r. We decided to sequence this cosmid to get detailed information about the flanking region of the H 4 r gene, and also to search for possible related genes, which are located in the vicinity of H 4 r and are possibly co-regulated with H 4 r.

Results

BamHI was chosen to subclone Cosmid 19G11

To obtain the flanking region of H 4 r gene, H 4 r cDNA was hybridised as a probe to a lawrist 4 cosmid library of D. melanogaster genomic DNA (Hoheisel et al, 1991). One positive clone, 19G11, was obtained and it was verified that 19G11 contains H4r. To subclone the insert of cosmid 19G11, its DNA was digested with several enzymes.

Fig 1: Digestion pattern of Cosmid 19G11with several different enzymes.

The largest fragments of BamHI digests were smaller than 9 kb . Therefore they could be relatively easily cloned into plasmid vectors. BamHI was thus chosen for subcloning 19G11.
The BamHI fragments were named Bam1 to Bam8. After further running the digestion gel, it turned out that the signal Bam8 actually consisted of 4 fragments with similar sizes. They were named 8 S1, $8 \mathrm{~S} 2,8 \mathrm{M}$ and 8 B .

Subcloning of the Bam fragments

All fragments were recovered from agarose gel and ligated into pBluescript vector that was already digested with BamHI and dephosphorylated. The ligation mixture was used to transform competent cells of the E.coli strain XL1Blue. After each transformation, minipreps were made from 6 to 12
separate white colonies, and the recovered plasmid DNA was digested with BamHI. The plasmids with an insert of the same size as the original fragment were further analysed.

Their inserts were again recovered from agarose gel and digested with several other enzymes. When all digestion patterns were as same as the digestion patterns of the original fragment, the plasmids were considered to be the correct subclones.

Mapping and subcloning of Bam1-Bam4

For fragments smaller than 1200 bp (Bam1 to Bam 4), at least two correct subclones were sequenced from both ends. These fragments are illustrated in the following regarding their sizes and digestion patterns with some enzymes.

Bam1 (425bp)
BamHI (B) BamHI(B)

Bam2 (650bp)

Bam3 (919bp)

Bam4 (1042bp)

Mapping and subcloning of Bam5, Bam6 and Bam7

The bigger fragments that could not be covered by sequencing from both ends were further digested to smaller fragments and then subcloned. The subclones were then sequenced from both ends.

Bam5 (1391 bp)

Bam6 (1962 bp)

The arrangement of the fragments digested from Bam6 was decided with an internal sequencing with primer 6int, which covered the junction between fragment 63 and 61 , and a PCR product of primer B61 and B63, which covered the junction between 62 and 63 .

Primer 6int: 5'-GCCGGTGGAATGTTTCTGTGGA-3'

B EcoRI(E) E B

2,006bp known sequence

A 2,006 bp EcoRI-EcoRI fragment in the middle of the Bam7 fragment was already sequenced (Akhmanova, 1997). Sequencing from both ends could cover the unknown parts and overlapped with the know EcoRI fragment.

Mapping, subcloning and sequencing of fragments 8S1, 8S2, 8M and 8B

The biggest BamHI fragments $8 \mathrm{~S} 1,8 \mathrm{~S} 2,8 \mathrm{M}$ and 8 B were sequenced using combinations of different strategies. They were further digested, subcloned and sequenced from both ends. Also, primers were made according to the partial sequence of the subclones and PCRs were performed, their products cloned and sequenced from both ends. Finally, some internal sequencing was also carried out, which was at the beginning of this work not possible because of technical limitations. The final sequence of each BamHI fragment could be determined as the contig of all these overlapping sequence segments.

For each BamHI fragment, the localization of subclones and PCR products are as follows.

Mapping and subcloning of fragment 8S1(6903 bp)

a.

b.

c.

d.
$\leftarrow^{212 \text { int }}$
a. Restriction map of fragment 8 S1. The enzymes used for subcloning are shown in different colours.
b. Subclones originated from fragment 8 S 1 . They were digested from 8S1 with enzyme combinations that are marked at the ends of each fragment, and then ligated into pBluescript vector, which was prepared by digestion with the same enzymes.
c. PCR products with 8 S 1 or its subclones as template. They were all cloned into PCR 2.1 vector (TA cloning kit, Invitrogen).

Primers	Template	Product
L1 +L2	h2frag	L1
L3 +L4	h3frag	L3
L5 +L6	8sxfrag	L5
WG210+WG211	8 s 1	j 1
WG214+WG215	8 s 1	j 3

L1 5' GGA CGG TTC GGT GGA CAA GAC-3' (21mer)
L2 5 ' TTT AGC GGC TCT CAG CTG CCT GCG GT-3' (26mer)
L3 5^{\prime} CGC CAC ATG GCA CTC AAT CAA CTT AGC-3' (27mer)
L4 5' CAT AGA CTC CCA TTC GTT T-3' (19mer)
L5 5'CCA GAT CGT GCT CCT CCA GCA AG-3' (23mer)
L6 5'GAT CTT CTT GGC CAG GAC-3' (18mer)

WG210 5'CGT GGC CAC ACA GGA TAT GCA -3' (21mer)
WG211 5'GCG CTA TGA CTC TTT CCC GC-3' (20mer)
WG214 5'GTC GAT TGC TGC TGC TGA-3' (18mer)
WG215 5'GTC CAT TGC CAG TAA TTC GC-3' (20mer)
d. Internal sequencing with 8 S 1 as template.

WG212 5' GGG TTG TAG GTT CAT CGC-3' (18mer)

Mapping and subcloning of fragment 8M

a.

b.

c.

d.

272int

274int

275int
$\stackrel{278 \mathrm{int}}{\longleftrightarrow} \stackrel{279 \text { int }}{\longleftrightarrow}$
a. Restriction map of fragment 8 M .
b. Subclones originated from fragment 8 M .
c. PCR products with 8 M or its subclones as template. They were all cloned into PCR 2.1 vector (TA cloning kit, Invitrogen).

Mapping and subcloning of fragment 8B

a
PseudoBamHI.

b.

c.

d.

a. Restriction map of fragment 8B.
b. Subclones originated from fragment 8 B . One end of subclones $\mathrm{bx} 1,31, \mathrm{bp} 4$, bh2 was not a real restriction site. They were probably digested by the star activity of BamHI.
c. PCR products with 8 B as template. They were all cloned into PCR 2.1 vector (TA cloning kit, Invitrogen).

Primers	Template	Product
WG220+WG221	BX3	a
WG224+WG225	S	2245
WG231+WG234	$\mathrm{BX1}$	g
WG232+WG233	p	2 g
WG220 5'-GGA CAA CGA TCC GCT GAC CTT-3' (21mer)		
WG221 5'-TTG GGA CGA TCG ATA GGC AGG-3' (21mer)		
WG224 5'-CGG GAA ACT CGT CAC AGC GGC AGA CAA A-3' (28mer)		
WG225 5'-CAA CAC CCA TAC GCC TTT GC-3' (20mer)		
WG231 5'-GCT CAA CTG GAA TCG AGT TAT CGC -3'(24mer)		
WG232 5'-GTC GGG CAG TTT AGA AAA CG-3' (20mer)		
WG233 5'-AGA ATT GGC CAG TGG ATT GGC CGA-3' (24mer)		
WG234 5'-GCG ATG GAA AGC TCA ACC TTC-3' (21mer)		

d. Internal sequencing with 8 B DNA as template.

WG227 5'-GTT CGC GAG TTC AAC TCG GTT AGG C-3' (25 mer)
WG229 5'-GGC GTT CAG GCG TTC CGA GTA CTC CAA TTT-3' (30mer)
WG230 5'-ATT CCT GTC CTG GCA TGC GAC TTT CCT TCG-3' (30mer)

Mapping and subcloning of fragment 8S2

a.

b.

c.
209V1

Sequencing of 8 S 2 ends showed that 8 S 2 was the fragment containing the Lawrist 4 cosmid vector. The two segments flanking the vector were mapped and sequenced.
a. Restriction map of fragment 8 S 2 .
b. Subclones originated from fragment 8 S 2 .
c. PCR product with 8 S 2 as template. It was cloned into PCR 2.1 vector (TA cloning kit, Invitrogen).

Primer	template	product
$\mathrm{V} 1+$ WG209	3 E 2	209 V 1

Primer:
V1 5'-GCG ATG ACC CTG CTG ATT GGT TCG-3' (24mer)
WG209 5'- GGC TCC ACT TAA GAT GTT CGG C-3' (22mer)

Arrangement of BamH1 fragments in cosmid 19G11

The arrangement of all the BamHI fragments in cosmid 19G11 was studied using a PCR test concept.

Two primers were designed for each fragment. They were located few hundred base pairs away from the both ends, and oriented towards outside.

a2

A series of PCR was performed using the intact cosmid DNA as template. Each primer had the combination with every other primer except the one from the same fragment.

When two fragments are located adjacent to each other, PCR products should be expected in the combination of the two primers oriented against each other, one from each fragment, both towards the overlapping BamHI restriction site end.

As for primer al in the figure, it would only give a PCR product with primer $b 2$ from fragment b. The primers from other fragments, even when they are in same orientation like b2, are just too far away from a1 to give a reasonable PCR product with $a 1$. So it can be concluded that fragment b is located adjacent to fragment a , with the orientation shown in figure.

When the adjacent fragment is very small, like fragment c in the figure, primer d 1 from fragment d is still in a reasonable distance from a2 so that not only the combination $\mathrm{a} 2-\mathrm{c} 1$, but also $\mathrm{a} 2-\mathrm{d} 1$ can give a

PCR product. In this case, the sizes of PCR products were compared, and the arrangement of all three fragments can be concluded.

All the junction PCR products were cloned and sequenced, to be sure of the arrangement, and also to make sure that there are no very small fragment between the two "adjacent" fragments, which was too small to be seen in digestion gel.

The primers designed for all the fragments to deduce their arrangement are shown in the following:

Fragment Bam1
B11 5'-GCG GCC GCC GTG CCA CTG AGA ATT G-3' (25 mer)
B12 5'-GCG GCC GCC AAT TCT CAG TGG CAC G-3' (25mer)
Fragment Bam2
B21 5'-GCG GCC GCC CAT GTG CAT GTC GCC GAC T-3' (28mer)
B22 5'-GCG GCC GCC GAC CAA AAT GTC ATA TCC CCC GG-3' (32mer)
Fragment Bam3
B31 5'-GCG GCC GCA AGC TTA CCT CCA TCG ACT GGG C-3' (31mer)
B32 5^{\prime}-GCG GCC GCG CTG GAG AAT CAG GCT GAG-3' (27mer)
Fragment Bam4
B41 5'-GCG GCC GCG GGT GCT GAT CCA TCT CGA-3' (27mer)
B42 5'-GCG GCC GCC TGT TGA GGA TCT GGC TGC-3' (27mer)
Fragment Bam5
B51 5'-GCG GCC GCC CTG GAG AGT GGC TAC TCT GGT-3' (30mer)
B52 5^{\prime}-GCG GCC GCG GTG AGA TAC AGA CTC AAC CCC-3' (30mer)
Fragment Bam6
B61 5'-GCG GCC GCT TGC AGA AAT CGA GAG CCC GC-3' (29mer)
B62 5'-GCG GCC GCC GGT TGT GTA CAT AAG GCG AGC G -3' (31mer)
B63 5'-GCG GCC GCT TGC TGA TGC TGC TGC TGG A-3' (28mer)
B64 5'-GCG GCC GCC CCG CTT CAA CGA ACT CAC TGC-3' (30mer)
Fragment Bam7
B71 5'-GCG GCC GCA GGC TCG TGG CGA ATA ATC G-3' (28mer)
B72 5'-GCG GCC GCA GAT GGC AGG ACG TGC-3' (24mer)
Fragment Bam8S1
B8s1 5'-GCG TAC GTT CTC CAA TCC CTC GG-3' (23mer)

B8s2 5'-TGG CCA GCG TGA TCT TGG TAC-3' (21mer)
Fragment Bam8M
B8M1 5'-CGG CAA CGG CTT CAC ATT CGA-3' (21mer)
B8M2 5'-CTA GTT CGC ACT CCT ATT AAC G-3' (22mer)
Fragment Bam8S2
B8V2 5'-GAC GCA GGT ATC GTA T-3' (16mer)
B8V3 5'-GGT ATC ATT CGC ACA CTC CCC AG-3' (23mer)
Fragment Bam8B
B8B1 5'-CGA GTT GTC CAA GTC GAA TAC CC-3' (23mer)
B8B2 5'-ATC CCT CTG TGC AAT TCG AGA CG-3' (23mer)

Sequencing result:

Sequencing of the PCR product of B12 and B52 shows a duplicate BamHI site at the junction.

All the other junction PCR products have shown sequences from the two fragments overlapping at the BamHI site. There is no other fragment in between.

Genomic arrangement of Bam fragments

To exclude the possible rearrangement of the genomic DNA fragments in establishing the cosmid library, all the junction PCRs (except the two with B8V2 and B8V3 from the lawrist vector) were carried out once more, using genomic DNA of D. melanogaster as template. For all the reactions, the same result was obtained as with cosmid 19G11 DNA as template. It was concluded that the sequence of the 19 G 11 insert does correspond to the 34 kb genomic fragment around H4r gene. It is not a cloning
artefact during the establishing of the cosmid library resulted from artificial ligation of several fragments, which are actually not adjacent to each other in genome.

Conclusion

This work was done between 1997 and 1998. The Drosophila genome was yet far from completed at that time. This sequence was submitted to the Genebank under the Accesion Nr: AJ007334.

Methods for Part I and II

Cosmid DNA Preparation

The cosmid glycerol stab (kept at $-80^{\circ} \mathrm{C}$) was streaked onto LB plate with $30 \mu \mathrm{~g} / \mathrm{ml}$ kamamycin. Separate colonies were inoculated into 100 ml LB medium with $30 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin. Cells from an overnight culture with an a OD_{600} of more than 1.2 were collected in corex tubes and centrifuged at $4,000 \mathrm{rpm}$ for 10 min with a HB4 rotor. The supernatant was discarded as completely as possible. 1 ml Sol I was added to the pellet and vigorously vortexed until the pellet was completely resuspended. 2 ml freshly made Sol II was then added, and the tubes were moderately shaken for 5 min at room temperature. 1.5 ml ice-cold Sol III was then added, and the tubes were briefly vortexed to be well mixed. The mixture was let stand on ice for 5 min , and then centrifuged at $10,000 \mathrm{rpm}$ for 10 min with a HB4 rotor. The supernatant was carefully recovered into new tubes, and extracted with once phenol/chloroform (1:1) and twice chloroform. The purified supernatant was precipitated with 0.6 volume isopropanol. The pellet was washed with 70% ethanol and dried in vacuum. The pellet was dissolved in water.

Mini-prep of Plasmid DNA

Single bacteria colonies were picked in 2 ml liquid LB-medium with $50 \mu \mathrm{~g} / \mathrm{ml}$ Ampicillin, and incubated overnight at $37^{\circ} \mathrm{C}$. The cultures were transferred into Eppendorf tubes, and spun down for 30 sec at max speed. The pellets were dissolved completely in $100 \mu \mathrm{l}$ Sol I. $200 \mu \mathrm{l}$ freshly made Sol II was then added followed by moderate shaking, and afterwards 150μ icecold Sol III with brief vortexing. The mixture was then centrifuged for 10 min at max speed. The supernatant was transferred to new tubes and then precipitated with 1 ml absolute ethanol. The precipitation took 10 min at RT, the tubes were then centrifuged for 15 min at max speed. The DNA pellets were washed by shaking in 70% ethanol and spinning down once more. The pellets were dried in vacuum and then dissolved in $30 \mu 1 \mathrm{H}_{2} \mathrm{O}$.

The solutions are as same as those for the cosmid preparation.

DNA Digestion

Proper amount of DNA was digested with restriction enzyme of at least 3 Units $/ \mu \mathrm{g}$ DNA. The volume of enzyme never exceeded $1 / 10$ of the total volume. The digestion system was completed with the corresponding buffer provided by the manufacturer. In the case of double digestion, the one-phor-all buffer (Pharmacia) with a right concentration for both enzymes was chosen. The reaction was carried out at $37^{\circ} \mathrm{C}$ for 1-2 hr .

Agarose Gel Electrophoresis

The gel concentration was chosen according to the size of the fragments to be separated on the gel. 0.7% agarose was used when the major fragments were bigger than $5 \mathrm{~kb}, 2 \%$ agarose when they were smaller than 1 kb . For fragments with sizes in between or of unknown size, 1% gel was used as standard.

The probes to be analysed were mixed with $6 x$ loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF and 15% Ficoll), and the electrophoresis was carried out in 1x TBE with $0.08 \mu \mathrm{~g} / \mathrm{ml} \mathrm{EtBr}$.
Two different kinds of marker were used, for standard and small fragments respectively. The standard marker consists of 2 parts: lambda DNA digested with Hind III, and plasmid pYH48 DNA digested with AluI. The fragments sizes are

23130, 9416, 6682, 4361, 2322, 2027 bp (lambda part),
and 910, 655-659, 520, 403, 317, 281, 257, 226, 187 bp (pYH48 part).
A marker for smaller molecules was obtained from a HpaII digestion of pBluescript DNA. The fragments are 710, 489-404-367, 242, 190, 147, 118-110, 67-57-40-26 bp.

Fragment Recovery from the Gel

Low-melting agarose method:

A block of gel was dug out in front of the fragment to be recovered. Low-melting (LM) agarose gel solution of the same concentration as the whole agarose gel was poured into it. After that the low-melting agarose had congealed, the gel was let run further till the wanted fragment had completely run into the LM agarose piece. This piece with the fragment was then cut out and melted at $65^{\circ} \mathrm{C}$ for 10 min . After adding an equal volume of TE and $1 / 20$ volume of 3 M NaOAC to the gel solution, it was extracted twice with phenol and once with chloroform. The DNA was precipitated with 2.5 volume ethanol and dissolved in water.

Macherey-Nagel method:

NucleoSpin Extract 2in1 from company Macherey-Nagel was used to recover some fragments. The process was carried out according to the protocol of the manufacturer.

Vector Preparation

When a vector is needed which was only cut by one restriction enzyme, it was dephosphorylated before ligation to reduce the vector self-ligation background. Dephosphorylation was carried out with the alkaline phosphatase from Boehringer-Mannheim (Now: Roche Molecular Biochemicals) according to the protocol of the manufacturer.

Ligation

100-200 ng vector and at least 3 times the molar amount of insert were mixed together. 5U T4 DNA ligase (MBI-Fermentas), $1 / 10$ from the total volume of ligation buffer was added and the final volume was adjusted with water.

Or the same molar amounts of vector and insert were mixed and the total volume adjusted to $20 \mu \mathrm{l}$ with water. This $20 \mu \mathrm{l}$ mixture was then added to one aliquot of Ready-to-Go DNA ligase (Pharmacia).

The ligation mixture was incubated in a $14^{\circ} \mathrm{C}$ water bath over night (Fermentas ligase) or for 25 hr (Ready-to-Go ligase) and was then ready for transformation.

Transformation

With XL1-Blue competent cells

One single colony of XL1-Blue was inoculated into 5 ml LB and incubated overnight at $37^{\circ} \mathrm{C}$. 0.5 ml from this starter culture was transferred into 100 ml fresh LB and was let grown for about 3 hours until the OD_{600} of $0.3-0.5$ was reached. The cells were harvested by 10 min centrifugation at $4^{\circ} \mathrm{C}$ for 2000 rpm with rotor HB4, and afterwards gently resuspended in 20 ml ice cold $0.1 \mathrm{M} \mathrm{CaCl}_{2}$. They were harvested again by centrifugation and again resuspended in 1.5 ml ice cold CaCl_{2}. After at least one-hour incubation on ice, the cells could be used as competent cells.

Each $100 \mu \mathrm{l}$ of cells was mixed with $2 \mu \mathrm{l}$ ligation mix and incubated on ice for 30 min to 1 hour. They were then heat shocked at $42^{\circ} \mathrm{C}$ for 90 sec , and placed back onto ice for at least 2 min .400 $\mu l \mathrm{LB}$ medium were then added to the cells and they were gently shaken at $37^{\circ} \mathrm{C}$ for 1 hour. This culture was then plated on LB-Amp plates ($50 \mu \mathrm{~g} / \mathrm{ml}$ Ampicillin) with $40 \mu \mathrm{~L} 2 \%$ IPTG and $40 \mu 120 \mathrm{mg} / \mathrm{ml}$ X-Gal. The plates were incubated at $37^{\circ} \mathrm{C}$ incubator overnight.

With commercial competent cells

Some transformations were carried out with Competent TOP10F‘ cells from Invitrogen. The procedure was done according to the instructions from the manufacturer.

PCR

The proper primers were designed and they were synthesized by PudongGen. In each $50 \mu \mathrm{l}$ PCR reaction, there were 50-100 pmole of each primer, 100ng template DNA, 1 Unit Taq polymerase (Gibco), 10nmol dNTP, $5 \mu 1$ 10x PCR buffer (Gibco).
PCR was carried out under the following conditions: denaturation at $94^{\circ} \mathrm{C}$ for 3 min , then 30 cycles with denaturation at $94^{\circ} \mathrm{C}$ for 45 sec , annealing at $68^{\circ} \mathrm{C}$ for 40 sec , and extension at $72^{\circ} \mathrm{C}$ for 100 sec till 45 sec (depending on the size of the product to be amplified). The annealing temperature varied between $55^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ according to the Tm of the primers (Sambrook et al 1989). The reaction was stopped after a final extension step at $72^{\circ} \mathrm{C}$ for 10 min .

PCR Product Cloning

With restriction enzymes

The primers for PCRs were designed in this way that restriction enzyme sites were attached at their 5^{\prime} parts, normally 3-4 nucleotides away from the very 5 ' end. The product was digested with these enzymes, and ligated into proper vector.

$\underline{\text { With PCR } 2.1 \text { vector (Invitrogen) }}$

PCR products were cloned into the PCR 2.1 vector (TA cloning Kit, Invitrogen) according to the information of the manufacturer.

Southern Transfer

Downward Blotting was carried out according to Koetsier et al, 1993.

A pile of tissue paper was set on the table. 5 pieces of 3 MM filter paper and one piece of Hybond-N+ Nylon membrane (Boeringer-Mannheim) was cut into exactly the same size as the gel. 2 pieces of dry 3 MM filter were put on the pile of tissue paper, then in the following
sequence 1 piece of 3 MM filter paper prewetted in NaOH , the prewetted $\mathrm{H}+$ Nylon membrane, the gel, 2 pieces of prewetted 3MM filter paper. Finally, 2 long sheets of prewetted 3MM covered the pile as „bridge" connecting two tanks filled with 0.4 N NaOH . Blotting was finished in 1.5-2.5 hours, the membrane was marked and crosslinked in UV light for 5 min .

Figure: Downward southern blotting.
__ 3MMpaper __ Nylon membrane gel piece $ـ$. NaOH tank

Labelling

Reaction

Nick-translation

DNA fragment was mixed with $2 \mu \mathrm{l}$ DNaseI solution $\left(10^{-5} \mathrm{mg} / \mathrm{ml}\right.$ in water)(Gibco), $10 \mathrm{U}(2 \mu \mathrm{l})$ E.coli DNA polymerase I (Gibco), $2 \mu \mathrm{l} 10 \mathrm{x}$ NT Buffer, $2 \mu \mathrm{l} 20 \mathrm{mM}$ dNTP, $3 \mu \mathrm{l}\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP}$ (50 $\mu \mathrm{Ci}, 3000 \mathrm{Ci} / \mathrm{mmole}$) and the system was filled up to $20 \mu \mathrm{l}$ with $\mathrm{H}_{2} \mathrm{O}$. The mixture was incubated at $16^{\circ} \mathrm{C}$ for 2 hours.

10x NT Buffer consists of 500 mM Tris $\mathrm{pH} 7.8,500 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ dithiothreitol and $500 \mu \mathrm{~g} / \mathrm{ml}$ bovine serum albumin.

Hot-PCR

100ng DNA template, $33 \mu \mathrm{M} \alpha-{ }^{32} \mathrm{P}$ dCTP, $2,5 \mu \mathrm{M}$ dATP, dTTP, dGTP, 50 pmole each primer, 1x PCR buffer (Gibco) and 1U Taq polymerase (Gibco) was mixed in $20 \mu \mathrm{l}$ final volume. The amplification condition was same with non-radioactive-PCR.

Purification

After the labelling reaction, the labelled fragment was separated from free nucleotides by passing the reaction mixture through a Sephadex G-100 column. The first radioactivity peak ($50-100 \mathrm{cps}$) was collected and used as probe for hybridisation.

Hybridisation

Denhardt system (for self-made blots)

Prehybridisation was carried out in $2 \mathrm{x} \mathrm{SSC}, 0,1 \%$ SDS, 5 x Denhardt's at $68^{\circ} \mathrm{C}$ for 0.5 hours with continues shaking. The probe was denatured by boiling for 5 minutes and cooling on ice. The denatured probe was added to the hybridisation solution that was identical with prehybridisation solution and shaken overnight in a $68^{\circ} \mathrm{C}$ water bath. The blot was then washed with 2 x SSC, $0.1 \% \mathrm{SDS}$ and $0.5 \mathrm{x} \mathrm{SSC}, 0.1 \% \mathrm{SDS}$ at $65^{\circ} \mathrm{C}$ for 0.5 hour, respectively. Afterwards, the blot was once more briefly rinsed with 2 x SSC at room temperature and was subsequently exposed to X-ray film (X-omat, Kodak).

Phosphate system (for cosmid blots)

Hybridisation was carried out in 0.5 M Na-phosphate, $\mathrm{pH} 7.2,7 \%$ SDS, 1 mM EDTA, $0.1 \mathrm{mg} / \mathrm{ml}$ yeast tRNA at $65^{\circ} \mathrm{C}$ over night. The blots were rinsed twice at room temperature in 40 mM sodium phosphate, $\mathrm{pH} 7.2,0.1 \%$ SDS, 1.5 litre of the same buffer was added to up to four filters and slowly rocked in a water bath of $65^{\circ} \mathrm{C}$ for 15 to 30 minutes. The filters were then exposed to X-ray film using two intensifying screens.

RNA Preparation

GTC method

A 2% agar plate was made with apple juice. The flies were let lay eggs on the plates at $22^{\circ} \mathrm{C}$ over night. The eggs were collected and washed extensively with tap water and then with 0.9% NaCl . The embryos were treated with 1% Triton $\mathrm{X}-100$ in $0.9 \% \mathrm{NaCl}$ for 5 min at room temperature. After being washed five times with $0.9 \% \mathrm{NaCl}$, the embryos were suspended in $3 \% \mathrm{NaClO}_{3}$ solution for 3 min . Finally the embryos were again washed with $0.9 \% \mathrm{NaCl}$ and frozen in liquid nitrogen. 0.3 g embryos (wet weight) were lyophilised and then suspended in 2.4 ml guadinium thiocyanate solution (50% guanidinium thiocyanate, 0.5% sarcosyl and 25 mM sodium citrate, pH 7.0) and homogenized. The homogenate was then loaded on the top of 0.9 ml CsCl solution (5.7 M CsCl and 0.1 mM EDTA, pH 7.0) and centrifuged in an IEC SB405 rotor at 32 k rpm for 16 hr at $15^{\circ} \mathrm{C}$. The RNA pellet was dissolved in $200 \mu \mathrm{l}$ TES buffer $(10 \mathrm{mM}$ Tris-Cl, $\mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA and $1 \% \mathrm{SDS}$) and extracted with 1 volume of chloroform/butanol1 (4:1). The RNA was then recovered by ethanol precipitation and dissolved in water. The RNA concentration was determined with a spectrophotometer (Sambrook et al. 1989).

With RNeasy Kit (Qiagen)

Some total RNA preparations were carried out with the RNeasy Kit according to the manual of manufacturer.

Genomic DNA Preparation

Genomic DNA preparation was basically carried out according to Ashburner (Ashburner, 1989) with modifications. Each 5 flies were fully homogenized in $50 \mu \mathrm{l}$ homogenizing buffer. $50 \mu 1$ lysis buffer was added and incubated at $65^{\circ} \mathrm{C}$ for 20 min . After cooling to room temperature, $33 \mu \mathrm{l}$ ice cold 4 M KOAc was added and incubated on ice for 30 min . The supernatant was transferred to new tubes after a centrifugation at 12 K (Eppendorf table
centrifuge) for 15 min . It was afterwards extracted twice with a $1 / 1$ mixture of phenol/chloroform, once with chloroform, and then precipitated in ethanol.

RACE

Tailing method

Reverse Transcription (first strand cDNA synthesis)

$1 \mu \mathrm{l}(1 \mathrm{pmol} / \mu \mathrm{l})$ primer was annealed to $2 \mu \mathrm{l}(4 \mathrm{mg} / \mathrm{ml})$ Drosophila melanogaster embryo total RNA, with $10 \mu \mathrm{l}$ formamide (with $3 \mu \mathrm{M}$ EDTA), $12.4 \mu 1$ pure formamide, $1.6 \mu \mathrm{l}$ PIPES, and $3 \mu \mathrm{l}$ 4 M NaCl overnight at $45^{\circ} \mathrm{C}$ after 10 min incubation at $85^{\circ} \mathrm{C}$. The mixture was precipitated with EtOH and the pellet was dried in air and dissolved in $4 \mu \mathrm{l} 5 \mathrm{x}$ first strand buffer (Gibco), $0.5 \mu \mathrm{l}$ 20 mM dNTP, $0.5 \mu 140 \mathrm{U} / \mathrm{ml}$ RNAsin, $2 \mu 1$ DTT, $12.5 \mu 1 \mathrm{H}_{2} \mathrm{O}$, and incubated at $37^{\circ} \mathrm{C}$ for 15 min . $0.5 \mu \mathrm{l}$ M-MLV Reverse transcriptase ($200 \mathrm{U} / \mu \mathrm{l}$, GIBCO) was then added to this mixture and the reverse transcription was carried out at $37^{\circ} \mathrm{C}$ for 2 hours.

Tailing

$0.5 \mu 1$ of the first strand cDNA pool was diluted with $12 \mu \mathrm{H}_{2} \mathrm{O}$, boiled for 5 minutes and chilled on ice. $4 \mu \mathrm{l} 5 \mathrm{x}$ TdT Buffer (Gibco), $3 \mu \mathrm{l} 5 \mathrm{mM} \mathrm{CoCl}_{2}, 1 \mu \mathrm{l} 10 \mathrm{mM}$ dCTP are then added, and the tailing mixture was prewarmed at $37^{\circ} \mathrm{C}$ before $1 \mu 1$ terminal deoxynucleotidyl transferase (TdT) (25U, GIBCO) was added. Tailing was performed at $37^{\circ} \mathrm{C}$ for 30 minutes.

PCR

$1 \mu 1$ tailing mixture was used as template for the following PCR amplification. A second internal primer downstream to the primer used in cDNA synthesis was used as one of the two primers. An adapter with a poly G stretch and multiple restriction sites was used as another primer. $10 \mu \mathrm{l}$ PCR reaction was loaded with $2 \mu \mathrm{l} 6 \mathrm{x}$ loading buffer onto a 2% agarose gel. The southern blot was hybridised to detect the position of the weak product. The signal was cut out from the gel and reamplified. The product was cloned into pBluescript and sequenced.

With marathon RACE kit (CLONTECH)

All procedures were carried out according the manual of the manufacturer.

Part III:

Analysis of 19G11 sequence

Computer analysis based on sequence viewing

Nucleotide composition

The nucleotide composition of sequence 19 G 11 was analysed with the program COMPOSITION and NUCWEIGHT of HUSAR DNA analysis package from DKFZ, Heidelberg (http://genius.embnet.dkfz-heidelberg.de).

19G11 consists of
A: 9,420 27.7\%
C: 7,778 22.8\%
G: 7,309 21.5\%
T: 9,547 28.0\%
This composition is not especially GC-rich. A considerable proportion of coding sequences might be expected.

Repeats

To check for repetitive sequences in the 19G11 fragment, the TANDEM function of HUSAR package and a Repeat Masker2 program (http://repeatmasker.genome.washington.edu/cgibin/RepeatMasker) were used for analysis. $916 \mathrm{bp}(2.69 \%$ of the whole length of 19 G 11 fragment) were recognized as repetitive sequences. These repeats are listed in Table 1.

The Pao element was originally identified in the silkworm Bombyx mori (Xiong et al., 1993). Pao-like elements belong to neither the gypsy-Ty3 group nor to the Ty1-copia group of retrotransposons. They were proposed to constitute a third group of retrotransposons. In contrast to the other groups, few Pao-like elements have been isolated and characterised (Abe et al, 2001). ninja was the first PAO-like element identified in Drosphila simulans and also the first one in Drosophila (Ogura et al, 1996). The sequence of the Pao-like element of 19G11 is the first evidence for the existence of PAO-like elements in Drosophila melanogaster genome.

DNAREP1_DM is one of the most prominent repetitive sequences in the Drosophila melanogaster genome. It carries several thousand copies of DNAREP1_DM. Noticeable conservation of the termini and multiple internal deletions were observed for

DNAREP1_DM (Kapitonov \& Jurka, 1999).

Classification		numbers	length 64 bp	percent	
Retroelements		1		0.29	\%
8702	8765	PAO-type			
Simple repeats		8	377 bp	1.11	\%
8329 13717 1 13810 1 9714 12092 1 12869 1 29871 2 33345 3	$\begin{array}{r} 8383 \\ 13767 \\ 13863 \\ 9765 \\ 12141 \\ 12905 \\ 29909 \\ 33383 \end{array}$	(TG) n (CA) n (TA) n (CAG) n (CAA) n (CAG) n (GGA) n (CTG) n			
Low complexity		3	134 bp	0.39	\%
$\begin{array}{rr} 3907 & \\ 15033 & 1 \\ 25564 & 2 \end{array}$	$\begin{array}{r} 3927 \\ 15123 \\ 25585 \end{array}$	AT rich A rich AT rich			
DNA elements		1	241 bp	1.11\%	
$\begin{aligned} & 1557 \\ & 1825 \end{aligned}$	$\begin{aligned} & 1761 \\ & 1860 \end{aligned}$	DNAREP1_DM DNA DNAREP1 DM DNA			

Table1: Repetitive sequences in the 19G11 fragment.

Three di-nucleotides repeats and five tri-nucleotides repeats were identified in 19G11 fragment. The repeat density is 0.088 di-nucleotide repeat $/ \mathrm{kb}$ and 0.147 tri-nucleotide repeat/kb. According to the statistics of Katti et al. (Katti et al, 2001), there are 2923 dinucleotide repeats and 2367 tri-nucleotide repeats in chromosome arm $3 R$ of D.melanogaster $(27.86 \mathrm{Mb})$. The average density would be 0.105 repeat $/ \mathrm{kb}$ and 0.085 repeat $/ \mathrm{kb}$ for the dinecleotide and tri-nucleotide repeats, respectively. The 19G11 fragment has, therefore, approximately the average distribution of the simple DNA repeats of the D.melanogaster chromosome 3 R .

Frames searching

Possible open reading frames in the 19 G 11 sequence were searched with the program FRAMES of HUSAR. Open reading frames are plotted as boxes bordered by potential start and stop codons. Potential start codons are shown as short lines that extend above the box and potential stop codons as short lines that extend below the box.

Xpound

The structure of nucleotide sequences in exons, introns and between genes can be usefully modelled using a conventional and straightforward probabilistic model as in XPound (A. Thomas \& Skolnick 1994). The 19G11 sequence was analysed with the XPOUND function of HUSAR, the following result in Fig 2 is presented in terms of the probability that each base in a sequence is coding.

The shortcoming of this program is that the training set used to estimate the parameters that are needed for exon prediction consists of only 159 sequences of annotated human genomic DNA. Therefore the prediction of sequences for Drosophila are almost certainly even less reliable than for human ones. However, as more substantiated programs are not available, the application of this program provides a useful method for analysis.

5.

$$
\begin{aligned}
& \text { 10,000 } \\
& \text { 20,000 } \\
& \text { 30,000 }
\end{aligned}
$$

Fig1: FRAMES analysis of 19G11 sequence.

Fig2: Xpound analysis of the 19G11 sequence.

Grail (Gene Recognition and Assembly Internet Link)

Grail is the most widely used program to analyse genome data in searching for coding exons and genes. The Grail link from the site http://compbio.ornl.gov/Grail-1.3 was applied for the 19G11 sequence.

The following list summarizes the exons predicted by Grail. They are illustrated and compared to the EST fragments at the section: sequence analysis methods reviewing.

Exons predicted by Grail:

foward (same orientation as the numbered $19 \mathrm{Gl1}$ strand in AppendixII)	
Start	End
4180	4687
9313	9963
10621	11156
12476	12577
12610	12938
27919	28256
28330	28520
28589	28765
28916	29090
29661	30099
30178	30855
33773	34053
22866	22980

```
reverse (opposite orientation as the numbered 19G11 strand in AppendixII)
    33813 33991
    17595 17793
    16930 17324
    15802 16872
    15065 15246
    13947 15010
    12822 13022
    10935 11178
    28851 28868
    21091 21226
        2954 3329
        2484 2615
    2240 2419
```


Computer analysis based on EST-searching

Grail and Xpound are both gene-forecasting programs based on consensus pattern searching. They only predict the most PROBABLE genes from a genomic sequence, but cannot identify the REAL genes.

In contrast, Blast search (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) uses the growing EST (Expressed Sequence Tag) database, and looks for parts of genomic sequence that are indeed expressed in vivo. The genes identified with Blast are more probable to be real genes as the DNA sequences are at least expressed at the RNA-level. As the EST database has already been developed since years, a huge amount of RNA fragments from different tissue sources and developmental stages are sequenced and documented. One would expect that most physiologically expressed genes could be at least partially found back in the EST database. It cannot be excluded, of course, that some exceptional genes may be not yet represented. Some genes may be very rarely expressed in a very narrow developmental window or under certain stimuli so that their RNAs could not yet be identified.

BlastN search against the whole Drosophila melanogaster EST database was performed using the complete sequence of 19 G 11 . A number of exons and parts of exons could be identified. Those exons included in the same EST piece were considered to belong to the same gene. In this way, 9 putative genes could be identified. Their structure and products are recorded in the following part. The nucleotides are numbered as in the complete 19G11 sequence (AppendixII).

Gene1

ESTs identified:

AI296812 from larva
AI295014 larva
AI260827 larva

All three ESTs contain the following two exons. Exon1 is upstream to Exon2. Exon2 ends downstream at nucleotide 64 , followed by a canonical intron splicing donor site gt. This gene extends most probably further into the genomic region outside of 19 G 11 .

Genomic organization:

	GGATCAAGTT	GTGGAAGTTC	GAGTTCAATT	GGGTAGGGAG	AGATACTGTG	
51	GTGAATCACC	CACCTGGACG tg	TCGTTGCCCC	GCACTCCGCA	CTGATTATCA	
101	CGGAGCAGGT	TGCGATCGCT	CTGGCTGAGA	TTGCCGGATA	GCAGGATTCT	
						Exon2
151	CATGAAGTAG	TСАСАСТССС	GGATCGAAAT	GCAGTGACCG	GTGACACGGC	
201	CACTCGGAAT	TTTTGCAACA	CAATTGATGG	GCGGGAGTTG	AGCTGGAATA ga	
251	TCGGAGATCG	GGGATCGTCC	CACGTTAACT	TAAGTTCACA	GCCAGACTTG	
301	TTTACGATCC	CGTATTCCGT	$\begin{array}{r} \text { ACACACTCAC } \\ t g \end{array}$	CATTCGCGCC	CAATGCCAGC	Exon1
351	GAGCCGACAA	CAACAAGTAG	AGCTGGAAAA	$\underset{\mathrm{S}}{\mathrm{CTTCCCATGC}} \underset{\mathrm{M}}{\mathrm{M}}$	CGGACCGGAT	
401	GAGCGGAACG	AATGAGACTG	CGATCGAAGC	CGATCAGATA	CGATACAGCT	
451	TGAGTCTGAG	ATTAACATTA	AGTTCGGCCG	GTGCCTGTGA	Attaccagag	

Gene Product

The sequence of the both exons was translated in three frames, one of them contains a long open reading frame extending from the middle part of Exon1 to the end of Exon2. The first Methionin and an in-frame upstream stop codon are indicated in upper section (genomic organization). The putative product has the following sequence:

```
> putative product of gene 1
    1 ~ M G S F P A L L V V ~ V G S L A L G A N A ~ Q L P P I N C V A K ~ I P S G R V T G H C ~ I S I R E C D Y F M ~
    5 1 ~ R I L L S G N L S Q ~ S D R N L L R D N Q ~ C G V R G N D V Q V ~
```

This segment could be the N -terminal part of the whole gene product, as there seems to be more downstream exons of the same gene outside of cosmid 19G11. BlastP search against Swissprot database was performed with this sequence. The segment from a.a. 31 to a.a. 80 has 30% identity and 44% similarity with the Drosophila protease Easter precursor from the trypsin family (Misra et al. 1998). To check the significance of this similarity, the complete contig of the three identified ESTs was translated into the following peptide:

```
> translation of the complete EST contig
    M GSFPALLVVV GSLALGANAQ LPPINCVAKI PSGRVTGHCI
SIRECDYFMR ILLSGNLSQS DRNLLRDNQC GVRGNDVQVC CPSTAGLGAL
THPLLPSDCG KVRWQRSNDT DTRIREFPWL ALIEYTRGNQ EKIHACGGVL
ISDRYVLTAA HCVAQAATSN LQITAVRLGE WDTSTNPDCQ YHEDSKVADC
APSYQDIAIE ELLP
```

This may be not yet the complete protein product of this gene, as the stop codon was not yet identified. Another BlastP search was done with this sequence and a trypsin consensus domain (Rawlings \& Barret, 1994) was identified. This gene codes therefore most likely for a new member of the trypsin family in Drosophila. It has 38% identity and 53% similarity with Easter precursor.

Fig3: genomic organization of the putative gene 1 of 19G11.

Gene2

ESTs identified:

BF504294 from adult testis
BF497782 adult testis
AA440145 embryo
AA949568 embryo
AA440941 embryo
AA536609 embryo

The four ESTs from embryos (those ESTs with AA in their terminology) and the two ESTs from adult testis (their terminologies start with BF) seem to represent two different transcripts. They share the common 5'exon (Exon1), and their second 5'exons (Exon2) start at the same nucleotide G_{8516}. Exon2AA (revealed by embryo ESTs) ends at nucleotide 8873, and Exon3AA starts at position 9313. But Exon2BF (represented by the testis ESTs) ends at around the position 8682-8692, and the next exon - Exon3BF - starts at a position around 9380. As no canonical donor and acceptor splicing sites could be found in either region, the exon/intron junctions could not be exactly identified. Unconventional splicing sites might be used in this case.

These two transcripts are probably created from alternative splicing of the same gene (the putative gene2 of 19G11). Considering the fact that both BF ESTs were obtained from adult testis and all AA ESTs from embryo, there might be two tissue-specific transcripts.

Fig4: genomic organization of the identified exons which belong to the putative gene2.

Gene product

Both transcripts according to the BF ESTs and AA ESTs were translated in all possible reading frames and the product peptides searched with BlastP program. No homology with known proteins could be identified.

Genomic organization:

```
2051 GTTTGTATAA ATAGCAGCAA AATAGTGATA TTCGATAGAT CATGTGAATA
2101 AATATTTATT TTTCTTCAAA AATATCGATA TATTGAAATG TAGATAAATT
2 1 5 1 ~ T G T C A C A T C C ~ C T A G T T C G C C ~ C G A A T G G C T G ~ C G T G T G T G T C ~ T G T G C G C G C G ~
2201 CCTGTATTGT CCGCCATCTT GTCAGCCCGA CTTCATCGAA AATTACAAAT
2251 TTAATCGTTT AACGCGTTTT ATGCCCACTT AACACACCAG AAAGTGCTGC
2301 AGTACACATT TTCCCACAAA AAGGATATCG TCTTGAGTAC GCTGCGCTCA Exon1
2 3 5 1 ~ G C A A A G G G G G ~ A T A A A A T T G C ~ A T T T G A A A G T ~ G G A A T T G T T G ~ G T G C G G A G A A ~
2401 AAAATTGTGC AGCAAAAAAT TCCCAGgtCT GTGCTGTATG TGTGTGTGAG
2451 AGGCAGGCCA GGGTTGCCGA TCCTCCTATT TATATGTGCA TAAAATAGAT
```

AA ESTs:
8451 ACGATGACGT CTTCCTTTGA ACTTTAAACC CATTGGTTTT GTAACGCTTT

8501 TCTTTTCGAT TGCagGTCAA GTAACGAGAG ATAACAATAG AGCAACAAGA

8551 GCAGCAGCAA AAACAACAGG AGCCGAAAGC ACTGGAAACA AAAGCGGCAA Exon2AA

8601 CGGCTTCACA TTGGACATGT CATGTCAGCA AGCCTCCAGA TTCCATTCAG

8651 CCACCGCTAC AGCCACATTA GCCAAGAGCA CAGCCACCAG AAGGATTGCC

8701 ACAGCAGCAG CAGCCGCAAC AGCAACAGCG ATAGCCGCAG CAACAGCCGC

8751 AGCAGCAGCA GCAACGTGAC GCCCGTGGAG AGCATTGCCG GCAAGACGAC

8801 GTCCGAGGAC TCGGATCCCT ATGCCTTCAC CGAGACTGTG GCCGTCACAC

8851 CACCCATTCT ATTCAATGCA CAGgtAAAGA AGCAGTCGGA AATTTCCTAA

8901 ACCCCGTCCA TATCAGGATT TGCATAGATC AAAAAATTGT AGTATTTCTG

8951 TAAGAAAACT GTATACATAT GGATGGGGGT TTCTTTGTAG ATAAGATCAT

9001 CTGATTTTTA TACATAAAAC TAGGTTCTTT GTCAACCGTA GTATTTAGCT

9051 TACGTTACCA CAGTTTTACC ACCATTATTT TGAAACTTGT TATTTGTGAG

9101 CCTTTCAAAA CACTTTCAAG TGTATGCTAA TCACATGGTA AATAAATTCT

9151 GGAATTTTTA TTGCAAAAGA AATTGGTGAT AATTTCAGAA CCTGAACTTC

9201 AATATGAACA GGTTCCAACT TTTGATATAT GGTATTATAT TACGCTCGCT

9251 TTATGTACAC AACCGTATTC TATGAAATTC ACTTACCCAA CTGTTTTGCT

9301 TACATATTGC agAAATCGAG AGCCCGCCTA ACCGACAGCA ATAGAGGCAG Exon3AA

9351 CAACAAGAGG CAGACGGCAG CAACAGCTGC GGCCAACAGA AAGGCGAACC

9401 TGGTGGCCCA ACTGAGTGTC ACAGAGGCAG CAAAGGCGCA GGCGTCTTTG

BF ESTs:
8451 ATGACGT CTTCCTTTGA ACTTTAAACC CATTGGTTTT GTAACGCTTT

8501 TCTTTTCGAT TGCagGTCAA GTAACGAGAG ATAACAATAG AGCAACAAGA

8551 GCAGCAGCAA AAACAACAGG AGCCGAAAGC ACTGGAAACA AAAGCGGCAA Exon2BF

8601 CGGCTTCACA TTGGACATGT CATGTCAGCA AGCCTCCAGA TTCCATTCAG

8651 CCACCGCTAC AGCCACATTA GCCAAGAGCA
CAGCCACCAG AAGGATTGCC

8701 ACAGCAGCAG CAGCCGCAAC AGCAACAGCG ATAGCCGCAG CAACAGCCGC

8751 AGCAGCAGCA GCAACGTGAC GCCCGTGGAG AGCATTGCCG GCAAGACGAC

8801 GTCCGAGGAC TCGGATCCCT ATGCCTTCAC CGAGACTGTG GCCGTCACAC

8851 CACCCATTCT ATTCAATGCA CAGGTAAAGA AGCAGTCGGA AATTTCCTAA

8901 ACCCCGTCCA TATCAGGATT TGCATAGATC AAAAAATTGT AGTATTTCTG

8951 TAAGAAAACT GTATACATAT GGATGGGGGT TTCTTTGTAG ATAAGATCAT

9001 CTGATTTTTA TACATAAAAC TAGGTTCTTT GTCAACCGTA GTATTTAGCT

9051 TACGTTACCA CAGTTTTACC ACCATTATTT TGAAACTTGT TATTTGTGAG

9101 CCTTTCAAAA CACTTTCAAG TGTATGCTAA TCACATGGTA AATAAATTCT

9151 GGAATTTTTA TTGCAAAAGA AATTGGTGAT AATTTCAGAA CCTGAACTTC

9201 AATATGAACA GGTTCCAACT TTTGATATAT GGTATTATAT TACGCTCGCT

9251 TTATGTACAC AACCGTATTC TATGAAATTC ACTTACCCAA CTGTTTTGCT

9301 TACATATTGC AGAAATCGAG AGCCCGCCTA ACCGACAGCA ATAGAGGCAG

9351 CAACAAGAGG CAGACGGCAG CAACAGCTGC GGCCAACAGA AAGGCGAACC

9401 TGGTGGCCCA ACTGAGTGTC ACAGAGGCAG CAAAGGCGCA GGCGTCTTTG

9451 GCAAGCAACA ACACAACGAA TTTCCATCAT GTCACGCAAT CTCAGAGACA

9501 GTCGACGGCG CTGCAGTTGC AATTGCCACT GCAATCCCAG TCACAGTCGC Exon3BF

9551 AGGCCTCGCC GAAGCGGGCC ACCAACGTGT GCATAGTCCG CCCGCAGCAA

9601 CAGCAGCTGG AGAAGATAGC CACCTCGGAG TCCTGCCAGT CGCCGGCAGC

9651 ACCACCACCG СТтTACGCCC ACACTCСАТС GCTGTGGCAG ACGCCGCTGC

9701 TCATAGACAA TGGGCAAAAG CAACAGCTCC TCCAGCAGCA GCATCAGCAA

Gene3

ESTs identified:

> AA941394 from embryo

AA263422
embryo
The two ESTs overlap with each other and revealed a single exon of over 800bp.

Genomic organization

```
9 6 5 1 ~ A C C A C C A C C G ~ C T T T A C G C C C ~ A C A C T C C A T C ~ G C T G T G G C A G ~ A C G C C G C T G C ~
9701 TCATAGACAA TGGGCAAAAG CAACAGCTCC TCCAGCAGCA GCATCAGCAA
9751 CCGCAACAGC AACAGTCCGT TGCTATTGCG TTGGTCAGTC CGCCCACATC
9801 GCCCGCCTCA TTACCTTCGC CCACTCTGCC GCCTGCCACC GCTGCAAGTG
9851 ACCGCCATGG TGGCACCGAT TTCCGTATCG CCCAAGGGTG GATTACCTTT
9901 GCCGCCATCG AAGTTCCATC ACACCACACC TGGCGCAACA TCTGCAGAAG
9951 GTGGAGTGCT TGAAAAAAAA GAAATCCTTG CCACTGGCCT GCCAAAACAA
10001 CAACAATAAC AGCAATTTGC CGAATAACAA CAATGTGGAG TCGCTTAAGA
1 0 0 5 1 ~ A A C C G G T G G T ~ G C A G G G A A C G ~ A G C T A C A A T C ~ A G A C T C A T C C ~ G C C A C C G C T G ~
10101 ATGGTTTTCA ATACGGGAAC AGTTGCAGTT CCCGCGCAGA GTCCGCAGAC
10151 TGCTGCTCCA CAGAAACATT CCACCGGCAA CAGCGTAGAT GACAGCGATC
1 0 2 0 1 ~ T C A A C G A G A T ~ A C C C G T C A A T ~ G T T A T C T T C A ~ G A A A G C C G C A ~ A G A G G C A G G C ~
10251 GGACGGCGAA AACAGGTGGA CCGGGAGGAT TAAGTGCACC TGTTTCGGGA
10301 ACGCCGCAAA CTCGTCCAGC TGAAGTGAAA ATGGTGACTC CTCTCACGCC
10351 GCCCACTCCA CCAGAGATGA GCGCACCGCC CCCTGTAGCG CAAATGCAAC
10401 CCCCGCAGAT ACCCACGTCT TGTGTTCCAG CTTTAGCTCC CAGCTTCAAA
10451 GTGTCGTCAC CAGCAGTTCT CAGCCCGAAG GTGATCTCAC CAGCTCCTGC
1 0 5 0 1 ~ A A G C C C A A A G ~ C T C T T G T G T C ~ C G A C A G C A C C ~ C G C T T C A A C G ~ A A C T C A C T G C ~
10551 AAATTGCGCC AAAAGTGTTC CAGCCACTAC AACCTCATCT GCACCAGCAT
1 0 6 0 1 ~ T A G C C A C G A A ~ A T C A G A A C A A ~ A T G T C T T C C A ~ A A G T G G C C A A ~ T T T A A A C G C C ~
```


Gene product

The exon sequence was translated in all 6 reading frames as no orientation information could be obtained from the intron sequence. An open reading frame exists, extending through the entire exon.

```
> putative product of Gene 3
    QHQQPQQQQS VAIALVSPPT SPASLPSPTL PPATAAVTAM VAPISVSPKG
    5 1 ~ G L P L P P S K F H ~ H T T L A Q H L Q K ~ V E C L K K K K S L ~ P L A C Q N N N N N ~ S N L P N N N N V E ~
1 0 1 ~ S L K K P V V Q G T ~ S Y N Q T H P P P L ~ M V F N T G T V A V ~ P A Q S P Q T A A P ~ Q K H S T G N S V D ~
1 5 1 ~ D S D L N E I P V N ~ V I F R K P Q E A G ~ G A P K T G G P G E ~ L S A P V S G T P Q ~ T R P A E V K M V T ~
201 PLTPPTPPEM SAPPLLAQMQ PPQIPTSCVP ALAPSFKVSS PAVLSPKVIS
251 PAPASPKLLC PTAPASTNSL QIAPK
```

BlastP search was performed with this peptide sequence, no homology with known protein could be identified. The PROSITE function of HUSAR was applied to analyse for known protein motifs in this peptide. It has five potential Protein kinase C phosphorylation (Woodget et al., 1986; Kishimoto et al., 1985) sites, three potential N-meristoylation (Toeler et al., 1988; Grand, 1989) sites, two potential Casein kinase II phosphorylation (Pinna,1990) sites, two potential N-glycosylation (Miletich and Broze, 1990; Gavel \& von Heijne, 1990) sites and one potential cAMP-dependent protein kinase phosphorylation (Glass et al, 19986; Glass \& Smith, 1983) site.

```
QHQQPQQQQSVAIALVSPPTSPASLPSPTLPPATAAVTAMVAPISVSPKGGLPLPPSKFH
                                    ASN GLYCOSYLATION
                                    CAMP PHOSPHO \(\frac{\text { ASN GLYCOSYLATION }}{\text { SITE }} \stackrel{\text { MYRISTYL }}{\text { PKC PHOSPHO SITE }}\)
HTTLAQHLQKVECLKKKKSLPLACQNNNNNSNLPNNNNVE SLKKPVVQGTSYNQTHPPPL
    CK2 PHOSPHO SITE MYRISTYL
```



```
                        PKC PHOSPHO SITE
PAVLS \(\frac{\text { PKC PHOSPHO SITE }}{\text { SPKAPASPKLLCPTAPASTNSLQIAPK }}\)
```


Gene4

ESTs identified:

AA803855	from ovary
A I512756	ovary

Both ESTs revealed two exons, with the intron between them containing canonical donor- and acceptor- sites.

Genomic organization

| 10851 | CTGCAGACGC AGCTTGGACA CTCTGAGTGA GAACGAGTCC TTTTCAGTGG | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10901 | ATTCGCCCTA CTGCCTACAA CAGCATTGGC TGCACTCCGG CTTTAATAAT | | |
| 10951 | AAGTCCCACG ACGCGCCACT ATCGCAAAGT AACCGGCGTG AGGATCGAAT | | |
| 11001 | TGCTGTTCGT AAAGGAGCCC TGAGGCGACA AGCGCTGCAG CTACTGTCTA | Exon1 | |
| 11051 | CGCGCTCCCT GCAGGAGCTT CCCATGCGAG CGGCCAAACA GCGGCTGCAG | | |
| 11101 | TGCGTCCAGA ACATGCTGAT CAAGTACCAA GATCACGCTG GCCAGCAGCA | | |
| 11151 | GGGAATgtAA GTTTAATGTA GTGTAATCAT TACCCAATTT ATACTAATTG | | |
| 11201 | TACTGTTTTC CGTTAAagTG GAATTGGCAA CCACTGTCTG GTGGCCAGCT | | |
| 11251 | GCAAGCAGCC CACGCTTAGT ATGGCAGCGC ACTGCGAGCG TCACATCGTG | | |
| 11301 | AACAACAGCA CCCAGCAGCT TTTCCAGCCT TGCGTCGCCT GGCGGATGGA | | |
| 11351 | TGGAACCGCT TGCCAGGCTC CTGTCTTCGA TGTGCTGCAC ACATTGGCGC | Exon2 | |
| 11401 | TCTGCAAGGT GCACAGCCAC CTGCGTTCTG GTATGGATGG AGCCCGTCCA | | |
| 11451 | GCATCGAAAC AGCCGCCCGT TAGTTTACCA | GTCGCTGGAG TGGCGACTCT | |
| 11501 | TTATGTGCCT GTGAAGCAGC AGCGAAAGCG CAAGGCTAAT ACGAATGCCG | | |
| 11551 | TGGCTCGTCC TCAGAAACGT GGTAGGAAGC CGGCGAATGA ACCGATTGCT | | |

Gene Product

One main open reading frame extends through the entire cDNA sequence. No similar peptides could be identified by the Blast P program. The putative protein sequence is:

$>$ putative product of Gene 4

```
    QQHWLHSGFN NKSHDAPLSQ SNRREDRIAV RKGALRRQAL QLLSTRSLQE
    5 1 ~ L P M R A A K Q R L ~ Q C V Q N M L I K Y ~ Q D H A G Q Q Q G I ~ G I G N H C L V A S ~ C K Q P T L S M A A ~
1 0 1 ~ H C E R H I V N N S ~ T Q Q L F Q P C V A ~ W R M D G T A C Q A ~ P V F D V L H T L A ~ L C K V H S H L R S ~
151 GMDGARPASK QPPVSLPVAG VATLYVPVKQ QR
```

The PROSITE function of HUSAR was again applied to analyse for known protein motifs in this peptide. It has four potential N-meristoylation sites, three potential Protein kinase C phosphorylation sites, three potential N -glycosylation sites and two potential Casein kinase II phosphorylation sites.

```
    ON PKC PHOSPHO SITE CK2 PHOSPHO SITE
QQHWLHSGFNNKSHDAPLSQSNRREDRIAVRKGALRRQALQLLSTRSLQELPMRAAKQRL
            MYRISTYL MYRISTYL PKC PHOSPHO SITE ASN GLYCOSYLATION
QCVQNMLIKYQDHAGQQQGIGIGNHCLVASCKQPTLSMAAHCERHIVNNSTQQLFQPCVA
                                    MYRISTYL
                    MYRISTYI
                            CK2 PHOSPHO SITE
WRMDGTACQAPVFDVLHTLALCKVHSHLRSGMDGARPASKQPPVSLPVAGVATLYVPVKQ
QR
```


Gene5

ESTs identified:

AW942247 from embryo
A I 544155 embryo

Both ESTs revealed two exons from one gene. AW942247 shows ten extra nucleotides between 12823 and 12828 in Exon2 compared to the genomic DNA sequence. This is probably a sequencing artefact of AW942247, especially as AI 544155 overlaps completely in this region with the genomic sequence 19G11.

Genomic organization

```
12401 TGTATATATA GAAGGAAGCT GGACAAATTC CCTAAGATTT TTTCAGTATT
12451 TTGACACGTT ATTTCTCTCT TCCAGATGAT ATAGCATTGA ATGGCGCCCA
1 2 5 0 1 ~ C T T G C T G G A G ~ G A G C A C G A T C ~ T G G T A A A T G T ~ G T T C G A C A C G ~ C T G T C A G A C G ~ E x o n 1 ~
```

```
12551 ATGCCTTCAA CGAGCTGTTC CAATCCGgtG TGTATTTAAC CACAATTTTA
1 2 6 0 1 ~ C T T G T T C A G C ~ T T T T C A T T G T ~ A C T A A T C C A T ~ G T G T G C C T T C ~ G C T G C C A A C G ~
1 2 6 5 1 ~ C C A C C G C C A T ~ C G C C T T G G A C ~ C T G T G C C T A T ~ G C a g T G C A A C ~ A A G C C G A G T G ~
12701 CGAGGCTATG GACCGGGCTT TGGACCGGGC CTTACAGCAG ACAATGGGCG
1 2 7 5 1 ~ G C T C G G C G G A ~ C A G C G C C T T T ~ C T T A A C G A T T ~ T C C T G G A C G T ~ C G G C G A C G A T ~
1 2 8 0 1 ~ C T G C T G G C C G ~ A T G C T G T G A T ~ G C A C T C A C C A ~ A A C A C G T C C G ~ G C A T C G A T G C ~
1 2 8 5 1 ~ T C C T C C C C T C ~ T T T G G G G A C A ~ G C A G C A G C G G ~ C G G T G G C A A T ~ A G C A G C A G C A ~
12901 ACGGCGCCTC CGACATCCGG GGCTTGGTGC AGACCTAATT CCGGCATCAG Exon2
12951 GTCGGATTTA TGGCCTACAG AATTTACAGA TTCATTTAGA GAGACAGAGA
1 3 0 0 1 ~ G A G A G A T T T T ~ C A A G C T T G A T ~ T T C C C A T T C A ~ C T T T T A G G C A ~ G T T T T C G C T T '
13051 AGAATTTCGG TATTTTCTTT TTGGCCATTT CTTACCTGCG ATTCTAGTTT
1 3 1 0 1 ~ G G C A C A A T G T ~ T T C T A T A T G C ~ A G C T T C A A T G ~ T T A T G C A T G C ~ A T T C A C C A G C ~
13151 AGATATGCAT GAATAAAATA GCATTCAAAA ACCATATAGT TATGCGTTAA
13201 TGTGAAAAAC AAAAAAAAAA AACACACACA AAAAGTAAAA AATTTGAAAA
13251 AATGTCCAAA AATATTAAAT TCAACTTTAA ATCAACATTA AGAATGAAAT
```


Gene Product

Possible products from all three reading frames, which all include multiple stop codons, were searched with the BlastP program. No similarity was found with any peptide in SWISSPROT Database.

Gene6

ESTs identified:

BF487868 from adult testis BF490646 adult testis BF500182 adult testis BF502886 adult testis BF503154 adult testis BF500662 adult testis BF497922 adult testis BF487536 adult testis BF488085 adult testis BF493348 adult testis

BF503529 adult testis BF499841 adult testis BF491655 adult testis BF488733 adult testis AI134580 head BF496020 adult testis

The ESTs revealed 7 exons from a putative Gene 6 . All introns are surrounded by canonical splicing sites.

Genomic organization

15301	GACTCCCATT	CGTtTAACAA	CATAATTTTC	TCCTAGGAAA	CAGTTAGTTT	
15351	GCCTTGACAC	ATACTCCGAG	TAACTCCCGA	AAACAAAATA	CAAAAAACAT	
15401	CAGCAGAACC	GCCGAATTAA	GAAACCCGCT	AATCCTTCCC	AGGATTCTTT	
15451	CAGTGCGTTT	CGTCGAGTTG	TGGTCGAGGA	TTCAAATTCA	AAGGttatat	Exon1
15501	TGAAAATTAT	tattitctat	TTTGTTTTCC	TTGCTCGACC	ACCAACCCAA	
15551	TCGCATCTAA	TCGCAAGGAG	CATTCAGTCC	AGTGCAAAAG	AGACAAAAAC	
15601	TGACCAGATC	TGGTCCGGAT	TATCCCCGTT	ttGctanggt	GATTGAGTGC	
15651	CATGTGGCGG	CATTTCCTAC	TCTGGGTTGT	CCGTATGCAG	CGATTATTAC	
15701	ATCATATCCT	AGCagGCGTG	TCGTTTGCTG	TCGGTTGTAA	TGCATACAAA	
15751	TGCCTATCTG	AGCTGCCGTC	TCCCCGATTA	GTCACTTTTT	TTGTACGTTT	Exon2
15801	GTAAGCTGCC	GCCAGTTTTC	AGAGTGGCGC	CACGGGGATA	CGTGGAATAG	
15851	CGTGgtAAGT	GGGCGCCACA	TGCTCCACCA	TCGACCCCAC	TAACCGACTC	
15901	CTCACCACCa	9TTGTGCTCT	ACGTATATTT	TTATATCATC	ATTGCGGAAC	Exon3
15951	CACAAAGCTC	TCGACTACTT	TCTAACTGAG	GAACTGAATC	AAAG $g t G A G T$	
16001	TCAATTCAGC	ATATTCTGTA	TATTTGCGCT	ATGACTCTTT	CCCGCATAAA	
22801	TGATATTTCA	CATTTCTGCT	TAGCTTTTGA	AATAATTTTC	TTTTTTTGTA	
22851	ATATATTAAC	TCTAGACTGG	ACTTACCCAC	TTTCGTTTCa	gGACTCTCCT	
22901	TCAGACGCAG	TACAATCTCC	GACTGGCCGT	CGATAGCGAA	ACGCGGCGGT	Exon4
22951	CGATTTGAGG	CAACCAAGCT	GATTAGTGTG	gtGAGTATTA	TGACTTGGAT	
23001	GGATATGGAG	CTTATATAAC	TAGAGAAACT	TCGCCGCCTT	TGTCCTTTTA	
27851	GTCATTAATT	TAATCCAGTG	ATTTGCCATA	TCATATTGAC	AGATACGTAA	
27901	CGTCATTATT	TTTCCTagAA	TAATATGTCC	GTGAGTCGAG	TGACTATGAT	
27951	GCGAAAGGGC	CACTCCGGGG	AGGTAGCACG	CAAGCCCAAC	ACTGTGGTGG	
28001	TGTCGGTTCC	ACCGCTGGTG	AAGAAGTCCA	GCAAGAGCCG	CTCGTTCCAC	Exon5
28051	TTCCGCTATC	TGGAGCTGTG	CCGGGCCAAG	AATCTGACGC	CGGTGCCGGA	
28101	AATCCGCAGC	AAGTCGAATG	CGACCACCAC	СTTTCTGGAG	CTGTGCGGCG	
28151	ATAAGCTGGC	GGTCAGCGAT	TGGCAGCTCC	TAACCGAGGC	GCTCCACTAT	
28201	GATCTCGTGC	TCCAGCATCT	GGTGGTGCGC	CTGCGACGCA	CATATCCACA	
28251	AAgtAGGTGA	TCTTTGGTAG	TCTGCTACTC	TGTATGGAAT	GTGAATTATA	

```
2 8 3 0 1 ~ C C A T T T C G T T ~ T A T T C A T T T T ~ T T T C G G C a g C ~ C A A C A T T G A T ~ C C C A T T G A C A ~
2351 CCGAGAAACG AGCCCGACTT TTTCGCCAGC GGCCAGTGAT CTATACTCGC
28401 TTCATATTCA ACAGTTTGGT CCAGGCGATT GCCAACTGTG TTTCGAGCAA Exon6
28451 CAAAAATCTA AGTGTGTTGA AGCTGGAGGG ATTGCCATTG CAGGATGGAT
2 8 5 0 1 ~ A T A T C G A G A C ~ C A T T G C C A A G ~ g t G C G T T G A A ~ A A G T T T T G C G ~ G T C G G G A T C A ~
2 8 5 5 1 ~ C G T T T C C A A G ~ T A C A C A C A T A ~ T A T C C A A T C C ~ A T T C A C a g G C ~ A C T G G C A G A C ~
28601 AACGAATGCC TCGAAACAGT GAGTTTTCGC AAATCCAACA TTGGCGATAA Exon7
2 8 6 5 1 ~ G G G C T G C G A G ~ G T G G T G T G C A ~ A C A C A G C C A A ~ A T A C C T G A A T ~ C G C A T C G A A G ~
```


Fig5: Distribution of ESTs as proof for exons of Gene 6.

Gene Product

The cDNA fragment was translated in all three frames. All include in-frame stop codons in their sequences. Homologous peptides were searched for all translated peptide sequences with BlastP program, no homology was found.

Gene7

ESTs identified:

BF491687 from adult testis
AI946574 adult testis
Four exons were revealed from these two overlapping ESTs. The last intron between Exon3 and Exon4 has no canonical splicing sites, so the exact junction between them could not be definitely deduced.

Genomic organization

28951	GAAGTCCCTC CGCTACCGTA GCGTCGATGT GAACACGATT GGCGGTCTGC
29001	GCACGGTTTT GTTGGCTGAC AACCCGGAGA TTGGCGACGT GGGCATCCGG Exon1
29051	TGGATAACCG AGGTGTTGAA AGAGGATGCT TGGATAAAAA gtACGTAGAG
29101	TCCGAATAGT GCGATCCATA CAGTTCAAAT ACCCCACagA AATCGACATG
29151	GAGGGCTGCG GCCTGACGGA TATCGGGGCA AATCTAATTC TCGATTGCCT
29201	GGAGCTGAAC ACGGCCATTA CGGAGTTCAA TGTGCGAAAC AACGAAGGAA
29251	TCAGTAAGTT CCTGCAGCGA AGTATCCATG ATCGTCTTGG CTGTTTACCA Exon2
29301	GAGGAGAAAC AGGAGCCAGA GTATGATCTC AGTTGCGTCA ACGGGCTACA
29351	GAGCCTGCCC AAGAACAAGA AGGTCACCGT CTCTCAACTG CTGTCCCACA
29401	CCAAAGCATT GGAGGAGCAG CTCTCCTTCG AGCGAACGTT GCGCAAGAAG
29451	GCCGAGAAGC TGAATGAGAA GCTTAGCCAC CAGCTCATGA GACCCGACTC
29501	CAATCACATG GTTCAAGAGA AGGCCATGGA GGGAGGATCA CAAACAAACA
29551	TTTCGAGGGA ATATGTGGCG CGGAATGATG TTATGCCAGA AGTCATCAAA
29601	AAgtGGGCTA GCTCTCAATT CTCAATTCAA TGCCTATCTG ATTTGAGTAT
29651	TTCTTCACag TTCCCAAAGC TACCGCCAGT CGCACTTCAA CCGGCTGGTC
29701	AACAGTGCGG CCACCAGTCC CGAAGTCACA CCCCGCAGCG AGATTGTCAC Exon3
29751	ATTGCGCAAG GAGCAGCAGC TGCAACGTCA ACAACCCCCA CCAATGGAGG
29801	TCAAGCATCT TTCCTTGGAG CAGCAAATCC GAAATCTGCG CGACGTGCAG
29851	AAAAAGGTGG ACTTGGACGT GGAGGAAGAG GAGGAGGAGG AGGAACAGCA

30851 CCTAGGGGTC GTGACTTTAG GTTCCTCCAT TCAAAATCCC CGCAGCCATT
30901 CGCAGCCGGA GCAGCGACAC CACAGCTGGC TGATACGCCG AGCAGTAACA

```
30951 ACAACAACAC CACTACCACC ACCATCACAC CCACAACAAA GCAGCCAACT Exon4
31001 CGATTCGATA GGATCCCCAC TGGGAGAGCA AAATTTGCAG TCATACTCCC
31051 GGGCAGTAGC AGTAGAAAAG GGAACCTGCT CCTTTTTGCA CGTCCTGCCA
31101 TCTGCGAATT CAAGCTGCAC CAAAAATGTA CAAAAATATA CTTTGGTCTT
```

Exon1	Exon2	Exon3	Exon4
BF491687	-	-	

Fig6: distribution of ESTs as proof for the putative gene7.

Gene Product

The exons were translated in three reading frames and their product searched with BlastP program. No similar peptide was found.

Gene8

ESTs identified:

BE977916 from adult testis
BF491390 adult testis

Genomic organization

```
2 9 8 0 1 ~ T C A A G C A T C T ~ T T C C T T G G A G ~ C A G C A A A T C C ~ G A A A T C T G C G ~ C G A C G T G C A G ~
2 9 8 5 1 ~ A A A A A G G T G G ~ A C T T G G A C G T ~ G G A G G A A G A G ~ G A G G A G G A G G ~ A G G A A C A G C A
2 9 9 0 1 ~ G G C G G A G G A A ~ A G T C A A T C C G ~ A G T C G G A G C T ~ G C A G A A C G A G ~ G A G C A A C A G C ~
2 9 9 5 1 ~ A T T A C G A A C A ~ G C A A A T G C A G ~ G T C C A A C G C A ~ A A C A T C T C C A ~ G G T G C G C A A G ~
3 0 0 0 1 ~ G T T C G C A G T G ~ A G A T T A A G T A ~ T G T G G A A A A C ~ A A T C C C A A G G ~ A G G C A G C C A A ~ E x o n 1 ~
```

```
30051 AAAGAATCGC GAGTCCAAGT CGGACCATGA GTTTGCCAAC GAGAGAGAT }
3 0 1 0 1 ~ t G A G T A G T A T ~ C C A C A A G A T A ~ A A T T A A C C A G ~ T A C T A G G A A T ~ T T A T T C T C T T ~
30151 GTACGATAAC CCATCTTATC CCCATagTTC AAGCTTAATC ССТСTGTGCA
30201 ATTCGAGACG GACATTGGCG ACAATTTGAT GGTCAATCCT GGCCACCGAT
30251 ACGAGGGCGG CGGGGGCGAT ACGGGCTATG TCTACAACTA CGAGCATGAG
30301 CAGCAGCAGC AGCCAGTCAA GCGGGGCTAC GAGCACGGCT ATGTGGTGGG
30351 CGTGGGTGAC GGATCCCACA GGAGGCAGAG GCAATCTCAA CTGGTCGAGG Exon2
30401 CTTTGGTGCA AAAACGTGTC CCAGGCGCCA GCGATGGACA TGTGGCGCAG
30451 TTCGTTAGCA ATCTGGAACG ACAAGCGAAT GCTGGTAAAA CGGGGAAAAA
3 0 5 0 1 ~ G C G C C T T A A A ~ C C T C G G C C T G ~ A G G A C G A T C T ~ T C A G G T A C C A ~ G T C G G C G A C A ~
3 0 5 5 1 ~ T G C A C A T G G A ~ G T C G T C G T A T ~ A T G T C C C G C T ~ C C G A A G A A C T ~ C T C C T C A A C G ~
3 0 6 0 1 ~ G A C G T T A C G C ~ T G G A G A A C T C ~ A G A C T A C G A G ~ A C G G A G G C G A ~ C G G A C T C C A C ~
3 0 6 5 1 ~ G T T A C T T A G T ~ A G C T C G A A A T ~ A C T C C T C C A T ~ G C A T G T C T T T ~ G T G C G G C G C A ~
```


Gene product

The exons were translated in all three forward frames, one of them contains an open reading frame, which encodes a product with partial similarity with two known proteins.

```
> putative product of Gene8
```

```
AEESQSESEL QNEEQHHYEQ QMQVQRKHLQ VRMVRSEIKY VENNPKEASK
KNRESKSDHE FANERDFKLN PSVQFETDIG DNLMVNPGHR YEGGGGDTGY
VYNYEHEQQQ QPVKRGYEHG YVVGVGDGSH RRQRQSQLVE ALVQKRVPGA
SDGHVAQFVS NLERQANAGK TGKKRLKPLP EDDLQVPVGD MHMESSYMSR
2 0 1 ~ S E E L S S T D V T ~ L E N S D Y E ~
```

The first underlined segment (aa 26 to aa83) has 28% identity and 48% similarity with an ATP-dependent protease from Helicobacter pylori J99 (Alm et al., 1999), while the second underlined segment (aa 119 to aa167) has 30% identity and 60% similarity with a transcriptional repressor CYTR (Valentin-Hansen et al., 1986) from E.coli.

Gene9

ESTs identified:

$$
\begin{array}{lrl}
\text { AI945488 } & \text { from } & \text { adult testis } \\
\text { BE977239 } & \text { adult testis }
\end{array}
$$

These two ESTs revealed a single exon fragment, which overlaps with the Exon4 of gene7 and Exon2 of gene8. Probably, gene7, gene8 and gene9 are actually different splicing forms of the same gene, whose alternative exons span at least from the nucleotide 29001 to 31191 .

Genomic organization

30401	CTTTGGTGCA AAAACGTGTC CCAGGCGCCA GCGATGGACA TGTGGCGCAG
30451	TTCGTTAGCA ATCTGGAACG ACAAGCGAAT GCTGGTAAAA CGGGGAAAAA
30501	GCGCCTTAAA CCTCGGCCTG AGGACGATCT TCAGGTACCA GTCGGCGACA
30551	TGCACATGGA GTCGTCGTAT ATGTCCCGCT CCGAAGAACT CTCCTCAACG
30601	GACGTTACGC TGGAGAACTC AGACTACGAG ACGGAGGCGA CGGACTCCAC
30651	GTTACTTAGT AGCTCGAAAT ACTCCTCCAT GCATGTCTTT GTGCGGCGCA
30701	AGCAATCGGA GTCCATGTCA CTCACAGAAG AGGCCGGCGA CGGAGATGCC
30751	GGCGGTGGTG GAGGCTCTGG CGATTTCGGC GACCAAAATG TCATATCCCC
30801	GGCCAATGTC TACATGTCCC TGCAGCTCCA GAAGCAGCGG GAGCAGAGCG
30851	CCTAGGGGTC GTGACTTTAG GTTCCTCCAT TCAAAATCCC CGCAGCCATT
30901	CGCAGCCGGA GCAGCGACAC CACAGCTGGC TGATACGCCG AGCAGTAACA
30951	ACAACAACAC CACTACCACC ACCATCACAC CCACAACAAA GCAGCCAACT
31001	CGATTCGATA GGATCCCCAC TGGGAGAGCA AAATTTGCAG TCATACTCCC
31051	GGGCAGTAGC AGTAGAAAAG GGAACCTGCT CCTTTTTGCA CGTCCTGCCA

Gene product

The exon was translated in all six forward reading frames, all possible products were searched in the Swissprot Database. No homology could be found with known peptides.

H4r and Punt

The H 4 r histone replacement gene and the punt gene are recorded in the EST-database as known genes. Their genomic structure was already fully characterized (Akhmanova et al., 1996).

Sequence analysis methods reviewing

The results of EST search, Xpound and Grail analysis were compared with each other. The EST results were used to evaluate the other two programs in this case. Filled arrowheads represent the exons revealed by EST search and the open ones are those predicted by Grail (only the exons evaluated as excellent or good were considered). The whole sequence was divided into 5 parts to make the exon symbols long enough to be clearly visible.

```
f/lfs/people/un53je/wenl1/19611/1to7000
```


$$
\lll \quad>\quad \text { Grail-based ex ons }
$$

PartI: Base 1 to 7000 .

Part2: Base 7001 to 14,000 .
lfs/people/un53je/wen l1/19611/14001to21000

exons
Exonl,2,3/ Gene6

Grail-based
exons
Part III: Base 14001 to 21000 .

Part IV: Base 21001 to 28000.

PartV: Base 28001 to the end (34054).

Conclusion

The already experimentally characterized genes histone replacement H 4 r and punt were used as calibrators to check the program Grail and Xpound. Grail didn't succeed to predict either of them; Xpound gave the punt exons a probability of c.a. 8%. H4r could not be predicted, either. These results reflect the present status of our methodology to analyse genomic DNA sequences. It must hence be concluded that the assessment for potential genes as made in this paper is rather preliminary, additional or other genes might finally be identified in the region of the genomic 19G11 sequence.

From the comparison of the predictions of the two programs and the EST data, it was also proved once more clearly that neither Xpound nor Grail could well predict possible exon
structures from a genomic sequence. But both managed to predict some exons correctly, keeping in mind that for most of the cases no experimental proof has yet been provided. They are useful choices for exon prediction when there's no or little EST data.

Also the EST data are of limited value:

1. ESTs are just segments of the cDNAs, whose 5 ' and 3^{\prime} ends are often lost. Also some parts of the transcripts with more complicating secondary structures might be not represented in the EST database as they could not be properly reverse transcribed under the normal conditions to establish the EST libraries.
2. Some genes may be not yet represented in EST database because they may be very rarely expressed in a very narrow developmental stage or they are only expressed as a reaction to some special external stimuli so that their RNAs could not yet be identified.

Part IV:

P-element mediated excision at the punt-H4r locus, $88 \mathrm{C} 8-10$

Introduction

P-elements are widely used in Drosophila genetics. Since the identification of their existence and the clarification of their transposition mechanisms, several genetic tools have been developed taking advantage of P-elements (Engels, 1997; O’Kane \& Gehring, 1987). Especially the possibility to achieve site-directed mutagenesis with P-elements makes Drosophila an excellent model system to study gene functions.

P-elements are bounded by 31-bp inverted terminal repeats and make an 8-bp target site duplication upon their insertion (O'Hare \& Rubin, 1983). P-elements are DNA-intermediate transposons that move via cut-and-paste transposition (Kaufman \& Rio, 1992). Their excision generates a double-strand DNA break in the chromosome (Engels et al, 1990; Gloor et al, 1991; Kaufman \& Rio, 1992). The DNA breaks are repaired by host cells, which gives a variety of excision products. They can be repaired either by homologous recombination or by non-homologous end-joining. Homologous recombination leads to gene conversions when the double-strand break is made in pre-meiotic germ line cells (Geyer et al, 1988; Engels et al, 1990; Gloor et al, 1991; Nassif et al, 1994). Most often, this conversion produces the replacement of the excised P-element with the other P element from the same site on the sister chromatid, yielding an exact regeneration of the P-element at the excision site (JohnsonSchlitz and Engels, 1993). Gene conversion could also result in the precise loss of the P element if the allelic template site does not have a P-element (Engels et al, 1990; Nassif \& Engels, 1993).

Although most of the transpositions cause the so-called "precise" loss of the P-element with a full restoration of the original allele, in some cases an "imprecise" loss may happen. In these instances, a small part of P-element is left at the original insertion site while the major part is cut away. In some other cases, P-element transposition caused also deletion of the sequences flanking the insertion site (Engels et al, 1990; Nassif \& Engels, 1993).

To study the function of the H 4 r gene, P -element excision was chosen as the method for the mutagenesis of H 4 r gene in Drosophila melanogaster. A "put" strain with an insertion of a Pelement at the 5'-UTR of the punt gene in the neighbourhood of H4r gene (Akamanova, 1996) was crossed with a jumpstarter strain offering the transposase (Robertson et al, 1988).

The P-element in "put" strain could thus be excised with the help of the transposase. In the case of an "imprecise" loss, mutant strains could be obtained with deletion or insertion around the initial insertion position of the P-element.

Methods und Materials

Containers

All transparent plastic fly containers were obtained from the company Greiner Labortechnik. They were closed with proper foam tops.

Size	Name	Diameter in (mm)	Height in (mm)	Volume in (ml)
big	PS-Dosen-U Teil, RD	53	100	175
middle	PS-Röhrchen, FB	36	83	68
small	PS-Röhrchen, FB	22	63	16

Fly medium

Cooked fly medium

216 g agar
101 water cooked for ca. 20 Minutes, till the agar is completely dissolved.

480 g dry yeast
130 g soja flour
2420 g corn
51 water mixed in a container then given to the cooking agar solution.
2160 g malt extract

1080 g sirup added
10.51 water added; part of this water was used to rinse all the containers for the rest of medium components. Under constant mixing, the medium was heated to $90^{\circ} \mathrm{C}$, and then kept cooking for about 30 minutes.

50 g Nipagin
21 water
Nipagin was dissolved in hot (but not cooking) water.

120 ml Propionic acid Nipagin und Propionic acid were given into the mixture about 10 minutes before filling the fly containers with it. It's important that these two components were not cooked for too long, but well mixed into the medium.
"Nipagin" (4-Hydroxibenzoesäuremethylester) is a Fungicide. It is sometimes added into bread to prevent moulding.

Instant Drosophila medium

„Formular 4-24 blue" Instant Drosophila Medium (Carolina Biological Supply Company, Burlington, NC)

Put Strain

A „put" strain containing a P-element insertion at 88C8-10, in the 5^{6}-UTR of the punt gene was used as the starting strain. punt is a housekeeping gene, which encodes a protein of the type II receptor STK family closely related to the vertebrate activin receptor. Punt and the H 4 r gene are located on opposite DNA-stran ep with 118 base pairs between their transcription start points. The P-element insertion is only 148 base pairs away from the initiation of H 4 r gene.

Fig 1: genomic organization of punt, H4r genes and the P-element insertion in "put" strain. The genomic structure of the H 4 r gene is shown with exons in bold letters.

Crosses*:

$\mathrm{P} \quad \mathrm{X} \frac{\begin{array}{cc}\frac{r y^{506} \text { put } \mathrm{P}\left[r y^{+}\right]}{T M 3, r y S b^{1}} & \frac{T M 3, S b, r y^{\mathrm{Ru}}\left[\Delta 2-3 r y^{+}\right]}{L y} \\ + \text { eyes, } \mathrm{Sb} \text { bristles, + wings } & \downarrow \\ \text { + eyes, } \mathrm{Sb} \text { bristles, Ly wings }\end{array}}{}$

F1

$$
r y^{506} \text { put } \mathrm{P}\left[r y^{+}\right]
$$

$$
\mathrm{X} \quad \underline{T M 3, r y S b^{1}}
$$

F2

$$
T M 3, r y^{\mathrm{Ru}} \mathrm{Sb} \mathrm{P}\left[\Delta 2-3 \quad r y^{+}\right]
$$

Ly

+ eyes, Sb bristles, + wings
+ eyes, Sb bristles, Ly wings

$$
r y^{506}
$$

$$
\begin{gathered}
T M 3, r y S b^{l} \\
\text { ry eyes, } \mathrm{Sb} \text { bristles, }+ \text { wings }
\end{gathered}
$$

$$
r y^{506} \text { put } \mathrm{P}\left[r y^{+}\right]
$$

TM3, ry Sb ${ }^{1}$

+ eyes, Sb bristles, + wings
*: Only the genotype of the third chromosome is shown.
TM3: balancer for the third chromosome, homozygous lethal ry: rosy eyes allele, recessive
Ly: Lyra wings, dominant $S b$: Stubble bristles, dominant (Abbreviations according to Linsley \& Zimm, 1992)

Result

\underline{P} generation

In the P generation cross, 30 "put" strain $r y^{506}$ put $\mathrm{P}\left[r y^{+}\right] / \mathrm{TM} 3, r y S b^{1}$ males were crossed with $30 T M 3, r y^{\mathrm{Ru}}\left[\Delta 2-3 r y^{+}\right] / L y$ females.
$r y^{506}$ put $\mathrm{P}\left[r y^{+}\right] / T M 3, r y S b^{1}$ flies have the P-element insertion in 5'UTR of the punt gene. This P-element contains a copy of the mini-rosy gene which could rescue a rosy genotype background.
$T M 3, r y{ }^{\mathrm{Ru}}\left[\begin{array}{lll}\Delta 2-3 & r y^{+}\end{array}\right] / L y$ flies are the so-called jump starters with the insertion of a jump starter P-element which could mobilise other P-elements, but not themselves.

F1 generation

The two genotypes of flies in the F1 cross can be distinguished by their phenotypes.
In $r y^{506}$ put $\mathrm{P}\left[r y^{+}\right] / T M 3, r y^{\mathrm{Ru}} S b \mathrm{P}\left[\Delta 2-3 r y^{+}\right]$flies, the two different P -elements were brought together. In gametogenesis of these flies, the transposase of the jump starter P-elements can mobilise the "ry" P-elements in the third chromosome originating from the punt flies, so that part of their gametes would have a mutated " $r y$ " chromosome.

F2 generation

In the F2 generation, 56 flies with rosy eyes were observed among ca. 5,000 flies with red eyes. They had normal wings and $S b$ bristles so they could only have the combination of the $T M 3$ chromosome from the balancer strain and the mutated $r y$ chromosome from "put". The $r y$ chromosome from "put" had originally a P-element with the $r y$ gene, which rescued their rosy phenotype. In these $r y$ flies, either the P-elements were excised, or they had an internal recombination so that the $r y$ allele was no more intact. Further experiments were concentrated on the rosy flies. They were backcrossed with their maternal strain "put". 5 of them died before leaving any offspring.

F3 and F4 generation

Type I

From 43 F2 flies, three kinds of offspring were observed in the F3 generation: $S b r y, S b r y^{+}$, and the $\mathrm{Sb}^{+} r y^{+}$flies which indicates that these flies had a mutated $r y$ chromosome which was viable over the original put chromosome.

F3:
$\frac{r y^{506}}{r y^{506} \text { put } \mathrm{P}\left[r y^{+}\right]}$

$$
\frac{r y^{506}}{\mathrm{TM} 3, r y S b^{1}}
$$

TM3, ry $S b^{1}$

+ eyes, + bristles

F4: $\quad \frac{r y^{506}}{r y^{506}}$

$r y$ eyes, + bristles $\quad r y$ eyes, $S b$ bristles

Males and females from the $r y^{506} / T M 3, r y S b^{1}$ flies were crossed. Heterozygote $r y^{506} / T M 3$, $r y S b^{1}$ flies and homozygote $r y^{506} / r y^{506}$ flies were obtained in the F4 generation, which indicate that all these $r y$ chromosomes were also viable in a homozygous constitution.
Stable strains were maintained with the homozygote $r y^{506} / r y^{506}$.

Type II

From 8 F2 flies, two kinds of offspring, $S b r y$ and $S b r y^{+}$, were observed in the F3 generation. $\mathrm{Sb}^{+} r y^{+}$flies did not exist, indicating that these flies had a mutated $r y$ chromosome, which was not viable over the original put chromosome.

F3:

$$
\frac{r y^{506} \text { put } \mathrm{P}\left[r y^{+}\right]}{T M 3, r y S b^{1}}
$$

$\frac{r y^{506}}{T M 3, r y S b^{1}}$

$$
\text { + eyes, } S b \text { bristles ry eyes, } S b \text { bristles }
$$

F4:

Males and females from the $r y^{506} / T M 3, r y S b^{1}$ flies were crossed. Only heterozygote $r y^{506}$ / $T M 3, r y S b^{1}$ flies were obtained in F4 generation, which indicates that all these ry chromosomes were also homozygos lethal.

Stable strains were maintained as heterozygotes of the constitution $r y^{506} / T M 3, r y S b^{1}$.

Molecular examination

It was reported that in some cases of P-element transposition internal excisions or rearrangements of P-elements occur, which could also fit the observation of the existence of internally deleted P-elements (Engels et al, 1990; and references therein). If the P-element in "put" strain had an internal rearrangement, which distorted the rosy gene, the F2 flies would also have rosy eyes, as in the case of a real excision. To exclude this possibility and to check if the P-element was really excised, PCR reactions with primers AA29 and AA32 were carried out for each F4 strain. AA32 and AA29 would only give a product when the Pelement was, at least partly, excised, otherwise they were too far away from each other to yield PCR products under the conditions of the reaction.

Genomic DNA was prepared from 3 to 5 homozygote flies for type I strains. For all flies, AA29 and AA32 gave a product of the size expected if no insert is present, i.e. 1.2 kb . The PCR products were cloned and sequenced, they all correspond to the wild-type genomic sequence between AA29 and AA32.

For type II flies, genomic DNA was prepared from 3 heterozygote flies. Another primer P was designed which has the identical sequence as the end repeat of P-element. PCR with AA29 + P and AA32 + P gave no signal. So it was concluded that at least the end repeats of the P element were excised.

Fig 2: (a): The genomic structure of the P element inserted in ,,put" strain. A 31-base pairs repeat flanks both ends of the P-element in reversed orientation. (b) The sequence of the 31 -base pairs repeat. Primer P was designed according to the sequence of this repeat. The arrowheads show the orientation of the primers.

The PCR reaction with AA29 and AA32 gave similar results as for type I strains. Only one major product at 1.2 kb was seen. All the products were cloned and at least 5 subclones were sequenced for each product. They all corresponded to the wild type sequence between AA29 and AA32. Because of the presence of the balancer chromosome, it cannot be excluded that this product was only amplified from the balancer.

To exclude the effect of the balancer chromosome, it was intended to cross the F4 flies with another double balancer. The TM3 balancer could be exchanged with another balancer marked with Green Florescence Protein. One could thus check the embryos coming out from the intercrossing of these flies and pick out those without the fluorescent balancer, i.e. the homozyotes for the $r y$ chromosome. PCR experiments could be done with these embryos. Unfortunately, all the 8 type II F3 strains survived badly compared to type I flies, and they all died out before the planned balancer exchange. A definite conclusion could not be made about these flies.

Discussion

From c.a. 5,000 F2 flies, we obtained 56 flies that have undergone either a P-transposition or an internal recombination of P-elements. Among 51 of them that survived long enough to leave offspring, 43 had a new chromosome 3, which is viable over the original chromosome 3 of put flies. Molecular data could show that they all had a complete and precise loss of P-element from the original insertion. The other 8 of the 56 F2 flies had a new chromosome 3, which was not viable over the put chromosome 3. At least the end repeats of their P-elements were transposed from the original position.

We did not succeed to obtain H4r mutations through P-element excision. There are two possible reasons:

1. H4r may have an indispensable function so that mutant embryo in F2 did not survive to adults. It could also be that some of the 8 type II flies contained the mutation, but did not survive long enough to be completely analysed because of their bad viability. Considering the importance of histones for chromatin constitution, it would be not surprising if the H 4 r mutants are haploinsufficient.
2. The number of screened excisions was too low to recover excisions extending into the H 4 r gene. A possible enhancement of the sensitivity of the screening is to introduce a section of mutated H 4 r into the genome of put flies with the help of P-elements, so that the double strand breaks left by the transposable P-element in the F1 germ line could be repaired with the aid of the mutated partial H 4 r copy as template.

References

Abe, H., Ohbayashi, F., Sugasaki, T., Kanehara, M., Terada, T., Shimada, T., Kawai, S., Mita, K., Kanamori, Y., Yamamoto, M.T. and Oshiki, T. 2001 Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements. Mol Genet Genomics 265(2):375-85.

Akhmanova, A., Miedema, K. and Hennig, W. 1996. Identification and characterization of the Drsophila histone H4 replacement gene. FEBS Lett. 388:219-222.

Alm, R.A., Ling, L.-S.-L., Moir, D.T. et al. and Trust, T.J. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176-180.

Ashburner, M. 1989. Drosophila: a laboratory manual. Cold Spring Harbor Laboratory Press.

Aubry, M., Marineau, C., Zhang, F.R., Zahed, L., Figlewicz, D., Delattre, O., Thomas, G., deJong, P.J., Julien, J.P. and Rouleau, G.A. 1992. Cloning of six new genes with zinc finger motifs mapping to short and long arms of human acrocentric chromosome 22 p and q11.2. Genomics. 13:641-648.

Bardeesy, N. and Pelletier, J. 1998. Nucleic Acids Res. 26:1784-1792.
Bellefroid, E.I., Marine, J.C., Ried, T., Lecorq, P.J., Riviere, M., Amemiya, C., Poncelet, D.A., Coulie, P.G., deJong, P., Spiere, C., Ward, D.C. and Martial, J.A. 1993. Clustered organization of homologous KRABzinc finger genes with enhanced expression in human T lymphoid cells. EMBO. J. 12:1363-1374.

Boulay, J. L., Dennefeld, C. and Alberga, A. 1987. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330:395-398.

Bruening, W., Moffet, P., Chia, S., Heinrich, G. and Pelletier, J. 1996. FEBS Lett. 393:41-47 Brush, D., Dodgson, J.B., Choi, O.R., Stevens, P.W. and Engel, J.D. 1985. Replacement varinat histone genes contain intervening sequences. Mol.Cell.Biol. 5:1307-1317.

Calabro, V., Pengue, G., Bartoli, P.C., Pagliuca, A., Featherstone, T. and Lania, L. 1995. Positional cloning of cDNAs from the human chromosome 3p21-22 region identifies a clustered organization of zinc-finger genes. Hum.Genet. 95:18-21.

Call, K.M., Glaser, T., Ito, C.Y., Buckler, A.J., Pelletier, J., Haber, D.A., Rose, E.A., Dral, A., Yeger, H., Lewis, W.H., Jones, C. and Housman, D.E. 1990. Isolation and characterization of a zinc finger polypeptide gene at human chromosome 11 Wilm's tumor locus. Cell 60:509520.

Choo, Y. and Isalan, M. 2000. Advances in zinc finger engineering. Curr. Opin. Struct. Biol. 10:411-416.

Clarke, N. D., and Berg, J.M. 1998. Zinc fingers in Caenorhabditis elegans: Finding families and probing pathways. Science282:2018-2022.

Constantinous-Deltas, C.D., Gilbert, J., Barlett, R.J., Herbstrith, M., Roses, A.D. and Lee, J.E. 1992. The identification and characterization of KRAB-domain-containing zinc finger proteins. Genomics. 12:581-589.

Darby, M.K. and Joho, K.E. 1992. Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5SRNA gene. Mol.Cell. Biol. 12:3155-3164.
de Celis, J.F., Barrio, R., Kafatos, F.C. 1996. A gene complex acting downstream of dpp in Drosophila wing morphogenesis. Nature. 381(6581):421-424.

Derry, J.M., Jess, U. and Francke, Y. 1995. Cloning and characterization of a novel zinc finger gene in Xp11.2. Genomics. 30:361-365.

Eltrod-Erickson, M., Benson, T.E. and Pabo, C.O. 1998. High-resolution structures of variant Zif268-DNA complexes: inplications for understanding zinc finger-DNA recognition. Structure 6:451-464.

Engels, W. R., Johnson-Schlitz,D.M., Eggleston, W.B. and Sved, J. 1990 High-frequency P element loss in Drosophila is homolog dependent. Cell 62:515-525.

Engels, W.R., 1997. Invasion of P elements. Genetics 14511-14515.
Friesen, W.J. and Darby, M.K. 1997. Phage display of RNA binding zinc fingers from transcription factor IIIA. J. Biol. Chem. 272:10994-10997.

Friesen, W.J. and Darby, M.K. 1998. Specific RNA binding proteins constructed from zinc fingers. Nat. Struct. Biol. 5:543-546.

Gavel, Y. and von Heijne, G. 1990. Sequence differences between glycosylated and nonglycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3:433-442.

Georgopoulos, K., Winandy, S. and Avitahl, N. 1997. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15 :155-176.

Geyer, P. K., Richardson, K.L. Corces, K.L. and Green, M.M. 1988 Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc. Natl. Acad. Sci. USA 85:6455-6459.

Glass, D.B. Smith, S.B. 1983. Phosphorylation by cyclic GMP-dependent protein kinase of a synthetic peptide corresponding to the autophosphorylation site in the enzyme. J. Biol. Chem. 258:14797-14803.

Glass, D.B., El-Maghrabi, M.R., Pilkis, S.J. 1986. Synthetic peptides corresponding to the site phosphorylated in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as substrates of cyclic nucleotide-dependent protein kinases. J. Biol. Chem. 261:2987-2993.

Gloor, G. B., N. A. Nassif, D. M. Johnson-Schlitz, C. R. Preston, and W. R. Engels, 1991 Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253:1110-1117.

Grand, R.J.A. 1989. Acylation of viral and eukaryotic proteins. Biochem. J. 258:625-638.
Hart, M.C., Wang, L. and Coulter. D.E. 1996. Comparison of the structure and expression of odd-skipped and two related genes that code a new family of zinc finger proteins in Drosophila. Genetics 144:171-182.

Heyting, C., Dettmers, R.J., Dietrich, A.J.J., Redeker, E.J.W. and Vink, A.C.G. 1988. Two major components of synaptonemal complexes are specific for meiotic prophase nuclei. Chromosoma 96:325-332.

Heyting, C., Dietrich, A.J.J., Moens, P.B., Dettmers, R.J., Offenberg, H.H., Redeker, E.J.W. and Vink, A.C.G. 1989. Synaptonemal complex proteins. Genome 31:81-87.

Heyting, C., Dietrich, A.J.J., Redeker, E.J.W. and Vink, A.C.G. 1985. Structure and composition of synaptonemal complexes, isolated from rat spermatocytes. Eur. J. Cell Biol. 36:307-314.

Heyting, C., Moens, P.B., van Raamsdonk, W., Dietrich, A.J.J., Vink, A.C.G. and Redeker, E.J.W. 1987. Identification of two major components of the lateral elements of synaptonemal complexes of the rat. Eur. J. Cell Biol. 43:148-154.

Hoheisel, J.D., Lennon, G.G., Zehetner, G. and Lehrach, H. 1991. Use of high coverage reference libraries of Drosophila melanogaster for relational data analysis. J. Mol. Biol. 220:902-914.

Hoovers, J.M.N., Mannens, M., John, R., Bliek, J., van Heyningen, V., Porteus, D. J., Leschot, N., J., Westerveld, A. and Little, P.F.R. 1992. High resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics 12:254-263.

Huebner,K., Druck, T., Croce, C.M. and Thiesen, H.J. 1991. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering. Am. J. Hum. Genet. 48:726-740.

Johnson-Schlitz, D. M. and Engels, W.R. 1993 P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster.. Mol. Cell. Biol. 13:70067018.

Kapitonov V.V., Jurka J 1999 direct submission to the database of repeatitive sequences http://www.girinst.org/

Katti, M.V., Ranjekar, P.K. and Gupta, V.S. 2001 Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18(7):1161-1167.

Kaufman, P. D. and Rio, D.C. 1992 P element transposition in vitro proceeds by a cut-andpaste mechanism and uses GTP as a cofactor. Cell 69:27-39.

Kishimoto, Y., Nishiyama, K., Nakanishi, H., Uratsuji, Y., Nomura, H., Takeyama, Y. And Nishizuka, Y. 1985. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine $3^{\prime}: 5$ '-monophosphate-dependent protein kinase. J. Biol. Chem. 260:1249212499.

Koetsier PA, Schorr J, Doerfler W. 1993. A rapid optimized protocol for downward alkaline Southern blotting of DNA. Biotechniques 15(2):260-262.

Köster, M., Kühn, U., Bouwmeester, T., Nietfeld, W., El-Baradi, T., Knöchel, W. and Pieler, T. 1991. Structure, expression and in vitro functional characterization of a novel RNA binding zinc finger proteinfrom Xenopus EMBO J. 10:3087-3093.

Lammers, J.H.M., Offenberg, H.H., van Aaleren, M., Vink, A.C.G., Dietrich, A.J.J. and Heyting, C. 1994. The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol. Cell. Biol. 14:1137-1146.

Larsson, S.H., Charlieu, J.P., Miyagawa, K., Engelkamp, D., Rassoulzadegan, M., Ross, A., Cuzin, F., can Heyningen, V.and Hastie, N.D. 1995. Cell 81:391-401.

Leon, O. and Roth, M. 2000. Zinc fingers: DNA binding and protein-protein interactions. Biol. Res. 33:21-30.

Li, W. and Graur, D. 1991. Fundamentals of molecular evolution. Sinauer Associates, Inc. Sutherland, Massachusetts.

Lichter, P.,Bray, P., Ried, T., Dawid, I.B. and Ward, D.C. 1992. Clustering of C2H2 zinc finger motif sequences within telomeric and fragile site regions of human chromosomes. Genomics. 13:999-1007.

Lindsley, D.L, and Zimm, G.G. 1992. The genome of Drosophila melanogaster. Academic Press, Sandiego, CA.

Mak, C.H., Li, Z., Allen, C.E., Liu, Y., Wu, L. 1998. KRC transcripts: identification of an unusual alternative splicing event. Immunogenetics 48(1):32-39.

Mathews, F.S. 1985. The structure, function and evolution of cytochromes. Prog. Biophys. Mol. Biol. 45:1-56.

Michael, S.F., Kilfoil, V.J., Schmidt, M.H., Amnn, B.T. and Berg, J.M. 1992. Metal binding and folding properties of a minimalist $\mathrm{Cys}_{2} \mathrm{His}_{2}$ zinc finger peptide. Proc.Natl.Acad.Sci.USA. 89:4798-4800.

Miletich, J.P. and Broze, G.J. Jr. 1990. Beta protein C is not glycosylated at asparagine 329. The rate of translation may influence the frequency of usage at asparagine-X-cysteine sites. J.Biol.Chem. 265:11397-11404.

Misra, S., Hecht, P., Maeda, R. and Anderson, K.V. 1998. Positive and negative regulation of Easter, a member of the serine protease family that controls dorsal-ventral patterning in the Drosophila embryo. Development. 125(7):1261-1267.

Morgan, B., Sun, L., Avitahl, N., Andrikopoulos, K., Ikeda, T., Gonzales, E., Wu, P., Neben, S. and Georgopoulos K. 1997. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16:2004-2013.

Moses, M.J. 1968. Structure and function of the synaptonemal complex. Genetics. 61(1):Suppl:41-51.

Nassif, N., Penny, J., Pal, S., Engels, W.R. and Gloor, G.B. 1994 Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Trends Biochem. Sci. 14:1613-1625.

O'Kane, C.J. and Gehring, M.J. 1987 Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A 84:9123-9127.

Ogura, K., Takechi, S., Nakayama, T. and Yamamoto, M.T. 1996. Molecular structure of the transposable element ninja in Drosophila simulans. Genes Genet Syst 71(1):1-8.

O'Hare, K. and G. M. Rubin, 1983 Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34:25-35.

Ohno, S. 1970. Evolution by gene duplication. (Springer-Verlag, Berlin, New York).
Osley, M.A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60:827-861.

Pavletich, N.P. and Pabo, C.O. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809-817.

Pinna, L.A. 1990. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim. Biophys.Acta 1054:267-284.

Rasmussen, S.W. 1973. Ultrastructural studies of spermatogenesis in Drosophila melanogaster. Meigen. Z. Zellforsch. Mikrosk. Anat. 140:125-144.

Rasmussen, S.W. 1974. Studies on the development and ultrastructure of the synaptonemal complex in Drosophila melanogaster. C.R. Trav. Lab. Carlsberg. 39:443-468.
Rawlings, N.D. and Barret, A.J. 1994. Families of serine peptidases. Methods Enzymol. 244:19-61.

Reuter, D., Kühnlein, R.P., Frommer, G., Barrio, R., Kafatos, F.C., Jäckle, H. and Schuh, R. 1996. Regulation, function and potential origin of the Drosophila gene spalt adjacent, which encodes a secreted protein expressed in the early embryo. Chromosoma. 104:445-454.

Robertson, H.M., Preston, C.R., Phillis, R.W., Johnson-Schlitz, D.M.,, Benz, W.K. and engels, W.R. 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics, 118:461-470.

Rosati, M., Franz, A., Matarazzo, M.R., Grimaldi, G. 1999. Coding region intron/exon organization, alternative splicing, and X-chromosome inactivation of the KRAB/FPB-domain-containing human zinc finger gene ZNF41. Cytogenet Cell Genet. 85(3-4):291-296.

Rousseau-Merck, M.F., Hilton, J., Jonveaux, P., Couillin, P., Seite, P., Thiesen, H.J. and Berger, R. 1993. Chromosomal localization of 9 KOX zinc finger genes: physical linkages suggest clustering of KOX genes on chromosomes 12,16 and 19. Hum. Gene. 92:583-587.

Ruberte, E., Marty, T., Nellen, D., Affolter, M. and Basler, K. 1995 An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80(6):889-897.

Saleh, M., Selleri, L., Little, P.F.R. and Evans, G.A. 1992. Isolation and expression of linked zinc finger gene clusters of human chromosome 11q. Genomics. 14:970-978.

Sambrook, J., Fritsch. E.F. and Maniatis, T. 1989. Molecular cloning:a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press.

Schuh, R., Aider, W., Gaul, U., Cote, S., Preiss, A., Maier, D., Seifert, E., Nauber, U., Schröder, C., Kemier, R. and Jäckle, H. 1986. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell 47:1025-1032.

Schümperli, D. 1986 Cell-cycle regulation of histone gene expression. Cell 45: 471-472. Schümperli, D. 1988 Multilevel regulation of replication-dependent hisstone genes. Trends genet. 4:187-191.

Shannon, M., Ashworth, L.K., Mucenski, M., Lamerdin, J.E., Branscomb, E. and Stubbs, L. 1996. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19 q and mouse chromosome 7. Genomics. 33:112-120.

Shannon, M., Kim, J., Ashworth, L., Branscomb, E. and Stubbs, L. 1998. Tandem zinc-finger gene families in mammals: Insights and unanswered questions. DNA Seq. 8:303-315 Shi, Y. and Berg, J.M. 1995. A direct comparison of the properties of natural and designed zinc-finger proteins. Chem.Biol. 2:83-89.

Smith, A. and Benavente, R. 1992. Identification of a structuralprotein component of rat synaptonemal complexes. Exp. Cell Res. 198:291-297.

Sun, L., Liu, A. and Georgopoulos, K. 1996. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 16:20042016.

Sun, X. 1994. Expression of two Drosophila genes. Ph.D. Thesis.
Supp, D.M., Witte, D.P., Brandford, W.W., Smith, E.P. and Potter, S.S. 1996. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol. 176:284-299.

Thomas, A. and Skolnick, M.H. 1994. A probabilistic model for detecting coding regions in DNA sequences. IMA J Math Appl Med Biol. 11: 149-160.

Tommerup, N. and Vissing, H. 1995. Isolation and fine mapping of 16 novel human zinc finger encoding cDNAs identify putative candidate genes for developmental and malignant disorders. Genomics. 27:259-264.

Towler, D.A., Gordon, J.I., Adams, S.P. and Glaser, L. 1988 The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57:69-99.

Valentin-Hansen, P., Larsen, J.E., Hojrup, P., Short, s.A. and Barbier, C.S. 1986. Nucleotide sequence of the CytR regulatory gene of E.coli K-12. Nucleic Acid Res. 14(5): 2215-2218.

Wells, D. 1986. Compilation analysis of histones and histone genes. Nucleic Acid Res. 14 Suppl, r119-r149.

Wells, d. and McBride, C. 1989. A comprehensive compilation and alignment of histones and histone genes. Nucleic Acid Res. 17 Suppl. 311-346.

Wieschaus, E., Nüsslein-Volhard, C. and Kluding, H. 1984. Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev. Biol. 104:172186.

Wolfe, S.A., Nekludova, L. and Pabo, C.O. 2000. DNA recognition by $\mathrm{Cys}_{2} \mathrm{His}_{2}$ zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29:183-212.

Woodgett, J.R., Gould, K.L. and Hunter, T 1986. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur. J. Biochem. 161:177-184.

Xiong, Y., Burke, W.D. and Eickbush, T.H. 1993 Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res., 21: 2117-2123.

Appendix I:

The genomic structure of the genes $T z f$ and $T z f 2$

TZF2

TZF

Genomic organization of TZF and TZF2

1. The ATG of TZF and TZF2 are underlined. Bold letters are from the coding exons.
2. The restriction sites used in subcloning are highlighted in the same colour as in the restriction map.
3. Some primers have several altered nucleotides compared to the original sequence to create a restriction site at the 5^{\prime} end. The restriction sites are underlined.

1 CTGCAGGCCT CCCACAGCGC GCCCCTGCAC ACGAACGGTG GCCAACAGTT 51 GGTCAGTCCG GGTGGCAATA ATAACAATGT TAAGATCAAC TCACTGATTA 101 GCCGGGAGCC GCTGGGGCGC ACCAAGTCAA ATACCATCGA GCAGGTATGT 151 CAGGGCTTCT CCGCTCAAAT GGATCTTTCA GAGGGTGCCG TGGAATCCAG 201 CCAGCCCAAC CGCCACAAGA AGCTGCAGGC CTCCCACAGC GCGCCCCTGC 251 ACACGAACGG TGGCCAACAG TTGGTCAGTC CGGGTGGCAA TAATAACAAT 301 GTTAAGATCA ACTCACTGAT TAGCCGGGAG CCGCTGGGGC GCACCAAGTC 351 AAATACCATC GAGCAGGTAT GTCAGGGCTT CTCCGCTCAA ATGGATCTTT 401 CAGAGGGTGC CGTGGAAGCC AGCCAGCCCA ACCGCCACAA GAAGCTGCAG 451 CGCCAACAAC CGCCGCCCGC CTACCGCCTG CTGGTGCCCA CCTACAGTGC 501 TCCCCTCCAG CAACAACAAC ACCAGGCACA GCAGCAGCAT CAACAGTCCA 551 ACTCCAGCAC CAACTATCAC CACCAGTATC TGACGCGCAC GCCATCCGCC 601 CCGGTCACGG ATCAGGGACT GGGTCTGCCA CTGCCCGCTC ACAACTTCGC 651 CCATCTGTCT GCCTCCGATT CGCGCATCAA CGAGGAGCTG CACGCCTCGC 701 AGCAGCTTCC GCGGGAGGAG CAGCGCCGAT TGCTGCGCTA TCACCTGGGC 751 AGCCTTTTCC CACCGCACCA GGTGCATGCC GTACTGCAGC TCTATCCGGA 801 GGAGACCGAC GCCAAGACCA TATGCGCGGC TATTCTTAAT TTATTTCCGC 851 ATAATTAGGC TAGGCTTAAA TTTCATCAAT ATAATTAGAT GTGTAATTAC 901 ACGCGTGTTT CTGCTTAAAG TGTAAAGTGT CGCTTTGGGA CGACGTGGAG 951 TCCTCGCTCG AAATTTACAT ATCCAGGCCA ACGATGTTGG CCGTGTCGTA CGCTCGAGAATTTACAT ATCCAGGCCA ACGATG PrimerGW1 $\begin{array}{llllllllllll}* & \mathbf{M} & \mathrm{D} & \mathrm{L} & \mathbf{G} & \mathrm{V} & \mathbf{I} & \mathbf{N} & \mathbf{A} & \mathbf{T} & \mathrm{D} & \mathbf{Y}\end{array}$
1001 GGACACCAGC CCGGCTACGG ATTCCCGTGC GGACTGGCCG CGCCTCTCGT $\begin{array}{lllllllllllllllll}\mathbf{S} & \mathrm{V} & \mathrm{L} & \mathrm{G} & \mathrm{A} & \mathrm{V} & \mathbf{S} & \mathrm{E} & \mathrm{R} & \mathbf{A} & \mathbf{S} & \mathbf{Q} & \mathbf{G} & \mathrm{R} & \mathrm{R} & \mathrm{E} & \mathrm{H}\end{array}$

1051 GGATGACCCG GTGGTTACGC AGTTTGTACG CCTGCGGGAA TCCCTTGCCG $\begin{array}{lllllllllllllllll}I & V & R & H & N & R & L & K & Y & A & Q & P & F & G & K & G & C\end{array}$
1101 CACACATCGC AGCTAAAGAG AGAGAGCAAA CGTGTTTTAA ATTGATTAGA V D C V
1151 aTCCtTGATT AATTATGTCT TCCtTATaAC TTATaATATT TAAACACTAA
1201 TACTTCATTC CCTGTTTATC TAATGTTATT TACGCCTCAG GCACCTAATA
1251 AACAATCAaC TAAACTCAAA ATATTAATAT ACTACGTAAT ATTCGTAAAC
1301 AAtAATCTTT TGAAACAGCA TGGCTCTTTC AAAATAGTTT CCACTGTGAA
1351 TTGTACATTC TTATAGAATA AAAAGTATAT TTTTATAAC GATTTCCATC
1401 TCTCTATATC AAAAAAAAAA CTCAATCTGG TTCTGAAGCT AGTGTATGCA
1451 TAAACAATCT GTGAAACAGT GAAAGTTCGT GCTAGAGAAT ACGGACTGTA
1501 ACCGCCAGGG GGAAAGCGAA ACTTACACGT GCGGCTTCTC TCCCGTATGA $\begin{array}{llllllll}H & P & K & E & G & T & H & I\end{array}$
1551 ATCATTTTGT GGAACTTCAA GGTGTTGGTG TAAGTGAATG TCTTGTGGCA $\begin{array}{llllllllllllllll}\mathbf{M} & \mathrm{K} & \mathrm{H} & \mathrm{F} & \mathrm{K} & \mathrm{L} & \mathrm{T} & \mathrm{N} & \mathrm{T} & \mathbf{Y} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{C}\end{array}$
1601 AACATCGCAC TCGTAGGGTC GCTCGTTGGT GTGGATTCTG CAAACGGGTA $\begin{array}{lllllllllllll}\mathrm{V} & \mathrm{D} & \mathrm{C} & \mathrm{E} & \mathrm{Y} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{H} & \mathrm{I} & \mathrm{R}\end{array}$

1651 ATTATTCAAT CAAATCGGGT TTGGATTGGA GCTCACCaAC TtACCTgTGG
1701 TGCTTGTTAC gCGTGgACAA gTCGGCGAAG gCTgCCGGgC AATAgCTGCA $\begin{array}{llllllllllllllll}\mathrm{K} & \mathrm{N} & \mathrm{R} & \mathrm{T} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{A} & \mathrm{F} & \mathrm{A} & \mathrm{A} & \mathrm{P} & \mathrm{C} & \mathrm{Y} & \mathrm{S} & \mathrm{C}\end{array}$
1751 TTTGTACGGC CGATTTCCGG TGTGGgTGTT CATGTGGCGT GCCAGCTGCT $\begin{array}{llllllllllllllllll}\mathrm{K} & \mathrm{Y} & \mathrm{P} & \mathrm{R} & \mathrm{N} & \mathrm{G} & \mathrm{T} & \mathrm{H} & \mathbf{T} & \mathrm{N} & \mathrm{M} & \mathrm{H} & \mathrm{R} & \mathrm{A} & \mathrm{L} & \mathrm{Q} & \mathbf{Q}\end{array}$
1801 GAGCCTGGGC GAAGCAATGA CCACAGATCC TGAAAAATGA GATTTTAAGT $\begin{array}{llllllllll}A & Q & A & F & C & H & G & C & I & E\end{array}$
1851 TAATGAAGGC TTATTGAAAA TGATTAATTA CTTCCACACA ATCATTATAC
1901 CCGAATTAGA CGGATATATG AGCTAAAATC GTAATAACAC TCCAAAGAAC
1951 ATAGTGAACA CGCAGTAAAA ACTGTGAAGT TACTTACTCG CACTCGTGCG C $\quad \mathrm{E} \quad \mathrm{H} \quad \mathrm{P}$
2001 GCTTCACGCC GGAGTGGACC TTGATGTGCT CGGTAAGGCG ACTCTGGGAG $\begin{array}{lllllllllllllllll}K & V & G & S & H & V & K & I & H & E & T & L & R & S & Q & S & P\end{array}$
2051 GGATACATGT TGCCGCAGAC ATCGCAGATG TACTTGAACT CCTTCTtGTC $\begin{array}{llllllllllllllll}\mathbf{Y} & \mathrm{M} & \mathrm{N} & \mathrm{G} & \mathrm{C} & \mathrm{V} & \mathrm{D} & \mathrm{C} & \mathrm{I} & \mathrm{Y} & \mathrm{K} & \mathrm{F} & \mathrm{E} & \mathrm{K} & \mathrm{K} & \mathrm{D}\end{array}$
2101 GcCAAGAAGG aTCTTGTGGc CgCCTtTGGT tTTAaTGcCG GAATGcTTGC $\begin{array}{lllllllllllllllll}G & L & L & I & K & H & G & G & K & T & K & I & G & S & H & K & R\end{array}$
2151 GCGCCAGCAC CTCGCCAATC GAGATGTCCT TCTCGGATTT GATGCTCATT $\begin{array}{lllllllllllllllll}\text { A } & \mathrm{L} & \mathrm{V} & \mathrm{E} & \mathrm{G} & \mathrm{I} & \mathrm{S} & \mathrm{I} & \mathrm{D} & \mathrm{K} & \mathrm{E} & \mathrm{S} & \mathrm{K} & \mathrm{I} & \mathrm{S} & \mathrm{M} & \mathrm{K}\end{array}$
2201 TTGCTGCCAG CCGAATCACT GTTACCCCGC CGTACCTTAA GTGGATTGCC $\begin{array}{llllllllllllllll}\text { S } & G & A & S & D & S & N & G & R & R & V & K & L & P & N & G\end{array}$
2251 GCGGTCAGTT GTCTTGGAGG TACTCGATTC TACAGCCACC GAGGCCGTCG $\begin{array}{lllllllllllllllll}R & D & T & T & K & S & T & S & S & E & V & A & V & S & A & T & S\end{array}$
2301 ATGTAGCTGA CCTGCGGGGA TTCACTCTCC GCTTGGTGGC ATTCCGCGCA $\begin{array}{lllllllllllllllll}T & A & S & R & R & P & N & V & R & R & K & T & A & N & R & A & H\end{array}$
2351 TGGATGGACG CGCGAAcGCT TTTTGAGGGA ACGAACTCCT CTTCGGTTGA $\begin{array}{llllllllllllllll}I & S & A & R & V & S & K & S & P & V & F & E & E & E & T & S\end{array}$
2401 GTTCAGATCG ACTTCCGCAT CATCCTCGTG GGCACTTTCG GTCAACTGAT $\begin{array}{llllllllllllllllll}\text { N } & \mathrm{L} & \mathrm{D} & \mathrm{V} & \mathrm{E} & \mathrm{A} & \mathrm{D} & \mathrm{D} & \mathrm{E} & \mathrm{H} & \text { A } & \mathrm{S} & \mathrm{E} & \mathrm{T} & \mathrm{L} & \text { Q } & \mathrm{D}\end{array}$
2451 CATGCTCGAC CTGGTCCAGG TATTCGATTT CGGCAGATAA CTCGGACAGG $\begin{array}{lllllllllllllllll}\text { H } & \mathrm{E} & \mathrm{V} & \mathrm{Q} & \mathrm{D} & \mathrm{L} & \mathrm{Y} & \mathrm{E} & \mathrm{I} & \mathrm{E} & \mathrm{A} & \mathrm{S} & \mathrm{L} & \mathrm{E} & \mathrm{S} & \mathrm{L} & \text { A }\end{array}$

2501 GCTTGATCGG CCATCTCGTG GTCATAGCCC TGATCTGGGA TGAGGTCGCC $\begin{array}{llllllllllllllll}\text { Q } & \mathrm{D} & \mathrm{A} & \mathrm{M} & \mathrm{E} & \mathrm{H} & \mathrm{D} & \mathbf{Y} & \mathrm{G} & \mathrm{Q} & \mathrm{D} & \mathrm{P} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{G}\end{array}$
2551 СТСGTACGTC TCATACACGT CATAAACCTC СTCGATTATG CCGTCCTCCT $\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{Y} & \mathrm{T} & \mathrm{E} & \mathrm{Y} & \mathrm{V} & \mathrm{D} & \mathrm{Y} & \mathrm{V} & \mathrm{E} & \mathrm{E} & \mathrm{I} & \mathrm{I} & \mathrm{G} & \mathrm{D} & \mathrm{E} & \mathrm{E}\end{array}$
2601 CCACCTGCTC GTTCTTCACG TGCACAATCC GATCCTTTTC CAGCTCAACG $\begin{array}{lllllllllllllllll}\mathrm{V} & \mathrm{Q} & \mathrm{E} & \mathrm{N} & \mathrm{K} & \mathrm{V} & \mathrm{H} & \mathrm{V} & \mathrm{I} & \mathrm{R} & \mathrm{D} & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{V} & \mathrm{L}\end{array}$
2651 AGGATACCAT ССТСААТСТС GTCATGGAAG ACACCACCCT GCGTTTCGGC $\begin{array}{llllllllllllllll}I & G & D & E & I & E & D & H & F & V & G & G & Q & T & E & A\end{array}$
2701 GGCATCGTCC GCCTCGGCAT AGTGGCTCTC GTCCAGGTCC ACATCCTCGT $\begin{array}{lllllllllllllllll}\text { A } & \mathrm{D} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{A} & \mathbf{Y} & \mathrm{H} & \mathbf{S} & \mathrm{E} & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{V} & \mathrm{D} & \mathrm{E} & \mathrm{D}\end{array}$
 $\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{E} & \mathrm{D} & \mathrm{H} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{Q} & \mathrm{E} & \mathrm{A} & \mathrm{E} & \mathrm{D} & \mathrm{P} & \mathrm{D} & \mathrm{V} & \mathrm{D} & \mathrm{P}\end{array}$ 2801 GgCTCCAGCT TGGTGgCTGT СTCTGAGCCC TTTTTCTCCG GTGGTCGCTG $\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathrm{A} & \mathrm{T} & \mathrm{E} & \mathrm{S} & \mathrm{G} & \mathrm{K} & \mathrm{K} & \mathrm{E} & \mathrm{P} & \mathrm{P} & \mathrm{R} & \mathbf{Q}\end{array}$
2851 CTCCACCTCT ACGGGTCCAA CGAACTGGCG CAGATGGCCG TACGATCTTT $\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{V} & \mathrm{E} & \mathrm{V} & \mathrm{P} & \mathrm{G} & \mathrm{V} & \mathrm{F} & \mathbf{Q} & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathrm{G} & \mathrm{Y} & \mathrm{S} & \mathrm{R} & \mathbf{Q}\end{array}$
2901 GGCAGGTCTC TCGAAACTTA AATGCCATTT TCAGCACCTT GAAGCACTTC $\begin{array}{lllllllllllllllll}\text { C } & \mathbf{T} & \mathrm{E} & \mathrm{R} & \mathrm{F} & \mathrm{K} & \mathrm{F} & \mathrm{A} & \mathrm{M} & \mathrm{K} & \mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{F} & \mathrm{C} & \mathrm{K} & \mathrm{E}\end{array}$
2951 TCGCATATCT TGTCCGGATA GTGATCGAAC TGTTTGATCT GCCAAGGAAA $\begin{array}{llllllllllll}C & I & K & D & P & Y & H & D & F & Q & K & I\end{array}$
3001 TTGCATTGTT ATATGGTTCG GGGTCCAATG GGACAAACTT ACGGGCACTC P V G GTGAG CGCTTAGTAC ACCCAGTCTA G AAA Primer GW2
3051 CGCCGCACTC GCGAATCATG TGGGTCAGAT CCTTTTCCGA ATCGTCGTTG $\begin{array}{lllllllllllllllll}\text { G } & \mathbf{C} & \mathrm{E} & \mathrm{R} & \mathrm{I} & \mathrm{M} & \mathrm{H} & \mathrm{T} & \mathrm{L} & \mathrm{D} & \mathrm{K} & \mathrm{E} & \mathrm{S} & \mathrm{D} & \mathrm{D} & \mathrm{N} & \mathrm{F}\end{array}$ CAGGATCCGCACTC GCGAATCATG T Primer CX4
3101 AA $\overline{A \bar{A} T G C T G G ~ C C A T G G G C T C ~ C T T T G G G C T G C ~ T G C A G G C A A A ~ C C C G G C A A A C ~}$ TGC TGCAGGCAAA CCCGGCAAAC $\begin{array}{llllllllllllllll}I & S & A & M & P & E & K & P & Q & Q & L & C & V & R & C & V\end{array}$
3151 GATCCACTTC TGCGTGCTCG TTGCCGCTGC CGCCGGACTC GCATGTGCTG $\overrightarrow{\text { GAP }}$ PrimerCXI
$\begin{array}{llllllllllllllll}\mathbf{I} & \mathbf{W} & \mathrm{K} & \mathbf{Q} & \mathbf{T} & \mathbf{S} & \mathbf{T} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{P} & \mathbf{S} & \text { A } & \mathbf{H} & \text { A }\end{array} \mathbf{A}$
3201 CCGAGTCTCT CATTGTCGCG AATAGGAGAT GGATCTCTTC CAGGAGGCTA $S \quad D \quad R \quad M$

TZF2gene

3251
3301
3351
3401
3451
3501 ATATATAAAA GCTTGATTAA GCAGTTTAAT ACAATATTAT ATGTCAAGCT
3551 CATGTAAAGT TCCATCGTTC CATAAGACAG TGTGGTCATT ACTGTACTGA
3601 AACAAAACTA CTTTGATAGA ATAGTGCTTT TCCTTTTTAT TATATAAACG
3651 AACTTAAAAC CATTTTCCTT CAATATTTGT AAATTGAAAA TAAAATTAAT
3701 AAAATGACGC GCATTTtTAT ATTATTTTCT ACCAAAAAAA AATTATTTAA
3751 AACATTTGTT TGGTAAAAAG TGCACATACA GCTATGTACC CTGTACGCTC
3801 CATGTAGTCG TTCATAACGT GCATTCACCG TATCAACTTT GGCGGGCGCG
3851 TTTCGCTGTG AATGGCCAGT GGCCGTGGAC GCTTAAATTC AGCTGTTTGA
3901 ATCTTCTGCA ACAACCGAAG TGATTGTTTT ATCGAATTAG CCATGAAAAC M_I T TZFgene
$3951<T G A G T C C A A C$ GAGAAGTGGG TGGTGTGCCG CGTTHGCCTG AACAATCCCA
$\begin{array}{lllllllllllllllll}\mathrm{E} & \mathbf{S} & \mathrm{N} & \mathrm{E} & \mathrm{K} & \mathrm{W} & \mathrm{V} & \mathrm{V} & \mathrm{C} & \mathrm{R} & \mathrm{V} & \mathrm{C} & \mathrm{L} & \mathrm{N} & \mathrm{N} & \mathrm{P} & \mathbf{S}\end{array}$
4001 GCGAGGGCGA GGAGCTGCTC CACGACATAT TCAGCGAAAC GGCAAGCACG CGCTCCTAGGCA Primer DM5
$\begin{array}{lllllllllllllll}\text { E } & \mathbf{G} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{H} & \mathrm{D} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{E} & \mathrm{T} & \mathrm{A} & \mathbf{S}\end{array} \mathrm{T}$
4051 CGACTGGACC AAATGCTGCA CATTTGCGCA GGCATTCCAG TAAGTGTGAA $\begin{array}{lllllllllllll}R & L & D & Q & M & L & H & I & C & A & G & I & P\end{array}$
4101 TCCTGCTTGG TTTGcCCATT TTAAATTATT CCAACCCAAA CAGGTCAGCC V S L
4151 TAGATGACAA CTTCCCGGAC AAGATGTGCA GCAAGTGCGT GCGCTGCCTG
$\begin{array}{llllllllllllllll}\mathrm{D} & \mathrm{D} & \mathrm{N} & \mathrm{F} & \mathrm{P} & \mathrm{D} & \mathrm{K} & \mathrm{M} & \mathrm{C} & \mathrm{S} & \mathrm{K} & \mathrm{C} & \mathrm{V} & \mathrm{R} & \mathrm{C} & \mathrm{L}\end{array}$
4201 CGGCTCTGCT ACAAGTTCCG TCTGACATGC CAGCGATCCC ATCAGCACAT $\begin{array}{lllllllllllllllll}R & L & C & Y & K & F & R & L & T & C & Q & R & S & H & Q & H & I\end{array}$
4251 TATGGACATG CTGGACCGGG AGGCCAGCAA TGCTAACGCC GCCGGCGAAG $\begin{array}{lllllllllllllllll}M & D & M & L & D & R & E & A & S & N & A & N & A & A & G & E & G\end{array}$
4301 GGGATTTGCT TAGCATCGCG GAGGACCTTT CGGTGGAGAG CGTACTGAAG
$\begin{array}{llllllllllllllll}D & L & L & S & I & A & E & D & L & S & V & E & S & V & L & K\end{array}$
4351 TCGTGGGAGG ACTACGCCAG TCAGCTGGAT GGCGGCATGA AAGTGGAGGG $\begin{array}{lllllllllllllllll}S & W & E & D & Y & A & S & Q & L & D & G & G & M & K & V & E & G\end{array}$
4401 CGAGGAGGAT CAGCAACATC AGGTTATCAC CTATGTCGTG GAGGATGGTG
$\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{E} & \mathrm{D} & \mathrm{Q} & \mathrm{Q} & \mathrm{H} & \mathrm{Q} & \mathrm{V} & \mathrm{I} & \mathrm{T} & \mathrm{Y} & \mathrm{V} & \mathrm{V} & \mathrm{E} & \mathrm{D} & \mathrm{G} & \mathrm{D}\end{array}$
4451 ATACTGATGA TACCAATATG TTCGATGTGC ACGATCCCAC GCAGCCGGTG
$\begin{array}{llllllllllllllll}T & D & D & T & N & M & F & D & V & H & D & P & T & Q & P & V\end{array}$
4501 CCAAATGAGA TCGAGGAGGC TGAAACCTAT GCTGAATACG AGGAATACGA $\begin{array}{lllllllllllllllll}\mathbf{P} & \mathrm{N} & \mathrm{E} & \mathrm{I} & \mathrm{E} & \mathrm{E} & \mathrm{A} & \mathrm{E} & \mathrm{T} & \mathrm{Y} & \mathrm{A} & \mathrm{E} & \mathrm{Y} & \mathrm{E} & \mathrm{E} & \mathrm{Y} & \mathrm{E}\end{array}$
4551 ACTGCTCACC AACGAAAACT CGCCGGAAAT CGCACAGGAA AAAGGCTCCA $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{L} & \mathrm{T} & \mathrm{N} & \mathrm{E} & \mathrm{N} & \mathrm{S} & \mathrm{P} & \mathrm{E} & \mathrm{I} & \mathrm{A} & \mathbf{Q} & \mathrm{E} & \mathrm{K} & \mathrm{G} & \mathrm{S} & \mathrm{T}\end{array}$
4601 CCGGCACAGA TGTTGCCACA GAGGAGCCGC CCGAAGAAGA AATTGCTGAA $\begin{array}{llllllllllllllll}\mathrm{G} & \mathrm{T} & \mathrm{D} & \mathrm{V} & \mathrm{A} & \mathrm{T} & \mathrm{E} & \mathrm{E} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{I} & \mathrm{A} & \mathrm{E}\end{array}$
4651 GACATACTCG ACTCTGACGA AGATTATGAC CCAACTCATG CTAAGCCGGA $\begin{array}{lllllllllllllllll}\text { D } & \text { I } & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{D} & \mathrm{Y} & \mathrm{D} & \mathrm{P} & \mathrm{T} & \mathrm{H} & \mathrm{A} & \mathrm{K} & \mathrm{P} & \mathrm{E}\end{array}$
4701 AAAATGCGAC CGATCGGGCA GGAAGCCAGT TGcATACCAC AAGAaTAGCC $\begin{array}{lllllllllllllllll}\mathrm{K} & \mathrm{C} & \mathrm{D} & \mathrm{R} & \mathrm{S} & \mathrm{G} & \mathrm{R} & \mathrm{K} & \mathrm{P} & \mathrm{V} & \mathrm{A} & \mathrm{Y} & \mathrm{H} & \mathrm{K} & \mathrm{N} & \mathrm{S} & \mathrm{P}\end{array}$
4751 CaAAAGTGGA AACCTtCAAA AAGAAGGTGG GCAGAAAGCC GcgCAACAAg $\begin{array}{llllllllllllllll}\mathrm{K} & \mathrm{V} & \mathrm{E} & \mathrm{T} & \mathrm{F} & \mathrm{K} & \mathrm{K} & \mathrm{K} & \mathrm{V} & \mathrm{G} & \mathrm{R} & \mathrm{K} & \mathrm{P} & \mathrm{R} & \mathrm{N} & \mathrm{K}\end{array}$
4801 CTGAGcAcat AcAtCtGCGa TgTgTGCGGA AAtATCTATC CGACTCAGGC $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{S} & \mathrm{T} & \mathrm{Y} & \mathrm{I} & \mathrm{C} & \mathrm{D} & \mathrm{V} & \mathrm{C} & \mathrm{G} & \mathrm{N} & \mathrm{I} & \mathrm{Y} & \mathrm{P} & \mathrm{T} & \mathbf{Q} & \mathrm{A}\end{array}$
4851 gCgTCTCACC GAgCACATGA aATTCCATTC TGgTGTTAAa CCACACGAGT $\begin{array}{lllllllllllllllll}\text { R } & \mathrm{L} & \mathbf{T} & \mathrm{E} & \mathrm{H} & \mathrm{M} & \mathrm{K} & \mathrm{F} & \mathrm{H} & \mathrm{S} & \mathrm{G} & \mathrm{V} & \mathrm{K} & \mathrm{P} & \mathrm{H} & \mathrm{E} & \mathrm{C}\end{array}$
4901 GCGAGTAGGT TTAAAAGTTG AAAGTAAATA GTAACTATGg CTAATAGGAT E
4951 GTTATTATAG GATCTGCGGA AGAGGCTTTG TGCAGAATCA ACAGCTGGTA $\begin{array}{lllllllllllll}I & C & G & R & G & F & V & Q & N & Q & Q & L & V\end{array}$
5001 CGGCACATGA ACACTCACAC GGGGAACCGA CCATACAAGT GCAACTACTG $\begin{array}{lllllllllllllllll}\mathrm{R} & \mathrm{H} & \mathbf{M} & \mathrm{N} & \mathbf{T} & \mathrm{H} & \mathbf{T} & \mathbf{G} & \mathbf{N} & \mathrm{R} & \mathrm{P} & \mathrm{Y} & \mathrm{K} & \mathrm{C} & \mathrm{N} & \mathbf{Y} & \mathbf{C}\end{array}$
5051 TCCAGCTGCC TTCGCCGATC GATCCACGAA AACCAAACAT CATAGGTGAG $\begin{array}{llllllllllllllll}\mathbf{P} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{A} & \mathrm{D} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{K} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{H} & \mathrm{R}\end{array}$
5101 AAATATTCGA AACAGTTGAA AGTAAATTAA ACTGACATTA TTTCTCTCCA 5151 GAATTCACAC TAAGGAGCGT CCCTACGTGT GCGACGTTTG CTCCAGAACG $\begin{array}{llllllllllllllll}I & H & T & K & E & R & P & Y & V & C & D & V & C & S & R & T\end{array}$
5201 TTTACCTACT CGGACAACCT GAAGTTCCAC AAGATGATTC ACACGGGGGA $\begin{array}{llllllllllllllllll}\mathbf{F} & \mathbf{T} & \mathrm{Y} & \mathrm{S} & \mathrm{D} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{F} & \mathrm{H} & \mathrm{K} & \mathrm{M} & \mathrm{I} & \mathrm{H} & \mathrm{T} & \mathrm{G} & \mathrm{E}\end{array}$

5251 GAAGCCGCAT GTGTAAGCAT CAACATATTT TACTACTTCA TTATCCTGCA $\begin{array}{llll}\mathrm{K} & \mathrm{P} & \mathrm{H} & \mathrm{V}\end{array}$
5301 ATAATAGCTA TTCTCTTTCA GCTGTGATCT TTGTGGCAAA GGATTTGTGA $\begin{array}{llllllllll}C & D & L & C & G & K & G & F & V & K\end{array}$
5351 AGGCCTACAA ATTGCGTTTG CATCGGGAAA CGCATAATAG ACGTATCACC $\begin{array}{llllllllllllllll}A & \mathbf{Y} & \mathrm{~K} & \mathrm{~L} & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathbf{R} & \mathbf{E} & \mathbf{T} & \mathrm{H} & \mathrm{N} & \mathrm{R} & \mathrm{R} & \mathrm{I} & \mathbf{T}\end{array}$
5401 TGGAGAAATG ACGCAGAAGA GAGCACCAAA GCAGAAGATG TCAAGGGGGA

5451 AaCGCCGGAG TTTCTCAATG AACTCCCCAA AGAGTGACAT GTTCTTTTTA $\begin{array}{llllllllllll}\mathbf{T} & \mathbf{P} & \mathbf{E} & \mathbf{F} & \mathrm{L} & \mathbf{N} & \mathbf{E} & \mathrm{L} & \mathbf{P} & \mathrm{K} & \mathbf{E} & \text { * }\end{array}$
5501 GTTCTTATGC AAAGTTTAGT CTAAGTATTT AGTAAGCCGT TGTTTAAGTT 5551 CTTCCATTAA GCAAATAAAT GTACACAGGA TATAtTTTTT TGTACAATTT 5601 GTTTTTTATT TCTTATAAAA AATTAAATAA GGAAAATGAC AAATTTTAAT 5651 GGCGGTGCCC TATGGCTTAG AACTTATCCA TTAATATATT GTACAATTTT 5701 CAACGAGAAA CTTATTTAAT TTGCACCTCA ATGTTTCCTC TTAGTCACTG 5751 CAATCATTTC ACCTCTTTCG TCCTTTTGTG TGACTTTTCG TGGGCGTTTT 5801 GTGGTGCAGC TGGGAGAAGG ACTTCTGGCA GTACTGGCAG CTAAATGGTC 5851 GTTCACCGGT ATGGGTTTTC AGATGAACCC GGAGGACGTT GGAGTAGCCA 5901 AAGGACCTGC TGCAGAACTC GCATTTGTAC GGTCGTTCGT TGGTGTGGAT 5951 CC

Enzyme Abbreviations:

Bm: BamHI
P : PstI
Sp : SphI
D : DraI
S : SacI
$\mathrm{X}: \mathrm{XmnI}$
Pv: PvuII
Hi : HincII
E: EcoRI
A: SalI
: HaeIII

Appendix II:

The complete sequence of the cosmid 19G11

```
GGATCAAGTT GTGGAAGTTC GAGTTCAATT GGGTAGGGAG AGATACTGTG
GTGAATCACC CACCTGGACG TCGTTGCCCC GCACTCCGCA CTGATTATCA
CGGAGCAGGT TGCGATCGCT CTGGCTGAGA TTGCCGGATA GCAGGATTCT
CATGAAGTAG TCACACTCCC GGATCGAAAT GCAGTGACCG GTGACACGGC
CACTCGGAAT TTTTGCAACA CAATTGATGG GCGGGAGTTG AGCTGGAATA
TCGGAGATCG GGGATCGTCC CACGTTAACT TAAGTTCACA GCCAGACTTG
TTTACGATCC CGTATTCCGT ACACACTCAC CATTCGCGCC CAATGCCAGC
GAGCCGACAA CAACAAGTAG AGCTGGAAAA CTTCCCATGC CGGACCGGAT
CGATCAGATA CGATACAGCT GAGCGGAACG AATGAGACTG CGATCGAAGC
TGAGTCTGAG ATTAACATTA AGTTCGGCCG GTGCCTGTGA ATTACCAGAG
AGTCGCTTTC GGACCGGGTT CAGATAACAT AATCGTAGTT GTGCAACTGG
GGGGCTTTGT AGAGCTTTTA ATGCCCTGCA CTACGGCATA TTCACTTACA
ATGAGTTGTC GAGATTTCAG CGTGTTACGC TTAGATGAGA TCTAGTAATT
AATATTTTAT TTGTGGAATA AGCTCACAAG CTAATACTGA TATACTGATC
GTGATTTTAA AAGTCTCCCA TTTGGAGACG TTAGAAATTC GAATGCCGAA
CATCTTAAGT GGAGCCTCTC ATATGTTCGG CATCTCGGCG TTTAGTTGTG
    WG209
GTGTGAATTA ACCATGACCG GGTTGAAAAT TTGTCGGAAC TCGCTTGCAG
GCTGATGAAG GATGTTTGAA GTCGGAAATT GAATGACTAC ACGATGACCG
CCAACTAGTG TGCCCAGGTG GACGAGATCG CAGAGTTGCC TTGGTCAGCT
AGTATGACCA GCTGTGCAGC GTTCGATAAC GTGATATCGG CGCGAATTGA
ATTTTGGCGC GGAGGTTTTT CCTCTATGAC TCTTCTTTAA ACCTACTTTT
GTTGTTCTTT ATGTCGTTAT TTAATGGTAT TTGTCGGGTA TATGATCTTT
GGCTTGCCTT TACTCGAGAA TCCATCTGGG TATCAGCCGC GAGAGAAATC
    TTTCAGTGCA ACCCACACGG GTATCATTCG CACACTCCCC AGGAGGAGTC
    TATGGGCTCA CAACTTCAAA TTCAGCAGCA GCAGACATTG TCCGGACCCG
    GATCCATCAC ATTAACAGCA TCGCCACAAC TGCCTATCTC TATCAGTAGA
    ATGCGACAGC ATCAGCGGCT ACTCCAACAT AGTTCATCTG GCTCTGGGAG
    GCCTTTTGCG GCCGATCATT TTATCCTGCC GCCAAGAAAT ATTGCGCAAT
    AGTGGTTCCA AAGCTAAACC ACAGTAGAGA TACAAATCAA ACTGCAGAGC
    CGACCAATCA GACCGCCGGT GCTCTGATTG GCCGCCCATT GGAGACTGCG
```

1601 ACTACCTACT ATACGTACCT ACTACGTTAA TAGGAGTGCG AACTAGAACA
1651 TTTACATATT TTTGGCGTAC CGATACTAAT CAGCAAGACA AATAAAATGT

1701 AAAGAAATTG TTCAAAAGTG GGAGTTTTGG GCGGTTAGTG AGCGTTAAAG

2901 TGCTGAAAAT CAAAGCACAG TTAAAAATCA AAAGACCCTG CGTGTGCAAC
2951 TCTAAACGCA AGTGTATCTG TGAGTGTGTG GGTTTGGTGG GGGGCTGTGT

3001 GGCGGAAGGA AGCGAAAGAG CCGCTAAAGA GAAGCAGAAA AAAGGGCGAG

GgCGACTGCT GGTCGAAACA AAAAAAAAAG AGAAAAAAAC GGATGGGGGA AACAGAGAAA TCATAAAAAC GCCGGCAACA GCGATTCTCG AGTGCCCTTC CCGCCACTCC CCAACAGTTG CCATCCCACC CCTCGCAGCG GCGGCACACC CACAAACCAC AAAGCGAATG ACAAACAAAA CTAAACAAAA AGCTAAAAGA AATTCAAGAC GCGCTCCCCA CTGAAAGTTC GTTTACACGG AATTGGTTAT TTGTtTtGTT TAGTTtTGGA AAttTGTtTA TTGGCGACAT ATGTGTGGTG ATGAACCTCC CCCTCCGCCC GCTCTTAGTT ATCGTGTGCA TGTGTGTGTT
 tatattgctg AAAttcttca caigagttga gtanagtccg tgaganaccg AGATTATCGT TAACTTGGTT TTAACGGAAC AGATGTGTGT GTTTTTTTTT WG251 TCATACCAAC AACAGCTGCC GCTCACTACC TACAACAACA ACAAAAAGAG CAACATAATA AAACCTCGAA TAACGAAAAT TTCGTACACT TTTATAAAAA AACAAAATAG TGATCGTAAG CCTTGGATAT TTTATTGTGT GAATAATTCT GTTTTAACTT AATTCGCCTT ATAATTATGA TACTGTTATA AAATAATACT TATTGCACCA AGAAATCACA AAACAGCTAA GGCCAAAGGA AGTGTTTTAT ATCGGAGATT TACTTTCATG TTAAAATGGA AAAGTAAAGA AAATTACCAC ATTAATTGGA TCTATCATGC GGATGAATTG TTTAAACAAC TTAAGTGTCT WG193 TTTAAAAATT ATACATGTTT ATCTTTCCAT TTAATATGGA TGCACAATCA ATTTGGATTA TAAAAATATA TTATTTTGCA TTCGAAAACA ATACCAAACG GCTTATTTAG GAAACCTTTC AAAAGCTTTA AATATTCCTA CCAGCGTTAT TAAATTTCCA AATTGAAATA AATATTTATT TGAATAATTC AGTGAGTCAT TTTATGGAAC CCATTAATAT TTATTGTCTT TTGACCGCGA AAAAGCAAAG AAAAATGCAA AGCAAAATCT TTGACTGTGA AGCCCATAAT TATCTCGTAT GACTCACGAT TTTGGAAGTT TGTTTGCAGA CAAAACGAGC AAGATATATG CTCCATAAGT TATGCCAACA TTGTTGGCAG CACTCCCAAG GCTTCCCCGG GTTGCTTCCA GCCAGTGTCC ACTGTACCAC TGCTCTGGAG CCATGAGACC ACTCTGTGGG ATGTGGACGG GCCTACGTGC AATGCAAAAG TGGCCAAGTG GAGCTGCAGA TGGAGTTCGT TTGGCTTCGC TGGCTGGCTG AATAAACTGA ACCGCATGTC TGGCTCTTGG CTTTTACCCC GCATCCCGCA CCGTCCTCCC CACCGCATCA AAAATCCATC TCCAGCTGCC TTTGCGGTGG TTTCCAGCCC CGCCCTTCTT GCTTTCCCCC ACCCGGTCGT CATTATATTA CGTTTTTTGC ACATTTCTTG CTTTGCACAA TTTAGCCTTC AGTTTCCGGT TATGAAGGAA GCAGCAAACG GGTTCGGACT CAGTATCTCC СТСТСТСТСТ СССТСТGCCC

5401 TGTAGCAGCT ATCCACAGCT CGTTTAACCA GCAGACCTTT GAGCACGGTT WG275 \longrightarrow
5451 TCTTGGGCCA TCACAAGCCG AAAACCTTCG TGTTCCACGG CGTGCGTTTT

5501 CCCCGGGGGT TTTCTTCGTT CTTCGCTAAT TCTGCCGAAA GGTGCCTCAA

5551 AATTTTCCAT TAATGTTAGA GTAGCAGCAG ACTAATCGCC TTGAAAACAC

5601 ATGAACATGA TCTATTATTC CATTGCTTGT GCGTTTCACA TCGAGTATTC
5651 AATCAGTAGT CAGTCAAGTC GTTTTAAAAT TAAAGAATCT AAACTTGTCG

5701 ATGACTCAGG GGGATATTTA AATTATTCTT TGTTTTGAAC ATAATCGTTC
5751 CACTTTAAAC CCTTTAGCTT AAAAAAAATA ATAAAAATGG TAATAAGGCA

5801 GAGTTGTAAT TTAATACATA TTTTTCAATT TCTTTTTAAG CCACTCGTCC
5851 AATTTGTAAT TGGATTTTTA TTTCATTGTT GAATATGAGC AAATTGAAGT

5901 TGATGTGCTG CGCATTTTTC ATGAAAAACC ATTAACACAA AAGCACTCGT

6001 TATTGCAATA AAATTTTATT TGTTTATCTT AAATGTTTCA CGCTTTAAAG

6051 TTAAAACTCC CATCGAAAAG TCACTCAATT GTTTAGGTTA AGTATTCTTG
6101 GAATGGCTAA ATTGGAATGG CATTAAAGTT GCAGTAGAAG GCATTTACAA

6151 TTTTGAAAGA CATTTGATGT CATGGTTCTA TTAGTCTGAC GCCTATTATC

8701 ACAGCAGCAG CAGCCGCAAC AGCAACAGCG ATAGCCGCAG CAACAGCCGC
8751 AGCAGCAGCA GCAACGTGAC GCCCGTGGAG AGCATTGCCG GCAAGACGAC
8801 GTCCGAGGAC TCGGATCCCT ATGCCTTCAC CGAGACTGTG GCCGTCACAC
8851 CACCCATTCT ATTCAATGCA CAGGTAAAGA AGCAGTCGGA AATTTCCTAA
8901 ACCCCGTCCA TATCAGGATT TGCATAGATC AAAAAATTGT AGTATTTCTG

8951 TAAGAAAACT GTATACATAT GGATGGGGGT TTCTTTGTAG ATAAGATCAT

9201 AATATGAACA GGTTCCAACT TTTGATATAT GGTATTATAT TACGCTCGCT
9251 TTATGTACAC AACCGTATTC TATGAAATTC ACTTACCCAA CTGTTTTGCT
9301 TACATATTGC AGAAATCGAG AGCCCGCCTA ACCGACAGCA ATAGAGGCAG
CAACAAGAGG CAGACGGCAG CAACAGCTGC GGCCAACAGA AAGGCGAACC TGGTGGCCCA ACTGAGTGTC ACAGAGGCAG CAAAGGCGCA GGCGTCTTTG GCAAGCAACA ACACAACGAA TTTCCATCAT GTCACGCAAT CTCAGAGACA GTCGACGGCG CTGCAGTTGC AATTGCCACT GCAATCCCAG TCACAGTCGC AgGCCTCGCC GAAGCGGGCC ACCAACGTGT GCATAGTCCG CCCGCAGCAA CAGCAGCTGG AGAAGATAGC CACCTCGGAG TCCTGCCAGT CGCCGGCAGC ACCACCACCG CTTTACGCCC ACACTCCATC GCTGTGGCAG ACGCCGCTGC TCATAGACAA TGGGCAAAAG CAACAGCTCC TCCAGCAGCA GCATCAGCAA CCGCAACAGC AACAGTCCGT TGCTATTGCG TTGGTCAGTC CGCCCACATC - CGCCGGCG GCCCGCCTCA TTACCTTCGC CCACTCTGCC GCCTGCCACC GCTGCAAGTG ACCGCCATGG TGGCACCGAT TTCCGTATCG CCCAAGGGTG GATTACCTTT GCCGCCATCG AAGTTCCATC ACACCACACC TGGCGCAACA TCTGCAGAAG GTGGAGTGCT TGAAAAAAAA GAAATCCTTG CCACTGGCCT GCCAAAACAA CAACAATAAC AGCAATTTGC CGAATAACAA CAATGTGGAG TCGCTTAAGA AACCGGTGGT GCAGGGAACG AgCTACAATC AGACTCATCC GCCACCGCTG Atg tittca Atacgganac Agttgcagtt Cccgcgcaga gtccgcagac TGCTGCTCCA CAGAAACATT CCACCGGCAA CAGCGTAGAT GACAGCGATC TCAACGAGAT ACCCGTCAAT GTTATCTTCA GAAAGCCGCA AGAGGCAGGC GgACGGCGAA AACAGGTGGA CCGGGAGGAT TAAGTGCACC TGTTTCGGGA ACGCCGCAAA CTCGTCCAGC TGAAGTGAAA ATGGTGACTC CTCTCACGCC GCCCACTCCA CCAGAGATGA GCGCACCGCC CCCTGTAGCG CAAATGCAAC CCCCGCAGAT ACCCACGTCT TGTGTTCCAG CTTTAGCTCC CAGCTTCAAA GTGTCGTCAC CAGCAGTTCT CAGCCCGAAG GTGATCTCAC CAGCTCCTGC AAGCCCAAAG CTCTTGTGTC CGACAGCACC CGCTTCAACG AACTCACTGC B64 GCGGCCGCC AAATTGCGCC AAAAGTGTTC CAGCCACTAC AACCTCATCT GCACCAGCAT TAGCCACGAA ATCAGAACAA ATGTCTTCCA AAGTGGCCAA TTTAAACGCC TTCAACCGTC AAGCACCCAT AGCTTCAAAG GGCGTTAGAA ATGGCATCAC TAACAACAAT AACAACAGAA ACAGCAATGT CGTTGCGAAG AAATCGTCAC CAACTTCGAT GCCGCCTCCA AAGGATCCGA TTGCACCGAT TGCAGCAAAC GAGTTGACGG ATTCCGAACA TCGTCAGCGA CGCCGCAAGC CCGCCTCCGC CTGCAGACGC AGCTTGGACA CTCTGAGTGA GAACGAGTCC TTTTCAGTGG

```

ATtCGCCCTA CTGCCTACAA CAGCATTGGC TGCACTCCGG CTTTAATAAT AAgTCCCACG ACGCGCCACT ATCGCAAAGT AACCGGCGTG AGGATCGAAT TGCTGTTCGT AAAGGAGCCC TGAGGCGACA AGCGCTGCAG CTACTGTCTA CGCGCTCCCT GCAGGAGCTT CCCATGCGAG CGGCCAAACA GCGGCTGCAG TGCGTCCAGA ACATGCTGAT CAAGTACCAA GATCACGCTG GCCAGCAGCA \(\leftarrow —\) B8s2 GGGAATGTAA GTTTAATGTA GTGTAATCAT TACCCAATTT ATACTAATTG TACTGTTTTC CGTTAAAGTG GAATTGGCAA CCACTGTCTG GTGGCCAGCT GCAAGCAGCC CACGCTTAGT ATGGCAGCGC ACTGCGAGCG TCACATCGTG AACAACAGCA CCCAGCAGCT TTTCCAGCCT TGCGTCGCCT GGCGGATGGA TGGAACCGCT TGCCAGGCTC CTGTCTTCGA TGTGCTGCAC ACATTGGCGC TCTGCAAGGT GCACAGCCAC CTGCGTTCTG GTATGGATGG AGCCCGTCCA GCATCGAAAC AGCCGCCCGT TAGTTTACCA GTCGCTGGAG TGGCGACTCT TTATGTGCCT GTGAAGCAGC AGCGAAAGCG CAAGGCTAAT ACGAATGCCG TGGCTCGTCC TCAGAAACGT GGTAGGAAGC CGGCGAATGA ACCGATTGCT AACCAGATCA GCAGCCAGAT AAACAAACTG ATACCTGGGG CAGGAATGCA GCGTAAAAGC AGCACCACAT CGCTTGAGTC CATTGCCAGT AATTCGGAAT WG215 CGTCGGCCAC CTCACACTCA CAGCCGCCTT ACAAGCCCGG AAATGTGTTG GCCGCTGTAC CTGCAGCACA GAACTTGTCC CAACGGTCCA TTCCTCCAGC GCTGGCTCCG CTCAGCAGTG ATTTTCAACC CAACCATCAG CAGCAGGAAC CGCTTTTGGT TCCCAAGTTG GAGGTGGATT CATTGTTTAA ATTTGATGCC GATCAACAGC AAAATCAGCA GCAGCAATCG ACTTTGGACC CCAGCTTACT TTCTTTGGAC ATTGCGAATA TCAAGGCCGA GGAGATTAGC CAAATTGTAG CACAATTGGC GGCGGCCGGT GGTGATTTAC AAAATCCCAA CAATAATAAT AACAACAACA TAGGAATCCA TAATAACAAT AGCGTGCACT TCAACAACAA CAACAACAAT AGTATGAACT ACAGCAACAA TAACAATAAC AGTTTCCCCT CATTCAACAC GGCCTTTGGC AACGCCATGG GCCAGCCAAG CAACACAATT ACGCACAATG GCCACGCTGT TTGGCCAATA CGGCCGATCT TCTTGGCCAG GACATGTTTG GTATTTGCGA GAACAGCTCG GCATACGCCA GTTCCGAGGA \(\rightarrow\) TACCGGATTG GGCGGTCTCA GCGAGTCGGA GCTGATAGGC ACTAACGATG CTGGTAAGTT TCAAAACGGT GAAACTTTTA TGACTTCCAT ATAATAGCTA TGTATATATA GAAGGAAGCT GGACAAATTC CCTAAGATTT TTTCAGTATT
\(12501 \underset{<}{<}\) CTTGCTGGAG GAGCACGATC TGGTAAATGT GTTCGACACG CTGTCAGACG 12551 ATGCCTTCAA CGAGCTGTTC CAATCCGGTG TGTATTTAAC CACAATTTTA 12601 CTTGTTCAGC TTTTCATTGT ACTAATCCAT GTGTGCCTTC GCTGCCAACG 12651 CCACCGCCAT CGCCTTGGAC CTGTGCCTAT GCAGTGCAAC AAGCCGAGTG

TTGACACGTT ATTTCTCTCT TCCAGATGAT ATAGCATTGA ATGGCGCCCA CGAGGCTATG GACCGGGCTT TGGACCGGGC CTTACAGCAG ACAATGGGCG GCTCGGCGGA CAGCGCCTTT CTTAACGATT TCCTGGACGT CGGCGACGAT CTGCTGGCCG ATGCTGTGAT GCACTCACCA AACACGTCCG GCATCGATGC TCCTCCCCTC TTTGGGGACA GCAGCAGCGG CGGTGGCAAT AGCAGCAGCA ACGGCGCCTC CGACATCCGG GGCTTGGTGC AGACCTAATT CCGGCATCAG GTCGGATTTA TGGCCTACAG AATTTACAGA TTCATTTAGA GAGACAGAGA GAGAGATTTT CAAGCTTAAT TTCCCATTCA CTTTTAGGCA GTTTTCGCTT AgAATTTCGG TATTTTCTTT TTGGCCATTT CTTACCTGCG ATTCTAGTTT GGCACAATGT TTCTATATGC AGCTTCAATG TTATGCATGC ATTCACCAGC AgAtatgcat gaitaianta gcattcanai accatatagt tatgcgttan TGTGAAAAAC AAAAAAAAAA AACACACACA AAAAGTAAAA AATTTGAAAA AATGTCCAAA AATATTAAAT TCAACTTTAA ATCAACATTA AGAATGAAAT GTATATGTAT CCGTACGCAA AAACATAATA TTGTAAATTC GCGGAGAGGT GTAGCTTTAC GTACATCTTA ACGTAACTTA ATTTGTTAGT GAACCAACAA AAgGATtGTA GAgAtcagct ttattataca tatanacgag Aanttatana ACAATACCAG AGCAAACAGA TAAAATGAAA CCGAAATTGT AGGAAATCTA GCAACAAATT TTGAATTCTG AATTAAAGTT ACGAACGCGA TACATTGGAA AgTTCGTTAA CATAAACAAG CCTAAAATTT GTTTAAAAAT TTTGTGAACG CATTTACAAC AACAACCACA ACACCATACA CTCAAATGAG AATTGCAAGA ACTACGAAAA CAAAACAGGT GAAGCTGAAA TTGTTTAGTT TGATTTTAGT TCTTGGTTTG CACCTAATAC ACATACACAT ACACACCCAC ACCTAAACAC CAACACACAT ACATACAACG TACAAGGGAC TAGTTTGAAA CCGCGAATCG tATTACTAAA TATATATACA ACTATATATA CTTATATATA TAAAATATAG CTATATATAC ATAATACCAC TTAATATATC TGTACACATA CTTTTAAGTG TAAGCTTTAA TTTAAACCAA CCCACAAACA AAGAAAAGAA AACCCTATAA CAAAAAAAA TTAACAGATT GTAAAAGTGT ATACTTGATT TATTTTTAAG CTCTTTTATT TAGCCATTGC TCGATGGCCA CAAACTTTGT TCGATTTTAA

14051 TTAAGCCTAA CAAATTTTAA AAGCAAAATT AGGCTGACCG ACAATTTTTG

14101 AGTTTTAGCA TGCGTTTGTC TATTCTAGAT TATGTAAATT AACAAATATT

14151 ATATAGAACA TAAATGAATT GTAATTTTCT TTAGTCTAGT GACAAGCAGC

14201 AACTTATAAA TCGAGATATA TTTATACAAC AATACACAAA ACAAGCAAGA

14251 AAACTGTTAC GCTTTAAAAT ACGATATATA CCGCTCACTG GAGACCGATC

14501 ACCACCCATG GCACACTCAA ACACTTGCAT CTTTCATAGG AACTTTCGTT

14551 TGGGCATAGC GAAACGATAG AGCAGAAGGA ACTACTTTAA AGATAATGGA

14601 ACTCTGTAAA ATATGATATA TAATAATTCC CCCACACTCT CACTCTCTAT

15051 ATACAAAATA CTTTAAGAAA ACGAAGCAAA AAAAAAAAAA AATAAAACAA

15101 ATCAAAGCAA ATGAAAAAAA GAATTGATTG ATTTTATGGC AACAGAATAT

15151 TTTACCCTGA AAATATAATA CAGTATTTTT AGTAAAAAAA AAAAACCAAA

15351 GCCTTGACAC ATACTCCGAG TAACTCCCGA AAACAAAATA CAAAAAACAT 15401 CAGCAGAACC GCCGAATTAA GAAACCCGCT AATCCTTCCC AGGATTCTTT

15451 CAGTGCGTTT CGTCGAGTTG TGGTCGAGGA TTCAAATTCA AAGGTTATAT

15501 TGAAAATTAT TATTTTCTAT TTTGTTTTCC TTGCTCGACC ACCAACCCAA

15551 TCGCATCTAA TCGCAAGGAG CATTCAGTCC AGTGCAAAAG AGACAAAAAC

16701 AATTTCTCTT GTATCCTAAT CGTTACTTAC GGAATATATT GACTTTAGCG L2
16751 GCTCTCAGCT GCCTGCGGTA TCCATTCCGT TGAGAGGCGC AAAGTGCTAT
16801 AGTGACTACC AGTAGAGTGG CCAGAAAGAG GTTGGTGAAA ATCAGCCACA
16851 CGAATAAAGG ACCTCGGCTG GGTCCTGCGG TCAGGAGCTG AGCCTCTGCC
16901 GCCTGCGTGT CCAGCACGTT GAGCTCTTTA AATAGCCCAT TCAGGCTTTC
1695
17001
1705
17101 CGATTCTGTT ATGTTGCTCA GGGTGCTAAG GTATGGAAAT AACCATTTGA
17151 AGGGGGGTTA GACTTTAAAA TCAACTCAAT ATTTACTCTC TGAAGGAGTC

17201

17251
17301
17351
17401
17451
17501
17551
17601
17651
17701
17751
17801
17851
17901

ATCTCACCAA AGCATTCTGC CCCATATCCC CATCACTGGC ATAAGCCTGT -CGCCGGCG B52
18501 AGTATCAGCG TTCCCACAGT CGCATTCTCC GGAATGCGAA CAGTGGTGTT
18551 ATGAAGTGGC CTCACAAAAA CCGGAGCGTG ATCATTGAAA TCCGATACGC
18601 AAATATCCCA AGGTGTTGTG CACAATATtG GCTGGGAAGG CCCATATCTC
18651 GCGTAGTTAT AGTAAGGCTA TAGTTTCCGT ATCTATTGCG CCAACTTTTG
18701 CTAGCGAGAT TTGGGCATTC TAGCGTCTAT CTGGCGCCTT CCAAACATAC
        ATCCTTACCA TCTTTGTTAC CCCGAGTGAT GGCAAAATCG AGTCTACCAT TTGGCGTAGT GGGGTCATCT GCATCCTTGC CCACTATGCT TGCCACTCGT TCATGCAACT CGTGATACTC AGTGATTAAA ACACAACTCA TGGGCAAGTC AACCTCTGGT GGATTATCGT TCTCATCGAG TATGGAAATG CTGAAAGAGC TAAATGAAAT AAATTTGTCA AATGCTTAAA TTTTTATAAC TTACAAAACC TGTTTGAAGG CATTGCGACT TTCTCCGGCC AGGAATCCGA ATTGATAGTT ATCCCAGGCC TCGATAACCA GGTTGTAGGA ATCCTTAGAC TCCCTGTCCA AACGATCGGC CACCGTTAGC ACACCAGTGT CTGCATCTAT GGTGAACTTT CCTTGCGAAC TGATGCGATC CATCAGGAAG GTGATCTTGC CAAAATCTCC CGAATCCGCA TCTCCAGCCT GGAGAGTGGC TACTCTGGTG CCTGGAGCTG B51 GCGGCCGC \(\longrightarrow\) CATTTTCACT AATCGTATAG TTCTTGCTGC CACCCACAAA GTAGGGATTG TTATCATTCT CATCCAGCAC TGTTATATAC ACATCCACCA GTGAGGATCT TGCTGGACTT CCAGAATCCA TGGCCCTCAC ACTGAAATTT AGCCACTGAT GCTGCTCATG GTCAATCTTG CTGGCCACCA CAATTTCCCC TGTTTGCGGA TCCAGATGCA TTAGTGATCG GTACGTGGGA TTTCCTTCCA GGGCATAGGT TATGGTGCGA TTCTTGTCCA CATCTGAGGC CAGCACATTC ACAATCATTG CCCCGTTTAT GCTGTTCTCC GTGATCGATT GACGGTAAAA GGGAAGTCGA AACTTTGGGT TATTATCATT TTCATCCAGC ACTTGAATGC TCAGGAAACC CTCAGCGATT TGTCTGCCCT TGGCCGCAGC CAGATCCTCA ACAGTAATGG CTAGCTTAAT ATGCTCGACT CTTTCGCGAT CCAACAGCTT AACCACCTTG AgGgTtccct CGAtgGAgTC CACCTCGAAG GCGCCCAAGA AgTCGTATTC GCTACTCTTC ACCAGCGCCC CCTCTTCAGT TCGACCTTCG CAGTGTTCTG GGTTCAGTTT GTACCGCAGA ATGGCCTTGT GGTCCAGGTC AGTTGCCTGA ATGCGATACA CCAGTGTGCC CACAGGCGTG TTCTCTAAGA TCTGCAATGC rGGCATTTCC TTTAGCACAG GCGGCTTATT ATTCACATCC TGAATGCTAA TGTTCACCGT ACATGTGGTC ATCAACTGGG AATTGCCCAA TCCACCATCC AAAGCAATCT GTGGTAAACA ATTACGAAAG GGTTTTAATA TTCTACAAAA AgGAATCTCT TTTGAACGTA CCACTGACAG AGTATAGAGT GATCTCTTGC rCTCTGTGAG ATCTGGATCT AGATTGGCTC CGTGTGCCAC CGATATAACT CCCGTTTCCG AGTTGATGAT AAACTTATCA CCGGCACCCG TCTGTATGCG
\begin{tabular}{|c|c|c|c|c|c|}
\hline 20301 & \[
\begin{gathered}
\text { ATACACCACC } \\
\text { B41 }
\end{gathered}
\] & \begin{tabular}{l}
ACATTGTTGG \\
GCGGCCGC-
\end{tabular} & GTGCTGATCC & \[
\xrightarrow{\text { ATCTCGATCT }}
\] & T \\
\hline 20351 & ACCTGCAGCA & CCGAGCTCCC & ACCTGGCAGA & TCCTCGGGAA & CCGTCTTTGC \\
\hline 20401 & ATAGAAGCTT & CGCTGGAATA & TCGGCGCATT & GTCGTTAACA & TCCTGCACGT \\
\hline 20451 & AAATAAGAAC & AGGAACCACA & GTGGAGAGCA & TTGGAATGCC & CGAGTCTCGT \\
\hline 20501 & GCTCGAACCA & GCAGATCGAT & CTCTCGAATG & CTAAAGGATC & CACCCGTGTA \\
\hline 20551 & AGGATCACTT & CTGCGACTGC & TCCCATCTAC & CAGTTCCTCG & AAATCAAAAC \\
\hline 20601 & TGTGCACCGG & ACGCAGAAGG & CCACTCTGGG & GATCTATAGT & GAAGTTGGAG \\
\hline 20651 & CGGTACAGAC & CCTCGACAAT & CTCGTAGGTC & ACCTGGCTGT & TCTCCGTGCC \\
\hline 20701 & ATTGAGATCC & GCATCTCTGG & CCTCCAATTG & CAGAGGGGTT & \[
\stackrel{\text { TCGAACTCAG }}{<}
\] \\
\hline 20751 & \[
\frac{\text { CCTGATTCTC }}{\text { B32 }}
\] & \[
\frac{\text { CAGCAACTTG }}{2} \mathrm{CGCCGG}
\] & GTCTCGTATT
GCG & GCCGCTGAGG & AAATGTGGGT \\
\hline 20801 & GCGTTATCGT & TCACATCCAG & GATGTCTACG & ATTATTTGGG & CCGTATTCCT \\
\hline 20851 & GTTGCCCTGA & CCAGCGTTGT & CGATGGCTTC & CACGGTGAGA & TAGTGTCGTG \\
\hline 20901 & AAATGATTTC & ACGATCGAAG & GCAGTTCCAC & CTGCCTGTTT & GATGGTTATC \\
\hline 20951 & ACTCCCGTAA & TGGGGTTGAG & ATTGAGTCTT & AAAGGGGAAA & GGTATGTTAG \\
\hline 21001 & ACCCGTATCA & TAGTTTTAAT & TTTAAAACTT & ACAAATTAGC & GATTCCTCCT \\
\hline 21051 & CTGAGGTTGG & TGTAACGTAT & ACCCATAGTT & CCATAATCCC & CAGAATCCAC \\
\hline 21101 & ATCAACCGCC & TGGACATGGG & TGATGATTGT & ATCCTGCTCG & CTGTTTTCCA \\
\hline 21151 & AAACGCTCGC & ATTATAAATG & GTTTGACTAA & ACTCTGGGAA & GTTGTCGTTT \\
\hline 21201 & TGGTCTCGTA & TAAAAATCTG & AACATGAGCA & GAACTATATA & AGAGAAGATA \\
\hline 21251 & TATTTTAGAC & ATTACTCTAT & ATGCATTTTC & CAGCAGCCAT & AGCTTACCT \\
\hline & & & B31 & GCGGCCGC & \\
\hline 21301 & CCATCGACTG & \[
\xrightarrow{\text { GGCTCGTCGA }}
\] & CCTCCCTGGC & GAATATCGTA & AAATTGACCT \\
\hline 21351 & CGGTGAATTG & TTCAAAATCG & AGAGACTTTG & AGTTCTTCAC & CCGCAGCATA \\
\hline 21401 & AAGTTGGCCT & CATTAACAGC & CAACTCGGGT & ACGATCTCGA & ACAGATCGTT \\
\hline 21451 & GGGCGGATCC & AGAAACAAGC & GGAAGGTGCC & ATTGTTGCCC & TCATCGTGGT \\
\hline 21501 & CGAAGACCAC & GTTTTGCACC & TCCTCGTCGA & TGAAATTAAG & CGGGGTATTG \\
\hline 21551 & GTTTGGGCAT & TCTCGTTGAC & CTCACAACGA & TAGACTGTTT & CTCCAAATGT \\
\hline 21601 & GGGTATTTCG & TCATTTACAT & CGCTTACAAT & GACCGTAACT & TCGGTGCGTA \\
\hline 21651 & CAGTTGTGGG & CGCCATTTGG & GTATTCGACT & TGGACAACTC & GGTGGCCGAA \\
\hline 21701 & ATACGCAGGA & TATGAGCTCC & ATTCACCTGA & TCACTCTGCT & CCTCGCGATC \\
\hline 21751 & CAGTTTGGTT & AGCGTGTGAA & CTATGCCTGT & GTGCGGATTA & ATGTCGAACA \\
\hline 21801 & GATCGTTGGC & CTCCAGGGAA & TAGGCTATGG & GATTATTGAT & CCCACGATCT \\
\hline 21851 & CCATCTATAG & CTCGAACTCG & CAGAACTTTT & GTGCCCACTG & GAGCATCTTC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 21901 & GGCAATTCGG & GCCACTGCCT & GTACTTCTAC & GAACTCCGGC & GGCTGATCCT \\
\hline 21951 & CCAGATCCTT & TACCTTCACC & AATATGGCAG & CAGTTCCCGT & ATTGATCGGT \\
\hline 22001 & \[
\begin{aligned}
& \text { CCCTGATTGG } \\
& \text { WG221 }
\end{aligned}
\] & CACGATCGAT & \[
\xrightarrow{\text { GGCCAGGACT }}
\] & CTCAGTTGAT & ACAGACTCTT \\
\hline 22051 & TCTCTCATAG & TCCAGCTCCT & TTTGCAACCT & CAATATGCCC & TTGCCTTGGT \\
\hline 22101 & GCGTAGCTAT & GGAGAACACA & TCATTGTCGC & CATCCAATTC & TTGCAGATAG \\
\hline 22151 & TAAACCACCT & GGCCGTAGGC & CCCTTCATCC & GCATCCGTGG & CCTCCAGAGT \\
\hline 22201 & GCTGACCACT & CCCGGTGCAC & TGCCCTCCGG & TATTTCAATG & GCATTTTGAT \\
\hline 22251 & AGGGCAGAAA & TGTGGGAACA & TTATCGTTTA & TATCCTCAAC & CAGGAGCAAA \\
\hline 22301 & AAACTCTGGG & TTACATAGTT & GTGATCGCTG & TAGTGACTGT & CAGTCAGCGT \\
\hline 22351 & TAGCACTATG & GCATACTCGT & CCTGCAGCTC & CCGATCCAGT & TCCTTGGCCA \\
\hline 22401 & AAAAGATCTT & GGCCTCGTTG & CCACCCGTGT & TCTCAATCCG & AATGATCTCG \\
\hline 22451 & CTATCATGCG & AATTGCGCTT & GCCA AGGTC & \[
\frac{\text { AGCGGATCGT }}{\text { WG220 }}
\] & TGTCCGGATC \\
\hline 22501 & GTAACCCTTT & AGCGTGTATA & TCAGGGTTCC & TTACGAGGAA & AAAAAAGTGC \\
\hline 22551 & AAAAATTCAA & TCAAAAATTA & TTTACTATCT & ATCTTTTGCA & GATTATTTAT \\
\hline 22601 & AGGAAATAAA & TGTACAGCCA & TTCAGCAAAA & GATGATTATA & CGGATAAGCA \\
\hline 22651 & AACCATTTTT & AAACACGACA & CATTGTCATT & GTCTGGTCGA & ATTTATATTA \\
\hline 22701 & CGATTTTATT & TTGCACAACT & TCAAGATTAA & GTATATTTAG & CTTAAAATTG \\
\hline 22751 & TTGAGACATG & ACACACTACC & ATTCTTTGTA & TAGATAATAA & GTTTGCTATC \\
\hline 22801 & TGATATTTCA & CATTTCTGCT & TAGCTTTTGA & AATAATTTTC & TTTTTTTGTA \\
\hline 22851 & ATATATTAAC & TCTAGACTGG & ACTTACCCAC & TTTCGTTTCA & GGACTCTCCT \\
\hline 22901 & TCAGACGCAG & TACAATCTCC & GACTGGCCGT & CGATAGCGAA & ACGCGGCGGT \\
\hline 22951 & CGATTTGAGG & CAACCAAGCT & GATTAGTGTG & GTGAGTATTA & TGACTTGGAT \\
\hline 23001 & GGATATGGAG & CTTATATAAC & TAGAGAAACT & TCGCCGCCTT & TGTCCTTTTA \\
\hline 23051 & AGCGCACCTT & CTTGTAGTCC & ATGCTGTCGA & TTCCATTACC & ATTCGCCGGC \\
\hline 23101 & GGCTGTGATT & CGTTGTGCAT & CGTGTGTGGC & GTTTGGGAAC & GACACCTTTG \\
\hline 23151 & GGGTTACTGG & TTATAATAAT & AATAGTCACT & ACCACATGAC & AGGTAGAATC \\
\hline 23201 & GAGCGGCGAC & ACCTAGAAAA & TAGACGAAGT & GTTACGACAG & AAGCCAAGTG \\
\hline 23251 & GAGTGTTAAC & CCATTTTCCC & CACATGTCGC & ACGTTTTATG & GGCCGTGATC \\
\hline 23301 & TATGACCCGC & TGGCAGTTTC & GCTCGAGAAG & CTAACTTAAA & GTGGAGGGAA \\
\hline 23351 & GAATCCACCA & GAGAAGTTCT & GTGCTCGTTT & GCCCAAAAAA & AAAAAAAAAC \\
\hline 23401 & AGAAACAAGA & AGTGAATTGG & & & ATGGAACTG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 23451 & GACTCGCAGT & CTGCGTGTCT & ACAGGTGTTC & TATATGTTGT & CCGTCTGTTC \\
\hline 23501 & TGCGTGAGAA & \[
\frac{\text { TTGGCCAGTG }}{\text { wG233 }}
\] & \[
\xrightarrow{\text { GATTGGCCGA }}
\] & GGCAGATCTT & TGCGAAAGTT \\
\hline 23551 & TTATGCTCAA & ATTAATTAAG & CGTCAGCTCT & TTATTGGCTT & TATACTTCAG \\
\hline 23601 & TTGAGTTTAC & TTAAATGCTG & GCTCAGCGCC & AGCCTGGAAT & TCCGCTAAAG \\
\hline 23651 & AAATTTTATG & GGTTTCTTCA & CAGCTGCCTT & TGGGTTTTGA & TTGTTATTTT \\
\hline 23701 & GTTCGCGGTT & TAACGACCGG & \[
\stackrel{\text { AACGTTTTCT }}{\rightleftarrows}
\] & \[
\frac{\text { AAACTGCCCG }}{\text { WG232 }}
\] & ACAATTATTA \\
\hline 23751 & CTATTTTGGC & TTATTCATGT & GCCAGATTTG & TCTCATTGCA & AATTTCAAAC \\
\hline 23801 & AAATTGCGAA & TAAGTTCTCG & CTCAAGTGGA & GTGAAAATTG & AAAGTTGTCT \\
\hline 23851 & TCGAAAGATG & AAGCTATCAC & GAGCTTAATG & AAAACCGCAT & TTGCGAATAT \\
\hline 23901 & TTTTAATGAT & GTTGCTACAC & TTTTGGAAAA & AСTTCCATCG & CCATCGGCTT \\
\hline 23951 & ATCTTTTCAC & AGAGGGGGGT & GCGTGTGAAA & AATGCATTTG & TAGAGCGATG \\
\hline 24001 & ACTGCATCTG & TCAAATGCAG & ATGCATATAT & GCATTATTAA & \[
\begin{gathered}
\text { TGCCATTGTT } \\
\text { WG227 }
\end{gathered}
\] \\
\hline 24051 & CGCGAGTTCA & ACTCGGTTAG & \[
\xrightarrow{\text { GCTCATTTGC }}
\] & AATCGGAGCT & GCGAATCCGC \\
\hline 24101 & AAGATTTGCC & AACTGTGGTT & CATTGATTTC & GCAATTGCCG & CACGGCAATT \\
\hline 24151 & TCTTAATGGG & CTGCCATCGT & AAATGCCTCC & GTGGATGGTA & ATTGATTTAC \\
\hline 24201 & CTGCCACTGC & AGGTTGCATC & AACCTCTTTA & TCGCCGGGAA & AAATCGCGGC \\
\hline 24251 & AAGCAGCCAG & CAAGGTCGCT & AGAGAGTCGC & CTTAACTGAT & CACGGTTAAG \\
\hline 24301 & TGATTCAAAA & GTAATCACAA & TCTGCGCCTG & ATTTCGCTTT & CAACACGCGC \\
\hline 24351 & CGCATGCAAC & ATTTTCAATG & GTGCGACTGC & CACTAACACA & ACTTGTATCT \\
\hline 24401 & GTATCTGCCG & CATCTTCTGC & TTTTGGGCGG & CTAATTCTCT & CCATCGCCGT \\
\hline 24451 & CCGCGGATAA & TTATCCATGC & ATCCGTGGCC & AGCATGTTTG & TGTAACGTTG \\
\hline 24501 & GCAATTGGGT & TGTTTGGTCA & GTTGGACGAT & GCAGGGATTT & TGGATGCTCT \\
\hline 24551 & GCTGCCCAGG & CAATTTCATG & CTGCACTGGC & TCAGTCGAAT & CGGGGTTATC \\
\hline 24601 & ATAGCTGTCG & ATTATTTACG & ATGGGTAAAT & GAAGAGAACA & CTTCGCTCGG \\
\hline 24651 & TACATAAAAT & TGTATGCTTT & TGTTCTGCGT & ACAGATATTG & TTATTCATGT \\
\hline 24701 & GTTTTTTACA & \[
\frac{\text { ACACCCATAC }}{\mathrm{WG} 225}
\] & \[
\xrightarrow{\text { GCCTTTGGAT }}
\] & TTTCGGCGAT & CTTATAGCTT \\
\hline 24751 & TCTAATTAGT & TCAATTTATA & TAAATGAAAT & GAAATCAAAA & TACGGTTAAG \\
\hline 24801 & AAATAGAGGA & AATGCGAGGG & GTGGAAGTTC & CGCCACACTT & TTCATTAGCC \\
\hline 24851 & TAATGTCTGG & GCTATCACTT & CCCTTCAAAT & AGCCCATTCA & AAATCGCATT \\
\hline 24901 & TAGTTTAGTT & AACTCCATTA & GTGGCAAACA & CACTCCCACT & TTCTTGCTGC \\
\hline 24951 & CAATTTTCCA & CACAGCTAAA & ACCCACTGAA & TTAAGGCAAA & TTAATAAGTT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 25001 & ACGCCGCCTC & GGCAAGATCG & GCAGGGCTCT & GCTCTGCCAT & TCCCCTCCA \\
\hline 25051 & GATTTACGTA & AGTGGAAAGT & GGCAAAAGTG & GCTGAGGCTG & CTGAGGAGTC \\
\hline 25101 & GCCGAAAGTC & AAGCAAAACA & CTTGGCCCAG & CCACCATGAC & GACGGCGCCT \\
\hline 25151 & TTCCGCAGTT & CAGATATGTA & GCTCTGCGAC & CTGCAAGATA & CACATGTGAT \\
\hline 25201 & GTATCTCAAT & CCGAAACCGA & GCGAATTTCG & GTGCTAATGA & CTCTGGTGGC \\
\hline 25251 & AGCAGGGTTC & ATGCTTGGAC & AAGTTCTGAC & CCCATCCGAG & TGGGCCAAAA \\
\hline 25301 & AGTGAAATCC & TTTGCGAAAA & TGTGTCCAAC & GTACGCGCGG & TAACCAACGT \\
\hline 25351 & CGGTTGGCGT & CGCCAATCTT & GCGGCTTTTT & GGGTTAACCG & CAAACAAACC \\
\hline 25401 & TGGTGGCAGC & TCCAAGGTAA & TCGCCACCGA & AATGGAAATC & CCAATAAACA \\
\hline 25451 & \[
\underset{~ A T T T T G A T T T ~}{<}
\] & GTCTGCCGCT & GTGACGAGTT & \[
\begin{array}{r}
\text { TCCCGATCTC } \\
\mathrm{WG} 22
\end{array}
\] & TTTCACCGCC 4 \\
\hline 25501 & CCCCTTTTTC & CAGCAACAGT & ATAATCGCCG & GTTCATGACT & TTCCAAGCCA \\
\hline 25551 & GCCAAGGGCT & TACTTAATTA & TATTAAATAT & TTTAAGCCCG & CCTGAGAGCA \\
\hline 25601 & ACAGTCACAT & ATGTACACTC & GAAAAAATAA & GTGCTCTGCT & GTGGGTCAAT \\
\hline 25651 & ATATGTATGT & TTAGCTAATA & TCAAAACTAA & TCTCAGAAAT & CTAAGAAACC \\
\hline 25701 & TTATAGATCA & GGGAACTATC & CAAAAATCAT & AGAAATGCAT & GACAAAAACA \\
\hline 25751 & TAAAATGTTA & ATAATACGAT & TAATGAGAAG & TCGTTGATAT & CAACCCTTCT \\
\hline 25801 & AAAATATATC & AATATTTTTT & TCCGAGTGCA & GCCATGGAGA & TCGAGATTGG \\
\hline 25851 & CGGGAATCGT & GTTGTGACCA & ATGTTGCCTC & CAGTTTCCGG & CCCGCGAGCA \\
\hline 25901 & AACAATCGGT & \begin{tabular}{l}
CCCCTGGCGT \\
WG2
\end{tabular} & \[
\begin{aligned}
& \text { TCAGGCGTTC } \\
& 229
\end{aligned}
\] & CGAGTACTCC & \[
\xrightarrow{\text { AATTTGAACA }}
\] \\
\hline 25951 & CTTCCTCCCC & CGTATTAGGG & CCCTTTTGTC & ATGCCCATCG & ATTCCGATAT \\
\hline 26001 & GTGCGGCACT & CCGACAGTCA & AGTTCAACGC & CAGCAGCCAA & CGATTGTTTG \\
\hline 26051 & CTGGTGGCTG & GCTGGCAAAC & AAAAGGAGCT & CGAGCTGGAT & TGGGCGGTGG \\
\hline 26101 & GGCAGGAGAG & TTTGGGGAGC & TGACTCCGTT & GCGGTGGCAT & GGTTTTTGAC \\
\hline 26151 & TCATAGCCCG & GGTTCAAGCG & ACGCCCGCAT & CCGTCTCACT & ATTCGAGCCA \\
\hline 26201 & AGCTCTCCGA & GACTTGGCTT & AGATGTTATA & CTATTGTACT & ATGCATTCAT \\
\hline 26251 & AGCTGGTGTC & GTGAGCAATT & TGTCCGTTAC & ACTCCGGCTC & CTTTTCTGGC \\
\hline 26301 & TTAAGTTTTT & GCACTTTTCT & ATTTGCACCT & GCTTCGCAAG & TATTTCTACA \\
\hline 26351 & TTTTGGGGTA & ATTACACAAT & TTTTATTGGA & CTGGCTGGTC & TTGGAAGAGC \\
\hline 26401 & AGCCAAGTCC & TTGACACGAG & CTATGGCCTT & AGTGGCAGTA & TTACAAGAAG \\
\hline 26451 & AGCAGAAGTC & AGCCAACCCT & TCGAAGTTGA & ACTTCAGGCT & CCAATGCACT \\
\hline 26501 & CGACGAGCTT & GTAAAGTGCG & AATTTACTAC & TCGAGAGTTT & TGGCAATCAC \\
\hline 26551 & TTAACAATAT & TTTAATAAGC & CAATAGATAT & TTCTAGGTTC & ATTAATATTT \\
\hline
\end{tabular} ACCCCCAACG ACTGCTTGCA AGGAAACCTC CTAACTTCCC ACTTTATCGA AGGAAAGTCG CATGCCAGGA CAGGAATGCA GACCGGTTTC GCTTACTTAC WG230 CCCCGTATAA AAGATAGATA TTCCTATAGT CCGAGTATCC TTTGGCGGTT TTCTGGTTGG GGTCCTTTTC CCTATACAAT TTTTGAAGCC AGCGAACAGT GACACACTCG AGTGTCTTTC AGCAAGTGTC TTTCACCAGA GAACTGACAA ATTTCGTGGC TGACACATAT TTTCGAAAAG GCTTCGACGT CACTGGTAAT TAGGCATAAG TCAAAGAACC CCGCAAAACA CACATATGGA GTACACGATG AAGCCGCATA AAATAAACGT GTCGCACGCT TCGAAATTGG GCAATGCACG AACCGGAACT CGACTTTAAA GAGCGGTGTT TGTGGTAAGG GGCCTCGAAA CCTGGATGGT GGTCAGATCA CTTGATGACA CTTTAAGCCG ACAACGGAAC GTGCCGTAGA ACACGCAGAG TTTCGAGTTC TTGGCCAAGC GAATAAATTA CGTTGGAGGC TATTTTGCAC TTTCGTAAGC CGAAAACCGA AAACCGTTGA GTGTTTATTT CACGGAAAGC CAATTTTGAA CGAAGTGTTT ACCGCAACAG CCGCTCGACG ACTGACGTTG AGTTTGGAAA ACAAGCTAAC GAGACTTTGC \(\xrightarrow[\text { AGCTCAACTG GAATCGAGTT ATCGCCGGAA TGGCATGGCA ACCCTGTTGC }]{ }\) GGGAGAGACA GATATAGCCG GGTCGTAACT AAAGAGAGAG AAACGCACCA AAgGCACGCG AgTAATTAGC CAACCGTAAA TTCGACCGGC AAGTGGGCGG TGGGTGAGCT CTGTTTGTTT ACAATTTGCG AGCTCGTTTA CTGGATCGCA AgTGGGTGCT CACTGGAAGG CTGGAATGGT GGTCAGCGGA AACCGGAAGT GCGTGCGCTT ATGCAATTTT GAAGGTTGAG CTTTCCATCG CAAAAACCAA
 TTTTAGTTTG CTTAGCATCA GTTGATAATC TTTGAAACCT TGAACTTTTT TGGATCGGTT TTCTCTTAAC CTAATAATTT CAGTACTGTC ATTCTAATTT GTCATTAATT TAATCCAGTG ATTTGCCATA TCATATTGAC AGATACGTAA CGTCATTATT TTTCCTAGAA TAATATGTCC GTGAGTCGAG TGACTATGAT GCGAAAGGGC CACTCCGGGG AGGTAGCACG CAAGCCCAAC ACTGTGGTGG TGTCGGTTCC ACCGCTGGTG AAGAAGTCCA GCAAGAGCCG CTCGTTCCAC TTCCGCTATC TGGAGCTGTG CCGGGCCAAG AATCTGACGC CGGTGCCGGA AATCCGCAGC AAGTCGAATG CGACCACCAC CTTTCTGGAG CTGTGCGGCG



\begin{tabular}{|c|c|c|c|c|c|}
\hline 32901 & GGTGTATAGG & CTTTGTGAAA & GCTTTGTCCT & ATTAACCAAC & ACATCAGAAC \\
\hline 32951 & ATCTTAAATT & TTCAGAAATT & AGGTATAACG & AATGTAAATG & CTAGGAATCA \\
\hline 33001 & AATCTATTTG & TGAAGTGAAT & AATGTATACA & CTAGATACTC & TATTAAAGCA \\
\hline 33051 & CCAACAATTG & TACTACACAA & ATGTAGTAAA & ATATCGTAAG & AATTGTTGAC \\
\hline 33101 & AGTGGGTACT & ACGAATTCAT & ATGTTGAGCG & CCAAACGCAT & ACTCGGTATA \\
\hline 33151 & AATCGATCGG & ATACCTTAAT & TCCCAATCTT & AATCCATGTG & TGTGTGCGCT \\
\hline 33201 & GAGCATTTCT & TTGAATGGAT & TTTGCTGCAT & TAGGAACTTG & TTGTATGGCA \\
\hline 33251 & GGTTCTGGTT & TCTCCCACCT & TTTGCTCCAC & CGGCCTCCCT & CTCTTTCGCT \\
\hline 33301 & CGCCATAGCC & CTCTCTCTTT & CTGTGGCGCA & GTGCGCTCTC & TCCCCTGTTG \\
\hline 33351 & CTGCTGCTGT & TGTTGTTGTT & TCTGCTGCTG & CTGTTTCTTT & TTTCCGCACA \\
\hline 33401 & AGCGCCACGT & TAAACCCATC & CCTTTCTGTG & TGCATAATGT & GCCTGCTTAT \\
\hline 33451 & GTATCTACTT & TACTATAAAG & CATGCACGCT & TACGAACACA & CACATACATG \\
\hline 33501 & GCCAGCGATC & CGATTACCTA & AAGGACAGTG & GGACGAAAAG & TGTTTCAAAG \\
\hline 33551 & GATTGAAAAC & AGTTTGCTTA & GCCAATGGTC & AAGAAATATC & AATCAATATA \\
\hline \[
\begin{array}{r}
33601 \\
\mathrm{GC}
\end{array}
\] & \[
\frac{\text { TCGCAGGCTC }}{5 \mathrm{C}}
\] & \[
\xrightarrow{\text { GTTGCAATAA }}
\] & ACGTTTTCAA B71 & AATTAAATTT & TTTGTATTTA \\
\hline 33651 & CACATTTAAA & AAGTGAATTA & TCATTTTAAT & TTTTATCAAC & AAAAATTTCG \\
\hline 33701 & GTATTTGGAT & GAGGATCCCA & GATTAAATCG & AATTAATGAA & TGTAAATAGA \\
\hline 33751 & TTTTCAAGAA & ACCTTACTGC & AGGCCCACTG & TGCACTGCAT & ATCCGTGCAT \\
\hline 33801 & TGGGGCCATG & CCCACTCAAA & GGCTGGTGTG & TGGCCAGTGG & GGCTAATTCC \\
\hline 33851 & GTGCCCAAAT & GGGGTGGCTT & TCAATGGCAG & AGGCCCCAGC & TTAGGACGCT \\
\hline 33901 & ACTCCTGCTA & CTTCTGGGCA & TGCGATATGT & GTACAAAGGA & TAGCGCCCAC \\
\hline 33951 & AAAGAGCTCG & CTGAGCGCCC & TCCCTTTCAG & TCTTATTCCC & CAAATAGGCT \\
\hline 34001 & CGACTTTATT & TGCCCACCCT & TTGAGCACTT & CCAACCGATA & ATTCCATTAA \\
\hline 34051 & CTTTGA & AAGCTTCCGG & \begin{tabular}{l}
TCTCCCTATA \\
vector La
\end{tabular} & \begin{tabular}{l}
GTGAGTCGTA \\
wrist 4
\end{tabular} & TTAATTTCGA \\
\hline 34101 & TAAGCCACCT & CGAGGCGAAT & TAGCCCGCCT & AATGAGCGGG & CTTTTTTTGG \\
\hline 34151 & CCGTTTCGGC & CGAATTCTCT & AGAGATCTTC & CATACCTACC & AGTTCTCCGC \\
\hline 34201 & CTGCAGGGGG & GGGGGGGGGG & GGGGGGGGGG & GGGGACATGA & GGTTGCCCCG \\
\hline 34251 & TATTCAGTGT & CGCTGATTTG & TATTGTCTGA & AGTTGTTTTT & ACGTTAAGTT \\
\hline 34301 & GATGCAGATC & \[
\stackrel{A A T T A A T A C G}{\rightleftarrows}
\] & ATACCTGCGT & \begin{tabular}{l}
CATAATTGAT \\
- 8V2
\end{tabular} & TATTTGACGT \\
\hline 34351 & GGTTTGATGG & CСTCCACGCA & CGTTGTGATA & TGTAGATGAT & AATCATTATC \\
\hline 34401 & ACTTTACGGG & TCCTTTCCGG & TGATCCGACA & GGTTACGGGG & CGGCGACCTC \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline 37601 & CTGCGTAAAA & CCTATGGGTG & GAATAAACCA & ATGGACAGAA & TCACCGATTC \\
\hline 37651 & TCAACTTAGC & GAGATTACAA & AGTTACCTGT & CAAACGGTGC & AATGAAGCCA \\
\hline 37701 & AGTTAGAACT & CGTCAGAATG & AATATTATCA & AGCAGCAAGG & CGGCATGTTT \\
\hline 37751 & GGACCAAATA & ААААСАТСТС & AGAATGGTGC & ATCCCTCAAA & ACGAGGGAAA \\
\hline 37801 & ATCCCCTAAA & ACGAGGGATA & АААСАТСССТ & CAAATTGGGG & GATTGCTATC \\
\hline 37851 & ССТСААААСА & GGGGGACACA & AAAGACACTA & TTACAAAAGA & AAAAAGAAAA \\
\hline 37901 & GATTATTCGT & CAGAGAATTC & TGGCGAATCC & TCTGACCAGC & CAGAAAACGA \\
\hline 37951 & CCTTTCTGTG & GTGAAACCGG & ATGCTGCAAT & TCAGAGCGGC & AGCAAGTGGG \\
\hline 38001 & GGACAGCAGA & AGACCTGACC & GCCGCAGAGT & GGATGTTTGA & CATGGTGAAG \\
\hline 38051 & ACTATCGCAC & CATCAGCCAG & AAAACCGAAT & TTTGCTGGGT & GGGCTAACGA \\
\hline 38101 & TATCCGCCTG & ATGCGTGAAC & GTGACGGACG & TAACCACCGC & GACATGTGTG \\
\hline 38151 & TGCTGTTCCG & CTGGGCATGC & CAGGACAACT & TCTGGTCCGG & TAACGTGCTG \\
\hline 38201 & AGCCCGGCCA & AACTCCGCGA & TAAGTGGACC & CAACTCGAAA & TCAACCGTAA \\
\hline 38251 & CAAGCAACAG & GCAGGCGTGA & CAGCCAGCAA & АССААААСТС & GACCTGACAA \\
\hline 38301 & ACACAGACTG & GATTTACGGG & GTGGATCTAT & GAAAAACATC & GCCGCACAGA \\
\hline 38351 & TGGTTAACTT & TGACCGTGAG & CAGATGCGTC & GGATCGCCAA & CAACATGCCG \\
\hline 38401 & GAACAGTACG & ACGAAAAGCC & GCAGGTACAG & CAGGTAGCGC & AGATCATCAA \\
\hline 38451 & CGGTGTGTTC & AGCCAGTTAC & TGGCAACTTT & CCCGGCGAGC & CTGGCTAACC \\
\hline 38501 & GTGACCAGAA & CGAAGTGAAC & GAAATCCGTC & GCCAGTGGGT & TCTGGCTTTT \\
\hline 38551 & CGGGAAAACG & GGATCACCAC & GATGGAACAG & GTTAACGCAG & GAATGCGCGT \\
\hline 38601 & AGCCCGTCGG & CAGAATCGAC & CATTTCTGCC & ATCACCCGGG & CAGTTTGTTG \\
\hline 38651 & CATGGTGCCG & GGAAGAAGCA & TCCGTTACCG & CCGGACTGCC & AAACGTCAGC \\
\hline 38701 & GAGCTGGTTG & ATATGGTTTA & CGAGTATTGC & CGGAAGCGAG & GCCTGTATCC \\
\hline 38751 & GGATGCGGAG & TCTTATCCGT & GGAAATCAAA & CGCGCACTAC & TGGCTGGTTA \\
\hline 38801 & CСААССТGTA & TCAGAACATG & CGGGCCAATG & CGCTTACTGA & TGCGGAATTA \\
\hline 38851 & CGCCGTAAGG & CCGCAGATGA & GCTTGTCCAT & ATGACTGCGA & GAATTAACCG \\
\hline 38901 & TGGTGAGGCG & ATCCCTGAAC & CAGTAAAACA & ACTTCCTGTC & ATGGGCGGTA \\
\hline 38951 & GACCTCTAAA & TCGTGCACAG & GCTCTGGCGA & AGATCGCAGA & AATCAAAGCT \\
\hline 39001 & AAGTTCGGAC & TGAAAGGAGC & AAGTGTATGA & CGGGCAAAGA & GGCAATTATT \\
\hline 39051 & CATTACCTGG & GGACGCATAA & TAGCTTCTGT & GCGCCGGACG & TTGCCGCGCT \\
\hline 39101 & AACAGGCGCA & AACGTAACCA & GCATAAATCA & GGCCGCAGCT & CGCCCGGGGA \\
\hline 39151 & TCTGGCTAGA & ATTCGGCCGG & GGCGGCCAGA & TAAAAAAAAT & CCTTAGCTTT \\
\hline
\end{tabular}
```

3 9 2 0 1 ~ C G C T A A G G A T ~ G A T T T C T A G C ~ G A T G A C C C T G ~ C T G A T T G G T T ~ C G C T G A C C A T ~
3 9 2 5 1 ~ T T C C G G G T G C ~ G G G A C G G C G T ~ T A C C A G A A A C ~ T C A G A A G G T T ~ C G T C C A A C C A ~
3 9 3 0 1 ~ A A C C G A C T C T ~ G A C G G C A G T T ~ T A C G A G A G A G ~ A T G A T A G G G T ~ C T G C T T C A G T ~
3 9 3 5 1 ~ A A G C C A G A T G ~ C T A C A C A A T T ~ A G G C T T G T A C ~ A T A T T G T C G T ~ T A G A A C G C G G ~
39401 CTACAATTAA TACATAACCT TATGTATCAT ACACAT

```

\title{
ZUSAMMENFASSUNG der Dissertation von Wenli GU
}

Fachbereich Biologie der Johannes Gutenberg-Universität Mainz

Thema: The study of a novel zinc finger gene cluster \(T Z F\) and a genomic region flanking the histone replacement gene H 4 r of drosophila melanogaster

Part I : A zinc finger gene \(T z f 1\) was cloned in the earlier work of the lab by screening a \(\lambda\) DASH2 cDNA expression library with an anti-Rat SC antibody. A \(\lambda\)-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of \(T z f 1\) to determine the genomic organization of \(T z f 1\). Another putative zinc finger gene \(T z f 2\) was found about 700 bp upstream of \(T z f 1\).

RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of \(T z f\) and \(T z f 2\) were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of \(T z f\) transcripts. Another two zinc finger genes \(T z f 3\) and \(T z f 4\) were discovered in silico. They are located 300 bp away from \(T z f\) and \(T z f 2\), and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C 2 H 2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.
Part II: 34,056 bp insert of the cosmid 19G11, containing the Histone H4 replacement gene H4r was completely sequenced by mapping and subcloning. Computer analysis was carried out with this sequence and 9 new putative genes except for the known genes H 4 r and punt were identified.

Part III: P-element mediated excision was carried out trying to obtain Drosophila melanogaster strains with mutated H4r gene.About \(5,000 \mathrm{~F} 2\) candidate flies were sorted according the phenotypes and screened with PCR. No mutant could be identified.

Genemigt vom 1. Gutachter/von der 1. Gutachterin```

